forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet_ctl_imagenet_main.py
398 lines (330 loc) · 14.4 KB
/
resnet_ctl_imagenet_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Runs a ResNet model on the ImageNet dataset using custom training loops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf
from official.vision.image_classification import imagenet_preprocessing
from official.vision.image_classification import common
from official.vision.image_classification import resnet_model
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils
from official.utils.misc import keras_utils
from official.utils.misc import model_helpers
flags.DEFINE_boolean(name='use_tf_function', default=True,
help='Wrap the train and test step inside a '
'tf.function.')
flags.DEFINE_boolean(name='single_l2_loss_op', default=False,
help='Calculate L2_loss on concatenated weights, '
'instead of using Keras per-layer L2 loss.')
def build_stats(train_result, eval_result, time_callback):
"""Normalizes and returns dictionary of stats.
Args:
train_result: The final loss at training time.
eval_result: Output of the eval step. Assumes first value is eval_loss and
second value is accuracy_top_1.
time_callback: Time tracking callback instance.
Returns:
Dictionary of normalized results.
"""
stats = {}
if eval_result:
stats['eval_loss'] = eval_result[0]
stats['eval_acc'] = eval_result[1]
stats['train_loss'] = train_result[0]
stats['train_acc'] = train_result[1]
if time_callback:
timestamp_log = time_callback.timestamp_log
stats['step_timestamp_log'] = timestamp_log
stats['train_finish_time'] = time_callback.train_finish_time
if len(timestamp_log) > 1:
stats['avg_exp_per_second'] = (
time_callback.batch_size * time_callback.log_steps *
(len(time_callback.timestamp_log) - 1) /
(timestamp_log[-1].timestamp - timestamp_log[0].timestamp))
return stats
def get_input_dataset(flags_obj, strategy):
"""Returns the test and train input datasets."""
dtype = flags_core.get_tf_dtype(flags_obj)
use_dataset_fn = isinstance(strategy, tf.distribute.experimental.TPUStrategy)
batch_size = flags_obj.batch_size
if use_dataset_fn:
if batch_size % strategy.num_replicas_in_sync != 0:
raise ValueError(
'Batch size must be divisible by number of replicas : {}'.format(
strategy.num_replicas_in_sync))
# As auto rebatching is not supported in
# `experimental_distribute_datasets_from_function()` API, which is
# required when cloning dataset to multiple workers in eager mode,
# we use per-replica batch size.
batch_size = int(batch_size / strategy.num_replicas_in_sync)
if flags_obj.use_synthetic_data:
input_fn = common.get_synth_input_fn(
height=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
width=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
num_channels=imagenet_preprocessing.NUM_CHANNELS,
num_classes=imagenet_preprocessing.NUM_CLASSES,
dtype=dtype,
drop_remainder=True)
else:
input_fn = imagenet_preprocessing.input_fn
def _train_dataset_fn(ctx=None):
train_ds = input_fn(
is_training=True,
data_dir=flags_obj.data_dir,
batch_size=batch_size,
parse_record_fn=imagenet_preprocessing.parse_record,
datasets_num_private_threads=flags_obj.datasets_num_private_threads,
dtype=dtype,
input_context=ctx,
drop_remainder=True)
return train_ds
if strategy:
if isinstance(strategy, tf.distribute.experimental.TPUStrategy):
train_ds = strategy.experimental_distribute_datasets_from_function(_train_dataset_fn)
else:
train_ds = strategy.experimental_distribute_dataset(_train_dataset_fn())
else:
train_ds = _train_dataset_fn()
test_ds = None
if not flags_obj.skip_eval:
def _test_data_fn(ctx=None):
test_ds = input_fn(
is_training=False,
data_dir=flags_obj.data_dir,
batch_size=batch_size,
parse_record_fn=imagenet_preprocessing.parse_record,
dtype=dtype,
input_context=ctx)
return test_ds
if strategy:
if isinstance(strategy, tf.distribute.experimental.TPUStrategy):
test_ds = strategy.experimental_distribute_datasets_from_function(
_test_data_fn)
else:
test_ds = strategy.experimental_distribute_dataset(_test_data_fn())
else:
test_ds = _test_data_fn()
return train_ds, test_ds
def get_num_train_iterations(flags_obj):
"""Returns the number of training steps, train and test epochs."""
