-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSmithWatermanGotoh.cpp
525 lines (420 loc) · 17 KB
/
SmithWatermanGotoh.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
#include "SmithWatermanGotoh.h"
const float CSmithWatermanGotoh::FLOAT_NEGATIVE_INFINITY = (float)-1e+30;
const char CSmithWatermanGotoh::Directions_STOP = 0;
const char CSmithWatermanGotoh::Directions_LEFT = 1;
const char CSmithWatermanGotoh::Directions_DIAGONAL = 2;
const char CSmithWatermanGotoh::Directions_UP = 3;
CSmithWatermanGotoh::CSmithWatermanGotoh(float matchScore, float mismatchScore, float gapOpenPenalty, float gapExtendPenalty)
: mCurrentMatrixSize(0)
, mCurrentAnchorSize(0)
, mCurrentQuerySize(0)
, mCurrentAQSumSize(0)
, mMatchScore(matchScore)
, mMismatchScore(mismatchScore)
, mGapOpenPenalty(gapOpenPenalty)
, mGapExtendPenalty(gapExtendPenalty)
, mPointers(NULL)
, mSizesOfVerticalGaps(NULL)
, mSizesOfHorizontalGaps(NULL)
, mQueryGapScores(NULL)
, mBestScores(NULL)
, mReversedAnchor(NULL)
, mReversedQuery(NULL)
, mUseHomoPolymerGapOpenPenalty(false)
{
CreateScoringMatrix();
}
CSmithWatermanGotoh::~CSmithWatermanGotoh(void) {
if(mPointers) delete [] mPointers;
if(mSizesOfVerticalGaps) delete [] mSizesOfVerticalGaps;
if(mSizesOfHorizontalGaps) delete [] mSizesOfHorizontalGaps;
if(mQueryGapScores) delete [] mQueryGapScores;
if(mBestScores) delete [] mBestScores;
if(mReversedAnchor) delete [] mReversedAnchor;
if(mReversedQuery) delete [] mReversedQuery;
}
// aligns the query sequence to the reference using the Smith Waterman Gotoh algorithm
void CSmithWatermanGotoh::Align(unsigned int& referenceAl, string& refAl, string& queryAl, const char* s1, const unsigned int s1Length, const char* s2, const unsigned int s2Length) {
if((s1Length == 0) || (s2Length == 0)) {
cout << "ERROR: Found a read with a zero length." << endl;
exit(1);
}
unsigned int referenceLen = s1Length + 1;
unsigned int queryLen = s2Length + 1;
unsigned int sequenceSumLength = s1Length + s2Length;
// reinitialize our matrices
if((referenceLen * queryLen) > mCurrentMatrixSize) {
// calculate the new matrix size
mCurrentMatrixSize = referenceLen * queryLen;
// delete the old arrays
if(mPointers) delete [] mPointers;
if(mSizesOfVerticalGaps) delete [] mSizesOfVerticalGaps;
if(mSizesOfHorizontalGaps) delete [] mSizesOfHorizontalGaps;
try {
// initialize the arrays
mPointers = new char[mCurrentMatrixSize];
mSizesOfVerticalGaps = new short[mCurrentMatrixSize];
mSizesOfHorizontalGaps = new short[mCurrentMatrixSize];
} catch(bad_alloc) {
cout << "ERROR: Unable to allocate enough memory for the Smith-Waterman algorithm." << endl;
exit(1);
}
}
// initialize the traceback matrix to STOP
memset((char*)mPointers, 0, SIZEOF_CHAR * queryLen);
for(unsigned int i = 1; i < referenceLen; i++) mPointers[i * queryLen] = 0;
// initialize the gap matrices to 1
uninitialized_fill(mSizesOfVerticalGaps, mSizesOfVerticalGaps + mCurrentMatrixSize, 1);
uninitialized_fill(mSizesOfHorizontalGaps, mSizesOfHorizontalGaps + mCurrentMatrixSize, 1);
//
// construct
//
// reinitialize our query-dependent arrays
if(s2Length > mCurrentQuerySize) {
// calculate the new query array size
mCurrentQuerySize = s2Length;
