-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadversarial_training.py
264 lines (209 loc) · 13.1 KB
/
adversarial_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import numpy
import torch
import common.torch
import common.summary
import common.numpy
import attacks
from normal_training import *
class AdversarialTraining(NormalTraining):
"""
Adversarial training.
"""
def __init__(self, model, trainset, testset, optimizer, scheduler, attack, objective, fraction=0.5, writer=common.summary.SummaryWriter(), cuda=False):
"""
Constructor.
:param model: model
:type model: torch.nn.Module
:param trainset: training set
:type trainset: torch.utils.data.DataLoader
:param testset: test set
:type testset: torch.utils.data.DataLoader
:param optimizer: optimizer
:type optimizer: torch.optim.Optimizer
:param scheduler: scheduler
:type scheduler: torch.optim.LRScheduler
:param attack: attack
:type attack: attacks.Attack
:param objective: objective
:type objective: attacks.Objective
:param fraction: fraction of adversarial examples per batch
:type fraction: float
:param augmentation: augmentation
:type augmentation: imgaug.augmenters.Sequential
:param writer: summary writer
:type writer: torch.utils.tensorboard.SummaryWriter or TensorboardX equivalent
:param cuda: run on CUDA device
:type cuda: bool
"""
assert fraction > 0
assert fraction <= 1
# assert isinstance(attack, attacks.Attack)
assert isinstance(objective, attacks.objectives.Objective)
assert getattr(attack, 'norm', None) is not None
super(AdversarialTraining, self).__init__(model, trainset, testset, optimizer, scheduler, writer, cuda)
self.attack = attack
""" (attacks.Attack) Attack. """
self.objective = objective
""" (attacks.Objective) Objective. """
# in code, we want fraction to be the fraction of clean samples for simplicity
self.fraction = 1 - fraction
""" (float) Fraction of adversarial examples ."""
self.max_batches = 10
""" (int) Number of batches to test adversarially on. """
self.writer.add_text('config/attack', self.attack.__class__.__name__)
self.writer.add_text('config/objective', self.objective.__class__.__name__)
self.writer.add_text('config/fraction', str(fraction))
def train(self, epoch):
"""
Training step.
:param epoch: epoch
:type epoch: int
"""
batches = len(self.trainset)
cl_losses = None
cl_errors = None
cl_confidences = None
successes = None
losses = None
errors = None
confidences = None
b = 0
for inputs, targets in tqdm(self.trainset):
inputs = common.torch.as_variable(inputs, self.cuda)
# inputs = inputs.permute(0, 3, 1, 2)
targets = common.torch.as_variable(targets, self.cuda)
fraction = self.fraction
split = int(fraction*inputs.size(0))
# update fraction for correct loss computation
fraction = split / float(inputs.size(0))
clean_inputs = inputs[:split]
adversarial_inputs = inputs[split:]
clean_targets = targets[:split]
adversarial_targets = targets[split:]
self.model.eval()
self.objective.set(adversarial_targets)
adversarial_perturbations, adversarial_objectives = self.attack.run(self.model, adversarial_inputs, self.objective)
adversarial_perturbations = common.torch.as_variable(adversarial_perturbations, self.cuda)
adversarial_inputs = adversarial_inputs + adversarial_perturbations
if adversarial_inputs.shape[0] < inputs.shape[0]: # fraction is not 1
inputs = torch.cat((clean_inputs, adversarial_inputs), dim=0)
else:
inputs = adversarial_inputs
# targets remain unchanged
self.model.train()
self.optimizer.zero_grad()
logits = self.model(inputs)
clean_logits = logits[:split]
adversarial_logits = logits[split:]
adversarial_loss = common.torch.classification_loss(adversarial_logits, adversarial_targets)
adversarial_error = common.torch.classification_error(adversarial_logits, adversarial_targets)
if adversarial_inputs.shape[0] < inputs.shape[0]:
clean_loss = common.torch.classification_loss(clean_logits, clean_targets)
clean_error = common.torch.classification_error(clean_logits, clean_targets)
loss = (1 - fraction) * clean_loss + fraction * adversarial_loss
else:
clean_loss = torch.zeros(1)
clean_error = torch.zeros(1)
loss = adversarial_loss
cl_losses = common.numpy.concatenate(cl_losses, common.torch.classification_loss(clean_logits, clean_targets, reduction='none').detach().cpu().numpy())
