From 425467e32bc91cb6b0db32fe546449130f38039d Mon Sep 17 00:00:00 2001 From: Bo Wen <56280490+bwentl@users.noreply.github.com> Date: Fri, 23 Jun 2023 10:18:33 -0700 Subject: [PATCH] format code with black --- activitysim/estimation/larch/location_choice.py | 16 +++++++++++----- 1 file changed, 11 insertions(+), 5 deletions(-) diff --git a/activitysim/estimation/larch/location_choice.py b/activitysim/estimation/larch/location_choice.py index 38a304543..a93002418 100644 --- a/activitysim/estimation/larch/location_choice.py +++ b/activitysim/estimation/larch/location_choice.py @@ -89,7 +89,9 @@ def _file_exists(filename): # read alternative values either as csv or feather file alt_values_fea_file = alt_values_file.replace(".csv", ".fea") - if os.path.exists(os.path.join(edb_directory, alt_values_fea_file.format(name=name))): + if os.path.exists( + os.path.join(edb_directory, alt_values_fea_file.format(name=name)) + ): alt_values = _read_feather(alt_values_fea_file) else: alt_values = _read_csv(alt_values_file) @@ -183,12 +185,14 @@ def _file_exists(filename): def split(a, n): k, m = divmod(len(a), n) - return (a[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(n)) + return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n)) # process x_ca with cv_to_ca with or without chunking x_ca_pickle_file = "{name}_x_ca.pkl" if chunking_size == None: - x_ca = cv_to_ca(alt_values.set_index([chooser_index_name, alt_values.columns[1]])) + x_ca = cv_to_ca( + alt_values.set_index([chooser_index_name, alt_values.columns[1]]) + ) elif _file_exists(x_ca_pickle_file): # if pickle file from previous x_ca processing exist, load it to save time time_start = datetime.now() @@ -207,7 +211,8 @@ def split(a, n): for chunk_ids in split_ids: alt_values_i = alt_values[alt_values["person_id"].isin(chunk_ids)] x_ca_i = cv_to_ca( - alt_values_i.set_index([chooser_index_name, alt_values_i.columns[1]])) + alt_values_i.set_index([chooser_index_name, alt_values_i.columns[1]]) + ) x_ca_list.append(x_ca_i) print( f"\rx_ca_i compute done for chunk {i}/{num_chunks} - time elapsed {(datetime.now() - time_start).total_seconds()}" @@ -217,7 +222,8 @@ def split(a, n): # save final x_ca result as pickle file to save time for future data loading _to_pickle(df=x_ca, filename=x_ca_pickle_file) print( - f"x_ca compute done - time elapsed {(datetime.now() - time_start).total_seconds()}") + f"x_ca compute done - time elapsed {(datetime.now() - time_start).total_seconds()}" + ) if CHOOSER_SEGMENT_COLUMN_NAME is not None: # label segments with names