-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSKAT_Eval.thy
648 lines (562 loc) · 30.4 KB
/
SKAT_Eval.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
theory SKAT_Eval
imports SKAT KAT_Module Set_Model
begin
type_synonym 'a mems = "(nat \<Rightarrow> 'a) set"
fun eval_bexpr ::
"('a::ranked_alphabet, 'b) interp \<Rightarrow> 'a pred bexpr \<Rightarrow> 'b mem \<Rightarrow> bool"
where
"eval_bexpr D (BLeaf P) mem = eval_pred D mem P"
| "eval_bexpr D (P :+: Q) mem = (eval_bexpr D P mem \<or> eval_bexpr D Q mem)"
| "eval_bexpr D (P :\<cdot>: Q) mem = (eval_bexpr D P mem \<and> eval_bexpr D Q mem)"
| "eval_bexpr D (BNot P) mem = (\<not> eval_bexpr D P mem)"
| "eval_bexpr D BOne mem = True"
| "eval_bexpr D BZero mem = False"
definition filter_set :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set" where
"filter_set p X \<equiv> \<Union>x\<in>X. if p x then {x} else {}"
definition eval_bexpr_set :: "('a::ranked_alphabet, 'b) interp \<Rightarrow> 'a pred bexpr \<Rightarrow> 'b mems" where
"eval_bexpr_set D P = {mem. eval_bexpr D P mem}"
fun eval_bexpr_set_ind :: "('a::ranked_alphabet, 'b) interp \<Rightarrow> 'a pred bexpr \<Rightarrow> 'b mems" where
"eval_bexpr_set_ind D (BLeaf P) = {mem. eval_pred D mem P}"
| "eval_bexpr_set_ind D (P :+: Q) = eval_bexpr_set_ind D P \<union> eval_bexpr_set_ind D Q"
| "eval_bexpr_set_ind D (P :\<cdot>: Q) = eval_bexpr_set_ind D P \<inter> eval_bexpr_set_ind D Q"
| "eval_bexpr_set_ind D (BNot P) = - eval_bexpr_set_ind D P"
| "eval_bexpr_set_ind D BOne = UNIV"
| "eval_bexpr_set_ind D BZero = {}"
lemma "eval_bexpr_set_ind D P = eval_bexpr_set D P"
by (induct P, auto simp add: eval_bexpr_set_def)
lemma filter_set_inter: "filter_set P a = a \<inter> filter_set P UNIV"
by (auto simp add: filter_set_def) (metis empty_iff singleton_iff)+
definition set_mems :: "nat \<Rightarrow> ('a mem \<Rightarrow> 'a) \<Rightarrow> 'a mems \<Rightarrow> 'a mems" where
"set_mems x f \<Delta> \<equiv> (\<lambda>mem. set_mem x (f mem) mem) ` \<Delta>"
definition assigns ::
"('a::ranked_alphabet, 'b) interp \<Rightarrow> nat \<Rightarrow> 'a trm \<Rightarrow> 'b mems \<Rightarrow> 'b mems"
where
"assigns D x s mems = set_mems x (\<lambda>mem. eval_trm D mem s) mems"
lemma finite_set_mems: assumes "finite \<Delta>" shows "finite (set_mems x f \<Delta>)"
by (induct rule: finite_subset_induct_var[OF assms(1), of "\<Delta>"], simp_all add: set_mems_def)
lemma card_set_mems: "finite \<Delta> \<Longrightarrow> card (set_mems X f \<Delta>) \<le> card \<Delta>"
by (simp add: set_mems_def, smt card_image_le)
lemma assign_image: "assigns D x t mems = assign D x t ` mems"
by (auto simp add: assigns_def set_mems_def assign_def[symmetric])
lemma eval_assigns1:
assumes xy: "x \<noteq> y" and ys: "y \<notin> FV s"
shows "assigns D y t (assigns D x s mems) = assigns D x s (assigns D y (t[x|s]) mems)"
by (auto simp add: assign_image image_def, (metis eval_assign1 xy ys)+)
lemma eval_assigns2:
assumes xy: "x \<noteq> y" and xs: "x \<notin> FV s"
shows "assigns D y t (assigns D x s mems) =
assigns D y (t[x|s]) (assigns D x s mems)"
by (auto simp add: assign_image image_def, (metis eval_assign2 xy xs)+)
lemma eval_assigns3: "assigns D x t (assigns D x s mems) = assigns D x (t[x|s]) mems"
by (auto simp add: assign_image image_def, (metis eval_assign3)+)
lemma eval_assigns4: "filter_set (\<lambda>mem. eval_pred D mem P) (assigns D x t \<Delta>) =
assigns D x t (filter_set (\<lambda>mem. eval_pred D mem (P[x|t])) \<Delta>)"
