forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet_cifar_main.py
241 lines (199 loc) · 8.57 KB
/
resnet_cifar_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Runs a ResNet model on the Cifar-10 dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
from absl import app as absl_app
import tensorflow as tf
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils
from official.utils.misc import keras_utils
from official.vision.image_classification import cifar_preprocessing
from official.vision.image_classification import common
from official.vision.image_classification import resnet_cifar_model
LR_SCHEDULE = [ # (multiplier, epoch to start) tuples
(0.1, 91), (0.01, 136), (0.001, 182)
]
def learning_rate_schedule(current_epoch,
current_batch,
batches_per_epoch,
batch_size):
"""Handles linear scaling rule and LR decay.
Scale learning rate at epoch boundaries provided in LR_SCHEDULE by the
provided scaling factor.
Args:
current_epoch: integer, current epoch indexed from 0.
current_batch: integer, current batch in the current epoch, indexed from 0.
batches_per_epoch: integer, number of steps in an epoch.
batch_size: integer, total batch sized.
Returns:
Adjusted learning rate.
"""
del current_batch, batches_per_epoch # not used
initial_learning_rate = common.BASE_LEARNING_RATE * batch_size / 128
learning_rate = initial_learning_rate
for mult, start_epoch in LR_SCHEDULE:
if current_epoch >= start_epoch:
learning_rate = initial_learning_rate * mult
else:
break
return learning_rate
def run(flags_obj):
"""Run ResNet Cifar-10 training and eval loop using native Keras APIs.
Args:
flags_obj: An object containing parsed flag values.
Raises:
ValueError: If fp16 is passed as it is not currently supported.
Returns:
Dictionary of training and eval stats.
"""
keras_utils.set_session_config(
enable_eager=flags_obj.enable_eager,
enable_xla=flags_obj.enable_xla)
# Execute flag override logic for better model performance
if flags_obj.tf_gpu_thread_mode:
common.set_gpu_thread_mode_and_count(flags_obj)
common.set_cudnn_batchnorm_mode()
dtype = flags_core.get_tf_dtype(flags_obj)
if dtype == 'fp16':
raise ValueError('dtype fp16 is not supported in Keras. Use the default '
'value(fp32).')
data_format = flags_obj.data_format
if data_format is None:
data_format = ('channels_first'
if tf.test.is_built_with_cuda() else 'channels_last')
tf.keras.backend.set_image_data_format(data_format)
strategy = distribution_utils.get_distribution_strategy(
distribution_strategy=flags_obj.distribution_strategy,
num_gpus=flags_obj.num_gpus,
num_workers=distribution_utils.configure_cluster(),
all_reduce_alg=flags_obj.all_reduce_alg,
num_packs=flags_obj.num_packs)
if strategy:
# flags_obj.enable_get_next_as_optional controls whether enabling
# get_next_as_optional behavior in DistributedIterator. If true, last
# partial batch can be supported.
strategy.extended.experimental_enable_get_next_as_optional = (
flags_obj.enable_get_next_as_optional
)
strategy_scope = distribution_utils.get_strategy_scope(strategy)
if flags_obj.use_synthetic_data:
distribution_utils.set_up_synthetic_data()
input_fn = common.get_synth_input_fn(
height=cifar_preprocessing.HEIGHT,
width=cifar_preprocessing.WIDTH,
num_channels=cifar_preprocessing.NUM_CHANNELS,
num_classes=cifar_preprocessing.NUM_CLASSES,
dtype=flags_core.get_tf_dtype(flags_obj),
drop_remainder=True)
else:
distribution_utils.undo_set_up_synthetic_data()
input_fn = cifar_preprocessing.input_fn
train_input_dataset = input_fn(
is_training=True,
data_dir=flags_obj.data_dir,
batch_size=flags_obj.batch_size,
num_epochs=flags_obj.train_epochs,
parse_record_fn=cifar_preprocessing.parse_record,
datasets_num_private_threads=flags_obj.datasets_num_private_threads,
dtype=dtype,
# Setting drop_remainder to avoid the partial batch logic in normalization
# layer, which triggers tf.where and leads to extra memory copy of input
# sizes between host and GPU.
drop_remainder=(not flags_obj.enable_get_next_as_optional))
eval_input_dataset = None
if not flags_obj.skip_eval:
eval_input_dataset = input_fn(
is_training=False,
data_dir=flags_obj.data_dir,
batch_size=flags_obj.batch_size,
num_epochs=flags_obj.train_epochs,
parse_record_fn=cifar_preprocessing.parse_record)
with strategy_scope:
optimizer = common.get_optimizer()
model = resnet_cifar_model.resnet56(classes=cifar_preprocessing.NUM_CLASSES)
# TODO(b/138957587): Remove when force_v2_in_keras_compile is on longer
# a valid arg for this model. Also remove as a valid flag.
if flags_obj.force_v2_in_keras_compile is not None:
model.compile(
loss='categorical_crossentropy',
optimizer=optimizer,
metrics=(['categorical_accuracy']
if flags_obj.report_accuracy_metrics else None),
run_eagerly=flags_obj.run_eagerly,
experimental_run_tf_function=flags_obj.force_v2_in_keras_compile)
else:
model.compile(
loss='categorical_crossentropy',
optimizer=optimizer,
metrics=(['categorical_accuracy']
if flags_obj.report_accuracy_metrics else None),
run_eagerly=flags_obj.run_eagerly)
callbacks = common.get_callbacks(
learning_rate_schedule, cifar_preprocessing.NUM_IMAGES['train'])
train_steps = cifar_preprocessing.NUM_IMAGES['train'] // flags_obj.batch_size
train_epochs = flags_obj.train_epochs
if flags_obj.train_steps:
train_steps = min(flags_obj.train_steps, train_steps)
train_epochs = 1
num_eval_steps = (cifar_preprocessing.NUM_IMAGES['validation'] //
flags_obj.batch_size)
validation_data = eval_input_dataset
if flags_obj.skip_eval:
if flags_obj.set_learning_phase_to_train:
# TODO(haoyuzhang): Understand slowdown of setting learning phase when
# not using distribution strategy.
tf.keras.backend.set_learning_phase(1)
num_eval_steps = None
validation_data = None
if not strategy and flags_obj.explicit_gpu_placement:
# TODO(b/135607227): Add device scope automatically in Keras training loop
# when not using distribition strategy.
no_dist_strat_device = tf.device('/device:GPU:0')
no_dist_strat_device.__enter__()
history = model.fit(train_input_dataset,
epochs=train_epochs,
steps_per_epoch=train_steps,
callbacks=callbacks,
validation_steps=num_eval_steps,
validation_data=validation_data,
validation_freq=flags_obj.epochs_between_evals,
verbose=2)
eval_output = None
if not flags_obj.skip_eval:
eval_output = model.evaluate(eval_input_dataset,
steps=num_eval_steps,
verbose=2)
if not strategy and flags_obj.explicit_gpu_placement:
no_dist_strat_device.__exit__()
stats = common.build_stats(history, eval_output, callbacks)
return stats
def define_cifar_flags():
common.define_keras_flags(dynamic_loss_scale=False)
flags_core.set_defaults(data_dir='/tmp/cifar10_data/cifar-10-batches-bin',
model_dir='/tmp/cifar10_model',
train_epochs=182,
epochs_between_evals=10,
batch_size=128)
def main(_):
with logger.benchmark_context(flags.FLAGS):
return run(flags.FLAGS)
if __name__ == '__main__':
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
define_cifar_flags()
absl_app.run(main)