-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadv_main.py
282 lines (228 loc) · 10.4 KB
/
adv_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# python examples/pretnormal_training_robustness.py --dataset mushrooms --tensorboard
import os
import sys
sys.path.insert(1, os.path.dirname(os.path.realpath(__file__)) + '/../')
import math
import common.experiments
import common.utils
import common.eval
import numpy
from common.log import log
from common.paths import DATA_DIR_TRAIN
# import models
import torch
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from train_utils import *
from adversarial_training import *
import gc
def find_incomplete_state_file(model_file):
"""
State file.
:param model_file: base state file
:type model_file: str
:return: state file of ongoing training
:rtype: str
"""
base_directory = os.path.dirname(os.path.realpath(model_file))
file_name = os.path.basename(model_file)
if os.path.exists(base_directory):
state_files = []
files = [os.path.basename(f) for f in os.listdir(base_directory) if os.path.isfile(os.path.join(base_directory, f))]
for file in files:
if file.find(file_name) >= 0 and file != file_name:
state_files.append(file)
if len(state_files) > 0:
epochs = [state_files[i].replace(file_name, '').replace('.pth.tar', '').replace('.', '') for i in range(len(state_files))]
epochs = [epoch for epoch in epochs if epoch.isdigit()]
epochs = list(map(int, epochs))
epochs = [epoch for epoch in epochs if epoch >= 0]
if len(epochs) > 0:
# list is not ordered by epochs!
i = numpy.argmax(epochs)
return os.path.join(base_directory, file_name + '.%d' % epochs[i])
class Main:
def __init__(self, args=None):
"""
Initialize.
:param args: optional arguments if not to use sys.argv
:type args: [str]
"""
self.directory = './.assets/checkpoints'
""" Arguments of program. """
self.trainloader = None
""" (torch.utils.data.DataLoader) Training loader. """
self.testloader = None
""" (torch.utils.data.DataLoader) Test loader. """
self.adversarialloader = None
""" (torch.utils.data.DataLoader) Loader to attack. """
self.epsilon = 0
""" (float) Epsilon for L_inf attacks. """
def setup(self):
"""
Set dataloaders.
"""
self.epsilon = 0.03
batch_size = 12
image_transforms = {
# # Train uses data augmentation
'train':
transforms.Compose([
# transforms.RandomResizedCrop(size=299),#, scale=(1., 1.0)
transforms.RandomPerspective(distortion_scale=0.45, p=0.4),
# transforms.RandomRotation(degrees=15),
transforms.RandomVerticalFlip(),
transforms.CenterCrop(size=400),
transforms.Resize(size=224),
transforms.ColorJitter(0.3, 0.35, 0.3, 0.04),
# transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]),
# # Validation does not use augmentation
'val':
transforms.Compose([
# transforms.Resize(size=(350)),
# transforms.CenterCrop(299),
transforms.CenterCrop(size=400),
transforms.Resize(size=224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]),
}
dataloaders = get_dataloaders(DATA_DIR_TRAIN, 0.3, batch_size, image_transforms)
self.trainloader = dataloaders['train']
self.testloader = dataloaders['val']
self.adversarialloader = dataloaders['val']
common.utils.makedir(self.directory)
def get_training_attack(self):
"""
Get attack for training.
"""
epsilon = 0.03
ace = attacks.AdvCF()
ace.num_classes = 2
ace.search_steps = 1
ace.max_iterations = 40
ace.initial_const = 8
ace.device = torch.device("cuda")
ace.pieces = 64
ace.norm = attacks.norms.LInfNorm()
objective = attacks.objectives.UntargetedF0Objective()
return ace, objective
def get_test_attacks(self):
"""
Get attacks to test.
"""
pgd = attacks.BatchGradientDescent()
pgd.max_iterations = 200
pgd.base_lr = 0.005
pgd.momentum = 0.9
pgd.c = 0
pgd.lr_factor = 1.25
pgd.normalized = True
pgd.backtrack = True
pgd.initialization = attacks.initializations.LInfUniformNormInitialization(self.epsilon)
pgd.projection = attacks.projections.SequentialProjections([
attacks.projections.LInfProjection(self.epsilon),
attacks.projections.BoxProjection()
])
pgd.norm = attacks.norms.LInfNorm()
untargetedf0 = attacks.objectives.UntargetedF0Objective()
return [
[pgd, untargetedf0, 1],
]
def train(self):
"""
Training configuration.