// delete the old arrays
if(mQueryGapScores) delete [] mQueryGapScores;
if(mBestScores) delete [] mBestScores;
// initialize the arrays
try {
mQueryGapScores = new float[mCurrentQuerySize + 1];
mBestScores = new float[mCurrentQuerySize + 1];
} catch(bad_alloc) {
cout << "ERROR: Unable to allocate enough memory for the Smith-Waterman algorithm." << endl;
exit(1);
}
}
// reinitialize our reference+query-dependent arrays
if(sequenceSumLength > mCurrentAQSumSize) {
// calculate the new reference array size
mCurrentAQSumSize = sequenceSumLength;
// delete the old arrays
if(mReversedAnchor) delete [] mReversedAnchor;
if(mReversedQuery) delete [] mReversedQuery;
// initialize the arrays
try {
mReversedAnchor = new char[mCurrentAQSumSize + 1]; // reversed sequence #1
mReversedQuery = new char[mCurrentAQSumSize + 1]; // reversed sequence #2
} catch(bad_alloc) {
cout << "ERROR: Unable to allocate enough memory for the Smith-Waterman algorithm." << endl;
exit(1);
}
}
// initialize the gap score and score vectors
uninitialized_fill(mQueryGapScores, mQueryGapScores + queryLen, FLOAT_NEGATIVE_INFINITY);
memset((char*)mBestScores, 0, SIZEOF_FLOAT * queryLen);
float similarityScore, totalSimilarityScore, bestScoreDiagonal;
float queryGapExtendScore, queryGapOpenScore;
float referenceGapExtendScore, referenceGapOpenScore, currentAnchorGapScore;
unsigned int BestColumn = 0;
unsigned int BestRow = 0;
float BestScore = FLOAT_NEGATIVE_INFINITY;
for(unsigned int i = 1, k = queryLen; i < referenceLen; i++, k += queryLen) {
currentAnchorGapScore = FLOAT_NEGATIVE_INFINITY;
bestScoreDiagonal = mBestScores[0];
for(unsigned int j = 1, l = k + 1; j < queryLen; j++, l++) {
// calculate our similarity score
similarityScore = mScoringMatrix[s1[i - 1] - 'A'][s2[j - 1] - 'A'];
// fill the matrices
totalSimilarityScore = bestScoreDiagonal + similarityScore;
//cout << "i: " << i << ", j: " << j << ", totalSimilarityScore: " << totalSimilarityScore << endl;
queryGapExtendScore = mQueryGapScores[j] - mGapExtendPenalty;
queryGapOpenScore = mBestScores[j] - mGapOpenPenalty;
// compute the homo-polymer gap score if enabled
if(mUseHomoPolymerGapOpenPenalty)
if((j > 1) && (s2[j - 1] == s2[j - 2]))
queryGapOpenScore = mBestScores[j] - mHomoPolymerGapOpenPenalty;
if(queryGapExtendScore > queryGapOpenScore) {
mQueryGapScores[j] = queryGapExtendScore;
mSizesOfVerticalGaps[l] = (short)(mSizesOfVerticalGaps[l - queryLen] + 1);
} else mQueryGapScores[j] = queryGapOpenScore;
referenceGapExtendScore = currentAnchorGapScore - mGapExtendPenalty;
referenceGapOpenScore = mBestScores[j - 1] - mGapOpenPenalty;
// compute the homo-polymer gap score if enabled
if(mUseHomoPolymerGapOpenPenalty)
if((i > 1) && (s1[i - 1] == s1[i - 2]))
referenceGapOpenScore = mBestScores[j - 1] - mHomoPolymerGapOpenPenalty;
if(referenceGapExtendScore > referenceGapOpenScore) {
currentAnchorGapScore = referenceGapExtendScore;
mSizesOfHorizontalGaps[l] = (short)(mSizesOfHorizontalGaps[l - 1] + 1);
} else currentAnchorGapScore = referenceGapOpenScore;
bestScoreDiagonal = mBestScores[j];
mBestScores[j] = MaxFloats(totalSimilarityScore, mQueryGapScores[j], currentAnchorGapScore);
// determine the traceback direction
