-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathSIMDSupport.hpp
1232 lines (944 loc) · 48.4 KB
/
SIMDSupport.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef SIMDSUPPORT_HPP
#define SIMDSUPPORT_HPP
#include <algorithm>
#include <bitset>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <functional>
#if defined(__arm__) || defined(__arm64) || defined(__aarch64__)
#include <arm_neon.h>
#include <memory.h>
#include <fenv.h>
#define SIMD_COMPILER_SUPPORT_NEON 1
#elif defined(__APPLE__) || defined(__linux__) || defined(_WIN32)
#if defined(_WIN32)
#include <malloc.h>
#include <intrin.h>
#endif
#include <emmintrin.h>
#include <immintrin.h>
#endif
// ******************** MSVC SSE Support Detection ********************* //
// MSVC doesn't ever define __SSE__ so if needed set it from other defines
#ifndef __SSE__
#if defined _M_X64 || (defined _M_IX86_FP && _M_IX86_FP > 0)
#define __SSE__ 1
#endif
#endif
// ****************** Determine SIMD Compiler Support ****************** //
#define SIMD_COMPILER_SUPPORT_SCALAR 0
#define SIMD_COMPILER_SUPPORT_VEC128 1
#define SIMD_COMPILER_SUPPORT_VEC256 2
#define SIMD_COMPILER_SUPPORT_VEC512 3
template<class T>
struct SIMDLimits
{
static constexpr int max_size = 1;
static constexpr int byte_width = alignof(T);
};
#if defined(__AVX512F__)
#define SIMD_COMPILER_SUPPORT_LEVEL SIMD_COMPILER_SUPPORT_VEC512
template<>
struct SIMDLimits<double>
{
static constexpr int max_size = 8;
static constexpr int byte_width = 64;
};
template<>
struct SIMDLimits<float>
{
static constexpr int max_size = 16;
static constexpr int byte_width = 64;
};
#elif defined(__AVX__)
#define SIMD_COMPILER_SUPPORT_LEVEL SIMD_COMPILER_SUPPORT_VEC256
template<>
struct SIMDLimits<double>
{
static constexpr int max_size = 4;
static constexpr int byte_width = 32;
};
template<>
struct SIMDLimits<float>
{
static constexpr int max_size = 8;
static constexpr int byte_width = 32;
};
#elif defined(__SSE__) || defined(__arm__) || defined(__arm64) || defined(__aarch64__)
#define SIMD_COMPILER_SUPPORT_LEVEL SIMD_COMPILER_SUPPORT_VEC128
#if defined (__SSE__) || defined(__arm64) || defined(__aarch64__)
template<>
struct SIMDLimits<double>
{
static constexpr int max_size = 2;
static constexpr int byte_width = 16;
};
#endif
template<>
struct SIMDLimits<float>
{
static constexpr int max_size = 4;
static constexpr int byte_width = 16;
};
#else
#define SIMD_COMPILER_SUPPORT_LEVEL SIMD_COMPILER_SUPPORT_SCALAR
#endif
// ********************* Aligned Memory Allocation ********************* //
#ifdef __APPLE__
template <class T>
T *allocate_aligned(size_t size)
{
return static_cast<T *>(malloc(size * sizeof(T)));
}
template <class T>
void deallocate_aligned(T *ptr)
{
free(ptr);
}
#elif defined(__linux__)
template <class T>
T *allocate_aligned(size_t size)
{
void *mem = nullptr;
if (posix_memalign(&mem, SIMDLimits<T>::byte_width, size * sizeof(T)))
return nullptr;
return static_cast<T *>(mem);
}
template <class T>
void deallocate_aligned(T *ptr)
{
free(ptr);
}
#else
template <class T>
T *allocate_aligned(size_t size)
{
return static_cast<T *>(_aligned_malloc(size * sizeof(T), SIMDLimits<T>::byte_width));
}
template <class T>
void deallocate_aligned(T *ptr)
{
_aligned_free(ptr);
}
#endif
// ******************** Denormal Handling ******************** //
struct SIMDDenormals
{
using denormal_flags = std::bitset<2>;
static denormal_flags make_flags(bool daz, bool ftz)
{
denormal_flags denormal_state(0);
denormal_state.set(0, daz);
denormal_state.set(1, ftz);
return denormal_state;
}
// Platform-specific get and set for flags
#if (SIMD_COMPILER_SUPPORT_LEVEL >= SIMD_COMPILER_SUPPORT_VEC128)
#if defined SIMD_COMPILER_SUPPORT_NEON
#if defined(__arm64) || defined(__aarch64__)
static constexpr unsigned long long ftz()
{
// __fpcr_flush_to_zero on apple, but better to be portable
return 0x01000000ULL;
}
static denormal_flags flags()
{
fenv_t env;
fegetenv(&env);
return make_flags(false, env.__fpcr & ftz());
}
static void set(denormal_flags flags)
{
fenv_t env;
fegetenv(&env);
if (flags.test(1))
