-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathtrain.py
252 lines (200 loc) · 8.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
import random
import time
import torch
import torch.backends.cudnn as cudnn
import models
from utils.logger import Logger
import myexman
from utils import utils
import sys
import torch.multiprocessing as mp
import torch.distributed as dist
import socket
def add_learner_params(parser):
parser.add_argument('--problem', default='sim-clr',
help='The problem to train',
choices=models.REGISTERED_MODELS,
)
parser.add_argument('--name', default='',
help='Name for the experiment',
)
parser.add_argument('--ckpt', default='',
help='Optional checkpoint to init the model.'
)
parser.add_argument('--verbose', default=False, type=bool)
# optimizer params
parser.add_argument('--lr_schedule', default='warmup-anneal')
parser.add_argument('--opt', default='lars', help='Optimizer to use', choices=['sgd', 'adam', 'lars'])
parser.add_argument('--iters', default=-1, type=int, help='The number of optimizer updates')
parser.add_argument('--warmup', default=0, type=float, help='The number of warmup iterations in proportion to \'iters\'')
parser.add_argument('--lr', default=0.1, type=float, help='Base learning rate')
parser.add_argument('--wd', '--weight_decay', default=1e-4, type=float, dest='weight_decay')
# trainer params
parser.add_argument('--save_freq', default=10000000000000000, type=int, help='Frequency to save the model')
parser.add_argument('--log_freq', default=100, type=int, help='Logging frequency')
parser.add_argument('--eval_freq', default=10000000000000000, type=int, help='Evaluation frequency')
parser.add_argument('-j', '--workers', default=4, type=int, help='The number of data loader workers')
parser.add_argument('--eval_only', default=False, type=bool, help='Skips the training step if True')
parser.add_argument('--seed', default=-1, type=int, help='Random seed')
# parallelizm params:
parser.add_argument('--dist', default='dp', type=str,
help='dp: DataParallel, ddp: DistributedDataParallel',
choices=['dp', 'ddp'],
)
parser.add_argument('--dist_address', default='127.0.0.1:1234', type=str,
help='the address and a port of the main node in the <address>:<port> format'
)
parser.add_argument('--node_rank', default=0, type=int,
help='Rank of the node (script launched): 0 for the main node and 1,... for the others',
)
parser.add_argument('--world_size', default=1, type=int,
help='the number of nodes (scripts launched)',
)
def main():
parser = myexman.ExParser(file=os.path.basename(__file__))
add_learner_params(parser)
is_help = False
if '--help' in sys.argv or '-h' in sys.argv:
sys.argv.pop(sys.argv.index('--help' if '--help' in sys.argv else '-h'))
is_help = True
args, _ = parser.parse_known_args(log_params=False)
models.REGISTERED_MODELS[args.problem].add_model_hparams(parser)
if is_help:
sys.argv.append('--help')
args = parser.parse_args(namespace=args)
if args.data == 'imagenet' and args.aug == False:
raise Exception('ImageNet models should be eval with aug=True!')
if args.seed != -1:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
args.gpu = 0
ngpus = torch.cuda.device_count()
args.number_of_processes = 1
if args.dist == 'ddp':
# add additional argument to be able to retrieve # of processes from logs
# and don't change initial arguments to reproduce the experiment
args.number_of_processes = args.world_size * ngpus
parser.update_params_file(args)
args.world_size *= ngpus
mp.spawn(
main_worker,
nprocs=ngpus,
args=(ngpus, args),
)
else:
parser.update_params_file(args)
main_worker(args.gpu, -1, args)
def main_worker(gpu, ngpus, args):
fmt = {
'train_time': '.3f',
'val_time': '.3f',
'lr': '.1e',
}
logger = Logger('logs', base=args.root, fmt=fmt)
args.gpu = gpu
torch.cuda.set_device(gpu)
args.rank = args.node_rank * ngpus + gpu
device = torch.device('cuda:%d' % args.gpu)
if args.dist == 'ddp':
dist.init_process_group(
backend='nccl',
init_method='tcp://%s' % args.dist_address,
world_size=args.world_size,
rank=args.rank,
)
n_gpus_total = dist.get_world_size()
assert args.batch_size % n_gpus_total == 0
args.batch_size //= n_gpus_total
if args.rank == 0:
print(f'===> {n_gpus_total} GPUs total; batch_size={args.batch_size} per GPU')
print(f'===> Proc {dist.get_rank()}/{dist.get_world_size()}@{socket.gethostname()}', flush=True)
# create model
model = models.REGISTERED_MODELS[args.problem](args, device=device)
if args.ckpt != '':
ckpt = torch.load(args.ckpt, map_location=device)
model.load_state_dict(ckpt['state_dict'])
# Data loading code
model.prepare_data()
train_loader, val_loader = model.dataloaders(iters=args.iters)
# define optimizer
cur_iter = 0
optimizer, scheduler = models.ssl.configure_optimizers(args, model, cur_iter - 1)
# optionally resume from a checkpoint
if args.ckpt and not args.eval_only:
optimizer.load_state_dict(ckpt['opt_state_dict'])
cudnn.benchmark = True
continue_training = args.iters != 0
data_time, it_time = 0, 0
while continue_training:
train_logs = []
model.train()
start_time = time.time()
for _, batch in enumerate(train_loader):
cur_iter += 1
batch = [x.to(device) for x in batch]
data_time += time.time() - start_time
logs = {}
if not args.eval_only:
# forward pass and compute loss
logs = model.train_step(batch, cur_iter)
loss = logs['loss']
# gradient step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# save logs for the batch
train_logs.append({k: utils.tonp(v) for k, v in logs.items()})
if cur_iter % args.save_freq == 0 and args.rank == 0:
save_checkpoint(args.root, model, optimizer, cur_iter)
if cur_iter % args.eval_freq == 0 or cur_iter >= args.iters:
# TODO: aggregate metrics over all processes
test_logs = []
model.eval()
with torch.no_grad():
for batch in val_loader:
batch = [x.to(device) for x in batch]
# forward pass
logs = model.test_step(batch)
# save logs for the batch
test_logs.append(logs)
model.train()
test_logs = utils.agg_all_metrics(test_logs)
logger.add_logs(cur_iter, test_logs, pref='test_')
it_time += time.time() - start_time
if (cur_iter % args.log_freq == 0 or cur_iter >= args.iters) and args.rank == 0:
save_checkpoint(args.root, model, optimizer)
train_logs = utils.agg_all_metrics(train_logs)
logger.add_logs(cur_iter, train_logs, pref='train_')
logger.add_scalar(cur_iter, 'lr', optimizer.param_groups[0]['lr'])
logger.add_scalar(cur_iter, 'data_time', data_time)
logger.add_scalar(cur_iter, 'it_time', it_time)
logger.iter_info()
logger.save()
data_time, it_time = 0, 0
train_logs = []
if scheduler is not None:
scheduler.step()
if cur_iter >= args.iters:
continue_training = False
break
start_time = time.time()
save_checkpoint(args.root, model, optimizer)
if args.dist == 'ddp':
dist.destroy_process_group()
def save_checkpoint(path, model, optimizer, cur_iter=None):
if cur_iter is None:
fname = os.path.join(path, 'checkpoint.pth.tar')
else:
fname = os.path.join(path, 'checkpoint-%d.pth.tar' % cur_iter)
ckpt = model.get_ckpt()
ckpt.update(
{
'opt_state_dict': optimizer.state_dict(),
'iter': cur_iter,
}
)
torch.save(ckpt, fname)
if __name__ == '__main__':
main()