-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1337.the-k-weakest-rows-in-a-matrix.cpp
112 lines (109 loc) · 2.61 KB
/
1337.the-k-weakest-rows-in-a-matrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
/*
* @lc app=leetcode id=1337 lang=cpp
*
* [1337] The K Weakest Rows in a Matrix
*
* https://leetcode.com/problems/the-k-weakest-rows-in-a-matrix/description/
*
* algorithms
* Easy (69.66%)
* Likes: 564
* Dislikes: 38
* Total Accepted: 46.7K
* Total Submissions: 65.9K
* Testcase Example: '[[1,1,0,0,0],[1,1,1,1,0],[1,0,0,0,0],[1,1,0,0,0],[1,1,1,1,1]]\n3'
*
* Given a m * n matrix mat of ones (representing soldiers) and zeros
* (representing civilians), return the indexes of the k weakest rows in the
* matrix ordered from the weakest to the strongest.
*
* A row i is weaker than row j, if the number of soldiers in row i is less
* than the number of soldiers in row j, or they have the same number of
* soldiers but i is less than j. Soldiers are always stand in the frontier of
* a row, that is, always ones may appear first and then zeros.
*
*
* Example 1:
*
*
* Input: mat =
* [[1,1,0,0,0],
* [1,1,1,1,0],
* [1,0,0,0,0],
* [1,1,0,0,0],
* [1,1,1,1,1]],
* k = 3
* Output: [2,0,3]
* Explanation:
* The number of soldiers for each row is:
* row 0 -> 2
* row 1 -> 4
* row 2 -> 1
* row 3 -> 2
* row 4 -> 5
* Rows ordered from the weakest to the strongest are [2,0,3,1,4]
*
*
* Example 2:
*
*
* Input: mat =
* [[1,0,0,0],
* [1,1,1,1],
* [1,0,0,0],
* [1,0,0,0]],
* k = 2
* Output: [0,2]
* Explanation:
* The number of soldiers for each row is:
* row 0 -> 1
* row 1 -> 4
* row 2 -> 1
* row 3 -> 1
* Rows ordered from the weakest to the strongest are [0,2,3,1]
*
*
*
* Constraints:
*
*
* m == mat.length
* n == mat[i].length
* 2 <= n, m <= 100
* 1 <= k <= m
* matrix[i][j] is either 0 or 1.
*
*
*/
// @lc code=start
class Solution {
public:
vector<int> kWeakestRows(vector<vector<int>>& mat, int k) {
if (mat.size() == 0)
return vector<int>();
vector<int> result;
vector<pair<int, int>> vecRow;
for (int i = 0; i < mat.size(); ++i) {
int index = binarySearch(mat[i]);
vecRow.push_back(make_pair(index + 1, i));
}
sort(vecRow.begin(), vecRow.end());
for (int i = 0; i < k; ++i) {
result.push_back(vecRow[i].second);
}
return result;
}
int binarySearch(vector<int>& v) {
int left = 0, right = v.size() - 1;
while (left < right) {
int mid = left + (right - left + 1) / 2;
if (v[mid] == 0) {
right = mid - 1;
} else {
left = mid;
}
}
return v[left] == 1 ? left : -1;
}
};
// @lc code=end