From 9357034f9aaea88da4c6a8a20fbce9d2461588ac Mon Sep 17 00:00:00 2001 From: Jonathan Swartz Date: Tue, 13 Aug 2024 11:39:03 +1200 Subject: [PATCH] =?UTF-8?q?fVDB=20changes=20including:=20=E2=80=A2Reintrod?= =?UTF-8?q?uced=20missing=20src/build/*=20files=20that=20were=20accidental?= =?UTF-8?q?ly=20ommitted=20=E2=80=A2JaggedTensor=20concatentation=20moved?= =?UTF-8?q?=20to=20a=20cuda=20kernel=20=E2=80=A2Non-cumulative=20indices?= =?UTF-8?q?=20for=20ijk=20mappings=20is=20now=20the=20default=20return=20s?= =?UTF-8?q?tyle=20(makes=20indexing=20into=20JaggedTensors=20of=20data=20m?= =?UTF-8?q?ore=20natural)=20=E2=80=A2cuDNN=20disabled=20for=20CUDA=20versi?= =?UTF-8?q?ons=20<12=20=E2=80=A2Updated=20notebook=20files=20to=20new=20AP?= =?UTF-8?q?I=20and=20now=20included=20=E2=80=A2Removed=20deprecated=20usag?= =?UTF-8?q?e=20of=20`python=20setup.py=20test`=20and=20running=20pytest=20?= =?UTF-8?q?directly?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Jonathan Swartz --- fvdb/.gitignore | 3 +- fvdb/README.md | 4 +- fvdb/env/build_environment.yml | 12 +- fvdb/env/cutlass.patch | 4 +- fvdb/env/test_environment.yml | 12 +- fvdb/fvdb/_Cpp.pyi | 23 +- fvdb/fvdb/nn/vdbtensor.py | 2 +- fvdb/notebooks/00_intro.ipynb | 309 +++++++++ fvdb/notebooks/01_api_basics.ipynb | 525 +++++++++++++++ fvdb/notebooks/02_nn.ipynb | 351 ++++++++++ fvdb/notebooks/03_conv.ipynb | 627 ++++++++++++++++++ fvdb/notebooks/img/2dconv.png | Bin 0 -> 22941 bytes fvdb/notebooks/img/DenseConv.gif | Bin 0 -> 176780 bytes fvdb/notebooks/img/SparseConv.gif | Bin 0 -> 135305 bytes fvdb/notebooks/img/blank_sparse_grids.png | Bin 0 -> 4122 bytes fvdb/notebooks/img/bunny_volume.jpg | Bin 0 -> 331777 bytes .../first-3d-brain-reconstruction-strip.mp4 | Bin 0 -> 122178 bytes fvdb/notebooks/img/grid_batch_diagram.svg | 1 + fvdb/notebooks/img/gridbatch.png | Bin 0 -> 194868 bytes fvdb/notebooks/img/gridbatch_concept.svg | 1 + .../img/image_index_grid_diagram.svg | 1 + fvdb/notebooks/img/imagestack.png | Bin 0 -> 18768 bytes fvdb/notebooks/img/jdata.jpg | Bin 0 -> 99292 bytes fvdb/notebooks/img/jidx.jpg | Bin 0 -> 128778 bytes fvdb/notebooks/img/joffsets.jpg | Bin 0 -> 51787 bytes fvdb/notebooks/img/numbers.png | Bin 0 -> 43325 bytes fvdb/notebooks/img/sparse_two.png | Bin 0 -> 13682 bytes .../transposed_sparse_convolution_diagram.svg | 1 + fvdb/notebooks/img/two.png | Bin 0 -> 15234 bytes fvdb/notebooks/img/vdbtensor.svg | 1 + fvdb/src/GridBatch.cpp | 13 +- fvdb/src/GridBatch.h | 20 +- fvdb/src/JaggedTensor.cpp | 119 +--- fvdb/src/JaggedTensor.h | 9 +- fvdb/src/detail/GridBatchImpl.cu | 2 + fvdb/src/detail/TorchDeviceBuffer.cpp | 23 +- fvdb/src/detail/build/Build.h | 123 ++++ fvdb/src/detail/build/CoarseFromFine.cpp | 75 +++ fvdb/src/detail/build/ConvGrid.cpp | 145 ++++ fvdb/src/detail/build/DenseGrid.cpp | 104 +++ fvdb/src/detail/build/EmptyGrid.cpp | 34 + fvdb/src/detail/build/FineFromCoarse.cpp | 99 +++ fvdb/src/detail/build/FromMesh.cpp | 110 +++ .../build/NearestNeighborGridFromPoints.cpp | 103 +++ .../src/detail/build/PaddedGridFromCoords.cpp | 91 +++ fvdb/src/detail/build/PaddedGridFromGrid.cpp | 144 ++++ .../src/detail/build/PaddedGridFromPoints.cpp | 99 +++ fvdb/src/detail/ops/IjkToIndex.cu | 14 +- fvdb/src/detail/ops/IjkToInvIndex.cu | 22 +- fvdb/src/detail/ops/JCat0.cu | 193 ++++++ fvdb/src/detail/ops/JOffsetsFromJIdx.cu | 1 + fvdb/src/detail/ops/JaggedTensorIndex.cu | 226 +++++++ fvdb/src/detail/ops/Ops.h | 13 +- fvdb/src/detail/ops/SampleRaysUniform.cu | 4 +- .../detail/ops/ScaledDotProductAttention.cu | 10 +- fvdb/src/detail/ops/VoxelsAlongRays.cu | 54 +- fvdb/src/detail/utils/cuda/Utils.cuh | 1 + fvdb/src/python/GridBatchBinding.cpp | 6 +- fvdb/src/python/JaggedTensorBinding.cpp | 47 +- fvdb/src/python/TypeCasters.h | 4 + fvdb/tests/unit/test_basic_ops.py | 107 ++- fvdb/tests/unit/test_conv.py | 10 +- fvdb/tests/unit/test_jagged_tensor.py | 62 +- fvdb/tests/unit/test_nn.py | 3 + 64 files changed, 3751 insertions(+), 216 deletions(-) create mode 100644 fvdb/notebooks/00_intro.ipynb create mode 100644 fvdb/notebooks/01_api_basics.ipynb create mode 100644 fvdb/notebooks/02_nn.ipynb create mode 100644 fvdb/notebooks/03_conv.ipynb create mode 100644 fvdb/notebooks/img/2dconv.png create mode 100644 fvdb/notebooks/img/DenseConv.gif create mode 100644 fvdb/notebooks/img/SparseConv.gif create mode 100644 fvdb/notebooks/img/blank_sparse_grids.png create mode 100644 fvdb/notebooks/img/bunny_volume.jpg create mode 100644 fvdb/notebooks/img/first-3d-brain-reconstruction-strip.mp4 create mode 100644 fvdb/notebooks/img/grid_batch_diagram.svg create mode 100644 fvdb/notebooks/img/gridbatch.png create mode 100644 fvdb/notebooks/img/gridbatch_concept.svg create mode 100644 fvdb/notebooks/img/image_index_grid_diagram.svg create mode 100644 fvdb/notebooks/img/imagestack.png create mode 100644 fvdb/notebooks/img/jdata.jpg create mode 100644 fvdb/notebooks/img/jidx.jpg create mode 100644 fvdb/notebooks/img/joffsets.jpg create mode 100644 fvdb/notebooks/img/numbers.png create mode 100644 fvdb/notebooks/img/sparse_two.png create mode 100644 fvdb/notebooks/img/transposed_sparse_convolution_diagram.svg create mode 100644 fvdb/notebooks/img/two.png create mode 100644 fvdb/notebooks/img/vdbtensor.svg create mode 100644 fvdb/src/detail/build/Build.h create mode 100644 fvdb/src/detail/build/CoarseFromFine.cpp create mode 100644 fvdb/src/detail/build/ConvGrid.cpp create mode 100644 fvdb/src/detail/build/DenseGrid.cpp create mode 100644 fvdb/src/detail/build/EmptyGrid.cpp create mode 100644 fvdb/src/detail/build/FineFromCoarse.cpp create mode 100644 fvdb/src/detail/build/FromMesh.cpp create mode 100644 fvdb/src/detail/build/NearestNeighborGridFromPoints.cpp create mode 100644 fvdb/src/detail/build/PaddedGridFromCoords.cpp create mode 100644 fvdb/src/detail/build/PaddedGridFromGrid.cpp create mode 100644 fvdb/src/detail/build/PaddedGridFromPoints.cpp create mode 100644 fvdb/src/detail/ops/JCat0.cu create mode 100644 fvdb/src/detail/ops/JaggedTensorIndex.cu diff --git a/fvdb/.gitignore b/fvdb/.gitignore index 92b270f6c4..e62d482baf 100644 --- a/fvdb/.gitignore +++ b/fvdb/.gitignore @@ -1,5 +1,4 @@ -build/* -build/ +/build/* *.creator *.includes *.files diff --git a/fvdb/README.md b/fvdb/README.md index 416349abc6..f9429145cc 100644 --- a/fvdb/README.md +++ b/fvdb/README.md @@ -93,7 +93,7 @@ pip install . To make sure that everything works by running tests: ```shell -python setup.py test +pytest tests/unit ``` ### Building Documentation @@ -118,7 +118,7 @@ docker run -it --gpus all --rm \ --mount type=bind,source="$HOME/.ssh",target=/root/.ssh \ --mount type=bind,source="$(pwd)",target=/fvdb \ fvdb-dev:latest \ - conda run -n fvdb_test --no-capture-output python setup.py test + conda run -n fvdb_test --no-capture-output python setup.py develop ``` diff --git a/fvdb/env/build_environment.yml b/fvdb/env/build_environment.yml index 5b072d3d86..f5fcff7320 100644 --- a/fvdb/env/build_environment.yml +++ b/fvdb/env/build_environment.yml @@ -2,18 +2,20 @@ name: fvdb_build channels: - nvidia/label/cuda-12.1.0 - pytorch - - conda-forge dependencies: - python=3.10 - - pytorch=2.2 - - pytorch-cuda=12.1 + - pytorch::pytorch=2.2 + - pytorch::pytorch-cuda=12.1 - git - gitpython - ca-certificates - certifi - openssl - - cuda - - cuda-nvcc + - nvidia/label/cuda-12.1.0::cuda + - nvidia/label/cuda-12.1.0::cuda-tools + - nvidia/label/cuda-12.1.0::cuda-nvcc + - nvidia/label/cuda-12.1.0::cuda-cccl + - nvidia/label/cuda-12.1.0::cuda-libraries-static - gcc_linux-64=11 - gxx_linux-64=11 - setuptools diff --git a/fvdb/env/cutlass.patch b/fvdb/env/cutlass.patch index 97828ceb63..7369fa7d20 100644 --- a/fvdb/env/cutlass.patch +++ b/fvdb/env/cutlass.patch @@ -7,7 +7,7 @@ index e22c8be3..a29e6067 100644 storage = reinterpret_cast(x); #else - __half_raw raw(x); -+ __half_raw raw(*(reinterpret_cast(&x))); ++ __half_raw raw(*(reinterpret_cast(&x))); std::memcpy(&storage, &raw.x, sizeof(storage)); #endif } @@ -16,7 +16,7 @@ index e22c8be3..a29e6067 100644 storage = reinterpret_cast(x); #else - __half_raw raw(x); -+ __half_raw raw(*(reinterpret_cast(&x))); ++ __half_raw raw(*(reinterpret_cast(&x))); std::memcpy(&storage, &raw.x, sizeof(storage)); #endif return *this; diff --git a/fvdb/env/test_environment.yml b/fvdb/env/test_environment.yml index 9eda44280c..c3175190b8 100644 --- a/fvdb/env/test_environment.yml +++ b/fvdb/env/test_environment.yml @@ -3,11 +3,10 @@ channels: - pyg - nvidia/label/cuda-12.1.0 - pytorch - - conda-forge dependencies: - python=3.10 - - pytorch=2.2 - - pytorch-cuda=12.1 + - pytorch::pytorch=2.2 + - pytorch::pytorch-cuda=12.1 - tensorboard - pip - git @@ -15,8 +14,11 @@ dependencies: - ca-certificates - certifi - openssl - - cuda - - cuda-nvcc + - nvidia/label/cuda-12.1.0::cuda + - nvidia/label/cuda-12.1.0::cuda-tools + - nvidia/label/cuda-12.1.0::cuda-nvcc + - nvidia/label/cuda-12.1.0::cuda-cccl + - nvidia/label/cuda-12.1.0::cuda-libraries-static - parameterized - gcc_linux-64=11 - gxx_linux-64=11 diff --git a/fvdb/fvdb/_Cpp.pyi b/fvdb/fvdb/_Cpp.pyi index 3eeca77700..30d2d9fea5 100644 --- a/fvdb/fvdb/_Cpp.pyi +++ b/fvdb/fvdb/_Cpp.pyi @@ -118,7 +118,9 @@ class JaggedTensor: @property def dtype(self) -> torch.dtype: ... @property - def jidx(self) -> torch.ShortTensor: ... + def jidx(self) -> torch.IntTensor: ... + @property + def jlidx(self) -> torch.IntTensor: ... @property def joffsets(self) -> torch.LongTensor: ... @property @@ -134,6 +136,19 @@ class JaggedTensor: @property def requires_grad(self) -> bool: ... + @staticmethod + def from_data_and_indices(data: torch.Tensor, indices: torch.Tensor, num_tensors: int) -> JaggedTensor: ... + + @staticmethod + def from_data_indices_and_list_ids(data: torch.Tensor, indices: torch.Tensor, list_ids: torch.Tensor, num_tensors: int) -> JaggedTensor: ... + + @staticmethod + def from_data_and_offsets(data: torch.Tensor, offsets: torch.Tensor) -> JaggedTensor: ... + + @staticmethod + def from_data_offsets_and_list_ids(data: torch.Tensor, offsets: torch.Tensor, list_ids: torch.Tensor) -> JaggedTensor: ... + + JaggedTensorOrTensor = Union[torch.Tensor, JaggedTensor] class GridBatch: @@ -243,8 +258,8 @@ class GridBatch: def cubes_in_grid(self, cube_centers: JaggedTensorOrTensor, cube_min: Vec3dOrScalar = 0.0, cube_max: Vec3dOrScalar = 0.0, ignore_disabled: bool = False) -> JaggedTensor: ... def cubes_intersect_grid(self, cube_centers: JaggedTensorOrTensor, cube_min: Vec3dOrScalar = 0.0, cube_max: Vec3dOrScalar = 0.0, ignore_disabled: bool = False) -> JaggedTensor: ... - def ijk_to_index(self, ijk: JaggedTensorOrTensor) -> JaggedTensor: ... - def ijk_to_inv_index(self, ijk: JaggedTensorOrTensor) -> JaggedTensor: ... + def ijk_to_index(self, ijk: JaggedTensorOrTensor, cumulative: bool = False) -> JaggedTensor: ... + def ijk_to_inv_index(self, ijk: JaggedTensorOrTensor, cumulative: bool = False) -> JaggedTensor: ... def neighbor_indexes(self, ijk: JaggedTensorOrTensor, extent: int, bitshift: int = 0) -> JaggedTensor: ... def splat_bezier(self, points: JaggedTensorOrTensor, points_data: JaggedTensorOrTensor) -> JaggedTensor: ... @@ -256,7 +271,7 @@ class GridBatch: def segments_along_rays(self, ray_origins: JaggedTensorOrTensor, ray_directions: JaggedTensorOrTensor, max_segments: int, eps: float = 0.0, ignore_masked: bool = False) -> JaggedTensor: ... - def voxels_along_rays(self, ray_origins: JaggedTensorOrTensor, ray_directions: JaggedTensorOrTensor, max_voxels: int, eps: float = 0.0, return_ijk: bool = True) -> Tuple[JaggedTensor, JaggedTensor]: ... + def voxels_along_rays(self, ray_origins: JaggedTensorOrTensor, ray_directions: JaggedTensorOrTensor, max_voxels: int, eps: float = 0.0, return_ijk: bool = True, cumulative: bool = False) -> Tuple[JaggedTensor, JaggedTensor]: ... def uniform_ray_samples(self, ray_origins: JaggedTensorOrTensor, ray_directions: JaggedTensorOrTensor, t_min: JaggedTensorOrTensor, t_max: JaggedTensorOrTensor, step_size: float, cone_angle: float = 0.0, include_end_segments : bool = True, return_midpoints: bool = False, eps: float = 0.0) -> JaggedTensor: ... def ray_implicit_intersection(self, ray_origins: JaggedTensorOrTensor, ray_directions: JaggedTensorOrTensor, grid_scalars: JaggedTensorOrTensor, eps: float = 0.0) -> JaggedTensor: ... diff --git a/fvdb/fvdb/nn/vdbtensor.py b/fvdb/fvdb/nn/vdbtensor.py index 7dd23ee823..4c0fd42ecf 100644 --- a/fvdb/fvdb/nn/vdbtensor.py +++ b/fvdb/fvdb/nn/vdbtensor.py @@ -71,7 +71,7 @@ def _feature_ops(op, other: List[Union["VDBTensor", JaggedTensor, Any]]): raw_features.append(o.feature.jdata) elif isinstance(o, JaggedTensor): assert pivot_tensor.total_voxels == o.jdata.size(0), "All tensors should have the same voxels" - assert pivot_tensor.grid.grid_count == len(o.joffsets), "All tensors should have the same batch size" + assert pivot_tensor.grid.grid_count == o.num_tensors, "All tensors should have the same batch size" raw_features.append(o.jdata) else: raw_features.append(o) diff --git a/fvdb/notebooks/00_intro.ipynb b/fvdb/notebooks/00_intro.ipynb new file mode 100644 index 0000000000..bc165a5481 --- /dev/null +++ b/fvdb/notebooks/00_intro.ipynb @@ -0,0 +1,309 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Welcome to ƒVDB! ##\n", + "\n", + "In this notebook, we hope to acquaint you with the basic concepts, motivations and functionality of the core objects in ƒVDB. By the end of the first notebook, we will train a basic network which we will take deeper dives into in subsequent notebooks.\n", + "\n", + "### What are *Sparse* Grids?\n", + "\n", + "In ƒVDB, we are fundamentally concerned with **sparse grids**. What do these words mean?\n", + "\n", + "When we refer to a **grid**, we're referring to a 3-dimensional space divided into uniformly sized voxels where there exists some interesting value in each voxel. \n", + "\n", + "When we refer to a **sparse** grid, we're referring to a grid where only a subset of the voxels which contain interesting or **active** values exist in the grid. This is in contrast to a **dense** grid where every voxel in the 3D space is occupied and contains a value (even if the value is 0 or some other null or default value).\n", + "\n", + "Here are some examples of data that can be useful to think of through the lens of sparsity:\n", + "\n", + "\n", + "
\n", + "
\n", + "
\"bunny\"
A volumetric cloud in the shape of a bunny
\n", + "\n", + "
\n", + "\n", + "
A 3D scan of a head
\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + "\n", + "\n", + "#### Sparse vs. Dense Grids\n", + "\n", + "Why is this a useful distinction? To start, let's think about images as 2D grids which are easy to visualize. We can think of an image as a 2D **dense** grid where each pixel/voxel in our grid contains a value such as this representation of a hand-drawn '2':\n", + "\n", + "\n", + "
\n", + "\n", + "\"two\"\n", + "\n", + "
\n", + "\n", + "In this image, every pixel, or 2D 'voxel' if you will, contains a value but some of these values exist at positions unoccupied by the '2' figure. If we were to visualize this image as a **sparse** 2D grid where only the pixels containing the '2' figure are **active**, we would have something like this:\n", + "\n", + "
\n", + "\n", + "\"two\"\n", + "\n", + "
\n", + "\n", + "Effectively we've reduced the amount of data by 58% in this case by only storing the **active** voxels that are of interest to us. This is the fundamental motivation behind sparse grids: to reduce the amount of data we need to store and process by only storing the **active** voxels we wish to track.\n", + "\n", + "In real-world applications it is often the case that we only have interesting values in a small subset of voxels within the **dense** grid representing a space. For example, for a LiDAR dataset we may only care about spaces where points exist along the surface of an object where the object is detected by the sensor. It is not uncommon in these realworld cases that the **sparse** grid would contain less than 10% of the voxels compared to the equivalent **dense** grid for the same data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Why ƒVDB?\n", + "\n", + "There is a problem if we naively move our deep learning networks from **dense** to **sparse** grids. If we think about our image usecase as a stand-in for 2D **dense** grids, our 2D **dense** grids can be expressed as a tensor of dimensions $[C, H, W]$. \n", + "\n", + "
\n", + "\"two\"\n", + "
\n", + "\n", + "Having a series of images of the same height, width and channel count concatenated together as a single tensor of a batch with dimensions $[N, C, H, W]$ is a well-supported practice for training a network with mini-batches (where $N$ is the number of grids in the batch). Many operators, like convolution, are effectively accelerated on GPUs for batches of these **dense** volumes since the operators can be very efficiently parallelized over lots of images in this format:\n", + "\n", + "\n", + "
\n", + "
\n", + "
\"two\"
Mini-batch of 'dense 2D grids'
\"two\"
Convolution over 'dense 2D grid' minibatch
\n", + "
\n", + "
\n", + "\n", + "\n", + "\n", + "With **sparse** grids, it is very unlikely we'll have multiple grids with the same topology of **active** voxels and therefore the same number of voxels in grids that we could batch together to use these same operators. It won't be as simple as cropping or scaling an image to fit a fixed size to create a $[N, C, H, W]$ tensor for sparse grids that have different topologies like these:\n", + "\n", + "
\n", + "\"two\"\n", + "
\n", + "\n", + "This is the fundamental problem that **ƒVDB** is designed to solve using novel data structures that marry technologies from [OpenVDB](https://www.openvdb.org/) and [PyTorch](https://pytorch.org/)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Training a Simple Network\n", + "\n", + "To get going and show how easy it is to start working with sparse grids in ƒVDB, let's train a simple network to classify the voxels in a grid as being inside or outside of a sphere using fVDB and all the standard PyTorch functionality.\n", + "\n", + "💡 We will cover all the details of what is happening in the code below in subsequent notebooks. For now, just run the code and see the results!" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Epoch 9, batch 99, loss 0.03371221199631691: 100%|██████████| 10/10 [00:16<00:00, 1.69s/it]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import tqdm\n", + "import torch\n", + "\n", + "import fvdb\n", + "from fvdb.nn import LeakyReLU, Sigmoid, Linear, VDBTensor\n", + "\n", + "# RandomGridsDataset produces a batch of sparse grids with a random number of randomly activated voxels in it\n", + "class RandomGridsDataset(torch.utils.data.Dataset):\n", + " def __init__(self, batch_size):\n", + " self.batch_size = batch_size\n", + " def __len__(self):\n", + " return 100\n", + " def __getitem__(self, idx) -> VDBTensor:\n", + " # create a random number of voxels in each grid with random voxel indexes (ijk's) between -200, 200 in each dimension\n", + " ijks = [torch.randint(-200, 200, (np.random.randint(5_000, 50_000), 3), device='cuda') for i in range(self.batch_size)]\n", + " # make a batch of sparse grids from the ijk's!\n", + " sparse_gridbatch = fvdb.sparse_grid_from_ijk(fvdb.JaggedTensor(ijks), voxel_sizes=0.005)\n", + " # features are just the world-space coordinates of each voxel\n", + " features = sparse_gridbatch.grid_to_world(sparse_gridbatch.ijk.float())\n", + " # produce a 'VDBTensor' which is a convenience for holding the sparse grid and its features\n", + " return VDBTensor(sparse_gridbatch, features)\n", + "\n", + "# Define a basic MLP-type model from ƒVDB modules\n", + "class Model(torch.nn.Module):\n", + " def __init__(self):\n", + " super(Model, self).__init__()\n", + " self.fc0 = Linear(3, 16)\n", + " self.fc1 = Linear(3, 16)\n", + " self.fc2 = Linear(32, 32)\n", + " self.fc3 = Linear(32, 1)\n", + " self.relu = LeakyReLU()\n", + " self.sigmoid = Sigmoid()\n", + " def forward(self, x):\n", + " # concatenate the features produced by two different linear layers\n", + " x = self.relu(VDBTensor.cat([self.fc0(x), self.fc1(x)], dim=1))\n", + " x = self.relu(self.fc2(x))\n", + " x = self.fc3(x)\n", + " x = self.sigmoid(x)\n", + " return x\n", + "\n", + "\n", + "# Data\n", + "batch_size = 8\n", + "dataset = RandomGridsDataset(batch_size)\n", + "dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, collate_fn=lambda x: x[0])\n", + "\n", + "# Model, Loss, Optimizer\n", + "model = Model().to('cuda')\n", + "loss = torch.nn.BCELoss()\n", + "optimizer = torch.optim.Adam(model.parameters(), lr=.001)\n", + "\n", + "# Simple training loop for 10 epochs\n", + "epochs = 10\n", + "with tqdm.tqdm(total=epochs) as pbar:\n", + " for epoch in range(epochs):\n", + " for i, data in enumerate(dataloader):\n", + " optimizer.zero_grad()\n", + " output = model(data)\n", + " # whether each voxel is inside or outside of the unit sphere centered at the origin of the grid space\n", + " dist = torch.sqrt(torch.sum(data.grid.grid_to_world(data.grid.ijk.float()).jdata ** 2, dim=1))\n", + " target = (dist < 1).float()\n", + " l = loss(output.feature.jdata, target[:, None])\n", + " l.backward()\n", + " optimizer.step()\n", + " pbar.set_description(f\"Epoch {epoch}, batch {i}, loss {l.item()}\")\n", + " pbar.update(1)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's visualize a sample of predictions from the network to see how well we're doing!" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz0AAAGeCAYAAAC+f28cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5gmVZn3/6lc9cTOuacnMYGMAVRUQGRRgV3XZU2rILi6grA/0FXXRHBdeUFX8XVVXtcFDJhWWcyACGJgQFBgYIbJoXN6cqhc5/dHdbf0TA/MIMjK1ue6Zq6r66nn1KlT59Rz7nPu+3tLQghBQkJCQkJCQkJCQkLCcxT52a5AQkJCQkJCQkJCQkLCM0li9CQkJCQkJCQkJCQkPKdJjJ6EhISEhISEhISEhOc0idGTkJCQkJCQkJCQkPCcJjF6EhISEhISEhISEhKe0yRGT0JCQkJCQkJCQkLCc5rE6ElISEhISEhISEhIeE6TGD0JCQkJCQkJCQkJCc9pEqMnISEhISEhISEhIeE5zSEZPTfeeCOSJC38U1WVgYEBzjvvPMbGxp6pOi5i+fLlvO1tb1v4+xe/+AWSJPGLX/zikMq55557uOKKKyiXy/t9dvLJJ3PyySf/UfV8ptmzZw9nnHEGbW1tSJLEJZdc8mxX6SnxdLa1JElcccUVT0tZf0z58+Nkz549T/laxWIRTdP47//+76dcxhOxefNmrrjiiqdcx33H4YF4quPz6eDPeYws1Ye+8Y1vcO211z4r9bniiiuQJInZ2dln5foJ/7PZuHEj5513HitWrMA0TTKZDM973vO45pprKBaLz3b1/seSzEP+tLztbW9j+fLli449lXnD+Pg4V1xxBQ899NB+n82/KxP+Z6I+lS/dcMMNrFu3Dtu2+eUvf8lVV13F3XffzSOPPEI6nX666/iEPO95z2PDhg0cfvjhh/S9e+65hyuvvJK3ve1ttLS0LPrsC1/4wtNYw2eGSy+9lPvuu4/rr7+enp4eent7n+0qPets2LCBgYGBP9vyH8/3v/99dF3nVa961TNS/ubNm7nyyis5+eST9/sROBj++7//m1wu9/RX7Gnkz3mMnHHGGWzYsGFRnb/xjW/w6KOP/o+fWCT87+I//uM/uPDCC1m7di3ve9/7OPzww/F9nwceeIDrrruODRs2PGOLN3/uJPOQZ5+n8rs+Pj7OlVdeyfLlyzn22GMXffb3f//3z9jvdsIfz1Myeo488khe8IIXAHDKKacQhiH/8i//wi233MLf/d3fLfmdZrNJKpV66jU9ALlcjhe96EVPa5mHakA9Gzz66KMcf/zxvPa1r322q/I/hqe7H/ypy3883/3ud3nNa16DZVl/smseCscdd9yzXYUn5c95jHR2dtLZ2flsV+NPzjP1O5HwzLBhwwYuuOACTjvtNG655RYMw1j47LTTTuO9730vt9566xOWYdv2/9j33LNJMg/5A7ZtY5rmM7KD8nT/rg8MDPzJFkcTDp2nJaZnvtPs3bsXiLcQM5kMjzzyCH/xF39BNpvl1FNPBcDzPD7+8Y+zbt06DMOgs7OT8847j5mZmUVl+r7P+9//fnp6ekilUrz0pS/lt7/97X7XPpD7zH333cdZZ51Fe3s7pmmyatWqhRXSK664gve9730ArFixYsFdb76MpbaVi8UiF154If39/ei6zsqVK/nwhz+M67qLzpMkiYsuuoivfe1rrF+/nlQqxTHHHMOPfvSjg2rL4eFh3vKWt9DV1YVhGKxfv55/+7d/I4qiRfe7Y8cOfvrTny7U/UBuSscddxwve9nL9jsehiH9/f287nWvO+h7dByH4447jtWrV1OpVBa+Nzk5SU9PDyeffDJhGAIH/5yX4otf/CLHHHMMmUyGbDbLunXr+NCHPvSk39t3m3reReiuu+7iggsuoKOjg/b2dl73utcxPj6+6Lt33nknJ598Mu3t7ViWxbJly/ibv/kbms3mAcsHuPfeeznxxBMxTZO+vj4++MEP4vv+kvX79re/zYtf/GLS6TSZTIbTTz+dBx98cL/zqtUqd9xxB3/zN3+zcMxxHD74wQ+yYsUKdF2nv7+fd7/73fu5RRxoq/7x7mg33ngjf/u3fwvEixbzfejGG28E4MEHH+TMM89c6IN9fX2cccYZjI6OLlnePFu2bOFVr3oVqVSKjo4O3vWud1Gr1ZZsizvuuINTTz2VXC5HKpXixBNP5Oc///mS5+7L0z1GAD7/+c/z8pe/nK6uLtLpNEcddRTXXHPNAZ/l41nKZQKWdnM42PfDvu5tJ598Mj/+8Y/Zu3fvIhfjJ+LJ+vSePXuQJIlrrrmGf/3Xf2XZsmWYpskLXvCCAz6Lqakp3vSmN5HP5+nu7ub8889f9C4AEELwhS98gWOPPRbLsmhtbeXss89m165di847+eSTOfLII/nlL3/JS17yElKpFOeffz4Qj4F/+qd/WtTfL7nkEhqNxhPec8Kflk984hNIksSXvvSlRQbPPLqu85d/+ZcLfy9fvpwzzzyTm2++meOOOw7TNLnyyiuBeAL9V3/1V7S2tmKaJsceeyxf+cpXFpUXRREf//jHWbt2LZZl0dLSwtFHH81nP/vZhXNmZmZ45zvfyeDg4MJvz4knnsgdd9zxpPeza9cu3vjGN9LX14dhGHR3d3Pqqafu58Z0sO/yZB6yf53+3//7f6xZswbDMDj88MP51re+tei8+Xff7bffzvnnn09nZyepVGrhHg+27W+88UbWrl27UP+vfvWrB6zXvr+ZY2NjC31I13X6+vo4++yzmZqa4he/+AUvfOELATjvvPMW7n2+jKXe+1EUcc011yzMh7q6ujjnnHMW/abCH96J999/Py972ctIpVKsXLmS//N//s9C28+X92TjIOEAiEPghhtuEIC4//77Fx3/7Gc/KwDxpS99SQghxLnnnis0TRPLly8XV111lfj5z38ubrvtNhGGoXjVq14l0um0uPLKK8XPfvYz8eUvf1n09/eLww8/XDSbzYUyzz33XCFJknjf+94nbr/9dvHpT39a9Pf3i1wuJ84999yF8+666y4BiLvuumvh2K233io0TRNHH320uPHGG8Wdd94prr/+evHGN75RCCHEyMiIuPjiiwUgbr75ZrFhwwaxYcMGUalUhBBCnHTSSeKkk05aKM+2bXH00UeLdDotPvWpT4nbb79dfPSjHxWqqorXvOY1i9oCEMuXLxfHH3+8+M53viN+8pOfiJNPPlmoqip27tz5hO07PT0t+vv7RWdnp7juuuvErbfeKi666CIBiAsuuEAIIUSlUhEbNmwQPT094sQTT1you+M4S5Y5/2y2bdu26PhPfvITAYgf/OAHh3SP27ZtE9lsVrzuda8TQggRhqF4xSteIbq6usT4+PjCsYN9zvu29Te/+U0BiIsvvljcfvvt4o477hDXXXed+Md//McnbLv5tr/88ssX/p7vrytXrhQXX3yxuO2228SXv/xl0draKk455ZSF83bv3i1M0xSnnXaauOWWW8QvfvELcdNNN4m3vvWtolQqHbD8TZs2iVQqJQ4//HDxzW9+U3z/+98Xp59+uli2bJkAxO7duxfO/dd//VchSZI4//zzxY9+9CNx8803ixe/+MUinU6LTZs2LbqPr3/968IwDFGtVoUQQkRRJE4//XShqqr46Ec/Km6//XbxqU99SqTTaXHcccctevb71nGeoaGhhXEzPT0tPvGJTwhAfP7zn1/oQ9PT06Jer4v29nbxghe8QHznO98Rd999t/j2t78t3vWud4nNmzcvWZ4QQkxOToquri7R398vbrjhBvGTn/xE/N3f/d1CWzx+fH7ta18TkiSJ1772teLmm28WP/zhD8WZZ54pFEURd9xxxxM84WdmjAghxKWXXiq++MUviltvvVXceeed4jOf+Yzo6OgQ55133hPWR4j4XTU0NLTf8csvv1zs+4o92PfDfN+d70ObNm0SJ554oujp6Vm4nw0bNhywTgfTp3fv3i0AMTg4KF760peK733ve+K//uu/xAtf+EKhaZq455579ruXtWvXissuu0z87Gc/E5/+9KeFYRj7tdE73vEOoWmaeO973ytuvfVW8Y1vfEOsW7dOdHd3i8nJyYXzTjrpJNHW1iYGBwfF5z73OXHXXXeJu+++WzQaDXHssceKjo4O8elPf1rccccd4rOf/azI5/PiFa94hYii6EmfScIzTxAEIpVKiRNOOOGgvzM0NCR6e3vFypUrxfXXXy/uuusu8dvf/lZs2bJFZLNZsWrVKvHVr35V/PjHPxZvetObBCCuvvrqhe9fddVVQlEUcfnll4uf//zn4tZbbxXXXnutuOKKKxbOOf3000VnZ6f40pe+JH7xi1+IW265RVx22WXiW9/61pPWb+3atWL16tXia1/7mrj77rvF9773PfHe97530fvrYN/lyTxkMfPvmvnfyx/84AfiVa96lQDEf/3Xfy2cN//u6+/vF+985zvFT3/6U/Hd735XBEFw0G0/X8Zf/dVfiR/+8Ifi61//uli9erUYHBzc712972/m6Oio6O3tXfT++fa3vy3OP/988dhjj4lKpbJQ/kc+8pGFex8ZGRFCLP3ef+c73ykAcdFFF4lbb71VXHfddaKzs1MMDg6KmZmZhfNOOukk0d7eLg477DBx3XXXiZ/97GfiwgsvFID4yle+snDewYyDhKV5SkbPvffeK3zfF7VaTfzoRz8SnZ2dIpvNLvygnXvuuQIQ119//aLvz09ov/e97y06fv/99wtAfOELXxBCCPHYY48JQFx66aWLzrvpppsE8KRGz6pVq8SqVauEbdsHvJdPfvKT+01M59n3ZXPdddcJQHznO99ZdN7VV18tAHH77bcvHANEd3f3woRViHhCKMuyuOqqqw5YHyGE+Od//mcBiPvuu2/R8QsuuEBIkiS2bt26cGxoaEicccYZT1ieEELMzs4KXdfFhz70oUXHX//614vu7m7h+/4h3+O3v/1tAYhrr71WXHbZZUKW5UWfH+xzFmL/tr7oootES0vLk97XUhzI6LnwwgsXnXfNNdcIQExMTAghhPjud78rAPHQQw8dUvlveMMbhGVZiyZyQRCIdevWLepbw8PDQlVVcfHFFy8qr1ariZ6eHvH6179+0fHXvva14qyzzlr4+9ZbbxWAuOaaaxadN/8c5hcblqrjPPsaKf/1X/+137gRQogHHnhAAOKWW255oqbYr7wPfOADQpKk/drwtNNOW3SdRqMh2traFt2fELGhfMwxx4jjjz/+Ca/7TIyRfQnDUPi+L7761a8KRVFEsVh8wvMP1eg5mPfDvkaPEEKcccYZS15nKQ6mT88bPX19fYveldVqVbS1tYlXvvKV+93Lvn3wwgsvFKZpLhgiGzZsEID4t3/7t0XnjYyMCMuyxPvf//6FYyeddJIAxM9//vNF51511VVCluX9Ftfm7+knP/nJQbVBwjPL5OSkABYm8QfD0NCQUBRl0TgVQog3vvGNwjAMMTw8vOj4q1/9apFKpUS5XBZCCHHmmWeKY4899gmvkclkxCWXXHLQdZpndnZ24XftQBzKuzyZhywGOODv5erVqxeOzb/7zjnnnEXfP9i2D8NQ9PX1iec973mLFkj27NkjNE17UqPn/PPPF5qmLVrk25f5ucwNN9yw32f7vvfn57P7zkPuu+8+ASyam82/E/dt+8MPP1ycfvrpC38fzDhIWJqn5N72ohe9CE3TyGaznHnmmfT09PDTn/6U7u7uRec93j0H4Ec/+hEtLS2cddZZBEGw8O/YY4+lp6dnYVv3rrvuAtgvPuj1r389qvrEYUjbtm1j586dvP3tb8c0zadye/tx5513kk6nOfvssxcdn3fv2dcV5JRTTiGbzS783d3dTVdX14L73xNd5/DDD+f444/f7zpCCO68885Drnt7eztnnXUWX/nKVxa2R0ulEt///vc555xzFtrzUO7x9a9/PRdccAHve9/7+PjHP86HPvQhTjvttIXPD/Y5L8Xxxx9PuVzmTW96E9///vefFrWox7tXABx99NHAH9wxjz32WHRd553vfCdf+cpX9nPDORB33XUXp5566qJ+rygKb3jDGxadd9tttxEEAeecc86i9jBNk5NOOmlRezQaDW677bZFY2f+ue/rTva3f/u3pNPpg3YLOxhWr15Na2srH/jAB7juuuvYvHnzQX3vrrvu4ogjjuCYY45ZdPzNb37zor/vueceisUi55577qK2iKKIV73qVdx///1P6ML0TIwRiF36/vIv/5L29nYURUHTNM455xzCMGTbtm1PqcwD8VTfD4fCofTp173udYveldlslrPOOotf/vKXC+6q8yw1lhzHYXp6GojHviRJvOUtb1n0fHt6ejjmmGP2G/utra284hWvWHTsRz/6EUceeSTHHnvsojJOP/30Z00JMOHp4+ijj2bNmjWLjt15552ceuqpDA4OLjr+tre9jWazyYYNG4D49+Hhhx/mwgsv5LbbbqNare5X/vHHH8+NN97Ixz/+ce699979XFSFEIv6VRAEALS1tbFq1So++clP8ulPf5oHH3xwkUsRHPy7PJmHLM2Bfi937Nixn6vXvvPHg237rVu3Mj4+zpvf/OZFbmZDQ0O85CUvedI6/vSnP+WUU05h/fr1T/k+H8/8fHbf3+/jjz+e9evX7/fcenp69mv7o48+etFzO5hxkLA0T8no+epXv8r999/Pgw8+yPj4OBs3buTEE09cdE4qldpP3WlqaopyuYyu62iatujf5OTkwgS3UCgA8cN/PKqq0t7e/oR1m48ZeToDyQqFAj09Pfv5aXZ1daGq6kJ951mqjoZhYNv2k15nKfWTvr6+hc+fCueffz5jY2P87Gc/A+Cb3/wmrusuGoSHeo/nn38+vu+jqir/+I//uOizg33OS/HWt76V66+/nr179/I3f/M3dHV1ccIJJyzU/amw7/OY9z2ffx6rVq3ijjvuoKuri3e/+92sWrWKVatWPal/7Hyb7cu+x6ampgB44QtfuF97fPvb317UHj/+8Y/xfX/R5LJQKKCq6n6B7ZIk0dPT85T7xVLk83nuvvtujj32WD70oQ9xxBFH0NfXx+WXX/6E8S2H2hZnn332fm1x9dVXI4R4QonbZ2KMDA8P87KXvYyxsTE++9nP8qtf/Yr777+fz3/+8wBPOm4Plaf6fjgUDqVPH+i5eZ5HvV5/wrrvO5ampqYQQtDd3b3f87333nv3G/tLPcupqSk2bty43/ez2SxCiEQ2+38IHR0dpFIpdu/efUjfW+qZH+y4/uAHP8inPvUp7r33Xl796lfT3t7OqaeeygMPPLDwnW9/+9uce+65fPnLX+bFL34xbW1tnHPOOUxOTgLwla98Zb++BfH79Oc//zmnn34611xzDc973vPo7OzkH//xHxdiEw/2XZ7MQ5bmiX4j9i133zocbNsfaP54oGP7MjMz87Q/N1i63/f19T2l53Yw4yBhaZ6Setv69esX1NsOxFJBtvOB5AdSc5lflZh/6JOTk/T39y98HgTBkw64+YnhvqsGfwzt7e3cd999CCEW3df09DRBENDR0fG0XWdiYmK/4/NB90/1Oqeffjp9fX3ccMMNnH766dxwww2ccMIJi9RhDuUeG40Gb33rW1mzZg1TU1P8/d//Pd///vcXPj/Y53wgzjvvPM477zwajQa//OUvufzyyznzzDPZtm0bQ0NDT6kNnoyXvexlvOxlLyMMQx544AE+97nPcckll9Dd3c0b3/jGJb/T3t6+8EP6ePY9Nt923/3ud5+0/t/73vd4xSteQWtr66LrBEHAzMzMIsNHCMHk5ORCUCXEL8d9g1rh0H6ojjrqKL71rW8hhGDjxo3ceOONfOxjH8OyLP75n/95ye8calt87nOfO6Bqzr47xvte5+keI7fccguNRoObb7550fNZKgfDUpimuWSbP9uT84Pt0wd6brquk8lkDumaHR0dSJLEr371qyUD2/c9dqDfCcuyuP766w94jYRnH0VROPXUU/npT3/K6OjoQU8Ul3rmBzuuVVXlPe95D+95z3sol8vccccdfOhDH+L0009nZGRkQUTl2muv5dprr2V4eJgf/OAH/PM//zPT09PceuutnHXWWdx///1L1m1oaIj//M//BOLdmu985ztcccUVeJ7Hddddd9Dv8mQesjRP9Bux72R/335ysG3/+PnjwVx/Xzo7O5/25wYwMTGx3xgZHx9/Su15MOMgYWmeFvW2g+XMM8+kUCgQhiEveMEL9vu3du1agAXFkptuumnR97/zne8sbEUfiDVr1rBq1Squv/76JSci8+y7QvlEnHrqqdTrdW655ZZFx+fVQOaV6f5YTj31VDZv3szvf//7/a4jSRKnnHLKUypXURTe+ta3csstt/CrX/2KBx54YEEl6fHXPth7fNe73sXw8DA333wz//mf/8kPfvADPvOZzyx8frDP+clIp9O8+tWv5sMf/jCe57Fp06andP+HgqIonHDCCQur/Ps+i8dzyimn8POf/3xhBQpiVbxvf/vbi847/fTTUVWVnTt3Ltke8wsIjuPwk5/8ZL9t/fm2//rXv77o+Pe+9z0ajcaiZ7N8+XI2bty46Lw777xzvxX7g+n/kiRxzDHH8JnPfIaWlpYnbYtNmzbx8MMPLzr+jW98Y9HfJ554Ii0tLWzevPmAbaHr+gGv80yMkfkf18dPyIUQ/Md//MdBfX/58uVMT08v6gee53Hbbbcdcl2eiKe6G/Rkffrmm2/GcZyFv2u1Gj/84Q952ctehqIoh3StM888EyEEY2NjSz7bo4466qDK2LlzJ+3t7UuW8VTySiU8M3zwgx9ECME73vEOPM/b73Pf9/nhD3/4pOWceuqp3Hnnnfupan71q18llUotuUDS0tLC2Wefzbvf/W6KxeKSymHLli3joosu4rTTTlvo90v1q6VYs2YNH/nIRzjqqKMWvnuw7/JkHrI0B/q9XLVq1ZMazQfb9mvXrqW3t5dvfvObCCEWvr93717uueeeJ63jq1/9au666y62bt16wHMO5bnNu+/u+/t9//3389hjj/3Rz+1gxkHCH3hKOz1PlTe+8Y3cdNNNvOY1r+H/+//+P44//ng0TWN0dJS77rqLv/qrv+Kv//qvWb9+PW95y1u49tpr0TSNV77ylTz66KN86lOfOqiEiJ///Oc566yzeNGLXsSll17KsmXLGB4e5rbbblswpOZ/fD/72c9y7rnnomkaa9euXXIX4pxzzuHzn/885557Lnv27OGoo47i17/+NZ/4xCd4zWtewytf+cqnpX0uvfRSvvrVr3LGGWfwsY99jKGhIX784x/zhS98gQsuuGA/P+hD4fzzz+fqq6/mzW9+M5Zl7Rd3crD3+OUvf5mvf/3r3HDDDRxxxBEcccQRXHTRRXzgAx/gxBNP5Pjjjz/o57wU73jHO7AsixNPPJHe3l4mJye56qqryOfzi3Y0nk6uu+467rzzTs444wyWLVuG4zgLq8xP9Gw/8pGP8IMf/IBXvOIVXHbZZaRSKT7/+c/vF5OyfPlyPvaxj/HhD3+YXbt28apXvYrW1lampqb47W9/Szqd5sorr+TWW2+l2Wzul/PgtNNO4/TTT+cDH/gA1WqVE088kY0bN3L55Zdz3HHH8da3vnXh3Le+9a189KMf5bLLLuOkk05i8+bN/Pu//zv5fH5RmUceeSQAX/rSl8hms5imyYoVK9iwYQNf+MIXeO1rX8vKlSsRQnDzzTdTLpcXxW3tyyWXXML111/PGWecwcc//nG6u7u56aab2LJly6LzMpkMn/vc5zj33HMpFoucffbZdHV1MTMzw8MPP8zMzAxf/OIXD3idZ2KMnHbaaei6zpve9Cbe//734zgOX/ziFymVSgf1/Te84Q1cdtllvPGNb+R973sfjuPwf//v/90vHuaP5aijjuLmm2/mi1/8Is9//vORZfmAE7ZD6dOKonDaaafxnve8hyiKuPrqq6lWqwtSwofCiSeeyDvf+U7OO+88HnjgAV7+8peTTqeZmJjg17/+NUcddRQXXHDBE5ZxySWX8L3vfY+Xv/zlXHrppRx99NFEUcTw8DC33347733veznhhBMOuW4JTz8vfvGL+eIXv8iFF17I85//fC644AKOOOIIfN/nwQcf5Etf+hJHHnkkZ5111hOWc/nll/OjH/2IU045hcsuu4y2tjZuuukmfvzjH3PNNdcsvL/OOuushTyBnZ2d7N27l2uvvZahoSEOO+wwKpUKp5xyCm9+85tZt24d2WyW+++/n1tvvXVReoal2LhxIxdddBF/+7d/y2GHHYau69x5551s3LhxYYf7YN/lkMxDlqKjo4NXvOIVfPSjHyWdTvOFL3yBLVu27CdbvRQH2/ayLPMv//Iv/P3f/z1//dd/zTve8Q7K5TJXXHHFQbm3fexjH+OnP/0pL3/5y/nQhz7EUUcdRblc5tZbb+U973kP69atY9WqVViWxU033cT69evJZDL09fUtuAA+nrVr1/LOd76Tz33uc8iyzKtf/Wr27NnDRz/6UQYHB7n00ksPuR2fbBwkPAGHonpwIMnqfTn33HNFOp1e8jPf98WnPvUpccwxxwjTNEUmkxHr1q0T//AP/yC2b9++cJ7ruuK9732v6OrqEqZpihe96EViw4YN+6lGLaXeJkSsIvTqV79a5PN5YRiGWLVq1X5qcB/84AdFX1+fkGV5URn7qqYIIUShUBDvete7RG9vr1BVVQwNDYkPfvCD+0k0AuLd7373fve9b70PxN69e8Wb3/xm0d7eLjRNE2vXrhWf/OQnRRiG+5V3qMpUL3nJSwQg/u7v/m7Jz5/sHjdu3Cgsy9rvPhzHEc9//vPF8uXLF+RwD/Y579vWX/nKV8Qpp5wiuru7ha7roq+vT7z+9a8XGzdufNL74wDqbfv21337zIYNG8Rf//Vfi6GhIWEYhmhvbxcnnXTSgpz3gcoXQojf/OY34kUvepEwDEP09PSI973vfeJLX/rSkoo8t9xyizjllFNELpcThmGIoaEhcfbZZy/INL/lLW/Zr9/NY9u2+MAHPiCGhoaEpmmit7dXXHDBBYsktYWIx8373/9+MTg4KCzLEieddJJ46KGHlux/1157rVixYoVQFGVBiWbLli3iTW96k1i1apWwLEvk83lx/PHHixtvvHHRd5cqb/PmzeK0004TpmmKtrY28fa3v118//vfX3J83n333eKMM84QbW1tQtM00d/fL84444xF0qUH4pkYIz/84Q8X+mp/f7943/veJ376058uWfel+MlPfiKOPfZYYVmWWLlypfj3f//3A6q3Hcz7YSn1tmKxKM4++2zR0tIiJEnar+zHczB9el697eqrrxZXXnmlGBgYELqui+OOO07cdttti8qbv5fHy6seqJ5CCHH99deLE044QaTTaWFZlli1apU455xzxAMPPLBwzkknnSSOOOKIJetfr9fFRz7yEbF27Vqh67rI5/PiqKOOEpdeeuki9aeE/xk89NBD4txzzxXLli0Tuq4vyOlfdtllYnp6euG8JxqTjzzyiDjrrLNEPp8Xuq6LY445Zj91rH/7t38TL3nJS0RHR4fQdV0sW7ZMvP3tbxd79uwRQsS/Re9617vE0UcfLXK5nLAsS6xdu1ZcfvnlotFoPOE9TE1Nibe97W1i3bp1Ip1Oi0wmI44++mjxmc98RgRBsOjcJ3uXz5PMQ/av0xe+8AWxatUqoWmaWLdunbjpppsWnfdk88yDbfsvf/nL4rDDDhO6ros1a9aI66+/fkmlzaV+10dGRsT5558venp6hKZpC/OQqamphXO++c1vinXr1glN0xaVsdR7PwxDcfXVV4s1a9YITdNER0eHeMtb3rIgcz3Pgd6J+9b7ycZBwoGRhHjc/l9CQsKzgud5dHV18S//8i9cfPHFz3Z1Ev4XsGfPHlasWMEnP/lJ/umf/unZrk5CQsJzGEmSePe7382///u/P9tVSfhfzJ/UvS0hIWFpdF2nXC4/29VISEhISEhISHhO8icVMkhISEhISEhISEhISPhTk7i3JSQkJCQkJCQkJCQ8p0l2ehISEhISEhISEhISntMkRk9CQkJCQkJCQkJCwnOaxOhJSEhISEhISEhISHhOk6i3JSQkJCQk/BFEUcT4+DjZbBZJkp7t6iQkJCT8r0EIQa1Wo6+vD1l+4r2cxOhJSEhISEj4IxgfH2dwcPDZrkZCQkLC/1pGRkYYGBh4wnMSoychISEhIeGPIJvNAvGPbi6Xe5Zrk5CQkPC/h2q1yuDg4MJ7+IlIjJ6EhISEhIQ/gnmXtlwulxg9CQkJCc8CB+NanAgZJCQkJCQkJCQkJCQ8p0mMnoSEhISEhISEhISE5zSJ0ZOQkJCQkJCQkJCQ8JwmMXoSEhISEhISEhISEp7TJEZPQkJCQkJCQkJCQsJzmsToSUhISEhISEhISEh4TpMYPQkJCQkJCQkJCQkJz2kSoychISEhISEhISEh4TlNYvQkJCQkJPzZcdVVV/HCF76QbDZLV1cXr33ta9m6deuic4QQXHHFFfT19WFZFieffDKbNm1adI7rulx88cV0dHSQTqf5y7/8S0ZHR/+Ut/JnSxgKZosue0Ya7BlpMFtwCUOB64aMTdrsHm4wPNakVg+e7ao+LdQbAcNjTXYPN9i1p86uvY2Fe6w3/mfdY+h6NPeMUtu8g/rWXXiFEkKIZ+x6ke9jD4/H19uyE3emeMjXc72I8fl+M9qkWvOf0TofCgfq63/OhKFgtrD0PdUbASPjcV8fm7BxnPBZru3Tg/psVyAhISEhIeFQufvuu3n3u9/NC1/4QoIg4MMf/jB/8Rd/webNm0mn0wBcc801fPrTn+bGG29kzZo1fPzjH+e0005j69atZLNZAC655BJ++MMf8q1vfYv29nbe+973cuaZZ/K73/0ORVGezVvcj3rDZ9feBntGmrhuRHurzuoVafp6LFT1T7uG2WgGbN5WY6bgEIYgAbIiIcsSkhB4gUCSQAiwTIWhAYuVQxkU5cmzpj9VXDdktugxW/KIQkE+p9LVYZJJ/2GqE0WCSIAiH1wG9ygS+IFg70iD4TEb2wmpVD0mp12iSJBJq0iShKZKrBhK8byjW2nN64dcdxGGuFOz2OPThI0mSjqF1d+N3tUOQiApykHVF8AZn6L8u0fxZkvxgwkFsmWSXjVI/rjDkfVDr9+BiIIAb7ZE5feb8KYLRIGPX6gS2DZ6Zxstxx2BYhmEjkfkeWit+fi+2lsXlTM147B1Z41qLcAPImo1H8+P6GgzOXJdlt5ui3Rq6SmrEIIwip9pGEGh6DJTcHHciCgU+EFEvRng2hHZnMpAr0VPl0U2c3BT4EYzYMv2GpPTDkEoUGQJWZHobDNYvya7qH89k+zbd+f/FkIgS9KSY2v+HHWfz+qNgIceLbNnuEmt4RNFgmxaZWhZmra8ztSsi+2EC2M4k1Y4bEWWgT7roOoahAIJntHx/lSQxP8UMzohISEhIeEpMjMzQ1dXF3fffTcvf/nLEULQ19fHJZdcwgc+8AEg3tXp7u7m6quv5h/+4R+oVCp0dnbyta99jTe84Q0AjI+PMzg4yE9+8hNOP/30g7p2tVoln89TqVTI5XLPyP1NTNncfc8Me0ebCCGhqBK+F5FKKTzvqBaOP64N03zqRpoQAtsOCSKBockYxoHL8v2IBx8pMz3r0NlhommxwTVbcHnw0RL5rMaxR7ag63EZ9UZAteqzfk2WVcszT7mOT8RMweXhzWUqlYB0SkGSJeoNH8tQWL8mR3enycRUk70jTVxPkMtqLF+WorvDWNJgtJ2QyWmH8SmbsXGHqVmH/t4UmbTC7uEGgS+YmXWo2yE9nQaaLlOvBSxflublL+5gsC/1pHV2vQjXC5HCAP+xLTS274UoQtY1gnoDv1xDNnTMvk7UTIbUykGsZX0opnHAMr1CicJd9xG6LmZvJ9Kc4R7Um7iTs2SPXkvrC49+6g0NiCjCGZuivm03jZ17aWzfg5rLkF69HHdiOjZ+whBvtkToeGi5DEZ/N6m+LkQkUPMZcsesJ7N2JZIkUSp7/G5jmUgIDF1m72iTWi0giAR2M6S9LTbu1x+Wo6fL/MO9+hGj4032DDfxgghTl3HcCNeNUBSJ2ZLLyEiTUtXHNBWyGRVFlsmmVVavSHP4uhz9PRaOE+IFEaoik7IW93vfj7jngSI7dtUQIp7EpyyFXE4j8AWdHTrHHdWKoT9ziw7NZsDkjMPElIMfCFRFQlagWPIolHwCP6KtVWf1yiy9XQaGrlCr+1SqPjMFDyEEuZxGX7dJZ7tBEAru3jDLxs1lZEkiCCNq9QDbDmnaIa15jRNP6KCrw1gwripVnyCIOPbIFro7zSXrKYRgpuAxPmlTqfpIEnR1mPR2m+Rz2jPWPofy/k12ehISEhIS/uypVCoAtLW1AbB7924mJyf5i7/4i4VzDMPgpJNO4p577uEf/uEf+N3vfofv+4vO6evr48gjj+See+45oNHjui6u6y78Xa1Wn4lb+kP5dZ8NvysyOuHQ1WGSSqmEYUS15jM57XDnr2aQJHjpCR0LuwG+H8UTlVBgGDL5rIYsL73qWip7DI81mSl4hKFA1yV6uyyWDaT2mwQCzBY9Zgou3V3WwkquEIJSxSeT1ghDqNUD2tvi72bSKmEoGBm3Gei1ntCgOljCUFCu+tQbAZNTDg9uKlGpBLTkNJq2ggA8L2JP1Wbz1ipWSsHzIiRJQgIi4LHtVY45Is9xR7YsMnwazYBHNleYLnjomkSh5BIEgvGJJp4foWkSrhuvoKctBQmJng6TeiqkVPZ5ZHOFlKXS3rr0jorthAyPNhmfsvE8AXt3kRnZTveaHtK6wCuUqW/ZiV+a61fyERidEcVfP4C1vJ/cUeuIXA+iCDWXQWv5w0SvsXuUoFYntXJw0TXVTAq622nuGiZz2HLUfBa/WCZs2CDL6B2tT2hMzSOiiPLvH2XmZ7/BnyniFUo4EzOoLTlqm7ajt7eSXrUMSZEJ602c0SkQAm+mSFCsoHe04jeahLaLls1g9nczNmFj12xaNZ/t22waoUpHTwZJkmg2PKJSgebuCpsLBayXLyffYlGtetz1mxk2ba0RRgJdl/G9EMcVrF2VoSWvUasHKJqEaShoqkRHq45lqVQqHlMzDl4QMTZh02gEeL5AUSS6OgyW9adoyceT9J17GvzuoSKaJpNKqSBBqeJTLPt0dxpMz7rMFl36ew68AxKEsdHg+xGaJtOS0550B8T3I8pVn0rNZ+fuOq4Xkk5peF7Epq0VxiZsFFmmq9tA12SKZZ8du+uYpkzaUqnWA2Sgv8+ivdVgcsphcsph9Yo0siLxyOYyuibjeRG1eogiy+SyEsWyx55Rj85Og1xWwzIVZFmitUVnetZlZNyms93Y710ihGDnngY7dtVpOmG84ysJCiWPiSmbI9bl6ep48v71TJMYPQkJCQkJf9YIIXjPe97DS1/6Uo488kgAJicnAeju7l50bnd3N3v37l04R9d1Wltb9ztn/vtLcdVVV3HllVc+nbfwhExOOYxP2GTSKilLoVBy2TvaoFz2cdwQ24mYmHEolDxe+fIuypWAXcN16vUQIQSqKtHeZrB6eWZhMjfPbNHlkc0VmnZIPq+jqRK2E7JtV51Kzefow/NY++wgFUoukrzYncbzIqp1n2xapWmHVKo+7W1/mORkMyqT0w6VWkDXH2n0TM+67NpTZ6bgsne0yfikQ63h09dlUmsG7NzbQAjBsoEUPZ06v9tYplz16eowWTmUIp1S8byISs3nnvuL5LMaa1bF7o5CCLbvqjM+ZZOyVMoVn2otoLszvpdN26q0t+g4bkQmrRIJQdMO8fyIlKXguiHVus/ElL2k0eM4IY9srjA145DNauTNkObMOLNln+lf76KjOoKydzdusYySslBMg9C26f7L09D7Oin88n4qv9uE0dGGQKCkTKxlfeSOXods6Dijk6gt2SXbTc2m8aaLNHePElTr2GNTRK6LJEmo+SyZtSvJrFuJJB9416KxZ4yxb/4Ib7qAms/GOznteUQQ0dgxTNR0ULMZIsehsXuEoFJFtnQUyyQK/NgAmpjBny5QH+qH1hb2/m4n0fQsYw2XqZJCS0bBcfOYsk92+2PY4zPIbTpNI82uwkpWnnQUt26MuPf3RQxdRpYlCiWPQtEllVKRZUE6pWIYCq4naMnr2G5ApRqQzWhYKZVGM2B61mV03GHdYVlaUjJ+EDE82qRY9jjm8DzZjMpDj5bxfEFfr7GwoKAoIeWqz9addVpbNHombXo6TUoVbyF+zTQVZAmGx5qMjtt4XkQqpaIo0JbXWbUiQ2f7/kaAEPHiwJ6RBtVqwK69dWaLHl0dBi35OKZsasal3giI5hY0BnotwiBkbMIll1WZDl3aWnWslMrUrIuuKfT3mjSdkJ27GzTcANeNMHSZctUnm46NMMcJSFsKCMHYuENvl82q5emF+85lVUplj6Yd7ufSVyh5bN5ao1zzcJ0QL4idyCxDplYPkGSJfLbtaVnw+GNIjJ6EhISEhD9rLrroIjZu3Mivf/3r/T7bNw5CCPGksRFPds4HP/hB3vOe9yz8Xa1WGRwcPOD5fyxTMy5BJNAV2LW3zvbdDWw7RFFiw0OWJAoFl5/+fIq9ww0G+tPk8xqdHQaKIuF6IVPTDvWmzzHrW2jJa0iSRBjGq7OOG9H7uJVqTZPJpFUmJm1Gx3UOW7nYJS0IIkAQhQJ5zvCJRPyfJEtIMkTR4nuYXxmOoif2qA9DEccozJUhy9KiVeXZgsvGzRWCUCAkYoMjiI0s14tQpDiuI51WqdZ8LEOm0QzQNRldl6jVQ7IZlflajIw1ufUXk2QyGt0dRhy/saNGueIThnFcw9Ssg+fHRo6qxBNFTZVRFBkRRggihJi/RwnTVCmWPIJQ7BdLMT5lMzXr0NMd75KFxRpycRbNaVKarDPhBPT4IbKmEDWa+JUa7py7WGr5MsJ6gyjjkD3iMNS0RVBvUN+8E2diBqOng+rGLciGgd5eQkSCqOkgaSp6eyt6ewuh61L+3SPIqoLR3YGS6kKEEX6pQvm+hxFhQO6odYvqLKIIEYZEYcTYt35A9cHN6J2tBMUy7uQMsq6h5DKIKKK+Yw8iCgEJe88oQpLROtoQUYS9ewwEKJkUfrFM5ZGteJJMY9ckVkuKIN+KFglUzSd86PdIuzcj6zKybBGpOrLaoPjbBsWyz72TPahpg1xGm3PNCnC9EMcJqdd9UimVlctSiCh2STN0GdsNcf2IMIzYuqtOGAoGei18L8SdM4qCMGK26CJLcNjKDJWaRz4XjxchBIWiR7Hs4QeCRiNgtuiCEBSKLiKK+7frC6amHBrNANeLUOfGU2sQ0ddrUa4FbNxc4dgjWxYZxkIIHt1S4f6HSoQhOE7Ajt0NwihiZLyJ7URIQEtOxTIVFBlqDZ89o4IwFGQyCmEUUW+G9PYo5HI6jhMyMW3TktfiMVEN2Dtq43gRxZEmfiAW4u6EEAhA1RRAUKl42I5JylIXxnAUQbREVMzIWJOR8SYA2axKTleIIoHthJSqHsVHPRAiNjpNha4Og7ZW/YC7z88UidGTkJCQkPBny8UXX8wPfvADfvnLXzIwMLBwvKenB4h3c3p7exeOT09PL+z+9PT04HkepVJp0W7P9PQ0L3nJSw54TcMwMIw/ratGsxFSmHWZmHFoNALCUOB4Inbd0SRSKQ1Ll9n4WI1QwMsGOh/nehZPVH7/cJmxMYc1KzP09VpomkSx5NG2xI6ELEtkMhrjkzZDgyl0TSaKBNOzLmPjNo9trzPV5tDWatDepmPoSryy7oYEXkQ6tXhF13ZCdH3/mIl56o2AiSmH0UmbUsnFtgVWSqajVae/16K3y8SyFPaMNvH9iM4Og989XKJS9UFI5LMakQDbDsllVHw/YrbgosgSrhfR3qaTtlTqDY/RiXjCGsdowJ69Te65v8CalRmEiEULOtpNWvKxS5xth0RR7KoTRQLXCZHTcdt6foSmymhqbFyqKhhzMU77TueCIGJ0wiadepx7UxTFymq+wJI8mkLGrtmYmoRkGEhujSiKaOwcxRmdJH/04UiqQuT5kLZQ0imENMvsbb/CXDFA6LrUNm8jtD1Uy8Ra0Y8kKzjD42jtLQQNBy2XJn/cEUjKXD2V2L1NUhTqW3aRWj6Ams0QNJo094zR3D1C5Hk0hyco/uK3yNk0RlcHEKvEuZMzeOUqYdMBBMgKiqaCoiALQXN4DDWdRk0ZBNUaQalC0HQQ0VaUTIp8dyeNSEPy48m04tmkRrcTVar4vT0oroPScAnDiKBc5LFyiqapsfLYQcq1gFrDxzBkUpaGLAlsN6ReD5gpeKQet0sZhoLJaZtqLaBY9MlnVWYKLndvmMHQFTraDGQl7kP3P1TGDwS6rtBoxjumpbLH1KyLIhMbikFIre6zQwjGJhxe8sI2ursstu+u4YcRxYqHELBmZQZdl6nUA8Jxm7UrM8yWfPYON2hr+YNBtXVnjTt/PYPnRei6zKYtVWaLLtmMiqpIOG4ERASliGxGo61VJwwEQRDRmIvFqdbifu17cVuapkK9EVCu+qTTKqomMTvrUCj6AOiGTLXqUa1LpE0VWYp3bTVNotEMcZ1wwehpNAMsS8ZaYrdmeNSmaYcM9FkLhowsS5imwmzRZXi0iaHLrF6RwfMj9o42WTZgsXZ1br+FgWeSxOhJSEhISPizQwjBxRdfzH//93/zi1/8ghUrViz6fMWKFfT09PCzn/2M4447DgDP87j77ru5+uqrAXj+85+Ppmn87Gc/4/Wvfz0AExMTPProo1xzzTV/2ht6AixTnlOjCvF9gSxLCAGqLOG5EU4k6O40MSyFct2nWPao133yeZ2mHbBrT4NqPUDTZCo1n5mSy1TBJZ1SF+IMlsI0ZGaLLmMTNrIMe/Y2mJh2CaMIw5Cp1UOatk2h6LJiKE1nh8HvHyljaBKCePJoWfGKb7HkMdi3tGJWqeLxyGMVSiWPcsWnUPYII4GiyFRrAaWKz+SUw/JlaYolj5a8RhgKSmUfAeRzOtOzDooi8PwQWdEwVZlaw8d2Q6IQLFNFUSWqhQDbjpXdIgG+LxFKkEkp7BlpUK74CAEpK1ZLMwyFTEalVPIwdBnPC4gQIMD1Qnw3oqPHBEmiVvfpzEqEU5Pke03CkoLc3rqwa+j5As8TWI8z/CIhEYaA4yBHIbLTJAwioihE+AFRGO+qEQR49SaNXXvJmochzU0svdkS9u5R5HQK1dTR8r3UHt2GmslAFBHWHdKrBxFhSG3TDkCQOe2lCwbP41FbsjR3jeBOFxECSvf8HmdsCjWXjo2e7XvwK3XUMESEEZIio+WzBNU6XqESq8zJEhKxNRl5AbIiIykyke+htfegteQRQuCVh3HHpwlrDfqXD/DoSIQiE8cp7XgMeXYKgohwdASrsw1VyPhj43j1GrWcTi5Tx7ansNsGsHo6ERHIcogsy4goxNClOFYnEGi6TBDEuyFhGO8GpiwFM6XMKb4JXD9CVuK+lM/FOxe79tYxNAXLVKhUfcqVABEJqo0QzwvnYsRkglDQsAO27qyjKBKlkk8YCar1AMeJDeaUpZBOKdQbIR1tBq0tGrNlj3oj3nmcnnV5+JF4B3OgL8Xu4Qa+H2EYCr4vsO2IlCHhBvJCPF8szCDFYgOhwHFDpLnHKj3u8SqqhOfFktPjUw6qLJEyFRwvwtBkVFXG90OKZZdGM6DRDMlnFDw/dqkVSGTSCs1GwMrlaQolD4hj9ebd3Co1H1lhv52bUsmj3giQZSmOc5tzeXXdkF17m6QslRXL0k/w9nt6SYyehISEhIQ/O9797nfzjW98g+9///tks9mFGJx8Po9lWUiSxCWXXMInPvEJDjvsMA477DA+8YlPkEqlePOb37xw7tvf/nbe+9730t7eTltbG//0T//EUUcdxStf+cpn7d7qjYBi2SMI4gDojY+VaTRjqeRG08fzY/c7VYUoFERCwvNDQEWWJYJAUG8EZLMao2M29UZAR5uO58fKVm0tOiCxa2+DMBT0hmK/wGrfj9i5p0Gh4FAoeoxN2kxOObS0aPR0WqiqhB9EIEmUqwGbt1aRJQm7GdAU8OiWCpapoCoSuibT0W7ExkoE6tycfz73yb2/K1Ku+JimTLUR0DWnCOf5sXRxT5dBuRbHUPh+hKrKBEGE7QQoioxpyFhmrFgliN3bND0OIPfcEE2XkKX4nhwnQklJFCserhtRrwUYpsL4lE3aUpkpOGQz6qK4hc42ncCPY5YadkR7i0ajGVIe9+nrNZElmC045JwS1uhe1GYdvWQxPZHC7Osmf+x6tJYcqirF7eZHf4iTUlRobYPyLoQToHguEoLQdpBNE1kSSKqGbJoIWcKbKeJXaqiZNEII3IlpiARaS4bQ9VBkBaO9jcj3iMIId3Ia2TKQALOvC3e6SOT6S/Y7SZJAkog8j+rGLbgT06RWDCApMvboBGo2TWpZD/Udw3iVKkZbC0raQsmmAUHk+0gCoihCOA6ypkIYIukq+CGKFU94w6aNmraIPJ+w3qQrJzHUIbFnawFr2x6irZsRswWkKETLZjHxcHeMIdfrKNkUMiFyFOIVCuilGooSIbp7MQ1lzqUsRJIlvMAnrHrUah6aJmMaCp1tOrYXoWrEahZSHKRvOwHlik82o2E7Yewm1ghpSCHL+ixGJhymCw5hEOIHsQS0kKCjTSdlqaiqxNikTcpSKFd9ag2fIIjdNGeL8Y5PEMQLDJ4b8qLntxHOGWJCCMYnbUIhsAyVKIqYnrEJwoggEARhPG7jxQQJy4xjkmo1n57u2C1VCHDciJYWjTCM3S/nCUOBrsnYTsD0tM36NVlmCh6bttaoVOO2aTYjShUPzw9JpVSqtZAWVaZc83nwkRKd7QatLTpjEw679zZBAtNQ6O2OYwUzaYXJabHgGuy6IbV6nOsnltmW0PU/vGMMQyGdUhkZbzLQax1w4eXpJjF6EhISEhL+7PjiF78IwMknn7zo+A033MDb3vY2AN7//vdj2zYXXnghpVKJE044gdtvv30hRw/AZz7zGVRV5fWvfz22bXPqqady4403Pis5eqJIsGekwa69TWwnjBMEjjWZnnUwdAlkQaMZEQSAJFAU0DUZw5CIRESlEufb0DWZMCKemNd8ctnYhcbzI3QtjkVRFIn2Vp2R8SaFkrdIWSkMBbv31tm1p0ZHhxFPAsPYHx8hYdtBHJQtS7TkNGw7ZNfeBu1tOi95QRuqpjAxabNruEGl5tPdadLWqrNpS5XxCZvD18VqY/f9rshj22oMj9nkswpNO8S0FHIZDU1joa7FksfywTQzBRcEOG6IPhcnUSh5SLJKa4uO5wVIAup1H09XCENBW4tBJqNRqfpzMr4es0WBmFP8UhSZwX6LMBBMTNlUqgE9q00q1QBZjmMdNF2ht9tEkiWazZA1qzLkszojEzZNO8DxBW31KdLDWzHasww+fwVdnRah7dDcM0LYbNL+8uPRM2l6Ok2276qTzcT5fWRdQ+7rI2o0cB/bjdEoo4ceIggQnotimUiaRmTbRLaNUDSCWgO/VkdNp/BLVeS0iTddRNI1vJndRFGsUhc6HkGxgprP0PLCY7AGe5i98178YhmW9+/X/0QYB2JFfoAzOoHe1f6HHaEozrtiLR/EHp3EHZ1Ey2aQNRW9JYeaTSNqoKZMZFVDbcmhtVXxZwrg+UiGTuQF+IUykq6iteTRWnP4pQqyBINKGbm2g1nDoWhZCFlGlhV0r4m/aQuK76C1ZFFESEdjkorVQZBpg3IB47EHiZoVWnSLct2i4czlTlIk/EAAEWEA1ZqPH4R0tMSxblMzDpGI406yGRU7CpmciuXJFVkin4dKJcDzItpaNExToVwKMUwZCYm2Np10SqXZjMeVjMTMrEO1Fo+PihRQLPlExLsikixRq/nsHm4gy7BudQZJjqXLyxWffE6jUg2oNwOmZz0cN1ZBExEgxTtSEizsMpWrPq2tOpoqz+3kaOi6TG+3iR9EeF4cv9RsBswUXB7ZUmV6xiGdUkmlVXq7DfYMNylVYkNblqAtr9Hfl6LRDOMdIUtFkgTVuk86pdCS02jJqSiKRNOJ2LW3gedF9HSajIw5FIsewZzEdaMRMF2IY550XZnbbYviuC4l3j0qljwazZCWfGL0JCQkJCQkLMnBpJiTJIkrrriCK6644oDnmKbJ5z73OT73uc89jbV7aoxO2Dy2vUYmrdKSM9i+0yedVvAnYznotKWRTofUGyGIeMdE16WFAHrHiydfEE/WPT9OzqjNxeO4TkTvoLmwq5PJqOSzGr4XB2/P59LYtrPG7x4uYVkKI2NNLCt2BUun4xXtejOktUWj1ogQkWCg32S6EMvh9vSkCIKImaJLZ7vByqE0lblEk5Waz5YdNR7eXMF1I2qNAE2Nd6w8X1CpxWIEE1M2A30WmqZgGjK2E6GosWhDOqVQqXh0d5l0dxpU6z61mh+7oaU10unYwHHdkL5uk6OPaMHzI+64e5Jdexs07TjhoixLRCJerR4ea+LYIU03oFTyaGvVaG8zaNohzeZcJnoJsmmFZc9v49Tnp8laEpHeSrEBs2NF6r+cIrWuk/ZlHQtxS4plkhrqp7lrlOaeMXJHrmGgz2K26DI55dDaqmNmUiidHcxON3D7oTWqoIQacmsW4QcE1QY0bOIIcxlJ1/ArNcq/3UjuuCMQgDsyhTM+jdHXiTdbxJstIYIANZtGsnSQZfxCCaOrHb2jDeHGiUL3TVLqThfQ21tQMykix0Pt/UOuIdmKXfiMjhZShy2nvnlnHKuTTRM5HpHjYnS30/f6MzA62/CLFSRNpiHLqJaBZGjoXW3IqgpCYPZ1o6Qt3KkCjZ0jsQDD+BR9uTT5nE1dCwj9AEnVkSIPxdTRMxZRGNJVK1BszlK3s0S+g1yp4Olp6koazVfozrXSN9RP04VsRkE3FKrVAMcN4hgdJ8T34h2UZjPEdSM0VcIwZfIZnVRaZflgClmSaMsLVE1mYrJJ6EeomkQuq5GyVLo6DDwvol63cT2wLAXXj4UM2k0Z2w5oOhEteXXOpVHCc0MQgse21bDtkNYWA8OIFRlTKRUQbNleo94MkWXQFZkwDAn9iEACy5Bo2hARi2RMTDkEQbzQoWsyHW0mq4ZS7N7bYOPmEsOjNmEYoRsyuqqAJNg90iCf1cmkVfI5FUOXcb2IUAhMI94R6+0yEUB7q0pHm8lv7pslbak0mg2iSGBZKh1tOp1tBuOTDssGUvT3WYyONRmZsNHV2MVVVWRSaRlDldk93KBU8cikVCxTJZ9X+VNnCk2MnoSEhISEhGeZIIgYGW3GRouA8UmHyRkHXVdQlDjQ2XEjWnIamipTb8TSuJEQEEKlGpDLxcpIrXmVZjNA1WIXtHrdx3biYP6Ox8nkRpGgvU1n1VCasSmHqWk7lssdbsbKX6FgZtZDkj3CQNDeqtPdZeG6IXtGbAAmpx0yoyqVqr+giFatBVQqPm1tBmEQl1Es+Qz0xflPHt5UoV4P5nZMVJpOSNpSFoyjYtmntUWnJR/HA0kSzBe+rD/F5IzD5JQbSz7nYlezUslD02W6OgwGeiwqtdhVyfNDms0A241di8wQgih2y9OVOGPP2JhNsxmga/Eu1qOPVWlvM+jrNmlt0Wlt0dE1icpYgZ7KOPYvy9hRiJJOkV61jIylUs5HpFZ27af6J8kyaj5Dc/cI2cNXk0mrHH14np176swUPIqzNs0myJUS3aXdGM0yQb2JnraQdR1JsZEzFmZ/N0SCyPVRUiZ+qUJ98za8UpX6lp1k1q/E7O+lsXU3Qa2BbBq4k7PIpoG8diV+rU714cfQezpRTIPKg4+htebnyo3wihVkQyN3zPrYLQ0QYbiQ3FRvy6O15rGHx+J7yliIpo09U0IgkHQ9zhcURajpFGZ3B2o+ixSBX66itebRMmkkXUXvbCe1fABvahZzqI/Sht/T3D2K3t0OQYjsOChOE0VVUDUJT5VACELHRXg+uZTFKn+U8ZLEdMsQdUklMrMEepo8ITmlSsZNkWrvYbA/liifmnYoVzxGx20kGVYtz1BvGgyPNRBCol6Pc+K05gyWD6bJZtSF/DuD/Rb5rMaOvTUKsx4DvRbZTJz3StMiVFWiUvPp6TRx3RDTlCnXQhwvFu+Q5dilMU7+GYsO6JrE+LTLxLSDpko8+lgV14uQpHjsy5KY2+GJY5KMMFZXk5BQ1QhLjRcsHDfCsBS6uwyOWp+js8NgdKzJo1sqDM9JZZtzOap8LyBlySiyjO9H6LqEbijxLqkbUbfj3R1FIRZdCAS1ekBbq8d00UVVZXq6TGQljg0sVTx6u0w0NV5UWbMizfBwg/ZWnUwmzs0VRfE/VVOo1mORhUxKo9rwGZ1o0tdjYZp/ml0eSIyehISEhISEZ51aPWBi2sFxIurNgEYzYHzSQVUlgrkga9uJsHSZ9jYdWYFqNcBzROzqlpZAgCRBT7dFa2s8IYoD7iOWL0vR2aYjiHPzeF5EoeBy2Mrs3CptioceKVOvh3jdgskZB0mKV69TlsL0rMPEtEPEnBKbFhsYisLChG56xqWr3aRa95EkCUWWmCo62G5Id6cxFysTEAQhljnnzqbLaGrsjpfL6czMOHMJEwNa8jpNO6Svx8KeM4z6eix6ukxGxmzGJpt0tBlIuHS1xypymiYjAUcenmP5QBrDkLntrklk4OjDc2zf3aBWCzDnYmqazRAkgR9ENG1BypRZNpCiXPYZm7BplhvU9JCsVyVfnaBnuYHe1YGkKAS1BpX7NyLpGlEYHlDmXNY1hB/ERoQsk8tqHHtkC5Wyw+Qvf09lx2/RKRG1KthOBr9QwtkzhtbegpbPYfZ3xy5h+SzIMpIQaG15nPFpJF3D7OvE6OqgsWcUv1pfyLMj6RoIgTM6id7ThT+1m1TDJr12BZHvU9+yA3vPCNbyATLrVpFePYTZ20XoemhtebxiBaMzTvYrKQpaPkNlpog7XUTvaI3luiNAkcisX43e0UL1wcewRybIrj8MrxjvOGmtefIvOBKjvRXFMpFTJu7ENEraQgpCMquHCG0HSY2Tf6ZWDxG6Ps7YJOixS2Xkuci6htqSRcmk6Gq6tKqTdBkZZss1GnKW1rRGaKbxmh5idobOFX1x3hkgn4+VCCs1j8H+FIoik8tIdLUblMoeLTmVal3CsmK3q2rdR9fkBXW1rk6DSESYmkK9GUtyz8dnmXMJPG0nJJ9VCSOYnnVw3XihQSJOaOr7EQJIpxQ62nTK1YDfbyzF8tOKTL3ho6gyrXmNchWadjyuJEkil1Fx3ZCGE8aGjgpl1UdVZVSgXI2Tkx57VAs7d9ep1UNyaQ2rXSESgnLZR5Ljd8j0jMNgf4paLTb0oxCCSOC6IXpWQ1UUNE0mCOJ8RJPTDr4f0dYay17D/E5yyMS0Q2erQRAIhgZSdHYZhKHA9+KFhWUDFntHbEDQ3qJTqwdU67FYiB9EuG7IbMFjoO/AyV2fThKjJyEhISEh4VmmUvcZGWtiGAq5nEbKUqjXA0pVj4YdoqkKnhTn/VBUiYypgYAwjF208nmV7k6Dvm6LlryO7wuOWJNjoMdi594G2YxGrREwMu5Qb/g0mrGiUjar8uhjVVYsT9NoBrS3GYxO2CAEuZxO0wlBgrYWndmix/ikg6FD10AGSZKQkJAV6Jhz9ZmcjjPdIwlcL45L0lQJ04jd7WZmXaq1AEWVyfoq5XpAS1ajWPHRVQlDj1fdPU+nVPYwTRnLine21q3OLggArDssy4qhNJ4XUq4GFIpxuaoq0dtt0t1pkrIUShWPYtnHMBV0XUWRZVIpBSHiZIxRJIhEHIPQ2WFg6SpdrSqdGcHE5jFE0KBSKdE58yjtuo3b6MczjsRa1hu7gmXTFO/5PW6hjLN3DL/eQE2lMHo7sfq60dryhI0mekcryDKh6yGrCpKioEyNE9z9C1JRhLm8H8U0yPs+jV0jVH63iaBaRzJ1Is9Hy1rIho6SSpE54jCMtjyN3cOETRft8MOwh8dpPLY9LtuMpaElVY3z/fgB9mM7EbKEbOqkhvrIHracoNHEHp5AMgzSa1Zgdscy1Iqhk16zgvK9D+EpMmouS2i72BOzaB2tqC05gnoD4QXknnc4Wi5L6DikVywju2YFhd/8nsKv78dobyW1YhC/WKFy/yPIKQutJUtku+gdraRXDxFV62SOWktg20iyjGyaKLqGbBixYEPKQnS14s+UMAa74799HyKBkdHJaQUGl2k4x/exczLElmRqWpp2KmSNEBHGBookgaLIqJqMEHF8jyxLqIoUu29GsbLe1IxHd6dDylIZHEiRycQun7EIRkhLXmNkzCaKBNmMSi6rsWwgRb0W5/gxTQUhmmSzGTwvxLRUokCQTYOmQa0R0t6qY9shrhsvFChK3GcFUKsFZDLKnDJbHEunaRJBCHU7wPPi2BtVlWKFwyjCcSEIQ7bvDrntrkmmpl1SqTimTddjlUXdkOcEQHz8uTgfz49QZBnkaMFduKNVR9PiMeYHEpom4wchQQS6tjjOUdcUZDlkquBy5OE5JFmiLR/vjPphhKZINOyQciXAdkJGJ5rUGxH1RoCuy+RzKg07ZOvOGn095p8kZ09i9CQkJCQkJDzLlEoeQRjRYsaByaiQy8WGihBxXhmkOK6lOecek89pyEh0dhpoaryDMDSQprvTZGrGYfeeBuvX55Ak2Lm3wdbtNSIgnVbo7bIY6LOwLIXdI01sN5bXDeaU3OZllS1DwbYDrJSKaSrYjofvx8pq9UYcSN3bZVGt+ZSqHtOzLtm0SqUe0N6q02wGGIaMIkuMjtkUSm6saiWJOAFoySOXiVe+K1UfTVep1F0q1TjBZD5noioyK5dZ+0nbGrqMoctkMxqDfdaipLKuG1Ku+MwWYhU8RZaQiGOgEHMTQH9O5csN0VSZFsVHr8wgb/FQizMM7NxBq1NAqpTQmjWCdotysYA7MU33a04mNdSPO13AmZihtnk7imGgpE2EECg7h7H6u0mtHERSVfTODmbvuIew3gBJQtI1Zu+6l+ojW7AG+/GMMnpbC4ppkF61DL9UpXzv7wnrTbSWHN5MCXdiBr2zHVnXcFMmwvORNA2ztxNJlqg8nENEEYqmIlsGke0S1BuoYUjo+7Eb20yJ8m83ouYzCNfHq9TwZ8t40wW6XvVyUisGUNMpMmtWENQaFH/1AM29owSlKu50gfT6VWSPXIEzOomaz6IYcVyQVyjjFcpk1q9Cb2/Br9RpP+l4EILm3lGKv3mQ6iNb0fJZWk84Fr0tT/WRrUSuh7WsH6OrE3tkHDWXA1nC7OnAGuhGRBGyoSHLMlG1QaRqmF3tNEcmCOoNdF2n7+Tnoa7vJNCqhJLCroJENOPh794DUQiSRFNNo3gmWUNlRbdKpKqEQkJv07EsBdsO2bipiI7PYBt09KSwMkac76nosmV7DRCsW50jCAXTMx7Vqk8uoyIi6O+zWLc6Sz6nsmVHnce2VSkWPTwvRBhx8l4/iND1+FqFsociy4SRAAlsNxafCMKIthaLsUkHTVMwjDh2Lx7zCkIEyJJMKCCwIzxZQtcFdRsUOWDT1iqKFO8G1+ZcYOdNCVmW0FQZgaC1VSMMQVYkms2AlKkQZAVNO8QSsevrdMHFdSIcJx4/E9M2K4cyi42Tuftqb9WxnZCZosue0SbWnNS7JEEuqyBJUKlCW4vG8sEUuVwsujA97fDI5gprVmbo7jIXYhKfKRKjJ+E5jRBiYQVDkqQnzcSekJCQ8KfGnVNi6utJUa7EQfnz6mqlssfoREStGZLParHrTTVe8RUimnN7ESiKoL/XpG3OeCgUPDbN2MyWPVrzGkEoaG+P41RUVSafVVHmZG3bWnWmZ9y5idlcMLNuMlN0UVUJWZapVHwcN44DaMvrqCpoqkomrVGpeoxO2jQbsfpaa4uG58UruAjB6hWZWFzAE5iWTCqlEoWCesPHDyK27aizanmGni6TMBT0d5u89EUddHXo6FpcXjr15NMVSZJwnJC9o03GJ21cL5aZLlU96g0f01DQVRlB7DKoKDIiiHPhWDTJTc9gECB0BbFzG6ntjyIIIZshUlTChk1Ya8SGSFsLsqZR37qLyLZRUxZ6ewtIErJpENQaOBPTuLNFUisGkRQZNZNGMnVqm3fS3LGXxo69qGkLCYEzPEFQrJBaMYBfqSNJoHd3ouWzZNYsx52cJaw3CetN3JlCbPhMzGCt6MeZnEXWVcy+bpyJKULHQ5Yk5GwKSVUJqzXs8WnUbAY1beKMT1O7/deEDRujux0lkyJ0HRTLwBmZoPXE54MQeDMFJEMjs2YF3kwRISJkWcabKRC53oLBAyAbOpHj4E5OE9kOWi6DVyxjD49jj0wSuS7p1cuJmk38ahUj7MLo7qDywCPUd+zFWt6POzVLfetOlHQaLZ9GzWcJKjVyR65F0nXsPSME1QZusUJYb2L299B56ovJHrMeSYLWFp2ZaYeO0gQTRQ9ftbBaLAI3oDyym1QYkFdzhGYr6ayB3tmG0doCAjLFKbpm92JZOvrOWWqTKcZTbRTJsHvYptYIWLs6g6ErHHN4nqYdMjLeRFNkjlibo783HlcAa1dnMfQ47uXhTRWqNR9Dl0mnFNyyx0whdv/MZOZy/DQDmnas1Fav+zh2iB+KhcS3qZSCqUs4bkjgg6qBYchoKgQBaKqMqsRup5VqiKFHdKkGui7j+wJNl7AdEetaS7FyoarI9HYZDPZbPLypQrMZ0dam4fkRk9MeMwUHVZZpyWnoRhwDNDbhIAQM9KVAQLniUa379Pda1JshO3fXCQKB48Ruc3uGGxTLHs1GgG5ItOR0+rotOjqMON9R3ada9ymWfO76zQzLl6UY6LVY1p9aaMunm8ToSXjOIoQgCAIcxyEIAlRVRdM0FEVBURRk+U8XPJeQkJBwIOKkidDfa6HIEoWyF6/IijjfDgJUGcIwwnFi9Sg/DCmV49w2vS0aR6zNMtCXol4P2LU3TmyoazL5nIaYy8mTz2q05DV0fbGbSspSKJbinZNazUMg0d6qoesSlYqPPLcCnTYVImQMQyaK4oDnas2L8+NEYJgyINBVmd5uC11zmCl6FEseYQi6IUEUxwPUGwFhBLqu4IexVLc549LRrnP6K7o5an3+kNvRdUMe2VJlcsoml4sNxKlZl3otoFwJqNRqWEa8+mzh4dgujSboeHQ0JlDkBkrOIpqYQdm9HTnwEJksUa2BLtx4thlGeIUilQc2YnS2xYaQ7WB0d5BaPYRXKBFU6siGSmR76O2t+MUKrS86BkJBbfMOmtv3YHS20dy+h6DZRAQhYdOmuXeM+o49cexKJh27eWkajZ3DRK6H2dOJO1OksXUXsqGjZjM4I5P4hSqZtUMgS0TNeGKq5tKEdRslZeBXY3cwSVNjN7U9o4gwRM2nEZKEpCh4s2WiIMCZmKaycQuSEHjTBXKHr0aSZZzxKSLHQetow947TuS6RF4HIggI67EhomVScWyTpiEpCvbeMcKmDbKEmk6h5rP4EsiajrN3HGuoH601H8t61xtEjkvkuLhThTihaRCSWjlI0Ggiux5qeyuypiKpGu0vPwGjswVroHdh52Gg18IZn0bs3kzP4Fqq7XmKTYFUqNCtNhjKe4xW6uxqtqCqPsHuUYTjYDoVao9up1ezaD+si1lJZWavS6UxQZjN48gplg9Y6JrMjt11locpujpN1qzKMj7pIBCLJumyBO2tOi88pg1ZknnksfKCXHy9HhCJiK52E4ByLSAKBbom0XB8IhEfS6dk0paC7UY06gG+IaMo4HogRyLOdSXJyHKEF0RoioyuSYgoAlQ8NyJtqRRdF0WW0TQ5NprmdpskSaK91cD34ZgjWpiZdZkpuGQsFdPw6esyaW3VkSWYmXXRdYmOVoO6HTA63sT1Ypc4EYHnRdx+1xQ9nQZHrcvx0KYyDz1aiRdKvJB6PXZnWzmUxrLidiqW413hhh3S0W4gybEBt2lLlUYjZP3aHKry9C9SJ0ZPwnOSKIrwfZ8wDBd2eoIgwPfjpGyyLKOqKqqqJkZQQkLCs4quxwk2XS9ixfI0rRU9zgi/p870rIuuyyBpmEa8W62p0NFmkk1p9PdZvPj57ViWQhTB2KSNmJOX9rw4CaaqSrTkNaplj5mCR3/vH4KGo0hQrQVMTjlkMirVuk+56mHoMrlcLGubrQV0duj0d5s8+GiVmaJDrRkSBhHeXKxD2lLixIlWLErQ32uxdlWG7bvqbN9dw9AV+lpT1Bo+livjuBKOJ2KDKojwZYm8LnHEmtxTMngAdo802LS1gqbOq0v5+L5gxbI0gnii5fkhzaqL5jtIkiBraqwymqhFB9cNSc/OQFhD9poomo7WKBM4HqocIqVVpLRF5Ho4kwWqj2wjvWKAsGGTXr0cLZdBy2WIPB9EFCcC9T0II5o7hnGni9S27EAEIZHnEUUR9p5x3NkKeC6h4yE8D6EoyCkTWYA5JBNONojCEHd8GhFFSLpGdrCX7PrVRLZDfccw9shUvBszn8tluoCcSRHZDmHTQTZ1VMvCHh4nCiO0XBbJ0AjrNiKKYoW5ncPoHe1UH92KrOtk1q2KryfLCGSciRkqj24n8gIiz8WdLaJl0nH+nWod0d9NMD4NCLKHH0bYaKJmszgTM8hziUkFsbCDpCoEjSZGXyezP7uHoK+b9NoVmP3dBM0mzvBEHB+VyWAN9hDaLoQhsjkEkoQ12IfR2Yo9NoU7XUA2YrGIrqBAanUP+dX9+Ahku4HhjNPem0WzsmT2TOErVYb9PkSgom0cprU6gdXTzvMPy9KmzvLYSMieaoqcqdCol+hblmGgPx3vxDQCxifthcUDXZcplX262gOmZl2mZhyGR5o4XoRlKbS2qKxcnmbvSJNsRiWbUSlXYtfOIIhwXUFEhB/E7peKDJoiAxJBAClLomnHiyK6ruK6cZ9uNIO5GBuBLMvolkQQKhi6RDYTiym4bkgmrdFsBsgScyqGgsG8Rj4Xi0bk8ypHrMlTrfv87uESiiwxXXCJFEG9HiCI5fJrjQCJ2EXOsSMGeuMEwumUSiatsm1XnHtIALuHm1QqHmEUC7CAwHYCxiaaWJbMymVZZmZdPF/QktVpycdiES35OJZxeLxJV6dBd6f51F+qByAxehKeUwghCMOQIAiIongrXpJi94x5o2be5c33fTzPAxIjKCEh4dlDVST6ekwe3VJbmBipSpw40zRkNF2mXdfQNZly1YsNH01moF+n2QjZtbeOELF7S6ni09dtUa/HErqKGqtKqYpEJEkUSi49XQaKIhOGgpGx2BWs1gjonEtQOjVts3V7jY4OnbSlkrJk2tutOMeNLKjVfcIATFNBQkKEEsWKH6/MShrTsw6KAmVNpq/HXEjAGIaC8QkHd85tp6/HAgFNO6Crw+BFz2vHMJQ4xmAJd7YoEtSbAVEYu/fMixoAFEoev9wwy8ysSzaj4noRk1MuuZxKd6fJ6uUZ9o40UAlwZ3fC7DRtVkRHXkHUIyqNJkW9naqiYFWnMXwXzQuJBPEqvmfjV+soQQiqjIgE/mwRR9eQDCNWcPN9ZE1D1rX5CseT9UjQ2DWCms+iptPIhg6KjKRMEDbinR4lpaNm04SeRlhr4s+WUFIm3vgMURAg6xq+7yOnTazWPOlVy1AsE8XQsQZ60FqysfcSoLZkEKHAnSnSHJlE+D6yqePNFoh8Dy2bQTJNJEkmikLCWgOtoxV79yhhwybyAwhj+eSwVkOyLCq/fZjG3nHCWgNJkXCLVZq7RzE72zAG+zB7O9E72/C37CSoN2NXciGQ4i2J2LVq3tVc12J3uKaD3tOJNGfk+aUKgRTLfFvLB1BmiwjPxxzsQ9FUoiBAMU1kU6e5a4TUin66/uKl2OPThA0bSZHxqw2o12kp7gZFIfJ8Qt1HT8UT6GxG46VdHrOdKmNFCfehWbo6IgbXashTu3DrTbxmC/1hnbzjM+GYeM0cshyr2BmaxPSsz+SUQ1urTqMRUJThgYdjI3u26DFbdONFg0Bl2UCaFxxtICLYurOK60ZEAqQoNnj8MCIMQURzmuwSpKwQw1SQFQnLVHCcgNYWldCPVdFcN0QiFjLQVImUpRCGYJlxwt7D1+aIQsHYhI3rBISRwA8EqZTCYastTn5RB709KVpbdDraDAxdxrIUBnpT/Oq+GWYLHj3dJqoqzbm9CixTYbbo4XlxPVOmwsrlaVYOpZkterS1aHiB4P4Hi0xNO2SzKkEAXhAhAfV6RNOO2Lq9TtMOUWWZzk6DrnYT2w3JzqnC6bqMLElMTruJ0ZOQ8ETMGzJhGCeTO5DRMh/b83gjaH5nqF6vs3v3btavX58YQQkJCX8y+ntTlMo+Y5MO9aZPoeTiBWLBTc3zBWEUkrI0XC+iUguYnI6VnwxDorXFwHYipqYdqjWfnk6Dcs1n4qEiErHhM1Nw8X3BmpUCRYGZgsPYVKxENTSQYrAvhTxngP32dwUkOTaucjmdlqxGEMwJBQgpzq0hwHFC6k0fVZNIZzUMXZ6TtzXmFJtsutpNLFOmWIkNtr5uK1anUmIXvnLVX3B58/yQkXGbbEYlnVLJZVUkSWJ80ubhTeU5ZTnoaDc4bGWWVcvTqIrEht/OsnNPA02N45IqVY/I9QgkmUnHYWhFnsE+k+7RjVi13+KmdDIdWfKtJsHYJPbsLmZbBille9CbFQSxO6GmKxhy7DKEIhM2mkRegGzqBM0mbqGIkk1Tf3Qbaj6L1t6C0dUeB4+rKiKMiGwHq78bJZNCkiWIIiLPJ6g3EaoSu4qFAYodr44TBhBFEIREYQAiQkQRUdOBCERHiGLFu3UiDJE1Bb29BcnQMfs7sfeO0dw5glepxavzuQyKbuCOTRF5PsIL0ZXYxSlq2EiZNJHjomRSKCmL2JSU0NpaqG/djTNdRAQBmTXLCRs2zb2j4PuIMMQZm8KvNfC7O9DmDDUlEjhjU6gZC0lTUDMpvFIZUa4hqQoiDImaNopl4k3OYq0cpP0lz5tzzRIoKStun1IFz29SvvfB2FAMQ2RDx+juQMllsYfHyR21lnxHG2HTprjhQZzxaULbRWvNE/k+jW27QJbRO9tRTAPCCNPSWNcns7ZHYnJnkaBWJ3ikSBRFhH5ArRELhEQpCb3hUJ4s4K4bpFYLFiScxyfteFczjBOgdndZDA2mmJ5x6O0yMQyFatVj644q+ZyG60YUih71RoChKwhJoKhRLEgQsGAXSlHswqYqIbm8hmWo+GkWxlwqpRKJOCbH8+P2CsN4V0lTZVKmwjGH5+juNNmxu8GOXXWmZl1yWUF3p8GqoTQd7Sb9PRatLX+IyTJ0mcNWZbjv94V4N8cNsSsRTTugp9OkJa8vuMB1duik58ZnJqNRKHnUmz4iFOwdbaIqEn4Qu+2ahgICFDlWSQz8iHo9ZMXyuA6lik8QCFRVIooEsiyh6zJNO3hG3rOJ0ZPwnCCKIrw5d4H53R04+KztylwCNs/zmJmZYf369Qs7QfNG0uONIFVVE1GEhISEpw1DlzlyfZ7WFo27fj2D64bYdoCqylSqPqoWx9LIcmwICSFTqwcsH7BYPpTBcaIFOetmI2RHo4GhO+iGRCat0dGiUTcVJqdsNm2tsGIwza69TexmSE+XybL+2OCpVDxGJ2w0XcX3Q0xDwnYCJAm276oxNR3n3MjlVQIPhAS2G6LK4HkC02RhMpayFCanIrIZhfY2k90jTdJphUxGWTB46o2AtKXS3qaxZXsN01KIIglDl9F1me5OA9cNuf3uGaZnbWRJRpJB3dVgy/Yqxz+vnZasxqZtVRQJVE3GDF1mZss0GgGRHqEpMFkvk6dBdtvv0OwyqmZhzNSQJ2wolpCmpmgfH6PNMPG8ADmKUAIHIoGQYvWpaM4tjTBCKBLudBHhBRiKGruS+QHOyCRhvYFiWSimjggC/Nky0ZCPHIRoLVmcqQJBtY5fLKEYBpIBcspAeAGyFy/cSYqCpGuo2QyhbSMhI6dMItvBL1Vi2WZdw6/WUfM51HwOFBl77wRh00XSNfSWHFJPJ1GjiZK2COt1IllG+B7eTJxrR+tsQ8llkBUF4ftEvo810Bt7TTSd+J5GJ0mtGEDWdYJKnch24xid1hzeTBHZ0OPdGlNDb83jegUau0cxu9uRpDjOpLlrNFZl6+qguWuEsOmQWbeCqOli9XVj9nUtGg/O+DR+tYY7PoPoCMisWYGkKoSOS3PXCEomjTXUjwhC0KG+dRfNPaNkj1xN/dHtyIaBkrIwujto7NiLOzmD2d8DgNaaJ6g1qG/fQ3PPKO5MMd5tUxXUzjaMbBd1F7RCEaVmI5Nm66PTSFaKKBLYToRuyNhOSBCLw5FpBmzbWcf3InK52JhQNYUde+rkqrH7Vmd7nM/GshQcOyQMI2QJdE3CDwSyDKoKuioTCUGzEWLpKpm0ghAQRoJcRkZRNDw3mpPclsnn54w0IUinFSanPWRZZvWKDCIStLXpdLYb5HM6nh8xMeVSrvgcfUQL7a1/MHwCP6K3OzamJRkKRZ+0JZPNxOdYViy80NNpkk6r7B5uxPm7phxmCi6SFCcmNnQZPRBksyqSiOdYLTkV2w2o+iF+GDEz41CvxZLxbW0GI6M25arPQG8Kz49of5xB9nSSGD0Jf9bMu7Nt27aNfD5Pe3v7ImPkUBXb5s+dN4LmrzG/EzRvBMmyjKIoi4QREiMoISHhj8HQZVYOZdi5pxGvgPrQaPqUq7HRIUlxbgxJBkkIVF3BNFUsQ2HV8gzTs04cHCwCnEZEd6dGKqViOyFTsx6WKbPsiDyRgHojQBKCtYdl6O4w0XWFas1n594GQSjo6tAZn3TmdpQcSmWfUtlbMFRsJ5pL8CkhIvAjgeu7IEWoisGekSYISKUUDF1h+bIUD28qI8syM7MembRKJGJRg+6OOFHj5LTDUYfnWL4shSTFu1MPb6rw+40lglDQ3WlimQoCqDd8imWP39w3Sy6vIoD+/hRje8tIlSKmBGFKx5dAUaFUbtC7/W4UqsjpFJFkInsV3OlpAsdDMnSkWh1FBEihFwf9hxL4IYIIIRE/AKQ430x7C7IANZ3CL1eJfB/V8yCIcMYn0dpaMXs6UNJponCS6qNb0dtaUFvzsXEyMo4II7RMBuF5KLkMUghoEs1dowhDR4oEkRu7YIeOQ+R6SKqGW6jQ3DOK3t1B1HRQMmlKv30Y4fk0duzBK1SQlFhFThYC4ft4MzZmfw9BrYGSyxA2GkiyhDXQTdRwEBKETRu1NYe1vB8E1DZtwytUEEGApMiETQd3fCou14gNOklT4x0p18MZmQI/BFkhclzklEV9xzBesUKEQJEV3EIRghBJ12juHSc11I/e1bb/YFBk3NkSkeuid7bGOz3E7a2YJo3tu+NnYOiEtkNz9yh6S47Q8wmaNo37HkTraEMxdGRDxx6dRITRnFugQem3j9DYM0LkB0SNJkKA1tFKWK6Rru1kRulFD1wU10WfnWJyZJpUfzeFhoQQYOgKuYyG64U4TkguGyc/lfjDgutM0SGIleYJAoGuK1ip2Ihx3JDYAzBWYRORQFFlNE3C1GXqzZBQAduJ4+k0RSGMIlpbDISId41cL5pbAAHDkhkaSHHskS1kMhrFose2nXVMQ+GwldkFsQdLUbBMhclph117GrTmtYXPBGAaMn29FsMjTXw/IpWO50JRJHDcCE2TqDcDimWf4bEmYSiAeBfH80TsShdGhC5oWkQUgSyDH8bCB4osoykStXpIe7vBQK9FOqURBBGVaoBt12jJa3R3Pf2ubZAYPQl/xjzena1QKGAYxtNieOy7O/T4naD5z5cygvZ1h0uMoISEhEMlCCKq1YBCycPxQqIoPh4G8eqrJ4VIyOi6RCal4oYR5YrPYH+Kej2kLa/RtAP8IJrLWwOaKlGo+mi6xtrVWUpln6FBi1QqTq6o6zIIwfRs7P7WNpdfZ7bgYllKLHGdU2k0A4SIiOoSrhciS7HRYpoSjgu2LVDkkHw2olTx0RQJTZNw/Yh8VmPlUJqWvMbe0SZhIGht0cjnNBp2wPhEk0xGZaA3tRAPIiLBzIzD1LTD8qE0KUude+9HGLpCFMJMyaNY8VgxmCafUSm4dapOhJ6xaDYEUQRVGwbCOlm7SNTZSqBIyLMFJKcCkoyWzeI6s6DF7miqaRDJEioQAiIIQAJJUVBzFkrKREJCSZmoLXlkUwVVI7NmObKiYI9OEvk+rSc+P94FQeCVKgT1Jl6hgqzrSJKCYplEYZw/h1CgdbTELmxBFF/Tsgh9D1lWkFMWIggRoY9wQ6qPbEMdmURWFcSWXfjVGno+O6eepiAcDymdIrQdRBCg5nNo+QxBvUlQKMe/Y2ZAc/cY7tQsAEZnG4Yk4xcrmL2dpNetorFzmNB28GbLBI0mXrEcxxcVK3F9hEDRNczBXpgTWZANHTHp4YxOYvZ14k7OgusT1BpIuobWmsdob8Xo60bNZ2M3xHoTNZMCQEQR3kwBd3yKyA9xRieJHG8uGWwGRDRngMbnhk2boFbHr9RwJ2aRdQ3FsnCGx/Er9VgZznUBQWb9CioPPUbpvodi983uDtyxKfxKFZQ42a7llWnpzlCUc+S7W/Bcg/aoSlDVkcixbFmW3u4U6ZTC7KzDcC3AcWK1tOmCS7XmUa767Blu4nuxi1gQinhMRnFyUXnOgFakOFeOpsvIcnw8EvGYRUTUmwKrodDZrrJ+ZZ51q3MYhszklMOmrWUmZz0Ge0xWLM/Q2W4iIoHrhKQsmakZh77upZN+trXoFEpxQt+WfByDlrIUDEMhnVbxvYjxKTuWn9ZVNC1OHNzeYlAoekBs3GQsldaW2H1vcsZBVcB1I2RZUBUCfW6HOgwFTTuWzDYNle4unY5Wg2guJ5AsS5iGxNiEQ2e7QWd7stOTkLBAGIb4vr/gzibL8kG5sj0ZB2OoPN4Imr/mvHud67qJEZSQkPCUKZQ8/CDE9yJsO8D34+D0lKXghxGBL0in44zsrflYmtZxQhw3pFr36e62qDcDGvWQej2kaYcoikxrXiObUglDUOYmd9mMSq3u095m4LgRlapPem5ld7rgEkZzCQ01eS5Wp0GjGaFIEITguBFBGFtlUSgwdIm2Fo11h2XJ5wxSlsLIWJNKzQcEXe0GAujtNpmcdqnWfKq1gGrNQ9Nk+nstOtoN6vWAyRmHqRmHbbvr2G5EqewjyzKuG+IFEcy5zTh2vJQuEOC5tCs2aqtJM4iTOla9OGaiV65g6grN2QpGRzuW28CfmkZStLmJsxPn0smlQVFRogihKiieT1hrEEUR2tyEO2i6SFEEqoI7M4u1fABZkrAGesisXs7sL+7Fr9Twpov4lQqh7RDWG2gdbeiqgqSoGD3t2GOTNHeOoHSmUA0zTk5ZbxCJCIKA0IiQy3WCMETNplAsi6AeGw4YKvbwGIqqog90o1oGkqYihxFyPocXlNBa86iWSei46N3t6O2tRH5IWG+CJEitGMSZLiCCOC4ofdhyrN5O3MkZvOkC6bUryB+3Hr9YQVJlIttFEiLezVBkwnKVKBJI2QxBvYGWSRPaDkE1TsAa1uoIvxWtLY+pd8S7Mg0bc7CX1MpB/Jki3sQMqRUDeDNFgmoNJZvB3j1C6Z4HQZIxetqIbBdnZAJ3ehajsx3Z0LGW9aG15BB+gKQouDNFnNEpzP5uZF1D7+ygvnUXIgqRFAlJa0Xvaqf4m9/T3DGM1pIjd9Q69M42gkIp7kOuh1dtoJg6Q/4E2e6VlPQclcDEMC2sZokVKZehrgxyRkGS4xgbQZygM5NRmSo4bN/dAGLjvGkHKEqsxCZERC6rUa3FqmiaKmHoypxcc7xAoSqx7DvIaKpEPheLIRx9eJ7+HpNCyeOx7U0KRZ9KNSSXVumdEwTZtqNKsezHhqgq0WgGVOsBvhei7SNTr+uxIeIH0cKxdEqlp9Pg/oeKNJ14wcW2QxRVxlQUTEMjZQmKJZiccZCQMAwFz4/fB51tBrQZjE/FSoiOF2AaOqoSuwJKMvR1mTSdaCGhcKHsUa54CBHvMq0cSpNOqTwN07klSYyehD8r5nPvBEEc5DYfvyNJ0gGNHtu2ATDNg98ufXxm7ydiX3e4xAhKSEg4WFwvzvbeaATIskQ+p83ltBF4fkg2oxGEHpEdKzXF7xKIhETaUhFCQhKARKwANWfQaHPxMLouEc4tivtBRKHkYTvxqnMsp6vz0KYy9UYQlxvFmdcdN6BY9sjnYvECy5QoVQKiSEKSwdQkbDeWCguC2H1FCMjnNHJZPXZNs32qtThjva7JsVR2n8V0wQUk1qzM0LRDgjBiZNQmipoM9KUIgogdexo4ThgbW4aCokqUKh6NZkA+F8vaSpKE50fUGnHcUTatUirbqELQ0yrjRRLdAYwV40DvttlZQsfBqpRJGz6iXsHzAlRLi13BJJBMHbOnGyGDNzGLJEDvakfq7oylnh0XwiiWR46keIeiUgfAHOhFuB5BvYEzPkPkebgzBbSWHNn1q6jv0HDGJ1EMA8UykRQZq783jpOpNwgqdfyxIoHrxXNeZCQhYqNiLpYFJCRThSDCG56KXe4MEI6PrCoY3R3Ye8cRrodsGESeh9rTiWzqhHWbyLKQFQlj5QDZdavQWnNUN24lvawXe2QSr1jBGuzF6O4gqNapbdqB1pIltWoZjW27QQZkFdkykRvNWHggCAldB3vPKK5hoKQtJAFRFCJrGm4pzt9jrluNbBoomRRBrU7kemgdbbjTBdRshuwLV9HYuRd79yj17Xswl/ejtbVg9HTglyv4pSpBrY43W6Lt5S9EzWVRzDlDT5aIHBcRhQvKee70DF6hiJLJIIIINZ2i86QX0Rgeo7FzGMkyCV2Pxs69REEEsoRkGciuh57LYPW20db6/7P3Z0+WZelZN/jba897n3nweYgx56yqVE2qKoGQSg2SNf01IENcAs0/gCHdgBlmcIFhBhdcYAZXGNNnBvREf03DByaBaE01pnKOzBg8Ijx89jMPe95r7b5YHl6RWVlVWVIlCNqfmwgP93PO9h3n7L2e9b7v71HMBo/JZAuVGtTLBctBSe6lmJ0W1s42QeDju4JlVGCaYJYFKkop8oJoIFGWSWulTiErlssCJfUaIYr1xgaAaRk06w6rfRffEywjyWyR02m5fOXzHYQpOD5NePv9GcNRRp4pHEeT2qSsePBwyekww3fNC6Kizs4ZjTOyQvHqiw1sx0SWGoCSXFSC86LC4Hvrpvmy4PA04e6DBbNFiWEYOo9nXpDlimZdkyYNUVFKTWWrKl256rRsXFfDFXzf5PFhxGKpzVySSTxXb2qEvsV0USCEge9ZvPScR5LIy9a6UkKeS5T6dFzPlem50v8wetpSpi76PT46r/NR01NVFY8ePeLBgwcopQjDkHa7TbvdptVqYdv2973GH9aI/DATlGXZD0VkX5mgK13p/380HGe8f2/BZJZTqYoKHdSZppLhJMf3TDodVxsXmVGWEtsyMT2dwF6r6R5/U+isEMc2sGyYTjOWc42pDXwLz9dY6STRs0EPHi7Z3vSphRaths3zN+s8ehKxjEqiuGQRlQSBSadl47kmo0lBXlTMFoUmriUGpmkgTL3oUZXu6fdcA8/Vc0H7BzFCGAjDoNOxSTPJN74z4ouvtdne9Dk5yzg+S7BMoc2cgEbdxjLh229OmM4K+h0HzzSpBSaGlJhpRL1YEEwlXjNA1loUTg3HNnA9C9c1cbseZ/dyirMznDzGRLAqXJ7zhjTP71KUc0TNwswTZOhjxnqWxQx8jDTHW+1j2BZOt4kwTVSWY9VDinmE0qUl7FYdq1FHRpHOxBG6HUw4NiLwkXlOfjrA217HW+vr/+xK4a/3qWRJ/OAJhmkSPncNe6WDv7NOsn+o28iWHk4YYFBRCYGgQhYS07SQSl5ije1WHQwTu+Zj+J6moA3HGIcnVEA+nlJRofIMp9PCsE1kmpIcnlCpCne1i7u5SjldIGwLZ3uNSlXM3/yA0WSG3W1jhT6qLKm/fAu73aCYzVne2UMlCcl0hioKKkOAZYCqkGlGuYwRUYxhW5ieq43XMiYvCtKTwUUVxqFcxsgk1aCHi3tkeHOH4PoWo9/+DqpS+FtrzN58H1WU+DubuOsrlLMF8eNDonuPMYRB549/iUrqKp3VqCHjlHw81fNI797TuPBqRqUUVVkwe/t98skcA4gfPKYY6CqXKiUqTpGyRMUppWOhkpRSGLhFzK4Jx+F1AtcktXJyJ8AdTynzgnznBhtrPq5jcPzWI4zJjBUzJSpNJokFjkctr3BW2pSlIkkltZpFnltERqlnXhS0mza+JxhOChaLAtsWmMLg7t4SzxMsl4rHBxFSVmyselzbCSllxd37C07ikrKs8ByTVsPCMASlVEzmOUcnCeNJTlUZ7B9GzBZ6w3i+KKgFFvceLnFcE8sUvHVnyr29JWurPjeuWUxnGefDjPG0QKqKwTAjyxWhL7AsveExn+f0Oh6m4GLu0GBrTcMQJtOcwNeUt1bTxvf0BoZla1JbnBR0Og71+vfIuMtJThCYHwp7/UnqyvRc6Y+8np2h+Sid7ak+2t6WZRlvv/02SZLwhS98AcuymM/nTCYT9vb2iOOYer1Oq9W6NEGWZX3oNX8SJuRZE2Sa5mVGUFVV32eCnkIRLMv62N/xSle60v8cWkYlb9+ZcT7IkLIizSUGEPomk0XJ6VmC7wkMDPpdH1VpslKW62FiAKUMXrhVJ0klwjAYTXKUgvFUt6i1Wg5RXGpEMhWDcY4sFW+8O+VslJGkil7HZW3V5cXbdfJC4bkmx6cx13frjMYpx2cZtmUwX+RkmaLTdnDdkiRRKFXheSaeYyIrPasQ+BauK1hb8akqmC9yhuNc7+r6JncfLAkCk+s7AUIYJInEtnUV67/+zoC378yZLQtcVzCe6nlJyoL+7AkqTrA8izI3MGSCmExIrTbN9XVu3a6RJIoNMSfMn5CcnSEbLYiWbI8PqOUzzEaAvDj/5XyJCD0M175sxTLrNaxaiOm7FJMZwvcIbl+jygvS0zsYlqBKcjAMDGHoSsF4plvNbAOZZsg41UbCd3H6F8P5SpEcn5GfDTW4oNNC5Tkyy5l/9x3czRW8lS7lMkUWJRQF4fM/hVHB/J27VDKmQoe4YpqYjoPdaqHyDJlkWLaN8BwqKYkfHl0O/SslkVFK/PAAALtRx2yGmLUAleQs339AenSGYZooVVHOFojQQwSaOqfKAtP3NLTAsuj9sS9ieh7Le4+Q+0eYgUclDNQy0XNEaMCE4bgYZYHKCpST6RmweUR6dIpZD3F6LTQTwqCYLjB9D3eliyoK0uMzpt95m/TknPxsRLmIKBfRxVyS1HM+52NkmhHe2CHZP2b0W9+m9vx1nF4Hu9UgfnjA7M075OdjrHYDy/dw2k2klER7++RnY0QtRE1mGEJgr3eo4oycMULZpIsIhMDbWQcpKaKYjRs9VMvh+FThdFokWBROHTmYYzgT1l7exp4McaozJu0mq+stDRc4K4hyyBdTUsPAtkMs08KyDNbXfDzHIAgsDo8TzgYZJ2cplmXQbTtsbQR4jollG8wXBVku2dkKNBQgr0gSyeqKh+cKnhxlrK96SKkoigrH0bNB7abDeJzxnTcnrK7oeZ9mwyFKJL2uy/XtkMm04M4Hc/zA5MGeNvK9joNtm9RrFp5rgRFzdp5imyBNKGVFeYGjni8KkiTmfCSwLUG37eK7gnpoc20n5Pa1GlEiL+lzWVYyHOYMRqlGbAc27aaNIQyKi6Dj527UMM1PZ/1zZXqu9EdaH5e984PMwFPTMxwOefvtt+l0Orz22muXhLeVlRVWVjQWM8syJpMJ0+mU+/fvk6Yp9XqdRqMB6JmhTyOX59nq1EdNUJqmlz/z1AQ9rQRdmaArXel/Hh2fJuw9ishLiWUJPNdEKRjNClRZEaeKrNBQAAyDOCpJMomSGmYgDMH2us/zt+pIBbeuhzi24IXbdd54e8oHewvaLQfbFpwPUs4GGRgVoa8XXFkqOT5JSDLJIi5p1ixefanJz32tzzvvzzkdJNi2iTD0QmU4zvEcQaftYFuCPEsvdm4t1lc9ZrOc/aOYes2g3/Vot2yOT1MMQ7DWdzk9z6nXHDbWfUaTnCeHMV98raMJbqrijXemBL5JkinGsxzP0ZXvKCoQxwdcK084crtkts9SWWSmwChLuosTbr5cY+P2FsV0Tu3efZbtBoXlYo1HNMox9aZFeVqQz5bYnRZIST4qMB0Xa2uNZP8YVZR4W6tUSpIen1FGMd7GCtnJkHI6x/QczNRDykovwpcRxkVIJlIhLBPT021qrddeJp9o4pkqS8rZguzkHDMMwBCoUmIIAyvwMVdXAEF6MiI9PqMYTZBRipIKt9cmuLaJjFOKRYRpmSgpqfJC0+JkiZxHlHFCGcUagFBVIAysRg2r5uOs9rXB8xz6X/8a8/fukZ0MsBohxkWGULT3BMMUeBtruJ0W7nofd6VLuYiI7j9m8e59ai9cRziOps+FAVa7qdHdeYRhVFSyoqoUGCaoEkyhkdqAu9IlPTojG00w9h4j7JtARbmIEa6Nv7uFSjJO/1+/zuQ777B87x4YguDmDk5LgxfSgxPKxRLT9xG+S/jcdbpf+wKm55DsH2OYArtZp1xEBNe2SA5OqC7Osd2sIZcJVZqhlKRSkirXdD6AKs0wXAsz8CmTFDP0EbaDIQSm6+Ct9qldX+fGYoIVVsTrG0jlslgUCGHRmp/SrO3SmY0pd30eGy1WG5CkitmsoBZaDLE5Ok9JPRthGvS6DqGvTcUXXmtT5BW/++0RpoCb1+us9l1ms5zhJKfTdpktS6KkxK9MWg0Hy1TMFyXtlsLzLTAEWVZRVZIs1xjtLJc6wDc0OT5NGE8LGnWTOJVsrQVsrPs0GzbLqOSNd6fMlwV5riu6RVnRaTnkpWI40W1zQkC34zKa5hRFhTAqslxiWQZJqlH5aSZRVUZeKp6/WaPbcuh0HLqGwWCUXVSqoNW2mS8LnRtWztje8Gk1bZJEsrUZsL766ZDb4Mr0XOmPsJ5Wd54akB+26H8603Pv3j329/d58cUX2dzc1LtJFxffZ+W6Lmtra6ytaW5/mqZMJhNGoxEAv/M7v0Oz2bysBDWbzSsTdKUrXeknogePI2aLgpW+C0Ac6+F804D5RZuZlHoWZTwtKCUIKgxh4NgmplGRFooolnz+M222NvzL506TkkVUIAyDemgyX5hsbfo0ajbTWU4p9cC0YRqcD1K6bYc0V9zdW/Dl1zq8+mKDbsfm4DhmGTtkuaTZ0AuS2SynLMGydO+9EAZxXPLkKCZJJIulxPNyxtOcNJOsr7hEsSIIng5nQ7ftcHQScz5MqYU1ZnO9+HnuVkPTpJYFea4wTYNWADUmmNtdhPSIk4JFkhM6Nt2+zbVanbYzYZFm9NWMlY6B8fIt8iQjeScle1eiioo8KzBEibBacBEOWsyXBNe2aH7xVYrJDLtRRy5jjXSuhfg7m1RFSbC7gcoyJt9884IqpyijGKMscNZ6eFtrUEFFhdVu4q6vEFzfppzNyc9HGpWc54C+R1mNGuV0rlvoXI/o3kMMx8Fb75OPJqgsJ3l0SHp0jrBM/O11bahmSyopKaNYG6q80PcPyyRPc6gUhmWTj6ZYtRC709TGynFw1/tY9Rpupw2l1O18pom/uUb8+JBiOsduNzEMgYwSFu8/RMUJ5XxJ9GAfTIEV+JRZRn4+1P+XSmFYJobwkVmqUdV2RVVWmDUXHIVhWdidJlVeko+nFIuI7GxEcG3zgvYmMWsBy/uPNOGtlDRefYHF3T2yswEYuu1t+t13seo1wtvXUXFM+wuvYoX6Pe+ur5CdDAhvXyMfjElPzvE2VjADj3wyJx9NSU8GCMdGRYmGIE2m2M0m3vY6chnrc+k6mIZB8wuvUKWlNkztJmWSkp2NME2Tlz+zi7FRJysNlHJQ0wJRVay94LEcpuSbTU4HBnFWXc7XpJnEDVwMleObitWtBt2Ow2RasIgk43HB1oY2ILeuh+xshZSl4vA4xvP0El0XPYyLvNoKxzZJEv0Z81yB7wlcV4cGKwWOA7YFeVFhWyb1usHuZoBpC8pcEQQmzbpG2T9+EjGZ5UhV0Wo6JEnJyXnCyVl6Oe+ziEriWDIgJ0klnmcipcHyohXWsgyyvMJ1Nantxm7I5ppPGFgMRjm10OTwWLez1kPBZJrz8vMN6jWb81HK/mFMLWzwmZdabKx52PanFwR/ZXqu9EdOTyszZVn+wHa2j0opxZMnT7Asi5/+6Z+mXq//WK/peR7r6+v0ej3Oz8/54he/yGw2Yzqdcnx8TFmWNJvNy5mger3+380EKaWIooh+v39lgq50pf8BNZrkGAbEiWQwyvQiXxjEiWQ2z8kzxfq6x/FpgufqiguA5wtkaWBZsFhkjC9yc7Jc4Tr6etRsOvQ7LqsrHtNZQV5WNOsWjw8SZouCLNOLnslUL2DeeW/GV77YYzorGE8LVnouN3Zr7GzqkMDFouTu3oLf+fYIpRRVZRAGJuoir+fug4hlXNJsuXTaNlLBfFYQxSUCg17PxfftCyqVluuaTGZ6MyqKpV7IOYK1FY/b2z6DcUa362LHCyojJXYbdB2bWmhzu27phZFjYihFfnKOWsa0iLDrPl7NgprFrFXDvLFFcnCKVQsQjo3VqGmCmarIByOE71J//jqGbVN/5TnSgxMm33yT1hdfxTAM5m/fo6oU+XCqCWxZTnhtE7vqIucLhGmST2bI2QKn3SQ/HTL51hvkg8kFwOCWxkFfhIw6nQbZcILwPexWg3w4JT8f49/cITsdgKoQvkuVm1itOuV0Tnp0hiolInChUppWZpuQ5ojAw6qHeuEuoZjPcU0Ds9fSGTAG1F68iUwykidHhM9dB8MgPxtgd9uYtQDhOFSqIjk4wd9cJZ/OMR0HTIPg1i6GpWebssWScjSmjCNNjK5AmBa4AuHayCRBJRlVkWGvbF3CBVScIXwXQwgM08Tb6NP83EsI39MGcDbHCgPSw1OcXgvh2njzFfLRlPxkgFULNDkuyykXC4Kb17Bbzcv3kum7qEJit5s0P/8y0f91n+x8hLBs0sMT5DLBXe9jt5tkx2eQZZSmhWEKVJLrc1BKHU7qOfT/xE9TTOYEOxtk4ynpyTnuSg9hW+SjCZyPsJp13JUukgx3cwW/5rBQFX4o2GjDw3NtgttNm0dHKefzCktUuJ5By1fkywTftVlZ8RmOc3xfgKFzfIBLctnl597V/x74eubPtgzQVHdqoYVtGViWYHMtYHPNI80UT45jPFeQJJJuxyUMNR4+yyVng4xu22E4yVksS9othzRR5JkkThVRVKAqg+VSAweqSgenClFRCyzqNYvRpMBxBPXQopQV9dBiZ8vHsgSffbnJZFrQ7Tgs45IHjyLOzlOaDYssN+i0XHa3AzzPZHvT5/g0YXPNZ3c7+DQvu8CV6bnSHzH9OO1sT3V2dsZgMKBer/PlL3/5Q5k6P66evpbnedRqNTY3N6mqijiOmUwmTCYTnjx5QlVVl1WgdrtNrVb7VEzHx5mgxWLBO++8w9e+9jXSNL1Edj8LRrgyQVe60h9dmUIbnkVU6kT1hg0VREmJZenwQ1VWeI5FoyYQF0Q1KghbFq4tMITB+TDjW78/Znsz4JUXGoSBRa/jUqtZzJd6nsdAk93OBylFofA9Qb/r4nsWriuZzgoeH0a64pPJy2O0LIFlCQLfot9z6XYc3nh3xslpiuEKJvOCs2FGmiqaDQd1MaQdBjb1uokhNCFuY9VjsSwIg+9dl/NcsVyWeof5AnldzhakJ+cEh2MYVZzvlXTTAf7jB7iej+GFlH6L2soGlq2fK45z4mXJ5qpPM7Uph8/AbIRBMV+CYeCsdMnPRnpWUwj8zTXkRduZ22nR/PzLGIZBvHeAt7GCv73O4L98g/RsgLD0YlcEHnIRkY9n2O0WMiuIHu5j1kLsTosiSoj3D6EsyQZj4seH1F+8ibe5ihUGIATFdI5VC5FxxvLeY5L9Y7LBmDLPKedLPY8T++RnI00joyKbzUEp/JqvaWkX5sHf3QSlKBcRKi9QsgSpqy/1V1/A6bR01Wj/CJnl+Nvr2I2Q+ks3iWxBdj5B5Rmmben5nFJRziPMegh2hbPSw99cIz041tlD5yPS0xEqKVFFftEeVyJsD7Oms4uysxEV4LYaICVGr4NdD8nGU/1efvV5as9dp/2V13C6bfLxlNl338VwHFSaYzdqIIT+3TCIH+6zeO8BlSypCom7vkrt+esXc2rPqFIYpkn9ledpH59z9r/9BmWRYxgCw3WgQucTpRmoisZLtzSkolXD6bYAUEWJu9K9yA0qaHz2xYsQ14TFOx8gnpLpTJNiMid+eIDVqNH+6ucvqkINitGUa2t9DBTHU4iVSW56pFlCNx/hng9xxymeJQjXOvjNHYaiyeFJykrXI05KDTGwNJ1xsijwPBPXE1gm1GsWcSyZzvQssGMblAX4rklR6ApukkqOT3WlplK6KlQPTKK4pFG3cB2TxVJncE3mJYFvEsWSTsvh/QczHNuAwCbPFeNSb6YUUiEL6HVMKgSeZ2KaOZYlWOl7UMHmuke9bnM+zHj0JLoIT5Xcvl6n13GQZUW/6xCGFo26Ju7FiQYwWLZgGZc/4avsx+vK9Fzpj4w+mr3zoxbtUkru3r3L8fExrVaLTqfzhzI8z+pZKIJhGIRhSBiGbG1t6UTy5fJyJujRo0cYhvEhExSG4admgp6eG8uyLqtAUkqklD8QkX1lgq50pT866ndd3r4zxzCg3rGRUrFYlswuqh+2YxAnimbDptWykSVEkR7u77QdAs9itigwBXQ7DufDjLsPFrz2agvfM3n+Zp337s4vU9uTLGMZlziWQaPhXO4cA9RrJvN5jnNBi/o4CWFw+0adD+7PmUxzokQyn2twQqfrYJsas5umklbDxkDQqOvh5Mkspx5atJoORaEDDx/sLVlf80hSiWnC7GSMGh3hlgm1Wsi1YMn0wT3yyYIsljRtyUoThBxQDhUzcwdMgRMt2Lrd56XPr1MeKMZPji8hNHazQTEYY7XqmIFHOZlTpTkyTvQMTqsBWU5FpRf8iwhnpYO/s0F2OkDOlpihj0ozhOvowfkK8umcchHrhbcwMRwH07IRgUs5XZC5DnY9ZHn/MUvbwgpD8sEEd72Hu75ClRfEDx4jMZBZRlUUpI+1MamyHMM0cVc64LlkT04QVoGBnr8xfA8jzjBdF6sW6DkeKgzXRkiB5XsYlkU5WxLsbGC0GmRnA8r5EplmVFJh+h71V1/Any+RUYzVqBHvX5w3VeFtrCJ8FzPwdbvY0TmeYeCu9CiWCdlwjMhLqlKCNHX1T0pU+hTyIEiPzzADj6DT0scHdL76eWq3dglu7tL83EsApGdDhG1qc25ezDtZBuV8SVUUGKZJVZQI30EZBbWbO5jOh6mr5TLCDDycTpNiNKEYTy/es+IC6uBSLpbYtQDD6KKkInzhJsnePjLNcFd6UKlLXHd+NsJd7ZCNJsTffpP5m3dYPniM3ajjba7irvYwbAs5m1P5LoapTWh4Y4fx8TlqGbElClpuztI08VYC2ufH9MIhS6fJwvAJAxM3nlC+OaRo7MC1G/TaNnuPIw6PE8JAV2/yi2DToqjY3gwwTb0h8hQxf3qeUVVw62aNyaTg8CjmgwclUaRnBTtth/UVF1nBYpFj23rmzjQN4lTj4mWpCAIL3xd4roWqKmyroqKiLCsqpQh8k8oG37dQlUEUS7Jc09dOzhJ816RRtxiOc4pCEQYWlin0TOEwYzLNcV2DrU1dyVksS07PU2bznFJCnJTE6z4v3K7Tbn46oaRPdWV6rvTfXc9m7+gy6o9eoEdRxJtvvokQgq9+9as8fPjwJ3IsnzSbp16vU6/X2dnZQSl1aYJGoxF7e3uYpnlpgNrtNr7v/8RMx0cN2VOT8/R7H2eCnlLhnv75Udz3la50pf922t0KsCxQFZycJaSZ0pWfeY7jCPxAI2cNQ2CbAs81iOIC0zSwTH19lLJCGALHNul1TAYjnQLfbjpsrPk4juDRQcxwnHF6ntJuWAhT0Kxbl5/9NJN0Ww6yAil1O84PUlEoklTRbdt0Ow77VJhxiWVps6SPUZIkEk1WrpjMCtpNHa5o2wZ7jyMe7euq0o3dENMSzCYJyzsPmEh47qUepqEIpw/wmzDtbVMcHrHZKFjZbWA6NunZGKuZIWo1zMik/8dfxAtcivU+WILx7/0+dqepR4hMk/R0hFFVGjXdbaHygnIZEWyu4V/boPfzX6V2+xqG6zD95pukx2ekpyPcjRXih08oowTTc6ECu9vWC968BCURnoewTIRn4+2sUwymxPef4PTberj8ZIB1O8C/sYO/uYJwHeZvvY+3s0lycEIxXaLKEsOxMaqKMsswHQfDcxGlxO7UccwWVWXgba5gN+ss7z7SJiNONWGtpols5WSOYZpYYUA+GF8CCspljLPaR8Up2XCMt9q7MIV17GYdMwxIjwcYptDmodcGoExSorsPMesBwY1t/TzdFk6zRjmPkVWKVWsg8xxVlLoKVYHKCrLBGCsMUHmJ2+/Q+vJnaX7pVYqzCf7m6uV7yvQ9VCGxaiFWq04xXaDygvToFOHY2M0Gdq+FSnLSkzPm796n/bXXMC/iJmSakZ0Oqb98G6tZZ/hfvkGVF3T/+BeZfvst0sMEMwiw6jX9u+9s4K/1kEmGqIVkx+cs3ruHFYa4G32qLMdZ7YFtM/vOO1RKYjXqtH/6NZKHByzeu0dycEJ4+xqNz74AhiA5PCXY3SS4vsXy/iOG//kblLMFhuMgihIv86hFFb3P36TfX2E+L5guCvIiRGQJzuiUcm2NWq3Bres1zgcpUVSSF4q8UMznBc2GxfVrIbN5yf5BTOCbGhDQtlEKaoGF7Qju7y24/2iJEDp8+Oa1kNW+h2HAgayYzkrKMmEyzQkDvXHSbtrcvlHn8Dih07SJE8m8KDEF1AKTMLBY6bsUucKyBIuo5HyYkeUSKgPXFfR6LueDlOmi4OXnmwS+0Fk7UrfeZqlkOM3Z3gjAMNh7tCTNdA6ZaUKeScqy4q33Znz25eananyuTM+V/rtKKUVZlj9WO9vR0RF37txhe3ub55577vIxT/N7Pqqnz5ekkvNBxnReYtuCfteh17E/9HpSVUSxbhup1SBJNALS8wSdlv2xGEUhBI1Gg0ajwe7uLkqpSzz22dkZ9+/fx7Ks7zNBn4Z+kAkqy5KiKC6//9T8PDVCVyboSlf6b6d+x2Vzzef0PCUuFcKAZsPEMCyEYRCGFouFztqJk5IwsIgTiXsx4JvlJVkmabd1tgeGQTHJiRNJ+2Lcoddx6XVcmnWL//03zsgLSV5URLHEczX62rEMHMdkMs1oXdMmRMqKwShj/zDm+DQhiiXNpk2naXN0mtCoWRyfZiRpSZYpskxhCj2TAHp+SJPnDFpNh17HJc0kp4OUJwcR62s+N3drCGEwmeRM986wR6cswzWenJXUywXW2QzZaOF5Ntu329RljEoy5GyBjGOqDz6g9YVXqX/pVWq3ryGznMV795HLhHwwInl0SJmkJI+PKJcRdqOm249OhwjPofbCDVpf/CzyAmbgrvYACG5s63yXOMFd71GMp5rulqSoLNeZLkqiZIlVCxHCRGUphutQDKeaqlYpRBhgBh7CcVDLBLFmQAXzN96nGE+wmnWEa2M6FoZyUFmqI+0Bq1vDqgUkByc4vTaGaercnTSj8j2qstQEsgq8jVVUXmK1m6RFicoKZJaTnQ3Izoe46yt6hmkZUaQpdquBME3sThNDCFRRUi6WNF59njJKWL53HwNDv58WS4TrUHvhFmCgkpRgZ5306JRiOMEAyjTFDDzdr1mUKN9BVOC0m1jNGsKyEKGH0+tQnI3xdzbwnjE93loPM/CQUUyws8nk9C3ix4f6OB2LMs8xhMBd61F78QbxowPmb9zBW+2RTxeU8wXC98gGY87+w28y/eZbGrHtOjgrPezRFMMUCMfG21rD7bZpfflzlNMF8w/2sFsNas9fxww83H4Pb71PJQTz338Xb6NPPpxQlSUyTsAwsFpNqjSjXESkx+c4Kz3y8xGqLCkmc+QiJri2QaVApSkyzWg/Oic+PGLhV9RfULQ6bVrNACkhywMG745ZtVJWeh5Vpalp42nOMtKV39s3Q9ZWPIbDnCLP2FzzCAJNYTw7S8nLiu2NAMsWhIHNqy+2qFTF3YcLklRe4sFXVzxOThPm84L5oqRes2iEFlEsOTlLODyOiVOFbRnYtkEcVxeBqQ6mJUhTRd0TxEmFbRl4no0sK0xDXzMqw8CxBXlesn9QYgqDc5FjmgZFKRmOc775+ohexyXLFd2OSxQVPDnKMAzIS8mDh0tMAT/z5d6nth65Mj1X+u+iZ7N3nrYj/Kg3eVmW3Llzh8FgwOc+9zn6/f7l9z7uscuoZDYvKYoSKsmT45TprMR1TUqpOD5N2Vh1WVv1CDxBliu+8+aM77zr8MH+GUUJva7DzqaLEIKVrssLt0M894cDDIQQtFotWq0W169fR0p5aYJOTk64e/curut+yAS5rvtjnb9PekH4cUzQ05ygp+1wV7rSlT4dNZs2t2/WOTlNcRwTzxNQgUAglc7PkbICBMIwmC1KFssSzxOcnMUsFrqNrFm3LoaeK6jg464Kt67VeOm5Jd96Y4ppGJSFYhiVuK6e15kvMpaRZDjK+c3fOScvFNNZwXSmW+OEASfnKaaoOBtkTGc5UaRwLBO3oecDHE9Q5Iq8AMcVdLo2YPD5V1tsb/osliXv3Z1z81qd67sBRVHx4NGS2azAm0W4QmGWGSJaULNiwlARrNk0fAMz91C5Sf3V53Ruy2ROVVV0f/bLuKtdivGUyXffIXrwRLdPXd8i2T9m9tYd7F4LqxZQe/EWZugBFVVeYroexXCCt7WKu9q9PFf+zgbe9jqLOw+wmzXsdhMlS/KjMaZjgSkoxnOd6+PYpLM55TIhH04RjoXVamC6LgYKlZd4G2tUSgIaCiCTFLtdx+l3cTbXsHyffDIjfnSAUSqEKTAc68JglWBAMZ0jl7G+VtsWpuuSHBxjWBaq3dQkNi5IaY0aVV7oYNDAo/7iLaqiJD05JzsfoQpJvlhgBT7CdRCOQ7C7Se/nvoLhOpz83/53ivEUd7VHGcXEjw6pyoJ8HKPyktrLzzF/7x6qULqVzTExAx85nKCKAq/fxWqEhDd3MIRAxgn5YMr022+y/Rf/HO2f/hzC+d4uvt1pUXvpFvM37mA4NqbvIpMUVZRQlNjdFk6vTXhrF6fXoaoqzMDX81VnI6xagLu+SrJ/yOSbb5OentP83ItYtZAySnRoaqwx1CrJiGb7uOt6Zivc2aT105+j8fJtsrMh0cMnRPces9zbJx+Mab72EkoqstMBlaqw23XsdpNiPMUKfFRREt19hOm7F/Ng+5RxQnjrOjJJSY7PKeYLHJVR9w3mJyOMosDrt7Bu3CCzA84mClEP6DqZPiFlSSBjghqYKx7zTFeEb12rs1hOWO379HvuxYyfZDDMkJli/zBmc80jLxWNmo1hwPqqz+lZSrNu0249bS1N6TQd/vhXeuxuBSSZ4v17c958d06aSzpNG88VTGYFCqgMxZPjhNW+i+eZ9Lsutmvy0vO2zgCrQJiCNNdVqSCwOB3kNOs22zs+QWAjZcVsAZWq2D9MeHKU0G07zOaFbtMzjYuMIb1m++4bU1Z6Hs/f+vFgVJ9UV6bnSv/N9VFYwScxPPP5nLfeegvXdfna176G532Y4/7RSs/RScr9h0viRKEqyWCUUhbw6ss1TMNgMMp55/0lv/WtKTubLusrLuNJwWCUUykolGI6U4zHOVJWXNvy2D+MCUPB7evhj/X7PtvqBtq8zWYzJpMJBwcH3LlzhyAIPjQT5DifTnn3k5qgZ6tAVyboSlf6yUoIg40Vj8A3WV/1MC0NHBCmrjKfDzVdSSqQVMzmma7U5IrAt2g2bTbWPM4GOaapq9CeZ9Kof7g9LU4kj54sSXOwTYOsVKyuujTqOhDw7oMlTw5THNtgMs85HyRMZgW2I2g3dUCiELqV7nyo50eOTnO6LZsKA88VlKUOSiykwjRhMinIsopXX2zwwu06jbrN+iqcDTJKqStAe0c6Gb7TcTGlh+la1H2LZgBEOTUb2jV9LSpjiWGZ2K0GbrdN3pgCBjJJGf7nb5A8OWL2xvsYrkP04LEe7l9G5Gdj3F6bYrqgmExwetcxA5+qlMSPDrCaIc3XXkbY3ztnpufS//pXSPYPSY/PSQ9OsdstTN/DqtcplktkklMVpV6cxxnkkryIEEpSJpk2FL6Lv72OVQ8oFhF2s04xHBNc26KYzLDqIYsP9jTJzXNxV3pUUpGPJhjDCVajDkKQ7B8hbAer3SSbzCmTBKtVxxh6lMMx2bhGWAsxbBsz9LXZadaxO01kkpGdj7TxGE3BMFi+/4Dl+w+wagHhCzepv3QbMwwwAx+71WD1//hzTL75Bvl4RnZ0RnT/MfFDk0oq/GubFNMZxTLBbNZQcYIwDIRlgwLDcTBMgdNq4m2sYrcayDih3Iwo50u8rXWs2ofvnYZhUH/pFsnROdNvvs78zp5uo2s18G/t0PzCZ3BXe+TnQx1aenxGpSpiz9XVn5efQy4j4oeHmtFsGGTDKe5qHzMMSB4dkByd4fTamJ6LUorFW+8T3X/Eyv/hZwhv7pA8OWbyzTeRcaIrYIaBynLm79xFuC7FMsLtdzDMi+WyaaKKEr/TYnF4plv68oLo4QHFZEr65Jh8OCF6+ATDtjBsm2bTxhSColEnHi9heRdnZ5OeG5CiqyvJkyOSg1PkMoaq0q1/vT5qZZWTs4TZvGRjzbtcK0lZoZSeD5zOC5oNG9PQ/+44gs01nyzTFcHZrLj4/MKLzzcu28x8z2Rr3efgMKaUksEwpVBQ5hVCVIShTVYVnJ2ntNsupawQaHhCt+1xYzfEdfXcznt350QXuP3VvqcNT6l4fBBxOshYLDXtDaUzfiaznG7buQhc1euLMLA4Pk15/96C1b5H64e02/5BdWV6rvTfVD9O9g7oRfmTJ0+4d+8e169f5+bNmx/7mKc5PQDzRcm9h0sMYLVvs4jgwcOSUsJiIckyye+/u2SxKDCEwXIpub+MODzJ2N5wMQyYjEuKEpJMsvc4RhgGpgkPHsfsbvk4fwiOvGVZdLtdul29w1iWJdPplMlkwv7+Pu+99x5hGF4aoFarhf3MjfnZmZ4/rH6QCSqKgjzXhJiPQhGuTNCVrvSHV6/j0Ou6FIWiLPVCpSgrfM/k+k6AYwsWy5Jex8VzBL2OSxRL6nWL7Q2fwLdJM8mTo5g4dvjsKy1qoUUUl4zGOaNJxsP9iCyr2Nzw+Nxn2jx6EjGd5SwWBe/dLTk9S2m1HG5cC2k1be4/isgyxWxZ4HvmxbXGwDQNmg0bf2RRqZyyVCgM5ssSywLbAaPUWSFRKnnphQY/8+Xeh0yY75sMxzmLi7adZsPWONxGi8rzMaIlwfoKStRYjk0aywjhe6THetEaPdjHDEPUcom7scr0229hoI1KJSXRg0dkB6dYvodZDynnEUpKZJIhswx/pwDTRJiC8PYu3voq3vrK9/2/OL0O/V/8WU7+H/8RO0qpf+4FitGM6OETyukCqDBMQX4+1iQ1z8Z82vaWZijbIj8fUXv+JqooseshVqdJJSX+9hrR3j7RoycUwwnCEri9Fk67fgEP8HD6XZAl6dEZGIL6517ACnySg2Py8wlVNcK0TYxeG7ffJnz+up6fubHN8oOHCMehjFOqoqRSOgS0nC31MU/nuuUuz6k+2Luo+NjIZUTnZ76Av71OBZz9b79OPp6CKbA7Tdy1FVSScP7//i9kR2eaYgbgOQjXxnBs/JUOhmUCFcKyMH0P0/dwui3m79ylmMy+71xXVcXi3XvkZwPqLz2H3W0T33+M3W2jkoxiNkdlKcnDQ4TnYoU+qoIqTskHE0a//V3S41Oie48RrkMxnupKTOhj+h6GZeJu9HHaLYrxDKfbJLixrTNcfd1ONnvzDpWUBNe3AHQ1ZzLD7jSJ7u+DIZBxinBsbXykxLgg+lmdBhgG5TJiefch5WyJ3W2ST3SrI3AJkPCaNfq7fWTDJ7n3EN+JWPpt8nObaTHFDjy89T5Or3XxmjHTu0+oxSmj2k1c98PrJdM0MC0DqaqLPEJFvW4zmRZ0HAcpdcX4uRs1DAMWUcEL3RrXd0LEM236VQX9votUivRiZge7oh46eh4n16as1bA5PkuxLIMb10I2Vn0qKh48XjKflVQVnA9T8kK35Gapyf1HS+7tRSRpSakqbNNASihkhW2bdFoOz9ani1LRqJkUUnE2SK9Mz5X+x9UfJHunKAreffddptMpn//85+l0Oj/wZ5+t9ExmBUmiaNRN7j+Kmc1zRpOCNFXsBSZSKfJcstJzWCw18/5smDOd56iqYjQ0SYsMYRjYloFAUgtNlpHk5Cy7CAd75jhLxXRWUhQKzzVpNq0fSEH6OFmWRa/Xo9fTfeV5nl+aoL29PeI4pl6vX1aCflKEuo/TjzJBV5WgK13pJ6MgsNjdDi4AAZLkop++vaMNyDLS15Sd7YC795esrrhMZwUnpylxLEnTHKUqorhkd9Pn1vUaRycJ9/YWLCLJdJrz5Dim03KwbIPdrYAXb9e5/3DBO+/POTlN6LQcaoHFaJKTZgoDcD3BPCqZzYsLzK2uOvueie/qFHnHNul2dM5HkVd4noGSFZYl8D2TtRWPoqwoZYV1scBaX/U4PU+JSomsKmzr4prh+8TdDZzZPdwioqqFZK0eyckT0uNThCEwfY/4wT7FZI7ZrFMmGe5KF29zlfm790ieHKGSDG9jRee5JCnFbEa5jBCeQ3YWY1gmwfVtGq++gBV4mDVNkqqqiux0QHKxQ2/YFv7GKk6/QzGaUgwn5POIfDihnC1BAEJQKaVnViyLMsupSkWFDv6sgOTgCKsREtzYocpyrNUe/rUtML7F8oOHeh6nKCnTDAMDy3NxXryFd30LioJymaCKAjlfkO4fU1FhNuvI6RzhuDgrPVSaY7UatL/wKoYQlPMly7uPEJZFpRSGbVNMZ5iuQxnFWK6D0+8gXBeVZSzf38Nd75EJk3hvn+ZPvYJKUszAZ/XP/SLJwwOS/UMwKvLJjHy+pMxyjCzFajXxVvogwKoHmLUQLmBEVuN7FR2VFRjCRHxMC3cxnrJ4/yFuv4NVD7FCn2I8Q7gOhmEw/cYbyCjRoa+9FqgKMwzAc6mkYvRb30bFqSbAYWDYNvlgxOQbbxDc2MJuNTHiGJSi8epz1F95DqfbRiYp+WBEdPch+WhKsLt5eUxOv02yf0iltLk1HRu336YYzZB5odvlaiF2PaD+/E2sWkA2GFOMZpihRzFdkhycIjwXu1FDZgXZ+YBiPCO+t4dVD7EFWL5D0ylpr7SZzGLaeYa31se4uL+LIKCoO9ROH1GEFlV/8+JerMlqji1oN23OBtnl3M7KBVDg3t6cybTEsTWspKoqFsuStRWXxTJnOitYRhLT1KZpPi+Yzkt8X7+255qUpaIsFY4lqADHFjiOnvWRUiFMuP8wYrksaTZsajWT0Uhnh40nOaNxxuODmGWszbdpClRVkZeS0zNFrWZRC0xW+h5hYF0eY7/r0mrajKffHyr/k9CV6bnSp64/SPbOZDLhrbfeol6v87Wvfe1Htns9W+lRqqKUiieHOcu4pFG3WVuRPHik+0k1TtFgEZXMF5KilMyXBeNJyWisczOEqDDNirI0iBKIYoUhwEBjJANPXxwWy5K37yw4PEkpiuoijdjnlRfql2GBP64cx2FlZYWVFb0LmWXZJR77/v37JEmCYRjs7e3RbrdpNpufmhH6OBP0tFpXFMXlzzxrgp7S4a50pSv9YNVCi7W+x+PDiN3tEPHMRomUFVFUcvtGnaoCxxG4jslq36TVsJktNMhAmLr1rNd1mS8K3rs3xzQN1ldcJtOctRUP3zM5H2YIoV8zLypW+x6zeUm/52mUdCkZjrWZKmXFclkiZYXnCno9ReibWJagXrNYkR5SVbRbDrW6TRQVTCcFXDx/u+2SZYrX356wsxHw4nN1LEuw2nPZXPd5586MJJFIVelWpURS9LbY7Ti4yzPikxOQJcV0ThWl2Ntren6lKDA8l+z4nOV792l96TOoXJPCqlJnfJieh4oTitEU4erQzXIyR3guVV6SHZ4zjfXgdO/nv0qxWJI8PmT+1gdUSulKwlKSHpwikxSrUaOYLUBJPT80nOhQSENgei5Wu4kBKFmiVIWwxCW+OX58RO8Xfgan1yY/GxLe3KGYzMnOR1R5weKDh6hIZ+w43Tb+9jrOWo9k74AyinFWumSn5+Sjmc7iKUqqotStdi0b0/coSVi+fRe7XkO4FqIW4K33cbfWdRAnFTKKkVFCVSkMy0bYNoZtIagwLMHy/hN6f2yF+PER4Yu3iB8e6Ha3wMN68QbCsRn/3uvEe08o5wtIM6x2XYMMpnMM18IQgmI0Rngu3vbapcHRhvIcZ6VDsLvxfZ+B9GSASlOsTX2vM+shwe4G02+/pYNbB2OUkgjPZfHeA7ytNUQ9xJCK+PEhcrFEOA5WLdRterVA3//nc6L7jwlfuEkVp/j9Lo3PvniZyXNpVKYLDAOMZ4Jz7WYdf3ud+NEhGAaVLHH6PQzLJt4/0mGpjo1SkujxIfVawPi3v0u5WBA91Bjs6oLIB8bl+bHX+hSjqTZxNZ8qzanf3OZ64fPeXckME07GNBo1stJg8GiIP3hCdfAO5Td+l3HnFsOXPkO8tgOWhe+Z1AILzxWcnqVsrnlMpgWDUcajw5gk0mTFk/OMfteh3XJ4//6Co5OUet3Ccy2yXDEcZXzwYEFZVqw5Hhh6jTZb5HpO0KioKoPhKKfbc8gLyclZShwrZouC1b5LUeqg4hu7AUFoMpsVnJylzBcFpdItrWZVIZVeQ2W5Qs5KHCdjbZwhy4q8VJcbJlkmMT+lfdQr03OlT1VKKY6OjnAch2az+Yna2R49esTe3h63b99md3f3E2Okn5qeWmgSJSUng4x2y0YpRb1m0mzapKliMi9QUjFbaCykHEEcK7L86UGAZVXEKZhmhbAM9vYjnr8Z0m3bmm6DJr29+c6cd+4u9M07rcjzioOjBMuEz77c/AFH++PJdV3W1tZYW1sDYDAYcOfOHbIs4/333yfPc5rN5mUlqNlsfmqVl6fQg6d61gQ9rQQJIT6WDnelK13pw7pxLWQZl5ycJoShjeMYZJkiiiXrKz7XtgMOTxKU+l5Lq+uarDyTs3M+zPBcwfFpwmJRUAt1QOBiWRDWLCxL0KhbjEYZk1lxETqq23XLi2BQyxQoCeNpgW3rTZ80LTk+Szk9z6jXbHzfpB5adFo2vmdybTugwuD4NCH0bRoNTYK6ea3GSs8lyyWPD2NqNYvrOyGWJXj5+QZUFb/1zSHDUYbjCMLAZGerSa/Tp0pvMn3rIe2j9zEMcDdXUVlOdj7CsC3sTgPT6ZGPJuTDCcVkTjGdYzYblMdnVEoik1wv7C2LYjihUhJnvY/peRiWIHn4BGyb4f/32+TjCcV0Sf2lm7j973USVEqRHp+xeO8e9Vd0oOby/mOWHzy8aJ1boIoSYVtQlDjtJqUVgWnqRbFlgoJk/xA79Km/fBtMk+FvfoP8bERwaxeUIj0ZkJ0OL7Ne1CJC34BM7FpApRTZ2RBRliAE1kXuTVVVmI5D7cWbpPsnRA/3cZpNjMrA9H3K0RRVSsrZhcmSkjKKses1KgMMpUEEZhiglhEyy3VOTpohk1QjukGHoG6vIVwbq1HH6bY1ovkCVFDOFuTTmTZjnqcX9009y/P09VUp6f3MF3C67e97/8s0Q1gmMk4opgsqpTTYyLIwfRcskyrOseoh/rUNTctbRsg4JTs50+ffgGIR6fkZy8Jp1jBXOrotst2ETpvw1jVknJAWBXargSEEwhQI16aSH24XN4QgvH0N4Xm69U6YRI8PEJal58rW+li1ALlYkh6fUUymyDjF7nVQeUl2+pCqUjCPYBWodDZSuLtJdj4EYeKu9Wh/6bP417cQ9x+TB3POi5DRcULs1BDxktr991iVE7zQ5lS0OZwL5O+8SfuFGe7nXyOOJbN5gUHF1qZPlJS88e6MPFO0azbdlkMYmpR5RYW+d8exRJbVZXUF0GCSWF62sJWlwqgqirwiSUscR9BpOmDo2aAoLlku9SyfYRjM5vqastJzWV/x2JxkfOfNCcenClVpsN/TypGSFaZpUMqKOFWcniVYwqDX1Y+9sRMQBiazecGt6z8e3OmT6sr0XOlT0dN2tqIoODg4oNvt0mq1fuhjsizj7bffJkkSvvSlL9FsfnLT8KzpcWxBtCx5cpAwGudYJjgO3NgOsG2Dw5OM49OEZVQipUFRSJIMnnIQstzg6RrDMnU3Q5op5suS7Q2PWqgXHLN5wd1HEVEkGU8L4kRRVVAUkjSreO5GiO//5D9ijuNgmiYvvfQSVVWRJMllJej4+JiyLGk2m5czQfV6/b+LCRqPxwyHQ27evPl9dLgrE3Sln4R+67d+i7//9/8+r7/+OicnJ/zbf/tv+TN/5s9cfv8v/aW/xD//5//8Q4/58pe/zDe/+c3Lr7Ms49d+7df4V//qX5EkCV//+tf5R//oH7G1tfWpH38YWHz25RYnZwnHpyl5rhPQb+yGbKx6uK7ue7dMndOTZRXzRUGcSpTSrWNpKul3bL71+xMODhOiRKKqiixVdNqaEue5JsNRjlKStVWPKBLYlqAs9Wc2zxVprvAcA9sRzBcVSoLrWjiWQZaVgP5sN+sBt2/WiCJJUSomswIMjfdfX/Xoth2U0s85W+T83neGFIVkte/TqFt87pUWVQX3Hi7pdR2adQfTNFCqYjzOMMfnOCcHyPkC6jWqsiTZ2wcFrS995mIo3aNSCnelS/zwCU6vS+nNKCYzysUSw3WoqKBSCMemKkry6RxkCaWi+dPPY/oeyf4xxWyB3Qiwmg1NaEMvfO1eC5UVlLOFrhAYugpQzpeAqU1CkoIptNlwXaxGiLezQX50hr3awcAgfO46/q1dzv7tr5McngAV+WBMJZVue7swUeUywt1axWw2iB7sY5gmcrEkPx1qg2UJVJZRCYGRZhjXt6nyguTgiOTomOZnXsRu1rGaNW3Y3r6rW76LAsMyMR1b5/ZMFgjXxl3rg4GuWsQpot1A+B5m6FOMptjtBgCyKCguZlWsICQbTSjORzi9NlazhtWskY+nBLtboBSGEPr3o8JuNmj81Eu0v/RZ4seHZMMJKIXTbeNtrCAcm+WDfco33iM9OqOME2SUIGyL9pc+C6aJjBJqL97UbYRRQnL3oW5Ne/AEw7WxwhCoiB8vdKVpfQV3c4V8NCHZP8Zd75McHJMdnVJVusojAp/6izcIb+2S7B9RzpdYjdrl59IwTfyddWSa0f36V4gf7DN7/V2c1R7CMilnczAt3I0VivGUChC2hX9tg3IZIYuS9MkxxWSKt71OFScUiyXlMsawbYLrW/gXLXXFdIH3+D47rkMnKrHEKfmDPcK6T3Bji3gaMfY26dRbFKMx5Z0PMDpdjK1tilxRAT//xzrc31sS+hZbGw7jcUatZiMu7rOzec7hcUyv45BkioMj3fY6neUcnSV02zZJolhEJUrBdFaQpCWmaRB4JpYtyEvFcqkQAs6GGb5rsrvls7sV0Go6eBfdL7YjWOkn3Lk3R11UeZK0BMPAcQSGAWl6sVYqwTTBczWN7uA4JoolK32X1d6V6bnS/yD6uOydHzV8PxwOefvtt+l0Orz22mtY1g9/a5al3g0VwiAMzEvTI2XFg8cRQWCxue5hiIoiV2BUhDWTNJH0OhanA4OsqEgThZLw7GZPBQgDhECHAzomnZaF7wqdc5GUJLHi99+Zc/9hRJJKBIJ2Ux/zZAGPD2LevLPkK59v/dDfI04kZ4OM8aTEcQxWeg79rvOhVpcfJsMwCIKAIAjY3NQ9v3EcM5lMmEwmPHnyhKqqPkSGq9Vqn5rpeNYEFUXBZDL5vpmgjwMjXJmgK/1BFEURn/3sZ/nLf/kv88u//Msf+zO/+Iu/yD/9p//08uuPtsr+1b/6V/l3/+7f8a//9b+m2+3yq7/6q/zpP/2nef311z/V+bmnch3B+qrPat/DMsG2zQ/lgbWamrT2jdfHlzM8i2V5MYNjsL7m8p9/e8Dbd6YYQuC5AgOI4pLzcUpZVrzyYlO3ZV1grYWARt0iDDRyuiglSoHnmTwlYAehRZ6XZCkasOBb3Nyt4fsm2+sBhjDYe7hECNhc8+m0XRoXCO0nRzHnw0ybqUxivzen1Uy4sRNyYzfkxRs+1ckxZ99+zFkUYQQ1qtU1/HxJPzqGIkWZFna7iYwTXZHICxbv3af905/TmOTFEvP6tv57muJtrFAuIvLRFLtZw0BjpQ1hwEX2jLPaR1gm3moPGcXk8wh/Z530ZIiz0sfffAZsUErc1R5m4JMPRpTTBWY9RCYpRpYjPJdiusCq+Rieh+FYWI06lusittbofv0rYAjSkwHnv/67TL/1Blajjoxi0qMz7H6H2vVtbM/F9DRcIPrgIf7NHQzLJHlyjN1rY41n5GdDELbOKspy7FYdM/QvkNIlzvoa7sYqwjLJJzOowNnoU5xPkFJi1nRAZ1VKnTkDGK6DUVW6apFmBNe2sDyX8Po2o4NTikWEsEyqi51/o6pIT07Rb4+K9PicqtKLbqSi8X96nt7Xv0o5XZAPJ5ihT3hjGzPwmH77bdKTc13RApalwu63kUnG9PV3KcYzKiqEMMnHEx0gu4ipPX8Nb3uNfDgl3j8k3tunGM90FWke6XPueZi1kDyZUA4iqrygXMbILMOUEmFZeP0uhmNTlSXp0Sny+IzWF17B7XepPXed2RvvU0mlyXiGgUwy0tNz/O01uj/zBY3fvqhKqVLiba4ifJ/o3kP83U2SR0eU0wVOv4MZ+ri1ELsRkh6ekh2eUUk915Kfj7DaTU2Ak4pyOCU7HWBY2kS3+zUQObNojvJNyumcaRmQezXW6wZF0GaeLJDnR/jPX2dz3ScvFHGsc7BaTZui0BsRUSwxBIS+iesI4rhE9Fw21nzOBwnnQ3WBpNe5PJNZyXSa4/umDh41dM6WlLp1TQi9SbO+4jGZFziOfsyd+3NaDQfHFjTqNp2Ww7UtH9cxsewCJXWLvOsKhAFRrIlylglPl3lFCfFUQ0481+SV5/sEwadjT65Mz5V+YvpB2Ts/zPQopXjw4AH7+/u8+OKLbG5u/sgF8Nkg49GTmPmyxDSg3bKxDF3yny0KRuOCrXWPLFPMFyX9js35IOW3vjHGtgyyvGI4ySlzjXyUH3NoeQG2DRYVrqODTD3P5OAo5V//2xNOBznDUc7peY4sFatrDmVpIoSBQFNV9g9ivvi5BvO5ZBnrsK52yya4GBaMYsm7HyyYTAs8z0TOK07Ocq7vety6FvzA86DhAsblOX5WhmEQhiFhGLK1tUVVVSyXy8tK0KNHjzAM40MmKAzD/yYm6HszV4o8z8my7MoEXekPpV/6pV/il37pl37ozzxtD/04zWYz/sk/+Sf8y3/5L/mFX/gFAP7X//V/ZXt7m9/4jd/gT/2pP/UTP+anKmXFyVnC0XHCMpYYBnTbDlvrPr3u93Y5laooZIXvWZwNEs6HGb5v0m3rmQHLMvjg3pwoKem2Xbpt/dhG3eb4LOb+owVBaGlSklVxOkgJfJMXbjeYznKWsWQ8LYmiEkMY+L7J5kbA9oanjZVhIKVic93nuRsh9x5G/MffPOX6dkheKl2NajuXpKWjk4STs5RGzSYMKuJFRd/NUXHG++9nuBT4+3fpHR5Qa5jEoUsZz7HPxtjRFCFTyjBApbl2aaXUi6Zem+x8RHp0itUMMUBXadoN0pNzrM011GiC0+/gr69SRBHF0TlOt4m72qfKc0QYaNPnupSLCEMAhg6vzE7PL02PzHLKZYRSkvD2Lnazrgf1lSK8tUsxnrB8eER+ck5VQWUYCNPEdByUkvjXt5CzJfO33yc713NAhmUhXJv8NEJlGcVgQuI6BDubVIZAzpd427r1ylCVxk9j4G2uImcLKtMAdPuc1agjlzHlYokZhggD4kcHoCpUWZA8PiK4sY23tkZ+PiA7OgXbQmY5CIGqFCqKMUMfDIPa89cIb+0CuvJTxgnT//BfEb6PXQtQSpE+OtGUs2vbON0WMk6RaUo+GENVUX/1eRov3f7Qe1xmOaPf/Cbp6YBgd+NySL9SiuWDfYa/+Q1dOVMKp91AeB4KPSuUnpxj1gPMep3hr/9nssEYw7KoDKikxphXVYXMcipZYbebiL5JGaXk0zmm5xJe38HptUjPBghLt8I5vQ5mLbiYkyqof+YFEILowT7xw0M942NbBLubND/3EpWUulWu28bfWdfPAzq4NC8wu23MRohMMpb3H5EdD0irUwzboVwscfo9gutbOiC31cCsh+QnA6LARy5jzMDHv77J8r0HmJuruurmOJAXJMdnqFuvYfkuhqGhAvV+DctK2bqtK3HTWcF0WZDnep0xnRXEicQ0BciK8yhHVYrFUnI6yJhO9ZzNa6/WkMrgvfdnSKV0NTmR1ELdyprnJXFcUpR6tq/fdeh3dfW5qvQG5mSWc3ymuLZV0e25HJzE7D1ekqZ6Q9qoxCV0AQRJVlIWF5vKlkGjZtJoOKytuMiyosKgUbex7U9vs+nK9FzpJ6KnWS/lxUDps9k7H83QeaokSXjrrbcoy5KvfOUr1Gq17/uZj2oyK7hzb4GUFe2GhVJwPspJ44LNFZ0OfnASk8SSKJZkRcV4KhlNcrK84rkbAeejjDQpSXN0WedjpCrd7ub7OjhwMi2ZL0oOT1LmSx0M2Os6jCc5kxiOjnPGkwLX0QbPtgV7j5d86/UpUaJ061wFpgWdpoXrWgzHGZNZyfUd/7IMHSeSg+OM1Z7eNf3oOT4f5tx/mHD3kaDeWdLv2phCt4YEvkmjbn2oSmQYBvV6nXq9zs7ODkqpSxM0Go3Y29v7UI5Qu93G9/2fiOn4qCl7+vePM0FZlv1QRPaVCbrSH1T/9b/+V1ZWVmi1Wvzsz/4sf+fv/J1LSMjrr79OURT8yT/5Jy9/fmNjg1deeYXf+73f+4GmJ8sysiy7/Ho+n/9YxyRlxd0HCx49iXAdQXBBLzo5SzkfZrz8QoPNNR+A4Thj/yDGsiGKSoQwsIXAdU3WVzzevjNjHklWex5JosmUjqPBAxtrAftPIh4/WdLvdKiFFtNZye5WSL/j8OQo5uA4YTwyqCrYXvf19e6C7mQY4DkCyzSpKvi97454dBBjXOCq202b2aLgnTszXn6hSa1mMRhl+J6JbVWcPzzHiaakgwRhQFp5vP/WnNutnNrtXULLpDlfUi6gnC8ZffceuA61W9fJR1PSw1MwTapS6gq845CdjWh87gXqL9win8wo53O9EFWK+qvPU0znxHtPkMsEQymc9VXsRo3sfICKU7ztdV1xEAJ/e5NiNtfI5zRD5gXJwQnZ0Zluxzo8I9p7gre5qtvZypLy6AxRC/A3Vmi8eFPPzJQS0zYJnrvIAipK8vGM9GyEITT0IDk4QUYx5Xyp75fLmHT/CAxNbrNbDTo//TnSkwFVVeHvrFMVkny2QCmFWsaYvgemTTGbI84cDMdBpelFe1aI6ftUSqEKSfLokPD5G/R+/mskTw5Z3n2EVWiDUC6WukLU79L/+lfp/LEvYtVrxPtHTL75BmbgUnvuOtlwQjYcU06XyGWKu9ZBuDYq1y2NqAq7WUe4Lsm9xxSvvYTdbHzvc3JyTnpy/iHDA7p90ACSR0eY9Rre7iblfIlKEsQF8lq0GqRHZ6g0R2YZwncxTItyvkB4HkYYUE5m5IMxpudiOBZGLQChDahwbNLDY01g812seoi3u4m32gPDID0+pxjPcFd7ND/3EuGtXZ1npBRmGCB8l+WdByRPjlm8fQ+ZZWSnA/ztdbzNNQzTvHxP5OMZhil0i5yUJCcD0sNjKBXuqz289T6UkvZXf4qqKEgPdfshpsBuNQCD+mdewAp95m9/gEwz7HYTwzYJuzUqKQC9hqryEqPzvU2RolS06ja2bXF+FtHpOKSpREqFUhVJUrKMS2RVIahYxOUF3KTQrauFbpPt9x1MDIQBjZrNcqFJfGsrLkFgsdrTGUHTWc5yKYkurg9Zpnh8EOP5gjSrdC5YqvB9g2oCWVpR5hLPr6ikrhLaDviORafjUgssWk0X3xMMRhlxIinL718v/qR0ZXqu9IfWs9k7z5K+nurjKj1nZ2e88847rK2t8eKLL37iNpKz84w0U6yvfO9Dv9J1eG9QMVtUqKOED+5HCAGWgCRVRElJFBfc2g1pNSweHcRkF5uIHycDcPQMJUrpljnHFiRpzmCYUZRgCQOlJEWpDVJeQFlWxKbEdSDL4O7DlMn0nFderPHKC3WyTPHe3SV3C8XtawF7+wmmCd2WTatpo1SFUhXTacFonH+f6Tk6TfngfkySlBgGPDlM+NbvT2k3LZoNG8s0WF91ee5GiGV9vEkQQtBoNGg0Guzu7qKUYj6fM5lMODs74/79+1iW9X0m6A+iqqp+6CzRsybINM1LPHZVVd9ngp7OA1mW9Ynof1e6EuhK0J//83+e3d1dHj16xN/8m3+Tn//5n+f111/HdV1OT09xHOcyOPipVldXOT09/YHP+3f/7t/lb//tv/0HPq7BKGP/MKbTdvCegRIEvsVkmnNvb0Gn5eB7JvcfRhwcxoSBieOadLsuUlaXLS1ppoeT6zWLUhZkmaIo9cBwVekh4sCz+F9+cYPAMzk6SXh0EPHme1OWy5I4kbieSb2qsEwoS7CFoFazoLpokxtmDEYZy1iiZIXjCubzguEoJ/AFmV3x4NGC6+s20cmQVhUxOhyQLXPWbrbwVrtgQHA+Yfbd91m+2ifYLYjf3yM7H6GKgkpK8vGMfKTnPlSWU8wWuqIQJ3pY3TRxXIfg5jWC61t4Fzvvq7/0J7BXe+SnQ+L9I/3zkxkyyckOjsgMgcpz6p99EafbJj8f4fTb+Nd3WLx7Vy9mr+8Q3X+sA0FdB7NRI3zxJsV4yvKDR9iNkODm7sVCfoBwHYRj4610EYFP6wuvIFyH5Z0H2O0G8eMjDAyc1R7lZI4qSoqZBiCgKlSWkecZ1myB6To0PvcS7kqX5b1HqDwnn84o5kvkZI7ZCLVpEOKi+qU3lOxmjeh8RP35G9itixlYYWA1Qg2AOB3S/KmXWfs//wLJ4SnJ40OK6RwZp/T/5M/Q+uJnCLY1VU0mKbM37gBQu3UNAJXlyDRjsb3B2X/4Tbz1PsL1NEo7yZBJRpVlmKHP5PV3MVyb5hc+Q/3FmxhCkA0nl5CGj0pGsX6zKYndbmK3GqgsRxUl2WBEeqiDOkvHxvQ87KZLVRQabpDlmMKEWki5iC6fr0ozKsPAWenitBsYto3wHOxui2K2QAzHeKs9hK2R3tVFCz6AVQsvw1OLxZKz/89vsrxzXwMcVjukx+fIJGXx3n1UKQl21rGadZL9I+R8Qe35Gzj9DlVZEpyPGf/e7+vKVJZjmCb1l2/jrvZQRYmz0mXyu2+g4hhvY4Xa7Wu4630My8RqN3VAa7cNVYXlKMxZxny5xC50Za3xuZfhgoZW5Ir1NZf9QxNlQJzoeI4oKVGyIsv1jqtt61llVcHGqkscl4xSSeAZzBaSTsume2GYths2stKhw6FvESeSo9OEolTkmUJWuj12Y9VjMimYzHL2D2LSvKIsFHmuCAOHbsdFlinFxXHYlsD3DXzXIvA1FMVxBKbJRUW5wjIF9h8iB/FH6cr0XOkPrE+avSOEuKz0SCm5e/cux8fHvPzyy6yvr/9YrxnFJa5tXJBDdECXEJqntogUB2cLfE8wm+fM5qUOyoo1HjVOFHGqODnLKH4UAl5BWenKS6elOB2kDEY5SaZN0TIuyTIDVSkuAD76YRXkOdTrxkVYV8E77y8pCnXJondsA9c16XUdzgfpZeDXyVnGbFEymerAPwzY2fSYL3Wl6r0Plti2oN00mYz1sRW5DjZc6TqUZXWB5NYDhp9EQgharRatVovr168jpbw0QScnJ9y9exfXdT9kgtyPyVv4OH1c+90P07PVwY+aoDRNL3/mqQl6Wgm6MkFX+kH6C3/hL1z+/ZVXXuELX/gCu7u7/Pt//+/5c3/uz/3Ax/2o9+5f/+t/nb/21/7a5dfz+Zzt7e1PfFyn5ykGfMjwPFWzYXNyqiEsva7D3uMllQFBaGNOC72QtjWIYDbPSRJJnmmMbJKVNGoOvicQhonnmYShyfqaf1k5qte0sTo8Tmk2Hba2LBo1m7v3F9y5N6ffc3FcgzTTLS95rneHzkcZtiXwPJPVnqY/FYXk7Cyh6cYMnwwpBw8ZZS6lKzGSmJWmjTctkE0HqxZgmwambZJNZky/+zYySrA7LZwLWlhyfMbi7Q+QUUpwbQOn04IeZOdjspMBdq9N+PIt3F6bYjInn87wdzZof/Xz2K0G2WBEuYzpf/1rCN8lPThlcfchxWhCfp6Snw1xajWclS61529g1QKq27uMh1PK6Yzo7hCrHoJtUbuxg7e5wvA3v4XKErJxgdms4bSb2N02Truh8cONGv7WOuVyyfz9PYrZAkMYWPUaVreFvMjbcdb6JI8PqKTUbWON2oWhS6GCbDhi/O2Y+NERxWxBenxO8uQIFBiujWFApSqsMMDqNqnyAhWn2I0a1jPVFWHbOoA0SVFSkp0NyQZj8vMhKiupZEnzS5+h+7Nfxn2GqJad6iyZ4Nr3MmuE6yBch/DWNv7GChUGVqNGGUXkgzHCsvBfvoW72qNcxBimyew7b2MIQf3Fmxps8AM+A8J1qAyD6oIgiGEgPFfjxVWl2/UqkFFyWVUxXAeRF+RRos+j4+gqTqOOu96/qO6cEd7YxRBPcd0x1u4mpuuSnQ7JV3tYjRqm72IG33+fLJcRp//PX2f829/C7rYppnNUmlKMp8g4wem0iB8d4K50sFtNxt98CxXHZMMx2dkIwzY1ZGO1R3hrl0pKvPU+3sYqoO9t4fVtbYCzguDaJnajTn42JD0dovIcq90gfnSAs9LFnQxoDMYcRA5eNKHW8Cjmc0bvPSRtrbGy6tNtOTQbDut9h4f7se42sQSzKEdVXISRGtRrFqGEJKvI85LBKGdtxWVjzUYImC9LilxRr9lsrvmcn2dUVCSJNk5JJnUGYs0icC2EIXBcDV5ZLAqG4wTbMuh2HALfYn3NwwDG4xylFI4j9LXLFmysuTi2SS20cB1TA6USydqKSxhctbdd6Y+YfpzsnaeQgeVyyVtvvYUQgq9+9asEQfAjXydJJcOxvrH7vklRKh7uJzhOimFAp2XT6zi6XJ1rwlroCx49KckyhWmib+CJ4nyUMV0ULJcV6gdUeUB3vJUFCBMKBQfHGSCopCaXKAVpVpGoCtPSLWsaCYku3xq6SlQLLdJMQVXxwV5EnlV4nokpIAhMPEcwnhUMxgVHpxmOrfGtK32bemhxby/mbKBxkvNlyeMnCfXQIm5K0tygqCT9nkOS6oHEwDfxPZPT84ztDe8TwxCe1bOtbgBlWTKbzZhMJhwcHHDnzh2CIKDdbl/OBf2gDKUf1/R8VFcm6Eo/aa2vr7O7u8v9+/cBWFtbI89zJpPJh6o95+fnfPWrX/2Bz+O67ic2/x+nxbK8pB19VEIYYMDxacIH9+c8PoiIYk1ry0uFlUl830KpivlS9/BnuQ5IdhyDPNOzlbVQVwUMw+Cl5+rfe+2oJE4ln32leWm6lKqo1Uw2131m8wLbNigiiW0beI6FY2vcbaNm0KjpjBDQ1fR6OiHZH7C72KNvpVSNXYwooikSWut9ZJyQ7B8R3r5GXBh4voWZRsQPB9RfeUFjh4FiNteIactERjHFfKmrIsLAbjcQvouax+QnQwa//jsYwsDbWqf+0m1tVID04IRiOsfptzEqaLxym+ZrL1GMZ0zfvEO0t4/h2dj9DirPyYYZMs5Z+1++TjGdsfjgIcG23sG3m3VUXmB3GjQ+8yLZcILTadF45TnsThNh6RmZxbv3QAhkXpKPJojAw9veoKoU2XBEcn6MVQ8QSmGYpjYkeUFZFXrjzvfwdjdYvHOPqiipvXATQIMM6rWLvCGlKzlVhcxznH4HJwzI50tNKhsMdXtbEOjMokohPBe5jJh89x1M16EqJCpLEaZFfG+fwW/8Lt2v/BT+ztNKT6az6J4JSCmjRJunosTdXMMwoP7qcyzu7OFtKILdTU17m8yx6gHuxgrlZEZ09yHB9S2cbptlqXRQ6keq/u5qXx9vUV5+vypLXV3KUgzLxlmrYdgCYQhkklJJSVUWGk5RlKhSocoCqxYQXt+hGE8xHQunFWJYNsvBBOuibd6wTIRtkxyeIbwJwfaGzj6S8kOzRtPvvsvsrTs4a33cfvfivbkgOxsR339CVhug8gK5jGm8+gLuapf4YUR2otHjVakwXBuzHmo0tuug4uxD5zS6/5j0yTHC9xj8+u8gPBeKEjPwEa6Dt9ojPz4nH0zIB2P6vg/BBvPrO1Q3bzIxTcw37rH1SszzLz+vc7xcQbvpsL6qKEqlN0XLCtsyqIcmFRUrXb1ZIauKsrRZxoq1vsfqikdRVJwPU2zb4LkbDagUvx2NCHwL2xKkmaJS0Kw7lLlivsiphfq+3GrYjMY5UVyytuJd3oN91+K5W3UODmOGo4xazaLbdnBsvZYLAkGzbpGkJcenKatdh1de/NHRJn8YXZmeK/3YejqI/sOqO89KCMFsNuMb3/gG29vbPPfcc58IoTybF7x3d8F0pskhi2XJk6OEOClpNiwCz+bBoyVvvKvIkpQoURTlktkiJ0srwlAvgLNMouyKZSRZnBc/1PA8lWlrE2MKKAqoKs2cN9Cmx0B32JYX1XFhaPTiU0JSKS9Siw2YRyVpqud6aqGmpbz+9pyVroPrWJwPU6azkkZdp5yv9hwqIE317/vKCzUsy2YwzMBQHBxnlDkEdYmUFYVU5IU2PdYFA/9HwPI+sSzLotvt0u1eXPyL4tIE7e/v89577xGG4aVRarVa2LYeaP7Dmp6P6pOaoI9mBF2ZoCs91Wg04uDg4LLC/PnPfx7btvn1X/91fuVXfgWAk5MT3n33Xf7e3/t7n9pxuI4gXfzgcvNwnDOda/hJrWZjmoLZvKQoNHCgWVdMpjkn5ylFWWHZkJeKMLDxfUGWVyyikuksZ3Pd5/OfaV0+92xekOfVh6pM+nphsL0R0G6VGIZipeeziEoGw5T4VCIEBKFJGFhEyUUY6HSEOHiMO5lgTg9odg1MAUdVW7dvjSe4/R7ZyRm5YRE7DW42LNSpJow9NTwqL4gfHVLOltRvX6eYzjUBzHcBgfAi3LU+pjDxd9cJb+7qLBlDsHjvPghB/aWbjH73dbKjc5LHhzrLxvdw1/oE17dofOZ5vZt+fE52MsAQJt7mCt2f/RKtL36WyTffoFZIvI3vEdy0gdDD78JxcPsd3JXuxTnTBLPl+3sYlkXt5g5yrhfHyf4xVqep53sufr9KKUzXxVnpIuOE7HSA3e+Ca7P84CHpkyOsdoP0+EwvxIWps3R8H5XnVLLEcBycsIm/2qOMEuRiiZwtMTxbV5hMDUsIrm0iPI/lu/cvQ13tbhOrsYXd1m1k2cmA6evvYHeaWLVQgwEuqD4ySYkeHpCfjzRQQhjkwxEgaDdqWL6L09y6IOfpNrfw1i7CNLHbLZInx+TDCd7GCna/TXp4qmepnrkOyyyn9YVXWLx3j3jvCYbjIONYz1ZFCSrNCG5u4zTrJIfHFNM5IvAxXY8q0O2PVVXpMNiiQMYxlSqxWg0whCapPTmmkpJiMkO4Dtl4yvy9+4S3djAsi/I//hbOahdvZ4MqTonuP2Ly3XcoJjNUWWIYgkpJ0qNzKsDutS7a8DIwDIqlxpmbgYfdqFNJpfHgrqPP32CM1QgxVnqAriLN3nyf+METgueuET53jZN/8x9YfPMt7EaI0+9imAJhW7S++FmywQin3cC/scO1dgPVW2F2tiDbfwzLY9zX7zNX52S9NkZUZ3wM17sOVeBzPpGXG78VBkrBPCrodR3dwdJ26M0KHcCK7l6RqmKr79Nu2ew9jui2XT7/2TbTWc7e44ijk4Rm3SbPFYcnCf4sZ3PNp1azyQq9GDIMUFLheXodEHg6p+vpxsrWRkCSaLKc55pM5yVlodjaCPi5r/Y0cOVT1JXpudIn1rPZO0/nNX7UYrIsSwaDAXEc89prr9Hv9z/RaylVsfc4Yr4oWV1xOB/kPNxfcnCS0arrkNGiyDg4Sjk8TbFNbTCWSUISVximrrgIQyFlRS00iVPJBWfhB+ppy7RU4Nj6z+JjHmOaQPW9bB/b0q1tT02Qbg2p8Fw4HxfYloEpLnZLGxbLpV7Q3Lru4zo+cVJyep5xep7xwDFxXQGqQlYV46k+36NxwXReQCUxDQM/iBGWwWrX5fGThNW+Hvbd2fQ/hLz9OC2WJeNJTlFW1EKLbsfGtn60EbVtm16vR6+nL+J5njOdTplMJuzt7RHHMfV6nXa7TVmWPxJV/ofRDzJBSqlLEySE+D4wwpUJ+p9Hy+WSBw8eXH796NEj3nzzTTqdDp1Oh7/1t/4Wv/zLv8z6+jqPHz/mb/yNv0Gv1+PP/tk/C0Cz2eSv/JW/wq/+6q/S7XbpdDr82q/9Gq+++uolze3T0Nqqx9kgRV6E9T1VdfF5n04Lnr9Vw3VNprOcdtPhfJgxm2t65Xick2R6UNn1BLXAYbbISVNJWerrRqUq2i2HV19osLXxvaq6zqWsPrQpIYTON4tTSeCZmKbFzd0QVcHRsQa2VBXkecVglGp6ZFmi9s8Jxws2Rg8JixlebuGcTpgXLSZel2iY4yzPSecp5uKMne459uKQ5ft72L2WXhQ26xSzhZ7lMUBRoaSkjPWAfgUXYZ+K4NYOjVdewG7ovBi5TKjKkvHvvE56dMLyg4fYjRB3pQfCQEYJ0d4T0qNTqlJiXOS/OP3OJVSgmMxRaYZVC4gvE6q5DMkUlqUX2GWB8L3L75fzJct7D7FqAcHOhv7z2hZyEWHWfIrJDKffxQoOUWlOsVjqGZJKo8a93U2swKUYTjG7Tex+h+DaFlVeUkwXGAbYzQaGJUBqmIN/bZUqz8lHU8rpgsZnX0AuYpRUFNMZMknx1lfwdjZJDk5w17oI38Pf3dRVB8/FMAzy8VTPTI2mpEdn1J6/gfA9iumc4e9+l/x8QpVluJurOGs9KEtNaTMMZq+/RzGaYLcamoBnGAQ3ty/btwzz4iaqdChn+0ufZfKtN4n3DjADbVRllGC36uz8X/4849/7fY7+1b8jOzhB+B6GbWG16tj9NsJxsBohMi/BMjFURVmUugJoGghDYIVtqAyE7+Gu9ojuPqQSgnI2p/biTbz1FfLJlGK6IDs6xem26Xz1p3DaTWSSMvnu2yz+6f8dYVkUownxk2MdtloL8Lc3KaMlZhAQ7KxTxilQ4a6vEFzfYfHuBwTXtjRtL/ARjn35/vA2+mSnI4p5hEwS0tMBi/fu6/P9ynM0Xr5NenqOygv8zVXKi5Y9p9PCsARKSajAXevTePk2hhAU0znu/n3sJMXc6VHOI8r5kvmbdyhii1K8xHBkg+OwtGqEoUee61GAMLSIlpIsV7SbNocnKZ5nMlvoDB8qaLUcRuOc8SRnMMy5datGs2HTbFzMHVcV0QVWOvRNHEdv1Aph4Ll6/ZCkJe2We1kNBn2vbjUdtjc8funr6xiGDkKeTDOqymBzzePGtRq18NO3JFem50qfSD9OO9tTzedz3nzzTZRSrKysfGLDA3peZTIraDZsHjyKeO/ukvEkB6OiKBVpZnB8lnJyllLkFZalqy2lrDSCuoTZTO8mCEMHhj5rXgzj+0EGwgDX1lACKSGrwLio7nx06a4quGiTBUObnWcBdXojqCROoFK6YiSEwBAVo0lBWSiWSz1rtNp1ePAoZr4osR19XKNJRpxWmEInrme5bsmzTUFWKASCepET+hb2mg72ev9+xAu3QzbXPH6YTs4y7j2MSNLvteut9R1euF27vHB9UjmOw8rKyiUNK8uyy4yg4XBIURR897vfvawENZvNTy375AeZICklUkrSNL0yQf+T6bvf/S4/93M/d/n10zmbv/gX/yL/+B//Y9555x3+xb/4F0ynU9bX1/m5n/s5/s2/+TfU699r9/oH/+AfYFkWv/Irv3IZTvrP/tk/+1QzelZ7Lit9j9PzlGbDIkkVw1HGfFEwmmT4nkW/6wAGYWCR55LtDZ9GzWI6zXFtTZXMsgrPE2yseaSZy8FRQikVoWPqDJ9Vj2UsGY4yVvoek2nOwXHM/b2I4Tin3XLotB3CwKLXddl7tCQH1vouGAZRVJLlksWiYDIrCQNT050aNswSqvEJ7mJMIQVu3cdvuVRU3BjPGJyfsox7iI0NOqFJN8hoyoJsGaGKkvx8zOT1d7DDAEyhM4Rsm/R0SDmagCmwfE9/hpcx8f6xXszdf4RRVagkw7AtKilJjs6Yvf0+4daaRkhXFcVoRj6eUS4j4ocHBDvruBtr2M26xgc3alRrfeKHB8R7+3ibayzv7BE/OiSfLShnS4RtIotCgw96HT1cfqF8pFuP6i/cxGrqFiqn38HutsnHU6oix7u2Te3l55h+5x1UXqDygmIyx+m0CG7ukJ0OdIUk9Fm8fZd8MELFOTKJySdTzDDEqTWxmnU91B4GJJMpSIlZD2n+1CsU4xmL9+5h+T5wYWjynPjhAc5qh2BjFSv8cCu5GfjIOKHqtiimM+KHB8x+/z2K+ZL5W++THp1heA7OwTHexhqGYxPc3sVfX6OYzxGORVWUeBuruP0Odqd1kYcEMk4wXAcz0Pchd7VH7+e/Qnp4SnpyDlWFs9LD31rDbjUwTIP05Jz0bEB2eE5VSdzVPt72GsVwgowSvG6HVIGKU6qyoCoK7G6T4PoObrfF8uEh+dnwIp8np5zOcG/uarhAp0mlKl3V6rbo/cLXcNoa+pCej4jvPaIYTbE6DQzHxm40wLyYIxsMMTCgQleaHAcZp/jbAXazdjGPZOCs90kPz7CaNcxA00812a2g+zNfIHzuOtn5CCyT9td+imBnE8MyiR88oSpLwtvXkHGKKgrC53YxfZ/40QEyTiiXMVVRgmOTPDlGxokOllWKdHamSW+tBituzlaZMQhanAwkQs2xugZS2XiOSb1mUSkdldGo2+xuBbiOwb2HEaqEWt0i9K0LEm+Fqiqe5SE1Gw4v3Krz+CCmXrPAqEhTxZ27C0zTYLEscRyBkrq13zLFZfBxkkpM0+DaTsiNazWsizDiUlYIYWD9iE3an6SuTM+VfqSeVnc+aTtbVVU8efKEe/fucf36dQDiOP6xXlPfuOB8kPLgYQRVRatpMZsVTGYFo3GmwQJpRQUUEgSA0FUYKXWVhotWtPyZThJTaBPzUdOjKkiyZ77+IdREpS5CTC/WRVLqao9h6NfV7WkVwrygwEkdqCpVhUFFkkImFINhQRKXjKflRTo6KCWJE92iJks9vFrIi9/JUkilX19chLOenuf0uxa+b+rd2kS3otTC70c9p6lk77H+v9hYdS+OveL0PKNRt7ix+6PnrH6YnmairK2tsb+/z3Q6ZWVlhclkwvvvv0+e5zSbzctWuGaz+YlaHf8gejYnCvg+E/Q0J+hpO9zTP581T1f6o60/8Sf+xA+tJv6n//SffuRzeJ7HP/yH/5B/+A//4U/y0H6oXNfklRcavPvBnDfenTIa5ZimQS00cW2TLJM8Oki4th2wue7zaH/JfFGwiApKCUJUlBJsWxOPhuOMxVJiCINe02N3y2cZS7pt3crywd6SOJHcf7QkiiWOpzM2okQyGGdc2w5pt2zCmsnxccrOhs/pecrjg4j5vCQILcyLinNeKObzgmq4pB0tcCiR7S41tbisHnmdJq2zIfXjc5qbFmYhUHOdN2T6Pu2vfZ7s5OyynUfFKaanyI5j8pNzUBVWs4bhOliOTaUU5SKiGAyZfedtWl/8DO4zbWj5dE68t0+4+/9j709iZcvO+17wt/sm+ojTd7fL22TDZJIUJZH007NsyYZfuVAFj2rmoQeeGLBmGhkwYNgDwxO7AAOGbdiwPXjlelVGPcu2ZDWUKIpdMrvb33vu6ZvoI3a/91qrBivOyZvJTDKZYlIidT8gyXvPjTixI/aOiPVf3//7/TcR84hiOKSaatqbKktEnBA93tOZNsH7s1iGYejB9GdHOCs9stNzBr/9DT0I3m5it5uoXHdWTM/T2T1ZjhKS+PEedi0kvL59Oa9i+R6N126RPHlG9PAZ+dEp4dUN8sNTDBNUp4XdrGM3akQPnyKSXHcQIj18Xk4jqvEUVVUoCaooyM8G+niadUSakZ0OsDyX1s4m/uYapm0ze0eTyCzbopjM9FzI1jpKVBQnffy15Q9+pimlj1kqimlM8uwIWVSY9YD0+JxiNMF0HMrBmKI/oXZzB/PGDobvoAYFjddvUw2mBDtrOlPm4tdKSXY2ILy6rSEAswgxj8E0CK5tX84rPV/56RDLc/E6bdxGAyvQwllEiZ6bkgoz9Klf36acx4TWJqbn6e6bEHruqlXHrofIoiK4fpXgig5rtQIfWZTk50OSJ/s0bl3DW+kC2nIYP9zVompnjWz/FNN1sOp6rkZmBfn5AKfZwG6EFIMJhm3h9jrUbuxoEILnIdKU5uduYbkO2UmfYhbpRQcm/tY6y7/2l/A3V8nPBhTnQ5xGnWo6RylJOZtjhf7CiumhivzSYugu90j2jijHUzB01zIfjLUABsoopkoTvHoPp9PCqpXsnAyJzR6dlkOoBJaV4F/fYp5WDIYljaaNEJrK9tf/yirn/RzXsxfo+YqyFNiWJjc+fRZxcpZx7Wr90gWy3PMYjAsePY2IooorWwFSwVk/Q2GwsebhuTbzeUWeSWxbw6akVKyv+nzx9e4HBE6cVFSVwrYNWg3nU80h/7j1QvS8qI+tD2fvfBLBUxQF7777LtPplC996Ut0u112d3c/Mqfn+aoqyWhSUpQSzzVpNRzCwObewzmmpQPzDHROT1FKptP80koGuptSwQXK/oPP40N/l+ojfvgpSqGFyEVZ9vszP5ePJUEYLGhzmocvpD4GQ+lZoclUCxnQljzQ4gkFlQRRcEnAeb5blWXaPujZOZUUC3+s4N7DmF7X4daNGjevhXpXZlHTeUWcClaX3/+isiyDwLe4+zBmNCkRQhH4Jr5nYdsGtdCi13E/FoP9sa+PUti2zfr6Ouvr6yilSNP0shN0dHREVVWXIqjT6dBoNH7qIqiqKg4ODiiKgqtXr/7ATNALEfSiPouqhTb1ml5wXN3SmPl6zeJ8kPPsIOHwOCVNBStLHt2uy95+wtGJnmlcWnLxpMFwXFzumGrLsZ7ZGY0tajUHFOxsBJz1M/r9jG7XY2dLZ4Dt7sdkuSSOKx4+mbO5FtBtuWyuBpSl5P7DGYYJV7ZCVpY9wsBmMi6YJxVFIemS0bUSvNChVvdQkY+IU6zaIufLMrBqAaqqqIS26vhba3jLXdzlLgYKw7KxWzXiyQHxw12KqcYPG56ryV1RgrS1tUsP9Cvy08EHhu0BVCVwWk1kWYKUJHsnOO0mpusgM03Ks5sNDMcmPTylcfv65X1NzyE9OOX8v/4B8dMD/O11kDrLJj8+x19fovG5m5TDCeNvfFcDbRwbw7ZxOk1NmHuu7FpA43N3wLLx15dxux2UUJiWSfzkgGT/EJnkWPU65WhGfj7Ev7KJk+WIKMHfXCc/6yOjCEwPw7Yp+0MMx8YSEtPRQ/KW55KfnFNOZli+j0wzilGEyPL3P69cl2I0oYpi7DCgmsfaHjea6hkbx0HlBeVkRjmZMf32O5i2RbC9jioKRJojhUAKyfgPv4u7tqxFnwSn3SB5doTdqGOFWlyU0zn++jL1m1eZfOst0r1jqjjReO1Oi9rNq9RvX/sAwjo9PtPhn8vdS2Q0aGtf0R8higK716Lojwi2VnWAaVGQ7h1hN2rIosJyPeov36R2YxtRlFiOjbPUpRhN9Y4jEFzdpPG525fhotVsTnE+wrAdTMtBpBnuUheRZlRRjLPUoYoSqukcw3NRaU5wbYvOV7+Av7Wmr0nfRaQ5pudSv3MDf3sDEelruJxGhFc38daXkVVF9PAp87uPMCxbz09JSTGcYHguMi8wbQsMU28CFCUyzTQWPNbdHsMyQQhMR+ckFYMxpuNcdh9N12bVmXLuS4a5gV93MeIYRxbUax7dtsfmRnCJt+80He4/img1HTzPYmUx4yeEYh6VBL7FeFbxbC/m5vU6GJo66y9Ia+22Q1YoxtOCKK6oKslkqqgFFd22i+caOI6JYcDWusfXfmmJ7Y33s8d2n8UMJwWV0OuiXsfj2pWQpe6nB8R8knohel7UR9ZF9s6FWPkkC7/xeMxbb71Fo9Hga1/72iXV64Le9nEVxRX3HkUMRwu8oqEZ8JVQRIkgywR5IQhDvUBIE4GQBkKqS7GgS/G+PPj4+qzGTBZjJJdlmtoCJ6UWR0pBWeoHt0w9M1QUkrxcdG5MLYSqSiIvOlU/pPRt4XRQ4s8EnmuwsebiWDqALM8lolJ8/rXGIhF5cT8++CpJpTs9g3GB75skiWDvQGcIbW0G+K7J6orHyy/VcN0fLkik1B0qnRHyg+GkYRgShiGbm5sopUiS5FIE7e/vaxLMggrX6XSo1+ufmeB4XgSVZUlR6JTpqqooy/Ly3y3LuswJurDDvagX9aetJBWcnmesrwYf8LLXazbzqGI+Lznrp0xmAWUhGU9L1lZ0QODmqsdZv8D3DOJEMhzntBoOvmdRKsVwXBAGOgtjednn6V6MEIprV7UNq91yuXnNZDQpGE/0e99zTd54rc3KksfDp3OiuGJzPcT3TJ7sxWyth+xshgxHOeeDgq7lszECxygRpoXqLWHGp1TzCKRApQV2o0791lXsWo0qigm21i4XvE6nhb+xggLmd58g8gKqCtN1MAJf26WkQmQZTrMBmMiqQFYVIs2xG/q5KKFDEt1uG5FmIBX129cvM2ZMW4uEcGeDYGOF/LRPuLOhgz6BKs607cowcJp1/I1V3UHIC5CS9KRPNU9QQtJ47bZGOitFsn9CfO8x6f4Jwc4HoxdUWWKHAa0vvEp074lGFq8ta5vT2ZBiMGTy5j3ykzOseojbbYEQyNCnilOsMKCczPVraVrY9RDLdfE2VzFNA291GW9tmfndx6R7x6SHJ6iyxPRcvaOmwHAdsuMzRJww/uabmIZ1OSeCAVWcYNdDzNCjihLSZ0dgmZi2STWZgu2AaZCf9vW521xFmga2py1ehufgrXSxG3XkYuHf+aU38NeWmL59n3T3CG+li7vS1R2l0ZjxN99EliWtz798+VqJOEEkKXa9hpKSch5RnPQpJjOUkKS7h3ibK9iBj7Bt7F6HcjRBCoHp+Vg1C2+1h7PU1rNQrkWZ5fR+9Zexa6HO46kqTv7zf2P2ziPsWqBDRJXS81WmoWEPaAGsO0YF+fE5stCBfjLRX+5Or6PjMd59pAEAQmKFAdUs0p3BWoAV+pSjKZbvUbt5Vc9BvXlXZz0thLm30tNzWfNYZ/mUFYZSOEtdRBTrbttJX4sc32Pwu9/E7bW1CItTLN/H31qjHE31IkMpRF7geRa3Nkzm6ADYdK6dJhvbIY5jkqaSwShHAeNphRASy3z/syeKSvYOE6JYIJWiqiSPdmPG04Ir2zWKUnJ4nHDreh3Xtdg7SImikrJSuI6FkoIkE9QKSavpsrMdcudGg6s7IQYGDx7PORvm7B/E+J7F1kaA61oUhT6ueVzy+Vfb9DqfHczgheh5UR+oi0HwH9fO9vTpU54+fcrNmze5cuXKB+7zfE7P81UUkqIUPHyS0B/mrC55WJZBf1DwjW8NMU1DCwAFEoOylDQbDueDHFGpS4ra+xrmk4meT1qL79xPXVL+oEVOoTGvEigqsBR4noEoFUUJeaG/az4seD7qMITSlr6yhLKUFCUcnZXEiaIW6re24xp63sk0sG1T22dck3kksGwYDEsm05LdvYTbN2u0GzaPnsZEcUVeSCzL4KVrIcenOa2GxdXtj7a/FaXk5DTj5LxASEW35VIV4od6dQ3DoFarUavV2NrausSaX4ig3d1dPQD5nAiq1WqfiQiSUl4Kmo/qBD0vgp7vAr0QQS/q01aSVmSZoN1yPvDz2bwkzyrmSYmoNGWtKBXTWUFe2LSbNidnmlbpOBauI5kKGE0KXNfUocaGTS3U1KRmwyFJBY0PDQnX6zb1us3mesDZecrWRsDaihYCaSpptVyCQAuUMLDoD3OWuh6NukOjkVMvVuiNA5AVg8jAEaXOPTF0h8Zb7eGtr9D58uuUkznpwcml4JFFQTmeYpimnu8ZTPTiOStQqYA0Q1kWhuvitJrYrQZKVIjzVFuzFtQ3kWaUoynBlS1klpOdnGN6DrXrV/TOkpCIrFgsHn2s0Kc6GyLSDCvw9aL64EQDC1xHz04AhmVdZrioQpPIwlvXMExTo6yrCm+lR7K7z/hbb2E2Qt11yApEFJMPxtSubWOGPuUsuhRolu8RXtkgvLKBkopqNsdyHAwMDMvC39pAxAn5ZIpSGn3shDVMx8b0XLq/8osAZAfHWKFPdPcxyd4hmBbeogtjhQZVkiBnFeV4Qn58Tu44mJ5zmWsTXtumdusaGAbp7iHleIbhOIjJHFlJFAamY6FyvVtXzSOyI3DmMcb2BsV4ghQVMs1Z/b/8KuG1TUzXxbAs4sd7ZM+OCa5uaHtakpKdDcnP+lSzmOTgROf4LIbzTdcBpYif7JE8OyQ7PF10UTwNuBiMqfKM1ufuUAzHxE/2qMYzTM8hPxvgLfUoB2N475F+fjV93sKrW6z8jf+V/GzA+X/9PYZf/w7FYIS7soxdC3DaDWSlyW8Igd1sAAaGrTOBsC3sRg2708ZazI5lx2f0/2dEsLlONZth1Ws4nSbFaKbtb6be7LObdVpf/hzBlU2K/oj44a7OEQo8Zu88ID8b4nTbBDtrxI/2Maw6SirEPGK2fwy2iRl4tN/4At2vfpFk94Ds6BwzDFBlSX1hpxvsHZMdnmJ4LiKKcZc6eM4jmuMaWBZbTY/2zRYnM8nhcUZV6dDSwDN55/6U2bzEsU0MLE77OW/fnSze+w710GJnM2Rjzed8kBPFJctdj/VVn7Vlj/tPIuZRQVXp6BDLspBSzypXQsdzbKz6vHK7ye5+zP5hQlVJDk8zRuOCbtvFtk221gNc12R1xefkLGNvP6bbdj6zzc4XoudFXdangRXkec7bb79Nmqb84i/+Iq1W6wdu83ynJ04qTk5THj5NmEUVtgWDUbnIldHkjzffm3ByqncjWg2bJKmYxxWmaXJ0nDEYFWTFDzwMPxHP2nP1pxE8P6yE0sLnwp5nsKDBlYt5oI98bh9dSr3/rA0DDBRxIrBtgyiC+w+1h7/btDEsE9/VMIUnuylP9pNFpofCtGF54nJ6Pubh0xglF0KmX9AfFWyv+bQbFjubwQ/4bpNM8J3vTzk8znAcE9s2ODjOMGXJzWuf/LkYhkGj0aDRaLCzs7P4ANUiaDgc8uTJkw/kCHU6HYIg+Il8OEopf+D3fJwd7qIrBPwAFOGFCHpRn7RMw8BYgEQu3D5pJjg6STFNA9MwyCttPxtPKxQK15V4nkN8moFp0Khpi5ySEKeCRt3hpas1XM9gqedhWjCbaQucVJLJtMC2DMLAXgQWXgQ8m1jPWcbMhQ//ototh5NzkyiuqNdsDAxqq0t4d24y/eM3Cbs9lpY8PFkikvQyZNK0LKxaqDsjzwRKKlRVMXv7ASLJcHod0tM+1WiEs7qMI3QIIlJhuI4OoLQtVJph9drYcY4VahtdnuUYnoO/s0H9pSske0ekR6eXHR7LdzTWOU5pvPEyMsvITvqoSiArocNNhxO85Q5V5CHLkuo4WSx6LW3NKyvdLXJtWFBLp9+/x+y9R5SjCaosKecxZRTjNGtU4zkizbRIKytEnJAdnRFe24TaB4Mw7VYDd6lLuRjAV2WFUkLnEtVC/FduYtg2/uaqfg2kugz8VGVFsrtPPhgDprZVx6m2FPoBIklIj851LlAY4NRD3OUe3nIPu1HDcGzqN65g10NGf/ImRX+o83aiRHd+xlOy8yFVXqDyHNN1qExbd+7uXAfLJH64SzmdUUUx3a9+idpLVwivbZE8O8QMXE1Dm86Z332sOx+hjxV4pHvHnP2fv4cqS5pvvIJhmZTzhPzBLvlwfLkBlQ8nUBRYtRDLcXX+Uq+NzHIKIbF8FzmeEz14Su3aFv7mGvB+ttD0rfsE22uc/f9+j/jhLsHmGqZlU0ymyCxF5jlVmlH2Rzi9NsGNHcrBCFVViCjBCgKc1WWaX3iZ9Okh2ek5pmVSzSLkckHjtdsEVzepRlPsbovw6gblaIZhW4RXN/G3NKI7O+1TDMaUownFcILKC7LJjLw/xPI0TQ/DoPsrXyLdOwZLI6+d1SX8zRWSpwfIPEcUOTIrMEyD4e98A2UYVFFCeT5CKYFIUsrxjBoGm401Hh6UFFmT4b0zJmYT37cwTYMbV+pc3QlJM8nZecbuQYJrG+wdpczmFe2WQ5pWnPUztjcCVpc9el2POK64sl0jSQVRIphOC+axoNGwL6EvCr3RGviWhrIMC957MOXkLKfbcZFScXSWsb0ZopTi6CTFdQ3WVvR7o9N2GEwK5nFFs/7BzaCfVL0QPS8KeN/OJoT4xDSrwWDA22+/Ta/X4wtf+AK2/dGXk2EYSCmZzkveuTvj/qOIyaxECEhzwWhScnSacudGnem85NGTBNc19JxOqBhOCuJY0GzZTOcllfjsMMg/jVILtPVFXyqJNSLOMBcwBgWeqztNz4MVPlzPE+i04IE4lgghmEclYWBSVQazSNBqWtiWhQJm84LhpKTIpaYxmSZlodvYeabICm2Ly3KJ4yhOz0vm84pGQ5/fOBHMowrTNChKyXv357x1NyLLNRK81bBo1E2GQ+0L/sIbn+51Mk2TZrNJs9nkypUrSCmZzWaMx2POzs549OgRtm3/gAj6NCWlvMwX+rj6USLoRSfoRf041ajb1EKHg+OEwLMwDG15OznLMC3odV1c22Sp53N6npJkFWWpGI0LNtZ8xjM9BKyAILBptRx838a0NUlJyZR5XDIcF2SpoG8bRInAMU0aDZv1VZ92y6WqJApFt/3+9b/UdTk4TC6R2mFgs70RsncY0x/mFLnAWvFJX/0FrKhg5ewJTirBdzXBrFGn9soNnGaDZPdQW69si3TvgHw4oRyMCK9fQVUVxWkfMwjwem1UmlNaFqoqkGmKKgXVNMLyHKy8wN9ao/OVL1C7tqN34WuB7qb0xxSDEc3XbpEPRnpGpNPCCn2Cl18i2F6jmsfM3rqnKVlJilk3aX3hZaxGjf5vfZ385JzkyTOsms6ssWoBTqeFLIoFQlgSP9knfbKHYdvYnaYe3D8+Z/7uI50p021jN+u6C3HSB8siPx9Qjsb0/vIvX+YSAbidFnYYYF/bwmk3mb/3hHI0xWk1cVeXMUSl55jKijLLCXc2Lu/fePUlRBQze++R7shU1QL13KQcTpBSaUGdpiAkZi3UtkHTILy+RTWNyE77tN54GbveIBNnVPMImeVU4ylVlmsyT5ppDVpJjDQF10YUJdneITIvEfOE/HxIcT4kPzmnimKqJMV0XQ17eLRLNZ3jbyzrLzjAatSQWc75f/s6yUmf+f1dbSOzrUubl8grRJroY/c9LN+l6A+QaU79zjU9m3VwgipKnE5Dz9dmOd5KD5GmCxz5jJP/938n3T+h/vINTNfFWepQnA9Jzwfkp329kbDS05k7kwnVbE68e4BMcj1jtLOu6WhLbexOA2+5R9Ef4m+v0/z8HW1/9l2mbz/UnUsABdnRKf7WOs3X75DuHxM/fobd0AALf2MVp63nldyltg6HdWycRp04y/E3VzFsi/x0QPTuI6rpnHI2w3Bs3G6H5hsvkz/aIzs8wfIDlKyopnONUzcNsoMTupuK1+9c49Rb4e0HfepXHLxmk611j5UlD8syqddMlpc8HjyaEaeCfJHdJaWBkAZLHReFwWBUsL4aMBoXSKEIQ5vd/RmDkZ6v1nlfejVTFArfNfFck1lUsXeUEsUlKyvBpRASAuzFRkvhSQaDguWuh2WbOLapgU/VZ7fGeyF6/oLXBc2qqqpPbGeTUvLo0SP29/d5+eWX2dzc/KH3ubC37R2k9IcFhgmhbzGclgwGOdN5xWQCw5FOFs8LAVhYlsF0VpGmQu9mCt19adZt5nFF9kMEwUc8U36S1rc/bRmL+R3TXJDndDcdZS3CUCWY9g+32D0/m6QUaNux/mFeQpxqekoQC8LAYDorSTPFeFYiJbi2SVUqfF8ymQsmkwrPV4jK1Gnnnu7alIXgPNa5Sd95e8p8rrNA0kxwcJxiGgZZJrBMCJvW4nfaCAnPjhRCKrJMsH+YMZmVupW97LHcc/F+xIzQ82WaJu12m3a7zbVr1xBCMJ1OmUwmnJyc8ODBAzzP+4AI8rxPNhR5ce3/OPVRIuhi86Asy8vbPC+CLuhwL+pFxYlgOst58CjCdQ08z2Q8KTkbZGyuBaAMlnu+xkMDhycpWV6QJpKXrtWRpASeRSUVrabNcs/j6Djl0ZOYRs2k23JIM0FZSlzXpBKKIpe0eg7zuCJ5FnNlS5IXirUV/wM++qWux1LX5ayfsbzk4djmYrEET55G+A2bRsNmdanGypf/b3j9I8bf/D7ZyRmW6xJc36bxyk2CnQ3CK5sku4dgmUy/8w7Z3jGG65AeHFNNI9KTMyxHW5WwLUzXXXQYKpSokKXQC3bbwq7XcNpNAGSSkkcx0cNdLRY6LZxOC7fbRuYFwZUNgqtbWK6j5wsxCHY2aX7+DuHVLSzfwwoDsuMz8tNziv4Yq17Ti1fXoZjMyIdjqukct93EcmyiB8+w2k3cxTGU46leTK90yfeOcTttPceBIjs6J77/BKfdYH7vCYbr0vnqF/QgvdQWPTPwsMOQ5uduIcuK5PEeSknEdIa/uYq/scrkW2/pLs0iBwe0Tc7utQmvbeG0W5TTOZQl2WCEWCDB87OhxoAbUBxr4EF6cIIUArfdJD06w/QcrNCn8fptRn/8JuV4SjWPtVXNNjU0wDSxPP13EaXMvn/3IuxJ2972j8mubuFvrjJ/9yFWGCKyDCYGxWiGu9TWnbXJhGT/mOzZId76CijF4Pe+ici1dTg/OqVKUpx6DbsVwMTQXZU0Jx+MteXN8QADp9siuv9Ui56VHpbvUc0irHqIjFP8zVVkmpPsHuEtdy8Jc5bv4W2s6G7gdI4qSuxmAykEyaN9qvkckeQYQurZsSjR3Rjfw3AcnFZDU/IWeUeg6XPxvSeIeYTVrGvRWZQY336H6P4TnQOVl3gv9bgYWjY9F6tRozwfYoYBS1/5Au7qElWaY1gG02+/QzEYY7cbyLLALAKq+Zzo9DFVrANcDcNEFgXBjW1EnEJZUUUJ0sqpv3aL61++Tit36M9GbHVSere3sD+Uxed5FkoZ3LrR4OGTiKKUOLaGCjQbDnkh6Q8LVpZ8DEMHmE6nOtdnOM6pKklV6c1T1zVRysCyLc6HuYY3AbO5RV4pylLb5mxL2/E9zyIILObzijST1OsmeSFxbQvH+ew2Cl+Inr/A9WnsbGma8tZbb1FVFV/5yleo1+s/8nFMUyeEZ+MC3zPJMsk8FhSFwHEMmg0bw4DZvNJDcQJUA2qh9pHHqaQsShzXwDLAdUFGP84z1SLq/T/z3N9/+mWygBwshI5YENmKYiHNDD3vU1Raprm2tr09P+fzUdlBHy6lNEBhGpWUpcRxDYpSkecKzzHwXIMkU5oIZ0BaKPISQOI6Oog0LxRlUQGK9x4lnJwVXLsScnXb43xYsHeYYZkwiyS9rk2j7pCUgjgWGtSQSx48irn7aM7Bsab++L5Bt+Vy80bIq7fq+P6nOxeWZV2GUIIm2U2nU8bjMQcHB9y9e5cwDC/x2J1O5xKu8eH6NKLnw3UBPbio50XQRSdI24h+kA73ov5iVZJUvHNvimWavHyrzlk/J0kFSVIxm1XUw4pbN+p6PgcNN2jUbfr9DFFJwtCmWXcYjgtMw2B1xWOp63B6mqKkpFF3yQq9MeG5Fld3wstA03msP3DG44IiF/zil7q8eqvxgQWR55q8eqfFvUczBsMCucgQMC2TL73R5db1OrWarfM2ioLJbozpOoSb65ieQzmecv5bf0Dt+hbtr3yR7q98mcbnblLNIrLDM5yVrh60BuzpXHd8+iPMQJO5rFqI0ahpYIFt0/7SqzRevoGIM4rBmGBrDX9tmcm33sawHTpf/QKGZVH0R5SziGIwYf7uI2RVYfm+RmA3ajRfv/0BwQMQ7x5i1mqI7IRqGiGzEjmPkUWpaXRhQO3GFRQGqixw2+9DC/LzIWbo47YaZLsHC3KXIjs+Jz/tUwxHcE3jjSffeZv06AzLd1FS4jbrtL74GirPGf7BtykmM2QlSJ4eYNg6/8Cqh3iba9iBj7k4P0pKqqlGQQfrq4Q3rzB9866ms8UZKispZ3OUlDjNOtg2duhjOC756TmTb71F+NJV7NAnur+LKkt6v/rLOPceI/McwzQxFgGxajHvYgU+pmtTzedQVTjLHVSaI4sSBaRHp4g8x1vq4LQaVKWgzGcgBCIvSfeOyE/6pCd9nX2UppSTCCUFbq8NSpEt0Kcyz1FlpbtxlrZA6IV+hhn6iCTBsGxMz9EREEohspxyMtfXTr2GmXpkx2c6+PM5tLlSiuzglGI0wVvqUUURSIkTBrjdBt5KB3djhbI/wrQssCzdAStL/DWdMyizQoMQAJHmxI+ekZ2ekxweU81iEBodb9ZrzO89wm5o5PX0zXsYtoXp2ri9Lk6nCaZBcT7SHbrRhPTZIfGDp5SzOf7GKqZpIZL80tKokGRHpyAV7lJPZ/UcnuKvL+Nd2URVguy0D2WhhVmhCEMHO431fK1S5Lmek3Zd7dQQUrG9CC8eDgu6Xff97yRDjyREkXZ7PHoa4fsmn3ulxSyq6A8zsqhiMi0JApvlrstonKMU+J7JxmqA7eo8n+++NabZ0JuhVZWzvRl+YOZXKcVkUrC9FX6mIaUvRM9f0BJCcHR0hGmaLC0tfaKF1+npKe+++y7r6+vcuXPnE4f3GRc+LMPANHWuRJZpa4ZlmfiWwjJ1VycrFaZhEEcVRaFRhoYEYSpsBUUlSUeS4hPNvVyIneeP88PH/NMXQRIwJBgWZIWe8eE59PWHz4Rlgyy17980uBQpBj+aRKezfhSRqLAKA9swFrY4RZor8lIghIFp6iDUMDTJcy1MhFAUhQ5QVQqqqCRNBOfDgrfvmnRaDq2GhZAGSZozmVb4ronr6qwgUNi2yd1HEcNRycqSQ+BbxIkgywV7hxmdlvOnzga6KNu26fV69Ho9AMqyZDKZMJlM2Nvb47333qNWq112gdrt9qWl7Schej5cP44Iep4O90IE/fzX2SBnMitZ6joMhvrDTAiJ6xrUaw5VJXVQ8GXYrkGv7XIaWMyE4uA4JvBsnW1hsMjryjkfFnTaDlubIbZpsneYkKYVR8cpvZ6L65psb4QYpgbDVJXk+pU6YfiDS4FG3eaLr3cYTwrmUQVS4OYRdTmE3TOKThO6LeJHz4juPtG2HMcifrLP/L1HpHtHnMYZ9Zd/n84vv04VZUy/dxepFKooqbKcajKjSjMdOikFViVQaQaehypLgiub+BsrNG5dx3JdrMDXcwzDiQ4LXe7S/Pwdoge7GmLgOrrTtLVCenhGWFY0v3wbTFNTsZ4dET14hunaBNvruCs9ovceInK9c+6u9JB5jswyVLVowWPQuH2d8bff1sJHVCghL7N1vJWeDqm0bUSSkffHxI/3F12UALtRw13qED98StkfYm2tU7u+g6oq4ofPEGlC+NIOzQuimNT/ZWcD3E6bjf/H/5V094B0/5j8fASA06jT+8u/xPzuE6JHz6gmM9InB1RpishzZFYCC7qYa1JNIz3/WZSoxUK+dmUDux5guC2S3UNM29J2vguhKASi1BY2TFPPY2UFAjBG+rPS9FwM29JY7AWJrHbbo3brKsOvf0cjuQcjqqmee7J9l+DqpkZhZxmYJqbjaHKarTsphmFqi1zgLZ6DQMQpMi3IB2Om37+vrVwKgivreMs9RBRTorDCEHepDZWk6I8wXIcqzbT9z7YRcUo50tAMlNRZQEGAZduYYajna20LGWggh0xzDScoK8rhFAMDKwzwljQmOjs5Y/TN7xE/2b/ETRu2ra0ao5nO8rNN/KubWLajv7cti+y0j9NqYNVC3G6H+XuPqCZ6Hijvj3QeVn+kcdZFrjtQcYrh2Br2IRWqKrUwnReIRg1jzdDdQ8uinOhd4ZoHniXJhMlkVtLv58wiPR/ouxZZUeG5JrZlsNT1GI2128a/wFdXkum04HtvT0izCsuyuLat53zuvNRgNC4QhsR29TbscJxTlLrzvLLkc+tGjfcezBhPCj1fOK/odlwmk4L7D+csLbk0Gw5SSo5PC9pNl2s7P5n1wMfVC9HzF6yez945OzsjCAKWl5d/6H2EEDx48IDj42Nee+011tbWfqzH1As7SafrsHtQ0qhbHJ3oHYYkrZDSoKwERSmxLf09o6RBlgv9hW4Z1OsWRS5I008KGHi+u/PD6vnbKD4y6OczKCHBEh/M+QEtaixTf2aiLkJO3+/qXNz8k2K3DUNjrQHKSmGbuuUshX7NywIy3sdoIw1sW5KkkrJ8f8C6EgvLnaEpcXEsiGLJUs/G902EUCSp4KCQNOo2O5s+nmPgOAZlqbAt7deNE4GBzgvKC8G796DXcWk1P/6jKIorJtMKqRT1mqZXfZIQM8dxWF5evry+i6JgMpkwHo958uQJSZLQaDTodDpkH+aNfwb1SUXQh2eCXoign786O8+wLHi2nzIa5wSBzdpKQKPuMBgVDMcF796bc/1qSC2w9ezjWFtD15Y90lRim5JO26Hb8TANOB9kWLa2qix1fdJM4LomYWgRJxWjcUE90MS2ZkNbvk7PskvIjFKK6axiNi+RShH4Op9ruedRm/eZvn2X2ffvMzofoqoKp9UguLpNFceEV7cxXJvZ9+8z/pPvI7Ict93AcF2Sp/vMHz7FKAXhrat4ZodiMCJ+so+sqktUsCE1/cn0feylNvn+CdnxGZbnEt1/jBUEWI06ludgOA7zdx7gry+THZ6RHZ3hrS4hy1J3W6SB5Xvk5yPKOEHGKfnJOW6vg9sLEVnO8A++RXY2IN07ohhOsTwXd7mjB959HU5p2Bbx7oHObWk1SXYPKfq+XlwvdzEdHZxaTKZUoymxYZCd90EorFqgQ1eDAGUYqKKi8fpt8tMhxWAMUpAdn5PuH9P6wquaZuY42PUAu9skuLZJdnAKRUn3K1+kfPklqlmk0drdFtV0zuyt+1STOWboY1UV+WhM/OgZspLYjRAr8LGaNWS/oBiNMaRCVgJ1eIrbauCvcPQdoAABAABJREFUr1J/7RaTb30fw7Co375Odnx2OUxv2hbp8RkiyTVNrdSzQ1Y9xLAsnFadYGMVJSV5f8Ts7fuE17Zofu4OjdfvED/ZJzs6w2rUMSyLYGsdsx5QDieYgactWnmB02osvNwgskKLFM+jnMxQQqCKEqRGR6cHx5iunh1DKcrRVGfsdNsEO+sYpkk+GOOtLmG3GpTjKdnRGcH2OiJJkZXAdh2yozMM38NqhIgkwfK1FVomKcHmKunBMTLPdTCt65APtOBs/+Lr2I0aIssZf/tt4gfPMFwHwzJRlUQkWnAYjk05mekva8fG7/VQokQKhWFAOZrRfP0OmAbVdEZ4fRtsi+mb72mRCojBmGIeU80j7DDA6TTJBxMoCo0nzwpKISjnMaqq9FyUFJgLaEbgQtdIeaJWKB/NMU2DMLQwDYPpvGQ0zOl0XGZRRaflsL7i8XQ/0SGltsXJWYIQcHUnoO27mIbBZF4xGBeUleTm9Rr9UUEcVSRpRaXAdS0Cz+K1l5s4rkUldEh7q2ETp4Jazeb2zQZPn8WcnGYsd12kgms7NXa2ws8MYHBRL0TPX6CSUlJV1aWd7QIx+MMqiiLeeustTNPkq1/9KmH446vwC3rble2QKBEUucLzM41dTTQNSOe6vH8sSumd96qSBJ62gZX8pAXPDxzp4n4X0uJ5RfKT7wQV1Q/+TCqdpbb4/Ac+3sa2ILL+0FISlM4003hrS3dxilwhxAclnmVClgmyUj8+BhgLYWZYGqWtFvlBSmpq29GJwDDBsy0qKYlTQRjqQWnH1NdYFJc83Us1VrtSlIVEKFhq28wiwSwSXN32uHOzQbf9wVTmo5OMx88S0kwfqWMZbK773LweYn0Ihy2kbt3btvGBXKKLcl2XlZUVVla03SHP80s8dpIkPHr0iLOzs8tOUKvV+sTdzE9Tz4ugi4WnlJKiKMjz/IUI+jmuSmiBMZrkdLsepmmQpoLJrMB1LcqqYDzLOTk1CGs2rm2SF4K1NZ9b1xo8eDLn2WHCs8OYZs2hXreJ44pWw6G2sIZYloFlmYgKaoHNLKoIPOsyXT3LJc6iM5sXkgeP55ycZRSjKcawjxHNqbd9rmx4mKdHpM+OqaIIf2NVL+jGU+b3Hum5Fs9Hpinjb32fYjDCbmkcsF0LyKZzLMfSi7fZHH9rg+TpPhgGstCYaysIKMdjDMtCCUF+eEaV5timgSjKRVcFyjjF8l1qt67pxbEQZCfnWPWQ7PScoj9C5qXuZE21Len8v/4+weYqjVdvassSUI6m5MMx8cNnFGdDLb6adZLH+2QHp7irPUzLQqQZ2dEZ+dmAYFsvqGVe4nQd/PUVcgXDP/w2ZRRTTmaYaQaGgV3zsYuWhlMcnSKihNaXXkPMIrKDY+x6DX9zlex8hKgkw69/i/TojHBnQ4ee9poEG2sk+0ec//Yf0XjlJYKNVY09dhxkVTF76z52PaD31S8y+tZbyDTDbtaxwgA5mWE1anrRP5wi8gLDtMAGhdJkvXoNsx5ievp6MUMPf30FVVWYrg7dBIW/ta7nVPIcK/Bwum0s18Gq1/FWexi2jUxzstMBRlGSHZxe5va4vTYiivE3VskcG6tZR5WVzprxPJx2gyrNSPaPkFmB6TuIsSbCGZaFqiQYCsN3L1GlSoHdbeMt95BSkB7qWaBwe53k2aEOvbVt2r/0BbzVHsPf/SaiKEiPz6lmM6oooooTLNem8fJNLWwWVDQAJRRWq4GbdSlnEflpH3epS/P1Owt6XEF2fEa8e0h0/ynYWgSKWbQ4OGtxrBp0Q1mSPjvGqCTexipuLcBp1SlnEdH9x7R/4XWCLX1tOfWQYHOd3DoHy9KdudFE/1uvA5XAdCywfKokxVBghT6GaeogVgNMxyFYBKLmx+ds7TR41DeY7J/jm4LCtSCo4TZDXnm5xWxWcHauNz+SrEJKRZxU9IcJ86jkzktNXrnd5OgkR0odh3F4nHDez3jt5SZbGzpY/uQ0QUjYXg9xHAPfvcDcu9RCyWRaksSC2awkCCxWeh62Y/K1X1xmfdUn+JQ29x+3XoievwD1/I7yRWDkxYLrh4meo6Mj7t69y87ODjdv3vxU9p80FRyeFDzcVdQ7MavLHptrPutrHt/47oinuwmWbdDv52S5zt4pS0UQQOhBKWwcR5PETMvAdfkE1raf1Jvnz84K90nE3Y8SPKAF00Wnx1iEpRposo963lJnaJudFIs7mYsuz+LPQrtbPnBchoACCHxoty2yXItU37eohTahpzjrK3YPdH6PlOqS+JbngjgSWI4F5DzajXnz3Yib12q89nKd9VWPNBU8fpZgGLCx6pFmgvGk4u27MxzH4MZVLcCVUpz1Cw6OMuJU47rXVzx2tvzLBd5Hled5rK2tsba2RhzHrK6uYts24/GYe/fuURQFrVbr0grXarU+MxKbcWljeiGC/iJUvWZxep7SbLiYpkFZCk7OUvJCsrrkUpUSwzKo1W3itGKUSm5db3Djep0oqnR+1tU6RS6Yzks21wP6g5w0E4xGOetrFq6jNx9G44JG3SJNKwI/IPDNS/98t6vnS965F3FyltGOz6jvPkIlCdJ1md9LePA/nrLccfBDF291WeeqANbaEtEjvdBLnx0y7Q9Inh5ghz4yThGzGCk0trn+8k1kVlCcDvHWVzBrAVaS6SFvI8V0HOxaDbNVJz85RyQZpmXq5PqyRFYVcgEYsAOXvD+kdm2bcjxFZhlVVpKfnOsuSaOOQiGLgmI8Z/K992i/8SqqEvjry9jdFvHuAcX5CNNzdVcnEXpovChJnuxRzWPqn7tFeTrACnyclS52q4G/vUYxmqCO+shKkh2dUU3mICrsdgPLdSmnM/LBhCpK8TdWqMZTRJRQzWNEFGPWQux6CCiK/lDPzDTq+v/DAKsRMr/3hOHXv4PMcryVJebvPsTttml98VWW/vIvUU7n5P0RVuAx+uab5EdnWPU6znKPKooRZYmczCmUtkGZrg1moFHaaUbtxg7NV29SjcaUky5Kgem6+Ne2KCczynmCVQ/0zE5U6Pwfz8NcW8bfWkMVFe5SG9NzqeYx6cExYjYnuLJJ6wsva9GUpHoRHngLe2GCLAodFhsG2PUAVUnK4Vh3NqoKhXf5uBdZDu5SB5kXKKWwfE/P+qCo0gyk0HQ9E5SQlKMZVujRePUKtdtXMS0Hd6VLMZggZrEGNUQxtdvX6Hz58ziNOtM338MKfMrJDEMpzGaNdHefcqrnfbyVJUzHxmk1aH3xNUzPJX6yT342wPJ11EY1nmrhbNsanCEl5TTCkBJl25iWzqMyPRcRJQCYtkUZJVRRors2gN1uEuysU01mWO06dj2kWFw/+fkAwzSx6gF2EFBFsbbFSAPTtDBdRwMOFl2n7OAUd6lDlrt4w1NumCWxdChmEjcasOQ0WWleJfB0V/jJs5jhKKfecFhdDnBsE2erRqNu6yBk32Q0LqmF2k5bCUWa6RDSRt2hFuiMO9c1QSmm85K8lASBTbNhEngWAzun03KphRbNhkNRaBvvT0vwwAvR83NfH4YVXAge4DKJ/sNVVRV3796l3+/zxhtv/Ej728dVmgrevjdj/yAnzWAwLDg7z7m6HfJLX+yggKW2y8MnEYelolpgCisBUQxJIrEtiWlBlusF+8ev88XH/stPrv7s54H+NOW6+vxXldKvpfV+eOoF9OCiw6MUhD4k6fsWvEs8NloLXVrupD5nvbZDvWYhJZwPcs7PddcoiiRSKjwHRtMSpRbkOKGIopKq0geRpoInewlpJlhdcREC9o9Sru8EnPVzTs5zikIRxRXZt8c4jsH2hs/5oOC9BxGmaVALTcpS8ehpQlEo7twML6/3coHCdF3zB+xxUkp832d5eZn19XU985Sml52gw8NDhBCXIqjT6dBoNH6qIujivzzPefToEY1Gg6WlpQ/MA70QQT8b1et4ehNh8QacRxVpJmg2HOJEsL4W4Domm+sBUVzq98HVGoFvsbsX06g7lwuFcFoQ+jYrywbng4xKKE5OU1zPwjLBNBTHi+yfTsclTgXHJyl5qcmKv3Oasn+UshHm1PYf4AU21vYWFtDyJoz3LeanQ1Rg42+tP/csDLylrg5ffPyMcjLDCn3sVvMyhDQ76yPiDMM0sBs1svMh+fG5Tqu/tk05izCUwPRdrF4LmeshR7V4XaooJTs+xxpOsHwPZ7mL3WxQTeY0Xr/D5E/eopxFlNM5duhjLmiN+elAdxyqinI0IXqiO0vp3jHuao/89BxVFLi91mKxrbs/SkoMx0WkKenTA1Dgrnbxetr2ZocB3toK+eExs++9Rzmd460vY5i6K1TOI5RSOuhUKQzT1I930id+tIu/uozTaWH6LmIeg5BYrg5GxTIppjNcFPnxKdnZCKceYId6Bqvoj+j/96+DYVC/dY1qFjF75z7xvSc4Kz0dBDqPkXmJFQRQFIh5pAM7Gw3MogApMV0Hb6mH02qQn6T6/BhgmAaNl1/CdF3Of+vrRHefoITAsE2sZp3ajSuUwzHB5irYFuneMemzQ8ppRBUl2PWAYHNVz7QAVhhQv3WNYjCm8epN7FpAun+Cv76MKEtmb94lPx+iUNjtJu7qCtVsrhf8jRp2o0Y1ibAcB9MytSgOPMrBGG9lGSkrDMOh+eXPIc7H1G5fx6oFWoTtn9D/r7+PkopyMKZ2+xr+1hrF+ZD40R6mbV92zQzXoYpiyskU03HBsVBFhRVoYpnTbRFsruF2W8SPdml+7g4yTZF5gbfaIz08pTwfaCtjPUDZthZtVYUyNK1Izyfp8FFQJE8G2I0QVQnm9x4zfe8atStb2PWQxqs3yc6HRPceU81jHVLrarFkWJam/9VqOM0Ghu9BVRG+dIXWG68g0hx/Y4Xmq7d0Fy1KiH77Xdxak9XVFqoS5IMR+emA/E8e0N/fI9u+ztzr4IY1XrnVxPUsbBMOXAPT0oJkNClYW/YxDe0G0S4L43LNNp2XNBsuva7L3kGCQneEysq4XGNUQrLU8/DchbVuUjCZltRCC9sx6bXdH3BvfBb1QvT8HNePyt65QEk/X7PZjO9///v4vs/XvvY1fN//1I9/fJYxHBWsrbhEM8lyzyXNBPvHKasrHr22y30JaSapBSZlJckX3R7QkqJ6bsFtWJdzvR+qCzvbT0P4PF8/WyIoz8Hzle7WfIx6vOzkKC00ix/UxD9gtxOVFiz1UIefDUY587gizyHwDdJMoqT+3a5jLMSJTZ5rq+NkWmAYek4I4PQ0p922WV5yOTnL6Q8Kikqx1HHoth1cR18Ej3cTaqHF0UmOYUC3bZNmkqLQA1H7RylbGx6ea7J/nHF6niOEotWw2drwWeq+T3JTSn1AwBiGQRiGhGHI5uambv0nyaUI2t/fRyl1SYXrdDrU6/XPTHA8v1lhWRbT6ZQgCDSNaDGPdNEJchznshP0STO3XtRPt5aXPNbXfc7Pc6qqoD/MEVIxi0pcx2JlyaMoJSvLHr5n0R/k5LlEqYq8kB+gG9mWgZCKdsvRFLiswrIkZwNtR3Ecg3bLIfBtXMdkOM7JckEttOl23AV6VnHydMh8ZvLS7TaX7wwpcRyLTPiE8Vwvbhu1y8e2aiGG7VBN+lihh8pKlJAYloVcZPOYgUd+OtDzFGVFenCCiBMtYBoBxdkIw9VdgOzoDJnmuj3tuSAVSujdfKUUTOaIJKV26xrhjR0Mw2D6vXfJDk8Jr29TJSnVbE6yewRSYNVDnFYLwzIQaYpSkux0QDWd6aFz08QOA9xem+TglKo/xFhsrlVxgtNqIPMCKwyxAo9iDI1bV6ld2yQfzTA8h+Vf/xqyqJh+/z0s30OtLFFNptqu5XkE25uoQj/v0nep3djBCnzSRWCniBOU1JYzWZTEu4cUg6kOzzQNitkMM4owAw8pJMM//Dbe2hLZwTHZ0RlOr4PT0DQx0/dw2k3yvp67QirUAtYikhRVVfhrq3gbSxcXD9VsjtvroIQg3j0keXqAmM9xlztgGKhK0nrjDu1f/gL9//N3SZ4eolCIOMEwddfQDDxMz0NKSX7Sx9/UeO1gcxU7CMlPzml/Wc/C5KcDnecz0/ZD07Jw2k1thYsbiEUgqkpzMA2UZWH7PoZjIdIcI/RwOk2y0z5WK8Br1ImO+ygk1XROFcVYtYC8P9IWs7KiGE0wHQeUwlnqED/a4/Df/R9ayA1GpEenes7IcTDOLNyVLkaWYzdqeCs9arev4XZaRI/36P/2H2FYpu7OKInTbiKSmCIvtSXQMKCSYFsYlcTA0MKz3cSshxRnA6o40bM3rkNxPmDwP/6I8ouv0f7iq3jLXdpf/hzF+QARJTjNJpbjoAwDA0PT++IEp1FDZhmW7xFe3yHc2SC8vkPt5pVLC+T8f/whTuBgGh5KCNL9I4r+GMP3MNsdjkaK82jKTKS0Njuoaz16HY/lNZ/+KCdNBaapZ2iVUqyteDzdS5jOSi1cxgVCKmqBDi6v1x2StOLRk5hex8NxDM7OM8LAoqoUZSX0pqqE037ObFbyR98e8Oww4eWbTW7dqLPc+2QxE5+2Xoien8P6pNk7z4sepRT7+/s8fPiQa9eucePGjR9rsSSE0lQQqYfNXddkMCrwfQvLkppGUkosy6CqJFFUsbzkMpuVTGYVKAPbhOxDK2q1yLJR6qPsXB9FZ/tJ1KddJD5/HAsSwQ/8/M+uhNKdm4vg9R9mj1PwiXOQpISqUpye5Ryf5hjA5oZPPYBG00RiMRhqmlC345LnCgxFXkjSrCDLFaapE+Wlkpz2c5p1izgNiaKKrFCISqKE5vubpsm1KwFlpegPCuKkIvBNTs5zzvsFZalQhhbTm+seCjg81r/T90yGY33Nvf5K4zKQ8UfR2wzDoFarUavV2NraQilFFEWXImh3dxfDMD4ggmq12mcmOKSUH7C4Pd8J+igRJKUkSRKWl5dfiKA/B+V7Fm+82uZNNcaxTc76GZZlsNzV+RhFKQkDm0bN1mKHS6gXBu8LYLmYY+s0HRp1m3lUEMWCz7/SxPMsSqGYzUriWPC5V5p8+Y0u7z2Y4bkWq8t6Q2s6LQk8qFUzxkaNQQwbLX2chqM7EMpykUmJTDN4TvTIosDtNqnGE8xaSDY/R4zGWLUAwzDx1pbhdEiyu4/dalC/fY1ga43Z9+9RTmfIQmC36li1gHIWacHk2GCZmL6LXQ8xDE23MV0dbWC6HuG1bUzbovHaLZZ//S+RHZ8jk0xTvSRgoEMnhcRacamSZGFd20dkOaqqtHVoMsNtN2m9dAUzDJjFqZ4fKkptH1KaUFacD5B5STEaI+YxVr2GjBPK6Zzxt97BadeRSYbh2bjNBpbrkB2fI9JMI4+rCiUlSircBUJZiQqEwul1MGybYjDGUxA/3qWazxezPW28pS5KKkSSoNKc5NEe+eEpstS+ZeP5uUOFfp2kwltfQVYCmaRYro1zZUufP3S2TH46oDgfEt6+Tu9XfoF094jBf/sD4kd7SCGxm3XsRkh4fQfDsph9/x5Ypn6tpYBKaJS5ENom6LmovGD+4Ime+wk8TNclvKHPVX7Sx+m0UFISP97DXelqklucaauc4+BvruEudYnuP0GkGYynGErq7KK4wK6HmE6AyDLy8wFKSeaJ/nMxmuF2m9Rf1muXZP8Ip1HHrtfIj88xDIPGq7fw1pYxXZfpd99BzGMan7vFyq/9JaSQzN66R/zoGYZhUrtxhdrNK/gbK1iBr8+fqBh96y1qV7coJ3PKwWhxXdoaZCClhhkUOuvHdB2UQFs044S8KBFlqWl4lcQMbURZkjw9WBDXFL3/5cuorMTtdai9dJXw6hbZ2TnT791FxBkYOog12NrAcB1Mx6Lx6kss/frXLsEaSinEPKYYz2nXbDgZcvKwj3l+quewPJ9z6XCWVZgNlzVbYsQTDNnm8DilrCTdjsvuNEZKTdfNMollGwglSbOKqpIcn2UEgcWdlxq0Wi5lpclvb7zWott2GU0K5lGJ71kkqaAWWIDB7nFMmgmubtfodh2m04rjU+3yeOO1Fkvdz074vBA9P2f142TvXIieoih49913mc1mfOlLX7rMPfmkNZ6WPHwSMZ1pwtYFXnUyKSkqiZKSswGYD+coqSgquH4lZHszIAgtkkyQxILiY1J4paaBgnq/8/PpYQU/rfrwAvriwI2P+Lefbn2SWaAfVQu7taa6AVEiNXVuIVKLSlH3IUk1BQpVEsWCvBBIqUhTpUNYlZ41ch0oCqlziVyDWSQ4PE71ILaQKAySRDCLKm5cDem2HcbTirJSJJnk4ChjFlW0mzadjk1VKbJU8uBxjO9brC5pXC9A4Fuc9nOOT7NPLHp+4PkbBo1Gg0ajwc7ODlJKoihiNBoxHA558uQJlmV9ICg1CIKfmOC46N4+fzzPd4I+LIK+853v8Lf/9t/m+Pj4J/L4L+pPX9sboe6Kzitu36gxmpZ02h5xXCGkYmfVx7ZN6jUbx9ad8EbdxjQhSUuSVDIaFySpwPMMkkxgWwbLPZcsV+RFpa2kroVlGjzbj8lSycFJyvWdkLIQOK6F51oYgKEUvi0ZRbDSANsEo1ZDBA1qMgfLRCx2QpQQOjSyP1pkyazT+tKrzN58j/jeU8DAX1/BDH3S/WNEluOtrxDubOCtLCFfE8T3nqCY4DbrOL0O0++8g+nYl+GPWKYO/mw3NUnNdTA9Rw+RP97j9P9T4DRquGvLtL/6RcQsQiQp6eGJ3rZSBla7QTWeU8Up1cNdTQJDk9TK8Qx/ZxPTdcmPzwmub1PsjJl9/x5W4OOtL2MHPv7GCrIomd9/jIhi2r/0hsZmT+eUgzGzuRZHSkpM2ybYWMUMfVgs1qMHTxB5gdPrYnke6ZMDnHZdz7goSfOVm2Db5CfnON020/uPMf0AqxHgthrafiflgi5mkB6caLG2uqQH7fsjMBQiSilnc7LDs0XOj0mw0QPbwlvpoiS6EzKeaZuVZWK1Gti1gPEffg+73dTQgijDMLXYQyrs0MNq1Jh+912C7TXstiaiWc06hm1STuZYvk94ZVMv4J/sU799nWBzDSUEdqNG55ffwFwE0FbJKoZl6de1rJi/fR93ZRnD1msVy/fIj0/x1pdJnqK7Kq6DLCvsRg1VCZJnh4g8h0pQRholXU6nlLMZsqzw1nqIaYTtB+RnQwzHIj8d4K0u46309O/0XdzVJRovv0R4ZROAYGOZ8VIbt9eh/Quv6YDTJ/uU8xjDMIifHZIfn9O8c536neukTxyK6RSZ5pTzOTIuEFWlZ2+adYKtdQ0YKHUXqBpr0h5FibvZxaoF1Fa6ZCdD8pNTTv5f/4302TFKSZxOS3d+VnoYtkX07mMs10WZJmYUYzgWjZdvEOysU5wNGf/JW1SzCFWWmoBYC4if7FFFEbVTydOTEieNCIcjyvYyp60bKGCtDvVWwMF+hFukuK0Wg2FB6Af4vsXBUYIQiomN/lzJBZZp8LlXmoS+xWhc8f13J+xshtRqNmsrPi/fbFKvaXLbg8dzfvv3z3m8F1EPbdKFPe7qdo3lnoa4WJa4nPd9dpDQ67if2ebcC9Hzc1QXAuaHdXeeL9M0yfOcb3zjGzQaDb761a9+bHjjx1WaCe49nDOPBN22xWBUcP9pSlFImg2b8bQEVTGZm2yZME8k42nJn3xvTBRX2jPtGsxmGpH8UWUAjv3+QP5nL3g+izfbz5YV7keVQosbYyF6lNIdpDAwKYW2rKkKTEsipN4VynJJXmixJBZ2RSX0fSuhhW1ZgpDaEpBlklrNRAiYRyWeC42auwhXUxSFZDAqGY/LRR6JJElsitLBNi021jzyUlJGFdsbH7Rp1gKL2by6hCv8aXN6TNOk2WzSbC7S4qVkNpsxHo85Ozvj4cOHuK77gU5QEASf+vGEED+ULPdhEZSmKbVa7WNv/6J++tWo23z+lTaPdyPSTDCPUopC0eu4rK369Dr6szjNBNev1HBskywXGAbcfxQhpMQyDHpdjyJXPHwyxbLgy1/o4vs2RaFjAUbjnHkkmEWSWlCRZYK9w5T5vOLa1RrNpk294RE7dexkSBmEVEJhm5AXCmNzg8a0RCZjPeQ+nVPNIqp5jOk5eGtLOJ0m4dVNalc3mVy7R3T3MeV4ijg+Q0Qp9Vdv0Xz1JkjIT86xXIf67evwaBdZVJou5tq43RZVkuG0GzokNM2RQQkoivMhdrOG7fuU0xnFYKghApaJVa/hdBoE22vkp+eILNP3OR2Q94c4jToyLzBcV3c+GiEyL6hmc8JretfeOD5HlRV26OHvbNG4c53spE8VpSgpKM4GKCGZ331E/HBPB3latkYpFyVIQZVkpJapxVWa4y13sZp17OUlVFWCa2soQHOD5pVN0mdHlPMYO/Bpf+k18F2M//6HFFGEqkqSoiI9OcfydDio4TiXQ/3ecg+r1eD8v/wO8/ce6+BL28H0nQVyO0Mp8FpNirOR7r7Ztg7HXO7htBvUbl5FScn0u+9dCtpgaxVVCex6iCxKytGMKs4wHUvnEZkmTruJv72GoaDsxlTjCdgWbhiQHZ9Rjqaa2HZyjrvcJby+g+W51F66gshyxCzGcGyclkvaalDNZrg9nX1jN2vYnTaqrPBWly9nX9KDY7Kjc215ExKn2aCazTH9AGe5i+E6iCSlGC46ja6jb4vCDjyK0YT53cdkZ32yZ0dU0zmFN2T87bdx2k2cVgO7Wcdp1qnmEbO3H2oYA2AFPiIviN57gpICMPR81+aKtsbN9OyULEpUWS1ADSGW5xBuryHyAjGdUwiBFBVup6lvUwup4gxMA7vdXGRZmJiGpTN3PJfo8R7jb34fmReYgYflWJitBo1Xb9L64quIJGX4u98kuvuY4NoOssjJj87Iz4fETw8wPIvlRpuyshiEHaamT39okiYjrm0FXFnXWUt9WzGbFzSbisEo52yQIko4HaTMI52r2KjbrC37LPe07XY2LwHJZCoJw4Jmw2ZlySMM9HfT/mHC4VGKH1isLfnYlsE81sTeMHg/esJ2tA1+Y81hNC6Yx9Vnhq5+IXp+DurCznZBZ/skgkcpxWAwYDKZcOfOHa5cufKplPVoYRVaW3aJE8HxWUGrYZMXkqWuSyUlb78XYUjF8WnBaJojKugPcx49iZnOS5K4+KFENoVeDFfis7Kz/VnUz7YIMni/ywPaxlwKSHOJUhq/m8Tw0lUDy9YLMM+XZLmGKFiWQiqJFHomSIgFgltoOp/rGhimHpSMU0FeKAbDkiyTxElJrWayseoTp4J6zaQoJNN5ySwqOT7LubYdEgTmIila5wg9PySZF5J26308tpTyJ7qzZJom7XabdrvNtWvXEEIwnU4Zj8ecnJzw4MEDPM/7QCfI8z55S/9HiZ4PVxzHhGH4wtr256xaTYcvvt7m+tUaV7ZD9vYTPE+T16azSiP9Q4tf+cqSBnscJjzM55SlxPNMlroe7ZZDli1S1k2dh3UhmA6PE6JY0Ov4mGZBEJiXOT2jaYl3mnJ1p872ZsDT8RKT0yF2OSKTBUmSYRgGqzsdWo0l2Fwm3TvQ9h/TxF/XJC+NRR4ze+s+7V94jd5XvkDz1ZsUgxHJk32S3UNW/++/jtttkR2dUY6nGIaJ2QgRQpA9O9IJ860WItVzPzLLMT0PVVV6aLzQBLfwyhZmLaCazPFWunhLHcpJRHp0ioxTZJpTJQUyzlGlRBUldr2O6diIPMNp1pCWSf3ll3B6beZv3SM/7mOYkJ/0MT2H4NoVnJaekXE6TZLdA5KnB1RJitNqkDw7QmYZTreliWHjqcYdOx5kOeVwAo6NE/qY9YDg2hampWebrDBE5AVut6UfY0tn9TjNuhZU330PJYSeCUEhsxzyAkOBYYUUZ6cLobmMnMWQpAQ7G5ehmJbnUQwcitEEd3WJ+o0rtH7xc4h5THpwxvz+YwzHxek0aH7uDlazzvB//jGGbZKfDTEdG29zjezwFFULMF2HcjRBRjF2vYZIMhDakui2tQfSbjVJqwoxjZC+prZlZ32sMMBpN2l/6TUs7/3NVMv38DZWiB8+I7y6Sf3WNeb3Hmv0eBggkxS7oZHeVhDo33fax6qFyLIkOzmnHOnXXEkXb7mrr5W8wAp9suM+ye4RwZX1Rb6P9jtagUc5mlD0hyghcFp1rGaN4qTP7K37NF6/g9Nu4a30GH3z+1TzmNqNK1iB3jBLj06wWjWQivjJHs3X71CcDxFxgttp4vZaFOcjcBxMz0bMdXhtsLmGVfOZv/eYcjpDlRJnqYO3vozMc8RkjtOsYyiJVQvxl7sEN7YZ/t6fMPjdb2rLWlnitGqYQaA7mlmuz0ec0v/vf0j06Bnu6jLZyTnVZI7TayOKinIewViAMli3LZaNnNxv8sRoMZuMWd9cIwhfWnR8BOfC4P6jiP4w18ceWNimQVVI8lLhudraZjv+Ygaxoiq1Fa7TdHAci3fvzUgzSa/j8Hg3ola32VoPEJX+fWkhL3PFAj/Etk0NGKqb2LZJJTRw6LOqF6LnZ7w+nL3zSQRPnue8/fbbzOdz6vU6V69e/VSPnaSCwSinKHRrcjDWNI5Wy6GsFGl20QYwKCqD00HGbFqxseajlMV4kvPsMKWstMVJ/RDb1fuC56dRfxYLw58tEaT44Pm66MIpBbUAMDQ44bQvWVvVnmDDMSmKSgeWSUGZ6fMu1WIuaIHL1mNmCgWMpwVC6E6fAiazijiV7B+ldNs240nFs4OMSoDnmkgJs0jQHxU0GxbjacloAnk+4faNGu2OTZpIhNAY7Iv603Z6flRZlkW32720jlZVdSmCDg4OuHv3LmEYXgqgdrv9Q7uuUsofW/TU6/U/9fN4UT/5MgyDemhrER9XnPYzorig0/a4faPO2qp/uetp2wYn5ym3X2qSF4LJrEQIRaftgFEjzQTDccFyz6MUisGwoBZYms5lQKvlEqdSg0dqNqNJyfqKoBmaXNv0uPeepHHvO8higt+pEdYd7ImH+epNul/9AhPfpfe//IK2BzmuJlxZJsnekRYHT/axfE/bqySEN67g9LqYrkv8cJfsuI8sCkSaUYwmzN59hKEUwbVt7afzXMw4RVQVpu9rPG+rgZwnBO0GzlIbGWUEVzY0xQp0UKZpkJ+cE+3uU54M3o9m8F3chs6GKecxZX+Ev7FK7SUtbFQlcDtNqnkElo3bbeMud3BaDT1wPouoZnNt4aqFKKlQxQSn18bttskHYz13ZJqIrIBWHTmeYTfq+GtLmgJ3cIrX61BbX8HptchPBhiOxdJf+apGGGcZ83cecvS//1c917O+rEVeUWE3NO65GM+wi1LPP9VrlIMxpu8x/J/fQEQJtes7KCGo4hzDtrACn+DaNsV4QvJoj/qd6xiWRTka4y536XztS1STGdNvv02ye4AyDMQ8ppxF2L0OpudQTWbYzYa+cKTSEAHTxNtYQaaZJt2ZJoZpYDUbeKs9PYczWOTrWLpbkfdHmK5z2ckBqN24QnZwSnZ8hre6TOuNV8gXQbFVnNH55TdY/rWv4Sx1KPojxt98k/ykj2GYnP/2H1GNJtj1Ok6niUwzRJpq+/ssRhY5lAWmZVJMJ1SzWCO4/QUOe+GRtxp1LNvC6rURaUbydJ/WF17R3ZLf/ROS0QQRJ5iBjxUEmK5LsL2BFbgkD/dI9o91LpBpYrebVPNYgw/WlvA2Vkn3jrCbDZpv3CE/7mPVAuymBjVoIRSQjqaXxEGRl3gbDQzPwV3uYddrzN9+QPdXfwlXVORnAzBMlGFgN+ukx2ek+8ck+4dYjZoOkt09oUoT4v0jvWFQVliuhypKiijFtBOCKqdnKdJaGyUEIs1RomKp5yF7TQZ7mbaw2QZ5ITVTxLdw3IVoySS7zxI9xtB1yUtJVkgw9SaO55s8248ZjW0qoSluSipsWwNXbMvAsnROWJwIajU9m9htu+SFwHWsSyv6Z1EvRM/PaH1c9s6PqsFgwNtvv02v1+P27dvs7e392I9dVZKnewnHpxnPDhP2DlN2DxLm84oo0buTaS4Yj22STOhOVAWDQUpeGOwdJguwgVrYmRaZMB9bWvB4DuQfY4H7+avnX5DPNiT1J1UGulOTZYpGwyJwK1wHDClJ0goMSFJJFOvZnVK8j8yG90lxhtRZQo4FVQkshFGZKywT0kTyrTfn3L0f4XkmYWCzvuaR5wZnw4KykPSHBSio1y2Ugqf7Kf1hwfqKx+2XQm5dD1hZ0qLiYvblsxQ9Hy7btun1evR6PQDKsmQymTCZTHj27BlRFFGr1T4ggpwFhemis/vjHG8URS9Ez5/TSpKK77w14fHunFlULQiVBqZlYNt1Gs+R2opCYtsmy0t6obS5rhZzdAZn/Yx7j+ZEsbaTFqWGxzQbDrOopB7adFr6Gnq6F5MXQsNE4ozZ0z36Dw7YHD5mbdPGKusYQhJuL1O/dQ1ZlIy+8T3cpQ7e0vszn0pKqijGaTVwl3o0Xr6J4VrIosLptPA3V5m9fZ/B73xD707XQqppTjkYU87nlKOpbvUaBhhg+QHYNirLKUcT/I1V/NVlymCO22og0xx/e/VS8JTjKcneEfGTPcpZpAMiLT1UbsmLmAaQQiHTHMO1Ca5soIQgerRHdnyG5To43Q6dL7+OGfhED59iBT61W9dQUiGFxOm2SfeOyUcT1LG8JILJVA+W240a7sYqdrPO7M33cGqarKgk2IGH6btEj3YxHpuoSiCyjPrtG7Rev72YGzmAsqJx6xrZ6TnZ/gmG72MYBrKSGKaBYVsEVzaxW3Um33qL8No2mAZVnBI/3MUKA7yNFezbN8gOjymPz8AwSQ+OKaYzqlkEQlK/cwMZp0T3HmO6Dv7WGuV4hh14VJMpkz95E6fdxjCgGE+0pU1/eNP7S1/GDD2m33uPcjzD8l2qKCEfjaEokELpDk+zjmnpbJ7pd94huvuI5udf0eLLMPBWenS+8gWmb75HsneEzHJkWRHcuMLa67dpfv5lDMMgO+1z/l/+J/O7j7DbTex6iNMISQ1DW9cqibe2jChKROAjDkuoJFargb+2gtNuMn37IdV0hohtXANsz8Xu6TkZmZcE3TZ2vUY5nFAMJky++w7FZIppWeT9EUpKvOUezc/dwa7r7lc1mmks+ukAt92kihOwDLyNZagU2eEpMi9I9w8XQbc2/ubaIuS1YH7/CW63g6pKrHpIMRjh1EO85Q52vYYdaKJgVg8p+mOoKqpphKwk3kqPYHOV+cOnlOM51STSp+fxM20NrdcwXZcqTpBFhSxKnZ0lJQgDWc5ob7QY2D5Joaj1x9ryeOMqWWYhlP6OCQPrEjoUJ0KHfxcasJLlEsc2WOq5OJbJ2SCj1cg07MDSdvH+0GBzQ2fp1Wva9nZ8qoEtaSowDMU8KilLwVLXo1HXYaZXtmrUws9OmrwQPT+DpZSiqiqqxfb6JxE8UkoePXrE/v4+L7/8Mpubm/T7/R8aTvrhKgrJYFzw6GnM0XGK7UCWCx0i+TTGsgwC38JzTJRQPNqNkMB8XpFlNiDwXMgLE4OLQevF8X0kbXrxYYveqfwofPJfjPq4LpDiz6YrtchEW4jVyxyfxf/kJfilwrYUaaaYxgohNbVPKd0hUsb7uT/Pl2UCBqQ51ELF4rtN06skl/ADgHmkmEaCZkPieia2CfNIUgnFfF5RCckaPo2aSeib+L7JLK7otB2ubL8fbCqlPq7ZXHJ8ljCZVhQLCs3qkoPnmcSxFm6GadCo2bSa9qVvWUgdjnrWzykWts61FY9a+MkFquM4LC8vX2ZiFUXBZDJhPB7z5MkTkiSh0WjQ6XQu54Z+nE5PkiQvZnr+HJaUim+/NeY7b45xXJNG3cEyDfJCcHSSEUV9wr+mffTAAh3LBza6Lj76Lywmg3HOdBFgWlaS4SjH9y22NgIsS1vfDODwJGU0Lth7+wBvOGDFTWm5MYFrIqSFEILkySH+6jLB9S1Gv/9t3E778tjz86HOKBlPQSrKeYS/ucrK3/hfP2BnCrbWKEcT8vMRIssoFjv/5SzCquk0edOxdBelLHGXOoBCJDlWLcB0bMLrO5gX8yiLjoFIM9L9Y4rhmGI0wTAtTM/TyfVlSbVAZBumidNtY6x0wbKRQpI83kMpDR4QZUW1f8y8qUlf87fuET/YxWnWsZp1jdfutIgePqWczi4xyKbrgBSIrNDBnmsryLLU5wTwlrrIvMBd6SGLEjFPEFmGYTt4az1m33uX7OBEL/jzDG+lh7e6hOE6pPsnlOMpSkiswEWVJqoo9MxIIVAo/J0NANLeKabjUA5H2kZXCwiv7VDO5sT3nyDSFLteo0pSTN9DmQbp4QlgYLeaKAXZ2YD06QEizfSs02SOu74MeYHdbRFsb2J6Lo0vvgx5QXE+ohiNSJ6dUJ4PsdoN8F2qs6E+6ZaFu7qEtQiyLcZTpt97F6dVx99Y4Ky318G2GX/ju6STmc4QMgwNN3jnIcn+MYPf+Qbzdx7gLHXxhKCczcknM6oowWrUNYlPSP1at5oUwwlWPcB0bdKjU1AKt9NEzC2qeQworF4Lp9dCxfn7KFOlqOKEwe99k+TpPpbvX874qLJCxCnze48Ir+8g5jHOSg/fc8nPB3hrKxi2qVHrrkN+0kcVBUbgU0Up87fuU7u+g7vcxV3uIAv9+haDEYZhYrcbeMs9aneuYwUB/vrKIjncILyxTfP1O1oori1R9EdYrTplFDG/90QLeSWxum2qWQyGiawqbN8Fw0KVKaqSxHtHOJ0m3s6WDi8dnNA2Ckbrt3CEw+pLV5G9ZQ6/PWI4Kmi1XDzXxDQkk3mJEJKy0t/jfqDIUoFtGszmFfOoIs6qBS1UW9IHw4KilLRbLp2WC4bB1oa2smnLbcVonOO6FtvrAd2Oy/kgp9txubrz2X5PvRA9P2P1fPbOBZL2R1WSJLz11lsIIfjKV75yueNrWdYnFj2zecm33pxwdJJxdJpRlpJ5VBIEFlIqhFBIKSgKSZbpL5okEZekMCW1hClKMM3F4le9nwtj/MAiWHd3Ln7+UQvkv7h1kUl0IXh++lY4c5FloZS2npXV+/9mmSAqyTxSmJYCKkBjNA0W9xMffU4vFnBVBZOp0JADzbt4DmSxuO3iZYgixQkpKBMTaDUtylK7ZQbDAtN0aNRsdjYDzvoFj54mhIHFcFwiJdRC2D2wiKsZhycFWSao1Ww6TYvvviUJfHMxEK6x28s9h611j5eu11lfcXmym7C7n+I4BrZl8PBpwmBU8Nqdxo8lfJ4v13VZWVlhZUXjbfM8v8RjP378GIC33nqLbrdLp9Oh1Wr9UBEUx/EL0fPnsEbjgnfvTXE8k5Wed7l5FQQWYWBzeJzw3r3ppehpNWxqoUUUCxr1D359O7ZJs2FTr1tMpyVZLhY+eptb1+s0GnoBaizgB0LCSkOxcTqituyRff0J+WSEaDex6gGWCsjPh4y/+SZWLUBJSTEaE+yskx2fMX/vMQqF02yAaVCMp8T3nzDptOh85Q3MhT2zGE6QeYnp62Fyw7I1UCArMDAuxYLlOVSzGMMyCbY3KGdzWl9+nbX/7S9jN+pMvvs2yd4p5WhCZdvk50Py/kh3I4oKf3t5kbVi4yx3MCdzfds0x7Ut3JUe6e4h87fvU7uxgywFVj3AadZwrm2SPNrD8GzCl66Qn/QpRhPE4SnlcIyz1MbyPPzVZVSWUQ6mGJ6jd30WH2SyKEj7I0zXw7BMRJJieS6qEpSTGXajhmFbVPMIf3uD+is36f/OH1P2h9RuX6McTbV9zXNx200ddjqcYIYBVs3F8n2UFGRHp9RuXsNybNylDvGTfUzbwm43iXcPcRo1/RyGYwzPI9hZx/I8UJL53cec/R//A2epjVOrkZ/2kQakx32NlO51cDqBhlWMpliBtmR1vvIFgqsbpE8PMRwbb2OZ+Ok+Ik0Ib13F31hBlSUUFeHNq5SDMenBCfUbOwC4nRbJLCLePbwUPcVwzPTbmjhWf+kKpu8h0ozB//gjLV4aIeV4qgVKWTB7+wF2GGDWQlCKdO8If32FYjjWeTfDMbLIqd26jpjNMX0Pu1HDaTcopzHzdx9QDKdYrkfj1nVqX7kGKIqzIeVkRhUnVFGCv76C02uTH55hBh5G4GOGPslFWG23TT4c03ztFnazjkxTrDDQOUpZQXh1g6I/1gG4UuIstcnPB6RHJ7hLXdyVJbL9E7L+ADFPMdCdLzsMCa5u4q0uAQqZZti1GuHO5uV7Inr0jOn33iXZOyI/OtNBt/Ua1SxGGSZ2LdAuivEMWZWXVj7TdqCSyDzDbdcx/SW204z1ax72X/kiibDJM4EQiqWuJqdFccl4qkcWqkoHBueVQRJV+L5FlgsOTxKQip0tDVpJU4HvmTRqFnEC+4cpG6u+thqWEscxWV/xCXyT4djl6lZAo6lDSV+63mB7I/hABtlnUS9Ez89IfdLsnQ/X6ekp7777Luvr69y5c+cDC6OPCif9qCoKwe/+4ZBHTyNcz2Q8LYiiiiST9DqKJJFgQBjarPRcBqOKeVzheSZpJqj5JlmmF7pVqYWOZYGl4xh0v8LgORfXc/M7L8TOx9Tz5/6nPw90gQ6X8oMWNdB2xThdEN4UFJWkyCW2DaYFpoTyY85r9VzHTyotpj5O8F52CRWkKRhI6nWDONEfvEIZJElFkgi6XRsMqPkmu/sJQiq9yDThvTfnPD20aXSl7iyZcHiccXxqICqJ45os91yWey5KQVEqklTy6GmMkorDk4x2y9ZobqDZVJyeFRyfZdy89pMRGp7nsba2xtraGmma8sd//Mdsbm4ymUy4d+8eRVHQarUurXCtVusDGyJ/GnvbP/pH/4j//J//M/fv3ycIAr761a/yj//xP+b27duXt1FK8Q/+wT/gX/7Lf8l4POaXfumX+Of//J/z6quvXt4mz3N+4zd+g//4H/8jaZryV//qX+Vf/It/wdbW1qd/YX7G6+gsZTKruLZT0/llsSBOKhQQ+ha2Y/B0P+Z/KQSuaxGGeij43sM502lBklZUQlMTs0wyi0qWuh62Y2IYik7HIUkEyULIX4QMXpAL76wZOOcJJi6TswH2Itfkouxmg+ysT/9//jGGrdHW/uYa8ZN9DMfGbeuuo4hivJUe9VdukDzZx9/UczNKKaIHT0EpGq/dQl50KxaUKhmliCTB7bbxt9cphxO8rVUwTKJ3HuA06vhry3hrS+RnfUZ/9D3y43OcTpP8XC9W8/Mhbq+DYVlYrbreKANkki5mj2yUkBSDMbIsoazIjs+pvXSF5usvE2ytEe8dYtd9MEz8jVWCrXXy03Py/pjs6JRy9xi7WSO8soVVD5j8ydtU00iHito2VRQTPXyG6TjYrTqqqkj3j3Qmj21h2haqqhbdFh9vuUt6cEzyZF/v+Ls22fmAYjIjuLaNQmEonenjdluYpqUpc7OI+PwZsiwwfI/i2QHlcEzy+BlWs052cELVqKGqiuJ8iNtpQlFSJTkYYNg20cNduC8JttYxXId8MCI7OMFu1jFdC5kXYIC3vU796pZGUxvQfOUmtZ1N4t0D/TqtrVC7voMZ+ti+qy3Cnoe/ukQ1izQGfHsDy9XLTKfV0HlHZYnIC87/29eZv/0Ad7ULhoG33MWwLERZIbJcB+E26xSDkcZV10NkJfBaDeqvvMTs3UcUo7GecanXMFz3sluWGWCHIW63hWHZeEsu1ZVN0meH2Esdmq/fwVtbwrQs5JVNkqcHeKvLzN97SHh9CwxTo73HM8ww1PlMSUJ0f0ztpSu4vRYyK7QA6o8IlruUUaxz08IQu6UznVzHw201kUFJftandmMHt9ehunmV/GxA/PAZKIksCsKbV6hd3QIDytEUp9vSGUyLr3qR5ZTjKXa7iZuk+JM5wfVtZJox/f493YEUFTgOIk5RSmlbWyl1TpDngG2THZ3ib2/QvHWdcLPG5it1hF8jTipODucMTmdEo4TZec4kMpCej2EaSKE/O7JC4LgmUimG45xGzSHJBSdn6aUtwzQNPnenyclZxtP9GNc16Q8L8lw7MaKoZGPV59XbTTY3QlzHxPN+Opu2L0TPz0D9ONk7FyWE4MGDBxwfH/Paa6+xtrb2A7f5pKJndz/hyV7MUs8lCCxOzjKyQreik0QuRIxJXiikMnAcg1poYyARQjKZig90AhR6YezbJq6tKAr13KzOB4EFLzTPx9UPO//Pf3godG/lwz//6VVRSIQCUSyIb5/wpF50kSrxg8IK3gcpWMZiLMCEslCYlkmeSZJcd5b8ukkQ2OzupSgUzYZLt+2yvmLg+9pqKYVBf1CQ53rWrN2yGY1LHNtkNCmxLVhf0XMUw3G5yEqRPNlLdECbb+O5Bp2WDon0fZPBsPiRoifLJVIqfM+8JMn9qLqAGGxsbLCxsYFSijRNLztBh4eHCCFotVrYts1wOGQ+n1/OD/249fu///v83b/7d/nyl79MVVX85m/+Jn/tr/017t69e9k9+if/5J/wT//pP+Xf/Jt/w61bt/iH//Af8uu//us8ePCARqMBwN/7e3+P//Jf/gv/6T/9J3q9Hn//7/99/ubf/Jt897vf/bGsej9PVeQKQ+mNpZOzTGdY2NoeNZuVlKW+PspKccG12FgL+N47Y969O2WWCEw0At404KWrNa5shVi2FrxFIXj4OOL4NKUsJdbCHlcLLV6+Wad9csrJw2eUkwnlYKIDPl0bKwioooTs+AwRJ9pCE9ao0oyz/+//xPBsai9do5pHiCTTodR3ruO0mog4I9ndJ7yxozsts0gPek9nFP0xahFmaZgGqixJDk/1MLdhIPKC9NkRMi9RUrd5h1//Nu5SB5nmOO0mVRTrnflZTDmNEGlOOdU7+8HOxmIeaEoZxdhhgIxTRJ5jOBZ2o6FDMwOP5hdepf3GyxSjKWIyw13uUgwmqKLE317HCjyqJMPbWNFZLYMxhmlCJfA2VihOzpFZAYaBTBIM26F+5xpW6KOUQTmeUk0j0tFsYbnycJe7+Cs9VFkRP9jF8l2cRoi71MVpN4kf7DJ/9wGGUJi1kGoWIVwH/8oWdkOLGivQ3aPZm+9R9MeEL12hGEwQ05leK4ynVNM57lJbL0B9bzEsr8j7Y/2aZDlWI8TpdsjPBhgY2LUAb31ZzzHlBU4YooTUAupMh7OG17YJr22THpygioLa9W2UlGAYmsw3jQCwQo9yPEflOSxEz8WXeX4+5Py3/oDB7/yxxlEbBvnJgKweYjVqqCzH7bWJ7j3CXV+lmsU43Ram40AUI6KYYGtdP9fTIcHGCrXb1xYzOGOswMVpNZGlQMxmiLKCSqDyAqfbRs4jhr//LYKdDZxuE9OysZs1/I1V5u/cX9DaDMKrmyT7J6S7h5TzOYZpYVgmzdfv0PrS5yiHI7z1ZYrBmPzknOJ0iFXzEXEKQtJ87Tam5xFe2STZO6KazC6tDHYtxNpZx6oFeBurxPeeUpwO9EaVVNjtBit/4y+THZ+R7h3hLvfIzgYU/TF23ccQktrNKyip8FY1Mr44HYCwEckcmeUY9RC33UQKSX4+0IIyilGVoJrM8H/xdZ0ZlGbUui2y0z7e+QH2ICOPbWaRRBYCTxaIoI6yTUxhYBoGUVTiuBZC6tNa5ALHNqjXbNJUYjoGZaVYXfEoS8WTZxGuY+B5JoFnsrFap9N0eLqf0mi6bK59+viGH7deiJ4/5/XjZu+A3tV96623ME2Tr371q4Rh+JG3+ySiRynF8VmugygrxWxeIiQ4lsFkUjIsBJYJUhno7yiF5xkUhaIRmhiGDnO5OGzLWNhVAdOQOI4OJ31f7PzFXPx8dqVnot6vzx6KYFsQ+DCP3xcsn8ameGFn+7hL/uJXCfX+4/qBzcaqy+mZ3gU3bQPf05k/Er3IpKGohGL3IGFzLUBKvaCME0mWCQLfIs8lSSqo1w0s0yDJxWWmj2Fo0Z7lgvN+xmBU0espJlODk7OCes1iMMpQyiDLBVvrAY26tiXVa5Ye0M0Ezw4y+sMcIaFZt9nZ8lnq/uicrI8KJg3DkDAM2dzcRClFkiSMx2O+/vWv8xu/8RskScL169fZ2NjgV3/1V/n85z//iUEIv/Vbv/WBv//rf/2vWVlZ4bvf/S6/8iu/glKKf/bP/hm/+Zu/yd/6W38LgH/7b/8tq6ur/If/8B/4O3/n7zCdTvlX/+pf8e/+3b/j137t1wD49//+37O9vc1v//Zv89f/+l//RMfy81b1mo0yYP8oQUpoNh2MxYaGQnF4nOClJtUC4aqU4vvvTnSwbsen29NRx9N5SX+UM5qUjKYlyz0t0F3X4vatBqenGdd2aoRmCVFEK1BUb7/D4N1HFKd9RF5gN+uUwzFxXmpxMZlSRQnuSg/TNPHWllj+G7/Cyf/+W8zevEuye4jpODitBuFL72OercUsgxJCZ4v4Hu5Sm8l33wPDwHQdvehrNihGU1SUkBwcazEzjbDrIXYYYNVDzMDDW18mfvCU9PCMpb/6VYrzIf3f+QblaIrp2NpmVlU6v6YocZc7ep4nScnjFAMINlap3dghOxvqPJ3xjNnb92m8fANVVkghMWwHlMIwTZSQRPefUo2m1F66ipJKQxKAZP8QhKLxyk2seoiIEorRBMvzaL7xCoZlQlnhra8QPdknuf8Uf2sNb3MVO/S13W08xfRc3JUl3ekxTZzlHoZpMXv3Afmgj7PSw4hT7FoNK/D1jI9hIIuK5Ok+2aEO8Aw7Teov7VDOIqq8QAlBOZ0jJXjN+iUdrIxSyskUf2OF9OSc4nyMrATleAa2JsQZrovle7i9Fu5yj2oyRSmJ7HX081qU4dgYpp4fuYBK2PUQ07Z1pwilv+yf+/AuZ3Ocdotn/8//wOS775KfD7BrIU67QXjl/8/en8RIlqX3nejvnHNnm3328Jgzch5rJqvqkSwJVDdfN98TnhoUpI0kaCGAEgGBEgRoR24oSFpowYWW4kqLhwb4pEZT3aIkkqViFWvIqpynGD3C58HmO99zzlscC8+MnCqz5qLyA6Ky3N3M3ezatWvnf77/9/ufRyhJsX+EDAPk4vGq6RyhpDuPfGcndJlIFi8MCZ94mKUvPsvyL30BpCS9cYfTP/2mex5t4URj6s5FPc9QbSey6ukcuX9MdmeH6NwqG5/9VdfpikKayRyv10G1W8QXNqmHI/ylDs28QLUius8+hhcHeOc3MDfvMvjc0zSTGQd/9KcIC163TXRxk+TyebLrd9Bp5mZvPHfM7lczy/C7HbqPP4QX+GdUQRkEhBsrqCQmuXqB6UtvkN/bY7ro5mBjgtUlTN2ANTSTOfG5NZrJFNVugZQOJNJzm01CCPxej/j8OuFyD9NohO9RHQ9pxjNM09CkGeVLr7Li5chLA9KdGjnRCGuo6gaZZUSdFoQKgcAYyfKyzzzV9LseCMHpqEI3cPFCQq/rMZpU9Hs+3Y7HYw+1iSI3rpDEHu2WcvcZltzdydhYjR6IlPhx1iei52e0ftDsnd3dXV5//XUuXrzIww8//KELm/cTPdZaRuOa4dihUDttj6ZxaMGDo4oklszmNcNJw2SmMcbtMArhyFpNYxj0A3TTEEaK42FD3by9U3/216yLIqgzvehgfSJ23JDT/SO0GHiSwnnCfmT5Kj9aK5wSD2Kn759u77Sp3Q8ytfp9f8UH1n1R81GFUlNDlmomk4ZGW6RygadIwWxBxapqw3TqLETGKGfDDCR143ag7tzLzwSa1pZZ2uArS1V73NnJ6XZ8hLX4vmD/wGUAra/5aA2dluTmdsZLr5dUpUFry7dfmOB7kgtbMVcvxTz7VJtrl1pcv5VxeOIyrUIFo0nNLG149okO/d6Hh7J9lGDSVqtFq9Xib/2tv8Vv/MZv8Ou//uv0+33+5E/+hN/93d/lS1/6En/0R3/00Q7su2oymQCc4bdv377NwcEBf+2v/bWz24RhyC//8i/z9a9/nX/wD/4Bzz//PHVdP3Cbc+fO8dRTT/H1r3/9f1jRc/5cRBIrbm3nnD+XnAkegDzX+J5k0PM5GRYYa7m7k/LVvzjGWri4FRMsdtEb7YT8yajihZfGPPl4lyhUdDsevifx0Ngbb5GUp+R399i7fof05jZep4WMQsqDI0QS4/V7pLfukt64s+gSBCDA73WJL26SXd+mOh3TjGeoJMHvd/H6HUxVMXv5LTpPP+JoUZ02QimE76PCwNmPsKgkohnPKLIcPZoAAtVrI6Wi2Dlwc6orA7xBl3B1ieLwFKFuISLfhZ3OM0xduwXilfPMr98hvXGXejpFhgHNLHW5brMUbSxSa/y1ZWQUgoGg36HYO0L1ui6c8mSMigKElDSzOSIM8Hpt6tGEajjGX13CFiXR2jJmZUB6/TbS87GiOQuurEcTZBDSfuIhpOeRXNwi39nDlDXdR69g5xmq1yFcdvjlYHWJejQhWBmgqxqv6wbyvV6HYGG9GuUlwaBH/7NPOavd4SnZ7bsI33fidDpDWEM9m5PdvEd8+RymKOk98xhNUTL+ixeox1Nal7YAB31I37xJM8+ohxP0NKUZz5AzF+4qjIfJC8rdA1qPXHF2QSkwTUN5Z5dwY5XqZIgMA/xBj2DJ/atPx4sZFPB6HcL1JYqdQxDCgQxabge/OhliipLTbzzP5C9eRPU6BP2um3Eaz5mO36D1yGXqyZR6Msfvt9GzjDTfQWjjhOJ0Dk2NENJR91oxnWceIdzaoP3YQwAE6ysMv/Y8o2++iC4rTJ4jlXLP0ffxBj1MUdC+donec4+BVDTTGeXBCa1HrtC6dpH5m3dI4ggZ+A484ftnIaLtxx7Ca7+9iez3OuiyZuP/8z+hOi3St26TXL3o5rekRGcF89duUE1n6Lygmc0d7MJzIbXJQw7QIZRH8tCls+fxzt+/9OXPUh6eUJ9OKI9OMUa7+bG7+/iDnkNcLw3wOm0w4K8MkKFHfHmLajRxGPS1Ae3HH0JISbXo+jSTObZpKE+GDl4xHHHp4fPMdwyBspzruNDgWWbwy4zUeNikSxwrxOLzcakXEISSKFQksSIIFP2uTxgqjk4q4lDRSWDrXIznvXct2un4TCYV87Sh1/3xhJG+uz4RPT+D9YPY2Zqm4bXXXuPk5ITnnnvujAL1YXVf9NwnAVlrF1a2jKZx1iBrYe8gpyw0rcTN6JSlo2NhodMW5IU9sxflhSZNNatLoesAafueAfT7lWXwbjvbz23p91nRC5xgAefFEu9401vjlML92+gGdIMUAr/JAIGRCmsEjfRBet+P6/0D1g8nggwgXPaZEzzWfe+dh8MJiIVu+zH6FS1u3mY0qakX52+/63aXylIT+IIgkHgevHUrZ23FJ0k8klhQloJ7eznjyduIQCkFWjtCXr9n2T8s2d0v2VgLiI9csvRg4DJUDo5K7u0X3N0pGI5r91JZKCqz2LywFIVmnmnGY01ZGtaW/bMPgihUHByVHBxVP7ToeXcppQiCgF/7tV/jN3/zN2mahuPj449/gHHXpt/+7d/my1/+Mk899RTg5gYB1tfXH7jt+vr6GRL/4OCAIAgYDAbvuc39+/+PWJ22z0OX29zby5hMKvxAIQXUtaGsDJ22D0LwH/7TPqvLIaNJxc5uwWDgc2+3YHUlpNvxqSrNbN6QZw03t+dEkcT3XRDpxa0Ebl8nn+xSb8ZU0xmmrp3gCQNUHOJ128xevY7RGmGgzjKUkKjAxzaGejJl/sYtrHaOg+jcGl6vRbDUo5m4NPpGKdLr2wRLPXrPPYEQgmC5T7i+THrzLvHl8+B5ZDfuMH/zNkZr/DjEaEuduYFutdSjnkzxOy03UL7Uozw4RnVaCCGohmPq4yHBIq+m6/tgYfryGzSjCbasKO7tIoIQ5Xt4gz6dJx9BSEl+d9d1T5SiuLuHlYLhN75LfH6d/M4O1XhG91OPY7VBpxm20UhPUc5Sosvnybf3KO7uo9oJ2IB6MkMXJeXeITKOUe0IYXHZKKFPeXhMXtZuUXl4Qrl/TO/Zx4gvbFCdjtBZjjCG/ueeQWc51f4R+B6mapC+h5dE+O0W+e0d0lt3acZTRyzLS1QQQGMQFua375Ld2yO5uEn7iWtEW2vM37xJuX/owjCNpTw8XgS+BtSjCaau8AcDB6QJLVoIhLWuXS4lFks9npLevIcAhJSMv/UyqnWd9qNX6T7zGK1HrzL6+nepTscuqNUYwgvnKY9HlEcjF5a5e4ApapcjE4YUd3bxem2i8xvkOwc0ownCk1SnY06/9jxy0R0S1hJtrVMdn1IeDRGtEL/dpp6l+I3G67TofeZJvHbrAaJgdXji0NatGFOWeN0uWE11OgFZuLmh+4SzbhsZBHjdFsW9A5rRlOW/+kXK0zH5vX1kEqEnM3e8yoro3DqdJx+hHk4oj4foNHPZOss9TNPQ/8zT6HmOTjMXstoYgo0V9Iuvk924Qz2Zkd3bRwgXetv/wqcIz63RTOeoJCJcf3/7sRACv99x3ZjjU5LL5/H7PSzCkRBrib+6RP/zzzmi4Z0dtIZ6OMaLImy7Rbi5hikrquMh1ckQr9Ommef4/Q5H/+ef0vvMU8jQZ70nyAp445UZ6UjTFiW+VgitWa1OKMMW7V7I8bimWEAL8lyT54bAF0znDct9n87imrS2Ei7mZN9//aqkcHPBP0FS1Sei52es7nd3Po6dbTqd8sILLxBFEV/84heJougj/a37XaD7omc6b7h9NyMOJe0ld2qUpeb5l0vyyjDPDOliMFy5ayOBL6hql0cgcLv91giqxlCUBssH2ed+zu1s1r7dfdGLVE2rQXicoaQt7xJD7xZG1qkF7Vphwo2vIhD4uqbCJbaGdUYa9XjwWH2Ezo/RoOtF8qt15Aj5/Y73xxNB1r6NqvYWICMlQfkPIsZ/UgQ+u7BYAiAhLyy+DwjnMV5dCdjaCDg+bdg/LGnFin7XUBvBbNogFRSFQ6UHvgvfiwJBGAjiUFA1lu2djMOjklpb7tzL6bQVa8sBR8cVp+MKoxcbF5U75F4gXIcpbTg4KMBaNtZCNtdDqsXiVklBFEoms+/PZf+4waTwYDip53lsbm5+zCPr6h/9o3/ESy+9xNe+9rX3/Ozd16r715UPq49ym7/sdeVSi4OjLlneMJ01WGtRniSSkjiWHJ2UlKXLaplnDULCoBeQF5qDowIlXVD0bF7Tip3Pvt8LCALJeFJz87Vjend2aT25SjM+wFY1Kgqx7ZYLuhyOkK0E4SnsPEO0W2533IKuKvTRCSoOGX7tecKtNZLLW+iiRKe5s8X1WlQnQ6JwnfT6NvGvfol4gVMWUtJ54hFG334ZPUtJHrqIvbhFvnPgrG5S4schducQvUgo9hedo2x7l6goUO0WzWyONRpTVOiiJFx1XUav16H3macQQlDP5jTTOaYqSa5dpD4du8yYfgdrLE1Zkd/ZcZEP8wyAyXdfYfytF7DaIJRg/M0XKXePXJZP3VAenOJ12wSDHuXOPsHaMvV4SjWcIJTC67bx15bRaUF15LoZqt0iuXTOEeCmM7woonXlPHo2Z37jjuuUlSUYS/uxKySXL2Cqiupk5GaU5inBL30OnRXMXrtBsLGC9D2CjRVsWeG1IlS3iyly9Nx1m4SweN0O1dGQ+nRCtLVBM527iGfB4vkpl4u0uGA34+kCtWmdJXDmFt/16Zh5XlBP51jdsPSVX2T5lz6PkM4uNnnhdYTv0XniYWyjGX3rRaYvvU41dOhyf7nH6l/9hUUeksXvdVCtmMP/+F9dflK86JQIQT2euiDWsqSeps7m122R7x6ixhO8JEH4Hs3xiGr/GK/TRq0tOUF0MqIezRh8/lkAdFkxf+MmwVIPooB6Mscagwo8d+7kNembt2k9ehmTl1TDCdHGKtLznLMmzeg++Qj8TcH4G9+j2D3E5AWqFdO+dpnOM4/TTGfkt3fc+izwqQ5P0NM542++xOALz9L73FOc/PGfM37+FUxRUQ4nFHsH4PtulqqqsIFPPc0Yf/MFZBDQeugi/U8/gT/ofeA1otw/dp+xrQTpK4TnkVzacp2b0xHz12+62Z5eB++xaxgs9ckQrMWUNdXpiNnrN7F57gh9Sz1aVy6iOgnFvX1mr7xJsLaCEIL1/JDHOWASrNKJfPrCYMYlNTCdZFSNZV5KAk9gNAShRGtLVWsm04YXXpmwvhrQbrvZ2TTXpNl7aZMAadY4UmX0k1sHfiJ6fkbqfvbOW2+9hZSSK1eufKQFw/b2NtevX+fq1atcvXr1Yy0g7oue+wJrOm0oK8vy4O3T4nRUc283ZzptENKS55qmsU70CIHvKcAgJQtPpsVi2d3PKUv7ARv7P2fdHWtB1whrsAikNRjpL3TH/fbF/cwcsxBE8h0/u387Fh4vC0gQEmFqwqbA0zVWONmjZYAyNYkuMAiipqCRPuV97B3SKc77Pqx3WhTl4m+ZBq9pQBiEsQRNiRAwD3tOkXzkeufrZN7xfB58/eLQNa70oqFVlg/+lh9zk+estIGscLa2KBQYY8kz62bNAkkcCbLcYIxxC6VGs3NQk+Xu9Wlq6w6nsJSVQEhL4Dvt2m75BAG8cFiRKZcwneeagyPD9VvZglL3dtaQUiCEXASaW2YzjTWWqnEAA6wlLw1lZVFKYI3l6cc73/85fsxgUvjR5PT81m/9Fv/xP/5HvvrVrz5AXLsPSTk4OHhATB0dHZ11fzY2NqiqitFo9EC35+joiC9+8Ys/1OP6ea+VQcDWRkSn7ZOXmqrS3N11i9lWojg6KTl/LmZzPeb29pzZvOZ0WJAkPkWpOTwpMRbaiUeWa7od35ESpWDQ97n9vX3iBvpdn/mtEV6vQ5PmWOOElNWG4t6+y50JXIaP0AbTaCwCFUeoVkIznpLduEszS51lLYndELyQmLLEGkcE6z7z6GIY3FW0tc7qV36Ru3/wvzP53mukN7YpD08J15eIzm2gywp5dEq4tozOc2QU4yURKokp9k8I1q2b8UkSTFEsZkk0cpHabsuK1iOX6TxxjfFfvEA1nLD0//gs5fGI0defJ72zA1WDzguKvUO8bpv2k9eoRzOwBuE55r6MQmQSU+4dkt3aJlhdYfCLn6L9yGWaWYoua+KLW2ezRPHWhgManI5I37gFjY/f77hjutjxEQjiK+fpPvMo+b19yr0jisMTwuU+XismunBuIQQi4gubhOsV+d0DWo9dZf7KW05ojKbUJyPXweh1iTZWqdOM7NYMPU+J1lfRuROHwVKPejTGpDkrv/wL5Pf2mL30BsXhCdL33TB7loMQ+K0W1hp0mZ2JQISkyVMHr5CS1rVLLH/+WcRip97rtjF1Q3r9Dq2HLjnAQOij4pj2o0vIMHTZR2kOCAaff9p11g6OHcK700ZP5zTTGWaeEqwsURweg3adeeE52IQIfYSSWGsJVpZo8sLZLT1FNXKCUyUx0dYG2fYO7ceuUp2MyO/un9kvhRQI6WEag55nyMBH9togpbOJldXZOWrKmvLY2ffC5QHnfuP/SX06QeeFEzCLMYPs5l1nQ4wjdJYTLPdpP/kI2c27buZJCLCC5NJ5LFD892/SDKd4vTatTz/lLG7TOaYsKY9HjL/1Aitf+YWzLJ4PqvzePuHmKqoVU+wcoFoxKomIzq2746QN/qBH75nHaD16Bawl297j5L99g/St26AUKlD4Gxfw4ggVBC4jSwiCtSVMWVOfjGjOrVHs7PPwGpyGhpMZdLwGLyop1laZzC3H0wY/jji3HlFUboNQG8M80wSBpN1WeL5i0PM5OinwfMk8bYgj+YDFrW4M01nD4w+3f2LkNvhE9PxM1P3snfv//Si7n1VV8corrzCdTvnMZz5z5q//OPVO0fN+NZvX/Pm3hhwcFlS1RUg3N3E/e0dKi7Y1+j5WWFh8TzCZ1RSlxfPAvMfa9jMseO5bzt7zfU1Qp9QyQEiP0BQYXVL58WIhfz9kaLG0t+8gpi2OrcTgmQaBWfzYkDQ5vfyEVjWj9kK09KiljzKazG8hrUZLjyJoY6RCCgt1ifFCHmyguS6TMg2yNni2RhnjPN/Ko/RiUIZONUWqAHPfZvd9uz7vrncvtO93gQRlJZECosiNITULO5sUi+7fx/xLP2w1DQRtyeqKT1ka96+yTGca3QiaBrQ23L5XUBQN6RwaU5+NUUWRy9zJC3dhbhqDlC6Ruq4Nq72A0aRBa01ZQNlYPOUEn168/NaAUgZjxJlGjQLFoOdR15bvvDjj4SsJ3Y5iNjdMpg1p6pKv1YeQ3D6uvc1aS5qmZxS1j1vWWn7rt36LP/zDP+RP//RPuXLlygM/v3LlChsbG/zxH/8xn/rUpwB3ffqzP/sz/uW//JcAfOYzn8H3ff74j/+Y3/iN3wBgf3+fV155hX/1r/7VD/S4/rLU8lLA8iDgdFyxvhoxHFdgod/z2T8s8JRguR9Q1Q4IU1auw7g0cF+PxpXLthCWWVrTThSTmSYIDGVhiDyD123hKbcrIX0Pv9emWqTN66qiHk8dlKDbch2YIkYpgfR9d5u8BKkwTUl5cEL7kSvEl85R7B9TnoyQSjoUcV6Q3bpLcmnrAeHjD7p43Q51muEt9UFKvE5CsX9EfTx0Pe7Ax6YZ5f4h4uI54sDHxiHlwTGsLNP/hU8hfMn4Wy/RzFL85T4mLxC+R+vhywTLAyzgL/epx1Pq2RxdVC7HJQoxeQ5ao9otN3eCINpcQ8UhKomoTsYkl7fwHn+I2fU7CwRzgEpisju75Nt76KqkOhmBFFhjsJX78FOthCbNHKVuljGfbSN9j3Bzhfp4yOjPv4dKXG6MDFxYY5NljL/5Iq2HLiBDl1FjqprWw5cIVgYI32PpS5+hPDzBWoPX6bgZDunIcMXuIUJJshu3HSxGSYLlAcFSj/jSFuHGCvV0SpMXqDBEdds08xR9kiN9zwEDpFh0iyxCKUxZE3Q7WCUJ11eI1pfJbt5FJRHBUt+9lv0u2d09ysMTZq/dAG3of+HZB9YsOsuZv36DcHWJ5MoF9/fiyOUWtRKyW3fdeeZ7qDBEegpdlgTLA8IL6zTDCe1Hr1ANp1gp8ccTqqpC1w1mOEN6/uL8ssxeepPuU486gty9PYwQeHGI6XYIlnqYuqaetqiOR4tOUofy6NRRB60lfes22c1tMJr0xjbC8whXl+g++xjJ1QuE68sMv/Y8p1/9FkZrZBzRTOcIKUgeukh0bg09Sxl/52Wk79N+9DIyCCgPTzBZhd9vIzyfejoj3lrH73cxdY2/1KM6GTN77S2CtSWCfpdoc/Us3+qdpcsKL4mItjbwex2K/SOaeYZQ0s0ZddsIoPXoYrNcCFQcEqz0aD/5MMXdA4LVJZIr57FNQ3FwzOTF1/G7HZJFcKqep6Rv3qKZzelurPLpuOJFAoYnJfhdbNwlagSqaFgaSDY3YmbzmtGkJstdSP3yUkg78fE9yROPdklixeFxQRJ7HB2X+IEk8F1mT10bLmzFXLrwk82P+0T0/BTrfhr8O+1snudRvnub/F01Go148cUX6Xa7fPGLXyR4nzfJR6l3i552S1FVmlffmjGbNxwclrx2fUpZWbdbfX8uY1HGuHyUB35n4IZqzcLpVT8geiw/k4KnqZCmwYj7TPy32fhYENagZYBVHqquUbohaXJKU1N4MUZ6hOUMpMBvKjzTUCsfi8TTJUpY4iol91tUXoTSFb7VxOWM5eyQ1fkee70rbC89SlLN6Oe7eLZhGvQpvZi4niNNTRr00Gphn9OFm/MBPOMek68rojpD2YbST/B1SagFRiga6ZN5LQLdoMnccwW08j9m5+ed9fZraSwYq0kz8H2FNT85S9sHVZZrjo5dx6WsNE0Dva5H0hLoqUBJGM8aisVMWvMO2EaWWZRnz0AdaW4wpmaeuq6mGNdkmSYKFv0v485334OiBLEAdRgLQlpiX+J7gIBzGyHWWNLczfhoY2klkvOPtp0NbtYw+JC5no8reuBBe9vHrX/4D/8h//7f/3v+w3/4D3Q6nbMZnF6vRxzHCCH4x//4H/N7v/d7PPzwwzz88MP83u/9HkmS8Lf/9t8+u+3f//t/n3/yT/4Jy8vLLC0t8U//6T/l6aefPqO5/SD11a9+lX/9r/81zz//PPv7+/zhH/4hf/2v//Wzn/885AcFvuTalTbHz5/yzeeHnAxL0qzhZOhRNw6IcTJyw75VZdhYDRlP72+SGSeSEPi+wvcEtbbcvjtnYzXk2pU22mujXr3F/OaY/N4BxfEpwdISXjuhHk/Qk5nbaAsDTF5g69otRpMQPS/QRQEid4v7KIJGI3yfejzHlBXhct9R11oJ4doyxc4h42+9xOBLn3a7/kXJ7I1bdB67iooCxidjTF1T7h5htKaZp64bsHuICH30LKU+PCXzfbxOQnl4Sv/zz7Dx638FrMXvdTn54z9HpxnxpS2ic2v4vQ7ZvX3y7T3q6Yz5W7exReWQ23nhuhxSYA3oNEfFAaYx2LJELfcBkJ7EZDlqdZn21Yvk+4fIJGL++k0mz79CeXyK3+/gLfVAG8r9I4qdA1ASGQRE58+RPHSecvcIpFuMNkXJ+M+/S7i+5AbNAas1SMngF54DKVFJgtUaf7lP+9pl4kvnyO/uI4REKkW0uUbrygWKgxMneCYzxt97jWLXLWRtXeN32m5wPs3wH71CcuUCk2+/RLC+gtdpUeVDh4+2DiZhqprqdIiKI2edWxkgA596PEN2WsTn1kkuncMf9CgPjpi/dYfeZ55C+Z7raFhLeXRKdXRKdGHjPZu0KokRnkd6+x7x5fP4gx6thy+RLeAZWEszTdFpis4Kd/zDgPjSOaRwO0RWG/xem9lrN9CzlGBlQLS+gi4qvH7X2d7GU6qTEUf/6auIKGD21h2SKxew9/NtpEBFEcJT6GmKnswWJDgPGXik1+8w+vbLJA9doP3YVSf8qppi/4jTP/kmS1/5AvHmGv3PP8P85h1MWiA8RbC1QbDcR7VjbK2RSUR+d4/2w1fOREuTZug8d9a2dguTZui8QsVuzqUqa+rhhPG3XsKLY2TgE6wt0//cM2f2zfvl9zqUe0eE6x7J5S3Cc2vuvFYKr52Qb+/iry6dvQ7WWgfsSBJaD1+h3DvCFDn1PKU+HtFkGc14RrAycI+tqug++zh6njF98Q2Ep+ggeFbB5NKA2coGJvJZnmgGvmbkK45OCqpSM583FEVDt60IfEG/6zHoh3Ta3qKzI5hNa+JEcnpaEkaSjdWYyxcT1pZDfP/juRZ+2PpE9PyU6oNgBVLKs++9331u3brFrVu3ePjhh7l06dIP5YcXQiCEOIMZnAwrhuOKl1+fMZ059Z7lbjLd4ATPh/05bdxi8f6cR3Gm3d7uCPzUy7wzKMbZ0aTVSGsWVmeJlfdbExZhXGClwCBNQ9zM6RRjai/C1xXSGoTRXD5+ldXZPbrlBC0UFsH1zU+R+x082+AbJ4YmwiMwNVE1I65StFAcds5jsbTLCcvzfbrFKevTe7xw/kv4tqGXHVP5CZ6umIZLWF8gjMUKS6AL4nIGWFrlDL8piHTBJBqQeR2056OMASo8U+NZTW20E2XKw5rGNY2U/+D80TshDB+5lCMn1W93dgwa8VMQum5H3M2k3W/ESQGHxyWTaY2SAuUJ5nO76Fy+feG9nyOlK/B9J9zFwhffaBAG5jNNVbtxrPvCXi9OrcUsMFXlBJfnCTzPvX/jSDCZVMxSjdaGstKEi/yCdksxTzVV9eEY+Z+06Pm3//bfAvArv/IrD3z/3/27f8ff/bt/F4B/9s/+GXme85u/+Ztn4uI//+f//EB36d/8m3+D53n8xm/8xpm4+IM/+IMfKqMnTVOeffZZ/t7f+3v8jb/xN97z85+H/KA0a3jtrSmzeUOrpZjMXPcmyzVLfWc329nLmM4bNlYj+n1/gXyV7O1naO2omf2ez+Z6jO9Jykozn2s8axDHB7SOtslSjWlq8pfvOLtLyxGqmlm68P6XCFyOj9Ea2RhkFGDqylmBfI9gqU+TF9TDEbqs8FsxpqzQeY4Qgs4T11wn4PY9kqsXiC9sUh4cU48mJFcuoNoJ8xvbqHmKEQKJRaeu8wACkxX4gx7RlfPoeYYF2o8/xOb/61fPELxr/9Mv0b52mclLr9NM5tSjKdXJmHx7BwTIICC+sOmGvIcjFv5SrDX4qwM6j16hHk5Ib+/SrCwR3n8hLO+AzVi8VkLr4cvUp2OigyNHnktz/M7cQQhaMeXJiOZkhAoDl4ujLeH6Kl4nIRj0mH7t2+iqxO/38BaP31QVxcEJ1ckIv9fl/kCsmeekt+4CIJMI4SsHLYhDZ6sbz8hu3WP66nWym3fc9Wg6d5/hocsLis6vo+cpxd09ioMTYk+h4ohgZYC/3HfdvarG1rUTf1EEwtLMUqK1FcK1JbpPP4pquVmvZjqnOh2jr2/TTOe0rl3EayeoJDqDH91HVr+7vHZCM5lhmwbp+/See4L0+jbjb76wsNO5LANTN6jAx+v3Ee+YEYVFIOd0hjEGT0rq0dTNVI0nBL0O9TTFNo2DWjz1CKYqmb95y809RqGzYsYRSIVqxQuxN0YlEeXuMfV8TnL1AoPPPXMmeMoFdCK/t0++u8/a//xLBMsD4vObeJ02uiiYvX6D8TdfwFQVKomJL29RT2aotqPVWevWQVjrMnN6Xayx2KYGG1AcnlKPJqhWRHRujeTqBYQU5DuHjL7xXVb+yi8+EBIcX9gkffM21WSGnucUeweYrAApHWER14E7O5W1dkCFOEYlMeHmGsXeMebmtrMSLuAl7UevEG6tk75+g/ajV1n5a1+mnszc3F8S0e13uLI8QIYBWWn4xvdSkg2PvPbJCo0Qgjj2sFYQR24Na4BB30cpwfFpye5+Rp5rnnq8x/JySFlqrLUksfqJCx74RPT8VOp+d+e+N/+dwkUp9b52s6IoePnll8nznM9//vP0eh889PZ+Za1lMm2YLAZle12fftc7E1n7hwXf+M6Q45MSY5z/O8samuZtoSNwmuFDn9s7dvadtrhvZ/uYvOIfdRkNVuM1FVYItFBI0zjLhlAY6T6AwaJ0SSOdBUFi8OuCuM6QuqYOWvTzEyKd06AovZhQFzx+9F02p7exVqDQzL0ue8sPU/gxjfCROPtZ2KSEuqRVzugVJ3jWcNzaBAxXD1+iX54SNoWzuVmN1ZbAVERFyVJ2xHE757R1Dr926cdRlTnRhiGu5qRhDyQoa2g8Hy0DpKnRIqSRPnGZ4tmCtfyUpMlIgz65HzFqr1N5ydsf+mbhz0J+bGrcg80d9Y6vfzg89sd6DO98EAvBA06gNI0hSaCo3rZqfpAgr2vOKIa1eft33xc67+xkKs/d3lNuvi1OYH3ZRxtnXSsryc5eyfFpSZpr6lqwthyyvOQxntZMJpq11YDo+/ibPy7I4L697Qed6bEfoV0nhOB3fud3+J3f+Z0PvE0URfz+7/8+v//7v/8DPY73q1/7tV/j137t1973Zz8P+UHzec3//adH3NqekSQ+nnLnVBR6rK2GaG1ptzwOT0p8TzKeVsSRx+WLCWDZP8rodVxXsN8NGPQCtxDRitPTkjf/7HUeMztsfvYx6ldedrMOvocua/TRKSIK8XodrIVwbQnhKSYvv+XmK3wfWzsQiowiEFANR47UNkuxszm1cCLJayeIhRVMBj5IhxWOL2yezU4IJfE6baTnEW+tI4OA9OZd14GxFr/bQmc50lN4SYSXRCAES1/8NPGlc2fHTAhB69oloq11ZyEqnT2vOjpx4aTGUJ+MKI9PsVWD12vTTGZI4ROuDJy9LgiwN7epT4Y0yz2QEt00Z4vWJs3xex13Vagbln7x01TDMYd/9KcL367E5CU6TTFlCQJnOZpmhOfXEIFHvndIdTzCH/TO0M2AI4FtuFDL/M4uOsvoPPUIMvSpT8ec7h7SeuQy4cYKxc4B8cUt/EGX1uNXmf+H/0Z++55bxMfxIuemC0pS7h9jtXao6coteuvxBK/bwTYaPcuoR1Ns3SzCYh2y2Gu1QBuaNCO+eA6ZJJRHp0y+9SJGa7xWAlISpRmzV25gTcPar/2Ks9p9yKXBLvJg7mfTRJtrrP2vXyG9fQ9xcxtdNsgoIliS7u/GEc1khs4cltwC1fHIBdU2Gltr6rxweG+lKA+HNEWOlApbV/i9Nu2HLlGPZ8xvbCNDH3+BJtd5gYoC4otbdJ99DFOWhFtr2ANB97knXL5QVTF77aaj8UWR63IdnnL6te+QXDiHjCLSG3eYvvg6xf4xXreNCgPqeUr2J98EYzFf/gz1eEq+EJ1WG3ceCvD8wM1MZTnNZOayhjpt4gvnFqIfh4W/eY9i5+ABfHW4vkJ8ZYu9/+8fUZ+M8Ze6+P2esyumOcHmitskWIxGCCnPZt8ElmhrA6SkGU8J11fOZrtcmHBGtLXhjpGnGHzuaWav3iC+fO4BQWvSDH06Iu+tQZ7TSmL6/ZDJrCYvcgdimTsr+OpyxP5Bzv6RW0+uLIcsL4Uo5eZsj45LXn9rxueeG3zS6fnLXPezd5qm+UA6m1LqPZ2e4+NjXn75ZZaXl/nUpz6F9wE7Kx/2d29tZ9y+m7ldZAG+L7l8PkEIyd5hwctv1Lx2fU5VWaqqQYSeS/mWb8/Jfzyr0rvpbD95Re8exuJYWo3SFV5ToL0ILQVW+rCg20hjiaoUoxRGOt6wMIa4mjFIjwibgk4+ZGflUSbJCio9IA+7aKFoZSnD9gZG+WxO7qC0pmUyVua7NNJnEq8ibYNBEOocz2ha1ZT12T2EFWANpYzYmtwm1tkCmCAZpMdM4mWSao60hsxrUaqIsM7oZidYqUBCJUMKFbNa7dIrh2g8TjqbeKbBSg9lDdY2GKR7vPUcKQSrsz0G3gmZ10ZZzWl7i9ILndhCuNkfIdwgl/ejYOj/ZENS75dc6DbbOFECYOYPZgl9v/svxrA+sN5p/zTWUQ03VgO6XZ+bd3KKArQ1eB5MXNwESllG0wqBZTLVjCY1G+tLdDsffjw+bqcny9yH4Q860/PzWj/O/KCyLB+wIU+n04/9+LJc843vDHnr5oyV5ZBWy2M+a5jOagyWedq4BHNfEfiSeVqTO/gfJycF40lDnhs6iaJaZEqdDCtaiQvAFaYmv32X7ucGDLZ6nF4Pic6to4uSZjqnns2Rge9ww4A36NGMJoSrA6qDE5rpFKE8hKeQSeyQxtYio4B6mgKW8Pw5go3lxXxLzezlN+k8/SjSV2diRwa+2zgwxu2MRyG2qRG+h+q08AY91+2JI1Q7we92aV29CJ6i3D10C2L/vdcfFUckl50FcfbKW9STmctQUQqdFTSzDFM4+pbf7wASlcTo8QyUwGpLcXDkullVjd/rYKrGzQCFAf6gT7Dcp9g5xPM9hJB4/Q5Wa8qjU8rdQzeL5HlI5dGMZq5TVlTUJ0OKssbWFWqp62AJgClKbN0QbG2Q3dlBj2fEv/qls3kZr+uQ1Olbd+g++zi21mR3dlBJTHlwTH5whBXirOtlypJqPEX5ProsqKdTvHZrMVMVoPMSXeToLMMisbV2DS0rUN02fq9L+4lrmKrCZCXNbO7CaosSGYdQNTSzGU1aIHxF68oFJ+CsxV/uI1tuvsXrPthFttZSj2e0n3iI9OZdJ2Z9nyYv6D71CK1HLjP62vPYxmAqR7ILVgagDSIvsb5PuXeElQK/08JUDaZp0FmB123jdTuUp0NsWWHjiOp0QnZnB39lAEoRTudkd3YQnsJfW6K9ugzG4K8uUR0NUa2Iajgmv+WQ3PHlC+iioNg9dKLAW4SgAvH5TaqTIcQR4+dfpVhkGcnFNVglMVgoD48Zfu07tK5cRGc5Xq9D59NPUE/nlDuH6E6LcGPVWcxmc7w4dN3Q8xtnx00IgUoi8t3DM9FjjWH+5m0mL765EPkOgy4Dn9aVC/Q+9wzWGKqDY7LtXZKL5xCLMOH5G7fQWU64sQpSUAo3ZGuMAyo18wx/0KXz5MM085zqdEzn6Udp0pxiew8ZBwjfJ7+7R353l8iscXci2AxPGGU9TtMBE+2RZi7CJAwVrZZHVTe8/EaJkoJW4tFKPIYjR6FUSpAkitG44nRUsbH20WjDP6r6RPT8hOqjZu+8U/QYY7h+/Tp3797l8ccfZ2tr6weysw3HNTfvZLQSeZb4nuWa2/cyJlNJeTujqT2UEqwOPO4Vmr2DnEZbwvC9czvfv94PVvCTt7YJXeE1JRYXIKN0jZEKpWvCJqNSMQg3txHVBWvzPUKdMw36zIIu2gvolmNiXdAqp3TqKRdO3yJoCio/wtQ565M7LBUnSGuYxMtI23BhdAPPNGxOthFGM5gfMk2WmUZLVEGLbrHL+nyHUJcYBHGd0dVDByoQFiM9LIK12TZa+dQyJGgyfF2wPtuhU4zpp0do5VN6AbNwiVm8wlK6j5Ue0jRUXkClIpDg6QawSGNRWDdTpGuyqIPflLTqGcK424RNgRGCWoUgFqGo1rhVOtat7JXv2ho/VH0QGvs+9e5HV97C3l2+Q7R/VMEDCzbfuwT/+31dNwuoHtDUhp39kvpecWb3E0BRv90NNcbhsfPQEFinz6ezhrwwJPEHixqt9cea40vTFOAHtrf9vNaPMz/oX/yLf8Hv/u7v/lCPb3c/Y+8wp9326C66NRZoJz5xaMnymqYxjEYVxkJeGKJAOfyygaWlgFlW0+34LicjWARlYfGUZLNrkaqku9GjOhmi4oDkyhamarBG00wzpi++6nbQR1PK/WNMXaM6bfzVZUxeYJrGWbf6HepZ6joyS303+Dx1C6Zg0HfzNVfOUx6dou7uosLwzM4Vrq/g9TrUwzEIib/UQ7Vb5Pf2qHYPnFXMc+GjKvDdvMjxkGhjlfjSFvGFcx90CM/KaIMuSoqDYxbBHy5nZT53JMXYLdTD9RWaWUr65rYTY0FMM56ehanOXnmL5PJ54ovn6DzxEOHGKvK1GxT7x8xefYvs5j3Qzjrl97vIOKSZZQvbEuiqJr+3j/Ak0vddl6WsSW/fxeROJMcXNlw36nRCsNJ3iGWcpbA+GVMcnVLsHFBPZqz+tS8TbKwwfeE1pi+/iZ7OQYHOClTLUWN0lqPrGc1sDkri97t0P/sU+a0dpi++joxCdFFjqgqtG8QCouAvQjZtXVOdDCn3jpFJ5FDTxiBbMTo9pTodA5b8zi5eFNH7hecojx0Ouf3wZSbfe92dJ0nswBdaUyzOpfTGNvPXbzrCWGMo9g9p0gx/0Ee1YqqjITrLaKbpQoBGJBc2aT3+EHo8oxpPmU3n4Ln5F6Ek0vNppjP0ZI6tGmQiEMYw+d5rqE6L+mSEXVzgq9OxA0TkJf6g62bQNtfofeoJqqNTdF4weeUt5te38ZKIYH0FoVyOT5NmDvYQRQRrK6TX72CyHG/QpR6OEVIu8PKK+PwGwcqA6StvghW0H7tKPRxRHZw625w1VMMx4++96ubLhCB+/CGWvvRZgsVM2f1yx+rtD6j5m7cZf/MFyoMjglVHOEQJzCxj+sZNiv0jgrVlZBwRzDKyWztu06Fq0EXlxNG1C2A0XhzSTOcUBydEm6t0n36EcG0Zr9umSe+BdbbOpS9/luLSPtmdHaYvvcHstRvIOGS5J1GnEtNqsd7MOT5NmYZrtFsRea5ZWw3ptBSdVsD+4Yyy1Jw/l3B0WnLrburov7XFDwRKCurGsLEWk8SK9VXXDfLUj3et+Ino+QnUx8neuR8YmmUZL774IlprfvEXf/EjLVistaSZpigNUSjPdvyGo2oxLP32y53EismsYTj2sEqzudHijZuSsrEuZBKB0Qbfk5jAUNe8L9jsfZ4tP3VYgdZgGqJ6hkSceYS7+SnzsA9YesUpWEPjRVReRFAX+HWGMhVdO6JVTahUhMTtjE3iJayUbI5vsTG9y1H3Ap6piZvs7M92ihGZ36VUEZEuWMkOCHVJGnXJsn1qFWKk52xutqKUIbUXsZQesDLfYx72mcVLbvajznjk6EVa1ZyD7hWsVKzODwh0QbsY0yknWCGplMdB5xKBrQlMBbrC1xWln1D5EcIYKhUhsBglKURMJx/Sy4+ZRcusljssp0fsdy8Q6BKMIQ27TvDwDgod9zHcGrkQaz/asNQfLiT1w6r6/tE3H1of1uF5Z8mFPtRAXgFYdyp+wP3v08YnU02cGIyB16+nbKyOefap7gfCDD5upydNU5RShGH4/W/8l7B+HPlB//yf/3N++7d/++zr6XTKhQsXPvJjqmvD3kFBK/GZp28vcO5T6Htdn6JsKCuDtpalXujebkJQV4bV5ZA4UuzuF+S5wfMEva7HPNWEgeTcRkR5WmIij8AXNEdzF4swmVPP3RzM/PWblAcneN22y3FZUDj0cIzqdV12yzzDbyWoThsZR9SjKcLziM+tU9gDt/hF4C91KfeOqGcp2Z1dus89zvKv/ALgdsLbTz7M+FsvYbV2C8kkQux7Dm3TSvC6HbAWXdXY2r1pWtcuIjxHmvt+5S06DvXRkPjKeYRSJMaQFhUmzSnmGdHGKv5Sz3UdQpeP0nn6UUxeUE9moC2mqhBKEJ1fo0lzTv/kLxg9/wrpm7cxVUUzmqDaibOJCZdD5LVjRNTHpBneoEvQ77k5liTG67apJzPK3QNQHjJQzK/fJb2+jS5KBr/4nBskrxtmb9yi3D1wszJNw/S7r5Bv7yDDEFOWqE7LdeW0cZ21pqGZpIjAc5Y2C7aowA/oPn6N+mhIM0vxPEW0vkI9dzk8ep5h6wZTa3RRMn/jppsBqSpsXTN/6w7V0QnVaIqtaoTvEy26H9VwxOzFNzBZjk5z4isXmF+/w+gbL9DMU9chW10i6HXdzFASu3mVxXupms6Z/vl3CTdW3AzO1Ysu5HWeURydgNZ0P/UEm//vX8Xvdzj+r9+gHk1o5qmzg3WdRVcfV852HwV4gz7+2grl4RH1vX1M7Yh6Qgj85QE2KymOh/iDDp2nHia5coH5m7ecmFMSO00pRlOayZT2kw+7rlmWU09ndJ58FJM7q2M9nGAFtC5skd/bdwCOwCNYWiNcX0HnGVK4GZvh179HuXuAbRrwffxWiybLMVqTPHIFCYRry9jmvbTeZp7ResQRMnVeMH/jBiIMF3k7Y1ToEwx6FGWNPhnRKOk2MjBEmyt0nrjmAnSlpP+5pyn2j6lPx+h5TnkyJDq3QffZx0muXjizr5mqdufyArahwoDWtUsufPe/fM2RCJcHdNIpW6fHjJsN0sEmeTajL2eEV5cQStDUhjTXDCcV1rqw8CzX2ExTVtrFnARu1ufkxAFbvvLlVUZjuLeXceFcwuMPd36slrdPRM+Pse5n7zSNm6P5KGGjSinKsuTrX/86m5ubPPbYYx9pgVPVhhu35uwflVSVJQgEG6shDz/UdjjL97mPFGAR6MYQ+pK15YDrt1MabYkiSVE2mNqtbdstRZpqyuqD8MM/xbDRMzugwQWEuu32yktQRuPZGs9U9IpTwiaj9BPCJsfIANW4VGwPzSA/JslHnHa2aJdTrBDkYYdGBmgp8UzF2uweSTUFBL5ZZDFYg99URLah8uKzYy2AbjkiKSduHkoq5kGHwm+hhSIwKUmd0a7GeFYTNRmdYoxBEJgK39b0DsZcHF1HCx/fFFQywigPZWpyr03jhUirCYuMfnpMYEqEBV87a8lSdkwedilVSC0DlG1IyilCSgKdsz69y+p8n93+JcbtDaw1ZHRwZ4ZFvMNqaZRw/n7TIJoCTfQjFj7vrB+fCPpx1Ts3BZqa7xtOZHHdIWsNNnfp1FWlef1GihCCL//C4H3R1R93puf+PM/Hzfb5ea8fZ35QGIY/lIisG0tdW/pdj+FYOKBFoAgDiecJ0qxmOK4JAsmlrYSL52NOxzVvXZ+R54bRuCLeiFEKjoclrdhjMq0pK8PBUcFwVIE1PLveJ5yckt7dI9vexeYl9TwFYyiPTrFKovPCCZmr56FuKI+HCAvh2grJxZDowiZSKXRRUB4PaSZTTF0joxA7ntBkKSiX52PrmibPHbHt1bcIBl38QY/2I1dQvs/sjRsUd3eZvnoDnWYEq0tOLN3HQGuDGPRIbztr0vr/+hU3g/POYzeZua6RBa/bwl8egOeQyCL00XmB127htVsEqwOq4QQ7HGO1627psia5epHkyhaDzz2LDH2ayZwmzTCLgMvyaIjADdnreY4Qlup4iK5qPN9HeBI9y2kWuGqB677IKMS2Ejczcm6d6nQEWMLVZUzhKGUWQXkyxDYar++6PNndPYp7e47aJSXFazdp0pxwc4301l2HE+91qE/Gi6Ng3TEw1tH1EC4Y1fdpxmNOv/ptEILk6gXq8exMTAop8XodVOJmwoKlPuHaCjIJmb1+Ez2du1mj7X0ARyiLQydElXIwh3lK+sZNquGY4uU3aOYZnacfcXjwoxPynQPmr91Ehf6iizMjubTlbGmh6wRZ3bjg0Dg6Q5snD11g+r03nL1MSpo0J7niIAPFwRGmcAOWOsuxdQWLuRVrDPmde1SnY2QUIoBwYxUVBsRXLqDikGo0JnvzDjKISK9v04znrsNmoahqqCqq4YTJd14mPr+JCgL8fg+T5UxeeI3Oow9hBTSjGRl7eEniQnS1oRlNyOoaEQSI0HfCod4j3FpzWVO7h9iyJOh3HGbaGFqPXAZrXYep1SJcXwagOhmhWvGZ5a06HlKPZ0TnN1x3K82Qfof8zgE0Dd5Sz4EgIh89mqDzivLohJWnv3RGgDNNQ3V0SnL1AqNvv0S8uUZ0bu3s/WSNodg7JNxYI1g8DoDi4JjT//4ddF7SunYZ4SlaXctyNaNzco9Sj/BFlzAbEQ/O4a8sc3LqzvErF9usLYc8/9KQNG2QUtBue3jKzSVaC92uT1Y0zNOGyxfbVJVh+15KEiuuXfnxuRI+ET0/pjLG0DTN97WzvbO01ty9e5eiKHjuuefOPrQ/St3ezrhzL2fQ81nqS4rCcGcnRylJp604HlYcHhf4nmBlJaSdeG4X0Ujeup3zxs1jpARPshBNks31mNG4oioNVWXP4Db2PTvXP8XujnbeVGkapNUIXdOocPE9TVw5r70yhsoLXRfES2hUSKcY4tkaYyVlkCCNYWO+43Yj6oJ5awnPNEgLVluk1rTqlFgXRE1G4cX0s5SwTvFNTRp0kFrj6eKBh+hhmAdd9ntXKIKW88/ripX5Pr1yeL8XhQRinT1wX4WhV47PvrbMGAbL7AweJg27bv5I10R6RmBKAlNTqAi/KenkQ4TV+LpES49WdghCspLtk1QzEIq1bJ9Yz3l67xuMkxWGrXXCuiRTHsIYrJBYLMoa15aQEo2PXIAhXCjN4ryW4h30ox91vfP8emcH6mdTBL2TQPSht7Pu/eRJSb+rzlKrb9zJeObJzvt2ez5uOOl8Pv8fztoGP9v5QZ4n8Hz3vhn0A46OC2TPUfykgBt3UqZpw1I/YDKvuXvPEsWK1ZWQKG5I04bxpKLX9RmNK+Zpje9JPA+qyrB3VNBOfMKNJSYvfh2bpujC7eR73Q7Z7Xs0WU6wNEDGoZuNyEvC9RVndxpPQQpnW4qcxcfWDb1PP0mxe4RKQrAwfyPGVpUjTSm5sCedY+nLn6E6GjJ6/hXaD1+mHrvrcOuRq7QeuYL4//0xJ//3V6lOx27Wp6hc98Iat4MuBTov6D77OKOvfYfep59E+D7Tl94gu3WPeuQCKK0xhJtrhBsrtB+5jBeHzK9vU4+myDAAY7Cle3z+oIff79BMZ4TrSwRLPfKdfYRS+P0O0bk1h2EeTeg++zhet8P42y+is4z46iXq0YxmNKXcP8I2BpkkmLJC5CV6PkcEnhNAgU8znqHn8wWZTuF3O4jlgVvw1zXhxir59i7DP/8OYMiub6PaLYTnUR4PKfYOaD16hWBtmXx7FyEk0aXzyJffojw8xjQLL6012AVeUiiBTEJkGDH57qv4S126zzxGfm+P4uAY1U6wTUO5c4jqtp1I6nacre7wBL/bRs9SvE7bze0YQ7C65MJntUZP5y4kth9TTWZMX3gdqzXBcp9mMkfP5lSHpy70eTjBv3oeGYUUOwc0s5Tu049iBfiDHtXphGaWESw7m641lnx7jyZNmX73Vag1dpF5Zy10n3sSUzUOa24ttpOg2gk6K1y2lLGYqnb2zDBElyWdx68RbqwALtR09soN5m84m5bVmuLNYzfL1Bh07jpXYtG9Sx65RLg8QPg+1cmI8fdexV/uuXNKG4fdxn1m2ziiGU2o7u7j9bpUwzGqlRAsdUm392hGE2SSIJRDptfHQ8qlvuu+HQ+ZvXYDKxwoAOmgDtndPSYvv0Wxs092ewdrDOXBCdXhKdVwjB5NEUGAOR0jWFgcZynTl96kuLsHwPr/8hVkGLhOz3iK6jjCXbl/RHZnF68dYxqNnmeE6yv0P/vUA+CCfHvXzcTFDvkN4ClBx6s5GY9JJrdZi/oOevKyT37pEUR/k2tXOqwshwShdJbteU2n7TGfNxhjGU9qGu1ok8bC9VuOQKikoNGWO/cyLmwlhMGPZy3xiej5Edc7s3fOSBofYQ5nPp/z4osvugTiIPhYgicvNPtHBZ22IgzlAiOo6BnLze2ULNN896Uxw3GNktBq+ZzfCDm3GXF0LBnOauxi+DoMBVHkTGGfeabHjds5t++lTKcNUj4INnD1UxA81ryNkTPWUdesJagzKs8Rf1rF2O346IKwzjELGlrtR1R+SJzOSKMeRiiUbujkp8ziATtLj2KtJov61F5IXM1Q1pAFbUo/ZhYNaFdTVuZ7DJN154G1mkqFhE1BUk7f26MQimm0hBWCTn6KwFJ6CYfdC0RNTrcYfuSn3kifYe88jR+wlB0gsVReTOq1qVWEZzQSy9p8B19XaC+AakYa9Cj8GM/UCGvRKqSXnWCEoBEeg+KUjcldxvEaisbBDxALPSOx1iUvY63rAQmB0uVi/mjBaDZunuDH1/25X4KfFhTh3fXe98MPUAL6XcWlCxFCSHxfkGWaLNMfKHp+kE7PX8aaz+fcuHHj7Ovbt2/zwgsvsLS0xMWLF39q+UHfrwJfsrkW8ebNOec3IqyF02Hlwv6mFVmpCXzJUj8g9BWnk5ogbXj0oQ5prilKTStxORhVqTkd1xhtKWtLGMByYtlYV4iqJg/adLstsu1d6smUoN9dvFeFWwzlAarTcgGkSuKvLrtF+yxFhAHzN26SXL1EfPUCydUL2LIm3z1w+ODRhGhrnWhjFdVp04wnJFcv4LcSTLvg5L9+nfSNmw/gd4O1ZeKtdSzus1G1Yrx+B5OXmKJyeTOV28mXgc/s9ZsOB9xqkd++5xaAR0N0mmG1Ibt5F6MtweoS/S98iujiObLbO1QnQ7xOC9XtLob4LPVk6kAOwzGFWZB6rHXBnuurNOMpwvdppnPmb91h+vKbmKYmu7FNcXDs7H5B1wm1ukLPc6zvEawOkJ6P8D3q0ZR4ax2v1yW/u0/88CXC8+dops5Cp9ox1liKvUOm33uV6vAEXVVE6ys00wnl8QSv2yZaX3XgiHARrNo0dJ66Rnl0gslKpO9hGg1S4LUSRBQirFvgC09RHY+wDxta1y5jLfjdlrOsaYNJM5rRmEIKhFJI30cGnsOQG2dB1HlOdTJCeGoxB1Tg5QWBFEjlkd3dx++1yG7vuHmq3UOayRR/0HPW8ekM6W8RbKy6Ifu7e0hPOere7oHDZ9f1Iqg1pz4d4/fa+GvLJFfPu+H80wnprbuYuxX9zz7FNI5cgGZZ4kchtt9xz6d0+Tm2rNA6x2u3XX7N7iF6NsdojdE12e4+fhy7WZwkdgS6xYyT10mc6ByOCYYTbN2guh2sNRT7R6hOQu+zTzH97qtUx6f4KwOEcB8A9TzDGkPn4UvM37iJ12pRDieUhydus0EI0BrZbjlBqTVeOyHcWKE6HiKkItraoDg8Yfztl5m9cYNy7xhb1Rij8V/skO8eOFFiDASOrNhMpsgwhMBzG5KzOelwTDkcu/f7yRhrXUctWBqgem1UHOEPupS7h1SjKV6vjUris40HIZ3Ize/tobpt5GiCLkqHAJ9nRMMj2r4h8wIskqlqoTKD/8ZrXPh8wPLAdYvKUtPreOzuF2SZRipBXRvSTNNuKerKcDyqOD4pKSvDoO8E8L3djIcutbhy6cfzmfWJ6PkR1rthBR9F8Fhr2d3d5fXXX+fixYtsbGzw7W9/+2P93bI0HJ5UNJVBG0u7pVheCqkrwyuvTTmZ1Pi+5PxGxHTeUOQN2zvOBjEaQ1k3xJGgqgTzObTakjSDl16bUTcWayzScwvet5HVboErHkAS/wSqqQnrFM80VNLHrcsdaa30Y7TwiOqUXnZC48XkQQdhNe3K5es0wiPz2qRRH61cx6LVjKmCBCM9JhgKL6FSAcuLzkjhhVih6GfHzKIBq7MdAl3QLU6phI9GEjQVST3Ds817HnKpIrRU9LMjCt8lnkeNE2iTaPCxRE8adsmCNv38+MxGFzY5lQrRyqM3O8Uai69LPDS558Sap2uU6dJPT+hmxzRewjzqM0lWsEKQ5CPmUR9hDVE1p5EetYrQdgEzQBDqDKkbGi+mkYq4nLmwVGMJTEnmt2mC5Kegg3/8VrggcFq7ftfL+27B84OIIM+Hrc2IdsunKCxlYYgiN5P3fvWD0NuSJPmhMr1+Vus73/kOX/nKV86+vj9n83f+zt/hD/7gD35q+UEfpc6fizkZlY5gtBoSRZKXX3PEo0tbCb2uz1I/QBvYWI+oa4PnSzpKMJ5UWAO+L4gTj2v9kDStaA6O2LJDlsuc+vUCWZwyv3KOC09v0AyHFIdDTFVhMdi6dpsXrQihJM14Qn3SIrq4RT3oEV+5gN9qoboJfq9LdH4dIVw6/Py1G5hGo8IAXZSkN+4gfZ/Wo1eIz29iqtoJj6NTek8/RrTl7DRWa/KdA9Jb99DzFK/TIlhbxhQV1dEp/gKfbU9G6MmM2eu38LotRn/xAtJTxJe2HF0tCh31bZ7hLfWZv3WL9OYd6tGI5PL5xSD5Ms1kRrC6THlwTLixgr+yxPEf/QnpnT2Wf2nrTIyZqibb3iW/u0ty6QL5vX1UFCLDwC1cJ3NQClOVzkblSUxjHOFLucwkXdaYyRS/1yW5ct5hwYsSEcVE68vUgUd1PCLfPSS/fY8mLxBh4BaZZUWxe0ixe0Qw6NL7/LPOLmgtKgkdSU9AtOEsU8L3kJ5HNZoQBG2CzTVoGtdxSTMXgOl5FHf3CNdXaD10kWh9hfHzryB9j3Lqnk+wvkI46KGSmGo8ge09yoNTmul8MeNjkMp1+4WQNNM5st3CV4rq5BSdpmdAh+rwhOiCe+11XlAdnmKqBpX4eL0O1fGQ+MImGEv80EVaD11aRCNYyuNTlFJYJQnX3KJZSEm4OqDz9GPMXnqD9NY96qMT8rt7NOMZ8sIG4eYqKgwRUUh+d8+JNAEi8Jjf2HZBpIHvrIWNodw5oIlj4oubTlBYixWSZjhxZL+8oB5Nmb74OjrNsdYQrSzhDXqUu0f0vvAcMomYvfg62e0dQCAEBIMe0dOP0P/s08xv3CU/OKYejtF5jmlqSBcp10WJlsLl3mzvolqJsw/qmtlbd6hPR2S3dyiPTgiW+xhtyd68SXV4irc6gNIh5HWaY6oKlETXFapqCFb6zgaXphS7R5z8l69jjaX7zKPYRrt5nsjHVjX5vT38Xo9oc2WBjt9m9toNkmsXSS5uke/sMf7Oq24myRrqyYzk8nmKxWZHJ/SQ9Qy/nOP3Nymp6C+16Mz2qPJLTHKB1oYk9ohCyfJSiNZQN26DPs8bZvMGKaDd9slyQxxqVpZCjk5L3rg5ZX01JEl+9BLlE9HzI6oPy975oGqahldffZXT01Oee+45VldXybLsA8NJP6gOjgsODwukhFbicfNOxre+N2aeNgxHNdq4VmISefi+dAnfpxVlZVymiGepa8N05oaps0Lge4KZkejGwREQLojRPJC9I35ygmeR/BjVKYEuMdYS6wprLVXYpvEiDI5UpqxBYUmyYxrlFu+1KPB0RWByBIZahUgsRirysMXEWyGuM5anu9StACNblF6CZxqCpmQ13yWoM/Kgw73Bw2RBFy09NyuUuzDR9xM8ABJnjfOsRlqNEe5tp0xDIz4eCtoI5UTeu76vTEOjgrM5o24+ovAPOGmfw1t87+LoOmuzuxx1L1Epj7BOOWqfZ5KsQA8O2+fJwxZBXRA1Bb4umYd9rFBYLH5T4FtNan2k454CAisFxkq0Cp1fSxjQ91vT+gcMOv1h6kcvgj4MSPDO+jiCRwoY9AWNhvGkomosYSBRBVy6ENNq/WhEz19me9uv/MqvfGiO0E8rP+ijVCvxeObxPi+9Oua1t6buOn5cMugFdLseSkpWlkOsdbRNow2HxwWXLyZ4niTNGxIUTWPQStA+vsvK7C69foRstanSEjE8phYN1aUOycUtoq1Nit0D9DzDGIvNSodc9jy0MdTjGcI7wmu36Dx6hfjiFv0vPEd2c5ti94D5y9cpdg/offYpQJC+dQca7exvRqPaLbxOi+LgmOpkSLAyQIZvX+OEUsQXNpm9dh1Ta4R2QdCmrJzVqKrQeeFQy9M50xdeZelLn6HJC8qdA2Zv3HIWpnaMSXOssZisQBcFwvPJ4n3C9VXKV96iPDih9fhDZNs7VEdDbNMwf+06ejG0nd7YpnXlPCIIHAThdEQ9ndNMpoQbK8goQC8yVUQQQNZgtEXRgB8jfAFKYsqS+nSMTCL3maJyxi+8hikqdFpQj8ak1++4IFHfpx6OaWYunNPrtmk9ehX/+JRmnmKKkjornLULd/7KMET4gZsLjh0Vz2SFy9iJQ7wkxsxTbKPPZm4IfcKlAeXhCZ1nn8DqhulLb9DMUtdhAZfPlOeI1SVYBKHapnEWvKZBIBChh7ACrx3j9bsIKan2j2k9egWTZljPDf0388zNUvU6C2pdi+pkhC5ceKcIfGyaoZIIqw3S990gvZSYujmbL/OS5GwWBcBqQ30yJL+zQ7C5Sv9zzyCikNkr1x2tbGlAcuW8E/LGUh0cgx/QjKao1SWC5T5Wa0dtu7BBcWuH+Y07DkGNdJYzKbH3H7tUEPj4fdcBMnlJnZWIsKA6HTF/6XW6zzxO928+RHZ3D1tWqDgmuniO+mRI+9plOk9c4/g//3dMVqCCABqDikNUp41OU+rJnGL3yGULrQzoPvs4s1evM/n2K6AkKgpdjtViZtDkm0xffB2VJ1hr8RbBtdJ6+N0OuqwcpbXfQ8VO/OksR0iB1+u6maAn111X9Po2xmiK3SNWfuULBMubZNt7pLfuUp2MOPg//gvhmrO6hRsr5LfuYpVyGxU371KdDNFZgSlrBJbBM4+x/tAW45Mh2XHKZDZHbh6x9PB5pPAYjmomsxohBUtdn3laL5YDgqow9LseSz2fQd9nljaUteHCuZiytByelFy5+Ino+Zmrj5K98341mUx48cUXiaKIL37xi0SRG+aTCwziB9GDytJwPCyZThuCwO0GHxyVbJ2LOTwuOTwuOTgu2dkvqCt9NlxdViWdlmZrI0Z7gjRvKEtQAoRn8VVDoy2NhnwxkhIEAgFkD4yo/BTsbPej7nVFpxzjVxlxk5H7CVr4xLqgUAFV0MZfhI8et7eI6hQjlfPdSo9GeNRhC5B4unKdHixF0EULSVxlrg1tBYEuKFTMZnaLc+M7KDSl32IuJIed8yijkcKijeKwcxFlGjZm99734UujCUyJsW+/nhaoVMhKtfuxDkXQFEhraKR/JmYsUHoRvdnp2e18W7Mx2aZVzWiUj6drWuWEedgnDTp08iF3lx7hpL1FoAvmUZ/CCzEoKi8mqaYo6RE2JbUyCKvRMkDoEqUrpDF4xmAXGTZp1McKiTDNAtoQIGyD0DVGha5NIuRPWPzcrx9eBL17H8JTEMdQlW/Tu7MF2l3gBI3+PjsCSrncoKaxHJ5UdEpLJ1EkkcIYy2tvpVy7nLyn4/ODggw+qZ+9qmtDVRuWl0KWlgJaccZg4DOeuJmdujZYoCg0xljmWUOWGx66nFA3lv3DHK0tYTZhPd8nOreMbLXcDnZbQ38ZRUN1d5dgtU95fRudFYQry9TDMdVkRj2coGc5wnc2pvJkyOALzyLjmNbDl4jPrRFtrlKdjjj6v76Kv9Kn9dAlrDV4/S7l7gHRuXWsMehZSpPm1KMpOsuJNtdQ3QfzoYSU+P0eXruFzguaycxZ5SYzl33iewilzlDx+c4B9ckptq6QcYwezmmGY1AS4fuLnf0Amob6ZES+s+86F6Mp1Te+5/J8rl4g2tpgNpmjfJ9qllIdnbhA0NEUjEG12yAk01ev010EuAoLwvecIJlneEmICkOHqp66Lkc9mdEUJd5isL5OUzdrISVGN0y+9xrF2jLxpS38duLEjxSoTgeBoNg9AOW6KEIp6tMx0++9hv9LnwNtkFHoAjXzgmp/6sJI+13yO/cwZY3xAmcRXOu6oE5jidZWCDfXiNZX0LM54+dfdrMfZUEzHCOiwIW2znPynQNk7II3zcKWL8MQGYao0HP2Oq3RWeGydJqG5OIWwz/7JqY5xmvFmLKiPB5iF1hwFcUEA0Mzm7uOojWYrKA6nbD0pU85+MCtHbxOgqlqir0jVKdN65Er+IvMn3o0ZfbqW4y/9xr1aILXSahHE8LVZeSzino6J72xTXV0gtWWep6ia01zfIipKsKVgQsmrRtk6COLEm+ph9g9xBQVqtdGWDfob6ylOhkjfEW43EcsIA8iDKhPx9imwR/0MLUmvbVN/zNP03v60bNzujwe4g96xNcu0X70CqOvP78QKAmmqqhTNzNUT1N0XjirWxxhsUxffJMmndOMpjSTOV4rRgSXCcIAEIjAd/azukaGgZuPkxIZBog4xM5TVKvr8rWOhy6wtCgweUGT5q4DNhohw5DqaOjQ8K2E4//yDY7++L9THY0QWKyU1MMJ9WSODDw6n36SYGVAPZ5hmwadZuiqhrpBeh5eN8FrxST9Fu2NJeb3jmiaKece77D6RJ8/+8YJvifod322d3LyvKGqDFJCmVmsMXiepN3x8ZSzdU+mNY9f69BKFMcnJVcu/ug/tz4RPT9EfdTsnXffZ3t7m+vXr3P16lWuXr36wH3uL2a01u8JIc1yzcuvT7i3W1DVFm0sSgqsNTz+cMdlg+zlTllb65DVWMYzjW6g8AyzecN0XlPdp7AtckWy4u0VWm3c2jTP7TsS6+EnKniMfnAQXAg8U2OQZFEXShe02UifwJSEWFTtjqOxkiJ0GQTtckqndPax7dUnEEajVYDSDcrUWOmddZAaoTjsXsRDE9Q583CJUWuTbj6iVU2phM8kXqbyW4vZGIMWPp6pOGlvsJwe4pvqPU8lMCVxNWfYWicLOghhKbyEpJrTy0/fc/sPq1Y1o5cdM2xtEDQ5YVNQq4BuMaKfHT1wW4Whn5888D0t3Tl12lrntL2Jr3MCXVEpHyE8onqOViFWCERT48scrynwdU7jRThOq3JkQqlIqglG+lRejLEaCUhrQJfcHwITaITWGBW9/drCT0kAwQ8yD/RuEFujoSyc4GklCq0tVWXOAAYfBWSgNWhj6fc8Om0PhcMOX7gQsbkWsn9YYrTlmSc7D1DcPi7IIE3Tv7Sdnp/nsta67IrCcPlii7zQDEc1Uko2113uxd5hjucJWrFH3Vh8D5b7PmGg2NoMCDxBu+URbu/QigQsxG1eaIJugi16tO0EnWUofxUR+G54Xyi8bhsZBTRp4fJfMDRZQbSwZ/U+/eRZQKIQws19KEV4ftMhkvMGYS3pjW2mL72B6nXxwoDw3Br1aIKpGqIL51DBe5cZ/lKf6Pw6zXSGqRtMUyOkQi3CP/UiyyU6t+oG3OfpIrizQmcFeIpgeUBzNMTg5lhQino2p8lyvM7iuc1Sus88TnLpnOtgVJWzbmU51XBMM8vRWU6wukRy5SIy9Mlu3SO/dRcVx8g4RMUx5ckYU9WoVuIugZ5PuLbsAkFnKTIK8Dot/F6HajJHKhcyKZM+9WhGNZqAMeR3FcX+ETIIHPggiiiPhyRXzhNtbbq5n+GY6uiU0z/7Ft1nHqX18BXiS1vkd/fg9j23+E5zkmsXGP7JN5G+hwxdd0Pn7rmH59bR0xm9X/8Kwz/9FqZpiNZWiNrnkHHsZpumGdZostv3QEg317SyRHV8iho4y5pYhJmavESGPvHFLUchm6UgJSr2EMFCQGWFgxakGTLwXYdKCHTdoKcz2k8+wuqvfolgZYCpG6rjoSOb1TWdJ64ho5B4YYNsZinTV9+i2DkABOHmKuG5DUdlPRmhq4pwY4Vi74hmNnfBtnFIcvU86Zt3aKYzZq/dIL64Sbi6DJ7CSIkvBOFy3yHYF+elPR27TYKmRvoSKQW21sgkopln1KMpXq9FeTwiXOpRpBnF+U1nxTTGbRqkOZ0vPIIXhUQXztF97glmL79FuX8EoY+ezGiyHGFc1l01Swl9HxU5YISeZ27eq+cIb+XhKSCQnkd9NHQ2PaXOQmlVK6E6GWG1Binxu+1FGG/lcOR56YKFG42pG+av3kDPc1SvhW0c/KI4OEJPU4Sv8DptrNZuw7IsyXcOEb7P0hc/Q/onfwGNcUKYObQT4q11wo1V1zk8OiG+dJ54qU2xe0CsGm7eSXnjxow0a2i1PAY9n5NRSZpqkkjSTmBiDL7n4A6TaYXnSXpdn3bnbQT7j6M+ET0/YBljqKrqY3V3qqrilVdeYTqd8tnPfvY9gXjw4aLn3m7G69dTZ2fQgLVM5g1Fobl4PsbzBCtLASfDiiiSGGMpCkNVOVtaM9PUTfZA5o427xO0CCj5znyTnyCO+kOsfUIq0rCNZzTKjkAISs9nLmNqFRBXKUiHhvZ17TJtqglCCCbxMvOgT9hkBE2Obyo8qzFWo4XzZEfNDM9o1mf3UKYiaArias5x9zzt09dIqjml36ZVjOlUE4I6R1nNPBzQ4KOF5IPMakk9oypDKj/BIFmb7TJIj1y2zscogeXc5A5xNaf0F/a7ukRLyXHnPFp4tKoJvfyUYEFtk9Y4IQIETY5GUKrIzf2YBmENSmsiO3OvvdEEuqTyQqz0CMs5ZvF7ai9CmQYlBGGdMUgPOepdBGtRLGhvwnXWrFiEJS4IPE7svON9cv+1/rGDDz6sPqgLJHBsHlfvd/2tGpDa3Uc3b7+PLIsxqO9Xi1yfdssjCBzpZnkpoMgMjYbVZZ/TUc101pwBDe6DUj7p9Pz813TWcDqsGAzcaxtHikHf5/CohLbr9gFcPp+gDczmDZfOd3j8kQ5HJxU3bs/JC8PxSUl0+4RaWdrdhrqBRms6LZ/+w+fpTwXN3h5NUZBc3mL4te84i1gcEW9tIgMfPOlsXuMp8dYGG7/+V4kvvisMWyzAJtZQHBxz9H/9d+av33D2przA3NxBWE2+vUv3M08SrC8Tba2/zzN3AYzLX/4sw69/10EKYrdANkUFxiCTmPj8GjIIMKWz4PmDHtXRbUxdobwYGjfkrdMMFYR4/Q6ibmiOhoj1VbwkOYsXa+YpWEsznbvug3YZNSAIV5eopzNG33qRYH2V9qNXqYdj0u1dVBQhFgGU3qCLXOCVo40VN/8xm+N3EheSGfiodoJX1dCOnb0pDPEuts520JvMZeQIIcBY6vEib23/2O3aG4PX6dD/3NM00zkqSRBKUt7bJ+h2GPzN/4X44jlGf/EC42+/RHzlAvXpiGYyw2izgEK0Sd+4hReHzF50SOnBF57DX3TchIAqDGBTku0cus7Q1hq2qlG9NgjwktgJqVmG1+/gXT6P12uz+ld+gfTWPUxR0Hr8Iczc2bXMZI6KQiqjye/sEq4uEWyugidpTsd4nTbR+ooLu3zxdYSQBJurdJ99jGhjlfmbtxj++fOYqkIGAcX+0WJ+KMHsHhCsDBx5bjihHk+oTkfkt3cQUiLCCNVKkItun/fZJ50lEUGwukT3U09QHp26rk9eOHR2u0WwseIE9KKlKJIEXVZulkcIh17PC3c8Om3X7agqmjRn/toNpO+CdP1eh/7nn6W9yNZRcURy5QLxhU2Gf/ECxfYucn2ZyHddxWY6w+t1CAY9mtmM8Nwapq7Jbm7jryxhPLeerA6O3ULM95BJjAoCvFYLf2WA8j2CbhsRRczfuk10fpNoa53szi5NljtBGgVuw6HR1FojowCzyBzRQmCLEqMNQaeFaieYNMNUTjAZrSl2DqlOR4SrA8K1ZfLdfQfW8BXR5hrWODdScXBCsLbi5uvabfanglvzOUsLMMHKUkiv43PnnuStm3NQgn7PRyrJha2IbidAKUESK4e3FoI811zYjH/0F10+ET0fu+7b2e7T2T6q4BkOh7z00kt0u12++MUvfmCi+v3fZd41HKC15dZ2xmze0O96xJFb9MSx4tU3Z1y/meF5gtNxxWRaMp46r7S8P4e+SHzP8gdFjrXvb8N5r+D5CdR7Wdjv/CFaKKwKCesxvq4xykdZQyl9GulR+jFWKqw1CGsJdIUWkrApCJuclpggrUGZBoukVbgMhZVqFysFud+mXQ5RtiELenSqKeuze0ziZXxd0wiJ3xTE1YykdIhoayWRnCOtgwd8UElgKT9hkJ9ihTgTIT9IKatZyQ4XKAk46lzguHMegUEazTRe4qhzkbBO0cpHGU0/P2IpPaJdThhkJ0yXVwjrnHG8gpESI5QTQ0EXTxfuWEvpMoh0TSUVrXJKPN3Bx5IGbbKgwyxeQli3QySsxgqBkf5i6siimgojFVYtqDO8A3F9v4z+KXZ93l0fzwpn7Nt20HeXFB8e6Cvu/4+ApnGd3IOjitVlZ3tqJT5auzyXs0ezEIofV/R80un52au6MTSNIXhHEN+gH3D7bsqtuymjkZtTODyu6HYUVy+1uHqpRZppDo5yDo8Krl3p0O8FHG/HTHfHjETOylLAylLE+WXJQOfYXFDmBdXRKardRrUTkpUB4eYa3oImpSI3P5Bv7+L3OgSry+/5XPPaCf7ygOmLbzD6+neYX7+L10lc98NaNwPiebBY3HlxzPz6beJz64sZFvDablg86HVZ+uXPEawucfB//FfqkzFenFCnqdNWQqF6vbMgzWBjFX/QQ2clTVq43WptqSczZ7Nb7LqrJEJ22iAExeExzWSGDH28VuICJyczdF5hygIVhajAd10aLOXhEBn4eI9edsPl1mKKCm9r3YkVK1CBd0YGK0/HLuOt10aPnAWoOjwFASpu4YUBwvOwVYMuK7xOgtfvYGuNns3RZYkpSmxjaHodwk5CeTpBhgHxpXOEywP8Xofus48jPEWwuoTXcg6GpV/8FOXxKemtuzSTmSNyRSHC97CNQYUBTV5y8Ed/Sry27CxjC9HjL/ddyGwYoEIf2gnta5cpj06wxrpMlkX+UD2eEm6uLQb/G1QrRk9nJI9cBePIea1rl9xCuakRniK7fQ8hFUGvg4oi4mceo5mmnPzXr9N58pp7HfOC7O4u6fXbrPzyF0iunKc8OiW9fgcZBQ7TLSXNycidU9YwfflNANeBi0Kq0wkmzxFC4j32EDIKCFY2EEB6c9vNqgUBQkmEdGHa96lt1lrq0wlev0OwtkSxf+QE12L+yMxTjBAES30QkmC5DwZaD10kv7uH1+8y+MXnUGFIuLaMStwCvZ7MKO7tMXv5LbxO2+G8hxOHMZ/M8NoxVmuSKxcceGKeo2dzwnWHJtfT1AEsjDnbDFBxTNDvYZoKnWYkD11AJRHV0J1/rYcu4sURYKlPh6AN4XLfZQilBRiNUBIVhlSnI0el67WdSI58F3ZbVkjPR+clwk8c4TVNqU9HICXR5hqmqvG7HZo0I715F1PXDm6VV+iipPXQJby1ZW6+eYpol6zFATMpGI0rJrOaqrL0Oj6NcbOrvmfIC8ul8x5B4FEUmjBU1LUljhTrq9GP5br7iej5GPWDZO9Ya7l16xa3bt3ikUce4eLFix96HyEESqn3hRnMM4029kzwAMSRpNvxyUvN4U7J7Tsps7mhWczUS+NEz/0F2P3Rio9WPwnBY1276YNWiNbCAgDg6wplNNoLmMZ9gqailx2R9S7TyACLQgmD0A1WWhrpMI6eLonqAoMkrjMnFoSilx3jmYpLp29hhOTWylNYKSm9mLDJCKuMYWuVNOhSeAntcsTW5DZKNwRNTh600SqgkT5ROXXo7O9TAov4kMHrj1MCKPwWw9YGUZ2CEGR+i8xvc9S9wCA9YHOyjZGSve5lKhVxbnKbzclt0qDDvaWHKP0WRojFXM7ALcSNjw5i4iYnLqY0nrPweVazVJzSSJ/KC1G6plEBRnj4pqRWAcJYDC4NN6hKknLErLXmEK9np/27hM9PFP/3fvU+QuysfvB5oO/3MtsFMRegKDVlaRiOa+rG8swTHYpS4weSKHz7DXt/M+TjggxWVlY+8u0/qZ9MuVwdSVUbwkBRlJq9gwLfk6yvhqRpjdbQNBprXRfI8yQ376RUlaXbEvTKIT2Rs3nVJ69qxgPFtcd6DLJjiudfZXRwjCkdHEAEAckVF3zogjrnmKJAzkJUHAIC4Sn81cH7dtx1XlCPp5z8lz8nvXnXEd+mKaap8btdZOCQzX6vhVQKKwTjb7/MVL2GkGKR99IQba1z7n/7NcLVZTb/+q/iD3rs/+//abHY05iqId89QOCG7YPlPsJTbqZmqUMznyGUQpcFpqoQApo0R4UGAZT7R3idmHo4xjZ68QEoqWdzqvEMU5Z47QSdFy7bpawxtYPi6KIiv71D57GHqEYTJ8CiAH/QJb97gOi1wfec/cgYt0BOS8dviUNsUTlqq5TookSPp1hj0XlOuHoBqSSy06LcPyK/s4euKoJ+x8EQZileJ6H96BWa0zEqDIgubNK6dgmAZjZn/uYt6pkLl5We7yIuBj3iZx7DLgbUhedsUPV0Tn53nzrNSa/fcWjiKMLvdQjPrblQ2PEUoRRYSz2cAMLZDsczrHagBRUF6FmKv7ZCdTLCH/QIlnp4nRamKJ1dz1OYusaUJf7ygO7TjzD4giPQNVlBefAaSMns9Zv4gy5YgcBS7B5ST+dc/Hv/G4MvPEu4tszstevovERGAa3HrtJ8+yVmr11fzHv56HmOLgr8XhsTuC5p69olgn7XnSdlhdfrUO4fE24sO9peENBMDlw+TRyieh10VtDM5g77bdzslNdtE18+z/zVt9B5SS3nRBurIAQqCVFRRLDUx2+38FqtsxDR+6/P8M+/Q3UyIjq3SjPPUHGE9D03Q2XbgEElCV47oR5OHCwjzQlWlwnXlykPThAqxgqohxNsK3bBsNbi9TpngkdIRbi1wdJnn0G2IsbfeZn83j7WWocMxyI9D6tqytEYU9TUTDBVjVQeuqgcijTwwWhnk/N9d+4q4QR/1ThKIFAcnmCqEoyl3D3CSoEMAmzTIOPA4cG3dygmDaeTfTqhZd5YBDG3yx6jKqTdViAss1lNK5ZcvhCze1DywitTtjYdnXLQDwgCyWPXOvTfJ67hR1GfiJ6PUD9o9k5RFLz00ksURcHnP/95er3eR/p7Usr3iB6lBP2ux43b+ix5+z4et5VIwsChE31fYczbFLH70Sn3S8jFkPWHPoKfgJ3N2gdRV+8reFy2grIN3fwUZQ0ahcBQipAibJF7CVp4eKbB0wW+qenkI7TyEdbg6ZpGeMyDFlZIOsUpQeOsW91iRFxntKsxSZXRKceMW2sI03DSOc+4tUotAzxdU/gxcT0jqjOk0YQ6x+iATChC07A+3/nAZfOPohTv/5oVfkKj3MXhtL1BI31mYZ/Mb5F4CUk1dXM/MmAeD8i9FkmTcnn4BqNkhYZd8rDLJFkh0CVBlVIFbTDaQSAkGATCWCovwgJxnZI2XUwU0EjPZRMVY9KwS+klGCmRFnxTIaRHUswxEiq/hRYaI/2324/3j9rHU+M/4jJ89HP9o4sgi4tPWHxmuVspBw8xi/+PhdNhTa/jEUUCow3ztOHebs7KUsjF8xGd9tu/W2v9ka8/9yvLsk86PT+D1e14LC8FHB2XbKwrTk5LJtOajbUIYyyjcUUcKR6+2mE+rzk5qQh86WY205TypZc5ZMY8VkRK45/s07p+nf2by5h0Hwn4K0tY3ZAsX8Iay+mffQtbux35ejR2Xv0kcuGdS31a1y4RnltHRqFbxFY10vewxnD6Z98ivbMLnsJiMHmNrWcL6ypEm6vIJMZUDU2Wo+YpVDXJ01cQi/e5SqJFAvwRrWuXkEHA0hc/7WAG0xnBoI+IQorb95hfv43qJNTjGfVkipeEhCsOby1Cn+Z04uxwAlQUIqTC5DlNmjF76U10WeP1OviDPir08eIYNpaphxOClQHl/jE6L5CdDv7aEsJoVKdNPZpQz+ckV87j9/vUw/HiM1TQzFJMnuEv9/EGPdLr2y4jbn0Zv92mrsdUpxPqaYopq0Xcg3Mf5Pf2kFISXTyHarcXuTilu+7VGr8VEz90idbl8xS7R4y//ZK7UBgHNqqOh9iqpslyshvbVKMJ2e17LjxSSZrZHNVpEywPsI1GWIg2V1yHo6xJ37pD+/FrSN9zoZ0Csu1dZBjSpDlet00zS6lPxm6Dd5a6If+ydjjkrXVa1y4TXzxHdXiCWhnQefJhwvVlir1jmnt7yFZCtNWl96kn3SwNkN3ZcwJjOsNUNa2rF5Fh4MTgbMbsxTcY/vl3Wf+ff4n2o1dJrpx32T3zfJGFlKGzEn/TzaTZRtNMplTznGBzBWGM+7cQXghBsLrsxNEkpTS4QN6b28jAx18ZEG2subnU8ZTZ6zdRgy7CCuw8c7lAZQm6ccLaOiEerq9Sn44Jz63ht1o00/kD7+f0xjbl/gmta5eIzq0xf+MW6fU7DkxVVNTjCfH5TeLLS9QnIxec2zQOO11UyCii++mnEFJQHg+dtdM48muwukRyeQuv20HFMe1HrlCPp/Q++xTRpXPEl7cYf/MlDv/P/0Y9mTuq2zxzdrx55og5wnW7RODhRSF1UWKzHBP4yCjCawWIfgerLSYvUH5AeOEc0xdeY/7qdeLzm+iipDwdouKYcHPFia/NVWgM850DTH+dPO6S1hpdVcyHEybjnKyzRlWHxIlCKcFk6my4UjhyqTaW8+diPvfpJa6cb/3YBA98Inq+b1lraZqGZtE6+f+z92cxlmbpeR76rLX+ec875oiMHCsza+6uanaT3ZQ4tSQeHsm2bB8TsHEAS9CFYF8JluAb38iAIcAyYBsQ7Asf+ICGfSgZsizIOjZkkYcyKbLZZHd115yVc2Zkxhyx5/3Pa61zsXZGzVOru8km6wOqMjNiR+zp3/+/vvW97/N+1gXH8fExb7zxBktLS7z88ssf8ud8UimlPiRvA7h8PuFb3xlx884M5QmMcQm5/b7PZFaDFXi+O5A+rgTvSrMXWZPuPhcULmN+THK2j2X7Lh6QqVFaE+iU9vyEZjUhDbooDHnQZBa7sE+BAOGCSZWpWRvvsDl+QKUCZmGb3G8yj3okhfP7jJMVPF2yOn5AuxiQFDMaxZTAVnh5QaVCjttbzMIuGEtk5mwO75OUMybREs1yRKliDIqwTrFY2vmIpJr/yF+yj2p8HExBMWl0sRYaxYTMb9KdHeGZisxv0iom+LrESnkGMsiDhFG0zDzpkgZtlC5JyilGKEpwmTzWIoylDjxKFaBlwDBZQVlD7ieEVUpDF7SzU7rZKbX0OGpucdi9QOYlGKlIPbfr5BqnitDU5H4TK9TiQLU4I5Z1z+6P1N/zg9QnQxFq836Sm9agfPAXnzcroNau+VtZWiwErGU61/zUlyOuXHx/vs7nQeI/qTRNv/D0/DEsIQSXzzeYTit29zL2j3Ki0E1+ptOatZUIY6AoXbDf6ajE8+DoYEbw9mu08yH2qS1GlaU4HtLwlukwo7rxDnM7J2g3wFNuF3xliezBI2TgUU4mqCii9fw1TFE52U2nTby9Tnl0igwCZjfvk97bQc8zyuGY6nTE/OFjbFFRHBwjhEKEAm0XPr26BqVQoe/8PalrPsK1ZRoXzhGuLZ09b1PXZDv75HtHJBfdAlc1EgbfegVTVPjdFsH6MsFyn2xnH68RUp3WVMOpazZaCem9HUyW4bUbeI2Y8nSM1Rq/28LvtKlHY8KNVYLlLuXRCa3rl2k8fZn5nYfomaPLBStLsAhulIFPNZnhNRpgNcXBCeHKMuf+3b+EasRku4eMv/cmg2993zUfWpPt7Lvd/6SDl8SUg/FZwGs1maECH7/dwGiLzRwwQVuLODpxgaBxRJhEhCsr+L0W7ReuEa70KU9GzB88dES9QJE9eMzoe2/id1q0vvQM+uAYrxkTba5SHp04hHBVuymMcMhjU5QEy33QBl2WeGsx1WhKeXyKkGIhoNB0vvo85cEAneU0n72KLUqKwxNMlpNPZ2Ch9cI1+j/9ZVrPXyVcWybfPeRk/xidZlgL9WRGeTpw2O+jU8LlPl7r3fNNPZ1Rz+bUk5mTIT7JMZQCGceAZfSHr9H/+kv4nRYyCGg9e5WT3/p98t1D/KUuSInVhno8c3jpdhMrJVJ5IDT5ySnVPHWNiDbu+Tx92QWAbjpfWXFwBBaqyYxq4BDj1XhKPZ0iPZ/k+iWCdtNl7JyOALBFRX73MXZ7DRn4NK9eoPn0FYq9o/cZN3VRkj54jN93WG+v2aD5wjUQkmo6dyj3ZoLXahJvbzjMeFlS3N3B9rtwfEK0vsLq/+3nkVHA6LtvuAFlGNB+4bqTJwqJ1Zry+JTZzTtEm+vIKGD8ndeZ33qAUJJwbZn57R3KwRA3S7POLxeFDiq02FgUUuK1GlQTJ80Pljr4y3304jWsxjOCaxcoj04x85RgbQljDeXhCV4co9OM2Vt3CDdX3TE7GNF87hoj2WB8MidsRiTNiP0sQA1HbCYlWaOBUIJG4uwZzYai1wnIcsOz11pIJQg88SNteOCLpucTyxjD8fExAO12+zMRk4wx3L59m52dHZ555hm2trY+1wIF+JC8bTypODwuuPMgRSlLq+UT+BJPucVU4CnmmaPIjcY19hPurta8uzZ7z3DFGLA/Lv/Ox8EKrFlMd8DTJVGV0slOqVVAbWI8XTCNuxRBE564RhaucSN8jBKMGuvEdUpYZfSyY2x6wjzs0s+OAUvqN9hvn3fNUNgl95ukUYuV2T6d7JSV+T6nzQ3a2SmhzgjqgnY5QFlDJj3CMqNdD5xPxUIXS2Crj34+P+SyvPvuPHkFk3JKLTxO4w1Ck5EGTUrls5ydEJcps6hHPz1EWU1Y5fg6p1Qhu50rzBrLxOUEaSxGSsJqzjhcIqznNIoJ87BD6cdIU4PwCcoxk2gJ4/l0Z4espY+ohc9pa51aBc6QGzTpzw45am9jhYdBuNcKgV9XWNy4HFMgjcAI4UAScnGi09oZoAT8WI7FH2p9eArkevuzJ4QUTlFQL/q7ZuLRSNwFYKnrkySSVsOj1/PZWo/wvfefcz5vRg/8yc7p+Umvfi/gy893eef2hNv3Z3gKrPFYWQ7pdnxu3Zly4+YUK6DMNY/35qSPDniuntC7fo4wDsh2D6HOmCdL2O2ExugPCdshyeYKttZOhpSm6FlKuNSjPDp1u/+lS4X3mk2XvzFN8Xodpm+8Q7F/hN9KyPYOyR48Jnt8SD2bY+sak+aLz6lABYHLOSlrqtMRKonQdY0gxEsSlO8j1PuPYel5SN8j3zsi3Fhl+PvfJ3+0T+PSNuXpiGo4Zvr9G/i9Diu//GdQUcDg976P8H1MmWPSkno2pxrN0UVGOZ46iV23Q7C6jIpCl0If+HRevE6+f0w1nqBaTbfpp5zcwe+0kFHgML/jKTKO3KTAWIJOiGrGC6kQNC5t07i0zdpf/CXSe484/hffph7/tkNXT2eUwzF6NkMoiS0rxEIuJVsNzGDicMO+j99qgbH4S22k73y9MvBQSYRKHCVu+vZtTF7RvH6J5vXLzG7cdfhkJRl99w2klMTnNwBB89mrTF674a6DUlCdjvCSmPjCFsFyl2owJl4+R/rwMaaq8dvNxbSkpjgeUpyMmN+6h61r0rs7JOc3Cc+tY+MIr9PGazfZ+tW/SPP6pbP3L9pao/nsU4z/8DUmb90hPziC2lDP51TDMfM7DwmWu/S+9mX3+g7HzG7ddwjlNMPmJaoVu9d70UTXkzn7/8s/o/ezL9O8donk0jmC5Z6bdi2aCBF47n3qd0meOo/0PdL7j5nff0Q5mhJtriJ9z9HzpGB2+yHNaxfY+qWvM/7uGyz93NecH+X2A/K9I8qTIeXpEOH7hJurNJ+6SHxunVZdc/qtV5i9dZeg33akwc01bF2THxyjbj8g6LYJ+u8qd2xZogsnbcx2DymPTykH44XvBTcZS2L3nizCdZPL2052KgTx1jq9n30ZpKA8PCXod+l++Vl0XTtgwpNmRSn8pR7zG3eJNjeYvHGTyas3kElMev8R+aN9bF1Tj6YgHP1NILFmAc9Qwh2jdY0pK4RykAQ8Dz2ZofMC1WzQeuYptv6f/8bieIooj06Z3byHLgpE4DtoSB6ikhi/33GbFe0m892UznJJJhImuaA0kij0kOkUr9XjeFCy3A9YX42ZZzVxrGg0PJaXQhCwf1hwfqum1fzRtSZfND0fUe/N3nn06BFhGNLtdj/159I05bXXXsMYw9e//vUfeKHx3qbn+LTkzXfGjMY1B0cFQSCJQkW76dFoeHQ7PvcezLhxO+N0WJHONeVHZ2R+Qmnsj4POZs0nO7utQeIm+haBlS4zJg8SKhWihSINGlReDAKXySMFtQ2olA/akPoJp8kqYV0g5pZ2MaQzvketAqS1hHVGqSIqPyIppihbkwcNdjuXUaamWYyJdAYCmuUEAIPENxVRMcHTJRJDLUPAEtQf42L/IdfHiai09JBY57nRNZX00cLHIPB0vmgIFYXfJMnHhLrgtLHOPGgSVTOwgmYxplYeuUqcabPKaRYTShUxD9uEdY2yBVvD21ReQhq06aXHJOWEQXODuJhRehFhNSf3I6TRJPmQLOxQeREWiRECIz2ick7tBQtlmyHQtZO7BA2QHiA4M/+oP4JMqB9qfUQTZCHLFb4PUSAIPNyE1pOcDiv6vYTlpZAkloThhzdZfpCmZz6f02q1Pv2GX9QfSfW6AV/5Uo/xtKLWll4nJPAF93dStIX19YgsrTnVhrLUNOo5SkAYBy7Ec54RNGOshsFY0U88hHUEJ53OmN26j2okCM/DaI2QgmhzhWhzzfkGtEaGvls0Nhukt+/Tfv66w9EeHKPiGF3kzO88RAh3bq6GY5chE/que7egqxJdl/jNFuH6CkKB12rgdT587AnPw+Q56d0d0ns7xOcdRc5q45orbSiOB3hJROPqJYr9E6LtdUxeYqqa8Pw60v8D5ncfUk/mqHbo5HJKUS4IWUG/i99po6IIneW0nrtG69mnGHz7e8zeuks9neGrtkNmG7swb6e0X3zaLbpXlz6Ul6eiEJ3lnPzm7zK/9xCvkWCNpp67wEZ/pU+8MPDjK+rhBFMUqFbDyQ17HSeZygusMVhdE6ycc2hwbahOhs7Ls7ZM+4XrsEAiq1YDL46Y3dkhXO3zZBMlXFtGxaG7jzDCSoG/1CVaX6Y8PiXotZFxgC1KTJqRPt5HIN1jKGpMWRBf2kIFIfnBMbP7jygnM5a+8TLNZ644+MNwBDgCXr53RDWeApZqMiV7tOvCSLst4stb1OM5+cER4+++5YAYy07K5Xw1Pkob8uNTqnccfTXaWsfv9wiW2ug8Z/T7r2LKis6LT9N+4WnSOzuUwxHzW/fx4ojGU5cIlruoxAEx/OUewTzFFk4GV2YZGKiNRgzGmNmck3/xbQeoaCbE59ZJzm+hs4zyZMTgD75PdTxENWJHMcQF5XpBQLjURRclVhv03IE4qtMx6e2HrP3lv+AmUIuyxpLe3z2bjGT7RwsZ4QqNaxcdBv3+Y/xuk/jSeYr9Y2xdsfxL36BxZftd75m1tL/0NOnDPfx+131G7j1yJLsodM1KUWK0ZnZvB/3Km5TjicvfGY9Jzm/RfO4KkzduUh8PqNIMqeRC3iOdbL0oz1DXKo5QcQC1xsYe4cYKva9+ibV/7Zs0Lp/j8P/4v9ALmlvna19yGwrGopoJFpi+cZPxa+8gjKGYzMlParbCmGH3Wd48CbBGoD2fPNNQOeBRo+GhlAALg3HFpe0GcaQQUjAaZUxn1RdNz4+zPpi943neR0IFPlgHBwe8+eabbGxs8PTTT3/uhcl7S0qJMQatLW+8PebO/TnKkwyGDm+cRBAEksvnE+7vpLz61oTBsCRNf7CG50den+H1A4s0NZ4pqaWHso66UHvON5LHTTQCo/yz22u5MEWgQXhUKsIIxaC5QX92wCTqMkpW6KdHeLYizqd4pkR7IUkxxTeugWkWY8bREqNomWYxpp2dMu1ccdIHazAIVJ3R1xMKP2K3dYXMbyGwJOWE1ekuSTX7hOf2w633vprDeBVlalZmu9QqdEAD63KAlK7p5qcoU+PnI4fvxsEPojqnlQ+oVEThxWjpUwQJns6J6oxcRfi2IqozpKmR1hLpAl9I4vmMUBeM41VyL8GgmEYdci+hkgFlGKN0iZYu7FALQEqMDahlhdIllRchrEYag9IlVgfUVYZWCXiL5kfjmNDiJ7nxebeEcNNBbUDWMEtrsBVLfY9WbJEqpNHw0NqytRG9j+r1pD4vrhrcZkySJD+sp/FF/QgqCBRXLrZ45/aEMJQMRyXHg4KVfohSguGooNP20bWBuSF9e8TxTUVkK8w8hTCk0s776emSarigXmlDOZo6UlkSIUM3XQiX+sRb60TrK44UdTrC63WY3bhDunPA47//v1Hsn6CLHBVG5Icn1NM51mik8hBSYWvjDNHYs80sASSbG85jMi+Iz28i/Q8vM0yWO5/FvR28VuNswSmUPMsi8RoxxcEJjetX8DpNpm/ddtjpecb0xl3SOw9RSUw9TdHzjPk7d5FhiNduLLIYDOn9XerpFAQkl7eJtzdpL4zjw9/5rpOhRc6ILTxFsLZCcvUiUkk3XVk0PPVsTvbogOlbt3n4//oHZI/2Ua0m4doyeJLqeEixe4iUApnEeK0G1liK/BjViFxmipJYo7FVDaGhnjg6V3zxHEs/91WsNgx/7xXwJPHGGtHWGlYbRxUT/kKe5Azm4GSC+eNDJ6nzJHWaoSdz5sadZJKntgFJevsheIqlb36DYLVPuXfE0W9+CxUGBCt9dJrhd1p4nRZ6OqMez0AKgqUeeVFgtSHb2WP0yhtUwwnS96jGUwbf+j4yjuh8+RmX4eJ5Lk8mDpnfvMfJ//UHRBsrzuyuJDrPiNaWXYhtFKKzkmL/GK/TwGu38BoJxWDI7q//E+Y37xGsLOH12jSfu4Lf71AeDwhW+otJnnVywtGE9vVLNF+4zvBb32d+9yG2rPCDyMECxlP2/uf/L+0Xn6Z5/RJ+t70gooXYWqPiGNsqqGfZ2XFaj2cgJOH6MpPXb+I1YzBthBR4rRgtnVRufneH1vXLmLpm8uoNTJ5jqwpd1wTLfVTkgkSttahui9YLVxGeR9Bps/RnfopwfYVocwUVhlitF5MXiQwCitMRtqqILp/H73UoDk+dx6osqaYzsr1DrDaIwOUMIhwopBpPsbVGegGymTiqoAQVBni9DkIK9CxDKEGwuky40sfUNV6rSfPZp1j/136J5pUL+N22kyVOU6rBCL/fRQUBwfoqxe4BKEV5eIItKycrbTephYdoN/CzKZuju5w2rzHKPXRVkyoP1QwodYkUDpSQZTVx5LO2Ejq63uIE8qPmGn3R9LynPip7RylFWX58lorWmnfeeYf9/X2ef/551tfXP/a2n1STac3xaUGWa3YPwQ9zijrjxp0ZQghakWSpF/Dgceb8aFJw9+GM/99vn3A0KFHS+VuksJ8j1OnHsZP+GZsqawnqFGU0deDh6YLKC8lU2wVmIbFYFv8ADEYqzpi/AqS1ju4mFcPGOpNkGc9ojJD0s2PKZoTQmlIFrBYDJO/6inxdUPgOO9lNjzFIJnGPUsV4dUFYl2BT9ntXqFRIUrpMm0m0RKUiLgzeIfgEZPUPq977ahoEs7BDXM9JyimzsIPSNb4pmcY9/LRmZbpLYMszyEKhIjIvIfWbCGPJ/QhlNVGZ4tU5nq4RGLT0aU9HjBorKFMT1jmzeMmBE2QAuqL0E3xdkPsNl2BdZ64J8gW1ShYZQRohPCc30RnW84mq1OUQeBGZ38DzQoQunfBNOk/LWRqoYYEg/KOCHPzw6ol/Tj7BVGtFpWGlr4CcwemE/eiE56+3Cb0lqsrD99+vb/68waTW2i8mPT8htbURczoo2D/IOR2VDmhpDJOpRknB+krI41cf0EyHZOWMMmtRak01yPH1mGa/RRLUeEXujOijycJ3IFBRSLF/hGq38NptZMOd64RyO6w6zZneuMPwd/4QEUWIQJEfHGHSDCukC5v0PHTlyIwy8NBGL7INLML3UUFAuLVO89kr6Cx3lKngw/r8ajRBRiH+co/53Z33+T/eWzIMMLXGZBmmqpm+deeMLJU9fEw1y1BV7eR7vgdKYmvj4AZAcTRwOTsSZBwz+t5bePFdej/7FTrPX6M+HWNxOSvS81GtBKs187duE26tsfyLX3fTj1v3Gf7ud8keH5A93nfejdU+dpqR7x0Rb605CMB4Sj1LEVlBPRjj9zoIQCUJejrHep7LNlEK1WzQ3Fh1tLB1F8AqENRZjt9p0bh+kfJkRLZ7QPb4gHqWklzYBKkwZYmtNdM3b5MujPLR9jpBt0P26ADVamCx7j197R3K0QRba9K7O4gwRE9cXk3Q72GNhro+m2g9CYAt9o6dbLBw0IsneUrBcg8vidCVhkVOS7F/QnJpy8nFjgfoPMdrNSiOThG+h1AKKwUmLV1TUhtEoFBxjEoiTJqfYZBtXVFP5+SPD6hGU4eSLkraL1wnvfuQ4mhIPRxj6ho9y2g8dw2/08KkruEI+l2XMbRAsKtWE5PmZA92nel+ZQkVO9zz/NZ9F6Y6m2OrkvzwGBlH1GmKqSqq0xHBSo/uT73gGk4p8JLEEQOVYn7zHsnFc1QnQ9IHj+m+/ByDb79Keu8Rweaqu3xVFYNvfQ/pe0Trq6hmTLZ3wPq/+efOQA9PPocqfnctFq4uMX/nLsLzEJ6i+fRl8r1jJm/eJHuw527fiJnffeSgA40Yr+VAFHqeoQIPE8eItMBrRAgpMXmOl8QEKz2XaSQgXFuh/2deJlzqUafZWcMDoJLYNW6TGdHmqvtMhwEi8B1173TkwAphiC4rhK1obm5QyIBgOGR9a4YNG/REQbG1yb72GIwrJtOKqnLS7wvnGnQ7biMmLzS+J2nEP9q25Iumh0/O3vE8jyzLPvLnZrMZr776KkopvvGNb/zAu6nHpyWvvz3h6LjgdFhy9x784WtD4qTgZFBy/UoDYz1aLY/11YBHuxkHxxmD79QMxxVCQuHOXY629al9xo8zbPQz3k4I8qAFGNCGzE+wng9WLn6JcK7vM+DX4rELucBaG8JyjsJSyAitAG0IbE4WtDgRkm52wjzpk5Qzmvn4fXdfqohWPgLAsxqBYRL2Kb2QoM7JwwbCGmoZsJQduR+yln56wNxvk3vxD7XpqYVH5YUoU3/o92Z+wiheYRp2OWlu4umC1dku/bTESEmNoplPWJs+JrTvNuzDeIXD9jaDaIWHS9dJgxbK1vi1IwjF5ZRrh98jC9ukYZdaSqI6R+oKiWEaLeHpnEJFpNESytRUyqdSIb4u0coHCb4uyb3ESRCrAu1JtPKxOI+Prwsa+ZCj1ra7GFqLlb7L6jG1W+w9mehZ3C7yn4xhD+CezhPAYlXB7pHH5YttfvZnIr70jCTPxzx8+IC3336LVqtFr9ej3+/T6XR+YHnbF56eP/6VxIoXn+1w/9GcR7+fkmUaKQWdls/6akg0OuL4dJ+0v0G8MWFJzPHX+qRMEfkAZgXe8BifCgKfOs0RxiIbMdVoQjkcEQjB0p/9KbfQ1Rpb18xu3KU4HZI92KWazomXey7jLfCRwcLzkuWIJILTDBCYWjsESei0+H6vQ7jSJ7mwRfvZqwSbq8zfuUd5MsTkJX7XNd3VaIKeZcSXzqGnc/Q8dVOeRowuSqrh2IV3+v6ZLG7y2jvMbt0nXFumPB2R7TwGIfA7TarhBD8MCJb6rjnyLbosEb6Hajbwe20HLei28TttJ6EOfMrhmN5Pf4ns8YF7TNqgs4x6Oqeez/F6LarJ1DUW9x9RHJzgr7mdf1vXKCkRa0uU+0fk+0duAtGIKR/tg1KLRqiBKQr0PEe2m9iioBoM8Zf6Z4Z9v5mw9q/90tlULrmyzeTN2+S7hxR7R8iFZ6I4OmHyxi2stSQXthh9/y3Se4+xtiZcWUY1E8qjU8L1ZZrXLzG7+YD5zfuYugZtznDSIoqws/kC3V0i4wi/mbiGuBEjlOe4MlVJ8fiAcHOV9MEjhn/wGl4SkT147GRWZYU12qGxB2MmaUp1PADPWzQdAfV4RpaXCE+hwgi56sJvbVmCCBANh/bGWPRkjlzu4y33AIFqNWg8dQFbVWR7R6jQNdT+Up/yZIjNC5p/7mmijRVG33mdfP8YnWVuYlKU7rmFAWiN12s75VhVOYT3bM781gM3yRhP8TpN/KVNqtMx87x0ssOyBCVpXr9MfG7jfdCC8vCEYLlH/tjBLcrDE6rhmHh7ncaVbYrdQ9dkPtoj33P5P3535cxjNfrW99hd7rL1q3+JcHXpQ+eB4uiU7OEuszs7zN65h9/vIp9MjbTDS8fn3H3VsznzG/fAGkQYYCrt1rBxiB2MkL6H9H0EAl04KSx+gJC1ozj6EiEVIvDRx65pfdL0CKVoPHWRo3/+u0zeuoMtC2ylF7j7KfV44iSgVUW0vYGtaprllELHlFVJ8+AeXnKRbG2d9rlVuoMKuWU5HZSMZzW9tr8glaasLoecDkrObcZ02l80PT/S+qCc7YNkpI/KzLHWsru7y40bNzh//jxXr179XLuv7y2tLW+/M+H2vRnjScXRacVoCmJW06lrZjPNK6+NWV0OiSOHEB5NKsaTkjy31BpMtSD+ik+Aor17j/zYVpCfSdYG4KQI0hqHd1Q+9myKY4AnmlTxboDpE+iBCkBIhHWIZS0EnikxQqGMXkx6FFnQpFHO6cyP6GWnzKIOjXKCtMZNG0xJOx9gEJRezEnrHI16xnJ2CEAtPXa6194nY/N0SahdorP9GGB1LTyMlPi6QnzC4PYJmc0iOG2sMWisUaoIZWs62YDV6SM8U5P5CY96V8n8BlGd4dmK49Y2wlpW57soo0mjJu1iSCsfnP3+WdBit3sZMFR+AAjnr1EhVkiScsbS/JCV9ICRNS6jp84o1SP229sctc5hgUY5ReqaehEmalAY6aGtYZisYC0k5QyvLsiDFo18SJ14WKEwi+yOLGiR+Q2kgDgfU3gNKuUjrKUW3kLOZt8z3bGLMYn9EzHxeW9lBewdFAgsF87F5FWTK0+toqSgKAqGwyGDwYAbN25QVRVh6JLrJ5MJrVbrM0FSvkBW/+SUkIJ2y2epF3BiCzbXYtZWXGJ5cWOXlZbloU2oVi/QzfdoFkMCv2J8MKR4vE9SnkKo8VpNyuEYU2sk4LUS/HYDGQWEqyvU8zmTt26R3n/siE1ZgR7PCJZ6mLSgmB24822tHaK6KJEWF35pWYSRGicLk8pJxFoNrACv1yFoN6mWujSunD+Twpi8pJ7MsViK/SOK/WOyx/tM37lHdG6N9M7Ds9wY1UgWGSGScjgke3SAKQpsrdFpjr/ad/SzKERKgWpELnW+dH4HmTRg4VVqv/QsqpEgfQ8VBsxvPUAGPsmV81TDMdmjffLH+1STGcKC6raYvXOfR//vf0iwvgKAv8ilkVGAjGOq8Ywojgk3V91zqmpUq+EeexSQXHRhm3o6Q5e1C1nV2u24FwXZ7gEmL2h/6VkAkgtbAAQrPaZv3mby5m2Spy5QDUaUA5f1Ux4NQFjSqqaep5isINxccZOueU60uuK8FvUirLWuyQ+PoDL4/TZes4lOM8o0x2s4T0z64BHJhS0XWrmrwZPYoiTaXHVhtL0Oh//kNxBS4vd7Dq+cZuT7R1SjKabWVMMRtqjxem1kEKBnKcXJCOEpLFBNZwTdDl4UIDxFeayx2lJnBcHaEl63AwK8tjtHWevCVYUQNJ++gjWWaHPVHcuB70AHl7dJLp2jHk+ZvOZTHp6QPz5yY3RnPFtQ6izdl58DC16zieq0OPkXv085GOM1YlQzwZQ1QadNcOUixeEx4eYq85v33f1urL6v4TF1jak19Twle/AYneZUkzHl0cCBInpt91iBfO/INbdJ5HJ9FqG5uiiZ33zA8NvfZ+0v/qLLSVpUcXTK4F9+h3qe0n3pWeYPHlNPZuS371MPx4Try6jAHV8yCIlWl0nvPXLSuLrGlA58oJIIlEIGgDZYT2GlyzASRYH0JKrRwJYVsxu3yR48Bk+5Jvk9FWyuYKqS6Tt38VtN/F7LPd5aI+MYGQSOTNdqYvKScDajMZkwmWnqHFpbMQeiwfHDOUo5elyj4RNbWOr55KXhxq0Je/s+X36hw/XLzc8N/vq89ae+6amqirquPxYD+8Gmp65r3nrrLU5PT/nyl7/MysrK577PJ6NkrS2378347d8/JSs0WhuqwpBX4AnDbFYhJeS54fF+ThQq0qwmyzWeErSaiiyvmc6f/N5Pu+ePa3gWjcUfVS0yECzC7fY/0f88Geu8931ZND6eqRCmRuNkXp6tHSVMSNAuo8Ai0Qh8qxGmBDRlkLB88gZWKmZhFyMkni7xdcl++8LZw8n8Bsvz/bO79UxNoDNmgfOuzIIWVig87aRjrWL0vqdUSZ/TxjrjZBkjFHE5ZWl+QKt4/4QJ3v+OjJJl9juX3DSknFArn+PWJlpIzo3uMoxXyf0m3ewYAYSVw4YOmusIIQjqnLiaszG+j8JQeDGnjXV2O5cYNFZpFFNG8QqNckpcz5kFbcJyjmcdPmIa9unlJ+x1LiOqOUk1oz8/4iRewyrJLOwyD9ruYiY8pAS/LqiFovAitPTJwzZSl2jhMQ+7AEjrmk+DIFcRVipkXaJMBcKgTI1R3llapzA1Vnqckc/OuvnFZ/EnDm398aU1zOaak5OCV163RKHk/LmYMAxZX19nfX19oYHOuH379tmEGaDX6539lyTJh85hxhjm8/kXyOqfgDo+Lbhxa8J4UmENTCY19/Wc6aziwpqHOTqmVZU0BnOO8pDj7jqFV6GzfepgTjOYk5QZUiVOQmZB9TuEayuO0tZrY/KS1vNXF6GSJ86gLQRm5ryAuiggL7BV5RY0cQRau91vY/CSBF2UUNfOpyLdTrHXahBurDjfT+XM36YokY2EcHMVW9ec/svvUJ6OaD59hXB95WzRufv/+Sec/NbvEa6tEPQ7mMJlmpSnI6fCGM9QjcQtULMCneVwMsQUzhekmm2irTWSSz7laMzsrTuoOFqACHDQgKJESEFe1ZTHQ6ILm1hrKI8HhCs9txu/3MdLEqrxmGo8cQ2etpi6Jrmw5chZnZabNNQ11TxdELxmbhNOKoRSJE9dpP3yc5T7x0zfCUkf78F0jgw8jLbu8ZQ1xmh0XjB85U38Xhuv2UAl8WLy0GV2855DiIe+I4itr2IFTN+4hWyExJurROsrCM/Db7fwey2QitPf/a7L85lMqQcTUB6mKMjNISqJsWWFWQSxmrKGi9s0r19BzzOK0wF1WeGvLtF+8TrzuzuLDJcY4b3nnKs1OsspFshsGUWoVoJsNjBFjp5M8HodbFk5wEBt8DtNrHWyKT3LUHGE32ljqpJgpQ9APZ27ANUFGU0oiddKiLY3CFb6pA93qU6GzO88QOcF8fYG8eVt9v/RP6M8HRCd20SFgZO/TWdYBOVwgt9tURcFs7duIeOIpZ9/GhUGWGGZ33rA/M4O1dRZCcqjU6Jz65iycpL6J085y6lOhlTTGfN7O9haE6ytuMyl8ZxqMEZnKcL3KB8dQF3htZrYukaEgfMyzTPi85sYXTO7dZ/u177kwk9x68LZjbvUs7lDuQPBUpfi+NThzrMCr9MmWFly8jQgOrdOfG6D9O6Oa8ZGY1Qjwe+1SbbXKQZjpB/gdZtQG6rphGh1BX+pizXGnRt6Hcw8Jb+/z+z2g7PA2Wo0ZfT9tzBpjt9qOGLi6QARBKhOGz0YUQrovPws4aoLvy6OTykGt7F1TrV9lSDStOo9TKPDnrdKqxexthKhlGSe1mSZpt91UQ3nNhKS5Effkvypb3qklJ+Ye+F53llGz3g85rXXXiOOY77xjW8QRdHnuq/xtGL/wEnYgkBSVYb7OynjaYXvCR7tFsyz2umAPWd0jiK7yJWSNBKQSuB7bgMuL/SCu/5p450n3/+4heKPwDr2oQ7syb8/EEp5totvEFiMeCJh05xNeN778wvzu7UupjTMx1R+jJVO5mZQaBUR1hlWSVTtJkJxleMZjVzkSpwb3nEUN+Vz1NpmGvXczwjBYes8mRfRyU7wzbs46kY5I/VbPFh6mrDOiYsJk8Y6ymhW/Ud0FpMVg2Cvc4lRY4W4nOObglnUIwuanB/colFO3/OqCOZBk0oFoGtOk3WUqc4mSqrWWCs4aF9AAMeNTUKdnb16EsP6dAdlNGuTh/SyE6JyjoemkgGPu5eZhV3XUlrLKFkmDZpEdY6wBmU1WeigDFO6hHWOPyiwwP3+0yhTkwZt0rCDb0r8hYY/95ukQQthNEFdkIYtN4XR5aJxDQBLrXyUrRaTO/BNjV/nTr6oFKNkzb0nVlMjnYQR63J8Pinu9Qxt/ZPf/GgD07lmMCzJC8N3XpuwuR7hee8+fyEESZLQarUIgoCnn36a6XTKYDDg+PiYO3fu4Pv+mRSu1+sRhiHzudsR+UE9Pb/zO7/Df/Ff/Be88sor7O/v84//8T/mL//lv3z2fWst/+l/+p/y3/13/x3D4ZCf/umf5r/5b/4bnnvuubPbFEXB3/pbf4u///f/PlmW8c1vfpP/9r/9bzl37twP9oL9CazprObNG2PK2rKxHrvFoSfYP8zZPciojqYs3X7EfFaSJC1ebikCISkrgdcWLP38U4idgNGrI0xVESz1CHodp++PQ7xWg3L/CJlENJ++Qnr/EVIK4nMbeO0m8yikHoxRsdPn11VFNZ4imhEq9NET1xRZu5jK+z4y8jFWEPbbRJvrbvc3DChORmQP98geH5AfnIB1Ppby5BSv0yK794j6dETzuasuDX4RGqd8f6H9dDkr1emIapZiq4pGt4MKQ7xGgqkqJ5NCUI9mCM8HxJlETCUR7eeuUk1m2LomXF062023uqY6HZLff0x9OiI6t0b++AAsBAs8tQwD6skMISQqDikenmA3VyHwic9vkj8+wFhLPRyj8wI7z5CeTzUeuAak33XI4a+8gGo1yB/t4bWbjvxWlA5PHbuGr9g9Yu/X/ynV6YhofcU1iMbQ+tIz2O+85nwVSQRljc4d8lkoiQp8VBKTXN52pLhFladDikf7iNAn3FilGo6dzwNcIzSdu01F5TkvSBRh6so1vFmOsNB5+Tni85sM//B1dFkRnV+neHSI125iqprs4S51WhBd3GL+zj0Qhctnmkzd8dZMCNaXHY1uNkeF4VnjLAMfS4ApJ1DXjrzXdJk12aP9M/+K13x3k8YaS/b4gNk7dzF54SZbRcn4O2+Q3nlIsNIn2t6gWMjMTBK7ZqnXwe+1KQ9OsMaAHmCyHJ2X5Dt7BMs9/KUurWeuuClTrQk2VvAaCev/5l/g5Ld+n+HvfJe8cr4BU9fUwwnp4wMEEJ9zx3yxd0g1HLvnMc/xeh3q6Qyd5rCYbtiqZrbI0pGHxwuCmqEeT2HR9NTjKfn+ocuPWpTXbjq/2GSO32k571wcUg1GBGvLCKVoPX+VOs0WjTeoKEJGgQM6tFt0XrxGcvUS+d4R4++8voB/zDFZxlxbROi7/xAMfuc7lNcvoRoJ41ffYvq9t1Hd1mJyqDHKecqqw2N0XqKaDcQCva6znHz3EGE0kWe5cLFF56U1TF1z+40jSi25/vSzZ5/FlaXw7HkeHuUMRhXbWz/8c+sH60990/NpYaNKKeq65sGDB9y6dYsrV65w+fLlzz2CG08qXn97wmyuSWLJcFxy+96cTstzcrnDklmqqSqLUm65VxtNNXXnKD+ELNcUhcYYl9xurUBIc9ZGfHT9OLG/+hM8PE9eL7OQqCkQ7gLnGhuJEWrx/ffc9j2vs9A10hqMlFgVYEyNh8EY7TDX1qJ9gVg836iYUkqPLOrj1SWhcOjpo9Y5ltID4iolC5qM4mWaxYTCi5jFPSoVMGxscM/UXBjeIqozjJBYBO1iyCzs4tcFnqnppUf4ulxQ4g4JdEkatjlubWERzJptpNE0yzGFjBjFy2dNTyUD9joXmcY9DE76dZqs0skHbopTpxghGTbWOG2sY4VgFvXAGNanDzHSwyLxdIFvStrF6AyzDTCNuszCDp3shDxokoZdlKmZRH1q4ZGrkFnQJqozhDFE9RwtPV658EsAKKNRi1wfcFI9u2jQKhU6ep5Q1CpY3KN1yZuANDUGicQirSQqJvjaNUxGSnKRYKzLyzBWgVULZPWTJnghcTN68fWPKLM45n7Cpz4CwMI8NSSJ8/idDkvWVsIP3faJp0cIQbvdpt1uc/HiRbTWjMdjhsMhjx494u233+bXf/3XKYri7Od+kJrP53zpS1/ir/7Vv8q//W//2x/6/t/9u3+X//K//C/5tV/7Na5du8Z/9p/9Z/z5P//nuXnz5lmj9Tf+xt/gn/7Tf8o/+Af/gKWlJf7m3/yb/KW/9Jd45ZVX/pUol3+S6uAoZ5Zqtjbis69dOJcQhYr93Qn7v3cbfZzRLUcsizldYQn8NrbWZLv7KLFGMXWLfJPlmDCkkgIZhtTzFK/XcrhqIUnvP2L03TcoR2NsWaEaCUGvS3k8QPkBQhvCtSXKw1P8OCF+cZ3xH77uFq5KIqMQgXAG9aJG5wVG13hRG5FmLvfF4ohOkynWGMqTIVjrENLdlqN/fft7mDTHzFMal87hdZ0vKN87AjN2n2ttkH5ANRhgyxKv3XITGGNcuC/CyajqinLoSGONpy8jAg8zy2hevfg++VA9TWk8dZHZ3R2yx/tE6246pRL3upuydF7QlSXqyZTms5cRO3sUR6fE2wGqlRCuLzO7/QCd5oi8QHoe9XRG0O/Sfvk5qGvSOw9dJo4QyHghwfYk0ngE/R5et4XJCqoip1wEYWItk1ffJt89JFh2ZvNoe5N875Di+BThKUQQIHwPtKU8OGZ+K6Hx1DblcEp5dEK+f+xQ350WfjdHpzl1lqM8zzUc9aL5QIKnIA4d7vhoAEqimg3K05HzW5UVfqdFcvEcpiqppzMXZjtN8XttbFmgwhB/u4XVtfONlBXhqptEzO8/dg1v4LlQ26NTkO74Ua3EIb2nM4Qvmd+4Q7C2THJxGxkGZ2oYU1boeUae7xOuLjm5GaDTDFNp0nuPGPzBq7Sefwqv0WD4ndfcBLHdRPoeNiupswz9aB+/2yZY6WEOT9F5zvz+I6I0I97eIFpfoTwe4ndaxOc2iDdW2fx//Ap+u8Xw29+nGo2pRlPS+4+o5ynJ+S2irXWC5R5Bv8M0zcn3jlFNNxGLttZIH+1jpyleu0E1GCPDgHB9GRkEVOMp5e4hkzduklw6hwwCTFlhyhoVBXywguUe+cIrFG9vku8euE2MZgMhJeGSw3jHF7aoJzP8TptwbRnpey489mSIns4RcUj64LFrHjstTFFhysrlVnUdNMrrtqmOBpRHA1S7QT2eYIqKxlMX3WGqNfmjPfylLvVoyvzmPeTzV5neus/8xj3n0fMlo9duIHyfxuVzsLyEuTumGozPpnrvLT+QZPmPgSTMF03Pp5YxhizLePDgAV/96lfp9Xo/0O95vJcxSzXrq06ragx4SnA6LElTw2xWY4zBWsgLqBfn6VqDkqCtoa4sVWUpqifrPLuQcX1c/XFpeJ5guJ48FuH8OEg3HVgQhhYJawt522Lxaxc+Dl3jGTcxUNagkRgUuRfj2RqhNVr5BLrCM3O0DEj9Fs1iTEiJlZI8bJNaQaUiBJa1yQ6Puld53HsKEJReSLMYsTLdpZAh43iFHWBptk/pxSTlmKio6KbHSGuRVuNZl41z0LpAveqRlDPmYZuD5hYSKPyYWoVIU9HJBni2Ymt8H4Cj1hbjZJlmMUKZmuNknZP2OQaNdZbSQ6TRaOlReDFJMaWXHtNJT7m9+gJ3V16kWYyxQOHFdNMTh6t+T+VejLSOe9co5yTFhL3OeQovJvMThOlihSSoc5SQJOWULGiSewmNYoSva4bJCqnfpPBjhHVocC0ktVQu8flsEPcuclKYGs9qtBRu41ZIsAbflBTSJ/VbGOEaHGGN82O9t8lZ7Fh5ulh4hp6Ee37MRoP+yW58fB+aDQ/Pg9G0ptv1macf/WHSWn+I6AZuc6bf79Pv97ly5QpVVXF6eso//If/EICtrS2+9rWv8c1vfpP/4D/4D9jc3PxMj+1XfuVX+JVf+ZWP/J61lv/6v/6v+U/+k/+Ef+vf+rcA+B/+h/+BtbU1fv3Xf52//tf/OuPxmP/+v//v+R//x/+RP/fn/hwA/9P/9D+xvb3Nb/7mb/LLv/zLn+lx/Emvk0FBHL//GPY8ydZGTOf+m+zvfZ/+Wpte6aF8iwh8quOBk5keD9DDMeH5TYLVPvVkhq011ckQfB8vialbDVTDSZtOf/vb5I8PF82FRoQBXrflJCyjCTIJwTzxWFjSmw8QYYDyPOdfsQav38VrxpjagK5RgY8tS6rRhGC171DYhdu9N3lO+nAPtMbUDhJjihqd5W76kDo6m1Aept/FlCVep4U4PkEogQx9hOc7GMNogooj58WdzVFSIcMAf4GXTi5u4bVbHP3v/wJ8D29hygYWPpic5PI2QgqG4wnF8SnVaIrXNuhZipBiMW2xzG/cYX57B12U5LtHFIcnjuIVRS6VvnASwGhz1eXKvPQsQb/D+Ptvk+8eON+O1gg/IGg0sVoTrjeJtjcoT05dtk67AdoihCRY6uJ32+S7R8xvPUA1HPWtPDhGNRNkEFDPU4LlvpuG5TnTG3eZvXObOisQxlLPUxfm2W2eTW+U7yOTBHTtIAxRRLi2TP74gHCpS/PqRYJOCxH4FMcDTF64CZY1CKWoZnOsMdSTOfn+ETrPkVNFcTrC6zSItjfJ7u64hswr0fMMW1To2Yw6K1CNmMbV85hSo2czqombNgkknRefpvOV55nffYgpa4SvmL11G4EgWO6S7Ry4LCghCJZ7WG2YP3hM/mgfnWaOoPraO9SjKcu/8FVUI2J24y5mnmF9DxH6oDXR5irh5roLz52mCN/HjyOKwxNUq+lklbpGT1Mal7cBh3luPfcU6Z0HmKKkHo4X3q4mKoko9o/PQmWTy9uUx6eoZgOTFzSuXKAaTRfLGuumSEtu7WjKEhUGxIsw3vTBLs1rl5BhgAx9dJa/b9IFOAR2I6Y4OsXvtvCXOpQHJ8zvPyJ7sIvXatL/ha/ROL9FcTok3z3AFO69qOcZ9XSG1+u4PKIwcM8hDpBBgIxDqmnqQouFYPLaDfLHBxRHp9SjKdV4igwDdF4QLrvnUB3H6Loi3FgBT5LvH5Pe2UE1IuLtTSwW5XtkO7voeUq4dRWtDcV4xtRrMp1VWAuNxKPb9qlKQ7L047mG/6lvej5pYjMYDHjrrbew1vKNb3yDIPhwB/7BKivDaFxR15Y4VotJDgxGFc1EnXl5jLEEgeTBoxShwPel+3Bg0do1O09qYeGm1ha9UKp9+sbtjznY8RMfj7swIgxncAIr3KRHPFnQ2nenOpbF1637GWsAQ62ChcbWPS8tLVbGiDLFKoURCs/kNMqpy4vxQiSauJwjsITllGm8zEx2uRN2eH3z6+QqRAo3VdEypPAiahUgjKaRD8i8hOPmJq1yTKUiZlGPTnZMLzsBHODgqLnNOFmmUU5I/RY7/etuglLNCeqCpJyS+00GyQp+lVEsJicnzQ208Mj8JrVUzOI+nfkx06jP3GuShU1mYY+wniNt7WhJ1iU8T8IOxkJU5zTyMQrNLOoSzh14QQGhKUEoUr9J7jcYRV2sVIRVhjI1WnqUfkSjnLAxeUTmJxRBk1IFzNrn0dJfNFWJMyjriqia40vXiBjhLd5NsWg63PtnhUQLgUairEbYikqGDKIQIwO09FCmctMz6aGtQliNMjXKamrpuURzC8pWFNb/dBmb/cnEWisJSSJJEoHWkASSKJQuvO0jSmv9mWS1vu/z7/w7/w7Xrl3j29/+Nq+99hq/9Vu/xW/+5m9SVdWn/vxnqfv373NwcMBf+At/4exrYRjy8z//83zrW9/ir//1v84rr7xCVVXvu83m5ibPP/883/rWt75oehZlrOWjLkW2KLB33qHpWzrnV2jaJvnuAXrmwhLzvWOKwZhke53mtUvYrEAq5XwbBsrBEOG3CJZ6lKdDlJL4HZegHs9TFzY5GGONIXnqIundHarBmFprhKeQnkew3CNuJkRbq+isJHu4iykr4ktbtK5foRqM0HmJns2Jz2/Seu4qejrn9DuvUx6cuPO6UtTjKdVoAkZTT1NkFDgfi5LU4wnzB4/IHu+hkgQvjhyrxoL0PTe5mcywWqMWVLmg76FC5zeRShJtraOaDVCK1peeJtvZXyzknARchiGNaxeJz61TT+eE66t0XnqOep453PFKD7/bxlQVszdvuyDhB4+p8xxbOwhB0Ou6XJLlHqrbItpYof/zX6N97fLZe9Z6znmm0jsP3dSiqqjLimhrnWh9GWs0epa6KdwwI+i28dqO/GqtIb64SXF4gj4+oZq4MEjhea5pK0vCtWWmr92gOBk671XoO3hBu4VqNfCjCBWGVNM5wvddEKU1iMB359RuC6TECjBpTuOpC3iNBrNb98BCuLpMPZ1SDWcOOS2d39Zf6YOSZDt7qGZMvLHqXruixO91sHWNDX1UI8ZUmno4BSXxG4mTCrYjZOAhk5hyMHKUvcQ1HkGv44hyaUY1mVGNp3Reeo7k8jnqyRyzmFinO7vMb91HeotMndHEEQhv3cPrNOj99Eu0nrlCtnfsyHlpji1Kul9/mep0iNGGYLVPvnsISQxSUA3GCCmoJzOCF5/G67YxdY0QgvmdhwSrSyTXLjH8vVeIrCV7tIfXbqHHU4qjU5KL51BxhPB9gn6H5MI5Wl95nnBjlcP/4/+iOjohvrAJWPfcTkdOVvf8dVTgk9575N6DdpPo3Abz267hFUKg88KpYXwPtUBxn/yLby8UMpJ6Nsdf7tN65goUDjjgddqoZkK+e4TOMvxei+jcGqrZYH7nAcFSl+TytpOSigVBzx5RnQzIHu6RnN/EazdcDpDvUw5G1FlOsXtIsLTIrlKC+miEv7qEmWVUlXFNe6+N325RDkZ4nTbh+grFwTGNzimGgFdu5aTBKWmmEcLlTfY6AWsrES9/hLLhR1F/6puejyprLXfv3uX+/ftcuHCB+/fvf6aGZzypuHF7xnDkFhXKE2yuhVy93MD3JfN5zeFxzvFpSVkaTgclRycljUQQBpJ5VlPV75/cKOW83bp+d/DxyfVjxFGf3eWndWBy4fF44i3y37Nx/+RK/54/zy7+hqBK0dJHC89BCqxFoLE4OpuwmsJzOGSrJLVRKGPxdYGnXUZPGrVo5iOyoIOnC0oVYoRiEvYwykNYy9zvENVzLIZ5+wJBXSCASgWsTHfYGD+gWU3I/QYHrfPE1ZyozpgGHQaNVfrzfbrZMYWXEFZzRvESmWgRZ8cAlMon95ucNjd4ZfsXkEZz2togrDOUNaRBE2E0vfTIhXx6IUGVo4KKZCENGzTWsQjSsOOkZxiEgLhOicsp43iZpUXTo4EkH5MuRYzb55FWM4qXsMKjXQy5cvIWuZ/wsP80jWJKOx8wifoM4yVG8QpaKby6Qiy6Wa8u0F5AToKvS0djExJlKpQAbdWiaXUnUq0CsAJpK4JFUGnlNc4WIBofYesFhU9ghcRYixF2MfATTrlmncxOf9ok5ycUa91owHLPJwgUK8s+Qkq6bZ9e58PTHPj84aSz2YxGo8H29jZ/5a/8Ff7KX/krP6RH7gKZAdbW1t739bW1NR4+fHh2myAIPjQhX1tbO/v5LwqWuiF37s/odaDItfNrSkE4PqWeZRDFhIEkaHbxmonzDBQVwldU4ylet41MIrx+BzyFzjKYZS6UNAqRUYCKQpLL20Sbqy5wcKVPNZxidO0yN1oNms9dZX7zHlZJvCgkPr9F85nLlAcnRJvufW5du0R67xHlaOyygADViPH7bTCG8fffojw8pR7PsEC0toSpambjCfNb910KfCMiPxgTLmvMLKVOc/x+h3oyRwQB5cRlxFht3G40ECx30WmBiEJ830P6Af2ffYn4/CbhxhrJxS2klPi9DrooOf5nv7OYWjkPkt/rnGUCSV/RvLKNDDx6X3+J+Tv3CNeX0WnO/M5DLJbWs08xu3UPfZI5aZ8A6SnaLz6D12s7qU6/TX08xFyszgJWg75b0FaTGfH5DYqjAeVw5HKHqtp5I/ISU82Rnjrz5czvP6bYOzzLiREI5ncenO36yygkXFthfneHeu68PUL4blLkqQUQYIlodQmsId93qGeHOXZTHgApBF6rQby5hs4KN1Gap+hZitd2Eymdl6hG5KhoewfYWlOeDGm9cA09nSHjmGhrncmbN7FZib/Udf6h4diFbVqDVZJoY4VgdYlqOofhBAIfEfjYylHGhJDosiJ/fEA5miJ9N7mrp3P8fpf+z36F03/5XWfkzwvynX2w1k2csgIZ+sgwRKepAzzEESu/+PUzY/3oe28RLi+RnN+kCDxm79wnXFkGISlPBuh5jk73qYZD/JVlbK05/e0/wGs18Lsd8r1D4kVIrMui8vAWEziZRI5gV5YIz6M8GVJPZiAVuihck33lAuXxgPSek8VRazdV7brPigh89CzFlBUqCmk9fZnqZMj09ZuYqnRN0mRGeXiKFYL2s0+5BnE8Yfb2XUd7fOE6jSvbCCGw2nDy239IPZ6y/M2v47ffpXbO7uxQnYzwmolzDnzgOmKr2lEI203UwpsnpPuddZqRFxWqEaFaTYrDEzedtRZTlug8x1oo9o4RSiE9RdBtIaR0HqLDQyb5Be7OLHGnpNnwkRJms5rjkwKMJY6+mPT8kVSe57z++uvkec7XvvY1wjDk3r17ZxrTj6u6Nrxz22GnV5cXiNHCcPvenOmspqoMb92cYrF0Wj6BLykqQ5bX5CVEgUddL/zZwq3hpFysCXF/rx3TGHBy3PpDvcaPeboDn9LwPIEPLCY870UQfxotbjH1skiUqRHCYJRPWDlDbeknzm/ixSC8xbDIgRAyPyaoU0BR+DFJOccisVKSFFNmUY9SehR+gkQjtUErxczvo+oCISDUOUpX5EHMLOqz27vC9vAO6+P7VP1rzIIOFskoXiYppyzPD5ELuZZvKnxdIK2hVCGZ3yDzG6i6IvdiHvSfpvQjfJ3Ty05Zmh0wD1rkQZNA5yhr6MxPieo5nq3xdUFSTBg0Vsm9hFpKutkpy/NDaqEYNNaRyQpRnRFXKf30iKSaI4XAt4aoypgFLQrlXrNJ1Of28vOEdYo1muPWOQSGw8YGg2SNyvMx0nfNJgIBRMLg6ZJShdQqdECJJ8S8s/f0CQXQHbjKlIAhqFOyoM2ZZFE6SaO1DnbwhNhmlQEDEosRCu1F6LMm+DN46H4Cpz11BYEvWer6aANrfZ8Xn2nSbn30qfnzhpM+yej5UWJAP/i7P+1c+Vlv86ep1lcj7u/MHMygMpSl2yBqjocEc8lS5BEt+mAZBgThQhdvLF7rMdHGKvXxwE0W6tohmj1FuLFCtLKE1+ugJ3OicxuE68vke0dul3ilh8kKysGY8niI14gIV5dcwGWWIz1FeusB5enINTadNl676chedx4SXzgHuqYcjp1x21rMPEdGIdWjfWyWozutM/qUC/CcE9QdRwCbzamGjvQl49CFeFY1QrkwReEpJ2Ubz5CJI8kJ4ahe8fl1Oi8/h1Qetq5pXr+MCt3mpKkqksvbFIfHxJe23W72oorjAV67RfdrLzG/fd/5LloJ6YPHzgw/mhJtrJDe20Eqj3hrHRn52EpTz+Z4nSbtZ59i8vpNhB+4vJfJjGD53cbeZDm9n3qe9pefhapm7x/9nw7AkGboeUo1mRL0ukRbqzSeukC2s3vmCVFRRNDv4i/3KEdTrLGEG6t4rYaTMz3cJVjtO7BEWWMK58+wBmyRY7VG+j5ep43OC6QfuClNXSM8j8aV8wSrS4z/8DWqydwZ/bXzZglPuemCNtRZgYxDmlcuO7z43iFCClTi6GBeu4UpaurRhPrwGLR107tuE+n5mGuX8NoNOi9cdyGzRQFSkS0gEuHaMkG3RTVLqSYz933rYBHl0Snp7QdM3lgn2lwje7iLHUA5mVKPp5iycoQ3Y/G7zneUP95j/Aevk2xvES73qCZTMJZoe8NNA7c3XAOxf4wXR6jzm+TShZP6Sz2a1y8RLvcQSlJP58xu3KMcjojPbyJ9n6Dfpjw6JT63sUBJz8EY6umcdGePYu+I3k9/yZH+PEU9nqAin+T8BlprbJYTrvQJlvtuE+DtO6hWg9YzV87IeMFSj8a1i0zfukX6wEnD6tmc8niIFaCigPBnXiLaWKMezfBaCdmDxwT9zoJ8WOCus44U996mx28niywmSTUcO9mo73xepiwdrlopquEEsdzHZAXF4YnbMLEapCQ/OsU82EMlEb1vvOxQ3WXpplBhwOzmPaywDuLRdNNL4Sn2dmZMOjHnL7RASfLcYDR0OwGry4I009zfmfOl57o/ojPsu/Wnvul574X3+PiYN954g+XlZV5++WU8zzuTgmit8byPf7lGk5rRpGKpF5xJU4rKsHeQ8+BxyvZGxPGgXISfCqwVzFNNVRvqGrKsdPaVRcMDi0ZnsRn+JINnsaT8iF7jx93w6E8wE9n3/fFuj/OeRY7V75G2fUQJAVZihERg8XRJJRSeqVGmpl6Y6RE+brHtfo8ArFDMwjYYjQ9E5YxSBVReRCUCKhWghUJiUbrCtzWmgtxvoKUiqEuick7px0Sla7JG8TLSGlYnO0R1hl/leLqkk51ihXR5PUCgc8IqRVpLXM5oZwNMc50KiVEBmtDRzISbxs38DipxBLRxvExYpUR1imcrCj9BCwXC4/7SM8yDDlZKgjqjUiEWKIMG07iHMIbO8Db7nUvsdy6yPtlxmm6hCOqMOu6T+wlShVjlgAh+ndLMRvRmBxgk82hBL9IajedIekgnKTQaz1RIa/CqgjxI0Chqz3uPL2uRnWTNQqpmUabGolwPu2hI5AI8gfQ/8P4LEApj9KIR+iDp71PKWH4SkNYC9/CMcf69waRmfT3imaca/PRXuiz3P36q/HnDSdM0/YFDkz+t1tfXATfN2djYOPv60dHR2fRnfX2dsiwZDofvm/YcHR3xjW9840fyuH4Sq5EopBAcHGV4nqLZUGgDpzNoEbK5EqBPB6iVJWfQ1oZqNGF68w4CSbS9hgoj1GiMLUvqaUqwtuLM68KRoaLtDZLzm0jPo/n0ZRcymDn5j1AuGkAmsTPy9zqYJAFhMbWmHIyYvHqD1peeIei2QUonpeq1mb19G6/bofn0FYbffhVT1/j9Dn63TTYYM71xByEVttZ47Yaz7uUlVoJMEuJeB1vWSD/AAvnuASIMCdeWEEJh6gpd1VBUC2x0m8b1y/S//hLhcp96Nsek1ftC6qTv0/3qCwy//Srp/ceoKAQp0fMMr9Wg+1Mv0rhynnhrlfn9x+427SbVeEpyoY3RzoMRba+T3X2ETGKk71GeDMh3DxfTpRWyB7tukrKQYFhtKA6O8VpN4ovnEFKy8is/D77H4F9+h+J0hN9p4iUxeB6dl55FJTHz2w8J1x2Nqzg8IT63TvvLzyC0ZvrOPbzWQu40TQmWesSbK2SPD5BJ6BayUiLjkGLf+VWEp7DauinIdE6w3CXaWie+sIVKYorjE1SzSeP6ZRrXLpLe2XFqc98jaDYoDx11j1pjywpvqUtnbYnk4jmEcmGWp7/1+87DtdxFzDMHxYgjBNIR2NoN6skMU1VIqZCt5iKvKSNcXcJrJpi6ptg/dpO4bpvydOgW670O4doys7fv0vv6lwlXl5jevEc9cWho4fsUe4eYvCBYXyE+vw7WML1xh9F3Xqf1/FVaz16l+9UvMXntberpHK/VoP3cNYrlPvneITorEKFPsnqeaG0JqSTpzh4qDgmWeoTn1pjfuk/+aJ/k4jmirXXXfFhD86nzZI8PqYYj8r1jsge7JJfPEZ1bx1aVQ8Q31hyc6He/S7S6QuunXjw7PhU4/9Fbd2m/+LSDgliL1Zrs4R7R5hrC98ge7aP6HVAKoSTzOw+phlOitT7+Uh+v1aSYH1McnRL0O9TTFFO4JqSeTLHry2drXNVqEm2suONre4N64ppH4Sn8pQ7c0ti8oDoZUI8mlMfO44OULlw2DvDbbXRY4C/8ZyoMwZMutDYMaVy+4BqooqIcjMFYipMBJ/El6C1x/ryD2zzZ1Al8gVSSBztz7tz/oun5sZUxhlu3bvHo0SOeffZZNjc33z1QFguMuq4/selxPp1311plaXj97Qn7+zlBKBk1aqJQkheak9OCyUzzaDcjz93ERjzx8S9KStccPZn2SHHmhvngPfNjl7M9qY9di4p3OzV4F1Tw3u8/CaD8xHJdoFeXjm6GcFkwQi0mAAszvHELXat8rDBoLRDSJ6pKYj2n9kJyv0HuJQivdhd3a/B14UIxtYMSRNUcIz03pUETlClF0EBLDyMcNOHB0jOkQYfV2WOiak7hxZRegFcXtKoxAktUprTTUyrPZxr2MFYQmZJCKprFEC2d9KvyAhr5GGtxDVJ6QjsfEuiCg9Y2lR8TVimFHzNOlhHWkpRjQl0yTpYXr5BEo+gUIzxdMo+6zKKu8/wgOGhfJKlmVNJ3r5+fINB4usCrKwbNNRSaRjmh8BLMAi5hpUQA0tZOfmYFpQqRWmOlRMuA2g8X74FxEpJFw2OU70BuOkdaSxp1qeRim9oYzJmX670Y8yd/lc7o8ukH2SfXH2O4gcU9vCBwvZ1yEmmSRH3shOdJfd6mZzab/ciCSS9dusT6+jq/8Ru/wUsvvQRAWZb89m//Nv/5f/6fA/CVr3wF3/f5jd/4DX71V38VgP39fd58803+7t/9uz+Sx/WTWEcnBVVt+epLfaazmuG4Yj6v8VaWEMc9diZTwvWA1ukQW1bkB8eLdPuK6Nw66e0dwo1VkktbdL76JfRsTnF0Snr/Ee2XniNc6pE93j9rmKSnaF6/TLTldtFnNx+QPHX+LMdFJRGjV95yqeu9DtL3SXf2MNqy9HM/5aQ0VU22s4upagcQ6LYIeh2yB7vIOHIZLWWJSQsXemksUkmEkkTn1qmzgno6I2quYoxF+BK/20LYFv5KD3+pT3V8iqlqqskMGYV0v/YCvZ95iXh9FRUvqJLTFL/XQYbv3ywIlnos/+LPkO8eku8dYqqa4NmniM+tE/S77jbLbue98+VnMFXN0T/7HarBmOz+Dl63g5CSPAxcqKPnGjcZ+BT7R7Rfeo46zcnuP3Jyq+kca50Mr/uVF87uQ3oeq7/8c7S/9Azp/ccO7Zzm5I8O8LpN8scHqEYMFsqTATLwibc3HKHxpWepJnNUI3Geq0f7i8ury9mJ1pdRcUxxeAxR4JofzyPcXEF1mtSDMdnjA7xOG5nE5LsHFMeOhNe8fplwzf388i9+fYFGnpEfHlMcn2KKknB9hfzolGowonHlPNH6ijO2xyHhxgpWu0Y2vrCF32mhGi4jCsBrJKgooP3Sc1SnI0xeYMqKxPeoZynUNSYrsEWBevJaBQHF4TGt568Tbq2S7x5Sno7o/cyXqUYTDv/3f0Gxf4yQLtpCRiHGWKrhxPlwPI9yNGJ24y7F0QlLP/8zROfWmd984JrxTot4ewO/54AR4cYK8zsPHVodkEq5Ji0MiC9s4vXbTN64hfC8haQup9wdIQPf4cdbTerxFK/VJNpYJXuwR/Zwj3Bzjeb1y0jPQ3geuiycDLXlaGumrCgHI2QSMb1xx8n2PYWMQ9L7O3itpsOYn1tn8toNir0jVDNBICiPTygOj2lc2iZc6joQwWh8dtxbbajnKdMbdylPhgtq3Arhap/mtUtOmmY0yZULLrvq6JT5rft4jQT6XVSSUA1H6HmOjH3iC5tIKSmOh8g4AuEmqfV4Su8bLxOuLbvNjrIi6LXI94+JL2xhKyenVHFEtPkl1CRGSnc9jz4gZQtCyWz+/mDUH1X9qW968jznD/7gDzDG8PWvf/1DC4QnOT6fhnxtJIooksxTTRIrbt1P2d3LkRKiUHDr7py9wwyBIM1qag1VZc4kah+OtTFo7Q4Mz4MkFijPUrjJ86I+frrzwSbqh1qfCX/7nnydJyOsj7zNJ+zkC4mWPsaXTjsqcPhkqRY/9q5x/n0QBOUtmPIemWoh8zG+Lqilj5EeXpVilJtkSGvQKsCr58hFVkxYZyhjsEJSqpComLkGSQaMkyWM9DhhE2kqpNZMkmX2WxdpFWMaxYSl+R4v7H4LBMyDNveXnmWULBHWKVGdU3gCIxeeJCydYsDaZIdWOWZ5tkfmNThsXSAs53TyAY/6VwmrjNAUKF3Szod4dcks7JKUM1rFkKX5PvOoh2cq2ukJhR8xCbrMwzaercj9BlZKfJ2TBU2EhSz0qGXINFoi9RJKGaCVQljXSFrhCHlCWKwQROWEWkV41tLOh4xln3LRjQsMwhqXlwRYKSlkw/0ua7BP3h8JDlf+XqnjB9//zzHdwb7vWHhfGe2OlT+GZYGqAs8HzxMUleHW3TnPXmt+JKr6SX1eT8+/ajDpbDbjzp07Z/++f/8+r776Kv1+n/Pnz/M3/sbf4O/8nb/D1atXuXr1Kn/n7/wdkiTh3/v3/j0AOp0Of+2v/TX+5t/8mywtLdHv9/lbf+tv8cILL5zR3L4o2D/K8QNJpx3geZLRuHKgkkaIeuoqk+++xoMTwcVL52iePAJrCTfXaFy9SLS5yvz2A+rRmNlbziDvxREqCln95T9L/2d/inqeuWnNjbvo6Zx65kiPfqeN3++y/m98k943vsLwd79LtrtPsX9Mcn6DdMci44jGlfPIMCDfPWDy2juoKER4CtVMnBTo5l1UHBOsLuEvdcnuP3L+BguqmaBaidu0ywp0UVIvpHC2KNCTOVZa6t0pwXKf3p95mWL3iPndHaqBk0HFG6vookT6AZTv+md07szq3a88/z4J25NSSUzj6kUaVy++7+v1PHUZKeB2rJMY6fvEm6uukTP27D78XpvZW3ewRlPPUheNkKbE2xuE/Q7NaxdpXLkAxuAtwlhV9P7PsBCCeGOVeIFcBkgf7jL67hsUe0eIwHcBqZ0W8flNkMI1QGFIfGGTcKWPzXNsVVOeDkkuniPeXkdIiddpUGcZ1XiKLipMWZDde4yMAvylLo3rl5FSkO7sL/JkEpIXrpFsb1IcnDB5/R2aVy8Rn99k8voNpq/fwtY10fkt/F4Xk+fE5zZQYcjs5j3nKZvM6Xz5WWxZkd5/jAg8cs8nXFsi6Dv8ud/vEiz3MGnuJoxRyOSNm0yPT0kuuSnY7McIKPgAAQAASURBVNYDh0w2BqMN9XCC6jbd8eZ5qCikGrnjIrl+ya0Yao2/toRaNHnFvsu98fstvEYDKT3CjRXKkyEH/+v/Se8bL9O4uvDWPNh1duIwpPn0ZdKHe1SLwNwn7zeAnqekdx7hNRtM3rhJNRjiryw5/PRsTr57iNduEW6tE26sOI9PGLqwXs8j39lDLvw/wUrf0fGkCz590uAIC2ApHh84bHXtyHXZo33CtWXqeUb6eJ/ZO/cwC+mhDAOUH6JrQ7qzS7S9gQx8xOI65wh8Q8q9fZJrl9xEeAFcCNdcKGn7pWexReXojQLSuw8xtab90nNOnthqOkqh76M8RbCxhooCguU+VtdkD/eQCEQYEK70UWFA89olpm/fJt87ds1gHKN6AbooSb58jqVgE/udkftcyQ9fq8tC02l/tI/1h11/6pueIAhYXV3l4sWLH7uYUEp9atPTbHhsb8bcuT/ndFiyf5BRG0O/HWCMZTqryQtLmrqLmbVOuvaknvh4zsq+21v4Pni+RBtLfjbr+WQ52x9tw8N7FqFPPBlPGHQfPOA/ZXFrn/yMxbMag8Ra6WYEdjH7em/TI6STTywkcJ6paVQz2sUQLRRHrW0wGm0NudfA0yUSQ6wzKukvEMoWLSSlF+LXJVE9Z2myy6ixRlgV1KpG6RppakaNNedmUR5z22IS9xkmK2Rhi7XJI+JqhjI1pecAALVQSK0dpUwo0rDFrOpQdp9iZb7P2uQRWdhiNLkP1jKJXIZPuxgQ1DmFl1CoCGGdub8Wiq3pPr4umUkPqUsyP2EW9KiVJC6maOFG57X0UMYQljOX8SMkvi7I/IQ86riJlvQQ1iCFdbI2q/F1RTcf0JkdcNK5CKbGp0YaixIVBomwoKVCGQPSeXKeeHHEGXocpDEYjEvfNTgohfR4fwP8ORqe9x1rH/3tP65l7RNFjiDPDLuZC2j7pKbn8056nnh6ftD67ne/yy/+4i+e/fs/+o/+IwD+/X//3+fXfu3X+I//4/+YLMv4D//D//AsnPSf//N//r4w1P/qv/qv8DyPX/3VXz0LJ/21X/u1LzJ63lNFofE9iTGWR7sps7Rmue/iDWhtkVfgpwec7B9iRxM6l7ZJLp0j3t5ARa7JyR65RPXZW7dpf/kZOi89S+P6ZVQSI8IAGQZMv/82Qkn8lR7WwOzWPYTySK5cwItDqumMcjjG77aQcYQpKvLDI4dUXu6h5ykYQ3R+0y06wwA9myOUR3F47EzZi8l7cnnbnRuLEi+JnfG8EaOrimowdqnwlaE4WWTQKIW1BpOVyMBRwILlLq3rlxGBz+S1m9SjCZM3bjoFQDNBFxXNZy4TX/rooNtqMqM8OsXWNTKO8Hsd5rfvk93fpXrS+LWbJE9doPXMFeILW8jvveWwy4trnQu0zKkWyGInQTvl5He+w9LPfZXln/9p/M4nh/+aunZwh+kMpMNTx+c3HQBgNMEu5HQmy9w0aDp3xDXlMon6f/arxFtrqCRm/3/5Z4SrS/idFun9x1TDqWtExlNMXizyh9ZoPH3ZkcUCn8kbt1BJxNKf/SkHdFhkCEXnNxj+/qukDx872dvJEKMr1wQGCqwh2lglWGTvFAuAgNdMmN64y/zhHuXxwE3APOWCWDstgl6X/s//NP2ffpHZnR3yxwfYBW482lyj/eIzqCjE1DXT126iZ3OsEMhGSO+rLxKuuoBOU9XudlXF6NuvEqwsYbRxm9HBAgxhNLooMCcar91GtRuYvCRcWaIcT8ge7BKtLbH853+WeuRyo7xWAxH4jF95C6ylHo1BCFQjcRjqRoLOC+a3H+J3WjSfvkJ55JomPcucmf/4FGsMKokpTwbudy5+h99uuonU+U2ENkTn1mldv0w1dvdv8pLZnQd4jQZep0W40kcuNM/ze48Yf/9NNwkdTV0zL6ULp52leIvwVz0RpPceEW2t0bh8HoByOKYejpxs9NwGKnakT6s12c5j/FaL7X/3X6dOM6Zv3SbfPcTvtmm/+LTDbp8MSe8/RoYu10nGEem9HbxWw6HoVzbACod6PxkyeeMW7ReuEa4vUxyfMrj5istQKkr8doPm89dpPXeNC7nPd759wMHdOUtdH7/ZcFMjYDQuEVJw7fKPRpHwwfpT3/Qopbhy5cqn3qauP330dul8QhIrXn97gucJNlYjfE/w8HHKZFa5YNHFQuyDvYP5wALtvTK2ooCTQi/WcH+EcrZ/pfpBZEoGgUZYA8ItxpWtqc2ikXpvo3O2YDaAJTQ1VvooU5EFLaLaXayDau4CuPKcWgWUKkJagzIuldozJavTR0wSp4X1TYEVEisk7WKIEJap6uHXGbOoR618vLpAGuv+bioqL+CweY79ziWWJ3t000NG5QqzsEPhRSTVlCQbMY26riEAAlNSqpj9zkVa+YiozmhnJ3TTE6Zhj8JPyKMYgUCZipnfwlhFpDPSsEVmnASuEh7jqE+tPILaPfal+QFxNScNmhgVoHSFVgG1kFhPoYWHlnJBUXMXOk9XaOm7nB+jmfstTFOQeTF12AFhnWRNKjAWIaxz/0gWuMGKSNfUckF5sxpjnURRodEL5Ka1EmEWk6BPw1L/IMeV1Z/h9/7RGOp9fxFJhUV6kM4tef5hAet76wcBGfyrTHp+4Rd+4cyv8FElhOBv/+2/zd/+23/7Y28TRRF/7+/9Pf7e3/t7P/Dj+JNeSayYzApmc5hMapoNj9lcM09rtDZkos3qS1uwe4/irmHp55593zThSbp8uLaMyUuWf+nrZ/IqgPLoFD3P6P3sy9TjGdXYSZDaX3oaFUXkO7sMBEzfuMX89gOCzVW8RozXSEgubFGPpi7Es5UQba8Tri3jtxuEK32KvUNmb98GpbBaU+wduZ3p0OGShacWIZMpfreN120t0NoethEhpcQqhQp9TFkxv/sQIQReIya5cO4soT65sInqtNCTGfnuIb1vvEz3ygUnv/mA9NxqzeTNW8xv3qeezZ2kqK4pTwYIz6d51f0c1lJPZoy/8wYmy+l+9UX6P/dVJ/m7/QDpe6QPd/F7XYK1ZVQUUo+mxBfPuWlEEL5vQvBRVZ4OGX33TYqDY6wxYNz0LLm0Reel5+i+9CzjV29QpxnpO3cRnk+w3HPN1dGJM8rf3aFxcYvlb36D8nTE+HtvYrXB63ewwk0QpO/TuH6R3le+RPO5K/htN13QpcMvC5zU6EmDZo0h39lHz+bk+yfI0Cd/tA9SYtL8zDvjdVqLwEyxIMCF1LM54++9id9pET59mTrNqEZTqunMhXLWNUIJbG3o/8yXz7DgKMn4lbdctsz5dbpffg6TFUjfR6cZweoSjacuYo3F6BpTlMg45Pg3f4/Bv/wuXqdFEviUJwP3HIoS6buJSnU6pB5NqNpNl8XjuamLiiPyA3f8u4ykIdnjA8bfe4vT338FPU3Psmik7xDt0dY6SEG+e8DK//3naT53lXH2Bt6sQXJpGxUFDH7vFfJH+8jIBcb6rTWQwoWppimykRBvb7jfG7hNhyfN3OzmPfd6AOHGimt4cFNHv9/m9PdecZMgYRG+h6kqTJY731ukoTbEF7fJHzyibiVYo0kf7jL53ls0rl3E77Spx1P0dAaehy2dH062EqILWwSLRie994jB736X5jNX3Hqn28bvtJA3AiZv3MQajVCKYNnlOYEgWF2iPBkQrq+46dlDJ2ed33pIsNKj8+I3CNcdCa8eTzn557+L8H3O5zU3jgPGDwFPYRotRLOJ8hQvPNfh0oUf/Dr1eepPfdMD7sL9SRd2z/M+U6K5UoLN9QjPc6GMYSB45/aM/aOC6dSxqMNAYIyl/pxRGe9veP6o6gdJzH3vdOcD0x579r+P8P0ACKQxWKTLhbEKVPCe24kP/N1RS6TR1Cp0iFF85kELLSXCOGO9Z2uQgqSasTzbAwS+LslVSBE08EzFymx/gcOOKPyEeeLIbtJqLIJ52GYWdShVSCV9lKnxTUlSzh0oQXpoFMftLYSwtMqxk+d5EQZJGnXwrOb84B02Jw+ROOjAKFkhqlOiKiUN2gQ6xzcVp0EHLRWSmknUQ0uf/uyAXnrCOF7itLlGhcSqgEp4aOlhlUArn2GySjc9Jq4y5mHbeW+MpvZdCrmj4ymk0RQiQllLUGfkvnItpJSUKkZLn8oPMMJ7tym3jsrn/r0I1ljw/3MVAnYhcbMEpkDqilp5KCqscJMlLeVnpK691wP0GSVw783E/dj6oyG+SQF+ILAWhoOKjfWQOP7kx/KDTHr+VZqeL+rHUxtrMXsHObNZTVFpZic101mNAMqsxEym7J7ssDZ/hDx4zPRhj8b6El6r6fwNuOuY10zQvne2w/uksscHWGNoLCYiZrGJJ6RkfmeH0XfewL+7Q/rwMfO7DylGY8J2C6/Twus0ibY3Uc0ZjfYlVCPB1jXhyhLVcOzIbGWF3wxQnTY2L0n3jiiPBs7rF4YEKz3nGUlTbFY6Etxyh0AphOedBZYWRwOybJdgpU/7uauE6867iDUIz6N59RJeEqGLnP6f/Spe/NGZVdMbdxi/8hbBUodk1eF88/0jxq+8iYhCJ61bLDqDlT5eu8n81gOSi+foPH8dfvUvcvjPfofZO3fx2y2SS9vIJHa45u0N2l9+1k1aHuxSHByTXNr+yMdRz+YMf//7lKdDos21swapnmfM3r6DNZbWM1eY39nh9He/g9duEfQ7YMwi0wg6P/UC1emI9MFj2i88zfq//k28dpPZO/eoxhPCXofG5e3F5MTQfulp1HuaQJPnWGOQi0yccM29ptnOPvPbDxC+Rz2fE7dXHHHreOh8VMMx9WSGHk1oPHcVv9WknqU0n3uKyZt3sHmBf3HLQSqkpBxNMGmOmc7JjGb83TeoTsckl7fpfvVF1IIk1vvaiwgpyB4duJyhwCffOyLcXMNf7jG7eZ/ieEA9dSh2XZbUwwnlYOSOWSVdcK5SDtaT59RD18SH68tEi+dnqpri0CGUG+c3z2Re07duUw/HjF+7QXk0QEbhGa5b+J6Ty5WVa7gCn/j8FtXRKfV46mR5SmGKElNV7nOwvkU1mlCcnCLDEFOWVKcj6jTHCwOaz11FKkV5MsDvdRFKUhwNqKdOIhmtr5y9V8J3AcAmTVFhhIh8ZBQhPG/hi8rRvqIajEnOb9C4donlP/9n8DvOjxVf2KR57RKqEVOdjs/8W7IREyz3qMczTJpBt43XSIjPreN32w7w0UwQUroNjaUeXqfF9LUbaD8n2lp3l/YsAyzNpy+js4z88QHj199B+h7h2gq9P/MyjYvnzjzx1XTO4f/2m8hGwrULF8mSNd5OO0wyAZMpjSXL2sUl2g2PqjbEP4b17RdNz2eozyJve2/1Oj5LXZ/huGK57+MpgZAuYbvTVEymNWn2yTu6H64/6oaHH6zneV89aVIWzc8TJN3ZTvwHGiQLFoGViymA+iDt7ckieBF2evYviVGKoM4Jy5RIZ/i6ZO430ULSTMfE5YzKS6i8iEDnCGHRXkjtRUyiPucm9/FMTWqa1CpCmposbNObHTBM1in8hFoqauWjjKZSAaowLnBTCCoZLXxVhlp65H6DSbRM4cX00wOWJ4+p/YgyaDKOl+hlJyir8XVJ6jfppYfs9K7zuPuUAx6UQ2bREp4xWGmI8xFLs11GjVVqoRzQQIakQZOgzh0u249pFGNq6TGJe7SzU/rpkcvSSJYpggS/roirGXnQpJY+ylYgQMvATXlsjVzI04SwKF2jvUUQ6RP6nnjy3kqwlftTKJ40E1YYF1yHJdI5zWxMUJeMww6TeNVJFqX6DD3MEyT2k/v7jPXHDGqgFmrM2oAuLLPU0O94XL7QoJl8/CnZGIO19nM3PR/M0fmi/vjV8lLI9lbC998YsHeQ43uCpKGo0pLm0Q5dPYZcsXNccv7hPof/6y7x+jLN567SuHCOYLWPEIJqPCU6t458zxTIWkuxe4DOMsrTEV67ifTdcZY9PiC9+xARBdTjKfH2Bno6R+clVZoimw2q4YRqMKH57OWzCQTWUk1nTN68DUDr2auUR6fOV1JWmOkM1W7SuryN33NUKbURML+347JWhCO4RZtrxFurBMt9t0B78xb1dE68uUq0vY5YbIaUgzFep0mw1KGazKinqUMtL3Xfh+U1VUX2+IDht76PDN2U4skCrBw4s3d27xH16cj5fKwlvbuDjCJUMyY/OCZcW6b98nN47SY7v/aPnPSqrjGz2VmwY9B3pEshQWfFx76v2c4+xeEpyeVz7/MceY0YsbVGdv8RzasXaVy9wOA7r6Pnc+ajCUhBuNyn+exTxNvrrum5/5jmM08RLPVY/9e/SfHVF88W8uVgxPzezoImVxFvrhNurSKVcvcrBNL3HUAAMGXpwBZxRD2dY/PCYZXLiqDTcldi68hM5ekI/eoNkovn8DtNos11Jt+7Qbi+QjWcuInR3hHl8QAhJX6vjSkrskcHxBfOMb95DxkG9L7q6GVeq8nSz33N4cGHEzovP0e+d8j41RuMv/0qSLnIUxLMb97HzObE5x0oQUYBKo6pJjPC5T5hv+tQ24Mxott0ga+z1IWgBoFDmGtNNXbTwfzRPsGS8ympRkJ88RxYS3l8SjmcoEKfOs0pRxOicxskl88TtFuM7z9CRuFZto1FYCoNSjoKXVVj64r88SGmKsAKTF6gFz6t6NwG1emQbGfPTRfnc4KlDq3nruI1YkytSe/tOGnbm7ewUmHQ1IcThwkPAkQUIoVABgHxxS2az14jWOqw+st/duF9mlDPMidL8zz85S7CV4usKycXrQYTiqNTrLGOMNdtOxDKnYeOvLeACElP0bx2kez+LnWWu3PCdI6MQqKtNUxeUOw5EERxOHD5w60EPZljKo30Fem9Rxz/5rfID46Jz21gjIHRiPM2pbXRR8Yh0sxQ6+vcezgnyzV/4RdWCYIfbVvyRdPzGeqzytuelO9Lnr7W5OadGYcnOc2mR1m5haOUgrL+PA3PT6qcDc4gBk8anA/u0J95PT7Ky+F+zkjPkeA+1g+0+PrZt5R7qRY5MZVUhDVkfoM07KJsRaoL0qBJ7ido4bGUHhLVGcIYKi8kjdrUM895g6SiPz/Aq1OmQQ8jFFE5Iw0aYAW+rlG6pPJCKqWYh22iYorwXWPg1wWDxhqViqi9cCHjksyiNpEu8OqcadSnVYzxTIVBMEjWmMR9jBCUXoQyNUv5iG56isQyC3soW1EunoOTo+VMwg4IF/TpL/DSQkgHEkCxNnvM+vQxWMv93nUmcR907TJxhESaisgYcj+hkoE7kdU1RjodlkZQS3+B24YnQaNn0x1qEO8JnrX67D2rvZCgyFma7pLUGWnUpllOSP0GpWx/ymH05Bh68nc+3sfzE1B6QXkUFjptyfpqQLPpoST0ex8vlTELJO+P09PzRf14ylOCZ6+1mKcVb9yYIISkriyNyTHN7JhAGer9E+ZjyPAx8yHF0QDh3UePpzSuX8ZvN7EWGpfPv7vTOp4yef0dxq+9Q/74kHz5AK+VnCGXHR46wA5GmKqm8/RlMJbZ7QfYsqQ8dvhkYQVet4MKQ1SrwfjbrzG7/YD5rQfIwMcUFeHaEpHvkz3ep55M3UTB8xyeuNOiOh2hmokz2K8u0fuZLxMs9c6mUkkjpp7O3QQAqI4HyDhCz1NkFJFcOb+Y1ryF321z+tt/gEpi4gubtF64TnlwwvTGHWY37zN7+zbB+grVaEZy+Rx+u0k9HFOcDFw444KUJRfyrXIwcgGZx042JYQgeeoC3a99iWL/kKDfRQS+k4wtFoYOMWzPGsiPqmxnz+GmPwqyEEeO4nUydAtT6TZ/jK7cuVVKpLdYhIYBOi8cEcvzHHTh/Cb/f/b+K8a2JE/vQ38Rsez26TNPHu/KV3e1N+wZDs1II10KlCAIki4uBBlAgJ4IQRAk6GUIDIaQCBHzIgrUE0f3giCv0xUpUuL47pnp6Z5qV11Vx/v0Zuf2y0fEfYiVebJOma7qrhqjqQAKdXKbtfdea+214x//7/t9+s5D8h1nSA96XYq4j0lzxm/doTGdueyiRozfc10pv+eutdV4ip7O8BcXmN5+gGrG2DQjmJ+jsKCTFBFGRKuLpBs7zhOyuYOKLjK785C8f0R8dhWdl0zevkM1nCADh51WzZhyOEYoSfpoi+b1C6QPN2nV5yiAUIrozMpJ4K3XaZM82TnxqFlr6X/zu1ijmd5+SLZ9gClLio0RzasXkUq4DKZzZ0AIdJajTEC64ZQbKgyQceg6K2GAzjPKoyEyDlGtBvmbt/HnuggsswebrsMyGkO7iZSScuqyl8Ir58gP+5i8fOdxtgYhBTJ04be2qkAbGpfWwVjK0QQVhyz8/FdAV1SjMYt/5atUkxk6zVDdNpMb9yiHY8rhmPGbd5i+fZtiOKU86DuiXaOLbZoTP5rw3FxIBD7NqxeQgUPPH8tcvU6LcGmOfN955JJHm1SjqZOfe5JiOEH5PmCRykM2QuLzZ2heOY+epSQPN9yCSBigZykmzVn8K18m2dwl6HWQvodqNkg3tim294kvrNfI6wAVKKL1Fefdsoby4IjBH79JvrOPiCOK/hGTNYFudzjLlGqwzaG8yP1tTXF0gI0ifnxjxO5+zi/9tVXWV+Of7kL6IcanRQ8/Wd72UTs9AN22z+df7REGLohpYztjMCiYpRrjqMkfAjbwZ6C7czI+apvnuBg59tkcj2cmq1I+hRWIZwsiDcifQOA69fiT13Kvm/otlDUoqym9BmBoZ0e08gGFDJlEc66TBKReA6xlcbLJMF5iFM7TKUb4VQYIxvESmRdz1FqlFD5GOMqbp0usFGjpkasIhKSZDqksddESolVAnI8pVEhgSrT02O+cxzMVPb9Bo0wolE/qxWzMXaXwQsIqo50e0UsPKFRE6jvZXbOYMgu7ZF7sChwkpRcwieYxUiGswTMFvi7c+zEVlfAITVKHhDaJi4TVyRMeLL9E5jXR2uJXRQ1H8MEaJw20lsoLsNLDGItWviPluQP3dP8LBcoi6ryKY1qbsBDoHAFUyiMuE3K/QeHFzKIOFkmhIkd8E+9V1B6/hKhr4FPFz5+SD+dnHcddHoQrfMLAY2khYHnBJ47le5JtjsfxNeijeHqSJPlU3vbnZHie5NyZJtcutZklFe3A4G3uY7MJujLMckOz26JYvoY9epPiaOhWgZsRgz/6Ed3Pv8Tclz9LdM5lJlXTGUd/+D0XqHhhHZNmeHNt9Cxh8vY9yumMapIgo8DlnSzMAYL44joIyPYOXQBir+vw0+MJ8edeIt3YoUwTvGYTv1tPkpKM5OEm/kKPYq+PajcRgUfVH1IuzbvJ9lwX2WqCcplEXqd1gp0GSzV2WSoLP/cF/G6b6a37eFISXzpHuLJItrPP+Ac3UO0m0YUz5IMhyfffRP/zqQu6XFkiPrNMuLJAsX+I32mS7e6jk4TOq8+jswxTT+xNXrzjBziY7zp/S5Ke3CaEoHXtIuXhEcHi/Emxczyq8bQ2eDufhq0XJU4XOKZ0XopqllIcHFFNpg4kMdfFX5hHSEk1mjC5dZ+if0TjynniRgOrNeVowuTtu+6S5ykXOHvKP1RNpkx+fBsVRwSLc5SjCdnWriN8NWPSJzsub2ZlgXBtmemth8gwoMpLsp0D0q098sMj8oMjotVFbKlPQA3Z9h7VZEouBOVgiNfp4Hda9L78WbxWhP19w+zeY5rXLrpjW3cgVBxiZgkqConOrKBnqSPsUTgMdpY73HrtoYnOrBAszzO7/5ig1yY6s4IpK4bffYPsyS7+ygJyvoeeJYSryxT9u4zeuIH0PddtOBqSbu5gUvc7c4xoLo8qUIK40i4ktBGRxns0L59z0kZr0WlGOZlRJgnlzgHleEawPE8w30M1YhqX1lFxxOTtu4jAh6KCNjW9L8XrtPDiCJPnFHuHyEYDv+1+A6P1VVQrRnqKYHmB5NEW5WCEUIrpzXtkOwcU+32mb9+lms7I9g7x6gKqynJMmlN5M6Lza+i0QPnKYbK1puoP0dMZrecv03r+qR9dSEnz+iUmb94hebyF6jRdYK6UTG7dZ3bzPs3rlwiXFvB7barpjOnN++jpjO4XXiY6t0bycANblI76d+kc4foyR998nXI4OiHK5buHeL0OQinKUZ9w0XXbEApbVez9s99xQb6TqfvZniWU1rC/MUIuN1CLMfcOCh5MNJ6SLPUU0VyDvcOMuw8m8FuWf+NfPcPy4ntLV3/W8WnR8yHGh/X0nB6zpOJoWKKUYGUppNNW7PcDhsOSSVKhZxqJWyCvqvcDTf0ZKng+0sd/dgJbdwRObrdPixqh6iBK3vkcIUG7C9d7y9+eGeJ0F6nem1JhDOSqcUIry7wm41g4b44QlDKgUOEJrCCoMsIqI9AFnWSfJGgzjeaY+F1GzSUKGVL4IdLWxn0haeYjhAUrBFpIjPJAOGpZ7jddd6SGLFTSYxr1cM+umIY9ZkGPoA5Dda/XBSS77Qs0iyHd9AhhNYnfJFMRo8YCGo9KKQSCuJhgrUZaQSV8ZkGHtC5ghNFIrZHCcn/pNeZme4Q6QRlNb3bAKDYO7KBzEr9NKXzCMsEzlfP+CEHit5z/x57at+/otLjbrAxwGRKgrMEiEFjCMqVVlCyPN+i3VpkEHbQKKWXg9pU1tQTt+Fx5dpwqmj8o0PaDxp8RfHUjAoSgMpY4EMz3FOfORFy73GQ4qshyTRS+d1GjtUYI8ZGKnk8yp+fPw/jlX/5l/vbf/tvvuG1lZYXd3V3ATWD+9t/+2/xP/9P/dEKf+x/+h/+Bl1566U/j7br3txxiTMD+wwOKzV0EUBrpQkvbksCLaMxfQG/tYvIcf3EeURnaL16l/dK1ky5P8nCTbOeA5uVzVLOUmRCMXn/TraQrSTFyq/HS9/EX5lxS+tYe5WCENRqv1QRjCZfmEVLQ/fzLyDDAVhWd115idvuBiwaQLpRydvcRkzsPCRd6CCmxeeUm63FIMN/Du7iOvzDH5M15JjfuY4qSbGvfmdusRTVigqV5Fv/qV+m88hz93/8+2ZNtlyXyZJvBH/8YnReUjzc5/J0/whZFTSJrMvzBDeIzSyz/X/4K0fqKWxVHEK0ukm3tk+3su9BO36eaTvHbrXfAD6pZimxEyOidWT+Ni+ukT7ZJH28RrCziNWOsMU7yN5rQ/fzLmKJk8PqPHQIYiFYXaVw8S7iySLg0T/8Pf4CZJbXsyi0qJY+2n5Lgjn7I9OY9ylnK7NZD4otnCXptgvke5WDE9P5jwqVFFl5xIZY6SZ187Mm2C1O94vxEXqdFfHaN2f3HDjssLNn+IarpyHlzX38NawwHv/Et8p0D8p0DvHbT+U0OhsjAw5/v1n6reVQjcrSwdpvW85fx5zoE8128Zsz8119j75/9LrM7DxFhgAoCUNJN1mcp8QXXXdN5zuTtexQHRxz89rexeUG4MEfruct48x2mN+4Rra84xHWvDq48HLgioNN0aHTpyLXR6iI6TZm8eRt8hQxCvEbsZFnzDgIghPNME/hUoynTe49pXjyL12oyveUm+J1Xn8OUFaPvv4kpKhcui8DrtvHnnGzRa7bofPYl/HaT0Q/fBgvJzhY6y5DKFaDdz71MeTQEC/nhkGCh5/KQ4pByMMEMSqY376MaIbayTO89Jr3/pKYhKrx2g2xrj+TxFtVgjF1ZIGg18LttdBiiU1dgBCuL+J2WW0R4sotsxhgL+V6fyZu3ic+fIVicBxwUQTVjt7pWVBT7R+g8p+wPab/6nCP07e7j99p4rSYqjkgebhFfOEvnpWu0X7hSw0e8k+tI68WrDtqw7b6rx5CS6a376FlKuLJI0R9QDCfk23sU/QHh2jJKgswKqvHUddKmCTock7RDNqo2SuTMtSP8+jsXhZKleZ/dg4I3b4z5qz/3adHzpzY+aqdn7yDn5t0pSVKBgDTVFKVlbTliYS6grAx3H0yRwjKamGcKnrpT8WdhWP1eaagfYryX70a67VkNwuXuWEvd6eE95ErCQQusfh/52+lxvM+OiylTU8VcxyEPYveaRjPzm04yB+QqQpmC9eE9Ki9iGvZI/SZBldFNDxk2ViilCx7Nmm2U1bSLIf3gDLly+OfC99xzdM75w5tEVUYn6/Nw8SUKL0LkFTbogLUY4VGpkEY+QXs+zWKKpwuMkJQypBI+o3iRLGihqgwjFNOwQyU8onLGIF6i9GOULgFDqRp4VUYhHKkt9z20khjh1fvMIoRESpDaIbIrqVDWJwnarE+ecOnoDpu9Kwwai1ilsFJRygbGFNg6qLSS/tPWpDHPFA/18T3u1lnXZTNWoKwmqJHgrWyIb0oyv0HlhVQqqKV+AoT3Pm3P422LZ4ran2L8KeOrJa52DwLpuoulxg88KgNbuzntlke75RH471/QfFSIATh522l89F/E8dJLL/Fbv/VbJ3+f3of/3X/33/H3/t7f4x/+w3/I9evX+ZVf+RX++l//69y+fftPZb81m4o48ui0FJ3MZ9vTyLl5zGiEHwkmnkdb5fhKopbmKQYD2lcvOLRvGJxMVKzWJA83CHptdJIyvXEXnRd4XbfCq4cJswcbhMsL9D7/El4Ucfit11Fx6LwLUqJHYwQQLM8h/ZD47BrTOw9dAdNyk2WTFczuPcLkBVWaEXRbNJ+7TFljjL25ZWTgsmaOaXJ+r0P3s8+j2g6bLJQLLkVrwrOrSOXR/93vUgwngAXlUUxmZLsH2KJ08ISiQCpFOZxATXrTac7gOz9i4a9+DX+xR7F7SLCyhNdtke3su98A5ZHvHuJ325hKg61c9k5ZOuIUgnRjB1FTvFQjZu6rrzF+4ybp5h753qEDRnRb9L70KioMOfydP3JdtFq6Nbl5n+ThBr0vvIpqN0kePAFAtZuYqkI1IoJuyPCHNyiOBmAFKnRZK+neIfl+n8bV885fleUk9zcQX/ApRhO2/1//gtnDTWxZYrIcK5x532s1EELQvHoe4SmyzV0nYUtywsU5Ws9fpv3SVY5+/3uUywPaL1wlfeTQ2F6nxfiHN8gPjk46SjYvCJYXsEVJ49JZ/E4HDCSPNvEaMfGFdTqvPMfoxzdd16WonE8mjojWlmk9dwlTViR3HpHtHGCFwGtEyEZItr1LOU2Y+9pnaV25wOz+Y8rhGK99DXCkQdWIMc2GI5Y1Y9cxKDUCCJcXXbdvdQmv10ZPEliWzo9Uh3Vmm3uoOKKcus/X++KrTN66Q7a5w+D1nNnDTbLNXUQYomvPiorCmsLWRCiFCny8Zky8vkp4doXGlfMk9x7jz3eIz53Bas3gu29Q9oeEy4tYbcj2+2Rbu2AMreuXMNpgRlOyjV1mjzZOACAqVlhjqZIELHjdFn6jQXT+jMu42+/jNWMHkxiOUUqhRBMZh8RnV1GhD8YwfuMWs/tPmPvyZwnXlpi+fY9qltL7wiuuo1VVTrJpoXFpnWqaOo/ZpXPIMHCfsxk7v9j1Sy5nSEqsMQ5fnuXIMKD3pc8wu/2A2f0nZLuH6MdboA3xuTV3DPKc4Y9ukW9so5oR5cER1cx1TYWU+J02LT1hZ9olnxiSSjKvMrzm3ImcESCKfITQ3Hkw4etfmieKPv4S5dOiB05+KN5vfBRPT5pp7tyforVhbSVECMHiXMDWbsb6WsTaSsRXPt/jH/zDR9y8P0WI0xk9Gl8pgghms/d7rx9GFvdRx3t8fqN/xoniaVLb8f8lAltLyuzTD3PsDXkH6ID6/g+F3zq1U+rOkKVuGtSeFiGdDE0AVYIVEi0lYZFTeDHTqEclAwKdE1YJC8kuA5bZa58jrAQSg6cLUr+FRTrNvRJAgFdlGKnY713kQv8mCjfZL/0YZQVWKgoZQY2brjzni3FBo30qFZDEHcbRPFp6+FWClgGVCilUwF7nAo1yQlzMmEsOCcsZWdBkAChdkITdmgrHqeIApIWwSgirDK08ZspDsMDaaBONwGBZSnaYRS1mUZvChC5jR0oqr4GyGqUrd2yMdOQ7XVJ6IUaKZ06bmiBlHAjBSuW6mCg8SuaSAyZRj1KFSGswJwXSs56sZ8fp+37GxQCtXZH9J+wHOpGzSdDWIhHEsWK+59U1uuXhk5Sf+8ocjfj9z/WPGkwKTt7WaDR+xk/w53t4nsfq6uq7brfW8mu/9mv8N//Nf8O/9W/9WwD8+q//OisrK/yjf/SP+E//0//0T/qt0uv4LC+FbG6n9NohcSQR2QhdpUwLZ5lb9DPHgClKVBCClOQ7h6S9LqrlMNIijrBFhQh8ZveeUA5GxOfWXDGTZk5mtL2HiiLQhnS/j6yzcrxmjCm187As9Jj8+A69L3/WBU2+ddflkShJ89JZwqV5Dhsho++9Tby+wnEel9EGrKF5+Rx6mpLvHrjQyv4Qf77H4l/9GuVwTLa56z5HGBKeW0FPEsY/vo3XigkXeti5DvlBn/63XqccjYnWVijHU4JuFxkGmLIg3z90IZ7zPWxRkD14Qudzr2CzgnxvH1No8p19rIB874BgoUc5SZg93CBY6LmuTxyRPt5idvM++dYeQinCpXnaL10jPn+G+W980RVb0+QkZ8cUJYe/+YcIAY1TOUHBQo/i8Ijh99+kygvywz759j46yRGeREURMgwohmMwlmh9mXBxDoRCKOEKydsPHHEvLyiORhTDEVv/j396UgSECz3nOdUaW2oWvv75+rgomlfOE62vMLv7CH9hjuV/5efweh3y7X3KoxHd115CBj7R6hKTt++Q7R2C7zDQ2e4+Qa+LP9dFl4XzphrD8AdvAjB4/Q2EAH9+jvjCGTpffBV9OMAULjQ1PLty0llJHmwwe7SJajSIV+ZdTlK347DmB33GP7hBuDBHfHaN/HBAurnnuhx57mSPi3MOzGBMLbnbJX205fDnSUp0ZplqNEGFPt78HPmO6zL4cz2HBQ9DPGOQdSETn1sjP+gz+vFtisMBIgxBG9fZUBKkILn7iNbVi8RXzpPvutyp/OAI1Wqy8q/9PKMf3WLy9h2mdx7iNWPmvvIa5XDE4e99h2xzB3yFCgOC5QVMUVH2h0TrS4goYHbzHo2rF0/oeQiBCkNQEmEFQimEVAQLc1SDEQiJbESuE2UM1WRC89I5orOrhIvzBItzBItzzB5vs/H/+F9QzQb5bp90c5vGhXXCxTkal8+7TlR/AAik71EVxUkGFYAMfecXM8aFvR4cMX7z1gnFTkhJsDRH87lLtF++Tr53SLa9S+fl5+qOKnitJrM7D0lmKSiF3+shavqdu9bs0wpmeHToj5bRWU643nKBpwgm05JmQ9FqKCyWNNEUhSH6BJo9nxY9H2J4nkeevz+h5fQYjUumiWZl8emqWxBIuh0fa+DsWsT+YcHSUsTeYU5VWgwVVVFSaB8QWO0mraem/yfjkwkdfXZ1+cMUPD9h1f3kjZ4ufMyp1X3n5RGmwKrw1GNPd3VqgdRPXOA/VTQd+z2sBRTSFAS6IPcbzmdiBNJorARlDIEtaeVD0qANNscIRe7F7LXPE+icSgVIUxHolFG0QOFFWAxhlVBIHysMAovBpQpNwy6V8MiDmHY2cB2jeJlBPM8krvMmsiPmkz160z1mUY9+YxULJH4HaUoKv+Xyg3AhqTpogADPlFTao1kaFpM9JpEDK1TSwwhXUEqrnSdH+e6zVzkCQ+Y30TIAJKN4SuE1MMLDqwr2m+tUwkOZCitA1+Q1jXHqQgTSGvwqR2LIRXTqgBzDKo6PF84HJQSVDEBYOmmfbnrEQWOFzAsRJ3S309279zrAp287TW77GUatu39nHf3Jyt5OrEgelKUlDi3thkeWG6QQNFsejUixMP/BeR8ftdNjrf200wPcvXuXM2fOEIYhX/7yl/nVX/1VLl++zMOHD9nd3eUXf/EXTx4bhiE///M/z7e//e0PLHryPH/Hb8J4PP6Z3qPW7iSxuJC+Yppy/w82GM0kdjymFAqRzLhYHdFeCtC5xRQ5XrvJ6AdvUw4nqEZItrmLzjJUq+HIWlrX/gmfbHvPGbIDD6/VxJ/rnlClqoMj/Pku6dYes3tPEJ4kmJ/D61SYrKDY6zO5dZ9yMHQBjGccZlcoRTDnJE+mKLBlhQpCFn/hK5RHI6rRGJ1lbpu+j9du0f38y7Sfu4y1lnI0xmrj6FNHIw5/54/wui30NCHbO0RI5WQxkxkCSTV0+1nUhCfpB0jPQ4+nyNA/oY0JKeh89gVmjzbp/+530LOU7udepnnhDLrULhMozYjOLBPM9Zz0ShuCpTm32t9pkR/2Kf5gzNxXKhqXzrlO1anso+Th5jvkZadHsDhP//e/x/jGXdCWYL6H7Tlqmk5TyqMRJkvxV5eRvpsbeK0QeWaVbO8AezjEJCkydF23dGOX6vAIIwQqy6HSBKtLVMMxR9/+AX6rwfxf+sLJ6wtP4TUazH3pMyeSrXI0AetIXjp1YasA+UEfPZsSn1ujShL8bgfpeZi8rOlwR+6YN5y53Faa9OEGs3uPmf/KZ1n61/8y2dY+wmiKQ+c3KQcjBq//GJPkRKuLVNMUz/PqAkPht9tU4ynJkx3mvvQqQasF1lHgZBhSDcb4nRaJgOnth/VPhSsIZeDTvHqecHGe8Zu3KCdToivnERKKI3e+CV/VYbrRCWkvWlsmXFrg6Ds/ohqO8ecd+EdXDg0fLM5hS40uCor9PmNj8dpNysMjyuGY6b2HeK0mXuS8NyiFCDxUFDH/1S+QrDxmcvO+Q6DHrljJdvcxdREnoghbFNiqRHi+C+SV0iHYxzN0mgIGv9vGn5+jmiUwHGOwGK1RdV5P8niL5vVLgJMCTt68xfD1HxOfWcHrdtDThKI/xGROahguL7pVdWvQdSEi/Ke/NTrJCJYXyHcOGN+8x/C7PwJjaFy7ROPSioNtHBwx/O4bdD7zAsHSvMPUpzmqpRBCUE0TionDfgeLczSunie5/4Ti4AhdllBWSDFmpYJxZxXdWqFcXGamJWZS0mgoVpdipJKkiaYRq0+kywOfFj0fanwUeZupYVbPGpKVhMpYZknF73+3z85extpqyGAwxRpN70yPnb2Cfr+kOm50SDfN0z+VxOynHR/Wv/MTVstPaG3PQgyeTlyF1YS6IJN+fftxsfdU8ue6NMcT3vd7zWMZlHbdA1kXVbgJuxFOUoQxCGvI/ZiozAiqFCtcYGalQsZRl0oGtLMhWdAkpYW0Gi0D/DJBN1bRUrkLpUvhxC9TjPRPCoOjxgqmKSi9iLBMXbGgU0Kdk5gSXXd4GtmI/c459ttnMcInLsYYIci92NHS0FTCOykOtPTQwqOSAWnQqktDW8MLQGpHxyhVCBiEqRDGYjAUyvmKhKmIqgRlNRZD6re4v/QKSdihVAGp18CceKwEloAcgbIWJBR+A3OCDX8vf4/EKIEmwK9yQpuhrGEczfO4d5VRYxkjIxDvVcDYZ/4tT/1bvMfjf8Zhjzs+mqcn/CdX/AjpGk3GgMQw0BXawNkzIcvzAUEg8b2fnNHzUfw88Cm97ctf/jL/8//8P3P9+nX29vb4lV/5Fb72ta/x9ttvn/h6nkV6r6ys8Pjx4w/c7t/5O3/nXV6hjzqstRz0C55szni8kTAYFTQaHqsLHks7d7jq9ek/v8jkUUmQTYj6j/A2dhjGAdH6mvNcSImQis5rL7pV39sPyPePsHmObMRkG7sURwOHmvZ9pKewlWGWPCFaXSJeX0FnBeG5NcqjEV4jcnhcJdClJtvaw2s1yfcPyLf3yQ+OmN5+wMLPfxkhJdOb95zcyjialWo3Ua0G4fI8zcvnKI6GJA83MJWh/cp1oqUFvPlu3QXYoBpNXRbKxbNk27sURyP04y3nfwkDsIbZvSeYLEMoSXUKNHA8RBBihhOKvT4o6Qhwj7doXrvoiFNRxOJf+zqtaxfRs5TprfsUh0NMUTF56y5VmlLu9WlcPo+eplTjGcnDTYTvY/OM6a379L74qgs0PX/mZPJfDkYumPI9Osc6zSn7A5eJgiBaXzuR8Zk8Y/SDG8ggwGa5o7jlObZGBgtt0LMEoWvpVZa5kEnfQ0n3O1keDSknM1QcUg3HHPz2t4kurNM4t0Y1nZHv9onOrrjidzRxxLpaUl70h85DNBiRHwxI7z7BCtcFaL10naVvfJFqlpLtHLD/G99CSIXqOn+X12o6+VO3Tba5Q/Jok4VS03n5GtnmLiAoR2MnRaxKgoUuqt0i39pDp6nr0KwuOe/UVFAdDTGlxuu0aD5/ifxggK0qZo82KAcTAIK5LsVg6NbXtCZYXD6RZwVLCyQPNih2DlyQ7rk1EDgvUqtBOkuJzp9x54mShKuLBN0OonS0NeEpgvmek3E1m6jAI9vexxQlzSsX8Dquqyl8Rfpgg+jMCs0vvuow1UXB6Ic3STe3Wfi5L2PVBcZv3CJ9sIGpKicV8xR+p4U/33W49WmCyUuU57ug2IUe2e4+NvDRaY4pNX6rieq2yDa2sUDj+cvEq8uO/JblIBXp5jZeK2b85h3SJ9v4vTbh2jLhmRWKoyHjN24SLi0gfY/46gWU77kcpTSn9dylExKdyQsnQ+sfsftPf4vpnQcUw7Hzk33/TabNhsNepwWmrMh2D1HNiPYrz5Ft7JDvHCAE5IdHKE8h11ecpO5w4FDoWiOtUziYoqRXjvhK5xB95UuMjc9iy6dRd3g8X1FWhvG04nOf6REEn0x+3qdFz4cYH6Xoabc8wkAwSyqadeaGMZZporl2KeLew4S9/QwlK4pszOpSTF62OOiXgEX5oIt6Y/Zk7v4nN37mLJ5n/TenJq+WE68J1oDVGHt8+3FxJLBGQy2CM9I7VUC93zjuMrhgUmMlVnpOZiE8hLRIo5G2fOonEqClZCJavHXmKy7nxgtp5QOUKZiGXTAWg8AqyTRYxFpDUKZ118RHWEPlRSAE1ghmQQdlSpStkMYwCXskQRtjLVoFNIupk6MFbW6vfqHu0Cha+ZC4mJIFDUq/VRc6DjBghQCj0dJjFnYdJc6LCIIWrjyUGAFaKYQVKIwLJhWWCkhEB6sCEAIpSgovplQxWvgYKdHSo5A+mYox0quDSw1G1jk7UiJ1jtCcfGZ7chypj019jK2uWXhQeAHCQqRLpmHPSduEx0/u2Dx7rD8hKVq9Uvfehc7HWwR59WY8D9ptRZZbpIIwcHc82U6Z6wZE0ccbTApO3vYXuej5pV/6pZN/v/LKK3z1q1/lypUr/Pqv/zpf+cpXgHfLm621P1Hy/F//1/81//l//p+f/D0ejzl37r0DKt9rWGu5/2jGjTtjNrZS0kzj+4LRpKJ/r8/q5j3WX1rn5dfmmJkDRj/eo4osenGOajx13YyxIl5dovdXvkqwssjkRzcxVUXzigMXmDTHm28zfuuWQ1lfv4gAF0RYT9zTrV2H/x2M8Bohza9+DqTE5AXTOw8pB2N0WaKaDcK1JSxw9PsH7P1vv4O/OIcUgmCxR7F7gN/r0Lh2EZPmTG/ep/u5l4lWl1xhEwbkW/vMbj8ifbLtJr/n1ojXltFJyvA7P2R69xF6muAv9IjWlzn+7pejCdy6h5YSJQU6LzBKIcIAk6aUR0OsBF1pSDP8uY7LA9reoxiMiC+s07iwfhLe2nntRaqjMen2Hv0/+j7Z4x2CpTl0ktaY4y7l1h7p23fx5jqEi5p8d59iv0/0ZJv5r77mQmF97x0yodOjHIxc4RaF6CQ7Ib8JKcCC9CRVWiArjapDIcujITIKKWeJyzpKUoKu++6aokQ1HLZYp6k7R/McGwbgKdLtPfb+xTfpPH8Zb76L9BTFcMzhb/+Rk6PVMj6dF6Rv3nbAgbwk2ztwcqRuy8mWHm6RXblA97MvEPQ6Llh1OEKMp3gLc4ALA7VFSbC8iAgDJncecukXvkz7hauUwwnlYET/m9+hGk3RZYnXamIWeu6cnGXku338xTl0mjka2N4+ohHSfvEa3Sik/3sBh7/3XfK9wxrVnTlrV6PhAA47+/j3NqhqrHQ1mTF++y7BXIfOq8+hWi2q7X2qaeJkWXVX5Pi7brIM2WpgZilID6kUNs/J9w6QSlFNHA0QJajGE/y5HsXRkNbzl8l3+2R7hzQb58gPhjVM4C7lOHE5PJs1PS8MEFGA9APKWUqYl6h2i2qSOF9X/X4aF8+5Yv/uE5dLpRTF7iFlfwC+R7gwhxdFzO49dlK+yCG3B3/wfZL7G9jc0QFVo+Hkm9v7LnhYOKR3uLTIrMa32zQnXF/B63UxeUE5njpU+16f7LsbVElG+ngbFQZUR2NMVVFNZgQLc8jAw6Q5+ntvEl88y+q//YuoOKr9QtZlCAUhxcER6dYuszuPEMLizfect/pwiN9tMf+1z4PN+LkzU14ve+SZodlSlNoyGGUMRwWXL7b57EtzH/pa+lHHp0UPH6+np9VUXDjb4P7jGdOZxvcEWW7otj3G05I//uGQ3b0B+wcJi/Mtmq022w9mDIYlUSgJAklZGWejsM5a8yc3Po6W0vvsyxMFlNN6S2swMqAMHGVHWI21BqTn2sa6QlqBrXKMF/3kua9123YBn5mb2CsfYSuiMsHTBZnfpFA+WgSknnRdEaEYEaNs6QJLZcAwXsJKedJ3mpvtEVYJSdAC4f6ehR2SsA1W4OkK3xRgLMqUxDoBBEZ6jMMFpKnoZEfEZUov2eegtUq/dYaomBGYgrBKSaIeSte5NkIATttaR61ihEfhhWA1yhpyFeHbkrBKqKTnii+ra69MTVNTHhrwrEbqCmU1WkhmfoPcix2tTucoazHKtbtN7bs6KURrvKe01u1X6yOASgWnKvKnBZC1gkp6ruOmIDcGLVWtOjwuaD7oYB6/9kcsdmovwcdTJJ0uLPT73P7hRxRAqSGOJHEgKQtNFDqz+iwxlLkhLzS37yVcv9yg2/He85r0UT09WmvSNP0UWX1qNJtNXnnlFe7evcvf/Jt/E4Dd3V3W1tZOHrO/v/8TA13DMCQMww98zAeN/lHB/YdTJtMSgPW1+EQdMPvxI4qiYm9gaLQEfl6g08xNdH0f2WrUKOJ5R2BqNp2UbJoQrbv3rRox1XCMDAPiC2epJlPKgwFep0kw3yVYclLb2d1HdF55HpMVhMsLJyTNcjRBz1JUr01y9xFpI+agdBIw2YiYPdwg3dih88pzeHGbxuVzWGtdMdVqUuzsU/SPAEHyaMORsbIOxeERs3uPXUfo4IhoZZFweYFgcY6jP/we+eGQpWsXOP09DpYW8Hsd8sGY+Ool0p1dyjpPx1ba4YMXeq7T1GkRnV3Fb7coaile56WrLqSyHlIpN6EdjtADl6kWrSxijSXb2HUBksYSnl3GpAXWWoJ553NJHm0x+vFtFr7+ecKVRaZv38NU1TtIcOBW0K0xBAvzFKZPXnumOI7H8Dx0MkL6ClOWNNZXUY2IfL+PnqXYssRrtwiWFqgebdWKcOmky2WFDOqFrFrm53VaCF+RPNnCG4ypJlOCuS7N5y4TnVmm7Nc5RHuHpI+38BfnKA8HqChCWGcqDmpi2+zhRu0zAYwjRqp2C6oKUzgJpmxECOW5yfNgSDkY03r+CuHKIjv/v98k29zDakuxe4hJMvd+qwrCkHT3gHRj2xWMUlJNE3pfcsb78Zu32f5//+8UgxF4ivJo6MJHlUJ6HjIOqQYjpjfuIGrgBp4HlbtOJ4+28BfmAYsKA+a++hrhkiObWWMohhOMsZjSyTzLo5GbtPs+QgjywwEq8AiX5vA7beKzq45yOBgjlIfXil0ukrUk9x47Sac1JA+fUM1SrDGowMPrtTF56X6XtEYniYNCXFx3x7eokGFIOR4joxi/55Dg7vvTwEpBdGaVYKHrAA5Suv3YjMFAMZpSZQVeFGC0cd9d40AK4eI8wVyX9MmWU70ohVSK6LlLtD/zPGaWkh8WqChw3897j9DjmTuffA9jDMmjDWxRYaVAeormtUuIecHs0SaTG/fQ//eMxqWzTq4oJNUswZQFRmuqWUI1mblCaf8Q4Xl47SbtV67Rfuk6swdPWN65yb/2b3+WN27N2NpJGVcVjYbiq19Y5Iuf7dFufXKlyadFz4cYHwVZLYTg8oUG7ZbH/kFOURou9jwGw5IHj6dsb+8hhebs+hx7BwWHgynDcU5ZglICT0lnAv1TwVV/goirUwZ7xFPC2HHXwBqLQoCuajKym8SGVU5hBdqPP3giLARWBBigkgGmhiBYDIUKKVREJRXCaiolscL5ZEz9saVQpEEbLzlESoExGq0CfF3WxZEgMIWTnwlHObMIbI1bxVpQEmUMuWown+wirCX1nWTMCEWzGKGlR+a1XF9KKtDHnRmJRBNWGbkXPd1ntu521VVjqWISIVgZPyFXDUDgVxlSN2tAgoewFcKAkRLPlERVTql8lykkBKN4ASMVrXxMLz3EWssk6p0UMfa4+DWu1VipsM6gMGgVIIx+6tk68VAZ934FnEgVraD0YwQWVWUgJPo9J+3P+L8+KLPnA88vOAmyFR/X9+fZ7Xy0LpAU0G57JKlBeQI/EESRotNWdNoeaV5gBSSJ4eadKdNEc/l8xIWz8bsKn4/a6ZlOpwB/4T09p0ee59y8eZNvfOMbXLp0idXVVX7zN3+T1157DYCiKPjmN7/Jf/vf/ref6PvY3c9IMk2aGVpN7x1y6GYkSUsNwyN2bzyk+fBt/JpWpeKIajJ13di8gibkO3tYY5Hx0yJMCOFMyAbaL19neuMu/kKX1rWLDjttnETKVhpvoYe/0HUdFeWM69MHj0jvb2KyAqsrxtMZ0WhCuLRA49I6xfI8ejxDNSLaL17B77SY3LjnJvdKUs4Sxm/eJVjoYasKmxck9zdIHm3WBYFlcnhEdnBI8/IFvGaM8AN0klKOpvjdp+es320TrC6S7fVRrYjOay8y/MPvU41nVEnm4AtR5CZ2F9eZr6EL1hj63/wexWBMuLp0sj2rDbP7Gw5THYb4YeAw+3GE9D0mb9/Dn++gwohqOMVWxk2KlSJcWTiRdRUDBxiY3ntE6/olwjMrqMDDFAX54ZHL4plrkW3vUh2N0HkBSmFqzwiAyUvyrX0oSvy5Lo0r58m3Dwg6bVS35bTtQoDnuRX8GnyCkK5rhEAnqcvq6XXQSYbJMppXzjv/x/0nSN+jcXHd5f7cfoBsRiQPnji/bKkpR2OXOdOKqSZTZv0jkkdbRCuLFIMRpihhvkuwOI/OcqrJzP03nmGyHJPl9P/g+4TrK4x+dJPd/++/dJ2pXgs1ih04o6oQQrju284BQgmCxXlMmmGrkuJgwPb/8htM3rpNsd8nmOvWOOQFiu0DJ/ErS3ee9NrovCBamkd6Hirwkd02zUvnXCezKJj7V79BNZ5RHBxxuLGLxRXkqt3En2uTPthALcwTra9gkgydZJRZjtdsEK4ssPyv/BzR+ipCSVc8H2c0KUU1SdDJE7x2E9VpYn/4NtUsI1zoYTotyoMjVKuBasYUe32CM8uUsxQpFfG5NRcKvLnP7N4jirromvvyZ/Dm2tiiIr50jmg4xswSRwVc66KTDH+hB9qgmg1M4Y6znOuSPdwgWFnA5KWjtQY+4BMuuVDgYH6O7hdfoRqO6b32sqMMGkO2e0Dyz38Xk2aoRoxqNTBZhs4Lt5hQlqg4dJK6+rfZ77icr+nN+4RrS8Tn1ly2UJ4x+fEdRBjQOL8OlUa1Yyg0Fotqt4gvnHUd0PGUfO+QSz//gH/jKxeYyEUq7X4nW41PviT5tOj5EOOjIquldNk8K0vuR2g0KXn9B3vcf7BFXoRYujQbCmMsk1lFVbm2t7aQpZWjOP+s8LQ/i8Oa2nNzKuDyFNrKWE1QJlihXIaLEBR+k3dOiuE9J8T1dipVr+jVhYirnwSV8pzkzZqT+0WtH3ST8pLSi5hFPeaSfWbxEkZIjCiYhR08XTCf7FHJgGk0h5ES35QIY0FYchk4rbOq85eEcuAEjPMVSY/Ej5kEPYaNJSrlOlxJ0EIZgzIlVip87TCkRjr/ztN9JxBGI9B4piL3mpQqICwTrJSu3rAW6vv9KiX3mihrMNbBFpyULXCFi61QVeEyhIREmsp1e07TM4Q4ORG1rOEDghPp4Hv7esQpGePxUROUx52hd+UpnSoa3S+WOz9kwE8FL/iwetCPKBM79cRn/v7gIshYmKYVwkqK3CI6LkciDCRF4f5/9kxMljnaYxQIHjzJ6HV9ep13gg0+qqdnViMg/yLL2/6L/+K/4G/8jb/B+fPn2d/f51d+5VcYj8f8B//Bf4AQgr/1t/4Wv/qrv8q1a9e4du0av/qrv0qj0eDf//f//U/0fQ3HJVJCUbii5/QQvoe/vYEa++itJ5RJggqddMRf6IEQhOfOUGy7TJ1ympyksh8PU5auaPY9wuVFByCQguJodPIVVM0GzasXHOXp4rrzuLx9l3Rzl+TBE6ppgt9tYbWTtIZL89g8J3m4Cdriz3ddZs3RkGh1ic5nXqDoD1x2iVIngahWW6y2+As91EEfr9OmODgk3z9EbB+gggAZBJSDIbYoyTZ3kb6HjCN37ZnOiM+sYfLKUcIebCLjBkEQIAKPaHWJ1vXLhGeWsUVB0R8Rn19HSOFCO4djTFGeBHuW4wn5QZ9qNAEpCBd66NkMGQUn3iSTu2JPz1L8q+0THLXXajJ56x7lYOKoYN0WxcER/T/4Hn63RePSebxOi/bL14lWlzj67hvYoiS86CaC1TRxMqowQDUbBL22AzdkBfmt+4ggIDq/RrS+4iaXtx64/CDfx+QFpqyvjwLs8fusKoL5Ho2L55i8cRNdVW4SS0wlpqSPtwhXF/G7bQea6XVPAEEmzzGVm+SWoynl4cDhNFSK8j1nWp8l6OGYNC8A4cARaYaeJchmw2X//NYfMrv/hOKgT3E4wGiD3SsoJzMoK/AVepKgpzOkp4jOrdL97IuEa8sgnJn+8Le/jckLgtVFkocbyMBH+Y6Elj1xPi8vDBBCgTJEa7UE0hriC+uApfeFV8l3D4nOrpHvHVKNJm5uleakownljSHl0Riv1caMp9hGVL+OhzffoRpN8JoN/KWFk0LHa7VIyx3KyZTk/hOq8QysJb6whp65gFMzS8l05bKXooBqPMMOJui8YHbjLn6vy/xXX3OBrVlOORhCVdG8doHG2TWisyvkhwMmb98le7yJP99j9mCDYH3FyRm1JjyzTLHbpxpP0KXGliXVdOYWFsoKXeOlgTp7yI3GFZf7VB4NqaYuANgaQ/poE11WlIMxshFRjsZU05RyNMFUFVYb181Lc0xZQVGCMQTzPaowcDLbHZfdY4sKoVznMVieJz/su+uFtieLNMmjDaSQFIMRqhE7hPjGNp1XX6D1wpWfqLj6uManRQ8fr7zt2WGt5cc/fsD3frjL4uIcnXbI5m5Gf1gwnWq0sbRbirK0FIWhLE86te+Yf/7JDMXHYOp5/3Gy+n68v0+v6Aus8Mj9BspUCOGCPzUS3xQuN0aF/OQ98hSIgLBYPCrvlGRKeCf3W2tASKzAYZgt5F7MUXMN7X4WwAsppU+pQqalM6VKDEpX5MphpfVxEWAsVlmWpjsYqZiGPeJsSulHJH6TmXeZSvlo6dW+IoGRPlpapJbUSAWiInXSubq7Aq5D5dsSYSpUVTLzG2gV4FUFlQoxUiGNRog6jNQ4mp0RHsZXdcFkULZCaJxBOJ5DCbBCInjqqXraNXH7TFJhhMvseVrQnNrPTw/w0/9ZeeqmugP0ngWJfVpcCeUygE42+7NcBD+gQIY6DPXj6Ab9ZClcMoNG7Irj0UhTGcvhUUkcShYXA6rSEIaCTtujESvGk5zRuHrPouejdHqSJCEMQzzvL+5lfnNzk3/v3/v3ODw8ZGlpia985St85zvf4cKFCwD8l//lf0mapvxn/9l/dhJO+hu/8RufeHfMU27SKYTzfCp1/J2ziOERoshBC/Cc38LrNLF5Qba9S7i4QDDXRSrJ+I1bmMmUeH2FWX/oNmGsyw45s+zyU2YJ4fIizeuXUKHvJGqBmxzJMCA+u0r6aAvV9lzOyuqik7a1U/xum2xjG1lLjcIzK5T9IaYs8TtNvGaT/OCIOElPVpqDpQWE8ui+9iJ7//S3QQj8+a7rGAjhVntnKV63g0kyRBgQrixRJSnZ1p7LaMkLqtEEC3itBq0XXc5MuL5C/5t/jApDvF6b8nCAjEK8tpNwmjrH53hy58852VD6ZAe/10KEIf3ff53+7/xRDfiUDqe9NO/wKb4PNdY72z4AJQiW5h3koduiGk1IHm3Qfuka3oKjgs197XOYLGd29yEqDln8y18mOrPM4I/foP+H38Of62JmGTJ2YAYqQ3RhHWENjcsX8FuNOgS0ifA9zv7f/k1MntP/3e9QTWbkOwdUSYLJChfYXcuFhe9BXZi0X7yKkIIqz/A6nafnWbtBvntIORih1pYJFufJ9w7w57qopkPZF4dDh/0OHLpYNiKqJCHd2MFf6CGbDYqdQ0x/hDfXAa2pZimq3SReWSA6u4aVktEf/wirFDIIqI76eG0XtFmNxoggwMYVQgoaVy/Q+/zLBAtPfRvpdMeZ4aPIdTKyAtVzigcZh6hum2K0TZlkSCGRgaIaTlCtBtHZVYK5DvleH1tVYA3D771J4+wqc1//HGV/yOTtu06+9nhGNZrQvH6pDha1TuLnK4fLXuiBkBT7h6jzZxDCFc4mL5jefoCtDF63hSlKpncekW3sYI3BX5pzBdDBwBXOzQayGaM6TbxWg2BlCRE4D5jXaeP3urSeu0QwP4eVgunbd6mGDjgxu/8Ee/cx09sP8Td2HMltOEJFIUZrdJ7jtRpO/lgXzfnhED2aOLCG51Ec9hFS0bh0jujMCtZaiv6A4es/dhK2SjN5+y75QZ/iaIhftpy3LAow/ZJq6AJFbVlCEKDHU3e/8VCej4xCGpfP0bywjqkqsu09h8OfzpBhgESQbewgAx8rFXrivFeNy+cRCDovX6f9/GXKwZjRD96qg3XfHSvwSYy/uL+GH2F8FHnb6VEUBW+++Sb3H87ozS3Tm4vYPyi5fKHBYFAyHM/wlagDCS1ZXp3MNwWgPCeD/ZMb+hOue46lS8+Suk5NTIVCo0+6AsIKlK4wwjrk8k/09uhTNVWNgX3HhF1zQoITTyfuJ5N6AYWIUFWOxNYQWdDSY9BcwTMOcT0LOhR+XG/XFU9I0ARMoi5xOUOZykENioS8GZMot1roVym1MgEjPUoVIBAEZYJRPlLnSDSgnnbCrEFqjZaKJOo6D1SNqO5kfXIvQgsPKwRaSaxUSJ3VNDeJJzVCl3g6Jy6H5F5EGrSYBE0EEoEDJgiEgyccH69jTw/GSQaPSWrHn9k639G7pIfCPH3syXE+fZxcV8odg2OENSBPT/R/xpUfU+fyfGC36GNCYQPv1wUy1i1qhKGg05FYJHHg9uV0phmOK155sX2S0fN+azA/jbyt2Wz+ia2g/Vkc//gf/+MPvF8IwS//8i/zy7/8y38yb6geK8sRuwcZjUgxSzSddn0OjkeYw0P08iq2v4GaDBFNDz2ZAcJJraIQ1YxRUYCIwhp24r6DycMNZBjg9zq0n79C3h8y+IPvEZ5bIz53BlV7QHSakW3t037pKvH5M0RnNjj8ve+6UM6lBYrhxCXLHxy5XJrFefQ0QacppihQcUCwtkw5nmAqzegHb2MSJ2Mqh2PC5QVaL16jqgljgFtRjyOSe0/w2g3wHWra5s7X5LUarpMlofPai9jS/R6qRoNs75BobZn2y9co9o+Iz64glGJ66z7Jo62TosfR6TS20lRj52tZ+IWvkO8dMr37kL1/+lsMv/sGOknx5+cc5vhwQDEY0rp2EbW4AFjKydTlkyzOke8eUOwfucnlQZ9iMCLf65NuOvqfiiLC1UXar75A2XdSKKEUwvdpv3AVWxmm9x9THQ0px1P8+R6NK+ec7OzSOeeNKCuk71P0BwS9Dl6vzeTNO6hmA4EDa3iNmCrPoKwwRhM0u8TXLhK2myAE6eYONq/e2Q0+lizXCFiv3QBvlfLwyK3AW1BhSPPyOSY371MlKR7gt1o0r59H56XrHlTOt5IfHKECH39xnnC+S7i6SHR2jezJNlZKyv7QFa26ojgYuMIM12mxhfuM8dnVE4z28VCN2HlIVIXXbjqAwSRBzHVc4THXI987hKpCNGNHkms3iS+ddUVlWSE8D6EU+cERVhvX+SsrpnceYorSdVnSjOTJDrLOM6pGU6Kzq06qFockj7eJ1lfw2i2S+xuuwKmzkqrJDL/XxlaG4uDI4bPDAGkgWl+hOhohwoBi/wiLpnH+TJ1jY4mW52k/fxWLZXrrAaoZ07xyAWsMox/eoBpP8Rd7zB5sUh4eOXDIQo9s75Bi9wBTVkRnV52crxG7MFolic+foTgcuq6KMQ4gMJwS9Fr0vvgZWs9fRkUhk9sPnJer03aZUFIymibMbj9CSOV+nZVCBQJ/vuc8grMEFQQE7RbByhLBYs/JU9PceQN7nRMPoU4yqkmC14hoPH8FCwz/6IcYbfDiiGpsEVqTPtkiXF6gec0tOvlzHarJlOTBE6L1lT+R36pPi54PMT6qvA1gNBrxwx/+kE6nw/XnXkTLGXv7eS1tUTQbHs1YobUlSTWeJ/AVFLaWVeunip8/mW5PPcn+JAufd5nN3+eTiafEtlqEhmcqtCldJ+Adfo338H+cGOGl6+YcdxrelR0kTnlTpJu76wKrFFZ6lBgn5Tp+lvSohGQSdKn86GnRJI6LKLd0W3gxni4dSc2PCauUdjogb4VOWnZM1rbgVznWaOIypZ0PGMXL6Fq2pmSJwFCpCGMNWnk1JAA8C1b5DBuLdLNDpC6xnkKVJabGmlrp1YfS5f1IoQhM6TpbKsQKSe61MIBGoqxxWUDKxxqDqaWCQjjQhNS2prqpeh8ed2lOH4PjffwsYrwuck519k4KHo6P18c5jrf/AcPoj52E/c6hTrANSoGuSgbDiuUFxdn1GEnIYFxhgSx3X7g8NyglaDfffWk2xhAEwbtuf79xXPR8Ov7sjZXFkIW5kOlMkycls6SiESvsw4fYmzcJWg28KCSMA6pkdkI7C5bm3EptUVLs92lePMva3/zrbtKnPGbHRc98j/xoiC0r2q88V9PTdt1qflEilaT90lVaz19Beh6d116k//uvU41dx8ZmGdTJ7KaoyPb7ToIgnRcjPrdG99XnOfzmHzO7cx999gzhfBcBROfWCJfmmd6857omScrxNddrN7DWOLlMpRFBgGyE6FmCrQxzX/s8xe4ByYMNpO859G2SEa+vEH3uJWQUoqLQEeg6LcK1ZfK9Qyf9m+9higJR+2r0NKX72gsugLTXJj8aML37GNWMEYGP8CR+r4OKItLtPZK7jwnXHOZZTF3mSOeV5/E6LUxVkWzsMPrODwlWllBxSLDYAxwNL3mwgSlLVBxRjqZEZ1ZAO9lZdHaV9guX0UXF8Hs/xhpDtLzgpIY4JPPxKIdjjNYkj7YQvqL3uZdovXCZbNt5QLzRzMkZPdftIC+ojGY6mYGwKD8g29vHm+8QLS8671elKY6GpNt7VMMx3c+/Qu55jN+6TdEfYCuNJKozZ0JUI8Zf7DqkthAEC3P4vTYqChx5LAyJVpbwFroEc11nss8yJyObzhzltNt2hU5VuYW4gcvP8RcXiM6uIoRwJvg6LFoGAcL3XCEvJc1rl5i8dYdqPHESq7JEKkW4tkzj0lmKwwHNFy7j1cHL+cERwldMbj1gcus+zUvn0bOUauo6O0EdCOp12qhmRHbYp9lqOFl95Qqtsj9AhQGdV55n4ee+SPpki9n9DdJHm1hjaVw+58ANR0OK/QNkGNK4epF898AtBDTiOiPIwxYupLuazvA6LaK1Zbxuy3VDZkntk3HHu+wPHLp6c4/prXvYssJq59EzhZMUEvjoWUJ09YLz1VSV6740m8Q1cMHlXQWoRoPWC1fAOlBJfjhgeuMezesXHcGx/q31ei28ZkwlXVFc7O47bLZxk1BrNFYJWi9cpXX9ItUsoTw4Quc51lj392iC322795rlqCjAa8ZEK4s0X7iMHs8o+g5G4S3OEa2vEcx1TopwANVqkm8fuMfEn0Aa6TPj06KHDydvM8ZgjPmJmnprLU+ePOHOnTtcvXqVixcv8tbtCa1mwZbJ2D3IGU0qWg1Jp63oH5VoY1FW1qvSxhU81Jk/H9/H/IBxXPCc+vOTGO/az8/+XU+epXr6t3A+Ha18V+zYU497r22Idz736d8Og31SENmKp5N3N3FXuqBRjEiCrjPcCydDE66n4gz+1lAFMa7boR2FjtqnVHdFwJL5MUhFVM7I/BZxNsRah8DO/BhlDVKXSCHwrCYqZwRVhrQVYZXQzY5I/BZGSEbhHEnoJAvCGnxd4GHQlQMLFDLGwyKrFAGUsoEWCmktYZW4bpL0kdZl/5RhC19niNIirCbzmyAV2mqsDOq69Ljz4i6IVpwqdI5LUVNCvXcQNbHtWa8PgCkJdeYAEwisfDaYtIYPfCR4xwfBDo6BCPKDH183qT7RwkdAEEKroTDWQypDkhpu3JpizRCLh0WxvTPjsy93WVyIuHguptd996X5p/H0tFqtv9Cdnj+ro9HweOWFLr4nuHV/ymE/Z//OIQtv3qBlDe1zy6wuN/D7XdInOy6o0Dr5ls4yir1DbKVZ+IWv0H7xGtZael96lXRjl9H33yJ9tAlS0rp+ic5f+zpCSZIHT9BpTmNpnnh9hXBl0U06cbCAxrWLlAd9ioMB6eYO1dQRnYSS6GkCElesSPB6HYrBiGxzByE9hO8hopDm5fOEK4uoOCTd2kUogTWSfPcQf75bh6J2KAcTTJriddtOSiM9mtcvEp9ZIZnvglJkDzcx1iI8xfT+EyZ3HtC8cA6v18LsFnReuY7fbdN+6RrTO4/I9w4oDgcEy26C27h6ASsEe//8d6lmCVv/6J+Sb2wRnz+LDDRlf4SZJngLPRqXzzO795hsa5fGxbM0r150cqdZQjVLXBaalC73pxE5v1F9PVHNBjLwybf3CRbnT46x3+s6gheuk6EaLgAze7iFzgoX7njhqYzSeacsOnFZQrbUWF3RvHAWv9UEbTBV5XDTgzFGV1SjMTZ2vpT2C5cJ11eZ3nnI+Ic3MdcvYbGUwzE6SbFVRXzuDGV/iNdrs/CXvkT/918nPzh0BvbRzEn8GhEmL5jcuIcpSuIzKwSri+i8oHn1IuFCj3Bl4eTzm7xA5wXC85y0C4E/10O1KgcxKJ1nCCHxm03SjV0ygSu2fN95UhAEnRbh+iq2KAi6bZpXzrpjZDRmmtN47jLR4hwWaL1whWK3j25MKGcZ5eEQGfrIgyNUEJDt7DN4/cfu3M2yk8VN1YxRjYbrLtx9jC5yioMjpFJ4c13ilSU6L19zmOVKY60lufuIajimce464cqC8ysJQbFTywZbTo7nt5qUk5nzz5YF6aMtorMrdF66Tuu5S1SjKdnuPtnOAfnhEcF8D6kkRmvQmsmte056GgYu4LQRk23tuYDR+S5oe3INsLoiWlsifbjB0r/+l1n+V34O6SnSn/8S+//id9n7p79NftBHCOmkhXlGNU2Y3nlI69olJ6OVinB1EbOxSzkYIZREdVoo7cJ7i9BHCEm2uYOKAorByHm50pzobEy+36eazGheveCyjvIcr9Nw52mW0XvtZedLu/8EhKX7uVeI11cwWUG+c4A/1yPd2Ca5/wSrNarbov3cZaLza++iIX6c49Oi50OMY038T5p0VFXFW2+9xWAw4Atf+AJzc06z6inJ7l5G4EkakSDLK0ZjQ73Iga4sZZ3L4nvOLwbue+qppx6fj38cFzvHraWfZVsfgbh1LGZ/3+2c2p6QaC9+erc4vu/Dvt7x4+r21UkXCDydIa12EjBr8WyFkR5GHhdeEmtLJ/mSCqVLgjKlNCGVFwDKPdZyQjqzUlDZEM9aPF2hdEnuxUy759HSSc2QAm1VjYfWTrtfQxukNQhrKbyYoMoJqoRchWRBC1N7gbQXEOYTPHIKYoyAuJggrWEUL2BRDmogxIl0ziifXChK6SGMxsgIISyBzvFMSaF8kL6DHpiyxphqOCbLCTD4p/aqkx4i7Cn7jMBVEcdFj/P+SMCrCozvoYXPU5lj/fhTx+TjGae2dSK/e5+C6hNeVbAWAgUWy8piwGCiMUAjVozGJZ5v8KRhOJpx6/aIl56LeO7iAkmy8C5p2k/j6WnUK6Gfjj97o9f1+cJr81y+2OJoUND/gy2o5vAn0GhoPJ1gGrEzRwsBUqBaDYL5HsHyAv5cB2sMe//7t8BoyuGEapYQLi3UhZAhPzhi+//5z/F7nRNJjIpDbFmR7/edOT7NyPsD8ic7DmCQ5aSbewhhic6s4rVbZNt76CwnPxxS9gdkO30nlfM8Wi9dc9vMCsrRhPCMk7yEK4sEcz2qaYLRmvTJNuVoSnE0whqDjEKChTmic2u0nr9M0G2T7x06U7RvCc8sM37zNunDTdcFiEOGR0MaF84igFHhJuGq2aR57SLJww0aF8/S+9KrBAtzTN6+y+zeo9qXtOO6MZVBZ5krvpbmqAYTsu19/E4LGXgO7nDpnCvQmrEjqVZV7ZM4ojgcOERzf1BLl0Ao5XDIRyOM1nh1tk50Zhl/rkO+d4jfbZNu7JBv7TF7tMns4Qb+fBf58jXALZZO7z6iGk8Y/SBj8sYtjDXYosBrt8n3+3iN2AEVrCU/OKIcjvEaEeHaEtU0RUYR1WCM8nzK0YT+H3wPgcXrtGi9dI3Wlcu0Xr6GFzk0tjWW9f/r3+DgN/+Q5PEW0foy0vMox1N0kmKswWQ5VZoiB2P0ZIYtHDjhWN0MOJ9JVriAVSGQzYhqOkWGoZPkJQ4A4XfblKMJ+dYeMvDw2i3KPCfd3sMWJUt//S8RXz7L7PZD9GyGarfQk4Rif4wMAoK5jsNUVxXF/iHFYIKZpejZDK/bpvv5V4hWF9BpweiNm0xv3acajEEI9CxD1Wb+cjJD1h1G6wtMnpP3h3jdFp1XnkP4Hoe/9x3KwRihlDt/jSbd2MFUFfH6CvHqMlI6KZ2pKvxuB6E8mhfXqZKEbGOP9kvXmP+5LxGtLTl55c37mLxARSF+s8Hs1n1QynXEtEVPUwetkAKv1QIsXsdJ/Y5/WavxBKwlmJ/Dm59DYOm+8hwqDLBak+8ekD3eBqB1/RJ6kpBsuAWM9PEW+c4+JslovXjVdbjqRYhiMHQwFG0QQUC4vEh86Szx2TWK/SOyXQff6H3pNWyZuwK23cKUFeM3bhKdXaNx7RJSSfLtPXRe4uMWgcOFHl70HPHZVVTdyUm3dxm9dZtir38Crxi+/gbJ/Sf0vvAy3S+88okVPp8WPR9iHE80tNb4vv+ej5lMJvzwhz8kjmO+9rWvnWQ4GGMZDgvCUDCaGJJUMxxrdGXxfEEzlnjKpygdISfJ3MLzcfPvVBfwYx6nuzsfByruI0xaxTGt69kCsp4sn0jOPmibz953PNl+dsJ76oNZgzAai6OUBWWCtIZSBlipqKyHERJlLVWdIYBU7lgYU7+qRdmKyihQx/KsWrZXS72sEE7fLENKP0KaikqGICzSVghjnT9GChdOZzSVDGgVE6QtSfwOYxWilY80FYUK8XSFsQaJphIBSdDGrzKsEFQqRGFJvBgjJJLKkXmET6UC/CrH0wUGiRYKvACwSFNSqshJ1k4KFotAINEorev+mOuCGXVcDIqTAu+kS2Oc9OW4kBHWPPXtYEmCFva0X+dEani6O/RRR60TfEde0CmZ3TuACB9QJBt9qrv48Y80h8pa5rQlzwzdjkMUR5FCCI8whOWFkM++FJFlCfv7Ax49eojneczPzzM/P8/c3NxP5en5i0xu+/MwPCVYXgxZaFo67Yzq+hLDP94mefOu83MohfAUXq9NtnOA14xpv3AVf65N0R9h84Jg3uGmZ3cfYY3G6zTxOutYXZE82iJ9tEnZaTH/9c87JPOPb3Pwf3yLYHkRFYVM7z0CbYgvrGER5Dv7LlMGSzVNEEo6qUulwWiMUlRJQrB4Box1QIN2C1tVZJu7eJ0WzUtnwThvjMkdXCDfP0SPZ0jfQ0h5Ek5a9od1srugGI7rSeMO4zfvUOz3kQ0XGCqiAFK3Mt957SU3IU9SRJohA5+FX/gqrWsX8dpN+t/8LvnBEc3L55zfYDpDRhF2MHIenWDkgpYRCGupkgyTl1SzlOn9x/h7rnvj/DfnCea6FP2Bwx0/2WL0xi1UM0ZPZ+g0RygX6BpfWGd68wFew2WvdD//Mv1v/TEHv/mHmCwD3wclXAejqhh+7y1MWmCKnGx7n2B5gaDXwV/oUQ5GpPtHWO1yZYK5HoAz62uNkILo7CrxxbOUB0fIVsz0xn30LCNaW3LZKUmGBYqdA1QYYsqKxqWzRKtLzv9VgzKEFQ5AAWR7h04uKZwc0ZHsNM2rF/Dmui50dJoSrC1R7B+S7x6CkpSDMZQlQiqk7zvscZVjy5LGlXPo0RQhBfG5VdfpynJsUSKUR3Bmjt4XX6HzmReIz50hvf+E4mhIsb5K3B/gz885PLI1jN+4SbZzQOv6RfzFOWa3HrgFvv4AjCHd2mV6457bT76H34wpRxNGb96iHIyJVhbwem30LKU8GOIvdMm395Ch6xBNbt3Ha8Q0Lp8j29rF7zjqnYwi8t0DvGYDr9cm2dgGJbGzgnB1gWhthWC+g/A8ps27LPyVrzoZ42DE8Ls/QmeFI+hJRe+rr1EdjUi3dsl398gP+tiqhEIRnFtFxSEmL8A6v5AUEnyP+Z/7IuHiHEIpFyKc5SdkwXRjh9Hrb2Ktpf3SdefLGYwJ5ruYNMWUDiRy+HvfIXm0RTWdke/sU6WuEOt+7kVUHTIK7nd/7ouvkm7uMv7RDRZ+/ksOPiEE6dYe+fY+YNGZk/at/Zt/HT1LOfrD7zO9+4hyMsVvt2ldv+TklRu7RCse6c4+g2//wHW1ogDKimowZvzj20RnV7FaEyzO07x64ZO55n4iW/1zNn6S/EMIgZTyfX09m5ub3Lx5k0uXLnHlyjvRe/sHOT++OWGWGgbDkiQxaG1otz1H8AF6sSLNNElS4nuQn1IH2U9kJfpPSM72QeN4UlzDA467Ak8nwR803ksW9x6+EmHdpNhofFPWk3sJ1nVgpNWUXohnK0oUWnqoKqsR0BZMjhAeRuA6MKaiUk8DQrWuanzoqeLHaAKdIq2llAHCGoeFxrpWs67q+wXSVHimQGCJyglaKrRQJEETLQOUKdG198bXOblqUOGyiJAK4zfwdEFcTim8BqX067m+60DZ2hdlpMTThev4eFEtxTM1olq6fVTLBoUxdQcKpDAEOgPASB/PlhitT4JMERZhLEpXVKqWHlpXLNq6syasQZoSIwTWiKceIOlxAoH40AXPs7LGenunPVqnH3pyqrwXaY53P/YTGEq6eY7EsrWTEYUKKSFNdf3SFl0JwkCyMN9kOAq5cu0Cc12P0WjE0dERGxsb3Lhxw8lrpCSKIrrd7k8sgGaz2aeenj8nwxpDNZmRPNhwxvj1NarpFGtAT1NMnuN3Wqz92/8qvS+8Sv9brxOtLOLPOdlr+mQL1Qjx53pkG7uEi/OYLKfYPaB59YKTooynLjukxlzLxhR8D6EkshlTHAwRwhHdpO+mBrYsqEYZKopoXr3oPAnGEPU6tD/zPMM/+hHp9j7t51ouhLAVk2/vEa0tM3n7DtnmLs3nr4C1pBvb7vWMQfgeZX9INRi6SeLt+8x98VVaL1zj6FvfY3rvIXqWuoUUKygPB+hxQnTRoYit0fjdFu0Xr9G4dPYEkgDO35Ft7RGuLGKqyqXObx+iQr9elAKb5siwRvQriSlL192YJQ67PRi7rKNbDxjfvMf8lz4DnqTY6yOVhwoDytHUIZGF63Z4zQbtl6+TbWxxlGcs/NyXaFxYJz1/htmdR+g8p9g7xGvEBN0OpihJHm5gjaHzmeeJ1ldp152fcL+PTjKCxXmK4RhblgTzTjlSTRNkFCKyDG+uC8ZijEYUJfG5VRCSdGOb8vEAEQa0Lq6jiwoE6CRl8tZdhJB47Sb54ZBgaYHo3LKT9+0eoNPceYGkwOt0EL577Nw3voBAorot0ntPmD14QjkY4bXbhEs9grmOK7pGY0xZES7NEbRb+ItdVBAy64/ofv4Vup99gXTnADOZIsKQ+PwqMoooDgcgoPuZ5+m8dI1qltL/1h9jszNE6yuU4wkHv/1HFHUOTvp4y3UrU+ePSY+GNK6epzwaI6OQalxQHg7ID45IHm1j8gLZiFC9Dv7iPPn+PUxZIGqEtlSKdGOL2d0n9L78GTePMxbVboCULtfKWopDR2jTU3e+hKsLdF55Hoxxxbvv0X7tBUf6m6WM3rjB7PZDZLtJ+ngTr9elwQXarzxHeGaZg8nUZTMtzYPy8HsdrLHoNMPrtJGeo76FCz1a1y+havR6+mSbcH0Ff66LtZbZgyeYqnQY+eGY6c27LuhdKVQYUo2mBAs9ksfb5LsHxFfO1x60CSoOqQYT/Etdd9tgROPi+klBJaOQaG3lBOPdunKe+NwZbFFQjqeOXvhwAzNNCFeXaD1/BdVp0bywjlAOCIKxTB88YfD7r1OOZ4Qri6A1NvDRaUY1mVIcHlEeHhGdWaZx+dyJ/PbjHJ8WPR9yvBe2WmvNjRs32N/f57XXXmNxcfGZ+y0PniSkmSbPNMNxSVFZqsoynWmkFEhhOcgKWg0fKSWhL8i96kTi9vGPZwqen3p8BDnbu4asuwI8nXAaC+K4Z/5TbNdYRwZ4x0p/XVRJ6cLnTOUKgKpC6pQ8aGMFREWCRaClh1G+AyfokriYYqRP5kVUyndSLzTCCJQpkcKgkZhjqpzRTqamYqTVWARxmZH7EUjlDLwyIJMKXxcI5aO1T1xNWZ5u06hS9ppnGMUWVSX4VUHqN5BCO2+RqRAyQAiJFRJrNVIXVNJDCyfBk6YCbO3BcQWBFh7GUycSPKCWex1LCI93osOGIxzYQKNQpsQzFcJUBEbXwan25KkWia6lgCcoa1sbZaTCWungC1ojqZC1P0hjTnmAPux45sGG+pg/e98pyMIpmd077z/1+E/Q8mLtU7mqA2xpilKhjQvmne+5JPD5uQApwPNcQLGUkrm5Oebm5rhy5QpFUfD6669jjOHmzZuUZUmv1zvpBL0XpS1Jkk87PX9OhopCqumM4vCI1vOXsdrUAZCTWpKVIpVH97WXqUYT9DQhWn36e1NOZsgwdFIYIch2DqiGI6y1WK2RSlHOEsqjISYraF05T7q5SzV01Civ2XB/JynNK+eZ2scIIVwo4lyX+OwqMgzJNnewWYVsxMggIFxfId/aQ188iwoDZBxTjadkeweMfnTDdaKPRo4UhsuFsZXGTDR+HDmfbOAjgoB095Bk74Dh99/kJOw58GuZmUZPZqRP9vC7DUY/eBuv3aSaJMx//XM0Lp07KXqKwZDp7YdUkzfJDxylLN3YwZvrIttNqoErVI4ns1XteQm6XUxVMX77LmQFBJ5b1d/vY7OCYGWBbGefxuULxBfPMPrRTQKvh4oirHBEvGBhjvjCOsmDDZLH27SuXaAYjAmWFhyBa20Zr+VCpcGS90ekT7bI9/r0Xnvx5DscXzhDMRpTjicgoBzPKAZDpJJYaxFBgAgC8q19kvQJOstQcYyKfXSSk27sYCuNUJp899DlsAzGRGvLlIMxyeMt4vNnkB74vQ6dV56jnGaMvv+2gweEITL0KIdDZOAjr1xweOWqIj63xurf+Cts/5N/Tra9R7Aw70AHnRbD1R8wuf2Q4uAIW5T4a8tI5WGto611PvM88bk14nNrdSaSRGc56c4+ye2HdXegRbA074J4x1Pic6tM7z7m8JvfYXbrPsIP3XlUFA6E0YwRZYUIA6Zv3cMUOcHSAsFCz0kKDwdQ004xhvT+BtnmLjrJ8bttTJI5v81o152nSpJv7ROvryJjF3obnF1BSNdNmdx+gPQ8wuV5ypFP0OtRHQ2dK7UZg5Qs/eWvMHuwwcHvfJtsZx8rJcr3CS+ed76uJzuoOHLEwEbE+M3blAcDytGY5OEmqhHh9zq0XrhC+mSL4mjM3Jc+iwpcXlO+30dGIe0XrjqQRFGQ7x5gKyfDK4ZjquEYv9N2nquyJN/vO4leWbqsnnuPkcoHz8258oGjCzavnCM+f4bmtUuu8J8leM3G04DW42tW4GE9yeTWPZL7Tyj6A7ddbcgPj9CPNhFAfH4NFYXEl88yvf0AlCI8s4wKA6gqvF4HIdVJiG3eH3D07R+w8Je/TLi08LFfaz8teuohhKhN6O89niW4zWYzfvjDH+J5Hl//+teJondTJybTimmiWVsJ+IPvzihKQ7vlIYC81EgrkRJ8JcgLTZpWgPjQ+YofbZzy77zrw/FTdnt+lsKHp34Lg5ug/tSbOrXKf0KIw03s67+tVFhT0sxG5H6DLOy4wsBCJRXSGjCl89HolNxrUHgxps5E8Ix20jfzdEfF5QwjIA1aGEtdFAmMFM7/IgyFdfIyg8Io192w1tRFi3UFmRWUKqbUJdNozr0X4cJP0SmFdB4i35R4xZQk7GIQ+FWGwpL7LYwQ7v2BKzqMxYXwuCJE6gKrAveap5HUz+5HeXy7qfNFJaX0sMJH6QKtPBxKG3fshK0Jd8fFlMsVqg/G09fwJIYIIwEqVwFIwbspbz9pHG/T4jB4pzuFxv1dAydOwBfi9HnxTEfo+Kmf0DAWTPVUYJcVMBg5n5jvCaaJptnwaMSCw0HJmdWIduvd39EgCJBScuHCBebm5kiShKOjI46Ojnj48CFKqRMZ3Pz8PGEY/onQ2/7+3//7/N2/+3fZ2dnhpZde4td+7df4xje+8Ym+5v8Zh6k0Qqk6hLI8wU67Vd96BVk4mppOUoT/znNEKklVa6GNMUxu3qXsjxFY8v0jZxTutNzqca/trjuVxpQlYR1o6PdaTO88ACkwaYb0PCeR0pqwrBC+Cxg2lXaZMkK4SfTRiOT+E1Qrdv5HbZjUUqLm1YtE68voLIWyQoYhVZlQjSdEK4u0LqyjJzPK0Zh854DkwWOM1ijfx2pNOXaobq/dxDZiir0DbNlBxTFeHIOSTG46bHXvS69iS83mr/8v7P+L38Na8NtNUNJl/hQlXruFnqTYskCPZ+53P3e/u7LdcF9YrVHN2EmEs5yyrFBHQ4rBCHwfr92gPBggPY9geQGT5djK4Hdajh4nJV6nRfJww0m5ZjPK/hEqDvFap7+PLhg1e7xJ+mSL+a989uSeYL5H95Xn8eKY6d1HbsL6ZJv4zArRuVWE72OSjHx/H+EFqEZE+nAD4XmEZ5aw1hJfOOO6ZZ6iGk4dzltr/F6L8mhMHgQs/PwXMXnBzj/7Lcavv4FOM3ehqip0VVENpyAl4coCkxt3QVf4C11MkqHCgPmvfu4k9BWg+9kXkTVIoDwaYbVBFzN0UbkOW+ngAEIITF6SbmwzvXmf6f0n7r0KaF67hJ4l5AcD133TmsPf+ANX9EWRM/LnBdZXUJboSUUw13PSzK1dF4IbBJTTGbYs8dtNZKuBl7icPZSk2D10iOY4QCdODo4E83gLXRSYoiI6t0qzRmInT7Zc4Kc2bh81YqL5ORqXztG8fhGvEYMUzqc0GFElKf5CzxnzV5bcsTu35gpeKdFTj2xrl3h9BYFg/iuvkR+6DmM1HFNNZojQRyqHkI/OruEvzZE83EQoByBov3TNff+GYyZv32X0o1sODHDvCSiB12igGs4PbXRFNZ5gK4PqtAGJySv81S7BQs8FrlaaMp1RDMY1nS0lPLOEbDQIw9CBN+KnIcjWWEZv3OLgX/4+SOm6yVMHzFCNGFtWVMMxzecuEyzNI0Mfr9eh9dwVBwiZJicFD7hukhmXCCTlcEK+e/Bp0fOnOU5n9ezu7vLWW29x9uxZrl+//r5wA2Mtxli6HR9POeN3WWqMtVQaug1BURjihqKqDEUhKEq3ih56kH9sGT0fV3fn9PiIFco7JtvH2r16YiqOc16e3Y8/qag6bje4ggXhv+c8HkvtdRHkfpNSBU6iVb+nwm8QlglIz3V7KolfphReEyz4xmlrbU2SC3RGMx+RBm3XQzAG7dWQghNEtutkFF6DUlScGPfrQqKSiqDKXEGkfA6byxTdi1TKYUI9XdIsJiS0yKKYUgUOU+05DXqgC7CW3I+dNt0CxlCoECPUU5I0OHCCCJ1M09oTv9h7SgJPyceEcSegkYF7z17IO4EA8j0OzzMFlaj9PsLjpKtkvfp0PO3fOv3c9znWFrd/JXUxd/r17YnvCum+a8JUGKHqolq7r8GJJ+nZwueUM/cTGMd7uixdB9jzLHnhXrLb9tjezWk1Pa5ejJHyvffDsadHCEGz2aTZbHLu3DmMMSdSuM3NTX7nd36Hv/t3/y5BEHD9+nXSNCWO4/fc5s8y/sk/+Sf8rb/1t/j7f//v8/Wvf51/8A/+Ab/0S7/EjRs3OH/+/Mf+ev9nHrYs8Xsd4kvnKPYPQUoXRlhVmKwgWOyhmk1MlpH3h6RPtl1WSaeF3+sQLC2QbR+gp4mjISmBEJYqLxFV5YIc2028OMTvtN35rgRS+A6v63mIIEBPUxc82YzRswQhBNVowvTWfbxuB9WKHXWqlr+ZPHcLGmVJ8fCIcjQmXJpHzXUQ0iW0F3t9itGUKs0IlhbQkxlCuABQIQSyGZPfuo8333VIamOwswzru0l6NZ7WgYoV1cQhgIWQqDigcX6NYN5luOz9s9+hmsxcEGXoE/Y6CCkpx1NkGLlLTeYIU35nBeF5mKpEFRXVYITfaiA8hfR8orVlTKXR04R8MCDf79P74quYLKf94lWSh5vYsnTG9GbjRL5jSzdHkIHvgh2VwuQlxXBM48L6u497HVZZTmeUgxHh8gJWGzdxnswIFufoRCHNqxdQrSY2c6vh2eYu4Zll8q09B6doxZhKg67Itvbx203ClcUTwpY1mmqauuueUuRHQ+KL68Tnz1COJhx98/U6jHTOkfow6FnufiKVpOiPMNZQ7vZJH24Rrrj9IwMXb1CNpi6zKcmw1lKOxqSbu7TaDRoXzxEszTO7/5jh999EeMoVUbX8MdvrI4SgcXEdrCB5tEXn5Wv43RbjG3eY3n+CyXPis2tM7z3CVhqv18VkGcaW2EK786LuMlht3HvqD1wIb00gpNUk29lHej66qmogQh89y5F+n/jqBRrPXWB68z7Zk02mN+8Tn1l2x+fgiGqWYY3BazbQsxmzu49ov3yN6Pw6fuPpordOMkfMm6U0Lqxj1gp0mjriXz1XVK0G5c4BxWCMSXN6X/oMzapi9IMbmIWe84ilBVWa0vnsC8x/7XPIKHQeqMAR74SUlMMx/d9/nfJwQLg878AdC12yrT10mqIaMUIpioMhCIlqhDTWV0EKwhXXDSv6Q/ddVx5mOqPYPaTY77tuarfF8r/2C7SuXSDb2CW+cAbpu87d5O5DDn7zDygGY8K1RYrBiGLnAFNUyChAtRqAJTq7SvjydbqvPo8tXbBtORpjyhIhnyoRRJ03ZsuSaH3ZecVe+fivtZ8WPR9yKKUoy5IbN26wvb3NK6+8wsrKygc+p9XwaDU9+kcFCws+lTYYA3lRIqxlNnNmxDBQeEoShR7TRJOkFUVxjEr+WbU3P6Hg+cD8oVOT4g8krn2IcXpyeorM9tRz8RO2fboL92zxhPPcWKuxVrjSyRQY6SMQeMYZ+LT0MVa7boWtt2OtM7KqEGpymlE+QVVgqLBGYOvmgGc1UqfOG4OkEorKj7DGoEyFrqVhTyENTuZlvbrAwiJsRVDlGOUhLTTKlMKLqaSPEcr9YKgQgyLxGxgpa6mZxKjQvbawaClOipGTfWLqYFYhwZQuc0f6dRfNmZGlrU7IdO9dIT7dr+bkMxwXBMfemI9wHtTdrHe+zClpo7DOB2TFOyV3Tx/g/l97wLxyhlFh3TWrKzvLCTJcCvN0c0LglRmV57uCWB6fw+LU+Vy/hrEf/7rAs7uCp7vCaIgbgihULC4EvPRcC8+TH/h1NMa8p4/nWSncsRzuv//v/3t+7/d+j/n5eb7xjW/w7/67/y7/0X/0H31sn+fv/b2/x3/8H//H/Cf/yX8CwK/92q/xL//lv+R//B//R/7O3/k7H9vr/EUYMgwcXc1TxOvL5LsHbiU0bBBdvYDXa5Nu7DL4zo/IDockj7fI9vpucrs8T3zJTSzHP7pBORwTXzhDvt8n2z5AKoFqNck2d5BhhD/fA60J5nuoZsP5VOKI4uDI6e97HRCSfLfvVrWNIRtPELuHtF66SudLz2PTnHTngPEbN8Fot4o93yE6s0ywskD/W69THo1QrSbCQn7QdxkgWeZQxZ46WaQwswRTVvidlgMDZM5TYifOBF+UlUN2S4GtSudXuPsIU1VE58/gdTvIRszkxj2nqg08ovVV9GgKnvM2miwF38ekmQsdvXQOr9VEBL7zuUxmyFaD6mjkQAuBj99suI6Wr1xOy7WLzN66g9ds0H3tJWxZESzPo6IIhANAqKZbXNBJir84j1CKYGURM03e87JZjiauSGxE5AdHeK0G09sPXHeu3j9lf0jz6gXW/uZfQycZu/+f/wMZhkRnlul95gWsMUxuPUD4CtVooAK/znipXBFVWbLhLrYOry37I6yukFGInibMHm1SDkbuOWmGzXN0XoAxCN9HBT7F0YD0/qab/G7vsfe//gbWCqyuqJKMcr9PfnDk5ITDMcXRCH+ui6pN/63rFwl6HY6+80NGP3gLf77L9NYD55HZPcRf6BGtrxLMO2DE7METOp95wYWi3n9M8/I5VBy6bmdZQRPAOkljYF1BNhgjfA+T5c7rYwx+t0t+eAR1toyepdjIhSCasgJtsdagCycDjM+v4c11XBF3OGD2cJPyaEh88SzZ5h757p77yTGWYKFF8miL4be/z/xf+oKjn4ErIALPSbkQTvoXBhS7BwTLCy7sFYEpK7KNXTqvPke0voKKnaQtfbzlgljnJb1zazTOn3lXmKspCtLtfQ7+5beY3XtC4+r5ky6SF4X43Rbp422m6QO8VpOqP0C1mkhfIQKJ8gP8XhsZ+FSjMTov8Lsx+AGiGeF3WzSunKOapGRbuzQvnSU6v0q2uesWUZOU4R//GJNkBItzSC8gPdhGNmK8tqKapegkIxnN8JcXCZYXajKeT3k4IH2yTVVTAoOFObxGjCkrytGE5rWLNC6uvyPL5+McnxY99fhJ8jaAu3fv4vs+X/va1z4UCjYIJOsrEfceTBkMK5LUQQyEhGZTYa0gDCW+D8NRhRcIBBalBFVlcWvyP+1M7PizfNDznzmpnp0InhQ8p0Ml4d2T0g96/WdW/k8oXzydgL6vvugZydrxBPd00VS/lvFiN9FHu4m+CpG6BOkhrKEUCqs84BiZfPwS7rW1cOb9bnZIL+3TKKccts5QSsU4XkKi8cqUuJiRhi2SsIOWHkExRcsATIXxJFb4nGCcrUVg6sLVdaSktYQ6IydGKw8jJQKLbzTKpsyCJiAolc8kXqCUPloqPFMira29RS7z5R3FA3VxcdxEEwqExjeO2maEk6RJY9DGPFOIHD/ptATM1sWROik4Troh79uVefY4Hj/nvS4z1u0nfVyEWZ6Glzp5nTPBwNPCDiq/USvZ6ucL6YJZcYsEwhqUcQCFyguxynX4jK0ff+JHej+J3yc7pKgR9BKiSBIGku29nOeuNB22NtF02u99Wf6w9Lb5+Xn+w//wP+Rb3/oWn/nMZ/h3/p1/h9/4jd8gTdOP7XMURcH3v/99/qv/6r96x+2/+Iu/yLe//e2P7XX+ogzp+zSuXGD4nR8RXzhDuLJ4IgMCGP3oJpOb99BZAVjK/gBbVITrTt5ircXrtSnHE6yAbGPXUc+6LRCO8mWLimxrh8mbt4kvnaP9oltN17OEfO+A2X2Xih6sLjL6zhtQGeL1ZUxRUU6mTlazNI9Nc6wUDP7w+5QHA+JzaxSHA6RS0AO7s++IcsMxQkn8bocqSSn2DimOhpjMLUKJMHQI471DF6rYaWE39yAriS6socczdFFghxMXXupMccgoIFxbQkjJ4e/+MSYriNZXHB2tXuwIlxYogPTxFjpNHXlOm5MQTGshvnwOv91icvM+stVwkq68eAo80M6jiRQOLjHXJQ18qmniskkW59BJjorrrpjvEyzOo1OH/NZ5yfY//t8oxxN0VTK9+YDGlfMnHbxqWOOHV5eIzqxQ5hm7/+tvYbRxQALj6Hnh+jKqGTP6wdvMfe1zNK9epPXiVfzu04wfGUVkm7vkO3skO/ug3O+ZajawZYVQCp0kLvRUyZPwzv3f+kOmt+47yWIcOh9mHMHR0O0DKTBZ7nwhaUaVpGBdUSc8z3UDWjHx+TOY1HlkdJo7WWRZYr6fM/7RTaZv32XxF75C88Wr7P+z36UaDJGNGFOUmFmKN9fBFDlg8XsdioMjzDQlXF1gcuse1TRBNZv43RbFYd8FiTZit++T1E3i5xzFEAReFKLzjPyw7zqZWCfhknXRVOmaLudgRA58MGH0g7cIel2HE283OPr298EYvE4bBHRefQFvoUdy7zHC89BZxvT2Q4KleeeLGo5JnmwTTBOq0cTtt7qop+6AWW3c585ymlfPM/fV1078aNHqEtHq0slc9L0gW9UsYfDdHzG784jJjbuoKCR9tIUuS2xeUk4mmFIjmzHVeOY+b+ATrS05kuFohn++CwhH4ssKyvHE0SHbjZrcCMH8HI35OazWpE92WPyrX6P9/FWyvUOmt+45VPpogvB90q1dpBAIKakmM7e4EEXYqiK5dR+bZgglGf/4DrP7jwCwVUW+s095cIS3MAfGEMx1WPxrX0Mq55n6JManRc+HGPv7+4zHY7rdLl/84hc/NDZWa8twXBLHiuuXm9x5MGN7J6UoDUIKlAACw2hUkWWGcmrRtR3jZ7MZfFg5m33nv48N6Mcr+8cr8fA+E93jguV0NkstUzuesJ7I1o4LlXpV/QRvzKnnvc+ouxjCVk+DLY/fl8VhqOvwUqkLJAIhhHtHxqCFqo397/UZrCt4rCUwJc18DFJw0D7LLGwRFzM8U2CEpPBiN4EoE3R9MfKNplT1fdKr9+NxUSWfdjGQSOum5mnQqsNDXbBpMx8SF1P6rTUyv+X6SMZQ1XI6TEWoS5RxF+9CNk99jFMFHKeKFiGxCAKdU6gIicZq6wpC+bRYfEcBIE4fh1P7SahTx/jUa73LG3Pc4Toe8pmuXC2cPl0QS4+nAATecc6JWv5mxXGBaxDG1OcAbt+aysXGGoOvc4cEBxrlhJnt1MVPRCkUAlnDHkqH7hbe0/MI8Ymjq+Fp5pYxYIzA8yTWWPYPC1aWQp7xip4MY1xw4UdBVs9mMzqdDs899xzPPffcx/Dun47Dw0O01u/qdq+srLC7u/uxvtZflNG8cp5i/5DkwQZ+r11nwwxInuwwufuIqj+os3aU68xkY5KHW3itBuVgTO8Lr9B5+TrlNEXVIZoop4+vRhMsTvaDVE4i5itHbooi0s1dbFkhg8CZ9pcXaL98Fb/bcWjcSjP58W3y/SNmDzbd1yUraD53mdb1C6goQtXI5Gx7n+bl82TbB/XEHlQcoVoNdF7U8iPtgjWzzEFk0ox8r4/0BN6cm8x7nTYiyxwlSzovZLiyQO9Ln3WYZQTFwRGjH96oVcMS6Sm0TcG6Sa3XbuEv9KjGUyfbC53/RUUhxcERepIQri0R7OxRHo0xdd6MySus1ghPohoNwrPzeN028cWzmLKiODgiPLPC9NZ9prfuI8P/P3v/FSNZlqBngt8550rTrt3DQ0dG6syqyizR1V0tyGmKxgy3hyvA3cVw94F8IBpYgOATX8mXfiBA9FNzydfdwZCYxYKcIZvbbMVpUbqyUovIyJAert202VVH7MO55uERmVmVWVVZJMg8QCDCPczsXrv32rXzn1/FNJ68jMlyht97neLwGHV/z/toAJuVFPvHiDgkaDaQShJ028Sbq8zv7WHzguzOA4Y/fLtmWLyXo3Fhk87WUzSuXqTYP6LYO/IxyfbhgqWt+1kWqXyLLphqOPYRy902stlECCiP+wSNFGcN+d4hQavJ/PYDXFliZUy8tIQ1/r07Z73PowaMzmhkGBKvLpEfHJNsb1Ls7pMf9THz3E/cpWB+8w62KE/Tz5CO4StvoWdz0u1Nwk6TsNP0fpTZDD0c+y6iBweoxLMdnompCHpd0ovbXo1RAwYcGK2xownliQ9a6H31i4RLHWbv34IwwhlNeXCC0wZV+6iccwTNBJ2V9edA+HUz5YN2MIaqP0aogOT8FtXYd0rJKPIe3LyA2PfeqUZCsX/sv9GSiOzuLjKOKA5OwLm6vNUxfe8OUatBGAYUh30fZNFpe/bkqaus/42/jBlPmd/ZASGIlrsEbV8obbLcJ8XVHplodQmkZPTqO2S3d4jWlgk7LcLlHkIp8t19yuMToqUejSsXsUXpC4KFINvZ8+W5mysEzSbl8QA9GGF0xfzWLno68wsPcUR1MqA6GVDuHvr+rPU1fzyPTlj62hcJOi3y+3ueOaq9U7YocVJ6RhOQaeJLV63FWsPk7ZtM3/mAxtULdL74DOXuEVkQYOuy0+qkT/vZ62z+93+FeHUJW5QkF859JvfZz0HPjxjWWt5//33u3btHt9tlfX39U006huOKw+OSqxcbhKFkfTXi9/+jZjiqkAp0BSf9irKEyvxozuOTj0/h33lcSrOYDLuHK+sPJ/AfB0r8hF44XffNhPjJd80IOAuuqoGL/8L9kH/H1Tvzo5LbFs85lVnVZnVEbaR3ft7s/Hu3FkJnEa6iQj460X+ctRIKh8E6y3FnG+UceZgCjlIl6LoUVAJGhWgREJgCKwJyFVOqhI9MQxMKrK7JM+NldjXQEEr6lUen0TJk3FilUAlaBQTWYqUmMJq4ytD1RDzWBe4UfH3U7HjB/CxAq/e5BJRoITELqZtxoGqAu5CXnaa9PT5OqSMeBS6PP+YsiK33YeHZevz/zu7r2UJTsQCzfpvuERAlENYicZjFdYkCaf1m6pfUQYo0GickSZXRyEcUcRstFVnYRhPhZFB/1hagb3Hdf8Tb/wxHZQz9Ycn5rZjx1HD+nKDb+egesIWf8EeVIz8+fh5BBo+vRJ5lJz4fn26oJGbp6y8Rrixx8mffI7t1308Ijgdkd+5jK+2LDZd6yDQiaDS8DCZUPiL40jlkHGBu3ie5eO70PETLS75JfTon6LRpPXedsNXk5I+/7dmYKCTd3kQ1UuLNNYJmigxDku2HgLY4PAYcydb66c9yI/FG8llOvL7qG+ytQ0YhptLEG8s4a7G6Qk+8n0RKRXh+Hd0f+xX1jRXMbF7H/R4ipKT19FX0ZO5/r3xxdtBpE3S8TyVsNxH1/SNc7pLvHpDd30NIQeOJy4xfefPUBB/02r4qAG8yd8YQrS2hGr7kNb2whWql5PcfYCYzL686OkHnY5wU/v1MZjSfuEBxdMLSL3yR9OI55rfuU54MaVy5gJlnvtNnqYuZzalOBsgw8rK1Zur7SOKQ8Vs3KQ9PaP7iZcJOC6Rg9sF95rd3kHFUg7SGlzB78x+y2fATaSEIV5YoDo5JLmwxfeM9Dw6A2ft3mbz9PrYscXlBemET2WggWymu1LjK9ySF3Rbh+rJPzUKg0oTyZIArvWfVTGfktW/SjKaeO7fWs1hSkN15gCt9cl/YaZFsb5Cc3yJY7jF54wbx5ip6NAEpiHodb6KXgnBtGVkb08vDPuml8wRND26CXofZNEMECpdDVSeAee+RRAhItzfQ07lPVos8mHezzO9blvv48/kMnD1dKCh2D0BIVCchXOp5FYAAUxR+4QxfmOqMwRqLVMorMpwv1NTTObMbt32B7uYasvBR0OMfvOnj0TstrLWY4RjZSNHtFljPJGptGL/+HlZrzGzO+JW3CNeWUc0G2d1dmtcv0f3Sc7Sff5Lht18lu7/vWUp8L1J6+TxEAYM/+x7zm/exVYVqN2k9cZnk/AbD77+JFJJyNKHsj3GIGihU3m9UlD75sJEQNNJT4F72B5hxRpCmhCs9XFmRPxihx2MQknC5R7S6hLMOW/go6tHr79K8lqPSmOl7tzFFSbF3xPSdD3z/13hCsXeEzjJcUSGEQDVTdA2EVJoQttoUed8DcmsQTtB48gqq1WB+f5egrDB5QXr5PDKKMFlJ96Vnidc+Z3o+0/H4F3We57z22mtUVcXXv/517ty587E9PR838txLicJQYozjuF95LX8qmc0ceVlRy5f9PvDzYngeH+6MtA08oKh//whAedxvAYu9Ftb539gSZPzIm4lNgRW1LwX16ET3dBcWE+QzPo5H2AZZT1IXMiXBo6Z6/xSDQhmfoCOsQdZyQXv62MVrPJxMIxyB9h08lZA0yymxzjBCUqoYh0K5kshkVCqu/4RUQYpB1mzFR0/0nJAEpsIIiRUgLEgcoc6wQpGHbd/PIwOMCgGFcQZZs1MSixTSHz9x9vr4mInlopDVWYwKqXCk5YRAKKZB4vf1VMa5YPEeY18+NMRjp2SxyijPHE8eY3UWPUyL8ywffb1HxsLooh+eF0G9r49KMBdfTD4Ao94hW2FVRBWk/hoIFBOxRDMb0suP6asQHTSxSvlz4CwOycOkuTPX2k/rXXvsXX6scFPAfObQkWU6t6wLePJqkyT+aFCzuPd8mkWX+XxOu93+8Q/8Ccbq6ipKqQ+xOoeHhz/W6/j5+PihktirAJKI7kvPkR/0Ob73gGo49hr4yYxo9RiVJohQoWc5sghBG8Y/eJNkewM9m33o+0ylCWY8JTm/Rb6zz3QwBnzxoc9KF1BYsjv3aT1zDaEePt+WFbNbOwStBq2nrpLv7KHDkGhtBT0YUfaHhL2ONy47h0wSzGTiPR+lQedTz/YkCcX4GEYgQ0U5HKGnM8KVHtHmKubuA2QtEWs/dY384IT5vQfYoiBe7RG02yCkD2XoNH1ju/Bssh6MaFw9T7K1Rnl+k+H338IUObIR45xB5z5trHF5m5Vf+dpp0tb6b/yqX22eF9isohqPvdSt0jhbf3qtpTgcYLOc5lNXsNPsNGgiff466bVLPiXOWg7+3Z9gtaH99EVE4BcwhFIkm+vIIGR2+x4yUoS9NuAwta9BRgHF/iFYR7y9DsahRxOqowGN7Q1v6kaQbK7RvHqB/N4u8zs76MmMwbdfPe1hssZ3tIjpHNVMEGmKns0J8Ql4jWuXsFlGvnvg09LCAJMXvpxVa8Rk7tNFtXl4L5QSEcfoeUZxeIyz3kuj0gQVBzSvXqDYPSReW8YWJdHKEiYv/QKIcTWb4su8y5MB6ZXzNK5d9H1SmyuEyz3K4z4i9NLBqj9CJjHzW/cxsxkohZnOvafm+ARXaWxRYrVGxbGPfP7Bm4S9Luf+r3+Dav+YyVvvY6uKajhBIog3VlFpzOTtWzgB4eoSMo6oToYI4XyRaf09JgGcIey0CJY7yDQi39lDhCEy8D1V8eaaD9CQkqDdIui0cQiG33sNooh0c4VodZl4fZV874DywL8/mca0nn+SsN1i7//z78l29knOrZPWvh0zm3Pwb/+Y0Q/fwhQVspZXlsd9Dv7XP0aFfoFXNptEvTYEAdnOLunl85jxnGhrAz2eYGYz8jsPPCDaXCXZWgMsUoCZzn3hcbuJnefINEa1m/771zmkUv58jyeUJwNUEqOSiOzuA9T3EnovPU/nC0+jZzOyoxOq4QST515GKCSmKLFlSdBsEK0tI5QHz0EjIWg2qEZjgm6b3svP03rqKtVowvzWfew8p/3cdRoXvbz3sxqfg56PGCcnJ7z22musrq7y8ssvEwTBR/b0/LgRhgKBwBjHaFIxnWmEhJMj7fsT3EMp29k55ScBPo8+7kfEUX+SsVgqX6zmu5qRcXz8JHAhQ6pBiJWKwFokCourMY1PM3MOQp1TJZ0z21vsa53ctgA8Dj8ZXUxsTzdWv+lFvPXHHBQrJKiAWGeEOicLm+hFcthi248cPYs0xkuewgQhBEXUJNQlVixAS0FsCgwKIwIvrxJ4iZs889ofuU81KBRgCED5GARBAE5QQZ3Y5uUbCM9cOVfhEJQywiEIXUURtCjC6CGw+djJuTgFENKUVCqhCuIzDNTjMrUz5/PjGJnF85wPY3COehXWnpGELXSZNZiQnGF8zp7Pjxo1ULIGZMQpmFowQPiQCU8GOdypvNFipPIBFEL4xChboayhmfeZhy0KlZDFLQzKR5cvgBM1gD4F+D9BUMOPeUcfNQQQKOi0FWvLEa12wMZqyIVz8cc8w7POUspPxaLMZrNP5D38SUYURbz88sv8wR/8AX/zb/7N09//wR/8Ab/5m7/5mWzzv4ahZ3Nm794mWu7hjGXwnVfId/ZPu1mcteQHR2AhubBJtNKtNfucJh8hBNn9PeKNFWQUYcsKPRghkghXVcxu3KZx5TyNi+dYXOtmNqfIK0xWMnv/LkJKnPFRzvnOHmYypf3CU57FyQpkI/VRt4MRAOXJgOaST18rhyOq/oig1aD71RdAG8wsozzu+8mR1qQXt3G4OgY3of3iM6TnN5i9c5v8/j4qComWOiTn1vxk9/AYFUfE25s+7nY89cFAeQHW0bx+mdVf/yXGr7yFUApbFuR3d8nu7yGFIFxdovmFZ1j+la/6DpyjPjLyJaO+z6RJ7+tfpP9n3yOOY9AVzljPCK30fBM9cPxH38RmPjkTKSj2j8ju7dH54rM0n7rC9OZdgmZ6CngWw2kvF6uOBuQ7B0Srq0xv3GL89geoJKrTz/zqeDUYE/Y6iDigGo4wszmqmZLd3WHlV75CtNxj6etfYvd//j1Gr7x9mm4XJDGNqxeweeHlR42GB6PDMfn+MYQBdu4BT7F7iOq0EIEiPzjGZpn/WSn0eAJBAHkBCEQ7QaURYbuJKyuilSVUt01+eIwKAlTdqWOLCqc1MgqxeUm+f0RQS95E4BkaW5QePD9xCTPPKI/6vpRTQrFzQDn1vpvkwpb3Tl27RHJujfGbN9HTGfnhMWaeE/Q6NNZWCJfaPjGvvp/ndx4gBISrPWQY0bweUp0MiTZWifQ6+e4R5cnQJ+0VFVZ7f49QCld7jU1RUo2mxKvLBO02yfYG+d1diqMBneeuobOcajBCJTHx5hphp8X4zRuU+0dU/SHJhS3y3UPy3SPic+s0Lm0Tdts440gvbqFHUwZ//gNm798h3lqjPB5QHg1ILmzSuLzN6NV3mH9wj/aLzxCvLpHtHvio7zxnfjAl7LVJV5bQkxmykRC0m8zfv+sZtuWeD99QCgJFVAcgqG4LcdxHpglRt001mqKSmKDdIGj56PfyaODDU9ot9MRHvKMCRBD4hRElUWlCdn+XZrvp7zWVJr24xXxn38+HrPFsmhSobstH1E8zopUu1ckIPZpiy5KqP0JfvUi8tkx6fhNnDMnWOktfefEzv8d+DnrODOcct27d4tatWzz99NOcP3/+dJIRBAFFUXyq11vqhiwvhbx/a8b+ccF7NyfsHxZkmUMFZxbH6/mWtT/uFc/s6+m/fhJ2x8EiGcPZx2ZnZyd/PDZRPTMhPLuqX1Pii58DU/myNhQISRkmlEHEqYzNSVAOYc2pxed0m4vXEuLhY89O9OTZ/fgodsLiZEAZNHAIAmtAWLS0XvomxKPbqF+iCnwyGtaXmBkh6k4aSWRylLWUQeh1qwiUs37S/yMnyA6cRKuIoJ6IG+VBjLQahKJSMcpVyHpVsRTed2KJKWTg9d0ItLRYGWAR+GCJRUDAWemYe/hH+gusCJte2mcf9+Q8Nhbpb494rR4fXlboRH0TtAalc0zQ8D8767d9Vip3yt6dOSYPN/rYPizOj/fuLM67q8+Tj4SQfvuL51oLMsQ56/uN8JHeOMe4tUkrH5BUc6ogxiGpEDhZ+4OMN+qeMo/OgYg+/hj9FCOoSaswgDBSlKVBKWi1Aq5eatBpBczmlk7745meT8PyOOeYzWafGdMD8A/+wT/gb//tv82Xv/xlvv71r/Mv/sW/4N69e/y9v/f3PrNt/pc+ynrFPrl8jr1/80fM3ruNKSv/sak0FudX2sMQPRh5CVFZEi73aFy9iIxDmtcuUp0MqYYTX0waBISrS0SrS/T/4hVUkpCe3+Ls5081G4RaI6WPPzbTOZN3bhGtLvnG+u1Nks1V9GyOaqWoNPZyuI0V5nd2KY0hrSe0kzffQwSK1lPPE3U7gKN0jnzfM1RmnmOqiqjbIogj9Dxn9t4H9L78AkJIyuMhzeuXiVaXCZc6jN+4wfTmHVSrQby+glDrmOkMPZuT7R6wkH7p8dS/1u37CBnUk3hfcBqf3yK5sEXYbfsY7vGM5lNXAbCFl3dFvQ6dZ68jG4mXpIVBvQLuDeizW/eZ337g5VaTmb9fBiE82Gd+b5fel1+g3D/xnqCy9HHJeMAzv/uA8riPLSuEUOT3dhl++4eY6Yx4tYdQinCpg5lmlMeD0+hsW5WYyiCdlyzFdSFt0GoQr62w/I2XmL51k6ouso3WVjyY2D3yUrQ4QsQhIpBQWV/WeXDiZc8NL71zRQlBgAxDwm4LpVSdeJdjja2jqSPvcYpCVLtJsrGCyQvMLCd//y7x1hpmOve9RnVAQ5DEiDDwvps4QgSKcLlLuNxDzzKi1WUPiLMcGceoZkrzycus/ZVvUE3nHhCt9KgGY4J2A9VqEnZaxOsrqCii+cRFX5i7f0i0uky+f8zwO68RbqwgnMPMM+KNVUxZefnn2jLRxirFcR89HEHoZc4i9v1TQuDDOIz/HovXlvwC6sYK8dY61WhCeTwAKTFBSHp5m2h9hembN7B56QHF+qoPFqnMKaOmB2MaV85THp34TqPa7xxvrp6CaVtWZHcekO8fUe4dnl6n1XRGdus+Ni8QjRQxy09lrqKRUp4MCZd6pBe6zG7cYT6a0Lhy4ZTJDFstZMN3G6kwJGw1iM+t+8CS1SVcpalmc+/ByQrsPKcsKlzhgwjEZEp5MiJot04VIkV/BIFCRhGdLzxDceCj8gtjcCWIZoQtKq/+MYb06nlkGNDf2acaTXzKnHPo6Qw9mRKuLqFHE1b/8i/+XO6xn4OeelRVxSuvvMJ8PudrX/sanU7nkf9/vJz0kwzv44l59c0RDx7kDMcGqSRKGa/ekSBMLRb6iXRtP6Gc7Sy6EvKxFX4JRiNq8PAouHhsFdxZHyKA74SQpsKpACd8IpmyGqPiehsKbEVoDJX023HC+zQUFqz2nhN3hjmwPEx6A/9enXnIMMFjrIUAFKHOMEJhVExQzVEmx4oYU5d1ijra2VmHcpa4mmJVTKFiBF6GFlCRFBPyqANOkBYjShmhASsEToZ82Nvy+PAARDlLYDVG1kloUuJQXmYlQ88AobHCH7sFWPJcewDO+KjOM0yEcA6nyxp4qTOysAVoOStdE2fYkR8FOj6BX+TsY4TCBMnDbX4sU/JxAPWxxywAtrBIrQl1SWhLplHHX4tC1ql01Nee9pLHWn4nHChbEugSLQOMahLrjMiWrE33KIViv3cJYcUpQNIEvmPJ1WENxtTH9Gc8HDQbiwADg3NQlo6iNBwdFVSVYTipfmRy26fx84Bnej5LT8/f+lt/i5OTE/7xP/7H7O3t8fzzz/N7v/d7XLp06TPb5n/pw2mDxTF99xaTV95AxZFfOS9LqqpEz32EtEpjqskMc+8BUaeNaBRkD/ZIzp8j2Vij9fQTZHd2kHV8sRDSMwZtX1go6oUQPZmh53O/ThIGmKqisXmJ5a9/ieErb1ENxoBj9v4d8v0jpApov/AUZjSl2Dsk2lr3xZN5gc4yHyN94Ry2TgwrDo7JH+wzff8u1fEAmfoAgezBPu0nr5CcWydeXyG7v8f4zRuEy12s1mT393Danhrk29cvU42mVMd9ZCPF5AXTD+5S7B6BMZR7PuJbpTHJ+S1Wfu0rvqtklhF0Wl4edW+P48mMZHOVeG2FtPYsiciHu5gsRzaS04noYpjpDFeUFAfH3rvTaRF0mlSDMdnNuxRHJ1STGYNvvoKeZ5jpHKM18dpK/d52mX9wDxH5xaKg18LMM9LL56mO36Q46pOc82l04XIXoyvK48FpBLEejAjaDVpPXiXeXAOgPBmiR757SbWblIMRTiry3QNsXmCqkureLqYoUGHoWUKjKQ5GICRhr0vQbpIfnIB2xCs9RBD4KOa1ZQ9WBmNslnkm7epFbFkBnAIYIQThShc9nBKf30S1Ggy+/zp6MCbodQhXllBxiExigl6X8mRIEIXMb9xBD8Y+JUxICD0wTS+fZ/kXXyZeX2F26z7FwTHZ7R1sVeHy0nfAZLmPI5/5wAYZxz7qeDwFXWErgYpCVKtBvndIsX+CiAOKo2OoDMXhiWd1jIPKeEaT+itMClS7Sbi2hNAWPctIzm96yeXaCsl0TtDwjFa8uUbYbpM/OMCVFcnlbe+FKSvKoz5Bp0Ow1EWPp+R7Bx4gzjNQCpnGFMcDZPiQDZSh/14b/eANysGYaHWJ4vAIk5UUR33P0k5mCCVxZYUez4iWup4lHI7ofvEZf01MZoRLHfLdQ0QYeO+O8UxrvLGKaib+cxJF6EIjwhBXA6p4c52gmaJHUy8jNJ5BSy9skV46h+4PcZWhGo4ZDUc0r10i3d4gqaV8pu7fKQ77lMcDoo0Vel96lnC5x+B7r3kfm7U4IVBxRNTrYErN9I33aF2/Qu/l538et9jPQc9i3Lt3D6UUX//61wnDD5uJfxJ5G8B4rFnqhqyuhpSVYTLTOO0otcWYGvjUnZbmUwGfn6Jw9EPbeQw4qPBD5A9Of0TfijzNPFC2RGExKITzmbxO1ullQiFNhXAGI+WZyGqFlQJlLcIZhJM121LVEcvBmZ11Z6Rp4rG585mJthRgfOhAJRQmbCJxpOUUy5wqTDwTQC0zc5aGzsiEgkX/i3PkYROhEqQzBK7CSUkephgVgXsoRfvRw/tGhHVYvK9IOm+i9AorUf9bYFH+taFmcgyLND2HxArfJ+TqoAjntJ+cnzIpZ47N6TF5WN7pVMjphk///+zPfDLQc3YIx6Nx1D/qeHzU/z0u7Hz4WKN8So6TisBptJO1gqFC1tI36QxWRdiaqBGuIjAlkatw+ChrZTRaBsTCETjtV4BNhTSVj7QW8mFqm/vZyNo+7u1rXdcBSUGSCDqdkLXlmP6wotSOe/dz1pYj0uTDn+tPy/TAZ+vpWYzf+q3f4rd+67c+02381zT8imvO7OZdnBMeBFTad940m9hSY7IcO8+opnNUUfrGrSBg9P03mbxxg+a1S1z5f/zfaT9zjfmdHWxREi51CTstrDbkDw7QsznF7iHlyaC+bfjgEz2e0rxygdYz12hcOc/83h6z925RHJ4Q9To0r1/2E/N5gakqyoNjbJ7TfPIqQatB+MwTBJ024zfeQaqA6dvvU/ZHCCW8jCkMqEYTnPGAKz84Id3eIOy1md+6j7izQ/OJy8gwYPr+bYJOk5Vf/irr/+2vMfjmK4x/+DZlf0i2u09+aweigGi56yVt/SHFwTHF3hHx6hKtp6+R3dslf3BAvrOPiEJkFKCvXEClDcZv36TzwlM+IGFtmXx3H1tWOOcw0znVaOz/Ho4JlrtUhye0nn2CaHWJ8mRAvrPnv4qiAEovK2xc2mby1g1fejmekt3d8SlxWe6Zl/RhUl68tUa07hmKZHMNGcd+ZXxrjeJ4iK00ydYqraevgpQsf+PLOGOZ3b3Hwe/9CUd/+E2ibhuZ+Ojv+b1d9GhC0GxAIP37yHI/mY8jbO7jk2UtOdOTGa4sEKEHWzKKcJVG1QmBQVH672vniNZXwDnmdx9g5nOKfR8gE2/ELP3Sl1j9S19n/OrbTN64QREe4oBwqeOLbNMYM5nh8hzRSEgubHrPkBDoomD+1h1saei99CzF/iHTG7fo/9n3Uc2U9jPX/HFxltmdHWa373mpZhSemRo49HCMTBNEFFIOx9i9Q5/gGimq/ghXaUxRUc0z4l4HKRVGG2zp47idNv7xAqSDajjGrvSI15YRUqLCgKDdpPXEJar+kHjLA4i0selnEkVFdn+XajjyUdx5jtM+/MDOSvQsw1UVqpkQNBKK3QPMvEAoSdDxfT/lUZ/yoI+eZ9i9yntpmqn336QpVVlipjk4S9Uf+s8uIIOA4XdfoxrPaFzcohqMmd+672WFQNBuEq0uodItpjduUw1G2LwgvVKgxxOy/RPEYZ94c43mExdRnZaX8B2dEJ3boHH5vJfgHZ4Qb655Cevhkb+2ABH4z1Xr+tMES12mb9zg5FuvIJMIpCR/sIeKY5Z//RvM3rlJ/mCfsNclu7+HrSrCbof2F58hObf+c7nHfg566nHt2jW01h+rmf+0TM9srpnNNftHBUJAEil6vRCHZTgWYLznxxgv6RKBZ330j93ET+nf+VBk20eNs5NQV38pLgo9z/7fw7+1CFFoApPjRIB1lX/OYpIuBMo6wGBtLY86XbE3IAKk0XgBl6MIEg8sanOhcCDwvo2H+/FRk3RJqVIWMj2LQlhNEfl+F2U1YTVFCEVgSqqwwTxsUqkEicVYr2NHSAQWaUrmQYNZ2PV9PG6xM5/E/+H3XauQAB+N7WqEa2rmwj9KnZoIwYdCKAx6kTonhO/WOQUx0h9X4WrWrvb3fCwIOxNFfrqs9XGP/TSelh+RIPeJxtnryJ1u2sdS+98JQDqHsLaWg/pvOicUVvq+De9fErgaIGrhgWugCyJXULqIWdRFGe19UkGClMFpoa1nIQ3K1czkZzCsBRVIWrGk0hbnBFEgmeeGVlPSbQcc9ytO+hXnz334s/1xxaQfN6qqoigKWq3Wj3/w5+M/mxFvrIAUVMMJQcv3mITdtpd37h96/45xVNM5aIsMQsLlJVpPXSFoNsju7TK7dZfRq2+x8d/+JVpPXjl9bVOUzD64R757wOBbP0SPJshGggxCgm6LhQnZFCVmlhH2OnSeu07nues0n7rK6HuvY7Kc/O0jiqMT9GBMNRwTb67RfuYa8doypiiY3bxH/uCQIAohCLwp2VpM7pvpg1YDq4038IcBZd/7VvRoQrS5Rvfl52heuYCzlvKoTzUYo8KQc/+Hv87KN77M5L1b3P1//k9ehuacT/GaZ36ivtRB90cMf/AG67/xa8Qbq5SHJ4RLbUSSEC136XzhaVQr5eBf/wf6f/Y9mtcv4UqDKw1l34crmMkMPc89CIgjsjsPKAcjwiW/cl4cHNeyYYPNSoJWE1uUNJ68QjUcn666V4MJQjpwwncWrXQodo/QkwnR+gqNa5coD/vk+8cEnZZvqp+VuLKkce0Sy7/4MmG3RXLOy5FO/vS7jH7wJpM3b2DmGToOUThEoHzcdl6gjanXCC02CYnXV1FxSFH0kVFE4+I2qlWzfQJMoVFJgggUhAHJuQ0vY2ukzG7dRQhVsxLOy66kpDjuE64sI2RA5wvP0n3xad8/VFbYomT0gzcpjwdUgyEMhJcmbm8QLfdY+eWvkt3fY3rzjk8onGcE3Y5fb607nfS87vkpNTL2TGXr6WvMb94je7BPvLUOUYjT2oM3bTCTGWptyfuSBiMfgJAVmHkOQYDLC6JOi3B9xfuAZjNskfsUN2uxReEZUWOx+OPn6+m85F0qhbOW7ldfpP3UNYSSzG7dZ/DNH4IUmKr0DFI9hFKoRko1maGURCx1iFeXfTmwc4zfusHgO6950DaZoZoJMo1qJsrUBbN1sl5VYmtGVYQBppai6rkHteFgROuJS6z/xq+SLRY19g592ecTl0jPb1GOpz4NcjDG4ctZo9VlotGY/MERxd4hEymRoTotq0231qj6Q0DgjCG/twdSIOPIx+BbQ7576OO7LYjbO55djGJcqSlPhiSba4g49mzi9cs0Lp8naCSgFMnGKtHGas1mV6cFr5/l+Bz01MOj/I+fsAVB8IlAjzGOD+7MeLCfk+eW+7tzjo5LnIAit2gjuLidcHBUYLT/2RhLp+0nsYdH2ktgPpL1+SnYncX4RL6hxcbPJm+5xxblz3hEnActWoZIV3tiVORZiRokOSkxte8iMBlapCyYCR3EBKYicAYpHNIapKujiaWXwIUmJy1nzMKmL6j8UdKys4BE+Jhpgy+cq4A8bKCsJaompNWcUAYk1YxZ1MFGjZrJcVCzL0YGWOfZKHcqw/pxk3vPvgiHZxIQ4IQHbYvY7tpA70GfQliv9xauZhTVIhVO1Kj4rLSMmpnwINE9Eg6xeMDZ01k3Yn7kbp9liT5DtuOR8bjMbsHeuVP2UAdxLQVz9aOcD6pw4KSXB9ZICGn9ZzMPUwKjkRiKMKXQcyKdMWiew8gQZapaKoiPV6/BbWhLGsWEUbLiz/HPWOLmayEc1rmHqVA4itKStEMcgqqyHPdLzm3GSPnoefi0TM90OgX4HPT8Zz6ctZQnQ8xkBgLClSUal84zffsDqjih6h/U3hB/P4vPe2lPcdQn6LVJn7iAsJb8wQHJhS2CdhOVpkzfuknv5RdIz2+ebkvFEcn5TfJ/c0T+4MBPMKzDlAXVrQF6ntF+8SmwlukHd1l6+YXT57aevkqxf8Tu//zvmN246/e12ya9uE1yfoNiz3fIyCggWuqSrC8z+M5rOK0RQhKsdDEPDjF5gYwj4vWOn+AbTb63jy00rScvk2yunRY1CimJN1aZ3d5h9MO3aD151S8iTaYUhyenq8QyDLHz3EcaI5CNhPKoT35w4llhIZFxcio9GvzFD0Apwl6HajKj7A89GzPL0fM55cExqt0ibLdQnSbhUtfLvY4GlIfHyCjATH0cdnZ/z4c7aN9xpIKAzheeYfrebaqTvvcezXOiXof0wjlUu0F1MiLfPWT0vddZ+uWv0HzmmpcajqceHNZG/fZz10k2V0kvb9N69jr9P/0u/b/4AeXBsU8lUwF6OMa1mmS3d5BhQHJpGzOagJREy12fMpdGtJ68Sri+Qn5rh7DTxhQFTlii1WVknJyyWsn5LZLtdfKdfUxZIoMQJOQP9r3pH5BS+R6g/oDq8ARXL1xG66sIKWk/d5308nmKB/vo6cwfl2bK6Ifv+KS2oxOyew9w9SQ36DSp+iOO//jbngXTBuGg6o/IdnZpP3Md8B6Y1otPMvzWK5jpHD0YYiOvCCBQSOHT7WwdruPPqS9TRSmkFMgoxk7nBL0OrigI2i1kM0XFEfneETKOICuQcYjJS+Yf3PNM6WqP9gtPeu9Vu+2ZO2OYvnsLPZvTfu46qj9EpxPMPEdEkWdlywqsJbm4RdBI0ZM5o1feohpPmN26hz4Z+tdcXUZPfLGqlAKT+wV467w/0w4mmNKn0qpmgyCJUa0mzpxAoHx/kZTkB0cMv/lDsru7YC3l0YB+WbH8DYXNcmQdKoE1qChEBAHdF5+h+eQVioM+UkpfvLu2THHY9wxxt1Xvl/RJdIOx7yk6HnDyv30Xp62PKx9PyO/vUY4mhN02S1/5EnaWMfvgHqYokGlK66krNC6f917EepSDkZ9eflxJ3c94fA566vHjUpE+KdOze5DzwZ057ZYi7QXcfwAHxwVFaSkrS1H4skrnBGEoaDYV05lhqRsihGA6s2hjyeaPq9B+BoAHPoF36IzkyC3YFHtm8n32oe7hRFxYoPauQN0JU2+sloJZ5dOHApejrCYwpV+tr7chhE8ya+gxgSkwQVDH2zmkA6MiAmfQtpbaiY/uNKl36Mzf4syvHrIeVdg4ZZhMFFMFEc5JlClwSnqAIgL/GHQNeB67Tlzd2v0hEOZBjbCGyBaeCXMVEGJqqZ50/owG5czLuYREC1uzOJJHQc5HvL7wQMc5cwqgPhK0LDp7PvYS/3mCnTPDUV83Z+LDT0G23x8rAAyhqbBSYkVYY/CaPXS2BhH+8dJqzxIZCKyhDNI61MIR6Bmh9SxbpQLysFFzSRDoEuU0aTVlLjo1E/mzvQkLHEVhyXNHHDt63ZBeJ2A8NRyfFMzmFQIPkC5dSFhZehiq8Gk9PbPZDOAz7+n5fPzkoxpNGP3wrVNfAA5Uq4F1lsaV88Sbqxz/yYyyPzpd+Y2We2T3S4RUPj63jp4u9k8ws4zOF58mWl6iHIx8PPAZ0AOAsz4ZbbnnJ+9FiZn6lXWkxJYV+f09Dv7NHxF1OzSuXUQIwez9O4xffxcc9L72IiqJcdrW3TAVkw92EEqw+uu/RHU8wJSV9wtNZ9iyopV6VsZmOeHqEmGvjZOCsNWgPB6g4phofYVq6pPZ7NoyUin0LKN4sM/4tXfIdvaRSnHyzR9S7B+RbK55KRd4306WU01mUBqIQqqTfh1aMPGM1MYKIgh9906ofHnqaEy0toxKImydymVmmb9fRCFmJjCB8kWhRUH24ADVaAAOIQXOWGxZgBAEy/6+odKYsNsiSHwfThwoX0gaheQ7HgiYLGf8+rtYY2g//QTtLzxNuX9MORiAEKz+2i8QLXX96nejwfi1dzj6o2+Cc1itT+Vm2e0dJm/ewM5z/5UwnWFmGcnWOo2rl/yqfX/oPUKdJtH2GtmdXagXeZ3WEHtQbaZzn09T1NdiEND90jOoVpPpux9g85Kw1/IlrmWFTGPC5R7zW/e488//JRv/u/8GZyzTdz7wnp8opHntEkG3TdkfYuZzGtcvexljoAhaDXIBrjKYzIdEmVmOSiNUq4nJCmbv3UG1WoSdFk4b0vUVzPNPEzQTgm4bUZfvht02nReeQiUR/W+/6hkmKQmWu9i5Twi0WYaezwiV91QhBDIKQBt0NUclMY3rlzxrMZpQ7B2igoDms0+QXtyi/dRVXFVRHA18vHegUO0mS1/7AiYvkUoRrS75tMTxFDOdYbSmcWmb5hMXmd24h57Nye/vUo0m2Fp6qLMcd9xHSEm00iNc7mGPTnxYhvIpiiYv/LXVaqCi0EtE66Q8Zy1Br001GHP4//tzXFkStJvIRuw9dP0hg2+/Wkdwd4mMofHEJdKtdRC+aBUpye7sEC51fU/WPGP3X/5bXOWZNKTEGu39hI2EajCqEwkdYbdFMRhS7hz4AtvUp+BWwzFrf+Ub5LsHDL/zGun2Bu1nrj16O3IOPRjT+cLTj3icPsvxOej5hOOTeHqsdezu5cSRoNUMuH1vjrGOZ6+3uXM/Y+8wYzK1WGtJI0FvNeb8uZR3bswYTQxx5DWlUaCwsfGJkYsV+p8F4Pmk4zQkYFFwqU/TwM486CGzIDyLoZyjUmG9Mi8Wy9uIWrrkED7kwFgSNydyJWjQMqBSEVooAl0inUE6X9yJd3ZghEQK7xdSgLHiYw5JHZEshd93dzaoYfGnTimzkjJKEdYXqyZlRqkinJRI59uanQSLxSJq3Ldgt84GKTyCBDkFjcJP2q1QOIGX91kvd/TTV+/p0WFKpcIaQIX++T/WL3TWk7PorDk7HtunR47B4+PnDHhO46LxoFZ+3PYfHuPFcVzEZuNA1il2yjlMXSAbmKqOT9ckek6pYg/AcSADcqWwUmGl9EfDgXQWLUNmUQ8rJcpWGAMEP9skt0KD1Q5tgQLevTmj065ZRSfZWI/ZWI8ZjCqmc82Lz7bp1WWln5bpmc/npGn6qX1An4+fzzDzjMG3fki+u+9X2sdT8gf7Xl6V+QLBlV/5Ktv/l7/B6NV3GL/+Lnoyozg88RKxNCZc6fkJuHXI0K/aZruHlAd9nHNM37pBur3hU7LAS9N2Dmg9+wRCKUQQUh6fUIgTgl7L96QMRlRhiDWGkz/7HkJJorVlpm++j55MideWCZe64LykyhnH7OYdnPag7PDf/UeKvUPMPPdSq+kcM8uY37lP9+XnCdop5dGQcjzFzjO0sbhKI6OU/J5nTWY379ZxxReZ3rhDcXhM0G6RXjrvfRJGY7WmGk0IlzqAQEahL2bMC58wF3g2vhyOKY59CpiMYz/JiyNUIyF/sEdx1EfV4QWq2SB7sI9spEghCdaW6b7wFADF/jEySZGlphqOfNGiMd4PUhnCpS7p9gZCCB/pHQUUkxk2LwjXl8l39imOTnyaXBIj0hg7y5m9d4vqeEhxdIyKY0QUErRaDL/5igeH3TbWWPp//n1m79+hce0ixVGfsNUiXOmiui3sPYMIfQiBCDyDJdOY6mRAsr2OCH3wQL53hJlnmMnUy7Wi2CeuVSUiiVn61V8g3VrFFiVLv/QynS8+Q/PqRWQUsvev/4DszgOG330NIYRPLltZ8pK2LGd+f5cH/+9/fZrOF60sEa32CNotoo0VhFSEyz2E0ejpnGR73SehVRV6mp2m1wklT0FpcvEc1cExQStFKImMQhrXLpDWnjNXafQ8I1q7wfz2Du2nr3q5FyCjGNVMcAZ0pb1UNFTo4RitAuI08cdoPMVOp8g4QnUamKkHP/H5TShKnza31GZ64zazd2/RfuHJuktLEq+vnHqzZu/dYTQc++S15S6qkRJebeIcRGsrlMdD9HTqWcz6606GvizcZAWm0qQXNgmXewSNhvf/1JHiMolhFVxVIaTyAQ5RQLi8RLjUwWY5QSOlqCPC00vnqY4HlP0hQaftO73iGGt9/mnYbdO4vI2KH5WSqSQm3ljB5iVBkpBeOEfUa5/KPA2OYKlL0utQHfeJVpZBCbLbD8jvH6DikOTceV8uawzzm/eYXviApS+/QLHvmeBqc60uDBbYSvt97rV9IevPaXwOej7h+CTyNmMcRWWJIkleGIajik4rJI4lhyc5rVbAZKrRRpA2AqYzy627GVEkmM4rhmNfaCrw6powAGPUWb/eTz8WErUf9QBR/31aTqYezoudrcHQGanUwueySCOTCpBITG0jET52uO5aURgEFo3y3hUZYYVAOY0AqtpXERi/+qOMJrYVUhcMGmteNufFto+BDvcI5jh9v4/+A4TCCBC2IjAVyjkc9fZF4mVPUJdYLp4j/OR0cWwEHqScIq8Fq+WZPB/64KVTPu3N64Gl0ygkga0owgZWBDWbsfDc1Kb6R1ibjwMFZ0pjHz8Oj8vbHmEtPo1v56cZH8c8iYfHTn7ULejsvvtzbFTy2OvW11Ut2fPXmAJhSOri11JGOCFoZ8eMG6uUKiG0JbqWyHnQVBFZixN4QG41qSnJaGB+hqBHAHEAVglsfR3NM0tVWtJU0O0oolDSaSuECNg7KDg4Kn9i0DOdTmk2m5+q1+fz8fMb2f09sh2fUDZ55y3ye3uYovST5qL0Le3zjO6Xn2fpF1/yQGI6xzqHDAN0ZdCDCarR8L6Vg2OqyZR8/wARBEQrSwx/+A4OWPrqF2nWvShmnhGvLlPuHxOtr+CM8Rp/a70fIysoDk9IAsX8zgPGr79L8+mrvkh0XmAGI7KdfUxZebncljcfV8Mx5khjZ1kd8btGVKeyFQdHfrUYydLXXmL69k3mu/uoZoo1lmhjBVdUyCSm9fQ1wk7TT5BOBp7pqEsOZajQ8znx2jLJ1jr5vV30xqrvgkEQ9DoYrb30K4ooh2Oq/UOcdcSry74T5WQESpAfHJMf9tGjMWWvQzAcgwCT57UHJqI8OMY9dYWg2yG9sOHBVJWQXtomXFqi7PdJL21TPPCdSGGvizMGPZ0Rb64x+uHb6OmcqI53trO57z1xzsvrVnsESYQzFhEELP3ylwmSmOn7dyke+OCF1pNX6iCGA6rBkOxegDCO+ckDgtHY9+YsdWoZlUMYg2imRN02ejbHTDMwBltUXv7noPOlZykOTrwMK/Arc6YsiZc6dJ55AoBofZnGhXPE6yvo8ZSgnhDLKKT13PVTCSJ4v2E1GFMNxqQXt0ivXaI6PEbP5kSrPfL9I7pfeo7VX/sFBt9+1cdnI5Bx7BnBvEAqSbi07FkH52oPWO5BXaVRUYQtSqbvfEC8vkrnxadJ6iS7o+UuQgqqkyH5wbH/OowCz8YIiYwinzTXaaNrIOoq7SVhDoJui6DbItpa90l3dRyzDUOq4YTZ+3dJtjewecn8zg7L3/iyV+XcuIMrChqXtum88CTRcvc0vS49v0bQbVMd9dHTKSYvveQtKwi6HRwKk+eYwRAVRRAqzHiKlsrL/loNVJIQr6/QeOIyejiiODjxPUfdFq1nr9O6dhGcY/SDN08XF8KlLmgfRhFaQ3Hcx5UaN5liZj4AJd5c897AM6Cnms4ojvqeURIQLC/7AAmETwy0Bn1jRtht1Yxf10tXrSRcX/Lx7s2UZH3l9DX1cEx25wGdF5+mde2SXyjQ2ocsCHEqX+1+6Vmi5d5nfMd9OD4HPfX4WcjbgkDQbgUcHhW0W8Fpb+M800xmBmsdYSQJLASBwhjLyaA44+n3haXaQmUMQR105k11P6M3KpWP5f2RwwOUBdsgrPFJbKeSq7Myt3rV3hlKFSMX8jEhsCJAWu3Bg/CxyWGV0aimaBViVIzUFaHJsLKJEwEaQ1pk6DAGGWKl8vtsS2bpMi6ob7ZyEe3sTvdzkX9/atZfAJTHR+2FQQqEEShT+vJOnJeK4ft5Fv0wp6+7iNJ+BFh5P9Oio0Y6W/uxahBS+5iifILDoVXse3iErFPkFkWw4uHxteYhy7Z4n6fnhTM/n2Wb4KF07+x7/aiUuY+61j+EEn/68VGx4s6dAXawSPf78L4s+qPqc8Xi2vOAQZnyNAzC4FVyRgBCImVAWk5xKCohiUyBQyCsJqoyTBTUZaYQWkMzG1BETZwMSMuJT3ZT0SeK/Pikw9u4BM6408MR1tkg1viJw2Sqmc0NrWZAkkgm04fM8qcNMvis46o/Hz/dmN99gJll5PuHVMOJ78JZ3fARutbWEccx83u7zG7toGdzP3Fb6uKaTcR4gj4ZML99309uR1NkVEcTV9pPIoxl9sF9cI6w10YEgTdXN1PC5S75gwOyB3uYvCDstL3UpvRJb+mV85jJjNGr3odRjSZkd3fI7+9hixKrPVs+++Ceb3avPOAJl9p+4gWoZkq02sPM55RFxfTdm6hGTLDUITaa6rCPnc6waYKrKvRoQnnSx5UVIpCM3/6AeH2ZaLlHvLnufbfST2K7Lz1LeXhMduc+6famL97MS1xZkV46x+pf+gV6Lz/P4Fs/pDg6oXHxHGG3QzkcU+6fUJz0fZJZGHi5UH+InnqJH8Z6T8d0TjWaEnQ7iCAk6LQIWk1aT13FjKdM37OYvKDxxBXAkT/YA+uLMcvByE90gxCrDa6qCDfXQBuqyZywERKuLCED5WOFS0287J+nByPPDt3fYxQGFId9RCBRzab3GzUb2Dwn35kipCRYXkKPj1CrPUx/TOCoFxmdl+M1E+LzG9g7973/o9KoOEYqhWylCKXI7uww/P7rpBe3iNaXye4+ILu3S/flF0gvbCKUojzu+wl1+nCy7CpNXjN7QdeXm3aevop74iLZzgFCClrXLxOtLdP5wjPMb91n+MM3kanfLg70YOSZo+UuZlaXpEpB8f5d75vJbtJ+9qpP1jMWUxSMX32H4JdSzwCe3yLeWkcoyXxn3/cJBQG2LFHNxEdx470jVhvQmmo6J2g3CZopqt2k9cRlotUlsru7qDShGk3AWvIH+/Ub9b7ZyZvvI5Wi95UXCVsN5id98qMTlApAKbpffJZyMEaPxhR7R6hmSmN7g9l7t7xXKfI2BpWE2Dz3i29RiDPGdyZZh5nOvLFfV0zfv016fgtbVcg4whWVj342BleDGxlFmJMRtv4M2el8MSvDZgWqkSBciIoTgm6Hajhm8ub7tJ+5RtBto2cZk1ffqf1CKfHGKkGnTfbBXWQag7PM7+2hx3OitZ4vzR2McaVPlQyW2ujpHD3LCTpNZBx7oBlHmKLwgQfO0n76Kt0vPUt5PMBpg2qkRBsryODnC0M+Bz2fcCilsNaeNqN/1BBCcH4rpT8oGU8qpISTfslpspZzJLGiKCyV1ljrMMZR2dM+rHr4VXBtT8O7Pln+wI8d7mEp6ceOerK5MIlT7/pZ5geHMCVOec3yaZKaBOtOERwIP7lfZHIL5widrq33XsoW6gIbNk7tQ6HR6CDC1SAg1gVaBmRhs2aQFh/nx5mLelewPgs+qCWBCynVWU+UAKyX0C2kTspqknJGYDQTuQTOYMTDziG3mJg7B07X8/C6dwfDgmWysg45cP44SeeIqjnNYoIVMIuXMM7Wccmi7t6pJXePyQqFFyHwEIgspI483JdTlufs8TjLan0EOPzQ+LQU4keAq48cC+BpOY2DdqZm0GpQ9xClnnnt+vw636ckLDjp6nNmsFL5JL1FkaqzvoPISYyKyVSIcL7UtZQx/caml7WYiiJM/TnRc4KqIItblGGTMmwgTUln3qcM41O28Wc1FosZYeTT20z9UXQW5sZhMRg7p9sO+fIXOxSlZW3lUU/P50zPfznDzH0JpS0rbF6g2i2fpgV+IttuIpOIZGONfGef5pULlO2mX5EdTZCBQkQRZjxmfuMuKo2JNn1Kmk8oe4qw06I47JPd2yO7v0fni88SbaxQPDig9dRVnzK2d4RMYj9hmk6RSUzj6nmiXhcdhOS7h+jJlNkHd5l9cI9iZ9+v1EuFkBIzmZEfHCOF8B6dnmcYFl1A4coSJssJ2j4uu5pMiZeXSLfWMZMZ6coSrWeuIsOA4Q/eYvjNHyKSiGhlmfm9HfRoQutvXCOuV5BVq0HYa4NzLP3Cl8h29tGT+WmilI+qfoIL/8Nv0rx+BREETN+5iR5NfPhBXpDv7iPCEFl3IKk0QaWp705BIJPYM1ORZ2EAD+qmM9ovPs3W/+k30EPvEyoPj8n3jsh3DykHQ39M8oLpu7cIl9qUhwNm792iPOwj4sh/l1cVpa4wVUW8vkraalIe9dGjKZM33iPb2UMEIXo2Z35/D6SkGozQoxk2z1CtJsFy17NhgzFW++QxOZ0TtBok5zb8pLgyOGNY+sWXUM2Y8vCEaH0FGUc+ba6qmN95QP5g33fvzDImb75Hcn6T1rXLoATj198lWl8m3t5g8K1X0POc/PAEIRVB6tPa9GiMjH0fFHXvjYxjmtcukj84QDRS9GwO1rL2137Zx0FXFRjjGZSyQkVx3fMyRTVTgnaXxrULzD+4T7jSQaYJybkNknPrhEs95rd3mLx9k6WvfZHk/CbJ5hrl8YBka53Z+3cIlnvY8cR/s0QCm2W+GFYKH7EcejaUOv1PtRu+C2syxTmHiiK/n0WJDEOKoz4Yiy1KZu/fwWrDyq9+FXfT0P/T7yKj2Icg4AiaDV8Mutxj5ZdeonH1Ind+93/k+E++g2olmKL0zOp87lU9Sx3MeOal3lWFi0If6e1ANlIaF7f9tTYeE7ZbBL02rizJ7h8QrXZJLm2RH59gJnNMHCF7HTAWM55hpnMvQ7UWGYbIJMLM58zev43VFc0nr5Dd3gEgrf17zScuEy13MNMZ85t3aVy9QCuOyVsNXKnJdna9DK/XYfSdH1Ie9tGjiV9EDn3IhUxjgkZKkKZ+kaTQpOe3CNotX3T6n3B8Dno+4QhqNPrjDMVrKxEvPtvh/oOMvLBkuaHdDkiOJfd2DFJAXmhsJhBSYIwnXqwFKRcTG3WKTQQQh5CZTz81/dD4sYAHFkltAlCm4nQvlMRahxDGAwEhziSG1ZP8mu14CAws3m9Sv4S1RDqnjJpoERCagjxZwqiI0FZ+FZwzm7QVcTXHRC2silHOoJ3xkqhTYmJxLny8daQzAlsxFy3coufnVPplTyfaqmZghPXyM2kMypZYGZKUM0JTUqmQLGx5eRWwCAOQNaBhIYtaSP5OmaWzoMMDpmnSxTqBVj6kwPt8xJn9lw8n8YvnOfsQDzjz8LHWIJ3GLmKvF/1FHzvBFY/skh8/Sj73UbK0n0ASJ86+vjndR7dgeT7SH/XwfAqszznA4YgQrvKvcarzrEGwNSwCq71szZGUc4owITIFrWIMpQeI86iDdZrl6R5axkwaS/5L2llCZ7GBb+m2Hym7+8mGAJIYqsphja9TpV7oWKyHRKEEJ7j3IEMquHa5webaQ+BljDm9B32SMZ/PP2d6/jMeqtmsY2ETsBYZ+nPrV3sNBMr3cjkfeBBvrtG4donBN1/BzGZe8rXcBSn8CrwQBGlCuLpMsrVG1OvWyV21X2j3kO6XnqP91DXfIZMVNJ+6yvD7bwIOazRhp03r6Wskm16yZnVF1R/S/85rnPzxtyiO+j7NK6gnNkpSjac+LjoIUI2Usj/GlBVhu0W03ENnuS9y7HYwWUbz+mWEUkzf/cAHAWjP+IgoJIhj5JULlP0RKk181K1S5A8O/OS00qcBI6YskUnMuf/jX8c6QbF7iMkzol6H9d/4NVpPecN08+pFiv1jGpfPUxz3yXYPvM+hkfgI4LJE1OWvKgoxxhAutSkO+lBU3otweLzInCfZ3sDlBWG3Rby2DNcvY8sSneVM377J6LV3GH73dcxwTLi2AtZRHPU921N4Rk8FPm0O5yj2DpChIux2KI5OmN/bQ0hFtNJFRgHZ7oGXHZ0MEUmCw/mS13YD1Ugo+0OqwYj03Drhcof8eEhxeOx9Jc2U1vUrrPzKVzj+D3+OrTTx5mqdBgh6ltWGeINLBGGnRbS+gpnMGb99g86Lz/ikwL0jgkZKOZpRHvnUPJkmlOBDH7Tx8eGlJr60hDyTwiWTCDOeEHbaOGtpXr3Ayq99jclb7xOt9mh/4WlG333DRywfHhOt9Wg9/QTRapfx27doXVd0v/ICycbqKUsCEK15Vqb97BME7RbN65cZfPd15nd2fChCltcSroio26bKcpLNFcrRjGR9mWhtBZtlmErjyoryuE+0tkLYa5OcW/den6M+ejonXl8maHqfjUxjZKvF7MYtVLuBHk8Ie97j5ozxDNX+Ec7B2l//ZbovPY+Qks3//teZ3bzr+3uK0od6tNs4PUQYi2r5NFtblGCNv3aMIb2wzdIvfQmCgOz2DvMP7lIcHHsf0M4hTXOR5vXLtJ+7TpAmVKMpIghR7Qjn8MmM/REijlCNBk5bX4BcVkzfu41wAof15/PghLDXptg7AGtpPX0Vk+VM3niPoNsm29nH5gXx1hrx2jLlyZDypA7+kBIRBlSTKRjjt3npHIQB5fGA9nPXiesy4P/U43PQU49PIm8DP/n4qPLSs2NtJWZ1OeK5pzqMxhV7hzmHxwWhBG1trWe06Mp3mvlhECiSRJLN7am0xlgo6+qYnxr1fOLX8PKiwGqMDAj1nIqUwGq/Ai5kzWickUTVE35lNPjpJw6HEwacN6BrIZnHnRpoKAqVYJQ/llYpLBLpNI1yQqwzmsWYIkhxwscTK1MhZYQ9K9mqpWDCliS6OAVkockxMsaowEcbuxrI2RK1kI/hULqijBKMjChMg0hnrMz3mYUtTtpbKKfRIkTgo6WtULWhHs9wWVCu8olsLCbtDyfxTqg6Jaw24uMZB3faq1OflI+UoNUTfFMQWo2VIUYplK2QDuyZktdPL0t7nGFZnPoFgHqczTnL9P04lmfx3DOvf1qi+hhTJc6wVQvPVK3llIC0FTiLspVnS1TkZYELj1Xt7AnquG+Ho5kPiGxOQUo777M83WOaLpEFTZQ1tIsRYZUzay8R1altQTUj1AWzqOOvFWt++kWGxZGrD0GlobAPidFAQRT7slLnII4lKoDxRLO5FrO89PA+85MwPZ/HVf/nOxoXt3ACP8lxDpsXHkDU6VuiZiCwGlNVvrujqojXV3xPR10yKRte7hs0G0QrPYJ206cy1Qtzi+JKVxfAJdsbLH39Jcavv0t5MiTstKgmUxrbmyTbm0SrPQD0dMbkjRuYec70nQ8ojgenPQquMn5lt07/ctYRtFvEG77IEWPJ9w7R0xmNqxdJLmxSHffR0wxnrA9DaDWRT16h2D+iGo4p+gPS7U2idoug08TfEzrkBycc/+FfEC53aT11laDbBmPRtZwPBEESE167QLjcpfP8UzSuXnh4nK+cJ3+wR3Zvn3hjlebViySba+QP9tHjKVVZUOwfE/U6xOfWfXHreEZ6cRM9zfziW7Phv78mU45+/8+Zvv0BzScv07x2kcbVi4TdNvmN20zfuYUQgqCREG9tEK300M2G9xE5C7quPAhBxiFBI/UJZbfusfTlF6iGE+K1ZfRwDAhsXmCLCpeXUMudMA6RRrjKYI1BRjFBp8XKf/OLXvr3xrtetjid07x6ntZz1ymPBxTHfZJzG/71as+MHo69x7aRoiczgvNbhK0mdCTF/hHZzj5BM2X8+nvYvKDz/DXKft9LHLVGKokezxBpTCAEqID04jke+U6xDpOXxBsxYcfL33pffgEZKOZ3dtCzDBlH2P6Q9jNP0P3SswStBvO7e5QHx3RefNIHRDx27wtaTbLBGDPPqUZTjn7/T9GDEcm5dZ/id9hHrKbYrCDf2Qccpqh81HMNxEylcVmOqTTz2w9QjQbRxhq2vr70eIKKI8J2C+/3Kok2Voh6bex0xviVt2lcPs/KX/oadp5Tngx92EAc+cvXcdo903rqKmu//osc//G3iDdWKQ5O0OM5Yh6jZ1n9dSkIO03i7Q1kFDN9412Mrhh884ck59aJNlZ8AMTJED0YkR8NWP3Vr5JsrjJ5+ybpxW2G33rFB0MECj2bYeaFl9EVJaqWkQLIOKIcjMmPvU8o7LRIttaRzYTyeEi+d4xqpdhSk93dRcYR2Z0dVLtJbCHb2ac89GDelFW9rmnQ/SF2MiPodSgOj0nOrdP5wtP0Xn4eFT/qkXV1qawtKx9E0uv8XJQJn4OeTziE8DnlPy7B7ezj41iwvhbTbCr2DwuEELzy+hBRemBgrfWeHfdQzjaZ2g8FFnzCTf748YlncQ5prQctzlGEjYcSL8FjsqozEiUByhoCW5CFrbpvRZ5O7p0SlNL30Vi5SCtTj0ivDBHzqEWYlSxP9xk215lFHYxQp5Nb6zS6ltb5AlF9hl+xvolaRRgZIqwhMRmRKZiHzZol0p4XkKDrD6K0FUXYwqIog4YHd9aRmDlahVQqQS/Sw4Sru3cUSDA24JTJQDziLXJCnXqb/DFStUHe+ec/0ncED1PY/IqmtKUvn8MR2BJBiJbyTI+T+IlImNPnPnbeOStX/NDDP8lGPkp6+DGM0tkY9Ecitf37pgar7XKCMhXjdBmwNXj0ZVZOCpwK0fhgAlEf70KlOCTSGUwQ+4Q2FVGpkEgXIAOiKkOYCqcCWlkfIRSDYIUyiJC2wrK4Sf90CWiufqtx5Bc5FjYtqUApUTNBimefbIGDbjug03701vy5p+e/rNF44hLtF55i+BevUA7HmP0jqAt4CQJkElH1RxQtD2bMPPOpbd02QadFsX+EKUrQ5jQFquyPiM9tEK70TrfjtMZWmuTSuYfbvrRNsrVGvnuIUJLJmzeQcYgIfZmjzUsmb77no4BXemT3dkFJHw9tLc5YZBxh8hIVR55xUorGpfOY6QyV+rQtW1bEW2vo4Zj53T2CZkrjwpbfbwHRyhLVyRBd5d6HsPCaWu9FCrotZKCwgd+vfP+IMC+IlnueHd1ep/HEJWSgiDdWaVy9iIojnHOUxwPfewM0n76GarcYv/oO8zteytN88gpLv/gyszs7zN6+6e8/QeDjdqVCT+eEnRatJ6+iJzPy3QOCZoNwuUNxeELQbaFHU7KdfbovP8/s/buEvTazm3cJuh1sXvny1dQnxskgxCm/KEOgCDstVCNBz+a4wmCdw+Y5yfY6s9mc4vAEnEMGgZeCWYurjPegJJGPGp9MCTot4vUVslv3/DnqdUkCRbF7jB7NGL/xLq0nLtF64hLp5XNMX79BdTzwk/jpHIfAZDkyUD7e/AxYnrzxbq3o8Oekef0S3Zee87HNu0doZxFSoE9GxFfPE6x3fBfS8QCZRDggPzgmLEo6zz2J6rYBnxLW+9oXvcRyMMZqTXE88MB4NKEajBGBpHHtAo0rFz8EeBbXtQgU1XDM8R99i/Hr75FevYAMAoJel9l7H6DHM4xzuKL0qWPn1j2zajzTES91fb9TURJ2mrhKU/WHCCUpTwYgJen2JtV4hoxKgl6bqOffg3NQHg9Y+vpLqDBEdUNfIrzYP2PJ7u1SHvvYeBmGbPzmr2OLksErb9U9cA7VaSKUwhY54XKXeGMVM54zvfPAJwMWFdNbdxF19HhyfoP2M9cRgSK7tUPvpefQ0zlCKeLlHuHqCsXee2T39iiPfIGubMQEjSZBu0HQauEqTVGd4IoCW6csBlvrPuziZER65Tx6POP4T76Dy3LCpR7Np66gpzP/ng5OSJ/wKYJCSsJeG1sZTFHU20uxeU7YatL72pdY+dWvfQjMFIcnTN6+SbF36CWEcURyboPWs094BvUzHJ+DnjNDnK4ef/T4pF09jw9/PxVcv9xkOtXcvD1jNK6QAqLIUJTqFOj8TBLaftphvbRI2QolLMYKpHM4GeB0hYnqxntTooUv0JS28gwQkiJs+Amo8RPNh+luXtrjlDfH+eQueTrRl1azKDadJkvM4zahLWgWIxCCSvqiUFGDAOcgLqco5zt3pK1qHwz163oQJvCJcF6yFmFkRFx341gFsvYdVVJRJTG2RiyRycmjJsJaompOFXf88XH4gkvwq59CAAvJnSOwBU6GCOfTY6xzNe+hau+JRTmLUQvWZAEeHyuDxbNDPszB+1Rc7Rlyj0jhflYnfsHYLfblp0h8W6TrfSiJ7uM2vZAfepZJWkNsMoTxgRPTaMmvklpDbHJKFaEEVMSAxMkQayWhKWhUU5rFiH5znUrFFEFCYDWhzdHERCajMz8hjxICJ8hlzCT1noFKReggItIF2rUfA3qLz/4nBx9C+O+3svKHIU0Edf8dZe6YaUcjkaQpOGtJEkWaKsLg0eP1k0RWf870/Oc7pFJs/LVf8YV+/+EQPZoSr/ZOI2ZtVfmV2VLTvH6ZyZvvYnK/IiujiPjcOsXeIXo89R8ZJRBC+iLN+jpx1pDd36X55FWaVy8+uv3IF5V2XnyafO8APSvQoykqjf1K78kAgSO7fd97j+YFxjrPLDnpwUEUncqFZRTSee46xf4J87s7fjI8ndP/s+95g3TdtD5+/T0/ySsrokZKcn6L6TvvY/KS8niIUIr5rR3Akl44hx5PiFaXqYZj327fH/oenNUlsg/uoZQiXlmuzdGa9MI5Rq++Q7az5xPFhmNMnuGMI17uEa0tk+8cYLVBxhHrf+2XKV96jvkH98n3Dkk2V2k/9ySz924h4rCWLkPQbtK4fgmpAqr+CDOb03r6Ktn9fQbfehU9npBePOe7U5KYcG2J7N4u0jjP5oWKqNNDj0ani2LO+HJQk2WY8YzieIBqpN6YPvOABAGuqrCV8Sze5fPIIMDMZszmGbKRkpxbw5UVQaMBShGt9Gg/dQ2UJNna8KWh6/hUssBHgpdHJ+i5j4qWUUi8uUq8uQp4/1K+e0i2s0+0vuoX3xSM33yf8nhAtLpMenmbqj/GZAXZ7fuYsiIKQ2bvfoA1FpNl6FlG0G7SffEZ8sNjBn/+fbovPUfQap6GcixCL1pPXvGemtEUnEM1UwbffIXi8ISw8+HFm/J4QLjSY373AdnOLsn2hmdkAJUmRF/9AtnOAQ7n5YJry4S9NtVwTNUfoZoNBMJP0p2/1hZMaePyNuVwwt7//O9R3dZDgJLGmLzEzobYqiJaXSI+t/aRn+9F0aYzvsumOhmQ7x/TfPYJgqUu5XGf9NI5yr1DguWeT2/McqrhCJMVhJ0mYrnn+26OBxTLA9rPP0m+c4BMUmxZYqZz8nqxJLu/V3f/ZCTb6wSdJrYsKAcjhImQShHUi2DVcOTvGyqoE/wCL1vbXKccjJBJQnHs/W+uLlZNt9bQT1zCzuYUgzHZrfvoiY/6lmGEK+cI6+X40eqSB+yNhOrohKo/9P6pehRHffp//n0fgb++4j2FecH8zn3K/oDlb3zlMwU+n4OeTzE+SWz1R41Gquh2Qg6PfFJbVWrKUuNQqEAhBZj/5GDH+yFwmqSaInG0iglaCqyKqWSIQSCQXoPuPBBwYRNDgJMBos6Bt0IRmNzfLE3lWRW1YDc+ynDvPR8Wh3J+BV+aiixusTm+z7WjN8iCJm9vfZV+cwPhDJEpCawmsCUGRTMfgAwwwvevKKexTnkmyHpZQWQKpDHoIASpiHSGFAkGhVEBVigkFmktWiqs83HZlYrRKn5k308DBoTjoV8FQKJlWP8zJNZzkGEdirAAKdLL4eoeo0fBizjdwqNYQZx5fv3/pw/4WVPCi/ADXcsAz4Yp/IhhzaPvZ+Hv+sS7V38ILAhnKYMEKTRhVaGMRqvw9BgIIXy3ETVYwgNC7SLCqmB5fkisc47a2wwb60RVRmgKwuwYHSQc9i4zj9o0ihGhLpklPZx1lGFKsxgR2IosbuPCs1HZZ0HH4j7wo+V+zj1kaoUAXTnyAkz9OylBa0tZOd55f8bqSsjWRkyv++it+ScpJ/2c6fl043d/93f5J//kn7C3t8dzzz3H7/zO7/DLv/zLn9n20ovnWP7aS8xv3CXotuvyxAxblgTdNsnFc0TLXdLL5xFxxNG//WPv71nuYQvPyKhGQrPX9jKT0YTZe7f8ZMUYip0DZDMhWVumOhmg0vi0AFBPZwy++5qXrkQR7nhINZt7xuh4gBQS1W7iCk24voyeTnGlN8cLAWaeI5MEm8+RUUS03KP11BWaT10lubtNfneH8avvIFsNus89STWZevP/ZAqVRs9zH7e9voLTPjYb5SehIgpoPnGtLl/0wCq8fJ7G1QuU/SHZnR2ECsBYisMT70nZO2D6/h3CbtsnXxUVxe4B1XjK/PZ9iv1jwqUOreuXCZe7FLuH6OEEk2XIJPHBBc7SfekFul98BhmFJNsboA2jH75F0Goilf9MytRLg/RsTrKxwujNG+j+iHz3kMk776OHE6KVnvfzDIbYLPP3+kARdNqEyz3CpQ4qiX1f0N4x8fktVDNBxhFLX/sCMo6YvnebwbdfIVpZphpNfHqX8bI2W2m/T1LiKk3r6WtEK11MobHzOfn+cZ2o1sHd26Xx5GX0cELvKy/SvHqR8WvvMHjlLUSgTu/ZttbaV8MR+Y5P9UNX6Mncl4AOxrUxXtK4sk2QpJSDIeVRw5vmV0uSi+eY37qHnvi+m+4XnmHtr3wDIQWz9+9iy4rlX/7Kh6RO4IH42clu6+lrFEcDsgcHhN02IgqRSnqACyTrK0zeep+w1/FSxDNDBMFpqEa8sYJD+PdxJiwEwOY5IolJNlcpjgYIYPzmDVrP+EJSW5S0Xr4K1vlEvukcEUb0vnzVv97HrFKbrMCWJfNb9zj4X/6YbMenwsXrK8jYn/elr3+RajhlfvM2QafhO5w6TYqdPUQYEq70MLOMYv+Y0WtvU+wdku8d+sjola4HkG91MdOM8evveQAXKsJel3B12d8T8gIznXlFixQ+0GP3CFtViEBh53NUq0m+d0SwsuRlbA/2KU/6WOOjwoNOCxA+gKBmdsr9Y2Qj9Z08lcHqkCCJkEFI1G2jmil6mpHf3+P+/+tf03ryMtFyj+TCFrP376InUxpnunlUI6Vx+TzzOztM375J9Ctf+cykbp+Dnk8xflKmR0pfVnp/L+fVt4aMJ35Cvhhh4Is9H/p7PqNRV8F89PDAQzmHVSFxNUVZ36HjnEXLiDJIWLAADoeWUZ2oBlhHaAoCp8mdROJwWMTpZH/hFVlIqB6fwCnPFAmNMhrlLJEpuXjyHgGGxBRcGN5EYJhFvVNpVBE0/ep+OcNLnyRaJlgcVoYL2w06iCiChMjktPIhedjy71gonxRX76GyvpvHSYUOEgJb4oQ4TY7z8dt1QAI8ZHmsRVBHey8kdEKSh83T1zwFE0LiY64fo/cWHpdT8FMHQ5zKCqmBUr39hbfpQ5HPP+VwNZA7BTEf5Tl6fNSSPmv8cxepcZ+KIaovUCGootRLwKiYyaCWQgocAUUYYhcR6s6hTIVyBoMHvM1qzOp0n2Y0phIhg/YmS9mxD7lwmixqMQkSWvkJ86iLkQGNfEQWdwh0QVBHVkdWU3zsvj5+zH88C+Qc5OXD0x2FHvQ4IM8sjZ5nfOeZZfeg4InL6vTG/7mn57Md/+pf/Sv+/t//+/zu7/4uv/RLv8Q//+f/nN/4jd/g7bff5uLFiz/+BX6CIYQg3lih+8VnUK0GxeEJ1XjmC0GXe6QXt7z6oNJc+B9+kyAJOfoPf+7lu/McGYU0n75KfG6T/PZ9TJZjtWZ64zYqSUjOrdN96VlQkuP/+B2a1y7S++oXfFLa914nu/2A9OIWzasX0HVPR//PfwDOEW364kXVSglUQLU0puoPcGXlW+Ir4ydN2qASSXppm+l7t+vfS+LNNaL1Q5Lzmz5ZLQoxeU5xcIyq06nK4QhwvgByZQnVSHHWf0GZLKc6OMEaL+nqXNhCxRG6PyK7+4DyeEA1HBNvrNJ68jKq0SB/sE81nND98vNM37qJA8qTPuX+sU8rywom7932oKissEXJ8Z/8BUGj6YtAl3vM3rtNvnuAABqXt7Had9wEnRYmyylPBhQHxz4KOApR3Tazd2+h88IbuAdjysMT9HhGuNpFKomIY2SlffnjuXUa1y4gVOBDCfojPwH+2hdIz22ghyOSC/68iyBgeuMW4coSxd4xIlAErQYijgm0phpPfWJWEPjYcG3J7+/5pK/+EJxj+O1X0KMpnb3naT1zzUcwOyAKiTqt02MohGD6zgeE68uUB30vbVzt0bh6ET2ekt3b9cWnqz3y+/vep7O6jC0LzNzLLs1shkwvEG9v0H35BYJui6o/ohpNCJopQafJ9N1bNK5epHnGd/VxI95YId5Y4eRPv+sleVIQLvVoPXmZ5V982SvJtSFaX6E6uXX6PFsUdby1/x4K2k1EEJDv7PvEVGtx1vqo96ykc/0KtqjI7++ix23i9RXMeOrN/u9+QLl/QrDUIey1SS9t+Yh0qXyKobGnnhQAU2r0ZMr0rfcxRUF+cEKx58MzTJaT7x4SLHXQownT9+8gw9BfU7sHyCQhaPkk22RzzftiqkPMLKM87lMenPiwBAQijshu7xCtLJGe30RPppjpnMa1iyz8sSpNfPBIw6EnXpqmR1Os0QTdli+SzQtUt43LC6r+EKT0iwWTKSpOfIeQ9tL8aKnjY9PvP8A5RxBH3scznSFUQNBteW/iLPOfB60p+0PK4QiVxJRHfe8l7I9oP//kR57zaG3FM8+jCWGv89PcXj92fA56zozPSt6WZYbdg4yDg2OUrGi2QvL84ZzV1VKtTzpknfb7qaVwP3LuaesoYYsTikBXRNWMUbpMGSZYfK+ME4AIccJinKsnpg/Ts/xrCKygXgU5K98SD31F4uzOP2QwlNYopzFBSCljgnoyaYQii9qkVUaoC3SQILAYJFGVszbb57i9TVpNKUJAC5QbMo076MB/eJwDUWUEuqBlDdOkhxUCK4Na0lazB3UamxEBEo1wDmG1F9XJM8DlLKMhQWiLEzWqPNPBY4WjUU7IwmYdhhCBcKddMX57i64fi/9YnvFKnYIbCLDomoFRVmPU2cf+jIZwCON8CeyZ0/NjnoSwFe18QClD8rj78D19khWbRUT6acS2j6wOMAjnqGSIwiGxBLpEBxFGKKSpkDga5RQhIAsazOMO/dYG86BFlrTp5H3WJvepwgZ5kFDKiMBq2sWYROecNDcJbEUzH+KALOmiReDj1j/xOAtIzubPq0fWGhbVSwsGKIq9r6fRCLh8qUGnFbC6FHJ/t2B9JabbeZga+Wk9Paurq59i///rHv/0n/5T/s7f+Tv83b/7dwH4nd/5HX7/93+ff/bP/hm//du//ZltVwYBMolJtjf9ZV9W6Om8ZiLGyGZK4+I5glaDC/+3/z3J+S1O/vR75EKQXNxCpSlmNCa9vE3ricvM7u4w+u4bdL/6Iktffv5U6mZLH7UbtJvEm2tk9/dJL26eTtaCVhOEJNn2XUHFwTEySbzJfTQjXu7i8sKbroVAhoE3bQcB8fYGYbeNMwaZRNhKM/jz7/u29U6L8MJmPekrPAuFoByOUR0fY13cukfYbWPygnznCFcUmPEMJwXV4QAhJTorcPtHTN79AD2d4RA+GriRUB72ibdDRJIwv3/De5tWl1CtlPLQTxRdXREhqgrRTJGtBsXBkWfLuj4pzeU5kzffQ4RhHfEb0X7xSYRS6MmUYu8IXXuPgqUupqoY/m/fBedItjfJ7u744tJex0/c+iOizTWfzNds+I6bpg8vMLOh99Ion9TW+9KzNC5t0//mD8hu7xAsdZCxT/osD09oPneNoI5R9uyK9+VQaarRmNm9XaSUVKMRpizRwwkqjTDWoqdzRt95lWowovX0VcrDE2xRkV45TzCaoKKIcH2F8sin+olAkVw6R+PSOaLlHjII6n6mgiDp1DHVE9LtTea37+Eqz0LrwZjJm++SXjx3GjFe5AWDb/3QXx8LoIZj+//83xGtfryEyZYlg++8Rnb3Aa2nruCuXMAWBdV0jggDnxZXaS+TW+6SNRMPRvOCcjDGleWp56375ReIt9YwWU6xd4SZzf2xjyOaT18huXiO6ZvvIaKQaLlHtLpM/uDQg5+s8J/DMMCW2vdoAenmKt2Xn2f63m3mt+4h05hqMCa/t0e+f+QlXVurqDghWl0hWulhtWHy5g2KH7yJCBT57iE4H8Ou5xlRmoIQqEZC2OtipjOqydSHRiQxqtdG1sETQaeFczD+4du4yoMYcD7AYDrzoKfbJr1wjvzBHlU+pTwZYivtFTnOoWqAZaZzwl7Hs63ShxxE0YpXyShJtneEiCPijVWSzVXynV0v/cTLdLEW2Yr8Wm6oqAZDnNZ1YmOBnk6Z3bxLeuEcIgyY37pP49I2YfvDSgSVRJTH+pR1/CzG56DnU4wgCD5xkMFiWOt49a1j/t3vf8D+oeT8uR6ltuzsFljtMNZR6k/QF/rIa37KHf9EwztlvIk8Rzofr61V5NPLFrjEVrjagB/qnEjKOjJY+PhmBIEpUc734ATGkEeNh2zPIsWr9g35cAR1ug9GhgS6JK4yjJDkKiExOcJZKuU/aIme04/aaBUh67CAcJwTmILAlAxr/XhczahEiA4jhHXEekZ3fkIZNZGmpJUPmcRd8jDw4FMInxImJcZq//6DpIYe7uG+w5m/AVOBCrBBrXEXEreYoDqLsIawyqlkgBMhUCGtRVnPaCnnO4KmcZdCxZjgTAGsraOsa/CgT2WCZyKt/aE7Mx6Txi0AxaIA9Ud29tRPUYpP1sXzcJsCQRZ3fB+TKamChIchBT9qewsE7/8OTIkOEhCCoCqwgWddnBAEtmJluseg4QMuElOgnKFVjqmkIg+a5CplHnpTaVJMmScdxvEyJojRSpHoGdNkicTkNKsJdiFJlIJceTAlBA9ZzE89Hj1u9jEW6BFVo/OgpywNk6lhbTmk0wk4PqmYzvQp6Pm0QQafR1Z/8lGWJT/4wQ/4h//wHz7y+7/6V/8q3/zmNz/TbUdrS6h2k/Frb1Mc9gkaCdHqkpdvzuZM37xx2lYuo4i1v/x1bFFyNByhR1Oq/ph4c5XGlQsES23cTU1yaQuh5CMGcBlF3gNx675f6TbGe0fKiup44CdX84yqPyRY7lHsH6InPvWtPPGR2LLVQJQVIgoJW01Ur0X3C8/gSu0n9tad9g+ZWYaZzcnuekO2iiNfqjnPyHcPfezuPCO9cM6DiG6L6mToi0LznHxnn7DXJj63gWqk5Dt7Pua3KLzMKVCEyz3ijTXfe7Pngx1cXmCEIFy5jB77yV/Q7fhCypO+n2iHIWaa4Urtj38YUhyc0Lh8gfTSCuXxkGo8pv+tV1DdFuFKl8G3X/Wr22mMrTTp1jpWaxZJk64sSbY3sdO5B4LrK+Q7+5THAxpXtgFB0GtT3D8gf3CIswZnHM5qOu2nAQiXu6z86teY3bpPfn8XZyxLv/BFRq+8RZgmqGaDajLDznLitRV6X37BH+ssZ/Lau4gwIOj44ygiBUrVrfcrHlROZ4xff4fGpW1WfvVryEDhBJT7xxT7Rz5YYjAi3Vqn7A+Jar9N0GmSnN+kODimODjBViWiCJi++wG2rAiXO6hmCmGAnsyY375Pur2FCCT5gwNkFJJe2EJGfoEuu7/HyZ99n5Vf+cojXo+zY37nAbMbd2pg/lAK55wjv7/H+NV3WPrGywTdFq6qaFw+z/EffZPisE+41EaGIfpkTrTSI+y2fZBCq8HB//LHdU+OofnUFZrXLlPsHVKOJqQXznkAMp7inEXVzEt5eEw1mpKcW6M47NP7yossf+MrhJ1WfQ2ucvgf/ozZe7cIWk2S7XUvQ8wKpm/fovXUZS+16w+oRmOqoS8SDXpdz+purFAeHZPvHtB84jJ6OCZrHIB16OEItPHyPuWDlBYluTbLcVYyv7ODEz6ePjm37tMGrfNfMkZTHB75xMd55n14UPvSMs/AZgXVeIKdZag0Ib20DQL0eEp68RxhM6XYPSBsNwlXegilSNaWPdN3mgpnvFS0leLyyktSl7rIJCKKl3xn2P4hKIEzhvm9XeKttQ9J2ExWIKPgdDHmsxifg55PMX4Spuc//vk9/r+/d5eTQUSWC27dnRNFikAJKufhw0+7Rr/gUX7s+JG7LkAqnBWe/dYFYvEEIeoprSW0BiMKlDUkOqNZTimCiCzughDEVUYkS0oZ1j6MGOk0zgVeaqbq2Z6znjU5NbA7pDWEpkQCveyYwGpO0jV6xcDT0s5PaofpGkXUwOAnp9ImPOhdpVMMCI1mKTtmlK4xSVexQGhKospPcFvVmIlUJFVGHjZYne4xTrrMkmUClxObknnYABnXq/Pe4yOkLyp9CCDOSLekqgEFp7I7XzbqD5+VAXncASEQwuGEb4gWwgctABRB6g+1lIiqAqWQOIyQ4ILHJGy1HC9I65JYePhRrvdrkax3Coxq4IT4BMzL2ULTh9v76LE4Dr6Y1TqBtJq4yjxr5tv4QMWPvc5ZJsuBLRFCebAszjxG+lS2UJdoGYKA5fkhzXLM7dXnsQgCoJDRqSxzebYPQiKcoVMMQSmGrQ3iakZc9zil5QyNRKuUpfkRh+1ttAwowgZahWgVYNXP6sb7YSmcx4HeN2YtRJFiPjc0G/7e4BWgD4/XT+LpabfbP/6Bnw+Oj48xxrCx8WiPxMbGBvv7+x/5nKIoKIqH4sfxePwTbTtot4jXVzn+w2/WAKiNkAJbVdh5Tnp5G5sVFHtHpBe2fAhAluO0RbUSVOw7X8Zv3EAKmN3eqcFBRePSNtHK0ul1FHbaZPd2MdMMcJSDMdN3P6AajJFKYrQme3DgTc/LPe/rmGbINMFmOcJY4m6bYLlH0Gly7m/9d74DZTjGGUM1nGAyb4wOOi1MXiCDwEdvO+fLQSuNTCOCVkrYaROtLFEcHTP+/ptY42g8cYGg18aWJdSLDzIKye7vY2YznLV+shbGuKKgOO4TtpreLD4c+3usFLjazyCC0EvyJH6lvmao3DxDRgE2K08LSsuTAVV/SHHUR2cZMggo/+W/JT23Tnb3AarZQG2ukVzYQnVbZG/fRApBuL5KeTyg9fRVCmOojvo+kSpNCZe7tJ+97iecSmHGGSJUnumKJcn6NiIM2Pkf/w357iGrf/nrdF98iubVCx64BgHHf/gXjN54D5uX2HlGtLUG1pHvHpKc3yI5t87wu68zu3GbsNMiaKZYY1FxhC014WqPoNXA5oUvcx1OUHWaV7yxRnppm/Tyto8aPzjCGWqG7OGKWnrpPHo8Yfj6e6gk8X1DaVKn800wdaqeSWOq4yH53gFCSUxW0Lhy4XQS67QlWO4w+PYPmd28w9JXv0h66ZxnGIMAm+XoPGf8xnuIOHwE8EAtCd30yYNmPKX1zBMMv/OaD7rotGmvr1KNJpjpjNb1yyz/0kuIIGDy3k1Uq0Xz+iVUEpPvHjB77zbZ7QeIQBI0EtLzm8SrPWY371GOxmQf3McUBbYoMUWBkBBtrOLqiOdqMGJ+f4/JmzfI7j0gvXoBFUdMXn+XajhCxjGurBi/fRNXgxCb5bjKgIWg3cBMZtiR7/qp+vc82BWC6q0bqDhGJpEv/EwjTO57glQj9fcB5wiS2Msv2y2K/ggh6pRFoDw8xhaaaH3Zmw2KyndEWR85X+VTVNv3fTltsNM51jrv59Fe+1Ie9b2XTBuKk4GPt17uEq+tEG+uUhz1KY/72LIk2lj1n6P+EJVE/troj4jWVgi6bWTLS1CdEGT39+h+6dlHvF3OOcqjPo1rF300/Wc0Pgc9Z8Yn6er5pKDHOcf3X3mff/+HeyjVptOWODTzuWGeadrNkCiSvrDQ6dPJz6faX/zUUXlLyU/PADnAGawMmIVNJmqJUkY1O2DAOSoZeLmOcHXnSZ9JfBkrPLhQzhBWBZGDUbqMBOIqpwpj3CIrQagzvhT/RzhLaEt6+TFaRlgZEJUzBHDS3KJZTlif3GWUfpE88j0OoatO/TjzqINyluXZAb3shCxsYulhZIjSFUUYE9rq1P/Ryw4JpyVpOWGUrnF79Rm0jEirKVjDNA3rqbwHCU4sQIPD9w45lCkwop7YuzOR1QtQ5CwIP1EvVERscoKywCZtQl2QmNyzWVHT989Y7WWE0sve4mJKpWKq6HFoXKecOQu2DhsQuk5KW4AuD3Ck0QjhkLqiChqf4mIQn1jW9ijd5LuJrApQzpzquszZAtKF9A8PdAECqxHC1B08IKxFYgl14VMDhY8VD6wm1hmxztga3maSLFGpCCkczayPwNGtRqSVX+UtwgatYoi0jnZ+QqUSYpOzMt+nn27ghGAeNjzrZjWTqMc8qBN7PpW87dOMejInwVmDqTRBYEljSxRqBqOKRirp1SyPc+4nkrd9zvR8uvH4/d8597HfCb/927/NP/pH/+hnst2g0/STPqA8ODqduEcrPZrXL1MNJ2Q7+6QXtpi+f4fs/h5BI/XeDykxWc70vdueDQGCNMbkKaNX3qJxeZvmE5cRSnq/jJR1slPF5I13sXlBsrl6GlWMswy/8zrx1joySYjWlkFIbF6hRyO/cr62jJ0XtJ66Sn73Acm5DVRap7O98R42y0kvnUMPJ+gsxxlL0GpQDcbo4wHJVZ9AFi51EVHgo6CXeujZzEfqliUCgUwiiv1jDyCSEOcSwk6L/M7uaWyz3jtCxyNkq4mZzQlaqZeEHZ34otR5dtpN4hdgfJqXE9IDMKWQaYoZTSn7fUQUYbOCajwGqdCjqfeGSIlqNVDN1KsOjvqIQBFvbRCudpm+d5vZzbuoOEKGAXo0QU9mqCTGTOeUJwNUktB58UmK/SNSY0kvbKJa/jOa7+wz/O6rvqBzuedb7CtNenGL9gtPES51Of7T7/p0LamQjYRopYuKQvRwTPvZq5i5T0yzNWBzSUS0vkK43MXUPTJmPqcaW6rhyEdP7x+TnFuj9cwTqDhCOEgvnaM4OCK7s0OyvYlqJDhrCXodonaTajbHVRpnNGV/RHXUJ+x1vOF9KnDtpi+UlYKg2yLsem9hNRp5CVpRIOKIfO+I6Y3bzG/fR3VbqCRm+u4t8p19sjs7ROsr6BefIt3efCQOWkYhzjpMVtB68grOGHb/p/8VjEUGknhtifCJSzSvX/IFubOMkz/7Po1L26z+ylcpToYUuwfeS9MfgrE0Lm3Tfek5it1D8gf7FPvHoBTx5hpmOieoo6WzW/c5/MO/oPn0VaZvfUA1mlAMhrisILt1j2Jh8O+0Cdotf04mM7K7D5BB6NlBJcA4qsMTqvGUAoFqxATLnkUJe20fVjHLMEWJLSvf4thIEYFC1EXGi+9RGUc0rl8i39333Vu9tv9eu7+PzXIv03zqqk9lOzxBKN/DpMdTvz4aBGAMMo4Jei2EE6Tn1nHOYLLCL6goSTUc033pOTb+xl9GyIBouet9evvHzO8+wBQ5LqsIeh2UUuj+CNVICVd6FPvHlP0B1WSO7g8JltpM375J8/pln4qXFT6pr9eh/cy1z7Sv53PQ8ymGUuoTyduqquL111/nzXdmhMkKzUhhjSArZuS5QBvHeKZZ6oQ0UsFs/pMBFunllJ+8x0fxI9ieesVeSjQRk8YyodUEtkDXpnFXS6Q0AiEDsriJmfrnWRFihQ88EM5PWI0KwVo65ZDKJlghPcpXDb/qgUII6xkgoWp5WkEeNMiiNpvjeyznJz5GWCiEAx3EWKGIdYaWyjcBW0sW+WCCZjmhQFCpiMAZjEyQOAKtKYKY3e5lAlMRmIqrJ2+zOnlAqRKa5YgHvSvkQZuGnZFFLbQM/QQeUKaoMYAPcACFQXkJny5xUlHJ6KFuSSjvaamf42SIdgYXeraoDBt1MavzDIZzPhFOSj/ZwnlpoQo4jfxenCfnwNUlsKFvcsZpz/qcAkpYeJOsAKtkPbH5LG4m4uH2pA8bKEmRWB/b7cBIW4OImm1yi/difay48AyRrH92AVQyQgcJaTHxkelCklRTplGHyJZsj24R9Ctik9PJTsBqPtj4Ekk5QTmLRZJUc6Zhh+XsAS88+BalijEywEnFZfc2u62LDFublEHMNFlGOONj2uWH04V+FkPWRJv4/7P3Z7GSXul5Jvqstf4x5og95855YHImi8WqEkuSJdmW5GP7wHYf2HIL0LFuDLtlAweo9o0N2LANqG96uOm7BhpQX3Sfi4PTMPpYaluyJaskValUE4tkkjlPO/e8Y47457XWuVixd2aySBZZIu22zQ+oSubO2DH8/x8R61vf+z6vAN+DS+canD4VkOcZ01nOtXcf0GlLnrvSYjat8L3uyYTnk4IMPp/0fLxaXl5GKfVDU52Dg4Mfmv4c1z/8h/+Qr33tayd/n0wmnDnzo83ZH1S2KKlfPEOw3KOaTF0OThTgt1su7ybL0fPE+XJu3iM6teZM80dD/JUu2fY+pigIN1acWRkIjHW7sIMRqlEn3lyjHI4Jui3qz5xn9N13SB5s03zhmccND+DFMfHZzcXizcmCq/mMap4gfR/pu1DN4OyphafHhaYShxSjCfPbDxBKIj0f2axTjcZUkylCSaokpUwS/OkcGYbH6MLFAlNSzROKQ7fwqZIUD5BR4CZTUiCRRGdOU81T8v1DR6JTitIY7PY+wfqyk9HsHJA+3EPWQrcjXmn0bA5ao5MUv9PCjlz2jVCKajylOOg7+pWUbiojPYLVJWxeoCczgqUuXqtJsNyj/uwFlO9j8pzpO7eoxnNsXiA9iYwCisMBqlFH+B7CU+T9IeH6MuXhgHI4RCiPYKmJyXJHKm3UsMYwvXaL2Y171K+cQ/g+1WhG/9/9MV6zQfsnXkUnLvuk8dwlN3WKHVlSpxnFYZ9wY5lqPEXPffxOy10/iwVycdRHFzl+r0s1dWjyYLmL1Zps+wAZRTSunMNoQ+3CafylDrv/+7/GZJmjzwmHv0ZIDn/nD7FlBU2LDDz8XptqOmd6/Q7+wjM2v3UfrKF24QxWCPKDPvneIXiK8Owp5z/qjwjXlij7Iw7+5e+CdNMjGbmspXTLEeSKCwNaL109kXlaswgbVxIhJfXL52m+cAWdZA75HQb4ndYJNrocjlx+VLPG7MZdJ9HLc4QUDh4xnrnvH89JwPLDAQjpfDLWkQqPKx8Myb8xRicpjSvnab3yPLrIFx6xI/c+KUp3fbeFIxzu912TVqVO3lVpB1HIc4cMD12Wky5cuLqcK5d1FYdustJtuUY39KjGM/Jtg2rEzoeWFoSnTxGuL7P88z9FeThgfuchIvTRSYL0FRDSfP6K8wUFPlWaPcamL94bJi/QRY5nGq4Bjd1aRvTaVEMnpY02Vun99JdovvgMs7dukO7sEy538TstdJYzvXYLk+dU0zmVVG4z5+wpioM+RX/omqp6TNUf4HfaVPOEbHsPGUXI0Kd++RzN5y59pNfr06jPm55PUB9n0jOdTvn+979PvV7n2Wef5/bWIVJI2h2PJIsQImeeuF3uU+sRvieYTEry3J7slz9dH25S/8RMhacaq/ff72JhbZ2vxwgfLZzMzUgfIwP3JrECIVwgaK5idrrP0E4OaOZjFJpJuETh1fCqDKk1CEiDOlGVOpqODBA+xNmE0GTMgzZ+lWGlwgJJ0ARrWZ/c50L/PSSGqEpI/DoPmmsI7Xb6lc4xIl6gvl06j7CGedCkkj7KGsLSYSyl0YRVyjRsk3sxvfk+IDhsuMC+1ekjzg5vkQQttjtN573BkbMEBiHBL0oU1uXmCBcm55kC31SLiYbA+BJtjz1K4oljLEA4spxRYpGA4xb8WgZYJIHO8ExB7tXQgJU+hV9b0NCeuJ8TatziMY6N/0JhrVpMo1xwqjA5ninR0kdLn0/m0fkktbiOjuVYxnm1tFiQ7DBIrTHSLHoe4Qg0psIzBk9n+AvJWelF5F50MvEphaJpK5amO9TKOSuzHer5GK186sWUZjZc+Hl8RlGP7myfPKzjVU7Ck3p1JIa4nBGanNA8liTlMgAlSP2Yg9Z5sqCGPB5HflZHSj4+k0sdjz/zE1163YDdg4JO0+PKxRpKJmTpiHv37nHt2rWT5mU+n+P7/sfaBUuShFrtk0z2/vOtIAj44he/yO/8zu/w1/7aXzv5+e/8zu/wV/7KX/nA3wnDkDAMP5XHV7XYJbfH4cnE5MkqBiOMNhz97jeZvHWd+pXz1J+5yOz6HWekvvNwYfZPnIdC+U6y5iknO+sPWfsrPw+lpvnys3j1OuHqEkG3Q7F3iAgCNzHKMmQUsvLn36D/je9TTaZUqZNEmdIRqqp56jJuFr7JaHON2Y17Tip34y7JvUfI0N2fSTNUFLnAxSx3QapB4CAekyn53iFZHLpFaFFSDcdgrWtC+gO8ZoPmi8+g65mDHIynJHcfIIVa0OAK9/loQOcF/nKHajxFNesESx3K8QQrQNUiVD2i2O8DIGoR1lhEEDpze3+AzUqH4h3P3GSqWcdv1dGpcrS5BZmt6rTwwohgpYspStKdA0Y/eI9gfRkhpDOLV84sLmsRqll3k5grF6DSTH5w3TWO7YYDJ1UGU+Tk/ZHDIYcBZX9IfP60yzuZCebX7zC/eR9TlYtGR5wcf3C5NKpWw+4dIaRy2Stq0UAoSTVN0LMUv9dCKu8EPx0sdU8mC9n2HhhD7eJZwo1V4jMO1zz5wXVM7s6jAeyDRzSfu+SQ1K0Gwlqq2RxTGYr9vqPaNWpEZ0+5MMxmHaoKv9PCZBlet4PyfddY+j62LEm2dkAIqsGI2pdfxoucHDK9v+3gB/0x89sP8b7YRCpFOZzgtxsnsATpe3gLz0u49sPwlmPoQ/Zg28n9ui38bhOrDeV4SrEgwyUPd8BaR2PznEet6I/Qee6u6QXMwBYF4++9RzWeU4ym6FlC8mAHPZm6Jnw4QQQe+cGRu06LHIoCnWUnmHlrLX6ruch1CtCTGdKA9BVer0f7lavoeeK8ZALnwas3UdpS7B9Rbef43TbR6jJBr0393Cadv/GXKAcjJm/fIL33iGqauElPaFwzWIsJN9co373jmq7xDFNWrrkJAqSQ6CTDpBl6lqDikHB9hfrl827SfOG0w+BLSfv1l4j21pm+e4vJm25ivPJ/+zN4tZjJ966R7/VdeO/WDnqa4HdbICVlf4jXatL7qddBa1SjTu+NL5zAGT7LCc9xfd70PFE/6oB7nveUjvv9tbu7yzvvvMP58+e5fPkyDx9lxNGA+byi1fLotn3K0hCFhuVewKm1kP6woPrIKY/hT5sIf1LHu+tPLqCPzSXASeOzWPVpqYjQSFNhpO92pRY7954pF94HR5hp5iOmYQcjFcpU+KaklfUx0qNSIV5V4pmcoraKtC54sp0NsUhyP0ZaTVAxPrvjAAEAAElEQVTlNPMRzWzEhf67yCe6NGlckyWtQVhNpSJKFTrynfLwdXFins+8Gs18QFRaoipBC0XhxVgpaeQTlpJ9Sj9gLHv0o1XuLr+AEYqd1hlG8YqT1yn1mFhnLUZ6CFMhTEnNlGghaGRjrIDSr9FIh5i6IAlaPG4mn7ye5MIjcryoNhjrYaTzUBkhF7Rq6863EAizQGC/vzk9OVdPnlj52H9jcfI765q9WRB8DB/Pp1HHDdixb2ghZRMeRrmQWGH1cZ4hAoFnCzyjMcJHWoNfpZTSRwhNoEs8XQCWPGhw5egtLh69h2cfjza1UOw3TjOsr5B5MVlQR1Yl1UJCFlYpgc5ZmW0/6SJyf0qPNGhy1DyDr3NUVlKqEHMcQvtpH50n3nJxDTqdgBt3Ms6dgReuNrh4rkYUSqAGLHP58mWyLGN/f5/JZMLbb7+NEIJer3fyvw9aeFtrP/f0fML62te+xq/8yq/w+uuv88Ybb/A//U//Ew8fPuTv/t2/+5k/drSx4rJiJjNUs47J3DUvgoDkzkMmb98iOr3K7L2C0bfeZPSdt4jPnXF+n6xwGS5xSL57hMkKgs2ek+NYqJKU6Ts3kXHMxf/X36Jx5TwAXqtB44XLSN+jOBxgsgIReG7nf+cAjEPRSqWoXTlH2O24qY7WlEcjxt95m/qzl1j7hZ9m9N13mL5zi2C5S7Daw5SO5unVI5enI4XLi2GXYv8Ik6aYvEJ4ElU447iKI2QcuUWXsS4pPi8Zv30Dv14jvnQOjGV24x54bhpTjZ0U2RqDsILkzhbhxqrLu+m1aKz0MAKKnUPK6Zz6MxcwWYYeTYlOryN8Rba1T3E4wBqzaFhK/Hodv9cGbVFhiAgDvHoMRU62e0AxGKLqEdaCikMnz1vuYfOC/M5DTFXhtZsEYYgKnQfD67aY375PcTQmWG5jLZTTKWV/TDWeYsqS8NSaw4R32hSjCemjfaJTK4RnN920YuR497Prd2k+f9k9x0WV8zn50YDaudMU/RGzW/fJD/p4zSbBSgdZixBSoRqxo7a1GicTQuEp9DSh+dxlul955cRn0fnii8Sn1ki3dijHM8rJlPjcaZZ+7g0Gf/gdJt9/F5273/fqEV7tFNHptZMFbPe1Fylnc2pnNyincwfJqNcASzl2Ya46yVxGEo6cK7T7zndQhQn5fh/VdP6Zsj9yzf10TvtLL6Nqj32w9YtnGXzje/hLlWtYcJ+DJivID47ctC/NiU+vn0w2hVJO/jacOLllp8Vs98Btto3GTmJWVXiNBiIKKLb33UZoHBGs9dx7bmef/MB5WkTgo2o1ROBTLvwvXqOGatQJ2k2yowGlHmMLQ+3iaSddyx3yu5q5vCsR+nhxSLSxSn7Yx+u2kaGPSVLSO48W9MMF+TXNiM6ss/ILP037tRdQUYjfrFNOZlTDCbXzm8xv3qeczpheu0l0ao3w1Br1KxXZwSG6qkAIgl7H5eoMJ1ht0FmGTnLiMxvOo3MwQCyaUKk8sp19/F6HzhdfdLS8wYT49LqbKvk+2dYuxWBE2U+Yf/P7i4liBZ6HzQtarz5P7fQ6VZKQPjpAZznRxupn/jl7XJ83PZ+gPkzeZozhxo0bbG9v88orr7C66k7gxnrIKy+0+P1vHHH3fornQ5IYlCfotn0qDcNR+fFBBH+asnrxPx7vyJ8gpZ9shJzuWaFRRiMxhDqnUv6JU0QKsZj+eOQo+s0NSj8i82K0kPjW0MxHhGVCv75OqULyoE5pfDDaSZWkIqgy1qYPGdRWyfwma9NHvLT9DWZR7yk/hQWGtXVKL8IzJZmoO8O58JBoZ2a3hlKFaKkQWDKvjrSGVtZnFjQp/A6+LhFWM46WCHTGJOyivYB6Nqab7DOsb5CrkEAXhDol9yJKLwZjMEKAVMRFgq8rKrkIZF34UmZRl6BMybw6RsLTSOvjWrwmAWYhYbMLAIIRbgKkqgIhAwohqeUjKlUj98LFeVOLU7UgsJ0cHTgZ44lF02MtlQyZRaGTvP17qWNQwoJy9+RFLaQj4uBeqzCV84ZZQek56eNRYx1vIXWrVQminBFUGa1sSBbUGUXLlF6IVz5+Dx7VN9hrnyMu57SyIQbFqLbC0nyPpfkeM7+FEpZ2OvyhVtSrckrhU6iQWjVz184ngAV83Dq2MR2/9ZSClaWQM6ciapGi0/SeaHieriiKWF5e5t69e/zUT/0U0+mUfr/P9vY27733Ho1Gg6WlJXq9Hu12+0QK92l7en7913+d3/zN3+TNN98kCAJGo9EP3ebhw4f8vb/39/jd3/1d4jjml3/5l/nv/rv/juAJM/Lbb7/N3//7f58/+ZM/odfr8Xf+zt/hH//jf/zvZYfvo+qXfumX6Pf7/PN//s/Z3d3lxRdf5Ld+67c4d+7cZ/7Y/lKXxvOX6P/bb1BNZpjFwk/P5uR7R9SfOY9Jcua371POEhjPSLd2EX8cEG+uEZ1aRac5WIhOreM1ao7W1mmh0oyg13WkRymxVUU+GAMCk2TUX7hC0Oswffc2ejhGhAHGuh3ubGsPv9ui+cIzj0MdlUI1a5TzOcl7t8lfeQ6vFhMudRzh0lrKwz7h6jLtV19w6FlfUc0zyuEYGYfIZh3h5W7BmxVYLHo2x1/uunyeg4GbiEaRk/C1mu49VJZYo6kOhiAEqh5BZdxOvFJOvhOHRGsrDhZwNHSLsy+7BbLXadL/vW9hq4rapbPk+30Q+wu4QeWeP053arIM6/sOtWwtqtlAxiHZ1i5Hf/Bt/EYdGQbE5zfp/dTrBN0Wxhi3QM0L/F7XNUSNGtV45jKG5gmmKsj2jpxPyFrMPMEKl6PizeZI38Nvt1yTk2UIIVBRSGmtg0J0W5hpwvzOA5r1q0jlke8fMn/3NkGvy+pf/fNUgxEH/+fX3S57mqDzGKE8RBgQrC4Tba6R7x+RPHhENZ6C7xN22oRnNp4ykAvpEObRppN4zq7fwcxTwuUuS3/my2Q7+86H0e3gNWsus2aeUju3SbjUcxMKa5m+exvVamCtQScJ1WyO32pQO3uKbMepLmxROGjB4nNAxZGTxuUF5WAMRcn83haNy+fpfPkVGs9efOo9FJ8/Tby9T3L/EeFSF5MXJFs7pFu75IcDyqMhXqP+Q/oWaywyCvBqMc3nLhNvrpHuHZHce+gmd/t9EFCNxm4qtsi08aIQFQUkW7tO3pVkzv9VTd17TYiTnJnahdME3Tb1Zy/iNRoc/NbvuXVQoCj7hZuCGoPqtAhXl/B7Lay15Nv71DZW8daXyA8GbrJlBQQ+YaeJVYrmMxfI9w4xWY6KQpK7W0y//y5+r013QXIbf/stqnlKur3nGvUwQHkeKgjcV7Q26MnCu6bcGkOnKeV4SjmeLKLz3FEzeU62d8Te//Fv8Je7jL//rvPP7R9hjMFkGeVgRDV3ob9IgdWGKs3cMXj5WVovXiG5v022s0/6cAfKkuK1F6hfPveZS9vg86bnE9UHydvyPOfNN9+kqiq++tWvPiUpCXzJay+32dnLeO/mjCw1NJqK02sRz1xqMJxUHBxm9Doe87T85Lk7n6QMgHi83XzSwiwkbWLx38fGc+kTVim+Lqk85yuxQi48OAYjnBkUaamsjzWauJiRhG3AUs9GNPIx86DBJOqhqoSoTPA8TYalVCGDxjqhzoirlKX0kGf3vsuZ8V32TMl+6yzKlPimZBp0eNS5CNYQmIywTCilR+U5Zn6oc2pVShrUEMDy7BH1fMY0WqKQIfOoC8YSVinSGrKgTmZjNykS7nXlXuzW68J5RzQenqmgyillgDTaTQbCFvlCtqd0iRQGayXKFEjtMobQFUaFH9L4sDjOxsERjkNbjHGPuwA8+KbE1xVa6UXwpjiRHrpPoeMFsn78GCewgMen+MNEk59NHU92nv6RI8hpEIpKeQhjEUgEFZXnzoE07rrKlXII8nJGXGVo6XHU3ETqgq2lq/imopkPaWcDvKpgUFslLudEVQJALz0EAbOoTW++Ryc7op0PCXX2Q89WomllI5r5kEqFGDzmvjNyflpH7TGw4HEPqBTEsaJR9zDGMk00aaY/sOmBxxk9Ukra7TbtdpuLFy9SFAWDwYDBYMC1a9fQWvPWW2+R5/mnPukpioK//tf/Om+88Qb/8//8P3/gc/xLf+kvsbKywh/+4R/S7/f5W3/rb2Gt5X/8H/9HwPlefv7nf56f+7mf49vf/jY3b97kV3/1V6nX6/zX//V//ak91x+3fu3Xfo1f+7Vf+/f+uEII50+xuBwcXG5bvneIrjT53qHzGVicN2Y+RxcleuLMwV4UUk4cXtrvtVCNGmYRXiqEIDjbpZzM2P/XX2f87bdcjkmlKY765IMxXt0ZnMO1FYQSFIcDF/g4mVKN52SPdglWnJSomiWLBZJl/NZ1LKBnKc2Xn8FvNdFJRnLvIdU0ASWRUcj8zn30PCM+u4HfbTG/fg9CH+Ypxe4+sh5hhWvIXFlUu43faiDDwO0ozxOGWztYXSGCAL/dxKuFVEmGKkoXRmnMyTFqXr1ENZuj04zWi1eJNlYwlSZ57x7xxU3CtWUmb91A1UKC1S7J7S0XWDpPMXlBOTJ4rQbFYIywFt1tuxDOZo3O6y/htxrYyrgmbDrDVIbGlXMIBPMb9wgWON5qNkcEHskiULWaJVC5oGUZeA5F7/mYOCI/GhGfXkN4zsflRaGDIcSxW0Aai/J9as9dcgGt+31UHFKOZ6hGjc5XXiWo1wjqNU7/yl9ldv0O81sPXNBoq47fbRGeWmP69g3S7f0FZa9FOZmS7h5w+Fu/j99u0H7p2aeuz2qeUOz3XQNxNCA4tQZY4tMbRBurlOMZVCU6z/F7bRovXKEcjBh96wfOszOaou9uLTDYOfVnL7rsqebC9yQsOi9RUYh6QrbnNWpEZzZAuQlj7dwmjecuUTt/Gj1PyA8G2KpC1WLCtSV6b3yBoNti+MdvMnnnFmCITq1Rv3KBw9/5A5LbD1ALfPaxd7bsDx2EodsCa2i/9gKruwcc/BsDRYUAvHbTARjC0uGj15aRC3S5SXL8s052F7SbpNv7FP0JXui71xcE1K9cwMwS4vObBEsd0gfb4DmJt/JDsr0DVC2iceUCeG7jzeQF1TwlPn/K+XkqTeerryO8xxuY2e4BwUqPcjQh3dpBNWrMb91HRuEJ+KH1/BVMkjH89lukW7uUgwntL7+MCEOX/xM4YJM4nq7q441xF0VSjaf4K0t4UUB0atXBRxbT4Z3/778ivX3fTTqXupjZnOT2AxDC5Y5pTXXYx6vXnKSzHtN47hLp1t4ijDV0myBhwPT6XbLtfbpffe0zn/p83vQ8UR9H3vZk0zMcDnnzzTfp9Xq8+OKLP2Q0LgrDg62U82dqvPhckyw1FKWhrCyvvtQiSTXjcUGaGXb2S6pPnnv6MWvRwWs4oYyJ4534ihP5nLX4OndGbwQaSSU8gspl5uR+zRn7rV3IrsD5fyR50KSXHFAGdTxdMKmtMI17ZEGDuJxTq+ZIa2jOd8n8upMRCcnqeIteuo8wFs84ys7yfJdSBYzjZeZCsdM6S+WFrE23yfwaid9EYgl0iRWCsEqQtkJa9wZupBOuHr7Jbus8O50LSGMIyU5IYWE5Zx50KLzImeitJgma7gPOaDd1USGezjkGPHimQuiSXAVUXuAABqakEiEIQ1hWVMpDC88Fjp5Mzo7rfXtMSmHM8eTHeahyz0nclK7w0MyjDmYBavCx7kNEOL/PU3K1E73YotvRGk5uIz7g8Z+krX0addxhvU86+SS+W3on/2aFRSvQVi1uaTFKoXSBkR5WBUziFQrP0fuCKsOqgMyL2W2fYZ+zrEy3wVrmQZNusocnfTxTIjF00yN8XdBNDqmX0w9rO7FAMxvSm+2z1btMFrTI/HjxHvnTl8AdEq0XzY9wpMVWwyMOFIdHBcoT9HqBw1R/SH0YuS0IAtbX11lfX8day2w249q1a/yLf/EvqKqKv/gX/yJ/+S//ZX7xF3+Rn/3ZnyWO4x/7tRyTyn7jN37jA//9t3/7t3n33XfZ2tri1Cnnlfvv//v/nl/91V/l13/912m1Wvyv/+v/SpZl/MZv/AZhGPLiiy9y8+ZN/of/4X/ga1/72n/wac9/qCpHE2bXblG7dIbWF55DLxbe4++/S7Z3QP+PvuuQt5XGlBW6LNHjKWiNiDJM02V2CE+hk5xyOEX66iRrxe+2mVy7Rfpwh8bVi3j12IUsasPsnZtU84TG1YtO0pMV+O2GW8wOxi61PcnI9w6dlLh0AaRhsw6+kwclgwnJ7Ycu9+T8aaJTq+T7h2Tb+xRHI6rJ3AWpRhEy8Jldv4fNCow12KpCzzK8dpMqyRw2tywRAoLlHip08ITw7Ca2KNGz1E1tmjVHYdOOAuTV4oV/wXc5K0IQbqxS7B1ynKVTDsfIKHAgCKA4GmKqCuUFLmukcPktwvNcJoqU7hMrDsl3D7FFwepf+wu0X3nu5Fq1WjP63jXSR7uYJKUqCorJlCrJCFa7VCPn8ziWEEan1/DqdZfhc9BHBD7e2gpKa+x07ghqx9N6z8MaSzV3eTM6CrClxms1qZ3fpLEwp1d/+F1q509TO7txck15cUTnCy/QfO4ysxv3qJ3fJN8/Yvz2dbLdA4QQLpcpL7BFgd/rML9xl8Pf/kPizXWCXgdrDLPrd5m9e5tqMqPKMpK7W1TDCeHpdYTvEZ89hSkKTF5QHA5pvvIs1WjK/NYDMIbGMxeR9Yj5jXuU332H/GhIvJBVAW5KkheYSmNnc+YPt1FR5HJpfI/iaIQQFhH4VOMpgz/6Hgf/6vcRykM1ak5uJgT+cpfOF16gfvUisxv36HzxecLVZVSjBkKQ7+wzXXjgrLGOYJgXeK0G9WcuUE3mzrejFL2fep304S6H//aPSLf38aZTyvEMISW1s5s0XrhMeTgkfbgN1jj6mZSEp9bA905ARAhBNRyT3LhL87lL1C6eWbB7DMXuEL/Vwms3CMpyMVWZYqwlWumhZ3OijVX8VpN89wAWUIyTMmaxWeIhPUX2aJ/49AbFcIyKQ5L72xSDIdmjA2xZEG2uIWsx5cERZjZHBD7Rxirx2Q3KwYRyMkMkKWgDnkQKgVUSXVSYnQPEqVUXYAwOkd1ukNy4g1A+quV82OnWLtU8xavXKHYPqD9/mdrlC8gooH75LHo8c3LAvSP81SXMPCHodRwCPgxIt3aZ/OA6wUrvRKL4WdTnTc8nqONJj7WWhw8fcvPmTZ555hnOnj37gV/Yw3HJaFwSBJL+oCQMJL1OwHRecetuQqft06h7rC4HHPYVB0f6M2h8nKn9pE7WvccyJLGQvUkUBmkrsAKlK6IqwdclapFWP6qvMQ8aCMQipsZNHJR1Gm5hNb3ZLkoXJGGbsEzozg/QMsBIhRUC31RoUxLoAougVs5opgMm8TK1cgY4fPHp0V16yQGJ32QUL8H8gKhKkFbTLIYUfoQQZuHvEBQyRGBpZi5Ibx62WJ09Yha2Udqhjq2ASbRE6jdIggYgkBimUZcTKJqUBGXuJhLWOsIcdjERAqM85MIHVckAT5dUXsCkvrwYptnFcTVPHPDFnT81+ZGARloXXimEXjRcHgpNKzliFnfIvfpiElJhhEKgHOXNHt/nE04VK59AWL//Onj/D97fkH3QbX5UPdFI2QVw4WQCdfxz48zGyju5Xk6AGVItJDEai10Ery7G6MonEW08U+JXKb4uFvQ/D1nlTMM2aVBnEi0zi9q08xHt9IhmNqTwQgJTEOrsQ1+RwL0rVqfblF7EQes0SdgiKjNyv/Y08+PHrCenRdaCtqAMhKGk2/HIcs1oYPjKqz6N+odLED9OMKkQgmazya/92q/xS7/0S1y4cIF//s//OX/wB3/Af/Vf/Vf8b//b/8ZXv/rVT+FVfXB985vf5MUXXzxpeAB+8Rd/kTzP+e53v8vP/dzP8c1vfpOf+ZmfecqH9Iu/+Iv8w3/4D7l//z4XLlz4zJ7f/5Ur3d6nms6pXz4LgGw3yY+GpA93SLf3nQzLaKTng6/cR8sio8BqjfB9/GbDhSgeDSiHY1Q9pnb+NPGZU+SDEfmjPVqvPkf9ynlnoNcGMRxhipJyMkMGvmuQeh3C1R7Z7gHTt25QTRKsrogXRvRsPCXwO5iywG928btt/JUOtjKkD7aJVpdQtdhNAU6tMbvuTNP1Zy+RPdwh3ztEKIm3skS4sUbWqFEcDtDTmfMCRa4BMUVJvnuAV4+opnOCpQ5eo+4Wn9Zg8sJ9BC68FDKOXAMTB5i8YvwnP8DvtjBFSbC6hAgCd4yfu4itNOnDHfLdA8KNVdeQ1WOm1+9QjqZgS7S1LlW+10UKSXE0QDUbCKMp+yMX0igEQim8VoP5zXtucWotep6SHAyQ93yiM+voxJHCrDFIIVG+R+3yWcrhhPJogN9p4jViyuHE5TMVjopXzedIT7kAy04LXYsJOi2K/pBqMluEkPqIMKBx5RzBUueHri0VhXiNOo3nLiOjkIN/9XXyvaMFNcw1lP7qEn6nRb53yPg775D83BsEvQ6zW/cZffstvGad+OLpk0X26LvvUIwnSN93uUxKUc1Two0VVBwxu3vTwSOiEJRk9u6dRfhph+T+DuM/eYv59bvE50/jNeroeYYt3flM7myhotBNICqNLgrCtSU6X3yJ+oXTzG4/YH77IUJJWq8+77xZUpDvHTH45vecTyjNqF08+5RUufnCZRecOxqj04zozBrh8hLBSg89T/C7TcL1lRNCoopDGq8865DSW7voEwCBwaQZwakV8v1DhO87Ml6S47ebNK5cxG/UmfzgPcrJDOV7qDimTLKTjKTkzkOs0W4CEgX4vRY6TUl39ohOn3KbBxfPOiLeOzcwlcZvPT21L0YTvGYdr9OmGo2x1lBlBcmDHUeALCuynQPK8QS/USdYXaLz6nPkuweOotasIbAEvS7h6hLFaMpcSeR46hrcPIOxwB57/axl+u4too1VTKUJlruYSlPbXHfhqGVF+nAbq42bmGY5Oitof+F5F4w6TTBFSfJgB7/VxMwTdFrQeP7SiYcsXFsm2z2kOOifbEx8FvV50/MJ6tjT8/bbb9Pv93n99dfpdrsfevt5UvHOjQmzmaYsLcoTLHV9arGi0pazpyLmqWaWaILAo9kwDMefphzpfQ3P8cLpCUWU+3e3WFY6RxhBrZzSSAfMow6lDBAY5lEP35TUysQtCsWx3ArAEBcJ0lqa2YigSvCs4czgJspqHnUvMQpXAEspfKIqIQ2aNLMBs7CNr3Na2cA1LIsSWOrFFICwyhjWlsmCumu4Fov+ygupZXMCnZ1Mp+rZkFo5RQuPUoWsTx5QeDFxOWVQW2MedchkTFzOkNZQqQCLAAm+zii8EOH5KF0ukNUCaTSeLik8R1qzYoGXtgUC7dDZKBeCWoxJwhZGSoz03PEVjixnF6/sOJBVYBBGozDO1F+VaGVAKHK/7gI5hUJYQSEVVi6mSIvMIIE+ySl67Kc5DnyFD25iHoMqHksc5RP/9nEbn0UzI8QTzZxroIWxWLXwcQjppk6wkLg5rZdf5ZTeQgIopNthksf+ssXzk4IKn1JFLCcHGCSZX2MadTFCEOgCLSSJVycoU8r6Bgb3+tfHD/AXk8OPqshmrE8esDG6R7+5gRWCSn52H4tlBeNJxb2thFqsWOqGPHO5/pFTjk8aTDqbOQTr3/gbf4Nf/uVfxn6mullXe3t7P4R37na7BEFwgoLe29vj/PnzT93m+Hf29vb+s2169DxBho+DcE1ZMb/9AGsMRpcOCa0UMorQefYYoesrt8jOMufrGU2w1jhUr3V5JuVkyuStG4g4pPn85ZPrTChJsNxz05zQx1/q0n7thZPn4DUbmKqims1cNk+vQ757QNBpoqcJZVkRnzvjwhIjF0hoi5JyODkxmFtt0GlOdGqVsNNk8uYIk+aEa8uUowkiChAIBy+w1hHPhHBJ7UA5mDjk88ERKg4RoU+w1HFwAaWQ9QipFCbLAOsW39MEVYvd5PPGPcrpjGz3gNarz7PxX/wF4s01jn7vG6RbO854vsA+H79GdwKsM7DXYlS9hslLwtVlwtWekyYtPEG1C2eoJjOyh7vIMKT3Z76ELUpMnmPKimznkHI2RUUxVmu8Zt3l7JQlJJULD23UkUritbuEaytUc5djUo6nmHnipi5LjhQXra+gGjHz+1tuApeX+HHkENfeB2+KHCfc++0m8ak1vHYTNZygFjhkrHE476pChiHFcLRAmV9hfuMuqhY91UzVL51DeB6T712jPBxSTaaEa8tEa0vUL59nfn+bYjACKYlefIb0/jb5zgH+Ss9NJYIAv+fyhcokQ0hB68WrCP850ge7Drk+SyhHE6rZnMbVi/Te+CLxmQ10lpPe23IhlntH9P/tN6hfvUC0sUq0uU5+0Gd+64EL+H7f56VQDtKR7x25vbdAoWcOA69qMd3XXkTFEeM332X67m3CU6sYY0iWew5p7WfoNGN+5wH53hHhao/Wq89htWV+/Q7RqVUaz13GlCUoSXT2FHqWUL96kXhzlaI/ov/1b5M93MbrtKid36QczzBZgTWOGKeTHJvnlP0Rc+OmW0bbk/dTMRxDpd00pVGjduksKvBI+kN8bTj4zd9l+M3vAsLh1suC2vnTYC3F0RCdZS6AdWWJ7NEest0kfeAAP+VoTHFwBEI65HccnqgwsJZi/5DhLMGLQ2pXL6CadaRULtdqkUVkigqTZA40MkvRWUbnyy/ReuU5ktv3mL5zy3kPhSBY+Bjj04+nkzLwnb8o/XBY2KdRnzc9n6CqqiJJEoIg4I033iCKog+9rbWW67dnPNrJaNQUUaSoKsP9RwlFAT/5eoczmzU8T3L3/pz9o5ziUzvXx83OB30QqkVezxMjJSFAehQESCXxTXGSI9NIR7SzIw5aZ8j8Bp7OkdYgTeU8PtYSlAVWwDTq0EkPicuEqMppZwOG8RIzv8kk6uJXBcK3mEJRyyf4OsfXOevj+/SSQwJd/NCz9XSBEWCF59b0piIqZnhBB6Vc3o6vc8IqQRjLPFoiMhXd5ACBZXm2QxI2yf0GK7MdJlEPU1O00wMKFZEETbKggUEQlnMMHqXyMVIhrcbTGQKX+1N5kdOw455L4YUUhIsJjFusC+Xw05XxQBaUIsQqd5xUlVP5i11uK7DCQ0uBshZjNaUfII3FCDf1ELrA4pEHIVYqFs5QjqdIVnoch6AqY9HKLgKfnmx8nqyFpPFYPmHKRSN8YgB6YnL0EXUcvIp1DY6Ex/Q4DyufmnE8vrtFw+N+RyCtwRzfVLoJkDzWg7EYRlone4yLKfOwSxLWUVVJWGU08xGpX6dQLvMjVTXmwZyLR++yPN/96NfwRElTsTZ9xINsxGHzNNb7bDJ6wB26ojTME83aUshLz9ZpNz/6Y/iTBpMe46qPG6UPa6j+6T/9pz8yYPPb3/42r7/++sd63A96nPcHfH5QAOhHPcf/HEqGgQstXFQ5GFGNJtQunnPNT+nIR6ZwuS5PbTaUJXo6ByEIT29Q7B9iswzVaSLDgNG33qLKMueDyApMMXgq48Vf6ZE82nMZKk+UKUqClZ4jiyUpeX9IMZlh8wKrK6yBcjxh8uZ72LKiHM/Q0xnh5hqqUUOnGXqe0nzxGQdnyAswhmqWOMmRscxvPSTvD1xIqJRYKbFaY9LCLdSX2kjPpxyOyTyPxtWL6GmClYJi5xAhpNt914vNHylcIn2nBcbgV21ql87id9voecr85l1q50655mIyc9Kx6RyhXMCrFwaEV86fkM38lSX8Rg2v0yR7sIO1jnqnajHJnYeoKCZ5sE26tYPfaTtfx+mlk2NYv3iGnf/Pv8JaS+38aXc+vv0DbFEigwCd5ZgspxpP8dpu2tN5/UWKg4HDhGeZk90tfLfT67dI7m4hg4DWC1dc8Ge3Rfpwh3IwxmvUTzDOwILEt0/t4lmC5S7lcOyuJaudhFApZBi4DcR5ik4zN5GezigHI8rBmPgJyRy4Zrl+8Qxeu0ly7xF+I6ZKc/ylDtPrdxh/5x3yvUPCU2sk9x5RTWbEZzeRi7wg4XsIKWm98hyTd26SHxzR+eJLbhF/4SzVZEo5mTkfynfepvHsJWrn3PTYhZneRyiJqkeYzMnq5rceUPRHxOc2KQ4HbvH8RGU7B0zfu40xhnIyoxyOybf3wFqic5ts/pd/2YXpzhOSOw9dOGySMvneu1itaT538WTyapIcrTyK/hhTaoJeCxmHLqfm7Rvk+wdO8hWFeO0mJk2ZvHOLcjxhfuMu5XBM7fxZ8oMB0vfQRYmZJfjtJv5SB52kjN98D52kqCik8fwVgtXeIsPpDjKOCdpNvKbzySQPtkkf7row2ywnWO6iR3PSu1uAxe91kEGAakTke0c0rl7GaE0+WpBn+0PnJUwSTFa6jKTFe0g165Q7R9jKBeX6nke4sYaezJlduwlSEleaYGUJneXoLMdmGWIxwVJxzPzmfVrPX6H5/DMI5aHzgmCpQ3xuE/W+82SNcWS6D2ngP636vOl5oj7qi/fw8JBr164hhOBLX/rSj9x5nc01D7cTPAXDSYWSGiFgPClREup1D20sN+/OmcwrlJDEkWGW/GlfxfumOx+3hAAVYGxFoQJyPyIsU7QfMGWJqEwoVbTgHRiEkItGw1Arp3i2osKnkY04PbrNTus8P9j8KqN4mcyLEQgyv0ZvvsdSsocWPt3kgItH1+ilR+6ZC0XmOxBEXM4XvpkKYSzRguTlMM6KKtknLyauQQvq5CgqL0RVOV6VMQvaFF7MIF5mdbqDrzNyFbM033UeESnI/Qbd9Aib7DMLeyhTEZcJymqULkmDGpOgSxq2sU+FjrrmwyAdUQ2LNAYtJTkuY0CrEElFYAqXFG0dDS+ROPw3cgGVkGgBQigqrd2pE4JcRo9DA8UTExApFg3HE+54IbCYk3DPSn7I+T++valOTrm7K+8Jqdxx0/MR1/dxUKp1czeMwaonZG0n76NFg2YXP8c9oGcLEAqvyvF1Se7FVCrE7StZPJyZ0rHeLMJCqSLmYQuDpZ0PMYspHAha2Yh6NiXS+3SSI9Zm2x/rkjewCMgVKAzzqE0ZfHrEsw8rrcHzBGluCEK3IfLRt/9kTc9sNqNe/+jpEcDf//t/n7/5N//mR97m/ZOZD6v19XW+9a1vPfWz4XBIWZYn05z19fUPDAAFPjQE9D+HCteWkUqh03xhTHcTbjd9aLu3VFk95aM8ztawlYZKO19GuwFVQTkQqFYTGfqEGyuwf4QtCqbv3nLeH6nw15ZoXDq7yHiJnF9wOne5KkDeH+LVYtqvPAeBT3E0pDwaIXwfr+PoUqoWE22sYiu3u12NJ64pKiv8VpP2q88Tnz/N/M5DRt/4HibPKUdjsp19qumMYjDGFAUyDF3waRwio9Dtwfk+tcvnsItFktGGtf/7n6XYO2L8g3fdhGgyxQQeylqH1fUkqtuiGk3wWg1qF05TO7+JDEMHg9g7ZPrOTRpXL9B88TnSR9vkj/ZRnSbR5hpmqeN2xGfJYneiQKgGep66xmAyJdpcQdVrpNv7HPzuNyh2D8kP+05KV5Y0nrtE/cp5quGYcjQl29rFCkHjmQtEGy7zJNt27wEZBMgwoPnqc3h1508Jlnu0X3mO6MwGwvdI7m4x+MNvkz3cdTCIi2dpXHLHJb33CCkFzZefY/ytN5nf33ZTwzjCVhUmr4jPrNP54gsIKQlWeqgopBrOiDZXXSjm8RXlu2BOB4JQ2AVBUHzI545Xd+d+6We+TH7YZ/83f498+wCv20Q1atSvXCBf0Lm8ZgOv5ppsW1YnkwvpKfKFr+n4Po/vtxxOSB5su8yYokIFHtmjXfQ8Ib5wxk0CC42KY7yVmGzvCKMNUgnygxQ9T4hOuQZ8fucBOivIHuygxzPC9VX8Vh1bVlTzhMPf/D2CbofOay9QTefE504xefsGZX+IEIJy6ORiQa9NNUnwWw0Asq1dVC2k/fKzqEaN9OEu+cER+AoReHidFtnDHcrx1IE3Wk2qaUqVZYixwzzbqqIqS2QUumyc0HnOdJ5THY2Y332IeSfFq8XUL55zhMJaSNkfcvhv/gi/28JrOvni6NtvUT9/xmUPvTWjHAxIH+66SZ21qFqN7MEW6e4B6Z2HWK1RC9KjlApVj4k21lzAKhC2GlSHfcBDBhYZh0Sbq+7+DwdYYCJuYfICIaD98lWynQNHbFTKBSIfDRlfu03t9DqtV5/Hq0dM3r550gQ/WeVgjN9pPtW4fxb1edPzI8pay507d7h37x6XL1/m1q1bH0tqkhfG+XhCRbejSDON1pDnTuqW5RU3bs+5eXdGmmqkspg/tZ/nEzQ8UvB4m/24nGQt92twnBtjDVXoEeVTPJ1TSZ+wyjBC4hlNVE7pzfYJdAYILh6+Q1jO2T73c+y2L6CRSAx+WYAnMVJihSQLajBzi2YtFPOwxUFzk8xvYAFlNO2sT1TMqJVTRGKpZOD8Q5Whlk+Yxkv4ZcK0vkwpPDLTYB40eNR9hkY+QVCRBE0Omme5MLiO1AWtbEBczilkQCVD4nJKKX18XVArJoxrywgjHPgAt/toFo2Gbyu08BeENUCIk8mXFQqlNVp5LgjUgrVuWhSWc6QxSDRBlTCNl9HSxy5ABlZIZ1R+sll5Mp9nMVVx/318A+MgDMZgpcAzBZ6uSPw6H9ywPNHQLBo3e0yCOwZbnEAIftSk57gBFItj80HAhOM/FQjDMbP5WNJnlEICni0xRi3gEa75UroELFaFYOwiuLWiN9uj9AICXTD13RdPXM5dCK0wDpSRDz/4KX/AqzJIJ9M0rmkVn1l469NVFDCbGVZ64CnxQ9OQ99fH8fQ8WR8XV728vMzy8g+H+f049cYbb/Drv/7r7O7usrHhdod/+7d/mzAM+eIXv3hym3/0j/4RRVGcYKx/+7d/m1OnTn3s5uo/xQpXl6hdPsfs3TsEK93F9Etg8hxVr+G1GphCc4JUlsJNdBfNhiNRgYoi1Kl1onNn2Pgrfw6vHtP/w+9SjsboPEfPU2TgY4qS4r07lEdDl92xukTvp79ENZ2T7/cRUlDsHCCVpPPlV4g219BFSfpwl/6/+6abFijlUP5FgQx8vHqN+Mw6tcvnWf4LP40Qgnx7n/7vfws9T5jf36I4Gi9SEtznhdeog6yjIidXs8YSn1lH+L6bNBwOHJyh1aB2bpOln3rdBYd2Wsxu3CHfOaSczVGnQ3jOeTbKo6F7Tp6TdKHcZ7WM3DS4OBwQnV4nPrtO/dnzpPcekR/0OaZO6nmCqbQ7Rv0RQikXjLp34NDJQlCOp+S7Rw5Y0B9hS43wFJO3bzC9dovozDrxKWf0r9IEm5VM37tN/eIZ6lfOI8OQcjSmmid4VQ2/1aL31ddovfocQa+NeDKAuNLM11bwWg1Gf/I2otIkdx/itVuoOCTd2nMBklcvYCtN48p5l9sU+MSnNwg318Ba59uKQuJzpxj9yQ8op3N8Id31UJUuHNPzEFGIjCO8eowMg4Ux/TEAxWjtsqGGI1S9TrjSdXkxq8t0XnvBATi+ew2Mk/O5nJe+e13SfWeEKz2qyYxka5f0wTajb36fYKVHuL5CsMgekpGjejmpk3Uo8/EMVa9hK+28bKHvZKFCIpRk9MffJzqzTri2zOz6XdL7O8jYTdTK8Yzk9gNEo+a+9dJ8wXEyFEdDjv7NHzmqm3VrvuJwSJXlLrBXOt8Wuoaq1ZwH5jiHJ4xov/7iScNq8gKjDdmDR8zvP3KybQT54dBR7qwh6LQRSpLtu+vO77TRsxnFwYD40hmHn45D1Nl110g2G0hfIYOA2oXT7jiuGdK9I9LdA+JTa4y+9Sbpoz0XWHp6HZ1lzK6bE1llsNJj8s4NprfuEXS6eL02NskI11fQiZPuyShAKEHQbVGOZmSP9pwRVRtMXlKNZ0zevQUIhKdQyiO588BRBes1UAp/pUe+ve/2ZssSU5ak97fofuVlOl96aeE1OiR9sE24voKKQhcSOxxRzVI6X37lZAr9WdXnTc9HVFmWvPXWW8znc37iJ34C3/e5ceOG4/H/iMbHU5zQm+qxQikocss8kMzmBQ8euVHyeFwyn2nKylL+qZqeTzjhEXLxO8e1WE0/ESxZqNAZ93VJKRSlVyMuJvimck1PlVOpACMk4WLxf9A6w0HzDMNojahIyP0YIxTa8wh0zsxv4kU50goKL2Srd5WomFGqEATE+ZhhbY1+5xRb5hLL811yFePbgjOj20jjMJLH0rRJbYV6PiFTMdOoB1IhqgK/Sqm8AC19R+TC0skHjKIlShkyri0zDduM4yWENS44VUVUKqJeHhKXc3IZolXgZGTGIHSFEiVKlxjloUxFZ75P6cXMozZYh6G2QKid+V6ZilJF4AmsEMTFHN9USKtx0EpDpkKs8AGBqlIkgtKvPXGuhAv1FAsCmjEoa/DLFImlxDUChfTdc/2wBfRxfs4JbGABP7BPnPuPde3A48bquGF64h9P7u9xqyFN5WASUlKpEGktfpUjgFoxpaEPmQdd8qCGlsEirDajkQ7ppoe8sv2HNLIRd1ZeohK+O65eTFi6a8wzBY18TOsJX9gPPeUP+tniKSaBa5g/jTpu+T6spIIwkAhhnZfhRxz3T+rpOW56Pk3J2MOHDxkMBjx8+BCtNW+++SYAly9fptFo8Au/8As8//zz/Mqv/Ar/7X/73zIYDPgH/+Af8Lf/9t+m1XJ5Fb/8y7/MP/tn/4xf/dVf5R/9o3/ErVu3+G/+m/+Gf/JP/sl/1vI2ISXt115E+D7pvS2q0dTtGHuC9hdfJL3/iOJo4Dw9s8RNU5RyDY82SCko+0OkUqAN3a9+gej0upO4GJfGXo4nCCExZYmKIkQYUPSHlP0xm//lX2L1L/8cetH02Koi2lxjfvsh4SmHj1WB73ZglSLf62Pmc6qVJcrJHCEFQbdN+wvPo+cJxf4Ryd0t0oc7Tp5lNNV4Rri2hH6Q4XfahKtOEmPmKcVghCmqRSK7JN5cw4tDrLaE60vE507T/corDpcrBBt/9c+T771KNZmBEMh6TP93/5ij3/8WXiNGRh2ElKQPdqhmc+Jzm25jw/fdpkocEZ1aI7m/Revlq1TTOcV+n2o2p5zMmXzvXWQUgJILLHGKsdbt1M8Sirdukh/2EQZUu4FXi11OT1aSbu+RH/YJN1aJlzoEy0sIpSgOBpi8oPXCFeKzGyjfQzdqiLOnWfozX2LpZ77snt/7Kn24s8hM2qUcjAjXlp1f6NGuM/xHEcVgTLjSc3LCF66cTFKq6YzZu7dI7j/CZK45FaFPdOkcZjanHI2dNFBKvDDEX+niNequ0e60iE6vO8zzuU2sNeQ7BwvoxoxyMKbzlVcpjoYk97bwGjW8WoyNI+LzmyS3H2DK0tH0ZlOynX1UHFO7eAZTaabXbpI+2EFGEaYoSB7ukO0eUL9ygdrZDZdxVIvQ88x95eUF0lcESx2q8QxjDPHmGjIIMHlOur1HtQhYbb5wheTeI7KtXTexmcyopjOsUoS9Dl6jhlh8I1RKoedzZjfvk2ztoBqxkzxK4f4EVNd9L+iiOJGtlaMxxf4Rslk7+ezymnV0UZBvHyCCgPLQwS+CXhudFRR9h53X0ynB2jJFf4ytSvxOi2qeYqsKYa3zPvke1SLQtXblvFNTVBW2rGi8cIV8dx998z7J3S3CXhcZhpg0Y7Z3BEK4adE8oRzOFuGuE4elX1lCxgF+u4HotNwWp+fk+SZ3ChBVi0l3DqAokQ2HFQ+igOj0upP1Hw4cJOXcGbKtHdfcCUG2tUew3KP18lUHqEgy/FaT2uWzdF57YRFMC72ffI3xm+85IuKC5Od3WnS+8gqNZz57X+fnTc8T9eQX73Q65fvf/z71ep033ngD3/dPgkk/ziKkFitOrYeMbpTcup+QZZosMxSVwRrLYJTTbQdUGrLCsJgmf/AA5iPr+Mafkg7yOPhSuNyYEsDzKFTkZGFCkSmP0o8hMERVSh7UGSnF6uQRCMk0apEFDUI9p532SYMGRkgSv44RPnGVE1dzEJK4mLLXPIPCcHp0l0nUZRr3aKV9Mr+Or53xbRL2qIdjevNDUi9mHrbRwuOwcYpd7zwY54MJdUZUzSj8GCMEvi6QVjONOvTm+8TlnEF9nW56SC/dZxItMw8ajKNlLBJpSmrFjFyGjOrLYC1iQUQrlENVBzrBwyB1Sb2ckxtNGtQxUiGMJbQJvfk+hVcj92KkAI1AGE3leRgh8U1JPR87E2FtdeH1EWi/hjZPyszcObZPhLUipBOCSQ9rSrRQJF4NvcgaehpU8MTfrX26sbGLxzluhj5uPYXIfvJxjv96DEh4/PBWCIxQhMWc0o/AVCwnuyxPd2lnR2x1LqO9CFFUIEMkmnZyxMbkAc18xMpsG18XnBrfY791lno+YejFHDTP0MwGnBrfZXP84AN9YR9WwiEsyP2YO0vPuSDaT6E+zpEsK81Rv0SKH33rTypv+7SDSQH+yT/5J/wv/8v/cvL3L3zhCwD83u/9Hj/7sz+LUorf/M3f5Nd+7df4yZ/8yafCSY+r3W7zO7/zO/y9v/f3TiAwX/va1/ja1772qT7X/xhLhQHd11+i8cwFsr1Dgj/6LiYvqD9znuTeIwa//y2X72IsXqvh0uaT1NG7POV2a6cz4ktnEYFP9nCX9MEO+aHLMhFSOoJSVbkp0YI81nzxCuHpDcbfvUY1cPK1+uWz1N74AtU8Jd85IDy16ohvRoMx6Cx1IaWB73JzjMPQiyjApDmTt29SHg2Iz28iPY9sex+vHhOuL5M+2nM5NEXppjJaU87mYAUqDqnmKaaoXFAlLnQy2lhzBvrF540MAuKzjymB4x+8RzkaE672KA8dZVNI6XJ57m2jK43fbBBf2ATjpFztV55FzxMmb98k39mnHEzIj/okD3bcVL/Tcl6i3QOkp4jPbBCePkU1nqCTxE3EIp/m85cp+yOsdiAFFYeU0znz9+4ipaR2YRO0xfoe2a0HpFu7BMs9wtNrhCsuhLv54jMf2PCA87G4TJMAv9V08j8poV6jGk8pDvtuOtVpInx14oeopjMGf/hdsp19/KUOfreNyXOq0RS/WcM/s+6umXlCNUtcOGtWYJQie/CIsj+k9fKz6FnC7PYDiqMB+a4j7wkpiM+dAq05+nffQs8SguUu4ORrXi3GX+qS7x9hjaU8GhOd2qD5whX85Q6T779LOZ4Rn91wi/UkdU3wPGV++76TaeKCdmU9Inuw61hLReWmP3mO8D1kHFHNE7KtPbKtffxeGyGgOBwSn90k3lzHazfo/8F3HKGt3cBvPP25KKzFbzVdcOx0Tu2ZC0x/8B5er4UtCliQxUxVYipNuNJ0C3WpsFIi/Sf8n1IuIBglZjp1U8lmHRVFWCFQsQNalElKdX+bcjIDrR20YTpH+D5Wu6mcOThyDfZwgjo4wotrjqh34w7ZwSHp/R133pPUyS5PrVK7fJ7pOzdJbj+k8exFdJqT3H9E3h+415dkLuC2FhOfWkfnBX6zjs4KZBRSHPTxGnU3zUsdHMQmCUJKVOgmMrassJWTFcpAuU2DWYLXqjvEu5REm+sIT2F1n+jMBvH7pJTBco/lP/uGk5ImKcLzCJa7T2U0fZb1edPzvhJCsL29zbVr17hw4QKXLl06+bA9XnhorfE/5EPquIJA8cqLbR5uZxyNCiptaTY9PAnjWcl0pimKglZDkWWaNDeOQvqJGp4f07/zgfXEwlUsKFwLQQVSOSSiVOReiDQWYS21zHlqnDysxLMVpRfgVzmeKSlFRMNMULogjZYolY8AgiphabZLHsSkQQOQ5NKlA8/CNmoxFRDWYqTP0mwXg8SrHLYYBHO/xrixTKU8omyGlpLCCxxS25SEVUEe1JyUSijmfgODpFAhhRfRGR4S6Yzl2S5zv8Wj7iXmQRMtfXaaZ5kHLUovIijnWCExQuHZEi19tBe6zB8hSVVErUpYnmwzri1TLRbsadBa5PYIPFMRWidFK1VIJQTai9AICi9GP4FqPvHtPNVIvP/vGmFKCi/CEi2ajOCJm7xfaubO59M/P4YdiCf8PO+7Dj6sjtHTH3rb46bt2JME1i4Q3QiULqnlE7qzPVYnD9lvn2NQX0NLn1Y5JSgPCbULoZXavSn2m2eoF1Pa6RGTsIMWipXpFis4up60LGRxH68sUAqfedTm5srL3Ft96eNPuj6g1HHG7I94/wrcFLgowO9IsswwmpR0Wh/+efLjeno+zfqN3/iND83oOa6zZ8/yL//lv/zI27z00kt8/etf/xSf2X9a5bca+K0GQbfN8JvfI72/Te38JrN3uiQPtrG6wq81EIGPrcf4vTY6zVCej7+2ROe1F8Fa+t/4LvnDXYrZHDNNnFymUcMP3ETZlhXCVwTLS+z8v/9/qHqMkE6yppo12q+9RO+nvsj07RvOtF+LSLf3yLYPiDc3aFy94HJNhEBGEeVozOz6XYKVHlYborWlk6yN44R6GfgOdZumVAvvj6rXiDbcLjXaOr+LAOl51J85T7S6TPu1F9wu8xNVDEZkOwfkB33G33kLr90kPrXqfCTb+0jfxy7ACcm9h8Tnz+A1ai4gdaWHF0eoVoP5nYfMr99BeB7lZIpUivD0ugMkLJq8YG3ZSfrK3C1aBxOEr/A7bQSCcHWJ/HBAPhg5FLiUpNt7tF97ntaLzzC/9QCdpMRXzhN0mrReugpSku8eUr9y5iM9DDpJ0fOU+tULlIMxOsnwGm7HXEYBs3tbTK7dIt87pPfV104+w6bX75LtHFC7cMbR/AAVh7ReeY5s/8h5QbptZtduoqKA8PwmMg7J9wdMrt2imsxY+YWfpvOVVxbY6dvudxp1os1VwrUVpO+R7x+R7B8hfA9bOerg8QQOnF8NIFjuuIn6zfvMbz8g3FyjceUCwWqP2Xt3KA76Ls+oP2T85rvUL1+g+cqzCN9j/t4d0p39BbACum+8RjEYkx/0kUqSbu1hihLpuf9OH+3jtxrUr5ynceUC0+t3SO89Aikoh2PnSV74qRyWvOOeM9B68Rn0bM7R730Tk7vGvBhPCJoNwvUVZBxRHA7wa84LZ8sSayxCCvRsjlePCTptZntHCCHcon7hZQ1We1SzuZtU5TnG4gAeswSv0cAaQ7Z3QKh7eK0mIqjwGjWqaUK2c0gxGCE9Re2Z805S2l7H5AXpg228ZoPozDq1y+cYf+ct9v/176PnGVIKt1liQXo+1rpNg3BzjeTOFsdrA5NkCwR8STmbU2UFSlhsUSEbNUTgo2cJ+UEfrx5TJRnSD2i+eJViOCW59xCvFlPOXBPqNZw369gn5LWeVlEIKT9z786H1edNzxNljOHdd99lZ2eHV199lZWVlaf+XQiBlPJk4vOjan0lotlULo+n5qGkYDAsCHzFeFrhSc3ykk9eeFSjkqq0Dr71sepP2fB8JMZ2QVSyxtk1rJtqBLbCWknlSeJiTivvE1UZk7hH4QXstC/RyPrkfh2lc7RXI/UaFCqgVG5R55sShcazJbYSzIMWvs4pvIhcRWQqRtljepfA0wUSS6gzVuZ7tNMj7i89R+7VSLwmnqmo/BClS4IqI/dqZH4T3wwRRi/8NoJKBQwaaxjcfQbaofKUNbSKEevTB9zvPEtaqzsqm4qwyqOwNWcaBioRUEmFpwsHeVABk/oaeTnH0zm+LZHaUkofLZUz+xoHMKiXUxrJgEFjg8yL0EKi/bqDGggLi7whN3V58jw8OfERgCYqUirl2PkIUFajrQDlP/E7T59LThDjx03OExeaOP6/j9PwLMht4knfzvtL4BqeJ5ofq4nzGUoYNBFIRRa22Vq6Sr9xCoQiqjIsCq18jM6ZhV2yoEltOGNcW2ZQX8M3JV5VcHp4G4klCRoYqZhEPWZRm07a/5EvQQPDaIWt7hUmcY/31l4j9/90TYLlacWoWvSUx8GkQjh5dxBCFAo8T/DK801AsndQ/Mim59gD83FqPp/TaHw6Ur3P6z9MhSs9lv7sGwy+/h2SB4+Iz26g8wLp+6g4cDvdkfNeqGYD6SnSB9tk23uYUjO/dRfVauK1GmhjXQZJkoJ0oZ0qCpjdfMDoW2+iWnWWX3n2JHywGIwYfN1BKU79P37BJagfHJHuHNB66ZkTOcqTWOCg02Jy7TZBr4OQAtWso4vK7ZY/8fmlWnVH91pbJuh1KEcTrLGotWVEFJLd20IoRfcnX2PtL/wZ6s9cJFjuPg4DtZbZjbtMfnDd7XSXJcmdhcelUcNYSzVLTt5wpiiwlaYcjhh9601kFJA+2MFaw/jbbyGlYPnPf5VqMmN2+yHlYnISLKR0XqeJ1Q4TnG7vIz0PGfioMHCUujwn2lh11Ctj3KKwUcNrNalfOe8gFUHA7MZdintblOAW675P/co5Oq+/9EN45SdL+L6jkRlLsLbsjPHTOaYoKPaP0LM5+aM9VBiQ3N9m8EffpfnCM6QPtglWuicNz8l5WuoQn9lg8oPri/BVQbC+jC0q5g92Uc0aMgwZv3Wdoj9k+c/9pENHP3eJaHPtJNj25P5Weqj72yR3t9z3glQEa8tu0qY1ya37mHlKmeTMb94n3dlz2T5AOZsho4DGc5epTq1RHPUd/XRlyUnU7j6gHE4ckGO5i9Wa2Tu3GO3su2sBKEaOxOZ3uzSeu0TQ64IxFMMx02u3ab1ylaDnfrc8mmCNQfn+ItzXuPdFnuE1a9SunEfIRfZSu0W0uYbdMuh5RpFXYCx6lhKs9KhdPke+f8Tke9fID/r4naabVAiBajeQjTp+zW1Iep0mXrOO7A8pjgYIz0P5itrKEqrVRE+mVNMZprKQu4nSMe0QKagGY6xxJL5odYnioO9Q7UJQu3gWnebM7zx0ZMHQxWro6Rx/qUfjmfNEm+sU+0eM37qO32pg8hwqTbDUId3aoRiO0UmK12niry6R7R9BWVJa65RHRYGZJcgowFTaIcX7Q+LT6wS9Nt2vvAzCUk1mqLIiXFumdmHTgRJqMfWrF/4vJV/+vOl5oo5PzBtvvEGtVvvA23ieh9Yfz3xTixWrSxF5bokiRVEYwrnEU4LZzCBDSZq4xWc99jChZjI1Dhv5kc3PpzDh+dDuamE4NxqBBhmChUDnSFthpMIISeHHSAR+lTvAgHZ450Y+BiGZBQ2EdZrZwq8t0NIp0lpmQRuaku58D2krPCxaSq6vfZHcc76aVnrIUnpIrZhRqBCLoFQ+s7BD5kWM4x6FFxHonMyLycIa5UJ+ZjAOE1rOSIIW9XxEMxtx0NxkabZLNzmg8CKiKnUfnCpkGi4RVwnL00eUXsRRfYNc1LGLJicuZqRBHYHP+uQ+cT5lr32RUoVkKgKvhqczrJBUKkCjEdYhtzvpPhIY1ZeZRy3CKqORj5hEPZKgBTh8szAWrXhabnZMt5C+k11UGcpW5CJejNMNwmo8BJVVi989vj6fbD6OJWfHaGmHQX3c8HyMEaPVi99/Ykr0vuvG/WgBR7AGYZ00Ty7gFb7OERhK6bNf38CnIiwStPLoJgcYIUj9JrlfR1jD6uQRa7MtdyiE5FH7Es1sSI+Dk2csrUEIS+7VgI9ueiwwDnrcX3qe2ysvMaotM6mvvO+1fPIyi5ghTzrvp5Tg+5DnzsMjFlaqMJA065KlXsgzF2tYBNPZR2+ifFKQQZIknzc9/wlUNZxQ9od0vvAinZ/4Agf/x7+lHDvZTHJ3C9U0hEsdB5uZ5SeTDVMURKc3iM9tMnv7BjYKsNpNVaqp8zdQhGA01XhK/blLJ3p7gGCRVzN+8xrLP/cVms9fpnH1AkV/hKrXyLZ2SO9tEawuI+PQUbDGU1QcEJ/doDjoM7t5j+Kg70hOUlBO5+i8QC18SawLvEbNLaKGY0TgwYJ+1nj+Cuf/9i8Rrq/80DHJtvcZf+dtt4O8fpZyPCXpbWPSnPE3vks5TQg3Nyj3DinTDL/ZACzx2U28ZoOg12X4x29idYUpSofvjiKq0RTpKYKlnvOHJCkIiQh94lNrrjmrtCOCtev0f/uPHAmv40IjZRg6xPdkimzUCFd6eG33b363Reu1F0AIGlcvUr9ynmCpQ7DS+8iGB1zzG66tuF3+KCTcXCW9t8387kN33+0m9asXWPrpL6HiiOTOFlWSodMcv9P64WtqMnP5SdMEW5V47Sbz6/dc3s6pVScRHAwxRcn0xj3SvSP0ZE58boN8/5BgpUe8ue4gEbgde9VtUU4Tst0jauc2wGh0Xrhr4GiA321RHvWxgU/ZH2OyjPTBDtN3biEDj/rFs9SfvUT96mWCpT6qWSe58wCT59QunjlZl+miJNnew2Y5wVIXpMCMZwjlYxIn0wt6XZCSYKlLvndIsrWLLUpql88tplBzjK8QngdCkh/1QUm6r71EfGaD6bVbzG85zHKw1GH21g3sAoChZ3MaL12ldn6TyfeuoXyFbHQo9o8c+hlBur1LftDHpjnR6Q2M1tiidE1gliOlQucZ/lKHxpULyCigOByQex72sO+ggXuHyPObWGtdSGscYsvSTXS7Lcw8IxuPaT3/DPWLZ7CVZvLOTeYPtikPB2TbLq4hWl92kBAhiM9vkm3vnQTaZtt7eN2284vtOv+Onswx89RNWqMQyhIqg4gjF1CKwIsjdFZgrSE8vbZ4nBV6X3mV6bVb5EFAsNzBWgjXVmi9dJXoA97H/yHr86bniRJC8MILL2A+YtyilPpkTc9ywFE/Z3Up4GhQEoQSYy1KCUptSXNNlht8z9G0lDIEvmA6P1nSve9eP01J2/vLuuwW4czw1hyb3N0itcLjeNFsgEY2xCjPkduEdfk9WJr5kMSrYZGkQYOonJMGLcDg65JKBRw11shVxOnhLaxSaOFhlIeWHpkfY8Uqy7NdkqDBsL6K0iW7rfMIaxjU10j9BkYoB1KQyvlprCGoUjxdoIBmNuTU6C5RmWCUj7SGU+MHhFXKQesMSdBkFrYZR0vMwzaFFxKUGY1sROLX3cRBqAU9rERZQ5yOqWUzRo21xQQqJfdq5H5MYSOELvF1SWgy16hJn1FtnWY2JPfrTgqIcLepMjK/jhEeBvBOmpEF5tlWKOvkedaak0a1UKEzMiNAWqz1nYPGumDTxXju8TTmKVDBojN5quF58s+PqOMplHjiY2MxbTp5DCsQpkQg3WYrgHB5PMaLEFg8XZB5NfBilLXUZLA4bzneQoZXyJDS8ym9kIPGKRr5hLicEVQpSdBCWk3uHUv7HIlNmh89gc2Ez1b3GYxSFF7EpLbsrulP0FR8WB1HJPkehCG06h6z1GCMxVNQVZZGXbG0FPDysw2aTZ/DfsHK0kdPcX5ckMHn9R9vWWuZ33kAwi2aAZovXSW5s4XXqiOUJN3adbk39RiTpti8JNvdpxpM8botguUeXqeFLkqKoxF+u7lYVB2hLpxBZzkEPmGv80PSzqDXId/aY377AbVzmyRbu8yu3SLbP0ItqF75e7eRUYgXh/hLPeKzHeLTG0zeuu5IUs3GCWzBViX50ZD80Bn6k8WiXYY+wXLP0btWlmi+eAVh+MCsDmut+z1rTxozGQaUw4mTxRmDAPx6ROkrgl4Xv1XH6zRpvfQs1WgCWHSSkD3adxOJ4/wYJRd+qTpqELrQ1kbNLVTDEFWLMFlJ/fI56lfOM79+l9n1ey5bJc2c9CovXCOXl9TOn8ZvNtBJSj4Yk+84Clf3J149kXx9nKqd3yR9sE0UeM74XTpfS3R6g3hzDeEpul9+5aQJCTdWyHYOALsw/z/+rDZFyfzGXWxR0Lh6AVNpovVlknuPSKuSfP8IPU+JTq0uMN9HlKOp88MsdwiWe2QPXCZQ68Vn8BfockqN320SrC+hx1Oy/QH5zj7FYETt/CZer8vsrfcIn71M7UJI/+t/gi5Koo0V8v0+xeGbzO49ovn8FbdQbzUphxPql88+fu5VxfSdmy4wdqlDfGYTa7TLauq2mF27xfTtm4Qba6jFa1b1GtMfXEc1amz81V9g8M3vM3nnPYrDETbLF9dYgNeos/RnfwJVj0nubLkA3Dgk3lynPOoz/sFN52XBku3sO9pfXtJ6/UWH+p6nlIMRs1v3SR/uIgIP1Ww4mXqu0VVFcXBE0R+fZF9FayvO0zMBv1UnvnyO6Q+uI+OA8mjk/FVZjr/cI1zuke7sOSS3p5CNOjJNUJ2Wo6YBtYtnKEYTdJbjNet4rSbBUpdqllBNZo5Y+OxFsn/3LSfnRIAnXfBqEKCWevidBjrNnURTgBQCogDpKbwoQngeVoC/IPuVh8MTj5TfbRNtrtH50ks0X3oWGQaEK72nkOfVzIFSTFEiA59wffmpzZZ/X/V50/MJ65M0Pb4vef5qk+2djK2dnDSrGI5KpIKlpYDZXOMpQaejiAPB0aBASYhCRZJVi4zG4y+jjwoc/TFqMSV4uhaTAauRRjtClhBYodBeeGJ8d7vWln59lbiYE5YJYZUR6ox54JoHI30a6QAfzSxoUJrCkUmwSKuxhAirWZrvcNA6S6hzuqODBUbZMmicYhL38E2O0iVLs11inVJJnwN1mtSvI7CUKsAiUKZACIfMOzO4RelHLE93WZ89PJljjOMVGsWYTnKEX2XcWnuVedByr7UqyIOGk7epAM9qauWUzKu7SZbSBFVOK+szj7uUXkQzHzIOu1TSB6vRKKQKFqSyAoNEL3TyLmgTojJxOFcvctFIpsIoH1AYWz0hQzN41lHeThDZSlLKyJ23k6bFLQYctW0x1REWqSs8XTgPkvJ5Wr52PEWyj+EG8ngq9HHr2CP0vimRsFjpLxABi/teXGfCuqmUkR6+rTCL6d1UtqkDB41NalXKNGhRqBBfF4yjHnO/RVzO2BzfI6oyCmmZhW1YeM7mQYtAZzSK8Y981vOgw1HzFI1ycpIzZT8gM+DHKbk4vHEIZSXojyp8T7jDKyGKPPJck8wrKgPDUYnnSdZXPtrA+eN4eprN5p/mpXxe/4HLZDnF0fCp3fpoY9XR1YwhXFli9u5txOY6Ji/Jdg4Ilrr4nRbzvHQ7w0mKtZbGMxcWi9Ax1hhk7LI+rDaEyx23aw7YqnKkq8kMjCEfTylHLi9l+I3vIWsRKooIT61iEeSH92EyQ53doByM0EnK/N4WxXhKtr1HmpdYIZBKIZs1iqMBJskJT62iGnU3CZZuahytLNP9yS84CVFWnDQjTx2TvKA4GJxMUACXz4ODO5QDDQKqeeqCUJMUPZvTPbtxYsC3lcZr1Kmmc6LT624SBahG3eGPpcRf7lLsH2HmKSIOSB88wlaa1svPOi9T4NN45gLlcExxNHLhos0Gfq9DWIuw2uC3mwy//RbZ9h7VZIrXqFM/f4bBN75L66VnqV06+7EkP9HpdaJTqxT9Ia3Xnnc78dZS8z1MmhOdWsFf6pzc3qvHToZfiyn6wxP/D0A5HFOOZy6naamDyQqK0YT00S7leOqmQGWFDHx0WWGNofnsBebX75I/2qd59RKqFlMc9Jnf3aL1yrNU4xmyFiHjkHB1iXR7j2Rrh/ntBw4z3R+78beUNAMPPRjhNevku0eUR0PsQoJYDCZMr92k9cpztJ6/hDWgahH+chcVuIDafGffecIW00Ov0UDWIvx6jfr508wfbJPcuu8AEUA1d6GH8eY64eoSXqNG0OsSLPWQSmA0mNRdK7JRQ0/mjvZ3fhNYTBXfukX2aNfR1YqS6u1b+K0G7S+9SHb/kfPKxBEEHuFSF+Eriv6I4nDoiIq1CCqNjkJqF88sJjt9l3VVls4LVFRw6DKBgqUunS+8QNF3EA2vWUcFPn6nRbp3SPMF12xO3vaoBiPMxopDi0/nDlTge8SnN9w1EHjIoIlOM7KdA0Qc4rdbmLqm6A+wlUH4HqoeE7Qa1C6eZXrtlsNXL4BLVJVT31sLRmOB+MwppBJMb9xBRm4KZbWhcfUSnS+//EPIaWsts+t3mV27RTmZuvehsfjtJsHVKyTtVYZTjUXQafqsLAXUap9da/J50/MJSyn1sT09AJvrMb/wZ1f5/ltjrt+ZMhgKWo2QRsOjKDVlAdN5RWUsYaiwaLJCI+VxMP1xg/UpT3c+7ANXKtAutVlZTYkzJQjrlpie0UjjJhCzcIlu2scvSjYm9x2SOmhz1Ngg1Cnr822yIuZg/StYYCk5REtJKQPqYkKtmABQ+DHNdIjCokxOUGUwh0KGhFVOvZwT6xQAz5SsTh6x075IIx8wC7sUfgPPlIQ6p55PWE4PGMhV0qBxkkUzC9uEZUItnyCw+LZyAajTbfbb56k8n1zVKfyI1HMyrFo+IzYzQp2yNN930jvpk4saFqiEQ0QrWyKMIveceVZYyzzoOE8RhmYxIi5neMbl6BQqIvXreKZ07YK1zkwo1cmkROoK35YYoRbtg3FxN0+dOwHCw6gnvDXWNTJ20cAoq9FGLfIqnvw95yMKdEahQrDqcdP0gVOfxRjjeBL1Q1MiF/WJ5mkQgzUI6+h3AjdN9UyFqgosktILEAbmUQesJakyjPJRuiCu5i6LCMMs7LDbOktvvs/SfIfEb1AsaHVRmbA23SIuf3Syr1Ee9WLsJIlCEuuERPl/6reXEG7CU2lw2YYWa6EqLUKC7ymWez7TmSZJDW+9MyHLDD/zRo9e96OhKD8Ove04K+fz+o+07BMT2kUFvTatF64wu3WP4miIMZZsaw9rNH6nSbC6hJ67YE0ZhYSrPbKtfXSS0vnJL6LHM9LtPWTg03zlWfL9vlu0RSHFcLIIf0wdeanSlIcDZjfuUk2mqCii9dJVJsYyvX7bhTyu9ihnCbaqUJ06frfF4e/8oUNQ5yU6dUh6bTR69wCd59SvXqT7+ktU04RwY9l9DGlDORhRHA3ItvZRtZij3/sWfqdF7cJp4tPrHxiSabUh3dkjWFvG6ywwwkcD9HSOnqeoeoSVimznEKsNMgxoNGoIJR3Fql5DSukWeYGP9H0XBlmUCKnweh1qZ9ZJdw/wmw2iM066lw9GCN+j85UvUBz0KfoDTFmBruh85Qv0vvoa0/duc/ivv441hmC5R+PKeeIzG5i8YPjH33c5Ok8Q6D6svHqN7htfYPTtt8l3D9FFSTmeokKf+NxpGlcvOlQ5iwydNMfkBY3nLpHt7JNu7RKuLSGDgHI6pxyOCFaXaT5/mdF33yG5/cA9kBB4nTbC89BZTvpon/qF00g/wO91HVb6/iOizTVkFDJ77xbJg23QhtYrzyI9j8l7d5h8/xrJ/W2K4RjpKcrpjHI0QXiS+e01FwQdR+hkjg0DVMPJmE2eU03njL7xXfLdA+LTp6imc8Jl59UxaYHOS1RTnMADZBA4b0tZ4S918A76WCHI9g7d47Tq1C6dcVPLfQcW6H7pFUdHS1JQCikFwvPIHu4Qdtsnxz3b73Pwf/4+1XhK7fI5VBhQjiaMf3CdcjQm3zuifvk8Ukn0LGHyzm031SxLvCii+TNfJr27RTGaYMoSPUvQWYrfaTiSmdZEG8eyaks5nqLzguJgSO+nXkc16vid5sI7J0jub6PzHL/lcq2i9VWQUE2mVOMZ+f4hMgwcGXClSzmcLN4DNZeVdDRE7x/hNWKqaeJut75EvjdAT2fkh32Cla7LBosidJIghURENYTvIYTAX+46T9Nyh8als4Qbq4QLCV10ao1wY+UDKYTJ3S1G334Lr1E7kSvqLGf/2kPe/Tf3SXvr1Fa7DmzQatPuRjx3pcnaymeT1/N50/MJ65N4eo7r1FrEqZ+P+OmfWOIP/rjPW+9NyDONMRBFkmYrZDyp8JVg7yAnzeDpvuozkrMpddxZPV1SYPDIpUIuFm9uKSwQQlArZzSzIQLByuQRnazPLOoisGS+k3qtTHeoFxN8nROYjCRoU3qhgwDonEY+JPMbwHFIpvuCr6QHKnDGcmMpVEBYpE89vXoxplbOCIsZy7N9+rW1hfxME1cJcTmjngcUKmYc9xC4hfH65AHhAmBQSR+DYBovMYm65CpCUSGtpVIhpRdRqoBWOqQzPyAsE5QpKVTEJOyQe3VKGWEEBFVOrgKEtXimQKAR1qKsdlMyoZycrcycJE8GrvEJW1TCW2TS5Gip8KuCsJqjhYdWPoHOKFUAWAQCZSu0UNinPDXHExoNuiLUKaX0KWWAlYsxA/C4ccH9rvApvEVAqfhR19iTyOzjhmZxn9Y6mp11mHOLegqOIISTjljhdJFBkVCq0J15o/FMjhEBxjqQQz0b0JvvUXk1SukyiCrpM6itcXpwizOjOxipFtM+iIsZvvl4qOqoSqkXM466G1TSR+nFG+39OO9PWNZ5UH+oqkUvOE00HBYoD8JQ0WpJZnPN3mHO+kpIu/XhH8U/jqfnwzyJn9d/HCXjiGCl57T3zcdSxXBtCa/TXCxme2As2faAcjIl3ztCNeuo2On4TVESnz9F+nDXSdoaNfxum8aV88gwoPOllxl9+y1G333beRaSFH+pjd9qUc0Tas+cx283GX3nGst/9idQUUj96gXmt++hrcGkOaLSlJM5nS++RLCxSv/3/phqNKP58lW3uEkz7MJYXuwcYCZzt9MuFeV+H6/dRPg+xWjM/Ld+n2hjjfZrG4Ale+TCKxvPX6bz2gtuUbfSI324jd9uLhb5hVtQzhJHT8wKVBDg99r4vc5JOGNx0Ec16njthsMlXzgNxhKd3WB++yHF0ZBqliB9RTEYo6IAW5WIMODM//O/oHbhjDPID8bot68Tb64Tbaw4U/dojMlLikOH6ba6YvK9a/itBuH6KtYYkrsPSe9vU3/mPAjB7OY9otPrP9LTAxAsdVn+c28wv/2AdOcAk+XYqqL18rNu11wbsp19sp19ir6buAWrPeLT6xTjGfneEbbSFIdDZBzRfOEZgq5bTKtGDZ3m6DRH1WLndao0ylMIT2J1hVePkCs9gpUu+UGf9MEjioMBjecv03j+MtL3Sbf36H/9O1STCcL33fErKkxZYasSnVsm79wgOn0KM5m5kM/1FcCSzxNM6UJn0ZpqmpDv7hEudygGI6bv3cFr1NCTGbPhGGEs4hgo0XDo7nKeoJMM6Smi02uYoiTb2cdrNUl299GTuZvoxBHxE++nfO+A+Pxp9HTuFvyNGtmjPY6+/ifMbt516O3tfWSjRrazD5VGKMX8vTuoMKB++TzBkkNl53uHbmqyvES8vkK00iN5uEu+d0ha7WOyimJ/gN9pIgSUwwmq7ry5epaiopBgfdm9rzzlmpZaTDWZ4bUatNdXXDOzCGxtPnvFod/rY/zVJfxuGxl4JLcfEqwtk2/vOa9dLUInKdlBH79ZJ1zIOsPlHtLzmd/J0eMp+d6hg1t4ChVFlJMZXhSh6jWEVEjPQxtDvLFCsLrM0k9/icbVix957ZqqYn7zrpOxLiaSJi8YXrvNu7cLRimsJEfUtY99MCTYWCYLzvPuDUst9mg2Pv0W5fOm5331o0bOn0Te9v5qNT1+7ieXiSLJn3x/yHis6bSVG0WiGYyKx5vowGfr31nU8WLq5DU5mZNVykmUTOWOibUo4+QKpYoo/Yh2MkAIWJnt0sqHjKNlsNCd77M820VZTVilLM/22GmFaBSNckagc7TwCKuUtfF9xrVlxvEKvs4QWIIyJ1MxjWqENIbci5/KXzEqYHWyRebFeKYkMila+ITlnFo+wQhBM5+yOnmXUKcOr11M8c3jVanz/VgSv062CAINdI4yJQInPwvKlG5ygLIGrQK66RGyKvB0zuGiAapkQO5H6IUcSxhN7sWLRschtkf1VaxU1PMJQpdkfg2Dy+0JbYUyOcqCsB5yIRsz0jVHuRdhpETqEit9NNJJ2U6kZYbH8rLjdHYP44Xu7487Vn5IvibcpAh7LHP8sCnPU7/0+DYCsMdN00IeJxfXk1m4+bFYK1C2dFMyP8IohUUirSGqEqJyTuY3iIopedDAWokVAf4CUd7MByjTJAkaJH6Lm2uv0k6OWJ7tEH7MZue4lK6YBm0yv+ayg46PoeVjNH4/fhUFDAuN8iAIDBLYWFNcvzWnWfN47eUfNh0f14/j6fkcZPAfdwkhqF04Q7q1Rzmenng2AMr+kGLvCFmL8eLYLZ5qTvbq1WJUPXaL4Ef71C6eIei0UTWH2g1WenidJrWzp4g210jvPWJ6/TbVLMVvNykPBqT3d4jPbLD0U6/j1WPG37vmgjGXu1Bp/F6P+Nxp9GxOOZ65KYdSrvlIUuxCtiYDH7nIObFFiWk1KSczbFnSevkqydYuxeEAO5tTHAxQjRrLP//VBXwA6Lap5imzd28RLnWpXTxD7eIZ0oc7jurVqJEfHC0Wm3W3e762DL6HnswoDvsuy2U6w2u1UHXnU5FhyNJPf4nJtZtkO/tUk6nL4wl9ZBjR/dLLNJ+/TLDaozga4bUbNJ91i7vDf/fHjlJVi8l2DvB7beLTbqoan1ln+u5dpm/fwGpD7eJZsJDtH1IMJhT9Acn9LWqXzpLvHdF88ZmPZfLWScrk7Rsk97cdWrjSpA+2nWTshSsk97ZI7mwhAw9TVtTObmKKgtnN+7RefY7Oq89h8oJyPGX8/Wv47QblZIYQguYLz5DcfUC2e0A1nhJurBAud5BCUCUpxdGIYKmD12nRfPYS02u3MKvLhOsrLP30l06evy4K8v1DR+yKI+cFSvPFekoiqMh2jrCVcQTCKMRr1p3EzYBqxnhRTDVPEFis1kzfvUPzC88xv3XfTXXqMcX2HuHqMkI5WqHfaWKMIbn9gHBtxYW3LnDojWcvUw7HTN+9TTWa4PdaVOMZwZrzj5XjKSgPoTyy3UOyR/sgBEd/9B2m79x0Ia31GFNWzG7eozoaEaz1AEE1nlEcDV3+VbaGiCM30fJ9/F4LC6Q7+xT9AaoWE62vuMDTyZziaEi40nOZTsMxJi3wuk26b3wBr9Wg8exF0q0d0nuPHHb84llqZzfwOk2yrT0mP3jPgRiUR+3iOo3LP026e0B65wHBxiomzUm39/F7HcrJbOGl6yMDn/qls0QbqyT3twEnMQtXepT9IXl/dOIPFL5PuNJz1uK8QNZiTFYSnd0gWBznaHPtR1675XBCcTQiXH/sY0sebHPwaExS22S9U2CTBFWLUL2Ww7g36ozsOgdHGc3P4Hvs86bnE9Ynlbe9v2o1xc9+dZmL5+r8yfeHzOYVSknuPJgxm2uUcuS0sKbQRpFmn+KT/7Cy7/P2POF3RyonrUJghIdAo6WilCHNbEhQ5QQ6p5UPWZ7t0k4P2eleQlnXYEgsK9MtpmGXZj4kMCVYUBhWx4/oZAMu77/NO5tf5qh52jUuzOikR2xM7lHKgHnUYRq2CavMLZy9mPP998j9mGG8Sq2YMg27VMpHWY1nKpZm2yzPdxEfQiUT1pCrkGFtjbnfwLMVYZXhWYNnHNK6nfY5PbrDqeFtlDUEOmW3c5Ezw9vUyjn7zTMkYcs5S4TAK1Ny34WUugaoogoaYGDuNxiHXbRUSKBezfF0gRAwjXpUFoz0sBqMJ7BSYaWgEgqQGOkhjrN2jlFhT9HZjk+dQQv5+OcfZ60sxOJ8f5xJx5N5Pubkd6XVGNQi+NA9tldleKagVCFWKDf9wiKMwSjpJAq2QiCICydlK02FER6zoIVvKxAWkTp5omdKMj9i6vfYaZ1nbfaIU8M79NLDj81ei3RCI+vTynuUXoxFIHWJ8T/7YDQDmAoqbTmwBc2mIks93r055eUXGnjqg0/WjyNv+7zp+Y+7rNZEp9dpf+F5pm/foDgaouIIk2aM37lJeHoNPU8p+kOXn9KsAy5FXilFsOz8PWiNasb0fvKLxKc38Fe6VPOE9N4jBr//J9QunUPGIdO3b4HnGpXo/Bmi1SWCXhtrwWvUyHYPqF8577T91lBNZuQHfarxFBBM373tPgqKCmsc/ObJcsGLFUIJUBKv1aD1whV0mpEfDEh3D+m89sLjhmdRXj2mHHqMvn/tRCqFJ0kf7aHTlGLhJZJR6PxGl3vIMCDZ2iW9v41IMoJm3eF285J8v0/vq18g2z3ApDkWQ7bjAkijjVXarz5H7eJZ1KJZ81tuoVkMx6RbOxz+1u+fTHcwoJo1ahfPuQDGICA/OHRWxtCnmqfMb9wj2z/Aq8XIOHK0ubuP3BTu9Dobv/QX8eIPD0U2RUH/D77N+HvvIqRExAFep0mo111+zYNtByyInUc0PrNB87nLiwX1hNl7t6md2XCLVGMoJzNnZPc9sC4XqvXSsxSHI/K9Q4KVLv9/9v4sRrIsze8Df+ecu9vuu3t47JGRa2VlZi1d1WSzu8SlWyI1GglqQMMhQD6w0Q8iIJCUILQECqQIQiJAig98IEgQIB/EBwmQBprRtKjmsEX1Vt21ZGVVrhEZe4Tvbrvd/Z5z5uFYeEZuVZnVlWy2kB8QmeEe5ubXzK5dO9/5/v/fXyUJzXRBPRyTXDqPt8yNssZgqtqdb902Mo5I7z6imS8o946WEkKfZrEAa5C+h4hcHo6eZ05GdTrG7yTEu9vYqnLZSKEL2K1Gk2U6u0G1W9TjCePfeRWrNX6nhfB8Jw2zTsongPzBPgbw11fpfvEZ55PtdkAKsjsPXS6PEnidNrqsqcYTypMh5doQf9XlLC1u3KYeugyccjxBZy4zylrtpmBFAXWN8BUqSRBKLc9DhWonVEcnyHbLnYeBTzDo0UznDl/eabswzyTE1hoZhwilqMZT2tccTjpYd1O5x1Om1vXL9L/6RfovPc/0tbfQZYUpS8oD1/Cu/OxP0X3+qWUgrKU8PKU8OGZ+4y5RljvPXuhTTmfuXIwCovM7CCzRuS2Hzw4DdO4gHdHuFvVkRj2dIaMQnRUEG6uoJKLcO6YuSmTgI+IIFYfozPmgsrsP3fEvJ6rAh2WoxjjJ/+OMy7x0sku/jbASpSTNcmPWocI7lAcnhN11ToYVVy/9uFfQj6/Pm55PWb+fSc979yG4fCFhbcXntdenvHFjzmTqKG5VpfF9tTRdfgKM8E+kPmBGR3xgASyxwjpimBGENicpZ8T1nE45IWyys3vpFmOm5ZxpvEZcL7A4EMLu9Da+Lmmkj7SWbj5kkJ9w2LuMtIZ+fkqhWqzkJ3TyIb1iTKeaUEmfpJxThB1KP8bTDecmt1nJjqmlTz86JQs77E5u4zclcZMSNvn7JkNPlkGQBj32Bu73ri32mMUDSuXwwa1qgddUCCyqqUiDDqfdXYR10IFxvIaWHo0K6JYTgqYg9GPmrFKpiEAXtPIFUTVn2N4hqhYI06CsRZgGLRVqGbxqlY/fZIRNTiN89HKhIBCopkQoixAGYxtq6WOFAmsRVjsJ2fsw0QLQjtEvFdJqsHbpE+JHND8ffP1/2MTn8Z1Zt4Lnvd8l0VgpsUu0tcABMazn/DzKNARNgcQus5NCMquJKxcAm4ZdlK7oVBOM9Ci8CGEt+/0rSKtZTQ9RApJ8iJaKWTTADK7j24ZuMf5hD/DsyBWGK8MbBLZhEq84yABg3jfl+Yx8dI+PwzqU9eFJxWo/IC8Us7lmpf+TaXo+R1b/4SxrLcXeEdn9PaqTEUIKonOb9L70AjovnIxnOife3SbcWePgf/rfKY9G0FTU0wXhWh9rDdXRKd2XnkWGIf7aChs//zMkV3bJHxxw8D//Gtmt+5THp6AN0fltTF7ib6zQe/GZs8DG8vCE8sj5Frx+l3rs/JcqCmnmKdXJCK/bxhqL14lppjPK4YR6MkXGMfU8I+g5NLA1xklfrUXGEV7y3iJfxRGmqhBKEe18eOfYWud3yL7zBvVwgtdJnJHdWqrRnGhzDbPSx2IdYa1u0GUFdYOKAuJLuwSrPXSaIYOA+MoFqtEUU5a0r18i3t3CVhoZeA6ljThreABnuj8ZMfvBO2R3HiJ9Rbi1it/rgjXUkzmLt28hA5cqr+cZwc4m9f1HLpvn8BQZBZSHJ2dkLLtj8doxw9/4FqoVs/ln/q0Pmb8f1/yNdzn+5/8nUnnIKICFpHx0hNdp0XnxaWZv3UIFAa2rFwjXBvgr/TNimz/oUt16QL5/jL9sWlpXL6AXGdmdB1TjKaaqkGFI9+XnnMQxX8qsNteQSXwGmogvnkNnOdVo6qYUUcTkd19DpxmqlVBN59iypJq5hXN0fsehzGcLmllKk2bYuoa6QWOpJnMHrJCOnNmMZi6/Jo5QYUhyYRtd18xfv+kCWbttWhe3CdYdZEJPZ6huB+Ep/DBk/Wd/it6XnsdWNYubd5i/8S7F/hH+oA9Vg/A9POkTbK1i8hKEcJPJvKBJM6QfoLWhHs7wkhiv36E6GdHMU3RRIKSH12nRLFIXuhnFiOUmQzNLUVWNvzpAhAEIQXF46qYcxyPnk1MKpES1IryWj60adFHQ+cJ1kku7mLxg9ua7DlcdOShEcvk8G3/6G5QHJ1SnI5CSaGudaGfDTRr3jhh/6/vUo+mSIpex99//v0HgZH+LzBHg2gntZ66yuHWf+Tu36Tx7BRH6Sz+XQPoKf9DD63WQShIMukg/oJrOUJ2EcGsNa4xDWmeFW1eUJZNvv4793e/jL0mKuiiINtdoP3uV+JwLE1YtN3luFinS91jcvMf8zVugunh2hOmFyFYbGSyJe0lEdTLGFCXw2Ui0P296PlA/St7243h6nqy6NiwyByrIMk2aGzptj3ZSMxpprFWUFVS1/eH5oT/J+tBjfpLytVwQO8c9nq6IqtQtQhdHbM0fvm95HOqSc5NbnLa2SZeErc35I1YWhzReQOXFFF5M5rd5e+vLeE3FueltOuWMcVLSqiasZYd4ywahUSHCGi4P33YeDNsgl5OpUJespweQHvzIh2iBcbzOYe8iR53zFH7C7vgWV4Zv0kifg8EVsJaoTqll4H53a53aj2iXU7rlmMJLOO6cxyLYnt0nFBmL7kXysE8nG1J5EZWX0EiPSWuT0gtRRmOlj9Al3ewU3VqlkQG+rtBIsqBDVGfOt1M7gomRkjzoOpiBKQnKgtxvLQM07XIBoZcNEFj5BIBAKjAar3F5OBXx0v9j+KGLePGxXzzxDOJ+Jw3WgjIGI8BKgaprgscoamtRGAwKLQOU0XiNyzASQpCUU1qFZtLaolEBmd8mbHI3dQGM8M7kj0m9YB726adHrt0yGjCETU3utym8mGm08omaHmevkUjdcG56j/uDpzjsXaLxP7jg+GwbIAd0gHShuX0/Y2c7ovmYDQ5r7afy9FhrP0dW/yEsay3zN28ye+1t10h0W9haM/v+O/hdJ33pffFZ0tsPyB/sk928j8krgn6bOs2pT0c00xl+t0OwtYbXblEcnND9wnXCjRVGv/ltFm/fJn+w7xbY1tKkOaasCDZXyfePSG/cRnU66DSlns0xZeXkOl0XrpjdfYSMHM65HI6ppnO32REGyCDA7zqPps5ydJpRFjXCk0jfR7YSgo1VhHDkJp0XgKCezqhHU6KdDbz+h4mD1cmI9N27yCgkuXoe6bkliy4r5m+9i0pi+q88Tz0cs7h5n+LuI4ftTRLiKxdoX7tIfGEHU9cs3rxF8eAR4cYaratLHLIQCCVQUYj0fYqDY+LdrTMfldUa22iyu4/wuy3Cc5ukb99xQ25f4fe7DsCwd4jXbTmaiW6o5wvK5TRJ5yV6kSEjH1NrdJbTe+U5BJbpq28Sbq7RunrRScNaMf5Kf+nJqjj5l7+DzkqSZ8494c20VKOpy1wRgmh3k+7zT2GtC4isl82E6nWQgUczW5C+e4/01j2q8RywDtJwcZd6PEElMUIKTCtGL5z8ylpL+7lr+J0EL4ldw3MyQsUhqtNi+r03neckjtBZgep1CNZXWbxzy9kjldugM1XlmloBspWAH0BVUh0dOxVJ0zhJvydJzm1hjcHrtVGtmPooc69NEtN99toZ+KGZLSgeHRBdOIfXbdGM3flj64bp994iv7+HzguC9TVHrzMG1XUNi6018YUdpt99k3o6d3S0JEK1Iia/9xrF/hHBoE95fIrJclQ7wYsi97ONRi9yKs8jOr9J/6e+iK0b6uEEBKx942vkD/Ypjk6Zv34DnRfunFaSejrF63SQgY+parxeGyEl2a37CAT5o0MWN+8SX9hBz1IW4ynZ/T06z14juXbRnY9C4A+6bsJ27xGn/+I3MWXjfGJau+mXktTTGdXxKSJwOG6kRCUh/ZefY/Lt1xn91qt4PQdEqKdz6kmJjHz8lT6bf+bfIjq/w/Bf/g5y/5BwcwMZ+u5cky7I1pSVy/ERkvHvvkZ+cEy0uYr0FOOiwut3Wf+Tf4S1n/saXrtFfGmX0W9/l2axoDocgtGEvkFOpuiTGcEzT72HqNcukLWoDGsrnzyQ+9PU503PpyylFGVZ/lg/u39UcPd+Rpppmsbw4FFGVWmGo1N6rZo49mkWHwnu+exLCufDOKvHf19KqqxBmYZWOWUtPaRdjlnLDgib/EN3FdcZ5ye3qaXvcKKP81N0zkR6TOPzjJMNsqBNW48ZJxu0iwmtcsY8WiWsc1r1Aisk02jA1uyBI659Sv/Gk3XS3ubtra9SeDGzeIARHnfWvsD58U2eOn0dZTUH/SvMoz6ebojqFGUNSTVjlqwS6gLf1HimoZGSaTxgEQ6YJOtgDFqFGKEovZBGhWeY6UYqkAIrJXnUw0gfLRRaOl9LLQOM76RqsZ5jrKRWrumy1mKUaxS9piTQORZFXE3Jgo6TZz2e8pzlj2qkqdHSQysnjXP1RODpRzY1n0AgZsEJFi1IgV56vbCuwTFIhNVo6btmT1iUaQirFCyUfoxBUAQt4iolqRcUfkztRUirCasFcZPhmxrRaFrVnEF6TLn2DEXYoTYJtReRlDNa5dTlFVk4ae/Qz07dhO9jzpFaeKR+CyEkhQp5NLjO2ztfpYr6P+JBf7DZ+P03QUq53lS5PEayrCHNNMNxRa/j43nvvRaPM8M+R1b/X7vKwxNmr72N122/z78TrA1I7z7k6Ff/D3qvvEA9nbG4cQcZBISbqw4h6ynq6YJ6MqE6ddh24UmSS+fof/kLLN65TXk8dAbzVkK4uUa9yKjHc9Kbd4nObyPDkNmb75Jc2iVYW0EG7jNu/Luv4nXarPyRV5jfvMfsO2+Q3rmPqRtMXhBsOWSuqV3YZ3zxHOndh2S3HxBuukWnCHz8KMC7tEv/qy8Srq1QDydYC8GgQ+uP/zSLm3ddY/DEY7fWUuwfo7Oc9jPXzhqeerZwk4rJjOrmPazWBOsrtK5fcjKdyYzk8nn0bI7wPayx1KMp8aUdiv0Twq2Ns9+hkhi/36MejgnWV6kn87PFMEA1miJ8B/zRVU2xf0L26AAeHeC3W6il9Ks8HSNuPaT9zBVmP3gHU9VnOObH+H6dF+iiwuu2XEaSNlhrOPz//DrJ5V1UHLkMnp1Nel98xvkxDk+IttaeaHgABMFKn2L/yDUVeUEzT0lvOyCDqWu3QG633DpCSRbv3EYlEcFKD1NVzH5wg+z+HvVw5MANSUK0s064ve5CaJOI/isvsPHv/DFMWmCKkibNOP7nv8H0e29Rj6dEO5sIJTBFRfHo0Mmq2q65aGYL9MIFhsrAh8DHH/QwWlON6mUIpkAK4RrLzJDVj2hdv0y0uwUI6pMRMgiX3tP3Hr3XbROd20IAXqfjAlbv3Gf2xk0Wb98GKWgmU1SnjfTddTPacl4XYzS6KMke7BEM+iSXdl2jMJqiAg+hfKqTofOltVs0UzfhNHWNqRua+QIVBrSffwqq2sk8T4Z0XrjO5p/54+R3H/Dof/hVZBLhrfbwloGxMghACsr9E9cY1xUqCkFKjn/9dzBpjtftUI8mjI9OHUygkzB77W2SKxfwOi3EUoFjmprqdEx68x7Bhsv90WVJfvehw7lrSz6d43faTsoWBSxuPWTw1S+g2gnprfuAdTCOc5vI0E1bAUQS48URwcYq3S8+jQxCmkVKau/hr/aRge9CX+/t0UznNIsFJs0weYv4+hWsMZSHJxz8T/+7Iw9+9Yt0nr7M8Ne/SX73EeHmOs1sQbiYEXh9ssEWcZFiT08RGxtU0wUL1WGw/jm97d+Y+nE9PaejirduzLEGhqOS196ccvdBRlFU+L6i322hTeXic5brqg/1IZ9lCQlKv7emWzY6wmiEFEjT4OsCZQ1WCCoV8+7ai6ymRwSmpFeM6Oaj93longQHAGihOG273RpflyTV3E0HfJeFE1YLjnsXAEtZTR23PTuhl49+Xw9NC8W91efJgxb9/NSNn/0WjfI57F7k2sn3uTB+13lwVOhka7pgEfbpFSNyv8UsXqGbDQl0QVw7lLQRiriaE1cLahVQqdDl4kiFtA2Vn2CsxNcZRijmYc+lRdc5SjcYJfCMxNc1vfwUgHnUQyvf0ds8hW9qrPTQymGthXjMupNO7iaWH4ZiqaM3FoRyvp5lrpITzH6aDJ6PKPv4P0uQgcXdp9UgFLUfgxREVUblu2bOs5q4WtB4gZPnAQixnPa1AeOeOxlgkORhZwmMcB6dRbxCpWJa1QKhNZUfg4Vxa4NptEqgC5SskUa7AFvTsJoeEj3RiFsgVW0OexeovISoSbm/8jRvb3/5EzQ8H1U/3hTojLO3fBk8JQg88H04Hla8/vaMOFL0uh7Xr7To9xz68/FU+XOQwf+1K3+wj9UG1WmjtcWpigTl0ZB86U+pJzOsFaTv3ic8t0Gw0qXcO0as9AnXV/DX+gj5kPjSOdrXryx3sJNlhs8KxaNDVCumOhlSHZ1QHhxiak3+6MB14lWDqSqa2RxblI6OlhU0kwUn/7/fobi3t5zuuEV3dTpBT+YUDw9oXbuIUBLTbpFc3sWUNSIIAEF5dAoS+l95mXBtBa+dEJ/bwt9wf5dBQD2eMPrN7yKjAK/XIVwbIOOQxc27ICT1eML0++8gwoDq4BhdVrQu76JnC1QUOjrZ4SmqFSOUdHKgpsGUFeXhMcGgR+v6ZU5+/ZuY8r2NESEF8e4W9XBCPZlhliGd1XhCM1mAgO6Lz5K+c5v67iOEkrSuXSK7/cAFRt5tkHFAtL5K/+XnaT/3FKPffpVmsiC5tOtAFJMJRrvFtkBQDSdkt+6jFxlCScLtdbovP0tybgudF2T3HqLTDK/fPZPsfVTJKEQYizWGyWtvodOMYNBzvhdjKE9HFA8OMEXJ4Osv4bUTrNak796hmS8IBm5KlVy9AI12C/9Wwvof/2lU5J77o/+lRkaBy3TxFNndBxR7h4TbG66ZAWQsEUWJ9H1aVy8x+/5bTs5XVihfIYTE67bwBj2ym3cR1skGrQUZBzBZYJRrmsuTU9SDNrasaBYp7WuXaBapy7J5olQ7oTw6ddP/0Gf2g5uYLAMhnWSzKKmOhuhFRuv6ZbxuGxMGmKI8a5Tazz9FdH6b9OYdUMpN2B4dUZy4LKh4dxVdNJj5gno8w2iDP+gRbK9TnYyoj04RcegCUqOI6atvEG2tu0DWVkT6rssqMsYQrPRdcG1euE9k47wzeB7F3jHxzgZWa/feM9bR5157G9s0IAWbf+aPU4+nnP6L3yF7uIf0fcLtdbxOG9M0jL/zA6rDU/cYPDcd8zttZBA4D9po4hqmyr2e9WyB38+dNyvyMY1r4A7/x/8vwdoqepHSPHOZ9tPXnNz1dOQgE0qCkqR3HmLKCp2V+GsDN93zFFL6JJd2Wdy8y/A3v03n2as0aY6/2mflj3yJ6nSCKUrqoqS32uW+t83b0xz/xoR4EaEsbL+4wfPP9j8Tcht83vR8qD4redvBcUHTWNK84Ts/mDIa5whKjPXIC6jqGiEgiiDLAQtxDFn2frfFZ17vw1hbAl3i1Q1eU6CwRE1K2GQs4gFZ2GEWr5KUM47a59iZ3GVz/gDvY4649GIKP6FVzij8mNxfZxEOnKysyenkpwyyYzbme0RNRtxktIsJyv7+PFSZ32YWrZCUM5TRxHVK6Sf4Tc48HnB/5RlqL+QxFrpVzWmVE0o/QQtFoEtqFSIfU76smzrtTO8ySdbIgjZWKKImJbeOPiYsSK0xnqTGkdQkGl+7aVG7mmGBbj6iW06oVMAkWUcZjbTa+WOEQksPYS1GSrxlflKpIhov4rHUzWncXGCpy/4RSGEIdEmlQufrMeY9stqnqmWj83GwA/Ee9UKrkMozSNugTIPC4c3DPGMSb6KFdMG1nofUNYEp8U1N6cWUXhthDHkYoKVHrzih8DvEwuP5/W9SqZi9lWtMW2tuomQ0ndmUXjlmNTsiqlMWYZ9xssH2zGVPGCDz2hx0LjBs7yAxLGyH/d4l7I/1XHywnryPJ83b7vsCiJYblU3jJve+t+TtGUsQ+nTaHmuDgK31EN+XnI4rbtxKefkLXYJAfuqmx1r7uafnD2FNH54wWggmb8+w1hJHir4qkXfeBeEmPsHaABWFzDdWqQ9PwVinlx9PEWGALSqCtRUnjSpKel/+AhiDKStU4kAdzWRO9nCfajzDGNyERrtsMWMMQVHhdbvEF8+B56GFoJrOXLaM7+MPuo7EVlREm6tY4YJUrWAZ/JngDzrIIEB4ivj8OarRiPLRMSYvqIcTir1DqtMJwlOE22su4HOeosuSajxB336IEBZ8n+rwBK/fQy9ydFYsm4gZ3RefRsUODlAcD2ldu4iMfHSWE66vorMCv98hvrRDuOKeOxH4eK3YZRk9UeHGKu3nnmL6g7dZvHmLcv8I1W7jJTHBap/y6ITF7Xt43Q5+p00xmYEUqFYL4ddUpyP8XpfOC9cJ1gZ4rQS72sM0DZhldk7jNg9VGKCrynm2lCTYWKWZpdSjGZzbQsURycVzZHce0qQZ/qBPNRyhi9JNBpZljaEaTbCecvSyt27TfuFpRBA4+WCau9ej36UeT87kQ9VwQrF/7MJcJzM3rVu7RLS9iSkq6unM5fTc2yO984DF27cd0at2wdn1zMnjyuMhaOO8x7A0ogtkKyLY2cAsMkzdIDsdwo0VvE6b6uQUW9WoThuvHWOKivjyOYqTsQuDLSqa8ZxmOEb4Pl67RXT5HPXREFtUjprXboFwwaOL2w+JNlawdUO0vUF+f4/8/h5NluNF4VL5YPE67fehwcvTIdHWOipxcj6TlSBgfvse1cmQJsuxTYOXREuEs0d85Tym0URba66hFyC8gGhjjfbzT9F++jLV8YjxvT1UGLL2b/00weoKp//qd1G+ctLH5XvMFiX9L38BosD5iQLP7XDXjUO4ex7NfIGMQ5ppzeytW0TnNhn91qvkD/aRrRiT5c4nVVZnvrx6tiA6t+WaeuE+s2XgQwr1ZEaQ58Sb6wSDLrrW+L0WZrm5Ue4fuXyevHTvz5MR5XDM7PWbLqx2lhKsu7VavcixVeXCisPwbAL7ZPmrfarDU8pDt8kspKJ1Zdd5y+KQvbHlZH+KlDlh0GZWGYo+PPPyOb72J67S63420jb4vOn51PXjggyyTKO15cHDnMk0Q4qCjbUWDw8aqsrt3teNy7d6HHJozL/mhmdphn//dwxGSrKwS1LNkdaS+j3nY0fwqH+VUBcYBIfdS7z06Dfo5SPiaob/AYKPtAZhLEZIgqZYks8grFJSP0HpDuuLPdZnD2npHx00CVB4MWnYBQRhkzss9AeeNXk27XAL9qhOaRcek3iNRdgjqlLWF3t0yjGn7XOM43WSakZSzllEfdeE6AaLdHAGKcm91nJx75qNRigaz9Hj4nKCRiK9mMpGNDJ0RlvrFhfNUvZ3fniDlfyEVjnl3c0vEdYp87C39J24UE691EZ7pkHqhlY1o/FCKh2hpcLIx2Fgy4ucAKE1CAeLmMdr1Pg0H1o0249uYj7ynFjm+3ykKk6CbfCWWTqll6BsRViXCFszi1dRpsdj5DlEhNUCf0lpq1SIAOdzMgVgaVTANNmgl57QqmZ0qhkwIzmcM2ltMEo20Ei2ZvdoV1N8XTtQhDXMowGb84cIa8i9hEXYA+URVwtQirsrzzCPVlwD+RMtwQenQBaoGkWnBRurHqOZe0O3EkkUKYJAMuj5bG1EBKFECsH6SsDRScV4WrO5Hp5BDD5JejtAURRorT9vev4Q1XhacedRQXqSEm0nSCmYzhvGd+7RLRdsP3OO6uhkaSqXhFtrBKs9R4fqd9FZQTOZIaMIL4nw2i2Sp6+gotAtJhuNkBKv22H0zdeojk8xRYnwfYRSiLp2uSdAM5mx+nNfJVwZMPyt72CKgno4pZmlxJd3sbV2cIHhxE0pNlYp8tJ5XlZ62LxAxBG2nOIPnGysmc7x1/r4nZhgY4XFO3cojk8xS1R0deIm+fHuNt2vPwtaUy9yJt96DZnERFurBOsrWK3J948QQjD7/tvIKMTUNbZuyN69h0xi9DyjiSJWfubLxOe30IsMUzU0iwwReETntpBK0iwy5/dYVri5ii0r4vNb9H/qZScFG3RRSczi3buUxyOsttRDZ/73V/rYusHq5gzNPf3em6z80S/jD7qoJEQEPvVkTnE6wpaVm4TVDbZuqMZT/E4Lv9dBLwqayRSrDUJJhJTOKzSa4rUTVByQ39/HhCEyiahHU9Jb95m9cwsV+MuGBMrRhPj8NtHmKiqOiXa3SO88oLh/yPS1t4jPbzN7/SbZ7UduQT2ZUQ0nlI+OCNccQrk6qZl97y38fgd8j+poSGd3CxX65I8OEdqQXLtMfuchfr+LjN3Ewvl9ImQSEa68QHF0SnrzDsJTmLxAIzB5BZ5ChD5nHyZSoULf/azyMGWJ7LRIdjbIHx4w/s3v0P/KF+g8d41q2RyBpRpPUb5HfHGXejgmOrdJtLWODDzq6QJv0CPY2aA6GlIdnxKur1ANx0jPcyG1169gdUMzz6gXGeXBkaOZJTHePAXPo16kmLRAJRGDn34FFUeUB0fUx0OiCzuOUJdEtK9fRgUB8e4W+aMDTF7SeeEp4os7+N22A5CMZ67xtBZ/fdVlCTWG9MZdTF5hmoag332PcjbPkL6H321TPtjn6Fd/A5OmeP0OKggopnP0bIEuK/IHByAEtnHTMncfwoUMa+chE0IiPd9J7Y2hdWWXeHeb+Zs3Wdy4S3xhC6xEH57g9zpuM2W2oNw7xlvpOslrFLpriV5QlyV2Oie5dJ56NMFf6WPywuUOIdwE0lPOX9dKwBqKwxMWb9/m5LRgqtr0z7eQswmmHMJ2TOfffpZpHTiZ9+dNz7859eM2Pd22x537Cw6OhhRFzflzfYyReEojI4tunDJJN+C798YTuOpPkp/yk6gnmwXtCGJIjNUoGoz0nNfEC7EItBcihEFLD2vhqHueGxsvcfX0bbrSY6U4fT/koMlol1OmySrCGqIqRUtJGg2I6wWr2RHtao5RAXyCpmecrHPYvUitHMZSohksDtmcP2QRDZiHfawQtMoZ3XzEsL2Fp2t8UxPXKdNolbiccmn4Jt1yirSa0kschMHvspodoaVikmzQaUZIa7h+9CoAb+78FPNoQKucYW3DcfcC87BPUs2IyzmLeIBvarR2MjiJReoShETZmnk44M76Czw0NWvzfSoV0CmnpEGHSbLhLmLiPeKYMJraj5HlFCM8lG0QjaEK3MVBYjGAMA4jrZVHI93URAvnK3p/iU94Sv0IkpsFhEfjPfYPWbQJyH25bPIMRvoINGGVIqymkT5aBggMFvBMg9WVC3rVNdLUzrtTL2hXM2rlAkoTnRHP7uHrmqScsTF7hFZusaalovJi11hbiwWmwQCJo0b5VjP2+hx3zmGlpFKf3UXVlXJKfgN5YYjDjDhU5IWiqlxA6XzRsLEWsLbiI5dNjVzunD4GG3zaYNI0TQE+b3r+kFSjLTduzck76/SnQ1TsFr2xZ8jLBbPGJxlntDyHc1VhgJfECK/tdk+vXXTNRl0jfJ/01j28Tpvi/h75u/fQdc3i5l3yR4dUpyOy2w+wVuMP+kjPGclFECIwRJcvgDZktx6wyN9lceseXhI7PK82+K2Ex9eCajqjODzFLFN5i/EMU9aoKCDstjFAsLVK+eiIejon3FxDFxXl/gnFgwOCfpfF6ZjJv/o9hJJ4nTbZvUfkjw7Y+vf+BML38HuODmermmaeOplV1aCrivp4hOokdJ59imh3g+pkDNaSPHWJaHMVYQyz195xyGLjrgGmqhh8/Uu0rp5n/uYt6vEU1U6wdeMWjsDaz/8xovWV971Gfr+H12m5IMijE6zyMMURpqiwRuP3Ogi/R7F/TD2cEJ/bZHHjjvOFeIqg26FIc7AuSFT6HiqKXKDp6ZjW1QuYskZn+ZmXSAY+XjdBxQnV6Yj2c09RHhyT3nvkQBZ3H2Kywkn76ga0kynqqiS+sIPwPabffdMFmu4dkt55gOq0HH1LOCqg9H10WZPef4Qxhvb1y+g8p5kt8DdWSG/ccb6q+3tu27CuKY6H9M5tIVsR6e37hJtrVKdj6ukUGUbIwGPtT/xRVn/2Kzz67/8XysNTdFaiogjZTuBk5I7BcxMfIQRoi9/vUuwfObwxFhEGLhD04SHlyZBe8BzRzgbNbIHRmjrN6by4S7A+oJk4H5tqxcTnd4ADhIXkwg4qitzi/fAEU5b0f+arJBd3mL3xLmjN5Luvk99/iClrJ4ErKogjkvM7CCnIHu3jtVyQarS5is5y4iCg89w1N1FtXBPLkvgXn9ti+oN3aCZzpO8RXzyH12tTHp7i9TpuunVhG+H5mPkU6SlH5SsqxMp713nTNAipKOcTdN1gqwJv0HMUv8AnWOlRT+c0k9kSWBEglEeTpi4DqdtyDU9ZuoY/Dt2kBrCNIRj0YIkwN3kByqe4v4eKIqILO5RHpzT399xep5RUozHVcOxAJNbitRMWe8cuQ6zbBgGLd2q8Xodoe92hzZckQX9tgPA8B2lRHtNknTCyRKGAlS7l3gGh1MRS0yQejw5ydncSAv/3Kcn/mPq86flAfZJw0h/H09PvWo6OHlKWkk6nRVUJ9FLGgBBoKwkrTaMtVW2c3lW6ac+PJG/9ROoJf4I0yy8tQb0ABEprAl2wNb1HFnY57p6nXYyp/BYCSOo5ViqmrQ3MyZsUQZu8zkieaF5qFRLonFr4TNrraOkRV3M6+Zi19JDV9MAZ4j+BlKfwYg67FxDW0M9P3P1Ln3GyTuVFzOMVpNUIa5kk6yTVhKKIWER9wFKqhFr5hHXONFmnUSEr2TGD7JjSi8nCDr6t6BZjtqf3WUmPiJoMYS1H3fO0yymLoMfd1Wcw0kfpGgFkYd+5XozBeD5Gefi6JKwzKj9BmoagLphHA/KghTINlRfjNwWlnyAQROWMRbwCQuKbBqVrmmVOTy19GqmoZeCAAhgwIK0LL0UIfF1iCZnFA7QXLpVXnzCz54fWR1H+nvD5nH1bYGWA1jUeFot2Om5rsFgaKfGrjNqLMFKh0cv7kUvTrztQC6wuDhknW0RVSmAKCi+hXU6QumYWrxA3KY3wKL2IPGizPb2LwKKByk9YhF32Bk+5SRuWpE4Z+20K/+OzMX5SJZaePG0keRXiKwgDS1XXLBYVnuexfzDn5m2fq5fbrPQ96triKUEcL3f8PmUw6WKxQEpJ/EOyPz6vf3NqMqkYTWpWn9nF5Cfow0PUxoaTrimg0kwfnNJ/8TwmLyj2jmgWKdXJGOEpvHZCtLmG1Y4w1szSpZxEOrLUPCV/sE9+f3/pqbPorESKGSZwO+5+O0GXJX4roToeUhycLE31If5Kj2o8czvKeweopenZVI2bmIymmKpBSIspCpLL57CNJlgdEHTaVOoUf7VPcXRC66lL5PuH6LJg8ep90nsPqQ6PkVHssL6eYvra25jKhZeqKMIas5SALWhmc6rTEdXhCSKMUO2Y+OIOMvCJL8SUx6fYvCS5donJb3+HJs0IVgcgJKauUK0EnWUEayus/dxPkd17RDWaIuOI5NpFZBx9qOEB14AE/R71aIrxfZqTkVuchz7BissF0tM51cmIajSh+6UXqE5GzG/cpTwa4nVaeFkbW2sQ4Pe6qDikODzBGkO0u4Wepw7tvawmy/G7XXpf+QLTb79OcXCC1207aE5RYavaZaSs9qhGU3ReYMuacv+Evf/hf8VvtxFKoLXGao3wfZrJzHlaeh2qvWOq2QKd544k+e49dJphqppgc43s5l2a0ZTWs9fwuh2aNKM6HVMdnzL7wQ2CQZdiPEMlsaP8KUeJCzdXUGFA68oFBl97maP/9dcdev3CDsKTlPtHDm4Q+u7cOh2h08wRRo3B63fx+z1UENB94WnC9RWHWv+f/jnh9sYZ4ck2DcELT6PCYPm8uc+hcGcT02iyOw8pD04QAsKtddpPX6b7hev0vvyiQ2nPFyxu3kd1OjRpjjUGWdWIyCfubjnJmZBI6aGSyFHtBAT9LvS7+L0utq4x0wWmacgeHJDdfUj+cJ9qPMU2De1nriBDn2hnCyE9ir0DFypqcWQ/Y2g/f53i4YGj/+WuiXWyNI/y2Mn6VJKA9FG+78AYviPhRDtb6DwHAaZyGw5mniKkJNxcc/lJh6fYosBbceuSYG3FNXeVk8GbssIqSbF/RHk6ItxcpR6OUUnkICDzlGa+wBrrpsWthHBtgKkrbFFQFQXJ5V2inS1s3VAcHJHeukewuuKylyYzwp1N/F6b8miIPX+BvLJ0YyfRrGcLRMe9H/ThIe3rfYajijRrCHqf09v+jahP6+lJs4Zbt4959fs32Nka0OkN+MEbMyazmlbs4SkYTTRJbGm3FHVtqUqD79av/JiguE9Zmvc1VcKx+aXV5EEHvykJmxytfI6755eL79BNWDAoXVGrAF8XSNMQ6ZJYp+9bIqdBh73+FXK/jcIt5PEsK+kxg/zE7cgj0dLDa370g86CDrWKzhoecBOD0otZhH020r0zapwWilk44OrpG6Rhn2FrEyLwmpxRa4u7K8/i2Ya1+R5XTt+gVU4ZpMf081Pn9RGCyo/xbM00WuW0fY5BfkIWdBi1t/CbAs80+Nkxi6jPPOwTVBn99IhFtIKRisCUFKKDsJZ5vIIWCl/ndIoRvqmwQlGqgDR0H9LCWoStkEZjhEM5B01BFvXAaqyQGLEMKBUWjY80GmFcNo5nK0ovxC5fS/EYcy0+ZfNs7Xu9zY8EIiwnhcL9nCPLSQQCz5QYIfB0jZYBlZcg0VReghXgNRUSjbSNy/pBkIZ9ZmEPISBrrdEu52xP7zLIT2hkwH7/MtPWBmAR1jLIjlnJjs8O4bS9xcP+U5RhCyskqi5Jgw65n8BnPul5b27qK9CNoCwM/a6HxcNay+VdGE4qvvf6Pnv7HhfPt+j12jx1pU+/u0Tz/hgZPa1W6xPL4T6vP9jKS+38Xd025osvUr35JubYJdvbNMXLKqrNLeqiovr+O1gh0FnpJjfDMfV0TvfFpwnWVlyI4RI+kE8XoDXpnYfYunY5NGmBarewZUNTVfhhQHxh20EODo9dYGdR0jq3hdUNNG7C4iUx9XhKcTjE73XRixRblKiddaLtTcq9I1QYUE/nlIcntK5fJt7d/tA5aOqGejSh2He5I0I6xL5qJ27BVmuUryj3T5hhCbc3UMpzwY1xRHk8ZHHj3lKVazFlTfHoAH+1j2on6LTAVCW2qkiuX0YIWLx7n2Y50fE3V6hHM+Zv3mTj5/8Y8YUdt2AWgsXbt2lGk498jbxOG2/QZfbObarhGC+OHOJaSYdyHk9pP3WJejShGk1Z/+Kzbipz5yFeHOGvDrBaY4xFSuEW9e1k6Q0R2KpBRhFymdVjqhqd5vReeg6vldD54jOEOxvM376N1+tircHvdQk3V921NYlpJjNnmi9qmvmcppO6QM48c83pPEMI66YHR0OstQhtUN22kyxZ4wh/Urlw2abBW+2jWhH5/hHNdLH0sXhkdx9QnSaE57ZJrpxn8fZtrNG0n71KcmmXYu8QrCF/dIBqtzDjCfm9PYKVLiqO0VnhFrzzFBUENFmBTnMHwtneoPPcVYL1VeTS2+L3Ovi9NsmlHcLNdVS3xeR3v0/67j16X3oer5XQTOd4vS7S90gu7Tqi3zI0c/Vnv0r/Sy+4HB0hIAyIL5xj/M3XKO4/cp6VLHeY67BH6+I5mjSjODhxZLdZRj2eEZ3bIr5ygez2fWzjJJg6yzn+1f+T+VvvOsmoUvj9Dunth+SPjlBhCNbgr6/SefYq/qCPSiInxcxyui8+w+i3v0t64zbp7QdgjcuxUsp9tPseqt1CBm77sDg6dWoRTxGsr6CS0MEIJnOC1R7hxprblChKZBwvgSNjgo0V+l/9IsnFcw5hfucB1fGQ8mREfTyiPDxBCEU9nqEXuZs+ISByYapeNyY6t01yccflPN17SOupizR5QX0yJlfLTZbRjCbLUVGE6rSWHrljJzG/tEOa1zSTknKhKStDToBdGxCUmu79E3qXr3+2F1w+b3o+dX0aedtkVvF//OYdbt8+YPf8Dp1On04XVvs+3/n+lIOjEotg0POotWU8cTtmerlaqusffv8/mfpAw/O4pEfttwGL35QEjZtOzMOeG3VLRaFbtOoZlR8R1xlKVwyyE8ImW/pS3AMwCPY7l5iFA+JqTmBq2tmIh6vPMksGRDpDWsMsHLCW7hM2xYeP5wNlxeNsGleZ32IWrXLS2iLSBXXmGimJQVmNWjZV106+jzLPUXoRo9bWmaG9UhEPV66jVcSVk9dZS/eZJJuMWhuOkoZFGk3hx3SLCb6uyP0WSZUCzkvST4+dnCvZQArn3dme3mHY2mISr1Mrj1IFID2UqZHGUHoJ2gYkxZQiaLt+QUj3HLh+Bi2lC/MU0j0mU1PAsgFxUxZra+JyhliGhIamATSFEBi1zOqxn3YhvPRBWbukwy2/914X9P7bWv0EFVuAkGjAWzbNvqlRpoEmBwRRvSBsSmZRH2U1vi6Xwa2AZ6lVyLC9zdr8YBlYKknqlLjOgIxLp2+Rhj2MUM7PVc3OMpwAPF1RBzGVclOgJvbccXmffcOz9JEiWEZ3WENZw3DaICV02h79XpetbcUirdBNyXhS0ApPOT0SvGNWWFtbo2maT42r/rzp+cNTUohlRIFF9nuEP/VVzGiETTPU1ibVW7cRTYmeuFDIYu+IZjzBSyL8lYuoMKSZpYQbq46WUdXIfo9gLXGm5yjE31ynXmTIQBOe2yLXxoUGxhHRzqbL2Cl7Tu4VRwjhcnB0VSOyEhF4BOsDypMxTZo6f14UIMoGk+W0r10k2Fwnf7DndutbsbtsGOOIVNM50fbGcud3SpOmWG3QaQFS0swXUAVOKmehvb1BPZohPQ914Rxeu4XXTqinc6SvUN0Oer5ASElxdMri5j2M1njtFtL3GP3Gt4ku71I82HcoZU+hcyfzUUlEPZ3Re/l5d0zLKao/6IJSLqwzeP/1wTSaejKjeHRIPRxj150xn9iBBfx2QlNUmLIGrfEHPVb/6JeZff8d8of7eEmM7XfReUF8YdtNCYB6OndNxL09ui89C9pQnY6oJwui3U3qyYz5m+86T4an0PPUIYnrxuW8LLcVhRDYRkNjaKrKSehCH+lJtLGEm6sY7Whu1hhMWiAjH9Vp4fW6eC03JauOhy689XhE6+lLKN8ju79PM3HwAlOU1LPU4Y21BgP15qrzTqU5nS88DU3D5O1b5PsOXNG6eoHqOEHFMeHuJp1XXuDk136D8tGRmyBEkQublQIV+ug8J7u3Rz2cojot8oeHRNvreHGIvzo4w7lHOxssbt6jHk9Jrl5g8fZtqpOha+qbBukpgrUBg5/6Iv2vvHjmlQFo5gvmb90ivryLt9IDJSmPhuApTFY4Ot25LfovP09xdEJ1PKTz4rMkF7bd1Ewq0lt3KU5G6LSgGTuZmtfvOvR0r0OwsUZ296Fr2jodmtGE+AtP07p+CWEs1XBCcukcpm7cBKXfwxQlKmm5ZtiXBOurlPtHbmK3SDF5gbBgigLbbVEeHiM8D+F59H/qi/S+8DTF/vHS1+POa1M35I8OUUlE++kr7jjbCUhJPU9pJnPqPENKD9HykUo6AEduaBY5tqwIr1/C73cJN9aItjeohmPU6Qiv1yXYWCW9eY9mli1R39YFna706H/5C0jfozw4odh/RLC2SuvcFgevHnN8UmJCgddt4wU+9ekJ+6eavRtzrl5q0U4+u9bk86bnU9YnlbdprflXv/EWd+9N+epXnqK7zM0Yjio8JXjxmQ5XL7WIQsnWesS3Xxvze6+6gMUwEJTVv45w0o9peGBpcHcL1zxou7DJJSLZCIGvK4yUGAtBXaKRJE3G2mKPRTignx8TUGOBo84Fbm+8QOknNNInaEoG2REbswcAZzK01fyQQXqCx49uKqM6RRrtgkSF4qRzzmGehU8ja4qghWkUrXoOOC6bxGKFIg17LKIBIFhf7FF5EaWKWIQDKukxyI+p/ITT9jadcoK3RG/Pwj7jZJN2OaNQMZN4nXFrw+XuKJ/c7yCsxgpBWGuysE/pt8iDDkZ5eLpCC4e0boRP4cf4QpJLj9yLl1AAB3owgJGeo7npmjxs4wlFVC9cE2c0jVCwJMpJIUjjAcrUtIsptQowQuLrhlI0IL1PAC34YFnHTxdLk5ldNkHCGSXPbvMYjf24EX187mBZKrTx9HtEmbjJEVhWs0MqFeKZinm0ghWCWgV4uiIu53SLUxoVcNw9j5ZOwrbXu8qzh99ic7FPu5yeTXY+WFoEpH4bZWqCOmUW9THSo/I+G/b/h565x08LMHO+WAfQw/WPvY7HNNVYKbh2uUO/M0BK+Kkv9VjMZwyHQ+7evUuapniex71791hbW/uRDc3nwaR/uKrX9YkiRZZrWolbwKgNlyMjd89RnxZ03/hdRNyj2D8iu/sIEXiE2+sui2a+wF9fwwrB7I2bhEs0rtWaejpzTYySeK2Y7GhIKw4Jt9aoTkaYxu3MqiSimcwIVgaEW6v4gwFyMqUeTamGEwD8XhsVB24X2PcQQYCMQ4TnsfKzX0EGoZMBzRfI0FGprLX4q87w36RuVxztsPr1Yu4yT6LITXyWmys6L9yufSehWaQIgQvAzEuyOw/AUwQrPVjp4bVb1MMR9WiypJ7tYKqK6nTC7M2bCCFpXb+EDHzXfC0yN2EYz0hvPyDafi+vJ9xYJTq3SfFgn+DcBnqWupyZLGf826+SPdwDLDLyXQZNXuK1YuILO0TnNh06vJs4CRoQrA5Y//mfcbvcniK5dn6JxV5QT52sTCpFcmGH9rNX8Vf6rulsxXRfeobyaMjsjZsEq33CzTW3eL33iOz2PWzVLAOnceLhokS1E8Ai0mzJIBUIpc6eOzXoImcetm6Q3RbB+goCZ36XoU98fhtbVvS/9hLT77zupg3GUD46QIYh1hiXoxR40Dgcud/roIuS7kvPLXN5UsqTEbZq8Lc71Fpjm4bk6kXi89s0S2/XytdeoR6Omb9zB9WKqKcpzWxOuLGG13LX56YomH7vLXSeo6KQ9NaI7MEBwdoAv9t2GUZHjga3+X//E3S/+IyTaB2PqU4dzW/9539miVJ//xqn2DuiHk1Jrp7H73UorpxHxTGmrhGBTzOeObpbv0t+cIS/OmD+g7dIb9x2E6AH+1SnE6w1yDBwcs5BDwlEF7YxZc3irXfxOm2sUoQXtpAWpt99nWLvgP5XX6L38rNYIZl97y16Lz9HsL7C+JuvUp2O8TqJO79WBy6P6eCYZonsDs/vABaTZo6+V1Ykl8+z9e/+cdrXL5PdeUh6+wH1eALCoeVXf+bL5Psn5Pf2UG03YZq99jbF0SleO0aGG5haU5+MKKoG1UpoqhpT1446t5Rdej13bpu6Rs9T4os72KpGSEFycRuvFeJ1uuiiQE/n5I8OaF+5QLSz4fxu0xntaxfwVwdMhzM2ViOCwHk4hNJwbov7JwVXLrXwPyM/D3ze9HyoPgmy+nFK+sdp7Yui4Fvfeo2jE8OXXn6abuc9fX275fFb3xlxclzi+QIh4OF+wd5hge9LqtqgpECgP3I//SdTj5udH7GDvHwujAqZRwOSyu34BLphfb7HIuw430mdIrCsLA7p5WN8U9Eq5whgHvZ52L/KLF7B1xVRnVF5EaetbTrFlEF+zNb0Pp6pl5S1T1ZJtWA1PeS0c45JtELq9wh1zqA4oZE+uRdRSx/fOKmcFhKtPA67F5iFA9KgS1IvEEDYFPi6QiwR3QbBNFrBM/VZwwPQLqeA5aS9TRZ0WIRd6mVAZiMk2gtQRuPrCs9WCGOoVIibauRUKkBLh1u20pHLrFBI3ZB7LRTayb+EwkgPIxWNCpF6GXC3DIiV4DDUUiC1QZkShKKRHgaJ3xSgDNaLqJS3HAb9ODv/0hnL7HK6I+3yAviETO6s93mMtn4cgvoYo22p/ZgpgqRJUaYmoiZoCqcpFh7tcuoQ4rqgEQFxnRM1KY2KKFWMtA154DYN0rBH5QWcm9xikJ2yMd/HMzXtanaGNrfAYWeXYfc8qd+m9hI8ayiRGPnZT3k+qh7vk9TaNT5NoylLQxloVvs+RWlYHfh4SjIYDBgMBly7do27d+9yfHzMbDbj/v37eJ7H6uoqq6urDAYDvA/gQh83PZ9Pev5wVLvlsbsd8+7dBQCt5LGs0XI60URXdlm1lwmTkOn330K1YpJL5/AHPYejNQY9m7vJwHiK13KL1XoyozweOgxwnlMPp9TDCYvbD4i21lCthHo0pZnNQTgJlz/oYhqNDD1aT110lLTXb4AAnRWo2AV5Cgv+So/WtQsIqYi2HHglu/MAEQZ0nn8aGfqktx64/JfAp3h0iC1Kqtnc0b5Op8jAw99YwRSV87TUNSoMKE9GIGH9a3+EzgtPk93fozodkT84QIQ+oqrpfvEZrDYsiorO9qYjhKUZwfoK1YlDYAfrA0dDUwqhFMGK7xC61i18TdOc4XaFUvS/8iKnsznDf/Hb1NM51lrSW/epjoZEF7aIoy10UTop1CLFWkM9niLDAK/fRoah8xAtq3Vpl+6Lz1CdDmnSHNVpA4L6dOxyVi6vsvP/+Hfpf+ULSxKcQcUhi3fvUx4ck1w6d3Z8MvBpP/cU2aNDCHyXs7LSwxQV1XCCNdp5qzzppjxRANa4UM2qBiy2Mc6w32vjdzvu8yOOiLfXnYyx28ZPYlqXz6PLivLQ7dybpRlexTEqDqm1QYUB/voKSEUzX5Bc3mX2+g3yB/sIIbFZQbNIXaimFBR7hzTzjOJ0RDDoE26vE18+76ACr990QaknI0yjKU9GS4W0dV6khfMVy1ZMcTykOhkjQ9d8Vscj8CTt61cINlaJo5CVn36ZwR/9EkJIFjfuugmEsagkAimY/O733H0EzmQfX3CSrWaeOo+Lbpi/edMFyEpFsNpD505S2swz9xzHAXWaI/ISu5R2+d02Xq9D8egIXdZ4A0l9PCK7cZf2s1fdZsNwhi4KkqcuMf7tV12WVhTSvnaRaGOV/OEBxaGT7AshaD17jeNf/Vf4gy7NZEYzmWLK+uw4/UFvGa46wTYNrWsXSS7v0qQuq85rJwgpaV29SP7wwGHIb9xZbhLsovMC5fukD/bBUzSTOSYrXNBsEhOuDWiyAplUDmd9eIyeuddVddrktx4QrPRQrRZeWeMPuoiZ++zJ7+8TL9Hg4fY61dEp0zv7mDJiezMmyzV5WhBMh9SdAXVrwOWBQ3vnhXZ+98+gPm96PqIeEyo+qh5LTT7OYDyZTPje975Hp7vCU0/t4Pvvf+H2DnL293PqGrb7AUWuufMg4/S0xBoXStfpeCgFk9l7YaE/uQboh0x3fkhZIbDC5c8oU1OrgEYFeMawttjH16Vb7JuaXj7Ex63yJskaWio87bJbfFPhVRWlDKlUSCM8AlP9iN/+4RJYNmcPiOsF6eaXSOo5/eyEVjVlEfaZxuuMgo6jgFVzjFAMk00829B4AVnQdhk8TYERcgkTKN3jMDUFEvGEVAqczb5dzhgmG6Rhj7DOaKTvpgciWC71NWAQFiezUwES444h7OLpmsqPqYRyGReIZWMBVig8k5GHLrgz0DW1shjpgVDU0nmZhDFOcmdZJtg6D5BnNFoo5lGfwNRoIR3s4FMY4T/6yX589sknKHCPyW28N9J40v9jGgJTooyh8JxGOSgKF2zrJShjmEUr1EK5SdhyOtQuRkgBedAFa7BSoBqDkR6+ruhkxxjpM4k3KfwOpRdjhE+7HLM+36cRLi/oxtYrjNrblCqkDBIa6dGopVb6D7CWqhCGoxohJWtrrTNS285W9KFmRUpJq9XihRdewBjDZDJhOBxy+/Zt8jyn3++fNUFJkvxEJz337t3jb/7Nv8mv//qvc3h4yM7ODn/uz/05/sv/8r8keEIC9ODBA/7j//g/5td//deJ45g/+2f/LH/n7/yd993m9ddf5y/9pb/Et771LVZWVvjlX/5l/tpf+2ufeXN26dIl7t+//77v/ef/+X/Of/vf/ref6vg/y7p2uYUF9vZzJtP8TBbZ7/tc7Pex2SrhuQ3qyRQVB6iPgFSoJMJvt6nnKendR1TDCfV4Snk4dCZ3YxFSoNMMnWb4G2ugFPGVCwT9jpMmScHJr/0WwUoPGYRE57fJHx1gm4aqdsHI4c46fqtFfHEXFflUw2VzVVaUh6eUhycEqwNU4DsZTBQSbq7ReeEp/G6H09/8FsWDQ6SvMHlJdXSC9AM3kVpOSWTgE66vsv6nfobOC9eZvfomhzfvLhuZFWwYuQmU1sjATcfq8ZTs4QHRdM7szZs0SzCAShLi3S0Hdlgi+kWgaBap8z08EYAoAx/TaFSnTbixRp07qVP7uWvYsqKaTN3CP4nRUUg5nFCNZw7xm8SIwCfa3Tq7v2B9hd6Xnmf66lsE68Z5ZcBl22jovvQMg6+95Bqb0EnlTNOQ3b6P1+t8KP/E67bpPn+d7ME+zXzO4uY9hJIOBGDMkmxXo4IAtEF1O1htMEWFDEPEfIGpKmf+1w1SBgSdlsN3txKHHdaG5MoF6umcejQh3FzDlo173O3W0k/UcUCa6Yxg0HV0MM+nff0Kxd4RXiuh9ew1uHmH4uGRUyIEPjrNqUYTmvWUZGeT9tOXkVGE30pY+drLzN+4QbHnkOReHBFurzF/4xbV4ZD2C0+hgoD6eERjNMnmRSdVnGdEO5s0swWta5cYfPVFwq01yqMhk299n/J0hF5kpLcekN99CJ7CXx2gQh9TuUYluXaRzvNPueZ6OCW7v4fOS+LdTedx0tYNIssaEXgk57fJ7+2js5w6zZHtGKQkf3iAHE5oZgvwFNXBCVYbvG6LaGvdTd6SU2bff5toa51mtsDrJO97fTvPP0X7uWtgLdndPXRRYOtm2eRo6tOxy/YJQ6ILOyRXdpGB74J7PY/BV7/ofEXL95LVmno8xRpDfMnl5FTHI8KNVUa//V1U6OI0/DhCXjxHM5mji5Jg1cntqtmCzrPXEFJSHp06KMXOJqrTptg7QFcV8frue/ucWmMaTevyLiYrqIYT4iR2DdzTl8lFhP6Nm2yFUAlDLiz1hR28Z5+ht7NCHCmG45Li86bn35x6sunxff99//bo0SPefvttnnrqKS5evMgb78x5uJ8TRRIpBVnecOdhthzdaW7cXpBnBq1dZ6s1KA+iyKAk75O3/UE2PK4kmd9B2oagySi8GC0jjKwYtrcYZMcoa5nEq85kn53QalJKL0YtF/2N55P57s1YeQ6TGur8x340Eks/H3JucptJskGvGALQz08J6wyvvc3W7D7CaCatdfr5KRJLUs6YRX1O27tMbUNcp/hNjhGSQX66nOjALF7BLGVxALOgR65CCi8m99vUXkBSLejnpwyTLUo/ImhKrJA0MiBocjzdYKSmUj5GKAQGYRuCpgAalDYo2xA0FaXvGPdWgBUeNcLhpgE3aVFUIgJvSThbNucGiZUKIxXSGrT0qYTCCIEWS0Pi+7w4P85C86MobTgfz2O/kGlACTA1YVPgWYO0mlCDNIawzghMReWFlCqi9jqkQdcZM03twAzWENU5whqXLWRxGUjSJ67nhHXGPFpBq4CwGDGJ1/Cs5qB/kZP2LnnQIvcSiiUgwU2TFFr6f+ANz+OS0qGp01RzOqyQUvDslYT1Vf9Dt30SZCClZGVlhZWVFZ566inyPGc4HDIcDnn33Xf5T//T/5Rut4vW+ifS/LzzzjsYY/iH//Afcu3aNd544w1+6Zd+iTRN+Tt/5++cHd+f/tN/mvX1dX7rt36L4XDIn//zfx5rLX//7/99AGazGX/yT/5JvvGNb/Dtb3+bmzdv8hf+wl+g1WrxV//qX/19HeMnqf/6v/6v+aVf+qWzr5/EeX+S4/+sy/Mkzz7VYXc7ZjKrMBqiSLI6CDAzj5MbIbooHWJav/+ToFlkhDsbzp9zbpPswT7zt2+jIhdWqssS4SuUvyS1rQ1cCOXdh4QbqwT9Dtu/+G/Tef4pjv+33yC5fJ76dIJMYlQYIFsJxYO9M4NaM15QPDoiffc+xpjlLv4BwdYaKolJrl8kv79H8fCA+OIO3u427ad3iC/uIj3lmpNbD/B6XUxUYqvG7alIgZBO4x9urhGsrxDubJLduueAAN020fY6wcYq5emYejJ3qGJjKYcjt3PveU6CpTwwlmro5OJCCvyBW8R5/Y7z8Vj7PtlTPZ1z+i+/yfD/+F38fpdaa4fJVh5+vwvGUJyOUb6iHk7QaYGUAuFJrDbk9/fovvzcWS5KNZxgtSY6v4MMA7I7D6lnbprnt1skV3ZpP3/9Q42NreplmOyHZbhCCNpPX6F/eIoKA2avvY0utJsSWSc/Uma5iFaKJs0AgW5q7GjqPFq+j4xC6tEUf91Bc4JBl2h7nXq2wFpDsL5CM08pT8aOFlY3qCR2eUSBIlhfRS9Ssvv77pi1pjo5dRM6Ieh95UW8dovi4T7BWs/5VjwPGUeoVkL56IhgpUd8YYf84QEoiddO6H7xGRACneWuSbfCUb3yEr/fpdw7clLFRjoZpe8T724RrvbdQjwKCLfW0HnJ5Fvfp56n6DQjf7DvGvBOC9M0VPvHyHZCfGmXZpGR3b5P95Xnic9tMb95l/SdO0TXNvE7LRY377r3y3iKlRIhBLm2GK2RUYjIS+rTCbao8bstfN/DNg3NdEajFNH2OuH6qnuvTucuU0kqsnt7yMB/X+CsrmqaycyRAYOAajSmmS0I1gdE57YYf+v7yDgkXu0hrMCLQ5rRDK3mtJ+7Rnb3Ie3rl/H7Xay15Pf3WNy8S3U6AeM8b6rlPFQydjlSpq4pj05RSUQ46CHDgPpk5DYJtIGipDwZu0a5LJG+R3U8QniS6nTiwni7LXRWorMMqxvCzTX8lT7V8dDlUlmLzgq6X3yWYOcCMh/gyYJYCfqtFnJlcPZefKx0kh+K2PjJ1edNz6csIcSHfD3GGG7cuMH+/j4vv/wya2trAFy+kJBlmsOTCilgPK05Oik4HTbLbtZNdqSAcqmiskCRa/RyyCCX2Nvff/0YDY9SbmsaYBl+aYTPIuji2QbPaIyQFH4bX+8T6JLaC0mDlvP6zDOiKsW0PAJdIaymjJKzjJRKhrSK2e/7kfXzIdN4jTToENcpRkhqL2Zz9pDd8bvcX32WsCnOmhfPap4+eg0sbjG8HFBszPe5dvIDoiZHGc08GjCN1/FMSeZ3GCUbVF5I5cUYLHoZSNpqUlazA046553GWigaqcgDZ1j1m5J5tIIRgqApaVSEtJYkmyKlIKxTkiZlItYo/DbSWoRp0EvIglhCGM6AAs4lDCisUOizaaJxz7t156YVPtIajDZY9XhB/Umano+6zcdMi4Ryjc/y/ACLlBKtQoStsdqihUfjK+bxGq16SicfM+2tUi4R3p52oIOgyUEoQp3hVTMa4TFq71B7AmVqOsXY/T4Bvi5YBD03yStn+LpmGvU5bu9SBglBU2GQKAxaeFj5+FL3BJr9D6CEcBsbvi/odz18X3JuO2Rn66O9Rj+M3hbHMbu7u+zu7lKWJX/tr/01/t7f+3vcunWL1dVVfu7nfo5//9//9/nlX/7lH+tYf+EXfoFf+IVfOPv6ypUr3Lhxg3/wD/7BWdPza7/2a7z11ls8fPiQnZ0dAP7u3/27/IW/8Bf4W3/rb9Htdvln/+yfURQF//Sf/lPCMOSFF17g5s2b/Hf/3X/HX/krf+Uzn/Z0Oh22trY+8t8+yfH/66pO26PT/sAieNAjvrjjyF39tgsLXIZqNjNn5o+3NtDTBeG5deY376IXC6qDlGq6cAviwEMGwkmNAH91gFfXrPzMVwhWB8TntpaNgKHz7FV0mpPvH5HeeYieZ3hJjNfpUB6dUp0MqRcLhFDuGmQspqyIs5zuF59l7ed+imL/mNNf/yb+6oDOy88RLHedqxO3iEsu7JDffYS3vUF5fIqeLjCLDBmHRDub+L0unWevIbHMvv8Ofq+N17rCdJ4ig4DWpV3K4Zh8iWMmA5XEzmy9tYaua1CCejzDakN5PEIqRXxxF6/foXh0cEaEA9fwjH7rO0y+8wNU7CRqpq5ZvHOb4vDEke5aMUIbqkO3262SGFOUzteRhLSevkzr2gUO/l+/RrC+islyt0UU+EQ7Gwy+9tLZa+p123jtFk2akT48oMlyJ3dbH6C6bYTvOyjCx0RtxbtbBGsDOs9fpzoaUg7H1OMp8fYGxYmTf6k4AmEp9o4xjUGnM4Rwi41mMifc2XTNoTXgKfKDE2gaWusrmDwnXF+hdf0S1eEJ2d1HDsKwvU64uYVqt9BlTbixir++QnF/n/LwFKGc1G38e68hlcTrdWk/uwwVHU+opzOi7Q2ic5vYSrtmaOm3whr0Iqf97LUlfrvEX+kDUByeUB0NqadzVBI6zPbco/PcteWxuLDY8uCYejxzRLLxDGMN5cEpIgwQSp7dX3V0Sr1ISW/eofuFZ6iOT6mHE8LtddJbDxChT7S1QfFwHxDOq1bW1CdDR+ALAsLNVaqhds2cktiyQpcBnrGY2k3caAr0oEc9mS6JecZ5YJRCGEPy1CWq8RSv2yF/eED+YB+9yNzmQlZQT2d0nr2K9Dyq4YRmOCFYHeB12hjdYIsKEYX43Q718QhhHSDB73dZ3LjD9NuvIzxJsNJHKEkzWzB7/V3K0xEouUSQDymPh6hWi2o4haqGwIUWm7LEGNA37uCvDQg3VpFxhFAe9Wjszu1zG279pKSbTvo+0flthFJn0+Vi7xDVdp4pe+82odDMvA7djR7zRUN9XOF7gk7bZ5E19LoB7dbnIIN/rfXD5G3wfoJbVVW89tprVFXF17/+dZLkvXFlu+XxxRe6nI4qskzz6usT8tyQZjVNY1FKYLEYC2qZyWMMlI09g2b5nqO4eR7UP3aI/KdpeDRLu/XjB/vEP7nFrfYCMB6t8ggjPAxOM6yFYBGvc9i5gJE+J9Md+ukJSTnhuLVNFvWI6gUB7n6mySqTeJXQlA77bD996CtAu5xwbnqHk/YOi7AP1tIpxmzOHzhs9Ue8lFGTcX5yi0F6gm9qgiann53gLxsG31Tsjm8xi8fMwh6LoEe7mlHpAGUMWdhmLgSNCpmFPRrhoAO1chOsyk8QVYZnKmZB24W6Wje5aRVjBIJWM8fT2skdkPTKCZUX45kav8nJgq6TFOIMq1jrzk1wJ4r6wOTFShBQexFBXeDVGaXfRllLo90O0yfz9nzUbQwf3/gsj8MCRmOEwiiBMQqEjxSgGhc+WngtFr0eWdgBC8oW+EufUuUlBE2OrxuXAaViJrZBW4VnG6bxGko3zgfV1BRhh1Y5BSlYBF0myTqlFwKSwveQVrscIC9wjx14//vgvXyHn0CI0ScuJWF14EJJ89JSVeZjb2uM+ZBv56MqDEP+g//gP+DGjRs8ePCA/+q/+q/41V/9VR4+fPiTPHSm0ykrK+9lmXzzm9/khRdeOGsYAH7+53+esiz57ne/yze+8Q2++c1v8rM/+7OEYfi+2/zKr/wK9+7d4/Llyz/RY/xg/e2//bf5m3/zb3L+/Hl+8Rd/kf/sP/vPzqRrn+T4/yBLCEHv5eextWb2g3do0oz6xh1UHON1WrSevowIPIqDU5pZ5rDLxu1EC09ia2fFk2FIsNbHlpr4/DYy8PB6bTc9shbheXjthOp0THLpnIMbDCfEP/NlqvGE2atvUg3HbhOn2wXtFnxgXTgj1n1ICeHkadvrNNM589fePiPF1eMpFkvr2atOhtVKsE1Dvfyws8a6xHjd0HnhOvneEVYv5VTaEG6vkz86xF/pu9yP0Kd4OATjAj/DjTVkGDha1mSO12rhdVsEGyv4fTfNyO48INxco/vSc2fP8eLmXdJb99F1Q3U8dAvW5e50M51THo9Qrdjlsix9QM6f40hVnaev0f3i0zTzlPHvvUb/y18kuXYerAMFZPf30VnB6h/7iqO+Admdh0y//xb1eOau6cY6f83FHRAw+b3v46+v4PfaBOur+P0OQgiKw2OXv3I6xu936Lx4nZWuAwoUjw5p0owmWKAXC0TkspaUtYho2cxVJfU8pTo+dVOUrEAcnRKs9Fj/+T+G8j28Vow/6KHznGptBa8Vs7hxl/zghGo2R3o+QkgGP/0KXrdLk912DdCg6xa59/eoJnOSy7uE6wOicxsITxKd26T7haeRvsfwN7/D4uZdvDiimaekRUm0uUb76SsUR6cUjw5dyGa7RXI5ctCK6cypApKY1rWLxLtblCcjvPbqe5MJa6lOhuB7VA/28LotyuORo5w9DoCOQqJWhM4K0rsPXc7QjTvUwym2rom3nT9OtmJkmjuPi++BkgirMXmOlPKMUOj1OpisoBlNMEWJKQp01SADz+U1GYMMAmQrAu0madmtBzRFSfv6ZcrDU+rRFK8dE2ysnPnGbFmi5ynh1gaLW3ddllY7WfqsGsqDY/y8i7fqYAePgx2b+YLFG++ikohg7T2PWbA2QLUiZv/jDYqHB0TnNol2t6gXKVhDdeIULl4noUwzZBSjAh+TFQ7THkfIICS+tIP38rPMvvuGC4ldW6GZz2ldOU81mVHuHQGg62Wo8LLpnH73DYSUdGZwc88jC7sEuy5It2kMjbasDQJeeLqLUp9Pev6NqsdNz2w243vf+x7dbpdXXnnlIxcnUajY3Y6ZzWums4bVQcDxaYlU7kJX1279+pg+LAUIY5GeJAgseqke+vEank8ILHj/o/vAzz/xveXkR+ra5eosF/pg8WzNJFmnVqHDDmPI/DZ1L2Jt+pCkM6fxAhoZEuqcpJxRq5B3t15hNl0lqRcMsiNWspNPLb4SwCA7oZOPKf0YYS3xEq4A0CtO2e9dIRIpaunTKfwWcZ2xPbtPqAsa4bGIepTKNR2dfERgalbTQ1rllCzoUXsBVbLuZHQCDJJF0Kf0nCxte3KXSvn4unagg6jrKHLSJ6gLlKlpPB/P1CRlilE+K/kBud+iDFq0ijFdGZCFnSXlrqDyYoQ1LjoJi0G5tToWqSuM8JaeHeFeLyvQSHIvxLM+CIswGgVo+xg04H7+/c/gj6rHiPAn3WWW9zDYBmVqkB56+RwbqZwHrElRxqBViLKuKcIKpG2QVtAoj0Z6aOmR+wntas725C5pNHDSwfY248RNwZSoSYoptR+7qaiXkIY9Jska0mgaGdBIH4HBCI9GPdnwfNRjerL+NUyBLAQBrK34aG0RWFqJ+Fgwitb6U3lLFosF7Xab69evc/36Tzbz4Pbt2/z9v//3+bt/9++efe/w8JDNzc333W4wGBAEAYeHh2e3uXTp0vtu8/hnDg8PP9Om5z/5T/4TXnnlFQaDAd/61rf4lV/5Fe7evcs//sf/+BMf/0dVWZaUT4SozWa//4n1x5WKIwZ/5BXiy7sEv/c90rduY60h3Fhxev+iIljrMf3u66i2W+TrO7XLXwkfQ0gE4eYGaE24uYpOc3SaE66tOLOzECRXLpI/OsKUTs6D77mGo64BgfA9/KUJ3tS127Rot0A36LKhGU2oR1NQHuXhKdXpGHRDuL1JdTIivf0Af9DDX+nRee4a2f1HqDiideUCwvcoD4/PpiDloctIeSzzEkrSfvoKzSJjceMOzXRONZpQz1LnR+k7upx5LJlQCm/QAa3Rs4wsL2nKivjcJlv/3p8g2loHoEkzxr/9KvnePs145shqWeF+v+chghDKCuG5DSMpJF6vjSkrsDD46VdY+ZkvA7C4cdfl4By7HCKMQbUTws01iv1jsvv7dF+4TnFwzPj3XkMoSXJ59wybXZ6MOPyffw0ZeBijyW7fR8Uh6sEB0cVthPJIb95F+r6T9gloxjNKdUx85Ty9L73gZIKBj60a6ukUW5WoJbFPBD7FwwOCXgcLhDubeK0W0fltTJYz/dZrCOUz+PpLeL0uyeXzTqaHcHK5xRRdFG6q1k5Y3LxDeeiCbINBz01i2i2Cc1vUsznpjbuoMHBNtu+jWgnpzbtuAqAUrasXCbbXkK2E6vCE6PwO/qCHtYb03XvkDw5Irl2gWWRgDcmlXZo8R4UR0e6WOweBcNOF13rt1pJiB7YsMUWJP+i9771ktaaZzbGNoU4XVNM5ElBRTPfFZ0lmM6bfe5tqOELGLpS0yQq3SPM8bFU7CV5dIwPnr7O4XWvhe/hrfdcwz1KHGa8cSMLrtikeOb+SaiU0aUr11ruUDw6wQuD3O0TbG042GYe0n7mGN+hSD6fEF3bw11ZRDw6pl7JJk+UO095JMGlBOZ44+WIYuCZqNie5cv5D1xLh+0jfIz91AaRWG4QV1IuFk9V5ziscn99BeIri4BivHSM85RpLY5zkbnWA1+mQ3X/E6Le+TXRuy71XraVe5HitmMHXXqJ15QLpu/fcObK+4qAKJwWt4zHV8JhUeBTdVbLMrSObxnB8Wnykv/UnVZ83PT9GKaU4OTnhwYMHXLlyhStXrvzIF2g6b0gzzbntkEcHOU1Tk+UWY5YesOVm7+Ovq9q4JZl8j/z06er34995XB/RAAkQQhJUhTOfKw9lFJNondKL6eWnVH5Mq5zRL8eM4jWKsEvQlPQXhxgvwCIovZhQO89LXC/QyuOgf4VA13TKyY91tJ5t8Kr5h77fz05Jgy6zaNU1DkLg65rNZcNTqYD93hVm0QoIULqm8iJ62ZCkWSyzb8xyqS8IdMkgPSaqU1rllEqFBE3OoBgyiTfo5EOyoMU8eRGpawKrUbrGbwoK0UbLkKg5xWvmXBzdZC3dZ693mSzoEtY5s2hAHrRJgw61Cpe+HuvkeY8DYIxAaLv099j3GMmPF/gGsBppBdIYPBpKoRw44XHZx5jpT1rC3fFjYIHjyIFxyHEtlUNsC+nw4KbBCIU0lsaPXFMkJMo2+GaZCC2dTEbZBotFGUNSTJlHfVo6o51N2VjskYZdMi9mlqzRyiekUZ95e4fcT6hU5JpdLLnfdueoMU7Spj7NJe6HNPyf5l6WSsSPlKUulYlaQ5oZnroas9J/Ty4rpTz7A58+nDRNUwaDwQ+9zV//63+dv/E3/sYPvc23v/1tvvzlL599vb+/zy/8wi/wi7/4i/zFv/gX3/+QPuLaZ5dTyY+7zeNJ+o/zwfZpjv8v/+W/fPa9F198kcFgwH/4H/6H/O2//bdZXV39xMf/wfpv/pv/5kcew0+yysNT0lv3sLUhurCDrSqCjVWSqxfwex0O/+d/QTWegYDqaIhaIoeJI5rpgmY0IX+wR/vqJUQQYCYzWJqbvbbzfsUXtmldv0z6zh2K/WNHhstyJ80BgtU+wcrAIakXqcuPAUQQYKuUZpG5YM0sWzYfFn9t5WzhWZ4MyR7u0wI6X3yGZjzFJglmibe2lSbe2aL/tZeojocIpZyHw1qa2YLswT754QkqCvB7O84E38/ctGgyZ57feSIgsgtY6uMR2iyQgY9/9SKDr79CtLNJdt9lCuX7Ryxu3iHYWCVYXXFyuP3j5cI0wxqNjGN3jVtOyuvJnGhrjWhrjd4XnsZrxRT7R1SnI4qTIRZLcsEtGuvxjOpkhNftkN1+QPvZq6S37mPqhuSJ6aK1lvLgCFtViHbE4JXnHRjidEQzmTH67UO8toNVdF64Tnr7Pras3EQmy8lu3cdrxfRfeo5mNCF7dIie51gNpsqX1DqDaQzx+W1MmmLyEu15VMdDkiu7zN9wmUAYQ3L5HN0vPueQzHWDSkKHCreWcGsdGQaUx8P38maKgvroFL1IEVGI125TNXOssYQ7G1RHpw5F3k4wlZuGVCcjWtcvc+7/+X9j9oN3mL/6FtPvvoH1vGXIZkmwuY4/qFi8c4dmtqCZL4ieW0dn+Rmu2et2KB7u03vZhblG2xvM3njXwZe0xuu2qE5HmKamODylfHiICDysMfj9HmaRY4qC+Y3bjtY3HKMXuWui4phmlqLnKdTNEkJhqIcTt4ifp5g0QyBQgy7R1hrCD5ESstsPaJahp8XeETIOEJ5PeXCMSiKic1tUJyOsNkQbKwhf0XrqCuHWGl4rxurGwUiORyS7m+g0c+fOIiNYX0X4HtG5Lef/GQ4dcORk6AJRhfjI61czXZLwlv46gcVb6dIsUfN+30nUkivnyR/sYasab30F4XmYuiHsdahOxwjPI3+0jwoD2s9fd5sLeYGKIqTnEe3usPnvfIP527dBCMJNZ/nQ2nJ8WrK5EdNKFO8eTwi6fQbbEUnsMZnW/MbvDUlij+tX259J4/N50/Mpy1pLXdfcv3+fl156iY2NjR96+6LUnAwr9g9zytKgpGWl5ztcX2740LpIOFklApTvpAmfvn4SDc8Ha3l/VqOVRxEktLOCbnFCq1pQy+DMU5MUM+JqxlHnPBaYxAP2+5eRVrO+OEBLj1m84kIrdUHU2qZbjjFI5tHgx256Pq58U7M7vs0iGpL7LZRpaJdTktoZS0fJJtN4lV4xRFo3sbBCME42COcZgS7ctGeZ+1J6MUGTL3HXOZNkgyzqkQcd0rDHsL1JIzxKFRPYAhBUfoxeZtBI2+DbmvXFAY0XkjQ5F0c3GLW3iaJVfNNQlxMq6XNnNSAPu0hjXTaDYenr8dCeXDYty45ZeDwp1RLW4i9BEZX0lw3PkyCCxw3Pj/L5PDHhsRalK+eFEsv7EMYtEq2DLUijXeNhLaEpiMsFhRCOMKcrN41SNdqC9kKsdmZmzxp6+QmNH3Bz80usp/ucn7xLq1rQLcd0yzFSCMJyQaN8+ukJxCs0SUgjfRdYK8RZVtKna3g+WB98//zwJijwodHgKQhCQZ6+/40rhZOqSuWM64vMcHE34U/9sQ3a7RitNca45/FxAySEoGmaj0Xjf1RlWcb58x/e4Xuy/tJf+kv8R//Rf/RDb/PkZGZ/f59vfOMbfP3rX+cf/aN/9L7bbW1t8Xu/93vv+954PKau67MJytbW1oemJsfHLl/pg1OWT1Kf9vifrK997WsAZ76nT3L8H1W/8iu/wl/5K3/l7OvZbPYjn/cft7J7jxh/83s0RYGeZzTjKVWWIW7eY37zHtHmOqPf+S7lwTFNlkOjUZ0Wj9+zstemPjolu79HuLXO5Nvfx2+3WPkjX6H7/FNnv0f6vqNfrfY5+t/mTuufxETb6+QHR1TDmmoyw2vFjgLWaWHrGmsUeMrtQBtNdTImvrBFsSdo5hnSm7qdcCWhrNybxYK/0idYG6Dzwi3Ai5LeV17E77TQswXGOCR0cXxKuX9C+u5dTGNQSegGzLXGXx3QDMcOYOB7JBfPodoJzTwlu3UfhCC+coHeF56mdf0ys1ffYPrtHxDtbiHDgMXNe444t7aCiiPCjVWyuw/dYqtxniEVBkvDdttNgYZjuq88j99KqCcz4nOb6LIif3SIsJBcdIGqpqogK2jyknzPEeua+VeccbydOL/QIneeEGspD0+Jzm9RDadYY+l84TrReEZ66x7la2+T3x0hr19k/voNjDXYvESGgaPJpRnF/jHJ1Qsuc2U8pxpPABy2fJFCrZFJjG0aRBRRHZ4SSEG048Jgm3lKdeKkfPnBEcXBKSL0nEfDU4hd14QmT12kPp1QHY9QSeTIfUdDVCvBX19BLzInVTQN+d4ByfF5pO8TrHcxVY2ZpXRfuE64ucr0e29Rj6dnwZbC9xBKEj97lfjcBtVoRj2ZuqnQ1hrVwcnSAxU4UEYSUzw6JLl6kfaz1wCIzm0S725R7B1ST+f4vS4qiUnfvedCSK1FKUmwvoKXRHjra2cyuHLPQRZqLDovnVRza51c1+hhjgx8hKdcptx4iskKhJJIz0P6PtXRCJMVxE9dxN9cRRclptHYKsf3PerRCLB0X36OYNDDLENz/bUVhAHb1A47D0TbG2QP9qjHU6Jz1/FaiZvyNQ16PCVY7dPkJXY6x+t06X/5C+T390muXoDlZ8njpuFs4+D+Houbd/CSmO6Xv4yep5j6JoWnMPOUsigRUuKv9EBIZBQiA5dFJKSgGo6dF+jINeTRzgZSSdrPP7UMohOodpviwb6jSB6cLDcglteyXJPnGj/2OdYJLUas9DVqzT3mOFKcDkvevDFjbTVkdfCTJ2h+3vR8RH1cd1nXNT/4wQ+o65orV678yIZnkTa88c6c0bhGSktdG169lSGEpSg11QcmOEq5P8a43eCy5Axo8Mnrs2h4nigBGIEWksqPiOYVW+N7nHZ3KL0tSumz2iyWAaA9pK6YJhvkfgtpLYcdn045ppYhadJjbfGI0k848aKzLBtwKGeNxFvmFf1+y7MN/fyUfn76vu9roZjFq0RNinwsyxKSqM7Igg6VFxPXKRvzR9QqoPQi5vEK03iFRvg00nlHpG6ovZhGBQhryfzWMmfHp13NaWRA4cdnUyGvzllP90mDLg97V2mUR60cSrvyIoR1kwrPapSp8UxDo/zl1OfJ1/dxPo544muDWMIFBILKcz4kdO1A4srJyxAfJLJ9XPNj3/fvWj5urjSYpWTOU27Mr2s3zbACjwapGySGsE4pvYQ86LisId3g64ZmGUwb1jnK1ihryLwOpR/xoP8Uk2iFaydvsJYfMYlWXSPqJWgZ4JuKwDRE5Yxq+dpgPUc9/FhJ249bHz8FUhLiWJIXBk9BEikCzzJbaCTg+YIolCSJIg4lSgpeeKbNn/q5dXa33cX+cWNjjDn7UxQFaZqyublJVVUfmgJ9VKVp+j5f4UfV2traGWzlR9Xe3h7f+MY3+NKXvsQ/+Sf/5EO/++tf/zp/62/9LQ4ODtje3gYcHCAMQ770pS+d3ea/+C/+C6qqOpPq/dqv/Ro7Ozsf25z8pI7/g/W9730P4OxYP8nxf1SFYfg+j9JnVaaqmP3gHerJjNnr75A/PFwav6EaT7Blw+a/98cJttbJ7+2dTWd0mrv3ZFVhlg21KGun5d/aINzZIH/wiMP/5V84sEGnRbi5RrSzQfuZq8g44vif/ybBxgrpnYfUp2OqZX5IHUUIpYgv7YD0Xahmkjh0s+9TjqeowKP/tZfw+12qo1Nso2k/fRW/16WauiBLhDjL0DFVTXLlPP4yABElUXHkFk+37jvqmqfAWLLbDyhPRvjdFsHmGuXhKc08RXgSceGcM2kPJ1gpnTwsDmk9e5X6+JR6uqAcjmnKkmhjjWo0wjaGxY3b9L70BfxBj3BrHVvV6LICrYnObTL4+ivOA1OUzF57230wP0b0ak1x6Mzw3ZeePfNGFXuHLuvFQnl4jG00ndfepjoZURydYvLS+UJw0rby4IR4d5N6nhKsDRChT7l/TH06JlhxE51wexNbVTTDifNvzhbUEwdsqN69B9YSbKzQSyLyvQPndwp8vGWQaLNIKY+HyDDANLWjdY1nYK2T7dW1A154ivlb7+Kt9PASF7pqysplRHXaFHtHqE6LeuKapXB99QwMQTvB5CVer0s9nrJ45w7tpy87yaAQxOe3SK5cQAY+szdukt++R+eFp102lJSYsqI4OKaQgsFPv4IuSspHB1RpjrmyQC+vhSIM8doJ8YUdws1Vd34AXrvFytdfpp7MGH/ze9TDiXs97u+j68bJz4oKpHQgj8vnwFjyN27grfQc7rvTcplBw8ly+uVkpqoVI6QkGHRo0pJgtU89TwFLsJxmlPkR+e0H+JureL029XSOjEK8JHZyMinQi4zqZISMApTW6HmKf36bYu+QcGsDGfquQSwrymPXEKbv3CG798j9jOejq5rq6BR/fYX+S8/ReeaagwbEEV6nTTOdO5Kb1qS37pM/OiTfO6I8GiJ3N5n94G1HthtNEcucPV2WiMaQPzyg/6UvoOKQYv8Ir9Vy5890gfRd3Ibf6+APeixu3nX+rE4LGQQE6wP33n10iDUGqd7/mWGsJS2hqKHvfSAWRAqCQNI0lqPj4vOm5w+yFosFr776Kq1Wi5WVlU9kLr77IGM8qdnaCKgby8ZGyL1HGUVh6bZ9iqJyUx3cLrDvSJtuaSmdj0fC2Sb7j+5/PuOGB9xi0jT4pkFYw0l7E6MEK4t9ojrjsH+Fk845Ql0ClsqL6BQTWqULj8zCDqf+NqWXENUpQVMRVgtCXTBJ1pHThnG8zqi1ibCGTjEhKWdOZvYZPSSLWL7pl18vEcnKah5zw6PlNGY1PSINOmRhl9Nki1r5VCokC7sM29toodDKp/ECpGmwiGVezlLGKFxQqY+mUhG532IRdFhLD/BNzSRep5Y+pd8i0AVJnZKHXeeDEQqJwVgDwueMdmEfy97k4weEkNI1ZUJhlQfSLF87i9C1y/kR8r2fffz/j37Rn3iylmehbZYwhdDR25amNCsUBlxgaDEhaAoG6TGT1qaTttWasM6wwlJ6LWRd064XdLNTZtGqQ1qrwE04rea0e54s7HFheIPaC2iVM3r5iEXYI/dazKMeIOhnx4xaOy6LR8jf55TnR9X732PaaBYLTRgoPAV5oWm1PFrG0mjotuT/n70/jbU1O8+y0WuM8bazn3P1a+1+7+qrXHa54iR2ACeIwHeSkwOfcjgiEkp0UIREQAoIEQkkBEKCH3QSICHxK384nwKCnAPkAwIJfCHBdmxXuVrXrl2129V3s3/b0ZwfY65Vu+wqu8opOwbq+VO75lprNu985zvHM577vm6UkrSbAVsbMe1WyI9+bum84Xm4zpqasix55ZVXGAwGrK2tefnPN0yB5AKh+nAjMp/P34Vk/r3U7u4un//857l06RJ/7+/9PY6Ojs5/dkZD+/Ef/3GefPJJ/vSf/tP83b/7dzk9PeUv/+W/zM///M+fk89+5md+hr/5N/8mP/dzP8df/at/lVu3bvG3//bf5q//9b/+XSW3feELX+CLX/wiP/qjP0q32+XLX/4yf/Ev/kV+6qd+ikuXLn3g5/+9Kmsds7nGWEcaK5JEUR6cUBwcM37pdd+wXNhARhF67PM0dD1l+Ftfpv2pJ6lGY2SaEC51sXlF0GnhBJS7R2AsraceZe3/9gdpXL/M/NZdZm/cZvrG26Sba+iJz61Jr2wx+JHnaVy9QOeZR9j71f/E9NU3EWGICEJsWVJPpqhWg+rwGJEmiMCHpIb9DuXRKa6sSB+9QuuRq8gwoHnlwvmuc3l4yujF1xbhl0fYWqPSiMbVLRo3rp6fD2aWE603CTttWk/dYPrqLfL7+4vckppoqUfQ7xCvrWAmM4/7Hc+Yv33PS3fGC9Tv2rL3sOQFs1t3qUdjzGxOcb9GhgH10RAnHPVoQvb2PeKVJWxVU5+OcZUGIYlWlwjbTZA+hDLZWkemCdn9HfTcT5Tq4RiEwFYV1fGI/N4ORmsv9xtN0HmJnMw4+g//jfr4FJVENK9fBukpWvp0RLG9j8kyhBCc/F9f4vSLL4ITtG5cAiUx85zsrbseHCHAGkv32ScJu03/fIHG9UtUp2M/seh7apfHnYfIIMDmObaq0POMsNnwu/hV7THV4xnp1ho29w2BiELv0ar9xCvZWiPoewS1K2vCXpvi/i5mXsDy2TecQKoAYzJUFBBe9kG6QaeNiiOSC+uEvY7PgDkdLaZs/XcZ7mUckVzaZPy7LzH6yivkd7Ypj4cE3RbNG5c94a/Tonn9MmG7SXbnAdOX3sDhiJZ6pBc3ibfWWP3xHyHotjj8P/8rpiyINtZ8wzObE60toRqJb5SlBAkmL2hcvYTOc4r7u+S3H/gNBoT3tWntX8PGKipJsPURZpFx5LA+K6nWOOGwRQULiSbaItpNwkEXneUEnRY4R76zT/fTT1PLMeXJENn0TX49WUhFyxJnLc0bVyh2D7GVP+/jFT+V9ECDirDV8EHBym9+ht02rSeuMf7qa9iqphqOyd6+72EKYUCyvkLQbZPdeUBxf59oZYAc9CAa446GWFdTnYyYvHbLUxTDiHo2g+nMy/jaA2QgsVLhjKXYOaA6GRIt9T2W/O42MokxtaZ948q53wogjiRxpDidWKR2iEBREUCuCQJBVTviSNJpK8bT+hsvkR9Jfdz0fIA6PDzk5Zdf5tKlSzzyyCO8/PLL5/S296uiNJwMKzpthZSC6axmnhkuXUipSkMQKOraMJkZqsqDb+JIUmuHEO68GfKe9W8nb/lOgAXfaRlQITUKLSQ6THAyQDhLLztEy4BxY5nK1gSmItEFjWpOFcRIp2kWY0bpEtJqahUzbiyDgHYxItQVlUrY7q+grCau52RRkyJIETNHw8w/8lejnKFdjjhqbRLr7LyxGqdLxKYg1O+YlQP7zrRokvTJwya1iXBJ4Js8J/wXIx457TNi5ALx7TNrkmrGhdHbhKZkp3MZi2CQHxLrnGG6zDTuUwYxw8Yq7WJEGSRYoXBKnk9YhDU44U0j0mlY0H+cULD4Heus//fZgtjV+HDRBSXpDELgrM/XEWIhj/vWJWy9aKICP+XxNlffGzoLzuBEgJGSMmyinGHWGNDJT2hUU4Sz1CrGCUFaHzPI9gmMxTlDlvTQUpJHbaI6RzmNKB1lkLLfu8zybI+N8R3yqMM06TFL+iR6Ti1i6kV+Eh9gM+LD1Fk/CO9MYp31PjuHn/IgPLAhjsBajbWCunSs9BXaKLTxDUu0wHI+crXJ6vJ7I6qBc3JYt9vlqaeeOl8IWmsxxvgvu8W/z+qsWfoom55f//Vf56233uKtt97iwoUL7/rZmSdHKcWv/dqv8ef+3J/jc5/73LvCPc+q2+3yn/7Tf+IXfuEXeP755+n3+/ylv/SX3iUP+25UHMf8yq/8Cn/zb/5NyrLk8uXL/PzP/zx/5a/8lfPf+SDP/3tR+4cFD7YzTsc11jqSWLKxlrJa5RTbBxTbB6QXtxChP7/1LENFIXJjhXL3iHg8ATyO2GQKp30YZtBIEKEibC/RuLq1QPHuUe0f07h6kdnrbzF74zaNqxeQSUx2dxtba1rbV7wX43SECBXJIuCzODjC5SV2MiOfzAlaDRqPXWPlx36Y1f/tDy3oVP2FFOedz+K5zMYYlj73PM1HLnP0n38HW1a0HrmCWsAUAKrjU4J2E7QhHHRprd+gPDjBvvR1cAvZTqCoh1O/GVgbD9hpNb1XYnONxBia1y6hWin18Yjy8IT8/p6X3zQSXFkjlSLZWmP+1j2cNhR7h166czrCzHNUM0EWBfm9HVQSE60sk92+j0pizDyjGo5RSUzr8Ws0rnkpd7F3zPzWXax1mOnMe0EW5nWcI7t9n2LvkOTCurdgxhHl3qFvVvttip0j4o1l0tUliu196skMEQjq0wmmKNCTKUG75X0lp2Omr91k7Sf/sM+subyFrSrqkxG2qmg9cpnZ7Qd+spDn3tNT1ZiiQgQBarF4Fs4tUMqSxvVLuKom394H63BFiU0Twm6LxpULvnEyXopST6b+e2kyJdveIxhPFj6YBD2ZenN7q0V1cEyy0sdIRTWaYBc+Fz2ekj/Yo/3MY9ST2TuBms4xf+sewy+/Qn5/l6jfIVr2VLPJKzexRUnn6cf8lLLdItnyfpf8gUdnO+sIB13Cfg+V+oV+5xNPUB2dYLLCE9E2VpFJRH0yphqOF3Q8idM1wnjfk6tqTF5AralnGVIKgm6HsN+hOhl76efWmpd+nQV4BwF2nlPlFSYviQY9ZKqx0zn5zgF2nqOdw4wm3rt9eIKzFpOXTF97CxGG5A92ye/tYXVNsrZC3e/iqprup58gu7Pj0eyrS4BApjH1eEY9nvmNh16HoNfxfqMoYvryG0xfedPbJRopjasXkYGiODihPDjBWEM1mSDGE/QixFhGXq1Sbu+j0pjOJ5/EnI6Z375HtDwgvXYBZxyz129RDT3xLuy0Cbtt4vUV6skUPZpgxjNMWWGKCj33cIMokiwNIu4e5MyPp+hum9lQYE8zv2/qBE895rO0guC7Q1T9uOl5j3pYB3n79m1u377N008/fS5/CILg2zY9/g68wAj8prinNQmMhSo3hKFEKoPjjM5m/Rp08bcPPaNv8SDfg+nONz6WAAKJs4LKhdhEkEdNBrM9GtUUKyTCWRCCSBdoGVCETR9SpQKqoIEVgrjO0FIxi7osT/dIqwlZ0iGwmlb1Dg2pDiPmSZdkniM/wLzrw9Zgvk8WNZmkK0hbY0SAsprubIeAd7/PZ0daWoN0lsgUOCEpggTwTUhsHXKRruNJzgGNeoq0HtrgpOA0XiOLOyTVnMBpmtWULGwxj1qEtkJaTRXGFGEDg8CJwMvInMPJBUnNeZ+PQy0o42cNzsPHyMvdzvGAZ4hAFhrKcyCBA2sWsrD3krt5nro78/E4FvcjFknnLAALkrOwUouXD542VjltrNDKxyxl+3SqEQaJE4rN0V1mSY+d3jXGyYDA1IS6RGIIraFw0KhmBHXBOB6w3b1GFTQITIkTgizsgIBZ3MVF799IfKf1MLneLDw7bjFUCyR4j7MgjARRIBAioKoM2jqyomJjuWJepmS5ZG1V8eyTbR670aLZeO/PbFVVfPWrX6Xdbr+r4QHeJW078/98YxN09+5dZrPZR/Laf+7nfo6f+7mf+7a/d+nSJf7dv/t33/J3nnnmGX7rt37rI3leH7See+45vvjFL37b3/sgz/+7WTv7Oa9+3S+Cup2AQEmyXHPr9pSRLYn2j879DgC2rqknU0zu9fdSSeZv3kENOrjjEf6iY7xZvCx9nsbaip8MKkl5cOR3nacz9GzuZUKdNjIKAY+N1rOMyW/8d2QY0P/BT3oM9iNXPFXrwZ6XWGlDutyn/+mniVeWkEp5X4WzjL/8KjKOz/0J4PNwbFHS+oFP0Lx+CdVIGX3pa5QHJwR5AUJgZnNkmtB7/hPM37yDrUP0bE51MsQai1SKIE197sjJMWYyQ8ah94ws9fwOeKVxUqCaqZ9sBwH1dE55dIJKPJHLlBXF4Qmm9AGprqpxStF+9DK9Tz9DuXfA7NZdVBJTTzOO/8sXkXFIvL5K45Er2DwnXVsmWu57nPb6Ks1rl6iGI07+y5fQWY6KQoJBb+G5yTFZQX069l6e8ZQ5wk+uhCBeHvjwSq2Jl33TGPY76OkcPZpRnwxp3LjsLzxSoeL4XFo1/uqrtB69QvP6ZfIHu15SZy2tx64iAsX87g5mfoyeZbiyBiWRSYjqtLyfqtZEUhJvrRF224DA1prmo1c9mKGsiZf66NncQymU9NlAxyPCRoIrCtCW+vDUH+M4Id1aI95aR5+OvCys06I6OmX0pZfQWUG8sQI4quGY8uCYyctv0PnE44SdFvVwzOTF1zHzzE9WLm2ikoQQqKczsjs74Bx6Oj/3l2V3HiCCkHB1mdmrb1AdndK4sglhSDWeou/vU5+O/ORl0WQE3TaqkaJHk0VTu0R1PPQEwTRZTERa5Dv7uL1j7+XRmurwlHo08fS0VgOZJgRpjHNQbO8jQuVhH9MZTrCY1OxT7Bx4GEYYEPbaWG0o9o/AOt88IaiPTinunyLCgPSSD7a1s5xqOELGkc93mmU0rl5ALWTMrtY+5HVrnd4PPouKvSSs/dg1ZBRQ7B76KV0zRQQBQ63J7u8uzv0avfDxiDgibCaIOITFRl2ysYqwluTSBumNSzQvbZLtHjD/+luUh6fYokDGsZ/e1bXfDLMOVICII7J7O0S9NtNXbhJ028QrA/q2pped8EbRhaVl2ovrQ14YwkAyn2ukFDz5aJvvRn3c9LxPaa155ZVXGI/H/OAP/uC7pA4P5/S8X8WRZDCI2NkrSBJJkkiiQHIwKzHGp84KoWg3IZCGeWapa7+TLAVEKeTFQ9mg71m/Dw3PwyUVOIkOGmin2etepVWOEUJgESiryZIeUT2nDJooW2FlhEXgpKRSCYnOaRenSAxF2EQ6S1M/RGATAmUNeZhipELaj77pSXTOpdNbzJI+edgiXARhPtx4ndXZEL9dTWmXfmoV13Oq5iZGKEqVEtqS0OQIZ6mCJtKVxLok0TPWxw+Ypj2sVASmRpqa/c5F6iAmMBVOCDQSrUKcEV7uKNQ7Exux8NIsMKKORZPizpqYxSL5rDE59/w8vGuygB2Isx/7bCZpNHYBA/BN0dnjLSR0+HPWnd3/u+7bLcyTgHDE9QzlnMd164J53GMeW2JXEs32iU3BsLHKdv8RVmcPuHB6iyxsMYn7xM4CIUetZaogIdQV06gNUjJsrvrpXH5CUs2RcY+5apInvY/uhPgWVVZ+unMGJbBGPDSdlawOAqSUWOcwOiSMuwxSzaWNgmubu1TzAw72ljH1MktLS+8is501PK1W65sanm+ss+bn7O+NMfy1v/bXyPOc69evf3cPwsf1kVVZWd6+M0MpweAh/Xq7FdJIA/YeVCzb0J94+EDS6ujUE9nywlMKBbjJjNYTN7CdNvVkhs5y4qUeopFS7x2BrolW+lhjvWk9zJm/dYd6NEWEygduthrIJMZW2ueH/M6eD9+MImQUUh2dgoDOM496T9HJiKDTov3MYwgB01dukmyt+YDJomL6yk0mByfo6RRTVETLfQaf/TTplS0/+Vzu0//cpykPTyi293DW0bx2keTiJvHKgOrohOLwGLO3oIAt96mOThGB84Qf6yDw0yOhAmQc++ZMG8rdfVzpH7NxZes84FI0EvTpGCcFUnoqJlJiF6GRrvShpOBIL2wSrQwwWc7s5ts4bVFhiMty7DwjWF1CNVKq0xHhoEuytUZ+f8/LpeOI9MKGJ+WVBaKZYvKSYs8jwW0QIBupb0RqjRnP/ESu06bOC+TpyAMI5pnHS68tE/U6yDShPh1hFsZ01W5SjcY0rl30C2drka+8eX79bz5y1WOWjSFc7oOQNC9t+U0TXVOf+vew8chlwk4LZxz10Dcq7SdvEO51kVGAHs3I7m17j9FkipnmBO0mtqyI11dRaeLzZWaeeCfSmPLw2O/YJwnjl96g2j/CWkfY74CzPhuq2cRZS3Z3h6DbofvMoxR7x9QnY7+7pLyksBgd4iqNCBWmLJl+/W0aly9Qj6b+ODQaqGbK/OYdgpbPUHIIpi99nXo4RQYKk2U4qQgaPiizPFpkPEUR1XBC0Gpg8vJcKqgaiQc/1BZTlASNFNWIkVFItLJEuX90Dn6IHrlCtNT3nwmjEWGA6rSI15d889RpYWqNmXnQSD2ceES0kIhAUOwcEHSaWO2nS1KkVPsnyE4TM8uwxjC/fR/VSAk6Le/DGU19Qz+aoJoJnWf/EK3Hrr7r+iJVQNBpEa+8k62mkpj6eIQQwoerhoH/GgdsrUkW4bymKGk9eZ14bcXngx0POfrNL1DsHmArn1dljPVY78nUAyIaqX+OArKbtz22+/EbOCT1wYnfILhyke7z62wdNzjN/JCh2QzYaiUEoWR7L+fJTsjq0nfHM/lx0/MeNZ/P+fKXv0wURXz2s5/9ppwMpdS7Mhreq4QQXLnQYDbX7B2WBEogJGSZJisscQhhIDBWEMfS50oZRxBJsFDVhm+9vv99bnjOSohFfg84aaiClEhnKJynbEUxWdwj1AVxXWCUJdSFD+uUkjJMGafLJDqnmx1ThA3Gok+nOCW0NQLQMsJPUT76huesUlMSzd8/l8MhGKVLDBsrOATd/Jje/HDxQ0daz8iDFOk0AghNjXKaSFcIZ4lNTlp56tg06lGGHpDQK06QUrDfuYy1BqNitErQUmEVVFGLc/3Y+SL4rFt5iL4m3qG2IRfGsLMr2TdNCh8aXzhLYD2NzarA+3MAD0Owvqk69wvZhSTOLSAIZ0/H3/+Zc0npitBqusUIrYLFVAcQklGyzCTpE9UlaTWhCGIMAVYoutkRo2TAsLXuG2MhF4AJwzxqY4QkEj7MNG9fJjQFsc190OmHQm//3spYvMrTggz92qsoIQwsUnp6m0D6zYso4IeeW+aHnu/TSCXD4ZCjoyPefPNNyrKk3++zvLxMt9vl9ddfp9ls8vTTT38oYptzjr/1t/4W//Jf/ku+9KUv8fjjj3/3XvzH9ZHWcFQxnWnWVr95SqmUoNFrUFy8RvzmGxR7hx45qxZZMXmB6rb8bQJcUZBe2oQHe8g4Il5dBmOpAw8aaT5yhWJ7n+zeDkEzpdw7pjg8RlhHfTQkWh4gk4ig3aL91CMQBAijPZo69KnwMggRC7+cM9aDAhopKo3J7mxT7h/TvH6J5vVLZG/fx1YVIgwJkwSkZHZ7cZuU6NEUFvSw3qefOcfanlV6cZPxS2+Qbx8Qry6hx1P0vMTMpt47UWtUK/WXoiD0mOtAkmytY2rN6MuvoJop1eEJxfGp9yUsjNgCjzNWzSZCCmxRErSbpNcuMr91j6DZoP/Dz/mJ0nSOzTJMViFCRTUcI5zH/+rJjKDdpLi/549ZFPiJwHSGLkqUtcg0WYRW+qBLh8PkBc5ov/hXEtlMfMDlfE5iHPHaCq5feXmbFMTry1hjaFxcJ1o0hDIK6XzyCT/hWBn4bKBA+WP/YJdi94ig38ZoQ3ppi3o0QYYh9XhCvDyg9fzT5Pd3PLXteIjNPOkz6LRp3riMQBD1Oyz96A/7acLdBxR7R0xfuUnjxmWqgxPKo1NsXnjkcRgSXdxAF7kHHRwNaX/yceLVFcZfeYn83i7h6sBPaUYzGtcvEbQa1JM5Isip9g/R1y5Sj8ZYo7EYPw3ZOVzsrSlcVlBPptiyJF5dxllD0GwQrSxhpnM//em1KfaPqG8/wBQVJiuIr24RLfe8V0YbzDxDL8Jn47Vlwl6b6tAf/3o49u+PtuSdlpdD1jXWxtjhGKMU4VKfaG2Z+mSIyQqa1y+dbxCKNCWIIsLlCIFEtRuYuibqtDBhSNjvUJ8sJjfdDtnbD0BCtNLHHJyCc8ggQJcF5u0ThBAE3TbhoEt9OsI5R+vaRVS/h9AeajL4/GfoPvf0N22UBe0mKo3Rs7knCtYaU1TEFzfJd/a9fE/5jU6Z+mwcW9XoLPfBund3ye/vYWcZpq4p7u16f9ksw5zlV6Gg0r5h2lgFJZnfvE21tM6ktUopLiJ7HaIqY8nN6C9foIoa/OCNiN2DnNNhRVU7Ku0w1rK6mtBqBKiP5W3fu8rznKWlJR577LH3XHwEQcB8/u39JZ12wKee6nJwXPDG23Ov015NuXV3xnhq6XUD+p2Q4bgmjhRCQBhKjk9Kpt/y7r9XDc+H9AoJSa0i0mpMYA1KOprFKVqGSOswKiStJuggJrA1zgaEtqAOErQIqFWIxLDXvcZe+zLtYkjoarSKWZrt+Knpd+FVKuAbB2pnt5093nFznb3uFaTTBLpimC6T6IJWPkSZGoPAOMijFjqI0SLwi3RbEpoK5+CkscFBO2CW9IiMv72I2rSLIQfNTWZpB2k1kamwBFRhsmhPLNKCPX/xctGcWN5pbN71RiymPu9FY3u44XHIxdRI2hqjEr/x6fzEx8mAd7RreD39WU4QlvMmyxt6sDhCU2NURB0kOCG9nFN5z5cWClRMqHNqFaGTPkXYZthYoQ5SsrDlFwG6xgYxylQ4JyiCBCMChHAe+20NRkqcbKBNgFUfPeHl25WzYCQoHFKAcZ48M5rULA8SVpdDVpZi1tdinv9kj1bTX2qXlpZYWlrCOUeWZRwfH3NwcMDNmzdRSjEYDBiNRvR6vQ/U+Djn+Dt/5+/wy7/8y/zmb/7mxw3P/2BV1X4jR8r3nupZ4xg/8hzrd95g/vWbKAlq4ZeJNlc8eUspotU+epZRHp0Sry4twgObOAFGa38psI7q4BjVSKhGE2+c1zXxsvcH1NMZzHwDMHrhNS+di1O/8xxH2Lp+R2JXVtiyIrm4eS5hE1JgywpnDOMXX8fMc9LLW5S7B5i5z0IZvnmH41nG4HPP0bx2CWcts5t3yO7t0v+hT9K4vHX+2uONFZrXLjL84os+TPJ0jM0zTFHiau3xwSpAZzmi1lgB0fISxd4R9fEQGXjk7vilr/sd9kD68M5QYeZeVmayY0QYIaIQ2Ux88Gav7X2SxiCUxBlDdeJBBemVq1SHQxC+ObC6JruzQ35vz/tUTkYE7SZmOiPsdYiWegDMvv4WZl6+M2GyFqEUqtXATPy0ByURUeSnO87SuHphQTI7ojoZEva6HhFe1wTNBp1nHiO9dpHJV15l+DtfRYYhOIdIIpo3rjDXt5m89IZHL8ehl/BZS9zrIBsx8zfeQhclvWefwBl/DY+WegS9DmaeYYqK7nNPkSya0fTCOtb4KcX05m0/5UhiVBwRtBvnG0/FwQlCQLS+TOvGFWQUES4vEQynqCgkWh74xqauodaY8ZRq9wBXljQfu+49P5M5KomwLkOECpX4TQFb1ZiFb2n86hukW+sEraZHl88znx9VluS3H5wZLjHzOfXxkHDg5Y9Jv0N2Z4ek04bVZRo3LvrndDLC7dSYMCIc9DGzObbWlAsJmko04CAMqcdTGlcvAI5i54B8+xCrrZ9QCUg212hcu0h1dMz89bcpTk7BWIJum6jXId1a9485mVIfn1BnBfO3t7FFjltMT0QQ4LT2mw+BXEitBVGvQ3ZnG7G9T9DxaHqblVSLz/7DFfa7JBc3mb9xG3kl9gCU2ZzOM4+Q33mArTzQwwmJTBOcMZSHxyAEydoKQgiq/WNEFHo5bJb780wpH4ysvYUj7LbBWUxVYYuKKSm7aoPStuioCJfXHJchb57GtGcPCK9dYWU5Zms9JQoVWa4JlGBpEKECSV1ZjLYEHyKj7oPWx03Pe9TKygq9Xu99f/5B5G1nlaaKJFJsb/ucnuXlkOE4Yv+wQNeOUPnu1jiBFI75XFNU7zfR+B4DCz704wisUj4osi6IdY5wwu92WU1gawSOIkixKkQZjdOAkKR6zrix6qci1YxJ2ue4/TShqVjO9ijCFneXn+Li6U1iW5KHTSoVI3DEevFYH/rZvotL9k2v/qxqGXHcWicyBWntu1HrBDu9qwjn6M/3yaI2edyhChMqGZNHTSJdkmYZwhmyqEusMyIDRobE9RwBVEHCabpEFreRQGxqrJBYKX0WjjUo56dc1i6mO+KM2IanqAlPZfMemzMZnOKdINGH38eHjpLw8jklFl4z4e8zqHOqIAaid37/YUrcu47cQ1MfJwlNhVxQ4cbJACsEZdjwcgEniGzlc51UxDzqeNy31T7MFHAqRMsIKwSBgCJMsTJALDjuRirqRcBtLUNs1Pwuk9q+uZJFjxWGAm288jAMIQokUgj6vYDN9cTnDPRCGuk3f478SL9JFEXs7e2xtLTE5uYmJycnvPLKK1hrGQwG53jm98IjO+f4B//gH/BP/+k/5Td/8zd5+umnv9sv/eP6iCsM/HzUWveuxkdry/Zuxv3tHEdE+KkfQ725TVBmtAcxKgoQZYVcHhB225i8wOQ5crGwN1WNOR4ipCDZWCFaXWL6xtuemHVwwvSVm5ii8tkxkykyDmEqFnp+w+SrrxCvL5Ne3vI0tNHYNy5aY3PvTUlvXKL7iccAfy56E3S4kKvtY8rC+y+Mz83S0znF3qHfQb+/R+eZxxFKEvY6FPtHjF94zZOpGmdNlKT52FWPzd0/9nkfAk88Ozqlns+w2ie5iygiWO7hjN/Fj5Z6RBsrJMtLnP7u17BaI8MQWxTnkAcZhx7rvcggEdajo8+G6G4htbB1jZ7NfSisWUxpALd3AIu8FhmFhIMuZp5Tj6aoVoty7wi3ILhVx0Osc6g49ugXXfvLaRCck9lUs0HQaiKkpNw9QClF64nrpNcuMPydr/qJQ2UIu22SzTXi9RXGr7xBdm8HEUeodHGNmGeAoPdDzxL020y/9gZ6OkNt9JBhiKs19fEIBJT7R0yCgEv/7/8nJi+Y3bzD7ObLIAXplQsIJbHWnm/AZG/fZ/7WferT8cIHM8AWJfU8J+y2EWFAfTJCdVZRsZ8cOG2wZYkIFHqe4/aOfLBqr0u0uoTqtpm/6Zuo2c23SS9ukh4MKQ+PCJd6mHnhn7exVIvJkmo3EdYRdNsU93YpdvYRUlEeD73fbDYnHPQWXrgQPZn725YHi8YyJ+m2iJb62FJTbB9gjSa5tIk1BiEUst+hHk0xZU1wRkura/9dlqZk93ZoXN2i/eQNLwGNI0/NWxvQeuQqqpESL/eIVpbJ/8//gp5mhO0WIo0J2i1UM/GeXKl8cGvT0wpNVXkP2CJbKWo3EVHkQ3+zgno0RqgAV2vCfpfWE9fR4zGnv/0VBj/y/Dc1Pt1nH8fmBfndXUyeo6czAgHx2gCEw+Yl1WiMnmVQVThtaNy4RLK5hi0rRBTQeuwax7/5Ba8M6bSwZYmdB5iy9J/XhQ/Qfy5L9lpXyYwijRWjsWGY1YwKQVFLiv2MdnbC4UlFGEhU4KM1hISisnRaIb3ux5Oe76v6ME0PwKs3JxwPa65eTNHG0WopglNJXnqTeVU5HI40loTBQyqmd9X3iZzt/epMceUkRdDCiRDlLNJaEpNRi5AiauG0pFFNyOIucZ2BcIR1QRkkZFGLQXZIs5pQhA0SPWcw36NZzelnB8ySAUftTZSznLY2/ILd+S+9wfyQtemDhcTqg9XZR+pbvZMGyIKEIkjpPpTxk8VtJskSoSmJdc5pcw2Lo5TeexRXMyLrM3akg7SeIXB0s2OsDH0ujwgJdc6ouYaWEYEp0SpaYK7V+RAn1hlaRSgUwmqMUAgsymq0CBfWG+G/TM8kgNa84/FRZxADeDecwDdEBhDOLPwBgipIF43EQ/I4gU/L/cYsH7cAJSARGIwKieoZVijmUevcIyRMDSpAY5ikA6yQ1DIEJ4jJCHSODVK0jBYhoxLc4jUhcErhCAFBJf1/+S7sAn27EkAYCZTw+TtKC8LQS1Sr2hIFgo21mOVBRBwKLm4lRNF7X7zruuaFF14gjmOeffZZpJSsr6/jnGM6nXJ0dMT29javv/46nU6H5eVl+v0+3W4XKSX/+B//Y/7hP/yH/Pqv/zrPPvvs9/ZAfFwfSQ16Ie1mwNFRgbYwniymwqcVx8OSsjRsbjQwF66iPvNDVPsHZPmEflvRemKNxtWLhEs9xr/7MsXBEarhgznLo2NPWTMGGUd0P/20p7adjnwSexQQxl42bI3GjHKwjvTKBT8hqjXppS2S9RXvU2i3CQcz5rfuI5d6dJ9/mt5nnj3PZqlPx4SdNvH6MsXOAfVoQr54PLfwI5VHJz5ENE2ZvXmH3meeJVn3U4R4dYn8zg7F3pGXCi2qPBqikpjmtYveW1AUTF9/C1f7RsJkOUHfy1vNdE59OibodwiTmKjbBuEWJDiNNdb7ctoLuIJSfpJTVUTLAwgU9ekIiUCkMTIIcHVNsXeEgwVVawcsxMs98uNTTFYgkpi038UZs5Dx+gVlub2PPhUY7T0hMokhDFBRiLPxQjalCZopRvlMIbTGzHOq4yHtpx6hcf0y5d4hraceJd1cp3HtIkGrAQKKnQOmL99EJhHV4fH54B/nkM3Uk/Eev061d0RycQ0QC6N96JsGKTGlxxMf/sf/hilK5q+/jTV+MV3uHjJ56ev0f+hZNn76f0NYx/TVN0kvr2Oqkrr2kiaZJkRxRD30oaphv0u41KXcP8FUJeXRiHo0wWQ5Ni8oD0+Il/uoOEIohYwCol6X9rOPk17cZOkPfgYRBez88/8fQadN0Gli5jnl0Sl6PCZIG0QX13FFSXVwQj0co2dzZLPhPUXae2rq0cRn7jQSXKiw0xkh+J8L/82ix1OP8J7lfiLVbBCvDLCVxhYlejJFAPV0ikwicA57braWzN+8j5nl9H/40wgl6H3uU5jJDD3PEXGEDELilSXitWXqyV0IQ4Rx1KcjnyWlNTYr/CRpAUVw1kKaeEmZ0dhKQ61RSUyyuuyBA702rqppXLtM4/IWMgyZ39th/MKrLP3YD6MesmQErSaDH3me4so+45ffILu7Q7jUZ+WP/IgnDdaG6c23qA5PcZUi7nVpXr+MWxAIo5U+0VIXGShsbZCRn0AFnSZ2ZDBGY0YTbOZJh/P2KvOVPmG7wSTsYh3MbUgUQyM2jHIvacvqOZ1OyLVLTdqtEK0t40nNwUHOH/n8GoH6sNvYH6w+bnreo75ddoRS6jwv49tVnhtOhjWNRFIbx3BYEQSSx643ub+TI4RPoa0qQ1FYKu0R1u+u7/OGB7yr2xgvC5AhxWLRXgaxz+mpR4zTJYSzhKaiWUywMsAiKaIWp+kaDZOBtRy1tjhpbxDVJVYEi5DQhGY15rB9AWUd7WpEaP2BqmXIcXuTZj2lUwy/5dP8RtnaB6nQWaQ1GBkirGeJl0GKFQIrJQ+619ntXQUEFolbeJzCekiznFJFKdbBLB0QmZJGOWbYXCMPYpy1VCrCCImUAYGtkVZjnUNbi3QWYQ0IjXDS5/8sGhRpNEpJn5O3mOYI3MJys8gX8O5EQCxgCPIhatuCLCgVECB16SlxKuRdjQ28x/+f3XzmLXIobXBCYUSIFW4xxTFYqfxnylksCieFb9qcwQiFVhFWKmqVIM7Q2s5SS4WTZ43W4h37fWh0Hq4ggHZTUZSWQEmiUHBhIyWOBccnFSvLEY9cadJqhVzcTNhYe28z5lnDE0XRecNzVkIIOp0OnU6H69evU1UVx8fHHB8f86/+1b/iH/2jf8TW1ha3b9/m3/ybf8Pzzz//vXr5H9dHXEL63aLf+tIx87mm2QgAx9v3Mqra0m0HhIEknyvW5ArLFxvkvQ4rzYJgPqTYOaA8OMYaS/Fgn8alTVqPXCHf3qM8OkWWJVJIZq+9RXF4SD2aEPX9RMIa7fPJKoEVBicdpiiJRAfRSEmvbtF54hHGr9wkWVui8+zj5E/v+sT5xeLbVjXVwnTf+8yzPo9DCKrjIfn9XUQYEPY6CCmpxzNEL/DTkOGYcu/gvOkR0oNVzMJXoucZszfvsP+r/xGTl+jpnHo8I15bxmYFstkgEsKb2MMIZ42fbhUl7mhIkKaeTmWthxwkCWY8ASmIVpfOCW5CSeq88lKrLMf2O1jtENacU9aqo1PQFlMUYK1/jUGASBLscAxFSeEsoy+/goj8JMXizrHBQRyhx2NMViI7TcJue4HwbXAmvwo6LeK1ZWQSU4+mPtum20aPJjSuXGDwuU+fv9fV8SnC4UNJtUGlCeFSH7nA9TtrqY6HZMNtH07pHNIJypMhIgx90wR+MhiFmHnN6f/1u+hZRrK1SthqI5Uk2lhBBIqT//IlVLNB79kn0aMpzRtXfDDm8QnV8ZBofRmxmIL4fKQBZpbjrObkN7/o0entBmG7RTad+9yaKCTfPyIWDnM6IVzu0/v0M5jZnOzejpeiJbGfllmLwGfSxGsrtB6/Try2xOTlm/41K4UMI1xeeDy3sYha+6YjTXyz6RxBu7Ww3ThY+HKEEIgwIL/7APCTL9VukV5YQwah92WdjHzDNZ8jw8hT3+KIejSm2NvHzGbEa0uYaYGTzvumJjNwjrDbIhz0PckwTVFxiExi/5ysZf7mHU+p67ZQceg3L43xpMJmirAWEQXINCa9tOWBFoMuCMHsjbfJ7jygPDjEZAWuqpgIQXk8ovOJx2heu3iej6OSmOaNyzSuXyIadMnv7RJvLOO0pTo4ZuXHPkuxf8zoCy96wuF4SrgyQKoOYa9LsXuIKf3nMLuzQ9BtoZoN4jAkaDfR4xmlPaH56DW48jiyXKYIIsIwYG8i0MbRTQWuqGh2Yg61pKn8RPv4tKSRKrR2WOsIAon94HvXH7o+bnq+g/owkx5jHVpbToYVw2nNfG4oC0OrFZAmisEg4OSkZjKDLLfkHrf+8D3wfd/wnJXySGWsD6ssXEwZxcyiLonOAYEqHWF9CpEkrGY0siHzZICVkknUJVcNjAqxMqAKYK97ldCUBLqinx1ShG0SPT9veABCW+OQzKPOu5qes8/N2XJdPfTfDzqnU0BUz2kXI8aNJdrFKcpZNIpJMiCqc47bmxRBk1jnBBhEXWOk8mQ3XZDWGVUYEdYFw3SFwNYoXSJkSBa10cIDrv1zFjgZ+EbBWZJqDkKigMCVBFVFUk6pwobPSHD4yYg1XvnhzGK64n0/geUdrLW1WKyXuxntpzln5DVnsTLwzvxvWQ/J3M55zn6L0QlBYEokGi0TrBAoZwiNxUqJFgE2kMR6TmhqtAywSnrakbXE5BghfcOEW0x83ILhbr5Bpve9rTMrUxgKmg1Jtx2B8DCSNPUo6V4v4rM/MOCzP9D3Y/v32anSWvPiiy8ShiGf+MQnvq13J4oiNjc32dzc5NFHH2V3d5df/uVfZnNzkz/2x/4Yf+AP/AH+0l/6S/zkT/7kd+Olf1zfpapqyyuvj3j5tTFhIGk2Q2azmvs7GWVl6fdClJSUtUUWgtPGMvLuNp2dbYaRJr3a916bomD+1l0IFNHWqpcKnYyIVpeIli8RrfSpT0aYvCR/sE/QanjyMQoRhSA8tlgFCpXGyLQBwuEqzfTrb5E/2KXY3qf7iceIlweeXl/VzN+6h55lBJ0Wrcev07h+EYBogcOuZzNa1y6fSxeE8shfGQYY5ygPT991PHz+ToCezjj9nRfI7jzA5qWXQHVa5Pf2yO++xPzOfZz2UQ8myxcyMekJI4HC4jBZzvyNO978PRqj0gSZRNi8xGntJUf3dygPDkEp9GKRqocTWo/fIOh3qE5OKbYPcM5iytIvnLs+j8TM5ri8IFzuY6Zzv6h84jp6Nqc+PPFTgrJCNhKifodkY81LxbTxx+FkTGXHftFuLeGgS/uJG4hAIZSiceMygx9+jrDTIlpbQgYBrSeuUx2cYLIcneUMv/QStigWMIZ3ro1CSqKVAfNbdyjHExpXLzL+2uvUJ0Oi1WUvTcqLhSTRelKXMR4qsbGKCAJMllNu79NcUMlGX/oa6eaaH7AnMd2nHkUKwegrr1Dc3fbnTRB6v9juIdHqgMb1K8y//hYmLyiPh35CUtUQKN/EnozRwzGdZx9n6Q98hmjQZXZ8yuwLL9K4sE7n2Sepx1NM5pvkqNZ0f/BZok6byas3CZoN0stbPsLBWYr7e96HJRWmqpBKeWiFlD6PKPIyMj2eLaZtlmRzDRlHZHe2kUmEKSscM4LHrp57lEQUeFJdnvtzdzan3D1cNE8SlGL8tTcIOk0E/osiaPqJqx5PsWVN0OuSXr1I2O/6kOnRBITwzerOIdFSj3B9ibDVJMqWMLOM8uDYy95aDeL1FbrPPUV9fIrVmvmte9TjCUGnzfytfarjod9gaDUw0xnjL79Csb1P/7PPgTEedgIEvTbtpx9FT2YUDw5ItlYREvIH+5jp3HuRLm/QuHEFEUeMv/wKoy+/7LOEitKvE8oSM5PYokI1Ev96WynR0nU6zz5O8ujTTP/9febWYlTE4VyRBA5KR6pz6v46YaVY6kaoUDIc1sRRSasZsLGW0GqGjMY1dW0Jw49e4vZx0/Md1AfO6cEvvIvSYq3XDBvtODypODguGfRCpjPNZKZpNhTGelvGOz2P5XvT8JwtXj+CxxLiHY+F8om9YKlISao5dRix17tKWue07ZDTzgWEtXTyEw67F5mLgOXZNlUQoYVfgNcq5qizxWH3EoPpLs33QEkL4bBCMkqXOW6uM0k8nrNdnDLIDullWwvG4QABAABJREFUx+DMuxqeD9L8LJbzrE/vY6RkFvdwSMrQ5/JEOkc4iEyJFYJaxgTUWBlSq5Bx0mdptkMZpESmQi+8LKGtiHXOPGx6eAA+yLRWEQ6HFQHSGSJbIayhkU2RzlKHDZJqiivH1MrnH42TAUaFCDy1LXBeLmmEBKdR2mGlb0Stis918WcAgnOfjvwg7/+Zf+fM66MJraaWMVYo2vkp87iLUZFvXGSIc8YHrErhmzPng14jnTNJ+l7mhvVEJOlJbufI7PMdAPm+w6bvZskFwdsYCBVEocA6SRQJ1lZjOq3QG1cjiRBwYSMhid//OJ41PEEQ8Oyzz74LWf3tyjnHv/gX/4L/4//4P/j1X/91Pv/5z3Pnzh1+7dd+7T09Px/X93ft7OW8eXtGVvjMNoShKA1VbXAOqtKC07hTR78XUaoeDRvS2N1HX172+0vzHFdVxMsDbFUTNBqEK0skl7cIz7N3oHYOauMN89Yh4gQ7z3BZ4fHF1uJkgCkr8gc7JFvrjL/8Knrm6WSN65eINlYw4yn1dOabJSl97omD7NZd9Gjic3qkQOc51cEp9aBP0GkjlKdYVSenqFaTIAyw5TsbV3qeI5OYeKXP9LVbFDsHNK5f8pIpbYg2V7HGkN3bxpalv08p/eSl3fBemyz3z6fywAXrHK42BHGM1RohJOGy97VUx6c+R0UqwnaLoNVEBopodUDQb/ufOYFKY0QUUh0PccYi49inzrcamN1D7CwnGnSJ11aI+l2yt+4DEHQ76NmM1mPXSNdXKI5OMHnpKcwLb1Gxc4AJA8Juh+TCOijlAxxXl1n+Az9A85Er7zpfZBAQLvfJX9onu/OA6atvku8eIqLQ38fW2rncUAjhj09RsvRH/yDl3tGCSOYleEGvh4wDsrs7qDT1Hp1Ggs4L7Dynns096ayuaT31CPndHaqjk8X+mPWSyU89RXppi/ndbeqjUz/dOB0RDXpE/S4qidErA2Qz9dLA+znxhQ1koHyDMcsQcUTr6UdpXNnCGcv81l1kEtN45DIijZm++iZRv4NqNpi+/Ab57QfYjVXqkxHJxU1PMmymhO0mMgg8zlsbpJLIOEZPZwilSLbWqY5OqMoRMolpPnrFT4HS2IMwopDq4BjRSIiikKDj83n00elCWm1R7RYqTSmPjj3cI01I11dQ3Tb5rbu4ukY1UlylCdpNmo9eQc9zinvbAKTXLpGsL/vzXkjfTE/nJBfXiJf6uFqjxzOCXgcRhogooG6miDii88knaV67yGg4Jnv7PtXRKUG/Q3bnAdXhKUErxRYl+XiKzgp6j19jfvMOO3e3PQCjKHE4VJqQXtmi95lnKXcPyO7tkGyuE2+sEq4ukd9+QL69h55nlG/eWVDcDEGvja00lfTHz2dqZZ46pwZEqwMfRhuFhEt9ZsEpxd4hzXZMaBoEuvIqpm4PHTZJBaRpwOZGyuFxyaPXW/S7EUmiyHJDVZmFh/mjr4+bnveoDyJv+6BNz2hU00gDLl9MGI5rRpOaKPTmwHYrYDLTzDJLrR21tqgAtDmbuHwvMLzfzUnSOzhrowLysEGs5xgZkZiCLGpRhC2SesbcdRDGIKRjGvcpwuZiUS79aFsoBA6tQvKgSSVDooXUTMvQ60ajDgedSwzTZaowIdA1lYqZR12KoMnm+A7mA3h+jFDM4y5lkCCdoVWMiXXOldObHp0sA0bJACMUVZCipfITCqm8BA6BMhVIhVYBs2RANz9iHnWZRy1v2beWtJqSBw0CU4MwSOG9MVqGKKtp56eenS8lZdxB2oq0zohMyShZAiGITLVAezuSOkMHEQ6FkQJEhEViA4UVAnnW5DgPLnDnUAIB4lwQ/s579571cPMhgAjrNKEpfSNnCuaiBw6U0yCEz1YSFiNSpK2J6zntfIgQXtqXRV2vr1YRDghNQa3id3xF5w/9++PhCXyeHN12wMWtlOee6fDW3Yy11ZgbV5o46yEMs5mh133/SdlZwyOl/I4bnr/8l/8y//pf/2s+//nPA3D16lX+/J//87+3F/lxfc9LG8fuXs5srjk6qeh2QtI4wFoIpMJgqSpLIw28ZEdbdJGTaclo6zG2LiWoxCCikHh1iezBLvp0TLl/jFA+7PLhsm6xU6sk5cmpl9HUXvbqaoO1BjfVYCytJ6/TeeYxyr1DwuU+1eEJejz1E4TlAdVoyvC3v0rv+WfoPP3oYoKhyd5+wOlvfwXZTDGjGfVkxuirrxB02iSbqz67pNkAYzBFRXl4zOmXXyZIUxDQe+4pCEPy+3vEqwO/yB/0mN+6C0qij0+9P0cIv+Oel6hG4oMRcz+JMZOZb3iq2uN3jaHx6FWq4xOye7s0Lm7QuLrF5JWbfvF7/TLR2rKHGmhDvL7K5OWvY6Y5yYU10ktbyEaC04Z6MqPYOUAPxwTdFvXpCJuXxBsr5wGkejT28qVGgskygmaDeHONoN9ldstLmbCQ3riKbPjjJCKFLUpUFJJevUjn2SdoPORrOitnLeMXXmX2+tvEa0s0H73qIQZCUp+MsHVN88ZlD2yoK/QsQ0/nzG/dRecZ1XBCPPBTCNmIMZMZNitILq6Tb+9hypL5G7cx88xPgbRmdHRKdTrGYZneuoc+GVIendB87Oo5nS5a6qHzgslXXyPZWqf95A3mt+6SvXXPI7ezAj2eE68t+fNASEQYIITAlBX6eLR4rjPq0YSlz/8QQngAR/bWXSav3MJkGXqeM/rKKzSuXfSBmEtdn+ruoJ7OPfJcSezuISIIideWCNpNRKAIu54Mml7cQMYR/c99mpP/+iXGL76+kJR5L5WbzgmbDbJ7u0xefA2Lw5UlNqsgFTibeepe6jc9nTbo0cRDDrTBTWeoVnMBx5CE7QaFENSzjE6vQ+/TT1OdjKiORzhnCK5fQSaxb0YubTB+4TUv2UxSoosbyCgiWuoTtpvo0YR6PPGBn0s9XFlji5JouYeMY+qxz/45+W9fQk+n5Pd20VnG+k/82PkUVs8yZq+/jas0/c89R/vpR7G1xhnD6MuvoMf+77K37+GMoZ4XqCBEj6c4Y4m6bWxdo5op8eoAEUYePd5IaD1yBRHHHM0E7UevMFFtYjOBmUMHHVS3yaiKSZ1XTASRpNaOdjtg0IuIF5uFeWFoNRTBxyCD75/6UJ6ewtDvhmytJ9zdzpjODBc2EkbDmnluiGPF2orAWjg4yKgrg1KKMPDZH9/d+h5J55QPMbWBpMCS6AItA4ogQVpLETaogoRZ3MUgCKwhcBplNcqUNOucXn5MaCqSckJgaw8ROG96FHGdk4WtBXjHsTTbJzDVIgS0ZNhcpZsfv2fg6MNVy5Dd7jXG6QAWo+pI56xOHqCc96dEuiDRBd1iiHBH7HUuMUu6YB2BqTy8AEGjmrE0P8TIkFpFKKe9JENFOFNRhE1q5S/+CAiMJq4zirCJg8VxUgjlJyGVSjEEnKbLZFEP5WoiXaBV4OluUuEQWIEnnjlwC8CAb4DE+XTHiYW/B7zHxznf+HzQvBtrULr0/iUg1BWpyRfhsY7QlDgpvcdJsgAzeNmaMpWX9QURyhqSekZoSmZRHyndImLooYZHig/+vD7CEsIrZmztvTzTuSGKBMtLMcbC9m5Bt+XpbLV2XNxKWOq/Nz7bGMPXvvY1pJR88pOf/FAND8Cv/uqv8hf+wl/gV37lV/jxH//xj+LlfVy/j1VVlllmmGcaIaCRBuSFJisMQSgIUJSVpSgtcSyJkwA7r8gnOfH1Ldae26T/0Llmy5LZ6cRjpa3yUjHnSWM6K5jfuo8rK4QUOLsgMNWRbyCUwp16+VG8fpGVH/2sR2E7h4pCVKvpcbynY8Jeh+rg2EsynUOoxefSWqrhiNlb91Bpguq0SDZWfPbMdEaxJ+g9/wyq1WT+xm1sXmAqTf72fXyI5mWSi5u4oqSezjB5TvHaLR/GenzK7K37OOOnNSpJcIVHN6tmAyH9hpjFZ+IELR/gaKsKmYTUp0OcdbSfvE7z8et+OrPUJ1pdJt1aw2QlJsvA4bNLphkYR7l7SHV4jGo2KQ9OMEXhcdSL6RhBgGxI7wNppkRZ7qVhRenDV3s+0NxkuZ+OJDFmPCO6uETz2kX/XKMQnZeUO/sEgx5Ln/9BH2r6Hhuv1fGQ7O37JFs+DDRe6ROv9DBZiQhD6uEEfTpGNBLmt+5R7Owjk4jZG2+jpxn6dEh9cEy8sYLY2fcbTO0myaVNRl9+hfpoglqQxWQUeSx5XZPd9n4XM88IVwbMXn+bfHufzrOP0bh6CT2Zkj/YR7UbOOcIe206n3gMoZSfGGUZycYyQa8LQNTrUh74yVO0voYpCrK7D9DTjGh1iXjh8yr3j3xA5hPXPTb8+JR854BoeeDlWdvew2YX3qxky0vViu19bO4nFDKOSC9t+HNsgUjXs4zi/h7x8oB0a917tQD3zBOMv/Y6TgiKnUN/zjxxA9lImb16k/rUE85MVSGlRMT+82dmHu+tqgrZboF16OmM6nTkN/+SBBmFyCDwMtLEqy1sXlPe38HMclQaE/W6bPw//gj1ZEZ5eEI9mtL/wU+x9KOfwc4L6ukcEUdURyP0ZOpx1VNASvRsfh60WtzbJ2guQk3LkuEXXqQ+GRFtrhIN+qSX1snuPKBx/ZLHkNea/V/9T4xeeBXVbFAPPWRBxjFmOsNK5YmBWys4u0R5cEzQaBKvLVGPJwgpaD52jXhjhcmoYFQFfOITHWaV4+ioxdBUFIUlzRSNhiKKJFEocdYxm9dsrqfnDU9dW4rC8Nj11vvKw3+v9XHT8z4lhMC5954KBEHgO/uHUI7vV2mqsBZaTcXWekKeWwa9AKMdSSrpdSNeuzllOsnQ2oDzv3+Gwv3WAaW/l/peeoXwK0gpcUFKIRVWK7QMCUyNxOKcXXhRFDiDtJZahVgZIqsp3eyEIm7R0DnCGZbmBxghOWlukAcNJtGAIkqJTUlgag9MsJpCBufSrzJM39X0LGCnZFGLUiXEOmca9xk1lukUpyjnfTLHjXVe2frs+W0OMCLgtLFKFSRIZ0mrGVnUWdDUfJBnYmsmcZcqatHNjzAyYh73qGVA3ljFSYk5W9w7iyFAGA8giHVGo5pgBZRBkzqIKOMONmxihH/20nkUrJ8GKfSC+uaERFiLEQtLTBDhJzS+6ZFWYx8OOhUS4Srv+/lGOts3v5H+d4T0YaY4CGKMM2gXYJRCGoONIt90Cfzky3rJjnQW6aCMG5QyQgLKlBRR+5yoU6vknacg+H1peOAdy5IQvulpJJ4NeHBUcnHTZxr1ewHtVsjqUsTqcvSeF2pjDC+++CLAd9Tw/Nt/+2/5s3/2z/LP//k/5yd+4id+ry/r4/o+KCWhqgxV5Wg2FHVt0dpDSDzG2lHVgqIwdDoB1jq0ExQ1rC0p+r13TxTjlSXmb98Ha1HNBuXeEXo6pZ7Mye9u+yDPXtsHIlqLjEJUo4EtKz9R6XawcUw06OKsQc9m54vBdGsNEQRUpyMfKjrNvNzloYDu6njkyWBSemrYo1cWC9UhkTEUu4fMb94h7LVoPnKJeHmZ1hPXCJoNVKdJfTJm8tLXaT91g/zONjrLCTstgk6LNNiiOnmN+vAYh/D+nDQmCLro8dzLtiwoqZCdpvdONBsUB0cIhCdzBYr66JQMQbS25HNpjMZMZsgkgTj28sB2g/okxWSZV9fOS2xtfD5OWVNnBTjrscDaeoBCUWEWC1WkRAYBQacF4JuluQ/EzB/sIaRi8//1E+/CCpu8QDVS8ns75Hd3zn0131jV0al/HxcStnDQp3njKvn9HR+4OZ4yu7ONjCOmr70J1jF/8y6TF79O0OvQff6ZxWTIB9X6ZvSQ2Ru3cVJ4RPJi0i/jGOcsWIfTNcFSHxmGdJ55nGR1mekbbzN54XWK3SOcMV5GKQT5/V0/Gapq9GTmMeW7+8TrqwSLJiTZWgMc+fY+QvmQV1vVdD75BMX9PT+h05riwT4qSQj7vlkKWg3i5QHRyhLT195k/vYDnLEkm6s4Y3wwabftjfWLoNJoeYCMQuLVFcJeC2egHo6YvPwG7ace8XLIRenpnMEPfwqTlyAgvbjmp1mDHioMGX7xBayxPoIjChFxhAiVn5A6Rz2aYMuacNAl7HeQaUyysoxdX0bPM6rTEZPX3/J+qlpTT2ZU+0foyYx6tIzThvTSJmHX5/h0P/kE0coAV9QErSbR+jKuqgi7LUw293k+eYGzDpXGGGOQUiK7Xp6JdVTDMeXRKaOvvEKysUZycYPup54AKSn2j4iWehz+x9/i9Le/QrS65BvdeYFKEoJO0xPrtCW+sIqKY1QSIVXgp4FmIZUFzGTKfJ6hnn4WKz2qvNUIOQ1q+p2IPDaUlSXPa3St+MSTbcrKYY2j1QzIckNeGIrCcGkrZeM9wpo/qvq46fkO6mzRcnaSfataHkT0egGHxxVx5BeMt+9nTGYabRzTacbBUYYShkE/5uBYU9XwzYOkj7JJ+R43PGd11vgQUoaLY6iixXXWLBbfPoulEgkW0MA8bDFurNCqRqTVlDJq0izHPOg9wri5QlpMUS5nqvrkYYuGnpHUs7MHRaPQQexlcSIidhUayTTpcdi+SBa1kM4R1XOmyYDUFChnFq2LpAxT5nGH5dkOic7Zb19k2FwnD1KKqE2tArr5CcI5srCFwBAYi5EhRdr0TUjcRwGhzpg3V4FgISlbeGukxDiJUV4aF+scq0LysME8alOrBOMc9aJREDiM9MCHsC59ro4xCyOvwAlPTPMTncWEZ6FkszLCe2YW7nysp799G1mnr7MuXOBUhDAlwmoiXSKdZRL3qYKYWiUE2gewBlZTy2CRQ+LI4hZGRZRh08vySktkSvIgpZbJQsa2wGT/PkjaJP7QuEX0kZSghGBrMyZUkpNRRZoorlxq8Pyz3W+5I3U24XHO8dxzz33ohuff//t/z5/5M3+GX/7lX+aP//E//nt7YR/X903FsaLfD6lrQ7cTMRzXKAlR5IP5ytISBZ7uFgUCox152KC/0ud6V39z8nqnRbQ8QAhJNZ4y+/rb3mSMwxmD6rSoDoeYWUbrses+e2Y6Q0qBajWIL66DNoSDng/yBEQYEq4MQEB5cuqnAI0U5ywCgXzIR1aPJuhZ7gEJYYQIAhpXLiy0/3OS9RX0xC9Km9cv03rs+jm5DSBIE/J7e8zCEJPnqDg8X+yqNKH9zGOMvlpjZnNal68SrS9THpxQcAhao+t64dsRqEBRnQz9zncSoxoSW9XU0xn24Bg9mWHmvnGLLm4SNlPmt+4SdFp+cuUsejLzHoVB19PxFhQtm9XYWlOfDglaLZwxi0U8Pg+p1/WBq7fuUDzY8wS3YA2E8M8tjZm/6X0rQbNBdvcB+fY+JivQ4wkH4ykmK+h+6slvyluxdb3IYvOlooDW49cXU7bx+Xs/v3nbN56PXIEwxJaHmFlG/uZdGtcuYXWNjAOiuO+zm45OkUqiOv711NMMxlPfYIYB0eYaycoS1eExtihJNleJ1pYYfuFFzGxO49ol0osbWG3I7mxz/J9/G5Aka0uIMMRWmtnX36Ls9+g99yTl8SmqkbDyRz5LtLJMdmeb5T/8wzSvX+LoP/wW9WiCUAo9mxMszgFwmOmcxrWLpFcuYGtNdTLCzjPsYoO63D9CBAHtJx/xvqsgINpYIWik4HwYbPfTTzJ/+z759i7lwQkyjrw8sygQYUjrievMbt1DKkG0PKDYOQAgvbxJdneb6uQWTimfD+UKODHoyRxX15jSYoqKcOAlf3ZeUAdDVKtJ+5nHGX3pa8xv3iYa9Cj3j9FZ5mmFgSLfPqA8PEbnJcs/9kNEq8vUByfkd3ewzlHuHfl8om6LajRBTzPSXpfkwqb3ySrlJZ4IZDv2DdWhl7HGW2ugNTIKKHb2qYcjGjeuEK8usX9vm5Pf+IK/RjRSquMhqtMkWBjMVRhilcWVGjVYBMBmOXbuPU3R6hKy2WD+1n2i1QG9lR7BSHD3QUaaKJ55vMtoUjOZ1sxzTZ5btLasLCU89XgHa2E0qSlLQ7OheOx6i43V5LsCMDi/1nzX7vl/4jpbuGitCcNvTbtKE8VTj7W5cy/jdFQhJYzGGqWgLA3bO3NwjsuXOlgnmM5zcIbaLKAG7iFI1kdSv08Nz1mJhWHePvSlfY499uhlayVQE+gSqyKKqEUtJf3ZAWXYpFlOqIKYvf4VetkRvfyUSoXkYYtRusQs6hFX/rhqGZDFfUKnyeIOJ60NYj3ntLnKYfsiw8YarXLEUnZApHOyuI2tFa1iCFiKMKUMGqR1hgBmcZcqbNAqhuiGoju5x1F7C4SkU5z6oDGhUK5CWYuRgfe82JrAGqTTjM7zbx46Js7hhEBah3CaLGpjpYcZSGfRKsA4FseuwooAIyTKWZyKsFLiZIQyBqf8JMoh/El0fgKJdx9vB++isT38Oyx+xjvvzTv/dg/9mm8Nu7lP4Z7FPZSzBKbESkUlApwRGBRWKpIqw6qAWnn6mUORJz3yh89LBd+Lc/QsE6uq37lNSX+I68Vt1oF0YJ0jzxxKakBw7aLk+pXGt214XnrpJay1fOpTn/rQDc9v/MZv8LM/+7P8s3/2z/jpn/7p7+AVflzfz3X1YouvNkcYC51WwGhSoQRk2mItqEDSaSl63YiytrTbEZd+6AlajV2ynUPS9SVPAjOG8uiUeG2ZpR/5AY5/63fR4wlmllMenaCnGbassUWGyQuy+zseaXvjEraqsZmXgREo0vUV2p98ApsVHP3n36HcPUSGAfV46jNK6pp6MvWUqZX++Wuxxi52fy2mnDN/+z5CSYKzwM3gFDOf07x6ge6nniJcTELOSiiFqStmr94kvbTlQw5PxwTd9vn9hM3UG8ibCY3LF4gHfaJum+mbd7AnI1Sr6Xe6o5ig4bBxSH0yRCY+EDTstEgubGLyDKEk1dGI4vYDxOVNXFUj2y1spX3TJyXJxQ2P2p4X2MNTPx0Lw4UnJaT5+FWwUJ8OqUcT5ne20cMJzlnKgxM/MRtPyYqS9OoF4vUV4tUB9WxG/mAPlUTMb96B0Get1ZM5tqwZffklysNj1n/yx84bP8CHXx6cUA2nntqWpsTrS7SfeZT6dMLoq6/iqgoRKjpPP0a03KfY2SdopQsU9oTq+JRka514eYny6AQZKJwAPZr6rJgkwRk/wUIIktUl2s88Rj2cYI3FFiVGeU+O0xqTlzSvX0YoiSgr6vEEm1fIOMJJf8yj5QHZaEJ1dEI9ndP+xGOkm+uEgy56PCXZXKVxeYug2aD5+DXGX34FJxzOWD9FyHPq0wlBu0m0tuzJZccnNK5epPOJx7BFSXUyQk9mpNcusP4TP0bQbVHuHpI/2MNp4/1EFzeJVwZUhye0n3wUGQaUB8e+cd1YIV5dJui1md28TTXOECoge7BLsXtIemmT1pM3yB/sehKaFAiHlzripY4UJc4Z6vGEYveA9MoF8nt7tD/xOEErJd703q/szjZIgc0KbFF6iEYrwWQF2Vt3OcgLGpurdJ97mvTqBbJ7O+jR2H9WtSbotMhu3WVelB4K0kypTkeYovSfKynRoxm2LGlcu0TQ8D+vTobIRoPi7QeMX3mTyctv+IZJSmxeYsoKM8sJV3rYvPReHyG9H3c2Rwbr6JMRzhiaj1/DTOfgwExmJBsrBN02bN8j6D7FwWHJ5Yv++7HRUKytxDjnI1vCSHLpQpOnH+8ipaCs/IQnUJI0Ve8Kaf5u1MdNz/vUt5K3CSE+FMyg2w559qkO80yTF4bTUc3RUcb+3oyqVrSaESdDQ5ZrpPL+7doPPlCeJuwXvL+nOltU/v7mnAALwtsi18ff4P+zWHw7IXBOYWWAc5akyhDOkcctWvmIVjFkv3OVadSnVYypZUBgapJ6ikj6zIM2dfsqymkSPWd5vs/G+A7tckIlI95efgbhLFqEpOUMEBw31lk3Na1iyG7vOoGtaFVTjFCUKibVMyJdctzaQMuIWknysEWrGLI03WPSWMIKSWhKdNDECUXgKhKdkwcNirBJYP34TrjFZOVs9MIiRBSFUYHPPBCSWdRGLSZfwugFeU1h1Ds7rFoqj5l2lrTOAEirwgMTZOzvX5ydPO6hx1zc7nhIPvaNF5v3+/93bncyxLqaSdoHt4ARCIkyGhf4xsqIALN4X40M0YtcovNzUQDyvbwwjncS9z7czk+0UA0+3NBI8Q6mIQxgdSVEa8dw5L1WcSR8VoB7B+kgJcQRJLGiNhapAh651uCHPt37ltCCs4ZHa81zzz1H8B5ylW9Vv/Vbv8XP/MzP8E/+yT/hT/2pP/Vt4Sof1/94tbWR8ulP9Pnqy6dEkaQvYvLce3yiWKA19DohjYaiF4U4C+FmjwcmIdi+Q3//Lr2ul1SGgy6dZx5DRhHxUo+Nn/5jjL74NT/5rWrfOHSaIBR6MmH66pskG6uE3TYiDOl84nHKPe9jCDstZrtHnv618ACFSz2aly9QnYwo944IbrQ8VGBRYa9FPZ1THQ+JVzyJymnQkzkyDglaTdIrF4m31r6p4bFVTbF7yOSlNxY0qw2CRoLJS6qDY0xR4KwlWlsGqQiaTQ9Z6HWIt1YpDk6QUhGte+O6KytqpwmIKPaPsKcTglYDlyaUB0dI5f0YQb9DNRz7KdhwgikrbFmTXtpA5wWuKJGtBsnmKtXRCa6uCQcDkvVlVJrQeuQqepaR39/xRvy89H6OsW9K4vVVwkEXM5mS3bpH49oFnIOg3aZ4sO9TBYBq/xAzLzBZ7jN8pnNO//sLhN0O6z/1hwE8VW97n/zBLghBvNynms0p9g5INtdILm6SXlz3yGYhEEpi8hyrtfd3SemzZSYzRDw832gLmg3Sa5eoDo6Z3bxNPZt731SzgS1K6vGUejzDzOeYScrwyy/7cE8VUO4fEm+u+imTUlRHJ9iiJrmyhRlPyd++TxlFOCmJ11eoJ1NPrJvliEBSHZ74qdbzzxB22wC0H7/uF8dfeIH52/cZvfQGQRIStFqEvTb18Yhy78BPyhZSObXw1jhjye5uY/KC9OIGYaftJ2HfUNHygPmteyQX1onXljxOu6g8/GHuUdH1cErYbZGur5Bv7zN58XVkGhOveHy4Wpz71XCMG08XKnEF1mCLkvlbD0BK4rUV6smE7P4uejRDj2b+dRcVOstJLqwjz9QMQoC1ZLfu+HBRIbBlRXF/D9VpI6vKAziaKeHyAD2eUu4doBsNn/dlPfLdTOeoUCH6PWSoqEcT6tMxMo1hlpPf2/Y+KCxBt4tKI9AGW1XUp0NUKyFa6nlkdl0RNFJUmlDsH5E92CO+sObzoRoJ0cqSDynVhnL/iGo4pv+HrxKGgvGkptlUhIHEWMd0qmm3QzbWEqrKUGvHZFqxs5dzOqqwFrqtgM1NL2/7bjU/Hzc932F9mKYHfKOU5dZPfIZzZvMJly812DuSzOeG6cwHmiWR9ECSs012zpaqCvcu2PKHqd/n6c771bsaHxYL/4VfRApv5jcFcTUnraaExZxaBnx97dPs9K8xWnhq2ukJjXrqdyWco1FNSHSOkSGVjGhlp8Q6p1Qx48YSx+0tkmpKGTaRzjvV51GbSOcoLPOozb3+46T1jMBpKpUQ64yj1iaHrQvUKqYMU7QIqPuP0J0fepy0DNEyINUZjXJCpAtO2hveG+TM4udyITl7OOPm7PU7lLUEtiYLOx4EYJ2nw0nlzf2L5uidBuZs6mLRKkRai8SgrEbLiHeaHB56zIf9PHzDz76x3u/Cc/b4BmE1ZdBCK4WRweJHD/2dOzv/LHnUXDzuQ+fj+0rYzl7rWX3w87/WvmGRZwo+AVHoT7koFIRhgJKCKJXo2jLP/e76IkOVMPJxU875aQ8CxlPD1YsBn//s0rdseKy1vPzyy9R1/R01PL/zO7/Dn/yTf5K///f/Pj/7sz/7ccPzP3F96hM9kHD77owicqzUCbVxZHNDsxGwPEhoNiVZ5v9/fTUhTS+SLa/wYO8IvRTw2ON9mlsryCgiu/PAU8zGM5xxxJtrlLuHBO0GKk29B1DKBQDA79j3nn+G9icexRSF/566fZ/iwQ7Naxcp9o6oRxOCNMGWJfHaEqrVIFruk9/d9d6FOMRkpTdTG0PjyhbiLLagBcXeIULMSa9e8lcs587PaVvVTF9/i/z+jgcs9DuYuZ9QuVojohAplZf5DboIKb0fZTSl2D/y6OnhiGhtiXjQI1ruU42m1OM59XSKmWb+fvodwn7HE8Pm3uSebK2AUqQX1hcTkpDmjcsk6yuMv/Z1nNHo6Rw7mRL3etRlTuuRy8go9LvgWpPf3/UhjRurlIfHxMtLzO/cpzoeYuvKN0pLfZRbgAxmGfVwjMm8csCUNa7SyCRcBFBuotIE5ywn/+3L9D7zCZL1FWY3b5Pf2aZ54wqzt+5S7B0RrS4RxBHTV26ix1Oaj15h/tZ9dJZT7B8RNFJsWaGzwntulMTlBWaeI1a91A4WxzVQjF54FT2ZIYMAEfnreHk0RH/xRaJBFxknPsemqqmGE/J72zQfvYIzFhUoioMT9GRK++lHKYPAh6wuDwgaCSIMqI5OMUXB7I23MbOM/g9/iu5zT9O4dvH881CdjKgOTyh2jtDTGXo8Jbq8Rby1jplnjL78MrauCbot4lbTS/PiyJ+HQYBKE/J7O7Qevfq+n7nkwjpBu8nJb3+VYmef6uB4ARiIMEWJajZoPnrFT7oubhJvrlGfjij2jwFoPnaV+nTC7I230MMJtqpQjQaqExGkyQIln2HmOaoRoydz4k3vU6r2jyi2D6hPh4g4Imw1EL2ub1qEQKYp1ekYUxQ+fLaufXhpu0W2ve8hIUlC87lLZPceUJ+McFVNuL4CtSYcdAnSlGx7zwcHH536Ka0SnkB4fOoBJQsAiJlniEBiixJ3MkLEEeXhKa3HrhED+s4DD4m4uIEtSprXDMFSB3M68dCD4xNMlhGvDAiXB8xu3iY63uXi5hXAMZ5q5kYTKMHKcszGaoI2DiVh77Dg5q0p1jpaLQ90Op3UHJ6WTC+3ePR667vS+Hzc9HyH9WEIbmd1fFJycDRmOJxy+WKfKEqxruDNSUZeOsLAT3TOvA/avNMHBIGXAhl9tjz9oAvA79OG56welvyYxSrzIbO80gXSaaqgySRdJjYZw8YKwjmk1ozSJeZRm0rFCCyhrlie79KqppQqZdbusd+/SuJKrFActbY4bq4TJAMG8z2yuEdgSvKoxUHnEmk1p1FNCI32VDkVIxeTlyxuUQQNyrBBWk5YKQ6ZJl1GzRUiXdDNj3FI2uUQJyVlkHpjsq1JyzFSCLKgQXmO4z4rj4EWC/KZv0kS1SVGKYxMfMbN2XFx30BZc4ATGBGgFVi5AAfYyoMSZMA7E5Pf60Xk4amR9yRZGVEK6x/nLMXzzEN03uCcUQ0ebvj86/zg9e0bICG8RM3hISBnE5skFDQa8hw+cOVik3s7BUr5z5m1/nPncBjt/ygIPbyg0VAkkaKoLFsbCWsr75+JY63lpZdeoqoqnnvuuW8rf/3G+t3f/V1++qd/mr/9t/82P//zP/9xw/M/eTVSxdpywr37c+7cnTGZ10ShYGsjodOOkdLxYLdgYyXmBz7VJ4r8+Z4mTep+yt5xyWrUpR353W4ZRd6kfHDsvQqzOeFS1y90Q00QR9BteRlaUSJnmZ+I7h2z9Ac/Q7K1zvC/v4ApasKepPPMo0QrA2QSe4VDs4EeT7C1pvXEDbI725i8RODof+op8v1D8gf7hIsGxRYVQTPF5CWNqxdIVpcodvbPwzqL3UPyBzuAoHntEtXRMbObd7HGUu7soxrez5NcuICZTBFSkF7apPcnnmLy2i3GX3mVoNOieeMKKgo9Ka3WqEaMSEPEg11Uo0W80vfHBnCp9c3AvKD99COs/rE/hJnPmX39bdLLW54AtrOPKSuCdgvb7ZB8fovRi6+iZxmuqohWlsi396lPRx75fHcHqtqT4rQ5hw0E3Y6n2FUVzjpkkvgF7XCK1RpbVgSNBKkS0osb538X9XvkD/bJH+wR9jqMvvLKQqrl1xx6OqcajokGPZKtNaKVAUGr6WEKDsJWA6RABg2Yzim29wk6TUxZEcUhwaBNuXeMaqUefPC6b0TQBpNXmLJESoXDT65E4k37QSPFtf3j2FpT7B7RvHGF5PIW+fYBejSlPBn6fCVjsEVBXVVeap4XBM0GvR/+FGY8Q6Yx5cnQP2ch0JMp09d9mKmZZww+92mK3UOKB3vMb92lce0C1XhCfucBzUevIYSiXniZgl6L1o0ryMjjyr9VqTSmmkw5+s+/jZnlRCt9gk6Lejyn3D+kcfWCN/XPMoqdAz8hUcoDP3odVKftvT4CVKuJcikiUL55jSPizVXKvUMf2KpC5HJMsrxE9uZd6tkcYw1WCERZk+8fkwAqTVFRiAgkMgx8E2ItbpFVU5+FnHa8BDPstWmnNyh2DqhORj4fZ22FZGuVeKlPeXKKqSs/6asqCALvuQsCVEN6oEm3g6sr0NZviNQ1IorQkynF7gEYS7K5zuCzz3mp5OEJTooF+a5P2O/grM/Hyu5sE2+uoRop8eiQpRvXCaKAC5sKYyxKSdIFCGh3r+DShZQ7d2cEoaDffef7tJH6nJ679+csDyKWlz76/LmPm573qY8yqwe83OXV19/C6BmtdpcsVxye5lSloars+RpYCYHPk3MsrhXntgy52Pi2DpxVXn6z8P34ReDCtP7Oo/J93fB8Y0kBdrEodn5HcB73KMI2ZdhkoDwZbZIuk9ZTlNNMw75HNQtBLRoYWSFm1mMng4RKxRy2tgh0iROKadyhiFo0ihHjxaRIy9BTz+Ie7WBIUhfoQKBlyDzueZLL5AGRLlGmolbxguzmiOsSKytaxZCV6S5JNeeotcUs7pLHHXCOyJY4GdDOj+nbQ4ogpQwSQGHPkK/OIK0mMF7eIqymDGM8gPshSZo/UA8dtLNlvUU4gw0iaqdQLAht7/LqfKtz+oMurs9+76EmSp5J1R72ab2HNO4bfUMf0uPy7nr4b98tgzvzwTkHYQhJLIhjj7WtjWA4MvR7mizTCOGIIkUQeu1bXgofdOtgbTXk2sUmaaqotOPkpCJNJca49/TynE14yrLk05/+9IdueF544QX+xJ/4E/yNv/E3+IVf+IWPG57/BWr3oODtOzPiRLGxHnM5TMly4zPdxhUb6wlLvYg0CfjGr5swlCSJYmcvZ2s9RSlBtDogWu4ze/MOtvaL6mR9lXo4XuR8zAiWu7iiQrWaxCsDmjeu0P3UkySbqz7jpaywZUHjygUfkvjQeajLmuLgeOFrkIvgxzVEGNBNEroCRl95lXL/CKQgaKR+odhIaVy9SPfZxxl9+WWyuzuAZfzC69iqJl7tk93bIb+3g57nmOncT0byksnLb5DdfUDj8gW6z3+Cejhm/tZ9qsNTmo9dQyzyUkhiVKtJ48oGw6+cYIvS46zPjHqAtQab5QS9rl/kSUWyubqYYDWZ37qLzUuEUuT3dlGdJr1PP0Pj8iYikAz/+4sQhSQX1tHznHhjhep4iEAQDPq4qiZa7qOHU6rTIXo0hgtrCARIUI0YlSS0H7/O8IsvYsuScLlPsr5C0HpHLmjygqjfoTodMX3tFie/+QVMVRF22oS9NvHj18Fo6vGceGsVoQKPc17qUo+kD90cjnGFp33le0fUs4zGlS2Cdgt9MqFxaYOq02b2+i3yuw889KGZoucZGIs1BpkkHgc+nWOmPqNGT+dYY2k+ehV9Oia7t0O65clgs1t3KO7t+LDTVsPn5EiFs9aH2gqY3byNmXhSnC0r8gf757Q6V1c4axFCkG6t0lwY7rO372OmGWG3TeYg6LRJL60DwsMXFscpHHTpPf/M+37ebFVx+Ou/zfF//u9IpQhWl7BliR5NCJf6yCTCWUdxb5f+jzyPmc09FANINlZxuqY+nSCDaOFdCnFFBcYR9ns4azFZQdBq4sqa6uiE/g99kvmd+56GZxx2nkNV++/nWUZ5cEK83Ce5tInJClSz4RvnJEYmHrSghyOfTZXlfmonBUG7SbjUJVoZEG+s+ImZsWS3H1CdjMnu3D/3qoFDZ7nPk8pyZBwhlaQa5QvBhkP1u6SXNv2UstLYsiTptpnfvk91MiS9sE7QSP3mR7cNCIQUBK0mNi/Ibj+g9dQjpLFkqye4fWRoNgWtpocYVbXl9LSi2fCE4slMc2Ez/ab3qJEqJpOK/aPi46bn+6mCIPjATU9Zlh5Zax3Xr17gtZs5D3YLytJinV/gB8rvUIMjCt9Nb5PC54WoECIFRfGQOOp80/w7kwF9X5WQ/ikb46cDyjd2WmrGaR+jAiJdLpDRCqsClPV+DGU1ToITggeDRzjUl3BCoqX3yEySAZEpPBbbLUJO4zZJPSep59QyIo9aWBRxnVFGTRKTU+s5VZCShy0Sk9OuZlgRoGXIJO5SS6+9rVVMEbaoZMi4sUwZJGgZIYBI53SyY5QpmcVnTZp/b6K68MhuPGmtDmLqBWbbInGCRbf7UKPzjYth4X9u1MKzJRzmTF5yptdaTM5+75Oe8wd955/Ovluu9u3q99TsvN9z8ffpm513zn8hoNsNKXKvXet2JFoLhuOaeeah5b1uSK8TU5SWyURjW5YsMzRShbEwmRqKyrC5HrPcjzD2m5seay2vvPIKRVF8Rw3Pyy+/zE/91E/xS7/0S/ziL/7ixw3P/wKljePedoYKBLp25IVlOK6xxhFHitm85tbt2aJZN5ycJlzYarzrPtJEkhcGrS1KqQVW+DEmr73J7LVbOGNAeLqb05qg3yVeW8YVJZ3nn0ElMYMf/pQPdlxU2G0jwwiEPD8P9Swj295j8tIbTF5+Axko4tVl3GJagRDEm6ss/8HPsPpHf4R65LN2EIKo20bPc4JmSrKxysqP/wFmb95h/MKr1JMppii91yPLidaWMVlOuX+EE6DCkCDoUp+MqXtdyr1DrDEMv/giQiqaj1z2IdCjCSpNEEoi44RkfYXJ628johBbG/Q8w1a1n1oIgam0l6kZfT6d7j3/DI0rFxi/+Bq21sSbq9QnQ8a/+xL53W3irTUGn/u0xxUHAdmd+xQP5ggV0P7k4xQP9qnLEoEgWupi5vOFwd7TvYJOC306pvHspve4jGdkd7bR0znl/hGNKxd9bkpV46qaeH0FM5mx/4UXyB/skV7awFlLuedlfemFTaKlLsWDA4J2E5VE9H7wkwz/21epxmOCTgdaljrLiasakcZs/cz/HYREjyZ0nnmUyctvMPrqK578FSh8cDWoRopspNii8JI241DdNsnmGvndbZLVJS8lKyuqw2Oq4xHRyoBoZcDka18H6zw1DLGYquWoZgPV75Hfukt8cRMRhuiTMenVC+jJjPnNOx5Zvr1PPRp73PnKEmG/S+vpR6lHY5y2xCsDbOVJZQBCKaKVJeZ3H+CcJb24+b6fuelrtzzoYzr1z3ep7zHsWU65e+ChH1jMeErQSmk/8zi9Tz/tz5ksZ3brLuFSn6U//IPkD7YRUiEHXUxWIJXAOR8UqzpNXG1QrSYijsnv7SCCgNajVwBHfucBuqoxxiCUxIkBWEu8toQtvRwxHHRRSUy41Gd68w56OsNkBfHKgOnLb2CNoT4ZEa+vUh6dEC33Wf2jfxBnDI3Lm5iqpj44Iup3fQjs6Rg9npxLT+vJFPDXhno4odw/IkhiWo9dRXVbUFQEg64Ps40jZrfuemlcq0F9MjzPc8IYTFnitCZsNxEq4OrFlKgXcH87Y/+wQABFaTDGYa1iey9nOKoIQ8HKIEZ9QxBpHCumsw+npPqg9XHT8x3WB530TCYTXnjhBfr9Pj/6hx7l//sf9qm0RQqIE4ExEMUSYy1JpNDaobX3JAj8OtUsNrGd81Spdxqd93heCx+DtmoxPfofsAH6xkWxgTpqMZUBnfwEKwMqFVMEDayQSOv3+a3wtyMkdVARmBqPZgYrJBZo1FOyqEORLhGYGhdK+tUBveyYadKnDFPKqEmoC6og9VMdq0nqHB2EzOMuk7hHHabgnEdF4wNMJ0kfLUNPoANCWyxkcR32u5cRzjKP+4AjsBVWhtQqJNAFTkUoVwMOwSK/512ysG91wBYNjTub+sC7JisCb1BZyOg+mpIPUd8+4GVE8uGao++43nmMujbMpnPyMgQHtRHEUUiaSPrdgOnMnEvhokiyuhYTh4LxuGZ1KSaMFErCI1cbtFuKpaWY6BtwmtZaXn31VbIs+44antdff52f/Mmf5Bd/8Rf5pV/6pY8bnv9FajqtGY9rBoOIt+/OGY0qolghpaQoNfNMM5pUVBWcDCtC5eUh62sJ4WKRoLVDSfGuJjy9tMnaT/wYejpn+vJNbF4Q9Lo0rlwgWlvyRuf1ZR/i2WoS9jvvel7x+jLxxirFzoE39U/nTF99k+z+LtPX3sTmJarfYf7mHYw23guRleT3dzHTOb3PPEvn2ceRi+u4MxY9npFsrAJgi5LiwR62KFFpjJ7MQHjstSlL77mx1ntQnCPqdZGxD8sc/e5LhIOe9z9IS3ZnB1uVyCjE7R/6BVoUIqOQII0JH7uKmeXkt+9730a7SdBuYuuaajJl/uY9Dv/db5Bc2KD52LVFw3UMwhF1WudG8mx7j1ZWsPG//xHaj1+nHk7I712iPDz1gZqDLvVoSrF36HN3Wk2CThuHoz46QYQB8dIAudRD5zmH//6/ohoJQSPBFRX5vV2KnQOaN66Qbq4SX9zwC8X9Y+rTMenlTYRUBM0GNBuYLCff3qXxyFWqoxMQ3h/V6HfpfeZpZm/fp9w5xJYlQRySPvsEjauX2Pzf/yhmlnP8X7+ImWWIMCJZX2H+1j1cUWDL2k982g2CdotqBJQ1zmhcXZ+T0pzx77tzFhVHVMMR+fYeejr3kixnKR7sY/odhBSIKCReXvb0t3mBWhDOHH7y4coKk2V+Etlq+nDPo1PCQc/jmIuS2Rt3fFMWRTjnw0tVq4mQAj3PEA7vVUljsns7PoMqColXl1CNlOkbb7P9//m3TF9/k2rvCDPLF/CIjp8WjWeYLCdoNUAIqmOf59N85AqNK1tUp2OCThuspbFxgfbj15m9dQ8ZRcg4Rs/m6PEcIQThUpf4wgbtpx+hPj7FZgXJpU2ElHSefgyEoNj154pzzuf79Ds445u21uPXKfeOCPsdVJr4c+vBDvGlLUQQMHntFnpBN5RxiMkrThbScVvU9J5/hvTKBY7/yxf941cVKIlUCSIOPRlPSWTcIFoaIIIAWy/gBMsD4vVlmjcuIwKFHk/R07lvnEZToqU+zhpcbTD5BJQk6HYIuv46Ei33iHttri8pNtdTxpOa49OS23fnhCF0OhFFZdk/dNy5O2c2N1y92HhX46ON+6bv2Y+qPm56vsP6IJ6eg4MDXn75Za5du8a1a9fYOyyxVtBqKI5PKqQUNBsBYWiYzQ1KWGoHVe2QApIGdJqK45Ghrt9NojqrM6uHDzE1SKlIooB57hZ0aPXQ1Oh/wAYIzpsgTcos7npCmkq9j8dZhHQ4F1CpwEutnMPivBdIpRgpCXVJZCuCMwQ0oGxNXOcYFVGHCUuzPe4uP8lpI0HaGisVpUpRTmOkINQFk6RPFaY+pVgXSBdihVpQyxRmMfL1dLjIk+iEYpr2vUzNORJTLuR73gdjVUSic9r5CXncplSLYK7/P3t/HmxZdpbng89aez7zcOch56HmUg0aShIgISPRGtodJqAJ2hi1aYccSEQQEnYEEGCwGQIMmDCB7aADIxob0+5f2IEBNy5JFAjNUkk1V2XldPPO85n3vNfqP9a5NzOrMktVpaoSbvKLkCrvufves/c5556z3vV97/MeOPBfVkkMjW1sBBt3tA7G36RSqNe8wXKTc7Ms0/25Vp2/QRjqF5bWFmFkkSvQSpP0CmxZYIuUdtsnTgVponGagmrVJo4KpCU5c6rC/IxZXPqeIM1NwPDi3PWhaQeCZzQa8cADD+C6N6LQ3bzOnTvHBz/4QT7ykY/wsz/7s7cEz9+hKpRGKY1tCcIwO8x/GoU5vX5OHJsuje9JBkNNv5+zsh6SpIrjR8pICYNBzpmTFewX7JTW7jyN9X//fjb+j/8v/Seew6mWkZUS2V7PpKsvzKDTnPKZ44del4OStk3jzXfT+dI3GF1eJbq0TLrfI9ncpQgTSicXSbb2UWNSmF2rYNerxqS9tknnSwq33aB0dN6ETK5u4c608eenyeOE7U9/nsET53Cn2+RRYhZUcUI+GKKHo7Gh26NIM/LhiHh9G6scoKIYp1VHFTmW66GyHLdZQ6UpRZJTOXNsvHgzO4Ptd70VqxSQ9Qf0mzVUklKMQrJu35jU56fxZ9rkYUI2GLLzvz5LESf4M5Nke13STh+dpMiSh05Tel97knRvn6n3PMTk93wH9bfey85fftGY0gWoKEIlmSHGxavY5QCrWsE6Mk/p5AI6ydGFYvCNZymfPY7TqGFXykRrW9gY38bo0jL+/DTJpqHMGZN+Hem6xJtjQRX45rr2u8Rrm8Z/4TjoMCTr9rAcZxxueafxOAYmSFm4DlbgY9eq1O+7k95jz5KsbWCVS0jPMxQ2zx13NRJUrszCoihAWoc5OFbpwP/hwDBESUm8tQdJakI0Ww200OSdIdHqFk69hDc5QbS0TtbpjcPPBOGVdZxyCbtRg6Ig6w8Znb9M9Z6zCNs2mTDDkPDyCuGFK6T7PUAjXRetCrzJJiiFLhRuu4lz4gj5MGT3U5+nCKMxNAOsSoDKcjpf+gaDx58Dx6KIU4QMEY5lOnFFYQJlpUClGdL3cadaWJ7L6OKV8UeqRfnUUUbPL2H5Ho233U+RZeTdgRFYvodVFAjbwZ+bpn7fnQRH5tj9qy+Zkb2xf1U4NpUzxxFSGBGYZCYvSFj4R2aYeu93UD59jPDyCqNLK8Tr25ROHcWbnaQYjUi2TGaPNzsFlqRIczNSORyx/P/8/yBsc56W7xEcMeJZejZFklEMQ5KdfayyTzGKsce0wKzTo3L6GOU7TlOEIf6MCUsdPnuBZHvfoOp39g3tsFqhtDA97ggbOpDwHKKLq4CmcvrYYehr4Fs4juTSlRGOK5meNJ+fSnns7qd4rmRnN6FWsZkaf68oNGmqmHmdAkpviZ6b1DdbfLzUeJvWmkuXLnHp0iXuuecepqen2e+mfOOJHt1+zvyMz85eTKEEpcCMHFlSkBeaJMtQ43G3etXBsiSOVRzmhhx4xA/vC7AEaFEYzLOCODWiyXavDkUZ4fO/8wicGUXSQo67OylS2yhpo1QxhgAc+GM0SJvUCsbBZWbpn1keEm2yb4qCXDpYqkc12QelSRwfp0gYenVyq4Kdp1i6IJc2W7VFqnEPgaaS9MktC4Gg0D4IE0SqhEAJyxDhxucpxuABDSAckJoMF6kLhAapNYU043K5tMmFNfbwvDA/50Z1LYIaDqEBBz93QMEoMsOIez3X04LrKWwHo4rAt9NbpoEkOxyEODSC7/chjAe4rsASNhtbBaORS6Vsc3rR5zve3qRSctjcSYgixULDYXbao1a5+paptebpp59mOBzy4IMPvmLBc+HCBT74wQ/ywz/8w/yrf/Wvbgmev2PlexaeZ407OgVJonBsSZJqtAY/kKgCbEtSFAXdQcrCfMDuXkK1YqMV1Gs2czMvnosHKJ9Y5Mj/4wfY++xX6H7tKVQY4baaZnfYdajcfsoEWF5T6e4+4aUVek89T7y6SdY1uN3gyJzZhZ6fRjoOeadrdtWF6dy4rSapZVFkOcNnLpCPIibe9VacZp1gfobGW+6hiGI2//Qv2fqzz6DzAvVoTnjpCirNjem9UFi2JI8ShC0hy8eEMdPFkJ6LUprowjK1u87gTTQRroPdqpNu7JBu71G+7QT+VJvR80t4CzMMnzlP99GnsUsB0ndNNkqSGqR2lhuRlOZ4s6YLES2tImyLrDdA5znpfhe7UsI5Moe130Vo6D76DML1aD50P7V7b2P3M5+n/+Tz6DRFujZ2qUwxnizQOx1G8hJaKSonF4mWN0i295ClADSUTx5Bei7pfheVF0Qra/Qfe5baXafJEeQbu8YHVC4RzM+SbO0aj4kQ5IMh0ThHCUuQ7PcJlzdMXgqCYGGayu2nSHc7jC6vUr/nLNHKJv7CDJXbT+JONBEStv7X34zHSUAKYYKZixwVFqgkAUtiWTbFKMKplbFcm/DKOiLLsKtVkr0OxWBE7U13mE+uOCHtDchEH1DkcQqb26jMbMhZrgtodJqj7BRdFHgzE+SjiGRrB7+3gFOvEa9v0X/yHPHqBhpw56ZQo9Ag0bUmvLTK1Pu+g2BhGuE4DJ+9SLS6iTfZwp+bNvhoIRh+4xm6X3/axBLMTSFdh2IYkveHiHFXXo0MLlx6Ltq2scq+gVZkOcnWLna1zOR73k5wfJF0Z490t0NwdJbS6qLx0Oz3yPf76CKndGwSyzGvtbzbRwiBynLyMDadPaXQWY6/MItdrRBvbFE9e5K5/+v7KR1fxG01AKjfdyca6D/+LP7sJLrIDdzi8hp2vWK6pElCPghxalXjj1rdgCzHrlcI5qapnDmOHfiEl1bMnuh4HFXUK7iTLbTWFKMRlbMnmfnQd6MKxf7nvkoeJyQXl0m394zXyXPNOOjT5ylGJvdL5wV5lII0r0XpebTf9TaCYwvXvad0uindXsZE23w+DgYZ+52Efj+j288IfAtvXTDR8khzxd5eysyk97r4eeCW6HnVdbPxtqIoeOqpp+h0Orz1rW+lVquhlObylZC80Ey2HRxb0mp6XLoSmlAmW6AVlAKB50gsaTwDQoCU+roN8xdGB2kNeVEghYVlH1CozCZ7lprMH2u8Fs6uO93/nQTQeNFsQVYYDLOdG5R14gQoaVM4DodmeilQukBJC6Fy5NjXIw6x0i5aWlCk2FqR2CVGTgW7SKlEHbpBi1R6JH4ZqQpKSQe7yImcsukO5RFBZmAJmeWi8NE2puskJIUwpnkj0iykSs0bjgUwFkYqByENihpBbjkMSm1y6Y59R5hUzG+qVMbHHAokcWOhZDkv43d9C3VT7PS3H6YhxqwFS5jNBDB/J1p71CoW9VpOHMfMTg44cazCHWdKLMw4eJ53U1LbgeAZDAavqsOztLTEBz/4Qb7v+76PX/3VX0W+Iordrfr/h6qUbaYnPJ58tkeWFTSqNp1eTpYWCGHGWj3X/Gk36mYDbH0zphRYLK+G3H93k1MnylQrN/8Yd1sNZv8v72Xi3Q+RbGwbYpvn4c9MYDdq1wnt8NIK+1/8BoNnnifrDRGWJOv2Uf0hxSikiM3OcLbfpUhS5Hi0qIhTs2iPItyJphkfCyPyUUj51FFa3/EgwrZZ/3//OXt//WXywQjpOsSrGwanqwzIx6CaNTrLQFlIf5xVkmXoOMGdaKLCCKHAnWrjNutEq5voLAfHIR9FdB99ErtSMaNtUQN/bhr95ScYPX8ZWQ5QYWx2uCsGsJB3Bwx7A9xGDVkyu9/R0qohoW3uYJdLJidvFKKKAstzKaKY3c98gXBpFel7pPs9hGebjpDS1O+/HSsISLZ2idY2sTwHf6pF48F7CC8uoyUMz11gdP4ypePz+AuzoDRFb4DbalK+7QST7/tOouU1+k+cowhj8lFM5fQxnGbNgATSjGhDE69v4022iS5cIV7bMoAJ28KZaBItr9J74jm8iRb+zBRFGLP3V1+idGKR5tvuw5tq03rng2z/r7/BaZQRKFReoLMclZvnQdg27tQ1IbibO0jPR7o2RRgjXMd83DgOxXCEsCxE4KE2t3HqNYSU6DRD2BZWzaYYhGMzfWwQ4kDeH467XiXQk8Srxr9k1cqMzi0Z7HejhtduQL2GcCycdpNoaYXBcxcpn1ikiGJGF5fN4xPFjMZoa51mJDt7FONRGZUXJstISpMts7VrwAGF+bewLMq3n6T11nuxSgH5MERlOcUoYnThCtHSGloK0v0eaadHvLFNsrFDvLWHSmKcagVhWdTuv4PKbSdI1rbwptrGh7W1Q2bbWL5rhHS1js4LykcXmP7Qu2k8cD2AYXR+if2/+SrJ+rbxc1k2OjGgB3eibYRzp2cIdlKCbZvRwJHBoccb2wjHpnR8EbtWId7aw+4Zv563MA1KYfke5dPHaTxwJ0UUM/z6M0TLG+x++guk23sER+ewJ5oA5jmYahNeWSXrDQiOLWCVA4r+ELtZZ+Jdb6P55nte9B504F23bcnWdsTKekSeaxp144/d2U3Y76b4vsXUhM/ifMCZExU899Z429+qupHoSZKEr3/96wA89NBDeJ5ZMIVRQbefMT1pFkZLKyFpqvBcQRQrtJJooQlDSblkkaQFSaIJQ7MzkqQvdSZmUSmECVyUlsC2NHkGSWo8QAfeoJe4mhv8ztfS9P6tlOK687NsMinJbLMaEIUJX7sehTxWeUKhcc3OFQK7SAAToOllIc3RFqVsSORWGHp1WoN1hkEDEDgqI8U8L7FbwYoHlNM+Q69G6FZxinQ8/uZRYAI4JWPktiXH4tScjxI2GnX4cB6IpQPaGGiT5Cy98TjcgffmRo//NUhvPX58bjYGd4gEdK/+zHX/fY3qpmCCb6/guS4NSRnLUxqNs3ukyeLR2JRKZWYmbT7w3jpC9djZ2eRv/uZ5qtUqk5OTTE5OUqlUDheIB4Kn1+vx4IMPHv6dv9xaWVnh/e9/P+9///v5rd/6rVuC5+9wnTxW5tyFwTgjWJhg99QsFILAplSyUIXGsSRzM2ZMaX7WZ2464IF7Gy87x8KpVw8DIG9UWbdP9+tPkWztQF5QOjqPdB2y/pC8PyQPI7LekGRjx3gIRiHSslC2hc4LdJYiPQ+v3QJbYo3zf9LNXaIr62il6Hz1CbOwVZp0p2P8Ou0WebdHPoqQVQtsG5lkBsAAZswqSgwsRkpk4OLPT6KzHHeiBUIwfH6JeHUDYUmSrV3cySYT3/02giNzFMPQZMzYNsnOnhntqZQQB6GtjmWa4Wlmcn2i2HSEnIysNwS06Q5pTRFFZN2BIbS1DZK7evcZtFKk2/sICf7iPNK2TIK9Y+HPTeOUTSducO4i0fomyeYeVqWEihJ0lhNv7CIcG3+qDQj8qTbSsbFrVaySf+jpSHb2sHwPu1KiyDKSL22aQEopyPZ7eNMTuBMt0r0u8cqWabYPQ9NZGQesHgSOWpUyzTffQzGKxtCGaXQ+3ikddwQEwiCYJ9s4tQruZBur7KOTFH9+EiHl2HM09vh4Dnazjs5zrEoFFUXoPCcfRjiNMtJxUVZixKPjYAUmt0grRdbpY5V8aicWCa+ske12sVt1rMAnuPMMwVQLZ6KJLgrCy6smbNNzCS9cYXRpBTWKEK6DznOGz13CqZaxywFxb0C8skXW66OyDKfRQBcFTqNu1lZbe+S9PgDSsWm+9Q4m3v0Q3uwkKklJd8+TdXp4Ey2cWgWVZmR7XfLegP5jz5B1+yYstFHFaS9ieQ5aqcOsIH9xlnwU0Xznm8l2dinSFBUnqDQn65hzsmtVRs8vgbSo3XUGp14l3d2n+/WnsDwXd7KFVa0gpMSbajN89qLp9vUGZFt7aF0YYTeKkI6N5XuoNMOqlA/Dgt12g6I/wp+ewJtqUUSpEaJj+MfwuUuk+13ClXUQmLynwYBkZx9veZ3KHadxJ5oUaYpwPJLtPTpfeJTg6ALq+En8B++nP7eI7qQ06s5170uWZciou3sxzz4/REiolGxKgaRWLRP4ku2dlCRRHFsIOHHsxeO6r2XdEj03qZeDrI7j+PDrA2BBq9XizjvvxLpmIXhtdMn8jM/2bkwc57TqLlFQUOSaLFdoNINRgVICpTRZbuayhL66eLu+rgoeITC5PoXGCSS2DQhNGGojGzQEvjmZLDXZJC9xdS+4jxfe9kbUwYL5BS9+y77qFxGg5bUv4Rc+ShKnCLGLBAnEThmnyNBaIDSkts/Qq42BBS571Vm0dLBVhqU12MKQ1KTLyK9TWDaJ5SKEJLd9CgSZ7WIphZMn5JZtOjxFZs57LMRsZdjjmRijU/VY7AhAFzh5itQ5uWWhGEML9LXdmxden+Ywq+dAXN1M1YqDn3sl/qBXUH9LBY9tQa0iGIb60Asnxw+50mBrsKUgyxV7nYy80GPx0+L48eOkacru7i47OzssLS3hOA4TExNMTEywtbVFr9fjgQceeMWCZ2Njgw984AO85z3v4Xd+53duCZ6/41Uq2Zw8XqbTT7l8JaLXz2jWbdKSTbVsEcWK4SgnCDTDUUGWFpQCmzvPuq9pcF+0ukm610XFCbIUGCwuYJcDvMk2w/NLpquTJMjAQ3guSil0LzIj1pUAp1rBqldJt3cJzh7HLpdQtQqjC0smPyeKka06Os1BKyzXNeIjThBRQp7luOUAp1kjWd8mz3KcmjFqI0HFKUUU4U62ADOCVYwiLMvCn2wTnD5GvLqBXS4Rr25jeR7utPEmZOOFrbAMRlu4rvFTpBl2tYzbrhGtRmb0x7FJdzuku/sGjFDyERpUGBFdWTObbY4ZLxSubehh022S5Q1UmiJt35DXopiiPzTdK63Z/fQXyHojVJpiW1WsatkQSuOEZH3b+GV8l2BxFq31mC5ngADCkgTH5szYdBiZzB4BWBZpp4e0baTnmeDZwKcII7JeH3eyhVOv4LYbCNcl2dwh7fSJN3fQeU68uYPbbhLMT2OXS4QXrqALhQxqxuvjusYXVC7RfOAugqNzFHFymNnUf/I5ijhBRTHlU8fN4yykyQSSkmR7lyIMkY5Euu5Y7MUUUUwexhRRQrazRz6KqN591pDrioLSiaO4k02ynX0ab7rt0A8DZiQw3e8RLa8Z/HIpoHbXGeI/f4S8NyJYnDnMf7MCH6vsE66uIwB/YYpiEJIPDDBBF4rkAEm9ODtGkYdY/SHJzj7R6ibuRIPSqSNYpQCrFGDXq/Qff4ZsMKT51jeRbO+SlgOk76PznCJOGDx9nuqdZygdncOpV/B8D3FsjmRzl2Rnn/DSMsK2KR+do3L7aZxqifD5yxT9Ia3veJBoZcMExZYCsk6fdK+DN9U2+VpRTLy5g1UKUHGCXa+ikoRiOKLIUkpHTc5QurlDtN+liELsUok8jCnXKzjNBkL08WYmD0crO199Yhysqo3oivdw6jWsSkC232PwzHks16OIYipnjyNcm9wvs1FdZKejsZ7sUh5WcVyLybbHbaerlEtmbVav2URJwaNP9uj1cioVm07vAMyi6Q9yalWHre2Erz7RpTcsuO1U9SU72N9K3RI9r7Ku9fRsbm7y5JNPcvLkSY4fP/4iwVQKLNoNj43tmMkJh0rZolJ2KAUCayTY309RBYRxQZKatFrXFQgh8F1Aa6L42t94sKC8BtOrTIApQJYrshwcW2A7ptsjpXnxKQU9lZsc0Jd1pd8OAfRNFszX+UUwZDJjmrn2IBBg6Zx63KUx2mLk1RmUWti6ILUcRpV5tLSQuiATNoldAjRBHpqvHR+tzbhcIS0y6SKVopzsoSyX1K0YNGc2wskTRl4DLQQWGqENne3AS+OoDKUtVK4MrloUoCUChRaSQjo4RYoUkkw75hoP6G0vvK5rb7spDe1AMI29QVwroF7lYulaONxLktjeWMEjxFWs+0E5NoTx9eJeX7t5IEFITZpqShMWji0YjQqYNN92XZe5uTnm5uZQStHpdNje3ubJJ5+kKAra7TZ7e3tMTEy8bOGzubnJ+9//ft7+9rfzu7/7u9dtjLwW9Su/8iv8t//233juuecIgoC3v/3t/Oqv/ipnz5695jHQ/MIv/AK/+7u/eziC+zu/8zvceeedh8ckScJP/uRP8l/+y38hiiLe85738O/+3b9jYWHhRnd7q77FajU8ZqYCZiY9PvcVRZoVFMOcvU6G1pogsJib8SkFFhGabj+lP8xRSt9Q+OiioAgNLtr4bl58jBqTuBgvkqPlNbNgC2PsxtWOkLAsnEaNYjTCKpdwGjVUFBu/QtIff+honHrZ7I4Ph1ieS/X2U4ZiVa+S7HZI93toS1B0+rhTLaLldbP4D0zuTNYfoMMY5bnYZSNKLFtiVUsGhVuvQR0zSrS6ib8wiwpjkwcE+EfncNsN4uU1/NlJ7HqVaGXTjADBoeFduh46zSDwzehVboTT8Pkl0v2u6V7FqUm0VxoR+IePp8oMwcwqm+BPf24af3aK8OIKWadLHiWoMMaZmcBpNdC7+yRxgs4L4p19wqUV7FYT4TimYxZ4eFMTyGqZYnWT8NIy7Xc+SLixTffRp8j2e2BJlCrINrbNdc5PYddqJvjScci7A/JUI4RAK4XTqqMLjS7MxqAVBGBZFFGC6g4Il9aIN7dRT+XkA0MaM/ktUzTefC/e7BTp9j46z0BaFIMhlu/RfueDBiLq2Dje1VFep1HHcmykXUb6HvQwuUjajAQiBd5M23RKmoZwl0QxOk7QaYpwLIPGznN6TzyLUwqwy2XcZg0dJeSdHsPnLlA+fdyY5jFCxm1BtLKOXSkjLUnW6ZFu72PXK9cFXgvHoYgSEwo7CkGDNzOJXSubLs8oQqUZTrlE3umz/8Vv4DRqBAtzZL0+0rYoHz+B26qbvy1lQn3TPYPPFpZN0R+R7O5j+T5IgS6UQZ1/42mCxVnA/B003nIv4cVlNv/kU/jz05SOL+JNtrCr5fF1BYwurxBeXiVcMv/ThUJpRbq1a8Jfw9AE1B4McYwJgPkgpMhydJIZz55to7RGZQUqTsmxKMKIfBgx9b53EF1ZZ3ThCuluh2Rz13RKSwGlo3PUH7ybwTMXCc9fRoQSpTTp5i4AjbfeS3BklnB9hzVvjq7TpjWXI/vb1N0pqDfY2IrIC819dzdwHUm3lxGFOYNBju9b1CoOWmtWNiK63Yz5GZ9jR0oMRwW+K9naiclzxX13NfD9134dcUv0vMo6oLdduHCBy5cvHwILblRCCI4dCRhGGeubEVFSkCtNGMNgmJFmiiRRFAcTUJrDDzTHtZA2ZFk+XsBdXVBKeUBtM42BLDe3pZkRQYaJPv6+hlFY4DmSki/JM3XdIvFlXvU1/369BNCrWDDf1E8Csd9k264wcMoIIclsH0sV5gGSxnkjVGEodwKQDiOrZh5QMSaijUtLKGRBJJoIXWCpAonGVRm5ZXYjHZWDKgiyIZnlM/SqKGyUyLGLjMJyyIUFGNKcRpNLoyYKYXF9lk4xNmkdCNwDEaOuEUQ3q2sFjr7mOl6l4HnZC/Q3vsOjNRT6alCvwIA7FGMfj2MARAfTfgKDdtdCUqtZTLYdAt8s3m5UUkparRbb29s4jsO9995Lv99nbW2NZ5999qZjcNfWzs4OH/rQh7jvvvv4j//xP77mggfgr//6r/noRz/Km9/8ZvI852d+5md473vfyzPPPEO5bD5Yf+3Xfo3f/M3f5JOf/CRnzpzhF3/xF/me7/kezp07R7VqFrs/8RM/wZ/+6Z/yx3/8x7TbbT7xiU/wwQ9+kEcfffR1Oe+/6+V5gs3tmP1OgmMLwkjhOZIoKqiUbVxXEvg23W5KpeJw5mSFMMzp9jJazasL0IPRn9HFZbJuDxC4k00qp47hL84aQ3WaMrqwTHhpmaw/INvvUWQ56foWaXdoAgmLGfwZM2oFGFhAuYy2xCG1y6lXyPshWhkAgTLzeSAE9QfuHC/2zDkJIXAbNXScodC4rTq6KBhdWqaIEkAfLuLtWhUZ+NjVkXl/zHPkGBrjtGpI1yW8vEy2vccoz1FpSnBsAX9uimyvh10rXx0JO/A72JbZ+d7ZJ+8q81m53zU+lbwgT4aEVzZQoxB3okG4vEayvQdKEScJdqWMcB2Kcbij26qjRzFOrUwxjNBSkOx2jJ8zjok2dgmX1lBZTnRlzYzGjSJUnOFKTDgomqI/JNXCLGIdE+ApHJd0dYt4ffMQaGN8Jieo3H6adGObvD8gWJwh2dglHw7RcYr0fVScmrGvcjDuWDlIx4Btsv0uo4vLqCQz3ql8ZKZDhiHRiuleuc0apaPz+FNtQ9TLc+Ira7Te8SCz3/c+Ol9+nPDSKu5k03QZ0sxkK01NmJGupRW00gZnrAry/gAZ+JSOLphj0wwttJlc0RDMzxBv7SLGIbdZp0u+3yOYn0EXBfUH7iRcWmX43CWswITbAmT9IcPnLhKvbtH+rjcjhGB4fsmMeEUx3mTzMIvmgMgmtMKuGhS2dGzjp41i0Aq3VqV691n82QnS3S7p7j6j0UWKOKb51vuonD0JUhJv7hCvbZH1BqYTE0YMn79I3hsiLRurWjYhtHB4TLS+hY5T3GkTPms3aviLc5SOzhtxeE0JS+I2qgzPLzE6Z8bNysePmM6r5xJdWibb6xjqq+uYx82xKZLU3K9SuK0meW9ICjj1Gl6rQfn2k+TdPqNLq6goNNjpyRbRlXWQAqtaxpmeIN/vku73yHY7VM4cRScJOkmxa2WywQgQOLUq+SCkL8t0rBpTVbAth2QA6c4elckW01MBW9sxO3sJ05M+V1ZDpqd9jg4yNnfMhk2SFsRRQa1qUSrZuLZEqxzXtZiZ8tnYjNjZT1icuz6X7LWoW6LnJvXNxtuEEPR6PYbDIW9729sOFww3Kq015ZLgntsr7O27ZgevgHMXRyTJeJcGgWtplGVES56bJPk01UgLyiWIopxC2SBMc0NdK1q0WfAZg7a5qSjMRpwe35ZmGiE0jgTXMTvjN8Jgv7x6PQTQ67BgFgLluIyccWBZUWAVsUmZxkKiyBx//JgdCI4DsaOvmQwTmGW0CRA1nIIchM1AVJBKUAgHIRRSWqSWTyFd0CBVgRYCoZShzNljQaXUGFhgRs+0sJEqG4/siasjbNeN+Imr/qWXbc05EEyvd317RtrEeCJQSih75h+uDVGiyXNtIAaWIRNJSzPOUsSRmukJj5kpH9eVODfJBdBa89xzz7G3t8eDDz5IEAS02+0bjsHZts3k5CQTExM0m01s22Zvb48PfehDnD17lj/8wz/Etl+ft92/+Iu/uO7r3//932dqaopHH32U7/zO70RrzW/91m/xMz/zM/yDf/APAPiDP/gDpqen+aM/+iM+8pGP0Ov1+L3f+z3+8A//kL/39/4eAP/pP/0nFhcX+fSnP8373ve+1+Xc/67WynrInz28wYWlEaNhbgIOlabTz5DjzyAhoNdPaTU97jxbYX62zNZ2RKdnYg/6w8zsCF++hLx0Htt3cRpVg2jf2CZZ36b+4N2UTyzS+fLjjM4vmYDBbt8shGMT9KhVYTwRz14ANP7MuO2Z58awblmUji1QueO0ub8oJtnaYfjMBRCC0pFZqneZkZ6D8bh07DXx56fpfPEbxOtbSMc2IYxxSj4ckscpVrlM6cgcRRiRdvtopZC2dbiwy4ZDkp09kAKnVkHaDlaphNNq4LYaZHtdnFoVd6JpghNrVdO1yXKz8FUKd6pNEae4rRrpfp9kdx8dG79Q0e9j12qUjy8actXmDsLz0HF8iFkukhSnXDLdsbIPjk24soFTLhEcWyC6vDL2VTgk23uoKCaPE4M0TlNQinTHxWk3sIIA6Rgcde2O04SrGyTrWzgTdfL9vtnoyotxSOc+5VPHUUdChOswfOYCpSOmE1FECSpO0cMQt90gH4bIsVlflnwzcqU1w/GC2W03TQew5ONOtvFmLaLldUYXlpGOg9tuYNeraK2Jr6xj16vUH7gLu16l8bY30fnC1wkvLaPTHLtRxZloUT6ZMXjmAvHOPjpNyfY6pN0BslrGazVxWnXyYUSyukERx4hSgOu79M9dpOgNses1tNIIxzWfdELQf+wZ7HqNiXe9jXwU0n/sWeMbKgcMnr5A1ulROnuc0vEFdKHwF2bx5qdIN3cJL6/itpomjybLsTwP6Xsmk6pVp4gTkrVNsu4Ap17FrtUIFqYJFmbxpibI+0OSvS4qNiGh2Bbh0iqj80sIIY1IaNZId/YYXVzGm2whKyWKYYhVKUGukI6NU6swePIc9fvvIliYATDUwKIg3e2MyXimk2qPfV/S84hWNynSjCJOGZ67TBGaPKFkp4PleaA0/nyT4Oj8OBi2Y1DhnoNTrRGtrGF5LjIrsGcmyHY7WOWA4OgcpBnh8roR2kpRvfMM2W6H0SXQUYLleyQbO9jlgPKJI0TL60Yo2jZaFSTbe3hTbbKZk9iWjz3OBxOOQxEbz7RlCWxHsrubUA5sM7LbcDlxrEKhR5QDi71OggCadYc4UYRRjpQmzkVKgetZbG7fEj1/ayqOYy5fvoxSine+850vOd6itUYphVKKwLdYnC+xOG/IPfudjJ3dhFyA9iWeA2GkieMC1xXUaw79QcZwpHCtnGrVJskEQmtG0dUd68LkuIG4uqNtjRd66hrvep5DyTdL92bTRmjB9l5G9k2Cb6+darpxvRYC6A1aMFsWBT4HeTbqgGetud4/c/C10DcRH+rwwEK6FBJAooSD0LmhugkLIQRSZ9hFQewEFJZ79X60HhtNroIJ1FgcacsGYV9zP9fWWIC9XMTxG4JC/vZ5eDwbHFeQ5xrXs7AtieWA62p2O7nZVfSNYVnaoLXC9yWzMz733lHDH2cJtBovDhXVWnPu3Dl2d3cPBc+1daMxuJ2dHZ577jk+/vGPU6vVWF1d5bbbbuOP//iPX3Fw6bdSvV4PgFbLeCAuX77M5uYm733vew+P8TyP7/qu7+ILX/gCH/nIR3j00UfJsuy6Y+bm5rjrrrv4whe+cEv0vIa1thHy//qvV1hdj2jUXey6Q5wUZJnEtQTSksxMeczPBUw0fWamPILAfGTnCp670Me2LNJMUfT6jJ5dodWocmS4h3zmPCpOcBo1nGaD/jeeoQhjwvNX8BemKcKYZH37MLgx3tyh2NzBrpbRScrowhWD2e30GF24QrK7j12rUH3oAfzpicNrKB1fxCoFhMvr+McWqJw+htaatDcgvHCFrNvHblSxSgGt73yQjf/+MPGqIVpJ3yW50iHb7WH53tgvo8iTFDvwKZ1YJN3pmADHQo3hAzm5SsmTmCDwoFCmE3LmOP7MJCrL6IcR6V6HIsvxSgHe9AS6yElXNgFIdztIx8EpBYh6haw/pBgb4dPekHwYkg9C7EqJ0pljeBNt4vVN0w0qFNL3jIAKo3F2UMN0pZIMWfKNP8e1UXmBGsVQFMZkHyUkex1UFONOm5EvVRSIkgdFQXD8CMUoJLqyQtodobMUy/coHZ3HrgRkvQH9x58l2+9RWpihcuYERRijSwHZXoesM0AGDqDwJlvj58+Q9uLVTaRjke7smVybWUNzyzo9ZMknXd0kWt8k3e8YEVUoM+Z1dJ7wwhXi1U3zeRnFJicHQdbtE2/tEMzNMvHut5Hud4lW1hleWkWzTnB8AbdZJ+/10bowJD3bMmNtiPFHmIV0bdK9Lpbvm8DcWhVVFAyePMfs972P2e/7XvYe+RKqUOS7xndWOr6I16gzOn/FZEWNBZbqj4wI8bzDcNLWO++n++jTOI0a/vQEKs1ACPxjiwbI4To41Qow9gAFPiovEE2DzU639wkvr2KVSgbEAXhTbeK17fFIaII33SbvDck6PVRoYBjCM76x2h2nDiEi6X6PwVPPm2wsaXy70vcJjsxSPm4odEVqaIXFYEQaGSFRRBHFMKSIEoo4RpZKuJNN7JLJXdJ5bsAcEnPfvotdreJOTxDMT+NNTzA8d4lke494fQshJf7ctPFmVUygrxYaaVtGnO/3KB1fRDi2EXu+R7q9hzc7Tf2e0+wmNUTn6ntZGOakgcfu0hDHNoj9XQuSTHFlZcR+J2UY5mxuRqS5wnPMRq8lzed2p5cxPxNQrYy9hJa5/fWoW6LnFVav1+PrX/86lYr5I/lmgqcoCpRSSCmv6x4dP1Li3rtqhHHO9m6GUgZTnecZgW8EkgmuU2am2LJxHRvLgjwvsFONYwMSihwsy8AL0tT4eSxpBBDCdHWy3CzZfd+oo5NHSyRJQZIV7O6/9JzbK3vp3YgEd0Apu1m9wQtmy7qqzV5kcxn33gVXQQI38q5obW7XCkvlFNIGocePlUZZjhmBK1IUFrHjGzz1YWioGmPErjkBoZFKoK6l0N3wcTnAVF973q9jfdORpm8zpc0ej4MeIMHR6FRQqVgEoUbpq69vx5a0my4TTYda1UFIgedJTh8vUylf/3aoteb5559nZ2fnhoLnRechJe12m3a7zdmzZ/n1X/91/vE//sdEUcQjjzzCO97xDj70oQ/xiU984nDc7PUqrTUf//jHeec738ldd90FGE8R8KIx3Onpaa5cuXJ4jOu6NJvNFx1z8PO36luvMCr4zGe3Wd+MWZgN8H0bjSaJC/rDHM+VaK2YaHncdqp2uBgAyHPFympI4FucOlFmciJg2FlDZH22Ht1htHmZWWeEawuKvMAuB9jNBoNnLhjz+sYWaadPEUaU24aIJS1JMRiRaW3oX0trdL7w6Njz45ksnTQjvLyMXQ1wW+PXhyrwJtu4Ey2K3oDh+Sskm9vEq5umM3R8kWynw95nv4o302b6/e9m99OfG2e7DAHw5yexK1VUniF8j+LyCuleFy0F/uwUANJ1EL6LGoZoNJbnIIMSduBSvfc21HBE/5kLFMOhIWPtGaJYMdUiXt8mWt7EKgc4jRy0CYUUnnvo85CVMnYQGPpW7iA9hzyKKIYR3l2TeDNGHB54R0rHFlBJZkidqRkrq911Gm92mvDSMsnWDkUYgyVwJprYlRLx5i4qDM3iPUrwZ13ynQ7R5VUQgqn3vROnUSW8uAJaEczPYFfLSN+lGIwQlqQYhqg8R/ge5YVpsl6f8PIqTqNO2h+g0gKn4SFKJRP2akkzSKCUiS2wDLUu3dhmfxTiVMu4Ey10GOMvzBItrZHt7VN74G6m3vN2E9TaHbD7V18CoP2ut1E6No8uFPuf/xrxygZeq4HTriMHNlYQUL3tBEIX2OWSEcFKYdUq+FMTxBtbDJ+7hIpi0k4fWfIgV1iuA2hDx1OayqmjpDt7ZPtd/NkpGg/eTeOh++h+7Un2HvkSlZNHTFdlPNaV7vdMF8nzyAYjJt/6JuPZ0to8XyeO4NTKlE8fN8QyzyXd2SXd3sWbOzb21Wjy3sBAElY2cFo1VJLT+8bT6KIw+TlKkfUGOI061XvOMHjiebLewND2KgHkGYUlqdx+itrdZxFC4M2Z13Cys8/o0hWkbaZ1hJCknQ5FuMXowhLpPfu47SaW75Js7xEcmWP49Hny4Qjpe4YqiEZHEenWLqNnLxmBd42/XLgO1dtP0v7ud+A2qgjHRo4/v/3ZKZLVLVQcY5WCwwBRK/CRQYAdBKhCoe3x6yyOUXFM7Z6zyFLA6Nwlanefxp1oUdktTLiy1mztZKx3HOyyh9dJyTPF8lpIs+5y4liZ9c2I9a0uaapwXBPPMgpzCqXp9lzqdZfpSY+jiyXkuHMUxwWz07fCSd/QutF428bGBk899RSnTp2iXq/zxBNP3PTnD7o7NxI8YFqAp46X2NlL8VxD7dntZBRK4QcSgSBNU6Qo8DwLpSXlso3QsL1nSG+VioXrWOS5Jis0caywbUngm65OlChUYUbYDrI7+4OCwJPkuSZOC3L1io09r7C+WRfo27RgtqyxKoTr1YO4gRC6QUnzZivG4aIIsAsTZqqEhRICu1A4eUTqlBH64Dpf2Fm69r4lSr6UxHwBhe1bFTwWV5+SG37/5Twv3/4cnjQFxPh0hcaWkjRTSGEzPeli25r+UNGq27ztwRZH5n02tlKmJlxOHitRr9n43vXXoLXm/PnzbG1tvSzB88IajUb84i/+InfccQd/9md/xnA45H/+z//Jpz/96VdMfHs19bGPfYwnnniCz33ucy/63gvfi7TW33Sc9+Uc80bXL/3SL/Hnf/7nPPbYY7iuS7fbfdExy8vLfPSjH+Uv//IvCYKAH/qhH+LXf/3Xr8tVevLJJ/nYxz7GV77yFVqtFh/5yEf42Z/92df1elc3QpZXIyplE1AaJwWDYcpgVJAmBcOwIM8L0hxsWzA3U2J6wkNagsee6nBlNeTIfMCFyyOatRR3bZdieZnG1gZDv0E21abqZqgoJt7cNRjfZo3Gg/eYsbetHfJ+iHRsgwze71GkKVa5ZJC6SYz0fEonF7E8l3wUkQ1HZsdfQ/3+OwzFcjDCXzCL82B+GmFZJNu71O69ndKxeawxSKCIE+LlTSp3nqZ27+3sPPxZdv/yS3gIrHrFAAD8MlatihpFRJdXSNa3QWmk5xjPyjAcDxhLnEYTp2wWRdt/9pfmWMyIFBiMc3Bk3uCYpyZMN2tt0+TONGqoQsHmDhQFcgxPyLo9BudM6KLluEghSLa2yfY6+IuzWL5PJobYDTM6l3V65N0BKI3bblB/8G7ilQ3seoVkawfLdbHKJayxJ8qfs4hXN9FFTrbbYZBmoLTpoN152vg8PAe3aXDY3ni8UBe5GcEbhgjPheEInaQUw4jSyaPY1TLpzj5i24U8p/mWeygdnWfw3EVUmiNsi3wctlqEhohUpBmMIpxywOi5ixRhhHd0Drdexa6UyPd7DJ46b46NzJiXVsYb5Daq5P0hKknxF+cYPHuJcGnNdA1KPpZlYZdKRFfWqN9/J/U7Th2+7vPhkKxvvGPJ5jayHGC5DirNTAdGK1SSMgST55OkJFu7ZowvjEm39rDLJazKNZtGUuJONIk3dwyqulYh2dozn+9C4E40Wfi//Z/Ju33CK2vknR4qSVBRRrAwg9duobQmPL9MurFjPDOYyQ4r8M1YpdJjsWK6SuUzJ0yOVKEIlzdACux6jdLxRUqnj1E+ecSMlZWCQ1BBePEKKk6p3HGKnU9/nrw/NNABxybrdtj600eo3XsWq1wivLRicrQcm/LpY+gsx66Uide3UIMQGXjkwxBvZhKnElCsx5AX1B+4C2+iiVMOsPzrP2e86Qmsapm02zfUwDxHK0XeG+I26wTfOcPo8irR5RWswMeZbOI2GzjNOtJzmfye7yDb6xIXBc1yDd/SLC1F7HQVtbkWrcUGSMnqRjjecBfEcUGcatJM0ag7JJmmVrFotzzWN0O6/Yy7b6tx26naoeAZhTm2LZievCV6vm2ltebixYtcvnyZe++9l6mpKfr9Pnn+4rmwAzzlgfK+keA5qIXZgPvvUVgWXLis6A5ypJRopbHsmJlJC2nX6fVzBkNj/JKWwHUkarwIKZUthoMCV0Buwdy0R6lkceFyiGNBnF/j/THdVLJC8+yFIUopwvDG12xZV5sdB156oeBb6zj+bUBhX1OHwkdcfxtjJPZLXqscgwhgTJ5AK0WQDUltD7SDljapE+AWCbHtj4EEByS1m1z3TYlo8K2rnBfUwVNwYGU6iGc69A29nF/wbfDwcA1ETo79bZiO50AVVCsmryqMChbnfWanPeJIkRXmpzrdjMV5nzvOVMzY2wtKa82FCxfY3NzkwQcfpFR6ZXPFYRjy/d///di2zZ/8yZ8QBAFBEPAjP/Ij/MiP/Mi3dvEvo378x3+c//E//gef/exnryOuzcyYufLNzU1mZ2cPb9/e3j7s/szMzJCmKZ1O57puz/b2Nm9/+9tf93N/JZWmKd///d/PQw89xO/93u+96PtFUfCBD3yAyclJPve5z7G3t8eP/MiPoLXmt3/7twETNfA93/M9vPvd7+arX/0qzz//PB/+8Icpl8t84hOfeN3OfWMzxrYFrmMxHGVs7aSEYU6uFHGsiJMcKQSDQUZ/kBNGQ9Y2Q7JUsbOXUKs4tJouRQFbuwlyuUdjbZNq1cMOfAb7fYJ0hyJOyPeNoV8L0LnxuLjtJirNGV68ghQSf3GGYhRRDEZYro1dr2JXzHHedJtwecNADAKfZHuX6MoapeNHqNx+Am92mmR9m9LJI4SXVykfW8Cfv76baPke7mSTeGWdqe/9TtS73kb/G8+SORbFMCQfxTj1CiqJDSZ7epJ4a4dsdx+rUkaEsTH6C4HwA/LRiGw4ohiFhEtr2JWSEXCAwCxM4509pOsw8T3vREURO5/+PPHqlvEjhRHedNuMh0Wx2SW0HTNe1BtQZDlOo4YOE0YXl00ifeDjNKuoOMWdmcSdn0I//hxuu0XlrlP489MMnnqewbnLhJdXUP0hOA7ZAVTAsswCX9hjApfGadYIzhzFm26T9fqGDDcGHyTbu7itBkUUY5VKV/fjpGT47CWcZtVYQl0Xb3bSQBYmW5z4+I+i88KAGrQm3thBeC7J2hbCtrBrVYokRVkpSmuy/hDpOliuS5HlBNMTZJ0+RRwxfO4SaG3Eq4Bka3fso8lReYFbc4hX1/HmZqicPnb4fFduO0URRvS+9iTSNh4unWXk/RHSN6Z8EGa9UyhUHBs/UhDgtauk+x2sKKbzxceMH6vdZPevvsTo3CXTrcpSpHN9ILRdKZGsbzPzA++nND99ON7mTrYOyW+V206S9QZU7jpD/4nnyPY7hJfWyHp9ouV1hGWhigKnXsUPpmi+9U2Mzi8Rb2xTvfsslucZ0euYpXPrHQ+gi69SOrlI7Y4z2LWKyR8ak9Kq99yGHPtd4rUt08m7tIrbauA0G6YzmeXoXFGMIqKlNcq3n8ZuVI2Qdw3wyKlVsMqBeV49G7teQacJ4eVlg0xvt6jeexvB7DTe/BTh+SvmNete7RCrOCE4OkfljlN0v/I4ydYu0vdwWnXjZ5puU7n7NvY/+2WccglvZhKrVsWfapnx0YUZoksrjC4soTtdFqTgUlYmbVbw5yaIEs1wGLO5FVOrWPie4NyFIXmmKAc23X5GkioGAyiXbRzPwso1/WFOf5hiWRZhmCOA0ycrNxw3fy3qluh5iRJCkOc5Tz75JL1e7zpgwbXI6oM6EDt6TBIQQrzkbqFlCc6cqFAtO1iW4MTRMtvbfR5/dp9mzcX1agxHOYUSVKsWQkimJ1y2dhK2dhTDYUGcmA8CW0Kt6nDXbTVcTxInirV1gw5UGlxHIKUYJ9NrMrN5ZDw/XCVfHfzbd0BIgSU1UfKtAA9uVC9cLH8bBdANuxlyvPi/9vm9pjMkeDExThYUskzXCRAqQwsBwsxX59Z4TE6PVcWBsHlRDs9rcT2H/2fu75s18g6PL67/2W9a3x7BI8WYSHrAlQAOth4sC5oNGynAcSV331blvrvq+L5FoTSXl0OOHwmYnw1oNx3cG4ALDgTP+vr6qxI8URTxgz/4g2RZxl/8xV8cjsG+EaW15sd//Mf57//9v/NXf/VXHD9+/LrvHz9+nJmZGT71qU9x3333AUY4/PVf/zW/+qu/CsADDzyA4zh86lOf4gd+4AeAqx3uX/u1X3vDruXl1C/8wi8A8MlPfvKG33/44Yd55plnWFlZYW7OgEx+4zd+gw9/+MP80i/9ErVajf/8n/8zcRzzyU9+Es/zuOuuu3j++ef5zd/8TT7+8Y+/bt0eDZQrFnGqWF0LiVOF50qKTGBZAt+3yVOFEFAohUo1K2sjymWHMyerRJHCtiSODb7vsZfnZIOIolnBGg1Q+9sU5QJhGyFglQNQmuG5S3gzEziNGsnmDmoYoT2HIkrNTrstKZIcYdkm3X4wwmnW8WcmKAYjpO9jl0s47RaNt9yDEIJ4bRN/YRq7XiPd62A3aje8ZrtWIby8Strp03/yHOHyOsKSJqCxWka6jhFAcQK2ND4IS6CjzHRo6lWkJc3vLwrCSytkux3Kp49ROXvCwAIA6XvEqxvEGzsU7SZ5r4/balC97SRCWjjtBunuPtkwpHj2EgDC81CDjoE5aLBKHsKSWIEJCE129sx4U7tJvLLJ4KnnsaoBVr1qAlNnJohXNkl3OqQb2xTDoRELtkXWC4m3tpHSAiFwqhV0lmE3mzTfchcT3/VWBs9dpvfo0yAFaXdAkSRkawOiK+ums3D6GPlgPNpXLsG4QyddBxVGpJs7WLUy7e94kGBumnBp1QR7Hp1DxTHBwgzZXtfk3UiJynN0LyXOC6RtUzqxSNEfmrl4IdBo7EqFfBiis8wAEKQwobEaEyJr26Q7+6g4OxwPK0YRWW9A1u0bSEC9hspN90w4DrV7zlKMQuKNHexBaDpQRYGWBhCglQmBVVGC9DwGz16g/dADtL/rLSS7e8bYPwwZPb9kMNbjRb0uCrL9Hla5RGlh5iqE4wXlNGo4DUOps2sVtv7nXxOvbRFvGn+OVQqwbAuhNBQKq1KicvtJ4vUtQ7ibvH7s15ubITg6h1OrUsQJWimSrRQhBdW7z1A+dfTw/A7gH9nePsGxeYRtmw2Ey6tk/QFYBpYRXrgMthnnzPc6DLf2cOoV48uOYizfR2iBKgqkZePNTODPTVM+tkCRJJSOzIPShJdXEFIix94iYVs03nwP7vw0+Shk+PTzOM0G/twUdr1Ksm06wl6rTuOh+wnmZ8Y5T9XDnKTy6WMExxfI+0OqScHqoyGjxGTt9AcRu3sp+70UMICClfUQy5KUS4ZCaVuCLNf4nqTuWiSpWb/GsaJUksxO+8xO+0xNeK/be+8t0fMSFcfxIab1oYceum4kwhrvohyMr13r3xFCvKLQwTDKKfk2TmXI9uYWCzNNSqUy+50MhMkc0VpSLlmUSxajMCfNFJ4LnmdzEMFy59kKH/ieKXY7KesbMYNhQV6YkTnPFWOcr8C2JYqC0GD0cT2zS66uWeOP359RWiClvk4UfSslhFks6+t+198SAfSiesE5vNS4l7Cuag2ubSsf+IeuGWOTmAX7a/lHfSPBcs05XV83eoxfiRfr2yN4XNcwJfLCCJ+gBFliTN0wtkspWFjwGUWaowsB9Zr5UOz1MxZnA+48W71hdweudnQPBM8r9d0kScI//If/kH6/z8MPP0ytduPF3+tVH/3oR/mjP/oj/uRP/oRqtXrowanX6wRBgBCCn/iJn+CXf/mXOX36NKdPn+aXf/mXKZVK/NAP/dDhsT/6oz/KJz7xCdrtNq1Wi5/8yZ/k7rvvPqS5/e9SX/ziF7nrrrsOBQ/A+973PpIk4dFHH+Xd7343X/ziF/mu7/qu60YO3/e+9/FTP/VTLC0tvUg4vlY10XQplxx2dlOGoxzHlQgJxZg2GCeaUmACMLd2E04fr9DtWYxGOWsbEcNRzn7XxrIE5cAm96rEssr+dkaRFFjBDNuejzPs0ow7VGoN/KoPCIbnLlM5exzpeSR7HZMr0h9d3e0fhQjfxaqWyAehoUxpjSpyVLdn8nVKZgTHCnz8+Rkab7kXIa/S5m5WWmn6T55j/2++RhHFxqcyMiZtpEB6HsUoNGNZUiJ8D1VogoUZE9hpWbiNOlqb/JGs28du1ky6vH11BFU4DrooTH7J2AzuTraxltcpohg1ColXNpCWJA9D4rVNk9dSryIbLmQFOsuRlbKhx+33TfdKY3wUJQ8VRtiTDXRRsPPw58gHIem+ERayVELkOXarDrYk29qjQODPT4FlYVfL+AvTVO84g9NqGBjE+cvYzTp2o4qKIuxKmWI4QiuNUoURRLtd3HaD6u0n0IAahlA3nbp0xwRYggkTFa5DtLZFutuldHyRfDBChTHZYAgCM64lJd7cNP7MJOle14xrxzHSsZGei5Xl5HlhRh5zk4mx/6VvoLOcZGefeHMHhRFf8eYOyfq2ASgMjVjWnT5Zf8T8D34Ip1ZheO4yVjmgdvspvIkW3a89Qbq9j6wE2J5nOm9xgtYKYRlSnxaKaHXDkMQ6PbRjkfUzkp39cTC7aYEJx6b+pjvwxuG136zKJ49QmpukePNdyKefR0Um6NNtNXDbDbJhSLK+TeXsCdyJFqOlNfO4lEtI30VHCen2HhPveTul44ukmzsGa14pEyzO4k1PHIoFy/ewq2WG57bIwwSrah7TZHPXjA86Nna5hDvVRiUp+ch4aoTnYjkOQloIz0b3+uSDIdb8DKWTR6icOYZdqVBECcNzl3CaDdJ9g7XWhSLd6+C2GpROHcWplNn7m6+w91dfIesOERaES+sMnr2ILnIsx8Fu1iifPkZ0eZVkY5fqXadx6lXyXBEnCikgCCzcVoM8KihXcwqR0RtoBsOcJDVE2jhRBL7AsixGI7NjPj3poYEkLpiZCvBci7X1ENsRvOW+Fo26g22//mHdt0TPTUopxVe+8hUajQZ33nnni0TMQV5Fnuc4jnNTYMHLqSRV7O5uk6d73HXHCTZ2zIdbpWIhBVxejtjeTSmVJJvbKaNRgedaZhcw19iOUcpXVk2ok+9aREmB65hg1FFkOju+KymXLaK4IE01eW7EjdZmZ+fw2scTWLYDUWyOU/oFNpgXlG2bxkLxksKoQArLDHjd9LhXL4BeK2H26usmYsDimgBVrnZfvpmn5mb1ort4pQLk5Rx/o+fh1d7fa1O+Jwg8we6+oihgNLoKwJPjzYE4UaxvRtTqLrudjGolIS/AloLTJ0s3FTwAly5dYm1tjQceeOAVC540TflH/+gfsbm5yWc+8xkajca3eLWvvP79v//3ALzrXe+67vbf//3f58Mf/jAA//yf/3OiKOLHfuzHDsNJH3744euQ+//m3/wbbNvmB37gBw7DST/5yU/+b5fRs7m5+SJoQ7PZxHXdQ0G4ubnJsWPHrjvm4Gc2NzdvKnqSJCFJksOv+/3+Kzq3mSmfiZbL2obBcNq2NGNtcYHSGseW4/d/Y/ytlB3K5YwwTljfiilyjRDgOhar6wP0qMp0ZRKRxPSFjaMt6oOEhpbsB5MMHIejFUHt+AxZf0C8tk26s0cRxgjbQloW6fYeKssRUiC1Itvvg4B0t4tKEnRWYNcqyKLAqpcRtqT50H2UTiyOkbbKBFDudQ69PNdWMRih44T+489h+S7lU0eJrhh8bpEakWH5vvGvpAlOs4GOYlScUAxDnGYVq1RGFTne9ATRyjrCcV6Q3WBKCIGQAp1nh5/HTrOG9H26X3uSfBii0hSnVUdlmQmw9FysehXLtsnDCDWKTJxEmiMsyeCJc1iVEv7sFMHRBVSSUIwiam++h/7jzxGtb+O2m9TuPEW8vU//60+T7ewjfR9ZDsxjjcAqBTiNOo0H7qJy+qgxx3e6OI06re96K+nOHp0vPUa8ton0XJL9LsOnL+K0alhlH4FgeO4S5ZNH8Y/OocKYIozwj82T7OwRrW6CFLhTbfY++2UALM81nbL5aYrhiMj3ELaF1grpjUM/SyWEFCSbuwQnFrECn6I/xG03GF1cZnR5Bdt1sSo+dtWY5JPNbSgMSCDb20dL6zD0VucFyX7PkP98j+kPvJusPzDX36qRdbr4UxOoaCyq03TcvXJxy+ZxLtKM/c89Sry0Zs6pWjavU6UoS0n57DgM3pKoKKF+/52HBv1vVuluhyLJaL7tPoM3z4tDyhpg/Gk7e5ROLGI3aqg4Zv9Lj1GEMZbv4h+Zp/m2e2jcfzdW4FM+9hLhzVIiA4/+MxdI1rdI9/bJhyHkBdI3oJAD74z0XEM2XF5HlEuQ5RRxjO1VDPLatkm2dlGZQdU7JR/heYbSt7GN06xiBz5uu44zphP2H3uWzlcfZ/j0BZPN47oUcYKwejgTbaRnE5w5Qe2Bu5CWNB00Dftfe5r1gcW+3WQUF0ghaNUdFuZLTLRclIKLSyMcW5BlilLJIi80WkF/YMKVNZo4KhhFBa4tcV0Lx5ZkmcJxpemsWuINETxwS/TctKSUPPjgg/i+f0MRc63okVK+asFTFAUbaxfZ74Q8eP8ZyqUS0s64sqLo7GQszPrMz0JeaALPIk4LXM+iUhaEIfi+oFY1qNM4KfjGU32m2h7zs8YEZrs5es/svjk2BgOoDcUqFooih0Lo60SIAILAxnEkaWa6SmB20W9aemwDueki3ggC25CDKcbzydY4l+hg8Xr959fL6z5Y1lXv0bU06De2vkn3Q44VzoFvRmCOf9ElvuABtOBqa+jwhje4XqjO3phOj8C8Jg5CdKNYkyRX5fnBcywBxxm/xl3QWHiOhS0FaaY5uuAzPeHTat58RvjSpUusrKzw4IMPvuKRtCzL+NEf/VGWlpZ45JFHDhHRb3Tpl/GiF0Lw8z//8/z8z//8TY/xfZ/f/u3fPvS9vJH18z//84djazerr371qzz44IMv6/fd6P34hVCGG4EdbvazB/Urv/Ir3/Q8X6raLZfbT9e4vBLiexalQBJqjbAE9ZJNs+GMO+/iMCZsFGb0BhnNmsMoLtjaVuP3O43l+WwE81TULlPWPuV6iST3sT2HStJhmGv2q/NMTrUMrCDPCU4cAcdBYLC5wrFRUYQqFMUwJFrdQgYuOkkRlkURGxN86eQi7Xe+GZ1mpHsdKmeMMBRSUjl1jL31bfLB6NDADaDSlHhzx4xnuTZOvYoz2STZ2SNbGnBwkcUoRjgWdq1C+cQi6X4XNFiujbAsLN/BrlcRloXXbqAiI4gOqohig/YdReT9Ic5Uy+T0wBj5GyEDn2J7D5VlMEYzC8cInGB2CmFbOElG2u2hooR4DDzQCNyiQM1MGpx04JN1+qgwpnzqKP3Hn8HyXbzZabzZKZx6jf5Tz5H3hgjbLO7sepXKmRNU7z5D5cxxkp190t0O0dIq3vw0djkg2RgvvrUmvLSCQKLimCLyKB1boHzSiMXw0jK6UHhTLbypCZKtHTpffIy8MzRdM8ehGMXkoxB/0nSA0p0Ousjxj8whhSBa2aDoDUk99zAY1lUKawxqyIYjRJoRrW6gwhCr3cSulkx2zG5McGSerNNn9PwlhLRR2vildJySuTYCQXDqKKNLK+x86vPGE5VmqDglWh6Ls5kJLMch2dknH+6htMJBk+x0UMMQ6blkYYyX5lROHyO0bcIra4SrGwTH5nFqFYokxV+YQaUZg2cvGoT1zITpZt2kdGaM/Jbr4E1PMDq/hK5dDZcWjsGMjy4tE61sUL39JNXbT1JEKUUYoXMzPi7sb/5ZOHz2IuHlNdx2nWR9i3wwIt3dR2eF2XRwbLzJFsUowpueIB2ODNQjNt0kp15F2jZWySfrjQyIIc8R0kJNtQ3xbb+HTnMqt5/EmpsxgqjdIM9z1v7j/zEmKkrsSgnt2LjtJnkYMjp3kfJtJwiX11CpeV0Ly0I2GyylNXa760w/UKFaMSJnazdhZz/l9tMV+oOU1bWQ4ciAWOwxWEsV2uCzhSDLIS4y1I6mVHKYarkMhhmDYYbrSCZa3htDoR3XLdHzElUul1EvQTezLIs4jnEc59V1eJKExx57DN+TPHDfGXp9jdY5tmWETLvlcmzRJ/AtltdiBsOcOM7pdvdIMzOWNtH2sC1BmirKJUkYFWzuJNx2qsJU22NlLaJVzdjvZex1Mpp1i+mJEivrMUkWE8cYZOeYgIyGZkNy8niJJFGESUGajs3iL7Gmyl+yY3H9IlmPO0kHIsd1IElvuGH3gnpx90FgXRfI+saLnYNzeZndk2922OEu1QsF3rd7l/1G9/86jyKKq4IHjB68hskxflMdv440lHyL6QmPMFTMzficOl4izWFhtkStevO3usuXL7O8vMwDDzzwigVPnuf803/6T3n22Wd55JFHmJiY+OY/dKtuWh/72Mf4wR/8wZc85oWdmZvVzMwMX/7yl6+7rdPpkGXZdeCGF6K4t7e3gRejva+tn/qpn+LjH//44df9fp/FxcWXdV5gBNWp42Xe+eY2G5sRUsJk2zOwGluQZZoMRRgrJlouQsDWTkKnk9IfZKSpxpaaQoPrSWolBz05z2S5oLy6BsMCS9iMQkXgB9RdSRZUGA1T/DRFa43XqiOkMJ2BPKd08ojZhe70sasVE4y5tUu2u2/+wKQ0nZxOn+GzF/DnpwmX1qjefgpn7OMJjs1TG9zB4KnnTR6O7xmvkFIER+aMB6RUIt3r4tZreNMTxOvbZL0+QmNIas0abquOzjKkhom/9w682UmSjR2D13YdvJkJVK7IRl82u+JbuxRhTLy2ST4YkIcJ6fYuVsXcl0FG7xBeXqMYjiifWMSZahOvbmIFHtHaJsnaNsl+F6dUMrAHS1IMhibHxHHRuSGhpdv76CSjfNLkvAwvLoEQZL0Rwu1SGY8yl47N4023STZ3GF1aRTgOpeOLTPy9h0Brel9/iqw3JOv1GTxzkaQ/IO8O0VlGsDiLVfLJhyOCSoliFGHXKqTb+1iBT/3e2wivrFE6Mkvp1FGGz1wgXt+idOoYwbF50Ip0t4PluwaMVA7AkiTbuzjVCkIpM+5uWagiJR+GlE8do3rHKaxKQLq9x/DZS0jXRVgWldtOIm0LnRcUUYRTq+JNT4JtUTo2z/4Xvo5V8lFJbkI9x+O00rFRWYpOUqzAI93tkvX6ZPtdymePEa9ukfcGKCEohiPyYYTlKwh8isHIjMm5DYrBkGh1E2+qTXB8Hq0KhGMTb2zjL8xAFJPu7pNs7JgxSyHwZqdoPHAn7sSNN6Gk55oOT5LizUwQb2yT7hhstLAkKk1RWcbgiXN4c9NU7zh13RpPpSmj81eMn+bkEbNZohSM14IHX2e9Af0nz+E0q0x9zzuxK2X633jGjEFWPPT4Q254acU83p7xpKkoMl6nUoBwHPJRiE4yYw92LCzPIx8OUWmCxoy5FKMRu5/5IsGROUOyq1eN963TQ+kCr1rFrlXQSUre7yNLJXSRM3r+MpVTR5FHF/BmJinihNXzO1zoj2jXd7CmXeTiHF6jBlWHpeUhf/D1fVY3RgyGOaNRYTbmEdiWIIkLssJsQvqeRZJYRJEiSxNGoxTXsXBdSa1sc2V5xDPn+tx2ukaz7iDl66uAbomeV1EHXp5Go8HXvvY12u0209PTTExMvOzwwcFgwGOPPUaj0eCOO+4gTjTLaxG7e2b+8eypEkfmS5RLZkHZbrpcWg7Z3kmpVR02dxIqJYui0ERhgVZmZtJ1LVxHkqaaY4sBUxMuYaQYjnKefm7IHbcZYpXr9SiVJDu7CcPQLLCL3OCUqxWbbi8njgscKfBcI3rybypKblTXC4KDIFUtOIQpFK/q945/pwCtv50+oNer6/HtFjkHdYDvvFG9mkymV1AvELBSjEN4gVyY7o4lwLaMH6JetXEdgShbHFs0QWfrWwm9QXZT0bO0tMSVK1d44IEHrhvxejlVFAUf+9jHePTRR/mrv/qrl1wk36qXVxMTE6+ZcHzooYf4pV/6JTY2Ng5pdQ8//DCe5/HAAw8cHvPTP/3TpGl66Nl8+OGHmZube0lx5Xnet4weF0Jw9x11Li+PuHB5SLvlAZrNrZhuNybNNY4tmGy5nLtoFhdCCCwhKZc0nmsxigqKXJFkinK1QutN9+E9q8m3trAcl9TyKJ29l4qO6F7eZHh5F3eiRDEKcZs1KneeRmcZRRijwgjL95BAoRXORNMstPICb2qC0olF3HbjEDes85ysb8I8D0SPkJLaPbfhz0wSr22S9YdYvoc/P4NVK7P7vz6HrDgGs7zboRjF+GMjdjEckg1CLMfBqVaxAt9sYgkoHZs3C8uiMP4GKQivrFE+cYSs16f71ceJVjaMD8h1TCfoyBzSd9n6i7+mdvdthOcvkWzuEJw8Qvn4ghnBKxThyjoqTsh6A+MbOjJHsTFCa41TrSBtB2FJpONT9AcopYlW1uk/fc7k+ExPYNcqZP0++aBPcGyB0vw0CGFgAouzCNumfHweZ7JFPhgRXllHCLA8h+H2rukWpBn9J59FCOMRlo5l7ltI7FJAsDhLurVHsrlD6fgiTrOOynPS3Q6ji8sUY4/I7iNfxJ1oERydo3ziCP0nn8dp1fHmprCCgCKO0VkxJqA5+IszVG47aTKRtKLoj7DKZaY++N0Iz2H41HmSrR3sShnpOSYoVpjdpmRz22Tj9AfGE+S5qDDGCmPscplgYQZhS9K9DsJ1kCWfYn2LvD8kOLaA06gjHIv+k+dJd7tgW1iB8Z6pJEG6RpgUIwMAUEmKSlPKp45RPnvcBIF6LunWLv7c1OFYpcpy4vUt9r/wdSa++yHsyovHld2J5lhMbxMcmaN6x2lGz18yAa5KkW7v4babuK0GjTff8+KOcKHRqqD/2NOoLCNaWqOIE6Rt/FBFnKCLgnR3j3S3R+PBuxCWRfNtb8Jp1tj7m68Sb+yS7XZQcYTWZiRz9NwFAyDRmM5MrTLOahpS5BlKaJNBhIYsR5YC0k6fvNdHVsoUybgTlaaMLi6TdbqGnyQkQgrzX983BMTtXQMxGUUGoBGGqDwj2dxhsyNQ/S4qLggvrZJs7ZNMzLJjNVhdj1haCQmjAssG3zced6SBd5VKNlIIFFDyBaXAjLDlhUYXilrNoRzYJKkiihVffazD/n7KyRMVzpysYluvn/C5JXpeom42GnHg37n33nuJooitrS2WlpZ4+umnabfbTE1NMTk5eR344Nra3d3lySef5OjRoxw/bmZSyyW4/XSV9JhRAC8kS9VrDm+6s0YYFbSbNv/j4S22dlKiqMBzJI2Gw7GFEiVfsjAXsL6V0B8WVMtmfjKKCmZnPCZbLnGiaNZdFucC1jcjnnpuhNKaUmBhWSa9PowK0kxTrVk4tiZXBUX0SoNKXywItL5Kg9aYRexLd4leukxn59sFQvj2Z9S8vvVKr++1fR6ufa0ddHNQphkWeJLpSQcNRLGiUrKolC1AcuKoz/ycGe98qbfOpaUllpaWXpXgUUrxEz/xE3z+85/nkUceuc4sf6vemFpeXmZ/f5/l5WWKouCxxx4D4NSpU1QqFd773vdyxx138MM//MP863/9r9nf3+cnf/In+Sf/5J8cQiZ+6Id+iF/4hV/gwx/+MD/90z/N+fPn+eVf/mV+7ud+7g3JJXIdydvf3CbNFFs7iSFx2kbEx3HB1HxAniuiMMdxJL4nzGs+LBBSIzCjyrYFRV6gbI/SW+4nu3CJIolRMsCZqKFUSji0qR45RnvGQAjq991B1u0TN2qUjh8xYZZ5YXZ6kwSdGawyRUH9vjtNijygfZ+s16fIMtTWrjG4X1NCCLzpCbzp68WrVgqnVTfY45NH6T36lOnGBB52rYwQZkFUPrFI+dRxrFqZ0bnL2PUq0dIaTquOXSlRxCnpXpdiFJuRoCgiD2OzmHMcLM+ldOoYtfvuIN3apffYc4yev0zWGwACd6JhRnikxCoHFJ0+2W7XkOKynKzTxyr7SN8jT1JUr0/59DHUKCLe2jMdl70ueaeH3agbypvn4pTKZKMRva89iRACf6pFERoUs1OvEhybo3z6OPuf/YqhrQWeET+WpHr3GYphiM4MCrqIYtK9aBywqfDnZ3BqVdyZNvlwRLrbQeUZ0nXY/8KjhJdWsSoldF4QpSbDx65XqT9wF1a1RO/Rp5Ge8VEVUUy6tYtKM4IH7safn8Kplqnfd4fJY+oOjAdoZoL+N54xo2yj0OQlee4LPDOCaGnNCNXZKaS0yIcj003Ic7KuwXBn/aHp7rXqSN87FCwqSrArZQTKQJvKAarIEakJfhXKjDMXaYruaeK1TdypCconjyAtizxOiFY2COZnsIKrmxDSsQkWZwkvrRItb1C9Jivo8MylpHb3Wfb7Q8LLq7gTTar33Ea8tk2yuUP51DFKJxaJVjawr/ndeX9IuLpBOh5NDFc2KR+ZpXRsAbvdYHTuEsnmLv7iLLU7T5Ns7hFdWcMKPCp3nMJyHap3nDZjgeevmIy5Rh3QpFv76DRBZQppW+A6uK063lSbaExuU/sGP281qljBQaCnBmljWRZSStxGjSKKybp9VGLGCaVjH3aVVJ6hosT8zRe5GV8dRcSbO+SDIVmUkfknCIoIaVt405OEieLCk5vIWRDSx3EkbqFJUxNurDWUApskKSiUQFqCsi+pVWy0FuRKM9X26PYz+v2MalkwPeUzOx0wGmZoNJeWRgS+xfEjr1949y3R8wrqWsFzMM5WqVSoVCqcPHmSMAzZ2tpidXWVZ599lmazydTUFFNTU4e7gsvLy1y4cIE77rjjMDfj2roRRvegjDiyuf+eBqWSzSOf22e/m1Kt2Ey0HHzfYnba5+zJEtWKGYnb3k2xbcHCvM/sjMfOXkbgSaQ0uwqlwKZWc8a75JJK2cK2Bbv7CWtJynTbY1ckJJkmTxW5yfsyYkUdPC4vPNODxfL1C17LMjvzB8eL8W69Hud1FuqViqob1RslgG4Jnpeu1+55sCzwHAPJkIDrmr+DZsPFcwWDkaJWsUgSzcnjJW4/Xca1JaMwx3UF9eqLu69Xrlzh8uXLr1rw/LN/9s/4zGc+wyOPPMKRI0de1XXdqm+tfu7nfo4/+IM/OPz6AMP9yCOP8K53vQvLsvjzP/9zfuzHfox3vOMd14WTHlS9XudTn/oUH/3oR3nwwQdpNpt8/OMfv2507fWuuZmA937XNBevDFlejegPM5p1h8Ewo93ycT3Y72W4riSODOjAsgWOBVoJxtM8CCmJkwI518Q5e4rw8jpeOEDGI2Lp0rznLCf/T6fwiwSVpGilxwtYgbCt8RiQER5Os4GKY+K1LXOsVuR9I4qQAp3nqGFoRm9e5nUKKSmfOkq8toVdLVO79zb6T50j6/QRdoSKM/zFWYLjiwjbGOLtSskYzR2b8NIyyU4HYUkzjrS+jeWZ/JLBMxcIjs5jeZ4xnypNsrZFutdB2hYqyygdXWAwep5oaR2dZCbQcm0L6Tn4C7NYvT7+3DT+7CTR0irpfo/g+CLIGioci4FqmWSvQ94bYJdLBEfnKOKErNenfPYY+Sgk3txh8MzzqOQodinAqVfw5mdovOVNlI7MMXzuEml/SLK+TRFG2BNNY+LXGp0X5nGeapOHETpJqdx+Cn/aeHKceh1/qo3WmtGFKwjHIdncNahl30NnuaHTxSmjnSWTp3TqKN5kC7dVJx8YlLYz2cYKXIRlk23vEa9u4k62KKLEjDQORgblvLpBHiVIyyJc3qBy6hjeVGucG4AZVev28WenECUfCoXMCyzfp4hjRpdXEUohSz69bzyNXa/i1Cr4s9O47QbJzj69rz+NNzONLtQhEMOdaCIsi3B5HRUlqCjGKgfYjTq1e87iTTQJl9bMSF2cXid4APJhaDxJvT7drz5G6fjCuIN0fXnTE7S+480Mzl0iPHeJtNNHOjb1B+6k+dY3kXX6RFfWDn2AWW/A4MnnyQdDhOcyuniFZHMPFcbEGztYFRNxUD5zjLzTN+G9c5Nk3R6ji8vko9B0v1yHvD80+GkpUFmBEBphSbTtIKTxkEkB6V7XAD60QqeG6Ct9j2IYI22HdJiAArsSGBx5lKCFOMR5C8c2O8uujXBsiiQxnSClzPcQhorYqmNXyoSXVvDnprF1QaQFdqUEKPrKJRM5bm/AQNqMwpxCa6JY4TomGsWSBYXSxEmBa1v4vkTakoUZn24vR2kYDHOQMNn2abddM/6WFowixdSkw8p6yPxs8JJr4W+lbomel1k3EjwvrFKpxPHjxzl+/DhRFLGzs8Pm5ibnzp2jVqshhGA4HHL//fd/S3QnKQV3nKkyN+NzeTmi28vwfcnslMfctFHgRxdKzEz5hGGBZQkqZYsoVsCQ7d2EotAsr0bUqhbNukUcF1TKFhNtl8CTlMtmRM51BLNTPoEvsa2MwTDHcQV5rikijT0WP1f9OC9eLNvyatalHIMMKAwdrlqRdHpG7Yw9uQaV/apG3l5Yr5cAuiV4Xlm9+ufBsgyAo1Zz8H1JkSvyHHKl2O9kTE26vOsdLd58T43ltYS9bsZgWNAbFFgWnDxaplq5/r6Wl5e5dOkS999//yvGSiul+Jmf+Rn+9E//9IZZOLfqjatPfvKTN83oOagjR47wZ3/2Zy95zN13381nP/vZ1/DMXnlNtD0sWxDFBUKakc1qxWF7N2YY5gyGGUlsctlcVx6i2PMioz8ssELNsUUH2xYsrQzJc0kWzHHmtIvTsklzm9NnGtQnqmhVxj8yx+jcZbyZCaxKmWjN5JCk2/vYtTJOs2bGZ6TJhwsvroyVlTAjUGFM3mrSfNt9iBeYxVVRkGzvkW7tkveHSM/Fn5/Bm5kgODpP/f476D95HhXGBEfnjbE9yZDlAMs1IZpFnBpvy4lF/Lkpgrlpk8UTxWBZJNt7JKtbeDOT9J96HgF47asZKvHWLunFK7gTLbyZCYpRhDvdxl2vo7Ui2dg2VLhRhFIarQ08oHL2OP7cNFalQv+JZ03OTZajRyF2rUbWG5Bu7pgxw2rZxIUlGcq2CBZmkSUfd3UDy3WonD2B3ahTOjJLcHQef3aKZL9LeOEKahBil0t4UxM4LbMrr6IUd6JlMNvjMSmtNFm3T7LXwS6VsDz3MCeldHQeq1IiWloj7w2Qjk26vQeWxG5WsVs14vUtwosmqLL1jgfAshhduEK8ss5gfRsVx6ChCGP6jz+L227gzUyR7OyjkwThuqi9LlajRrbRZW/rq5ROHaV65gTCkqR7XaTvmqBWDdnOvukMRSHp1h75yKC3Lcch65qQXOu2E8QrG3gzBukshDCG++GQYhgibIkMgvEiwGT/gMKultGqINnZo4girMDHnWoTXV657rUXXlohWtkwkIswJLxiY9fr1N90O6UbENbsatl0KjBoaeE6pNv7dL78mHkOq2Xy7gC7MfbHDIYIx6b3jWcYnb+CNz+NPz9F3hsQr27iVCtk2x20gO5XHsedmmB0aRmd5kSXVxiNgQWjC0tYtSqWY6P2umMwgRH00rKI1rZMIGlqxkixbBOQ69hjSEU4Fp8SWfLQhUYlMVmvT94fYpdLyMAn6w4QJd/QF0uByacahYZ4F0ZIx8FpNwyauj8kH4xIdvdoT9XplWeQdQ/p2PT3Iah4dDoJe1mIkJKqb8bYskyRJQorVViWpMg1TiCYmvCYmQrG1osM2xZ0+xmNms3sjH/o35FSUBSaatlmbz81G5b1G09Kfat1S/S8RB2Y0Q48PK+E0BYEAUeOHOHIkSOMRiMef/xxoihCa825c+cOO0CvFI17bTVqDvfd5aCUvsqrv6Y8V+K5V9VyuWRx751V9vZ9Tp8os7ubMIoVeQZ7nRTfswxqcFgwChVH5gPyQmFJgUYQJ5osNwhC35VIocyL/XC64caL5XJJkmQKMGN8SapJtVnMZunYoD4WOdbBGNMLSogbdZReSb1W/pNbgudbqxs9Dze6fXyrhHrVwnUFaaLGnjWoVGxOHS8zN+UihWB7L+fuO6t0Ohm9fo60BO2mQ6vhXPd3sbKywsWLF7n//vup1+uv6My11vzLf/kv+a//9b/yyCOPcOrUi0cmbtWtejUVRgVPPdsnDBVH5kuH+NbZGZ/Hn+6ytq6RlmCybbIuhsOcvFBmBxpNrqA7KPC2ErLckJOqZZuLGzn7oeAt99U5fbxMvLFNuLRKsrFDsrdPtG5288NLy5jRrxbCcYjXtw1quOyTa0OK0Yw5kgrj65AgfQcr8Mi6fbLegGRnj87nv054ZQ3pugTz01jVEsNnL1I6eYTGm++hetdZvJkp4rVNtGNRDCPSnV1kYAhyWmvsSoDKHOPnCA01zvI9LN/s6IeXlsESh+GLSInKcqQzXtIoRTEIsY7Mk+13sTyHYHaCeLVFPhiSd/okux2E44w7SgF2rYrOcobPXaRIUnSSEV9Zx203kZ5nAkKHIfl4senNTGKXA5xm3Zj2A3N+0jXCZPpD7zG77eNxsKzTI17bohhFWNWyyT8CQGAFAcKyyHoD3KkWKkrNJES7jrAtE1yqNZXbT5Js71I6tkjzLffQ+dqT5vHf75Hu98CyrutoCNs2Y01ZxvD8EsK2CS9eoRiFWIGPNz2BShL6T54jO98n67RItvZQSYpVrWCVPIowIt3cxZlsUPRSBo89R7K6hV0pIVyDWNYI0u0dvJkpVFEweOp5VJ7jTrUQjovbqoO0sF0bKS2KNCW8sGyymjwXt14mcR3yokD6JfJ+n7w3BASy5CG0wJtqo0Yhva88Se2eM0z8g+9Fj0WOLhTCkkRX1hhduIJTq+C2GiSbO4bqliR0vvyYEeCzU4ePj9aa3jeeZvjMBYJrPUF5TrKxw+DJ5/HnZ8x4ZLc3Hv8aES6tEi6tIhxDqEvWNkFaFFGMO92m98RzpvOmFelwRLK5Rx6GCCEpOTZC2qSdPmK/Z7pagYvfmibt9Axu3bIQlsCu10xo6vi1H0cJ0jfBucKrEyzMEC5vkO2aDqhVNp2m0fkrOHUzYqhGI9pvf4CsNyC8sDzOXCoQaY5dqxLMTuPNT1E+dYxka4d0p4NdLjN3qk1vB3pBi0BZgKZQ0Ikgk8ZDnqQKsIljhRQ5liXxfUmtGtBoWExN+MxNBzi2IE5iylIi0Ey0vOuABWmqmGx9ax7Jl1u3RM9L1LViB3hVhLYoinj88cfxfZ83v/nNaK3Z2dlhe3ubixcvUi6XmZqaYnp6mnK5/KrmyF8J7cKxJTNTHjN4nD5eJs0UxxcDnnh2QDgqyAoTRNpuuSzOefT7Ba4nmehmHFvw2e9nbFyTE7G8GpGkagwTePHCVUoQ0vDbXRuU0qixqimUeQFeK2auhRocXJbnmtvT7PrvfWuZPK+m+3BL8Lz29dLPg7TAcQSuI1mcdVlcCLCE5PbTZTzPHJdmis3thLkZb5zofON7WllZ4cKFC9x3332vSvD8yq/8Cp/85Cd55JFHuO22217Rz9+qW/VStbUT0+1nzM1cH5HQqLvcf0+LtfWYrNA4jqQoFLYjCAIHrcD3C1BiHF5tc/vZKrWaM4Zda+JYkeWK/nOXCJ94Bp1lBp18+jj9x54hH4bU33Qn0nXQh9x/TbK7bzI0fA9vZtKEW6YZMk3xpltYQYl0a4/9zz9KtLbN6PwSWbeHznOChTmE0MQb25T8BdNZev4y0nNpvuVevMkW3mSL0olFkrUtIt/Bqo2T37WCQmE3a2aM6dIy5eML13lJhGWhxx8A/syk6XisbOBOtbB9z+CopYC8IOsOCBamCZc3DbCg0wOtkZ6LN9Um63roJAEtiDeNx8iybaTrmEDMMKZ8zIyxqShCKIU3PYE/O4VdKY07VcnhiEIxMshsk7WzRbK9h9bK3FenD7ZExYnpkGllxoyk8SNle12TYzPdIN3tICwHu1xCt5Whm40iE9wqNHl/CIB0Hey6GUtymnV0UZhA0zgxWU4TTaxKmb1HvoRwXfP9JDHUM61JtvdQaY70Xexahbzbx51q4TRqDJ+/jC4K7HYdu17HrlRId/axygHCdfDnp1HDELfVQPWHhBeXzViW5yEDHxWGuHXze4P5GdyJOnk/xA58vJlJBs9dIN3eM6jxKDFjXEAxCE03reQbT1S7gV2rgRC4022scgm7UUO6Du6EETdOu0G8soldKWGVS+SjEGFJ/Nkp3HaD8Moao4vLeDOTh39j2V6H8PLqdRAEMMGt/sIM4cUV/GPzNN76Jjpf/AbDc5fRaUoRxfjTEybPsF5Fq4J0v08xComurJFs7uG06uZ1mmZ4c5PopTWy3hCdZsiyjduoouKUIsvQSYacm8YuBYZmZxdI24GiwLJtrMDDPzKHO9Um2doxoIMkI+8ZAQ8Cp1HDbTWxqmVkJSDf2Qch8BfnKJ06SunYAoOnz9H72lPmb2WiTe1Nt1FanCHrR+Y1MTdtAnaFxIpCbl9osz/TZD+BrID13QRheyxMl7Ack7lTdFOE0EgpKZVssrRgasLFsSVhmLO7n5CmOWubMVlaUC7ZB9ORAIRRjmMLWg2H4aigXDbvY69X3RI9L1H/4l/8C06dOsX3fu/3vuJFEkC32+Xxxx9nenqaM2fOHAaczs/PMz8/T5Zl7O7usr29zdLSEr7vHwqgarX6hhlpjx8p4bmS1Y2EUZTjOZK5GZ9GzeGRL+yyvhUbvCVQKVnUKg5pppif9nGslOcupoSRjRqbzC3L7AYqZTw7UkgsAWGkiRKTLRF4EscVKAW1imA40oeCR4oxjpixj8OGLL7+vIUY7zq+Johq82FqPupfvPC+evstwfP61osFkFYWltQIDbPTPs2aY7w83tVjXUdSFJpRWHDNhMt1tbq6yvnz51/VaKnWmt/4jd/gP/yH/8BnPvMZ7rzzzld4XbfqVr10be0k+L51w/f8asU2GVNS0+1mdHrZOENNUxSKwLco+ZJ222N+JsC2BHNT45DPQtPrp1x4YoOoe4m5WZ/Jo1Mm9LQosMsl/JlJnHqV2n23o7PCENJcl+DoPLuf+jxIyeDcRUhzVGHev12lkIFPurNPtLxuFvNSoNKMYjBEzWQE89MUUUJ4eRW7VsWdbBEtrVG57STOODtHxSn+9ATuRNPgrNMMISVuu0mwOIsMPNLdjumAtBqHj4k70USlOYNnLxKvb1KEMcnmFtnuPrIUGGzyGGVtPrwkaE35zDGcZo3hsxcNNCDNqJw6wvD8EloV+FOTIAS6ULjtBu50CyGl+f0b27iTbar33E6yuYVOErTvUoQRTqOG9FyDPd7tEMzPEG9sE61vQpqZSYm1TfLuwIxRBT563KlLNnexqmV0mqKFwCoHuO0GOs1MLstel3wYYtfKxo/TqJJ1+uz9zdfMYyIlbrNB1hoghDChk1IaGEPZvA5UFJnnJwrRuULnOeHlVZxqeUxMc7ErFeP3SDJ0rlBJasShZWGVAsonFpGeY6hmky2i5Q2CuSl0lpEPQip3ncHd3mPv84+iixynXMWaalG76wzezNRhly7rDtFZTu3e2yifOcbKJ/8bWbdP9exx8sGIbDgiurJOPhyhkgy3WcVtNkBo02kbhsRrWwTHF5n87odoPHA3nS99g8GTzxNv7+JPT5Bu7YKUlE4cwWmZtZvbrJuxxig+FDjpXhcVJzcM0xVCYNcrxKubTH/g3YBi51N/g6iWoddHeh5qFBlPUclH2pK4NyAfjA5DdqXrkA9H5GGMFhJ/fgZ3uk3pyDzS8xk+dwGV5ag8pxjF2NUyKk2J1rfRhSLvj1BJjBMnlE8fZ/I9D9F/6hy9rzyJOzNBkSSUbRvQJuA1jrGqJYpOn3Svg8pyWt/5ZuzAJ+/2qd5+Gn9mivDSCqWTRyiPQ2iz3oBoZZNkZ8/8vTiC4Mg85VNHmPU9RgnMBiGin9Grtpg/WWNlPaQbZZh9Co0UmjzTBCWbu26rUQosVtcjRlGB70rmZwJ6/YxwlLG8Fh36uC1LsDgXYNuC3iDjrttqr5ufB26JnpuW1hrLsvi1X/s1fuzHfoz3vOc9/P2///f5wAc+QL1e/6aCZHNzk2eeeYZTp07d1OjsOA6zs7PMzs5SFMWhAPra176G4ziHAujl3N+3UlIKFuYCZqY8klQf7qx3eylJqghDo75tS9Ad5EghOL5Qoux3CFtDsrzJxk5Gt5fheRLHEuRj70W5LJmc8BECNrYS8sL4hILAwnNNKm8iBU6WI3JMeOnY14MQWFqTjzs8B6PjRT72qr7s6zPH27YRZFk2HtE4+P7BQysAZV0DU7gWK/ftFgSvZ/1tEDymBOD7oLSFLsx4m2Wl5FlEnsasbZax7QbN+lU4wUGY5M0wl2trazz//PPcd999r0rw/Nt/+2/5rd/6LR5++GHuvffeV3tpt+pW3bSK8RjxzarZcGk2XIpFzWNP9Ci0QiCo1zwW5nx29lIaNZcgsBiMcrJMkeaa5dWQXj+je3mfXljQCSpMKsWpGYmTxOSjCH9+inS7Q94d4k6YDkO6sT1ehIPte6AqoBTC97CrFeMf2e2Y0RzHpggj3GaNbHsP2WqYcahaFbtaphiOSDZ3/n/s/XmwrNdZng9f653fnsc9n7PPPOlosixbxlFsYyZ/kqxjJ4FUwmfipLBJGMqAyyRQEOwkpOxUAlUmVMpFKFIQIAHJgH8hJE7CBwaDB81HOvO8x+7dc7/zsL4/Vp8tyZZtyZYHfjlP1Vbp9O7ePb399rrX89zXTfmOo8Q7Q9LhGKPoqtHxPEcYBqWDe5EH9uyKHs1VHa88SdXKaDZtkfoB/rV1hp99isFfPoZ36brqdFTKWI0GWRiQDsfkWYah0HbYtQqlI/t2vUfO4hwC5cnJwhC9UABtFsY5mqK7FjJOMBs16q+/G7NVI97eQeg6ztI8eZYx+nxK1O0RbnZBSqxGFf/ydZKdIfZim/Kdx5iePo9mmljzbQDlB+oOlOAz1N8ym1X881fJpj5ms0q0MyCPE6KNDka9ilkrk3kh7t4qeZwokbm2RetvvJZ4MCIeDHFXlxl8+nE16qjp6I6FmJH2NF1DJilWq4FRKpL6AdF6B5ln6svQMtEsE33moRFSICwDGScqX0loyEy9B0bRRXNdsqmvvDrVMpnnUzpxBO/CFdLBEM21sedapL5Ceddee/tuOOzNUt1EDc2xFYggSUgGI4xaBdO2FIJ5a4ds6qEXXar33I5RKhGsbypvTbVEFoRs//4n0QyD2mtP0nzLfWjO4wTXN5QvZmkOZ7GN2aw/HzZq6MhcddZ2H0uWIzRBFqckO33i3hCZqbEvu91Qt8lmWTtPnSUZTRCGTuZHJL0hmmNDliN0oQiCN0MPMxU6ajWqJEONaLsLQmAeWEEgMMpFikdWSfoDghtb5FlO1OliNetkUYRm6OiNKggQUx1ncY48TRh+9mkK+/dgfc+byOMY/9J1zMP7CNe3SfojhOsQ9foQpZjNBnarRuP+16HJnDxOqdx+FHf/CpNnzjF97tJut9SsltGLLpplUNi/gtWokQzGRNs7aJaJFsWsmCbyDXv55EWLJ08PCcKcJFFdRcfRabcdlhdsVpYLvOa2Gucuetxxm4Vl6bMNcEEU5Wxs+Zw+N6E3TGjWLFp1izyXjMYpB/cV2bNceHVOql+ibomeL1FCCD70oQ/xwQ9+kGeffZbf+73f46Mf/Sg//MM/zFve8hZOnTrFAw88QLPZfJEgkVJy5coVrl69yu2330673X5Z96frOvPz88zPz5NlGf1+n06nwxNPPIGu67seoFqtttsxerXLMDRe6EkdjFKqFZOFtk1/mJAkkkP7bDrdkM3tbVbmI157zxGsswHD8ZiJoRJMhalhGBqWLdiz7OI6Oo26YrIXizrjcYLv5YRRroJVo5xaxSAMJZapKWGS5qSZJE2VB2gXhKBByRWEiSSKwLUAAUH4pclveQ6ODc26wc4gVbPpOrPE8xd0i17yD9wUQd/MLKCvZ31rCR5Dn3npMoluKv5/qVig2TBZmMtZ25hw9myXnY7NwkKdSrmCHxqUijr12hdT2jY2Njh37hx33XUX9fqXaAN9iZJS8h/+w3/gwx/+MH/8x3/Ma1/72lfpmd6qW/XiqlVNrt7wqVW/+BjOc0m1Ys4CqA1OnlDoV4lUHc4gw56muM7zHes4kVy54TH1UmpVC6RPvaJRK8DWUJLLnGO1m4nOAs0yCNa38K+vk449NMtQyOGdAbKS0Pybr8OYGffRhML6bndVYvzOgOD6BhiaIrPVqmgaJOMJRrmI7jqkEw+Z56STKaMnzzB8XHlUjEqJPE5IxlOsWmUXi32z0skUveSCrjP4zJN0//hTTC9dI+kNwdRJ/AA9SkDT0FwbkURYs7GzZDIlm3qY1TJZGCO0ZLZ7PsVebFM6cYjxk2fwL10j7vXRHZs8jIl9D7vdpPnGeygdP6SEmASjXqX/p59leu4S6WiqvEDVMoX9S2iOjVEt4yy0MRpVRXsbT9UI1KyMSgndssiCCKNeQaYZ9dfeQenwfpLJlHhrhzyMMapqzK+wfxn/yrqidVkWmmWphehmlzyOsepVkt4IZ3kBzTSJ1q6AJtALRaTMd/1GZl3BWqy5Fuz0EfuWySY+ZqNCsjMkjxQ2Ou700CtlTF1T+XdpBlKSRQlOqYhwbKLtLmkQkU29XfS1Xi6qUbmVBdLxhDwIycMQq92Ykb+eL5nnpKMJlduPYtbKbH78k8Q7Q4RlqHycJCENol1PkdWoIuOEaGMbGajXmzTFrFXIs5ThZ58iD0Na3/FG6q+/i3gwxqpVMMpf7JVOxlPMSkkJlZvvSalAFkSMHn+GpD9GM3XQNML1DsG1DYyiS+W1tzP63FOEszyf3A9JDJ8kS3dHCbPhiGziodm22rU1daxykTxLSQYjsihBAMl2DxnFOIMRerFAYZ/Ki/Iu3wAkeRgj0wxnaR57sYXuOspPdmgVYRrE2z2KR/bRfPPr8S9eZ/PR/4lRcike3ofQNCbPXVC47KU5lR01HEESY823iXcGhBsdyicOUX3NSQD8K+tEWzu7m8zO8gK1e05itepEWzsEG9vkgepA+aUW8Y6ASztMvBTH1nBsg3LJYO9yAd1QuY+N4zZJKgmijOXG8x20OFFd4j3LRQqORr1u02o4hGGG4+jMtexb4aTfCiWE4OTJk5w8eZJ//s//OefPn+eRRx7hV3/1V/mxH/sx7r//fk6dOsVDDz1EqVTip37qp3jwwQd54xvf+IpRuDdL13Xa7Tbtdpvjx48zGAzY3t7mmWeeQUpJu91mfn6eRqPxdRNAoL44TV3QrFs06+rLKElTLl/eRuaSucWDuK7N7cd04ignf3ZMkkosW6NcMnAsHcdRpLdOL2E6SXeFjCRDporGFSeSIgaNukalqKPpgiDKiaKMIMgxdMXJThJJludousCSAilzlV4+8xd9OdCBBnT7KXGsNrgMHdJZ8N3NIOUX1xeKgRf+v6LKvJRY+NqBC9/I+tYQPLo+GyGcvR9xIpWXYPZ7w9Q5caRCwTV4494FXEdy9kKPtfUxU2+bclHj5PEGviexrfruZ2JjY4OzZ89y11130Wi8dCr3lyopJb/2a7/GBz/4Qf7bf/tv3Hfffa/qc75Vt+qFNd92WNsImHoppeKLv5ZvbASkaU6WwdkLYwbjhMEoxtQFUy8jl+A4gsFQYY/nWjaenzKepLQalvpcaRqWITANQass6Y4lS1UHo1wgm/pqAdsfYTVq2IvK8xD3BuiVMnkUMXn2POXbDmNWy4AgC4IZwneKd/4qyXiCNddGmAbRVgfdMjGqFdzlBbWbbuj4l27gX11TXpr5JjLPmTx7XmXVXLpO+61vQLefFz15nJD0R5ROHmHwmafo/vGfkYWzOWdDI7i2QT6ekmuCpD/AbNQQho7ZMKncdphwc5vphWuMT5/Hv3gNvay8HsWDqxSP7kdISbixjT3fQtgWZrmkwhsdmzwIScZT8iRBZinp2GN67jLh2iZmXeWmpJ5a3BvVKtV7TiLTlNHnTxPt9AlsS3luFp/f9LxJfNNsi7jXJ1zfUvCBNCUNQqxaheabXsfoiWdn+HAV0Clmgecyy9ELDiLPSQZj7PkWMkmIbmzQest9OHsWmDx9jiyMVO6RrpNFEUwFmmGA0Ii2d8im/iw4VRnipZRkMypeOhzjLM+jlwqE1zdJBiM0x0azTUaffYp04pGlKfnYQ3NtSkcPEO8MibsDCvtWKJ84jD3XJhmMMWtlgs0uZrmINvNZ+VfXMRyHwoG99P/iccanz+HMNbCXF8g8hZkePXVGkciSiHSkMZnlKxkFB/yQdDLBajUBDc00CW5sItOM4pH96JaFf/k6pROHn4daAFkQkU0DlTf1gp1dq10nHowJrq5ROnbgRb6xaKuD3+1Ruu0wcadH8ch+solPMvEQzpjc80mGE/I0xV5ZQOiGAgwYOu7qMobtEG530GwTI3MUDrw3JBmNySceRr2CMEyqr7sDd3UZQG0grG+pwNtyAd22seeauMvzGKUi+Z5Flbmj65SOHaB88ghxZwerWkGiRJx9+1FkmuFfXSOdeuimRXBlHatVJ/UC4t4Qe65J/b67KR3ep7pbuVS3XWihzY43Z3keZ3keKSU7/YjPP9ZnOs1o1E3SVIlZ29GIooyN7Yh61aRSNiGX+H62O3kRxznb3ZBePyZOVUdbCCi4JscPf3Vr5K+lbomeV1BCCI4ePcpP//RP88/+2T/j8uXLPPLII/zWb/0WP/7jP06hUKBYLPIDP/ADlEqlr/wHX0Zpmkaz2aTZVGz+4XDI9vY2zz33HFmW0W63mZubo9lsouuv7gK2UtLJcsgyia4Loiji3PkLOLbDG16/nyCQbHViBHDiSIl77qwynSaMRhmWLdjuJmx1Q+I0p1W3KJUNrq8HaChxEKS58gFp4PkJCHU4HtznMplmxLbO8qLO5laAYegqCTvMMGdCx7Y1pl6GrkEYpQyG8kUeH9OYgRGkWt4nszG5LFM/X1i6dhOk8JXEwBcKzee7QLcEzyurSklg24LRKCcXUKsa2KbAjzLCQFIpmdxxvIxt6ZiGYHVPgVbDYu9KmYmXgczJszGjYY/Tp0+T5zmtVgvTNFlfX/+qBc9v/MZv8NM//dN84hOf4P777/86PftbdatUNesWhw+UuHB5ynSaUijopKnkxobH1lZEuWywZ7lAs27wuacGnL84peDq7F1xmW87SAnnL04YTRIO7S8yHCdYpgoMHAxjiktN3NGaWtzoAoFkFAqWlxcYP3lGZYEUXcxWfdcXonafczTTZHr2EslwTGHvEmazTjqeInRd+T4sRaNKdvoI1Ek07o/Ryzvk6UFSz8eabzN+8gzO3gXKxw8SbffwrlxXHRM/INjokI4nVO84hr3YnmWzRBQOriKzjPFTZwCJ7joE1zbUKFp/iEwzjEZFdQO2uqCr3BF5e47MlLlab1bRDJPC/mV010UmCcHVdbSCQz4NKNxzEu3GJuRSdRIAWSoRbXWUnyZOmF64TDoYU33NbS9CdCdTj+GnHyederTfch92q0E8HpNOfILrm5j1CvbcC0JaNXD3LBD3BiTDMXargV6wcerz6K4SBvkMUayXikrweP6sQzLGqJbRSy5y9gUWdvsIoHbvHRSP7KNyx3G12B2OFfXtiTPkWYCxbw9Ws4buWkzPXSG8sUXSG5CFkSLfxQm6ZWFUKxilAmajikSS+j55lBJ1+xi1CnqlhA5EUarCXjWBPdcgC2P8q2uYtTJoGuU7jqI7DvFOn3Tqk/cGCrssBPbSHNPnLjA6fZ7MD9B0HUcDoWsqRyjPMVtVkp2BEhVxglFykbZJFgWkEx9hmAq20KwTXL7B2m/9Ac7yovJSbWzjX9ugdPwgVqtO5gXIJKV04iCFA3te9LlLBmOMclGNeG7voBUURS/3VTCsNd8i3OqiGzpmqYi9PE96/orCmjvKbxZ3B+iGBgVXdYLimHirR4wk6Q0xigWEoRP3BmQzgETqK5Kvs2+ZyZnLuHsWIE0J17YI1zZJdvpgGLukuXQ0QdiWEibzbbIwwr+6TrSxzfipM2ilApppEnd2cJbmCda2iPtDiodWMVsN8jAiuLZOnmakb3k99pyaULJajZnAfuny/JQLl6ecvTjh0hUPyxb0+jHtpqKveX6Grgn8IKNcdjmwWiSIcyq58hvGcc7la1P6w4Siq1MuGmS5ZGMzVNTVnYi51jeG2nazbomer7KEEBw8eJAPfOADPPDAA7ztbW+j0Wjgui5vfetbuffee3n729/OqVOn2Lt376viyRFCUK/XqdfrHD16lPF4TKfT4fz588RxTKvVYm5ujlarhWF87W9ts2Ex37LY6kRoWszVK1ewnCp33bGX249XducwpZRUysYucSMIM9JU8tz5Mf/7UzFpqkzmSInMIZ5pBKEpYaJpysxmGoI0yeh0Y5YXXeo1nekkZ20jJAlV7kqjZirjei5ZmndY2woZjGJkJNANichBSDAtFYQaRpALSJOv3IF5eYLnpeqF0IMXCKBX+Fe+cfWtIXgABBLTNKjXNDRDUC0Z2JbOvCFAwJEDRVb3uFTKJssLDo3ZCFupaLxgR9xleUntSI3HY65cucLW1hZCCK5du4bv+7TbbRzni8PpvrCklPyX//JfeP/738+jjz7Km9/85q/L8/6zP/sz/s2/+Tc89thjbG5u8vGPf5xTp0696HF88IMf5GMf+xiDwYDXv/71/Pt//+9fBFGIooj3v//9/PZv/zZBEPDWt76VX/mVX2Fl5YuzKG7Vt3YJIdi/t0ilZLK5HbLVjVjb8NjshMRJTlkYrG8FlAoGS3MqEHTi5eQIlXae5ezdU2AwTFjfComiHD/ISJKcctlg38Fl0gueMqG3aggxm7OvVdEKLjLPyZOMpKeERLjdVZSyVhPNtTGqJWSeq11hCZU7jtH788dIRmP0foF4Z4doZ4AyIYCMM/wra2iajrN3kWysvBjV19xO1OkxPn0OUEACe76lxoI0jWB9G81xcFfmKOzfi9mssvUH/5vp+St456+AEERbHdIgRszMn9nYUybuOEHYguDGBsMnnkXkYLWbytCJwlvb8y3yOCFc21IL/UoJZ6GNQDA9e2kWEJqSjqdEOwNSL8BdnicdT3BWl78ok0hGMXkuSfojtEIBZ+8i8dMjnOV5wrUtRp8/jbtvRRndTeWfyaKYdDSm8pqTGI4Fmo6zNIc91yRc20JmKcGNTcK1TZXT0x9jRglmvYK7NE8WBMg0ZfzcRabnLuEuzhHc2MRsVHEWW7gr8+RhpAz/Gx2yMMKsV5W/qFGnepeLUasw/MyTAJSO7MeqlhXxLUlBgl4oUN+zTON1dzF87PTul2e4tolWcLAXmhiVAuFmF2e+jVEtE3d26H3qc+iFAqUThygdWlUCoDckHo1J+yOMYoHCwb3kQYRZvIFmWfgXrqKXipBmZF6A2ayBEArfrGuYjQoySsiSBGGZGJUi2sz8K2d+ILPdUKSzSon6vmWmZy4RXN9AcxycpTbF/Xtw9iy+qMsDkIymGEUFaYi2u8SdHjLLsZfmsBcU1MK7eA13WSFB3b2LeJevM3n6rBL8uk4ex+SpQ+U1J9R71aghTAv/4lWkrpMnKUl/hO7aWM0Gmm4gHNUVMgsuWZYzeeI5rFaD8p1H0etlpBftPh5rroGzsohMEvwrN8jCiOFTZwnOX8VemqNqmYQ3NkmGY4L1bbxL1zHrFUpH9+OuLCJ0Hc00EIaGf3mdYKND8dC+r3hOCsOM02fHdHYicilpNCxMQ7DTjxmOY+ZaDvv2FsgzycRLKBYMCgWD4TCmXjXZ6misb/r0hwnNuvX82FqmzkmOq3P20phGvfUl/bhfj7oler7G8jyPb//2b+c973kPH/zgBxFCsLGxwcc//nEeffRRfu7nfo477riDU6dO8fDDD3Pw4MFXTQBVq1Wq1SqHDh1iOp2yvb3N5cuXefbZZ2k2m8zNzdFutzHNL54TfzllmRonjpaQ+ZTPPXaZ+YV5bju+zJ4ldzf/5+Yc+Qvr5mWNmsXhA0Wm05QLlz3CUGJbOlmWqTECBJYJQSRxbI27T1bwwxzfV4jrWtWi0/VQfHhJlsFYZrQbOiePl3BtjfEkZepnWKak5KoOQRI/79NJX1HI6dcmBgwdTFMny5SYE1pKFAlAf0GW0Te7vjUEjy6Ur6pctlhasPG8jCOHCuzfUySKc5wZnW1x3uHksdLLmvMVQhCGIf1+n7vvvptCofCigOBSqbTbGS2VSi/5OXz00Uf50R/9Uf7rf/2vfNd3fder/rxvlud53Hnnnbz73e/mb/2tv/VFv//IRz7Cv/t3/45f//Vf58iRI/zLf/kv+c7v/E7OnTu3Ozb7vve9j0984hP8zu/8Ds1mk5/8yZ/kwQcf5LHHHnvVu7636utfQghaTZtazSKIBgyGBrWqTamoz86bORubAf1RwpGDZXqDmK1OSLcXUXB12m2bxXkXyxQYhsb6ZsDygku5ZGC7Ou6JQ0zPXSHqDvAnoGUJSabRest9hCcO4l++oTwYWUYex5j1KsloTLi2jVFwsedb2MvzRDMfR9IfIGNFlRG2jdVukk0DkskEs1xAs1Tnov66OzGrFeL+EN3QmVxbh1xitZ/fYTYqJaxGBc2xMesVavfdjVku0fvU5+j89z/Fv7GBSHM01yb3I0gzRMFWO+BCQzi2EhWuIrf5l65jVitUXnOCuNMj2u6R9Ee4e5cRuk7q+ST9MZU7j6E7Nu6eRdLplOFfPUncG6pRLz9AxorMlY59rPqM4Cql6pBISdTtY5aLSmSMJ9hzDay5BtPTF8jikHCrSy4EpqsM++7qCt61dWQYk40niLxIFkYKtVwtqt36oaKwma06SW9IHiekU5/CoT1kUYTMc0ZPnSXuj9Bti3gwpvvJP1eG8pUFnEVl4k9nIZRSCAZ/9aTqaCzNq7GqLMOsVqjedZz5h75djcJ5PuFmF+/CVRCC5ne8gXQwUiS2SpnJcxdJRxOcPYvKJxWETJ+9gHflhhoru74OUtD4m/eqLsC5K9iLbVpvuQ/v8g0mz5yjcGCPAlQEESCwamXiWhnv3GU018aqVxG2pWALcYrZqKnROD+AGZRBGKai5Wka/pU1Uj9A80NCPyDqD2jd/3oqdx8n2uhQOrJK/XV3fcXPnlEqYJRWKRzYSxYpBLmMYjWKlqXE/SHWYptocweSjNLR/Sq0NkmJekPMegXvgvKama0G9kIDs1HDSBUhUHddnKUFmm9+3QvGSYe4+/eoMTovoHi4grs8T7IzwNvsYi20yIOQcG0bd3FOeb10g7g7oP8nf6nEar2K1azhzLeIun3yNGXw2aeo3nmcwt6l51PhkSSjKc6eRdXhi+IXjZK+VHV2Ijo7EYvzDvFaDqTYlk6pYJDniiRZLZvYtk4QZWhC4PsZrqMzP+cwnKT8rz/tYJpi9rFRkzo7vQhDF0ymMY89EWJqGseOlKl/ncJIv7BuiZ6vsYrFIn/1V3/1omT25eVlfuRHfoQf/uEfptPp8Pu///s8+uij/It/8S84duzYrgA6duzYqyaAyuUy5XKZQ4cO4Xke29vbXL9+neeee45Go7ELQrCsV3Zg9Xa2GPbO8tD3HGdxcfEVmcyUCd1gdcVBAsWizsUrUzxfxzTFrOuTY1sq/8gPc/JMKmNgKnFnC99iweDIwQK2pT5c02lGpxOj6bDVjVhs27h7C9xY97lyPdjtHOXpK+m1fO1ioOAKbEsZVFoNkyTJGY5jokiCyGbjdd/Mxei3huABEDpYlkazYdKsWRQLOfv3FFmcV92YJMnp9hNajZdvbNze3ub06dPccccdtFpqpGR1dZXV1VXiOGZnZ4dut8u1a9cwTZN2u02r1aJcLmPbNn/4h3/ID/3QD/Gf//N/5oEHHvi6PXeAt73tbbztbW97yd9JKfmlX/olfuZnfoZ3vvOdAPyn//SfmJ+f57d+67d473vfy2g04j/+x//Ib/zGb/Ad3/EdAPzmb/4me/bs4X/9r//Fd3/3d39dH/+t+vpVfxCz04tpNCx2BskuvlXXNUolk41OyE4vxg8yZK468kXXwPcyhmlCq2Fx54ESl65M+dyTA2xLo1I22LNUYOHEUfzNIfNRyMFjLuWFOlarjnfhKrkXUDiwh3B9i3Czq5LqbZN04hNeW8eebypQjYTBZ5/GKJWwF+cI17fJ41gFKLZrOEtzgMRq1CjffgR7UZmq4/6AZOIRdXrolqkW7a6N7jpkUw9/6qHbNuPTFwjXt8iThNGTZ/EuXFWhpUiEZaC5Nml/TO5lyDRD5ilC5mCZiDhWmTe6jtA1NEOnsG+FPFSdgmizA0JgFAqYzTpGpUjU6ZMnCVF3iNms46wuK+DBYETt215DvL3D6POniftDMj9Q4Z1BiLBMom4foWkYBRvNMNAsC6tZR2Y5ZqVK7seIXCJ0DaveUF2PnR2qdxxXZvFOXy2sk5TxU88hTIvikb2YlQrB9XXiwYhs6hFsbBOtb2HONbHbDZyFFo37X0vcGzL488fQXBsZp4Qb2yAlwdoWUWeHuNOnfNcxRC4JNrYZfHYT3bERhk7x0CpWs6ayZJKEaHuHaHsHoWmEa5uMnzyD8tIUVIcsSVQ+zYLyKemuQ+HIfmSSkPkR9vIC7vI8jTfchdA08jRjevYSwZYCXlizEFeZS+LRlHCzSzb1ELZFOvVg7ClPjdDA1DELLu6+JXI/Ipx6pIMJmmXg7lvG3btM3BsSXVtX42jlIsLUYZIwPn0OdzjEWV4gXNsmuyPaxWV/YZm1MpppkEcxUmiEaxt4568R3Ngk3ukT90eYzRpmrYx38TqaqSvAwkwAR50dxGAMmSTzfYxGBd218C9eJ514WO0mhb1t1SmNY2SWYS+0kblEd2wMx2bSHwGSdOqRTKYzfLZUQIgkJZ/6jJ86g3BsZBQT90dkfkjtruO4+1YoHNirSHX1igKS3Ngi2hlgL82hWZaCQ8wgDoWDe8mjWIEivoLo2dgKcBwdTROUigab2yGGISiXTXp9Jb4n04QozhiOEmoVg8kk4cTRCrals39vkfmWzWSaMBiqjqgfpMSJxK2a2KbBREZcuubhBRknj1VYmPvK0xhfa90SPa9CvVDwvLCEEMzPz/Pe976X97znPQwGA/7gD/6ARx55hI985CMcOHCAhx9+mHe84x2cOHHiVYMSFItFDhw4wIEDB/B9n06ns2vqrtVquwLoy437SCm5fPky169f5+67737FvgiAVsOiWjbY2IpJ0px61cLQNWwrx7Z0/FCNxlmOTrGkM5okpAksLdjYtkacSopFg2o5o9dPWV0xGA5zOt0YxxEkmSKEdHciSiWDKFYiRwJpIsnzlxti+rWLAYHqWOUolvbmdkyWKxxmtWJihhnTSUac3rw/vub7fGX1rSF4dE19pxk6kEuCOCeIcvatOGiaYLMTcVPirCw6zLVenkjvdDq7gueliImWZbG0tMTS0tIuHbHb7fLxj3+cn/mZn+Ho0aOcPn2aj33sYy8aM/tm1M3xvBd2mmzb5k1vehOf/vSnee9738tjjz1GkiQvus7S0hInT57k05/+9C3R89e4bgIJbMuYkSwV5h9ANwRSwvqGT6ViUimrMU/H1nFdnV4/4uyFMecujFjfiJj6GaComOcuTtm3t8Adx6vc+YY9tF6wwHCW57FadTX2laS7m3GaaWCUCxSO7kcvF5XnQoBu21jLc0Q3tsijGM22ZmGSBZyFFul4gjBNivtWiLs9nKU58iRj/NwFvAtXFZIale8h84xkZ4CzMEfh8CpC1/AuXce/fIMsCBXeWhNkE494a2eXfJL7oQoz1TSEpkIgM03HrJVxFlqg6aTTAGexjDXXoHhgBaulcneSyZQ8TgiurTN6/FmErhOubWEvtjCbdWQQUti3grvQxm7V6f7PP2fnk3+uTmC5VOGbtoUMY8Jen/KxA2jlIjLPSXoKI60XHYLrNYpHVnEW5hCGzuTsRfp/PkQK8C+vkQUBetEFIWaeljHB1XXYr6mdey9AK7qYM8pL5vmkjk31oW/HqlcJLt9QSGHDwJhhhjXbJO6NmD53Catdw1leIN7oADOy33YPTEOFZ9oWMs2YPHeJcH0bvVzEbNYVNnuzSzLLo3GW5zGrqhOXBSG6q44dcTPAPY7QQHVlwgiA6cVrRJtdwnUlxJw9i6SeD1LiX7qBVrDJ/ADdtRVFzQvRXdVRNGslkrGHYdvISooUIMw+hmOpUa8sJVzfIhmOcZbnyKY+eRQjbJOCqRNu9UDoyoifpsBLix57romzsoB38RrpxMe7fJ1oZ0AyGJIMJwgkmq5BnjO9cIVsPKV88qjKoQ1jwm0VZuvsWSAdj5G5pHTsIBzap44r28I9sEL27AWCbdVx1AyDPFWjH+Fml+m5KwoYYZpkExVAK6WCL6SjMakXkAzHWK06Vr2KblvIJCUZTcnOXSQZjslvO0Rh/x6MUpHC3gW1q5hL0skUzTBw9+/BXZ5XtLk0Q7O+/PRPnkviJMc01HmgVjGplAyGo4RmzSSOMy5f9ZhMVQaVpkGa5BzeX9qlqDqWxsqSSxxbGIbGZJpyfd1nrm3iOsqjXXB0Fucd8lxy7uKEasV8yemhV7NuiZ5vUAkhaDQavPvd7+bd7343o9GIT3ziEzzyyCO8+c1vZnl5ebcDdNddd71qAqhQKLBv3z727dtHGIZ0Op1dH1ClUtnNAnLd59GCeZ5z5swZer0e995771cNZXAdneNHSkgm3NgIEELlTfQGCZWyhkSBEjQBhhCEgcQt6FimTrGgz8Y0BCuLDr1hQqcX0+sn1Gs6hqmzuR1i6hpppgghuiYwDY00y5Eo8TMLF/8y9bwY+FrIaxIFSnAtSHNJHOdkOZRKGlEsyTOoVXVGk4wofnkkuFevvrmCR/B8lz3LQZOgmYJW08TWBH6Y0ukl3HGijO2okNtaxaDVsNBfxqxvp9PhmWeeedmI+BfSEY8ePcpkMuGDH/wgCwsL/OAP/iC/9Vu/xd//+3+fd73rXV/jM//qamtrC4D5+fkXXT4/P8+1a9d2r2NZ1hdhuOfn53dvf6v+epbK0hS4jgqCHo4SGjN6ZmEWYDrxU8oVk2LB3B01znNJfxhz4dKYKIZiQcd11O/8MKPbi9A0yd94fZOFOYcoyuj2Yq5c9+gNIjRvgXLnAtXBNuwM1QI/zbGadUrHD6EXXGQcE213mZ6/SrbtK6SuoWM2awgJmR/gXb5BFoY483P41zcRhk7t9XeR+j7Tp8+qHB7HJun0CDa2VQaOpfJZsovXEGmGu7KAvdAiuLaB1DR0y0RrWsTdPtloPAtzU5tzmmWgV0poukbqBWhCp3j0AOGNLdLxhFjXsBtVCvv2zGABKd75q2DqFPYuobs2/tV1ZJoRbe4QdweUTx6hdPwgmm2RBhFawWV64SrO0jzWfBMh5WwxOlKZP6UC6c4A0aiqwMs4IdrcJksyNNvGqJQwii7+JRUC6l+6jl5w1euGII8mCMNAWBbxcIw8fxW73UTb5yiRkksEkixOCa9t0P0fn8JdXca7dB29qLJz4igmjyL8a+tkY2/Woagwefos/uUbMw+KpqAInR2GwwkyTklHE+JOH3f/MkZRhWPqBRd3dQlty2T87AWKR/djVko4i22CK2vqQBWCcKtLtNMnDyPMShltq0v/04FCNAswGzXsJCWLY2SSMHn6HKkfUNi3TKndIHRVVxGhYVRLeOcvk0eRIuoZJqQpzqG9WO0GetEl6vZIhxNSz0fOkOdmpaI6gblELxSI1jsYrQbTC1fJs5SdT3121/dllIpYC211fM23ELpO7bW34126zuAvHyfqDRWhzvfRLQtrrrGblm63GkRoKlOoWkK3LbIgRGgF4p2BEvBxosR/pUTx2H4mpy8w/OwzapxtOMa7cmMmnjyMapk8ikm2d8hlTp5lCMMg9QPi7R3sxTb2whxyewejWiIPo90RNhknJJMJcpAhDBPv4nWVxVQroxeL6KUCtfvuUo/H0NEdGykl/uUblO84hjRM0jTHMF56nalpglLBoNOPqZTBNDX27S1y9brHeJoSRcovaBgazYalushzDmma8+yZMa+5o0apZLI473D24pSluslgnKDNzmsAU18BW8olA00TbG0rwtvK0hcHxb6adUv0fJOqWq3y/d///Xz/938/k8mEP/qjP+KRRx7hbW97G61WaxeCcO+9975qAshxHPbu3cvevXuJ43hXAF28eJFSqbSLwb506RJRFPG6173uZZm/v1zVqyb33VPHdXSuXPdZWrD4/JNjBqMU19Wolg2SRFHXajUDXRPYtsbSvLMLN4jinNUVlzjOKdg6USpJ05xGzaKTxNi2wHF0/CDDKeikucQxYeLLr9Dl+WIx8EKNJGb/MXReticniHNsS6DrGrGfqwyimjYLR9UoFSFOFJQhy0DKL02Ce3Xqm9/hERpYJji2xtTPkbn6/zDK8PycamSw00toNg3efF+LPcsv/6TX7XZ55plnOHnyJHNzc6/4sf3FX/wFH/7wh/nVX/1V3vWud3H58mX+8A//kO3t7Vf8t17t+sLRVynlVxyHfTnXuVXf2lUq6mQzM+LCnIPnp/SHMZWSgWFoijKZSdJUUq0oERTFGVvbAdfXPcaTTF1PV+cW09JYrpt4fsrEy3jm7IijB8s8d2HMhcsevUFMlkrAxNAPslCtsTiMsEyD2m37sVq13VGYLM/IowRhmBjlkqJZTTyy0QShG2RBQLQzRC84mMerBGsKJ7zxu3+Ed2UNDINks8v4mXOQpmBZCNtGMw3SwZio00ezTdx9Swgh0BwbOfGUWImVkV0IDd211WiblKrTk0uyVI0PZUFA0h+BlArtPNekdOwgmmORjCZqrCpLKOxZpLAyj7u6jGZZ5GGsaF9hiNWsY9ZUvk24tolRKeIstkETBBevKcM/EnQDZ6GFZph4l67hyj14l66Teh6armMttAmurpHsDCgdP6hCz12bdJyQJxkyThGWqahakyl5lqM7NqnnYS/PkfRG5EGEUSogBBi6jn9tndFjp5levIpZrWA3arOdJdVpMWtVjGKJUrXE9NINJk8+Ry5zzEpJjZ0FIcnYQ7Nippeuk/khMlNp3c7qIulwomACuo67fw/+tQ28M5coHt1P4cBepJRMnj7H5MxFUj9AIDAbFYoHV7GX2gRX1vEuXad69wn1XAwNu94iHU2RUhJ3dige2IPQNZyVRfIsw2o3kFlG2OmRDEY4q0toYYR3dYtgbUtly9x9gnQ8pf+XT5CnCWa1pP7+cIywTfSCi91ukA7HjB47TTocEW5u41++gUwSQGDVq6qz06xRvu0wlTuPk6cZ0UZXiZYkIQ0CsomHKGtkQYTIJPHOEHfvImbZxayWFLzAD8g9n9wyibY6xDsDJcZn49i6ZSHTBGxTdUddR2UsRRFkUm3MxjHCstANNWIYbnWQSYLuOKRTH81K0QwNsowsismHY2SWIXSD4Pqm2ohIUjIvwN2zQGHfigrfNRVN0Wo1FDzDDwi3dgitEr20zuizPQCaNYvFBYdW44s7YYsLLpvdkCjOlJenaHD4QIm1jYAbax7Liy733t2gWTfJc9jcDhkMI85fnNDph9x5ooZlaRRcjc3tgMEwwZp5Ez0vJcthdbmwK7yEJvCDr7/5+Zbo+RaocrnM933f9/F93/d9+L7PH//xH/Poo4/yjne8g3K5zEMPPcSpU6d4wxve8KoZlC3LYmVlhZWVFZIk2TV8X7x4EV3Xdy+3bftrXkTpmuDksTJFV2ezE3HiSJlrN3wyCe2mRbGgUy0bLC/adHcSwijHnHV5XFenP1Rz6mkm8cOMgqtj6jqtuoXvZ/QGCXGSEyU5hgDX0pBCogsleozZSFWezzJ5JGgiw7F0NAPi5Hm6m6axm92j66r7k+fsipSvVEmC2lEyAAlJIqmULDSREMU5WZYrYt0sHPWLNdmLSXDyCy57ZfXNFzygXr80hczIZ+GGEEQZvg+6qWGH6qS6vR1z/opHq2m9rBb3zs4OTz/9NCdPnvyirsjLqb/4i7/ge7/3e/m3//bf8q53vWuXyPjjP/7jr/xJvoq1sLAAqG7O4uLi7uWdTmf3eS4sLBDHMYPB4EXdnk6nw7d927d9Yx/wrXpVq9WwqZRNegOFhj24r8TmdsB4mjKdpjiWxupKkfk5iySR7PQUXckPMrJMieWCq+O6hjLbxzlTL6NSsuhFERcuTXny9IhOLyQKcxqzQMAkkfihxlDfg1kpYvYvU0kS5dnIVahnNg2wGjVkkhFbOmSS0omDBNc2QNPIohizVsKolHFnYZXCdRj+5RPkSUrtdXeS+QH55etojoXVqJH5ikYW7vTRECRSMnriDJouiPsj1VHZ6SFsG4FAaAK91VR+Bz9U3095jqYbGO3yTCDF1O67m+prTpB7IclwTDxQ9DBneR6habiLyvenOzbFg6ukgzFGo4aMY9LRZBdWEO8M0NBUlorQSJweGDqaaaI7Fuk0QAqIdgb4GwpzLWwTd3WFwr5l0DSS3pDpmUtIQyOPYoxKCWGZpH5AttklHo5IJ576okFR4bIgJJt66MWCykVybdKJR9IdIByVyi1ycJfm0Csl0sGIPE4onzhEuLZFFsbE3Z7CSldryDRTr1mcYhRdjEpJdYiGY4qrS0S9HtNL17DbDZCS4Wefwm7VsRs13P0rkOWEGx3SsUee5WqU6sBeyHKibo9oq4swdfIkQbNM4t4Ao1ICTaO4fw/hVpfR48/tZsWYUpJNPOxGDWuhRXBtndpdtyHzDF3XyW0bd/8K8UaXPElIBhOEqVO/7y66/+svSCc+6cQjD0I000RYBsGVG0T9EWlviNGsojk2wdV13L0LClIw8cg8H21lgfFTZ9GLBfzLN4h2ehT2L5N5CjJgOA6aqZNHEValCFlKNpqiFR38G5tY9Qql44dJhxNFnpM56cRH5pLw2gbmXFON9QkNZ3EOmeVkrTrJxFchrDNCoDWnuk2ZH5KHsQqLzTOFw+4M0KtFNMdS4IcsR6Y5etHFXV4g3hkq4WWZJIMRw8eeRTNNGn/jHux2Q0FLtrrkqeo2TkotbliL5FODYlFt715f99nshBw/UmbP0ouDZNstm71LBa6u+biOThTndLshV9Z8Jn7G4TmHLM1Y20g4d8ljOEqwLA0pc7Y+F/PMcyPKJZOVxQJCg9E4JkkkSdmgWDRYnHN28x9Bjbq+nMmOr7VuiZ5vsSoUCrzzne/kne98J2EY8slPfpJHH32Uv/t3/y6WZfHQQw/xjne8gze+8Y1fNZXtC8s0TarVKpcvX971+3S7XT73uc9hWRbz8/PMzc1RqVS+agFkmRpHD5XYs+xy521qV2kapKSJxHF0mnWFog7CjItXfLr9mDTNWZ53OLy/iKbBVjdG1xXWeHsnplwyWN3jYtsaUaw6CAt7bHw/I4wyuoOY8Tglz5V4qZY1hMiJkwzXtalXLTRd0ukmjMcpSTYLLjUUlCBNJHEKuglCqPuI4xd0goQSSTfFFKgNtywHMYMoZBK2OiEyl/hhTprORFf2lb1GmqbPMNrwUh0g24Qo+VK3/tYQPDcrzcALZkJSQp6CZQk0Q3mhKmUFs9juxozG6VcUPTcFz2233fZVCZ7PfOYz/O2//bf5hV/4BX7wB3/wW6o7sn//fhYWFvjkJz/J3XffDUAcx/zpn/4pH/7whwG45557ME2TT37yk3zv934vAJubm5w+fZqPfOQj37THfqu+9lJjwRWePTtifSOgUFQ0JFOPaDUsFtp1RuOUWtUkTSV5LukOIqI4wzRUNo8zG2tDCGxLI4rUhoumgecpHyQCwiRj6ks8PyXLJQIIoxx9T4PifpesOCbzRsg8wyiXqNx5nCxKyPwAa77B9MwlFQhaK+FdvKEIbY6lxm/6Q/RyiTwIsZfmCG8oOIGmaTjLCwqTHcdqpzoI0Gwbq1VX2SebXdUVmkyQYYREIEbTXVGQb6ud6sLxA2izy4xiQY1uDcYIBLV7bmPuu+4ni2KS/hByqahzgxG9bv9FQZRmrYI51yDa7GLWK+RZiszyXUy3VnCIN8eY1RKl44de/IZtdUgGE2SSkk48jHqZzAuINraRcYKz1MZs1picPk8ynpCHEeFmB63gQpwgpcRsN9BMHZlmZFFC6qmdecMykWmiLvdC0vEUqQkMx0IvuCTDEcH1LZyVeXIpkVlGMpyQTH38c1cUKrzoKnN8npHFKXkQKiqarpOGIXkYEQ8n5EGIjGKsdh1neYE8SQjWO6STKbU33kP1jqP41zfo/9lnMe88StCsKWJfGCrB6/sEa1sIqYIu08mUcH0Ld+8y9nwLq1kj9XyirQ6Z56vu2Z5FnOV5NTInBFa9jDnfpri6hExThQjXBOF6l9rrbseebxPc2GTw2adxFtsIw0BzLIL1LabnrkCSorkuWZrhFItomoYx1yBc75L6Ec5Ci2BtW3UHdZ2d//OXYBo4i23CjS6pH6LZChigmRaZH5BNAzXuoevkWa7eZy9UsIPxBIYTjEpJkek0Dc21FThifRurVqZ0/BB5FBNtdXFXLaZnFG3QP38Fe76J1awTrm+R+aHyEg0m0Kigl1z1+g7HyFl2ljB0NMNEmAb2QkuJmiBEVMvINKV04jDVe06iGQbO3qVdBP001TlzJcOxNBUgOqtyyWQ0Tjh/aUqtYlEuPS8JDF1w/EiZasXkyWeHnL88QaDRblgUXJ1SyeSJZ0cMBjG2rTPXtgmjjMtXAiZeyuK8zWiSEsYZi22XWtUiTSWHDxQpFc0XCZw4ztF1Qe0bQHC7JXq+hctxHB566CEeeugh4jjmT/7kT3jkkUf4B//gH5DnOQ8++CDveMc7eNOb3vSKqWwvrOFwyJNPPsny8jKHDh1CCMHi4iJZltHr9eh0Ojz++OMYhrErimq12le1UCy4OgVXfdncNLy9sFxH5+SxEp6fkWbK6GbNZtbTNOfcJY8LV3z8IGNtK6BcMnnjvXWEgKeem7A4Z9PtxYwmKd1+PJshVanTSZJRKAjqtSJL8y63HSty/pKPN81IEp2yIXFsnSTNiSNF3JFJhkRQK+tkUmc4TJBy5uFJZxEQLyiJuixFiSJTg6mXIVC0sjzPVVfpZbx02Sy4FQFC6i/Ab2ez3+u7ousLbsm3kuCB2Vj0rINmKB8yhqlRcDSSRKLr4Loq3fkrHVa9Xo+nn36a48eP73ZFXkk9/vjjvPOd7+Tnf/7n+eEf/uFviuCZTqdcvHhx999XrlzhySefpNFosHfvXt73vvfxC7/wCxw+fJjDhw/zC7/wCxQKBf7e3/t7gBqP/Uf/6B/xkz/5kzSbTRqNBu9///u5/fbbd2lut+pbv8aThO1uxHAUo+mCdtNmrmkz17Jx7qyz3Q3p7ERkGdx2vMpC26FaMXnmzIgbGz6Nuo3r6Gxsh4ocicQwxIs7yLPjOwzVOdVxddBgNEoZjRJlKC7oGLqOlJI8T7i+HmLtL3PyrgPM1Wa7sAUHzTDwr64hAbvdRHcdwo0uI+85tSgzVUCz0AR5LpGTKWZt5rlI11UYaRSjF12MYoF06hFnOflkilFWBu/MD8lkjtGsk44mkIO90ARNUyNEWQq6oZLq51pYc00yL5j9+DgrC9grC0pM+QHB2hbhxjYyzbDmmui2jTCMXQADqGDM0pH95HFKcG0NzTCJOj11HcfGalSJu73dtPqblXo+cX+sgjqlxKhVsNsN1eHIUfe91cWslQnXO1hzTQr79yj/yPqWWmRrAiuOKR7ci1FwGZ+5hLAMou0d8lIBe66lvB7jCVG3T+YHkOUKhew4hJtbZFGIPdcij1OVIZOlhFtdwq0OmmGo4yGXRD2FGbc0jSRTI3WaY5OMJtj1CvZ8E82ylA/E0JFpSjIaMX76DHkQML1wlelzl9CLLv7VNbIwxKiUVS7RZkfR8QwdkecITad05AClYwcQuobQLSq3HSa4sqZyfI7sR3ds5WsZT9Bti9QLsVs19FLhRZk6cXeAUSigWSbe+SvYrTq6ZZL0h8SDMZqmY1bK5GkGmoYpJRKJd1mhy/MoIursEFy+QR6GxP0Bxf17iHYGOIttyrcdJri2oaI0NJ0sQo2RmTrJ1MdqN9Asg3Tik6cZTrmoukxRQjb1MaslnOU5ZJRCnmMvtSl0lqndfYLS0QMMPvOkGkVLM4RlYlXLRK4Ds/iOLAgRuk7p2EHCrS7FQ6tqnNMwmA5VXhFphtRzsiAk6Q3QS0W0UhHddVQmz+oKdrux+7pphoE9r7qZNy5PieIJzebzY2xJnDEcpwxHMZ1uiKZJ7j7ZoFTUySWYhkLfz7dtSkWDY4crNGsWUz/lwqUpWarCR/0wo1I2EUCnE+GHKeWSjmlq1ComcSTxvBTHNdA0VPiya+yKniDM6A8i9i4XqFdfnY38L1e3RM9fk7Isi+/+7u/mu7/7u/mVX/kVPvWpT/G7v/u7/ON//I8JgoAHHniAhx9+mLe+9a2vyIdzk3p1+PBh9ux5cVqxruu7IifPc/r9Ptvb2zz11FMIIXZ/V6/XXzXfEajxjOeDJ58vw9A4drjEfNum3TBZ2wyxZjubeS45fqSkAAId5fmplBTVSNclYRAg0VlZLFGvK5pIZbarESeSZsPE1AWjaUrRNQmCiChU/pwsh3jWudE0DSEkuZS74kUw89W+EISQAxrkucAwJaChafnu718uMEHXwbEFSSzJZyN4ciZo0gy+uAP0rSd44PlRZ9NQ6fNZlqtOmS6wNY1yUdH35poGlfKXPi31+32eeuopjh8//qLRr5dbTz31FG9/+9v5p//0n/K+973vm9bh+fznP89b3vKW3X//xE/8BAA/8AM/wK//+q/zgQ98gCAI+Cf/5J/shpP+z//5P3czegB+8Rd/EcMw+N7v/d7dcNJf//Vfv5XR89ek1jYCzl6cEIYZ9oxmtLEZ0KhbnDxWpVoxqZRNDu1XIJkXHqvHD5cRmmC7E9IfxHR3Ijw/ZXHeYTJNiaMcXcswDRXKmeWSyTTFcXUO7y9hWxrDUcxoktBu2Bgz/48QAtvWSbOc3iAmCnOMUvlFj9teaGM1a0SdHs5iWxHDHAt7aY5s4iHTFGuhDXFCsNlBP3EIs1pGWMrzI0wTIUIQgnTqk/RHyqTdG0J3QDqegIBkPJ3tnDvqZKdJ3JUFhGWSdPtophoLArAaVVLLwGo3cJfbpF5IMhix8yd/pXKF3Fn46fUN9KKLlJJwawd376ISA9s7hJsdsvGEdBpQOraAs9CmsG+Z8u1H6f2fv8SoVcjiBJl7agErM7yL18ijCLNaRsocd6GNUSsT94fILEE4FslOn6jbx6iVFXUujKm/4TWMPvc0+Y0tJDnJcEy42cVdWaRy8jDpaJHx6fPILEOvV/CePa+8SH64GzSZjDyyJKOwZx6Z5iSDIUgQVoPi4hJ5lCgM8mhK5gfq+EkSyKWi10WJonnFMdH1Edl4irOygNWqI7OMdDwlGU3RLZvR554hixLGTz6Hf/k6eqFAOvHwNzpogFGr4M4yggCyqYe9OEf1tbdjFJ5fj+RJSunYATTDIPMCNNNEIkmnAXFnB2GZjJ88i1awceZb2IvzWHXlrUJAtNUl8wKKR/YzefosWqFAcvkGMs8hy9BkThpEWM26GvE6fR7dttHLBZL+GKPoIsyi8lIZBkapQLTdw11ZxGw3EBeuqoBaXZD6PjJVoCGhCfI0Ix6OcBbbVO+5HaFrZGlCcPE6/rUNps9dxCiVFJZ6eY7KySPoxReMjEmJ5lhouqbE4iwQNvUCsqmPvTiP7trYWU469hRtTQjyMFLeNk2DOEGvlMnynGSri1Eqoc9Q1HrhxeNpL6yJl2LZGnkmZ17ajM1OiOelGKYgTiVPnR5xbS2kVNBp1i1KJRUInkvw/YyFeUVY1XVBsWhw9bqnIB6a8l37fspwEmOZOtVZVyeXCorguuqc4romrmPQG0S74/32bFz36MGXl8f3tdYt0fPXsAzD4C1veQtvectb+OhHP8qnP/1pfu/3fo/3v//9DIdDvud7voeHH36Y7/qu76LwZT4I169f5+LFiy/LBK5pGq1Wi1arRZ7nDIfD3VwUKeVu6GOz2XxVBdAXlq4JWg2L5r11hiNl8M0yqJQNmnWDyTSj4Oh89skhRw8WiZOU5871MU2dA/tq6LrG6kqBuZZFmkjG45Q4llQrGlGixu78ONvd6Wg2TMaTjCyHJM4xTQ2QaJpECLlLZlNhpMobpGlgWerDrmmQJYIsz8lfMNL2ckhxN0flcgmaAXn8kq/I7Lo58stj6r5ppeuqu3Oz21Mp61TLDr2BYvzbtkaWqRHIO06Uv+RoW7/f58knn+TYsWNfleB59tlneeihh3jf+97HBz7wgW/qSNub3/xmZcL+EiWE4Od//uf5+Z//+S95Hcdx+OhHP8pHP/rRr8MjvFVfzxqMYs5emKDpgqXFF5IzJdudkDPnx7z2rjqGob3kcWrbOnccr9Bp25y5MMG2BYORpFEzaNZttrohUZgSaxp5nhBGklrF4MiBMiePVXju3ITrGwHTaUIY5FiWoiq5ro7npbRbNkmSk73EDK7u2FTuPE7vU59j8NmnmZy/QtLpkQ7HZJ6Pu7Iwy+EZkg5HRJsdrEYNe66FZpkkAqTMiTo9ws1tZKRM6Wqsa7qbKC3zVI0U+SHSVYhoe76JZphoUpLNfC9xb4hVLauOw0IboQni3phoZvou7F9RaOtZxTt90tEUYZv4F68Tj8ZEGx2VQzMNsOpqjDsZTTCqZdy9S3jnLjO9eA2zWSMbT4k6OyT9ITKOKR45QDrrVMhcjcTJKCbc6GAvzWPPNRmfuUTcHxJZWzMSmhKSwjTQdB2ZpSS9IbptU3vdHbTe+kbM+Sbjx5/Fe+7iLgXPbNfRdB3NstBLGWRSLfLrNs7yApppUL37NpLxlMLqMiBUBlMQgmWglQrEnQFEEZphYNYrmLUqkR+SRSHRdg97rkncHaCXC2iOOUN0W+S+j4xT7PkWWahwypppIppV0uGYUCrzqzuj5ImZr0dQQ2Y5yWAEusH8278TmcR4F64RXN8gS1PCzQ7BlRuY9SrpcIJmmYTrHZz5Lu6BFYyii1mr4F/fVMnWMicZT/HOXVbiqeAghUCzbexKCWuuRRYnCNMki+JZdkUGhknuBwg9YfzMOUonDqG5NtH2DqUTh4g6O0RbO5DnJFFCHoZY9SpGqUgyGOLMt3H3LpFHIZkXKJpgEKI5JnF3SDr1sZp1kt6ILI7xLilqntmqk5y7il0ro5eKBNfWcVaXFZ79/FWyMEIzNPIwxGxUyaOEXErC6+uqm+QFZEGk8Ns7AzTXQXcshIDSbYdwV5fJpgHmTYH4BWXo0OtFdHciJpOUje2AOMlZXnApFUym04wwztjpR4xGAsfR6A1izl+aUHB0JHJXkBiGxsqiy6UrU8JYTcJEUY4fpsRxTqmgZEU6g604tsCydeJpSpblHDtc2gVPCQGVkkLvf6O+j2+Jnr/mpes6999/P/fffz+/+Iu/yGc/+1l+7/d+j5/7uZ/jPe95D9/5nd/JqVOn+J7v+Z7dXeIsy3jmmWcYDoe85jWvoVarvaL71DSNRqNBo9Hg2LFjjEYjtre3OXv2LGma0mq1mJubo9Vqfd12nYUQ1GvmF43INeo6b7y3xmSa0hv4jEZd7jhRYn6uTZYp2MHdt1c4uFrg7MUp+1YLDMazuWpNEAqV8VN0BQKNNBOEscS1wDQFmg6moaEJQaOqMRinhKFEinx3TAtmIARNqKwgXZJKcG2dNMvIUMLoK4ERdptGGbN8ny933ZfCXn8z8oBeXAL1fePYGvWaSZZKglDSqms0aiZRrGNbGgf3F3nDPTWOHHxpPPpgMODJJ5/k6NGjLC0tveLHcfbsWR588EF+6Id+iJ/92Z/9lvLw3Kr/+2q7ExHGGUsLLyYVappgru3Q2QnpDWLm21+6ax9FOddu+IwnKQf2lTFNjzDM2bviImWOH+SkWU4uBXMti7tOVrjjRE2NpAQZYaiCAoNA+YGEUMKnUFCjtPNtaxd5fbPSNGenH9G/Msbf8snOXSd44lmQEqtexZxvYVTL6OUSeqlI3O3jX1nDrFUpHT+Is9hm+PhzjJ98jqjTI/MCjFKRWQwNmmGSO2K2SM1neSISDBPNMklHE+yFtvLA+AECjeLBPditBnrBQUrB9NwllWeiaTgrCy8SPABWq0E68XD3LpGMp4yeeg4kpFNfYaMNg2Q4YfiZJ0mnHiv/31O0v/NvEHV7qpNVVp2CdL4FQmW9DP/qKZzDi2QTn/DGlsrfKRcASTL2FEK6pXw0MoqJNraJe0OMchGrVSOfBpj1KtZSW4Eb+kNqd52gcvcJNn/r/yHa3sFsVDFch2Q4RkYJWrmIEJK4NyD3AworSxQO7cNs1Rg9/qwShX6AXiogpSLF5X4EUkU66AUHd3UZs6jyl9Kph1F2Kd92WAW6JjHjp85iVIskvSFxb4iz2GZ64Qq5F2BWK2pyMstV52y7TzIaEdzYpHbPScxiAe/8VeJ6BWdpHnfvMsVDqzjLyoNZPLRP+av+/PPIJMGsVbCaVfRCgSyMyDyfYG2DuD9g8Xvfhlmvom3tENzYIg8CrEaddGWexAuUSAhCMgROdZ54NCbrDxGORRYECsIRhsTnLqmuoaEjJAhdx15oE250KB7ZT+Peuxg/ex7NtUiHU6QQOHMNwi0V3OqsLJAMx3jnrijkeKOKXioiTZ3RXz1NnqaUjuzHKBXA0EinHv0//zzO3iVyKfEu3UAYBvZCW2HYXUf5i4RGGoS4i/OUbz+CXioy+vxTRBtd8iwDmVPct0LqeeRphl5wMEoFzEKB4oEV4m6f0rGDmI3aS54r4jjn6nUPy9FJE8lkmuA4BludiKmXsr0TUS7pLMy5DGcbMsWCSRyrz7vaFDGYa9uztZfF6p4CaxshfuATROlNijxxkjMeJ2rqJpPs21PENjXGUiJzsCz9JWlx36i6JXr+X1SapnHfffdx33338ZGPfIQnnniCRx55hH/9r/81P/RDP8R3fMd38La3vY3f/d3fRdd1fvu3f5tisfg13acQglqtRq1W48iRI4zH410M9unTp3cFULvdxjC+MYdbsWiwPC+5cX2du0/OsbKiugLdXkK1YrB/T4FcQn+YcGh/gSDMOHfJI8kk6SzwVBNQKmjINEcRFYUKKhOqnes6OvNtG8tOgJw0lQzHKVkmybIcy9QxbZ0wSBXuOpZEcTYbSXv5421ZBmEuX3bW0ItL/4LrfOFlX5/SNLVmuZnBZJpQcDUsU+CUTOZaNivLNuWigWNrLC84HNxf3M0b+cIaDAY88cQTHDlyhOXl5Vf8eC5cuMCDDz7Iu971Lj70oQ/dEjy36ptevUFEwX3p86GuC2QOnv/ld0U2tgO2uhGLM7y/ZWpcu+EjhGB5sUAY5Ti2yjy762SVIwfLbHdCrvY95udsLlzR8f2cOMmRCLI0xw+Uv6foasSxZDx9/jGMpwnPnRvTe+4q8tnTYBiI6l70wlVqKy1MXY0vkeXEO32Epqnxrs0uUuaUDq9ilEuUTyaEa5tML1zFKBYhy0kmI4xyCVF00OJEhV4GMVIIdMNAMw00TSPZGVLcvxeqZeLOAKPogKa8FslkStIbYtaq1O69nWQ0fZEv5EWvcalIMvHQbAt33wrJTQHSbijAQZ4T94cMP/sU5eMHqd5zksYb72H87AXsWgWzVmF64SrhjU2SwRi9UsQol7GqVYLrG8g4QSJJwph06qGXi9ithqJ2TX0AzHpFBUv6IVrBQS8VEELDqpYIbmzirixQ/7Z76H3y04q0NvHIvBBhKBpMNhmDhGzqI6OEZDgi8306f/RnjJ8+M/PySLXgD0KEZYMm0IslkAoTrWk6WaBABEKCME3Cza4KWR2OiQfqPoRtQ5yojKJLV0m9ALNSVBMRlSLTS9eJN7sqv6agwlZ1x8Zq1ZCppHT0AJU7j73o3Ks7Nplt4Z27ojKJVpeJt3ZIhmOErqvuUG+gUNStprpNwZld5qBZBjJSQbrCMcl72az7FmFWKyovSRnMyD0fmWagCTRDVx022yIZqsydbBowPXuJ0tEDmNUy4dq2GkVzLEZPnUUmKXqpoMJtEYRX10k9H2Ho5ElKcE39u3z0gMoOqiofG6lUJl8pKexfIdreQbNMzFqVbDwh7PRwZ8Gv7t4FrGYDq1GbZXUZGLWKes/KRXTLUp3S8YTMU+OKmmGSRgn140eo3X2CqZfR7am8G4SaiqmUDDo7EWkOvc2QNJNM/ZQ0gyTLuXQ1xrI0isUCN9Z9ev0Y09R4/WvqNOqWgkh1As7MOtPtmS9oZamAH2RomsvESxmPZgAioUbgNE2QZxBFGXGS43spK0vuN8S38+Xqluj5f2lpmsY999zDPffcw7/6V/+K06dP85u/+Zt84AMfwPd97r//fh555BEeeOABGo3Gq7IQFEJQrVapVqscOnQIz/PY3t7m6tWrPPvsszSbzV0f0KtFnnup2tnZYdA7y5HDe9H0Cp2dmDSDcknn4L4Cui52xzaEEJw8WsLzUy5e9cmlnEUeaJimwllXyga2pRHGOUsLDgVHp7ujUtPnWyaenxHGkhqCiZci0Ci4CvGo/EaKppSkaizuhbS3l1OarpDPN+tmfpD6Gy/Xw/ONE0BitlGLDgVbMNe2KbiKRGdZgv2rLq+7u0qrYeM4GvqXmeMdDoe7gmdlZeUVP5YrV67w4IMP8nf+zt/hwx/+8Nd19PJW3aqXXbNgza+20kyysRVSLOq7huBqxeTY4TKjScJ4nDAcxdz32iZHDpawLTVO8syZMZalM+1EHDlY5sy5CabKgCTJBHmWk6dq86fm6ozGMWkmyTLJs2fH9Ls+1eEGNF30VpNkfZNJrjOJNNqLZfLNbdJELUSzOEHoAnf/Hsq3HcG/sk48HBPc2MBebFM+fgCZ5sgsw7+6htB18jDCcF2yOCHPfAxhKWSz56n4AKl62oZpUj5xCHuhpZDaU4ULrr3uDlpvvo88jBl8/umXfO3yLCPc3CEZDEgnviKpmSalI/ueJ7ppGlargb+2xdb/838IN7bVAjbNCLd2SCce6WhKvNPHPbwfq9Ugm3qIWll5YmqzkNI0RS8WsCsl8iSHPCdP1QicXnTIwgjv8hpWs0oep5TqNfIsI9rsUrv3DjB0wrUt8lARQGUaIb2MPE6UECwW0FwXZ76JvWeR/qceI/N9rFYdoesq76XmE65vq9BR20EUBMIyMUpF0AVGsQCWQZRkBNc2MMoldNcm2uriXbhGYd8KtXtvJ7yxhRCa+v1ookAPYUykaaSej1Ep0bjvbmSSYlTKpMMxIHFWFgmurVM6fnA37+lmeZdv4J2/Qp5l6J4FSPRiAd2x0Rxr1tEqqLEuIAtCzJoSNNH2dYShY1TLRGtbyDhRz8lQgsaoVYk6O4rCN3tPNctALxSULwpAQrTdw1mcw1lsU7rtEKXjByCXeJdv0P3kn6OZBu6BvQTrW3jnroAu0GsVDEAYBrrrkEcJ9kILd58aM0uGY9y9SzhLc4TbO+gFl9q9d2C3G8S9ITKJQWjEgxHepWtMn1UdqGwyZfTkGbIgUI87y9Fdh+K+PaAJRU2MGsT9EXrJxSwUqJ44QvnOo3SngjPn+0z9DMfRQUq2OiFxlHHlhkepoKYqdnoRAEmSMxwnpKmkUtZpVG16/Wj2OYNeP2F5UadUMmilNkmac+HShHJRx7Z1TEN1dXQhcG0dWZZESU4QpPi+yl1cXnRIEsmlq1NqVYs7TtRmFoFvXt0SPf8X1M1uzB/90R/x5je/mQ996EP89//+3/nYxz7Gj/3Yj3H//fdz6tQpHnroIdrt9qsmgEqlEqVSiYMHD+J5Hp1Oh7W1Nc6cOUO9Xt8VQLb96rU6NzY2OHPmDPe85iTVWoteP8ELMhxbo1lXmUCgRs/mWjaPPz0iCHKyTAWp1koGUz/DLSifiRZmqnuTS1xLp1YxKBcNpIQ9Sw5emKowQF2Z9cplgyjKMAxBPoE0TZlrW1iGxmCcEEcpU08Jn+xlip+CI0gzxbBPEshy5SPKZM5XJ1y+vgJIAKYlKJV0WjWT+baLpoPnp6QpVCoGC3POl+zs3Kybgufw4cNfleC5fv06DzzwAA8++CC/+Iu/eEvw3KpvmZprOpy7OKFe++LfJWmOpotd0MpLVZaqDo0itj1flqXRbtq0mzYbWwH1qrV7nSTJSdNc0SkTSa1q4bgaQSiUN8A1iOKcVEo6OzHLCy47/ZjJJMEPM3r9mLYVEo9H6DMPqF4sYDYqeN0RRCHmeIg+6+ooMbMOeoh35QZWs0a41QUJlduPggTv4jWsemUWChmRTjzV3bEtpOugObPvBqGQjwLIvYDyvXcw98CbFeK6O1CGf9fBXmihmSbh+jZCaEocWM9vsOVZhnfuMuMnnqVweC9CSNLJFN2y8C6qBb5RUSO2yWhC3OmT7Ayw6jXsuQZmuajGwBpVyncdZ/yEGqszyyXGp88Tb+2Qp5nCP+c5yc6APFMIahmGZHGq4AyWRTIY7Zr506lPMpyQRRHVO49hLc5hNWp0/sefkYUhwjDRLEEWxcg0R2iKLpb5AbpjYTVrBFfWSYYjzFoFo1KeeWh0SDMKR/YxefosmR9hFB2MYhWhCZKxRzr1yaOILIlVnIDnE9zYVJlGCy2EZcxEmqtybMIImWQIXcds1siDkDyKZiS2FCFAN3WsdoNwo4uzNE8yGJHsDNCXn48XSCdThn/1BNFOXwEGSgXkrHOlmTr23BKZp7J4borRPEpw9y4jJUSbHWQiSfojom4foQk0xwEpycIY3bFnhEAfUkVJI0flQukaRqUMhk4yGFFYXcKoViju24M931KZQk+dw6xXKOxdQRg6wtAZPXWWaH0LZI7ZaqrjyzGReb7rWcvNmDyKZ4etDknC+PR5hCaU58yy1NilDtPnLmGWCpRvO0i0vo2UEqNcxDt3mTxX381G0VUeKcNQAhVASlI/ACmZnLvEZKvP5aBEvmcfyyt1skyBSyxLcuFywPU1n7tvr+G6KiOHG0qw1DBmURw5aZIRhDfR0SajSYxlCZI0x7E1Dh0scPmKx42NAAGMJynlok4QZKxvBTimwHUEtm3hWEKNx0USL8hwHY3772txcPVrmyx6NeqW6Pm/pJ588kne+MY38su//MsYhsFrXvMafvqnf5pLly7xyCOP8Ju/+Zv8xE/8BG94wxs4deoUb3/721lcXHzVRoGKxSL79+9n//79BEFAp9Nha2uLc+fOUa1Wd7OAXgl57gvrJpjhrrvuotlU7fDlxS+9mJ9rWYSRpDeIiROFx7ZtDcNMZ/jknKmXoglBFElyS+XspJkKVV1ZdJh4KXsXXba6EXkO1arBdJrR2YmYb2tYpkatauI6GotzNoNhzHYvZjJNSFKVV5PNBNAXlkBlBlmmJE0VBrZR0+n3E0UBEtor6hi9dL26AkjXoeBCqWSwvOBQcHWmQTrzkAoW2ibHD5W+ouAZjUY88cQTHDx48Iuogi+nNjY2ePDBB3nrW9/KL//yL98SPLfqW6rm52zWNny6PZW9c/M8m6Y56+s+tmPQ7UWMpyn1mkmtYr7oXCw0ZR7e2AoVGlpKSiWDetWiXDIRM2iIYTx/m5sI2qmvFqYCNUpnWRoINUpr6GL3/iSKDpdlkl4/RjcEWp4jpFQjVkBsukxKbYLNK2SdNWzbQOiQXN3GTEPS0QTNNBg/8SyVO46hGTrazOthVEqKZBUn6MUC2sxbQi7RDB19ZZHi6pIKB3UdZJah6RqNv3kvjTfdqzxElfIuFOCFZc03cVYWCK9v4Oxd3B1ziza7jJ8+h7M0R/X2Y/hXbjA5cxm9Vibu9gk7Pex2A2EY+Feuk46mWPUqwbU1ksEQs6b8KdnYw241mPuu+xl89imibh9naQ50nenlG4RrW+hFhzxPkYlEGDm51MjjmCyK1WiSqd4nveBilApoxQIyiZk8e57yXSfY+sP/zfBzT5NFahEtsxS9VkEgwLFJg4DcDyBNCLf7yDgmGYyQcbKLCU93BujlIjJRtDIh1C5/OhiRWSZ5EKoxP8tAKxRwVxYw55qQZpjtOtZCC++5iww/8yR6qUDSHRD1hqSej91qoNk2cX+APrvPqNvFajUUtUxoahxrMMaslMjTFxtTJ89dJO6PcJcXyDwfYZoYlgVFV3VyCl0Qmhpvm5uNt9kqt0gzdQqHVwlvbKE5Fma9ikwTUi9UnqUkxaxXIVfZRTLPEKY9AwhJ8jghC0LSwQit4KKXiwgh1AgcEFxbV7hy0yIZjsmCgGC9gwxUZk82CTDTlMTzScdThGFgVkqA+hs3hXY69fHXthXWeob2Tj2fnf/zaSZnLqJblhJCuga6jmFbyrNTLpDtDCkd2oMwTdLRFHRNvafDCf7lGxi1CmJBrZcGg5Dg6hbNLKBv3MbGUKGhJbDTj+j2Y3b6McsLGqahRmG3uxGuq2MYGnGcEcY5YZRhmgJdQGdH+X2yXFJ0DYI4x9CEwlZ7KdWKgRfkjMYevp/iSYFpCuZaDvMtC8dVm8OWpTHftLjjRPVrO2m+SnVL9PxfUjfzfl5YQggOHTrET/3UT/GBD3yA69ev88gjj/Dxj3+cD3zgA7zuda/j7StpQ1UAAO6SSURBVG9/O6dOnWLPnj2vmgByXZfV1VVWV1eJoohOp0On0+H8+fOUy+VdAfTlyHMvLCklly5dYm1tjXvuuYdq9eV9uNJU0qwbzM+ZnDnnIYSk3bTp7sQ8fXaMZaqMH4GGJjJ0U0MiObSvQK2i0