-
Notifications
You must be signed in to change notification settings - Fork 7
/
biquad.c
644 lines (521 loc) · 18.4 KB
/
biquad.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
/*****************************************************************************
* Gnome Wave Cleaner Version 0.19
* Copyright (C) 2001 Jeffrey J. Welty
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*******************************************************************************/
/* biquad.c */
#include <stdlib.h>
#include <glib.h>
#include "gwc.h"
struct {
int filter_type ;
int feather_width ;
double dbGain ;
double Fc ;
double bandwidth ;
int harmonics ;
} filter_prefs ;
#define BIQUAD
#ifdef BIQUAD
#include "biquad.h"
#else
#include "iir_lp.h"
#endif
#define BUFSIZE 10000
static gfloat dbGain;
static gfloat bandwidth;
static gfloat Fc;
static int filter_type;
static int feather_width;
int row2filter(int row)
{
if(row == 0) return LPF ;
if(row == 1) return HPF ;
if(row == 2) return NOTCH ;
if(row == 3) return BPF ;
if(row == 4) return PEQ ;
if(row == 5) return LSH ;
if(row == 6) return HSH ;
return 0 ;
}
int filter2row(gint filter_type)
{
if(filter_type == LPF) return 0 ;
if(filter_type == HPF) return 1 ;
if(filter_type == NOTCH) return 2 ;
if(filter_type == BPF) return 3 ;
if(filter_type == PEQ) return 4 ;
if(filter_type == LSH) return 5 ;
if(filter_type == HSH) return 6 ;
return 0 ;
}
void load_filter_preferences(void)
{
//looks like confusion in the previous source. Should this default to NOTCH?
filter_prefs.filter_type = 0;
filter_prefs.feather_width = 20;
//looks like confusion in the previous source. Should this default to 3?
filter_prefs.dbGain = 2;
filter_prefs.Fc = 120;
filter_prefs.bandwidth = 0.5;
GKeyFile *key_file = read_config();
int row ;
// We should probably have a separate test for each preference...
//if (g_key_file_get_string(key_file, "filter_params", "filter_type", NULL) != NULL) {
if (g_key_file_has_group(key_file, "filter_params") == TRUE) {
row = g_key_file_get_integer(key_file, "filter_params", "filter_type", NULL);
filter_prefs.filter_type = row2filter(row) ;
filter_prefs.feather_width = g_key_file_get_integer(key_file, "filter_params", "feather_width", NULL);
filter_prefs.dbGain = g_key_file_get_double(key_file, "filter_params", "dbGain", NULL);
filter_prefs.Fc = g_key_file_get_double(key_file, "filter_params", "Fc", NULL);
filter_prefs.bandwidth = g_key_file_get_double(key_file, "filter_params", "bandwidth", NULL);
}
g_key_file_free (key_file);
}
void save_filter_preferences(void)
{
GKeyFile *key_file = read_config();
int row = filter2row(filter_prefs.filter_type) ;
g_key_file_set_integer(key_file, "filter_params", "filter_type", row) ;
g_key_file_set_integer(key_file, "filter_params", "feather_width", filter_prefs.feather_width);
g_key_file_set_double(key_file, "filter_params", "dbGain", filter_prefs.dbGain);
g_key_file_set_double(key_file, "filter_params", "Fc", filter_prefs.Fc);
g_key_file_set_double(key_file, "filter_params", "bandwidth", filter_prefs.bandwidth);
write_config(key_file);
}
void filter_audio(struct sound_prefs *p, long first, long last, int channel_mask)
{
long left[BUFSIZE], right[BUFSIZE] ;
long x_left[3], x_right[3] ;
long y_left[3], y_right[3] ;
long current, i, f ;
int loops = 0 ;