by (auto simp add: assign_image image_def filter_set_def) (metis empty_iff eval_assign4 singleton_iff)+
lemma eval_assign4_bexpr:
fixes D :: "('a::ranked_alphabet, 'b) interp"
shows "eval_bexpr D P (assign D x t mem) = eval_bexpr D (bexpr_map (\<lambda>a. a[x|t]) P) mem"
by (induct P, simp_all, rule eval_assign4, auto)
lemma eval_assigns4_bexpr:
"filter_set (eval_bexpr D P) (assigns D x t \<Delta>) =
assigns D x t (filter_set (eval_bexpr D (bexpr_map (\<lambda>a. a[x|t]) P)) \<Delta>)"
apply (auto simp add: assign_image image_def filter_set_def)
defer
apply (metis eval_assign4_bexpr)
apply (rule_tac x = xb in bexI)
defer
apply assumption
apply auto
apply (metis empty_iff singleton_iff)
apply (subgoal_tac "eval_bexpr D P (assign D x t xb)")
apply (metis eval_assign4_bexpr)
by (metis empty_iff)
lemma "filter_set (eval_bexpr D P) \<Delta> = \<Delta> \<inter> eval_bexpr_set D P"
by (auto simp add: filter_set_def eval_bexpr_set_def) (metis empty_iff singleton_iff)+
fun eval_skat_expr ::
"('a::ranked_alphabet, 'b) interp \<Rightarrow> 'a skat_expr \<Rightarrow> 'b mems \<Rightarrow> 'b mems"
where
"eval_skat_expr D (SKAssign x s) \<Delta> = assigns D x s \<Delta>"
| "eval_skat_expr D (SKBool P) \<Delta> = filter_set (eval_bexpr D P) \<Delta>"
| "eval_skat_expr D (s \<odot> t) \<Delta> = eval_skat_expr D t (eval_skat_expr D s \<Delta>)"
| "eval_skat_expr D (s \<oplus> t) \<Delta> = eval_skat_expr D s \<Delta> \<union> eval_skat_expr D t \<Delta>"
| "eval_skat_expr D (SKStar s) \<Delta> = (\<Union>n. iter n (eval_skat_expr D s) \<Delta>)"
| "eval_skat_expr D SKOne \<Delta> = \<Delta>"
| "eval_skat_expr D SKZero \<Delta> = {}"
definition eval_power :: "('a::ranked_alphabet, 'b) interp \<Rightarrow> 'a skat_expr \<Rightarrow> nat \<Rightarrow> 'b mems \<Rightarrow> 'b mems"
where "eval_power D s n \<Delta> = iter n (eval_skat_expr D s) \<Delta>"
lemma eval_star_power: "eval_skat_expr D (SKStar s) \<Delta> = \<Union> {y. \<exists>n. y = eval_power D s n \<Delta>}"
by (auto simp add: eval_power_def)
lemma eval_iter1: "eval_skat_expr D s (iter n (eval_skat_expr D s) \<Delta>)
= iter n (eval_skat_expr D s) (eval_skat_expr D s \<Delta>)"
by (induct n, auto)
lemma eval_mod1: "eval_skat_expr D s {} = {}"
proof (induct s, simp_all add: assigns_def set_mems_def, intro allI)
fix s n assume "eval_skat_expr D s {} = {}"
thus "iter n (eval_skat_expr D s) {} = {}"
by (induct n, auto)
next
fix P show "filter_set (eval_bexpr D P) {} = {}"
by (induct P, auto simp add: filter_set_def)
qed
lemma eval_mod2: "eval_skat_expr D s (\<Delta> \<union> \<Gamma>) = eval_skat_expr D s \<Delta> \<union> eval_skat_expr D s \<Gamma>"
apply (induct s arbitrary: \<Delta> \<Gamma>, simp_all add: assigns_def set_mems_def filter_set_def)
apply (metis image_Un)
apply (metis Un_assoc Un_left_commute)
proof -
fix s \<Delta> \<Gamma>
assume asm: "\<And>\<Delta> \<Gamma>. eval_skat_expr D s (\<Delta> \<union> \<Gamma>) = eval_skat_expr D s \<Delta> \<union> eval_skat_expr D s \<Gamma>"
have "\<And>n. iter n (eval_skat_expr D s) (\<Delta> \<union> \<Gamma>) = iter n (eval_skat_expr D s) \<Delta> \<union> iter n (eval_skat_expr D s) \<Gamma>"
proof -
fix n
show "iter n (eval_skat_expr D s) (\<Delta> \<union> \<Gamma>) = iter n (eval_skat_expr D s) \<Delta> \<union> iter n (eval_skat_expr D s) \<Gamma>"
by (induct n, simp_all, metis asm)
qed
hence "(\<Union>n. iter n (eval_skat_expr D s) (\<Delta> \<union> \<Gamma>)) = (\<Union>n. iter n (eval_skat_expr D s) \<Delta> \<union> iter n (eval_skat_expr D s) \<Gamma>)"
by auto
