-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
250 lines (228 loc) · 12.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import sys
import numpy as np
import pandas as pd
import os
import cv2
import wandb
from datetime import datetime
from tqdm import tqdm
import argparse
import random
import json
import torch
from torch.utils.data import Dataset, DataLoader
from VAL import test
from hc701fed.dataset.WeightedConcatDataset import WeightedConcatDataset
from hc701fed.dataset.dataset_list_transform import (
APTOS_train,
EyePACS_train,
MESSIDOR_2_train,
MESSIDOR_pairs_train,
MESSIDOR_Etienne_train,
MESSIDOR_Brest_train,
)
from hc701fed.dataset.val_dataset_list import (
APTOS_Val,
EyePACS_Val,
MESSIDOR_2_Val,
MESSIDOR_pairs_Val,
MESSIDOR_Etienne_Val,
MESSIDOR_Brest_Val,
)
from hc701fed.dataset.val_dataset_list import (
APTOS_Test,
EyePACS_Test,
MESSIDOR_2_Test,
MESSIDOR_pairs_Test,
MESSIDOR_Etienne_Test,
MESSIDOR_Brest_Test,
)
from hc701fed.model.baseline import (
Baseline
)
def main(backbone,
lr, batch_size, epochs, device, optimizer,
dataset,seed, use_wandb,
wandb_project, wandb_entity,
save_model, checkpoint_path,
off_scheduler,off_weighted_loss,
num_classes=5
):
if save_model:
if checkpoint_path == "none":
raise ValueError("checkpoint_path is None")
if not os.path.exists(checkpoint_path):
os.mkdir(checkpoint_path)
# set seed
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.manual_seed(seed)
MESSIDOR_Centerlized_Val = WeightedConcatDataset([MESSIDOR_pairs_Val, MESSIDOR_Etienne_Val, MESSIDOR_Brest_Val])
MESSIDOR_Centerlized_Test = WeightedConcatDataset([MESSIDOR_pairs_Test, MESSIDOR_Etienne_Test, MESSIDOR_Brest_Test])
val_dataset_list = [APTOS_Val, EyePACS_Val, MESSIDOR_2_Val,MESSIDOR_Centerlized_Val, MESSIDOR_pairs_Val, MESSIDOR_Etienne_Val, MESSIDOR_Brest_Val]
val_dataset_list_name = ["APTOS_Val", "EyePACS_Val", "MESSIDOR_2_Val","MESSIDOR_Centerlized_Val", "MESSIDOR_pairs_Val", "MESSIDOR_Etienne_Val", "MESSIDOR_Brest_Val"]
test_dataset_list = [APTOS_Test, EyePACS_Test, MESSIDOR_2_Test,MESSIDOR_Centerlized_Test, MESSIDOR_pairs_Test, MESSIDOR_Etienne_Test, MESSIDOR_Brest_Test]
test_dataset_list_name = ["APTOS_Test", "EyePACS_Test", "MESSIDOR_2_Test","MESSIDOR_Centerlized_Test", "MESSIDOR_pairs_Test", "MESSIDOR_Etienne_Test", "MESSIDOR_Brest_Test"]
# load dataset
if dataset == "centerlized":
Centerlized_train = WeightedConcatDataset([APTOS_train, EyePACS_train, MESSIDOR_2_train, MESSIDOR_pairs_train, MESSIDOR_Etienne_train,MESSIDOR_Brest_train])
Centerlized_Val = WeightedConcatDataset([APTOS_Val, EyePACS_Val, MESSIDOR_2_Val, MESSIDOR_pairs_Val, MESSIDOR_Etienne_Val, MESSIDOR_Brest_Val])
train_dataset = DataLoader(Centerlized_train, batch_size=batch_size, shuffle=True)
val_dataset = DataLoader(Centerlized_Val, batch_size=batch_size, shuffle=False)
LOSS = torch.nn.CrossEntropyLoss(weight=Centerlized_train.calculate_weights())
elif dataset == "messidor":
MESSIDOR_Centerlized_train = WeightedConcatDataset([MESSIDOR_pairs_train, MESSIDOR_Etienne_train,MESSIDOR_Brest_train])
MESSIDOR_Centerlized_Val = WeightedConcatDataset([MESSIDOR_pairs_Val, MESSIDOR_Etienne_Val, MESSIDOR_Brest_Val])
train_dataset = DataLoader(MESSIDOR_Centerlized_train, batch_size=batch_size, shuffle=True)
val_dataset = DataLoader(MESSIDOR_Centerlized_Val, batch_size=batch_size, shuffle=False)
num_classes = 4
LOSS = torch.nn.CrossEntropyLoss(weight=MESSIDOR_Centerlized_train.calculate_weights())
elif dataset == "aptos":
train_dataset = DataLoader(APTOS_train, batch_size=batch_size, shuffle=True)
val_dataset = DataLoader(APTOS_Val, batch_size=batch_size, shuffle=False)
LOSS = torch.nn.CrossEntropyLoss(weight=APTOS_train.calculate_weights())
elif dataset == "eyepacs":
train_dataset = DataLoader(EyePACS_train, batch_size=batch_size, shuffle=True)
