-
Notifications
You must be signed in to change notification settings - Fork 1
/
discriminator.py
42 lines (36 loc) · 1.42 KB
/
discriminator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
import torch.nn as nn
class CNNBlock(nn.Module):
def __init__(self,in_channels,out_channels,stride = 2):
super(CNNBlock,self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels,out_channels,4,stride,1,bias=True,padding_mode='reflect'),
nn.InstanceNorm2d(out_channels),
nn.LeakyReLU(0.2,inplace=True)
)
def forward(self,x):
return self.conv(x)
class Discriminator(nn.Module):
def __init__(self,in_channels = 3,features = [64,128,256,512]):
super(Discriminator,self).__init__()
self.initial = nn.Sequential(
nn.Conv2d(in_channels,out_channels=features[0],kernel_size=4,stride=2,padding=1,padding_mode='reflect'),
nn.LeakyReLU(0.2,inplace=True)
)
layers = []
in_channels = features[0]
for feature in features[1:]:
layers.append(CNNBlock(in_channels,out_channels=feature,stride=1 if feature==features[-1] else 2))
in_channels = feature
layers.append(nn.Conv2d(in_channels,1,kernel_size=4,stride=1,padding=1,padding_mode='reflect'))
self.model = nn.Sequential(*layers)
def forward(self,x):
x = self.initial(x)
return torch.sigmoid(self.model(x))
def test():
x = torch.randn((5, 3, 256, 256))
model = Discriminator(in_channels=3)
preds = model(x)
print(preds.shape)
if __name__ == "__main__":
test()