cl_errors = common.numpy.concatenate(cl_errors, common.torch.classification_error(clean_logits, clean_targets, reduction='none').detach().cpu().numpy())
cl_confidences = common.numpy.concatenate(cl_confidences, torch.max(torch.nn.functional.softmax(clean_logits, dim=1), dim=1)[0].detach().cpu().numpy())
successes = common.numpy.concatenate(successes,
torch.clamp(torch.abs(adversarial_targets - torch.max(
torch.nn.functional.softmax(adversarial_logits, dim=1), dim=1)[1]),
max=1).detach().cpu().numpy())
losses = common.numpy.concatenate(losses, common.torch.classification_loss(adversarial_logits, adversarial_targets, reduction='none').detach().cpu().numpy())
errors = common.numpy.concatenate(errors, common.torch.classification_error(adversarial_logits, adversarial_targets, reduction='none').detach().cpu().numpy())
confidences = common.numpy.concatenate(confidences, torch.max(torch.nn.functional.softmax(adversarial_logits, dim=1), dim=1)[0].detach().cpu().numpy())
loss.backward()
self.optimizer.step()
# self.scheduler.step()
if b == (batches-1):
# global_step = epoch * len(self.trainset) + b
global_step = epoch
# self.writer.add_scalar('train/lr', self.scheduler.get_last_lr()[0], global_step=global_step)
# if adversarial_inputs.shape[0] < inputs.shape[0]: # fraction is not 1
# self.writer.add_scalar('train/loss', clean_loss.item(), global_step=global_step)
# self.writer.add_scalar('train/error', clean_error.item(), global_step=global_step)
# self.writer.add_scalar('train/confidence', torch.mean(torch.max(torch.nn.functional.softmax(clean_logits, dim=1), dim=1)[0]).item(), global_step=global_step)
# self.writer.add_histogram('train/logits', torch.max(clean_logits, dim=1)[0], global_step=global_step)
# self.writer.add_histogram('train/confidences', torch.max(torch.nn.functional.softmax(clean_logits, dim=1), dim=1)[0], global_step=global_step)
if adversarial_inputs.shape[0] < inputs.shape[0]: # fraction is not 1
self.writer.add_scalar('train/loss', numpy.mean(cl_losses), global_step=global_step)
self.writer.add_scalar('train/error', numpy.mean(cl_errors), global_step=global_step)
self.writer.add_scalar('train/confidence', numpy.mean(cl_confidences), global_step=global_step)
# success = torch.clamp(torch.abs(adversarial_targets - torch.max(torch.nn.functional.softmax(adversarial_logits, dim=1), dim=1)[1]), max=1)
# self.writer.add_scalar('train/adversarial_loss', adversarial_loss.item(), global_step=global_step)
# self.writer.add_scalar('train/adversarial_error', adversarial_error.item(), global_step=global_step)
# self.writer.add_scalar('train/adversarial_confidence', torch.mean(torch.max(torch.nn.functional.softmax(adversarial_logits, dim=1), dim=1)[0]).item(), global_step=global_step)
# self.writer.add_scalar('train/adversarial_success', torch.mean(success.float()).item(), global_step=global_step)
self.writer.add_scalar('train/adversarial_success', numpy.mean(successes), global_step=global_step)
self.writer.add_scalar('train/adversarial_loss', numpy.mean(losses), global_step=global_step)
self.writer.add_scalar('train/adversarial_error', numpy.mean(errors), global_step=global_step)
self.writer.add_scalar('train/adversarial_confidence', numpy.mean(confidences), global_step=global_step)
# self.writer.add_histogram('train/adversarial_logits', torch.max(adversarial_logits, dim=1)[0], global_step=global_step)
# self.writer.add_histogram('train/adversarial_confidences', torch.max(torch.nn.functional.softmax(adversarial_logits, dim=1), dim=1)[0], global_step=global_step)
# if self.summary_gradients:
# for name, parameter in self.model.named_parameters():
# self.writer.add_histogram('train_weights/%s' % name, parameter.view(-1), global_step=global_step)
# self.writer.add_histogram('train_gradients/%s' % name, parameter.grad.view(-1), global_step=global_step)
if adversarial_inputs.shape[0] < inputs.shape[0]: # fraction is not 1
self.writer.add_images('train/images', inputs[:min(8, split)], global_step=global_step)
self.writer.add_images('train/adversarial_images', inputs[split:split + 8], global_step=global_step)
# self.progress(epoch, b, len(self.trainset))
b+=1
def test(self, epoch):
"""
Test on adversarial examples.