val_dataset = DataLoader(EyePACS_Val, batch_size=batch_size, shuffle=False)
LOSS = torch.nn.CrossEntropyLoss(weight=EyePACS_train.calculate_weights())
elif dataset == "messidor2":
train_dataset = DataLoader(MESSIDOR_2_train, batch_size=batch_size, shuffle=True)
val_dataset = DataLoader(MESSIDOR_2_Val, batch_size=batch_size, shuffle=False)
LOSS = torch.nn.CrossEntropyLoss(weight=MESSIDOR_2_train.calculate_weights())
elif dataset == "messidor_pairs":
train_dataset = DataLoader(MESSIDOR_pairs_train, batch_size=batch_size, shuffle=True)
val_dataset = DataLoader(MESSIDOR_pairs_Val, batch_size=batch_size, shuffle=False)
num_classes = 4
LOSS = torch.nn.CrossEntropyLoss(weight=MESSIDOR_pairs_train.calculate_weights())
elif dataset == "messidor_etienne":
train_dataset = DataLoader(MESSIDOR_Etienne_train, batch_size=batch_size, shuffle=True)
val_dataset = DataLoader(MESSIDOR_Etienne_Val, batch_size=batch_size, shuffle=False)
num_classes = 4
LOSS = torch.nn.CrossEntropyLoss(weight=MESSIDOR_Etienne_train.calculate_weights())
elif dataset == "messidor_brest":
train_dataset = DataLoader(MESSIDOR_Brest_train, batch_size=batch_size, shuffle=True)
val_dataset = DataLoader(MESSIDOR_Brest_Val, batch_size=batch_size, shuffle=False)
num_classes = 4
LOSS = torch.nn.CrossEntropyLoss(weight=MESSIDOR_Brest_train.calculate_weights())
else:
raise NotImplementedError
if off_weighted_loss:
LOSS = torch.nn.CrossEntropyLoss()
LOSS.to(device)
# load model
model = Baseline(backbone=backbone, num_classes=num_classes)
model.to(device)
# print something to prove so far so good
print(f'You are using {backbone} backbone, lr is {lr}, batch_size is {batch_size}, epochs is {epochs}, device is {device}, optimizer is {optimizer}, dataset is {dataset}, seed is {seed}, checkpoint_path is {checkpoint_path}, num_classes is {num_classes}')
if use_wandb:
run = wandb.init(project=wandb_project, entity=wandb_entity, name=dataset+'_'+backbone+'_'+datetime.now().strftime('%Y%m%d_%H%M%S'), job_type="training",reinit=True)
# optimizer str to class
optimizer = eval(optimizer)
optimizer = optimizer(model.parameters(), lr=lr)
if not off_scheduler:
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10, eta_min=0.00001)
# train
model_begin_time = datetime.now().strftime('%Y%m%d_%H%M%S')
best_f1 = 0
best_acc = 0
count_no_improve = 0
for epoch in range(epochs):
model.train()
model.to(device)
epoch_loss = 0
for i, (x, y) in enumerate(tqdm(train_dataset)):
x = x.to(device,torch.float32)
y = y.to(device,torch.long)
optimizer.zero_grad()
pred = model(x)
loss = LOSS(pred, y)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
# wandb log Step: epoch
epoch_loss = epoch_loss / len(train_dataset) * batch_size
# validation
acc, f1 = test(model, device, val_dataset)
# wandb log Step: epoch
if use_wandb:
# Horizontal axis: epoch
wandb.log({"val_acc": acc, "val_f1": f1,"train_loss": epoch_loss})
# save model every time after validation get better f1_score
if f1 > best_f1:
best_f1 = f1
best_acc = acc
count_no_improve = 0
if save_model:
if not os.path.exists(os.path.join(checkpoint_path, dataset+'_'+backbone+'_'+str(seed))):
os.mkdir(os.path.join(checkpoint_path, dataset+'_'+backbone+'_'+str(seed)))
save_path_meta = os.path.join(checkpoint_path, dataset+'_'+backbone+'_'+str(seed))
if not os.path.exists(os.path.join(save_path_meta, model_begin_time)):
os.mkdir(os.path.join(save_path_meta, model_begin_time))
save_path = os.path.join(save_path_meta, model_begin_time)
torch.save(model.state_dict(), os.path.join(save_path, f"{dataset}_{backbone}_{epoch}_{model_begin_time}.pth"))
torch.save(model.state_dict(), os.path.join(save_path, f"{dataset}_{backbone}_best.pth"))
if epoch == epochs-1:
torch.save(model.state_dict(), os.path.join(checkpoint_path, dataset+'_'+backbone+'_'+str(seed), f"{dataset}_{backbone}_last.pth"))
# if the f1_score is not getting better for 5 epochs, stop training
if f1 < best_f1:
count_no_improve += 1
if count_no_improve >= 80:
break
if not off_scheduler:
scheduler.step()
if use_wandb:
run.finish()
train_set_acc , train_set_f1 = test(model, device, train_dataset)
# Save the config of the model as a json file and the best f1_score of validation set and the f1_score of train set with last epoch to see if the model is overfitting
if save_model:
Centerlized_Val = WeightedConcatDataset([APTOS_Val, EyePACS_Val, MESSIDOR_2_Val, MESSIDOR_pairs_Val, MESSIDOR_Etienne_Val, MESSIDOR_Brest_Val])
fianl_val_dataset = DataLoader(Centerlized_Val, batch_size=256, shuffle=False)
model.load_state_dict(torch.load(os.path.join(save_path, f"{dataset}_{backbone}_best.pth")))
centerlized_set_acc , centerlized_set_f1 = test(model, device, fianl_val_dataset)
optimizer = str(optimizer).split(" ")[0]
with open(os.path.join(save_path, f"{dataset}_{backbone}_{model_begin_time}.json"), "w") as f:
json.dump({"backbone": backbone, "lr": lr, "batch_size": batch_size, "epochs": epoch, "device": device, "optimizer": optimizer, "dataset": dataset, "seed": seed, "best_acc": best_acc, "best_f1": best_f1, "train_set_f1": train_set_f1, "train_set_acc": train_set_acc, "centerlized_set_f1": centerlized_set_f1, "centerlized_set_acc": centerlized_set_acc}, f)
# try to do the inference on the test and validation set, and save the result to a json file
if save_model:
save_result_path = os.path.join(save_path, "result")
if not os.path.exists(save_result_path):
os.mkdir(save_result_path)
model.load_state_dict(torch.load(os.path.join(save_path, f"{dataset}_{backbone}_best.pth")))
for i,j in enumerate(test_dataset_list):
j_loader = DataLoader(j, batch_size=64, shuffle=False)
acc, f1 = test(model, device, j_loader)
j_name = test_dataset_list_name[i]
with open(os.path.join(save_result_path, f"{dataset}_{backbone}_{j_name}_test_set.json"), "w") as f:
json.dump({"train_dataset": dataset, "test_dataset": j_name, "acc": acc, "f1": f1}, f)
for i,j in enumerate(val_dataset_list):
j_loader = DataLoader(j, batch_size=256, shuffle=False)
acc, f1 = test(model, device, j_loader)
j_name = val_dataset_list_name[i]
with open(os.path.join(save_result_path, f"{dataset}_{backbone}_{j_name}_val_set.json"), "w") as f:
json.dump({"train_dataset": dataset, "test_dataset": j_name, "acc": acc, "f1": f1}, f)
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--backbone", type=str, default="resnet50")
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--epochs", type=int, default=2)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--optimizer", type=str, default='torch.optim.AdamW')
parser.add_argument("--dataset", type=str, default="centerlized", help='centerlized or not', choices=['centerlized', "messidor","aptos" , "eyepacs" , "messidor2", "messidor_pairs","messidor_etienne","messidor_brest"])
parser.add_argument("--seed", type=int, default=42)
# wandb true or false
parser.add_argument("--use_wandb", action='store_true', help='use wandb or not')
parser.add_argument("--wandb_project", type=str, default="HC701-PROJECT")
parser.add_argument("--wandb_entity", type=str, default="arcticfox")
# save model
parser.add_argument("--save_model", action='store_true', help='save model or not')
parser.add_argument("--checkpoint_path", type=str, default='none')
# turn off shelduler or not
parser.add_argument("--off_scheduler", action='store_true', help='turn off scheduler or not')
# turn off the weighted loss or not
parser.add_argument("--off_weighted_loss", action='store_true', help='turn off weighted loss or not')
args = parser.parse_args()
main(**vars(args))