long ring_buffer_length ;
double rb_left[BUFSIZE], rb_right[BUFSIZE] ;
load_filter_preferences() ;
filter_type = filter_prefs.filter_type ;
feather_width = filter_prefs.feather_width ;
dbGain = filter_prefs.dbGain ;
Fc = filter_prefs.Fc ;
bandwidth = filter_prefs.bandwidth ;
switch(filter_type) {
case LPF: g_print("LPF") ; break ;
case HPF: g_print("HPF") ; break ;
case BPF: g_print("BPF") ; break ;
case NOTCH: g_print("NOTCH") ; break ;
case PEQ: g_print("PEQ") ; break ;
case LSH: g_print("LSH") ; break ;
case HSH: g_print("HSH") ; break ;
default: g_print("UNKNOWN! ") ; break ;
}
g_print(" Fc:%lg bandwidth:%lg srate:%d\n", Fc, bandwidth,p->rate) ;
/* filtered_sample = current_sample - ring_buffer[j]; */
/* ring_buffer[j] = ring_buffer[j] * 0.9 + current_sample * 0.1; */
/* j++; */
/* j %= ring_buffer_length; */
#define MAXH 5
#ifdef BIQUAD_CALL
extern biquad *BiQuad_new(int type, smp_type dbGain, /* gain of filter */
smp_type freq, /* center frequency */
smp_type srate, /* sampling rate */
smp_type bandwidth); /* bandwidth in octaves */
#endif
#ifdef BIQUAD
biquad *iir_left, *iir_right ;
iir_left = BiQuad_new(filter_type, dbGain, Fc, p->rate, bandwidth) ;
iir_right = BiQuad_new(filter_type, dbGain, Fc, p->rate, bandwidth) ;
ring_buffer_length = p->rate / Fc + 0.5 ;
for(i = 0 ; i < ring_buffer_length ; i++) {
rb_left[i] = 0.0 ;
rb_right[i] = 0.0 ;
}
#else
FILTER iir_left, iir_right ;
get_iir_lp_coefs(Fc, &iir_left, p->rate) ;
get_iir_lp_coefs(Fc, &iir_right, p->rate) ;
#endif
/* testing for filter response */
{
double freq, d_freq = 10 ;
g_print("left a0:%lg\n", iir_left->a0) ;
g_print("left a1:%lg\n", iir_left->a1) ;
g_print("left a2:%lg\n", iir_left->a2) ;
g_print("left b1:%lg\n", iir_left->a3) ;
g_print("left b2:%lg\n", iir_left->a4) ;
for(freq = 10 ; freq < 20001 ; freq += d_freq) {
double from_formula ;
double rr = BiQuad_response(freq, p->rate, iir_right, &from_formula) ;
g_print("freq:%5.0lf response(dB):%10.2lg formula(dB):%10.2lg\n", freq, rr, from_formula) ;
if(freq > 90) d_freq = 100 ;
if(freq > 900) d_freq = 1000 ;
if(freq > 9000) d_freq = 2000 ;
}
}
current = first ;
push_status_text("Filtering audio") ;
g_print("Filtering audio %ld to %ld\n", first, last) ;
update_progress_bar(0.0,PROGRESS_UPDATE_INTERVAL,TRUE) ;
{
while(current <= last) {
long n = MIN(last - current + 1, BUFSIZE) ;
long tmplast = current + n - 1 ;
gfloat p = (gfloat)(current-first)/(last-first+1) ;
n = read_wavefile_data(left, right, current, tmplast) ;
update_progress_bar(p,PROGRESS_UPDATE_INTERVAL,FALSE) ;
for(i = 0 ; i < n ; i++) {
long icurrent = current + i ;
double feather_p = 1.0 ;
double wet_left, wet_right ;
x_left[0] = x_left[1] ;
x_left[1] = x_left[2] ;
x_right[0] = x_right[1] ;
x_right[1] = x_right[2] ;
y_left[0] = y_left[1] ;
y_left[1] = y_left[2] ;
y_right[0] = y_right[1] ;
y_right[1] = y_right[2] ;
x_right[2] = right[i] ;
if(icurrent - first < feather_width)
feather_p = (double)(icurrent-first)/(feather_width) ;
if(last - icurrent < feather_width)
feather_p = (double)(last - icurrent)/(feather_width) ;
if(channel_mask & 0x01) {
long dry_left = left[i];
#ifdef BIQUAD
wet_left = 32768.*BiQuad(dry_left/32768., iir_left) ;
#else
wet_left = iir_filter(dry_left, &iir_left) ;
#endif
left[i] = lrint(dry_left*(1.0-feather_p) + wet_left*feather_p) ;
