-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapplication.py
204 lines (156 loc) · 7.7 KB
/
application.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from flask import Flask, request, render_template
from datetime import datetime, timedelta
from models import db, Pressure # , Result
from k_nearest import *
import os
import json
import random
import math
application = Flask(__name__)
application.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///" + os.path.join(
application.root_path, "post-chair.db"
)
# Suppress deprecation warning
application.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False
db.init_app(application)
@application.route("/")
def index():
return render_template("index.j2")
@application.route("/input/", methods=["POST"])
def data_input():
data_json = request.get_json()
back_left = data_json['back_left']
back_right = data_json['back_right']
back_bottom = data_json['back_bottom']
back_score = generate_score([back_left, back_right, back_bottom])
seat_left = data_json['seat_left']
seat_right = data_json['seat_right']
seat_rear = data_json['seat_rear']
seat_score = generate_score([seat_left, seat_right, seat_rear])
# TODO check that knn is initialized
classification = make_prediction(knn, back_score, seat_score)
feedback = ""
if classification.lower() == "bad":
feedback = make_advice(back_left, back_right, back_bottom,
seat_left, seat_right, seat_rear)
p1 = Pressure(timestamp=datetime.now(), back_left=back_left, back_right=back_right,
back_bottom=back_bottom,
seat_left=seat_left, seat_right=seat_right,
seat_rear=seat_rear, back_score=back_score, seat_score=seat_score,
classification=classification,
feedback=feedback)
db.session.add(p1)
db.session.commit()
return json.dumps(p1.serialize())
@application.route("/data/")
def data():
# random fake data for testing
# new_data = Pressure(timestamp=datetime.now(), back_left=random.randint(0, 1023),
# back_right=random.randint(0, 1023), back_bottom=random.randint(0, 1023),
# seat_left=random.randint(0, 1023), seat_right=random.randint(0, 1023),
# seat_rear=random.randint(0, 1023), back_score=random.uniform(0, 50),
# seat_score=random.uniform(0, 50),
# classification=random.choice(["Good Posture", "Bad Posture"]),
# feedback="")
# db.session.add(new_data)
# db.session.commit()
num_minutes = int(request.args.get('minutes'))
time_offset = datetime.now() - timedelta(minutes=num_minutes)
data_list = db.session.query(Pressure).filter(Pressure.timestamp > time_offset) \
.order_by(Pressure.timestamp.asc()).all()
all_data = dict()
length = len(data_list)
avg_back_score, avg_seat_score = 0, 0
avg_back_left, avg_back_right, avg_back_bottom = 0, 0, 0
avg_seat_left, avg_seat_right, avg_seat_rear = 0, 0, 0
labels = []
back_score_data = []
seat_score_data = []
back_left_data = []
back_right_data = []
back_bottom_data = []
seat_left_data = []
seat_right_data = []
seat_rear_data = []
# if no data pass empty dict
if length > 0:
current_values = data_list[-1]
all_data.update({"latest": current_values.serialize()})
for element in data_list:
avg_back_score += element.back_score / length
avg_seat_score += element.seat_score / length
avg_back_left += element.back_left / length
avg_back_right += element.back_right / length
avg_back_bottom += element.back_bottom / length
avg_seat_left += element.seat_left / length
avg_seat_right += element.seat_right / length
avg_seat_rear += element.seat_rear / length
average_values = Pressure(timestamp=datetime.now(), back_left=avg_back_left, back_right=avg_back_right,
back_bottom=avg_back_bottom,
seat_left=avg_seat_left, seat_right=avg_seat_right,
seat_rear=avg_seat_rear, back_score=avg_back_score, seat_score=avg_seat_score,
classification=make_prediction(knn, avg_back_score, avg_seat_score),
feedback=make_advice(avg_back_left, avg_back_right, avg_back_bottom,
avg_seat_left, avg_seat_right, avg_seat_rear))
all_data.update({"average": average_values.serialize()})
decimation_factor = math.floor(math.sqrt(length))
# populate chart with decimated data
for j in range(0, length - decimation_factor + 1, decimation_factor):
back_score_point, seat_score_point = 0, 0
back_left_point, back_right_point, back_bottom_point = 0, 0, 0
seat_left_point, seat_right_point, seat_rear_point = 0, 0, 0
# TODO needs to be more consistent
# aka jump less, use same starting points when decFactor same?
for k in range(0, decimation_factor):
back_score_point += data_list[j + k].back_score
seat_score_point += data_list[j + k].seat_score
back_left_point += data_list[j + k].back_left
back_right_point += data_list[j + k].back_right
back_bottom_point += data_list[j + k].back_bottom
seat_left_point += data_list[j + k].seat_left
seat_right_point += data_list[j + k].seat_right
seat_rear_point += data_list[j + k].seat_rear
# TODO improve
labels.append(data_list[j + math.floor(decimation_factor / 2)].time_string())
back_score_data.append(back_score_point / decimation_factor)
seat_score_data.append(seat_score_point / decimation_factor)
back_left_data.append(back_left_point / decimation_factor)
back_right_data.append(back_right_point / decimation_factor)
back_bottom_data.append(back_bottom_point / decimation_factor)
seat_left_data.append(seat_left_point / decimation_factor)
seat_right_data.append(seat_right_point / decimation_factor)
seat_rear_data.append(seat_rear_point / decimation_factor)
all_data.update({"labels": labels,
"back_score_data": back_score_data,
"seat_score_data": seat_score_data,
"back_left_data": back_left_data,
"back_right_data": back_right_data,
"back_bottom_data": back_bottom_data,
"seat_left_data": seat_left_data,
"seat_right_data": seat_right_data,
"seat_rear_data": seat_rear_data})
return json.dumps(all_data)
@application.cli.command("initdb")
def init_db():
db.drop_all()
db.create_all()
print("Initialized default DB")
@application.cli.command("bootstrap")
def bootstrap_data():
db.drop_all()
db.create_all()
for _ in range(0, 10):
p1 = Pressure(timestamp=datetime.now(), back_left=random.randint(0, 1023),
back_right=random.randint(0, 1023), back_bottom=random.randint(0, 1023),
seat_left=random.randint(0, 1023), seat_right=random.randint(0, 1023),
seat_rear=random.randint(0, 1023), back_score=random.uniform(0, 50),
seat_score=random.uniform(0, 50),
classification=random.choice(["Good Posture", "Bad Posture"]),
feedback="")
db.session.add(p1)
db.session.commit()
print("Added bootstrap data")
knn = main()
if __name__ == "__main__":
init_db()
application.run(threaded=True)