env.__fpcr |= ftz();
else
env.__fpcr ^= ftz();
fesetenv(&env);
}
#else
static unsigned int& get_fpscr(fenv_t& env)
{
return env.__cw;
}
static constexpr unsigned int ftz()
{
// __fpscr_flush_to_zero on apple, but better to be portable
return 0x01000000U;
}
static denormal_flags flags()
{
fenv_t env;
fegetenv(&env);
return make_flags(false, get_fpscr(env) & ftz());
}
static void set(denormal_flags flags)
{
fenv_t env;
fegetenv(&env);
if (flags.test(1))
get_fpscr(env) |= ftz();
else
get_fpscr(env) ^= ftz();
fesetenv(&env);
}
#endif
#else
static denormal_flags flags()
{
std::bitset<32> csr(_mm_getcsr());
return make_flags(csr.test(6), csr.test(15));
}
static void set(denormal_flags flags)
{
std::bitset<32> csr(_mm_getcsr());
csr.set(6, flags.test(0));
csr.set(15, flags.test(1));
_mm_setcsr(static_cast<unsigned int>(csr.to_ulong()));
}
#endif
#else
static denormal_flags flags() { return 0; }
static void set(denormal_flags flags) {}
#endif
// Set off
void static off() { set(0x3); }
// Set denomal handling using RAII
SIMDDenormals() : mFlags(flags())
{
off();
}
SIMDDenormals(const SIMDDenormals&) = delete;
SIMDDenormals& operator=(const SIMDDenormals&) = delete;
~SIMDDenormals()
{
set(mFlags);
}
private:
denormal_flags mFlags;
};
// ******************** Basic Data Type Definitions ******************** //
template <class T, class U, int vec_size>
struct SIMDVector
{
static constexpr int size = vec_size;
typedef T scalar_type;
SIMDVector() {}
SIMDVector(U a) : mVal(a) {}
U mVal;
};
template <class T, int vec_size>
struct SIMDType {};
// ************* A Vector of Given Size (Made of Vectors) ************** //
template <class T, int vec_size, int final_size>
struct SizedVector
{
using SV = SizedVector;
using VecType = SIMDType<T, vec_size>;
static constexpr int size = final_size;
static constexpr int array_size = final_size / vec_size;
SizedVector() {}
SizedVector(const T& a) { static_iterate<>().set(*this, a); }
SizedVector(const SizedVector *ptr) { *this = *ptr; }
SizedVector(const T *array) { static_iterate<>().load(*this, array); }
// For scalar conversions use a constructor
template <class U>
SizedVector(const SizedVector<U, 1, final_size>& vec)
{
static_iterate<>().set(*this, vec);
}
// Attempt to cast types directly for conversions if casts are provided
template <class U>
SizedVector(const SizedVector<U, final_size, final_size>& v)
: SizedVector(v.mData[0])
{}
void store(T *a) const { static_iterate<>().store(a, *this); }
friend SV operator + (const SV& a, const SV& b) { return op(a, b, std::plus<VecType>()); }
friend SV operator - (const SV& a, const SV& b) { return op(a, b, std::minus<VecType>()); }
friend SV operator * (const SV& a, const SV& b) { return op(a, b, std::multiplies<VecType>()); }
friend SV operator / (const SV& a, const SV& b) { return op(a, b, std::divides<VecType>()); }
SV& operator += (const SV& b) { return (*this = *this + b); }
SV& operator -= (const SV& b) { return (*this = *this - b); }
SV& operator *= (const SV& b) { return (*this = *this * b); }
SV& operator /= (const SV& b) { return (*this = *this / b); }
friend SV min(const SV& a, const SV& b) { return op(a, b, std::min<VecType>()); }
friend SV max(const SV& a, const SV& b) { return op(a, b, std::max<VecType>()); }
friend SV operator == (const SV& a, const SV& b) { return op(a, b, std::equal_to<VecType>()); }
friend SV operator != (const SV& a, const SV& b) { return op(a, b, std::not_equal_to<VecType>()); }
friend SV operator > (const SV& a, const SV& b) { return op(a, b, std::greater<VecType>()); }
friend SV operator < (const SV& a, const SV& b) { return op(a, b, std::less<VecType>()); }
friend SV operator >= (const SV& a, const SV& b) { return op(a, b, std::greater_equal<VecType>()); }
friend SV operator <= (const SV& a, const SV& b) { return op(a, b, std::less_equal<VecType>()); }
VecType mData[array_size];
private:
// Helpers
// This template allows static loops
template <int First = 0, int Last = array_size>
struct static_iterate
{
template <typename Fn>