}
if(channel_mask & 0x02) {
long dry_right = right[i] ;
#ifdef BIQUAD
wet_right = 32768.0*BiQuad(dry_right/32768., iir_right) ;
#else
wet_right = iir_filter(dry_right, &iir_right) ;
#endif
right[i] = lrint(dry_right*(1.0-feather_p) + wet_right*feather_p) ;
}
}
write_wavefile_data(left, right, current, tmplast) ;
current += n ;
if(last - current < 10) loops++ ;
if(loops > 5) {
warning("infinite loop in filter_audio, programming error\n") ;
}
}
resample_audio_data(p, first, last) ;
save_sample_block_data(p) ;
}
update_progress_bar(0.0,PROGRESS_UPDATE_INTERVAL,TRUE) ;
pop_status_text() ;
#ifdef BIQUAD
free(iir_left) ;
free(iir_right) ;
#else
filter_free(&iir_left) ;
filter_free(&iir_right) ;
#endif
main_redraw(FALSE, TRUE) ;
}
void type_window_select(GtkWidget * clist, gint row, gint column,
GdkEventButton * event, gpointer data)
{
filter_type = row2filter(row) ;
}
static GtkWidget *dbGain_entry ;
static GtkWidget *freq_entry ;
static GtkWidget *bandwidth_entry ;
static struct sound_prefs local_sound_prefs ;
static long first_sample, last_sample ;
void show_response(GtkWidget *w, gpointer gdata)
{
biquad *iir_left ;
double freq, d_freq=10 ;
Fc = atof(gtk_entry_get_text((GtkEntry *)freq_entry)) ;
dbGain = atof(gtk_entry_get_text((GtkEntry *)dbGain_entry)) ;
bandwidth = atof(gtk_entry_get_text((GtkEntry *)bandwidth_entry)) ;
iir_left = BiQuad_new(filter_type, dbGain, Fc, 44100, bandwidth) ;
for(freq = 10 ; freq < 20001 ; freq += d_freq) {
double from_formula ;
double rl = BiQuad_response(freq, 44100, iir_left, &from_formula) ;
g_print("freq:%5.0lf response(dB):%10.4lg formula(dB):%10.4lg\n", freq, rl, from_formula) ;
if(freq > 90) d_freq = 100 ;
if(freq > 900) d_freq = 1000 ;
if(freq > 9000) d_freq = 2000 ;
}
free(iir_left) ;
g_print("first_sample:%ld last_sample:%ld\n", first_sample, last_sample) ;
{
struct denoise_prefs p ;
p.n_noise_samples = 10 ;
p.FFT_SIZE = 8192 ;
print_noise_sample(&local_sound_prefs, &p, first_sample, last_sample) ;
}
}
int filter_dialog(struct sound_prefs current, struct view *v)
{
GtkWidget *dlg, *dialog_table ;
GtkWidget *feather_entry ;
int dclose = 0 ;
int row = 0 ;
int dres ;
GtkWidget *type_window_list;
GtkWidget *show_response_button ;
gchar *type_window_titles[] = { "Filter Type" };
gchar *type_window_parms[7][1] = { {"Low Pass"},
{"High Pass"},
{"Notch"},
{"Band Pass"},
{"Peaking EQ"},
{"Low Shelf Filter"},
{"High Shelf Filter"},
};
local_sound_prefs = current ;
first_sample = v->selected_first_sample ;
last_sample = v->selected_last_sample ;
load_filter_preferences();
filter_type = filter_prefs.filter_type ;
type_window_list = gtk_clist_new_with_titles(1, type_window_titles);
gtk_clist_set_selection_mode(GTK_CLIST(type_window_list),
GTK_SELECTION_SINGLE);
gtk_clist_append(GTK_CLIST(type_window_list), type_window_parms[0]);
gtk_clist_append(GTK_CLIST(type_window_list), type_window_parms[1]);
gtk_clist_append(GTK_CLIST(type_window_list), type_window_parms[2]);
gtk_clist_append(GTK_CLIST(type_window_list), type_window_parms[3]);
gtk_clist_append(GTK_CLIST(type_window_list), type_window_parms[4]);
gtk_clist_append(GTK_CLIST(type_window_list), type_window_parms[5]);
gtk_clist_append(GTK_CLIST(type_window_list), type_window_parms[6]);
gtk_clist_select_row(GTK_CLIST(type_window_list),
