-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
220 lines (179 loc) · 6.73 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import torch
import torch.nn as nn
import torch.optim as optim
import spacy
from utils import translate_sentence, bleu, save_checkpoint, load_checkpoint
from torch.utils.tensorboard import SummaryWriter
from torchtext.legacy.datasets import Multi30k
from torchtext.legacy.data import Field, BucketIterator
#Load SpaCy vocabulary for both english and german
spacy_ger=spacy.load("de")
spacy_eng=spacy.load("en")
#Tokenize both vocabularies
def tokenize_ger(text):
return [tok.text for tok in spacy_ger.tokenizer(text)]
def tokenize_eng(text):
return [tok.text for tok in spacy_eng.tokenizer(text)]
#Allocate Fields to accomodate text from both languages to numericalize them
german = Field(tokenize=tokenize_ger, lower=True, init_token="<sos>", eos_token="<eos>")
english = Field(tokenize=tokenize_eng, lower=True, init_token="<sos>", eos_token="<eos>")
#import dataset and split into Train, Test and Valid
train_data, valid_data, test_data = Multi30k.splits(exts = ('.de', '.en'), fields = (german, english),root = 'data')
print(f'train_length : {len(train_data)} -- validation_length : {len(valid_data)} -- test_length : {len(test_data)}')
#Build both vocabularies | Construct the vocab object to work with
german.build_vocab(train_data, max_size=10000, min_freq=2)
english.build_vocab(train_data, max_size=10000, min_freq=2)
#Main Transformer model
class Transformer(nn.Module):
def __init__(
self,
embedding_size,
src_vocab_size,
trg_vocab_size,
src_pad_idx,
num_heads,
num_encoder_layers,
num_decoder_layers,
forward_expansion,
dropout,
max_len,
device,
):
super(Transformer, self).__init__()
self.src_word_embedding = nn.Embedding(src_vocab_size, embedding_size)
self.src_position_embedding = nn.Embedding(max_len, embedding_size)
self.trg_word_embedding = nn.Embedding(trg_vocab_size, embedding_size)
self.trg_position_embedding = nn.Embedding(max_len, embedding_size)
self.device = device
self.Transformer = nn.Transformer(
embedding_size,
num_heads,
num_encoder_layers,
num_decoder_layers,
forward_expansion,
dropout,
)
self.fc_out = nn.Linear(embedding_size, trg_vocab_size)
self.dropout = nn.Dropout(dropout)
self.src_pad_idx = src_pad_idx
def make_src_mask(self, src):
src_mask = src.transpose(0,1) == self.src_pad_idx
return src_mask
def forward(self, src, trg):
src_seq_length, N = src.shape
trg_seq_length, N = trg.shape
src_positions = (
torch.arange(0, src_seq_length).unsqueeze(1).expand(src_seq_length, N).to(self.device)
)
trg_positions = (
torch.arange(0, trg_seq_length).unsqueeze(1).expand(trg_seq_length, N).to(self.device)
)
embed_src = self.dropout(
(self.src_word_embedding(src)+self.src_position_embedding(src_positions))
)
embed_trg = self.dropout(
(self.trg_word_embedding(trg) + self.trg_position_embedding(trg_positions))
)
src_padding_mask = self.make_src_mask(src)
trg_mask = self.Transformer.generate_square_subsequent_mask(trg_seq_length).to(self.device)
out = self.Transformer(
embed_src,
embed_trg,
src_key_padding_mask = src_padding_mask,
tgt_mask = trg_mask
)
out = self.fc_out(out)
return out
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
load_model = True
save_model = True
#Training Hyperparameters
num_epochs = 10 #Number of training iterations / cycles
learning_rate = 3e-4
batch_size = 32
#Model Hyperparameters
src_vocab_size = len(german.vocab)
trg_vocab_size = len(english.vocab)
embedding_size = 512
num_heads = 8
num_encoder_layers = 3
num_decoder_layers = 3
dropout = 0.1
max_len = 100
forward_expansion = 2048
src_pad_idx = english.vocab.stoi["<pad>"]
#Tensorboard
writer = SummaryWriter("runs/loss_plot")
step = 0
train_iterator, valid_iterator, test_iterator = BucketIterator.splits(
(train_data, valid_data, test_data),
batch_size = batch_size,
sort_within_batch = True,
sort_key = lambda x: len(x.src),
device = device,
)
model = Transformer(
embedding_size,
src_vocab_size,
trg_vocab_size,
src_pad_idx,
num_heads,
num_encoder_layers,
num_decoder_layers,
forward_expansion,
dropout,
max_len,
device,
).to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
pad_idx = english.vocab.stoi["<pad>"]
criterion = nn.CrossEntropyLoss(ignore_index = pad_idx)
if load_model:
load_checkpoint(torch.load("my_checkpoint.pth.tar"), model, optimizer)
#Uncomment this for evaluation
'''ch = 'y'
while ch!='n':
sentence = input("\n Enter the german sentence : ")
model.eval()
translated_sentence = translate_sentence(
model, sentence, german, english, device, max_length = 50
)
print(f"\n Translated English sentence : {''.join(word+' ' for word in translated_sentence[:len(translated_sentence)-1])}")
ch = input("Do you want to continue (y/n) ? : ")
#score = bleu(test_data, model, german, english, device)
#print(f"Blue score {score*100:2f}")
import sys
sys.exit()'''
#Comment this for evaluation
sentence = 'ein pferd geht einer brücke neben einem boot'
for epoch in range(num_epochs):
print(f"[Epoch : {epoch} / {num_epochs}]")
if save_model:
checkpoint = {
"state_dict" : model.state_dict(),
"optimiszer" : optimizer.state_dict(),
}
save_checkpoint(checkpoint)
model.eval()
translated_sentence = translate_sentence(
model, sentence, german, english, device, max_length = 50
)
print(f"Translated example sentence \n {translated_sentence}")
model.train()
for batch_idx, batch in enumerate(train_iterator):
inp_data = batch.src.to(device)
target = batch.trg.to(device)
#forward pass
output = model(inp_data, target[:-1 :])
output = output.reshape(-1, output.shape[2])
target = target[1:].reshape(-1)
optimizer.zero_grad()
loss = criterion(output, target)
print(f'Epoch {epoch} -> Loss : {loss.item()}')
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1)
optimizer.step()
writer.add_scalar("Training loss", loss, global_step=step)
step += 1
score = bleu(test_data, model, german, english, device)
print(f"Blue score {score*100:2f}")