void operator()(SV &result, const SV& a, const SV& b, Fn const& fn) const
{
result.mData[First] = fn(a.mData[First], b.mData[First]);
static_iterate<First + 1, Last>()(result, a, b, fn);
}
void load(SV &v, const T *array)
{
v.mData[First] = VecType(array + First * vec_size);
static_iterate<First + 1, Last>().load(v, array);
}
void store(T *array, const SV& v)
{
v.mData[First].store(array + First * vec_size);
static_iterate<First + 1, Last>().store(array, v);
}
void set(SV &v, const T& a)
{
v.mData[First] = a;
static_iterate<First + 1, Last>().set(v, a);
}
template <class U>
void set(SV &v, const SizedVector<U, 1, final_size>& a)
{
v.mData[First] = a.mData[First];
static_iterate<First + 1, Last>().set(v, a);
}
};
// This specialisation avoids infinite recursion
template <int N>
struct static_iterate<N, N>
{
template <typename Fn>
void operator()(SV & /*result*/, const SV& /* a */, const SV& /* b */, Fn const& /* fn */) const {}
void load(SV & /* v */, const T * /* array */) {}
void store(T * /* array */, const SV& /* v */) {}
void set(SV & /* v */, const T& /* a */) {}
template <class U>
void set(SV & /* v */, const SizedVector<U, 1, final_size>& /* a */) {}
};
// Op template
template <typename Op>
friend SV op(const SV& a, const SV& b, Op op)
{
SV result;
static_iterate<>()(result, a, b, op);
return result;
}
};
// ************** Platform-Agnostic Data Type Definitions ************** //
template<>
struct SIMDType<double, 1>
{
static constexpr int size = 1;
typedef double scalar_type;
SIMDType() {}
SIMDType(double a) : mVal(a) {}
SIMDType(const double* a) { mVal = *a; }
void store(double *a) const { *a = mVal; }
friend SIMDType operator + (const SIMDType& a, const SIMDType& b) { return a.mVal + b.mVal; }
friend SIMDType operator - (const SIMDType& a, const SIMDType& b) { return a.mVal - b.mVal; }
friend SIMDType operator * (const SIMDType& a, const SIMDType& b) { return a.mVal * b.mVal; }
friend SIMDType operator / (const SIMDType& a, const SIMDType& b) { return a.mVal / b.mVal; }
SIMDType& operator += (const SIMDType& b) { return (*this = *this + b); }
SIMDType& operator -= (const SIMDType& b) { return (*this = *this - b); }
SIMDType& operator *= (const SIMDType& b) { return (*this = *this * b); }
SIMDType& operator /= (const SIMDType& b) { return (*this = *this / b); }
friend SIMDType sqrt(const SIMDType& a) { return std::sqrt(a.mVal); }
friend SIMDType round(const SIMDType& a) { return std::round(a.mVal); }
friend SIMDType trunc(const SIMDType& a) { return std::trunc(a.mVal); }
friend SIMDType min(const SIMDType& a, const SIMDType& b) { return std::min(a.mVal, b.mVal); }
friend SIMDType max(const SIMDType& a, const SIMDType& b) { return std::max(a.mVal, b.mVal); }
friend SIMDType sel(const SIMDType& a, const SIMDType& b, const SIMDType& c) { return c.mVal ? b.mVal : a.mVal; }
friend SIMDType operator == (const SIMDType& a, const SIMDType& b) { return a.mVal == b.mVal; }
friend SIMDType operator != (const SIMDType& a, const SIMDType& b) { return a.mVal != b.mVal; }
friend SIMDType operator > (const SIMDType& a, const SIMDType& b) { return a.mVal > b.mVal; }
friend SIMDType operator < (const SIMDType& a, const SIMDType& b) { return a.mVal < b.mVal; }
friend SIMDType operator >= (const SIMDType& a, const SIMDType& b) { return a.mVal >= b.mVal; }
friend SIMDType operator <= (const SIMDType& a, const SIMDType& b) { return a.mVal <= b.mVal; }
double mVal;
};
template<>
struct SIMDType<float, 1>
{
static constexpr int size = 1;
typedef float scalar_type;
SIMDType() {}
SIMDType(float a) : mVal(a) {}
SIMDType(const float* a) { mVal = *a; }
SIMDType(const SIMDType<double, 1>& a) : mVal(static_cast<float>(a.mVal)) {}
void store(float *a) const { *a = mVal; }
friend SIMDType operator + (const SIMDType& a, const SIMDType& b) { return a.mVal + b.mVal; }
friend SIMDType operator - (const SIMDType& a, const SIMDType& b) { return a.mVal - b.mVal; }
friend SIMDType operator * (const SIMDType& a, const SIMDType& b) { return a.mVal * b.mVal; }
friend SIMDType operator / (const SIMDType& a, const SIMDType& b) { return a.mVal / b.mVal; }