thus "(\<Union>n. iter n (eval_skat_expr D s) (\<Delta> \<union> \<Gamma>)) =
(\<Union>n. iter n (eval_skat_expr D s) \<Delta>) \<union>
(\<Union>n. iter n (eval_skat_expr D s) \<Gamma>)"
by auto
qed
lemma eval_mod3: "eval_skat_expr D r b \<union> a \<union> b = b \<Longrightarrow> eval_skat_expr D (SKStar r) a \<union> b = b"
proof simp
assume asm: "eval_skat_expr D r b \<union> a \<union> b = b"
have "\<And>n. iter n (eval_skat_expr D r) a \<union> b = b"
proof -
fix n show "iter n (eval_skat_expr D r) a \<union> b = b"
apply (induct n)
apply (simp, metis Un_assoc Un_commute asm sup.left_idem)
by (simp, metis (no_types) asm eval_mod2 sup.assoc)
qed
thus "(\<Union>n. iter n (eval_skat_expr D r) a) \<union> b = b"
by blast
qed
lemma eval_iter:
"iter n (eval_skat_expr D x) (eval_skat_expr D x \<Delta>) = iter (Suc n) (eval_skat_expr D x) \<Delta>"
by (induct n, auto)
lemma eval_star_unfoldl:
fixes \<Delta> :: "'b mems"
shows "eval_skat_expr D (SKOne \<oplus> x \<odot> SKStar x \<oplus> SKStar x) \<Delta> = eval_skat_expr D (SKStar x) \<Delta>"
proof auto
fix mem :: "'b mem" assume "mem \<in> \<Delta>"
thus "\<exists>n. mem \<in> iter n (eval_skat_expr D x) \<Delta>"
by (rule_tac x = 0 in exI, simp)
next
fix mem :: "'b mem" and n
assume "mem \<in> iter n (eval_skat_expr D x) (eval_skat_expr D x \<Delta>)"
thus "\<exists>n. mem \<in> iter n (eval_skat_expr D x) \<Delta>"
by (rule_tac x = "Suc n" in exI, metis eval_iter)
qed
lemma eval_iso: "\<Delta> \<subseteq> \<Gamma> \<Longrightarrow> eval_skat_expr D s \<Delta> \<subseteq> eval_skat_expr D s \<Gamma>"
by (metis eval_mod2 subset_Un_eq)
lemma iter_jp:
assumes f_jp: "\<And>X. f (\<Union>X) = \<Union>(f ` X)"
shows "iter n f (\<Union>X) = \<Union>(iter n f ` X)"
proof (induct n arbitrary: X, simp)
fix n X
assume "\<And>X. iter n f (\<Union>X) = \<Union>iter n f ` X"
hence ind_hyp2: "iter n f (\<Union>X) = \<Union>iter n f ` X"
by auto
have "iter (Suc n) f (\<Union>X) = f (iter n f (\<Union> X))"
by simp
also have "... = f (\<Union>iter n f ` X)"
by (metis ind_hyp2)
also have "... = \<Union>f ` iter n f ` X"
by (metis f_jp)
also have "... = \<Union>iter (Suc n) f ` X"
by (auto simp add: image_def)
finally show "iter (Suc n) f (\<Union>X) = \<Union>iter (Suc n) f ` X" .
qed
lemma eval_jp: "eval_skat_expr D s (\<Union>X) = \<Union>(eval_skat_expr D s ` X)"
proof (induct s arbitrary: X)
fix x and s :: "'b trm" and X
show "eval_skat_expr D (SKAssign x s) (\<Union>X) = \<Union>eval_skat_expr D (SKAssign x s) ` X"
by (auto simp add: assigns_def set_mems_def)
next
fix s t :: "'b skat_expr" and X
assume "\<And>X. eval_skat_expr D s (\<Union>X) = \<Union>eval_skat_expr D s ` X"
and "\<And>X. eval_skat_expr D t (\<Union>X) = \<Union>eval_skat_expr D t ` X"
thus "eval_skat_expr D (s \<oplus> t) (\<Union>X) = \<Union>eval_skat_expr D (s \<oplus> t) ` X"
by auto
next
fix s t :: "'b skat_expr" and X
assume asm1: "\<And>X. eval_skat_expr D s (\<Union>X) = \<Union>eval_skat_expr D s ` X"
and asm2: "\<And>X. eval_skat_expr D t (\<Union>X) = \<Union>eval_skat_expr D t ` X"
have "eval_skat_expr D (s \<odot> t) (\<Union>X) = eval_skat_expr D t (eval_skat_expr D s (\<Union>X))"
by simp
also have "... = eval_skat_expr D t (\<Union>eval_skat_expr D s ` X)"
by (simp add: asm1[of X])
also have "... = \<Union>(eval_skat_expr D t ` eval_skat_expr D s ` X)"
by (insert asm2[of "eval_skat_expr D s ` X"])
also have "... = \<Union>eval_skat_expr D (s \<odot> t) ` X"
by simp
finally show "eval_skat_expr D (s \<odot> t) (\<Union>X) = \<Union>eval_skat_expr D (s \<odot> t) ` X" .
