-
Notifications
You must be signed in to change notification settings - Fork 0
/
sketch.js
213 lines (188 loc) · 4.96 KB
/
sketch.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
function removeFromArray(arr, elt) {
for (var i = arr.length - 1; i >= 0; i--) {
if (arr[i] == elt) {
arr.splice(i, 1);
}
}
}
function heuristic(a, b) {
var d = dist(a.i, a.j, b.i, b.j); //dist is a p5 cmd --> calculating raw ecludian dist
//var d = abs(a.i - b.i) + abs(a.j - b.j); // Taxi-cab heuristic calculation
return d;
}
var cols = 100;
var rows = 100;
var grid = new Array(cols);
var openSet = [];
var closedSet = [];
var start;
var end;
var w, h;
var path = [];
// Constructor function to create an object to represent the nodes
function Spot(i, j) {
this.i = i;
this.j = j;
this.f = 0;
this.g = 0;
this.h = 0;
this.neighbors = [];
this.previous = undefined;
this.wall = false;
if (random(1) < 0.3) {
//random wall generator
this.wall = true;
}
this.addNeighbors = function (grid) {
// to add neighbors to a spot at any particular grid value
var i = this.i;
var j = this.j;
if (i < cols - 1) {
this.neighbors.push(grid[i + 1][j]);
}
if (i > 0) {
this.neighbors.push(grid[i - 1][j]);
}
if (j < rows - 1) {
this.neighbors.push(grid[i][j + 1]);
}
if (j > 0) {
this.neighbors.push(grid[i][j - 1]);
}
//adding diagonal neighbors
if (i > 0 && j > 0) {
this.neighbors.push(grid[i - 1][j - 1]);
}
if (i < cols - 1 && j > 0) {
this.neighbors.push(grid[i + 1][j - 1]);
}
if (i > 0 && j < rows - 1) {
this.neighbors.push(grid[i - 1][j + 1]);
}
if (i < cols - 1 && j < rows - 1) {
this.neighbors.push(grid[i + 1][j + 1]);
}
};
this.show = function (col) {
// fill(col);
if (this.wall) { //obstacle or wall
fill(0);
noStroke();
ellipse(this.i * w + w / 2, this.j * h + h / 2, w / 2, h / 2);
}
// rect(this.i * w, this.j * h, w - 1, h - 1);
};
}
// To build the grid on the screen
function setup() {
createCanvas(400, 400);
console.log("A*");
w = width / cols;
h = height / rows;
// Making a two D array
for (var i = 0; i < cols; i++) {
grid[i] = new Array(rows);
}
for (var i = 0; i < cols; i++) {
for (var j = 0; j < rows; j++) {
grid[i][j] = new Spot(i, j); //each node in the grid
}
}
for (var i = 0; i < cols; i++) {
for (var j = 0; j < rows; j++) {
grid[i][j].addNeighbors(grid); //add neighbors to the created nodes
}
}
start = grid[0][0]; //top left node
end = grid[cols - 1][rows - 1]; // bottom right node
start.wall = false; //start node cant be a wall
end.wall = false; //end node cant be a wall
openSet.push(start);
console.log(grid);
}
// To run the loop --> A* algo
function draw() {
//Running through the unvisited nodes
if (openSet.length > 0) {
var winner = 0;
for (var i = 0; i < openSet.length; i++) {
if (openSet[i].f < openSet[winner].f) {
winner = i;
}
}
var current = openSet[winner];
if (current === end) {
//Find the path
noLoop();
console.log("DONE");
}
removeFromArray(openSet, current); // remove current from openSet once its the smallest
closedSet.push(current); // add it in closedSet
var neighbors = current.neighbors;
for (var i = 0; i < neighbors.length; i++) {
// evaluating the neighbors
var neighbor = neighbors[i];
if (!closedSet.includes(neighbor) && !neighbor.wall) {
//checking to see if the node exists in the closedSet
var tempG = current.g + 1; //tentative gScore
var newPath = false;
if (openSet.includes(neighbor)) {
if (tempG < neighbor.g) {
neighbor.g = tempG;
newPath = true;
}
} else {
// not in the openSet
neighbor.g = tempG;
newPath = true;
openSet.push(neighbor);
}
if (newPath) {
neighbor.h = heuristic(neighbor, end);
neighbor.f = neighbor.g + neighbor.h; // f(n) = g(n) + h(n)
neighbor.previous = current;
}
}
}
} else {
console.log("No Solution!");
noLoop();
return;
//fill this up
}
background(255);
// Draw spots on the grid -> debugging help
for (var i = 0; i < cols; i++) {
for (var j = 0; j < rows; j++) {
grid[i][j].show(color(255));
}
}
//Adding colors to the visited and unvisited nodes
for (var i = 0; i < closedSet.length; i++) {
closedSet[i].show(color(0, 255, 0));
}
for (var i = 0; i < openSet.length; i++) {
openSet[i].show(color(255, 0, 0));
}
path = [];
var temp = current;
path.push(temp);
while (temp.previous) {
// Backtracking
path.push(temp.previous);
temp = temp.previous;
}
for (var i = 0; i < path.length; i++) {
//visualize the path
//path[i].show(color(0, 0, 255));
}
//Changing visualization of the path
noFill();
stroke(10, 10, 242);
strokeWeight(w/1.5);
beginShape();
for (var i = 0; i < path.length; i++) {
vertex(path[i].i * w + w / 2, path[i].j * h + h / 2);
}
endShape();
}