SIMDType& operator += (const SIMDType& b) { return (*this = *this + b); }
SIMDType& operator -= (const SIMDType& b) { return (*this = *this - b); }
SIMDType& operator *= (const SIMDType& b) { return (*this = *this * b); }
SIMDType& operator /= (const SIMDType& b) { return (*this = *this / b); }
friend SIMDType sqrt(const SIMDType& a) { return std::sqrt(a.mVal); }
friend SIMDType round(const SIMDType& a) { return std::round(a.mVal); }
friend SIMDType trunc(const SIMDType& a) { return std::trunc(a.mVal); }
friend SIMDType min(const SIMDType& a, const SIMDType& b) { return std::min(a.mVal, b.mVal); }
friend SIMDType max(const SIMDType& a, const SIMDType& b) { return std::max(a.mVal, b.mVal); }
friend SIMDType sel(const SIMDType& a, const SIMDType& b, const SIMDType& c) { return c.mVal ? b.mVal : a.mVal; }
friend SIMDType operator == (const SIMDType& a, const SIMDType& b) { return a.mVal == b.mVal; }
friend SIMDType operator != (const SIMDType& a, const SIMDType& b) { return a.mVal != b.mVal; }
friend SIMDType operator > (const SIMDType& a, const SIMDType& b) { return a.mVal > b.mVal; }
friend SIMDType operator < (const SIMDType& a, const SIMDType& b) { return a.mVal < b.mVal; }
friend SIMDType operator >= (const SIMDType& a, const SIMDType& b) { return a.mVal >= b.mVal; }
friend SIMDType operator <= (const SIMDType& a, const SIMDType& b) { return a.mVal <= b.mVal; }
operator SIMDType<double, 1>() { return static_cast<double>(mVal); }
float mVal;
};
template<>
struct SIMDType<float, 2>
{
static constexpr int size = 1;
typedef float scalar_type;
SIMDType() {}
SIMDType(float a)
{
mVals[0] = a;
mVals[1] = a;
}
SIMDType(float a, float b)
{
mVals[0] = a;
mVals[1] = b;
}
SIMDType(const float* a)
{
mVals[0] = a[0];
mVals[1] = a[1];
}
void store(float *a) const
{
a[0] = mVals[0];
a[1] = mVals[1];
}
// N.B. - no ops
float mVals[2];
};
// ************** Platform-Specific Data Type Definitions ************** //
// ************************ 128-bit SIMD Types ************************* //
#if (SIMD_COMPILER_SUPPORT_LEVEL >= SIMD_COMPILER_SUPPORT_VEC128)
#ifdef SIMD_COMPILER_SUPPORT_NEON /* Neon Intrinsics */
#if defined(__arm64) || defined(__aarch64__)
template<>
struct SIMDType<double, 2> : public SIMDVector<double, float64x2_t, 2>
{
private:
template <uint64x2_t Op(float64x2_t, float64x2_t)>
static SIMDType compare(const SIMDType& a, const SIMDType& b)
{
return vreinterpretq_f64_u64(Op(a.mVal, b.mVal));
}
template <uint64x2_t Op(uint64x2_t, uint64x2_t)>
static SIMDType bitwise(const SIMDType& a, const SIMDType& b)
{
return vreinterpretq_f64_u64(Op(vreinterpretq_u64_f64(a.mVal), vreinterpretq_u64_f64(b.mVal)));
}
static float64x2_t neq(const SIMDType& a, const SIMDType& b)
{
return vreinterpretq_f64_u32(vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(a.mVal, b.mVal))));
}
public:
SIMDType() {}
SIMDType(const double& a) { mVal = vdupq_n_f64(a); }
SIMDType(const double* a) { mVal = vld1q_f64(a); }
SIMDType(float64x2_t a) : SIMDVector(a) {}
SIMDType(const SIMDType<float, 2> &a)
{
double vals[2];
vals[0] = a.mVals[0];
vals[1] = a.mVals[1];
mVal = vld1q_f64(vals);
}
void store(double *a) const { vst1q_f64(a, mVal); }
friend SIMDType operator + (const SIMDType& a, const SIMDType& b) { return vaddq_f64(a.mVal, b.mVal); }
friend SIMDType operator - (const SIMDType& a, const SIMDType& b) { return vsubq_f64(a.mVal, b.mVal); }
friend SIMDType operator * (const SIMDType& a, const SIMDType& b) { return vmulq_f64(a.mVal, b.mVal); }
friend SIMDType operator / (const SIMDType& a, const SIMDType& b) { return vdivq_f64(a.mVal, b.mVal); }
SIMDType& operator += (const SIMDType& b) { return (*this = *this + b); }
SIMDType& operator -= (const SIMDType& b) { return (*this = *this - b); }
SIMDType& operator *= (const SIMDType& b) { return (*this = *this * b); }
SIMDType& operator /= (const SIMDType& b) { return (*this = *this / b); }
friend SIMDType sqrt(const SIMDType& a) { return vsqrtq_f64(a.mVal); }
// N.B. - ties issue (this matches intel, but not the scalar)