next
fix s :: "'b skat_expr" and X
assume asm: "\<And>X. eval_skat_expr D s (\<Union>X) = \<Union>eval_skat_expr D s ` X"
show "eval_skat_expr D (SKStar s) (\<Union>X) = \<Union>eval_skat_expr D (SKStar s) ` X"
proof auto
fix x n assume "x \<in> iter n (eval_skat_expr D s) (\<Union>X)"
hence "x \<in> \<Union>(iter n (eval_skat_expr D s) ` X)"
by (metis asm iter_jp)
thus "\<exists>y\<in>X. \<exists>n. x \<in> iter n (eval_skat_expr D s) y"
by (metis (no_types) UnionE image_iff)
next
fix x y n assume "y \<in> X" and "x \<in> iter n (eval_skat_expr D s) y"
hence "\<exists>n. x \<in> \<Union>(iter n (eval_skat_expr D s) ` X)"
by (metis UnionI image_eqI)
thus "\<exists>n. x \<in> iter n (eval_skat_expr D s) (\<Union>X)"
by (metis asm iter_jp)
qed
next
fix P :: "'b pred bexpr" and X
show "eval_skat_expr D (SKBool P) (\<Union>X) = \<Union>eval_skat_expr D (SKBool P) ` X"
by (auto simp add: filter_set_def)
next
fix X
show "eval_skat_expr D SKOne (\<Union>X) = \<Union>eval_skat_expr D SKOne ` X"
by auto
next
fix X
show "eval_skat_expr D SKZero (\<Union>X) = \<Union>eval_skat_expr D SKZero ` X"
by auto
qed
lemma eval_star_slide:
fixes \<Delta> :: "'b mems"
shows "eval_skat_expr D (SKStar x \<odot> x) \<Delta> = eval_skat_expr D (x \<odot> SKStar x) \<Delta>"
apply (simp add: eval_star_power del: eval_skat_expr.simps(5))
apply (simp add: eval_jp)
apply auto
apply (metis (no_types) iter.simps(2) eval_iter eval_power_def)
by (metis (no_types) iter.simps(2) eval_iter eval_power_def)
lemma eval_star_unfoldr:
fixes \<Delta> :: "'b mems"
shows "eval_skat_expr D (SKOne \<oplus> SKStar x \<odot> x \<oplus> SKStar x) \<Delta> = eval_skat_expr D (SKStar x) \<Delta>"
by (subst eval_star_unfoldl[symmetric], insert eval_star_slide, auto)
lemma eval_star_inductl:
assumes asm2: "\<forall>\<Delta>::'b mems. eval_skat_expr D (z \<oplus> x \<odot> y \<oplus> y) \<Delta> = eval_skat_expr D y \<Delta>"
shows "\<forall>\<Delta>. eval_skat_expr D (SKStar x \<odot> z \<oplus> y) \<Delta> = eval_skat_expr D y \<Delta>"
proof (auto simp add: eval_star_power eval_jp eval_power_def simp del: eval_skat_expr.simps(5))
fix \<Delta> :: "'b mems" and mem :: "'b mem" and n
assume "mem \<in> eval_skat_expr D z (iter n (eval_skat_expr D x) \<Delta>)"
hence "mem \<in> eval_skat_expr D (z \<oplus> x \<odot> y \<oplus> y) \<Delta>"
proof (induct n arbitrary: \<Delta>, simp, simp only: iter.simps eval_iter1)
fix m and \<Gamma> :: "'b mems"
assume "\<And>\<Delta>. mem \<in> eval_skat_expr D z (iter m (eval_skat_expr D x) \<Delta>) \<Longrightarrow>
mem \<in> eval_skat_expr D (z \<oplus> x \<odot> y \<oplus> y) \<Delta>"
and "mem \<in> eval_skat_expr D z (iter m (eval_skat_expr D x) (eval_skat_expr D x \<Gamma>))"
hence a: "mem \<in> eval_skat_expr D (z \<oplus> x \<odot> y \<oplus> y) (eval_skat_expr D x \<Gamma>)"
by auto
thus "mem \<in> eval_skat_expr D (z \<oplus> x \<odot> y \<oplus> y) \<Gamma>"
by (auto, (metis a asm2)+)
qed
thus "mem \<in> eval_skat_expr D y \<Delta>"
by (metis asm2)
qed
lemma eval_iso2:
assumes "\<And>mem. mem \<in> \<Delta> \<Longrightarrow> mem \<in> \<Gamma>"
and "mem \<in> eval_skat_expr D s \<Delta>"
shows "mem \<in> eval_skat_expr D s \<Gamma>"
proof -
have "\<Delta> \<subseteq> \<Gamma>"
by (insert assms(1), auto)
thus ?thesis
by (metis assms(2) eval_iso set_mp)
qed
lemma eval_star_inductr:
assumes asm2: "\<forall>\<Delta>::'b mems. eval_skat_expr D (z \<oplus> y \<odot> x \<oplus> y) \<Delta> = eval_skat_expr D y \<Delta>"
shows "\<forall>\<Delta>. eval_skat_expr D (z \<odot> SKStar x \<oplus> y) \<Delta> = eval_skat_expr D y \<Delta>"
proof auto
fix \<Delta> :: "'b mems" and mem :: "'b mem" and n
assume "mem \<in> iter n (eval_skat_expr D x) (eval_skat_expr D z \<Delta>)"
hence "mem \<in> eval_skat_expr D (z \<oplus> y \<odot> x \<oplus> y) \<Delta>"
proof (induct n arbitrary: mem, simp)