"""
writer = SummaryWriter('%s/logs/' % self.directory, max_queue=100)
epochs = 150
snapshot = 1
model_file = '%s/classifier.pth.tar' % self.directory
incomplete_model_file = find_incomplete_state_file(model_file)
load_file = model_file
if incomplete_model_file is not None:
load_file = incomplete_model_file
start_epoch = 0
if os.path.exists(load_file):
state = common.state.State.load(load_file)
self.model = state.model
start_epoch = state.epoch + 1
# epoch = start_epoch
log('loaded %s' % load_file)
else:
num_classes = 2
# self.model = models.ResNet(num_classes, [self.trainset.images.shape[3], self.trainset.images.shape[1], self.trainset.images.shape[2]],
# blocks=[3, 3, 3])
self.model = get_resnet(num_classes)
self.model = self.model.cuda()
# optimizer = torch.optim.SGD(self.model.parameters(), lr=0.01, momentum=0.9)
optimizer = torch.optim.Adam(self.model.parameters(), lr=10**(-5), betas=(0, 0.99))
# gamma=0.97
# batches_per_epoch = len(self.trainloader)
# scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=[lambda epoch: gamma ** math.floor(epoch/batches_per_epoch)])
# scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.2, patience=2,
# verbose=False, min_lr=1e-6)
scheduler = None
attack, objective = self.get_training_attack()
trainer = AdversarialTraining(self.model, self.trainloader, self.testloader, optimizer, scheduler,
attack, objective, writer=writer, cuda=True)
self.model.train()
for epoch in tqdm(range(start_epoch, epochs)):
gc.collect()
trainer.step(epoch)
writer.flush()
snapshot_model_file = '%s/classifier.pth.tar.%d' % (self.directory, epoch)
common.state.State.checkpoint(snapshot_model_file, self.model, optimizer, scheduler, epoch)
previous_model_file = '%s/classifier.pth.tar.%d' % (self.directory, epoch - 1)
if os.path.exists(previous_model_file) and (epoch - 1) % snapshot > 0:
os.unlink(previous_model_file)
previous_model_file = '%s/classifier.pth.tar.%d' % (self.directory, epoch - 1)
if os.path.exists(previous_model_file) and (epoch - 1) % snapshot > 0:
os.unlink(previous_model_file)
common.state.State.checkpoint(model_file, self.model, optimizer, scheduler, epoch)
def evaluate(self):
"""
Evaluate.
"""
self.model.eval()
clean_probabilities = common.test.test(self.model, self.testloader, cuda=True)
total_adversarial_probabilities = None
total_adversarial_errors = None
for attack, objective, attempts in self.get_test_attacks():
_, adversarial_probabilities, _ = common.test.attack(self.model, self.adversarialloader,
attack, objective, attempts=attempts, cuda=True)
relevant_adversarial_probabilities = numpy.copy(adversarial_probabilities)
relevant_adversarial_probabilities[
:,
numpy.arange(relevant_adversarial_probabilities.shape[1]),
self.testset.labels[:relevant_adversarial_probabilities.shape[1]],
] = 0
assert len(relevant_adversarial_probabilities.shape) == 3
adversarial_errors = -numpy.max(relevant_adversarial_probabilities, axis=2)
total_adversarial_probabilities = common.numpy.concatenate(total_adversarial_probabilities, adversarial_probabilities, axis=0)
total_adversarial_errors = common.numpy.concatenate(total_adversarial_errors, adversarial_errors, axis=0)
eval = common.eval.AdversarialEvaluation(clean_probabilities, total_adversarial_probabilities,
self.testset.labels, validation=0.9, errors=total_adversarial_errors)
log('test error in %%: %g' % (eval.test_error() * 100))
log('test error @99%%tpr in %%: %g' % (eval.test_error_at_99tpr() * 100))
log('robust test error in %%: %g' % (eval.robust_test_error() * 100))
log('robust test error @99%%tpr in %%: %g' % (eval.robust_test_error_at_99tpr() * 100))
def main(self):
"""
Main.
"""
self.setup()
model_file = '%s/classifier.pth.tar' % self.directory
# model_file = 'D:\Projects\Diplom\CCAT\.my_models\pretclassifier.pth.tar'
if not os.path.exists(model_file):
self.train()
else:
state = common.state.State.load(model_file)
self.model = state.model
self.model = self.model.cuda()
# self.evaluate()
if __name__ == '__main__':
program = Main()
program.main()