filter2row(filter_prefs.filter_type), 0);
gtk_signal_connect(GTK_OBJECT(type_window_list), "select_row",
GTK_SIGNAL_FUNC(type_window_select), NULL);
gtk_widget_show(type_window_list);
dialog_table = gtk_table_new(5,2,0) ;
gtk_table_set_row_spacings(GTK_TABLE(dialog_table), 4) ;
gtk_table_set_col_spacings(GTK_TABLE(dialog_table), 6) ;
gtk_widget_show (dialog_table);
dlg = gtk_dialog_new_with_buttons("Biquad filter",
GTK_WINDOW(main_window), GTK_DIALOG_DESTROY_WITH_PARENT,
GTK_STOCK_CANCEL, GTK_RESPONSE_CANCEL,
GTK_STOCK_OK, GTK_RESPONSE_OK, NULL, NULL);
gtk_dialog_set_default_response (GTK_DIALOG(dlg), GTK_RESPONSE_OK);
gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dlg)->vbox), type_window_list,
TRUE, TRUE, 0);
feather_entry = add_number_entry_with_label_int(filter_prefs.feather_width, "Feather Width", dialog_table, row++) ;
dbGain_entry = add_number_entry_with_label_double(filter_prefs.dbGain, "Gain (db)", dialog_table, row++) ;
freq_entry = add_number_entry_with_label_double(filter_prefs.Fc, "Center frequency freq (hertz)", dialog_table, row++) ;
bandwidth_entry = add_number_entry_with_label_double(filter_prefs.bandwidth, "bandwidth (octaves)", dialog_table, row++) ;
gtk_box_pack_start (GTK_BOX (GTK_DIALOG(dlg)->vbox), dialog_table, TRUE, TRUE, 0);
show_response_button = gtk_button_new_with_label("Show Response") ;
gtk_signal_connect(GTK_OBJECT(show_response_button), "clicked", GTK_SIGNAL_FUNC(show_response), NULL) ;
gtk_widget_show(show_response_button) ;
gtk_box_pack_start (GTK_BOX (GTK_DIALOG(dlg)->vbox), show_response_button, TRUE, TRUE, 0);
dres = gwc_dialog_run(GTK_DIALOG(dlg)) ;
if(dres == 0) {
feather_width = atoi(gtk_entry_get_text((GtkEntry *)feather_entry)) ;
Fc = atof(gtk_entry_get_text((GtkEntry *)freq_entry)) ;
dbGain = atof(gtk_entry_get_text((GtkEntry *)dbGain_entry)) ;
bandwidth = atof(gtk_entry_get_text((GtkEntry *)bandwidth_entry)) ;
filter_prefs.feather_width = feather_width ;
filter_prefs.dbGain = dbGain ;
filter_prefs.Fc = Fc ;
filter_prefs.bandwidth = bandwidth ;
filter_prefs.filter_type = filter_type ;
dclose = 1 ;
}
gtk_widget_destroy(dlg) ;
save_filter_preferences() ;
if(dres == 0)
return 1 ;
return 0 ;
}
/* Simple implementation of Biquad filters -- Tom St Denis
*
* Based on the work
Cookbook formulae for audio EQ biquad filter coefficients
---------------------------------------------------------
by Robert Bristow-Johnson, [email protected] a.k.a. [email protected]
* Available on the web at
http://www.smartelectronix.com/musicdsp/text/filters005.txt
* Enjoy.
*
* This work is hereby placed in the public domain for all purposes, whether
* commercial, free [as in speech] or educational, etc. Use the code and please
* give me credit if you wish.
*
* Tom St Denis -- http://tomstdenis.home.dhs.org
*/
/* Computes a BiQuad filter on a sample */
smp_type BiQuad(smp_type sample, biquad * b)
{
smp_type result;
/* compute result */
result = b->a0 * sample + b->a1 * b->x1 + b->a2 * b->x2 -
b->a3 * b->y1 - b->a4 * b->y2;
/* shift x1 to x2, sample to x1 */
b->x2 = b->x1;
b->x1 = sample;
/* shift y1 to y2, result to y1 */
b->y2 = b->y1;
b->y1 = result;
return result;
}
/* sets up a BiQuad Filter */
biquad *BiQuad_new(int type, smp_type dbGain, smp_type freq,
smp_type srate, smp_type bandwidth)
{
biquad *b;