fix n mem
assume asm:
"\<And>mem. mem \<in> iter n (eval_skat_expr D x) (eval_skat_expr D z \<Delta>) \<Longrightarrow>
mem \<in> eval_skat_expr D (z \<oplus> y \<odot> x \<oplus> y) \<Delta>"
and "mem \<in> iter (Suc n) (eval_skat_expr D x) (eval_skat_expr D z \<Delta>)"
hence "mem \<in> eval_skat_expr D x (iter n (eval_skat_expr D x) (eval_skat_expr D z \<Delta>))"
by simp
hence "mem \<in> eval_skat_expr D x (eval_skat_expr D (z \<oplus> y \<odot> x \<oplus> y) \<Delta>)"
by (smt asm eval_iso2)
thus "mem \<in> eval_skat_expr D (z \<oplus> y \<odot> x \<oplus> y) \<Delta>"
by (metis (lifting) UnI1 UnI2 asm2 eval_skat_expr.simps(3) eval_skat_expr.simps(4))
qed
thus "mem \<in> eval_skat_expr D y \<Delta>"
by (metis asm2)
qed
theorem hunt_cong_eval: "hunt_cong s t \<Longrightarrow> \<forall>\<Delta>. eval_bexpr D s \<Delta> = eval_bexpr D t \<Delta>"
by (induct rule: hunt_cong.induct, auto)
lemma evap_bexpr_not[simp]: "eval_bexpr D (BNot x) \<Delta> = (\<not> eval_bexpr D x \<Delta>)" by simp
lemma filter_compl [simp]: "filter_set (\<lambda>x. \<not> p x) X = (- filter_set p X \<inter> X)"
proof -
have "filter_set (\<lambda>x. \<not> p x) X \<subseteq> (- filter_set p X \<inter> X)"
by (auto simp add: filter_set_def, (metis empty_iff singleton_iff)+)
moreover have "(- filter_set p X \<inter> X) \<subseteq> filter_set (\<lambda>x. \<not> p x) X"
by (auto simp add: filter_set_def, metis insertI1)
ultimately show ?thesis
by blast
qed
lemma eval_skat_not: "eval_skat_expr D (SKBool (BNot x)) \<Delta> = (- eval_skat_expr D (SKBool x) \<Delta> \<inter> \<Delta>)"
by (simp add: filter_set_def, metis Compl_UN filter_compl filter_set_def)
method_setup simp_solve = {*
Scan.succeed (fn ctxt =>
ALLGOALS (fn n => TRY (SOLVED' (asm_full_simp_tac (simpset_of ctxt)) n) ORELSE all_tac)
|> SIMPLE_METHOD)
*}
declare filter_set_def [simp]
theorem skat_cong_eval: "skat_cong s t \<Longrightarrow> \<forall>\<Delta>. eval_skat_expr D s \<Delta> = eval_skat_expr D t \<Delta>"
proof (induct rule: skat_cong.induct, simp_solve)
fix x y assume asm1: "skat_cong x y"
and asm2: "\<forall>\<Delta>. eval_skat_expr D x \<Delta> = eval_skat_expr D y \<Delta>"
hence "\<And>n. \<forall>\<Delta>. iter n (eval_skat_expr D x) \<Delta> = iter n (eval_skat_expr D y) \<Delta>"
proof -
fix n show "\<forall>\<Delta>. iter n (eval_skat_expr D x) \<Delta> = iter n (eval_skat_expr D y) \<Delta>"
by (induct n, simp_all add: asm2)
qed
thus "\<forall>\<Delta>. eval_skat_expr D (SKStar x) \<Delta> = eval_skat_expr D (SKStar y) \<Delta>"
by auto
next
fix x y assume "skat_cong (SKBool x) (SKBool y)"
and "\<forall>\<Delta>. eval_skat_expr D (SKBool x) \<Delta> = eval_skat_expr D (SKBool y) \<Delta>"
thus "\<forall>\<Delta>. eval_skat_expr D (SKBool (BNot x)) \<Delta> = eval_skat_expr D (SKBool (BNot y)) \<Delta>"
by (simp only: eval_skat_not, auto)
next
fix x y z show "\<forall>\<Delta>. eval_skat_expr D (x \<oplus> y \<oplus> z) \<Delta> = eval_skat_expr D (x \<oplus> (y \<oplus> z)) \<Delta>"
by auto
next
fix x y show "\<forall>\<Delta>. eval_skat_expr D (x \<oplus> y) \<Delta> = eval_skat_expr D (y \<oplus> x) \<Delta>"
by auto
next
fix x y z show "\<forall>\<Delta>. eval_skat_expr D ((x \<oplus> y) \<odot> z) \<Delta> = eval_skat_expr D (x \<odot> z \<oplus> y \<odot> z) \<Delta>"
by (simp, metis eval_mod2)
next
fix x show "\<forall>\<Delta>. eval_skat_expr D (SKZero \<odot> x) \<Delta> = eval_skat_expr D SKZero \<Delta>"
by (simp, metis eval_mod1)
next
fix x
show "\<forall>\<Delta>. eval_skat_expr D (SKOne \<oplus> x \<odot> SKStar x \<oplus> SKStar x) \<Delta> = eval_skat_expr D (SKStar x) \<Delta>"
by (metis eval_star_unfoldl)
next
fix x
show "\<forall>\<Delta>. eval_skat_expr D (SKOne \<oplus> SKStar x \<odot> x \<oplus> SKStar x) \<Delta> = eval_skat_expr D (SKStar x) \<Delta>"
by (metis eval_star_unfoldr)