//friend SIMDType round(const SIMDType& a) { return vrndnq_f64(a.mVal, _MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC); }
friend SIMDType trunc(const SIMDType& a) { return vrndq_f64(a.mVal); }
friend SIMDType min(const SIMDType& a, const SIMDType& b) { return vminq_f64(a.mVal, b.mVal); }
friend SIMDType max(const SIMDType& a, const SIMDType& b) { return vmaxq_f64(a.mVal, b.mVal); }
friend SIMDType sel(const SIMDType& a, const SIMDType& b, const SIMDType& c) { return and_not(c, a) | (b & c); }
// N.B. - operand swap for and_not
friend SIMDType and_not(const SIMDType& a, const SIMDType& b) { return bitwise<vbicq_u64>(b, a); }
friend SIMDType operator & (const SIMDType& a, const SIMDType& b) { return bitwise<vandq_u64>(a, b); }
friend SIMDType operator | (const SIMDType& a, const SIMDType& b) { return bitwise<vorrq_u64>(a, b); }
friend SIMDType operator ^ (const SIMDType& a, const SIMDType& b) { return bitwise<veorq_u64>(a, b); }
friend SIMDType operator == (const SIMDType& a, const SIMDType& b) { return compare<vceqq_f64>(a, b); }
friend SIMDType operator != (const SIMDType& a, const SIMDType& b) { return neq(a, b); }
friend SIMDType operator > (const SIMDType& a, const SIMDType& b) { return compare<vcgtq_f64>(a, b); }
friend SIMDType operator < (const SIMDType& a, const SIMDType& b) { return compare<vcltq_f64>(a, b); }
friend SIMDType operator >= (const SIMDType& a, const SIMDType& b) { return compare<vcgeq_f64>(a, b); }
friend SIMDType operator <= (const SIMDType& a, const SIMDType& b) { return compare<vcleq_f64>(a, b); }
/*
template <int y, int x>
static SIMDType shuffle(const SIMDType& a, const SIMDType& b)
{
return _mm_shuffle_pd(a.mVal, b.mVal, (y<<1)|x);
}
*/
operator SIMDType<float, 2>()
{
double vals[2];
store(vals);
return SIMDType<float, 2>(static_cast<float>(vals[0]), static_cast<float>(vals[1]));
}
};
#endif /* defined (__arm64) || defined(__aarch64__) */
template<>
struct SIMDType<float, 4> : public SIMDVector<float, float32x4_t, 4>
{
private:
template <uint32x4_t Op(float32x4_t, float32x4_t)>
static SIMDType compare(const SIMDType& a, const SIMDType& b)
{
return vreinterpretq_f32_u32(Op(a.mVal, b.mVal));
}
template <uint32x4_t Op(uint32x4_t, uint32x4_t)>
static SIMDType bitwise(const SIMDType& a, const SIMDType& b)
{
return vreinterpretq_f32_u32(Op(vreinterpretq_u32_f32(a.mVal), vreinterpretq_u32_f32(b.mVal)));
}
static float32x4_t neq(const SIMDType& a, const SIMDType& b)
{
return vreinterpretq_f32_u32(vmvnq_u32(vceqq_f32(a.mVal, b.mVal)));
}
#if !defined(__arm64) && !defined(__aarch64__)
// Helpers for single value iteration
template <typename U, U Op(float), typename V>
static void iterate(V out[4], float temp[4], const float32x4_t& a)
{
vst1q_f32(temp, a);
out[0] = Op(temp[0]);
out[1] = Op(temp[1]);
out[2] = Op(temp[2]);
out[3] = Op(temp[3]);
}
template <float Op(float)>
static float32x4_t unary(const float32x4_t& a)
{
float vals[4];
iterate<float, Op>(vals, vals, a);
return vld1q_f32(vals);
}
static double cast_f64_f2(float a) { return static_cast<double>(a); }
// Emulate these for 32 bit
static float32x4_t vsqrtq_f32(const float32x4_t& a) { return unary<std::sqrt>(a); }
static float32x4_t vrndq_f32(const float32x4_t& a) { return unary<std::trunc>(a); }
static float32x4_t vdivq_f32(const float32x4_t& a, const float32x4_t& b)
{
float vals_a[4], vals_b[4];
vst1q_f32(vals_a, a);
vst1q_f32(vals_b, b);
vals_a[0] /= vals_b[0];
vals_a[1] /= vals_b[1];
vals_a[2] /= vals_b[2];
vals_a[3] /= vals_b[3];
return vld1q_f32(vals_a);
}
#endif
public:
SIMDType() {}
SIMDType(const float& a) { mVal = vdupq_n_f32(a); }
SIMDType(const float* a) { mVal = vld1q_f32(a); }
SIMDType(float32x4_t a) : SIMDVector(a) {}
void store(float *a) const { vst1q_f32(a, mVal); }
friend SIMDType operator + (const SIMDType& a, const SIMDType& b) { return vaddq_f32(a.mVal, b.mVal); }
friend SIMDType operator - (const SIMDType& a, const SIMDType& b) { return vsubq_f32(a.mVal, b.mVal); }
friend SIMDType operator * (const SIMDType& a, const SIMDType& b) { return vmulq_f32(a.mVal, b.mVal); }