:param epoch: epoch
:type epoch: int
"""
super(AdversarialTraining, self).test(epoch)
self.model.eval()
losses = None
errors = None
confidences = None
successes = None
norms = None
objectives = None
b = 0
for (inputs, targets) in tqdm(self.testset):
if b >= self.max_batches:
break
inputs = common.torch.as_variable(inputs, self.cuda)
# inputs = inputs.permute(0, 3, 1, 2)
targets = common.torch.as_variable(targets, self.cuda)
self.objective.set(targets)
adversarial_perturbations, adversarial_objectives = self.attack.run(self.model, inputs, self.objective)
objectives = common.numpy.concatenate(objectives, adversarial_objectives)
adversarial_perturbations = common.torch.as_variable(adversarial_perturbations, self.cuda)
inputs = inputs + adversarial_perturbations
logits = self.model(inputs)
losses = common.numpy.concatenate(losses, common.torch.classification_loss(logits, targets, reduction='none').detach().cpu().numpy())
errors = common.numpy.concatenate(errors, common.torch.classification_error(logits, targets, reduction='none').detach().cpu().numpy())
confidences = common.numpy.concatenate(confidences, torch.max(torch.nn.functional.softmax(logits, dim=1), dim=1)[0].detach().cpu().numpy())
successes = common.numpy.concatenate(successes, torch.clamp(torch.abs(targets - torch.max(torch.nn.functional.softmax(logits, dim=1), dim=1)[1]), max=1).detach().cpu().numpy())
norms = common.numpy.concatenate(norms, self.attack.norm(adversarial_perturbations).detach().cpu().numpy())
# self.progress(epoch, b, self.max_batches)
b += 1
del inputs, targets, logits
global_step = epoch + 1# * len(self.trainset) + len(self.trainset) - 1
self.writer.add_scalar('test/adversarial_loss', numpy.mean(losses), global_step=global_step)
self.writer.add_scalar('test/adversarial_error', numpy.mean(errors), global_step=global_step)
self.writer.add_scalar('test/adversarial_confidence', numpy.mean(confidences), global_step=global_step)
self.writer.add_scalar('test/adversarial_success', numpy.mean(successes), global_step=global_step)
self.writer.add_scalar('test/adversarial_norm', numpy.mean(norms), global_step=global_step)
self.writer.add_scalar('test/adversarial_objective', numpy.mean(objectives), global_step=global_step)
# self.writer.add_histogram('test/adversarial_losses', losses, global_step=global_step)
# self.writer.add_histogram('test/adversarial_errors', errors, global_step=global_step)
# self.writer.add_histogram('test/adversarial_confidences', confidences, global_step=global_step)
# self.writer.add_histogram('test/adversarial_norms', norms, global_step=global_step)
# self.writer.add_histogram('test/adversarial_objectives', objectives, global_step=global_step)
def step(self, epoch):
"""
Training + test step.
:param epoch: epoch
:type epoch: int
"""
self.train(epoch)
self.test(epoch)