next
fix z x y assume "\<forall>\<Delta>. eval_skat_expr D (z \<oplus> x \<odot> y \<oplus> y) \<Delta> = eval_skat_expr D y \<Delta>"
thus "\<forall>\<Delta>. eval_skat_expr D (SKStar x \<odot> z \<oplus> y) \<Delta> = eval_skat_expr D y \<Delta>"
by (metis eval_star_inductl)
next
fix z y x assume "skat_cong (z \<oplus> y \<odot> x \<oplus> y) y"
and "\<forall>\<Delta>. eval_skat_expr D (z \<oplus> y \<odot> x \<oplus> y) \<Delta> = eval_skat_expr D y \<Delta>"
thus "\<forall>\<Delta>. eval_skat_expr D (z \<odot> SKStar x \<oplus> y) \<Delta> = eval_skat_expr D y \<Delta>"
by (metis eval_star_inductr)
next
fix x y :: "'a pred bexpr" assume "hunt_cong x y"
hence "\<forall>\<Delta>. eval_bexpr D x \<Delta> = eval_bexpr D y \<Delta>"
by (metis hunt_cong_eval)
hence "eval_bexpr D x = eval_bexpr D y"
by auto
thus "\<forall>\<Delta>. eval_skat_expr D (SKBool x) \<Delta> = eval_skat_expr D (SKBool y) \<Delta>"
by (simp del: filter_set_def)
next
fix x y show "\<forall>\<Delta>. eval_skat_expr D (SKBool (x :\<cdot>: y)) \<Delta> = eval_skat_expr D (SKBool x \<odot> SKBool y) \<Delta>"
by (auto, (metis empty_iff singleton_iff)+)
next
fix x y show "\<forall>\<Delta>. eval_skat_expr D (SKBool (x :+: y)) \<Delta> = eval_skat_expr D (SKBool x \<oplus> SKBool y) \<Delta>"
by (auto, (metis empty_iff singleton_iff)+)
next
fix x y :: nat and s t :: "'a trm" assume "x \<noteq> y" and "y \<notin> FV s"
thus "\<forall>\<Delta>. eval_skat_expr D (SKAssign x s \<odot> SKAssign y t) \<Delta> =
eval_skat_expr D (SKAssign y (t[x|s]) \<odot> SKAssign x s) \<Delta>"
by (simp, metis eval_assigns1)
next
fix x y :: nat and s t :: "'a trm" assume "x \<noteq> y" and "x \<notin> FV s"
thus "\<forall>\<Delta>. eval_skat_expr D (SKAssign x s \<odot> SKAssign y t) \<Delta> =
eval_skat_expr D (SKAssign x s \<odot> SKAssign y (t[x|s])) \<Delta>"
by (simp, metis eval_assigns2)
next
fix x s t
show "\<forall>\<Delta>. eval_skat_expr D (SKAssign x s \<odot> SKAssign x t) \<Delta> =
eval_skat_expr D (SKAssign x (t[x|s])) \<Delta>"
by (simp, metis eval_assigns3)
next
fix x t \<phi>
show "\<forall>\<Delta>. eval_skat_expr D (SKBool (bexpr_map (pred_subst x t) \<phi>) \<odot> SKAssign x t) \<Delta> =
eval_skat_expr D (SKAssign x t \<odot> SKBool \<phi>) \<Delta>"
by (simp del: filter_set_def, metis eval_assigns4_bexpr)
qed
lift_definition eval ::
"('a::ranked_alphabet, 'b) interp \<Rightarrow> 'a skat \<Rightarrow> 'b mems \<Rightarrow> 'b mems"
is eval_skat_expr
proof -
fix D :: "('a::ranked_alphabet, 'b) interp" and s t :: "'a skat_expr"
assume "skat_cong s t"
hence "\<forall>\<Delta>. eval_skat_expr D s \<Delta> = eval_skat_expr D t \<Delta>"
by (metis skat_cong_eval)
thus "eval_skat_expr D s = eval_skat_expr D t"
by auto
qed
definition eval_pred :: "('a::ranked_alphabet, 'b) interp \<Rightarrow> 'a skat \<Rightarrow> 'b mem \<Rightarrow> bool" where
"eval_pred D b mem \<equiv> mem \<in> eval D b {mem}"
definition expr_determ ::
"('a::ranked_alphabet, 'b) interp \<Rightarrow> 'a skat_expr \<Rightarrow> bool"
where
"expr_determ D s \<equiv> \<forall>start. \<exists>!end. eval_skat_expr D s {start} = {end}"
lemma pred_expr_to_test [simp]: "pred_expr \<circ> rep_bterm = test"
by (rule ext, simp add: o_def test_def pred_expr_def)
lemma test_to_pred_expr [simp]: "test \<circ> abs_bterm = pred_expr"
apply (rule ext, simp add: o_def test_def pred_expr_def)
by (metis o_eq_dest_lhs pred_expr_test pred_expr_unfold abs.simps(4) test_to_pred_expr unfold_is_abs)
lemma test_range: "range pred_expr = range test"
by (metis test_to_pred_expr equalityI image_compose image_subsetI pred_expr_to_test rangeI)
lemma pred_exists: "p \<in> carrier tests \<Longrightarrow> \<exists>P. p = pred_expr P"
proof -
assume p_test: "p \<in> carrier tests"
hence "p \<in> range pred_expr"
by (simp add: tests_def test_set_def test_range[symmetric])