friend SIMDType operator / (const SIMDType& a, const SIMDType& b) { return vdivq_f32(a.mVal, b.mVal); }
SIMDType& operator += (const SIMDType& b) { return (*this = *this + b); }
SIMDType& operator -= (const SIMDType& b) { return (*this = *this - b); }
SIMDType& operator *= (const SIMDType& b) { return (*this = *this * b); }
SIMDType& operator /= (const SIMDType& b) { return (*this = *this / b); }
friend SIMDType sqrt(const SIMDType& a) { return vsqrtq_f32(a.mVal); }
// N.B. - ties issue (this matches intel, but not the scalar)
//friend SIMDType round(const SIMDType& a) { return vrndnq_f32(a.mVal); }
friend SIMDType trunc(const SIMDType& a) { return vrndq_f32(a.mVal); }
friend SIMDType min(const SIMDType& a, const SIMDType& b) { return vminq_f32(a.mVal, b.mVal); }
friend SIMDType max(const SIMDType& a, const SIMDType& b) { return vmaxq_f32(a.mVal, b.mVal); }
friend SIMDType sel(const SIMDType& a, const SIMDType& b, const SIMDType& c) { return and_not(c, a) | (b & c); }
// N.B. - operand swap for and_not
friend SIMDType and_not(const SIMDType& a, const SIMDType& b) { return bitwise<vbicq_u32>(b, a); }
friend SIMDType operator & (const SIMDType& a, const SIMDType& b) { return bitwise<vandq_u32>(a, b); }
friend SIMDType operator | (const SIMDType& a, const SIMDType& b) { return bitwise<vorrq_u32>(a, b); }
friend SIMDType operator ^ (const SIMDType& a, const SIMDType& b) { return bitwise<veorq_u32>(a, b); }
friend SIMDType operator == (const SIMDType& a, const SIMDType& b) { return compare<vceqq_f32>(a, b); }
friend SIMDType operator != (const SIMDType& a, const SIMDType& b) { return neq(a, b); }
friend SIMDType operator > (const SIMDType& a, const SIMDType& b) { return compare<vcgtq_f32>(a, b); }
friend SIMDType operator < (const SIMDType& a, const SIMDType& b) { return compare<vcltq_f32>(a, b); }
friend SIMDType operator >= (const SIMDType& a, const SIMDType& b) { return compare<vcgeq_f32>(a, b); }
friend SIMDType operator <= (const SIMDType& a, const SIMDType& b) { return compare<vcleq_f32>(a, b); }
/*
template <int z, int y, int x, int w>
static SIMDType shuffle(const SIMDType& a, const SIMDType& b)
{
return _mm_shuffle_ps(a.mVal, b.mVal, ((z<<6)|(y<<4)|(x<<2)|w));
}*/
#if defined(__arm64) || defined(__aarch64__)
operator SizedVector<double, 2, 4>() const
{
SizedVector<double, 2, 4> vec;
vec.mData[0] = vcvt_f64_f32(vget_low_f32(mVal));
vec.mData[1] = vcvt_f64_f32(vget_high_f32(mVal));
return vec;
}
#else
operator SizedVector<double, 1, 4>() const
{
float vals[4];
SizedVector<double, 1, 4> vec;
iterate<double, cast_f64_f2>(vec.mData, vals, mVal);
return vec;
}
#endif
};
template<>
struct SIMDType<int32_t, 4> : public SIMDVector<int32_t, int32x4_t, 4>
{
SIMDType() {}
SIMDType(const int32_t& a) { mVal = vdupq_n_s32(a); }
SIMDType(const int32_t* a) { mVal = vld1q_s32(a); }
SIMDType(int32x4_t a) : SIMDVector(a) {}
void store(int32_t *a) const { vst1q_s32(a, mVal); }
friend SIMDType operator + (const SIMDType& a, const SIMDType& b) { return vaddq_s32(a.mVal, b.mVal); }
friend SIMDType operator - (const SIMDType& a, const SIMDType& b) { return vsubq_s32(a.mVal, b.mVal); }
friend SIMDType operator * (const SIMDType& a, const SIMDType& b) { return vmulq_s32(a.mVal, b.mVal); }
SIMDType& operator += (const SIMDType& b) { return (*this = *this + b); }
SIMDType& operator -= (const SIMDType& b) { return (*this = *this - b); }
SIMDType& operator *= (const SIMDType& b) { return (*this = *this * b); }
friend SIMDType min(const SIMDType& a, const SIMDType& b) { return vminq_s32(a.mVal, b.mVal); }
friend SIMDType max(const SIMDType& a, const SIMDType& b) { return vmaxq_s32(a.mVal, b.mVal); }
operator SIMDType<float, 4>() { return SIMDType<float, 4>( vcvtq_f32_s32(mVal)); }
/*
operator SizedVector<double, 2, 4>() const
{
SizedVector<double, 2, 4> vec;
vec.mData[0] = _mm_cvtepi32_pd(mVal);
vec.mData[1] = _mm_cvtepi32_pd(_mm_shuffle_epi32(mVal, 0xE));
return vec;
}*/
};
#else /* Intel Instrinsics */
template<>
struct SIMDType<double, 2> : public SIMDVector<double, __m128d, 2>
{
SIMDType() {}
