forked from zjuluolun/BEVPlace
-
Notifications
You must be signed in to change notification settings - Fork 0
/
REIN.py
157 lines (111 loc) · 5.26 KB
/
REIN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import torchvision.models as models
class NetVLAD(nn.Module):
"""NetVLAD layer implementation"""
def __init__(self, num_clusters=64, dim=128):
"""
Args:
num_clusters : int
The number of clusters
dim : int
Dimension of descriptors
"""
super(NetVLAD, self).__init__()
self.num_clusters = num_clusters
self.dim = dim
self.conv = nn.Conv2d(dim, num_clusters, kernel_size=(1, 1), bias=False)
self.centroids = nn.Parameter(torch.rand(num_clusters, dim))
def init_params(self, clsts, traindescs):
clstsAssign = clsts / np.linalg.norm(clsts, axis=1, keepdims=True)
dots = np.dot(clstsAssign, traindescs.T)
dots.sort(0)
dots = dots[::-1, :] # sort, descending
self.alpha = (-np.log(0.01) / np.mean(dots[0,:] - dots[1,:])).item()
self.centroids = nn.Parameter(torch.from_numpy(clsts))
self.conv.weight = nn.Parameter(torch.from_numpy(self.alpha*clstsAssign).unsqueeze(2).unsqueeze(3))
self.conv.bias = None
def forward(self, x):
N, C = x.shape[:2]
x_flatten = x.view(N, C, -1)
soft_assign = self.conv(x).view(N, self.num_clusters, -1)
soft_assign = F.softmax(soft_assign, dim=1)
# calculate residuals to each clusters
vlad = torch.zeros([N, self.num_clusters, C], dtype=x.dtype, layout=x.layout, device=x.device)
for C in range(self.num_clusters): # slower than non-looped, but lower memory usage
residual = x_flatten.unsqueeze(0).permute(1, 0, 2, 3) - \
self.centroids[C:C+1, :].expand(x_flatten.size(-1), -1, -1).permute(1, 2, 0).unsqueeze(0)
residual *= soft_assign[:,C:C+1,:].unsqueeze(2)
vlad[:,C:C+1,:] = residual.sum(dim=-1)
vlad = F.normalize(vlad, p=2, dim=2) # intra-normalization
vlad = vlad.view(x.size(0), -1) # flatten
vlad = F.normalize(vlad, p=2, dim=1) # L2 normalize
return vlad
class REM(nn.Module):
def __init__(self, from_scratch=False, rotations=8):
super(REM, self).__init__()
# cnn backbone
pretrain = not from_scratch
encoder = models.resnet34(pretrained=pretrain) #resnet34
layers = list(encoder.children())[:-4]
self.encoder = nn.Sequential(*layers)
# rotations
self.angles = -torch.arange(0,359.00001,360.0/rotations)/180*torch.pi
def forward(self, x):
equ_features = []
batch_size = x.size(0)
for i in range(len(self.angles)):
# input warp grids
aff = torch.zeros(batch_size,2,3).cuda()
aff[:,0,0]=torch.cos(-self.angles[i])
aff[:,0,1]=torch.sin(-self.angles[i])
aff[:,1,0]=-torch.sin(-self.angles[i])
aff[:,1,1]=torch.cos(-self.angles[i])
grid = F.affine_grid(aff, torch.Size(x.size()),align_corners=True).type(x.type())
# input warp
warped_im = F.grid_sample(x, grid,align_corners=True,mode='bicubic')
# cnn backbone feature
out = self.encoder(warped_im)
# output feature warp grids
if i==0:
im1_init_size = out.size()
aff = torch.zeros(batch_size,2,3).cuda()
aff[:,0,0]=torch.cos(self.angles[i])
aff[:,0,1]=torch.sin(self.angles[i])
aff[:,1,0]=-torch.sin(self.angles[i])
aff[:,1,1]=torch.cos(self.angles[i])
grid = F.affine_grid(aff, torch.Size(im1_init_size),align_corners=True).type(x.type())
# output feature warp
out = F.grid_sample(out, grid ,align_corners=True,mode='bicubic')
equ_features.append(out.unsqueeze(-1))
equ_features = torch.cat(equ_features, axis=-1) # B C H W R
B, C, H, W, R = equ_features.shape
equ_features=torch.max(equ_features,dim=-1,keepdim=False)[0] # max pooling along rotations
aff = torch.zeros(batch_size,2,3).cuda()
aff[:,0,0]=1
aff[:,0,1]=0
aff[:,1,0]=0
aff[:,1,1]=1
# upsample for NetVLAD
B,C,H,W = x.size()
grid = F.affine_grid(aff, torch.Size((B, C, H//4, W//4)),align_corners=True).type(x.type())#,align_corners=True)
out1 = F.grid_sample(equ_features, grid,align_corners=True,mode='bicubic')
out1 = F.normalize(out1, dim=1)
# upsample for keypoints
grid = F.affine_grid(aff, torch.Size((B, C, H, W)),align_corners=True).type(x.type())#,align_corners=True)
out2 = F.grid_sample(equ_features, grid,align_corners=True,mode='bicubic')
out2 = F.normalize(out2, dim=1)
return out1, out2
class REIN(nn.Module):
def __init__(self):
super(REIN, self).__init__()
self.rem = REM()
self.pooling = NetVLAD()
self.local_feat_dim = 128
self.global_feat_dim = self.local_feat_dim*64
def forward(self, x):
out1, local_feats = self.rem(x)
global_desc = self.pooling(out1)
return out1, local_feats, global_desc