// diagonal (445364713) > stop (238960195) > up (214378647) > left (166504495)
if(mBestScores[j] == 0) mPointers[l] = Directions_STOP;
else if(mBestScores[j] == totalSimilarityScore) mPointers[l] = Directions_DIAGONAL;
else if(mBestScores[j] == mQueryGapScores[j]) mPointers[l] = Directions_UP;
else mPointers[l] = Directions_LEFT;
// set the traceback start at the current cell i, j and score
if(mBestScores[j] > BestScore) {
BestRow = i;
BestColumn = j;
BestScore = mBestScores[j];
}
}
}
//
// traceback
//
// aligned sequences
int gappedAnchorLen = 0; // length of sequence #1 after alignment
int gappedQueryLen = 0; // length of sequence #2 after alignment
int numMismatches = 0; // the mismatched nucleotide count
char c1, c2;
int ci = BestRow;
int cj = BestColumn;
int ck = ci * queryLen;
// traceback flag
bool keepProcessing = true;
while(keepProcessing) {
// diagonal (445364713) > stop (238960195) > up (214378647) > left (166504495)
switch(mPointers[ck + cj]) {
case Directions_DIAGONAL:
c1 = s1[--ci];
c2 = s2[--cj];
ck -= queryLen;
mReversedAnchor[gappedAnchorLen++] = c1;
mReversedQuery[gappedQueryLen++] = c2;
// increment our mismatch counter
if(mScoringMatrix[c1 - 'A'][c2 - 'A'] == mMismatchScore) numMismatches++;
break;
case Directions_STOP:
keepProcessing = false;
break;
case Directions_UP:
for(unsigned int l = 0, len = mSizesOfVerticalGaps[ck + cj]; l < len; l++) {
mReversedAnchor[gappedAnchorLen++] = s1[--ci];
mReversedQuery[gappedQueryLen++] = GAP;
ck -= queryLen;
numMismatches++;
}
break;
case Directions_LEFT:
for(unsigned int l = 0, len = mSizesOfHorizontalGaps[ck + cj]; l < len; l++) {
mReversedAnchor[gappedAnchorLen++] = GAP;
mReversedQuery[gappedQueryLen++] = s2[--cj];
numMismatches++;
}
break;
}
}
// define the reference and query sequences
mReversedAnchor[gappedAnchorLen] = 0;
mReversedQuery[gappedQueryLen] = 0;
// catch sequences with different lengths
if(gappedAnchorLen != gappedQueryLen) {
cout << "ERROR: The aligned sequences have different lengths after Smith-Waterman-Gotoh algorithm." << endl;
exit(1);
}
// reverse the strings and assign them to our alignment structure
reverse(mReversedAnchor, mReversedAnchor + gappedAnchorLen);
reverse(mReversedQuery, mReversedQuery + gappedQueryLen);
//alignment.Reference = mReversedAnchor;
//alignment.Query = mReversedQuery;
// set the reference endpoints
//alignment.ReferenceBegin = ci;
//alignment.ReferenceEnd = BestRow - 1;
referenceAl = ci;
// set the query endpoints
/*
if(alignment.IsReverseComplement) {
alignment.QueryBegin = s2Length - BestColumn;
alignment.QueryEnd = s2Length - cj - 1;
// alignment.QueryLength= alignment.QueryBegin - alignment.QueryEnd + 1;
} else {
alignment.QueryBegin = cj;
alignment.QueryEnd = BestColumn - 1;
// alignment.QueryLength= alignment.QueryEnd - alignment.QueryBegin + 1;
}
*/
// set the query length and number of mismatches
//alignment.QueryLength = alignment.QueryEnd - alignment.QueryBegin + 1;
//alignment.NumMismatches = numMismatches;
unsigned int alLength = strlen(mReversedAnchor);
unsigned int m = 0, d = 0, i = 0;
bool dashRegion = false;
ostringstream oCigar (ostringstream::out);
// Determine the CIGAR string.
