The Semantic Conventions define the keys and values which describe commonly observed concepts, protocols, and
operations used by applications. These conventions are used to populate the attributes
of spans
and span events
.
The following attributes are reserved and MUST be supported by all OpenInference Tracing SDKs:
Attribute | Type | Example | Description |
---|---|---|---|
document.content |
String | "This is a sample document content." |
The content of a retrieved document |
document.id |
String/Integer | "1234" or 1 |
Unique identifier for a document |
document.metadata |
JSON String | "{'author': 'John Doe', 'date': '2023-09-09'}" |
Metadata associated with a document |
document.score |
Float | 0.98 |
Score representing the relevance of a document |
embedding.embeddings |
List of objects† | [{"embedding.vector": [...], "embedding.text": "hello"}] |
List of embedding objects including text and vector data |
embedding.model_name |
String | "BERT-base" |
Name of the embedding model used |
embedding.text |
String | "hello world" |
The text represented in the embedding |
embedding.vector |
List of floats | [0.123, 0.456, ...] |
The embedding vector consisting of a list of floats |
exception.escaped |
Boolean | true |
Indicator if the exception has escaped the span's scope |
exception.message |
String | "Null value encountered" |
Detailed message describing the exception |
exception.stacktrace |
String | "at app.main(app.java:16)" |
The stack trace of the exception |
exception.type |
String | "NullPointerException" |
The type of exception that was thrown |
image.url |
String | "https://sample-link-to-image.jpg" |
The link to the image or its base64 encoding |
input.mime_type |
String | "text/plain" or "application/json" |
MIME type representing the format of input.value |
input.value |
String | "{'query': 'What is the weather today?'}" |
The input value to an operation |
llm.function_call |
JSON String | "{function_name: 'add', args: [1, 2]}" |
Object recording details of a function call in models or APIs |
llm.input_messages |
List of objects† | [{"message.role": "user", "message.content": "hello"}] |
List of messages sent to the LLM in a chat API request |
llm.invocation_parameters |
JSON string | "{model_name: 'gpt-3', temperature: 0.7}" |
Parameters used during the invocation of an LLM or API |
llm.provider |
String | openai , azure |
The hosting provider of the llm, e.x. azure |
llm.system |
String | anthropic , openai |
The AI product as identified by the client or server instrumentation. |
llm.model_name |
String | "gpt-3.5-turbo" |
The name of the language model being utilized |
llm.output_messages |
List of objects† | [{"message.role": "user", "message.content": "hello"}] |
List of messages received from the LLM in a chat API request |
llm.prompt_template.template |
String | "Weather forecast for {city} on {date}" |
Template used to generate prompts as Python f-strings |
llm.prompt_template.variables |
JSON String | { context: "<context from retrieval>", subject: "math" } |
JSON of key value pairs applied to the prompt template |
llm.prompt_template.version |
String | "v1.0" |
The version of the prompt template |
llm.token_count.completion |
Integer | 15 |
The number of tokens in the completion |
llm.token_count.prompt |
Integer | 5 |
The number of tokens in the prompt |
llm.token_count.total |
Integer | 20 |
Total number of tokens, including prompt and completion |
llm.tools |
List of objects† | [{"tool.name": "calculate", "tool.json_schema": "{}"}, ...] |
List of tools that are advertised to the LLM to be able to call |
message.content |
String | "What's the weather today?" |
The content of a message in a chat |
message.contents |
List of objects† | [{"message_content.type": "text", "message_content.text": "Hello"}, ...] |
The message contents to the llm, it is an array of message_content objects. |
message.function_call_arguments_json |
JSON String | "{ 'x': 2 }" |
The arguments to the function call in JSON |
message.function_call_name |
String | "multiply" or "subtract" |
Function call function name |
message.tool_call_id |
String | "call_62136355" |
Tool call result identifier corresponding to tool_call.id |
message.role |
String | "user" or "system" |
Role of the entity in a message (e.g., user, system) |
message.tool_calls |
List of objects† | [{"tool_call.function.name": "get_current_weather"}] |
List of tool calls (e.g. function calls) generated by the LLM |
messagecontent.type |
String | "text" or "image" |