x2k6LqgXDbYGSQYOiSxxDQEjarJfNvC8zMOrRZ3wwLLJYPeIORzTwy5eCUgkV8+pFQToOk6raZgPMmZTBM0XVl8ZhAbQC1g0pcQTi+3BGCauvIcSTVGorjbL18A6ToUCxrVsoFlasy3Le4+WWE8zYnjjDiR7N9bYM/Slxe24/GYxx9/nIMHD7J3795X/Fy2trZ44IEH+LZv+zY+9rGP3UI436pvuaqUTG47VuXM+TEbmwHGDL3fH0YEQU69Dpev++S5xDIFy4suRw+WMU21QHnm7Jgr16acvThRt0XRD1t1i5XlApWy6kg3Zonn+SztvF4z2dwOkLkkJyeJc1zXoODqeH6KY1uUijqVsoVtCyaTlDjNkbmiNwnTAcNAhiGxZrHWiUlL89jOOjJySAzln/Bjj6IjKBULlI/sI4tiop0B+cSjePQAumORhRGFg6v4V9aQWa5AArqOzFXWilUtQZ5jtuq7eS72fAu9VGD4uWeYnrlE+cQhyrcdQWiaCjuNYoSuOim1e+9gKCXhja3ZvC2Mnz4HmsBsVJicu0w69Uj9kPCpM5DlZBOfaH1LUeEGY5z5FsK1sZfm0W2beDAkCyOsVoPg6jrNN70OvVQguLFJuL6F1W6guw6DTz9G2O2rx63niLKLWchBA92MSeOIm9hPYZkqL0jmJKMp6WiCUSljNuqkno8+E2x5msNwQp4kavQpikHXsJcXcJfaaiHv+cSjCfZ4SvHwKsIwyaKIYNZpy10HzTHJghSZpSAlum2TjMaYCISlRsqkzBj+5ZNY803CzS7hZgejUiTzApLJFM2ykFkOCPJEdVWkgHwSoC1Z6MUZoEMT5FGE0Kvo7vPn/XQyJbi2QfHAHtU9imKS3kCJNcPAKLqqW2eaLDz8HVjtBgD2fAut4JJNfeKBGh80a2Xi7R1AYFaKmNUKqR+QR/Fubo9mKhCGZupqXlzm5FECuo5Vr6DZSuRj6Mg8J9zaQQgI1jYhk+RxrNDnRRerXiUMY+KJh26ZiIJNPvaItnsk4yl5EKIXCyTjKXFnh2w4xt2/Muvu6MQ7Q5LRhHQwxlxdxl6cI08Skv4IaUH55GEK+1fo/f8+g7UwB2mKPd8mGYxI/YCws6O6haaByHKC65t0AhdZqDFc2+HadB1tfpFa1ULXBXGccW3N49K1KVNvNiYolfe4P8jI85xKyaQ/iAGJoeuMvZQ0lcRJjiaUHeDGekAc54wmCfWqSblkqryeLKdesykUdKbTFD/MGE1SlhYLHFwtMpom1CoWhv7qrB+/1rolem4VoATQ6uoqP/ETP8GP//iPs7GxwaOPPsqjjz7Kz/7sz3LnnXdy6tQpHn74YQ4cOPCqCSDbttmzZw979uwhjmO63S7b29tcvHiRYrG4K4BKpZemekkpOXv2LN1ul9e+9rVf8novfWNFYptrWsjDghvrAYaujHdKTAhMXZvhqzXaTYtmzaRQ0HEcA12kWI6BH2TkueTqeoimC4IwRwBTPyMMc66u+awsOuxZdshyuL4eYVoGy4s2N9YjcvHSdDahqZ8ohoW2SbXk0RtoWLZFGEvSRFFz/EB5h7L4lXmFgN0dX8OAckHHCxWeWyZiNw9I1ZfuAukaOM7NkNQcw4CVRQUn8AKJrgkcx2Bx3uTY4dKXPXbG4zGPPfYYBw4c+KoET7fb5aGHHuLuu+/m137t124Jnlv1LVtzLZtyqcFOX2Fkh6OEnX5Eu2kxP2dj2+rrOQgzrlzzEELQqFl8+nM9zl8eMxwlgNpdrVYt0iRn7KWcvzSh3XR44DsX0ITKA1rbDPCDlDDMdjN7kkxiWhq+n+FLiWlolIs6OVAu6sSxxLY0/CADAZ6X0lwpIxstBhdvsJZV2Bkm2EYFkVeoJRPMOEaTBlKzSEKJWS9SK5eAKbprkwQh4Y1NKncfJx17FI/sw2rV8a+sEVxfhzRB2LZaXDYbio7l2MSdHZyFNvXX3ak6Kqjxs9FjzyIMA80w8C5dJ52qUSh37yKF/Xtovul1RJtd4p0+WRjhX9sAmRNt99Acm8wPyIOQuNNHs0yEpiMsC4II3TKRUpL5IXmcYBQL2O0m0VaXZDQmHoyIByNkmlHYu0TljmPkcUIe/QnJsYP4V9fRXRcIyQZjNNfBmmsQd/oQBKDrOEsLGLOxLhknylwlJclwQmF1j4IboAhxyWSKsG1kkpLs9BCurTDd7RYyzdELLnqxoMaihKB4SHmUMj9ABiHB+iZGycVZWSYPAqLtHtF2hzwPVRfINMmnPpltghBE2ztEO33cvUuUigXV9bm6RhalyCwhGYwQtoUmBGkQzbJm2opcphwzZEGkMNKLbaxWfffYz/xQPR9DJw9j4v6A3I9IRmP0QoE8S8nGHnPf8yba3/U3dgl8Rq1CYd8ynT/+U6ZnLmLUqqSeR+r5aJaFUS4qEZkkZFGMZmhkqUDTTdUNyjN0ywYhiEdjZJooX9J6h6BSYfCXT+DuXyHe6ROsbaJZNmQJWQJmrayCXAdj8ixFBBlOq4FeLTK+tkG808dwXew9CyTjCcnTQ6KdPpprUz5xCKNUIAsiwhsbGKUCVqNGMpqQhWo00JprEm12SPpjigf3YM23FMY6E+RJgrM0x/TSdbLRFLNVw927RPHQqvIxXfEZre/gVdpE8YCFA0uImcgolyxKRZPJJCFLAw7uK1E2TeJY0u2F5Jmg3bQ4dKDMVifk8jVPkWclZJmkUjMpFnR2+orItrbh0+sbpKmkVDRYmHPp9GLiOKfoGiRZTpIq9P7inEMSS5YX3F3kdZrmTL0MiaTgGl9x6uPVrlui51Z9UQkhWF5e5kd/9Ef5kR/5ETqdDr//+7/PI488woc+9CGOHz/OqVOnOHXqFEeOHHnVBJBlWSwvL7O8vEySJOzs7LC9vc2VK1dwXXfXA1QulxFCkOc5p0+fZjKZcO+99+K67le+kxdUuWxQLhkMRwntpkUQZmx3I7a6McWCTrNuUquaeH5KksrZrolSFXGSY5iCA3tdLl7x2O7EjKYphiHQgKmf40cZdxyrYFmCze2Q6+sBxYLB5nakWsyWhmEKpATDlIThi7s+pjZDPVd1trpT9u/ROX5sjkrRwDA1njw9ZjLN6A9jBoNk93ZCAF8J+HbzusxG6CyB6wpydDw/e4nbvlgAqbvQ0TQwTIXazXNJMgtQNS0N19ZZ3VNA1wS2JWjWLTVK8yVqMpnw+OOPs3//flZXV1/Go39x9Xo9HnroIY4ePcpv/MZvfMNogbfqVn215To6K4suW3rIk88O2eqEeL5BfxjTqNsszNm4jk6lYvLEMwNMXePGVoiuaQgE5ZJOEGZMJgmWqREEGa2mOm+ZhuDM+QnX1nxsW8N1dTRNUPBSCq7OcJwQBKqLk2Zg2xAlkmrFIAjVOSBJJU8+M0TXYX0rYDiOsa1FwnCbeGsd2y6y08mxI4OCYUNzDiMOCQs19EGPQWJS9DPcPEczLZyVRbwLV0hGU0WlsixKr7+T4qFVvAtXsRfaFA/uVUKlPwRdwzt3FWdlkcodx3AWWruvnVktk049tv/bn2BWKxjlIkapQLjZYfjZp9CLLs0330f9216Du3eJuD9k6w/+N1KCu6S8JcE0wFlokU09tUh2FSFL6NqLcgWizc4sJFNgVEoE61sgpeomRPEMQ9zE3bOk/m2amLUy1nxb+ZVGU2SSkCcpeRxDnqNXSpRuOwxpqvw/oylpFKHFCTJNEbaJ7tpqfErXMMtFZJqjVcukvQE54nlfT0nl2GiWiUgEydQj6Q2x5prIPMe7uk7U2cEoFBC6ge44Kmw1CFXXqJQjTJ08jsn9kKg3IE8zpB9ADkazitB1RC4RmkQIQ71GqPwbw3URhkE69kinAVkYKaHph1TvPkHlzuMvQofLLCOYEdD0SpHSkQNE2zvEnZ4ST0tzOLcdZfnvvx2z/PxGZrwzIO4OMKsVkII8jMmngdpxy3M02ySPE/SCQxqGEIOGhlZ0dz09aRAAAhlHpGmGUShiLbQpHdkHWcb4888wPXuJaGuH8m2H8S7fIL2xjWYb5FmufGdhTOnEIay5FuH6FsIy0S0XYVgI3SAdTUiGY9KxR/uBN1G+/RgAyWhMFoRYcy2MRpXg2sbuMSaTFJlmTM5eRBg6peMHKe5fwbtwjemFK/hX1wmvb6CXCpSPH8JZmkM6LtvdkGkg2Z4I+pMAuzZCrk2pzRVxHQPH0Sg4GmmsRtnGkxTT0nAcjWrZpOAatJs2+/YUWZhzGI0SpkGGqQuKBR3LFNzYCJUXr6Qzmqhzw2YnYr4N9boah+31Y8JYbQA7ls5WN+Taus9r7qizMGeT55IbGz5rGwGTqUJcF1yd5UWX1ZXCNwxwcGtVcKu+bAkhmJ+f573vfS/vec976Pf7/MEf/AGPPPIIH/7whzl48CAPP/ww73jHOzh+/Pir5p0wTZPFxUUWFxdJ05Rer8f29jaf//znsSyLdrvNcDgkz3PuvfdeLMv6yn/0C8oyNQ7uK3DmwpSdXkypoBOWdFaWHGxbQ9cFc001ora2ETAYJ7QaJnkOO/2E5QWb1RUXP8hY2wxpNU38QKUdm6ZCvzbqBksLDuWSzuefGOM4glJRx7F11jaVX6hcNgijjDzLlEEzUWFihZKOADwvQNN1ekOHgpvi2AYgKZcU8jkMUzxbIIUCJOjq3I6ceYXyF4y93RQ5CoSgLigUBAXXRGiQS3UC1rQX3+6FZei6IrxkcFMAketYhsAwNZoNmwN7C0RRzniScOeJyldMWp5MJjz22GOsrq6yb9++V/xeDodDHn74YVZXV/md3/mdrysd8FbdqlezNrZCnnhmwHY3olG3KBYMwihnbSMgCDIOrBbIMsnaRsjyootra/heRrGgUyiY+IFC5S8t2GS5UIsVV+PytSnDcUqrab9os6FcMigV1TlnZSlhczPAtDXiOKfgmtSqimy1vRNSKVksLrhYpgZS8OnP7zCeZOybP0oUrsH2FjKIsecbhL5G0GzT8rYwKg2SyYQkjJlOYixD4lZLGCWXpD9UPomJRzqZEm11yfyI2mtPUr/vbozy8yCBYG0TmWYUD+xFd78YeJPHKd65KzTufy2J59H55KcI17Ygz5FJwuAzT9F6y33M/X/ejH/5OsloQh7HJPUKRrFAMhojTAUCCDt9siCCXJIOxkqIpBma3cdLEjTXobC6TJ4k+JduKKFVdNHbdfI4wb9wldFjz5GOJ8T9oYo7KBUQQmA1asg0VaGenk8YROhFV41Hzca+VNZMhObYCE1Ddyyc+Tm8sUeeSfIgIo8iNamnCTQUfjkejjCSBLNRo3j0ANF2l3B9m8FjzyAsC//yDZL+ADQNmWTkcYTQFFo4GU0QtoXdqu8uuoWtzp15oPwxme9h1MsqgLVcRKYZeZphVsroBQdhGORBQJ6kyDAmi0KCq2voBZf2d91P62/eq/w1L6hkOCad+uiuhd1qQAuc5XnyICTq9NEsg+b99+IstHdvI7OM8ZPPkk6mtL/nb5InCfF2T4kZ2yLtD4m2e+i2Re465H6IyHOsVh2jVoJMknkBxCF56IMUmNUS82//dmr33D7rUIFRr9D/zJPkaUoWhBQO7CEZKhBDNpmS+QH2QovyySPoBZfM92e+owb+1Q2y6RSjWMCsVRFCQ4ZK5KJrs0wjgdA0zFKJyDBIpx7JeErU6ZFOpsgwJu2PqNx9gtLRg9TuuV19Fq5vsP0//oykO8BZXcKP4NrFCdNpimFqYBpMhwmRDFi/4lEf57TqNqal0azbOI5OGOZUKwaFgkGeScpF9VlPEgUjKJcMymWT5SUVHp6mOZ1eTJbm1Gsmuq6h+5nyB+rg+xneNKNatWg3LYbjeIbalxi64MDeIq26xeVrU66tBWx3VSe7XlcdwqmXcub8GD/IOHG08g0Zgbslem7Vyy4hBM1mk3/4D/8h7373uxmNRnziE5/gkUce4Zd+6ZdYWVnh4Ycf5tSpU9x5552vmgAyDIP5+Xnm5+fJsoxOp8O5c+dI0xTLsrh8+TJzc3PU6/VX3HWab6ud1G4vIopzjh0ust2JWd+KmHoJO4ME0xBIBOWSQaupzJAH9rrs21tA0wSmobJm5ts2uZScv+gx8VI0TZAkCvd6fT1i7KU4I40wUu3dUkGngzIb66mG4+SkmZq3LbkajqUxmYYkQqdQMIhjiWkoMbO9E7HTi1UYqhDYto6QGXEqd/HWUqofTTG4cW2wbI0wyElRf0cDNCEoFgWTqcoUMGaIbF1TnacXjswZOljmbHRBSGzbRJATZ6DLFENKKoWMSsmmUq7Q7ydMpinVypcWIdPplMcee4y9e/eyf//+V/T+gRqJO3XqFHNzc/zu7/7uVyWAb9Wt+mZUFOdcujpF0zVKJQPL0lQ3xtVxbI3+IKZaUSIoz+XuKEh+k1QAuK7OeJyQS3W7JM3Jga1ORKViflF3VQhBo26x3Y143V11bsw5SKBeMRUgIcl4+tkRtmVw6EAJ19GJ44wgzMilIE1zupGFV93LVLZxjBzRLpCvncfZuEaa5Ig4RpbKMNwk3O7DkbldtK+7uozZrBFv72A06hj1GuWT8xQO7MEoFtRo0Y3N/z97fx5s+V3X+eOPz/75nPM5+7nn3L1v793pzkYCIaBIcBAYIEvxY0QdNDWoUMBYiDojuHxFC5kpUKlhBlDLkRnLKh0hjjowVCJEEAgh+9bpve++nH397Mvvj/fpG2IIJCEZBPtZ1dXV537uPac/95zP5/18v54LfqNDNBgSDUakUQg8mfSkSYq/3SL2PPqPnmH0yEm8zSaqbSFnLNRyCVJo/8Pd9O59BK1aEmb3wZD+PY9gLEwLX4uUinS1MBQmfMsgjYVELOwOiL0AORPhr28jSeBtNZFUheKLL0fNZUnTFL/Vxdtu4W1sE7u+8L70ejjLa2T2zIvOIlWF2MVamMHbbBKPXZy1TWRFRc5apH5AGoZIuo5smciGTvbgHtIoYnTqHP5GTxS4moYw/dtZ1LzoOZJNHb1UwNozS++BBL/VJZicv3DkCi9LOpGbaRpJEpAkMWF/iJa30ffMEY3GEIten9QPiT0fSZNRC3lkSSI1DBiMJ5UOiBuLBFo5TzxUSJFINZ/M0jwzN/0rMkvzmLN1/ikuRpRnDywKOVe3j1rIIasqUjaDlvcIOn30avFJ06Gg1cXfbmFMVUhlCfvoAVxdR86ayJtNZFUjHo+RFSGZ00tFUilBlhRylx0EJMJ2T4RlTMrkytddSfVHrvsnnw8Zoz6FhIgoj3sDjGpFpMqlIM3UMKbKyJom3idJilrIQZqi5bPImTL540eQdJXe1x6g9/UHhQRy3zyyKvLhRQR3Su7yQ/itLu7yuvBThSGancG+/DBqNkP3a/dT+ZGXYM7UkDWV7MIco1Rm+0KHLUen1w8wDIX+MCD2PKxAxZ2dQ9Y0ev2QIEipVgxm6wa9oUIUJVTKBpomY2fV3c6cc8sOqipTLugc2JtlZtrk1NkRK+sOjhORJuJ6EkUxKZIINZkMQ4dOhKKKYJXxOCZnK9i2RjYrVCMPPtbDdWPOrYzRFKEIsUxxTCGvYZkKa5sO9Snj25YxP1+4RHou4TnhYgz2W9/6Vt761rcyHA757Gc/y2c+8xle+9rXUq1WufHGG7nlllu49tprnzcCFIYhFy5coFgscuzYMQaDATs7Ozz8sOhkuCiBK5fLz/g58zmVfO6Jj0KxoBPFYqWvKjEjJ+Lg3gxXX5FndlIEaBpPyL0ylkIUpySpKC8tFjR6w5A4STENifUtn52mh6pKVCoaqganz7socoKiwHAYkZKiyApIMUooElqT2MPQFUxLJ01gYc7ENBRUVUjXdprCeGgYMpYuEUUySRALopJ8k1Ru0psTx6KZWVYkVClFikHTJIIgYacRkbXkyaIrJU4T4uiJoAT5Yi+QJMIKVE3C81J0DUxDBwmKRZ25usKe2Yhmc5u11WVi8tSrVawDM9+SjIxGI+69914WFhbYt2/fs307MBqNeNOb3kQul+Ov//qvv6v0v0u4hP/X6PYChqOYqapOpxfgOLGImE6FiThJUja2XbFpYcnkbJVOP0DXJMbjBCxRmyw2WISX0M6qkKZIkpDPfTPiWKRVtto+2zseYZRQr5o4bkR3EJKm4jUFQcqxI3mqZZ00SVndELu02YyCncmIabWpcPd9EU6SEqLhLBzGD6HQGKNtrWNkssgkpIMBUUdn+LhP7HoY5ZKIfc7beOtbeKsb4u+NHSRVEd0qfigikr0Ad22LqD+keN1VE4mZQBJFOGubhCMHZTAkHo0x5mqopkh6i/ojISMr5PC3m6iFHOZMjczeRZwLa3jLmyRxRBqnwleRMVBzWZIwQi8Jr4iaz5KGAekkgnp0ZgXihPIPXYs+mV4EjTbjk+eQDIPsoSWC7RZoGtFwhLcqum3MmSli1xPTkCRFzWeQZJlgsylM9HECivi9RYMRatZi+Ph50R1zdD+SqRO5HkmcoBVzSIpM1Hcgn8FanEUr5kgT0bPjr22TXVrAPrxE/+FTSK0OycghCULwfMJ+H9mySByHNIlJwkgk6Fkmeq1K4geEgzFapYCUgFGfIh4MkC2LOAhIZRlJSYm6PZKxThqINMDMwaWJn2qW8suuedr3fOz5xCMXa88cermAc359EkQASBJqLksmn0f/J3nu4WCIu7GDt9UU59L3SZMYLWeTlHwS+siGhjkzhZbNkNm3wPjcGv0HT+Bvtcge3oteKYoAAFkmdj0KV172lNcnyRLmzBTBdoPsZQeQJImwN0TJmnibDeSRg6SpSKoiJpZjFzlriWPyNvKkJyhs94gn0sXx6QuT2GuVYLuJ32yTPbiXzN553I0dSBLi0RjiGPOyg9gH9ggZ5YV1nAtrFEoFlJyNVi7QX+vR7XVIHAfbyqBoMu7AoTpqE5l1vGqNUlHD9WIWZi1UVUZRhfT1wD6bA3uf7KtN05Ra1eCqYwUW5iwefLTHyrrDcBTSbvv4foquyygyhKFEkqb0+gFJKhEnCf2+j+uKag/DkElTie0dl3xeZ64WsrQnS7PtY2dVykWdfj/kwqrDwX2i3DaKUgI/YavhXSI9l/D9g1wux1ve8hbe8pa3MB6P+fznP89tt93GzTffTD6f541vfCM333wzL33pS5+zuXw8HnP//fdTLpd3pXSVSoVKpcLRo0fpdrs0Gg1OnDhBHMdMTU1Rq9WoVCrP6jnztspVx/M0Wr7ImDcUqmWd3NP0ZlQrGuWizk5D7MoahkwUiotJirgAqKpExhKykmJeA0lmc9slY8VEsYxlAqmM54NppIzHPmmiUiqI3U1ZESbmdjdks+nR7YaiqyERUbRZU2MwdAExjYmBNBZBNbIkggYkScb1ErTJtCaeyGCCMCYIYxRVJggl4jRFVScbeRJoqpDERYkgTooiMTdtMT9j4vkxnV6IoctUywaXH81NztM8rfaYbq9Pr7vDl798hkKhsEtKLctiPB5z3333sbCwwP79+5/1+8FxHN785jejqip/8zd/86w9XZfw/Y0PfvCDfPazn+XBBx9E13V6vd5TjvlWk99PfOITvOMd79j99yOPPMK73/1uvvGNb1Aul3n729/Ob/zGbzxvXsVvhyBMgBRVFf06Zwcjtndc+gPRjZMkQiYiyRLTUya1qk5/FDIeC/+g68VYpkKSpERRiqKkyDKUS8akl+eJMW0cp6ysj9lp+CKWVpFQZIn+IERVJUoFDU1VUFUJ05R3FyCjcUinG1AsqIwcIaULo5SprMpUxWR9w6HTDygXDdzpI8hTU9Q2HqM83CQMbNRMFimJ8TYbJH5A1BuSPbAk5Fau8AqEvQF+s4O3som5Z5bSS67YjZlOgoDu1x9k8OgpStddjaKLx9MoIthpiVSwOCGJYvTJpoekKCgZE3d1C9My0Ep5wl4fPW+jlEvkjh0UfSwbOxNfjkfih6RhhKwqJKTEboikyCilImrBxpip4W83MWoVcpcfEq8hTXE3dkR63qTfB1XFPrQPJWPR/tI38FY3CHvCoK9mRY9M5YevFb8T1yMeTtLLWl0kRRaErTfAvbCGe351QtamyCzMouRt0dWiSIxOnifqDvG2GkRjBwnRQaOVCyg5C+fMCu7yupB0kSBpOlqtQuK6KKZBrCokcYokS0S9AeZMDUmW0Is59KuOMr6wPpnqiJQ2koQ0CElGDoqd2Z00JX5INBjh7TSRkBidvkD33kfIX3YAJfPUa7KkCsJAHGPO1tGrJREOEEbImopayO1O0y4iCUMGj5zGObOMPldHzVjIqiKKQD2HxA8J2z3UTAbNzmDWp0g8H2uuRuaA8IgZpQJKxkSvVTCmp/DWt0Vq3reAUSkhKSqEEda+Baz5abIH99B/+CSt278KmkrsuEIOKUm4K5vC79Tpk9m3QDTpOpJkmeI1xwl7I9IwEnJATejLJVmmecc/0n/wFJKmIEsSarlA2O4yeOgkucsPo5byOCsbQkpn6Mhzc/TvWsXYv5fxuS1Ud0w0iJC8BNXOIu85gFG0URUZw0hJSRmNIzq9gEJOxTKVp1zX2t2AfE7djc7fv9dmfcOl1Q7wg5QkTZBliTgWqZN2VmF9xydjQpJKNDsh5aJEuaihaTJxAuWSLvoEJRGDHwRiQ1iWJYpFjY0tF9cX8v4oBs+PcbyYPfMZSoUXVqlxifRMsLy8zO/8zu/wxS9+ke3tbWZnZ/m3//bf8mu/9mtP2qFeXV3lXe96F1/84hexLIuf/Mmf5CMf+ciTjvle3kT/OSCbzfKmN72JN73pTbiuyx133MFtt93Gj//4j2MYBm984xu55ZZbePnLX/6MzeaDwYAHHniAmZkZDh48+JRzKUkS5XKZcrnM4cOH6ff7uzHYQRBQrVap1+tUKpVn9JyWqbBn/plFZpuGwrHDNsurLu2eKCW7+oo8kgTdXkgYphzcm2HsJAyGwkScMWVUWeLyowUKOY1OPyTwY1wvxBl3mZ82UTRb+HMSsZtraDA3bbCy7tDuBiRpKi5CtkYupzByY5KuaHomTSAV8gPPF7GTmYxMGIkd4CiCOLm4KJIxDDANFUVJ6A/ENMiNUmQFEQebQsaSkWVEmIOUsm9PhiSFclGjUtJZWXdwvRhJEhOlKFZ50ZWL7NuTwfM8ms0mzWaTM2fOYFkWvu9Tr9efk6TNdV1+/Md/nDAM+fznP//sUvteIHz84x/nwx/+MFtbWxw7doyPfvSj/PAP//D3+mX9wCIIAt785jdz/fXX8yd/8idPe9yf/umf8trXvnb3398caT8YDHj1q1/NDTfcwD333MPp06e59dZbyWaz/NIv/dIL+vpBpEJ6fszWhOhsbjmsb3gkaYphKOJvXWambuG6EaNxzMJshihKWd9w6A9Cuj2fMEwwDAU7qzBTNzl+pECr7XP63Ih8TkWSJDq9gJ2mT6GgEYYJ+bwgUmMv5sSpIUmSsG9Plt4gpNnysbMatarB2BG7uJYlUpy2Gz6ZjIJlqczPZhg7IY4rOs10TaKwbw/23jzBP34RKZEpHa4gqxJRlJK0uxiVHMHODqahk9knEhqDTg9vfQtJFyZwf6eNNSmyzOyZIx47DB45jZrNYC3MkHg+sedj1CtIQDAW5vRvRhrFpGGIbIqFpqxoqMU8YbONNlXGqFVIQqEFdicLYK/REilqkrjmpoqGLEkopolRLaNXy6j5LNJE85t4voiYtrOT5xTlo1rRJrPnRUiqTPer9wk5Wj5H6vso2QyVV15P0GiLQIRqjL/TIhyMkHSd7H6R2hW5PhLgbzdJk3S3hNQ+ICRvajbD+NwKwVYTf3MHtZDHvmw/0dAl2NwhGru7HiIkCVmNkTUNNW+jmBaS55E4LkrGIrt/D+bMlJDV6RpxEGAMRhhz08iqQjTcJlwb4be6pLKMbGjotQqyIuONWkimQeL46OUSZq3K8KGTRL0B5Zdf86SoagDF0DEXZhg+elrI2nQdo/5EQEXQ7gnJ3TelvbnLG4KkZCyCVofEzqJmLMylWeSdNrHjYB85gF4pYkxXkWQJrVDAnKuhV0uMz65SuPIo5sI0imWi5m06X74HZ2UD1c6QhBHO+TXczR1RxCeBtXcBFBXnwjqKnSGNYvRigfIrrp14c8R7QJJmGJ48R0KKnKbCN3Zuhag/QCsWMBdmUAsjzIUZrLk6kiwzPr+Ot77F6NQyiq6g16ZQC/ZEmufjrGwgmQa5w3tJgnASDw7R9Dzjyjx0WzStOqgBeugQqiHx/n1IswfIJCr5nML55YCN0BPBHYaMJKs8dnLAxqbL7KxFxlLwvYRsRuHowRyZjFgX5W2N6WmTUlHH8SK63RTXjSnkNXRNwg9SSgWVfFZGURXKJR07o4gCd1NhdtrC0GVanYDBIMRxRfdPMjlfnpfQ6Qb0BxIH9+VQVYlmK2E4injosT5XHiu8oMTnEumZ4OTJkyRJwh/+4R9y4MABHn30UX7u536O8XjMRz7yEQDiOOb1r389U1NTfOUrX6HdbvMzP/MzpGnKxz72MeB7fxP95wbLsrjxxhu58cYbCYKAO++8k09/+tP8zM/8DACvf/3rueWWW3jFK17xtF6MbrfLgw8+yNLS0jNaIF+U3hWLRQ4ePMhwOKTRaHDu3DkeffRRKpUK9XqdarX6vBnec7bK8aM2ni8uTqYhI0kS3b5IVcpYYtdqpyXiaZudgFxO5aXXFMlmVJIkYWVtyPLyNlMHyhSKVWRZQlUkdBUePjlCVmWKOY1OT2j/k1h4kmoVg7E76VxQxC6thNhxCYJkQlTEBIk0ZVKvMPm6SI4zNIWspeB6oqTVMmW2doR8DgSPKtgKuZzK1naApslkMyp7FzPUpvTdEtaNLZfhOMa2RYDDTE1MqkzT3I0m7/f73HfffRiGwc7ODt1ud3cqVywWv+PmgO/7/NRP/RTD4ZDbb7+dfD7/bY//f4G//Mu/5D3veQ8f//jHefnLX84f/uEf8rrXvY4TJ048p+jtS/jO+MAHPgDApz71qW97XLFYZHp6+lt+7c///M/xPI9PfepTGIbB8ePHOX36NL//+7/Pe9/73hd0oypNU8ZOxNaOx3AcMh7HbDd8UMA2VVJSBgNRCGhZEkkMj50ecPXlRQ7stamWDS4sj9lqeBTzKkcP5zm4N8tM3SKbUYmjBC+IueveNtmMTL8fI0kpYajgODGLcxm8IOHCyhhdk4hiCTurUinqdHsBJ88MURSJ9OI1QJLI2xrbDY80TvH9iHJR+BzbnYCsJVOpmBimQu/sgIyeY/ZVx3A0cAMJeX0VkjHDXoq21aU2KZwE0IoFhifOYs3VScOI3jcexp2pIikKWqmAOTtN4oeoE/O8UatgzNSQkBmdXybZahINRrggClAVFUjEIl5TiR0P8+A0ucsOMDp5nmC7CbJM2O5izNTIXXGYNI7oP/A4qAFqqYBWyKHksxNSkyF3xSHioYNaKRE026h5G1JRDHvRXxV2B2ilAlohj3N+jbg/IrNvkeKLr8SYKtO75yH8Rhv3/Cr28UMY9QrO8ibuxrYIRbAsClcdQcvb+O0u8XBMHMREvT6KbqDlbaKRg7e6QTRy0bI28h4Df3NHJJ7N1GifupvE84Us7+LmV5qSBiFhr4+SNUX8sqchGRqyrGAfPUBm76yQZAUhkiJRu/FfUXrJFbjr2wwfPEHnrgeI/QB9qoSsiF4kd6tBEsfo5RKKriFPpmpBv8/g/5zC32yQ2b8oClY9DzVnk9kzh7U4i7e2hbe2hTE9RRJG+DtNnOV14pFL8fqrRSpdxiJNEnr3Poq3LvqT/O2W6NwxdbRiXkyKOn2yh/Yy9eqXo5giklrWnyj0FUQ096RghOzhvXjbTYaPn2Pw8CnctU3SWMj90iDEPrKPwpWH0aplgu0GSQqlYwcwpqdofeFrNL/4dbRCTpxLQyfqD9FmayJ86OR5jKkKSsbAXd0m7HTRSiIBTyvkSMMQv9mm8KLjhO0uaim/O9mMPZ/U83BXNoiHYxRDo2WZmLM1Nsc2560FdLXKOGrTa41QLB2vkqG+IMpx5SDBcWIylsLeRYtONyRFQpImUvaWRxAmzNRNrrisyOyMSd5+8jrI0MWa5cqjBQajmLVNhzgBU5fJZFTCKMF1YzIZmR96SYVSUUyWdU1CN1RW1hz6wwjPjSdFpiJN0nUj2t2AMEopFjQgpdn2abYDZuoG5y6MUGSJH7qu8oJde6X0Il29hKfgwx/+MJ/4xCc4f/48AP/3//5f3vCGN7C2tsbs7CwAf/EXf8Gtt95Ko9Egn8/ziU98gve9733s7OxgGGLB95/+03/iYx/7GOvr6/9ipj3fCVEU8eUvf5m/+qu/4m/+5m/wPI/Xv/713Hzzzdxwww273ox7772XwWDAoUOHmJ+f/66fdzQa0Wg02NnZYTweUy6XqdfrTE1NvWAG+FPnxpxfcYQOXpdpdgJOnRtzYI/F4mSaNB6POfH4GbL2FDf88F7SVEx4crbKTtPj4RND/CBhMIpYWfNodYQspFrRma6ZuF7MqbNj/CAGJExDwvdTxo4oBU0RwQSyAlIKYfxEwEHGkCkURZlhpxeiaTJ75i16/YjRMMQLElIgaylIskTGVLjmyjwvubrEvj1PnoalqQhukGXpWya2OY7Dvffey/T0NAcPHiRJEjqdDo1Gg2aziSRJTE1NMTU1RaVSeYovKwgC3vrWt7K+vs4XvvAFyuXyC/I7e7a47rrreNGLXsQnPvGJ3ccuRrt/6EMf+h6+sh98fOpTn+I973nP08rb5ubm8DyPvXv38ra3vY2f//mf331f/fRP/zT9fp+/+Zu/2f2eBx54gBe96EWcP3/+aTdZfN/H9/3dfw8Gg11C/0xJeKPl88AjXYajiLPLQ7Z2fPzJpkm364tFxmQqnKQS9aqOnVU5eiiPqsqQiinzzLTBwX05kbA2QbcX8MjJPls7Hp1eyHAYsrbhoKgSC7MZDu3LMV0zOLcyptsLKZd02l2ffYtZalMm2zsuj50akrEU9i1lOL/iYGgS7W44KRpOCKIUU5Vx/Qg7q1KvWSIZMoHixinqUZugMEUYpxRsleDhhyGOif0Q57FTZBZn2XPdod3rROdr9096SUTxZmbfIuFgRNjqIBsGWsGm9vobqL32FaIcM01p3XkXzS98jdHj5xg+cpI0lYSECNHpIisKqAqSIlP/16+kcOVRkiAgaPcJ2z2Cbo/qa16Bv7pB8wt3odgZ/I0d1LyNpKqkcULQ6aFmTewj+7GP7Kd43VX0v/EQfrODXi4yfPysiJWWRAlsZu88IDE+fR5JVZANg9JLrkS1M3TvflDIohyf7JF92PsXCTp9Wn//VcJuX0zUl+YwvmlxTpLQe+AESRhhzddwV7eQZAW1lCcNI+Kxg6RrpH5AOBjhrm8Rj8R0J3Q8kpEjojYlGUjRSgWyexdIwghzvo6kqpRefAVqxsJvdQlbHRQ7S/bQEvnjh8js34OWt2l96W62//cdQoq43SJ2XMLBEL1WRc/bQuolg314nyABg7GIybazmPPT5I7sIw0jopGDuTiDNT+Dt7HD+Mwyo7MrxGMXvZjDmJ9GL+ZRshmK116Omrc593t/QhqGGLN1glYHf6dF4rpEwzFKziaNY3JHDzD1qusBEXIRDUdiQpKmxGOH6qt/6EmkB2B8YY1z//kPGTx2FmO6gqLpyJaBPlUmGjkAlF9+7WSCJ95bmaV5nJUNvI0dZNOAOCZyXManLiAZOpIi03/gBLKuiTCFSJSgWnN11FwO+8heQeI2t8nsW8Rd3yb1fLRqeXd96G3sEA2GqMU8lR+6BnNumnbL5aGmRUMtUzkwjaIIiXynG9DqBOSyCratEkcpUZyyMJdBkuD88pjZaZNq2UBVJfqDiJlpA11VOHoox/6lp6okVtbGfOb/bAi/sCkCCYajEC9ISZKE/iAiY8rsXbQ5flmejPXE/CSKEs6eH/HIyT5RJF7HwqxFECVsbHps7rgkSUq1ZOAHMYNRRLmkU68aOI7oSPzXr57m8IHcM7qOgrj+FgqFZ3T9vTTp+Tbo9/tPWlTdddddHD9+fJfwALzmNa/B933uu+8+brjhBu666y5+5Ed+ZJfwXDzmfe97H8vLy89JyvODCFVVedWrXsWrXvUq/ut//a989atf5dOf/jS/+Iu/SL/f53Wvex2GYfCXf/mX3HHHHc8L4QGwbRvbttm3bx+O49BoNFhfX+fxxx+nVCrtek6++ff33WL/HgtVgc0dn+E4wjIVFmZMqlVBsobDIWfPnmNubgZFK2KaivD9TDAYqmQyCotzJp2eKAgrFRTWt3zSRKLbC/HDlFxOxYpkmi0RNen5CUEgElakFIIQ5Ah0HSxTpLZ5E6mahESrExEECXGckrUUDixZfOOBASLrDVRVxjAkDu7NkJKytulSrejkv8nrJEkSqvqtif1FwlOv13clioqi7JKcJEno9Xo0m01OnjxJGIZUq1VUVWV6eppcLsfb3vY2lpeXufPOO//ZEJ4gCLjvvvv41V/91Sc9/mM/9mN87Wtf+x69qksA+J3f+R1+9Ed/FMuy+MIXvsAv/dIv0Wq1+PVf/3UAtre3nxKRXq/Xd7/2dNfrD33oQ7uTpueCNE1Z33RIEti7mGF5zcFzIyFzDVI8P0Y3ZGq2QcZSGQxDur2Q/jDi+NECe+YzFPIapcJTvYZBmHDizIDxOObAXps0hd4gxDCEmdkyFQp5lSBKGQ5D7Kwq/IcJuwRkumYiSRJnLgwZDiPiOGG1GaCrEqVJrLbjxnS7AbKi8aOvqHFgr00YpqKr7NyQ1a90GXgxlcrEl6iqJEGAosjoKnhBiuvFZCeyGklV8LYa6LWqkDF1+iRBgFYpEvZHuBs7DE+cQ9I0MnvnkVWV2PUIG13ylx1ELxUYPnqaJIpQcjZhqyMimGUJc88cfqvL4NEzglTUKiSeT+nIPkrXHKeXJMJrkaaC+LQ6u2I5tZBDUhSCVhe9XiUejDAXZ1EsUxwny3hbDZG+FUeTiOi+SEYr5shfdRnSxFOqT1UYnzyPkrXwt5pkl+YnfTcpcRiimMZT5GBJFKNYBrKuolcruCtbSKpC3B8h6SrGdBXNFilyzdv/kbDdBwkU00TRVCErCqPdXa5oMCZ2XczZabL7FrEWZ6m+8qX0H3gMqdvHPiYmUGkU0b//MbyNHcovvwZrtk7u6AGUgo23usXo1Hn8jR20ShHFNEESvhy9VkXRNaLeQKT1HZ8jHowJOgNIU7zNbXr3PUL2wF7sI3tJ4pjs3nmM2Rp6sYCkiNQ8v9mm8fkvkz2yj3g0mpR1KpjTU5OgCUeQqMEQNZdDK+QmkeQh7srGxCcUEg0d7KP7iP0A5/waaZKg2BmMWoV47JImKaXrr0YxxGQolSTSKCLxffr3PsLwxBnylx1EK+XRpsrCe7a6SfbgEpklsS5JkxQlY+FeWBeTvyQlHo5Jy0WUbGYS2lAk7A3oP3oaf6dFNHQYn7ogotF7ouzWnJ4CWWG4tkXiRxSuvgr94AEM26Afxki9EVPjLQbbFuWFMrN1E0OXSZKUnaaH4ybMTptkZJGudub8iCQWZcSjcYSuK2iKxHCosjhvsLbpMj+beVJBaBynDMYR/UHIVsOjWjGwDBldVzD0hE43QZJEt99gFHL/Q12OHspTzGukwPLqmO2Wj+/FBHFKGMSsrItyZccJaDR9IKXXC7AslQN7s9SnTBRFJmenbG57PH5mSH3KnEyDnl9cIj1Pg3PnzvGxj32M3/u939t9bHt7e/eGeBGlUgld19ne3t495rncRP8lQ1EUXvGKV/CKV7yCj370o9x99928//3v50tf+hK6rvMHf/AH3Hzzzbz2ta99Xr0bmUyGpaUllpaW8DyPRqPB9vY2p06deorp/ruBqsrsX8qyMGsRRgmaKvHoqRGtTkDojzl3/jwL8/NISoFsRsXOPDl0oVLWJr6fiHxOo1TQaCdwcF8Gy1KR0pTBMCLIK8zUDO57eECj5ZOkgtzs3vN4In46a2nk8yqDQcDYTUgTKOZlkBR8P+b0+TGSBEvzFqfOjzE0mem6Tj4nLkJrGz5pIhMnffYtWuyZt77tFNN1Xe677z7q9frTFtrKsrzryzp06NCuLPHjH/84f/Inf0KpVEJRFO644w6q1eq3eJbvDVqtFnEcP+XaUK/Xd68Ll/DM8Fu/9VvfkUzcc889XHvttc/o510kNwBXXXUVAL/927/9pMf/6XvxCa3+07+f3/e+9/He9753998XJz3PFJ6f0O2H5HIqrU5IZxI9a+gxrivS2RRJwnFiZAlGk9jYOE647+Euvp+gyDBTt6hNGVRKBvmcShAknDg95PFTA8olg24/JG+L1KS9i1nWNl2SNKXTC6mUdeJUBJO4XoJhyOSy6sWTQr1mEkUplx3O47oRX/jHBmGcomsKsbA9MDVlUCpojMYhvp8QRgnDUYIs52h1fbSpJ8q+5GqV+MxZyGaQNZVUUfH9hGxGSHqQRAaut7mDpKpouQzGdA1JkUWcccYiHo/Y+Zu/x9ozi16fwjl7gZSU2PMwalWkazTclQ28zSZJGKEV8hSuOY5azBENxwxbXdzVdaw982T3LlC85jiSLKPaWTGh0DW8TbGDH48dZNNErxRJAlEqOjpxltHk/aEVcmT2LZK74ghJGNJ/4ARhdwCyROy4RIMhsqETtDp0vnIvxmxtUlAaEnY8jHKRNBEGdMky8da2MRemCQdD0jRFzWWRFEV4Q8pFETk9dsge3ic6i5IUSVNRTF0Y9efqJJMJpmzoROMxxIkILSDdLV6TdY3M3kVK11+NJEH+yqPEQUDi+RSuOU48dvGbHRHqoGvC95KzyV15BLWQQ7EMSi+5AmN6it49D6NPlUGS8e97CHNxDkXXSPwAb7MJQNQZEPT7jC+sklmYRZ8qI+saiecxPrPC+Owy1VdehzlTw9ts4JxfE7HSgN/sMDxxBtW2iEcOWt4GJGRDR5+EEEQjB7WUp/TyF9H50j30H3iMNE1QMhkUy0At5hmdukD/t/8LRrWMks9hVotkDiwRdnqkUYQ1VyceO7jr20T9IUG7i7vZIB6OkTQdc2Ga1A/xljdQ8jbO6hbedgs5Y4lEOEXBPrCElrPpP3QS4hitVEDRdTL75kWZKqDYGYZff5DY85F1DWQZo14Vpbo7LUbrTZxEJeo6pEv7cXNL9C64VEoJ7ZFGoZolTccQD+l0bVRNIptRmZ+2kGXRi5PNqqxvuYyGMVGUUikbu59rz09oDQJS4OhBm2Y7YDgKMcpiY2IwDPnG/V0efKxHECWEYcrmlkshr+IHKY4bYRoySQJBGDMaJ4yciK2Gx8F9NpahsL7l4XoRYSysxRtbnghUcGIsQ6ZWFRs1g2GMYSgEYUqSpCgKhFFC3hax+ztN7xLpeS54LjfRzc1NXvva1/LmN7+Zn/3Zn33Ssd/qRpim6ZMefy430UsQkCSJz33uczzyyCPcddddKIrCZz7zGT74wQ/yjne8gx/90R/l5ptv5l//639NPp9/3s6paZosLi6yuLiI7/s0m012dnY4c+YMtm1Tr9ep1Wpks9nn/By6Lu92ZuxdyLC93eW+x1ZZXJgjSvKYmsS+PSJi8pthmQqXHbY5v+zQ7YukNNOUmaubVCsa/WHE8MyYg/uyzNYMtps+vX6IqSUkEw+PpoIUi/S1OBE7v4oCsiKjKpC1ZVRFYjROcN0U1wvo9kJm6wbHD2epVg0sQ2Fl3SVKYXHOYv9ShiBIOLfsTHadv/UFynVd7r33Xqampp6W8PxTSJJEPp8nn8/z4Q9/mI2NDb72ta+xuLjIVVddxUtf+lJ+5Vd+hZtuuuk5/z6eb3yrz/2lz/yzw7vf/W7e8pa3fNtjnkt57UW89KUv3Y25r9frTE9PP4WYNhoNgKeQ2G+GYRjf1TT4YodWFCasro/xvRjXF5KxIBC7qI4b43oRuioTp8InqKkSa+vj3dQ1SZIm3jmL2WmDMBI7rY12QBCmbDc8CgWNPfNZKmWDTjek0fFY3RjjOBHbOy5bWy6ZrMLhfTkM84m4bNeLMQyJWtVgu5GyMJ/BMhW6vYA4gUpJp1wSPRsPPtpjuxFQKYkCw9DXaMRFiuc2sI/MIGezyKUSUiZDvLGBPDtD6kE0HBHpJmG7SzwYkbgioCANQhLHJegO0MsFjNk6YaeHt76DVqsgKQrmdJXRyXPIuoaSsdCrZbRSnuzeRZzVDVAVZE2neOURlIyJv9Mm7A0JWh2s+Rkqr7wOxTIJ2l2clQ2csyu7yV75yw6hFHMQx4S9EZ2vfAOtWMBamEZWVbE73+kzOnEWNZcVXiPTICQhjdJJepyIeHbOrOBt7oikskqR2AvwtpsQRrjrW4TdAWGrSxrHhJ0BnqYhSU3UvC2mTKqCUSmSObSP7j9+gzRJMSoFkGSRYNdoo9gZZENHzdtEtoViGEjpRUcmaMU88SR2W58qo2Qt0euzNIe1Z5buV+8Ti/mzK3gb22JCpsgkYQyyTOx42McPYh9aEr6nNEWfKmHUysSTRD5ZVTFnagD4O03c1Q2M6Sn8Rgu/3SHYbqPkbYzpKqqdJez2kVUFSVFwljdI05TRiXNIioJer4puI11jfG6FNIrRCjn8nTZ6pYCkapAmhIMRQbOFVsrRf+gk3a8/KEhQIUfi+UiKzPjUOaLheLds25DEPclv94k9j3AwYnTyHM7yOmkUo+ZtkiAUUeKhQTwa42+30Ip5gnaX4PQFtIKNc3aLjvkNsgcWsY/sR5n4bpxVkbZWuu4KvK2WCOZwfQTvjECSMOfqKKZB0BZyQq1YQNuzQPfsDmngo5SKZF56Nep8AdcVnppukmGqomHkLGp6SH2fTacbiOTVnEo11KlVTTRNptsP8LyYclEna6m79yHLVPC8GM+LcVxRhn7xTeI4EQ891uPxM31MU+aq4yXasx7nl8c0Wj6eHwuJvSzUHBlTJQgCVFVmOIpYWR3T6oYkiShO37uYoVw06A8DTp8fTyo8ZBYXsvR6IdmsCE3oD8UEu1ISP2eqbFAsaHT74XO+vn47/MCTnmd7E93c3OSGG27g+uuv54/+6I+edNz09DR33333kx7rdruEYbh7g3yuN9FLEEiShGazyT/+4z9y9OhRAK699lp+93d/l0cffZS/+qu/4g/+4A945zvfyate9Spuuukm3vCGNzynYtKng2EYzM/PMz8/TxiGuwTo3LlzZLPZ3QmQbdvP+TnDoEsanuNlLzmIYRbJZBRqVf1JsrZvRjGvcdXxPGMnJklTBqOIzS1fpKXJMrWKaER+6PEhnW6IpoqenmBy3Ugn8dOSDIoiJN6dfkS1pFMpKUxXTVY2XLq9EEkCRU6Jo5TtVkCpqHHl8QKr60KLu2c+Q60qwgt0TWYw8un2gm9JejzP47777qNarXL48OFnfb6SJOE973kPJ06c4IEHHmBxcZGtrS3+9m//lkzmmaXrvdCoVqsoivItP/eXPvPPDtVq9QWd4j3wwAOYpkmxWATg+uuv5/3vfz9BEOx6+m6//XZmZ2e/K3L1nWAaonNneW3MxraHrEgYuoxlKHQI8LyIKBHS1DiKUTUZQ5fRNImdVoCseMzWDRw3ptEKWF4d0x9GTNcMFuezWIZCpWwQJyndXgCMObjXZnHeYnXDYWvLY+zEhFHKYBChahKuF7HTcOkNIkbjkF4vYmnBYuyEDEch2YzKVOWpBYIbWy6dXsj8jMLszMXPpMngqmNs3A12c0C22xMXoEqF0MiCopJsNZG6HcbDhKgp0tvkjIUxM0U8HKOVC6RJIhLHshbe2hbmXA0tZ+OubxF0e4xOn0OSFaLBEGtumsKVRwhaHcJOD32qjL/TAklGLxfRy+J3HnR6pLFY1DvL6/TueZig00PSVLzNBv7GDmPLJH/ZAcw9s3irGyR+QP7yw7tmc0mW0aslIsej/eVvkAJBo0Vm3x4U0yCNE9zVDeH9aLbRa1W8ONmdzsiqgjlbx5ipEXb7FK45Tu7yw/S+8TDxyEHSdYKVTdRiDvvAEub8DIWrjpJEIZ0v3IW33UKaFLBppQLZA3sI2l30UonUcUVJq2WJEIo4JokTJFVBzWSxj+5Hr1XQqyXioUPrjq8yeOhxJE1MX8z5GREGMEE0GjM+vcz49DLFF18OksT47Apxu4+sqnjrO0iGhl6voqgqQbMjZIiGIdLfFJmg1UXN2ST9Ec7aFtb8zO5kT7WzhP0h8ePnJ2WnT6QrIkmYM3WiwQg5a6FmTCGTixOSKCLoDEiCCFKJwX2PEI1GqKUCxlQFrZCj//BJho+eQisXMKdrItK7WiF1PaLBkPHZZdET1OmT+D6ancFZ2SAcOkhJTOz5aIUcw1Pn0fI2iqGjFnLotTJpKpEEIeMzq6QJ5I4dIOwNSLwAc2GGzN5FzNlpgnaXaOQIEhlEIvCgVCDqDfA2dohdn3R1i0A1ScYhKhHagQOoe5eQJIlMRiVNodkJGDgqlTRF0xSKFUEOVtYdtrY94lR4dpM0ZWvHw/diSgUNP0h2g5SiKEFVJSxLpDDWpozdr203PTa2XRRVpjBRdFTKJvm8zumzAx59fLDbE1guGmSzGkmS0OoEDIc+sizR7fooiiQIT0nHMhX8QMHSJWRJptUNKRZEotvYiciYKrom0+r4pAlkMgrTdRPfFxPuFwI/8KTn2dxENzY2uOGGG7jmmmv40z/906eYqK+//no++MEPsrW1xczMDCBukIZhcM011+we8724if6gQFEUPvnJTz7lcUmSuPzyy7n88sv5wAc+wMmTJ/n0pz/NH/3RH/ELv/ALvOIVr+Dmm2/mDW94A1NTU88bAdI0jdnZWWZnZ4miiGazSaPRYHl5GdM0dwnQs5k6bW9v89hjj/Hiay+nVqs949ciy9Kufr+Q05itmwRBQhCk3PtgjwsrLo1mgJ0RDe5jJyGOxW6OJAt1gyZLZEwZP4pRJAnDEGWqmzsuG1seICZScQyKLBEEMWeXHQ7v99kzb1HI68zWn7zDLUu7yoknwfM87r33XsrlMkeOHHlOhOdXfuVX+MIXvsCdd965m4I2MzPD29/+9mf1s15I6LrONddcwx133MEtt9yy+/gdd9zxz2oS9YOG1dVVOp0Oq6urxHHMgw8+CMCBAwewbZu/+7u/Y3t7m+uvvx7Lsrjzzjv5tV/7NX7+539+d0rzkz/5k3zgAx/g1ltv5f3vfz9nzpzhd3/3d/nN3/zNF3RKJ8sS8zMWDz3Wpz8IqVUNhkrI5rZLFKSkEkLOlEAiQamkoCoyvUGApipC/qZIBGHCzo6HLEN3EBEnqQguSVLsrEI+r1Mq6vR6AYNRhOtGSFLKtVcWqVZN4jil2fbo9UMePTVAlWUKRXHfKhY1VF3mwUf6KCrE0VP/H0GY0Gz56JpM1nrycmJ+T4nt7mWsyx7H5mR645SGpzGOVUZbbUrViNn9KtbKSUajB8ge3U/iB0iKQtjukgQh5kyN2PVx13eAFM3OMjp9Hm91C61SFB03Qwdfkgi7Q2phJAo3fV/s1psiAOFJ594wiIZj/GaH/r2PQpqSOyJ6wrpfvV8sXIOQ8ZkLonOlPyR37NCTIpQBglYXZ3mdwcOnSMKAxA9R8n2kUgHZNFCyFkkYEbk+dPpIpiFKNTseajFHEoUkQYiWz5PZv4AkSZjTU/Qfepxgu0maJGLBPFMn7A3ofOU+VNvCPnYQEIl3yiTBDFlifPoCZq1MZmmGrb/8HEGvN0kwm6xjJFAsg9zBvSRxxOjU+SfKSHtD3LUt9HJeTIK+ifQolomkyrhrW5Suu5LCVZcJktXqkkQxYbePt9Wg/Q9346xskCYJ2iQ6Og1CUkMj9jwUO4NeLRP1BgSahjFTw5iu4m83CYdCTm3tmfumM5ySuD7Z/Yu4G9tE7R6FK68XRZ5eIIhvu0P+yqNohRxBuyMS0/I243OrkIjJmWpZSKkkkvCGY4K5BuZsnf7DJxkvC0Ibrawj521kTSVxPVEUmiTIuoZayOOvbxNlLQpXXQZjV4RAzNUw6lWi4YjxqfPIhkZ23wLVG17K+NwqSRQhGzrm7BMbX8PT53HOryOtbhONxkSjMWkQkcQJTjxGKZfQjx9Dm58TsozJGjSTUbB6Ia4XM/IDanuFlLbR8tlpCPnYnrkMc9MWkiwxP2vx+KkBg1E0WccmJIlEkiRUSgaKIpJlrzhWmJAqQZQ0XYE0fJLaRFNlolgiSaGYVxk5MZouT9InY9yJFxHE9FpKodMNiSbpstsNj94gxM4KcqUoEpmMQm8QMBiGE909lIoaC3MZshmF/iDkwN7nz1f9zfiBJz3PFJubm7zyla9kcXGRj3zkIzSbzd2vXYw7/bEf+zEuu+wy3vrWt/LhD3+YTqfDL//yL/NzP/dzu4kR36ub6L8kSJLE0aNH+Y3f+A1+/dd/nXPnzvHpT3+aP/uzP+MXf/EXednLXsZNN93EjTfeyMzMzPN23lVVZWZmhpmZGeI4ptVq0Wg0uO+++9A0jVqtRr1ep1AoPO1zbm5ucvLkSa688srvekdbkSUsU8EyIZtR2GmJ0kHXjUkSKBQ0FEWiN4hIIyGZMU0FQ4fQUchnVWoVHTunsrntCRmcIoyMSQKWpRDHCUkMrY5PtaqRpiIZRlUmEa2RYDv53JMvJRcnPKVSiaNHjz4nwvP+97+fv/u7v+Mf/uEf/tl74d773vfy1re+lWuvvXZ3Sry6uvqkEsxLeH7xm7/5m/yP//E/dv999dVXA3DnnXfyyle+Ek3T+PjHP8573/te0UGzbx+//du/zbve9a7d7ykUCtxxxx28613v4tprr6VUKvHe9773SX6dFwozdZP6lMEDj8YMx0Jq5rrxbs2W6Ip54m/Pj3DdhPkZHXnSAdbuBML/ochkLBnfS/C8hLET8cjJAS++uoSuicVGtx+wsekKf88eG9MUj5dLOqvrYza3PCJi5jMK9ZpJtWJgGgqDYUi745PCxJP4xILIdWPGboRhSOT/yZQ6n9M4uM/m7AWJR7oKzU6A58fIUkImX0AqGTx0aoXqmQazxSqlxSkxQRi7qMUC8cghaHXQinmclW3MepVo7DI6eR6tWECvltCKOcbnVvF3hIQqJcFamMXf2MFv9SledwWq/eSJcDLxUwTNDmF/SPbAIn6jjbcpTPlqwSYauwSNFkGzjWyYWPPTk8ABgaDZZfDoaWLPRdIUSBSUjCqM9F6AOVcjCUIkSRbPL4MsyeilPPqhJWTDwN9q0Lv7QTILM4zPrAivT7ePJCtIpkHa7pGMPWLPR6+VRbpaoy1kX6pC4nnIqozfaBOPXYyZGqkE7tq20DMnCWkqIVs6SsZCShKM2Rp+uwtRhLUwI4pTByOiwYiw3SWNI3j0DMXrrtydaoX9Icb0FGkQEE18Naqd3ZWoJX6AUauQv/Io3uom0dgRQRF+IGKX/QBSUG0LSVOJxx6RMaZw7bT4HZYKOMsbyJoi/FySjGIaJGGIVsyT2TuPWrDpfO0B3JUNzJkp0jjGW9/GqE+RO7qf0anzqDmbqD8kcQNSzyeZhFjIkzQ/SRHnzdtuEY7G+Ns7SJKEfWgP7soW4WCA0+6TxMKMkgLKZKrjjhzSICLoDZFliTSM0OeKFK66jDSOGT1+jsLVxyi+5ApIEhLfF5PJ+RlkTZzHaDiid/fD+K0eWknEXJtZiySMCaOEUMqTOkOCRCIpVnFPrxMVp1AtjWxGJafFlKIWI6tIB5tRy+PcypjAF/HTC3MZpMl4pD5l0u2FIqAkheE4QtdkykUNVZPodgMuP1pg/55Jv1Qq7vuqDI4X4285KKqMaShkMwqOK3Y8klREX8syovS0GxCEouxckSVkRWI0jgnjBN+PWVkT3X2GqYiJq55SyGnk8xp+EBMEKTNVg0xW5eA+G1mWaDR9CnmVevUS6XlBcfvtt3P27FnOnj37lKSwi54cRVH47Gc/yzvf+U5e/vKXP6mc9CK+lzfRf4mQJIkDBw7wq7/6q/zH//gfWVlZ4bbbbuO2227jP/yH/8B1113HjTfeyE033cTCwsLzRoAURaFer1Ov10mShHa7TaPR4MEHH0SSpF0CVCwWdyeG6+vrnD59mquuuup5Tx6bmTaoVQ0Gw4h2J0QC5mcM4ljn3MqYwTBG18DUJUxDRlVhYcZkcc4kSqBcUGl3Q8JJupupS8RhAlKCoigUixppApWSRqPlY+ryRD6XMj9jUik9Efd9Mc2wWCxy2WWXPSfC81u/9Vv81V/9FXfeeScHDhx4Xs/VC4Ef//Efp91u89u//dtsbW1x/PhxPve5z7Fnz57v9Uv7gcWnPvWpb9vR89rXvvZJpaRPh8svv5wvf/nLz+Mre2aQZYnLDuV55ESf7YbHYByTzWgUC9DuBUThpFMrhf4w2k1W0w2FFOj1A4IwoZBTcb0EP0iIYkFMVAWaLZ8z50bUp0wGo0hEyUtw6EBul/AA6JqMoSvMzVoEvig57Q1CeoOQUl6jVNRRVRlFhkbDo1w2sCbf73oxg0HI/qUs+ZzYFBmOxGJoOI5IkhRNg5UNl3Y7AClFUcQucaPpMdNqEvYh7PqEBSgvzBJsbBEOhgRegL+2jeUF6MU8ajHH4NHTAJiTkkdkWUwyUgnVMgkbHbGzLkkEne5k4f+Ety6NEyEne/EVhJ0eSsYkiWOcC+uQsJvGFfsBjqEjKQruygaNO75C9ZUvRZ8ShZzj5TXSKEQrFTEqJbydFpKhiYmC7xN2+8JDE0dolRJpmpK74hCZpQUS3yfo9BmfWyEajhkvzGDWKkSuj7exg1rMIU/6idScTTQc0fri1zGmSiiGQez7ZPftIXfFYfydFpIsYxw/hN/q0P7y3fTufphUNFqLN08cIykK2YNLZI/sp/f1BzGnq/hbTSEfq1dFNHezRZomOKubGPUpMvvmiQYjiGOspTmRQDdZC6VpyujxcwweOUU8cpANjcRxScIQd3VT+JxyWVIkYs9DLReIxi40O6RxjLV3DnNWKDJkESWKu74twgEMHSbeI/voAVEmamcpXnsc+8h+EQ8+GmPO1skd3YeSzQhSlc2g2llB+lQZKYpImZTMJgmxH2JN10jGgkzLigY6GNM1tEoJ5/QK3nYDKQiRMgaKYaJPyHdKijTx4GgZE61aIrNnThAaTUUt5NCKT3TtFF9yFb1vPMToxFn8dpdoMCJo9YhGI/RygSQIRKS6pqEAOC6KD5Fm0OpJ+GEVXQrQV7dJ4oSOJKGqcPXLl+DwQc51VM4tj2i1fA7ts1mcs7CsJz7TpYJOqaARhAlHDtikyAyGwW5oQKWoc/21ZQxDmUx7fZbXxjx2csjIEV7BUlEX8jpLQUIoOsIwwTJlwiBlNIoIwoQoTokica2yMgp+ENNqBwSBCGvJmgpJCr4bUyyK8JRWO0BVZNpDlzBMOHwgR6Pl7058jh7M75alPt+4RHomuPXWW7n11lu/43GLi4v8n//zf77tMd+rm+i/dEiSxNLSEu9973v5xV/8RTY3N7ntttv4zGc+w6//+q9z9dVXc9NNN3HTTTexd+/e540AybL8pNjlbrdLo9HgkUceIU3TXbnd9vY2V199NaVS6Tv/0GcJO6syUzPYu2CRyymcu+AShOJidORAniCIWd/yyGZUqhUd100olTQqZZ12N+TAkk2jFTCceIaiRJAPTVOoVTWmqwayInH0gE1vGNFsB0gS1CoG9ZqOMpn8XCQ8hULhORGeNE350Ic+xP/8n/+TO++8kyNHjjzv5+qFwjvf+U7e+c53fq9fxiV8H6FS0qnXDJbXxuRyGkksSMJ4rDCOIlQFsXiVJPK2wshJGI1ibBv8QBSXJqnQ6qep2HG1Myq6JrHd9ImihGJexdRljhyy6fUjctmneu9cT3TvNNs+SELalsYpZ1o+ui6Rz+tcdiiHoSmsbTqsrYudX8OUmJ22mKoYyDJsNzzWt1ziKMUwFDo9n1PnBgwHEXMzGTIZhWZLXDuSKKYfqmQqUyStIe3mGKmeRZtbopMUGHqbBM0u2UZAYdok3+7h73RQ8zb+tlBixK5H4noYs1PopSJeowlIGLNTOGfX2P67LxJ2B9iHlpAzFmGzizk3TXbfAv3+kDRJiPpDwt4AvVIEII1j/M0G/vo2WrWEMVXGvbBBL/MQ1p45zNk6UXeAWswRtntkj+4nlSXCZpckDEhTCNo9YjcQu/5xjFWfwpyrEw1HooDT9Qk6PUgh6g3wFYU0CDBmp0hcH3dlE2txhiQQP8NpdUmDEHOuTtgb0b3nIezLDlD7sR8GYHxmmc6dX0dSZIyFGZTegGgwJAkjkjgFWcacnhKdPWkqJkFxjF4TagO9UhRhEf0R8ajD+OwFlIwupHcHl0hlCa2QR8mKJFN3dZP+fY+i5DLIRhF3bVP0Azk+frtH0O6TWZpFK+Yx52pIiiIS4TwfbWaK7L5FEs/H327hb+1QuPIo8cG9DE+dQyvmRU+SJONv7qBXS/g7Law9c2T2zKFYpiAxrj+R3iloxRz+dgtjpsZ4eYPY9ZFkGdkwCAcD4rFHtlZBL9g4/SFpGBKHIbKqYtREEWbU7oEii4mQLIsOoHyGeDBGlmXisUPiumSuPkbhmuMYs0KanoSRqGrIPyGj1Ao59Okp0pMXkFQVc7pK7LikcUTQ7JIEAYkfTEi7hKLIWKM2F8qHaMsVylFI7voXI/U6MBzQanoklsXm7F6ioYaiwtKCjecltLsByLB3Mbvbl5OzVaYqJqfPDfGDlOkpFVOX6A1EJP7lR/NUKwZRnHLyzICzy6NJ6lqMaSj0+iFR5DNTM3CciJEbkUpgGDKGodDtB4zG0aSM/eJQADxPyOk8PyYKE7wgQZHEBk8UJ0RRzHbDgzRFkmRSJOysQsaSmaroLMxmqFaMJ3WOPd+4RHou4QcSF0sJ//2///e8+93vZmdnh//9v/83n/nMZ/jABz7AsWPHdgnQM00UeyaQZZlKpUKlUuHIkSP0ej3OnDlDv99HURQ2NjYIw5BKpYKiKN/5Bz5DFAsa9ZrBxpbP3vkMhiZz5vwYdWIqzGRlDh+w0VQZWREFZYYuU5syGI5iAi1hbsai1fUYjZPJyFpmuqZz7ZVFgjBlrmKQy6nk8xqLc0+N8b7YV5PL5Th27NhzIjy/93u/xyc/+Um++MUvcuzYsefr9FzCJfyzRLGgUS2bIg1JleiPYkYjIXEzDQlZVjBMeUKGFCwzpd8PSFOVKEqxLIU0BdNU8LwEzZB2EyI1VULTJIZOzLFDOa6+vMzDJ/oMRiHV8pOlI3GcsrHlYGc1ZqZNRqOIrR0Px43wvBgAXZU4ciAHsojOBjAMndkZVUx1gLVNF1NXMHPCnLy+7jLoxwRBQqcX4HkKmiaRtVScUcAoVulpNgW7hOYNuLCpI+kq0jBGtW2kVKavmTTnDzE/OIcxfBySBMXUSFPwG23SKMI0dNBUwv6I8enzaMU8kqERtrp0v/4g7toWueMHKb/0anKXHRCFmTM1xqeXdycY0mSX3m928LabyBkTa3EW2TBI4og0ThidukDQ6RP1h6RRhFYqkDt+CC1v073nERLXI+z2iIbO7rRDtUyyR/chIeGubopkNMSiL3Ngj5DatTuEvSF2MY9imSRRhLfVRNJU9HIRdWZKxFtPfubw5Hka//cfSKMYc65G775HcLebpHFKMnJI4xjFziL5PmmSkPo+XqND4UXHMBot0jBGyT9R/qhYJtbcNLCDpCro+RzZA6KHJgkj/J0W2Wv2IKsq0WhM5yv34u+0kIcWoxNn8BstMVTyfILtlgiiyGXJHtyDt7FD0OkjZy3SQMQlO2vbKDst0gQkVUU2Ddy1LdHns9NBrxbR6xXCTo+g00fJZoSk8P4TKPks2SP7kE2DoNPHnJnCmKlNQitSVMvA29hGVlWUnA1xgl4uihLTKCYaO0SeB36INldHtTPIqoper+LvtEhlBSVjoldKyLKMVMhhzEwRtPuohSz1N9ywG4qRJgnexs6uP+ki/J0Ww0dOYy3UKVxxiNj1xZ+ii7u2RYBCggYDF1UG1VDJVHKExWmSWMH3YrwIYquES55sXUFVJR4953HV5SZ5WyNJUrp98VkdDCPWNlwO7bOFpE+WyBdUDu7LIksS9z/SYzgWsfd2RuHcBRl5ksJ2YdVBUcRmSbWssdnwJ7H2AaNxSDarosiwOJ8haygYpsR2w8XzEmRZzNJ0Q3j6JEWi3w9RZEn4fkixbY18TqM/CBiNEyRCdENcy2brJi+6ooSiyoShiNd+IQkPXCI9l/AvAJIkMT09zTve8Q7e/va30+l0dgnQhz70IQ4ePMhNN93ELbfc8pz8J98OnU4Hx3G47rrrhKSj0eD06dMEQUC1WqVWq+0WcH43UGSJIwdsLFNhp+EzUzeZmzYxTYWMpZDPqUxVdFRVIgxTfD/m7LJIXZIA1004fMDmYJJlec2l2fEpFjQO77exLIViQWPP4tN38VwkPLZtP2fC81/+y3/hox/9KLfffjtXXnnld3U+LuESvh8gyxKLc2JS4rgxuQwMBgFRLDyEKQmBHyFLohtHlmQSKcZxBelwvRBNk7BMlWxGRtUUNrZdwjAmiaFY0gkCUVKasRQW5iweeiwQxImU0Ujo77d2HEajmP1LNo2Wz7nzI4IwQdNkmPSA3f9wj41tj2OH8xw+KDysw1FEtx9AmnLuwoheP6RSMdhedWm1A6I4wbIUTFMmChPaXkI+q2BZCkZGIzBshsMxwew8ibvN8GybsuqjRS7jUGEkWQT7LmOUrRK2OsxmyhRSX2wrR2KHXVJV/EYbZ22LqD9EksCcmcYs5ZENHc3OoFdKqDkb+/A+1JzYkTfn6hgzVZwzK6RJShqFIMmEjQ6p72NMT6HlbWLPJ7O0iLU0h7e8jt9oC1nY4hxaKY+30wJJwlqcIeoO0CpFpCRFn6vhnF5ByVpISDirm/jNDmrGIglClGyG7ME9kKTC1D7YImh0kDMWRBGx44jXUMqLfp8oJgkC4T9pdxm5HmkkyEvny3cTtHokSULieKRhgFotY1aLxCOH2AtQ7QzmzBSx4zI+dZ6g2yMejInHLpImI2czgoCoKpKuQpzgbe6ArJC7/DDW3nmGj5+j940HaX3hLhH2sLxO6vmYS3PCc7WxM0lfSxmdEc+hFnKoWYtwOMLatwhRRP++h9GqJZI4YfTwKREcoEjIqkZCSuKLKGlZV6EhY81N7051kkaT8ZllzPlpNDtLaBrinFsG7b+/S/TrjMaCZKUJerWEtX8PxAnu5g7+dgtZVbD2iJL5/n2PYe2dJ7t/D1F/yPj8KnKoYR2eI3dkP1o+h1qwGTxyijSKCbsD0jAijWNi18eoVym++PJdaRuAs7pJGgToc2IaJGkKsq4xGEX09SJeu4FayqJYOWQFclmdiBRDV1jIa4QFizhKxObtjEWlrLG25uIHiUjtm1w7alWD4TBC02R6PSEpzdkqzbbP1rZLpWQwGAbomky1pOP7CX6Y8sipAY+dGZKxVJbmLTwvoT8U8vZyUSeOEpxMjOPFFPMa01Mm+/dmWd/02NhyhLw1FUEqaZoyVTGYrpv0+yEDCcIoRZJiUUg6jshYk0qMMETRNGRJIgxSilM6lZKGqils73i0Oj5z099dL+J3wiXScwn/oiBJEpVKhbe97W38u3/37+j3+/zt3/4tt912G7//+7/P4uIiN910EzfffDNXXHHFUxL8ninSNOXs2bNsbm5y7bXX7paqFgoFDhw4wGg0otFocP78eR577DHK5TL1ep2pqSk07bkVchm6zKF9WZYWLOI4xdDlXR/AN0NTIWMpvOhyjV4/xA+TiQ5fpMMszmfIWqL0TNdlshmFWvUJHf8/xUXCk81mOX78+LM+Z2ma8slPfpL//J//M5///OefcfHkJVzCDwKqZYN9SzZr6w6tKMHKqChBgmnIpInMYBThRzGlosJlh4psNz06PTGBafcCPF94dUxTxQ8TPDciCMXnfzwKcT0ddWLCn62bjJ2Ir3y9zXbThckSqtnxMQyZrW2PTi8AhKY/jlM8L8Y0ZXrDkJyt4Hrx7nWlkNcwDTHVydsapiGuEWkKc9MGzY6Q34VhwjiOURVw/RjdjbEzKnEmg+8Y5BjRr+1jPMpT7p5lkOZoqAWsvYvYi9PkWzv4sc9wzzGU5UexNB1ZUZB0jTQIiR2XsD9CMXWIYkanzmHO11GzWayleZFQ1uzibTZE2hkgaSq5YwdJ/ABnbYvR6WUUy8JvddDrFaw9c0iKTNQfkT24B3vfApnFWcZnl1FMA+f8Gv7mDmkiPDNpEIGuko5DclccpXTNcfyr2rhrW0iawvjkedRsBqNWJuwNBCEr5JAUBfvgEmGnTxLFmOUCJPO4mztIioIkScR+gJyxcDcbOCsbmAvT6BOvUNAW/6947GLM1lCqJYKdFlGrixSLRX+8sUXY7hD1h+SPH2L48Ek6/3CPSM6aQJIklIyFtTSPOV1Fq1Ww5mpY87MYMyJkovOP9+AurxP0h6RBQNjrAxLeyiZEEakfohZskBAJfGGEOV1FkhXUcoGg0SJxPRIvIElT3AvrjE+dF+Q1Y6IV8khIBJKLYRiE3R5qzsacqaHYGSRJIo1jgnaX8dkVSi+9mmg0pv3Ve2n+w90kgxFK3karFFAMQxDMMESxDLSckEUWr74MtVLAnJshHg5xzq8zePBxjJkpJFVFzWbIHtqLWZ8i6g+JvQCp3SVzYA+F44dxVtYZPn5exHvP1rAWZlAyT16oOysbBL0B/t0PkUYRaiGHi85Wo0dcmUbb3kZ2R2gzNdIkZdDsIZkmypJFpWZTuWIKpVJAlkFRZKIowfGEOuOJ9iUhjw3DhM0dj3YvYHVthOsl9IYh5aLB1o5Hs+ORJhBEKeW8RhAlkMJwGLC+6aAoKSQp/WEoZKqSiK8XwSWCiPX6IRlL5f/3xjm+8vUmYZTiuvEkTVZMlFVFpj8ISZMURZGYm7aYrptsNTx2Gj6KDKaukMuqyLLEeBzhBzEjN6FsqEiTx15oXCI932f44Ac/yGc/+1kefPBBdF2n1+s95ZjV1VXe9a538cUvfvFJYQsXI7QBHnnkEd797nfzjW98g3K5zNvf/nZ+4zd+419UwpwkSRSLRX76p3+an/7pn2YwGPDZz36W2267jR/7sR+jVqtx4403csstt3DNNdc848V8mqacOnWKRqPBtdde+5RCU0mSyOVy5HI59u/fz3g8ptFosLq6yokTJyiXy7tR2N/8O3um0DUZngFvUhSJSnny8+tC4hKECZoqPaUg9ekQhiH3338/mUzmOROe//7f/zsf+MAH+NznPsdLX/rSZ/X9l3AJ3++oVnQWZix2Gh6qojA/Y7Gx5eL6Ea6TEEYpmirjByIQwA9S9u3JUironF0ecX5lTJSkk+JiCdvWyJgyczMWIyem0w149GSfH7quiqaJOPqcrVKpFJAAVZVpd3w2Gy7Lqw6DUUSpoOO4MYosUcjrDJ2QKBCxt622z2zdFPG2gGEoyJLoCFmoZ4jjlLEbk7dVeqMYTY2RJYnhKCKIEuIUgsBjnFHxfTiwZ55KrcXJC2OQZdxsge3cImYpT6aaAwnkwBddRjN1vGGbcXeA6Y+QJElETMcxkqZizEyh5mzisYO7tk1m7zxaMU/Y7hH0+7gb2yhZU3h2Wl3hs0hT7CP7cde3SONYTIBma5AkeFtNtEoRa14kuEqShGwYyBkLv9lFyRgi3EBTkT2faGUDSVYoXH6I0kuvIgkjBg89jrO8QVAUZn41b6PXp4i6/UkJqIJeq2DOTAGgT5UJGi3SIMQ5v0o0GiFrOlbGwr2wLiZHSYpz5gJJGCNrCmoxT9DqkkaRkGpNVUBVd2V4aRRDmmIfO0DU7qNNlXFWN1B0A0nTIElJwgg5axKPPYzpKqXrrkSxTLRSgTQMGZ44g7e1QxKGGPUq7vIGkqqilQrEgxHu2rYw85sGkiQjmyayrpLZL2Rxw5Pn8FY2yRzcS5oJRHDB+g5pnIKhIsUJhBHqVJkkCHAurJGGEYUX11FzT9xDJUXBqFWJ+iPclU3MuTr9Bx8n7g1RS3nRpWMLGaAykcCNT10gf+wgpeuupHT9VbjLGzgX1oWUb6pM2B8yPHUevVhAr08JeeH6FpKqiGmanSGzZ46g2yNodDBrZZTJxK537yP4O01KL70aNWcTdHqMT5zD29wWJauKgrexQ6sV4LgxoVlgMHUZmjNAWx1gSRGmHKKUKlg5E+YXMKZKT0oLlCTwAjF5vbixcPH9OFO3KOQ1RqOInZZPpxdSKesospjEVsoGK2sOna6Qq5WLgtg4XsJO08NxE3JZmcEwwtQlXC/BcS5ubKREUUKnF3J+ZczLXlzlxS+qoGkinGBjyyWOU0bjiJ2Wx2AYIclQsBUW5y0qJYPROMaxxaZqGEk4TkQ+r7NnQZDYRtOjmNdIk/RbbtI+37hEer7PEAQBb37zm7n++uv5kz/5k6d8PY5jXv/61zM1NcVXvvIV2u02P/MzP0OapnzsYx8DYDAY8OpXv5obbriBe+65h9OnT3PrrbeSzWb5pV/6pf/X/6V/Nsjn8/zET/wEP/ETP8F4PObzn/88n/nMZ7jxxhspFArceOON3HzzzVx33XVP68dJ05THH3+cdrvNi1/8YizrO49qs9kse/fuZe/evbiuy87Ozm60dbFY3CVApml+x5/13UBRJKxn4TMKw5D77rsPy7K4/PLLnxPh+bM/+7PdaOof+qEferYv+RIu4fse2YzK/qUsDz/eR1VhY8uh2Q4IoxRSoeSKk5TBIMBxIyxLJYxTMhmVa64sEYYJaxsuiix2WAs5jamqjq4pZC2R1nhhbczRQ3nytsrmtst03USVpd2ENcNQUGUZTRXx91NVHQkJTZPRVInhKCBna4RxguPFRPGT91VUTcHOiJ3aIIgZDkNkCYxJn5DrRaJ4UpOJPEHkfD8mSaEyX8S4ag9RtIFecRi3bUZSESunkaQpsiSRKqJtWVFV1P1LBN4Iu71KPB6jFGzwA+QoAlkhjSKSMEYxdGRNI/F8kjBgfHYNNZuhfefXCZodjHoV+8g+tEKO1A+wZuso+SzDR07jb+xgTE+RWZrH2jO3u5MfdvsolgFxQvEllxMPRsK4PxwRdAeT0jLY/uw/4G7skFmYESWk9SrmfJ3eXQ+Q2b8HtWAzfOQ03uYORn0KSRalnOHQoXfX/aRIZA/twzm/StDoomRNJE0TcdWyTOx5Ez+MQjQcEw2GRH4g0sUKeWRdw6hX8CcJbtbsAqXrr0HL2TinLmDN1okHI+KxA7KMrGuksggOkFKJ4aNnREdMAmrBRq+UGJ+6QOwFguSZBs7ZFZEMJ0kodoaw3SMcjkBVULMWsetwcZSURBHexg5IErKu4DUGu8Z+2dSRZZlEgthxod1FLeRJ/EAUhubsf/qRAUAp5ujf9wjOhVXikYM5M4VazJOGkfDPBAGFyw9jLs0xfOQ0qCrFl1yJYppkDy6BLAu/18oGkeeT+iGx6xKPxlh757GvPIwxVRXnhpTOV+8njWMKV1+GMV1FnmxIpnGMc2EDOXOK0nVX0r/vUVBklJyNXi4AEq6VZb3psZPEjCiTqWUo6hHBaMQgVdCLOYrzZYqX7achl0h3fHK2Si6rISsScQyqKmFospCcfhOGo5CHHuuzvDomTlIMQyYIUtrdgJ2WT9ZS6Q9CFEVGQnj+Aj8hiVLhM/NiNE0ijBJOnhmRpOIaIMsSuib8QaWixmAYcte9bWZqJp6fUCnr7FuyaTQ9VFWm1w+olHWSJOXIwRxTVQvXi0mSlMW5LHEyJIkl9ixkKOSEpC2MEobjSFwvZInC05SzP5+4RHq+z/CBD3wA4GmjWm+//XZOnDjB2toas7NCs/p7v/d73HrrrXzwgx8kn8/z53/+53iex6c+9SkMw+D48eOcPn2a3//93+e9733vv6hpz9Mhm83ypje9iTe96U24rssdd9zBZz7zGf7Nv/k3mKbJG9/4Rm655RZe9rKX7fpxgiDg0UcfxXVdXvziFz8nkmJZFktLSywtLeF5Ho1GY9cHlM/nd6OwnwmZeiFxkfCYpvmcCc9f/MVf8Mu//Mv89V//Na985StfmBd6CZfwfYDpusXstMWF1TGOG6MpMikJyaQzK0kSwgi0BOws+K5IWlucs8jnNZQtD1mWSBKxiNlu+BRslYW5DLouMxrH9CYFgmNHtKE32z6eJ6KNkzihNwjwvJQ0FZMlQ1dIkoTBKMTOqqiKTBAlyLJYgH0zojChWtF5/MyQlbUxvWHE2I3w/YTBMKDTDVEUiXJRR1Yixk5MGKVUyzrNTsDjZ8dkZ0psb1l4/ZhOJyBEw9KhmkvRrByKpqA6ffRKEUUqkC0rRJ0O1uIs3maDqD8QUw1dQy3YaLkssqIQtLqMz69CnKBkLKLBGGtpnthxGJ9dIX/5YfSpCsMTpwl6fbJH9uGtbmEuTJNZnN29H0aDEWF/RGbvHM7KJpk9cyBJ6DttBg8/jo6EXq+SeD7Dk2eJun06qoq1dw7VspAzJqgKw5PnyV9+EPvQEmkU4a5v4e80SZOUaDhC0nUyC9Potcqu/0evlXFXt4j6A7RyQSSGaQphp0/kTmSKSUzUHeCubqDaWVIgcRyMeg378D6SOKb9lXuJekOi4Zjc0QPEjiPSxMKQyPWEbyiKREDEAyfE+C4MSRMIB0NUO4MxVUYrF7EWZ/A2doSsUFchhcTxUKan0CslvI0GxoyNrCpEgxHxYIRWzhOPPZIghCQVUciWKTxLrkcqScSeTzQYkcSJ+H8qQtIW9ofEIwdS8XsMOz38nRbGzNTE76MC6WSqlRC2B4zPr1H5kZeg2hkkRUaedFZJiohFlBQFrVxEkyDxQ2RdQ86ahM0ug4dOUX/jHFFviHNhjdHjZ4EUSVPw1rfI7F/EnJ4Sk6fpKt7aJk6liLfVJHfsIKPHzuA3OgyMAps9OD/KMgxijMRjtO8QhQNVCrZGXpJodgJOjFIO6gXcccJjJwdIMpSKOlNl0Zd1+ZECw3FMu+NTKurIssRoHPHo4wPOnBtSLKhiLSJBpys2TaI4odsNiKKEes0UKY1+TG8ggkfKJZ2xEzEai02KJL0YPy2Lv2PxHHZWwfUS7n2wy76lLJ1ewOrGmCMH8hw9lJ/0b6U0OwGOE2GaiugISlLxPkwTDE0lX9aQJRl5MsWSZYkwSGi0fA7stSkVn72y5dniEun5AcNdd93F8ePHdwkPwGte85rdKOEbbriBu+66ix/5kR/ZbSW/eMz73vc+lpeX/9kXQf6/hmVZ3Hjjjdx4440EQcAXv/hFPv3pT/PWt74VSZJ4wxvewOtf/3o+/vGPUyqV+OM//uMnndvnCtM0WVxcZHFxkSAIdgnQ2bNnsW17lwD9U/ncC42LkjbDMJ6z7+m2227jF37hF/hf/+t/8epXv/oFeJWXcAnfP9A0mcEwpNsLKeQ1wlC0nQd+QkxCEKQokvDthVFKfxAQJym9XsDKuoOsSBTyKmkiUcipKKqMosgYuoiF9f2Y3jDAMCTaXR/Xi7FMhUpZdHEkSUocw07Dw/cTmk2PXE5DliVyWZWcrbG26eL7CbWK+aTdZteLRRjKJO52umbi+g6jUYTjJfSHMXGSkrUVOn2fsRtj6jKmLkoPx+sx7U7AgaUsdk5F8nOYwzZ67OL5BmsB5MwMC8U85nibRK2jZ1ViX8FPZVTfI3tgkXjsEXS6wmSeJKh5mzhJcNY2Cds9Ci+9ivHpC4xXN5DiBEnVkC2DoN1DLeXwt9v42w20qRISMv5OU5CMXI40TlCyJoWrj4qpx/k1gsGIsNlh8PDJSYLXFGFvgL/dIHF8rGOHiHpDxqeWxUK61QVFJnY8evc8RO7IftRiTizwL06mdB2tXCRFInF9jHqFeOSQeD5hb0Cw3UAt5gURi2MkVUFRVJRKmajbB1VGsbPIpoGSy5AW85izdbztJko2QzQY4a1vE49dsoeWMGoV9EqJyPPpf+MhktGYWJEJWqJbxpgqo9crggx1hHdIrxSx9sxiX3YQb6dNsNUgiWKRLFcuoGRM/E4PJWOJQtVOn2C7iZyxUHMZotFYpMtlLWRNJZUlkiSBOAFVFb1LqoKUCq/JeHkT2TCJhiNkSQJZIg6Et4kkxdq3gLuxg7+xg6QppFGCrEgQxjjnVkTSmgR6tUw0dNArOkkQ4G3uCK+UoSNpKknYhzRBs20U3cDfbND92v2CIMmS8CohoRXzxH7A8LEzyKqCXi2j2hn8Rht/p00ax+ilPMahfSx/7RwXTneJo4RRWBZSSl0iqpbYHqsoeRPLUGi4ESsbDnbOY27GolqxCULxuXC9iGOH88xMW4zHIafPjdja8YiimJUNl2bTo1zSWZyzOH1+jOcnJImYpIZRwnAQEaUp5WJCkoDrJwSBSGTM2SKZrdUOUHUJTZFBToiilGrFoFwQqWu9QcqRgxakoh6jVtY5c2HM42eG9Ich+ZwGiFTGwwdyDIcRrU5AHCW4bkQYypRLOscO53G8mFbHx3EiOr2QOEqxs9quxA3lhd10v0R6fsCwvb1NvV5/0mOlUgld19ne3t49Zmlp6UnHXPye7e3tS6Tn20DX9d3Sw09+8pN86Utf4i/+4i/4qZ/6KcIw5JZbbuGLX/wir3rVq54X4vPNzzs/P8/8/DxhGNJsNmk0Gly4cAHLsnYJkG3bL+ikLooiHnjgATRN48orr3xOhOdv//Zvecc73sGf//mf8/rXv/4FeJWXcAnfX0iSlG4vJE7ANhX8QJSJGqYo30zTWBiEJQkkUV7q+sJ/J0tCAtfvh5TLBtN1C1WRGY5CVjZcBoMQz0/wfJGctrblMVc3qJSeuD7JssTMtMVOy8N1Yuo1gzSVKBY0craKHyT4foSmSaRpSq8fkLUUhk6M58YUiypb2x7Vsk6tqpPNqNz3UJc0hZm6TrsTomsyg34IiZDSahooikoYJzRbHpYps2chi13NMXQTOo0BaujgxxL5QkThyF6Go1ma2yMsN6G9kxD1ZKxcmYX5BSyvR5rEhK0ucRgRj13isUPseGhTJcanzjF6/Pyk16WApCqEa5v0HzxBZs8cerUMSOh2DiVr4a5t4W+1KFx7BXqxgFGvoBbzjB4/y/jsMs7t/0g0doiHDloxT9Qf4i5vEPaH2If2Ihs6YX+Iv9PGmq8J34znYh9cImh1cc6voRZyZPYvUnzRcdyVdQaPnCYajfHWWkR2hsy+RSRNRUpT9GqRxPcxKiX8VpuwJ3qGgmabeLtJGkbIsi4KUfNVrAPzuMtbxOMxuWOHKFx1Gf5Oi9jziX2f8ZllVDtD7Af0HzjB8NHTSIpMKoEsKVh755EVBW+7JXxEskQS+LjbDfQp4WkpXnOMwYOyKBU1dfRKCUlRiAYtVNtifG6V4SOnkHM2iq4RhgFhZ4BSsDGmp/C3W6SuS+J4SLKEms+CJCYwcZyIdLzVTVIJsnN1UlkRhbNRPPlchHhr2ySuh7/dRLYMtEIOVBPZFjLA8ell7OMHKP/wtYwePY2at0n8kKDTI2h1RFfSYIhsGEKWZttiMqQpjE5fIHfZQfEzJfHelxQFvVzEb7SFj6lSEpHnSKDI+H5Mc83h3HLIqXaBIDbIWSkYNrETMFY0MppGCrTbPkEUs7rqoGsKuq4wdhL6g4hSSWPvYpbzy2MefLTH2qYrqimmRCfWuQs+jYYnJKBJihckjF2R2pizRWKi40R4fky/E3F+dUwup5IkKa4XUyroyBIMRjEgpruuE5OxFIoF4TP0ggTHT8lnZQxDZmPTJUlSLFNB12TytoqdUTm0L0u1rHN+eUwuozJTtxg7QupqWSrbDZe5aZOFWYsohhOn+vS6CYoisW9PlnrN2CVQx44UJoENLwwukZ5/Bvit3/qtXdna0+Gee+55xqlW32rR+82t1N/qmHTStHxJ2vbMoaoqL3vZy/jIRz7C5Zdfzv/3//1/3H777bznPe9hOBzyute9jptvvpl/9a/+1fMqR9M0jdnZWWZnZ4miiFarRaPR4J577kHXder1OrVajXw+/7z+PqMo4v7770dV1edMeD73uc/xtre9jU996lPcfPPNz9tru4RL+H7G2IlIk5RiThEExYuFXEgkU2MZMr6fEMUxsSN2bNNEXNNtWyVNYeSEtDoexYJGrWzg+TEXVsYgS+yZs6hNGXR6AY2Wy2AYEicSuZyKZSooikS3L6Jts1WF+pRJHIvF0U7TZzSKmCrr5PMa2zs+65sedlZl31KWpYUMJ88MubDqkM0EKLLEcBwSJaBr0O0LaZ08Ak2RKJV0hsOYkZNSzIOpy3iqgufFqIrwEOw7WOa8pjNsj5HjmHNeyrlVHT8ENY2YkmP27isz0ztPuN3g/IUBc9MWdkUUP+uaShKGqHaWyPdRDAN3fQvFNECWiV0PZJlk4oNJfJ8coNhZETRQLaHmbZxzq0S9IZXrX0SapgwfPUX//hNEnQFhp49eqxINHMLRGHmSFBaPHCRVFROasYMkg7/TwZipEg/HKJpG4aqjDB47Q9DuYh/Zj2yIXW5vcwclmyGzNEfQ6kGSYs7W8LdbRL0hWiGHv9MUCXK5HKQJkR+ImGpVQasWkTWVweNnCAZDrOkqheuuwt6/iGIZ6FNl9GKOxPFwltfo3X+CsNPFXdsiGjuomQxhq4dWyBF1B8gZi6g3wFvfQjYNEi+gf99jpGFC7sheJEXGWphBKxdIkxT74BKSqhIu1Im6Q7T+kCSOBMlodYjHLvLEE6XYGbRKifGZniANpinWIUGEpKdohTy5Kw4zuP8xomaX8dghTVKSOEbL2Zh75xk9fJLRibPIho5ayBE7LkGzi2wZYs2TpijTNbRCHtXUyeydx1neIE1T3NVNvPVt1FwWrZBDq5RwVzdwVzaw5qdJ44TE91EyFrKuIU38WoohJFhq3ibo9okdj8T3UQs2aW2GtdYZmmtNlhsJIzdB0Q1aQcpI0bBln6Fq02+HVCs6G9surhtjWjKVko5tq+RtjShKOHN+hCJLooMrENHvG1sua+sOKUI25gUJQZAwGHrstHx0VUKWZVw3JiWl1w+RUrAM4dkJw5TRKCKKE8ZuRLMT47kRqibtRmH3+hGqIuP6YhpkZ2QsQ+HCiiN6frIi1dXzExwnYm3ToVTUcNwY14t56ESfbEZhYTZDoaAShumub3DkxDTbPt1+SL6gs7+is3dPFkMX/p6LBeqHD+R4oXCJ9PwzwLvf/W7e8pa3fNtj/ulk5ukwPT3N3Xff/aTHut0uYRjuTnOmp6d3pz4X0Wg0AJ4yJbqEb4/Pf/7zjEYjvvCFL5DP53nDG97ARz/6Ub7+9a/zmc98hve973387M/+LK95zWu46aabeM1rXrMbX/18QFVVpqenmZ6eJo5j2u02jUaD+++/H0VRdidAxWLxuyJAFyc8iqJw5ZVXPqdi1b//+7/n1ltv5Y//+I9585vf/JxfyyVcwg8aVEUim1WplHXGTsxwGBHLKUkqiIMkyfhBgixLeH5CmgpJkKJIqEqMqsnkMgqjccxjjw9YzysEYUoYwcH9NkcP5clYqigw1RR6g5BHTvYolwxIIIhFRPbFOFldV7AsIUEbjiMcN6JaMalVDGRZYjDw6fRDojBhY8ul1fHJZBSqFYNeP+D86ojhMKZa0TGNZNcojSIa6CUZNE0iCFPiOMG2FcIoxXFF50irE1GbMimXDU6fG9Ibh2RkUFWF2XqGMEx4aGTTKBU4WtpAWb7A8vkBlZky0sG9aIbKVFHHDEa4qxs4Z1dRNA1lqkzQ7gkTfRiDBIqmIaEQdPtocQKJWOwplolsWYxPXyB8+TWkQcDgoZPCnzLp2Qm7fdIkhiDBXd1AAvSp0q4HJUkTwpGDls0QdnrC/2JnUUsFsdCXJcJOj2gwIhqNhdRu0sdDnBK0OkSuS9jqErQ6yKYpng8RaBD1x6JEc94k7PaQFRVzbgatUsGolrD2zFE4fuiJ91nWwj6yn9j3iR4eM3joJLKuk8SxSKAzNdJQAiTG51YgBVlXiYIADQW9WiLs9hk+eoqw28WamyZzcIniwqwIhSgX6X39AdTuADdKsA8t7ZLLqD/EWV4j8kLiwZBwu4VeKeKtGsSKIghpFIOmoORsrKUF0jhGksCol9EKOYJ2D1yfaOwSPHKKoNMjGo4xamWMWoU0Tgh6faLugDiMyO6bJ7N3nqDdo/n3d5G/8giFa47Tu+9RMRnTNcy5afRyAUlVSeemcVY2cJY30CoFZMtENjSi/hCtJEIJwsFwEjUui46lwZDY8Slce4wLQZZxfgr3/Em8kYWqGmQthTRNiFpdRnIWs1omSsFxYhEIUNKJY7CzGtpk86HTC2i2fLKWQqmgocgSlqkQJyntvvDNTNdNCjlh/E/SlEYzwDJFutvYjQiCBMeNMQ2ZYsFAImF2OoOiyqxtjGm1PTKmSjYriEmcpGiazNgNGY7EVLdaNkXQwFj4dJYWsmSz4jkvJridODnA1GWOHC5w5XGDVsdnZd3h/OqYpYUMRw7muP7FZTwvYXl1TLPlUchrLM5lKJX03TJSTZXJ51Q2d1z2zGcwn6Yi47u+1r4gP/USnhWq1SrVavU7H/gMcP311/PBD36Qra0tZmZmABFuYBgG11xzze4x73//+wmCYDcS+fbbb2d2dvYZk6tLELjlllt44xvf+KRyUVmWednLXsbLXvYyPvzhD3P//ffz6U9/mt/5nd/h7W9/O69+9au56aabeN3rXve8TmMukpxarUaSJHQ6HRqNBg899BCSJDE1NUW9XqdUKj2rKU0cxzzwwAPIssxVV131nAjPl770JX7yJ3+S//bf/hs/8RM/8ay//xIu4QcakoSuS3T6wo+i67IwAgO+nxDGKaQpSSKhyCKBybZFuEAYJBMiJORwnpvshhaUSjrzdQNFkXDciHY3QFVkSgUVXVXIZhQ63ZA0TalVDMqTRUi9ZuJ7otS00fYZOzFTFYPhMGCnFYjWdQVOnxtjZxT2782ysuZOWuJDwhDCMKbVDgARBBaH4KcxrieTiv8ycRwRxxJRmOD6MSurLsgprpewd0+WKIwJg5R61aSYV1nbclndcJEkiOKUwUhlPH2YqSv3Meq6TNsJtaqOks/jtLepBAHFcoloeAJJU1GzFkGzQ+IHIEnCUK8qJHJK4gXINR2/0xdSN1lGNjVixyUejnFWN+g/dJLE9QiabdRCbkJcZIgilJyNls0g6yppEJKGMWGrTzwcIqWQBAGx4+JtNyBJSFxPpMsFAaOzKwxPnScN///tvXm0ZWV55//Z895nPufOY9WtmaIQoUAFB8ABtEEhnbhiWG0grS4R0cUCu6PmF0U7YuJA0otoomulIZ1ONCsqbaJ2GtIohEAQS5Aqhpqoqlt153vPfM6e9/v747115FqAzCjsz1p3VZ193nvP3u89Z9/3eZ/n+X5DgqUqmqkTRzH+wiJmfwVF08hsniLpukTNFkkQkgQhej6Lmssg/JDM+glUU8fsL2FWZMYr7nROfKvpGqCShKGck0qBqNFG1TWMYgGBwJtZhChCdSz0Yp5wfgVlALIbx1FzGdlHVMig5bJkJscYfMc5WAMV6rv24E7P0jlwhMQPSbouRl8Jo1TAGuoniWP0Qpaw1kTRNFRNRdE0/LlFhKqumrbaOH1l1HyWzv5DxG6AZlto2Sxa10MxDOJOF39+iTgMSVyfxA/QC1n0bAa9kIc4wTB0+s59LWa5hL+whFbM4R6ZBVXBHh2k/21voPmTPYTNlnwzAkYxh1kuSo8ky8Qs5fCOzWNWSpRf+2oAugenV32RpDpdEkQUX70NJqdY+lkDc+sW5h+pU+wuELSbKF0FTVcoZXI0ckOEiU1xdYNBfkYNFpcDLFNhZt7D92Oa7QgvSPD9hIQup59i4vsxKys+IpEZYMfUUYoq1apPMW9QrfrUGgH9ZZOBPouZBRfLUqmUTAo5nQRBuWTi2Br1hs9y1adYULEMDSHkBoBt6wwYCt1uzKHDXYJA0GyE6IbK+IhDpSzXi0kiCKOEpWWfJJFS2o6lgqIw2G8z0GextBKQsVQ2T+V6PYCFnE6rEzI04JygQgdSyXJpxZP9gWnQkwLSg6darTI9PU0cxzzwwAMAbNq0iVwux/nnn8/27dt573vfyxe/+EWq1Sof+9jH+MAHPkChIE3ZLr30Uj7zmc9w+eWX88lPfpL9+/dz/fXX86lPfSotb3sWPD7g+UVUVeWMM87gjDPO4Prrr2f37t1861vf4oYbbuDKK6/kzW9+MxdffDEXXngh5XL5eZt/VVV7wfS2bduo1+ssLi6yZ88e6aA8MMDg4CB9fX1PGQAdD3gURXnWAc+//du/8du//dv86Z/+Kb/7u7+bvsdSUh5Hoxmy55EGmqaQsTX8AExTpdkOCcMEhPy82JaGZWvSm1ARVAommqEyN++iIEiEFDEoF1W63ZBGS6puHTjcpVaPCMJYigjYCq02mKZA1+QixTKl6lu7E7NtU4ZywWCmE3H/njoCwfrxLIem2+x5uEGtEaJr0pCw1gzJOjoTow6WpVKtyR1qhMA0NARSIKFcslCVgHY3ptOJUBQF21Sk8SIJUazg+wn1lo/rJdiWhuvGLCx5NDsRlYpJsx3SbockCZRKBhlDo+PGzC14NDI6lXKR4VMrrF8nM+nNO6dZaoFe6UO1LMJGExHHRL5PEkUILyARoCIgThCZDCKK6ew/Ik1Eh/pRNRUt48hSoft2EzVaWKODGLUGermIUS6AruIdW4R2B/IZRJIQdqUUdNhsScPLfIYkjKTq2eiQzOos1zEH+6QqWddDsyycyVGEEESNNuH8EkHXRc045LdtRHVsguWazI7MLtLeexAtm8F2LPRyHquvQtRqE9Va5LdtQlEVWnsPSf8dQ/6Nil2P9sMHCGsNFE0hu36M7OYpvPkl/MUV4sAncQNEHCPiGFXTiDsuim2ilQu407M468fJTk0gREL+5C0kfoiiKkSdLrV7fkr34BGiZhstkyFsdQjrTYy+Ms66UTTbwnAyZMZGKJ99OqplsnTbv7F0653oxQJRq4NRzKGaJlG7AyhSbKLWImq7qLqOYmgkQYiiaejZLFo2Q1xrIOIEESfg+RiVEnrOIZhb7vX8GMUi2Y0TdB87CgKy68Yw8lmWf3Qv3lFZvqdoKka5gKKpFF59MvboAGG1QeGUrei5DIBUpltYxj0yg719K9ppp+EX8/hdQRAkxEKnNb4FMTJOVKvTbfmY+Sx+roQZaCAErZYsOzNMlVJBiolU6yGWqVEoGHheQtbWCENBGCS029KMuN4M6XQj4kSwXPXo67OxbRXhgmVqNFoRXTdBVUMsXaVv0GJs2CYMBa12yIZ1ORxHo1oPqNcDTEMjjBN0TaHryaxQf59F0wzRdGksvGkqS7ub0F8xcd2IeiOk1YmIY1mOVirqNNrynLTHiRDYlsrsoseh6Q4b1ufQNfl5Nw0NnmQJkCRSov6FXCOkQc+vGZ/61Kf467/+697j0047DYAf/vCHnHvuuWiaxve//32uvPJKXv/6168xJz1OsVjktttu48Mf/jBnnHEG5XKZa665hmuuueZFv55XEqqqcuqpp3Lqqafy2c9+lkceeYRvfetb/OVf/iUf+chHOOecc7jkkku46KKL6O/vf14DoEqlQqVSYevWrTQaDRYWFnj00UcJw7AXAPX3968Jao4H1UIITj/99GcV8Nx777381m/9Ftdffz3vf//704AnJeVxxLFg74EW9VbIKSeVyDg6Bw93yDoy4Kk3Q3IZnb6KgabK0rAgShCJIIgEhpJgmCrtlvTbabUislmdIJSu6wKFOBa0OgFL1YAwENi2hu/HuJ6s4+/vswhCQaMVMTbsYJkq+x5rs7TsyawKcPCxNkdnukSxzDKFkaDVSWh1QuIYjs11KRUtjs50mVv0KOZ04gQazQBD18g4KqZpE865spwtIz1IvCDBNDW56HIVNE1D16SaXa0erDZNy+bwlXpAlEDGlhkuBCgIup7ANAWtdsz8ko/j6NJzzDZR44hpN0dpYhNB4yGMxSrC9dEzDsK0ECSEtQZqrGIN9snAYqVO5+ARwloDe2JEBiJRTFRvrmYTZH9m9+ARGbA0O0TdLiJOCLseRi6LXsyh9JmyaT4I8eeX0HMZtHyW2A8AFcU0UA2NYKmKs2ESM5chqjcxCjkUVUMkCYYQGOUS5mAfcaOFPdSPQOBMjJL4Pv5iFaNSQss4xL5PWG2QO3mTLOlaqmIN9uPNLOBMjKBoKv7CCp3HjuEvLhM1Owg7xj0mS911xyFsRiiaip5xCJeriCAETcMoF9F0DRFEGIUcqmPJwMY2ieotguWaVJdbrqGXZBkYqobmWIgoltkrx0bVVVjdJNQyDs74MMO/8TaCapXqnT9BNU1ELIhdT5ayJQJnfIio6xJ3u1hD/bIsMY4RCoggQCvlEZa5qgiXQUQRGCpxu7vqZyQwB/qkweojB6SKXDaDUcyR3TiJUSrQeuQA/lIVRYheBm/kkreS2TBJ7e6f4s3MExdyqJYpe3iCCHfTDmYqm3AfixCihkCwtBxg2yq5vInramQ2lIhrIVU3RolBVQWWoRIGCq87s4JlaJimSrXms1xtoOsKvq9IX652RMbR2LAuix/EHJ7ucGzOZWHJI44FyysalaqPbeu9rLBpqJimyuR4hiiSfTSqqhJEEaalkctqDA7YlAoG2ayJrikoikqSJGQzGiKBdicmiqCvpDM1kWXr5hx33rPM7kcbNJsxXS9CVRUMXcEyZSfQ4pJPtRowMGDT6UbMznvUmwEr1QCRwNKKz9RkloF+i3xep9mK6CubIKSxadeNEQJcL2Kw3yaXe+FCE0Uc72BPSUl5SRBCcODAAb71rW9xyy23cP/99/P617+eSy65hHe9610MDQ29IMGCEIJWq8Xi4iILCwt4nkd/fz+Dg4NUKhX27NlDkiScdtppT5nNejJ27drFu971Lj71qU9x9dVXv+gBz+c+9zm+//3v88ADD2CaJvV6/YQx09PTfPjDH+b2229fs0FwvOwTYPfu3Vx11VX8+Mc/plKp8MEPfpA//MM/TAO4lB7NZpNisUij0ehl1J8Oy1WfH99fpa9sYRgqcSyo1gOOzXTZe7BJxxOUCzrD/Rbzy4GUpRYKx2a6NFoRjqXghwnVeoDvyzKTbEbHc6VvhmVrZLMaQSBAkaVxSSJQFNA0FVWF4UGbXFYHIdiwPkezFbKw6OMHESv1iCRKWFh2cT3B6JDTk7kOArm4iWLB8IDF6EgGz4t5dH8L01IwDZUwStA1ubAzdIX5RR/fixgctPB9gefHZB0dXZcCBo6jslINyGQ04kh6fYax7GFqdyNEAroGuq4Sx+AGESRg6LJPaNumPKPDDomAaGaW7IEHcXMV+jQP7/7dmF6TvrhJTg0QSUzi+0QdDxGE2KODsiHfC9BLBTTbpPza0xi88DwUBRa+/yP8uQWCTpfugWm6+w+ThCGabYOho2oaxlAfJAl9b3otVl+Jxv0P0T10DH9hBc0xUTPO6sK6gD06gGKasgk+l0PPZ3CPzhEu1zD7K6iORdxxEXGMUS7hTAxjjQzSeeQA5mA/3sw87f2HVxXTZDmkapr0v/l1WP1lWnsOYA714U3PEjZamIN9NHfvpXvgsMzCdNrEHQ9FU1FUDVXXCasNhCJQdA1vZgGjXEQ1dIy+MvbIAAiwRwbQCjniZhtn3TjhSpXiaTsIVqr4yzU6ex8jdgNi38ceG0TVdKJOFwWBWangbBjHGR9m4II39UQBarv2cPgrfyO9ehIZsCMSkiAiu3kd9ft24x2bxx4fJu66RB2XqNkEFJzJUWI/QEkEqmPLUrlEkJkawxoexKwUcSZH0RyLqC3LC/Ov2oamamSmxntzF3c9RBQRux6KotJ/wRvR8zkS16V7eIbuoaOIIERxbObUCsfCPPlKlmxGbga2OzEPPlzH92IMQ8P1Y4IgwbZVPC9mcSXA0BVEIjhle4FL/+M6avWQBx9uMDvv0nVDQKHVjqg3Q+rNkG0b84yN2Ow/1CGKYhaXAxaXPLKrMvKtTkQSy42DbldmUIsFKQQQRoKFRSkMkMsamKbCtk15Bgds7rt/hbvuXUHXVYoFo6eWFkYJ3XZEEAve+Lo+Bvtshgdtbr9rkZWaT6MRYVoqmib7DD0vwjA0RoZM+is2U+uyHJ1x6XQinIyG5yZs2pAFITd4TjmpiBDw4MMNmSmuB7IcNpIlulEkeNVJBd7wun4KuadvVPpM7r9ppicl5SVGURQ2b97MJz7xCT7+8Y9z5MgRvv3tb/MP//APfOxjH+N1r3sdF198MRdffDFjY2PP22JbURQKhQKFQoGNGzfS6XRYWFjg8OHD7NmzB13X2bRpk/RQeIb87Gc/4+KLL+bjH//4SxLwgDSLffe7381ZZ53FX/3VX53wfBzHXHjhhQwMDHDXXXexsrLCZZddhhCCG2+8EZA307e97W2cd9553Hfffezbt4/LL7+cbDbLtdde+2JfUsrLDOlYTq++XdMUBvosCjmdKD5uFKqwbUuBg4elB0c+qxPHCdV6g0YL/DBGJLIefmjARoiEqhBoKvi+wA9DHEsllzFwvRgviMllDU49Kc/MvEfG0RgbsWm1ZOnZwpKPF8RoqspAn4HbjZmZV9A0aLYCmbWxNDRd7ip3arJszTJVBvstqvVQ9uLECeMjWfrK0uMHIRjoMxGY9JUNHjvckYtoW8OyVDQFBgYsHFuW34DAMFW6TUGnGxLHCbqm4kegqKtiCKqCUKVcbyIEtbpPPmcQxQmNIEfF6KNSX6IymccfzNCoqywsxdBYwTQEqq6R3bQOBUEcRMRtFz2XwR4dRAiBMzVGbst6OvsPo+YcIj/AOzxLEkWg66i63B1PGm1E1iI/MoSRtRFhgNFfwRrsxyjmiV1f+sJ4HophQhITLNcon30aeqGAiEIQYBTyBLUGIoyIWh2CWgMFyKwfJ3/yZmnKWWsQzC8TJzH5U7ZAlCAUIZW1NoyjZRxq9/6MuOuhWAbmQAWBwD18DPfILGoui0AQ1ZpEra4UljANKY1tqAjXJ+64mP1l7JEhICEJY1TTIG53ae8/QlRroGYd4lVD07D573Qfm8aeHJNlffUGUbtL3O7grJd/s/z5FcyBPrSMTf6kTb2AByAzMUL5NadKw9VGC0VRMSslKXzQ7mIN9xOs1NCyDiKJUaMYzXbQMrbsyxJSTc0eHSJYrhF3ujiTo5iVMkkY0TkwjaIp6OUiUbWJUSxg5rO40zNYQ/1oGQfNsfBWfBorLuHkRg496tF1OximxtDAIKNvnCBnK9TagvkH6mi6YH7Jo92O0DSVYl5nbMTh0X1t/DCiXDJpdyI6nZCul5Bx5IaEqsJA2eKnD9YZ7DeZGLOZnuni+QJVFQSh/Mz3l03a3YjDR7scm+2CIgi8BFQII+nDoyA3CxRk5iWbMRjst2XfXklmgBQU+isGfiB/bqMpjYJzqxnhJBKw+qtQUBCKvB9lHR1dU2i2pahIuxNTKCj0laUxqutH7Ftw8QKfYLUf7+hMl1xGZ3wsQ70Zks9plAommqZQrQUcPNLmtadV2LIxyx33LDM375HPGbLnqWAw0G+SJILdjzTYeUr5BenrSYOelJRfIRRFYf369Vx77bVcc801zMzM8J3vfIdvf/vbfPKTn+T000/vBUDr169/XgOgXC5HJpOh2WwCMDg4yOzsLHv37qVcLvdEEn6Z/9BDDz3EO9/5Tq6++mr+63/9ry9ZRuS4DPzNN9/8hM/feuutPPzwwxw9erRn5vvlL3+Zyy+/nM997nMUCgX+9m//Fs/zuPnmm7Esix07drBv3z5uuOEGrrnmmjTbk/KcUBWFJ6q1ME2VQt5gftHDKhiYhspgv83Bw23iWDAyZNPuRByd6ZIkCqqiUMjpGIZCpyvIZ6WMtR+EeF5CEgs8T5bAFLI6QwMmAwMOfiR6KlH5nC4d24MYQ5NZGumQHq6W4Ava3Zj5RR/HkT4qcQz6qsKb70XoZZNCTmNpOQJUFAQDfRaWpTM376KHCQMVk4mxDH0lE8OQZqb1ZkitHlDIG3Q60ji168YUCgaWqXH4aIQfJAhTWTVolYs129HouglJEsuyoVhmhJaWfHRdIe7fgGgYTHqLWDoMjxepZh38sETJnUfPZrEnRog7XaJ2h8yGCTJTk5jlAnHXwx4elL0jxTzhSp2k66JaBv5jRxCeB4aOomho+SzmQJnsuhH0fI5gcYXuoWkpSX3SBlTDJLt5/aoRaYSIQ1p7DhK2XaJWl6jZIbtliuy2jZTy2V6pGIpCEoaUXnOq9IoB8ts30QhDoqMuVn+FqN0hanYw8lkUTcc7NkfsBeS2bcAZHwYgMzVO57GjNPfswz10VJ5vXwU0jbDZQfEDknZXiiNkHPI7NpPbvkmWra3U8ReWaO7ZD1EIiiplvQcqeLOLaKtlX4kfkng+uS1TmH0l3GPzuIdnaD98AKNcQrNNcts30ff6M8hsnFz7htdUgpUa/sIK5mCFzKZ1KHFM4ocyUza/DFECqopeyOPNLaHnpbR4WK1DHEEiQMRY/WWMgswuBMtVFAUUyyQJBO1HDoKQqofls0+n+cAjuDMLxHPLLHU1ZgKHY+EYSw+ZxMoiUZgQBglxAmOjDmfvrOD6CQ/va7JSDwiCBMfSyOV1mi0Nx1aplA3iOKHdiUAIslmdUkkhisBzY/pKJkJZLWlb8SkVDbZvznH/ngauH5NxVIrDNiIR7DvYYnHZx/UT8lnp41MxVFrtiFojXM2ICjQtwbJ0cnmdiVGbjhtTzBsM9lvU6gEzcx62pdLxYgo5lXXjWcIQDh5psVIN8IIIASBktrVSMqk3Q0aGHNqdkM1TWaq1gJVqTLXmE6yW3oaxQCiyHzCMpYhJuWQQJYL+isXYsCP7fIRA1xVm5zwO9XcoF0wqJRmgKYrM3OZzUj4/SQRzCx6LKz6TY5nn/Z6bBj0pKb+iKIrC+Pg4H/3oR/nIRz7CwsICt9xyC9/+9re57rrr2LFjRy8A2rx583NegCdJws9+9jOCIOCMM87AMAw2btyI67osLi4yPz/P3r17KRaLDA0NMTAwcIL/0KOPPspFF13EFVdc8StfAnbPPfewY8eOXsADcMEFF+D7Prt27eK8887jnnvu4ZxzzlkT6F1wwQV84hOf4PDhw6mRb8pzopA3cCyNrhuRcX7+51hRZMbn8HQHa8BG06SPR6drMzvv0unEjI9m8L2YxapPHIGiyhKyXEZnuSoXSgLoKxuMDNqEscDtxsQJRBHML7qyUToUuG7MYL/FwqJUarMsKOQM+isWQZhg2SqdjsxK+UGCpisEfozrJyiApkKzHZJthuTzBgmQtXXa3ZBqLaRQMNh+UoEoSDhle5H1E1lqdZ9H9rcZHZZBz979Cc1miGGoDPbZrFR9DF3DzKlUSlKBrt2NMWJBJqNRGrKwDIXDxzqIRCVfMDBN6WfkBwnNToxIFLzSBgrFQSpkGVpfoag7BLFG9th9hI8dInE9Es/HmRih/9zX9YKL7uEZWRLVatM+cJjO/iO0dj8qK6/CCMVxMIo52fcCaBmb2PUwKmUp0xwEaNkMUa2JOVBBNQ3M/jJJGND82V5EHKEIyG3dQPP+h+nuP0xUrZPfsQWzr4ReyBE1WsSeT1hvAAJFUQmbbZzRIfreeCb26BCKKvuDRBAikoT2o4+hOnYv4DmOiGJEGBJ3PcyBCnoxj+bYGPkOQaOFWK6haAr5V20lt2U99sggRiGPn8sQNFoE03No2QzWyADOxAgkCWZ/WZab1Zo468cIlqrE7S7OxCjWYB/ZTevwZ5ewRgYo7NjK8G+8VZYDrpIkCYv/906O/MXf0dyzj7jdWVXZy2KPD1E8bTvmQIWw0UaxDVq7H0VzMiRhTNzu4CcJRiGHns/KEjbTRC9KwQVvbhGzIucRIA58gnwJvxtyZP8y+ps0Km84g1ytzt5HaxybjVjqKtSrMaEXs1LzCcKYUsEgl9U5Mt2hXg9otSMazZDBAYv+ikkSQ6cTgQDLVPCDhFNOKjA8cDyDkxDHgmPzLhlbRdUU9j3WIollf12+plMqGoRxgmPrDA1YKIrMyOTzsoTNMBSG+mUZqpPR2X+wRdeNyWZ0wjAhY2sM9FmUywYz8y4r1YDlmk+5YAEJI8M2Z7yqTF/FopjXeXhfiygWDA6a3P3vKyws+wikH5hhaPhhQtbRmBx32P2wFFjQNQhCgetGVOsRrhdRyOpkMjr5gkG1FuCvGqQ2WxGv2l6kWDTpdiNm5lwarZDlquzTMw2FZidmbFgnToQ0WF7VU1JVBctSWVhKg56UlwFf/epX+eIXv8jc3Bwnn3wyf/Znf8Yb3/jGl/q0fuVRFIXh4WE+9KEPccUVV7CyssJ3v/tdvv3tb3P99dezZcsWLr74Yi655BJOOumkZxxsJEnCgw8+iO/77Ny5E8P4eT2t4zisW7eOdevW4fs+i4uLLC4usm/fPvL5PDMzM2zZsgXLsrjooov43d/9XT772c/+Sgc8APPz8yf4UpXLZUzT7PlYzc/PnyDjfvx75ufn06An5TmRz+mMjtgcPNRGUaQXB0gVoyhOWDeZIWNpzM65mJaKZaqUiwZ9JZOMo+F5EVPrctSbISs1afrXdWPqjQBVVdA0hSiW/5ZKFm4m5PBRKQk7v+gThIJiQefkk4pkHI0jx7oIYHTYppA3MHTpxA7Su0dfVTtz3YgwEkRhTBBBuWRgWRqmobB1U4lWO2S5GiKQJW3ZrNzFXTeRZcuGnBQasFTmFnwWFn0qZZN8TufIsQ6OreOHCRNjWcplg3ojoFgwqNVDHt7XxLI0LFNFJAn1hjRqza86w3uuLNFruxG2pWHaUtq765Q4GgxjHwbHUbFMWLdpG04cYRSyhI0WpTNO6QU8sefLrEKpQPWe+/GOzmMN9tG2LBQRo2gasesSGzpGPoeWcxBeSNzqSjnsJEHP57GHBogaLby5JVTTBAXcY/NEnS75bZuw+krY48MkQSjLz47NE7ke+a0bACieeQrZDZN4iyt4x+YRIpHZqPXj2GMn9nrGvk/jJ7sxSyf2NcSuR+IF6OUSilCIWm0UTZPSzMUCBCGqY1M569UQS6NU4pio1UaEgfTBWX29qNnGXg1+OgemiTsd9MIAwWIVb2EFY6CCalmY/SZhrYmez1I++7Q1AQ/A/Pd/yP7P3EiwsIyStTEqRVnWt7BMsFIjWFjBmRzFqBRRTB1iWcZolQtE3S5xp0vSlUazIowwRgfJDfXL/p/RIcxKiajdwY8VFu0RXMVCxWV2UWP+h9NMbBlkeMhmLsyRHYK5x9qEcUQiZIlXZtUbxzBUFBUOHGqvyjULslkNRVEoFw0KOYNGK8SxNNyu3BzYcVKRk7YU6LgRDz3aZG5Rfu5cLySOZXq33gyZSWTZ5uSo9KZZrsren9kFl243ZrDfptmSmwEospStkDNAkf14YZD0TIZVRcpjqxr4niC0E4pFHdvUsG2NwX65eSfvHTGumzAxkWVkxMbzpEBKFIMfyEBrcTlgbsHlyLEOjx3uslT1QEBr1eA0SaRq5OCAxfCgTRQntFoR7XbIoSMdgiBhuSozYpmMRrloMjhgsefRBo8d7rCw6FAoGCDAsVVGhmyGBmw0VSGKXhi5gTToSXnR+Pu//3uuvvpqvvrVr/L617+er33ta7zjHe/g4YcfZnJy8pf/gBRABkD9/f28733v4z//5/9MvV7nH//xH/nOd77Dl7/8ZdatW8fFF1/Mb/zGb7Bjx45f6smTJAm7d+/G87wTAp5fxLIsJiYmmJiYIAgClpaW+Iu/+AtuueUWAHbu3PmCylJfd911vbK1J+O+++7jjDPOeFo/74nOUwix5vgvjjmu/fKrHtSl/HqweSqHEIKZOY9qLZCWIQKKBYPTdpQwTZXFJZ92N8I0VF69o0TWUQnChFxOX826CB7YU0NTFDJ2TBjEhJGs4Y8jwZFjLoW8lL21TYWJUYex0QzVesDIoCylGR60OeesQX74b4vkshqGLu8bpq5iWwpxohKHMe1uhKKqaCrEiexD0lSFWiPEMDQG+2Uglsn6WJbKuomMNDbttygXDVRVfm4yGZ0dJxV4ZF+Llaq/6k0EjVZAIWegaQquG2OZGkGUMD7mUGsEqIqU+u10YjrdmFLeZGLMwTQ1Zua6EEMxZ5DNGgShvOa5UKHm2yi1Fhk7Rjd0EldnW1xk6NARChvHMfrLUi662SZYkmVpiefjHZ0nMzWGOzuPns9iDfaBpuPNLCCSGKNSQHMc/LlFoigirNbR8zmKp26T37thknClRlBtSMnsZgd7ZIDEC4i6Ho2f7CH2fdA0rOF+wkYLLWtTOvNU7LEhVMOQCnKnbZdiBU8gKuPNLeIemaF7dJ7mT/dg9pfJbl7fC+IANMtEMXTUOMIaGUDRVKJOV0pTF/OgKog4Ri/kcSZHWLnzJzQfPkDc7BDWWyCkJLTm2FItrt3FnVkAQEQJej6HNTwg1ermllbfx1JAo/CqbTiTo2vOOajWOXrTP+AvLqEXciiKCiJBMQwwIhLfx1tcwlk3iggCkk4Xe/N64pW6LDdcqpKIhMQLCOtN3MMzxGGIiCK0Qg49l8Ea6kMfG2ZuSeA1PLJhh874BC2RpzXX5XBthXxOp1QwKJdNGq2QIEzwQ2mKaloa7Y4U9ohjGWA7joZwZRax242kBUTfz3vRZLbk5z16hZzB0opPsxkSJ/JvSyGv9/5+tLshBx5rUy7qnHrKIPVGQL0h5aQr4yb5jMHegy1URSEMEhIrwbY1as0Q141WM5sxCNnnZhqqtKyomORy+upnKmTvgRbDgzbOalao60YsLsvPv6oqCCHNkF034tB0h/2HOui6iucn/ORnVbrdCFVRiAW96/D9hIYIqTZCJkczVGs+7U6EqsD8kk+1HtLuRGzZkMXzE7JZjVojZG7Bp96KEKKLbefJZaTYyqHpLrquEgQJo8Nrq0ieL9KgJ+VF44YbbuB973sf73//+wH4sz/7M/7v//2//MVf/AWf//znX+Kz+/VEURTK5TKXXXYZl112Gc1mk+9973t85zvf4a1vfStDQ0O9DNDpp59+QgB0PODpdru/NOD5RUzTZGxsjM9+9rPcc889bN68mWKxyGtf+1omJyf58z//c9761rc+r9d71VVX8Z73vOcpxzxdg93h4WHuvffeNcdqtRphGPayOcPDw72sz3EWFxcBTsgSpaQ8GwxDZfuWAuMjGeoNuTBybI1K2eypKpWLJlEsmJ1zOXK0Q6crF2WtVkTXiykXdTKOzqYNBg8+3EAIBV0TqLqKqUv1qFo9AAUKRXs1QPEZGrQYH3FotkMe2dvipM05Rocdpo91GR2S3jtBkKyW3kXU/BihKNimiqpKhTYU2WfTbkcoisdAv8XIsI2IE04/pcSpJxefdIOgXDR5zWlllqsBXTci52gs10P6Sgaul6CosLjs4ZgqTkZn47osQSRkQ7iicGi6g+xUkmaomYxBuajT6cZ0uhHdbkSoywxU33iBzrKCcF2s2GN6EebFKDsG+zm538KcWURVQM9nKbx6G7mTt7By+z3o+QyKpqFZJkZO/j+/dQOapuPOzBPWmiRBJHfJl2qIcpHy2adRPP1k4laHuNXGmRjBmRghdr3VkjVPmqSGIUa5iIKCP79IsFQjiSIyUxNYw3Nojo01JI3LFU17QnuT1qMHafz0IUQUoeezaPkszYf2480uktk0SWZyDD2XQbWl0WhQbRI2mqgZh8QLSFyXMGqgmgaKoqDaFq3d++k8egAjl0UxDfzlKkkQYpQKJJ70YdJLRcJ6g9gPEX6AoioYxTzZTevQsjYiikFRiF2fwqu2nfAeqP9kD529h1b9dWIgIYkikk6XJAggjkjcBPfYAvZwH4qqkTTaJEFI0Gj2+nmEbaEBWimLP7uIt1xDG59AKZSIGx5up0mnLsgWbGbzG6mbg4h2h6KuojsqD+1tMjJoMx4mLCz7tNshwWoJp6JAFCX4gSCX1VBVBV2XmcIwjjFM+V7LOBGg0OlGDA1kKRXk0tr1YlrtiJl5j1YnxLY1Ctm1f2NzGbkRsFyVAf3IkMNAn4UfSJXFjKNTzOskQhBFUK2HqIosqet2I/I5XX5e/IR6LUTXVQYHLEZHbExDZqqq1YCDh9ucvK3AxGiGUlHHNFTiSPYeOba6er4Jc0selqGSy2hkMwZ9lRjPT2Qvlw66ouB5MVEs0DSVOE7w3AjfjwhjGRS2OzGGKjcIoyjmob0tRoZtLEPhwYc7RLEgn9OpN0Me2ddE1xSKRQNdV+m6ESdtLjDU/9S9w8+WNOhJeVEIgoBdu3bx8Y9/fM3x888/n7vvvvslOquXH4VCgUsvvZRLL72UTqfD//k//4dvf/vbXHTRRZTLZd71rndxySWX8JrXvIY4jvlv/+2/cf755/Pa1752jUzz02V2dpYLL7yQCy64gK997Wtomkan0+Gf//mfX5DSr+OGq88HZ511Fp/73OeYm5tjZGQEkOIGlmWxc+fO3phPfvKTBEHQm59bb72V0dHRpx1cpaQ8FX6QsFL1Za+MpjBQtsj/gk+F9PNpcuhIF9vRyOflDq7nJzQXXR7e18Bz5QJmbtElCuWiIp/VUBUVIaQcbBgIpo91e30KYWhw8EibbjdmacXH9WIqRR3XM1mu+mi69MjJ53QG+k2iqIuuKWSyq145SGW1TjcmDAWNdoiuShGGqfEMm6ZyvzQjqusqw4Oy7Cnj6Nx93wrLywF+lNDpRswteOSzBqYZsmFdFl1XmV/00DSF/orJsTkX01ARiUDTZT+7ZarUGglhJFDVhCTRaLVjar5BPmsz0KdQ0KDlK8wN5SgMmzgjClNjFma5gJ7PIeKYJAhlWRpglAooxRKdZpckilH7+tBdlySMoNVGtUyym9Yx+p6LKL56O5plUjz9ZGo/fpDOoaMYxTxJFBFU6/grNXTHwR4ZIGq26RyZI2q30XNZohWXqNmm+9g0/vwSlbN3Yo/JDZao3cGfX149LwPF0Gg+8DCqZaBYBmGjRdRqEyxX8WYX6Bw6Sm7rBhkg1JtEzTaKaeBOz61mdbIYlRJW1sFbrKJlbNqPHMCdngNdJ4ki+XquB8heJgF4swsY5YJUppueBUPHn1/GGRvGmRxBtSyCao32o4ewhvt7ZqfK47ze/IVF4lYXRVFRDYO46yPCEEXXwQ9kligRxO02IiqjZR0ppT23IJXpJkelgamiEkUxZhCRbNrGUS9L1InJBBH2lo1UiaGgE1WK1NoGeS1EzavkK1nUjEUh73HoaIdWV2YohADdkMF+syUDINuSEuq6Lk03AUoFAxQF3wtpNCMqFWO1z8eiUjLZd7DFzJxL142ZX3CZnfcZHjDJOtov+OEJ+VkMZNmYZWnoukqpYDA77xKGMvgfrjjEcUKtHrKw7KEoglzGYGj1NQ8c6qAoiszQClBWq8M0VaFUNDh0pM3e/S2iSJoSlwoGG9dn6boxXTeW73FdIe/oFAsGrh8Txwmd7qrwQ9Gg242IkwTLUlFDed5RJOfp6JyHoSt4XoKK7KlrdSJAEEcCy1RZWJDKkGPDDo2mNDJWNVAVjVYzwrQUqtWAzVM5CvkXJjxJg56UF4Xl5WXiOD5hd3xoaOiEnfSU54dsNstv/dZv8Vu/9Vu4rsutt97Kt7/9bd797ndj2zaGYRAEAVdcccWzCnjm5+e58MILe6WKx2/k2WyW3/zN33y+L+cZMz09TbVaZXp6ume0CrBp0yZyuRznn38+27dv573vfS9f/OIXqVarfOxjH+MDH/hAT+v/0ksv5TOf+QyXX345n/zkJ9m/fz/XX389n/rUp9LytpTnzPyix76DLWqNEFVRQAHH0pgYc9g4JV3MQfr5HDnq0lcxsayfL5jGRhw6nZBH9reIE4Hrx+iaiqII/EiQNGIyGWkAGISCnKOjAKWige8n7H64gWPrbFyfpVQwKBV1HEdjaNBm8waNRMgSs/l5D8tWabVCuq6GY2t4foLrRVimTqWkkQjBSjWk0QrptAOqDZ3b/3URx5EKbWPDDuWS0fvchGHCSi1gecUnjMSqepPcOV6oetimhqapJAm0OgFZoeNkNEYGHfJ5g+UVnygS2DWfdeMZhgcsHt7fotWOEIrsGUoijWY7xlUT4jjBdRNMXaER2QyVbUwvRgHMgsNMoDJeqpDJy534GJV2YlB9bIG4rNCcVwg6BlgVNOGStNvomTKVV2+lMloiWKlROnU7xAntRw4iEMTNtsyyWCZJGKIaJvmTNhP++09Rsw7t/UdW+1fqaFmHqNVFz2cQUYw1MkiwtELzwUcxBit0D07T3rOfsNmSBkaJIFipETY7GMUcwUodf34Jf34ZkcSgQNLp4s0t0Lz/YYQCmY3riNsd3GNzEMeAKs0pvYDsujFy2zfRfGg/7sz88ZdAdD30Qh5FVWTmxvOJ2128uSU02yTsuGTWjaLns6iOjTe3SOfAEWlImstilvKs3PFj7JEBSme+CqNUIKjWaT4ohQuS4/KFQqBYJkos5LnFAtQEsVqGp5g6ouORuD4kUkbbGR9BAOFylcDIcCwzTpeEciUm01zG9pscMYZo+Rp6S8Migk4Xc3gANSPLpwxDpevKTGjG1vADga6xKgUNnh9j6DLL4TialHvO6BiGRjFvYJsamYxGxtYwLY3RYZtqPeDQkQ5eEFNvhKsGnBHH5qX9w9CgjaKoRKuZltKqV85xNTddV8lkNBaXfZarAX1lAy8by0C/z8S0VNZPZti6sUC7E1JvRMSxVIobGbRxvZh2N6ZsSjW0aj1gfsnn0YNtvCBBCMHikk82p7N1U4EgkOflejFdr4Vtq7hejG7Ic1RVhWLBwDAU6g05T60kpt2JCMOEMBaAlMHWdYXR8SxhKPCrMX1li3xOXfUKkxs1y9WAMJQKc+WiQRQLum7MYMHGtKQYRLUe9nqQnk/SoCflReWJ+iPSxeMLj+M4PaU313W58MIL+elPf4qmabzhDW/goosu4jd+4zd44xvf+LRK3JaWlnjnO9/Jaaedxv/4H/9jzc7Vrwqf+tSn+Ou//uve49NOOw2AH/7wh5x77rlomsb3v/99rrzySl7/+tevMSc9TrFY5LbbbuPDH/4wZ5xxBuVymWuuuYZrrrnmRb+elJcXy1Wff7tvmVpdSkJrmkq5ZBAnCfsfa6NpCpumpPLUwpIPsCbgARk4dP2YfE6j0YqwDJXY0dANBc9NiBMhy2A8uVsrFIViXmew36LeCGm2pbv64opHoxER+AnFoiG9biJ4/Wv6sG2Nxw63+dlDdTRdwzTACxJcVwYXWUejUNCJo5h2O6JSMth7oMPsgr/aKwDZjMaGdTm2bcqzeUOOTjfi/j11VqoBlqmiGyrH5lxq9YA4Snjt6RWarYhmS5bw5HI6lqkyv5r1yWU1KqUcjVbI6JBFsWDiejHFotwdtyyNcsmi1Y5wfak+FccC01TRDY2FJZ9WJ6JSNMnYGtmMTrsdsVz1KRYMgjDhkX1NjrXzsHCQVkNnoapQUPP0BXWywxWSIIcXwnKSQ3lkmtxgERFH1O59gM6BI2iWRW77JlTLIGp1MPvLlF7zKqJWh9q9D9A9cASzUgJFQS/mZZDi+oBCWK2TeD7W0ADezALNXXto7z+CnnXIbJhAUWQPRufAEZoP7sUeH8YeG4QkwZkcAUUlWKoSeR4IgepYiET+688vouo6aj5L4gfEnQ7F006m/LrTMPvKdA8eQTV0SBKMYh5V11BMA1VRCWp16b8TBOhZB9WyyGzIMnLJ+RRP306wXGP59nsggcrrz8AeHUA1TSnUMDOPiBOs0QHmv3Mrzd2Pyj4iNyAMm6CraFEszUkTIVMuSOPUuOuSJDH4EapjkXgBSiL7fxLXw+jvYyU0iFfq9BVtzL4+yFoojk5/o8FSVcev6owN2djD/djjq5mzKGFpxSdOBCtVnyAn+8Bq9Uj+XlRZ4haECYauks1oBKGUcjcNKaveakeEUYJlqGzdmGNiNMN9D1SZnnWZn/eIEkG4KsDQboccOpYQJ4osl9MUbFujVNDoK1v0VSyWVwJ8P+LIMRdFlRsbx0vrgjCh2YoxDZXNUwUGB2wGB2zCMKHZjlhc8jAM2e8X+DJ7U6sHHJt1cWyVdeOONO9NBK6XcGi6TaVo0t8ng4sglMFPuxuRcTSKOZ1CwcDQFDqdiFYnwvUEuYyKaag0vVCWoSKzVEkiKBZNogDqzUi+fiPAsiy56ZLViCJBrREQx4KBfpPBAZnlbbRCnIxKX8nEMjXmF7006En59aW/vx9N056wPyLtjXjxEELwoQ99iLm5Ofbu3UulUuGOO+7gW9/6Fu9///sJw5CLLrqISy65hHPPPfcJPXlWVlZ45zvfybZt2/ibv/kb9CdorP1V4Oabb35Sj57jTE5O8r3vfe8px5xyyinceeedz+OZpbzSSZKEe3dVOXCwIx3RbZUkEb3FyUCfxdGZLmMjDo6t0elGWPaJgiStToTnJhRLFvOLPooiF1GaqqAiPWtabenUrquQxAmOrSISuZmuAIsrHrPzbq+kbqkWoOsKhazOpqk8G9dn2bheKq4dONRm32MBnhcThAmVsmyWjiPB4orsJ8hkNarVCMNLen4+C0sRUSzwgpiVmseBQ13mFjxKBZ1iwWSg32Ko3+TIsa704EkUxkelXG0uq/PYkQ5+GLG05NFqxxQKOsWcAYrglG0lNqzPMn2sS6MVsn4ii6qCqqhomoqiaL1d5kJOLjRB7nS3WhGmqdDtRGia0ivzOXi4w/SMS/+2CaKwQfPHe+mzM6gTY9SPCbS5JRxNkKlU6Mwcozs6wPo3n0Hi+XQOTGP1SWlqd3oGs1TEr9Vp/uxR2o8cpPS6U6ViWqWIiBOiRgvF0NCyWazBfkQUEdYaMkgxdEQU0XrkIJptYfaVer97RVFQVIXY8yBJZGAQROgFKV5gDfWRTM9KA1JNAxERt7voxbyUuTZ0shsnQUBp5ynYIwP4KzXcmSX8hRX0jI2WyaCYMmhTNQ0S2UGlCMisG6d45g7itktp58nYo0OQCMxykcIpW2XgtIpqGmQmx2g9fJDFH/yI2PconnYy4XKNzpEZko4LfkQcRCi2iazPAjVro9sWcbsr+1GPZ4PCCDSIWm1U00Tp66PTcch2lhGZQTTHAtvCOnUbA52AmYebTC9EaJMVnKECrG60Ts908dyYStGgWg+IIkGpYKKrCo1WRJwINFXFCxJanYgtQ1lGhhyiRNDqxASBVEc7eUuRV59SYuO6LHsPNDlwuEO1FpDNaTiWRhAkRIFgbsEl9GO6bsS6cQcBmLpCNquzaUOeV20vUm+EHDjUpt6KOHVHkYyt0Vx9LVUF21R5ZH+Lbjfqza9hqIwN2zRaIc3VnqQ4b9DphhyddVFVGOx3KK5mMVVVYWoyQ60WsO+xFqome4sA2a8TKazfksUwNUYGbfr6LI4e68r7kKkiFNkPpCiga7LUz7RUBiomXiCYmZclp9msTr0WMH2sS3/ZQgi5IdNoBBiGRi7zc0EHhMD3Yipli1xOp/O463s++dVcraS87DBNk507d3LbbbfxG7/xG73jt912GxdffPFLeGavLBRF4Y1vfCOf//zne8HmW9/6Vt761rfyla98hbvuuotvfetbfPSjH6XVavEf/sN/4JJLLuEtb3kLjuNQr9e5+OKLWbduHd/4xjeekfBBSkqKZG7eY9+BFqWSQan489LSbFan3gxYqQXECTSaIY4tJZobrRMXAUki1bFMTcGyNKJIeoK4nsA0FXRdQdFUMpZCGIKqKbQ7CYePdQmChDCMaTRlM/TQoEPW0Ve/P+LQ0Q4//ukKmib7DlaqAeNjGWYXfDw/QlMhCGJabXkulqEw0G8TxwqeHwOyZM00dTRNML/gUasFHHhMx7Y1hgYtdF2h0Q5XMzY2lqmSxIKVmizzAell5Hoxy1UfgUBB4HYjFhY8Rkcc+ivmqmKVlK5+01kDLC777HmkQbJqiqgIBYHA9wVBGPdKCaMkwTRUDs900VS5+/7Q3iYPPdqgVDSxHBN34zbac1DqLqL4PnG5QrO4jvL2UUSjhn1khmB0PYHQiBeWiT0fu1eatpfMxCjW+BB61sGbWaR21y7pa7NhHD3rIESCgoJRLqBoGkG1JgMLQMQJsesj4gRn7MTNQYGCapnEnS6qZckStMcR+wFJs4MzMYJWyIGmolkmmmXJzJIXyCwT0Dl0lJUf3os/vyDV5BKBiJdIooi446LnsqiOiWZb6KU8Qb1B68G9lN9wRk9swVtYBlVZE/AcR9FUvMUlOgeP0P/ms0iimOyWKYRu0D1wmMR1IYwhDFEzGRRTRxseoZ3vwzND7IxJJmxjaoJY1wEFxdCxRgcJzCyRC0a7gb5uHaCi5zMYfWXMIZ2tuQoz/7rEfFPBLMSrssshrVZEX8VkbtGnVDQZGbKJY5kdQZVZMsvUWD+eQTPU1YZ+hfERm+VqwFC/xUmb82zfUuipEi4uB1RrAaahomsqy9UAz49RVMhkNOoNmVHsug59ZZuMozI1mWXLxtyqCbHF9EyX0WGHYkHeG/rMtRne/Op9IklE73UHB2xW6gGtTkijLoPGZjPqbWBMjDpkMz//vWiaykmb8xybdxECmi1ZYrtpfZaOm0hZ7NXP3+apHIcOtxFCYJoaYSCIEymxb1kaA/0WXpDQaMb0VQxqYQKKIOtoBIEseUOB+QUPFIGmKXhBzMJSsOoLpuK6CesnsowMWtSaUU/E5fkmDXpSXjSuueYa3vve93LGGWdw1lln8fWvf53p6WmuuOKKl/rUXlG8733ve8LjmqZxzjnncM455/Df//t/59///d/51re+xe///u+zvLzMW97yFh566CE2btzIP/zDPzyrPqCUlBSYW/SIE7HGkPQ4+axOtRZg6FLCGWQPwOyCRxQl6KtS0kIIVEWahOqGyuiwTa0eohsKtVqIHySoioJpKAQhqIqUqq6UTJrtkNl5j3ojRNNURoat3iJH0xQURePoXMy9P61hGCqNZsTCkke5ZPCa00vsPdDm2KzbO7+xERtDU3GyGgcPd0kSQaFgYJoaQgg0VeB6MQtLPoW8ztiog21JaV2zqNHpRCwsS1UwVZOqdFEkJYIPHGrh+xGFnEazJUuJNE2jv2LS7kTc/1CDN76mj5VqgG1pctd7xKFa9ak3Qyplk3ojYHHJp9sNsW1VKo3pCqW89A3puhFHZ1wsQ+XorMuhI10G+uUcZmyNcGwdSX4KAh8lSmhjITYXUe69G72vjxBBkgiC5RpaxkFEEf7CCiDQchk0W2bM9ayDXiqASIhqDZRMhrAyRGt6HqEK9LiLLVTyAwVQFYKVGnEmx9KSx4EHlgm7PnkzYXgkS2m0jJHLYJTyBCt1QMFbXCb2AlTLQESxLEtLElRdQ4Qheq6Eaht0Hj0EhkZUb6GXi9iTo7QefAR/YYnspvUEy1WiZofY84hbUiwg7nSJ2m3ZC5MkBPNL0ltqYuTnAgWxlDN/PEIIKWKgaoTVuvSa0XU0XcceGyIJIxRDxzt0lCSKMHJZslvWs+KqzGTHacUG2DGmKqhkOpQGckxuKBGt1HAfO0rcaIEVoTQgymZxBvogjnEmR6QoAlAsmJyyvdBT9MtmNMolkyhOcF0pwlEqGJiGyuyKx7FZlzBOUJFGvoqqcNLmAl6QsLTkUS4a7NhWYGTQoVJe+3cwihN8L8a2VFZWe1csW8OxdRl0KC5xDLmcwfatUi1xeNAh46wVN9AeF8AKIUhkvIWqKhSKBr4vS8AG+i0MXaVYMJgYyfDI/iZDAxaT41kazYBWJ2JsJMPkeGZNUByGCc2OVH80dYVS0WSo36JSNnn0QJtjcy4iEeiGFCzJZvVeX0+7E6NpYFvSGyiKBAqgqNLANEmg3Y1RVRm8nLQlz/yCR5xIP55CzqDdTTAMWdamdxVeta3IydsKKKpCFCY9cZPnmzToSXnR+O3f/m1WVlb47Gc/y9zcHDt27OAHP/gB69ate6lPLeUXUFWVs88+m7PPPpsvfelL7Nq1ixtvvBHf97nllluw7RfmhpSS8kqg68bk8gaeH2Ou7mh23YhmSyqh1esBXTeWfTNCMNhnMTJoMzvvks3peF7M0kpAoxUyt+gxNGAxMmQTBAmKqrB+wiCKBLMLLn4Qo6qCQk6nv2Jh2zqZjIGqKKzUAhxToVT4eRmrEIKFZR9jVZ1NUSARguEhGz9ICEPB6aeU5SJNyD6ArZvyuF5CtRrQ7UoJ3IyjI4SQJTetSAZYiizJW1jwyFgaQwMWuiEbwVeqAYW8LnuTLCm+8NjhDvsfa2NZKuGqhG+jGSHyCratI0TMTx+soSqyDAlAJALPTzBtFSEE5YJJISeVp6JYLsgsQ+5SF/I6tXrESj3AsTVKJYN8Xhqh6rrK9EyXkUFLNruHCqrmEJIgoqQ3X16YYOVV6Se0uqaMWh3irovmnHif1HMZrPEhfDdmZklQr2oYroKoLhLn8mQLWTQ9R9ho0fZVHov7OLZ/P1pUR885zMQKR44ssHl0iYGCiYJK4gd4iytE9TZRrYViGhiVIqqmYowMErs+iqqgmjre3DJBvQFRTOwHkAjq99yPN7uAPT4s5bIH+mg+vE9KDre7qJqK0DT0QgFVUUkyWcLyAKLrU7vrJ2TWjaHZFkapSOKHvUDHX6jizy0Qux6KptGerxJoNp1QxdET7JFBSIAkJlpaIfJ9tIxDNDLJkjJEVGvTFzSw+gsgBKZq0jEs3A3bGX+tTuuh/bQffQyl61EyBcv94xSzGbLrx2W53er7uV4PeNVJRQb6LPY/1qa92p/ieTJYHRmyEELhyNEuswuuVDjTZRO/aQmqjZD5RY+tm/LksxpTk1lO2nKiASxAqWCiaSr1RkiSCDJZHWVVbDwRsozMsWUp2JmnVbDME/thSwWDpWWfJBHU6gHL1QDXi1FXldiiMOZV24s0WxHLVdkfowCGoXD2mRUyjs78okcikp7fVastsz6apuK6MYePdpiZc7Ftja6X0Gy7LK0EbNuU5+StBUaHbJaqspQ1ChN2vkr6AXXcmJlZVwZfeZ1OJ6Zak2Ikg31Wr2RPUWTfz+R4hqyj4/oJYyMO8WpPT6Vk0nVDCjkdY3XjJYwE9brP2LCU7X4hSIOelBeVK6+8kiuvvPKlPo2UZ4Cqqpx55pn8z//5P1/qU0lJeVlgGlKSVu4ES1GA+SWfMEowVku+FAX+74/m2TiVZ8fWApPjGVQVfnx/jaUVv1czv2FdRpbMrARkMjpJIuh0YzxP9r6gKIRhQsZWCSOBFkmPn1jIcldVlRmlKJaO7M1WhOvFDA3auN2Y9mo/QV/FJONorNQC+isKO7YVOTbn4nkJnW5MIatzqBWSxJDPSDWqTjem0QzRNLkgMw0VXVfIZjXmFl28IGZowJE+IYrMcjXbEZ4Xse9gm1YrxNAVVEVKBRu63AXvdkPyOR3b0kAkVGsBqqrQ6sQsLnl0XHn9rpfQdV3ZW5QoDPZZmKYqBRK8GK0Z4TgRlbIsM4xiQcbWsGzpQ2RZKrVGiB9EHJz1ME2VVjuimNMZ7Lcpl/oIDj/C6KZBdF3B6CsTHJxG1TWSOEbVddlfAiRRBKqC1V8mGhth5v5jtCYHUeyQmlWElSVMv42YW8HXbbJJhvnsAPXDy4z0G0StALNkgqrSCGz2LbTRqouES8tYowPktm7An1vCm11EMXUS1ydxPZT+CkQRYauN95MlEt9HMU2S0EckCVopj7+4TOIGWMOD2EP9JGUpytB6+ACKppIEoQySMnmqao56foLQzaKLkIV7j6FtfZSxN5yKPTqIUS7gzSxIw9Cjc6iGgTBNjs76HA0G6HZjCtMKpZLNcCaif2IEvZRDxAnt/Ydx1o2y6PQTRjbDGx30zCQiSVBNg9JJG3D3HmD5kaP0ZccpnLIVe3QId3qWXKmC2beZllXG6s8ShLKUsdEMKBYMNqzLUSwY9FcsVuoBzWaIoau02iGuG1NthCxXAxCgayqqIku7clmtJxW9vOxTKhmyzO1JGB22GRw0eWRfi2xGJ4mlfnQUCil4YEoFNiGg3ggZGlgb9CSJwLJU2t2InzxQJYwEpqH2xDge3d+kmDcoFUw2T+Wp1QNpGIxCPqejaQp79jaIE8HkWBZV1Zhf8OgGMcMDNhOjDtMzXZarPratsXkqx9CqmEC9EfLI/iYZR6O/z+oJHFiWSrsTMz3bIQwFI4M29Zbc3AhCQRBBFArcIMEwE7qeLFlzHA3bUqk3Q8JAqsCZGYVyOYuuKswtyqxRoxNyz64aJ28rsGNrgZM2F3oGr883adCTkpKSkvJrxeHDh/lv/+2/cfvttzM/P8/o6Cj/6T/9J/7gD/5gTdnl9PQ0H/7wh7n99tvXqPM9fszu3bu56qqr+PGPf0ylUuGDH/wgf/iHf/iCqkoODdosLPsMDVjMLHgsLHiomtwPPjzdpdWJ8H3BzLzH3T+usn7S4dU7SlimRiGnS78aTSHjaBimRqMR8NC+Fl1XqrEV8yobJrMoChw51pULCEVmQdrtmDCSu8bjIzaapqKpsg9HVRRMU6WUN9A0uei3LIV29+fKm7YlXdW3b8lj2xqHj3bodCMqRYNy0ZTO7bosn2l3ZB9SFAoMQyUR0osnCqHaCKk3Izod6dSuKhBUTNaPZ1A1hYf3NjEtlQTI5wxUFar1CEUVzC36tLoxjq0hEkF/v02zFrC0EmDbKsMDFpmMznA75MFHmoShoFjQsQwVw1DpK5somoKpS2PVybEMzVaEoatYlkZ/2eLYXJdsRufwdBfbVFCQ5rB+kOC6Ibf/a8Bo3uTMSo5i0kEIaSTqzSwQrNSImm0y6yfQ81lEnBAuVzEH+jDKRarzPo8pAcnBOaquho+GlRTIqjpiYgONoY00xTry3SZlpYuzZT3dIzME1TqKrpM3DOaFzvxjSwyXiziTYySujzU6iJbN4M0sgA2KrkGSYE+M4B2ZJaw10TIOiqpKkYQECidvJlhcwZ2ekQoFiuwTym5cR9z16B4+RtRo4WGyrA7g9o2Sy5s4IqKz0uGIKBP/6CC5zespDhUp7tzB/P++lebP9sryNcPg4JLKXFyhcNo6jAd+RvzYARonnUTdt9hQUBjNZ9EyDpl1o5TPP4cZf4BBTaVQtknCmLDaIL99E/b6MfS+Iov3H6Cz0kH3PTTHZvA/nEtu83omhM70jMvcgktzNWDesC7LxFimV75p2xpjww5jww4oCrseqNFqhURRQjark8tqtLtxb2NCICjmTcIoZqUeYFrqU/ab9FUsTt5S5NB0FxCEgTRp1Q0VXZeftbGRDNmM7J97PI2mFDFYrvosLXs8ur9NNqsxMmSj6Qq+l9BfMcllDKaPdRlYDUyOBydCCO7fXadWDxkZclBVBcfR0TWF5VrAocNtOu2QheUAx5E/t/9xGZVS0WBu3mV+yVtTtlcpmWQc2TsYxQLNlEHh0oqP68bkMhqKqtFqR/h+gmGo6CpYhlS8OzbnEccJURSja8eVEgMUoFwyGOgzMAwN29JkOeELKOibBj0pKSkpKb9WPProoyRJwte+9jU2bdrEnj17+MAHPkCn0+lJjsdxzIUXXsjAwAB33XUXKysrXHbZZQghuPHGGwFoNpu87W1v47zzzuO+++5j3759XH755WSzWa699toX7PyH+qWBYaMZ0lc2WVr20TXZ6NvuhmQdnUxGwzINWp2I5VrIw/ukYsD4sEOpYKDpP194FYsmp5xUpNOR6mXtboTnSZUo3VAYG3Lww4SV1aZqy9IY6jfZe7DNoSMd+vssMo6GqkGzKRWfOp2I9RNZykWTlWrYa5pWFFb7CxT6KxZRJEvnXr2jxEo14Pv/b47D012WVqTHiKbJUrJSQV4vSL+TimpSb4SEUUy1FuP5MaMjDq87o0i3GxOGCZWSyWNHOjJj1JJ+J0ksjQ4NTUHXFCxbY2HRY2k5YP2kg65rNFsxmp5QKloUi4bc1TdUwggsSyGT0ekrmziOyrEZj243Rlv1IgEYGbYJo4RDRzosLnkMD9l4gSCTMRjoV8llDMIwJtQt/MEt+NEMHDyKapsYhRze3JJs5hcCf7kGcYzRXyG3dQNtD3bPqsyOnUzS6qItzpHVYiIty1JpK/rIEL7Q+OmjLU7N1ikXbRRDJ7N+XHrcrNQRQUgmbxHlChRP7id/8ib8hWXClTpmpUh2yxRGIYe/tEIwv4I3v4g1PgyqglHMI+KYuOuhGoYsQxrqJ6g18OeWyK4fh1WBhOzm9UStNt35ZZaGN+Ov30q/5qMoIGKFfNagmBMsHK7y2N5lThsqYo8NYQ71k90i/XRqnk41P8D4cI5MKYvnvJrqvfejHjmA7xQ4MK+iK3MUxocZfPs5hLFCVPfRLI1gyQVVJbNhHHtiGAC9rw92ZMhPmQwNmKi2hWbJBXoG2LY5z9RkhiAUGLpUM3wyNq7P4roRd9zjMzcv++wsQ0VTYuxVz6hsxqCQ06i3IjpuhEhg4CmklC1T5XVnVNj/WJvDxzpyLjWFOJaiCFOTGaYms7juz0tbAdqdiAcfbtBsh5SKBpWyycapLJ6fsLQspcynJrP0lU1MU2WlFlBrBPRXfn4ujWbE0kpAX9nsCRw4tsamqRx95YBDRzssrPjYts5Jm/OUiiaatjbCyGR0llf8NSIJ/RWTctnG3ddiYtQmikBFodYIEEDG1qU3mC/IZzXWT2YxDZklbXcjSkWdIDTJZgzyWZ2FJZdcVscwpB+QguDkrVnWT2SZW/Do7zOZmsw++Q30OZAGPSkpKSkpv1a8/e1v5+1vf3vv8YYNG9i7dy9/8Rd/0Qt6br31Vh5++GGOHj3K6OgoAF/+8pe5/PLL+dznPkehUOBv//Zv8TyPm2++Gcuy2LFjB/v27eOGG27gmmuuecGyPZmMziknFXn0QJO5BY9sRsP3Y8JY0Fe20FQF29HQVJWckBmaRjPENlXabkS9GdJXWbvwyjganW7IyJBNuWSSJLJf4Sc/q/V2focHbYSQzdBxLBhqRtiWRseNCIIYXVdpNkO6bszokNXrYcg4Gu1ORCEvS3sG+s2eb4hIBFPrsuSyOrmsztvPG+LffrzM4nKAoshrLeZ1RKIgSAgDgWOr5HMaCnLnXVUUxkdthvothgdtDh3poGkqmYzO5HiGA4farFR9ut2IcsnE8yO6bkw+bzA87NDpRNSbAblsnqnJHI1WRKsd4vkxm9fnQcjXDGNBoxXRX7Yolw1IEh4LYxaXfLZvK5DLyiWRoausn8jIHe+KiabB8IDF4ICDbSmADP5WagFVO0t7YojhvEtYa5DdNEn/295Aa/9hmj99CM2xyE5NYA5USIKQw48sEthlUEsshVlKp4wTKgmoq++BSKFY0KlWA6phwPrV1hFF1zD7y5j9ZUQipFpZdQbF0DErJcxKSXrcKErvfRt7ssTNUqSaXNzqoKgaiq5i9pVxxoYIGi2MYg7dsYn8gGC5hlEqoOg6imkQuz6eZtMpj9CnBSiKIAlCYtfHqBQwK2XsoyvMHGlwkhejRz6KolI8dRuqY3NsOiLTUsgUVjOFY4OUTtuOXsgTdjwWOwrOq05h47nbsQb78BZWGLjrKNUVn8ygjdlXwSjlYbVnKwgSdE0h15fHKD6xmI5laTyB28IJmIbKqSeXyDoajWbI7LyLrkO+YBAECRlHp1zSQVVwuxEZW2NqXYZK6alFfPorFu94yxD/eu+KFDbwE3JZg5FBi/5+i2otoFySmdHjzM671BshoyM2USTwfHkvsG2N9mq568ighbHaA5QkAs9bW2bn+XKz4Bf9vExTZWjQpliQ8u8ZWz/h/rGWtfc9XZdKb4/sbeL6MaapUCrpDLhSRMHzYlRNIZ83yOd0BApekBDFCUvLAZs3Zum6CbalkiDwAjkfqqIgREK1FqFrCpqmkM1ozMy5TIxleubMzydp0JPyiuPOO+/ki1/8Irt27WJubo5bbrmFSy65pPe8EILPfOYzfP3rX6dWq/Ha176Wr3zlK5x88sm9Mb7v87GPfYxvfOMbuK7LW97yFr761a8yPj7+ElxRSkpKo9GgUqn0Ht9zzz3s2LGjF/AAXHDBBfi+z65duzjvvPO45557OOecc9b4UV1wwQV84hOf4PDhw0xNTT3ha/m+j+/7vcfNZvMZn2+paHDGqysI4NG9LRaWPSolE0NXaXfCXmN+IsB2pLdOuxvRFwlq9RODnjiRam7Hd2dVVf5/84Y8Dz5UZ3bOpVg00HUFz0tod0I2rs8xPmJzeLrLkWNdvCCmkMtQqViUigblkoGiKIyPOhya7jA378rFTVanWg9w3Zh14xmGHrfzvWFdjmxG5+DhNg/sbtDshOSyhizFM2QZXRAK2o0IVYHxEYfxEYe+ssVyzafeCCkWDIQQxLGgkDfYuD7H4ek2waopqucnDA9ajA7Z0li0EyFW/SwtS2PQ0hjst+i6MV03RiQyKNy6Oc/cvNd7nSQR5LM6paLO8KDdmzuQ2SzfT5gczZAIQbFgoGlry5oUZNaqGhhoU8Pkt/98sZk/eTPFHVtoP3qQsNrAO7ZAbJq0SsOMbxni8ANt4oTVnXb5faap4roRnS4UCjpdN0PYqWFWWPu6qoLrx/QN5FBUtWfy/XjlNBHHiFD69mQ3TxGu1KgpCkaxgJ7PomVX1bzqTcy+CuZAH3oUAQre3BIiiIh9n8JpJ9HO9pPEGrRbhIBq6JiDFYxyCREEWCbEqk4QJRiqiqKpUj1OUfBCFUv/eRmXEALVtimcshVzsA8x75LdmMMeltLZzsgAW96Y44E9ddSiifG4TE2yaiI6OGD3JM2fK5qmsGlDngvOG+InP6vRbkszXNeNZSmjJ+h6PomAnaeWOXlb8YTsyBMxNZml3Y2ZW3DJZQ1sWyWKBEtLPtmMzL4c/zlRlDC/6JHLSd8aRVkVEEnkvGUy8vPW6sRUVhUR5ebF2tf8eSZWrHkvHycR0vdKUeSGhfkEfTOdbsTG9bkTvr9cNHjV9iJH51yyGY0wSNB0FZEIVmohtqkQJzA55hDF4PsxGVtjYiyDocNgn4nvy3tXFAmSJMELBFGUUC4ZBJG8VsuSwX8cJegvgOl5GvSkvOLodDqceuqp/N7v/R6/+Zu/ecLzX/jCF7jhhhu4+eab2bJlC3/0R3/E2972Nvbu3Us+L2/MV199Nf/0T//EN7/5Tfr6+rj22mu56KKL2LVrF9oL8EFNSUl5cg4ePMiNN97Il7/85d6x+fn5E4yPy+Uypmn2TJLn5+dZv379mjHHv2d+fv5Jg57Pf/7zfOYzn3nO561rChvX5VhY8Km3QkxD+lkcL2qXUrWCrGMShjHJ6mIiik5spG62QkpFs5etOE5f2eTVp5Q4NuOyVPVxPYFtqpy0ucDEqCNL3QZsTtpSWHWel3X7j+xrMjvvkXE0dF2lmJeBSDZjoCrgmCqb1mcZH3F6Mtq9ORyw6a/IEr6fPdQgnzMoFXQ8P6FStgjDhOWqz8iQzZaN+TVNy3Es6K+Y9JdNFpc9hgZsigWD9ZM5gkgQBoLhksGm9bKnKEkEnU6EbalS2OBx2JZKPqszM+9SKhgYulSTGhqwcL2EejPgpE15KmWTuQWfli5/znFxiYGKFD6o1YMTAp7jC8/jDea/2J+hqCq5LVNk1o/JkrQ4IdRMnH0htqORzbrMzCdrFqiKohBEgoyiUC6YmIUi9ShAW6phDZSld48QVFsCo1Vj9NT1ZLQYb2YBe2yol+ERcYJ7dA57dJA4CBBRRGbDJGGzg7+4jJaxZcAjEkgEiedRePVJOJOjBEsrBMt1FFXBWTdObvsmom/9iEMP1NFzCqZjolgmqq6TRBFRuw3FIlbeQddUNMfBGhmke+AweiGHZUD35/sD0iA1m0Ev5FbnkROa1ocHbKYmsxw+2qXZDHEcjSgWuG5MpWSwddOJi/LngqYpTI5nWFjyWan5uF5CqWRK9cFmSJIkvG5nhbe8cfBpN9hblsYp2wqUCgaz8y6tdoSmKqwbzzA+5qzJ8sSxIIqlBw7IzEqpaDC/4JHJ6L1rPf4e63RjHEejVFgb+BXzOtmsLsU2CicGhc1mxLqJLHGcMLfgMzxo9wIvIQS1RohtaQwPnpgFUlU5Ryv1gIyjkx/Q8cOEg4faxHGC5yv0V0xsW95/lFXxkeFBi9l5b1UIxeDQkTZLyz6eG2M7GoP9Dooi7zkgewENXXlageWzIQ16Ul5xvOMd7+Ad73jHEz4nhODP/uzP+IM/+AP+43/8jwD89V//NUNDQ/zd3/0dH/zgB2k0GvzVX/0Vf/M3f8Nb3/pWAP7X//pfTExM8C//8i9ccMEFL9q1pKS8nLjuuut+aTBx3333ccYZZ/Qez87O8va3v513v/vdvP/9718z9onK047vij/ZGLFqPvNUpW2f+MQnuOaaa3qPm80mExMTT3neT0albDI2YvPowdaqVK6CWC1Ncz3ZW2AYCr4PlYpJFEMY/XyxnKwqriWRYHLMecLFQrloUi6auF5MHAtMU12zy3tcCvfxOK8qM7/osbDkEcdw0pYCw4NWz+DQMtUTgp3Ho2kKWzflMU2Vg4c7LK1IGe5GMySb0ZmazLJuItP7GWGY9IQUDENl+9YCD+1tMr/orXqWSNEBx1LIZQ1cP8Z1Y2Ih6O8ziGJxwu9MVRX6yibTx7poutKbM2PVaNI2NbZtltc1NOgzt+DR7Uqz1q2b8gRBwq4HaygKhGGMYfw8qHJdqVBl6PKczSdpbldNU0ozA0aUYB2p4gcJG9fnmD7WpdOJ0HRZkhZFCQjZQxGEgtNOGcYO8xx74BDiwDKqoRHFkFVjTj6pyLq3vJrY9aj9+EG6jx1FtQwZxIQx1nA/5deeije/TP3fH8DsK5PbtgFEQrBUBUUh7rqIMMLoK1F5/Rlk1o1JQ1PPRzV0tIwDwOhrtlA++iAtX6HkuShRRBwn0ojUdoiHJxiZ6ut5zeQ2rcOfWcCbXWAg18diE8JYoLguUbtLbtsUqm3R6cog8xe9bjRNYevGPJWSydyCDBgytsbGdVmGBuw1njbPFyODNidvLbDvYIvlakC7ExH4MdmMxpmnlnndzsozVhSzLJnRWTeewQ+SXn/bL6Lr6qpBZ9y7toE+i3o9pNYIyGZkCaihy0xMoxmyZUOOTEY/4fXWjWd4eF8TVf15VieOpUy0uSra4VgqImmxsOShKDLACMOEXEZmQ8tPUjY4PGixbVOOg4c7zM6FMkgPEuqNiPUTDv19FkIIXC/B82ImxzMkCasbJlK0IJctIoTMTJeKskx2perj2LIkt9WOOGlz/invLc+FNOhJSXkchw4dYn5+nvPPP793zLIszjnnHO6++24++MEPsmvXLsIwXDNmdHSUHTt2cPfdd6dBT0rKs+Sqq67iPe95z1OOeXxmZnZ2lvPOO69ndvx4hoeHuffee9ccq9VqhGHYy+YMDw/3sj7HWVxcBDghS/R4LMtaUxL3XNA1hR0nFVlc8fjR3T7NdkgQJERxRCGvUy4ZuK7M7EyOWiiKRj6nM7fgyYZyAbmsxvZtBUaGnto/64kWXE9GLquzaSrHxvWyofjZ9DcpyvHma0vKbFsq08dcNq7LyAXP4wK0ai2gUjZ7u9eFvMHpryqzXPWp1QNyWSl/299ngpCLPxQo5GQGyrakXHe9EVLI6yiK9EMKgoTTdpTQDHXVER4QkM1obN+aZ2zERlGUnqLX4zMvvh+zUvVZXPZZXgkYGrQAhU43JghjxkccgkA6yT8dB3ldVxkbsXlob4vxYYepySyLKz6mrqJpClEITkYuVCtlg1N3FKmUB1nYXGb+wCJBvUUhpzC6YYDS+mHpjVMuMvC216+qxtVRVLAG+qWSm22h2hbe0Tm6h49hDfVROPUk/MVl3EMzKJpK6XWn0ffGMzFWMy+aZfaEAY5T2r6JbYeqPPhQg46Sp2BG6JpKEEFLyzK0dZz16/K98dZQP+WzTqNx/0NkFucodHRmFlTKJZPy5vXY46PUGyGuG7FpKkc+e+JSVNMUhgdthgftJy3Xej5RVYVNU1kG+uR7tevFGJrC4IBF+Qka/p8Jxqpq4JOhaQrjwxkefLhOmNcxdFVuDKzLcnSmy8ych2NJufRsVmHzVI6NU7kn/FmTYxniWHDkWJe5efl+V5Cfp80bcvStBpiv3lFkpeZQrQVEsSCf0xns//mmxhPxi5/njhsz0Gdy/4N1XD+h1ghBSInridEMfSWT5VrA1s05js54tNqyL3DdRIZDR7q0OxGGrqCoUolyftGjr2IwNvzC+QCmQU9KyuM4vgD6xQXP0NAQR44c6Y0xTZNyuXzCmF9cQKWkpDx9+vv76e/vf1pjZ2ZmOO+889i5cyc33XQT6i8UuJ911ll87nOfY25ujpGREUCKG1iWxc6dO3tjPvnJTxIEQU/G+tZbb2V0dPSEsrcXEsfWeMsbZXnST+6v0Vj1uwHB8or0DhkZtshkTLZvKTA57lBrhEShQDcU+krmU6pUPReeq5iDokhVtGLBYGLUYfejsmxOWy0li2Kxmv2RniGPX1xapromGOnva/PY4TamqTIy7CAEtNoRCHjDa/pAUTg602Vh0UMI2W+zcf3PA7eVWkC4OmeVkvmEQeDjF9eWpXHK9hJxArserMomcEcKNvRXTBCCoUGHyfHM056PsZEM1XrI7LzH1GS2l6lzvQRdl71HhbzB63ZWGOyXfUYTGypMbKg86c/UsxlyW564FFPPZiiffTrN3Xvxjs0RL1ZRVJXCqdvIbpkiu3n9L/0dG+UiW99xBnrhUQ7uq1JvJ4hExa7k2HTyGNvOnDyhnMqZGMEc7KMwv0Sx0eXwUkI1dmhi0FqRPkvbtxaYHMv80td/oQOe4yiKzHg+X/1Cz4SRYZuVmsOxOY9sViNja+i6QqlgkMvpbJjI0tcnM7a/WML6eDRNYdNUjtEhW94jIun7Uymba7K7hqH2gspnwuM/z8fZuD7HvbtW6HRiCnmDYlEnSWC56jM+lmHDZA7b1Hh0f4tFPyGf1Rkbszky3WV5JaS/YqGqMDLosHH9iRms55M06ElJeQKeqOTll92Yn86YlJSU587s7Cznnnsuk5OTfOlLX2Jpaan33PCwlLY9//zz2b59O+9973v54he/SLVa5WMf+xgf+MAHKBSkJNall17KZz7zGS6//HI++clPsn//fq6//no+9alPveifZdvSeMsbBpkczfDgIw0OH+3SaodYltwF3ropz8b1OenZoSlknF+/P9/H+xzKRYOZOZd2J0LTFNZPZBgfyTzlYlNVFbZskFmBY7Nd2p0YFBismIyOOAwNWCiKwuiwQ6std5wzjrZmATU67Dzjc844Gmef2cfUOrk7vbziY5oqjq0xOuwwPuo8owyaZaqcsq1ApWRwdLaLaagsVX2SSFAsmkyMOWxcJ3/Pz9di3yjk6Hv9TsJ6k7grZaDNvhKq8fQX92ZfmW3vfB3rl2vUl11iVSM3WKJYsp70s6JZJpl1Y2SAfqDblap7rBp/PlEj/SsV01DZcVKRUtFgZs7rfTamJrMn9AA9HTIZ/QUNHh7P+IhD5vWDHJ1zWV7xiSKBbWlsOKnI2IiDYcheOsvSODYnVeocU+e0U0rSMHZVMj+/Wo73QvLrd9dMSXkBOb5gmp+f7+0Ogyx5eXxJTBAE1Gq1NdmexcVFzj777Bf3hFNSXoHceuutHDhwgAMHDpygmHi8J0fTNL7//e9z5ZVX8vrXv36NOelxisUit912Gx/+8Ic544wzKJfLXHPNNWv6dV5MLEtjx0lFtm7K0+pEJEmCoWsYuoJlaS9Yc++LiWXJ7MvkWIYgTKQ899MMGjRNKsmNDNn4vjR9dGx1zULJMlWsp5TjfXaMDDqMDDpSSCKWZqvPdtFuWRob1uWYGJVzoCogkLWKL+Tv2SgVMEqFZ/39iqLgDFRwBp7d97+YC/FfR0xDZcM6+dnwg2f22XipqZRNKmXZN5gk4oSeP0WR5YrHRURe6Pf6k5GG2Skpj2Nqaorh4WFuu+223rEgCLjjjjt6Ac3OnTsxDGPNmLm5Ofbs2ZMGPU+Tw4cP8773vY+pqSkcx2Hjxo18+tOfJgiCNeOmp6d55zvfSTabpb+/n49+9KMnjNm9ezfnnHMOjuMwNjbGZz/72d7CN+XlyeWXX76qnnXi1+OZnJzke9/7Ht1ul5WVFW688cYTenFOOeUU7rzzTjzPY25ujk9/+tMvecbWMFQqJZP+ilQuy2T0l0XA83gMQ/YtPJtFnaZJg9GMo73ovyvL0shm9OclS3F8DhxH72WlXm6/55Rnjq4/+8/GS41jy8/HkwkRKIrykr7X05A75RVHu93mwIEDvceHDh3igQceoFKpMDk5ydVXX83111/P5s2b2bx5M9dffz2ZTIZLL70UkLvD73vf+7j22mvp6+ujUqnwsY99jFNOOaWn5pby1Dz66KMkScLXvvY1Nm3axJ49e/jABz5Ap9Pp7cTHccyFF17IwMAAd911FysrK1x22WUIIbjxxhsBqZr1tre9jfPOO4/77ruPffv2cfnll5PNZrn22mtfyktMSUlJSUlJ+VVCpKS8wvjhD38ogBO+LrvsMiGEEEmSiE9/+tNieHhYWJYl3vSmN4ndu3ev+Rmu64qrrrpKVCoV4TiOuOiii8T09PRLcDUvH77whS+Iqamp3uMf/OAHQlVVMTMz0zv2jW98Q1iWJRqNhhBCiK9+9auiWCwKz/N6Yz7/+c+L0dFRkSTJi3fyKa9oGo2GAHrvy5SUlJSUF4dncv9VhEjrQFJSUl56/r//7//jn//5n/nJT34CwKc+9Sm++93v8rOf/aw3plarUalUuP322znvvPP43d/9XRqNBt/97nd7Y+6//35OP/10HnvssSc1l0xJeT5pNpsUi0UajUZPJCElJSUl5YXnmdx/056elJSUl5yDBw9y4403csUVV/SOzc/PnyAdXi6XMU2zJw3+RGOOP07lw1NSUlJSUlKOkwY9KSkpzxvXXXcdiqI85dfxTM5xZmdnefvb38673/1u3v/+96957omalMUvSIM/kbz4k31vSkpKSkpKyiuTVMggJSXleeOqq67iPe95z1OOebzp4+zsLOeddx5nnXUWX//619eMGx4e5t57711zrFarEYbhGvnwX8zoLC4uAicazKakpKSkpKS8ckmDnpSUlOeN/v5++vv7n9bYmZkZzjvvPHbu3MlNN92Eqq5NPJ911ll87nOfY25urueZdOutt2JZFjt37uyN+eQnP0kQBJim2RszOjq6JrhKSUlJSUlJeWWTlrelpPyK8/nPf54zzzyTfD7P4OAgl1xyCXv37l0zRgjBddddx+joKI7jcO655/LQQw+tGeP7Ph/5yEfo7+8nm83yrne9i2PHjr2Yl9JjdnaWc889l4mJCb70pS+xtLTE/Pz8mqzN+eefz/bt23nve9/L/fffz//7f/+Pj33sY3zgAx/oNSteeumlWJbF5Zdfzp49e7jlllu4/vrrueaaa9LytpSUlJSUlJQeqXpbSsqvOG9/+9t5z3vew5lnnkkURfzBH/wBu3fv5uGHHyabzQLwJ3/yJ3zuc5/j5ptvZsuWLfzRH/0Rd955J3v37iWfzwPwoQ99iH/6p3/i5ptvpq+vj2uvvZZqtcquXbvQtBfXBO3mm2/m937v957wucffkqanp7nyyiu5/fbbcRyHSy+9lC996UtrDCZ3797Nhz/8YX784x9TLpe54oor+NSnPpUGPSkvGo1Gg1KpxNGjR1P1tpSUlJQXkWazycTEBPV6nWKx+JRj06AnJeXXjKWlJQYHB7njjjt405vehBCC0dFRrr76an7/938fkFmdoaEh/uRP/oQPfvCDNBoNBgYG+Ju/+Rt++7d/G5DZlomJCX7wgx9wwQUXvJSXlJLya82xY8eYmJh4qU8jJSUl5RXL0aNHGR8ff8oxaU9PSsqvGY1GA4BKpQLAoUOHmJ+f5/zzz++NsSyLc845h7vvvpsPfvCD7Nq1izAM14wZHR1lx44d3H333WnQk5LyHBgdHeXo0aPk8/lnlWE8vlOZZoqeHen8PTfS+XvupHP43Hgu8yeEoNVqMTo6+kvHpkFPSsqvEUIIrrnmGt7whjewY8cO4Od+NE/kV3PkyJHeGNM0KZfLJ4xJ/WxSUp4bqqr+0h3Gp0OhUEgXTM+BdP6eG+n8PXfSOXxuPNv5+2VlbcdJg56UlF8jrrrqKh588EHuuuuuE557Ir+aX7br/HTGpKSkpKSkpKT8upOqt6Wk/JrwkY98hH/8x3/khz/84Zpd5eHhYYAn9Kt5vJ9NEATUarUnHZOSkpKSkpKS8nIlDXpSUn7FEUJw1VVX8Z3vfIfbb7+dqampNc9PTU0xPDzMbbfd1jsWBAF33HEHZ599NgA7d+7EMIw1Y+bm5tizZ09vTEpKykuDZVl8+tOfXqNKmPL0SefvuZHO33MnncPnxos1f6l6W0rKrzhXXnklf/d3f8d3v/tdtm7d2jteLBZxHAeQktWf//znuemmm9i8eTPXX389P/rRj06QrP7e977HzTffTKVS4WMf+xgrKysviWR1SkpKSkpKSsqLSRr0pKT8ivNkPTc33XQTl19+OSCzQZ/5zGf42te+Rq1W47WvfS1f+cpXemIHAJ7n8V/+y3/h7/7u73Bdl7e85S189atfTaV2U1JSUlJSUl72pEFPSkpKSkpKSkpKSsrLmrSnJyUlJSUlJSUlJSXlZU0a9KSkpKSkpKSkpKSkvKxJg56UlJSUlJQXmMOHD/O+972PqakpHMdh48aNfPrTnyYIgjXjpqeneec730k2m6W/v5+PfvSjJ4zZvXs355xzDo7jMDY2xmc/+1leCZXqn/vc5zj77LPJZDKUSqUnHJPO3zPnq1/9KlNTU9i2zc6dO/nXf/3Xl/qUfiW48847eec738no6CiKovC///f/XvO8EILrrruO0dFRHMfh3HPP5aGHHlozxvd9PvKRj9Df3082m+Vd73oXx44dexGv4qXj85//PGeeeSb5fJ7BwUEuueQS9u7du2bMiz2HadCTkpKSkpLyAvPoo4+SJAlf+9rXeOihh/jTP/1T/vIv/5JPfvKTvTFxHHPhhRfS6XS46667+OY3v8m3v/1trr322t6YZrPJ2972NkZHR7nvvvu48cYb+dKXvsQNN9zwUlzWi0oQBLz73e/mQx/60BM+n87fM+fv//7vufrqq/mDP/gD7r//ft74xjfyjne8g+np6Zf61F5yOp0Op556Kn/+53/+hM9/4Qtf4IYbbuDP//zPue+++xgeHuZtb3sbrVarN+bqq6/mlltu4Zvf/CZ33XUX7Xabiy66iDiOX6zLeMm44447+PCHP8y///u/c9tttxFFEeeffz6dTqc35kWfQ5GSkpKSkpLyovOFL3xBTE1N9R7/4Ac/EKqqipmZmd6xb3zjG8KyLNFoNIQQQnz1q18VxWJReJ7XG/P5z39ejI6OiiRJXryTfwm56aabRLFYPOF4On/PnNe85jXiiiuuWHNs27Zt4uMf//hLdEa/mgDilltu6T1OkkQMDw+LP/7jP+4d8zxPFItF8Zd/+ZdCCCHq9bowDEN885vf7I2ZmZkRqqqKf/7nf37Rzv1XhcXFRQGIO+64Qwjx0sxhmulJSUlJSUl5CWg0GlQqld7je+65hx07djA6Oto7dsEFF+D7Prt27eqNOeecc9aY+F1wwQXMzs5y+PDhF+3cfxVJ5++ZEQQBu3bt4vzzz19z/Pzzz+fuu+9+ic7q14NDhw4xPz+/Zu4sy+Kcc87pzd2uXbsIw3DNmNHRUXbs2PGKnN9GowHQu+e9FHOYBj0pKSkpKSkvMgcPHuTGG2/kiiuu6B2bn59naGhozbhyuYxpmszPzz/pmOOPj495pZLO3zNjeXmZOI6fcD5eaXPxTDk+P081d/Pz85imSblcftIxrxSEEFxzzTW84Q1v6PkHvhRzmAY9KSkpKSkpz5LrrrsORVGe8usnP/nJmu+ZnZ3l7W9/O+9+97t5//vfv+a5JzIjFkKsOf6LY8RqE/6TGRn/KvNs5u+peKXN3/PBE83HK3UuninPZu5eifN71VVX8eCDD/KNb3zjhOdezDnUn/F3pKSkpKSkpADyj/l73vOepxyzfv363v9nZ2c577zzOOuss/j617++Ztzw8DD33nvvmmO1Wo0wDHu7ocPDwyfscC4uLgIn7pj+OvBM5++peCXO33Ohv78fTdOecD5eaXPxTBkeHgZkJmJkZKR3/PFzNzw8TBAE1Gq1NZmKxcVFzj777Bf3hF9CPvKRj/CP//iP3HnnnYyPj/eOvxRzmGZ6UlJSUlJSniX9/f1s27btKb9s2wZgZmaGc889l9NPP52bbroJVV37J/iss85iz549zM3N9Y7deuutWJbFzp07e2PuvPPONTLMt956K6Ojo087OPhV4pnM3y/jlTh/zwXTNNm5cye33XbbmuO33XbbK2pR/myYmppieHh4zdwFQcAdd9zRm7udO3diGMaaMXNzc+zZs+cVMb9CCK666iq+853vcPvttzM1NbXm+ZdkDp+NAkNKSkpKSkrK02dmZkZs2rRJvPnNbxbHjh0Tc3Nzva/jRFEkduzYId7ylreIn/70p+Jf/uVfxPj4uLjqqqt6Y+r1uhgaGhK/8zu/I3bv3i2+853viEKhIL70pS+9FJf1onLkyBFx//33i8985jMil8uJ+++/X9x///2i1WoJIdL5ezZ885vfFIZhiL/6q78SDz/8sLj66qtFNpsVhw8ffqlP7SWn1Wr13mOAuOGGG8T9998vjhw5IoQQ4o//+I9FsVgU3/nOd8Tu3bvF7/zO74iRkRHRbDZ7P+OKK64Q4+Pj4l/+5V/ET3/6U/HmN79ZnHrqqSKKopfqsl40PvShD4lisSh+9KMfrbnfdbvd3pgXew7ToCclJSUlJeUF5qabbhLAE349niNHjogLL7xQOI4jKpWKuOqqq9bIKwshxIMPPije+MY3CsuyxPDwsLjuuuteEXLLl1122RPO3w9/+MPemHT+njlf+cpXxLp164RpmuL000/vSQq/0vnhD3/4hO+3yy67TAghJZc//elPi+HhYWFZlnjTm94kdu/eveZnuK4rrrrqKlGpVITjOOKiiy4S09PTL8HVvPg82f3upptu6o15sedQWT2xlJSUlJSUlJSUlJSUlyVpT09KSkpKSkpKSkpKysuaNOhJSUlJSUlJSUlJSXlZkwY9KSkpKSkpKSkpKSkva9KgJyUlJSUlJSUlJSXlZU0a9KSkpKSkpKSkpKSkvKxJg56UlJSUlJSUlJSUlJc1adCTkpKSkpKSkpKSkvKyJg16UlJSUlJSUlJSUlJe1qRBT0pKSkpKSkpKSkrKy5o06ElJSUlJSUlJSUlJeVmTBj0pKSkpKSkpKSkpKS9r0qAnJSUlJSUlJSUlJeVlzf8P64hTeY53O2gAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "test_data = next(iter(dataloader))\n", + "\n", + "fig = plt.figure(figsize=(10, 10))\n", + "ax = fig.add_subplot(2,2,1, projection='3d')\n", + "\n", + "# get predictions from the trained model\n", + "model.eval()\n", + "pred = model(test_data)\n", + "\n", + "ijks_0 = pred.grid.ijk.jdata[pred.grid.jidx==0].detach().cpu().numpy()\n", + "pred_0 = pred.feature.jdata[pred.feature.jidx==0].detach().cpu()\n", + "\n", + "preds_in_sphere = ijks_0[torch.round(pred_0)[:,-1] == 1]\n", + "\n", + "ax.scatter3D(ijks_0[:, 0], ijks_0[:, 1], ijks_0[:, 2], marker = 'o', c = torch.round(pred_0), cmap='coolwarm', alpha =0.25)\n", + "ax.set_title(\"Prediction of voxels inside/outside of a unit sphere\")\n", + "\n", + "# Also plot a 2D slice to make it easier to see\n", + "pred_0 = pred_0[((ijks_0[:, 2]>-20) & (ijks_0[:, 2]<20))]\n", + "\n", + "ijks_0 = ijks_0[((ijks_0[:, 2]>-20) & (ijks_0[:, 2]<20))]\n", + "\n", + "ax = fig.add_subplot(2,2,2)\n", + "ax.scatter(ijks_0[:, 0], ijks_0[:, 1], c=torch.round(pred_0), marker = 'o', cmap='coolwarm', alpha=0.25)\n", + "ax.set_title(\"Cross-section of predictions\")\n", + "\n", + "fig.show()\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "fvdb_exec", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/fvdb/notebooks/01_api_basics.ipynb b/fvdb/notebooks/01_api_basics.ipynb new file mode 100644 index 0000000000..02bb307d77 --- /dev/null +++ b/fvdb/notebooks/01_api_basics.ipynb @@ -0,0 +1,525 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### GridBatch and JaggedTensor\n", + "There are two fundamental classes in fVDB you will encounter frequently: `GridBatch` and `JaggedTensor`.\n", + "\n", + "```python\n", + "fvdb.GridBatch\n", + "fvdb.JaggedTensor\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### GridBatch\n", + "\n", + "A `GridBatch` is an indexing structure which maps the 3D $ijk$ coordinates of a set of **sparse** grids to integer offsets which can be used to look up attributes in a tensor that correspond with each voxel.\n", + "\n", + "This mapping only exists for $ijk$ coordinates which are **active** in the space of a **sparse**, 3D grid.\n", + "\n", + "💡 We call these 3D grids **sparse** because of this arbitrary nature to the topology of **active** voxels in the grid compared to **dense** grids where all voxels exist inside some chosen extents in each dimension.\n", + "\n", + "The figure below illustrates this $ijk$ mapping process for a `GridBatch` containing only a single grid.\n", + "\n", + "\n", + "
\n", + "\n", + "\"Image\n", + "\n", + "
\n", + "\n", + "In practice, `GridBatch` is an ordered collection of 1 or more of these 3D grids. \n", + "\n", + "🔩\tAt the level of technical implementation, these 3D grids are **NanoVDB** grids of the special `IndexGrid` type which only stores a unique **index** integer value at each active voxel location. This **index** is an offset into some external data array, a tensor, (one that is not contained in the `IndexGrid`/`GridBatch` classes) where contiguous array members correspond to spatially nearby voxels. `IndexGrid` will allow us to reference into this 'sidecar' tensor of attribute data given a spatial $ijk$ set of coordinates.\n", + "\n", + "Each grid member in a `GridBatch` can have different topologies, different numbers of active voxels and different voxel dimensions and origins per-grid.\n", + "\n", + "
\n", + "\n", + "\"Image\n", + "\n", + "
\n", + "\n", + "##### Images as 2D GridBatch\n", + "\n", + "\n", + "To help explain these concepts, let's consider how we might treat image data with this framework (an image can be thought of as a dense 2D grid after all). \n", + "\n", + "If an image is a 2D grid of pixels, we could imagine the position of each pixel could be expressed as $i,j$ coordinates. For an RGB image, each pixel would contain 3 associated values $(R,G,B)$.\n", + "\n", + "In this way, we could decompose an image into:\n", + "\n", + "1. an `IndexGrid` of $i,j$ coordinates\n", + "2. a tensor of size $[NumberPixels, 3]$ (the flattened RGB features for our attribute tensor)\n", + "\n", + "The $i,j$ coordinates can be used with the `IndexGrid` to index into the list of RGB values to retrieve the RGB value for each pixel. \n", + "\n", + "
\n", + "\n", + "\"Image\n", + "\n", + "
\n", + "\n", + "If we had many images, each of different sizes, we can imagine constructing a `GridBatch` as an ordered set of their `IndexGrid`s.\n", + "\n", + "All the RGB values would go into a sidecar attribute tensor where each feature array would have to be of a different length corresponding to the image size. We call this attribute list of different-length features a **jagged tensor**.\n", + "\n", + "
\n", + "\n", + "\"Grid\n", + "\n", + "
\n", + "\n", + "This is the essence of the relationship between `GridBatch` and `JaggedTensor` in fVDB, but more on `JaggedTensor` later…\n", + "\n", + "Lastly, it is important to know that each grid in the `GridBatch` will be on the same device and processed together by operators in mini-batch-like fashion. \n", + "\n", + "Let's put together our first `GridBatch` to see how it works." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# import the usual suspects and fvdb\n", + "import numpy as np\n", + "import torch\n", + "import fvdb" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will make a `GridBatch` of 8 grids, each with a different number of active voxels and all of those voxels' positions being chosen randomly. Further, each grid will have a randomly chosen origin in the 3D world space and a randomly chosen voxel size." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "batch_size = 8\n", + "# Randomly generate different numbers of voxels we desire in each grid in our batch\n", + "num_voxels_per_grid = [np.random.randint(100, 1_000) for _ in range(batch_size)]\n", + "\n", + "# A list of randomly generated 3D indices for each grid in our batch in the range [-512, 512]\n", + "ijks = [torch.randint(-512, 512, (num_voxels_per_grid[i], 3), device='cuda') for i in range(batch_size)]\n", + "\n", + "# Create an fvdb.GridBatch from the list of indices!!\n", + "grid_batch = fvdb.sparse_grid_from_ijk(fvdb.JaggedTensor(ijks), # We'll explain JaggedTensor in a moment…\n", + " voxel_sizes = [np.random.rand(3).tolist() for _ in range(batch_size)], # Random, different voxel sizes for each grid in our batch\n", + " origins = [np.random.rand(3).tolist() for _ in range(batch_size)], # Random, different grid origins for each grid in our batch\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are many more convenient ways that fVDB provides to create a `GridBatch` besides building from lists of coordinate indexes such as building a `GridBatch` from **worldspace pointclouds, meshes or dense tensors**.\n", + "\n", + "💡 The fVDB documentation has more useful examples for these cases using functions like `sparse_grid_from_points`, `sparse_grid_from_dense` and `sparse_grid_from_mesh`." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# This grid will be on the GPU because the `ijks` were on that device\n", + "assert(grid_batch.device == ijks[0].device == torch.device('cuda:0'))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Each member of the batch has different voxel size dimensions, a different origin in space and different number of voxels" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Grid 0 has 116 voxels,\n", + " voxel size of [0.9519320130348206, 0.9454407095909119, 0.36045560240745544]\n", + " and an origin of [0.49334126710891724, 0.26929008960723877, 0.4102530777454376]\n", + "Grid 1 has 768 voxels,\n", + " voxel size of [0.19912821054458618, 0.008141621947288513, 0.9990909695625305]\n", + " and an origin of [0.6951860189437866, 0.5513076782226562, 0.8320647478103638]\n", + "Grid 2 has 920 voxels,\n", + " voxel size of [0.6421335935592651, 0.47253838181495667, 0.9842809438705444]\n", + " and an origin of [0.43986809253692627, 0.8472382426261902, 0.4374838173389435]\n", + "Grid 3 has 930 voxels,\n", + " voxel size of [0.2742624282836914, 0.10442875325679779, 0.7849230766296387]\n", + " and an origin of [0.2953282296657562, 0.6793888807296753, 0.5144127011299133]\n", + "Grid 4 has 981 voxels,\n", + " voxel size of [0.9298512935638428, 0.5107961893081665, 0.08465440571308136]\n", + " and an origin of [0.6837033629417419, 0.9869440793991089, 0.8731261491775513]\n", + "Grid 5 has 627 voxels,\n", + " voxel size of [0.44863489270210266, 0.6608395576477051, 0.7873831987380981]\n", + " and an origin of [0.3249656856060028, 0.9829473495483398, 0.16377957165241241]\n", + "Grid 6 has 923 voxels,\n", + " voxel size of [0.9786439538002014, 0.43387871980667114, 0.7194949388504028]\n", + " and an origin of [0.8193762898445129, 0.9936668276786804, 0.31122133135795593]\n", + "Grid 7 has 840 voxels,\n", + " voxel size of [0.9930934309959412, 0.32834455370903015, 0.4128821790218353]\n", + " and an origin of [0.23459914326667786, 0.7528347373008728, 0.41168293356895447]\n" + ] + } + ], + "source": [ + "for i in range(grid_batch.grid_count):\n", + " print(f\"\"\"Grid {i} has {grid_batch.num_voxels_at(i)} voxels,\n", + " voxel size of {grid_batch.voxel_size_at(i).tolist()}\n", + " and an origin of {grid_batch.origin_at(i).tolist()}\"\"\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's examine some of the ways we can retrieve indices from a `GridBatch` based on $ijk$ coordinates." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Grid 0, feature Index at ijk [[-283, -242, -57]], world-space [[-268.9034118652344, -228.52735900878906, -20.13571548461914]] : 4\n", + "Grid 1, feature Index at ijk [[466, 245, 313]], world-space [[93.48892974853516, 2.5460050106048584, 313.5475158691406]] : 756\n", + "Grid 2, feature Index at ijk [[-151, 193, -299]], world-space [[-96.52230072021484, 92.0471420288086, -293.8625183105469]] : 286\n", + "Grid 3, feature Index at ijk [[302, -130, 70]], world-space [[83.12258911132812, -12.89634895324707, 55.45902633666992]] : 681\n", + "Grid 4, feature Index at ijk [[423, -340, -478]], world-space [[394.01080322265625, -172.6837615966797, -39.591678619384766]] : 590\n", + "Grid 5, feature Index at ijk [[-199, -45, -259]], world-space [[-88.95337677001953, -28.754833221435547, -203.76846313476562]] : 58\n", + "Grid 6, feature Index at ijk [[-163, 121, 189]], world-space [[-158.69960021972656, 53.49298858642578, 136.29576110839844]] : 403\n", + "Grid 7, feature Index at ijk [[493, -252, 261]], world-space [[489.8296813964844, -81.98999786376953, 108.17393493652344]] : 622\n" + ] + } + ], + "source": [ + "# Let's retrieve a random ijk coordinate from each of the lists we used to make the grids\n", + "ijk_queries = fvdb.JaggedTensor([ijks[n][np.random.randint(len(ijks[n]))][None,:] for n in range(grid_batch.grid_count)])\n", + "\n", + "# Use the GridBatch to get indices into the sidecar feature array from the `ijk` coordinate in each grid\n", + "feature_indices = grid_batch.ijk_to_index(ijk_queries)\n", + "world_positions = grid_batch.grid_to_world(ijk_queries.float())\n", + "for i, (ijk, world_p, i_f) in enumerate(zip(ijk_queries, world_positions, feature_indices)):\n", + " print(f\"Grid {i}, feature Index at ijk {ijk.jdata.tolist()}, world-space {world_p.jdata.tolist()} : {i_f.jdata.item()}\")\n", + "\n", + "# NOTE: This GridBatch (Batch of IndexGrids) just expresses the topology of the grids and can be used to reference a sidecar flat array of features but we won't create this sidecar in this example…\n", + "# We can get the index into this hypothetical sidecar feature array with any `ijk` coordinate (if we ask for an `ijk` not in the grid, -1 is given as the index)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### JaggedTensor\n", + "\n", + "`JaggedTensor` is the supporting feature data (i.e. the 'sidecar' of attributes) that is paired with a `GridBatch`. \n", + "\n", + "You can think of `JaggedTensor` as an ordered list of PyTorch Tensors, one for each grid in the `GridBatch`. Same as `GridBatch`, the Tensors are all on the same device and processed together in a mini-batch. " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Here we create a list of Tensors, one for each grid in the batch with its number of active voxels and 8 random features per-voxel\n", + "list_of_features = [torch.randn(int(grid_batch.num_voxels[i]), 5, device=grid_batch.device) for i in range(grid_batch.grid_count)]\n", + "# Now we make a JaggedTensor out of this list of heterogeneous Tensors\n", + "features = fvdb.JaggedTensor(list_of_features)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the `JaggedTensor` above, you can see how we constructed it with a list of heterogeneously sized Tensors whose shapes were of the form:\n", + "\n", + "$$[ [B1, C], [B2, C], [B3, C], …] ]$$\n", + "\n", + "where the value of $Bn$ would be the number of active voxels in each grid of the `GridBatch` and $C$ is the number of feature channels (5 was chosen in this case).\n", + "\n", + "💡 Note how each Tensor element in our `JaggedTensor` can have different numbers of active voxels (similar to `GridBatch`) but the same number of per-voxel feature channels. This is distinctly different from the classic representation of 3D data in a PyTorch `Tensor` which is usually a homogeneously shaped Tensor of shape $[N, C, H, W, D]$ where $N$ would be the number of \"grids\" in our batch, $C$ is the number of feature channels, and $H, W, D$ are the 3 index dimensions of a **dense** grid." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also directly use a `GridBatch` to derive a `JaggedTensor` to match the `GridBatch`'s specific sizing.\n", + "\n", + "This more concise line of code has the same effect as the previous example:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# From a GridBatch, a matching JaggedTensor can be created from a Tensor of shape `(total_voxels, feature_dim)`\n", + "features = grid_batch.jagged_like(torch.randn(grid_batch.total_voxels, 5, device=grid_batch.device))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we have a `GridBatch` and a `JaggedTensor` of attributes that correspond to the batch of grids, we could use the $ijk$ offsets we can obtain from the `GridBatch` to index into the `JaggedTensor` to retrieve the feature data for the voxels at those $ijk$'s." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([[-1.4529, 1.5827, -0.5729, -0.5724, -0.0612],\n", + " [-1.4506, -0.9575, 0.0528, -1.1230, 2.0563],\n", + " [-2.3013, 1.2390, 0.8193, 0.1099, 1.1040],\n", + " [-0.9724, -0.9775, -0.3134, 0.7936, -1.3263],\n", + " [ 2.7002, 0.3406, -0.3990, 2.0181, -0.1572],\n", + " [-1.1491, 0.8803, 0.1625, 1.7068, 0.4811],\n", + " [ 1.8915, 0.3565, -0.3147, 1.0703, -0.1139],\n", + " [-1.1003, -1.2272, 0.8648, -0.4511, -0.3558]], device='cuda:0')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "features[feature_indices].jdata" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But beyond just looking up the features directly, we can use higher-level ƒVDB functionality like sampling what the feature values are at a given worldspace position.\n", + "\n", + "Let's get the feature values at the worldspace positions from earlier in the lesson:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "World position [-268.9, -228.5, -20.1] \n", + "\thas the feature values: [-1.453, 1.583, -0.573, -0.572, -0.061]\n", + "World position [93.5, 2.5, 313.5] \n", + "\thas the feature values: [-1.451, -0.957, 0.053, -1.123, 2.056]\n", + "World position [-96.5, 92.0, -293.9] \n", + "\thas the feature values: [-2.301, 1.239, 0.819, 0.11, 1.104]\n", + "World position [83.1, -12.9, 55.5] \n", + "\thas the feature values: [-0.972, -0.977, -0.313, 0.794, -1.326]\n", + "World position [394.0, -172.7, -39.6] \n", + "\thas the feature values: [2.7, 0.341, -0.399, 2.018, -0.157]\n", + "World position [-89.0, -28.8, -203.8] \n", + "\thas the feature values: [-1.149, 0.88, 0.162, 1.707, 0.481]\n", + "World position [-158.7, 53.5, 136.3] \n", + "\thas the feature values: [1.891, 0.356, -0.315, 1.07, -0.114]\n", + "World position [489.8, -82.0, 108.2] \n", + "\thas the feature values: [-1.1, -1.227, 0.865, -0.451, -0.356]\n" + ] + } + ], + "source": [ + "sampled_features = grid_batch.sample_trilinear(world_positions, features)\n", + "\n", + "\n", + "for xyz, value in zip(world_positions.jdata, sampled_features.jdata):\n", + " print(f\"World position {[round(num, 1) for num in xyz.tolist()]} \\n\\thas the feature values: {[round(num, 3) for num in value.tolist()]}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### JaggedTensor Implementation Details\n", + "\n", + "\n", + "Internally, `JaggedTensor` does not represent the list of features as a list of differently sized PyTorch tensors, but instead stores a single tensor of the features accompanied by a special index structure that allows us to access the feature data for each grid in the `GridBatch`. \n", + "\n", + "The `jdata` attribute of a `JaggedTensor` contains all the feature data values in this single list. `jdata` is a `Tensor` of shape $[N, C]$ where $N$ is the total number of active voxels in the batch and $C$ is the number of feature channels. \n", + "\n", + "`jdata`'s shape would be equivalent to the result of concatenating the list of heterogeneously sized Tensors, mentioned above, along their first axis into a single Tensor whose shape would be $[B1+B2+B3…+Bn, C]$.\n", + "\n", + "
\n", + "\n", + "\"jdata\"\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "size of features data for the entire GridBatch: torch.Size([6105, 5])\n" + ] + } + ], + "source": [ + "print(f\"size of features data for the entire GridBatch: {features.jdata.shape}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To determine which grid each feature belongs to, `JaggedTensor` contains indexing information in its `jidx` attribute.\n", + "\n", + "`jidx` is a `Tensor` of shape $[N]$ where $N$ is again the total number of active voxels across the batch. Each element of `jidx` is an integer that tells us which grid in the `GridBatch` the corresponding feature in `jdata` belongs to. The grid membership in `jidx` is ordered starting from 0 and members of the same batch are contiguous.\n", + "\n", + "
\n", + "\n", + "\"jdata\"\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "per-feature membership for each voxel in the GridBatch: tensor([0, 0, 0, ..., 7, 7, 7], device='cuda:0', dtype=torch.int32)\n", + "\n", + "the size of the features of the 4th grid in this batch: torch.Size([930, 5])\n" + ] + } + ], + "source": [ + "print(f\"per-feature membership for each voxel in the GridBatch: {features.jidx}\")\n", + "print(f\"\\nthe size of the features of the 4th grid in this batch: {features.jdata[features.jidx==3].shape}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Additionally, `JaggedTensor` has a `joffsets` attribute that can also be used to index into `jdata` to get the feature data for each grid in the batch.\n", + "\n", + "The `joffsets` attribute is a `Tensor` of shape $[B]$, where $B$ is the number of grids in the batch. `joffset`'s values are the start offsets into `jdata` that corresponds to each grid in the batch. This is essentially the same information that can be found in `jidx` but expressed in a different form.\n", + "\n", + "
\n", + "\n", + "\"jdata\"\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "per-grid offsets into the feature data:\n", + "tensor([ 0, 116, 884, 1804, 2734, 3715, 4342, 5265, 6105], device='cuda:0')\n", + "\n", + "the size of the features of the 4th grid in this batch: torch.Size([930, 5])\n" + ] + } + ], + "source": [ + "print(\"per-grid offsets into the feature data:\")\n", + "print(features.joffsets)\n", + "print(f\"\\nthe size of the features of the 4th grid in this batch: {features.jdata[features.joffsets[3]:features.joffsets[3+1]].shape}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The features stored in a `JaggedTensor` can be of any type that PyTorch supports, including float, float64, float16, bfloat16, int, etc., and we can have an arbitrary number of feature channels per voxel. \n", + "\n", + "For instance, there could be a `JaggedTensor` with 1 float feature that represents a signed distance field in each grid, or 3 float features that represent an RGB color in each voxel of the grids, or a 192 float feature that represents a learned feature vector of each voxel in each grids." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# A single scalar feature\n", + "features = grid_batch.jagged_like(torch.randn(grid_batch.total_voxels, 1, dtype=torch.float, device=grid_batch.device))\n", + "\n", + "# Cast to a double\n", + "features = features.double()\n", + "\n", + "# A JaggedTensor of 192 float features\n", + "features = grid_batch.jagged_like(torch.randn(grid_batch.total_voxels, 192, dtype=torch.float, device=grid_batch.device))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "fvdb_exec", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/fvdb/notebooks/02_nn.ipynb b/fvdb/notebooks/02_nn.ipynb new file mode 100644 index 0000000000..8bed869183 --- /dev/null +++ b/fvdb/notebooks/02_nn.ipynb @@ -0,0 +1,351 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import torch\n", + "import fvdb\n", + "import tqdm\n", + "\n", + "# A starting point from the previous notebook:\n", + "batch_size = 8\n", + "num_voxels_per_grid = [np.random.randint(1_000, 10_000) for _ in range(batch_size)]\n", + "\n", + "# A list of randomly generated 3D indices for each grid in our batch in the range [-512, 512]\n", + "ijks = [torch.randint(-512, 512, (num_voxels_per_grid[i], 3), device='cuda') for i in range(batch_size)]\n", + "\n", + "# Create an fvdb.GridBatch from the list of indices!!\n", + "grid_batch = fvdb.sparse_grid_from_ijk(fvdb.JaggedTensor(ijks),\n", + " voxel_sizes = [np.random.rand(3).tolist() for _ in range(batch_size)], # Random, different voxel sizes for each grid in our batch\n", + " origins = [np.random.rand(3).tolist() for _ in range(batch_size)], # Random, different grid origins for each grid in our batch\n", + " )\n", + "\n", + "# 32 random features in a JaggedTensor\n", + "features = grid_batch.jagged_like(torch.randn(grid_batch.total_voxels, 32, device=grid_batch.device))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### VDBTensor\n", + "\n", + "As you can tell from the previous notebook, the functionality for `GridBatch` and `JaggedTensor` are closely related to each other and it's often the case you want to perform operations that reference or affect both the grid and feature data at the same time. \n", + "\n", + "To that end, `VDBTensor` exists to wrap around a `GridBatch` and `JaggedTensor` and provides most of the higher level functionality you'll most often use for these operations.\n", + "\n", + "
\n", + "\n", + "\"VDB>\n", + "\n", + "
\n", + "\n", + "Creating a `VDBTensor` is as simple as:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "from fvdb.nn import VDBTensor\n", + "\n", + "vdbtensor = VDBTensor(grid_batch, features)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`VDBTensor` has some common functionality to both `GridBatch` and `JaggedTensor` such as moving to a device:\n", + " \n", + "```python\n", + " vdbtensor = vdbtensor.to(device)\n", + " vdbtensor = vdbtensor.cuda()\n", + "```\n", + "\n", + "Or retrieving the number of grids in this batch or total number of active voxels:\n", + "\n", + "```python\n", + " num_grids = vdbtensor.grid_count\n", + " num_voxels = vdbtensor.total_voxels\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### VDBTensor Operations\n", + "\n", + "`VDBTensor` has a number of operations that are designed to work with both the `GridBatch` and `JaggedTensor` at the same time. Concatenation is a useful example.\n", + "\n", + "`VDBTensor` concatenation has two different definitions.\n", + "\n", + "1. Concatenating along **dimension 0** is a concatenation along the **batch** dimension. \n", + "If `J1` has **10** member grids in the batch and `J2` has **20** members in the batch, then `VDBTensor.cat([J1,J2], dim=0)` will have **30** members. \n", + "All input `VDBTensors` must have the same number of features.\n", + "\n", + "2. Concatenating along **dimension 1** concatenates the **features** of the `VDBTensors` together. \n", + "If `J1` has **3** features and `J2` has **4** features, then `VDBTensor.cat([J1,J2], dim=1)` will have **7** features. \n", + "All input `VDBTensors` must have the same number of grids in the batch and number of voxels in each grid." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Concatenating VDBTensor of batch size 8, feature size 32, total voxels 49465 with itself along…\n", + "\tdim 0 gives a VDBTensor of batch size 16, feature size 32, and total voxel count 98930.\n", + "\tdim 1 gives a VDBTensor of batch size 8, feature size 64, and total voxel count 49465.\n" + ] + } + ], + "source": [ + "print(f\"Concatenating VDBTensor of batch size {vdbtensor.batch_size}, feature size {vdbtensor.jdata.shape[1]}, total voxels {vdbtensor.total_voxels} with itself along…\")\n", + "print(f\"\\tdim 0 gives a VDBTensor of batch size {VDBTensor.cat([vdbtensor, vdbtensor]).batch_size}, feature size {VDBTensor.cat([vdbtensor, vdbtensor]).jdata.shape[1]}, and total voxel count {VDBTensor.cat([vdbtensor, vdbtensor]).total_voxels}.\")\n", + "print(f\"\\tdim 1 gives a VDBTensor of batch size {VDBTensor.cat([vdbtensor, vdbtensor], dim=1).batch_size}, feature size {VDBTensor.cat([vdbtensor, vdbtensor], dim=1).jdata.shape[1]}, and total voxel count {VDBTensor.cat([vdbtensor, vdbtensor], dim=1).total_voxels}.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### NN Modules\n", + "\n", + "Many commonly used Neural Network Modules are available from `fvdb.nn`, operate on `VDBTensors` and return `VDBTensors`. For example:\n", + "\n", + "* `fvdb.nn.Linear`: fully connected layer\n", + "* `fvdb.nn.Conv3d`: 3D convolutional layer \n", + "* `fvdb.nn.BatchNorm`: batch normalization layer\n", + "* `fvdb.nn.ReLU`: ReLU activation function\n", + "\n", + "These Modules are designed to work with `VDBTensors`, are a drop-in replacement for the PyTorch equivalents and can be used in combination with other PyTorch Modules:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Linear layer took a VDBTensor input of feature size 32 and output feature size 64.\n" + ] + } + ], + "source": [ + "from fvdb.nn import LeakyReLU, Sigmoid, Linear\n", + "\n", + "linear = torch.nn.Sequential(Linear(32, 64), LeakyReLU()).to('cuda')\n", + "\n", + "out_vdbtensor = linear(vdbtensor)\n", + "\n", + "print(f\"Linear layer took a VDBTensor input of feature size {vdbtensor.jdata.shape[1]} and output feature size {out_vdbtensor.jdata.shape[1]}.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this simple example we took a `VDBTensor` (a pair of a `GridBatch` and `JaggedTensor`) and ran it through a fully-connected layer to produce a new `VDBTensor` (another pair of a `GridBatch` and `JaggedTensor`).\n", + "\n", + "💡 It's worth noting that it would be wasteful to have two separate `GridBatch`s in this example because our `Linear` operation hasn't actually changed the topology of the grids in any way, it has only produced new features.\n", + "\n", + "In fact, the `fvdb.nn` Modules consider best-practice optimizations such as this, and you can see that the `GridBatch` of the input and output `VDBTensor` are in-fact the same objects on your device:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input and output VDBTensor's GridBatches are the same: True\n" + ] + } + ], + "source": [ + "print(\"Input and output VDBTensor's GridBatches are the same: \", VDBTensor.same_grid(out_vdbtensor.grid, vdbtensor.grid))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In practice, in the course of running grid operators in a deep neural network, it is often the case that there are several `JaggedTensors` which are produced that correspond to a single `GridBatch`. \n", + "\n", + "`fvdb.nn`'s Modules will automatically handle these types of optimizations for you such as ensuring that only the new feature data is created when operations are performed which don't alter the topology of the input grid." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Training the Simple Network Again\n", + "\n", + "Let's return to the simple network which classifies the voxels in a grid as being inside or outside of a sphere. At this point, you should have a good understanding of how all the pieces fit together in this example to train the network." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Epoch 9, batch 99, loss 0.04092085361480713: 100%|██████████| 10/10 [00:16<00:00, 1.67s/it]\n" + ] + } + ], + "source": [ + "# DataSet that produces random grids centered at 0, 0, 0 worldspace with voxel sizes (0.005, 0.005, 0.005)\n", + "from torch.utils.data import Dataset\n", + "class RandomGridsDataset(Dataset):\n", + " def __init__(self, batch_size):\n", + " self.batch_size = batch_size\n", + " def __len__(self):\n", + " return 100\n", + " def __getitem__(self, idx) -> VDBTensor:\n", + " ijks = [torch.randint(-200, 200, (np.random.randint(5_000, 50_000), 3), device='cuda') for i in range(self.batch_size)]\n", + " grid = fvdb.sparse_grid_from_ijk(fvdb.JaggedTensor(ijks), voxel_sizes=0.005)\n", + " # features are the world-space coordinates of the voxels\n", + " features = grid.grid_to_world(grid.ijk.float())\n", + " return VDBTensor(grid, features)\n", + "\n", + "# Define model\n", + "class Model(torch.nn.Module):\n", + " def __init__(self):\n", + " super(Model, self).__init__()\n", + " self.fc0 = Linear(3, 16)\n", + " self.fc1 = Linear(3, 16)\n", + " self.fc2 = Linear(32, 32)\n", + " self.fc3 = Linear(32, 1)\n", + " self.relu = LeakyReLU()\n", + " self.sigmoid = Sigmoid()\n", + " def forward(self, x):\n", + " # concatenate the features produced by two different linear layers\n", + " x = self.relu(VDBTensor.cat([self.fc0(x), self.fc1(x)], dim=1))\n", + " x = self.relu(self.fc2(x))\n", + " x = self.fc3(x)\n", + " x = self.sigmoid(x)\n", + " return x\n", + "\n", + "\n", + "# Data\n", + "dataset = RandomGridsDataset(batch_size)\n", + "dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, collate_fn=lambda x: x[0])\n", + "\n", + "# Model, Loss, Optimizer\n", + "model = Model().to('cuda')\n", + "\n", + "loss = torch.nn.BCELoss()\n", + "optimizer = torch.optim.Adam(model.parameters(), lr=.001)\n", + "\n", + "epochs = 10\n", + "with tqdm.tqdm(total=epochs) as pbar:\n", + " for epoch in range(epochs):\n", + " for i, data in enumerate(dataloader):\n", + " optimizer.zero_grad()\n", + " output = model(data)\n", + " # JaggedTensor indicating whether each voxel is inside or outside of the unit sphere centered at the origin of the grid space\n", + " dist = torch.sqrt(torch.sum(data.grid.grid_to_world(data.grid.ijk.float()).jdata ** 2, dim=1))\n", + " target = (dist < 1).float()\n", + " l = loss(output.feature.jdata, target[:, None])\n", + " l.backward()\n", + " optimizer.step()\n", + " pbar.set_description(f\"Epoch {epoch}, batch {i}, loss {l.item()}\")\n", + " pbar.update(1)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's visualize a sample of predictions from the network to see how well it's doing." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxkAAAGJCAYAAADmGv6VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9WYxl6XqWiz6jb2Y/Z8zoI7KvzOqb1dnLC2OOjdlssc+52JKRuELiwhLGkmVbIMSNLSFb9gXoyAIkbrCEBJyLDQK0vbcxsL28lsv2qlV9Vlb2kdFHzL4b/Rj/fy7+yKjKalbjVbWM8XikvMgZM2aMMZsx/+//vvd9NSmlpKSkpKSkpKSkpKSk5DNC/7M+gJKSkpKSkpKSkpKS/7koi4ySkpKSkpKSkpKSks+UssgoKSkpKSkpKSkpKflMKYuMkpKSkpKSkpKSkpLPlLLIKCkpKSkpKSkpKSn5TCmLjJKSkpKSkpKSkpKSz5SyyCgpKSkpKSkpKSkp+Uwx/6wPoKSkpKSk5PtFCMHR0RG1Wg1N0/6sD6ekpKTkLwxSSubzOevr6+j6p/cryiKjpKSkpOTPHUdHR2xtbf1ZH0ZJSUnJX1j29/fZ3Nz81J+XRUZJSUlJyZ87arUaoL7k6vX6n/HRlJSUlPzFYTabsbW1dX4d/jTKIqOkpKSk5M8dj0ek6vV6WWSUlJSU/Bnw3UZVS+F3SUlJSUlJSUlJSclnSllklJSUlJSUlJSUlJR8ppRFRklJSUlJSUlJSUnJZ0pZZJSUlJSUlJSUlJSUfKaURUZJSUlJSUlJSUlJyWdKWWSUlJSUlJSUlJSUlHymlEVGSUlJSUlJSUlJSclnSllklJSUlJSUlJSUlJR8ppRhfCUlJSUlJSU/EFJK5oucyTSjEBLXMWi3bBz7h7OXGccFw3FKmgmQIKRE1zV0TaNRt2jUze8aHPZZIIUg7Y9IR1OkEOpGDTQ0DM/BWVvGcJ2P/V6RpCTHPYowRjN07KUWVrtJPp2T9IbIvMBwHZy1Lobnfu7nUfL9IYRkMs2YLTKkhIpv0m5amOb3/v4vCsl4krIIcwCqFZNWw8YwPv/37edFWWSUlJSUlHxP/Pqv/zr//t//e27fvo3neXz1q1/lN37jN7h+/fr5faSU/Oqv/ir/8l/+S8bjMV/5ylf4Z//sn/Hss8+e3ydJEn75l3+Zf/tv/y1RFPGTP/mT/PN//s/Z3Nz8szitH4iikEjA/HO8EPhByXPB3YcLDo4jkqRA0zREIWnULZ5+qs7y0scX1Z8lh8cRdx/OWQQFYVhwdBqS5ZKltk237WDbBusrLtev1bCtT1/0SSmRRYGm62j6p98vm86JDk7IhmNElqNpGlIIZFGQnA4RcQIaxAcnJL0hhufhX9rEqPrYnSaNl57B214/f7z46JTJ6zdJB2PQIJ+H5EFIPl+gGwaG72I1Gxi2jdmqU7l2Ed0yiY97pKMJspCYtQruSgd3fQV7ufOJBZUsCgA0w/gBnm31PBUCDP27Jz7/j4QQEiGfPO6ikAAfW8h/P+cYxwXv359z2ovJcwka6JpGu2Xx9LU6jbr1XY9tvsh5/96MwShFFAKJhmHAypLL09dq+P6fz+X6n8+jLikpKSn5ofP1r3+dn/u5n+NLX/oSeZ7zj/7RP+Knf/qnuXXrFpVKBYDf/M3f5J/8k3/Cb//2b/PUU0/xj//xP+av/tW/yp07d6jVagD8wi/8Av/5P/9n/t2/+3d0Oh1+6Zd+ib/xN/4Gr7/+OsYPuAD6YTGephyfxgyGCVJCu2mztuLSadt/qoVXFBdkucA0dHzv+38O4rgg/QF+/0+DlJIwKrh9f87eQUi9ZqHrOtNZShwX7OwH7B6E/PhXl7i4Wfmuj/eneQ5O+zE3b88wTY1mw6I/THBtg0bNII4LDFOjVjPZ2Q8BeO7p+sdeH5FlxPsnBA/3yOcLNMvCv7SFf2Eds/rkcc9u3Wf62jsUQYhmGizuPiIbTbA6DZAa6WCCu7mMbttk0zn2WhcZJeRBiH95m3w2Z/zHb4FhYPou6XjK9Ns3EVmGs9xmce8RszduEu4dk46muJtrVK9sI4WkeuMKaW/I6A+/jb3cQQQR8ekAmRdYzTre1ir2Upvac09Rf/76eaGUnA4IHx0QH/cBcFeX8C5u4q52v6fn+DFJKjjtxRyeRCSpwLV11tc8VpfdJ4q3x6+jZep47p/953kR5ByfxhyfxkgpqVVNKr5JlgtG4/SDz++qS9U36A1SDo4j0kyd49KSQ6th4ToGvmc88f4pCsmtuzMOT2KWOjaOrc43zwX9QcLN96e8/ELrO76fk1Tw3u0pg3FKd8nBOut+pJng6DQmTQVPXaviWAYV3/jU64uUkiAsEFJ1Er9TQf3DQpNSyj/rgygpKSkp+fNHv99neXmZr3/96/z4j/84UkrW19f5hV/4Bf7BP/gHgOparKys8Bu/8Rv87M/+LNPplG63y7/+1/+av/k3/yYAR0dHbG1t8Tu/8zv8tb/21z7xbyVJQpIk5/+fzWZsbW0xnU6p1+vf13HnuWAyy8hziWPrNOoWuv69FwbHpzHv3ZmRJAWVitqrC8MCw4DrV2tc3PruC+rHzBc5e4cBp/2ELBOYps5K12F706de/e47oEGYs3cYcXIakWYSw9BYWXJYX3WJE8FkmqLrGp5r4Lo6pqHTbHzyGEeSCk77MbN5husYrC47VCuffAyDYcLeYcjRiVrkp2lOmkriVGAaGq2WTb1mMRonbK55/C//r1VWup885rMIcvYOQ057MWkmMU11DtubPvXax/9+EOYsghwpJfd3AuZBzkrX5fAoYu8wPC/0FkGOocPT1+vkuSQIcr78cptm44PHFFnG+FvvENzdwXBsjIqHSDPy2QJnrUv7q1/AatZJRxMm336X/u9+A5FmmM062XiG4Vi4G8uEOwck/RH+hQ3CRwdE+8c4q12cpRZWp4XMcxovPI27scz4tXfRLRN7ucP8vXtkwwnV65fJZnPm795B5DnJ6Yh8PgchcbfWcLptnLVlrHqF+LiPUa2g6RrOcgfdMkl7Q4yKT+X6JYp5SPsvfYnKlW2CB3tMXnubIk6xGlXQNPKpKqRaX3qeyrWL3/U9BqqIfff9GSe9CNczsS2dNC2I44L1VY/nbtRJM/nEe9mydJaXvvf38ufBeJLy7vtTpvOcim9iGHB0ErF7EOE6OtsbPq5jIKREStCQSLSz4khyfBrTGyRUfJMLmz6rKy7bGz6dlg3AYJTwrTdHtFvOxxb1Qqjff+HpBhe2/E89xsPjiDffnbC64j5xHcpzwaP9gHsPFqyuuKx0XVaX1d//aHewN0jYPwwZTVKEAM/V2Vjz2NrwP5diYzab0Wg0vuv1t+xklJSUlJT8qZhOpwC0220AdnZ2ODk54ad/+qfP7+M4Dn/5L/9lXn31VX72Z3+W119/nSzLnrjP+vo6zz33HK+++uqnFhm//uu/zq/+6q/+QMcrpfrS39kLmM7UItUwNDpNmyuXqrTPFg7fiTDMuX1/BsDaqnd+e71mMZtn3Hu4oFG3aDVs8lwwHKeEUYGmQa1q0Wp8UNDMFznvvDdhNE1p1G0qvkmaCR7tqcXCi880v+OoRRDmvP3elOEopV63aPo6aVbw5rsT/s//GiKkRpIULBY5uqGxvuJxcdunWbdo1C1VbBg6rqNzb2fOG+9MGYwSNE0tsjptixefafLCMw0c54Od2L2DgD9+Y0wU5URxQW+gdogn85xGTT12EBYIAZ2WzXiacfP2jEbNwnUNklQwHCXEiSCOCw6OQ+KkoNlwzs5B8Gj/7Dl49oPnIEkF93fmHJ8mJElBkhTs7Ic06xZpKni4G2AYmlosauB7BuNJShgWNOoW40nKbJ49UWSED/YIbj/E21pFdz54/e2lFtHuIdO33qf23DWGv//HDL/5OsnhKVajTjjcJT7q4V/ewu620V2H+LiPTDKkpiHzAs00EVlBtHuI4bpERz2KMCQ5OqWIU+zZnMXtBxRhxOzmHdB0rGYdURTkiwCzVkXEGcVsQe66JCe3cFaXqDx1icWt+1SfuYpuqXOxu23i4z4iTtEdm+D+LlarzugPv002nWPVq4goQXNsNEMn7Q04/Z2vs/q/O/iba9/xPV8UkjdvTrh9f85S20HX1XNbq5rkueDoNELTIIwKJtOURuPJ9/J4kvHis41PLBg/T/JCcuf+nCAsWF910TSNKMo5PomZTlMGuSTNBI2a+lzOFjnDUcqXX27jezoPd0Nms4x6zSKMcuZBjjyJGY1TXnimQbfjMJlmCMEnLuR1XcN1dE778XcsMgajFNPSnygwoqjg9bdH7B9FxIkgzQRJKuj1E3r9mBefa7Jxdv05PIl47/aMQkjqNQtRCHqDhPuPAtZXXL78Spt287tf2z4PyiKjpKSkpOT7RkrJL/7iL/K1r32N5557DoCTkxMAVlZWnrjvysoKu7u75/exbZtWq/Wx+zz+/U/iH/7Df8gv/uIvnv//cSfj++Gkl/Du+1N0XaO75GAYGmkmGIxTFtGEl59rPbEAfUyei/MRhZN+zHyRs7Hmfex+9ZrF0XFEr5+goXH73ozhJEUqLTKWqbG85PD0U3U81+DRXsBomrK24p0vMCxLjQqdnBVDLz7b+NTxiL3DiOEoZW31gx3Q2Tzj4CTk6CShUTfxHB2/YpJnkpN+TCEkuqZGMTbXPYSEh48WnPQSDEOJTSueiWVqTGcF3/zWgFxIvvRiC9PU2TsI+D/+zyN6gwTTgP4wZT7PaDTU38qzgqKQ1Ksms3mOrsNSSxVgg1GKZWnceTBnNlfi1oOjiOks5cqlGq6jY5r6E8/Bw90FLz3XpBBw6+6Mg6OQZsOm1bQYjlOGo4S9o4hmzSROBLqukaQFK133fHRFPB7YOBOESylJe0Oi3UP6/+1VpBCYtQrWUhP9bFxP03Wc1S7R4Qnhg10mb9xk/v7Dc51EkSTIvAAhwNAwbJd8tsDwXDQdijgh64+w61WMepWkNyA+PKGY+Wi2RXbcx6z5WPUaRsVHJinJcEIRxeimoboqjgOFUMWPJimyjLQ3xN1aQyQphveh3WxNR7dMsumcyuUt0uGI0//7Dxi/+iZGvUqsaaSDIfk8wmrWMNsNst4QWeSs/m8/iX/1wie+z8Ko4K2bE1791hA0VWRrmka9ZnFhy6fim7iuwTf+eICmwXLXRdMymmeFhu8ZqrDfD3nxmcb38Cn9bAijgjv357x5c0qjrpa6jYbF/Z2Ag5OIVsOmKJQ5gOfpHJ/GjKYpFc9kEWSEkcZwnNJpO+i6hmloLBY525s+k2nG3YdzWk0bIeR3Ho/U1Wjl+/fmhFGO5xh0lxzaTSXoLgpJkhZ8WAJUFJL37kx5tB/RadlkuaBRt/A9k8Ui57gf492fs3S2KXLn/px5mIOEvYOQySzD0DVsS+P1k5jpLOel5xpcvVT9oYvIyyKjpKSkpOT75u/9vb/HO++8wze/+c2P/eyjX7pSfpcv4u/hPo7j4Dh/egFxXkge7i3QdI1O+4PHsS2dlWWXo+OI/cOQZkMthISQ9AYJx6cR+4cRo0kKQJoV5Dn4rkmzYaF/5EvbcQ36w4TBMGE6z1lecs+/2NNUcHgSA3DtcpXTQUKzYX9sVEvTNJpNm/4wYREU1Kof/6qO44KT04j6h0a9ikKyux8yXxQsd23G4xRRmCx1HCSS037MvYdznrpco920mC8K8qJgPMuIk4KNVY92yyFNCybzjJUlh6KA2/fmXNqqYJoav/PfTni4G1A/W7ilaUGUCKaHEb5r4PsmhYxxHB/PMxhPU1Y7as78pB8xneXkhWR12SXLBCe9mHbT4aQXY+ja+Y6vpmn4vsneYcTaqoeGGnNZXnKxLJ0kSDjYGSOygkbVQtM0GjWLOC6Yz3OkjFlq21iWjmMbFIVE08G1NWbv3GZ+8y75PCA+GaBbBtM338NZW6Z64zLGWUfD8Fzi3SMW9x4ppyihtA9WrUoyGJP2BiSjCemfvINZr5Gc6SPMmo/MMtLJFP3gGKvTQqQ56XiK4bskvSGaoeFurCKihPDwFImmRplmC6yaj2aZiDwFDQzPQWY5hm0i0oxsOEa3LTTrUzoDUhIf90mO+xi+i7exQtIbUEQJmqFRxDGuu4yxuUq+CBj/8Vvojv2EGP3xZ+aNt8e89d6U/iihejYaWPUNprOMnd2A9TWPh7sB93YWXNjwmc4zhqMErx+zvVmhVjVxHJ39g5DL2z61D41N5bkgjJUY3XMM4kQgpcRzDazvMuIjhNIfSClx3Sf1B8Nxynt3pjzcDZjOMwxDYzQJsC2Nw+MI1zbwXIMgzJkvcpaXHCoVk72DEN81GE3U50E3VEcMwHEMZvOMNBW0mxaDYcpkklLxTSUoF/L8c5hlgiwTCAk7jwJAdS0d20DT4dFBSKtuUauajCYph2fdEV3XaNYtprOU/cOIes3AcXSlf3GUvsU0NKbzjJNewnCckmWCO/fnCAlxnNMfpgipxqU6LYdO22YRqqLINDWuXKx+x+f1s6YsMkpKSkpKvi9+/ud/nv/0n/4Tf/AHf/CEI9Tq6iqguhVrax+MYPR6vfPuxurqKmmaMh6Pn+hm9Ho9vvrVr35uxzydZUynGUudTy5UGg2L3jAhjApcR+fBowXv3ZlzeByyfxSpkSdA08FzTdBgbdlla91/otAoCmXlmheStY/MWNu2mlE/6Sc0ahZZJj51HMqxdSYTNSbxSaS5+lnzQ64ziyBnOE4xDA3b1Ini4oMRFQmigCxXuolV3+HezgJD10CCa+tEiaAoJLZtICRMphmdtk1/EPPtt0YMRgl3HyyoeAbthkMY5UgJug55JogA1zWYz3P6g4RGQ3VQ6k0LNBiOEsJIUK9ZTGYZRSbJMkGzYWOngsEoYbmrXp/TXsxokjAcpaoAlZALiSFzggcnHN894WQ/oSYEE62C2azjrdTRDQ3b1s+tRK9crOC5Or1+Qqth48/6TN+8hb3Uwu60SE4H6LaFbpvEByfolkntmavqKROC+HRAsVig+z52p002nQOgW2rBT5qDJsmDkCKMyRgjixwhBIahg2ESH55g+D6alKpImMypXb+sVrCmQToYkY2niDRHBCG5oWM3G+TTALNVQ7MsZFGg2zZpOCOdzLEa1bOuiqkcrnSNIkmxmnWS/ohiEWB1GhTzEJEXpL0RuutgVnyyyYy0P8Jo1HCXWmTTGcNvvMbSX/kRnJWlc/epnd0F33p7RJ5J9LPV9iLMmQcZrbrFeCKYzHOSOMdzDZY6zrkL0mic8Ma7I6XFkBrzRUa1YvDcjQbNps3hUcjBUcQiyJnMcuI4x3ENmnUT3zfZXPPYWvc/VmxIKTntJ+wfRoxnKVKoouSx/kAUklt3ZgRhQatuqa6iBrXKWfE/SvEcnf4wYb7Iz14CDc8zQIf9o4goFsSJwLY1okjQalrYto6mn71kpo6QkiQTLLVtGnWT4TilWTPpDRL6I7X4Pz6NODqJWV12WAQ5rq0W/roB770/pd2yuXyxSqthcXgS8fbNKdcuV0iSgjyXeJ5JFBfYtn6ujbIsHe3sdUgzwc5uyGiccnHL5zQucB2DWlVdWwajlE7TxrbNs4I9pN20SFLV2atWzPPC8fOiLDJKSkpKSr4npJT8/M//PP/hP/wHfv/3f59Lly498fNLly6xurrK7/3e7/Hyyy8DkKYpX//61/mN3/gNAL7whS9gWRa/93u/x8/8zM8AcHx8zM2bN/nN3/zNz+3Yi0IJOz/Nt96ydMJQjfoMx2q8YTCMOTyO0TWNjTUXKeHoNOG0H1GpGEymGUkiuLDp47gGQqhFs6GB6+ifKCa3LB0hJIswxzTVuJb3CY5aSVoQJ4Kj44jpLMP3DDot+3zRZRo6hqErF5+z29SOqpoFV+ernZ9vXkiyXGBbOnkuKASEkaBZt0gSQS4k40mChjwTyGqEUc5onHAySLm3MycMBUJIHEftsBaFJM0ktYqpcjKCgiQVeK7ObJGr7siaR71qMV8oh58kVY45SECqURLb1qn4JkGYMxwnTCYZ80WObevUqha+a3J3Z0GR5LjHe8i9R/R6BSLRqZASRDNGvRl6ukTrwgr9kdJeeK6B75kcncQ0aiY3LvvEr99CdyzMWgUpJXa7SXzcw1lZwmrVSU6HeBc2MCue6kwUOUalQhFG2J0GRRQpe9k4RjMNikjZ1RZhjFXz0T2PfLZAt21EkpGc9tF0Hd1xQNdJB2PsdgOn2ybpDUmHU8xahXy6QIoUdJ18PEOzLMyKh26YpNM5FAWaoZPPA4rpDDSN4He/ge65GK5DESU4Kx38S5vINMfwfbytNWZvv08+X1CEEVZLdekM3yObB6TzBdlwjEwyijghPh1Qe/oqjRdvYK0s886tKXEsuLjlI5Gki4R6EVIkCbO+QJoWCSbtmomrGei6WrzmuSAIC05OEvRVnaUli1yoDsEb747xXJPpLMP1DJKsoD+IiTOBoWlEkYXjZDzYCbh2pcZXXm5iWR98Pg6PY27enoKm0aiZ6LpGGBW8d2fObJHTrFkMRilSCo57Cf1hwmSa4XkGUgqSRLAIsrPiR9Jo2OiaxmiUMhwmxKng4rZ/Pso0X2SEUU61YtJdcvDcs64YqjhxHIOnr9V58+aE196aEMU5nmcSRjn3Hy3UZ6uQhJGgUjEYDFOSrMD3LDRdw3eV8cTzmsa9h3Nu3Znj+zqFUKYNtarFStfB/lDejG5AnkuKXDIcJ7iOjpAQRAWOo59fZ8xMKL1Xw8R3dd67PWMyydT1QuPc3OHapeoTmqvPkrLIKCkpKSn5nvi5n/s5/s2/+Tf8x//4H6nVaucaikajged5aJrGL/zCL/Brv/ZrXLt2jWvXrvFrv/Zr+L7P3/pbf+v8vn/n7/wdfumXfolOp0O73eaXf/mXef755/mpn/qpz+3YbUvHNNW8/uNZ/Q8TxwW2rXbBd/YCBqOU8STDtDRqFRNd15X9ZUXn5KTg9j0lgo2igkWYs7xko+s63bZNmgmy/NONGzVNCUKX2jbHp8nHbD7TVPDuremZoFRTY2QatJoWz1yr02ra+J7BypLD7kGI5ypbS9PUMS2NIhREElxXPx/3QJ5lApzdnudSuWxNUxaLjEWUk6WS0STFtQ0cW2c6V6JWy9SoVR2KQo2QhGHOw70F9aqFY+tIoNWwSZKYJBG06hb1mkUUF3SaNosgJcs1xpOUes2m2VDjTUlScDqMebQX8PRTDSTQHyj7207bZjLNaDVsOm2bzdjlndeO2RsdsEaAlC5mxcNxPNYKQd6LMQ93qW5WqV5osAhy2g2LRs1kdVk587gi5nQ8xWrWP3gdNldIh2PS4QSrVSObzMnnATJTHQfvwibJcY90OMZZWcJZ6RLvH1FM5uieo0L38hzNNNAsJao2qhVM30X3PRASzTLJJjNqz15VQXqaRjpfkBz30S2TysUt0HXi3UOk65BNp2go8bnIMsR4hm7bWM061euXMWo1Zm++R9wfIbMMw/eVrkMIhn/wGsv/609AXmAtNbG7HYIHu4isII9iiiAkXwTE+yfoloWz3MGoeogoITk8RYQR+WwOL32B8TSjXjMxDJ1GNmN0/wF5nmHJDHswYZI7ZNUGxWaThmMyuBOwfmODWSiZzTMaDYtCSqJI0mk5XNzy2dkPeP/egleeb2AaOrv7Ab5v4gEHRyFHp2o8zjA0/vBP+mRZwY99eQnb0onjgns7cyxbp9X4QMjcONPwHB5FDN2E/jAmyyTViuqIDMaq4zGd5ywWGY5rEKeCypl43bYMgjBTo4m1M02SUTAYqfMfTVLSVPDM9Tq6rjGapNSqJq0zMXW347C27LK7H+L7DkLAyUmIKDgXZ0shsU2d8SwjWKjOz2SasnsYKV0HqjPaG6ZEcaGscnWNjTWPykcyMhaLgrUVF8s6C5tsWIRRAVI+2Tm1NAajjKpvcHgSc9pP6C65rJ2J4MMoZ2cvIE0FLzzT+L6CA79XyiKjpKSkpOR74l/8i38BwE/8xE88cfu/+lf/ir/9t/82AH//7/99oiji7/7dv3sexvdf/st/Oc/IAPin//SfYpomP/MzP3Mexvfbv/3bn2tGRr1m0mk7nPZiVlfcj3ndz+Y5169UsS2N4SghinJMUy3S9TNV5iLImc0LGg0TJKpoyQpGZwLkF59t8uyNBgfHEQ8fLT7xOB7PbytRrNIc3Hswp9t1qFcs0lzwzq0J03nOS8826C6558c4GCrh+hdebFHxTbY2fIaTlNNeQqtlUfENltpqFMVzddZXXIJQ4NjyfKTJtNQCbbbIyAuBrusYlk48VuJ2y9TJcskiSAnjAtvS6S45rC97xLEgSdRtcSTIsoyltkUUSeIkx7J1VjoOraZFpnTdWLZBp+UymaYsdz2StDh/7h3H4OKmz50HC3YPAlxHpxAS3zWUeNXQWF120HSVgeGkC6aDiKYbU6lUmKY6IMgx6HQ81mZ7dOMDus9vc9zPeOapGpcvVM7/Xq4mnfiwcb/dblJ75irB/V2SkwHpYEy8f4y3vU7zKy+SHPeYCUH06IB0OMZs1LC7HbLpgmw6U6ni9SqaaaC7NhQFVrOBWffRHJvsdIRmGnhba1Qub5OcDklOB+SLkGymOhJFGFPMQ4xGDRHG2M0GaJAtAupPX0WzLESaYtVrmK06szdukfaGmI06umVgVStKuG2a5LMFyWCEt7qCjFNqz1xBpKlysdrdB0Mnj2LyyRyrVUdzHAzXxWrUsVoNikWgngt3CdtaI56GJLd2sG6+RzPKCAyPRSzIDJ+57rGWDLhWMTA2NnjwcMbR+5Ko1sGydIpCsAhyOi2b1WUHNA0pNMIgJ80kYZQRxwLfNzg6jgEN19VxbJ2lttLpvPH2GN81eOXFFsNxShAUrC47xLHqOlqWhm0rDYdl6+weRIwnGRtrHpal07Uc0GA2y5BSEiUC29Fp1i0sS40Uqg5aiu1q1KsmRyfRufPZZJ7RalhUPBMNyXCUIArJ5SuNcx2Iun5kXLpQodWw6A8S7tyfUa2Z2LaBpkEU5QgJjqUzLSSDcYo2Vnaz9ZqJBPJMgibZXPcwdI9eL2E2yzB1cFyl/RiOUwohee5GHd9TepfVrsvuQUReSEQiqPoGWVYwD3IqFQPbMnh0ENJsWnRaH+T4+J6JZekcncasr6q8k8+assgoKSkpKfme+F5ilTRN41d+5Vf4lV/5lU+9j+u6/NZv/Ra/9Vu/9Rke3XdG1zWuXqwShsrCsl63sCyNJBHM5xkrXZftTf/8CzhNJbalny9IhZDMgxzT0HDPFjXdto3jGFy9VCVOHjvAGKx2HfYPQ2bz7GO2ncNxiqZJ9g5CdvZDDg5DxrMMXdPotG0aNaVj+HCBASqReLnrcHQScdqPuXyhSrNh8eIzDR7sBgxHCVmuRpe2NyvM5im6oWGakpNeTJELnDPxaBDmCAHtpkOc5GSpmk3XNZUTAGr04jG2beD5BvW6RX8g0TSJ6+pqIZYITFMjiFThdOlCBdsysCzVWfnaVzokacGjg5CKZzCbpiTuB92kSsVibdlhOM5wbZ1gkWOcCWDXV1waZzvWFQe6cY8Hwyl9N8WfHZLnDQ4tD69qs9HSqBQm+XjK4GBKtVVjdfnJYtKo+NidllqgVz5wB1OjUg3C3UPctWU6f+VH8C9tYdWrBNUKyXGfyvXLRDsHFPMFeRhSxDFoGvbqMma9opK5qxXyRUA2HFMsFpjVCrpt4i53aH31FWrPPYWzOmb8J28zv/eI9PAEs1lHSoFMckjAatXxtjdIjntouo53cZN4/wSrVaeYhywe7rJ47x4yKzAMHYmDFAJ3pYvVqpOOJ8S7x1QubKrRr4vreFtr2J0WuWVi1GvE+0dobQ1vc418MqUIAxqvPIdZU/kuRRiRHh7jeTbhwTGj3QNqWYbbaWAOx3jTMbPmGp1qhXXXpjo7xbq4wtUrVXb3FvQyH8NzSFLJxW2PKxcqNOrqdUxzgW5q5LlU3T5NiaIfW8nOF5I0FYzGCeNJQhwXfOOPB8zDXDk/hTkP9wqm04xCqCKj3bTP3MT0Mz2Dek+qz43OStdVuh9HpzfI6HYcLmz6mJZOlgmCIKMnJFXfwnVMNtc9okQwm6kiqFY1yVLJYJRyYdPn4naF9ZUPPpt5oY7ZdXQ0TWM0Vboo3zHIMoHjGMiza4hp6hSF6tgtdx1Wl53zcTApJTu7CybTjM1Vj9E0JYgKxrP0LMxPw7Z0vvrFNs/dqJNlUt2uweWLPnku2D2MyFJ5/llfX/PIcsF8kfHU5drHQgEtU8fQNXqDpCwySkpKSkpK/rQ0GxYvPddk/yik10+IEzU+1GxY1CqGEgc3LdZWXL799hjP07FMFTomJGdheRqarmE7Orquc2m7wvqqR5oKprOMIMppNiyuXKzw1rsTHu2HeI6OaekYOnAmYL55d0YYFDRbNq2WzXiinITiROC6Bt1PEKir/AqT037C5QvKJabVtLlhauy6BlGkRKJfeaXN3mHInXtzhlLt3FuWzdqyi5SSPJfMFmqHdu8wI4iksu7VNObzjDAqKAqwTDB0jcVC2fB2mjZhkJ+F3GlUKyaWoVOpmNRrFtevVOkuuSSpOLP2VEXV/YdzDo5i6jWTMCmYHUS0GiaeZ1IUarG5venz4z+yxHt3ZlR840wg+0GBkBz18AcHrEV9vEqTLMrwoj6ZsNGmIGKTuWFQeBbrQnDjWv1jYyaarlO5eoH4qEc2mZ2PTYESeWuaTutrX6Tx4tPnt3uXNqmNJhRxgogTsukc3RNoQmC1GuimgdVpYlgW6WSG3WyoNHAp8a9eIF8EOGvLeNvraJqG021jNWt4a12cdoNiEZL0hhg1H6tRQ7dtnKUm3vY6+SLAajcwKh7p6ZDZ/V2y2ZwiiNB0g3wWIOWctD/AajepXNlGs0yK2RxnuYPVqBHuHBA83MNe7Sjr3P4INA3DtZFpBlKgGeZ5srlxJgx3FmOqoxQtiTkxdSZ2F9c0KfQFcbWNMZ/xnDulqtssjhbUtibU19e43EwpdEFoW2ysm7z4TPNcDA5gGiAKeZZnoiEKwSIocOwPdEWzecp4AlkuaDVsLMdgOMq4Pwk4OAxZXXGo15UFbJZJjo5jgjCn1bCpVgyKwmI8yWg11Viepmk4tvq8djs21y5XaLccprMMw9bRpIV31hVoNS0aNZtmQ2Nt2WM6TcmFpLFs8oUXW1y5UPnYWJFhqII6TSW+pwwWLFNH81QgpH5m3qDrGpapkWYFUZKz2q0/oTdJ0oLZPEcISe1anZe7Lse9mJOTCFnAjWtVXnmhydaG2gwxDNhY87hzf85Sx+Err7RpNhb0RzFSaugaVDyT/jClWbfZXPM+sMv6EOZZsOLnQVlklJSUlJT8haFes3j2eoOrFwt2DyJ29xdMZjnTuXJKchyd5bbD+qrPo/0FhgHHp8pdajrPsEyNimdi2zrNhkmnrXZoNV3tREoBUSwYT5SVZBIXjEYpug6rqy6+Y0AhKXJY6tjni4xaVeU+6DqMzgL8/I8skqWURHHBaJxgGsq7P8sF41lOmgo0Td2n1ze5sOXx4rMN4kRgnAlUpVBF1XSe8bv/zylhXNBu2nQ7GY2aTX8YY5k6tYpOGGcg1YKoNxQ82l+wvuqztuJwdCpZBAWeoWE5Op6nc3m7okYvjiM1ghIVgOT4JGal61KvW3RaFr5vMhjGSjx7JpBf7ro8fa3GU1eqRHHB4XH0pGNXFBHvHpG2V1jdf8TycJ/CctTiW+oMQ53FtIHQDC5cbPLii026K5+8K+td2KDxSsj85h3S4QTdsVXeha5Tffoy9eevP3F/3TRpfOE5NNNECsHi7g5FEGKvdjGbdQzPQcQpdreFKArS/gikRApJPl1g1HzqLz+DvaSc1ESSUgQRZqtOEUYk/RG6bWI4DiLNkHlB+OgQb3uDxivPIdOUIsuZvn6TYrFAsy2lmS8K0DREFCPSlOm33+Wx1Vc+XyCyjPbXvoi91CJ8uI/dauBvrSMKweS1d0hPh2BZeKtLFEmGPJtv03QNmWU4IqNjJOSNCluTPoFZZa5VEGlGc3pEMxyyJgQWXUbDOdN3qwgq5ImJ7QtyXXD9cgXfNxFxQtIfkQ3HxP0cIgcz8/BqVWzLIErS8wTxLJfkOcq2OYZmwybNlX5iPFHdxHXDP++EmYZyYusPEsJQ8PT1Gsdn406DkeooaKiRpmbdZDYzCGNBPSswdJBoxLEKy5wvCjbXlBbi/HpRt9g7CFlf8bi8rUbvegMViBfFBZ5rsNx1WVlyuPNgTq2qTBEcx4CkUJqOcYo826TIUOYQrqPyYA6OIqSUWKbGYKycsDbWPCTK5nl5yeHpazVOewnray6b6/4T3bnLFyqkmWD/TNvxOP8nCHIaDZOtdZfNVZfeIMFxP3kcNU0KKpWP5/58FpRFRklJSUnJXzim85ydvQWmpbPets6/uIMw5+A44uKmy/5BwO0HcybTlDgtyFOJYaoRq3pd7Xj6Z1/cYajEmpatc+vOjOPThO1NnyuXqkgpKQrJzm7Azl5Ap6MKkw/vYuq6StkOo5wkVUXKh4sMKdXY0627U1oNm8lczZE/ehTQbls8e72O55nn53D3wQLTVJ2Wj1KpmHzxxRZ7hyFBx2E0yXAcDSGhWbcpREGaFhQCCiHRCmUpq6Gx1HGoVgwaNYuXn2tw8UKNyTTl0V7IbJ5Qq5rU6hadjs1klmHqOkGoxszCSKjuh+URBAWXt30sW7l0XdxSC7gLWz7jacrJaUyrZeHYBuHphNN+TOXiBq1HBuL+GG97DcMQuDLHy6ZIBjhLHVqVFdobzU993TVNo/bsNdy1LvHRKfksQLNNDN/D6bafWGCC6nDMb91ncfsBVq1K+6uvED06ov/7f0LaHyKilCIICV0HZ62Ld3GDIoxJjnrYqx3aX36J6pXt88fLo5hstqCYhxRpiswLjGoVs14BDfLpgnDnAP/KNu7aMsnBMbLIiQ5OcFY65FGCrusUWYZ2FuSgWSZ5FJFN50p07rnEhz1EFFO5sk39xRsYFR/dNIkOjzHrVbLRBBGEiGYVUGNLoEalijjBWe+ynAlMu0XvZB9j1qdWidBm9zFmPaqrLWxLx2lUWDZ10kpCdHiLLM65sLHEqVzl9LVT8q6PsZiRzgICaaNLnYv5hP0/ntC5voVleQzOrKM916Di6YBOMcuwLZ3hJGE+z0nOtBOuazAYxtiWTsVXeoc0FaS5wPN0Lm35RFFOmkpqVYskzbFM5V7WHyWA0mcEQc7szNggDDOkBhRweBLjeQb1mk1eCIJAdRaWl2w0DW7dmbF/FKnPr63TH6bsHUZ0l9Q15LU3RsSJ6sbkuaQQaoSx1bSxbJ35IjvPbzk6VToUTYMsU25yVy5WsCwD/ewFUanhBqsrzlliff5EYKhp6jzzVJ3VZffMuUpw7VKVbsehVjUwDJ3ZPONbb4yZL7InckpAhRYahgoJ/Twoi4ySzxwpJUIoQeF3C+AqKSkp+WEjpeTgMERInnCpAaj4aoTn8DRGN9SXuO+ZNGo2cVKQZgUV36BWMxlPU6YzG983mS9ynnmqxmKR0+snLC87WGc7ikkiQAPPM5gHBaaRYX/CrqJlaVi5csrpD1PW17zza+h0lnPv4QLHNnjqSo1qxaQ/iGk0lSf+/mHEtctVNF2j4ptkmWT/MGRjzXsiqExKyXSmkriDMMe0dCoVg72DACEktgfjiUQ3NCwLoljDNFUcRBAWzEPlZvXjX2nz139ylXbL5vAkYrEo2Fz3yHI1J94fJDiWTqNuMxyltJsWsyBXxZNnEMc5+0cxrYbFpQsVls46Qq2GzUvPNj/QmWQp+Tih4UqurIG41GWRLsgmM3JdQzdNNf5jmNSevoJRq5CPphgrS5/6+muaht1pYTXrBA/2CO49IpvMQErMepXKtUtUrl1Qi/LdQ2Zv3sJuNzDrVfI4ZviN10hP+4DEWmpjtRskvQHZYIKztoxuWpgVl/aPvELl6gcFRjoYs7i7w+L9+8gkxV5fUandUlIsQqV5KgSaZYKQSqshJWalquxrgwgRxZjNBmIwpFgEaIZajoo4Iby/i7Papfu//Dgyywj3jqg/fx270yJ8dEA2mpIOx1i1KnmtQjZfsLj9EKtRQ14vyKYzokeH1J65RuOlp5l++yabaw7+tQ7DtwaQZYiqjmE1AIHUDIpFgN1qYjs66e//dyzDwB5tsLG0Qq+6wdF7GblpU3/6Ms2mw2ZHo1OB27envPn6AYv6MlXfJEmUkPvoJEEKSaWiHNN0XVnVDsYpRycRug6Ns4Wy4xj4noHrGGyt+VR843wc8P17c6SUVDwD11Wp4/1hytNP1XAdkzdvTs46fDrTWUajbnL9ao2j44iDo4huR3UAPVcF900mGf/1Gz3ms5TNzcoHafJC2ci++q0hUqoxStMUKqtlniAlNOsWrquTpmr8q91QQZgb6y5pqqy1hZDsHgYsFjm6rlGpPrk54NgGWZaS5R/PzdF1jaW2w1L7kwuFes3i8kWfO/cXRGcaE1BGFnkuuHqxSrv5KcGOPyBlkVHymSKlJMsyoki1AE3TPP9nGEZZdJSUlPyZE0UFo+nHRdmP8T2Du/dmBJFgddnBsdWIghRKy3A6iNndC0liJai8dKHCxc0Knmdw8/aUk14EKMvM+SJTAlf5OD8gxzSgaXzcLjLPJY6tU6uolPCjkxjfM9B1jbsPZqSp4LkbdepVkyhRzj3ViommwWSWMQ/y83Oq10yOzlyu7HPLXslwlDKapGSZSkweT8KzcK/ibLEDeaE6DkkiqHg6tq26EUGUU6uaPH+jzt/46bXzIMH5PCNJC6KkID5LcD4+jTFNHccEKxiTL1K2uj7jzCJKXLJcjbm88GyD9RXvCevNVtPmlbrFbJ6T5YJkNyBPU1y3YOK5tL76MsnpkLQ3RIoCmRd4W2u0vvgcaX+sxp++C1JKZu/cZvb2bQzfxVluA5AOJ/R+5/dxNlaoXr/E4v0HoIFZVxqYxc27apzpwjr5dIGua/gX1qlcu0B4f5d8MqfzE1/G21xTGRRphubYJL0hs5t3ycZTdN9DaBpWvUI+WyDiGKtdp5gFZGmI7lgED/bQ/vsf4W2uUnnqorKzTVKErmNYBpptQxiD1JBS6Uk0y8RwbDRddTei3UPqL9ygcvUCg9//Fvl0hn95SzUuTJ3w0SEyKyjihODeLnanSeNLL7D2//kpjGqF0TdfZ/T11xBphkdCeP8Q0gSt3STtjTBcB6tVJ5tM1LmNZhi1CuyfwN4xde0tvGoL69JFWmaFlYsXMXTIZwuMIsGZztmoF1QuL3M8ktzdj8gNjVAaJImkUjXI0oLpPKdRt3Adnck8oygATcf3Bb6rs9J1aNQtptOMW3fnCCG58VSNo5OIvf2QySwjzyWdtk2SCJIkZWVJBQdKCY26Sa+f4Ng6T12tcTpI2FxTBfP792bnAXuzmcrbiFLBjat14kRwcBRy2k/Y2QuxLY3rV2qsdn2eud5gNs857UUswoL1FY/lJYd2y+Lhbsh4mpIkkkbdQtc1sqyg6pkMRiobwzQ0TnoRRS6xbR3PMzBNNSL5p+HSdgXfMzk4jphMM6VFq1tsrnmsfcRt77OkLDJKPhMedy+yLEMIcX5blmWkaXq2I6FjGAaWZWEYRll0lJSU/FARQjIapzw6CLj/cEGtZrLSdWnUVRbAY9JMMJ7mVGtqEeKfjSFJqaxadV1nOEyUHmKaUfFMdDRO+yq877Qfs7MXUBRwcdtnqe0gpVrUx/sBGpJa1TxzwdHPHzuMCrpLDs2axXM36kRxwekgJkuVc9PG2pnNpKYp/QfKDUrTNPJcWW7qGoynGYNRzM5uxNFpxEpXBQnuH4XomsYzN2rKL3/F4egk5tF+QL1iEsYFpqEhDNW9aTXU4gapipPr1+o8d71Go2HjuTpJqnZ7D48jjk6V9qJ9ZpEZxQWHe1P2D0c00wmWA0bqsoSObDVorGzwpZdabK37n/ha6We2tQCZuUL/fgURxeiODUJSubyFt72GSFLSwZjmF59H03U020b3vvvoRzoYM3//AfZS69xVKV+ExEc94qMT5nceEu8eEu0dYa8sYTXrGJ7H/NZ9TN/D7rZJTJP0uEfSG2FUPHTPI5vN8S9t0f3JrzJ57R3CnQNElrK4/ZBivsBZXcZq1pm9dQuZC7yNFWY37xLuHGBWPAy/gtVtoQlJOhhj1ipYzSbu1hqL2w8xG1XMaoUizZGF0hKIOMVuNqg8fQVvY41iHpKcDjDrNdWdadSwmjVElqhsDttEsyyc1SXsTlPlgghB44vP0fnal3FWlogPT8kmc9L+EGdjhfqLT6PbFvNbD8jHU9z1JWrPPEURRUzfeA8KgVnxMCs+7toyMi+IDk/Qjw7w6g7Grom83CU4PGV8/5AHJxbGSZ/o3TlidQmzusSS0aBi1bmT1ikch2bdJIr1s9wZFaSHVB3BdssiywVpLjk8iegNIvIcCgHthqVSuXPB6rLL9qbHvYcLWg2LQsCjXTWy+NgYwLF1xuOM3iBlfdXFNnUWYc7tuzNGk5ztLY+VJYeHewFCwDvvzUhSgWWo8UakyuRIU8HeYcjeUcSlLZ+nrtTY2vDYPYh44ek61y5X2dkL0bSQVsPm7oMFB0chtqXSxAdjlVlz2ot559YU01AmE0hlgbu87HJvR1ljN2rWmWvW99aB0DTtXOMRJwKkxHWNTwwM/Swpi4ySHxjVnszJcyUcezwm9eEi4sNFyIeLjg93Ocqio6Sk5POiKCR3Hy7Y3QvIC0EhlCh5Os/oNG0ubil9AKBmtSVKIxF+sCs+m2ccnSYUucRxDeo1E8fRuPtwzv1HAX/lx5bY3vQZjROiROVoDMfZuR99taKyOsJQzXkPhin1uommKRca09AwdY3tTZ/1s8Csq5eqZLng1W+pkOzH7jCWqUTfO7vxWa5FThComXVN1zjtRcwXBUFoEoSFKhbQQIfjk5iqr3ICNtZ9mk2bQsBpP8Z1DIbjhKpvIZAksTjXVHTbapd8MIx57c0xcSoIw4z7OyGiECpA7Oz4Gp5kNB8xjzOoNljdcnCXHGSeM9gbY2canebGE6+RlJJ8MkPkBYbnnDseWY0a1acvM339PXTHJu0PMXwXmaTkkzne1hrWUpv46JTKpa3zZOvvRHzcQybpeYEhspzF7Qck/RHO+gr6YILuuVidJvl4yuLWfdxLm+SzALNWQTdN3NUlRBiDlOSzBZqlXksRROiOTfurr1C5ss3snTtEO4dUb1zBXVlCCkE2mpLNFog0RUMVOEbFw/QcRBBi1Ws0v/gCiJzRq29gNWoUaUo2npJ7M4rRDJkkoBvonkfl2gVM38NqVjErHtHuEc1XnkPTdZW90WlSvX6JdDihCCM0TSMdTchnC6xm/UyQHjP6w9dJTgdk0xnuSkdZ0R73KeYBumFgN2voFU+NVL3yLKNvvIZu22iug4wTzEb1rNjTsRs1okVAHkXER6cs7jwk2j1i1g8JJ1XcxRQsg3QwZfFoRGVrk1ozph9nzK0OReEjhMT3NAYDZaTQqFlIobp+lmmQpILFImce5lTPAioXQc7hSUQcC566UsWyDTzXZBEWrK0Y6JbOeJKx2hXohgrpXFpy8F2D2SJnOs04OI6YzXKuXq6w0nXJMoGh69SrBtN5znu3Z2xv+Kyvetx7GDCdZ6SJwHUcpIQ7DxakmeTyxQq+Z1AItdBP04KDo0iNRPnKfvboRHVF63WLxNY5PI0xTI31VY921WQwSRmMUhZBjusYtJo2p/2EvcOQpy5XubD1cd3Vp6Hr2sdsbD9PyiKj5Afio92Lx6m4H+Vx0QEfeO0LIUjTlNPTUxaLBRcuXCiLjpKSks+Fo1M1OtRs2niugWHqPHgU4HsGg1GCbelc2K5QFJI4UonThq5hmKpLoJ95yaepsonVU0hidS1TIumM194a84UXmizCnChWqbzzubJ8bTVtgjBneclB0xyadTWXPRwlKpCranJp2+fapSrbW5Unrn2WqbPUsXm0H56PQ/UGCcfHMUenMdZZkvlwnFKvmrSaFuNpzqVtn/VVn+E4Ye8wo9N2qFctRpOU6Tw7n+Gu+CbdjoMU8iz3wmA6S4kSQRhlRKHAMDX+8LUh+pn7zeKSGq86Oo3YO4jQNElewNVLSrjqRjNaLDiw6kxTDcPUiVLJIjaQrRbrxRBzNoH6KgDx0Snz2w9IT4fIPEf3XLwLG9RuXMasVak9+xSaZTF75zbJYMT85j2sdgN3cxV3rUtycIy91KL2/FPf9XtDSkl8cEI2nRGfDLAaVfLZgrQ/wlnuoBkGmmmQjiYAFFlOPBhhthtoho7IckScEJ/2ycZTrG4bq+IhhCRfhEzfvUP16cvUnruOu76CiFOS454aVUJ997kbKxRxCq6N2WpgLS9Re/oKmhRks4Dml55XHY+33yc5HVJ7/imKOGH4B98iORkipUB3XNDAatZJZwt038Vq1sjDGCkEzvqyOmFDR9N1DN+lUt8EYHHvEfl0gbPSRuSCIozwL2ygGTqjP3qD6OAUu15RLlZSgg7u9hroOtlwzOzNW+STGfN37pJNphTTBWajiuF94FKk+y6gIZOMbB6weP8h8VGPZJFQFGukUYorTYRnIpEYgx74PpV0RjrXEVmVOAEpddJcsrHi0GioBXaaFipzIwbX0ZCF6ug5jolpaspW1tI47iVsr7tUKwbDiQqyazdM7u+EnA4S6lUTUCF8T1+tESYFexbE+wVXr1RZO8ta0TXV8YhTQa1icHAUstJVmxWTWUoYqnT7Zt0CXWM2z5gvMt67PaNWNVlZUt3M/jBltsjZWvewbYP8NKJes3GXDKJYWUNvrblYls7ufkgcOQgkSx0H3zeQhaTTtECzmc0z7jxYUK2qkL3/ESmLjJI/FR8dj/p+RN6P7/e46EjTlMlkwvb2NmmakqYpQNnpKCkp+UzIC8n+UYTtKBEnwFLbIYwKTvsxeS7ZOwoxLSWi3dpQ1ptvvTvBOhud0DWlW7AsjcUioxAapq1ROdsVDMKc9+7MyDJBkkrmi4w8UyMJ/WGCEMqmcntTFTKXtnzWVlwWYU5RqHGLWtU6zwv4KGvLHvuHETu7AWla8PatKWGc06gZzAJlZ5okBce9nIPjmGbDJAjU+fmeTr+fUuQSUUjyTAWNfVgoWq+ZbK432T8M2TsMGQxTJBIhwPNMOm2LICwYTlI8z+D9ezOWuy7NukW8VBBEgqPTiCyXbK27GCdDPL1g2QNpWgjdJMk1unVYa9l4/YJ0OMbbXCXaP2b06hvINMVeaqHZFkUQMX/nDtlwQvtrX8CsVqjduELl8hbNLz5PuLNP0huh6Rq6ZVF96SL+5e0nsi8+iWwyY/rWLaZv3SJ8sI99PMCouIgsR0qJZhjki4DF/UcYroPhucQHJ0jAsG2c1S7jb72N4diEh6fKHjVJSW0LNJXFoSEZf+sd7G4Hd7WLZqsMElkUiDQjuLdLNplRzOekwynpaIzdbqnMCsui8cqz2EstRt/8NtlsAUJgVnw6f+lLZJMZwe0HqrhZaqE7FhSAEIhIjUOha1SubONtrQFgd5rYnSbZcIKzskQRJSRHPaxGFc20yEdDnG4bo+Ihi4LkdEhw6y7GF55DkyCKgqw/ZXH3keqmnAwo4gSJJI8TiiimSFOMQqDZHywrDddBt1QKuW6ZhA/3yKMYv1bFG8+ZGT52ukAzLfA8SGMMkeE1fJLxlDWjhd1qY5hqhLHZdDDPnJBWl13CKGc+LwgjZeE8GCXkhcSxDeJYUK+pLl4QCnxfZWf0hwlBkLNY5Ow8WlCrWQghefqpOrZjMJ6mXNquMZsX1Crm+ZpDN3SaDYvj0xgNHSnV7WFYIAqhMikqqpgTQjCf52SZIIqUXW2zbhOnBeNpytqKx2ye43mS+SKn4hmYpk5/qITY169W0TSdk35MnBZoQGPJxrE1ZmdGEqqTanF8GnHSi8oio+R/Hh5rLd566y2uX7+O4zg/0OL/o0WHlPL8X5IkZdFRUlLyAxHHBYsgP3dVARWgdWHTp1GzGIwSjk9iHFvn6adqLC+5LBYZ42nG/mGIkCrtdz7PMC3IMkm3Y7Ox6pEkguE4RQglykwzyVLbxjQgzSVhmOP7Z8WNBoNRQhiqncxmw6LV/N4WB4ahkReSnb0F+0chp70U3zdwXZ21ZZfjUzUCU68azMOcWkX59e+fuWhNg4w0F2S5JEkLdEPjwlYFw9BUcB4qEX112eO0nyLlnCAskFKq7ommrDZbDYv5IsexdfJMYleNs5AzE9fW0c8sRauapN12abhQKSZcmQ8wDZ2a18Qx2ySGBkVB0h9y8p//K9H+CU63jRQSZ7mN1ahhVisEO/sED/dpvHADAN22qVzepnJ5G5GmiCRFsywM97vrMPIgZPxHb5Kc9qlc2kaEkRIq5wXhvV0028Rs1Ji9e4fkpI+7sYpR8XDWukS7R0xev4lZr1EsQrLxVLlaVTw0QyebLzAMg9pLT1NECbP37lJ56hLualedT7tBdNQj7Y1IT/tY7abSdZwOGP7BaxRnGRn1Lz4PEkbf+DaL9++j+z4yS5nfuodmmfhba1RvXGHyzW8jhcS/tI5ARxOSfL4Az8Vp1Wn+yMuYFaV30S2L6o0rjF59g3QwVpbKUYy91CIdTdAMHW9rFU3TSAZjRBwjCkF4fxfdNBFpRtwbki9CZFFQubCB0DRM3yPTxuiOg1evkc0DsrEKOdQ0jSLN0B1b6UHSVBUbrgNJSjePCNwtIreLn8wxRUqGQRzkuFXomjH5bIG3sUQYC6qeTp4LsgyWOg71mioawihX3Ym2hWkYLBYZ02nKeJrRqFtUqybzQAm2u0sOvWFCnglqNQPT0gnDAsvWOTxRtriXL1S5eqnCw0dz5kH+hOWr6yrx9eFxyDzI6A8SkqRA0zW6XRchNbJCMJumzIMcz7MxDCUsX1m22dkNGU1SXny6zuFpzMFxxHiaUq9aFFGB6xhIobJKRuOUIMwZT1Q2T3YWjlmvqpyUx1R8k+EoRQj5uesr/jSURUbJ98Xj7kVRFJycnHDt2rUfeKH/0d9/nNAJqvD4aNGRJMm5puOxiNw0zdIyt6Sk5BPRNBUD8NFJTl3XaLfss8Rvk5efb54nbTtth5/8S8u8/d6Y/cMIx1JWl7alfOsvbFWwLYM4SYiSAstUgXeWqa5BnmfSsHVO+zGWpRFE6j6zeU6eCR7tBXiuwZWLFXRdLfQXgVowObbxxNx0HBfcvD1FA77ySocoLkhSSbtpU+QCXQfbMqhXLVzXJD8JiWJBVgjSTJDnUK0YOKaB7xvkuWQ+zzntx6yveoynGfWayVLboRAq9fzGUw2Gw4Q4Fdimhq6DrqlZ+NE4VQu0uKCNcuOKYoFlaTQbNs2GzYXWKqPXbzIcTNkwRzhNtYE07/eI6lXMqk82Dxn/H/8341ffwl5ukQ7GJCcD4oMa1WeuYLeb2K0G4YM9ajcuo9sfFGRFGJEHEZquYfnfW5BYvH9MfNTDv7SpMilmawQ7Bxi+h9VtE9zbIR3PiHYOsLptdNOgmAfILEd3bPRaFZKE7l//CSZ/8ibRziFC19F0DcOyMGo+uu8r8fhxD1kIvFWVnVF//jrH//G/Etx9iH95E92xKaIE3TBofvkFNAmGa1PEMdGjI4owxmjU0HQde2MZZ7nD7K330VyH+uYa9ZefJT44xllfxWrWkUDw/gPih3toFzcI7+9AluFdWMddX8G/so3Icxa37hPtH5P0R0ghMOtVnLVlNNMkDyKSkz6yEMgspwgi7EubJL0RFAJZCDXOluXUX3r6PG9k+uZNhAA9ihFxTD7TEVmGCCKs5Q71F29QBBHxwRFiEeOsLrF8eIqYHTPwtpm6bbIoJbE9TGGwoY+pNiMObMk0TAkicB2DRViwteZS9Q0GwwQhJZ6nM18UVDyLRZBxeBKT5YIsFQRhRq1iE4Y5z11vqs+npbNYZHieycaai362ZpjMMpY6Ni89p1K4n36qzn//Zp+kVeDYBtNZxmk/JssEoLHctgGNNJcstR021zx6w4TROOPgJMY2VQGTFZIoFhwcxdiWxmyWEiUF1y7XsB2DOC6o1yxc16DIBftHEYcnEWmqNGFZRaWj16smg1FCISRZLnB5vCnLJ6Z4S6kCM/NCnGWK/Nks98sio+R7QoVJFWRZhpTyfEH/SfqLP+3jfxrfqeiI4/j8Po+LjsedjrLoKCkpAfVl3axZjGYZrvNx0WMQ5vieQa3y5Ffi8pLD177S5dFewGSW4bsmJ70I37ewHwfpSTB1jTgpWGq7uJ6BYUC7ZXNwHDBfqFCx9RWPJFajExev1vB9g3s7C2pVE13X2N1XtpZ5IXBsg9Vlh0tbamyrP0oYjVPWVpXVa9W3aNZyOi01531wFKLrylkHUG41GgxHKbquoetKtLrUsRmOMiVCr5nsHwSIQuJ7Jk9dqeE4BoaukaYCXVfWmZWKiWXqFIUgCAuSJFcWqR96nrpLDofHEeNpQaMmCKOcqW1yehKz4iZsXGlwZqKFlILg7iN036NIM6JHB2SzmdJ0ODZWu6nyG95/QOOLz6O7Dvk8QKQZum1ThBGL2w8Idw4owgg0Dd1zcJaXcDdWsFuNTxV+BzsHmDUf7cxJrHLtIpptEx+douk66XhGNp7hX1zHv7iFpqv7ZfMFWpxg6Bp6q07rS8+j2waDNMesV9DQ0F2b+KjH4q33MTyHdDxl+to7PPz//jbNH3mZ1f/tr+BurJAc98inAVLM0WwLZ3ONxuoS4aND5rfukYcJmqGjOxbFZI67vYa7tozuOJjNOvFRjyKMMKs+3uVt7FaDuD8kur9HdHiKu72OUamwuPWA0R+8jtmo0fjCszReeobKUxfxt9cJ947QLQsRR4BG9OiA6P4umm0RH/eJ+wPsTgt7qUlyOiLaO6SIIkSSIZFIIZBxQnDvEe7WGu7WunqN4pgiTjGqFXTbxl5q03jhOtUbl8kmc5xum+m338WoVTBbdVr9HVqpYKH5xFGM5bcwOxZZGJE0l1lq21x7oQlxwmSWcTAoWCzU+69aMYmTAtAxDWXnfHwa4/sGojAIdSUGn8wSDFNjPEvJc4HvGqyvely+UKX6oc5mFBeEYU6SSiwLXnyuyf5RxP2dBbalM5llaoGfCpbaNl98qU0cF7x3Z8ZwpCxxOy2b+TzDcwwqFQPb1nGEsmSezrOz0EDJ4XHMctdjfcVlMk0xDR3PNRiNExpVi+E4odNxSFJx7kKXZgW2peNaquB53GEJgoyrl2pPdDFG45RH+wGDsTpn21KC+AvbPvXq55OH8WmURUbJd+XxeFRRKJeVx4v3TysypJQsFgs8z8M0v/tb7PstBL7XouNxh6MsOkpK/mKj6xob6x79cfqx1Ns4KZjNMq5freF+JCBvMEq4/3DBaJohhKTRMNnZF8wWKhTMNHWiWNmIOraO5+pEYYFl6uiaRqvuEEcCxzEoCkm7bdNt2zTOAgCDsOCdW1NAUgjlW2+aOnFS8PBRyHye88KzTQbDFNv5wG6y1bA4OI7ORySEUONUKlVbufx1lxzGE+ViFacFjm3ieQarKzquo8Y+prOMZsPi2RuN85nuZsOiUjGZncboukZRSCwTDEPHdXWGY4EjU6xphDaXmFKnstqm0/KwTA1N15X7lp3zzKZOm4Ki10O6LkiJiBKc1SWCnQOSg2Oc9WVM30evVtRYzsEJ9lILCkE6mGB49rnlahEnjP74TcKdA5xOC7PdYHHnEdHOHiJJ8S9t4V/axLuwQeOlZzA89/y1lEIg0kwF3Z2hGYaywt1cIV+EJKMpwfv3MSu+KmDQkKkax6o+fZXg3qNzbYXMBRQFMs2RukZ8/4R0MsVe7mI1a+pneUFwf5fg/i5Jb4BZq56lb1egKNAdG7OqRprMagURRQQP97DabQzPxt1axVlfOT8PZ7lDtHtEMVsghaT6zFV0z2Hy9m2ig2OkpiPihOm338FeXsK/vEk2nhHcf0QRJeRBSPMLz1G7cYXktM/R/+//wnBt7JUlVXSkKfFJn2jvkPbXvoi3uYa4v0dx6x6abWF4BjIvsBt1zEYNJCTHPZylNs0vPK/E5EGoLH5bDbyLmzS/9Dz2UpvRN1/DatVIjvvEe0eYtSq651IMhlSMCVUNPL9CtZnD2iaZ7WHbI9wH3yCfzMB1ueY0mFgtksYase8xmWZcv1xj7zDk5u0ZrmdQq1gqhC8x0EfaedDdw90AXZNc2q5Sr5tUKk9+1k1TvdeLQq1pqr7J3/jpNd58d8w3/3jAIshp1Ey2N6pcvVCh23VVR8E1+KNvD9k/CtlY8+l2bBZBQb1mIlGmDZ2WjeMYJElBb5Bw2o9VKnmmNFJ7JyG+q0Yf19c9grg4z7JYW1WFyHCUsbHm4roGu/vKzW0eCGpVNQYGEMc5335nwhtvj0kywcaKx/amDxrsHoRM5xkvPtt8Ymz086YsMkq+I4+7F58m7v5okZHnOTdv3uT09BSAer1Oq9Wi1WpRr9fPdRcf5QfpiHxa0SGEOC86dF3/mKajLDpKSv7isLbini/eD48jTEOjEBLT0Lh8scLlC0/aQE6mGe/emhKngk7bxjJ1uh2HPIc33h0zmiTUqja6rhbmW5s+tqnRG6Y0Gxbrqx5SeBRC8tSVGtsbZ8nbH7rmuI7GrbtzLmz6rK18MPJT8U081+D4JOLwOKIQ8omJiI11j4d7AZNpSr1mYVlqZrtWM5UwVYNaxVKiVJSWYn3F4eJWhdaZu1aaFvT6CTeu1Wmc/d5pLyZOBZYmmfVm6GlIHAF1A92vgDRpZFOM00PkTKNSNfGjOfmugVPr8OyPPEdme9y4WqP14Aj5/Cq6Y5OcDs80DOBsrGC4DpNvv4vVrOFtrlEsIkQYY9arSMcmG06gWSebzRCREkIbjs3i7g7Ro0P8i8r6dn7zLulJH2d9hSKMKJIELJPFrQfINKf1Y6+oRHCUINtu1gl39jErPpppnnc0dNvGqIImBGarQTadk/THaDpY7Sb+cgerWUMzdYpIaQWy8QzNspBINIn625qGiGPCg2M0wN1YwV1fJdo7JLi7g7PcQXdsOl/74sfen7pr46wsYVQquBvLWO0m4f1d1bGxLQzfw6xXMSoei/t71J69SjaeMP29myxu3QcpMOo1stEEq9sinwckx32c9WWVEl5xmb97G6vdwFlZIg9j7JU2IkoIH+xRhCEizcE00DQdkaQYroPpO1jdJoatksmRoFkqO8WoVsj6Q3TbwlntYNYqtH70Zdy1ZTB0DMdGt22klLgbqwT3HtH9a3+J6bdVfojdaZJqIJMce7lN85VnqVy7QDZdENy9RzoPKGwLs15FCyMazYLluo6IFsjLL+C5NVpNm9FEdeykVDv7WS6ZzjLStGC5beI7GtWWTbViUfFNTnspnmuy3LGJYtX+y3OBY+s4tkYYqrFFzzX4S1/pIqTGeJzS7ThnVtAKy9TZ2vBJU0FRCDzXYP9IsAhzzgynadQsxhMVsOd5Spvl+zrv3JoyOdu8mM1SegNJt6Uc7WxLo9VwcR3Vsem2bcKoYDLLePBwQVZIpvPsTCPisncYMptl/P6rPd55f0YUFRiGxp37C2q+yTPXa1y+WGE4Ttk7DHj2+ne3eP6sKIuMkk/k07IvPsxH7Wqn0ylvv/02nufxYz/2Y+R5zmQyYTwec3R0RJ7nNBqN86KjVqt9Lgv971R0JElCHMdl0VFS8hcMTdO4fKHKUsdhMEyIY4FlqV3GZsP6mGhy9yBgOEpZ7iprVwDL0vnyy00MHQ5PIi5uVaj6BieDBE1KNF3npeeaXDwTVO8fhRi6csP5IHVbXV+jWNDrx6qbUP/4CIOua1Sryj1mpetwfCrOf9Zq2Fy/WuO921P6w5gwUroMFebnsr3h0m46WJZOXkiaNYtnrtepfGgcTEioniULv/v+lKOTGN3QsGSGv3Ob6vGU46JKpjss5im2EVCzJavxkKDhkxgOhZWyyAy8SY/2o/eR/Qd0v/YF1p99mtTUyaTEataxmnXyeUB83CPpDUlOByTH/XO7U2etS7RzQDaZYVR9pK6R9IfYx32aX3kR/8oFFVb4YE+F3pkmyemQ+LiP7lhqBGkekk2maGhUr18keLiHf2Ubb1NZ5ObzBflZcFxw/xFGxcddX8Fd7wIw+sM3yMYTJX4eTdFNA800EUFEdNQjW4SIOFUjSyd9rHoF//IW2WhC0hsqUbPnIM40g872Ona7iaZrmI0a+Tyg/sINgjs7Kouj237i9c5GU6yWsuTNRlMM26Jy7SLoOvFRj2wyQxQFRtXHv7CBLArGf/L2eRCg3W2jGQZpb4hYRNirVVVwdJqkwwnz9+8T3N9n8I3XsBp1ssEY99IWeRCRLwJ018Gu10DXyQdj5jfv4qx2EWGC3WySDkbojo293KYIY0SWowtBHkSYrTr5LKT69BUq1y6eF3Yf/uzVblwm7Y/IZ3NaP/oK9ZeeITnpM7/zABnnVK5fwOkuIYKYtD8EIXCXOzhryoZXFgVJf6SKxeUO+r1btFafoXcYI6QyYtB0jfE4IV4kGLMpHWLaRwFJKhCdBs0XNkmLBqat897tKe+hMZ0p0bSmwbUrNRZfzzg4SUjSHN81uXyhSp4LKhXziQLjw3iuwdVLdZoNm0IMuHVHI8skjYaFpuuMpynjWUa9amHbGral02rYrHYdQMM6M0zoDxPCqGB12eXG1foT41zzecbb702wHYOLKy7XrtRo1Ew0XeP+zpx7DwOSpMD3DExDI04EnqMznma8/u6EICpY6tgcncRcvlA9d9n7vCmLjJKP8dHsiw8v2j/K4wX87u4u9+7d48qVK1y8eJE8z7EsC9/3WV9fV18QYch4PGYymbC/v48QgkajgWVZ5PmZfeDnsMj/6PE/PuaiKCiK4lOF5N/pvEtKSv58Uq9a33EuWUrJ7n7IH78+Io4L+qMEx9ZptxxWl1Wx8NLzTWxbp92ySROBjpr57nZdum2bJFUBdkUu2VzzMD/0fb4Ick56MdNpyt5hRJoW7B9FrK14HxtjsG2dKCpotxwqfsxoktJu2swXGVJCrWpycBKBlDRqNr5nsrXpcXG7iqErl6f9w5CVrvNEgVEUkvEk49KWz+kg4eA4YrnrYpk66a2HOMEJX35+mbs9jdiwmGcaUSQwj3ep1nWevd7ACGdkj/Yo+gMsHSzHwA96dHsPCP5ogdVuUizCs4C9ObP37pLPFpi1KlJIlUPRGxE8OqBycRPt8hbJ6ZA8CCjmITLNqD1/g/aPfRGrXkVkGUUcn7tIJYMh2XBCoYIU0D0X3TCUcDnP0as+8XEPb3OVbDJj9IevEx+d4qwvE5/01XjU6YBov0URJ6SDMdVnn2L+9m3cbpsizUDXKcIY3XOID07QHYvml19g/ub7mO2Gcofqj8hmc2QhwDSRaQamiVWvYfhqzEnTdUSa4m6ukPZGRHtHyDTDbFRBSLLJDDSN5pdfxPBcBr//J+q5qlep3biMt7lKOp6RHJ7Q+vKLdP/qj3HyH/8bRZyej3aZtYoqTjxXPefzBbrvKavf0wHBw33y8RTdsogMnejgGF59HcN1qVy7iFWvYi+1sDtNNGD0J2+THPUoghAKgd1qIIUAQ8fuNAGI948QcYK3uU7zS89TffrqxwqM8/fyUpvWj77M6I/eIHy4j8xzzHaD9f/9r6vOyniGSFKyeUAeRCAkxocE/Zph4C53WDzYI5tMycYzqlcnnIoOs6mL1KpMJzHRPKM2OUQuFlQdDbNeITFMGI9xDjL0lXXem/gcHquMjHbLJisKFvOC3cMerabFxopHEBXszELevjWlWTNZ7rp8+eUWjvPk+T3O0Gm3HJbaKijQcXVsU0MUEtMFyzIIgoLD44jlroMQkosXKqqz+SFWll0ODlXnchHkVCofOGj2RwnTeUa7ZbO96dNp2RiG+lmaKl3W9StVdvYj8lzie8Z58N5gnBHFBaORGsHKMlEWGSU/fL7f7Atd18myjDfeeIP5fM4Xv/hFWq3Wp4bxVSoVKpUKm5ubSCkJgoDxeMzJyQlBEPCNb3yDZrN53umoVCqfa9Ghn4n6Plx05Hl+/vOPajrKoqOk5H9+Do4j3rk1ZRHktFs2rmMQJ4LDo5AoKrh8sYJl6dRqFpahkWqwtGRTq5mkqWDvKGJlyaHddHj+Rp3ROOXhXohh6mSZ5P7O4lzH0WpZJInBYJQSRgVXLlapVU3CKGc2zxmNUxxbjTtdv1Ll/XsLbt+d0Rsolxnft3j+aRXsh1Tz4UttlyQV5MD1y1W21j0WYc5pL8ZxjHPnnbUVl/VVj7fem9Coq3EwEUUUh8forSZe1eEyObqWsH2hRhSmTP77IdpiTuv0mGIwYn73IWlUqFGfdh09zsiO6wQiw41SjKpPtHdEcjpABJHalRYCmaa46yuYtQrRwwOsSgVndQmzUSObzJi9ewd3ex3vwhr5dI7hu2imie44FIsAgGwyJx1NsFoNDM+liBOKJEUUBelkjjwdkrwwQkqpAvx6QypXL+Bf2VYOVoen5LMFwcN9RJpiL7WJD45JJ1OcTlvZrs5Diiwnmy6w2g0M18V0XYyqj2aZ5OMpSImz0oVCoHsuQtOQAmSuwgo1TVLMFzjrK5jVCu7WGpWr28gsJxtNQdfwtjfwr2zjbqwA0HjpBrO3b5OOpiq7Ii+QaUrt+ado/+grylULcNdX0B2LfLpQwYGmgRTqOIo4QWo60d6R0sLIArGI0F0HzbGV5W2Wo5k5yckAw3fJFwEiy3HWulQub2JWfZy1ZZLDY6xOi3Q8RQfs5SU020IzTQzHZv1n/lf8Cxuf9pECIOmPmL97m3wWoBkmSDVmls0XZKMp+TxA0zQW93bI56HqANVrTzxGNg9Ijk4pggirVae92aZiOMg3j/nWQ5gWbWpWxlrWZ+i3EYZGEGTktkllY4mZEMx2x5wuJGmmUfgGUZTTbNhwliI+m+Y4Vkq1okYeoyhnMs3ZP4gwdI1XXmjiumrpnOeqG7nS9XBdnVdfG3H7/hykMmFIo4IkEVSrJo2qSb1mEsWCla7zsQID1NqkWjUphMBzTA6PY1xXZzRKeO2tCVkhWO1qHBxHTOcZm2s+zYay8tVQ9tlJoswlHndmNV3HNGC+yKlXTWaz/Ae6Pn6/lEVGCfDp4u7vhBCCt99+m3a7zY/92I9hWd+7a4H6MFWpVqs4jsOjR4+4ceMG4/GY0WjEw4cP0XX9iaLD9/0fatGR5zlZlqn2eZIgpaTVap1ndDy+f0lJyf8cxHHBg0cBrmfQaTsUhTzfDXQdndE4pTWx8D2Dk5OITkfZtU6mGdNZxmSeIHJwLY2XnmvQ7TjUzlxwTvsxe4cRk1lG7Wz04uKmT3+YkqYFcVxwfBoxnRmc9hMlSJ/nrHZd3nh3woUNnxeebfAHf5SqMa+6RdU3aNZtqlUTTYOjk5ilts3FLaUvcRwdIZSA/aSXsAgzGjWb1WWX7pLDbJYRRQWrK+raLRcBIgwx1tSIkecaLIIc1xLU3JRs1iMbTZE1k+jghGwwQUfCAgqRojcaGKZJNp5SBCErf/0vE9zfZXFnB6vdQJ4O1ONurWG1GmiGocLpHuwipUBEMeHBCSKMcDeWWbx3n8V793E3lml+6UUqV7YZ/eHrWJ0ckWaIKEZfWyYdTZRlbJ5j+B4inxA9OkJIocad9o/wL26eBeWBt7GCu9olHU2IDk+Z37yHs6p20/MoppgFWK06zloX3XHIhmO0s9Hb+fsPiI9OyBcRRRzjX9rC3Vhh9ub7xKcDdb+iIF8slA4FkBpUn7pEfHhKcPchGBqVi5vUnn8Kd30Zs1574rtN91zyKGb6xnsqifvSFvUXbmBUK4z/+C3S6Yz4uI/ZqCKzHKfbJp8vKNIUkKooEULpOYJQhfalKTg2drNBMhwhNQ2tEBgVjyIMKcIYu9smPu5jt+vUX3oWZ6mJe2GD8R/8CdFRH6vdwG42VMFV8SEvqD5z5Tz0D9RYk0hSMAwMR5kJPO4kRXuHoIGIEjTTJNg9JP7Ga9Sev07z5WeUw9dwTDqYkM9UcemsqHE2KQTJcQ+EwPBdzKqP4bvUKx7PbepM375N1HqRFhF2HpO7FnGho8uUppZQq7Q4GEOyiLDNlM5Gk6WOjabp9AcJQahydE56MYsgZ3VZdVGqVYssB00TZw5qZ/kbvgrD2970uXqpwu27c+4/WuA4Glsb/plrlEaSCiq+wfKyw2CQomkC04AsVRsNQipThcddCU3T8F2TV15o0RvEvPv+lNN+Qr1m0G77dNsOQsB8kfFwd8HVS1WK86kTMHQVPvrh1BhNV12VvICqr/J6fliURUbJE9kX30txIaXkwYMHZFnGxYsXuX79+mcSxlev16nX61y4cOEsMXPOeDym3+9z//59TNM8LzharRau6/7Qio7hcMh4POaZZ555otPxeLyqLDpKSv78M5qkLBY5qysuWSbYOcuyMAwNXdewbZ3eIEZKjVwILFPn7oMFvUFMkgoMTSPLBd96c8zsbKHiuYYSB5+5QF3c9Gk1baoV5T6TppLDk4xCwu5+iGEo16q8EGyuuTx1uUYuVAdkPXLxPZNnbzhMZhmjccpwnGJbyp7W93SOezGXLlTPk8MNA1a6Litd9+MnfHb5VDvunAWKPDlaqjJGNPLpHJlmajZ+OKKIYnRLhddJIVWHoZBIJM5Sm/DBPkWa0fzSiyS9EWajiqZpWI06VqdBtHtEcG8Hd2MVEcdYnQbB7RGGZdL+qa/RePlpFQSX50T7x0j5Nq2vvIi3vU706AiZ52iurfQdJ310Q8e9sAFCkvfUTH96PGD61nskxwNEmlF79hpWvarOrSiYv3ef5OhEhdFtrJHaNmaaIeKEIoyQRYHVaFAEIf72OtkiPDtvi2zao5gviAwDmeW4myvIPCe4v6tcsqKEZDjB7TSp3rhKeHxK8Lt/oHQeeUG8d4zdblJ/8YYakzpbkA+/+W1O/sPvko1nmI0aumMze/s209dv0vjCc9SfvaYKp71DFSSIhqZr+Bc3iQ9PyOchyUkfgCJVTl4yz8nDGGephZQFhu9DIRFhhIgSdNsim84xGlXSox6G5+CudbAaDWpPXyXrjxBJTh7HxEenhA/3MOs1Oj/+ZRqvPHc+DhY+OiR8sEu+CNV409YazkqHxZ0dRq++gWYYaEh016GIZwR3HqIZBtlgjIgTlVfSaWE1hogsI9o/xl5SWpPiTDuCbSHzHKvVJJvOmd9+yOKd9+nKnNX5Ab4N0jap6jkzzWW1YdBMJswf7OPMQsAAK8PvmPhOVz12EREnBZ6rJhaKQnzoI6Kd2zc36hamqQIvF2GBaSqL59NBzFvvTQnCnP4go1ZX2RRFIUCDw+OI2TwnTgvSpKA3SHn/3gLPMajXTJoNm27HodO2iaKc1eUKvmewseqxfxjx7NMm00lKb5ierT2g2bAZjhL6w4RGw6YQEttSnZA4VjbSjm2gaYI4KtDqFr5vqMLqh1hllEXGX2A+PCL0vYxHAcRxzDvvvEOSJDiOQ7fb/b4W+lJK5ouCKC6wLJ1G3fzE39d1nUajQaPR4OLFixRFwWw2Yzwec3x8zJ07d7Bt+2NFx+fB46JC0zQsy/pYp+Px8X40jbwsOkpK/nyR5xI0JbpeajvMg5zhMMVxdGxbJ8slk1lKq2bTqNmc9BKCIMfQNVaW1KaHEJKd3QW37swYDFOeuV6n3bKZznLmQcbmmotpajw6CFkEOUJAlkviKOfBboBj61Qqaqc0rQrGs5TljkvqqaCuIMzp9SWLs2wP29JJM8HObngWqGefO+V8N2pVi2rFZL7IadQt9FoVvVZFzmZozSZhVFDxTRxbZ94fYfgOSX+AbreVBkHXAQ1Z5BRhhO5YpIMR7saK0lDMAozL29hLLfyLG2hnZiHZdIFm25iNOuGDPUSakQ2maLZF5ys/in9p63y2XzdN/O11ot1jssmc1o++jNmoEZ30QDeIDk/RkDibq2hCEu0eolkm7tYq7vqqKhTadbKRWtTWX3kW3TBIhxPC3QOVSN1QidRG1afoDbHaDfVapjn5fIHVqGHVq4QPD3A3lqk+c40ijAmiGBklJL0hGhLQMJdaiDBGRDGGY2OvdJnf2yEfT/EubVJ7+iqmp0aTkn7B6NU3yKZznOUO4f4J/d/5f9Asi/qLNwCNbDojH01JhmOCe49U3sXVCxRxwuSNm1jNxnkooXdhA9P3VFGLhhnFagxqFmBWPMx2g/R0iG4YUPUpwuC86En7I2SeIwUUQcTsnbs0v/gcszfeAyTdv/7j5LMFIoxB0yiSFJnnFEGIpsH4W+8Q3NnBrPkYFY98HnD6n/4rRRgRH/VJxxPctWW87Q1l8TsB3XWQEqKdA9LnnsLzPZxum7jqI7KMbDwhPjxRKetxQtofYfgqgR0pmd+8i2aqYr1V0WiHY2w0am7B+nrBICuYBoLF6ZAkyjEdhxlVHH1E+2EPg0uIi1dwXYN8nJKkBUUhMT/kglkUksk0O/uMO+fBl7Yl6Q9i/vP/dUSUFBg6rKx4OK5Okkg0JL5v0nB0FkHGfJEipNJZzWY5O6NQdScihyyXzOcZx6cGqysuq2cbAtNZxnyR011yMDTon41VPg7qrFRMJpMUzzPotGzCSFKvWlhmQZoJ4kQwn2dYtsbVy1WW2g6ry+4TQZ+fN2WR8ReUP814VL/f55133mF5eZlXXnmFV1999fv6m1kuuPcw5KSfkmcCTYdOy2apKb6rha1hGOfFBChr3el0yng85vDwkNu3b+O67hNFh/2hdNjPgsfPz6eNV2VZRpqm5z8vi46Skv/xmS9yBqOEOBFMp+mZYFs5T13arlCrmAxHqdI5ZIILGz6NhsnuXkSWC5JU4PsfbJY8TuQ1ch3XNYjCAn/NYHXZ5fgk4r27czzPwHcNqhUTQ9eIE52j45ggKrhyocraqodlaYRxwaO9kDSVbKy6DAYxRycxtq3sdB//Tccx8D3J4UmIZWmY5vd2rXFsnc11j/fvzrEsHd9zMLe3yd69SVDoFLpLd0kJTNPJDM20cZa7av6nKCjCWAmv0wwpBVJA+PBAOTPpOka9gtNtY9WrZOMZuusQ3HtE0huQnAxJhiPyyQx3Y5U8CNR4zFIbw35y9FYzDDA0kv4I/8IGrS+9gFnx0Ayd4P4emq4h84KkN0T3PNy1LqIocFaXlHDbVs5D6XBKPpphd1tkk5laIBumslwVBbptoTs2IojAMslGUwrXpv78dcK9IzTTwNteV7v022uEJ33iwRgzipFZgeZY+Bc38S+sq26CZWHY1tnOf5XaU5dxuh0AdN9j8f59kv6I8R+9id1pEu4dkZz0qT19hfDRIe7GirLzFQL/0ibRw33CB7vYX3xeFRphxOLuI+ztdaQoSE4GICWr/++fwr+wzuTbN8mGY7LpnMW9R2gCNNNAxCmaYaA7LpptohcSbBN3cxWkxKx6aEIQ3N4BU6f2zDXCnQNkUWB6HvZSE9f3CB7sER2cYLgO4d1HeFvKsjhbBMxu3iPaP1LFwWEPq9MAIYh29kBsqvh4TcNuVIkOT1QWxsYKZtWncv0y+Rs3EVFKkaSkO/vkixB0ncaXXsBd7RLc28FqNdAdm3Q4wk6nrDc1TmQdbbRH00yo/v/Z+68fy7L8vhf8bG+ON+EjMtJnVWXZrqpudjWbXqQocOaKIkQBFzOQBP0DgsgXCRAgPQgCpAc9EJBeriALyDyM5kKX1EjiFZsU2d3s7uqqrPQuvD0njj/b77XXPKwTUZnlq7uLoskvkMiMjGMj9j57fdfva+yCk83HHA9jUr9NteKxlocc6Q56GqI/uIesVKmU25hGTJoKJJJq5f1F+DTISJKCtVUXURT0BhmgUa2alH2T9+6OVLxt28G2DNpNlV7nOjphkBOFIAvIC6jVTExDJ89UFPB0qjYoQLWGT8Ocq5fKNGedNaKQFFI1fteqFmvLHnuHEVGUq02PVDCa5Lyx3uDaxQrf/n5PfT8ucGy14dFu2rxyvcbSokv3JCPLCx5sTCn56rV+0YTjGcn4M4hP6774IIqi4MGDB+zu7nL9+nWWl5cBZrt2xSfe90ns7sfs7MU0GyauY5HlBd2TlOkk5SM8UJ8IwzBoNps0myoG8Mm43O3tbW7fvk2pVKLRaJz5Oj6PZ+Tz4KNIx6kE7XTS8UHScZpe9QzP8Az/ayClZHsv5NFmQBTnGIZOEuccHMbEseCFa1UsU2dpwWO+7ZKmBd1ewpdeqnN8EnPz9gTH1SmkxDTe/wCLIqF2LC1VjhdEObmQuI5Oq+nwcGPKwpzD8hO9GEJI4jTHcw08TxXlTYKcySQnigW9QYo+028XhUTTP1xiqmlqMSMLjSdeDlIqMygoj8bp/Yo8p0hS1hYs0qzMzl7IYJCi+wsU9SHWwTYLFSiNawR9gW7ZuEttivkGpuci4oi420PLCsx6DU0Dq1GliBOCzT28tUXcxTkM36P03CUG3/w+8f4heRhDIRFBgG5auCtL2K260vKHCZNbD6i++jxWrfKB96fBE9eb0pXzVK5dJHiwhbuyiMwLkqMTpBBE+0d4q4vKNB2neCuLykcxnpBNA+y5BiLLyKchZrlE6eoF8mmgdvltizSIycZjpCxwKwugaRi+i+65yKKY+S4KNJhF2a4jgoBsOEE3DZLjHlajTv3LLzO+dR9naR5N1wm29kn7Q3X/QpD0huo1ywKj5COmAbIoSDt9ZF5QZDlFGKG5Dpqmo9sW8czXYrgOtVdfAAnOYhu73cDwXNzVJfwLqyQHHeXbKJcQj7fQdYNwZx9N18gnAVKCWS0pUjAY4bUWFWEUBcZ6merL14h3jxh87z3y0VRJ6zQdDYlZKVO6ch6j5JEcdqEo0EuuWvD3Rxz/1jeYvHcf3bPB0IkOOog0w2o3EXHM6O1bFHlO0jnBqlQo8oxw94g8jKAoKHLB9N4m0eEx+t4hmuPgrixQOreE3ayRjyag6+gziZnVrBNt7rN2bR672uB43CPbOMJ0LEq7DznveixWHJx8SKnhoRsGR2Gb5uQIc28b64U2jmswmWTYtppaSiRpWtAbJFi2xkLL4egkxXMN2i3leAgClfJWq1lEccFgkLIwr7xco3HGOMiZTFNAw/dMSp7J3kGMrkksW8fMdMaTnELC+prP4nwZKVWh5mCY8WhzyubOlNEkY3HOZX7OoVwyGYwypkGGFAXLix61qkWWSy5frNBuOWxth0wjwVzLZGXZw3N1NrZDLFNjMEwZT3KEkJRLBs9drrK08MWoQOAZyfgzhSe7L6SUn4lghGHIjRs3KIqCt956i1Lp/cKqz7NIzvKCo05CuWTgOoo5W6ZOq2mxfxBQdn7wMj4A0zRpt9u02231fFl2Rjo2Nze5desW5XL5bMpRr9c/Uxv5KT5PWeCpX+PJ+56Sjo+adDyZXvUMz/AMfzQ47ibcezDB9QxWlvyz/9cNnTv3J2hMuHqlMmvRFownGSuLHgtzjvIpzCJi+cBHQxDmWKaGYWhEsSrFQko0TadcMtEMjWkkSFLVDJ7lBXuHEZ5r4ntK3x0lQqXAaGAaGtMw5/s3hyzMOcy1HLJMMhimlEsGhqHkUtNJSsk30HQ46acszDkcdxMODiMGY7XZ0ahaLDZ0SpNjosc7akfbMlg6t8zc5RVGmUGweQD1HEf3MNOQIheUrqxT/7FXGX77HYLHO+iWiTPfxqpW0EwDmWRIHUQQY3g2zsoixqzRGaDy/CWinQPG795FdyzC7X21i91u4K0sqgnHgw10xyaPIuL946dIhmrrzrGbdQBEGBFs7CKihCJJOfntbyJ1nSKMMGwLs15FxCnB/U3suSZGo4qjSZKTIcnhMUiQQYxZK2PVa1h11WBtNWrk4ylenBDuHWLVqpQurlFkOdlgdNa2rbvOWbKVSpiatYkbBpptkR51sRfaWM2a8j4kqZKTWRaG5yCnIeHuITLLVKt5yUOKXJlj8kIlRdkW+iy96rTxuxAF2hMTcd22VDTsj71G+eqFp45DZ7GNM99C03WcZoOpZSKCCJFnyCRXfR4ShJMAGulgBIMhzlwLMZkyvfeY6cMtwsfb6LaN6Slpk26biDidRfIuYlXLqiuj5JOOpxz/1jcYvXMHs+QqE36qjr1sMCJ6vEMeRmQ91d+hoRNu7SGyDN35Pq0ff4MsiOj/3h+SHvewVxbwVheRaUY+GCOnEUWSoukGdlNNRkSSUsQp7toiBpLz9oTahRJRYZI+fEwRjymv1kjLBX1KuPNNntdzzD704hLJwYR+eUq9YnPhnE+RQ+ckodfPcD2dStnEsQ2SVGLo2qzbQiEXatJQLVukacFglNBq2SwtuFQrJkVRMBpDvWqyMOfOCIWkWrXQ0PA8VYqp6zpJWtCsK+P5f/1Gh+k0w/cNbNtgZzdkNMpYnHdZW/GpVCyyTHD73gRNU59l3qwfo1yy+PpX26yt+AihJFO7+yEih7VVH01TAReFlMRRwe17Y1xHp1H/0So/TvGMZPwZQVEU5Hn+ueRRh4eH3L59m+XlZZ577rkPyX00TfvQ4lsISZoJQGkSC6l0ziIvyHK1m/ckLFNDCEgSGE9yHEf/TFriT4NlWczNzTE3p5Ip0jRlMBgwGAx4+PAhcRxTqVTOCEe9Xv/YNvIfFp+FdOi6/iEj+TPS8QzP8MWgKCS7BxHoGtXK0xPO1WWPQko63ZhuN8EwwXMMLl8oc2HNx3EMlhddLp8vc+POkCQrCKIM09BJEkGWFWSZZDrNSdOCdstlcydkacHFcXQaNYuKb5LEgkDkGIZGyVWa6jwvuHV/zGCYYVkazNq6RV4QGRpZpjo+Vpcduicp42lGUajnyYVEUrC3H/L9GwO0GcnxXOOsf+PoYMzRb99ioeizeL6FWfIosozxu/ewmodUKj723jG6Y2Oen0eKgmwwIjns4K0uUXvtBYLHOwy+8x7ZcKQ0+dMQzTJwFucxHAt7roV/YQXT95XsiFmMpu9Sff06RRQjwgh7cR6rWn6/dbvsI5MUEUQE9zfRPRerVsasVUkOO9hzDdzleeKDDt3f/gPi/WPs+Qb+pXWi3UNM10H6HqZr451bpkhzpvcfk4/G6LqGiFM008BZXab+6vPKizHXYPzOHbLxBKtawSz5arHcG+AtzdP8iS+jGTrd//K7Sl5km6BBfNAhOe4pr8nFc2iOhdg/Bl2ZsL1L5zB9VyUp5RkiUJMDq66eI5cS3TQJZz0U3toSdqtBESfk40BJtbp9TM/FrJUp4gTdsZFFoSRNgBQF8WGHbDgin0zJxtMzUzuoFvP6l17k+Ld+h7hzQu3l5yhfvUC4uUdy3FHt3lIigkgVIOa5Ioy6xnRjFx5sEu8fkw5GyEJSvryO1axTpBn5OCAdjiiEoPnjbxA83KbIMkbv3SfeO8JuKhmTblnojoNZK5MHIdPH2+pYqFcwyyWKPEOfTNEMnWwwJj7sEB10FIGba2DXKpiVMobnkocRyVGHcGsfZ66JTFOKNEO3bfyLayotrDdQLefBiNa18+S1y4z0hOqXrqO5DuZYYzTJseyCa42MYTximJhcea3GG28u8NzlMv1hxp0HE/YOQoRQtqPOSUyraWNaOp43WzZLNekIAkGzZuGUDTonKYNhimnqDIcp3V5GlhZYlkG3lwKo6Fpl30EWYBo6tqVz3E347rsDNrdDhJBUyibVik2rYVGuWMSpYGM7QNegXLHodBPStODc6vvyqtPPtuNOjGlGvPFqk+k0Z+8gYnHRVUbxk4QoLpCg1mNSMte2npGMZ/jB8OSC9rTs7tMWr0II7t69y/HxMS+99BILCwsfebsnSYYQkv3DiL2jmCQRGIbEMiBKCo47KbkoyHNo1U28pfdlAuNJznia0wnhu++OcGyd5UWH9VXvLNLtk5DlBYOhusieXsBN88P3s22bhYWFs/cSx/EZ6bh37x5pmlKtVs8mHdVq9UOk40e16P+spOODno5npOMZnuGHR1FI9g4i3r4xIM0KdvcC2i1liHQcdZ6tLfsYusbzVyu0GjauazxVXmUYOj/2RpMoznm8FTIcJ5RLJp5jMDVy0kxS8jUaDZu5tk1vkBJEgmbdwjJ0nrtSoVZVpMI0dY6OIzq9lCQRJHFBYUl03cKy1CbNaJJTLpm02y5hmKMBVy+Vz6RUe4cRjquRJgWLCw6GpfPuzQG1qs1Lz9fOmorNsMO0d0y3vUC7VMOdFfRZ9Sqj798h7ZzQ/Ik3MUvvT3asWoX4qMv4xl0aP/Yq3vkVws1dosNjNMvEdGyKKCY96VO+eoH6my/hrS4qk3D+fia/SFKsso/0Pax6FbtRfer3Ylo2aZIR7xyQj6bkQYjuWOiuS+2V56i+8jzj2w85+R/fYnp/A7vdJB+NiTu9WQN2QXrSJ58ERHtHarKgaRSiAMtCy3K8tUVkrIzaza+9zsKf/0lEFDG99ZDkoKNSj8IYzdCpv/ESlWsXGX7/NpWXnlML+tFEdVtISZEkyDw/80aYr5WQaYa7Mj+L5k2VvEjT0S2bPIrRZtPzIsvVzycIKYRAsyyQnEXI5pMAdJ1solrE87HyVJSuXlQt46MJk9sPCR7v4Cy0Gd24R/h4l9Llc1ReuoY+kwa7Kwt4a0vEu0dolomUBWajSrRZwXBd4sNj4sMOVlWlWGHoFEGEpuvkQUQBylidZqSDEZphYM+30R2LaGMPs+TjLLSJD47p/t/fYnJvA+RMTpYLsCyKJFVTB00jGU/RK2U0qakpXcknr5awm/WZv2SDPE6x6lX89VVEEKr+DNMgH47JhlOKKMYsl9AkGKUS1euXziZcdquO1ajhLM7R/tmvko1Vf4jh2ZjlEku+xC/ljMYpaVZQTsasvvoc1//ieSoVtciebxvMt12EUIV4aSq4/3jKUScmioTyW+kanZOYg8OYKM7Z2g0ReUEhUfG0Odi2RqNusTCnPj/uPhhTKZuYhjZbrxikmaDkGWS5mkzuHYQUhWSx7aAbGp2TiN4goVa1WJx3SFLJUSfmhaYq/iv5xlMEA1RoxVzb4aSX0p+Z2eNEEIRCEadChVtQqBjdOBXcuD3muSu1H8kG7wfxjGT8KcYHzd2fhWBMJhNu3LiBaZq89dZbeJ73sbd9kmRs7YY8eBzgujqObbCxNeHRZqgi21JJLiR5JimXDV57SbK84JCkBbv7EWkGjg2Nmiqqebih0iounPM/9rlBNefefRgwGGanGwO0mhbPXyl/qpnJdV2WlpZYWlpCSvkU6Tg4OCDPc2q12hnp+Dxyqc+LJ0nH6fMURUGapk+1kT8jHc/wDD8c8rzg5t0x//PbJ9x/PMG2dAxd48Gm8km8+kKdZtOZ5c1rVMrmx+7wLcy5fPm1JiXfZGMnIJjmdE4S4lTQaliqy6JuU5tNSo47MUGYszDngKbNFv7qvG80bA67MYfHMSXfYGXZJwoFuZCYuqSybDLXckjTgpJnMAlyNF2n5BtMpplKnZUqbWZhzmM0Tin5FiIXdB8esJB0EL0e2ePHWLUacZQyHGWUZyTj1O+QjSdqcfgBOPMtos19hm/fQjcMlv/3/wfH/5//xuTeYwzPQ2vVkblAMwwVUVuvqgjWJ8lKo0Z80MGqV9AMnSLLzhbDUhZEB8forot3bgV0DXd5Dq1Qm1665xBu7TK9u0E+nFA6v4osCqK9QyZ3HmHWq5QvrWFUfNLjE3TLIp9MMaoVZJKR9YaUr6xTunYRzTSItveJ1pYoX73A2v/7LzF67x7Tm/dJh2OsVp3S+gq659L5b79HctSj/MJlKi9cwWk3md5/TNIdYNYrSFkQ7x9TurhG6cp54sMu0c6+SnsydIbfvkHweBuRZhglD0yDaP9IlQEedcnTDMO2VBTu/hHuQovS1QtMbt0n640IhhPEOECzTDTTRCsE/f/5PcQ0oEgzys9fpvrSVXTbIh9PGb1zl6KQNN54SR3vcUK4cwCGjtRAMy3SjT1EoGRHYhIiNZ3k+ARnaR7LK5EenmDPN9ENgyKMcOab6lqfCaK9Y4pcYHquSiKzbUY37hE83iU9PiE9OAZNU6QgVBHH5AJ7oY1Z8Uk00E1DSdNaDYooxplrUbq8Tj4NifePMdDQNU91mlimKghMU9VdUvLIcoEz38JtNwg3dzAcE/NLZUQQMbm/QbxzQOmSerzTxw4eb+MuaRhln2bdoupJkuM+xUqZ9V/6yhnBeBKnZmuwsB0DKeGok7C3H5JmBeNxjmXrWJZOb5AicolhwHiqenDmWg4l38TzTEbjDNPQGE8yGlWbXBZEicAylORqOMoYTTJ0DTzPoNPPyEWCYxsYukDkkjQreOm5KpWyycsvVHnv9gjb/uh1jmkqr1gQqklpHAuOujHjSU6aFWotiNpwkcDuQUivn7C8+PHrvR8Uz0jGn1L8IN0Xe3t73Lt3j/X1dS5fvvypaUinJCOKBbsHMeWScdZWe3CcsHcQM4kKFtom9aqFrsHJMGN3P6TVtDANjUrJZL5t0+uqE6NS1plOc27emWCaGu2m/dQO4pOv9/F2RH+YMd+2MXQNISTHJymOHfLic5WPeMUf/z48z8PzPJaXl5FSEobhGenY3d0lz3Msy2J7e5tGo0GlUvlCFvmnj/mMdDzDM/zosbEd8M3v9RCiYGXJJc+h5KuyvO5Jys27Y15/pYFuqMSmkv/Rl8jBKGX/MKJ7kqAbGmurHkUGjjul1XRVnGQoGE9zev1UxeIaGp6j85XXmxwcx3ROEmpVlTZjzMqykkTgeSaeo+M6OklSkIuCuaZDvWbRH2acX/N57nKZg+OEzZ2Q3YOIStmkUrVYXfLOCsVsE/z7N0huv0vgZOi6gTjpoNdqaM2AsHoVltWiQkpJHkVkk4Dp/U28tUXshbmnWoOFyMke7+CuLRLvHqF7Hv6FNcxyaSblESSHXVUgF8c4c00VNTqDt7ZE8GATKQRYNuGjbay5Jobrkg1GFHFC6eIaIkmpvngN75wqeJNFwfi9+0TbB7iri6pBvNMnGwwphMB0bfLBiGjbwJ5vKdLjWGgDDd3UwbaovniV0pXzZ9Isw/cIN3YpXTmPVavQ/vqbtL/+JlJKpvc2GL1zB5mekPZGUBQE9zawahXK169QffU5km6f4XfeI9rew7+4Ru1L19FtC7NSIumcELxzG6PkK/P17hGFLNANXaVxTaZohoa90MIMI9B1NNuiCCLi4x7uwhzu4jwUEt13af3EVyitL+OsLJB2+wzfvoVm6Mz9/NexG7Wz92TV1DUpfLxN+fI6um3R/9b3mdx+iIaG1awyvb/J9N5j7LkWZrWMUfKwLYM0SUk7PfIwRMzCSgohIM+xalU0Q8du1MmmAZqu4SzNYaUJRZQSPNyidHENTddJTgakR12ywRQxDtB9V5GJVMUZy0JizTcpX7uophdBRHqiig41XVNyNF1DBJG69kmQWYZIMoxKScXmygJnrkHtSy+iey7Bo20ls9o+VMWDrQZG+YTOb30D78Iq1VefR0QJabeHNpvGyFSla8397FtUrl89O0ZFkpIPx0gpsaplhOWwfxhxcBgRRoJmw2QyTZkGKla214+RhZI2SakCF/rDlNE4J04kz10pY8xaxyeBIIlz0lRSLpvomoZhG0RnnRY6lbLFYJSRZWoCmCSScsnEsjVyIdnYDrl2qYxlaLMp3SdsfkrQNY2SbzKZZhwcxziWTrVsna0VpJQcd2OKQnJ4HD8jGc/w6Tjtvtjc3GR+fh7HcT518ZnnObdu3aLf7/Paa6+dmac/DU+SjDgRzDVtigLuPJiwsRMyjTIsQ8cydSZTgevoeK7ByTDF0CQriw5BlFNyDXqoqLgbt6fsHsZkeUGnn3LxnM8LV8s06hZHHWXG0nUolQy6JynNmjWLgFM7D/WqyUk/eypL+vNC0zRKpRKlUonV1VWklDx8+JDhcMhoNGJ7exvgqTbyUqn0R0Y6Tv8kSUKaKp3nM9LxDM/wyYhjJXtI04K5tsNgmLGzH5JlAtdRcqjeMOW4G+M6OhfWS2c7/U/ipJfw3t0R0axDwjA0skAyGGaYpsHzl8tYtrpfFAvCMCfLJEkqmAYZlqXzwtUqh0cx/WGKKAoc2+CNVxqYpsbBUcxglGFbOq6tM9dyqVVtNA3CIKdatrhyscJ82+X7xYC9fR3fM2lUVRwuUklVzdvv4t74fXLdgbUFdATipEsxnUK0j6g7yOuqjCx4uM3g2++qBfxRF6tSwVtdpP7my+8v9tMcigKZ5SRHXdxZelN82EGLYnRXTWiS4w5Wq878n/vxpyYZdruBUfI5+e3fZzpbGMo0x/AcjFpVGYjjFG9t8Slyouk6shBEBx3Kz18mG05Iuic47SYYBkWSUsgh6XCipiG6QeXFK1gNJdGReU4eJzzp0DdcBxHFSCGUHEio+Ntoa5/+t9/FnmvgX1glncW/2q06aafH9P5jys9fRpNQvrxONhhTJKmSdiUm8WGH9LhH9bXrICEfTah4rnouWagFtWlRfuEqMssY37yPzDJkLhBAftxVMqw0x2rWmP+Fn6T51VeRRUE+mp6lKWlomJUSmqEjomTmjxHotk0+npJ2+6oFfeuAyguXiTb30Ey1uLRbDbLRBN1S77vIcmW4n0zJOxEyy0kdG6PkY9aqoGuqbDHNkElKluVEOwdk0wCzUsZZnMNwHbzVRSovXGYwHGECermErhvoro0mBCLN0G0Lf22Z6mxhn42nZMMxRa6M9d7KIkVRML23QR6FaGIm7UEDHfLRCLNWxl9fwayUqL/5EtlozPjWQ6xqmcqLVzB8DxFGZMMJxaNt0HQW/58/S7CxQ7S5RyEEhu/irizir6+QdnqYrTrR1j7ho22y4VgZ8H2ffRocu0sUpql6UDS1mZnmkv4opT/KcW2DdtPC8w3CMGc6zdFNjWrJYDjMlHSybLGExuFxhGkbrK+WuHK+hO0YvHdnSJYJQCPPFREppLr2R1FGGOXkuWB1ySdMBGkmcV2DhTmH+4+m1GsfTs1MUqFKAysmtaqFRGM4TFmcd5mGKjbXdQyyXLWRa2gcdeMf6vP14/CMZPwpwpPyqAcPHlCv1z+1oG40GvHuu+/i+z5f+9rXcBznE2//JE5Jhm3pWKbKdH+0EXDj9pjpNCeKCmxLI01V5OL+UQyok/R//P6AtRUHXddYaEN3ILnxoMtRJ8EwdHxP5+QkQdMhEwVl31RExdaZBDlHnYTxJOeFq6VZPrXazTEN7Szm8cmfy6mB63Rn7kmIQqLx0d87fZ+O41Aqlbh+/boqFJy1kfd6PTY2NtB1/SnS4fv+F9pGDop4fJB07O7uArC0tHRmIjdN8zNNs57hGT4Lfu/3fo9//I//MW+//TaHh4f8p//0n/iLf/Evnn3/r/21v8a/+lf/6qn7fOUrX+Hb3/722ddJkvDrv/7r/Lt/9++Iooif/dmf5Z/+03/K6urqF/a6J0FOv59iGNAfZgxHSpc9HGdoKA01msbG9pSf/Yl5Lp8vf+gx8rzg/saENJPUaha7+xGjUYaQkjAS7O4F2LbO6y83ME0dz9GZTuG4GzMcZ2RZwc27I+aaDhfXS1y9VKKQ4NgGSEkYF9SqNkedmErZolJW/TpSSoajFNPSWV122dwJuPtgzNvvDdnaCdF1qJRNlhY8zi2YuL1D9Le/TZplyKUFDMdGtwyMxQWyw2MQKfaoT9ofkQ3GdP/b/yQfjjEqJfxL55BJTrCxQzoYMf+LP6kM2NUSGiXS3giZZJgtFZlq+C7ZyUD1GEjwL57DbtbIxlMGf/guumNjzzVJjk+IDztqNz+MMWwbISGfRog4RaYp9o+/QeX5y0pm8wQ0TQch0GwTmecgijN/g+7Y5L2h8jFYFoZjk/aGylzebuKuLhLce4wIQ+xmQ+1QZznuYhvNMEj7Q0Zv3yI+7BI82iI+OMZdWURMA6xWg7TTUzvwzRrj249Ijk7QbQs5S03SLZtsOMEs+xRpjnd+BaPsE+8cUnnuInkQETzaQgqJCA4RyQgNiWZZypOhadiOjWaaiCzD8D1wC7wL56i+dPWsCyPt9hFpSnp0gohiht+5gTPfJjnqIoJoFjGrIaIYd2keEcY4803QNNJOn3j/iCLLsOea5EFAHkaq++Q0vUpKRJ5DVmCUPHRTxzu/MluwTyniWCVdVcoUQiCmISKOmdx6gP7aC1iVEobrKL9JnKjoXcPAatYRSYJVq6jHGwekwzF2vYpZ9jHrZcKHO2iORe3Nl8kngSrv655g+J6akmUp+eEUJNRevY6zrMzvRS6I94/RgNrrL75/bXQdijQj7Q2It/eovXSNxV/6GdLBiOnDLeKtfbKTIePekEJKNb0QgtLFNby1RUDjYOOE3XdvEM+dMFi6Qn8sCIKcIMqYTgVFARJJrWph22CbGrEOuShwDJ0gEgzHOfNzDhqa6rswdURWMJ1mnAxT2g2bNJVUyybTqEAIVekoCollKUllkhZMg5zDTsT5tRK2pSaci/Oumqb2EloN+2z9kmYFJ72U1WUVbatpoGuSKC7YO4jQZ+EEuga1qsW5FZ/JNCNOPnsdwefBM5LxpwSncponuy8+yUcgpWRra4tHjx5x6dIlLly48LkXoafPUfINXEfnd7/VZ2M7JIzUCSgExIVg/0ilNGQ5uK5G2VcMems3Rjc0Dg5ztncN4jTBMMDQQQfCWHLSzRkMptiWzuXzHpNAleHkuaQ/zHjn5oTV5YyL6z7Visl4mlMpmWcSK2WKTJhM1DhyadFhacHB0DWCULB/GHPSTxXZmbNZXnQ/0vz05M9S0zSq1SrVapX19XWKojgjHd1ul0ePHmGa5ofayP8oSEcQBGevN47js9vouo5lWWeTjmek4xl+UARBwCuvvMJf/+t/nV/5lV/5yNv8+T//5/kX/+JfnH39wWLMv/k3/yb/+T//Z/79v//3tFotfu3Xfo1f+qVf4u233/7CUt6kBKkpg6XIlfZ5ZcllNBb0BwmDYUYBXLtY5uqFCq6rSHwQCpK0wHN1JtOc4SijXrV4vB2cNWVbpiICo0nG/YcTWnWbS+fLDEYZmzsBhqF6M1aXS6yv+owmObfvj3n1xTqL8+9vBC20HYIw5/y5Et1eQn+ozMuykMSJ0mQbhsb33h1y674qAbMttYCZhoLt24dM7gSsTbepjHsM9CrVQZ/MitEWWohKnbQ7xk3GGFFAPp4w/M4NsvFEeSE0KCYhRqWMd2GVcGOH/u+/Tf31F6m8fA3dtuj81jcQQihjMxp2s4bVqJEcn1Aq+1j1CuHGLpppYJZ8ilwgooT4qANSkvT6uKsLmK6r0ow0iDb2yKch4dYetVef//DvTgiMkk8RxBglHyOOyYZjRTCmIYWUSAmGYyvpUZqSj6cqQjVKlP9hPMVbXWQSJUhZsPb/+mWS4xOO/tN/J3i8jVmrkJ4MsBo1DNch2tzDXp7HaiuCVMQp6fGJWhjXGojRlMpLV5G5IHy0TenKOiKOMVyHtNtXrda6jlkp4a2vML75gLQ/QjMgPuxglss4S/OIKCIbjnGW5vDWV7DaLYooxG5WGb9zm3D7AJkLvAuruO0GRRgRPN5hevcx07uPKV29gFEtkQ0n5IMR8cExRSZwV+ZpvvUlNE2j8sJlsuGIaHuKUS6h6TrpSV+lP1mWMpeHMTLLVCyxZSLSFLJZdGyWo5U9QMNwLJUoZivfS+f/+h3Gt+7jn1sh7vTU1CZOkYVE5ipi2F6Yw51v4SzNIaKY9PiEeGcfTTcQcYJZr+KfX0V3LExKlK+eJ7R0lW42niLGU5zFOWqvvUDrJ76sEtfCSEUSnwyw203S4x7ZYARSoJd87EYdzTTIRlPSXh/NuEw+mhI+2sH0HZzFtvo59IaM37mN7rn4F9bQDAMhJAeBxcCq4ezvURg1BFWaVQPDsOn1A6IoR9d1+npKmpqgZSSxULHWGmShJBeq1HO+7WBZBnkmME0d2zbo9VOW5l0uXShx3InJsoQgEGgaeK5OPlszCVFgGgZZVlApm5RKOhKoVixefL7G3YdjDo9j9NnESTdUQt7zlyvousb+YUQQFlTLJtWKSS4UiUGCqWtomkTXT/0nP3o8Ixl/wnEqjzpNjzpdPJ7ufn0U0jTl5s2bTCYT3njjjbMW7c/znEXxPskIQkGcKHYuhJpeZCkYpkYUScInpnBZrpKUGnWBrukIKen3E8IIyr6GZetUZ3GLo3FGf5iR5wLbNjjqJAghaTUtVhcdDo6h20s4Pkk5OIpZWXaZb9lYls47t8aMxmpB4HsGtapJEAlu35sSJwUriw637k0YDHPKJYNcFNx7FDKaCF68Vv7IhKqPg67r1Go1arUa58+fRwjBeDxmMBhweHjI/fv3cRznqUnHp02YflBIKc/kUh+cdDxJOk4nHM9IxzN8XvziL/4iv/iLv/iJt3Ech8XFxY/83mg04p//83/Ov/k3/4af+7mfA+Df/tt/y9raGr/927/NL/zCL/zIXzNA2TdwbIPROKPVdDFNncEoZTLN0XUN3zUYTzOOTxLevTNkZcHjwcaUzZ2AJFWygmrFQhYqL388zmk1399B1DSN1UWPHSF5tDmlUjbp9FKyvEAUShu9OO9iGDrNuk23l7C9FzLXcs6S9NbXfAbjlNFYeS/SVBIngjgWXLrg8MqLdW7cVARjezekWjExTYM0DHGmQ8z9bWIDBnKMpxvUayZ22WXQDTATDX+xSf3qOdzuLvlwxPjmA4KNHdzlRfz1ZYyyR7zfIR9NKPIc3TCJdg5Y/OU/R+3V5xFhhOF7TH/vO8TbJXTfwyw56KaF2ajhtBuMbtzFWVygdPUCuq5TpBn9b73D4PffVoQgTTArZbW4ta3ZNMRTXrhHW8pIfeH9iVY+DTAbNaxmg6Tbx6z4GL5LetIn2j0kPuoqGVC7jru2jEwzSpfXKdKU8c37IFSiUh5FhLtHiMkUTIvO/+8baLZD+GADZ20JTUrS3gB5fAK6rqYxJ0Mq1y9DUTD47nvKWxCqdm9nWU0LssGIbDzFrJVJT4Yk3R4A1RevnL0Hs1xS/od2nXwyRbNtvMvncJo1pIRo/4giTsjGU+xWneTwhHjvCKtZJxtNsColoq09vPUVDNdFtx1l2k1istGYrDckn8x+tuUSWU/1gfjnV/FWFrDbDepvvoKIUnTXxm4reVAhhPLbTEM0nTOClQ/V75+8QHNtRBAS7R2hmyZFnuOuLmEUApmkKjCg26f3cAfNd9ANA+fcEvlkQoGOrumqV2Ymy2v95JeZ//M/QXB/ExHFWM0aletX0DSN5GSgIlV/5qsURUG4tUe8f0zwYBPv/Cr+2pJqiz/oItKUeO+YfKSmMTJN0W0bdI280yM7GWLWyqAbgEaRZUzvPUa3Tex28+x3kw1HGCUf3TSIdg+x2w1yodYlBQYEEdObd9GXLpAPNVLhgFAbIY5jIIoCTVNBNEGQYzsGrqURREoaqWmqmM91DTzPpFa1WVn2GA0zLp0vcdLLmE4zJAVppjZodU3DNCFNBYauYxgarquK/ObnHKzZ+mSu5VAtNznpp4RRfkYWGjUbw9DI84Kt3YC5ls1g7JJlBeVZOI+mQW+QcHCUsLzocH71R+/HgGck4080Ppge9eRC8ePauPv9Pjdu3KBer/O1r33tc7Vg53nB/lHM4XFClku6RxK/JBAyIYoEzbqNRCMXgv1DQSEUqxaFmkzopmqlFaJg7zDB1HUqZUPlu0tIcwmaRCLR0JgGYvY+wTAkcSqYTAW6LjnqpPSHKaaho+uSvUOJ56uiPykTHFtjYyukc5KyvOxSrRg069Ysxi1iPMl4uBFQLpugSepVi3LboNNN6C84zLd/8MxowzDOyASodJThcMhwOGR/f5979+7huu5Tk44P7vT+oDiNKT7Fx8mriqJ4Rjqe4QvDN77xDebn56nX6/zkT/4k/+Af/APm5+cBePvtt8myjJ//+Z8/u/3y8jIvvvgi3/zmNz+WZCRJQpIkZ1+Px+PP9Zp832S+7SAKiOOcNNUZDDNEoeQIk2mOrsH+YcT/97/sY+g6tapFvWapQItYsHt/jBCSxbZNLtRGCFIV80kgjHJqFRMh4d6jCUEgaDXts4jcJ43ktarFcKRMpKe7iNWKxavX62zuhnRPEqRZ4Ls27Ys262s+40nOjdtDDo4iXFuRJsIAu7NDMRojdYOJ4VOKA3SRs5od47XOk9Y8RDil0WxTarYJrRjNMKi+/BzJYZfqq8+hz+RH/qVzZ+lDRRKT9kZnxt7pgy00y8RdWSQ56qjfy2iCUVGt2apTASrPXTwjGNN7jwg3dsA0SE96aKZxtni1KmWVHpSkGNUSpBnTu4+x68oLkE+myLyg/toLWM06g2+/g4hjyAuMalntsuc5ZrmkLi55jtNu4J1fIR9OMOwtjLJPtHtAEWd4F1bxLq5hVsv0/+BtRJRQvnpByWU9B//CGuGjbeL9Y0zfQ6apiqVdW8LZ2ceZb1F95Tm81UWmD7bIRxOcpXnMapkiySg9d4FsNFZdD90BzqLyloggROYZZq0CQqD7HpavJgOaBla1TNjto+kG+TTCXZkn7fZJDrtIJN7KAkWcEG7uonsuRskhfLxLISXh/jGGYyPzAt3UMUol7FqZcHfM8Ds3sH7+65glD2deJS2l3RNF7F4qUQRqkZ8OlQSu+uIVRJYzfvs2yUmffDyFLMdbmkf3PdLjE4osIx+OcFcW0A2dcO8IDR3N0kn7Q8RoikhziijG8Fz0RhVyQVEI8uGY4MEG1q/+BRb/t5/70DnqLj8dl1+5dhGAyd3HDL71fXq/9x1EGKt+l1yo1vooIYnVtMQszRbKJV/F/N7fxK5X0AyDpNMj7Q1xl9XnkJSSfDwl2jsiH02x2w2y3lAVFhoO0yBHDodMhyrdy/JU4V44iqloBommiF6cwnCoJJOGoWEbGqah0ulsU5VlJqmgUVNRtrWqRcnTOe4USAmer9Mfpcy83kgpGZ8lxmm4noFp6KRZzlEn59Y9nf9SPuKrb7aYb7sYpuoWE4WBrmnYtn62aTGe5IwmGavLHmEsOOmnCCEJ41xJGz0TIQrWln0W55+RjGeY4bN0X3xwkiGl5NGjR2xtbXHt2jXW1tY+1yKyKCQPHk/Z2o1wXdUs2ekDj2IWFxPipEDTIQgywliV1IhiRhB09ce0IM2UjCoICgyjQFKQZ6pDw7QgywS9voq7nYQ5hg6uY2I7EpEp82bnRE1PHFun1TYRuerjmE5zdvKYr71RYzTJOT5JyAt4tBkynebUKkrfeNiZleKYOovzKkKu189YX/VmC4UPRzjCD96TYRgGrVaLVqsFKKP9aRv59vY2t2/fplQqPdVG/nnI35P4IMn4qPfwcaQjSRLiOEbX9Q8ZyZ+Rjmf4rPjFX/xF/vJf/susr6+zubnJ3/27f5ef+Zmf4e2338ZxHI6OjrBt+0MT1IWFBY6Ojj72cf/hP/yH/P2///d/qNe2tuxxYdWn00/Y2ZsSxQWZKMhTieepnX+A405CLuC6b9CoWpiWQaVs4dk6b98ccHgU0Wo6GAZMpjlSql3NySTD8wxKnoE95yCBSsnk3IqPNfONSSmZBkqi1e3FtGf+jHpNGXOrFYsXr1XZr4Z0ThKkhErZwDA09g5C+sMMxzIwTR1DA7e7hxUeU0wHSNOiKFcp1VzqdgVteEhxdERlfYUsybHyhDwwyEcB87/0U1Sev8LgW+9QxCl6+f04W7PsQ9kn7fawahWMSpn4oKPkORdW8c+vMn73NvFBF911KETO5PZD0DQqL17Bnlc7xcnxCfHeMe5Cm7Q3pEgyTNfBalRJByPicYhRdhWpiRPMWhW7WUPKAlKJszRP6eI5vHPLaLquNPquw9H/+dskxz1wLEqrF3AadaYPNok7Jxi+i8xy8mmAUfExKh5636H6yvP46yvolkW4c0A2nJCNJ8qLMDOuq+bv2UTipI9VKiELCUmKCBOqrzxH+coFsvGErDfAajVU1KphILMcu9XAW1smPjgm3N7HWWwjRUHS7RPtHqEbOrrnojsW2SSASUAeRKRHHfIwxl1dJO0NKF1cwyj7JCcDxDQk2jnEbFaJd47QbRMJZOMJyXAIcYbZqOGtLmDNtzEci6Q/hFk0bbi1R/X6FTRDp3TtPNlwpArrlhdUV0eUYNeqlC6t460vE9zfwFtbQrMMMsfBajcpokj5ZESBmAZk/RF2u6mSnE4G5IMRRaaKFGVRIMIQw3EwfEe1dRcF5iTAWZ5HsyxG797BnmueRRh/GsrPXSTa3mPyYAO7XUfTdNxmDXdtkaw/VG3iO/uUr54HTSc9GZANhsQ7h+jGGpM7Dwk3d8mGY7xzS4g4IXiwpcz+B8cqEWs8UdKyl65iNF2cLKQ/jvBMHUplJaPSdXAM7CylauTMLZc46CSMpzmepzxYcSIwLdXwrRsa1bJFHOWgK99XrWIRJxLX1gGNMBSUPBPTzKhVTEqezskgJYzUGqcQkmmSU9FN2i2HtUWXh1sBmqbxwrUqJ30lq5SzOFrH1llZ8rhyoUyUCPqDlDgSWIaOY+lIU1L2DdA08lyClFy7XPnIkIsfBZ6RjD9hkFKS5zn5rOTo47ovdF0/m2TEccyNGzdI05SvfOUrVKvVD93+k55vGggOj2PuPQ5YmLMpzRovm3WNw05Opz+mN1CSpcPjRBUVoUhGniuCARCq8ldO65myXJmUkOBYIDJBJsE0BJNQ+dh0C9AKwhBSoyDPC6JYnRgL8yaeq3YYm77JYJRTLSRBVHBwlChJl5RoGmxuB0xDJeVKEqWZbNRNVpYctaM4VhFvvqsThoL+MKPkG2f+jB9lT4ZpmrTb7bMUryzLGAwGDIdDNjY2CIKAcrn8FOkwzc92qn4ayfggPnj8nJIOIQRCiKcic580kn+WzpVn+LOJv/JX/srZv1988UXeeOMN1tfX+c3f/E3+0l/6Sx97v087dv/23/7b/K2/9bfOvh6Px6ytrX2u11atWFy8UGZl2aM/UFImw9Dxqib1mkUUC6JYFVdJCQfdmHrdYWF+lu6GBhLiRKjYydliX4iC406M6+rUZlOPZs0m9iTH3QTHNVhb9siygkdbU/b2Y0YT1e8jhMqpv3a5ytWLZUQhuftwwsFhRFEos+hRN8F4HNA9ifE8gzDKlTm0e4i38wCJhp1FZHGg/m7O4cy1sMQEMQ1JTwaI6ZRw9xDDtqi99jxzP/c1DM/Fv3SO4MEWlRcuP/37ECqStv6113HnW/T+4G3VH+KrHc/am69gbe0TPNwiH0wRkwCr3VKRp5qmGqn3VfeF7jkqutbQkWlOHoQUaaYqjw1DNU6LAjSJUSlR//Kr2O0Gum09dUw4c03m/8JPEe8dMbnziKw3QoQB+STErJQwPJciV0lRMp8lYR2e4C7P4a8tq/6M8ZRocw8pijPZjO57Si51fILVbmBlOfHeEannkgYBWW+ojNNpSnLcxaiUSIdjzGoZigIRxZjVMlalTPXFK6S9AdPbDxm+fRsRxYjRBAqh4mGFxJprqZ/vcZd8HJINR6DrhA82sOo11dxdFKpDw9Ap8gzyApkkFBqUzq+iFZJ0NEGzlFQo64/QdYPCc9BsW8mCFlqkxz0Cx0EzlMeh/NxFmj/+BgCDb34f3XOoXLuEWVcRuNlghJQFWW9M6co6ZrnE9NGW6kHRNdX5MUujMjwHb2WRUO9QdPvYtSoiz1QBoaEjpUaRJBRphre6jNNu4l9eJ+0OmNx5TJFlJIcd1RuztqSaz2fFek+iSFJEGNP48itYFRXIoNsW0fY+druBZhiqmb7TV8f7YAgS3NVFKi9dxVtdItzaI9o9wJlrkHT6JAcdzGaN0qVzkOeqiyPJCDf3KFcrVIuAsSbIpE5YauBJSYEkE2AaNhUSrq2YzM+7dLoJeS4xDB3X0Ti34rG9H3HUTZlMUkQBpTLMzymZdBDmtFs242lGkhR85UtNdH3I7fsjxpNchd+4GoYBUmq0mxamoWMaGr5voqcFxycJ3V6X+TmXdtM+m6jmecHjzSmTScYkyNk/imdTT12VK85ibT3XQNc1qlWLc6ulz/U5+nnwjGT8CcLp9OKUPHxSj8WpX6LT6XDz5k3m5+d5/fXXP/NiFVSL96PNgL3DiOOuyoVPE8HqskfJN4hijeE4p+QXJKlgMs0wDEhTSZqriyeoA183eJ9dzKCr/idAEQ7DlKQZTHOVBCUlxClqF8QosC1dEQdA0zWQGlEs8FyDckknjFKyTNIfqvz4cSAIw4I0zZgGKqfcMlXTqGvr9AaCnf2Ia5dLlHyDvYOEsq+DrrF3FON7BhfWPJYXHSUP6xd894aKrqyWTdZXPeo184debFuWxfz8/JmcJEmSs0nHw4cPieOYSqVyRjjq9frHmmM/L8n4IE7Jw+mx9STpyPP87PsflFc9Ix3P8HFYWlpifX2dhw8fArC4uEiapgwGg6emGZ1Oh7feeutjH8dxnM+VfvdRKHkGcVywuROQ5xLXVZ+HjapFlAjG0wwd1WxXFBAEgo1t5a9wXYP+MKVRtTAMjSguiJKCsq+y7pNUYNvQG6m0qpN+wuqKTxAoM/hRJ+bwMOSwm+A6BoUA29HY3Ak4PIo57sQYhmr43pl5NewnQiiOOjGdbkzZN+gNNIwogMN9tcittxVhGU2IvCq1IqTsgH9xnejwCE3XkIVqlG59/U3m/tzXzuJl53/hJ9g9OmFy6z7OyiKm75FPApJZytLcz6rfSTYYYfjve8ny0YT0sKP8LOdWSDo9RBQx+M67yCzF8FySkz5GyVNN2bNoUBFGiCBQEwcJYhpilj0oNEqX1tFdh3j3QEmE8py0P0LmuZo0NGpkJwPMSpm5n/860eYO45sPsBpVrPoVsvGUeO+QaHNPxdvmOc7inHpcx1YpfCd9pMjRLRNvoUV8dEIRxdjNutrEmwQYlQrRQYdiNCbePTqTdKW9IcGDTXXxkhppd4BZLaEbJqWrF2ayKEH5+mWselWlaQUh3uVzmLMkL92x0fKccOMAo+xj18tk4wm6YSDijDyM1Ouea4FlkccJUhSKpCGxWw2MWpn01pgijDBcByRkw7GKnbVMRP8Ed3URmWRUXr5K5YWrFGmG4Tm4S3OYs4V6+fJ5+t/6vorgdZ1ZiV6iJlRlD3tpDl03VBP5zgEyy5FCqGNtEiBKPu6FVbLRBOm7OAvzJP0BIkmV5A3Vc5FPI6y5OmbFx1tZYPpwi+wb38KqVTErPlLC6O1bhA+3qX/lFby1pbPjLBtNiA+OiY+6+OdX0O0nph+6jtNu4My3mN7fUOV9SYLVqOEuzeHMz2HVyuiOraYhuwcMv3cLzTJnkxRTdWK0mwR3H+OuLpB0+th7R8zlfQIKgqUVYqdGMFFeLF2TmCa0bQGFoF71WV/16Q0yDEOjUbG4fLHEwkLMjdtD4kgwCXIaVYtCSKRRUCubrK74xEmB5+nsHsZYls7Kske8IRhPBGiSvIC5pk25ZCo1iK7R6aXUqiZJIhiOM2pVk4ebKUms1CTVioXnGnz3xoCFtsuFcz7dXkqtZlHDYjTKMAydc6s+/WHK5fOlL6Tp+xTPSMafADwpj3oyPeqToGkau7u79Pt9rl+/zvLy8ud+3oOjmMfbIfWqycKczd5ByI07Y969NWRp0aPTyREFNBsacawkT2km1aQBRQYMEwoBcf7hx38iZZa80NB0cB0lqSpmkbOFgERAAuR2ge/piELiOuA5GuWSQalkMgmU6ckyNb79vREHxymikGQzKVZRgKEXmGWdim8gpEaSCLq9lGbdppAwnmTMt32W5lX61Hiac+9RgKbDxk7O/Uc5SXbCZFoAktVlj69/tc61S+Wzro4fBRzHYWFhgYUFpU99so383r17pGlKtVo9m3TUarWnSMGPcrH/caQjz3OyLPtY0vFpRY7P8GcHvV6P3d1dlpbUwuH111/Hsiz++3//7/zqr/4qAIeHh9y6dYt/9I/+0Rf2OqJYcPfhhFwUGKZGAWRpQZoXJIlACFQ5nqkryaSmirCSVHLUiZhru8SxwLINGqZOvSKJ0gJZQJKmmIZGmkLJV36Lo+MY1zWIExUdOQ1yTgZKE93rp9iOzuJCCd8z6A8zHm4FIDusrfrUa9ZTBAPUY2q6TrlksNByGLyzgZiGxBnogwGZhNj0qepwuVngRBOMhRZWxVfpRGuLlC6toeka0d4R5Svn0XSd6otXOffXf4WT3/kW04fbpEcnGCWX+luvMfdzP46/vgKo5KZ0otLrRJwQ3N+gyHKcJbU5IoII79wSo3fucPh//t94q0sk+0eq/do0QNPxVhcRYUS0d4TIcgzLxqiUlDHac6m98hxOu0G8f8z0wSbh4x3Skz6FKDAcG3dlAbNehaLArlewXn4ew3MJt/cp4kS1ies68e4BlRevgmmq76UpSbeHTDOS4xOkriu/QLmEWU0pooR0MKJIM+LdA/LxBJlLNN9BywVaycfyPbVbftJX5n/HJtwxcFo1jEqJ8bt3Z5OUnKw/xFloUzq/MktD0ijimMmjbabv3SfcPyIfT9F9j0KCYdtgaFhOhXwSMn20g1kuYVXLOO0G0fYBMkqUz9GxSQ47FJNALbilRCqzI/FRF2M0wbAtosMO2XhM6flLeCuLVF68qrwrT8C/uIZmGkwfbJJ0+iAEVquOG8dIlJdSM3T8tWUM12Z88x7FcY6epGhlH+/CKvZck9BQ8hvdc7CbdbL+EJmkGGUfkah+DK2QeBfPIXWNaGuf6stX8Z8w+DtzTeKDDsPv3cRq1qAoGN96QLRzSHx4zOjt20xvP6R05Tzl5y9huA5mpaQmZb5D6fJ5rHoFu1bBXVvGLHvEBx3s+ZbalATKz12i//tvU2SZIrmmSZFmaIZO9dXnMXyX+KBDsLlLvWaxOL9Ip3GOi5FOdyzJhEQUau2i65DkGucXPRo1k94gYzLJuXy+jKbrrC55FKLgweMJrabDhfWSUnVIaDVtzq/53L4/pjPIGI0z5tsO5ZJJGkv6o4ThKCcMlXdCFCqGP4hUGE61ZlCv2CRJweZOSL1m43pqE7bXT4kiQW+QcOFciXpNxeT2Bimea+C4OsfdGInkxedqnFvx+SLxjGT8Mccnmbs/DmEYEgQBWZbx1ltvUSp9/lFYUUg1ZnN0bFvnzv0J790ZM5pkFALuP1Y7gb6bUTDlpJcRJ/ks4UqZvSWARI38hJpMfBKiUN1vdjdEwcz8NHtNEkRRqJxnTWccFGiGIM7UndZXHU56KftHEZPp0yRG08CwwLJ0HNcgTQoiNTtkfdWh28vR5hyev1rGMtXFvV61OD5JefA4YO8g46hbYFmFMqvnkq29CL5doEkNzzfIM5V81fiIcpwfBq7rsrS0xNLS0llK1CnpODg4IM9zarUajUbjrJzvi8LnIR2n8qpnpONPF6bTKY8ePTr7enNzk3fffZdms0mz2eTv/b2/x6/8yq+wtLTE1tYWf+fv/B3a7Ta//Mu/DECtVuNv/I2/wa/92q/RarVoNpv8+q//Oi+99NJZ2tQXgb2DkONuzJWLFRYXXKZTwdZOgJZDlhVYlqEkU5FQ09dCbVi7nk6cFISRIBcSkRc06+qijqaxvROiSfBcE8PUmG+7s+belP2DmErZZG3Fpd9PEAJMU6NWNbFtgyyXmKZBs6ExmWZs7AYUwJe/1PzQ63cdFYV5fBLz6jWHzh/cJRj1kNMJAh1h2izYcM42WRCSZDQl3DlQpWVvvETt9RcxfZe0N2Twze8jc0H1ukpAqrxwBf/aRZKDDmm3Rx5E6KZJcnyinntpDv/8KtHuIVKIWZrRFHthRjCiGM0yKHKB4bnkwzEiisCyiA+2MEoezlwTo+SjWQaG4yo/hK5RuXYJZ6GNbpt451fRDINo55B0PMF0HZzFOXTbUn0TGzug68g0pZilCZWuXMCszaYGkwA0SfW1F1j53/83RBDw6B//H/T/4G2saoVCCOLDLvZcA299mWwwwl5o4a0uEm7tkRx1SAcjDN/HXWuR9gaIKME2DGU0H01mJnMQUYKMY5z5i0hRML2/QXUW8+vMtZBoBBu7uGvLZ2Zje66FhmT6YBM0nSJJcBpVkuMuMswxKz6aoZPuHzH1HGWu9j2sRg0RRKq40HXIRgma4+AsuIhZJ4VkNuEXSoImkwT3ynn8tSUmtx+RT6Y0f/xN1YnxBLxzy7iri+SjiSrnywWDb32f/rffJe2PcGa9GiJOMHyf0uV1ssEI3Z95S0766K6Du7ZEHkRYlRJmrUq0uUs2CTB9D6fWpvryc5QurjF85w7oGv6Fcx86xp2lOcKNXdXivb3P6NZDsv6AdDQhG06I9g8Jt/cJt/ZpvvUaeslXHTLfeQ9noY2zNI9RLavjvDvALPk4C++XC1vVsurB0HQ13ctydM+hdmkde7GNbugEG7vY7Qb2QpvSnQ0WmjZHI0mzLBlHkkIWjAcJmmYxt1zBdXSG45x206GoqfZuKSWFBNPUef5qjUpJSZMMQ2NhzmVp0cUydcTdMSf9lHpVpdRJqbxh65USuhYiC5U4ZaZQoCFySZYXpF3ByUmK6+hcOl+iWnl/zeE6Bo9HE6ZBTpZLPNfg0oUS/UGqjN+5xPNNFudcXnq+9oVOMeAZyfhjjdPphRDiMxtvDw8PuX37NqZpcvHixR+IYICSSqWZ8jBs70V8590hcVKgo5EKSRapnOWigEebEVlaUMCZLtDSIMkgF2pnz9U1JtNPZhmz6Oan8CQxEYJZvj1YFiSJoNcvaNYtXn6+gmVqvHtrQhi9TzB0bfa4s9eqAVkqCSJBHKtUma29mIU5h2rVPCMYgEqSCHO6vZSjbk4QwZUlC11Tt0nzgo2tiGnQpewbJInE9TReulbltZeruM6P/uTVNA3P8/A8j+XlZRX7GIZnpGM0GjEajc6kKI1Gg0ql8oVJmT6NdMBHt5E/Ix1/cvG9732Pn/7pnz77+tQn8Vf/6l/ln/2zf8bNmzf51//6XzMcDllaWuKnf/qn+Q//4T9QqVTO7vNP/sk/wTRNfvVXf/WsjO9f/st/+YV1ZCSpSsarVJTUqV61efWlOrqucXgcqt2/OGfvIFLaZ1PJYYJQ0Gyo1Lw4FgRTFUV5/pxPFAv6owzfN1hZ9hmOU0qeie/p5KJAQxVzhXGOhkYu1GaHpnFmsozCnHwWQ6vOUY3hKCOKBcYsKeZ0F1bTNObnHPqDhOLefZb1CfnFOmFYIjs6wjRz5us61bqOWauokjLbYuEXfxL/8rrqc9g5UH0CMwmKZqgeh2jnYNYSPSIbjtBNC6tRUYvnO49wV+apvPw83toi4da+Kr7TDTQdZQQeqQjXbDylcv0KdruhPBe5wF2eUx4B38eqlkl6AzTLUMTCc/DOLaPrGu76ClatQnzQIev18ZsXztKGijwnH0/J+mOCDdXinA7GlK9dxHBV54Gz2KaIU6KdA+pvvoQz16B395HS3GuQHvfQpFSt2IOxarX2fcySP5NwhRglH6cl8c6vkI1UP4RZq6gW7lGBbpmq/6NeRYQhZrVCOhxRTCKkqRPvHlG6doHylfPk04DspK/6NuZaGLaJWfapPH+Z0YU7oIGmG9jNGslBh8JI0Rwby3NJOycUUUJwfxOjUsJuN/HW1TTBXVth/N49rFqZIi8wbJvc0FUhXyGRhSA7GWD4Lt65ZYySj1WrEG7tE+0cUJ4lNj0FTUPECdH2Pkmnd0YWpg82mdx+SJFlaIaBWS1j+B5mpYTdqCITVR7oLM0Rbe1jVUuYZR/NMCgW56DIkaJAdx2kBuH2PtlhF//iKmgoMmtbZ+WLmqahWyb9P3yX6c0HpIMRWW94JnXTtFmvyu4BJ7+TqiLI8QSAfDJl9N0bZKMAmaQ4C23K1y4qfwvK15F0e9iL82iAf2FV9UqYxtk5BqAbBv76Cv75VbJOH3N0yPxSG7lmo8mCpD8hbobwwnWiWoM0KyiXLRpVC5D0hyr5Utc0FtvOmUoCJHMth6UFl2p5liZXNhmPM9pNJQM1TV2REVNTATumrhq6DQ3LUt4vISR+yaBzkhAEOnFa8EGXrePopFmhOjtQZZ9LCx4Lcy6iUF1Bcy3nCycY8Ixk/LHEx3VffBKEENy9e5fj42NeeukldnZ2fqiFpWlqVMom9x9Ouf1gwnCUqf6LXMO0lDYxTVWawTQoVKO2puRRsniaLKQpaNqnG6eLT7lJUUCSQiYk1RIsL1nUKyYL8w7Vqs633x7R7WXMPPFnF3QNRTLyDKK4IE0llqXTappcWHOwTbXLoKGIhW3rDEcZuwcxR50EieTgWMXsImcPiCI946nANDIaNQvHVl//4Y0Rhqnx+ivVH6mM6qOgaRqlUolSqcTq6irvvvsulUoF27bP0quApzo6SqXSHznpyLLsbMryjHT8ycZP/dRPfWIQwn/9r//1Ux/DdV1+4zd+g9/4jd/4Ub60j0Waqgvukzt+820lYUgzJZtMM0G5ZGJZGoZhkgs1NR2MMtK0UDuQCy7VqsXaSklNKo5ihFCyqv4gwZqRguEgm2XnZ/SHknbTwfN0esOU8SRnPMlV/CwS2zFoN9WmiWWp27z9zgC/ZFIumcy1HJp1C2bn1guLEuvmgIlfIz88RrMdymWbShHgYpL2QjANnLkWtTdfpnL9CtlwzOT2Q7LxRPUseA7Bxi7b/8d/xG7VcZfm0TQYv3ePIoxw15ZwVxewGzWKPCfeOQTdoP7mK+iuS+9/fm/WhF1g+h6laxfIR1OKKEa3LAzXxZlvIVp1vHPLpIORkvyUPdUmPbCQSNA0ZJrhv3gF/8IaMstJj07QXRdnQaXxFVnO9O5j4v0jNNPE9Fymj3eY3rpP7398i9Jzl/DPr2A3akhR4K0tUbq8zvT+JuMb93DXlpB5rro/ohir6pN0+8R7x9S/8jLNr32J5KCjduezDNPzsOpVkm4fzVAOHQwTEYTolq2uA0WBZqrSP4RAMwy1wDcNyi9cwWnWADArJbLxhHw4wphX78fwPKxqmTyMKT9/SUXw1spqspFliEmAbttY7bryb1gWra+/ibe+TP8bf0jW66sW55KPngmyyURdby1DybgsE5Hl2HMtRBAwuXmPyvWrGCWPcGOX0lVVvKuavMdqOn7YJbi/gRRCSdccG6vdRN85RA9j7FZdlSD6HnarrmRprkPluUuIacjw7ZuqM0NKzFqFpDckm06RcYLpeWjA6Ls3z/wk+SRg8IfvIoUiSc7yPN7KgipXDCP6v/tdRKAM8XkYoWsamq3axLUoRlgWyeEJzkKL6uvXaf/Uj6nulG6f3u99lyITVL90HdNzVYP4/hHR7iFpb0j5uUsUWUZ8aOM/4f0AlGfGdXBXl7AaNRpvfYnxjbsqSnimJrHrVRpff1VFH+s6QZizux9x58GYzknCeJLhOOpzIIwE1ZLJ0oJLATzaCjjqxLxwrcrCnMvask/JN+n1YyplG8tUCVQnvZRq1WA8MRhPcwbDTClEhFTGb13D90zCKOfO/TGOrVOrvh+DXwiwTB3b+mDqqIpMzjJJs/6jic3/NDwjGX/M8IPIoyaTCTdu3MA0Td566y08z2Nvb+8jezI+CXEi6A8yJpOMIMrZP4zZ2AnYPYjIMkGcqIPzdLNRFOrP6dMUEgyUVjF/IgU2/wg/xg+KXAACpprgqJMymQgMQ+Pd2xOOj1OEUATnlFiIJ9dCGiRJgecZlMs6KwsO8/Ouaj/fiXBdnc5JxrlVl8PjmNEkx3E0pqFkOClIE9g9iFlbVkbwOBFkuSQvVNJDnkpMC5IEbt2fcOm8R6vxw53Io3HOcTdhGgrKvsH8nE39U5o5T6cca2trSCnP2sh7vR4bGxvouv4U6fB9/4+UdJxO6O7cuUOz2aTdbj9FOk7Tq57hGX5UMAwlVcjy4szr4DoG51d9Op2IRt1iMALL0vBLJpapjts0EZR8A0oWL1+v8mNfanFwHHPcTXAdVRy6dxDhOTmthkOaFjx4NFUSUeDoOKFUMliYcxhPMkQukYUkjHI1GdZgZy9kMDAokMy1XDxXlZSapsZokjEaZZxb9ahULISQPNfMyY0x/VJBbMSYJYPSShMij2w0RfM95d148Srly+cp8pzxrYckB8cYNTWdMDwX03fITgZQFJSvnFcN2paJ99wlsm6f4P4m5usvolsm7uoi8f4x4vlLNH/8Dax6lc5/+5+4S/PYzRqG5zL4wxtotiorlGmKM3+OeO8I6eiULp9HN02c5Tn8C2uIMGZ8+wHx9gH+hRWchTZpt4eIU5z1FfLh6Ky3I9o7JNzZQ3dc8jhleucByVEPq1lXPoobd0kOjnBWFmj/zNeovvo841sPOPkf3ybc2oO7j8j6Q/wLq5jVCiJJiDb3iPePCB/uYLeaGL5D2umhl3yKNCPaPSDt9RHTGMM20BxlUi9mhEJEMUWSolsW5tI8dqOKmATIOCV8sInx4lWsZh27VSd4sI1IMopMeTVEFCM1yIMAw7WID4ZYLdUgrnvKlOguL1D/8svovkN4f4vSxTVaX38TMZnS+73vkg5GIARZECBFgWYa6FjohoHueeiOS+1LL+CvLRMfddHdHbyVRUScIOKY4OE24aNtsvGUbDgm2tzDW1+m8tJzGPZsquDYTG7ep/T8JSWr0zT1fusVdMMg3N4nn4bkkwBvZZHqS88R7R4yfbxN1h9g2BbmfJPGay/hLM8pr8xhh/HthxAn+FcvYLhK7jW9+5hsOKZ89QLTB1vEe0fonk02nICuU2gaMgsxfYciF+RZhrs4h39xjdorz59NK+xmHbNaYfCtdwjuPcZq1Jk+3CTt9DE8h/Lzl3GX5wkebTO9/RARRLgLbdXQPZqiGTq1165jt1UghTPXpP0zXyXt9pUk0DSx2w1ltkcV8N24M+Skp/pueoMEJAxGKaNxTq1mQQH1umBx3qNRU4EQ9x5OqFYslhZcrl4q0xskJKlKzqyWLbW5MUyJYkHJM7As1RtmWiqG1rJ16jWTopAMRhn3H024dqmCaekqmKZisTBfMJnmTCYpUTybaDg6aaKaw+fbP1yIxmfFM5Lxxwin04vPau6WUrK3t8e9e/dYX1/n8uXLZ4u503Spz4I8L9g7jHnwOGBrN2BzJ6I3yEgzQatmglSmyDSX5LPUKMNQj62MYbP/09XiXnzAf/FZw19PE6VO3/YHJyJPQuTKN9IbpiRpQTwzcD7p6fgoaAbIomA6FWymIYedlOUFh0rF5NIFj8PDlM3tkDQrsCyNze2I/iAjSSCJlRelP0hotWzGk4wkFRx3JZ1uhm1DrWKiGzrHnYSN7Yj+MGMwyDAtjaV5l8V5+zMvoE/6KXceqCx/x9bpnqQcdhJeuFpmrvXR5OWjyviq1SrVapX19XWKomAymdDv9+l2uzx69AjTNJ8qBnRd9wslHaeSmDAMz9KFTicdp6TklHQ8mV71DM/wg8L3DOZbDjv74VOFeFle4LomF9Z8XDvBLxnYppIalEsWgaaR5gULczYnvZSbd0e8+VqD+bbDwVHEhXOlWa+Ohu+qVDqJie/qTIOcUsmkWrGUHCtVF/cgVJ+nhRCUyzZSkxx3U6pVk5JvcO1SFSGU7ELTNdKs4Pb9CVculrl+rUqj12Xv4Jj6XA3ZuEy8f0wxmagJQsklOT5RfQ+VEuP37iKShMnNB8oPMUt40h2LtDvEW13A9JxZClKEUfLQNA2r1SDtnJwZmHXbUl6MwRh3eYHy85dUx8DWPtoso1z3XbL+kDRS6T7OwhxFmhM82sKolNAdG295QS3qUA3Q3tIC7soiRZphtxv4F9fRLJPe735Hya2A6f1NkqMeshCEO4fEu0eYZQ+rUcFdWyQfT7BaDaxqmSKOGb1zi+Swh24ZuPMt4k5PlbEddpESZKq8YxgG2XRK57//PoZpgGXRuH4FMQ2Y3HlEEadkwzGFbaLpAVrJQysKdCRFUlDEKeUXrqgivCwH08S7tEraHxLu7FN94QrehVWmj7bp/e63EUGMFALNNNAMHcNxmN7fVJGwlkVhGqQnA3TbxL2wAlmOGGY4i4qYWfUqS7/8C/gXzrH/H3+T4MEWTrOGZpoUQiBzQTYao1sWzrllvHMroOtYjRpJp4fuOHhrC4xv3GN6+yFWq46/vswkitQG3NEJmr1B+bmL6KZBMQ0xS556b5qGOysWPIVVqxDcewymSfnKuiK2V88jkoS021dSpv6YdDzBv3wOs+QTbu4hkwx7oY2YRhhzLlatgln2ifcOSQcj0p5K7EqHY/JJgFktoZmWek1JDo6FGEzRLFMdrx+QWLpLc/iXz+EuzTO9t0E+mlJ67iLe8jz2fAsxDbHnGsQHxySHHTRTx6pX8S+uUbqwpro8nryG6vpTvo4nsbUT0B+klEsGh0cx9ZqNYxscd9VGxJztYDs6+4cxtYqN5xk06zaHRxEn/YS1ZZ+rlyrcewiep95Hb5AS7WYcdiPyTCpCUbfw/YJaRcVsT6dq51YUEseQDCcZB0cR51ZLrCx7uI5OvWYzHKV887t9dV3VoRCS+bbNT//4/FOfg18knpGMPwb4YPfFZyEYWZZx+/ZtBoMBX/rSl86K3k7xZE/GJ+G4m/BwM+DWnTHHJwmHxzFFgYpznMzGdBoUUqqx8Ww6IGb+BgxmY7z3JxtP4pR45J/yUjRUV0aBIi4SyLIPP97pbQsJ00DMyrAycsFZY+bHwXNhdcmhO9t10COwTEVQGlWTa5dKvPhcmYcbIWlesLcfcdhRDcOOxVnvx8lQfegmSU4QSaDAdXSyXGMySfF9HU1q3Lw7oVYxmYaC6VRgGCMurbvMzzlIqdFsWMy3VAvoByEKydZuRJoW1KsmUqrkm8EwY2snolm3zlo9n8SnpUvpuk6tVqNWU+N8IQTj8ZjBYMDh4SH379/HcZynJh2u637s4/0wOCXTT+rwn5x0nJKO09s8aSR/Rjqe4fNidcXjpJ9w3IlpNmwsS2c0yni4MSYIFZEfDDMmE4Fjw8TLiFOJqcO5lRKFhO/fHJLlkp/9+jzrqz5CSK5dLnP34YReP2NxXsmwwjDn3qMp59c80DR6/RQpJb5n4nkZYSjIhUZRFJgYGKYqGh1PcqoVk2bDoT3OGIxTVUw6zTi/5nN+XqN/r0c2muJfWEEzTMySTzacKKO1ppGNxhRRhExzgkc7xPtHZOMp/oVV7FYDdI3kpE/aG+CeW0L31QRE17RTJegZcRBR/JE/S900aXz5ZZVUtXuEzHOKOCHtjfDWlym/cFnFpS7Pk858CbrvYTXrSFGQ9ocUUUzp6nm1MRUnaJaFZho4Cy2cuSZJ5wRNNwgfbaNZJhgaYjzB8BysVoN8MEbTdUzXxWk3kVnO+N27WI0q9ddfBFMnPugi0xS7WUekKdPbD9EdSxGMwQQMZb4uTBOrrDG9+1hdfCQqlQi1wy2zHIYTNNNAui6aaVC6dI7q9cuEOwdM7z7GrJVJDjoYjmrjdhfnmNx8oLyLkTJna46FVStTeek5pBCMvnuTfBIgcoHVVtIye76J3aihe66akEQJdmMmvyqXaP34G5QunePkd75FHoSAxuAP3gFUz4huO1SuXznzORieq8rpRhMq168QPtzCXVk4M4CnJ0N03wNZMPzODaKdA1WIiJKqGa5DESUfPgg0jTyMsOo1tNnmpkhSpncek/WGyMRHxgmT2w9UGli7STYc48w3sRfnQQjSbl8VL6JRpBlShpiuSyoLkuMuCEERJYgoUd4J00CmKbrvUsTJGWH+IMySj7uqSveqL19TfSZAuLVPuLlDEadohknaG+AszWO1GtTffBnDeX/zTkqpIolFgeE56PbTG3thmHPUTajXbDonMYWUMwmkUkyUSibTaU6rbhNFOaNJiud56LqmvBZTZRBfaDtMgpyNrSm374857iYEQU6aFhiGav/Os5xK2SaMBKPZZMI0NWzLwHVNNdWQkvm2RblsMR5n2LZGu+mwOO8SxYI0LUgyQX+Y8j9+v0t/kLG24jHXctC/QFn3M5Lxvxgf7L74LH0Do9GId999F9/3eeuttz4yO/6zTDJG44w7DybKlKSpiUZvqCRHWSYoZo3daGrhb5pqkX36sBIlX9I/gUAUEhwb8o/4jDqFroFlguOoXgxQU4yPIhinEAWQzSRRQr22T+JUhq5ey2gsmExVDJ1pQCYKIMfUYe8gZq5l47g60UiwsaMW+Y2aSRgK9RmuKfIzmmRqujPrk8ryAtsA3dQIY8nRSUySC8qegeepCOCt3Yg/fGdEyTeYa1k0GzbPXy7zY6/XPtS2GUWCTi8lmOaqWFCC7+m0GjbjaU4QCqqVD5++RVF8rgW4YRhnZAIU6Tjt6Njf3+fu3bt4nvfUpMO2fzRazlOS8SSenHTAx5OOD3o6npGOZ/g0NGo2L1+v82hzSn+QkmYF37vR5/gkY3XJpVazmIxz4kQl9XR7CbZt4lZNpkFOo6bO2c2dKbfvu7z+SgPL0rlwroyU8N++0SHPJYOh8tJZlo5tairWOxIEYY7nFTRrNtWKZDLOMEyVdidyievoJKnk8dYU09RpNmyaM7nl0cMjits36d6dqJjZ/oDpvU1KV84rrfys8yLaO0RmAqtRp/qlF4gPjoj2jjBcm6w/VCl7nodhmThzLfLBmGKugeE4WM060fYeZu19G+npeVVkqiPHrL1v3jcrZVo/8WWS4xOywRgpBMHl86SdHkWaUaQpmmFgtxoqlaleIe321ePOFsDJURerWkazTOK9I6KtfcrPX6L8wmWGf/guw3fvkE0CjLJHvHNI2umje65qoNZ80sEYu15Bd22yaU6ye4g9p8rZnFZDRZIeJuiuA7Ig6ZxgzIzeRRzjLDSJpwF2pYzuOIhpQDoc46+vIQsBuVAL3JKHVfLRbBNvbZlsPMG/vE60c0R63EP3XWV2jhLENEJs75P2BxiOg39uGRGGOIsqYSqfBiT7R1RfeR7nL/wkk7uP0aTEXV3EXV5Qbeuoz75o5xB3eQF7oUU+DchHUwCsRpX2T3+V8c37hJt7GL6tfDBzTUSUQFFQJCnouvI2DEY0vvoamqFRCJUAlg7HhI+2GL17l2w4BFFQzLo4ANJuj7Q/xFloUebDZvF8NFGkdXZ7KSXBo23S/nA2aaqRGxM000REMaN3bqPbNnajilUr459fIeuPlGEdNdmKDo+Z3HpIEaeYtQr5KEAKge6pFncRxmiWReXyebKTAXarcSarO0WRpmimie5YyrhfLasCxv0jJrceYvgeVqUENYNi5jeJHu8wLvk03nxZHZfHJyrWd+bFMEoe/sVz6nybEZEkVclPtapFFBVYT5ioNU11WuRCkgvlq03T99djpzKnd94b0h9lRHHOxlbIaKykkaNxfvY5komY8VQQxcmZysM0lVfIsjUMXXWTmabkwUbAc5d1PFfnpJ+yuuJR8i2mQc7GdkCaSGpVh+E448HGhE4v4eK5Elcvlb8wovGMZPwvwg/SfSGlZGtri0ePHnHp0iUuXLjwsffRNO1TJxnH3YQoFtSrFvuHMf2hKnTJhTJ2a5pajMvZeKHmm0iZk6Sz/5sZq+VsqvFBSnM6+XjSn/FRcGw1UTAMi4oPuZCMJh9PkOQTf+u6Mqmbhuro+DheJVFeiU6cK9OcrlKwKJReO0lh9zDk3KoyqYlCMpkK9UEfSabhbBozS6kKQ2VyN3TICvU4GeBZGoYmGYxygiDHtlSs5cZOoEjJTOMtChiPc27eG1Mu6fzY62qRXxTKTJ/nkqOjhCQraNYsdB2CqGA6jZifc/g4n/QP25NhGAatVutsMpbn+Rnp2N7e5vbt25RKpafayC3rB4vs/SiS8UE8STpOSXNRFKRp+lQb+TPS8QyfBa2GTb3aYDTOuPdwjK5rrC27tBoOpqmTexJ3NtHIMnBsSa1iIQs47KiCzkbVonsSnyW06LrGypLPxfUShZTYlsFwlNAbpEyCnFbdYX7OYf9IUhTKJO55Jqah06ybeJ7FwVGE7+pUKhbZrIyv5BvYtoE46VHceIfMCMgWSmrR49jERx3yyYTS5QvorkM+DYj3jpSRe2URTQjMaoXytQsED7Yosoy0O6B0rYa7tEgehExuPyTcPqB85TxSFBRpTjoYYfqeSlGqKg9HtHeEtzKPs/i0bEQzDNzlhbMUqPLzlwgebhM82lK9C5qOd36F9s98FUyDeOeQIhdEO/sgJaWL62dTE5p1RBQzufMIu9Wg+bXXGd95pCYknRNEmqmdoaIg6w7JzBEYJlbpEobvEfcGxHtHWPUyGhreuWUqL1wm3jsiPuyCyMnGU5ilGDoLLXTHxiy5ahGb5mi2iVWpkk+nOAttDNfFrJYpP3dZdXxEIfXXXybaO0STMLn3GP/SOZy5Fkm3R9YbIoKIIstJuwPm/tzXyMdTjCdSHs1yiTSMiA+6VF6+ijcJsFtN8vFYGbGFQGY52WwRX7l+hfGNu4SbeyrVCxXF6l86R+vrb1B96RpWvULa6VN+4RJZb0i0d6TKDwtJkWVUXrrK3M99jcmdR2iaxuT2QwbfuUHS6ZFNApLjEzW9yAuCe48pohhMi7Q7ID7oUH/t+lO/92wwBk2j+tI1JS1LU4okIznu4iy0CTd2EUlGctDBatYo4oSk06NIU8rXLlH90nXl0ZlvPfWYcjtHFgXO4pwqD3ScGREJFYlLU6xKCadVR0M+VQ4JqqU+3j9WscGLcwyjdxi+fZP0ZMj4nTskJwN021JRwCUPu16j9uZL2HNNos09ytcuko8mDL71DiJWBY2aaSKCgOEf3iA9GdD46msYjo1hapiGTp6rouBp+L6UolxWqgPLBkNXa7FT5UGWFwxGGUEkqJSVnDKMcnqDmKJQkvTxOCeKchoNm7VVn63tKdNAoGuKYBiGmoouLfg4toq/vnapwmSSE0WC/WFKt688HfWazWSqpqetpj1bG0osU6dWtdjYCWadIF+MYuEZyfhfgB/E3J2mKTdv3mQymfDmm29Sr9c/8fa6rn/kJGM4ytg/ijjqKGmUbeu0GxaaBv2hIM3lbCKgiAaFVCRBh8FQnUSmDpl8wnehqX/rs7+fJAHw6cbvNIMs17CEar8EqSRan3w3FUk7S7SKYvmJk4ynvifBNcHztNnugkaWCQb9nHuPAyq+cm1KCXECaZqrCc6TjydBm0VSSqkazaUGaVYoA7wGuqHMWXle0O2pdAjVEA6uPTOWppKt3Zjr13L6g5SjTko+G+EkWYGha1iWum21rLG1p6YtJf+Lafz+IEzTpN1u026rxUWWZWdxuRsbGwRBQLlcfop0fNZW+c9CMp7E6ft6Rjqe4YeBYWhUKybDSUalbFI3VJpcuaTOzSguzvxgUlN+Ds8zsG2dk15MtWxSFEqmOddSU2TL0in5JlkusW2dwW5Os+GoczwvKPkmnmtgGTAJBWFS4LkGraZHlqvdUDE772sViyDIGY0z2g0Ib95F29vBmbMJNvoqTjUXauc9E0qCstDCrlcQc03QdbzleWShYnT9S+fQLIvo4BBdgru8iFWvImVBetJHhKFKOxpPEVFEfNRB03TVhzCZkPVHuEtz1N94+UO7xh+EbllUXrhM6fI58mmIpusYZZ/g0Tb93/1D4t0D0uGYePcQ99wKOBb++urZLqrhuRieS/B4h9ZPvondquOtLJB5DvFRl8J10DQd3bEp4hgxmpAFEZN7G4zevokIYoosUzIlw8C7fA7/8jnko22Ch1vIXKC5NjJOKJJcTSlcF8OxyZIEmYO7vgSZwKiWKSZTtFBDZgnJcVfJZ7IMu92k/823SY46mK0G+ViREme+RXxwjLe+TNodqBLCokD7wEaMUS6RDocUiZLtlJ+/iG6ahDv75KMJmmVSe/1F3JUFpvc2CO5vYrfrqrxOSvLRlNH3b1PECfUvv0Lzrdfp/d53yAZj7Lkm9lxzlh41IQ8iml/7Ema1jG6bBA+3VEzwaKp6SQ465IMx+XCCiGN0x4HDDu5cG6tSJhuN6X/zHdUY36ojwkgVJ37pRUpXVVRv+HhXkciDLnLWjJ4ed5T/xLEwa2WchRaTO49Ijjpn04tTSCnJBiPclQXi/SPMWpl8PCE9GeAuziHCiHwagqbhn5vJ8XwXo1wmeLSjivUKQZHkuKsL1N94iSJNiY9PSI66gGqsl4VATFPVp6JD2htx8rvfUWSwNyTt9pjcfYzM87MSSnVcOpjVCuHGDu7SHOVrFyn7Js2GTbcbUZEh3a0DYltJq/xKDTSJEBpCSgxDp1YxSbOC/f2IOBEszDm0mg5BmPHg8YSD45gsK9g9VGlaug6DQaZS2KRU6g5O1QpQ8k3qVYMwEriuQRjmTKYZlu1Tr9nkhUTTdR5vBoRxzqXz5fevobOkKs81GE8yDg4jFuacL+Q6+Yxk/BHjB+m+6PV6vPfee9Trdb72ta99pp3jj/Jk9AYp3/n+gK09JQPq9VOCSJCLgiwvyIv3JVJqairPkppO5UWnnROnk4unjNrMbiwFKmfqFKejjI9eGBdSybGSVF3gTxfunwW5UIlXn/X2p4hT5TMxDBhPczQdKmWTLClw6hYPN0NsG6Lk470eH5JzzX5uRaGay2UBYSRmUwdJnDAr6tEYDnMsR7X3DicZv/PNPodHCSIviNKCfj+jkJLlRYfdA7UL4tga1bI5Iyoffdx8HpKRZsoAL5FUyia29ekLfsuymJ+fZ35ejf6TJDmbdDx8+JA4jqlUKk+1kX9c98HnJRkfxCeRjiRJPjEy9xnp+LONJC046acEocA0pTJTRjkiL4hTQSaV7NB3TazZeSFRzeDdk4Q4FqSZyqxfmFe59ytLLrfuTdAjSJNC5dA7Ot2ThMFI4Ng6WVoQx/nZeZykgjgWzLdshuNcxXhrnMVfjoMR03dvUyXCq5QxS3V17JoGwcNtoED3bGpvvEQ2mqjyt9VFpCiY3H7E5N5jRBhjuA4ySUkmIeHWPvZcSPhYtUpXX1TxpkiJ4XuIIMKeb1N7/UWsenU2qZj/UInbJ0G3beymkpVMH21x8B9/i+xkgOY7kCkDedobMrl5n9qrL1B58SruQuusgyHtD0lOhmT9EXqlhJEL9PEUI80okoRsFIOUFEC4tUf4aAfddyi/dJWs0wcDRJIw+t5NxHCMv75CuLFHkWVkHZUUpHsOZqWMYXikI7Xrb5Y8tDSnyFLy3hBkgbu2SOnCOWQhCcYBw++8h+Y5TN67R9Lpq/voOna7gbO8gN2s4yy2EZOAfBJhzDwzhu8BIMKI+LCriv6CmGwyRUwD3NVFzFqZyvWrqhPDcYj2jggfbeOtLaKf+gU0DatRRXdtgodbeOdX8daWaHzlVcbv3SPc3FMX5UJilD0q1y8js5zj3/wdws09Rjfvo0lURK6hUlvsxRbh413EaILWMEg7fWSWY9WquOeWVNqSBvZCC7tRw1tdxGo10DSN+psvAxonv/37BA+3sBs1DN9Bcxx02yQ+6BDvH2PPN3FXF7HnmozevoVZ8bFbDdVfcdTFatax5pqEO/vIKKF05QIYBvnJEKkpAmq1alitOma9ytzPfFV1vOwdKSmgaeItL+Asz2O4DoPv3MAs++S+y/TuBnmcohkaRqWEmIZotoV3bonw3gajehVvdYm0OyA7GeCuLX7EMW29HwN85Ty6rnNuyWb/+4+Y7nbwhlOmGVgGxNox7XoLbWGRw6OIdlNJlCxTUCoZoCkp5FEn5sadIQ8fT+nPYq/zQqXONWo20zBjGig/xekVSwgVyX3cSZASLp5T5ZCHnZilBZdmw2Y0zhAn4Lk6nm9w1I1JUoFpqoS9aSjONkhKvslompHnEst6RjL+xOK0++Lx48e02+3P1FUgpeTRo0dsbW1x7do11tbWPvPi6IOeDCEK3rs14vb9KbatM9+2aTUs7jyY8t13RpR9g5JrEEeCVPXGnMW/WpYiEKauFt0ffp1P/v1BgsEHvlZG6Sf/X0XNvv++PgthOP0xZKn6t2V/uizrg0gz0DL1igwDBuOUvSOdrb2Q/jAnEzO+9FkeK3+/JyTLZnG+ekGWSzRNqp+bhCzTqFdVydZ4rCRV04ng4eOAMCoIIoFrKU3lcT/luJeyuuhSKRuUfYd6XeXmF7NSkQ/qKJ8kGUUhGY5zhiOV0lKtmDTqFoau0e2lPNoMmQY5EiiXDC6t+yzMqQ+eIBSEkfpQqlbMj+37cByHhYUFFhaUXOLJNvK7d++SpinVavUp0vFknO2Psh/jSdJhGMZZR4eU8kOk49REbprmZyb7z/CnB4edmE4nZjTOcGwd19VJ04I8hbJvkSSCaSBmUbYQxTm9fkomCqaRoFw2MQyd+4+m7B1GvPRcjZVFj8OjhO++0yOIBb5n4Ng6lbKJ6xi0WzbjccbjrSnDcc5glNGsqfZvyzY49/9n789iJU3Tu170981DzBFrHnKeaq6u6na3yzY22DRnszlns0GbC+4QF74wlixscYGvkMDIRkLIEkggIUCwDdr7HLwZhAEb091uuwd3dVVWVs7jmteKtWKOb/7e9z0Xb6yVmTV0ZVV3m6Zdj5SVyqgYvvimeP/P8x/WXAJfdyaHoxzPNakyolGOmD+/jFN9TLkJVpcwHZvpjfvEdzeJz57CqVUIz52iHE8YX79L0RuQ9foUR0OsWgXb97EDXwfKmRaGbbPwv/wk9VefoxyMtEWnYWBVQ/L+mPqLl/BWFil6A/KjAVZF8+w/zrWihKD3u18n3TkgPLeO5TpMeveQSYYReIjJlOntBwBk+y2qV86THRySbu0h4oRka5dk5wDTNKk+d4Fsv0vycAeZTVFS6UXZeAplSe3UJSzbQngusixxGzWEY5MdDcBzKUZjDMvBalSxfBdlW4+dmWYCd39tiTJOKSdT7HoVd65FsLIEpknRH+B2GqRHfWScYNWqGIMxmAayLJne26CYRqz8H38Wf6HD5PpdVCnwTy2R7nXJDyUizcj2j3ReSa3K9PZ9VF5g2TZSSdyoSbq1R9Ef0vjsS6Q7e2CajwHGE2UFPlJIsr0u/tI8lQun8ZbnyfYOkWmmdS+myfTGPaJbD7EbVWSRAwbJzj6yLDHXPZASMZwi8wK72cCba2mnrPVlnHad9NEupuvgdpo0X3sR5wldDmiRdfvHXtOA5+EOzlyL8u5D7NCnTDNQEpUXZNsHmLaDuzCn99VoTLC6hL+6SPW5CzReuYLMCqL1FUSWEd/bRGUFIk5QpoldDTRdOS+wHAu308SuVnDbzfftG5GkpJt7VC/rNPbJjXtavC8NlFlgVUNMS2euoBTTWw9w51sUozF5f4jTaWLU3r9Gs2cgXOYFlu8RHO1xKt5if77NsNkg6ueMEoErU5Z6D2mf8ah/9iJzbRfb1veC/kDrIcaTkuu3R4yGJc2Gw3BUzLSjJnFcEieCopAoqXPILBtcx6QUCtvUbd4sl4QVi8EgnzUrfEJfN9ECP2M0LikKSZYLdvdjgsBhONPdhr6F45h4nonrmE8FEn4v61OQ8UdQT9KjNjY2qFarVKvV7/iaNE25evUqeZ7zhS984am03Gcp0zRP6Fh5Ibl2Y8w33h7R66XU6w5KKRY6HpcvVLl2Y8x+N0UI3c1X0kAqRVFIkkxSr1mkqUCKD9ZePK6nAcYHP9fgg6ccH6/eC0TEJ8ziUIDr6As4ThS7eymF0KPEsnxPzsZ3KNN8nM0ButugTS/UiVjeQB+L3jAnLxSl0LQM2zKwbYOylCihiMqS8USRZooklohSsbLoMZ2WrIuAZLXkm2+NkBLm5xxWl3zC4HE3/5hz+WAzYWMzoRT6w00D1lcClpdcbt6dIkrFXMfFAIajklv3Im2V28/Z2cvIMolpQbvpcOlchVr1o28Xvu+zvLzM8vLyTM+SnEw6dnd3KcuSRqNBq9U6OT+/X/WkicJ7QUeapifPOQYdx5OOT0HHD3dNo5Ibt0cMJzmTuKQ/lFRDG9sxmUaCKCln1H/JNCo56uf4nollGjQbOv17adFnbSXAsgy6RxnXb4+Z63hM44K8lOwdpEynJbWqw+n1gNXl8CQIcK7jsX+YMhoWtFoOgW/TarosznuEgc14WlANbV59sUGrO+LAVbgzMfBxGaaJv7SAkopyOKH9Y68TrC3R//rb7P6r/wcMSLcPoCyxfR8ZxWTDCdXnzmHVQqJ7j/CXF6i9cBHLdbDeY9FZThP6X38buxJQ9EcopbB8D39tifrLV9630Pywyro9prcf4C60sXyPvKddjsyKD0rnLuTdPsYLFygGI3pf/jrlOCI4s4q/vIC/vEB+0CPZ2gXTwK5UsCo+mAYGWsQs0kyHxYUB2cER4aWzlKMJebePyAvK0RQr8DFsm8rZVS0SnwUHGgaIKALTxmvrBXa8vY8qCpxaFW9R27Zme12sMMAKA5KdA4r+mMrF09rxyHUwZr92WbdPsrlLcHoVqxoCknykrVgn1+9S9IdICXYlAAmm79L43MsYhkHR7ROuL2MFAZMb93E7LU3ncj+cuWA6NiJ+7ABmV0LsC6cBkEXB0X/7GsVoQnheNyizgx61y2d1LkRvSN7rg2Ui0lRrFBo1DM/B9IPZdMvAqldm+3GCKnTDSklJftjXFCQFSmg9S+OzLzK985B8/xCRaPoqhokEykmEur+BUora8+epnFvHsBxMz6Ny/hTuXBtRFJiOzfjd2+S9ETLP8daXsSsBdkOnjbc+/xnENGJ87TbtH33tA/eLLEpkWeBUQ+xaFadZx3AcrY/xPKxqiJhGOvHbsoi39ogfbiOjlMnNe+SDEd58h8r5UydCfNAAh1nqu8xzonuPWFwMWO34jBMoSpuyEDiGhxwqKuGItZdqT7lWRZFAKTjspQyHBZWKhZzImfGDAGXguhZ5IShL3Ug0LU1fr4QWaSZRUpHmAmNSsLEZUZaKhQWf1WXtZnfcOLl5e8xkqhskh72Mxsy5bm3Zx3ZMHm7GGAb85I/OYX+AW+X3oj4FGd/nem/2xfFi5ztVt9vl2rVrLCws8Prrrz8zx/3JenKS8WgzZnsvxXEM/MAiDC1Gk4Isl3juMSJWNBsuvmsynhbEiRY9B5icXvXZ2knpjwTWzMXpaSbWMbh4DB7CQCd9f/R04fg14j1/fzDF5gPrGcTlH1aOA5XAIheCLINJrC0rpfrOblVPlmnoEakEXBcypV+fF/o9hNTuV4ELYcUizxWjSUEltDAt3UHoDUom0xLXsUgSHXyolKaoxXHJflfzw4cTQZpJLpwJCQOLqzcm3HsQc+VihYU57wRkDMclG5sJlYp1AkCyTLK5kxLFBXEiWVl87ErWbjnsHmTcuhcxGmsbzVbDRgjFUb/glox45fkaaXbMB7U+0o3CMAzCMCQMQ1ZWVlBKEcfxyaRDKcW3vvWtEy1Hq9WiVqt934MB4TuDjuMJx6eg44evpFR8860ev/+NPtOoRAqFkJLhOEdKnQWUZ1qQ+fzlOgYzjcasS5AmijOnQs6sV0+EnO2mw7ffGRJsx5xeC/jcZzpUwpFeWJW663isoSpLDWj+ty+u8Gg7ojfIWZz3Tzzr81wymZRcOl/lwpmQVNUwKwHlZKoX9ifc1JkIrigITq9QObeO6ToUR31wbJLNXW192m4gshw5kZiWjUgznHqVolnH9H2SrT1klmOFPm6nhdOq68Vot0fRG9B47QWCU8sYlkUZJcT3NxDTmPZPfBZ7NlkpxlPS7X3y3kC7Oi3OaYtU36McTRDTGG9pHlDkMwqSLARFb6AtZOOMyc0HuJ0WycY2tecvUH/pMnYlIDy3TnbURxYFZZwikhy7oic2ACLJyHb2cVoNTMehHE0pR1NEFAMKy3UolCI/GmK5NnazgWkbWJWQ7OAIGSeYto0SCqtepfbyZeZ+5g2mN+9j1aqau28YWty9OMfkxt2Z/anOVpBZTt4fYdWresGfpKTb+4zfvoG3tEDycJPB197CaTWx203y4UjbsCrtk1t7/iKm71OOJ8QbO9py9aXLYGinJqfTQKSP6QNKaCHicddZZjlW7fGE67jKKGb05rv0v/ot3ZU3DUzfJx8MSXYOsIMAYU+xaiFeZY7owRZyGpOmGU69hr8SYFg25XiigZYQyFJog4HZeyebu8hZ5kgxjUg2d6l/5nnEm++S7vdASQzL0iDJMDA9B6uubX7ddp35P/mjWL7H+MZddv7Nf6T9Y6/r82kSYdo25XiK22pgeA7FcIIqBMErK2QHh8gkY/jNdwhOrxLMTAeeLNNzMT0XkSSYvosqBd58B7tWpegPKUdjVFFSTiPyowGGkridJtXnz1PGMTLJyfYOEElC45XnZlMjQd4b0Pj8q5i2TXbYpxxN8ZbnMU2D1slhsAEb2eiQ7nQpR5OTtHeAVsvBsQ3u72dgaD2XYUCz4TCeGozH2u1Tm/BovafnGtimSZwIrdP0LPJMEkXaRvcLr7eZ6/gndvgHh3pKu7jg06iV9PoZSoDjWPi+RbPhYlkmaSaIY4H5fQIYx3vj0/o+1JPZF8e0kOOu6Ye5PkkpuX37Ntvb27zwwgusrKx84s/XlmmCXj9na1fnKizNexwe5SgBopA82M/wHM3RczyDPBfMtR2qNYtuN6N7VGJasLWbU4hjsdDMWeqkPogepQXTHzNwfFbvfa+PBh0fU47xVNkmlFJQFo/lJIV8rD35TmWa4Npas5EVs22ZuW4hZ/oM9fi5Et2B1ABMUq9qWk+n5TAYFlq8ruTJ5OMYW+oMEG2Fl+c51dACpZhre0SJYGMzYTgqWVv1GI/0QnkwKiiFOgEYpZDaTQsNGizr/TQl24LtvZS59mNhuW0bzHVcHm7EjCYlBpov3qrbrK341Gs2nvtslCfDMKhUKlQqFVZWVvjSl77Eyy+/TBRFDAYDHj16pDm+T2R0PAut8JPWh4EOKeWnoOOHtDZ3Yt66NiIrBOvrIXkmGQwzur2cONbUKSkhSQWjcUG1ZlOrWfR6OdWqw/lzFV66Uj+5roRQ7O4l3H0wZWE2FWw3HTodT7+mYnE0zGkPC4LQYjAsWJlNQTptlxt3xvQHBaNxoa95Q7KoRiztDzl6MKWcRMisYPTuHZAzG23LxPQ8HehWCWmeP4Xpe4hpTPRwS3PlHYdsv6t1BqGPt7yAYRrINCc4e4qs22d66x6GZeigvaIgebSjJwiriyQPtggvnX7K/ceuBFgzbUP8aIfKhdNEdx8xvnoTkebYoa+DTm89wF+ep/WFV2fp03qxhxlSDsZan+C6GHNtitEEwzRQeUF0+z5KCKoXz+K2GogkQ2Y5Ms4oJzFlmuC12/inV/V3yXK8c2sUhz0wTQzbRpUl+V4X03Ow61VkmuE0qpi+SzmYYFgm3tICYjTGXF/R4vE4RWQZ9ZcusfT//mnsWgWkwvRcrGqIgXHigKVKQTmd4jTrmKFPcGpFZ5MMx5RSIKYxxTjCCgO85XlkVuCvLCDilGIwwqqEeAtzejv3j8hHY7LuEeU4QmYZ6c4+hmVi2BZllLJ46U9gWhbJ9h7leEreHwGGTp0OfUzfJ1hZeOoczw6OGHzjbcbv3iGbWQZPb96nnEaYYUA5nlJMY/K9LtHDLexqBTmJkWWJmsaoNAcpMT0Xf3URp9MifbSFv7qI6Xv0v/om0f0NnfRe0RkreX/I+N27jN+5TTEc605/qn8UZSJ0UrptYTkO+SQmPxyS90dke10t6p5EDB2bZGsfq1qh/urzOhl9dr7brSbZ5i7Tuw8I13XDKts/xK5XWfyzP/W+sDzLcwnPnWL4rWu47Ya2w51EeItz2JVAh/DVbZxWAxEneItzOO0WyfY+eX9Eur2PFQYYBz2saojteYxu3NP3/9DHsq2Z1fP7Fwlylu0hS/GBi6BaxWZtJeQb3+7T6+fEsSCKtduU71qsLvsoYHs7nllXMqMVa0coDH3fkVJhmgbKgB95tU1/VBDFJbZlsNdNCTyLMLQ57GXMz3nMdzzyQjEa52xuGzQaLtWKzfKCx3hcnLzf97o+BRnfh5JSUpblB7pHfRjIiOOYt99+G4A33niDSuX93Yln/3zFfrfk0XbJTq/Po82E5QWPU6s+B4cJ9x7GHPYzilxSrdr4jsnigs94UtAf5oSBxXhaIpRB4FokWUmWaVSN0voFIUG9T+D95DZ84s1/T3180PFxKsnAnlGtjjNBnnXbLfP9AYRPTlQsUzcbUZrOJUpwHKGzNnJFmCuW5i2k1Enhh72CdOZsozdIv58UYJgC29Le27ZlcOt+THUv46Xna7RNhyA0EAJ2u3qCdPxdilJy2MvpDwqEVOS5ZGHOw0E9dVORSpEVCscycd8j/kpTwc5+hmkZnFr1GU9K3rw24s1rY86fDlhe8Dm97hN8QKjgh9XxNVCr1Wi326yvr6OUYjKZMBgM6PV6PHjwANM0n5p0hGH4PwR0ZFnGW2+9xYULFwiC4FPQ8T9h5YVkczvWdBXLxLFMnFBzkkuhEKXWUNkWBDNe8+FRrpsPUnHmVIVXX2ziuSaTaUmWCfYOEjZ3YpJUzCgOko3tmErFZq7jEkU6YO/eoykXz9U4eyrkwpkqjmPiOCafuRRw+HBKHJfgWBj372NsP6IIfNyFDsnuPunmLll/gGFaqCxHoTBtG7tZx6klGI6tJw1xSjkY4zRqlP0hxZF2L1JCYuwf4bRqYFrE9zcop5FeqAY+TlPnYogkJb63Sbq9j0JRmU0LnizDNDF9l8P/9gcMv3WN8ds3AAjPncKb05MQJSTx5i6Db75D+8dfJzi7RnT3EeGZNcooQuUFTqelF2MzqlPtpUvED7cp+iOsakg51fSivDfEW5pDFQWja7eJ7z2ijGOq507jzLWwHIfw8lmy3UO9ME9SlGni1SuIOCE/GujEct9DTFNUWeAvz8PS3OOgQcMg7w2Y+5NvEKwtAxCcWmHy7l3CavjYYhewG3XENCE4vaadtmz93UUUU04iUusAmWSE50/jtGqImetUvLU3mxplWOsepRAUoynDr79NsL6MtziHiGKsGSDMdg9IHm5hODZ2LeTgt76iM0fmmqDQ+900WPxf/xROp3WyfSJOGHzjbcrRhGB9mXI81bkieY7KcqRpgGmi0gxlmJTTWOdqmAaGZWEvzmmTgLIk2euigGRjB6tWwWk2yHa7jN+5hSxK4vubJNt7OkF7oYNVDZheu4uUJYZpYIUBKsu1+2ReYFiWtugtC6QomF6/gzPfwV9dIts/1NMHV0+Dprfug2nhNitYlVAL+31Xb2Ozpq8FIRDTiME33mb+Z37sRFh/XJULp8kOjmb0tRVG33yHdG+mC+m0tANXlGD5Pk6nSbqxixIFpu8hRUl8/Q5llDL81jWClUXsdgOv02T4jXcYfP0qtRcv4tSqlKMx7lwbKQTZTpdkZx8RJZTTCKdVoxgMcefbJ78RhmEwP2vkTWeOUKVQGmzYgqV5j0pg02i4RHFJHEttfV1zMJSOFZBKoZSpXSqVYjDMOXu6yp0HE6ZRSRQJ2k2b8aRgGhW0mx7nTldIc8VR38a2DC6erdJoOGSZJMkEQnwKMn7g68nsi2PaynsXHx8EMvb29rh+/Tqrq6tcvnz5uxbD7uwlPNwWiEIy3/I46OY83IqxbZOVxYBb9yKEUDPesSLJFHvdFMc2EKnmLE+nJbZrkJclSSqZaWZ1R14I1HvoUX909WF6jk++LaWYfa9Z0uuzlGnqMWb2HUIGn3KfmoUSFoVEKQPLAM81WVxwOTwqEBIcxyDL1WPr39nXk0p/TmmCERjEqRalxolgZy/BskzC0KJWsUgzg9FU0Gra5LnkzXdGDAYl1apF6FuMJ5J6XQOdq9cngMJ1LSwL1lc8HNtiMC6eCgfc72YoYGneI88Vu/sZBtqhJ4oFN+9N2dxNeP5ilU7beSawcXwNPHmuG4ZBvV6nXq9z+vRppJQnaeTdbpd79+5h2/ZTwYBBEHzYR3zX9eT1q5Ti6OiICxcuIIRACPGhlrmfgo4fzBqPtVNLo25zcKR/qE3D0KYGytDURqEIQofFBY+VxZCsEETTgoOjXHOkC8HmdsxoUjAc5Rwe5doD39QC7krFoRLa9Ic5vmtx5WKNRtOhGlh84fX2yXUly5LJjXvEdx8hxxFG94jowSbZ/iHhqVWcRo10r0s5nlJ97XmKL38DmZcE68vkkynl0YB8MMKqhXT/05cppwmVC6dBKZJHe0xvPyDd62LXKpiOg5KCZHMPw7ZJdvdxG3XCi6fJjwZabzAL8ysmE1S/JDiz/oG6C5Fms+08IjizCqaJt9Ah2+tSDEfUX7ikXZYWO0zeuYVpW4RnVokfbulufJwi8gIzTpBphlUNqL/6PMHqEsVoOuP4K6J7mxSDEd7SvHZumm/p7nW3r9OkDYXbaeEvL9D8wqv0v/KHjK/dQkYRKsu1fiDPsaqax5/3x9jVEJkVmr61PP84BfrBJu5ci9oLF06+Z+3FS5STiPjRDlYlwPI8LYwHgnPrqDyHmfeiYRrYFS0ItiohVhhQu3KWZHsfDJN8MCI/OCJYXyZ+sIUsctxWk6zqkx8OkIt6WiTiDKsSknd7FKMJVhgS3d+kTPSUpRxPNcWrKLFrFZx2k3ISUU4inNl3SXcOyI8GhGfXENMY03VI97qoosRdmmd64x5WrUJwdo38D69h2LZ2XHIcpBTY7Qa265IfDRCjCapVx51pE+L7m4zeucn05j3cVoNyMj0JzSsGY+Q0xp1vkXWPKEYTsG2tRZBCf44BZkVrBlRWILNCb7c6Tv1ViDRDJinxvUcYlkk8Cw6UaYa3NIdMNGgWUYJTr1K5fI50a59054DKxTNPnat2JaT9xmtE823sRg0xTZjeuk8RZ6jQR5alphfY2mELywBspm/doBiOsSohZZRQ9IfYgY9Vr+K0m9gzd6rRN64SnFnDW5rX1MPtfeIHWzod3HMxohgrCBh84x1kKam/cBHQv5t3H05ZX62cRAm0Gg7tpr5H7exprVC1qrVaosxIC0UUl/iehWPrXK9qxaJetXBci5v3JnzutTZh0OTNd4akWUySmoSBxZm1kMOedsgJfJO5tjaOaTUdLMtkGpV4jvlpGN8Per03++LDkrufBBlCCG7evMnBwQEvv/zyiS3oxykhlD5Ruyl5LglDi4NuhusYmK6B65msr/hkqeDugylxqh2DtND4WOBcMhhprr1tGzi2Ii3AxUChTvIolAIpP3x68UdfHzblMNCmuPq/zzKYeNbphaYLaQ3Gs0DB46RxpaCcUaps08CwNV/bMg1euFThzWtjTEPTr5R6v4uXlMeTE0n3KGc6LZES3rkxoVZ1MJS2y40idXLP7g0Lbt+P8V2TaSywLIP1FY/RuGQvyvE8U3N/E0ElsGnWHeY7Hv1rBdu7CZ5nMZmWPNhKaDdsXAfubSQcHuW0W47OFhnp0LKHGwmjsWB5weXiuccuVR++v58GGR80qjVNk2azSbPZ5OzZswghTkDH3t4et2/fxvO8p+hVvv/9CRQ63t5jMAGcTDqEEJRleXLNH9Or0jTFNE0ajcb3ZZs+rY9XUmlgMdf22NxJmEw0mLYsk6KUZDObSMcG2zQZTQqEkJimto+O4pKvvzkgDC0aNYfRGMLApD8otZajUFTQQs1GzWY4LlgpJb5jsrYSnAAMpRSjt24weuc2bquOYZsUownlaAJCa+HM0Gfy7l2UKAlOreDMtZGJdj2iFHiri2AY2L5PsrHD3v/9W9Rfe4FsOGH0jbeReY7puogoRdiFpiQZBjKKGHzzGp03XsP0XIJTK6Q7+8SbuwA4zToiTcgPewzffBdvvj2j5mgwn+51ybYPCM6ug5A49epJtkV22GN67xFBlpM82iZ+sEWZZviLczjtJvlhH9M0KeUs22OhTXBmnWBlUVvKmgZOtYJMUvKjAU6riWHqfZM82kJMIirn14lRpPtH1F66Qnh2DdOxaf3YZ8EyyUcTxHCCadn4p1d1l18ITMfECkJQiuxIi50NA/K+1kgsfPFP4C8//v3Vjkmvk8yAgUgznE6T5mdfovG5l9n7v/8Tk+v3Zh1qkIXACjSFLTi1qulsjo0sS8qZDgPH0Ta4dzfwVxa0vsKyKEdT4nJrFjIlSbf3AYW7OEf3P32JysUz+CuLTEeTp5ymxDRm8s4tqpfP0Xj1OUAL7U3P0fkktQru0hyT6zrlWiSpFlYrKA77lEmC6VhYQYC3rKdF5TgiG46xa1VQHobt0Pzcy9ReuIhMMo7++9cwTAPn3KkZXamGFXhgGCSbOxi+DrlTUkKaoRxbJ8zXdLq2gU6Nl0LoxT1QjiOsSojhemQ7XUzPxgo83IU5it6QdGcfKQSm52NVA2SaIdOU8NxF7Vp12KP721+lcdjHX57HW1k8EVrb1QqNz7xA9cp5Gi9f4fB3v0b/a2+R7XVBSUzXpZxEiDiZhVY+JB8Mceb0cS1GE0QUIfIcmerrz203MRs11KkVsv1DTRu8t8n43du47YbOPikKKpfOUL10lnIcMXn3DsHqIk6zTq+fMRwX1Ks2raaNUp620cdAon/jPcei03R57nKdd2+M2NqLTwTf0rPxPZNmw8H3LRbmPIpS0RtkrCyFrCx6PNw08RyTRtUhCK0Tt8hKaJPn+m8dEqiI45Kzl+snGrPvdX0KMr4H9XGyL45BxmQy4erVqziOwxtvvPGJOrJS6hj5R5sxeSHpD3VnbTQpWOwIHLtE3dfAQqFmtJmc8WycphQUFsRP5OIY2eNOep4r3eE/WYD/IAGMp8swwHUtyuLxBMEyxMwd6nu3zaYJvgvrqz4b2+lHPl9I/ZoTS2ABjqU7n3Fccuf+lEbdoSgltarNcFKSpUqDGZ4GSKUAmUCRlzO6GoiJJMtybAvuPjLIUpO3b0TMtaEaWJxeDXAd7Vx11C/Z72aUpSJKJc9frLCy6GNZJt1ezpe/PmB5waMsFdt7KeNpgWObTCPJYTfj4FCnhpomxJkgSgTtms4HkNKmUde0kzsPIqoV+0TXcbx4c5/QbuhAIYPeoGBvP2MSlYSBxfKix8Kc+4HXkGVZJ2ACNEg/dq7a2dnh5s2bBEHw1KTDdd9v/fhJ6rh58GTmxzGoeNKS91iLVRQFv/7rv86NGzf4v/6v/+t7sg2f1ndXga8tZW3bZGneYzzRNpFClqSZzr0IPAMTgygpyUuJaRgkmSDPNZ2wLCWmaTEY5fT6OZ5rcWqtQn+Ys9dNtd2zpX8DklTQ7Wn66cKcBr9CKHZu77Hx366T2QFmInG29qgblnYvqoTaTrZRBQPyowH50RBZlKiywAwCqs/rjvv01gNK08RbWYAZGHIqIcVwjBn62KE/44YXyExqW1PXRk5jDNtkcu02+dEAu1bBm29Txql+bDDErlWY3ryPXa/iry7S/rHXcVp1ks09sEyC9SXSnQNAOw0VgxH50YDx1ZsYto23NI9VC7U96flTeEtzTO9u6C5wnCKLUmtKQk9TZQKXypXz2I0a6f6RXszNNRFRRHTrPsUMYIRn1vHm24xvPWBy7SZiNCY8u47p+8z91I+CZSGTBLtWm4m/wa5VsHxPi5vzEm9xTjfNSknl8lk6P/EjNF/TidYiSfV+si2saoXq5XNULp1FCYExy9epXAS7XqH3u98g3d1DYeK06virS1i1KkoIBl9/izLWwYblcILluZTTng5IdGxtY9vX9rd5f4Q5jfDm22BbuI0a/uqSdi+6+wjTdckPeogsI1hfOaFviTQjur/B4FvvUH/lyszJ6fF90zAMqhfOMHn3DsXhADEcI8YRMkl1KKGh3b0ock2zazewamAkGaZtYVUqVC6covbCBb394ykyz/U5lGba8rah1y2GqbnD2f4RwfoSxSgiPzzSlKZj4bqUyKLEX2gh0wLTMimGY2SaU7lyjmI4wnAtTRFAYvku5so8eX9I0T0ifrhJbTYNqFw6B4bB8FvvkuzsE6wvET/YZHr7Af7qIq3Pv/rUJE4WJdNbDxCTKcHyPLWLp7GqFWSa0f2vv0dx2GOU5IjRGHd5Hsu2Z+dCihWGmLaNTHNNeUszZK6TyUUUU4ynhGdXKUYjnGYdy/dw59rYzRoizTFsi+JgTLrbxWnWT8BCb1QwPxewuhTSPUo56ueUpaC2FNBqOCwvB1w6V6NWs5n8bkGaCkzbYK7lUas4GKZBtWIRehZBaLO7l7Kzn9I91CDm7oMJWaZwHJNW06YSOLQaDqVQnF7zSDLJYJgz1/ZYWvj+MQI+BRnfRT3ZxTx2j/oomoRhGPT7fe7cucOZM2c4f/78J6ZHjSYl23sJvm9w2C8oCsXSgstgVHB/I8dA8ZxdIoRkYydhe0cvHItC34s+iO7zXraQBhhP51r8IJZST38X0wDTst5jbfvd6zkMAxbnPapVC9P6KEtfXU9OSRwL0gLSXCF8RXFYsL2Xcf5MhcsXXK7fjiiykuID3lfNgIqQ+vsZhn5OkioO+zmuY5FnJm+9GxH4BS8/X6FasahVteAUoBSKJJfUqzYouHUvxvdMSqGdpwaDgnbL1VMtw0QKWF1yufsg4sFmQq1q4bsGnjLJU0nmKxwXiMGxLVoNm72DnOFIC8m2dlN291OKUjLf9rlyMaRasTXQjiyu3Zxqgbpv0hsUHPVzLl+osL7y0Tc9y7LodDp0OppuUJblCejY2Njg+vXrVCqVp9LInyXI8oOP4fvpXe+t94KO6XT6kVbVn9YfXdWqNgvzPhubEWsrITt7CUUpKQqJbYFCkeYKDIEfWviW1jn5noXnGERTwUtXfM6sV4iiElEqwtCm2XCoVCwebcbs7CdYpsFoWtLvZ4zGBa+8qCdZpVDcvjfm0dc2MPox3pkO2WDM/kFOox0yJww8G7Asku0Dsv0jRJzMxqcWxWCMLQTlaDoT1mbYa4s6AbuiXX+KyURTdjwHqxLidJqoNCcfjDBdG6fdQiHB1J1lVRS68+rYZAdd8v4AJQ1EIRBRQtrtEd19xOTWfZqfe4l0+4Dq5fNaQ5DlZDd7ZIeDmWBZd+Wt0KfojyiUpPbSFQCcRo3qxdMknqNByPICMk21U5NpYjeqFIMR1QunkWXJ4X/9KunuIVn3CJFkVJ+7gL80B4Z2hqo/fwF/dRExjam/dJnw3DrTexsEywvkh30Njp4SAytMx6F6+SxL/5+f0dpC38NbmsMKA9L9Q0bfvq6nCIahX7+yQPXyObyFDsZ7HB7rz1+kMuvmizjVyda2Rfc/fYnhm3cIz65i+x5WEDC9dhtVSk3RqgbYnSYIRbC6SHpwhEgz/KV5wjPrOI0qdquOadukuwf4a0tE9x/hLy0Qnl1/ahss38OpVcn3jygGIx0CON9mcv0OWbcHCgzHpv7yc0xv3kNmOcnmnl58myZgzOx7HQzH1pM0x9H6gizTIOPSWSxPT6VlXmDVa1CKE8G+FhBaGI6NSHNUUaAKPSGwKhU9nVYgywIr8PBPr2hqmRmRdft4S/OE507htBvED7YIz50muvOQdL+LSDMs35tNeMBuN6i/8hzVS2eRWc7oresYlonbblC9cAZ/dRElBMnGLsNvXWPupz6PMWsKJZu7JPtdZCl04GNdAxAr1A5mo7duUh4cckyBE2mKiGMsz9MA0/e0YH44PpnGUAqK8ZTJtdtYnkftyvkTAXreHzJ5V2uKEIJyPMWuhIRnVgGFGAxJ+hlgENk+Zak1knmhqemmaWDaOe1WwoUzFc6fqbK9m2AYBrWKgx9YVEObatUGqSeqm7sJjZpDmgnG44JJJHAsgzQr2d4p8IOcwdDm9HqVNBMYJqwtB1w4Wz0xsvh+1Kcg4xPWe+lRzwIwiqJgNBpRFAWvvfbayeLok9Y0KilLRZEr4ljSadsYGCx0HG70JIYCUUr2DlP2DlKStNTdcDUTE5fPIkH4wZ1efKeSCuT7sjO+exG540K9poP0fM8kzXRQzofVe9PLS6H/ODaYtiJJ9Ov1QlzfzB0Hio+y5J0BDClmgAO0S9UgoV6x6I9KHm6mSKm4fmfKdKoXRRgK07QwFOwfGnR7GfNtbX2LMlhb8dnezXBccD2T8VSfM5ZtYaiSPBMUuUGz4dBpu7pbe1TQqNnUqrrTZ5ja9nNjR9vr5oW+ed6+H/NwM+aLPzWHkoLe0KLaVCzO6WlDrQrDccHmTsrinPfU5ONZyrZt5ubmmJvTN/qiKE7sch88eEAURVSr1adAx7PaQwshPnZSeBzHhGH40U/8tP7I6uKZCmkq2O+mzHc89rsJuwf6OmnVHRQK17GIpiV5LpnreFRDmyQRGIa+39ZrDq2mS1FIDo60Lmeu7TGZai1blOiLt9VweeFKDccyuXp9xMKcx9ZOTM1XGA0XO7BwYgM8SSRtBmaNueQQ07bJu0dYvotMU5SUyJn+xwoC8qO+XgrZNmbgn2gMZJqhCoHbbuj7umFguQ7SMHBEBafdohxPMByPYjBEJTne8gJFf6RFvI92MCwLq+pTDsZYtRBTSIrRhOzabcrhGP/UKkoUKClxW3XSnQPie48wKyFgkB31CVaXZha7JnlviDq7rnUL9aoW2c63KYdj7RrUqKKKkvxwgLfYofWFV7ECHzGNKKMElCJYmyVOz6qcRHgri9SunCe6v4XTrON2Wqjrd/EWOtj1qqY4TaaYYTATCCfYlYDalQvUnnusvRBZTu+rf8jhf/kqyc4+dhhiN2taczCekB/0aH7hFS1aHoxBKexGTYMT3yM8swboac7R734NwzIJz66iSoFZr1F97jzp9j7T2w8wB2OcZh2vWcddmAPLJOsPKTZ3cVsNfUyKXDuroGYL4FNM3r2Lv/C0exLooEPTdbA8l6I3xGk1kEVBsr3P8Fvv4jRrmLaN4dqYtk3RH2IGHt7iHPlghOG7iJntMA0TkWTYngeiRCQJlbPr+ljOyrAsrUk5uzabUOTaUrheoRxPtQ7V1ARlt1HD8hzt6jSeIqYx2BaNly5ROX9aC9IdG399GX9xjmI81c4oBlrbEoaYga+bXfWqnnwpcOdb2JWAycaODvpLc7BMyiieUewa+GuLpDsHZN3eCQUu2dzR2WHTGHeu/dR+1GnwW5RRhBhHiMkEu1rFW13EsC2SzX1M0ySb2Ug77Qam65BNIyzPRUQxk3dvU7l0Vu/bwwHj63eQWY5dr2I6FsVowvT+Bt3/8nsgLZx3dsgnLqNIIU2LtLlIbFaRCspCUUhJHJfs7qcEvsWLVxpEiSBJBO2mQ6XqaLq2hKUFTbeyZu6Rtx9MAd0MTVOJEIo8F7iORa3m8NrLDc6fqRL4FrWq/X3XD34KMj5BSSnJ8/yZpxcAw+GQq1evopRibW3tuwYYAJZlaI5nUuI4Wrg4HOYcDQqtt5BwfyOmN8iIYjHjvD9e8f6wAoxnr48vIk8TuPMgwXbBxCDwYRp9wDsbYDl6ilHOwM4x4DAN8DyDslCkupnBcFxioMgySfERwYKWbkIBJ00eXNdAKcgLgzRXWBY8eBTjegbjsWA4LsgyRRCaLMxZZIXk7qOIKNK2tOOJ1hRsbJuMJiVlKWlUHeKsZP9Ag1XfN/B9LTxrNWyG41JnalRtHBu+fW2MZehUUtOAuw8jhIB206bddLXzzk7Kt6+NuHzOIC+s9wX81So2R4OcOBEfG2S8txzHYWFh4UTrlGUZg8GA4XDI3bt3SdOUWq32VBr5k3SoJ+uYCvlxKooilpeXv6vv8Gl9bysMbV59ocHBgs/WTsx4UnBqJWTtsy0ebMbcvD2hVrNwbJM0lViGIskEvmcy1w6Jk5IsF4SBzVzHozfMGQxzKqGJQufHrCwFTOOSc6cqnF7XLoEHhynfeqfP8kKAX6+QlVp7YTgWWAZVVxJ5DZrlGLW3hxQCO/Q1naQsNQ0ojtt2oQABAABJREFUzTFGE+yKj0xz3PkOMk6xqyFOvUIyjbFbNZxWg2I4wlucw5tvaUG1aWL4LuXWlOoLFxBZQfpom2z/EKWUXnSaJs5ci6I/QpYlojsAQ9uBYplYtSpuq050d0OH25kW5XiK4boYlolIclCQHw0xA5/GZ55DDMcUowluq44SWoth1SvaUnY8RUmJ02rQfO4C4ekVrQUA6q88x+Brb2u7Xn9GeZSSfDjGcGyC1Zl+wtALfAAz9BFJSuX8aZx6lXT/cNZxNwkvnUHlpRarz0oJwejNaxz9ztcohmNqz19ARDHZQY/4/gb+yhLOfJPJ/UcEi/OgNJXYMAz8lQUan33pJG066/bI9rpUzp/Gne8wvXWfbO9QN10sE6saYHgu9c++gOm45PtHRA83kXGKWdGOeVIIsoMj0r0ulYtnaf3Iy1j1mraJHU5QZYFh60mszAvyQz0JcOoVlJT0vvJN9v7tfyXdO0CmGWI8xVnsoPoZYpqAYeA2auT9IeluF5kXmKGPSnOy7T2wtDhbJil2o0bj9RdwWo/1ZFYlwPQcTNfGcAIN5h5uIcsCd66F3awhRQVKgZx5wpf9ETgW3voSlq2pUKbrsPDFH8eqVhi/fZPo3iaYBsVgQrKzj9OqU39Fa0yUlBgzgDT89rtMrt0BCeNrd0j39jEdF29pjuj+JvGjbdxOm+rls7NzbYK/vKBprKUAdDI7JqiyJJuZHhTjCWWcoEqFXa3itht4y4ugpA7vCzzKyRSVF7jtBlgm8cauBm22g91uEG/vkfWGKCC6+5D8cIDbrGOYJtJz9STvwil6X/o69lybztoZ7j+U9COYs3PSgyO8JnheBctU2KY5C0CWXLsx4vR6SLvpkAUW7ZZODw9Dm0ZNG7z4noXvmTzYjOgeplimodeHSulwPs/SDIyKzWhc0mq6uM539/v6rPUpyPgYdUyPOnaPehaAoZTi0aNH3Lt3jwsXLhDH8fcMObYajo6pH+ZkuRb2HB5lSAmthkWvX5KkgqJQGCiSVGn60DM5KP2wA4z31rNNORQQp0AKpqEX89ql63EmhmXptG+lIH8CMBzTnQwgSxVSacraMRCZxrrrcOwqdazlkB9wvEyTkzwNpWAykSRpiigN9rsZcaIoCoVtGVSrFrZlkKPIU8n+fqZtGwudRr65nWBaGqQUucRyDNJMMhiVCKE4vWZSqdhMpyWtuk2SKRbmPGoVm8lUEiclh/2cwVA7kQW+QbViIoQWwFqWTjD1XE3devAopswVe12DW3ennFoLaNZ1R6UUCssyT0RocSI4OMzoD0pc12BhzmW+434iJwzP81haWmJpSXfn0jQ9mXTcvHmTPM+p1+tPgY5jYHE8yfg4dTw5+bR+sMrzLE6thdSqOl272XTxXAvLtNjdS0gSQYLOq0kzwdlTFc7NJiCbOwllIUgwGE8K8lxy1M8YTQpkCY2GQ55neJ7JYJhjGAbtpkutanP9VsHSnI8518GsVlGjMVa9hl2tUEYR0q+hgnnY358Fyml7WqdWw6lXKKcx2e4BYjrFburFn1UJsBs1prceILMCLAOzEiC7PcQ4gvkWlmOR5Tn5o4FujLkuxdEAmeWITFv0yqLAcBzygx6mozvfssz1ItoAcdjXi88wxGhUGX3rXUzPw2nWcdotiskEw0qxawGWH8yAgYESApmkCN9jdPUm8YNNzMDD7bS0BaxpEZxZo/bCxad+F2vPXUCWgnR7n/jhDt5cEwU49Srh+dO47aYOgjNNyjih/7VvM739kMmNexTDMcHpFbxOC5lkiCwj29zFrFZO7HpBA4PJrQca6HSapNsHj6dElsnk5l2Mu7aeTvwf/8tJV18WJenOAfLrbzH3U1/QouooQZU6W8Kbb2NXAvKjAfHOPobr4M93KOOE4devAlpPgRRY9RpGlGiQ5zoYtoUZhli1EHe+gyoLqhfOILKMvDdCHTMnbBt/dVGHFe4dcvjfv0H3P/4O5TTR4uOiJN7axR5PaH3hM5iOjd2qke12md64T344ANPEbTVQpdZNyCzDDAL8pTZI7VQl0gJ/ZR4zCCj7Q9z5DtG9LUzPxl3qgGmQ7WtgZDo2piVx2i2MaYSME8o4wTBMxGCMtEzygyOq/9tPU3vpMqbj4M23dYL6YEQxnpD1BtReungibgdmU3ZF63Mv4y7O48y3EVmGXa1Sff4C9syUQJYl+eEREymxa5UTeYpMUsooYXz1xgxYHCLihKzb19Mgy0KlOSLNEFJijarIUmh606kVnHaTwe99S7tiKYhuP6SMEtxWneDUCuG5UxSHfZLdA/b+zX9EGQp/dYl8MCLZ3sMwTVpfeJUyzSiGE8oko5JLgiMHO22yXVbJhKI26NFYC4lmjk+gKfFKKW7endBpOZw/U6XddBFSO+NJCStLAVIq7m9GbO3ElCU0287J9VSWWq87nhRUQ23mkmbiU5Dxg1afhB6V5znvvPMOURTxuc99jmazya1btz40jO/jbxQEvslkKnjwKGYyFSzMOSwvehwdZfT6irKQesyWKh2k95EA4/3p3R+5EXx/xm2m8cEL7D+a+mjQIWdCbtPQFKcTBy6hw/k+IO8O0HusmL3OcwzKUs0AgyIr9HsY6GmI7r88fdyU4n3HMisAQ+HYkiSVTKYSKSHwDeJEkpdKa3BynUQOCsOcaVly8H0D24ThpKResan6JoeDEiUVewc5jbqN55tME0HoWxz2CnzP5Nxpn+3dmG43x3UNwgCEkAwGkiiVZJkONRNlyNpKQJJoR6puXzAYm3z72oRH2ykvXK6yvurTHxQsLXpUKxZxIrh2c8JgWOD7FmKst+XsaZ8LZ777vAzf91leXmZ5eRmlFEmSnGg6dnd3KcuSRqNBq9XCNM2PPcmI45ha7f02oJ/WD0YVpfacL3LF9u6Uo15GGNjYtonnWvi+SVEqgsDi1t3JbBoo+c+/26VWtalWbFzHpBLaKAx6/Yw0KWm3Qhp1F6UUO/sJR0cJa7UCRiOigxKuzGNfvEBx/QYqS/E6dU0P2t5BtaF68TTl1RinVsXptKhcPKWNI9KM+OEW8b0t/OVFglPLlNMp6c0uhmNTOX8amaRku3dxOk29qNzrIuJMh70VJdXLZ3EXOxRD7e1vNaoU3T5G4FOOJpSzzAORppoiaVk6l2MGsGVRUH/hOfL+WAu2bRtsE3+hgzvfppzGJA93kGlG1hvgVCsow2B09QbDb9+gevEU4dk17GPL3NGE8ds3NXg4/XjKYFgWzVefx7Rtur/1JexqFcOxMH3t4FSmGfnBEbIsmLx7B6TEadQI1peYXLvL4GtvYTeqeAsdVKnD0VzLYnLjrgZGDb1vZD7ruA/HpAdHmK6LORNQW65DOY00+Or2TkCG6dgEp5aJH26fWKcalr6ZHlvXW2GA3Shhex/b97Rdr2FAKcGxsFB4ywuUwwmGpcMIDc/BqYSINCd5uE3+wiVEFNN47TlkVug8lNn+saohOA7DN6+R7XaZ3HqAGEf4K/PIUjsVWb5PdnDI+OoNlv73P4NMUqxKBX99merz54nvbWqr3EqI06yRHhyRH/SwazUq59dRhSDZ2Ca68wB/bYnw/Dr+Qofg1Ar5wRHlaILXbmHXKsgoxapXie5t6ARyISHwNPUt1UDPrumpTHjulBacA06rcTItcdpN0s09ysEEVeowRFkUlKMJTqNG5cJplJQEq4sEq0vILDsBGKCBlzs/R7q7j2EuYjfrlJMp/T94i2z3AAwTK/CZ3npA3h9g12r4qwuoNMOqVwBFOZrq6chCB9Nx9KTC9wnPn0LmBSKKyXvaGMFuNbTY3/fIyhKrVsEMPESUggKlJHajjmmZlElGvHmbYjgCy6KyMM9cKPHlIffLkq7TwTQEoSPBcZAzP30hFY5lUA1tXrxSB2VwZj2kWtH7r1q1aTUcdvdT3rw2ICsUrmvO1gZKJ3rPaFbdw5SyVPp+9T3LMfvo+hRkfEQ9S/bFB1Wv1+Odd96h2WzyxhtvnAhOLcuiLD+CD4MOjjo80m5QpglzHY+5tvtUh/fazTG9fs7CnMv2bsJBmjEYgu+bNOoOjqsYTUuKUq9Gj8PjPhxo/GBNL/7HAYwPqg8GHVJZmkeZw+x3k0xqYCA+4kKWCrJcaetaVy/2heDERlPIx2YhTx6zD8rzsAydPJ6mJtNYYhr69UWhSFNmAT6P6VUAptROWUUJcSKZWZqT5pJq1aHdskliHQ5YFIqFOZtGzQEUrbZNxbfY2E7Y3M6RSp+zUSIoS00rKAqQUqcop8UUqTQtrCwVvmOwughB6LNzkPP2O2PKUnL+THgCIPYOMgajkqVFT//wo8/7rd2MxTmPeu17d/syDIMwDAnDkJUVnSgbx/HJpKPf7yOE4OrVqyeWubVa7TveC6bT6aeajB/gsi2DNBXs7ScUpaJSsVlc9Dk40A4SWSEZ9DNGY4tqaFGvOlSXbR5uROx1Ey6fr2FUbOpVh3bDZTjKKCWEgXUipAzyKaNv32Rz2MNUPnvdBo3RLuGpZbzXXqXY3oH+AKPRIHRCWqc96PexqxWqL5zHX148WZABeHNtTNPE6bTw2g3iOw+xmg0qZ1axqiHCUARn1lBZhrM0R7i2TJkkTK7eIh+Oqb/yHOnmLu5cixyF6A0xKwEmirI/Ri+0xlihj+G6KJTOh3AdrGqow/OadYIzq9ihj7s4R7Z/iNOo6+TqSYTMM7LDPvlhn+rzFxi+eY3Jt29g1SqIacLwW9fwVxYJz67p4MDJlPjhFsGplfddT7XnL1Ac9Tn4r783W5BrT3BlaC6906xjV0LcThMAp1lDlZLe732TcjjGnevgLc0TrC7hzndIt3YZv3OL9o9/FpEVWJ7mtMabe9p16YnuTT6aYFom3mKV7LCPLEsNqtBuSpbvke5qkOF2mlj1il4QN+soKYnubSDGUyqXzpB//SooReXSaURWEN15QHbQQyYJ4fnTmt40irADH9NzSbb2Gb75Lu0f/QytH/0M6fY+42t3NH2tGlKOI0Zv3UAJiRJSd+NDT2dzgNaMVENcyyS6v0X/D75N8zPPYdo25XhCsLZE/dXnyY507kjRHyJmmoPa8xfo/PhnNTiYRshCaOpZb0R4ehW300TOgv7ULBlcZplOaE9TRt96V4f7ObbWDdmOzsfIcrL9Q/q//yatH3kFf3ke8wn3P7sa4szp6VN2oAGs3agTnl0jWFtGCYEqBUVviLfYIev2KIZjnGaNx41ORTGaEJ5dx1voMPjG26Q7+9RffR6n1WD47XeReQ5C6fDE7QOcegWnGuKvLqNQZAc93Lk2pu9ih4EODFxbJHm0ixF4ZFt7WI0qqhBkBz0M29JBip5L/aUrjK/fxmnVtQmI7+M0qqR7XeJH29hBMNP8VPFyE9NXXJgmmNmQTs3EaBocKpf5jtZ4LS5oXcpcy2V1ucJRP2MaC65cfNpydq7taL2MY1Lkpc70KRXTaamNVQILY+YKGSeCnf2EWtX+vmVjPFmfgozvUMd2lMeg4FkAhpSS+/fv8+jRIy5fvsz6+vpTr/mwxO8nKy8kN25P2DtIsS0DqWB7L+XMesjFc9qxYe8gpdfXPu7fujqie5QgpU5u3D/MQeUkCSRJiWMZmGjqzvceYHz/Jhk/2PXkvpKAIknBwNLOXeaz5XOI2W63Z6DAtsF1NAUrTp5OEH/aTljXscrGMME+plDJx5+dvMdx6wRgoEFHUYBhaZF8Uej3ATnLD4CirnAdk2pFczqvXKywu5fRaTjcvDvl6vUJ01hgGtq1Ko6f3t4iV0ghyQupgwNtCyEke92CaWSwsliw2HEopaJZd3j1hcc3z6NeThiYmIaBEIrxtCBOJKNRwXAcfE9BxnvLMAwqlQqVSoW1tTV2d3fZ2dmh3W4zGAx49OgRhmE8ldFRqVSeutajKPp0kvEDXLWqTZzqydqxdkJbzRr0+xl37o+RGFw66+G4Ju2mS+BbpKlkOMzYP8w4H9qUQrJ/mJOliqIs2N6NSVNBfDjCePdtrHTK2GoQtCsIK+D2w5jTo/t0Xj6P/9nXifoT8lHBlec6nF/zGL19U9NXopj4wdZMl+DpRX6SE55bp/rSFdxaFafVwAx88t4AJSTBuVO0vvAaZRQzffcOdqNG7fmLBCtLOkH7cEDW7eG2G5iOg/RczMBDSYXpO5SJgYh1V1rmOSiJUgp/eQ7DtrErepFkGCZ2vUb9+Yv0ekOdxVAJ9JSg1UBJRTmZkm7uYU8j/LVFai9ewnQdxDQmuvsIVZRUr5zHadTJjwa62x88nXMjophiotPJvXYTmeVgmJiBR94bItKM6qWzJ89XQqKKgsZnXiDd7WKY2qwhH4x0WvRck3R7n2IwwqoGqKJEmSbp5g52q4EdBnp6IyXqsE+R5TitBunWHsOvv427OIc738FpVMEykTMBnV2rUrlwmtGb1zWtRkqK/hCnVaccR7gLHfJuDzGJNe06ySj6QyoXz+IvdJBCUA4n2LUq5TTGroZ4823aP/E53FZDJ1TPtYkfbZP3R2T9IU67Qe35i2z/n/9OaxB6A5RhYnkOZayDAe1KSOFPSTd3Kc+uUX3hEvmRBoAYOoSPZg2nXsWZb2MHPrIUjN66TnbQQ+QFTqOKMk3yrX2qV84BeppzDOwAZOEjk0OCc6cY/uE1nWkRuJiWgxF4FN0j8smUvD9i65///4huP6B66RydP/kFDXi7R4zeuaX3UZphVQJQYPoewalVrNAnebhN9aXLyCTR+6TdZHr3IelOF9N1tDZHKrz5DpULWlweb+xguDbR/Q0dTui4OpPDMlGFwLRtghmIMSyL+MEmYjSe2QUvY8woXv7iPJbnET/axgp93GYDJaUOR8xSTN/FaTURSUo5SUg2dnXYoxySH9hk/eHMztYmaDUxDYNmINgZmtQbDuFuAqmF49mIWGFJg1rFpt10mE4Fcx19XVQrNpOJpjtVwse/f55nsb4WEk0F02Q6s8OV2JZJ4Jl4vsVkWrC44HPuTIUHjyLmOy7zne9PrtST9SnI+JA6nl48i3XlcaVpytWrV8nznC984QsfuMD4MJBRFJLeICdJ9d/buwlryz62rT93Mi25dmuCbRucXgs46ucc9lJ+/xt9Do6y2YJRoVSJ7+cYhiJNFUUJlqmwzA8Lj/u49Kj31g/UuOF/UB0Hyul/GYgnwMFH71chYGZIo/nRAsRsuiFTvfD3XQ048uIxUDQMrf8oS/34s7CHjsMETVMDi1KCb4Oy9JEUJYxzuPcwwrRM2k0Lz9UCs2kk2NxOKQtFlmmR+nAsKHJN6vogRyzbBss2MJQGPnlSMo0EniuR0qQ3KOmPSubmHDzX5PgyK0rJOCoZjwVpJtndS9nr5qSZIEkkea74s396nkbdZjAsyYvjgEtFkkpcx6DTcmnUvze3OCklruuyvr7O+vo6Ukqm0ymDwYBer8f9+/dPcjwmkwlhGDKdTqlUKp/o8/7u3/27/Nt/+2+5desWQRDwxhtv8Ku/+qtcvnz55DlKKf7W3/pb/JN/8k8YDAZ8/vOf5x/+w3/ICy+8cPKcLMv4pV/6Jf71v/7XJEnCT//0T/OP/tE/Ym1t7bveJ/+zVxRrQXe1ajMYZniuhWEa1CsWaWZj2SZVz2Ku49GouwS+yWisrZlt2+Kwl+kuY8dnEpUszDs82kq4dWfK6prA39wg7A2IG4uAwcV5h9aCzZ1deHBUMH5nl5qqUakHXHyhzflzVWzLwG3Vteh0ElFOY5BSC2BNi/DCOuHZU4SnljWF5/QqMs8p4wQxjSl6I83XX5qncuU8rS+8Su25C/S/9hYYINMcMZlit+r4q8tYFR+ZFSRbe5i+h98fkR31tWBVCQzHxp9v60yBOCW4oLvu3lzzJJzVqgRawD5bdGW9AWKaEKwtIfMCt9PCCv2TrrVVrWA4NunOPt7yAuaH8UqBeGOXrNuj+ZkXUGVJGSUYtoVdCen/wbfJD/uIODkJC5RZhohTimlEfthDpRmmZ6MO+0R3HuItzWPXK0zvPCLrHjG9/ZDpgw3KOAHHwbRtTM/QwmXTPAl7M2yLfDSlnEQkm7uamiYE1SvnT7a19uIlkJLp3Q2SRztk+0coIbHrVdpfeIXp7YeYgYdMMorxhHRzF295XqdhS4lVCQnOrJHtd7UFbquB6TyenATrywTry5RRjPot/UOQbO3qhW6eowqBFDkInUfh1GvafnaWSaQAf2WB8MzaLKV7hCoFVjXEsCzG126R7Oxj7B8xzUtErvU6mAaGaVFMpjS2958CdSc1+1FyG3W8xTnsZg2VF6Ag2zsg7w+xqlWUWaAKQTGYcPTlbxDd39Dg7OpNyokGY8ZwrAMeKz7lYMTo6o0ZHa9D9fwpkt0u0Z0NKhdOYder5EcDykmk3cpaDcrxmGB9hXISEd1+gCpKHebnuog40voZlE6RLwR2vYbp2MSbe/pcqlYI1pepv3iJZGuPwdevUrl4ivD0OmUUk+52ybq9E4qc4dgEK8sU/QHJox3cVgOrGmDaNlYlRM0E/aZjg+9TjMYUgyGOMPFoELs1mnnMMFwlt0KSJAdf0W55TCNBq6nzLZ7Yze9r6xqGwfpSSJkrVlYCvvatI/YPMkzHQCjIC0UY2CzNeRz1C/qDjLyQfOH1Novz/vctiA8+BRnvqyfpUR/HParb7XLt2jUWFhZ4/fXXP9Qa84NARpII3r094aiXA7C5E1OWSnfOAni0mbC5HdMflvQHGS89V2c0Kvj2OyMO+5l2F3IMhFTkGUyj44W/3m4hH1N3nrZU/cGiR/2wlGFY75kYPbtVrjzOwZCcoEIDsB0TqeSJXsMwn3augvdPqY6zmU5ONwM897Fg/GTrjuld4jFFLUnBsiX9IbSbBo5rcvZUgO9aM/qey/1HMb5noJRBFKn30duU0lqRVmhgYJKliiyXpJnENBSOBY5jctjPSFLJ3lrGXjenEpjcuR/T6+vk8WkkGY0LWk2ddOq5JvuHGf/1S0ecPRUwngrSVPJwK6YUitVFf8aZT7l8vsLy4vvTx5XSCc3GzA3rI4+LlE8Jv03TpF6vU6/XOX36NFLKkzTy3/iN3+Af/+N/jBCCX//1X+fw8JA/9af+FGfOnPnIzzmuL3/5y/zcz/0cn/vc5yjLkl/+5V/mi1/8Ijdu3DgBLr/2a7/G3//7f59//s//OZcuXeJv/+2/zZ/+03+a27dvnzQ4fuEXfoH/8B/+A//m3/wbOp0Ov/iLv8if+3N/jjfffPNjC9l/2CovJGFgs7ZscevehF4v1hxox6BWtem0XCoVbVfre3pfGYZBnknyQuDYWk+VpIIsFUwjqR9zDMo4x+4fYlRrhIFNVmhHwno55sWmojsxWCbh1KJg6bn2icuaUorscIAqBf7aIna9iohnHO9Z+JcSgvDMGnm3z/Tuw5kdrIUV+ighie4+Its/xKpWTug93nyb6Y17BKdXyLs9sEzsqj6PVEWh8pzm+ouMb94n5BxuvUr0aJuiP9SZGkVJcP4Udr1Gfjig+bmXMTyP/pe/QX40IDi9Rnx/g+j+BjIv8BbmNHWqyInub+IvL+C0miccetPzUOWIYjDCtC2dku0/fZ0qKYkfbmEFHvGDLdK9LjLNwDQfT0uimHwwIQgfh8KV4ynZXlcL0+daIATFYEQ5jZne2UApSbp7SOXiadyVBfI/fAeZpKRRqrfHMjFcZzbVMDGUwg4D7bJlmiBKRt9+l8osFyF6uEW2f4hhWfhrS8yfXWd89SZKlFqk3tETmHT/SC+el3y97cOxzqaoSkSSYNg243dvQymRWU45iemvLeGvLGBXQkzHwV1oo/ICmRcU/SHZ/iHBqRWiu4+0NqIstaB/muo0c8vU9LcLp8A0sWsV3LkWsiioXjmn7WWTlHIckTzcpoxinFYDy3dxlzoYGKiiIOn2kXnO+Opt/JVF7OrTNNBiOMZp1ZFSnkxhVFYg85x4cwen08JpNcgP+ziNCv7aIpMbdzn87d8n3dP5FG6nhRhNMbT/MmIUoaQk3dijcv70LBCyAYbBtFEl6/a0ZfET25IdHOG12/iri0xu3ifdPiA4s4pbrcymDDEyyyijRIvhA590Z5909wCk0sfdsvDnO8iiJNntUo7GDL95jfxohLvQITiziogTvPk5DTRsE2e+xejtG2T9EbUXLmo9zyRCjCfIWZAjhnZ4y3a7WtPhunSmOxgxKLuKeO5lxkKLuW3bpBJYtNseK0s+zuw3ahqVtBsuvv/+e/fSos/ufkKr5fLGZzs83IoxTXNG/dULBYV2nHIdg4PDjLfeHXJmvcKVC7VPE7//KOqTiLullNy+fZvt7W1eeOEFVlZWvuPzPwhkPNqK6R5lLM17WJZBnJRsbCVsbCcUheDuwwjbNimlZDQuuXlnwu5BytZ+Sl6omcDYwHiGaLhPAcZ7SikMWWAohbScY77Qd/me733g2fM5jt2iSgGyeJxpMho/PmcUPJNw6/i9jkvOQvwsS+swTEN/XcPQn/Hk6WOYMxesXDKNBVu7Cc9dCOn2M5bmXcpSkpclSupFemwKDPGer640oElToT9TGDg22LbBJBbkGdjjFKUkvmuR5oLf/tIRUVpiGiYrC9pJamd/zCTSlrbzHYtOyyUvJW9fHxMnkhevVHi4GXNwqDtvRSZpNW0s0+DRdsLnXm1wetWnWtG3u+G4YGsnZTAqME2DhY7LqVX/A2/cJ0fsI9ylTNOk2WzSbDb5lV/5Ff7m3/ybXLp0iVOnTvHP/tk/42d/9mf5O3/n7/A3/sbf+OgDB/zn//yfn/r3P/tn/4yFhQXefPNN/sSf+BMopfgH/+Af8Mu//Mv8hb/wFwD4F//iX7C4uMhv/MZv8LM/+7OMRiP+6T/9p/zLf/kv+Zmf+RkA/tW/+lesr6/zO7/zO/yZP/NnnmlbfljLsY2ZEUFOGNjUzzjasUUp4kg7pTmOeMrAwfdN3cwpJAp9Lk1jwWRasrufaGe/poNjFjQrBm41QHk2xVEf8XDCsG/g2CZmZuN4U+aNK4RmQXR/FxEnlFFMdPsBjddf1BSX4VTbnxomItHiKrtWwVuax/Rc4ruPCC+exvIf0x7seoVkc1fTbhra3cxfWcBdaGtrzeV54nsbmK6DYTsUR33spu5AB6MJVhDgtOtULp8j3T0g3drHCjydAzDXwmnWMRwbhMCdb5EPxmR3H5E+3ALDxFvq4M63dEJ0KiFOtTPWzgHmmbWnuvN5b4C/OE94bv19v7WqLBFxQvxwW4eZVbXYFiHJewPK0VTrArL88Ytsm3w0JusPsH2f7KBHKgWW7+vAv/GUbOeI/LBHsL6M6drYvodamKMYDGfhbi2wbUzfwQ1DptfvkOweILJCN+mkwLBs/LUl9v+f32Zy8x4iSjEMhd2s03j9RdpvvEZxNNRuUY6tMyGW5ogf7mAu6Mcql89i+T7FaEI5jjBcG6deIzi/hkgzTN+l+1tfQQlB9bzu2rtzLcKza6iiJN3ew27UCM+tk2zuUgxH2PWqBlrTmGRzF4SeVKTdPuprb+EttAnXV4kebdH9L783S/8uycdT4o1dnFYNJSVWqzFbT4Dh6OvCbTUoJxPizV3qzz/OGimnEeUkxl9bYvzuHYr+kGI4xq5VKQZjyighnGsj4wTTMnHaTYrBSNv3Bh7pXpfa5XOaateskXd7WGFA5eIpDCA9OCI4u45dr5Js7VGOJti1CtGDLYrRVE/+0BoLMwhovv4CdjUk7w20PiYrSKeHRHcekezs6XO3FKQ7XarPncdtNxm9cwslBE69Rv3FS1itBtM7D4nvbVDGKRjo88NgBtaqqLJEpgWG65Js7mpqo2uTH/WxbBurGuKtLurpSK3K9NZ9wtVFzIreNpUVhPWAsKZIMVn6s2cIzp7i/sMpj7ZjVpYCGvXHeqzpLAB0ddn/QC3FXNvl/Nkq9x9OmUYC2zJpNlziROdbVasOC3MehmGQZZKFeZdW0+XRVkSr4bCy9P1J/f4UZMzqeHpx7If/LNOLKIq4elVb0r3xxhvPRI14L8jIc0m3l59YfQI0Gw4HRzk7+wlxLAg8Cz+wKAtJJTTZ2kvpD3JkqYPc8kKHn8HHyb74IQQYUswECbMwCma8oA87lmVBJRtSyUaUlsvIayLsUHN8vpvN+MhnfGfQUYonHvoeV5JpJ6xKoDU6UoDtQCqe1nsYzKYaEuJIcGQW3Lg7RZawtZsiheLgMCMvSkRpfKBz2fE/pxHYtsB1DSzTIPBNprG2AjZzgW3BwCi4fnvKXMtlGpVUQou9gwzHMShLvbhTSk9L9g9zskzQH5Qc9nKu3dSuU826TZoJtvdTHm0rqqFFu+UQeiajUcGLV2oYBly/rW/C9aqtrf82EqJY8NJzNWz7g8+Vj2thW6lUKIqCX/qlX+K5554jiiKyJyPpP2aNRiMA2m0dJPXw4UP29/f54he/ePIcz/P4yZ/8Sf7gD/6An/3Zn+XNN9+kKIqnnrOyssKLL77IH/zBH/yxBxmmCdt7MQ83YqpVff+tVWxaTZfFBY+7jyZMp6VuXgtNOfFci2rFZmcvxrVNhFCEgUmr6bJ7kCCVnkynStESNmIYIVRMM+1j+TaqWsetODj9lHwcc/TlbzK99QCV6yCyrNsnerBB49XnqL14mbw/1JMHKQnWl7Cfv4DhOIgkRYkSq15BjCNMW9ufAnryYZpYnqttbdHJxq0vfIbBN95G7nX1dOD+JrIUOM0a7nwbWQgW/tyfwuu0SLf3yLo9nFaD+T/9YxrUmCbjG3eJ7m3MRLglk2u3KQZDkAp3ro27PA9FSdEf631sWSAEpmdj+i559wgMA9OxSfYOacy3aXz2Jfy1pfcdH8NxEHFCurlH5dJZ7QI1mpIPxxqAJCnlZEqy28VbmccwDMZXb5LudSkOBwjPI+sPdTDcsqaFHQek2c06k+taSO0tzeEtz1GOIrK9Q5yWFm4n2/s4dZ3AHZ47DaKknMQoZVAOJ+z/x9+lck5T15wzayipyA579L/yh8g0o3LxLNHth4hS4LRqhBfOaNH3rQdgWfgrS2S7Xdz5Nv7aEqooCdaWdOgfCpnlWIGrdSNS4q0tUvSGjN6+iSwKsqMBtaV57EpI87UX6H31W+RHQ5R23NCBiYtzND7zHDLOMD1HH/MoRZQlludiuQ6m5+KfWoFMB/mpopzpLQykFIjxFMOx8ObmcBo1rbMJPAzH0a5YrkPl/Lqmh2UF4eXzlKOx1p0MhpTDMVng4TYb2K0G7mJHJ2FbFna1QjGacMKTxcDptMgPBxjKwJ1vIZIMMRzR+9LXSXe6KDVzRClLpFSIopiJxGs6N+zeBslul2yvi7e6QO8rf6hNCZIMpxLgdlqgIN3r6ulNf6j3mxQ41QoYJpN3bpPuHiDyDJlmlNMILEuHLPoeTkubH0R3HmIY6HyWyzMamVJIUZLv7GN2XeovX8Gq+KSbu8i8wD+lk9llUaKKkmI0xjMM5ipQW/Bpt1xqNYedvYQ4LrFsk7KQuJ7JlYtVlhd9PfHMJVKB52jLd8MwOH+mQrPuUKnavPn2AFB02i5KwXxHA4yi1D/0rYae0FqWye5ByvKi/30J5vtjDzI+SfYFwO7uLtevX2dtbY3Lly8/k2ZDCB2+lmaPV3NyZntnPtFBbzVclucLHm3GCCXxbAvbNui0XVDaMcA0wLS0IPZJx6CP2AJ+6MCFnLXPlV7l2rLELyJKwyb1arP2vfX0hEJJvGxCM+pST4cUlsMkaBEWMarMKCybzK3weF89wV36INCihH7KE4tQYzYVeLbj8vFDAT9uWdZscmFogbhjGxiWgQVME/k+QfmTzliqhEpgYlsm+/2cnb2UOC61DqjUCaXf6Xuq2fuVhSDK1Iwjqv/f8VFJEsnDzYSy1PkEhmVQrVgUucRA0RuUDK2Cw36O55lUAxvPM6iEBtt7KUrBaFRwNCiIopIgsIhTiTUusR2DyVSwvZfiuiajUUmtapGkAss0aDdtDns5/WHBwpz7gd/h44KMsizJsuyEtnQsIv8kpZTir//1v86P//iP8+KLLwKwv69dZBYXF5967uLiIhsbGyfPcV2XVqv1vuccv/6Pax31Mr7+Zo+NLR3IN5oWuLbJkW3SPcqohBbrKwF7+xl/+O0BlapN4Nu4rkmWlViWDqbU6fYlUkKz4ZJmguGoQEjFjmqxPrhLYdpktRDL1SJkURQYgx5hJ2R68z6qKGl9/hXtWFQJyA4OiR5ug2lRu3IOdW4dmeWaBpOkgEKVJaoUNF55juzgiPyoD+hzxfRcqhdOg6ldb47Lm28z9ye/QHT7Ienakg73Ow7Z6zQJVhZwOi0Mw8Bp1TEfbZPc3yTd3CPdO6SciVcr509hug7JzgGG42IHPpOtR9r20zC1mMw0KEcTZJrhNBuU44jC9XDaDcQ0xrAswgunWPqL/y/CUx8y/VcKJUEZBjLPiDf3KA77OhjQ98gHY2ReopQg3TskuvOQZHMPy/epvnCRYjDSfP3xFBGn+OvL2gmpLEk398i6RxiOTXh2nXIwwl9ZANPAadQQ0xiZ5+QHPdx17Wwk0xwrDLQ+47BPur2P1+lgVatgmlo7t7xAZplMrmnRvcwyJl+7o7UpCx3cVp3Wj34Gd6GNXauRHRzqvI5rtzEdm/ywj1WvYtg2MsvwFuaQWU7eH6KSDH9pnnT3QIuWfZ9s/wi306Ry8QxYJr2vvknRG2B3WliOTf3VK1BK3EYd/9SypoXtdSkGYxb+15/CdHWnvBiMKPojlGkSP9gg2zuknET6c/MCqxIi4gT3sy/TeOEC4fnT2iCgEuAvL5Bs71Hc26T6wgVMz2F6+yEoiUhT8tEEw9DHzF9bwqlWSbcPMD1XBwa2G6gnGjCGZZ28VilNiROPMq19WFs6mYTJ2TRHCUnS7RLf39DWvaF26IrubyJBn7ujMeV4SmkYWJUK7nKHSjWknMZYtSqVhQ5yEtH6wmew61VG375OMRjhL80RrC4Rb2xj+x5WxacYRToU0rbxVhZ06KJl4TYbWrvXaSCiBH8RyiTVU73JFH99GW95kXIwQs1+YA3bJjy1jBmGlJFO9XUdkxcu11lZ8jnq5TNap8V8x6MSWmxux1y/M2FzO0KUilbL4/lLNS6drxEGWkP2RsulWbd5uJmQZWIGQiBOSqJIsLjgUavqYx8GWhRelpoq+r2uP9Yg45ge9eabb3L69Gna7fZHAoyyLLl58ybdbpdXXnnlJE34o2pnL+H67QnbuxOODiVH4z1sy8D3TKJEIqTi/OlA256ZUK+7nF7zNec3l6zMewSB7u4WpSKJBZ5jMnpmw+MfMoAhSpA6rdqUJa7IsUSOCVgiQ7p1vCKmsFzdkZ8J6BEFlXxCc7pPK+4yF+3jFTEP5l4kcmukXhVPKIIiJnJrFJaPoUqU5QAzIcRsSIJgxkmSGKrAz1IcKSgdD+G4ZKZ2qvl49WFTjuMP/WRVCdCvV4AhyQrF4pxDnivSTPKdMhqlhGlcsrmb0D3MiRNJnDxL5srTlReKUmqr3pMydXK9EAohFP2BtriqVmwqHZujOCcrFVEkkApsS2Ka0DNzOm2XXr8kTgVSKvrDElFqHZXv6XBDzzWZRpKFjkl/WGAYiqNBzv4hjKc5/UE560Zb+L5Fu+l84DRDCIHrfjAA+aCaTqcAnxhYPFl/7a/9Nd555x2++tWvvu//vY9iMrPZ/k71LM/5Ya44Edy4M2b3IMM0jZOE7jwXFIVgGiscG6oVl1bLQUo9nRiOdDBWo+Zw9lSFSmjTarkoqd3gTAvu3JviuTpbYuotkIsene49MrNFXLpYB4fE+4cEhoElbPI8xalXkWWJ5WrnG7teRUlFutvFm2uTD4Zke4fINCMfjAnPrVMMJ9otqRrir71IMRhrvYJh4DR1wF90b1Mv2NDHPNncJbrzkOywD0Ji+A5OpY6/PI/TqGE3te1mOZnS//1vk+7sYzdqmK5Dur3P6E2tQ1CzCz/bP8Kq+ATnTzO585D8qI9hKAxLT1VEmmPXa4g0JTvo6o756iIyLygHY9z5zgml5XgfHLsLyTRHKYnMMtxOk95X39Q0lDDAME3AwO00cNst5DQGAwzHpvXGq0xu3NegS8w0lb6HgaEzDHYOkEk6W1wbiCg+WfQV/aF2lRJaE6HyEmwLpxLojrVj48+E6jLPsKshxXhMsrNP5ewax/d6u1plfP8Gh7/1Fdo/8Vman3uJvD+iHIyxfJ+5n/kxgtXHzYH40TYySXHaM3crz2P07Xe1OxFgei6qP9SZHoA7p/NIqhfPaKrSOEIWQ5xqhearz5HuH5If9jE9D5SB027gLy9gVULyNNOBg0IhJhHWXGu2zSF2rYK/PE/RG1BMJuRHWp/izncQea41Mb/3LWqXztB49fmT7ZdFQf/338Rp1zFNk8r505iuS7q9jz9NNRDIM5xOk+D0inb8Mk1EFCOloPXiJVRezOxoNfVJKZ1Um+0fgZRIKamdP6VDZIcTZJLo9/E99v6/vwWmSe35C1iui8hyssM+8cY2xXCC5dh4S/Mz8KK0nmU4we+0cNtN/KU5/NVlRm9eQ4pSZ3tkOcV4QnhunTJOCNZXsKrBCS0u2z/EqQTYFZ0J4nRaZMkB2c4+lu8QntHnQzmNNLVvEuPOt2n/+Gsa9EYJGGgKYKNG8mjnKatqyzKYa3vMtbVOqRSKfj/jW+8M+PY7A4pCUa/amJbBzl7Mzm7M/kHKj31+7sSa9sqFOr5nc/X6iNEoBxShb7G+GrC8+FjsLYTCMo3vm53tH1uQcTy9kFKSpillWX7kD+9kMuHtt9/GdV3eeOMNguDZOGx3H075b18+YpqUDAc5W7uKG/f38H2LubZLveoQBCZFIVmYcylKHcDy+dfbPNpMODhK2D/U3bXBKGc4yklTQZYrbPv9wWzv+ab8T0OPmtGdTFliiRKUwDAshGEgbB8se2a9lGMpsChpTfawlCJ2awjDwhEpliwoZUYtnzDx2wjTJpMuWC5ekVCPDumMd/FUgTQs2tMu7ei/062t8LB9hX5tBVsWhPmEUeCiTGe2Alcn9k9OmeOWOZnlIkyHaj6lkfQwgDz3KC0T26kQuc2ZnZP1bPZP76tn13N8p0ozCAJIU0mhjVM4OMxJsvfb4n5QTaeSJEl0lsd3zFr54NJA5f274DgdvTAN8lyLsVsNk6IUHPUzdg5SDo8KbJuZQ4qe3OUFmKaBZRtEkWA0KclzORPFG4wm4LoWpmlw1Mto1iw8z6Q3KLj7MMZ1DA6PCoSUSKEpWKXo4djwI681sd5zw32v8PujKpp1pb7bxO+f//mf59//+3/PV77ylaccoY5Ty/f391leXj55vNvtnkw3lpaWyPOcwWDw1DSj2+3yxhtvfFfb9T9zHfUzBqOCLBfESUlRzgwVDBPP11C+WnXZ62acXg357KstorgkSQSGYTCJCu7cn5LmgtGowLENskKysRWTJCXzcz6ua+LYPj3jLNEkp5ZPmRttExtT/IU2CxcXsA92KYqMyfW7mNWQ6rlT2NUKzkKbdGMPkaSM3rqOzAvsRlWLUisBpmsx+INv4zS0CNvptPDm2099x3KstRzu7PH43gaDr7+NYZknAtzxWzcoDno4c22ql87iry5Sf/ky8cYO6e4B4dl1LWxFC2o1jaVPsrVH9cJpZJFj2NqRy3QdLbg+0kx+03UxKz7+6gLZbhcVVvDmdTAeBtjtBsnmDjv/57+j+dmXsGoVVCnID3pEG9uUgzE4FvlBn/TgkLzbw66GemFpmRimQTGJKccRqshJD3pIIUg2dsj7Q0ScYTiWDkhzXYrJlMm1O5rq0m5i1/XjpqOzGMrhGCMMUKMJyeY2ZiXU22Qo8sFIW+fGCdE0xvR9xFRbxFq+TzkcIeK5E4erchJRDMa4K4vY1Yq2TvU8/PUlRJQwvXEHf2nuBAA67Sb+6hJ2NcCuVsgHWhAu44TcNDFMUysuZx18raWxqT53jmRrH7saYlo2ODbuo22dti6VzjKpVvRUaaJF1Mo0dLCf555005kdL39lkaI/QhYl2cERwall7DBE5gXSgLDTQgrB4A+vMf/Fn9Bp8IAqBUoIrJlw37BMwjOreCuLhJfOYFd9hm/e0MnxUaItfoUg6/aoXjlP/eUriMmUya0HZPtd3bcrtFjfW+zgLs4jkwQRJ0T3HpEfDZGlBvzp1i7J5i7Nz72C29LbY1VCyuEEkebIaYxRqxA0GxhSUk61PiI7OCK3bGrLCygpkaLAWexQ9EYUR0Py3pBympAdHOF2WoSX1rAqASJOEWlKsneItzhP5fw6Ippi1ypYlbNgGMQPtlEz+qCYgcDay5eh0PcPt92E2b4DtFW0YeAtzn/w/aqXce/hlIdbEe/cGBPFgvk5F8c1adQcOi2P/jDj1v0xcx2P119pYhgGtm1y4WyVVsPBNLU5UKft4bqPf8fUjBlz6Xz1U+H396rem31hmiaWZZ2IvT/sNVtbW9y+fZszZ85w/vz5Z07/zXPJN98cEiWCuZbL4WFMmoFpKTxXL5iGoxzP85BSUqlou9DFOe3N/nAjZjAsmUxLHmzGxLEkikvSVD5lZ/bha74fcHBxrKEALcJWAlMJpGUjcLBkiYnCKhNyAkxREORThOVQmHq60Il2aE736deWacaH5JaHK3LcMsUsBVHQwLJKlMjoTLZZGG+xMNnBRBG5NSZeg2o+oZH2uXzwNrv5kInXorA9hOWQOiHSsPXNURnYssQrU+pJn6HfQRoFtXRAO+liKMXEa5CZHoujbRKnwiicox8saJCEMRtKfNLj8slAR15wYvMKGquVybN/ajGzyf1uAxLfC06kgLRQiHIWGCgli/MevWHO/c2U8aSgKLSOpBZaeK5BXugk01IoFudcBsOc9FCgAM81KEud12FbFuNpwZ37gp1uxnzbYXcvI4pLpNJpz55jnoQbjkcF/+33esy1XS6ee3oC8XHpUlEUEQTBJ3ZwUkrx8z//8/zmb/4mX/rSlzh79mnbyLNnz7K0tMRv//Zv85nPfAaAPM/58pe/zK/+6q8C8Prrr+M4Dr/927/NX/pLfwmAvb093n33XX7t137tE20XwFe+8hX+3t/7e7z55pvs7e3xm7/5m/z5P//nn9r2H2Rr3cGooCgEh0epvqaBasVBoSgLxXhS8GhzSp4r2g2X/cOUdsPFrpls7yaMxgWTqeaDD1ROUWiwnKSSat2hFBKRKGo1QYURRjnAEiW2KQmfv8iZi3N4hmC0vUU+mqCKkvHVW4jxFCsIsFt1vIUWg2++Q7rfpXr+tNZdBB61ly7pxOVuj2I01WLYzT38lYUTGkk5npJ1+9ReuYLTrCPihPG125iBhzffnlGLHmA5Lu6V8zozwbbIe30Of+f3kWmGv7J4AjBA508Ytonh6KlGsL6MXa0y2b5HtnNAmWSa3lSWuoNumZSTWHe/85zm51+i/WOvE9/bRJUlTqeFaZtkR0PS/SOmX/4m3nxLU4/yAme+RbbdJd7YIT84BAxU4Gth9lwb07aY3H6gdQdLc0Qb24jRFJnqjA+7WtELzTjB7bQ0r34wpvVjr2O6Nlm3hxm4GIaJKgqK0YT80RYKsGwH07KxQp+sN6TsT7CqFSzf1WJl39N5H1Gk7XELobMdwkBPoPYOZjkMpQaJM1qaEhIcm6I/pPr8xZMEcbtWwV9bIr77CEyL6O5D0s09FDonopxMNW2q0JOMYhxhmCa1Fy5h16rE9zYoRIrp2BSDMSov8ZbnNT1oND1p7Bimoadu7QaUAsN7ejIbrC+RHRxRHA0Q04h0p4vh2ti+j12v4sy1CNaXSDb2GF+9RfsnPjs7LywszyUfjvWkaXbeWK6NtdCh/RM/giwFlutSjCba0a/TwqqGVC6cwfI9nFoFM/CJH2ySbOwRnluj/cZnCE6vMnn3DtM7I+JHNylGE7z5zixvJWIymCDTnHyoNUAiiskHYya3H+jJnm0jsoxiOEJh6AV9nuNUq4CmYjlGSPJwFzPwMT1LZ5mkKTJJMMOAysUzJ/ktdq1CMRxhKjB8j+m9DeKNXco4xWk1CM6sozB0WrhloiyL+itXWPzfv8jk6k2SjV28lYUTQJZ1e0xu3seuhIxv3KEYTQjWlzA9l3S3y97tPd65l6A8nxwfA4P5jgsK9g5SDKBRd2nWXbpHKQ82Iy6dr1KvPZ6KdNoez12sc/fhVDewHT3JLktJr5/TqNssL33/8jL+WIGM92ZfHIfrmab5oSCjKAquX7/OYDDgtddeo9PpfKzPPOrnHA1yOi2HLJeMp/pzqhVrRv8wOBoWJKmkLGBlSXDlfJVmw+H2vSmWbfC5VxtsbCccHmVs7qZEiaacfOf13vdJOfy9KFHyfhqRAkNiSoUlSoQJlmGiDAuBxFYKW6S4RUKYT/GLKc2kRzvapxN3MWXBA/E8GBbVfEwk6hoMmCl+GeEXMaUTcOboXVrxIZYqkYbN1Guw3blAIxlQmg7SMJif7NOODhmECzSSHpHXILErZG6F3HLxywS/iHDKlJphYJUF7eSQ+ckOtiqpWSGlaVNaDpYU1NMeTa/LRvsy0rRQ5iyU4ntiIfpBeo7vPTXuo9LLP2kVpf5zrBWxLJOd/YThWLtJ1asmg6FOHZ9GJUpalEJR5IqjXs633h6RZLNOtKWBhWlqm9zxVLtHuY7JJCnZ2tJ89uNMGd/TYYFBYNGo28x1XEaTknduTFhZ8qmEj/fhsSHEs1YURe8L5/s49XM/93P8xm/8Bv/u3/07arXaiYai0WgQBJpW+Qu/8Av8yq/8ChcvXuTixYv8yq/8CmEY8pf/8l8+ee5f/at/lV/8xV+k0+nQbrf5pV/6JV566aUTt6lPUlEU8corr/BX/spf4S/+xb/4vv//g26taxowmpTEiWSh4zGe6CmF65kzsFAyGpfUqw6ua9I91LlFaSpOjmdeKkajnHrNplazkQpadZsgsJlMS8JixKmjLYJ0gt2UqO1dfFXQmLpYUwcVBtpWdTSm/txFlFRYYYDbaZJ1e1i1Knajjtdp4rR14J6/sog3C0Bz59rEm7tUr5wl72p9gFIKQ4FZ8am9coXGK1cATWsqhxOCs6uoWbcf08JpN/T+8F3ywx7Nz77E+OpNsv0e4cUzJ/tLFiUiionubWD6OufBadbBNJnevE/RH2MopaeCkwQRpxgYlEVOttclPH8KMwiI7j4i3TnAX1nUdrAzP/WiN8CphqT7R4jpBpbnk/eHFDMAZoUhqhTI2Z/s4AiRpNoZyYD4/gbZvk7PlqaJA7jtBv6F00QPNrVTk+No0fF8C8tzKScRdjVEJCnjqzd1ToZpYjfrqFJoOtfyPCLLKUuBXfGwgwDhOvirS5RxSnTrHmWcYnn+E/sqJ+8NUYYBeYHluVpoPCsxjYgfbhPdenACMgzDoHb5LNl+l/7vfRORZHinl8m2uxiGnnTYlYDxtTv4y/NMbz/AbTYYvfkuwelVWm/MKDhpTrC+yuitdxldvUU5nhKsL2FYM/A5jbSg2nfwOu0TUArHdsE7JNt7YFt4a0tYroMoSpx2i+rz5/Dm2mAYlNMpB//5K0QPtzCkQipJvn9EurNPvLpIsL6Cvzx/spAW04j5n36D6guXNCVNlLjtFoZtMb314OTcRSn81WU6P/l56q/odHKRZiTbe/9/9v4jyLIsve8Ef+dcfZ9+z3V4RHjoSJ1VhUoUsgB0kQC7CZpNG7tpxunFjBGbmQVXY1zQjDtwxSUXWHAzZsSmbRYzY9M2TXKaoKEhWEQVSmVlRqrQyrV4+up7zpnFee4ZUZlZmVkoBbA+s7QMd3/ivnfV9z/fX3Dw7/6EOs2Jzq0hpLS2wEpZgwPfgr/syS7lyQhVlOissIJ5NNINEIGP32zgdproLKeaztHznHzvCHlxA6cR0bhy/mybiUNm371FPZpSzebWXlkb6nligbNSVIfHuJ0WKskYP3wbJ/Bx+12C5QHuwtAgf7pP/+tfxm81aFzbQufFWX5KORyTb+/hRCH+xQ2q4zH5k31mt2JwHarJnAfjgDT36Ltj9nZyjLuKt7WC57okWc1wVNJqekhpJxdZVpPl6jmQAXD1UoO8UDzeTtk/0EShREpJr+tx40qLdvP5x/80678KkPFZ2RefNskYj8e8/fbbNBoN3nzzTYLg4377n1RKGQ6PC9JUMU9q652uoKoNdW3FbFmubHiezu2KhQOuJxhPKr7z1ggh4Ls/nCAwLA8C6hpWV0Ke7GbUtUE6i7Toj787duDv8AsFGjap6ZP/pmpcY4FG7bhgBAKDNDWeKvFUCaqkcEO0EHiqpBYejqlZmm0zmO2zMt+hXU7QwqWRjxFC0y6mJEGbRjFBS4e530EYQ6gKmsWEWucsz3aJdI4wmmnY47B5jtrx8FWBXxU0ioTcb9BND4nKhKPWBpnfopsekVcJRkBQF5RuyCzsI43CEYrcbXAUr9AsZ2jpUDkBid9mEg0QAtrJIc1yRumF1Nql8hY78KfaUJ3u89PX/NmIyH8WJQW0O4Juy+XwpEQg6HVcylIzEqXN9gDK0lqK1tpmfmgsYDgV2iMMZWmoazt1iQJwHEOSaPJi8XUvLHuzAloNQeDLs/yP0JdkhU2B/lGQ8UWa3/l8ThzHn/3AT6l/82/+DQDf+MY3nvv9v/23/5bf//3fB+Cf//N/TpZl/NN/+k/PJgZ//Md//FwI6L/+1/8a13X5x//4H59NDP7oj/7or9XI/97v/R6/93u/94l/+5tgrdvreEynFc2GgxCSpUHAdFaRF5p5UlEUhsCX9HvewqPeYfcg5cHjlFbDodnyQGt8X5LnmiIvKSqF7znU84qGq1g/ekSnrQiuXUQny6RHx9TawakL0vtPkHGIynP8QR8ZhZi8QJc2EdhfHljnowVFpp7MYTyjHk+pNmwT5/iuzc9pNmi/epPy4IQ6SW0DtmRXicvDE3Rekj7eQWtlLWOHY+rJDO+ZxtcJfKuB0Bp/qcf8zmPULEF2WuiqZv7BPbKdfRASlWYIKZnffUQ1GmOKEl2XgCDe3ECX1SK9O8Ntxpiyxl/qUQ/HjL75PZtMPZ7idTv4KwNMXlClOX6/TfrdW9bO+uImKrWcdVPa15aNCJPl6DQDpSinc/x+l7oqrVWr44DnIZRCzRLShzu47RbNa1sUxyNMWVsb3YNjWjeusPy7v4kIPKZvvQcI8p19C9A8H3wQoY+ezHDjGJPl1HObi8DccvrdOCQ8v049niIRVi9zPKQ4sBoCt93EX4QYPluyESN81+6Tqjrj4ftLfZo3rzL5/ns2Q6QsEb6DrhXRuTVk4DH69lugoXnzEtGVC5iqYvy9W0Qbq/Te/DJep7XIWTlh8tYHuJ0Wxak2YxHQ5/fbOM0Gna+8THFwTB2HuK0mxe4B4+++g9tt0bp5CV3WhBuri+TyiaVuHY9I7z9m/IN3md95xPy9OxbYOg5er40TR+Q7BxS7h4Tn12he3bIr/M0G3a++Sri+AlcuANaNqTwa0rhykWDNUs2k6+Iv9/E69vqV7ezz+N/8zwy/9Rbpw6cgBNVwgr/TJr503lIEtULEIbooSB4+xe91CJb6mKqiPB4ipYffayO0nSKFvTa6UiD2MVGMvzYgWF0mWO7ZIMfFOeRISePmZXRVUh2PENpYV7Q4RFc1MgwJL25QHgztzUtK6iShmqdUJxYge50WjZtXKMdTZu/eRWWWKubEITK2QvrWS9doXNs660eNMZz8+V9RHo9p/p3fIilD+h1D6AvcyQizO0J3QljuEwUO87QmzWocKZlOqwVd+/m+K0lrHj1NOBmV1o1LG1xHsnUx5uqlFu7PMIgP/isAGZ8n+8JxnOdsZY0xPHr0iLt373Lt2jW2trY+94rk0UnBt7475OHTnKrSSAfSVNGItU2/rAx5BVmhEFJTVVb5X5Yuk0lJteLzn/58CAjKUlFUmvfvzK092cWI+dzeBOGTaFK/JOLuU8cnFuR9o+wyM4skQCEASzuK8pl1+HJCGvmYUOV4qkALhyRoYowgrFOmUZ9mNubi6B5hmeGrEldVBMWIQJfMgi6tbEhczMiCJnGZWMGYdPDrkrXJI4I6X+i1JaUX8mDwEmnQop8eooVDGrQQEuJyTqua0ihnpGGLvGwgjWYw3qVdTEj9NpXrk6dHzPwWjq4p3Yjca6IdDy0cKiekcnyiKsExFcrx8HRFPJ+S+y0m0kE7nwBaleLMlkoYFtF7PyEY+fzUqudDGn++5bqWNZdnkAdmoTEyC1F6/ZzmyGAPLwH0Og5RKBlPKjzfQdUapYzNOtCWiiiloCgMlbLSGGdhDlYpO1BLEpv6HEeCJNH0ez6dpodSz38ZP4kmo9ls/sSTDPM5doYQgj/4gz/gD/7gDz71MWEY8od/+If84R/+4U+0HV+0fpbWukVRPGcDPJ1Of6JtHPR8GrHLPK2to4orWFkKSNOaJK3o9320UkSRi7swjBhPKqpao5Qk8KxNW7flMksUo3FJktbWPCByGVQTonxK0ekRHh9AWVN5EUs+RM2Q4mSEzDKaN64go5DqeEg1nuD02pTDMTov0LVG5zn1LLEiYSlRSUby4QNUktK8eRmjDdK3KdXBxgryZERxOGT0nbfJn+yhlcLxPYqjIdn2vqWD+J5ND3efAdBlhdtsIBYhd04ckm3vU0/nJI+2yR5tE53fwOu0mN26g3CscDffOUJVNU4Q4HXbuI2GbTp9FzWZ0bh+ieJoSLFzgOP7uI34bMVdzuZM9w7t9nuetRhNUoLVJTsxNOB127Z5P5kQrfWpHYnX7yAch3I2p56nC3chhRtHGGMwSlkHqTS1wuPVZQSCxktXSe49wW23iC9tEqwvkz7aoZ5n+Es9iv0jGlcvIqOA5PZjhDFke0cIz8VtRJTDiW1afd8KmDfXCM9vkD3dI1gZWCvSrCBYXcYd9EjvPMQshMbPCtHK4xEgSB9tM/7uLVovXLEBc9jzuXH1Iv5S7yyluhpPmb7zIdMfPiLfOyJY6SODgOp4hH/1Io3LXbJHO0xv3ab/9a/Y13Eder/+KtU0IXu8QzWaIDyPeH2Z+PoW9XCGyQvqWUL68CkyjqjHE4L1Zdqv3GDWiDn+k78Ex8UJPITvktx/jJAO6aMdtNJEl89DXlIdDfGWewhhtSPR1jmb4fF4D+E4LP03v0585eKZZshozfzOQ+bv3iF7ukc1Txdp5msMvvG1M4BRjqc8+Nf/ltG33yI4t0qoFPVogprOSZMElebU5zdwOy2cZoNi9wBXiDNdjNNpW6tbA+GFDerjkZ0ipBm6qPAHfXq//ir+Up+D//VPKHb3F9oSjakV/toSrVeuUx6coNKceGsDhKSaJmdAph7PyZ7u2tR0z6OuaurZjHqe4vW7GMfBKMXsvbsEgx7BxgqmUpQnI5KHdxAG2q9cf+7apJIMo61FbzGdo0yAu8is6i832DkckZxM8Zc6SOlQVYrd/Yy8NMxmJULAB3dnZLni8laTslC88/6E45OSbtdjcyOmqjXjScX2bk6/G7Cy9PkWz3/S+lsNMj5v9sWzk4yiKLh16xZJkvDGG2/Q7XY/9/vNk5q//N6I+w9Tel2PKPSYzmom05LJzOBK0NpYgyJpG8ksN4vf1RwcF+zsFxwcFXTaLkWpSdMag6WUTGYleWGeS3n+qH7BAGPhsmS71dNf2rQ3YRTCqIWxkUYKiaNqhFGL/2s8XSOEwVEljWKKNDVxOaMUHqUfsDp6wLXj91me7SKpqaRHWOfE5QwjJe1ihIeilg6dYkjuxQijMUaRBR1Wp49oVgm536RwY7T00dJBGE0WtBFG41cplfRoqwJpFJ30kJXZNvOgQzc5Yik5oHR8Mq+BwqFRTFDSZe63qV2fwo/IlGJ9+ohpNCAsEjQOnragaVZb95eonKKkJPObiEqhhIcQBi1djDE4Ri1Eei5GOhjx05p6fDro+EUAjFP2USuWZLnG9wVVqfEcSV5qhqOCvPw4mD5NMi9KQ1ZWYBYgwIUgcFDKkOWa0Ae1sMEUi2BC67ApEcJQK6vLUFqTFYZu2+Pa5QjPk8TR89/VT6LJ+Gk4S/1Nq5+lte6/+lf/in/5L//lX3sbo8jl5tUWeamZzSsm04paGcrS6nyWBy6ea2++w3FJp+WRZgopYDwrmaU1SVJTLwBtGErKSuI6gn7XwzwYUm/vYKaHFJ5BaUFH5HT9Em95A391YK1Hl3r4gx5F6CMcF7/Twm018c6tWlectYUl7ELs7LabOHFAvnNg06XXlglWl9B1zeSt90luPyC5/5T5B3ep5gl+r0vr5etEW+coDo6YfOcdWi9dQ/ie1RCEgbVmzQrCxWqqLkrcZsTs3bsYbRsiU9bookKGAeHFBdj44AGmqlBZjtuIaN64DMba1lajCbgOxdGJtZ8tSozSOM3YaiPSDFMrit2DM61DcTyyKdfzBH/heHRqe4oUFgB1mgjHQeUF1ckEleeATQ/HdS1lq6rQRYHnunaS7sgzJyPpOtSjKaPvvoMMAor9I8rjESbPqYYTkgdPwRhrzRoFOO0mFJV1V8pLO1U4b1e+dVVTz+as/He/xcY//gdM37vD9N07CK2pxhMm0zmzH7yLurxJdHEThHWRyh/v4XZbFHs14++8TfZ0l+YLV2m/fH3hXCjOGm1jbCq4cF28Xht34RpmjGb07R8yvXWH9ivX8fsdsid71C9NcTstQBCsLdO8eYXOazfRC1Mb4TgkD54y+u4Pmbzl4nasi5le5HAs/c7XqCczG3BoDOmdB7jtFkhhdQiBT71wXAqX+2RP9iy9TBtrlSxAIOi+8RrllQsYpWi9fP0sWR5gfuchJ3/xHYq9Q1RWAPb9kwePmb53lwu//49ovXCV4Te/x+St92hcvmC3s6wW54KgPLLuV3Hg0Xn1Jvn2HtlTCzbL4cQuIk1nhOdWUVlBcuehTaHvdRCBh4xCC2p+503KwyE4jgXgjoP0PLxuyxIx0oL44gYqL/FWlnECn1BKK6xXhpM/+0vKkyky9HG7LZxOC+n7gCFcWyZ98ATqivarN5Gn2VuuteGd33mImmeossbxP2rDrTXyAVWaUX3/HVTvJiMEsc7xlGHgCHbGhukox4sCptOaojQIY1gehLz6Ypu61vz5t4659cEEKQWTac31yw0cV6KUxhGwMgg4HpXcfzSn3/N/ptOMv5Ug4zT7oq7rT6RH/WidBuSdnJzwzjvv0O12efPNN/G8z+apTWc1w1FBrWA0KdnZy2i13IX3cE2a2VV9zxNEocP1SzG37yVUyifNFNUCMMwTzf3HCyWugXpY2gyCRR8osLSQT66fI8BQCtCgbX6BEWLRwWEnFlKeXSxPV3CMcACDoyqCKsMxCgF4dY6WHq7KUY5vNRJRH+V4dNIj1kf3cU3NMF5hdfKUjfkTPGVXMmvhIU1NZHK0AqnAOJJJtIxf21F7LT2mYZ92ekynmiIBr5wQlzNSL8ZVJXGV4poKv0pxFqtOYZmyND/AAc6P7tBNDu1KjVHUToBnKg5a5xlHffw6I5AuuRczCzpIVRMHA2ZRj2Y2JqoyCi9GqpqwmpEFHbrZkH52yF7nEtOwizSaRjFDSWcx1QmopQSjUEYsvj9YjDd+ijvzp+Nc9ZOUlLAIXiUttE0ErzRlLYgCgVq4UYGdPjzLLpOW7rygRNmMDtcVVjyuavLcAvmiAlNZkHGqKTEa6trg+4JQCjxPsroccPNqg5WBDwjWlgP63efP/V+BjC9WPwtr3X/xL/4F/+yf/bOzn6fTKefPn/+Jtu/alRajaYnjNDgZFuwd5IynFXWtUVqw0nW5cbXJ8bBkMq0ZDksOjguEgCAQlIWhqg3tlovnOUQRRJFDXhgulAc00jH++cu4rZBQwtryBuHeYyY/eB83DtHaWAei5T5O6NP/zS/TuHoRIQTpox1MVdF+4SrlcEJxcITXbVtaFcKKcrf3Wf7dr+NEIaPvvsPRf/omxdEJs3duU0/m+BvLqCRl+M3v0TweEqwuM/vwPpN3bxOdW6UaTTCtBvVkTrC2hL+6hFGK5P6ThXPRJYqDE4q9IzsZyAtUktugukohMLb5M4Z6PCF9uI30PFSSodPcNoMnY6TrWBvcZoSapaiyRI3GOHFMuLl2JqgtDk7wOi10VlBNZwjXsUJnYfn39WRGeH6D5o1LjH/wvhXwSoHftZMNm4ckcJSyCc1tQbCxSj2zDbMTBCz/ztcQns/sg7tMvvMOWimE7yGMRoa+TVyfzBcuQhmmqkFryuMx/lIXf2lA5ysv47Ub6EoRnVul/+aXGH/7LQ7/43/GYCz1ZmWZ9usvUGzvk9yzqdROEFAcnRBsrhGsDhAI4qsXqEZThn/2HZASr2U1XEYpC6ZmyVkgYHU8ojwZU+4fLyhKEpSmns8J11cRkU/7pasEG6u4nSb5k138fhcnCs+u5snDbYbf/J6dhH3lFaTvUh6NqafHpA+eUB4OaWydI7q0ydLf/Q0mP3yf6nhEcTCmnlhRtzfo0bhyAZS2jlKtGDWdwwJMlqMxxhiC5T7Z9gEqzc9AhsoL5u/dpdg/QiU5/nKXerpwCKs107fe53FWsPV/+31G33oL4bk4jRgQeO0map7ixBFup0mxd4SpauLz6xilCTesRa90JBhD8+oW4fl1kjsPyHYOKY9HuP0O4dqy1Ts1G3ZKdnCMt0hNlz/S75UHxxSHJyz/7tcZfONr9tx88NSG/C33OP4zYbM8BOiiRHgeXreJ1+3gLnWYfvdd/G7bCv8bznPXNq/bptg/phqOcdaWzs6B6a3b5Pt2giaOjnAfz9kWfTbWYtxGyGqZYDLJwXSFJwcldW1YC0OWlwNevNYiyzU7exl5oTkeFVSloiwNj3fmeFKSV5oocOj3fNZXAo4KxXhSnlnl/izqbx3I+Dz0qB8tKSUnJyc8efKEGzducP78+c8XyLefc/v+nCzXqNqws59xeFSwsRayf1QwmVo3iMmsJi9K4tih33JxpCAtbPPjCMsd1wZ0Zftyx7F88ec+1yduwc/RnnZB45Gqso2+lNTCI6hS/CphHC9bYYnReCpHSx/lWC9yuyygaKfHhKpAmoqwzBBG4avcNtHSZW10j8RvYaSHlpJGMaVZTonLOUvzHYI6ZxJ0mcV9lPRpFBP8pCJc2CS18zFKeORexNzvoByPdj5kffLouYQJB03pRUhjpw57rQt06xSpag7aF+j7+3gqWzwWuuXY0nSQlE5N7oSW42mE1V5EPXK/gXICKifksL15RqEqvJhKeijpUbkBjXxEIxvjYPDLOa7fxFEVzXxEVKfkbkTitSn9ALdecCydgNrxKdwAHO+jjI5Pqr/WofDskzUfHXU//eNLa0tXMkBVQo1l1DnSoFxhHTqEFWkruyBJFApqZSxdSmCTS41NLq9rje9DlmGnH+LUrer5960VSGkQUrI08Hj5RpOVpYClvofjSNZWfDae8RA/rZ9U+P1fW/0srXWDIPjcurjPquWlgCtbTT68O2OW1ISBw8aqNRUwygKIk1HF1oUGu/s5tbKjsGbDxfcdtKqoakOeK+ra3rg3VkKK4cQ201GEG7j0uz7djke37ZGXPZIHT6inU+KtC6jZnGLvgOjCBk5k03aNMWS7B9Zx6NwqbruFznObF4DBacR4nTbR1iaNa1uUJyMO/sOfUuwcUJ6MUVlpw83SAhMLhBSMv/+ebRA7DYq9I2sjqg3VeEbj0ibx1iZqOiMbTREIgpUlmte3qCYzK+IW4Laa1POU2a3bNlm5rChHU4QA2WqQPdlF+h7BxsrCqjTF7XYsqkcQb6wiAp+0GTF71wbVBcsDytEE4TrIwMdpNUEpiqMR0pHUJxl+v4sfR6g0xV/q2ZTv0QQ3jpFxaKlfjkSV1WJq4ViKjzLkuwfoNKfza6/Q+fKLRBc2EI5jxccvVGRPD8h29nDiEOG4lKMxuq4gAem76LzA7fds2vb6GuH60iKsr42uasLza8w+fMD4u++gqgq/0ybf3id78BQZhwRry4Tn1lBZgfQcGtcvWXev3SOcVszs7duoNKWaJpTHQ1b/h9/FH3StOP78OtV4iikq3G6L/OCYfHsP6fl4A6srqEcTyvGU4mhIPZ6iZwndX3vlzILWCQOCVdvA6rIkufuAcjgmPLeOKUvSJ7s2RK7XoWw1Se8/Woiv1/D7XZZ++w2bYP6Xb9ksKMdF+D7F7hEy9C2tZ7GgaOwqqPVvkQJd1dZq+BmHsvJoSPp0D5VagJHvWmviU3cqf6XP9N077P4//lfyvSMAqskEJwxxGhFet005miA915oApBn53iGNi+doXr1Acu+xzTHxfdxem/l7d/H6PaILmxS7BzRuXsYf9KzjWp4zu3UHXdfEWxtUJ2P8lSXEM9blIvBsGOPSR/lpVnsSUi2mcdKz+iyDQQjPUnTDkPJ4RL59wOz9exit8Ad9oovn8Lt2ShUs95m9e+fMMaxOMuYf3kf4HsHygGo4AmM41zUUleZgJuh1GjhNWAoFgTcn7G3QX4rZutAgDCRPd1JuP5ijlaUcz+YlZW2QGPLSEAWSjbWI6bxiOC7Z3c+IQ5drl5u/Ahmft57Nvvi8yd15nrO/v09d13zta197TjT542o2q/irH4w4GZUUhUYbQ54pDo5L8kIRRy6BLxlNKtJUU5Sa2bzm+KRkMhMkme1+Ttu401PRmIX50md/Wn6+0wtAVTTLCaUTUiNB12gMvipp5yckfhclJdIoXJWRG0VYpbimxtOKsM5Q0sUID+NUaOHh1gmV9OgnuyxlB6xkBwBMgj5NNWdlts0kGuDpinG0xGH7/II/Y8i9mMJvsjm+S1SlCAz97JA6t+ACbYjr+SdG2DlaEVUpjXLG+fE9tHCYB12iKqWTDT/2HIEFJw41RkhKN6R0PJKwRyF8BJqoSqgXFDEHw7CxhqMrJAaNoHIDXL9NEuU0yim97AQpJEq6RFWCr0u8usDRNanp0M4PcbQm9xpkXpNJ2KU0kXWnOk0wN2qxirc4lZUEqT/6+09cP/r8zxaRS/FFLG41tZa2SQGUAWpQApv2ejq0ObVplla7USnO/qb1R4emNnY6srDhx/Xs/09zPcACFfti0G46vPpCi/XVkNdfarG6Elhn4U8IJDo1jvhJNBn/tdUv0lr3i5TrCG5cbbG7n7OznxHHDtIRXNyMGQ5LHEdw7+H8jL8c+IJux8PzJHmh8VwH5X5kMhDHIDA0khNCatorHZbLY86vXMKLfOrpnPLwmKDfRfg+g99+g+LwmHzngHo8Y/Stt9BvvAqVwm01kNIhe7JLvnOAygtrP2rAiSOC5R7xFbsQNv7+u+SPd3GXeojhBLcZ4cQ2BDTfOaCezdFK4zYihFjHbURE59dwG7Fd9Y5DdFnjRAHtV2+S3H6I128DWOHq1YvkT/fwem2SB0/J9w5ptpr4ywOqWYKazXHDwIZ5Km0TtidzkCAcQT0rEK5DcTKm9eJV/OUB4eY64apNsqauady4RLi6hCprK/jeO8RpNXCahZ3bSkn3q68SXb5APZnSuH4JrTWmrKkmE7TSCEdYO1XPQQofEYVIz6PxpUus/R/+7hkFSWU5uijx+l2Se0/QRYXXbeH0OlSTKXqSop0Mr9dBOC5uM8brNHFbMaooUfMEf2VAtHWO5O5j6vHENtlZTjaeWfqZUqjtffzVJfxem3o6RRc2NTvfO0a4ElfViH4Xr9/D6bTIn+wx/M/fp/XKdRylSe8/pRpPqJOE/HhEsXuIykuE55NvHy6OCWlzL6oatxGRb+9T37xMsLZCvnfE5O0PibY2CfptyuMxyZ3Hdr8v98l3D3Ca8YLeA/5K3z5/Nid9ukOrGdkGWgirURj0ALPI11BWW5NZ+q8wlq6jy5pwfRnpuuQHJ1bE3W2fnXOmrtGJXbyrZ6nNPmk1z/I/XCGp2ynDv3rHam2Kgup4jNtr48YRXr9LFC2S3jObNt7+0ou0rl9GuM6ZpsJf6aPzgmo8tYBgNCG+epHWi9fOQIQMPLKHOxijady8yuR77zJ79za4Dm7gI1wLqMKNVYLFpAGwNrUXNjj4d39GPZktAIQFJ/VsTnk0RFe1FXdHwULjFFPsHVJPZ7ReuYnfbeH1u9ac4WhEtLFKcXhCPU8J1pbIt/cpxzPkPMNfG3A5nNBI5kxHgtoLaF46xzmRcW5D0N7qYIzhweOEnb18QR22xkJppihKRRS6YGwGVaUs6J/NayYzC3D+/FtHIATXLjXONGg/1WvtT/0VfwH1bPaFMeZzA4zDw0Nu3bpFFEW02+3PDTCUMvzg1oTb9+coZZgnNY4jaTUc4shhZ7+g19FEkeT4uKKsNVLYkKLZvGKefXxHnjZnPz7z4mwLcKRjV9d/StaiUi5kFT/65uaj5lIYjacKKuHgAtJoasenckM8pXB1hRE+wkBczhgsphC51yCq5gRVxk7vKsrx8KucfnJA6UakXpPzxey5ttY1NZUT4lPRzY5J/SYnrXU8VRCoAmk00lRMo2WG8SrnJg+feW5Fc5GO+mnVKCaM4mWE0QR1ccZCiqqEVjn+xOcUTsh27yrzsENQJThRFwBfF/hFySDZQ+EyD9sUToQnPZTr4VYZTl0i0QR1ijSKZjFmIz1hu3eVzG/g1zmu1gTVHFeXxNUMr8o5bp2n8CKiYkLX1GR+i3nQxQiNXCigtXAwukIgMI4LWv4M8OdnU6u+WIaGfbAxz8MXYyzN6UfLggVz5ikQ+NCIHUshFAatFlqlhaNUqSxgcB1jqVkeDPoeeW7wPMGg57O24nNxMzpzkfq0xNNTU4hfgQxb8/mce/funf388OFDfvjDH9Lv97lw4cIvzFr3i1aW2/Pn9Ve6gGA+rzg4KhiNSw4OC7JcsbuXUSlDI3ZY6gfMU4UxFWWl8UOHIICqVsSOJhrtE8/2aKsZstHHKabMfvAuwfoK9XRONZxa4bIryZ7sUE+mVKMJ1XRO+mgHEfps/p//B7xOi53/+f/L9NZtgrVlgkUSty5KyqMTyuGE/m9+1dp7Pt7GaUSYvEAEvl2BLypUllEnCSrL8fpd/IVdraqs7Vq4sYr0PTpvvIYbh2f0kfThU6pZSr57SDWe2cnBPKW694Ts6d6ieQoxdY3fa8OgSzVNMOIYigpVK7zlnnXRiULcdotqOCZ7tI3XbyOMIbqwQXxxk2o0Rm5t0v36Vyj3Dpl/eA+x1MPvd+j9+msI37NC9zSnefMy0dYmXqdFNZoye+8eZuH4o4sS6UiE7yI9jzrNceOQ3m98icaVrTOAoavaZoQ82iZ7uk++bcXJqihRaW61C4GPUfZaGp5bJbqwTuul6xSHJ7iNiN5v/Rq9N79ipwhHQ7xuh3x7H5VmBEt9hOdiMJRiRDUa48QB6ZMd6tEMb7mP32uhkhzWlgmWrI2rIwVuq4HXa1PsHdN+/Sbpg6fMPrxP+mSfOk2RoY+jjdWtJClCCKoss65HUWitXcOA9NEu4cYava+9zuy9O/j9DjIMcFpNovN2sqhKKxA+BRgAbiPCaUTguXbSEoQ4cUD2eJfo/Jp1mRpNz+jQTuij8tLSy8KAajqz1rXnNygOLKWreePyWeAgWICMsKCons6tgcAzNrrlaEyxe4BWtlPWRWlZDpOp1ShWFd76CmhNuL7C+f/L/8TSb71x9vzer7/O6LtvM/n+exRHx8zevYsTRzRvXiK+fP75KYW0xwtakz3aXgTiSdR0TlXVdlp46RyNG5dwG8+7BEYXNxGuxGk1UMcj6pMR+B5OFOAKafd7sEJ4Yf0sqDJYW6bYP7LnwWs3UUlK50sv4babpI92SO49pJ7PUfcSmxfmOhb0ZjlCSvrGsBFVdL726zQvdlAHOfdIyTLFeFxSlhrXFWhjtWWtpkOe24DnNFf0Ox7zVLG7n9NpeTQbLtNpRa/jUdeaD+9O0Vrz4vX2T2xW8mn1Nx5kaK2p6/oL0aO01ty+fZvt7W1eeuklqqri5OTkc7/nyahk76jA8yR1rVgeBAgB80SxvhpS15paKZLEMojakUuS1MwT9THXmh+tz86+sPQorT8PGPl8JReOO88BFrOgy+jFVhkwjsskGGCEwNUVtXRx6xxpFKUbLBrliqiY000PcDCM42Wick5UpfTmuzjadoKtckI3G2GAaTQgqJIzJw4DVE5ALzlAAD41ibQr/u38GK+u8ExtR7RIUjdG8/G19x9XveyYWdRl7nfxq8yuYqPppvs088knPmcUL5MEHYIyQbstwjpDpEdUjkezmNLNRwijmVcdlHAYR8sctzaIyilaumhVIYxBoilkQO3alSIJBHVOUM7J3AaBylmbPqZwG3i6JvWalkYVdJEo4mKKEVZQrhwfoe10RRtIgo49RDR/jcC/z1M/fz3Hs/EqxkBRaGptCDwr5C7Lj6iHrmOpItIxCA2OFHhSYnyr15jNa/YOS5QSHBwVtJouW+cjG3T0o++7uLb8SpNh63vf+x5/5+/8nbOfT3US/+Sf/BP+6I/+6BdmrftFK80UB4c5jiM4PC7ZO0gJfIeLmxGOI5lMK3b3c8azkkbkcv1Kk6d7OXmu8HxJMq9xHEEcwFVxyAoZ2VIXmXVprXZZWxtQ72yDUjhhSOPqReosox5PKY5O0EWF24hx2y3y3QOyB0/JHj4levMrCEciXRdTVhAG9rpYVZaO4VmNm85yMAKv06Q8HmPKCl3WdvpR2JwAXSuk49jmrqxoXNuimqckj7apjobkB8eEa0t4gz7R5hrlyYT57Xu4UYQMA9vcKUW+c0A1nCB9FzWbY8KQYH2FYG2FYmeP4uAIk+TENy4RX9ywQCfJrAYjzcl39mlcOk/na6+TP94m39vHjSMaNy7jBh7OhXWM0czev48pK+rxDBkGtF+7SevlG7hxiFnkFJha4TZCVFkSrm1RnIwWCdk5ulYIAZ0vvczy736d7NGOdZ0qK2Yf3CffPSDfOSB7vI3OSoQjwBEWZKQ5OA5u1CQ8t0qwtozbbiE9l3o2I3u8Q3BuFTWeWVOZ0cRSg8oSGYZnDbNA4DZisuGI8V+9jXBdokubVrMySzBGo8uK7NEu8bWLmLrGiUKClQHJ7Qec/Om3ccKQ5o3LFHsHJPce4bUbKFHYSY/RID0cKTBCWD3JPIF+x9r7noxo9juEq8t47QZLv/ubqHmCms+ZfnAfNZkj/Oevc1oZnGaD+NJ5ZODjL3VxWw1UURJf2GD2/j2qyQw3CqiLkrqo0GVpm2BH4gZt4q1N6vEUv9+l85VXiC+ee+49/KUe/tqAya07GKNwn7H4rucJ+dM96mmC22mdAQCV51RljtE2syx5tIMMfLpvvIoAsu19wnOrCGFBof+wT3r/KcL3reuXMai8JLn/mNYLV89yMOp5gj/oUg6njP7L94i2ztF64RLCtbqMejIjfbhN++UbZ45VZ9s6mRGfXydY7nPyze/b0D9tBYP1dG5tkIHO6y/iBB7FvtVUuZ0W+cER7r0IGQQMfvPXCDfXKHYP0apGvX8PleYEqwOcbovy4AThupiypDga4rdCelc2EEKQacPassuttOJ4XNLreJyMS5v34ztkhaJWGtcTpNOaqSMXRkjQ6/pUtQEB3b6P6zo0Y5edvZxzazHdzk83M+NvLMh4NvviVDD4eRBYkiS8/fbbALz55ps0Gg22t7d/bOL3j9Z0VhP6Dr5n7TNbzdOLiyHLFK+92GLnIGc0qZjOFHluffeLkkXT/pPU8/SonxrAEAuay6kxlFYfAYtnRcYL9yclHVxTL2hPENZ6AQpCgiqlmx7Snx+QuxHzsEfuNsgWoujEa9LNhzSLMYP0gE5yROX4Z68ptKJ2feZ+ZxG2d3z29q7RuKoiqnJcXaOFQBqIyjmtuvxCAAPA0yWbowcctTaYB13AsDLfZTDfXWR4PF8GwTTsoxCMGiuUTkjuxiRhF4wmqlJKxyOoC2rp49U53eyYWdhBSQ8jHOJqRlgm+HVG7jcZC0kvOaRyfHa7lzlZWcMxNY1iwl77Eo1ywtXDHzILBzztXaNyAmrHIygTXBTGGPw6JyrnFI5P7jVxdUEtwjNKGdJ5zkLxZ1c/B9Ah7JSiXoTEJ5m1qc3z50+qogTtGlyMpQkbcF1DkimiyIrri8pwdFQihaDTjpnNaz64O8f32nTaz18WT68NX2SFJ0kS+v3+X/8z/xLWN77xjR9rsfvLaK37o6WU4eHjlIePU8AwmpSMpxW+J5nOai5fjOn1fGplaDQcJtMKpeHqVgMMjKclzdgG7znzOZ5OmLf7TLWhvdxnxUzww2WCa1s2Odl17MrveGrvXXmJ1+uera76Sz1kGHDyF99B+r6lFZ1bI9/ZpzoZ2bC+KKR54xIyDMh2DvCX+qiysiYHBydkB8c4oY/wXPR0jqkt6FBliZglRJfOE6wMSB88IX+yh7/UpTy0FrPF0dBu4zzFGE3w0vLZCq7f71BN5wjfxWk17Aq40VTHI/KdA0xVoTOb8+HElq4Vb21ahsE0wWvG1EmGv9xHCrF4vqBx4zLhxjJgV5aDlSXy3UOCa1s0r18iOLeKqawLU/5kD60V9SxBZSnx1YtkT3ZtgrSUi9c0Z1OP9usvUOweYIy2YYSTKfnugXURcl3QBq/bpEoy1CzDiQKoFXoxDi2GE2QjIlhfYvzD90gfbOP1unZFTkryh0+Z331sJwy+TzWdo/xToTKUwwnVeI7KMlovXifeOkf2dA/lSNQ0xWhNnaSUx0OEkDSubyEch/TpHk4YEG1tUh4cU6cWLJYnY+okhcBHOoFdiY86qLK0OSeLHAwZhbbpBWQUUCe5ze1oNWm9epP57Yfk8wSnEZ1dmU1do9OMYG0Zr9VYAOItdJ5DpUgebFMcD+20qyzRaYbRBq/VwN1cZ/W//x3aL1/H77atpmB1CbQmfbRtXcWiALfbIr3/BAyodE72cAe33yFYWcKJQvK9A+pZsnh8CBj85SXKo2PK0YxqODqjry393m/TuHKRyXdvMf3hB/S/8et0X3uB9MFT0vtPab9yHSeOyLb3md66jdduUu4dk/g+7ZeuoeuafPcIfJfkg3sUB0fke0d4/Tbh5ro1IMgL+zkWtsjPTmR0liF8j+biGM+e7ILSNgSwKACJ3+vQfvkaThiQPNq2Vrh5QTWaIF++Qf83vkS0tYkQwrqGtZtkT3bRRYk/6NopnVL4q0vWxN6xi+f1dG73Q6U4d3WZ45OIO/fnBL6D5wiSVJGmiiSrmS2yf5SyU1thIAgd8kzR7fgEgUcjcnAkxLHLcFwynpa/AhnwcXH35wUYu7u7vPfee2xubnLjxo0zIeepu9TnLSnB9wXrKwF7BxnjSYXrCuaJYmMtoFaG7b2Co+OC2Vz/FChNPzv9hbaa7MUP6hkrWvlcvoVEE5apdWQqZoybKyjhUDkeWkiEqYiqKX5dMIkGVI5PUKfW2tUJ0I7PJF4mrmYIrTmO15F1Te145F4TDLhVSVgkdJIT4np+JugGCyba+YjK8S38EQK1gBat8pMnD59Vgco5N35ALa2mwtU/XgxjgNRvYwRkfgMtbMOfBp1FMJ/GNUNWZk8QBlxVIozmuLGOcgNcVTJI9/GrjMTvsJTs4hrNQes8hRvb56uS0gkpvIg0aNqsjXKO0JWdXCymH5WwYnLX2C66cnwqJ8BTNYgKJRbJ4kovFNU/b3vjT0oi/9Hff7ESWJF3FAiS1Hyi7e4p3XBhDHOmx5COdaMqK03gWdvRfs8K9eap4vx6yN5hweFx8Ykgw3GcLwwy/rbSpf421NFJwc5eitKWu6yBTtvH8wTTac2dB3MunItYX41IUof5vObwqGDrQoOLmzH+oWA6rZjOoS0y8lqiSsG1CwEvrl7Df3Kfcv8IEfjoskRNrHWr8LyzEL1TgGHqGikF8YV1iv1jZh/cw+91iS+sE24sU89Sq63IS8BQHA/JD06oZnPy7T3ynQPKwyH1aAytpuXazxPqqkL6HroocNaWCdeWSB4+IX+8i4hD1HZGdTIiurhJ49olZu/dpponeK0myd1HhGvLdppRK4RrE4Kl49hQt5U+1XBMeXiCqit0VeFEAcJ1yB7vofOS8MIGQgrCzTWic2t4K336v/FljNIkDx6T3X9Kvr2PEwWkT/fJHm1bPclyn/ThU8Y/eNdOIgDhSoSQzO88sDbg52zYW3L/sW3yhMCNI4KNVdb/0d+n88qNM6tfleVMfviBDZ3bPrBhep2WFWTblbWPGvNGhN/tUk1noDX5/jHF032k6yB9l/TeY9TSBNlsUB6dkO0c4i/3z5y5nHbTOgft7NnFjUaDYH2ZYGUJVZQ2qLCsKA9PcJox2dM9+m9+hejiOarhhOp4glgfkNx5iNOICdeWqGdzsu1du/+LEtGI8Ttt8Bz08QilFH4cIT0HnRc2nRpsMvuge+YV3nntBcrDE8r/938kfbiNWunDgoLlL/XpvPEKajInuf+E2Xt3KE7GzG/dtrbG3Rbh9cvEm2vUaUZ5PMaJfTpffpnN/9M/PLNoNVoz++AeyYcPLDA9ZSYMJyAF8YUNNv7h32f/P/wp8w/uo5IMb9BDpTlIB7/fsCGOShOuLxNf3CB5/JT88R7Nl67iD7q4YUB27wlgqOYJ6ZNdyt89IHlkKYjSc/D6Bm+ph9tpMb/7GF2VFCcjxALkqjRj/vYjkrsPka0mOi/Id48oDo5pXr9M780vW6OBJKOazPD73bNrhwgCTKWQnkvrhat4nTbJvcdU0zmm0ojAIdo6Z3U9QtB+8Rr1xU3q8YRqmrL8975OsDxA1zXzOw85/E/fpNg/sgDFdZGhTz1JqOcp7B0g/RC/30MGvqVXjiYEa0vEm6vc7MGT7ZSyNvi+pKwUWaooa21NTpzTO6KgNgZR2UXhdsu19GMN7aZHFFp95GcxbX6S+hsHMj5v9sWzVdc1H3zwAYeHh7z22musrKw89/dPS/z+tOp1fXxP0hg4XLvUZO8wx5GCpYHPylLAt743Ik0UvY5HURTkxWe/5mk9H4r2c3SP4pnEM61AGoQ2GKEBB6/KCOsct85QrrdoiCs8XWGkg1fXuFqReE0rdjaK3G/gqIrQaMJqTuY2mcbL9NMThNE8Wn6JsEqIyjkOiklrhXZ6wnKy97FpgmtqluY7TOIl5mEXYQSuyumlR3j6C3zBP1ICO9X47McZompO4VpRpRYucTWjlD5OPkQaK2zfPLlLqHIyr2ltdOe7GMdlGC7Ty4/wqxLXaOJ6TlRnjBqrzIIuSjrE+YQsbOKVuRWAq4q532ISDojLOWGVI7RCCEEpQ1xV4OiSJGhRuRFCgF9leGXFPGhhxDOnt1Y/Y/rUj6tPm3J8MfCsjX10mppP1X+cxRcuLguuA34AnaaHdGyWge9LAn/hFuIK8oUJQ+BLZsnHrwNfVPQNkKbp59Z4/ap+/rV3kDGd1USBizGQjSscCRJBp+1ycFRyMiz5tdf6zJKa/YMCxxGcjAqklPieBCHZXIv4UhTRm01YvRkx6Ll20ar/AsXRCcX+MbqsCM+v4zYbHP/v37KBcYumRZcl9TTBXx3gNpvU0dxy0UubwC2kpFpYxJq8BEeS3H1k9QPG0PnySzY9eTgmakVUxyN0ViAch2DRYMooBKVI7j22NKnRZJFB4RNdPEc5svakpq4RjkO8dY5qMrNTC8dB+B6dTov88a61Sw08ysMTioNjhOvieAFOFBKuDqzTjrYNty4rwrUlmi9cQZc10bk1wjU7ufAGHaTjMPnBe0ze3qY4GhFvbdJ94xW8RoNyPGP/3/8p1XBC+8svEm+uYSpFvneImiWURyd0vvY6wnNw203cXptwZYCulW3AAX8xtQk21wg2VhGeS3F4TPPmZcrjIcn9p8h+x7pKZaXN2zC26Q7PrxFurlJPUrxBBycKrYh60CHb3qc8HCKbsfXXqCviKxeojsfku/vkeweQ13gbS1BWuHGEcB3iC+cQQjB99w6mrHDikMbF87Reuop0XZKjIXoxFQrXV2wuxSzBjSPcMKJybZ6RqRXFyXCR5ZDhdVvIRmhv30LgD3pW9zBPCTfXGH3rLerJDBkFNK9f5sL/9X9i///zH0kf7eD3u8Rbm8TXLuKEAZk4IL58nmo8xV806dJzCTZWrXXywTHx5fMES31mC/emswwIYPbBfSbfvYXbaRJvnUNISbZzwPz2fYK1JcSVC8SXNzn3f/wHHP3ZX5HefYTKCwuOApsxUU8TgnNWMwQsaFUCgaA6nuC1W3gLjZHXaTP6/i0e/d//nziBT7SxQjWcWnqhUggpcKIAXVXkT/dIl3osfeNrHP/n76DzAq/dxF9dtpqnvLDUu9kcneWk959YqlOnRfuVGzbw0nUJ15dxGqGlj7UamLoCo3FajUUGyiHlcEJy/wmNyxcwRqPmKdP37uO2G8zev0exNKTY3Wf4ze+RbR+cZcOo2ZxSCJw4tvf5kwn+iouMAqrxjHz3kM6XXqL7xqs4YUDPM1y51OR4WDDo++wfZNx+MKcsNb7nWD0wAumA1AYBjMcF7abLoBcQRw4rywF6occNg59+j/A3BmR80eyL05rNZvzwhz/E932+/vWvE4bhxx4jpfxCIKPbdrm6FXP/cUq341GUmrxQdDseCkOa1YShQAh7MyoK/bnoTYtJ7CJs79MbsC/m4vM56/TjG41jNEJpHF2ipE/tuCjHozI10ii0AEdXOFohjbZWdhgyL6JRTHBVTe0ESK2QuqQQTaSqcB2FV+fU0sPRinnQYXn8iIbOkBiiOmUSDZhnx89RpU4rrlOC2Q6Z10RLiV/nBHX2U02O+HHVyU7w65xhYxVpNIUbIbUiLmc4piauE1oqo1WMqYsRlQyJiylL812mYY/a8YnLGc1iwn73EqUMFsGALrkbof0WmRsSCg8hBA4FyvWtIK3OkCg8bXm4le/jYnAW8xxfFTimpnBCG+onXZ6ju/0CwvY+vRyeP74/P7Wqrj/HRxHg+9ZpKg7tlHOeKpoNwfKqT1lCWdmk76o2hKFd6StLQzP++DZ80YwMsJOMOI4/+4G/qp97aW04GVpqQBw55KViPq+YJ4owdAgCC0KDwMFxBKvLIec3I9otj7I0ZFlN4HncuNrmK692aU6bDP98SNRzEafT8cAn2lwn2lwnufeEzldfIVhbZn77IbN3P6TwvIX41iVcXyI4t4ZKM/u89RVkHFIeDe0K+Z1HOI0Yt9+1q5tAuLFqE6jjEH/QJXu0jWxYoOD4PnplgBPbFe3swTblyQgZx9b5aVH1NKE4OCZYX6EajlFJhnAdypN13HaTYNClefMKAPP7Ni1b+i7+6mCxgJIgowiJwV8f4MaxXfGVkurYWn92v/oqRlnR8KnwWJclk++/R3r3EW6rgRPHuFGGKUqSe0/w+z0m33+H7OG2tb398AGmKK2b1GhKPU8RxpA/3rXC+NXls2avPJkgAo9s54B894D0wTbhwQmmLGm9eNVOOssS4bnku4e4UYjXaVmtg+NQ7B7g9du0X7hGfnC0ECpa21q/30G4HkI6VKMJjRev2qTv4yHl3hH1PEVnJY7r4Z0fWLH0PKUcTfCXegjHITq/gakV6cOneI0G0dYGGKwN7WiCE/k4YbBouMFpRPZ79j28dpO6rHA8H5WkmLpaOBh1KXYPqKKI9usvAJA8eIJRivmdh0jPw4lD9HBM+mCb6OIG53//HzH/8AH53hFGq7NwyHhrkyIM6H7lZarxjHo0te9VlLjtBtVwQhGHZxoIU5Yf5XqkGcntB7jt5nMr/9Voit/vYYqKfO/QNvZLfZrXLlEPJ2Tb+zZnQkgUttt1Gh/pIHRWLEL4hoSb6xhtmN99iKkU1cRSqby+db9y+x2k7zO9ddsC1NdvEi8PUFlO0WnhLw8Yf/8Wxe4hzWtbJPceo/MSJwqQYUCwPGB660OO/+yviDZWkFFIfnBCefQtGte36P7aK3i9Ds0XrjJ9630bsLi9bymKeYFOU0tnfLJrqYd1TZ1kJB/cx4lC4kubZI93OPz3f2YnmEFA4+pFnDiiTguyx1ZP4vXb+Ms9VFbQuHrhLMxy6e/+Bu3XX8Q5PT4cwZWLDeZJzQe3p3i+RBj7eymhEUkcR1CWhjwHhGGeKpJU8eKNgIubDTodn+GoXACPj2sS/7r1NwJk/CTZF8YYnj59yu3bt9na2uLKlSuf6nPvOM4XoksJIbh4PqbX9ZnMarQ2CAnN2OHeo5Q//t+P7DbX2upFJPBJzk0/UvosmuDHr/D+dAGGeobNYl9YGL1oVD3MgjZVuwE5Bi0c/DqjVUzw65xudkQtfcbREkp6rE8es9+5zKixbMGKMZRuQOGGNOqERjlDCk3tugR1SsPkSKNxTI1rwFMlmdf4RJAB4BhF8yekR/11q1VOWZlvMwt7eLogUDmuqsm9BmE+xdcWhIFt732d45c5lBOW0/3nVC5Z1uawtUHixUyDNpkXUzkBICl8iVQVhCG+soJwV1e08hG530QjUNIlqDMMAr8qmMVLKByU41E/F963OPgQH/m9wkdq/1+K+vx6js9z6BvzERipKkOzISlKQ14o9g9KXE8Sh4IP783pdwPWV32OhyVhKFhZ/mTh9xfJyADrwPSrScYvZ50MCx4+TXnwOCWZl2SFdSgzwqCURiuB59qpV1FpklTx0vU2L95oMU8UWkMYSnodH8cRqOYK3lKXfPeA8Nzac/em4miI22oQbdrsgfX/8e9RDUe43Q5eu2E1DFG4WHlOcFoN4qsXCc+tMfr2D5j84L1FWrOkPBlRjaY4jQh/qUv6eNeG4AUBxfEYJ/TOqDHtl29gVE3+dN8u0BUVRs2hru0qsNKoNEOlBWiDP+iRK41JM4rDE2TgLRKZbal5SrC6ROvl66gkpagOcIIAb9DBazbQauEnbQzScfCXBgjPpRxOMLWi/foLBIspxvz2A5IPHxCdX0OXFcn9J8SXzoOE6VsfLOxAEwC8dpP08S7FwTHhuTW8fhuV5VTTKdNbd+g1YivmNZrieIzf71Iej85yO2Tg4rQbZO/ucvi//fkZBcZrt/CXe2CgOh4jPA9/rY/XbRFfOk+xd2D1IYMeTjMmunQO6XmYuqYaT3F7HerxnPDcKo0rF0jvPsLUisbV89R5CbVGhg5eu0X+dB/he/idls2R8F2C1SWcZgNda4q9Q9xOi95vf5Xy38/tKuKiTF3bhlI6yCTDlZbuI+MAicA4Eq/bsla8vQ7FwTFqaxN/qU91NCTaWHlOuFwcnnD4v/25Faq7knLvEKSzsGpdtgGEGJwwoKxHuN0WwdqSpcUlKSpNKU/G9N54Fb/fRWDdohzHoTgaUo4meO0m2c4BQoqzTArpezb87+AEdemCpQ4dHtN68ZoFydv7Npek3aQ4OLYGCFubi0neFFNViCg4C/STvocIfOqJBZ1Op4VJFOm9xziNGDVPcJoRyW1LO6unc3tPXhkwv/UhOFY/4w265NsHSN+1GSqTGaYo7WQlCmm+cJXGpU37vh/aBPT2y9dpv3IDpGT///X/ozwZU00svS7auoC7yKPJd/bZ+1/+mGhjjcaNS7SuX8brtSlPxoBB5QX1dI6/1AUgWOpSjyfoNENGIU4QkO8ckD71zqZb4lRA+0wtDQLOrYf85feGHB6VFLXVKDuOII4dfN9BCkGtrC4jzTRLfY/LF2wK+N5+RuA7XL/SIgz/K5xkaK0py/ILTS+qquLdd99lPB7z5S9/mcFg8GMf7zgOVWXtvQ6PC/JS04wl59Zjej8igtHacDIqebSdcjKsCH3JoG/TE7ttn1Zc4DiSeVIR+BLfd0iz+jMBhi2FNj9NetRnNEbmVOQNYBBaIY0VVQs0jq4xkkXKtsAsEr61dOnND2hUM7R0SPwORjqsTx/RKudkxZBJ2CML2gTV3K7U+A3COqFyAhtU5wXE1RxXlQR1jtQ2BbwpxgRV+rk+Xe7GpH4TI+TCwWr+M51qSKPZmDxiHC9z1NwEA7XURPmYuErspKOcfWpO3rPb1spOOGqsMYpXGDXWFuJwgTQajUQ7Po5RROUMjUtUTBFnoRGCdj7C1RXzoEMtPTSgF/83wl28mfyEd4YzM234BWg1Pk89u002BvHjv//xVasFVcoXRJGD4xiEsCFrSmv6HQ+DICsUDx9n3Lza5IVrTbrtj4veftJJxt9Wd6m/yXV0UvD2+1OM0YynJXmuaDZctDa4jsRoQ5YrilIThQ4nw4ILGzE3r7Vptzzan4AbnSik+9VXGX37h6T3n+I0IyvSnKe4zQbdX3vlbGW398ZrzD54wPhbbyE9B+E4C8Grwmk2iM6fo3HlAuHGKrosmd9+BFrZbIdOC3+5z/z9e2SPd6Gu0XVtzTqUQhfgNJvIZgO0zQzQWlsK1IV1TKXO7Fyr0cRy95Wmms5w2w0kBuLYagaORrQWUwxdVlSjKV6vTfvl6xitcRoxsw/uI13bmJXHY2uX6vvUdYopK9xOk2B9mcblCzYITwhUXpDef2opPoGPygtYbKPKclSSIjwr8BW+g1YKoxUiDGw6sujgRAHVxCafF0dDhIA66eAPrFVvcu+xFc/WClMrdFmDlKS3H5I9PcCNQ4pobJtvA3LdhggKsE5Fvkf64Cl+u4nf71AeDcme7BFf2LA0HK2RroMucqTXp/3ydXSWI+MIEIisxFvuLZprn+LgmPFf/sA28UqjsozmC1dZ/8f/gOaVCyAEXrcFUjL5q7cZfvuHqCRDhgHVyRi310Hm1nY23z/GVJXNOum0qCdzvH6H3m98hWhzlezpHs0bVyiPT6DXxmhN+mgHXRTUSUa+f4gqSordQ7xBD29pgK4qjFaoecLsvTs4UUjj8gWbFYGwk5B2E6TAOA7huVWaN69QHg0RgYdcuGoVB8fM37+H9H27uLqYSKjCAlkZBZi6xKiaYu8Qg7XuradzWq+/SP5oB1SN3+9RTSaUxyNLZ+62cRoxOivIDoc4jQiRSXRV2RTwRoyeWQ2DTlN0ra1oXQDKEF+6YCeGG6sL963x2bkbri1hypLyeGztX49OMEpj6oro4jmi8zZc1AkDvI4VrzeubVlq1voy4cVzaKXtubu5dkbxClaWCM+tMvzm9wg3Vum98dpZ71rP5ghH4i/1md9+QD1Pz9ynwo1VkvuPmb5zG8d30YXVPzUunye6sMH0ndvU85Tem185m2YcnxTs7OX02i5qPSLLaqra4HoSzxG0mzazLcskYeCQ5oqN1Wihv9BcOBezsR79TKYY8EsMMk7pUafuUZ8XYIzHY95++20ajQZvvvnm50qINQge7xiO58eMxjWzxE4nlgcBX36lzQvXW4SBdaW5fW/Od3445vCooKxsUJOUggvnIl55sY1WhmuXYt67PSPLNGox5TD62SwK+zmez8T4WYi7f8z3ZfTzTldGY4xAG7vyLbXGWQS9OaqyAXO6pp0egXRxdEVYZUyiPqnfpJ0esz5+yLixTFjOGWSHjLFCZk+NKN0Ig0MaNPHGOYP5LolnfdOlVtTSpXRDHF3RLMaf+clOGqscts4vVv/tayzNd1mdbX/UjP8MqllOeXn32zzq32AWDvDqgm52ZC150+PnYF0tXZKgQyVd/LqkWU6QRpN5MbvdKxjpElQZYZlgPG2BhpSc7jdPFbi6tgnpdUa40Gkox6edDRk3lpmGHRxVYwAlHBSnQX3PjM6eO29OvxvNjz0+fmnKxiB+VNaiUsACkP+YZwooCmOnFL5jczAcRbvhMBj49pzWBiEFjabDoPfJrhpfFGQYY0jT9FfC71+yUsqGVtXKsDyIEMYyvX1PIh1BmlR4gaRShro2qNqeI0Wt2NlPqVXIoOd/4n0oXF9h6XfeJHu6R76zD0oTX7mAvzI40yEACNdl6Ru/TnUyYvLDDzB1RbBiA+qaly/S+bWXbTMEBCsDmtcu2ibTdZC+TzmaMPrLH4CQeP2OTceOQ8IL61aIPRojhHXESR9tk23v4nXbdN54jXLvkDotKLb3bSO1MEwxVWWdi4QgunIeU1akT/bw3rvH7PYDpO9bO1K5hEozO5m5sMHkB+9RzhPcdhOv0yS+egEnish2D5BRwOp//7u0X7p2RiEDUPOEepYQrNvvRAY+wvcoDk/It/coDk+snmRtCaNsSjTaoNKMKs1xq9qmTZcVwcVzOK51vPIHPVovXCF9+BSkQJc11XgCGLuif/EcTiMivfcYudCUqDRD+AHRhhW4Byt9TFExv/2AeGsDIR385T4IQfbwKaYoaVzfQnoe+f6RdYHaXEMGAU4Q0HrpBvVsSj2bIQPbaFuq2hhjDF5V4XVaNF+4SnR+FTWd47abOJFNLp+9dwdcK96e336IkGLhnuXQuHaRxo0tvAfbOFGA04yhqnEb8SJJukn68CnFwTHDb/8A4bqWYvT+PVSeI4QkffgUleX4Sz2r4VloK8CQbe9TT2d4vQ7JnYdUr9zA67So5ynJvcdWFFyUFPsnFPuHAPiDLst/77cQjkM5HDN79zZqnuJf6p85RNXzlGo0Reel1ct0WwghqSZzC0CyHBn4NK9fwnEdioNjvF4b4TpEW5uEGysYY8MJh3/xHdxOC2+huSlHExu4p7Q1DJCC6MoW+dNdqvEENU0QvoeuKuKtcxZAOg7eyoD03hOq8QSv2yG6uInb7VDs7FPUNTIOaX/lFZo3L1v750W5nRbJ7YeM/sv30EVJNUutEUBWEF9YO7O/Bct2cYIA6XuouloICk/91wEj8PttnMCCUKON3eYst+5zaYb0W0SXz9H72pcJVvp2ujScMPyL75I82CbaWMFbW+HeJKLUIdeutODelMkgYPegIPAldW2oK4PjWApVUSrWVgL+we+us7YSIqQg8H/6AXzP1i8lyPhJ6VGPHj3i7t27XLt2ja2trc/tBnN4XHP3kUN/kDEc1zgOtBoux8OSt96dojW89lKbD+/N+dNvHrN3WFihjDY0Iodaw95BTpYrykqzuhwQBJJ7j1KGwxJjDKU0Z1qKorRK/jBY2G3qn2N6N/zIBAPsDNcBaW88GDAqBwy18JFS4akSx2hcUxNmEwSGWdTFIAirFM9UpEELg510SKNZnu8Ql3Mqxyf1mvSSQ1rllCuHt2jUc6ZBj9yLmQRdAl0QVXOa+RRfV6dbxTzoMo4GlG5EVCV0smOEMRy0zuMYRTc7AiD1mux0r+CpkkF68DP9+uIq4cWDH5DLACMW+7LOeRYyZl6Dnc5ljpobJEELg0M3O+Da4Ttkfovci+ikB7jtCzZ4T1dkfoNGOgUMSdAGXWOUYm32lG4xZO63MI5HPz3mytEt3tn4dZQMqGVgtTEsRD1GPRfUhxELoGEW/1nHMFCg64/Swv9GlLMQOJ7+/OnUqroGrFslqVa0moIiN+SuzSYZdD20NhyPKrZ3cl59oUUcffx1fhLh968mGb98NZ1VDEcl/Z7P7kHGoO8zndfM0xpHCmoFVa3ptF2qSuP5ljJljODR05SnOxlXLzW5stX4xHuL127ivXTNOuLcf8Lsnduo77+L04hpvXKD+NIm6b3HzN69S7C2xPLvfp3yZGSD3FaW6P3mV4g2185ez23GuO0mOsvxlhd2yAsxuFaGajbHVBV+Z+VsVb48HJI9zc5i7wUSneSU+8dIz0PKAn+5Z92TshyV5TYrQmncXodgeUD6aBuv3cTttvAWTbBwHIzSZNv7+IOupRcLg6kqquGY6MIGbhxRZwWO61iXHN9/DmAAnK0QGHsDkr6Prmpm799BJTlGa1SaWkrUeEJ1MkYEPoHvImKbR4U2BKsDwnMreIMuy3//tykPjkkf7djm3LGWtsHKgPJ4RLAysAL1eAOUIlhdQsYR2ROr6RBSIIWdYqWPdmhcvUjzxmXmdx6hZnMa17YQgU+xvbdIlq5Rcxum1rxxCZWkIAUqSxj+5VvUUwsMjOMgQ5/oyiblwRDhWFqS27bHz+y9uzSuXKBxbYv04TaT779HvLXJ8j/4bebv3bdX6vGYfPsA4bkIpYkvriM8j2B5ABiS+09RScrsvXvIKEAXJdnTPcrDIQCNqxcI11ep5ynS93CaMcmDbdAK6bqovKA8GduguMe7RJc2KU/GzD+8T7A8sPa2dY2azGzmSuQjpcPwz79L6+WrrPzubwKQPHgKBuJrF6mHdkp26uRkBKRPdjD3H9O4fgl30LXJ61WNcCSNqxcJ15dxGxFJ6FOeTPBaOUG/a0FcM7bgZXXJuitNrLBbOAK320YlCU7o47abhOvLeM2Ycji2x5vjEmwsE11YBwTGGIKVAdVoSnLvCY2rF3GbjTPbWvlkj3jrPN0vv/IcwADIn+4x/fAeRmsLgsuSfHuf4mSMP+jgtp5dpDKUowk4EpXmqLLEjawe2IlDGyBb1Xi9DtVowuTJrrUVjkPq4xHVPCG6coGlb3ztbJGiODhm9uF98r0DdF3htWKG93cZHkPnjdfw1tdYWgoZTSqGk4rJtML3BOOpIqrstnXbHl99vc/6WvQzBxen9UvVXZxmX2xvb9PpdAjD8HMBhaIouHXrFkmS8MYbb9Dtdr/Q+95/lJNkMJCCTssljCT7BwWzud1R01nFeFqyf1gwntoAJg/D4UmN1g5prplOKx5vZ1S1phE73LjS5NUX22Rpxb2HKftH5dl4qq5sq5flP0/3KDjTX5jFKvbZd7v4/+kKOBojXGpHILUmLBOiKsVTOXLx2EAVbEweUMmAk+Y6hRsxC3rE1YxUtimlR2A0Wkgq6dMop/TSfTr5mLi2tKZOMaJVjGnJgGm8xDhcYhIt08pHdLNjkqDNTucyBoGnS1K/xSQaEBdTaiegmR2hhGQcWcepud+hcEOuHL3LUrJnJzE/wwo/xdVKI9htX2CvfZHKDfAXVraHrQso6dPORwR1jgd08iGF10BLF1ctrGdhQZmKGLcapFGPfrJHq5gQVBlRNefuyqucNNZpJ4co1yf128BiRK1yfFVSuNGCDqUt0DAKhPdRg76YWqHUYpXl53PR+WnURy5sn67nEMJ+fM+1lraTqbW9DUPD/cc5Ui40GAZOxhX6UziNPyld6leajF+uqmqD1gbHEdS1ptX06HV8TkYFw3FFXWvbaKYS4RjaTZelvk+n40MHkrTm3oM5rabL6vLHDUQAqumcg3//p0zfes82UUJgtGH69geEF84hPYdocw23uQCg1y7a5v3JDsndh4QbKx+Jx32f+MpFxt/+IW6zgRMFGKXxl/rUsznpkz2QEuFIVJbBomlxGzHNl69bPcPDJ+S7hxSHJ/jdlg3/jEK8QRedZjidFm4cIQMft91aCP4Ey7/zG3S+/NLZ5zJKkTx4ioxtSN/87Q9AukRb562APQpsWF8jovnCVXAk5f4h3Lj03PfjdlqLELQJXr9Hcvchxd4RMo7ttGI8sWF2ncCCFEdiqpp6PLNZBR3wfI/wwgZOr0ty/zH+92/h9zo2ONAY3Dii/epNioNjqtHUrupjV5dlGBBd3CDaXCfod2hcv0Tr5euUxyOmb3+IwRBurKHSHL/XJksz6smUaH0FYQzC94nPb9B6+Tpus2EF9WFANZ1bgDGe4A/6FjwWJWqe2myOwF53DeD4HuXhkGoyY/itHxBd2iS58xAZBvj9Dm67gRvHFLuHlFGAmswoDk/ofvVVhJSMv/uOpepOppTjGeHqEuHGsmVJFCXNl69z8if/hXT7gMbl8/aLVwqtNH4U2jRtpWwC+u4B9SxF+o7N3pASoxSz9+6SxU9xmzHSlZSVTUH32i285T7huVWcRszk1m28pR750128QRd/0GP63h2KvUNk4JFv2wwWoxXxtYt43RaT791C5SVeu0nvN75kweChddYKNtbw+l2C1SUG/80beP0Oh//hz8ke7+KEAToK7TSmb9/LaEN5OMTtC/xuxzoILvdww5BaaaLz6zbQ8vT8HE4Il/p43Q46SaknM+rx1C7IKY2/tkzr5av4g87z5/V4yvjtD/A7bZovXT0DIM2Xr5P+uz9leusO8aVNu58Ri8ncPjqvyO49ZvruXZpXL+D3Onj9Ll6vQ/p4FxyJ024StRqoJKVeTF/iC+dwGzHVZEa4tkydZMw/fIBRmmhzHYTEXx7ghh303kO4/SGy1+bShQZR6BCEknsPEoaTkroyxKHh0laDr391iV//cv/nBjDglwhkGGOo65q6rrlz5w4vvvgiURR95vNOTk5455136PV6vPnmm3jeFwsSyXLFdK5xHUNdK1zXYTSqODwuSHONIyW10hwdFziuJEk1RV7juFa9v39YkBUKDGcjqdm84s6DhGbDoSo141lFGEqqUpFXAiHrhQb358mHf0bgLX7MAWYMri5xlMLRNcJoXKPoZCdE1Yy536V2fCbREpnfwtUlIMjdGCVdpKkXuQ0hSdBhFK9ggKhOEVqzPn36sVZ21NrgpLmGqyoEmr3OFpOoT+X4NpyunNkHVnOmYY9hYwW50BSMoyXG8Qp+nRGVCQbBfuciAsPKfOen/B1+dhkEJ401dntXmHsd4nJKVFuNicyOmEV9HK2J6hlU0MtOSLw2CkG2SPYu3Qi1oKR5usIIyUlrk2nY59LwNnE55/7Si4wby7h1idTKpq2LkpyGvRnoGlmlJMKx4v1TjcazmP1ZAK8MZweIFD/+GPklqB/1afiIevjROeW5gFGUFVSVg+NAEIB0JElW8+hpzpPdgsm0otdx+f7bE25ebbK6/DzF8osKv8uypKqqX4GMX7LyXCuGrJWhEbv4viRJaxxH0ml7CFyqGoQwzBMboLp3mDGaVkShQ6ftYbBT608DGcO/+C6jb34Pp9Ug3FhBei66rCiORxz/yTeJL1/EbbWsMFYI3LZtuoO1FZt3sVh5P63m9S3q6YzkziOEFKisQBUFTjOm9co1ip1DVFbgtWJoN0GyaNIGixX/JbxOh9kH98j3T2zuxmiCznKM0gTLPaJzawSry8RXNpm9d5/4wjrxlQvPfS7hOITrK9SzOb03XkMGAV7PNulCCtQ8tffARnimQ1DPNHenJV2XxrVL7P8vf8zk7Q/IHu1QzxKcOEKVFfV4TrCxgtuMcZoxKsvsYoLr2DyH0MdrtzB5yfQH71IdDWlcvkD75RtW9+FIJj94zwIiKZ4LUVOp1Tl4XUu3EYt94zYbOI2Y8XdvkW/vUx6P7N8Xgnun2QSjkVFAsLrMxv/43+F2W0x/+AGz9+9RT+ckdx+h5gneoEuwsWLTqhcaEzWZEl/ZIljqY4rTwEKrVZh/+MDu99EEf9D96Du6fJ5oc9WGC16/xPjt98ke71DPE7Inu8zevWvBiyMQm2sYrSmPRraBbTVwO23EwQnp9h7tThPhOkhHUqc5SIEwknzvAJMVeP0upihBOHi9DvHWps12SexjjTJ0Xn0Bt2UnazLwLZVrNKM6HpI+2bXuR2GA22rQee0F8r1Dxj94j/JkQrC+jJfaRHCv0yY6v74If3SpJjOyx7vWwcoYqw8pSga/9QbB5hrjv/wB6aMdvH7HOpntH6LzEpXnqKLA77So+h3bUwirH9JpjrvQuKC1daA6GaNPbYNvXkbNU5rXL6HKapHFYog2VxGuR/ZoBzWzNECAep4y/NZbZI+2Cb/2JerxDLfdpJ7OMWWFqkqmb71HcXCIGzcoR2Ok79G4eYWgVqiiotjew6QprVdv4vc6hOfWSJ/sUZ1MCJa7eJ02le/hD3q4vTZqNsdttyj2j4gvbFAeDamT9MwJzuu0EFLgOgI5GFCOD3EPj/AuX+L8uZjV5ZA3Xq/ZOcgoMs2vfanPtctNop+BsPuz6pcCZJxmX5w6PH0etyetNffv3+fRo0fcvHmTzc3NLxSWdVrGQCNy8D27oFvkNdt7OWWhcR1oNBwEcHBU0Gi4tFseSQrjYcU8rcgzg3Q+cnzyF+BjOCoYja0IwwgIQwfXc6iT6qcCMOSiX1Q/9mtSn/jPj9IEnv0Z+7tTio0jkKamkw+5ePIhvio5aa5SeA2kKhk3lpBa08xHrM2f4OqSWdCnlx4RVhmuLhk1ViiciKic4aqCLGjycPklHKNYSvYRC1rQsLFCs5jgLmhSEXOOWptU0mNj+ui5TxSVCWU0QElJ7kYkQRe/zvB0RelGdJIhni4YNVbopYd4+uM3us+q0vEXOReCsJwTqM+Xw6GFZL99kd3ORY7jdUonRDkeppA0yrl10dIVAoVGMncboGviakbmNejPbCJs5rWRaFxd4amCygnI3RgtHDK/ycOlFzhprFM7PkpIjHBwTI1jjLWyrXO09CzdShurgBanAYvP7vpP0a7oBeD4pRSFf3L96CdxJLRaLlXtUBQKPwBXajxHU5eKLHWYTEqiyKXVcIlChw/vpSSZ5quvdVgefCSC+6KTjCSxzji/okv9clW75dHv+pyMS5b6AXt7GUfHNXml6bQ88kwRRYLJ1Gb05IXi7oM5/V6AUppWw2PQDxhP7dTDdZ8HnuVkxui7byMCn3D9oywmGQQEKwMm33+X8ffftdPGMDhLTfeXujRvXsVUNtH6WZAhPY/eG68Rba5bGsxwTHNyEeF7tF6+ZukTD7bx11eYf3AXjMDrd5Gua6cXS31aL10jWO0z/NbbGG2IL24SbKxSnYztqnatbFbE+wVqltD9jdfPBOLGGKrxlPLgmGo8ozg4wRv08Add8qch0nPthGDRuJ+WSnOiy88DldMSnouuFWqWnDX+Qi4Ext0WMvRR84w6TVHzBFVpBNpSnhoxwTmb2aCzHBmF1HMr+vV7bZrXtqinc+bv3yW6eM5mjhiDSjLq6eyMHgOgsgJ3sd3Zw23mi2wPqz+xDWo5nqKLwrogTed0v/ISTiNi9K23bFPfaZLtHlJnOcH6MroorZORY7V1qq5xXA8cgalqm959NKQcjimOhjhxxPSdD88yHZ4t6ftI39KAipOx/bxhQOfXXqGeJZTHQ4rtfWbv3aEerxFfuUjrhSsgJW7b5lRUoxnZzqGddpUVejInvnSe7PEu1WhKsNRHCKiSlHBtGVOWuK0G/soFZu/dIbq4iQxCq2cQWBE9iymyMfb7H0+RoU95bKc6bqtBYJbxui28bod6OqOYHVPuH6OzwuaxSEE1T60GRym8btuq73wf2etQJymjP/8O1XROfO0i6Z2HhKsD1HyOCQPcKrJaoKUO5XhKsLpE8/qlM0vk5XMrJHceWZpY4OG0W0T9DsGKFbqLdpP2azetw1dRLs5TH7RmOrjD/P17FIdDyuOh1TY93sXtNq0m6q9+iC5rtFLk23s4UUjtSKqkANfDCXxkq4FRivjiBl6/R3k0JH2yR3kywe200EVBsDpAei5et4UTx4Tn1ghW+kjfY/TddxbUwfzs2JWLJlUXFcG61W01YodOy2d8LInG47Njx/clnufRTmouv9TgpRvPT2Z+nvULBRmn9KhTgHGqvXAch7r+9PTlLMt45513KMuSr33ta3+tFcMwkKyvRsQhhIHgvccpw1GN64LvSqazmk7HxXUlSkNRWrH3PKkWeoqP4IIQUJQGKcHzQGBXUX1fUpYKVSuUNpjFM6QE3+MLhfWdltE2W+158fizpfhkmyPzTKP5bMf50QXuVBJcuiEYw8bkAZNoGSV8gjqhWgTSeapkHvU5NjWDZB8Cg5Iex80eRkia+ZS2GTIPOsyiJSonoHICtHAoTz5kbfrY5kQIeQYwACQGr85J4jZaOEjzEZLSUhJVCVE55ai5SRK0CMqU0o1pFBMa5dS6BvlNlPS+MMgYR0sctM9TOBFGCII6Y3m+Qz85+EyZ9DTsc9xcp50N6YYnjOIVBIZ50MOvC0o3xK1L2ukJ0ijurbzOsLFCJf2FHfAhphZ2OoHBCIfSDamkR+X4SFMzjJYx0sGvUwtgpUSDtbwVDlLXgKTwQmrpWb2FON2/4vnpxcfA5o/UafL738BSGqQ0NCJJXSlcV+AHPs2Gg6oV86SmKhWCimbk0OtoysJwfCLY2S9Y6ntnixZaa1z3818q53ObRfArkPHLVY4juHyxwTytmc1r2i3X6jGlYDgq8VxJXSvSrKbX9eh3A0YT6wzoOJLJtObwJOfVFzqfuKBV7B1SHpwQbZ372N9UYYWv9WSGjCMrKMbSkMqjE+Yf3sNttz7xdW2+wvpZzkT2+osM/8v3KXYPCVeXqcczsic7FAdD3G4Dr9Wg2D/GiXzirU2cMKD7668jo8g6V60vo8uK9NEO+e4hWtVW2JuXVNMENUvOAFD2ZJfk3mPMQnBd5xmztz+0GQlgJy+nepFFVZMZwnOJF9v7bBmtSe48JDq/TvPmZU7+9NuWm95pI+MI4brkO/vWFaoo7ftKB6OwzlT3HiMcB7cR4TTjM9eufPcAv9fGiUI6r72wCCgcYYoadf8x/rLNZYgvbwJWNOzEIdG5VXRdM/vgHuFqH1MUVLPEgiwprSXuoeXCB6tL6LLm5C++g1Ga+PKmFWzffmjpWrWiVsbmiGiN1++i8wKVZuisoJrOrVVxklrDCWNAacbffQe320b6PuHa0se+s2o8g6oiurBB8/oWAHWWM/rWD2xoYhzhtBq0XrmOG4UYpXGb1sY1uN6ncXULnReEa8sUu4dUWYbXblDNEkvJmc6t7sZzUUlO8+ZlvEGH5MMHNjvFcainM6rjEdUsxfYQGn9pgFaa7PE2ulLMbt3Gvd0+CxHMHj5FVRVqMiO+dJ7GlQsg5QK4TsjevUv7yy8Snd+wx4zrEp5bJRhYe+bx99+l+4aliOVPdhAC4q1NS/GazCj2DtF1hd/r0n7lBv2vf+Wja3ZVo+YZ89sPab/+on1vpSmHE3RZ0f3qq7gtO6lwwmcm145D+9WbROfXmb5zm3z/kOYLVwg2VjC1wu93md97RHbvCU7H6pXC9VWcOETlBWo8I1hfRoY+lDWN65eI1leo5ymTtz1mt27jtBpn+TP59gFuo0HjsrUdPq14a5PZ+/epJzN0bc2P6nmKLir7Ha3Yx0opWF8LSZ7AybimVyg8V1KUivG4otfxuXDuF3sf+oWBjB8n7nZd91PD8Q4PD7l16xarq6t85Stf+UI3/08qKQVbF2L6XXBDQRxKpo4FAI1YEoSSslBICYdHBXWtkQIrFDttfhd9u9bP6GsX7b9SUNfaNjqec+YsxeLxxWeHTX9iGaxN5yf/8UeF3T9S4mP/4KOGU4D0UKZGakUpfUbxKrkX2ywLbZ2OtHBQ0gWjmURL1npVOiR+G+V4TMI+qd8mrFNqx8MIByNASQ8lHI6b6/gqQxqN+IRG1zGKRjFh7ndo5ydIDEpIUq/F0nyXtekT4jIh8xoIY+imBzSKKY6uyb0Yry4WVK7PX5nXYK+zBRg6uc3pyL0G++2LBFVGs5z+2OdPwz6OrglVztr0KbkbkXstlJSM42XickZYp0R1wjTsI01tt1PWlDLgaf86pROAtuDBUyVxlVI5HpUTogRU0sfRCtdUKOGeHXDK8dE4gCGPWnb3m4WtmRB8Mpj4DNikDTiav0lajdMSApJM0wjtyVkUdkGjEUk6bR9jJHWgWV/xMaZm76BGmDknJwqhItpRn6WlPq1WC6XU53KpO61T0fcXzdb4Vf3sa2kQ8NpLXR4/Sciymkbs4DhWm9RseDgCXDcjjuwCU1Up+l0P17ULRdsPhqwyJbtY4HXbNmTtdD9b60ArpP6RUvMU6VjO+7Pud8Jx8JcHZE/3aFyL8BaUmR9X0eYag9/6NWYf3qfYP8Hrd+09qFaoeYquaoK1JaKLG/g9u4Kp8wK31SBcX0aGIbP376OKnM6XXjjbfmMMw798i9l7d6wg2nVI7j22q+mDHmqeEK2t0HzpGtXxEDA2Gfnxjl2JFtYNyWhD50sv4D8zkTmtajylODgGx7F5FYMe1cmIYG2AylKSvECXFV67gXKdhaDdoMoSU1b2+xNW26HzEq/XJVxdojweorICJ1pQdr70IvU8I1hfJnn/Lk4jxl/pU88tDx8h6Hz5ZfxBj+LgmPJkTHR+A+n7zD98QHlwjGzGoA3Z7hHF4TGdL79EeTyiPDii9fqL6FqDXjgwBgGyH1mAlpeE51YAYdPaHzylHE8xi8uw124hHAgvbAAQrC5RTWY2oK/TwokC6lliQUlRku8dIjzbgBttSJ/sMHnrfdJ7T8h39hFhSHlwjL8yoPvll2wq9bk15rcfEl2+QHxhw7o8TeYgBNWHD4gunoPtPTvNaYT4gw7+oEe4uU64sYxKF5OZqqY6PiHPCpDSpmcrTXk4Qiso9o9ovnCF5rVLVOfWGH/nbaqptdVVSUZxPEIC1WxOvneEv9RFBgHScamTlHznAJA2IFEKTFFY16x2g2o8QZc1wUqfxuWLJHcfgjFEm2vUvQ7Zwx0al87T/drrqElC+mgbv9tBuA71zG7D4O9+DScMKHYPOU1Db964THRp81PPLyEEXq+DkIL4wgbRhQ3SRzvM3r9LnWaoWWJzcXYOCTdXLeDqdvBXBkxv3cbrd4ivXEDPs48WDbS2dL9Bj+5XXsLvdzFKU56MSB9uM/qrd2jcvIwThnidJtGFjUXCuofKysUUrCJ+4QrxpfNntsEA7YbD+VWf2aV1xklNXdu074ubMRcvxLSav1jC0i/k3U+nF6dc5x9dvXEc52MgQ2vN7du32d7e5qWXXmJjY+Ontj2Dns+FDcPBBJoNl2asbH/lSerKMJ4UjCeKqjb2IuFYCrvr2Nbclbbhr7W9z2i9SJWwCxXowtItiuojV9HT+nz5GV+k9McBxnMr0s+6DJ1aqi3+LRbPR+BqhVQVpd8g9VuEdYany7MAOE8VxOUUGXRsvoZWuLqinx2ghMssaFO4EcLUGOmhFxkQtXBRUhLUGeNohXPje/h1RuK3iMuZnaA4ASC4MLrDPOgyjayThjA2dXt5votjFCvzHQyCg84FfJVbTYfQBFVGNz3G1Z8+DfukmgdtSiegt3CsAoiqhHG4xDzofCbI0OKjBqJZTrh8/AEnjVV2O5dwVM3SbIdzk4eYhYbFURXLyS6FF7PbvkzhhDYpXSiUdKmkhzQKiUELbEBiXWKkQBkf5fpoY2lVWjgIVVH58WLPOih5amV7uqufnVyc/vv0WDitT8jU+BtYvgdxaBO9kYIoELRbLo4jODy2K0OhL5klCtdxwbjUOmB1IFlacpjNJmxvPwHsAohSijRNiaLoM2mZpyDjJ6Fv/qp+9jXo+fS7HsvLAZ4naTU9gsBBSutANZ3XHJ4UBJ4kjl2CQOKoCrP9mKXhhKPU4b77lEHbJdxcp/uVl3BbTYLlPt6gQ3E4OnOJ0mVlNRV3H1EnuV0tXlB4To8PUyvqyRy30zyjKX1WhRurBOsr1OOpDUOLAsqTMUd/8pdgDPHl82fi1DrNmHz/vbNTux5NmH1wn/D8Gl6rZfUb2Oaqed1agM4/vI+31MNUtQUYWU41mdO4cQk3DnHOrZI92aNx84rN1dg/sqYKm2s0Ll8gPL/+icd/NZoye+/u4rJkaUz57iHVLEFEAdnOPjrJ0GWJ4wd2KgConQOE61qr7iyn2D/GbUSEm6vW8WleYp6hWJuyIjq3ytLvvEnx0nWSB08oD0/AQHTxHPHlC4TnLOXEKGXpSq4V5TthQL53aClNu4eoNCNcXaLz5ZdI7j5CRiHpnUfovKR5Ywu33UQEnhXe97sgBOXxGOm7NrnamDMaj99t4yx0OG4jpJ4mhBsreO0m+e4ho+++Q/ZkxyaQY21Q3b4FcCrLyQ+OOPnTv6KezPCXuwjPpToZUQ3HjL75fZwwoPXiNTCG5vVLCATHf/ZtytHMZpAYjbc0oP3SVZovXAYNwfqKNcloxmfHTHU8pPOVl6nzgvH33kGnOcH6CirNz46vYt8K66O//9sEqwOy7T1kHOJJcZYgr4sCd9Cj2DtCzTNLCVruL9ylFMXBCdH5Dfy1JUytqKZzpu9aETXCQae2UY8ubuA0IvKdQ+rJFOm5NK5vsfYP/1taL1+nOhmRPNwm395D57VNm3/jdeKtc/YcnKdn4YDic1BfdV5QHJ6c6XeClT75dsuKuYsKr9fCVBUqt4nnfreDv9QnWOqBUriNmDItMMreP4ujIfUCfMmFblg4Eq/d5P/P3p/FWJal933ob6215zOfE3Nk5JxV1TX2XM0mxaYskjItXUCXuhAu9GIYeiCgB4EwCb/whQRoGqYBWYAg40KAAdI2KF9c4ApXsmFbbEkci+zuqq4xq7Kycs6YhzOfs8e11n1YJyIza+juItmDSH0vmRFxTsSezt7r/33/IT/uM33nJrO7D1BxhFdLFtOKJTb+Hz9HtLFCNc8YvfYO1WjyBK3OVBXpw316V9a59lNXmWuFrix5YZinFQ+254SBpNsJ6bR8Z+P+A64fOMiw1n7XcL0Pg4zZbMabb74JwFe/+tVPRUN4/GZ+WmmqmaUaT7mFx+Fxzv6xx85xzvGgQkqBNTCfGwZ5yWxeUVaL7GQLhV00MKybeGjx0RRuY08DljUW9clTh7/w+phF4UcoLx+jyRACFgndwlYoXQCSQGcoqwl0Rq4ichnQzPtgYRJ1CKoUpTWZn7AxuktSOKpIIx9xVN9gHC9hpcLTBZ6p8ChI/QbCGrSUBFXO2vgB+83zDOMlx8vUFcuTbVYmO/Sm+8zCJpXyCaqcpJg84Rq1PNt1drphGyMUpYqIyxlh9b0F+j1eWnjIjxkBSTSV+u5BNfV8yChewiCQWGrVFG9SEpUzzg1u002PUKZwrxEKI3ySYsAg7pH6MUb5CKuR1qLRWOkz9+r4lHhVRl3nFF6IQVFKgTQFvtV4VU6hYrTyAIGnNVZotAo5C2kRH/6oL8CHtU6vcUal+tDnUVtQP2CL5T9nnd5HtTbMM0ujpljpBVTGhfOFgWIwLMnLiiQJqNckVQX9YclwIrl0cY1nrtYxxjCZTHj33XeZzWZ84xvfIAgCut0unU6HbrdLEHz0upjNZiRJ8gPe6/9Y30tV2nJ8kvNwZ85wVDCeVKS54dqlOr4vmc4qgtCFVmWZxvMk82mFt32HeNqnudYllTHzTsJ6RzO/8wBbFnR/8mX8XofWZ5/j+N/9CcXJAKRkduu+s5Xd3kPPU+Jzq2TbB1BWyDhyGVCeItxcoX7lwqfal9OOKzgqkS0rvCRi/M5NZrfvEy738JsNisEQvRCdRqtLZJ7CPzjGVprx9Zu0vM+ciY7D5S6NF58hvbtNdnCMzQqy/WN0ljk3n7KkGE4I2g3n5BRHNL70IjovHEc//PgckdNtHF+/6brMvS5h1227TGKG33jDLcT6Q0xpkHmJjTQo6ahUYeCS0dMcVUuIt9bxWw03vSlLN0kI3eLNFCU6LUgubTlxfbdFMFtyXfnBaNHVn+C36niN+kKIHaFnLjwxWOoQLHXIjvpU0zlRo4aXRPi1xDkD12t4tZh8Z59otUe0uUp6f4dyMsVUJcmlrYWN6oh8MCa5fJ7GM1ewxpBc3AClMGlOcTIiPr+J325S9keke07UnB+cID11tp/1Z6/S/+PXGPzp65i8cKBnY8VpVKLoLHSxGk8Z/PFrLnn8ynk2v/Yyo7ffJ9s7JGg38S+fI1xdwmvUXdCddJNvm+f4Sx2EUpiyojg8QYQhzeefIj8Z0Pnii2QHx5RHfUQQ4LVqCCmRniK+fA49nZPu7DN89W1sUeHVE2ylyQ/72Lxw2RS9NkYbrK6Yvn8HqwTS985E8CAQnkfQbVOOxszvPiRc7lLNUuzCtjlc7hIsdTBlRfpgj/j8OvXPXEHPnINX+wvPY196BmusSwRfTOhUrFDxgs40T5Gh07o8cV+Yzcke7rngwrLEqycUJwOiDaetUklM/bmrlMMx1b1tx8rIC6rRiPrVS87tLArxWg2KgxNMUSKkQEXu7+T9AdVk5ly56u7ZUE3nZAcnUBnK2Rz9IMdfapPvHjK7eZfeX/8KtacuosKQoAdeLXbmBA/3n9j2aH2FzpdfdJ9Fa7n3cM7tuzPS3NGEtbYoOePceswz1xr4/g92wv4DBxlCiDMawSfdjDzPO9Nk7O7ucv36dc6dO8fTTz/9PVEQrLUcHhfsHmTM55pmw2NjLaLT8rn3cM6DnZQ0NShPEAaC2UxTVhJdaKy2NFueGwXmmsnEuHUYDjgY8+Qy/pQi5UkoFutTAQuQ9IO0p13UR8DMaaf68eP24cXko263tWCFoFIRQTUjKFKEtfRm+47S03mKvaiNForCi0n9GlE5o5kOaKX9MwCwMnnISbLKMHbj7aDMSaqJA2lexCjusTa+j7IV7fQYv8o4rm9SqoCkmNCZHyCweAvx+SeVtIaV6Q7SaPab56lUwDxsMo3a37OW4rSiau4CCYU804EYBEZ4xKUDT+rjDvGiWukJ07DNKF7GNzkIiUayPr5/BoYkTlhvhcCzJZOwySBZpfBijJR4uiTQKaE2lDKkng1oFCOCKiPzEqZRj0oaiqCOsRZpSrRySexCSoQpMMLR08486T9W5O/2DmE/hDkfn3CcrtYBqRdf/uiDjVOAP8+siwGRsNQLSFNDkijOrQf8wZ8MqdVDfE8xnrjjsNTz8T1x5lwlpaTVahEEAZubmywvLzMcDhkMBjx8+JB3332XWq12Bjra7Tae5zGdTv/jJONHsKrK8MY7Q96+MWY0LhHAPDNMJyWHRzmfe6FN4EvKwqAUbK7HtFs+/nSEEnOiy2vMS0HdV8xziykKvEbC5L27JJcvULtynqX/5CsUgxGj199lfP0mZX/sPmNYZ9+67ALttNbUL51z1rGNOkV/RLj6UT4+OFekckHx8dvNJznkQDWdMfjTN0gf7KLiiObzT5HtHrok4aUOQa9DfH7zEd9fuhC+U6pQ+nAfv/tIZxKtLhF0mszv7zC5/oGz0t3aQNZi0vs7ZHvH1J++vLi1uPecpg9/p8q29ymPBjSef4r07g5WG+fe5HsLobTFazYxWiOsxVpDeTKgGk8Je21UHKHikOTCJuHqkktHvnWPcjim/YUXACj6Q8r+iOTKBbxGwuBbbzH449eY3b6PkIr44gbhUpf0/g6jJKL1hReoXd4iOrfO7P07qDg+E0lP37vN/NZ9bKWJzq0xu/0AEQTo/sh1xKVwLlZh4MLZDgeU0zkyjmFtGWsMzWcus/yzf41iMOLk66+QHfZdHoPnEW2sULt6gXI4ZvLuLcrhGK+euAVjo46tSrKDPvnRCY0XnuLo//wDdFHiN+tntrxWSaSvXBq552GKgqDbpvniZ5Chj55M6f7Y5/AaTzZmVRIxu/WA6NwqtnKLdqzrmgbLHZovPEO0vkL6cI/k4ibdH/882cGxo7oZi/A8l7sSBY7yc38bPUvPAu90XuLVYkzgo2czp/lJc7zEaWn0bO6ArXh0DZ2WV0+Y3N+l+7UvE3RazO/tEC51kEmEyUuK4z5+q47fbnLy+988cwMLljsuXf7C5hP33nI0YX77/hmAkGFIctlpRLxaQjkY0f+Tb5PvHaPqMdLzmN/fYX5vh+JkSPfHPoeQkqDTov2Vl9BZjtGa5PKWmzpsbZx9Jr1ajO21md95SHx+HRH5TN67w+hP36RKM/xem8m7t4g21yiO+87Zqijc8YxDhOcTLnVR9YR0e5/Rt6/T/bHPu/3rtln6T75CvndEMXSsiqDddBqQxXTk4CjnxgcTkkTR7T5yZ81zzb2HM3xf8sy1H6zr4Q+FLiUWSaOfVEopyrLk7bff5vDwkJdeeomVlZVPfP2H6+FOyo1bMwSWMJTs7mccneQs90J29jJqiWJtJaCqLG+/N2aeGjwlsQtHGomjPpUaPF9SGbNID/548ojWT+aZ2e9Levd3q08SesMCIuGAxgIlnYpH7CJD4czidDHCtxUWhfZ8fJ3h64JaOaGR99GFxzjuEhUu76I9P8A3FQfN80T99/CsJipmSKOJqxlxOSXzamgUUlgsFiMUvQUAyLyY/dZFF0AHzMIms7DF5vA2yWJxf1ql9KmUj6fLM1H33K9z2NzCMyWt7MR9L2iw37hAVM4fWeB+l6pnI5rpCfOwQVTO0VIxCVq08gHN1N3ILJ8MNHxTsjG8ja8LhnEXv8o4N92hlZ5gF1eOAeJiSlimGAT9ZJ1KemgEGAdoJS5l3UifqJxTTwccNTY4rm8grSGsMsQi60TpgmY2YBw2yWQNIwK0UhjpLaYYp+d2ca5PQcejlfRimiH4KBB97N+zAc9/GK5T1kDgQQGMJ5r72ylRKBnPSqS0CAkr3YD1tYCiAM8TJLFkZ7/4CCg9DeNTStHr9ej1HIWjLEsGgwH9fp8PPviA+XzOb/7mb5IkCVpriqL42EnHd6s/+IM/4L/77/47XnvtNfb29viX//Jf8nf+zt95tG/W8mu/9mv883/+zxkMBrz88sv8s3/2z3juuUe5Bnme88u//Mv8i3/xL0jTlL/xN/4G/8P/8D9w7twnc5H/stfte1P+5NU+xhia9QA/EDQry7GCw6OM926OubiVECeKvDBcOl8jihRleoiOJaVQSGlIqiny/QOGaoKtKsrJFDBs/j//b4QrPXp/7YsM33iXbHsPLK4rXa+hwhCrK7wkptg/Qv7Y54k3Vsge7hGtLxOuP/mM03nB9N0PmN95SDVxjmVeq0Ht2gXqz1xBeh7WWkZv3iB9sEtycfOMChJtrKLTjMl7t7FFSfsxMbrXqCN8H53leM06Rd85F7mOMlSjCcm1C2T7x3hJTO2ZK489r5uUozGTdz8gObf2PWlITit9uIuKQ6JNZ82aHxwjI5/JjduUJyO3kFtqUw4nLo3busWstRZdaUx/iFevYcoKGQSoeuzyEpZ7LjV89whVj2l98QWCpS6DP32D2a37pA/3nUBcKbKdA7LtA2Qtotg/YfzW+7Rf/izRxgrBSpf53YfIJCK9+5DxG+9SjqfULm8RLneZ399xugFtKIdjdFaQ7twiWl8hvrCBNQY5nrsF9Tyl8cwVmp97lsazV11mxM4h6cMdp7kzhnIwZvz2DbLdQwfmopDyqO8yOrotwrVlwqU2xcEJzRefJlzpMXztHaRSFFpTTVPK4RgR+PgtZ6lazVOXoyEEJssp+gM6L3/uI+dCCEHQaWC1Zvlnf4LieIgtSmQUECx3zxatMgzQiwT4fGefarpgCFgXNuc1G8hKo2eZo/oZi8U4W+JaTNiokR/2Xb5Gq0Ht2kX8TpP+H76KbDWItzYojk5QceTAWlGi5yl+u0nz+aeoXT7v7Jcf7rt99T2nJ8Eyfe+2oxwtKE353hHZ9gGtz89pPHcNIQRFf0j/j16lOBoQ9Nr4zTp6njH81lsUB0e0X/4sw9feIT/sk1w+dzb9CJZcBsfwT99gvrbshONA0OuQXN5i8tb7tL/8orNr3t5Hz32wYEpNvLXupiVhwOH//vukOwdIX+HVEqSnSB/skh+eUI1nZDt7lOMZcqG5UXHsqHLzFIxg9Pq7tD777CJB3bnNxQudSDWbUxycML/z0FkzryzxcDdFSEGj/mSUQxgqmk0XQnr+XPKxobPfr/qhgYzvVFVVsb+/T6PR4Md//MeJoo/3JP+4ynPD/e2UMBC0mu4B32zA4UnBm9dHrC2HZ0KYojKMJhXbeymekBirqdcCfE8wGJZIAYFnSedOW/Gd2OnlGf3/RxBgnArUH6fFWAsY0CWoELcItSAsUmuEkAiraaUDci+hFIpRtEx3fsQ4bGOFICozkmKEb0raswOOGpscNrYIdMbcr2GERAufUkYYoch9j+b8hGbap571GUU9RlGXSdwh82q00mPnqgSMox4HzS0untxAYJ1YvLbGoLZCJZ3TUlhmTkQddshVwLnpDnIxSQl1xnFtnUnY/p5Bhmcrzg1uMYk67DUvMI3aSDQGQeonlCagVAGhKUmKqduux95fSY+D5nlHh5IKKxWDqEdUTIgfs8GtVTPWptvc7z5NGtSpZOj0HNZihCETAcoPQJfkKmS7c4Vp1KGSgbMRRFJ5gdPCSI9+soyWisxLsEKijEZajbYChHJiVF2AkNhTS7IzgwIc0PjYec9j1sZ/4fX9G9nKBV4qStCV24vRpCRNFdN5xd5BQZJIdvYzokiysRrheYLjQemoVctPAoNPysnwfZ+VlZWzBsh4POZv/a2/xe/8zu9w+/Ztut0uP/mTP8lP//RP84/+0T/6nk0qZrMZL730Ev/Ff/Ff8Hf/7t/9yM9/8zd/k3/8j/8xv/Vbv8VTTz3Fr//6r/MzP/MzvP/++2dOe7/4i7/Iv/7X/5r/9X/9X+n1evzSL/0Sf/tv/21ee+21Tx0s+Jehqsrw1rsj0rRi61ztjJsc+LC1qfA8gTGW5z/T5MqFGv/m9w8ZjkuiQmMnOXpuULGlpzLEvTskjRLb8DBaU03mjN+8QdBr0/rcc4yvf0D2YBe/USdYWUL4HlSV0xIcnKAbCbbUjN94D5u6BO72l158YkJhqorhq28zu3GHoNcmvrABdhEK9o230GlO+wvPU40mZA93CVeXPsI1V3GEikLGt+4TrC1h5ikohd9u4i93yHcOXBaAcSGEVhvygyO8Rt3Zp/oe0dYa+e4BwlOYzE1nRRiS7+6fLb6/1zJl5fIaooDm808xb+7Sf+XbzG/fp5y5lPJyNkf3x5iicJxkz1nk6rwgaDXwttYQgYc1hnz/hOTKeRrPXsFrt1GBs7iVUcjJ73+Dsj9ChAEqDhfieEM5GDpB9KUtak9dpDgeOM3MZEZ8cZPWl16k/wffIt0+INxcJei2qT112VmNYh2VyVeYqmJ8/SZeo+YsefOC+meuEm+tkz7YY/bBXXSWk93fId/ZR9YSqsmEajQhvnAOv1nHFCWT6x8wfuM9guUu8eYq5WiCVIps5xCTF8QXz2HyAlOU1K5dYnL9A7KDIwRQTuYIJQm7bcw8o5qnoCt0WSIDj7I/YH7rAeHaCrWPEToLz8NWGuF5TyTNP17hSo9s54ByOHZd85UeCKgmc6pbDygOj6g/ew2/7QBLNZ46IJhmqHpCuAC7eX9IvLmGCgPK/hirDdHqMr2f+AL54Qn57iGmKJCBT3Ru3SXZ9zr47SbdH/s81fNTdFa43Jmy5Oh3X3EWuY9pmLy6C6+bvP0+0doSfq/D5O2bFP0RyZWts3WnSmL8TpP53W0Asr1j4s1HIZinVbu0Rb53yOz2fawQ+LXYTUKikPpnruDFjmYnNlaYP9jDVhXJlS26X/08Ji85/N0/YvzGDcyClWOriuJkSP3Zq6iqYnrzNsXRAFWr4Xea+K0mQkpUFFKOJlSzGWV/RDkcn4EMcA5t0xt3mC4yWk69hHSjzaE4R/v88seey3pNsX9QMpmWf/lBxieVtZaHDx+yvb1NkiR86Utf+tQOLbO0YjqvWOmFFKWhPyjoD0smM83efuYuNOEeKDt7Gcf9nNG4wldQVBVhUBCGjpvr+Loa/V3Mmlz9MOhR+ol/Pr5O9RYsgMVjUMlULMhdZ9MNv0zxrcZYQT0fsTa6TR40nLYCSIM6k7hHVGUEJmMadpiFDQbxEpUXYYVHko+ceFtAWM6oF2N60z2UrchlhMSQ+k1O6j6l9DlubNKZHZyJpgVQK0bM/AaZFxNXc45r6+y3LpzpLQ6a5xlFS7TTwwX9CCZZn3o+BiyerqjlY6yQzmpRRVghCKpsAWQEk6jjQv9kiF857YmwhkFthcxLaOR9PFMxD1u81bpAXMzwTYFnNc10wPr43kK74uqovkm/tkY9H+Kbkkp4TJIlJJoLg1tPzAY8q7FSsDTdZe7XMY0Ncr92ZvPrVxk+knFtCWEFFkFYZUhrSIO6k+crRS59hNEoW2KUD0JSSYmwuE6gzoiqDImh9EJK47scFOmd0Tg+GUR80vf/IoD0949KJBbDmSx/pM/I80U31IIUlgubMcOhC+QbTSo6LR/Pl3zxxRbd9pNdoO81J6PZbPKP/tE/QkrJK6+8wn/9X//X/Nt/+2958803P9XC/ud+7uf4uZ/7uY/9mbWWf/JP/gm/8iu/ws///M8D8Nu//dusrq7yO7/zO/zCL/wCo9GI//F//B/5n//n/5mf/umfBuB/+V/+F7a2tvj617/O3/ybf/N73pa/LDWeVuzuZ7TawUfEj0IIlnsh23spRW65ernB4GjCO6/tYndOkMdHxLMR8Xods7dPR2aEOmd+11EW9GSC121z8sevM7lxx1mdzjNUq4G/CPQ6Lb/lu868yVGBR/cnvkC0ufooAXxR+d4R8w/uEW+tOf/+RQW9NjIKmd28S3Jh02VYDMZP2F8+XtYY0nsPnQNOt401ltRu47VbhCtd0gd7WAvp7iFSSvylDu0vPE+2s4ffaiADn+mNuxT9IVJJl7uDwGvXUQ3XPZ8/2CV96Og24dqyozN9yFnKFAU6zRm99g5eq3FmcyqDwE1wDk9cNz0v3KJMChA+aIPFIj1Llefku4fEm+vYskLVIsw8ZfCnbxGu9eh8+SVUHJEf9ZndfYjfqDN/uIdK3AKtms4pjwcEvS42ywHh0sp9n3BtiWzngNqVC0SbK/jdFiqOGL1+HVuWi2RPQdBtUQ5GqGYDr14jubTlAuSsRecFw29fx2YF4eoSctF1N2XJye99A51lNF98huJoQLZ7gF5Qf4RSeO0GwVKHcjhZPKoN47dvuiyNIKBYX6Y46SNrMUrWEEoik8RZ0R4PSI9OnPnAuQ28WkL6cJ94a53ZnYfM7z4gWu2dTapOq5rOiDbXPlEIba11gYJZ5rqonqP5CiEQvoffbZLvH1H2x4QrXcLVHtVkSrZ/iAg8VOyoRyqKCZcT6s9cci5fyw7Aep2mszq+sEl8bh2rK4TyyA+OQMRPULy8Rh1vgSdGb76HyTL8zY+yW/xWg+J4QLp7CFKS7hwQrfY+0tgWShEsQAie51yiPlRCChovPE1x1Ke+CPDDWpovfoZwYwU9mjqtVV7Q+srniFaXnJvZzbv0//g1+n/0Kno+x++2QEjK8Zji6ITxGwXh5ir57hF6nhJurhCuLT0BclQtpjgZuAyPD7kDTT+4x/BbbyHjkGCt56hWnsdw54TZzl1qdY944+Opl2fLwB9g/ciAjLIseeeddxgOh1y4cIHpdPqpAcZ4UnHn/py79+fsH+SUlSHPDfNUc3xSsrOfcn97zuXzMUoKtvdyEFAUhlSDNoaTYYYSEoNFVxbfk0hhXFf0E//yD2t6YXATiNMk58dpUaclHvvHPhKRIEEFC8xhz94igLCYI6ymmfWZBm2OGlukXg1lSgovpJYPmYVtSukzTHqkfh2/ypDWclzfIIza9Ca7LE33yP0aw2SJSvr0ZnuMwh6ByVmdPMRIj0r6ZCpiv3keaSs682M8W+HpgpoZo4ymlAGD2jJxOSOq5gziJUovpJkdg5B0ZgcMk2UOm1uEg1v4uqCQEmk1ninY7lxlGrYxSOJyyvJ0l9SvcdDcOnOzOqpvIKylkQ04rq/jVzmByfB0hRGCSdTDqx6yPNvFCI+TZBlrNeeGt11XSfqM4i5xOT2jcXm2Is5HTMI2uRcTVenZWRlGXSoVoVXoBJy6BJljtNPPeLog9yN8XRLoDC0TtPKwpsTTJVpJDB4WF8CX+fFjeEFiMXi2WgjpS+JijBCSk/qao1Kd3mn+LLqBH3FX21PPCCXPsDPGgAyglShqsYfWjhpZlM4Sbm0l4HMvNLl8/qNaij9LGF+j0eDFF1/kxRdf/AvcM7h79y77+/v87M/+7Nn3wjDka1/7Gq+88gq/8Au/wGuvvUZZlk+8ZmNjg+eff55XXnnlryTIKAqD1hZfffyFq5TEaDfd1sMhm4fvM8tG9OOYbKXH7PYM885N1myfbqwpdwaoRt1Rd8KQ+Nw61WzO8NW36Xzlc4jAh/LJjB4ZR9iyRNXrCCXp/MQXqT99+WO3J93eBymfABin5dVi5ncecPi7f4SZzZm8dYPyZEC0uUa8uXr2nnI4Zv5gF5nUXEJ3r7ug+2jy/WP85e6Z01JyeQu/XsNfaqPnGUV/RHZwjJmlxFvrJJfOofMCISQqCsh2Dhm/fcMlW8/mzmFJwPT6B8xv3af9xReoXbsIOMH38Btvkt7bppqlICX6eMD8g3sEa8uopEa+8x6VrhDGuMmPp/ACH1NpzDxFxhF+r0U1mlIcnuD32sh+QPTsVbx6jXR7j8E336T+mauMXr/O6FvvECy3Se/t4LeaqCSmHE2xxqKaMWaWYqsKq+1CoBuCNczvbWOKkqDTREQh4VKX6Qd3kGFEsNxFeIpyNMVoQ+3iOfxOi3LgOs0my0nvPHC6Dk9SxTFGa2ylnWjTOl59cvEc5XBMur2HmaeEaysUiwRsBMxv3wfpJtvFwQm20qSLTn+0sYqezUl3DvGaNSd8T3P03AUTJhc3nRvRYAQXN4k2VpnfeUAxGBM/BjL0PMWWmuTiR0OMrbVkD/eY3rrH8LXrFMcDVByTH5ygotBJ/QKf5ovPUF25QH5wTLZ7RLjcwW/UkVKdaR3y4z4qDun++BdovvA01lon2r6wiYxC5vd2nNNWvYbOCkZvvUm2c0i8sYrVmvjiOepXLzyhV6pGE1T8yZbiKgpdvkSvg8lzVLLiKG6TGVQVpqqoJnOy3QOmN+8ifd+J6ddXiDZXn7CHxThwnlw4R3p/m2zngEl/yPzuQ5IrF2i//Nkn9Eh6njJ99xazW/ephmPC9WXUgonjNWrkB0cuwFIqgqU2eh4t8jos1WzuBPWhj5nOEMrD77bwHpvW6Lxg8tYNsqMTB8iLAqk8gtUlkvVVkr0Z/TuHNNd7H3m2p5kmChX12g922f8jQZcaDoe88cYb1Ot1vvrVr3JycsJoNPpUv3MyrXjrPSfoC0PJnQcz5nNDo+5cQo4HBUq5ML27DzOwhuNhhVIWJSSVdhxuJQVKWEezMJa8sk7Y7T1OiXq8fkjOOxo+Kuhm8fWHxby4L07pM4/CPBbC31P+jKHwIioZEOgUgeGosYUQltIPKGSMMjm92T7jqEO+EH4rW1KqiFbWJ6hSCi9mEncJFmnVqqoovYBhtMwgWcK3mlnYQlpN7kXMgiZGKirpc9Q4Ry0bUS9GdKcHSFsxqK0ySFZJiol7EIRNvKog0AVzr0buJWRezKC2irGSlem2A0v5lN3mBeZhi2bWJyxnzMMG98Jn0EKRlFN8nTNpXiQq55QqYBK2mQUN8mSVYKFFmYUt4mJMIQMsLgm9UYyYRR0qL8avUoz0MMIj0E+6WilbYaRHIT1OB565injYuULqx4zjNrmKqbyQoEqpVIBXpmjlEZdzShWB1uhAYaSPVm4SJHWJlBrPVI/cthYOYdJqx4iyFmsFRZAQVjMCXRIWMwgslQzctfBnmSj8CAOMD5ddWE0LAVGgsJYzB6GVnqNGxpHi0vmEpy7XP/Z3nGoyvteazWbU6x//u/68tb/vnEVWV5/svK2urnL//v2z1wRBQKfT+chrTt//V63qNY9G3Wcyr6h9zEN2Nq+IQkUzEYy+/Q6MBrz0xQ3mpWCaWbI1Q/6Nb5K/+m2mnkIs7DUBgpWuozP4HmaaUhz1iVaXmd25j05TVOwWd0IpTJqhp1NUktB46uMBBuAcc0L/Y39WDsbMbt1HNWo0X3iaYKnjUq4ntykHY5rPX0OGAdn+EcXBsXM0AmYf3CVccfoF4SnmN++y/HNfY+U//UlkGDC//YD+H3yL4mRIftxn+I03EYFH68VnQCnEZIYpK0ylwVNk93eJV5dpPH/tbNuCpS7FyZDht9/B7zQJlrpMb9xmduueo5i06sw/uI+ZzZ371gf3md6+TzUcOdoWOHAVheB5SCkxavEBtgI9TSlGY8LJFDNLEZ6i/fnnic+tM3ztbWa37sMCCKkwRMWRCxOUwgmWlXLNOSWxVYUMfNQilE0GAaZwouyiP6LsD8iP+phCkx/tke0cOIG8UjReeIbxt9+hGI2JN5ZBSNLdA7xagmrUyHYOndOWFOhKI4xF1WLyo/4jZyytqcZzVORTHBw73c0i70T4EmOMA1TtJl4cuknRxhLlyYj8qI+oFuFyuaPcRevO9lT6vhPVC0H9qUtkO/vM7z5ExaEL1pvMsFVF/blrZwGPj9f0xh1Gr74N0umJ/GbDuW9NXVc+Ob+BV3f7WRyekFw6RzkYYcvK5bDUE6rhhOG3rzN99xbBShcZheSHzsY1WOrQefmzePWE6VKH+d1tlxXx6lsO/LYalIMhkzR1adsPdun9xBfPtlWGAebjF2OAoxrKMHDUPE+R7h6S7exTHPbJ94/ITwZnCdoyiQl6HYrBmHIwopxMaXzG6Z3AAfVwpcfgldfO9l/WE6rpnOE33qA8HtD+yiOgkR/1Sbf3KU9GH5lOCiEW7lkTrBQEvS5iTTG79QCEQPnqjGfid9qoJHQJ9bVHToXpw12G33wLYy1Bs45Xr2GLkvTuQ8rjAevL53nveMJ0MKPeffQMKivDYFhw6XztrwbIOC1rLXfv3uXWrVtcu3aNixcvniV+f1IY3yfV7n7GeFLieQKBc4wajEr2Dg1x5G5SaysxaVrRHxX0hxVV6cCDUo4uVFUQhVAaMNpSlI6uXlaPaBeP6ofkHgWLVu2pBJkF7eW0TrUV8qP/fwLcPU7Kxy1OF3kLVgg0HrOwjTSacJFBoYXHNGwjjcvdyLwILRTSlG5xbAq0dKLsSnjkUUKYTxBKM/VbDOMec79OVKSE1YxJ2EWZnO7sgH5thdRLyP2YSnjYhWg582ukYYNx1GESdYjKKaUKCauMSvqkQY1SBfi6ICpSJlELiWF1eJ/D5hb7rUtE1ZRSRdTzId35AQfN8+QyoJUeM0yWOUrWsEKQ++7vT4MmaiGMVrqgFB7z+hpxPkGMbrnvmwrje456BPg6J6xSMi8hKcY4ghPkXuymIlV2dqiP6hsUXkwtH1PJABNK5kETC4RVSjM/YRSvgDVoX5JGTYzynU2yFBjrYZXEqzJ8k1GpBQUKF2xoF0Czkgs/bm0ovZjSr2OVhzIaKKhUxPeGGD6kzdCA0C5y/ke4rHWf7ygQLrVZCvJCgxA06x5SCNothRBwMigpCkMQyA/9DvtnAhnf77Tvj+s+fjet2/fymr+sVa95XL1c5xuvnTCduRC+02ORZZr+oOTyhZi2mTHYPSLaWEVISS2EWijQcYeju3UOtUFP53j1Ol4jcQDC96jmKaYoMUVJOZoQdFvE59ZconZRIn0fU5YuMC4K6f3kc0TnP7rAOy2vUSPb+SggtMYwu/OAavbIklbP5kxv3MVruk5p2mkSbqxw8kevUZ4MULUYFUUu5fv+DuFqj6DbxmvUqF+9gIpCJu/dZvjNN50w+9wq4cYKkzffI93eZ1CUoA16OnPug5VGJpGjzXwMEAp6bWa3H5DuHKBqCfM7D/F7bVToEsi9WsLg1bcp379H+mAbk2bOOUhImE5Ba5eVUZXIJHGdZa2dHWrkO/vcoqLMZ0w/uEft0tZiYX+Av9yh+5XPYWZzqjQjvngOnWbM7zwkXFvCaI2ZzfHbTZdRcX6x4F/QnZJuB+H5HP//vo6KA/xOm8ZSF1MUTqw7mtB47inaX3ye0TfexK/FnFnEL56LInDnGuuApfQ98HxsUWCrR4tjGfjuJhWGhJurLlV7NCZYW6Kazsh39lBB4JK8a4nrugtJ4zPOStVvNZFx6JyhjEH6CmsMpnD0rfJkgKk0MggIlnrookJ5jtJWu7xFfH4DhCDbPyLfO1xkPlRM37uDv9R2Wo9KU+wfEfQ66CRGj6fOEW1BA9RZTv2pS4Rffonhq29TDqeI6ZzZ3W3Kk5E771HE+K2bBL0WSz/1Ms2XPnMm1m597jmSqxfY/X//7+jZnOaLn0GFHuVoSn40wOYHVOMpKg4JV3suFX1jlel7txcajicnfSYvwFiijVX8XhsrYPgn33bTme198sMTyuEEgQN98VIXtKU4OqZ29QLZgz2CbptofZl8/9iJ8UcTMIbk0rmze6iKI/xWw1lFry1Rf/oyOi9I7+8wff8O+dEJwvPctR2FjwKHhbPqNcMxwcVNhDH43Rb5wTF65hakKggoByMaLz5DZ+EsdVrzOw/J+wNazz+90FICQYCqJ+T7x9TVDucbm4wnJZMiJQgVVWnQxrK5FnPt0ven+fWd6ocGMvI85+2332Y2m/HlL3+Zdrv9aKMes7D9Xspay/GgoCwNu3slSsHacog2loOjHIul0/QJfEGaidNgVpRcmOvg7g+6ct76vi+R6hGTCOvcph7VX8T04jtx4b9TnQKM0/d+wu859d09BRifmPh8SrGySGsBjWcrF5QkFIqK3K8v9BoZVkiGtRUa+YBA52gZYqWHNJV7vSmYBw1q2YDSWo4bm0zCFkYFmMXfK1VIqFO09IisRpkSZS3NYoy1hknYoUJxXFsnMAVP732TJeQZ7apQIbkKAcksaBDplFQ0CMs5F0/eYxa2OGptoaUiqqYk5ZS512CveYFK+ghTUvgNHravctS8wCjqYIVAmkX6vNFU0qcMm2ipyP2E0os4bJ1nd7rH6myH3IsJqgxfZ5RejEYQlnO221co1UXCKiOs5kRlysboDpEpSVVI4dUYJEvUsxGDeJlJ2Cb1a1hhKVRIUM6Z+i1y6aOsxS9z8iBx16x0Im5PF/imQhiNMMYx3xbHH2EXp945oglrCcs5YZVhhEIZQerXqfCRRmPUJ4m+P+Z6gkdA1fIYL+lHD2ycOiM26gpjHPXR4qx+pYTJRGMMhKFgYz1eJITrj4CM02bHp6Fuzmazj0wa/qJqbc0JNPf391lff7RIPTw8PPuba2trFEXBYDB4YppxeHjIV7/61e/Ldv2HUC891+TkJOf+zpzZTKIWYu+qtCz3fF7+Qg8m+84lKHhy8Vwc9RHakly7wOStmwSrPfx6Agh0VlAOR25BHAdn6dqqliDj0NnJphk2K/CXutQub7L8Mz/xHQFffG6d6c176Hn6BJe+Gk3JtvcfBX/hwuVspUkf7lFN5oy+fR35/m2qkyHJxXPUFxOTqNIURyfIJKL+7DWXh+D7VLM503c/wGvUzvIyAJLLWxQnQ0avXkeFAapZWwiyLWKoMFXB9OZdalcuPBEQBk6Emx+enNF7wo0VTFVh8hKvUad25TyDP3oN4ftuAZtmzlUyL5yYCguFRkSn9F5H8zqdPHiNGpUUFEd9isEYryypJnOizTXXUb+wyfT6TUyak1w+j37vFvnBEXqSopKIcLlHsLaEV0sYffsdyvEUW1Q0nr2K1drpFUWEXNDrpOc5Ss88Q3gStMFf7WGmM8rRxJ3vMMSUJeXJkKDTQi067l4tJlzpMnr9uhPwL8rvtJFxSLF3SP3pK05LlpfIWoxXSzBpQetzzxGfX3fXwfaeSyY/v4GXxEyuf4DXqmPSjOJ4gNdsoJoNVBQuuPxOd6FnKaa8iapF1J+6TPLURcKNFawxjL59ndnNexhdIX3fTQ7u79J5+SUn9O62mUch1WzuKFCjCfnhCUGvjU4zsBCdWyc+t+Zoca+9w8nvfYOiP6Tx3DVaLz5DsNRBz+cuOf3YWfiaqno0LRiMmd64Q7y1jslzsvvbGF05X5osJz/pY6uK5gvPULtynnB9meTyFrMP7hGuLj3KnRhPSR/uO+rfUhshBLasyHYPKE+GzPcOkcZlYiAF1TTF77SpvbhJ3h9SDsZU4xmjb7+D+cxV/F6HeHOV0Vs3EL7H8NW30VnhAM/aCuFKF6+eML/zgGCpQ/+V1xm9/i7Z3iF6njktD2C1cQniSjn9jtaYrCS+sOmmIcMJwgr3HBWugaTCgHCt9wQtTGc5+cERQbuJLsoPWVkL/G6bbHufi19YIfrSMscjw2xWEYSK1aWQpW6A5/3gaQg/FJAxGAx49dVX6XQ6fPWrX8X3n7yhf9pJhhAC3xMcHRdM55r+sOD4pGA8LSkLS64sNNwioig1ZWnPltZYl9Z9CjyqCqQ0ZKnLIfvoVvxF0aPMn+H3nG7NYzd0+5jGwj7WcX6cEvUdF5ELsbV1AjtPl9SKEZlfR8sAiQXtBMeVcmndlQzIVUhtYfNqERReROolNIoh4Dr7w3iJadTGCokRCmkNGkulAk6SZTwsqXHibmVKUulx3LxAqQLiqE0lFdIYhKloFGMq5WOBSnhIWzELm5RevKAHWbT0mMQ9hDGM4y5rw3tMwg79ZI1SBeRexDjsgKnQMqDyQ1rpMWDJvQRlHCfYLvIltPQovBjPlFRakvp1bi+/wCyo0ckGLE122G5dZBa2mQd1JovJT1zMKJVPrmJWxjv05kfsNS9wkiwxD1oc1M9RSYWyFXExYRY2MNZSScU06jrQKyVRPiEp3Q2xUAHCWJrZkFoxJvUTchlQqmiRieEQ86nTBNqgdIW0mricoTALUXgASIIqo/IiDB9PyXhUCwHGd+qAn35WBT/U6caZaRqLxoGFqtCsrUZoA6u9gId7KfPUkGUaP3AAq9lQBJ5EfUwa6ul96EdlknHp0iXW1tb43d/9XT73OWdNWRQFv//7v89/+9/+twB84QtfwPd9fvd3f5e/9/f+HgB7e3u88847/OZv/ub3Zbv+Q6huO+SnfmKZ6zdGbO9m5KXGU5LV5ZDnnm6yuR4zn8mPJqsC+f4hMgrwWy2naygKdO5j8oJqMqXsjwiWO6hmzbm5+R7F9gE6K53GIMuRcYBKQoLlLtObdymOBtSuXiC5vPUR8a3rjl5i8vZNvGYNv90AC+nOHuV4Suernz/rJkulqF27SLi2TLZ3xPzeNlhL/bPPQPGoWSc8RbC2TLF3RLZ7gIpj/Fad4sB1d5PLTzoQee2mC85rJoh6guf5GN9DxZFzZZrMGb/1PsmFTRrPXnsCaFitEVI46tXRYJEPkWGKAiGVSxAfT8DiBNxljh5PFq4Yi3NgLXoyAylQ9Ro6z1FBAAistagkptg/pjg+YXp7yvzWfYQS6JmjtUQbzq2pGk/dongeET33NBiLv9yhOBowf//uWbcxXFti9Pq7FMd9mi89RzUaUfZHWO2esV69RudLTmNVjSZOUHxulWx7n+LgeDG9MAgvJD6/hgyjMyAZdFr4rSYmK6jGU2QcgTGIwPHzvSQEBMFSB69ZI9s9Ij63Rry15hadSYxXq6HTuevynwzQ0xlCKVQSIaMQk2UMv/kWfqdB87mnXPDxUR8R+FSzGfMHO4zfvsngldeoP3uN2uXz5Md94o2VR/bF4ynlYOSSzSNnN5xc2GT2gUs4F1I4oHHUR49n1J+9QrS+zOTGbUbffpfyeIAXh4SfuQpFyfTdW9SfvQIW9GTK0atvM71xl+TCOsml8zQ//yzp/R0XXmcN+f6xe44Vmmo6A2sph2P6gzeoP3PFGSEEAe0vv+Qofvd2zoBmOZ6gfJ/iuM/J11/Ba7eYP9zDq9eZ391GGhC+y/cQgQfi9Po8xmu1qF3cco2osqL7E18gPr/J7PYDZjfvInBTOxn4lIMx+YED0NHWGtn+Mff+X/+C0RvXsdpSHJ5QnIycSD/w3DmfOiqcnqVYqwmWuwy/+Rbzm/fcZDAOkaFz+ZS+h2o1qEYTl2y/sM81WQ7SI9pYJT/qI1efFIsjBdVkSryxwvJqnZXH+lzWWibTirwoUVLQbPp46gcz1f6hgIwwDLl69Srnzn1UdASfHmQArC1H/PvhMTu7GaW21CJBWSrmc814VOI0VYJ5WlGUmko7CtTpgOI0NsCyaKR8pBy4UFI5vfUPvB63qT3VXJyuqNwEwk0txKILc3rxfSdr0oWmQwgsBq18rFSktuEEeKKikh7SGgqgUMHCPtaiZUChNEGVUaqQzK/jRSW9+RHP7v4pwlp221fACjyrEThUb6SzH1TWoEyJFWoxnYgYxStopYjLGcJoSr+G8QTHtXVq+RhfF5QqdOLt8Tb9xgbTsE1SjImqFGUqpmELzxQIa4jLGZUMmAVNonJCrtqLLA6BEQKDpJQehRdRqBCpIpQpKGWItAVSVy6B22hCBBbLKFliHjQ4P7jJOGrhGcPK5CGlDCi8hFo5YWm2S1TNKbyYIqyx077MfuM8o7DNSWOdw/oGxYK+ZReDVGkXrmcIlKmQ2iARSAzCaHwKfD1hbfKAqEoZxMuEMqDwIurpCSf1jcV++Fjlu4edEPhViWcrlNEIDBhN7sWAxFr92HX0STecT9H5sDjbyR8S0Piwa4aUUBmB8uDpizVWl53jnLVw5XJCHElmU8Pdeylf/lybeu2j2621fiJA9Hup+Xz+59JkTKdTbt26dfb13bt3eeONN+h2u5w/f55f/MVf5Dd+4ze4du0a165d4zd+4zdIkoS///f/PgCtVot/8A/+Ab/0S79Er9ej2+3yy7/8y7zwwgtnblN/VWupG/ITLy8zHDt6nOcJ2k3/LAXX77VRSUQ1nePVH3GhTwPUpO8Rn9/ASklxMnDaCeXhN+t4zcYZlUKGMTrP0ZOJSzxuNlx3GVD1BL/VpBxPOPnDVymGY9pfeP6JBYNQitbnn8Nr1Jnfukd+6AJJ/VaD+lOXSM5voOcZ5XAMWiMWHX49m1McHGO1xmvUyfeP0POM2tXzCOUoYjIKmL53m5X/7KcIV5ecjkGKj1h42kVytmrUsUUJUUTQbTk/wnmGlxcgBZP3bhMsdYjWnHWmNcalhOcF83s79P/0dcrjAfH5NeKtTWTkM3+w62g9VQXWYCuDLvTCrcF3jQu96P5VTksRLnVRUUj6YJdqNsOLYoqTIce//02qk6GzuR3NEN4x1XSOqsXUnrqIF4Vk+8f47Sarf+enOfn6n7D3L/8v5vd2UPWEoNWk9sxlOl96EZPljL/9rktv/9zzlKOJA0ZK4bWaqMBjfncbVU+c41ESEW+sOFcoY6g/c5V0e5ds55D6tYvo2Zx8PAUE6//3nwUlXebDaILwfZa+9hW8OCI/7jO77WhwqpZQe/oS+d7RE3dlv9XA7zaZvHmD8rCPv9zDa8ToaUq4towKA5fM3R9hEaT3timHI1DeGc1JhAGyVmPyzgcMX32b1heeP8uAACfoFr6HCAKynX2i9WWSS+fccd92idhCKWTg0/jKZ6k9dZF0e5+j/+sPEUq6a9z3z6yNi+M+g1deR/geVrv8jMnbN8i29zj+vW/R+MYbrsvve+66LSv0bI7OS4Sn0NM55XiKyTJ2/j//BypxOSj1axfpvPxZ6s9cYfzOTcrXrxOtLRNtLFONZ4t8lD2mH9wlunjOJYvXaujJzE0yABYJ8OnOIYnnL5grFhn6yDBEKMn87kPnLvXstUeC8AbYqiLb2aeczkjvPGB+96G7PpIIGcfodJ/iZIhMQrwoIpACfIXOc6yAajxxzQAE8YYTpsvQUcKElAgpKQ8H5IcnZ+fnVGOi6gnsHzO9fguv66xvT5Pgw7VlalcvPPE5Hk9Kbt2dctx3bB8hod0KuLRVY331e4+H+LPWDwVk1Go1tra2PvHnSimqqvpUHOKNtRBfCUaTkkbdI80stZpHEkvu72SUpaFW8zAzt6bypKNAmfIJZcIn1KPpxQ8NYDzxd4XjxJ8KuU9Bx2PUJ/d6DXaR1CydBR+mclaxQriO/Znj1EIyLgSFH5NkQ7yyZJp0kNY4brrwkNZNO5CSLKjhVRlxmSIsdGaHPLfzCiuzPe4uPUt7dsg07mKtcJOQxWRCYtEqoJ4NcVtvmQXOgSkuJ46upHwq5WGQzMImJ/UNfFNSKg+soJOe0MgGpH6NcdzF5CMHKpRPKXy09LjbfYZKCqJizCTqMI3ahOWMOJ8yTnogfUovcftuQaAd7LKaSkVIUeJpi9IVtWLsKFQqwArJIFkhKqc08xHjuItWAc1sQOFHpGGTuJoTVCmD2hqjoM0o6nDY2HLZGwudzChedg9YR95FYvGsE3NLqwmqORbp7DJlg8yrM4hXiMspylR0shHDZJl2PiAP6mRoPBuSCokSIHWFVj6ZXyPQBZX0CKucRtZnGC8jkA4UfGKXfpGr8okA5GPAyQ/YHu/jSi4YgkpCo6aQ0k0pDo4KLpyLiWJFURimM+cspZRgecn/iLUpfHrRN/z5Jxmvvvoqf/2v//Wzr//L//K/BOA//8//c37rt36L/+q/+q9I05R/+A//4VkY37/5N//mLCMD4L//7/97PM/j7/29v3cWxvdbv/VbfyUzMj5cSgl6HcflttY+AU79Tovk0jkm128hNpZRSYy1FhmHzG/dx2/WqD99mXI8ZTae4i9oMdVk5vQMG87dqTg4ovdTLxN02lTjCZP3biMjJ0QuT0aYNCdaW3ZuNO/ddoFuH8oqkJ5H4zNXqF09fxbGJ8KA43/zh4zeeBc9S11onZQur2PoOP3x1gbCUy7hW0nSu9tUkwnJxa1FZ3iC32vR/sLzjiO+WDydJnCfls5ywpUu+XEfPZmjWnX0dI6pNH6n6egf0zloTb53SLi6hNWayfUPKA77ePUaQgqCdhMhoJplzLf3qF85T7S2hPAVJncgRgzGeI3YTQ1CB3DMLIXQhYrKKKDxwtMIBNObLiMAIbB5jhwMibc2CM81UKFPOZi494QB2b0dWl943jmAXdhk/1/+LuPX38WUFY2XnnFWu1qjJzOmH9yndu0CXrtOdm+b+tULBN3W2fE41W0YrdGzlGo+Z/zmeySXtoi31lBxhF3puSZaGBGsLmG1cQ5el7aIzrmpRPXCDJO7TAhvITq3WtP+wvP0FzqeaHMVk2aOitVsUJ4MCFd6JNcusnP/f8dIiLpN4o01vKajj4nAZ37/IePXb6CnM3ThsibK4Ri/08Ja4yYVRyf4y13mD7YZfftdbFESb60T9DoE3RaplMjAp5rM0bMUr1kn2lxdAPCE7k98gcazV0Ep5rcfcPCvvs7kxm2CpS754THFYIytXCaKnmfMbt4lvnQO6XnoeUrQaVF/5go6TZndfuA+P/P0LMXaliUqiSj7I3Sau2toZQk9zzj+93/C5L3bdF7+LL2vfdmBk8NjwmUHQKc37lIORmCtSyK//RBTVGAMxWB4pomRQkLkjBjKwYjJPEVGAXqekVza4uT3voFq1sj3jwhXe+g0Q/qnjSPrkuobCePX3nY/i2P8RsL83i46TQk3Vin7Ize9qzTZ3iF+r0240sOrxZRl6ah3sADAdayxmDwn3FilOB5g0xSTPdJyYi354TGTd26ikhhjDdn9HYr6kNqlc/idNZJL54g2H40wJtOKN64PmUwqOp2AKFRUlWE4Lnnr3SHWtthYe9La+C+6fiTcpT5cp6FVn+YBL4Sg1w0JfEVVWqQHRVExnjgxZ6vh4fuKIjHMAI2hTB89XSSu+f9REPFDco86+9vwsd659sMUFg1GoKxGC8BWKFs5Rw7PX4ANCUJhbeUyFIxBUeLrHItCS4myhqBKMYv3hcWcUoUY5bmuvjUgLEqXeKZw9BuricspVgruLz/Ldu8pRnEPqySYylGehEUZQa4irJB4piSu5nRnh8y8GrlfQ5oSLRWlCBeL7IJCReR+ncxP8PKh0xEIn5NkFasUninIbMJRzaVhGyEIdY4VktSvOVpXNqKSAVExY3m6TebXsELhL6YwSI9Qz8mVG2838wGTsI3SBXExQSuPUrlFSVJNCaoCDRR+gpceMw+ai+mOROmScdhm7tcZxj1Sr+ZC8xZ0M4mhnjvAor14Qc1aXO9YtJAI5WG1QCufSkjiYornFeQiZpAsUeQBl/o33HlSkmnYplIh9WzEJGxSqgjPlFhTgvBIgwaZMTSKAUGVon3XoZW2QqCwn3QbOEsC/9gf8olanx/iNAMcg9Bz03B8T7C+GvDlzzXZ2c9RUiKVIM81vi9JYsksXZhDfEx9UhDfd6o/r7vUT/3UT2G/g5m5EIJf/dVf5Vd/9Vc/8TVRFPFP/+k/5Z/+03/6Z96Ov8w1m1fsH2bsH2ZobWm1AtZXIpa6Ac3PPYe1lvGbN1wOwGBEOZ5hsozOj30ePZ1R3bjtxOFKYuYpwWqPxrNXMaV2wucbt1FBQNBtoWfOX99vN90iczgmPzp29KokBvpk23ufGIgmff+sgz+785DRG+8x/vZ1wvUVatcuIgOf/PCY+e0HeO0m0YazRLXGBYr57SbZ9j7CUw4UNesESx32/7d/x/z2Q2xVUU1mFIMRrZeeOePKS6XwmnXKyczx29McrQ1eHKEaCUJIjNHorGBy4w4qiV2SeJoTba053cW33iRcX8bvtcn3j11OQFbgJS4osOyPKU4G2KrCS2ogLVZbqtkMlKK2tUY5dtaj+cERlE6TqGoJJs3xl3uui19PEFKii8IlqveHjgp2MmT85vt4zRrDV992ydqBjx5N3T4KQbS14Sxadw6I1pZILp9j9Op1N6VqNx096OCY4qhP+nAPay3VaILfaSHDgOG33nZg48p5/FaTcHWJ1Z/7GuHGiqPOLQIFT8ur1+DDzkOL3Iblv/FVhq++TXp/F6Qi291BHJ4Qb61Tu3aRcjgme7jjhPizlPxk4Ox+6wkqCpB+CMaFDnrNBsZYTGXwE/f8MmlOfnDsFvWHJ1gEKnJCY7/VILl6Aa/bZn5vGxn4Z/ehajIjPzih9pS73k5+/xvM7mwzv/uAajJ3GoVlR/Wd3XrA6PCEYNllpRRHA3RVEdTrqGYdv+OAm4pjgnYDXRkoJqAN5WC00HBklJMJtnCTDWstGEu2HSOThP1/9XUm1993GS/3dwg2VrCTOcLzCJac1bCMIybv3mJ28657WuUlqh6DcLQiK4ULRcwLqvEMkxU0nrpE86VnEIHvAu/ev0Pt2iXy3QOyhbmDHk/dv3lOcTxENeuYNGX6wdC5ViWxo+Q1alSBh1Aepigd5THwyPsj9GTqKJLGYiuNLTQWTX40IFjqOhC62BdwOTODb7wJxhKuLGGNcfojrcn3j6jSnPjcuvv8PiY/2N5LGY1LNtbis2vQ8yRL3ZCTfs7d+zNWlsLvq1bjRyYn4/E6BRafxp9eSohCie8LkthZ0k4mFfNMo6RlbSU+Q3BJ4hJe87zCLpK8xWLNvnC6QwqDsYIfPYCxEI+cbbgA6zIZfF2ghQfSwwjh/o9AGItYUGYklkqFi/e7CYYREk9XhLrEX7ggVcIjI0Bag0SjrYfFQ9gMYc1CZOw6+4UXszTbI8kmTMIOpRc6YX2lUcYs6Dl24UoFfpURl1O6032kgCqICXRO7kUY4REWUzxbkSpD4YUExRxfp9SKiaNMSY950ERgCIzBsyW+KZgELSoV0Rp8wNJ8n2HU40H3GoP6mhNLaydc1wuhumdLUlnDogiMRiqDMoZaNsAzBQaJXuhJrBB4plw4ReXOjcoLMQisVEhdMIyXKbyAUvgIBJX08EzFNO5irMVKhdIlVjoPKGHtQkOxWMxbgRUeBktgUnIVoTBo4dHIJ9TtkFLFCBzlZ338gLBMOWxsIqxBWJfUHpUzwiol9yKkTqmkh5HqLExwIpvuvBqNkhWVVY+odk/Ud0oCf9x44LTER7/1QyiL01YJ6ZK+b9+Zk4QKIQXjsabbcZ+LMBA0Gx6tpvexVCn49BkZ1trvq4Xtf6w/fw2GBW+/N2I0qUhihVKCnd2U3b2Uq5dqXLlYJ1xbRly/hQx9wrVl/OUe+d4h47duEJ9fx2QF1mikr5BBgN/ruEyJi5vg+c5BpnD0KJ1mCPnIzUqGAdX0UWaOiiPKwfgTt7ccTRj8yetkOweI0EdnGX6vQzkYMX7nfeK1ZfKjPsFKj3C1B1LiNesUfbdgCTotTF4QrS8TrC0xeOXbzO/cB2PxGjWnqTvqM7vzgHz/mN5PfMHZnYZOxI41TgwfxyhPgTFk24eU/aGjZvjKheM1ayQXtxCeIlzuovOCoj90moNagvfUJfxui/n9bTAByZULZAcnFNv7mEpTpQUq8DG6wmhN0KijarFbaKYaPU2xWhNtrlMOJ+jplPjSOfymC/crByP8tqOOmHnO7PZD/E6LyD+1wLWESx1kElMNx86R5+AE4SnirQ0QTuAfri8TLHdckN9hn/TBrpsM5DnZ4QkqDChOhgTLPXpf+zLlaMLs5j2ElLS/+Dy1axefSGj+bmXKkuJkiK00Kg7p/PgXqD99mfx4QHp/h2z3AKM1o29fZ35/1117lcZqQ3Fw7EDw8YD44gYy8l1mRq0GQmLL7EwrY7FYXZEdjpDHQ5dBMp5STWfUrmyRPthjeuMOweoSZX8EAiY3bhMu91BJRHL1vAs//JM3kJGjU+lZRnkyRE9n+O2GA9SwWEgZRBIjkwiKypkjRCF+p3m27zIMELGH9KSbNBjtktJ3nKuUVRIvitxNXUmXs2INxfGA4vAEnWZYrZnevIuZZTReeoZgxS3MVRI7yuDRCTYrkLXYgb7Aw+oKmxXouVvvBL024WqPxvNPnelTos1Vxm+85/JhopDJG+9issK5RXkKW5RUeYadgM0KwOI16meOV8VohB7PkKFPdG4Now3Zu7exvnLZGUpi8hxblAgl8VoNquHENQiKkvjCubNQy2z3kPThHo3nr1GNp8xuPSDf2Xc6IAR6MiW5cp744iNdVZaWPLx5SGwN1ahywaCPNczarYCj45zhqGSp98m5I3/e+pEEGaedw6qqCIKPhhF9XAkhiCJBFElGk4pKW9K5RlcWGQiCUFKvKe4+TBEIfN9RSqoFY0gbR6Fyml/t6CvikVbjh1IfK0s5tUJTIBbicWGorM/p4s9YjVWBQ0vCaQmktQSmpJYPHSVKRcyDBpUMqYSgVIvJgVAIIZ1zlArcgrfMkJ49Ay3SGqS1SAyeLhcBd3uMozYWS2+6yyhaJvMTpzsQnGkPVFYR6hm1YkrpR0yjDl6Vo6oMG7YxQjDza/jG6S+E0YTlDC1DjFAUXkhSTCm8mLCcM6yvgrUEVUYofQo/XgjNJcbz6aR9pmELLSSVijhJ1vGNS/fOvWSBLsGrcjrlBAE0izEzLPV0gBaS/fZlp/GoZi40D0uSTyhlj6P6OhaPuByTeTGjeAkj1cIu95BmOuB+9xpHtU0QEFQZ3kLnIdRpqt0pZU1iBM5pwhqskKjKgaOoSkEqfFMyDVs87Fyl8APCyiXXnmpjcunjVzkaiTIVzWxAKQPmYZOonOPpApFIgmpO7tdAuPNpTq8p4JHmR/AkoHi8Til6i5//iFmjnm51XkJ/WPLH3xoSh4rVZR/lQS2WbO8UlNry+ecbHB7lbK7HeN6T+/FpQQZ8f3My/mP9+aqqDDduTZjNNRtrj4S5jbrH7HDAB3/4EHlH4t25Cb7npgD7LvjKqyXkWc78wS6q7hJ59WgCvo+VAhl4LtshcPzz04mA8D2seXQzd/kMj55rpijPUqkfL2stxXGfw//rD0kf7FK7esFRt6Si9dln0POcbGefcGMF2ahh8wJVS6hGE2rXLjK//YB87xB16qW/vU/RH5Mf9vFbDUerWtCjknNrjN+7Rbq9x+TGXeLNFcLlHvGVC+i8oKxGWO1yJaosJ9vdd11Ya5BSUrt2ETPLmd954KhE0Yz53Qekd7axWqNqiaNPhT7kJf5WkyrL8Rt1dBRSHPSxaUqV5xD4SCGp5hnVYOIcfVoNROCjxzm2KPAaCV49WgCoEhE7HruKI5JLW+SHx1gg3ljDbzdQUbBIlF4IpZMYU1R49YSiPyJcXUJ4yiWTz1I6P/Z5/FaD/f/t3zuKT6+NJ+oIT5FcPI+ezZnduoffqhO0m/hfeoH57YegHAUsWwAnlURneomPO7/p3W0m792iOB44167QJ9pYpfni0zSfu0bzuWuYoljYEY+It9awRpM92EUm0YKqN0enGdnDffA8vGYdf5GWXU2njhKIpRqOKQcTTJrh1SK8dhc9nZMfnjD81tuO/laUeJ0W0UpvYTsckVw+T+ulZ5jeus/s1n2SC5voeQrGUcFULWby5g3m93fRkynx1roTY58M8CqNLUuE72O0QYYB6rEpjqk0fruOv7FM0O1w+G/+0K1ZtCHoNPG7baehsBZVryGlYPruLae/6bSwRmMEKD/A5oWbVHmK+tOX3GdPSfxem+pk5Hp5gQ9VhUoShBfgJQF+t0vtmUt4rQaTG7exlXbndbmHrSpO/t2fICMfU1b47QZep0m0vko5nlJN5xQnffz2Igl+kWlhygqbl2f3ARfEd4KxBnJDuaAdGq1dPsxojEpidJG7cxgEtL/yEsFC25LvHyE95e4pUoEUbjpjHHVLKEVxMjy7n6UP9zh8/SaDt6YkSqNDSdBtkVw67xLIcbRRYy2V/v52BX8kQcafJSujKDSjsUZKQVZoytySlxrfF4SBYjgs2ViLCHzBUd9FtZ86Sp1WdWphKp13/qfUnv/g6mxBd6rBEI85B51OOqQTGiBBWIxRlF7A3Dap5SN8UeDrEs+W5CrBCEWufPAiknzogImpkNbgmQKvyJkHTadJwOKZEs9YknICWA4bmy7ozVqGtRUG8RIWxdr4AVE5R1pNUowxSJam+yAFD9vXyFREEXaoVIDEYPDQMsCvCpr5MUJIKhVQSY9R3KOej4jzMbPFJKM33UMt6F8WSeElDryEbQoV0cj7zn/dGrT0GMddSq2cPazOaaR9cr+OwOJVJUJYxmGbsMpZnu2S5BMKPyL3aiTFhDRsonTBcX2NadihlD4CS1K1CPI5vs4pRMzMb+AFOTO/SSlDBIZK+BReTGUqB9J06RK/rXYWtMo5p2ihHIiqMoSANGxR+S5vYxy1nROWzomrngMrpnKTEgyV9KiiGGkr/KpgGjawSCrhsd/YQmKohLdI07AYazFSLXDEKXAwDnB8LF1qcX2dicXtgoq30Pyc1g+ZMnVagSeoJR55YaiswQ8VeW6YTjVRLKl7Et+XvPvBjDSzPH01eYLa8B9Bxl+uOhkU9IcFK0uPAIYtS8r33kfu7GCPpuy8PqIx3APPdRzjc2uobguMwasnzG4/QNZrhGvLxOfX8es1RBhgi5LswZ4L+Qp9xAJIBJ2WSxXOcqTvYUpNuLqgQSxsXeOtjSe2U6cZw29fZ3L9JqPXruPVIsaTmUvLnmcgJKoW4y91MHlB2O0wffem49wvAs/iS1uY1NFiTFFQe/oStqzwmzUXyvd4+rmUJOc3md+5TzkcUX/qEtHmsgtuKwuyh3tOzD1NKY77gCBY7ZLvHAIsuOArLh/j4R7p/W2QinBrnWLvCFWPKSdTspuHyCCgGE0oj/qESx2Sy+cYvHadYv8Y6yuE1o5iUpaUgxFeu0Fta5NyOsNfauO1GojQRwUBXrtF/nAXa2Ln+mWME8eGbhITdFoYaxC+T9EfMb+3TTDvIgLPuTPVYkzmErN1UWDyAqs1zReexhQltcvnHC3O80i39x2gUW5SlO0ekB85wAYgAo+T3/+Gm6ZkuaOYAcFSx1nRfogON7t1n4P/4/fI947cteF5eN0WxVGf/PCY2pXzmKzAaMPsg3v4jQQ9mdJ6/mlsVTlgtjATKAYjyuEYWUtIrpynmrtFbDmaUPZHjuOvtbMB9j2nUdlcpzg6ASFcjsj6MtL3KftDen/ti9SuXqToDymP++i8ILu34yZBvoc21mkIMmfVaqxm9NrbLh/m4taZUNxpTwKXqaIk1WxGORguAILF5iV+t0XZHxGd3yC5cp7p+3fw4gC1CCw0eUGw1HEAMY5J9w7dZ3FrHZVEzO/voLVB+Y66Pbv9gGhjFVNVCCloPHOV6Y3bmCxH1RKnSZUSFUWIwE0qi50jju/vuga3FG7brEuft2mOPTV8yAvKgWtGqmaT2lMXyP/wCBlFqChHT2cQhVTzlHI6R4W+m3KmOeVogp5l2KrEGnOWnWGNQVeaajx1WicBzc8+w9Lf+LEzMwZTlou0+QmTt993CeUbq47SVlXM724zev1dWp97FiEl/T9+FUpL0muDUviqIj0acnKcYbYuIuKYwBdUxp6ZXny/6kdSkwFOl/FpQMZxv6TSlkZNUYsTlJLs7GWMxiVGG3b3MqazijTTFIVFKTc5EmdAYwEwhDqbbPxQ63va9Q9dHIvF9GIcw6NFn8B6PiLPMFKR+TXiakagM7yqwldOR2CFh0QjrKESgYMwQjKLWkhTYYVE2sVMQiiEdQdpFrQpZUivnDMLO8TVDC18N4b3Y1p5n7XxA2rFhNRP6EwPHJ0pXmYWNvBMQVJNUVozDtuUXkii59TKCfVsxDhZopaPqWcDsqDONGzTme2x37rorHeF02ZoIZFWMw2arnMjFFL45F5IrZgQ5zNmYQsjFLX0mFCXhNWUXI0Z1NdQtlqAjtpCRB5y2GzTTAcYOXFUK+Fx0NxiHjbOjq8wmrmCInSL9cJLMFKhVUClXB5FXLluTKEitPIQVYGyFdaqs2MbVBnWGqxUNPMh54/f5e7Ki5TSx8qAWdxw+hghXUq98MmjFqlfQ1iLNPnZNaCFB8qSqw5CQC0bIK2l9CIqFSBshTAlvtVOl3IKLh6nSH3S59SeAtuFKPwUoJzOD05NCLRe/LofDtiQgPLcrbwsLZU2DIcVjbqg1Qy4fD6hPyip1z1qiWL3MGdjLaTZeHRbNMZ8Kk3Gf6RLwa/+6q/ya7/2a0987/G0cWstv/Zrv8Y//+f//Ey4/s/+2T/jueee+75vW5pprHFdvNNtKd97n/L2bWSvR1Rvk98taAYh+e4BwXLn0ZulozSoJCbd3qX10mecq0ulUUojwxCVFKQP9mg8d41qNqccjFGtOvHWGpN3b2O1JlxfRcbxYqE9IL60SfiYWNMaw/C1d5i9fwcVBgSdJsGKE59mO4cUJ4OF1WkdlcSUoyl6njJ7uOdcpep15vd3UOExyeVz1J99imhrg86Pf4GDf/V1bGVcR/exMnlBtndIuneMKTXFpXMuKfrWfWqXz9N84RlGr7/L+O33kVGA123jRSG2rIjPb1D2ne1psLnK6NV3sNbQ+tyzeGmOmczQ4zkqjqhGU4JOk2o4whqD322jJ3PXOY8jZvd3MGmBiNw6wVQlfqNOdG4Ndg9cirlUtL/wLMJzydaqWXeL4cGIapaRHZxQjSc0n71KdGGd0atvM/iT1ymOTsj3jpw7VC1ywNBaqvGM9MGOA2+VQdVrjK9/gJ7OEcpNBkyaYeYp9jFqg4xCioNjplIyvXmH4Z+8QdkfEm1tULt8jtozV6ld3KAaTRn86evIr7185rqk05S9f/l/MvzTtxfuVc6C3hr395FQv3qR+tOXqWYzRq9ddynoAsK1ZZovfob5B3fJT4YOJE3d8fUiF943fecmep5hMpdrUqUzBwYqg/Qd198aTf3pi1ST+UIQLfB6LWqXz1O7dhEhJcFSh/mdh0zfu0V+dHJGxxFhQDWZMrtzHyEVfqNBftBndneHapri1WJUEhNtrjodyfaC/mQM05v3CXotVBQRLHeZ3bqPnszw2nXqVy8w/+AeVnmYvMRvLWyafd9NQeIQm2aIMAApnXVw5YIa9QKEF0d9Z2jguQTt5OKm00KNp466Za2j73WamHnG5L3blMMRjWevEXTbAE4M/u4t8BTx5qrTcQwn7pFXlhRHfXrPPw2sM3n7JtV4jL/cgRPhaFDDMSrwiTZWCFZ6zG7eRacOSGrtjrVREqENGIuUknI8wV/uULt2kWhznf4fv35mIex32sxu3qccjqlms4WT22L94XmoWoxXi5i8/b4DSdpQP7/G+qHmg32Ll3jsiQ5HuxOC7JDahXX6/YJ2O2A6K8+MML4f9UObZAghvqO48dNOMo77BcvdgN29jMm0pJYIDA4s1BOJtobBqGQyrTDm0QTDUTVPxd0aax+50/wHV/aUunL6jcfoLlZQ+jFe4RyYbCXwTelC9Pz6ggJV4pkK32oMlkwmCGswQqGVcuFvp25V1mCkwi8KpDWkQY2TmrN2nEYd50CFYRy2qecjonyCFWCsomwRxk0AAQAASURBVFZM3MPdCwlNBtYF4eVeiJYBRnrkMqRM1girjHODW24SoEI8XdLIR3Sne9xbeo5hvIy0Govj3CqrSYMa48hpQ4SpXAK5VPi6olA+ICiCOo3ZLkb6eBia2YBaPqBWzrjYv0lczjhsnMM3Bb20TyU9BvEKNmgg0QRl5rqKQrnpjlJQOmtfsHimwpzS/qSPtJp6NsTXJYUXEeVjShUwjXvumGLQ0ncheRgsBqt8wnJOEXYovAAtnReX0i7tvJ8sEZhy4UKrUTjhvwCk1lReiDCnrCZBrRxTmgITtl0ona6wxhIon0L6bvIgxHe49j+JOvW4dsPyRAaMgY+mg38ny9y/uDIW8twgpaCsDEIK+oOC8RjCwCPLDZ4viCNFHClGY9eEeBxkfNpJRpZlaK2fcHr6q1jPPfccX//618++fvwY/uZv/ib/+B//Y37rt36Lp556il//9V/nZ37mZ3j//fe/78dNCvHEpWfHY6qdHWSv6yg0swqkQo/HBD2nZSj6I+LNR3QmoytsqV1Ow2BEfvsBtqyQYUC0sUJy6RzNzz9H0Gkxv/WAbCHiFXFEeXSCufeA7OEuqp4Qnd8gRjC7eZdoa52g3XQC47vbRJtrFP0h+XGf/HiALd1nvTgeMLlxm86XXnCuOcd9VC0m2VpndmebcKlNuNxDz+YMv/k2tctbtL78Iuk9t1hMt/epZnOC5S7hchfh+aQP9yj7Q7x6TLjcWXTvFfO7D0kf7tP98c/T/tKLTpewk6DiALEIBw2XuqgkJj84RjWcW1+w1CPbPcRvNYi21kkf7JLtHSCVoJqlyDgi3FgFrSmHYxdc2KzhjyboIHXc/XoNr91AWEuxfwzSaT+EkjSffwZrLdP3bqHCgNHDHcr9E2fRqhTBcodqOuP4D75J/9//KeVgjNdqgJIU4wl2sRANui2C5Q6mMgQrPWpPX8JvN8i39xi/dxs9nFD0B+h5Ttkfku0eYoFwxR3ffO+Q6Qf3md16QHr/IaoWU/YHjGcz0gf75M9epfvjnyc/HjC/8+AMZAy++RaDP/o2+Ir4/BpCuXtONZszfe8WKEW0vkKwsoRfNMkeHpDt7FONpyRb6/jNOo2XPkM8nlKeDJm8d5toa43605dpfe5ZzHRO8a238Bo1/F6b8mRAtnOAFICx6DSjdnmLaGPZ0ePOrWGNxQtDJ/Y/GaGajmY3v/uQdHuffP+YbO+I6NwqKgrR8xRbaIK1LhhNNJ05rcTJkGo6I760ha00jc9cI1xdYvytd9BFgZ7OSCdTak9fdlkkJ2O6f+2LxFvrC9A3YbjI3NDT1J3zdkDQbVOOxhhdESQtypMhpqqoXdpC5znT67fR8zG2MuQHRzSef5qyP2Ly1g3qzz9FuLJEsXeITGJ3nk6GVNWUajIj6HXPBOnuPKT4nRbFyQARhcTrK3hJ7PJflHIW17XEUZCuXqQaTVyGCBY9mSOjABWGWCDbOaCczmHhmGqNcTQnnIZSeArh+86YodUgubCJV4tBa6bv3GR++wH1py8hAo/Ze7cWjmePbmLlaIJKYmrXLjG/t4MFGk9fBGC9LelPNW89MOSVpdMJsdmMcl6wshyx3At4/9aUWuKx1P3+6DJ+JOlS8OlBRlEa9o5ylAdZrplnLqCtXnPUJ2kU9Zobg2lTYfRiWmH1wmHH1WkT9vFgrx9KST5kWwvfdXEmTt/4kW86gTcCrMYKn2nQRKuAoJqjhSSs5nimolIhvikdHUnghFLGLVyd2BusEIv/K+aRS5QWumIad0jyCQIXLGdlQGUDPJ1z2DhPGtWJiymHeotWekJQpVjTJA1qgKXyIrRSKFMS6Qy/zIiLGYHO6U13MdJjGC0BljvLz6FMST0fIU1FrgKm8RIObkhHATJgpE8uFFZ6xMUUFqLvQvlkMgYpMELRSo8537+JUR5Wuush0DlxOWUSdymVT+rXOamtUagIKxVaeIsQQ4GwlkqGWCmJiimVF6DFAhhYS06M7+dEOqMyFSAxKsDXBZ4pFq5bBimckDzzG+w3z+EZ7QTnOqNSIYUXYJSHEZJSxBgbYITCKzMkDtAoUxHoArsA8qUXMkm6zE0TXxcOBojFWFhKPF1gkegF9c4inKbnE6+z0wXjx12Lgo+kzH/kc/RnCaL89GWsE4CnmcaTAj9w+qTJ3HB/O6XX8blwLnZGEZVZuFF9NPH704CM+dwJH79fYXz/oZTneWfp5I+XtZZ/8k/+Cb/yK7/Cz//8zwPw27/926yurvI7v/M7/MIv/ML3dbtaTZ/Al6SZJo4UZjjCZhlqeQlrLXmmWTvXxd7W2FiiopBqMIKNFccVN+ZM5Dm/84BwdYmg11lkSmTO497zsGVF67PPOkeg/ojpB/ec7uqpi0glyfZPGL99g9Eb73Lyb1/B77Xx6jUaLz5FuNSlms4I15bIdg6c334UErSbmEojJMxvPQDt6BymctoCkcS0v/QiKvSpJs49yWvWkHFIfnhCNZ0Rba6RHw0wWU72cB89mRGs9ChOBpiicIJ0z7kKqTAgPr/B4FtvMnrjXapJih5PsfOUqnDiY6EkRX9IUk8wlaY4HCCjgNbnn6UaTpzotqiIttad9e9ozPSdW4SbKwStBtP37zgKTxQ6958kQsURwlr8bov4/CY6TRcp1wlCQtBsUGWZE3WfW2X/X/8eVX9CtLVBuNTBazeQfkBxdMz47Zvo6cwBjIUrlAREs041m5PtHaLiiGhjld5PfcVpLd6/59y67u8wffc20zv36f3UVwg3VigHQybv3KQ6v0F5PHCi/fEEPXFWs/HFc0gl3FREwfTmXbxWnfrTl8l2DpyIWArGb91AZznJ+rkzgAFg8hLp+VhryA+OsZU7Jn63RTmZkR/1yY/7ROurzn2o2ybfO8LvNAi7HaK1JaRSzlJ1qYfZ2aPcOyJYXUIFATJJKI9OqMZjF+ZoXQZMfnhMOZwQrvaQSUy+f4yQAj1LKYcTl+MiBNVowuzWA/RojKrVkFFEeTIgP+o7O+JaAsag6rGjFh2eEHTahN02jS8+jxdHzplpOsMWFUQhna9+jnhrHXDN5/rTl52u59waptRUkxlmPsNi8XsdgnYbpAtd9GoJQilHQ1qAf+EpTFag6s5RaX73IcVBn+TSOcKtdRdyd3iCHs8IOm3izVX85S5lf4QMXZMw3z/GlIVLlh9NkFvreO3mWVaG1dqlltdiovVlvKsXSC5tUpyMyE8GTG/cZvruLaS1RGvLyDgie7BDOZo4gCFdno6KAsecqdx2g3BmDQvdRNBrkx8cM7/1gPjiOQbffItiMMJfBIbq2RzhezSeuULQbTG/+xAsZ5qvKBBsdiUf7Bs8KciNwpQFGy3JxoUajbrP3n7K3n72Vw9keJ5HVVXf/YWAMZbhuGA4KlnthfieZHc/42SmEdLSrHtUpaXT8ZnPK6Rwad4SjecrSr1ggOBMEcJAUFWWqlrIG76P+/mJ9bFY4rt1f78TrcNRWwo/ISjmeLbESMU8aLqOTjkHJGE5B2sopROSSwRuSWwX4YVyoYYXaKkopE8RdoiLCUaXNPIhrXxAoQIyLwFrmEZthknKymSb7vyQygs4aGzilS71MPcdyBDW4le58/OWPpGdIjDMgjoNGTCOexw1tvB1yiTqUqmQUM/JvJg8bHAKVHxd0E6P8HTBUeM8hQwohYAgcToHa11IX9QiquZYoVBGE+kUoWEYLTOvr6OFZF5bRhqNr0t06JGGTefiZC0uOs8JtksZoETpjpSQxMWM1K9RygAtnW2Zll1SnSNwOhNfF0TVnFJ4FH6EtThwZME3BVqG+HqGshplCpfSLXsO4IH729ZghEelfAwelfAREkeLEpJS+WfcT4mg8GK0VChdYU2Obwo8nWEiD6kNWkVUp9krn3S9PUHFe7xO3/NxPzttGHz/wYXnOUmIsYvgYAN+KPCVRHmCmhSkmUFXlrXVgEpbjk9Klno+reaTt8RPCzKm0ylCCJIk+e4v/ktcH3zwARsbG4RhyMsvv8xv/MZvcPnyZe7evcv+/j4/+7M/e/baMAz52te+xiuvvPIdQUae5+T5o6TU8fiTHZk+qZoNj/WViHvbc3rdAM+4CZcxltG4JI4VKxdWGL7XI93eI+x2sNK6DqTWlEd9ZL2Gvr+DqtfPLCZPS6cpszvbNF98GgCvlmArTXk8IFjpEnTbzB/uMXv/FnoyI1xbphxOKEcTsp19pu/dJljp4jVqlJMp+d4hQadNur1LNZxgtUanOVpXzHcPzvQH/vNPkVw6T7jaRYjFIleA1caJen2f+tOXCJp1soMj8t0j16kdjMn7Q7IHe5iicELsyZTht94mXO05CtLJkP7CoaeczJBSIsPQ0aZaDYrjgZueRiHlZEqwvITXqBFvrJKkW5iyRGc51WRGOZkiQpeXoBsJXrtJdthfGCYavEYDPZs5ABMECE+iwsB1mcuKoN1i+T/9SeLNVbL9Y0xlUbWI3te+THJ+wy0ShWR+655boE7n4CmCpTbp3Z2zSa1QknC1h5mmhOccgJzduucSxPtDdJo77r2UZA/2GLzybXo/+SXqz15j9sE9xq+/i4pDwo1V8t1Dl4HiKdSChiakdIuMQJI+2CPaXEPFzl62mqaUg5FzHFMfamrMUqwQlKMp3N9jevMOXr3hLF37A3T6yDVLhiF6OiM/PsGr1wl6LcKVJXSaU81dNz1Y6aHaTWoXNqlmKSbNiDaWmLx9k+E330TVEvKjE2a37yPjmHB9xdnA9jpMb9wmfbBDfPEcweqSm2LdvItQgvnDfWqXtqg9fRmT5+j7O4TrKwTdNibPyXaP0PMU2Woyee8D6k9dpvXiMyQXN7GLjIjx9VvIOCK+sPnEMQiWOgTLPUx1iN9JWPobLzO/eZ/86GRhj7zO5PpNB2g8RX7L0YhMWaJqzj62mqWMvvkW9acvE60vM791D72Y3nn1iOT8Js0Xn6KczimOB9SuXqDoj0gf7FGenGCr0tHXtKYcjDF5QX54TLjcOzN2ENIFK7a/9CJeEpHvHxO0G3iNhGx739Gcem2CpS7Zwz30ZEo5miJ9F96pkhiMwWQ5Xj1GxTFSCPR8Do/lswQrPea3H5BcvUD7c88696nF2jg6v+4mXp0WOssXBhICnWZnDmfGwlJD0q1BNsmRLcnK5SYqdtdqve5xMiyoKvN9sbL9S0GXGk8qqgoun08YDEuiUBJHkrzQlJXF9xS60qR7mtGkoigcPUoIRV5+eLscXcostBpKQfUDF4Dr71GT8WnKLtyLXPdaEyKsxdMFRriU7bDKaaVHHNU3qZSP0o4eZVVEdTraWYxbrRRoqwiNofQ80qCOBUovhNwQVSlG+mgEYVVQy0cILIUfUcvHjBtbZIETYfmVo/9kQeKCEk2BlQojumipsFJxUD9P7keEVU47zdHSIyjnFF6EwSPJRkziHso4EbWRHtq43AxH7xJYPCppicqpC/uTPlhIyvFi+6CUAdOwwThskfs1asWEZun0GL7OXUo5EmxFGSQY6Tr/IKiQi8NjMQgq4aGF068gBJWI0NLHNyVYQ1RlICyVCtzvFCCsJdAlhYowuCmDMu7rRE8WcptHae4SCHVGIT2MUE48LySF9BbUM5dVoiwLTYlcOG35EMSkFjydY5FOI6INBO53f7ROJxP2E4DGdwLBH16of39Ah8BNL5SERgK+L8hzS1ka2i2fc+sRSgkODnMGk4Kd3ZwoUiz3fK5drp1x9U/r04bxneoxvtcQ0b+M9fLLL/M//U//E0899RQHBwf8+q//Ol/96le5fv36mS5jdXX1ifesrq5y//797/h7/5v/5r/5iNbj05YQgqevOUrW7kFGORUwqiBIqTdDzp+rUWt48OUXKYcT8uM+XqtOfnCMUNK5vfgeKgrwGo+ApM5yysFoQSk5YPz2TRrPPUW8tU6+d0g1mZFc2cIUBdN3b1GNZ4SrS256MBjhd1rUnrpEceg6wpWUDP7oVYwxeLUaQnmOLjNLkb5HuLZC0GvReP4a6YM9RBQSrnbPHK28hbtQtn9EMRw5QahwXdLej3+R/p++TvZwn+Jk4PZNSpIr52m++AzR2hLVeEb/D19F1kKSaxeZ398lOxqgp3OqyiVxR+fXCbpO1J4dHCOkovvjnyc+v0FxNMCr15BRQH5wzOzOfQeOxlOi1WXK8ZTpOzfxux1k4FGeDPG7LWe4IgS1p5wNbL57hN9qUg3GmKKg8dIzrPxnP+VSsocjdn77/4tOc0yak27vE/TaCN+jmszwl7tw6x4C34mGm3W3Fpi5AMP4/IajYZUGFYdM3rqB9DxMXiB8Bxhq1y44gffeIYNXvk3j+acJljokl8+7ELYowOu28NtNl7S9oNOI0MeWJTKJ0FlG2R8SfuYKpiyZ3LjD/MGum+rc0sQby6h63eVb9IcU/SF2nkKrzuCVN9BZTrDUwW/W3WTrsM/wW2+7bIwkQsUx0dYq9Wev4dWTMzBRjaf47SZMpsgoJGrWmd26j0lL16Gfp6hWA68WEy33CDdWHQjd3scUOdVkigwC8sMT9v/V76JnLifClBXF4QnVaOzscYWk8cLT1J++vMh+MAj/ffRohr/axaS5CyRcaCNEELjzEQUfq/uTQUDjuauYoiTfP6QaTAhWe8ha7AIMWw2yoxOX9zGeUGU5ZpoiAw+vGROs9jCVoRyNyfeP6P31r1CsHBP0uqgkpJrOiS9s0PnxLzJ564YLDcxzZ5JwdOzAbq+FmWVuOtOsUWU5SgjK4YhqNHW6x7ygdmmL9pdecO5Re0dkuwfMbj0gObfO0l//Cvn+EfPbD9HTuctHwQnghec5jQ0CmSQIKdzXUpIfD8/sd6XvMlZkFKDTjNZnP8Po9XeJz2+462wBUq215AcnJFcuIJUkfbhHfGFzsc527T9PgT+fklw9/6kslv+89SM7yfg0IKOsDNbA5QsJk15Ff1SgtetM7R0WZFnFLNWkmQE0UirsY+Lu02wMACzkuZtiwH9IAOO7UKkWVlpy4aBlF+ITo1znXFpDoHMKP6bwYpRxOgFHHTJwmqWwyNeweIsFraCSIYU0SAv9ZAmspZ6PKVTgXBqkAKnI/YR52GTqNTisbVD4kVu4W42qSkoVOJ2HLpBGU3oBA2+VuJwTF0egJYHOkAunqCIM///s/VmMZVma1wv+1lp7PLMdm818HiPCwyMiMyKHyKwBKCiRraYpWlzRoEZIDQJUvJSqEQ39VAJUCEpC9VQM6pd7Xy7VrXv7Ss2tS1YCRWZV5ViRGXOEz5O5zWZnPntca/XD2sfc3GPIiCQiK29SS3KZuZ1pn7332ef7f99/QBlN5kUILJkXVcZazk0pCWPXYTOmCr2zFCpAizZhOaGZHGCkIvHqTOIOhzplHLbo1xapZSMO62skQZ1x2MYzBZOgSVgkFF5IpiJ0pXWZaVQEAiFElb4tjnQijvpmjqhmVcY3pVQERYIJZKUrkQiEy+gQglyFgGF+ssUwmqeej5G2ZBJ0mAYNQODr1FGfVOiC/ARopEt4n2l0KrCnqdr6FehxwBNKz4nhtJEViDTv4wx17PwSn0S34/jzVyn17/n7x1/H2xbNpsBajzwvHcVkaphMNPW6Ym01ZK4dcP5sjZUlJ/ZW75P4rbXG9/33/P2D1izt+79lkPGVr3zl6PerV6/y8ssvc/78ef77//6/54tf/CLwXvMPa+0P3Wf/6B/9o6P0c3CTjJMnT37s7Qt8ybNPtzi5XqN/EDEstpHjAQsXFvB96QTJrQbRmTUm79ymdu40tVOrTnRqDOV4SvPZp7B5SX7QAyFI7m+6bAEpCJfmKfpDDv7Ld2hcuehaEL7Lych7Q/K9Q4TvIQKfYmff/a5cEqxQgnKQYK1lurGD36hRO72ODF2R4Xc7lQtN0+k5Tqy576wHWxSn1o589Wcr3++hguCxbIL4xAor/8c/w/T+Q/b/4zfR4wTVrOHV65S9IblSoCQ2zyEKXAEU+s6xSbjf9TTDpjnT2xvOBvagT+3MOotf+XnCboeD3/8eyZ0Np5u4dhuplCvsT6/TunoZKwSHX/8uRmvi0+sk9zZcl3p5HhlFmDRFFyW1C23iE6uuGbUwx8Kf+RJeHFEMRvT/8PvOsrS6ZunRhEl/iIxDTFGJhgPf5ZUYUFXCtteou66v5yOURMYhNi/I93v4nRb+XLtKWLfIwMfvdlAVzSdc7FK/cIps95Dhm9cJ1hacqL1ecyYA4wTVqM3Cttx1NXPPbUvD7v/6exSjCX6zgYxDisOBc1ZaXUT4imIycSnmjTp+twNSEnQ72DTHW1+m9fxTBPNz6GlG49IZGk9fINvaJd87OKLYqCh0+zBJEN0WUgoXklg5Z6Ub22R7h6jAp3HxLH6rTu3sSVDKgbksZXrjnhNPxxHJ7QcE3RbxqXXX2R9NwWr00IG1YHEO6flHAFfnhdOstJrOVjgMkb567PNd9IaEK4tY7Y6b13rcKMNr1IlPr1G7cIr41JoTgXea1M+fov+9N5j/0mcZvX3D6Z2scSWTcE0hIQSYEq8RY/LC6UvqNerVc+kkJT/oUxwOaF65SDg/R/9br6KLsnJfa1COxiRbu+jBmHBlATNJkVFI/eJpwu4cnS+/SOczzxCuLBy97/jUGvGpNWQcY3VJ7eQq8doS0foy/e/45P0h5XhCfjBAep5zJdMGXWVdlL0B5XDM/td+HxXHhCsLNK9epn7+lJucKEn90lmy3UOS+1sE8x1ULXJTlv0efrtJ+/mnXUNzOGF6dwO/2cAbFOg9S38npXVqifjE6mP7ejLRnFyLP7VAvp9okPFR6VJxpAhDQZoa2i2fJHVWtsqThIHzRp9ODcZoAl8dCcLBXQfiyP0/zapoiT8uLcbH8cx9j73ok1/QM2tR4d6ccHBWCx/tK6i67la4sL5hNE+uQtrJIVYIGlmfxK9TigBng+uKUmUNUoCoQEjqNzBS4RmDsgVG+AyjLlExpp4NSL0GYTqgkfaQWHIVcHv+aQb1ZTydEegUi0CrwE00/OgICIHTSxghaWZ9UlunFIpShcyNd9hvrTGI5ii8iFo+JCwTtFDOxtWvgwCvTBAqdKNPJFpKF6InBKIuXIhhkTIMWuwuu7Htid51lkabjKI5DuorJH6DejakkCFaei7tHEkhPKyUCOv0G7kXIYyjNhkkhYrdWMw6upkRApCUMkR6UNqSdnLAxHTIPeFCEcuc3AvcfpeCrGgw1YbV4X2iYsJm+yyZLqjnAxeqKCANGmghUaZAag3Swwq/AlYzcdFs+jAL3jvmBjVbM+G3OX7bh1GgPs6amSu833ry4vZfP+VQCqZTwcqSR6mhKAxZrtneyzgdxax2QuY6Pt2Oz1z7g0GE1poo+uhdn8lk8t88VerJVa/XuXr1Kjdu3OCXfumXANje3mZ19dGX3e7u7numG0+uMAwJw0+GNyyEoNP2acUxo6snOPzmLsNv/REG4QLO9p0wOFpdQmDR0xTVqBOtzRMuLZBs7uLFEdMHW4xef4diNCVcmSdanMdqQ7S+RLg8z/itG66YqrpVVhvnjS9dEW/SDJREp5kLfZtOKccpKgkxaUphNHlviB6Onb9/PSa8fNZd3pMMr1kjPrFC77uvke7sPwYyyuEYqw3h2lJFP3r0OZNhgC1K9CQhOrlCuDRPORpTTqeUd8YghXMQGowwSYYwlujMCQQcASuEdJ3d0cS527SbpA+2Cbsd5n/u84yu3Wbvq79PORoTrixSW1ogPrlSdXRh/k99gWy/R+fFKwgE6dYORX9UZQ/0wBj8dguv3SBaWaJ+8TTR2nKVxv4O2c4+8ZmT6MxZgvqdlgub297HFiXeXAuvHlNqZ0dqq+ug1a7hk/X6eK06frvJ9OZdiuEEr91wHWLpzCx0ljm6VrdDvrPP5O6Gozwl7riFnQ7TKMAkKcFCl6zcQ4/G6CzHazXJtnaQfoA+scz+733TTbTOnUQGvvte1iUWwfjaHUTgOWvXsnRTIN/Hb9aQYUjRH5LcukfzymU6Lz1Lvt8jWOy63/cO2f+9b5HvH7q0ayWJ15cZ/uAtsq19gtUFiv6gArc+wcIcVGDRSlyKuu/jN2r47aazTX+wQzEcYqaJK4gX5h09K0lQoU+RaacH0gZKg7GOEmKKguntByAExhiyzR1n1xoGhKtL+K0GOkmdzuMLz6EnCYNX3nDdfED4Hn61D/Q4wZ9vk9zdxGQZiRAMX32HdGef9vOXMWlGOZwgAg85TdDjBJPnTO9voaLgUcbE7j61c6ecLgcXfmnS3O3Dbpv4/EkGr79NsdvHq9VdwvvugbO8jQK8eg3pKYqDPlmnSePiWaLVBUyaMbl2BxkGhMvzeM3KCSvwsaUrMIVSxGvLqJ/5HMO3rlMOR5iicKn2gxHC9/DaTYrDPsVoQri25JLSrXXGAbuHlP0R/nyHaGURr1Gn+zMvMrl+h+mdDbL9HtL3aDx1jsbFM0f0zbkvf5b9//RNet95lWwwJiwXOKgvUrePi40HwwKlBKvLn95k4ycWZHwcC9tG3WN9JebW3Ql5YTjoFTzcTugPCup1xXCU4CmFxukvpOSojhFUNXj1XLPdf9TonUkQPtWl30fk/UPWh3b9jneFZ3ZZHE0eXKaBRJoCYbVzmbLaTRrKDC0UzbwHCDJPg4go8VG2wC9zSi/CVgAAIfGLhEBnWOWhsWjpM4zmafduIrTLf7jfvURYTClkRK+xTKkilxxeJZUXqkHm1/F0gRXKDQisJdCpex0gKFKKKqujnQ1YHG1gGifJrKGV9AjKTaZhi1HYcVONavviYlRNZqwLrFMxtWKCMgWBTilUwCBaIPPrTowuFAKI8zH1YOQ0EjpDWo0WimlQR0sPo3yENYQ6wS8TtKwS1hHOGlbOinN77PBKEAahDX6Z4pUppXD8PI/s6HkxFmVK/DIh8WtM/RoaS+LHTKIWmR+7/ZONkLrASA+LRFonJCqrQMlHrf1jZ/gR3Wl2rjyilFWcreMn2hPnVmXNdgRUPmL3Q+NyWz5Sh/+/nlpVakhzw/5BQb0uGJZOayWEoFlTLC0ENJsezcaHXwJ/FE3Gf+uTjCdXlmW88847/OzP/ixnz55lZWWFr33ta3zmM58BIM9zvv71r/PP//k///Fu184+/VfeIN91OQCjt28yvn7HddxPrhKuLBKdWiGcnwNraV25SPPZS+R7h6Tbe+gsc7aghSY+uUow38ZmJcnGJjIM8JrO57+cTKuU76nL0Ag89CyMyxhMkmKlxHieo22UBUqEeK2mAwpF6a4PrQbByiJePSbb3MMYjWrW8efaJA+2KfYOGF+7TTmaku0fIgOP9gtXsEaT7x8SrT0CceVwTHL3IdYYaqfXiU+tkdzfpOwPMWVJvr2PCANE4OO1W3itOvneIX63gwwDJjfvUY7Gzr2o2yE6sUL93Cmmdx+gJ1Pmf+5ztJ9/muTmfeoXTruuaxRirXX5BUrh1WPy7X28OKZ27iTNKxfR08TRlYIqNT1xLn5e89FnqugNSDZ2CJYXQODsZ8cJ5XjiQv+aDbLtPZL7W/jtFvHpE5TDMSbJyEuNyavUZgOi0aWcJqS7h5TjqRPkBiHEIaYsKsetGsnDbQd+DvtuP42nREsLTIOAYHGO5M4GQkrC5QWy3QOsMeT9AcJa5r74LJ2XrjJ87R28Zp3ha9ecmP3cCZI7G+QHA0yWYQZDVBjQvHweGUcUe4eUcYRIMkyaIjyf2vmT7tzqtJx2ZDIlXF6g87nnGXz/TSY376NqITJwxXo5HGGygvThDl4tBqNdGvtwjJCK6Y37Lil9vkO42EUGPsHiPKpRo+gP0HlZUT006cYWOsmcPfx0ipCSfPfQhTT6DrQW/SHldErt9DrBXIdJEJDce0j2cIeDr3+H2vnTePUazSsXqF86y+TaHfKDAdNX3nbAtuKrh2tL+M0a+c0+wvPw4hCv3XL0oxt3iZYXaD59nv4rb1IcDJBxVBkuFIhAgVIUh0O8Vo1yMiVcWXh8WqIEGCeul77P6l/+Crv/2zdIt7bJ93ouDLDVQLWa+AsdorXlitLXoRgM2Pwf/z21cyePNCBeq0HzyiUaT50jXOoi44hyNDmiLQaLc7Q/ewUReJTDKcFcC9VqouoRZX+ITlKilUXChTmX3+EpvEadZGuXw2//gNX/858nXF0E3JSn/dlnaTx9weWx+N4RcD9+bTNpTuv5px0wUQHXHhp2Hg7pTW7QevoMWgZEkeKpi42fzsTvH/Yl/HHdpc6fqREGgjv3Ex5upmztZKRpwXhcUqspilAyGhs85YoNYx6F8aXZ489lKi0G/BgAxqeS+DfbtxV4EU5DYI4a065LY5SHMKDIUbog9zw8UyCsZRo0CYspWnqU1nkPKa3xyhRbpWfP0rIRAis9MJbI5sgyQ2DpxfMcNtZQpsDXOb14idSvAZagTPBNDpU9bphPKl2HJS5GSKMZR21Sz+kY7nUuEZUTMhUhpGSqatSKEc20RysdUHohpRcR6JSF8Ral8rB4gKaRDug3ltAyIFcxrfSAdnKAb3IO66uU0qu0Dzla+RzUVwh0TqBz5ia79GuLpBUA8azGKB8rvRkhCmuh9OJju17glRkEzWPaBTfFcHQzi28y6tmA7c5ZShUiBfhlDkogtUEZSzM5oJX2OIwWuL74HFZIPKvxihQh3Xbkfu1o3mCFovSc25SDCRUQmOVZwLEi36mihRQVeev4fY5b0j6xzAygWAdKrHFfQh9l0mFMFU7zw+/6+Pr41CpjoMggU4Y49gh8QRAIwlDRqHtEkeLMyZha/OEA4uOCjP/WMzIA/v7f//v8hb/wFzh16hS7u7v803/6TxkOh/yNv/E3EELwK7/yK/z6r/86Fy9e5OLFi/z6r/86tVqNv/bX/tqPbRuLwYjDb75Ctue6mXb3wCX9Nurkkynp9i46z0jub9G4fJb60+dJ7m/SePo8Mna87sH333I0nSQl3dxh+Ma7gKB2ag2T54zevoGQivj0Gs2rl5lUacImNyQPNhHKpxiNXMZNFGKTDJ1M8eIYW2qXmRD4SN8junDaUZ/imHI4Ju8NEHHI8Advg6eQvkft4mnSjR3yfRcQF3Q7JJs7FedXHHXXvTgkqVyrgoU5l2kQhdTPnaIYjiiHY3SaYQvnCuWFTkBcDkZH3V0ExGfW8Tttss1t0nubSKWItMsQCE+s0Lx8DhkGiMAD6Xji6dYeJsuQQUCwMEe2f0jycAt/cQ6/6cSwqhYfHaf3S8ouh2PSzW3krkfeG2CyHJOlUCrK8YSiPyLd3EUoSeOpc3S/9BmynUOGr75Ncm8TGQdOq6BLTFGi9w6cdmbngPzgEF2WeHFEOUmwRXHE/ZdhiIxDvGadcGUBoTwH3k6u4C/Mk9x3lC8Vui66D7SvXmbuS591xXipQSlnGKIUttQE3bmjaXNeliAktUunqZ07zeDbP0BEIUJIZOAhfP8o+M+tRxfS+vlTBPMdko1tit4A6XvUL59z2SY/eBu/Co9ECZJ7mxTDMbbUeK2Gs43tD/Hn51C+T3LvIbIS2xcVxSfd2nPAsFnDpLkL5YsiZzXcaRGfXCPb2UMEPrXlkwRzc+jxBNWImf/5z+G1GkxvP8BvNlj4hZcJlxdIHmwxfO0dGpfPEJ9ZZ3rzHtlBDz1N6X/nNazW7n112+jhmHRj24Eea0kebNJ+4Wmi5XmKg56bfhiNHieAQXg+2d4hwvPofP6004vMwje1xuYlpiydg5cuqZ0+Qf3cCcrxBJuV6KJEj8aY3QOKgx42d9Mlay3j63cJF7p4rQa1U2vOwfFwQP97rztHtrMnaD51lsGr72LywlEVhQNQ4eICJ//6L7n0+mlCORxz+K0fOOva86exeU45nGCNBiuc26QQbqL1BG1XxdH7aivK0Zjxu7fxOk2CypbXB567aDlcDti8sU2Ud1m5epalhZBW86PTgX+U9RM7yVBKPeYk8sOW50lOnaix3yuYX/Cw13KkLKnVI6YTQ5qbI+ZIEEiSTGN0VXM/PkE6qoU8BelHY2z9aOuTBBjvJ8atRtpgkMaJkR3XvipLrcUiSGVIqAwSi8LSzPtkKqL03LRBWI3AWatOo45LmbYGax2NqlB+xYM0CGPQQYu4GJP6dUrpLGGdwDth6tcR1hDlE3zrdBi5FyMBv0wxSCZBi1J4pH6EVT7CaIb1BfosIoymlo9QXkSgE7QMaGeHhOkeqRdTSpctERdjwmLCQWOdQW2Bqd9EWmdrHOqc0gsojM/UbxDohMSvo6VEywDdlJTSo5YNsVJSTwekfo1ShoyjFmDxdEYpfbSQ5JWmgZk43JZunmGtoyw5O5PqmLjiXAuPw9oymVdHmRyEo4xp4TnHJ1NSeD4b7XNkQY1SVVZ3VpOpCIWzFtaVC5gQAitA2+NhesfpUMZtj+XRtkj5aNBhj1OjPmRVuhxhNFZUNLrZB+ajAo3/KtnFR6dW2Wpzpomm2ZBoLfA9wdMXazxzucVc54df/j5uGN+f0KVgY2ODv/pX/yr7+/ssLi7yxS9+kW9/+9ucPn0agH/wD/4BSZLwy7/8y0dhfL/7u7/7Y80W6X3nVQ6/9QNkFDB687oLGzs4xKaOemOqKZ30Ff0/esN9VoqSbPeA6a37qCBg7gvPM3n3tqNXDcfYvMCfa1M7c4JgYc7pKm7fZ/DaO7RffBYRBgzfeAOTpkjfr7rMGUV/hIpDpOc7x6LVBWS9TnLrAbLdcHQTJR2ValL57WuNP9d2GrCdA8rxFJ2m1M+fpvO5q5SDEcmDLfL9HunGNvlgiF+LwfNQYYhOU7xmg/alMyT3NzF54brY3Q5Bt4PwFJOb9/DrdaTvHhOuLpE+2Cbd2nUdY89jevMu+WGfeH2FbGuX5P5DhJSUSUb9//G3CZa6TK7fcfar23tugiAEo1s3mVy/SzmZcvCNPyJeX2LuZ15k+St/ivAJx67jyxrD6O2bTK7dIViYqyhsyyT3Hjqq1WSKzXOitSXaLzyNNZbha+8SLi8y//NfQCcJtnTp1MU4IVAeweI8QXcOr1FD57kDe9pQv3iGfO+QyfU7CC/Aq8fOvthYGhfPIpQi3dgmXJhn6Rd/jum9TYqDPsFCB1V3DkPNZy44oW+l98p7Q/cdbF06fHRyhUDMVZpJF6Q7euM64XzXZZUEPl69dmyK5DrOZX/onKPqj641fqflwNOxFa8tk+8dUvSHCE+Rbu6AEMSn11yOSaflrFO1Jn2wiVhfwaQZRhvsaOwS5A+H5Ps9ByhaTcK1RcKleWeM06gRLi2w8hf/LKM3rrP71d/HpgXZzp6bWFw+S+3MCYRSFZVPEMx3AJhcv+1cxyYJw7eukT3YBgSq06iKf024OEew0CHous9TcueBczjbPWT09i3wA1SrgUkSvPk5l/odeC413li8uSbtF54+cv0qpwmDV95ETxNE6FMOnIOb8DwHKvMCEfjYKjhQeB62LNxxXll0j1MS2zUUvQGcWnOGCvMdTF4wvnab6NQqzeeeQgQ+kxt3Gb1zGz1NULWI5lPn6XzheazWjN+5zeTWPYK5NipepHbmhNN8jSaORgnumB30SR5sM72/STDXOqJlfdDKdg9dnsq5x/VqvhIszyk6ZyKk3GP59JWjRPFPc/3EgoyPm/gNMBiVbG4PyacbBL6HNhHWCEptMdqBBk8JGg2PLLdMKt7c+3nUliV8FEnIY6LxP9Y1S2uultXun3Thc0fdamvdfYWoNBsKrSS5LQl1zuJog0E0T1aPqCc9LBJTW8STuctP8GoEJiNXEZQTN9GQPrmSKGnIRYRnNJ3+HbKwTlROSYIGSTyPNDmlUAgUk6hFe3pAPR9jcWnXSpckYQNTOSUJZBVa4+hKpfSczsKUKKOZhHNYYRFY2vaQejZkr7FGL15kafzQhfp5MVho5H2sFdSLMbW0zyTqMKq1yZVPISUID2kKpNFMgjap3yQqxihTEhUTjJRkKibxHFVKYh4V2UikKcG6JM+wmGKE5+hVs6A66+haCIG0JYUXoa2HMAXKGgwukLD0fUQFAKd+k9KLHMVtNjXAjZO1tUhKkJVo3Ipqe3D3EU+CBoUVBkx5BDyPqvBZKIs1FZXu/QDHI1qV0jm+1Wh45GD1oQDjI4CXH3l9MLVKCpefU5bup5SSZkOxe1iw3M9pNhW+9+Hb9SeTjI+//t2/+3cfersQgl/7tV/j137t1348G/TEGt+8x+5Xf5987wAhBOO7GyS37qOTzNmdtprVKKxANmqYJCW5/xDpKdKdfefccmoNFYcEC12K0QS7tUv94hlMklKMxvhzLdLtPdKNLaw2bP1PX3UWmsvzdD73HMVowuB7rzN49W1HfZokqHoESpAfDBCDSh8Q+IggYO7lz1A7e5Led14lub/pgvu6bcrxBL/dJD6xwujN64TrKxT9IaPXr5H3BtiypOgPyDa2MfNdorUlwuUu+UEftCZcWgAgfbB15Hhji5KyP6D13FPEp9YYvXmd9OG20zg06xTDMTIMKPYPnYtTu0m0tgS+h5ikZLv77P/HP6T90lU6zz3F4e9/j2Rzj/r5k2ANo3fvMHrrBunOPrY0mCwnub9B/7uv0/+D73Pu//43aVw6+77HLnmwRbq5Q7CygPJ9vEbN/eu06H/r+/iyQXRyhdr5U3Q+ewWMce5Q+30W/tQXaT13mb3f+zajt2/SPLWG8n1kFLkQwucuY4xh8tZN54Q1TbFZgddo4LUbhCuL+FXYIDjuPYHH+PptTJpjyhKwCL/qUFpLtrt/dJsF9GgMCEeXK0o34cCRbIOlecrxlLI3ZPjaOzSvXibfOcAWJdY4nY+QgmIwwhQl9fOnfmiRWDt7krkvvkByb9MlYOcFXrfD9NZdgsV5ymniBPcrizAYke0duu0YjigO+k5vsDRPOZ0g/ABb5A7Q1muIMCBaWcBrNjDTlNbVy6QPdxCeInm4fWT/mrcGFRUrcBa9pUZPEqb3t0g3d8n3Dyl2e3jtBjIISB7uYKYJXqeFKUrSB9uoWg0VhUSn1pnc3mDw/beYXL9Lvn/gmASjMdleDxn6xCdW8RbnCJYWMNrZGOe9gdN//OAtdJIx99JzRGtL5HHE+Not9n/vW6goIjq5Sv/br1Km2RH4kmHg0uGNZXLzrpuaWFu5O3nUL5xCRSHBfNsB/v6QYKFL/dwp8v0+2fbBI5B52OfwD1/BFqUTnx/0KPpDsv0Cr90m6LbdtKrdxJQl05v3SB9soXwP9Z++ideoEZ89Sevq5fed8gHO3raa2uT9EeVgBMYg49C5uYWBC/bU+qcbZHzSdCmABw82uX79NktLCywtekymJaV2CEAlla9wqBxn3hOPzJJ4xOJQCvLig1/jyfXHDzCOVCSP//mI8uIKRiu9qgttjyg7ElF17ARWeCg7ZRi2SfyY1KtD7EZ12vPxdE6uQlfr4vQSylqMqPQGQlX5DRZpMqynXFZG0KhIRVDKsNJxWEoCeo0V/CLFNxmNtMc0aCKFJSwSBrV5EBKLQUvXvYmKKUWVb6GVfwQABPZoauKmIg4ATMMWw3gBIwSLww209JmGTQ7qq2ReRK4i50xlwTdO16CFxCoPUWbO3ld6jMM2RkpSr+F0FwI0CmVyBwjwEBikKZHWooXCCuHoV1IBCmHdpMjlsShKAVJIpNAIk6OsCzAURh9Z60oqc6oKELqYQYuuJgfGcxcZM8MLtnKFeo8OozpPqlpflWk1+RCVyN4F9iEkwpRYKXkcsLqklNnTeVZTT3sUwmdYX6iAyQ87Tc3jtK1PbTlw4ViBBk/NALWiHsHyYsBBr+Cd6xOwcPHch4fm/QnI+OlaOknZ+4M/Yv/775LsHGCTFNvrQeZyJfA8bBw5G9QkdcWF1tiioBiMyfcOMVnhMg+AcGGOcGWBbHsXIZyzTzkcM72zwfTuBl6jTnhiGZO5okUPJ6Q7+45SMz9H7dI58oO+0wI06ojquj2bJug0c8X8YITXdIVW/cJporUl9xzry456cn8Tf6FLtnNAcdgnufcQqzXZzj7Z9r4rJtMMM5liywK/2yG9v8n4xm3mPv8Cwfwc6dYuZpqA71E7d5rVv/wVgrkWfrfD4de/QzEaE64tIZs1Rm+8S7HfR/ge8blTmFJT7B46UWvuXJYe/g//C97f+SvIeg0Vh0cTn+Grb5PtHyKExF9ooaKQcGneFWDf/gHq//XbnP7bfxU9mVIc9pGBS1IPVpeY3nmAikIaF84wfvcWQklUo4aZTN10qEyRgUf99Dq24jrHJ50DVzkaY8qS0ZvX0OMphacoAWst0lN47Sb10+sUBz1kGFA/f4bpg4eIwCNaW8JvuylBUeVoyMBnevMek7sbJHc28BbmCFoN8v0e2R+8QjGa0Lhw2mV3GEsxGJLvHQCScpK4iZSxSE9CHBGuLJJubIHvMb2zgb+ygFSSbHuf6MQyttRMbt1H+B6t558iPnPiQ891qx3lrnbuFNnWHsJTVRK1azxGy/MUwzGFlM4Ot1HDazdpPnWO3a9+wwUL+h7p5i54AmEFpijIt/YwScb8z32O1jOXKMcTjDaowGN8447TblR5HxiL16zTfP5p6udO4jfrblKQpKQbLsFchs7kRNXrzsks8LECp7GpxS73YzCqPlsuD6OcTF3Py/eRoU85TTF5jpIBpigQSuLPd4hPrtF8+rz77B70UY068z/3+SPaWbS8QPv5p9n6n38Xr9Ogfu40XqsOnnLC7CgkXFqgnEwpR1WQXhgQLrjMm/T+JibPaV297ChwxmKNxeQ5ve++xuTWfWd20HRUq9G7t9n8n/6D094864I349PrjN54l/G7N2k+c9EZGBjD9O5DRzGbazH30lWCtSXK/T6DV97EZDndL77gLIOfWDIKsaVm+OZ18p0DTJZXGhTwO01HzbpwGuH9eMr/n9hJxscBGVpr3nnnHe7f3+HC+XMkqU+7lRD4Em0MSaKx1sNiabd8MKC1IQoExbEph66auY9th3zkRPXJrU+CJnWcR/9+neJZN7v6/TF+PghjiIoxuVdDS5+wnGCQbMxddABECArpVxkOIISilAotJIWKXFdGBRgrQVqkKV0hbS3ClkyDFolXJ5vZo0ofrD3q0vtFhjQZhVdjLt3l/P6bPJi7yEAu0Mp65F5I5tWwwsMKQa4CSiRWSiyOzmSq3A/fFng6oxABmRe5nAxrKCqHqWnYYq91wtnQ+k1yP8Sg0NJ3cwarKYTEeiFYV0wXHoyjDspqjPDwy7Taz86+1wqBEO42YR01am6652hPs1wMFWBKp/OwiKqAd25ZWDDCosoCLX10tY98nVLLxnimZBh1EMKC0fgmI/NitFXHNBCCSnTj9CG2dJQ4qI738XPDVlMTi7IaaUylKbEIazBSIY07Pwr8x1lJwgn/sAJhDZ7OwUIW1hy6EebY9rzfEtWmViDow4ymPoE1c+6NQ8VCNyRJNUoaBDn7ezsUeUTk17h9r2B9NaQWf/Bl8EcRfv8JyPjJXQe3N3n7//0NhvcGDjsHTWI1QSmD0gWUmnzoBM1B1wVcGa0xeYlXj1BheOy66la8vkL6cBuTF0dUh1wIgqUu9TMnMVqTbe0RrS05bvrdh2AN0foyamsHVYuQShEsdlGNOrqaTlijsXlB/cpFalUh33j6ItHJZbwodAFwkQM7yf1N5/rTH1Ic9l0wWa2GqYKgVBw6/rYQ6CQnbjXB8xj84G2iE2vUTq4QrixQHA7IDwc0njpH7ewJpOex+kt/jmh9md1//59J7mxgrCHf7ZFu7eDVa0xv3nNFXauBqscUWYZs1pnevse9f/M/Ei4v0nnxGUxecvjNV9Bp5obpgQdlSTks8VoNwsV5kqLk4BvfQ4Uh0Ylll4ZtNKN3bxOtLzkhdrPuuudak97fotzcIz/sUY4nlUagTbqzT/HOLQCXv+F5jN68zuTuBnu/+/suQDAKiJbm3UThsMfk7kO8Wo2s16Nx+RydLzxPuLbI4NuvVeAPoKKcGsPonZsMX7+G9D1kLUZoSzEYo6KIYjAm290nXnU0GMC5CPWGpA+3nY1p6KOsQXghwaJzhYrWlgiWF0nubqCUx/L/6c/i1ULKaUJyfwubpAhjmNx9COAC3yre/WwVvQHTuxtM72+B0ah6jAgCJ5CfZoRLPjJw54r0fVovPE28slgV7oKiP8SWxh1/pShHY/RgiCkNeppgyxIZ+O72Ro1yexeMYfzWTeeSpQTxuZMIIbHWUPSG9L/5CmVvwKn/23+H9DynA5lMnYPi1h753oEr6pVyupZahB5NXaq2r9BpiilKknublKMxQbtF66UrDH/wNtM7D7BF6ZLOGw38bofGhTNk23sIJWm/8AwyDtn5na8Tn1hBxRHl0DmoqVpM7fwpamdPMLn9gOmDLWQY4iGQnleJ6AP07gGy5j5vepLgtRsECx1saci398hXl1xmSj3Ga9RIN3eZ3tlw9tNVSni2d8jge69THg4wtYhsc5d89xBhDf5Cl3RjG+w1Wi9cccnz1++gahH1S2eZ3nvI7ld/32WzhD6jd27iN+u0nnvqPde4YNm5iU1u3qd+/iRyYc7dYAzpzj7pwx06X3j+x2ZO8hMLMj5q4vdkMuHVV19FKcWf+VMv886NnK9/64DAE6iG4u79HG0sUaTQ2qHM4ahE+YIgFBS5YTS2VSify0aW0tVxSroaSuef5DurKqwPBFDHC7YPo5mIx3//0PPFIirev5U+CIWVkKmas001WZVLUUOYAuOFyDKj8EIKFblwN2ucW5M1aFE5VUn/iKMvrcYzJUGRkHkxw7BdaT5wbkkzwbktCUrXNYxNRlgY2pN9zhy8S+5FJGHL0aWk52g4WjvnFQTaC7EIgjJxzlTSRwCjcI5evIjFFfZhPiabO0c9H+GXKUW86LQhQqJVQFRM0CLAUyVTUaOsuvjH96VFUioPmReYSsZihMTTJVqBxsNI31GUdIFvNKUfMTfZJVcBuRcRllNspXXRMwqYtQjhCnxV5oBLC5+NH6TRNLIBSucU0nP7X3lk8Ggfzs4NY5E2RzCbUFUjjMdyLB6BDovECEOpfHwMSpdIU7oJjZBYZd0xPXbeVDsDaZ0Fr1WK3MZooci9GpISWerKTvdDivEjI6pPkzpVOQbbR82BwdAQRopWK8AYQVpo5MQwGE7p9w+wxW1OrM3R7Xbpdrvvsav9uGF80+mUdrv9w+/4J+vHvvLC8If/39fp391HtbsEgz2sMG5yqBzVRZUFNi8cRUWDyQpMmuJ3WkQnV/G7beTmTsWxdgJlv9smWl5ENRukDzYreZakfvE0QknSh7t4nVblda+weU4xnBCtr2BK7ShXB330JEHFMQjhQgAbdayQzH32Web/9BcZv3mdw69/h3zPOeKoWkS45nzv/W6byZ375Ad9su0dwqVFUJJyXNnR4uG3HAWj6PVdJ/XSWUbX71COJkxuP6AcT1FBQHxmjdbzTx/5/1tjyLfdazaevUC+c0i+ckg5HIGSzqEnDNB56ZoWQiAC37lJFQWjN65hy5LmlQvovECPpwisS062FpvlFId9V8gbyPb26b3yBh3cxBwl8Vp1isMeJi9pXD7rRN3nTxGtLDp7141tV6CWJdnuoROoN5xeYXrvIcntB3j1GvG5k66j226RbexQ9ofMRLmqFpMdHpLvHjIqDX69htd2ZiTFYISsErtl4FOMxgzfuAZGU794gXBl0U2Hy9JZuPrKBfQdDMi29/BaLlitdvaES2NHYK0hXFlExTEmy7AlRCdW8Gox8vJZmpfP0bpyARVH9H/wtqPUxaE7L0rN4JW3mN7ZoPulzxIuV7S37T163/o+RW/o9BZKku8dusK4Kn6TjW1XC5SW8NQS8cqio+BOEqITK4zeuulA9lwbFUfUxhPynQOEssQLHTetQtD79qsMXnmLoNtGBAGHf/h9VCM+yltR9RghVXVuFGQHhwRri869bPcAqzWTG3ddJok2yDDCFCXleIweJch6jBlNXEvWU2Q7+4zeuYVOUsKleaY371H2hs6e2fMRUpBv76EHQzCG+Z/7PCqKmN7fpH7uJHo6RU8SRm/fIKv2iarHNC6fpfnC05SjKbWzJ1BhcJReX+zsk27vU46nBL4Hnjpy0Zrcc6C0mCaMr98hWl2k89JVVC0m2dh24LMCGOV4yvDVdyj6Q+Iz6+4z4HsujfzBlmvAhj7ja3dJtw8QArx6nebVS4zevU1y6x4oDxl64HlMb97H5DmX/p9/j/jEymPXOTNNUFGI32lS9keolkVIiU5SF8DcrB8lhv841v+u6VLb29u8+eabnDhxgtNnLnDr7pSDXoGSsLGdEQeSVsPjqQt1JpOSew8TstwwmRqUZ/GkRHkCqSymhFn7Vla2ta26xBoocvN+so0fYR1r4c4wxHvWo47JLPjusfC0mUC3mgo419GZmPuDlqNGOZfwGYhRaM8VrAWKohr/Sx3g2RwtRUWPct1yK122BsL1v7WRjzj9RhPnI2plSikUhfGdpaqwVWq4rVxR7dFb90yBX2QYUTKOu7y19nnmJns0sh6FDIiyIZH0mUbdKvNhtu8EhV8D4RHmYxr5gCRokqkIz+QERUJUpoyjDlOvgVGKUvpMwzYYg8IQlDmTMEILhWdLSqLHB0PVftbSp/AsVkomslnpRAx2lhtiSiQlYZkQ5yNcBkaAZ3Ki6Zi68NmYv4CRXnUMKscIA6airBV+WO1X60Tzns8o6pB48dG0xnGm/GMdVIvQBZ4tqz3qRm1a+Y+0G09yLa3BJb47oGiMJjQup0RLDy1rGOFV+2F2jlTPIYQDfNaAcY/3TUGKQBlzRDUzj4EMe+znI13IB5z0n9iSAqKak8AsdAOiUDCeanqDEmNcMSGEx3BS59K5FV54LmI67bO5ucm1a9eI4/gIcMzNzaG1/ljC7+l0yvr6+qf4Dv9k/ajr5p0xD2/usiAKiGoI08QfD52uTvnV9aFw11YpKYcj5+jTbR+ld9cvnqEcjJhcv+OCtyqxtN91NrL+/Bx+u0HRH7kCb99lMYTLi0xv3nV0CnCTQa1RniKc76CnLmjPau2cpTxFsNzFTDJq508yuX6HwavvMHMp8Tot9DRh8s4tl1MRRST3t8i29lyHmCqALUldIFq97hKFM1EVtNp13z2F1SXTm1vk/SEqjkg2tpjevEfruaeoP32B/ndeZfer30CFIeXGFvnuAdHaEuVoRDGcuBwNATZ1mUfRyRVMXoAxWGPRScLoresk9zbJdvex2iBDH+n52DxHhAHFaEyytYettm1y4y5+q0n9wim8WkxxOMRqjSk16cNtgoU5hBCuczzrHj/YpNjeI3r6ogtQy3LK0Zj8oEf6YIv40llsWRKuLWImKSLwmNy4h1eLidaXKIcTiv0efqdJtLJYpb03kZWj1/TOQ6zRBItzZO/uYdIcr9N2WSqza7MQzqLXWpfYXI+J1pfJD/pYneK1GrRfehZVjzn4T9+sjnfh7IkX5pxz4r2HqFrE+N1bDL7vkp1H79wkWlvGqz9y3vLnO6Qb2/RfeZPFP/dlsJbB999ETxJq504ebZPfaVGOp2R7hy5X46BPa2WRYr9Ptr1LftBzSd55gckKp/0Qjm5lcqfBCFaXHJXOAnmBLXJH0Ws3mXv5M0jlROX+XNPZDcsGxWAMJkf6Aa0rl9DjKaPX3sUkGdP7m0zvbpJt7buvGW2ciN1aZBggq8T1YH3ZFdTJLgjh0u67KxhdMn73NqoWuZR36aYdSIHRmqI3cJQgo0nuPSQ+s05yd5Pp3QcU/RF5pScyScbBf/kO8dkTzo6503Y6x8CnHp2kHE04+Ob3QQhqZ9ex2lHr0u19JtfuIKIQFfgkt+6z8Gd/xmVc4GiZMnjUsMv2nBhb1WNHcZLSaVPSHD2aUB4OaD51AX1yjejEqjNQ8D2mtx4wfvcW4eqic50zBpNllEXB5N3bbP///hOn/85ffew7qjjoo2o15r7wAunDLfKDgXOqiyPiM+uoOCLdPjhKp/+010/sJOPDQIYxhmvXrvHw4UOuXr3K0tISb7474sHDhLmOz+c+0yG+NuLta2OW5n18XzIYaxbnA5LMMBqV5AUYZckzezS9mNnVzrQZRQFhKAkCQ/ZfPc14giPyw2otY5A6Q0pJCdUU4NiDK079Y7ZY77tmHW7tqEBOUMFRmJ+AR8WfxShFTsyRgPhoY4+jIuUKUevEAFJAIUOmiiMnqbnJLkYI0qBO4UVABVqqZwjKlMKPKFSIyOHW0vM0p/usDO/Tq62QNNtY6ROUCaXIXa4GuePPzrZbKkeNEpK4nFJLByRRi3HQIvEbGOH0A0GR4OmczK/hle73UvlHQX+Pv7dZUQ/WKiwSayVGOJhmlXJWwEis8rFW4xlDoHOkzhlEbec6JT086xydhE7xDBjPA2uopT0GcZciqDOztZW6wDcFVgimXp3cjyt9hX1iCuB+ikpPIa0lKKaUKiAVdWxlsfvegYGtwEMFNwVooShkgEA6tyjveCiM4FFeRkW1kwqhNZ4uqGV9UhWivZBMxBg5O4eeALu2ou2JynAAy6fBlZp9FEoNRQ6NuhN1dzs+u/s5xkAtVsx1VJWdUzKeGjqdNisrXc6dO0dRFPR6PXq9HtevXyfLMqy1bG1tsbi4SLPZ/KHNkVlOxp+sn6xVFIbbdyeYIHKMvfEIgwQ/wPOdO562Fq1L/MhZnAaLXaSSRGvL+PMdGpfP48UR7c9ewZaOuoEUCKWQYYTXqONXvvj5/iGmLPHbTZpPnXe5A70++a4LihO+D75Hxbyhdsales9Em0G7gVerEZw5SbC8wODbr+HVY9ovPM3w9WuOUtVpYmoRozevU/SH6HGKbNSx/aHrvHuKcjjFq8fOiaoK/VOxy6uYvHvLFf6bu5iiwOQlwmpko4nfqtP/ozfw59qoWoz0feKTK4zevYUIfMrxGL/ZohwnqHrdUb7CgLI/wExS18wqjRPELi8ipSR5uE0xGKGzjDLNCKxF5wUUmmIygaJ0E36l0FMnthdK0rh09kizUfT3QQjn9rO6eDRtQQp0klYi3z7JxhbF0GUczWgz+e4Btiyd45I+REwlfrvlrE+TjHI6RcUxrc8+S7TYZfT2TbKdA6LVhSqvpMAaic0KZBTS+swz5Fu7iPBRMWmtRfg+NsuxWYa/vkTr6mWXL1GJiNMH27Q/dxWpJONrd/HqETKOnQh654AyS13Cd7tJdtB3Yu25tgvROwYyhBCEq4ukD7bJtvfBWvJdZ6n75HXKvf999zXg+yT3NvE6TcKVBdLNXSyC5tXLzH/5RWyp2fz//A7F4QAZBdg0c5qQaUZ20CPv9ZFK0f7MM0fOWcJXeLUQVYsp+kOnGcpLbFEgaxGqWSfbO2DwR2+4/Jm1JcK5FrZ006+0st4NFrrUTq2TNerokQN9qhYSLMwjlXQWzJ0Ww1fecNqNrMCUGlWLEELi1WuoVsO93609wrVFrLEUez2K4Zjp3YeUgxHlNHVFNhYzzhm88ib1sycwV58CY0nubuDVa06faIzTSNzbcvqh1UVkECA6TXTiMl2aLzyFrEf0vvsa5XhMur3L+K0bRCdWCRfmyPcOUI0a5XiKyQus0cggIN89oBxNkFFAtrntJhCNCHX5LL1vvcrkxh2ChS5+9Z0ipER6HnqaIvyA0RvXSO89dInts3PQOFv5YN41P0yaOWAfBUjPc3Q4oyvXuv/GQcb70aWSJOHVV1/FWsuXvvQlarUao3HJ7n7GXMcnjtxOe+6pFr1BwWikaZeGVtOj1895uJWRZpY0M0ym1ZOKqvFrXBlUlhCEUBqDSczHEoK/d83AxRMH8wMnGTAr6IwInGeU0Qit0Xgu0Ox4IfcBuu/HCj5r0SI4NiRxgXCPhLjH7lsV0I9b4tr33G/mVwVupF3IanqBICoTWlmfg9pKFaYnKaXvUlel7+hXVV6GNK7wFMbQry2CFQR6ihEKLT0XFCg0VMF3whqMASMEufLpR12M8giLhCRo4BUpKJ8Eg5rV59ZQywbkXkwuQwbxAiXOWtce7TgJViPIkcZU1rCGQKfkfkSUT8mC2jFQQjU1EO6L2RQM4wXSyqLXCInIJxWWkyBxoXlCMoy6jq+KZZbKboXC0xMKFZEHNY40Fe9xiXL7yyAwwsMzKXExQeQjMhVWAv/Z8T92glUUKln5NksMpfIo1OwLspqSyePn6TGQaQyKEiM88rDOGI2HphCVRsQK916efPzRZKhKvLSCT0OUMcPayuUakueGJDP0hyXaQL0m6bQ85to+cawwFQ6YJJqoumb4vs/S0hJLS0sADIdD/uiP/ojxeMzGxgZSSubmPphaBW6S8SeajJ+8lWaGNC1QUqC1QGSu26/9EOEFCKHQMsCToFph9YVgXQHx3GW6L79A4/JZALx6je7PvER2Yb+ycy1pvfAMQbeNSTImd+5j8hJ/rkX9/KkjL/vmMxcZvPYOdnsfIWXl+OPjNWJaVy9h8sJZhYZDWs9dRkYR7c9cwSYZxXB01J1uPH2B6e37JJt7FP0Bh1//Dnqc4i/OuVAuKTHjBFoN/G7bFeDjCfl+iskKrGlw+I3vOrtXo1FxRNhpUfSHgEB6CiEVxXhKtr1P7cJppKdceGBWuG6vtQgrCM080xv3KI3GKwtMUWKtxmpLsDiHrEUEx4TPUFE3RhOyLAff5UVgrLuOCOXEvIHntAVC4reb+K0GfqdFurFNfHLtqFi31tFGha/wWg28Zo3pnQ3yg0NAIKRECEH94llHy9rvU9Rr1E6foDgcIn3lrNiVQkUR3lwH6Suy/T4IyPtD5y7kK7xmTOcLn8UUJaPX33FiduFoRl5lJSuUQgY++WAIAoLFLqYoj4wCdOVaFC52WfmLv8juV79BOZo4rYPRrhAsS8LzyzQuncPmBf3vv+UsT9+6Seszzzw2zZjpG9zjXfNQPiHozQ/7jN++Rba9B75H+/mnXaL1eEL90jkW/uzPEK0uEnQ76CynOOhRf+ocvW++Srq5gzEGz7rmrsASLi8SnVylfv40RW9AMRzTvHQWVauhpynFQY/8sI8XBc5wYOxMB4SStK5eJj6xQjEY4bXqBEUB2iDOnURnuQMpvQFCKaLVJepPn6McjAlXFgg6LfLDAdN7DymmCZTGmQxkOSjp7Gd9D5nmiMoFzWvWiM+cIHmwCUKQH/TJD3oueyR2TU9rDQJBmWQUhz2W/g9/iumN+0w3txn+4G2S+1voLMOrRUgJozev4bdbNK9eptjvOc3KaMrgtXdJbt13OSpLXYrRFJM7d6xyNMJrNQm6baZ3NlDNOjIOSbd20ElGtnfgKJYXTpPtD9DThGx3j3I8JTwWoglg8gJVi/GbNYqDHtl+7whk2AoQ6WlKMZni12vvydIoh2PiU+s//cLvj0qXstYe3Xdvb4/XX3+dlZUVnnrqqSOudF4Y8sLS7TwaGUWR4pmLLa7fGrG+GvP62yO2dzPSVBNHAikFo0lVmcyYSVQuU8KVeEpKssz88GHBB64PKaaOpY6/d80KfgVWO7pNtQ3Satc1nqlbpeT9wcqx/TuzWj2aXojqMTPh8GyDjiGfxzIWnvw5e3mBMJqgTDDSwzMlXpnQSns00wP2mutOGG5NRRkCp+lQlAgCXaBsiZYBk6BGrnzGQYtaPnITEWudBS2gqRyysFWSt6C0UEqfqEiZejFWBdQzd3FXRmOQCGFJVUTeWKNUPhqXayFtiRZeBTKq/WKdFa2o9rM0mjjtY0XH3VxZxEpjsJQuGdyWTMI2U7+OlQppNIHO3GQhbDgdhFQo4yYepYowUrnskerEsoAVgtSroVVwjBZV7fPH/j8T8FsK6aFFTCxDhLAEOqe0llxIEPLR0awob9gqi6TSXRTSc+eYqcDBB30mrVN06MreVgtBrmpAySOdSEWF05k7PtWxmul1HAfZTbqw9tFrfsJrNvTJcovnWWqxwvckSkmkFChPsDjvk+UWKSRKfvB1KKw86Z977jnnDDIacXBwwNbW1nuoVZ1OB8/zmEwmn/ok47d+67f4jd/4Dba2trhy5Qq/+Zu/yc/+7M9+qq/5v/elJHijPlZAtnKKcO8hNs9RVmN9H/KcQobE3S7NS2sE7QbxyRVazz/D0p//WReadmy5zv5qJeYduNeIQqLVJWrnThKtrTB45Q3ygx5+p42QwhUMK4u0P/ssAKO3roOUzn5z+8C5//g+7eeewmu3iFYXaT1zwdmCVroBgHh9iWChw+C1d+h/9zWK4QSv3SRY6mLT3N0v8JBKYFWIGY0pCo0pC6TvI33lir9pCsYQnJ+jOOgdTSyK4QhP4orwwHedUCEwee6sOI1x1CspaF65BMaSH/Zdl1Vb/I6z+IxWlygHY2QcYrLMBYMpRby+yvTuBllvAJPEAZbAx03IBapeQ/oB0vfRozHp9h7xiRWE7yECj3B1ic6LV8i299GTKUIppvc3Gb97m9r5046HHodOHF64jAOTFyjfI1ieo+wPESdXiM+uo3NHz/JbdfKiRCnphLna5SCYQpPcvIfwJOHKEtmDh8jY0bP0NEVGAflBD1uWqDhy09ThmGz3kGh1yYmev/sa4doy0foS6daeS4df7BIszbP8lZ9n9NYN9r/xXSg1piionV6rLJIjCANUHDkA2huQbu0QzDldhHPEarmvA+kot/YJu0udZIzeuE520ANP4kUh0foK8ek1ss1dN1k/tYoMA4ZvXmd6675z4SpKovUl8sMe+U5lsRxF1M6fdmnU9RidZuSHA4LqJWvnT7L/H7+J0RpPSqe1sAahfPS0j0WQ3N8kObnqaD+lxu920KlzV9Rp5gDl6XWClQWnkPUUyZ0NF4q4dUAxGrppRJWSLcMQhANZMvCRvo/BuFDG4RAVh8TnTzO5fodsc9sJ4cOw0ikBCGQtxmQ5UknXNLBw6m/+d+z8h6/T//arxOtLeO0mejxFZwUqd5qMwfded9SuMCDb71H2h+Q7exSDEcHyfEWXPCRaX6GcpGR7h04IHgUOtGe5s+/tj7B5Qe38aRqXziLjiPyw5/RgSUI5HOLFofv+zHKssQRLc5iyahhWuo/k/ibj63dIt/ZI7j9kfP0WzatPUTu9/ignZDzBIqidPfEnwm+vQlnGGIQQ3Lx5k3v37nHlyhXW1tYeu28USqJQMk009Zr32N9XV2KSVLOzl5EmGm0sQTALx3n0gTwiojjqOr4PQSAoKvcv/bGBxod1a/UHAIzjNlazol8iresgCyxKl8xsaI0Mqu7PB4lpZ4Chmlg8RoGagY4nX78qGGeZDB8k5pWu8+/NkiB0jrIGzxpyL2YSzeGXE/q1ZWyVQC0BdIZEkPs1ShUSF2OmXkyhAgrhIzwovYB6PqaTDenH80yDttummf7EVp0vobBCkXoxVkmH4oNGlUjuV3QiF1inKycqz+Qo4yxuZWXNKouCUilnYYvCMzmeLWjkQ5Ym2xwIyyjqYhF4pkBaN/Iy0mkctFCVS5UBq8krgbo7Zm5iZIR0RbqgKrzdKSBN6fCmF6C98Dgj6oOL/qPD6FXH0HVimlmPfryIrOhxj4Cd21cIS6FC1CwrQ1Q6GwUfOlkQwlGwZuen1mipsDJwjlm6+tBUwFfa0oHLGcXPWhTafQHPtD2fkjRDqaopqqAsLeOJJo4F1hj6g5I8s4zGJY2az0svxDSbH+4sJatOqBCCdrt9JOouioJ+v8/h4SE3btzgd37nd/j617/OxsYG29vbHzvE76Ou3/7t3+ZXfuVX+K3f+i2+/OUv82/+zb/hK1/5Cm+//TanTp36xF/vp2VFAbSSHqLZJrn0HEqC2N3BFDmEAbkNUUVGfcVZeLY/c4XOZ69Qv3AKGQRO/LzfI9/vOdqL75Ed9Mg2dynHU3eljkPi0+u0n3+axlPn8Oox45t3yfd6YA1+p03npavUzp4AKWk9e4nJrXsk9x6ShnsuR2O+Q7S+Qu3cSeoXzuC3m2S7B0d2rLNl0oz0/hZ6MsFv1l3CdKMBDRBRQL69D9rgz7Uohetwhq1FwsU5R5fZ3EH6PtneAemDLUxZElQheCrw0UmOKTQI6QTMo7GjWUh5JGR2tAtDtLZMsDhP+nALjMHrttG9IeVwUqVG98kP+pi8BAqEUs7xqdUge7CFzTJEHKNCz4nFzYziC6bUrlOcFejekKDTJlyaPwJ5AMVwzODVt6mdO8n47ZuYvCBcXkT4nrMOloLkzn2CxQXqz1ygPOi5vI2dAxcQGDiBerbbIz65gtHWZQsg3HMUBSYpEUGPYjxFTBIHXLRx05M4ohyNKdKhOycO+kQnVqidXqOcpBT9uwxev0a0ssDCL7xM57OPQtBqZ0+iGjWmD7YIF7qkD3eonTvB0RezlETrS4zfvU3RanLw9e/i1WKn+1AKv9UkOrWKXwXcqVpEOZ4cpVM7B6x3EL5Pur2HiiL3GmdP0HjmAvl+n+ndhxSDEZNrd/A7TcLlBaw2qCjACukA72IX1awTLHXJNrYZ37oPWjuR/clVet973eWsNGLy2w/Idw8dLQ/rzsN5F3aY7eyx+9VvuHTy+1uUgxHBfAev2ybwFPGpNcKVRfJej/GNBxT9gQPAzQb55g7FYIyMAlegTaaYrAK+lW289UrMuCQfTxi+fg37VEE5HDO+cZfRmzfAcJTHQUUrQin0aOJ0RNqS3t+kzHNGb91wzQWtUZ0GxeGI8sFD545mnZVx/dJZ91yArLlJmMBiJgn186dIH+yAMYQLHcbX+tiyZPHPfdnpju5skB+OsFlOdHqNxrOXAJjeuk/Rd40Lqy3pw11safDbrUo30kA1G0yu36F2zk1Kd/63rzvNltUE3Q7h8gKTm3c5/P3vkm2cov70BWzmzH9aVy8RPSEW/zTXTyzImE0pptMpb7/9NkVR8PLLL78vFaFe81hbjrh1d4LWljBQTBKNMZaf+XwXYww3bk847GfY3JAkhvIJX9pZo39W+/i+ZDDUj1w3P5YY3/DRAIZ9ZOv52DpWnAjhhMZY1xVHVkV9WRV+Txais3cwAwwVmJqhp6PnnXWf5ROPq7rPxvEV9Wy0c/T0x4CJNQinmHdp4SanUCGFCuhOdytml0SaonJVEpQywOCcikrfJ/djR4My2oElISmISH1DUKbIWXBgFXrntv3R/jJYpLAIqzEqJFeP+LFaGJSxDoBYgUAQlBlRmTCOOkhjCcoRuV9DWYNfTDHSJ8ynRGVKveiTBk18naPKAuFZDE7Q7psMP09JwqY7jBXQQHouJwMwSjmhNGDVTMTtLmy6OgbGCx8dw9mkifc5rE8u66YZwmqa0x4BJWExAQQHjTWsNfhlSaECjiZWFiyCUnqVDcAs+0IeO18+aM2mX1XHDBC6QFmX/p77NTfZssJJP0wJMgA0yhoCnZCpR8noYI/415/UUhJadUGa2ypLzWCswVOCXAtKY8nKkv4mLHQtRWG5dnPCylJIt+O/5/k+TPTt+z6Li4ssLi4CsLS0RKfT4V/8i3/BP/kn/4Tf+I3f4Bd+4Rf4e3/v7/FzP/dzn9h7/Jf/8l/yN//m3+Rv/a2/BcBv/uZv8tWvfpV/9a/+Ff/sn/2zT+x1ftqWniQsihH7qy16zQbDICKYf4B6eJ88LUjn6pxoW57+279I98WrhMuukAXQWc7g+28yvXnPBfZJwfTOBuVwTPszzxzRmMrxhPHbtzBpRvfLLxKfWiM6uYoeT9BpTjkYkW7tMr27gT/XIj6xSvfnPo+pqC5CScednjkzGYPO8qNk62IwOvL3T7Z2mdy6jx4nlWg3x+QZMgjwGw1s12k7dJKBENROrrkwrnYLay1eo0a+fwiFJt3aQwaeyzRoNdzvVNtjnI4gjLqUownpxjbZ7j76ZoqZpqhmjXBxASlExRP3SO5sIISkdvkM0g8YvfEuOs+JVhcASdF3dBglIJjvoCdTB5SWFpCBT7az7wSxSXakl9DDEd5ci/qFM0QrC67wr77D88M+epwQn14n2zlgfOMuwvPQgyFlf4ROMtKtXSf0zXNkGDgqV+jjNRuoWkywskA5SVxq+HiMimK8Rp1sZw9ZiyHPMXnJ6I0bDqh5inLvgLI3oPbUOepXLpLeeUgxGrP4pz9P46mLTO88IH247XQDVpNs76OnKeoY3QncFMJv1pGeojgc8OTFP1iYAwuj194BIDq5ivI9ymnK9PYDt929IbVzJ6mdO+mK6eXK0ei1d9HTjHy4jx6MKMOQbHuX4ZvXiX7wjrM4DX0wlvjkisusqJYMF5k+3CHb3afs94lWl8l2DxwofrhNsNglPrVK/cJpbKmZ3t3AaIOo1ZBl6ShBVR6M9BTZ5i7JaIrfaWC1BoEzLxiO0G/fdKn3gU/6cIfRO7ewRUH7c1fxwojJfQeEZBCiwgi/5Zqb5WSKDEP8bgt/fg4zmpDt97BCUE4m6KxATqbYsiTbO8BaQzA3h1d7lJRuCkezQruEb6EU2eYOyYMtolMrZJt7pA+2sLkL25VSYXSJLgo3nVyM8Ft1kgejymQhQqcZNisIVxdQcUTzyiX8hS7BnJs8qTgiWl3E7zQQvk/nxStI32dy6x7lwIFqjEVEAUjlPqtSOT1Io076cAeTlwSLXfb+8zcZvfou2d4BptR4tYhwZQkVRQjPI9nYIVxZpHn1MrXT60RrSz+WEL7Z+omlS82+3L/73e+yuLjIiy++eDTdeL91/kwNzxM83ErZ3s+QwOpyRKelCIOAE6sxb98YIoRFSIE+prMQAkIfMmf/jzEwnZojDaz5yLEWs+nFBx3AJyYYunzEVRfyfR5XFYYzcGCdg5C0GuNHVVe/4t4fcfeP3lX1GEdVedzWlEePmz3WuA+90AYrXXq0qQrKx57vGMDwrMaisJSEZcqMbS+wTL06SdBwjkwCjJJUKgScqWs1LFFOXC2qYtdikbqkED6pF5P4jaP3/khrMJveOMrLzL3psUJZCJAheTU98GzpBFxCkXsxpfAxvkRLgW8NQT6mkB6l8in8ECkMpbeElgrPFETlmFTHlH6MwFLgUUiFtQKE6/g5bUo1XToqyjUC6bjDRxMlgQuwm7mHvZ/+4oOmUzy6b5m5HA8pmHgt+lHXTXWswSrv2PTNHj3MVhMNJ2zJQQWPnvOHrQrYgEBgsFJS4Khfs/PICIWyllDn5IBAooUk8+puK2Yg9Tig+oSWNjBJLMa63BspBeOxCzHstCTWKoJAEPiGRl1RloaNrZTd/Zwrlxsszj+eoPpxMjLOnz/Pr/7qr/Kv//W/5rd/+7cJgoCvfe1rZFn2ib2/PM955ZVX+If/8B8+9vdf/MVf5Jvf/OYn9jo/lUsIunXLMw24OwzZjZZIWi3KM0/TrEmunI44qfeZf+k5ovVHHGhrLYffeoXDP/g+lKXTE+SO5qCaDZIHWwQLc/jtJl6jjjwdMr3rhJi1MxUlQQiGr71D8mALGXgIzyPd2GZ87Q6tq5eoXzqLGU+xpcBrNbClZvzuLSa37zvnpsBH+B7Z9l7Fx44YvvoO6cNtyixHBgHlcOL0Eq0m/nwbFQZHlKhgqUvj6fMA6DSnOHBON36rhUkLyuEQfL/KNBg4qtH8HEJJvHodnWUIXEja3ItXGN28x+jtm849yfcoR2Nq504RXziFHicUkwnZ/U16f/AKfrdDfjjAn29jS40pc0yao+oRZjTBFo5yqaLIWa4iMK0mlH2oqFr186eoXTiDqkfUzp5g8Pq7DF97h2xrDyvAi0L0NMWbb9N67jLJvYdM7zhLXguYLEc16qi5dkVrGRAuL9D98oss/MKXsVnG+Nod12nf3MNiaVyeR0YB5qFGIBBSYcsSq52+wmu3wPPQowleENB66jytKxdJ7m1SO73G4NV3UbWIuc8/h8VNQpMHWwx+8A6186eZe+nq0TmmGi73oxxNAEf9cT7cyk0TquK3GI0JOi0wxk1RmjWCuRbleMLuf/gGp//O/4X2Z54BKZlcv03/e2+S9wau+Mxy/G7HOZiVJfnuPtM790nuP2R66wHdn/0c8SnHENFJhk5TRu/cYvjGu+jRGNlukfcGOF2Do4fZQldTJQ8rJXqakN7ZwGvWXXjhfAe/3XJ0L2vcMZk6B6iiP6wsckOK3bGjHNo2+X6PeH3FUYqadXR/jNGafGsPEQbIZs1NEorSheYZi85L9DhxVMBaTLi+5GhElRNnuLqEajVcDsbNu9Vnt+70LHnhpkK+owILX5LtHnDwX77D9M4GwXwHk2cu/bwWOycrLNnuARiLSVKokr8xFlMWRO0lsJZiNMZvNx1lMPCIlxfpfP45R6866BGOxpTDMeUkQU8SsqRHtntA3h85QwHPI+x2EFKRD4ek9x+S7+zjd5v4rRbB+jJlb8i4P2R88y4qjgiWFrBZhkkzopPLzpUtMHjdDt0vffbHRpE6vn4iJxnWWm7fvg3AqVOnuHDhwg/dOZ4nOXOyxiTRDMYlVlvevTnm1bcGNOoe+4c5pnSOUVLOLGvdCmZh2NX/laqMLj5WCN9HELM+BlYsypYY4YrsqjVc3TbbGHGMtiQe1Z7waPpxZG17jB/vYqIdwJhRZY4eOAMLBlnmIJQb9ZuCQGeAJfUibNWFttYVwMLoik+Po7+YAmVdGVnIABM4pyYrFVExZVjrkno1pCnRUqKl77piVCN4XZBXSd4gnAkRBqxygXVoxtGcS/t+DEAd+93M0sbd/lKmQMsZLawSbs70AMYV3oVQaJMzo44ZGUCZUFaZFBZZib5TwLjJjAwQXkRUJuRA7oVoWRWk1jizLpzl7aMci+qH0e44zATSqGp6VW3jDDjZynnpI18EBJ51+RuDaJ40aJB7EUYco7hVGpJZwvvxiZBVH5QM/iFLimp6ZTDeLDzEPa/UOaI6rvV0QKATRuEcmR+jpUJq5yLim5I0aL7XYvcTWqV2E4048ohjRX9Q4HuS4chw5kRIFEnGU0O34xOGkpXFkP3DnHsbCd05/zGNxscN4gOX29PpdHj++ed5+eWXP9H3tr+/j9aa5eXHhYDLy8tsb29/oq/107a8Rg2/22HuoEdzLmbnYIdpPkRqQ7uE+k6AWl3E6zQfe1xyf5O9r/4BZpriz7cRniLf6pNsbFM7e5ISl00wmzDMvPGTjW1qZ05grWXw/bdI7m8Sn157TJSbH/TZ/ve/R7j4OipyWixZi8i3XTK216g7W1NjHG9bSqzW9L79KsmDTVQcIUJH+9DjKWV/6P6NJ6AEZX9EvL5C49JZp4eQElPkJHfuQ2lACVQcYorIXUvT3MmligLhB4Rri9TPnGR67yHSU8Sn1xFKOWrmhTOoekw5GDoaaquBMI7zHbSbRJ9/gdGb15neeYAwBluWmNKFC/qdFqpZcyL1UmPiEG+hg5kkrpCMQ0QUYiYJ0co8c5+7Su30Gl6nxfT+JpO3bzpBtueaS9n2AcXBITrNmPvCC7RfukqysYW/0MWMxmgstbMnXaL2w20yXxF0O8goon56DRlHiDB0Ooc4ckF9vkKPxkfFp8QAHjIIMNo4h6DKctLruEI/XJrHb9VJt/aweUG44rIrZlcUr1kHLNNb92lcPHN0zqgwoHbuBJPb98n2ewxef9fpCwKfYH4OnZekWztIKV3mxNiF2MkoxKtF6GnK3u/+Po1nLrDwc59j7nPP4TfrpJt7qDhkb3vXFfydNjbP3eQnd3QrtCHb3mP87g2EJ1Fh4ALb7m06JzHfw282nMZASqc1WZrHe+ai0xRKSbK1R7F/SLZzgPQ9dy5b3BRpPCVcWnC0s7xAJwnFYR9Vi7G6RCofW2gH0tsNvEbd2cLWYoQUDmhXWhVhnfDcaheI6NVi/PkuOklAWxqXzuDPz7kJX39AuL5McTgg29kDz6N+4TTleEK2tUu6sU0w13Qub4ApcifYPxhiixKv0yJc6jK5dtvVKwtdsBaTZgilMEWJ9H28dgsznji3qlKjwgARuCZCMZo4LYSULrxvvkO4tkTQ7VC/eAZTltjSOCe00YT+f/xD10hIMlQ9RsWxS1M3Gq/dwgYBwlOouI43P4fUBq9ZZ/pgi3zvENVoIAMfb67F9M4D8oNDVByR7R4ChvkvfYb4xOqnc4H9kPXHCjKEEK7De2zlec7rr7/OdDo9oiR8VPS1s5fxcDNlcc5n7zBnMi3Jc8PhYc7DnRTlCeJYUhT2MTF3UTrTpqNXEc5h6qOvH8Etx7owO2FLLK4QVYaqwLVHRbArX62zG8MlOytTHk037CwjY1ZQzoDJDKQcd5CyxyYA2mkLrLWEOsXXJbWszzRoIL0Iq3PXsZc+Qigc7ckVitb1p5G6rOg+bsIS5BPnHoUk8eqU0keZAoE8clwyVdaFQT/aXuGoO36ZYBCUXowwEo1xt82mPcwoU8coYEfp1wZRzVGkERipj4CZFRLtxSAqUKJ8l3FhcozwSFWEkvro+a2AwgvxdEmhQnQFrqTnLnTKWvQRIJDYo5PniRyIY53/o0nSUaF/dKdjFLTZ4z+MbvdolcpHWM00aKGVcjkXR1Sk0omJqomKsG5CRSXefnzq9cNWNfGqAKadvafZdhtbbbmlkfXppAdkfkRUTBDCgbI4H2GER+Y9ARo/IcqUqnC5qnazMQZrFFII0kzTqHkUxpIMCxY6PlEg8T1352bDYzTWpKmhXjtGxfuYQXzWWiaTyafuLvXk9fC4OcafrPdfQkoaF8+w/e5tss13aUrJXLeJ9EPKwYjxuw+QUej0RcdW7zuvku/u03r28hEw9mpRFbTWh26bfPcQc+E0sjpXZmJpgOKgR7KxTXTcbhWw2pDu7JHceYAtCua++BlMmrHzO19ncu028Zk1wuVF8r1DwtVF4tMnyB5uuy7x+jKL7Sb9V95geuchxXiCiiNkFFKOJ+T9gQs3q8UsfOXnEVpTDMf4nRZmmlXZHy1QEpPn7prhQTlwgl8V+oRPdWk/e5lweYHoxArjd29ijRPUqsCj9tRZst1DV6gqSfZwG7/bJj6xjB4n1M+sY7KM0RspOi8wucZrKcLlBfx2Ez1N3XPNtQnrNWyaUSQJpj90wvIwoPXcZU78X3+J9nNPIWsRB7/3bfKdfUyeE60tH6Wd6yRlnKUkD7ZQ9ZjahdME83Pk/aGj08SONqJHY9fVrsUORIwnrnN+ao3ayVWyrT332kpRP3eKcpoiwhA9mZDc2yY6sQTGUPYGFPs9ko0thO9A3vCNazQun8UkqaMIPZHCDVRakXn0ZEpx0D8CGQDh8iLZ7j6TW3cph5Pq8mgZvnsLmxfo4QR/cc7ZsfYG6CRFNWrI9RWCRRdMd/iN7xK0G7Q+cwXVqBMudBGB5yhQ2gG9dGffFcqVza4330Z6PjrLOfjP30JGgbOb3dkDJY+csmoI6udOOdei3oDmygJ6mtK8chE9HDPMMprPXMCkGSZzTTzVqDvt0O4BFAU6SUG4cD5/ro3Vlnw8QkaBO9dn2RVF7oTd46lzzkpzVC06MieRkcSPWi5sbjib7ljq509jigLdHyKjGJNmTkOVFYjQcxkg806TJKva031FW0xWVBO1EJNm6NGU9otXmd7dpDg4RDVrxOsrLtsiSymTFOV5RMvzJJu7BHlO/elzZNt7JHc2nL5qJaQYO1OG0ZvXaFy55Ghi1ZKeR/3iGbKdfcJuBxn4RMsLLuiz1XCBhnGI32pgjcsPiU6sYJKUZHuPYpJSpin5jttvIvCZ3H6A32xgtEaEPsHiAmo8JXm4x8EfvMLCz32O6Am3qk97/URNMvr9Pq+++irtdpuXX36Zb33rWz80kO/42t7L8D2BsbB3kFOvKbpzPjdvT8hzSy1U5EoQ+KCUYTjWR6yhGej4eIY3H2BP+76reoGjwpOKPOSKA2HB15mbBhw9RiBMgWcBox3lB0GkUxK/4dyFlAA7cxyavY6tHJCoQvSOUXCsJcynBCYj8Rsoq12KtZRM4w6eLoizcdUVV45zX2VRPOqSu6JeSfc3S0VXksoBlbBN5oWOSuUpZxGnC+wsWdu6PA6QjrvvrJsAibKGsrK19Y2hmE13rDiylTx6L0JUuQ4FSFGF5VX6glkdfARKZn+bddA9t/+lu10bibIaZQtK6VGqgFL6jyYlAoz1j/bh0XQCmIUEzo7ZI0qXu83O6ERHdLgnCsKjonv23j5ql1/g69JlatiqOJoBL0H1niVIgTUC93EXj+432+8faBzA0X2F1Y7WZi3KGlQ2xLOG1G+4d6YLEC69fBh2mIatymxXYFCkQcOF/h2dP5/sJGNWG+pqIFSUlv4gx1MCX0k8Jej3C6SEvpQ0Gh6Nujt+ZWmpaqXHn/NHCOKz1tJsNn/4nX+EtbCwgFLqPVOL3d3d90w3/mS9d0Wn1lBRQDFyYulyNIZSI5Sk/eKzCM9jfP3OEZWlGIxIN3fxmo9P3kQQuGluPaLsDzELHTfRqy4H5TQlPtcCZnqBKXJ16bFtyQ96pPe3iNadANMUJaN3bpHv7BEsua6p12ogcEJQW5bEJ1ZJ7m5iBbSee4rk4TaT63fcRMDaaptiyuEE4XnEJ1ZoX71EfjBg/PZNl/VQTTRFGFAeDJC1uEoA1nhR6ADIwhwLf+7LNJ++QO30OuVkivAU8doSRX/E4PV38Dod0u19kBKb5ehpSnxqnUfGIY6S6c+1CeMIoSR+JUYuxxMHhnZ7BJ0GnS9/HjOdkG0fOBeqhQ5zP/M55r/0WaIVp3ma3nlAtt9DT1LywYhy5D5rqh7jd1qEi/PoLHeC7NKJloWSyDgiXJonXOoSdOfwmjVG79x2rlS+T94fEp9aw2vUiE8sM93YRGc5shYTd1ro4RCbpsjQQ6c5Jk1QE99d17QmWnQFXdkbUqwsYAtNcX8L+cxFVOORy1wxctkJVhv09B4IQfjOTQdIluYZvX2D4nBI68pldJpQ9MboJCE/6JH0Rs65bGXJBcENR0cOF3l/iKxFyEZMsNBl+OZ1LJBu7TG6cccBudgV3NPb951w2veweoL0FFIpF/p2ZwMzmjrQ0R+T9/pY7fj9UinK8bQ6ni2S+1vkowlKuslHWZaoKELFEV6zhphvU/bH5NtOz1L0+oBANWLsYEKw0CU6teZoRwc98q198r0Dd/y2dkAp8q19kAJVizBFUTnv5HjtlpuOLC9Sv3iG4atvk+/uE8zPoxNHD5Q1p/3L9w+RUUiw1HVp8GnmwjEbNdovPIUKI4Zvvosw4M21COY71C+cqbRVN6k9dY72Z57m4Pe+TXp/G5MVblIhJXMvv0DQnXNTgirvRo+nFL2ho0WGAfrBtsv00hq5uoxJMicm//nuUVOodu4k5TRh+9//HrZqTNi8dFksgY9QEaper+yfQUYh0zsPKA4HLvelKF2wrzEOHGUFejgmOrOO9AOEdK6O9bPr2Dxj+MZ1wuWFH0s+xmz9RIAMay337t3jxo0bXLx4kdOnT7s0T89736yMD1plaZBKkGaGojC0GgFaW8qysrnVrgcfBpCkGu9RbUwUCJLUFer6I+VifNzphXB317gCz5QgFLbixFspyIVA2CrFG4UwGq/yAZ+fblOokHHcdXEEtsSIGYfcXdRnkyFhLZ7OaKR9krBJ4tUqqgvERYpnEhK/ga7C1ZKgjmdL/HyCp3M86yxYrfLwdFkJtsGoqJI9OHCR4lJyq36+C8qzmlJ4ID28SjCtVUDphY46pACrK56qo964KlU8CscTbrJkhERY4QJxji+r8Yspocndh0sFTouAraIrKrF6xYkTpkBaixY+yIp+JgWW4FFdj0QLWz2HophZwB6v/WfHUVaFsrVuQ2fH4LFC/YjX9j5/O36/Y6Dk6O8zEPOkTsc+dh9lDcIWQAzK4+gLHuG0FlVivLRuzvMoEO84ELJ8aMFvLegCJZxY39cZni2JshFGudBBY4Wzz1U+nqksbCsMqDB4xRhpLYUXYbxPBly83yxmFkquDeS5BV+Ql5b5joeUgiCQtJqKooC8sPQGBb4nGIxKTq1HR3kZs/Vx6VLTqQve+bQsbIMg4MUXX+RrX/saf+kv/aWjv3/ta1/jL/7Fv/ipvOZP0yoO+sgoYuFPf5FyPEFPXCpvsNBxqcjDMendh+hnLqBqMXoydYV7LaroEe7r0m83ycIAW2rK8RQVhQivAqxjV7ypeo2D3/8uve++zvjabYrhiGht2QnKPY9s98AFavoettQUh32yh9vIWozfblL0hpSjCdHKIsL3yTZ3CFcX0alL8MZTBHMd4vNnKA561RSigLzE7zRpXLmEF/rOE//EChhDcu8hZc919/PtfWQUMPfyi0QrC4CzP03uPURFEUtf+XniquOZbu0ifR/hKfy5Nl4coacJXqNBtr1HOUkQgcu2KKcpeB7FYFiFFUrXte+2CU+uOHrO5q7LxsDiz3epnVjEFvPM/+xLdL7wAkG79Z5jp6cp5XDM4PV3nA6iWUcEPkXfFVt+p0240EU1aoQLc0wDH9VuIawhOrnqsoqqJWvODUocmyqbogTPwyY5Ni/o/eEr+Msuz0jWaoTLi9gKkPrtJunDHVQQIDwPm5fIwGN69yHx+jImzRhfv+0E21KSbGwxevOam15t75FvHzB+5xb1C6dpvfAM4+t3OPi9b6NadZrPXKi20qKnKQd/8D3QhmI8oegPULUaQkhU0x0DJgnZ5i7h2gqqWaP/R28wvnGPxsXTqMBjsr1L0R9gshIZR3jGIKMIyhJvrk05ToDE5YlEvstICRR+p0n2cJdsa4/6U+coR2OGb9/EpBllf8DgB2/TvnoJGYUUw7GzNPYVXqNBsDiH91TDiZiHYywCFfgIrbB1i99pYYsSnaSuWO4PUWVJuDSPkIoyzdx7ky6dPpjvVFbPE/KdfUfh6raJTq2SPNhCZznNF56ifuksXqOOznOGr7yFajfxu3NHBbX0FOHKPCbNaT33tBNpN2s0r1xiev02pnThdH67RcGQfGObzkvPoacJycZOZdawQu3Uupu8jEZMb99HjyYgneYm39rD6hKaNaL1RWrra4RrLhG+6A3of/8t2s8/jV9NuoR02SHJnQ30YMj03gYo9zkrKltocMCDhqIcjMgP+iCEA3WtejWlm1AMJxXzA8rRhHC+Q37Qx4tDZ0KxukS6tU+6uesmQ3Zm9PC4FvGTXn/sdKk8z3nzzTcZDAa89NJLzM3NHd3+Yanf77cWugH7B2PiWCKFYDTWbO+ljKcFYSg57OUoTxIGAmMsvudQnu8JpBJIqSnyx41k33/914aJqYr1c7wDLjGzREDtsgX8cooREs+UCOvyHqwVlNK5Skks2miEMQSmxEjp+PJVd954Pr7J0VpCCcqU+CYn9yK09JG2JCymCGsogxpJUCehzkxQrsqcUnpYIWdh0RxlbMwu2spNBDSWqfTIvRgQhNkIJQRRPiZVETpSCAxeUWClQAsfY10InbQuyIkqM0MgnN2rdOBJmgwjKictowl0TqwTOskBptJbTKIOo2iOClYgjSbKRpTKjdSNEEihsUZUeRuzaQjVT0cnMzNNS4UhHrlwiWP/qjWbpAjLcccrsJXuYhaMV+0zZsDhGJiY/ZgJwKtgPynAoN7HQcwePU4LgfHqRyCp2qhj2+cAmy3y6vkqW1kxo2/JY8/35GtU/xdOpu8XOVqWBGUGGKZRB4NAWoNnCozyEBZa2YDUb6BMhpGeE6Ybi65oZ+boNWen/Y9G83k/stdxl0+lwPnGgzYa8FhZ9rlyqcVwXHJwUHDj9pSytKyvRJw9Fb/n+T4uyBiPxyil3jek75Nav/qrv8pf/+t/nZdeeomXX36Zf/tv/y3379/n7/7dv/upveZPyzJ5gdWacLFLuNh9z+0qjsgmvaOwK1F92duioDjoESwtIKT7cg9Xl5hcu+WC2Not9CShHI4wWYHXarD9P3+VZMNZuro8h4T0wRb1y+doXD7rnJgC37nTrC464WvgI5XCGoP0JLZw3S4Z+OiiZHz9LjZJMIVGvHmDcprQevYSWEvyYJN895BiOCSY7xLOtV1oWX/osjvOrBMuL1D0Blhfke8c0HrhmQpgAAhsWSLDANWskW/vHYGMcGmeaG3J6UxOrxGsLDJ687oL7BuNMEmOV4+xWjtgJiXjt285B6lW3VHG7m4glKJ2Zg2TF86xanGe9gtPUzu1jtWa6d2HDIN3mP/5z7+H/pf1B/S+9X0XYBj4jv9eJZljLOnGFqpZI1pdYu4LL1A7f4rDb3yXfK//2JXNZDkqCqmfP02+d0h8apW8P2L01nWmN+4RrS/R/fJnmd7bJN3YRoYBtdPrZDt7pPc2UbXAgU0B0dqySzkfTwlXl52hTJISnlkjvbfF5NZ9pK8YXbuNLUr8hS7Z1g6qWcNfnCPd2Ufdukfr2cuU4wnCU+jJFFWvAS5AccbPLydTbFZS5AMEwnVSjCXvDbDGEIc+B//lOyR3NojPnKB+Zp3Wc5cBQfpgm/zwsHLvCpy2o91ChAEiTTGFJj6x4hzKigI7TV2Y5HzHZWakBUWvjylKvGYD4Svy7T0mUUDtzDqm1OT7h3iNOu2XnkVPE3SS0rr6FCbLOPzm9xFhQOPSWZJ7m6Sbu+idfaynMFnhCumydIBEO2q012pgksTZCSepe8/GHjmjmbxgcv0u0fICjSuXqJ1cJVzsIkOfoN2qhOmFs9EtCnSWY7MCr1FDLswRrS5hs5xwsYvfbpLcfYhNx0fnid9sOHE3FQ1rmtL92c8RrS4yvbfJ4NU3STe2md7dIlyYw+808RoN9GCErNcI2g1qp09Qv3Dm6Fw2ZUn2YItyPD0CGeVo7Oydi8Klg68vM/jOa5SjCVYbTFE6pykBQbdN0RuifB8CR3czWY5fd3oztKEYjZxVfH+IzpcJmg2C+Tnik6sI5ZE83GHva3+ADHywzs7X5XOcOXLT+6TXHyvIGA6HfP/736dWq/GlL32J4AlE9XFBxupSxN5BzsZmwkEv5+6DKdoYTq7XWFkKSBLDcJyTpFBq6wSisYdSMJ6U5AVu9PShVA6NFIpZ5s1HZ7fPnKVm3eMndv0TzkLSaFeAY7FSMY7mMEKiiqnLZ7AWYUqUhVgnxNkIrXwyLyJRTawypKLulApVASwEZMpDAHE+pJ6Pyfw6mRdXVBZ3kgVlgpYeSjj6krGWcmYNK44X3E905o1LkcaCkj7GGkoZUngRwoKyhqickquYUlX0ghnNRQisCKqAO1N15l2nydiK8mUMoU5YGG1TK6Y08h7DsEPmxUTlFJ27ItZIz1G9jEZLTakCwLrnrfy0j+14sAZlcizKUcJmhe+RE9LxY1RRr2bvWc4AxOxvFRXoyemL4BEwO+6sZGbOTI/AzQwQGCEq8HGM8nZkAQtQ6SOedA574oWtlEidoUSAscZNyoRg5gV29PpHGzqbeDggYlRY5ZtA4UUonWKtxjdOsxJgUWVKUObMj7eZBA10Y5XSGjK/hvaUm4BoTSE1WPlI1/Gh2/6jL9+TaGPR2tIfauY7kt29gmaccPlCnZWFgK3dnMsX6pw7VUOp94KdjwsyZkF8n0Y+xmz9lb/yVzg4OOAf/+N/zNbWFs8++yy/8zu/w+nTpz+11/xpWdL3XAhWnr9v906nmaMozCYW3TbhYhdblpTjhPHb17FS4YW+c/6p1YjPnsDvtinHU4KFLl6ryc7/+p+Z3tt0TjRS4I2m5HuHrpt+7TZ+p4WMAtIHW3jtJvHqMpN7G3i1GqaZuWKrNEei1KI/ZHp3g+IHb6JCJ4g9/O5rSN8nXJ4nXl/Glgbpe0QVjQQpMddu03/lDaL1VfxWvbIIXSBoNYnWlhFKVSJnz/HojSY+tU642GX6YJvW8087obdSdF58FpPnjN66SbK5Q7q5S753iE5zhCcphiNMWjj7zklCsLzghNp3NxzwmmuRb++RbmwTrSxQO3fSdWy71X0K59w1uXWP5pWLj4HAoj9k+Mpb5LuH+ItzmGmKCDyK4QSdpESri5RTl2auGjHBYpdwbYnicMDe1/6Q8bW7hMvzblphNLWzJ13Oxuk1wiWnZ0g3dmi/eIXamRN4zTqtZy9RTqZMbtwjPrlC5+XPsPE//C/OEjZxTkbGGOwkwe+0COZaLtzQU4TzXYKWcxsb37xLcTggmO+ih2OE8qlfPIWK3DRlcuMewWIXGceYPCfvDYmr9PB8MKYYjNGJExWLdoAejjB56b5yyhJTFPjNunPG2jvEn2uh4pDxtTtE68s0n3uK8Z37lMMJujd0E4tW3eWuJJmbKmjXwZdhSOOpc1jjsiL8hQ7T2w9I7j4A30eGE7KdPaeD6M5h0py9//RNNxUIAhpXLhGvL1OOxqQPt8n3ehitCRfnqZ0/xdzLn+XwD77rzpUkxeYZ6NJNpTzlpheAajZACLzIGan43Q5mmqCadefWNJ7SuHSGzmeu0Hrhafxuh8mt+6T3NymGY4LFebp/+ovo4ZjicID2PUTo4zViwpVFZ6YgBbos8WuuIRStLDDcO3BW0lI8+v62lvjkKtnWLtnuAeMbdyj7Y0TgkfdHyNDD5CnlVBEsdlHNhkuRLzXZ5h7R2vJRGryKQveZmaaYomD05nUmN++hx1Oy/UMmN+9Tv3CKzheeZ/T6NSa33XHzl7oIESI9H3+uhTWGYv/QZc34vqPERSFlLcLsHiBDHxm6AMzisI+q10j3Dhm89g7TWw/wf/Yl4pMrgKAcjuh/+1X0aEznc899KjSqP1aQce3aNdbX1zl37tz7CheVUh+LLhXHiqcuNNjZTbGA5ylqgcegX5ImgmefavDWu0O2dnKMhRLQpsTzBFrPOqGWek2Q55bisZd+pL9QVR7crFb7SC5Uj2GlD+veOj69kRItI5TWSAy58CiUD9ZSzwY0yhGZF5N4UdXdT8mlpFSRoyIhyFWIsRCYHE/nLklbSHIvRpnSaRBMifHraOFXFCbQVadfgxNsK7/SoemK4/8kvQeoAERROS+ZShQ9DWJKGThnFOuTqwhzhFEc4DJipmtx/7fV87nhgnhUBwvwrEGiaeY9pl6NcdhBYqnlYzK/hsWi8oRC+mgVoKwll76jXD2GBh9NBFwitUvmBqr8B7ddxhwHHYAwj8DHTGdRjSjf/7DOiuljwOS4kH0GJKyosK1HqeSjvx2Bjydeo9oPWOtA2AeeUu4GISR+OUVaSII6Bu8RsNX62GSteow1zpRAOCQYFgkCGEVtCtkgzof4xoGUWj6mneyT+TUyLyb36/hlRkDqzgPlpgTKFsSFIVeWQlaTg08p+bsoHQ1PVi9RFBZPCh5sZ2jgpatNFucDFueD9wUY8PGF3z8O0TfAL//yL/PLv/zLn/rr/LStYGGOYHGebPfQUYiOLWstyYMt/G6H3rd+4BKrVxYJVxYY/OAtl8CrDWY4Ic8dX7p+8Qwrf/nPY9OMfOcArTX9P/gew1ffRbVqZFt7jhNdlqAcbaacjJ2v/3wHqzW1cycJFufIDw4p9nuESy6QraicjbLNHfKBK9pUHNJ+/grh0jzja7eZ3LrP+K0bTO9s4NVjJ9JeWSJYmKMYjGl/9hn0aMLglTeonzsJgNGGYKnL3BdfQAY+4xt3MdMEv9OkfvEs9Qun0ZPEufFZe3RZ8efadD7/PNnWnrPHPLGC13ECblvkzpVHgPA94rPrqDgmueeCy2z+/2fvT2ItydL7TvB3BpvufN88+eweHoNHZEZGTsGZlEpqsYAWhEIVeiN0o6WFAG0ErqSlFgIXAgSuKEjLRvVCaFR19cAusagSi0pmMpM5RERGxuDhsz9//uZ352vjOacXx95z9wiPZEQyU0yx8gAOd3+DXbtmds2+//f9h4Ko30H2ItIHj7wBhXXIUDH/6D62Mr6bbS3lNKV56RzRbz1xZpt+eIdqNCbe8lSkqqhwmZ+emOmU+YPHBL0uZjIluXyeoOfpVkt/45eIVhY4+KM/Jd8/IWgmhMuLXt+wsULvq19ANWP2/79/TLS29IlrQjcbtK5fJn20y/zuI3S/gww1+SBHhhoVBYQL/XryADbLiDZWfO7HQpdgsUvxTW8fa7MMh6tT3UNsnmOykvzxvg/Lk4JqPKMaT4A1qrHXNIiaA6o7LdovX6U4OGb+YMdPjgDZSGi/9hJBt0n2aA/VSIg3VgDB+N2bZHuHSKXpfOllf16NpTwaECz2aFzaOsu3wDmkEIRL3pLWphnV1IvmUd4xrRqMz3Jb4o1VbFFSHp5Qjqcs/fpXqQYjbFH41O5um/xkSLF7QOeLL/vE8FAT9Ps+dfzVaxSDMdn2LlJrVLuBmc2965Vw6KSBajcRWpJsreOs8xqRfheX55z7v/w3NC+fR0gfwtu58QKtFy4ipGT60V3Gb31IuLJA9miX/HCAUJJodYloZbGm7/Uws5RyNPU5KUsLhAs9ioMjgsVe3RP0OTM2L1j+279KNU85+ePvEG+uoJoNypMRrtkg3ljBzFOfNN+IfVhtUZHfeegnK6tLhL0u1XxO0GmjOk1Gb3/A5Ic3CZf7hMsLxOfWcZVh8v5tkvObrPz2r5M+PmDwre+TH5zQvHKB3pdvML//yN+rHj4mWeoTrix5Z7nJ1O9zw1Oo4gubNC9s+AbFnQfkO/uUwzG60/KAM/Xp6uHSAqrZYPrRfZJzG8/Yd/+01l8pyPjKV76CtZ9eoX/eSQbAdGbQWvJLX1ngg48mTKYlx4OC6bwiLypORgXGeqBqDRTFk6lG3cCi1dTMREVlTl2ontCjlPSZGlUdOv0ZxxiffTlQxmB03X3HIWoQUcpO3aWXdLITjFCcNFdJdZNRoglMijIlGuEpSQRngxPhHIGpcFJQEvuCXOKLTWtwdUCbcDwpti2UWvtC33no4s66+U/vswN7GgYHJvSBfBJwzpz9vqw73w6eyv6oaUJnNKK6gy5OnaWcBzZYkmKKpGLUXGXUWEZaQ2hywmLKNO5yGlqYBw2M8Ane0lUk5ZRUN3C1q5QXaQZnr+dDGP2DLzIpypaEVcE8bFMqh3OnU5wnb1nYss6c4BPfe/46BQ4ObQucE97RzJQYHWKpcO40EZwnBf8pwDgLbXziUmVRnAm4f+xLKyogySdYqfx0Cn8Bi/oas0+DxlqIcnbenHfusipC1+ew0jHN9JjQ5DSKEapOVz9uroFwJPmUNGwhnECZjFI3cUIQlTOkqyhP083/El3/00N1io+evlWkmd+0wFOn5qkhjhXNhmJvP+dON+DFK006rb848fuzrtlsRuOpkKdfrJ+vJZSifeMFTr75fZ9vsbzgBZrzjOnNuxQHx15jVjc2soe7lJMJ1WRG0G4TtJo1/nb+QWAsw298DxFoqtmc+b1HDP7sB5SjCe2XrpJsrSFqRyndapIfHCGEQjYiln7rTcrjIdnOPsVgRLDUx93fId3e87Srecbk5l3MeOJ1H2FI5ze+dtaBbN+4jmwkzO/cJ3t8SLK1RvOFS6gwpDgZ4aqK9svXPGf+eEhy5TwyiogWelRZxs5////ClRVhr41Y6mOLknR7199LAkW8ukw58EWJqgPayhNPzQmX+kzfu41JU0QQoFstgl4PUxYo7bvPs1v3feZGFCEbDWyaUw6nVBNvIRou9IjiENVpE9YuUc45qo/uMf7hh7RevEy8sUo1nZ2Bv3ht2etGdvYo9k8oD468IFgK4nPrtF68TPcLL56dbxVH9L7yBdqvvug70cdDPw1f8pMOFUde/O8c4UL3udeMSVMm796kHIwJF3u+8N078sBCKkQYUBwPKAcjnz5dF+O4CzS21gnXllEt70yUPt4nu7/D7PZ9hJTemrUy3ro3DP1UKQ5pXD5HfnDk721JiJv6vBKENy9wxvjQPi2Jt1aJN5Yp9o6opjNa1y95W9Ttxz6NO8uRUUh5eILutFn+r38NrCHbOfB2ssdD7HRO68UrqCTGjCeIXofk4hbz+4+YfXTPU3hVDFFAtLFCfG4DqU91Dpr5zbu4X/sK8fkN8p0DbFVnnyQRnddfof3qdcZvf8Ds5j1EoAhXlzwlXEpkoAkXF4g3V7y4HEFxeEy41CffO0K3G942OCtItx9j7z6i8+oLzO9u1+WB1xGVowlCSeLNNW+R3ErAWNovX+NpG478aEhxMkTc2ybfO2J+5yHtV18g2Vqn/co1ph/dozjyjnA4HwQZLi1QrS2R7x3R+9oXCHodZve2yR7uYI3FVQaZ+H10lSHbPcDOU6/jasTYNGduHqI7LRZ+7SuYecboB+8RdFqoZoIQApMXqI6f4Jx86/ukDx4Rb60Rb6z5RHohmH5wh2IwQiYJrZev+pDH1Gu0VBh4utr6ige/K4vYOqMpXl9lfucBIgzovvYi1WjM5P3bdF9/GRVHqCQG5610/9qBjL84+0L/BCCj8sLvquTRbsr+QU4cS+apYf8oJ0t9UFcUgpKSwtQscee/ZowXiefFJwGG1qCVQAXg0p8BuvAEep44IYlaZy0oCb1TlBCUQZOj5jpGhThnUdbUBBdFVd/khTNeWO0cyub1g9MhnSMpphBCIWL/klIjbeWLz1qD4YXlAlUncYdVRiETytBrLp7ZbwGcUrpqW15lDE5KToPo4mKGVYIsaHFGKXpu+/8JZ9+dgg3rqU6RzXBIKqkoVezzTmqNSB4kSGMpAp9rYeoQwKgsUa6iVYyYRl2vx7B1CB74gD7lNSjaFASm8GGHQuKkQOFwtvBuImc5GLbeN3lWkD9LI/vYOvueQ5mcXnpMHiRYoesJjw+2c2eC73o7z0xLPqZlAF9Zf9wS6XlLCJCaSXMJVeVoUyB1hJVBPc85zfpw9e5apKkwKkTgTQR88nlJYHyCcFjlBLZAOEGuW0yjHqEpKHTkaX2mpJMNkM5SqpBmPiWuZgSmYhq2mIRdr1n5S6D00/r/TOdfD5ngiaWtw2MzZ+H4pPDTtMIShYIXrjSRP0YTYowhiqJP/f7H1yld6hd2sj+/K9laY/FXvszk/VvMHz72WgjrPE3lwibtF59M1W1RMvnDWwgh6X39Nd9dHoyQSiKTiPE7N30BvNilPB6hoqC+EL1GAgHJpgcaqpkQLPQoxxOS85t0v/AizsH0/Vs+tXk8w5Ul6f3HiEATri3iCktWFARSnQUAmjT3+RhS0Li4iSsLT4GREjOeYqVAt1ueCrS+gs0KMJbOjetnlqknf/YWNvd+/8HigqeH4Avq4z/9HjLQdL/4CtVghO60aVz1nO35/UdMP7rP9IM7npa01MdZqEZjnLFU8znxxirJ5ir5o72zyZEtS+w8w1UlrsyxpSXb8Tkjpza0ADbLCZb7iChkduchwVKfeQ28ZBzihCRYaiNCP0FwRemLuDwjOb/F4q9/DfUcGpyKIx+OeOncJ753SgezZfUJlaWZpwy+/Tb5/jGN65eJt9bohwFmNGG+vUs5Tcn3atvbMET12uSHx5SHA5+N0IipBkOyvaO6I577nIajE4KFHtFSHxlq9EKfcKlPur3rw9VuPyDfOUCGAUG3Q7DQQ7dbuLykHM/qfZbEmxuoZkx5NEQ2YhqXz6EbDdJHu7iqIlpZACFIzq1TnAxx1pLt7NL/ymvEG6sUwwnZ/W1kq0HntReIlhaY33tEfnjij20Q0Lp+iWqeexmf0kSrCzz9jFNxhDOG9O42S//X/xb3SkE1noIQfprT7yKEoPeV19CtBsd/8l2EEATLC34isrmGSTOChV4dnuh8noiSqG4L3WyS7R2QHwywsxmNa5fofeVViv1jr/VwjuYLF32SfWWYvH8L3WoSrS6Rbe9RTWcEfT/Zyg+HzG7d81axUpJc2KSaTBl++x3mK9t0X3+FxoUtr7NKYsKVBZrXL3sjhpMR43c+IN5cR2hBvn/sg4SLkmIwpHoww8xTnLNeR5PECOuw8znFyZBofcWL3SczDv/9f2L89ntEK0uodhPdbVOdDClHU0/XayZUwwnze9tES4ss/x9+FZcXXvCtfU7Nwte+wOzWPcqTMTKJKI5OECdj4uUF2q9dpxrPGL/zAaqR1BkgGt3r1BNUH4yo4ohobQndaSPjyOev/AzWz4W71Ketn2SSMRgV3NuekYSKo+OCybRinkFeOMqiLkwkGCsIAkGAJM0tjdhXLFJW4BxleVqiPNEzVJW3u/T79mzn9C+/npD/JQ5TF6amDsUDW3eWLcJW5Dqh1BHSWZQpcEIwCXs4ZK0D9toDhyDVLUKTEpZzrPa6h+7siGncYRr3EYB2xlOErLdwtfjf1zYlLudoWxGLOcfBxpOCtwZCdb/Yaz+kRpicwGToymCFIlchTjgcunbvNX44gXiWovOMwPoJuJBYtMl89x9LUk6RKibXCQJBpTTKlBQ6wTn/nq2QBKc5F+CPG/iEbgBjEMLnlVvjqUzaVCTFGIEg0w2vi0CiXEVQ+UL7bOoinhpjuaeoUJ+oL58GHt4SuFFMMFJhpCUsci9YP03iPqNHnW5TPrVd8bHtPvcFn7NO91dhdII1pQ9SOlXzC58N4jMrpJ/qSInE+FwQW2F16BO866lYUk2ZBh3/8HGOVj5gZfKIadhlkizSKOcszvfp5AP22hdIyjHX9t8m1S3uLb1MYApKHMjAv24NVD/Pcjw5DYH2R6qoPLutdhk9i+FoNCRBKAkCyepyxMsvtJ7JxHje+kmE3/856FK/WH+5Fa4uEuwfIrZ3kcqn6RaHJ4RLfT+16PhzWE1ndYhYxeT9W9ii9JzqvPAd4KxAhPos4djkJUJrdN8LT8uTEaqREC0vAtTZDHMvUK2L4e7rr9C6fplyNEF325g0J334GIzDOVvTK9qYyZTicMD83jbtl6/57SnldRlrK0Sri3TfuIGUyjvO1NetrXUmJs3I9w7JD44ZfveHNK9dpByMyfcOkXHoXZDuP/KC7wubNK5dQIUB1Wh8xtlOtx8z+dFH/iAKgZmlmCz3ovfpDDPz3VuTZlhToZMW+c6e/1qWUQ4n2LzAZDnV8Qmy06b7wqW6ACspT0YkFzdJNleZ/OgWxeEJ+cExs9sPQEvyxwdUkylBr1t30sWZfWe8sXyWWP3jljOG/OCY/PAErEW3mgSLPbIHj89AmK0q5ne3OfnWD5i+fxvV7zC/dZ/qZEh8boP+L72B/cb3mL5/CxFqgqU+QbOBaCRUgxEy9sF+CEfz2iXm9/xEIFheQCQxbupFvemjPU9DGk8pD44JF3q+MVJUBN2Wn85cvYhqxJTDsc+4SHNvShCF9L/6GtP3bhGfX0e3W6QPHzP89ttUwzHR+jLVeIZsxDghCFf8NZc+eIzudIjXl3BZTvvV66xc2GJ++z753jHRyiKq1aQajGhcPk/75Ws8+n/8AcXOHrrb8oXyPMXkpaeuTefofpt0e5f84Jj2C5eIVpc+cdxVFNL94ssE/R5CK8J+BxEFTG/eY/ruTd+lH42xs5Tk4iZYR7y0QLi6xOzOQ4QUNK9dZOVv/xqNS+fI948x4ylI4UPx2t7RL+h3PN1wPKX35utkj3xQne/CWoJum84XXzqbzuk3v0R8boPJOx8yfu8WnRvX0N0WneWXaT3VcFCNmOj+IuO33iNY6NJ64RLZoz2mH97DCYcIFDbNkYkPErRZjmwmJBe2PKU5ywgX+8xuP/RgsNcjWOhSjqeM3/kQlUS0X7uOEJIqyygf7REu9CgnU4r9Y9o3XvCALQyY/PBDph/eIVzqo5sJ+cEJZjIjWl9i4de/SuPSFtOb92hMZ/53lGQeRT4X5vCY6d1tit1D0gc7NK9eRHdafkr2N9c+cd5+GuvnHmTk9cjns6w0MwxGFXGoKCqLDiSLi5qDI4OSjiAUHiRYsMKR5YbKePDgcJSFw1RQyJJnsw+edEipv6rk5wAZn+kHPeVICB+ypmyFReKkrEOVRb0TglxHCCeQNRVJW4PDIEiwQiCc8TQofIvX6YBSCCZxn242QAqDlZqknFOqpJ4MBFSnk4e63g9MTmANVmmssxS6poKcTgFOdRWnoXl1y9gJTaFjnC2xSIzyEwBt/ZTAIXyxfyZ2/xh1iifbDUxO4Eo66Qlp2MQIhbQVlQoJTUEjn5CHDX/snAUVElcpadCgVCFCeLqZ0dGzgEbiaUAWQusfCE7ANO6jrKWUElOLz6UpyaPWU7//sYtBnHbk/wJxjjO1iL9HaAtEldKb7ZPpmEonWOt8sN/ZsflpLlefN4VT+sn/BV5UVLt8WeeBrKxSoqqgUhonA4xQnm4GSFuR6gRQWKFolGO2BndYmT7m4cI1yBXzoMUgWaJZTIiqOZUMedy5yHFrAys1jXzMLOlRnWa8/ARubdZ6AHGGdSUkMZSF36SQYEtIU8AZhChQUtDvBp+qw3h2+59PkzGfz39m9rW/WD+9Nfnhh4zf+sBb1/a7ZPtvU47HDL/3LvnuPgu//AbhQu9sQFlNJmQPd1CtBraoEEBxcEy2d4jNC1ovXUYAZZr5FGgpcZXBViXlcOyD2YSg2D8m7HdovnD5mf1RjQSUojw4Jj889gA/UEgdks1mMJ74fkygKQ4HmCw/Cw3z+oMxQimixf4z23XWkh8P0J02J9/4ruf8T6dMfnTLJw+vLNBaX6E4GlANxyAEnS+9ggxDXFlR1AVOOZ4yuX2f7N4j0u3HREsLFFVFORzhipJweZFgeQFXHaIaCdWo7sKuLHvaitaYaYqZpaB8E8yUlvT2A4rtPRpXztO4uEl8bo3mtYsUe4dMb95BJiHNaxdwxjJ6+z1snuHSApvkCN0EZ8nubRMuL9L54iv+nH3KctYyv/eIw//lG8zubiOV9FarbT8ZsVlO+mgP1WowfucDxm+/T7qzj80KQh1QzVJkHDL78C6tl6/Q//oXyPcPEVFEvLbo3YAmU6yxBIsLyCQke3zwjIC4PDzxwXhSeDqNqXBlgJnOiNZXaVzYwE7nOC0x85zWi1doXTkPQHJu3Qv6nZ+wmfmc1rULzO9uM7t5H6GVt1EWAlMUPlNkMiOJVsEY+m9+CeFg+N13mPzoQ2x2kc5r1+l+6Qbx2jKN8+vMt3fJd/ZRrQbdL7xIcm6doN9l8L0fMn33pp8UpylmnlKMppipD4DTszmuNBz98Z8R9jpEK4ufeh6S8+t0v/Qyw++/R7F/iKsM7ddeJD86YfTW+5jRhPzgiO4XX6b90jWyx/u4oqB5+Rz9r32BxpVzCCHI97wNq3OQ7x0+A2yitSXmDx4jA83ir38NM0+xZcnx//YddKd5BjAAVBjQOL8OzjH76C75/jHF4Qmtl6/WtGrhAysdtdZpjGw2fPJ2u+nriyigHIw9QCxLL1SPQ1QSEy720K0G5WAMwk9AVRwh6npJhQHOWZ/BMs+wRcn07Q8oh2NUnGCzlOP/9OfM7+8g4wCb5hQnI7LdQ8LFnge9b36JhV/9CvnhMa2rtQGIdagkPmuYyECRj6ccf+O72KL0D0wlKEYjrLPeAvdk9DMJdv1rRZcaTyqcg+tXmvzo5oT53JBlxvNIY0lROUzpMEBVPkutsJUjL3ynW4sfX1ik+WfrH/v1vP1/RsHrhV1lilUKR4C0lrDKKXSEQdaOS3XCttQgAq+5sALhKqQryXVSB8ep+m98segMEocuc6wMWJw9RpuS49YmhY6Iyyml8p2sSkhwFdqYmjZU+QmHMRghcXWOh3AGgcGI8Am7yZwmbNd0IqHIlfQULwfCFYCncfmCtqyBkHtSUJ8BKQ+4Amfoz/cITIVRAboqSMM2ZeD1FN35Hso5MppUOqZSIdIZ2tkAKySzKPRi9lPSvjs99g6EwqAwGrACYXKsUBQ68RQzvK2uwGtU3DPXxPPO/unE4tMU4LbWNkgKlSBNRcNkOOG3bbzS7CmNxSlw+VRF+edcT09ITqlonmomcVhXInD+xiolQmqEKIlsgSpmjBuLfqJUFXUwY4C2BWujuzSLKVUQkYYtnFBUUjGL2qRBk7QY0kxHSGcJbElczhk0V8jDNpWswxlP395PkP5tjH+OV8ZPMKT0UC8vayaZ8Nqr2RyEqwgDydGx5IOPpiz2Qhb6n27b93k1GdPp9Bcg4+d8lcMx01v3CZf7lMMxs9sPyHf36zC6mOl7t3HWsfQbX0M1fIhctnMAziHC8ExUfBrk6ZzF1La1qtUk39mnGk5wRU5ZGarhBJsVqDhEd9r0f+UNGhc+2XE3szmDH/yI/MEuqt/GFRIZhwStFvnRMQKB0BpbVbiixIUh1WiMXugiowChQ2Z3HhBvrvnJxTyrLTihGowIl/s0rpyjPB6S7x6hGgnFzgFBu0n/K6/6MLixF66aLGf24R3K4djfCwLN7IPbXnRqLSIOEVIhnEAEEWYyr49PQNjvEm+t+2yQ4RC0rLM5UlQSodotyuMTnz2xtkSxd8Ts1l3Cbgu3ukRxPGD8wW1kFNG4sImQknh9icGfFUgdoDaWEDogXOhSTWa0X71OvLmK+zHNSGcMg+//iP3/9/9KvndAtLaCAPLDAQjphb7CW6GffON7TD+6iysN8eoy1lqSCxtUowmlgGh5kfT+DjKJQHir0Plshu52/PVSlFRpijk+RiqNCkOCTttb3Z4MKSdTVJx4oW/pi73k/AbNKxeQYUCeZjQvnSN9vM/87jbNi5tnUykVR57ytHtA49IW2f4RxcmQ9N4Oqhn7YLzZHIFABZr42kVar1wlWVuhGIyY3bqPM5bGhS1vy7t7xOh77yLffJ1wsU+334XXXvzE8Vv97V/n5BvfZX73EbIReWeosiJcWfRi/ZFP7R7/4D3sLGXjv/ttkq31554LIQTdL91gdvch03c/QvdaZHuH5LuHRCuLtK5fJt8/YvbRfVxtmZtc2mLh618k3lzz58lYiqMh1ngnqHIy89dlfa8WylOlzTzzeWvNhrfizQt/3Q8n/ng2EsAx/eAO+e4B5WCCihPy/SNcZZl3dvznYTTxDpvTmXeNOjgiH45xlSFYXsBMZygdIBdjbJp6cLG8gG7ENC5uEfQ6DL79FtnBIWo0BgTlsXeZCnodb1vtnM9QOR5hipJwZYlwqYerWswePmb6/kcEq8tIrXDGIJsJwWKXfO+QcnOVhV/5Mq6qKAYjwn6XoNcie7jjE9Nnc6p5jrPWa0wW+5iiIFha9AGCR0M6X3qZcjT1Vt1Ln7T3/susn/tJxuelSwmg3w/pdwPCQJBljqqyTKc1Fakuip/erLEwTeEUEDw9tfi09dmY5Ob5GIPTYtoiTU7gvPWrw9u3NosJ7WzIKOqShm0PLJw9E2SfBrUJZxE4ct1EuareKU9MFw4ExnfZbUGrGKFdxTzs4aRgkCyRhQ2kc0jj3ae83a0GjAc1zus8AnIqNEYqoirFgRfu1nkcnBbIZzQiDzSUKTG15aoTikoInFQIW9Z0rR6lir3byFOiYyEc2jma2Yjl6S6FTjgMN5gmfYzSKFMhnGHQWicuUwKTo4zACk1gcowKCaoUpWKMjp4CCKfJ1b7jc2o/W8oA6jwN3JNrQFNRycBTmZ6hPX1a4f/jgIb0mSfFDIUHi6luMI77GBWibeVDDIV8lgf0UwEYp7ugeJI477ctXIWyFcgA85R9rxGKIvD0MyVzAlOh6mNrlcK5iqScszA7xAQRFskk6nLcWGEa92rHsIpp0GEYLxNWKecGt9gY38VKxbCxUh9/w5mL1k/wXk9lK1JAZaFIqSd//u/Tz7lWkCSSlaUQJ+Duw5T11Tn9XudTmx0/iYXtL+hSP9+rODzxIXxBwOzWA2QUklzYwt5+iGo3CZUk295lcvMevTdeQcaxp1ItL5xNJE6LDSEcKo4pDo/JDo6JVxa9lejegXeQ6rVxue9m6U6b9o3rLP3G15/RIZyu8VvvezpQmaNFt7b0zLBViYojyqOh/8RKQbp3gAo8kCgnM6LlRVQjIH3wmHz30NvHtps0rl6gPBpg5ulZl1+3m7Uo1qDaDeb3djBpzuit9ykOjr342zmq5UWaL15C6gAzTxFKEy4vkB8MKPaPEUmEMxUySbwjkoSg1/FF4dYq8cYq1MVupRSqESGUhqpCxN6BpxpOCJYXKQ+Pmdy8S7qz7/URacbib3z1yUPWOcKlHrbXphqOqcYTxMoSndde9EBEK9JHe3TmaV04Prvmd7cZfvttXFHSeuGynybgJwLTm3fRrQYijIjPrRMsdGlc2ETGITIISR/sAJ6GU9SuROm9h546dzA4c6WyWU45mfrQQiVJ7z4kWltCNtpeYxMvUbTbiL0DgoUu3TdeoXi8Dwif3RAGOGPA4a+VTovJe7eYfnSfaLmPjGNsUVCejIjWlkEITv7ku4QrSz5Icjj2xW7Tu5q1XrrK0m99HaEV8/uPGL/1ATIK0M0mjSvniTdWsFXF5L1b5IcnLPzKG4TLiz547v6O78gv9mlePkfj8nm6b9wg3z30blOVIeh1KMdTrxEKQ2SdFD959yP2wpCN/+63P3WiIZREt1r0fumL2GnK8J0PUI3YU3faDRpXzpPdfUi4tozNK+J++wy0VJMZs/uPmN15gE1zkIJwsU/58tVnJlnOOMTH9Ir57hHF0TE4r7fVzQamLP0kaXURcITLfWyWYq1h/K0feMvblQXKwwHp4z3ygyNkM2F26z5mOPJOWp0WRTLEpgXGWmQckmyuYQovBK9mc9KdPQ9KLp1DJxGVVEw/vItIIp+8HmjSBzs4Y0nObWCzDACT57gsJ1jokz987AGxVkihCPt9dJyQPtplevMOjcvnmX14l3Q6R0ahT3K/dR8RBqg4IlxbRkQhZjL39y9rPc2s2SBaWsDlBfnh/w5BxuexsO12NK2mYu8gZzgsiSJFo3IUpaMsLeAIQph/Qt/yxJ4WPIXqZ7OeKhpthXYVoSkJyhlp2MHWH4pSBkzDthd2K/3ESvC0AK2nH05qrPXdcVl7K2FLcOKMoiRrm9FKh8jKkemEuJrVeQcVVioK3SCwJUoYnNIYqcnCNlE5RZuKTDeoLZhoFCNyHVPo+KmClaeoT97y1AFOapLSZypUOkbZkpIQIyR52CIu54SmIFchlYrRJvf7UdOhSqkZJstExRQrfX6HqMA5S6kict1AVxXL04eMk0VGahHpLJU1lLp2/7CengVVXUwKBBbHaQ7HKSiqz43QOFcC0gMvoZGi5v6eFcIfL0rtx75+eizcs1+TgjKIoHI45UXrRgW08wGByZmHHaZhj+pM5/IzEBCfajtO5SRCU+qn7GxrAby2hZ/sBBFBBc1y4o+ilAgHcTknsAVp1KadDzlprjIO+955SoYoVyFNRRkklEKjXMU07KCcz4ARrnp6hz52rD77khLiELrdgMm0Ist9AJ8STwZD9XAGqSTtlibPLdNZxe5eTnXDh3I+b/0CZPz1W7YyCAHZvk/m1e0+tozQnSbVcOzD6Fo+QK44GuCkDwY77dgKrcn3j7BpBlJ5a9IsJ3uwQzWaYNLCe+WHvtuu2m3izVXMdIZuJ7SuXfjEPlWzOcff/B7R2jK2LDGzOeFSHxn4Aj87HlLlhadWWEv2aI+g1yHotGheu0jrhUvIMKAYjsm29wkWeiz+yhvIOObg//fHzzgnySgk3lhl+tE9dLPB7M4DiqMTTyGRAqEUJk0pBkPCoxHR2pKnm+QZjXMbCCkpR1OwFmsd0njdCEr6sL3LW4T9DtHqEq4yhEt9isEYayyyEaC0PrP1CBf7FIcnvvseBqgkoTw6wQrB7OFjwqVFmi9cxBmLSiKS1WVsmpHtHng6z/l1L3hPM7+PlfkE6dJWFbPb9+tOtzgDGOVozPSDO6QPH1OlOUGnhfvTimhrnXh1yVu5ak0xGFENxuhexye17x1RHJ0gG01UMyFc6qEaiaeJzTMv6u62fbCZcZiswGW5L2yLnOSit/etToa1lM8hggCTF6T3tr0T1HCEimIal86RnFtnevMe1WSKSmLar1zDSTj8n/+EajxFn4x80d7r0nr5Gu1AM1r0U55s95Bi/4jJB7fJD4+9jXm/65O2J1M/xds/onjb6xHm97cp9o9RcYRutwhXFmhcucDir3+V5MIGS7/1dYbfe5eqKjEzcFlO2G37azUMkFoTnVsj3d5l9Pb7LP+NX3pu7oIzFjOdkT0+8DqhHR9QOLt9z7uOba6hu22aV85TDiaUozHVdAZ4W95yNCFaXSR7fOCtbZ1l8GdvE60vo1sNn/sR6LOsFecc04/uke0dkD0+IFxeQADZZMr84S7J+jKm2UC1miRba2Q7+6T3ttHNBJtm5I8PsEVFvLFKOZwghSBoxrg8J95Yo3lpi2z3kPE7HxBtLPuMiqrCjGdk+4dUJ2NMmqFbTYSUZI884JDNxOtFBMg4RrcSmi9cIlzoMbt1D5sXVIOxT5UPJMXJEGMslCXh0gKzm3cRcUzQb5PvHdN++RqLv/E1ZnceUhweE2+tI+qppklzXF4ghSTYXCVcWSDsdZGxd8Uqh2PUaujttn/K668VXSqOFFcvNfmz753waDcnjiSBDohjyWhSMZ1VzGb2Y7kWf9n07h+3FKinpxlPik8hHM55YXGlE5CiFmpb0rBJHjYQTniOPBIhan7XGdAAvC8QQiqsUbTyE3CCadIHIdBVRlhl3iWonpa0sgHNcsZOz5IHTUoVYGWAMRmupippkwGSoLYlLZAk1dy/HyHRp2JgqXHW1JQo92RM5FUX4AR5EKNNicagqHCWuhBVRGWJrItZpywKgVGh76CjQFkOgsRPN4BGMfRwSggPB2vB+zzseKcmIZiFbWZhC3AoLMpUFCrmLITvLODuecLpetrl7KnPEmGVYgPPMjI6BCefo5d4jvPT0yChBmPCGKzQ5EETmY0xKiAuZ8TlzE+skEibI5R37DgLJPzM67MU6qdgok4ffyYEUiKcH+G7WqR+qpexQhGZnEYxJg1aSCxBVWCk9poeGXrLXxkQVnPiKiXXDeJyBqpBpmNmyQImiKiE9q5lZ9dz7falPv/tyFg4dfOvJUtI6VlXWktvkV1PNGap4eFORhgKssyyuVaQZoag9XxK1E8CMhYXP52P/Iv1V79UI8Za6x15Et/1loGmcWGT+YMd8scHZyBjfusBja11yteuY9Pc05WKwhesWhMvLpAfHWNGU6o0p5rsetvKJPaUDR2QbK7SvLTledpl5X35k2e77fnuIdVkRryxgm41Gb/9Ptn+MSrQlKMxZpYSNBu0v3idpd/6JagMg++8Q3xhi+4XXjrbTrTYJ2i3vA3uZE4Y1TbRHwu89K5UJeMf3iTb3vWahHlGfuDD3IRQqEZCtn9I0G9jiwqEIN5cRSjJ7O42IgzBnnh3p6LEZTnNr7xG57UXMeMputvyFCIl0e2mBwBJgtISm5cE/Q7hUo9yMPT6krzAlgWq38UcD8ke7nKSl+iFLioKEUrhSr8fQb9bB6r592Vmc1/oJ35CZOsO8mmBVY4m6FaDon7/1WTG5N2b5HuHqFYTGUcEywuUx0OK/UNM7eAUry8Tb6yQ4erzMMdM555ydG4TqXwelUkzZBIR9DpkO7tkO3PC9WWifhfdbXnHMCWIlhdo33iBajKDyoNFEQSUx0Pmdx6AkCSbK6T3n1iyOmO87etiD2ssJ99+GzOdYouS5NKWt3ctSoqTAc5UtF+5RuPiOfb/4D8y/fAeqpVgixwVxoQri4QLXaYf3Gb64R2fMSFgducB2Z/sUs3SGrB0CHoZxlTYrKA6GRKsLND76muoVoPRWx94U4NOm3h1EdVqeEcpHFJKRL9Dvn9MfnBMvL7yic+gcz6hPb33CN1uEPTa/vNRFGS7R5iiImg1vOXyWui/vn9MeTIkPzohXlvG1BoanENozezWPeYPtonXViknUy/M3j1E9zoUhyeMvv8jwKeoz4cjVKPhHdtOhr7gDwO6X3ntzP7WDCfolQXy3QOCbodweYFqPKWxtUY5mmIdBJ02xbFPjReh9mCr3fR21rceYEvj3cT2DtDtljc9SDOipT4iCAgWe6hmQnr/ETZNIYl9oncSoVot0oc7/hGtFfM72xTHI1RREC700d0WshFTDMdU0ymNCxuUx0PaL10l3lrzTRDA5AUnf/o9jv/4O77GbBQ0r1x4ZuJn8xJnKpx1z50E/mXXz/0k4/PSpdZXY1681ubd98d0OwHtliYIBPe35/z5W8P/jADj01YtlHYWozRGRoSVPBPcivqB4JzzWRI178PIoC4Pa5ekmmzurVVBVoZGMfeuRfmYLGyjnK3pSRVWKJJ8Qq5jsrCFFZpK+akCQCECP3qsCpIyJdMN0qDxpM9cpkTllHnU9kFrVVprOZTvaLkKQ4itt2eR3mIWidGSpJyhqwIhDNL5DIZCRgSuQiBIsiFOau8GJU67XX6yZKR/HekMoS1QpqRRTLB4wKJtRWkL3GmgXj2gqKz1z1cp/LbOAu2ed9nXoMB5e1ptCyqpUMagTYlD4owX43vdwNMPbvfs32d0p3qbwp9zL943WERtNSzIRUKpY4z0QYXlabK6KcGIz1F4n9KOTt/Lp6yz6ZPw71HUtpu105RDYjH+AWepKXmWUoY4B4mZE5UzCh1jhSDXCdOoy8J0l2Y+ZJgsMU0WvUDfGQoVkQcJwvlwr1JGjOM+yhmCKsPIsLZLllj1k00zssJxPCgpvTEcSkJePAnks9ZfAq1YkmeGo+OKsoIPbs34H/4/+7zxhQ6vvtT+RNPjJwnj+0Xy9s/3Ok38nX5wG9154qCvGgmNC1sIKUnOrWOynO5Xv0D/zS9ii4qTb36fxqVl302cpZi8QMxm3rp0zYtOs0e7mLRAKC/2Np0WrrIESwskm6vM725j5/7hX02mnjOuJOVkStBpY6YzGpe2UEnE7M5D0sf7OGPR/R4qUPRfv0Hz4hbZzj468W4x5mMUIRkGqDhkfm+b5MJGHb41OSvAwXPWm9cvM7v3yHvzG4tqN2ldu0C+d0h2MMBag44j3y0u/URCt5u+654VqEbMrCxxVYVQktbL11j8ta+gwgCrVZ1FsUZybhVnDcPvvutpP9ondYdLPd9dNd7+NVpZpHHtot8/4fUn+e6h74j/1psEi33y/SNwjvjcBrpVB+CVFeVwSu9rX8DMMyZ3P2J+fwdXVZ4bv7qELQ0yikBJbFX57v3RANVqopLYF/1FRbK5SjkcUwxGPoDxcN1TU6KQcHmRUilcZWlc3qT7xqtM37sFQjB/sEPxYAeX5ZjJHFuVBP02ut2k9eIVRBCQb+95alO/i80rogt+auUAAk24suRpWmHg9/F4QHHg6VmLv/qVMxeq9O5Db2N72huqz3m8ukj6cJeT4dg3Cx0ECx10q+kF7b2Y5rWLqDBgdvsB2c4e0bk1Zh/cYXZ3G1tV6CT2k6FZihCScjCiWhxjsow4L4j6PRrnN8nraYcMA2QU4soSqRQqiihHE5rn1qEyPgH9OavYPcAh0L12HTZ2+j5Cgr4k235McOM6Qb9DeTKiceUCSMHRH/0p5XjK/M42OolIttYxeU5eA2UzyxFRwMKN1wn6HYbf/xGqEZMfnjC9eRcRhrRfu+5B/dSHy9rJjNIYZOvFszDGoN8j2lr1jm4nQz+lGk+9i9zWGkUdQKga3tlp8s6HJBc2WPzNrzO79YDZR/dQzYRkse+tjDst4vVlxu/exKYZtqi8DsM6qvEUk+UE3Y6n2T3YoTg4QgQBWEt+NCR9uOupeEKgu01UGJIfHFPV9Dxb5RSDyZmeUQiBaiReg5HlNC5ukb3gBf3T929/IpvKztMzl7R4fflz3U8/y/prBzIALm4lbG42mM0q4liT5obhuPyUBO+f8Xqe4ZATPq/BndJW6o6uDHBYpPXgwLnTrrrzRW6tf/A1rD3rzDtrKHXCJO7hpMI6QW9+iLKGWdRB2hKJoVQhe71LVDIgDxpIUxAivL6ipg0ZAdpVKAwWfIEtJM1qgjSGIkh8V6vMUDVAcEChI6qaxiXqO6AyBQiFVRojA4w0BDYnzmbMwy6JydAmJy5nDBsrWKExSvv36SxIjSE+a77nQQMqgarP2yxoo7AcNtdI4w4OgbIeEFjhwYCzp3a7NaXpmc7985bXyjghicqMTnqMshWjeJFRYxGFxRrndR6uDsj7eGH/vMBCBFZKhJNeJy9D2ukxadwhrwvy6lRgIGpwcZrn8dypy+m+4ql3tvLbVeGn6xtc5b9+6l7lQNvSF+LqiWGAdRKBQAoQWKIyIzEzQKFNSaFi4mJGVMwYNldplGMim5GrJnGVMVCaQvWQpqDUCQjQtvLwRXoAKW3F4nSPUWPRJ8TLU13G6ef9s382rfWg4nSd0h2fvnVICUVlGE4MUgqWFgI2VgLS3PKnfz6k0w64eO7ZLs5PEsb3C+H3z/dSUUjvjVeZ3bzH9OY95OUtf/869BkUybk1mi9eoToZES5060TqkvzohMl7NzFliU0LhJJU0xQZKEQQnxVUMg5QUUS0toLJcsbvfoAtcpb/zq/7z2eeMfj2W6QPdzGpBxlmnuGcRTYSyuGYaG2ZYKEHP3gPVxaYaUq0tkjr5ate+Fp6LYRNM4rBhORj3UeZRLWOQtG8eoGTb/4A3cl86Fa9bFmRH5z4Qvj6JXSrCdaSLi/i3n7f05ikItpYofullykHY8rjIShJ+8Z1mlfPEb31AcPv/wgzn4PWDL79NiqJiddXWP7bv+b1E6MJ3TdeoxxOmN97hIhDVJ1WXZ4Mcc55kLG+jBACW1VeDBtH5Dv7pLcfUty4TrjQ8wFsWhH22meWudV0TuPKOYKFLsd/8h2KwwHBQgfVSDDzlPHbH1COxwS9LuFCz1N0Do8B4WktRen3IQ5JttapJjPK4QQdh2cTEDtPqSYzdLtJ+9VrNC6dJ1rsM0/8eRdSoZsN5EIP1Wli0oLy6Jii1aQcTog3Vok318BBtnOAKwvijWX6b77O+AfvMfrBj0gun/Mhe4O5L/KVon31ks9hOB4Sry356YaUxOvLpA8eUQxGxGt1USgk1XhGORrTfOEiqpnQeeUautMm6LaY3byHGY5RK4vYvKSazLB3HvoAPAE6iVBhjCkyzCxFBtpPKKZTsseAsV6Y/cIlwn6XdPsxWreRzlGOp4RLC5iyQiUJ4WKPcjD2blfPWenOPvHaErrVZPrBbf96cQRCeBCuFEHf09Oq8Yxoq02+s4dKYqKVZURYBwg7oLI0X7qCirx2qnPj+pmxQraz70MhRxOqyZz2S+sgJUGnTTWd+89fqMmPBrWs1N/rVRgQLfapkph4mtF6+So6jr1+QUpsmpOc3yDoe7pRuLJUJ7A7bFXR+8JLNC6fI1xaoBwMGb/7kU/77nURUehDJ0eTs5TwZGON5vVLhItd8scHOGuZ3ryHmfvjIuIAOfdMDJuXlNMJTkjMwykyCIk3lhm/9T5Lv/X1s2Oc7R54mtzeETYvSB/tnrnSpfe2kXFEuLSAzTLywxM6X3yR3pde+es3yfiL6FKfV5NxuhoNzZde6/CfvnXMh7cnFIVlOKpq59Wn9Rf/GdbzFOKi7qxjkAisVD63AJ+uHJoc6ySmFnw7TilS9qkC0SBq/UNgKqwUFEFCWGVo6+lMCkt/foA2OZNkASsluYq91gOBVSGqDlgrZQAYKqkZxwsEVYY0Bm084IjKjE52gnSWuJwjcBw315hEfUoVIJzz4EhAks/9e8FrQJwVaFMQmgxwlEGCoqKVDUjDlg/OwyeCn4KDJx38J5x9h6BQCUhDGja9NqAYY5R3aHJAYEpKGdbTi2cpXP7PjysafdtbIAiLCWGZMQ+7KJNT6ZCoSP12T9O2MbhKUgUR1sk6AU48p76vQY0TuBpEaJPTSQ8ZNxapVIi3x31qIiLk2Ws9F1xYL3536kkyvK4pSEbFT73Nj2seBGAQ1gNXn6yu0CankFENmoQPObSOsEx9qnqZIZ1lFnZQpqKdDpg2lyiDiGQ+x4ckBlgpkdZSSo2Q2ueapCOv8baWgIq10TFGBnTSYzr5kEFrmcPk1KNbPfs+z1D6X+7zKgSUJSgh2FgP2ViJQUrWVkIebGfcvjd/BmQ45z43XWo+n/9Ck/FfwNKtBu0b15k/3GH4g/dwCKRWBP0uxcmQ3f/hDwkXe5gsY3bnIWY8PRP+isLUVmbeFc0KQXV0QjWeolpN/znsdgiX+oCjGo6Z3XpAvPEhzWsXmX30gOJoQLSyQLjcx5U+kyHfO6JxYROTZmSP932Ohqm8FWUjoveV184E4yLQdY/AT7M/vmyaE64sIoSgceW8d9T68C4I4elieYEtSnQ7QUjhAQaAlHU31zG7/YByMKZx+TytqxeppjMGf/5Dskd7RMuLZI+PyA+PfeZI96JvAu0eeEFtt0339ZfAwezuNtn2Y/pffx3VbFCcjKhmM3+8GjHleEq0sXKWc2BmKUG3TXJxyzsEZQX54THJuQ02/k//NcI58sMBZp6hmg3ar75IcmmL4bffojgZnVmcnp7nYKHL6PvvURwcE2+tUk5mVCcjqizz1rqTKeHyAsmFDVQr8cGJUYhqNohWFrz4PisQUUB8bp2l3/plsu3HqEaC7nZ8xkG7SXJuHVuUyNBnNqQPY3TLa2aSrTVUFFKMJqR3t2m+dJXl3/waMgwpjweUg+FZISwDRbSyiMP5HIXhmHI0Jl5b8hRaIOi0yOPYF6k1+DFZTjmdgvRZLGG346c3QLSyRPb4gOndh3QXOjjrsy4QYCYzZKARUmHKHFdZP52wDhloXGmQWnu6Wxz6oLpuC5UkpLcfINston4HqSVYR/P6ZXCOoNM600R84vrMcmQc0dpaI+g0OS5L8v0jgl6HaH2JyIFKYrKdfVQzoTweIJQkubiJ1NqnrQPFwRHzj+57UN7xIFl3ntx//Wd2QDmZ1Q3BJ+5TQbftXadGU2a3tz1l7PF1n3nS72KyHGchubRF0O08MWuw1qdzl5UXf89SdKuJrNNf45VFOl94EaGU3+bOPvn+EfmB116oMqJx7SJKayY37/pjtdjxnbI6pHD4rbd8fk0UIrQmaLd9MzcrKI5HFIMhOooQga4bqQ5nDPPbD2he2AIpOPnT72HTzN8HwoBqPOXwP/4Zdjb3OT5FyezWA6LVRRZ/8+ss/c1fJnkOte2nsX6uJxmnmoyfxLv3xgsdHj1Kmc7GNBsBw9EcrQ2uVE9P6P7zL1dnSlgQNkdZixXKF9cOcI6wSqlUgHPCd35PXZxq7r90lsAUFCpGu4qgpgoJa5DW0ihGhKaoefUVk8bSmXOUchaDrctSgRQCaS1alPV+aCqpcSrBKYmrJEuTnVponaCdITQFq5OHBCbHdSSzqO33WUakUYvQZChbUunIOxfV1rSliuq/Q4QzTOMes6iLkRptS5wQmFMf0lNQdWZvq3DO4IRDVSVIQSsbU9TZGcr40XMptE/mPptcnB34evrz412MtCuQVY5RAbmDqMoogoRCN3xQn8ULzl2BRSFdgSoMuY6wLv6UTZ++B38csA5VFUzjxaecr56j83CmPgYfK7ydIzQ5RmiMrZAIhLUIU2HDqGbkVZw5fj2zPIVI4K2IlbVA5fdDAMZbHkd5SmRTdOXT4hvFDG0yctUgLicUYYKuCrplSqkTtD2ikw2wsaA7P/SOWWXGLO7hhEQ5gxKwdfIR7dkxadKjMztkz1aMkx6Ez+ugnILx0/XslEMKj0fLz9CH0PWdrtEULHRDJjNDs6kRCHQgmEyf3Yi1Htx8XrrULyYZP7/LOW9XOX73JmY6J15bYXbrPnaeEW+todsNqukcO59TxQHZ3iFSa5KXrjD+0UdES310r0167zFlOkdah2zEzE+G2LJCa1VrMbxGTSiFiCKK4yHTW/fpfPFl0p19dKvB7MEOdpb6zvzqItHKAtnOHp03XvXBdIMRqtXATOe0b1ynde3S2fsI+l1EFFANxr4D/NSyRYnJirN0a6k17VeuEfS75PtHmOkctbxAvLWOnWcM336fdPvxWdqv7rQJeh3Pe5+lVIMx6YMdbGloXjlP/6tfxAkYfvttGhc2iVaXSPcOKQcjwuUlUDB99ya7/+P/wsZ/+9v0v/wq5tXrUD/H04e7DL/3Q8Y/vImrDK5yBN0WznqrTYEvirGWeHONoN9l6de/RuulK15MzbOaC6k1xdEJ2eMD4rWlT9QJUmsal8+R7x95h6zFPsFSn/xkiCsLGlfO+0lOp+UFuWVJtL7iLX8vn0dISdBtEq0sU40n6GaM7nY4/ub3yR7tUQ5G2LygPDimms2RYUiytUr7xguUgzHzu9sorTwNazjGFAXV9zPmdx54G9n9Y6q0tlpt+fyF4mhAtnvoU6MFZ5SiU9DgcKh2k3htmezBDtMPb5MfnjC//RDZbFBOxmcC++bV86hGQuvaRaa3HpBv79Vi6gmykSCTGB0GmOEEm5fIUHu5HuCMxRmDLUuCXhvVbtH/pdcpDr24ffC9d7Fp7gt7KTB5zuzWXXSzydLf/KVP7YoH/Q7Zoz3/2Tq/wdr/8W8yfu8jyqMBCElxdEI5HJOcWydaWWTy/h0aFzcx84zZ7QeEWqMCjYhCEFAMhmANwULnLBcCAOEpv2G/i0OQbu/6VG5jEEpRzXzmh5CScjjm8D98E931TlZBv4tzrg6knHjdUFFQHA3AOZ+Knhc0X7pC++UruBp0ZLsHNK6eJ987Jn24Q9Dr0HrxCjbLKYYTyvGM6Qd30ElE9mAHtCLfP2H89k10s4Fe6lGcjHDWUs0znJDE59fJHu1hggxZ+hBE19YEnRYmLTDTGf2vfYHieMDD//5/gqLE5Dnd115ChqGnBx4e0371Ba85S/yk1VWGcLnP0m+++TMDGPBzDjJOH/CflxsNgPCOM2+81uXmrUe0kjnXL7e5/SAnTZ8/YDj7xefui//OT+Y89VQXXeCzJnAo67v9DocV+JAeAiZxD1UH2Tks0lAnZJ/+Lr5bX3vtVvUkITQ5TmmUtSzODkh1gnIlRijmURdkXexZixSWSgZ1N6xEoLzoy1VI56kt1npB7yhZquGNQznLwnyfyOQEruLq8btkQZNChghruLd8w3fmgUL6m4C0DuUq4nKOE8KHDTpLoROkc2BLP9OpAY8V5qkC+akiWUhk5R2oAmNoVVMGQeJfz4Gt8z7OFMCn+heEzwq0xqeSPxdoOESVe0tfqdC2IqlmHlwFTWQNlsLSXzzCGbKg6TU0Z/kgf5Gm4PTnLPOoTWVjr/F4JuTvdN8cT7iTH9uuEJQqRNoSYb1bk1GKQoWgPMDyOSfWhyIi6wAJ49+HlASmQNUp6MqW5KqBNoZudoiRIUmVIm1FrmOics6lox+x3zlHKx8RmpSZ6qBdiTIVadgkDVq08xOckAS24tzJRygMj3pXqbSnR2hb8qh3Dde7Tn+6S3d+RKkjsvCJ+82PX8/eA6wz2OqTX3/eKsr6KOaOo0FJGEimM8NoUlIUjqWFZ/MyflKQ8YtJxudbv//7v8+//Jf/kt3dXV555RV+7/d+j1/91V/9mbxW+mCH4fd/hG43CFe2SHf2CXpdbByT7R7UnGaBjGPMYMLxzXsk5zfqcFKfA6FbLXSvRTmeYLFI6xBSouIQFQT+HtlMPH3KefoEWGQSMbl5j9mPblJN5witiNcWUe02xcExqtNCJglmPvd0q6VFxA1Nvn9I+8a1M1ckAN1MvHB1Oq+nEgVCKcrxlPJ4ROPKeZJzaz5v4O5D8h1PwdCdFs2rF0gubXnXn0hTTSaeitJp1c5G3gkqWlmg++UbdL/yGo2tVWSSEK8vE/Q6XoOwf0S41Gf8zgfYLCfZXEfU9tdFFDH+4U2S8+ss/eabZ+FnxcjnE3S/dIP2K9f8do4HpPcfESz4YMRww1tbV6MJ8TmfZB2tLp0BDPDcfZ4cDkyaY4vyGTrY00u3m7iyov8rX8bO5kSrixz+4TeQSUTj8gXMxPP8Z3e3KfYO0d0WzTdfZ+HrX3wGtNiyJNvZI9s7ZvrBbeYPdrzT1tGJpxNtrNB66QpBp41zxtuGLvZR7SaTW/cp9g5xDkwyJd/ZZfrhHfKDY8x4xsKvf/WsW25LrxuZ3rxLtLpMqy6cw8VuDYa8GxMCnJReSH14QjmZEgaSajildNYbAIwmdF67ju60SC5sEK8uU42n3rnr8nmyvQPKwwFVMMfNDEaAkAJbZ7yYOssDAdVw4q+hKxfof/11Fn/zTXb+7/8Tw++/RzWdcZrlklzeor1/6Dv+T123pys5t8H05j3K0cRPFFoN+l9+lXIwYn5/h2Cxy8rf+jVa1y8xv7sNEj/pmc3J9w6Z336IXuwSLvYgCMgePiZ8/RUaF889Y1tbjScE3Ra638HMZmSP9tDtBiIMyXb2MNO5t+l94QK9r34R3WyQP95DxiGbf/fvUh6eMH73JunjA4qDY3+NLvUoDo5xRUm0ukTz4pbXEIUBydWLTD68w/idD8FawsW+d6tLIhrXLlF874fYIie7/4hofYVgoYtQ3q3OzOfIKMBlObb0ttUiCPx9RypcVuDqSZkAdBige110q/LOcidDbJ5THA0QgXe2G731PvHmir9XVcZPPIqSYjonXFqgcXELZwyz2/e9qcNPPQC4/vz9TLb6GddnoUvB53d5AcBBUZQ83rlHUQja3SWKQrC04Hi8X1DVDfY6KgF7pp14Pp3Gmh8HTP6ifTkFGbU3sS0QzmJVACZHuTrYrv45JxTVqYjHliDwRSNe9u1QlDWdyDpwdQq21z4olM1pFCPSoME07DJqLGOEJjIppxSUXMWAL/iNkCgsSTknycfM456nTzmHkYpShUTlvAY2FUFVkOvY5z7YiqScolTE2ugBRRBx2DqHdhVGR6gyJahSKhWRBQ0qFaJMgbKWIkiQ1vj9x2KdqKc29Ql0TwW11cJmKzWljrHOciI10lYEts7jCOL6/J22YlzdBXI4KTHoJyfxE5een6BULkLZgtikxKXv7qWuSaF82F+hIrQ1FLKBdJbedJdxskQaNHgCbP6CJSRWJ2Qu/Jie4+lr7yll38f3E3AywFalLxaEp4kJBZXzIKrUMVE582BVaKypaOQTmuXE/19Kb11sMrSpELbCIYlMAaYgqlK0NRipaRYTnPDZFlYqAlegjaktfhWBKTBKMY4WEM7Sn+0TmpJ51KY/P2TQXGUa9ZDWMI273hIZR2wy2vnQU8h+ovXpU47nrTgUxJHGGugvBeSF4ebtOVcuJly/+uwE4lQL9lk1Gc45ZrMZ7Xb7L/7hXywA/t2/+3f8k3/yT/j93/99fvmXf5l/82/+DX/n7/wd3n//fc6fP/9TfS1nLbNb933Sc7/L5MO7jN9+Hxkqn2eQxExv3sFM5kRba+h206drz+akDx97+9M4Iq8M5ckQjPGJzYlFCijSgmrmH97RUh/d7XiP/Czz4VlBwPRHH1KNPPUKIciPhoRIkvPrlMe+Q9r/6hcJF7qerpJEzO/5RGeXl75YrgzlcETzynkWf+2rVMMR+f4xzjp0M6H7pZdpvXSVfO+IwbffxqSp544r300//tPv0T4e0HrpCmY8RzebJOc2KY4HuKL0VrLGIRA0zm+y8LUvPJOmDOCKEoDieICZeCelp5/lvtgXpA93yfeO0J0WJ9/8HsNvv1OLty2636V94xrr/83f5vgb38VlBbrh6VsyDEgubII1JOfWCD+FdnO6hJJ1SJupheDjM8egoN/FlRVCKcJ+B31uneTiFrqRcPAf/pThn7+DTVMcgmo89pTOxb53fLq3TePSE/qVmc6ZfnCHap7V9KqGF01PZlhjve3r6pK3vKsExckBpizIdg/IH+1Rjsbofg/dbhKuLpHvHvjOuvNZHu2XrwLe7Sy5dI7Bn/2AYKHni2k8uEoubpFu71JlOeXJCN1qUo2mSOuIlhfPJiEyCnAOLza2BpnEmMmM9O4jZNsHIeZHJ6g4osBPfIqygMyH2lljkEJ4KtiFDXTD2x1PP7pHuLSAEH4ykO0dESz0SM5tIKMAGWjKWcrBv/8GutNm4c0vfeJ8hcsLdF59gdHbH1KNpwTdttcpzDKi9RX6X3nNp5uDfz+HJ8zv7eCKgsbl8xRHJxRHJ0wPTjB5RtBp037lak1R9MvMU6ppSvvGC8zuPCRcXEB32jhjKI6GuKL0n9GyIl5ZonXlPLrVoHnlnAc2xtL/+uu0rl+m+/orTG/dx0xnlKMpZpbSfOkKzYtbBN0n93sdBTSuXmD47XcIl/s+dyStNS5xSLy27AMgnSVc8Fk44x/eBGtJttaRidcIyTiiGo6QQiKkZPr+bVxVes1SUeKMw2Ql5dHQGwx0faOi9UtfwqQ5Aog3Vn0OzIf3qGbeLc3vRwBVhSsKP1HptRBa0319+sx7+Wmun+tJhpT+5lFVFWH4SUT849ZkMuDxow+ZZV2karOzOyMMJHGkWFsOSTNDI1Z0Opr9w5Sjkx9f6PzEAEMpKA3KemVqXM7pzw+ZRW1mUQ8jdB1c5nMglH0SAOctbSUSUK7CoZACSsGZcFe6CuEE0llKFaJNQaOYMUoWGccLTMMuqW7UNKiAyMwQ1mLC6ExAHpgS5QwOybixSKkTDAopLNoUJMWU5eljsqDBPGxxZ+ll2sWYUkU0GWNkgLKGwJQ0ijmL012MDonKGVZqhHOMdOxBhtAIFSPxrk3KFhiV+PdpPRXMuNNpw9NuTadaCJ+BYPBZG9pWWGe9NsEaRE39EdaiqpxK1TqDU5vU02P3HDDgZOBHpBaMkMyjDpmKMcprDQwSKxIy57AqJKgy5nHPC9KdA+kdmv7CaQZ4LcSZEP3H/eynXXkCp7yITLuydh/zeplMRaA0eV3MK1vRzsd0ixFJMaVQIZUKyYIWWdAmZoJRMUZKbDFBSIWyPrhQWkNSTJlFHZJyipUByhTYoEkuGwhrCauM1dF9RskyS9PHbA5ucdze5LCzhbQVUZnRzLcRWJyDIMgQznHY3iCuUubBT6P7/3Fw8QR0CAGBgk5Ls7keo5QkLxyBhn434Otf7rGy9Czt5FT0/Xm6O/P5/Bd0qc+x/tW/+lf8g3/wD/iH//AfAvB7v/d7/OEf/iH/+l//a373d3/3p/pa1XROcTzwjjWjCbO7DxCBRvc6mNmcfP+I8mgIUpBt7yIDH46mOy1kHPlk3OMhWU0pidZXfEezNDilEKFGSImItE8WTmIcjuLwGKkV8doy6cMCoTW67a93l0SeetJu+gnB3UcIKc+oTgDRyiLxyhKzu9tUk6l3cnrlBZqXzxEu9rFVRTUce5DRanjBc5Yzevt9nDE0Lm6dbUu3Gpg0Y3rzrhcsB8pPaipD+8XL3qpWCoSSXhQfR88t8E+nKvn+sRemftyVrSh9+jWQ7uyRfnOH4298FxVokosbdSE8ZPCN79N8+Sr9r36B6fu3KaczwmaHYKmPnadeG+Bg/MMPiVYWiVaXnpu7EC71CXodRu/c9I5bszm2LOuJkUbFEQu/8uUzapmKI5b+q19BtRps/9/+n9g8R0UR4bWLYKF1/SI4mN99RNDvEfY72KoifbRHtn9E8+oFHzzYaJA92oeGJWw1yB7t4qqSoNcF58geH1COpyRry4SrC4SrS8jgNGclRzZinLG+2zwakz7cQbdb3lmyrEg2173WZf8YlXibX1cZlv/mLzO5dZ/yaEA5mXqBcDOBeUY1mni9ZVXhogCb5ox+8D66ERMuLxFvrRK0W1QIisNjHzK5ukBxMkBojZAWkxUIJVDtFvG5dRqXz6GbTXQzYX7vEc0rFwi6bU6+8V2cMXReuvKMY1G4YJnefsDxf/ou3S++jEpibFmS7x5SHJ1gjSXodeh/5VWfcn008KD20hbNy+eJN1fPtqVaTfK9I1CKpP56uNTHpJtU8znzjx7Q+fINzDQlLXaRYYhJM0DQvnHN21EPxiz88pe8zmg0xqTezUl3/IRL99pnbmVCCFQS+alHq0F+cIyzlu4XX/L7snuAbiS0Xr7y3GdD4/ymF5sPRozeft9fj2kBzqFaDYJ+BxV7PaAzDpVE/rPbb3s2Rl6c5abYwiDigHIw8tM7rbBliai1WNVk4i2KM39dzB7sYLIc3Wyc6YNEFJD+aIdwbYloue+d4RJJsNBHakW6vedNN38G+Rin668cZAgh6nyG53/v8zpMOee4d+8ed+7c4WtffoE//6Hig5tjlBRY64hjjZQCYyAIJI1EgRN1bsVP6119bEmJrkqkM7TzAX6CECFthTQGE0SoqqCdDUmjFsJVhCan0Ikn+whJpSKUqSlUQqFMhbIFgfXp3OAIy4xWOaFRTpmFXZrFlNDkDFlkHrZwAozQlGHsOYyuopX73INcBRgdnQnQEQ4rvKVpIxsTVBlHzTXmUZt51GWYj+sJjCCp5izO9jBKE9kCWQyxpaRRTJmHLR72rjIPO94dQXpKgiHwVrXCa02MUDgtavMn84RC5AzCOZQxPnlbBj5KzxVIp2p9hwdbgXUI56iEwcmASkec5mJI62kLp+npnwQap6MqV2sWINUN8iChVJHXuwhQzk+jjIC4Ssl04ulqiCfXz5l97aetU1rUqZD/4992T4GPH7OdOgG+0C0PsJzXVyBPgwbF2XupVEBSTAlMxjBZItMNpDVYYepXsFQyYpQs0UuPEDVw6WQnWKH8BCJooW1BGSRIZyhliJQGKwQnzQ0EFqsUR93zNNMTVscPKGXogyCdYx62CG0BRtLMx+Rhg53eRcroZ0ExUmdHT0qDMXAytAhVsrnWoNUKWewGrC5HXgT+sfWTTE9/QZf67KsoCr7//e/zT//pP33m63/rb/0tvvWtbz33d/I8J8/zs/+Px+PP/oK1rSdCUhwPwHj6UHk08MnF8wwZRYhQe0vTurFh84JgoYvNCpAl5WBY028MSIFuJ5g8RzhvTFGdjJFCohonVJOpz1S4eonOqy/4Lr7wgEBIgVAaGYd+f6T0KdPJs2C3Go6pJlNsWZyFnTUvnUNGoS8uk5hwaQFnjO+aphn53iHF8ZDGhU1vG30yIj84ohqOQWmcs+THA+LVJZL1VaYf3aU8HnkffRxCSJLNNaK15TPHnadXuLp0Fhh2qhM4W9ZiZqkHN86Rbu96ilqrcZaZcOrHnz3eZ/ff/QHRxjKt61dQcUS2s++TkIVAtRLSR3uEvQ6675O4e1997RO0KBmGyEZc2xK3kHFIeeRtRquTMSgfQhf02vS++gV0s4GKQsKlBRbe/BLxpt8vGQRMP7zjLV9bDQ8+D46QYUC+e+hNQbQi6PmOr2o1UVFIORhSpJnXV8xSOi/HOGdre9wpxXSGjEOitRWEkoQLAcXxEFkUPiCv20K3Gl48Xl9XjUvnaN94AYDm1QteKL8ak5zf8HS8vES98gKzm3eY335ANc9AKw9cqgqTlwRBQJl6Ck306nWW/sbX0HUTxOQ5CEdxMvJhkaMZIgh8mnscEq+vkGysoBoJ0/fuEC71aVzcZPz2B6jaCjZ7tEe8tvIJS1SkJF5bInu0S7Z7QLi0wPDP3yF7tOdBLGBLQ7DUp/flG/S//rr/tSj8JGDNclSzgc0yqukc1Uw8PUkpKCqilUV002tL0vuP/PG6coHuG6/QuLDJ7PYDnDGEyyuIQFOcjLB5VU/JNnxCu/TWxrIW7tmyYvC9HzL43rsUB8dQp3hHK0sEi33mdx+SDwbEK0uEK0uEvScTAJvntF99gck7NykGIw/UNpseeOK80YSp6L7+KibN0e0G0w/uUo1n/rykqW+4KoWrDDiN7rYwswwzmfvGchITriwhQu2zXQ5PaFw6R/pgx9/DgOzxPo2LW/4+kc4R0ruAmtmceH0ZGQb1MQ8oR5O/oNn5l1t/5SDjL1qfB2RUVcW7777LaDTijTe+gtJNlndOGG8kNBsa4xzWQlVKytIiBNx7mDKd258dwABQmlIFLKYjCp0wjhNftOJqRpDnapU6wgrlO8jOTz+0tVQqppQaIwVOSJyQCCkIrdd2JHX68uJ0l1Y+Yh62cUoSVSmhmWOkJqgy8jDxKaRSE1hLOx+wOH3MYec882AVhEQ4g3A+osHX24JRc5Fp0qUImt7xyngxeYUk1Q0unnyEFZJMJyyNthk1FjlqbRCVc+ZBqy5OKywOI0OvQhECKwIyWadN1+4K0ngwcFZ8C4GwFdKVtaOLwEiJdLX411aAJCpShHTkOvFAAue3gajF5w4jo7Oi2wnLx7vfohZLB7ZE2ooyiDzFCokT1jttucrrWJxjHrRwUvrkEqnqwsTWIOHpbT/9AX7qQhOiFmg/pQdwp45KT2s8Pu0G4J4Iu4XGSetzNhy1aNynm0fllEonjOIeoS2ZRd3aCcpnqORC0CimCGupdMQ87qCARj4irlKM0jQyD0YrqYlMTlTOEM7SzEYoZwhNycJ8t9baxAxaa0hrmSbefcwJ7z7lpCQpxrg6fDLXTc9FlD+5e5SUEOhad1EfXq1B14F8OEFp/Ge/yOH+/TFB4LgnAy6dS/jlr7aAZzUZnxdkWGt/ATI+xzo6OsIYw+rq6jNfX11dZW9v77m/87u/+7v883/+z3+i11PNhKDXphpPfLGSJCClL5TD0BcSSeTzYaoKF2qCZgOcIN89pJzMfcq1MeQHx4SLfaLVJVSjQfvGMjYrmN9/hBlPMXlBOZ2RnNug84WXkEqiW03ChR4mzagGQ2Sz4V9XCPKjAUG/S7y5hnpqYj+/u83guz/EzlNUu4mrKo7/w7c4SDOi1WXCpR6630EFAdVs7t2JlMIUBWYyBSmY33/E/PZDT9lKYpzJKU+GVNM5MgjpvrZOt/MqxdEQk6Zed9ZtU81SdPP5wl0VhXRevc74vY9IH+ygGglSK8w8pRxNiVa9c1a2e0D5eB+qkmDVW60668ge7/s/e4eY1NvQmukc3WnhTMXs7ja6EdP+4svYLCc/GiBbDaa374NWLPzSl54pRk1eYOYp7RvXyPeOmL53G+csutUgvHoeGQSoZsLszjbOQev6ZcqTIZP3PgIcunYrAghXl5lv7zJ59yOKwZj04WP6b75O540bWGvI9g45vR8LKXwBXFaUxyMvZC9KD0x0gGrEBN021hjK8YxoxXgHQuEpYeXJCJOlmKyoHbXOEfY7T87/vW1aN67T//Krzxx/b2ULSktEGFFNU1xeIrQkWOh5i+PxFNVpYY2hms7Rzdh30M/OYUTnxvW6+N/3wu5ex7tgnQyhLMn3DrFlBZVBNWKy/WPy3QOmH92n/dIVisMT4vMbz71GZBz5MLp5yvzP3yHb3iU+v35WyDtryXcPGX7nHZZ+602CXue527FZTnLeT3Syx/sU+4fg8O5PlfXaldv3ab18lebFLWQz8QJ+QHda2KIkfbTL/N62pwuFQR3kKLzN9Gzma4yn8snG73xIdnBEvLKIajZrytYx4x/eREQhydYaZu/Y088e7dK6foVkc9Xro2YZ7WuXmb1/h+bFrWeohq4yBN2ON5SIIzCGcGmB5FyKNQZbFKhmAxWHVCsLpPcfUQ7G3v1LOHQSI+PIu2tJQTXwjmQ4SzWdkWys0Lhynnz3kPTBY+w8wylv8GNmHqDodoNw2QfGOmOwRUmw0OVnWQD/FwEyPouN7XQ65a233kKIiKW1L/DeLUueDzkZFHRamiytsE5Qlo5AS4w1DMeWNDV8jkHJT7xs2OJQxb4zb71NrXIVVqoz69BKBni8qUnsnLDM0bZkKjXIEGdrGzbrC14vsPapy41yxML8kF56yP2F62c1tp94lJiohbQOKwTaGdr5iIXZPtqZuuz1hb40JVZppPPFshN40CI0whkCWxHaDJnPmYVtsqDJJOzQqCY08qlH2nh71MPWFpUKa3vVnFw1/FQBcFjvqFVPMpA8sbCVpwWfL7KtDCml5jTtXMETsbXz4m7tClLZpJKh395ZHoZ3pDq9iUish3RO4Ck13sZVmZKoSilVTGAySp0gsShX1tbHYKUgJ6k1BBKnamrU6QTklOJ1+trO8MngP/Hsv5/H+T9NwRY8Nel4znTkY5t6gkm8nSDC+VBCnYCDcbxAaEsElsAWWAtWSJJiRicfMI26RNkJgclYGW+DUIwaiwhrGMULiNowYB40iYWiP9tnaX5ArhN62ZG/ZvCOXKNokTRK0FXGoLXCOOoTVBnL08eUMuCwvUlYzmkWfur2lwIZwj+7A/1EW6UEdNoKJSWTaUmrKek0A5QWhIEgzw1hUHEynPEH//N3uXY5ZnFxkYWFBXq93k8UxAf8QpPxOdfHO5c/zknwn/2zf8bv/M7vnP1/PB5z7ty55/7sx5fUmsaVC5z86ffPXHNUI/a0qLKkmvuiWgYBGItwoNstypEXQtvZnKDXRkYxKJ+IHa2vEPa7vivoHGY6IzeWzhdfItlYo3Fxk2B5gdlH93xxqqVP8+13KQYjzHiMqbUWyZXzBO0WQc2/L06GDL//LkJJGpfP4Zxjfvch5dg7A9nKECx0OfnG98h3D2i9eJXWi5dxVUV6+z7pgx1EFJJt7yEb8TOFNIBJM+b3HtF68RIqCkk2n7jLOGOpRtPnpjX77xtkI6Zz47rPIrhzn3Chj4ojGlfPk5zboDg8IVzok5XGF9W1cLscjrzIHk+H1r0uqp4gHf3Jd7xOIApx85T03kO6r74IUpDe36H10hXSB48pr18iXHpC4yqPB1SDMZ0bLzBRkmo0Jljse2paq4ktCu8Q1G7y+N/9wRmQLE5GUBnK0YTOjetec/HhbaTStK5fJts7JGg3ETrwgubNVUZ//o53ttIKV5aYPEMoheq2EIHyQu0XL1MNR6Q7BwSdVg3AMsrhhGCxRzmaeAel8QxXlEzfv0XrlWvI8MmzojgaIOOIxoXNTxx/3W4SLi2Q7x8RLXRAgskyLyTGM0NUp0m40PWhg3HkA32nc3S3jS1KqukMV5a1YLik88WXKI4GNC5uoTtthBSUx0N0w0/q8qMBut309rWtJtnjPdLH+6hWQue1F/n4s6kcjL0tcWXIdvaJt9bOAAbg8z42V5ndfki6vfupIENohRCS5rXzJFurlOMp+cGJF91Px97OtdXEzjOOv/UWupUQdFuMf/ShTzXXkuF33kFoffY5ddbVgmqJCLV3EasF49PbD5g/2PE0xa11P+UovWObaiZUM0/jEwjKkxEgqMYzzOwqUmka1y+hmw3ijdUzobpqNRFSePexJCLstjGzOdFSn+r+DsFSj/m9R1BV6FpDlKwsIU/PQatFOZ0ilKdLVeMpdp5iZjOEkkilPZ1zMiN9sIOZZ8y3d0h3drFF5c/zaEKkNMElP2Esh2PMPCVY7JNsriD0zw4K/JWDjB9Hl4InNrY/bu3t7fHuu++yvn6eab7Mg0cF7aZP+p5OLY92U/LC0Gwoklixf1gwHFvy3FJ5GipS8LO3tlUCKt/1tk4S5yVCaSpRYoSfUihTYKWmkiGd/AgrFVGV1cWx9iItHJqKggiLpNAxM/ok5YStwW3G8QIP4kUMEqcaZEECCKQzBNaASWnkIxCQ6ZhCBEhnPd1GSoRzGCF8N74+P1YFaOOQGJSzVDLEqBCL4ri9Rhp36aTHbI3usDDfR1rDcXOVLGgibUmpkzrgz7/OabigO6MueT2GPQUYpwV2nY7uzjr7DlEVSGHBUu+nrsEFPEm0htPC/3Sb2hZ1vgX+Z5z0f9d5EFZKtC3pzfYZN5ZxQiClYR5qTucLTkq/n6fgCM4oWc9MFtzHrWc/9aJ46t81QHHmyfjymXv3x4HGM8iCJ1kbfm9DU8IpmAOisgAJga38ORV+dK1wjMMeoS2Iqox2foLCkUnNOOrhkBSBF3Mq42l/i9NdXjh4m8Dk7PSungEMgFIElDIkrjI2B7dZme1y2NrgsL1BrhMGjWVKGVHEIYGtCGxOyefTXD29KvPE9S0KQIcQakFVgVOOleWYpX5AEMhTjE6aGZYWmrSbmrXNiM0tx2R8wvvvv09VVTSbTaqqYj6f02g0fvwO4PUYwC80GZ9xLS0toZT6xNTi4ODgE9ON0xVFEdHH6TmfYzWvnKccTRh86wcUB8fIZuJ5y3FEVAeB2apCJjHB0gLVPPUBfZuryPMbNC5sMvzeu77ICDTl8QAVh9g8Jz84pjgZEq0vs/Lbv0HU75I9PuD4P3yL7PE+wfIiQgryPZ8H0LhyAWcq0nuPCBd7pPd3CF9/+SzALNvZoxrPaF71AvhyOGZ+9xG61SRaXiDbPSR7vO9dbtZXPOXBWoJum86NF8ge7zP89luEy0vP6iqcxaY53S+/xvzWfcbv3qL72nVkUFNFqors0T7h2uIz3PjTVQ5GDL//I/LdA2xlSLbWmT945APKrpwnaCTkjw8Il/t0v/IaJ3/y58ycwxYFMo4ojwZewGqsp43hb9mTH94k3z3EZBlSCqyomH14F6yj84UXvfZkMkMGAeVg/AzIcMb6GkJIqtGUaHUZ/ZSIVShFORoz39ljfusBreuXPIg4HDD687fY/4M/ZvLhXQ9unNe2uPkMrKX18lWSc+vMP7pP49oFgsW+T8veXKUaT0FIVLtJdTJEJgnJ+XVvd9pIsLM5cm2RoNsle7iDyXPM7gFmPMNWpdfqnF/HTFPyx4cMvv02reuXvaan2aD35deemzUhpKR57aKncAWKeHWZfGffW5uGDirjKTbTOQjnKTRxiLWW/ODIB7RlOSbNSB/uIuKI8dvvo7sdHyqoJSIMa8BPLWQ3XotjLcnGKkJLyvGU2Z1tr/V4Kim6ms4pTgYsvPkGp2HBp/Scjy/dbpA92qPz6vXnfj9cXkA147M8ELRmdvsBQkqKvUNv4xyGzO4+oBpOkWFA783XaVy5wOjdj8gf76OTCBmF6IWup8pP52T7R0w/uktybgMhhJ+qTVPKowEy8LbHp1TBajTFzOe1kHuH0dsf0Lp+yYO18ZTqYYpKYs79n/8ejcvnmbx/h2hlkWbvotflHA9xxrtNtV+6Snr/EcXJkKDXpTgZk23vkA9GSCF83sloim7EJBe3aF65QDmYEKRtZBIzv7dNmZeoThMhFeFiF9lqURwek+8dYuYpKgxrLVKM7moftNhp+8lkbUmsotC7S5UljYvnnskX+Wmvv3KQ8RetH0eXstZy69Yttre3ee211yhMh4fvT1hfiZBSUFWOleWAD26PSRqaLLecDCpmWUmeW6RwSMV/lkkGzoC1KFueFZCVDihUDEKhTEFoChrFlCKIUcanOBvw++nACUPgJFYoKuGDziQ+76CVDunOT2iWU64dvkMaNNjuv8A07iGsQduC5eljVsfb3F94kUzFFDpmHHXJwrbXdQh1Fox3WiArU9FIB8wbCyhrMEKTqgSjQywS6QxWaMZxn7CaM0iW6abHLM73sEIwjpdI4jmVTrDWYPSpLa0HAj7RvDoTuQPUpE3f3bae9OOkOBvpVUFCBT4bAotzXmsh3dNZGHXRjzybDIi6hhdK1S63NS1JQKVjmtmI/mwXoyK0M8T5hFncRziLEdoHBLrabvhpLcWpjuWUJnUGmms73c9MdzwFFqfA41Ssfrqdp6ceT9lknb6GfUprIjUlHvw46TNUYiGIizmLs12ckAxaK8yCDqlO0LZA5imNcoK2JcJasthrUlrZmHYxpJAR87CNdJYLJx+xNtlmHrRQrqKUoZ+O4AMfs6BBOz1BOUOrHBONUgJbkquIcdxH2SlCQCMfM2iu8dNaDmgmASuLAZ2WptfTrC2FDMYVu/sF3U7gXVO0wFjodDRaKRYWemxtrp65RN2/f580TfnOd75DHMcsLCywuLhIr9dDP6frM5vNCILgL1UE/+9phWHIG2+8wR/90R/x9/7e3zv7+h/90R/xd//u3/2ZvKZQit4bN4jqgKrhd3+IMz5pO2zEzO8/ohpP0c3EdypnKSiJardoXbuAajfQrQa63UI1Y8zU0y9cUWHmGcmFTRrnN5BSUo7qhGutUK0GUkC4sohKYma371MMx9g0wxV+Sp+cX6c4GnD4R9+k/5XXKA5OkFHgQ9N0QHF4Uk9fkvq9SG/32fE0rGxn/0m3ud2k9eJldv/HP0Im3vwBvDNNcTJAdZrEq4u4mp6RPdrzBSWAEERry/S++hrOGMbv32byzgdkj/cxeU5xMibotem88gLJQpfm5XM0Lm4w/fAeZjqjeWED1UiwlWH0/R+R10FzGEu0tU6VZp5KM51jssx397KM8vAEEUdIa5FBiAgDnPGUmlkj8QBxMPIZGh9bqhEjo6h2anKYNKOczqhqy1wn8F3nyhD0O4SLfV/8ZjkiDMkfH1IOfoTQApXEqCT21qOtJvN72976PY4wszmLv/V1jv7wm+SP9igGY+w8Q4chuVY+ydxYst1DTDrzr3swIOh1UL0OMgyY33mAMw5XGeKNFRoXt0gu+JC50Q9+xNRBsNTz3fmyoprNn5lCmSwn295ldm+bcjKpgx0XEXFMeTJCaIlMEpjOUElMsrVOcTBAhZGftO0fIQJvf5qfjDBZThBHpNt7hHmJbWe4ymDSMc5Yyqmn4MlAkR8de2tlJVBJQnJug1TuMb+/jasqZKCxZYUtShqXzrP4m1+nHI69UPk5yzlHOU/Jj4cc/q/fwszmqGaDxsUt4jrAMOh3aV67yOgH76EnDUxZUQ4n5AfH5I/3iZYXCZb6FHuHBIs9H3750T0W3nyd4uAQGQaoThuJpx+6vECFAa6yWKXp/cobhJ02ItC0XrrK8PvvUY6/x+T928hAEyz0MNM5AonLC0+HLEri9WX01Yu+UbDt07RtUSKDwKd/14A/7HexRQk4RBDUDlEF7Vevo+KI2e0HyGaD9soiNitId/a8lktAb32Z/lde4+RbP2B2cEjc8A6W0foyMggwYUDj0jmqvMCMJwglKQ5PkEHgQyGTiNarL1KOxsjaZlc1YtqvvOA/L+MJxBHNFy7+zOxr4b8QkPE8ulSe57zzzjsURcGbb75Js9nkvZsTtAYpBUcnOR/dnnFwlDOZWaLA0W5pGrHFHTuUzMlLfLfzZzrBqBPGrfOiOBn47joCWwufpTO1g5SlXYwIZ7uM4iWmYZfAFDSLMYWIKHREGiiksyRVisIQF1MKndDOB+RBxDTs0MwnfPn+/0opNI8XrhKYnEYxJynnWKGIqpRZq0OuIgqVoE1B4AxZ0MJ3vr2mQTpLUk5pmIyyyihV7KlHKqx7597NKLQ5FWCk5ri5SljlCBzDZBlpSzZG93gkFeNoEef8xaywOFcCAl15NwjAW/mikA6sc89ODZy3TqSmWTkpEFagav2BT/4+FTw/0WScgjqBDxzx57sGCaYiKlMa1Zz+bJ/+/IhHC1fJZMSk3aNSGot+Mllw3nXJyafAxNMDBVP6znzgqWFeG6GeAxA+y4f6FMhYb/UL/nWf3tap89bpBOOpzA2/jwqcQRlDUk5o1Fklvfk+7WzAw4UXKHRMb35IaAriwnfnIjP39D0HgS2Iy5RIZEi8ULySARZBUk7pzQ85aq2jq5JSBczDDtrkCOE8yHUW7QzNckyj8Dqio9YG2lbkQUypfvIpxtNL4nUZo1GJFI4wlGgtkUqSJIrpzDBLDa2Gd5e6sJXQSBTNpiaK6jRYIWi1WvR6PYwxvPLKKwyHQ46Pj7l16xZZltHr9c5AR7PZRAjBdDo9+/cv1mdbv/M7v8Pf//t/ny9/+cu8+eab/Nt/+295+PAh/+gf/aOf2WsKKWlc2GT5t96kPBlSnowoj06oshyXFQSdDrrdpJpMcLPU89qLAlsZ7PGI5MImutvGzFPMeIYMQiyCcLlPcm4dISTTD++SPtone/SYeHMd3Wyiep6CIpUk3lhl+v5tguUFFn7pDZoXN9Fd30nMdw85+pPvUNQWqrrdRAaaYjBC6ifdYFfZejrg+dUy1F5TUa9ocw3daVIORqSP9hFK+k639fa0o7c/oJpMWfrNN2nfuFZzuyHsd4jWlqimc47+t+8weut9L37FUQ4nZI8PiDZXMNMZrRcuE2+sEm+s+rT0owGykXg+eF54/ne7hYp8MVWOp96CU0C+u++nOgsdL0h3eLFroHyydSm8iNlaZnceottNbzUc6E90XYOFHsnmKrN7D3HGMv3wLjKJkHGEM8ZnItS6h6Dn05vz/WPygyOSTT95mN68ixkWxJsxVZrR2lij/co1XFkyv3Wf5OJW7Ur1ywTtNuO3P6D64Qc4AfHGMtHmiqfZRaFPaw594JlJU+Z3t4nPrRGvr3q9j3GEiz16b9wg2VpDNmLSu48AgasqGlvr2Kpi8K0fML+7RP/N1wkXej51/c/eIt3eRSUx8eoyUmvMLCW+sEG+/RgRelt0obV3/tIBqtPA5hnp4wOkUt62dv+Q7P4jZBTSfOky8w/uYLMcum1s/Vy2WYYtKmSvTTmZedBzMmF+5wGykRAt9ln4+hf9lKHZwBYFutumcWmL/tdfp3F+g3mdWeWMwRqHmXpKtUlT8oMTjr/xXaRSpPe3Sc5tEPQ6pPd3aFz223DWN9mqacrk/dseXBydgHOEiwtE6yserDqHiiLotilPRqS7h1ST1FOsavAVdr1LmK1KRFZSDYbMfnQLe2ET3e+Q7x1x/CffIb3/CDOZ+uN3fwcnBSrQfpo2S4lWF88MD4TybnFCa2Y37xNvroGSdfDkYy++fmqKU01mSB3Q+/Kr5IcndG68wMKvfZnRd39ItntI+5VrJFurFCcjph/dI15bofvlV6mGY+bbjylPhkRrS+i2NzgQUYgbTXyGx2KX6t2P0Is9VBjQvn6JeGMFHYeUowkmKzj55g/8RLTXpvXCJZb/q1/5VFrkT2v9lYOMz5KV8fFJxnA45O2336bX6/GlL33prLMYhRJjYHc/4z/92TGDUYlSgiIrORpY0txy43qLygq2d2dU6acDDClBSyj+Us5edYH59Ebr8twJjRGe1iJrN9OomqNsRRp1yMPGmVA2zFKW8l2OG2tkYQvhnLcGrVIqGWIdHDXXsVJy0tqglQ2wCCbJ4pllbrOYYgU87l8iU00WZgc4BIPGKsJ58bQAtCmZRl2U8zkIQkjyIGFpussoWSQN2xgpEc7vb1LO/OTDFRQqxAYt5tEAbUuGjSUWZrusTh6yONtnp3eZB73rWCkIbUFZu2ZZqWpgYim0v0laIXw2iK3IgxbUExspFcZR051qOhUOI8C6J5Sqs+PtXF3sg3MKo4Ozrr+w3kZXYtCuJLI5s7iLMhU2Cih16Ld0KkyvGUFOSFT9mk+NMwDhaXfomntnn+g0nl6fmUp1CmzwgEyGHrScTU7gmVRv+RyxuPDTEIHDOkElNcetTSZxn8hk9NNDuukJUTHlpL3BSXOVdjYkUw0CW9JJDwmrzOeAOGqb4YpBc5lRskgvPWZt/JCwythrX6BSIUuzXZQpkNaQB03mcZtudoxF0CgmCGvIgwazsM04XuCJvfBny6T4tHVK2CoqDzYOjgsQUJaWonAkseDwpGQ8gfNbMatLAY2G5vxmjJLP3odONRlaa5aWllha8h3U+XzOyckJx8fH3Lt3D601//7f/3sAkuT5QtmfZP2Lf/Ev+IM/+APefvttwjBkOBx+4mcePnzIP/7H/5j/+B//I8n/n70/i7UtS+96wd8Ys5+rX7vf5+x9+hMRJ/rMyM7G2Flgm1voqqSLEJQlhGWBkAxPhheQQIAKJArMC6qXKlEyUt2XW6VL3UtzC2NssI2ziYyMyOhOnCZOt/tu9bOfY4x6GGvvc05EZEZEkr5OjIeUyhPn7L3WXGvOudb4vu////+iiF/4hV/gn/yTf/JU3Pc777zDX/trf41vf/vb9Pt9/spf+Sv87b/9t38siqE/9+f+HCcnJ/z9v//32dvb44UXXuDf/tt/y4ULF35fn7eazJi+e5vG1Qs0rl3i+D/8HsntewSXNm0nPE1xWhFaaYR0KPaPQGkaVzcJ1pYwZUV48TyO79N87gr1LKHYtxG40vdxmrGNRY1C1GRCnRY0WzG9L79MNZpQHA2ohmP6P/1l2s9eeerYvF6bw1//zxhtNYDO8oLN9t8/QdcVXs92xJHCQt/mDTittN1wZjnp/S3y/RNQGl0UZ+wJU9XIyG7STV1jakV2bxt/sUfrpWepT0ZWQvNwl+nNu6QPdjBFQbCyiNtq2O5u4JM/2qXcOyL98NFcTrROdOE85cmIfP+IxpVNwvXHG5eV//5PMPjtb1k43Cwl395HeC7h+RWkH5Dv7COkQE1niCBApTmqKM8AorooqcZTmtcuEq4sWaPqE0sIQfulZygOjknvbc0NtBHoeRTsxjnS+1sUB8eEays20evhjp1axCGBu0j6cAfpeTQunbeei8BDuA7St3Gi2aNdm2QUR/S/9irhuRWMFHbTGIY4YUB1MrTTpTjE6XfgaIjf7+K2rXk4fbiL227R+/LLxBfWz1KyioNjkvuP8LpN3E7rjPdgtCZ7tMf4jXdZ+PpXGX/vA7JHe8SXzp1F+RqlENIhXOziNSKyBztnpmgaEX7XFla6KqmOBpapcDy00yutcOKY8miIbDSokxSMQQorzva7HWTDGsvVeIaMQ5ymlV6XxyObkNWMWf0ffo7OjevookQGPv5y/8yDE64t4S/1GH77bTshSTKq0ZjyeEA9TTHG0PriCwjXnUdHu0QXN0jvbYPjYIqC9NGe3diHNtQkfbCD120RrC5hqsqmMJ16Gw0gTzv6Djot0FmOv7xAsGo/w+tZQnL3Adn2PqPvfYAqCrLtA7J7W7grC/grC6hJQjVLMGVtCx2smV0KYa+hUwO7Meiionl5g8kHH1IOR0jPox5NrF/p3jat56/ihME8bc7QfukZ/KU+w9ffwe00yXcOMLWm+cxlVJrZOF1hX8P4zffoffVVoisXKI6HOM2YYH2FaH2J2Qf3KQ8sp8QUJY7r4UQhXiPC63fwl20DQmtNeTzEX+4TnV+l+dxVy4/RivTBti1Emr9/Mt8/8CLj09aTngxjDNvb23zwwQdcvXqVixefHvMs9H3euTnhzXfHHB4X9HoeVWksiKjS5LnieFiSZhUCie9pivKTn1dr6z92sdOOz78+UmCcbRjn0pbTbjsCLT2EyqmcgMPWeWrhgtC4SmOEYBQvUzkBcTWlKEMkGlfXVI5HJTxKL0YLh36yT+I2GPUWSL0WGsvPmIY9KickqFMKJ0A5EmE0WdDB1SWFG1FLFyNd3DojrDNbPBhFElqvR6NOaIynTIIOadgjdyNcXeOpnKhKmfltUr9No5rQKMZMogWiKiFQJUnQZXm6zbTosTJ7hBa2oJkEXUqtqKWPM+caRGVK6UZzNZK2o1YzN2jjoHCwhmYz97DUuNrGrUpTo53gsWzo1JA9f89rMfdgGHBVjhAS47goISjmdOs4n1K0QsrTx5HSbl7nUqnTDfypXd56MU5N6BqpNcrx5jGyT/7Mk9OLz7nBEwLjhFYFVVVoAY6wOmSDxGh3XlA96Qs5NZ/PU7QcjXZ9/GyC1ApPV7iqYm3ygBvb32Rn4doc5uhRzaV0vfQQES2ipIsRksyLqRyfZjkl95ps965SOiHLs216yRFuXeDOpXmTsEfmtyicgKPWOgLD0nSbdjpgt32RUroctjdI/DaeKqnE3L39I1jGQFHUxLHHLKmQAi6cj4giycKCT10ZhDQ0mx4vXG+wvPRxidMpJ+OjK45j4jjm/PnzaK0ZjUb8y3/5L/lX/+pfsb+/z0/+5E/y8z//8/ypP/Wn+NKXvvSZYX4fXWVZ8mf/7J/la1/7Gv/8n//zTzy+P/2n/zRLS0v87u/+LicnJ/zFv/gXMcbwz/7ZPwOsMfpnf/Zn+frXv87rr7/O7du3+cVf/EUajQZ//a//9R/quH7U65d/+Zf55V/+5f9dnzPf3qcaTYivbCKEoPXcZYzWtvcwB1UFq0u4YUw1neGEPv5Sn/DcKtVgjNaa6e0HGKUoDgcUJ0OK3SPcVkR8ZcPGs84TZNxmgzo5oDwezrkbLZJ7j6iTjHxrD7/bxu93z7qd2aNddJ4TrK/geC7VeIq/1KdxdYPhd94lfbSD324RLFngX3LnATIM55GvDabv3aY4GCB8l8azl+3mfTIjufuQYGWR5uZldFlRjSc0r10ivnaB4e99l+m7d5CeayUsownp/S2cZgzK4C81MMZQHJ5YVocUyDgG10MlGcntB6i8oBgMkY571nUvjofoJEN4Lp1XXyA8vw5SMPid7xCsL+N1W8zev0P2aAfhBqiqRie5VYDWyvZ2lMIUle28RwHDb7+N226w9HM/hd/vnp1Tr9chunSe+NJ53F6LYsf6VcLlhTNTr84LqtmM5P4W5cmIYF4IqVmKcGwykwh8nKaHTrMz3okTx6T3HhIs9c/I6tN3b+G4ktaNq9TjKV6/Qz1LLPyw1UCdjPE6TXo/+UWijXVQiuG33kLXiuYzl872LWbO0wAby+o80agQUhKuL5HvHZHceUi+tUuw+pgVoouS5M4Da16+uEG+s49747qVD2c5RmvaLz1D68ZVBt9+2xZ3rjUJu722ff11TXk4AF0jlMZtN3A6bYqdQ4JLG9RpRvbgHfylPtGalZOassTrNC2M8IN7mKL6RP8OgPA8nJZlXeiyxG3GlIMh5TRBDadEm6s27clxUHlB+mjXAgiXegy/+RZOFOHEAendB1Y6ON87FfvHuHGMDD10VdvpF8YyWsIQU9X4y33K3SM71Qrs/WWU3ViXRwOcKMJrNXB7Hcq3blInCWbfWIP3NLHSM99H1TUqSamGY8LzKwRz/4lRmup4gNtpUk9T8gfb+N0OjSubRBfP4S/1SW7dY3brPs3rFwnPrRJf2iDaWLPNAWUL6HL/GF1VzG7fxxQFpxMthC2Ihv/5OwSrS3ReuUH6cIdi9xDHc2k8ewmdFlTTxE5k0wyUsvTxzXVkENjHvXmXejzF7bWQgU+0uUq4uoxRmvT+NrNb9+h+8cVPPH8/ivVjX2ScTjKUUrz//vscHR3xhS98gYWFhY/9bLft0ogdssxuMrUWRKGkETvsHhRMk4q7DzRlqVHK0G5Jjk70JzzrE88v4PPXGB8pMM5MsY/lL2jmEwSDqyuiMkVImPmNOUxOUTsGv87BKKZRD1fltPKRTT9yQgbxMrXrIZUiUDnK9SkEpEEHpy7QbkhcTijdiFG8hBZQSH8uU4mRpkYaiasKSsejFi6lGyGNxlUVAoNUFQaXSvq0qgErRw+pnIgH/WetXMkYMt9OGnyV08oGaOkSlzMcXROVUwovJnNjBtEyhdegM08kqpwAKQyBLoiLGZXj4cscXU6pvHDO6QBfCWrHR+qaGjUvMDxOTRZauijpI3SFmGuLjdYYoTiVS7mqxAgHpY1lXQiBFgKNpJYSTzhMogUqJwAcBBrlRI/P25PDCKGfskQ8NoBLlJxLth7/48enFp+pi/yRiQQCfy5lAolQCiUktXxCyvUU+8NOO6Qx1gcEVE7AJOzjqYKF6SHrg/sY12HUWiXzWyxNdyn8mMxropBkfoPcCUjnCVOZG+MahaMrViYPCVTBUesczXJMUGY2WtmUGCEsaNHYzPdWPmJjeIdeekhtJIHKENhrR6KRSmGkpHY+2Rz4w6wkAykrkkQyGivywuC7NsrWdaym/WhQsHvgE8cOzcbTH4WfJcJWSkm/3+dXf/VX+amf+in+0T/6R/ylv/SX+Hf/7t/xz//5P+fOnTs/tEfjNKr1137t1z7x33/913+d999/n62tLdbXbYzkr/7qr/KLv/iL/IN/8A9ot9v8j//j/0ie5/zar/0aQRDwwgsvcPv2bf7pP/2n/Mqv/MqPxTTjD2JVw/FTEDnh+4QrC3gLPYzW5Fv7lIMhjesXSLf2qI4sdM+JbYdx/Ma76LrCiSJmN++iy4ri6ARVdPCPR6jpNuXBsd1wLi5Yc7nnktx9RD2ZMrvzkHo8oToeMXnzfbx+l9aNq7abe2AJ2U7g03z2MrMP7lEenczBXRHJB/fxf+KQRWUMAAEAAElEQVQLNJ+7BhjyR3skt+/RvGGlPfnBCV4zRqU5rWcu4XVaDL/1PQtp0xonDHDikOjcKs1nLlEnKcmDHbxOk8WvfxXpuqRbNvIzvfOQYNVuqKrRhGowQk0tT0EXR/hLPYRcI1juk2/vUx4Pab30HOmjXdIPH6GyHOG51jg8/wgNlxfp/+SrVKOppT0vLuB1WtSTGf5S35qZhUBGHqauoKxx4pDw3Apep40MXMbffR+nEbP49a8+1YHVeUHz2kWC1UXKwZjyZGQ3h6MJfqdFdTS0j19WlAfH9nhWFqhmKU4YEl/etKk99ZyZZOymtTwe4LabhBvWO5be36LYOya+vEm4vsL43duU+8eotEA6LkYpWi89R+el62e0brDBA7PbD+zx9Ow0xtTKTkN8F52XZ9320yV9H5SiODhGZcVT0pZyMKaeJvgri1SjCeVgQvfV5yzHRSmqk7H1X7SaNK9fpB5NkJ6H//JzFAdH1hA+V1eURwNqUsrhBDctMHVNeH6VdHvf3itSUp6MzqY7breNqWt0VXH4734bIYQF9805HjovzgqHYu+Q3k+8iqkqZu9/CELSvHqRcv8I5iR6f8Gmk6nJjOLgiMa1SyS37yECn+rwBCcM8FaWCJb6xFc2mL71PtnWLu2Xn8PUinL/mHoyxY0bIAXN5y6DgYMHu2d+zuLohOLgxEY6S0F0fg2kILn5IcX+EcK3zIhqYo3XwnGsZ6jUtqDpd3E8zwYuVFZn7/U7hOsrTN+7i9tuEKwvWg+GMUTn1wjXlkkebNN55Tka1y8//sz1PNxua05NP0JnOTIKcfpdBMJK02YZuiyh3aD/x7+E3+tQDic2uOJ4QLC8SHx5k3xrh+Pf/Bamquh++WX78K0mdZIy++Ae6YdbBGvLNmku8EnubiGDAL/XwV+0oROt566e+b1+1OsPvMj4LHKpoij41re+hRCCn/iJnyAMPw7PAqgqq8O+cjGm/lDT77q4rkSpeVfEQDN0SAQkiUTXNk//+00q8uIz7gfP1mlx8ZHNiT6V8IjH/xMGg2M3xabEQeFVBanbtBwIbUBomxPkWDr3LOjim4rmbMws7NlNmbE08KDOMDgkQZvMa+LIgDRok3oNlPTmG78ShIMRGi0cwipB+S61EyAQROUUX9nRjhESv07ZHNxCAJ4qcdCUfgtjNGE1IwtaZEELYTRBmdLJdrl8/D6Rsjq0g/Ymqd8irDJyN6ZyA6SuKLyY46aN5jPGmr/V/IZ2tEKg8IuS0g0syXoup1GOhzjlUcw7xEY7NhNdFTi6pJCSoEiQ1OReC+N4CK3w65xa+hjHRsvWQmKkPz8AYb0ydUo+p2TL09SrT4qQVadchyflWXMZnPwMG+VTLsSZn+L7rbkkymiErnB1jTTMz7vCm8uutGAe/XvaNbcfqpbYbTsiygibMiYFQVowiFYolwKWpzs4YR8MDBsrJEEbR9cYITlunqNRjFk4fp/D9kULk8yHuLqeszEKUt9eb3E5RTkeEy/G0TWlF6GlRCA4P/qQhcSmCEkkvfSI5/bfQAg4am/gVTnDeImZ9+kpTp9nJSlIqYliQ5YrGj2PrNBoBY6rqSrDwXGB0pqXb7Rx3cfn4vNyMmazGf1+n1/6pV/il37pl35gFOuPYn3jG9/ghRdeOCswAH7+53+eoih44403+PrXv843vvENfvqnf/qpQufnf/7n+Zt/82/y4MEDLl269Pt2fD/OSzjycdYx4HVaNvJVCoR0qWcpzL0LEmM3q1mJms0wRlOezKUHm+u4saX3Hvy732H67i2qYwvGqlOrxefuQ8L1FbSqUVVNtLKI02niL3SJLp5D+j7l4THTmx/aqNqywiiFt9DF67TofOF5y7VIUuLLG8xu3iVYW6LcPwYB4cVz+GuLyCBg/Ob7Fh7YbNB45jLxhXOWEP7MJSvRGk/QxtC8eI744gbCdchuHyClxInCs5hvIYRlX4Q+xdGAYH2Z2Qf3bKe+tEZGKSX5ocHrHFh5yXRmE55UTXLrPiLwCdcfd7d1VTF55xYqSVn+2Z9CXHVt0ZLleI2QyTu3KQZja9SNLXCtHE/xO02C82sEywsUh7bjK32H2c0PcdstmtcvWp9FZDeFRmuE4xAs9XGikPLwhHzvgOjKBnWeo1JrNpdxNIcWDgkWesQXzhGuW31/cusBpq7Jdw5sZGsc0nr2ij2PZUl6bwuv10ZlBfnOvuURGIWuS5xGiN/v0nz24lMFBoAMQ+LLG9TjGTor8PodjNbU0wSVZDSeu4K/1PvY9Wq0sVGuCPv65p/zuiznQ3RpN71aWf6CkLYLH0foNLNU8eVFQFIcHNN+5Qb1dIZKUtx2C395AaM0wdoSfr9LuLaMkbD8J/8Yw29/z4bLOC7lYAjazBkYNSYvkGFAPY9DHf7emxz/1jfxOi2c0CYc6aqmPDyh88pz82Ou5sTvFmoyQ9eKaji2ZnxABD71NCV7sE16b2de0DTB9Sh2D6hORoTLC9QXN0jvb1MenRBesNT6Okktb2Z1ifaLz5Bt7SF8HzXLmXzvA4zS6Kq2ZveFLkJCvneIlA6O71mfhbbAOn9tCZMVeN02BoNRmu6XXiT9cAsZ+MRXNvHaTbx+l2xnn/zwmGh9iezBDvXE3gtuI7Lsm9Cn2D+m+cxjaaQQgsalDUbfeWfO3emeyefMPA7baUTUozHCcc8YJ36vTe+rrzB59zazm/cQQuI2Yxb/xNdQSY7bjin2T0ge7FDsHVKeDHDaTbxOy0YiXzyHSjNm79+l84UXcOJoXsDmf3iLjE9bRVGwt7fHxsYGzz777A+UHziOwPckS4sBj3ZSDo5KpCNIkposU7QaLq4vWYhcskwxSzSOfHpSYSMuH28oP7sp/KPyqPkyp3KdpzccAsugMAJEpW3BoRXSaJucJOyXYOnajZcWAkdX+GVJ4rUonQBfFbiqQrk+qdfEn3s0Mq9BIFLbvZcu+Xzz5tc5UTGm8CI0EiXthKJyAsI6JaxSOukRvs4RRrAw22Xz5BZvb/wUadCilQ9RwmHQWKPwY3rJIVJg05ekTabK/BZxMgMhaKfHJD075RjHi0TljNyNGMbLaASeLsm9Btoo4nJCJSKCOqFyAmonoFmMKWTALOziq5IaqJnLl7SVKWlpzfNhlXKWwCRAGsf6I+aAPWGw8DljrOFeWu6Hwep+K8djHPWR2voXCvdxKsv8ypifT42DRp2mSM2LlM+8zBOPKT5afD71g5wyPNA1rtFUTkBQZfMkLmsAd5UlIJdOiDbCFi+nYKH5uZGqxjg+jq7pzA6Jq5TCDdhvX6ASHs8cfpfMb5D5TRrF+PGRGINyPFZnuwSqIvFbNMsJid+yRdkT17IAmsWI/fYFa/YGlHCIyxlLs13734BGElUp7myX4jiixiFQFaUXMeNxDOKPYmlj67misO/zYFwRBZKqhtAVKGXo9zwGw5rhuGJp4bGXQSn1lLfh09ZHo25/v6cE+/v7H4t67fV6+L5/Fgu7v7/PxYsXn/qZ09/Z39//b7bICFYWmb7/odWzOw7+Qg+v06I8GuAtdNF5gdaK5N5D1CwlvrxJtL5MPUtJH2xbarHrEK0vgZDoosRvN1HtJmqWkT7cxhTVvDtdkO8dke0eEvTayK+8it/v4F6/TD2ZESz38ZcXKI9OqBd7Z6DA0+hS6bkEK4sEWHmM24zpfuUVGzkrBF7XGtXzg2PruZCScB6jCpaHMbv9gOT2A6oktfTvnQOii+dpv3CN6mRk5SSue/Y55rWbSN/D6/dI7z4kfbBNsX9oVahSUI+mmNDHEYJ87wgZ3MVtRPgrC8zevwOua4nfTy6lEK5LcXDC9OaHtG5cPStCwnOrOM0Ge//y1+fJSzXGcXF8z9LFF3uWaYBlEmSVwjkaURwck734DG67SXz1Av5Cb14MpWSPdsj3T0gf7VAdDQhWbJSv3+9TDUc2VrSocMKA7pdewuu1mb572yZUlSVut22/s4XA67Rpv3LDau2TFFPVtun39gdUgzFup2l1+p7P9N07lIMxapbOJylW4uO0Gqgkpf+TX8QJAma371OejGzq1vICqihoXr1AdTKydHlH4jRiqtH4jMgs3HnXfy4TE460zAewWv5G/JTk1FQ1shGCtMli4foyGG3jm32P8jBD1wq0ITq/grfYAyPwVxbovPQsva+8Qrq1h+NZwrfKC3SaUycp+fYest+hGozw+z28bpt854Dp+3fwex16c2Di9OaHlAfHROetLEo6DsJonMDHaUaoowGmfKxZN3WNkYLxu7fBc3CaEf6CPf80Y+rpjGowpnHp/NmkrHllk84rz1HsHVMObBGiZikqLwk3V6mOBqgks+/fcGKnNGuLgGVd+CsLyCjCPEFzdYPANu6MwYlDSzl/7hpuFJE+2EF61lhfj6ckdx6gJjMyrSlPJvhLPZw4smb1d27hdtt4vad9RADhxhr+Yt+e86K074/vo8sCGQQ4gA6Dea/x8UbUX+iy8MdeY/y9m7RuXKVx/ZJN2Do4Jrl93/o5jgfU0xn+8jIqmeHNpxansrJ0a49gdYlgZRHhuX+4ORnfbxljuHfvHnt7e7RaLW7cuPGpv+M4gvWVgEc7Gb4nkVJRlZokrfE8yYWNCM8XqAoODgV5oT8WX2uVTR+nQf/g9X0KDPuI1lMgHJ7csBqB7TZjU5lKNJomYNOSlLApUlJXVvKCxjGKyg0p/Ca1dDA41PPNo3IDZkGXyrFmZSU8Fmc7FqQHlE6Ali6uLslkkzRo4uYFS7MdOvkJQZXRqCacH32IABK3QRa0OGyfR6DP2BGFG1JJj8Jr4JhDluYdai0ke60LDOIlK82SDr7KWRs94NzoHsPGCifxCsN4idxrYDy7EfN0iaPVXPYkcbVieXqPg/YFSiekciOCOqOf7NvUIlOR+m1G4SKVG2BdCdLC+uasBYEkqCYo6ViCOhq/thyMzIthLkdzjUJLELpCCdcSwaXBNdVc8nQ6qTiNxAVhFH5dkEn/TB/6ied8fiQf+3vxxJ9Pi89Tyrd4YhLBY4+FEKCl5YpkQdNubE6LFcdDqhKJwhiJ0Y8nL47RGAyeKpBoWvkQIz0GzVWbLOaGFE5IoxhRuyFRnZwdXiV9QmXTajI3nnuDlkiC9jzSV1K4IY6uiMoZAFGdsTZ5yLQY24JI5bTyIf68ELJzDD33xJQsT7bRwuHu0kv2Q/S/kPz90SWEDW8AGAxrPE9Qhg4C6HVcpJwb9bWhqp/uJnxeGN9sNvtU2vff/bt/91OJ1a+//jqvvfbaZ3rOTypkPjpB+STY3ff73f9WVrC+QnhuhfTRLtH5NZwooPnsFabv3GL67h07rdg7we228PtdogvreJ029WRGtrVHNZzQuHrh7H6tJzOE5+Iv9uzmtaxw201r4BXizMtQpznV4TELf/w13Dhi+v5d8t0ja0QeTTF3HwAClWVk2/vU4xn+Us92p2Fu3lygcXnjTJd/usLVJeJL56lORo8LjKJk9Pr3zgoqrxkTb57DAMmtDylPhrjNGOlIgtWls2vCaTUI1paoJwlgSG8/pM4KKIs5Q8RFF6WNtD0eIBzwF/v4jiTbPcRUNSrJrOwrDCgHQ7JHe5bArJSlTB9ZWZfX69jO8KUNogvnMWWN04wxSmFEi3B58Ywdoo2hPB7hxAGNixu2a725Rj2eMn79HeJrF3B7bY5/65tWyrLYQ7oOfr9LdTJCBD6tF64Rri1RDsa2W35/y4L1lCbfP6IeTax2/uI5VJpTHg1x2y28OYlb+h4i8Jm+cws9SwjnhSZAsLJEPZ4yefsWJ//5O9bDoDVGaVSSEF04j7/YJ1jqE11Yt8WDMai85PDf/hZHv/WNs3NQz1KKwxN0UdJ54Rqzm9ZUrGYpnVdv4Pc6eN020vOZ3bmPSi0UMLnzkHhjDRkFqCy3vAchLGjv6gW8bgvhe5ZzUpaUgzFep4XbaVEdniDDkMa1L80Be9B69gonv/F71NOZjW4OA+o0tf4R36csa0uZPji2UMhrFymPR+g0J1xfpnHpPPnWLtM7D+h2W7jdNsL3UEWBv9Qn2zlEK/s9Z5TBFCVaCFSS0XrmEsm9LcQTTTyn1aA6sXLH7qvPIcMQt92aezAWaVy/RLDYwyiFqmp6X3qZ4W9/m3BjHSewKUuTdz6wr3seXSs9FyKfWilUZmF7CJCBZ++BLKf/E1+YP25tN+zLi+g0o5wnppVHJ7i19Q+pNMNf7hOuLVvi+L0tGtcvPnW/qqJk8uZ7qOkMpxFTjybU0wSv06RxZZNgdZnJe7cRno/fayE+2u2WAq/TIlxfJjpvZXzuhXNEG/Z+GJ5fo3H9IuHaMuN3LIMm395Hzz0f9TRhUH2X5nNX6L320h9uTsYnfdlVVcU777zDdDrl0qVLTCaTz/x459cjGh9Mabc8Om2fvFD0ux6dlkuj6TGbVZxMKmpliAJBURqqJ0YZn3lwcbZ+UIHBWWf9MS/hCQO4sZ1mcQpFUxV4Cr8uqaSHcnz8KsczFX45o/RiSifAMxVhVVC6IQoXJV2UrqxMCkUzHyOkoPRjlGv5BQiBpys62YC4nHHcXMevS5YnWxx3NjFC0M5HSKMp3Jj9ziUQgsxrMAkXqKWHEoK4SiiCECVdZmGXXn5iuQpGUzsetfY5N75vJwbSJh85GFYnjxhFixjh0M2P8VWbJGijnBAjBdOgf3YjRSqjUU6opYeTnbAy3cKtC97a+OM2zlZIjDzlbTw2VRthiMqEfnYAxswN8Qa/Tim8ht26z7keAErIOVyupvYC5k5De3609RPYIkLbtrjkLNnLFo7fTxr1pC/iiev7jHUhH//TKXlcK5CWtK7nPhJpasv9mKdIGSTGaAxPpFMJiZLRfNBi8Ooc1+i518RDzItbaQyNYsI4XqJwrRzBVRV+XXDSPo9X59awjjyLVV6cbnPQ3uRR7xqOqXFVyTTo4ZiavfYmK9Nd1sf3iarZ2UsM58EBn7TsDEqjcCndgMRrMYwWqedQRwtp/NEUGQIrhXQd29xLM0Vgmzi0Wy5pVpMkiqrSSAfC4OkJ6fczfn+/lSTJpxYZf+2v/TX+/J//8z/wZz46efh+a3V1lW9961tP/d1wOKSqqrNpxerq6ifC7oDvC7z7b2E5gU/vKy8zev17ZNt76CwHwFvu01nskx/ZzWZ84RzB2hLOPAq1ShLb6VYK+cQmX2WFzcavarIktQk7i33cRmSNqFGE04is3KYoqYZjorVlOq/coDweUJ4MqceWG2N9CYdM371tO9XGWC+I1njtBsvXLz0hi3y8TuUXg+0Dm9fve5QHJyR3HuI2I4xcoB5OQFiSufQ9CxA8OKb5wjWClcWnHqt59SI6K8j2Dsm2DzC6RpcKQ4ETBbhBAzcKKacJ6cM9VFbRuHKB5rOXKY8G5LsHVO/cQga+ZZF4LnKxhxQ+ThQwe+8Opq6JNs/h9zsWIuY5+BsreHFM9mgHnRVUkwlOHGOElVzpLCW6sIYIPFugOLaIcKKQ/OGOBQ8ag/Acu3EbTDBGW6N5v0Oxd0i8sUrj4jnijVXcZoy/skSxs0f7xWeIzq2gSmv+D9dX8Jf61NMZszv30UVJ9mCH2a17jL7xJo3rF9CVQvpzmZljJUoyCike7eG1mrhxbE3lq8t2gnHzLn7/i3aCNp9IVMOxfePLCuO6mKqm2D1AFwVuu02wvkLz2gWqUY/RG+8yfe8u4eoSRiuyvX3yR3uEa8s47QbZg12K/UO8bofmc1fw+m2yrT3cZoPOl15i/N13MVVF42tfQCtlPRAnQ+qRZZks/fxP0f/JL56lQzWfvUz7C88z+uabhGvLeEs96nmcbfZwh+jSeRpXNpm+exsZhkjft9Ou1H4HOK0GwvcZfest8p0Duy85HqLSnGCpj9tu4rWapPe2UbPEFiFlRbR5Duk6jN54j8n4A7zlPn6nhYxskYOAxtULdhrQ75I93LY+yywnmU/fZBQQri1bOZjWqCxDOBI3jucToR5OI8Zog9NqU41m1qgeRRTHQ4SQqFlC54sv0P3Si9ZQnxYs/NRrNK5fIt87YvC737Hm8XYTr9/BjUNUVpDd355Pj1bmoRKP9wHGGMZvvMPs5of4y4t0v/g85XB05rEpDk7OOBfa8/CXFxHzYIhqNKE4OCY/PKE6HhKsLOAv9h7DKYWwCXFbu6R3H1kaeZaTP9rFacZ2KjT/7CqHY/v3X//qf1ucjOl0yptvvkkcx3zta1/j+PiYwWDwmX/fcQTdtsfz11v4vsRxBEWpuPcwI8sVVW1I05qy0riOwPgGYx4Tgz/7moPcPsum6Exaw1wiI86KD23A6ILS8ZFuhatKtPSsOVnlaEdCZTnV5owmDWE5o5YepRtg5ubnZjZgYbZP7jeo3QChDY4qKZ3QmsPrDNB4uiKqE2rHY6d3GSNdlHA5aqwxCrokYZ/SC9k8vonEsNu+yCRcoFmMqHV1tinUwiH3YprFmHxu5F6abtNPD0n9FonT4iRepZYuz+19h/XxfYbxMpkTo6RjpUeqpHJ8XKFoJQPCKmMc9G0BkxyyMt2iUYzZ7l6m9CJKJySoEqsNxb5XljliCxpPTXl+95sUXsxW9yrDeJnUa6LnHgpprPzo8YbfIHhiyiQFNd7j//4IC0OYGkdXeLqikk9Op568Sb+fBGr+IMwTqbQB7BRHCInRNX5VULo+2vHQuEhssaNshYPQYl6bWP4FRoHz+DhqJwRdzqGE9jnCKiUN2+x3LuHqCkefejUE3fzITrjmvBDruShxdMUgWkYLlyTq4OqKsLKTirgYUbox3eyQpdnOD8zK+mimli0LDZnXYL93kcP2ecIqRUQLluvxOZaA7w/TFPZtkcI2EpQG3xd2ymcMjdglzRT3H2XceKZFp/35jd9PrjRNP5X2/WQU7n/p+trXvsY/+Af/gL29PdbW1gBrBg+CgC9+8YtnP/O3/tbfoizLM+nXr//6r7O+vv6Zi5k/rMttN4kublAeDymPh/OuvZUiCOHgzaVLYmAlL9nDHZvRv3+MALK9I+LLG9aYK61M0W1GtiuqDbqqqCYa6bv4Cx2cOERIiXYd8u0Dms9cxokCoo01/JUFsq09vE6b7hdfoByMmXzvJtObd8+6ts3nruI0G8xu3UNGoTWKf2RjEF1YJ9rZIP3wIW63zezeQ6ppYqVPrSbR6hK6VtSD8by3oZCthu3oOh+R87oObq/Nwh97DaE1stVAT+eJUVmO223jhD71LKUuS+Irm6isQGiDCHzLBokj26ltNYk3122i1s4BYrFLsLyImiWUJwO8Voy/0EUbKE5GlLMTK02aWHic9Dy7wVPGgg6HE9Rohr9gz5HbjHGiEF3XJHcf0fni8zYVaJbabvtwTOPKJkhBvntIOZwQxRac5y9ZadAEQ7C8YLvY81UnmfVbCMnJb36T2fICbquB17bm4tkH96gGE+JrF+zxjqeYuqZxZRPhe1bG0mzgxCFevwtakz7YoXHt4lMG7vT+FsJxWPpTf5xqMGZ26z71bEZ0cQMhoDgcUM9SvG77MV/hpWdI7m8Rrq0Qba6jkhy0Jjy3SnlwRHk0QF/aoBrNCJYXaL/0jH1OpRh8803yvQP8hZ7tYEuBdBy6X36J3te+cFZgAKg0Z/FnvoIpS2Z3HpDvH5HvHADQev4a/Z/6EtJzUUWBDO17Z+Z+Rl2W5A937GTu0R7FwTFuM0Z4HqauSW6P8BZ6uP1LVm630KX14jPMPrjH+PW3Ua5LtLFKvr1PvntIvntoU9i0Qnous9v37fmPQ8KNNaS0HSV/ZYHJu7ept/cxlcJb6OEvdK1vSGm8Xpfpe7fstTRL0EVBuL6Mv9gj7l1ESkmxf4SuaprPXWHpv/vjVMMJya37RJvrBOdWEFJaQGWaEawt468sodKMfDihThPqSUJyf5t4Y5X42kXwHn+XlMdD0vvbBGtL1rA/mljZYRTaiVml8VeXad64zuibb9qJleuS7x0x++BDK1vLcmQzJt875Og/fIPel18iunie6bu3mHzvA6rhGFVW1ElKdvuhBUoGvr1GjaGeTGk8e5XGhXNUo8lTXp8f9fqxKjL29vZ49913uXjxIlev2g/RJyNsP8uyMC2XLFf0uvZmqWtJ4OfcvpdRlhqNoaqgVpq6fsoD+BnXp0wvProcd74TOi1M4LEuX1qZDhppFHE1ReFSuSGl4yNQhFVKKzux8bNIHFWS+i30vONsjKCRW6lTGrSIVEbqePi6QOqS1G+jhSQ3Ebvdq2jp0MjHKFxqv8OVw7dACPY6lzjobGKQdNNDplEfoRVaunimnhuzKzxV4BhFLT0mQRdhNLnXwFMlC8k+o2iRYbyMQKOF5LC1SVzM2Bx8wJXDdzjobJB4U06aq0TljFnYIy4mrE/ukfltpNEsTPfYHNwiVBmH7Q1mfpeomKFCl9rxUY5rvyjPTNpWglYKl73WJpnf4qSxysxroR13HtmaIfAxRlE5AUpKwJt7cqz+UswvBuO49hwZgzyFAGrw64KgLim800Ll+/kpnjjHqLlBQlgJlKrsNXE22ZJgFA6CPGw8vraEQet5fO+c+WGTMh4/0xNCrvmOXs8Tsuy1oaTLNFpAA5UbARpnTkYPVEbhhkggUCm97Bhf5RjhcNxYJ/ebLI8fUQQN/Don9xo0iyHLsx0Sv42Zs1U++sqf/LtP+neDYBb0KKVPLz2i8iKSoP2EXOzTVyMC37fhDLWAMBS4EsZTgz59fzSUxk4qBTYpzvPsZKPd8vA8aMQuz15tfIyT8XmLjCRJWFr60XlKHj16xGAw4NGjRyileOuttwC4evUqzWaTn/u5n+PGjRv8hb/wF/jH//gfMxgM+Bt/42/wl//yX6bdttKOX/iFX+Dv/b2/xy/+4i/yt/7W3+LOnTv8w3/4D/k7f+fv/DctlzLGMH3vNuPvvm+LgMU+1cmQejy10ZWhNR+bomTyvZtUJyPATgBYWyJ7uGMjTH2Pzheex23GmLpC13q++Q6JN9dBSMtZmM4I1pfJtvepRlPK4wHF7qGVKDmS6Xt3MdrQev46wnGsSTMICM+v0bxxjep4RPO5y7SuX6IaTZi89T7+Qpdw9enrTfo+va++gtfvkN55QHlwgqlqvKUFwvVlvDl9uJ4mNorWkXidNtG5FbKtfRvXOp++VOMp4doS0WvrpHcf4vXbuO0W4zfft1wLY6iTDJUX+It94svncby5OfdogNOI8LotJu9O8OPQ8gTyAhFYqFnnCy+g85x8+4D4ygXiS+cYfuttqoUeMpxvhgSURwOq8RSBmB9DE+n7+Es9qnkx1nrhun3PXJdimhCdX7WbtaU+brfF+LvvUU0TvI4FIpqqxihNtrNPdG4Vt9tCV/VZgaGyYs7VOEHlOdXxkGxrj8Wf+ymaz1ymniW0nruKynPy7T2SW/dtgRLaIBHpubjdNo2L53FbTzcejFYUR4OzIkPXNemjvTNIoFxZJL33iOjCebxWA7ARt9V4htuM8TotquORLajuPLDvae1Y7pMUNJ+9RPizX6PcP8FtN1n8E18jXHkcextf3kB4LrNb9x5T5BsRnddetIXv6XuQZozeep/Z27cpByOQgsaVTevb0IZi94Dul1+204O6RjgOulbIukJIB7/TInu0x+z2fTuBKkuEFOisQCiNDAM6X3yRYHkBJwpZ/j/+NNH5NUxVMX7zfepZSvPGFfyFLl6rRXF4THEyoh5NcTuWJ+J120y/d9MC8taWbDe/qqjTnPLgyP7/eGolbo48e8+DtWWEACeOmb5/B7QivrxJ67mr+P0uuqzIdw5IH2zhLy0wffOm9bx0WlSjKYPffp3G1U2yR7v4vQ7VeILXbWFqRXL7PnVipzimUhTREOG5lE/wcMqjASorUOkh6b2HuM3GPPY5hdqgsozk9n2Cr75K96uvIATMbt0jufcIU2uEI/EX+7ReuIbf71IcHDN+4z1UUTH53ge47SbtpT6mVhSHJ4jAxwt9myi1tkQ9mhBtrNH/Y69Z0OfBiU1667Z/pJ+zp+vHosjQWnPr1i12dnZ4+eWXWV5+XOV/Eozv09a51ZCjk5LhqKLZcLj/yJrAz68FZLlmdz+3Dn79xD7vv9Tg/WnLccDMdfZPPpexfgapNYXXJKwymtWEGYZKOgSqJA1aTKKe3UwDolKEJqcyIY6sEcawOr7PQnpA5cW002Na8oRBYw2kQyOfkAUNq+MXEJUzlJTkXoNuekTlNWjmQ+JyRis7YRou0k8OMNLhpLFKo5hYz4JwqZyAVjHCqUtqN0AajTDG/n4xRhrNIOrjqxxPlUz9DsYY7i69wKCxzMWTm5wb3WOne4WkSgCJzBSV9NnpXsWvc5am2wSqoPRChIDMaxLoHF8XNMoxGD2Hw9k4VGkUaE3uNSmCFtu9K2R+16ZTabt5t14ViacrrGrGfiHo0w28sN4Lc8bDMGfG7qDMzwoNV9eWeo60U6f5FAnx5K30kanG3ExuhGs30m4wf2wLQUQajJSojxUsYs7bOC1IhS1W5OlzGIxRCG0wwsrGpLL+HLDxvAgoZGSLJwkYidElvqqQqmIaLuDqit5sn5XxA7r5gEnQJXcjlma7GCE58iPCOsPVNZnfonL8ub+n+thl/oMcKmALIiUdUr+JoxU1cNA6Txp2f8DN8/RyHZuK6ToSITSeB1HgIF1BV9YkmaGuLZTvtIFggCQ3aKMwSiAduHqpQa/jEfgfL25+GE/G5cuXP/PPf9r6O3/n7/Av/sW/OPvvV199FYDf+q3f4md+5mdwHId/82/+Db/8y7/MT/7kTz4F4ztdnU6Hf//v/z1/9a/+VV577TV6vR6/8iu/wq/8yq/8yI7zv8ZVnQyZvHMHr9fGiQJGr7+D8Hwaz1xBpZmVKwQBxnWph2P8xS7+yhL1eIYBnDhCZwWj77yNmiU0rl+yqXeUhKuL6KKyMoxaWZAfBv1on3z/kDpJEQ+2AVu0hGvLiMAjvnget2HTXcqTEWo6I95ctxIcKa3UCfC6barRlOzhzseKDAAnDOi89CyNaxfRRcHJf4ZgdRlvrrnWRUl+cER1MiTfPcKLQ2Qc0ryyaWVJtd1s977yCvGFdXRVE26uU+zsW4uYlESXNtBFQXlkFQZOI4ayQjYb1sEW2qlNORij8xw1TSmEpSajNNXRgPT+NuH6kk2+6XWpJyk6LwjPr9K4tIGuK8rDE6rRlOJ4SL69R7C0gNuIaFy7hNdtgYBs54DRG+/hdlrMPriLrmqq2Yzuy89Z3kKvQ/OZyyR3HpDvHlCPZ1SDEShNuL5M90svWflb4KOyHByX6c27ZA92QApMrcl2D6086JGFwDUubxCsLFAOx7RefJbk9gN0USJcx0pZ9o/nUqAGwfKi3SjP338h5dNxllrb74e578QYbdOknMfNSPGkjBeoi5zBf36D9MMt60OJI9CaajKjPDzB63VoXNmgHE3QRcnkvTs2ejjwidaXCdeXCc+t2BQkpXAa8ZmPB6xf4Ojf/Q4nv/sdjNKIwANtUI8y0HdpPn8Ng2D8xns0b1zBjSP8xT6zW/eoJw7R+RWcOGL4+tuUJyPKwwFeu0nrheuYukbNUrsNqmuaz1ym2DvE5CVCCLK9I9Ca+Mqm/b2FHsH6EuVojE4SVFngBz2C1SWqwwHpgx20UhZ0VytUmlMNhvMYWRBhiAw8Zu/fRQhBsGonDt5Ch+j8Gs0bl3HjmHpm/YjZoz3KkwEISee1lzDK+ovi86u2SK9qyuMhg997E5VmxBfOWdhhUZI93EY2IqJeB4OVNgnHQhhHr7/D6v/pTxIs9EBrVJJaH0fHJqP5iz2q4ZhyMEIfKarJlNYrz9J67grl0ZCj3/w96llGuGbN2uHq0lkB6y8vkH74yErhtMbrtAArdavGM+rRGG+hS3F4YuWSzRi3bYtAJw6tb+jzd9o/8/oDLzLKsuT111+nqiq+9rWvfUxy8MMUGUsLPs9fb/FgK2VrL2drL6ffcYkaDjdvzRiOK2s0NfZ+/7S393Hiofov04wLYaVTZ69n7tMQEo1DLiKk30NJl1q6BHVBNz9m5neopQ8oaieg9GNkZaVPzTKjmY/wVcnM75K5MZ7fZHG2Ry89BmE4aawzUItkfotaCConoJI+hR8hkgNyN0RFfTxd0M5PSMMOud+gVYzRwsFXGXFlTWqL0108XUC8TCPZ4/zoLnGZEFUJg3iZvc5FSickrIYkXouT5hoagZIOJ8119toXOD+8y+roHqOwxyzoUTsBDopSuBw3VpFGs5jsc9JYIy4n1MLKx0DQKKZ4Vco07FM6vvUd4J5tsjWSJOwRqAKnrMidACVcjHTIhYuptU1GcuaXvnA4A/edSdnEmena0yWeKXFUTe14dNJjuukR2wsOqdem9AIeG8Tt7wldg5SP5W1oG9NrTpOfDGJuKDf2n3+A4flJsdGTKWVmPr2ZH+t8mqOFY2VYpwXLacEkxTyv3r4+5bho2bBemjkjZBQvUrkhUZUQVTOiOrGFmSpsYlltk61yN8YAnXz42S77s3cBG8NoBFo4lG7IMF7ipLn+xOv6bA/oe4Iwcqg1GG1IMktCF0IQ+oJp+cREg8entKoNeam4ey9lfTng+uVPljh9Xk/GZ5FLfZ71a7/2a9+XkXG6Njc3+df/+l//wJ958cUX+e3f/u0f2XH9YVjZ7iE6z/HOLVuz73iKP9+wO3GE9F2MNszuPrSxl0ZSjafUgzE4gtaNq1b3vL1Pur2H02rSev4aQoAqK8ZvvMP03dvWZG8MwnGoJ3sI18Pvdem8eoNgeYF6OEX4Ls1rFy2/AXst59v7pFv7FCdjjFZPdWEB3GZEcfSDJcRuFNL9yqtMbz2gGozQZUFxYDf39cTq743ReBfWMUXF8Ftv0/3yi5z7P//3uI34MVHaGDqv3mCYZlSjCdmjHerxFJ3lCOGgK8tKSB9s409noBV+v0O4ukhxMqbYPUDVFWowoshy6kmCcCTlwSHVyBLSVWLToJK7jxBA0GvTevEZ2i9cR+cl4zfeJd5cQzgS4TjIyEeXJSorKE+GpA/ehVpRz1Kk5zL57vskt+7R+cILdF+9YScb7SbTW/dwGhGtF64RX75AeG7F+m2MIVxfJnu4gzGG2Tu3UWU533xBcXCE1+1QT2bMbt8nXFkk3FgjPzgm29qiHIyILq5b3sc7KWqaUAU+k7duWq9EM6Zx5QLh+RVMrexEbL6E5yGjkHx7DycMEL6H04zt9KwRz6FsFgpXHJ6QbR8wefNddFkj4/Dx56aUeN029Swhe7SD24zIHu1ZQ7gQOGGALium79wiPLdC9wvP4y30PnGimdy+x/F/+ibS9wnXlxGua2U9B8dke4cUR0O6X3mZbGuPyc27SM8GAVSDMd5Sn84XXkCVJfnWPnWWY7AbYen74Ps4cUw1GJFt71vZj+dSjiYESWqLcmNov3Cd6c0Pmd28S3F4QnV4Yr0Tvk+xd8zwd7+D04gwxhCsr6BniS1yZinBYtc2kacJKk3xblzFaTdJ7m9RTabo3PptvE6bzhdfIL50ntnNDzn89d+h2DvGncv30rsPqAZjFn76y2fpUNJzCdeWyPePybZ2cVtNos01dFVRDsaEq0uosqSezFBJbnUKUcDs5h32/+Wvs/GLfwanEVGejNCVwo/Csw2+1+vgLy1QtFvUacrkrZvkO4c4gY8MfDqvPGclmh9pfgkhkGFA9miX5vVLZ3/v97t0X3sBlSTovKROc1RR4jRiVJqhsox6OMHpNKkms6fglj/K9QdeZBhjaLVaXL9+HfcTYrRc16X+nMhtIQTn1kKWF33evzNlZy9HA9s7OWmmqCqDIwVOCJkxzOXpT8XVnuq9JXZvZj534tRnWE/KbaS0XQOhMEJSujF+neIoRaArWuWEadDBrVKiakbl2Hz2bnpAJx8yjBbI/DaJ36KWdgPXzoa0iiGeLmnnQ3K/gasqPF0SlxMmpsc0WiSqcxxT26JLBvhVSuX4jKMFmMP2OtmxjZF1A1K3g6dLrh29w8r00dkmMqxTMr/JOF4kCVpkXotSOkhjUMIlKFMco3iw9DyVG5IEXSbxAkGdURsbf4uAWjr0kn3icsJBa4NaejSLMSvjB5b9MYf/Sazsx6tzKjecnyNbRAXlDNcYpBvgVJlN4/JiKjee2yLU3Bdj5qbu0ynC3C+B5Yo0yilBlVI5AcIYzo/v2chWZSjieO4jeOKDWjwxGDOnV5KLkjwhB7IMCzOP1DVGPHEtfHSdHtPpn/n4n4Udl2PUvOioQPhP/JiwBY/QiDlZXWhjYYy6xtU1udegcGMcY5hEfXI3QmpNqxyxkBwwiJcZRks4ukYAy5MtWp+xyDi73IFaeJRuRKMYsdu9xFbvKoX/+ZItjLHDpyxTFIWmKGwjQGlQT1YWTyzXtW9RnoPrwWRaYzCsfALtG344udSnGb//aP14rHo8PevcmrICKZ/SI8swQEYBbqdJcXCEGo1RI3DbDYRjLyThOHjtJk6rgb/UY/Gnv0zntRepJzP2/9ffYOtf/M9UJ2OcVoxKUpym/Tm/10X6Ac1nruA2Y5L7WzayFNtBTh9sM7t9j+r4hDoIUDMLkyvOLeMv9Gg9dwWjPtuULdpYpfvaC2z9v/6/VMdDEIJ6MKaczmwn//wqjasXrFxsMmP0xns0rl5g6U/85NljCCHovPQM+c4e2e/u225xNgetFSUY7KZ6klCNp3iLXeJz65YMrRT+4iLl8bE1f8cRmASdFeD5mEpRjo4Zfedt0AZTVYjAozg4Qdfv03ruKjIK0GU5jzxtgIDp9z5AFSXVaEo1TShPhniNmGhzFW+xR/Zwj+TOI+rRFF2W9L70EtVkSri2TO8rr9hksCeWEILG5Q3Gb93k+N//Lvn+MU4jwu20kI7EW+gSrCxiyor03jazpT7Mp0vZwy10qUgf7tp4VschunQOv9dDZRlOFCJ9j+T2PeokIVxdOiONV5MZye37TN+9bZPN3rtL85lLuJ0W5eExKs+pxzPcbptyOCZ9uG3jTmuN27dU7tl7d2g+a68lsF3qfPeQ8du30FlB85nL+L02uq7Jdw7JHmwz/OabjN94l97XXqVx9eJZOpFKM8rBmL3/5TfId49ovXDNNqTSjPThDggrmcq3D5Cei9OMmLz1PkYIos3VM4L46I138NoN8oMjwuXFedH6dMPGacTUhyeoJLOJT2/fYvLW+9a7sX9I96uv4vXn0sPLGyRVDXNPRT2111B+cIIuCnRRousalRU4votwPYJel8KA04ypxwkyDpC+bydM3baNii1KJm+9T757QLF3SLDYo/vq8whH2onYaIJwXWa37lvfTxyhihI1macwKkPy4UNUUdh7PY6pEkvfRhvcZmw9V0t9sgc7jL/zLr2vfYHGlU2k71IORlY6eTSw9wSAFFTjqQ0y2DmwE47RhNl7dzFK2XMVffzeN0ohPHceUft4BUt9ms9eJbn3EAY2eS7aPGdlg0qhiwq31WTy5vsEC92nCuAf1foDLzLCMPyB8bSnk4zPC7dSyrB/VPD+7Rn3HyacWw2pas3yos9gVDJLaoS0mxMnsJsWpW3kZVEYXB8CD5LUbjaEkqjPHz31fda8uyxO/8y8yyzttEEGKMdDC8kk6ts+uWs3aFE9I6pyOukxpRfP9fNrTMMuXp3TyQa4urL8CSHJvZheckDpBLTyMUq6hFWCdjxyVVJ4MYUb0ksO2O9cZBAvE1Wp9Vk4IZ7KOTfawTEKOY/QbWcndLMjSjfg3uILxOWUTnZCXM24fPwOtfTI3ZhR0Kd2IwsDNIZGNaVdjJgaw1FzndRt4OoaoTXa8TAYXFVTuyGlG7GU7OHXJbOgSVAX+CqnyEOOG+tUwicJWsTFhCxoz4GD4JoKLXwyv02gMjxVWAaJUShdIYwtLAzCJjnJ+RTi1N+tlf2jlJbEXk1pFpbv4eialckjtntXGceL9vd0DU8B+MTcZP5kESCf0OXZ/zfYwsA8BdH7futxcfK4hJkXJrrEsWIs6/VwAzsnEafRu6dTFpvsZIRjQ39NjqtqC+xDE1QpWkia5Zi6dima6+RejJEST+U0izG+KliZbLE83Sas00+9wj/ux3CopG/fHwOJ17CF5edcQkBZGcrKnjTHtadB/aCRpLH3dmUAbWg1HS6ciz6WKnW6/qjI+MO7ZBSiKyv1E46d/D35/WJqhdtoEJ1foxqMrKQksk2depYiXRcn8FCBjzPfrGQ7Byz89FcwZYVwXaKNdaIL56hOxhRKI0MfJwppXL+ISlOKoxObbNTtWP7FQpfp2x9QHA+RcYQqK0SlrJF1qQdCMPy9N9BVhdto0Hz++qe/Tt8n2lineeUCRafF9N071GmK14gI1lYQnku2tW+bW66DdB2m796h9+WXn9pseL0OThzhLfXwDroWBIhNwnKiyHalH+0ixDzi9apPeus+uqqJNpYxurbRvnU9t74Zpu/fpnHlArgudZLSuLRBvneEPyc6l4Mxs9v3aD131UpJJwlOu009nuB2mujBGJXlqOkMNUuIzq0QbZ636UHPNUgfbKGzgvF33iFYWqD57BWa1y4Sba5/7H1Sacbs9oN5j8dOeqXnokZTRK9NtL6MqTVup0X23h1G332fxuUNnLlMCAPScdB1RXz9Emoys5T2uibfPyS+cJ7icIDwPFb+u5/BbcRU82J08ub7mFqhtWJ68w7J7XtEVzYJ+l3S2w9w2y3Eosvsvdt2M39ulTrNcJs23Wt26x7Zg22aN66e0btVXlAfDWi/+IwtMJRidus+2YMdnDgkWFu2xuQ7D8h3D8/8MZO3bNjA8W9+E12V1NOE8JydZOi8wF+YR8MmKUe/8XvoNMVb6Nru/voa0hHo2l5L9jxu2gQw1yG9t/XUPabLwm60pzPGr7+N8D3cRsPeS9sHFP/2P+I2YqLzqzitBrP3P0T4PqYorUxICHSaI10HlaSWOVZXGEdQDoY4cQhG03r2Mv5ij+JggNttEF88j641fr9jJyFlxejbb5M93GHh6189K4ZMrTC1IlhdoBpMyPaPEEC+fUCVpKjhhOTBFkZpTK3Idw4wxtjrXwqC9SWic6s47aZND3UdZBSQ3n1I4+oFWjeuMX33Ntn9LStXi0JrlN87RuXWTM6cVB6sLNB64RrHv/ENkrsPab/4zFPXr1EKozStG1cpdg/Bkei5L0RGIV6nSTUYk2/tESz1UUlqfTJ5QXR+hcZzVym29sl3Dmg++4ewyPgsxG/4fBppYwx37yfce5iSpgrflxyelOSFwnUlZa3tdKLmbK/mexD5knbHo8gqEDCZ1YS+i+MJ0sygPi5B//xLqSe66KfjE30Wl2q0xEiBVBXCKCrHx9EKLQ2ermhUM0rHZxpu2ItaV6RRHyUkfp2zONshqHMmUZdKRrTzIevje6RBa24Sh5Pmmo3IlZ6dVLgRx81VxmEfV5e0sgGuMAhjCOuUq0dv4xpF7sVIo8ndkGFjFTC4quKodZ5x1GdjeJdGOWVjeJv31r5KEnUtZVtAWOdUTkDmNpDzGFMch2Y2wNcl07CLJKZ2fWbSZRq06aeHeLpgIc3oJfuM40VcXbE4e5MX62/w3c2f4ai1TuWGeKoExyesMyqpyJ0I4zVo5CMACtkgqDKQDnpuWFanfgp71SC1mm/XBY6qiMsxBodaOrSKEd30kKhOGUZL1J71dNgt/5OGfuYTCcPcmc5jV8LjnzMSHk/GPmlL/knr9HEfP2ZYWa9EGrRx0ah5RK9Xzqjd2BYxc0P42TUnHDInwpMVrlZoXZP6LQ6b5+lnR/iqIKoyOukxAk3uxnTTY3rZIa18+JmP9Mk1L6stnVw6jBuLTMP+E+/NZ19SQFXPTe+GpyKov9+q6sdxtp4n6HZc1lY+eYphjPncnowkSX6kcqk/Wr9/K1pbZvbeHUv+7bWRcYiapbitBqayQK5w3X7Jj996DxnHNpZzmuDGke3iZznScYivbNqkm5t3md68y+B3vsPgm9/FaUQ0rl6gGk7I7m/h9ftUsynVcIzbblKejKz3oKrI9w4JL6wzvfuQejieqx+17eC3m4TryzhxSDmYMP7u+/R+4lXizbVPfZ26qsge7dB59QZuu8lBHJHcfWA3GmVNdXjC7O4DVJIifY86zW3RMJo+VWQUhyeoJKf/lZcpDo6p1paRrm2OSMfBiex9JKMInZc2GvTliOnbH2CMsF9xnkt1MsQIgdOIrETqwQ5uu4nQUI2mloDuueiiwu93yHcOqSaJjUMvK6rRGFOUOHGMmCTIKIThGK/TROU56f0tGyPaiAlWl+wGUGviS+dZ/PpXv296zug777D/v/yGlYNt72G0xu2s4i/2MVlhPzOltGC8yYzogt1EV+MJaGjeuIqazRh/513rxwmtJ65OMtg/IbpwjuYzlxC+TzE3kY+++y6TN97DX1skXFmcF6QDkoe7pHce4LzyHCt/5ucxVc303VsIx6H1wnWClUWSW/eoxlOCtRVUUZE/2EGGwdzYX1CPLeTxVDpTHg3It/bwlnpQVpSjKcXeAW6ngVsr9v/n/x/S8ygGI1ReIAIPk+XkRyeoLAMh8BesMbk8OrHgR63wex1kmqEQhHWNv7pqZUJFgak1jYvnrW/H93CbDerhGKfTxJQ19TRDBC6H/+t/oJoltF64jr9si1YEzG4/IHu4Y+9JoxGuxKQl0nPQtbCGd0fgtBvU0wSTFRYoqQ3VcILbauL3u9bH025SjaaopKQcTum8/IylwysNgY/XaZJWFdmDLfxex8ryPAcZ+FaWFlouiuP5OK0YKQXZaGJjpwOfcG0JpCS9+xBVVza1q9PC7VjumS4rEIJ4zkapRxOiC+eQgU/U76LLGtA4XgPkCRhD/miXfLGHKUr8pQXiy+eJL64zfuumldjMJVZOM6Yaju3EZjJj+O3voWYZ/ootfsujgU2ZGk2QjZhqMEYXFfGlDdovXsRfWcLxXeo4IN8/ovmEQf1Htf7Ai4xPW6cSqrquP/OX/ixRbO9ldNouRekzWwkoCsOd+zMmsxJHCnwP6oq5pttuVnxf0m64HGbQaZQs9BpI6XFwXFHXCq0/Du/7oZY41dTos4GG1BUOBldbQ67A4KgaLRxiNUULl7Ca0U/2GUVLVG6Iq0oEini2c0bwPo2njcdTZmGPVj6kVU7YHN7hpt8md2M0kqAuCKoBlRvgmBq/ruinhxgMtRvQTg9ZLidU0mMWdtkYfUirGFE6PkeLz+OpgqiysY9xNWMcLnDSWCUup/iqxFMFneSIw/YGaOz0REhmQYeomhFXU7TjUrsBtfGohW+78drgqpLcbzGO+ggEy5NHLCX7LCQHaOHgmJrSCXlm73Uy72eopE9cTlFCkoZdtHSRwlALj9RvEdYZrXxM7nrMnB5CGqTS1r9w2r3SCqksT8Q3Nc1sxPrkPqUbszzZop0fU3oNQDALukilLCDvlHvx+OTO/RGcnWMxT3MC5pMTMf+dJ6cST8L4nlhanRm2z6R1wpw9R+X6aGWnDdLUaOPh6RJf1Rinpj5leczppWcFiuOhtEBQooSc+1t8tJQsJPtUjmenWMMPaRaTU876D71OU6UEksRvWtiiH/PZiquPvCXa1urzhN7PvGoFnmsPptv26Pc+meitTz/AP0dTI0kSWq3PP5X5o/W//wpWF4mvXiD54B7+Uo9wY5Xk9gPULEHXiujCOkbb7qQThvOEo4lNjmrE1EmCTjL8tSULdjuxG8fd/+nfUhyeYGpNeTK0EwLPpZ4ldsOpNcksoXF5E7fdpDgaMPzmWxhjbGqSY6PO68GI+OJ56wmoFbqsLOBulhBurtkkpfCTC+Qnl0pz6llmI3TDgOjcyjxStLCk78DHMQan1cAJA6qZ1cTne0dEG4+LGDVLMbUCaTuk4bll3DiiniXossafa8bbrzxLem+Lzqs3kPPJiC4rske7OL5H8NxVvK7dxJWDEemDbUxdITyH9ovP2ASu+4+sXKqqqUZj0vtbNG9cI7n7gPHr7yDjEOk41OMZxcER5YntWuu8oDweYqqKyrO+Br9ru/gC8X0LjPE7H3D3//p/J3u4Y8/VZGbP1ywhvrhBfGUTiuIxJb60BuXTGFd/sYvTjMnuP0LXteV2LPRgAaTn2ESf5QWE0iR3H9o0JqM5/o3fsxvOWUJ5cIIMfLx+l/aL1ykPThAIWs9ftwVZluM8dw1/oQtAuLZsPTkCGpc3LUOl38HvdVB5TrR5DqcRn0Hsiv0jK8M5HlLsH6HKCp1kZA93UemHJLcf4K8vo6bzwq1W1gidpdRHQ/Ac1CzF63etwd2ROHFomSQaypMhxdGA6PwqbrtBvZOgkoT42gUrY0oye+1UNdXDPQyaajTDiQMLnFzuoyczkrsPiTfWiS9vYJRi8I1jpu/dtils0sHttMAY1NHQFh5BgM5LROBbOZ1rz58MA2TgEV04h9uyMrJ6NMWJI4L1JYrDE/K9I1SaIRzHQhEdh+J4RDWe4vc7SNclWFti9v6H6LqmPBrY9DfXJX2wQzWZIkOf8Pwq5dEAJwpxWxHVODm7T9RcAlUNxgQrC0QXzp1FZetqztBQGq/TxHgOyc17VloZhtar04iRYUC+e4BRmvDCOqO3bjL43ddxm7ahdUqDbz9/jez+NnWSorIcvb2P0QaVpDaltdOkvXmOYHWR8miAjAL8lUUc/7QE+Pzfw591/VgUGUKIMxLtJ/2bEOJzmb+TtKYsNQs9n3bLJQoc+l2HNFek92cUucZxJK5nSFNzFthT14rRKKHT0lzY6HF0IqgrjZQazzHkPzK51OmLk/NJirbaflWeFR1RNaM3O2QW9VkbPUQ5LsLY44znm/SwTMj8Jp4qKdyYcbxI7sX4qqB2PQSKqJrhqpL18X1mQZs7y6+wPN3G1wWFG1MaRS89JPeaBHVGqxiSBB3ickajnDDz29RPyIEKN6Z0Ijr58VMvJawSUr9FLVzGUZ9hY5m4SmjlQwaNVQbxMmGd4GhDNz2gWU6Jqhkn0QrH7XMwj6I1UtLOreTroLXJhcEtutkxGoHEoIRgt32JcbTAcWONyrXQQuvJAKlrmmVK5oZzcJ+DXySEdcLMPzcHzmGv/NMvHmMAF+MYHFURlAlRPaV2AqJqSqOaUnox3fSIWrpoKXBNjdaSWjhzPwc8LhpOpUqn6yxklielWY81WuYpv8bZDW+09W5om0B19hxG4ejT9r2m8kKkUUglrRzK1DaaVte4RlBLCXpeUJ1CIU099/6ESF0SVCUGw357g53OZRrFmGm0xF7rIhvDO2wObxOo/HNc3I/XaYEx8TuUQUzl2lF26YTgeJ/6+x9dtZo7VT7H/SgFhKEF8Z1fi1hdCtg7KLh8If7Yz55+1vxBGr//aP3+LeE4dF97ERn4ZPe3bM3dalivRiPClDWjb72D9BwWf/aPMbt5h6Nf/x2KR7uoycwamy+co/nMZYzSVMPpGanaywu8fhdT19STqe3kzjk4MvQpd49Qs9R2FYcT6iSl/1NfIlxdJN85sClHaY4bR8RXLliD8yylznJwJPGF8yAkuiif4hl84uuUAuEIWyAA0eY6o9ffodg9xGnENl537quoZwl+t4nTbFAcHj0tT55LSoWUSM/+jhOFVkIGNpUJrGzI82wnX0rcTpNwdZnpe3dQiUOwtHB2bI7vEa4soed09GhzzW7UXniGcGOKmszItvdpv3qDpT/xEzz8f/6/0UVpzw8gfA/pOtbQrA3SdRGei9tuorKCYv/IbhaRuN1PLv7LwYhH/4//yUaRrizitpq4Xdvlr6cp6b1HSM/F6zTRRTWnfp+n88pz+It9ZOgz++Ae6cNtDDYtrE5zAmwMrhNHhOdWbZzwyRCn0aAaT8h3D0nvbYHrotKccG0Jf7FH+mAHtxHhthvM3rvD3v/nfyNYWSL54EP8pQXcThPpuvjLC0Tnlsm2D+x5DC1v5fR9733pJZJ7W+R7BzhxbKnaeU41HFtCtu+jfR+EoNi30bC6qm3C1SxBFbaQmuMuUGlONk1QaY7X6+B2mjiuCxorA/Jd6tGY4vDYRj9L0FmOEwRQK8rDE5CCYG3J0sZ3DvH7XaKL5xi/8T6NixsYrLcnfbRL8/pFGtcs1LEcjC3EsqwI15bJ9w4ojk5QkxkiDHEDH13XOJ3mmV7WKOur9JcXbDjAYITwPFtg7B6SP9pFKQ15QZmkVAfHNgZ31aY2eZ3WWdhCeTLi+De/ifBcVJrOr61jq2LwfaqjIfUsw+u4RJvrVO/csWlZlTX6uq0Yr9ei99VXrWS3beN3dZrNJ2ApxcEJ+aM9e//7vgXvVRXJrfvU4yluHDIbTfHaTfx+j+6XX7Tk9emM5MNHmKKy5PFZaotOIPnwEfVwTOuFZ/DaDdLtfVSSIVzPvo/7x1THQ5z1ZWuST3OC5R8Nw+mj68eiyPhBSwjxuROmHEfOCxNDp+WyvBRweFxSlgqtjP3/+QYl9CV1rakUjKc1rZbDhXOC1aWQuw8SZjNFXmiq2vwQPI3v+6J43Oq2SwtJ5YQYUeDX2TzoSLA42+Glnd/jpLWOEg5hnXLcXCfzmni6okQjjCb1mxROyEm0Qua1EWj6022axYhA2Yp6ffyAYbyMo2ukMXiqpJT+nNhtg121sOTlwg1pllA5AYvl7uNDNxo551845vEboqU8i7OdhAuAoFFNiYczoirluLFG4Ub0kiN62QnNfMgwXkEK8FWBNAq/Luikx3SKIVo4GGPw65zt3jXrF8iHzII2x61zGARJ0GZhtkstfZT0EFqBI8i9yE4zdI3QFbPGApnqoBwHqSsLshPicWybAIyam8gzy5GY/9PCdJ9mMaadD2hnA95f/SKuUXhlSuXFOEJYU/cThYEtGJ7wXwiJQZ+9x6fPZ28/G2Foo2qfKCTsg1kj92lhcvaQAiU9XFVSS6sVV1pgPJuKg/QsVNDYVCvHgBZq/m/2OV2jLRAREEhKL6D0QhxtzeNRNaOTHlG5AVu9q7i65MLg1mke1udalhDj4BlFaQTb3SuM4mWyz2n4fnJ9lqM4tdt4Lmye91lbDZlOFRvrAWurIQdHJRfORzgfAZH9MEXGH3ky/utaTuDTe+1FWs9cohpNARCBj0ozhr/zOjIKaD53BSkl7eevIVyXyVs3QWsa1y8Tnbfa+Go8RRU50vPQeYHKbJqPSjKKvUNEGOB1WhbUNU+10mXJ8W/+Hl6nxfLP/iTh2pLtgC/1KfYPcVvNsy63E4XUSUZxeIzOS9L7W1SjCe2XbPoSxlgJ03gGgNdrEyz1EY6D02wQrCySb+/jNmOC5QXiq5skdx5gpJ0yCIE1KAcBbjOmce2iLWqmyVnsqr/QtfyMvLCb4Yc7trs+LzJ0luMv9SmPThBzWJ4MfCuLSZJ5PGx2RiIHg65q/KUu2aM9hOfNyeg2+tbvddBzEnP7xWdReYnJK+JrFwhXlzF1TTVLUaMJCEuQrqYzgjiaG4AzVJKSPtym/fINGtcunp13YwzVYGRjSL/xJtP37+DOJzlCCNwoRLWbCM+jGo3Jd/ZBrtF4toX0PcK1JVovPWOlOYCuaibv3p6nbNWoAwtrdBoR8eVNvKUew99+nWqa0rx+waZ6KSuFk44NBamnMxtJuhiTPdol+dBOPNw4IljqUew2mXzvfXAl8aXzqPEMGcd4vY71DFUVIAjWl2lev4y/1Gfy/h3G33kX4brkOwcURxaEF6xHqFliJ1fjifUDNGKbyrS8gNYKU1W4fesV0rMM4Xl2KjaeEl1YJ1hZpNi3xnRTVqiqRu8fAwKvFVONZwSri/jb+0QXz+P2O1TzOOJyMsPtNFn+uZ+i2D9k8sZ7VBMbRCCksNGuwzHRuVWCc8uoNCO6sE6xe4QbhzSuXqQaTZm+fQtvoWOP5WiAAKp0hrfQwwl9gpUFqBXK5EjfY+FnvkS2tcfgG99FeB71aEI1nOAEHm6vY9PiHu0x/eAezvx5jDZWomcMejJl/NYHdjqJLSiroxNEs4HXblpfyvkNjBGkdx5g6tryKl5+jsaVTRsisXt0ViDIMEQYQ+vGVaLNdcbffRccSb69T3k8tDLEpm0EVOMZ+f4R0vfo/8QXiS9t4viWdeIEAU6/y/Fvv25hjOPpmXdMFxVOq4HbbuF3U+pJQnU8wFvsIz2H4mRIsGYLL6/fJpwHAPyo1499kQFWtvB5EqZ6HZdex+N4UBJFDmA4GRYcnZQ2kQhsIo0DuJqqBqUVgefQbMYkqeLRTkleWI17EErysfohtlefsKSwwnTgySQjACPlXKxvmPkdSjfiyuH3iMsJZRZw2N4krBOicsY06FD6XZKgjevWBFWKX+XUroenMi6efMDydBuEYBQtElUJcTllITlAoImqlGG0yCBeoXJCGsUYV9fMwi6FExI5U8bREo1yTCc7OTv8uJoRl1NmQY9WPphPFxxyr8HK+BHK8ailQyc7JAvaBFXG8myHsJwxifo8t/8Gq9Mt9tub9LJDmuWIR/o6RtgiZXW6RT87ZOa1bbxpY/WMufGw/yx7nYs0ijGVG5D4LdrFmOXJFmnQZhQukXkxrlb4dUY9lwDVwkE5ktoNcHVt4XtGz4F7zPf9Bqlrai8mczyWp1t0shMujG7hqYpRtMBO5wK3lr/ANOgjBTi6QsgapeYJAlpwGlFrC4P5FTOfHpjTeFmjcbRCue5jU/iTF5dQ8+vgFMI3v1aMTZpytDVsO1rZeN65BErMeRxKzmVA0rXF9Dz+Vwht4YpCooS0Rdk80tYYeQZZLJyAwosZNFdZmO6gpccoXmJptkuznHyuy10hKWVA5lvqeuo3edi/bhOlfn8Ao2dLawgDiEKHooTBsKbX9VhbDvA9gdIGbQwOHy8yHMf5zEETSimyLPujIuO/wuW2mk/5D/IdK01oXr90VmQKKeh9+WXQNtnGaGU3lXmJzgqqIwvcGhyeUB4OEI4txevRBBkG1LMUx/PAaNxO24K89g5xwgCVV+i8RDYiwrUlsntbJPceUU9TtNJIx0EVBcKRxFc2EVJYyN1330MlKSqxxYuZfz/azc4q3ddexG01aVy9SL57SHF4gr/Yo/Pys6R3H1EeD6hGE5u2E0d4nRbx5Q3iSxvzTd/jpp7XbRNf3mT69i3C82uUwzF6LrlRhW1glcMxej7FSe4+mHfJD0kebOE0I5wopDwZWs1+mlmpVrNJfGUDXdToojx7Pl2UZFv7RJesvKPYPbRm4oUuSGG9B0WFt9BFhD5qllGNJwjpUB0PratOSMrDATIOqScJwdICqiiZvPkeyb1tdF5w8ruvW4K761AnGW7bFhJus4FAovMCXVb4/R7h+VUrk9raY/TGe3itBv6i1d77i13ShzuYogDXoTwZIieTeZEYkz7cIVxbIr5ywXoBtnZx4nhO2hbU4ykqzy3QriypJgnNS+fPInZbN65SzxKGv/sG6d0HyCCwxWFeopKUzmsvsvo//Bx+rwNaM/zWW+RbB7idpo2RTWy3vJ4k6EoRX72AmU/C6kmCrkvLhxmMkI60PghlqdPVcIwxUBuNu9hDRiFuIyara3vcRYG30EdKgdduorWmGIxA2vS1s+SqrKCeTjn5T68zvXmXI6wsNT88oRyOcZsNjDYYVaOVIlhZhFrTfPYqbiMmV4rZ7Xu4rZa9Vp+5RLDYpTwYEG+u0XzmiqWjHw2oRlPaz19HxgFGGxpXNmk+f407/5f/G+Xx0B6T0vb9wlBPEmRsC1xTV4y/+z51llNs7aOyjMU/9hr50QnB4gLF4THphw9tc6Gs8HyfcmjDIfK9Q4SURJc3KCcz/JUF4ovn0EVJeTyi9fzVM89DdH6V5PZ9dFlabkWriTwcIKTECTyMMrithj0mINvex5Q1wblV3FaDcH2F4nCAMYb0/raFBcYh3kIXoxTVYEQ1GlMeHON3WsjAJzzXtFLF/UOq1BrD0yjC63foffnls6bCj3r9WBQZP0guBZ+fleG6kmevNfn1/3jIb3/jhNGk5nhY4HuSZttjOLGTDF2fmkYVAgfpQJYZ0ILZUY5SUJTguxrXtfuxz2Iy/cEvdh6behZvCmfyGqNRRlA7AZ18gF+lDBprvH7xZ1mebCF1zTTso5EUTsBhe4PSiQiqjEY1ZnG6y9rRfZLA3jx73YuUjtXu+qpgebpNP9nnoH2BWnpIYyi9CEfVLM62CavUbo+DDo1yxuJsl152fDYJAWwhMH7IbveSnVjMDeLd5IiFZB8jrKyplx7j1yVJ2KaSPmGd0xrdZ318n6PmebY7V2mUY5rlmLXxIyaxNa+nXoOobjCJ+8yCDsrxSGjj6JpZ0CL1W3TTQ1xdo6RL5fi4YH0E0qPwQqJyhhB2ClC5FhwnVIUWDrWY+/i0tjGLT/oipMStC5rFmGYxIa6mjKJlMr9BJTzuLr3IUesc1RxCqBForEdEac+eV3sFcjax0Mp2PuqCWjjzklLgUKGNxAgPOPWGmMeXg6kep1YJ7M/MPSun+ftGSBwMtVFn7G1zunM/lV8JOKWNGy0BNS90LSvcCIFRAtdU82MWc4q4sEEAKqeVT1DSQcnP9nFxOnSp58fiGIWSHrOgQ+UGtIsJjxorPAYYnt7bp16VH37JuU/Dn7Mv40jSabtobTgZVJSl4coFhRzXXNqM8Nz/chBfklid7R95Mv7rX/UssZ8L84JCuI6FZS0vEF/aIL23hdMMcdoxuiis5lsIdJZTJ/kZ2VrXNcL30FqjJ1OclSXi65dp37hiE4m+/ZaV14yn5HuHNK9ewJQ12miMskC+cjRBAP7SAo3LG485Ea7L+J3bHPxv/4n40gadLzxPuGJTk3RRkt7fxijNwk9/mej8Kr2vvMLk7Ztk93eoc0suFmGAv65wPA8nDgk3zxFf3kTnuY3rnIMB61mCqWqa1y6C1kzeuW0738MxWhicdgOv0aCczgiWFul97RWi86sYY3CikPHbH1ANxmcE8HqW4naaNK9fJL64QZ2kJHceUA0n1vthDNLziK9s0n3thbOJgdOIiII10jm75PTngvVlW6DsCOsDCSO8VgMZBQTrKzSvXGD4re8hA598e4/pe3cJVhdxzy0zevM9TFmi5owdU1UI37dRtJGP8Dwb4fvF54k3z1EcWIlw9uFD8sC3CT21IvngHtVkRvO5y8QXNyi29sgPjqhHE3St0GWN1gY1S3GaMUbpeQf5AKUEuihReWFNy5PEdqTPreLON31uyyadjd94F53nNJ65jMpLcJx5HKmkPDwh6HfJD44ZvfEe1WBoae8LPYxWZI8s08Rog99uku0cUI7GlIcnCOlgMOjpDDUPoBGObX4FC11kI6JsRkQX1hFSzidS7pkkSCcpVZJSjaf2nKwu4nWaFIcnhOdWEEJQTWcMfvcNJu/N5URKUU0T6vF0HofbwG01qJOU8njI5O0P8FpNVv/Mz9G6fpnZ9Usc/eY3yB/uUk5nFAfHFI92CS+s0/3Sy9bHUVY40S7Oy23i8yvIILDwuvUVZjfvYvKS6Nwq5WCMKkr8XseqGfISU1ZEF8/RfuEZG3QwTfG6Lfp//EsYbSh/z7Jh4s1V6smUybu3EY5DcTygHk3wOi10aVkZQloPkHRdZOARXrtIfH6V4AnyerC2ZKN57zzAX+ojmzHF4fG8+J77LQZj0sGYcjiinswQjiS7t4UajfFXl1EzGxtdn1jDvkoy/KURXreN1++Q7x1SHJ3QuLKJLkriS+cJ11fs+/vObaLLF+j/xKuE51Z+X6JrT9ePRZHxact13c8N5MtyxeFxSSN2KUo7MTBac3xUY7BTDK3BGNu1dOaSlyRVFLmkVpqiNFSloZw3WRxp8/Y/J7bj4+sUvHb6ms4aphItHcJyysJ0h3FjhdSNqKVrQXDZCf3kEGlq9lsb+HWB1BpfFzhakQVtkrAHwG7nMmvTh3Qz+8GYew32Wxe4MPiA88O7DOMlasfn/OAOpRNSOwFTJ6RdjLhy/C799AjxfWY3cTXj4slNJmGf0gmIyhmtcnxGJG9nQ06aa/SzQzr5CUq4pH6LZj5i0FjjqHUOIwVGOgwaq0TFlG5yyKC5SuE3EKlGaG3p4uUYR9fkbswkWkRoReE1aBYjBB1rEvcahFWCNAZfFXZcKBxrVhYgmNOw9SlHwswnAcLC/IzBMRpPV4R1imtqStcnr0PGUY+gzin8mEm8QCc7Zhr1ybympX0jkUYhTA1GzKVY9vls8WAwRqOFwFM1QZ1iHNcC7cScAC8cQCNUffb7UtkRuBZy/u+nl4hA44GROKrArTN8Yywd3RgqeWoQnx+DtrG+tfDm74W0VFBV2oLEaBwUbl2hXRcFuLoi0DlSK2ZBn2Y+JSgz+95+hmXz0gRmfj3XwmUc9ij8hk0Y8xoU3pP+hY9u6NX3+ftPXwJoxBAGjmVmGMFgVOE5EiMgzRW37iZcudRgZanziY/xeUF8p0XGH00y/utcRmvK4yE6L0i39kjvb5Fv71s5kePgLfaINtYshK8oyR7uUB6N8PvW9GuEoE5Sa1B1XcqjATrJqIsCneYYBNHmGu3nrlrzKpwRwd1Ww/oHlvpMb97FCQMWvv4VJm9/YLvyxthkq1livR5lTXk8AqOoToZUvTbT9+6AVoRryzax5sI6+dY+xd4R0eY6jSubFiC2d0Q9nVEeDUnuPqRx8TwyDDF1TbF3iM5tN3/hp79CPUtJbr9HtrVHNU2gUvjnlul+5WUa1y4w+E/fJnm4DQjShzu4nSat568SnlsBbOPwtIudPdq1caDry3idFl6/M498rSmHY5b/9M8Qn18/M7F6vTbB8sKZWdvttnHnHhLhueTb+6hkRj2d4jqCcH2FYHnBvv7QdvnrWUbzxhXijTWyR7uMv/uelQStLiIDn9m9R2T3t6imiTUKO9LmYhSl7fJq24DpvnqD9qs3KHYOkYFH68Y10mbM7NZ9ir0jC1WrK7xu6ywy1wkDoo11hOeQbR0QLPeR0iF7uDOfRkmCpT5GWb+CLirq8ZQaYQnra8tzuKM4uz7rJCW6tGEvWNfBJDVS2s/yajBi8r0PaFzeYHZvi/TDhziNmGDdbvCjzXVkGNhwg+mM2b1HVCcjC6Fc6tvvxLpGlTWUBfVcciN9D9ltI8OQcH2J6mgACNqvPofbbaNnGenBMfVwgtvtEKwuESz1qaYzS8Y+PEHNUhCC8bffJtvaJVjpY4oS4br43TZOHFEenlAenmB69ZkMrxqMWfo/fI3eF1/EiSPqyYz44nlbsFYljYvWRK2SlMF//Bbph1u0X3mW7k+8SvvFZ3CCp0M90ke71kvSjG1DYDyhnlqJoROHGBPOX+cyweoi+fYB/nKPajgh3z1ATaYke0dzXkaIqRXVaIqoa9x+FyEkxfHANhBbDTv9mVnzt9uICdaWn5qMS8+j++WXLUTv4Y6VKE7stdh87gpOI7aUcs9F+j7x5rrlzqwsIh1pU7629ilPBrjdjp0q5jmjb38Pf2WRcH0ZtxGhpinF3hFOI8Zf7OOEAU4U0nn1Bkt/8idsSMHv8/qvosj4YajfH95PSDJFv+uwvacI/PkNWRsb6mQUxjgIHAt3lqC1AaNIcihybQ3h0k4vtIZ54u3v0zrtqEuG8TKlE+IaRaOcgoRhvEItXZy6wjMlSMnCbI9hcxVH1ZRuhEEyC7ucRquepj8x//MoWiTx26zMtulmRxghEcZu5k/18VE5+9TNpBIOg3iFYbyMlg5J0MYkkk52ggAWZzsUbsAk6HH6jrWKEXE15bB1joVkl9rxkEbRKCckQZtGMaGXHLI82aKXHTGOFglVNk/QspMYV1cUXkDqNQiqBL9KmIb9M1CeoxXtfIARDifxMpXj2+a8mYP7VI6SHtrxKWXE6eTAUaXdEtcVfpWjgJnfoZ8cIox97z5cuEHl+FShR+34CKNwtaF2LPfBGOzFIuR8cjCXTJ2l2To4lER1RiEi1JlvY27kVlbKVwsb+ahdHzkvhqwvY54OhXXjCQRxOUEicFXOVCyQuxGnkwCh1Zm/QuPa5xFmDny0z+vqAk9rHFVQhB3cusQ15Ty210dKgzT2vutnh4RPXE+ffiXb118Jl1G0yEF7E89U7Lc2OOhsPCauf+J6srg4ve+f9Ll8n+edq9WaDZdZomi3XFoNl8Pjgk7bJY4lVWnY3Ihoxi51/clF9A/DyAiC4BNhon+0frxXcXjC5O0PKPaPqGcpk/fukN59SHxlk/jCOYxSFDv71IMRzReuEa4sEiz1qacJ8cY6SivLn0AgpIPAaul1GMA0QUmJ9Bz8Xge30zrbFKI0SEl+cITX79nnnyYEa8uUh8e0X7iGSnJMXWOqmmxrj2LvYL6h7pM+3EbGEf5iDyEgmTMV3EZku/9SkO8fnXEhnDiicWWT6ft3rWfDdy1x3K1tbKzvktx5ROcLN3C7bQa/8x3yo2P0LKM8GVGPJ5S/8zoy9PC6HZxWg95XXgGtGb91EzeOKI5OCJYX8Bcfb1yCpb6VHPU6lIORhflNEsq8QKUZ8aXzdF58dm6SXvnEc+S1m0QXzzF95zbR5irR+grVeMKkd5vi8MR23bWxiVhSUo0muF2XcE5x9/pdZnce4Pg+wUqf2c0PmX1wD4QgWOpbqVdtuQtuu4W30KMajHACn2BlkcF//KaNMg0sp6EcTSiPh4Qba9Zonmb4iz0m796m2LOmev9oiAwszdtfXcKUFeVogj+d4bZbZA+3516dFKSDv7qE43u47Sbxlc2n3guV5hYMB9SzGV6rQXhu1TIiipLi0ALduq+9QL5lKd/+Yp/q6MT2sHyPYGUJlRdW0uPO2TC1lfypvCBYXbI+ouMBuiwRWuL3u3gLPerRxF6r+wPcRkj2cNcWvFLiNWJkt2UjUV95Hif0md25T3p/myLw0bWy0cA7+7hxw6aqHdjuv7+8YGVSWYE2Bl3XuC1brHrdNp1Xn8eJI6rhmPGb79v45yggeuV5pOfO799ja0jvtwlXF+m99uLHrp/Tyb+/2EenGeGljbNENxvIEJDvH+KEvo2XPjzBaE2+vU89miHjkOjyBjKOmL53m2o4nsf0VsggAAHFcDSXJK3gd1vUeYXXiBBSMPneTfyF7tn1eLqcMKD35ZdpPnuFaji2MsGHOzY9bTBGFwVojduyBWOxc4BJM5y1JfIP7oIUFg64f4QM/v/s/VeMbFl63wv+1lrbh89In3n8KW+7q7tZzeZlq8lLNufqju4MRgQIDgW1MGoJI3IgkHIgBQmiCBniknrhAyFBgPQw0kAYSYCuRJmWSA1F077LVx1v02eGj9h+rzUPKzLPOVWnTFd3UU2IH3BQlZmRGTt27Ij4/t/3N97c8S1mdu022c4+4el1+5zvHdB58WOYsiS+tY1wXTqffOYPBGDA9wjI+CBZGd9u6vd4WqGEYDSpcB1BWWpms4osN5RVxXEjM89ioixtgzKeVOSlFYseyyeOmVxvp85/d+vYltRQSZckaOJU1vFHIqhnQ/rRCrHXYGG6j8FuJwrpk0sPqSviIMQtbXBaVEzecQ/S6BPKi4ATW1WvyvCShwOLUjgknrVuDYoZji7Ya57mqL5OUM7wypTMjdhqX0QYQyvt41cZZ/pXmPmtec5HQT0bsd84hTIVQZnQSo7mYMonc0IG9RVO96+wMt22wm0hELpi4rdpZEOkLiikS+LVCfIZw9oysirxi4SlyTZnj96kVV+nHy2TOx69aIlMBSDAq3KcKqeSLqrKKbCi90L6VI5LpVy7CXJrlI6Hqgo8XbEyuss06jDx20z9NoVw0XPNiULjmIpqfnFY46b5dSwEJ42yOaYAGSrhMQ7aFCqw17yuMNJuGCrpUc31Efb3DPqEfnVvMyGMQOpiHrTYQAqDWzo4xiZ3l1JitEKZCmUqhDbkjnXZwhjCfIJjNIV0TkCRg8YUKW6V0MyGJG4NYQS1fECYzzjTv8zq+M77AuxjmpRBUAp3bhJgmPhtDIJRtMhB6yyF++24MH3wLYfAOk+NxiVlCUNdUJYGISym6bRd0IKzGxF5qRlPy4cmfn+7IGM6nVKr1b6tsNA/qv/+lfcG9H/vG5STGH+lax2bPBd/ro0whRUjm0qTHRyR9wcs/MAncTstsp19vKUO06u35qs7Tbq9ZxtRIWxSdD1CBR7VLEXnBdUsZnr5JvGtLYTn2gntaIzbaVv73LyA/UO8dpPa4+cZv3KZ2Z0ddJraZPDMWmlme4cIx7G0T8fB7TRJtw/IjwY4c5qTUHLusnOvdFEQ37hzEpSWH/RIdqwTjtdpEp2zScTjb71B3hugs4Js9wBZryOiEDGeMHnzGjpJLbdcazvRzguS8YzijatM3rzB4g99n92S+B4oiXQUrU88g05SZjfuUsWJbSI//hTh6fWT9PW3ly5L6y6pFM1nH7dUsOt3rJbBdaw7VVFa29rRhLw/RBcFKgppPH4Bt92cnwtlBdcY8sMB6daeTfRu1Gk+8xjj1y+T7BxAUVEKoLAJ47VHz9H5zAvs/sv/gIoiahfP2uTsnQObjr3fQyhxktFRTWOEtBkO5SzB9RwwBqfTgiyjGE6YXb1tQxDv7GLKAhwHpx7Y2zUbVGmOv9w9SfAG7GdBnpPuHeIvLeDf16w6rosThYxfu8z0+h2y3QNmV2+S3N4GQEYhMvCty1G7SXzt9jxXI0D6vtUVLHZQoY/TaSJ8l/ygj9Ooo1pNyvEE2ahjsozowibRqVWyw8EJmAk2Vuw2pCisAD3w8Lod0js71s7VaNu0V5V1nqoq/MUOGYZyMKKc60ow4DXr1C6cpnbhDCryT2yak61d8uEInaTW1tW917b6y13S7QPcTou8P6IYjk+e9+MSQtgNWqdBVhSQ5QjPtTaxvjVsMGlmdTdSWFvZZo3hN1+n9sg568KWF+gkxW23LBAdjDDSDhaoKkxZWs2NlJTjKcHKor0PKamyguTu7jtAxnG5zTpus87K//pDHP6n30H67jwPQ86pmtbIgbVlVOCT7R6Qj6wphM4Ke7sAa5zgecjxFGMqysmM2oUz1B45SzEcY8qS+hMXaT77+Lsey0dR3xMg4/3qw9ClFjouGkN/WFJpgzGQZvoBgCGw9Ke8mNPgK8ixLCZjLD3qflDxXQcYwsw5W/qeuFc6tuk0Ci09jNckKGIcUyF0gUaROgGZ9CmVTzvZJ/GaFMqjcny0lGwMrxMHLfRcTA3WvUoL+cB24/gxvVtrNPHb7DXP2ORnBF6Z0EiHDMJFwnyCX2UIDG6WM/Hb9KNlmukAgUEZu1W4v5Qu0cKqB9rJEX6ZEnt1MIK14U02htcRxnBUW2ccdMmVR+6ETIIOhXQZh10wUAmJX9g1bD0f8dz279FJjugmh9xYfJIrSx+jkh7KVGAEUldUQlI4NtjQn+eQFEKCntvEWqkf5VxjoXTJ3e5FFqb77LQvWu2CVBTKpZIOldEWdEiFV8zQyrMfUA+cTDPfKhm00ZTSARRaufaG8j6XMfkuz8SxtmKecSGxDlVCCAuOygRpNEEWExqrnZj5LSohULrESGnBj7ZbCSEFTllQSY9CSoIiw9EVfjkg9psU0ud0/wqL020q6REVU04Nrtpz+S51fORzUhp6fl5SFbC1cIE31r6PSbRI7NXIvMY9IPWh6mFbjnlg5/wFWpT2oNIU8qxEKHCcEseRPPVojUZDcXikcZ2HH8cfBfH9j1Gzq7coRhObSVGUpHuHuO0m3kKbbPeQ8cuXcBfbSMdBZxnCcVj84e8nPLVGcnubdPeAyeuXqaYzcF2bEp2mmKIkvHCG8Owp0oNDpq/ZiXu2e0h2cITTrFs6EAI9tRz8YjIhXF+j8di5k01AOZ2S3N2xictJZsPBypLp5ZuAwFvuoBp2ACQ9h3JO27O6kOIdzVYVp9Y1qjPPzTi9TnBqDaM1QlpHxvFrlymGU/xuk/j6bTvVH01It3aRrjd3vPHQlSY/7DP42qtkewdI10X6nqXIjMY0n3+She//GLqq7GR/oYWKVq3ouKoQDzFWqObbjeygT9EfkO33QAiCjRWiMxt0Pv0xonOnSHf20VlG/YmLrCwukB/22fu3v4kKfJx2A6dZx23d00eVE2s7bIwh2dpFOMdOfgZ3oUPruScwRUVVlkglCU+vE50/jb+6OG+eK8rRmPjmnfkmZgJCUozGVEliwwvrkd0WTCOM0XbSX2mqJEMaCM5uMrt2h2IyRWhDeH6TbHufYjTFaMPklctMXIm/tMjs2i2C9WWClSWEknPqkc1dCc9svOM6Pg6VHHz9FaavXyXb7+EtLyA9z16bQlBKgRlNEI6Dv7lqLX+lpWcJsC5downeYgcVRWRHPeKbd/EW2ni1gHQwxJm7ULmdFsJxcGYJKrJWxkViRfIATr0+z5NJKKex/egyZq470XjrywjPYXb5JspzEU4DFXi0PvE0XrdjQxpbtROgVQzGtllPsnnA3f0lrGOZNug4s8f3tuseIDq7SXzj7hyQ75HvHhFfvY1q1XHqNYIzG0RnNkju7FF75Azp3iEgKEYjyklsrX53Dy3dzpnnnywtgDCkW/t2S9Ufomoh3tIC4ak1iqMBIHDqEcVR/x3H9M5j3LCp3bsHRBdO4bQb5HuHNpizLInObeJ1Wsxu3CE/HCBchdtpIqTCW16AssIRAjotjDAUR0OK8YRgcxXl+3YjNhhTjCZ/BDLeXh+GLnXudMSla1Ou3ZgxnRUMR+UDAAPsdPPYc/94o3HsaqrnzqInodwfRR1PuYWwugEDZi4UdqsULRwMAldn5NID6bEyvgXGUEkHaUoq4eDnE0q/Qzs+4OzRW6yNbnFkNhlFi3ildRHInYBW3KORDj7QoWVOyHb7HJV0qad9Yr/JfvM0l1Y+TiVd2ukRUT6mmQyo56OTjUYlFY5++NapkQ3pVWskcw1FWFhOZFjEbIxu4mpLpxmHC7SSo3lex4ij2iYzv4FXJET5hFL6jMOQ7nSXKJuctOaNbMjidIfbnUdpJgOkzon9JolXp1KBXclKD6FTSic8sXC1MRYGoW3z7lYZS9O71irYCenX7AapwgK1Y9G1XVxoG2LHsRbibfkYwk72EdwDFw+FdeKdX5r7d2cGQYUqM7R0qRB4ZUZYTCmdgMyxKbNCG5QuqNyIxAnnl5nVXghteYGlUBaUCgehZwTFlO50j3HUpcKmmxvpUs8nrI1v4ZgPtkXUSHInpFQ+qRMyDtpst8+T+E0GjXUsKPhuWko9fMtRVfMhgoDKgNSQZhWugpVFj+29FCkErcbDcwY+DF3qjzYZf7iqihOSrT28hbYF7EU5t1ENSbd2cZp1VBQQbq6haiHSc8n2j4hvbFN/4iLCUQy+8jLS9fA3VhC9/ompXDGz4WQy9CnHU2pPXMBtNhi/+hbB5iresm1edZpRe/wC0nfJ+yNU6OOvL5+EvZXjqbXGTTJwHGQY2ERkY5N80S3KaYzXbmK0ORGV5gc93FbjHfQjoaxbnalKwE6JjzcFgBVUVxWm0lbEXmmEUja8y3FRgYcUAq0klCXJrS2K3gDpedYhp1mn9D1E6DG9fB3hOQTry3Q+9RwqCu/d39tohVWSMr16i/j6babXbpPe2cGp16hdPIO70GLyxlXiG3fpfOpZonOnTrQexxVsrJAf9ej97jetVfAdCyTcxQ7BSpdyMqP1wjOk23uMX71kXaqERDj3xNBOu0n7sXNWADynmPlLXcrRFOm7JHd38ZcWUK0G1WQKUiEcZXUuoyn+6jIq9KmmUzuwchwMJVUlMFVl8zJubVOOZ6jQs85gSWqzVRq2oTZ5ibO8QH7QY/CVV2g+85htaEOfxnOPMfrm6+84d6bSVjwdBCRX78xBxBrGVBY4OpKiP0SGAflRD5PmNJ56lCpOQBtqF85YsJEVlj6VF9QfP084WaWaWSF+dtiz17brAJJqPKUYT9FzR6y8N8DkpdX2HA4oen381SWCuUjcFNaJTBclXrtFNZ6S7R5SjGc2zFBJ/KUubqdltxdGW3H5XFchHLsRYr5l4G1v2/db0Qv14OeLMcZSkaqKYjJl8vIlZORTf/oi2X6PbOeAyhj8hUdtqvqzj9F85jEOv/S7qMhn8vJlhGczMpgHdApH4W0s4y11kMpuG3SaW+3W6XWcWmSzRnzXhinG6Tuet4eVdB38tUXiW1sUhwOrk6oqhBAW9C51rbtcp41q1qyuKSusaLuqELUI6TiUcUx5NAQl8bodvHbrJMgx7w0ZffN13GadYG35fY/pu1HfEyDjg9Clvl2QsdT1eOrRiN/58iH9QUZRKVxHMd+cUpbgzlO/j5ODH5aD8ZEBDGBu4zMXDAscrW0LVuU4usBI2xhW0mHmNajlIwyS1I1wqgwFNjVbBnTiA1bHt4jKGa4p2BjeoJaPGAWLIGBxukM77r2jYXy3Mz/1W2ROZPURwQK92hqFcpn5DUplPzC0kGRuHTOWKCq80oqF362ifMLq+BaHjU1G4SIGgV/GrI5vExVTCukyjKzdbjPt41Q5vdoqueOTKZvhMPNbuLpAGs0saOGa3NKi5pU5Ee2kxzRcAAxhMaNSHrFQlpoE89wKq0dRurBNu1C4pkCWOUYqRuEimeOT1desSLzKUZSUxrVOTccaCV2hlQ+mQlQlSGXF28Cx8NvmYFh/+A+u6pnrOsz8d4TdElTKs3oOISgdn8REHCfaVtKx+SVliiozjGI+xZIIYzcnBR6F8imFpVS5uqBSPoUb0p3sMgvadOJDlma7RNkYVxfveZQG682mEWjhkjl1Jn6T3PE5qq0Re61725iPoIQAz7WvZ23Ufa/Xav7/itAHRxn6w4JX3pzRqCtWl3xub6UEgSQMHgQUH0b4/UebjD9cVeUF01FK5ilIUlwqNBI9tpM+t9OinExxOy3cThNTVZaaYPQ8MTewQML35tNuTXbYQycZ7kITo7UN7RKC5tOPUhUV/nIXt1Gn7NlBj9Nu4i12cJt18iMb6pXtHOCvL9u/leZ43TbFZIYrBaYo0XmJO08eF0qS3LzLNMnslFjafI5gdYn2J599hyWlqkUEq0skt7dOEoPvr2Iwwmm3oLJUCxxFlaTWHrPZ4H73O11Z+1EhlU2WNpb+okuNXOpSTaZMXrtC46lHqD9x8d2fhzRj8JWXiG/cRShFNbTJ6kJr4jvbNOo1auc2yfaPGH3rDWsb+zYnnGo6oxzHVBPrhOW0auiyYPLaZWaXHZY//4M0njhPsLbE8Guvkmzt468vIT2PdHsX6Xk2uM/3KDNr5+q0GgRrS0zfum7ftaXEzAGZqkcUgwlKhZiqQHjKWoPnuZ06p/mJgNmrR1RFQbZ3hMHgdZqEp9dItvbsVj7NEK6L1+1YqpfvET39KPlBn+jsBvXHL9hJ+HBMvn9Etn9krWensxOzAn9t0VJlAK/TQvk++VHfWsLmOQjIe31MWSF9n/D0GtV0xuTN68yu3KT+6DmEozBaIwOfajLFaTWthq8sKaZTnFqAFAIV+hD64Dnkuwc2EDGqkx32SO7u2sDEKEDnOcHaCrVHztL+5HPgKAa/903yvjVMEL5raYeHFpwHm6vo3ArgveUuzjys0ut2CNaWmLx1HbfVIO8NH6DXmaqyzZuUuAst3IX2vet5PGX8ylukW3t26/jmNYTvzkFxDa/bof3JZzFZTnBqjcXPvWid3wCd5+isoPboWbvJO+hhisJmYoQhJskIlhYoRhOceh2nbYcSTr2GLkvK/ojg1CqqHpEfDgg/9uS7vgaMMUyv3uToP/0O0yu3KGeJpdyNp6hGhL+8iNusWyqXNpgsw4lCqjixrmun1yinM6rJjCpLbXJ7LcRftLS74zBOsJk38a0t4ltb/2OBjPerD6PJOOoXvPx6j6Kc4fsuJrfslDC0HKgsNygJlbBUqmOAoaTdbvyB1HG/abQNT5MOfpnOsxHUSepqhcDVOW6ZkbuhzYHIZwjpsDDaxa/yeeJ2E6kr3CpDAkvTXRanuw/c1QetUjgIDKVwGIddlM5J3RCvygiLlEpKcuUT5DMOWhu0Z4esjO+8a1hbJRSx18AxFWujW/YNmweF5lo6VMLFq2ZoIW1glLD3U0kXAdTjIxCSzAmppEPi1skdCzKONRtSl2AMqVejEg4acWLwCsLa9qLRxobaCWMs+DJgpIOoUo5qa1TSZXG6RTF3Q5K6QkhLWZK6pBIKaSoKU4GQ1p8dax7wAM1JzJ8BreeD/PnI8/2m+idLjNKCUSlPwhKNMJTKp3R8hNZ4VWobfmk54aIqUbqwdyt8VFXAXE8iTty1ShQav5wxCrsMgwUa+Qinyh7IRnm30kCJQ+nYzYUwmkJKSuXSr6+y19ikUi6x/8719XerjIGieFj6t7UL9n2o1yCOS8aTinbN8NgjHRoNn73DDMeBpx6rPzDo+DCajD9ylvrDU1muuXQrY2c7p6oyaDYRQJAGNPZ2UJW2egclEa69DorRBKdVx99YZvDVV0h3D5Cea51/xjPy3sAKUJs12yzPErylBRY/9yLBxgq7/+o/WZrJ3P1NKGkDwG7coWi35gnDi8gwIL5xl3Rnn/yoZ204N1ZwooDxG9fID4+oZqFtgiqNcBXlYAxGUPSHNJ9+lPD0Ou5c1Gm03U5YDYewVJCd/Tm/v2u1G8ZQDieUk5kVD+8cMHrpDShKjFfZRk6CEMo6I0pN3h9QDsbI0LePx7GWpsLzbNiYI5FBQHT+9LtqLgCS29vEN7YINleJb22hy4pg3SYP5/2hpWwttPGWu8TX75LuHFB/7MHX2vTKTYrhiMX/+TMU/eGcTlUQXbROTniOnfAvd1n5P/8QB7/xX0EpS4eqKsrxjDJOGL92GbdRIzyzRuPxC3gLbaTnUU5iwgunEWBF+wh0llEmMU69bkXErQZCKkuPCkObJ9GoUcUJ5cBmFrjNBv5iB7fZILmzY49hcYEySW1WRKMG2uC1W+SHA7L9IxY/96IFNrWQ9qeeZ/LmVYbffI3s7h5GG1QtsMnywzGt555ARQH+chckFihGPmKmKHojvNVFlOtYWlndhh3GN+4wfu0SwvPI9nsYIDq9Dm7M9K0bVuPQaUJeQlOg94+sBGlm7e7T3UOisxsE66sgsM5hQlhtyalVRt96Y+68lZDu96AqKY76dpMiFcFi115Dc4OE6OwF/OVF8v2jkw2Fv75CdHqV8WtjSy0cjHBazfnmpIcKAqrZjCpJGfzeN1DNBl63w/TyDbKdffzVJWR/iL/UQdUsYBOea8+3AdmsUQ5GFKPpCcgQ0tLU3G6IGY6tLqMoMdraOtvNQUhtZZHZlduYsiLdPrQW03Nr5fDMBundPZskft/2zVSVBXSuHXrOrt9h9//770m29glWF6ldOIUuKuIbd0ju7JBVBp3mlnotQISBzbMZTawYXFf4S110q0k5HOPUonkYoA0KFG9z2hJKMfzaqzavxnUJ1ldsJksY8FHUHwqQ4TgOWfbB7DMB8rzi975yk8tX91jsNMgLTVlZMWhVGlxXEfiGOK4oq3uSCAEfpbL7bTWnbolqDiqsza4WNjOhFBq/zObOT00oZhQqZiId6tmA7rRH6tZsY240U79FlM9YmW490Lp+WAKHX1nrxVx5FNLDK2JK6aKMppn0KB2XmdfEL1Mq6dCJD2nHhw/9W4lbY7d1lpnXRAuBU5V0EgtK7uf6O1WOXyUkTsQwXGQSLiCr0trC6QKkIvUaeEVMIV1SFRJmIyZ+ixvdJ+jX1pgELYbhIhVqDk4cNAqMRhozt4QVVPOzZIxCmIpSCCrlUcumhPmMcdChcHzGQZdM+eTKuj0ZKRBGotFUQqLnwm17om2WhdAFRnpzuyPr9IQRCFOij9PeP8gTI4SlOVlJM0aDV6U28PB4W2IERkpyfKTWyLmVbumECDROVaBMiYvGlCnaCaxIvMoBgzaQuA0q6eCXMRjDUeMUC0nvHZqah1UlFNvN8xw11qinIxrZgLHfYbdxhiyoMw06zLwGJ9f7R1DvBBi2DFafUZYS5XjUa4KlRcHe3hbbWyWeXyeeNlhdEix27zUu3y7IiOOYKIre/4Z/VP/dyxjDlWsTbu+XtC+eRly7gmo5GCEZZYsUt+5QHx1gdIXX7SB9n7w3AG2Izm6QHfRJbtxFNWqEZ9YtlamqKKbxnJMuqWYpOJJgY41wbcUKfytNfPMO4cYa3n32rKYq58F4E/z1FZZ+5DOk2/tgYHZji3BjFV0UTN68TjmaYIqKdHvPBuZpm/Adnj+Fv7RgqUJ7h4y+9QbScwhPrc9DvApUPaJ27hThmXU6n/4Yo5ffIr69PTessMFfrReeovHERdx2i9m124xfvWx53EcDsoMeTr2G22lSjsYkd/cQjrI2p66HCn2Mkqh2i3Bzxb7HJtk84ftdngutGb70BtnBkQ3uu3YbMKjIZmp47SbZQY9yMMJf6SJ9l2L4YBholaQkt7bxuh2cmhUWO3Fi9RxZjvA9Zm9dJ3vuSYKVRRpPPULRHzK9cRcxlFa7Iax4uxhOcBo1vIW2dVtKM4yuUJ5LeHoDv92gGE1s6GC7QXbYJ1cjysmEchoTnloneuysdTGaxeT9IdM3r+OtLpL3h/ZzflgiA99Ol7VGOI6lWc1mNu18Pom3jXNClaQ49RrSdWk88yh7/+a/UBwOqD1+wTbJZUV2eETWG1jjgcDHX+5Sf+Qc5WhCMZmR3t3FW+oQndmwTkhHAys2XmjRaDzB9NJN8r4Ndms8eo7gzAbp3V2M0VRxChirOcjzE6vNah7mVyUp+WSKjFO8hQ5Ff4zbqlN74gKm0swu3+Tov9xEpxlOzT6mfDBEpyWqFlB/+iKNR85STmJqF88RrC6ic5sBcqzJUL5H+/s+hnAcRt96g9mtLZK7uwipUM3IhmPmBVWSkR30qe7skh/0qWYzFn7gkxaIjybIKEJFIfGtHSZvXSc6s4nXbWMOK/JeH29tmejshqUPKht6OXntsqVNnl4n3dpHKIHJKhs6uHdE64cftcdY85GeTzmLUWGAiqwNb7C+ROuFZ3BqEflRn9mtbdKtPTD6JORx+LVXyA77RKfXT2iF0pPUHjtvN0tpTuv5JxCeAwb81SVq5zZI947Y/n//G6ZXbuIvdy14bFnQm+4cIH0Pf235gY1munPA6JVLVEk6pw0K4mt38NeWaH/fcyfX33ezvidAxneTLlVVFV/7xuvcuj1kdWWZ7f2KKCxJU01VaeLEILOS47Bld557Uc2BRvUQytR3vzQnDdc8H02grbeycnDmgt1C+WhpqSiZ8nF0wdJ0B1fnzIIOrfiAzuyAqIpxdEktG+FV+Xvd8QeuejqkkfbpR2tU0rEp0E6IW+bUizFl6eAXCYuTXSrlsDLZeugWQwvJbvMMU69FM+sjjSZXHof1dbwyYWW2B8xbUFPRjg95ZeMHOGxs4FQZWjqU0iEoEwrpUaCIw0VK5RHkU2ZBm8urL6B0bsMFpQVFWkoK6aF0iWNKBC4VUEpNpSXSHIfEOXOyj0AZg9I5mRuihbSbI+WQuwGl451QwSoERnl2e6GPEaq1ojXHuRfGcJz+beZheGJuV4tQCG0tkt+bSqSRurKCdOGB0GgjqYQzFwzJE7BihEOlKkSl0VId211Rza1ipbbBSWE+JSim+FWOV8aUykdpK9l2q4zl2S5emXBUW6OeDt51M3Vcu/VTXF57nmG0TFgmlMJhr76GIyx1rXR8S/v6iADGe9X8FDCeaaSAMxshZ06v4fuSNMsY9Ids7Y756te26HYCut0u3W6Xqqpw3Xdvjt5es9nsjzYZf0hqNC7Z2U9ptRxytUF2MEbcPqCxENHq+PSX18iPdvDzAiEtn91tNwjPbOB1Owy++greSpdgdYnBN16jmkyRYYgK/bnxg8Fb6VL2R+R7+wxfsg41qlWnunYLEfgnAANAKAcj7HTTX2iBEKgopPXCU0yv3yK5vUtx1EPnBcH6CkZXxDfuUmW5TW2uhYTrKydC52xnj9n1O+S9AbXzp4nOWZenojekv7VPtHua9vc9z/LqEtnuAVWaI13HJgXnBcnW3snUtOgNrZNSkmLKAtVuEp3eBCHxV7vkB33y3hB/dREV+Lhry5YlcNi3KeLdzjxV+eE1u7nF6OuvWf//bgccx9qulrfw11cI1pets1JhKZumsqYX6fY+uixRgY9wFMV4ivQc0v0jkltbGK1tarewadrZfo/xt97A//z/ZG1DP/0xptfvMPzaa9YRCVChT/O5J5C+y+S1K1BBsLlC49knwBhm1++iwwCv2zkJanQXOkglmN3cwmk1UZ6L26gjhcAoRXJ7BwAnish29kAp8oM+ye6BtTnOCxsq6DjkoylOo25B3DRGBh6qUTvRywCYvICyJDy7jqgqysEIoRT+6hKqUSe+uUUxmVL0hrhLC3hLC1a43+sDTSvSDgLi67ctrakW4baa9vrLCsL1VWqPniO+eReTZYSn1qji1E7e04xqNEU2Irx2g6Bew1tcsJavhz2K/gjTrNnPJAP53iHZYR89jTFlhQgDXGU/F3WaQSCp4oTpq1coBxOCtSVr16w16c6BzatYWTx57G6zblPsWw3q+z10kuItdsiOrHah/uhZpHdvYp/c2SE77JMdHBFurlo6WJIxvnmX5NodqjwndS2F2VtaQNVC4ht3mF27Tf2x86goQoa+FZFLgU5zpKMo53a5VJp899BaI/s+q//Xz1N/7Dz50cBuu4zBadTxVrpIxyHZ2mPwlZeoprP51kuS3N1h9MpbxNfvINy529w0PhlqqHqI021Db4SKQqKzG6Q7+5T9IdM4xT+zztm/8FPs/uv/yOz6HetYV4ssA8Z1kFGA02yg8xwV+BSjCZNLN9BxQuPpR6zlM1bXk9zdZfj111j8oRdPNizfrfqeABnvVx+ULpWmKS+99BKzKZw6fZ7dgwIhEowxhIHAIEgzw7F2KAwdqkozS/QJuPhoFxnH09y3N5Zzjr/QGOFSSVClAaEJypRCeiCwYl3pUCum1r3HrRPkN1lI9imUTyE8KqUIquRDbzCOyzElm8MbBEVM5gRMgxad2YGdokuHQgW0kh5GKdpJ7x2uVWAD2WZeg5nfpDEHGGAtZYsqZRgtszDbf6CRLYWDNBVOmRFWCRo7LTe6ovJdYr+BMhVeESOERhibpp25EWE+pfQ8hDEsxPsWnHkRzaRHv7ZKJZU9BiERWPG2rAocXdi/mc/Q0iGXLn4xAwyJ37b0I22sfMaYE9vZe0/fcSaGtJw8S+K1PzMWQKINKIXQxma0HN9+fjwnZcxcQH6/b/L87xs4zvaWpsQaxM5fwqYCxDzDwzoWyAqbcyHAKxO0tAI6I12itMdG/zrbnfMYYWlYi7M9Fqc7CKNJ3ZBC+fhV+q7XSC489jrnid0mbpEx8xr066vkXo17e8ePboPxXiUEOMq6xzlqzqlGkBeaIFCEQUBW7/Lk44t87Okak8mQXq/Hm2++SVEUhGFIEFjgEQTvvUb+I7rUH54ajXMOeymVhtmsREdnIG0Q9Xus+THe8gJl8ClabUN0YRPl2+mgVIrZNduc1R+1tpY6SaniDFWvUY1tUng5SzBZiYysPSjaWNtVrfE316z/fZJZbrsxlEkKWU54ep14a5f8cGAdiLD2tLNrt6iSlGB1CZPnlJMZuqqQjouIIqRSlj7StJQ/p9th9tZ1qumM5rOPW+oMzBOJc2bXrGNU86lHiObhbtn+EaNvvGp1A2Vl7VCv3MTfXCG6eIbiaECyvUc5mZHcvIOMQtxuGzEYI6SlxlR5gWM00vPJdg9huUv3s5/EX1186PNQxQmTV94CIfAWWjjNOsHqElUcI3x/njcR2rfD4zyIfZtfMH3rhh2gZBnp9h7Tq7eRjmvpQRLCU+u4C20LQgKfKsmYXrtN46lHCE+vU84Ssq09/IUWslmnHFuqWHHYQygH1axRxgntz7xA7cwG9UfPsfsv/yPlZEo5nZ2E6XlLlurUeOZxm0ewvUc5iSkHQ5K7e+iipH7xDLIeUSVNVBjiRCHTK7cofM/qHfrDEz2Ev76CcB2Knn0+o7MbD1BY4ut3EI6i9cxjlHGCqSqk46BqoU2I37dJ1SL0yXcPkVFAlWQkd3eRrksxqiGMITp3mmo2JR9MSHf3rTvVQgtvtUs1SyjGM5wogNwCuXIWU8WpFWLPUtTKEs1nHj9pmGfXb1POEhpLi7jNGmWSMvzWm5iiQAYeTqNmqT3TmXXiUAqpFDIM5mnk22T7R4RnNtFpjr/SpfXxp08Ali5Lpm9dY3blln2OjUH4PlWcUE1jwlNrDwAMozVSSWQYkG7vE6wt43Y7DL/1BsnWHsr3UG6ADDyqacysP8JdsAGQs2u3ic6fwl9ZpOyPqT1yFuE66OxYb5OSHw3IekPbvNdCup/5BMGpNcQ8d8VfWnjwWk9Sht98HVMUJ685ALfdRGc56c4+TrfN6JVLJLe3bICnAKkc3IUWTqPO+KXX7SBiqWNdw+KE6auXCNZXOPf/+tPMrt1ievkG5XhGdtBD+Z5NB5/GeIsL1B87Z62ej/q4b8vsEEoSbKyQbO2R7R2dgI/vVv2hABkfxMJ2MBjw8ssvs7i4yHPPP87vfGVIlmUEvqRRd5FSoE2FMQWltRZGKsM01hTvrW1FzV1qvrN6v2ZLILXGKCsgrpQLSBxtaS1SGxK/wSRv00iHyKrCCImScHfhMQCcqkSgibIxrfToO/bx8aqM9fFtOvGh3UaEHQbREjOvhV8mKF3SSAesjW9zfzr4xG9zWF+nV1tl4rdI3Rqnh1eppyObwg3zTAc1dz6yz20pHEbREgvxnrXGLVNcXRDlEw4apwFtU86pTgTJQhjCcsYkXCD1anbC41p7X9eUUCQUToBXxKi56N0gKJWP0AWuLomyEbkbkfk1tLDuWH6eM/U75CqYu0iJudPYfZsLuAcqzLHGYq7mN8dOSgaEwghjudGI+a8YmAcNaunNtxLH59BS507ocwb8coYWLsZojKjmQMMgTImZAyZ9TMEwEmEq9NwZ1+CQOSGNtI9XFQRFTK2YoJXCL1O8KqMT79Od7SGxzmLS6BNQ+LCqkIzCRQrlE+VjRuEiw3CR3Ks9cKv/XhsMx7FbykZN4XmKek3hOpK7OylnNgVppqkqw7lHaoShRxgus7y8jDGGl19+GSEEe3t7XLlyhSiKTrYcrVbrHaLwOI7/SPj9h6T2jzK2thO6XZ9220NJn7IbMR4uso1mdSWgEQpaZpt8a5cyL6niBJ3mmKoiPLOBs9Ai2z2kSnPKyZTs4JDs8IhyEkNVoesRsgxtgq+UeCuW+9/9gU+QH/VIdw5OmiXVqBE8dg6dZMRXb9F6/imic5sIIZBhwOArL1MliZ0ouy7Ccaz9aOih6nWM1lSzxAoJXauL0GVpLbff9pklPRs2Fl+/Tf2RM0jPIzvo0fvtr1EmCeHaMlVRkM+Txk2a462tULtwhvosJjsaMPjtr5LvHeK0GvjLXTIpqMZTpsMRya0QVYtwaiHL/8tn6X723aei6e4heW+At9xl/MpbuK2mdXvKCrLDAaYoKacxtUfOIn2f0TffINvdp8oKmz0Sx0wv37DJ7GVltSJo/JUl8kMr0o3On6YcT/BXFnFbdeJbW4Sn1xm/8hbJ7gGNJ86TbO1TTRM7dV5coBxNEFJYofDLbxGsdInObbLyv36O0ctvUPTH8ywUgy5KGo+dp/WJZyiHY5Lb2yTb+5STKU63Y+lXoW8ticuSvD/CW+rScBzi7T2UX6foj7A2vatW/zGnbEUXTlM7f/qBc2a0QQjrEPZ24b630MJfW6Toja197HjK8KuvUA6sa5kuK7K9Q9AG3/eJzp8hnOtR0t1DpKdwopBka5eyP6ToGdtUZzlFf4jOC4QUSN8jOxowfuUtgs0VRJzg1mvoOAGMHebkJdVkSrZ/ZIMAl7oIR9kNjevgNOztVaNuZ3WOtOB6OGLlf/thaqfXHxD3T167zOilt3A7DcIz69bkJE6YvHmNdHufxR/5zAPnQkiJqkXIsQWFVZIipLCvz7JCdiN7/56HDAOK8RSnqPAWO+S9wXw7t4TTrFH0B/gbq7iB3RRWqc3NqT92ARWFdL7vYwQbK2Q7ByRbu1TTGFWPCDZWCdaWEEpZJ63eAG9pgfj2DsVwbE0CDFSTGelRn+LydaTr4nWauKuLSCEpk5T47g4mL1n83Kepndu89xhdxzqK3dnGX+nS/YFP0njqUXb/9X9idu023lKXQg7J9g7JdvaZXb6O8H2iU/f0Rg+8N7gOGOtUxv+IIOP96FJbW1u89dZbPPLII5w5cwYhBI89UuPNy2PSVNNtu9Qjh/UVGAwz9o8yihKSmaF8H4AB1oXqO2MhvU+zpRRUINEYPW86pUEUBYUTUArLly+NYhh28aqUoEjZPLrEKFgg9ls0kh5CaCqhOKqv25yK7IPZ1b5fhWXM2f4lEq9OIV0baqcLHFMRZeMHNhHjYIHbnUc5bKxTKo9KKMZhlxvKY310k8XpDhJD6kS0kqOTRGmASiq0VNSyCbmKmAYtRJEQ5lMEhiif4eh8nsExoJQu46CLEZJCupTKp1n0KAlInYBKBaDtB65bpohSIIUhyqc2a0RFeDrHqwoECRph3aGMIXEjEi9CoPHKnEpKKuHOc0zuJUMIY7cU5piiBFgzVxvkCMKClOOOH4k21dxtyk5dhCkwwpljCzm/Vmx+ilckKDSqyqmkxmhDoSxlSpoKt4gp3IBKWEG3sX8U15RoYYXzypTWRhfoznbZHF0nVzXqyRHNZEDi1WimQ0bhIjO3QeZGnBpenwPcB6sSDlOnziRsM/EXKByfXrRCv75O4Yb335L/HgAD7umrlJS4nmJzzafT8XCVoBY5aAPtpsv6qs/K0ttEcUIghGBpaYmNjQ2KoqDf79Pr9Xj99dcxxrCwsEC322VhYQHf95nNZqytfXfemG/dusUv/dIv8Vu/9Vvs7e2xvr7OT/3UT/HX//pfx7tvWnfnzh1++qd/mt/6rd8iDEN+8id/kl/5lV954DavvfYaP/MzP8PXvvY1FhYW+PN//s/zN/7G3/gf1mq3LDWHvRzpCGqRQkl7HhxHsrAYcdTP2O5rvu/jCyw9tk62e0i6d2gdi9pN3FaD3u98ndE3Xic/7GPyHKfVID3sU0xjENi8hNUlhO9SDsbEN7cppzMazz2B123TfPoR8t6AYjABKSydSAl6v/kV6o+ctSLbealaSO2Rs5hKE120Amqd55jLkPdG99xK7ns6q1mCEQLluriNdwJfp1Gj6I/IjoYUgxEH/+G3SW5tEZxaQypFldhE63BzDZ3nZHuHuJ0mbqNmxbgYtDGU0xkScBuN+f0ITFHgNBv4Gyss/fBnHppXcFzZYY/ZNSuYNZWdZleT2OogMOg8Iz8aWFBVC8n2eqA1Kk7Ie32mV25S9oY4y11cx3Luy0lM0R+h1pfJe0NA4C0vWNDmOuT9EWWSktzdxamFdmrfG+K0GicBb06jRrJ7gPJcDv7D/4/8sE/9qUeond1k4Qc/xegbrzO7egsw+KuLJxbIwdoywdoyba1JD/ts/ZN/CXmOWuoAwk7Gp7HdOtUi/HaL4NwG0nHJdvdtyFstwG23iM5u0vr4Uw/QhQD8pQ5IrMDefVvrJiTCcWh96ll7nSQpbi0k3FhCRRGTVy5BZT8FktvbVGmKOwepzReeJL1xF7fdZHb9DuneoX1cSiIDF1mPYDy1YZVBgJDCTvfjlNJAcGqNdPeAojck7w0pesM5iIZibn+rPBehrPmJqWwulTF28Oa3F/BXFglWl4jWVx4AGMVgxPTKTbzF9gPZJyoKCTfXmLx+lXy/h3P2wfwQf22JZGvXujRNZ2Q7hwTrS+gkoeyN5hs4u2+Pzm6gy5LRy29RTSwjw19dIthcJ7m7Y+lP8zBH6XpEZzYIT63b10DgMfz6q0yv2GtC+h56e4/ppRvUHj1L8/knGL9+mcHvv0QxmaKLArfVpEpTqvEM4TmYsiTfP8LptHHbVjgPIH07VCiPRnbSjaU2ZYd2UFFNY8o4sY5cq0tkO/uMX3oDt1XHX+pizp+iHE/Je0Oy3QPKOCE8d/od1tb3XUTv+nr9Tup7AmR8WE2G1ppLly6xu7vLxz/+cbrd7snPzm5GfP8nF/h3/2UfIQWrKy6OEhz1M8pyHsxXvBcl/p7d6Hem0/iAzZZSlDKCqkSYCmGgcgIqDBpJ6tTwTYJnUqZeG8yIcbSIEYJaOSH16lRVhqsLFCWxV6eeDb5rqQQSQy1/Z4r4/aURHNVWmQRtYq+Ommd+BMWU1Ak5bGzglpkl+eichdn+A5e1q4t53kZIN95FmZKZ3yBTdcJixtr4Fl6RMKitUMvGpG50YoXrViVaOsReg5lfR+gKr8qt8NsIMidACkmBYBy0qISDEYogG+BWGcOaTQgXGCqkDTY0BgcNaIxwMHMhNw8ke1v74XsvULsBsDIEee/7wszPogDh3KNFybnt6v20KTOPtdM5bpWSuTVKoWgkfbTjEsZTJkH3xNEKDdJY2lfh+Ehd2GPSlXXowh6G0jYFfBgsoUyB49VYG9/hoL7O7YXHyZwQR+cEZcLUa3BUX2dpunPy/EzcJrFXJ1chU69hrYXdEKRjtygn/OE/KHu2d69K2+FA4EtcV+I6gqUFj08832S566PUu7/v3B/G57ouKysrrKysYIxhMpnQ6/XY3t7mN37jN/j1X/91tNb80A/90LctGH9YXbp0Ca01//Af/kMuXrzI66+/zhe/+EVmsxm/8iu/Yh9bVfHH//gfZ2lpid/93d+l1+vxp//0n8YYw6/92q8BMB6P+ZEf+RE+97nP8fWvf50rV67whS98gVqtxl/6S3/pOzrG96uzZ89y+/btB7731/7aX+Pv//2/f/L1BwFJ3+0aTUq01qws+ozGJZ22+8A14CrBeFrSaXtI1yU8vX6SmXBSWjO9fIPaI2cJspzssId0FY7vY4S1pRVCUk0Tm1MQBRgNtXOnUKFvMwtcz/LAI+tANPr6awjfewdNQdVC/JWu5cgXJe58Si+MQU9nVEaDlASbK+Cqk5wDYQzuYsfmOOwdIpWD07aNtClLqjRn+NWX7JRz9wCnVSc/6hPfvIsQAp3lCKXmNqIjiv6QYhLT+/1vUk1jAPKjAdGpNdxmgypJ7OYl8HEX2oRnNsh7A8Iz6+SHfZt54Ll4SwtI17WWnVduMrtyC39zBXehg8lyiqpA+A6mqPCXFwnPbtB+/imml25QHA1ofewJZBBQXLuFcl1MLcTEKbTqVjA7fx9Nt/Zx2g10WdJ8+lG7cTnoIcPAHovr4LaaZPtHoPUDCdLlNCa7u4e/uoS/skg+HBFfv8Ps0nXMfDUUrC+hs4JyPOPwP/8u9Z1H6H7mBVQUku0eMvzma0zfvDa3JY5xu2385UWi86dIdw8phiPKeZO59L/9z9ZCVtnnT4aB1Vj473wdNJ5+lGBzldm1W9QeP2+3GvPKD3sIIS0FLPCIzp2ygG+5a6lcd/coxmOS3UOq8YTk5l3Cs5vUHjlLuLKEHk2p8gKv06TaWMHrtNBaYw4gWHEx3Y7Ne3Ad6o9fpHbhFNMrN0n3DnHSDF2UjF5+E51meOvLyFpIMZ5hjEBGPuVoCghUo045m1HNUqrpDFUL7f0kGcn2PsXY2kYfV3bQo5qlDw2Pc5p1nFad0euXkYGHEBKnVUcFPt5CG52XpFu7lLNkHq4HOA5uFBCe2bChlFGI0ZrxS29aQf0jZ1CNGsXRgGoWIxxF7dGzyDkV2mnYoMH07g7h2U3y3pDJG9fm7kz3XNSqJGP8ylv0f+frjF65xPSNKwjfx201yA57CAS1i2cAQbpzaBPYpSTd2beMB4GlZGUFuJLJa5cZP3Yek5dkewcIJVFRiPQcZldv0/vN37d6qqKy4FQbqthKBbylDv76iqVE7u7BM4+841zquQbNfQ8N1Yet7wmQ8X7lOM47NBl5nvPSSy9RliWf/vSnH+ru8onnW0zjkjcuT/FdyWRixa9z/ZF1pXnXfuieOPthlrbHERfvXfcJvN+17oMBQoLj2UC+qkBj5mJhjRGSynGQWYUyJY4uub30OJkK6cb7eGWGq3OaaY8wn1gdB/dx+/8AqlAesddgEC6ReA3C3L6x2DRta/CaOwGrkzt0ZgfU8wedQqTRdGe7bHUukrh1GqkFALkK2BzeoHQComxI5tWJgya5cCmFSz9awdMpbprRqy+jhUOjGOPoktQJKZ0AcGlPd/GrlJlXJ3YbOHpGrnyGUZfEbSCrHL/KcYDYmQu7DZTCtVuOE+tZMz+taq6lmX+vKuYYRKGl4IHn1lQnoOTExuwYsAgHqJC6QlEiqoJCufa5l8reo3SYBm2MtJ7swhQorefZHwavzHCMFUYWTmAtgO1ZResSqXxGtWX8MkGGyxgMy5NtjHTIpEeUjVgb38TRBX6RkDshR/V1mukAv0xI3BqpV0dqTU1PEBhu1VYZBQtkyj3ZlDwcVD+YzP1Rluta29oshclUU5YpR72ctRWfc6cClroezrskfZ8c7buABSEEzWaTZrPJuXPnOHv2LFprfvmXf5l//s//Of/qX/0rPv/5z/Nn/syf4Ud+5Ec+1PH/2I/9GD/2Yz928vX58+e5fPkyv/7rv34CMr70pS/x5ptvcvfuXdbXbRP8q7/6q3zhC1/g7/ydv0Oz2eSf/bN/Rpqm/NN/+k/xfZ+nn36aK1eu8A/+wT/g537u5z7ybcbf/tt/my9+8YsnX9+vWfkgIOmjqKoySCE4d7rGjTszev0Mz1coIchyawyy1PXptN4lpDG2wCE6u0k5HFvb8dGUcjzDGI1q1HGiEK/TopjOcDs2PTzdOUB4HsJ16P/ONyinM5TvI1wHFYWohs2CeLvVq1SK2oUzTF67QnxrG51kCNchPHuKcpZYhx2lKA77ZK57Qo9yGnXQmskbV0+2HU6jRnTuFFWeU81iMJpgc53ZrW3y3hAdp+g8Jz3oUwyGSNchOruJLssTiofJrVuT43qgK/KDnt3y1CPywRjpJtQeOUd08QyH//XLDL76MtXUpkI7bdvwNp9+jHT/iL3/478Q37pLsjPPi0gy/JUu4eYa5WyGEJLuZz5JsLFsJ8xpigwCdJZRzSfIzBQq8NCzGNWoI+s1lOtQTWOCzRW85UW8xQWrlRnPaD9+AeW5OLUId7FDfOPuCXAA22il23sYDLWLZ2zD6rlEZ9bp/d43mbx2mfDshqWnGSsWRymS7T2k41C7cJr+738TneV4K4vkgxGApWTFKdHZTeqPnLE5HUtdms8/ydKP/gDKf3eL3/vLqddY+7/9n9j+//xbxq9cxu00kY5DMRohpEP7k08jHEu5SW7vWPcpLOfeqYcWEHt281AMx6h6jaI/ZPC1l/GXlwgWO8Q37+I063ajZKCaxXgrXVStRnz9NkIpws2VuVWrQ3xrC7fVtJaqgxFFf0TRG1LFKTpOEUpQTazzWj6coOoRJiugqlCNOvVHz9vQytGEojdg8sYVgo0V5Dy8zpTVuzq92+yanPjNO5YG5Xs4UYi/uUIxnFLNYhpPPWKNDwYjyuEY6TqoMCA8tY4KLfVpeuWGdQc7vUb9iYv4cyqR02ow/NorFAcDvOUFTFkxu3aLchITnFpDNWr0f/trVHmODAO8buvkNSw9l/jGXUbfegP/1Kq1dp6Hc+bzbVbeHxJsrGGq0uannFon2dq1gFgpnNDH3Vy1W6LRhN5//QpVmtH6+FMnhgoGCDaWKdOU0StvEayvUE5i0p098qMhVZLaDWAtsoL7SpPOk8uPPwN0WZJu7xFsruGtdB92qr+j+kMBMt6+yRiPx3zrW9+i3W7zwgsv4LxLmqJSku//5AKdpsdbV0dcuj4jTat3cFXfrx52+/cGGO8m8H5YCd7RmEmFNgapC0vHwfaxfh4TlCnNtE8tGzMNWuRuYKlH8RGVchlEKyRunfXi+gM6iT+IUqYidUMyN8IrLNffIGxon3QI8ilne5dYmu1Yj20nolQubpXjz5PJW0kPAfSiZXInpJZPORXfIMombC1cYOp3cIuUo2iZQbSCn8d0kn1yt0YhHVZHtxgFi0RVjNHG0ojQpG6NSjmE2QwtFbHXQpmKUvlkykeaCq0cEqXwqhynyq0zkqkolWsdo3R5Mi2zp9ZSpqJ8QqZ8jHSshgK4B0jmwELe//1jShT3RN5GIk0BGLRyEEgqIUicwFKpgEr51hVXOjb8CTPfTmgq5VkaFsfykPm1p21jhdGUQnHU2MQtMxaSfVamd5G6ZGfpWRpJj0Y2Onku/TJmFC6SuhF+mTAMFqxdr9EU0mW7c4GD+ilyN+QecHq3rd393/vOAYej5gOC40HBvARQi6Sl4809xR3HunrFScXl6zM+9kyL5cX3/lD/oGF8i4uL/Lk/9+f4N//m3/BTP/VTPPvss/z7f//v2d/f/9CP7WE1Go1YWLgnJvzyl7/M008/fQIwAD7/+c+TZRnf/OY3+dznPseXv/xlPvvZz+Lf18B8/vOf5+d//ue5desW586d+64e49ur0Wiwurr60J99EJD0UZTnShzHbrYePd9gMMzpDXN0ZcNbPVfSaDj4/juvzSrNGL16mfGrl3HaNYRqIKMAd6mD3N6z2TNAOZmiAh9/ZRFvoUUxGKHqEWV/gFSS1seetBSHwXhueWtF2cK5l4t0fwXrNtAs771MftRHRjZ0zWk2qF3wMNK6Duk8x1/q4m+uWh79cGyF4IsdpJTkgxH93/sGweYabquBv7KIMYZ8v0cxmuAvd63rzZxqk9y1+UraGBy/spNiaR16gvVlUNLeb1FgjEDVI5TvEW6uMPraK0zfuEZwZg233UROXUxps4v2bt5l+I03KA76hJvr6CRBa2M3CHuHSNfFaUSWu99qnAArIQRVEtvpvcHmfmC56cV4gtPtEMw3FjgKIRVus4apKtKdA7ylDuEZK6QOTq+T94eE5zYYv3zJmmQoRdYbUI4mhGc3CE6tUhwNUFFIur3P5I2rJHe2Sbb38BY6qFo4t7pdJD/os//vfovGkxeRYUB0dhOUIr2zTTGN8RcXLEWtHuEE3smEWecF49euEKwtoVoNpJRWrP6Q9x5dlphK03jyImf/n/93Bt94jcnLb2LKktYLz9L55DMI32f41ZdtZsncMVCXFdK1+3ib4B0iJjOqmaVu6SgkvrVN/bGczf/Hn6QYTjBFzvTyzZPQSRVFCKPthFwI8qMBKoxJt/etbufRRcKNFUya4lw4Q35waC1UmzVrPFDkZGlGNRozfWOCikKcWojwHLLBELe01si1R86S7fdIt/YIT6+ji9JqOfpjxvEV6/DkezZ5vRYxeeMqOi+ILpzGiQLKWcp095Cj3/4axmg6L36M9vd9DCfyCdaWGb9+BafTJLl+l9nVW5isoIwTku1d3E6bxpOP4S0tWO2LFDj1iNojdpBUzmLia3dAG9yFJrNLNxh97VXy4Zjo1Cr53hFOs07tkTMEq0vk/QHxnR2E76OLEp3ldgsoBDrNyAurpRRCWkex3gj/9DpOt0Nycwuva4MFs4MjyskMFc7F/f0B0nepP3qeKknJdvYJTq0RXTxj9Uz7RxSDMfnhETq3bl2mKIm39ylHE1Szhr9pQabTiGyCujYEGyu0P/nsCbj7btb3BMj4oHQpYwx7e3u8/vrrnD9/nvPnz7/v74aB4vlnmly6PmYWGzotD20gTj547gbYnu1hieDvrA/DRb+/AdWABGXfGDAVQhukKDkWEucyYFZvMAwXkVXOKOyidEEzHRC7NoxuIT78iBh2716OLvHKzGoApCRVIakbErvWizx1IwrlkUmPo8Ymo3CBUnm4VU47PmR5soUyFa2kRzPpWzcoXeFaUhCNZMBhbYO77QtMgza1bMRCckBYJSxPt9lvnGbqt5ACcmV92wUGVea4KBxdUSgfWRVWZI/ALxI8t4YwGakT2ma9qgjKlJm6f6JpToCCmNOoSuRcfK3tB7DRKANGCLQR9ukSdsOBPN5iKI6BpTBWsH0iEMcgdUnm3NM2aOHa39XaCtrK3OIbKee2tPa/WihLlTL63pZtfsEKXeGUJZV0yJWPW2XUsglBmWAQBHlM7DcppYszF9TPd2iIOcKupEfq2NyRUvpkKiR1I8ZBG6e0FD3N/ZqMd6tvb8uhhF3wHW8T5zKXkzN2jKNdx7LTjLG5UQCeJ1hZ9vEcRRgIdnYzXn1jyGe/fwEppaV4POQD/dulPc1mM5rNJi+++CIvvvjiB/69D1LXr1/n137t1/jVX/3Vk+/t7e2xsvIgr7bT6eB5Hnt7eye3OXv27AO3Of6dvb29jxxk/PIv/zK/9Eu/xKlTp/jxH/9x/spf+SsnVKgPApIeVlmWPZCXNB6PH3q7d6tW02FxwWPvIGV1JWBtNWR5ySdJKrSBwSCn3XJJkgqMOQEbxXjK4CsvMXnjKnlvgC4KysnU2qh6nm0iRxOEEuiiQtZDhIBiMAYk/kITXWnbTM598I8n6KaqmF66iSkq8qPBO51pZjHCc2m98JS1Ix2MqCZTEBJVC61D1SS24uQ/8cOkt7YZv24b5+m1W5i8wGk1cJsNVBgiPRfhOjj1iOTOjjXECzyEsNaiUkr89SXKcUx8ewcnClDrK5TDKQhhtzPLXYrhGNkKkVmOv2oTvsVcFDy7fht3sUPz6UcBgSkLsv0+wlGML99kevWmBUSLHfLhyP5MCIzWJHd2aDz/hE1LDjxMUVo713pE2R/jrS4hfA+R5kjftRqUosTrtglPrdttxM4B+XBEWKySbtswttbHn8Jt1imnM+tmVa/hrywSnduwz4WQiMkUb3mR2sWzlMMJurIT4NFrlykHI3Bcq3M4tYYuS/LekCrLUZHP6OuvMrt5l873PQcImzvw4scY/P437XZEQHz5pqXPFSXR6XWEhP1/+5s2r0RK/JUu0dlTLHz/x6g/fsEme0+mzG5uEd/cgrJE1SJqF06z8vkfYPEHP4kuK9ympQhNL123FrF5Tj4YkV+5hRMFCM+jmsQgJcXRAOl7uK0m3kKLqixxagF5r0++c4i/3CVYW6T1wjPE1+8w+NorNh+l1TjRE3hrSxT9AbgOre97Hm+hSX7QIzvo2/Ny2MdgcFtNms8+Zk0TuGKNEqYzdFlR5SV674hs7whvoUXnxY9RO3eacjaj/7vfxF24SjlNiG/eYfzaFZwoJFhbRhcF6dYuSEk5nuEvdmg89zhVnDL65htQlgjHoZpOqaYx45ffoPHEBcLT6xTjKdnWPkWcIJW0NsKDHJOXSM9lduUG5WiEDH3C9RW81SWcZp3pW9dxO026P/Rp3HrE5PINivFtxHxrZoTAW2xTzawYXXoeyc7BPSvogz5Oo2btlgcT0MaGE05jpHKILp6mSjPywyOEkNa1ql4jP+xTjqa4zTr+yiI6zXFaTWY37pDv9lDNGiryqaYxo2++YQe32/sIR2LKChWFiEpQTGJMWSKEIds5ID/qE64v43UXcBdaVg+ztvSAQ9d3s74nQAZYoGHeZcVw/IF/6dIltre3ee6551he/uCR6ElasbObzSf7BmEMvifI8g826RfCNjF58fCtxr36TsWu4m2/L+bORCXGSGKvjhGGSdChkorMiVBVftJoOqaikfRoJ7331U98VNWJD+gnK8y8Bkf1NUrpEZQxbpHRSvr0ayv0o2Uqx6WWjajlY3IVcNDYQOqKlenW/CwYmxcCFNJjFHY4aG5SKI+omCLQ9udCUEiP2G+yNLlDLi9ggjYaiatzmwiuAsJ8wur4No4uyJTPKFoCqaglR+RuSKoCpC4RSDyd4lQ5bpGhdEHiNdDc00woDLIqcRTUkgGZ20BUBcpA4fqgK5DzF6yxKeAn180x8hP3u1JZNyljbC6GXVfcBzwNIB0MmlI5c3qVBQAnCeCSOb1Lo0yJ1qB0abcgQlAo20hUKCqh8MvZ/HAM9azPvn+GYg4yDDDzW3j5jCAfY4B6NiRx1lG6YhA02G9sMoyWAEXmeRTqw6aFvveWo5pTGu8nqx0vNY/D1JWwchDPFThKUJYGKezkOk4M7WVFs+GQZhm7BxaB3L8ZlVKe/IMHNRkfpGaz2fu6S/2tv/W3+MVf/MX3vM3Xv/51PvGJT5x8vbOzw4/92I/x4z/+4/zZP/tnH7jtw4Yrb5+Ev/02x++vHzVV6i/+xb/Ixz/+cTqdDl/72tf4+Z//eW7evMk//sf/GPhgIOlh9ff+3t9733P4XiWE4MLZOrOkZGsnoSgqRqOS0bRgMCzwPMlokrO7lxKGis21kFNrAdNvvkZ6dxenVUenGdOdfcpZjMkKZD3EXWhSTWdorfGXF2yK8yRGlwVVmmJ0hXNUpxjb15yKwpPnQDgOXqdpnXzyguTODk67STmZMb10k2x3367uigq30UC5LtRrKN+3AXjaBqaVowlCwOjlN21wXi2i8cQFipFttoSjaDz7OEV/SDVLLEVi9xBvqUt5e5vxG9eQSp742vmrSwhlgbjbaeC26rjtBn63Y4MAYU67MhSDEaasqJ3ZJNs7AgThmXWO3+yE4+KvdJlcusn01cuU8cxyxqcznIUW4alV+/qWwoIVKQjWVq2Lk+sghbRZHO0GxVEfFQX28fo+xVxr4XVaVHmGrjS1i6dpf+o5Gk8/itdq4q10qeKUwVdfJrmzg05zqixDGHA7LdK9I6RSuM0GRX9IfPUWurC5EZNL163w1/MwgxGiO0+EdiznevLKJZxmzU6o45RyMmP86luEp9dpPPsYfrfN+M1rZPtHpLsHBO0GzU89R3h6nekb15i8ccVqHaREei6j/hvMrtxk+fP/E83nHmf4jdet+L7dQLgu+WDE+F9/CRyJt2iHJaoeEl04g9tu2on7zbuYLMfkOSbwKUdjsoMjdFZY29TxDBN6FKMJbrdDeP60NTk46BGsLpLuHFrq0GPnbcDdYQ9VCzBTe279lUUSz8VrNVj47Ccpjob0b27PtSY5FBWqHmKKkmoa47YaqDCg/tg5S+PZOzq5toSwVLmiPyC5u0sxGlMMJ3R/4AWK3pDkzi7ScymnMwsQlxbQZcng919CRQGLP/Rp3GbdbhmMRkYBCINOMtL9Q5uDog3tTz5D48mL5Ed9quEYudDCX1my9C2tEa5DuneADDxcYPz6FfzDAU6zRnY0oPbYOdx6RDmNSbetJsIGafYYfX1GdO4U7kIbMKS7B+h5kKNOM5x28yRgEOxgAYm1oZ4bRLiNGunWHnnfppobAeVgglMPqT12ntqFM4xfep18v4eexBSlQTUiG4g4iylnMdn+EXl/iChLhOdZEfpcXyWlJDh32p6fqkK4LghB62NPftdzMd5e3zMg473q+MPx8PCQF1988dv2pJ/MSoajgkoL8lwThg55UREn1UP1Fm8v14EoUpSTinc3ufoI3HSUmjesLpUxIA0Tx0PqEqVLS1/RBl+nBEVMY3ZI6Qb4ZUwl1ANp2n9QFeZT3DLDlS71dExQTHF1gVMVLM92yJTHQes0q8NbJG6dXtSwKSG6YK95GlfnhGVqKUhuyGFtnanf4qCxYalXUhIWUyrl4ZQJiVdHJQPGwQKVcPB0ycbgOpOwYy1+y2IukDf0astooSiFi1/E9vwol6CIyZVHUCQUjsHgkCuBqwsaad+6VykXLRSVdKmEsm8SRpO5EaVShNkYX+cM1DKlmgMMocEIjLJJnUoXVEZxbH9rjpu9KgPpoqVLogIevI6ONR9zjYecfw8zp3EJtIxObIAxAqfMkKq6d6xCIkyK1BpFSaFcJm4LPdfKeFVOJ94ndex2AgRSl0hTcVRfxysShNbEXo1efY2J26RyXCrlUjgulfSs69Z3XApHzvd5Rs9f9/PHLcCRlh51YqojwHPvbTSUEjZYszJICVFkBd+1yMEYa+nZbnp4nocx5mQ7qrVGH299hKCqqg/ciBtjmM1mNBqN97zdz/zMz/ATP/ET73mb+zcPOzs7fO5zn+PTn/40/+gf/aMHbre6uspXv/rVB743GAwoiuKkeV9dXX1Hw35wcADwjgb/g9S3A5J+9md/9uR7zz77LJ1Ohz/5J/8kv/zLv3xizvFBQNLb6+d//uf5uZ/7uZOvx+Mxp06detfbP6zaLZfnn2rxe1/tc/X6FOVYsO97Ei+QjCYldTnBMxMuvTZjPzQsj+/iKEN2ZxcR+RS3pnar2KxTjSeYuk3/nl65SXJnF51kOM2a3WooRREnc11BdjI1jM6fPhEcC9fBrddoPPMYo5deZ/j1V5ldv0PRH1pXq3bTTogHQ2ZXbhKe2SBYXTrJEfCyHF2UHP3mV4hvbhGeWT+xOHXblrudHfbItndRrSYq8MmPBjbluj+wyeFLC5BmVKPJCW89OnfKTrEX2witmVy5RTma2ubWc4nv7FoKRhgQnT8NZYkuCrzFzjs2MuVkRnx7m3I6xalHeN025WhCvt+z6d5LHYrRxH7OaUOwvoQQwlK51pbsc7S6aC2Dd60FsO4P8ZYXCU+vUY6n6P0+tbMbLP8vf8xy8efUj3Iypf+7X7dT88UObqeFzguywx5hI6Lz4vNke0cMvvISaZzgLXYI1pdxopDRq5fs+6e0gni3EZ78bnrHNsU6yy2NTeaoeoRUDsmdHdx20z5Xm6uMX7+C9H26P/gJgvUVppdvMH7jMtL18M8vU42nCGV1HcnWLke//VXrbKYN0flTJxSqYjQhHwxssnajjn/+FOVkyujrrxKcXrN5FPtH1C6eRUXRXGSMdVkaDpGeg6rXLTACKOfp3fUaehZTf+SspdfcuGvTzxc7pDt7zK7fpfbIGZCSyVvXLTALfMrekGz/iMajZ/FXF5m8dgmdl7jtJsVgRHztDkJJ8uEY5xgcN2pE589YKriU5H0rcB699hYmyWg8/ThlnDK5fAOEoHbhNOnOgX2fznJMWeE0arjNOtGZdfLB2GbY5Dky8HEadcrBGIrSXlNxSnh2A395EeV71C6eITyzQf2xc0yv3ia5vWOBfmXtoMNTazjNOsnuAdzOcRdaJ05p5WRKfnBkKW/a4K8tkx/2KSYzq1FyFFWc4i51MaUNktRZRjmZ2ddcklkb/KJE1RXVwCakC6mQvo/f7VhANbE6L39lkdbTj6LqNWpPXCQ7GiBaDaSyQcBO01Its90DqtHEOo/5LsJ17TZnlqKaNcL1FWrnTlGMpzZIstMi2z0g2+8Rbj6c1vrdqu95kDGdTvnWt74FwPPPP/+hQq+ytOKonzGZlYzHdm6cZRqlHi7qPi4lbCOjNQxH76XlMHxkotZjLr+u5lNvhVbz/AQMjnII0xmVdNlvnz2hv0hgZXKX+pxnX6HIXCuO98vkJDPiu1mzuSOREZLSCUn8GkYIguSA5dk2fpmQK49cBQyiJXI3smAJwShcpFIOhfIIqwy/mFEqn1K5eIUFTakTUDgRzeQIZQq0UCReg0JZGs8gtHa2ndkRXpWTK59aOcOfxMz8DmZu8xpWMyrhUM1F1Oujm4RZh4Pm6fl5LfHLfK6mmNOhzPy5mF8QAo1fzCiUP08VtxeS0iWldDlO+7alwFhnG4Sx/447Y2Ps1uN4qyHkCQi59/v3fW3gJE9DOIjjRHNdWuqVtu5WUTokVwGzoAVzUOpXFrxpJJNokUG4hGsKMPDowcu4VUHqhMRO7cRVSxnNIFph6jWZuTUmfofC8fDLnEK5VO47DRc+bEl57+FLJFV5T3MhqGx2YTmnrAmIIoHnCDvVkbDcddBG0ahLDo8KPF8S+IqsMMSzgnrd5fFH6ycbi+Nthdb6BHAMBgO01rbBKYoTStV7aTTiOH6o8cT9tbi4yOLiw4PJ3l7b29t87nOf44UXXuCf/JN/8o77/vSnP83f+Tt/h93d3RPr3C996Uv4vs8LL7xwcptf+IVfIM/zE5rSl770JdbX199Bo/og9e2CpPvrmEJ27do1ut3uBwJJDyvf9x/QmHzYKi3LkE98vAPGcPXGjGbLpVFzKW/fYfbqVVrNiqbncLjVoxzv0W5Iauc2EYFPenvHagyqChxFemeX1ieeo/WpFtM3ryF9F391GYRBej5OFDC9fNOmdGvN9OptTFVRf/yitdJMUtvYNGoYbfC6HaokJTp/CipDfGeL+MYWKvRxOy3ywQivN8RbXkDnJVWS0Xj2MSavXcaY48+JB8tb6JBu7xHWIhpPPc30reuUw4ndZiwvQgz5JEYFduLsdtuU/THRuVMnzjjC2O1DfnCEatSs3kIpnE4T6buUYwtQdF6Q7h7gLS5Y7n9vxOzWXRtk57kYbQhWFsl9j3I4Jt09wO0uQGWbSOl7TK/eYvDVV1BRQOsTz+Ittklu7SBdj/DsJt7yImWcoAIPb2URJwwJT68TXTiN+7YMidnVW2S7hw8069J1cGqbVnuiFN5ql/rTjxJdOG0Ts1tNSytqN0l3D09oW7ooKIZjsv7INrzGUOUZMvQoJ1PiyzdoPPck0nNJd2wQHEKg51qWcGOVKs2Ib9yFSuN0W/NMFBsuZwPXFohvbzP8xuss/vCnyQ56ZAc9G4Z4e9tqataWSe7sYIymnMaAYXb1NsJzT5KnZeDhdlrW1jcKLAU28KlfOI0uS/v3tneZ3bxN7bFzyFqI227S/eynSO7sktzZQQY5yz/2WYRyKGcz4ht3yIcTnHqESRJ6/+3r6Lyg9sR5otPrVNMZ49evMbtxB6mUbZbn76dWV5PhNOr2Pd63228VhZSzFD3PRvGWj8gP+yS3t2zw3HSKajYtEH/qUVTkI6OA+OZddJqT3t2lHI/xlhct5UfY1bYMA5x6jfzgiGRrF6deoxhNcdpN6hdtQng1SwjnGh3peVRJaq9Bz4OioEoywmbjnkg6L8kPB6haiNtugOeSD8dkc6vrKo7J9w6pPXIWVfMpev35JszFVHpOhpCYApscP4vJDvp4nRZCKrwzS8j9PsVggFqyYL4YTVH1Gqpes62DNgjXao6k59q/cdS3VsI7+yjfxT+1Rnp7B1VvID0Hb2XRZms4ylKtHYXB2FyM/1FAxsPoUvv7+7z22mucPn2a27dvf6g1f1Fo/tuXewwmFWla4TpWpFpWhvcLEa+ODYDeVYtxvL34A1A/SMAoi3i0sR7reYJXpcRejdzxWRvdoZYNaCU9Eq/GTuscZ4/eJHd8JkGHxLPTVq9MWJjuE5XvTOn+dspgrWHt38w4rG9QOD6nhlfJZrvcqR4hdQL8MqGeDgEopd3EzII27eQIYQxTr0nmBkitiYoptWLGTussqVvjwuFraCAobZjewI1IvDq1dMRBfZOp1yTMJ4RlilPEDGprlFKxNNsFY5h5TY6iNdqzfVYnd0icGqlXI3NDMqdG4taZBB0Mglo2Zml8F0dXzPwGE79D7NasoxMGoecpjkLgVKUVPOrSZpiogALQUtkLRloQaIHBPATQ8ea2ZuX85w+6TUkhqB64lN5+Xc1JQ1UByrpKCVPZjYQQRNmY1GtQKQ9VTGxyelXglhmKilpqNSxemTKorVI4PgvjQzrJAc10AECUjXH8DlpIKmm3IJkKuLn4FPFcPC+MzRovnQ+iwXj/On5Za23/PdQTTSg81zaIjqxwHIMrHVpNQVEoZrHGoFhd8njkQo39o5zLV6dMZhWOW9BpuLz4iQ7nz7wTDByDiMFgwBtvvMHjjz9OEAQnG47jLcexjuPtWo4Pssn4oLWzs8Mf+2N/jNOnT/Mrv/IrHB4envzsWEj9oz/6ozz55JP8qT/1p/jf//f/nX6/z1/+y3+ZL37xiyei6Z/8yZ/kF3/xF/nCF77AL/zCL3D16lX+7t/9u/zNv/k3P9T76LcDkt5eL730EsAJIPogIOmjrMNeRlkZmnWXXj8jzzULHQ/RO8S/fZlcC+LmCvXlAFf7jPd2CCeHeN020nVxO21L2ZklyOmMUk7xFhrIwMfvtu1k/+wG0zev468uUsx527O3rlPNYlQYUI6nuAsd6wAkJOGpdeJbWxRHQ9yFFrNrt61z1XSGcBxUPSK+ehNVr6NCu4lwGjWqOCVYXSS5vUO2f4S/tmQTm2vRPfMHQChh77PZoPXC0ziNuqVWHQ7mmRK22XPbTYrhmHw0QjquTaR2XQTgrS4RbK6S7hww+sbrGAwLn/44TjMiubtP3h8hhUDVQ8avXEIGvnXb0ZpyPMHkVrxsSktrkq5nt7kG8qM+wlWWe55kjF9+i+D0Ov7Kks1a0JrWx56wKdnjGeVwbOlaCHAU/toy4ebqAwCjSmw68/j1K7jt1kMF1Sry6f3Xr1AOxnhLHVQtOqFj6crSXUxezPM2NohvblH0LS0o7w+RSqE6bUCgahHTK7dQjTrecpdyFpMPx1TDMd5y1/4tY6wIOE5OHJreeUwBlBX5dMj0retW/+IoiuGY+MYWTqtmBcVJShknuM06ptLMbthk+Y0/9X+xGoTBCFNpnHrE+NJNdPLbUFSkewfoPLf8/6ygShLi63dpPHERGQUo36fx5EUaT158YLs4uXyD/HBAdHYTt9Ug748oRlPiG3dIbm2jXI/w1DqTN67aFOlTa4i5bXI5mqCzHB2nRBdPW4BWaYTvAQZdFRSHI3utN2u4jRrFaIQKQ4yuKHoD9CwhWFuiGE9Jbm0TX7nFaHONojfAlPqepqC0QM2UlbV1LiuK4YRiNKEYjml+7EnchdaJY1p0bhMZ+KR7B1TDqU3MDny85UWLVwKfKs2QnkcxHFNMpshGjXI6I727iylKSw/UkO8foVp1Fn7wU/R/71torS2laTgBV9nPD2NQS01UM8Kp19BJamnhw6GlfAWBBTM37lJ12xghLFVzPMVdWrDi/LKkSnLr5JXlNntlfYVqMrOv80Yd1lesOxeGKk4ppES4rn0fC/x72b8fcX3PgIz7yxjD9evXuXnzJs888wyrq6tsb2+/w8b2g9Tl61PevDJloeWQB5I010zjiqL4YELud99e/EGGjc3v69j69Jg7rlxKDLl0iLIZreQQv0xxq5ywmjEKlziqrxP7TcJsTCs+OhmEF45PUWa4fLiNRuzWOWhsEHtNbE5FytRv00p7J9kYy+M7HNXWmHktJr6lL3lVRis+pN9YJ5vrIMZhF1VVhMWMUnmofIxT5uRBm9wJ8cuYZjrksLGBV2YIo8mkS6lc/DKmlfRYnmwT+00K5ZH4TbJsSFAmlMJhWFvC0ylHjQ3GQddSm4qYUnrUsyGDcAkjBfVsgFuV+GWKQpO4dVInROoKh5xKOCi0FVlLH5cEt8zwigwjJMIYSzey4wZsoN6xuxQ2pd1UKKA87qSFwAoqoDoe5T+0ju2UKrwqIZ9nbOg5TcnMn1OnSnF0QTM5ohQuXpXhlRml9CjcgIlp41QFYT7m4v4rdNKjB6BMJec0OwGpqjMJWkyDDhLNLGghjJ7TpIL7HLO+s3r7a+xhLzmtIcvsbY1Q+L4dSkynmiTNMUZQFFbMv72b0u24fPb7u4SBotN2OXc6ZGXJx3Uefn6HwyEvvfQSjz76KJubm/fdr91yaK1PqFXACdAoy5Isyz7UhvVh9aUvfYlr165x7dq1B44D7tFGlVL8xm/8Bn/hL/wFPvOZzzyQM3FcrVaL//yf/zM//dM/zSc+8Qk6nQ4/93M/9wDd6KOoL3/5y3zlK1/hc5/7HK1Wi69//ev87M/+LH/iT/wJTp+2CcYfBCR9lJWmFa5rr4OyNBgMSVwgr93EiUt0a5GitOfab/jMHBejPPLDvp36Y6wYOc/Jp7bRnV2/jRDSUhM2V8l7A4TnoouSbOcA5pqLcjxFSEW6tcehrmi/8Aytjz9FVZUMv/oyRht0kpIf9MB1cOdhb9oYZjfuUMUxOk4oRhOcRt1OM32fKsvIdg9xGnXCU2uku4c49Qg5F0/nwzFaa5xmnWzngPDsnC5y/TYmzXBaNmzQagsSqmmKdq1rVfeznyK5tUV2NMBkOdV4irfUwVuyQXfJ7R2isxsEK12GL7+J8jyQEF+9hbe6hLvYxmQ5KgyJzp0i291n9PIbSMexqc+uQ757iPBcnI0V/JUu7kKLappQxQnRuQ2K/ojZ1Vssfu5FJm9es85HvmubtKpi+tpl0tvbdL7/47jtJtNL14lvbpEf9Rm/ehl/fYlaeQZ/5Z51p804uE5yexvp+6haZK1X8xxvaYFgZZHi9DqzyzcwQOtjT1FOYrs5yDJU4OG0mjiNCK/TxlvqML180zpczTfeOo6JHj1HeHqdwe9/i2oys2BHWrrLcROv4wSn3UZ6jm0MBZRz6lOwvkLeH5Lu9ShnMWWSkB/2CdaX8T/1/Ek+gz9aYvLmVWZXbtF48iIYY92DpEB6ivD8GWZX7AbL0rsE7kKLoL5Kvt+zqdtHQ9R9YW0nE/yiIL56ywYGzkPxvIUWtcfPUcwBxPTSDfy1RbylLsH6qtUMlSU4EUV/bPURnoNs1KzuaDihOOpbsBX4aMfB67bxOy2EUqgopIoTSwlKc+IbtyknUzCaKs2oypLB73zdPkYMVZpaNzJH0Xz2cXSRkx32qaYx1XiKCgOr0+m2LZA+7FNOZzjtBuHmKkIKWF+h8dRFVBRZMD+Y4DZrjOd20PHNLfKDHvGNO2htMEmKqAVgjM3dmIvGw3nWSLS5Rj4cIR2FCgKko/AWOzjNGvm+fQ7TrV27HfQDws01a9TQsddwORgTFzcJ1papP3IGpGD00lt4S6t4C/Y8iUlMMZmS3NqyAYcIpm9cw+22MFmB8ByqwQin3cBtNQg2V21/4jgPhH9+VPU9BzLKsuS1115jPB7z4osvnkwIHcd5z9Tvh5XWhttbCWUJa6sBk0nJaFKSZNV3uHv47wAwHqiTDnU+CxdkXsBe4wyPH3wTh2L++AyToE3m1AiLCZVycIsUgeCgtkHoNFid3p1TYz545cpnu32BxK1Ryy0daxQs0K+tEBZT/LlDUXsOOHq1ZQSahdkB7eSQfrhEpSylKHfsGr6THnIsygfwqwSNixYSATSyIVoqdppnCfOJdVlSHrVsSFgkVMph4rdQGFLp0YtWCcqYid/CrTIa6QDH2DH5oLaCMJpSBQTlFL+coYzB1RWzoIVKSiphU7WLuUVrmE8JywmlcijmuRBro9uEOmWneRZHl/j5jJnXAikRprL0JYEFDkZjhEAYgUQTZhO0dKyTlGROlXqfl6Oxa+cS92QjorTBiGOalkOYxdSLEUprXJGSGM0wWqSSDlE2IXUiCt+nO921WxcsYMycwArJESe6jF5tmcyrzUX2BRpF6UUoXZB/aKH3B69jRzfBXJ40Rx+Vhji1lqFxCggHf65dG4/HlFkPRcgLTy/zyMUFguC9j/UYYDzyyCPvaOzfLgg/1nIcg4/dXWv1+Z2G8B3XF77wBb7whS+87+1Onz7Nv/t3/+49b/PMM8/w3/7bf/uuHNcHLd/3+Rf/4l/wi7/4i2RZxpkzZ/jiF7/IX/2rf/XkNh8EJH20x6goC/ueFyclu/sZXpnQun2A9gPyoxTfE7ZJcwPchRZ6e5eiP7KhqdMZ2dHQhol5Dt5CC2+xS97vk1y/g99dQHsewlVk+4cUownB5hrSUTidlp0T1UJMliMjn6I/YvL6FcavXALXoRrPSPcOaDz5qG1Ay5JqMMJt1FCBTzEYIyOf9ieesnOHOIaySXRuk3I0wXn2MfyVRatdmCV24j2eIoB0Z5+j35xYwfPOIf7qEuHyItlR37rhCIG72CG6eIbhV14CBG6zjvPMY0SzmGI8ZfzKZYLT61RTKzKWrosKA2sPu77M5I2rlKMJxpEkd63vv5CSznNPUn/kDOPXJOb2Diqw4XhVnOC0mzSeeZTioG+b31YTt1En3T0kub1N/fELJDe3GX7zdZLb21YIHt57XXudFsnWLoOvvYwThSR3dm0I3uYq7t1dit6QSZxiytKmmZcls6u3KGexpbYZbUX4ix1rAdwfEm6u0XjyIkIIppduoNMMd6GN3N5DSYUII9xmnXB9xdr/Som/1MGpRwQrizQ//jQLLz5/wufPzm4wef0K/vqybS539tFxOv+MEHhLbaokI7m7azM2tI3izXYPbJicMTbNuygxRUk5nDC7dtMCUWmFyO5Ci/Grb5EdWDE7gK703B7YIdhYRfnufIvinqyR/dVFvHaD2a2thyZCF8MJxWCEv/ag4U50ZoN8vw9KUE1j/NUlS1OqRWQHR2RbewSn1pGPusS3tqlmM/Ldw7neJ7Taim4b4bnM3rpuAcVciOwtLTC9cpPqoEd2cERyexuU3VoppWifP4MpS0Yvv0E5jnGadYLT6wTLXZyGTTM32iCVw+KP/SArn/9B+l99mYP/4zdBCISSZPvWFSvYWEH5Ls1nHj95/MnWLsH6Mm6nTf/3vkUxsKYJxWSKnsVz+rNElRXx9TtI1yXYWMFpN4m39lD1iPDMOt7aErN5IrhOUquXmGWoRg2nHlFNE3RWEKzYcwfgLbRpPPUok7euodMMVY/w15bJeiNMUdiBxWiGznN7vfQHuO0W/voy4cYK+XRKcTTAVOYkRFBK60in04zJmzdoPPPIO1LlP4r6ngIZcRzzrW99C9/3+fSnP/1A+uu7pX6/V5XVvGH1BRJY7PqMp9/e5F6It09a/6AAxn18/vtLqbm9jsAtE4JiCirCNRWToEWJDW/T84m4zdmoyKVPiSR2asy8FtOwTUN5tPIRXhHjm/wDH9lxonc7uWeTuxDvMw4XGdRWqA+nDzyCs73LnO5f5jgerpIuo2yEVyRIU3JUj5kGHbwyISjmDizziX2mArxihhRWjHxqeI214S2CYsrdhUe51X2cSvoUymMQLZO4tgk2QpK6EVoqmkkfLR2qeXNcKheBwS9nNJMevdoqsRNajQGKu+1H7ERPSJwyQ0sLLPwyoZEOrPNSmbE2vkMzHXAUrlA4AaXyEPPEb31Mhzq+gOacOyMkJRIlFHou3D7RYsxzNx7MVzkWP9u/YZAY5YJUyKqw2pDSOqcVygcBXplSuCFCV8RunXye5K2lC1VFJz6ilo/p1dcolE+vtopWDgaB0gVOkaOFYObVKVRAqXxGfpfMq1EqBy1roD4au7u3lzzWvfMgeawo7v2/60C97hBFHgbB8orLcrdkNDrgd3/3KrVajcXFRZaWlmi1Wg/QhUajES+99BIXL158XxHx/VoOrTWz2YwvfvGLbGxsfNfoUn/Y6+Mf/zhf+cpX3vd2HwQkfVS12PW4eUfQ69mgxkpbfV4UKnLHIStgMq0YDAsqbdh89izJ3TeZXr+NP5lSJRnp9h5Oo4534TQqDPEWW+gsQ9cyyiS1lqvjGXl/bD/YkwRvaYHaY+ehqkh3Dgk2l5m+eQ2d5kSn18mPNiinU3ScUE5issOete2MU6okxWk1oLQbEW95wdKNjKFKR6Rbe7Q/9SzpzgGzSzdY+tEfwFtaYHblBoO3rlNOZjSef5xwcxWnUSc76pNu7dgk8Y4Vj+a9AVWagTZWIJrlpDv7DL72qk0fX+6iPM/mzzRqlKMJVZoRnlrDVJpiMCDbOaDsj8FVBEtdyiwj2lylmsQnmU9GQ7C5RvPpx9BJzPCbbxBdOG0XwFlOdjjEW+pa+tZCi3SvR3hmExzJ5M1rJ25Fby9/dYnRN14HJWk+98T8uwJ/Y5X01hbCc4mv38XrLlBOpjZLZG4dK5SiHI4sr9+3mSDp7gHeShfheyz+6GfwlxfJe0PiekR9vinI++N5toWwRuvakPdHNJ9v0HrucWTgn2wrms8/iZ43pMK1jf7s5hb+Uofwgg1YjF+7fEKZQ0imb16jmqY43SaUxja5ozEq9NF5zuS1q/gbSwjHsYBFKbK7e8ggpPHUBYSQFhi++hZCyLkAukveH823S1aIbcoK1WqS7x6gi+KdjkNaU+UFuqzs9Fza91C33SRYXya+s41wFDLwbDMbBhZsfeJZms9YK+P+V15i/NIbdhNUVfinLPDWSY6KAvz1ZdxGjbxvNTEIgc4Kkq1d8oMeOs0oBiOEo6g/ep7ozLoFS57D8Buv4a+v4EahTROPbQid26gTndlk4VPPWX3QQW/uEmf1NF63YwP2hmM6P/AJZBQwuXKT5Na2vaaWF5ldvUnjqYsYBLv/6j8ipcQ9tYbQEN/dsTqqOR2uKgqcVpP46i3y/pCiNyLYWMFt1pGRbwHZ/PbWDStE5zmmqnA6LaR377yrKMBt1SmUJL5xl3B9mcYzjxHf3ibfPUB6HmWcoKsK4bjowtLDwvOnaW+sEF+7TXY0INs7tPa5s4zx3T7T60NMp8viygVEP6W7GH2kjoPfMyDj6OiIl156ifX1dR577LF3iB0/DMhwHcHKokd3wWP3IKUlrcNMVWmqDzC8F8J671tx+Ls0/R9JvQ+QmQON1AnxdE4jG6J0Ren4jMJFQFI4LgvxIfWsT9K+gAFir0mpfISp8MqMVtq3FrCOj1vkHyg6EKylrDT6gaZPAu3kiNwJGIRLCDQaSZRPWZpunwAMgEY6YHGyzVF9HS0V0gAIvCoDIRh7TYxUnD96Ey0dJoF1KgmLCevjLaJsiLTtPGABVezVCMqYxGtQSoGX90n8FpUQtMseQZWQODVyZ77arDL8IqFULqXyiN0606BlFwRC3XOfki5GKlSZW30GBo1EmYJKOcR+g9XJbaZuk8P6unWhgvtAAydCb7fMqIS0AMiLMKh7PqwnZ//tz8J9goW5ra1TxoCHVya4VY7SJZXjUWGDBxfiAxKvzkH9FKlftw5keUwnPkAIQSMZoExFL7JWw/VshJenGAQzt8Uo6lIJxShaso5TnqXGFV70NmH6R1vHGwz7mj2RIt1z/sUeSuCLOQ3Kvr639yqefXKZT3/f4+iq5OjoiF6vx8svvwxAt9tlcXERz/N49dVXuXDhwrftUpRlGT/xEz+B67pcunTpu0aX+qP66Guh7XF6M+S3v9wjiUtOrYcc7BlGlYczm9LZWEJKuH1nyuOLBdy4TDlNEFLY5qndxCgJeUl6Zwc1D8KKzmzgry2R7x2imzUrZJ3TNIQUdsrrOJSzGG+hhXRd8qMhne/7mN0CbKwwfm2I06zjdprk+z1UGNhNRprN04TFPNdCzbUUBlNVGGOpUPVmg9mVG9YB6P/P3p/Fypad+X3gb621x9gxnjjzOXeec06SySJrcpXbpTK61Q0bDRsoCHJbL3ox0A96sWHAEGAYMPxg6MH2gw0Y9oPdhtpwW5BLVkmlGkyJUlUxk0nmfO/NO595iDn2vNbqhxXnZCYzSWaykiWyzA/IvFOcGHbsiL2+9f3//9/Tfeb3Hztg2ZUthDaM3niH5PologsbyKRBuXPA8M/ewi6048LzKI8HlIen1HlOeTQgWl+hGo7Jnx3gd5tuMa0NCOFiMquK/OCY7NEOxeEJIo4WA1xBEDdIrrkd59kHj8DfwWRuF9dqTT2e47WbhMtLzO4+PKeIgyHacpIQW5aYosDWmnqeEX/GTjuAUIr86AQvaSyM7Y6jIqIACy52uKwpBy7lpxyMCNeXSa5dREjJ5J2M8ugEr9tBxiHVYET28BnBUpelb7xK0O8tIm+P3fSq2yY7OKY8PCV/sku+51KvZOAjpKQ8OiG5dpHowgbJ1YvEFzdZ+sYrJFcvUBye0Li0xfiN9yiOjskePKM4PMVvNeh87UWS6xeZ3X3E6M13yfcO8NPMNa55hp7N3SZTI6TOc8zeEdL3zj0DlDXp42fU4wl+v0vQ69B64Sbzu49cg9rvEfR7AOiiYH7vkduY1IY8CkhuXqVxddv5Jozjp8yf7DK7+4jZvYeEy30n1VpfRnoezdtXqGdzFw87z5xcDHe+N29cwWs6H1zv6y9jcmfw1mnO/IMH2Frjd1skvWu0bl9FJQ3q0YTs6S7po2fUM/e67dEpIgrcjrznORXyYo0YbW/hP3ATtfjytvtMmIWXRAo6L98hXFtm9J23qNOc/q9/nXo8c+dBXhJf3iR75j4r+c4BtnbclWh7nfH33iffPWDp17/uzP+LKGg9nVGOp6goQkS+m0gAtqrxGhHlyZD00TPXkAXbgMCkBcmty9hKU+y7uFw9mTtSeTNxoQl1jVAKPXMmf1NXBO0m8fY6qpkwf/ce8cYq0VrfJU2NZ0QX1qE25DsH6MncTdWUcv6V8YTWCzdRly7zbO4zKRRepw1RzL13hxzkd3npN29y5WLyU2s0fmaajNFoxO3bt9na2vrMf/c87wt7MoQQXNhqcONqCRZORyWzeU1ZuejxHxdfa+3ZYuZftjzqM0opLAEzv4XSNcZU1NLjqL3FJF5ic/yI9vyEpJowiUacNDc5TtYJdUEnH6KFwgqBtM4YZPCQn9Of4ZsSI+T5HvtZCWvYGtwnrlMHfTMljWKKb8pP3FZgWZs+o50PyYImwjqfwzxokwcucSquMlrFEKUrVkyNsjXRYuGvgNyLMFKxPXzAabJOJX2iKqOZnVCrgMqPOSNqlkohtGFz/oRiAQcM6oxaBszCDsaCrwsqfCoZYaWi8mKMrZF1gbGQ+QlaeiAVjXKK0hUzv4UwmrDKeNy5yTBZddOCH/ysWuHM0lbj65LCjzFGn4/J7XkS1Q/7kNvzf/LqkmaZkkYKozwqIfDKimY+pEpWqVTENOwyDzuUXoin3YSqCBLyukk/PSIPEgKdUesAWc2ItDOeZTJmFrUZxSt4i4Yo85vMgzaVn3xpHozPWwsYKb7nDoF0NpRzZo3R4CvwlCBNNUqJBX7Eo9sJUFKgpM/GxgYbGxtYaxmPx5ycnPDw4UPSNCWKIrTWTKdTms3m5/qizfOc3/md3yHPc37v937vFw3Gz1lJKbi41aDTHi9mhJZGK6Re3aT57C5eXeLFId70kGh+THV8SNjvILdXsMZSn4zwopDw8jY2y2k+f4POizfxex3qLGfwT1+nPBmB0ZQnbpEeXdlGxRHl0Ynj89y4zPzBE7xmA6HcYilcXyYejJl+8ACv7Uzd9TylPDqlOh3BUhcVhwjfd9G2y11HSN53UtOD//X3XdrSxU3iTpOg38WYiwS9NsFSF3BRspO375HvHmKKkuzZAdJXqGYDv9VENSRIheo0kXHk4jCVQiUe9WzO/MOnWM/DzDPCzTVkGJyzHiwWGYb4DWfWxRjqLKWeZSRXtqknMyyScjDEqyrKo5bL+p81mL7/gGoxSZFhiK0t2dM9qsEIv91aXIstQbftdP6fVcZSHJxQBW5iqxK3uD2L9lRxRDmZkz3edQu7VpPWC7cclRpov3jLme8HY2e2DkMaVy7Sfunm+aK8cWWb9ku3GX/n+2AtQa/jErL2jjF57iYQRlOdjhh+5y3KwYjWPCPfOaT98m3aL90m2lgl2lil88pzrP3ffpPZ/ccc/e9/hJ5nNG9dJVxfxlY1o++8A9oQbq876OP6Cg3fZ/LePfIPn2LPUg89DxEEVCdD6ukcsTCTl6fuz36nydI3X0UIyeSdu4QbK/jtFnqaMrv7AKsNyS0HIKyB3f/P30cEHvHlLUyakz7dw4sj/KU25f6x8zOcDInHU5q3rgAQrPTp/erXCJa6DP7Z69i6pnnn2rlkCwBr6b72EsHSEpO33qdad/6NoNsGKZk/eEr27IDWCzepZnOQEtVq4IcB1YFrMoTn5Irp/cfumKwsIcOAoN+ldeca4doy9WQG1uJ1miTXL9G8fQ1TlOQ7h87HIB1l++N+hPzSJoe/+8fE2+suXW0xVch2Dpjff8T8/mOCJRd9HF/YoI4jd44EPibNMc0Kr9vBFiX54fE5nbxx5QJe6BNvr5HtHTK/99hF4vbazsORxAT9X3YBC55yVPZaL4IQPMKVPkIJms9dJ95cZfL999BZSXJ1203fhmOUHyCaPn6nRT2ZUw3GmLxw0ErPI768zbP1O4ynltWW+/4D6DRgPjjhg/eWaSY+q8t//uS+z6qfmSbjxo0bP3JS8UUmGVVlOB6UjEYVSsHViw2Weh5Pd3KMgWYj4+S0Zjz78eMMazViIUH66dcXbGakQnsx49glGVmjmflNmsUYvy7opKeQCXqzY4aNNdKwTQYk5YRGOWcWdehkpwjcNMP7nE1cKx/RKGdMoj6NcoLAkgZtojqlnx4S1RmV9Bk01ni2dBMjJEk5oT87oFE5KZUHNKrZ+Z8Beukhu91rPOrfpvCTRSrVhGYxpJWPmERLxNWcZj46TzjydcFSekSlAnxTkgcJWkiS0t2m8CLysMOR8OlmJ0RVRlSmLKXH7Le3GDWWKFQCaKxQKDRaW0op8YyH9CV2gXH0dEU7O+XK6fsMGys8XbpNf76LtYJ53MWcpUV9qvsCKz1KLyaqZnhW4xVzZlHvowSYH9VjLFgRwlZIDAIHKsxVjJTOx6KwtPIxSpeM41WMcN4PX5fn/ol52CYuJ+R+i7jy8aqCQdxHmZKoyNjpXeegfREtPeJyQhE2XcJW2Pl85+OXXFKA50EQuGYj8JyB3pMfSSGFgjh2XUhVGaSSbG9EXNz+tJxCCEG320Upxc7ODleuXCGKIk5OTnj06BGe552nKPX7/c/0WRRFwV//63+dwWDA7//+79Pp/Ms5Nr+oP18JIVjph1zYjM8DQLyvdine8zFPnqDmp6SDp5AITFnSuHKBxuUtkJLJWx9QHg9oP3fNaZ6Fg7rpvGT+/gOyZ/tIT+H3e4TrKxD6SN93DIm1FeLNNVSnyfi77xD0u+dMC+l5NO9cw+s0GfzTivmDp/hdN/EQvk+0uQYY0AarayZvvkedpijPI758Ab/bInuyS/m99zDTOct/5Vcxb75/fv8AwvfInuxQHBwTX9xEBh5eM3GcACHwl7ro1CXmeJ0W1hjGb32ALQq3wzrPqfOMaGOV9ldfQPk+w3/+hpPrlBXWGMKVJZe8s3uEv9xzoMK6diyGNEc1YmTgUY8n5PsHpE8PsHmO3+85MJ1S+L0WpqyYffiEoNdDdZq0bl0jurLN7K27+P3epzYEsr0DdJoR9DoLg74rlTSoZ3N0URBf3qb3jVcRSjD49hvkC1O+293vusjXyZT0wVO6X3+JpV/52iceRyrF2m//Gno6pxqNKY5OyR7v4jcb+Fe3KfaP8bs9GpcdvyLfP3Y8i41VDv/+H6Bnc9ov3cZruY0JFYU0tteJL2wS9LuLaRXUeeHwQJ6HtBYhlZM2xRFSKPB9VCPGazcRwYKM7nvoPEdqF70brS07AvuHT/GaCc3nr7up2HgGCMqjU1QSE1/ZJn+278IE0pT56Rid5bQmjo5OXaOzHL/hYoLL4wEA03fuY/KCYKlL8/ZVuq+9hFos+Ed/8j2yR7t4LZdypmdzZBTSev4mk7fuIjxF48oFZBigWgnl0Sk6K0g/fML8wRPywxNMUZJc2sLKGm9Ba6+G4/OJVD2eolqJk85J6SZFv/pVTFa49KWyop7Omb5zzxHC53PC5md7EOppigpDkptXPuFTkL7nzonTESqJ3ee4cB4Jf6mHCAL359glLWqtKY8GLmZ4ZYnuay+jQt9NSLBMT0eUByfEV7YRSjp2R9Jg+u59rNZE2+vUs7l7Pxsh9WRO48JFwuUes3uPnBxxmmHywk2S4pBgbQW/08JWFdmzA7ylDo3Lm8jQpdAVS2ucTg2xB8dTd+0MPEESxYTTE4pZyt5B9pe/yfhxO4ift8koS8O796bsHxYoucAQSMHF7YhGpBiOSvo9H6VmpHlO9SPW1UJo/EChF7c5S4/96dRPMC1Z5EFruyCYKYVRAZmAg+5FkmrK06UbaOUBgmY2YpKsMGyskXkpCo1fFyzNDgk+ttj/cRXogq3RA45a28yDNggXfbo62yWqM4yQ7HWuMEpWFtOHmmG8Suq3uDi8S1ylsHi1Z++oBPbbl7i/+ipaSpJiQuWFDJI1djuX6GUndLNTjJB0shMujB7SLEYMGmvE5RzP1FQoJkEHicUIgVYRS+khpYopvBgrJFdO32Madhk2VqhkiBYOWKeMIajnVNKjDDouuUvUeLpCKxezF1RztPQ4bq6Thh2MlGRBm1nYpvJClDULaOLHz+VF9yAERipqFQKGPGiC8jiXR/24DXRbI02NlZLAFHhFRRkHCGux1qLqkv58Hy08DrqXHT9DV4uWRFBKn8xL2O9eAyx5ETH3GlR+g+PWRTCGg+4lwE0Dxo1lNJLaj35E4tUXL9/Bi39sSQG+D72uhxBQlDVnMb/VguiNcEo0Yy3ttkeZG3xf8tVXOrSbn/3VNp1OeeONN7h06RJXrrhduO3tbYwxDIdDTk5OuHfvHkVR0Ov1WF5eptvt0m63qaqKf/ff/XfZ3d3lD/7gD+j1el/acflF/cVWGEiiQKI1dNof6aDrW7eZBl3G3/pTdN2g2Yxoxb7bOfTc7ZLrV6iGY6rhBK/bBm3QWcHwz77H5K27mKygcf0iwvfwkobb2dxco/+NV5GNiOp0yOhPv0++e4S1xslvVpZQgY/0PRqXtvBaTU6/9WfYsnbfr1FIeXxK0O/ReukW8w+fkD3bRwUhot0g29kjfWxQSYNgqcPsgwd0X3vJyZny4lzrXR4NsJVGtnxk6ON32nidplsIjiaMnuy5BWW/i5CC9OEOQbd9LkNR3Qqv1IQrXbIne3jtpjPDzzNHFlcSrR1TIrq0CUJQHJygkpj04VNUktD75qtkzw7cIjcKEcJiBJi6Qvoe1uIMv9OZm5AUJeXBMtXGGuFiWpA93SPaWEEuwJr1ZEb24JlL52lEWK3PYYUAXjMh3z1ChaFbqI4mmKxgfv+Jk0RtrNB+7joqDqnHU5Lrl2i/ePsz1yXxxU3W/upvMn7zPUavv40FZBxSHpxSz1K8botqMEbGIfVowvA7b9G6fQ1TVBz+w29RHJzQfuU5kmsubc0usrvFx64bep4RdFpw/SKzd+9h0gx/1KSepdiqwl9qO4/C6cixR7R2oDdjz/+MEAT9HtVwRL57iLWw8ld+FRUGjL7zNvO7j7B1RfZHfwJS0bzjdvyD5SWwhvndBxSLyGPpeRSHJzRvXSHaWqc4OCZfGKuXfv3rxBfWz30c0foK/X/1m2RP99zi2mjiy9vE2+uM33yP4T97A6/doDz2HTV7MHYSpeUeIvJdE11W6OmM+cNn+P0OCChOBtiFDMVqF3giD0+p84LG9hrp42cIKWm9eJP0wVPSx7tYoxFSYvKS9PEOJi9o3r72qfe0ODxBJREy/MhrWM8zysmU4tglb1nl9PPT9z4kWOk7P0RZ0bh6CRUFzO49xO+28PsdkisX3WvqtgiWXRKb0Q58qIKQpV/7KkG/h8lzsp0D4itb5HuH5E/2qaZTiqMT/G6H+PIW3QUscv7wGXg+XtdDhW6KUx6eMH3vPuFyH1uVTgZ4eAKlC3Hwkpg0bHFwZF0CpT6zgVoCD3qlZM23DMcldW3wfkj64p+nfmaajB9XSqnPJZc6PC7YPyhYXQ7QxjKe1ozHJf/kWzOWuv6CGGy5faPNUi/gwaM5x4PPXvV4Ujn5+cKbK888vF/ya/tzy7EWYD43+7cL026Hk+YmCJgFbUovpj/fp5kPSIMWhRdS+AnTqMc3P/wH+Kb4Qg/ZqGZcGtxdLN4hrLJz38U8aDOJl2hng3PqeFDnjOJlRvEKjeoJGij8hGG0RO43UNay176MwNBNT1HgfAOddTxdIK2hlQ9BwLixQlJOWJ3uUqqQWdjFYjlqX6T0QqTRjBqrBHVO4cUk1Zyl7JhLo/t0s1N2OlcYRcuACwRIqilaetRevIiEFS7ZQ0gqL0BYkFisFOReg7xzGYyh9GKsECijkcZQqTOp1OKkOTtTrFmkTSlK5ePybM9u8znLgpU+tYW536RWPmbBrNDWZxz3QFiiYkqpQrTfoJWPQPrE1QyhQtKwizWGVj5yCYvKJ6qmzII203iJUgawSKrSfuCeJ8Y9T/kFnusPKSkWib6fo4x1TIyitLQTRRxJ+j0fT0nGs4rp1LEyGpEiCiW6sviB4JXnW7z2cvd8JPzxms1mvPHGG1y8ePG8wTh/blLS7/fp9/vcunWL+XzOyckJx8fH/If/4X/I66+/jud5WGv59re/fU6u/kX9fJbvSzbXY967N6WZeCglODjKePosY541yIM1mrc2OegK5o/fw88tscqxtUb6imCpS3k6RucFjSvbpM8OFuwIQXLrCo3L24u0oSUslvTBU8LVPvUsJXuyi1CK+NIm9XjK6PW3iTZXaT13Ay9Z7IjOU3q/9CrFyQCqGhF6lKcjx1qoa6rhBJ3nzqtRVyjfc7IZISgXcp3Z/Uc0b15l/sFDVBJjjaEcjhBRiNWafPcYr9OkeesqtqiYZk7yFK4vk1y9SD2dIaRwZOfp1LE3agNVRbi2jIoikqvbVKOJI3hPU+b3H+F1WoTLPVSjQTWeUOwduYW0kMSbq9iiojw6wZxtHCiJRiIsBBurVOOpI4v3u7ReXEP4Pv1/5euoRsT8/lOat6/gNWPy/RO3mLYWr5kQbq8TXtygHk0pDo7xOq1zzkI9mbnjNnKshPjCOvHFDeYPnrkG7cPHzkNx9SLBap/m7WuOYfJDqrnY8S6OTxl//wOq4ZR6NgetKQ9PqQYTF7Wa5vi9Nl67hQx9ZwQ3xoEG45Bocw3VTNxO/cTR1IFF+pEiuXkVm5dkOwfOq9PvUhydUk1mKN8nvLSFmeeYPMcag6kq6tHYmcc7bbxm7BolJSkPT0guX0AlMSd/9Kfkh05mpydzvHaL9PEzR1vfcMdcBD7VcOzYLgupXnl0SvfrLxNtrJBcu+hSkTZXEcoFB1htHDSy3cR/4SbtF26eH7P5g6eM33gHGflE2xvn53n2ZI86y6kmM5fw1Uvc9fV4QDmaUh0PQCmEp5xPpCyhqqmn0nlDWol7n7Vr2Kfv3HWE7KsXzpsGawzVeMr4e+/jLy8RLn+0QWStpRqO8Tqd83jecjBi+t6H1JMZXjNh/uFThv/sdYTy0GXlQIh17fyCWYpOUxqXLtB97SWKA8c2ch6eNjovmLx1l+GffBedlZiycNPRy1s0rmwTX9yiODql/6tfozwdMXnjXeZPd+m+fAfVbZI/3WP4Z2+515/nVIMxQq0vZJMtqrfvYuYZIo5Qge8maAfOp9O8c4ODo4KTScBGD1rxR9fF+axiPw+Ia48VIX5qXsu/fE3GSUEYCorS8PhZymymKWvD/Yczel2fTjtgPKkxtkZJwWuv9ni6k3J4kjOeGsryTLeiqBZm0zMyuP7Su4uz5uLPqXVXHm7cIkC4L90iaDKJlticPMJayIIWk6hHZ36CrysqL8Ra8KqcqE5/okhfgSWq00/9femFWCHPGwx3WzcBSYMmFpiFHXa61yiVSz46TVY4aF8BLEZI4ipdxNcuEqmEky0pqwnqjHG8zNpsn8uDu0zDLlFzGy0UrWzIpNFD6RqJofJimpNdQuP4IWfPJdIpoU5o5QNq5TOTLTK/iRHudclFN+nrgqhKKf0YIySVCqiVhzCG2gsxQqJMhRHC+bvl2SMsfrUGrHYaZSU/FlP7GbKqH1VSYqyLbS28BK2Uk2dZgVYN8CyFl+A3SjSWWgXYqEtUpdReg9KLUEYTVym+LpEClNbUi+Ss0os4ayqMWDRCwPm5+SVMM4xL3T3vwzzlGokf9rHSBvJCgzV4SuL5glZDEYYSJUraLY+vvtwmDj3SQtOIFL/xy32Sxqc/T7PZjNdff50LFy5w9erVH/tckyQhSRIuXbrE3/k7f4d/+9/+t3n//feJoog7d+7wV/7KX+E//o//Y+7cufNj7+sX9bNZFzZjRpOKvYOcWhveuzthntaUpaVTaQK/wmv0mdiYh396n62OQS1ou6aoiLaXXEa/kIz+7HuYWtN++TZes+HibiWoOKb9/A2mb98DIVz8bBQgrKCez6nTDF0W6CzD1prm7atUwwl+u0nzzjXGb7xLuLFyDm2rZ3PKwZjx6+/g9zqYWhOv9t1EAYvJS+qsRBcl8w8esfIb3zhfdONJ9CylODpGoAhW3EJrdu8h4UofL46IL2wgpELnBeXJCBW65KTs8S7R1hoyCFBRSD2cUmQndL7yAt2vPO92wF9YIlzpkT58hikqhFcutOEhep45H0S37UB0QqKaDQTgLy3hr0qC5T7x5grTd+5Rhymtl2679KGidAyNVoIpCsrjIcu/9Ssu3WqeOY39co/Z+/eZ3X1E67nreI2I/PCE8ugEIQVeu4VddvLUxsWN8ylH8+Zloq018r1Dxm+8s0gDazB6/W2yp3u07lz/zEhXwC1IraU8PnVemKUuejJzSVuTIXo6w0onp0gf7+D3WiTXLhGu9kmf7DF/+MzFsYYBjWuXGP3p9xzZOQrxWgmyEWHmqeNOXN5ChYFrZGqNrSuCS9s0b1xi9t4DqkGOKReSqSynGI4Qj6WjrpcFMgqJL22jmjEHf/8PKfYO8XttBJKyNugsJdvZdzHmeYkMfYw2Lp1qNCFYcjGzpqwWUyKJqWtHvN87ZP7hE8rjgUupakTEFzfd+7CQhZm6Zn7vESoKkeFHspx6ljrJsLVUpyPii5sI3xmh86f72LLEIpCexWss5EppRm0cN8pvtVx089RBAbu/9Cqze4/pffPVT0wlhJS0X75NtrPPyR//Ka1bVxdQuoBqOCG+uHW+N3jG/NBZTrix6iZ7D545WranEJ4HdtHQTTOyR7u0nrtB/9dfw+u0HE+k2ya5cQlT1kzfvcfg22+4KSLgtZqUJwPq6YzyeEDzzjWE50B9q7/1q7RfvMXe//d/pzgdMf/T75E92qGezom211BJg2LPhSyYsjr3MZWnI1SzQePCBqaqHYxPKNKTCafZnEg2nMzurIzBz+foTo/dIdx63sdTf8mbjB8nl/I8j6L4fLvt1sLeQcY81Sz1PKZzTVVbjo5KjIHN9ZB5ZhgMKorS8LWXezx6NubP3hwjF9MLvfDlGgveT+XYf8lmcuU5J6xVlH4ThGWYrBLVc8JyjhGSUWMVLQN66RFhlRIiiHWK/RErXb04MT/eMPywqhEgFGKhKfvBNbSWPoEeYxEcJxvUKqCbHzt2g4opvQgjYGKXyPyEsM5dFK/0iKsZaiGuUh/LFPZMTS874TRZZ2V2wGmyxlCuUcqYZjlGGE3pR6yO9miUThKmEQzjVaTVCCyFiij8BlpKhDUIawl0QaVCrFTUXoAwNVb6aCldY4RrWrRUWEIWsAv3pKz5KJrW1G6BfmaatmcpUWextZ+j07AO6udVGUiFEPbcTG7V2cTBoqVE4yPqCoukUhFa+UjjgGNROSeqMsogQRqN9QSlDJx0C2BxPKz6gfjCL4kBAR/JoNSZFcX+6ACGPIO6srRbgvXViDiUeFKyvOTT7/msr0aAYD2KuHwhYnX509G68/mcN954gwsXLnDt2qdH5T+qtNb87b/9txkMBrz//vtsbGzw5ptv8g/+wT8gSX74Tucv6me/wlDx4p0O3bbH//aP9zk4zOl1A9a2Atq9beqHD9jbnRBpj1KHdGdTOi0fneaUx0P8XouN/+e/TuuFW+ccApPlpAfHjmxtLTIIFgZszeTtD1xyklTuV2PQaYbOCvx+l1TuEa4t03ruOsn1S8jAZ/zm+2RPdheTAMesEL7nTNlC4McRckEQN0WFBXSWofOS4vCEcjih9cIN/KUOs/uPyZ7to4uS7leeI7l6EZ3mTN+9x+Sd+6goJFzqoBbJVtVkhox86lmKaiWYokLFEfHlLfylLrN37jG/95Der3yV0Z9+HxVHJNcvuwXi3iHF0QA9yxyFfDAiXOk57bh2C1Gv26YcjFBx4Jo1XVGcjsh2DjC1ZnbvEViD30zId/ZRSYzf65A9O6CezJBR6CYRu/sIBDL0qacZ0aaiefsa8aUtdF44cGYYMPj2dwn63U/IqM6qOh1htUGGTq5myori4JjydMjSL3+V+MLGp36mns7Idw4QvkIlDWQQoNPUvafTOSYrMJ6HjNyEOHu0S7ztAij8bovy4MQ1Yb6HasTgKUZ/8iYyaRJtLiOUIn3wjOTWFTqvPocQUI1nzJ/uOWBgv0txcEJxPKCaTDGVm2jJMED5HtYY8v1DwvUVWs/fIN5aJ3+yz+zd+4QXNzFVxfSDR9QjJ1ei1i5RbDLFb7q0Iask9dTFytuqRoUBQqnF7v+EcLXP8E++50zwyz2k71PP5kzfuU81mrL0q1/FSxrUkxnlYER0cZNqNMEUzuDvknWso3PjJhuNS5vI0MO8YxwVXEnqogRtUHGEjS1+FLnXWFduulFrqtHM0eGx6Cz/xHuli5L5h0/AQDUYMbv7CCSEq336v/FLxFvrjL/7LvnuoTsfxlPCtRUwhvzxLqqd0P3KC5iqotg7pHHrCkG3Q7576ORTG8tuqqYknV96xflF4ojs6S7Z7qF7PlIStJuuWY8jNyXKCtLHu4RrfUzpNkFNWVGeDpnde4Rd0MvBUs9S6umcYGOZejwl390HpJuQ+T7xxS38TpPG1QsES11Mrdl9+wmmKWjZOU93FHGo8DFEoqax3MLv9clr6LZ/epH0PzNNxo+rz+vJWFsOebabMZrUtBI3Pj45LZlMK5KG4uA4ZziuaMYKz5cUpeHBowGPnk3wfd+RhRfICCndYqj4/AiJz1k/pbSqs4XsInK39EIOW9s0yjm1DDBCMvebFO2IRjFlKT9G6JrSC5kphbCGuJwhseRezEmyziBZB2BpfsDqdMdp4IXEN8X5XrdGMI6W0cpDWk2pIoQ1TMIlWgsDdu67BVknG1B6EVnQIi6nWBzIDyy99IhhvIywjvmQLZqPpXyfbjZAABrJMO6zOttnEnYxQjEL2+w2L3DS3ib3YwQWrTxOmxsoU7M5fsjm+DEAR80tjptbjOM+WkqmYRctPIxQLpbXGKyQGKFQunIxjdY4+J+omAdu90pZi6dzhAkp/RBjBViNrF3zYBbjR2U1WkjXfFkDtsaeafBwpNIzY/cPLSHwdElsUioiKi9YyLrkx37uLApNYqUzQktTEZUztPJRxuLbGmlrNAIjPYxSlDJeNJJObmeF/6U2FZ96KRJaiTs244nB81xD/8OmGWeRtUpCEkmuXUloJR7zVPPqi22iUGGMpdX0iKNPP+/5fM7rr7/O1tbW55pgfLyMMfytv/W3+Na3vsUf/dEfnSffffWrX+WrX/3qF3zlv6ifxQoDSa8TAILbN1r0ewFSSUyxTD05Rd97xFQr9OU72OAEMdmHLKfz9RcI11eRcUS0tozf6ziGQ8tJX4TnLq2mKMh2DymOThC+R7DUQ3oCr9XAZAV1XmB17WJKe226r710LjEpjgcUh0dM3/vQya6scP6F2jjYWFE5eN90DtYi4xAhJFZrZFAgA4/Jm+8tUn4k3oJFECx1HOhPClQS07xzneF33iJ7uofXiAjCwEHSOk1H1o4j0MbFYm67WFmwqFaTejIn6HXovHKH6fsPKY5OHXSw2ybo94gvb5MfnlAPx6SPngEW6XvOf7CQOVXjCcXpgHIwxNSW8mSAasTUwzFeKyHcWiN7uo+1ltad61hjmLxzj9Gffp/s8Q5gz9aqIAXl6YDu117ASxqoOKKeZ+S7Rw7gt4hT/Xjlu4eUp0OCtT4qjhFKOnLzhQ23iHznLsFan+p4SPZsz7EawgC0oZrMSS5ukR+dYrRGp5nT7wuwVeWul1lJeTpChj7j77+PrirC5SW8plt8T969R/503yVitVuUR6fUkynN56/TunOdejKj2D10fpeiJOov4TdiUIrs4Q7UNX4rQWfOLO5FESIKkYGPtYrk9hWCXof46gXmHz7BVDXK9zG5mzSZvHQMFgH6sKTYO0Jdv0TzygXSxzvoaUo9nlLPUxqXt53UbufYsVImc4SSROsr58fT77Twmgnpo2ekj3Zo3bmGTjNMVROtLBFtrZI+3nWQQuW5S5fW6DTHu5S4iNUFDb6ezVGtJnY2B2NRjWgB2TOYWlOOpsjwZCEj1G6CuKCtn5XRmtkHDx2luyiQnreABjrmiylKos1VZOAzev1txq+/495jIT5BZZ+9/yF1XmDmGcXpkHB1GQHO3K4NQnmYrCBc7VMNhhz9o39KcXgCUlDPUsSC9u0mLAKvmaCzHJmF5HtHCM+nmqfM3r3vDPYnQ/JnB9TSPUcRh9iyRtU18dY6uijQ8wxrXdhCfGGD8mRANZkR9HuOWxLHTKsALmyg91KO5o4h5jUiOjZhPfTZ7oSf8KV92fVz1WR8HrnU2mrI+mrEwycpVe1MsYNRSRwqsIY8B08IBqWhEUmqKmc8zUkaDYQUFIFhOK75gmm5X6D+AuJwz4B9wiMPW5R+gtAlVki0H1NaQ6VCBIZS+Hy49ipRnSKtoVFMWJofst+5wn7nEkbIcyN3WM7o5qckxYRmMaFWLjZ2FPdJwxZrkye0ihnKGJJiyjTsMA27WCEJ6pz18WNa+YBShW7HXEhKGTGO+0iraRQTShUS6oJaeBgv5sLwLu18RBE0mYk2g2QdZQ2jqGC3c5nMS/B1wWF7m5PmNlE5pVFnTuJkDYUXM4xXmHsNCr/B/ZUX3WOUc446FyhV4NI7sHi6olY+WNDSQwuJxBJVc0frBjxbEZY5vq2plY/EYK1rTHxjMAKUrjBYauljzqcbNQKBsgarS2rPZd6fG36wP0ITadFCkXsJCIUWvvu5T0iYFi7ojxnP3UDF+U7iaoZFYHANyyzqYqRPfdZgLKZQP80GA9ywTRung5XSJUb5/sKDUVhKfRbW4BoL312DyArL/lFBI1YEFxIuX2iwvhL+SKPaWYOxubnJtWvXvlAOuDGGf//f//f5R//oH/HHf/zHXLp06Ut49b+on8U6PnUT8jj2kIsRmwxDxOYG4tEOsqqZT3JMXxBf2CDaXKVx9SImyyl2DqmnM8LlHvV4SrS2fN5gnN+PTKmnMxdxWZWodo/84Jh6NEVICZ5Cj2dMvv8esw8+pPXcdXSWM/wX30XGMY1L29TzFL/bQnqKyTv3KE6H+EsdyuEYWzuQl7UWnc7R85R4e5PG9YsEyz3aL91yps9ZRu/rL6HnKcX+Ef5S5zzdJ1jpu2nDhQ1az9/E77bJdg85+F//ESppYI2meeMK0YL4XA3HLhmr1cAUJe1XniO+uEm+f+x8InFEtLGCqTXZ0z3iC+suinc0xW83Ua0mejJDdproWQYWvEaD4mSA8HxkFLmkJSkRShH2uxT7x3jNBJPlDP6PP6MajWlcv/RRIlOakT3ec/KdBx38RYStiEKSW1fwWgnjN945XzSC2zUuDo8Xnoj5Qnb2UQWrfbKdA07/+E8oDgdgDaoRY4cTZh88pB4MiS9s4HWajN+6SzWefTSX9jxk5GOtdmleFzbQaU72ZI/5/SdEGyuIKMRMU+KLG+fmfGsM+d4Ryvfp/8YvYWtNcXhCNZmhZynl6ZD5h0/Qown53gEyCvA6bfR0Tj1Lz2VOdZoTLHexlcbvd2neuMzkrQ+QnqQ8GYCSBMs9qvEEneUI30MoD2vNAlanUd0W/rJjg6g4diDK/WPCtWXC1T6T779PfPHTUx6hJF6zweCffmfB7Jgz++ChM4/fuAxSke8dYbIMXZSUwwnSk4Rbq8jAw1dNt1g/GeC1Gkjp2BEuJjlAT+eIOMBLGgil8NpNVBySnwzOE8zOqh5MHN19OqM8GRCurmCrknIyQYYB4+++R3L1Io3L26z8VsddcN58h2hrnXI4oTgeOimYMdTjKeVkCtritxKC9WXirXWSa5fw2gnDP3nTgRe/8oK7bj3dx0pB0O+4GN2jU+RgjPAVXruFKUtMVWJqzfSdu4y/9x75032az7k4Xi9poOuaTEiEABH4lAfHhFvrWK0xQmCzEqEU2dM9N2U9GSGEcOd0s82gUPTDiJe/sUyWa7JMU5SWotQEgWJzPfrMDbovq35mmozPI5f6PJOMwJd85cU2k2nFwVGO5wnKIiQKJe/fm6GtRUqBNpYsy0iiikbSpNcNefosIys+egxjAbOQDJovw/D9F8jbOF8sKoy0IH2wGk/nxHXq0o6QzKMOh2aLleke0hqyJOE0WWPQWMMKUMZgEUzDNruda2xMH7N9+gHDZJVZtERYzplHbcIqo1lM8E2FspawSvFMTTs9RmEI68zB9nDejGYxYrd7jVIFjOP+Yplr6c2O2Jo+pZaK0ou5dfhdBIJp2GG/c5lmOWVlukOtQg5aF5hFHZrF2MEIpWLUWKEqJwS6pFI+hYz4cPUVcr+x8B1YVucHdIoBp3odJTwEhqhKqVSANgIjPLdrIlw2k11MCDxT4Vk3fdDCTVW0WITKSh9jnReilh+jxp3FkQmJMRYjPbwFsf0jmdTZrot7nM8qqxSa4BxA+OlyPqIz8B9nx7zOKbwGXp1Sy3AhWStIyimZ36T2Y86J4z/lBgM+ahgakcDzBZ1uQJ5rprPaadita0KkdPG12kLoucSryaRmNNV8dcnn9o3kRzYYaZryxhtvsLGxwfXr179wg/Ef/Uf/EX/v7/09/viP//gLT0B+UT9fVVSWXtdnNtc0k49dEoMQ1jcwxodas/68pbuWnMPFsCHVeIopK1QrIdxYpTgd4i109dYYdJZjshy/03YQMQv57pEzZkr3nSCVmz7YWjF7/6GDcJUV5cmQ1p1r1JOZo/yeDKhLjddpo05GJK+95BbNVUU9np7LgqLNVVov3kTF0bleu57OmT947JKlwgCdF+iDCj1PqcczLBbVTKiHE+eXaic040skNy67CUcS43Va7vbTOSLwSa5dwBaVk89ojclL5ydIYoLVPl7SoFzk/wvlkdy4zPT9DymOB84QO0tJHz6jPDoluXkFGfhul39zFQyEG32oDeXx0JmOj52OPVhbdo3d2sp5gwHgNWLi7TWK0wHhWp/Oq88jpEQoidWGeu5kP/nuAfHCeGzrGlPVmLLCazYWEyO7WLC722cPn1GeDmndvobXbJz/u4hDiuEEU2taX3measGoENogooDqdITOclS75eDCAkxekO8eIj1FmuVkD3dY+zf+tU+QnoWUhJurTL9/l+GfvEnj6iWq8YT5w2dM3nyP4uDEeVEaC1p3UeI1IhrXL1MeHGHLCtVuumQyrWlcv0T/117D77YJVpao04z64BiT5Zg0c1ySqsLUtYM6NhOq0Zjpex8SbawS9Hus/NavEvR7qCh0dO61ZZfeZPlM+Zmpa9Knu6SPdhYsiC7R5iqT779PNZ6QXN4mvrBBcXJKMEvJ948wdc3sg4dUgxFe0iDodZxnJQoJLm6jC3e8alOBlNh6kZ3oKVQjWngzUudlWcQpCynJ9g8XkwKJ3+s6uV+n5aJph2Pyp3vM7j6icdmxbDqvPucmGUpRD58RLHXcFCQvnC9SSEAjopB6njH+/gfuuE5mBMs99Dx30NubV6hHE+YfPiHdPXDTx6rEGAOVoByM0ZMZXrtJ68WbBMs98v0Tsp19kAKTF6gkJuq2CTot0sc77rOcFdiipJ5lzqtpNNWJ82SoOEDPcrKnLlp/fPVrdFs+CJcymSQ+SeLOtfG04nRQ8M2vLuH7X36q1Pnn8qd2z19yfRFORhgqvvZKl3c+mLKzl1FrS1YYrIWljk8jlpwOZpSVJAqbjIY1SggQUNUfS5CybvmnxEdRqz95/UUC/X6gFlG3aKhlSCUrtPTJmyHSWsbxMuO4Tzsf4uuCzE+ovIiocs3INOwsJh81tRBM4mVyv0kjGyMkhFWOEYqT1gaNOiWsMyKdUQpIqjnRDyRXaSAuJsy9JqUfEtYp86BDWKWLxblGiIBudkKjSpFW45mK02TdPUdTMYmWyMIWQZ0ziZeYBl30Qi42D5qURiN18QwMuQABAABJREFUhRCCWilmQYtpvIyvS8fD0DXxYkJRS9/FvQqBENLJCDB4usSrCyoVYaUgmY+ppE/hNxxPQzjTtF28r7UK3DRAAJiFF+NsSgFIA0hqfzGJALA1ni4X0bZn58fiBPz4wthasHrRCIgfYeNY/JtxfgsbetTCI29eQGIIyjndbE5SDzDaUCmPUoZ/oaC9sgBdWwIfikLjKYFUUBUfTTE8tUCIaIgiifIUF7Yi7lxvMp1r0lTTaX/2F2Oaprz++uusra1x48aNL9RgWGv5T/6T/4T/6X/6n/ijP/ojbty48SW96l/Uz2pFgaTZ8DAaRuOKTtvJbKWnMNJnVMXc2hJ023MX3an1eWa+DAJk4Ii/vW9+hfThE4rDU0zuNOHS92nevkY1m5PvHGDyguzJrltUhiFKSmxdoWcpasld/OcPnjoQWRw630WnRfvFW+i5i8xECoaNCD2ZuxjXMHQfGAvCWoTvUY+nmKyg2D8ie7qPM4U774eTc4zJ9g4RQpJc28Zb6pE9eoqpNKf/x3dIrl8guXbZmZnnGfGlTUyaU54M8ZKYcKmLKSr8ThOjNSe//22Ko1OstW6BV9X4/S7JlS2wUBw5wrUMA7K9I+rBiHBz1enYjaVxeZvyZEDr9jXiS5vku0cUJ6fndOR898AZcdeXqcYzbFURbjpDtqlr6vEMnWUOADieLWJGlyj3j9wuue8jfI98/4h85wCZNIg2VvCaiTO4JxHN29eQvsf03Q8pDo9djGqtmX/wgOTmFdrPXceUJbP7T9xkYTACa8meufdVxhHxxirl6ZCzYA/VbEBRQRSSPtpBCEG0tU5y6xq2rpi8+T7j199xi+olx9zRWc78/iPSh0+YP36G33yT4vAEi8Vrt+h87XnSR7vM3r3vJFZxRDmausSyCxvEl7ZcytjpiHqWsvZbv4rfc/fdfu4Gu+X/RvZ4l2Clh2o28MoSPbeUwynKU0TrywjfI9pcw+KmOUG/h87dddxf6oCUjmwu+FRcMEBxcEL2ZI9wbYVoex2pFK3nr1ONJwy//V0m33ufcG2FfO8ArKX71RdQceQW5A+e4XfbtF64jVDCkeb7HRrdC+hZRnX/CSr03eaflM7n12kBAq/TonFxk3h73TU4cUT68Cn5/pEzescRdZohAx8VR47gvn9Mvntw/tzDjRXCjVVO/sk/Q/gu6tnWFeVkhgoDZBQicMZdFUXg1czuPXKN06UtrLEUJwPiixv4nbaTpWUF/sUtVLzYmMgL56OqasL1Ffq/8jXHq+m75DaTF+iiwFQVXruF322TXLsE2rpme57id1pElzYcV6OssbrGlNbtiCuPWoWMJzVXv5aQrjY5HZYoJfCUpKoMFku76dP6IXHvX1b9XDUZX4T43e8FfOXFDr4neLKTUhSaJFHU2nByOqOqPYLQ43RYkheWLP9IGH6e5mU/8u/+5FOMLylB6suoxRdB7reQaIx1i2mhc7LALdiFNUziPlp6tPMBtQzQQi2SnkCLkNxPCHSOT4WxCmk0UmoKr8E8aGOEpFSB21v/AcO4QTBINni0dJtaefRnzmiVBmOM8piGPR71n6NRTmlLj3fWX0OiaZQztPSQ1p0DZz4KD5gFPZSpCOqS0guwCGohkTJAoYnLOWnUI/cbZH5C7jecH0RIrBXU0qOW/mIKoZDWooVECJ8qjMBqAl3SyYdUXojWHlYISt8H6Z17IT618LcfP2vswu/xkf9B1jnKakcJxzUg5yXcz3D2ixAYGXzyNp9pGj9rUCS138AYpwtGCErpJFZT4dKzauU76ZXyQRh+2ufoWWqvMS5MwfMEVWmJmorAk6ANnu84GFEoqbVFCBcv24glly8mXNiMODwpGU3qz9SRZlnGG2+8wdraGjdv3vzCDcZ/9p/9Z/y3/+1/yx/+4R/+Ijnq/yS10g9pJh6NhsfhccHxSYHFgpGkMiZMB/SeHvLe20coCc1GQBQC8zlLv/YaMgoJlroEvSHJ/+WX3aJl75B6niGlREY+TAwiDDCz1Jm+wwBblFjAGo2/1HHJS1lGORg5gJ6QzmB7OqI4PqUezxCeIlxbprG9jtYanafkByfuPLcCtaAig3XG4JMhXhIRXdwke7RD9mSPYMmRhuvxBL+/RLi6TDVLzw3C5cnQNTrGsPLbv0768An5zgFVXi6Mv9IZZ7F0f/lVxq+/jckLoq01iv1jxu++S/poF1uVJFcvEq6vnKdnNS5vubjbzDUsjctb6DQnuXmZfOeI7MkzZBAQX9zEayVM37mHzguiy9vEjYjWCzeYvvsh6f1D0oc7hJsrFLsHzpciJLooSB/tOLjcaIKezVGNhgOXRSH11MnJ9DzD5gVeO6FxddtB15Y6zN6/T7Z7iN/toPo9sh0nRzJFwfitD6hnGemDJ05m1kxoXNhkXj6mHE+wR6fIwCffP3JBHb02KgwwRqNTR3KOLm7SeeUOweqyk2l1mlTjKdnTXfxeG1trpu996JqKRRpZsX+EwVLuHuL3l6jHEyyCcHMV/fCZI5unGcIPiLYcr8JqB6tr3r6KKSpO/uhfuKlaUTr5URRQz3Jk4Dlide4mOV6rQby1gQgU8eULpPefMP3+XaTy8NsJpqxRjYjm8zdoXLuIBQb//LsujMD3XbRxs8H4e++TPtlFBD6zDx4SrS5jjMEUJY3rl5z8qKwI+z381T5eFNF6+ZaLgD08Jnu6h2pGXPl//7+Y33vM5O271JMZ8cUNhK/wex28pIHXbjoPULtFuNpHBB5eq0X/N36JfO+I9NEO5ekYU1UI33PSs6f7TnK0sUK0vuK8Fx/bwJa+T/ulWwz+2Xeo5ynVcIKt7bn2wEXpVui0wus0iS9vURycYBYpZEIIMBYhJV7XAS1VElMcDwiW2piyps5dHLZqN/FbTde4AV7HNRTVcIxAIDyP8ugEv9/Fa8b4Kz1avsJoQ/e1F9GjKe0Xb7smPM/RZUa0tkJy4xJpVqOHmqTfYuNyk/5SxWBYUlaGTstjqRcwn9c/FTbGx+vnpsn4vHKpj1cUSjxPsLocMptpqrLkZJCC9IliB/HRWiCVJcvczywipZ1OvNZoozA/+mF+RP1LnF78sDrbcdA1YDAoQFJJn2FzHT0/JvdiLIKZ3yYPGuRBQqEiLBB6EwQGqSsKL6I/PySqUgbJGoUXu0W+aFF4EZvjx/j2k43hIFljr3sZrRS+LvFMAUiWZ3sUfsIs6GCEIg0STpqbLvq2zl2Mqa3ZHAtaxRgtJZXymQUtjBS08hnGQpGsuhGiVBgJsk5JgyZGKGrpOV+CUFicD6OUEVr6+Do7z1Z1MbYSWIyPTY2RinnQctG2EpdCJSQYjbL1YhLhfv68zjwSQiKMi9Q1gLXOHySkwi/m+DbFWpjE/Y91uGf3dZZCxWcoqSyfOMcWxnJlDFosPBuLVBowYCWl9CjjBdFUCNckfWKKcfYZ+3LPW7lQY0nh0qQ8T6CNwArDeFqhjSGMFa1EkecG3xPuy19Ylnshd240uXMjQSlnftX605/KLMt4/fXXWVlZ+YkajL/zd/4O/9V/9V/xB3/wB7z44otf5sv/Rf0MV7fjc+lCwr0HU8JAMAOm85qqNBQ0uHjyOnbylPriFmUQMR/PCEeHtCngW9/B1jXR1hqmqhFKEm+vU4+n2LxAhAH1eO5CIKKI+eEpqtXE77WhqjG6xhiLF0fO1zFPMWlBeP0S+e4hOk1JH+5gjXayFm0oDh1jYut3/u+07lzn9I/+xMXieh5eJyHfcRn5OnUXtWCtj/Q84ivblMMJs3uP8LttB23LUrLdA7fDfnHTyZoWPofG9Uv0vv4yJ8Dk7XtuGBv6C5bCCn6/Q3r3EV4zofeNV8ie7XP4e39MPZ4TLHfRWUm+f4RcRNVmOwdYa5DKLTv8pQ69115kdvcRtiiJ1pfJdw+o56ljckhACFrPXyfe3kR4Cq/VdLvA05Txd9/Bv99ANZ05HGspHw0RUiDCgPLolObtawgpmL57HzPPaH/1edqvvkBxcETzzjWXEHR4gvQ9Jt//gHxnn3Bj1Wnk379PORhjipLyZMj03Q+xxhBvrwOCejRxHps4JlzpMvqT7zuJjuehPEW41gcs9WROORgRLPdpv3yHcN0xmtQiXUm1GpQno0UDlLkGQxuyR8/c5cNT1POUfO+YfP+YarWPCEMn9cpyvO11wrUVsic7jP70LUSgkHHoJEH9LoNvv4GKAmToM33/AZSa5NZV8p0DF8nqe1DVhP0eKokohyMX67u77+4rifHbzXPvRTWeMn7jHbKHT6kGYyf/CnxkI1pIeobkzw4J1/p4jZh854Bs5wA9TzFFBdZQpylCG+Ir20SrfXRekD87oPO1F4jWl2nevEp5OiTeWqf94m36/8ovuSni7iHj7723eO/an/osp092idb6jnB+8wqmLAnXlp2HqOuaa8B5S546sj2ecoloB8dIzzUwfrdN6/mbmCxj/niXYvfQRcg2YqrRhOLoBIQk6HXAWieNLKrFfedEFzZcYpox+N02OsupRhPSoTOmCyWxdY3XdKliQi68YErRuHqBydsZ9emI1vM3XKLV/jH1aIJqNWm/dAdTlgghqGYzos0VZOiTPniGimOirVWwltZKh17cJhchPSXo9wL6vY9SpNJMY4yl8RmR719m/cw0GV8W8fvjNRhVPNvL6XV9ap0yn6esLjcYTSDLNHUFtTafoHifRWoKDVIq7E+86PoZbDDOSgoMPliDtcKlQpmayosRscbTBVp4HHYuUks3MTBCIqxg1FylKDO0knSyU5rZmFjPyL2YNGyz37pALz3i8uA+y/ODT8jMtFCcNNbw6pzEGkbRMrOgS1RnzBpttFSEdUFcTcj8FspU1Cp08qtqxjDZYKd7lWARHWuQzMM2wlpyPyayJVE1p/SiBV/D7T3UKkCjzjPLtRTUMkAZjRESKyx+XRKagrnfpvQiNAIpF4lT1iCtA/IpUxPUJWApdQnSGam19LHnkbQsphgLMzU4071cfNw+FvFbeTGYEmVqhHVMCH9hQDfqzBz+I9/Mj/3e4hl3H0pItPCxoibUBVLXzKPeRw2FlD/EaP6D5+yX03QsJrjnTYIUUFWuUfA8S7/nGDaehKw0tBKfbttB0u7caLK2GqKkoKoMQohPaueBPM954403WF5e5tatW1+4wfgv/8v/kv/8P//P+cf/+B/zyiuv/Lle6y/q56ukFFy7lLCzN+fB4wKt3flXKI0elgRxgOhfIbY5dnJCfXJKXhjyaxdoNqDYO6KazqmGToJUHZ0CgnCtj55nqFaD7p2XqOeZM+zOZujZfKGFN07moDwXO3v3EcmtazQubTH6s7eYfP8u0db6x4ysluKoxqY5s/fv037lOVrP3/hID57nzGePsGGIajYIpEL6bmEhPY/mbbe41GmGLSqqeYqI3II03z2kPDhGtZrIMKCepeiipB5NWPrGyy49p3QmU6/TQkhJ+uAZSEmdZgxff5t6Mie+suVCLpqWejiGqkI0GvjtFu0X7zjZSuATrPbdTn9tGP3Jm4Rbaw5s+OAJxTxzqVSz1KUQ4SQx6cNnzuPhSScbmUzx+11sXYFSFAfHBKt9B9q7+9gt5owlW8S+eg9aNG9dRUUh8/uPEXeuY7IMlSzh99rMHz6lOBlQHBxjy5p4e8MtNO8/odg/QkYh6uYVVBwBoGcp1TxHnIVshCHN21fcOuJ0vJge5FgDwfoy0cYKZ9/pKolRjRihHXPB1jXlySk6y8n3jpBJjNdwCVQmK9x1Oyuopilxt4VOHZV68tYH596F6OKao2GXJbY2ZE/26P3yV1ALz4ffOyVYd9O0oN/DzFOXNFXVDlg3GOG3BNHaMvXCS2TL0jExFuV3WmRPdzl5+y7Lv/FLxBfWyZ7uUQ0n5Kcj8r0jvG6T5NYVghUHLS2OTxm/8S5eOyFc7SOldI93OsZkBdEF15jX05Sg20LFIaZ08bRCCMKVJcKVJZp3ruEo8scuzll+dP2rhpMF5NKlADrZ2WOSaxepxhNsmlNVFTIKXZJWmjF/+AwZhUzevUe2c4DfaRJf3qZ5+xrR1hrpox3aL9xkfu8JQjnpokpco1ENJ+QnQ+wCrVDsH5H3u8jInRuj775D/nTPRSGPxkQrSzSuXXaAyzCg2D2kms2pRxOq8ez8nApXlmi/eJNhlmGNJVhewmu3CJY6NG9dpXF5i3qWMn7zPWZ3H2GKCq/VZOlf+boLVYichFO1ErbvnbKrIcv1J8zdWluGo5JL2w3azZ9eshT8DDUZ4D6k9hMSk4/qrMn4eDLEj6uTQcmznTmT6YBAFWxtLTGdGSwlZWURCBbx0J8qizOgfnJx9XkXXD/DDQYsTL7SJVChMRa0F1ALSe7FhLXFCEUpfIzwsNLtxAugVDEmdItvT5dMGkvsRtdoFmPWxk8ovYiTZJOwyojLKY3KsSksUEufUvmUKmTcWOG0ucGed5VWNiDQBaUfsz5+4jglwkNinRejuUariDBYMr+BMoZmMaSbHnOarPOse+18qiJNTeo3yf3ENSJSUSNcg2G0m3JgKbwQiXXDBqGo/YC4Sonr1C3whaIWilBXTlJmLQbozQ85aW3h1TmVDCj8xPE0PusYf+LPH/uoCXdrs7id9mLM4rxX1mklncH7x53nH/93N/FwExXNGVpbmBpflxRewzUYgi/ov/jzTTk+LjfUBqIY+k03RTw+qSgrdypaI/CUII4UUWR56bk2G2shYSA5OqkYT2qstRSlZXsj+sSOTJ7nvP766ywtLXH79u0v3GD8N//Nf8N/+p/+p/zDf/gPee211z73z/6i/vLUYOSuCa+92sUYgTWWJztz+rkhOPEYrFyk2QcePcSzhnhlnayymMSQH53iZTnZ033kQvevGjHS92hcv+R2/Ttt7N4h0eYq1Sh0i7pagy+J19fxl7uYNENkEj2ckD7eweu2QUqq4cSxAKzFZIWbakQhg3/+XcqRy+M3VUU5GJ3r1JvPXSdc6jB56y6mrM6NxSoK3Q5zt83s7kPqwQgZRYTLSwsquD2XS+nU0cXnD5/Sev6623n/WOmsQMUhOs3Idw4o9o8JljpOr87Z9RxUM8EUJfV0igwDt+ibzMgePaOazEAK5584OEF4imh7g2xnn/pkiN9t0XrxJtH6MvOHz7BV5YBuzQb6yR6mKKjHU1JtwJPnkh2Tl1TjKTL0CVf6TkfvufcGYzG1dgvxqna/f7hDcusK7RduousamxfEF7cQvkd5fMrs/QeIIMBoQ3k6JNpah7qmTlNMXjB9uo8M3TSpODjFbzUIN1coj4foGahWC28RvyqkM/pXgxGtF25iq4riaOBkcUcDsid7CCVpXruGzjKyZ3vYsnIqi8BHp5lLupICK0FPpojAp/vqc0Qbq05G1O0we+8+9XyOyfLzJkMtmB1epwlKEr90C/vP33QSvVaTcHWJ5u3rNG9dZfq99/C7TYqD03MYJIA1lnqeYxfZ/uFq35mWdw+o5xmNaxfI944dtX15CSEEOsvRaYbXbZ6nQYGjyZuioDg4we+03TV6cW7JMPgEUE/nBcXeEXiKcjh2DeXGKl4UoBcG9s5XXiBcxOlWown1eEZ8+YI7357uAuJ8wicbkfPuLHUdV6KsKIdj8oMTl4J16yrC87DaEF/eZPq99/Faibvf6dw1SSdDB5lsNZwX6N37LP3KV8ge7wIQrPSx9x65pjtJsEVBfPUCMvCppnPKxztOFvj+h06utgiVkL5H96sv0PvGK6g4RkaOon5WXqtJuJB6ze8/pnH9EiKKmMxqprMKk4J/fMryakLy/ApP9ktGo5IoUlS1pa4MG2sRN65+Mk3tp1E/U03Gjyq1kPlorfG8z/e09w9n7OwesbYiuXn9EsOR5s13xsznDjqmHE7gizyLj/3+hy24fsYbjI+XUmAlGjDWOL+w9BfNQAhSOKO0UWi1YCsgsFrQKKZYK8j8JlJXNPMRhRe59CVdste9jkBw+fR9Ki9k0FihVDFHzU1yv4UVgriaEVUz5mGXwsY0iglSFyA9Si9AS4/CT9yOPx7TeIlCRfh1QSBd0tLyfB+DYJisUwv33N3EwKViVSLCSrUwj5dofAzyPDXKYj6Kp9WVe93WgFRuRiAkBg/QzMO28zJIHyENQlgXICUEwlqs+PhI7EeYs8/+3kqMis7+AFiMlY64rb7oR3Nxp2LB3BAWjMZDumbIa3wJ6VGfPv+lUJ+YBH68FhYQ/IVXva7BakHgC0fh9VzKm9aQl5rD45JW02N9NUAbSxQpnr/V4uAo5+ikQklYXQ5ZWw1QCzrp2QRjaWmJO3fufOEG47//7/97/vbf/tv87u/+Lt/85jd/wuPyi/p5r/3DDCkFScMtxopcU5aWRigJQ8W4MKSZIC5KRL9PECjyvCI/nSCPDmk+d43k6jbl6Zjk+mVUEmG1dYZUpRi/fddRt60FbVHNBuXekSNtNxvOI1CUdL/2Eq2XbjF590OEMfS+8eqCvj2ASqOaCdXpYBGNKwhXekSba1SDEdU0JblxGS9pEC73UI2YcH2Z+YOnbsdcCrfgDEMaFzcYv/4OttYkVy8gffe66+mEbOeAajBi/uAxwlek9x9jjaH93PVPRIM682xMNZ6iZ+liA8NNc+t55nZoRxNk4Dlad1ZgyoLx9z9g+r6TL8nAkaUBvFZCsNTBlDXN52/Q/dqLFPvHNJ+7fi4XqRb3m1zaptw/oRpPHcugKhBC4vd7VKMp2cGxS+BJG5iDY6rBGNWIEM0G6dNdMJbk9lVkGFKNTx3QbjhGtRKizVX8fs9p+LXGaOvgh8EMiori8BSEwGs0ODPUI0Epn+jKFiqKKA9dAlTzuauYrKKezSgOT92EwnfBAsFqfyFb2ie5cYVoc4UqzZ3nYKlLcTJwDJHDEwcwTBLKoxNM7Yjb0vexC4meAIJel87Ld/DaTarByD1/YyhOhgtjNAT9Htx9RHk6ojodQuWkfghBuLWKLSraz113UxNrKAcThO/hLYzjpqrJ9w6ZvnuPepoyfecejWsuKlkoDxX6BL0u5ekYrCXf2cfr9VysahS4aUUzoXFl2/FDjk5QnbY7p+MzKVNO+ngHEQQM/+wtx33xfYrjU9dseQoviSmzgnzngOTGJdov3Sba3iBc7X/0obbu+qwin/bzN5BKUCySykxVMXl7F7Sh89pLxItoZp3lbiL5eAe/16Hz1eeYvXPfpWm1G0ze+oByOHam/iR2cjZjkEFI684NqumU6dv3XCx0p42uaxdQYNy0avLeh2T7x0jfpzoZYIoSLQST77+PLSpkM8EUOXoyp/Pai8gwJFhZ+szrmhCCzldfoJ6nzA+HHJQxw7l1m8fTKSbPafQucbsX89pawsFRzizVBL5gbTVipR8S/BRTpc7q56bJOGssPm+TcXIy5IP377HST2i1lzkd1jx8lDKZajzP7bBMJobPkHZ/zvqshuMH//7noIRwBFojkLUzPJZ+A41EWgPCoBYmSG2dhCyqUiKdUXkhQTkh0DWTuEdYFxhcOpRvctKgycPl57FCnE8Vxo1V5n6LsE5dspNyxmqlS5JyyqyxwtJ8D7DMgjZqMTEZN5YRRlMFAcNkDSM9knLKNOwyCbuE1ZRmPqaWq1Shv5BCeQicod+rC0JdkAaBez5C4NcFnqkppEehQgg7FF68iLA1KFOijNNZVjJC+x5a+hgUOpB4ukKqGms9LI7KLYxeyLIk5wlTnzJTfLwhOCu33W+l+ija7MdOMs5+9Mx38fE0Ko3UJbXyKf0IvC97JLqQgZ03GJ9uuqWEKID+UkitLbO0wvcE89QsGDYQhi52utPyUEoRBII8N1SVZW3ZTTIubTe4tP3pZ1AUBW+88QbdbvcnajD+x//xf+Q/+A/+A/7+3//7/Pqv//pPdhh+UT/3Za1lOqs/IScQi0GiDhsuS7muqHKIqhKdtKgKS14a8uMDWr0GQb/nYmgXu/FeI2Z2/zGHu/sO2jaeEF/YIFxzsFHrKVheAs9z0CwhCDZWab18C7/ddIvqLCfaXHUjQGOp85z5u/dAO2aFPU/DkwTLS5haUw3HRJurZM/2aVzaItpapxqMncm42aCazGhcv0Q9z1CN0AHe5hk0BSbNmb73ITrLaL14E6E8wmUnqckf7yKUpPPSHcSCJSKURLUacChgQa02eUExS8mPTtHzzNGe04z02T4Igf8P/w/KkxEyCmnevEywaIZMUZI92yfaXKX/G99ACEFxPOD497/tkrKK0sm3JjP8TssleGERoY8fR6AkJivwkgjViEnf2YfaMS28MMDq2pmN9UcgHj3LmM+eYsoCrxHhtROm7z+kPDih/eod0qe7ZI92yI9PKY8Gbse600b6Dubmt5vM7z1yhts0R1uLN5qh1mOSG5epRlOCbheb1ETba9TTOX67ib/UJVxdQjYiquMB4WqfpV99jXBliWBthdM//Odkzw7w4pBiMqUczTCzGTKO0JV2pPgsw5TlgiwPqhGjy4JyNFnIy5ynTfg+ep5+dLJLgc5zZh88RHoKnRdYbahOhxQHx/R++VVkq0Gxc0D64Kljrly+wPzuQ8fUGIzJdg+oTkfnpPnJm+8Rba2hmgnF6Yh075DiyR4EnktWKipMnqPrGikl7RdvEa0uo/OCep463sfhKTKOGb3+NsXeMXWWkVy7iBdHYA0n33kbUxR0X3uZ+OKmm5JdM2TPXLxy87kbn4gzBvDazXPgod9p0X7lOarTMdV0Trazh601zRduEq32sca6cAJtUHFIneZkj3fofuV5Vn7718j3jui++hw7f/d/Z/gv3sBf6uI3E7xOi3B1Cb/bQc/meO01sp0D2i/dRIWhS4Z6ssv+3Ufku4eYoiJ7tANKouKIYG0ZsFSjKaM338FkBc0bV1xzWpSc/OG/oPPKczTvfDbnKVzt0/3Gq3z/d7/LyYM92onC8ySi30RducO0s8H796d89eUuL9zp/BS+PX98/Uw1GT9KLiWldGO3z+HL2Nvb4+2332V7+wJh3GM0qXjn/QnjWU0YCFrNEGthOE5/7H199vP8geAg4CeVlSjxkTy+/KkBAH9MSQVCoEWAXYwrpakXTYZc7NK72wgLAkuhQmpfMmqsgLWEuqCdnxLoAi184nqGrwuOWlu0itG5fElLRe5FDJNV7CK7WViXrDQLurSLMe3shLDOKf0YYTTGTzBSkRQjPFNhhHQNSdAijbrMghbtbEA3P2US99zFrK7wTYURbSqlMMpH1HOsAM/WSF2TFDMCkzFQPlr6FEqgxVlalEuCqhRY1MJ34ZqMbnqyMMMHzrinKzxr0VJipOeM3eeL/s+78P1YOpU4/9/nq0/d1MWiGT8+byJ/GqUWCzFrnZndWgfPU0pTa/CVwvOh2/WoKsgL7fTRuSYMJJ2WIisdrjDNDI2GYDpzcsiL2xFrK8EPfeyzBqPT6fDcc8994Qbjf/6f/2f+1t/6W/wv/8v/wm/+5m/++Q/GL+rntoQQBL5kln50bTlrfAdli3hpGfV4F9Psc1wEzE4sWQX+ZEowKVFXr9DGYusamcSYNGfyjjMN1+MxOi+xZUn64VNnqL5xGZsWSE9RTWeYNHNsCG1J7z463+G3nmT85nvYWjs51MmQ7NEzMIZs74h4Y4XuK8999Jz7PfK9I5q/9DImL0kfuijQ+Mo25v5j8kVqkteIiS+sY3/5a+j5HD1LqYdj8sMTqGvaz98iXF0iPzpFSEl0YYNqOnfekwubBMs94EzSEtJ97WVnhDWWbPfQsRqsk9WYoqCez6gGE1QSM33vAdHWKn4rIb3/2EmGnr/pGBXrK2SPd2neuorXbrokpG6T2QcP0bOU4mSAnqXke0eUwxH1aOLYBQupDDi4ni4qMAYZKFTSwBiL8HyEqhcNToDfbKKLgnCpSw00Lm256cHBCfOHz8j2j911ybJIGrOYsqSezZGeB1pTHg3Ido+ohxNEEBCuLmFKFxts8rabaAxGCM+jsbrExr/xW9SzlHz3YGGAtjSuXaR5+xrhyhKmLMmf7hFurjJ56wNn9E1iwrU+WeZ4JkiB120R9BYgxLKimqZYY7FlTXngooK9doJqNigOT4gvLJgg2jC//xjViGlcu7CYgiikp0iuX6ZOM7xOm8mb75M9dvGvKo4J11eoBmNGr7+NKSvii1uOl9FtO5N8VZM+2cVqQ/5sj2o0c4EpnsLk+blcVgUBfrdFvneMajQIlnuEy10mRyfo6RyTZg4CiMCLY9c0j6d4SYwKfIKlLumDp/idFkG/60IWLmySPt4l3z2kcfUC5cmQejQBwOu2iS5tMXvrLioOkUFAuNZ3x/PxM6TvE2+uUs8zioNj9HSOrmqoa3RaUI8nLP3q1wg3VmnevELj8hbTuw+xeU60ve7CHBrxeXNj69pNzAKf5KoLT6jnKePvv089GqO6LUReoQ+O3TQrCqDWiNB3EkiliG9eJrlxic5XXnDG7uGE8Zvv4vfa5yDMH6yiucTg8ouopQtkdY3yFM3tZYJWgz6wf5Cxf5jT6/zw6+lPs36mmowfVz/O/G2t5f79+zx9+pSvfOUVZlmD9+/NWer4tBIHQprNaiyCw+PsJ3oOZ8tGi5ODGKsRbq//48/0Y7//7IZDwDn/rNVUVKVGSFjIHP/iS0hQAQaXOoUxBAu+Ra18FtgbBJD7CQaBiaWLTbQVlIJZ2Cauc5SukEZTC0nhxVjANxVxOSfyM6okovJChK7QMnTQP1szi7qUfszK5Ck3D97A1xWjeIl52EVVleNxSNcQHLQukAZNrFQ0iglxNcUgmMR9msUY39TOSK5LBJbKi0j9zrk8TpmaWnlo1XQXEmuplO/Me0Yv4m1rojKjCBJnHlcefukM4qqsKeMVdy4I4czyXoKR3kcTCgtfqFn43PWDU46z9KkzaqT4yH/xU5ysaXP2Gfjo79othef5TKeVU4Zozf7+CN/3aSWSyUxgjCHNakDiKUEQutjaojB02j4v3G7xwu32D43WK8uSN954g3a7zfPPP/+FGgyAv/f3/h7/3r/37/F3/+7f5bd/+7f/HEfgF/WXpTbWYt56f+zgeNIlvC33Q4bjipP+ZcJRRnZwwnxcocwRDSFo+gbbW2JfdxAjy1I5JVpfYf7gKfnOngOGFa7BkFGErWvqeerkH82I/Ok+qhHhdVq0XrqN53vUU8d4UFFA4841qpGD49XTFFtVeEmCCH2q4+HCO/HkfMdWLuQxXith6ddeI32849gM1tL5yvOs/l9/g3B12YH1um2s/ueUR6cEd66j04zRd96CjTWCfhewYAwi8Im31tFZzvR77zO//xirNTovwVo6L9+m9eIt91gPdyhPBpjaTVZl4IOU5IenKM8j3Foje7pLtL7sCM3NhOLgiPTxLu0XbuA1G5SHp8zvP6FaaO6tcdcinaYLzkiJv7KEiiKkmiEbMbqoqOdzVNRAz1JMWYIAGYXI0Ecoid9qYNsJ5dGpk0DV1WIikDsztqeY3n2AKUqQkuzpDqrhNPIq8PE6TWfiTjOMUhhtKQ+OMWWJ3+8tonAvUB4MqCYTskV8q/R9Gle26X71r9B+6TYI4YzcC5+M126ef3/l+8eUxwNaL9wiffDsPInLayX4Sz2Ko1PAIpWPajUXE6XaRbi2YsdVKNz7IhdNT/Zo59zXUA3HFKdDZBQSqh7N567jtRIAZBxTHhydN8nR1hqqlZA92WP23n3KwYhs5wBhDNVoQrDUw+Y5+cEx0foypiiZ3XtMPZtTng4J1pex2hJtrlNnOfV4hikKWs/dwC58LSqJzuVA0cYqy7/5DXSaM7v7gHB1GVvXZE/2HC/Gd8eqODihODxenKMsZGOK7Oku+e4B2bN918DhktCC1T5ep+lkV1Xl/A2NiHI0Idp0Jvx04fURvo+eTNHTOeXxgHIw5PiffBuTF7Rfff7cgB8s91yqlPzk9Um1EtKnew66ubgkjb7zNvO7j9x9j6ZUc3d++is9pJRUkyleHCOTCFPV6HlONZ47sGUc4vfaLuL4ye4PbTIePZ1z70lOGDSotSXNNPZgQn8p5+JWgyCQnJwWaG3RxnJyWjCeuOtzp+2zvBQQhv8nIH5/nvI874eyMuq65u2332YymfCNb3yDZrNJtzLM5pr7D+fMM0OeG9otn8msZpb+5MG0ZsHPCH0NUrHgLv2Q+uyGw+WjO1WNwFDrhQ/7X3Yp52cwVlIbB4qTusYqR7b2dOV8CH6EW8UahKkpVUwtfeaBpp0PqBaRr6UKEUGbQOdIa0iDZLHbv0hWEo5SbfBRpqYSgg/XXqGRjwjLGVVznaCcoYBA58xFB2E0o3gJIz2CukBag5b+YsQkKVWIwiJ0TaAzcuU7aY5O0SZw0i0rKaVP7UWLn3UcC1UXKKupZYDFI426aCGQWIyF0o8Zhz0QUHoxlQxcWpKukUaDCD5qMn7Q/P1llrULA/niMRR8PM3qL8IbJPhkg7HwFDKb19QGQl8SBBI/UCwvQVVWDEY1ZS2wWtGIDUni43nuecaRoNvxeOF2Qqf12V9NZVny+uuv02q1fqIG43d/93f5m3/zb/I//A//A3/1r/7Vn/CV/6L+stXqSsjyYcDBUU5/KSAMFJ22z0o/4MEsJLv4HKfHx3TEE9TRLvFyh+61TeyzpyidsbcHjWWPuJU4mGccU81T6jTHVjUqjpBxhNduUo+mxJe30PMUlTTwmolrbKTE67QxtSY/HRFnOc2bVxh9912qxa62KUtEXRFurzm43O4R4doyzZtXqGdzVByiGi5ytPPSbVrPXcfW2u2c/oAnq3HlAtnTfaw2jlTtLcxTQD2ZnwPipK9oXL1IPZkTbK7iddvE7SbR9gbRxgpCKaK1ZVrP36A4OibbO8LM0wUJ3BB0WqhmQrTaZ3Y8Ij84oXFlGyEFfrdNeXxKPd/GS2JHUP7uu3jN2O0WA+H6MvnhKcM/exurNV4UotPURfBai/I9bFnhNQJU0kA2YmSrBVWF32mR3LyClzQQvsfkvftMXn8HGYWO2dHrAjB/tHM+iYrW+ujJ1PExshy/0yTotV1jdzrCVBXzDz5ENRv43Rb+Uhc9nZE93HGpW0qhyxIzmhJurxGsLVOOJhQHx0Sba+f+iLPSi0a0PB1hrcFmGc1bVyiPB66xqLRr2MxCKpVnlEcn7q3SBmMNHGrne0DgL/fwWgnWCrq/9Aoy8Jh/+JTi5JTy4IT40haNW1eJttY+8f2pkpjBt9+kGk/w+13SnQOKnUOKw6OFrEojfB+VNGi/fIv82QHF/qGTTL31AeXRKSLw3cL4dAg4BoxcSAKjTp/yZEj7lTvUkxnJzauOB7GzT/frLxGtrzgvBgKh1OK/GcWpA0DqvED4ynErPhYAZI1h8s49vEaDaGv1PKWpTjOGf/I9F/PbStDGUh8NUM2YeHsD3Wszv/cYFo1csXeInqXI2J1HwVIHq42LLraWxpULqGYDayzjt+4iPYXwlZsqddvnl/3G9UvUpyO07zN6422wOLr58ZBqMHZSvdEUrRRo48CVVkOSkD58iq4qOq/cPgf3FcenzD98THE8IN5eJ760RbDkztvTYcndBzPyQtNoSIbjiizX6NpyOig5OSno9UIubsaMpxV3P5xyOihdwpWAWlt6HZ/nbrZZ6v10Jh0/U03GTxpjm2UZ3/3ud/F9n29+85sEgTtYvi95/laLRkPx6Omc4ajCD4wD732OkouRhbPkujr71VOabtdnllqksp+zQfiMhkMoJjOLMZ+dcvUvpyx4HqVoYEpBOz1Cq4DaizFAGSRYnNlske6MtDW1DFG2IvebEDTJq5JaBUQ6pVUMMdIj95sYa9FIt9t+znEALZxubBZ2eP3qb9HORpRBjEFRKx+/ztHSo1Lu/Q10QaALCj+mUU0wSCSaSdilqoNFqlKE9iKUrmkUY/KgA8Kn8iMEGmGc7wSki5lVIdZU7rlIpweSRqOsRiCopMewsXo+CXGcEYEOPYTVCLRTW1ntEqW+4CL4R74n5zO0j52Y53f/g+fWT98bpJRrMoz5yORd1Qbfg8BXLHU9BuOKKFJEUUBR+sRxichrtABjamZzjRIKIwStZky/G3Bxu+EWXT9QZxOMZrP5EzUYv/d7v8ff+Bt/g//uv/vv+Df/zX/zyzoMv6i/BBVHihdud7j/YMrxoKAsS7JcEwSCX/n6MqenBcP1Fsv9OwSzERzsOYkHCnV8iF7agkvbqGSRutRpIQLfmU9rjddMUI3IeQsmM4qjU/zlJaqTAeGK27QwVY2ezh3NutuhHE0Jem2itT7x9roz/zYi6sGEcH2FejxFRj7FwQnxhU3KowGNm1fOI1/BxdbyQzyM0fYaqhlz/E/+GVgoh2PqycyRsJOE5PZV6smc/IMHlKdjysGQxpVtmtcvE1/e+kR8aH5wglSSxpVt9DRFLHUXaUuK8njodvDnGV67QTUYLZKponNAnilLxz6aTPCaCf7yptud3j/GlBX1eIrfajhmwNEpMvCQQlKnKV6vg4hDZBTRvHWV+YOn+EuOzREu9/C7zkdhihK/ERGs9Wlc3CK+uIkpKuYfPqGezvAasZPpFBUyaSClxFhLNRw70ro2eJ0W9TylPB3hIwh6bQSCcHmJ/PCE2fsfIoRwKUHNhPX/x79G5+XbFAcnDP/0e7S/8gJmNneN38IvkD3exZQlxdHJYtJiz2XjXis512eX8amb7EjlvDjCYj0PWdXU8xyqitmDJ5i6JlhZYukbr7L2b/wWtigpDk+Z338ExtB++Tm8JP7U+ZA+2yd9tkfjwgZeI6bYP8JrNdDzZBHLahFhiJ7NqQZjmreukD7eo57PkUoSrC/jt1tE2+vM7z1Gz+ZYawlWl8BCsLqEHs+oRlOqwYh85wAVBjSuXKBxYYtqOKEaTamznOCsiRCS8nTovBctJ6ELlpdoz1O8ZuISB48H2FrTunP9EylYegFeNGlO++U7ROuOD6WznOk79ynTHFO7xq3Ym5HvOeih2UsRnkd8adPJza5skz54Sri+QjkcU54OqYYTpFKIKKAcjJ1kyvdoXNpk9V//dWbvf8j4jXeox3NUFFCOpujJdLG5bCjnKWiXNOYJlyal2i2XF1NWLt0tL12c89EAr+Ne+/jN95h/+ITu15035fGzlMm0Yjqt2NnL0NrS7fi0mj7WgDaW/YMMqy2eJ6i1ZW01Og9OMcZyfFLwzt0xX3t5iUb85a8bfqaajB9Xn9VkDIdD3nzzTVZXV3nuueeQPzDCqmvL8UnJhc2IyaTi4dOM8bSiWsiSBG6BpD+2I+sp99+CtXa+W7tgqwAaIRRZ4ZoLTy7uQ/NDk3Y+49UA7v4+ek0/C6bxjy1QlU8dSsZqw1G9rXGQO+F8FBKNRVEFDSpjULZCVBZpalrZEKMUBTGZl3DQ2sJKn9yLHRRPisXBNGAXi3GhMMKlXJVeg2ks6M8PyfzGufRKLLwSgS4JdIG3MGZbKxgkawhrUUZT+jGVF2GEQgNaKrKgi2cqauljzszZajHRWngoLAat/I8M24sI2Ep5jswtBNq6+zufVOgKpO/W/MalWCmjKaQFFXDmkfjJpVM/II+ydvHHsynGX3yDAR81xWfSv6J0T6Xd9BHSIiQ0Ig9fQVEaAt/xLcJAkpeGTjOmqmusqRHUtONTGkHKbCJpJ6tEUXT+WGcNRqPR4IUXXvjU5/zH1R/+4R/y7/w7/w7/9X/9X/Nv/Vv/1pd4FH5Rf1mq1fR49aUuDx7P+fDhjLm1GCOYzWoOj3KiWLnmt9enudmH2Qxz/SLVvbvUhyMHb80qqvEEk+YEq8uoxMl5ymPHP3CG3QpdlvidNjKO8Tpt6uFCR95qkty8jClLyuEUk+UI5SjfAMHKEunjXcrTITYrwEA5HDF/8JTk6gXaL976XK/VWsv8w6eOQ7HUdbyE0KcYT0nLit4vvUJxMmD04ROskEgpiNZXQGtOv/VntKfPOfkPUJ0Omd995LwMT/fJD08IlrrYunaNFhYhJCbN8fs9TJpRTxwXwNb6vFnJnu2BBX+55xaBJwNUM3EAtOEYU9YIz10r/G4Hr9UkfbyDns8dOyMI3OTIuMlN+4VbBP0e9WyOrmuE7xNf2CJYXyF/dsDw29/FAvkzBwkMeh2SW9coByNn8m5EyCCgPDxxdOY4QpcVVDXVfGFC7z2H8N21IFhZQs+cIVv4Pu0Xb9J+6RbS8/C6bY5/71sc/aN/6pRoZeGOfadD7xsvE2+todOcyfc/cBMNrYnWVwiWl7DGYMoKr9NG+B4my8GTDvJWlFSDEaauCFf7rkkqK8fAyAv0aEq0tUawMJvXs8+WiZvSeXjirTXwFeXJ8KN9LM9D+b6LBBYCr9dxcMGVJaw16HmGv9pHaAuBS86SceASquYZepYhAw/heQtWyCpCQPvFW4QbK5z8/rcZv/ku9WRKOZyQPnxCeTwgWFkiPziBqkZFEbasF6TtjMlbdx0fZjoHA8FS9wdidg3Z7iHS85DNBtVgeN5kqDiice0C1XiCDANMXTN/+Mx91nyFRaBC35n+dw9c89lOmN97jM0L/G6baHuNajhFT2cu/XIwwu+2WfntX6Pz0m38dpPJ9z9AeJLi4NRdspV00jWBS5OrNfg+wlp0WVEcnoC1RAvqeXF4gt9p4rUaJDcun7NC8oNjxm+8QxEmvP3uiPm8Ri9YGJ2WT5ppslwThYrBsCSOJWmmOTjOefFOm7oy52mtUgpWV0L2DnJOTgsubje+4Lfmj6+fuybj43Kpvb093n33XW7cuMGlS5c+c2fzdFjyZCclyzTDiYOotRIPravFAv+TJu7Ag27Xp6o1ZeEcCotUPgwapRRSKqoK0rnF81yD8kNUXD+2XH/x8UWhMx3/RTYcH+nqP2OBKhU6SNzcRdduh34hk9LyTDKFGwFagfQMupKLVCOXu+4W+CuEVY61gsprOFM5NUYGHxmdrUYAylR4tqJUAZOwi8QihaWWCk/XtNMjWvnYpWIJsEjCOscIj7ieYXBTkVoGFH4MwjUN87CFZzT12eOdRch83KAt5GJc5ZoPcdZ0nEP2zMd+Ds74FGc/e9Y82TOatq2dhOkLhEV9uj72WKZyE5J/yQ3GWXnqfODj5H9ujIOSgihUKGWZTGuCSLK1HjHLDNNJRZprhIBGHHBxq0Uz8em0YGOlYHB6xMMH90iShJWVFXq9Hvfu3aPRaPDiiy9+4QbjW9/6Fr/zO7/Df/Ff/Bf8tb/2177wBOQX9ZenrHXn48mgIM00gS9Z7oe0EsVwXPHg8Zy7D6Z4nuDiZoNmoni2l3H/8Zw801y+mBCEkiRWbG4kLF9fwt9cZfLWY3x/hAokQa9L5c1pXN0m/fCp8wDkJTrLsQswjE4LTHpEfHmT3q98FX+Rj+81GwilmH/4hMblLbLHO1ghMHXtFkwLjb/0FgtBASqK6P3yqzRvXMZrJp/rOFSDEdO3PyDsd4k3Vsj3j/E6LYJum/mTPY7+4R+j8wIpF5KQtWUaNy8RbW+g5ynTt+86KNvuIdmTXYbfeZvJd99BBL6bPMzmjjpelAt9sYtYDTdWoNaYWlMcHFHPMlQzpjwZEW46qUtxeEx5fEq4sbpoQCx+u4XfbWFO3TQnWO9jq4p6npEfHGGy3G1E7R0ihCRY6pJcu0Tj+kVM6hZ0pqyopynJrUuc/MG/YLh/hAwCVDPCazWRQUCxf+QkPw3XUKjINUJeu+WSkvIc4XuE/S46KyiPBngXI1Q3oT44RoY+fr8LxtB6/ibK99FZzuhPv8fs7iO8dkL3K88zf/CUYv+YYv8EU5as/uu/TuPyFtVowv7/7x9jqor44ibA+fQr6PfAGKra0bnxJPrYLWBVGNK8fpFgpU+5SMMyaU7j6gUXUQv4S10aV7aYvfchYmsdFS8My8Yw//AJVhvaL99h/sEDJ8+LI8x46vw1cYSYzzFZgdxwoDyd5eiyROc5fq+DkC64R89TbFFRHhy7BfhsjtdsUpyOSC5sYDIHJ8wPTygOjkkfPkO1E1Qcu/epqJi9d99dT7Wm/ZXnaWxvMrv7oTuPlnsL+N+U7jdeIrl5CZN+UrNu8sK9hlbiphnVJzen/V4Hf2WJRAjSp/v4zQTaTWfyB9d8FCX1ZE766BkyjjC1Jr60id/rku/s47cSvGbDTcgWE7P4ootBDDdWab98xwEl5xlCSkyeObnVWLvUlLJCKOE4MlmOqWpUt4WMIqrRGJMWzj/VSogWmwz/f/b+PMiy+67vxl/ne/Zz96X36Z6efSTNaJcsGRvb2DgJYgtP8JOQpHCFopzCporYJlWYgsJVGAJOnIUyqZCiMBUCPPVACNsvYEO8ImNrl0azb713375997Nvvz++t3tmNKPVli2e6FM1anXfc/ezfN7fz3sJ45yO2aB1YZORt8TVdY25WZs0y3H9hCTJEKrCYBCzGQTYpuDIoQJhmBGGGa1tmQd0aLGAYcheQVEUDEOw3XkTZKBp2l4g3/nz51lZWeGee+6h2Wzecns/SHnuzIAz54ckSUYQ5DTrhkz0FnKUFIUpQZSjqwrlsoZlqpiGIAxV/CClP4zHQEQiw3gMJhQhV3IzZO99q1LVa4vOr9wqV+EbDUB7tfWiAOOFpWq86C6TSavYRNEZOBN4Zkn2xEJDzVNElqAqCVqaESc6uaKhZhGRDqkwGNtWIbIUY+wslQOxYWNEHlqaEKqQCINEM4n0AlbUpxgN6BamCPQCzeEarlEkMQ0SRZUCdc1gryFXIIGxDmS30Xxh6J1yTTA9Bj058n2QZzdsJilRY9rXdba0idDHVKkxOt3d7jqC2auvMUoR1/Emv80AQ1Gkm1QyHkjpBghF7DnwVkoacQKjUcrmZkgU5UzWTRxHZd+cjeuldPsxnp9RrykcP1LhtiNFDEMQxzHtdptWq8WVK1dQFIVSqUS73aZer7/irJxHH32U973vfXzyk5/k/e9//5sA4//gyrKcy0sul5ddojBD0wVJknHm4pA4ytB1hZU1n5GXQA5Xl1yEqhBHOeWSRhSlZFlOvWowchOuLruoQkFVdZzjhzlwdwVbB2t+jvXf+xOZHWHoBBe3UWwTxQ9kGJsq0GplkuGQpO/iXV6m/vA9ktoExP0hasGmet8dCFUQrG8RtTrSzjbPyLwA1baov+NBMj+kdNcxnHFDuhv29nIVrG+RegGKEAyePUcy8lA0lXjk4S1vEKxvoZkG+r4ZNMtAyTIGj59CcwoUj+wnbO2w9dkvI1QVs1lDcyyZUSAUgrUtGShnSrpYFkTS9nV2SgYUHjmANTOBe+EKaRSPA9sg9SOC1g7umcuY89PEvT7RTp88jCRtyfVAEWjlkkxttgys6Sb2wjThdg+jViHPUtSCQ2lsaRpcWZOhdWmG6lhU7j5OGsVYs1NM/8B78C+vMDx/RWZtAHkcYc5MYtQq9J98Ht/fBiCNQhIvQEkzRMGSuUq1KrkfEA+GGDMTOIfm8XUdocvmwBhnS/jrLdyLS6iOiV4p4l5exT1/BWUc1DU6fRFFgclHvks2seUio4tX6T76JFqljGabCFVFn64R9QbkOz2SkQd5SuoFaJUSatHZc9hSDAO9XCAeuQzPXqLxjregjN05K/fcIR3+rqyQx4k8iWc5wrYpHFrA2T9H0hswOifPucLQpHNVHJNnYM3Popkm0Y7Ui0SbbYShUX3gJHGnj3dlDW91XYbjWaZssFWFPIml01gQYZgmpZNHMepVtj/3FdI0AT8kWG+RJwn2/n2gqYyeO0+OQvcrjzOsVSgeP0j1+CFU2yIpFQCF0h1HyeOE3teeuWkfz5NE5lC4PtqBm5tnrVhAaJp0ZLv7ON6lJZLBCLKceDAiGYf2DU5fRK9VyNKU0u1HsOdmMKcahC05nVRtue8n/SF5IM1yhK7JXBah4OyfxV/b2nM9y3aBt6aONVk2iVBQLROjUcO7vEzmBSim1IYUjx1EKzr0vZxz6yntYU7qmWxfGtCNSuSAY6vUKwaqpjByExShYGiCRt1iqmmzsuGha4J63aDTjej0IqYnr1HmlN1G53WoNxTIeCWajDiOeeqppxiNRnsC71tVuxPx/NkBT5/q0e3HJHFGmuWYpoqeQ38ohS+areE4UkCrqXL1VSgyMCwIU+pVgTsKiTMdTVURIiOMcgq2QhTnJOk1MJGO5QXXu0/B7pr4a61vBeD4JjSoQn4IuSofLVVL0uUik5QqOw3RkphUaJSDLr5RQs1TKv02A6eJZ8q0Ty2WGotENeQYMUtJVZ1Y0Yk1CyXPCbKUsOCgmRUiv02q6hSDNhW/zU5hCtcokqoWkoq1O3kAECBy6b70omOFG0cO2VgnIsFHhppEpAL5pSu74OJ61c54QqJc9/veqOzVAozrX8t1r1fd+8+4vj0BkHkuhzWWoowduiRwR1HQdUGcQK8fU6/pKIqOH2SomsLBxSJJkhNFOYvzDidvK3H0YIGJhrGnxdB1nWazyfLyMo1Gg/3797Ozs8OFCxcIgoBarcbExATNZhPbvplfDPDYY4/xj/7RP+ITn/gEH/jAB14XgPHLv/zL/I//8T84e/Ystm3z1re+lV/5lV/h2LFrtJU8z/n4xz/Ob/zGb9DtdnnLW97Cpz/9ae644469bcIw5KMf/Si/93u/h+/7vPvd7+bXf/3X2bfvFgEhb9Zrqo1WwPlLI4pFjWZ9dxU358yFAVeWPQ4sODJbQAHXS4njjG4/plhQcTIV3RBsbAcUHBXDUNnpRjx3ps+hxQInjlcoluRj1t96D96VJbb+9H/jr7WINlpkaYrQDYzJBtZkA0UIQk0QdwZs/fFfkQxHFA4tojoWJCmV++7AXphDKxVJw4jOlx+T4taig14poVZKeJdXSIcu/so6rT/7AuZkg9LthyndcQR7/xxkmaTexIm0ba1X946BZOCSxTHDM5fIswxzRqYHhxstlCRBs0yEbVE8egBFUcjihGhrm/4Tz8kGa7tDsLLOxHe/nSyUyeDGzCS9v32aNAxJ4xglTWQ6t6GBqkrK2MykpJy6Ptb8HHqzLulEpYLsd4cuo4tLRIOhtFdVVbIwkknM6y0ZopolCEMfOxQ55GGCszCLXi2hFRxKJ48SdwY4xw5gVMvSatfQMadk8vf2//oi5kQdrVLCmpkkTVP6TzyHqpuoBZukO6B813Hi/pD+48/KPCfXRUFIgKGqpCMPa980WcFGQSFYXh9TlAKM6gRaSVrI5mmKv7RGHsvV63jko6QpimVKMbpQiIQg2Nyh+7dPoVdKKIYmX19ZOlolvmxcSSSlK97uyiC4NCXLOyQjmToeOA5qb0CW5dj7puVntNW54SqiWib1h+8hOryfqN0lS9Nx3kORnS98jWQ4onjHUbyVDYKVDZlOHkXEros50aD2wJ2kQSBDC/dNY9SraOUipWMH5euIYrwry3LlPsvJwkhShPIce2GWPJN6EWdhVtq9muY4EHFAsLRGlucQJ4SdnjxmHAu1VCRPEqKtHTzbxjm8gCIEweomnS89hnNwHoRCtNPDaFRJhu749W8SdrpohYI0Whgn1Od5LgFNGKNVyySuS9If4V1ZIwtDqcUB1HGTn/kBcZ6RJwnh1g5GrbxHXdqtPM9JB+74cp+TDEYomkrm+qilIlm0KoFaIkOChaaj2LYEOqaJWXCw52fRGxWiVgdFk2YLlftPoho6YZzz2OWU9U6GUCAeKXQ1hWpNZzBMiOMMRVEoF6RDZhBk+EpCsSizp3avzZ6foGkK7U7EVNPamz6FYUqt+s3O0pL1hgIZL1d5nrO0tESxWOShhx7aE3i/sKI449zFIYNRTLmkkucmqxshYZTS68to9TzPKRdURn5GpaRhmRp+kLC4YDFRMxh5KRcuBZQdl+6wwuXVBNOQYXQ5mbSXE1IzrKnX9BhCjH8f97cIqdnIshtpWS9Vt87hgFdkjavc7Przks91XYP6DQPZsbvTtVV9yFRFrkKpFlYSoGbJmAyWomcRCJWS3yUVGpmiglAwYp9E0chVjUi3CFWTfJzijQKBUZDPoNmEmkHV7yLymE5pWs4Kckh3k69fCCZuSOK+Dghc94lc+1+VvQY+TyHPsGKXwCyT7upIbrjfLtjI2KNg5dcE5K/hA5U/XjKp+1tLrXthxRFUSpKrnmY5SZJhaPKE1u5EFB0VXVeoVgzCUMLt3iBhftZicd7htqMFJhrmTY+bJAlPPfUUhmFw1113IYSg0Whw9OhRXNdle3ubra0tzp07t0ermpiYoFQqIYTgqaee4gd/8Af5uZ/7OT70oQ+9bhOML37xi3zwgx/kgQceIEkSfvZnf5b3vve9nD59mkJBUld+9Vd/lU996lN85jOf4ejRo/ziL/4i3/3d3825c+colaTTzE/91E/xp3/6p/z+7/8+jUaDj3zkI3zv934vTzzxxB5/9s167ZVlOavrPqomdUG75XrSfGB6wqTTi2l3QvIcymWdMExptUOSRC40pLE0+Wi1Q1w/IYpyVBXmZ21MQ+w53kRbbVTLpnLX7WilIoMkJt4ZgJDp0GkUoaBgTDalNenaFsMzl/CvrOEs7mP6h/4epTuOShpDvcrsP/oHlG47zPD580TtHnka461KVx+hqXtOPMHqJnG3R7i5LUXNSUrc7kqqlWlizU5SPnFETg5Mg3CrPbZwHacdBxH+RgthW6hpKl+rH6A5NmKc+jw6dxnFNAhWNsiiWCYVC4VkMCTc6RN3exCnaAVbngF1FXJFUrEqJQpHF5n6nncCMHj2LIoAa2567/gs3Xs7na8/g3vmEs7h/WQoRDtS2GvNTsrV6SDEX2+RDIaYgF4ro49pX0azQRaEJMMRo1Pnmf0n3ycD3cYVD0ZkcYxekCvbw+cvEFxZkxkTQw/huuRpBqqQ1r1BKDMUBiP0RhVhmuRpQp4YRO0eRq2Ec3gR4pjCbYcJNloE61ugqcTdPslwROZ6pL4vKUfZWDw+8sZTJ01y9Q0N7+oaeq2EPT9DnqbU3nI3AMnIw7u6SjJ0EXmGvW8KRdOJ2h3yICbJQtBUlPUt1GIBoQkpjjdN7PkiyguaCUUIzKnmns4ncT2irR0QCu75qxRvO0T9LXfTE9Jj32hU8a6uYU41JeDoDjDqVey5aUonjhJutPBXt7DnpfNRcadLFif4V1bRqiVJuVMF5kQdtVyS+6wQZIlMK493+nhLa2j1CqptEaxtAZKypNkm9r5pUj9EKxUYnr6Av7JB9e7jqAUHxdAIltfJwpCoHe99/unQlZSkNEcYGoNnzhGsbUnXrk4f9/xV9FqFpD8g2thB1IqyXwki0ixFK0gtEOPJmHNoHu/SMsPnzlI6fuCm80u03SHxfNzlNbqPP0c6chleWGJ0cYm4OyCNY4SmIgo2ugIYBgI5vbD2TZMMR6SuSzIaSfOFuWkyP5IgxdA5t5FxbjWjaIFh5ChKhtBNRqMEVSjsdCJUTSGKM1ByBqMYVZWBjGcvDAmjjDzNOXN+QMFRqZRN0jRDE3KxpOhoTDatm97XN6P+zoCMbrfL9vY2hUKB+++//yV52d1eRK8fUa+q7HR0tJpKloPrJ/iBHIsKFOIELENlsmmhCoU0g+12jGkIep1tVDUhVSbJlBRDTwjDHMtSaNQ0Rl5GnqYYBsRRjqLLUOUsgzjkhgXt/FWOMjQhKSgvDUpuDTgMHaL4lT2PECmNqorrQxiO2+NvZOyyF/qWXveSdCAhxiQPc9RcJnHnuYIVDqWWQqiYw4CBUSFTdTJFSJ1ImqDkqaQq7WkoIFMUOSbKIRU6bc0mNAoUgy6uUSQWcgx9y8nB3lRj98N9qSY9H/OJZeKunickwpCBfXvzxeunIgrXAMYuRes1Nre7CY0vv+Fre/xXWbsyFvJxBMd1rmvdQYJlCZpVHcvW8f2cOE4wTZUwyogTgaYmKCocnCngFDTuPlFmZtK8ZRZGkiQ8+eSTaJrGnXfeedOxXigUKBQKLC4u7tGq2u02X/ziF/nQhz7EiRMneOKJJ/jIRz7Chz/84deVIvUXf/EXN/z+W7/1W0xOTvLEE0/wnd/5neR5zn/4D/+Bn/3Zn+WHfuiHAPjt3/5tpqam+N3f/V0+8IEP0O/3+c3f/E3+23/7b7znPe8B4Hd+53eYn5/nr/7qr97M8vgmlB+kDIYxpeKNlzzPT8eOLAadvsfQTahXDLI0Z6cb4/opUZyOVwFToiijdtzi0FQRTRO4foIm4NlHr+CVAqpGzPC586AK6m+7D+fwAnG7ixAqQtNI/IB4u4tWtDEn6qRRhHAshKpiTDUIW206f/MEqqFRuvO4tP8cpySXThwl7vZpf/5vyZOceLzSqjpykpc3ZJict7pJ/5kzlE8clfoNwyD1fPyrqyT9IfW33481PUHcHUgXpHHlUUjmBwjTklqELCN1PTTHlquzI5e40yMZuqhFB7NYII0iBs+cJdzeIR6MSKMYoauouoZaLo/Fxi5ECaJUZHT+qsz2KBWJOj0KB+ZvOD6FaWFNSeesPE5IhiNUy0SvVdErRcLtLulwiFqyJce9VCAZeQzPX8Lf2EIoAkUoJEOXPIfEC2i+8y2UTxwdP76BMA1S38e9vEL3q08jHJPyiWOknk+w1Sba6ZIFIXqtzPT3vZvNP/4sqWlI+otloRoaycjHX10nGblYi/OYjTr2/DRhu0u02SYZunvUG/fiEonrojfr0nmqVpbp3SMPUVLHLkOQpwlKriB0HaNakZkMjSpasUAWJwyeOU0eC/RyGX+rRbCyTpYlMBbmx72hTBWfqOMvr2PNTuLsn7vJunjv+85zRmcvMzp9gbg/JEtTot6A7c/9Dfb8DMZUA//yCnmWU777NoSuEe50MBp1ag/dTen2I1j7ponmZ+j+7VN4V1YJt9qEWzLtXa9XKB45QLTTIe4OpItYHGPWpfuZ0HUZ4LfZIg8ilIJNOpBNthgH3MXdkVzZVwWJKiBNyeOEuO/iLM5iz8+gCIF/dQ1RtGVa+MDFmKhjzEyiaJrMW0l7jM5eovuVJ9DrFapvuRtzosbgufOoJYekN0IIFdW2UAwdhZw0jNBKDva+GYxmnWizTdTp461sYM9NySlPnuNeuEr/mbMyYPLyMnFvQC5kD6PVq6SuJwP3whglB7VYwGjWSPtDUCUYjbZ3MCYakOUUDu2n+pa7GT57ju3P/y2ltz/E2TUbVc2p2pJOWWgUmaiUOHfFJ4wShKJAKhk8npeQZDm2Kbiy5KKqCvv3OcxOmbR2Yra2A4ZuytkLBrWaTtHRuP1Y+YbFl29mvaFAxos1A2tra5w+fZparYbjOC8JMLIsI46lbsM0VBo1nZWNgPkZCxTY2YmIk5QgANNQmJt10FToDxPyPCND4epSC3JY3D/FykZMr5/g2CphmKFrgmpFZ2ZSpTeIaHdigkDadmq6gu9LEKMq0jmwXFRx/QwlzglfQfOvCjAtBT2Tzlhx8komINdOImH0SihVMlZPV1U8b6wtyV/5pOXlS33B02ukArqFKbQswYgCat425bCDHbloJHScSSkS1w0C1SFWI7QsIhX6WHg9BgO5jAXMUfd6+0Q16Fl1+maJTJgvEGa/8K3v5ksoY4zwws/p+uGy/ECUNEHkCWoWkYnxdOMGVtX1WgvxIo/1KuoNuHKd7/1nTJMSUo9hmoIgzKiXVe6/u4xtq5w577K+JXNpik2NesWQVEVDMPRSJidNpiZeHGA89dRTqKrKXXfd9bKr+LquMzMzw8zMDMeOHeNjH/sYH/vYxygWi/ybf/Nv+NrXvsYP//AP8y/+xb/45n8ot6h+vw9AvS5H6VeuXGFzc5P3vve9e9uYpsk73vEOHn30UT7wgQ/wxBNPEMfxDdvMzs5y4sQJHn300TdBxjehdlOHb3k0XvOuQFcVoihl5CaEQYquCwxNoWCrDEcJUZySJRmFgkYYZhQMhcbOFUbnrrAsMmgouKfOYTRrcsXW1EnDENIMY7aO0h0Q9QYopoG3vEbq+WiVEuZEg+LhRaJOl2h7h50vP06eZlQfuPPay1QUKYz1AlTLJErTPYABSHpRwcK/tCx1CEmCokkKhOrY2ItzeFdWcS9cpXLfCcypJv7yhkwtdiyELrdN+gPM2UmUoU46cklLRfI8I+70pbtTlmHPz5COXLlibptydB8nqIaB0CWYUrMERRPkUSwF4OtbKFnO4JmzpEFI6vrY8zOo6jVGQh4EaOUC1swEUXeAXqtgTjZQNJWkP5JuPmmOOTNFuNbCu7IqtYCDEVkUomg6atHGqFWwpicZPncO/9Iys//391B76B5pmbq4j85Xn2J46jyKkPazgJy2ZBnW/AxCVeWq+EZLTi+K0qdbURWi3lAGvqkqmRfQe+wZKvfcAU88T9TaofHuhzGaDaKtNt6VFSmG7yQkO30gg7E+RNEEYbsj9R2VCnFvQBL4WM4UtYfvJe7KTBFFgaTThzyn9vC9kKbEAxlEKMLk2lpUmqE4lpzkuFJIXLzt0IseE96lZXpffwatJIMEFUWhsLgP9+JVgu0OhcOLe25lQlURjo053cSanpBThPETmxN1mt/1MMHaFu3Pf5UsCHEO78eemZDOYMORtLNFIbx4FUVVcQ7tx6hXZDDryjqaYxO1OqBA1BtCHEsTEQWC7R2ErqOOXNRigdSTkyF7/xxifH0wp5t4y+uolsHEe98Gec7w1HmMZk2meo98RucvSxeoiTpa0SLY3pHPIQRxt0cSBORRhGobKLq0gDWqFcyJBtnIw5ho4BzYB1mGd3kVRSiErQ7e0ir2vhn0Rhn30irOgXkGz50lSTJUXcOcniSLQrIgRHVsKZgfuBLwOo6c0tSq6NUK5mSN2sP3SmexRpWdL/wtq49foB/tR1cU4jyXief7Zthup+MplUDXBHOzFiM3ZrOVE0QZpbKBbQhqFYMoyXD9jKmmQZpmFBwVP8q4d6HA4nzhdQMY8AYDGS+sFwq8+/0+ruu+6LZ5npOmKcWCimWpeH7G5IRJlGR0OhFKDosLDo2qztPPD1CFgu+l7PRiVCG7bN8dMNE0qVRq7HQzjh50sAyBH6SUSzqul9CsGRi6wLYUHEdnpxPS6yeEfkaSyB5RqGAYCoWCRpomeFmK8iKAQRXj9GQBtq2ga4I0ycjEa2n8X86p6ho9KskAoSBEvkf2ed1KaKRCI81SYgSVUMMzyoRGgQzoOFMoZBh5MhaCQ6zq7FGVFDmdUMjIxXXvZ8wty1UZnifpUC/xTpTrWo08vU5XsbfB+Oeu0FolF4I0V0lzHS2N5GeVXzcpeVEc8XoAjIzXe3rxcvtCll2beFVKCqahYZga7U7CxITCXXeUKTounV6CocmU+EZVp1jU2GiFOJaKod/8HtI05amnnkIIwd133/2qaUJXrlzhV3/1V/nwhz/MJz7xCS5cuMCf/dmfcfXq1Vf1OK+18jznwx/+MG9729s4ceIEAJubmwBMTU3dsO3U1BRLS0t72xiGQa1Wu2mb3fu/Wd9Y2ZZKqaAxcpMb0m0tS0VVlL2/N+om/UHMTifEtlQgI4xgOJLuHrWKjjd2SEsyWIg3YOsyxek6/UgltnyZAF0p4V5YIs9zrNkpXNcnHrhkY0tDRQjibh+EilGroFXKxL0BwcY2SXdAFoSEW20UTaV08tieKDz1A0kZimMU/QV04TwnavcYnb+CWnRIg4i4P8I5sA9zWmoutHKRwbNnMRo1ynffRuoFZGFM3BsCOVq5RJz2MepVVNNAr5RIw5hga3uctFyjdMcRCof2s/P5rxFt7WAvzBBtd4gHQzI/JB+nfWdhTLSxQ54kaAUHoamYk3LFPxm6dL76FO7FJUq3H95rWBUhELaN0A2S3lDSWdpdGWRYcFBtS+owopi4P0LRBM7BBVBy4naIUAWZH5JoI6z7TmDNTuJevMrWX3wJ++AC1mSDwpFFBs+cwV9eQ9hS25CnKanrS8GubRKubZGFkQwenJvCW1pndOGK1EVM1NFLDmZzP8nQRSsXMCplFE2l/vYHsGcl/SxzXbRigeY7H6T32HOEGy2yKJXJ3H4AukYeJ2j1qhTd94bY+2cpnTiCNT0h7Wl3emRhJDMUyKncf4LR8xcpHTtA5nsYlRLJ0JPUI6FgTjZJfR9VU+UEaJyM/cLK4pjR2UuotrmXnp0GIenIw5xsohg61nST5jsfekVGAlrBkYGQQ5fBc+cxquW9hjrpDgh3+tJmWKgkvQGDp09jL8wSdfsoaSb3syAae/on0tnLNlFLBYhiVMsgDUKZll2tUDi8f4/uBdKWNh35QE6xXMS9skrcG2LNTQIKWrlAtL2DalvY8zMEa9vE/QFJfygXBGyL7KnTxEFE5gZkigwn1MpFMtcjy8GcncDeP0vzu94qnaeGI3qPPUelVsI+tED/a8+gF205DdR0MpGS9oeYM1Mkg77Ux+QKWZrJ76dcJB16qGWH0u1HsWeaOIcWMWpy0qOXi9Teei+9qy51MYEbKziTDnqlyNDN8IKImRmL1Q2fdickjBKSBGpVjYYmECgoKhiGzHu5eHWEoQkqZY1y6VqW3OsJMOANDDKSJOGZZ57BdV0efvhhCoUCo9Holonfu+BiN8CmVNTZv8/h4hUPb6y5yNKc6UmLE7eVyLKMc5dcwiiVQiNywjBi5PlUSibFYo0oyQmCBNt05DRkPaNYEFTKJgVbQ9cFqgZCjaUGIwFXpGhJuhdQpmkqQZgRhClxPNZLKOP8OSSoMAwoOCpxIjM3phoG3UGMH+V7RJzX3vwrXAMY2d4j7VJf8hxUJScei9d5VTkfr7GESmYU2Kjux0hDMkUl1Gy5OhYPcYVGqggJrnZ/5kjOmaqQ32pKcb2we4/Xc33tjmnGb05BghHxErt/zpiuNP7cFAXQSEQOqNdRw74hb1qJMF/x/b81Am9tHC77co5oaQqul1EuacxNGRQclammxfysRX8QMzNtYugqIzdFCEjTnIm6wfTUzRqMXYChKMprAhiXLl3ie7/3e/mn//Sf8ou/+IsoisLRo0f58Ic//Koe5xupD33oQzz77LN85Stfuem2F05pr0+sfbF6Jdt8q+sTn/gEf/7nf87TTz+NYRj0er2btlleXuaDH/wg//t//29s2+ZHfuRH+Lf/9t/eoKF77rnn+NCHPsTXv/516vU6H/jAB/i5n/u51+39qqrC/KzDM6d7+EE6BhBQdDQKBZWlVY8jB4v4fkq/H5GkOe1uRBylaLrA9VPSLENVdYZuzKWrGcf2m5RHLZRSEVFwIAzHgaDS1jru9wlWNikeP0w2P0uw2SLpD0ldn8T1UB1Hrj5rGmQp7qWlPXGqMdnAX9lg+3N/QxbFVO8/KScV45wIZVcIuFc57so6vceeJdzcRisVyKKYPI5xLyxRecudqLaNf3mZcLNNHqfkqkIWx6iOjTXdRLEM7IVZOl99En95HXOyLsXNfkDU62PUa0y8523UxtMVUbJRdI2400dYJmqxAKm0MNVrFWkvLkCtlMiiCGHYGBN16Q5lGBi1Cv7KBvb8DHpZGrgohkbc6+Ovb2Ltn4Ykl0nnYUTq+dJUwtRJBkOZzGxLoXY69EijFHSZAC5DEBNAwZqbwV9eY3T2EtZkA61YoHTnccxHnyRud0lHLgiB0aggbItwfRut4JAoCvo4BE0tOlKPqQGZ7DW0onQGqj18L6kfELa7WDMTACRDl2BzG32sMyidOIpWKkrb2labNI4x6xVqb72X0m1HSAZDVF2neu8dMo8EUFQhG/NEoOQ51uwkmReSxwlZkpInKfpUE72WEG7vSIBmymPMnJ5ALZVetHmIO32iTh9rbpIsSfCX1gjWWjK/gVxaJG/tUL7j6A3N/MuVogoKB+dJBiOCjS0JPocjjHqFuDdELclEdkXX6Hz1KdKRS/H2IxgTNfwrawTrWzKo0NRRhEo2clGrFaz5GZKBS9zrY0zWKRxevOFckcUJii4XItMoJtzcliYK42trnmZkcYwwdFTbIh4MibY7oKnojiXBXqlAGgZjR1CF1AtJg0DmjwgFY6KOvTC3l3If7XQZPn8Bc6JO4gXy8YQgGblkaYJWLBCutVBUBXt+Tgb8zckUe2EZlG4/gnv+KsLSKd95G3q1jPKCEFqt4GCUMqqNJooHm4OYYp7Q7cdkWY7rZnheSrms0agZ5DmYhioZLQoUHZ2Rm7DTjXC9mMX5AvvmHAIvZWXDRwgoFXRmpszX7dz7hgIZu2/S8zyefPJJTNPk4YcfRh+PcXctbK+vPM/JsowsyxBjmzaAxXmbgqOyuR0Shhn7Zm1mJk2KBY0Ll0fUawZZlhNGGe2OS557mKZNFOusrPskcU6OvL1RN+gPEtJMkSNyO0fJc06fH9EfxMSxdFe2LUGaCaIoQ9fHi+xZTjqm9us6FB2VKM7x/AxVQJYrGLpgsqERRjlpniMUBV1VsB2F4TB7SY2Fosg+VdXGkEKDJJK6jBvPL7I51lX2LHl1DbJclfdXFTx/7BF9HbpRFYi/MXusW77oVLPwteuERkIlSg20PCdXFNIxAFBIxyKAF04cdu83FnK/bFr6dffdC7N7iYPqBs3F2IqWMU9IPshL3//F6gZnqJRXLtz+1jlIxa+A1qcgP6IgyjHDHN0QlIsaUZgRRTmloo6mKhxctAnCjDiWn3kYZFTLN7pYpGnK008/DcA999zzqgHG1atX+d7v/V5+6Id+iE9+8pOvOkfjm1E/+ZM/yZ/8yZ/wpS996QZHqOlpeVHZ3NxkZmZm7++tVmtvujE9PU0URXS73RumGa1Wi7e+9a3fonfwyiqKIn74h3+Yhx9+mN/8zd+86fY0TXnkkUeYmJjgK1/5Cjs7O/zoj/4oeZ7za7/2awAMBgO++7u/m3e961089thjnD9/nve///0UCgU+8pGPvG6vfWbKYuQWubri0utFGIYgSXIKjsbBhQKmLtjaDri66hGGGaWCxsyURamos70dsN6SJ1XL0jANlag3ZHt5h+axeUSc4QUpLV2DtQHi9BJ6lhBvtFHGnvtpEJFHEYqhkY486bxjWxjNGlG3D6oqrV6nmmgFB71aRm/WGJ29jDU7JXnyEzX0eoXU82VI2zg/I+r06T36JNHmNkqWS/EyOenIIw8j2n/xJaz5GRTdQJ9qoNVL9J84xeCpM2RhjDnTRG/UUAsO5uQEqm2jmgZxR9L/7H0ziMV9VB+8Rt/Sy0WcQ/MQp8T9IUa1jLa4j3B1Uy7eCYUsThFagqIomNNN7PkZtIJNbpnYC7P0nz5DvNPbAxnhRpuk08do1DBnp+Rt1RKogtHzF0g9H2dxjmBzB9W2cQ7sIxmOZJOt5KimIUPi4oRop4e9MIuiqqiWRbi2tWfxa9SrlG47TLC2hVZ0pNjdMvCX18nTVF5XVBVhW4zOXJI2pVMNCXKqZchzFE3FnJnAmpuSeQ9XVsnidKzZcMmCCKMuj2fVtrD3z1I4ukjva88StTugaiT9EYNnTlO8/ShTP/Aewo3tPe3C6PwVqWUYjCDN0CfqDE+dkyBTFQjDIA+jvVwQY6KO5ljEAxet5GBOVGUS9S1qd3qDouCev4J3ZRWtWMCYaoICSX+Id2WF7uPPMfn33i6nGYry8g6gloleKeEcnMe9uIx3aQW9WECtlCgaOmFrB9XUEaaBOVEnUlXMmSZkYC/OAjmx55EOXBLfRygKpmGQeT5Rp0vmyWyOZOSSjJw9TVG03cFZlDbOUbsDWSaB+LgUVZWC/2JBfiZZThpEUjDeHZKNRqBrWIvzROstsiAgjxPpGKWrmI065swkpWMH9jQueZqRJSnB+Lv3VzbJkoQ8TYl7A8x90yimIQX7mionbJ6PQo453UTRVMp3HScLQrSifRPAADm5rJY0ohh6g5h2J2J9K8DzEvxANj2WqbI47zAcJsSp7EXTRP4slVR2OikK8pqsqoKNTZ8oygjCjItXRnz2C5vcd2eNo4dLmMY3/9r5hgIZIAXeTz75JDMzMxw/fvyGhuGFid+7E4wXAgyQSYZTE5L7/cLKUZhsGIy8hNGogyZ8YopEQU6xqJAk4AUZaZpx9uKIA/M2czMWUxMmw1FCwdF46lSPwUiulARhSpzk0ioMqBRlqnGvLzm8ujbOscsgiqTVmILUQhgip1SQIyvLzmnvxNiOimmC6+UvO1kQyjV9sKLI54lvarhTKTxUZJYBiXTJyjIJSFSRSp69opLmcqqRpTJk8Hr9sZJ/o3a8L12pUSDNYkSWouQpuaKS765+JrcABuouALhuFHPtLV9XY8DwSlK3d0HA3n52PX0qG9O2XvjYLyixS9m6HkzAzSDhldoTf3ssal9Yu65npinDJ4UCji0wLbmv25ZGEKWUShp3HCvihxlb2xGOrZJnOUGUs2/WusEqbxdgZFn2mgDG6uoqjzzyCP/gH/wD/uN//I/fcoCR5zk/+ZM/yR/90R/xhS98gQMHDtxw+4EDB5ienuZzn/sc99xzDyAb9S9+8Yv8yq/8CgD33Xcfuq7zuc99jve9730AbGxscOrUKX71V3/1W/p+Xq4+/vGPA/CZz3zmlrd/9rOf5fTp06ysrDA7Ky/6/+7f/Tve//7384lPfIJyucx//+//nSAI+MxnPoNpmpw4cYLz58/zqU996nUV6quqwtFDRSaapnSI8hIsQ4bxlUs6Zy4MePbMAENXpfO1IkOtPC9FKFAuaDgFlWbNZHrSokqO56asbfiEUU6WgTVyET2PrOdL21jLwQoj4t4A0hjn4AJq0SHa7oz5+PK9puOcCq3gYDRq5Eksm+FqmdT18JbWsOdnEIZB6Y6jxDt9hGUQbm5j1Cv0nnqeYK2FViuh5CDGYul05JKGIeFmW+okHBvFtBg8fYZ05GI0apK2BdL9RtdwFmRAYBbFxDs9VMeSzj7Pn5e88vFquV4ukfRGaFM1SoaGWiqQDVzs2Sm81Q3Ctc29ZtZenKPywJ3SbhS54l08dpBwvSVtdrNMCpFPX8Je3Ie9MEPYahO3u/hLawjbQhRssjghzyDzfLSijV6roDq2zNNoy6A2zbFkYz5eZks9X67w69fOO+b0BPbCHOnIlRkhhk6eS/epPE2JOyOpZxACa256LB5OEbqOMHSErhOstbDmZ1ALDsI0pNVvGKEaN7dVqeeTuh5pEFK55zbiwQh/fRNFKMQDl9G5yxSPH6BwZD+jC1cZPPU8WZSgVYpYs5MUDu1HdSx6T50mGUoBPqog6Q4QBRt7dgq9JqcFeZqilQoUDi7sBe7ddCyMDQPC9RbB6iZ6/UZAogiBMTPB8NQ5UtdDmKbcNxb3Ye+fRSvcOrTNnJlEK0nAaO+bImztk5MZIbU5wtBl0vd0E29pnc5XnyLzw/GKvikF06pKpmtyyqdrZGmKvyEDFxVNI48SBs9fIFzbkloSTSPPMsonZQJ952+eII0TMi9AKxXJ4oS425c0MFWQeh7B2qakHgYhUa8vc1RsC1UVCMsYT950wnYHfW2Lyp23UX/rfdiL1xaQ1IJN5voMz11CLThYCzME6y20okPqeoTL66jVCmkQMnjmLKpjknm+FNnHMgV69v/+XrwrK4RbO9jzMzd8lnmaEXcGJPsOEbYVhFA4sOCQ57C+6XPhioui5DSrBmGUMfQSgjDFDOUkQxMKFy+PCMIc01RwvYTzFwfkKBQclWJBZ6pp4fkp5y/LEOOTx8t7NvLfrHpDgQzXdXn88cc5duwYCwsLN91+feL37vTiVgDj5apc1Cg4CqPhJpaRcPzoDBcuB7iebIhMXVAsCsIwY30zxDZVjh8pogiFelVned1n5GaUiyqDYUqpoDLyMlSRI4TgwILN8SMlVtYCXC9hux3RG0a4nrQRQ5F6DUUBQxcUCjpzsxYbW+GY755h6ALTyBm517rlF1rbKkjqlSqdX0kSCVxu1HGkqEJF0yGNJWgoWHL1f+Tm0oEjVUnSa9sLkctmeteWF2Bsw0t+bWKiqtKV6pXUK6J9KQqoBtlNfebY4en6Uscv6oYG/AVAY/dPOZBdt3/cwFB6kaZ2F2ntvWghaVk3BeC94Cn3gM9NL/Zl6oXbpC9x27enrt+vNFVes+tVA8tUqJRUbEtlfs7k7jvKNBsGUZSx2QpptSOEUDgyaTI1aaCOT2JpmvLMM8+Qpin33nvvKw7Y262NjQ0eeeQR3vWud/HpT3/62zLB+OAHP8jv/u7v8sd//MeUSqU9DUWlUsG2bRRF4ad+6qf4pV/6JY4cOcKRI0f4pV/6JRzH4Ud+5Ef2tv2xH/sxPvKRj9BoNKjX63z0ox/l5MmTe25Tf1fqq1/9KidOnNgDGAB/7+/9PcIw5IknnuBd73oXX/3qV3nHO96BaZo3bPMzP/MzXL169SagtlthGBJed8IZDAav+vUJodCoGTRqN+oZev2YlTUfx1F5+0MNllc9gkAuHm13QpIkp1zUcN0UVUTsm7HJTQe9UmDp/DZ6rcqJow726grZ3ARMNwiuruKHoKy2ceoFRLGAMdmgfOIY4Xab3pOnibc7uBeWELqKNT+HPTcpNQFbOxiNynjVPJMgZVy7jbr6pM3w2XOMzi/hnb8q8xWadbSSQzz0pAYgTYi3u1IYnaU4C/tIumvEgxFqsYBqW2iVEqIoE5edxTkpAM9zavef3HvOPM9RVEH/ydOkXiCnLLUywzMXST2P0u2HsQ/O419dJ9jYIvMD9HIR1TRRdJXmOx7CmKzfeJ3OM4onj1G97w7pFBiEkCTozTpms0bqzeMszuNdXiHu9cnjlJEXkHo+1rykcZFlCNNANQ05czZ0GXYmBHq9ShanZJ6PKJdw5qf39AWqZVK953aSkUewvEo68og7PcKtNpkfUTp5BOfAPOH6JtaRxb3V/ag3JM9yhKGTxhHe1TW0wikgx9o/S9TuoBXtPeCRBiHKOBckTzOMehHVsfFW1lE1DWOiLqcsm212/vpR6XrUlFMca2YSdZxvsgsAavefxFvfpHhkke5jzxDv9NFKUqPiL62BolA4egBrboryPXcgXsTmX6+UsBdm2P6LL5PFCcZ1ACNP5WRKWAbe5RWyIKR8122kI5fuV5/EX1qj9vA9ct+8xeOWThyl9/hz0mUpScmzlKQ3IOr0sGamEI4FYtzMjzxSoVA4fpCk2yfdbEsaWLWMliRY0xMIyyQLI8zZScL1FtbsFJplEmxuE2y2qb/tPupvvVdmwwD1PCePEzqPPkUWRWiOhV6rUrrjCP7aFt0vfV1miSzOE65voAxGMvvEC+Tz7JuheOQAWZ5i1KqQphj1CoUj+29cyNY1gs0W7oWrY12LQhYERH6AWikRX1klzTI000BxTBRdl8f1RE0eZ6ZJFoaUTx6j8zdP4F1dlfoQQyd1A6KdHurUJC2twf55m8kgZbsdEoQptapJqSBjGbwoxQgl0yMIpOGKpil4cYpjaeR5RhTJfjZJcxRyRh4USxqdfoxpKhw+WGBj02dh1qZWvfU+81rrDQUyisUib33rW/f85V9Yu5OMLMv2JhqvFmAAFOyUXvcKYaRz4vaDpKlgq51i6IKDiw6WqaLr4PsZS2sBhw443H2iTBhlPHN6wOq6T68fk6QZpqmiqhCnMUIoWIZKGMPKWoChQ2IK0lwmxgZhhKIJsjSDOKfeNJmbNLAdjSjKKRY0yqWE7Z1UUkySTDKFxna2u64+XOeUYhjSwSqOc9w0uwlggEqaQTq+NvsBFIsScKgq14ELCVQMQ044HEs2gSMPFEXd6/E1FQqOgqrKsJ0oeuFz3rq+MamH8iKC6Fut8Ks3/Ni9O2omRzO7v7+Sxl283Da3eK5vWl0PmF7/1Pfd2p2MZWMnXn0cXB5F10BGlu66S0kLP01T0XWVO44VufP2EgVHnlZsS+XAgsOBhZtXvbIs45lnniFJktcEMLa2tnjkkUd4y1vewn/9r//125Yl8Z//838G4J3vfOcNf/+t3/ot3v/+9wPwr//1v8b3fX7iJ35iL4zvs5/97F5GBsC///f/Hk3TeN/73rcXxveZz3zm71xGxubm5k0i91qthmEYewBsc3OTxcXFG7bZvc/m5uaLgoxf/uVf3pukfLNrsxXg+wm2JVf4ZqZszl8aMhwlCKGQJTLMVQgFx9LwwwxFqOSlaaz4eWqlKiUtIR65UCziDSICs4RfVMl31tHDGNOWK+zBZgtFUZh411uIuzJdWStYWDNN8iQhWGuhV0sUjhxAUQVZFGNUK3uvVVEUCocWsOenqb/1PrpPnpJBd1FE4cACpCmJG0Cek/mhFBpnKYkfEq5vIcZBcHkOYbuDZpnkWYY4sI9wq03h4AL+0hrlk8f2mnJFkenKquPgXrhK1OlLkHD0AIkrJwWZG2A0q+RpgjnZoHL3HZBndL7yBOH2DpCj1yoSCMQJwfo2haOLFI8fks5ZaUqwukG+y9cUAtUyKRxZJIsiFF1DKxfR6xVpW/vcOfz1LTTHwZhsSGeibelQZE40URQxbvoL2PMzOIs3Bls6B+eZMHRG5y/jL62RDF0UQyfuDijefmQ8vcgRpkHxtsMS5Jy5hDA19GoZQ1FQTZ2g1SYduDS+62E028K7tIJWKSAcG+/ikszxqFWIB0O0ooO/ukm83aF0x1HMSal3UFQhP5ONFuHmNqXbjmBO1nlhaaUCmmZQfeguynceo/UXXyZY2wTLxNw3g9msYk40KRxdpHB4P4Ckk23tkMUJqmlgzkyg2hblE0fpfv1ZglNbqLaF0DXSKJbTKssg9QMUXSPxgrFAuYjdqBGsrNN/+gyNdzx4U++VhtKS2ZyZJBl5pK7P6OxlGQhpGiSDAf0nn5fBhXGMWiqgmoZMs5+eQNgmSX8g+4U4QdE0uV2xSOp6qEUHY0YKsI1mnWinizndxDkwf+17PTCPOTuJOTvJ8NQFhKFhzcrzi5LnqKUi9lSdPEkJshx9oiZF6gMXRSjoRQfF0CnOSOvaLIyIdvqEm23sfZL+mmcZ7S89hr+6Ke2Gg0ha36pSU4RQMOemiFptlFIBsyCDGVXHwZiooRZs9LE5ROHwIo23P8Do/JVx6vkQ1TIp332cYGIfo3MBUxWdes1gomHieglZlpNmGafPDeh0I7IkRzdl8J7vy3NVEGQ4ZkaSQuDFJHGOZQmKjkaOnMyqKgz6MvMnzyUl6//TIAN4UYAB1yYZSZKMk1lfniP4wur1ejzzzDOcPD5BubZIqx2TZRkHFmxa7eiGFa4ohsmmwYH9Mo34yecGCEWhUtbx/JSNLQl4amUDVckZuBlRnLGx5dNqhdiWQhiD5yVj7ch4EV0IbAfmpg0qRYOVTR9DEziOSq2q0+nGjEbJXlaGUGR/rKlgmQphnJOlUqBbLevUqyqdXkoYZ3sC8yy/NcUmTWEwyFHHonNDYy+dPANsU/KjbEcwGioYmhxdpFlOlmYkqUoY5igivaHx/NbXq6UQiTfKQOAV1ou9v9cHcOzuDzJMUupzcoAx4NC1sfFHKrezTY1CQdCsG5SKKnefKHPytmsA46VqF2DEcfyaAEa73eb7vu/7uPPOO7/tjXj+Cg4ARVH4hV/4BX7hF37hRbexLItf+7Vf29MtfCvrF37hF162eX/ssce4//77X9Hj3eqc/EIR+62E8C923936mZ/5mRuE/IPBgPn5+Rfd/pVWnuds74SUSjoDNyGKM1ShYBoCo26y0w0JlBRdE1RKGqWSdKmanjRR7zzM6s6AcGuTi2s++fImvmKSRxHGqIvuDfC9AZlv4LQHmLaGMT1B+fihvawfe2FGim83t2VYW7mEWpYANI1jMj/CGa/SXl/CMLDmpij2hxSOLuKev4oiFIJWF0VR0CcbJFc8SY0VKkIIov4QLcvRbHOcLi4blmQ4knTbUUDi+TJReqxf2C1FCAqHFnAW58Z0JBAFaT3qXVmRXHhFULn/TkmVWW/RP3Uef6OFf2WVPIkxJptypX2qiX1gjsq9d1xzllJVnAPzdL/+NIkf4l+REwaE1DbmeYY9O83kI+8kWGuhKDB49hyJ62E0qlhzU3hRAuQYEzWEqaOVS9gLs9QevOuWAmZ73zTW3BRxb8DwzCXUMxcZPnuW/tefJUsiku5ITkpKBYRtoFVKqJaFMhb4oqmYBYfC4UWyKKZ4z+1kkZxwOAsz0k62K4Xs0XaH1PdJukPZBE9f93qEgBzMZoPhqQukrgfcDDJgbKCoqtTfeh+F44cYnb1MsLKB0FTUMU3KXphB0TQGp84xOnNJAiihyMRpBYxmHaNewWhILYewTOkCVixgHt6Pe+4y4VZbBu81qgyQuRbG9AT2/DTB2iZRu3tD6nWwtkXvyVNE7a6cKukawtDxrm7iHFnE2TcjJwa+z+jcJfIsx5qbQi8XCbe25WpWJvUrcX9EPHQJtnYgl4F6wrLQqyWGz51FyTKErhEPXLb/4ssYE3XKdxy9NqkyTSbe8x2Ujh/Cu7JK1OmCUCkeXUQ4FsUji6RhhDk1Qf/rzxAPhjI4MssJt9rY+2dJwxjvyirGRB3yjKQ3gDHICDe2GZ2+iFGrYEw0SAZDok6PzDRQCxZa0aFwx1G6X34Mo1GTWqHJBqptkScxcXeIN/Kl+1Z/iDnVxJhsyHyXJEG1TFTHZms7AII9CpNhiD0DjcMHSpy5IF1STUvF0FXKRR1VVdjcChi5Af1RQrmooaoCVcgJh1PQyDIIogzTUHEcjeEooVRQX5d+7g0HMhRFueWFO89zDMNACMGXv/xlJicnmZycpF6vv2KaxObmJqdPn+bw4cPMz0tf6P3jxY1a1eB//XWLrXYoBayRnCSUiiozkwbtTiQF5DMWnp9QKen0Bym9QcxONyLLpVh7YsoiCFMcS05YNlsR5ZKOrsHIT7ENgW0J4iQnyxX6owQVBcMQMlBFydF1RYqA0lyee8bXXW1samQqCo6tUq/qNGo6jbrJlSUXRckIgwhNU4lT9UWD9fKxED2K5f9bJmiqIIxzbFtlomnQ6ydkuUy0VVTQMoVIUUkSCCL4Vq6u31xvDI3C61cv9f5eqY7j1dWunkc1BeWiSpYlKGNHqCgGQ1ewbRVV5JQKGtWqTr1icviQw1TT5M7byzj2y7+OLMt49tlniaKIe++9d8/U4ZVWp9Ph+7//+zly5Ai/8zu/86oBypt1c33oQx/iH//jf/yS27xw8vBiNT09zde+9rUb/tbtdonj+Aah+wuteVutFnCz1e/1ZZrmDRSrb3Y5tkqlqNPpyUAr01QpFXVMQ5p5BEGKriu4LnR6Mds7AWmS0fZmmHbK1NxtjKiFl2pMuh0KuYdSr5PpKoFtQx6j5i7+5WU0Q3L7E9eT6cd+SLTdwV6cQ9E1gpV1/JU1tGKR2kN3Y0w2iHsDFFWgFgs3gDG1YGPPzxK1Ovirm3LFt+AQtjtkfiB57qaJZpvSqtX3JAXEscmSFNXIUU0T7/IqqesT7fQoHT+w1yi/kHKjqCp67dpkxd43jb1vWtrqCoGiqvSfep7O3zxJtNORXP4D+4g6PYL1LeKhy/z7/y8ab7v/psd2FufoPXGKzpcew5ioYc40JaV3OCJud0k8nzzLqdx7B4XjB4jaXbzzV/DXtlBNg33/7AfQ6zUJAPIcs1nDmpvGqFdf9HtXFIVou4N34SpGvUL9nQ/hjleVg7UW3a89Q/HYIkatgnqbBBrhdgfIqdx5nMKRRbRyEX95nbC1IzUHs5MMz10hC2KikkO4tUOwskXSHaAIFWtuhuv1fKkfoBUctEoR1TIJtztyOpNnCMvcszDOYrnAqhXlYqxZr2K+9V6paUlTFE3b2zeGZy/Rf/wUerWMc3CePEkZnr2Ee/YyWZJSPnkU8px4MMJo1ijdd0I27r0BwzOXZWOe5ejV8p4zU7C8DnmGVnCkK9cYZITbHTpffZI8irFmJva0OJI2ZpK5PuFmm7HbDebsFJkn6W7FE0ewZicJ211QVZTlNfRmFUXXiDpy3zSaVdLxMaKPV7uMfTMI2yIPIvqPn0LoOqXj13JBFCGwF2alM9XIlZSylQ2izkA28ZZJ7cE7yfyA3pPPAxl5EO/x0pP+UB5zQsHLcyr33EGepvgrG2z9+RfoP3OacH2bLDmH0ASoAs12EEWH1AtIOn3yJEXRtT0qF4Ci6ej1Cv7qBt5wRDaWACiKsmeAsHdsWSr6OEJh1xFvt4oFFSWX1+WZSQvDkNlhQZCS5RklR8WyNWZnJFhJEvk4w2GMYUgWQsHRaFQNXF9mwVnm/wHC71vVrsBb0zTe9ra30ev1aLVanD59mjRNmZiYYHJykkajcctVzTzPuXLlClevXuXkyZNMTEzctM2RAw69+2s8+/yAbj/GNCUqPHzQYXrS4sqSh6rKL3bfjC2RYJjiBSlxmlMuaJTLKqYh0HUFbRzpjrK7zypUyzpRlJGkinSiSjLiXMG0BZqmsLDPZnXdx/UzKiV1z80hCjN6w0RaktkaczM2E02dy1d9/DAjTTLCKGXgRuSKpEe9XHJ3Jh1hybKxrsLMIFfIMmh3YvIsh1wCPlUBoStkec41B+HXp9l9+fo/GWC8sG6l47iVJuSVlVAlCBi4ctVZHUtQLEPgFFTIFaYmdMpFDU1XOXTA4eTxMtOT5isGGM899xxBEOyJnV9N9Xo9fuAHfoC5uTl+//d//wZL1DfrtVez2aTZfOU2lS9VDz/8MJ/4xCfY2NjYc9P67Gc/i2ma3HfffXvbfOxjHyOKor3v8LOf/Syzs7OvGMx8M0tRFJoNk0tXR8xM23hBwsqavBCnqXQv9Hxp+GEZKn6Y7p3Xt9oRIzelMl8jrzcJ+zn7Vp5G8/rsFKqYmNSdCCMNSeKUqFYhWN3Emp2keOwguSIXlOKhh2ob5HEqaSLj4L3E90n9kJ3P/y2J66OoAmt6gsLRRawZmcdgzUxQOLyfuD9keOo84eY2aRCRdPtkaYpm6mjTE9LSNg1BEZJ33+0BCkazTuoHeJeW0WtlRKOKMA12Pv+3DCdqlE4eRy/JlOKXykxQhCBqd4k6fTpfe5pwe4c8TtAbVeIdGeRnTDQINrfZ+uO/onhogeKxgzc8hlpwUC1jnIjt47lrUjdSLFC5/yTJ0GXjD/8CZ3EOEOglh+Lxw0x937v3wgRfbWVRhHvusrQOHoMR/b4TRIs9zGZNhvZpKnqzRh4nKCgY5SLOXccpHD0gQWIYEW61cS+v4K9sEm5uE23vUDpxlNr9d5JnGdbMJP7VNbylNaLtnb2GMotisiDCOnpABv5pKu7FJaKd7p7lqjU3NdYkbGNOT2BMNW767K//btIwwh3npejj3AXv6hrhygb2wizJYEgWxZTvvg2AwTNnQVEo3XaYwXPncS9KjY81O4ViGkRbO8RqD2O6SbixDVPN65wWwbu8TNTpITQN94lTMkdi5BK1OjiHxkF/h/ZL4bxpoDeqRNsd+k89Tzr0MKea8t9kHe/8FeL+AFBwFufI0wytYJP6PuQ5er1K1BlgTAZkfohzYB9aqYB7/grOgfk9YwKAxPWke9bVVVI/IvU8/NVN1KKNNdVENQ0qdx0n3O7gXVom9QP0ccp66gXjjJlJ/MvL+Mtr5KmkzA2eO4t/dR1/ZZ2o1ZGO+IaGakmNE0LgXlpGq5RvENRnSULU7hJvdwk7XfIwovvoUyhvuw9rZpIwTBmM5HTRsTVKRY3Jhsnquoc5Zd8gylaFQrGgommCJM0JRvGe66PjyOmFokCpoBGEOmGY7T2+oascWDCZm7JBgeEo5vBikUb9m7+I84YHGbcSeNfrder1OseOHaPf79NqtTh//jxRFNFsNpmamqLRaKBpGlmWcfr0abrdLg888MANPOjrS1EU7rurwsKcRasdkeU5zZrJZNPAMASlokaSSN7a1IRJpayxf85ibtpnZtpip5OQZtmeI8nQlV7auq5QLGi4ngxKsU2BrgsqFR1dU9g3a2Hqgs12RJ7lZJm0Sk1ThUpZxTAEg2EqL2zARNNgfp/FVisiiDKKRcHSqstmy0NBxdTBf4Vi7N0JSZJC5oOu5wRhjJFrFByBk8qU8zjO8IP8JUZp3yrA8SbAeOl67d+DaSgYhkIQZQhF0JzQCaNMOuaYAtdPJCCNVfrDlKMHTb7rbU3KxVd2CtkFGL7vvyaAMRgM+KEf+iEajQZ/+Id/+LquaL9ZL17Ly8t0Oh2Wl5dvsB4+fPgwxWKR9773vdx+++3883/+z/nkJz9Jp9Phox/9KD/+4z9OuSybnR/5kR/h4x//OO9///v52Mc+xoULF/ilX/olfv7nf/7blgsyPWmytu6TpBlHDpbodGM63RDPh/4ooV4zcCyVrXaIaQriKKUXSRvyUlGn102IkxC1PMuieAor9QniIqELaUFHTTxSJSd2QzKh4S2to1cr5HGMv7opG9U0J+4NsA/so7Awi7BNek+covuVx6g+eCdGo0KepPhLqwSbLWoP3YOzfw5hGFTvP0kWSovc1A/kCqxhYJgmer2C0WgQrG2SZCmp55Eb+ljrUQahEHcHiHGTXbnndrRyEe/SMt2vPc3w1Hmc/fswp5uUTh7by3G4vvzVTYanzhNt7xBstuk/eYo8yygcWSRY3iDq9FAtSzpVVUr0n3iOC//mPzP5Pe+i/tZ7sWYmybOM3teeofu1Z1FUMXb4U9BKDqWTR0mHHsHaFlGnh7N/DqNZIRmM6H71KeJen+qDd+2t+L+airsDmRmx79oUTega1nQTY6KGViszfO4c3sVl4t6A0m2HKR3ZLxtwIciiiMHzF3DPX8VanEMrFxidvUAycnEvLsmV+IkaxSOL5GGEv76Jd3EZvVmDSFqe2vtnMWcm8M5fJe6PMCZqZF4oF/Z6EjyqRYfK3bdRvP3Bm95nnqb4q5u4l5ZJvYA8ifGX1yndcQSQovpgfQu1VBzTv4rEvT6ZH1K64wh5lpEMXPzVDQZPPY9WKqLXy9jzs/KYLDiknk/U2kFoOuZEHaMp7XnTMJKUpK0dkqGLWiqglYqkQUjcG6LoGqpto5UKe8AYQK9VMGpVwo0WWtFGGAaZJ5v8YGubLIzQi5MknieBsxeg1WugQB7HMoekWsacbKKVC/jLG8SdHur4ORLXo/voE3jLG2NqWIWsYOFeWKLzpa/TeMdDmJN1zKkm9Yfvwbt4ldQPsB0LFAVrYQajWSPp9LH3z+FdXSPY2JaWxVs7eFdWpJU0OXmSSkerIJZApVYhL9iknkuwuoFeKaEYBv7VNUkn02TmjSg4hJsttr/wdQb7b2ebEq47NjfKc0xTpVmTzmVLqx6Vso6uCYIwxXUTDuwvkqQZ5aKOIqSZUBhmBFFOFIbkmaS6KyiUihqGrrDVDtFUmJ2WEQLrmz6L+xzuOFb+P8PCdpcudX2CN9xa4K0oCtVqlWq1ypEjRxgOh7RaLS5dusSpU6eo1Wr4vo+qqjz44IMv25ioQmF60mJ60rrptmbDoNkw2WyFFMeNVZLCXSeq3Hl7ibWNgLMXRxiGwsUwxYhyBqMYoYBlKRi6hmVpLC5YOJbG4j6b9VZIoybBhiJgeTWg208o2ALTUMlyhSyFUlGQpBoCBXKF0+dGJGnOfSfLFJyQx5/ZYWrSoT9UMTToDSNGo5f5nMc/d3FDPg4QzHOZjCuta+U4JE2l/e4rC+p7vQDHmwDj1dUr/x4UQIicKMql25kjWNhnoamCpZVANlVJjiYUio5GEoNQBUGQviKQkWUZp06dwvO81wQwXNflh3/4h3Ech//5P/8nlnXz8flmfWvq53/+5/nt3/7tvd93bXk///nP8853vhNVVfnzP/9zfuInfoLv+I7vuCGMb7cqlQqf+9zn+OAHP8j9999PrVbjwx/+8Lc0OPH6StOcJJELQhevjMhymeztezFOQcOxVRRgbVNmUwyHctFLURSEKigVNPr9iDjOyVSDQWGCkrVOpumYak6gOeiz0ySuj9FaAVND6CqqYxFujVAUBWOqSZ5lxK0dwrVNzFoZkaakIw+tVEQrFfdWRLWiQ7CxzeCZMzJ0zTSwZiaZePdbsffPogjB4MwlnIVZ9EYNb2UDb2WVuN0jzzPUYkFSmwC9XpV2qOSUjh2i+V0Poegaw9MXIctkI60ItFqFcHObpD+i/p0PYE5eW0kP1rfo/M0T5Emy5/8/OHWWtDtg+PxFFEVaxpLn+Gub+CubJP0hg8efJ1ht0f3q0zTe8QBGs8bgyechz7Bmp6XLjh+QdPsMT10kDQKEqUvakm2hWibCNBAFm9G5K1gzk5izU4TrWwSbbfI4Rq9XseembqB3vbDyNCUfO13kaSYBDpKa5F64SrjeIk8yrOkqqeuRhaHUZYy3C9a3CVY30apliof3j8VrGc7iPHG3z+jSVaq1ElqpQPGOIyRBQPuvH6X/+CkKhxYo3XYY+9A8cadH/9mz2Ptnqd1/J+FWW1oTt9okIw+2d8iTjKg7oP7wPVQfvAut4BAPRrT+8st0//YpqRtA0q9k3kZK5c5jpCOP1AtkDgby/J1myDwJMbYT3u5gzU5hTjaxD+wj3NgmWNkETSCEkFqJ0QjSnLJ5B8NT58jCGMUyGV1aIm53ZS7JOJ9CKxbQqyXyKCEadaRt63WV+T6Fo4vojZqkYQlBuLUjm/RKBXOmiVYoIhxT0pe8gNTzCNciksKIUqlA6fjBvUkNOeN8GFnuxSW85Q0KB/btZVuolknznQ/S/uLX6X7tKconjyMMjdT3sffPYe+fQy+XEAWZWxG3uxiNKsXjh9j54tex9s/iXVlldPaSFKgLIa1so4g8SlE0QR4nkOeUTx6TAZx+iL/eIo8igo1ttIINIJPjqyWcA/NcWPJZWrnC9AO3MdG02GwFrKz5dHsRlbIuoxgUBd9P0Io6tbLOiWNlDi44PPFsjzjJSJMcXVMYjRKiIMUyBWGUsbUdEgQJnp9hmoJmzaRY1NA0heEoZnHe4Z1vnWCi8fos3L3hQAbcmH/xSgXeiqJQLpcpl8scPnyY7e1tTp06BUiXpOeff56pqSkmJiZeE83CNAR3HCuyuqHRastRwaEDBfbNWJiGYHrSpNWOaHdCSo7GYJgQhilCFXR7KdWyymRTp1TQWdhnc+ygQw6sbvjEcU57R/KACwWBKgzKZY1SQSPJcnw/JUng+OEihw84XFn26PYT8nzEytoOplmDUKVcSCk4KrYlWIoC0viaodL1tTvlFIp0ds1zcOxdoJGBkpNnCnEsLRyTVwwwXljfDMCx66N14/2EkP9uEQD/d7BebwD1Mt+DAkEoxd2qyAnCjJX1kIKtkmUZIzdjZspkZtKS49eiRq2qs7Ie0KwbL+mrvQswXNflvvvue9XHnud5vO9970NRFP7kT/4Ex7m1P/ub9a2pz3zmMy+akbFbCwsL/Nmf/dlLbnPy5Em+9KUvfRNf2WurOM44c2HI6rpPnudMNE12OiG+n1KpGFQrhpyGXxiy04ukSYZQqJQNkjRnNEoYDWMsQ0UVCn6QMrBrTGomvdI0tqWSFQ0JLLAoTASYmo9zcIE8ijEm6jIjQ5H8K9Uy0atlvOUNmfBtGjeEiu2WOVnHX94g2mpjL0i7YL1WofbAXRj1Kmv/z5/jnr0s8xkGQ5JOfywqjRGOg7AMjOkJhK6hlUrU33Yfje+4F0XVJD89zWSo3VikSp5hL8ziXV1ldO4yxoS0o82zjOHpi+RxvOfzL2wLYRgotkXc6siMCiEIVjYIVjbG7kUmSsEmDUJGpy8QLK9j7Zui9rb7ZI5AEO5RhYSh4567LIMQF2YRpgKair+2RbixRepH8j5hhD07SdjuIQwNRRW4F5YYlQtU7j1B4dDNtvgAqR8Sbm7LqYNjYdQrmNMTkkJzdRVFU3EO7qN6/wmMySaDp8/QjZ6h9vA9aKUC3qWrpJ5P8fhBjEZtLNqWpdcrRNsdkq5Mu/Yur5D5Ifb8HFq5SDIY0X/qecKtHek4VKtQuecOmecQhoCCs39O0tBabbIoItzcZv3/+XO8pXUm3v1Weo8/S+fLj6HaBqU7jqCoKsnQpfPok3T/5nE5lZmdvPE9ez6qbSJekI1BlmFONwlbO+RJStTpSXOAJCZLchRdSD3GYIh77opMfB+6DJ85gzANnIPXHLy0YgG16JD0BqRhQHad/XSWJETdAaUTRykc3o9zYE5OSUydxPVxDihkYYjRbJB6Aa6xRNTtkw5GYJvSUV7T2F0uTUYuwjH3wvnSMMK7vIJRq+wBjN1SHZvG2x9gePYyiR+QbA3Jxonf1tzUOLk+RVHHIYfNmgxV9n2S/oje156WIv4sRwlDkjCSEVy6jjIODoyHcooVbXdBl6GOqqahV0uYE3XUconM87Gmm/iaTUvRcZIehdSj1VZYWfcxTMHsjMVgkFAqaui6SppmHD9SYqopE7qLBY3uIKa9M7ZKzqTsZbMVoKqC248UMG2N0Sih04sYujFRlFEr60xOWNTKOrcfLdN8nQAGvAFBxgsBxmvxvt/Z2eHUqVPMz89z6NAhfN+n1WqxurrKmTNnqNVqe8LxV0O7cGyVowcLHNovd2RVVW647eRtJda3dDZbIc2mga7LNG8F0A1ByVGpVQ2adR1NExw7XCCKU772ZB9VwMy0ze3Hy6xueFy45JFlcvV46KbMzZg8eG8FQxfs9CKWVnbY3AxoNpokKShqThblMicjkw24WVSIQynejhP5L8+v5VfvTigU5G2WKVAEDIYpSSJXdgp2Thi96q/gphKKKjOzc9gLtrsxsOIW9eLNt5DXmf8PgIxv9YTmFjqOXE6wkhTCGGoVlXJRlU2EAkJVmKjrmKZCuaQzOyXBxnAknXgs89avP89znn/+eUajEffff/+rBhhBEPBP/sk/IQgC/vIv/5Jisfjyd3qz3qxXUZeXXJZWPSYaJsaYKrBv1sHzU7bbAcWCxrmLI1ZWAuJUrg6WShq6quAFCenYxtsoCwxdrhx2agsEW2cojnbw9Un6o5ihKyfUZT/E1XNsw0FXVbRiAUVXyaKILE7GDjplgo1t0iBENXX0akk26tfVbuOUBjdzY52DC0x818MMnnqesDuQIWimIektqpDhajmopkGW52jVIs6BeZlInvokvT7a2DI3TzOpExhfh41mjWB9i2ToopeLxN0+YWsHo3nNZUivlLCmJwlWN0FVyOKYtD8g2GiRDF3SIII0JctSudrdqBBstAg2tyjfdRxzdgr37GVUx5JCZlUFIYg6PbRBGWt+Gv/qGuHaFoqpo5oGeZrS+ssv4xzYx8R3PbQXCAdSlNx77Bm0UmFvApMMR8S9If7yOqMLEiQk/SHC1PGXN3GvrJF6PuZUg3ToYc1MoFoWxeMHUU2T3mPPsvOlr2NONAh3+hQOL1K87TBC16DgoBYckpE7zjmBNIoJLi4TrG8hTJPyHUco3XM76XBE1O6SuAH2/ln0WgnV0EnDiGBlU1rkbmxLbctEQzpwHVwg3GrjXVqiFcf4K+uoloE5M7W3GKuVCjLY78wl3PNX5Ot3LGkKYBskrr/3evM0xb+6hrClw5SiqYRbbRQh0BsVwtVNOUnJc+LhEL1exdo/hz0GLkYYMahWcFfWCbc7mBON8T4qsGYmGIwBC1lGFkbEIxfv4hIwThu/vCLdmA4vMvk974Q0Y3TuCsnARbFMos02uR9KmpIQWFNNzKkJqZc5ewlh6sTdIYXjB/eyO7JQpnnr1VtPsFLfZ/T8BalZKlioxYIEfFttnP37qN5/Uia8jyvq9sjilGBlnaC1IwMPbYuUAJJUTi/SbC9jIA8i4nYX1dBI4wT39AWMZk1OSsYhmXqlhL1/H1s+RKmgpucEXsRaX0h30SQnyTLCICPJct5yT52hm3FlaSQT5xWFUkHj7juqXLzistMNSdIcIQwcW6Vgq0xOWgghqFUM9s3a9IcRl656NOomBxcK7Ju1qVVeX23jGwpkDIdDfvqnf5rv+Z7v4Tu/8ztf08RhdXWVc+fOcdttt+0FQjmOw+LiIouLiwRBQKvVYnNzk3PnzlGpVPYAh23br+g5rgcX11fBUTlyoMDhRQlCXm76YpkqEw2LhbmIyaaBaQiEkBOEtfWIOMkoVzVyFGambFRVsNkKOH9xi/4golCo0huC6yWShxdkeKbUdKhje0RFQI4AJcMYs1TSRE4mVHEtBDXLIUkziqa0MXPdbJcSS/oyIvJXUoqQIdhpLmlpafZyU46Xb77z1zN+/FtSbwQK2Bj8AUmaYuTQrCpUSiZBJJiftSGHI4eK1CrSaUdRFPqDGEMXaC9yLOwCjOFw+JomGGEY8s/+2T+j1+vx2c9+do/P/2a9Wd+s8oOU9U2fcknbAxi75dgqxaKObQkcR1Cv6WS5hlAVSoVrdL/hICZN5fTP0AX1qkG3X+ZM806OrDxGaXsJVy2Q64JqmKCoKjtOg/5GzExTYbopk7mD1U0UVWAekAnGiq6RdfsoQsGcnrzZ8jeT42Wh33wJVxQFvV6lfNftuEtrDJ86LfMFalXyRK405YqC2awT7nQJN7Zp/a8vYtTKKLoMszPGrkHJYIRelzkCIG1z83iwl2WRJ+kYxFz7TBQhqNxzO97yGsPnz6OoGv7GNsGmbJalzqKAVpLi2swPUaslwtVNhs+dY+K930k6dAnXW3sgIg1C4k4f48G7SIMI9+xljEYFIQRiTJ/cfQ3e8gblsRYBwJyo415ZxVtaQ6uUGJ46h3dllbC1w/D5CwjDwD4wJ4FBt49imSSbPbzLyzKZ/NAC9vy1cEkAxTGJu0OMiQYIQRZHsoHu9OWKvaoSb+2g6JoM8vM83ItXyeKErNOnfOIomm2hF2ys6Qn81Q1S15OGK8jgv9T15fXXC9AbFdKBi7DkCrZeKZEGIcPzV0h2+tKV7AX7iD03Rdjawbu6SuHwftRigdE4ndpZ3CeTzLfaDM9cwF9tUTy0QNwd4F64Sp7nMpV+cxtFVVEdcwwOc/IwofvoE+h//zuly5UqsOZniPpD/KtrAGi2RZakpG5A4fhBsiAiS1LCdo+o0yWLE0lvm6iDECSDEe2/flSC4CBkdHmJcK1F9ngI5BhTEyBymRejSIqSMGTqev+pM9Tffj+VO4/tvXehawhNJ4uim1LPg81tuo8+iXd1jcrdx2Q44vI6weoWWRgS9waE2x0m/v7bsacnyCKZk6FXy3iXlmSDr+ugqWi2TRpGMus3zSUoVwRCE4iCjdmsoZgGyWBE6od4V9ZQHZvSbYew983IY2A727P87Hk5y6s+iiKF37aukqc5O52IsxcGCAHPPB9x6uwQXZNmQocPljh5exk/SImiTDpJxZlc8OjGmJZAFQqel9Ab0/HbnYCryy5b2yEzUyaHF4uYL7JY+I3WGwpk+L4cWf/4j/84aZryyCOP8A//4T/kne9858s2KXmec+HCBdbX17n33nup1Wq33M6yLBYWFlhYWCAMQ1qtFq1WiwsXLlAsFpmammJycvIl8zperl6NeDHPc2kPOrYn8/yUTjeh2dCZnrQ4uN/m8hWXK6sB6xsup06vYRk5tx+fYqMVEQQpfpChqqDrAkWRGRiWKSg4Ml5+5KYYhoLIxyIgAXouNSWqGM8VxuneOeCHCfkYELxYit4L08dfrtLxc+njXA5uAAi3AhwvXmIMfL5NGtFvUn37Acbud6gA1bKGpqqSNkfO+kaHMIRDiwaqXqDbjfYEaJ6f4voZtx2x0bSbJ415nnP69Gn6/T7333//qxZpx3HM+9//ftbX1/nrv/7rFz2W36w367VWnuf0+hGulzAzfevFpWJBZW3dx/MyDi06DEYSlPSSUIaW5jnFgsrIzen1Y2xLkBelB31v9hgXKlUaWxeoDdYRwFJhnmj/ISxN0Lj8JNHqBr4X03QUSYtSBXmaEbXahFvb6PUqermEVivflDMSdwdolaK0Ob1Fha0d6bpTLuCdv4ywLBRVlfqOcoGw1Sba6aIaOnEnJu50ST2PzA9JXJ88TbCmJwEFe35aWqojuf7CukazEZaJsE1Sz9+zVQUwGlWmH3kXqR/gnrlMMBxJe1ByFENHLThypbxYkLz+cYp22BmQej6lO45gNGv4axtkQYxWKuIcXiAZeoxOXyCPE7IgIAc0xyHzPfRyEaNRldqR/XPXqDN+QDpypW7ha0+T9kc4hxdQCzKZW68UCVe3MKYaFG4/LAXMjoWiqVgzExRvPyJX/LNMBqZdXUOzbYxqhcp9J9EKF9n5yuOMLixh1KsIVbp3pa7H4Nlt1KJDuNPFPXcFrVzEqFUIN1sMgOKxA6i2hV4pE253EJpG1Jf0ncTzCdsd4naPNAzI45TSeHqgqEI2u3lOEvi3dP0Spomzf46420fYFnq9gqIqZHGK6li45y4xfP6CBIX33k7p2CHSKGLn0ccJNlsQZ2glBzQNZRwGbE41EbbF6PwSxeOrlE8cQ2iSjhVutVF0Db1SJosihGlg759DIUcUHZrf+RayKGLnS49hz0yOaUgyzT7YaNF/+gz+8jr2/AxGrYqiqrhnLhG1O4higeq9t+McWpB0sN6A1A/RamWsmQnq33Gf1Kd0+/irm0SdHlG3R9wdULr7NrTxJDCLYrxLywSb2xjNKmqxgL+0Dig4hxfGYF/Fu7LM9l9+meo9d6CWZJhjOnTxLl5FKxcQpj4OiDSuOy5zsiSR/Ay7iKrraOUieZpTvecEwWZL6mKaNYpHD+5pegwN6RxXtOkmBr7vMTtjo+yyPIRCraxyddVjpxPjWAqWKdA1hW4/ZmU9YOTGPHB3HVVVCMOMUklnoWLQ6UV0uhFpmhEnOboOlYqJaQgmJ0yiOOfykksUZZy8rXLL6/k3Wm8okDE5Ocl/+S//hU9/+tN8+ctf5g/+4A/44Ac/iOu6PPLII/zAD/wA73nPe24SfiZJssf7fvDBB18xb9s0Tebn55mfnyeKIra3t/eE44VCYW/CUSwWXzfXk1JRQ6hyzG4aAteTTlK6LqiWNISiMDlhsbLu8dWvL2NZKgcPzOB6OUcWdda3fIajlFJJQ1PllCAMcyrlnMV5m+EoodWOqZQ1Nls+o1FKMqZIaVlOmkg6lDoOYfP9VE4udvdvIa1ur9dsCeVaGHaWjhvV8b75Uta5aSYBxi0oxjB+Solbdje4ccKhKGDqoGkw8iTFa0wj/TtW336AAfJ7U4X8PksFwcSERb2qU3S0sRYjZKoR0en1aLe3cIdFnEKJZqPCwYUi+2ZuFmDvAoxer8d99933qgFGkiT82I/9GJcuXeLzn/88jcatm6g36816LRXHUgi5tunTagVcWnYBaDRMTOPmYzKOc0xDAUXlUNOkXJTn3ChOZV6BJi3Lm7ZGmkIQZBQLKvvnHTpdk7XaDF1Lrtgkisb0tEWxpNG3DPQLj9NPNESxzuLdx8m7HbzLKwT9IYqh4xzaT7jRovWnf405M0nhwDx6s0rSG5J6AdUH7kQr3PpapyiKpCaFkbRAnZ+VQEZRyOOYpD9C2BaJ56FqgsLRA6RuIGlDvSH9p86Q36sw8c6H9ihGeZYRbXcp3XlM5il0++SAOTuFd2lJAofrrpPGRJ36W+8DTWP47FmEY5CFCYqhkwxGsjmdm0JYBslgKKclSUrq+mRxTNTukIcJeZJgTNRAURidukDieljTTVTHIfV9go0t8iRFOFKYH3eH6OUSxeMHyeKY0ZlLBOstsjghXN1E2OPzllAQhia1A5ZB1O7iLMziPHgnUWuHNAhRNG1vWpT0R4RrW2j1KunQRSsXUQ0No1lHESr+5RWMZhVzZlKKyRVFJsCjIDQdZ/+czNQoOZJ6s7YFeUbpzuPyOzN0yHO2/+LLRDsdvJVNlDQlVyAduQjbJO7IFfXMD1BtC8UwENs7ZH4ApZsXRvM4xd6/j8l/8I49XUbU2sFb2aDz5cex5mco3X4EvVqS+7NtUTp+iODSKrHvY44pWggFrVwgj2Lpa57neFdWKRxcQHVszJlJ9KU14k6PwtEDaEWHcHsH78JVwrb8m7e0Rp5mZH6INTtJnma4F6/iL68TbLYJVjaIdnrkcUL5ntspnziGXi4xePYsiqZiH9hHaWx5nOe5/K47fandcWzci0v0n3xeOlw5FnmaSTvh7R1qD92D2azJyc7KBuSgT1Txl9f3whyFrkutkRAyzFFVUXSN5nc9jF4r469syKleoUDU6hC2dsg8X7p0CiEbkigjNwyMiRr6RJ08yTCaVfRmjSwKycslwo1tot4As1ElT1Mcr4eZpXjVBfxY4NgaSSyNKJI0kzECqqDTi/CDlOlJGasghCBJMto7AY8/3WV+zmFu2sa2VYSioOsKczM2s1MW/WHMqTN9dENlfTOgYKtcXnJpNiyaDZP1zYCZKfuWpkffaL2hQMZuaZrGu971Lt71rnfxn/7Tf+LRRx/lD//wD/npn/5put0uf//v/31+8Ad/kO/+7u9mc3OTT33qU7z//e/nwQcffNXONbtlGAZzc3PMzc2RJMke4Lh69SqWZe0BjnK5/E0FHLWqzr4Zk+W1AE1V6PZiBsOEg/sdKhX5XjQ1Iok2KRYL2E6VOIV6VSOKcxRFoKowGiWoqqBe1Zmb1TEMhQMLcgXaNkNuP1biC1/N0NSYwSglTXLKVZ3BMCZJM2xL8u39ICMIEhKuTQpeKPo2dNA06dFcKgrWNmKyXI5BwvilJxxZBvF1t6viGh0rHzffmjqWe+cqWb77/KmcrmQq5htyr32l9e0HGJo2dodkrN0xpVe/qYFtCAxDIY4VZqYKVCo1Tty+wKFFleWVbTY324TeCt12kSVl4gYQnuc5Z86codvtcv/9979qF6g0TfmX//Jf8vzzz/P5z3/+lnk2b9ab9VorijOePzdgdd1H0xTiNCPwU555vs/8PodDi8UbAq9Go4RiUR27sCQEYc7crM3UpEmnF7K67gMwNWlxYN5hqx2wsRUSxRk73RjPl+GmlYrBdjugUtJIolxOLA4eZjNOmHY6eGFO5/QSVuqhGJpc/Qwj+o89h7VvCmOqSbjRkkLWRhXn0H4KRxcxJus3TThg7Pb06JO0//pRsjwnXFkn3OlROnoAvV4l8XyyMEIt2KRDD2N2cmxVCsnQQy06xNtdSDMpeA1CGRa408WYbJADrb/4EslYsC4sQzaMl5YxJ+oI0yALQqJ2D6NapnhwntwLCFs7BEtrcmXbtFCEIoPIEpU8TikcPQhZRvdrz5CGEYoqEIbUDCg5hJ0eKIK40yPu9tGLBbR6BbVcJNrcJg1D9FIJ8gz3yirxYEiWJPIaWXTQhFz9N6ebRNsdop0BakEugiiaDopC1O5gTjZkInZF2rzufsZRp0s+PnHmaYo1K2lscW+APSNF9NFWB0URKIoUDWvFAuFmi8Y7HmB4+uKYPiUQhsCcahBudbA7A8JOB/fiEqnr42+0CFbWybyAbKynsY4ewGg2SEYjvKur6KWxjmbowuEDRNs7qEVnj9YG8vOKh0MKhxfI04w8TiTgnJ1C0XW881cxpxt7gYh5npMMXYSuo1gGIsswphpoug6aIAsT/LVNSCP0ukPqh2RxggpoBRtrdhJzokEychmcOke4soGwLYq3HcKcrDN6/gJhuwMoFJQFvLUNvMsrqJXSXqNulIsotoV3aRn3wlXS/pBwu0MaRayOXGb+4XspnzyGaugyPXzkYp84RrTdoff4swhdo3BYCvyt2UnMqQa9v31aOnkdXiBsd1FyUEwd99xVmfmhCcRVA73ooJYKGI0KRrNB4eB+9GoJvVKSSegTdYShUTi6gCg5DE+dJ251yJKENI7JBkMyIbCadeyFORmcORbzo0ihurUwSTpwSYcubn+Ioig49Qp3vnOe0/0Cw0sj7IJg6MaYhiAMMwqOJgGGn6KpCqWiThTlRHGMEFCvmqyu+1y+6jI3bVOrGtSrOu2diKlJE0UobLUCNloBiiL7qXLJoD9M6PaHTE9aGLqg1Q7/zwEZ15eqqrz97W/n7W9/O5/61Kd47LHH+IM/+AN+/ud/nh/7sR8jyzJOnjzJwYMHXzPAeGFpmsbMzAwzMzOkaUq73abVavHEE0+g6zqTk5NMTU1RqVS+YcChCoVjY7779o4cuaPAZMNE1xQGgwEXLlxmarLJg/fvY31D5mOEUUq3nzDZMBgMYybqOr1hSpLk1KoaWQq6KmlYE02D1fUA30tRVUGpqOB6KYamUHSkPWO1plMrmXQHESNPBv/tag3jBDQBmi6bU02DSllD1wWqEJhmTBDIJPBXyqC6HlzIutZ8j/GKpERdu4cUe+uQxCnjmcjfsSnGNx9gCF7APHuJUq6NivZ+V1WollQmGyZBmLPdibG8hHJJp1bRmZ0xOXqwSMFROXlHkZN3HCCKItrtNtvb2ywtLaHrOhMTE/i+z2g04oEHHnhNAOMnf/Ineeyxx/jCF77A9PT0q7r/m/VmvVytrnusrHnomsL2dojrpyRpTqcnz3lpmnPn7ZUxJTAhijKOHiyxsuZjmoKtdshOJ8Q0VfwgI45zLEvl6OESMxMWQzelVs0xTcFgEBNFKYYuGI5i4lgamaRpRp6Dbqq0Jw4Qz85gP/UVBt0WpeOzaJXSXlCaXpP2ss6RRSonjjI8c5HR2cvkWU68vUP/8ecoHN5P850P7Qleg/Utln/z/2V0/gpaqUCeZ2TNOuHmNv2nTuMc3U8eRORZSjLyEI6NMzeNahmAgmGaqJZBMt0EcuKdnuTkmzrlk8eIByNGz55Fq5Qwd+ku42RjvV4Z25X6qKZO8c5jxNs7mL0B+fGDFI8eZIeccKONogmEKoi2OzIEb3qC8n0ncE9fxLu6Csgxq+bYWPtmSH2fcL2Fc3Ce4u1HiLY7KKqQYnmhYExNkA5HxP2hBGIH9+FdXCLc7lC8/RBCM1Ata+z8pGBM1Il2eiRDl7g3lFz8bh9FV3EOLyJUIW10LRP30jJ6uUi0I+k3KAL7wD7MiQZZJAW+Wr1CnudkaYo1PSEpNgszDJ87TzhepTOnmvhLa3vTEemOlDO6sox77jLJwKV42yHyOCbzAvJyTNQbSreibh+9UYUcgrUt7IdnybMUa3GO+jseZOv/93m8SytjxyiLuNsnaO1gNmqkYUznC19DqxQpHF2kdNth+RxJsgcwUs9ndGmFqNWWLk6eT9IdkvkhqaaRtnsyf6XTk7oRRcGendozIIg6PbRigepD9+BfWWF0+hLW/jmKxw5i1Md9UqNG1O3hXVqmePwAweomwjJRDQlK8zhB0TXyJCVod6U4ulmVmpcgxLu0zPrv/SnelRVqb70XVVURto2zf06G7QUh1sykTAbv9MmjCEVVqTxwJ+HWDuW7jhO1e3hLayQjj2inQ5Ym5KlC0h8RbbcBgVYpUj55jNI9t5PHKXkcS5H1yWN0vvw4YatD6dhB7Mkm/mZL2tR2BuQoWDNN9Ep5z0o48wO8yysomopRryBMk9q776R4/BCpF6AIBaNZY9owMJdd2jsy3DPwM9qdEFVVSJKc1U0Pz0spl3SGo3icu5ajKGAYKoGfsNUOAMlIOXakxHNn+qxvBlim4NKSy2CU0qwZNOoGE0051YyijM1WQLNuEkUvT1V/LfWGBxnXlxCCt7zlLXv/fvRHf5SHHnqIjY0Njh49ynve8x6+//u/n0ceeeSbAgBAgpypqSmmpqbIsoydnR1arRZPP/00iqLsAY5qtfqanLDkcyjMTFnMTFnkec7lJY/LSz5nz2+xubnO1NQsRw9PsjhfpFFLePb0gHOXXDRVulftm5WZBrats74VsLUdMdUwESocP1LAC1K+9NUupikY+XKc32wYtHdC/CCjYGvce3sR2zHYbKkMhwnDYbLX4GcZ0oEoBsOA/QsFmjWDXj8mzTJUVYCSvmKAoTCmV2W7QONa863LBSWisaPVroGtMqZoRZF0qjKMa9vI+7+cU9W3u775AENhHKiYv+Bvt9hW1ySgiONrjlyKIu8wGGUESy6mKZhsGBSLFvvnLB66r061ot1kUWsYBrOzs8zOzpKmKZ1OhwsXLuC6LqqqcuHCBSYmJmg2m2ivIBwryzL+1b/6V3zpS1/i85//PHNzc6/xE3np+tKXvsQnP/lJnnjiCTY2NvijP/ojfvAHf3Dv9jzP+fjHP85v/MZv0O12ectb3sKnP/1p7rjjjr1twjDkox/9KL/3e7+H7/u8+93v5td//dfZt2/fLZ7xzXqjVBxnY7vwjI2tCKFAtaJTLWvYm4LVjYCnT/UwTUG5oKPrgqOHihxaLJLlcPHykIU5G9/P6A1iPC/BtlRmpmyOHCjuiTBb7YCCo6LrKnGSM3JjkkQ6aAxHMZomSJOcNAXD1LAmK4iJCdQjB6nd0SALQ/pPPC+5/aZBahkE6y3SSplwa4fE9UiursGBfRDHuOeu4J6/wr4f/b+wppps/9WjuJeWcA4vEG228Zc3IMvQig7JyMO/vIpzcB59egKR5aCqKIpgdHGZ/z97fx4t2XWWd8C/vc98aq66deep525JrVnCI7YBYwO2JTsJEBISIIuYhR0W2IlJYpOwAhgwISTL+ZIsVvLFWXFYSZYlMEMAG4xtgsGTbEkt9dx956Hq1jyc+Zzvj119JVmyLQmZ4Uu/y5bU996qe+qcrjr72e/7PD9Bhl7Ik8axEhqDEd7uPkkYkTu6RJokeJu72Iuzz6AYy1kTdI0sSSi/6i70fE6lYQlB47f/CHtpTo1AxTFT3/Jyel94nOCgox47idKtvuoewt0myXCMe2IFe6aG4lYkDC9eJ2y2VRclStTCeTQm8Xz8zV2EFDgriwjbQuoaQtOIWl3i0ZjooEM68infe1YlCl3sTY5aoBXyjK9v4O800WzlK0m8gI72JcW0OH2U4h1niNo9xmtbSNtGLxcp3XnLZKxGkMUK+hY22gTNNma1hLezj5CCuD8kHo6J+kPan/mSEjK9Pt72Pla9ip53CQ/axCOPZOyTO32EeDBidHmDNEkUNM82lO9iMGJ0eU1FA6cZ4f4BuWPLVL7pTgXGq1c5+OSf0fnMlxivbxEPPey5OqW7bkUaGmGni7/fZHRtk9QPcY8uIS31mtF1Bk9eJthvY1RL5GsVok6P7uceY3DhKrrroBcLSEPHXV0kHnqErTZBs4W321AMjZyLNT/D4PGL9L78JN72DrppMbx4FatWwT2+gjR0Uj/EW9/l4FOfhyTBmp4ik2qcLI1ChNRIo5gsipCGoUIBbIs0n0OgksoGj14g7g0p3387M9/xWsxamc6fPoJRLOBtNxhfXScejrixbS8dCyEl0rbIMtXRERno+TxxZwC6jtQ0knFIkiRkScLokvLPlO685XC8zl1dZOr1r2TvN/+Q8eU1jEpRdatcB+1WC7NWIY1ieo9dJPF8zOkamuuQ+j7B3gFpEJA7cZTc8VVFlq8+4yOK1eUc999d5eraiKkpg7UNMdnUlZQ9gzjOSJKUxkHIwpxNzjXIsowgSGl1I3q9p2JAKyWTe26vsN/0uXB5SBynVEsGSwsu+Zx2uDY2TYn0BI0Dn9tOf2PCVf5aiYwb9bnPfY4f/MEf5H/8j//Bgw8+SJZlnDt3jo985CN88IMf5J3vfCevfe1refDBB3nTm95EtVp9SQSHlJJ6vU69XidNUzqdDo1Gg8cff1xlrNfrzMzMUK1WX7TgEEKwuuTQ7eywv7vDvXcfY3V5inpNkcetqskdtxbp9mJ0XVAq6LiuxmAY0+1FWJbg9luLLM05uI5GIa9x6eqIU8dyLM1bXL4+VmZxL2E8SpFSUCkbdHoZhYLg2EqObi9ma9en14sIlVdPwfkkFPM6t5/OM/ZTyiWdwI/p9RMKrs5wFNMbJIRfJ1Y2zSA9/JmnFt+6DqTwdEFtGUp4PD0h7kYMr64p8/pfFHF8EmVPlj7/js1Tx/SNGZH6SgP+Vx7XDZ7IMx4DaLoae8vnNMbjlCxTEZy2pWEZgkvXxxw/mqda+drdQSklrVaLJEl45StfSRRFNJtNrl27xrlz56hWq4fvmefqbqRpynve8x4+9rGP8clPfpKVlZUXdyKeR41GI+644w5+8Ad/kL/xN/7Gs77/gQ98gH/zb/4NH/rQhzh58iQ/+7M/y+tf/3ouXrxIoVAA4Md//Mf5rd/6Lf7n//yf1Go13v3ud/OmN72JL37xi2jaX77P5mY9d/lBymic0BtECAHF4o0gEcH8nEulbHLh8pAwSDl1R56pmkW5aCCE4MSRHFmWsb3roWmCWtmg0zWwLI0zJ4rkXHUbPXW8QLcXsrPv0+mHxJFK+TMdQ40ISYCM/QOfYt6gWjbJ4TMME4rzVQXn22sSD4bo5QI34gEVD6JB1BsgpIZmW1j1iiIkBwHDC9fY/80/pPLq++h8/lEQ4F3ZIE1T9HKeOAhIun01DuMHGNUKRpbhbe4Q9wZE7S7SMtGLuck4kppzT4Yj7MVZwoM2g8cvkCYJuePLuCtqEyAejvH3mowuXSc46BC1OowvrzH17a8if0ylGWVkZKHyVIyubiBti/I33Umw2yDs9Aj2D7Bn6xjFIlHUVQC2YgFtkvSYBuHEdJ6RhRGZoROPPbIoJmz3SIYjskilGDnL80x91+uwamWibp8kDEi8gPzJI9jz00S9AXJtm3g0Rs85hM02CIm9UCfq9BFSoOcdxlc3FKU655D6Aeb0FKU7b6Hysjs5+MM/RZj6oRE+jWOCpprP1/MuRrlI0h+SeD7Di2tEnQ7Bfht7ro5eKpDFiUpaCkIKtxzHWlDQwSxNSUY+/k4DDB3DdSYiw2K0tqlidA0dcUPcScUOuzG+lQxGCp44Uycae0SNNvGl64zXt8gdW8Gq18iiSJ3zZovVd3w/zsIMo+tqlz1oqGPMskxF7+bVAnvwxGVF3i7mVKcqikEI3GOLGMU8Qtcp33sb0jDoP3pBHY9QXpAoHJOlCYMnrtB/9IKKEF6cAV3S+dNHSP0Qe7auxv5SdQ1lzlHJZZpGGnhKwNgGRqmI7toIyyAd+cTDId76Nv1zF4k9n8QPiLsDvM3dQ8P+DaNoMhozurpB/7GLAFhz0wS7DSU+DJ24PyKJQkgzFY6Qd9HKRfzrm9gLM8rvMvEb1V//KvRSgc6ffJGg0UYzdKzFCs7SHLmzp+h99jGM61uqS9fuku0fIA0dc6qCUS6qsIaprx5ksjjv8uSlAY8/2cc0JY6tkXNUBG27HWGZmrJ/RBm2pdaLQoJhqB3D4SjGtjXGXgwZLC+4aJpgNI7o9mI07dnMOQFEYUa18o2Jsv1rKTLuu+8+Hn/8cVZXVwF1os+ePcvZs2f56Z/+aS5evMhDDz3Ef/7P/5kf+7Ef49WvfjUPPvggb37zm5mefnYc4IspKSW1Wo1arcbp06fpdrs0Gg3Onz9PHMfU62pevVarvaDFR5qmXLx4gdHggAe+6+7Dxc3Tq1o2OLbqstcMKBV1hBDUJsk/s9M2d9xSxDSeWlkKKTBNyeJ8numaxaVrY9Y2PeZnLWo1A4Fib5y/FGEYEtfRuO/OEucv9hkMFZwPIdCkQNcEj58f4joapbLB/r5Sz7OzFs0DQRBmIFOi5zU6lSDQEFIJBvE0uN4kgffQD5Jlk2SqDIJQff+5r+JLLzg0MRFYBQ0pBX6Q4PnZoa/ha9cLFximAa4t6A2yr3oOb3QsbjBRyJ7tndHkU99DQBiprpQQTzfLC/VtoebHDUNi2zq9fsT19TEnj371lLUsy7h06RLNZpN77733MAK6VCpx/PhxxuMxzWaT/f19Ll68SD6fp16vUy6XDxOj3ve+9/HRj36UT37ykxw9evQFnacXWt/xHd/Bd3zHd3zV1/Jv/+2/5b3vfS9ve9vbAPhv/+2/MTMzw6/92q/x9re/nV6vx3/5L/+F//7f/zvf9m3fBsCHP/xhlpaW+IM/+APe8IY3fEOP/2a9+NIkBEHKYBg/i2wrpcBxdOZmbYpFg4U5F9d56j2r65IzJwoszjvs7fkMRjGaDoNBQqn4lAjP5XTuv7vGnz3SptOLOLLsEgQJYZLROAiRCVTKGkmcITVYnHdIsgBdE+TjIf1HNxhd38C7vom331Lv8TgmGYxIkxhpGMqErT21Eyk0CZpk/3f+CG9zl8GXz5NJibs4i1FRIDgpJfZsnWTsk4zGCClIvJBkOCYNQmTBhTjG39wnSxOi/nAC46sQtnuITh/p2HgTmJ5RKuCuLDK8eI3RlQ3iwRAhJakf0j9/RSX43HqC3NFl/J19lapULpBFMZHnK0FTKoKmYdVrzP2NN6AX8vS/fJ6w2XoGtfkGjdsoF4n6A+JWh9gPsGplrOkaw0vXiVpdrJkpBQOMI6zZOvb8NEapQNTuIycRpnoxj7u6yOjKGtFBh2C/Se74CnqpgDRNlZxkWwQ7DZVeNBghpqcYX93AW9uidPdtFM+eovvFcyQjD6NSwt/eV6M+cUwShATNFtKyyKTA293Hu7SGsE2MqQqGkBj1ElLTCFodvM09qq+6B5KEYL9J1GwrGnSSEHUHIAXBboP4oKtM6jkHs1YlHgwx6zXi0Zju5x6lePYU7T/9EuP1bZLhiPigQ+Z5RJ0+aRgTdXoUzpxAMw1iz2d04SobmmT2wW/HKBXo/MkXSJOE8dYu4V6LqD9AzzlI18GcqhAPRypOFyXCinecoXT3LYgM0HXyp4/R+8LjxGMPZ3GW4JN/RjIaYy/OQZoS94YkYYjh1IhafdI4QXccvFaXwRMX0bcKSMtCujZEMYkXgBAqbtmxlPHZNrHqVWIvII6HCpgXJ4QNlb4Vj8aMr20idYmWzxF1B2oUy7EP08yCvQZ6Po89M0U4P83omhKTaRwhhES6JkLXSZOUaP8A8/gKQkpGa9uHHBghBNVvupP86aMMn7xKMvLQ8y56pcjo0hq9Rx5Hz9kK7Lc8j5FzMaqq4yFdm7g3JOr0MGvPFhpJktE4CJRPNgUjE/QHMZ2O2jwu5PVJNyOjP4ywbY0gSBl7MQuzNoW8xqNPdOn1I4ajBEMXTE9Z6LqC9OVyGjt7HmNbo1AwkAI8L2E4ipmbtqmWb4qMwxJCHAqM5/re6dOnee9738s//+f/nGvXrvHQQw/xa7/2a7zrXe/iFa94BQ888ABvectbmJ+ff0kEhxCCSqVCpVLh5MmT9Pt9Go0Gly5dIgxDpqammJ6e/rrjI0mS8Nhjj+F5Hvfff/9XnWsXQrAySY7a3Q+wLEkYZZim5MiK+wyBAVApGawJFW1WKRuT3ekMXZesLNr4YcZ+w2d908OxNVaXHIbjhCAC15VomoL0RWFGHKf0hzGnTuQpFTS63RBDB8vUmJu16A1iDFMwEsnhONNkhJMbUzdPH5HKUH6PG8DAbOL5EDy1EA5D9Rhd3uhcPAUW/Nr10ggOIdXOf87VGI7VHLepg/d1RcaL62CkKeiGQJPZYSLXV9bTv5al6vylybN/JlL2GkxTPa+mgeuovx+FnMQ0dcIwxbZ0igW1c5umGYauomq/Wt2IjN7f33+GwHh6ua7LysoKKysrz/Bx/Mqv/Aq/8zu/Q71eZ3t7m09/+tOcOHHiOX7LX1xdv36dvb09vv3bv/3wa5Zl8ZrXvIbPfOYzvP3tb+eLX/wiURQ942fm5+e57bbb+MxnPnNTZPwVLsfRKBYMxuMEbfrZXeaxl5DP61iGJEme/Y6L4oztXZ+dPQ/PT/C8lN2Gz2iccOZk4TBj3nE08jnJyqLL/KzNQTuk149YXdAUXCvLSONJh8OURLJIvawRPnaOxDIwaxWC7Qb+9h5ZEqOZJuZMnWDvgGg8JA0j8qePIwyDLI4Zr+0QNjsKdmaqVLgsCAgPOiRBQNwfqQWcoQjYaRiil4skw120ahFrfgbv2jqhF5BJMfFXxEjHIUvUzkUahYStDvFoRNRssffrH8ddWVTPl6UYlZIieOua2vmNYobnr9H7wjmsmRrSdZCGjuY6RJ0eWi6HPT+Nv72He3wFe24Gb3uXsKsWoP7WHvbKAkbBBSkRUgOZoruuMmKPfbJyRppFSNMAKXFOHiG3PEfYbBN1e5jVMlmWqhjUy4ptYNYqOEcWkbZF61OfhQz0nItRKlK85ThaIU//kXPoxbzqSPiB+u9KkbDTo//ok0x96yupffN9jC6vEbY6jNe2sBfn0IsF/I0dyDkw6RJF+wfKI1EqkE1I3VG3PyGpx0QdJY6yOFYdpG4fe3keHeVxGF1eJ+z2yPwQ6ViKiK2b5I4tEnX62HPThAcduo88gbe5q7oZUhnRs7GvzO6GrsCO/S/jHlnEXlkA26Tz+ccJWz1yJ1bAMgiuq2NLw5AsTRXXwQ9IPB+tkMNeWaB05xmcpVnMahkxYVukQUQy8vB3GpiVIlG7q94wQhJ1eqQjj7g/RBjKh+Jv7hANxrhL8+RPrDLe3MWaqWFVSgQHHbIMok6P2PORpok0dTTTVt4MXY19ISVS04mGI4SUOCvzdD77KP1zF1VSmGurHX5DgSzRJO7qAkLTVGdM19ALLlo+p7qC01OKDzNZaGi2icy7oGuYtbKi1N9xGjnx/Hqbu/Qfv6Bo3mlK1Bvg7x8oYWaaWNNV1WnrDZG2iXtkCc22lH/poEsaPfeoR+Mg4Nr6kErJYKZqYpiSLM1wbI2UjDjOCOOM0VgJA9uM0CTM1G3OnMhz7nyPcxcH5HM6tinRdKE+o0YJ/UFIuWSQptDuhAxHMeWSgvZZtsZdZ8vPWje+VPXXUmQ83xJCcOzYMd7znvfwT/7JP2FjY4OHH36Yhx9+mJ/8yZ/kvvvu44EHHuCBBx5geXn5JRMcpVLpcDd3OBzSaDS4du0aTzzxBNVqlZmZGer1+jOM6mEY8qUvfQlN07jvvvu+rom9XDS487Yi+82AwTDBcTSmayaV8rMfV6sYrC45rG2OaXUy9hoBUqqklFrVRApBrawzGCYcWXZZWbT51J+18f0ETZcUc2BZEt+P8YKUSlmjkFM3TUOXWJYkCBJqVYN61WQwjBEI3ClJnGT4QYJjScIopd1Jea7F9yGBHCU0xMR4nqTKR5Cp7XZ0PVPdjhd8qV644BCTf8ST4+n2YzxPGTdNQ4mmr+wePPN3vLgOSpxAr5+qbu/XYJXcqIynxNeN0jWwTRh66vuaBN0RmLpEikyJDyGxTNXpsiywTeVrEULtqkxPPffORpZlXLlyhb29Pe65557nFRn9dB/HL/zCL9DpdPjd3/1dCoUCr371q/nO7/xOfvRHf5RXvepVz+MMvfS1t7cHwMzMzDO+PjMzw/r6+uHPmKb5LG7HzMzM4eNv1l/NEkKwsujyyGNtWh2fSslCSpWI5nkJQZAwVTNxXe1ZYL4kybhwecDa5phK2aBcUmLccTTOX+rzxUdjjqzkJ6OUGdM1i9m6w8KsTRhljMYx/UFEuxvh+QljL6ZasTh9vMBMVWd4TTJYG2HW5hV/QgBJgjQt4jDEskyEJhCJJAlCkGqHf7y2zfDiNdIkRbdNRByjl4tEzTapgGingebaoKsF7HhrlzQI6T/yBHopj0xTpG1hL82TZRlJf0DcHx7uBqVBiObahC2PLEkxbJskE4S9AXJ7H2HqylNRLpH4gYoArZaJhyP8zV3QNYp33Yo1W1eL8p19opGH98UnkLZJ7sgy9lyd/f/zRwzPXyVotLBXF/B3GwyvbmBWClgzdUgz/MYBRq2KszyPdF2yICRLM4xKCb2Qw8g5ap4/TogHY8KDDr0vnUcv5Ij6Aw4+9Tk018aencaanaJ4+xnco8sqqci2EJpUhuCRhzU3TToaq5jULEUgMSslRlc38Lf3KN15i+ImjMZkGfibOwT7TWQhp4TfXpNwv0UqFP/ELBZUylCpQNQbEHd7uMdWydKYYP8AzbEJmy2iThfp2OiFvDImtzukQah4GFIQdQZI0yB3bIksCOj8yRfB1NXCNY7Ri3lSz0doqjutW2phKwGkRjz2GF64SrDfQiLIwojRhatgmcTDkYrxbXZIfR+kpv4+xynSNJBSkPoBmuMcMjnisYdRLCB0Tf0e0yDs9YnHHvFgRLDbIMtSkqGnRIatAIaZEOilAnrOmcTzjskmvo6w18deWSAeDJVwRqqxJk3D320Sdwdojk3U6pABgycvqd85GqvjLqrRRqFpJKMxYeMA5+gS+ZOr+PstNNsm6vVAM0hGY+VxkZoSwJNzIB0be2Zq4iNSpPIbO5r+9j7tz3xRjaYtzKjRxD/dVwIPIMtUpyafw3Ed/F3Fu8kdWSQZe+q1WBYHrYDGQcDYi7Et5ZHd2vYYj2N2Gj57B4HyTmSCwSghn9PQDUk+r2HqIX4Ili2Zn7FYXcxz0A5Y2xyzupRjcV7djz0v5urakCBKsS2NFEF9yiRNMwZDFe5SzOvkcjoL888PRP1i6v+vRcbTSwjBysoKP/ETP8GP//iPs7Ozw6//+q/z8MMP81M/9VPccccdh4Lj2LFjL5ngKBQKFAoFjh07xmg0otFosLGxwZNPPkm1Wj0E/z3xxBMUi0Vuu+225+3nyOd08rmvfwmlFBxfdalVDHp9pX7HfsrCrIWcvM6xl5KkUCnreH7KeJygGxJj8oHlOjpCQG+o5gI9P8XQBWdO5dnd81nbCsiyCATk8zoz0xKBRDdgbz8gSVIGA7VatyyNeOL1yMQz/RY3TN6moeYMx95TK2ypqRGlp1+aF+aNuFFfX3Bok+5K/DQOiOelh4t5P+BrCJ0/vwdD0xSkxwuVyHpBj5WqGxROOCIiU/9tS9C1jOEoJc3AjlN6A/U6xn5CuxNSKRt4fsJ03XrOUaksy7h69So7Ozvce++9LxhamWUZv/qrv8qnP/1p/uzP/ozbb7+dL3zhC3z0ox+l2+2+sBf6DahnkZWfIyL0K+v5/MzN+suvoysut99S5tyFHu00VIso1AbKTN0kijPKJRPTeOa17PRCtnbH1KdMLFMjjlOCIKFcMrj/rgrrWx6uo1GvmdQqFn6QcO5CX/EnTEEupzNdt8lStVjc2R1z/Eie0yeK+Dv7eDmH4p23EOw18XYaxIMRmaYR9/oIBOPL1yGFLEtwjyyTDD1GV9YZXrhG4vsITRKnKd7GLnrOVbvH3T7xYASGhn95nXCvqRaClsV4Y+cwGjaXCdzJWMh4bROjWFCPE2pUK+r2ycIIvZgjGozUOEkYEfs+muaSDj01XhXFWAszSMcm6w2Iuj2cI8ukvo+7ukDQOMDfa5KMPbI4IgsEMmcT9gZErR7CnLAoOj30Yl6JoutbardYSpLhiNzq0sRMq/gQUbeH1Kdxl+cJWx3CCbhu8ORl4uEYZ2mW0r1nEVlGeNDB294j6gywF2bIn1il/SePPNXhSRKCRkt1FdKUZOxhTtcP05MAtJxzuFMvpCTxQ4ZPXKb1x58nGgyUQTiM1fiYbiClJBn7xIMhSHCPLGHN1Ym7A/S8M9kRv0Th9FGs6SnG17bw1rdI05SwoaJepW2iWTZ60VVMDMOk98VzmLN14sGALFF+jIwMs1IgHQfK15CkZGlCGqguidCU1ybuDTBqZdXVWV4gDgK8q2pEz6hX0XM59LyLNEzSKGS8sUMaR+jlElG7R7DfRD+6TBqqDkbprlsnMMECYbONv7VH1O7hLM4S9foEewdkaUrq+YSNA7Iswyjm0fMOIDCrJaiUsKaniAZqRMw9soy3scX4+hZZkpBmGeP1HfzNXfS8i3NmAc2xkZZJ7Pn0P/4nyjchdYxSSY0Geh5C05CORRZGhK0ees6hePtpeo9eQNtpkISxgibGEUk3QmgSoeuYFRUapNmW8qPUyqpzmKYMzl8hi2I1mgeEzQ7JyMM9ukTY6pKmCVG3fyjGtLxDsLOPvTijfC/HV7nSgI2tjjoXpkYUhlzfGHFtfUSnF+L7KWGYMkgzalULUxf0+jGjUUSvH6LpkuV5l1xeIwjg2saIa+tDLFunVDLYa/r0BxGtTkCnE2EYgryrk3cNgiAlSdUY9ub2mLtuL3P2TIli/qVJZn2u+n9GZDy9hBAsLCzwzne+k3e84x00Gg1+4zd+g4cffpif+Zmf4cyZMzzwwAM8+OCDnDp16iVbQORyOY4cOcKRI0fwPI/9/X02NjYYjUZYlkWpVCIMwxcc//l8Skrl26hVTEoFg0fPD2i1Iwp51ZFodyPKRQ3X0fA8tQitVU063YjROEXTInUTLhjMTpuUSwr4UiwYVEs6hbxOoaDTmxjSVxcd9poBjVZIGCZs7/RJMw3DUDvmsYQ4Sw8TpnKuJJ/XSZIM04Cxl6lZwjjGtgVJogRGlmVfo3vwYuorxYDaPckQymAu1TjSU0lWqrLDf3xlvTQCQ9MgFWLimPj6dZjYlYHrCtJMkEYphq6EUpqqkS9N1xAypehqnDmRp1ZRi6tGK2CqbFKrmUxPWdx2Kk996tkgvWvXrrG9vf2iBca///f/nl/+5V/mYx/7GHfeeScA999/P/fff/8Leq6Xum5E5u7t7TE3N3f49UajcdjdmJ2dJQxDOp3OM7oZjUaDV7ziFX+xB3yzXnAJIbj/riqaBrv7PratI8jo9iOuro3JuTo7ux5kGSuLuUMjZKsdkqWgS8HunkezFeAHKUKojR5DF1QrBieO5On2IxWsIKDVCqjXn/osF1LQH0RYlsbMJI8+DUIEUDhzDGd5nsG5S4zWNrGqZeTiLFkQkngBwjIJmy2SwYio00e6FlmaIA0DLe9iTU+pFKeL19QCbzgmaFwgvHB9ktDjYNSLCiwXJ6BJwv0WQT5P7uQRIFP+LseCwXDiOReHYDOBVJ8xjonplkiCAOKEeDAknZ3Cnq4pqF53oGJihUBoAqlpeJu7hI02+eOrBHtNAPRcDqlrtD7xpwoYtzBDliQMHruIPT9D/vRR4v6QqDfEnpjBzSk1hjK+voU9O4VZKeOuLmDVqzirCwS7TbzKPrrrKl7CqSOH9257YQZ7YUYtBP0Ac7aONVvH29pD6JryjlxaJ2weELa6SMsif9sz7/1pGBP1x4zXtog9n8Zv/gH9xy6qsaKRR9wdKr6HULTtxPMhSUi8YEJ6ruKuLJAB441dkv6QyjffR+H0UezFWRIvYHD+MuHGNqRg1SvoxQJpEICQmLUyUV/N9GvFvDLUT9fQV+aV4Bz7CE0/7CokQ480jsjISJOUdDhSz1MpT0zlJqQJ6WTnLh55CCHRywXSJIY4wayUiXsDvPVN8ieP4q1tKwjiaEzu2IoaQ5KS3LEVRlc3iFo9dNdGcx0lVibxtHqthGaY+LsNtLzLjR26LIiwFmeRjkV60CbzA0ZX19ByDu7qAv5Ok7jRJokihK6hFVxIVQhAEidkofJTpGMPDAN/ew9ruop7ZOnwugV7DUaX16h/x2vInzmuggUsk/7Fa4wuXCdqtZXns1Ikc22SIEQv5NALOcWxWF1Uca+dHkGjdejPAEgnYxZC0zBKynekuRbB7j56sQAZhJ0+3pUN7KU59nPzPHauS7loUCwY5FwNhGC/6XPuQo8gTFleyJFzNXq9iM3tMdWKiW1Imp2AgmswVTEoFAwcRyNJUq6ujWi2QuZnbHYbPuEk5KLVjibrpowkjigVI2ZnbaYqJpoUdHohR5dz1L5Bhu8b9f+kyHh6CSGYmZnh7W9/O//wH/5D2u02H/3oR3n44Yf5wAc+wNGjR3nggQd461vfyi233PKiU6O+shzHwXVdfN8/ZHw0Gg0uX75MsVg8jMZ9rln3P2/Vqia3ncqzse1PIH6C207naXUiOt2IXE7DtTV8R8PUJUKAbSuBEMdg6IKrax6mLklSj1xO4xX3VTh7uoDnp1y+pvKeCwUDIRL8YYdB3iRJNfqjhCBSRoOcoxEnGQJwHW0yIqUhZYbUUhxbo1w08P2U/igmiROSVBBF2VcwNl7KUgIhTSFNk4kBXTs0on9tH0jKn1dggOrUxImA+Pmay5XAsAzVxcg5upr3jlP8IGY0yrAmSRVxkpHPGcxNm5w9U2BlUbVWt3d9lhcdFudtFcGpP/vv+dWrV9na2uKee+550R2Mn//5n+d3f/d3ue+++17Q47/RdeTIEWZnZ/n4xz/OXXfdBagRxk996lP84i/+IgD33HMPhmHw8Y9/nO/+7u8GYHd3l3PnzvGBD3zgL+3Yb9bzr3LJ4L67qmzteGxsjbi2PmbsJSwvKVqulILd/YBOL+L2W0pMVS2iWAF71jbHNJo+jqM2VLI0YziO6fcjxS3qqvz6LIOxF9Prx/QHMdWaGkkdj2MMQ3LqeJ5KSd3YxSSzO0sSZfoVApEpkJjQdeLhCGEaOAszDKOYsKN4Bfbi3GSXXRwuXo1yAT/n4G030KfKaI5N0u0hXTWCQ5KiVXPINCPsDUBTc/PxcDzZvdZVBKyhT1KEtElShFQ7vmMfe2aKwq0nCFodjFKR8eU1FRnb7hE226RZRtRWbI00DAm7fZXWJARpGKlRK00n8QO8TbXrnUmB4fukaUoaRKRJQhpEKmEqg+LtZyjefgpvbQd7aY7R1XWkaeAeWULqk8/bNCMNIopnTxN1+xilwnNuDhrlIuONHZLekNLdtzK8cFUlH5XyGAWXYG9CDK9OPBKzdYQUBAcd+o8+iT03Tdzt0T93ke7nHkcvupj1imJZjPtIy1Dm9P4QvZhHuAakCZmU+NsNtJyilCf9EbkTR8gtL6hzsb6NUc5jFAuMowxpSKRtT0BIGdJS1O1sMrvrbeygu466ToaOtAzCZge94GKWCjDpHiQtT+2SxZEC55WLJGGEOVVB6LoicPuBWhCnKTCZT0YiHQenXsVbUztUUX9IMhyhl0sUzp6kePeth5wNZ2Uea36G7ucfQ+g6wV5DmbNhQnW3ydJEsWJGHsFBW3Vd8uo1eLsbhN2BYnAEEcb8DCJJD7tsg3OXVCemPyQZ+2SGRCtMvDOeT5Bl5ObraMUCw0vXyZIEo1QkjVUKWf7kKoVbjh2a+p2VBQonj6gFzclVwv0W2cSTkYzGxI6FXsxTedmdOMvzAGRRTBbFKg0sy4h6Q/y9Jn6zpZguhTxS18ifOkY8HBPsNw/9KLk7zrBrzvDHj3oMxzHdfqRir0sms1MmF68MGE3GNjs9H03TcBwFI+721M+SSe6+vcz8rEO7E+F7MUjBwoxNt6MM49N1hyxLFWDZkiAESZwy9hLSTHUvsjTl+GqBOEn/Qjrw/8+LjKeXEIJarcYP/dAP8UM/9EN0u11+67d+i4cffpjXvva1LCws8OCDD/Lggw9yxx13/LkEx+bmJpcvX+a2225jenoagOXlZcIwpNFo0Gg0uHLlCvl8/lBwvNCF3deq6SmLqapJEKaHJsRON+L85SG9vuoejMYplZLO0WWbKIFWO8Iy4ehqDteR9AcxUqBM57pUqt/ROHumwGAY0+sNuXjxPNWzddyCQ+CnnL86pNePiOOMsZco0N/kPmHZElODIMmIo5SpBYfpmqGSWST0h2ACcRSTpBNDOepz4iVtbhyWdsjpkCKZCBvta3gxXhoBmiRQzAt8PyP8Oi/sRspUIS9ZmLHww0yNuumQzxvsN1J0LUXThQIgxuA4krkZC/G0ea8b8cTl4nO3Ta9du8bm5ib33nsv+Xz+Bb2eLMv40Ic+xL/8l/+S3/7t3+blL3/5C3r8S1XD4ZArV64c/vn69et8+ctfplqtsry8zI//+I/z/ve/nxMnTnDixAne//7347ou3/d93weo1Kx/8A/+Ae9+97up1WpUq1X+8T/+x5w9e/Ywbepm/dWvYt7glpMGcZQxGCUszTuY5lObA46tsd/0ubo2ojIxR3a6Ef1hRKlsPiXANSgbGju7Hp1uyOy0w0zdRkoFudqSY5IkI0szNENyZDnH7LT9jKhIa7qKUS0RHnTQy0Xi0RijWiLxPDLNYHxtC921CTQNaZukUYxZq1K45TipHxD3h+SOLSto3LVN4uGIuNsn2Nol7g1J0wxd10BkSF1HxCmZoTaOtJxLGicEu/tktYriRISxIiPvd0j6Q4SukQYRQgo01yZ/20m0nEthtk7QaJFGkYLkrS6iFXLE/QGaa+Nt7ikTcZTgbeyguQ5ht0/UH6qdfimJxh5pFB9yBJKxp8a0kgSzXsWamSJqdbBmpib54aCXC8y88TX0HnkCb20baRsqjSrNcI8ukjt1lPanPnfoG/jKEprKQM8ytbml5V1K995GMhyRBhG5LCONYqyZKYKtXeyZKbI0pfXpzyFti/ypowhNknw+IPHGZFmCs7qISDPikYdyk6vzLF0HI+eqztOEmzF47CJGrYy7PE/lm+9HaJLB4xcJGopRUXnF3YTdHuHegUrWCgX2ygJZnBC1O4TtLulgRCYFAoG32yTuDVS3Iorxd5sI0yRLU/R8Hl1IokZLAW6jCOKILAyJR2O03oAsSdFchySOyTQdvVTErJTV6JAm1bU3VYJleNAmC2O8zR21EO/0mHrdyzCnqghNo3jLccaX1QJ/cP7qJIGriD1bJ9htEHRHZFIS7B8QdfroxRxGmjA46KqUJz9QPgnLJO4NIEmJ+gOmvuXlkKQML10n9UP8vQa6Y6OHMakfKGp8FGHUquRPHWF08bq6BppEZBJpWaQJbP5/P6K8RcU80WCIt76DbjlYSzOU77pVCeVej6Q7IAkiimdPkYYRB5/4U8xqCb1URNomUW9AsNfA31Hjf0lvQL/ZRs8rwWmUC9jz0zjLs4wur1O673b2Kkc5f6FPGKXMz9gYhkYYJTQPAtY2RuzueRRcTV2nVGDagjDK0KTagA2ChIVZm+WFHNN1m5l6RhilSAHDYcyVdbWuIkvx/ATb0ogTCIKEIEzxw4RuNyBfUFHdnpdgGBq333JTZPylVrlc5vu///v5/u//fgaDAf/n//wfHnroId74xjcyNTXFW97yFh588EHuu+++5y04bphmt7e3ufvuuymXy8/4vmmaLC4usri4eMgcaDQaXL9+HcdxDgVHPp//c6tQKRUR/EZVygZ3316k3Yk4edRldWnE2qZHoxVjGIKZuolhSFYW1I10ZjJOMxjGNNshx+IUXRO0OhHXrh/w5PnLrK7OEiYV5mdjWu2YE0dznL88Io4S/EBt02eTroRrqzdZEKXESUbjwCdNMkxTMD9n4XQ10ixTXg0/ZThMlGfiz3UWvnbd8IfEqYaEibh5uo/jGwDZm5jNDVPih+lh9+S5uim2CaYtmJ+xmZqygIwwTEgTaPUiXEftiORdjTSFYkGgaSpT27YlWZbRH8Q4lkb5OUIDQC3GNzY2uOeee16UwPjwhz/MP/2n/5Tf/M3f5Ju/+Ztf1Dl5KeoLX/gCr3vd6w7//K53vQuAv//3/z4f+tCHeM973oPnefzoj/7oIYzvYx/72DNipH/lV34FXdf57u/+7kMY34c+9KGbjIy/ZhWEKa1uQL1mPUNg3Khq2aTdUclQUzULz4sJwvQZHb4szWj3QkajmEJe3UpvgCtNU4mKnT2f5QWHE0efe2ddmibF207R/swX8da2icc+cW2GzhPXiHd2wTLJz86j2SZalmFNVdFyKlq0cMvxiWG6Tby5S9QbIm0bYUjMuWm0cpHx1U31ewwd6TjK4Jt3sZfmlYeh1VWP0TXc1QVyJ1bRbBN/v8V4c0dt4gxGKrb22Ap63sWq18ifOcbBH34GLZ9DL+YIGgdql9cy0Ao5lZoUxWRkKqGplFeG7L0mWiEHQpD6vuJDTFKMkiAkiyeiY/8Aa0axHfydfcbXNwn2WyRxgv2GV1P71pcT7DYVO8TQsWemsGanANALOeLBEM159rjnjfEvPe8qb4qU5G9VyXZZlpH6IaPL1wj22/j7LfjyeYQu0W2bymvuR2gaQeOA6KCN0HW0XI6400cvFbFn6oSdruogjX2SwRBncQZnZYFooMSfnnOZeuOr0XSdcLfJ4IuPM17fwl6YQ49jtHwOd2WJZOiRP3OcpD95HWlG0GwdmoeNQg5regqjXCD1Q4TnYdZKeNv7+Fu7aDkHa24KY6aKr0kl4LIMe34Gs1ImPGjh7zRU+peuEwzG6DkXzbZJw1AJDy8g8X3SMMLfaaDnHNzjK8pM3+nT+tTniQcj5r/nu9BzrqLAz0xhTlUp3nkLUaenCOmp6kh0P/co9sIsaOBf3SRNU/ztfcKDNpprK5/IyrxKQ6yWyRKVNNb93GOqi5MkuKvzjDd3QVdjYcHeAdIyMSpl1TmSErNexZyuYlZK9B69oDodu3tqbDDnkmVqRttZmiMajBQvJQNh6lhTVbJ6jXC3QdBooTkWQtfxt3aVeMtS+k9cIfV8zKkKZrVEGob0n7iMv7GNUavgrCziLMySesqrkS2usnXZo1wyaHfDp0B4hkapCBevKDp4uWwSJSGGqRGGGSkwGirop+saVEo61iSUQtMEzuSeo2kCy5QYuqQ/TPD9hGLRwDYF3W7MaKyM47atKV9GqAJ8xl5Kf/B1oGYvQd0UGc+zCoUC3/M938P3fM/3MB6P+b3f+z0eeugh3vrWt1IoFHjLW97CAw88wMtf/vKvuuBI05QnnniCbrfLfffd93U7E4ZhHCbyxHHMwcEBjUaDz3/+85imyczMDNPT0xSLxZes7WVbGvOz6viPreboDSKV02xLshQePz94luH5BqAO4NLVIX/y2V3WNvaZqtV5/KJJu9NldlqNDPh+SqVgMBgJwjDDtjKiOCNOYDROsSyJaWjkcyrlJQhT+qOUnKMxP2ORpKn6cAqU30BM+A/fsMqe5r/IbgADNeLDGN4b/35pFplqlw+Go/QreBbP7J4IlG/DdiSryy7lgvoASzOoVUzltUkylk5a+IFaVDm2pN2NJp0Ogeen7DZCHFty4miOYv7ZHwdra2usr69zzz33PCez5WtVlmX87//9v3n3u9/NQw899IwF/l9Gvfa1ryX7GvNuQgh++qd/mp/+6Z/+qj9j2zYf/OAH+eAHP/gNOMKb9RdVUZQSxRmF/HO/bw1DkqRqt7BasamUTQZjj04vxHU0hqOYZjPgoBMSRylCZmxuq4XEDdEihCCf09lrBBxdLRx2bL+ynCOLVKWg9dnHONjqMIo00EyEY0OxTP9ghDcIqC6UydXKSNMk2Nont7JI8baT9L58nvGVNYRhEOwdIKRB/uRRxuubaI5F6vlqDEUTaPkcwtCwp2ukk5GSwq0nsOamcZZmyeKY/mOXMJMUZ2FWUbV39iHLMAou9tw09vw04UEbvVxk+o2vRi/kGV26TnjQRmg6QauNdB2IEjI/IvF80rGHXirgLM8RtrrEveFkBMuDSVQuUUwaJSReSNjqMrq6SRYECMNAz+dACtKxR+tTn6N4+ymKd5x5zo6Fe2yFzmceQS/mn0Emz5KEYL9F/pZjaszm/NVDw/mN66U5FoWzp3GWB4yubqjHRTFGpcz4+iZRu0vcGeA3WsT9EVo+R5okZElMRkoaxQgpEZqG5jjo+bxK+EoTCseXcY4t4yzM0vviE6RhQBpGCKkRtTrEPTXGY1YL6I5F1OqAFNjlkjLmr29jFHIq1QiBZpmIyShb2O6RJRmF208S98dIKRApEEbUXnkvGDqDxy/grauEsWSkxmZAYFSKjNe3yAwNYeokwzHxcKTE2tAjixI018I9sUruyKIa06uWCdtdul94nOLtpyjfeztmrYy9OIu3toWzvIA9W8eerQPQ/eITSMuk/q0vByFo/uGf4m/tkiUpQlfJV2a9iuY6CrqYJMrnUCvjbe1iTFUUjT4IcI8uk/oBxgT2GDQ7OEuzCCkIm20SzyfsdBldvK78IidXiVpdnKV5Nfq23ybYa2KvzJOfruFt7+Msz2NWSmRCEGzvETfbWNM1nMU5siQl6vUJDzpKFO030SzlNfHWd/D3mwgp0atlEs+n8TufJH9ylfobX0P1Ffew2ZO0uwMqJYM0zegNImoV9fcyCDOSDEjB0DUsU6NWUWulOMmICjpxlKgRdkfHdZ95jw7DhP4wxjY1ivkMwxR0uhmDYXRICDcMtVbo9GJG3ojQV/fAU8cKHLR8PD/3jM3ml7puiowXUa7r8ra3vY23ve1t+L7Pxz/+cR5++GG+93u/F8uyeNOb3sRb3/pWXvnKVx5G0XY6Ha5cuUKSJNx///1Y1rN3Wb5W6brO7Owss7OzJElCq9Wi0WjwyCOPoGnaYYejXC6/pHN2pYJBqaBeQxCmypDUj6mU1NfSLKM/SFhdtul0I/7PH2yyu9dmdmaKdl8jjAKiEBqtiGrZQJOCYlEjExk5V2IZkt1mwGiU4PkxhqEjkORdnXrNZnraIIpSNCkVgE/Apatj4gRsWxLHECfpMxbjz1U3xopAPYcmnx37+lw1ufc9JTYOR7OeS1g8v2hcbTLqfPicT6/sKSCh4Jl67vD4J8/h2ArQowkBJNQqBrat4dga3X5Mp6s6FEdWHbq9mJGXEEYps9Mmb/n2aXRd+WDKJf2QWvz0Wl9f5/r16y9KYAD8+q//Ou985zv5X//rf91kSNysv1Jl6AJDUxsd1nP4HqM4RUqBMcmOX1501Vo4ydjd92kc+JimZGHOZjCMSBJotgOub4w5uuxiTISGrgviKCVJMnRNEEUpB+2Q0ThW5PGCQaVs4q4u0hIFRk90cYI+mu+RLM4gXUfF1QbQzyLKCzXMcoHu5x/H329Smqlhz8+oaFfLJDhwIYomO9eglwoEUUgyHqvkpCxDWiaDS9dJxz4L3/cAc297PeOr62qUSUrq3/YKrJkp9LyrDMO+j7e1R7h3oKBwmo575rhK34kTJWyEwD22SjweM7q2QeIHpF6A0CVGpUQyGE14Enmaf/gZ/J095fWQIKRG2OqgOTZ6uUDU6ZElEUZZmb2RkvH6DkatTO7YMkKT9M9dxqzXcBZnn3XtcseXibo9Rpeuq8W+66iFtefjrMxTPHsKAM02yaJn3wSEUNHG/p5aPPrb+/h7TUhTnJUF3GPLmPUq/k6TYO9AJSUJJUYgJcsy1fGZqaE5NlrOxZquUX35nfg7TbzNXXInlvHWtgm8DlrOmcTWjuh9+QJkKcZ07ZDGHh500ByHxA8wamXVpcnnSYOQLFOcBoTaiTerFTShUf6mO5GmzvD8NUr33Io9W6d0x2m2PvxR+o9dACnRDJ3R1XX0fI7ckSXFcWi00KcqZKHyMpBlmNM1SnfdijVde0ballktE+w26T96gfK9tyOkpHTXraRewPj6FlreQRoGUX+At75F4fQxjHKJ3iPnsOemcZbm6H/5SaJOV4mlMGF8ZUN1B+IYs1pRKVlxorpGho7f6SOtjLg3RGgSqeuYhTy5E6u4Kwt46zuE7S5oGtK1Kd99G2G7R9zuHx67Wa8wXt9SPJUJ44UsRSvk8Dd2GF5ZV5tRQhB2+oyvrhG1e6RJir++QzgaUb7nLFGnh7+9h1EqYJQKpFFE3B2QRTHxyGP45BXkrbfy2OWU6xsj2gWD/jCi243wg5S5aZs0zbBMRehO0oy5GYuxFxOGqYqmjxRA9J4Fl9VFl1Y7ZLpukWWw1/DZb3g0WyGaLjBNjXxOJ6ykxJOx6JyrMfYSev0Y1xZkKVRrJpWSie8n7E+SqG6KjL/CZds2b37zm3nzm99MGIb80R/9EQ899BA/8AM/QJZlfNd3fRcve9nL+MVf/EW+93u/l3/2z/7Z1wTyPZ+6ISqmp6dJ05R2u02j0eDRRx9FCEG9XmdmZoZKpfKSGdUBLFNybNXlwpURu/sBui6I4oxK2WB5weEPPnmVza02d5ydIQgtxoHaJR+OVM60FBmelzIOEqYqJuWSzl4jPCRSa5pAlxI/UjFrhYJkqmwwO+Nw/IhL8yDk/OUB1YqBZUqG44SMFE1TnZTn2qOW3HhuDs3itqluJKn//JKqsmzSNTBV1ySMvlrn4rmTqp4uFQxd/T+MnmKDHB7rV3g9ni4qhOAw7cow1CKpWNQpl3TSLKM3yKhVJDlXR9cExbxOIa/RHcR0e6rlqmuSYk7ntlsKrC5/7S7a+vo6165d45577qFYLH79k/QV9du//du8/e1v58Mf/jBvetObXvDjb9bN+kbWjYSna2tDlUf/FRsz3V5EpWQcEr0XZh0azQDTFGxsDRFCeS3anZBuLyKf1ykXTQ5aAeWiwcy0+izwvJgMuHJ9yH7DZ3tvrDocebXhoknBdN3i9LE8u60E7bbbMK89QbTWVYso1yVLU+xshN+LSWoz5I5M4+82CFtd+k9cZnR5neHFa5j1Gtb8DOOra0hNx1mcU8bP0Ziw00NLMhXPGkYIXcc5uoi5MIVRLjL1+ldNYkAlmus863zkTxwhjSJSP1ALPscmS1IOPvlnxL0B1kxdja9cXiPxfIxqmYiegqUtzzG+tom/s4/W6uDtNUn8EGGZGPkcWjGPNonGFaapjiOBqDsgGQcQR2iFPFreoffIEziri5BljNe3n1NkSMOgfN/t2PMzeGvbRL0+ZqGMu7qEvTR32N2w52cYnLtMMvbQ3KcCVqLegN6XniBq9bAWpgmaLeWZyTsMz18lHgyxpmqY9SpRq0PQaJOGkUotGoxIRz4y72JMmCFCQPWVd6G5LvHIwygVlLdD1/H3WwT7inIedXv4W/vkT65SvOd2Es+j/X+/QNwfoecdnOU58idWaP/JI6pzoUnSbkg8GCFdV3lvkgRjqoK7PIfQNUZX1lXKFUCaYtZKOAsqLS/qD8FPFXwvTjBdB6/dIxoHuAt18reeINg9IBkMifsDpKahl4sKgHjjXLs24UHn8M9GqUDtNfereN5zl/C2dknDSAH0HBN/r0E0GKGXioyvbyA0DT2XIxYeekkJp2gwwrRN1TUaKv5E2Gxh1iqY9RppHJK2Ongbu9jLczgLs+iugirGlRH1W46R9EdIQ8earhG2uirubVJZpuKIk8GYLFZE+dH1LcJmm6DRZnx9E82xGT55RXWlDB2zWlIxtlFM+OQVksEYkORPH4Msw9/eQ1om1mx9Mta1SOvaHuf+9+fpL57CtSTVikmpqEOWsbPr4Y1Vh8L3YyxTokl1k0+SlIOJkTsMM1xHkk0SItMsZXffo3kQstfwsSzJ/JzyamzujNnc8piqWmiTUfgLV/v4ocIVuK6BkLC84FLIG3R7IfvNgDj+Rg6c3xQZL2mZpskb3vAG3vCGN/Af/sN/4I//+I/5T//pP/GOd7wDTdNYW1vj93//9/nWb/3WlyymVkrJ1NQUU1NTnD59mm63S6PR4Ny5c2RZRr1eZ3p6mlqt9pIIjrkZG8fROGiFBEFKoaBTrxpsbFzn6vUGCwsz5HN5uj0fQxc4tmQ0SqiULRYXbHqDhDhW5PFaxaB5EKIbEgcI/ZQgSqlXdTRNYEhBEGYIkeEHKUsLNlGcsrnjsbHtEUYZUgqkgP4gQUjln0gTMA2JlGoMK5/TMQ21K6nrkl4/xrElg1HEaJQy8r76m0xOnlOTKk8/SSLyrlpAjMZfzw/ybB5HkihvRKEAtbLB2mZ0KH6+muC5ITDgkNOFaagQkP1mhGWqczAcJfiBMnink50YyCiXDKZrJnGi1NyJ1a8tMDY2Nrh27Rp33333ixIYv/d7v8cP/uAP8l//63/lrW996wt+/M26WX8RtTSvdgb39n3KZRPbkkRxRrenWEJHlnPok8VJfcpC1wV//NkW27tjojgjCBKSRG1UJElGsxXgOJJGy2d6yiKMUja3PWxbYzxK2N7zGHkpri3RpBpzlJpgd98nilJG45jcyjxmQSNpd4gvX0ZMCKWa48DSKlmlitA1nKV5jGqF8bV1sjhBLxUw6xWSwZCw0cYoFzHqFayZKbyNHaypKsLUiXsjjGKO6e98LbXX3E+4f8Dw8hrVV9ytEqieo9IoUpC+LFOL/UnrRysWlKk756oI1F6fxPNUqo/nYxTV80khKdxyHO/6FqP1bQUNrJTQJkRTiUSf/Gwy8iicPkY8UvwPZ3kOs6aSsqL+gOGVNQZPXMKaqRMPRxRvP4XxHMctdR13ZUFFxn4Vjo1Zr5I7dYThucvo5QJGuQgChheu4W3uYVSLpEMFbNNsC71QIPF8xmvbhM020tBJJx4S9ArC1LGPLmMMR6RBQDIcIx1THfeTV4hmZzArRfRqmbDZIR566HkHP4mJBkPSJMWZn8ZamEWzDOJeD6NYoHTXLcS9AcnYR1om+VNHFI9i5KGlGUaljDB0tEKO/KmjpEGkrqXIFCCv08NZnsfb2EEIiXtUgYe75y6hZxlmvUo88SaYUxXspTmsclElZbW7+Bs9xhu7RN0BeiGHu7KgrjkqglmvPPMekWXKBJ8MRpMujkPcH9J/9IJiiaRKoCeDMebMFNFgSHx1QJYkarxv0ubXci7W/DRhu0fSH2JNVbEXZpTJ/PYAb3MHb2NHCeypCkarSP7UEYp33cLBH/0ZcbdP2B0gTR0ixXwJO+q5woMOWiHH4NI1gu19hGWSzc8QdnrEnT5aPsfg4jWIYiqvvlelwAHSMiadqxR/v0H+xCr+jnq8nnOJewO0Qg6jmKfrQrs5YmW1j2dVWd8akSTq/m1bkjBKmC1azM84TFVN+qOI5kFApxsyHqeYhsQ0BHlXY7vh47ga9arJ1JRDqx2xuuwyVbMoFQwMQ2LbeUxDcm19SKYJtnYDtnZ8pBQMLQ3LSpmt2eiaIAwTTFPSH0QqPe8bWDdFxjeodF0lMnzsYx/jfe97H9/yLd/Cww8/zLvf/W56vR5vfOMbefDBB3n961//vIjJz6eklFSrVarVKqdOnaLX67G/v8+FCxeIouhQcExNTf25jKrlonGYQpRlGRcuXGBvr8mZU0fZ3EsZDBUpPPGVATlKMmanLZbnHQRPkbM9P8U0JSdWHbJM0B3EGBpoumrrDb0U007Yb4Y0WxH5nEbOldRrFrt7PmGo3hyaphbWpimo1UzKRYPxOCFNMsZ+im6oOSvH1lGfFRo5R1HqpIyRWsJg+OzXqWvgOmLC5hBEUYSUGrYz4XlEynj+fOJ0pdQmOxFAluCNYTd4fo99uvhIUiVdpMiIogRdl8SxwA8TxChhdtqiULgx+xmja6idCqE+rBbnbWamv/qo3ubmJlevXuXuu++mVCp9/YP7ivrEJz7B3/t7f49f/dVf5W/9rb/1gh9/s27WX1QV8jp33Fri6vqIZiug01XBFZWyyeqSy8zTGBejUUwUqVGYwTAGBLYlkZpGFCREcUp/EDAaaegSDtoBzYOAKM44Nmsz9lX06MqiQ5ZBu61GHI6v5piuWzSaAWQZui7RFxdw3/B6PEPtmMhqFZnPMxyB1ATBbgPNsVWSk2VR/qazjC5cU2KjkFPGY88n3G+p2FrXxqrXAJWmZM1OUXvVPeiODbUKwfY+yWisfA9PqyxJGF5ZZ3x5jajbn4xf5TFn6xDHiovQ6eNv7hI2WhPYoERIQeoFh/P4aRxj5Bz8vQPibp/i3bcS7jRJPI80jEmGI7XgnK0hDQNpWxiWiTVVJX9ilTSKGF/fIthpgKae29tuIAydzv/9IpVX3I1R+urjnF9tfFhISenuW9Fcm9HldbyNHdIwIjjokDu+Qjr2lPl55JEGAeNrG6Sh6rxncYJRKZJbXWS8sY2ec3HmpknCiGQwUElFcQth2yoWWDcwqhXMegVvbZN4MFaR7bN1yGB48RpRp4eoV5XHotnC324QD0eMr20Sex7p0CMNI+ylOcVwsCyyMEQYBkLTcI8skEUxZq2MXi0epmfFnQFRp69EQkkJw6jdRUQR5swUeqlA4odkfgBRQtIb4AcBeiFH8dYTRAcd4sEQZ2GGZOQxXt8hf+qI6tJkULxNjZ/FwxGDC9cYnLtE74uPg5C4qwsYxTyFW0+ShjHBfpOoP8QoFhT9WoCWz2FOEsTikYc0dLIgwr1tCWdxlrDdZXj+KnrOPRx5krrEnKqS+gFRZ0DxjjMUbz+NAEbnrzG6ssHo4jWsqTJZBqO1bZKx6iIJw0BaBlmc0Pnsl4kOumiuzeCx82iuO6GRuwTbuyRjn/HlNUp33woIsjTDmp9RfC8/INw7IPUC9IoygGdJgjlVJk6hFVkUpi3GjS6hVaR5EGLoEtuRCKnGK/M5nde9aordRshBO6BUNGgcqM2KNFFrGsfRabUCwiBlbsYmDDNKRZ2VpWe+Xy1T48TRPJqAzV2PxTlbJUsFKYYh6A2UJ6OUN9QaK8uolM1DM/k3qm6KjG9g/f7v/z6//Mu/zA/90A8B8JrXvIZf+ZVf4XOf+xwf+chHeN/73scP//AP8+3f/u088MADvPGNb3xRs+/PVUIIyuUy5XKZkydPMhgM2N/f58qVK5w7d46pqSmmp6ep1+svenwrTVPOnTvHYDDgZS+7j42dlP6whxeobsVwmNDvR9SqJgszFq1ORLlkcvp4nqtrHnGiREazGVAoGNxzp4VjawwGEbuNENuSHD/qYuqSg07IxasKEuXYatZwdsakcRAReCmWLXFMDV1KbEtSLugctCO8IOPYsoMfprS7MX6YoWmCkZ/ieRlxrHwntpXSHyQEE+ielMrzIKREkmLIiDjSySYmdymyQ2Lw86mn+40lKv86CuD5+jieXkkKwzGYekouJ9F1sJD4fkavH2FbGkGYUi4ZSCG4/UyB5UWHnKs9p/fiRm1tbXH58uUXLTA+/elP87f/9t/mgx/8IN/3fd93k4J9s/5KVzzJj8+7GkIomnetalIrW5MEtqdqrxnQ6oSYhiSfNyjkdQxNTjodqouhAJhq/tm2JOWy8ltYlsb5ywOGwwgpVCRloaDT6YYMRzb5vI4UYBgag6FKqtKm69ivfDnhE0+C7zGOMow4Q9/vI6ZKJGOf7hceR8+7iO09Ej9Qs/mA5lgkfkCWpCRBgJ5zVepPvYJmWwghEJPPfGkaRP2R4i88rbIso//YBXpfPq8WfWlG4nl4WzuMf/uPMGtlSvfcSuHMMYJmm6jdZby1h1kq4iwvYs0GpGOfeDSeGHF7hK0OZr1K/sgSg5FH1OspgJwQJFGoaNTVkkrPqhRVwpEf4G3tMTx/Vc2TIsjiiOSgTeG24/jbe/TPXaL2ynte8PXPskzFvyYKppYBWqmAPVtHyzn013fVuE6aolfKpGkHEUUkYUQWRYogfdctSNdWXJAoVp6AfRUjK02DJAhVxGqWEXV6pHHM+Oo6uSPLh90b7ZgLUtD9/ONE7T5ZmpEJgb9/QLh/QBqEKnY3itVOvB9glAskw5Giixs67vI8aaD4F/lTR5CT43FXFtFzDt7aNmGnpxbPzRbJ2EcruOoYkhSiEKFrCMsg9nwMTUNkAi2Xwz2+wuDJy/h7TcxKiWC/SeL7ZFGMe3QJzbUJmi36X34Sb2OXeDhG2paieLe7+LtNrNm6oszHCcFek3QSbxt6AVatTP7oEv5ug2CngbOyeBihq+dzaKU8Qgqi7gB/t0E69gmabeLBUKWm2TbtP/484V6TeOQzvrJGPByRxAlGwUW4DlGnT+oHSMMgS0ekcUJ00CELY8UWqZSBTNGwo5Cw1UaYJhoSb2MX9+jy4fulcOsJgl0F+PP3myAlQSrxY4FWrZHiIjtDMrOAWcyx08nQFuHMiTy9QaL8WAhMXTL2UtJUUC7ozNRtrq6PSFOVUme7auw5SQS9fsRo5NEbRDRbPvWqhevo1GvmZGJBlQDGgaKkHztaZOSl7DV8Wp3o0Iuqa8q/IYBwIkK+kXVTZHwD6+d//uef9TUpJS972ct42ctexgc+8AG+9KUv8ZGPfIT3v//9/MiP/Ajf9m3fxgMPPMB3fud3UiqVXpKFmhCCYrFIsVjk+PHjjEYj9vf3WVtb44knnqBWqx0KDtN8fvTHJEl49NFHCcOQ++67D9M0WV5IGAxjtnZ8LEMiRUYQwdK8TX+kYtROHcszVTXI5w22d30MPSQKlQm8VNDVTr2uUS0blEq6av+tjdndD5ASxp6aY+wPU6SUrC7amIYkzTL2miFpAsWigSEFewcR1YqukjYQLMxY7B+EdPsxU1WDWlnQHwj6oxhdh+maQRCmJKnAMFRevmFkDPoBxYLOQUcj8pLD7Psk/Xpwvqfq6eNOKZDGN5wazx6pei7BIZjQxyfPlSSQaWAagjRV/66UdPwgYzSOcR0N01TpNqvLDlPVrx00sLW1xaVLl7jrrrueFav8fOozn/kM3/3d380v/dIv8QM/8AM3BcbN+itd/WHEkxf7tNpqV+EGD6fXi7BPaRQLz4xzbrZ8xn6KZWmT+Wl5aAoH1SXVhKBYNTiynOOOW8s88niXwSjm/KU+W7veIRtISkG5pDwZfpiQz1QS3FRNx/dTGs2AWtVEX1pE5Fx617bZv7hHlqWMDyxyu02cy0+QcyS5o0tqgRvHSEMnGnvIUC2E3WPL5E+uMry0hlktIm2bYK9J7sjioS8hHo0RhoqyztL0MK0pPOgwOH8VMSF2KxaDIGwc4K1v423tqJHMOCYLQrWLrOvEY4/ciSXIBOONbeTIQS8VQAismTruyrxiUqQpmmmi5XJqTMYP1OdaEGLWa6qroemML11n+MRlxX2olBACom6MtG3i7oB4JsDf2lUAvnKRLEmUt0PXkMZT11DtMqdIy0RIlcjUf/Q83UeeZHj+CnF/qJKOTEMlLwnw17YVAV0I4t4AKSVavYYWREhTQxomJBnO8gLD81cZb+5AnKLlc2iWSTwYkYUKLhg0WsQTArjUdQU2XJzDnplCmoYad6uVkaaBszxH7wuPq1QvMtAUbV1aJnqpoJgljoOcM3GPryJN5WdR5uf5w06Wv90gf8sxSncp6GDYbIGhY1RKSN1Q6VJZplK+JqA5o1wg7g4QkyhmoUkKZ46TDBQUMh6O8fcO0Idj7PlZ0ihi67//BonnozkWU9/ycsIL19BdF6HrpHHCeG2T8bUN3GNL6MUcQtcJWx1kziZ/bBWjWkbqkiSIMColjEqJeDCkdM9tVO67nf7jF8l8lSo1OHeJ/toW6Bq508ewamWGl64zurRGJhRJXi8XseanGT55le6Xz5OlKWkYIXU13qaX8qQHXfS8i70wy+jKGmmaYs9PQ5IStrtkQUiapJOkq5jRlXVyJ1YonD6GvTCjRJ4XMN7e5+DyLl61RlooYkibzlpHBTeszNAZwig1mClZGJZOzk1ptOCgFYAUCAGf/3IHx1bBNoWCjtOR2LaG66jQm/4wJM0yikVt4uXMiJOMq2tDhMw/494+9hMazQABrG2MGXkJnZ4ifxu6muhIk4zFeQdBRhhm9AffyHjOmyLjL7WklNxzzz3cc889vP/97+fcuXN85CMf4d/9u3/HO97xDl73utfx4IMP8l3f9V1Uq9WXTHDk83ny+TzHjh1jNBrRaDTY2tri/PnzVCqVQ1P5V0vAiqKIL33pS0gpuffeew87IY6tcfuZAvMzFsNxgmmokYIMNc5UKhqHrbm5aYuZKZMkzej3Y7b2fLq9GE3CiaMujYkhaXc/4MKVIXLyQTv2E1xXkqYZ01Mm87M2pimJ44xGs41hSXK2atkvz9tommB732M8SnBcleKgaTA/azP2EmZmBHGcsrPrc/utBe48W+aJC0MOWj7dXki/32V12UXTXUwrotdPGI9jglTF2aapSmD82teZye4EE7/ERCQ86ye/uuAQAqQ2SZWyJJ6f4joaui4QQqVMLc7aOK6kUjTQdImUUK+az1owfWVtb28fCoxKpfK1X8xz1Oc+9zn+5t/8m/zcz/0cb3/7228KjJv1V7qCMOXJC31anZDpun3YtUgmbJ5zF/rcc3sZy3rq/RgnKUGYkHN08q5OGKX4QYZlSJi8p4dezOKcw+yUjWFIBsOY9a0RpqlRLhq0uxHFgkGSprQ7IZom6PUiWgcBW3secZQyPW0jJRy0QrIMwtBifVylHYWIMMD2U6a295FdqJoRR8sNCkuzSF1XFPC9Jtb0FP76NkJkmDNT2MMx3sYO0tQxSkXsiVk6aHXoPfIEZrXCwR9+BqOUxz26grMyj7/bmHAO1M65OTMFacb42iZpnCi6d5ySP3WEsN0n7JzDmq8rEOD+AdKyMAp5qi+7C3t+ms4XHicd+eRPHaH5iT9TqUuri8SdPlkckwhBFsdY5RKIjGBjF2lZ+M0WYauDMaWo2kIIpGViz89gTdeIWoou7u0f0H/yMt7aNkwW4e6RRYxijmC/hbe+owzHxRzF206RRhGdz59TXQddw1maI5OSLIwYXOgwvHCVZOjhHFlU419jT4ESSwW0vEsapwStDm6a4i7P0f3CYyT9MdLUQNcJ2j2yJEG6alwqmXREgmYHa6ZCFkaMrmwo9sSRJaz5Ou7RJfy9Jo3f+zTe9S2V3hVF+Ju7YOi4S3NolhqF1WyT3PFVZt78LZi1soITbu3h7x4AyjuQO7FC6Z7b0HMulZfdRRbFjK5tIKSk/6Unldl5/wCh60SDIVa9qs7pxHBtTlWRlgJA5s8cxz26xOjqBmkYkDt2REXzJgnCNRldXiP2A7X779iKiN3u4G3tYRQLiiqey+EszJGGMd76NuF+m0EYozk2Zq2Mc3SZ4pljRL2BCiN43cuQhoFRqzC6vI5Zr4EQuEeX0XMOCDW+FLa65I8vkwUR4/1NcseWGV1ex2+2iDsqFSpNEoxyAaNSpHzfbXT+5EsIXVcmdinJokjBaTUNOen2uYt1xuub6LkS1lyd8r23o+cc1QHrDqi8/C60yjw7/5//jdk9gMTAPxgSZAZ+cZrWSDDqj3BWaxiWWiP1hzHtTkScwGzdZnbaxvNi4iTl/OUhcZTS68cTr2lMpxcxHKl4S1MXahNWSOpTNoNhzN6+T6VkoGlqXTUaxrS6IZWi6qDOTTs0mwGWmaEbGmmcoBmSJM6wbcnivM1BO2TsJbjONyZh6qbI+CtSQgjOnj3L2bNn+emf/mkuXrzIRz7yEX71V3+VH/uxH+PVr341Dz74IG9+85up1+sv2UIul8tx5MgRjhw5gud5NBoN9vb2uHjxIqVSiZmZGer1Oo6j0jd83+eRRx7BdV3Onj37LG+HaUrmZ5+fqV1KgZSCWtWkWjEmRm4wdCUoLl4ZcnV9RBhl1IsTT0OaMfZSMjKEVKyHMMrY2Pbww4yyLcgQOKYkNFN6g5gkhkLRIG9rHBxEWJY4jIfNORpzMzksU+PsLSXuv7PMdM3gs19skMUHrCxWsZ0SgZ9ybNnlyctDGs2MdAiQIsgY+5MEKAWTfUZ3w9CVMMgm3g0pwbVgNIKv7bd66rxOlkBkmUBkkowM29Io5HR0QzAzZVIpG6rtWjJYmHXwgwQhBMeO5DCNrz5zubOzw8WLF7nzzjtflMB45JFHeOtb38pP/dRP8c53vvOmwLhZf+XroB1w0A6ZnbEP4XmgvF0zdZvdfZ+DdsjC3FOJQzM1hzjq4tgahbxOmqSMgxQvSEjSjDRNqVVMqhWTuVkb19Hwg4TdvYB8Xmc0jul0FbivWjWRElqdgLXNIRmCUsGgXDYZDGKkBkvzDoWCzp9+4YDmeptC6lOayyMGPUhjwql59rodrPUeR10bc0rFfcZjj/D6NlmaIk2T9ic/+7S0KKEEhpAML12n96Un0XIu9sI0mm0RHnTwtvYVTTxOiAdD5ZWYU/cb/+AAb32TJIxIwxDv+hZS11REreerlCEp8TYVdyB/6gh63lUCxzJxVubRKyVFLh/7aK6DNjdNMhqR7rWwlurYM1NEnT5GIYe/2yTqDtTCz7Kwp6uAIIlinMVZ9GKO8cYOYbePv75N2OoqP0e5gDlVY3TxGmG7o0ZkkpQ0CEk9n4OP/wmQYc7W8Td2EKZJsNskS1OyJCVsttFyOZKRp5Kz5qYxpspEvR5Bq4vuT8x05SLhbpOwcUDSH5GREfWHZGEMqTJdo2ukSUYyGKI5NiJLiftjcidWsVJBsN8kbHXInVzFObJE57OPEjbbCENH5hyyMUTtHkLCOEmIh2OyICRqtjdAybsAANr6SURBVKl98/04i7MITaP66vsIDzqKlI2KLjanKoefx0IIimdPMd7YYXDuEqO1LYhiYj9As1OMcpHYD+g/eZlk6EE6QC8WGV3bJIsi3CNLmDNTeGtb2PNzSuyZBka5RhpFGLUKYjgi2N3HqKr7SDLykJMI4cQPFLW8PyDu9DAn3hNpGIosnqRkUUiw10QvFyndecthJ8pZnGVUKjB88gqjy2uqAxMnICVRt08WKm9J1B0Qr20zunCN8eau6hCViySehybV+Je3vq0EZZpORq0sNNMkHnmHAQFS11RaWCmPu7xIliRK1ABRt09w0FGbfoU8G/sx2hveSPbI5+lsHBBYOdJ8AUGG3d6lWThCb6xR6AfYps5ew6c3iHAsiWNJRqOIVjfCsSW2JWj7KYiMdiciJSSJVbiNrmuEUUYcJyBsZusWWZaxvesxVTUplUzGXkKzHaJLQaVkKOp3nFEsGGQZeH7CKEgJo4jccY3V5Rz5vE6nExJFKdwUGf/vlBCC06dP8773vY/3vve9XL16lYceeogPf/jDvOtd7+LlL385Dz74IG95y1uYm5t7yRZ2juOwsrLCysoKQRDQaDRoNBpcunSJQqFAuVxmb2+Pqakpzpw585LG4wohsMynXsfcjM31DY+DVoQgw/cTogRqVQMhBAetkPkZC8uU7DYCsjSjVNCo19SCu9cL2W8ENNohjqWRxRlRnOI4GmGY4PkJaQpuTieerPZvpEYV3ADiDY4fm0VoRVqdGCFVWkMQpAgpkJpApIIkyQ5nHYVUZvEkUWwNQ1NfEwLQQUvAsgS2pROEEXHw9c+LoYNpgh8okRUBmR9hm4KMBMu0sEyNatnk+FEF1RmPY6brFnPTlprZ/Cq1u7vLhQsXuPPOO6lWqy/4mj322GM88MADvOc97+Fd73rXTYFxs/5a1I0uwtMFxo26wcY46DxTZCwtOkxPWew2fPI5Q5HAKwZRrHLsLVNQq1pM1UzmZhw8P6V54DP2Y3RdiX9DlzQPAja2xmgSgiDFtlSXQwh1XLajEQYZjZaPodvsbA4oixGVuou0NOQ4xTShbVj4wmL7YIR9dZ9pJ4c4aBJs7xMNRlRedgel++4garSIegNK95/FqlcZPnmF3qMXGF9bxyiXqL363kPTtF7IkXg+wwtXMes1gv3W4ffCgw79xy7ibTdIo0i1ZjUNf7ep5vsdC2lZFO86Q/n+O5BSI+4PSYIQZ2WB6soCo8trDJ+8gjVdVQC6To80UAt298QSRqmENDSiTp/ENEl9j/CgTRKE+Bs7aLapdsPnpzGrJcjAW9smDSOchRlyJ1YV2G04Uubm8Zho7wDNtXFPHlF+gr0m4wtX8K5uok/YBiq1aBajmMfb3FHChgzp2CR+gL+poHFoOiJNMUpFtLwLWaZGkHQVP2gVy3hbe6RhiJ7PISwTkpS4PyJLE6LhCGmZiiKNwKiWMAo5osEAf2cfb30HITVFCG91EBOhohfzisFxowWu6yrZKgwZXrpO6gegaVj1Ku4NWN5zVBKEpMPxIcdDSIkMArIgUjtjUUKwtY9eLiBti/G1dUZXN3AWZjDKRbqffRR/YwejXgNNqjQuFOdE6BqaroPQVCxsEuPvNbHm6pBlilOVZSoW1tAo3HGapN3DXpo/9Jb4Ww3coyvUXvNNWPWn7kdGqUD+7Elaf/IFRlfWVPqWaShTvueTjD3Gl9fB0Ij6fZX8lbMxCgVl1Eeo/0lJ1O7h77VAk4c+JKNeAU0Qd/tIyyQee5MRhZTyK+5SIL+5OvFgpEIKxh5C09h/9Do7ewaFosVO8QTBwixap0kyCEksm3DhJKk7hW5qjIcxnqb8EbouSTNodZTZ2zQld99eoZg3+PK5Lt4oIU4S/ECBtHI5DU0DMkGlbEygwJKTxwpcSAeEUYY38ZbVTuZpNH2yyUebpgksS2JZkmLRwOyqz7cTR/Pk8wZjL0bXpRql+gbVTZHxV7yEEBw/fpyf/Mmf5D3veQ8bGxs89NBDPPzww7znPe/h/vvv54EHHuCBBx5gaWnpJVvoWZbF0tISS0tLhGHI5uYm169fV4bAfp/r168zMzNDLpf7hiwuc67GyaMul6+PaLZ8hJTMTynDZbcb4bo6uiZZnLPx/BRdFzQPBFKTSCDLBM12BCmYliSKMoJBTK2is72bsLcfcHTVwZCwuetTr5msLDm0Wi0++7lHOXXyKG5uikvXx8xNaxiGoNOPGU88GYWcpDvIDj0ScTJJfdJBN58WfatLyARxkmDakkJOZ+QnOLZAojwrXy1hytDBthT5UxOABsWchm0ZZMRoIsMx+hiyz9JMhRMrDtWq8vF8vWuyu7vL+fPnueOOO16UwHjyySd585vfzI/92I/xT//pP70pMG7WX5tKMw5nzp+rhIDsK2Ygi3mDV94/xe//0R6dboSAidk7w9AluiaZrdvccVuZWsVkY2uE56esLLmMxynDUaI6pzkNZEqnG5OlGXGc0e5FNFuqw1opmRQLOttZRuMgIByHlESCtCZpfoaFFwrCMGAsXTIR0lrbwhtF2MMOriOx56cp3XkLZiGHWcgRD8cEe02IM9RsV6r+n2X0H7tI/tQRrOlJ+pRjI3SdxFefuUkYkXV6Cl7W6ihIGSAsE6lpisxs6CQjj+Cgg70yp4zicYI5U8VZmsdZXUTKCZTP8xhcvI7UNcxKiSQIcY8sY01VGV3fJGh2iAYjcieP4KwsIA2D8doWwf4BQaNN4VtPYVXLZIC/sUvY6uCuLmItzCIn0bpGqUgy9vGvbSIsA5llaKZB2GwR7DYxS0XCQo6w3cWqlCFDGX21KcKDLlkcqQhdKUBIpGGSJfFk8S4QlgECZaifm2a0vq1ecxSi5R3VARmMkalaXCdBoHbOe0Pytx6fEKSHaLkc0tABQdIfMrq2ib04izVVZnx1k8T3wQ/QqhakkMUqmlaaBs7qIq0//iLj9R3subpiUQDusWWq33TnM7gfAFmaMjh3ibDTpXDyCMXbTuKtq8SloN3Du7apbjgTXgkZ6K6NVsghTYN45BM1NtWUQN59xue90CRmrcyo3UW3TKRloBUrKqa32ycKQ4SmRKUQgvyZE4g0I+z0kLaFtG2suWms+VmMQg7jKyJx1XtSYNZruCePQJpN/DyOGt1rdRlcvK5Aju0ByWhE/sxx9V6PIvSCosUHOw30nEMyHmOUi8qA7gc4S3PYCzME23tKeKQp9tKcSpSSgsLL7qD8inuIOj06f/II0jQUDyPWMeOY4cBja3OArJTJ3bqKoQO6iUghbgW4uoaUkiwDy5DU6zaGLukPYrLJZ9FBK2R22uLYSg7LkmzueORdGPspZALLkJSKOq5j4Doag2FEqWRwdCXHnbcVMU0dUxeMxjHTUxaDUcxwFOM6EtfVGQ5jtSYxNSolA6mpdKluL2JlwX0WSfylrJsi469RCSFYWVnhXe96Fz/xEz/Bzs4ODz/8MA8//DDve9/7uPPOOw8Fx9GjR1+yhd9oNGJjY4Njx46xuLjIwcEBjUaDtbU1bNtmZmaG6elpCoXCS7rYnKqZnD6eY3pKjRFEiXpTjP2Eu88WWZyzaLRCDtohjqNxy6kCcZxy0AnZ2wuQAubmHU4czZGmKQetCDcnyec0QBJF0OpGLMzavOr+Cv64yyc+9QSms8zuQY6DS126vZg7bi2qOVihIuXCELqDBE1CIa/R66uuSJKAH4KtvIIkqcDWhErKCFWU7MhPybk6SZISxTGunhGECs53ozGUZap7oXwbGaYhkLaglDOYmbaIEuj1VRzeG79tlYWZhDBo88QTio1yIzmsVqs9Z1Tx3t7eocCo1Wov+LpcvHiRN73pTfzwD/8w/+Jf/IubAuNm/bWqcsFgY2v8nPyELMsIw5RS6dk+puNH8tjWPJ/9YpvtfZ9coGEaknLJ4MSRPHfcUiKfV4876ETkXB1NF5QLgv1J/j2AqWtkaUg+b5BzNUxTw7YlfqB8H1LqHDRDmq0QExhFkAVqPDTEJhY5HK9L6E6hu2VcLUE3BN44wCrlqL7ybsxqmSxNSYZj0jhm8OQV9LxL9ZX3IA3lEbBmaoTtHoPzV5CW+VRHY0L6Lpw9SevTn5+QwlE75mmmRlykPGQHpGMPNJ2w0SJY3yU66Chzb6ONv7FHPBhRPHsKo5hn+o2vASTdzz+GNV/HKCrDs7+zTzwcE+42cE+sHh7LjVQfc6pK2OoSd/uqTQx4+w3s+VmsuWk055n+QSElseehaxIhhOJANNroOQehKdp1FMYkWYqVd4h6Q1J/l2Q0RkhN8Rq8AGOqiNQ1siQmd2KFYL9NeNBWI1iVIlFfJRwJ0yTqDRAZoMtJ50F5AUhTpBBkAqzZKWUOz7kqIjdOiHt9BfJzbOw5BUcMm21iPziE92UaJOOYtNnCWZhDTMx9aRiTRjHB3gGJHzA4d4lgu8Hs33iDiiieVNjqEuw1Fadi5GFWSqRhpEz9/YECNEYxWt49jJUFJiLAxJ6tUTh7gt7nH38WvBAU/duzTNIgUJ2lWoX8yRX8nSbkXHLHVtCKebz1bYSUDM5dJB56mJPRKr/bIyMjiyJqr7kfmX9qaZplygvkHllEd22C/QO0vMvo6ga6a2HNTRN1ukgB9sI0gyeuEOwdYE1XlbhzbcXzKOXJkoSo28ddmcff3CPNUJG/eReSBG9tB6NapnjmuIp+nqnhHlshHXkq4ng88ekIgSMzHEvS6JoEaUDFH6CbU3DjfREnlEsmugapyAiDDNPWDjldhikol0wKBZ3+IMIyFbBvuq6ifZNEBU5EUUoQChrNgEIhxbEdDtoBti3JuzpbOz69fkSGSt50HA3HkfQGCe1uRJpktDsBYZTi2BqahK2tMYapcAArSy8NQuGr1U2R8de0hBAsLCzwj/7RP+Kd73wn+/v7/MZv/AYPP/ww/+pf/StuueUWHnjgAR588EFOnjz5oheCzWaTxx9/nJMnT7K4uAjA3Nwcc3NzJEnCwcEB+/v7fOELX8A0zUPT+EuRjJVzdZYWHMIwPQRlhUHK4rzD/XeWKJeNSWSrzmicsDRvk2YZ7o7GaJRQLOq4tkaWZTi2TqWigHWvuK/KLSfzDEeqAzIzZdDptPi/nzmHZq4wM10hn9MJgoR2O2Jjy+PoikPO1VW0n5aoYzJVqpVhKJFgTF5uFCuRoUuBaWggIcskWZYgyfDDhCRWiVBJAqapoIFC3GBzKOO6N1a+Ck0D09BYWLCZmbIwTInnmaQZnDlVZLpmAbNkWUav1zsccQuC4BnJYYZhsL+/zxNPPPGiBcaVK1d405vexN/5O3+Hn/3Zn70pMG7WX7uq10wKeZ1WJ3xW6lq7q2Cb01PPDr0IwpTROKFUNPDDhOFI4tiSU8cL3HnrM43ifpAwU7fY2vVoDhOCMKFYMAmCmP1WwHCUEkY+1bJJuaR+l2tLBsOITjdm7MW0uyFZnBF0bJx+RC6nEQcZufIS8yJC7zaxLYFzrIKIQ9L+EK++iD4/R3jQYbyxQ9TuEfeHDC9cxT2pmBNISabaOZi1CsFug2D/4HBhn0Yx0jKpvOpe+l++QP/xC+h55VEQmsScKpP4aoxVaBrRxG8gdQNrYQZ7fubwPMSDEf1HL2CUi7iTzsTU674JaRp4W7tolkkWJ8SDEf7GDnqx8IzHG5USZr1GPBgrRke9hjVdJR55uIaOWS6RDIZqB/ppaVJIAYlKTgJIxh5ZGCELLiAQtoXQBFIIFaMrhepm5Gyi/bbKKTcVNT1sdUj6QwIh0Asuopgn7vYwyyX0Yg4MHe/6FrGANEnQ8i5JbwBZimZoaG4ZaRkkYULY7JA/cQT36CLJOFCpWFNl7PkZRhevIU0TveBiLc7itzqQxMT9IfHYIx17WHN1hNTwt/cxqiVGl64RDwYYhbxaKKcprU99Fi1nM/0drz1MEcvCiDSK0V2HID7A295T3a1Mjd9KKcikIIti9PyE+eF5xP0xQjewZqbIHV/B39ghaLQQCLLKUyI9m6QzaYUc4X6bLAgnzIkipbtvwVmaI2y28Te2GV5ew99t4hxZUuNjhRzGZJTNW98ibClSfNBsk0UxwtCJhyN010Y/uqRG+i5eIx6MMGsVND/C3xgRWxbm7BR6OU/iqc6a4oT0EQKMYp7woINZKVH/9m+m/vpX0/vyebzrm4SNFlrOZer1r6R4x2nc1UXCdo+w2aLzf79AEsWMLl3Dmp3GjlX3ztQFc2V4/BpE0kRGI8LBiNjOkaQK1jk/6ygvRZRx5lSRQT9ic3tMuWxi2Rqb22Mkalqh3Q04e6as4q+LJgctnzjOyDJBGKVYpgL4XV4bsdvwEQhmpi2CMCM/EWXdXky3FyElnDiaZzRKWNscE4SWGu0cKIG+vu0xM21z/125rxsM8+etvzSRsba2xs/8zM/wiU98gr29Pebn5/m7f/fv8t73vvcZMaobGxu84x3v4BOf+ASO4/B93/d9/Ot//a+f8TOPP/4473znO/nc5z5HtVrl7W9/Oz/1Uz/1/8wCSAjB7OwsP/IjP8Lb3/522u02H/3oR3nooYf4hV/4BY4fP84DDzzAW9/61hfkpdjZ2eH8+fPcdtttzMzMPOv7mqYxMzPDzMwMSZLQbrfZ39/nS1/6EpqmHQqOSqXyoq/F0RUX19bY2fcJgpRSwWBh3qZaVm+MatnkttMFHj/fp3EQks8p74JAcHzVRZ/MQQ/HCZ6XUMjrnD6uYt+mJlNCe3t7Ksq3fpwwzpHP3UjLUuCc0ThmOE6oVgzSLCMOM3RNYtkCUGRxx1btUN9Xu4pZKnBtgZAZuq7R74cq+jaDyEuIY+XXkAg0XZJlKVmm4m2lJsg5Go6lIYSid6cphEFKuxNhWRLTFMxN29hPW9g8nY1y4sSJw+SwjY0NnnzySXK5HKPRiDNnzjA1NfWCr8Xa2hpvetObeNvb3sYv/dIvvaSenJv116N+7ud+jt/5nd/hy1/+MqZp0u12n/Uzz/Ve/4//8T/yIz/yI4d//sv8zHZdnTMnCjx5sc/2roczMTz6XoLrapw5WXwWTyaKUp682GNj2yNOMvwgI5wkwWzvNtnc9njVN00xO612j11Lw7E1TEOj2/WwHclBK2C34TEYxGRZymCoYiaFgKmqPYnahs3tEaYpkVISiARpmwRjD4Rie/hakb57EjvY4wy7RFYOyzKxVwzGs8sMGz1Yu0YaxWoXPInJsoxkOKb/2EXco8tI2yQejdFzLprrEDTa5I6vgoCoO8CeqzN64grSsciSREXdahJhaGRxilktoE8612FvQBbHymNQfibnSS/kiHp9xtc3cZbnEUKg53NUX3UP42ubjK9vkow89FIRc34as5g/XBiDGsWxF2dIxmOyNENqEqteI3e6hLe2g7e+Rez5pO0euSOLh+1gPeeqxenIx111kbY1SdBQYyK64yALeTTHJg0CwnZP0Zodm8z3ScIIvVTE39ydvG6dpD/ErBQPz4lRK6Hn86RhiFWvkkQJqeeh53OE+RyaaWCUC+iFPMHOPn6zQxrHilotNaRpIKQgf/oY6JLcqaOkQUCw0yQNQ6Suk2WCZDQiGY4xaiVqr3s5cbdPMvIZPKG6U6W7blWdDdS4WxpGDJ+8Qu74CsWzp9V5NA3VcbEMkuGIsN1FLxRIPZ8sjkDT0B1HdSLihCxN0ByHJAiJ2t1Jh0eSP7Gq0qjaPUaX1zCnq2RBhJAC98Qqmq5TvvNWSvfcipCS4dV1vKub+Ft7IAXj9R1GF69iTFVJhmNGl6+jOQ7WXJ0sS9Fcl87nHkVqcsJ9URwab2sPa6pC4ZbjFM6ewt/eIw1Col6feDhE5nNohRzxcHhIFHePKn9K6ocY1RKJF6C5OdyjS4SNFtVX3kP1lfcQ7DaIh2P0Yg57bpp47NP6oz+l96UnnyKclwsMn0wZX9tEGjr5M8eQmsZiVbJQTtlqSnb/f+z9eZSkZ3nej3/efal96717pmcfzYzWEWiQLZBYBIhIwg4O8QlGsTE4LE4snMSA7RhyBDmHxfgQg3GODziJz/fnINkONo4tjMFYthBiRiNpNPvae1d17VXvvvz+eHpaGm1GQhgb5vprpru66q23qt567ue+r+vTS4llh0AXIQu2reC6MVECWVvFMhXGRwxMQ2a16eM5EZKU0myL+OZq2WJ81MRxIsIoIUnF+ma0KgqEdjdiMAxxXJHceeJMH0WV2L3D3LheZWwVTZU4d2HIyqqP68f0BiGVooGkwK6tKmOjFoYu0+kFrK75TI5bz+pPe6n0Aysyjh8/TpIkfP7zn2fbtm0cOXKEn//5n2c4HPKJT3wCECyG2267jVqtxgMPPECz2eTtb387aZrymc98BoBer8drX/tabr75Zh5++GFOnjzJXXfdRSaT4f3vf/8P6un9wCRJEpVKhZ/92Z/l3/7bf0u32+VP//RPue+++/j0pz/N1NTURsFx5ZVXPudC8cKFC5w5c4arr776u9rxVhSFWq1GrVYjSRLa7Tarq6s8/vjjpGm6UXCUy+UXtDhVZInJcZOJMWPda/jMD0OtorNvd575JZfBMKZYVNk2a5OxFapljXJREzuE3Yhr9+Uv2aVcWlri+PHjXHXVVZxbUEmdJ6FUxYJGthWyuOJz7sKQKAY7oxCEKikRtqmQsRWGroqmsvHh9/2EWErpDxMUN0bTYjw/2ZjJjtc33aL1C0nOFB0NzxffkZIkkbFVdF0mSRJURcb1YgxdJopTBp2QkYrG9tkMucyzm/yeGlW8ZcsWFhYWOH78OLZtc+zYMRYWFjZek0wm86z38VTNz8/zxje+kTe+8Y381m/91j+JAuOzn/0sH//4x1leXmbPnj18+tOf5sd//Md/0If1Q60gCHjLW97CgQMH+L3f+73nvN0XvvAFXv/612/8/6lwx38K1+zRmkkUp5w41ef8vEMUJWyastm5LbdRKDxV9abP2QtDBsOI0+eGyApUSzqjNYMoTphbdHn4cJsbritTqxiMjZqcnRsikTK7yWZh2WWt5SMhkcmqWIbMYBgxdCIWllxIoVYz6fQDBsOILbUMzU5IIacSZFS8NvS7Hr4bkcgyYawzU5tisG0nZytlqopPbekoRBH++TpaFG34LJIgEklA+RydR57AnVtGyWcJ6i3MiRFSWUIiJfF8/PoapAneUh2tmKP8imtJw0jQuf2AeGEVJWuh6CakKbHnC/aDrqOXcpijtWecOy2fI1zrkPjBRgGhZmzy+3aS3bVlg2sBCa1vfgfdcUFVxfIySYk6Xextm1AzFqUbrkXJZRg8cZKw1cFfapBKIqUp7PbJ7d4qFtqRGP1J210kXUfSVSLHIxouE3V7SJqGWS1hbp5GVmS6h48S9YboIxWk6XGGJ88Sex7+qjBVy4qMnLGQNI2wO0DVNKLeQFCsVxootoWsSMRBhLZOytZHykS9IfHQIQkjlHwWCUFsl00DWVUwxsSol5bPYezbRffQE4JuXm+h5WzCfIZgLcAYrYlUpCBcNzEDkXhd4/XC5qJkVUHNZXHOLpDduUW8NpUixmgVb3EFSVGIe4LwHnS6RH4o2CWej2QapP0BXr2JUSkhIZFEMSCeG0hUX/tjyLJM46//nnCtjZrPopeLKIaBNTVG8WVXoa2DBtVyAVlR6B56guG5BfxGCxQVa7yGUsiLWN/VNQYnzqDVSuiVEt5f1Km97sewN08iyTJJGBG22vSOnEQfqaKXCxjjI8iWgbfcAElBL+UxqmUkTUHWDJzT5wlWmsiWgV4qEHX6pHFMds82ygeuJWx36T9+guprb8TePLVx7oanztP824dpf+tRlKxFGgT0Oj300Rp6uSA4IQurGCMVjJEKmipx1WaZ02d7rIUJqqpRKRti0S/BaiNA1yV2zGYI/BhF0ZmZzlAo6LQ6gZhyiAX3YvOUTRgmXFhwqDc8uv2YclHFNBViV0KWIzK2Si4jUSqquF5Ktxdx7sKQLTM2jp/QbgX4UYIfpRiGRH+YkLHFhgepmJhorPmUSzqFvM5a06fbCykVvzs+2ovRD6zIeP3rX3/Jl9CWLVs4ceIEn/vc5zaKjPvvv5+jR48yPz/PxMQEAJ/85Ce56667uOeee8jn8/zBH/wBnufxxS9+EcMw2Lt3LydPnuRTn/rUj3zizcWd7be97W287W1vo9/v85WvfIX77ruPW2+9lWq1ujFStX//fmRZLGr/5m/+BkmSuO66614U+VmWZSqVCpVKhTRNabfb1Ot1jh49ShzH1Gq15/UMPNdzeb6b1io61bJGGAqid6sTcvz0gJWGSJeQJYkrdmTZ/JT5w4sAuovpSp3+kLVmQDGvIkkSpqEwue77aHUialWdK6/IYZkqJ08POHFmSBgmqIqE68VYlkKxoNFqRbi+ABMK2OvFaF5AgjhOUBSJNAFI0TQFXUtJ04RCTkFVBZjHMmS6/YSxmr7h40gRns1qWWPbrP1dvb8bjQYnTpzgyiuvZGRkhCAIaDQa1Ot1zp49i2VZG69JPp9/xn0uLy9z2223ccstt/Dbv/3b/yQKjD/8wz/kP/yH/8BnP/tZbrzxRj7/+c/zhje8gaNHjzIzM/ODPrwfWn34wx8G4Itf/OLz3q5YLDI2Nvasv3ux12zf9/H9JyPZer3ei3sSwGrD49jJPksr7jrzIuaxY12WVz2u3VdkatJGkiGX1VAVieOnepyfH4poyRRsXaHREmDP0ZpIuev1Qi4sOFTLOtWyTq1icPRED9OQcd2YjK2iqtDphWRsAfVrtgPCMGWl4RMl0O1FjNZEh9LQYjZNZ+gPYrqWSqwN6az4ZHUYLUhs3VGiOJInCGIWBiqBUqWyepI4amFtGheQtfVd67Dbo3PwCdIkwlsWQD6SFHcuEiCy8RH8RgtjtErY6QHSRpFib57EXVihcvPLaX7tWyDLIoI0jYn6EmqxQNzvY81OY02PP+Ncp2m6nvH9LGlemrYRVVq75Ub6x87Qe/wkieuSpqBmTKwtMxgjFdSMjVbM0z14hDRNyF+9G8U2cc7OQVrFnV+m3emJhKlOH220jDFaJVhrifGghSWSKEEr5pBkGSVjEXse2kgFfaSMVsxhTo7jLq4gyzKSKiNnbJJ1erpi6CSeRxqEhEFM0L5A2Ouj2BbG5ChpIqjenmVQuHYverGAYhiEmkZm+6wopBRFdEocH7WQE485PkL+6t0YIxWiwZD+E6cEtND3Uds90jAis3UGvVokbIo4W7/eQslnUdf9JBeLjCSKRPJTtUTsuMSuj6wLAGFu7w6CTk90YaoFvMVVnAsLRF0BIpSlGCmOSPyIsN4kGboQJ8iWweDUefxGE9myKB24huzOLRSuuQJvqU7U7Yn3RKWEMVbdeD2TIKB78AmcU+dR8znUrI1eK5FGEX6ri+IHAqg4HIo0hlTCW2ogSRL+ShOtXETRZWRNJX/lLvzVFt2Dj1N6+VUo+Sy9x0/grzRIwwi9UhJASddHUmXUYp4kSdDzWTHalM9iTI1hz0wKf0Y+g7/WJlhrY46JwthdWKH97UcJu33UYhZrUly/Ej/AX1gWRWscAyneapMoVyCOhPdi0lsmUx0hnCwQphBG4ju/UtaI45TxEZOhK2jfGVulvB53vW02y4V5h6VVh3Y35NS5Ic12gGkqoiD1E87NDYkTRBJdQcUyVQaDEEWRyNoK7U7Ao4MQJAlFkVBVMWp9fs4lk5Eplww6HREMoOkJ3iCm2Q4oF3VMU8EPfoSI391u95KkmwcffJC9e/duFBgAt956K77vc/DgQW6++WYefPBBXvnKV14Cjrv11lv5wAc+wPnz55mdnf1HfQ7/lJXL5XjrW9/KW9/6VobDIX/xF3/BH/3RH3HHHXdQKBS47bbbOHbsGOfOneNb3/rWiyowni5JkiiXy5TLZXbu3Emv12N1dZWTJ08SBMGGSblarW5A/b6Xx9LXY3BrFZ2MXaDdCYniFNsSFPGLnZC5uTnOnDlzCYBufNSgvhawvBqQzYp8c9dL2DojcuZHajqGLoyE0+MmtapBEMQ0WyFhJMadOt0QpARJEvBBSAnDlCCMUVWZOEyIU0ijdGM8qj+IkBUZy3wyLz+bUVhtBPSHId2+oAubpky5qJHPaliWiKX7h9RoNHjsscfYu3cvIyMjAOi6zuTkJJOTk0RRRLPZpF6vc+jQoY0xtzAM2bFjB51Oh9tuu40bbriB//E//sd3XRR+v/WpT32Kn/u5n+Md73gHAJ/+9Kf5y7/8Sz73uc/xsY997Ad8dJf13ve+l3e84x3Mzs7ycz/3c7zzne/cKE5f7DX7Yx/72EaR873IcSKeONFjbnGIt55MVyrqhGHCibN9jpzosW93npGqST6nMlozOXm6jx+KZCVdl0hSwaqJ44T6mk/GVrEshVYnYDAUYKtsRiFOEs7Ne6yuR1cWixrlgk6KgHlaluhqSLKEbSrEOY3ZTRmWVjxyGZVSQadYECEYuiHjRDKFnEiHWWmndP0hSZISxynLwSiv2xqjnels8BJkQycJQmIvQDEMtGKexPWIXU/4LKIIc7zG6G2vwp6dhjRl7a/+DmNcXCvSNEWvlnHnVvCX1zBnxnDmVwj7fUhS1FwGvVIkKWYpXLn7GQZsgLDdJbNjFsV4/t3SJIwwKiWxA20bKJYFUUyw0kDRdcbf8gaCVofYcbFnp8TYk22TBLGABjoOTqOFNTVO8cZrKezbQeKHNB98hPjCApltmwnXR6LMqTG0SpHhsbM45xeQVQ0pY+GvNiBOUYsFJBAG7XWCtprL4K82iNoDkjhCMQwB29MNkr6DpCno1RKyquCt1EmjGNnQhWE5ZyNpOrVXH0C2TIJGizSKBYhutEI8cHDPLxK2umS2b8Ycq0IK/ZPnCOot0jgidjzCXg/VMkRKkh+QIonuBqLrE6610asl1IxN4gcbY1QA5vgIlR+/HufsHL0nTonzPVIhdn2QZJRcRjA4gg6xH5LGQ9IowizlIU2IBy6KoYsQgVIBRRPf12o+J7oZ1dIGMR5gcOIsw+NnsabHSIKQ4amU3PZZZEUm8USykmzqZEarKBlTPM8gILs+DqVYOtmdW8T7WNcpvuxKhmcuEA0dEtcT8cV+gDk9jlYtiWQ0WRJjguUixDHlG65BH6kQdQeE3R7D42fE2J2pkyYJxf17Mcdqwlx+Zg6SRIAitSfXIrKhoxQEUFCvlmmemGO+t0oyyJB4IcNGm0QzyG2ZIsoZYmJPgjgRlO2sraFpMltHLU6eHTB0YrIZhTSFwUAkQL3yhhqnzw2w132oq3UPx0uEL7QT0B9EjI0Y2JYwjodRQhRDECYM3ZhBP2TP7jyqKr6fwyAlm5U5fXaILHnMbhYssI3PWpKy1vIFk+z7vA//T6bIOHPmDJ/5zGf45Cc/ufGzlZWVZ3gBSqUSuq6zsrKycZvNmzdfcpuLf7OysnK5yHgOZTIZfvInf5Kf/MmfxHVd/vzP/5xf/uVfZm5ujnK5zH/5L/+FN7/5zdx4443f8+L/oiRJolAoUCgU2L59O4PBgNXVVc6ePSs8EU8zKX+vsi3lWSmW586d4/z581x77bWXFFIZW2Xf7hyLyx5r7QDdkNk0bdHtR6zW/Uv8DwDVss7OrTaFvMbpc0MeOdLDcSNMSyVriwLCGSZEcYQkwdBJ0DQJeT1JMk5BlcUIlWWKeEQvSGis+SSpWPSQSjTbERBQLmpirDiFyYkcmvr8Rcba2tpGgfFsnhoAVVU3fDUXx9zq9Trve9/7OHr0KIqisHfvXj772c/+kykwgiDg4MGD/Mqv/MolP3/d617H3//93/+AjuqyLuq//tf/yqtf/Wosy+JrX/sa73//+1lbW+NXf/VXgRd/zf7ABz7A3XffvfH/Xq/H9PT0Cz6+RjNgadXD9WIKOQ1NU4jjlEbTF6OJbkiz5bNtNovrJfz9w2ssLLkMnIhmJ8TQJHRdxFpnLA0kEVVq6LIAr8UJJ884HD/VR9dkdF0mk1HRNAlFlrAshRRodwIsQ2TmB15MFMbkMiqeG1PIq2IBIEuQpjhuxEojQFUkfD9mrRWQsRUmx+2N3wdByvz4OFM7t5OrFYS5+sIicd8ht2sLYbdP2Okjy4JqHDTayLqGef2VFK7bi6LreEurJFGMrKnEfsDw9IX13eKANI5J/Qg9l8HePoteLWKNVMns2Ubcd/CX62Lufb3QSNNUMAsMXRQwz6PYcek9ehRrZgJrZhJ/pS7SmpCQLANFN1Ask8Hxs6gFMYrjXlhicOIMaiFLtlpEOqoiScLDYZQLqMUisiJhjVchisRzNA3Cbl+MzyQJ2d1bSRPRpbBmJmj+7cMMT11AsQwxxtIRxOg0TojaPeL2QJiRdRVjrIpeKxMPPdSMiWxbgqg+OUaaxBiTo2j5DGkUI2k6xf370NeNgGpGdNSTIKD7yFGcs3PEQ5fBiTNEQw9SyO7cLBbAQYBerQjvQL8Pmoaay+IdPY2/VBf3lxcFglYukt0xS9DqYG/bfMkYFYA5VmP0TbfgXFjC2FsGUpIwJur1hfckl0XSFJIkgSACCfRinszWzVjTY2i1Ms7ZeZb+vz9Fr5VF4hgSsi6I84Vr96Dls8SeL4jmBfFv58Ii7uIKWrmAYttETou4O8ScHEUr5AUhvD9E1lTRQYtj/JU1rJnJjfeTmrWxN01SvvE6mg8dRtJUUi8gaLQIO30UUzBF9EoJa/Mk3cNHQZZI4wR3YRlJVdDKecFo6Q/wFlfpPX5SjEulKX59Da1UEITwKL7kvCm2RdwbEJRHWcgJWF/G9YhTiXZphlVKFLMlykWNOEoEP0uWxDUhSVmp+1yxM082o7K47NLtixjs8VGTyXGL/iBEUSW2T2cYOhG9fkiSpriu2Kx0nJgwTFlzA5rtAEUW0xNLKy6OG1MsaBubOML7mTJaszh7waHbDZ/BwZBl0fUIQ7HJ8v3US15k/MZv/MY/uNv08MMPs3///o3/Ly0t8frXv563vOUtGzuTF/VsrfOnRw8+Wwzhc/3tZT1TSZLwu7/7u1QqFR544AEef/xx7rvvPn7mZ34GSZK47bbbePOb38xNN910ieH+e5EkSeRyOXK5HNu2bWMwGFxiUi6XyxuegZfqMdM05ezZs8zPz7N//35yudwzbpPLquzaniVezziXZYnVhs9K3cfzRcoVCP+FpooIunJRo5jXyGZUHrEU+k5EGKTML7u46z4NJafSH0QkCaiaJLL4kxTDkLEMQRHOWDLLdZEMUcpr6KrMaE2i0RJz2iBysy1LYWbi+anqzWaTxx57jD179jxngfF0PXXM7Utf+hK33HILkiRRr9cZGxvjda97Hffccw979ux5YSf+Jdba2hpxHD/jeY2Ojm5sPlzWd68Xc81+Pl0sJgCuvvpqAD7ykY9c8vMXc802DOOS7seLVacfMuxHKLKMponCuT+I6PUj8jnR7Wx2QuYWHaIo5dEnOswtuICAYAXCwYAkKfSGIcSiwFBVGV2TGAwi/u7bawycGEWVicIE14uII7GZ4KyPTlXKYmeyNwiRUth7RRFFhiBMGanqnJtzCUMxdrna8AmDmGJeI0lSinkdVYWlVZeMqVIoaChqwqk65BKDK5QhhelR3IUVpHVwmmKLgkQ2TdSMjV4qQiISohLHE+wB20KxxELcOb+ItyAWhnqlhAX49TW8RpvClTuxpieIXZfUD7E3TaBYBt7CKkkUIa3DzrRCjuJ1+zZGUp5L3lKdsN0TMDlZxhitCF6DJCFrKu7cMs6FRUhT0igmaHUYnp1DsSzUfJag1UGSQB+rYdQqeEsN9BERB5sEwgAfD1zsmUmMMUEwF1R0jf7R04AkRpcmRpEkieGZOZIgQJIgarRIkhgUCQxV7PzGsUi8sm20cp6w1UOVZPRykdzVu4i7A8zRKmo+izFSxpoe3ygwLipNU7qHnqBz6AlAELITNyDq9nDPz5NGIdbUOJ4kEbba+I0maZxijFZRTJOw0WJw+gLO+QWMWoXiy65EK+ZFt8a2yG7b9KznWq+URCBAEJCECebEKIFl4l5Y2jD4p36AWi6Q37WTwv59wsi9fs6CtRbdg0ewt8yglwqCpWHkcM5cIAkCKje9TAD2egMi38dfWCEeOMTdvgDemSYgEba6qNksxAlJEKDlMhijVQEJNHX81aaIy10vMqKBg2yZuAsrBAur6GXhM5FURdy/5yMrKtb0BJKmoFo2QX29ADE01MKT/I00EJHEUaeHe2ERc3ocUkCS0MsFZF2/JKpXkkRgwHwb+vkR9NkZ5n2VSJYZ+hK9usdgySEIYqpljZU1H8cR0fZBEFMqGnhezNSkMFnLMpSLBlPjJuWSwdyis5FOZ1sK1YqB48QoKgwGMUmaUm+4RDFYlkLGEn7QZieg1QrWoaAhhq7QH0ZiakMWATLOMKKxFlCtGGJMO00ZrntP81mVMLyUCfRS6yUvMt773vfy1re+9Xlv89RdrKWlJW6++WYOHDjA7/7u715yu7GxMR566KFLftZutwnDcGOBMTY29oyFRb0uqvvvdnH1o65+v8/ExARf+tKXyOfzTE5O8vrXv57Pfe5zfPOb3+RLX/oS73rXu/B9n9tuu40777yTm2++GdN8/oXuC9FTTcqO41Cv1zdM2cVikdHRUWq12ot+zDRNOX36NEtLS+zfv59sNvu8t1eekrZQrejMTJrML/m0uwlpKqGpEpunLUoF8RFSFInZGZuVVZ9T326RJJDLaDhOguMmZDMKpiEiLw1dQVOh3gwoFTRUTd7oktiWBJK0DnaVyWUVVEWiuZ6xn88oTI6Z66NYz65ms8mjjz7K7t27n3Mu/vnU6XT4iZ/4CXbv3s19992HruscPXqUP/mTP/kHz9s/pp5toXp5Y+GF64Ves1+obrjhho0xydHR0R/8NTtNcf2Y/FM+Q71+iCILCngYCR7P2QsOmgrdfoTvJ+sxkSkpKVIKQyfGMmUcL2baMAnChJnJDE+c6LHSCNg8baNpMllbIQwTGq2AuJVgGsLMuXNLFt1QWGv6bJ/N8pqbRojilMNHOnR6IYW8Qr3hU18LiOKEXEYljNbpvllZxOAGCYYuPF4ZW2xWPDpXovfYOcZONtGXu6iJguYFJEMXc2IUe3YaZZ2h4F5YhCjaSGXSinnM6Qk6Dx3Gr7cEnXu9q5zGMUkQYlSKtL/1KFGvj71pkqDRxJ1bwpwcofSKa4iGLkQRSjaDOTHyjN30Z1PkuIK9sX4ckiRdMl6lZiy8pVXigUvvseNAir+0irVtM7JlkgYRaRwjq6oYFQpD/OVV9FIeUogcB//RY4TdLrKiolVLmOMjgqidsVELOYJ6S8zvj1TWi6wFUkkCRUbRVZL+kNgLBEBPEcBCd34JM4mRNA3Z0DDGqoKhMDVG9ZYb0MpFQTYPQoJWB630ZLR7sNam88hRglXBuFBME8nUhVnc8/GbHWTTRKuV6Xz7MaJ2DyWfJWx2cHsDkGXyV4mCZnjqHGopLwze1RKFa/dijD57gqCatcnu2IK3Usc5fZ6w3SEaOmJUSNeRLZ1YljBHqsi6JlLP1o/ZW1qld/gYYW8gPB+2Rdjti9diegJvblkUpqU8wVoLb6WBXhJFKrKMv7SKbFtEjouStTHGq6gZm2gwJLNrKxIQ1JvotTIXSd0ASRASdQdkdm/FPb+IMTGKMV4jbLbRyyWkmvB/hq0OYV8ELlgz42jlAoMjp7C3TZPGCWkUEXb7yJpKZusmSBKGZ+ext23aOGZjfARr8yTO6QvCv5HLEPsBAy+l0QxIRidYC03srIYmSxh2Qq8fsLzqs9YOGKsatLohcSz8obYl2BQPH25z6EiH668uUyppzC86rDQ8dm7JokgSybo1QpIkpidsFFliYcnB94WXIwxSxsdMigUNkFBiEQqDJNHphzx2tMtITcTcB0HKiTN91loBSCLRudsLSVNxBbNMhU1TNmmS/vMbl6pWq991PObi4iI333wz1113HV/4wheeYSg9cOAA99xzD8vLy4yPC0PZ/fffj2EYXHfddRu3+eAHP0gQBBs73vfffz8TExPf0xfjj5LGxsb4whe+8Iyfq6rKLbfcwi233MJ//+//nb/7u7/j3nvv5Zd+6Zfodru84Q1v4M477+Q1r3kNtv3SAV1s22bz5s1s3rwZz/Oo1+usrKxw4sQJ8vn8BvzPsqx/+M4Qi88TJ05Qr9fZv3//d5Wm9FQpssSOrVlqFYNuL0SSoFjQKRXUSxa1tqUwu8nmocMdet0II6swPmqg6xLdXkg2q3HtvgLZjEKvH+F4PcI4RVZTFEUmjmMcJyGXE6MYcSKia01ToVzUKWQ1TEtmYuy5d3NbrdZGgXHxM/NC1Ov1+Imf+Amq1Sr33nvvxs7xnj17fuAdjIuqVqsoivKsC9XLGwsvXC/kmv1i9Mgjj2CaJsViEfjBX7OrZV1EtYYxrifh+RGdnhhFiuOYTi8gTVOKOZVuP8I2VXQjJJ/V8MOYKE5x/IQ0AYkUQ4U0lRirmVTKBg890iKbVdA08X1WKZtcuQeOn+rRaIZAiqXLDL2YtbaAgV57ZXGDunvVniLn5oasNjzanRDHjSjk1fU0GI9+nOJ5CUEovGZBmLC86mLoClGYkmYrdEomlWiJ9MxZem2fJJUYmR3BGKtuFBhpHBO7LnqtLBgL68rv3UHvkScEO8A2kbVI+DqGLrKukfgBeimHpOsbu/NpHOOcX0SxLMo/fv0LLvZlVSVNntuAGrQ6eMurqJkskiKT+MKM7V1YIhk4yLZJ2B9ib5pEzdpEQ4fYC0FRCft9BsfPY4yUhc8jSfDml/FXm5iToxiVIqUbrqb7yFHc+SWGpy8QdLqQpgT1NdI0JQlYB98Jn4OazYjjWIci2TMTwv+QpiQDF21mgtgP6P3NQ3hLDdIgQNJ1zIkaud3b1pOeVhkeP4eatTDGR0S8b5Ij7PQZHD1J1B0StYVHw2+2UTRNxNm6CsZoRTBDamVi16Pz8OMMT55D3r0NNZuh99hxYtcV6VJPGz1WMjbW5gli10GvlukdOUXi+RhTo2jZLNFgQLDaFDHHjkvQ7pGEojvVe/QYUXeAXipudEQo5IhdD+fCIsZoFXd+CWNyhGjgkIYRyvpomDFaJXZcwnZPENRlecMMn9m2mdzOLaRRROL5OKcvoBZypKmEv7pGNHCwt86IBb/jYW+Zxt48RX/oEnW6gkCva6RJgnvmAvbOWQp7dmBvnSFodkiCiHjQAlX4ZuyZCfRqibDbJ/F9SFMyWzfhLa4SDx0ys9PIuoa3uErQaBM020iTm5AmNtNLMrhuQqfnEcfiPdvpRkBKFCUsrHrYpkI2oxIGKaoMUZximAqeF9Hu+GzZZENBp9cPOXF2wMSISRgmJEm6Mco0PWlTqxps2ZxFAlwvZXTEIAoT+k6EqStUyhKmpZDGKeWiShAkNNs+1YpJxlZQFPDcFFWTGKmJ1CtFlshmBQcsiVNy2R9STsbS0hKvetWrmJmZ4ROf+ASNRmPjdxd3X1/3utdxxRVX8La3vY2Pf/zjtFotfvmXf5mf//mfJ58Xra+f/umf5sMf/jB33XUXH/zgBzl16hQf/ehHL5OIX2IpisJNN93ETTfdxKc//Wkeeugh7r33Xj70oQ/xjne8g1tvvZU77riD17/+9S/pbrdpmszMzDAzM4Pv+zQaDVZXVzl16hTZbHaj4HiuwiFNU44dO0az2eT666//rguTp0uRpY3UmOeTqkrs2SkgON1eRIKYkbQtQQfO2oqgv6ZQLGosLLmoikQUxsLIqEnrBnaQJUUkVMUppi7h+BHTU1kmRp+9m9NqtTh8+DC7du16UQXGYDDgX/7Lf4lt2/zxH//xS9qpeiml6zrXXXcdX/3qV3nzm9+88fOvfvWr3HHHHT/AI/vh19zcHK1Wi7m5OeI45vDhwwBs27aNbDbLn/7pn7KyssKBAwewLIuvf/3rfOhDH+Kd73znRsH6g75mVysmE2MWDx1skbEVkETiUxgmyLJEHCeM1SxkVcIPEyxTQlMFeDNrqxi6gqpJDAYxAyeiWNDZsTXLvt15mp0Az49xhjGrqy6KIjwYpaLBVXuKzC26LCw5G/d15e4Me3cJk/lFFfIaV+0pMHSybJqyqZQNxkcNSOHQkQ7Ndhc/TNYjXiWSWIw9uG6M68eMVg30fI1oZJJqzaTz0KM0Q4VqubBRYECKt7SKYq9zFp6ywacVcuT2bCfqDQBIwhBZ17BmJghWGkSKIpKigmjjbyRFwRyv4S6sErY6Yuf6BcgYKSObBtHQRc1ceo1OwojhyXNo1TL5a69AqxTpfOdxkiBCySq4c0so+QxaMS+KHlkmCUK0Qo6w3YEgQlYV9Ip4DEmSUDI27tIq/SMnKbztTszxEdRcBklTWfvbhwlWm6RJQjRwiT1PGOxIRfSspokZ/aEDcUzseuIcyQYkgmuiV8t0vnWYaDDEGKkgmwaJ5+POLRM2O5R/bD/eSp14OMTaNLHxvvdX1oiHDsbEGLAqvBFIKKomWA9+IDoD1SJaqQRIBGstEt9HL+XRywUymycJO306Dz1GPHQpXn/lJa9v4npEnT69x08Kz47jkfgeapRdX/wr6GNVgpU17B2zothqdlAMnaDVRVYVlIyJ8pTXSbFMosFQgAv9kMTxULO2GJsaOKhZG1nXsGencfUVktCHUoE0jLEmR8ju3LLx3rRnp4mDQNDAEwE3zF+5C2t2GufMHJIiiaCE2Wlh+Hd9Es8TEElFQc5lMUdrFK7ZjZrNkNm6CX2kDFEsaO9Ze+N8xK6Hls8hKQrq5Dj+1BaWD58gTRMyBRt7pIpqWxSu34dx/X6e+PsBC8d7ZDOCe6EoCv1+iOsLmm4YJPSHIUlRR5agXDLwg4h2N2ByzKYrpaysegRBgm4o5HMayysuYZxSLmqs1j1GauZGQI2mysRxyhU7C+i6hOclHHq0jRskqEpIoaAzUtFptkKSVHgsEl2kTnl+QrlgQFHCDxLabRFQMXQi1po+fpBwzd7Cs/pWX0r9wIqM+++/n9OnT3P69OkNkvRFXZzPVRSFr3zlK7z73e/mxhtvvATGd1GFQoGvfvWrvOc972H//v2USiXuvvvuSwyCl/XSSpZlDhw4wIEDB/j4xz/OoUOHuO+++7jnnnv4hV/4BV7zmtdwxx138MY3vvFZI1FfrAzDYGpqiqmpKcIw3Cg4zpw5QyaT2fBwZLNZJEkiSRKOHj1Kt9vl+uuv/0dZNCvrlO/p7SaulxCGKe1RndPnHPwgZanuo6mgKKLgyGVUXD+h1/eRZchkRDRFEEpEUSKgPAlousrOLVkO7C8+66hUu93m8OHD7Ny585I0tu9WjuPwUz/1U8iyzJe//OWXtDP1/dDdd9/N2972Nvbv378xajk3N3cJ8O2yXnr9+q//Or//+7+/8f9rrrkGgK9//eu86lWvQtM0PvvZz3L33XeTJAlbtmzhIx/5CO95z3s2/uYHfc1WZCgVdFRVYq3loyjiy7s/CJAlYdaslHUMTexMI0nYGZVsVsF1U0I3omYZ5IuQz6ls35Jl764ChiGztOLSbIa0Oj71Zrox71wsaGyaspmesLAshTfeMoZtK7TbIafODliu+4yPmFTL+sZ4SjYjkq2KeQdDF7n7GVtlctxiccUljCKCUMIyFFRVQtOEGdQ0RQw2koy+exeFwRDvxALNhoM67IIkEXX7SKrK6L94NZn12f0kDEUikapijNYwRqtYmychTpBUhSSIcC8sotgWUaeHkr90Y0exLZLlBlFv8IKLDK1SIrN1hs53jghw4NAhjSJkTSNyHFJJJrtrC7IsY2+eRDZ0mmFE4npolSJ6qYA1M4m3vErY6ZF4AcauUZwLi8SR4CMopoG/VEdSFAGbU1WUgo5WFBuWsmlAHKPlsoStPlGni2LoIn0pTUBTUTMWiR+RhiFKPkPY7hG2OrgXFjFGqmS2TlO44WoGJy8wOHYKNWPjr6yh18oYIxXsTRM4FxbpHztNug6Nk9bX/7Hr4a/UkTUVrZAljSL0UpHclTtxV+oMT11AtQ0UTcPpDVFzHfRyAW9hFa2UxxirEXYH63GyRRTbZHjyHNbMBMZYDX91DefMHM1vfltE4NoWsqKgZjNESYy/XCdsG5gTo6jZLGkYQRyL2HTXIw1DEi8giWP0WvWSDkkai7AAf3VNdMXWU8mUXBZvcQVvuY8kKSRRCGmKNTNN7Ptktk4jyaJQlE2DNIxRbJPx219DdvdWSBHQwvXQEcU2xchPnGCMVsjt2YFzbp5o4IjuZLODOTZC6RXXkt29TRDMCxnCTg+jVkY2dOG58RKW10KWz4Vkr6iQe6QtNhqiEaRpDdbq1Js9ssU8O3/8GkavmEbSVIKwx9CJGRs1kdZnuYIwwfNiur2QMBRJb6GfMCAmTX2SVIxTx3GKH8SsNX0ePdoln9dQJGh1QpZWXa7aU0RRZVbrLkjSRXYktYrB9ITF0RN9FpZcGm0fRRafd6/uoasKkizeSynQTVNWGz7ZjPCXKorMubkhT5zoc37exTQVNFWikNeor/ksrrhMjr24zdfvRj+wIuOuu+7irrvu+gdvNzMzw5/92Z8972327dvHN7/5zZfoyC7rhUiWZfbv38/+/fv56Ec/ypEjR/jSl77Eb/7mb/Lud7+bW265hTvuuIM3velN3xP5++nSNI2JiQkmJiaIooi1tTVWV1c5f/48pmlSq9Xo9/t4nsf+/ftfEsPod6NiQSNjK3R7sRinskWsbuCnmNZ6ZyJMyOVVBoMIRZXRUkiUBFKQkHG9CEM3efk1ZZAgaylUKjpjNV0sHp6mTqfDI488wo4dO5icnHzBx+x5Hv/6X/9rfN/nL//yL/9J+S6eS//qX/0rms0mH/nIR1heXmbv3r38+Z//OZs2PbvZ8bJeGn3xi198XkbG0/lHz6Uf5DV7rRXg+xFX7S3w2JEO3X6ErokFvOPEDN0E143QNIkgTEiQqJY0shkN20qIopha1SCJU3RdYmzEZKRq0GgGzC86KKpYVHT7EZomo8iwUvfodENyGZU9u/P0BoKpYZgKqiLTXXJZXHaZnckwM2nh+WIMI2MLE+hqwyOXVYkj0RWV05QkAlUH3ZBotgLiOKWQ18hYMnGUiNGIShbj2quxIpWku4avhUhJTH7PBOVXXEPhmitIPJ/hmTmRcOT6yJqKWi4gKQpRp/ekYVmKQJaIBw6SpqFXxLiJSE9SUbI2YgD8hXN0JEnCnBgl8Q8yOHGWqDck6g+JfR9F09DHKsKYu35ba2KE8o3XMThxVixwZRlr8zhpEjM8LbgM0WCAv9wQgLhr94AsC3q15ws4YTFP0OyIxTSii9B95ChxECBrCsbECGkYEXk+kqIgxbG4rYQoPuME1RIdCr1WZuRNr8LeMk3rG99m7Wt/h6yrGJNj6IU8wVobb3GF3BXbMWpl/OUGxlgNxbYI2j20Qg73/CLOhUVk0ySNIqL+gDSIaPyVgN4lfkCsyGilAqSCydGvN0l8n8z2zUiGLtLI1qVYJkmc4C6uErS69B49hr+yhre0ilbI4y2tkEQRWimHVsqJgm4o4oGNsREBI1xZI+p08RZXxWucsdBKRWR9nYXh+/hrHcJWh6AlzmXUHwLC36NGEdbkCGGzQ+R4eAsrpGFEmkRoGQu9VCR2XGTTJLNzFi2XxRirXuJdeaqM8RH0SpHhmQtiXKuYo7B/H1GrS9Dro5cKjLz+JvJXX0Eax3gLK4SdAb1HnhDpUpPjNNQKj60oNJo+cr6AvSTjXlhFQmLvrgJTuyaR5CmSJKWx5nPaVygmCpEj0t9yOZV2JySXFSyL5VWXVkdsUCCDIknrPKsU30+I1ovJesOj0w8xdBnXjbgwPyQIU3I5ldGqQWPNR5LE9SSf05AkwenJZhSOnuzz4HfWWFh2CUPhD1NVlYyt4PsJYZCQy6oU82LSYnYmQ61iYFkCwtdsBZiGzPSkxeS4TTajkrFlOr2IYyf6WIZCufT9AfL9k4mwvax//pIkiX379rFv3z4+/OEPc/z4ce69914+//nP84u/+IvcdNNN3HnnnfyLf/EvqFarL1nBoaoqY2NjjI2NEccxjUaDkydP4vs+hmFw/vx5RkZGKBaL3/dxjIytsGNLhlNnh6zUhVlb0ySuubLAlk0WaZIShGKnod4IUGUw1iNsxU5kgmWIC0c+p7Bvd/55H6/T6XDo0CG2b9/+jI7gdyPf9/k3/+bf0Ol0uP/++zfGEP856N3vfjfvfve7f9CHcVn/zNRqBzhuQr8fsWNbHkmCMBQm6vklhxOnBzz6RI+pCQtZEslRYyMWzU6A68aMjZjYplikVEomO7dlKeRVHn2iK1Km1qMhaxWd/iAiCBNkGXw/IWMlaIpMpxsyPiaSZgAoaPQHIX//7TWOFjVMXUGSILu+qEnilOOn+lxYGOL7KdWqSVR3xeJcV0hicCOReOcHotgoFjSxwCDH4/ZOMsoEo0WZTN7A3zRCdkZEkLYePIR7bgG1kEPNZYi8kOWjS3hDH60xJNMckB9bh52FIcFah8zurQzPzRO1uqRxjKSqyJaOMVJDK+bxVhrE/SFIElq58JyLxouK/YDuo8fQykWsbZtwT88JD0UhR9jqMDh2muYD36FywzXoNdElsWbGkTWVwclzAji41sHePEXphqvRKiVhAs+JrraaE12Xp49iBY02kqoQtrvU/+KbdB45ir/SJGp3UYs5sbDWdWI/EMVTLNgWSRKjmTm08RqKpjHz8/8KWVboP3aC4ZkLSLqGVi4RtQVPxJ6dIu47DI6fIX/NHpIgRK8UsbdM49ebdB85ir9cJ/ECkGTCTo/YcYXvBbBmJoiHLv7KGs7iMma1jKRr+GcuoNcqmOMjhO0u1tTYJedZMTS8hRXioRhZirMWSsYiiSJBr15piOdo6JiT4xhZW7A7ygXCrowyO4leKlB6+TUoWZvuI0+Q+AHu3BLu3BJBs03UGyIpEonnkd02i7e4QgfQx6oMjpzEnBzD2jTJ8MwcaRhijFYIO30yO2bJbJkmCULRyVAVcldse97PbjwYkgQR/SdOiTGsXAa9XEArFdFyNqWXXUX+yl2QJHQPHqF/9DSKbVK4bh/9c4vMffskh50q9cJmvPIobmLhHOkTJzA1bnLkRA/TlKlVTWRZ+BiWVjwaaz65rEo+p7F7W47z80N8X/gf+sMIXZWRZQmNdD00RnQuAhIkKcX3U7r9EFmC0ZqB5yfouoJtCz/H7m05xsdElG2zHTK7KUulpON5MY8f6/HwIy3aXeEVUxQZx43x/YRuV8I0ZXJZjSBIiJOULZuyTE9YG/HXq2s+S6sepiUggKM1Y+O6Uy7qLK+6LK26l4uMy/rnJUmS2L17N7/2a7/Gr/7qr3LmzBnuvfde/uf//J/80i/9Eq94xSu48847uf322xkbG3tJF/9LS0sYhsHLX/5yer0e9XqdRx99VAD11keqSqXS941cPTZiUMirdLohSQLZjEI+t24SV0DTwPNdClkVTZPp9iOytkIUpXi+iMDLZVTWmgF+kGDoz36c3W6XRx55hO3bt78oXkAQBLz97W9naWmJr33taxtQwsu6rB9mhVFCvy8+m5l1s3Wspyz1XXRNhDUM3ZhSQSORUpprAYsrLpom0uHCKKHbC9m5LcsN11UYHzUJgoR2N0SSZTRVgDKb7ZAkiUkTiTgBiYR8QaPV9ZmZKj5ZYCB8W6sNn0YzgBSu3GODJLGy6vLIkY5gZpCwvOrjehG1isnWzVnCSIRD2LbC8qrHwIkwdFkkx6Rw5ESPYyd7dDohU1MFVEMn1DWiXkr/iS5bpVWUcwtYmyeRVZW+m3K6r9NKLbxhB01OKZkGpQs9xkdMClfvpX/ijBibMnS0chFZVwl7A5yz86RxwupXvo63uErUH4hI0GqJwlW7Kb7sKhTzSYZG2GzjLdeJ183Fzpk5tFKeaK1DdvumjVQrrZAjWFnDW1xmcLpEsZhD1tT17scIsetRuuEaCtfuQV1fJF9U4ge0HzxEmiSX+BIAot4AJWMiGzqtvzuIc2GB1PdRDA3fD4iW10jiCKKYNIkhlUhJRSE0MSoo3roiRsOSFG+1jmyZqIaBXiog6yqKbRK2u/ira9gzE3hLDbylOmrGxJwcpXDtHtb+6gFIEtR8hsQPQFWQFHljAR50eygZSxC+/YBgqY5q2ai2iTE+gmLqxAMHNWNjPi1RKvFDknXehVbM484vE9RbxH6AZBqCMt4fkiLhzi2iFvJoxTxpkhJ1e6i5HPmrrqB4/T4kRSEeOvSPnCK7awvdR44S9gao+RwSKebkGJVXvgytkMc5v0AmZ5O9YhvDE+dI4pjh8bPCZC3LmNMT2JtE113WNfRqCffcItldWzcYIk9X0OrQeuAg8WBI8YZriDo9vOX6hg9k9NpXUbx2D5Ki4FxYZHDsDOZ4beP90DFLzLsTtBZ9ElkmtjJkLQ1FjWi2AtbWo2CPnpT5sZKOogjwrmHIrK55pKnBWitAkqFW1ukPo/Xvdw3HjfB8kQCXyah0uyFhnOAHwqcZhgmtts9I1cDQFYZOTC6rbkThx4m4BoRRyvzikCCIuGpviU43ZGFpSLsbYhgKhbxOfxDS7oS4YSyKm0DCcSKGDkhIXH+16GgFQcz8osuFhSFzSw6mobC44hLFKTOT9kaiZcZWabYCoih51kmJ71WXi4zL+r5LkiS2bdvGr/zKr/Cf//N/5sKFC9x3333cd999/Mf/+B95+ctfzh133MEdd9zB1NTUiy44oiji8OHDpGnKddddh6qq1Go1arXaJaC5I0fE3G+tVmNkZIRKpfKSFxyWeRGw9+ySJYlMRmWkqhMEghAuyxLFnIptqWQzCrLy3MfU7XY5dOgQW7dufVEFRhRFvOMd7+Ds2bN8/etfp1KpvOD7uKzL+ueojK3Q6YeUik/u3PUHIb1+SD6nCZpu6LO04mGaAqbVaAaMVnX27i6wa1uOkarJSFWnN4g5drLPSsPj+GkB32t3QhRFplbRieKUNAFVkRg4EZ4b04gCNrI519Xth6y1fGpVfX0SJyWKE5rtgDSBTjfAcSOiKCFNU9ptH1mCStkQMbpuTCEvGB9jIwbZjMrp80NOnhaE4W2zWSbGLeI4od0Jhfk5jZh74hRbZ3LIqoobpBxfSug5KaWshGLmCLt9jJ3bWA0U7GmbK/aUiP5/LsFyAzSVsNURvAlNI7dvJ/0jp+geFh0JfJ/Y9UmTRKRVtTqM3f4aSFN6jx2nf+wMiecjGxrO2QURGRvHpOtxr4plohVyKBkTbbRKsLqGt7CCv3kKvZgnCQPCZnedxbHnGRwKAGvTBO6FBdwLS2I8yTJI05So0ydodihcs5uw2cZfbWJtnqT9tw8LOF/WIu4NRUiHKkMoAGcXjeOSqqIWsqi2RWbHZqKBg1Er0z9+FqWQRUsTgrU2armAkrEJ2z3i0RooMv7CMtmbRbxt4bo9tB9+FK2QQ6uUSKKYsCXGp4yxGs7ZeYJ6E2k9ecsYrxF1ByRRiFqsEXs+YW8IskRuz/aNjg0IrgSKAmmyESOcpAlBo4U2WhWspjjBW15DVmVSWSJYbSJpCqkfoOSz5PZuJ3Zcznz6C0TtLkoxh2rbRJ5HPHAwx2skfkAai/eAc34RcyxAK+XxlxrUXncj1tQ4vcdPMDh5DmvrJqzxEbRqEfkpcFc1nxWcjv4QNWMT9gYb3ZI0jjFGKvjrKU/2lmkkSSK0TREnraqE3R7dw0fJbJvBGKninFvADVKarYROr0ucpKyt+bQCFd+2SV2PTOqh6CaBL0YLwyiBBFYbHp1OSKWyzucIE86cG9BY83GciM4gxDZEASKtjzObhkKn52MYMromk7EVhk5K3wvxA5E+l1EVwijl3NxQ+EpSY52XozNwIk6d7dPphrhezNARRO/5RRfLkvH8GF2TkWUxiiliaSWSJAUpJYgSDF3BNBWabR/bVllcdGi0fFJAU2SmJ2xKBY1mKyCJU7bOZteJ39KGD/r7octFxnehe+65h6985SscPnwYXdfpdDrPuM3c3Bzvec97+Ou//utLDOpPBck9/vjjvPe97+Xb3/425XKZd73rXfzar/3aj1QKliRJbN68mfe///3cfffdLC4u8kd/9Ef80R/9ER/60Ie45pprNgqO2dnZ7/rchGHI4cOHkSSJa6655hmU8qeC5nbt2kWn06Fer3P8+HGiKKJarTI6OkqlUvlHIVuXSxqmKTNWM2h3hRnONGT6TkI+q6DrCtWy9qxdjF6vx6FDh9iyZQszMzMv+LGjKOJd73oXR48e5a//+q+p1Z4flHVZl/XDJLGbKDN0oo1ORrcXCdBeIMYQTFNh03QG21JErG03YqRmYJkKUxM21bLOhQUxWhVFCYapoCgyZ88PqK/5TIxbFHJPXvuHTojrSTSawjtx7GSPsVGTasVAU2Xa3QAJCVWRieMESZJotnx6gwjPj3niRJ8oipFkGUVWCKKEtXawblpXmN2U4bqrSiwtu6RInDw75OyFAXGSMDlmMjpqrkPAFEpFiXYnoKjCoO3gzxSwgEYvoTNMGSmIBQyKBlGMKSdoowWWWhFjC20kWaZyywFixyXxfCRNRSvk8Nbn/eOhK1J+DB0ll4Eoxl1cZeEPvkx2+yyoCr1Hj6NXS6iTInI66g/pfOcI3sIS+mgVQ1VxlutEg6GIi7VMVNsk7PVpfuNb60bgFK2Qp3TD1cSh4GRIT7t2qxmb0oFr6T7yBN5SXQD+AC2XpbB/L/bWGdbufwC9UiTs9UklSZxjXSc1AiRDJ3F9MCEOQoxSATmTQauWsKbG0Kolsju20Hv8BErGFjG2rMe1Dj2iVhfZNkn8kKg/JGg0MfbsIHfFNhFO4vpohRzy1k1iwayp9B87jlrMCU+K5yMlorA0x0cwRmv4K3UUQ3QhlIyNOVYFWSZNko3nF3Z6RH2H3JU78ZZWSdd/njg+YX9IOBgSrLXFcw5CpGwGooRoOMRbXKX6ypdTOnAN7QcPMzh6CsUyUSyD4Owise9hjI2gloskQUgaJeiVPGrGImx28FfXMEZrojMTRFjT4ygZi7DTE4Z085n+yDRJQBYLXr/epP3gI/irDVGLSwrOuXmGZ+bIbJ8FwFtpMDh2lsTzkG0TxTbpPnIUWdeo3nKAxlyT+bUUv+dimAphELO44tEcgC8bqBJoJCSApslIsoSSSLhBgmkptHuiyEjTlAsLLoYuMbs5Sy6nceb8AMeJ0A0RNWvoigDu5Q1GRwxSoFzUaLdDPD/BMGQ0RWZyQoxHDoYRrhdjmArTkxaOK8zgQU6jVNDR9Yg0TXG9iPPzw/VupQDoBUFEGCIKDkPCdWPiOEVXFbZszrB5KoMsSSwtO5ydc8hkRQFUqegUCxq6rlAqyrQ7Ab1eSKVsMBxGTI6b35cuBlwuMr4rBUHAW97yFg4cOMDv/d7vPeP3cRxz2223UavVeOCBB2g2m7z97W8nTVM+85nPAGJh+NrXvpabb76Zhx9+mJMnT3LXXXeRyWR4//vf/4/9lP5JSJIkpqam+MVf/EXe9773sbq6yp/8yZ9w33338eEPf5g9e/Zwxx13cOedd7J9+/bnLDjCMOTQoUNomsZVV131DxYJkiRRKpUolUrs2LFjY6Tqoo/jYsFRrVafUay8VKqUdTZP25xPHSZGDM7NuwydiNERnUpZZ3LcZNPUMxMfer0eBw8eZHZ29kWZnOM45n3vex8HDx7k61//+ouC9V3WZf1zVj6nc+UVef7+4RYtxcc0FBw3wg8SJFmM3hcLIq5akiWarYT+UIQ0tDshvp+sx9E6GIZMrbo+ArQJ1poe/pJLrxuQy6jIsozjRiwte+iGiLMNgoShG3N+zqE/jJidyRD4Caoq4bgx1YpImGp3AoZOxNnzQ7x12rcsCSK4loDrJhtJWKNVg2xG44qdGnt25Xn8aJcgEBG7paKO9pQFxMUxECdMMGWZ0BfesdUuGNp6gcH6wk+0WLFMhVY7oNUOsYMQbWIEvVy45Lw2/+4gseuRhoGAyBWeDJCwMxaDJ06z9OW/wp6ZIOz11xOrQgHCW+uQxhFKPkfi+vitNmFngEyKv9YSIzTlAnF3SP7KnZjT4wSNNcJ2n5X/+1d0Dz1B6Yarye/bhTl5KStHK+apvOoGgrU28WC4kb6kZjNE/QFJKOJuk0aAPTPJ4NQ5sbg3TIjF4lzJmKAqpLJEZtMEWi6DNTNBcf8+ZEOnf/yMABXWyiJNqlzA3jKFX2/iN9skjkPiuhhjI9RecyOSrtN68BDDs3O0/vY7hO2uGInK5ZAtk7A7JHFdFF0j0jUUyxJwPVlCNg3UrI27uEp2xyzFl11F7PqELbHAv/icc3t3kt2xmZ6u0X34cSRdwzk3jyTL6x6WtijKZEVE/JaLSOYkEimyrjE8PUf/yAlyu7chPwWMGLsuvUdPkALmWJXsjs1IT/meTKMId24RY6QiOBiIkTe9XCRsdVEmRgQvo9MTHRBdI4ljtGIOJWPR/MZD9I+fIY0i4oFLmoouTtBoIakKeiGHc24eSDHGR558oYOINIxY/fZR5hYc0iCkOr7ejTAEqLLd9/HDGOJUgBYBfd1H5QcpYZCQsRTiSDzm4rKHH8Rs31JA10SXYttslpW6R6sdkCYpPSckYytkMjJJIsJf/EB0LHRdZnLMJggTykUdXVdQFJ8oSvC9iChK6fUj0hQytkx/ELK86qIoMhlLwbZVuj0xNi0iqhM0TcIy1I1eaJqmhHHKWM1kdiaD58eCmROljNRMbFNmbtGl2fbRSjKKLKHIEp1eKI5HhvHRH8J0qX9O+vCHPwzwnKkq999/P0ePHmV+fn4jPvSTn/wkd911F/fccw/5fJ4/+IM/wPM8vvjFL2IYBnv37uXkyZN86lOf4u677/6R6mY8myRJYmxsjF/4hV/gXe96F61Wa6Pg+NjHPsaOHTu4/fbbefOb38zu3bs3zle32+Xo0aNYlsWVV175gseeJEmiUChQKBTYtm0bg8GAer3OuXPneOKJJyiXyxu0cU176aA1iiyxfdamWtbYvsWmP4wIwxTLlMnnNKpl/RnjVv1+n0OHDjE7O/uioGVJkvBLv/RL/O3f/i3f+MY3XlQS1WVd1g+Drt5Xot0NWW34xKkwa14ccZzrDcllYXXNo7EW4AcRSSJRyKUYtsrSikt/GGGZCrt3PBmUUCpoTI1bzC86rLVDdCPAthQaaz6aBqWiLuKoFUiTFHvdd1XIauiazNKqSzGnUasYIj0oTGiseYRRgq7K2OvdkqgfoqoiHKI3iNg8Y1Nv+miazJ5deSolg2Jep1aNSRvC1H6xyPC8iEYrYGXVY0GX2ZLmmKy3SadKJAk8dTMz6g5Qchm0Yg5Y31RWVWRDJ3E9FPtpJupmhyQIkFUNxbp0t1pWVWTDoPOtQzinzqMV8/hLdZBlZMsg6vQxJ8dwz88zODOHlIKka0iyTBIEJI4n7khRUPMZ4v4A4hR78ySkEDSaDE6cJewOKN94HdbUGGmabnxPSJKEUStD7dKRKknXkXVdFEdRhDU9hmzotB96lDSJSUhBSVAME32kSn7PDso/tp+o26f0imsxqmXSJBHjPKsN9FoZrZjDX21i1MrYs9NIqoqyZRqtXCa/bzvmzDjtvz+Et7RKNHSQNFV0IoBgtUESRQSNNUhAq5VEV6CQJWh2QILE84mGLonnIcky3sIqimWQ2b6Z4oFr0It51Hx2I2LWnpnAOX2BzrcfIw4C1HJepDwlKUkcrL/WfWRdxyoVMcZq9B49LoqI8dolBQawXvBUaH/ncbRiHklVLz3X6wVH4gcbfyspCtkds6z9zUN0HnmCsNMndT2QZWLHA0li7M7XEjQ7dA8fJej0IL4IZ0xJo4SoNyTxAxTDII1izMknC4wkCJFUBWO8xvlzA/qSzag02PDiqKpELquhKz6WN6QvWdiahYL4LjZ0iaEr3uRJCp4fs7jsEgYxtYpxiSlaksA2FQaahGWqDB0Rg+06Me1uSL3pE0Ux/WHESMWgVhV/63oxiiJTWg95aDQDZHlIkqYMhjG9XojvC9aNaSjIVQPTkPF0BdeNyWYU4jjBcxOkNCJOgRR0TaJcFGNXmiaLLokhUS4/edzTkzZxktJqByjrmxlR3aOQ09ixLUet8v0xfcPlIuMl0YMPPsjevXsv4RPceuut+L7PwYMHufnmm3nwwQd55StfeUmU6q233soHPvABzp8/z+zs7A/i0P9JSpIkKpUKP/dzP8fP/uzP0u12+fKXv8x9993Hpz71KWZmZrjjjju44YYbuPvuu3nPe97Dv/t3/+579lVIkkQulyOXy7F161aGwyH1ep25uTmOHj1KuVzeMI4/dQzuxUqWJSolncp3kerQ7/c5ePAgmzZtetEFxn/6T/+J+++/n2984xsvaszqsi7rh0X5rMaN11c5frpPsx2gyhILSw6trk8QJkRRytyiS2MtEKOMpswgp9EfRmRshSRNCUKVOE43wFmyLCi9jVbA4pJDFKe4XowkQT6rY2gKhi5jWTLh+py368e02j7TEzaKLDExZpHPiVSoNIVOLxJpVbKErgseRi5RGTgRkizR64csrXqMVk12bM0yPSFMs9msCqkobBZXXCxTod0JOHmmT78fEUYpqioRyEXUTotUOk+2NM7qUCNrJES9AUkYkduxGUnTxOw3kKnmMSdGcc7PY22avGRzTDY04u4AY8vMRsTpRSVJQjQcIAca5kgNc3JUUL6jkMGZecJGE2OshldvCV+AIqFkM0iqiqSrJGGEv9wge9VOnPOLaPks9uwUF70tki74B1G/z+qffx1zrCZo5tUK2Z1bMCdHn3UjTzF07C3TdL/zOLJlkQQR9pZposGQ2PWIugNk2yJ/xVaSMCa3ZxuKZaAY+oZBWZJlsru24tebeEt1zE2TePPLeEt1glaHaOiiFfPIuk4aRnS//Rju/DLGSAXnwiLm1BiJ6+EurpKGMSQRycAVyU2OQ3bbZiRZJnY9JEVC1nWSKBb+kCQBGcJun7WvPoC7uMLMz77lEoaFVsyT3b2V1oOPCO/NhUWCXg9Z05BVBUlWSMJAHG+7S54EwhjZ0Mg/R9qTWshCIngmnUeeQFJkZE1DK4iiW83aaKUC8dDdOE/W7BTa4yfoPPy4GE/K2hAnKPkMSsbGX10jWSeHp3FC6geCFyFLJGEMUoq/0gBVIbd9duO1T9KU4ZoAQKr5LI4cgm2hFEdIlpaQq1Uk06RWUamfdwmdPt7IboaxjDwUbIskTqgUdTbP2NiWysyEzezmDGGUcuqsgFKSpqw2PBaWPRw3Yq0ZMHRDdEMmY6uUizqdfkin40MC46MmO7bmGKkYgMRqw6M/EGZxCYneMEbCBxnanRDTULAtGcvSGK3p+IHgbMmy8GgpskylbNLqeCiyjJym2KbC5LjN6IghEua8GNOQKRd16mv+xutlWQrbZrN0eyHtTkAYJOzYkuP6q0sUC9r3dZP7cpHxEmhlZYXR0UtbtKVSCV3XWVlZ2bjN0xeHF/9mZWXlcpHxHJIkiWKxyM/8zM/wMz/zM/R6Pb7yla/wv/7X/+ITn/gElmUxPz/PwYMHue66615SA3cmk2F2dpbZ2Vlc16Ver7O0tMTx48cpFosbBcf3G/I3GAw4ePAgMzMzL+p9kiQJH/rQh/i///f/8o1vfIMtW7Z8H47ysi7rn5eqFYPrc9qG9+HQozKPHuuSzWgoCnS7IZCiaRKKLKMoErIk4XkxQZgwdGI63YBK+cmNo3xOY2zEJPBjts1mCCM4Pz+kVjFRFVhc8YiTlFxWZXzcotsNhTckK7NttkSnJ+jAWVvFygjDp7lemAjQtoRlK8SJ6HrGkRjtumF/hW2z2Y3FwkjV4Py8gxIl5HPq+oz2EM8XM+dqmDI6ajA1XmbtgsZjy3PskJv4bY1eLyVTypDbthlzQnxHNdsB+bxKtWIi7dlG0OrgnFsQpG7DIHE9ZF0XnY5nmbkP603iIMTeOoNWzAnfRiGHpGroxTzdQ0dwFlaIXRfFNgUrIo4hTUm8gDjy0ApZguUGARLFG67iqeZ52TRw5pZIopjhiXMYEyPIhgZIqBmbwjW7Kf/4y9DyWbRC7pJjy2ydwV9uMDxzAWQxDqSV8kS9PtbMOPaWGWRFJvYDtFKRsNmhcO2ejdSiNI4FrC6KGJw8R9QbotgmkiwhGTpWqUBm6wx6tYy3XKf90KNopTyJ75O4Pmo+A2mKmrGI/RB/qYNkaii5LFKckISR6KInKep6apW/2kArZDFnJjZ8KMlIheHR0zS++gAT//INl1Lc8zky2zeRBJEwz6+IsSpR+ASiayBLyKqCu7AKYYAxNiKo6s9ChE7CmCQSPhj8mDgMSZMEb2EZo1ahdOAaFNu6hNuRuB7EMeUbrxUFShCi6CpauYiatXHOL9KbX8I5v4iSsdFLhfXzKCOofOCvNvHnV7CnxoiCiGY3pL3SI1AMqE7SWIKhm5CWbPR92wmPHyeuN2CtiQFsmbJomVVUuyiOKWV9Ya8zWtWZGLO5Ymee3dtzYmSxG3B+zhEdBi/mwoKLrskYhgISlIsmGVtBVQXTYu8VBUglzp7vw3q8tKaJ8zcxZuF6MY4b0+n5jFY0DuyvcursAFWRqJZFZG2nF5EmOllbdDyClPXuR0S07tcyTYXRmsFIzaRWMXCdeL0jErFnpwimmFt06XRDEWWN8J5UKwa6LlMu6Vx/dXnjd99P/cgWGb/xG7+xMQb1XHr44YfZv3//d3V/z1YJPrWF+Gy3uejo/1EflXohyufz3HDDDXzwgx/krrvu4vWvfz1/8id/wu23306xWOT222/njjvu4OUvf/lLauC2LItNmzaxadMmPM/boI2fPHmSfD6/UXC81KTsiwXG9PT0iyoO0jTlIx/5CH/4h3/IN77xDbZv3/6SHt9lXdY/Zxm6zMSYxViS0m4HBFHCwpLLqbN9ur0Q05CRkImThPmFIbmsSi6n0WqJ3cBiQWfbbMJI9aKxWsC0GmsecQK2JUawkiRlrRsSp+m6gVx89VqmgGUZmoquK1yxw2JpxaPdCbAMlWpJJ4wSFEVmMIgxjJQoSjANBcOQCIKUzdM2WzdncF0xrhFFKYYhs3na4sx5h5ytshSmdLohlqkQxSljYyabJm1sWyWze4KzZ7PMbFWYiFPmVmOcUpaRbIZgEDEYRtiWwq5teRFEUS1T+fH99E+cE2M3rR6yoVN7/U0kjotzdgFZ10SxkabEjoffEnTqzOZpjMkR3HMLKKaBbIhRpcTxBeFbUVDLguAdux7BWlvYQiwNSZEJuwNSPyCot1AME6KIOIzwFpZxzi0QDR2i7gB/tSHiXTMW7oUlut85Qu+RYxT278WamSC/b6fwZAyGBPUWeq1E7AekYcTg1HkSP0KvVpBUmaDeFJ6BQp7B8TNkd86S2b4ZEL6VzqEn6B85iWKZlG+8jrDTI6i3cC4sYE+OUjpwLZIiE7S7wqOxXMc5M4dTXgBStFwWSVGwt27CXxXwO2vzFLHjEba7qFkLa3oMvVKid+Qk3loLohh7z/QlRnfZ0FHLRQbHzxA0WsLDsS5JVVAtkzAckN27Hb/ewltcEdyJOEbWNFRL+GjSBKRMBklRGJ46T/7Knc/43HjzSyiahjUxijFeIx44JHEsUp+6fXpHTpK7YhtBq4diWwI6uNYm7PaxN08KinqnB3FMNHDE2Jqp0zv0BP7CKvpomWToIlu6GP8q5NBKRTBX8Ys16s2QbrOJk6jYtRrm9DhpLs9KJ6bTldDKFqmdQd9/HWmnS+I6SJLMaD7PzuWIq3SZxRWP1YaPJEOlqLNja45d23NMT9ob8dLFvMZIzWBh0WHgxpBCJqPSWnTEeVKhXBJjSoGfUMxrxHGKpMj0+wGeF+MFYvxJ1+QNT1YYpVyxPY8sifGrclEnjlMyGY21dojjiCCKbi9gMIwZGzUIItBViXJRZ2LMJE1lCnnB0On2QzIZha2bDGxbpdURnrCFZRfHCcnlNIIgZbXh4roxE+MWa02x4VEqaJfEab/U+pEtMt773vfy1re+9Xlv892OpYyNjfHQQw9d8rN2u00YhhvdirGxsY2uxkXV63WAZ3RBLuv59elPf5rbb7+dT3/600iSxE/91E/hui5f/epXue+++/ipn/opTNPk9ttv58477+QVr3jFS2rgNk2T6elppqenCYKAer1OvV7n9OnTZLPZjYLjeyVnD4dDDh48yOTk5IsuMD72sY/xhS98ga9//evs2rXrezqey7qsH1Z5XszQjdm+JYdlypydc9A0wZzQDYUgjOn2A9IURmsmSZLieTGDQcTZ8w5RlDI1IQyejhNz/dVlqmWDhSUXTZOQJTGilcupGwVGmqY4bszUuMlozaTdCdg+m2Vm0sZxYyDFNlW+dbAJQLsb4PkxtqWiqsK4uWnC5tp9JVrtgAsLDoNhhCxLSEAupzI9YRHGYuSjVDCYnDAp5nSKxSdHJGRZwovgW2cE8Vgth7S6Ia1+j/Exi93b84yPmJfseurVMpVqmbA3IA0C0DQGiUHgZ1m672vQblIyA3L4qJYhPBJxjDU9hr11BtJ0g/7sLddBVYkHA/RqGVWRxS6/J+Jv0yRB0TXioQuSJxKYnjhF2O4i6zr+ahN3eQUpSpAMHa2YQysXCRotksUQvVJCzlp49Ra5KGFw9AxRb4heK+OenSfsiV1nAH20ytgV25FkCX91jf6JswyOnibxAqL+AHvTFGG3T/uhRylcuwf3/CKNv/gmsmWilfLIpoE1PY6ay+LOLRK7HrHnkwYh/cdOEDmuIKWrPSAh6jn49Sbm+IhImwoicV+FHIppoGZMYi8g6g+RLZOg3SFs98lfvQu9UnzG+1gxdFIvIOz0LikytEoRvVpmeG4BwhjFEK9l7PugqiSB8GaE/SGSJJHdtB1zvIq3sIK3WhYmbkkmTRPBpmj3KFxzBSiKOM9xROKHxEMHv9Ei6vRRC3naD3yHfjFHbu8O4T1JU4bnFvDmloldV4xDScLMHvWH+J0esm0gKQqypZOGMd7yGnoUM5AszhW2E4zPkoxOsLjYpzSaoTaWJVuUUUiQ3BaMFenqFovLDuNj64TyUpEoSmisidHEXFZF0xWqJYM4TdF1mUxGIZ/TUJVLN4Z3bskyHEYcPtIgShLW2j6NdQ/U7FiGbEYwW1rtgKMn+usR0wHNdoDjxSik2LaKYSiomoTnxGiqiKM9N+/QbAsat+PGqGqCLMFKw6PbF3G2uazKlpkMq2s+i8su5aLO+JhNxlJYa/k02wEjVYNrryoyHMQcfrxDHItxyzhOcaOEdi9krenR7YtCaXXN5/ipPuOjJju35ti5LUc28/0pB35ki4xqtUq1Wv2Hb/hd6MCBA9xzzz0sLy8zPj4OCDO4YRhcd911G7f54Ac/SBAEG/P8999/PxMTEy9qxv5HWZ/85CdRFOWSDpBlWdx+++3cfvvtBEHA1772Ne677z7e9ra3IUkSb3rTm3jzm9/MTTfd9JIauHVdZ2pqiqmpKcIwpNFobBjHLctiZGSE0dFRstnsC+pYDYdDvvOd7zAxMcHWrVtfcLcrTVM+9alP8bnPfY6vfe1r7N2794U+tcu6rB8tpaLYWF7xsQ2Z0FbwvBRFTdB1GctQMEyZKEmJY8QsdM2g1Qk4dqpPEMRkbI2pcZPdO/JYpsK2LVk2z1g8cbzHhUWHXFZcexw3ZKXur5uypY3dzcEwolzSKWhi1OVl15bo9gOWVzwKORU/FIVJFCVs35zlja8ZJ4kTHjzUxvdjZAkRU1nQGAxjAt/j6n0FZjdnSIDZmcwznnanG9LphZiajCRBkoBpysSJYASUCtpzjlVo+SxRnHLyTJ+5hRaRPYFyy2toHz1Dp9Vm3PTYOq4hqRLJwMHaPIWsquR2bsUcqeCcW8BbXMUYraIVs8iKQtjtEw9dwlYXSZGRDAMlmyHxfAhD0liwHoxaBQyJ2BEpTKE7QAHUaklA8DpdERWWJkhA2OkQtjvkdm2l8+1HQZbJ7pjd4C6kcUKw1iJYa1N6xTVIuiaiaXMZ7JlJJE0RRnQ/wDlzgf4Tp/BX1wjqTYzRKmGzhXtuAWvTBIptIZsGSRgLb0W7S+z5ophQFMLuAGRFjGWdFbC+NApx5xdFlGyvjyTJZHeL0TS9VkUrZLGmx5FkGWt8ZKMweqqSIETJZ+Fp3ANZVcnu3krn8FGGx88ShyFKNkO04oAnvA+JHyC5LsbkGFohQ/7q3ai5LPHAob+8hiRLpEmKkrfJ791B4eVX0T98jP7jp0g8jzgMCBsdZFPHGKuS3TWLNTFK2OrQeehRsru3iE5Oo4VRLqCVRhBO64T+yXM4Z+Ywp8ZEDHAixuTSJCENItoLTRYmrsLPakzOFOjMzlJWllGcAQvzffxWwlQuwaiV2bRjlvk2GIZCsxmQrPubkiSluM6SmVt0KRY0JsZEeEEcp6w1fR4/1uXaK4vks0++30XRnpKkCVGcIqUJqiIRxcIvIUkSYZSw1vTJ51UmRk2W61Ati07eWtsXfAsZAi9BUSVMWyRH2baK6yUYuoSqyQRBQj6n0e0FJCnUKgb5rIaqytiGQq1iYBkK5y8Mmd2UYaRismtbjp1bc5ybd6iv+VQqOoYuOlxBkHDyTJ9W28c0VDRNoZjXUda5Pe1uwPHTfaI45eq9xecE/34v+pEtMl6I5ubmaLVazM3NEccxhw8fBmDbtm1ks1le97rXccUVV/C2t72Nj3/847RaLX75l3+Zn//5nyefF0aon/7pn+bDH/4wd911Fx/84Ac5deoUH/3oR/n1X//1y+NSL1D/UFdC13Xe8IY38IY3vIHf+Z3f4W/+5m/40pe+xDvf+U6CIOC2227jzjvv5Oabb77EiP+9StM0JiYmmJiYIIoi1tbWqNfrPPzww+i6vlFw5PP5533NHcfh4MGDTExMsG3bthdVYHzmM5/hN3/zN/nLv/xLrr766u/xmV3WZf1wyzAUbFvm24fazC27qLqEaamoaorjiKhJRQNVkak3AvJZhR1bc0yOmXT7EXMLDmMjFrt35CnmVYZOTH8QoSgSM5NihHJhxaXdCen2IpotnzRNGR0x0TSZZjug3Q2ZnhgyOW5tmMmrZYPX3DTKE8e7zC97G0lR46MGe3YWyGdV7v2zBRrNgGxWRddkAQzrBJRLBpalsLDkMj1hcfxUnyRJLvGtxXFKs+3juTFukHD8dJ/setpVHCacOT/EDxJe+8oRbFslt75r+1TNLQw5e35IqbSeiDe2hak9k3SXWrRaHtGsyZYtBToHHxcRpuM1JEVGr5aRdR1vuYGSyyGpErKhMzh2FpKUsNtHWoffxa6HlssgWyZpGBGutRien0cvF1FsQ6QIMSRNYlTTIPFD1peGxK5P0O6i6Aadg0eIBw7D84vo5SJaufBkKpIiY4xWceeXWfva3xG2+xBF5PfsQNbWyfCuhze/jJLP4JyeQ81nMafG0Ir5jd8PT89hjFaRBDGNsNUlaHVQ170gWqmAVhRpUcbECCkpztkLRJ0SkiyTygneYh29WiSNYoxykcI1V6AVRGKUohu45xcwZyaQVRUlYwESUbeHZGgY1dLGY11UEgRIuiYidlsdwmaX2BNdIVmR14MGBNhO0TVBbO+IpK78VbsYnjgnirmsjb11hv7hY7hLdRLPx94+Q+K4DM8toI9WBOOj08NfaWJPjQsvylIdZ25JpHgFIbJtc9FTkyKRBgFpHAtmiKoS9oekUbzh6VjpKgxlk4mKhr1lijVJp7B9Gj30sHoufpii7ypgVIs4IYShy6ZJm1rVYKXusVL3GQyF6XluyWG0alItPxm4oigSIzWDpRWP5RWP/DZRZKRpyomzA5qdkG2bsvTdmFJBx3EiTp0dML/komsiAjsIE0YqJu1uRBQmzG7JYJgqIz2TTidgdiZDoaDy8KEWSSr4GrIM2YxCtx+RzwoPhqFDrZqj3Q7w/YQkC8NhTLVisO+KAikwt+BQqxjs2pZDVSVW13wuzDlMT1mX8C4URSJOUnqDCCtMmZywN64t+axGuyuK0dWGx1rLZ3LspY+yvVxkfBf69V//dX7/939/4//XXHMNAF//+td51atehaIofOUrX+Hd7343N9544yUwvosqFAp89atf5T3veQ/79++nVCpx9913c/fdd/+jP58fJamqyqtf/Wpe/epX89u//ds88MAD3Hvvvfz7f//v6ff7vOENb+DOO+/kNa95DZb10n3AVFVlbGyMsbEx4jim2WxSr9c5dOgQiqJsFBzFYvGSL23HcfjOd77D2NjYiy4wPv/5z/Pf/tt/4//9v//H9ddf/5I9p8u6rB9G+UGyzoAIOL/goMpQrZisxC7DKEKWoDsIMTQZTQnRNJmrrshvFAPlko7nx4yPmmiaxGNHuzSaAUEoRh8KeY3NMxkOXFfm+Ok+g0FMXNAYHzVR1uFtsiyRAmtNn5W6x+T4k9eiWsXgx26o0ekGhGGKpkoUC2J38zuPtkQRMWVv7F6C2LVttQOKqcpaK+CKHTmqFZ359YLjYqHR7QecOjvE96ONoigIU4p5FZBw/JiHDrXWx8EsRmom2zZnNiCGQSg8LLatXhK5LZsGpS3jUA7o6DLqeJniddD+1mGccwuohSySLBN2ekiKjL1pjFRWGJ48j6QqRK4jXLmJMCRr2YwA+SkySBJ+IQtJgprLkvgBsR+g5jICRieJHNI0FWbjuDcgjROUcRPFNAjqa7jnFpBVRQD8nrZppeYydB85ilrMI2naRoEBoFgm8cBhcOwsWiFHGsWkUXTJ7xNfjFZJhkbU7YEsQRRt3I+sqWjFAvpIFZIE2dCRUgXJ0DGrZWLHRbZN1GyGwcmzlG+4FjWfxVtYQbZNtNEKvb8+iXNhGa1UQM3baNkMcsZGzWfJbN+MMVIBhGdkcOo8vcPH6D9xku5jx4k6PdIoIo1iZFURSWBJApJMuh6Rm1gm3UeOUL7xWjKz02Rmpy85R97iKo2/eoDYj0jDAH91DXd+BcXQCLs9JFlhcOw0uV1bULM2erVI/+hpVMtEnjAIVhrIGQtJVYgHDmG7hzk1hprNoNcqSAvLImLXcYnTlK5VIlcwsWdHsSdGkesQxhJaMY9WzLPS8JjrqSSdIa4f0elGqIrMFi9Drx/i+xGVskG3Jz5DS6vri+oJMXaUz6qoqowkpRw51kXXZHI5FVkSqVCVsoFtqfTODvC8GMtSmJywOH/BYW5hiLvOpnBcAc8sFnRsWxQq5aJOmqRkbAVdE6DdMExYWHbI2iq6LqNrEr2++Ns0hUJOo5AXIRIToyamqZCxVeT1AiEIE6I44cyFAf1+xOKKS7cbASkTYxbG+mdx6ER4XoIkgePGGwXGRWVtZQNKurZ2ucj4gemLX/ziczIyLmpmZoY/+7M/e97b7Nu3j29+85sv4ZFd1guRoii88pWv5JWvfCW/9Vu/xbe+9S3uvfdePvCBD/COd7yDW2+9lTvvvJPXve5137Of4umPe9GnkSQJrVaLer3Oo48+iiRJ1Go1RkdHMU2TQ4cOMTo6+rzwwedSmqZ84Qtf4Dd+4zf4sz/7Mw4cOPCSPYfLuqwfRi2vepw626fTizhzboAMrHWCdVhWQn8QIykSxZxGIonRCNOQKZfE2EWapBcnPojilEePdOj2xciTaShEUUK3H/H4E12mpywytsbSis9oTd8oMPwgZjCMmByzyGQUFpZdxtcJ3Rcl0mcu7bqGYcLSiodhKBsFRpKkGwb0bEZd3yGNKeQ1Xv3jI3ztm3XOnB9imgpxnHJhfojrRuRzKpYhE4UpgyimseaL6N2chmWK+XHbUphfGOI6EVftLWKZCsNhxMCJqFWePWEvm1VptwOGTkxxZgLZMnHOLwg/Rpxgz06T2T7L4NR53AuLYlEuSWiVEmG7J0Z4NBXJ1FCLeeJeH0nXUG0Le3YavVLEW1wVJu5uj+GZC8R+INgXwyF+u4csy8KrEETCK2AZSKpM1O0T9oYYT4MKxq5HPBhijo8QeP4zntPFv9VrFRRTI30abVzN2qJjk7PxlxsiIUnTBOPBMgjaPZSMRf6q3ThnLqBXyygZCzWXRc1mkE2DYLVB2OogKbKA251fEKNDYUR2dgr1ja+id+QUQbNFtNAnKuYpXLmTwjVXUNy/b+NY+sfO0H7wEO7cErHjodomWjGHnGRJluskQ4c4jFBzWWRdJfHEuTNHq4St3oZX4+mSTQN3fpVESlFUXbxOukYqy8T9IebYCMFKg/bfH8KaFSZ25+wCWrlA4dorCBrt9RGxGK1UILt9s4hJlmWyOzYhqzJ+swNZmzhNkUIdq1Ykd8UO9HKBauhy9oJDYoud+HYnYDiMGB81sS0VTZXJZVUePNhEVWSuu7KIosoMhgK6GccJrXZEqxNSLupomvisiVHEFFWV0XThFxkOI6plA8uQmZ60WFx26fXFNQIppbEWYFoylaLC+JhFEMS02uGl7xlJIk4Ep6bZDnA9UUykqRhN1BQZpBRVgWxGZ3TUJIlSdu3IbVwnNpSmLC07IMlsmrYZqZk4XoznJ6zUfbwgYevmDLquiEI7TZEk0TF6xntZlliHrRPG6TN+/1LocpFxWT+SkmWZV7ziFbziFa/gE5/4BAcPHuS+++7jIx/5CO985zt57Wtfyx133MEb3/hGcrncSzbSJsvyhh9o165ddDod6vU6R44cIQgCbNumVCqRJMkLSsdK05T//b//Nx/4wAf48pe/zE033fSSHO8L0T333MNXvvIVDh8+jK7rdDqdZ9xmbm6O97znPfz1X//1JR2/p3JHHn/8cd773vfy7W9/m3K5zLve9S5+7dd+7fJY4WW9pFpr+hw53gVJolzUWM2o7L0iz8kzA+pNHymFmWkbWRJwrvpaQCGvsnk6w9yiR38Yo8gi0lZRJXq9gJWGz9iIgaYJirCqylRKOq1OQLMVMDlucvrcgF4/BmKQQFUlJkZNJsdNglAkxbTaAdZ6MtVzJb+4fkwcg2nIrDU9HDcmjAS3o5DXyNoK/X5IOJIQhglbZjKU/8Ukp84OOb/o0OkGglaeivvygpQ0jYjilOEwWgeDqtim4HIkiSAIrzY8llddtmxa34h5nrXJ04/cqJUxamWSa66A9fEcABSZ3uGjwqwcxRAn+LZNioReKSAj4S4skzgeaRJjjNawZyYwRiqEvQHaukFcKxWIBg4wIGh1SeMYOZdFLRUwN00g6yrOwqoYr9I0wmYbo1wgiWOCehNvucHw7Bzeyhrm9ASJ5z0jJVI8qZQ09DG3zZC4HsHqGmqpgGKZpCDYGJUSpRuvEwVGEOLOL2+wHOytM4TNNt3DxwhbXYzxmujE+AGyqpC/bh+ypuCvNtEqRYovu4rBiTOkQYQ5MYI5MUpm2ya8lQZRb0DQ7JDdvY3KTS9DWY8QjgZDBsdOk/gBiR9gTY4S1FugKBhlMdIkGRpSIroryDKSniBpKmo+i5LLCCr3OtDuqYqHDkrWQpEk3LllSOL1iNoENI3IGW4kbwXNNkrGFslfgyGyaVC4ejf25ilx36qCt7hC64GD6KU8WrlIIZ8jaLZFMdJsM7JzjPjKKzcAfOX1z1SrLTgTg0HElk02aSI+q9MTFpn10b4gSBgMIwp5jVbLp97wKRVVqhUNUshmVOYWHLr9kFpFZ2Yqw9SkRRSlnDrTp9UJmJ6w0HRFdBUMmaMn+7S7MYYuU8hrFHIqA0cwKjKWQrMdbrxv0jQlSQRc8/S5IQtLLoW8SrVi4PkJKYLDo+sKk2Mms5tsdm3L88jjHYIw5WKCsOvGtNoB84tDzl5w2LoliyQ+OtiWgiKLrmqzJa41xYLooOiqRByBoj4z8dT3hN8sTlLy2cvG78u6rO+LZFnm+uuv5/rrr+ejH/0ojz/+OPfeey+f/OQnefe7382rX/1qbr/9dt70pjc9Y7zpe33ccrmMZVnU63VqtRqWZXHixAnCMKRarTI6Okq1Wn3egiNNU/7P//k/vP/97+e+++7j5ptvfkmO74UqCALe8pa3cODAAX7v937vGb+P45jbbruNWq3GAw88QLPZ5O1vf/uGhwSg1+vx2te+lptvvpmHH36YkydPctddd5HJZHj/+9//j/2ULuuHVGmaMr/kEEYpYyMGvh+DJKEoMls2Zel0Q8IooVzQUFUFz49w3BjTVBm6Ee1OSBQZqKrMakMYOzVVZqRm4LgJp88NqJR1ZqczaJpMIadRb3hkMqowb1oysiRhWyrZrIptiV3H+ppLveERhQmaJlPM60xNWIyNGM+47siShGFIOG7ESiMgv+7JCIKExWUXCej1QsolnW8fbmMZClMTFvuvLnHg+gpf+9s6npsQhSl+wxNxvZKE60YEQUIUxyhNGcuWWVkVMLBMRsXQZRaWXDZPZ0QErq1uLOKerv4wwrYVMval1y/5aSNKeiFHZttmtGKONIzQT18A1rd605SwNyBxPBTbJGg0USwda2octZjDnhylPxiSuC76+BiqpTM4dgZFU5EUBTWXwZwew6iUSKKIxPHQ8nlQZKKBQxJFDE6cw5tfFt6EMEQr5AQUzg+QNA1z/Cl06SgR8D9ZwZwYRTF0hoaOX28SdXqE/SFqLkPlx68jd9Vu4v6Q7LYZOg8/Tuy42FumCXt9+kdOEQ2GomhJU7FITyHsDsju3kZu1xac8wvk9+1ErxSJBy7m5JNJlFoht8H8CLt90iC6xPDtrzaJegMixxVxwrKMkhOAQ2KR2IWboJby6IUcJAnhwCGzZVos5iUZ4pQ0ipCesgmUhCHBWht78zRhp0tod0h8H8U0RFGXsQkabSS5i71pChQZSVEo7N9HPBjQP3YWxTLIX7kLWRHvA7WQQ1s3rEedPmrORivmSeMErVrmip17ONaxcb0YyxQjR7MzWRaWHR490iEMEwEIl2DTlM1ozaQ3EGNsqiqxsOSy0vA4dqaP60WEjYRSUUVRZIZORBglSFJKsx2yfasEqeBKTE3aLCy7rK75TE3YpEC7GyLLEru259Y/XxqjNYPDT3Q5cWbA7u05bEuh1xefiV4/JE7E9WZ5xSObUSjkdYp5HSToD0RBn7U12p2Qmw7Y1CoGm6cznDk/wDUU0lR0HddaIa4fYVoKSZxw8vSAyXGLUlHDMGQGwxDPjzj0eIeRmoGMxFozIIwTxiomg6FIqwKI4wTHjamWdbK2ykj1+8P7ulxkXNZlPUWyLHPVVVdx1VVX8ZGPfIRjx45x77338ju/8zu8733v45WvfCV33nknb3rTm6hWq99zweF5HgcPHqRarbJ7924kSWLHjh30+/2NWNwjR45QrVYZGRmhWq0+Ix3rj//4j3nve9/LH/7hH3Lrrbd+T8fzvegid+a5Rgvvv/9+jh49yv+/vTePlqws7/0/e9675uEMdeoMPQ/0IErjAKiAUdCggolTWNdILhpQGhcBbq5iAuiNYNRwc5cJia6fC70xStYNOFzjzQWvBmJwYJRupqaH06f7zEPNVXt+f3/s6qKP3cxtN8L+rFWru3a9VWfv91TVeZ/3eZ7v98CBA5TLZSBSCrvooov43Oc+RyaT4R//8R+xbZuvf/3rGIbBli1b2LVrFzfddBNXXnllnM2IedE4TsDkdIfHdzdImAp21yU3m1ZZrHgUchp9RZ2FRZdmO5KVtDsBpX6DpKWwVPXRFDlyLe6WMfX16Tz+ZIPAh2y/1lWrcUmYCiNdF+7Zhcjxd3bBRpZkMplopzWf0xECDkx2eHxXndKAGR0DFpYc9k00KZdMRstJ0imVXFfXPmEp+J7AdgR9eY2OIwhCUORo93b8QJtMSiGTVPHckDAI2fmYS73ps2ldirl5m1AIVo4laTQ96g0Pw1DwfAGSoNkM0NRotzbXr5NIKFRrLpWqx+xch5WjCYYGLYaHLB57soFpysv6Qmwn6GVvJmc6GLpCsaCja0cq2ASuh5q0sEZK+M027fFJUhtW05mYxKu3IqlTIdCLOYQIEYDX7hC6LiIUSLKM3l+M1JA6bczyQLRT7gfo/QUQIaHtIOka5sggwvMJXI/2nglEEGCPTyKnEoSOi9FfRFJk7Kl5RFfKFkBNJghcD2d6AWu0HGVYdC1aMG9Zj99o4S5VcWYX6Tv7NHKnRop+SlFHL+ZJbVhN84m9tPcdpPnYHnzbRjENwo4TqVFpKoHr4S1Vqfz8IfSBIgjQ+4sILwogDu8PORxZ13FrTdr7DoAUvTe9Si2a20YLv9FCeD6SKqNl0oSeC12lrNDt9rSkEpjpFNZYGeH6GMODyJaxzIsDiF4HsMaGsA9EzdxqykLLZ3GXaviNJqHjoaWT+M0mnQMz9J31epIrRxC+T9CyqT/yJGo6hV7IErQ7BLZL/9vfjJpJ0ZmYxplbihrxywOk1q/GKA/i7Gmyd6JFveGRsFTCMHK8HhtJYBgyK0aSJC0FrfseVBRQJIlG02ex4pBMaIgQhkomC0sek9M2iUTkMzE9Z0dZMw0mDnZwbMFQySSdUinkdQ5MtikNmDhuSKXqkkmrOG6AJEGxYJBOaaxdmeLRJ+qM729RKpnR5/nJDp4XRj45Sy6OG1LI66gq1OouuqGgqTILS5E8diGnY+oycwsOuh59t1RqLk/ua1Bv+GTSGsmEQrsTkM3qBL5gcrpDMqkwPGTy8/uWmJ6xMUwZy1RQFBAIkpaKJKDR8qg1PDQFPF9gWQqplMq61anfmDFfHGS8zLn55pv54he/yPT0NJs3b+av//qvedOb3nSiT+u3AkmS2LRpE9deey1//ud/zu7du/nnf/5nvvGNb3DFFVdwxhlncMEFF/Dud7+bwcHB570Atm2b++67j0Kh0AswDv3cTCZDJpNhzZo1tFotZmdnGR8f55FHHqFYLPLII4/w1re+lXvvvZdLLrmEb37zm7zzne/8TUzDMeNnP/sZW7Zs6QUYAOeeey6O43D//fdz9tln87Of/YwzzzxzmerXueeey6c+9SnGx8dfkON5TMwhJmc67N7bZH7RYWKyjWkozC26lAZMigWDat2j3vLJpTU6dkA+q1Gtebh+SDKpUan7aLqEqsisHI2aSrWcgqHLJEyFparLQH+U4UhYCgtLUUnS5FSHmVmHLRsNRoYsdu9r0mp7TE53WKy4DA9Z7BlvkM3qrFmZwjAUOp2Aas1jZs5m/ECb1WMOqZRKKqmQzxnYHZ+p2Q6yJMhkdDJAsxlgOz7ziw6yJNA1mel5B63ikbAU+os6Bw62KeY1bDdEkiUyKZXR4QT7D7Rot7tZDD9ECDB0iWJep5DTqVY9qg2Pas2lWnP5j18uMlK2WLcqxcoRiwOTHQSg63K3vMxBkWUWFqPARCLq8diwNs1A3/L+kmgXPEQIgddsYU/PEnYDAa9aw5uvIlk6csLALA0gW1EDtzM9j/B99IEiyTUrIvfoXJrO/kn0XJbKLx8CWUY4LigKwnXx6028WgMtm0YyDGoPPoKSSqJ6PiKM1KgkOerN8OvNqLxoqB9nfglJlsi/4WSKZ5+GO79Ia9c4rggj13MnkoItnvk6Mq8+0pNIy2XIv/7VGOUB3EoNd3YBL51CNnTsyRlky0Q2DbRcFmdqlurPH6T/nDdhlPp6cr6h4yIb+hGvbU/P0to7QeA4yEqUFfPqDRqP7iZodfDrDbRMKprjMAAk9IEigeMhOg7kIsVDJWGBBNbKEVAUEqtGjwwyJPAbLbzFKoHj4swvIqv9gISsqyiWgWJoaH05wnYHqbsp1t53AL2YJ3vKJiRFiZrPwxC9v0hi1SjW2BCyppHevJ6g3QFZRk6lempJ69dEC+Gp6Q71lo8iw8Z1aYaHLaamOuSyy+clYSoYhszje9oM9ptk0yqVqksqoWLoKjNzglYzYMaNspiFrIbnhbRaPvs6LSo1ly0bMwwPJahWXeYXHWp1j6WqRzop0DSJ0WGLfFYDSWJo0AQEc4vRzxgrW4ShoNUOcNyAwQET1wuxTBnfFySsaPkdCkgYCoN9Bpap8KvHaoRBN4mHoNH0mJ1zUBSJ+QUnkrpueHhewGB/VJ43t+DQ7vhUGx5CErhOyPxi1LC+dVMWVZWpN1ySlhb57dgBw91M69hwgmLhyPfUsSIOMl7G/NM//RNXXHEFN998M2eccQZf+cpXeMc73sGjjz7K2NjYiT693yokSWLdunV86lOf4pOf/CT79+/ntttu43/9r//F1VdfzRve8AbOP/98zj//fIaHh5814DiUwcjn88sCjKP93FQqRSqVYs2aNbTbbSYnJ/kf/+N/8LGPfQyAP/qjP/qtaPKemZk5wngyn8+j63rPqHJmZuYI35hDz5mZmYmDjJgXzPyiwyOP15FlidHhBM12gOeFqKrEgak2K0cTrBxLcnCqg+2F1Goeth2QSmqsGosUlSYOthEIHCfAdQM8H9KpqMyor6gzPtHBcUJUVUaRIw+KgwdbPLmvTbGgIclQb/ggojInxwmYnu7w+G6NgT6DDWvSJBIq9YbL3vEWHTtgoN+gUvOwElGW4Z57l0hYCsMli3rdR5IkKlWXdEojlZSZXfBoNj3SKZVAROcaeQO02TPeJJvWEEKQTqgsdndXZVlCVRUcz0NWwHEEjhtdx+CASaPlM7fgoKpRmZakwP6DbQ5Mdrj3oQorRiyMbqOpqkqoXlQKVh4ySSe7xm+BYKnq9rwI8octCs2hftRsCm+phrdQwZ6aQ8tnQEQZBCWRQO/Loxg6yBLNx/bS2T9Jav1aEhtGsYaH0NJJ3IUlnLkFQtuhuW8Ct1LHr9RQUgm8Sh2/GfUSqMkU+de+CmvVCPM/+o9IISoMMPoKSIYOYYhWyOPOL9HeO4E1XCK7bSvm8ADWcCmSml05TGKsTOfgTCTvmkxgjZQi+Vr56f0G1IQFQRCVgDkuYcchdH38xlJUmqTICD8gcFxSJ61B1jT0vjxGqQ9neh5rxfCy1/PqTao//xX6QAFjeBAtESkE1XY8QXvPRCT9a+pIpo6qa6DKuDML0d+WdSvwqw2MwSJ6f5H0xtUYA0UC28Uo9ZFYGf0sIQRBs4VXb9HYuQt7ep72/kkkU0cxdLxWG617nsJLoyQTyAkT13YQjotXqeMuVOhMTHV/Vp7iWW8gsXIYSV0ui+yiMtPUmJrtEPiLJBIqxbxOLquTzUSlSUEQ9RYoSvTen593aXd8EpaK5wZUah7ziw4Hp9ssLjpYhoLjBFRqLrWa+1QbkSzwfFAVQa3uoSgyjieAkP0HXGRFYqRk8uotWQp5g8d21VmqeoyWLXJZnVRSecqvRJLIZHQSlsrrTikwOdVBliUGB0x27Y1UoJaqUSO9pkQiDStGI0nZas1DkmF+KerFGh6KjoehYOfj9V75ZX/RQJHBCwVTcw5+AMWCxv6DLs1GZNSZslQG+w1yWY1WO2BqxmbViiSGrnLy5ixDg1FgIknSMuPB3xRxkPEy5qabbuLiiy/mIx/5CBA5Zf/f//t/+bu/+ztuvPHGE3x2v71IksTKlSu56qqruPLKK5mcnOT222/ntttu45prruGUU07hggsu4Pzzz2fFihVHBBCHdu6z2SybNm16XhmQRCLBunXr+PznP8/73/9+fu/3fo9du3YxOjrKG97wBm699VaGh4ef/YWeI9dff32vDOrpuPfeezn11FOf0+sd7Vp/vRnt18eIbp1xXCoV80IRQnDgYJsgEPQVo130/qLO7r3NyGDPE0xOdTh5Sw5ZEiws2uiaTMcOSaWkrsN3iO0EmIZCadCi3vB7rrpRTXdUxz0zbyMvCBarHksVj4cfDRFISFKKeld5at3qJItLHnOLNq4bORFbhsTMbIfJ6Q7ziw6z8zb93fIiRaanSpNIKtidEMcNo36OpEKt6mEY0cI26h1RyKR1Wm2ffRNtJEmikI/KRWpNj8d31ynmDQI/5Ik9TRwnYKBfxw90mg2PMBA021Fj+lLVYXbOodUOaLd9BNEuMQIMXWF+yabR9HjNljyqKtFs+jRbHrmsge9Fi7dkQkFVZfqLBtMzHaZmOsuCDDWdIr1lPdVfPkxrzwRCkghsp+vqraEXsxgDRZypORqP7e4u7DIgApwDM7izi6RPWoOkqrT3TNB4dDd+rYkxUkJJJwnbduS7och4C5EhX3rLOkQg0PJZ6r96DK2YB8CrNqCrFqXlM5GvRSFL/nWvWhY8SErUk2GWl2+cPBuyqRO6Hs3H96J0jev0gSJB28ZvtLCn5wgcB3ehwuJdvyC9aR2pdStJb92IX2/R3ncQvS+PbGg40wss3P0LnNlFlFyK+n07MYb6o0Ch3sRaWaa9e4LQdbsKUDpqNoUQAi2fIXPyJqzBvm62IlJ3EkgkVo+RffVJqKkk9vQcrSfH6UzN0XxsD95SjeSGlSTXr4ykfAeKCNclaLUJLBMlk0TxA+yD02j5HAyV6SRySBJYSkB7fAo1m0LLZZB/rfS32fLZ8VgkAZ1IRH0He8ZbLFZc8lmNsZEEQwMmYyMJMunoubmsxuoVCXbtaVKreiwsOVRqHoJI6lXTZGbmIhW2UAiWqh4IQSYdlTW6nqDpBeiawqoVCbLd121ILrv2NMmmVIaHEuSyGp4XMH6wTdsOSCZDkJYvoZtNn9KAgaHLzC44JJOR1PShjGg2rTK34JJKKjRbAZ1O9Bn2fUGlEvUvjQ4nen/rDoksWJaCrsoYhkI6pSArEtOzNrMLNo4XIEKB5wlarahnZanqslBxQUC741Opuui6TD6nMThgsrjkslR1UBSZ8oBBJhNnMmKeJ67rcv/99/PJT35y2fFzzjmHe+655wSd1csPSZIYGRnhE5/4BJdffjkzMzN897vf5bbbbuPaa69l69atnH/++VxwwQWsXbuWyclJvva1r/H7v//7bN68+QUtnO+++24uvPBCbr75Zi666CIkSWJmZobvf//7R2QKXizbt2/ngx/84DOOea6O9aVSiV/84hfLjlUqFTzP6513qVTqZTUOMTc3B3DMry3mlUOnE7BU88h0m5M9P8S2Qxptn4mDbiTlGEQqNL4fNTmvXpUEopruyWmbhCmTTChkMjqlfoPFiovnh+wZbxKKaIEkS7C05FBrejh2GC0KMjqdjs/UTAdFkXrlRPNL0c/t7zNQNY/peYdaY4mBfgPPEwShYKHqUmv4JCwZPwip1KJ6+GrNo92JshjVusRwyWR+ycVzQhJmJOEpAFmRUGQJSYrcf/O5SJVHU0Oa7Q7NpkezFXkK1NWoz6OvGKljRaUdCk/uaWE7IQlLQjNkkqZCq+Mzv+gyXLIYG07SavssLLmctD7No0/UeWBHlcGByJ3YMhVSqcgXpK+gk0ppzC04rFsdLuvPSG1YjXA9Go/vRc9laO3Zj6yqGKV+tGwab6lKc+8EQaWOmk0TdGw6B6bJvvokQtej8vNfIela1EAdCtRUgs6e/V3vDJnQttFyaRKrRjCGBpAUFUmTUC0Dv94iaNsI20VJJbqBgE973wEkw8CvNvDrzZ7p3gtBCEF77wEajz5J58A07fEDaH0FAPRiHkmW8OuNKItSzEVeJrJM9b4duHOLFM7YRuHNr6O5ax/O5CztgzO09+wnaNuk1q/C7C8SOC6tXeN0JqZw5ysQEpVxKZHKkb9UxV2ooBWypE9aQ/n3zyV90lpCx8VbrEaN2wkz8iKZXaB6/06aj+9BMQ2UhEnoOqiZJPbENHp/ntSGVXi1KChzlypR+VUig9sO6FhZ5uUCoSggzUau65YiyLahmOYI6TEhBE/ua7K45FAuWbheyJ5xm1bHJ5vWaHYNLh23zVLVZeumLPmsjiRJrFmZwjJV/v3n80zP2eSyOsmkihCCZiugv6BRawQ4TkBT8wkCqNZ8PC9AViCT1KLSplZIwgoA8H1Bq+XRavnMLHT48X/MMXGwxYFpm1bTI5fRGR222HpSllTXSE8CyiWLUIDvRwEOEPlmWA6OE5JJK11PjJBWx6Na9yJTvoTCirFkb00QhoIDkx1kWSad0nDcENcN0TWFbDrq46pWI7WsZELB8wSqKtHXr+O6YdTw7QZYSQ23m6185LE6Dz9SxXEFbrdMLJvW2Lwhzemv7UOPHb9jnisLCwsEQXDEwmxwcPCIRVzMsUGSJIaGhvjYxz7GpZdeyuLiIt/73vf453/+Z2644QZWr17NzMwMmzdv5s/+7M9eUIDxH//xH7z//e/nS1/6Ui/AgGhx/sd//MfH+pJ6crvHgtNOO43Pfe5zTE9PMzQ0BETN4IZhsG3btt6Ya665Btd1e7K2d9xxB+Vy+TkHMzExv04QRn+0FTnKSkwcbDM7b1MesOgvGNTqHjNzHQ5OdejvN9i2Jcee/W1MS6Y8GDV8Vmse6ZSC60VZDdeJsgnVuo+hyyRNGVWRWaq5+J4gm9XZuD6NDByY6rC4GKlLzS+6CCFImCqmqdBoepH7btVDTclMzzj4vcyIgh/4LCwFJJaiPoqkpRIiMHQZy1KYONABoGP7qLKMZcp4zRDbjoIQXZPRdZmO7dNseixWXHJpjdEhk+kZ6ZAPG64nMA2oNzzanQDXj3okRCgYHDDQVIlW28c0VGwn8hpwPJ8kUSBRrTs88LDPrr1NJmc7tDuRkk02oxGEgk4nIAwF6ZRKo+mze28Dx43MBfuKBn0FHaM8QGLDKrInb2Dh//0Me3oOSZJwZhZo75sg7DhoxRxqOoGkarhzC1R+8Su0YpbO+BTWqhGMUl/kSZFJYwz2EToe7sISSiqBXiwgW2bUT9CxUVMJ1GwGr1Il9ILu6ypIioUkSUimiayrOPNLiDB8Qe89IQQiCGjvO0jl5w+hGBrpreup/eoxhONizyzgVRtRU3THQc2lEI6H12iCH0YlWRNTNAeKpDevI//6k/EbLRb/7RfIioyWjQIfSdNQtchDpLFrH+3xA0iyipDAGuhH6y9AGBLYDs50JH2rZSJ5dsU0UIYHCV2X2oOP0t57AK/epPnYbgLbIbFiOBorwBgoIoIAZ3aB9OZ1FE4/hc7EFKxayVLFw+9fg9PYx4yRRrIdCktVClrkJWI7ATPZQZR0Nso0dYMsiMoI5xccCgWDIBTs2tNg70SLTFLrlvNJNFs+G8tp5hcc9o63OOVVGpIU+cJkMxrFvEFfn4llRlmLRiMqGxTIqErI5JJLOqGi6TL1hsdCxUOTFaykQiqhRiVKQhD6UdZS12RmFzr88/cOcnDapq9osGFNkmrNY37BZcdjdRYWXbaelCWdVlm/NsVAn4EQoBsynU5IwozkazVVZmbWxvNCFCUK+mfnHZIJlQ1r0rhesCzuctyQtu2T7CrPzS7YuF5IpBktRZ+jhkcxF3ncJNMazaaPIsk0mx66LpNKKtSbPo1WJDAxv+QyPdNh7ZoUa1alu34hLv9x7yKuF/LWNw/0jDqPFXGQ8TLnaKUncdnJbx5Jkujr6+Piiy/mP//n/8yePXs4++yzsSyL++67j9e+9rWcf/75vOc972HLli3P6YP9y1/+kve+973ccMMN/PEf//FL7vc4MTHB0tISExMTBEHAQw89BMDatWtJpVKcc845bNq0iQ996EN88YtfZGlpiauvvpqPfvSjZDLRH8oLL7yQz3zmM1x00UVcc801PPnkk9xwww1ce+21L7nrjfntweqqrbQ6PrIUyTrmsjpat6nUNGVMXcIXoCoygZAwDBnbDsmkNRKWjISEF4SUBw2mZ23mFh1UVSKdjOq9ZVmh3vYJBSBLpFMKubRKEIKuyUiKhOcJ2u3IiyKf0/GDaOFqGpESTLXmocgSpiGBJGHoMl47YKnis7Do09en4/lRc6quSIwlk6wcS3BgukO15tFX0HFdQRgIbCfAdQSOFZBKqriuYKblYKiRqZhpqhhG5A2QSWtMTHUYn2hhWgpJS8b3QnZPRQGMlVAJfRBCot0J0DQJTYtes9nyyWU1qjWfaq1Do+GjyTKeHzWQT83YNFo+q8cSTM92mJ2HTkcgQtCNyBRwz3gLTZdIKAH+VICi2GTXbkCXZFRLx9s7gZywMFJJZEMjDARepYZiGQTzkVSrV61FhnCOR9DpYAwU0fL9CCGQEwZepYE5PIizUMFdqgLgVep09k8S2i5oCs5cBXtmEVlVMYf6sVYOI0mR1O2hss3nitdo0tq1j/b4FML3aD66B62Qxdi0FoDk2pX4S93m6cUaQauNmjIJGu0oI+P51B96FH2gSOj5VP+/f4rKpFQNNZUgaLVJblxDaDs4MwuQTkY/WJYj07+FGqploOg6ai4d9bMQuZKLwMddrNCZnMEaKfXOufarx2k88iTGYBFJVVAsA2tkCK9ax5ldBBG9XyVFQTYN6vtnSG5aDx4sPDSOcFxSw01qgUxnZA35vgT1ZhNVCcgNWKRzOZpGlsnFGhvckORh89WxA1w3JAzhid11Ht/VQFEk2nJAvRHJxjp2SLBKUMjrLCy5PZlYiNTMXD+k3Bf1pFS7JVODfQZzCy7VhoftBAz0RUaYh7wrdF0mYSiEYdTMLRHJ1C5VHfqKBgKJasNnqGQSBoKlisfQoEkhZ1Cput1SLJnXvrpAtqsYJ0kwOpTgwZ1VavWoPyQMBdmMSr3ps7AQyV6vHksy0G9gGAq799rMzjtslbMUu8abqiIhy1FWJQhgZtZmYdEhkVBIWCqyLDE8ZNFo+QwUDRAS84s2bTvo+V64bkhHDhBCUK1HwhRBIBBCoCgy/X0mmiaz87E6mzdmj7nrdxxkvEw55K1wtNKTuOzk+FKtVnnve9/Laaedxre+9S3a7TY/+MEPuP3223nrW9/K4OBgL+B4zWtec9SA44EHHuA973kP1113HZdddtlLcsF97bXX8o1vfKN3/zWveQ0AP/nJTzjrrLNQFIV/+Zd/4eMf/zhnnHHGMjO+Q2SzWe68804uu+wyTj31VPL5PFdeeSVXXnnlcb+emJcPqiozPGTyyON1Ok5IKEQvwAjDSK41ndFpd3zk7k7gQJ/BnvFWtAupyWiahO1GwYHthiwsORi6jKzI5HM6nhfieZGpVSqhoqoSthOSSmr09+ksVhwaDZ90WsX3oxIuz4skLZcqDopM5NatSLjeIX/eAENTUBQJEKhK5K+RSWukkirziw7DQxYDhch4a8VIgtl5G9cLyGU1FhZdbFvQ6biEocA0FdasS2KakQSorkkYerSDa9tRv8VwySRhabhupFTVbAfML0aSmklTpVAwECKk2QwIghA/CNE1iWrVpdEOkBSAKJjSNBlNFixVHJKWQqPp47qCkzdnGe5K+3puwJ59LfY+3qbUr7NqeBjnkceYNBIkSVJUBFo6BYqCO7uIyBVoTC0RtEOSg3kslcgJ3NCRNZXO5DRCgKRHi09JktAyGcJWB7/WQJJlQtfDrVRp7HwSe3oetZDD6Muj5TMIPyTstJFNHS2XwVusohVzR/FLjggcF2+xgvADlISJkk3TeORJ5n74b3T2TyEbGpKq4MwtYbT7EUGItaKMUepDy6bwa028Wh233kAvZNDzWSRNQ+8vIOkaS/fcT+C6SCEQRjK2rT378at1hBAYg/0IBEHHRrEirwMlkQAR4lXrWGPlSDWqiwh8CAVaLkdn/0HEa6NeE69ap713AqO/gJpKRr0pAiRNRe8v4Deb+K0OgW3T9BQqSyF2q4Zkdah7/ZBqMfSqPuSN62mKaRK2i1Eq4LhFlgJIj1ioukzCdqmh0ZRMCofNoyRF7tTjE81I6MCKFtJKtzm51nBZqES9QYWCjl9xuzv7Tz1fliSCIDKklOXod5/LaoQCpmbbiBA6nRDDgGRSxTIVmq2oh6hthyiyRDrls1Rxu2pOLrNzNrqm0pfXUS2Zet3DtkNyWZ10SkMQ9UH9ugRsadBEfVxix2M1ioWoaT0IoixEux0t+gf6TUaHo8+Bqsg8uLPCrj1NtuoKiYRCJqWyb3+LuXkHVQNV1XD9EKfi4zkhA/0GmzZmePTxOq2OTyYls1SVcN2AdhvCrqT14IBJox3JUZumgu+L6DPSfVPnsnqkuHegHQcZMc8NXdfZtm0bd955J+95z3t6x++8807OP//8E3hmrzySySR/+Id/yOWXX46qqmQyGS688EIuvPBCWq0W/+f//B9uu+02zjvvPAqFAu9617u44IILeN3rXoeiKDz88MO8+93v5k//9E/5kz/5k5dkgAGRP8bTeWQcYmxsjB/84AfPOGbr1q3cfffdx/DMYmJgtJyg0fT5j3sXaXd82p3oj63rhuSyGv1Fg737W4RC4PmCclYjlVSYmGyjKKArMkKSmFtwoLsLmEio5DIaIFGpu8wuOCgKXZduiTCIdr+LeYOxkYAn9zaxnQAJCU2VyKR1OnbI9KxDoxWQz8oIAflsNzCpRu7fyCAj0Wr5kFQp9ZskuiZ4SxWHMISVYwlURYrKPgblbnmSRKcTNXC3mh6ZlMpgVz623QnIpDUyaZUHd1R7pmDNVoDvR30rhqFS6reo1j1MIyrbMHUZz4OO7RIKweiwgQBsN8BxfBRFRlVlLFUi8EN8AZ4XMjHZJpvSWL0y2VtYQSS/Wam7jJSjsjR1xQoSfhvvwBRVoSMfmEJfmEdoGjNqkao3SEfPkOjvI9F0sTRB1vGRbAdkGWOggLtYJWzbhHoUeCDCaDEehnhzC0iqxvz//SmdA9NImoZi6kiGjnB9ZFNHtvJ480u09x0ktWYMY2SoJ8UKkSGdPTVH/ZEn6ew7CH6Akk4g6xpeo0l770H8ah0tn0WEAc7sIu78IubQAPbMPErKwhzqpzM+ibVyGHt2nqDRIjFaBl1DOA5aLoM7t0DouPjVOomxYZKrR5BUDWd2gUZXhQtFxRot0zkwRdBoIVtmFEwpCmFCo4lBe9FGUWQMPFQRoOUyKKlkV9I2cvR2F6sErQ5mqR8ASY2kayMfEgmtmMdv2czvmaMip8F1MC0N2VSZ3DdLGBpoI5sYGhtDntOQ9u0lbLXQEwnqdpRF0BWBv1hFLwwipZf3t+QykerZ7LxDsWDQavkEYRQwCAS+J3C9kCf31cku6jhOyOycHfX8JNUo8E4p1Jse+axOwlJIWArtTkguo5NJPdWEnU5qXfU0CSEkJmc61OouCUvBcXwkKTLClJUouKk1XOYWHAb6DBQt6tM6JJmraTKtdnDE940sQdJSWDWWxPNCmu0oi6qqoGkSpqGyZ7yFZUggyzhOSCFvcOBgm117G6xbnaJjh1TrHkgSoaCXbfGEYHbBIZfXGRmyGN/fZmq2Q63h43s+nidw5IBUSqNcNhkZsti3v4WmygQBqEdZ+UuShOO9sJLAZyIOMl7GXHnllXzoQx/i1FNP5bTTTuOrX/0qExMTXHrppSf61F5R6Lr+tDvxyWSS9773vbz3ve+l0+lwxx13cNttt/G+970Py7J44xvfyB133MEVV1zBJz/5yZdsgBET81JH02Q2b8jQaPo8uKMGAkxDZqTrmCtJUfPlwRmb/oLBvok2zXakx99sBtTqNkODJmPDFrNzDvlcpPykadFirL9g0Gz6zM5F7tmqKvd2YaWuu/eWDRkWqy6+K1A1mbkFF9v2Gew3kCQwdBnbiczmkgkNXVdpNAIMLSAMoTxkocgSXhCVKbleQKslKA2anLIlxwM7a4RIDJct2u1IunbatQlDwepVKcJA0OoEBELCcQNWjiboLxg8tKNKs+XTanWzKLKEIkUZICEgm9VIpVTSlsrCkouuRTXyridwHJ/5BR/PF4QhIInIzyOhEgQhHafrf+GGaJrE2lWp3rx4btCV7VSxTJV228UWKqlXn4wyOEiqMIH9pEZCDphJlNhXT2G7Ai+dQzFNkp0KZnWOdtBhrJgguWYENZGkbj+Bkk4SNFv4YUjQbGEMDaAkLALHJmjZUa/CyBCJVSN09k/iLlRQygPIqkro+6iZFGapD60/T2JFGbVbjuQuLFG9byfVBx6hs+8Akqqg5TIY0gBK0qL2i4dxl6pIloHfipzX/U4Hv9akvvMJEqvHqP7iV5grR6Jm8P1TkQRuIoFbraPnM5gjpai8rtkGRcarNvAHbNrjUyipBGoqiWyZBM02Qa2OtnoEvZjDmZnHrTbwBYiNJ9Geq+NkBgnbNiIM0QyL4mCavBWipS2MvvxTPhhhiCRFDeJeICCVQk5Y+I0mWjaNrChQ6KPalFHqVbRWAyUzSjg3iymH+Js2MhtmyHR8jGKOdmcYsTiFmF8AFzy1jZtUUUt9JPrLGMZy/w3DiJy85xfsqCm67RMEgkJOZ27RoWNHPQsPPFxDUyXSaRXDkJmZd1gxkmD1iiQrhhPsfLxOQ/FIJSMp173jLZptD9OQKeQ0HBdanQAhQsJAxjQlLEvGduQo6O/4kWSvEPTnI6WoVqtNs+VjGpHCU3hYf45th+RHj1xKt9oBthOydlUKJPC8qEfk0SfrVOseqUQk6Tw9Z5NOqNF3kAyqJlOpujhOCIQMdkUmXDek2QoIwijjUijohIFg7/4WzZZPMqGQz2nU6j5BEBltmrqMocn0FwwWFx2m5myQoFgwuxshh3710Wc0YSlHXMeLJQ4yXsZ84AMfYHFxkc9+9rNMT0+zZcsWfvjDH7JixYoTfWoxR8GyrJ7Xhuu6/OhHP+Iv/uIvOOWUU+KehJiYY4CqymzemOk2MCskLJmlqs+e8VbUxF11qFYddvmCZFKhv2iQzeg0Gj4jwxa5jMrUdAckidGyxfiBNpaldBWcJAb6TCpVh0bLI5PWCQW4XkCz6QOCgT6T12zJ0mwHPPhwlTAUrF+TxrJk2nbI/LzNQL9JKqmwUHFJWgq6JrFuVZJqLWCsbGF1MxiOExIEMkEoWLsyyehwkskZh1rDo9WMSp/6ipFTdxAIkgmVyek2B6dtxoYtRssJBvvMnsqPEFDI6+SzGpomd3tSAuoNH88PKeZ0tp1cYNfeGjsejRyIQbBnvI2qQa3mEQqBrin4Xkij5aOrMqmEiq7LNBselqmQTj+VEbCdSNErlVS6BoBduWpNQx0bJTMyzOzqLchLe3jyYZtG3qQyU8euN5EcBUk2sbJ5kmOvZmhDgGLPEIYhSjqFmkog9+exJ2cxR4bIbNmACAK8So3+t5yOCELsqTn0vjySphC4Lt5Sjcwpm9CSCTqzCxCE6LksqQ2rkSQJv9li6Z4HcGYXCF0Xc3QILZsmdD3sgzOErodQFezJGfShQYwVZSRZRg0zBI02zUd3Yx+YRrFM3EodvZBBRKoEpDavASGh5dLofQW8hQpBK3I/F54HgF9v4C5UkE0DNZ2MXMYrNYJWB2VkmNmOyWSlymx+HUuqT3n/T0gES5ijwyTSOvg+9aUaWn+CgVyOxKqx3t8VYVocaGqMP+gw25QRqAx2Sow09tHvBUiBTyeRwzayqEKmrudwzDJhoshSOguZLAZQq3v0FQ2eqBTQsimkWg2p1iK5Ik12tI8qFoWMQSH31PtAiEiMYW7Opm2HVGptOh2fjh0wPtEinVLp7zOp1T2Qob8vctl2nIAgEOza20DTJMoli2rD48Bk1KMky1E/VtAR9BcNGi0fTQPXBc+HjueTsBQkYKhkYWgS6aRKrRkF0smEiizLKHKbRtOLsh9K5ImTSUcSsJIEG9Y9s+qYpsq4rs/UrI3vC5IJBdNQCIIQCYHjB4RCpVS0kBUHxw7IpFX6i5E7eRhGGxUSoCgSphFJDc8v2jy4s8pwyeyWgSkUctFnfm7OoV73yWZ0CnmdwQGLJ/e1SKf1Xr/GIeYXXbJplTUrUy/i2/XoxEHGy5yPf/zjfPzjHz/RpxHzPNF1nd/93d/ld3/3d0/0qcTEvKzIZTRWr0jx2JN1ntzr0Gz5KCrU6wGVqkPbDphdcOgvmthOSDatkc2olEsWqaTK/b+qkE6pDJUs6s2onClhKei6jKpKpJIahqEwNGBRq3t4viBpKYyWLdatSbF2ZQohRSUXcwsOQSBoNAPKAyaSEJE6lA+ttoulmwz0RZKyqZROEIDrBGTTKiINM3M26aTGpg1pshmVbFqLmsO9qAxMkiCVjPpDavVoQXXIsyKdUvF8Qa3h0rZDLENhpGz1nIgBLFPF90OWqlHzeLXmMrcQ1cKvGktQyGuEYVR6taNRw2mHWJaE5wsEIZ4XUmtGO68JS2HFSBK7E5BNa9QbHhMH20zNdNA0GUWW0PXlBmFhCLJpMKEPM+scRPJdkvkkadEG38cT4BsFwoECj8oSK9YlsB99Aj2XRngBvl0nvWktqfWrQYLFu36JWR4ksXIEr1Kjc2AaEQq0bIb0SWtp7HwS5+AsfjaFv1QjfcYp5M/YhjFQBKAzMY07v4SaTiJsB20wKi2SdQ1joEDlvp3g+yArEPgccn0LwwC/1SK0HXwJlIRF6Lh0Ds6CBEomTeqkdVhD/bTHJ/EWqjjzi7hzixCEKH19iFyBwNDRMxJBq4NXq2MODYCsMrV7kUd2+Mx1NDpammkpjY+Ku2IbI/sfJNw9jm2ZpPMmimVQx2LFlo1YK8pAJLf6yJzCv8/laFQ6ZIoJZEmwWwwyI2D93BR9XpWJTJ49bUFLW4tf6iPTnyaX1fFaAfMzNvmciqJAOqXTaHocrAWEJBkdKqKvzbPkRI3Wa1c95eQNsLjksvPxOvWWj6bKpJMqSDq1msfB6Q6uG/ZUz4aHTEaGE6STkZmk64UkLIUHHq4yMdnGtkPCUCDJ0FcwePXmHKmkwlLV45HHoyxCJqWya2+DWt2n2fLRFBlNkQgCKOY1VDV6Tx8qqVIUiUbLJ2xEJYV+IJietcmkVN56Zom1Kw9vYY9IJhTSSZVGy6eQ01lYdHGcgL6CEUlqV10QEn1dNa16wyeXDRBBJIO7sOTSagXU6lFplmX+mvN6ZAnOwoLD6acW6HRCdu9vsW+/g+1GmxCSIlFveExOdyjkNLZszDA95zBxsE06paGo0feQBJx1Rj/F/LH3y4iDjJiYmJiYVwyRrn6SparLvokWui5Tb7h0nJChIYswFByc6kRN3RJksyprVz61KDJNhVrNQ9dkVq9IkUrY0YKg7UcOv/0mm9an2bwhS7Pl4bohyWTU+5BMRH9yHTekv2jQ3zUGFES7nQtLLgcn27hBiKHLDJUsGk2Pdjtgy8YMQUCkHtOJNP8ThsIZryv2diALOY3ZBYfBAfOI69a0gPVrUpy8OcfcvM3kjE294VGr+YwOm1imTK0elZUcEp8QIsR2QooFjbe/pcRiJZLtfNXmDIXcUz/DdQP2jLdodwLCMCSd0HB98IOQMBCoSrTL/JqtWSo1jwOTbeYWHXw3JJNUabsBHTtECIXpuQ7Jbvaj3vDRNIkF2cQaKOLUmyT8Dp5lErTbpAo5XCONpEDNkaipWYob1pDZuh4lmcCZmcerNQg6DrKukhiLGq4Vy0SSZfRcBm9+Ea2/iJbLYK0ewSwPRvLBW9ZTOv+taJl07zo7B6dRUgkIugaLh5WcHOrZcGsN1EyKsGMjRIiEjDe7iN/soBSyhB0Hv9lG1jQkJarHVxMm9sQkqXUryL12K369SXP3BJUnD9JJKBBqNCsBkmJjGgrZtEHYXkAyLSojG3lCDLLQksnmDeYmBbXZDrIUcDC/jqpeYKw9waDSoqIqlDYM4RTLyCdt7pnhTc3YPLSzjtZfZFSfQ7TrKKZOJimz6KZ5WFnD2JotNMwCiwcd0n1p0qZKxw5YqriUBkyirFaTpSWXoSGr27MgcJzI2HHPviav2Zpj9crUEYvZ6VmbuQUHIWCgz6DVCUgnVTRVIghCWp2AjhNQLpmsW53ufY4MQ2ap4uB5Ko/vbrJRSlMetMiktW6/kks+qzNStsjnDIZLFgem2uze16RW87HdkP5+E12TmJuPsoCLFZdkQqFjB9S6Td5CCEwzchNPmgqmIfdKm1IJ+ahVBqoqM1K22PFYnabuU6m5mGYk96yqEguLDgP9JooioyjQ7rgsLLrRhsagRbUeuYO3OwEDfUe+fscJMEwZ1xFIEgShQAb6+3QMw0JTJdodn8Ulj1xW4+RNOUqDFj+/b5HxiTbTczaqKjM6ZPKWNw7w6q35o39hvkjiICMmJiYm5lkZHx/nv/23/8aPf/xjZmZmKJfL/Kf/9J/49Kc/3fM0gUjK+LLLLuPHP/7xMgWxw8fs2LGD7du388tf/pJCocAll1zCn//5nx+3ksAwjHb6N23IEIawa0+DwQGVhKUyPdshndJQNYl8Vqde97tN0tHCO5NS6XQCOnbkrjtSTjA4YEYyk35Io+mzbnWaQj4qUzgaqiL1dPQPH2NZCum0ytyCw8xs5Iq97eQctarHYtVDCEExb2CakVLMSetSrFmZ6s3byHCChYrLUsUll438BYQQNJo+didg7cZMlJlJa4yNJHHdkOnZDom9CutWw/2/qjA166CqURWV50V12ls3ZRkZstizr4WuS+QyxrLraXcCinkDP4ia2gUSlimTVhV0Q0GWBIN9BuvXpFmquPzrT2apNzzyeR3dUKjUPTJpjbFhi2rNZ37RJtU1ESuXTGZmbUJVxeovkDAg9H28pRp+s4Xidai3FCzTpVqBtW85mfTm9ZE799YN+K02wvORTYPKzx/EnowUF2VDJ3XSGpqP7cGZmUNSZPylGmEhR/qkNeRe+6plAQaA8P2oh0FRkGQJ0XUGP4SWTuLOL0bGde2QoOMgDIG3VEeIACkUyLJMYnQIc0UZWVXxWx3chUXcSh17ag5F15B1nepCi7anQCaHZmrIYRthpLDbLl6lRsYwqCzZTK8dIDD76e+XmZ5pU220ME0FTZEQgOgbYJdTxOmXySRlcmsLSJre6/71A8HufU3adkBxMI0+aOFWalFfSSgolFIcbBvs15KsHUuxd7GKYSpdxTWZZstnseIy2K+zbz8YpkIxpyPLEmtWJMlkVISIFvGFvHZEgOH7ITMLNh07ypblshozsw6Nlk+n4+OHkRJSEMDQoNkLMCASWGh3ogDVMhWyGa1nKFfQddqdgPEDLQb6DAp5HdNUWLc6jaJIPPxojaFEVIbldpXhOnYQGXU6kUmdYcjMztsYukIhqVIeNBgaSET9PKZCpeby+O4mW07KdQOt5YyUE3TsyLBzqeKi6RK2HZBKKBTyOpIEjaYXCTO0AgpZwcrRJMmkSq3hMTxkYT5ao1LzKOYj40GBwHFCPDfKPuoaNFsB03M2mYyGeViviyxLaErUmP74ngaVqsfmjVlevSVHq+3jutH1HjIPPDy7dKyIg4yYmJiYmGfl8ccfJwxDvvKVr7B27Vp27tzJRz/6UVqtVk+GOAgCzjvvPPr7+/npT3/K4uIiH/7whxFC8OUvfxmAer3O2972Ns4++2zuvfdedu3axUUXXUQymeSqq646LtdiOyEdJzKLm19wkGWpVyZkGgqyBIEflVwEvqBaixbBENVErxpLslRxSafUqBxJkXCckFrDZ6Rs0Vd45rIDRZEYHUrwq0eqeGm1J6cryxKFnE4QCEbLJm84pdA15BNUqi4LSy6uG5Cw1G6/iLosMBvoM9i8McPuvU1mZu3ecctSOGl9epmqk6HL3UZzHVmSKBZ0zj69nwPTNvOLNiKEvqKBYcisHksShIK2HQU3v47jhqSSCo4blX6sGk2gqhKSJCPLkVxvPm+QzWj4vmCwP1K8cdyQ/oLO2EiCWt2l2QrodCIVrledlGXThjSmIbN3QsXQZZrtgFTKRNE0lLKO30rTqrWRmwH9q3MUXl8ivWVk2ZyoyaeuObFyhM74JIHtoJgGWi5D9pTNuAsVWvsOkEglGXzHmSTWjC173iH0/iKNR57EGi11Xchr6P1dIdYwRMmkMAb6sKfmSKweBknCm1+M3LCbHWRdQx8oYo6WUIyuF0K3QR0i13Mtk8KutqiP28gnhyTySYIDBwlmZ6E+jSbAlTTcXIFgZCX0l6AZIkmCxaqHZSh4viAQEAaRiIBuKNQ8BU3WqbQEpQEJq9vk67ohtYaHLEWZAUkyMIcGIpUpIQiQ8HZW0YXUEwGIlMvoGkLKVGserhuQSeusXZli60nZSB71sN+D54dMzTisGE0tK4kDespR2YzWywC02j5zCzKOK7AMQYiE/GubEI4TIkTkkZFKqhj68pKihKVQq7nMLzrLgvlq1WNo0KLe8LtSzjLlkoXvCSZn2szO2ZQGTIoFo/e8/oLB8JCFdVg5YTqlsbDoMDnTOWqQoSgSG9amGOjTcT3B/ELUc5XNqPQVDGbmbFRNxvdDTF3mpPXR5oTnh8hSJJJw0oY0u/c0mZmLslhdI3hMUyGVUKJAaM7G8wS5zFPXHzmYB4yULdqdgPnFJps2pHtzdKjx3vNDpmZtyiXrqNfwYomDjJiYmJiYZ+Xtb387b3/723v3V69ezRNPPMHf/d3f9YKMO+64g0cffZQDBw5QLkf13n/1V3/FRRddxOc+9zkymQz/+I//iG3bfP3rX8cwDLZs2cKuXbu46aabuPLKK582m+E4Do7j9O7X6/UXfC2yLHU19ek1cx4ilVDQNIlmM3LM1lQZ24kkKqs1j4SlcsrWLIsVj4PT0YJECEgkFNauSrF6RfI57QiWBk0WliwOTtukkiqWJRMEglrNwzQVNqzJ9JSrVEVaVl71TAyXLPryeqRI44WoSqSqk0gc/c99PqdTyGssLroMDhhsWJtmw9poB7/diYzQyqVI1crq9p50OgHJ5OE7ytG/lqmQTkbNp54fGb8ahkwxr7NiJNGTyTSMaFF3OK4bUG/6tFoevg+veVWeYl6n1fbJpjXKpQSPPlmn3nCxLAVJAlcxaKsyw+sNBlel6B8rPGM2zBwpkdywiuaje1DTCdRMChEEiCAgsWqM/OtPJrlm7Gmfnxgr03pynKDRJrFmjMYjT+LMzKNmUniVOrKmkly3EknXMPr7EEEAQqAPFJEtg9ALMIcGen4WAIQhwg/QizmE55N9zWbcRQd7LkE6dFH6i6hDJcJ6HVFvgCQh6QmcRgt94ybMpI7ccmi2A8JAoGgyigqNpg9ERm66JqFpMtVG5C4/0G9GfQ9EUqtqN+sRdiVjgShAkCQCN8D3QwwtUkvL5zQkJKp1j0bTi7IMfki230BVJCxTWVZG1pt7Q6HTCfC9EPWw7I+qyhTzkS/LIdEmRel6wSSUyESu5pJKqDhu2Ntxt+0AWQJFk6k3PUaHraOqI6maTLuzXGK21Qko9RtoalRuZZkqui4xOmwhSZGHzlDJJJ/TWViyMfWoB+vwAAMgCASaFn0eng5JkijkDd6wrcCDO6tkMxqWqRAE0GgHWEZ0frmMRl/BRAjB4qJLIa8xXLZ43WuKaKpMs+lHEtZIpJIKmYyGrkWbBw/trLCwZHc3PMD1BO12QC4bKWzt2tvAtv0jgjCIyjQVOZLm/k0EGcc+NxITcxTuvvtu3vWud1Eul5Ekie9+97vLHhdCcP3111Mul7Esi7POOotHHnlk2RjHcbj88svp6+sjmUzy7ne/m4MHDx7Hq4iJiTmcWq1GofCUpdbPfvYztmzZ0gswAM4991wcx+H+++/vjTnzzDMxDGPZmKmpKcbHx5/2Z914441ks9nebXR09AWft2VGC5t63UPT5K5JVoSmK2RSGrqu0Gp51JtRX8X0TIcgCNm4Nk0hb7BudYrTthV5/SkFXr+twBu2FTlpXfqoO/1HQ9dkNm/MsmVjGrW7KHSckJHhBK/ZkmOg79kDiqfDMBTKJYuVo8momftpAgyIFpgb12ZIp1SmZjpUqi71hsfMrE2j4bFmRZKBvsiVuDxgYuhRvbrrPbWwsrr1+Ujwmq05tmzMctK6NBvXpjhpXZpcRqNcihYwmiojwbI5B9B1hb6CQT5nMNBn9BRwkomo6T6b0RgtW0iShOuGuE7U4NtX0CkNmvQXjWfNIMmqSu7UrRTOOAUlmcCr1vGbHczRMn1nvu4ZAwwAfaBI9tWb8FttglYHa3QIJZmgc2AK4fukNq5h6L1vZ8VHP0BizSiJsWEKp59CdtsW1GQCRZXR8xl6kl6Au1RFtgySq1cQ2FEQHQQCkcmhlgYQc3NIpoVaLqNt3IC6fh2aZSJyeVIjA8hAJq3RbgXohgyim2EwFVwvpG0HCCTCIKTe8BkZTrJuZbIXjJmmwnDZQoKj+j3YTgiSRCat0pc3UGSZbFZj5YjFipEEY8MW5VKC4ZIVZToyR3+vuW6I1m2i/nVWrUiRyUSGcIcjiIITy4oyhrmMysyczfhEi0rVJZFQCbvKaU9nIud3g9rDMQ0FIUmsWpFgbDiJLEcBdSgEm9ZneOPr+3jHW4Y458xBNqxJk81oy8q0DtGxA5JW5NPxbAz2G6weS1Kre8zO2chK1Bw+NdvB9yOvnmrDY2qmQzqlsnFtBk2VWbcyyaZ1GUaHE2xYm2bj+jRDJYtCTuek9emo/2tjlkJeJwzCXkC1YsRizcoUhqHgOgLTePrvJVWTcd2nD5ReDHEmI+a40Gq1OPnkk/mjP/ojfv/3f/+Ix7/whS9w00038fWvf53169fzF3/xF7ztbW/jiSeeIJ2OdtWuuOIK/vf//t/ceuutFItFrrrqKt75zndy//33oyjHXt85Jibm6dmzZw9f/vKX+au/+qvesZmZGQYHB5eNy+fz6LrOzMxMb8zKlSuXjTn0nJmZGVatWnXUn/epT31qmd9MvV5/wYGGJEmMDidYWHKxHQESuF7YbZYM0DSZkzdnEQImp6PeiFUrkgwNRLubhzBNBdN84d89hh41j4+WEzhu2C3bOv7fZbmsxrZX5ZiZt5metQkCQblkUi5FpV+HNPVHyhYz8zYHpzo0Gj4CH1mGVstDAP0FnWLewDAVDFPB80LmFx36igYD3SxMLquRTqvU6t4RPSthV2Vnw5oUmvbUomjNyiSuFxKEgqBbBgJgGTJ9RZ1VI0k2bcgc4b1wNGRNI7VxDYm1KwjaduQJkkw8p34gSZJInbQGLZ+hs38SZ24RfaBI31tPj0qMhvqRdT3KjIyVae87iFutk9Y0hOvR2r0f33YIHRdkGb/RQpIhf/o21HQCLZ8FoveFaqiw/iTkMCScnY1SDrKMcFxcNYH5qi2MrOtnfmeNbEZG16TI1d2Q6NiRq7XlqmgaJEwZxxFsXJ3mzDcUjgg6V44k2VNqsW+ijUTkhi1J0G4HVGsewyWDVCpymS/mNeYXHLJZjWRSo9H0SCUVkGCg3zyqM3oYRr4uG9cu/70eor9o8IZTCvz4p/PsP9AkldaQhEQoosX36LBFedBECFiqerhegGWq9Bd0LEth/8E2R/vBrhsiydIRGcChQZOZ+cigcLhsMThg4HkCpZsFcJ2QlWMJMimNk7fk+NFdc9TrHul0VJ4YhoJaw0NXo4zLYP+zZwBkWWL9mhT5nMb0bCS6sGpFgpPWpQl9geOFKIrE6rFMz2wTIJFQOXlzltKgydR0B9cLSSZUhgZNBvpNVEVixUiCuXmHhCWjqlFj+aF5drv+NIb+9Mt91wlIJo+t0/ch4iAj5rjwjne8g3e84x1HfUwIwV//9V/z6U9/mt/7vd8D4Bvf+AaDg4N861vf4pJLLqFWq/G1r32Nf/iHf+Ctb30rAN/85jcZHR3lRz/6Eeeee+5xu5aYmJcT119/PZ/5zGeeccy9997Lqaee2rs/NTXF29/+dt73vvfxkY98ZNnYoy3WhBDLjv/6mJ4/wjMs9AzDWJb9eLH0FQy2npTl8T115hcjWUdDl8llVUaHLdJJjXrT5+w39rN5Q+Y30hR5iENNtCeSREJl9YoUq8aSCMEys65D5HM6J2/OYegyM3MO9YaH64eUBizOOLUP3VRYWHSp1CNfB1mGwT6TjevSvQBA12TWrEix47Eai0tOrw6/YwdUqi7FnMZIefmCR9dktmzIMDxocnDGZn7RwfdC8jmNkSGL/qLxnAKMw5FVFTnz/H0BJEnqBhQDT/u+lRQFa6yMNVZGRCYH1B9+nIP/8B2cxSqSiJrIzZFB0pvXk1hRxl2okhiLMoDZjEYxpzO/BAPbTiFcWCRcWIQwIEylcaQ0q08eYqDPZHTIZfxAi9GRyJm92fLxg5BazSeVVBkuW6TTKqosce5bSqTTR2Z7CnmdN72hiCzDvok2s/MOEPUqjAxbnLI1z8KSw9xi5HotSRLzSw6NZmT0ODZssWI4ydaNKuMTrSN/rxWXQk47okTucF69JUfCUnloZ4XFqoeiQCahM9hnsGZVipWjT/XIHFroy7JEEAhkSWL8QIt0WutlFVptn3rDZ+VIgkJu+TUP9BsMDZpMz9rkslrkldGVle50fNavSZFJRT1YJ2/OMb/gsuOxGrWGh2HKyEQZuVRSZe2qJP3F5yb9ekh9brDfjGR2pafeO79+/3AMQ2FsOMHYcKJ33ct+fzmd0eHI1TudljAMNerJ6M7BhrVp6g2fRtMjndKWPbfdiUw7X0zm9JmIg4yYE86+ffuYmZnhnHPO6R0zDIMzzzyTe+65h0suuYT7778fz/OWjSmXy2zZsoV77rknDjJiYl4g27dv54Mf/OAzjjk88zA1NcXZZ5/Naaedxle/+tVl40qlEr/4xS+WHatUKnie18tWlEqlXlbjEHNzcwBHZEF+05S6mYk1Yyn27W8xv+QgSSB3nY83rEmx6jn2WLxckCSJZ9rUH+gzyGWLLFUiV+JDdfrJhBrVz9e9qB+g26eSz+pHlMiUSyaSBPsOtFhYcggD0A2Z4SGLNSuTRy1NURSJvqJB33PoSzlePKfsR7dhJXvySUiyxML/u4fQ9dEKOfRCjtBzcWYXSW9eh1keAKLF6NrVKVp2jZkln0y2H6040DUv9Cj1W4wMWSiK1A3gZCanO6xZmWRf17yusDZNqd9AdM9xw9o0K0eObGY/RGnA4l3nlpma6URysiEUCzqjZSvyfWma7BlvMb/oYJoyA0WD8mB0HitGLQo5A1mGdEpl38Ty3+tIOSrdOdrv9XDWr0mxYsRiseLieQJVlcjn9KNm9w4ttH99DmbmbCSipu8Na6Kg+dfff4eCVsuUmZ51qNU8JCk6980bM4yWn5onTZV521mDjJQtdu1t0mxGssr9BYOR4cRz7sF6uvN/uvvP9XmHjm1cm0bXFCZn2svmYP3qqE/swFSbJ3Y36dgh6VSUqWq2fDw3ciU/3BzxWBIHGTEnnEMLjl9fYAwODrJ///7eGF3XyefzR4z59QVLTEzMc6evr4++vr7nNHZycpKzzz6bbdu2ccstt/T8FA5x2mmn8bnPfY7p6WmGhoaAqBncMAy2bdvWG3PNNdfgum5P1vaOO+6gXC4fUUZ1PDB0mdHhBKPDCWw7oNmKGmaTSfUIA6yYCF2Tj9okKkmR7G8++8w7u5IU+WYM9JvU6x5BKDCMyITteMkYnwgyWzei5XO0do/jzi0Rug5aNkPulC0kVo8uk8PN53ResyXHgak28wsOjiO6ssUZRoasXpmepsmsX5NmbDjB1pOyLFVdqjWPetNHiEiCeGQowfCQ+ayLYV2TWTmaZOXokeZymZTGqzdnaXTd5hVZIpPRjlCKerG/10P9RM+Hw+fg0Oc3lVSfsZTRNBU2b8iyctSPGrelqLdFP0pGUVUktp6UZf2adCQ5K6LM34kobXw6VFVm/ZoUY8PWUb/DVo0lSVgqB6Y6kXO6gGw6ygQODZq/sc9dHGTEvGQ4WgnFs73xn8uYmJiYF8/U1BRnnXUWY2NjfOlLX2J+fr73WKlUAuCcc85h06ZNfOhDH+KLX/wiS0tLXH311Xz0ox8lk8kAcOGFF/KZz3yGiy66iGuuuYYnn3ySG264gWuvvfaEf5ZfbI9FzPNDVaSn9RJ5uWKNlDCHBwlabRACJWEtCy4OJ5vRyGayOE6AH0TlS09XVnfovdtXNBBCYDshIhTohnJEIPBCkSQpKiN6liqzE/V7fSGf32RCfdYMyyEMXcYovHQyaUfj6eZAkiRKAyYDfUbUzC8EhqEctRH/WBIHGTEnnEMLlJmZmd7uJ0QlFIeXWLiuS6VSWZbNmJub4/TTTz++JxwT8wrkjjvuYPfu3ezevZuRkZFljx2qTVcUhX/5l3/h4x//OGecccYyM75DZLNZ7rzzTi677DJOPfVU8vk8V1555bKm7piYlzOSJKGmjswWPB2GofB8lraSJMVZuJijcrzFJV45haYxL1lWrVpFqVTizjvv7B1zXZe77rqrF0Bs27YNTdOWjZmenmbnzp1xkPEcGR8f5+KLL2bVqlVYlsWaNWu47rrrcF132biJiQne9a53kUwm6evr4xOf+MQRY3bs2MGZZ56JZVkMDw/z2c9+trfQjHl5ctFFFyGEOOrtcMbGxvjBD35Au91mcXGRL3/5y0c0bG/dupW7774b27aZnp7muuuuO+FZjJiYmJiYY0ucyYg5LjSbTXbv3t27v2/fPh566CEKhQJjY2NcccUV3HDDDaxbt45169Zxww03kEgkuPDCC4Fo9/Piiy/mqquuolgsUigUuPrqq9m6dWtPbSrmmXk5OTbHxMTExMTEvMQRMTHHgZ/85CeCyFtn2e3DH/6wEEKIMAzFddddJ0qlkjAMQ7z5zW8WO3bsWPYanU5HbN++XRQKBWFZlnjnO98pJiYmTsDVvHz4whe+IFatWtW7/8Mf/lDIsiwmJyd7x7797W8LwzBErVYTQghx8803i2w2K2zb7o258cYbRblcFmEYHr+Tj3lFU6vVBNB7X8bExMTEHB+e6/evJERc4xAT80rlz/7sz/jXf/1X7rvvPgCuvfZavve97/GrX/2qN6ZSqVAoFPjxj3/M2WefzR/+4R9Sq9X43ve+1xvz4IMPcsopp7B3796nNVOLiTmW1Ot1stkstVqt11QeExMTE/Ob57l+/8Y9GTExr1AOOTZfeumlvWPP1bH5aHLDhx6LiYmJiYmJiYmDjJiY33Kuv/76roHW098OZSoOcSIcm2NiYmJiYmJeOcSN3zExv+W8kh2bY2JiYmJiYl6axEFGTMxvOa90x+aYmJiYmJiYlx5x43dMzFG48cYbuf3223n88cexLIvTTz+dv/zLv2TDhg29MUIIPvOZz/DVr36VSqXC61//ev72b/+WzZs398Y4jsPVV1/Nt7/9bTqdDr/zO7/DzTfffISZ2fFgamqKM888k7GxMf7n//yfKIe5zB4yRAyCgFe/+tUMDg72HJsvuugiLrjggp6Eba1WY8OGDbzlLW/pOTZfdNFFXHvttbGEbcxxo1arkcvlOHDgQNz4HRMTE3McqdfrjI6OUq1WyWazTz/wNy1zFRPz28i5554rbrnlFrFz507x0EMPifPOO0+MjY2JZrPZG/P5z39epNNpcdttt4kdO3aID3zgA2JoaEjU6/XemEsvvVQMDw+LO++8UzzwwAPi7LPPFieffLLwff+4X9Mtt9xyVBnhX/8a2L9/vzjvvPOEZVmiUCiI7du3L5OrFUKIhx9+WLzpTW8ShmGIUqkkrr/++li+Nua4cuDAgad9P8e3+Bbf4lt8+83fDhw48Izf03EmIybmOTA/P8/AwAB33XUXb37zmxFCUC6XueKKK/iv//W/AlHWYnBwkL/8y7/kkksuoVar0d/fzz/8wz/wgQ98AIiyCaOjo/zwhz/k3HPPPZGXFBPzW00YhkxNTZFOp1+Q4MChnbg4E/LCiOfvxRHP34sjnr8Xz4uZQyEEjUaDcrl8RNn14cQ9GTExz4FarQZAoVAAIsfymZkZzjnnnN4YwzA488wzueeee7jkkku4//778Txv2ZhyucyWLVu455574iAjJuZFIMvyMSk7zGQy8SLlRRDP34sjnr8XRzx/L54XOofPWCbVJZawjYl5FoQQXHnllbzxjW9ky5YtwFN+EEfzizjcT0LXdfL5/NOOiYmJiYmJiYl5ORJnMmJinoXt27fz8MMP89Of/vSIx47mF/FspRvPZUxMTExMTExMzG8zcSYjJuYZuPzyy/n+97/PT37yk2WlGYfUmI7mF3G4n4TrulQqlacdExMTc2IwDIPrrrsOwzBO9Kn8VhLP34sjnr8XRzx/L57jMYdx43dMzFEQQnD55Zfzne98h3/7t39j3bp1RzxeLpf5kz/5E/70T/8UANd1GRgYOKLx+5vf/Cbvf//7AZienmZkZCRu/I6JiYmJiYl5WROXS8XEHIXLLruMb33rW3zve98jnU73MhbZbBbLspAkiSuuuIIbbriBdevWsW7dOm644QYSiQQXXnhhb+zFF1/MVVddRbFYpFAocPXVV7N161be+ta3nsjLi4mJiYmJiYn5jRJnMmJijsLT9UzccsstXHTRRQA9M76vfOUry8z4DjWHA9i2zX/5L/+Fb33rW8vM+EZHR4/HZcTExMTExMTEnBDiICMmJiYmJiYmJiYm5pgSN37HxMTExMTExMTExBxT4iAjJiYmJiYmJiYmJuaYEgcZMTExMTEvS8bHx7n44otZtWoVlmWxZs0arrvuOlzXXTZuYmKCd73rXSSTSfr6+vjEJz5xxJgdO3Zw5plnYlkWw8PDfPazn+WVUG38uc99jtNPP51EIkEulzvqmHj+nj8333wzq1atwjRNtm3bxr//+7+f6FN6SXD33Xfzrne9i3K5jCRJfPe73132uBCC66+/nnK5jGVZnHXWWTzyyCPLxjiOw+WXX05fXx/JZJJ3v/vdHDx48DhexYnhxhtv5LWvfS3pdJqBgQEuuOACnnjiiWVjjvf8xUFGTExMTMzLkscff5wwDPnKV77CI488wn//7/+dv//7v+eaa67pjQmCgPPOO49Wq8VPf/pTbr31Vm677Tauuuqq3ph6vc7b3vY2yuUy9957L1/+8pf50pe+xE033XQiLuu44rou73vf+/jYxz521Mfj+Xv+/NM//RNXXHEFn/70p3nwwQd505vexDve8Q4mJiZO9KmdcFqtFieffDJ/8zd/c9THv/CFL3DTTTfxN3/zN9x7772USiXe9ra30Wg0emOuuOIKvvOd73Drrbfy05/+lGazyTvf+U6CIDhel3FCuOuuu7jsssv4+c9/zp133onv+5xzzjm0Wq3emOM+fyImJiYmJuYVwhe+8AWxatWq3v0f/vCHQpZlMTk52Tv27W9/WxiGIWq1mhBCiJtvvllks1lh23ZvzI033ijK5bIIw/D4nfwJ5JZbbhHZbPaI4/H8PX9e97rXiUsvvXTZsY0bN4pPfvKTJ+iMXpoA4jvf+U7vfhiGolQqic9//vO9Y7Zti2w2K/7+7/9eCCFEtVoVmqaJW2+9tTdmcnJSyLIs/vVf//W4nftLgbm5OQGIu+66SwhxYuYvzmTExMTExLxiqNVqFAqF3v2f/exnbNmyhXK53Dt27rnn4jgO999/f2/MmWeeucwZ99xzz2Vqaorx8fHjdu4vReL5e364rsv999/POeecs+z4Oeecwz333HOCzuq3g3379jEzM7Ns7gzD4Mwzz+zN3f3334/necvGlMtltmzZ8oqb31qtBtD7vjsR8xcHGTExMTExrwj27NnDl7/8ZS699NLesZmZGQYHB5eNy+fz6LreM+E82phD9w+NeaUSz9/zY2FhgSAIjjofr7S5eL4cmp9nmruZmRl0XSefzz/tmFcCQgiuvPJK3vjGN/a8u07E/MVBRkxMTEzMbxXXX389kiQ94+2+++5b9pypqSne/va38773vY+PfOQjyx47mvmmEGLZ8V8fI7pNy09n3PlS5oXM3zPxSpu/Y8HR5uOVOhfPlxcyd6+0+d2+fTsPP/ww3/72t4947HjOn/q8nxETExMTE3MC2b59Ox/84AefcczKlSt7/5+amuLss8/mtNNO46tf/eqycaVSiV/84hfLjlUqFTzP6+34lUqlI3bx5ubmgCN3BX8beL7z90y8EufvxdDX14eiKEedj1faXDxfSqUSEO22Dw0N9Y4fPnelUgnXdalUKst24+fm5jj99NOP7wmfIC6//HK+//3vc/fddzMyMtI7fiLmL85kxMTExMT8VtHX18fGjRuf8WaaJgCTk5OcddZZnHLKKdxyyy3I8vI/e6eddho7d+5kenq6d+yOO+7AMAy2bdvWG3P33Xcvk2W94447KJfLz3kx/lLi+czfs/FKnL8Xg67rbNu2jTvvvHPZ8TvvvPMVswh+oaxatYpSqbRs7lzX5a677urN3bZt29A0bdmY6elpdu7c+bKfXyEE27dv5/bbb+fHP/4xq1atWvb4CZm/F9KxHhMTExMT81JncnJSrF27VrzlLW8RBw8eFNPT073bIXzfF1u2bBG/8zu/Ix544AHxox/9SIyMjIjt27f3xlSrVTE4OCj+4A/+QOzYsUPcfvvtIpPJiC996Usn4rKOK/v37xcPPvig+MxnPiNSqZR48MEHxYMPPigajYYQIp6/F8Ktt94qNE0TX/va18Sjjz4qrrjiCpFMJsX4+PiJPrUTTqPR6L3HAHHTTTeJBx98UOzfv18IIcTnP/95kc1mxe233y527Ngh/uAP/kAMDQ2Jer3ee41LL71UjIyMiB/96EfigQceEG95y1vEySefLHzfP1GXdVz42Mc+JrLZrPi3f/u3Zd917Xa7N+Z4z18cZMTExMTEvCy55ZZbBHDU2+Hs379fnHfeecKyLFEoFMT27duXya0KIcTDDz8s3vSmNwnDMESpVBLXX3/9K0J+9cMf/vBR5+8nP/lJb0w8f8+fv/3bvxUrVqwQuq6LU045pScz+krnJz/5yVHfbx/+8IeFEJEM63XXXSdKpZIwDEO8+c1vFjt27Fj2Gp1OR2zfvl0UCgVhWZZ45zvfKSYmJk7A1Rxfnu677pZbbumNOd7zJ3VPLCYmJiYmJiYmJiYm5pgQ92TExMTExMTExMTExBxT4iAjJiYmJiYmJiYmJuaYEgcZMTExMTExMTExMTHHlDjIiImJiYmJiYmJiYk5psRBRkxMTExMTExMTEzMMSUOMmJiYmJiYmJiYmJijilxkBETExMTExMTExMTc0yJg4yYmJiYmJiYmJiYmGNKHGTExMTExMTExMTExBxT4iAjJiYmJiYmJiYmJuaYEgcZMTExMTExMTExMTHHlP8f3ovK7/UZB+gAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "test_data = next(iter(dataloader))\n", + "\n", + "fig = plt.figure(figsize=(10, 10))\n", + "ax = fig.add_subplot(2,2,1, projection='3d')\n", + "\n", + "model.eval()\n", + "pred = model(test_data)\n", + "\n", + "ijks_0 = pred.grid.ijk.jdata[pred.grid.jidx==0].detach().cpu().numpy()\n", + "pred_0 = pred.feature.jdata[pred.feature.jidx==0].detach().cpu()\n", + "\n", + "preds_in_sphere = ijks_0[torch.round(pred_0)[:,-1] == 1]\n", + "\n", + "ax.scatter3D(ijks_0[:, 0], ijks_0[:, 1], ijks_0[:, 2], marker = 'o', c = torch.round(pred_0), cmap='coolwarm', alpha =0.25)\n", + "\n", + "# Also plot a 2D slice to make it easier to see\n", + "pred_0 = pred_0[((ijks_0[:, 2]>-20) & (ijks_0[:, 2]<20))]\n", + "\n", + "ijks_0 = ijks_0[((ijks_0[:, 2]>-20) & (ijks_0[:, 2]<20))]\n", + "\n", + "ax = fig.add_subplot(2,2,2)\n", + "ax.scatter(ijks_0[:, 0], ijks_0[:, 1], c=torch.round(pred_0), marker = 'o', cmap='coolwarm', alpha=0.25)\n", + "fig.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "fvdb_exec", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/fvdb/notebooks/03_conv.ipynb b/fvdb/notebooks/03_conv.ipynb new file mode 100644 index 0000000000..2484b2bdef --- /dev/null +++ b/fvdb/notebooks/03_conv.ipynb @@ -0,0 +1,627 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Convolution\n", + "\n", + "As mentioned in the previous notebook, `fvdb.nn` contains the `VDBTensor` class and useful Modules such as the convolutional layer `SparseConv3d` as well as useful activation functions." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import torch\n", + "import fvdb\n", + "import tqdm\n", + "\n", + "from fvdb.nn import VDBTensor, SparseConv3d, LeakyReLU, Sigmoid\n", + "\n", + "batch_size = 8\n", + "num_voxels_per_grid = [np.random.randint(1_000, 10_000) for _ in range(batch_size)]\n", + "\n", + "# A list of randomly generated 3D indices for each grid in our batch in the range [-512, 512]\n", + "ijks = [torch.randint(-512, 512, (num_voxels_per_grid[i], 3), device=\"cuda\") for i in range(batch_size)]\n", + "grid_batch = fvdb.sparse_grid_from_ijk(fvdb.JaggedTensor(ijks))\n", + "\n", + "# Some random features of 8 channels for each voxel in the grid\n", + "features = grid_batch.jagged_like(torch.randn(grid_batch.total_voxels, 8, device=grid_batch.device))\n", + "\n", + "# Create a VDBTensor\n", + "vdbtensor = fvdb.nn.VDBTensor(grid_batch, features)\n", + "\n", + "# SparseConv3d of 8 -> 16 features\n", + "conv_layer = SparseConv3d(8, 16, kernel_size=3, stride=1).to(\"cuda\")\n", + "\n", + "conv_vdbtensor = conv_layer(vdbtensor)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Convolution on sparse volumes in ƒVDB is similar to the general convolution case on 3D data with one notable difference: for the `stride=1` case, the topology of the output grid is the same as the input grid. In effect, we only compute convolution at the active voxel locations in our sparse grid.\n", + "\n", + "The animations below contrast this difference between general convolution and this sparse convolution approach, visualized on 2D grids. (Image Credit: [Chris Choy](https://chrischoy.github.io/))\n", + "\n", + "