train_steps = (
imagenet_preprocessing.NUM_IMAGES['train'] // flags_obj.batch_size)
train_epochs = flags_obj.train_epochs
if flags_obj.train_steps:
train_steps = min(flags_obj.train_steps, train_steps)
train_epochs = 1
eval_steps = (
imagenet_preprocessing.NUM_IMAGES['validation'] // flags_obj.batch_size)
return train_steps, train_epochs, eval_steps
def _steps_to_run(steps_in_current_epoch, steps_per_epoch, steps_per_loop):
"""Calculates steps to run on device."""
if steps_per_loop <= 0:
raise ValueError('steps_per_loop should be positive integer.')
if steps_per_loop == 1:
return steps_per_loop
return min(steps_per_loop, steps_per_epoch - steps_in_current_epoch)
def run(flags_obj):
"""Run ResNet ImageNet training and eval loop using custom training loops.
Args:
flags_obj: An object containing parsed flag values.
Raises:
ValueError: If fp16 is passed as it is not currently supported.
Returns:
Dictionary of training and eval stats.
"""
keras_utils.set_session_config(
enable_eager=flags_obj.enable_eager,
enable_xla=flags_obj.enable_xla)
dtype = flags_core.get_tf_dtype(flags_obj)
if dtype == tf.float16:
policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
'mixed_float16')
tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)
elif dtype == tf.bfloat16:
policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
'mixed_bfloat16')
tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)
# TODO(anj-s): Set data_format without using Keras.
data_format = flags_obj.data_format
if data_format is None:
data_format = ('channels_first'
if tf.test.is_built_with_cuda() else 'channels_last')
tf.keras.backend.set_image_data_format(data_format)
strategy = distribution_utils.get_distribution_strategy(
distribution_strategy=flags_obj.distribution_strategy,
num_gpus=flags_obj.num_gpus,
num_workers=distribution_utils.configure_cluster(),
all_reduce_alg=flags_obj.all_reduce_alg,
num_packs=flags_obj.num_packs,
tpu_address=flags_obj.tpu)
train_ds, test_ds = get_input_dataset(flags_obj, strategy)
per_epoch_steps, train_epochs, eval_steps = get_num_train_iterations(
flags_obj)
steps_per_loop = min(flags_obj.steps_per_loop, per_epoch_steps)
logging.info("Training %d epochs, each epoch has %d steps, "
"total steps: %d; Eval %d steps",
train_epochs, per_epoch_steps, train_epochs * per_epoch_steps,
eval_steps)
time_callback = keras_utils.TimeHistory(flags_obj.batch_size,
flags_obj.log_steps)
with distribution_utils.get_strategy_scope(strategy):
model = resnet_model.resnet50(
num_classes=imagenet_preprocessing.NUM_CLASSES,
batch_size=flags_obj.batch_size,
use_l2_regularizer=not flags_obj.single_l2_loss_op)
lr_schedule = common.PiecewiseConstantDecayWithWarmup(
batch_size=flags_obj.batch_size,
epoch_size=imagenet_preprocessing.NUM_IMAGES['train'],
warmup_epochs=common.LR_SCHEDULE[0][1],
boundaries=list(p[1] for p in common.LR_SCHEDULE[1:]),
multipliers=list(p[0] for p in common.LR_SCHEDULE),
compute_lr_on_cpu=True)
optimizer = common.get_optimizer(lr_schedule)
if dtype == tf.float16:
loss_scale = flags_core.get_loss_scale(flags_obj, default_for_fp16=128)
optimizer = tf.keras.mixed_precision.experimental.LossScaleOptimizer(
optimizer, loss_scale)
elif flags_obj.fp16_implementation == 'graph_rewrite':
# `dtype` is still float32 in this case. We built the graph in float32 and
# let the graph rewrite change parts of it float16.
if not flags_obj.use_tf_function:
raise ValueError('--fp16_implementation=graph_rewrite requires '
'--use_tf_function to be true')
loss_scale = flags_core.get_loss_scale(flags_obj, default_for_fp16=128)
optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
optimizer, loss_scale)
train_loss = tf.keras.metrics.Mean('train_loss', dtype=tf.float32)
training_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
'training_accuracy', dtype=tf.float32)
test_loss = tf.keras.metrics.Mean('test_loss', dtype=tf.float32)
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
'test_accuracy', dtype=tf.float32)
trainable_variables = model.trainable_variables
def step_fn(inputs):
"""Per-Replica StepFn."""
images, labels = inputs
with tf.GradientTape() as tape:
logits = model(images, training=True)
prediction_loss = tf.keras.losses.sparse_categorical_crossentropy(
labels, logits)
loss = tf.reduce_sum(prediction_loss) * (1.0/ flags_obj.batch_size)
num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
if flags_obj.single_l2_loss_op:
filtered_variables = [
tf.reshape(v, (-1,))
for v in trainable_variables
if 'bn' not in v.name
]
l2_loss = resnet_model.L2_WEIGHT_DECAY * 2 * tf.nn.l2_loss(
tf.concat(filtered_variables, axis=0))
loss += (l2_loss / num_replicas)
else:
loss += (tf.reduce_sum(model.losses) / num_replicas)
# Scale the loss
if flags_obj.dtype == "fp16":
loss = optimizer.get_scaled_loss(loss)
grads = tape.gradient(loss, trainable_variables)
# Unscale the grads
if flags_obj.dtype == "fp16":
grads = optimizer.get_unscaled_gradients(grads)
optimizer.apply_gradients(zip(grads, trainable_variables))
train_loss.update_state(loss)
training_accuracy.update_state(labels, logits)
@tf.function
def train_steps(iterator, steps):
"""Performs distributed training steps in a loop."""
for _ in tf.range(steps):
strategy.experimental_run_v2(step_fn, args=(next(iterator),))
def train_single_step(iterator):
if strategy:
strategy.experimental_run_v2(step_fn, args=(next(iterator),))
else:
return step_fn(next(iterator))
def test_step(iterator):
"""Evaluation StepFn."""
def step_fn(inputs):
images, labels = inputs
logits = model(images, training=False)
loss = tf.keras.losses.sparse_categorical_crossentropy(labels,
logits)
loss = tf.reduce_sum(loss) * (1.0/ flags_obj.batch_size)
test_loss.update_state(loss)
test_accuracy.update_state(labels, logits)
if strategy:
strategy.experimental_run_v2(step_fn, args=(next(iterator),))
else:
step_fn(next(iterator))
if flags_obj.use_tf_function:
train_single_step = tf.function(train_single_step)
test_step = tf.function(test_step)
train_iter = iter(train_ds)
time_callback.on_train_begin()
for epoch in range(train_epochs):
train_loss.reset_states()
training_accuracy.reset_states()
steps_in_current_epoch = 0
while steps_in_current_epoch < per_epoch_steps:
time_callback.on_batch_begin(
steps_in_current_epoch+epoch*per_epoch_steps)
steps = _steps_to_run(steps_in_current_epoch, per_epoch_steps,
steps_per_loop)
if steps == 1:
train_single_step(train_iter)
else:
# Converts steps to a Tensor to avoid tf.function retracing.
train_steps(train_iter, tf.convert_to_tensor(steps, dtype=tf.int32))
time_callback.on_batch_end(
steps_in_current_epoch+epoch*per_epoch_steps)
steps_in_current_epoch += steps
logging.info('Training loss: %s, accuracy: %s at epoch %d',
train_loss.result().numpy(),
training_accuracy.result().numpy(),
epoch + 1)
if (not flags_obj.skip_eval and
(epoch + 1) % flags_obj.epochs_between_evals == 0):
test_loss.reset_states()
test_accuracy.reset_states()
test_iter = iter(test_ds)
for _ in range(eval_steps):
test_step(test_iter)
logging.info('Test loss: %s, accuracy: %s%% at epoch: %d',
test_loss.result().numpy(),
test_accuracy.result().numpy(),
epoch + 1)
time_callback.on_train_end()
eval_result = None
train_result = None
if not flags_obj.skip_eval:
eval_result = [test_loss.result().numpy(),
test_accuracy.result().numpy()]
train_result = [train_loss.result().numpy(),
training_accuracy.result().numpy()]
stats = build_stats(train_result, eval_result, time_callback)
return stats
def main(_):
model_helpers.apply_clean(flags.FLAGS)
with logger.benchmark_context(flags.FLAGS):
stats = run(flags.FLAGS)
logging.info('Run stats:\n%s', stats)
if __name__ == '__main__':
logging.set_verbosity(logging.INFO)
common.define_keras_flags()
app.run(main)