refAl = mReversedAnchor;
queryAl = mReversedQuery;
// if ( cj != 0 )
// oCigar << cj << 'S';
//
// for ( unsigned int j = 0; j < alLength; j++ ) {
// if ( ( mReversedAnchor[j] != GAP ) && ( mReversedQuery[j] != GAP ) ) {
// if ( dashRegion ) {
// if ( d != 0 ) oCigar << d << 'D';
// else oCigar << i << 'I';
// }
// dashRegion = false;
// m++;
// d = 0;
// i = 0;
// } else {
// if ( !dashRegion )
// oCigar << m << 'M';
// dashRegion = true;
// m = 0;
// if ( mReversedAnchor[j] == GAP ) {
// if ( d != 0 ) oCigar << d << 'D';
// i++;
// d = 0;
// }
// else {
// if ( i != 0 ) oCigar << i << 'I';
// d++;
// i = 0;
// }
// }
// }
// if ( m != 0 ) oCigar << m << 'M';
// else if ( d != 0 ) oCigar << d << 'D';
// else if ( i != 0 ) oCigar << i << 'I';
//
// if ( BestColumn != s2Length )
// oCigar << s2Length - BestColumn << 'S';
//
// string cigarAl = oCigar.str();
// fix the gap order
CorrectHomopolymerGapOrder(alLength, numMismatches);
}
// creates a simple scoring matrix to align the nucleotides and the ambiguity code N
void CSmithWatermanGotoh::CreateScoringMatrix(void) {
unsigned int nIndex = 13;
unsigned int xIndex = 23;
// define the N score to be 1/4 of the span between mismatch and match
//const short nScore = mMismatchScore + (short)(((mMatchScore - mMismatchScore) / 4.0) + 0.5);
// calculate the scoring matrix
for(unsigned char i = 0; i < MOSAIK_NUM_NUCLEOTIDES; i++) {
for(unsigned char j = 0; j < MOSAIK_NUM_NUCLEOTIDES; j++) {
// N.B. matching N to everything (while conceptually correct) leads to some
// bad alignments, lets make N be a mismatch instead.
// add the matches or mismatches to the hashtable (N is a mismatch)
if((i == nIndex) || (j == nIndex)) mScoringMatrix[i][j] = mMismatchScore;
else if((i == xIndex) || (j == xIndex)) mScoringMatrix[i][j] = mMismatchScore;
else if(i == j) mScoringMatrix[i][j] = mMatchScore;
else mScoringMatrix[i][j] = mMismatchScore;
}
}
// add ambiguity codes
mScoringMatrix['M' - 'A']['A' - 'A'] = mMatchScore; // M - A
mScoringMatrix['A' - 'A']['M' - 'A'] = mMatchScore;
mScoringMatrix['M' - 'A']['C' - 'A'] = mMatchScore; // M - C
mScoringMatrix['C' - 'A']['M' - 'A'] = mMatchScore;
mScoringMatrix['R' - 'A']['A' - 'A'] = mMatchScore; // R - A
mScoringMatrix['A' - 'A']['R' - 'A'] = mMatchScore;
mScoringMatrix['R' - 'A']['G' - 'A'] = mMatchScore; // R - G
mScoringMatrix['G' - 'A']['R' - 'A'] = mMatchScore;
mScoringMatrix['W' - 'A']['A' - 'A'] = mMatchScore; // W - A
mScoringMatrix['A' - 'A']['W' - 'A'] = mMatchScore;
mScoringMatrix['W' - 'A']['T' - 'A'] = mMatchScore; // W - T
mScoringMatrix['T' - 'A']['W' - 'A'] = mMatchScore;
mScoringMatrix['S' - 'A']['C' - 'A'] = mMatchScore; // S - C
mScoringMatrix['C' - 'A']['S' - 'A'] = mMatchScore;
mScoringMatrix['S' - 'A']['G' - 'A'] = mMatchScore; // S - G
mScoringMatrix['G' - 'A']['S' - 'A'] = mMatchScore;
mScoringMatrix['Y' - 'A']['C' - 'A'] = mMatchScore; // Y - C
mScoringMatrix['C' - 'A']['Y' - 'A'] = mMatchScore;
mScoringMatrix['Y' - 'A']['T' - 'A'] = mMatchScore; // Y - T
mScoringMatrix['T' - 'A']['Y' - 'A'] = mMatchScore;
mScoringMatrix['K' - 'A']['G' - 'A'] = mMatchScore; // K - G
mScoringMatrix['G' - 'A']['K' - 'A'] = mMatchScore;
mScoringMatrix['K' - 'A']['T' - 'A'] = mMatchScore; // K - T
mScoringMatrix['T' - 'A']['K' - 'A'] = mMatchScore;
mScoringMatrix['V' - 'A']['A' - 'A'] = mMatchScore; // V - A
mScoringMatrix['A' - 'A']['V' - 'A'] = mMatchScore;
mScoringMatrix['V' - 'A']['C' - 'A'] = mMatchScore; // V - C