smp_type A, omega, sn, cs, alpha, beta;
smp_type a0, a1, a2, b0, b1, b2;
b = malloc(sizeof(biquad));
if (b == NULL)
return NULL;
/* setup variables */
A = pow(10.0, dbGain /40.0);
omega = 2.0 * M_PI * freq /srate;
sn = sin(omega);
cs = cos(omega);
alpha = sn * sinh(M_LN2 /2.0 * bandwidth * omega /sn);
beta = sqrt(A + A);
switch (type) {
case LPF:
b0 = (1.0 - cs) /2.0;
b1 = 1.0 - cs;
b2 = (1.0 - cs) /2.0;
a0 = 1.0 + alpha;
a1 = -2.0 * cs;
a2 = 1.0 - alpha;
break;
case HPF:
b0 = (1.0 + cs) /2.0;
b1 = -(1.0 + cs);
b2 = (1.0 + cs) /2.0;
a0 = 1.0 + alpha;
a1 = -2.0 * cs;
a2 = 1.0 - alpha;
break;
case BPF:
b0 = alpha;
b1 = 0.0;
b2 = -alpha;
a0 = 1.0 + alpha;
a1 = -2.0 * cs;
a2 = 1.0 - alpha;
break;
case NOTCH:
b0 = 1.0;
b1 = -2.0 * cs;
b2 = 1.0;
a0 = 1.0 + alpha;
a1 = -2.0 * cs;
a2 = 1.0 - alpha;
break;
case PEQ:
b0 = 1.0 + (alpha * A);
b1 = -2.0 * cs;
b2 = 1.0 - (alpha * A);
a0 = 1.0 + (alpha /A);
a1 = -2.0 * cs;
a2 = 1.0 - (alpha /A);
break;
case LSH:
b0 = A * ((A + 1.0) - (A - 1.0) * cs + beta * sn);
b1 = 2.0 * A * ((A - 1.0) - (A + 1.0) * cs);
b2 = A * ((A + 1.0) - (A - 1.0) * cs - beta * sn);
a0 = (A + 1.0) + (A - 1.0) * cs + beta * sn;
a1 = -2.0 * ((A - 1.0) + (A + 1.0) * cs);
a2 = (A + 1.0) + (A - 1.0) * cs - beta * sn;
break;
case HSH:
b0 = A * ((A + 1.0) + (A - 1.0) * cs + beta * sn);
b1 = -2.0 * A * ((A - 1.0) + (A + 1.0) * cs);
b2 = A * ((A + 1.0) + (A - 1.0) * cs - beta * sn);
a0 = (A + 1.0) - (A - 1.0) * cs + beta * sn;
a1 = 2.0 * ((A - 1.0) - (A + 1.0) * cs);
a2 = (A + 1.0) - (A - 1.0) * cs - beta * sn;
break;
default:
free(b);
return NULL;
}
/* the canonical coefficients */
b->can_a0 = a0 ;
b->can_a1 = a1 ;
b->can_a2 = a2 ;
b->can_b0 = b0 ;
b->can_b1 = b1 ;
b->can_b2 = b2 ;
/* precompute the coefficients */
b->a0 = b0 /a0;
b->a1 = b1 /a0;
b->a2 = b2 /a0;
b->a3 = a1 /a0;
b->a4 = a2 /a0;
#ifdef HARDWIRE
/* hardwire BPF at 10 kHz, srate = 44.1 kHz */
b->a0 = 1.0 ;
b->a1 = 0.0 ;
b->a2 = -1.0 ;
b->a3 = 0.1 ;
b->a4 = 0.9 ;
b->can_a0 = b->a0 ;
b->can_a1 = b->a1 ;
b->can_a2 = b->a2 ;
b->can_b0 = 1.0 ;
b->can_b1 = b->a3 ;
b->can_b2 = b->a4 ;
#endif
/* zero initial samples */
b->x1 = b->x2 = 0;
b->y1 = b->y2 = 0;
return b;
}
#define M_SQR(x) ((x)*(x))
double BiQuad_response(double freq, double srate, biquad *p, double *from_formula)
{
double omega = 2.0 * M_PI * freq /(double)srate;
double phi = sin(omega/2) ;
double a0 = p->can_a0 ;
double a1 = p->can_a1 ;
double a2 = p->can_a2 ;
double b0 = p->can_b0 ;
double b1 = p->can_b1 ;
double b2 = p->can_b2 ;
double phi2 = phi*phi ;
*from_formula =
10*log10( M_SQR(b0+b1+b2) - 4.0*(b0*b1 + 4.0*b0*b2 + b1*b2)*phi + 16.0*b0*b2*phi2 )
-10*log10( M_SQR(a0+a1+a2) - 4.0*(a0*a1 + 4.0*a0*a2 + a1*a2)*phi + 16.0*a0*a2*phi2 ) ;
int i ;
double sum_dry2 = 0, sum_wet2 = 0;
p->x1 = p->x2 = 0;
p->y1 = p->y2 = 0;
for(i = 0 ; i < srate ; i++) {
double x = sin(2.0*M_PI*freq/srate*(double)i) ;
double y ;
sum_dry2 += x*x ;
y = BiQuad(x, p) ;
sum_wet2 += y*y ;
}
return 20.0*log10(sum_wet2/sum_dry2) ;
}
/* from robert bristow-johnson's response, march 1, 2005
http://groups.google.com/group/comp.dsp/browse_frm/thread/8c0fa8d396aeb444/a1bc5b63ac56b686
20*log10[|H(e^jw)|] =
10*log10[ (b0+b1+b2)^2 - 4*(b0*b1 + 4*b0*b2 + b1*b2)*phi + 16*b0*b2*phi^2 ]
-10*log10[ (a0+a1+a2)^2 - 4*(a0*a1 + 4*a0*a2 + a1*a2)*phi + 16*a0*a2*phi^2 ]
*/