SIMDType(const double& a) { mVal = _mm_set1_pd(a); }
SIMDType(const double* a) { mVal = _mm_loadu_pd(a); }
SIMDType(__m128d a) : SIMDVector(a) {}
SIMDType(const SIMDType<float, 2> &a)
{
double vals[2];
vals[0] = a.mVals[0];
vals[1] = a.mVals[1];
mVal = _mm_loadu_pd(vals);
}
void store(double *a) const { _mm_storeu_pd(a, mVal); }
friend SIMDType operator + (const SIMDType& a, const SIMDType& b) { return _mm_add_pd(a.mVal, b.mVal); }
friend SIMDType operator - (const SIMDType& a, const SIMDType& b) { return _mm_sub_pd(a.mVal, b.mVal); }
friend SIMDType operator * (const SIMDType& a, const SIMDType& b) { return _mm_mul_pd(a.mVal, b.mVal); }
friend SIMDType operator / (const SIMDType& a, const SIMDType& b) { return _mm_div_pd(a.mVal, b.mVal); }
SIMDType& operator += (const SIMDType& b) { return (*this = *this + b); }
SIMDType& operator -= (const SIMDType& b) { return (*this = *this - b); }
SIMDType& operator *= (const SIMDType& b) { return (*this = *this * b); }
SIMDType& operator /= (const SIMDType& b) { return (*this = *this / b); }
friend SIMDType sqrt(const SIMDType& a) { return _mm_sqrt_pd(a.mVal); }
// N.B. - ties issue
friend SIMDType round(const SIMDType& a) { return _mm_round_pd(a.mVal, _MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC); }
friend SIMDType trunc(const SIMDType& a) { return _mm_round_pd(a.mVal, _MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC); }
friend SIMDType min(const SIMDType& a, const SIMDType& b) { return _mm_min_pd(a.mVal, b.mVal); }
friend SIMDType max(const SIMDType& a, const SIMDType& b) { return _mm_max_pd(a.mVal, b.mVal); }
friend SIMDType sel(const SIMDType& a, const SIMDType& b, const SIMDType& c) { return and_not(c, a) | (b & c); }
friend SIMDType and_not(const SIMDType& a, const SIMDType& b) { return _mm_andnot_pd(a.mVal, b.mVal); }
friend SIMDType operator & (const SIMDType& a, const SIMDType& b) { return _mm_and_pd(a.mVal, b.mVal); }
friend SIMDType operator | (const SIMDType& a, const SIMDType& b) { return _mm_or_pd(a.mVal, b.mVal); }
friend SIMDType operator ^ (const SIMDType& a, const SIMDType& b) { return _mm_xor_pd(a.mVal, b.mVal); }
friend SIMDType operator == (const SIMDType& a, const SIMDType& b) { return _mm_cmpeq_pd(a.mVal, b.mVal); }
friend SIMDType operator != (const SIMDType& a, const SIMDType& b) { return _mm_cmpneq_pd(a.mVal, b.mVal); }
friend SIMDType operator > (const SIMDType& a, const SIMDType& b) { return _mm_cmplt_pd(a.mVal, b.mVal); }
friend SIMDType operator < (const SIMDType& a, const SIMDType& b) { return _mm_cmpgt_pd(a.mVal, b.mVal); }
friend SIMDType operator >= (const SIMDType& a, const SIMDType& b) { return _mm_cmple_pd(a.mVal, b.mVal); }
friend SIMDType operator <= (const SIMDType& a, const SIMDType& b) { return _mm_cmpge_pd(a.mVal, b.mVal); }
template <int y, int x>
static SIMDType shuffle(const SIMDType& a, const SIMDType& b)
{
return _mm_shuffle_pd(a.mVal, b.mVal, (y<<1)|x);
}
operator SIMDType<float, 2>()
{
double vals[2];
store(vals);
return SIMDType<float, 2>(static_cast<float>(vals[0]), static_cast<float>(vals[1]));
}
};
template<>
struct SIMDType<float, 4> : public SIMDVector<float, __m128, 4>
{
SIMDType() {}
SIMDType(const float& a) { mVal = _mm_set1_ps(a); }
SIMDType(const float* a) { mVal = _mm_loadu_ps(a); }
SIMDType(__m128 a) : SIMDVector(a) {}
void store(float *a) const { _mm_storeu_ps(a, mVal); }
friend SIMDType operator + (const SIMDType& a, const SIMDType& b) { return _mm_add_ps(a.mVal, b.mVal); }
friend SIMDType operator - (const SIMDType& a, const SIMDType& b) { return _mm_sub_ps(a.mVal, b.mVal); }
friend SIMDType operator * (const SIMDType& a, const SIMDType& b) { return _mm_mul_ps(a.mVal, b.mVal); }
friend SIMDType operator / (const SIMDType& a, const SIMDType& b) { return _mm_div_ps(a.mVal, b.mVal); }
SIMDType& operator += (const SIMDType& b) { return (*this = *this + b); }
SIMDType& operator -= (const SIMDType& b) { return (*this = *this - b); }
SIMDType& operator *= (const SIMDType& b) { return (*this = *this * b); }
SIMDType& operator /= (const SIMDType& b) { return (*this = *this / b); }