mScoringMatrix['C' - 'A']['V' - 'A'] = mMatchScore;
mScoringMatrix['V' - 'A']['G' - 'A'] = mMatchScore; // V - G
mScoringMatrix['G' - 'A']['V' - 'A'] = mMatchScore;
mScoringMatrix['H' - 'A']['A' - 'A'] = mMatchScore; // H - A
mScoringMatrix['A' - 'A']['H' - 'A'] = mMatchScore;
mScoringMatrix['H' - 'A']['C' - 'A'] = mMatchScore; // H - C
mScoringMatrix['C' - 'A']['H' - 'A'] = mMatchScore;
mScoringMatrix['H' - 'A']['T' - 'A'] = mMatchScore; // H - T
mScoringMatrix['T' - 'A']['H' - 'A'] = mMatchScore;
mScoringMatrix['D' - 'A']['A' - 'A'] = mMatchScore; // D - A
mScoringMatrix['A' - 'A']['D' - 'A'] = mMatchScore;
mScoringMatrix['D' - 'A']['G' - 'A'] = mMatchScore; // D - G
mScoringMatrix['G' - 'A']['D' - 'A'] = mMatchScore;
mScoringMatrix['D' - 'A']['T' - 'A'] = mMatchScore; // D - T
mScoringMatrix['T' - 'A']['D' - 'A'] = mMatchScore;
mScoringMatrix['B' - 'A']['C' - 'A'] = mMatchScore; // B - C
mScoringMatrix['C' - 'A']['B' - 'A'] = mMatchScore;
mScoringMatrix['B' - 'A']['G' - 'A'] = mMatchScore; // B - G
mScoringMatrix['G' - 'A']['B' - 'A'] = mMatchScore;
mScoringMatrix['B' - 'A']['T' - 'A'] = mMatchScore; // B - T
mScoringMatrix['T' - 'A']['B' - 'A'] = mMatchScore;
}
// enables homo-polymer scoring
void CSmithWatermanGotoh::EnableHomoPolymerGapPenalty(float hpGapOpenPenalty) {
mUseHomoPolymerGapOpenPenalty = true;
mHomoPolymerGapOpenPenalty = hpGapOpenPenalty;
}
// corrects the homopolymer gap order for forward alignments
void CSmithWatermanGotoh::CorrectHomopolymerGapOrder(const unsigned int numBases, const unsigned int numMismatches) {
// this is only required for alignments with mismatches
//if(al.NumMismatches == 0) return;
if ( numMismatches == 0 ) return;
// localize the alignment data
//char* pReference = al.Reference.Data();
//char* pQuery = al.Query.Data();
//const unsigned int numBases = al.Reference.Length();
char* pReference = mReversedAnchor;
char* pQuery = mReversedQuery;
// initialize
bool hasReferenceGap = false, hasQueryGap = false;
char* pNonGapSeq = NULL;
char* pGapSeq = NULL;
char nonGapBase = 'J';
// identify gapped regions
for(unsigned int i = 0; i < numBases; i++) {
// check if the current position is gapped
hasReferenceGap = false;
hasQueryGap = false;
if(pReference[i] == GAP) {
hasReferenceGap = true;
pNonGapSeq = pQuery;
pGapSeq = pReference;
nonGapBase = pQuery[i];
}
if(pQuery[i] == GAP) {
hasQueryGap = true;
pNonGapSeq = pReference;
pGapSeq = pQuery;
nonGapBase = pReference[i];
}
// continue if we don't have any gaps
if(!hasReferenceGap && !hasQueryGap) continue;
// sanity check
if(hasReferenceGap && hasQueryGap) {
printf("ERROR: Found a gap in both the reference sequence and query sequence.\n");
exit(1);
}
// find the non-gapped length (forward)
unsigned short numGappedBases = 0;
unsigned short nonGapLength = 0;
unsigned short testPos = i;
while(testPos < numBases) {
const char gs = pGapSeq[testPos];
const char ngs = pNonGapSeq[testPos];
bool isPartofHomopolymer = false;
if(((gs == nonGapBase) || (gs == GAP)) && (ngs == nonGapBase)) isPartofHomopolymer = true;
if(!isPartofHomopolymer) break;
if(gs == GAP) numGappedBases++;
else nonGapLength++;
testPos++;
}
// fix the gap order
if(numGappedBases != 0) {
char* pCurrentSequence = pGapSeq + i;
memset(pCurrentSequence, nonGapBase, nonGapLength);
pCurrentSequence += nonGapLength;
memset(pCurrentSequence, GAP, numGappedBases);
}
// increment
i += numGappedBases + nonGapLength - 1;
}
}