thus "\<exists>P. p = pred_expr P"
by (metis (lifting) image_iff)
qed
locale interp = fixes D :: "('a::ranked_alphabet,'b) interp"
context interp
begin
definition module :: "'b mems \<Rightarrow> 'a skat \<Rightarrow> 'b mems" (infix "\<Colon>" 75) where
"module \<Delta> x \<equiv> eval D x \<Delta>"
(* Properties from Kleene modules and linear languages by Hans Leiss *)
lemma mod_empty [simp]: "{} \<Colon> r = {}"
by (simp add: module_def, transfer, metis eval_mod1)
lemma mod_union: "(a \<union> b) \<Colon> r = a \<Colon> r \<union> b \<Colon> r"
by (simp add: module_def, transfer, metis eval_mod2)
lemma mod_zero [simp]: "a \<Colon> \<zero> = {}"
by (simp add: module_def, transfer, simp)
lemma mod_plus: "a \<Colon> (r + s) = a \<Colon> r \<union> a \<Colon> s"
by (simp add: module_def, transfer, simp)
lemma mod_one [simp]: "a \<Colon> \<one> = a"
by (simp add: module_def, transfer, simp)
lemma mod_mult: "a \<Colon> (r \<cdot> s) = (a \<Colon> r) \<Colon> s"
by (simp add: module_def, transfer, simp)
lemma mod_star: "a \<union> b \<Colon> r \<subseteq> b \<Longrightarrow> a \<Colon> r\<^sup>\<star> \<subseteq> b"
by (simp add: module_def subset_Un_eq, transfer, rule eval_mod3, blast)
lemma mod_assign: "\<Delta> \<Colon> x := s = assigns D x s \<Delta>"
apply (simp add: module_def)
apply transfer
apply simp
done
lemma mod_pred_expr: "\<Delta> \<Colon> pred_expr P = filter_set (eval_bexpr D P) \<Delta>"
apply (simp add: module_def)
apply transfer
apply simp
done
lemma mod_eval: "\<Delta> \<Colon> \<lfloor>s\<rfloor> = eval_skat_expr D s \<Delta>"
proof -
have "eval_skat_expr D s \<Delta> = \<Delta> \<Colon> abs_skat s"
by (simp add: module_def, transfer, auto)
thus ?thesis
by (metis unfold_is_abs)
qed
lemma mod_star_eval: "\<Delta> \<Colon> \<lfloor>s\<rfloor>\<^sup>\<star> = (\<Union>n. iter n (eval_skat_expr D s) \<Delta>)"
by (subgoal_tac "\<lfloor>s\<rfloor>\<^sup>\<star> = \<lfloor>SKStar s\<rfloor>", simp only: mod_eval, transfer, auto)
lemma mod_test_and:
assumes b_test: "b \<in> carrier tests" shows "a \<Colon> b = a \<inter> UNIV \<Colon> b"
proof -
obtain B where b_def: "b = pred_expr B"
by (metis b_test pred_exists)
have "a \<Colon> pred_expr B = filter_set (eval_bexpr D B) a"
by (simp add: mod_pred_expr)
also have "... = a \<inter> filter_set (eval_bexpr D B) UNIV"
by (rule filter_set_inter)
also have "... = a \<inter> UNIV \<Colon> pred_expr B"
by (simp add: mod_pred_expr)
finally show ?thesis
by (metis b_def)
qed
lemma module: "kat_module free_kat SET (op \<Colon>)"
proof (auto simp add: kat_module_def kat_module'_def)
show "kat free_kat"
by (metis free_kat)
show "complete_boolean_lattice SET"
by (metis SET_cbl)
show "(op \<Colon>) \<in> carrier SET \<rightarrow> carrier free_kat \<rightarrow> carrier SET"
by (simp add: ftype_pred SET_def)
show "kat_module_axioms free_kat SET (op \<Colon>)"
proof (simp add: kat_module_axioms_def, intro conjI impI allI, simp_all add: SET_def free_kat_def)
fix p q m n a P Q
show "m \<Colon> (p + q) = m \<Colon> p \<union> m \<Colon> q"
by (fact mod_plus)
show "m \<Colon> (p ; q) = (m \<Colon> p) \<Colon> q"
by (fact mod_mult)
show "(P \<union> Q) \<Colon> p = P \<Colon> p \<union> Q \<Colon> p"
by (fact mod_union)
show "m \<subseteq> n \<and> n \<Colon> p \<subseteq> n \<Longrightarrow> m \<Colon> p\<^sup>\<star> \<subseteq> n"
by (metis Un_least mod_star)
show "a \<in> carrier tests \<Longrightarrow> m \<Colon> a = m \<inter> UNIV \<Colon> a"
by (metis mod_test_and)
qed
qed
definition hoare_triple :: "'b mems \<Rightarrow> 'a skat \<Rightarrow> 'b mems \<Rightarrow> bool" ("\<lbrace>_\<rbrace> _ \<lbrace>_\<rbrace>" [54,54,54] 53) where
"\<lbrace>P\<rbrace> p \<lbrace>Q\<rbrace> \<equiv> P \<Colon> p \<subseteq> Q"
lemma hoare_triple_mod: "kat_module.hoare_triple SET (op \<Colon>) P p Q = \<lbrace>P\<rbrace> p \<lbrace>Q\<rbrace>"
