Skip to content

Latest commit

 

History

History
49 lines (35 loc) · 1.95 KB

README.md

File metadata and controls

49 lines (35 loc) · 1.95 KB

Benchmarking Representations

Code for training and benchmarking morphology appropriate representation learning methods, associated with the following manuscript.

Interpretable representation learning for 3D multi-piece intracellular structures using point clouds

Ritvik Vasan, Alexandra J. Ferrante, Antoine Borensztejn, Christopher L. Frick, Nathalie Gaudreault, Saurabh S. Mogre, Benjamin Morris, Guilherme G. Pires, Susanne M. Rafelski, Julie A. Theriot, Matheus P. Viana

bioRxiv 2024.07.25.605164; doi: https://doi.org/10.1101/2024.07.25.605164

Our analysis is organized as follows.

  1. Single cell images
  2. Preprocessing (result: pointclouds and SDFs)
    1. Punctate structures
      1. Alignment, masking, and registration
      2. Generate pointclouds
    2. Polymorphic structures: Generate SDFs
  3. Model training (result: checkpoint)
  4. Model inference (results: embeddings, model cost statistics)
  5. Interpretability analysis (results: figures)

Continue below for guidance on using these models on your own data. If you'd like to reproduce this analysis on our data, check out the following documentation.

Quickstart

Use the cytodl api to run any given experiment. For e.g., train a rotation invariant point cloud autoencoder on the PCNA dataset

from cyto_dl.api import CytoDLModel
from pathlib import Path

model = CytoDLModel()
model.root= Path(os.getcwd())
model.load_default_experiment('pcna/pc_equiv', output_dir = './')

model.print_config()

model.train()

Contact

Allen Institute for Cell Science ([email protected])