friend SIMDType sqrt(const SIMDType& a) { return _mm_sqrt_ps(a.mVal); }
// N.B. - ties issue
friend SIMDType round(const SIMDType& a) { return _mm_round_ps(a.mVal, _MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC); }
friend SIMDType trunc(const SIMDType& a) { return _mm_round_ps(a.mVal, _MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC); }
friend SIMDType min(const SIMDType& a, const SIMDType& b) { return _mm_min_ps(a.mVal, b.mVal); }
friend SIMDType max(const SIMDType& a, const SIMDType& b) { return _mm_max_ps(a.mVal, b.mVal); }
friend SIMDType sel(const SIMDType& a, const SIMDType& b, const SIMDType& c) { return and_not(c, a) | (b & c); }
friend SIMDType and_not(const SIMDType& a, const SIMDType& b) { return _mm_andnot_ps(a.mVal, b.mVal); }
friend SIMDType operator & (const SIMDType& a, const SIMDType& b) { return _mm_and_ps(a.mVal, b.mVal); }
friend SIMDType operator | (const SIMDType& a, const SIMDType& b) { return _mm_or_ps(a.mVal, b.mVal); }
friend SIMDType operator ^ (const SIMDType& a, const SIMDType& b) { return _mm_xor_ps(a.mVal, b.mVal); }
friend SIMDType operator == (const SIMDType& a, const SIMDType& b) { return _mm_cmpeq_ps(a.mVal, b.mVal); }
friend SIMDType operator != (const SIMDType& a, const SIMDType& b) { return _mm_cmpneq_ps(a.mVal, b.mVal); }
friend SIMDType operator > (const SIMDType& a, const SIMDType& b) { return _mm_cmplt_ps(a.mVal, b.mVal); }
friend SIMDType operator < (const SIMDType& a, const SIMDType& b) { return _mm_cmpgt_ps(a.mVal, b.mVal); }
friend SIMDType operator >= (const SIMDType& a, const SIMDType& b) { return _mm_cmple_ps(a.mVal, b.mVal); }
friend SIMDType operator <= (const SIMDType& a, const SIMDType& b) { return _mm_cmpge_ps(a.mVal, b.mVal); }
template <int z, int y, int x, int w>
static SIMDType shuffle(const SIMDType& a, const SIMDType& b)
{
return _mm_shuffle_ps(a.mVal, b.mVal, ((z<<6)|(y<<4)|(x<<2)|w));
}
operator SizedVector<double, 2, 4>() const
{
SizedVector<double, 2, 4> vec;
vec.mData[0] = _mm_cvtps_pd(mVal);
vec.mData[1] = _mm_cvtps_pd(_mm_movehl_ps(mVal, mVal));
return vec;
}
};
template<>
struct SIMDType<int32_t, 4> : public SIMDVector<int32_t, __m128i, 4>
{
SIMDType() {}
SIMDType(const int32_t& a) { mVal = _mm_set1_epi32(a); }
SIMDType(const int32_t* a) { mVal = _mm_loadu_si128(reinterpret_cast<const __m128i *>(a)); }
SIMDType(__m128i a) : SIMDVector(a) {}
void store(int32_t *a) const { _mm_storeu_si128(reinterpret_cast<__m128i *>(a), mVal); }
friend SIMDType operator + (const SIMDType& a, const SIMDType& b) { return _mm_add_epi32(a.mVal, b.mVal); }
friend SIMDType operator - (const SIMDType& a, const SIMDType& b) { return _mm_sub_epi32(a.mVal, b.mVal); }
friend SIMDType operator * (const SIMDType& a, const SIMDType& b) { return _mm_mul_epi32(a.mVal, b.mVal); }
SIMDType& operator += (const SIMDType& b) { return (*this = *this + b); }
SIMDType& operator -= (const SIMDType& b) { return (*this = *this - b); }
SIMDType& operator *= (const SIMDType& b) { return (*this = *this * b); }
friend SIMDType min(const SIMDType& a, const SIMDType& b) { return _mm_min_epi32(a.mVal, b.mVal); }
friend SIMDType max(const SIMDType& a, const SIMDType& b) { return _mm_max_epi32(a.mVal, b.mVal); }
operator SIMDType<float, 4>() { return SIMDType<float, 4>( _mm_cvtepi32_ps(mVal)); }
operator SizedVector<double, 2, 4>() const
{
SizedVector<double, 2, 4> vec;
vec.mData[0] = _mm_cvtepi32_pd(mVal);
vec.mData[1] = _mm_cvtepi32_pd(_mm_shuffle_epi32(mVal, 0xE));
return vec;
}
};
#endif /* SIMD_COMPILER_SUPPORT_NEON - End Intel Intrinsics */
#endif /* SIMD_COMPILER_SUPPORT_LEVEL >= SIMD_COMPILER_SUPPORT_VEC128 */
// ************************ 256-bit SIMD Types ************************* //
#if (SIMD_COMPILER_SUPPORT_LEVEL >= SIMD_COMPILER_SUPPORT_VEC256)
template<>
struct SIMDType<double, 4> : public SIMDVector<double, __m256d, 4>
{
SIMDType() {}
SIMDType(const double& a) { mVal = _mm256_set1_pd(a); }
SIMDType(const double* a) { mVal = _mm256_loadu_pd(a); }
SIMDType(__m256d a) : SIMDVector(a) {}