forked from 418sec/qlib
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcatboost_model.py
73 lines (59 loc) · 2.49 KB
/
catboost_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import numpy as np
import pandas as pd
from catboost import Pool, CatBoost
from catboost.utils import get_gpu_device_count
from ...model.base import Model
from ...data.dataset import DatasetH
from ...data.dataset.handler import DataHandlerLP
class CatBoostModel(Model):
"""CatBoost Model"""
def __init__(self, loss="RMSE", **kwargs):
# There are more options
if loss not in {"RMSE", "Logloss"}:
raise NotImplementedError
self._params = {"loss_function": loss}
self._params.update(kwargs)
self.model = None
def fit(
self,
dataset: DatasetH,
num_boost_round=1000,
early_stopping_rounds=50,
verbose_eval=20,
evals_result=dict(),
**kwargs
):
df_train, df_valid = dataset.prepare(
["train", "valid"],
col_set=["feature", "label"],
data_key=DataHandlerLP.DK_L,
)
x_train, y_train = df_train["feature"], df_train["label"]
x_valid, y_valid = df_valid["feature"], df_valid["label"]
# CatBoost needs 1D array as its label
if y_train.values.ndim == 2 and y_train.values.shape[1] == 1:
y_train_1d, y_valid_1d = np.squeeze(y_train.values), np.squeeze(y_valid.values)
else:
raise ValueError("CatBoost doesn't support multi-label training")
train_pool = Pool(data=x_train, label=y_train_1d)
valid_pool = Pool(data=x_valid, label=y_valid_1d)
# Initialize the catboost model
self._params["iterations"] = num_boost_round
self._params["early_stopping_rounds"] = early_stopping_rounds
self._params["verbose_eval"] = verbose_eval
self._params["task_type"] = "GPU" if get_gpu_device_count() > 0 else "CPU"
self.model = CatBoost(self._params, **kwargs)
# train the model
self.model.fit(train_pool, eval_set=valid_pool, use_best_model=True, **kwargs)
evals_result = self.model.get_evals_result()
evals_result["train"] = list(evals_result["learn"].values())[0]
evals_result["valid"] = list(evals_result["validation"].values())[0]
def predict(self, dataset):
if self.model is None:
raise ValueError("model is not fitted yet!")
x_test = dataset.prepare("test", col_set="feature")
return pd.Series(self.model.predict(x_test.values), index=x_test.index)
if __name__ == "__main__":
cat = CatBoostModel()