by (simp add: kat_module.hoare_triple_def[OF module] hoare_triple_def) (simp add: SET_def)
lemma [simp]: "kat_module.hoare_triple \<lparr>carrier = UNIV, le = op \<subseteq>\<rparr> op \<Colon> P p Q = \<lbrace>P\<rbrace> p \<lbrace>Q\<rbrace>"
by (metis SET_def interp.hoare_triple_mod)
declare hoare_triple_mod[simp]
declare SET_def[simp]
declare free_kat_def[simp]
lemmas hoare_composition = kat_module.hoare_composition[OF module, simplified]
lemma hoare_weakening [consumes 1]: "\<lbrakk>\<lbrace>P\<rbrace> p \<lbrace>Q\<rbrace>; P' \<subseteq> P; Q \<subseteq> Q'\<rbrakk> \<Longrightarrow> \<lbrace>P'\<rbrace> p \<lbrace>Q'\<rbrace>"
by (metis hoare_triple_def interp.hoare_composition mod_one skd.mult_onel skd.mult_oner)
lemma hoare_if:
assumes b_test: "b \<in> carrier tests"
and then_branch: "\<lbrace>P \<inter> (UNIV \<Colon> b)\<rbrace> p \<lbrace>Q\<rbrace>"
and else_branch: "\<lbrace>P \<inter> (UNIV \<Colon> !b)\<rbrace> q \<lbrace>Q\<rbrace>"
shows "\<lbrace>P\<rbrace> IF b THEN p ELSE q ENDIF \<lbrace>Q\<rbrace>"
proof -
obtain B where b_def: "b = pred_expr B"
by (metis b_test pred_exists)
hence "\<lbrace>P \<inter> (UNIV \<Colon> pred_expr B)\<rbrace> p \<lbrace>Q\<rbrace>" and "\<lbrace>P \<inter> (UNIV \<Colon> pred_expr (BNot B))\<rbrace> q \<lbrace>Q\<rbrace>"
by (metis then_branch) (metis b_def else_branch pred_expr_not)
hence "\<lbrace>P\<rbrace> IF pred_expr B THEN p ELSE q ENDIF \<lbrace>Q\<rbrace>"
apply (simp add: if_then_else_def hoare_triple_def mod_plus mod_mult)
by (metis (lifting) filter_set_inter mod_pred_expr)
thus ?thesis
by (metis b_def)
qed
abbreviation assigns_notation :: "'b mems \<Rightarrow> nat \<Rightarrow> 'a trm \<Rightarrow> 'b mems"
("_[_|_]" [100,100,100] 101) where
"P[x|t] \<equiv> assigns D x t P"
lemma hoare_assignment: "P[x|s] \<subseteq> Q \<Longrightarrow> \<lbrace>P\<rbrace> x := s \<lbrace>Q\<rbrace>"
by (metis hoare_triple_def mod_assign)
definition satisfies :: "nat \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> 'b mems" where
"satisfies x p \<equiv> {mem. p (mem x)}"
lemma hoare_while:
assumes b_test: "b \<in> carrier tests"
and Q_def: "Q = P \<inter> (UNIV \<Colon> !b)"
and loop_condition: "\<lbrace>P \<inter> (UNIV \<Colon> b)\<rbrace> p \<lbrace>P\<rbrace>"
shows "\<lbrace>P\<rbrace> WHILE b DO p WEND \<lbrace>Q\<rbrace>"
proof -
have "P \<Colon> (b ; p)\<^sup>\<star> \<subseteq> P"
by (rule mod_star, metis b_test hoare_triple_def interp.mod_mult interp.mod_test_and le_sup_iff loop_condition order_refl)
hence "P \<Colon> (b ; p)\<^sup>\<star> \<inter> UNIV \<Colon> !b \<subseteq> P \<inter> UNIV \<Colon> !b"
by (metis (lifting) Int_Un_distrib2 subset_Un_eq)
hence "P \<Colon> (b ; p)\<^sup>\<star> \<inter> UNIV \<Colon> !b \<subseteq> Q"
by (simp add: Q_def)
hence "(P \<Colon> (b ; p)\<^sup>\<star>) \<Colon> !b \<subseteq> Q"
by (metis b_test not_closed mod_test_and)
hence "\<lbrace>P\<rbrace> (b;p)\<^sup>\<star>;!b \<lbrace>Q\<rbrace>"
by (simp add: hoare_triple_def mod_mult)
thus ?thesis
by (simp add: while_def)
qed
definition while_inv :: "'a::ranked_alphabet skat \<Rightarrow> 'b mems \<Rightarrow> 'a skat \<Rightarrow> 'a skat" ("WHILE _ INVARIANT _ DO _ WEND" [64,64,64] 63) where
"WHILE b INVARIANT i DO p WEND = (b\<cdot>p)\<^sup>\<star>\<cdot>!b"
lemma while_inv_while: "WHILE b INVARIANT i DO p WEND = WHILE b DO p WEND"
by (metis while_def while_inv_def)
lemma hoare_while_inv:
assumes b_test: "b \<in> carrier tests"
and Pi: "P \<subseteq> i" and iQ: "i \<inter> (UNIV \<Colon> !b) \<subseteq> Q"
and inv_loop: "\<lbrace>i \<inter> (UNIV \<Colon> b)\<rbrace> p \<lbrace>i\<rbrace>"
shows "\<lbrace>P\<rbrace> WHILE b INVARIANT i DO p WEND \<lbrace>Q\<rbrace>"
by (auto simp add: while_inv_while intro: hoare_weakening[OF _ Pi iQ] hoare_while[OF b_test _ inv_loop])
end
end