The type of the content, such as "text" or "image". |
messagecontent.text |
String | "This is a sample text" |
The text content of the message, if the type is "text". |
messagecontent.image |
Image Object | {"image.url": "https://sample-link-to-image.jpg"} |
The image content of the message, if the type is "image". |
metadata |
JSON String | "{'author': 'John Doe', 'date': '2023-09-09'}" |
Metadata associated with a span |
openinference.span.kind |
String | "CHAIN" |
The kind of span (e.g., CHAIN , LLM , RETRIEVER , RERANKER ) |
output.mime_type |
String | "text/plain" or "application/json" |
MIME type representing the format of output.value |
output.value |
String | "Hello, World!" |
The output value of an operation |
reranker.input_documents |
List of objects† | [{"document.id": "1", "document.score": 0.9, "document.content": "..."}] |
List of documents as input to the reranker |
reranker.model_name |
String | "cross-encoder/ms-marco-MiniLM-L-12-v2" |
Model name of the reranker |
reranker.output_documents |
List of objects† | [{"document.id": "1", "document.score": 0.9, "document.content": "..."}] |
List of documents outputted by the reranker |
reranker.query |
String | "How to format timestamp?" |
Query parameter of the reranker |
reranker.top_k |
Integer | 3 | Top K parameter of the reranker |
retrieval.documents |
List of objects† | [{"document.id": "1", "document.score": 0.9, "document.content": "..."}] |
List of retrieved documents |
session.id |
String | "26bcd3d2-cad2-443d-a23c-625e47f3324a" |
Unique identifier for a session |
tag.tags |
List of strings | ["shopping", "travel"] | List of tags to give the span a category |
tool.description |
String | "An API to get weather data." |
Description of the tool's purpose and functionality |
tool.json_schema |
JSON String | "{'type': 'function', 'function': {'name': 'get_weather'}}" |
The json schema of a tool input |
tool.name |
String | "WeatherAPI" |
The name of the tool being utilized |
tool.id |
String | "WeatherAPI" |
The identifier for the result of the tool call (corresponding to tool_call.id ) |
tool.parameters |
JSON string | "{ 'a': 'int' }" |
The parameters definition for invoking the tool |
tool_call.function.arguments |
JSON string | "{'city': 'London'}" |
The arguments for the function being invoked by a tool call |
tool_call.function.name |
String | "get_current_weather" |
The name of the function being invoked by a tool call |
tool_call.id |
string | "call_62136355" |
The id of the a tool call (useful when there are more than one call at the same time) |
user.id |
String | "9328ae73-7141-4f45-a044-8e06192aa465" |
Unique identifier for a user |
audio.url |
String | https://storage.com/buckets/1/file.wav |
The url to an audio file (e.x. cloud storage) |
audio.mime_type |
String | audio/mpeg |
The mime type of the audio file (e.x. audio/mpeg , audio/wav ) |
audio.transcript |
String | "Hello, how are you?" |
The transcript of the audio file (e.x. whisper transcription) |
† To get a list of objects exported as OpenTelemetry span attributes, flattening of the list is necessary as shown in the examples below.
llm.system
has the following list of well-known values. If one of them applies, then the respective value MUST be
used; otherwise, a custom value MAY be used.
Value | Description |
---|---|
anthropic |
Anthropic |
openai |
OpenAI |
vertexai |
Vertex AI |
cohere |
Cohere |
mistralai |
Mistral AI |
llm.provider
has the following list of well-known values. If one of them applies, then the respective value MUST be
used; otherwise, a custom value MAY be used.
Value | Description |
---|---|
anthropic |
Anthropic |
openai |
OpenAI |
cohere |
Cohere |
mistralai |
Mistral AI |
azure |
Azure |
google |
Google (Vertex) |
aws |
AWS Bedrock |
messages = [{"message.role": "user", "message.content": "hello"},
{"message.role": "assistant", "message.content": "hi"}]
for i, obj in enumerate(messages):
for key, value in obj.items():
span.set_attribute(f"input.messages.{i}.{key}", value)
const messages = [
{ "message.role": "user", "message.content": "hello" },
{
"message.role": "assistant",
"message.content": "hi",
},
];
for (const [i, obj] of messages.entries()) {
for (const [key, value] of Object.entries(obj)) {
span.setAttribute(`input.messages.${i}.${key}`, value);
}
}
If the objects are further nested, flattening should continue until the attribute values are either simple values,
i.e. bool
, str
, bytes
, int
, float
or simple lists,
i.e. List[bool]
, List[str]
, List[bytes]
, List[int]
, List[float]
.