\n", + "\n", + "| Dense Convolution | Sparse Convolution \n", + "| :---: | :---: |\n", + "| \"dense\"| \"sparse\" |\n", + "\n", + "
\n", + "\n", + "This approach is similar to other spatially sparse convolution approaches used in previous works such as [Minkowski Engine](https://github.com/NVIDIA/MinkowskiEngine) and maintains spatial sparsity in the data as we progress through a deep convolutional network. Using a `stride != 1` results in an output grid with a different topology where striding has been applied; comparable to the general, dense convolution case.\n", + "\n", + "💡 See the [Minkowski Engine Documentation](https://nvidia.github.io/MinkowskiEngine/) for deeper discussions on sparse convolution." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Given this feature of sparse 3D convolution, `SparseConv3d` will make sure that the output `VDBTensor` it produces will not unncessarily create new grids for a `GridBatch` if its operation doesn't change the topology of the incoming grids:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input and output VDBTensor's GridBatches the same: True\n" + ] + } + ], + "source": [ + "# A convolution that does not change the grid's spatial topology\n", + "conv_layer = SparseConv3d(8, 16, kernel_size=3, stride=1).to(\"cuda\")\n", + "\n", + "conv_vdbtensor = conv_layer(vdbtensor)\n", + "\n", + "print(\"Input and output VDBTensor's GridBatches the same: \", VDBTensor.same_grid(vdbtensor.grid, conv_vdbtensor.grid))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Contrast this with operations which must necessarily create a new grid topology as part of convolving the input, such as when striding over a grid:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input and output VDBTensor's GridBatches the same when toplogy changes: False\n" + ] + } + ], + "source": [ + "# Let's try a convolutional layer that changes the topology of the grid\n", + "conv_layer = SparseConv3d(8, 16, stride=2).to(\"cuda\")\n", + "\n", + "conv_vdbtensor = conv_layer(vdbtensor)\n", + "print(\"Input and output VDBTensor's GridBatches the same when toplogy changes: \", VDBTensor.same_grid(vdbtensor.grid, conv_vdbtensor.grid))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Transposed Convolution\n", + "\n", + "When performing strided convolution on a grid, such as in the case above, it is often necessary to perform the transposed convolution in order to produce the **same toplogy** as the original grid at a later stage in the network. This often happens in UNet architectures. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Unlike with dense, general convolution, naive subdivision of the sparse grid we coarsened with strided convolution won't produce the same topology as the original grid! This is an inherent characteristic of the sparse layout of voxels compared to a dense represenation.\n", + "\n", + "Take a look at the following diagram as an illustration of this point. In this illustration of a 2D sparse convolution, a 3x3 kernel coarsens the grid to 1 active voxel. When it comes time to perform the tranposed convolution to attempt to topologically invert this operation, it's entirely ambiguous which were the active voxels that contributed to the coarsened voxel (and its features) at the location of the downsampled grid.\n", + "\n", + "
\n", + "\n", + "\n", + "\"transposed_conv\"\n", + "\n", + "
\n", + "\n", + "Any combination of active voxels might be present in the grid we're trying to produce as the inverse of the strided convolution. To accurately invert a strided convolution, we need to upsample the grid to the original topology by explicitly providing the desired original grid topology." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To accomplish this, `SparseConv3d` can be provided the target output grid as an optional argument, `out_grid`, when performing this transpose convolution." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Original grid batch voxel count we need to match: 49,431\n", + "Convolved grid batch voxel count: 166,878\n", + "Tranposed convolution grid batch voxel count: 49,431\n", + "Input and tranposed output VDBTensor's GridBatches the same after transpose convolution: True\n" + ] + } + ], + "source": [ + "# a transposed convolutional layer\n", + "tranpose_conv_layer = SparseConv3d(16, 8, stride=2, transposed=True).to(\"cuda\")\n", + "\n", + "# providing the original grid as the \"out_grid\" to the transposed convolutional layer\n", + "convtransposed_vdbtensor = tranpose_conv_layer(conv_vdbtensor, out_grid=vdbtensor.grid)\n", + "\n", + "print(f\"Original grid batch voxel count we need to match: {vdbtensor.total_voxels:,}\")\n", + "print(f\"Convolved grid batch voxel count: {conv_vdbtensor.total_voxels:,}\")\n", + "print(f\"Tranposed convolution grid batch voxel count: {convtransposed_vdbtensor.total_voxels:,}\")\n", + "\n", + "print(\"Input and tranposed output VDBTensor's GridBatches the same after transpose convolution: \", VDBTensor.same_grid(vdbtensor.grid, convtransposed_vdbtensor.grid))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's illustrate what happens if we were to naively coarsen the convolved grid to reproduce the same input topology. \n", + "\n", + "If we were to naively do the transposed convolution to target a 2x coarsened grid (to try to match the effect of convolution `stride=2`), this would have most likely given us a grid with a different topology than the original grid with a much larger number of active voxels." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total voxel counts\n", + "\tOriginal grids: 49,431\n", + "\tConvolved, upsampled grids: 166,878\n", + "\tTranposed convolution on grid : 96,630\n", + "Input and tranposed output VDBTensor's GridBatches the same after transpose convolution: False\n" + ] + } + ], + "source": [ + "# Let's attempt to do a transposed convolution and output the topology of the convolved grid subdivided once (to attempt to match the original grid we convolved with stride 2)\n", + "convtransposed_vdbtensor = tranpose_conv_layer(conv_vdbtensor, out_grid=conv_vdbtensor.grid.coarsened_grid(2))\n", + "\n", + "print(\"Total voxel counts\")\n", + "print(f\"\\tOriginal grids: {vdbtensor.total_voxels:,}\")\n", + "print(f\"\\tConvolved, upsampled grids: {conv_vdbtensor.total_voxels:,}\")\n", + "# this won't match the original grid shape we're after\n", + "print(f\"\\tTranposed convolution on grid : {convtransposed_vdbtensor.total_voxels:,}\")\n", + "\n", + "print(\"Input and tranposed output VDBTensor's GridBatches the same after transpose convolution: \", VDBTensor.same_grid(vdbtensor.grid, convtransposed_vdbtensor.grid))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Simple UNet\n", + "\n", + "Now that we understand the basics of convolution, concatenation and training networks with ƒVDB, let's evolve the sphere detection problem from the previous notebook to try our hands at semantic segmentation.\n", + "\n", + "We'll try to segment two different classes of shapes, spheres and cubes, that can be randomly placed in a 3D volume using a simple convolutional UNet architecture in ƒVDB." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### ShapeDataset\n", + "\n", + "We'll define a `ShapeDataset` class that randomly places a sphere and several cubes in a 3D volume. The dataset will return `VDBTensor`'s whose features will be 4 channels: 3 for the world-space coordinates of the voxels and 1 for the class label of the voxel (which we'll use as ground truth and not as input to the network)." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# DataSet that produces randomly centered spheres in a noisy grids\n", + "import torch.types\n", + "from torch.utils.data import Dataset\n", + "from typing import Tuple\n", + "\n", + "radius = 0.12\n", + "\n", + "class ShapeDataset(Dataset):\n", + " def __len__(self):\n", + " return 800\n", + "\n", + " def __getitem__(self, idx) -> VDBTensor:\n", + " N = 100\n", + "\n", + " ii, jj, kk, = torch.meshgrid([torch.arange(N).cuda()]*3, indexing='ij')\n", + " # normalze ijks -> [ -1, 1 ]\n", + " xx, yy, zz = ii.float() / (float(N) - 1) * 2 - 1, jj.float() / (float(N) - 1) * 2 - 1, kk.float() / (float(N) - 1) * 2 - 1\n", + "\n", + " # pick random sphere origin\n", + " rand_sphere_origin = (torch.rand(3) - 0.5) * 2 * (1-radius/2)\n", + "\n", + " # create sphere mask with the random origin and radius\n", + " xx -= rand_sphere_origin[0]\n", + " yy -= rand_sphere_origin[1]\n", + " zz -= rand_sphere_origin[2]\n", + " sphere_mask = torch.sqrt(xx**2 + yy**2 + zz**2) < radius\n", + "\n", + " # create 3 random cubes\n", + " cube_centers = []\n", + "\n", + " def check_bbox_intersection(center_a, center_b):\n", + " bbox_min_a, bbox_max_a = center_a - radius, center_a + radius\n", + " bbox_min_b, bbox_max_b = center_b - radius, center_b + radius\n", + " return ((bbox_min_a >= bbox_min_b) & (bbox_min_a <= bbox_max_b)).any() or \\\n", + " ((bbox_max_a >= bbox_min_b) & (bbox_max_a <= bbox_max_b)).any()\n", + "\n", + " for i in range(3):\n", + " rand_box_origin = (torch.rand(3) - 0.5) * 2 * (1-radius/2)\n", + " # test that the bboxes don't intersect\n", + " while check_bbox_intersection(rand_box_origin, rand_sphere_origin) or \\\n", + " torch.tensor([check_bbox_intersection(rand_box_origin, center) for center in cube_centers]).any():\n", + " rand_box_origin = (torch.rand(3) - 0.5) * 2 * (1-radius/2)\n", + " cube_centers.append(rand_box_origin)\n", + "\n", + " xx, yy, zz = ii.float() / (float(N) - 1) * 2 - 1, jj.float() / (float(N) - 1) * 2 - 1, kk.float() / (float(N) - 1) * 2 - 1\n", + "\n", + " sphere_and_cubes_mask = sphere_mask\n", + " for box_center in cube_centers:\n", + " cube = ((xx > box_center[0] - radius) & (xx < box_center[0] + radius) \\\n", + " & (yy > box_center[1] - radius) & (yy < box_center[1] + radius) \\\n", + " & (zz > box_center[2] - radius) & (zz < box_center[2] + radius))\n", + " sphere_and_cubes_mask = sphere_and_cubes_mask | cube\n", + "\n", + " # create the grid from spheres and cubes\n", + " sphere_and_cubes_grid = fvdb.GridBatch(device=sphere_and_cubes_mask.device)\n", + " sphere_and_cubes_grid.set_from_dense_grid(1, [N]*3, voxel_sizes=0.01, mask = sphere_and_cubes_mask)\n", + "\n", + " # create the ground truth sphere-or-cube mask for the grid\n", + " sphere_gt = sphere_and_cubes_grid.read_from_dense(sphere_mask.unsqueeze(-1).unsqueeze(0).float())\n", + "\n", + " features = fvdb.jcat([sphere_and_cubes_grid.ijk.jdata, sphere_gt.jdata], dim=1)\n", + " return VDBTensor(sphere_and_cubes_grid, features)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's visualize the output of the `ShapeDataset` class to understand the data our model will be trained on." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAGgCAYAAABosFR3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d3xb5dn//zna8ra8tx3vxBm24ywawsoCQtgBOsJTaClpeZov0ELh16dpS1ltKZTV8VA2DZRVRkpIgCQQJ4D33kPesi3J1p7374885yDJki3Jkmwn9/v14gVIR+ccyee+rvu+7uv6XAwhhIBCoVAoFMqihrfQN0ChUCgUCmVuqMOmUCgUCmUJQB02hUKhUChLAOqwKRQKhUJZAlCHTaFQKBTKEoA6bAqFQqFQlgDUYVMoFAqFsgSgDptCoVAolCUAddgUCoVCoSwBqMOmUCgUCmUJQB02hUKhUChLAOqwKRQKhUJZAlCHTaFQKBTKEoA6bAqFQqFQlgDUYVMoFAqFsgSgDptCoVAolCUAddgUCoVCoSwBqMOmUCgUCmUJQB02hUKhUChLAOqwKRQKhUJZAlCHTaFQKBTKEkCw0DewVJmamsJXX32FsLAwJCUlISEhAZGRkeDx6ByIQqG4x263o7GxEWNjY0hKSkJ8fDzi4+MhEonAMMxC3x5lkcMQQshC38RSwm63o6+vDy0tLbDZbIiNjYXNZoNGo4FIJEJsbCzi4+M5B04HIYVCAQC9Xo+amhqo1WrY7XYkJiZCrVbDbDYjKioKMpmMsx0CgYDaDsoMqMP2AZPJhLq6OqhUKpSUlKC6uhp5eXnIyMiAzWaDWq2GSqXC1NQUNBoNxGKxkwOPiIigg5BCOccghGBsbAxfflkLrSkC45N8TE+psfm8EmRmSBEmtkKtVnP/WCwWREVFIS4uDgkJCYiLi6MOnAKAOmyvIIRgYmICNTU1iIiIwMqVKyESifDxxx9j2bJlyMrKmnG8xWLB1NSUkwOXSqVODjw8PJwOQgrlLMZms6G5uRknKgdwuj4C/YPAGYNrA8CHkA9kpolQtjoSq1fEICdDApHQApVKBbVajampKVitVkRFRXHhc9aBU849qMOeA7vdjvb2dnR1dSE/Px9ZWVncPvXhw4eRk5OD7OzsWc/BOnDHFbhWq4VUKkVcXBznwKVSKXXgFMpZgkajwekvq/HpSRs+r3J1sGcctisiIZCTLcbG0hhUlMYiI1UMk8kApVLJOXCbzYbo6GjOgctkMurAzxGow54FvV6P6upqGAwGrF69GjExMU7vHz58GNnZ2cjJyfHpvIQQmM1mJweu0+kQFhbm5MAlEgl14BTKEoMQArlcji8qm/DRFxHolbs7yr3DdkQWDVy2LQm7tycjPOzMsXa7HTqdzsmBE0IQExPD2Y7Y2FjqwM9SqMN2AyEEw8PDqK+vR3x8PJYvXw6hUDjjuMOHDyMrKwvLli2b9/XMZjNUKhVUKhWUSiVMJhPCw8O5QRgfH08dOIWyyLFYLKivr8eX1eM4dCwMU1pPR87tsAEgTAzcfGMaLrskETzezLFvt9uh1Wq5ELpSqQSPx0NsbKyTA+fz574WZfFDHbYLVqsVzc3NGBgYQHFxMdLS0jw6yY8//hjp6enIy8sL6D10dXXBZDJBJpNxK3CDwYCIiAgnBy4Wi6kDp1AWCUqlEjU1NRgZF+L1DwH11GxHe+ewASAnU4Tf3lOAuFjRnMd++umnWLFiBQwGA7cCZxgGMTExnN2IjY2l5adLFBo3cWB6ehpVVVUAgI0bNyIiImJB7oNhGAgEAqSkpCAlJQWEEBiNRi6E3tzcDKPRiMjISCcHTms5KZTQY7fb0d3djba2NqSnZ+NIpRXqqemAnX9wxAzFuMkrh80wDKKiopCUlATgTNLb9PQ01Go1xsbG0NHRwa3A2a236Oho6sCXCNRh48yAk8vlaGpqQnp6OgoKCrwOIYUiQMEwDKRSKaRSKefADQYDFwZramqCyWSa4cCFQiF14BRKEDEYDKitrYVGo0F5eTm0BikaWxsCeg2LBZjW2vz6LJ/PR2xsLGJjYwGcceBTU1NQq9UYGRlBe3s7dwzrwKOioqgDX6Sc8w7bbDajqqoKKpUKq1atQmJiok9OLhgOe65zMgyDsLAwhIWFIS0tDYQQ6PV6zoEPDw9zYgy0lpNCCTyEECgUClRVVSE2NhabNm2CSCRCf4MKGo/71vO5oD0gp+Hz+ZDJZJDJZADA6Ueo1WoMDQ2htbUVQqEQMpmMsx1UwXHxcE477MnJSVRXVwMAYmNjuTCStzAMA7s9MANpPjAMg/DwcISHhyM9PR12ux0GwzelIIODg7BYLIiOjp7hwCkUim/YbDa0trait7cXAJCbmwuR6Ey42mwhCEbMzU68m2j7uoDg8/mIi4tDXFwcCCHcClylUmFgYAAtLS1UwXERcU5abLvdjs7OTnR0dCA3NxcMw2BqatYMkSUFj8fjHHhGRgbsdjv0ej2USiWGh4fR19cHQgit5aRQfESr1aK6uhoWiwUbNmzgJvwsgiAtREO19SYQCGY4cDb7vKWlBYQQquC4gJxzFtpgMKCmpgZarRZr165FbGws5HK53wNiKSTZ83g8REREICIiAnq9HgKBAElJSVwJWW9vL+x2O1fLmZCQQGs5KRQHCCEYHBxEQ0MDkpKSUFxczG0xOdoAxk3pVUCuz4TezrAOPD4+HjExMRgcHMTGjRu5MrK+vj40NjZCKpU6hdCpgmPwOGcsMqvnW1tb67TnBPgf2nYdrIEkWA88IQR8Ph+RkZGIjIxEZmamUy0n68BZMQbHUhBay0k5F7FarWhoaMDIyAiWL1+OlJQUbnzyeDwn2xGsrV7G7r09CIbtYO2cSCRCQkICEhISZig49vT0oKGhgVNwjIuLQ2JiIlVwDCDnhMO22WxoaWlBf38/CgsLkZ6e7pREwePxzuoVtiOEkBmDh8fjISoqClFRUcjKyoLdbudKQcbHx9HV1cXVcjquwGkiCuVsZ2pqClVVVeDz+di0aRPCwsKc3nedtPODNCZEkoWdLLPf0dF2MAwDkUiExMREJCYmzlBw7OrqQn19PVVwDCBnvcPWarWoqqqCzWbDhg0bEBkZOeOYxbjCDhZ2u33OwcLj8RATE8NJsTrWcioUCnR2djqpKSUmJtJaTspZhd1uR29vL1pbW5GZmYm8vDy3ESZX28ELgl8NDwNSEsSBP7EPuHPYrjAMA7FYjKSkJCQlJc1QcGxvb0dtbS1VcJwHZ63DJoRgYGAAjY2NSElJQWFhocc9WX8cLyGES+YyGAyQSqWBuG3u3MHC3Qp7LtzVck5PT0OlUmF0dBQdHR20lpNy1mA0GlFXVwe1Wo01a9YgPj7e45hxjc5FRggQEQ5odYG7n/JVkUhMmFs0JZiwkxJfbAfrwJOTk5GcnAxCCEwmE+fAW1tbqYKjj5yVDttisaChoQFjY2MoKSlBUlLSrA+AryFxq9WKpqYm2Gw2GI1GnD59GmKxGDKZjHNs7P74YsMfh+2KJzGGyclJtLW1cbWcrqUg1IFTFjOubXQ3bdoEsXj2la3rZD8+VozC3AhUN8xWjG1z+bfnZXliHHDjlakQBiv93EsCYTcYhoFEInGr4Dg4OIihoSFYrVaq4DgLZ53DZvV8hUIhNm7cOGPPyR2+hMQ1Gg1qa2shlUohFAoRHR2N5cuXY2pqCkqlEv39/WhubkZERARiY2Mhk8kQHR29aDKuAzHwXGHFGMLDwzEwMIDNmzdzK3Bay0lZCszWRnc2XJPOwsMF2L0jGb3ybijV7hYBrIa4Oy1xZweenAjc99N8ZGeGe/UdFltkbi4cFRy1Wi2io6ORnp7OCUA1NjbCbDZTBUcHFocXCQCOer7Z2dnIy8vzekXn7Qp7cHAQra2t3PmPHTsGQohT7SKAGfs2JpMJUVFR3Ap8IcPFwRh4LOz+uFAodFvLqVKpIJfL0dzcDJFIBJlMRms5KQuOTqdDdXU1TCYT1q1bN6ON7my4206rKJXh9u/Z8c/3BtHTZ3Z4Z66GH9+8V5ADbP/WNMaG6mHWx3KTf4lE4tU9BZpg2g3gjO0QCARUwXEOzgqHbTQaUVtbi4mJCaSmpiI/P9/nvZbZVthWqxUtLS2YmJhAaWkp4uPjuffcOXqRSMQlXgDgdL+VSiUGBwe5mmc2rBxKZxVsh+06EXGs5YyPj+dKQVg1JbaWUyKRODlwWstJCTZsG926ujpYrVZcdNFFPm9lubMdIiEPF52fiFUl0fi6ehT/+bQfQyMiTGn5c6qgCXjA3huScdXOZDAMuHHC6n6z44S1He7a/gaDUDhsd7aDKjg6s6S/GSEE4+PjqKmpQXR0tN81f7OtsLVaLerq6iAUCrFp0yanGa63yWps2Cc1NRWEEK4BvUqlQm9vL5dxzc6i2XMHg1A7bFfYUhBvajlZBx6oWs4TJ07g97//PaqrqzEyMoJ33nkHV155Jfc+IQS//vWv8be//Q0qlQrr16/H008/jRUrVnDHmEwm3H333fjnP/8Jg8GAiy++GM888wzS09PndW+U0MLmoQwNDSE/Px+tra1+6Qx4sh2EEGimhiFAF+76UQGSU9IxNKJHW6cOxypH0NKugdH0jQMXi4CCZWHYuycNKwq/qWRxzBWxWq3cOOnt7UVTUxMiIyO5Y6Kjo/36LbwhFA7bm+oVTwqOarUacrkcNpstKAqOi8V2LFmHbbPZ0NbWhp6eHhQUFCAzMxMtLS0BLc8aHh5Gc3MzMjMzkZ+f79YZ+bpvxDAMpzrGipaw+72O7e8kEgnGxsYCnsC20A7bFV9qOaurqzE+Po59+/YhNzfX5/vT6XRYvXo1/uu//gvXXHPNjPcfffRRPPbYY3jhhRdQUFCABx54AFu3bkV7eztXDrh//368//77OHjwIOLi4nDXXXfh8ssvR3V1NRWWWSKwbXQZhsHGjRshFovR2toKu93u89/QdQ8bOJP02tjYiOnpaVRUVHAh9mVZkViWFYlvrQvDseOVyMopxoTKBpudICVRjKw0KSSz1Fs7RqqAM1tv7MSf3XoDgIGBgYAneobCYfvz27vaUp1ON0PBUSQS4a233kJ5eTluueUWvxz4YrEdS9Jhs3tOZrMZGzZsQFRUFIAzf0Cbzfc2dK6Djp0MjI6OYvXq1UhMTHT7uUDUYTvWPOfk5MBms6G5uRkmk2lGAltsbCxiYmLmNWMkhARt/9wfh+2Kp1pOtVqN9957D8888wwef/xxXHPNNXjjjTd8OvfOnTuxc+dOt+8RQvD444/j/vvvx9VXXw0AePHFF5GUlITXXnsNt912G6ampvDcc8/h5ZdfxiWXXAIAeOWVV5CRkYGjR49i+/bt8/rulOBit9u5MeXYRpcd+4GY7E9NTaGuro7LMnc32WYYBiIhsCxLguIC/+urRSKRU8mUXq/Hl19+CZ1Oh5GREdjtds5uxMbGzmubKZh2AwiM7eDxeG4VHFtaWvDpp5/iH//4B37+85/j7bffxsUXX+zTuReL7VhSDpsQgqGhIdTX1yMpKQllZWVOezjuZrve4Djo9Ho96urqwDAMNm3aNGt9dTBmnHw+HxKJBFKpFPn5+U4JbJ2dnTAajYiKiuLC574msC22FfZcODrwBx54AM8++yyOHDnChQkDRW9vL0ZHR7Ft2zbuNbFYjC1btqCyshK33XYb1/TB8ZjU1FSUlJSgsrKSOuxFjNlsRl1dHSYnJ7F69WokJCRw44D9t7+2w263gxACuVyOjo4O5OXlITs7e9babSCwWd1sxjUAFBUVQSQScXLDk5OT6O7uhkAgcNp68yaBjWUh9rDnC6vguGHDBlxzzTU4ffo0Hn/8cWRnZwf0OqG0HUvGYVutVjQ2NmJ4eHiGni8Ln8+H1Wr1+dzsoBsdHUVTUxPS0tJQWFjo1QMUbKUzTwlsKpUKjY2NPiewLTWH7YjJZILNZkNOTk7AB93o6CgAzGixmpSUhP7+fu4YtjzN9Rj285TFB9tGVyqVzshDAc6Mf38n+2xUr76+HiqVimsoNNdngODaDoZhZqw255PAthQdtiM6nQ4REREoLS0N+LlDaTuWhMOeS8+Xxd9BB5wJgzc1NaGkpATJyclefWYhpEndJbA57tm4JrC5RgiWssNmW6AGM7nG9bfx5vcKtjGj+IdrG92cnByPz6e/tsNisUChUCAqKgrnnXeeV/km81nRe4O7Z9HRLgBzJ7DFxMQ47aueDQ7bG02O+RAK27GoHbbdbkdfXx9aWlqQkZGB/Pz8WTfn/Rl0BoMBDQ0NADDrZMATC6kl7pjAxmZNajQaKJVKLoGN7V3LzqT9HXh2O0H/oAGtHVpMKs2IjREiPU2KrAwpYiIFXJQimINuenqa+86Bhp2kjY6OIiUlhXtdoVBwM+fk5GRui8JxpqxQKLBp06aA3xPFf9g2ujqdDmvXruWqLzzhq+1g222Oj48jOjoaa9eu9XpcscctpO3wJoEtOjqasx3eZHHPh1A47PBw7wRofCWUtmPROmyTyYS6ujoolco59XxZfB10CoUCjY2NSEhIgEaj8VkPPJgPsD/n5vF4iI6ORnR0NJfAxs6i2WQbhmEwNDTEhdK9SWAzmmx46V8D+PRzJaY0DvcIIDISWJYlxbo1MYiLNkIkCJ4R0mg0kEgkQcnGzsnJQXJyMo4cOcKFzcxmM44fP45HHnkEAFBeXg6hUIgjR47g+uuvBwCMjIygqakJjz76aMDvieI7jm10ZTIZNm7c6NWq1xfb4ajLkJCQgLCwMJ/GK+uYgrXC9gfXBDbHrbfBwUHYbDYwDIOBgYF5J7C5I9gOW6/XIyEhISjnDqXtWHQOmxDC7TlFRETgvPPOm1PPl8XbQceGyuRyOVasWIG4uDgMDw/7vPr0t8tXqODz+TMU2E6fPg1CiNcJbKopEx56ohuNbcYZ5ycApjVAXZMBdU0GAEBEGLD6VCfKV0ajIDcc6SkSiMWBcbCsw/bXUGi1WnR1dXH/39vbi7q6OshkMmRmZmL//v148MEHkZ+fj/z8fDz44IMICwvDTTfdBOBMKP6WW27BXXfdhbi4OMhkMtx9991YuXIll/lJWTjYCgu5XI6ioiKkpaX5pHbozVh21WXo6+vz2QaEYg97PjAMM0NxrL+/H0NDQ24T2GJjY+fd/CgUDns+kbnFYjsWlcO22+1oaWlBb2+vT3q+LN4MOqPRiPr6elgsFmzcuBEREREwm83c9X25XjDFTYKBSCQCj8dDVlYWoqOj50xgU03z8ds/dmBw1HuDpNUDJ7/S4ORXGggFQEGuFFftTEbpyiiESefnuFmH7S9VVVW48MILuf+/8847AQB79+7FCy+8gJ///OcwGAzYt28fJ37w8ccfO7Vk/dOf/gSBQIDrr7+eEz944YUXaA32AqPRaPDVV18BgMc2urPhje1gdRmysrI46WN/S0mBwI/zYNkNtmmHRCLBmjVrPCawOW69+arAttgd9mKxHYvGYev1elRXV0Oj0UAmkyEnJ8fnc8w16CYmJtDQ0ICEhAQsX76c+6HmM+NdrLNkTzhGEWZLYDtxsg9vHRbDaPZf+tBiBZrbDRga6ceeK5Kx85JEiEX+D0p228LfidIFF1ww69+LYRgcOHAABw4c8HiMRCLBk08+iSeffNKve6AEFraciu2et379ep+dNTC7hoPNZkNrayvGxsawZs0ap9CqP1G2xRgSnwtHu+FNAltERATnvF0T2Nyx2B32YrEdC+6wWT3f+vp6xMfHIy4uDtPT036dy5PDJoSgq6sLfX19KC4uniEF5+8AWoqZwZ7C/o4JbMOKCLxzpBdGx74FXrQC9IR62o73Ph7DiqII5C/zf9CEItOTsnSwWCyor6+HQqFASUkJWltb/T6XJ9uh0+lQV1fHVai4hn59bc3ryFKa7M+2XegugY2d+LtLYHOnwBZsh81u/y11FtRhW61WNDc3Y2BgAMXFxUhLS8PAwIDfISZ3g85kMqGhoQEGg8FjqMzfrE2r1cqpcC1kBy5fmGufvkeuw5//0Qf9jC1rR0dt8/C6Z0YUNjS0aOblsLVa7bz3yihnB2wbXZFIxDnSjo6OgNoOVpeBVUVzN779WWGzWhGTk5MIDw+f1zaPOxa6W5ejdoS7BDZ2641dgUul0qAqqbH3EKws8VCyYA57enoa1dXVIIRwe8nAmUSpQA06pVKJ+vp6xMbGorS01GNGtK91kWzSmk6nA4/H4/Z/2RkkW/+8GFfgsw08u53ggyMKKFVzTVw89fEFAB7O5I/PZHBY7+1tukWr1dIV9jmOYxvdnJwc5ObmcoZ+PvvJrhKlbW1tGB4exsqVK2cIYjji6wpbq9WitrYWwBn7NDQ0xDW6kclk85YeDhb+loO6S2BzVWBjw+UKhQLx8fFBmZQbDAa6wvYHNuPQUVHMcX/DceD4CuuwCSHo7e1Fd3c3CgsLkZGR4VVJmDcDz2Qyob6+HmazGdHR0TCZTNi4cSO0Wi2USiXGx8fR2dkJsVjMDUJ/kjAWoluXVm9FfZM/2xHs38/+f/+4vn4Gi+8idE4Es5aSsvgxGAyora2FRqNBeXk5ZDKZ07McCNuh1+tRX18PQohXugy+iCeNjo6isbERWVlZ6OnpQU5ODmQyGdRqNZRKJTo6OrjwMWs7IiMjF8XEP1ArYHcKbEqlEg0NDRgbG0NXV5dTAltMTExAmh8ZDIagCi6FipA6bIvFgrq6OoyPj2PVqlVITEx0Ky86nxW21WpFTU0NtFot1q1b5/UfyZvQllqtRl1dHWJiYlBWVoaamhrOAbIPYVZWFlf/zKqPNTU1ISoqihuECxk+n9Vh62xQqvz77c/g6TudOefU1BSGhoa4MJivhojuYZ+bEEKgUChQW1uL6Ohoj0015ms7pqen0d3djZSUFBQVFXk1Rr2xG2xEbmBggLN7PT09sNvtEAqFXKtZ4ExyFLv/29/fzyV4sbYj0OFzbwmW0hnbsAM4U6vsqB3R19cHrVbrcwKbK3a7HUaj0a9kxMVGyBz25OQkampqIJFIcN5553l88OYT1tLpdLBarVzjDl9WtbOtsFlVo7a2Nidhf08PsGv9s8lkglKphFKpXNDwOfv9PBkim5XAZHb71jw5M8DCw5kZCmzs7+DNLFqv19MV9jkGm6Hd19eHgoICZGRkeHx+/XXYrEKgTqfDqlWrnNSq5mKuyJxjRG7Dhg2IiIiY9XjH8LGjciFbPrVQ4fNgSpOyoiwMwwQkgc0VvV4Pu91OV9je4IueL+BfWIsNs3d0dAAASktLfX64PIW2bDYbWlpaMD4+jrKyMs4Js5/xBrFYjJSUFKSkpHB7OLOFz4OVPcqe19N922x2BDNvNSE+FmVl2U6zaLlcjpaWFoSHhzvNot0ZomCqFVEWH1qtlutytH79+jn3IP2Z7BuNRtTV1cFkMiEtLc0nZw3MvsJ2jci5PtNz2TlX5UKLxcJF7ljhI8fweTATMheqB4G75keshKq7BDZ3CmwazRl5RrYv+VImqA6b1fPVarVcF5u5/ui+zpItFguampowNTWF1atXcwkdvuJu4LF7ZuyK3V2XH1+dqzfhc6FQiLCwsIBnn8/lsK224JaZSMRnHjfXCITFYuFm0a4KbLGxsYiOjgaPx4NOpwtYWCs7O5vrpOPIvn378PTTT+Pmm2/Giy++6PTe+vXrcfr06YBcn+IZNqLV0NCApKQkFBcXe7WS9HWyPzExwbXqjYyM9Ev8xt0K21NEzhVfbcds4XO5XM4dNzo6ioSEhICGzxdL0yCpVIq0tLQZCWxKpZJLYHPsQCaVSqHRaMDj8QIWnVtI2xEUh+2o5xsbG+txz8kdvjhstll8eHi4k4C63W73efC5Djx2MCcnJ6O4uNhjScd8V8PuwufNzc0wm80BD5/PvcKer8O2w/M+NiAWu39PKBQiMTERiYmJAJxbiA4PD8NqtaKtrQ1dXV0oLi4OSM3m119/7fScNTU1YevWrbjuuuu413bs2IHnn3+e+/9AJL9QZsdqtaKhoQEjIyMe2+h6wlvb4ajLsHz5cqSlpaG9vd2vcLqrDZgtIufuPuaDa/icXdGzyVuBDJ8H02H7m9DmLoFtenraaQtBIpHgqaeeAp/Ph1Kp5GzMfFhI2xEUh93R0YHOzk4UFhYiPT3dZ3lRQsisRpkQgoGBAbS3t2PZsmVYtmwZGIbh6hv9cdiOjeh7enrQ09PjVmTF9TOBRiwWIywsDNHR0Vi2bJlT+Lyrq4vrqRoXF+dz9vmcK+x5ZnFjjoB6Urx3D607BbahoSFMTU3hH//4Bz766CN0d3fP6/d3Da0//PDDyM3NxZYtW7jXxGKx161WKfPHZDLhiy++mLONrie8cdjsnrLJZHLSZeDxeLBYLD7fs2Mp6VwROUcC3ZqXx+NxWwZr1qwBgBlRq/lknwd7DzsQUUQej4eYmBgu9G21WjE+Pg6DwQC73Y7k5GQ88cQTuOOOO+Z1nYW0HQF32GxJ1VyzS0+wjtaTw2bFVpRKJVfawTIfyT82w7y2thbT09NeZZgHu1uXL9nnjqFjT8zlsC1BDIlLxUBWhu97bKwC27e//W388Y9/xN13340tW7YE9Lc3m8145ZVXcOeddzqd99ixY0hMTERMTAy2bNmC3/3udwGZoVPcMzw8DLFYjLKyMr/D02xfAHdMTk6ioaEBMplsxp6yv/2wWcfrTUTOlWAqnQkEAqfwObv36xg+Z523N9nniyUk7gsCgQApKSnYu3cvWltbUV1dHfBrhNp2BNxhMwwDi8Xi9/4JO1BtNtuMEI5Go0FdXR0kEgk2bdo0o4vXfBrD2+12tLa2IiIiwusQfqBnySyezjlb9jnbMtNRgN+17d9cDlsq5kEigoskaWBYVxaJ1CT/S7JYtaLo6GgUFRUF8M6Ad999F2q1GjfffDP32s6dO3HdddchKysLvb29+OUvf4mLLroI1dXVXnePo/gGIQR8Pt/vRiqe9rAdo2ZFRUVIT0+fMQbm47BNJhNqa2u58Lo3nwFCqyXuuPfrT/Z5MPthh6IXtkQimVUAx19CbTuCEhIXCARceNpX2JWla2hrcHAQra2tyM7ORl5enkc9bH8G3ujoKPR6PZKSkrBmzRqfG9EvFLNln3d1dUEoFEImk3Hhc/Z38XTfcTIh0tKE6O71PTQ4G8nxDL57bQYEgvn9XmxYL9A899xz2LlzJ1JTU7nX9uzZw/13SUkJ1q5di6ysLHz44Ye4+uqrA34PlPnZDcB9SNxsNqOhoQF6vX7WTHN/MsytViu6u7thtVqxcePGJaOk5Zp9brVa3YbP2a23yMjIoEqHBtthazSaoOk3hNp2BMVhz0fAgHW67OcdkzhKS0u5+jxP+OKw7XY7Ojo6MDg4iPDwcCQnJ/vcD3ux4E34nM2SVKlUbsPnsTEiXPKtBIyMDkNvCMx9JciA/7mrEGkp889YDYa8YH9/P44ePYq333571uNSUlKQlZWFzs7OgF6f8g0CgcBvuwHMtDsqlQr19fWIjo7Gxo0bZ8338HWir9VqUVNTA6FQCKFQ6NdzGegVtr/RvtnC5wMDA9wxYWFhMBgMAS8fC7bDDpak8ULYjkW3wga+CW25Nov3Jszu7cBzFDTYuHEjmpqa/OrWtVg77rgLn4+MjKCnpwfNzc2w2Wxc/aJMJkNYWBj4PAYXb46H3mjHBx+PQjU1v3vIyRDif+7OQ3LC/Ac4q1YUaIf9/PPPIzExEZdddtmsx01OTmJgYMDnOl2K98zXbrATfUII+vr60NXVhfz8fGRlZXklTezt+B8ZGUFTUxOys7ORkJCAmpoan+91MdsO19Kp6elptLe3Q6fT4fTp0wEXbwlFa81gOOyFsB1Bc9jznSkrFAr09fUhMzMT+fn5Xv9BvRl4arWaKzljk0/8aZO3mFbYcyEWixEfH4/+/n6cd9550Ol0UCqVmJiYQHd3Nxc+l8lkuHJ7HMpXRuNU1SS+bpjG0LDZZwW0lYVS3Lc/FzHRgSln0Ol0AVcrstvteP7557F3714no6PVanHgwAFcc801SElJQV9fH+677z7Ex8fjqquuCtj1Kc4EaoXNJo5WVFR4LZbhjd1wjMitXr0aiYmJmJ6ePqvbazIMg+joaEREREAqlSIjI8OtZoKj7LKvdnEprrAXynYsupC4zWaDxWJBX18fNyh8YbaB51gO5jrz9qdN3lJy2MA3mZ6Ova8zMzNhs9kwNTXF6Rdrtc2IjIzE5goZLr8kBQaTBD39RtQ0qNHQqsXEpA3WWX6qzRsisf+HyxAm8S95yB2sWlEgHfbRo0chl8vx/e9/3+l1Pp+PxsZGvPTSS1Cr1UhJScGFF16I119//azQI16s8Pn8ea2wjUYjNBoNxGKxT9oP7LVnG/8mkwl1dXWwWCzYuHEjt73kb7JaMAlme01vwueuuhFzEYqks0BLGi+U7QiKwxYKhX4NPL1ej7q6OtjtdhQVFfmVBu9pADnuhbuWg7Gf82eFvRRmySyeSjNYdSD2N2Gzz1UqFdraWrnw+bWXybB3zzJMTAKdvXp8XadG/6AZBqMFAj4PUokZV1+eiYs3x0MkDJyzBhBwtSIA2LZtm9u/n1QqxeHDhwN2HYp3sCtsX0uICCGQy+Xo6OgAn89HWVmZX9LEs0mMshG58vJypxWVvzZgKdoOd07VNXyu0WgwOTmJ0dFRdHR0QCKROMkuuwufh8JhB3orbaFsx6JZYY+NjaGxsRFpaWng8Xh+74u4y/ZkJwI8Hs/jXrivK2y2LZzdbkdDQwPi4uICpucbrJpHb8/rmn3Ohs/Z/rVCoRDL0mVYu0oGgTASOj0DO7GgpakK27bE+12WMxvT09MQi8UL1uWMEnwEAgEnmuTtM2S1WtHU1ASVSoXi4mJ0dXX5NXbcrbBni8ix+BOZ02g0sNlsGB0dBcMw3F5wMMZNoPDGdjAMg6ioKERFRTlln6tUKnR3d3NJo67hc3+ErnzBYDCcNbknC550Zrfb0d7ejqGhIZSUlCA5ORlVVVXzapPnOIDGx8fR0NAwZ8s8X2a8ZrMZtbW1MJlM3EPKdqGSSqWc815sg9Cf0oy5w+daREZGIioqCpIglidrtdqQdTWjLAzsJN1ms3k1bjQaDWprayGVSrFp0yaYzeaA2Q2bzYbm5mZMTEzMiMhp9Vb09OnQJ9eDwIrRYT7UahNiYuYeAGxPbLaqw2azoa2tDRaLBTExMZztcNVQWGj8WUS4C5+z+9+O4XOLxRLUtrnBCIkvFEFz2LMpDrEYDAYuBO64LzSfPXB2puwoluCNoIG3IfHp6WnU1NRwdYz9/f3Izs5GdnY2N6OcnJxclIMwECt3d+FzlUoFhUIBAPjiiy9mZJ8H4jtrNJqgdiOiLDw8Ho+TGJ5t/5kQgqGhIbS2tiInJwe5ubmcdkMgHPZsEbn6lim88M8+tHUb8I2Jk+Lw57VYnh+JDRWxKCmKQXqKBALBN5NjR/3yVatWobGxERKJBEVFRSCEQK/XY3JykotiiUQizm54CiW7+12CRSBsh6vkMCveMjg4yHXvmyt87g8Gg+GsyT0JmsPW6/WzHsOufJOTk1FUVOQ0o55PT2xWE7i2thYajcartnzs5+YKbbGzY1a/vLu72+l9xxlloAZhIAlGqJ3VzI2IiIBKpUJ5efmM8LnjIPRXBJ+usM9+GIaZc7JutVrR0tKCiYmJGfLHfD5/zj4EnmDHv6eInN1ux/uHR/HXl+QwzdAVYjClAU7VaHCqRgM+T46MdDE2lcVi9aoYZKeLIe9rhVar5fTLGxsbnZQHw8PDER4ezkWx1Go1Jicn0dXVxQmZsGWa7lpIBptA2w7H8Ller4dEIkFUVBTXdcs1fO5N32tP6PV6REREBOzeF5KQl3Wx/bHlcjlWrFjhpBDD4k9PbMfz9/T0cGIJ3jqI2ULihBDunh0z12d7gGcbhOwDGepBGGw9YD6fP2v4vLn5TPY5Owjn0j53hHXYlLOb2bbT5tJlcJQ19mfrx2azoa6ubkZETm+w4tnnu3DoU7VX57LZgT65CX3yUbz27igiwm1Ykc/H9/asQljYN47DWwlivV7PZWL39fU5ve9rAyB/CbbtEAgEiI+P54SxPIXP/en9bTAYqMOe9aQeBp3RaER9fT1XGuHpR/Q3JD4yMgKlUsllc/qqWuZukmCxWNDQ0ACdTocNGzY43bMv53cdhAaDAZOTkzMGoUwmC1qZSKgF/F3D52azmTM8zc3NsFqtToNwtvB5sNSKKIsLT5P94eFhNDc3IysrC3l5eW4dsr/NfywWC1paWgBgRtOf4TEDHnqiAy0d/kr/2aDV8fFlHTA22YNbbszBhrUxPuXMsG0009PTuTaarIJhc3MztxJlI4kLmbDqD+5sh6fwOZsr5E32OXvfwVBIXChCtsKemJhAQ0MD4uPjZ5RGuMJ2zvIWx8Q11gH4+nC528PW6XSoqamBVCp1K23IXsOfh1kqlSI9PX3GIOzr64NOp+NE4lkt30AMloXuuCMSiZCcnIzk5GSP2eeewuc6nY467HMA11psm82G1tZWjI2NYc2aNTNaGzrC7oH7Mtl3TFwD4DQhb2ydxkOPt2Fs0t8JtA3AN1t9fQNmHPy3HMuyz1zLnz1nHo/HjZG8vDwYjUZuDLFduFpaWrjFQaD6MC9k8w/H8DmbK8TaS2/C59Rhz4HjCpkQgu7ubvT29qK4uBhpaWlz/uH5fD5MJpNX13IVNOjr6/O7645rdnl9fT0yMjJQUFDgsdlIIBI9XAchu7+l0+kwMDDAlX6wjTz8HYQL7bAdmSv73DF8HhERgampqYA57AMHDuDXv/6102tJSUkYHR0FcOZ3+vWvf42//e1vUKlUWL9+PZ5++mmsWLEiINeneMZxsq/T6ZySv7wJg/oSnXOUGM3OzsYnn3zCbe10dGvw0JMdAXPWLJ3dBrR1agJmOyQSCVJTU5GamgqTyYSTJ09CKpVyzZLYMRQXF4eoqCi/94EXk+1wDZ+zkxZ34XOhUBhQSeOFth1BDYmbTCY0NDTAYDA4NYufC2/3sFUqFerq6iCTybhVu7/KQ2yymqMOsac9dsfPBANWICQ7Oxt2ux3T09NcNuV8BuFibpE3W/j8rbfewj/+8Q8kJCTg8ccfx/e///15D8AVK1bg6NGjTtdnefTRR/HYY4/hhRdeQEFBAR544AFs3boV7e3tZ0226WKFtR2jo6NoampCeno6CgoKvH62vHHYjhE5NieFtRlnhFv4+Oe7QxhT+KO6ZgfAgztnDQBmK9DZq0NeWuCFU9ixzWbOs2NocnKSWwSwHbi86YHtyGJy2K44Tlpcw+e33347DAYDnnjiCRgMBlx00UXzvt+FtB1Bc9gWiwWVlZWIjY1FaWmpTxnRcw262QQN/M0wZ0NpDQ0NUKlUM/ayPH0m2PB4PMTExCAmJgbLli2b1yBczIPOFcfweVFREU6fPo3p6WkcOXIEt95667zPLxAIkJycPON1Qggef/xx3H///VwrvBdffBFJSUl47bXXcNttt8372hTP8Pl8jIyMQKvVYuXKlT73MJ5r/HuSGHXsUT06bkBDkz+db9yvql1RTZuAudtmzxvXLShWhYztgR0WFsZN/GNiYmYdv0vFdriGz998802sWLEC4eHhqKqqCojDXkjbEdQVdkFBATIyMvzaT/Y06FhBg8nJSaxduxaxsbEzPmux+N7P2Wq1Ynx8HBEREdi4caNXjcYXosTI3SB0bEQ/2yBcKoPOFR6PB6FQiPXr1+PPf/5zQM7Z2dmJ1NRUiMVirF+/Hg8++CCWLVuG3t5ejI6OYtu2bdyxYrEYW7ZsQWVlJXXYQYZhGJhMJmzatMmvLZDZonPuInKO12Wjc2PjZmh0vq5+vXPWAGA1nTl3oFfYs53PVYXMYrFwmhGtra2wWCxOE3/X336p2g6Wxx9/PGDRsYW0HUFz2ACQnp7ut0ygO4et1+tRW1sLPp+PjRs3ul1N+hMSV6lUGBgYgEgkwrp163zqDLaQuM4m5xqES3nQBbJF3vr16/HSSy+hoKAAY2NjeOCBB7Bp0yY0Nzdze1GuK7ukpCT09/cH5PoUz4jFYiQmJvr9t3ZnOxy1xgsKCpCZmel2HLC2w2iyw+bzrpr3ioaEYSN6dpgtdggFTMgn/0KhEImJiUhMTHRKAB0fH0dnZyckEomTZsRStR1arRY8Hi9gJaELbTuClnQG+FcPyX7e1el6KzHqq8MeGBhAW1sb4uPj/UqcWkzMNQgFAgH4fD4mJiYQGxsbUNnUUDjsQM2Qd+7cyf33ypUrsXHjRuTm5uLFF1/Ehg0bAMz82wbTYFG+QSgUeqWS6AnX6NxcETlHWLvDF/jyd/Z9+81ktqFvkEHfEPDJqR6IRTzk5YShMD8SmalSiEShXQi4JoCyWdiTk5Po6OjgJJgVCgVEIlHANSOCaTump6chlUoDZusW2nYEdYVts9n8Kur3lGU+VxIY4P0ett1uR2trK0ZHR1FeXg6tVovx8XGf7nOhV9iz4W4QdnZ2QqVScYPQUTZ1voPQ38mZtwRT/CA8PBwrV65EZ2cnrrzySgBnVO0cGwYoFAqf91MpvjMfWWLXz7MROYFA4DEi5whbKSLgezMO2BA4H7467dYODb6qFsBiIwCmz7x4TA0BH0hLEmLtmmisXhmFZZlhkMUI/eo8Nh8cs7DZOuaqqipotVpUVVVBKBRydkMmk81bsTGYDluj0fiUXOcrobYdQXHYrMSgv71tWafrKlrizQrLmxU2m3hitVq5chGdTreo+mEH+twCgQDh4eGw2WxYsWKFk3BLT08PVwPNDkRfB6E/jUV8IZArbFdMJhNaW1uxefNm5OTkIDk5GUeOHEFpaSmAMxnrx48fxyOPPBKU61O+wZfGQe5gV8lsRC41NRWFhYVePZus7RAK5lqNeb9f7Q6lmv0vAuCbcW61Af3DFvQPT+CtQxOQxTAoXBaOitJoFBdEIT1F7KRPHgoYhkFYWBh4PB4KCgoQHh6OqakpTE5OoqenhxNuYeu+IyIifLZdwQ6JB1MhMdS2I2hi1rPJk84F6+xPnTqF8PBwt6Ils312NsfLNu+IiYlxSjzxtx92MAiWiD8bmmEHYVhYGDIyMrga6MnJSSf1JF8GYTAHXaDViu6++27s2rULmZmZUCgUeOCBBzA9PY29e/eCYRjs378fDz74IPLz85Gfn48HH3wQYWFhuOmmmwJyfYpn5uuweTweFAoFpqamvIrIOcLaDgF/NrM4P2ftC0o1wakaLU7VaCGVDCE/R4pd2xJRujIG4WGh7QLI2g7H8sv8/HwYDAau/LK/v9/pfZlMNqdmhL/a794S6B4EC207guaw57PCnpychM1mQ2pqKteJx1tmW2GzQgls8w7H8/ojZKBWqwEANTU1SE5ORlJSUsgbeviCp70U1xpoo9HIrb77+/vB4/GcQmDuBmGw97CNRmPAVtiDg4O48cYbMTExgYSEBGzYsAGnT59GVlYWAODnP/85DAYD9u3bx4kffPzxx7QGOwTMZ6LPJl1arVafdB9Y5l5he3LW/joD7+2NwQg0tBrQPyjHFTtM2L09KaRO25PtkEqlSEtLQ1paGux2Oyd+JJfL0dLSwimQsZoR7vZ3geBtLwa6y99C245FtcJ2FDQA4LOzBtw7bEIIOjo6MDAw4NS8Y67PeYIQgtbWVsjlckilUhgMBrS3t6O9vZ3LrkxPT4dUKl1U+9zeJj9IJBKfB6HNZgvqZCWQakUHDx6c9X2GYXDgwAEcOHAgINejeI+/DpuVGGUYBsnJyX4ZSNYGSCQ8hEsBHScf7rhf7Q5fHbbNw3/P7YCnNASHjiqQlxOGdWtinN5b6PaaPB4PsbGxiI2NRW5uLkwmE6cZMTg4CABOio1isZizucFcYQdS0nihbUdQHbYvK2y2MYjVasXatWtx+vRpv5yAq+OdrXmHI96usG02G6qqqqBSqZCVlYX8/HwwDAOz2YzBwUGMjY1heHgYQ0ND4PP5iI6ORkpKCuLi4hZ89e1PtqK3g9BoNAata5DNZguow6YsXvyJzLGNQXJycmCz2eaVO2O32yGLESI7Q4rmDgO8C4H7k1Xu7pyuExX3151U2fFllXqGw+buZpE0/xCLxUhJSUFKSgoIIZxi4/DwMNra2hAREYGYmJiA36sjgSwHXQwENSTu7UyZFTSIi4tz0lydr8PWarWcsP9c++CeunU5YjKZcOrUKRiNRpSUlDhlAopEIi7UbrfbOV1bVqQeONN1JyEhAWlpaUHNXPREIMoLPA1CpVLJ/Tc7g/alfeZsaLVaEELmVJ6jLH18WWGzEbnh4WGuMUh3d7fXfQhcYW1HVKQApSt4aO+ywmoPpImczVm7vm7DbKvv7n594G7LC+ZrOxiGQXR0NKKjoznhFqVSCYVCAQA4efKkk2ZEoMLYZ1vToKA5bKFQOOdM15OgAbvS9Sc05tiIfq7mHa6fm22FPTU1ha+++grAmeL52VZ7PB5vhji9XC7H+Pg4+vv70d/fD6FQiOjoaKSnp7uVBQzGLDnQWuKOg3B6ehoxMTGQSCSYnJxEc3MzbDZbQAahRqMBAOqwzwHYyNxcDsIxIrdx40bOKPsrTcx+1mq1orGxEclxKlx1WQo+OqbC/z1+88TXZDXXY52/06TKCKPRGJKJPyEk4DoEQqEQSUlJiIiIwMTEBMrKyjA5Ocm1z5RKpU6Kjf7WUWu1Wk5+9mxgwVbYswkasNmI/nbdslgsqKur8ylLdLYV9vDwMBoaGiCRSLBu3TqvZEsdkUgkKCgoQEFBAaxWKyYmJjA0NASVSoWJiQkwDIPw8HAkJib6lNXqK8FWK2IHYVJSEggh0Gq1ARmEGo0GfD4/qOUZlMWBo4aDp+iaa0TO8Tny124AZ8ZHf38/pFIpLrpwIxhGiI1rNTh6QoGvapWYUPqzR0xwpiHIfBPEnFffJpMJlZWVThP/YDlvdiETrEUEn89HZGQkIiMjufaZrGJjW1sbLBaLk2ZEWFiY1/diMBiCHnYPJQuyh+0oaLBp0ya3DtAfAQWbzYbOzk7Y7XZs3LjRpxWZuxU2m6zW29vLNTGZr2IOKxyfnJwMu90Og8GAgYEBjI+Po6enBz09PWAYBnq9npMdDVRCRjBrpV2zxBmGCdggnJ6ehkQiCagyG2VxMpvD9kZi1F/hFXbyHB4e7iRPvHpFNFaviIZOZ0Fnjw51TUqcrJ7C0LAJpjkF2eYKgfsLH1IpHytX5s2Y+ANAX18fUlNTA9YLO5gO251NEggESEhIQEJCAggh0Ov1XN5Md3c3RCKRk2zqbNumOp0uqIugUBNUh200Gme8zoaq09LSZhU08DW0ZTAYUFtby/2/r+FT16Qzm82GmpoaTE5OIjMz06uwuq+wbTSLiopQVFQEi8WCxsZGTE5OQq/Xo6amBjweDxEREUhKSkJKSsq8EtcWUg94PoMw2GpFlMUDj8dzO/ZtNhuampqgVCpnlRj1x2Gz8sTs9o675zg8XIg1K2OwZmUMvnu9HYMjBrS0afDFV5NobtfAYAQYHiAWA6lJIijGtFBrZ8ssny88p4m/UqlEY2Mj7HY7N/EXiUSIjY1Feno6IiMj59ULGwiOw55LIZGNPoaHh3OaEaxsand3NwwGA6KjoznNCFfFxmAKLi0EISvr8lVi1JeBp1QqUVdXh6SkJOTk5ODEiRM+OyfHZDW2NajBYMDy5cuRlhb8Xnh2ux0dHR3Q6XTcnpxWq4VcLodSqURnZyc6OzshFosRFxeHtLQ0hIeH+zQIF4uAvy+DUCaTcXrAgeChhx7C22+/jba2NkilUmzatAmPPPIICgsLuWNuvvlmvPjii06fW79+PU6fPh2Qe6DMjmumuDcRORZfJvqu8sRjY2NeVYrw+TxkpYcjKz0cOy5Owhcna2EwSSGLS4FWOwnleBf+/Un4/zns4MDDN+NZq9WiubkZycnJKCwshN1ux8jICEZGRjA+Po6xsbF5TfyDHRL3xYbx+XzOOQNwUmzs6+vj3mcn/nq9PiCSxovFboQkJO6PxKi3e1FyuRzt7e0oLCxEZmYm1ziA3RvxFnaFrdFocPr0aRBCUFFREZL9D6vVivr6epjNZlRUVHCryaioKJSUlAA4I3E3PDyM0dFRjI6OYnh4mNv7SUlJQUJCwpyDcLE4bFdmG4QNDQ347//+bwDAG2+8gR07dswr+ez48eP48Y9/jIqKClitVtx///3Ytm0bWlpanJJTduzYgeeff577/0CFFylz4zjZVygUaGhomDMix+Kt3XAnTzw+Pu5zSRjDMIiOEiAlTAizeRgTWjky0uOQGC/G4GjwMrkZ3plxPDExgYaGBuTk5CA7O5trE5qRkYGMjAzY7XZoNBoMDAxgcnJyxsQ/PT2dkx71xGJy2K5IpVKkp6cjPT2d04yYnJxEX18f7r//fjQ3NyMhIQEXX3wx1q1b5/d1FovdCPoKW6PRoKamhusz7YvE6GwzZXZ2PDY2hvLyck6li8fjAYTAOKmCqa0H6uom2KamQfh8hBXlQZooQ+SqQohiY5zOx4p/sIkcGzZs8Dm5zB+MRiNqa2shFotRUVHh0emKRCJkZ2cjOzsbdrsdarUaAwMDUKlUaG1tRWtrK6RSKeLj45Geng6xWDxjICxWh+2K4yAsLCzEtddeiw8++AAPPvggEhIS5tWE/qOPPnL6/+effx6JiYmorq7G+eefz70uFovdNqmnBB+BQACLxYLOzk709fX5lDzqTWRuNnlifxPWBgcHYTQaOW2GNz9q8+s83hIm5WNwcBAdHR1Yvny5U4mpIzwejwv1A2cm/kNDQxgbG/N64r+YHbYjjpoReXl5SE5OxqeffoqJiQn84he/wCeffOL3uReL3Qiqw9br9Th9+rRbKdC5mC20xc6ObTYbNm7c6BQunW5sA371F5xqvRfwFN6KjkTaD69H/l23QhARDkIIBgYGQAiBSCRCcXFx0ERAHGHrxGUyGYqLi33qw+0oJWo2myGXy6FQKDA4OIiBgQEIBAJER0cjNTUVMpkMfD5/yThsR8RiMdLS0pCbm4tTp04F/PxTU1MAwP2WLMeOHUNiYiJiYmKwZcsW/O53v3OrkEcJPAzDoKuryy+J0bkc9mzyxP44bJPJhLGxMdhsNiQnJyM9Pf3MKpcJnuoYACTIbOjq6kJpaemMZ3c2RCIRcnJykJOT4/XEf6k4bFcyMzMhFApx77334uqrrw7ouRfKbgTNYfN4PFgsFk7QwFc8DbypqSnU1tYiJiYGK1eu5MLedrsdfX/8O3p+/fTcukNTGgz9/jkMvfxvrH7+EcjDeBgfH0d8fDwkEgna29vR1NSEuLg4rp460KttpVKJ+vp6ZGZm+jyZcUUkEiEvLw95eXmw2+2YnJzEwMAAFx5iGIab1ASrNCqYA0+v1wellpIQgjvvvBPf+ta3uK0H4EzP2+uuuw5ZWVno7e3FL3/5S1x00UWorq4OSdTlXIfdnvIlIsfiaaIfaHli4BttBkIIsrKyoNVqUVlZeWaM2YOXJMkAyErTo6KiYl77s95O/NlrBGPC7+vWpa8YDIaAJ50tpN0IqnAKmxnsD+72olgJwtzcXOTk5HAPDyEErb98DCNPvATgTEKGV4xOoH7nLbDe+W0UfX8PMjIyuPOx/bGHhobQ2tqKyMhILsvZnxZyjoyMjKClpQVFRUUBT2jj8XjcfdrtdpjNZvT390OhUMBoNKK/vx/Dw8OIiYlBWlqaW9EWfwh2x51gqBX95Cc/QUNDA7744gun1/fs2cP9d0lJCdauXYusrCx8+OGHAZ+pU2YilUoRGxvrV5SLjSQ5Po/eyhP7UsPtSZvBarVCqVSiplmOYJV1lZbYcO0VpYiICOwk1nXiPzExgcHBQahUKgBn9nHDwsIQHx+PjIyMgOzPBlrMyZVANg1iWUi7saiafzjiuMJ2nB27W7EP//M9zlkDvin72gEI/vIm4vbe+M3nHWqIly1bBpPJhMnJSYyPj6Ovr4+biMTHx3PhZm8ghKCvrw+9vb1Ys2YNl2QVLHg8HiQSCZKTkzEyMoKsrCxERERgeHgYSqUS4+PjYBgGERERnGSqP0aSVUIKlsMOhrzgHXfcgffeew8nTpxAenr6rMempKQgKysLnZ2dAb0Hinvm02LTMeLG4/F8kif2ZoU9lzaDQCBAYmIitl8chrrmDgyMsjYwEM7bhpIiPu69Yw2io4Nb5shO/CcnJ6HVarF8+XLOBjqqNc534h/MiT7bgyCQCokLbTcWTfMPV9jQlsViQX19PQwGg9vZsWlCidb9D/h8flYokAcAehM6fvknrHn5D26PFYvFSE1NRWpqKux2O1QqFcbHx9HW1gaz2cyFzhMSEjyGPux2O9ra2qBQjGPNmnJER4emkcXk5CTq6+uRl5eHzMxMAOC+h16vh1wu55rRO9ZuZmRkICIiwqvBFOyOO3q93qd9utkghOCOO+7AO++8g2PHjiEnJ2fOz7BbDJ4SeyiBxV/xE/azwBljrVKpfJYnns1h22w21NbWYmJiAhkZGSgsLPR4zuyMMFy+IwUH3x2CSk3gWWrUWwduw7cq+PjZHWsgFQc/v8Zut6OpqQkajQYVFRXcvnZhYSGsVisUCoXbiT+r1ujtxD+YDnt6ehpAYCSNF4vdCKo06Xyak/P5fBiNRpw6dQrh4eHYsGGD24eg54kXAL1vYv/uVH1VH38B49AoJGmzZ/ixvaHj4uJQWFgInU6H8fFxjIyMcB1o2JB0ZGQkGIbh9IkHRwwwWXPwjzfGYTKOITNdguK8KOTnhiM6MvCDcGxsDE1NTW6zSNm6zOXLlwM4E8pjy8ZcazdZgQZPGeyhcNjsdsV8+fGPf4zXXnsN//73vxEZGYnR0VEAZwa1VCqFVqvFgQMHcM011yAlJQV9fX247777EB8fj6uuuiog90CZHaFQyJVn+grrQHt7ezEwMOBThvlsDttXbQaRiIcdFyYiXibEu/8ZRUeXASaL4xGujT5cX3PEiqt3SPGD760MidqfzWZzKjN1DX0LBAKnBYxOp+PKxrq7uzkhJJlMhvT09Fkn/sHcw9ZqtQAC47AXi90I6gobOOMI/NnrMBqNGB0dRU5ODtfC0hW7yYyxd474dF6PEvxGEzSNHXM6bEfYWWVERARycnJgNpsxMTGBiYkJ9Pf3QyAQIDY2FlNTU2jvEeNElQQjY2MOZ5gCMIaEOAFWFkWgojQGywsikBgvBp8/P+fHlnysWrXKqzwCgUCAzMxMZGZmcrWbrGhLR0cHOjo6PPb6DoXDDoT4AQA8++yzAIALLrjA6fXnn38eN998M/h8PhobG/HSSy9BrVYjJSUFF154IV5//fWzSjFpMSMQCGAwGOY+0A3snujIyAjWrVvnszyxO4ftrzaDVMLH5vXxqFgTg74BA5pap1FZrUT/gBEareORnp03n2fBLTfF4dpdhQgFFosFtbW14PF4WLt27ZzaDjweD5GRkW4n/gqFAqOjo9wxycnJSEpKcjpnMFfYGo0GAoEgIIm2i8VuBHWFDfjecYsQgp6eHoyOjiIqKgoFBQUej7Uo1bCOjHl835W5+uVoW7uQsOP8WY6YHZFI5DTzHBkZQWtrO76q5+PYV563B8Ynrfj0pBqfnlQjTArkZ4dh47oYrCiIQlZmGCQi72eg7D55X18fSktLPUo4zgZbu7ly5UoAzrWbjr2+o6KikJqayumALwWHPZeSlVQqxeHDhwNyLYp/+BsSd5QnXrlypc8rK3cOe2xsDHV1dfPSZpCIBSjKi0RRXiSuviwVowoj2rt0OFU9iZZ2LSYm7fjmqt+M9bhoEy45z4zk2HG0tREkJCQgNjY2aOOM1YSQSqVOFTi+MNvEv729He3t7U4Tf5vNFrQSWlbSOBBJbYvFbgTNYTMM4/M+ttVqRVNTE9RqNbKzs7mQhsdriESA3bt6R2+a21kN/vXRdcfU1BRaWztR1RSJY1+5uxu4vSO9Aahv1aO+VQ+hYBg5GVJsvzAOm9bHIS5m9kgFmxAzOjqKtWvXBmxm5652Uy6XQ61Wo7m5mTuuq6sL6enpEIlEATUqwSjNoCxe/Ml/USqVqK2tRXJyMsxms1/Pn2NJGCEEXV1d6O7uRnR0NMrLywMSuuXxGKQmS5GaLMWF34qHasqC3n4d6lum0Nalh9FgA8MzIFlmwnVXFiM7M4bbJ25ubobVakVcXByX9BooJS29Xo/q6mqfNSFmw9PEnxVsGRoaAnCmm2FERATi4uLm1SvBlUBKGi8WguawAd9mygaDATU1NZxesEKh4JIGPCGMjQITEQ6i8nwc66i9GWqS9MAkB4yNjaG2rhlf1ETjqzp3e2Le7V9ZrEBHrwG9g4No7dRi755MJCV4TmpraWmBSqVCRUVF0Jq2u9ZuTk9Po6qqCgzDYGBgAHK5nBNtSUtLg0wmm/fgNxgMAVthUxY/vlaYuMoTf/75536t0NmOfewerkKhQFpaGoqLi4NWehQbLUTsqhiUrYqBwWBGdW0TzCYrNm4o55yNY9McjUaDiYkJDAwMoKWlBVFRUZzz9rfclFWjTE5ODkqTIxbXiX97ezsGBwdhtVq5ib9UKkVCQkJAJv5arTZgK+zFQlAdtrczZXZ2nJKSgqKiIvB4PK+cPcPjIXbzWijf+9Tt+762jI9Zt8qHo2fCtv+rb+zGsa9i0NTujdGY23lbLMCJU2qkpkhx45Vp4POdH0CbzYbGxkYYDAYnLfJgo9frUV9fz/3dbDYbJicnMTQ05CTaEhYWhsTERKSlpfm8IiCEwGAwICoqNFn1lIXHW7vBTlIVCoWTPLG/PbF5PB6sVisqKyuh0+lQVFQUsGTHuTCZTKivr4VEJMD6irVuw8QMw3Atd9ly04mJCa41r0gk4px3bGysVxEBtrc4K3scKucml8sxOjrK5RkYjUauzbDjxD8mJoZTa/TVeWs0mqAtXBaKoDvs2ZwuKwna3t4+Y3B4uzrP/u+9bh22r85avDIP4XmZPnzCGUII2tvb0dc/hsq6BDS1z2wtOjeeSz/MVuCLL5W49OJEyBxC42zZm91ux9q17gd6MNDpdKiurkZSUhI3KxcIBEhKSkJSUpJTr++JiQn09vait7eXq91MT0/32MrQFRoSP7fwZuybTCbU1tbCbrfPkCf2dw/cZDLBZrNBr9ejrKws6DoJLDqdjtM2X7FihdeOiZXtTUtL48rYxsfH0draCovFAplMxjlwd3vv4+PjaGxsREFBwZw1xYGkp6cHcrncadtOIpEgPz8f+fn5sFqt3MRfrVZzvb59nfhrtVoaEvfp5LPMlB1nx+7623rbJi923WpE77oIU+9/47RZZ+2L0y7+w/8Hnp/7J2yvXq1WiyljNmobFX6dZybOq+/efh1Of92C8lUpiIuLg91uR01NDUQi0QwBh2Ci1WpRXV2N1NRU5OXluZ2VO/b6BuC2dpM9hm3552myEWjxA8riZq4VNitPHBsbi5KSkhnPvT8Oe3x8nOs/D4Dr8pSQkBCQbR1PsCvcjIwM5Obm+r3C5fP5nIwyq9Q4MTHhUanxTEJsK0pKSpCUlBTgb+UetsXy0NAQ1q5d63Gby5uJv0gk4ib+UVFRbv8+wRBcWmgWZIU92+yYxduwFsPjofTvv8Pxb10P0jXg5KRdg82e3FnSHd9B7IbVc17LHWazGXV1dWAYBsXLS3Hw990Ijuw/HwRAe6cNEZJumE2NXF/pwsLCkDlrjUaD6upqZGRk+KSB7q52kxVt6erqQldXF8RiMSfawvb6tlqtMJlMQV1hP/PMM/j973+PkZERrFixAo8//jg2b94ctOtRZme2yJwneWJHfOmJDQDd3d3o7OxEZGQkKioqwDDMjNVqXFwcEhMTER8fH7Ao1ujoKJqbm1FYWBjQFa6jUqNjuSmr1Mh2Jly2bBni4+MDdl0AsGr1sBmNgM0GYrFBGBcDvlQCQgg6OzsxMjKCtWvXet0bwN3En61WmZychEKhcJr4p6amcolrOp0u6CvsUNuOkCedTU1NoaamBjKZzO3seLbPemLabILtl7eCd/9T4A+Ouz+fw38TfCNfGnn9DhT8zx1eXccVvV6P2tpaREREoKSkBMNjJgyP+hMK957qZjsu3pIH1UQr18f21KlTCAsL42bQ0dHRQdmLYtsSsg1L/IWty1yxYgWAM4OQzR51rd3s7e0FEBjxA3e8/vrr2L9/P5555hmcd955+Otf/4qdO3eipaWFU4ajhBbWYTs2m5hLntgRb20HIQT19fUYHR1FSkoKVqxYwV3PURxJo9FwkpzNzc2IiYlBQkICEhMT/XIIhBD09/ejp6fHa52E+cCWm6akpKCrqwsDAwNITEzE0NAQent7nULn/uS/2K1WjH/8BeTPvAJtbQugdaihFwrAy0qF5IJy6C+swPqLtsxr1SsQCLhtgNkm/jweD3K5PKgr7IWwHQyZq8BsHtTW1kIoFCI/Px/AN7PjvLy8ORMc2M4327Ztm/UaAwMDaG5uRlhYGEqLl6PnN89g/KW3Advsq3MmJwVh370S+vICEEKcSiW8mUGzYbmUlBRuD7e7X4v//kUrLP5LqHvF+eVG3HhNKrfCtVgsXJh5YmICALjwWFxcXEBWBOxEKycnB9nZ2fM+nyfsdjump6cxMDAApVKJXbt2wWazIScnBz/72c9w++23B/R669evR1lZGSeMAADFxcW48sor8dBDDwX0WhTvsFgsOHToEC655BKuNzYrT1xWVjbn6qypqQlisZizO+6w2Ww4deoUtFot8vPzvX6mDQYDxsfHMT4+DpVKhfDwcG6iHBUVNedEmc11GRsbw5o1a0K21UMIQVtbG8bHx1FWVoaIiAgQQjilxomJCUxNTblVapwNbfcA6r57JyzNXXPfRIQEeQ/+DBl7g9NAx3Hi/7e//Q0HDx4Ej8fDhRdeiFdeeSXgfaoXwnaEZA+bfUgHBwe9brfJhsQ9tXQjhKClpQUDAwOIj4/HqlWrwOfzUfL4/TD+f7dh9NUPMP7F1zC09cJusYAvESOsKAfxl2yCbPM6hOdkgicSghCC6elpLlzU3NyM2NhY7qF1N4NWKBRoampy0udm8SM51UdsUOvDkZuby70iFAq5PR9CCKamprjM0aamJsTGxnJa5/7MONl9ttzc3KCvOnk8HmJiYhATE4Pjx49DKBSitLQUANDR0RHQa5nNZlRXV+Pee+91en3btm2orKwM6LUo3sNG3axWK4xGI2pqamaVJ3b3+dlW2AaDAZWVlbBarT4nl0mlUk4YxGKxcGHZmpoa8Pn8Wfe92WoOnU6HdevWhSwhyp0uODC7UqNcLucagLATf9do6MTxL9F4zY/h9QpFa0TXf/8WE598gRWP/w9EspiAfk+BQICsrCykp6fjySefRGxsLCoqKtDe3h7wKpOFsh1Bd9hGoxHV1dUwGAzYuHGj13sXjl13XB8Um82Gr7/+Gmq1Gjk5OTOSNSTx8cj+6c3I/unNIHY7iMUKRiR06/gZhkF0dDSio6ORl5fHzaAVCgU6OjpmzDgHBwfR2dmJFStWzEjW4PMZ2ILat/7MTrzJ5NloMQzDObz8/Hzu+0xMTKCzs5Nrj8eGzudKplEqlairqwt5JunJkydx/fXXY//+/XjwwQeDEuKfmJiAzWab8XdMSkritIIpoYfH44HH43FjMDMz06M8safPe0pam5ycRFVVFQQCAc4777x5OU2hUMjp7Ds2BXK3700I4XJd3OlzB4u5dMEdcVVqVKlUmJiYQEdHB0wmE2QyGWc7tKdr0bh7n1/3pP73Z2gVSbHymQPgiQJb1WKz2fCDH/wAlZWVOHnyJIqLiwN6fpaFsh1BddgMw2BsbAwymQwbN270ScXGUdrU0WGbTCZUVlbCbDZj1apVc2Y4MjweGLH3g8N1Bs0ma/T39wM4s7LPy8tzHyUgBAwQpKSzb9LmiA9XcPw+bLnExMQE6uvrQQjhQufutgImJibQ0NCAoqIirxsoBIKvvvoK1157LX74wx8GzVk74np+T1EdSuhgGAZtbW1YuXKlz92O+Hw+TKaZqoV9fX1cg55Al0C6NgVy3fdmy5JWrlwZMmftqy64I47fp6CgAHq9HuPj4xgdHUX7V9Xg/+Thed2b8l+HMPm9XUg4f8O8zuOIzWbDj3/8Y3zyySf49NNPg+asHQm17QiqwxaLxQgPD0dZWZnPX4Jd+TmGtqampvDll1+CYRisX78+6LW5QqEQKSkpSEpKQmNjI9RqNWJjY7mEEdd9b4bhBclhO+e4+5t14FguwYbOJyYmuK2AmJgYbgat1+vR0NDgttNXMKmpqcFVV12F73znO/jDH/4Q1Ic/Pj4efD5/xoxYoVCErNSF4h6hUIjc3Fy/nj3XChNCCJqamjA0NITExESsWrUqqM+Vo8BJXFwcamtruf3g06dP+7zv7Q/sVgI7SZhPFQlbjRIeHo7s7Gy0v38Swz52SHRH56+eRPyn6wPy/W02G/7f//t/+PDDD3H06FFODjVYLJTtCHqWuEAg8OsPwjaTYB320NAQGhsbIZFIvN7LCgQWiwV1dXVcCZpIJPK4721FNALvsWcWpM2zkRcA59A5uxXARhO6urq41bdYLA5qRx1HGhoasHv3blx33XX485//HPRVrkgkQnl5OY4cOeLUAu/IkSPYvXt3UK9NmR2hUOhXow3AeQ/bZrPhyy+/xPT09KylYMHAXa4Lu+/N1n2z9dOJiYkBq/dmhVgCqQvuyOhbH3l8zwaAh2+qcGbDVNsCXUcvIgr9rzgBzkzI7rnnHrz11lv4+OOPuZyXYLJQtmNBlc7mgh14bW1t6Ovrg0wmw5o1a0JWc8x2/5FKpVxSG+B537uldQwCvhVmKwPfdNY84al6PPAGRyqVIiMjA0KhEEqlEjk5OTCZTGhsbITdbueiCXFxcUEJ6bW0tGDXrl24/PLL8eyzz4bsb3znnXfiu9/9LtauXYuNGzfib3/7G+RyOX70ox+F5PoU98zHdrATfYPBgFOnTsFisXid7Boo5HI5urq6UFJSgsTERO51b/a92dW3P4uS6elprnrFl31/b7Hb7bCPui+dBbzXvgAAEGDq66Z5OWxCCO6//368+uqrOHToECoqKvw+l68shO1YFFrinmAYBs3NzZienkZWVlZQHkBPsA9+YmIiioqKZr0uu08cFZOC9z5rQVev+f/emasx/Wx4ftzFkuD8BsPDw2hra8OaNWs4QQU2msD2+G5ubkZ0dDS3FRAeHj7vv0lHRwcuu+wybN26Ff/4xz9C5qwBYM+ePZicnMRvfvMbjIyMoKSkBIcOHUJWVlbI7oEyk/nYDnYP+/PPPwePx/Mp2XW+sAIhw8PDKCsrm7V3tuu+t1arhUKhgFwuR0tLC1fv7W11h6MueE5OTgC/1TcQu33OklkWb0axacx/VUhCCH7zm9/gueeewwcffIDzzjvP73P5w0LYjkW7wrZYLLBYLDCbzSgoKAipAWWTrZYtW4asrCyvHVJUhAAXbEiAfGAIZivgbVeumZBZj0tLCnw5yODgIDo6OrB69WqnMhfHaEJubi6MRiMXOu/u7oZYLOb2vf3p1dvT04NLL70UmzdvxssvvxxSZ82yb98+7NvnX8YrJTjMx3YolUrodDqIxWKsW7cuZM1wbDYbt8CoqKjwaZLgqE6Wm5vLbVEpFAp0dnbOue8dKl1wBgAipIDGMNehs8IuR6YFZwSofC03JYTg4YcfxtNPP413330XW7Zsmdf9+EuobceiXGFPT0/jyy+/BABERUVxknaJiYlITEwMyKrOE4ODg2hvb/cr2YrHY3DBt+IgH9bhk8/VLhNRb5w3+xjP/t3KVgVWbGFgYACdnZ0oLS2doenuikQiQXp6Otd8fj69evv7+7Fz505UVFTg4MGDC+KsKYsTfxy2ozaDRHJGDrOyspLbI46Pjw9ov2VH2FwXQgjWrVs3720jdosqIyNj1n3v2NhYjI2NhUwXnOHzIc1fBkNN87zOw450U2o8KisrOaXG+Ph4xMTEzGrfCSH44x//iD/+8Y946623cMkll8zrXpYSIRNO8dbBjoyMoKGhASKRCOvXr4dYLIbFYuFqo3t7eyEWi5GUlBRQGU5WmH5gYAClpaVcqz5fSYwX479uzEJaqhQvHRzxUJftqSvX3CwvEAfUYbMZ73OF79zhKBTB9upl2+PN1at3aGgIO3fuRElJCd58882gGVLK0oTP5/s02XenzQCc0b5XKBSciJBMJuMm/oHKxWBzXQKRke2O2fa9TSYTCCHIysry22b5AsMwSLp2J/rm6bABgEmOR8UVl8LGY7iJf319PQDPSo2EEDz55JN4+OGHcfDgQezcuXPe97GUCKo0qclkwkcffYStW7fO+RCzez89PT2IiYlBWVmZ28+wPZcVCgXX8YkdgP6EZIFvOoepVCqUlpZ67CLj2zkJXnpDjtfe8WaPxnG/2nPoPDYS+N19xchbNv/7A4De3l709/ejrKws4EpAJpOJE2yZnJzkevUyDAORSIQrrrgCOTk5+PDDD/3OBqacvTQ3N8NsNmP58uVzHuuozbBy5UqPq0xWhlOhUGB6ehrR0dGc7fBXQIXNdUlKSkJhYWHIcmwIIejq6sLg4CCSkpIwPT0NrVbr8763P0wNDKFm/XWAbn5h8azf7ceyn+x1es1RqXF8fBx6vZ77ThaLBUePHsX999+Pl19+Gddee+28rr8UCfoKG5gpfuKKzWZDXV0dxsfHkZGRMeuDz+fzuUHGzjYVCgWam5ths9m4h5Wtk5sLi8WChoYGWCwWrFu3LmDOg8djcOklyRgeMeHEV1OzSJa6Jpe5D51HhQO/uTc/IM6aEIKenh4MDAygvLw8KPXsYrF4Ruh8YmIC//M//4NDhw4hLi4O3/72t6mzprhFIBBAr9fPeZwv2gyOtcRGo5Fz3p2dnZyiYWJi4oxokCfYfWNfc13mi6MueEVFBbfAcP1Owaj3NhqNaJL3QfTjG2B+9Hm/zyNZU4TM/7puxuuelBrlcjkuu+wy2Gw2XHrppUGvs16sBNVh83g8MAwDq9XqMfxksVhw6tQp6PV6FBUVISMjw6fzs1mWRUVFmJ6ehkKhQFdXF5qamjhpQE8lEkajEbW1tRCLxT4rAXlDYrwYP/xeNnJyFPjo03GMjLmG+OYqfDjzXmwM8J3dVgz0VUE7NbvO+VywM/Ph4eFZe9IGEjZ0zuPx0N3djVWrVuHKK69EXV1d0K9NWZp4s4c9H20GiUTitEfMJnj19fVBLBZziwJPW25srsuKFSsC3lRiNjzpgrv7To773qwuOKtz7k/Y3mAwoLq6GjKZDIX3/hi9AjEGHvyLz+cRryzAmtcehyB87ggAW4Fz/Phx8Hg83HbbbdDr9RgZGUFhYaHP117qBDUkDgCHDh3CunXr3M58tVotTp8+DbvdjvLycp/3UD3BdqFRKBRQKBTQarWIjY3lnLdEIoFGo0FtbS3i4uKCIi7gil5vQ1u3Fl/XqfDFqXGMTVrhzXwpJ1OA395TjMR4idtOQex38qazDtuicGxsDOXl5SErdQHOlJzs2LEDYWFh+OSTT0IyUaAsXfr7+zEwMOC2rpZtJhQMbYa5ttwYhuFyXdasWTNnkmYgsVqtaGhogNlsRllZmdd78I773uPj40713t4khwJnMrmrq6sRHx/PlbkSQjD23qdo/ekBQKWd+0YYIPWuW5D3sx+AL/E+snbw4EHs27cPTz31FG699VavP3c2EnSHffjwYaxevXrGgz02Noa6ujoIhUJs2LAhqKFRx4YearUaUqkURqMRaWlpId13AvB/CVmdiJblQT7Kw+eVSvQPmWB0UfoTCYF1pVH46a05iI6eOaAcdc4nJiYgEAi4kJ67vXw2jDYxMYHy8vKg9ol1ZXp6Gjt37gSPx8Nnn30W8P1yytnH0NAQurq6sGGDs9a0zWZDdXU1lEpl0LUZHB2dQqGAzWbjVv6lpaUha40JOOuCr1mzxu9oICGEq/ceHx/3at9bp9OhuroaSUlJXCthR4xjE5C/8C8MPf82MDYBuG7/JcQi6dpLkXPHdyBN8y0a8fbbb+MHP/gBHnvssYC31l2KBN1hf/LJJygsLORUhtj9087OTkRFRWHt2rUhLeeRy+Xo6OhAeHg4dDodwsLCuBm0N6tUfyGEcElepaWlXDTBbicYHjOgqW0abZ06aHU2yGJEKF8didUlMZCI5v5t7HY7l2U5Pj4Oq9XK1UazpSytra1QKpUoLy8PWVs/4EwU5bLLLoPZbMaxY8dCuiKhLF3GxsbQ1NSEb33rW9xrFosFJ0+ehNFoxIoVK0LakMZsNqO2thZGo5ETZnHsxhXMhh6B1AV3d27WbiiVSs4esvverLNOTU1FXl7erPbRbrPBNDACy7QWlikNRHExkKSnQBAuBePHPX/wwQfYu3cvHnroIfz0pz+lDXkQAod9/PhxZGdnIzk5mWsxNzY2htTUVCxfvjykiRqsw1y1ahXi4uJgtVq5vauJiQkIhUJulRoTExOwMDkbih4dHUVZWZnHxBhCCCxWAj6PAZ/v3+/CllexM2idTgeh8Ezf7zVr1gRs28Eb9Ho9du3aBY1Gg+PHj/vUd5hybjMxMYGamhpOEIPVZiCEoKKiIqRRGsdcl1WrVkEgEHCrVMctN9Z2BFKoJdi64I447ntPTEyAYRjYbDYkJiaiuLg4pKWXH330Eb7zne/gwIED+NnPfkad9f8RdId98uRJpKSkIDExEadPn4ZOp0NhYSEnhh8K7HY7Fw4uLS116zDZVSrr6Agh3AD0N0mDPW9LSwvUajXKyspCGoq22+2or6/H9PQ0wsLCMDU15fO+t78YjUZceeWVUCgUOHHihJOeMoUyF2q1GqdOncJFF13kVpshVLC5LuzerTuH6brlFhkZ6STy5C/B1gWfDZVKhdraWkRERMBkMvm17+0vn3zyCW644Qb84he/wP3330+dtQNBb8HElmecOHECer0e5eXlIXXWVqsVdXV1mJqa8pj8BpzJOI+Pj8fy5ctx/vnnY/Xq1RAIBGhra8Px48fR0NCAkZERWCwWr6/NNo9nMzpD7awbGxthNBqxceNGVFRUYMuWLcjOzoZOp0NVVRU+//xztLa2YnJy0qkd4XwxmUy49tprMTIygs8++ywozvrEiRPYtWsXUlNTwTAM3n33Xaf3CSE4cOAAUlNTIZVKccEFF6C52VnswWQy4Y477uA00a+44goMDg4G/F4pvsOKLnV0dKC+vh7R0dE477zzQuqsJycnUVVVhfT09FlXt2wm89q1a3H++ecjPT0darUap0+fRmVlJTo7OzE1NQVf1kYqlQrV1dXIyspyu28cTNRqNerq6pCbm4t169bhW9/6Flc+JpfLceLECVRVVaG/v9+r0jtfOHHiBG688UbcddddQXPWS9l2BH2F/Yc//AH/+te/cM8992DLli0h3T81mUyora2FUCjEqlWr/Op+45ikoVAooNPpOLWkhIQEjwaElSoEgDVr1oSsHShwZqLQ0NAAk8mE8vJyt9d2rGF3t+/t7/1aLBZcf/316OjowIkTJ3wq0/OF//znPzh58iTKyspwzTXX4J133sGVV17Jvf/II4/gd7/7HV544QUUFBTggQcewIkTJ9De3s5N2m6//Xa8//77eOGFFxAXF4e77roLSqUS1dXVVCZ1gTEYDLjqqquwbNky3HrrrSFPDh0eHkZrayuKi4v93iu3Wq1cxrlrYuhsW25sW85g64K7g20gkpeX53HszrXv7e/fqbKyEldffTX27duHhx56KGh/76VsO4LqsI8fP47t27fDbDYjPz8fl156KW644QaUlJQEffBptVrU1tYiNjYWy5cvD9jej16v55w3q5bEDkJ2Bc1OFNg9r1Aaf1aEhs1k9cbxOsqKspMSdk/Ol3pvq9WKm266CQ0NDfj8889D1rCFYRinQUcIQWpqKvbv34977rkHwJm/SVJSEh555BHcdtttmJqaQkJCAl5++WXs2bMHwBkjnZGRgUOHDmH79u0huXfKTMxmM2699Va8+uqrEAqF2LJlC6688kpcffXVQRH5ccRdrksg8LTlxrasZW0EO1EIhS64K5OTk6ivr/dpouC67+1vvffXX3+NK664At///vfx2GOPhWxyttRsR1CzCNrb2/HnP/8Zl112GV599VX8+9//xlNPPYWsrCzs2LEDe/bsQVlZWcD/OOwsMSMjA7m5uQE9f1hYGLKzs5GdnQ2TycQNwK6uLoSHh0Mmk2FsbAwxMTEoKSkJen23I2z4nxCCsrIyr5NEGIZBVFQUoqKiuE5B7AyazahnJyWe9r2tViu+973voa6uDsePH1/Q9pS9vb0YHR3Ftm3buNfEYjG2bNmCyspK3HbbbaiurobFYnE6JjU1FSUlJaisrKQOewExm82ctn93dzdee+01PPDAA7jzzjuxadMm7N69G9dcc03AKw4cc13Wrl0b0MkBu+UWHx/PyW8qFAp0dHTAbDYjLi4OPB4PCoViXr0M/IXtUFhUVORTRMGTznlbW5vX+961tbW46qqr8J3vfCekztodi912BNVh//CHP+T+++c//zl+9rOfYXx8HK+99hreeecd/P3vf0dKSgq2b9+O66+/HuvWrZv3anR0dBTNzc0oLCwMejhJLBY7KQsNDg6ip6eH6yHd1dU1q1pSILFarVydZmlp6bx+R3ZPLjMz06neu6qqigvrsTNoHo8Hm82GW2+9FV9++SWOHTvGNV5YKEZHRwFgxgolKSkJ/f393DEikWiG0U9KSuI+T1kYIiIi8PLLLwMAsrOzcfHFF8Nms6GyshKvvvoqHnvsMfzsZz/D+vXrsXv3blx33XWIi4ub1xhjRUlMJlPQW3K6ym9qNBq0t7dDrVaDYRj09fVBr9fPuuUWSFiJ1eXLl89LtW2u/t6sdrtjvXdjYyN2796Nq6++Gn/+858XPMFssduOkLZIYhgGiYmJ2L9/P/bv3w+lUomDBw/irbfewmWXXYb4+Hhs27YN119/Pc477zyfnA4hhOs8tWrVKq7uO1TodDr09/cjOzsbWVlZXF10XV0dGIZxyjgP9KrbYrGgpqYGQqEQq1evDmgIXigUIiUlBSkpKU773i0tLbBarfjPf/6D6upqdHd347PPPltUcoGug9+brnG+dJajhA4+n4/Nmzdj8+bNIITgyy+/xKuvvopnn30W9957LyoqKnD55ZfjxhtvRGJiok9/Q8dcl7Vr14Y03wQ4I3NqMBiwadMmMAwDhUKBkZERtLW1ISoqiss4D0bSKlvvHugQvGt/b8d9bzYJ77333sPRo0exa9cu/PWvf11UeSOL1XaELl7rBplMhn379uGTTz7B6OgofvWrX2FoaAhXX3018vPzcdttt+Ho0aNzttljpQr7+/uxdu3akDtrtmY0NzcXubm5EAgESExMxIoVK3D++edj5cqV4PF4aGlpwfHjx9HY2IixsTG/eoW7YjabUV1dDZFIFFCJRnewM+ji4mJs3rwZpaWlOHnyJKqqqqBWq/HPf/4zaNf2BXaV4DrbVSgUnFFKTk6G2WyGSqXyeAxlccIwDDZs2IAnn3wSnZ2d+Oqrr7Bhwwa89NJLyM/Px4UXXog//OEPGBwcnDMzW6vV4quvvkJERITXOR+Bgq3kUKlUqKioQHh4OLflVlFRgc2bNyM1NRVKpRKVlZU4deoUuru7odFofMo498TIyAiam5uxatWqoD/zrM55WVkZtmzZArvdjvfffx86nQ5HjhxBT09PUK/vLYvddiyow3YkJiYGP/jBD3D48GGMjY3h4Ycfhkqlwk033YTc3FzccsstOHTo0IyyKrZ0SqlUYt26dSGXvRwdHUV9fT2Ki4vdZlXyeDzIZDIUFRVh8+bNKCsrg0QiQXd3N44fP47a2loMDQ3BbDb7fG3WWUulUqxevTqk++UA8Nvf/hZyuRynT59GV1cXbrrpppBe3xM5OTlITk7GkSNHuNfMZjOOHz+OTZs2AQCXPe94zMjICJqamrhjKIsfhmFQWlqKxx57DK2trairq8NFF12EN954A8uXL8fmzZvx0EMPcVtVjiiVSnz99ddISUnBihUrQp5vUltbC4PBMKOJBwvb8Y51ctnZ2dBqtfj6669x8uRJtLe3Q6VS+eW82eS21atXh3yBMzg4iPvuuw+XXXYZpqen8eqrryInJyek9+CJxW47gl7WNV/0ej3effddvPnmm/jkk0/A5/Nx0UUX4ZprrsHq1atx6tQp5OXlhbx0CjijC97Z2YlVq1YhPj7e5887NijRaDSIiYnhwl9z7aGxcoWRkZEhNzaEEPziF7/ASy+9hI8++miG3nMo0Gq16OrqAgDOYF944YWQyWTIzMzEI488goceegjPP/888vPz8eCDD+LYsWMzSjM++OADvPDCC5DJZLj77rsxOTlJy7rOAlh1wVdeeQXvv/8+t0d72WWX4YYbbkBzczPCw8OxfPnykJdOmc1m1NXVgc/nc3oPvsC2q2UTXn3dchscHERHRwfWrFkT8uQ2uVyObdu2Yc2aNXj77bdDqp7GspRtx6J32I6YTCa8//77eOONN3D48GFoNBpkZGTgwIEDuOKKK0JW4+1JF3w+GI1GbgCqVCpOLSkhIWFGZyuj0YiqqiquZC2Ue66sqMBf//pXfPjhh9i8eXPIru3IsWPHcOGFF854fe/evXjhhRdACMGvf/1r/PWvf4VKpcL69evx9NNPo6SkhDvWaDTiZz/7GV577TUYDAZcfPHFeOaZZ4JWO05ZGNjx+sorr+C9995DTU0NGIbBnj17sH//fqxYsSJkY4idaIeHh6OkpGText1ut0OtVs/QU0hMTERcXNwMhyiXy9Hd3R3yTmPAmYYu27ZtQ1FREd57772QL7BYlrLtWFIOm8Vms6G4uBgrVqyARCLB0aNHYTAYsGXLFlx11VW44oorgta+0Vtd8PlgNps5jfPJyUlIJBJu5S0UClFdXc3tJYfaWT/44IN44okn8N577+Giiy4K2bUplEDw9ttv40c/+hH27NmDqqoqVFVVITs7Gzt37sSePXuwZs2aoI2pYOuCs9UprJ6CwWBwEnkaHh5Gb28vysrKQtppDDiT3LZ161ZkZWXh0KFDIVWsO5tYkg4bOLMHw9YLWq1WHDlyBAcPHsThw4cxPT2Nb33rW5zYQqD2tRdCF9xms3HOe3x8HDabDRERESgoKHDbRjNYEELwhz/8AY8++ijefvttWqdMWZLY7XYoFAquGdHY2BheffVVvPvuu/jyyy+RlpaG7du344YbbkB5eXnAwpvT09OoqalBWlranF2vAoXjltv09DQYhkFmZiYyMjJCqjg5Pj6Obdu2ITk5GYcPHw5qydzZzpJ12J6w2Ww4fvw4XnvtNXz00UeYmJhwElvwd8+Glfs0Go0oKysL+QxRp9Ph66+/RmxsLIRCIaeW5Bj+CtbeCSEETzzxBB544AG88cYbuPzyy4NyHVeys7O52kdH9u3bh6effho333wzXnzxRaf31q9fj9OnT4fk/ihnFxMTE5xGRGVlJRITEzmNiI0bN/o9vpRKJerr65GTk4Ps7OzA3vQcsO2M5XI50tPTMT09DZVKhYiICKcGJcGaQCiVSmzfvh0xMTH4+OOP59UMxVvOZrtx1jlsR2w2G06dOoVXX30VH330EYaGhrBhwwbs2rUL119/PeLj4716UBdSFxw4kyRRXV2NtLQ0TrnNUS1JoVDAZDJxzns+WuCuEELw7LPP4n/+53/w6quv4qqrrgrIeb2BjSiwNDU1YevWrfjss89wwQUX4Oabb8bY2Bief/557hiRSBTyRBrK2YdKpcLrr7+Ot99+G1988QWio6Oxbds2XHvttbjgggu8dt6sLnhhYSHS0tKCfNfOEELQ1dWF4eFhlJeXc9uEs225zUcL3JWpqSls374dEokEn376adC2KV05m+3GWe2wHSGEoKqqCq+88go+/PBDrmZ7165d2LNnD5KTk90+qCaTCTU1NZBIJCHXBQe+CaVlZmZi2bJlbo9xbFAyPj7O9edlB+F8ogH/+7//i3vuuQfPP/88brjhBr/PEwj279+PDz74AJ2dnWAYBjfffDPUavWMbjsUSiDRaDT417/+hTfffBMnTpxAWFgYLrnkElx77bW45JJLPGY6s6VTK1euDHl7WTbXZmxsDOXl5R5XtuyWGytqwufzuYzz+Wy5TU9P49JLLwUAfPrppwFJzPWXs8lunDMO2xFCCOrr6/HKK6/ggw8+QFdXF0pLS3H55Zdjz549yMjIAMMwMBgMqK6uRkxMTEAbiHjL1NQUampqfA6lGQwGbuU9NTXlt1rSiy++iDvvvBN/+9vf8N3vftePbxA4zGYzUlNTceedd+K+++4DANx888149913IRKJEBMTgy1btuB3v/sd7b1NCRp6vR5vvfUW3nzzTXz22WcQCoW4+OKLcfXVV2P79u3c5JhVXVy9enXIV26EEE4Tvby83Osx76hkqFAoYLfbOefty5abVqvF5ZdfDqPRiOPHj4c8G92Rs81unJMO2xFCCFpaWrh6zdbWVqxatQplZWVoaWnB448/HpLuYq6o1WrU1tYiNzd3Xv3DTSYTlzWqVCq9auQBAK+99hp+8pOf4JlnnsH3v/99v68fKN544w3cdNNNkMvlXLLh66+/joiICGRlZaG3txe//OUvYbVaUV1dTbNQKUHHaDTivffewxtvvIFPPvkEhBBs2bIFBoMBpaWl2L9/f8izsVl7plKpUF5e7ndyGbvlNj4+jrGxMW7Lje0j4GnLzWAwYNeuXZiamsKJEycC1u3MX842u3HOO2xHCCHo7OzEww8/jJdeegl2ux3FxcW4/PLLccMNN4SskbxSqURdXR3y8/MDWtdntVq5vauJiQkIhUJu5R0TE8N9t3/961/40Y9+hD/96U/40Y9+FLDrz4ft27dDJBLh/fff93jMyMgIsrKycPDgQVx99dUhvDvKuY7FYsG///1v3Hvvvejt7YVEIsGFF16Iq6++GldccUVIKkrYKpapqSmUl5cHLBubEOKUce645ZaQkMBdx2g04sorr8TY2BhOnDixKCR+zza7EXqZmUUMwzAoKChASUkJnnjiCVx66aWc2MIf//hH5OXlcT29gyW2wPakDUaSikAg4FrhOaol1dfXAwC6u7vR1dWFv/71r3j00Udx2223BfT6/tLf34+jR4/i7bffnvW4lJQUZGVlobOzM0R3RqGcgQ2Nr1y5EkeOHEFLSwsOHjyIX/ziF7jjjjuwefNmXHnllbjqqquCot1gt9vR1NQErVaLtWvXBnSlyDAMIiIiEBERgWXLlnFbbqOjo2hvb0dERAQOHTqEkydPYnx8fNE467PRbtAVthcQQjA8PIyXX34Z7733Hr7++mtkZWVxYgulpaUBcd5sm7vi4mKkpKQE4M69g1VLuvPOO/Gvf/0LYrEY3/72t/Hcc8+F7B5mg1VWGxgYmFXKcHJyEmlpafjb3/6G733veyG8QwrFPTabDZ999hlXZqpSqXDeeefhiiuuCFhPb7vd7lRy6qnvdDAwm81obW3Frl27MDk5iYKCAjz11FPYunVryO7BE2ej3aAO20cIIVAoFJzYwunTp5GWloZt27bhhhtuwNq1a/3KJFcoFGhsbAx4mztvOXr0KG644Qbcf//92LFjBzo6OnDjjTeG/D5csdvtyMnJwY033oiHH36Ye12r1eLAgQO45pprkJKSgr6+Ptx3332Qy+VobW0NyiqGQpkPNpsNJ0+exKuvvor//Oc/GBsbw4YNG3DFFVf43dOb1Ycwm80oKysLecmp1WrFt7/9bdTX1+PQoUNoaWnB6tWrF7zN7tlqN6jDnieTk5NOYgtsT+89e/Zg06ZNXjlvtiftQpR/AMDx48dx3XXX4a677sKBAwcWVT/ojz/+GNu3b0d7ezsKCgq41w0GA6688krU1tZCrVYjJSUFF154IX77299SLXDKooft6f3KK6/gP//5D+RyOSoqKnDFFVdgz549XvX0ttlsqKurg81mC3lrUPb6e/fuxZdffonjx48jLy8vpNefjbPVblCHHUDUajXeeOMNvPXWW/j8888RFRXlJLbgLiwzMjLC1WqGus0dAJw8eRJXX3017rjjDvzud79bVM6aQjkXIISgpqYGr7zyCg4dOoTu7m6UlZXh8ssvx4033ojU1NQZ49JqtaKurg6EEJSWloa865XNZsMPfvADHD9+HJ999hmKiopCev1zFeqwg4RGo8Gbb76JN998E8ePH4dUKsXWrVtxzTXXYOvWrRAIBOjv70d3dzdWr169IOUPX331FXbv3o0f/OAH+P3vf0+dNYWywBBC0NTUxGlEtLe3Y9WqVZxGRHZ2NoxGIxobG8Hn87FmzZqQiznZbDbs27cPhw8fxqeffurUxYoSXKjDDgF6vR7vvPMO/vWvf+Gzzz4Dn89HZmYmpqencfToUSQnJ4f8nmpqarBr1y585zvfwZ///GfqrCmURQarVvbyyy/j/fffR1NTE4qKijAxMYH/+q//wn333bcgK+v9+/fj3//+N44cOYLS0tKQXv9cxy/prmeeeQY5OTmQSCQoLy/H559/Huj7OqsICwvDt7/9bbz77rtQKBTYvXs3WlpaMD4+jtLSUnz729/Gm2++CaPRGJL7aWhowO7du3H99dfjiSeeCJmzZvfHHf9xnKywvbZTU1MhlUpxwQUXoLm5OST3Rgk+1G74BsMwKCwsxAMPPIC6ujp8+eWXUCqVMJlM+P3vf48NGzbgl7/8JZqbmxGKdRchBD//+c/xzjvv4KOPPgqZs6Z24xt8dtivv/469u/fj/vvvx+1tbXYvHkzdu7cCblcHoz7O+sQi8XYsmULTp48CaVSiRdffBFSqRR33nknsrKycN111+G1116DXq8PyvVbWlqwa9cuXHHFFXjmmWdCLre6YsUKjIyMcP80NjZy7z366KN47LHH8NRTT+Hrr79GcnIytm7dCo1GE9J7pAQeajfmB6sR8YMf/AAKhQI9PT34zne+gy+++AKbNm1CaWkp7r33XtTX1wfFeRNCcN999+G1117Dhx9+iLVr1wb8GrNB7cb/QXxk3bp15Ec/+pHTa0VFReTee+/19VQUBywWC/nwww/J9773PZKYmEikUinZtm0beeaZZ8jIyAjR6XTz/qe2tpYkJiaSG2+8kVit1pB/x1/96ldk9erVbt+z2+0kOTmZPPzww9xrRqORREdHk7/85S8hukNKsKB2IzjY7XYyPDxMfv/735PzzjuPCAQCkp2dTW6//XZy7NgxMj09PW+7odVqyc9+9jMSGRlJjh8/HvLvSO3GN/i0vDKbzaiursa2bducXt+2bRsqKysDOpE41xAIBLj00kvx4osvYnh4GO+//z7S09PxwAMPIDs7G7t27cLf//53qFQqv87f09ODSy+9FOeffz5efvnlkCeqsHR2diI1NRU5OTm44YYb0NPTAwDo7e3F6Oio07PFRiPos7W0oXYjeDAMg5SUFNx99934/PPPMTw8jP3796O1tRXbtm3D8uXL8dOf/hRffPGFU8tJbyGE4KGHHsIzzzyDd955B+eff34QvsXcULtxBp8c9sTEBGw22wxhj6SkJIyOjgb0xs5l+Hw+Lr74Yjz33HOQy+U4cuQI8vPz8ac//QnLli3Djh078Mwzz2BiYsKr8Fd/fz927tyJdevW4Z///OeCOev169fjpZdewuHDh/H3v/8do6Oj2LRpEyYnJ7nnhz5bZx/UboQGhmGQkJCAn/70p/jss88wOjqK++67D319fdi9ezcKCwtx++2349NPP/XKeRNC8Mc//hF/+tOf8Oabb+Liiy8OwbeYCbUb3+DXBqZrkhIhhGYZBwk+n4/NmzfjL3/5C3p7e3H8+HGsXr0af/nLX5Cbm4tLLrkEjz/+OMbGxtw676GhIezcuRMrV67Em2++GfKsUkd27tyJa665BitXrsQll1yCDz/8EMCZNp4s9Nk6e6F/29ASGxuL22+/HUeOHMHY2Bh++9vfQqFQYM+ePcjLy8Ott96Kw4cPw2q1zvgsIQRPPvkkHn74YRw8eBA7duxYgG9wBmo3vsEnhx0fHw8+nz9j5qJQKBaF2PvZDsMw2LBhA5588kl0dnbiyy+/xMaNG/HSSy8hPz8fF1xwAf7whz9gcHAQhBAMDAxgx44dKCgowLvvvrugztod4eHhWLlyJTo7O7msT/psnX1Qu7HwREVF4ZZbbuEkUX//+99Dq9Vi7969yMnJwc0334wPPvgAFosFhBA8/fTT+PWvf41XXnkFu3btWujbd+Jcths+OWyRSITy8nIcOXLE6fUjR45g06ZNAb0xyuwwDIOysjI89thjaG1tRV1dHS6++GK88cYbKCoqQnJyMpYvXw6RSIT33nsvpA0BvMVkMqG1tRUpKSnIyclBcnKy07NlNptx/Phx+mwtcajdWFxERETge9/7Ht577z0oFAo8/fTTsFqt+OEPf4iUlBSkpKTgnnvuwV/+8pdF2W7ynLYbvmapHTx4kAiFQvLcc8+RlpYWsn//fhIeHk76+vq8PseDDz5I1q5dSyIiIkhCQgLZvXs3aWtrczpm7969BIDTP+vXr/f1ds857HY7+eKLL0hERATh8XiEz+eTP//5zwt9W4QQQu666y5y7Ngx0tPTQ06fPk0uv/xyEhkZyT07Dz/8MImOjiZvv/02aWxsJDfeeCNJSUkh09PTC3znlPkSCLtBCLUdwcRsNnO/nUQiIfHx8USj0Sz0bVG74YDPDpsQQp5++mmSlZVFRCIRKSsr8znVf/v27eT5558nTU1NpK6ujlx22WUkMzOTaLVa7pi9e/eSHTt2kJGREe6fyclJf273nEOpVJK7776bGI1GMjIyQoaHhxf6lgghhOzZs4ekpKQQoVBIUlNTydVXX02am5u59+12O/nVr35FkpOTiVgsJueffz5pbGxcwDumBJL52g1CqO0INv/617/IO++8Q2w2G6mvr1/o2yGEULvhyKKQJh0fH0diYiKOHz/OlQ3cfPPNUKvVePfddxf25igUyqKF2g7KuURoZa48MDU1BQCQyWROrx87dgyJiYlOCj8UCoXCQm0H5VxiwVfYhBDs3r0bKpXKSVv49ddfR0REBLKystDb24tf/vKXsFqtqK6uhlgsXsA7plAoiwFqOyjnGgvusH/84x/jww8/xBdffIH09HSPx42MjCArKwsHDx5clJmLFAoltFDbQTnXWNCQ+B133IH33nsPn3322awDDgBSUlKQlZWFzs7OEN0dZTYeeughVFRUIDIyEomJibjyyivR3t7udMzNN988o8vOhg0bFuiOKWcT1HYsXajt8J8FcdiEEPzkJz/B22+/jU8//RQ5OTlzfmZychIDAwNISUkJwR1S5uL48eP48Y9/jNOnT+PIkSOwWq3Ytm0bdDqd03E7duxw6rJz6NChBbpjytkAtR1LH2o75sFCpKbffvvtJDo6mhw7dsyp9EKv1xNCCNFoNOSuu+4ilZWVpLe3l3z22Wdk48aNJC0tzavaul/96lcz6jCTkpK499kygJSUFCKRSMiWLVtIU1NT0L7vuYBCoSAAnEp19u7dS3bv3r1wN0U56wim7aB2Y2GgtsN7FmSF/eyzz2JqagoXXHABp6yTkpKC119/HcAZ/ezGxkbs3r0bBQUF2Lt3LwoKCnDq1ClERkZ6dQ3aPzW00GxdSigItu2gdiP0UNvhPQuedBYMDhw4gHfffRd1dXUz3iOEIDU1Ffv378c999wD4IzUXVJSEh555BHcdtttIb7bpQ+h2bqUswBqN0IPtR0+spDL+2Dxq1/9ioSFhZGUlBSSnZ1N9uzZQ7q7uwkhhHR3dxMApKamxukzV1xxBfne9763ELe75Nm3bx/JysoiAwMDsx43PDxMhEIheeutt0J0ZxSK91C7EXqo7fCNRSGcEmho/9TQQbN1KWcL1G6EFmo7fGdx9VsMEDt37uT+e+XKldi4cSNyc3Px4osvcqUB50r/1GBBCMEdd9yBd955B8eOHaPZupQlD7UboYHaDv85K1fYrpzL/VODxY9//GO88soreO211xAZGYnR0VGMjo7CYDAAALRaLe6++26cOnUKfX19OHbsGHbt2oX4+HhcddVVC3z3FMrcULsRHKjt8J9zwmGf0/1Tg0QoMv0plIWE2o3gQG3HPFjYLfTgEOz+qVlZWTPqNQGQffv2EUJoP14KZSlC7QZlsXNW7mEPDg7ixhtvxMTEBBISErBhwwacPn0aWVlZAICf//znMBgM2LdvH1QqFdavX4+PP/7Y69nb119/DZvNxv1/U1MTtm7diuuuu457bceOHXj++ee5/xeJRAH6dhQKJRhQu0FZ7JyVddihZv/+/fjggw/Q2dkJhmFoP14KhTIn1G5QfOWc2MMOJmazGa+88gq+//3vO2WLUpUeCoXiCWo3KP5AHfY8effdd6FWq3HzzTdzr+3cuROvvvoqPv30U/zxj3/E119/jYsuuggmk2nhbtRPnnnmGeTk5EAikaC8vNxJjYhCofgHtRsUv1joTfSlzrZt28jll18+6zFLVaXn4MGDRCgUkr///e+kpaWF/PSnPyXh4eGkv79/oW+NQlnSULtB8Qe6wp4H/f39OHr0KG699dZZj1uqKj2PPfYYbrnlFtx6660oLi7G448/joyMDDz77LMLfWsUypKF2g2Kv1CHPQ+ef/55JCYm4rLLLpv1uKWo0mM2m1FdXY1t27Y5vb5t2zZUVlYu0F1RKEsfajco/kIdtp/Y7XY8//zz2Lt3LwSCb6rjzhaVnomJCdhsNqqdTKEEEGo3KPOBOmw/OXr0KORyOb7//e87ve6PSs+JEyewa9cupKamgmGYGWUdhBAcOHAAqampkEqluOCCC9Dc3Ox0jMlkwh133IH4+HiEh4fjiiuuwODg4Ly/J9VOplACRyDtBrB4bQe1G8GBOmw/2bZtGwghKCgocHpdKpXi8OHDUCgUMJvN6O/vxwsvvICMjAyP59LpdFi9ejWeeuopt+8/+uijeOyxx/DUU0/h66+/RnJyMrZu3QqNRsMds3//frzzzjs4ePAgvvjiC2i1Wlx++eVOQg2+EB8fDz6fT7WTKZQAEki7ASw+20HtRpBZyIw3ykwAkHfeeYf7f7vdTpKTk8nDDz/MvWY0Gkl0dDT5y1/+QgghRK1WE6FQSA4ePMgdMzQ0RHg8Hvnoo4/8vpd169aR22+/3em14uJicu+99/p9TgqFEhwWi+2gdiN40BX2Iqe3txejo6NOSRxisRhbtmzhkjiqq6thsVicjklNTUVJScm8Ej3uvPNO/O///i/+8Y9/oLW1Ff/v//0/yOVy/OhHP/L/C1EolJCwULaD2o3gcVZqiZ9NsKEld0kc/f393DEikQixsbEzjplPoseePXswOTmJ3/zmNxgZGUFJSQkOHTrEaStTKJTFy0LZDmo3ggd12EsEf5I4vDlmLvbt24d9+/bN6xwUCmXhWAjbQe1GcKAh8UVOcnIyAMyaxJGcnAyz2QyVSuXxGAqFcm5BbcfZB3XYi5ycnBwkJyfjyJEj3GtmsxnHjx/Hpk2bAADl5eUQCoVOx4yMjKCpqYk7hkKhnFtQ23H2QUPiiwCtVouuri7u/3t7e1FXVweZTIbMzEzs378fDz74IPLz85Gfn48HH3wQYWFhuOmmmwAA0dHRuOWWW3DXXXchLi4OMpkMd999N1auXIlLLrlkob4WhUIJMtR2nGMsbJI6hRBCPvvsMwJgxj979+4lhJwpz/jVr35FkpOTiVgsJueffz5pbGx0OofBYCA/+clPiEwmI1KplFx++eVELpcvwLehUCihgtqOcwuGEEIWarJAoVAoFArFO+geNoVCoVAoSwDqsCkUCoVCWQJQh02hUCgUyhKAOmwKhUKhUJYA1GFTKBQKhbIEoA6bQqFQKJQlAHXYFAqFQqEsAajDplAoFAplCUAdNoVCoVAoSwDqsCkUCoVCWQJQh02hUCgUyhKAOmwKhUKhUJYA1GFTKBQKhbIEoA6bQqFQKJQlAHXYFAqFQqEsAajDplAoFAplCUAdNoVCoVAoSwDqsCkUCoVCWQJQh02hUCgUyhKAOmwKhUKhUJYA1GH7CSEEGo0GRqMRhJCFvh0KhbJEsFqtUKvVsNvtC30rlCWGYKFvYClis9nQ0tKCnp4eAEBkZCTi4uIQHx+P+Ph4iEQiMAyzwHdJoVAWG1NTUzh16hRMJhMEAgFiY2MRFxeHxMREREdHg8ejayiKZxhCl4c+odVqUVVVBZvNBq1Wi+zsbIjFYqjVakxNTcFkMiEyMhIymQwJCQmIj4+HUCikDpxCOYex2+3o6+tDS0sLwsLCoNPpsHr1aqhUKqjVakxPT4PP5yM2Nhbx8fFISEhAVFQUdeAUJ6jD9hJCCAYGBtDY2Ijk5GQUFRXh6NGjyMvLQ2ZmJneMwWCAUqnkHLjZbEZUVJTTClwgEFAHTqGcI5hMJtTV1UGlUqGkpATj4+MYHBzEBRdcwB1js9kwNTXl5MCFQqGTA4+MjKQO/ByHhsS9wGKxoKGhAaOjo1ixYgWSk5MBAAzDOO1fMwyDsLAwhIWFIT09HXa73cmBDw4OwmKxIDo6GnFxcUhISIBMJqMOnEI5CyGEYGJiAjU1NYiIiMCmTZsgFosxOTk541g+nw+ZTAaZTAZCiJMDHxgYQEtLC0Qi0QwHTu3GuQV12HOgUqlQXV0NoVCITZs2ISwszOn92RJHeDwewsPDER4ejoyMDNjtduj1em4WLZfLYbPZ3DpwCoWydLHb7Whvb0dXVxfy8/ORlZXFrY7ncrIMw0AgECAuLg5xcXGcA1er1VCpVJDL5WhuboZYLHZy4BEREdSBn+VQz+ABu92O7u5utLW1ITs7G7m5ueDz+fM6J4/HQ0REBCIiIjgHrtPpOAfe19cHu92OmJgYzoHHxsZSB06hLCH0ej2qq6thMBiwbt06xMTEOL3vGpmbC9aBs1tqhBAu01ylUqGvrw+NjY2QSCSQyWRcElt4eDh14GcZ1BO4wWg0ora2FlNTUygrK0NcXJzHB38+pRk8Hg+RkZGIjIxEZmYm7HY7tFoturq6IJfL0dvbC0LIDAc+34kDhUIJPIQQDA8Po76+HvHx8SgtLYVQKJxx3HydKMMwEAqFSEhIQEJCAgghsFgsUKvVaGpqglqtRmNjI6RSKWQyGeLj45GYmAipVEod+BKHOmwHCCEYHx9HbW0tIiMjuT0nT/g6U54LHo+HqKgoREdHIzw8HPn5+dBoNFCpVJiYmEB3dzcYhnFy4DExMdSBUygLjNVqRXNzMwYGBlBcXIy0tDSPzjHQiWMMw0AkEiExMREMw2DVqlXg8/lQq9VQq9Xo6upCfX09wsLCuOTXhIQESCQS6sCXGNRh/x82mw1tbW3o6elBQUEBMjMzvRpYwUyy5/F4iI6ORnR0NIAzq/np6WmoVCqMj4+jq6sLDMNwtZysA6eZpBRK6JienkZVVRUAYOPGjYiIiFjQ+2EYBmKxGElJSUhKSgIhBGazmQuht7e3o7a2FuHh4U7VK9SBL36owwag0+lQXV0Ns9mM9evXcw5yofA0CeDxeIiJieH2xGw2G+fAR0dH0dHRQWs5KZQQYbfbIZfL0dTUhLS0NBQWFnoV7WLHIyEkJA7SnQM3mUycA29tbYXBYEBERISTfoRYLKYOfJFxTjtsQgiGhoZQV1eHsLAwbNiwwe2ekycYhllQeUHWOcfGxgJwruUcGhpCW1sbp6ZEazkplMBhNptRX1+PkZERFBcXIyMjw2vnFuitNF9hGAYSiQTJyclITk4GIQRGo5Fz4C0tLTAYDFTBcRFyzjpsq9WKxsZGDA8PIyEhAQB8ctYsi0l3xrWW0263c/tYg4ODaGlpgVAoRExMDBITE2ktJ4XiB5OTk6iuroZUKoVAIEB0dLRPYyiY480fe8QwDKRSKaRSKVJSUjgHzupHNDU1wWQyISwsjEtgowqOC8M56bCnpqZQVVUFPp+PjRs3Ynx8HCqVyq9zLSaH7QjDMODz+TNqOZuammA0GrlaTpFIxGWS0lpOCsUzdrsdnZ2d6OjoQG5uLnJycnD8+HGfo2yLPcLFOvC0tDSkpaVxjY6qqqoglUrR0NDgpOCYkJCAuLg4KgAVAs4ph+2o55uRkYH8/Hzw+XxMTEz4FdpeSg8nW8spFosRFRWFnJwc2Gw2pxpwx1pO1oHTWk4KBTAYDKipqYFWq8XatWsRGxsLhmHA4/F8nrQvtfHEOnAAWL58OXg8HlVwXCDOGYdtNptRW1sLpVKJNWvWID4+nnuY/Bl0LMFaYQfrQWcTXVgH7q6WU61Wo6enBw0NDbSWk3JOQwjB2NgYamtrERsbi02bNkEkEnHv+7MfHewVdjDGJ/sd2UkKVXBcGM76X5AQgsnJSdTU1CAsLAybNm2CRCJxOmY+yWNLraetp8xUx1rOxMREJweuUqmcajkdHTgtBaGcrdhsNjQ3N0Mul6OwsBDp6ekznC2Px/PZBizF8eLosF2hCo6h46z+xRz1fPPy8pCdne12duvvCjtY2Z7B3BcnhHg1w3fnwB1rOTs6OlBXV4fw8HCnEDp14JSzAY1Gg+rqathsNmzYsAGRkZFuj1uMK+xgMJvDdsWTgqNKpYJSqaQKjvPgrHXYer0eNTU10Ov1qKio4Eqf3OHPCluv18NqtXKrT5lMhujo6EX/0Plb+zlXLScrxiCVSrk6zoSEBFrLSVlSOLbRTUlJQWFh4awrQV9tB9vBCwCampoQGxsLmUy26LeaHLfSfIVVcIyKikJWVhbsdvsMBUcAiIqK4qpXqIKje846h00IwejoKOrq6iCTybBp06Y5y7V8nSUrFAo0NjZy9Yxmsxmtra2wWCyIioqCTCZDbGzsoqx5DpRYg7taTjaTlP09ampqEBkZ6STGQGs5KYsVto3u2NgYSkpKkJSUNOez6kt0jpUvHR8fBwBERERAoVCgs7OTa53J2o7ZJJE9EezIXKDGrTsFR1a8hSo4zs5Z5bB90fN1xNtBx5Z1yOVylJSUoK2tDWKxGMuXLwchhMucZFvgEUI4YROZTIawsLAFd1bBUldiQ+gAUFxcDABcLefU1BRXTsZOaKgYA2UxoVQqUVNTw7XRZbOi58Lbyb5Go0FdXR3EYjFWrFiB+vp6ZGdnc9UaU1NTUCqVXO/r8PBwznb4ut8brKSzYI1THo8HoVAIkUiE/Px8quA4C2eNw56ensaXX34JwHc9X2/CWkajEXV1dbBardz529ranM4RFhaGsLAwpKencytOx7APqzrGzqJdk99CQTAHnt1uB4/H487vWstpMBi4RJTGxkanWk7WgdNSEEooYSfh7e3tyMnJQV5enk+OwJuks6GhIbS0tHBtetVqtdP7joJHwJmVvkqlgkqlQnd3N6c6xtqOqKiokIeLgy2jarfbuUgoVXD0zJJ32IQQ9Pf3o6mpCWKxGCkpKT6L78+1wh4fH0dDQwMSExOxfPlyp8Hi6XMMwzjt27CzRqVSyT10UqnUaRbtGLoPdllXMGAdtjscJzSsA3csBXGt5YyPj6diDJSg4thGlxCC3Nxcn43+bCtsm82GlpYWKBQKrFmzhlNUZK9ht9vdOl6hUMgle7L3ySZsNTc3w2q1Ijo62mnrLdhjJBQO29Nv762Co2Py69mq4LikpyQWiwVVVVVoaWnBqlWrODEDX/G0wiaEoLOzE3V1dSgsLMTKlSudBpgve9/srDE3Nxdr167F5s2bkZubC4Zh0Nvbi88//xxff/01urq6YDQag1YutlAO2xWGYRAeHo709HSUlJRg06ZNqKioQEJCAqanp1FbW4uPPvoIn3/+OZqbmzE2Ngar1Tqv+ztx4gR27dqF1NRUMAyDd9991+l9QggOHDiA1NRUSKVSXHDBBWhubnY6xmQy4Y477kB8fDzCw8NxxRVXYHBwcF73RQkthBAoFAocO3YMAFBRUcG97iueVtharRanTp2CTqfDpk2bOGcNfDMZ9/Z6EokEKSkpWLFiBc477zxUVFQgPj4eU1NTqKurw+eff47GxkYMDQ35/T3mwle7YbcTjCvN6OzWorNHi0mVedb78jR5ccVRwTE3NxdlZWXYvHkzioqKIBKJIJfLcezYMRw+fBhfffUVenp6oNFo5v2bLBbbsWRX2GxttUQi4fac/FUsc7fCNplMqK+vh8lkmrWsw98HwVG0hL0eO4tWKpWw2WzQ6XQBT2ALtsP299xz1XL29/fjD3/4AxobG/Hd734XN910E9auXevTNXQ6HVavXo3/+q//wjXXXDPj/UcffRSPPfYYXnjhBRQUFOCBBx7A1q1b0d7ezv399+/fj/fffx8HDx5EXFwc7rrrLlx++eWorq6mWa1LAHdtdFmb4a/aoasNGBkZQVNTEzIyMlBQUDBj3PrqsF0/6ypawm69KRQKAEBVVRW3IvU3gc0VX+yGUm3CWx+O4HSVCioVgZ0BRAIgLUWC8lVRKCmORE56GKKivome+Ws7WAEodkuNlWB2rAE/cuQI7rvvPqSmpuKee+7Bzp07ERcX59N1FovtWHIO21HPd9myZVi2bBk3IHg8Hmw2m8/ndF1hT05OoqGhATKZDGVlZR4TPgJZhy0Wi7mM6/b2dthsNkRFRQU8gS3YDjtQTstdLWdYWBi2bt2KmpoajI6O4rXXXvPpnDt37sTOnTvdvkcIweOPP477778fV199NQDgxRdfRFJSEl577TXcdtttmJqawnPPPYeXX34Zl1xyCQDglVdeQUZGBo4ePYrt27fP70tTgopWq0VNTQ3MZjM2bNiAqKgop/f9ddiODr+trQ3Dw8NYtWoVkpKS3H7GMSQ+XxwzrjMzM3Hs2DHk5+dDq9UGJIGNxVuH2tuvw4NPdGFw1NkOm0xAW5cRbV1GAApEhAF5WRKsLY3F8sIIaPVWxMXNf0HiTsGxoKAAR48eRWVlJZ544gmkpqbioosu8um8i8V2LCmH7UnPl8Vfh82usAkh6OnpQU9PDwoLC+dsmRcs4RSGYSAUCpGenh7wBLb5rIK9OXewEj94PB5Wr14Nm82GZ555BsuXLw/o+Xt7ezE6Oopt27Zxr4nFYmzZsgWVlZW47bbbUF1dDYvF4nRMamoqSkpKUFlZSR32IoVto1tfX4+kpCSUl5c7OS02UXI+0Tm9Xo+6ujoAwKZNmxAWFubxM46rymAQExODpKQk5ObmcmqFSqVyXgls3kz0qxtUeOjPvdDp575HrR6oazWirnUEABAZBqwsVuKqyyJRsCwCIlFg7AjDMNxkRqVS4ejRowE5ryOhtB1LwmHPpefLwuPxYDabfT4/O1irq6uh0+mwbt06rkZwMeCawGa327kyEG8S2BxZLHvY/sDuRQXjbzM6OgoAM1ZFSUlJ6O/v545h62Vdj2E/T1lcOLbRXb58OVJSUjzKa/q7wtZoNOjt7UVqaiqKiormHAPs+6Ho9CcUCp223tgENpVK5VMC21x248MjY3j2pSH4sV4CAGj0dlRWW9DW043rd6Vi+4UJkIgDZ0u0Wu2sk6j5EErbsegdNptp2d/f71HPl8XfQafRaLhwrjdCKywL1Yiex+M5lT2wimsqlQq9vb1oampymkU7KrAtdYcNnFlBBAvX38ab3yvYGbSU/7+9N4+Purr+/1+zZ89k33cSAklYkpAAyuaCoKCIC2I/Cl+1rRVtqVpr7ccPWIW6tFZ/VWvVzwfcELQsWndQFmVRyL7vyWSfPcns2/39kb7fziSTycxk3pMA7+fjQWsmM/O+M3nfc+4995zX8Q77NrqT7Xq9sR3Uwlmr1WLevHlISEhw63VMO2xX9yKVwEb1vaYqNZRKJe1c7I/eKAW2ie5xi8WGfYd78MFh+RRHPfpdKFUEBz8bQEZqAObN9d3CXKvVIjg42Gfv5wx/2I4Z7bA1Gg0uXLgwqZ4vhaeTjhCCzs5OtLS0AADmz5/vscOZCd26JkpgU6lUaGhogMlkolfR3hwZuIs/HDafz3db1MIT4uPjAYyuhO0Nr1QqpVfO8fHxMJlMUKlUDitlqVSKpUuX+nxMLN5h30Y3NTUVs2bNmjTs66nt0Ov1dFJqUlKS286auhY1zunEPoEtOTmZ1vxWKpW04phAIKDPvcfaOpuN4NNjg9g/ZWftiExhxalzKp86bJ1O53Gimbv403bMyLIuQggkEglOnjyJ0NBQt5w1MFo65e4kMJvNqKioQFdXF+bPn+/VOKdrhz0ZVALbnDlzsHTpUpSWliI2NhYjIyMwGo2oqalBdXU1uru7odVqffYZ/OGwmdImz8jIQHx8PI4ePUo/ZjKZcPLkSXpCFRUVQSAQODyHyghmHfbMwGg04vz582hubsaCBQuQk5Pj1hmtJw5bJpPhzJkzCAkJQXx8vNeJljPNdlCa3+np6Vi4cCGWLVuGOXPmQCQSQaFQQKfT4dy5c2huboZMJkPfoA6HPh0EE5+itV3r0/fT6XSM7bD9aTtm3A6b0vMdGBhAXl4e4uPj3TbQ7k46qn4xJCTE4cvyphH9TJt0YxmrwPb9998jMzMTZrMZCoXCpwps/nDYU9ldazQatLa20j93dHTQmvOpqanYvn07du/ejezsbGRnZ2P37t0ICgrCnXfeCQAIDw/Hvffei0ceeQRRUVGIjIzEo48+ioKCAjrzk2V6oJpqlJeX0/Pak3Imd2yHzWZDa2srurq6MHfuXCQlJdEVHZ4wU3bYk2EvWBISEgKJRIL09HQ6ge3HChNkyiAwse/T6n373UzVYc8U2zGjHLZKpcIPP/zg1pmTMyabdNTOvbm5GVlZWcjIyACHw4HZbKZ/7wkXY3tNYLTpwNgENnvZP3cT2MbiL4ft7Q77woULWLVqFf3zww8/DADYsmUL9u7di8ceewx6vR4PPPAAVCoVSktL8fXXXztEd/72t7+Bz+fj9ttvh16vx9VXX429e/eyNdjTCNVGt6WlxSt5UWBy22EwGFBdXT1Ol8Gb7HKm5og/2vLaH72VN7YDUP/nGdSixTfzwObjz6LT6dyK0k7ETLEdM8Jh22w2tLW1obGxEeHh4RAKhV5l9LmadBaLBbW1tVCpVCgqKqJ1e6nXUePwhIsx0WhskoN9AltmZiYsFgtdBjJZAttY/OGwp5LpuXLlSpdGjcPhYOfOndi5c+eEzwkICMDf//53/P3vf/d6HCy+Q6fToaysDHq9HjweD/Hx8V7dg65sh0KhQFVVFaKjo8fpMnjSrWssM32HbQ/lsO3RaO3HP9YmTM2BiwS+ta1UOZu3zBTbMe0Om2qqoVarUVhYSCc9eMNEk254eBiVlZUIDAx0GiqbivLQTA+Jj2WyrER71SDAdQLbWAU2ph22VqudloYpLDMPQgj6+vpoR7pw4UKcPn3a66RKZ7aDEIK2tjZ0dHQgNzcXycnJ4+aOt/Xb1PtfLDizGyaTq889NQfOZ8Bhe9pjYiYybQ6bEAKZTIaKigqEhobSjlSv1/ts0lGCCQ0NDcjIyKC1u8fijZCByWSCVquFxWJBfX29T2UAmcTTMgJ7BTb7jltKpXKcApvRaHRaH+8rmKylZLl4mKiNLo/H85ntMJlMqKqqgl6vR2lp6ThVNPvXeep4KQnR5uZmxMXF0QImvlrs+qu9ptmjr9reUVsnePwnBHzfLfwpuzWVHfZMYVoctjM9X+pm9dWkoxypXC7HwoUL6R2jMzgcjkfn0VRzCqoHtEgkomUAQ0JC6EQNV+Hj6WIqNcPOOm5RERGFQgGVSkWL11AhdF/uiLVaLeuwL3OGh4dx4cIFAOPb6E7VdlCvValUqKyshFgsxpIlS1zmcHhiNwghaG1tRWdnJwAgKioKer0eNTU1sNls9Jyxr3+eKTizGxbPPLYdE+2+rfTvmAiJT7Toupjwu8PWarUoKyuDyWRCaWnpONUqT0qzxkI5bI1Gg8rKSroZvTtOY7LQls1GMKK1oKe7Dx2dzZgzOxNyuRx6vR5ZWVm0DCDVvKOhocGhXWRkZCSCg4PdnoQXQ3tNDodD632npaWhrq4OXC4XIpEIfX19aGpqQkBAAB198CSBzRmsw758sdlskEgkqK2tRXJystNyLW+lie1f29HRgdbWVnojMdlccbcyxWQyobq6GjqdDosXL8bp06cRFhZGR67s659bWlogEokcGnhMZd74AqcO2+KrkD4P9s4asMJkUNLKlpGRkVNul2kwGFiH7Qn2er6xsbEoLCx0ehNOdZVssVhw9uxZpKWleZQt6iq01dWjw6df9+N8uQwjWjNCQsKR3WxBdBhBZBiBxWIDn8+FQCBAXFwc4uLiaBUhyoF3dHTQLTapiejv8Dmll87kYiA4OBipqamTJrBFRERALBZ7FIHQarWXxDkUi2eYzWZUVlZCJpNh3rx5iI2NdXoPT2WxDwC9vb2wWq1YtGiR22p67uywqYhcaGgolixZQietUa8bu/C1Wq3j5k1YWBhtN3wZPncXZ3aDuTHwcOXSVMTEcOijNwAOlSueND+yWCwwGo2sw3YXez3fOXPm0D1FneHtKtlqtaK9vR1WqxWFhYV083d3cbbDJoTg6xODeP2dTgyPEIzK5wmgHrGhp181+joI8MXpOiyaF4YFeWLMygiAOFzktA0epf/d09ODhoYGhISE0A7c3nkxlYxibyCYYGzSmasEtsbGRjqBzX4V7coIMKlWxDIzUSgUKCsrQ2BgIK644gqX0TJvF/tqtRpyuRwikWjCPgUTMVlkrre3F/X19XRnQXsHP9E8p/o9U/e60WikF/6uwudMJrE5axokDmfGfURHAkuKYxEXI3JofuRMgY36HlxtfoaHhwFgRvWH8BbGHba9nu+SJUsmLV73ZtJptVq6Uw4Aj501MH6HbTRZ8ea7nTj8hQw/hWuciOKDA0m3GZJuBQ5+pkBYCJCVHoQrS8KxIC8C8XEicLkch/IpKnyuUqmgUCjQ2NhIh88jIyNhNpu9aoE3GUw7bKvV6tLhukpg6+7udkhgi4iIGHeEoNVqkZaWxsjYWWYW9m10Kc0Ed5pqeGI77HUZQkNDIRaLPU6anCgyZ7PZ0NDQgIGBgQlzaNx1sCKRyEH/25l8KLXoZwpnO+w52SE4eWbY50pnd25MRmz0T38H++ZH6enpsFqtDtoRDQ0NCAoKoo8PxGKxQ/RWo9EAYLYHgb9gzGHb6/mmpKQgOzvbrfCnp2GtgYEB1NbWIikpCWlpaTh16pRX5UX2K1SpzIDnXmlGZZ0OjmcrkzOsASpqdaio1SE1SYpbbkjE8iVR4zrPCAQCxMbGIjY21iF8TjlxDocDo9Ho0/C5v3fYrpgsgc1egS0iIgJhYWHQ6/U+O8NOT0+nmx3Y88ADD+DVV1/F1q1b8fbbbzv8rrS0FOfOnfPJ9VkmZrI2uhPhyWLfbDajtrYWarUaxcXFGBwc9GqH6myHbTAYUFFRAUIIli5dOqE6n7fXmyh8ToWOKyoq6LyZ8PBwn4SunTnswnli5OYo0dBsmPL7U/ziznisWRXj8u9tr8AGgG4hqlKpxrUQjYiIgFwuB5/P99kR5HTaDkYctslkQkVFBZRKJRYsWIDo6Gi3nQQ16SY7a6XUjXp7e5Gfn0+Lq1O/88Zh22w2VNepsfulRshUgKfOeiySXiveP9iLkGA+li6KmPB5Y8PnDQ0NsNlsCAgIoFeQwcHB9E3q6dkvxUxy2GMZa4jsFdj6+vrwP//zP/jhhx9gNBqxcOFC3HLLLVP6HOfPn3cw7rW1tbj22mtx22230Y+tWbMGe/bsoX9msmSNxf02uhPh7mLfXpfhiiuugFAohEwmoxUPPWHsDlupVKKyshIxMTGYO3euy3nqC+EU+/C5xWLBqVOnkJSUBLVajdraWjp8ToWOPTn7tceZPU6IE+HOmxPx/r960dhmnOInIfjdA0m46sq4yZ86hrEtRKkjBJVKhZqaGmzevBmEEDz77LO45ZZbMHv27CmNdDpth88dNiEE5eXlsFgsbmdo20Pd4FS7S2fodDpUVVXRK1hq12X/Wk/hcrmoqBnBa28PYGiEctRTL8mSKmw4elKBBXmhCApy7+vmcDgICAhAVlYWALgMn1M6v+5MQqYdtjM1JG8Zq8D2/PPP48yZMwgODsbevXtx6623Tun9qclN8eyzzyIrKwsrVqygH6NC+Cz+YWhoCOXl5cjOznbZRnciJtthE0LQ09ODxsZGhzNlYGr9sG02G935r7W1dUKRlbGvY+rMOS4ublzUSi6Xo62tjQ6fU//czT535rB5XA4KC8KRnBiI8xUqnDyrhKTXgBGNZ+MNFAG3rbV55aydYX+EYLPZsGPHDjz11FO4cOECUlJSpuywp9N2MLLDHhwcxLJly7yqwaUmqdVqdeqwpVIpampqEB8fj9zcXIfnTEVUXz3CwYef2Ttr39HUpoF62Oq2wwYcnerY8Ller6eTUDo7O8Hlch0m4UShn5m8w56MyMhI8Pl8bNmyBVu2bPHpe5tMJrz33nt4+OGHHb6bEydOIDY2FmKxGCtWrMCuXbu8yo9gcQ+5XE43U/AGSgPAGfa6DIWFheOSF7112NTrqqqqoFar3cown4qyoie4Cp93dXWhrq4OoaGhDroRE83fiSKeXC4H8TEirF8dj3XXxkGhNKFDokNV3RDKajTol5pgdLH5Tknk4Zf/FQWrqc9XH3vM+LiIjo5GZGQkDh065PP397ft8LnD5nA44PP5Xod7JtolU0koEokEeXl5SExMdHptb6QCCSFoarOgbxBgYg0zNGKDwWgB4N4ZymSatfbdt2w2G4aHh6FUKicNn0930tlUIIQwVkt55MgRqNVqbN26lX5s7dq1uO2225CWloaOjg48+eSTuOqqq1BWVjbj1ewuVvh8/pT6tU+0w9ZoNKioqIBQKJww6uetwzYajdDr9QgICMCSJUs8ujf8LU3qKvu8rq4OVqsVYrGYth324XN3omccDgfRUSJER4mwaGEEtlptGJAa0dqhRVnVEBpbdRgZMQMcDsThPJQuEOPGtQmwmlWQSJgrU9NoNFPq8ucKf9sORnbYU6ml5nA447I9DQYDqqqqYDabx6kbjcXTiUdJEHZ2A0zl4NlsAFNzk8vlQiwWQywW020zqczrpqYmGI1GehJSGfoX4w4bYE6t6H//93+xdu1ah0Xgpk2b6P/Oz89HcXEx0tLS8Nlnn2Hjxo0+HwOLbxz22LlPlVVNpsvgjcMeHBxEfX09uFwuiouLPb73p1tLfGz2uVarnTB8brFYPHY2fB4XyQmBSE4IxMql0TCarFAozbBaCYKDeBCHC8DlctDfz9xCH2BW0tjftoMRD+XLlbJcLqfFViZL4gA8m3hDQ0OoqKhAeHg4DCZmm0r4S2TQVfi8o6MDAFBXV8eIeMvF6LC7urpw7NixScNlCQkJSEtLQ0tLi0+vz/ITU1noj3291WpFQ0MDBgcHsWDBgnHnjmPxxG4QQtDS0oKuri5kZmZCIpFMqSrFV0zl/TgcDkJCQhASEoLU1FS6dIoKn2s0Gjpxytvsc5GQh8T48fbbH02DmHDY02E7GHPYFovF69dTimUtLS3o7OzEnDlzkJyc7PZr3Zl4lHgJVeNJ3v7B6/G6g8Xq/9X02PD5yMgILULhKnxutRFYrQQCPsej3TiTE89iscBkMvncYe/ZswexsbG44YYbXD5PoVCgu7sbCQkJPr0+y0/4wm5YrVZal4HH47ksqxr7WnclRquqqmAwGLBkyRJYrVZaG9xTPHGwhBBotFYYDDYIRRyEhfAZ1RofWzpVW1sLQgiMRuOk4XNPYdphM7XDng7bMeNC4sDo5KFKm+ybxbv7Wtea4M4FDTgMK/0Rn8sLeA513EBlyI4Nn+t0Rqg14ejsFWJEz4FIKMTszBDkzgpGemoQgl0kzVGyp0xNPCbUimw2G/bs2YMtW7Y4CNVoNBrs3LkTt9xyCxISEtDZ2YknnngC0dHRuPnmm312fRZHpuqweTwejEYjzp49S+uNeyJNPJnNso/IURKjIyMjXu9s3X2dXGHEl8elKK8ahmrEAi4HiIsRoWRBOObMDkVaciACRMw2GeJyuQgKCkJ6erpD+JzSTLAPn0dERHhUxnQx7rCny3bMuB22QqGAwWCAWCxGUVGRx4pfrhy2Xq9HZWWlU0EDPtNNtabfX4/L9LQPn2t1Frzyf634/pwOFpsJozXoOnx3bgQAECkGcnNCsLhQjNxZoYiPFUJg96VR3zlTE29kZHQcvnTYx44dg0QiwT333OPwOI/HQ01NDd555x2o1WokJCRg1apVOHDgwCXRom+mMpWjNJvNht7eXuj1eixcuBBxcZ6VCE220B8bkaPm0VRC2+68rr5pCH/5Zwf6BxzH1jc4Ks7ERT9io7mYnx+G+XkhGBrxaihujdX+M7sKn3uSfQ74x2FPprDpKdNlO2bMGTYhBO3t7Whvb4dIJEJKSopX8pwTTTyFQkGfhc+ZM2fcWTif4UNmT8NF/uppCwBqtQl/eqkZDc32JTH2348NSjXBmR+HcOZHDXhcICmBj+L5oZifH4HMtCCE/Wc+MLnD9qVaEQCsXr3aqdEMDAzEV1995bPrsLgHZTc8bVCj0+lQWVkJq9UKoVDosbMGJrYbNpsN9fX1GBwcdCox6m12OTCaTOvKWR07KcMre7phdF6pNjo+AANyGwZOqPHVCTV4nGB8V9aEpcVizM8XIz0lEAIBM0pnFGPD5yaTySH73GKxOGifjw2fM+2wdTrdpDkMnjJdtmNG7LCp1nNarRYlJSVoamqacotNirGCBikpKc5f59U3YR3z/8636RFiICzU/fZ4TDb/GDvp+gb02PmXZnT3uVpgOU4mq80KSa8Vkl4LDn2uQmICD2tXRiCQx2Fs4lGlGTOpRzCLb6EW6Far1e3FulQqRXV1NRITE5GQkIDy8nKvru3M8bqKyFFQO2x3FxmEEDQ3N8Nms0GpVOK7776jHVlUVBQCAgJgNo8qJB74RO7x57ASLhpajWhoHYQ4bBDXrYrBhrXxEIdNrT2nJ4sooVDo0DNgsvC5P3bY6enpjL2/P5n2HbZKpUJVVRXCw8OxdOlSCAQCn/TEBkYTlSi94MkEDUI8PuKgBFbGCq2Md94Fc0IRFTm9/WyB8R13mtpG8Ke/tkCp9vSdHBcmff0mvPPRAIrz+Zg7pw8JCdFeiea4YmRkhLFaSpaZARX1slgskzpsm82G5uZmdHd3Iz8/HwkJCdBoNFPSf7B/7WQROQrK0bjj0MxmM6qqqqDX68HlchEbG4uUlBQoFAoMDAygubkZQCC+PCVEdZNXH8MB9TDwyZcy8LgcbNqQCOEUdtretuV1J3wuEAgQGBgIlUrlM+1ze/R6/SXTlpcxh63T6Vw+hxCCrq4utLS0IDs7G2lpafQNMdWe2DabjRZLcLdlXkIcF6MBJndwpYZm/ziBkG9BVpICnR2Ykg64L7CfdDUNw3j6b60eywg6hwezBahpIiivGUBkZ4tD95yIiIgpf2bKYbM77EsXLpfrVvKXwWBAZWUlLX9MnU+624dgoms7kxidKCJH4a5qmUajQXl5OYKDg7F48WKcPHkSAGglsvT0dCiUejz792bUNlkxWdTOXfRG4NvTCiwrjUR6qveJV87aa3qDs/B5bW0tzGazW+Fzb9DpdJdM7sm07LDNZjNqamowPDzsdOfrbU9s6rVUv2WqS5g7K7ZZaULERBj+0/TDFe5LlwaIOPjtLzKQmzXaFIDSAaduyKioKL86IcqQSeVG/P2tTh8565/Q6LmwIBFXXhlDZ583NzfDaDQ6aJ+HhoZ6/Jk1Go3Pd+0sM4/JjtNkMhmqq6sRFxc3bufrTh+CiaBsDiUxWlJS4laCo70c8kTXpML2qampyM7OdnrvW20En3wl+4+zBsbbGO8d+KDUCkmvfkoO29sd9mQIhUKIRCJERkYiLS3Nafjc3oF700SD3WFPgqsd8tDQECorKxESEjLhztfbHTZ1XqJQKDBv3jyPxNcT4wVYvtiGY9+bJsi09KwhSEwk8PivZ2FuzmjdsH0bTYVCAblcjtbWVohEIlouUCwWM9IHm4KadCfPKNHd7335jCv6eg0uxVu6urroxh7UJHTHETOpVsQyc5ho7ttsNrS2tqKrqwtz585FUlKS09cCE/chcIXBYAAhBCaTyaMuYa522PaJtFTY3v519iF4mcKE42dc7RZcH7u5ggBQDk1tvjPlsIGfFjuuwucSiQT19fV020wqWunOZozdYU/2pk5WyYQQdHd3o6mpaVxpxFi8OcOmBA1MJhNSUlI87pQiFHCxtDgQeXNS8K9P+9DSpoeZthueNQSZkyPC77dlIS7G0RHZt9GkbkhqJ9rS0kKXs1ksFvB4PJ9PEkIIbISDc+VKn73nWMxjjK0z7fORkREoFAr09fWhqakJgYGBDkkozowtU2pFLDMLZ7bDYDCguroaRqPRpS6Dt81/BgYGUFNTAwAoLCz0aNFMzc+x17TPnyktLXUq+GPv5Hv79JAr3d2keL77tlpntsN29t6uss/r6+vp8DnlwIODg8e9D7VhYELSeDrwS0icunlVKhWKioroP8BEUAII7mIvaBAbG+vVLpXD4UAosGHF0hiULBSjvVOHE2fbce7CCFTDQujd7NF+9bJQbNuaicDAyR08j8dDdHQ0XSqi0+noXWhfXx/dvSgqKgoRERFut8KbiNFsVg4GZS7qRKaIYJLvnsvlIjw8HOHh4Q7iLSqVymX43Jc77J07d+Kpp55yeCwuLg4DAwMARr+np556Cm+88QZUKhVKS0vx6quvIi8vzyfXZ5mYsbaDSv6Kioqa1Jk660PgCvuGQnPnzqWdtic422Hr9XqUl5eDz+dPuFsfW7+tUJmn0G/AmQPnwlEQeWrOlklRJHezxCfKPlcqlWhvbwefz3foWkh97waDwWch8em2HYzvsEdGRlBRUYHAwEAsXbrUrTpaTybdWEEDSiHNU+yvKRBwYDZ2IC9zCP91y0LoDSI0d2hwvkKFytohDEotsFca5QCIjODithvjsP7aOK9vbGonOjQ0hKCgIISHh0OhUKCjowN1dXUICwujHbg358CjBoIDg5E5FRehyLMx2YfPgZ8WLSqVig6fGwwG/Pjjjz4Na+Xl5eHYsWP0z/a7+ueffx4vvvgi9u7di5ycHDzzzDO49tpr0dTUdMmE1mYq9oljVDjZnf7SY18/GWMlRgMDA1FTU+Ox7aA6BFLOV6lUoqKiAgkJCcjNzXXbFlhtvpyT48Pn0sEBDAxwvT4HZnqH7Y0W+2Th85CQEJSVlUGn0/k0/2U6bQejO2zKmaanp2PWrFlu/8HdCYnbCxrY97edaiN6nU6HiooKCAQCenUcHg7ExwVg+eJoGIxWtHfq0Nw+jOo6KdRqNZaWZmFhQThSEn1XdsThcBzCQQaDgU7GoJoNUM7b3UlI7bAt3qvGTgIXwikq0DgLnx8/fhxNTU1QqVSYM2cOjh8/PuXm8Hw+3+l7EELw0ksv4Y9//CPdWeftt99GXFwc9u3bh1/+8pdTui6LawQCAQwGA21oJwonT4Q7DtuZxCjlcKey2JdIJGhqanI7u9x+h81c3umoM+Fxeeju7qbPgSm7ERYW5paz9McZ9lSYKHy+Z88eWCwWXHPNNXj44Yexa9euKY93Om0HYw7baDSiubnZqTrQZEw26ShBAwDjBA24XC7MZrPHY6Z2cmfPnnW5Og4Q8TB3dijmzg5FYZ4VtbWDuPrqOMYzvQMCApCYmIjExES6BzYlKu/uJCSEgIDDoEwqB6IA34XNqPD5hg0bcPDgQYjFYtx8880+aQTf0tKCxMREiEQilJaWYvfu3cjMzERHRwcGBgawevVq+rkikQgrVqzAmTNnWIfNMFRZVVRUFJYsWeLxMdBkC/bu7m40NjZi1qxZSE9Pd5DbHJsI5gmtra1QqVQoLi5GRESEW69xcNgM9zKIiYvHokVxMJlMUCgUUCqVqKmpASEEERERdOLrRBHQmbbDngwqfP7000/j/fffx1dffeWzI7XptB2MZYkTQuhQkzevn8hhKxQKVFZWIi4uDnPnzh33h/Zmh00IgVqthlKpxNy5cyddHduPk0GBngmx74GdlZVFryYVCsW4SWifhf3TLoK5scVF+0461B6dToeMjAzcdNNNU36v0tJSvPPOO8jJycHg4CCeeeYZLF26FHV1dfRZ1Fh5y7i4OHR1dU352iyuEYlEiIiIwIIFC7xyEBPZDvt2m/YROXu8sR1Go5HWffDE3o3dYXMJswv+4MBRQyUUCh16YFMJoP39/WhqakJQUBBtN+yzsC82h01B9SAoLS31iazxdNsOxnbYALw6KwGcn2ETQtDR0YG2tjaX7TY9nXRUaF2pVEIsFrvtrAFm9L69YWwyxkST0GazAQTg8gAwUNXF4QCZacxkcvuyNGPt2rX0fxcUFGDJkiXIysrC22+/jcWLFwMY/7dl0mCx/ASleuXtd+3MYev1elRUVIDD4bhst+mp/gMVWudwOMjLy/N4c+K4w2b23oqPGe+sOBwOwsLCEBYWhoyMDDoBVKFQoL6+Hlarlc7AtlqtF6XDHh4ehlAonHLCLsV02w5GHbY39ZDA+DNsi8WCmpoaDA0NTSpo4InDNhqNqKiogM1mQ0ZGBt3C0V2Y1L/1FleTUCqVYkRjRYBADA+S8N1mdiaQlsKcw2ZK/CA4OBgFBQVoaWnBhg0bAIyW+tjXzUqlUq+aSrB4hjsqia4Y67Ani8jZ44nt6OvrQ11dHWbNmuVVP+yxO2yBgDmHnZrER1rK5IuJsfoJlKaFVCqF0WhEfX09YmJiaM0IXyk2Mu2wAwICGFts+Nt2MPItcblccDgcr1ts2k86jUaDs2fP0jKEk6kPuTvphoaGcObMGQQFBaG0tBRCodCrDNGZDjUJ58yZg4yMDMTGiJGVQf3Z7SUQp0ZoMHDjtcIp6RW7Qq/XM5ahbTQa0dDQgISEBGRkZCA+Ph5Hjx6lf28ymXDy5EksXbqUkeuz/MRUWmwCP+2SqSzz8vJyzJ49G/n5+ZM6BXdsByEEjY2NqK+vx4IFC5CRkUEfAU6F6EghghkQ8uMC2HB9PMJCPdubUVnYaWlpKCwshFAoRHJyMgghaGpqwnfffYfKykpIJBJotdopfX4mHTbVNIgp/G07GNlhczicKU08ymFTggZpaWkTSvqNxZ1J19vbi/r6eofEEy6X6/FNx+QOm6nFQFCQEDeuToSkuxNytffqSfaIw4FfbA5CYhxzCxhfygs++uijWL9+PVJTUyGVSvHMM89geHgYW7ZsAYfDwfbt27F7925kZ2cjOzsbu3fvRlBQEO68806fXJ9lYqbqsHk8HsxmMyorK92KyNkzme2wb96xZMkSWsPcm2S1sTvs5IQA5GQHo6JG69H7TMYdN8fgmmXRPrEnERERCAsLoxUbqbyZ9vZ2CAQCOnEtIiLCIy0Mph22L3fY0207GNPB5PF4Xu+wORwOzGYzamtrMW/ePI/CCa4mHdXhp7e3d1z2ureTDhgN2fvqjARgrr0mpSg0P1+MO25Owr8+7ceAjPrM3mkXx0YBzzyeC4Ou19fDpfG1WlFPTw82b94MuVyOmJgYLF68GOfOnUNaWhoA4LHHHoNer8cDDzxAix98/fXXbA22H/C0Ne9YbDYburq6EBYW5pHEKOC6nNS+eQdVCkbhzWKfEAKbzUY7q7BQPm66Lg6D0i70Dfom6nX/lgTcuDreJ87KXo3MXrExJSUFVquVTtpta2uDXq+nxY+ioqIQEhIy4Rio1qRMOmxfKiROt+1gzGF7u1I2mUyor68HIQSLFy/2eFc1UeIIJZRAyRtSq2P713ky6cxmMxoaGgAA3333HQIDAxEdHY2UlBQIhcIZeb5NJT8EiLhYc1Us5uSE4ly5EmfOD6Gv3wi9w7n25LvvzFQBdjySjdiYADQ12RjVQTcYDD676ffv3+/y9xwOBzt37sTOnTt9cj0W95lKp76BgQHIZDKEhYWhuLjYY0c10aKdat6RlpbmVE9i7G55MgYHB6HX6wGM2o6wsDAkJiZi/txIbP9FBg5+2o/qBq3b6opjCRIBj25Lw5Li8Znw3uIqcYrH49G76+zsbLp3gEKhQFdXF10jTWWf229uqO+bySxxXzrs6bYdM2qHrVarUVlZSRtmb75oZztsSm0tJCQEixcvdupYPJl0Op2OPlcvKCiARqOBVCpFT08Puru7wefzER4ejqSkJERGRs4Y520/6Xg8DjLTgpCZFoTbb0xE/4ARrR06/FipQm2jBnKl/Xc4dpdtQWqiDXffwgexDcFs5jHehJ5atbNc2nizw6YkRru7uxEdHe11lvnYHba92lpBQcGEYj3uRucIIWhtbUVbWxvCw8ORkZGB3t5eqNVq1NXVAQACAwOxaV0Ubl2Xjo5uE86VqdHaocOwm531ggOt2PVELmZn+TYa5Emmc2BgIJKSkpCUlASbzYahoSHaeY9VbKTOl5myHVqtltEzbH8zY3bY9oIGycnJ+Oabb2C1Wj3+Q46ddIODg6iurp5Ubc3dZDW5XI6ysjLw+XxcccUV9M0wa9Ys2Gw2yGQy9Pb20jcp1fwiJiYGycnJXpe6+YKJJh2fx0VKUiBSkgKx6sooaHVWdEh0qG0Ywg+VagxKzTDoCfhCIDKCj2WlsVi1OAA6ndqhCX1ISAiGhoYQFhbm0zN4k8kEs9l8yQj4s0yMp3bDaDTSTX8WL16M/v5+j/oQ2GNvA+wrUyZTW3MnOke17pRKpUhKSsKcOXPA4XAQExMDYDSC1NPTA6lUioGBXhDSg/AAPm6/PhxBIQmQK0WoqFWjrHYEg1Irxn5FfB5QkBuI4rlqnztrwPvSJKozHyUmYzQa6d13T08P/bzBwUGXwi3ecqk1DWLUYbuzUqYEDaRSKS1oQE0aq9XqtdIRIQRtbW3o6OhwuTqmcGeH3dnZicbGRoSEhKC4uHjc2LhcLuLi4hAXFwebzQaDwYDu7m7IZDJ0dnais7MTAoEAYrEYycnJCA8Pn3BBwkTSmbuTLjiIh/zcUOTnhuL2mxIhU5qhHrKACyAyQoAIsQBcLgfAaA6A0WhEdXU1nZQDwCEENtVJSJXbsTvsSx9PdthURE4sFtONQaYSUqdshzN5YldMtsM2m804d+4ctFrthLKlAQEBmDVrFmbNmgWLxQKFQjFu4V80NwhXL42CFVFo7TKisVkHg9GGCDEfC/JCkT87ABUV/V599snwVS2xSCRyEG6RyWSora1FX18fbVspu+HKPrqLVqsdd/x5MTOtO+yxggaUIhdVFjYVXd/KykoMDw+7bMdnj6vrEUJQW1uL3t5exMXFoaCgYNKbl8vlIigoCLNnz8bs2bNhsVgglUrR19cHpVIJmUwGLpeL4OBgxMbGIjEx0aeJaxN9Dk8nHZfLRVy0yKWCmUgkglAoRHR0NBITE2nZ1N7eXjQ0NEx5ElJqRWKx2KPXsVx8UBEyV0cshBD09PQ4lRj1VPzEHi6XC41Gg9bWVo+ad7jaYWu1Wpw9exZWq9WtToXAqO20X/jr9Xp0d3dDLpejt1cCQIKIQAHWrhAjLi4JYnE4hEIeDAYvD70ngfpsvg5bU8lrPB4PxcXFDu0za2trYbPZHBQbvQltsw7b3TeeZKUsl8tRVVWF+Ph4zJkzZ9zN4O1KmQqfms1mLFmyxO0Q9ESTzmq14ocffsDw8DCysrKQmZnp8ZiA0e/DXgtcq9VCIpFAoVCgra0NbW1tEAqFiIyMhNlsZiRTnEm1Lur4gsPhOLTPtJ+EdXV1tHqSJ5OQUitiMqmNZWZgL7rkzEFYrVbU19dDJpM5lRj11m5QlQiDg4PIy8ubUEnRGRMt9mUyGd1m0/74zBOoRX1ubi4AuFz4u7MY8AbKFjFhO+wXZmMVGzUaDRQKBQYHB9Hc3IzAwEAH2VR3hFt0Op2DiMnFjt8dtrsSo95MPKp3LgAUFxd7tCJ0Nun0ej3Onj0Ls9mMBQsW0OdNU4XL5SI0NJTukWqxWNDX14eBgQFIpVLYbDao1WrI5XLEx8cjLi7OzpDZ0NKhRUXtCAalBoSH8zE7MxTZmUGIjhS6nFTT0dPWF5OQabUilpmDvcMeG3GaKCJnjzud/sZCyROPjIwgMTHRI2cNOF/st7W1oaWlBaGhoVi0aJHPVMFcLfwpverTp08jIiICKSkpCA4OnvKc95fDtofD4SA0NBShoaFIT0+HxWKhF/6NjY0wm820bCqVvOZsfDqdjt1hu/XG/+nYZY+nEqPuOmxCCCQSCZqbmzFr1iw0NTV5Ffq1n3RKpRIXLlwAl8t1EElgAj6fj9TUVMTExKC8vBxCoRBCoRBqtRpNTU1oampCQEAAQkLFOHaah+9+0MLg8NXKESgCMtICsawkHHm54UhPCYRgjOrYdDehdzYJKdlUV5PQl2pFf/7zn3Ho0CE0NjbSPdqfe+45zJ49m37O1q1b8fbbbzu8rrS0FOfOnfPJGFgmhsPhOK0wmSwiR+HpQt9gMKCyshI2mw3x8fFeJYXa578QQlBVVUXLU+bl5TG20LRf+Hd3d6OpqQnx8fHQarX/SV4boJ8zduHvCUw6bHcTi/l8voNsqk6ng0KhgFwuR2trK0QiEV1aJhaL6c/pK0njmWI3/LbD1mg0qKioQEBAgFuJHO5OPJvNhrq6OsjlcixatAiBgYFoamryOPxrP+moBuhBQUEoKSlh/GwZGN1FVlRUIDY2Frm5ufTYTSYTenp60N4xiLfeUKNfQY3FccWuNwL1zXrUN+sBDCAulofi+eEoWShGdnowIsQCRkPi3iwG+Hw+YmJiEBMTM+EkjIyMxPHjxyEUuo4euMvJkyexbds2LFq0CBaLBX/84x+xevVq1NfXOyzK1qxZgz179tA/T2d2/+WGff6LfWmVq4gchScL/aGhIZSXlyMqKgp5eXloaWnxKpxOJatZLBacO3cOGo0G2dnZSE9P9/i9PIUQgpaWFvT19aG4uJjO86DKqbq7u6FSqRwW/lFRUUhOTkZgYKDbvbAB5hJhPbUb9sItqampsFqtUKlUUCqVaGlpgcFggFgshlqthkKh8Mlma6bYDUbrsKmb3xuJUXdCWwaDARUVFQCAJUuWICAggO6F7WldMDXp6urq6HrOefPm+SyU5Qq5XI7q6mpkZmYiLS3N4fsRCoUICknAgc+G0K+w33WMNSyO4xyUWvHZUSU+O6pEXCwfa1ZEIj3JisBAZs+wvWWiSdjS0oIPP/wQKpUKV199NV544QUUFhZ6fZ0vv/zS4ec9e/YgNjYWZWVlWL58Of24SCSatLKAhRmoHbbFYkF1dTWGh4fdlhh1d6E/kTyxNyprHA6H1oy2WCwTtu/0NVarFXV1dRgeHsaiRYscHMfYcipq4T84OIi+vj709vaCx+MhPDwcCQkJiIqKmnD3PR0hcU/g8XiIjo6mlSsp2dSPPvoIzc3N+POf/4y+vj689NJLXl9jptgNRnfYZrMZjY2N6Onp8VhidLKJp1arUVFRQa+OKcdK/fG9OceyWq3o7u5GRkYGsrKy/HJm2tvbi8bGRsydO9dpckR7lxb//Vw95IqxvxmrRGad4HfAoNSCd/8lRVEBcPuNzDTD9rVwiv0kfOSRR/DBBx9g48aNPjeEQ0NDADAuYefEiROIjY2FWCzGihUrsGvXLsTGxvr02izO4fP50Gg0qKuro8OP7u5UJlvou5In9qYfNjBa1tjb2wuBQOB1cpmnUHrphBCUlJRM+v0IhUJkZmYiMzMTNpsNSqUS3d3dtKQoAFovIikpySE/YCaExD0hKCgIQUFB2L17Nz7++GP87Gc/Q3Z2tk+vMV12g9Ed9sjICCwWi1dnwK5CW9TqODs7e9yO1BuHbTQaUVZWBmD0ptRqtejr60N0dLTPC/kpqDrx7u5uLFy40GmGZ3evDjueb3LirMcykQ74T7+3EaCiHiiYY0L+3CkMfAKYFvCPjIzEtm3bfPq+hBA8/PDDuPLKK5Gfn08/vnbtWtx2221IS0tDR0cHnnzySVx11VUoKytj7H5g+QmqI1R6errbETkKVwt9d+SJPXXYnZ2dkMvlAEYXGlR0TiwWMzYfqOS7oKAgFBQUeBwF5HK5DjtSg8EAiUQCmUyGrq4udHV1gc/nQywWIykpiV6AzNQd9kQQQmA0GrF06VKsX7/ep+87XXaDMYctEAjA5/MnlAKdDGcTz2azoampCX19feNWxxQcDsejGu6hoSH88MMP4HA4KC0tBYfDodXKGhoaEBoaSp+zuhKx9wQqK1WlUmHRokVOkyLMFhv27OvGoNybmlLnu2+LBThzfhjXrlAjLCzMpxOFyYnHlLzggw8+iOrqanz//fcOj2/atIn+7/z8fBQXFyMtLQ2fffYZNm7c6PNxsDgiFAoRERGBnJwcj19r317Tfq66I0/sicO212aIjY3F3LlzoVQqIZfLUVNTA5vNRjvF6Ohon+XBULkucXFxmD17tk/sUUBAAHJycpCTkwOLxfKfeu9eqFQqyOVy+hqdnZ1ITEz06bmsPySNfd20ZzrtBqM7bABe186ODW3Zr46XLFniUm7O3YnX29uLmpoaBAQEYPHixfSkCg0NRWZmJoxGI+RyOeRyOa1SRk3AyMhIr863LRYLqqqqYDabUVJSMuHKq7tHj/M1wx6//3gcnfeg3Iby8nJwuVyEhIQgLi4OCQkJU6pxpjoPMemwfZ2l/9BDD+GTTz7BqVOnJk1kSkhIQFpaGlpaWnw6BhbnCIVCrxdo1Jy0d9i+liceq82QkZEBDodDi50QQjA8PEwrHNbV1UEsFiM6OhoxMTEICgryytG6ynXxFXw+ny7DpMpLq6qqHJL/hEIhrdY41YX/xdaDYLrtxrRLk06E/Q57ZGQE5eXlCAsLw8KFCyd1LpNlilJN6Lu6uhAVFYX58+c7db4ikchBxJ5aQTc2NsJkMiEqKoqehO6EPKgkOZFIhOLiYpefo12ihZeSyBNgBcADny9EaWkBJBIJnVXZ0tJCZ2QnJyd7XLvJlBIShS9rKQkheOihh3D48GGcOHECGRkZk75GoVCgu7v7khJgmMlMpSc2NY+tVis4HI5H8sTuOGx3tBnsxYNmzZoFvV4PuVwOmUyGtrY2iEQiOmrnbui8p6cHTU1NyMvL81sypF6vR11dHR1BsFqtGBgYQH9/P+RyOaRS6ZQX/kw6bKPRCIvF4hOHPVPsBuPSpFMRjbdarfTq2JNEMFcTz2q1oqysDEql0qOsdftzn9mzZ0Or1UImk9EauKGhobTzDg0NHfeeVEguKirKZR0phUxpmnRM7jPqrAEAHBvCwsLosxez2Yze3l4MDg5icHAQ/f39o/15w8IQHx+P2NjYSSch0y3ytFotEhMTffJe27Ztw759+/Dxxx8jNDQUAwMDAEZ1ygMDA6HRaLBz507ccsstSEhIQGdnJ5544glER0fj5ptv9skYWFwzlcU+5bCNRiNqa2s9kieezGF7q80QGBiIlJQUunc0VbpIhc6joqIQExODqKioceFm+1yXwsJCOuubaYaHh1FeXo6kpCQ6KsHn85GcnIzk5GTYbDZoNBqnC/+oqCgkJSW5tfBn0mFTPQh80TRoptgNRh02MOogvQm3crlcuqOLNxnmziae2WzG6dOnYTAYkJeX57UT4HA4CAkJQUhICDIyMmAymegVNJWwQTnvyMhIqNVqup8uFT6bDKvZV9Kkds4a+E/Tjp8QCARIT09Henr6uNrNxsZGNDY2IiAgANHR0XQCytgJxrTD9pX4AQD84x//AACsXLnS4fE9e/Zg69at4PF4qKmpwTvvvAO1Wo2EhASsWrUKBw4c8PlZGItz+Hy+17rY1NwqLy9HQECAR/LErjLMfaXNwOPxHARAhoeHIZfL6a534eHhtO0IDAxEQ0ODy1wXJlAqlaiqqkJGRsaEteTUop5a+JtMJvT19WFwcBADAwPo6+sDj8dDaGgoEhISEBMT49QPXCwOe6bYjRnpsCm9XIPB4Pbq2B5nK+Xh4WH88MMPIIRM2i7PU4RCoYNcIJWs0dTUBIPBAEIIEhISkJiY6Ha0weYzLXHHUL+r6zur3ezu7oZUKkVvby96enro2s3ExERERkaCz+dfVA57Mo32wMBAfPXVVz65Fot3TGWHrVCMllSEh4ejoKDAKy0GewghqK+vZ0SbwT50npWVBYPBQC/829vbAYw6+NzcXL+1iJRKpaitrcXs2bORlJTk9uuEQuG4hb9EIoFKpUJDQwMaGhpoGWL7hT+TDntkZAQikcgnPQhmit1gzGFzuVxaiMCTlHadTofy8nIQQhAZGenV6mTsxOvv70dVVRVEIhFKS0sZLc3hcrm0Njafz0dXVxfi4uKg0+nw/fffIyQkhF5Bu+wbbZtKQonjrtoePt/99xUKhcjKykJWVhZsNhsd8aBqNzkcDgIDA2kHz1Tdul6v99vugmX68eYMmxCCrq4utLS0gM/nIy0tzWNHMNZuWK1WnD9/Hmq12i/aDAEBAUhOTkZ0dDSdGBoaGorm5mbU19fTofPo6GhGlPf6+vrQ0NCAgoKCKdUOO1v4SyQSh4U/n89HWFgYCCGMyT6PjIxMqDF+scJo+yNPdX0pveDExEQEBQVBJpN5dV37ntgtLS1ob2+ne+b6Q7nMZrOhsbGRlkulFh0mkwkKhYLu4kOdi1PnV/ZjIxxvd9gTO2sACA/zLpTH5XLpRBmbzQaTyYSuri66BAQAvvvuO4SHhyM5Odmndai+3GGzzHw8tRtUBy9qvlVXV09JYhQYPQM/c+YMTCaTx0dyU4HKdYmOjqbbexJCMDIyAplMhu7ubtTX1yMsLIx23r4oN+3q6kJ7e/uEmhBTQSgU0r2+qYV/d3c3hoaG6H4CSqUSMTExSE5O9tmGamRkxGmDmIsZRh22u6Et+9Xx3LlzkZSUhN7e3in1tbVYLCgvL4dMJkNKSorPahYng2pwYjAYUFJS4nDDCIVCunk7VTIhk8nQ3NwMo9GIiIgIehJ6t65w7awBICdj6o6Py+UiICAAs2fPRnBwMBobG5GWlobh4WGH2k37Xt9T2REwUUvJMnMRCARuh8SdyRN72xObcthqtRo//vgjrc3gr3tPoVA4zXXhcDgICwtDWFgYsrKyYDQaIZPJIJfL6TIrym5ERkZ6XOHR2tqK3t5eFBUV+fSo0BnUwl8sFjtEEahuY11dXRAIBLRoy1QW/lTTIHaH7e6buxHaovRwFQoFFi1aRIvXe9Mmz57m5maYzWbk5uYiJSXF6/fxBKPRiIqKCggEAhQXF7tMTOFyuYiMjERkZKRD1vng4CCampowpAyGZ3+eyZ21gAcsW+y71bNEIkFbWxuKioro8JfNZoNOp0N3dzdtUOxrN1NSUhAaGur2JKT6FDNtSFhmDu7usCeSJ/bWdlAL/XPnzo3TZmAaKhw9Z86cSZNhRSIRna1Nae7LZDI0NDTAbDbT5aaTKTUSQtDQ0EDbXn+1oTSZTCgvL4dIJHLICXDW63sqC39fdvmbKUxrSNzZ6tjd106ERqOBSqUCIQQpKSlO1dCYgOpGFhERgblz53q8KqQaX6Snp8NsNiNE3Itvzsqg0VHfgStnPLmzBoA1q6IwJ9s3u4XOzk50dHSgsLDQoc6RqsucM2cOAMde397WbhoMBnaHfRnhTmTOlTyxN7aDEILOzk7YbDYIhULk5OQwKuhhf92Ojg50dXVhwYIFHmvl22vuU/3m3VFqtNlsqKmpgVarxaJFi/wWOjaZTCgrK6NlVe2/47G9vnU6Hd3r237hHxERgeTk5EkX/qzD9vTNXUw8anUcHR2NvLy8cV+8N2GtwcFBVFZWQiAQICUlBSqVCqdPn0ZwcDB907pM9PISlUqFyspKpKSk+CQxRSAQoHBeKtZeAxz6twxW+jjbmfN2z1kvLQ7BvXelgseb+mdvb2+HRCJxK4RG9fpOTU2FzWbDyMjIhLWbycnJCAoKGncvGAwGn6oVscxsXEXm3JEn9uYMnNJmiIuLg1AoRHNzM2pra+kcEyYSvexzXYqLi6e8KLXvN+9MqZFqZxsZGYnu7m5YrVYUFxf7rXUs1bOB6uHtytlSi/q5c0cbH9gv/KlI5GQLfyYUEqebaXHYPT09aGhoQE5ODlJTU506OE/CWpRsXktLC8LCwlBcXEyHWcxmMxQKBaRSKcrLy8Hj8Wjn7el5jzMGBgZQV1eH2bNnTypV5wlCIRe33pAAgIvPjw1CqwPGO2r3uOrKMPz2l7MgEk4t4Y4Scejp6UFRUZFX5XZUuQ0wutqmRFv6+/ud1m6azWafqRVNxGuvvYYXXngB/f39yMvLw0svvYRly5Yxdj0W10xkN9yVJ/ZksT+RNsPs2bPp3SqV6BUeHk7bjqk6Aqp1qNFoHJfr4i7EZoPNaIJVbwCHx4Mg3HE+OlNqHBwcRE1NDQghiI6OhlQqdVupcSoYDAaUlZUhPDwceXl5Hm9q3Fn4BwQE0GqNQUFB0Gg0jJfD+dt2+PUM2351PFnP2IlWycRqhWVEC45IAH5gIAghqKysxODgIBITEzF37lyHm0EgEDho4zo774mNjfVYoJ9KlGtvb8e8efOcShROlQixCP9vUzJWLY3CuTI5zpxXQ9JrgslMPcOZA3d0yjdeF4X7704Dnz91Z93a2oq+vj4UFxf7JGtbKBQiIyMDGRkZdLIPJdpC1W7++c9/BgCvhTQm48CBA9i+fTtee+01XHHFFfjnP/+JtWvXor6+HqmpqYxck8U1PB5vnD69J/LE7u6wXWkzjN2tGgwGyGQyyGQytLa20q0oY2JiEB4e7pED8iTXxRna9i70fvAZZJ8fh6mtBzAaAC4XCAtDWHEeEv7rJsTdsAo8u++I2o02NzcjOjoamZmZUCgUtFJjSEgI/XmcKTVOBb1ej7KyMkRGRmLOnDlTfm93Fv41NTXYv38/HV5n4nhjOmwHh0xWET4FqqqqwOVykZOTA5PJhMrKSphMJhQWFk668tHpdPjuu+9w3XXXwTQ0gp73PsHAh59C194NmE0ATwBeQgysmQmwrCjC7Ouv9uhLsi+VkMlk0Gg0EIvFiImJQWxsrMuzD6r93+DgIBYuXOi3hCir1YbvzzagokqJQbUYTa0GaHROnwkOCK6+go/b1kcjLi5uSitNQgiam5sxODiIoqIiv4SZqJZ/K1asoBWLbr75Zhw6dMin1yktLUVhYSGtZAQAc+bMwYYNG+jFAot/sVgs+Oyzz3DVVVdBKBRiYGAANTU1btdC19XVQSAQuOz2NRVtBovFQpdnymQyh5LHyZoCTSXXxaweRsMjf4biX19O/uQAARLuvQPpv92KgJhIaLValJeX09LI9t+hvVKjQqEYp9Q4lVJYnU6HsrIyxMTE+KVSh1r4/+Uvf8HLL78MYHQB19LS4pb+tydMh+1gfIdtMpkcVseFhYVuKc9wuVyQYQ3q/udv6H/lXcA0NkRmgHVoBNbGdvA/P42ONw4j+MUnELm8BBw3JsHYUgm9Xk9PwJaWlgnPva1WK2pqaqDT6VBSUuK3pIbRlpx14GEIv7ynGIGBgVAPGdHcrsPZMhUamrXQ6c3g8zjIzhRj1dIwJMYa6YYDQUFB9CQMDw/3KEvb/pzNX4pLAoEAL7/8MgQCASorKyGVSn1eQ08lwDz++OMOj69evRpnzpzx6bVY3Mc+a7irqwudnZ0e1UK72mH7QpuBz+fTnbnsyzObmppgNBodonb258NTyXUZaZegfP3PYeuRuvcCgxn9r74L+bHvMOutXWhUSh10we1xpdRoNBoRGRlJn+N7ErrXarUoKytDfHy8x33NvYXL5UIul2P//v3YvHkz/v73v+Pdd9/1ubOeLtvBuMNWKpU4d+6cx0pBmqpGcB75K/qVGqe/p1KtqKlma+tG9U2/QuKDdyH7qV+D66EcXWBgIH1GMtG5t1gshkQiAZfLxaJFi/xW8mG1WlFdXQ2DwYBFixbRuwFxuAglC0UoWRgBk8kG9fCoww4J4UMoGHXIqamp9I6AEqahzq8owZaJPgcly6hSqVBcXOy3xQkhBI8++ig+/vhjHD16FPPnz2fkOnK5HFardZwjiIuLo8X9WfwPh8MBj8dDbW0t9Hq9x/LEXC4XJtP45jlWqxWVlZU+1WawL8/MycmZ8Nybw+GgtbXVq1wXo0KJihvvd99Z22Fu6kTDpl8j+cOXkJ2d7dbniYqKQlRUFHJycqDVaiGXy9Hf30+Hzt1RatRoNCgrK0NSUhLjCnH2tLe34/rrr8eVV16Jd999FzweD9u3b/f5dabLdjDqsDkcDoaGhjxWClJX1qFy/c8BnfP+kq7yovteeRdckQCznnzQ65vE2bl3X18f6urqAADR0dGQy+U+bUw/EWazGZWVlQDg8rxLKOQiNtp5WM9+R0AIwdDQEORyOTo6OlBbW+vQq5cKd9tsNtTV1WF4eBjFxcV+K/sghODxxx/HgQMH8OWXX6KoqIjxa469T7ztMMfiOzgcDqxWq0fNOyic7bDNZjPOnj0LnU7HmDbDROfeEokEOp0OAQEB0Ov1UKvVHp17Nz36HKzd/V6NiQDg9ClgfPUAyKtzwPEgmmDf5Cg9Pd1tpcaRkRGUlZUhNTUVmZmZXo3bGyQSCdauXYvi4mLs37/fL6qW/rYdjDpsSizDE2dtGhpB1ZbHvHLWFD1//T9EXbcckaVT35lxuVzweDwoFAqkpKQgISGB7spFNaZ359zbG4xGI911yFdNBzgcDsRiMcRi8bheva2trQgMDER0dDRGRkZgNBpRXFzMeAYpBSEEO3bswNtvv43PP/8cixcvZvR6o4pyvHErYqlU6jcpShbnUHKW3pQcja0w0Wg0OHfuHGw2m4M4E9OIRCJoNBpYLBYUFxfDZDJBJpOhoqLC7XPv4cY2KA597dX1CQDKdcg++BSaB+9CaP7E5/qT4Y5SY0hICHp6euhkUn/R29uLtWvXIj8/HwcPHvRJww9XTJftYDwk7qniUN8Hn8Dc1g0AGHvK6l7F8Sj1D/0JS88c8Dg0Phaqe82sWbPopDbq3JtaQUulUpfn3t5ANUERi8VeCbG4i32vXip0Tk1AHo+HpqYm+vyKyWgCIQS7du3C66+/jk8++QRXXnklY9eiEAqFKCoqwtGjRx161h49ehQ33XQT49dnmRiBQOC10qH9Dttem2Hp0qV+W3xOlOvi6bl39z/e93oMY62PZO8h5P3lcafP9RRnSo3d3d3o6uoCMFruarVaER0d7XEWvacMDg5i7dq1yMrKwpEjR/xyVDldtmNGaInbI/nHB/R/2/+JPXHWAGBuasfw+RqIlyz06PoOY5FI0Nraivz8fKfdawICAmhnR517U+EiSoEoNjbW43pvKkkvPj4eOTk5fgvPcjgc9PX1QSgUorS0lE7Es+/VSznv4OBgn42LEILnn38eL7/8Mg4fPoyrrrrKJ+/rDg8//DDuuusuFBcXY8mSJXjjjTcgkUhw//33+20MLOPxpmMXBeWw29ranGozMI3JZKJ30c5yXcaee2u1Wkil0nHn3pHBoVCfPO+zcam+PQNis7mVlOspVD/s3NxcxMfH04ItFRUV4HA4tN2Iiory6e5XJpNhzZo1SE5Oxqeffuq3BRkwPbZj2rXE7TH0S2HqkDg8Nja5zBOGzld55bCpTFKqXtydEJo79d7U7tvVCpBSgBvbAIBpqIQcq9WKwsJCCAQCCIVChIeHY9asWXQ0QS6Xo62tDSKRiJ6EERERXkcACCF4+eWX8cILL+Cjjz7C6tWrffzJXLNp0yYoFAr86U9/Qn9/P/Lz8/H5558jLS3Nr+NgcWQqPbE5HA5GRkagUqmcajMwiVarRUVFBcLCwpCfnz/pvLA/J6bOvSkJ39az58Eb9K5joTPM6hFY9AYIgn1b6aFQKFBVVeXQQ9s+dD40NERXq9TU1NBNjmJiYqZ0jKhQKHD99dcjOjoaX3zxhd87c02H7WC0DlulUuHcuXNu75iU56tQvuou+md3VLRdEXvvrch78Y8evYZqRjI8POxWvfhkUPq+Uql0XL13TEyMw/vL5XJUV1cjOzvbbw1LgNHymcrKShBCJhWlAEa/I0qcXyaTwWazOTQccPfckRCCV199FTt37sS+ffuwYcMGH3walkuB8+fPIzQ01ONzULPZjDNnzkCv19Pa/Ez1jx6LWq1GZWXlhOVTnqLrG8QPi24GNHqfjI+fGIfF5w9BEOI7h03ZrDlz5iAhIWHS5+t0Onrhr1KpvBagUalUWLt2LQICAvDtt99eNu13Z9QOmx/w02rL0xC4MwQeOlsqI5sQgpKSEp9McvvMUftz77H13hwOBx0dHcjPz0d8fPyUr+suZrMZFRUV4PF4WLhwoVthQ3t5V3sBGolE4tCrl8o6dzYJCSF466236CQz1lmz2OPNDlur1eLcuXOwWCyYO3cuTCYTHWYWi8WIjY1FbGwsIzsxKtfFl4vtwLhoCGIiYdb0jvudDeNzfCYjIDMJ/CDffXbqM8+dO9dtmxUUFIS0tDSkpaXRx4hyuZyuhKEW/a7KTYeHh7F+/XoIBAIcO3bssnHWgJ8ctrup7oLUeIADWMnUnTUABOW6vzrX6/UoLy9HcHAwCgoKGDvvcnbu3dXVheHhYQgEAiiVSvD5fJ/onE+G2WxGeXk5BAIB5s+f79VnHitAQ4X0xvbqjYmJcQidv/POO3j88cfx1ltv4fbbb/f1R2O5yPHUYVO5I3w+H1dccQUdas3IyKBzMaRSKZqbmxEaGorY2Fi6g9VUmSzXxVs4PB5i11+F3v/v3XG/oyyDDaPZ4O7M3Lhb1vrs/HpwcBC1tbUoKCjw+jPbHyNS5aYymQzt7e2ora1FREQEXTZGRSI1Gg3Wr18Pq9WKEydOXHZtdxl32MBoCNWdFornystgTYwGr1fu0XXsyxd+ujgPUSvdKwsaGhpCZWUl4uLi/CKfR8Hn86HVaqHX61FUVARCiFfn3t5A9aSlSsZ8tTgICAhw6NWrVCohl8tRV1cHi8WCpqYmXLhwAYcOHcLrr7+On/3sZz65LsulBaWS6A4dHR1oampCSEgISkpKxi087UWRqNIqqVSK9vZ2BAYG0mWZnlZ2UJK9/f39KCoqYqRBTcrP70Dv20eAoRGnv3e3koabEI34Ddf4ZEz9/f1oaGjwaQ8F+3LT7Oxs6HQ6uty0paUFgYGB+PDDD3H69GlwOBycOnUKERERPrn2xQSjZ9iEEHzyySdYuXKlyzCUWq3Gjz/+CA6Hg7Smfkge/4vX16RuWOHyQhT/67VJswZlMhlqamqQmZk5rq8uk1B65FKpFIWFhQ4rfU/Ovb2BanMXEhLiVmKML6A+0+9+9zu899574HA4WLduHT7++GPGr81y8dHS0gKVSuVS5Y4QgurqavT39yM+Ph75+fkezV+qjFEqlUIul4PH49Fhc7FY7HJe+DrXxRUDB79Ewz1/mNJ7JP1zJ7JuWzflyGFvby+ampowf/58j3t3e4vFYkFLSwvWrl0LpVKJ0NBQvPPOO1i/fr1frj+TYFzpjMvlugxtdXd3o66uDoGBgSgtLQVnkQmD7xyBsb7Vq2vyACBQCPziFnz33Xd0iURsbOy4SdXT04Ompibk5eX59dyYUhEbGhrCokWLxmVKunvu7U29t8FgQHl5uVs9aX0Jh8PBN998g48++ggvv/wybr31VrS2evc3Zrn0mSwkbrVace7cOYyMjGDWrFleiXSM1QRXKpWQSqUO7SfDxdEwmoIxNGKFQMBFdKQAEeEc1NbW+DTXxRVxG6+DprMX3X96xavXB/32bkiTo9B94oRD1M7Tcff09KC5uRkLFixAZGSkV2PxBqvVisceewzh4eEoKytDb2/vZdtJj9EdNgB88cUXTsNFhBA0NDRAIpEgKirK4QxV09aF81ffDaiGPb8gl4v8Q68gZtUSGI1GOvylVCoRHBxMn10NDg6ip6cHCxYs8GtohdIFNxqNWLhwocd1g/b13nK53KNOQVSbO6pTkD/lNz///HPcfffdePrpp/Hwww+z0p8sLpFIJOjq6kJJScm43+n1epw5cwYWiwULFixAdHS0T69NnadW1vThyBdqdHQDJosAhADBwYA41IKF+Xxcf81spKaEgM/zT4Sq4f/bg8GnXhlN8nGH8BDk/u2PSLhlDQgh0Gq1tD0cGRnxqL+3RCJBW1sbFi5c6DelOGDU3m3atAlNTU04deqUX6tnZiKMO+yjR48iPz/fYUVmtVpx4cIFqFSqCZuCaFo6ULl5O8wtkrFvOTExESg89CrC580Z9yuz2UzXN8pko7WN8fHxSEpKglgs9osDsdcFX7BgwZTPpe3rvWUymcO599hSFr1ejwsXLjhtr8c0R48exebNm/Hkk0/i8ccfZ501y6T09fWhubkZS5YscXhcqVTiwoUL4HK5KCkpYazV64VqJf7yahuUavtH7SteeBAKgfQUEZaVRGBBvhiZaUEQCJhJVqUystNDI6F792PIPvwc0E9wxh8oQtzP1iPjN/8PgamJTp9CJYfKZDIolUr6LN9ZeVVnZyc6OjpQWFjIyDn9RFgsFtx5552orq7GqVOnkJ6e7rdrz1QYd9jHjx/HrFmz6ExCo9GIs2fPwmAwID8/32XtntViQedLe9C79yCs3YMTX0TAR9z/24jsnb9xKQpgNptRXV0Nk8mEtLQ02tlRSjzeqJK5CxO64PZQZ8TUCtr+3DskJAR1dXWIjY31a1IdAJw4cQK33347fve73+F//ud/WGfN4hZSqRTV1dVYtmwZ/VhXVxcaGhoQHBzMaLe8oyelePnNLpjMY38zNqXLitG0Lw74XCA5SYgrS8QoKYxCVlqgz5w3dW48Ngt9uKEV8k+OQdc9CKLTISA7A1HLFyF8wRzwPBBHse/vLZfLweFwaJXGoaEh9PT0oLCw0K8Z2VarFVu2bMEPP/yAkydPYtasWX679kyGcYd96tQppKamIiEhAUNDQ/jxxx8BjHaecvcGMKuGYVYNQXbiBwyfvgBtZx9gNkKUkoToq0oRc/1KBCS4Flw3GAyoqKhAQEAACgoK6Kx1SteX2nlbLBb6ZvWVjJ6/dMHtoc69+/v7MTQ0BIFAgKSkJK+yYb3l+++/xy233IJf//rXeOaZZ1hnzeI2SqUS58+fx8qVK0EIQV1dHXp6ehATE4P58+czci9ZLFb865Ne7DkwiPFGcTJliJ9knkJDgDUrY3DLugRERkxNKpPa3c6fP98v58b2Oud9fX2wWCyIiIhAQkKCV+fe3mC1WnHffffh1KlTOH78OHJzcxm/5sUC4w77zJkziI2NBY/HQ3V1NQICAlBSUuJXzdeRkRFUVFQgOjoaubm5EzpMQgiGh4fpXaper0dkZCR97u3NzTpduuDUtcvKypCYmIiwsDCvzr295YcffsCGDRvw85//HC+88ALrrFk8Ynh4GN999x1WrVqFH3/8EUNDQ8jMzERmZiYj95LZbMPbH3Xjw4+d9Zz2VMbJCh6X4KqlAbj79lTExkZ6PGZCCFpbW9Hb2+v33a29NPPcuXNprXNPz729wWq14le/+hW+/vprfPvtt8jPz/f5NS5mGN/q8fl81NXVobq6GpGRkX7tmAOM6s1euHABKSkpmDNnjsvdLYfDobWzly5disWLF0MsFqOnpwenTp3ChQsXIJFIoNe7JxWoVqtx4cIFpKam+t1ZDw8P0z1pc3JyEB8fj4KCAqxYsQIFBQXgcrlobGzEyZMnUVVVhb6+PrfrXiejrKwMGzduxJYtWxhz1qdOncL69euRmJgIDoeDI0eOOPyeEIKdO3ciMTERgYGBWLlyJd3PnMJoNOKhhx6im5nceOON6Onp8flYWTyHz+dDo9Hgiy++wPDwMObPn+8018UXEEJw7JQcBz/1hbMGAB6sNj5+rLDg25O1OHXqFOrr62kZX3fG09DQgIGBASxatMjvzrqpqYm+dmxsLDIyMlBaWoply5YhISGBlpw+ffo0WlpaoFar4Yt9n9VqxW9+8xt8+eWX+Prrrxlz1hez7WDUYRNC8Oijj2LTpk3o6+vzWk3LW/r6+lBZWYnZs2d71UgjODiYvlmvvPJKxMbGQiaT4fTp0zh37hza29uh0Wic3qyU8lJ2drZfm3gAo0IwZWVlSE9PH9dAnuoUlJubiyuvvBKLFi1CaGgoJBIJvSjp6uqCTqfz6trV1dXYsGEDNm3ahJdffpmxz63VajF//ny88orzUpfnn38eL774Il555RWcP38e8fHxuPbaazEy8pMAxfbt23H48GHs378f33//PTQaDdatW+d1lygW39Hd3Y17770Xzz33HDIzM30m0OGMoREL/n10AOP/7FMTSB7SAuFRubRyYmNjI06cOIHq6moMDAw4LVujqkjUajUWLVrEWFKdM6iFgkwmc3ptkUiE5ORkLFy4ECtWrMCsWbNgNBpRWVmJU6dOoa6uDlKp1Kv5QwjBY489hiNHjuDLL7/EggULfPSpxnMx2w5GQ+I7duzAK6+8gqysLNTW1iI8PByrV6/GrbfeipUrVzLmvAkhaG9vh0Qiwbx583xe4G8ymeiMc4VCgYCAAFpwISwsDAMDA6ivr/d7fTcwKopfWVmJrKwsj2sV7eu9lUolgoKC6OMAd8696+rqcP3112PdunV46623/LY443A4OHz4MK1HTghBYmIitm/fjt///vcARlfEcXFxeO655/DLX/4SQ0NDiImJwbvvvotNmzYBGF3gpaSk4PPPP8d1113nl7GzjEelUiEvLw8REREwmUzo7OxEYWEh1q9fj02bNtE7I19R3zyC3z/dCCMdYPJFJ4NR7rg5FvfcMdq9idLdl0qlTo/cuFwuqqqqYLVasWDBAr+cF1MQQlBfXw+VSoXi4mKP9NapjlxUHhDV39vdem9CCJ544gns3bsXX3755bjKACa52GwHo8Ipd999N37xi18gKSkJIyMj+Oijj/Cvf/0LmzdvRlBQEK655hrceuutuOaaa3zWI9Vms6GhoQEKhQLFxcUIDQ31yfvaIxQKkZiYiMTERFitVro8ory8HMDoKjkrK8unusLuoFQqUVlZiZycHCQnJ3v8enudc3sVqPLy8knPvRsbG7Fu3TqsXr3ar87aGR0dHRgYGHBo1SkSibBixQqcOXMGv/zlL1FWVgaz2ezwnMTEROTn5+PMmTOsw55GIiIicODAAVx55ZUAgJqaGrz77rvYt28fdu7cifnz5+OGG27Apk2bkJ6ePmXnLVcYYWLAWQOAQffTjsted3/WrFn02XBvby/q6+vB4/EgEokwf/58vzprSshpZGTEY2cNjEbtIiIiEBERQff3lslk6O3tRUNDg8tzbyr8vGfPHnz66ad+ddbOmOm2g1GHnZWVRf93aGgo7rnnHtxzzz3Q6XQ4ePAg/vWvf2Hr1q0QCAS46qqrcOutt+K6667z+ma1WCy0KElJSYlf+qPyeDzExcUhNjYWbW1tkEgkiI6OhkQiQWdnJ10uFhUVxagTo3rS5ubmIjHRee2lJ4xVgaIyRxsbGx3qvcPDwzE4OIh169ZhxYoVeOedd6bVWQPAwMAAACAuzrFyIC4uDl1dXfRzhELhONGcuLg4+vUs04d9Ode8efPwwgsv4Pnnn0dTUxPeffddHDlyBLt27UJ+fj6uv/563HHHHV63tLRa8Z+scN86awCwughgUkduCQkJOH/+PAQCAfh8Ps6dO4eQkBA6ajdRxztfYLPZUFNTA51Oh6KioinnF9n3987IyKDFq6h+2FQ0MjIyEmFhYXj++efxj3/8A5988gmWL1/uo0/lPTPddjDqsCciKCgId911F+666y4YDAZ88sknOHDgAO6//34QQrBq1Sps3LgRN9xwg9tO12AwoLKyEgKBAIsWLfLZjt0d7HXBS0pKEBISQqslUR2CjEYj3XnG1808KD10d3vSegp17h0ZGYmcnBy63ru7uxvXXHMN+vv7kZ2djWeeeWbanbU9Y42cO13j3O0sx+J/OBwOcnNzsWvXLjzzzDNob2/Hu+++i08++QTPP/88cnNzsXbtWtxxxx0eiQONDCvBhLMGAJvN9YmjVqtFeXm5g6CR2WymK1U6OjpoJ+dpz+jJx2ZDdXU1DAYDioqKGNnVU+feycnJDvXe7777Lp555hmYTCb893//N5YuXerza0+FmWo7/CMk7YKAgADcfvvtOHjwIKRSKfbs2YOAgAD89re/RVpaGm6//Xbs37/fZRKURqPB+fPnERISgoULF/rVWdtsNtTW1kKhUGDRokV0Ew+q+0xOTg6uuOIKlJaW0sldJ0+eRFlZGbq7u2EwGKZ0fUpgIi8vjxFnPRZK5zwzMxPJyckwm82YNWsWkpKS8PrrrzN+fXeg8gbGrnalUim9co6Pj4fJZIJKpZrwOSwzFw6Hg6ysLOzcuRNlZWVob2/HnXfeiVOnTmHx4sUoLCzEH/7wB1RVVU2YwUwIQVtbG/oH+8GEswYAo3HirPChoSGcP38eCQkJDgsMgUCAxMRELFiwACtXrkR2djaMRiMqKirw3Xff0Ud+7mScT4TVakVlZSWMRiNjznosVNQuLy8PVqsVVqsV69atw3vvvTdjoloz3XZMu8O2RyAQ4Oabb8YHH3yAgYEB7N+/HxEREfjDH/6AtLQ0bNy4Ee+8845Dth4lsJCYmOjXZhbATze9Vqt12sSDggoTZWZmYvHixbjiiisQHR2NgYEBfP/99/jxxx/R2dkJrVbr0fUHBgZQU1ODgoICvzuZ/v5+rFmzBnl5eaisrMRXX32Fv/71r34dw0RkZGQgPj4eR48epR8zmUw4efIkvZIvKiqCQCBweE5/fz9qa2tn3GqfxTUcDgdpaWn44x//iB9++AESiQT33XcfLly4gOXLl6OgoACPPvoozp8/Tztvm82G+vp69PX1IW9ONoODc26PlEolysrKkJGR4TKUT3UQy8/Px4oVK5CXlwdgNMHz5MmTqK2t9Tgzm7JbFouFngf+ghCC119/Hbt378YHH3yAI0eOoKWlZcbIjs5028G4cIovsFqtOH78OPbt24cvv/wSKpWKdnqEEDzzzDNISkry65jMZjMqKirA5XIxf/58r296k8lEZ1cqFAo6Mzs2NhahoaETTuS+vj40NjZi3rx5Pm9+MBkymQzXXnstkpKS8MUXX/glV2AsGo2G7va1cOFCvPjii1i1ahUiIyORmpqK5557Dn/+85+xZ88eZGdnY/fu3Thx4gSamproRMRf/epX+PTTT7F3715ERkbi0UcfhUKhQFlZ2YwK7bN4B9Vf/oMPPsDhw4dx9uxZxMXFYdWqVWhsbMS2bduwbt06tLSZ8MifmhgZw4Y1UXjg/zmWVg4ODqKurm5K+SaUyBOVcW4wGBAVFUWHzieyRxaLBRUVFeBwOFiwYIFfo5EA8L//+7947LHHsGfPHtxxxx1+vTbFxWw7LgqHbY/VasX333+Pxx57DOfPnwePx8PSpUtx44034rbbbkNUVBTj5wiULnhgYCBdY+kLLBYLXS4ml8shEAjoCRgREUF/runoSUuhUCiwevVqREVF4ejRoxNGFZjmxIkTWLVq1bjHt2zZgr1794IQgqeeegr//Oc/oVKpUFpaildffdVBjMFgMOB3v/sd9u3bB71ej6uvvhqvvfbaZd8R6FJFqVTin//8J3bv3g2dToeYmBisWbMGV6y4He8dCYbV+wjzhPzmF6m44eqfol8T6YJPBaoTF+W8NRoNIiIiaNtBLaipTQaPx8OCBQv8vih95513sH37drzxxhu4++67/Xptey5m23HROWxg1Gnfe++9+PWvfw2TyYT3338fn3/+OSQSCUpKSuh6zdjYWJ87b3/pgttsNjpBQyodVWCiajX7+vpQWFjo17agwGh97HXXXYeQkBB88803fhV1YGHxBefOncPevXuxa9cuHD58GAcPHsTZc/WYtWA3AkKoHBDfOLKYSOCFHflIjB9d1PpLF1yv19N2Q61WIzQ0FFFRUZBKpQgMDGSk+dBkfPDBB9i2bRteffVV3HvvvX699qXERemwnUEIQUVFBd577z189tlnaG9vx8KFC7Fu3Tps3rzZJ2IL06ULTgiBWq1Ga2sr1Go1XRMdGxuL6Ohov4S1hoeHsWbNGggEAnzzzTd+lUtkYWESlXoYj/73CTR1BcJqHXVkP/kz7xwbhwNsuycZ666JB4cDtLS0oL+/HwsXLvTr3DGZTOjv70dbWxusViuCgoLoMlRXR26+5ODBg/jFL36BF198Eb/61a8Yv96lzIxKOpsKHA4HhYWFePHFF9HY2Ijy8nKsWrUKBw4cwJw5c7Bs2TI8++yz6Ojo8Er3VqVSTZsuOIfDgVqthkajwaJFi7Bo0SIEBQWho6MDJ06cQHl5OXp6emA0Ghm5PiW7B4z2tvaXwaFEMcb+27ZtGwBg69at4363ePFiv4yN5dIhQhyG3z+8EvPnjmolUM7aasV/krmof+5z58Y4XH9VHIBRBbHBwUGPOhT6CkIIent7ER0dTcuJ6nQ6XLhwAd9//z0aGxuhVCqnlHHuio8//hi/+MUv8Oyzz+L+++9n5BpjuZTtxiWzw54IQgiam5vx7rvv4t///jdqa2uRl5eHG264wW2xBarO2VsFsalAyax2d3ejqKhonHKbTqejz66Gh4cRHh5OJ6354nxZp9Nh3bp10Gg0OHXqlF9a/FHIZDKH7Nfa2lpce+21OH78OFauXImtW7dicHAQe/bsoZ8jFAr9OkaWSwNCCNq7NPjw426cOivDCF2wMXr/UbehOzvv+7ckYsOaBBBCUFtbC61Wi8LCQr8nZxoMBpSVlSE8PHzc8Z3NZoNSqaQTXgkhdNTOVx38Pv/8c9x999146qmn8Oijj/ptk3Mp241L3mHbQwhBR0cH7bwpGU9KbGHu3Lnjbqr+/n7U19cjPz/f76VTVIu9vr4+FBUV0TXeE0FpgUulUqhUKgQHB9POOyQkxOMJo9frsWHDBsjlcpw8edLvUqtj2b59Oz799FO0tLSAw+Fg69atUKvV47rtsLB4i9VqQ1evDlU1Khz/XoqmNg20dHO+Mc7b8X8g4APbf5mCa5fHw2KxoLKyEjabDQsXLvRr6RQwOnfLysoQERHh1K7ZQx25Uc7bZDLRIk/R0dFejf3YsWO444478Mc//hFPPPHEtIoRXUp247Jy2PYQQiCRSPD+++/jk08+oWsi16xZg82bN2PevHkoKyujW/v5OxubigwMDg6iqKjI4wQvs9nskHEuEolo5+2OWpLRaMTGjRvp1qL+EGVxhclkQmJiIh5++GE88cQTAEZDW0eOHIFQKIRYLMaKFSuwa9euaV9YsFwaEELQ06dFRa0a334nRUPrCLROdt6EWMGHGsuKRvDrbWuh1+vR3NyMkJAQzJs3z++lUzqdDmVlZYiOjkZubq5HzpIQAo1GQ0fttFqtQ4MSd6RLT548idtuuw2PPPIIdu7cOa3O+lKzG5etw7aHEIKBgQHs27cPhw8fprV8LRYL9u3bh1WrVvk1q5KSOpXJZCgqKkJQUNCU3s9qtdKNPORyOTgcjkP4a2ymu9lsxm233YbW1lacOnXK78cAzvjwww9x5513QiKR0LWrBw4cQEhICNLS0tDR0YEnn3wSFosFZWVlfu25znLpQwhB/4AeVfVqfHdOBkmPASazFcFBPESG6iDr/TeOf/MRBgcHwefzceWVV+LNN99ktC2oM7RaLcrKyhAXF+eTXBtnR26U7XBml06fPo2NGzfiwQcfxO7du6dd5vdSsxuswx4DIQS/+93v8NZbbyE7OxvV1dWIjY3FmjVrcPvtt2Px4sWMOm+qJ61SqURRUZHP65ypRh7UJLRarYiOjqYzzgkh2Lx5M2pra3Hq1CmkpaX59PreQjWF+fe//z3hc/r7+5GWlob9+/dj48aNfhwdy+UEIQQqtQl6gw0iERficCH4PA6kUikKCgoQHR0NrVaLvr4+lJSU4MYbb8Ttt9+OmJgYRh2YRqNBWVkZEhMTvW6E4gqqkYdUKoVSqRx35Hb+/HncdNNNuO+++/CXv/xl2p01cOnZDdZhO6Gurg7BwcFIT0+HSqXC/v37cejQIZw+fRpisRirV6/GbbfdhuXLl/vUeRNCUFdXh6GhIRQVFTGepDJWLem1117DmTNnYDKZcPToURQXFzN6fXfp6upCZmYmDh06hJtuusnlc7Ozs3HffffRvWxZWPwFIQRffvkl1qxZAwAoKyujy0w7OztRVFREa0QkJCT41KGNjIygrKwMKSkpyMzMZNxZ2h+5SSQSbN++HSqVCjfccAM+/PDDGaEUeCnajUumrMuX5OXl0dq2ERER+NWvfoWjR49iYGAATz/9NKRSKW6//XbMmjULP//5z/HVV1/BYrFM6ZpUm7vh4WGvetJ6A4fDQXh4OLKzs7F48WJotVrodDokJSVNqxLRWPbs2YPY2FjccMMNLp+nUCjQ3d097eftLJcnHA4Ha9eupUuFiouL8dJLL6G5uRkXLlzAsmXL8N577yE3NxcrVqzA888/j66uLq/KTO0ZHh5GWVkZ0tLSkJWV5ZedrUAgQEJCAubPn4+4uDhoNBqkpqbixIkT2Lt3L+PXd4dL0W6wO2wv0Wg0OHToEA4ePIjjx49DKBTi6quvxi233ILrrrvOo8zKsT1p/dm8Hhg9477//vtx7NgxfPvtt8jLy4NGo5k0K90f2Gw2ZGRkYPPmzXj22WfpxzUaDXbu3IlbbrkFCQkJ6OzsxBNPPAGJRIKGhoZx5W8sLDMBQggaGxvpSpX6+noUFBTQZaae7o7VajUqKiqQmZk5LcdX9fX1WLt2La6//nr83//9HwghsFgs09JfwJ5L1W6wDtsHGAwGHDlyBB999BG++eYbcDgcuqf39ddf7/LmtVqtqK6uhtFoRGFh4bQ461//+tf497//jW+++Qbz58/36/Un4+uvv8Z1112HpqYm5OTk0I9TJWcVFRVQq9VISEjAqlWr8PTTT7Na4CwXBVR7T8p5V1VVITc3F9dffz3uuOOOSTO8VSoVKisrkZWVhdTUVD+OfJTm5masWbMGV111Fd59990ZEQanuFTtBuuwfYzZbMann36KAwcO4OjRozCbzVixYgU2btyI9evXO2RWWq1WVFVVwWKxTEutJiEEDz/8MD766CMcO3YMhYWFfr0+CwvLKIQQdHV14f3338fHH3+M8vJyzJo1C2vWrMEdd9yBgoICB+etVCppHYnpqOJob2/H6tWrsXTpUhw4cGBGOetLGdZhM4jFYsFXX32FDz74AEePHoVGo8Hy5cuxYcMGXH311fjiiy8wb948LFy40O+1moQQPP7443jvvffw5ZdforS01K/XZ2FhcQ4hBP39/Xj//fdx5MgR/Pjjj0hNTcWaNWuwadMmWsmrsLDQ6/acU6GrqwurV69GYWEhDh486HfbdTnDOmw/YbVa8e2332Lfvn344osvIJVKIRaLsXPnTtx2220IDw/321gIIdixYwfefPNNfP7557jiiiv8dm0WFhb3oXp6UxoRZ86cgdVqxTXXXIPf//73KCkp8evutre3F9deey3mzp2Ljz/+2O9Rwcsdr7LEX3vtNWRkZCAgIABFRUX47rvvd5UJpQAAD5FJREFUfD2uSw4ej4drr70We/bswapVq1BcXIybb74Zf/nLX5Ceno7rr78er7/+OhQKxZSzRl1BCMGuXbvwz3/+E0eOHPGrs6ZUj+z/xcfHO4xt586dSExMRGBgIFauXIm6ujq/jY+FWVi74TkcDgexsbHYvn079uzZA5FIhHvuuQdWqxU33HADcnNz8eCDD+LkyZMO+tlMMDAwgDVr1iA7OxuHDx/2m7Nm7YYdxEP2799PBAIBefPNN0l9fT35zW9+Q4KDg0lXV5enb3XZ0tvbS/R6PSGEEJvNRs6ePUu2bdtGMjIyiEAgIFdccQV59tlnSUdHB9FoNESr1frkn0ajITt27CDBwcHk66+/9vvn3rFjB8nLyyP9/f30P6lUSv/+2WefJaGhoeTgwYOkpqaGbNq0iSQkJJDh4WG/j5XFt7B2wze0tbXR/61Sqcgbb7xB1qxZQwIDA0lsbCz5r//6L/Lxxx+ToaEhn9kNrVZLOjs7SXZ2NlmxYgVtu/wFazd+wmOHXVJSQu6//36Hx3Jzc8njjz/us0FdrthsNnLhwgWyfft2kpOTQ/h8PikpKSFPP/00aWlpmZLz1mg0ZNeuXSQwMJB8+umn0/L5duzYQebPn+/0dzabjcTHx5Nnn32WfsxgMJDw8HDy+uuv+2mELEzB2g1mGRkZIW+//TZZt24dCQkJIVFRUWTTpk3ko48+Imq1ekrOWiKRkDlz5pClS5cSnU7n98/G2o2f8CgkbjKZUFZWhtWrVzs8vnr1apw5c8anO//LEQ6Hg6KiIvztb3+je3qvWLECH3zwAXJzc7F8+XI899xz6Ozs9ChsTgjBq6++imeeeQb79u2bVEiASVpaWpCYmIiMjAzccccdaG9vBwB0dHRgYGDA4d4SiURYsWIFe29d5LB2g3lCQkJw991349///jdkMhn+/ve/w2Qy4d5770VGRgbuuusuHDlyBEaj0aP3pdTLQkND8dVXX/lcKtldWLsxikcOWy6Xw2q1jmszGRcXh4GBAZ8O7HKHw+GgoKAAzz//PGpra1FbW4s1a9bgyJEjKCgowNKlS/HMM8+gtbXVpfMmhOCtt97Cjh07sHfvXmzYsMF/H2IMpaWleOedd/DVV1/hzTffxMDAAJYuXQqFQkHfP+y9denB2g3/EhAQgM2bN+PQoUOQSqV48803wePx8OCDDyI9PR2bN2/GRx99BL1e7/J9hoeHsW7dOggEAhw9enTahJRYu/ETXiWdjS3mJ4TMCKH3SxUOh4Pc3Fzs2rULlZWVaG5uxs0334yvvvoKhYWFKCkpwY4dO9DQ0DDOeb/zzjt4/PHH8dZbb+H222+fpk8wytq1a3HLLbegoKAA11xzDT777DMAwNtvv00/h723Ll3Yv63/EYlEuOWWW/Dhhx9icHAQ7733HoKDg/Hoo48iLS0Nt912G/bt2weNRuPwOo1Gg/Xr18Nms+HYsWMICwubpk/A2g17PHLY0dHR4PF441YuUql03AqHhRk4HA6ysrKwc+dOXLhwAW1tbfjZz36GU6dOYfHixSgsLMQf/vAHHDt2DDt37sRvf/tbvPbaa/jZz3423UMfR3BwMAoKCtDS0kJnfbL31qUHazdmBgKBAOvXr8e+ffvQ39+Pf/3rX4iJicGTTz6J9PR0bNiwAa+88gqampqwatUq6PV6fPvtt4iIiJjuoTtwOdsNjxy2UChEUVERjh496vD40aNHsXTpUp8OjGVyOBwO0tLS8MQTT+DcuXOQSCT4+c9/jh9++AE33XQTXnjhBSxcuBDLli2b7qE6xWg0oqGhAQkJCcjIyEB8fLzDvWUymXDy5En23rrIYe3GzIPP52PNmjXYu3cvenp68OmnnyItLQ27du1CYWEhGhoasG3bthmprX1Z2w1Ps9So8oz//d//JfX19WT79u0kODiYdHZ2uv0eu3fvJsXFxSQkJITExMSQm266iTQ2Njo8Z8uWLQSAw7/S0lJPh3tZ0tnZSQICAsiyZcvIzTffTN56663pHhIhhJBHHnmEnDhxgrS3t5Nz586RdevWkdDQUPreefbZZ0l4eDg5dOgQqampIZs3b75kyzMuN3xhNwhhbQfTPPzwwyQhIYFs3bqVLFmyhBiNxukeEms37PDYYRNCyKuvvkrS0tKIUCgkhYWF5OTJkx69/rrrriN79uwhtbW1pLKyktxwww0kNTWVaDQa+jlbtmwha9ascai9UygU3gz3sqS+vn66hzAOqj5SIBCQxMREsnHjRlJXV0f/3mazkR07dpD4+HgiEonI8uXLSU1NzTSOmMWXTNVuEMLaDqaRSqVEJpNN9zAcYO3GT8wIaVKZTIbY2FicPHkSy5cvBwBs3boVarUaR44cmd7BsbCwzFhY28FyOeFVlrivGRoaAgBERkY6PH7ixAnExsYiJycHP//5zyGVSqdjeCwsLDMU1nawXE5M+w6bEIKbbroJKpXKQVv4wIEDCAkJQVpaGjo6OvDkk0/CYrGgrKwMIpFoGkfMwsIyE2BtB8vlxrQ77G3btuGzzz7D999/77Kva39/P9LS0rB//35s3LjRjyNkYWGZibC2g+VyY1pD4g899BA++eQTHD9+fNIm7AkJCUhLS0NLS4ufRsfiij//+c9YtGgRQkNDERsbiw0bNqCpqcnhOVu3bh3XZWfx4sXTNGKWSwnWdly8sLbDe6bFYRNC8OCDD+LQoUP49ttvkZGRMelrFAoFuru7kZCQ4IcRskzGyZMnsW3bNpw7dw5Hjx6FxWLB6tWrodVqHZ63Zs0a9Pf30/8+//zzaRoxy6UAazsufljbMQWmIzX9V7/6FQkPDycnTpxwKL2gOsGMjIyQRx55hJw5c4Z0dHSQ48ePkyVLlpCkpCS3aut27Ngxrg4zLi6O/j1VBpCQkEACAgLIihUrSG1tLWOf93JAKpUSAA6lOlu2bCE33XTT9A2K5ZKDSdvB2o3pgbUd7jMtO+x//OMfGBoawsqVK5GQkED/O3DgAACAx+OhpqYGN910E3JycrBlyxbk5OTg7Nmzbivv5OXlOazOampq6N89//zzePHFF/HKK6/g/PnziI+Px7XXXouRkRFGPu/lAJuty+IPmLYdrN3wP6ztcJ9pTzpjgp07d+LIkSOorKwc9ztCCBITE7F9+3b8/ve/BzAqdRcXF4fnnnsOv/zlL/082osfwmbrslwCsHbD/7C2w0Omc3vPFDt27CBBQUEkISGBpKenk02bNpG2tjZCCCFtbW0EACkvL3d4zY033kjuvvvu6RjuRc8DDzxA0tLSSHd3t8vn9fX1EYFAQA4ePOinkbGwuA9rN/wPazs8Y0YIp/gatn+q/2CzdVkuFVi74V9Y2+E5/OkeABOsXbuW/u+CggIsWbIEWVlZePvtt+nSgMulfypTEELw0EMP4fDhwzhx4gSbrcty0cPaDf/A2g7vuSR32GO5nPunMsW2bdvw3nvvYd++fQgNDcXAwAAGBgag1+sBABqNBo8++ijOnj2Lzs5OnDhxAuvXr0d0dDRuvvnmaR49C8vksHaDGVjb4T2XhcO+rPunMoQ/Mv1ZWKYT1m4wA2s7psD0HqEzA9P9U9PS0sbVawIgDzzwACGE7cfLwnIxwtoNlpnOJXmG3dPTg82bN0MulyMmJgaLFy/GuXPnkJaWBgB47LHHoNfr8cADD0ClUqG0tBRff/2126u38+fPw2q10j/X1tbi2muvxW233UY/tmbNGuzZs4f+WSgU+ujTsbCwMAFrN1hmOpdkHba/2b59Oz799FO0tLSAw+Gw/XhZWFgmhbUbLJ5yWZxhM4nJZMJ7772He+65xyFblFXpYWFhmQjWbrB4A+uwp8iRI0egVquxdetW+rG1a9fi/fffx7fffou//vWvOH/+PK666ioYjcbpG6iXvPbaa8jIyEBAQACKiooc1IhYWFi8g7UbLF4x3YfoFzurV68m69atc/mci1WlZ//+/UQgEJA333yT1NfXk9/85jckODiYdHV1TffQWFguali7weIN7A57CnR1deHYsWO47777XD7vYlXpefHFF3Hvvffivvvuw5w5c/DSSy8hJSUF//jHP6Z7aCwsFy2s3WDxFtZhT4E9e/YgNjYWN9xwg8vnXYwqPSaTCWVlZVi9erXD46tXr8aZM2emaVQsLBc/rN1g8RbWYXuJzWbDnj17sGXLFvD5P1XHeaPSc+rUKaxfvx6JiYngcDjjskQJIdi5cycSExMRGBiIlStXoq6uzuE5RqMRDz30EKKjoxEcHIwbb7wRPT09Xn8+uVwOq9XKaiezsPgQX9oNYObZDtZuMAvrsL3k2LFjkEgkuOeeexwe90alR6vVYv78+XjllVec/t6dPrzbt2/H4cOHsX//fnz//ffQaDRYt26dQ92nN7DaySwsvsOXdgOYubaDtRsMMb1H6CxjAUAOHz5M/2yz2Uh8fDx59tln6ccMBgMJDw8nr7/+OiGEELVaTQQCAdm/fz/9nN7eXsLlcsmXX37p1TiMRiPh8Xjk0KFDDo//+te/JsuXL/fqPVlYWJhjJtgO1m4wC7vDnuF0dHRgYGDA4UxIJBJhxYoV9JlQWVkZzGazw3MSExORn5/v9bmRUChEUVGRg3YyABw9epTVTmZhuQiYDtvB2g1muSSlSS8lXPXh7erqop8jFAoREREx7jlTOTd6+OGHcdddd6G4uBhLlizBG2+8AYlEgvvvv9/r92RhYfEP02U7WLvBHKzDvkjw5kzInee4YtOmTVAoFPjTn/6E/v5+5Ofn4/PPP6e1lVlYWGY+/rYdrN1gDjYkPsNxpw9vfHw8TCYTVCrVhM/xlgceeACdnZ0wGo0oKyvD8uXLp/R+LCws/mE6bQdrN5iBddgzHHf68BYVFUEgEDg8p7+/H7W1tey5EQvLZQprOy492JD4DECj0aC1tZX+uaOjA5WVlYiMjERqaiq2b9+O3bt3Izs7G9nZ2di9ezeCgoJw5513AgDCw8Nx77334pFHHkFUVBQiIyPx6KOPoqCgANdcc810fSwWFhaGYW3HZcb0JqmzEELI8ePHnTa237JlCyFktDxjx44dJD4+nohEIrJ8+XJSU1Pj8B56vZ48+OCDJDIykgQGBpJ169YRiUQyDZ+GhYXFX7C24/KC7YfNwsLCwsJyEcCeYbOwsLCwsFwEsA6bhYWFhYXlIoB12CwsLCwsLBcBrMNmYWFhYWG5CGAdNgsLCwsLy0UA67BZWFhYWFguAliHzcLCwsLCchHAOmwWFhYWFpaLANZhs7CwsLCwXASwDpuFhYWFheUigHXYLCwsLCwsFwGsw2ZhYWFhYbkI+P8BME8j8aO3AGEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Visualize the ShapeDataset output\n", + "import matplotlib.pyplot as plt\n", + "\n", + "\n", + "dataloader = torch.utils.data.DataLoader(ShapeDataset(), batch_size=4, collate_fn=VDBTensor.cat)\n", + "X = next(iter(dataloader))\n", + "# Ground truth\n", + "gt = X.feature.jdata[:,-1:]\n", + "\n", + "fig = plt.figure()\n", + "\n", + "for i in range(4):\n", + "\n", + " # ijks and ground truth for batch element i\n", + " X_ijks_0 = X.grid.ijk.jdata[X.grid.jidx == i].detach().cpu().numpy()\n", + " X_gt_0 = gt[X.grid.jidx == i].detach().cpu().numpy()\n", + "\n", + " dim = 100\n", + " ax = fig.add_subplot(2,2,i+1, projection=\"3d\")\n", + " ax.set_xlim(0, dim)\n", + " ax.set_ylim(0, dim)\n", + " ax.set_zlim(0, dim)\n", + " ax.scatter3D(X_ijks_0[:, 0], X_ijks_0[:, 1], X_ijks_0[:, 2], marker=\"o\", c=X_gt_0, cmap=\"coolwarm\", alpha=0.25)\n", + "\n", + "fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Convolutional UNet\n", + "\n", + "Here's a simple UNet we'll use to segment the shapes in the 3D volume built from fVDB `SparseConv3d` layers and `LeakyReLU` activations." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Define model\n", + "class ConvClass(SparseConv3d):\n", + " def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, bias=False, transposed=False):\n", + " super(ConvClass, self).__init__(in_channels, out_channels, kernel_size=kernel_size, stride=stride, bias=bias, transposed=transposed)\n", + " self.relu = LeakyReLU()\n", + "\n", + " def forward(self, x, out_grid=None):\n", + " return self.relu(super(ConvClass, self).forward(x, out_grid=out_grid).type(torch.float))\n", + "\n", + "class UNet(torch.nn.Module):\n", + " def __init__(self, in_ch = 3, out_ch = 1, growth_rate = 16):\n", + " super(UNet, self).__init__()\n", + " depth = 0\n", + "\n", + " self.conv0_0 = ConvClass(in_ch, growth_rate * 2 ** (depth + 1))\n", + " self.conv0_1 = ConvClass(growth_rate * 2 ** (depth + 1), growth_rate * 2 ** (depth + 1))\n", + "\n", + " depth += 1\n", + " self.conv1_0 = ConvClass(growth_rate * 2 ** (depth), growth_rate * 2 ** (depth + 1), stride=2)\n", + " self.conv1_1 = ConvClass(growth_rate * 2 ** (depth + 1), growth_rate * 2 ** (depth + 1))\n", + "\n", + " depth += 1\n", + " self.conv2_0 = ConvClass(growth_rate * 2 ** (depth), growth_rate * 2 ** (depth + 1), stride=2)\n", + " self.conv2_1 = ConvClass(growth_rate * 2 ** (depth + 1), growth_rate * 2 ** (depth + 1))\n", + "\n", + " depth += 1\n", + " self.conv3_0 = ConvClass(growth_rate * 2 ** (depth), growth_rate * 2 ** (depth + 1), stride=2)\n", + " self.conv3_1 = ConvClass(growth_rate * 2 ** (depth + 1), growth_rate * 2 ** (depth + 1))\n", + "\n", + " depth += 1\n", + " self.conv4_0 = ConvClass(growth_rate * 2 ** (depth), growth_rate * 2 ** (depth + 1), stride=2)\n", + " self.conv4_1 = ConvClass(growth_rate * 2 ** (depth + 1), growth_rate * 2 ** (depth + 1))\n", + "\n", + " depth -= 1\n", + " self.dconv3_0 = ConvClass(growth_rate * 2 ** (depth + 2), growth_rate * 2 ** (depth + 1), stride=2, transposed=True)\n", + " self.dconv3_1 = ConvClass(growth_rate * 2 ** (depth + 2), growth_rate * 2 ** (depth + 1))\n", + " self.dconv3_2 = ConvClass(growth_rate * 2 ** (depth + 1), growth_rate * 2 ** (depth + 1))\n", + "\n", + " depth -= 1\n", + " self.dconv2_0 = ConvClass(growth_rate * 2 ** (depth + 2), growth_rate * 2 ** (depth + 1), stride=2, transposed=True)\n", + " self.dconv2_1 = ConvClass(growth_rate * 2 ** (depth + 2), growth_rate * 2 ** (depth + 1))\n", + " self.dconv2_2 = ConvClass(growth_rate * 2 ** (depth + 1), growth_rate * 2 ** (depth + 1))\n", + "\n", + " depth -= 1\n", + " self.dconv1_0 = ConvClass(growth_rate * 2 ** (depth + 2), growth_rate * 2 ** (depth + 1), stride=2, transposed=True)\n", + " self.dconv1_1 = ConvClass(growth_rate * 2 ** (depth + 2), growth_rate * 2 ** (depth + 1))\n", + " self.dconv1_2 = ConvClass(growth_rate * 2 ** (depth + 1), growth_rate * 2 ** (depth + 1))\n", + "\n", + " depth -= 1\n", + " self.dconv0_0 = ConvClass(growth_rate * 2 ** (depth + 2), growth_rate * 2 ** (depth + 1), stride=2, transposed=True)\n", + " self.dconv0_1 = ConvClass(growth_rate * 2 ** (depth + 2), growth_rate * 2 ** (depth + 1))\n", + " self.dconv0_2 = ConvClass(growth_rate * 2 ** (depth + 1), growth_rate * 2 ** (depth + 1))\n", + " self.output = SparseConv3d(growth_rate * 2 ** (depth + 1), out_ch, kernel_size=1, bias=False)\n", + "\n", + " def forward(self, x):\n", + " x = self.conv0_0(x)\n", + " conv0_output = self.conv0_1(x)\n", + "\n", + " x = self.conv1_0(conv0_output)\n", + " conv1_output = self.conv1_1(x)\n", + "\n", + " x = self.conv2_0(conv1_output)\n", + " conv2_output = self.conv2_1(x)\n", + "\n", + " x = self.conv3_0(x)\n", + " conv3_output = self.conv3_1(x)\n", + "\n", + " x = self.conv4_0(x)\n", + " x = self.conv4_1(x)\n", + "\n", + " x = self.dconv3_0(x, out_grid=conv3_output.grid)\n", + " x = VDBTensor.cat([x, conv3_output], dim=1)\n", + " x = self.dconv3_1(x)\n", + " x = self.dconv3_2(x)\n", + "\n", + " x = self.dconv2_0(x, out_grid=conv2_output.grid)\n", + " x = VDBTensor.cat([x, conv2_output], dim=1)\n", + " x = self.dconv2_1(x)\n", + " x = self.dconv2_2(x)\n", + "\n", + " x = self.dconv1_0(x, out_grid=conv1_output.grid)\n", + " x = VDBTensor.cat([x, conv1_output], dim=1)\n", + " x = self.dconv1_1(x)\n", + " x = self.dconv1_2(x)\n", + "\n", + " x = self.dconv0_0(x, out_grid=conv0_output.grid)\n", + " x = VDBTensor.cat([x, conv0_output], dim=1)\n", + " x = self.dconv0_1(x)\n", + " x = self.dconv0_2(x)\n", + " x = self.output(x)\n", + " return x" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's train this network in a simple training loop and visualize the output of the network. Each volume has about 5% occupancy of the total volume which, if it were 'dense', would contain one million voxels. In the 'dense' case, a batch size of 32 would mean we're training on 32 million voxels per batch!" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 0/5 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Visualize the results of the trained network\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Get a batch of data\n", + "X = next(iter(dataloader))\n", + "\n", + "# Remove the ground truth channel from the features for the model input\n", + "input = VDBTensor(X.grid, X.grid.jagged_like(X.feature.jdata[:,:-1].contiguous()))\n", + "# Ground truth\n", + "gt = X.feature.jdata[:,-1:]\n", + "\n", + "fig = plt.figure(figsize=(10, 20))\n", + "\n", + "# ijks and ground truth for batch element 0\n", + "X_ijks_0 = X.grid.ijk.jdata[X.grid.jidx == 0].detach().cpu().numpy()\n", + "X_gt_0 = gt[X.grid.jidx == 0].detach().cpu().numpy()\n", + "\n", + "\n", + "# plot input and ground truth values\n", + "dim = 100\n", + "ax = fig.add_subplot(1, 2, 1, projection=\"3d\")\n", + "ax.set_xlim(0, dim)\n", + "ax.set_ylim(0, dim)\n", + "ax.set_zlim(0, dim)\n", + "ax.scatter3D(X_ijks_0[:, 0], X_ijks_0[:, 1], X_ijks_0[:, 2], marker=\"o\", c=X_gt_0, cmap=\"coolwarm\", alpha=0.25)\n", + "ax.set_title(\"Ground Truth\")\n", + "\n", + "\n", + "# model inference\n", + "model.eval()\n", + "sigmoid = Sigmoid()\n", + "pred = sigmoid(model(input))\n", + "\n", + "# predicted values for batch element 0\n", + "pred_0 = np.round(pred.feature.jdata[pred.grid.jidx == 0].detach().cpu().numpy())\n", + "\n", + "ax = fig.add_subplot(1, 2, 2, projection=\"3d\")\n", + "ax.set_xlim(0, dim)\n", + "ax.set_ylim(0, dim)\n", + "ax.set_zlim(0, dim)\n", + "ax.scatter3D(X_ijks_0[:, 0], X_ijks_0[:, 1], X_ijks_0[:, 2], marker=\"o\", c=pred_0, cmap=\"coolwarm\", alpha=0.25)\n", + "ax.set_title(\"Prediction\")\n", + "\n", + "fig.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "fvdb_exec", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/fvdb/notebooks/img/2dconv.png b/fvdb/notebooks/img/2dconv.png new file mode 100644 index 0000000000000000000000000000000000000000..3acb8ba9b0d7c681135808aa29e8112c3bb0d9a4 GIT binary patch literal 22941 zcmZ^K1ymf*viIWdE@6=%!QEjYKnU)zxI+lCxNFehL6hJl1PJb~ixb@4-4+P2_{aag z`|f+^o%78(JylcttLmPvGt<3QHJ{a0<#8}6F#!Moj>3Cc%@CEuegq`rzdv(Hg8^qoM*}ec{mos0gS4q<c-k1+lQ^^mcUqM++eCE&9SbTDzOmdOJEe zxrus9(Eke|`ojMs=Ax(l7sTCOf*!1*PAda(wWby1HqFh{FUS6DDe4G$hTP_|E5fLtKUM^lHq2IKgWNK)7{SIe|mCq`}b|V+#uIKzi{zza&!I1 z_KT|cKT=UmYd464$3NzEob22sdBy(){=ee?>FvL?)LiYXU&i~7nk3J^RsOf^|KepJ zj?S*uZf^hJ1^$iy-?IOUSN{NUhrGHFbp5aC z`!C=8OZws*NlbCB|2SF_a~kuI1ptr&D9B1{dn24=p=BEPdOVMjUYQVlJjVRYbRtUg*#EJuEg7mCMm8 zRLuf?oGxl`WrWdK{a&rLn~Jm<&AbiJd8?(Rr7uA3wd}I1Sm$@z)PHz*sCXeHB(yXk z4|KdgX~=mzPz$QQyYq#r5w8v7sVip+^9-Q*Zx$C7;SUR*ZVx7(oVJ|R*V)fe`bXE` zSjM2)IV?9${8GtC>(%^wHt{1e%Y9N|wnUGs<#JRk=1E`ZC&=axIhC+;?uzG@anU+ZKl-|5Wje@{?XFXQa=luoV#k#^K+TKvFquDY#r()30Vt(h;h>N$&;P!5k!jxlUkw3#>7Fd{GsrLa#-gbJU zaMdA00VzVT0$;sNu*^CM?RtVV!?SRQ0;nL*y;_RozW-)mSL7gFnR!%3ul0t<9Wr)< z-$5QT(_pk?+d2w2$(^;k_sgqo@utu#Hxe1B5nioO3FM&wACd8`UeuV_-YFFVblDln z(%9;Cm!}+u^WP{tm1h3j(W2J3kVsZF@VDyv(b`kJ#eHj8knEa*W`)nGcrh5H=cZR? zATWK&Kfx6|q)c$s+*>i*4Tt)rb|c4>XH#&IQ0wtZX~}K%-6(|Hy$u1Gg#hqeHV3io z=!BRC8EK&S-jh-#bQmtlK8zfbpDz(iGa=bt))&^DPuU$Bfjl)o?ygm^}AZ!Cb2bWfA!w3k4zWd zOlK3(cQR=&g`c5319Uxd+-qVr3WTMY5xvEc1S7EB=h&}n)K$UQ-SgF5g|?e?p!#MP z@rN&ia@0nfiNMKtJyzJ1^IIrVs?4qSst%3BR=14!b~=OiI-@F0;Eu6RABWr~Tkq5> z8{H8n0>jS&0s;uch*IBOi@3Y(aWfp|Vzcc-J3J#^f$V?i+`&4g1D|R9jtM-=-=jsd z;Z;V%(42!^4<-xD(V|`nevumFyTwQUyk|>&{D*I>w$&C1R~#lKa~%nKF#kN}u5eQc z#l?za#sitH1l+7RKEThV1K(sNu{>mE<#IN^F+`d{L}zD-V~c}Dk~wn#P3-Ky3od;R zxS!9b$#8(FWmjUFwvQTg1=^e{)gPCI&yG)j2)&ta8=+;7ml?_qO^jS}>KM7ra2Tig zBZQgq=iBCH&{*5ed@ui?cGc?i`FFkz|HW7q*| zn}B&s50oe|h@8KQ!;u>{FxI!;dOkw&J3J_KfG#l4m()odUvaRN?#-Q5MgN-Bi51?M z_#q!D!!>6b6mXp7tJXx3^!H$@{{l8uBtpe)H~F(Or@wl3dV1a#biXkDw?zVr5?u_O z8HQMUs9Qh{NTN3FZkcIWr-_-<-vO=JljP)BcwFJkl83~@!S4t1EL0@h-8Z@%KREFR zr^%(pg?k5N0T9xm7W9DYJRoJ&(BIrlvyl9 zOw(aPNu^Redw9MHQ9ApAVd9Zj5(C?A z3^J~7fs0}u_J5u{7122j+IZS68w)0Mv#%JA^jEH@Q?{*|z?$WaAy(&`YbJr4W-42& zh#i{KCV@CVF47PJ0a;|zCp(bAXDiU`t!A;SXLzMxTB@QlD}_|l{;0RpUrulsW6vRv zlRMEzoJZepI7OA0InPZx55sM`rVaX~jK;cvQPHE)N@CBgIH9y{#zcy{&&=86xOS#q zD<0Oj2uOT?hq*eI17V@S6bb%#DVu#g6Q6>|zl9)ywFa&XR9h1@ksaa;P*D2>e3;$xHkVVmI`jBIve29V)SBiK7SI(kDxpcgynTbES{0e?Pz{5VwQ`5AVMuF<=!z*a;(}!6kaWH#cBZ!p=dkQ42TTc6e<}wk>P7Pe^rD77C`;!H$g(C zAmzGb_}Av5N9XI+J)Kj|Hz7yI+Npb0%;9%(ea7oH<1$zdYj@JK;?oUlhJA}IQuU$| zSWj>Fow5f`195J!*6S&rZr##z9eK;jvzMn>XFfIUA@=ALXOW)e|(JKVek` zu<^ZnpC&MBBpy|GAJY9+vQGf4-D^3pD4K>7d$&cz)w0bEnQF)D=n#V0KOIk9%#Hx6 zPO#_1)Q>#+mFgLHLGdV2($9z7mz=pEgv1nskK_f^9X&^pn<$xr}En6r0PZRkC=I|N7%pDBs1mMJrv z8P8o`ySOPvvB~L}afrTo??zgOv1m=>>o+zrTv2zMw&eNEzeAo^b3_oR1gfze<1Ed) zOQap?M$|3kHhb!9dNyNVj;%}0m@|B?$ZU`M-FFSFk28gRJ!>1Q$Wg{yBJuC=NLw&r z7%9&(7ksQUrjuXsiQ-oui6;g|cwdePh0d^F{pLUN5BBTb_1Hk3u~}=#X|Y*KP)x~k zkfW$XlE42HZMbJ!pGs77l5$_Ta>w`Usiio4+hp|SO@3BV!>Md3{0o*Ns+owj{+56g zdx`hB;SqX$u3Q-|_u$7@l-uL5JvDwRi2=$}-@)&chLMCK7M|k6XEyivonvDrr_4}a z_d#>x{v#{0qc`8yDB3B8j!K?S(ijg{$#;RPPA$jU{MxC_44We4E z90wKKGuyEdr`p2ytLFy+5wszezTSnN=3xmnkVV7t?$$c>!?su8mcjjY;ZuU69c+Hf zM*Z~FabHpv6|SM?I5$%K3<-?Eu$ZVJx_@m@_N+X=jT(&uay?Je*f z*zC=L?)bnJ2j^3}5y6A%ghg<3g{pF}4(3Q|9~zf<2sMdvB`OZ3)f&7{sJk)`Kk?CP zBL?TXr;)?+sXcO@k7TYT_#@RS7m_lEMdfx|iQnR{Xc8yn;Y*?sweL%qL1bK9pdIkR zg9Ka236|+&%Pg-AaX9a#M|UW$C`%)SgB+xt0u=--+hU8_i4sAA2#?c#w6`Bd{E{VP zW$FGz_#s1+Sb9!VG=xZR+PB}CR)m(t8Nq>_Et*4KW*LxE*Sgq8vk_U&JhRw*r{X!G z_S|m8AMD-QvJ77NyVVy)c`d4y zgj=eqI$5QXG@2j5gDmnSKhN0<%ZvP%z_F&KcYj}zUtp?pE$zu>aDQmvCU~s|Lz4Wi zi`TKX!r^6J(l~k79R7>lY_xc!0MTk5^M z;T^LfIWl9bc1z-R8kQKQws7Qp5G?3rS;1!Gu`8@CLIdFB$-BEB6r@MgUSujWJRzV_ z!^n{4^R4A5SR&?x_`h_&9gjvad6T832c{{{ZXZ=FfXp|GXtPI`m9t>K0!wrv(sBh- z#8>Gp{zgir8|Oa26f1tV8m3bF= z(>TCw@0ROl{N)FpY>{cuF<#8L1<(pGrq;R8ZN#TIF7J;D*AQ zA?Tu3K#17$Y5bMwWW{lcAOv3X|>imvx(w8ptoeM?C} znv=6Ioknq>F5aP#)j*<4V40U>G*w^i0F?Y(*M+9r!q3wGLM!J^+nDAlejURswbx2F zy1GD}_*((KqC)zh0b9?oKUgjT5ovj-H!Mj(Cd{85nK*KT>#(Y8%A|IbQvPpEbmdQ- zjrkL6(9&}?j9`lvGUH3-_Mi~XQbJs_UTy+^I}a$_INzi(zKG#!|IknEqiyDWd-~0h zp;o+WtZ6z=CNkpm7XBmt%|({5KSXR(q^1BV!(lUo`THyN0TAim^-w%qp!GZ3Obwmy z(Xljd*pL&~Z5dDlw9bv_&krbWTSry7db^zVlax3$V1k@ng0r);5lCBDr0m?!&KExZ z;vz9cSVPLI;o=>a%Oc2%hpZTju zJP}!}6?QX}POiVOtDy`|mLYoFm9J4lo837|N+b` zX0v^EzgbWZ{&9T+)D6X)gHXQg2-PSyP)h9{212tP2gQ80j8OL2vR?um79v&AU_*2o zb~Y)gLTYZ%^}MCb*2d8iyti4E61|ikvUNcMs}&EI%?E8~@m_L-lbLwaVJdVKaC+N^ z&;gq{-p~-LYp}SkuWKM^$L^tC{pG6mM(zt^ z$%F?044CotEsupB&*e+aRpJGV#*lKmK30~xKR@22kC5oTGxntfZA@asVFTi+ggE`p zEc;?9dh4taf{`aMZu?yG7&>pBZaP4%cZh&5WT857dfynIAKoDlHPniKR^ucRfc1rzzn1Df-sd% zifId^r=TtLLP!ZlBGbpWQ?MZ{3h8=I8A|rv zrl5So~^jPNmgMPp3@ zJjqMSudYVyARwx~lEM?0%DCgL2FI;4R28*Q~#bb4tr)tfHg*s-f6 zl1$kF+<_i3+r#ht3&Quz+tB8H9n1oUA8;jkVFtUv4y zBweNGf913N#oP|{2r7*B78M#yUJ2&(e)(t79pcpd+}{3x^1kl%yJgAV(AB3(EP&3= zq_=A#WRFImh5IvQ^WHc&LSF0smkZv(t#2fN&5xPr!4pAx48U3VCpY*{@o#9A_T!j`hw!jL0h8vb<}-st~z8g?$vYIfR4zQFdX^Tf|*kn-<@b?FhLzPug2h~o~B?sQa>`(@z)Ni-T z3J92u!+kRGe9D%;zx&u>Ho|;M`f-<~Zs>}?=jys3IY4Z%K@D;>bFa$OIV3kGML|9^ z{=<1JcFpVaTU-E}eTlN9h)|cB=i6xDkvOvZv%-v2i^1DB1=R_-QMbQXXLVBLQCzLR zz|pzl?GK&;EP5%BW+4>1+<(S@a_Y>sNk%-L%Q)Qy?7RCrvMR}Y_q8QZHf~SSdLWE@ z``?Z1Or69EbkxWnk|D3)M^^U-?|duCm=wT|KmeoaN50NrMPo!{YA$tFF9;{V=jrn= zbaFJ$nn^DcHk<5d3YsS{_y1lBh?_|vO~u6HtgalF@w;h|cG5_oYD+lTl|i7Cfjo~d zJ&-`^Db5t%Io~pMC0_I$i?B_0AjJouh89EU!fX$tRl4UbDq( zzDH%_GU}w1EJ~kP^)8!7o_^>W9%I=TE-;pO)nG-u(xygzt%vp+^)k7E5AgH>OJ@&1N^_-Krvi8Fcc84Rz*ot~UPetrood(qbZ5+#IA~ zqKQiq#ZEvH0`#9J;bhW{4bU&&oRp2{p*PIv8I*xs7uWcm=Ge5TkwcJ}swXwSACi_= z%G*eMyiDU79qE8&FyG^ ziSk^Wk%#c>5DzH@{ct2@7-G^$jNU?i1+^o|7<=vN^9I^mY9YKEe|Gl;&hAq;EbqxU zA&6JI%+4K<_3M>RQRS&YCHNuCpT=Ic^-6F}_j$(TdSi>LcEnzvkX=Q{fcG)gu`zbaK!T#S*Hk!-vZ(zY3EIK-D^IaOZ7N^G zoc>NdNtXYjjv?d1l|hf74klH+c7kgN0TPL{ecEZFW-J9F)a+ave^DdoN~vT|wohfm z;^D?i-t8+x)3(ow_CEF*RkU6xlDi>bpBTESu_+<-Vvy0;>2WTu1x~9}HS6w--8Iv?O!V5Bx=y9nm{oA9+g?sep-dQksC}UJxi{&+0a?IJtlN7H(q{NTXRw#h*#A_|X^C_Hc9%2&6 ztw+Nm7Kemr)U5WdZ!!{hN`GVN7&3CvhrD$Xhr8%;<|GPCY|Qg zH1DFO$Eza+lQhEY(9;D)yJ=FwX`tgW%5-cqZa9SJQ-Wx^kyQ%)MG{kqc4j;}RtbWl z(YIMXOcHd3SZqyvlG12MRrw9j=kkx``SfH|$BJxtl4=!n#Yw@DKEC+kL~RV>H&`?I z%VLt17r?#U0x<9f?2!gBbfw?N*ivbCJELthv3;unt9a(`Q=t3 z&n4;ivZdd!x7UiNC)cq>plKsWA|!q*Hn1WriiOyHW}z_4N7fhKgvEBRccmt+&wOS` z0aQ!|Gw&Mm-kelgi`|!Wpr`E@XFtE1)!!(-Y#@BP5fXBbr75AdXyx5fQbeNs?J#Bn zh4QAv<*Y+Q|5kkr(lW0Y%A><8y^XHFo22$JZ?;tT6NqZ!rMyIKwqB0;R;YG9A3BO;xX^&fV zD}0Bpq(}S}JDI1i(gigY9R;-%tX_&BZuQj`ox*5*magr%yjibI9`Y=r1R8j|>>V4e zX%&!4dO!rs(!H}?(=XxBeveP_#4oBY8oL}F{;HxYz@g{P#IrX#;CS`^td0q2_!jT! z{;J;Va}V7AKA$n>ctN91+Eys&o>{OS=UME!v`zi5e#6=2#!Tu4G$QgQ6aMQ{lq=2Q z+HIEm5v!r*($dH8kxScC33;2xzcQRKZ85+#;eccoRN5OoV~^Aom;P7g#^3a8XyF(# z4bw=n3|n{0dy=*dE1rhrTzrrafKXqQ@N}H7@~Il=@$dM1NYf5!%hjx57u4tb*Gme& z7q?`fDtCWK^jh_?O*B5lyWOHfGqFjTy^B{PF8;u)?X3SNs?b}>T<1fGveTDA$oEIX zQd51A5!|*XzH2`3xc&dZ34NgCSPwgy#u~0{*m!__=LF|$s+t!GoJj}^4rtH9w_p& z<{#kEr+Ymk;8B22{Lbq@b*`fu?Dd_uLenEYds()45`Wbzr(HzWyT+sTc`%;GBPEG# zo*#Z8cmT|0_XTLTEf!oh_TtcY*${y@0IE-FY?NKlXS3<|dJh+BZe1j8*iNJ}JksM}(d6WLy@Pde$m?-!)IJ#5)kx)`%Cq)=3EtiC^5e+jKTvG&u>- zF4>XZt6Ckb0ATMU({8KV(r@Mxae6x|03{DF)AxjNvQZ>A&07b!kRyoGZN0sMF*$P8 z-^fXCOsDedup)FLf6$*5)*5X5QG#Z$7UakB)f2PmEg`cm03}7!GQ0E>YlZ%X!n4iu z6QCb6$fH;2L0K$vL2Exa^l{G6|E1Jn=#Sm~*S5wU2kDKtwYO4xk2Bs`7f68M@c3v^ ziH~?SkZkkacexjbXk{N~ekD>IBGDLoE9NA<88=6No#2klZp8V3o^S*Rx}cMCt#IyC zF_DA4X9`qQ+VC+>m$9clBr6L>{$S0%#ZMNA@HEc3xcVnWEzD^qbyruQsr_JvkR4Fd zH?NtJ)U@gq|B%7kWnimsTWH8F2^~!EFp_A4DcoADx42&pi9OYjtU8NB4BG>m zuWmDz%JTEL`<7R!cZxg6{g*OS{kDACc+szCDWsZLjoGma6Dhkt0*2|?jkn(f%VQ$h z8gRNyAHvjp2Xy%-1@0$ONGcGE*OJXpkHZMiNLrnV32Wj@b5r=PGh+t~ZXLb7qs9 zjupV>s4MA(rcD~=G~=D&4!z7VI9@UoZ(Hh5Uq;+^?E!o(_Qb6W97QinF>wN^#s4g-mQE225MeZSCDUySB8V8#gFL{;Y<< z1;>**{uRny_8D1wet2P3d7`G9EHteHNZdy56O{D|@lug4?`hjuMv249aED%{D5g}DlmlLe17*EE$wx)8Kx{X zlkrJDD^ToAu+srFmJl@Fun^=b!GwxnM18lu?4Vq0K56C1?MNlOI}AesNi%ic>>b$1N5b z-YwxJ?q)RcO)Z*9I4s#{1)4CU{K;UWk*D|E^7*6*uLQv=xaSg+)KvG^6fa@JF%4U5 z_46sGeKz+W+m+!5v!DQSvl3TUk(QfL?=1kTZ z-hgzjRt~y&&CS7ZT|LT6=Cdyq{QHVJqpyLaO1vIpq`xl;R%A8@D>k+jX4i9?g39DK z%Jd%;7@Vem^A*UiXq*{sn{NE1@Y*wQ>CC|j^ght1z)b{xxq$NdyL{_S-sz?)%;<~! z%t0y|XDVbESaZ&?6bIK2x+w0mDoTF9#LU9iRhUe846(}){eGIpX z$C4yw#1s$Di*6O2(FxrC#proqsdD|-$~0rGtvm2~D+iu&;UVbV8pJHnAJM&Nrvw!u zh?tGVO&;LCtpYw^2cgE@m?s?-5({)34nwi}^|zXm9Y+U71g{D{1#U$rgb)uCCJe=4 zIVU~!&?%FR!QPlqGw;qwIK4@tF39LxvNPLJ@}cfdOk#;;`9_yL$Zm@ydDZYdcWQEx z`D)HS^XgJSQ_=-vpAMb|hj@DMf9YRvvsuCsT2`N|?mLKwHQ)(eUG21UW$rVCUOsXqm@E)?L@O*pru{meH~P!o$GP6HwiTL<^ibS$2ICbG^k+2i?{hA$j<+O zAg8*wkA4n+A2_N@YA%w!2g>A4VGtE1V-$h4sR#ZZQtD0v~D37(YaZD#6t$%)facUp~< zsy{qW6z{0ctnF&w^lLGaDrXc!=mRCT83UeC@aNDsaJR&8YnG_HNf%W(fBlTa*fg*Q zpAG|tzaF%1+sZaR1R5?d89r#A>cngW>{uM`Bx#g_$@Uq$z@Az2_xc7 z6P)L1pFgpP&s`@H8?ZXjWNV%ehhvz*zL2)qT|f=)4&5pf0o?W3oBf{-?=cJ()-yS( zH-ogBW04B;$0_!7nN>5v%W&x%qs(%P<)K|%0Ao3mHY?u67x{pQ+6VoVQlf54Mah11 zyPF-j7*46xJKe-?S7|HsXYx|aA8h26gONyU0n@Yo+km5*Q4q-jL}R~veNV|>S$t8Z z%oeHrz!qsz2!&meYMf?6tTVH)6 zWz->y5FAWwY!^uYa%bm$zb4*)W7kJ}z)aCN$UT@Z9^CSySgY&zAI+l1rGya0JpHF! z=it=S4;wKRhP`@wi%fbj56itU9}-nLq6`im74Y#wmbu<`b@!miGtQb8bx~(;}{-PF$RQQ(Dbw4)&ne+q+-es>R!^D zF_uB@k*f$iTx9t{4_2vPIPy;|)D_QSLyL*FiAHO7NqZb`Y`ze(Z=hE8NwIbrV$-|v ztVbif@@8Pn!zX6z%{5~UJJ+P~&9f*dI~PJ|518`sRC~!RC!P0QQ9DpUf|w3g?8btV z)3M}m(N-cjb{SrkjBXOFE?m{#`>ou@ArPHci~Z4fBXGb z4*{*$waCrneX`i2HKe5)@BMp+-b%CRprpDc&3?CS=7(?W{J=3a@lIc zPju;mqBzB{gKyCW)c|oJ%Hjv2u)7*xR`>$3nSV^S{^+D0?uO4xZ7THjw`MZ|X^${* z$}lS;q4KT7V%#S!ocBO~SQm_-s!^(7()@FXb;1&)L*nxB2U~e#{=8hSFalu{KR%{n zmqPMsRJS65%c8+M>EhPJde>nw-JtmoCC}HzPxgy}=)ZR6(6)rn15))kY1bW*0zdM_ z!MS@!UrW6s<75-5f3AcbMJYEk;a->;90;*vBdo^+{Z4kRRF1$h_b}{Q+}vxH(?k3+ zL=u|bj1T6aEX?-(=+cB4bVwGc>l*lczZU7$+1UTy4vxZ&&`62)G-x8Is&zY0Ae4!- z9?suhn@(0*D~@^=EMHdH_H7_Tmz}KlVGma0cnF;XPsxJxoE^%(b)2O}Y8UIb{%$RW z{R}EX7y8K2sDKK&Ts}_avOou{!~2zUoU+LnD26v(QMmoS_7x0)lKE5y#?8eCy9X@L zKfqI%mHOdFpU9v{a=!Ld6;341@S9V=8fxa7<~70hZx^H9vL3MbkB)lyms)pIs6#;!QOsx;L{g3H6<_PxU}9a-Cbf$|6N*ks!_H_zLSNr6^z zt^NmUiIylp)vsSn!Kn(=8{fr>oUA;)!~j8n?sub2dv~`xys`#Q$ytn7Yj#R{EMa)TK+pN8i)*1?YuDj%#rzZ`ZfcK#f;jc>5*r$rV z3K#3p{~+F}ve`!!*(bIiq@y~eGg@K5%GF?oPh`C8BQrLFG1o1km{zT_i5u3_+!km(>!51t)AJj2#VD`Ua*dLS#T-GbR z=1?4*R&1gRpKpf*^gDB;rnmJkY8=>S4VfQ7O-mu7UMffC)SW{;6|2yy zMwKU}@J6d|F&AG<53mD61ePau5h3fCzNo@RJiWe2t370wef~c&$R{vvg1>OMNGVFR zo%c~Wc2edzTDK141@BiXXQtQs!Mf%}R6&DtFQu0;@T-cTtOb=G3c64h#7e{gDoAS; zIeX=1m-@z3&Xc=3jV=Ns5!&0nzQ;&ID9CsCuU=6``#E!o;ZaBWA)muDrN-AH^(J>H zOM9O6algd6dT%Nc+W~$dqlQ|;H~^F8ASi_3>nAe8`9|iGa4Ox!;S$mda#e#XuOkJ@ z=t#Nnugc*+u{v659#YafPeL;L0cO};U$KiXcDl!4==O?aDhxZdRL$Yzq1afh(=nZ~ z9iDCLwx3i)2htvBf9~Kt*gf&6`B%7GcEDe@BZ^EK=(z=z%Q2Pphmz|u2rQ^50M#$u z&M~Q*{yiwAFv4`_@;f~}Ff?PeSC!mpL@&pZitD*d=MIms;;$*}X@~iFutT`5nVTJk zJRM+>N{RQENS+8!yLyR*e1Yc;*G2E5G=M2ieAp5Fn!GZBBR~L(YOX@E(w@w?pE}W z%!zL+bw_$t_#uFc!21mt_`6MgM9zV+^QW+#6Jg^fhL7`jk;RUw^AZznF6ky1&Q6%) zQb@Lr72(iJ8a$>Ch({ou)xx@kuu!DvOEu@mAO!ouDn%b4#1wNbbfmwa+2R$bfAd~*;mq^E1 z&`8EBU2-tR`qY^ym6W9L7A?Io`q6Mj6tw@Eg)Bo{IUECzQYP6`x3PDM94m1p|qcAT zH|vt9aOUlO%d4cNpLTUI%(b>Eo*FA3XzF`VkjOdo5i7g?r954WDKHv6xLy4yKY`pa z6yn`=ef^D{mML)3H~o(k8VcgPx5Y0G?PkwMLCyk<5(+2jgF`Ade}XlH-*nR9ka+$k zV6YA}&r2hn=7@=7Y5!eoSP20-n(Gc8o+#RUPiPNR!aPf11C1MSRH|R&S_oA|vdor$ zl;^89;Oge5QN(=r*@X_He=}8!)1O6^jMqZ0kM~?p*a>}Utpm|*o2K5gVx@GhbwYQ^ z&HKF;pLqdrm~Mn0^Pstj=>4SkBHSlXb^}(YmY?F4Etf%c z_4r6Ub~_$qDc67+yn=^_i2lW2?Ae>Yno^Sc#@>Rg3)?HdAMd__!1g86LOK93pqs;! zp2!?`)(%Z4cCI)s?Dx~gyTz}=#y@RVDStO3Vd6ltLm9x*-JVoeXIG3hj9b311%shG4`{R%tBM#zJz*p(@8E(W z^sw2+?M3pRMC8?@4dllP8tWNi|1>oC#m$*szE+^rCypdJJMtGgISQ%`v3=#RmmL(Y zgUiV;N=dT?n^F}k1JfmyG`j9Q->I#^PUqNK3v49fir17fDESC#7KdYQ8i-`zCYi} z7P7pJLODp3@74MqOx&42=Zd`lB{hYh|A@bm*Zh71F9>Wz|CvaorLa?!Dwt4-KrzhO za+o!!SI0ZUB)Eb=vTFV=ONZbh!u7-J<3915WjDrD#-_#}%%=qP?-Ssw%ur1&>NL;i zWzYj_YcZ_dUNY-e04ls%6ZAYhj*ojcmk@rktV?w$lR&BzlM|0V`Y<`>V6`T_5!@W_ z$8<$^i-=6SiIy}Wk<2PJ(1d-UeK%FJd9F-;Nv%uMm_U^>+2tD9^eLx>MP6|$MN4(i z>V&@%5zyB?IHjX6f}rj$eJqlGhtbbBCeFu_+?{7dLfACWsrH(Yml*#|<^p?~sae6~ z%O`ERwKSV*%}Ij`0GrdPfckQo6%I!h3P$iMf@F&=eUF+$dzFnHfipLm$uMWo`ho{wO!`18dCR z-w~sHvnh>m9^$Pz^kU2IajbN7efAKZ&(&MO~BGb1qjDW9stc{eGSl_zAxQjWE)o>OIN#(FM~!w^$2HA`8P z>HS5R4XFx*$(p|L)f6)YIHvj2D11ap`>!X#U@ru1awy-8q-Y)P+NRj^8m zf8R$bSW!4p!Z)rhEfpqkG}S(EuE;x3VR%d<+kPYmo~2W&5M--#km`0&t@CYj<|ivE z6Hz&4JNl`zi;!C8C&p{1*|S@X9?aQ7gQ#kJJ(t%RX5F&OT7f&^ww&2B89ZHY)yT=u z-vl1BmTy8!*mjR%?>W(Qn?*cxDv?<*3VMmzzDKWrOFjfUjwmAVY*{`;smUQm{tjyH zr+gaIutAGQ6{wm|B0>K#8FvYljk0~ZRiW}(#P3YT33>Od?`1adRRGrD%!j;ARhN&y zNFU8tc{i#HC@su$vChQ1U^1qa_vy7R9U6~0XM7iIEgsIMvJB4l<@g)HxfOxmf3Sc5 z@>yEAPk6F^%7qg?V5^NbuFQgwDfJIH+L@ghbH*1)Qdn`QLCT7S*%9noR?%CJ|MmTl zvSf_VL0_&S)|7>$`S}L1zCv$^+LnIzTkjGV4yUOhrMq0C{Bd%I;UPX*{c#i=vdW=q zR%|`jbvaM}&uSMbf=^k}Gw$Jc?;Tc=!4?*?!q!76o)rbVDhx3RSrj%W!2)p>+3mvwA`E{RTEeJF{*)i9D>+3DZ*O_3IR-4vF*Ob6vO1 zh;TzzK8VG!qFEi2T6QMJcUKGuM7Rv}5bZuJ9SzS#F{h-V1=1#|JvL+8V)DD~IP<3V zgcn3;E4YT*ZddI6G_1^bZ1JhMQKpX-&Nf^BqN5xW%(yanF-Qwf^0B;){#p4WOhb~A z<>zXGubfb{(l@)x&5D;2mB@;XLZ^ug_(u3kZj*Gwi2gx9I@#2=apq}t;>_RNtG+{z zZ{E~}{A8HiQv64#1YcRdBjFpq(Y#87LS^L0{sfVN+p{8IbRI9bqnGkSFG2w;2qsna zc7u_|(&XVP#t&YTuF9xI5KXm56jcA=#Nqk)iYtfP&rgR+5)YRcKrSD9CX;PoPSJds z7R9j;*94V#%4}KL-ZP|QvJUr{fssFPE7Pw0BBh(gvPN{Ezu;QmWTrWtz*x$}PF>II z|9lm}lc?$($~i7SjKW3cl5BstNtY##9Q5Y*^^^uyrg^cczmKO{2RLN6{Yrv3XnsZk zGtHvrf-U_0ISj#_H5|o3KgH@{B=R(}>i~~D4Z|Lm4!s{NnnA*|k zFj7f8>k#tT#TsCt9Sw%gZ$BupK6+%71gr=d7+#G{7rb*csU9WeD5;T%mt;yo>dYrf z6^fS)-T8z@wk30mKrNNVIiW-iYL^e{u}sJ8{2{d68%EcKo;&9%YebRFzFI$7(^wD9 z`NU{wAj0F$ScNjMDX)QO?O#L{n8HB&8|w#R;wvNq8XeSBC>jN4+uzB~Lhk`B6alzl z;S||z*A9<_H33?^+s=7&8X;byzpjJ?tQ6?#5y81SnK4BZ!o`9R8WB)vCLg%Wj&I{ zMc;TK==m{}y?eY0T|YCqysQid#7_UrPL}1y{q9b6>t%(UR2&uFiZzm-86Y3B#8$TF zxH=VXWl;-`?Na;>#>6arJ8ZD-dazFoNW*4LRbo!qRx?PndL;&RxRLnn09#}d+vv-I zV?5*3d&(xj4i!Rbt{@2S!fiW+ob}sga2H3?{$Bvu7bfTqX|`o`g~QL1OSp)59L(;! zbdyaUHr`(7v$nXM%Wl>1-UExD6dL4*Xjs-F&cavTu!Bd|+E(9zLzm1&;^Ui?NkqER z2lt#fqx&!B$NeD1k&7StMuz~CZ|UkFH~QofVW`k4d<@UZ5pj{LJf!i*V5Ki(ip@$m zFT(H8+7zJUH&)};<}x#h%+d;J^>LvyBeVo03r7p3)uZ58$&!=g#~;5rbLNCsz+>yH zusDwH4<0zq-u6@WtS|@^$@G*5@-xL(PDY=6vfc5kUxn97Bs+Gwr|gu0?;{*|(M5Li z*S{WKK_QG)4RoaOHHS_(Fa#0j)Q{|E_dGWv0G0Ca`U?IE$0aYwq1)%JR`&OC0l3O0 zm;A?LR^p-`zy}!by6diR4ncV)Um|z_D{)F~pNk(E{LIk>7met{XaE2fgGod|RQPX= zWstxspfX-v=@&q4O*tcSDQ`Yi`SFi`JY=>MpTa082P;_fyylu~^q8#M34K@{d3M_~N!Ryzr4n2wq+~RAVELEdR}zF(dGi4s}Kx2>r(- z|Jbk8eK~%Cm8Q-5$XdS`2H?MK4ZG*AKx)y+yx=deQgA65J`^95p5a5uxVi{acv@Wf z!4Ju$G6h&FJhocg>jGq)#s_Gm6IVE|lrY(249Ulu`MNmeAPu^2*2Lk5h#z;o$l~Nb zylmVsZdKmo!bAED9{?@sF{z?K!J|fne9~oHs(AtFb0qLLzxhotM7)2eyueGh-(8PtlC3R4m>7+7B687rlVlVW)W z#JrM>U$S!bEPlzyMJ5#vKmZm1;2xQP4NC-YXizmZHDQbTzyl8q70ruz01ASi3ovky z1gl3}WFb>!gkQi`JY40Q_~IolGDHF-yvn1>Mi}{raLEfKf5pXRn1aQpeEiy@>LEnv z?`JfnPeXizR+2^3EZK2mpb-w}=m7)_8Vp@HeuPu$0s-lhF8(w|^#r6xz6mFch5-N-F9sIjkSv}~QmGtr z#fMCllZlwX3ZHn9N1D<#Wz;yAxcB=vY5^s{8TEFBw06p;SUf3R)Ium z(0waE00MxL7l42@jln`%il=9Ie4s!)NGaQPu8R=)h@5*`!s$Oo?O30In= zLAYcJRLOiOFXD?`!gx-WH_nIdRer^nf9xu6@>3i=$8O9kKJpF$V(LQqO0KGu%0rxn z?%^**T@I{qVNjkFg@3ZJSSA!JfWRXwg@3GctQlRi!r_II3RfCb5;JyY-NeDNvTTGE zCr?;5KAu4u#dOw;B%qN!X(%qP z?kNX=6CnezvJOl>S@vRBM%nqQ%M(vLQOp}wRzHAo*=3hWM5aqV-nFv2z$tffc=LQ%3h;+N8SmJ+2v{0Qd~DDmU| znP;A{-~RTuMXM$`q`{>$<*TuQK8CO!~+t4~8qlNX44;<39% z9KKrk zs>(N|SR}=u0~|3xvOt64<9OV2QNdhTcYy$ZjUh=-V?FKxD_s}BB3;0x^odW;LS>Pj z#-3Clmt-QJPpdQLBQE1WemREKgQ-)eh7}BCA%`xQHD=O-SSABZ5OKMb9w3rMLk|E7 z;(p$|d0`okHzYXh!n455r-y3&unc+TVm+AjVuOAbJ3XiJwa4WAIgVgfwESz?0#DbF$K8M#a#kqJ=_z)zXEr$LD~j$i5?nWd;p zgEd(&l!Kx~Qly@7%PA!0A` zdUBNxuJ{N8j65R~Py&APj9gvB;a-i1aNQHeb4>6e6XHImBySwHz4x6BR!YDihx4(8 z9{}CnoVLV6@mLg;!#&E3NtK36C8IPHstFtwjvtms3Z(+!2MG8f6H5r;PaI7qNS6yf zTzI(@PkA9t>BJd{!EmiBo=_83Ir)!jXv| zE*Ji!iF_>V%$YNTRp*%{CWackQNYJOc%}@LhhYdq67DH87Lv^lWMjoO1R+ftfX1+t zOJyLg^elaJgxlF*1xcLZTGf(SPIc`Np)4j~R5XN=vxv$<$*c>aJeE+TM8zjAz~HzW z3K#fP3CLjViAyEGhl^ZXtP~d{&~lF~NMO}7AOcL1!#&GifCxecK!y)cG7eVv3|IiG zWZ@!T7kTC$nS=p09MU%`p6>x9Zj7LR%&sbUkm)=tZav+heA+{l;yJ9kirNT4=(XU^4Bvi6%9CI zJ^=tXCZ2UE9m$j{e(@on3z9rQMdk8Lx*CT90KlPMfQCk+QT(JV;wy}};sv0Zxf8C* z7vjNgRG2C)mKmp^a4G}Kg4H6NbO0RkAyud< zP4RH?19+-jp1H&$e`IhEFJUT=WCIrb1uR_7pHepT#04+QN_t-kdE^(DFy&YIjLVH2 zeozA!t4%&wf#8>3h>xXJeDZ=WkV&3m{YvJJx}6PH`Uud}il`mUF~VHg>hjcGBUTls zBmfft!o_;wazRwQDu{T=OEOS8V?F^y4T5JXhwr)~n`g$D%#e}GGZ*(<y^MY|DfUe_Zmw5*QOC-V(r~A`d>cLn#XcK)K?)s!VaC0<-{7#Al{h zu6yXAheE^PcXVZ0iN~@V=^+c<;8NbaRF1bxf|WvX2^3NWl@|M{0u&y*aTsyf>p%be z^NXN~d37()5SIfiSVvh^07%6F2+5X9eDcdP7d+}22#fi+Cro7o1WFg)_?~VV@Zd-K z40TvLW%rQD4i*&xbo=hRZxO5-uE5841DM1q56Ds)_$lAWVIs)!K)#GkV*~K&*~klN z3atDf96b#Un75qE5%JKe@{z{hCBdrJPo>A!iwYB1Q8Ijx{9*+VF5;fU%Iw~7Ph}zt z;+YB|Eh>t;j|G3MJ-jM6zJj^5Rc8M;iIwKfggBIq*q7eE37~ zV@Uz`jW^yH{MD-vPQxMZBIK|}jI7`P{`d0EbSeL_#~xe!hHe^Tmji2BA$HV{iU356 z^-wMqf<*uT00avPXsI~D;RkS7JjQ9wxMi+lVP4}eoixcI??e5^45jJtEiCvCt=7%oHrUah&&+& z!jCdBnW2HO)5KvDh&b?)78Exe{D~{M$uh?c5&3`#B3>+04I%{kAM!Rw#feXD%#R-c09aHq-J`$?fB}s_r^-=$#p9XEQ{y2% zi|6o@z9t&{ICK1#t>nlB9OMChPTI3xs)-9>07Afq4?RH2m&zwsVdPUhiW4HX#8sHU znHDBLxiKKok9r@4ceLB(z{;4Ar4xZEu9P(8P`MlwVP<{KIp?IYwE6f&DS3otg(v-~ zd@7zx4NHJfSXyQT#8NzI@!ku5T@I`cx+%Uj+SgCekMJ>JjZZp8xHZdsBaO;u#!Jg* zz@J9WGstIt%;*vr4ZWjf4dx5eU?4L z)u1;JIC?nNuN`^=fh8i=8UY;@hxOL@i%MpeugV4pR1zSB@K+_pl}UV-zi^3h zOvs>tbS8BUU0)3p8@*+15lTL8c!eibYz3&EViw3bE0xMQXiU+I$Gpz6thM(@!Dgi6Q$^ey* z#paUyBtLRU2NI8DD<6b$A6rPpAx!xsUDArf6c;z9q&&h@wwO=%$dp|8$fLl@bCQ&& zq<_{k@=8%x1uL4NWE|&bDA0B>)jirnK0e*VRx2mxQLrii8B{{@8GnWj0E6R&fHFzM zlVwFFF8~sU@9eXa6;raJNssrhIKhQ{jkS|}$cXdCt{409Sn{-TC{4v-9aoLGSZ?|$^jbL>*0t^4VpeH0{Jlkwe)!>sjVn*3 zAqHS@0A$vzS;a;B4Dm&8Dx1U6YzmYkh8TRy75VI$mm@3_zu^G5`6Otba&STmaPv-9 z9)6DSF*HF>d5H32?ep*hRxS-u(&Tqlurg+4orGgPg~iFV(&hB?vDNxVAAK|^D^H~% z7Ns%-D5cyuc~wU2SLz;q0GL-kyj<CjR!ca1PWyX`cz zoq6-M)7I7ecE;^y-+3C?q3(0%WwSe_ZVl|g$fYGd0i+)}5*C?zDDD1KnWVA@y}f-kBQc25XD9*=8-Z)t9Ukcv+Lp8wb9;Te+kq z*?HxQzddPeZ=RC6$a*GETzRP+Z&zPu&8vr!d@PLn&dgRn%;I(3$R>lX%y@pDppxAg zKL^|F2f)j&_4+=1g>O|>`d)dH?@pEF_pR0nKYLK=d1`XEEI$kUzHeXUhh>`lU`=x# z&^mv$^EdiIndWjpK@omXrqaKcP~m4Bavh*>omTp5?Ya2ba6m_y3ip7Lfu$n;C58FB z_$T`3%J1`+{2BnOTbxS2GIis?X!ciSs(2yLUrPpjCDj4HgRhe7t+(E4)H_vKk>K}= ztE{Q1sr0i1jd>2r09OAFK$ZV$b(5bZXliM6SxK-n*6asNs^Rxn${njsndLp`{7{`WACTIey=LYxag*>1nL;ugd(`W$xBYt6FV28$ESW)P zcu$b;kq`39J=DLbGQhzx%3qlo?|>TWAZ+~ssDvh5`MI}36H#+Nwl|H==Fgq+9bk05 z*Z<)Ue^}rmwgGGRFu=9qpZeig(+qC?s_}~>hok(;e7DQPx@jkCpc|~)DxC45#)xva z+XfJ=7oMPpr1-AHQZim2B-(l zEA#OzRvtn704gBm2RnFf{ozu7=%$^f0l-Q8=`!wk&e?(UWh?qqO>!9BRUOCTBC-Q5Wu5`u&ff;$8cA%vj86C{KP zOkRHX)>rpdeSf_7R#kVeUT60{r%zY)*~ip0R3)YCbii@o8vp?R0}Kv^6XN6JlMoX_ z2+0YENuXp@IOO!?RhdJbHAZc1i05W4_^O@Nk10GC@F;1h$~lfn^} zMTp3;b8v9*^6?7@@C%EHh=_zQ$)ZSLt?3L9BV8(9*m*->gbQ<*tY=mt<21W+13qB9TYHFD%I z@wjKE%==1$|~P3z;!5FE@97Qz@AE^6y9;S{Fy4_Z1} z+S;0iCPqd^`W9CIfPQGN?C7cP>}}@kq3sc%>>jG`6Kv__Z|om#78GF-9O>xj=-}@8 z4=#Zrfq{WRVc`)G5zNt#X{_StY%D&sros&d85@h{S z+1ztEy$XbVGI@PVB!dc>e4cUzG;oD9iA6N9hj*(7Bs>g{G7L*p4$ZZXjP;4c_&<(P zh^%6NGQbia#g-h)o}S2=o5od;$z7DiTb9RHS-@9Sct5&FBJP!2Y_dmON>M2KAD^6@o}GR>|9Ww8_5J(J&!2z){ssO&fb|y+j^jT&*1!0= zDn^D%3TPGKdq@cAzase_-bj z;H!W}YyY47|NHu575I;DU`g=*PWyjV5ROg(4*#rf{~ZwyzW#v#01Exbc|rnx|HCW) zaSD5n|KczI!~Opi@Si^MAMWzseB-}t{+plwmyMBu(!aOD0RTJ#m;c4>{}=z4@8ADq z{2#C>_y@W?f(B8|F7r%Hw|8p!g0l|UFNBn14=$GFn}uSy0{&HRt{KOX-_^Qi^^$!h?BWd4t4UjzW% zaR5NG{y!Q=B>?;-js<|OcMd`R!T;^*Uxfhx6hHvP00lq`FahiU4jk_5?vR6yDw1CTk$7UTl*1_gm4Krx^c zP&TL-R0V1TJqNu44T2^?3!o36ZO{?u67(Ak0TX~Jz>Hun@O`i(SOKgBHUe9NUBG_e zaBwU*9b5>m2DgB_z=Pmv@CtYfd;-3P01$i#6@(Qc2>B}sQG)0}EFjJhf5>AF;nHwDxFb9ao&m3g_rl-7_u+pKqzG<=9Ks0Uj)+1OBH9q6hz-Qm zzm|{9CDo)DD~brCHReI`j zQ6jM;c}!A5@`~g=$u%iCsSv3isTXM~X%p!r=^+^|85fxfnIl;&Sq<4R*)BPRoSj^W z+<`oXyq0{Fe4heF!A+q-;ZBi4(MmB#aZX7_DN1QV8A@3~`G#_f3PQz2r9tIMl|l7_ zYL)6YH6yhGwG(v`bsO~}^$iU@4T{EzCYk0L%?izLS{7OrS`XSR+HTrUbU1W;boz85 zbmerTbf@$b^fL4g^vU!u=+_zkf*JT23>Y3U)G*92Tr)B;sxkU97BLPpo-$D}p_ts6 za+&&>j+n`r<(b`>bD7^VAG1)hD6n|46tax4oU<~psSvCawSl;m{fEZ`jHyy4>JGUZC(>gGD+rs3A$4(D#> z-rynRdBEexQ_Zu?3*(jK_24bzo#zAdiSfDemGHge2lI>byYZLtF9<*dqy)SLss-K) z5(p{?1`9R|Zr`K2r+qK_UiZDP_c`uc+|Rl{ejkezLwX`>kspP~gfxYsg?fc9h53XX zgiC~%MF>SyMV^TCh+K&B{}pu-Ef-xABNx*VOAs3pyAziX_ZM#yKa${(u$3s4crQsI ziIz;2oRES_DM~$&>XZ5{X+VijG&B%Oq0x^EVrzaY_06B9Gje-T$S9GJd3=o ze5L%>1J(z252_#Rpx9B4sCv|a0g^;}I%?UCAmI#gXtJxl$)2BU_9Mx(~Lri5ms=7<)7mZ4U$){Zux zw!e0-4p>K1Cr4*Pms8hUw_6X;)6mP&`-J93`=MX!!}QVmCHh|sgbX4K#tq30Z48?X ze;6qmWf*-l<}nU3{yStsY+_~7XmVq!Y?^JlWp>{z(rntC&fLws#{$>F#G>Bf+ET?b z&vM^N%qre$)tcKn)OzwE-9yiZZ)}Kd>})!0p|+;BO}4jodUn-z*Y+CrrS|6zN)81M zCypq`T*o6PIj3x=17|tsZ0AE4IhP!lBi9G6`L3sKN^Zq&7w+or74A14dLBtXU6Y8_z%kLZSyX7bCm*;oxujOAK01B`U=n16w*EY@s@dU*M zZ3oK-mjwR|F$w7iB@OisoeAR$OA0#(R}HUwg!9PZ(NF|yL{!9fNe#&jCL+VtTP+DQy-*o5nxeW1)@=RE!cjju=gRF*Z((Lf;-5i~q zu3VPfo+6H-%%a<3*W#5D#gb>G45dk>H)W1xi{+^D zwhG3Il#1V#Zk20QYE@m;T-EtCu$thSFSRDM<8_jCjrDZ(DfM?xy`OG17&MGDN;Eb$ zF*Ic~gPVhzk6Nr+=3A9pd)frss-96jOKAt%gW8Xu+df}?q4i>@L$agoCFjf1PV&y= zE>Krk*Ln9}*Y2$z^PYuQny-d>WqLbb-+TSEkF~Gl4dt7Renfw4|KGRaZ?6Y@2TliF z26u;ShCU9P4KI)AkIao~jZTcIjt!41jK7_bo9LUAo_sYWIn_NaKHW7VHq$vPHrqKT zKG*e5;$6?Y)O_!P>_Y$IgT=um<)yJ@jpgYT-Iaw^ zccgkWe{6ZYf8u-c=QRF|^sMwN&)1jVP~T?G&Cd5P{4f4qre4urJ^e2Fedro}z4^oI z$DfGQ zs?kwDTOt{7yfNAF^j!ri2EnNLvSFb{J%`VF>Sg27Q*@1HnPz9xO0!vq`=_bS=J(HR zhm#q#x>`PTxGptWPj|I`?DpNAD%0w2`}8{W>iE-i_p{G$F%Wzv?Vk4S;Y4!&hci9T zcgHi?waT?$z1W{F6!F-cdDU_7u2Lz5NvHSa(Ncq9^TXNR&Xf1;4%6j2ue;7Z_5_@4 z&c5#c_IV%%pINuB=VEsvhu>zd@72}8e2rFx?wj80leG?y&vVwk(!rN|*dXS2lArD~ zD=rpBtMy0PUCHvGF{r8`_K>evf8y@HeezfA^pJbY`pd5^W+>YRp!meSR%9#2x9UnO z0-J;!aLn zo#tZMr%a>bL{?onIQhSi$B4^`YvhH=FsRpN8I`+gWM6J0({ilDIjd7k3KQ+~9Q^Gk z@$X)-=oEO;Q93*^T;$;@5__nq^n{Cp{b5POkMH#n{JH7}mE6t-N>5m6I$SDJSB)xj zqsc7xOG_R7m7Y)+lIhiy4t?j2Hn37`tc`Uii-TTTBN30vx{?>4V*RrDPLfKrqnaWr zw+@cmSc`CRYO9MSk6U8g?N6SZoj0ATw#RDF}S^x&qSoZN9B_! zdjZ}lZenTfx!@Nq+%plyyVEnb#h#)A1uX(Lc%yv;q8V)TZ_eMUrKC&}DmeEZE#3G3 z=naiZ*RCIyV3y5WUt8{!YTOj`p3KI)>-*$vuNPJPg*+iFtH$COORAWxs!q zzCpT0Bd98gq3&A)n{w~`pt%&J;~|xOtQTT`I&4XXN0JE4Q(*Sw)u1ZMk+)v@nxQfq z)W*a2Y~h(`F#Q64Zg<}cCn1NT9x(Mb2ULqfUp}wI!R=mG$6L6z{3D9pueCo~B<|^Y z?(LBDQt%c_FQ&$pYMGDtj*rRYpSc#2)aF)KO0hSp%j=QgazE&J#)(}>RuyI{{fVbc z@H<;KKbD;T=({=s$0xsJu!@6GYGUvDGWmQ+nbM4e1NEHDWg+KXc4kZr8ihvQgFwOqNXCb?V^>-6BFdjM4muQ zjOPbg=HZF)PnYh0Ph2D+g`_y$Rx?}rR!3Xr_-$=KH=2mPN-}Dr1C=z*2j+~I z7DWD@RvZ*{SOVU9>AYOc3s*rZBk*IzG;HB(qGna!sUt+q$6D79(MzmS9*?3+S{7bt zfDH0AO$yNa++nZQ=h9mXZ`QpmMo5zv*8|cB$jNVtKU!go?K8*3=y@ zrPq2;9ZwBBc-mTh5bfUewYag!U#`SIj@PDpHNWShqmS7L2tmy-0e*?UIbC8S5T2*|Z6;e5+DCa@zJ(&Yb#phIUbva$tITXV*YpeKl5I^IHp{{dB0Oa# zS#Ac)GdxefOOOS~G>3eZyjJG_tVB4^KW2*aGaeB_(B0tT+%E)EKJuo zPDDYNGh~R$z%PHHS)ur`(WF+<1vUzWj^Q=iMwm7XUF<2vV5w-QuN-`bbyq6r8z?4H z$OF>8ryjflU%`Z}_=<}ZZMoU+Pnm=U)UxY14Xl4?-f?%F?0Gb(;|NZkcnwMeW^EeN zX`|g8K2~Ru5$X5Xg2m#$*Sats(HR9m3ysf>#|602(+9A?o*_g_oW8<|rEWT2%EY4Y`+~o&`JVJsWYBbl+zX`5vj&Zc%kb=Af?MiHj`-1kKCK29 zJm==$u%A5X_)O;6<Mm-~4a^Qvx7DYy-Dim0S`44WvhDt%Z!eVe;?Wmk7C)r_vPJC7*vf? z#%wNqS18MmN51c?2K((EmtI&V3JpbY<-aGu-$QiK#VI6Xh@`vE+wP}!=uli0q7ssd zJ+vXg?02Uf`HF7}y=~4^BhZ5{zf6pDPYay1Z8|7se;?W;iymK}btR5?{nU3ix1Z6L z{BOSM_)&kpDe`2{n!WL`&947x?MnK?U--31uR&aic(52}?A4 zUQtB?F{h_mP?A*1)@VNSWQT}P)Qi`D4$G-!DPbC*2jk`Fq-T1C+vP?GGh0M#e1zA< zCNiB%>V{b( z<;CkiwS>3d9z9w8D(*socDZzMbb4uMlx?-=#Cl>XK%fTtCh_1x!p6ZLPFf@OGlW#Q z-uvzX#Qr|)FLiXs5Afm+Ya22CsMw~(77{z#U z7MmUthwdj>To-?5b&nK0%+l(UG#a;yc$Qz+@qyKtO)BrWeAa74$XHiEyorEmdt6n% zOzF9Kl2Ibg^Qd%j5ZicI7G7-X&nKp6oK-e3(Rjf7SPm!lYqE#ytI7w)s*e+; zCD8Cw_51gUA$`lxXV5CM<~)yP>aZ0{Uo7jcJfI-;>TwCCYvq@XKJ)2YV_}Tyk+X*p5S>dv1vX^h`jvi zhZe^|X_7KfG)cx7@Yfsz$34|(BORs1aIU3{)Ps8)u0G_H$=nWXB4&^$u8?P(_i0r@ z`@_$cpCp=<4Cvo$x0^K~svmfC zofvNc$9#*2!k-o(Lj3JCKq~F2k$Dj`&}@E{Cw~K+wk7$^dormi(}~H8xa=blFWvX& zaiH%bZ+eOvU$W}oi9)X z)LZf@$ei+DC6Tkl4?~VPgS>o#SNZvpu6tvit}sI295%b<$U*`Q4J+6< zs&EhWg8eSo7fYz0EDrQlC22~Cft5}48ProzYax*9fRtEm(yY48_9EW8~mwoIseRTyts-cRJR&(tuZy@CHq~t_)5-Njpr+k7WfMRK!OV;CDPlH7el5j zch$4HXS6rv`KpFm9X{rp%0eV#sP_zlsB?{_Yx0W|1fG^aA1^gmDr8NL&PnIK$Ue z;51nR02_2KjFotV1RRSKk@)(#N#!#ZUwu63&Y??luRJg5_ZfPQf+qR!?c#L9 zX=zs{0~KG>+DiA05qw|(-?or|>)g@#;K>W@^m9ea`|bHGqx^!FnlAC?FaCU~ypMLn z<+q}^&a(}wl5SAHJcmMT2}xNAm-v}k2EyLcR~p+wn5Q#eN%K@g%vgB)V}3{q6|jv2 zw}+gRmUPGw@u`*8646$IqUlLLR6_b_U;nUxD*bVs#JgWu{8Xx-w4A-~?xgXsIf?Yf z+*(>|1qs-pNS%t)e?1DmePpYGYzvl7&;KZ==_U)mZN*LM#@|q#H3LOUtMvlF0Gc#W zb2z!@Im2o1PI$=3$grH1M&SJ59Ca#N%g~aP^N325&G&xD03lUXQ;S7ynMRu8pC0TV z$<6Sf=p+#ws{sSfJ_sKNo+d7<)d*I-$6)m3Lv=?Yf&tJOKk5Ef%k@Ij`x9>l0dNhq zJ0XviU{_j5sZ)5L@xTwog3}0l=Wc|SV+D!>UO&h2g|gC3RIv{Q}G_jeHCdZJ1kY(ZIwh5ii_d`ECh54&o3;XbhnX4mGR`r zNtg9Ectx3-yAgWRm3{ef9A>P1M@~dz=~SkgX|*z)1zbI9au@AT_!c33R0kFWS>7o7 zkRqF_?IROce7)dg-Zxo)T{vvTnfSpW%WX<|b-v;xqpO?X8G-0tJHV7VLABi(Z)qi4 zlIOGf-1oLH+PG~wA+E?03wjt<8m5{#M6kg9qDxV6-dx}zy%9(rJvdxb<+DY4VT)j7 z>Qrzf;WxN2YDcOMv_Xh9ID6S+h3PW0d&!nw#K5)_Q?leld$um_M` zVhFDB`PkI|#R5aj1QUYIN}pvges2O`pYq^@k|A>J{n}H#O(Kyxp41rFM_c*bO2Cq2 zjZWdM9;|wqDn*rXMf!BrT*nk7z^uxX*|JnvTKeH5q=7PFxm<9=TLm{q9mI-(eW>hx z3Kua-5@O6m6Y6UZPTX{Ao#TWW<%D7!4o4 z+q_7V{JI6gpKs$_Al!_0Ku}Mb{C-=Tx`Mm^>{&n?hRrmWtv~!WftE6+gnetEvyhN{ z9m~3Hvqy+S@|?SBY+`ppmHOk~ja7cJaTW8Sdy(y1twRk~RyH%`r?23m>AbGM=Vav$ z@f5OsB&;6Vnl-kT{z+4h+ONV&moPPS_~f2JS=|$gyg8#OwsaMed+Ubs+r#X{UhSQH zSwzmZ7Fhk@PkoJBC!TR$MRVy_%U$@MifyV6-ZL-Dx}_=hwL}gkzIW6567jRnesZ2; z!M@0B?T;}mWBc;~&bwJxxJ=5ZTbMal_Qo(XeIt8LX9M}~pR~Xd)xqw6nA_fn_hCz_ z_M=1%d{zwZRLoyAK{mW zXNwBdXDgZ?EL(&g>UbYxD7r=76a#lseqWhuboN=C#_T?kU7!&0(byjgoH*59Y)vhC=K@B3ei6l`*L93&wKHwlFW~c;`%05nyoYZWnu|LVjt}@g5RJuGoKWeije1|MP zHy5`xzNIqfdwT+s`lfIIBCsX;bk2{-J`rM?_`6yD)zzv`a3&(Cu{BS1f=JTq{`Ev45kV#B zge1^;;Q#y30dQq}7XNdHzw3y6{$b0t@%h(6JybXk-6_>r?c4oXxmcK+?& zU2xpzYpusYX}bJ+6?_8k?3!%eH4?x5A^ZFs@#x+6>us7&cxmI7{KnR<+;)sjFX8^u z*B`FI3$$gwLzu9T1)_}e2l=j8U{GTV6%8e1;^;}r;SvxPKx1gKqT~4R1Rqi~knAd? zL1eu5zF$<w=!_20)hcOBD#f|n zqJU4XeBOI!On1pwlyxGHO3r8o;&rqrj{(P8Oc7mItm`(6FvqYfJC0tsMy-aCvbUOlgkYVsGY;e@OEUra89ghHS#+kXAaw3!;tHbqFQ_;ksBwdcP?) z+~ad4X>UNG8sD}>NLy%}gPb>PlLn;#2{8&7bn^ukv(x%huqVwwBxU(0HF+EjV!yj) zUTG>M#Wri?^x<@9t57@T>W5024KOf*NXDLe1}D14X%5l7>{{liM#a)kLA1zq4pAp@ zD4EtA<0u0h;~r)Dx=s_zzgJvQg5UoT(*T%Xjr1(SoOy~0b*HX5+J_CS!-Q@%O0kJ% zl`*2c3cV&nd>;4$J=>vg#H{?rBTrSW9s5YvD*D~n*htk^@~1wg62d$AjYKpizaE;| zt-D)y&Q6gx$NEff^>d_K#Zf!2%^WqQ2z{!Y2ph5%XgHnIZ5vr4mv<1f8?=^I9yt@m z3<`(#`_MbTaw-V%Pk<0`q|smkV)(`ha$4G_&BBSX(m~H6wgt1(vlo9C?B(Eoa@2BT zSESh}cv>HB=MDR*c#JIv*``-5>N~jTXcN&`>XHlNPexRn-Cebg>Nq7{tN46dl?j-g%;io6wG>@^ z8%TJOEP{XhM=EG^sW-|`5&yS2i?+9`$5#`bnFh;SvdzAb&mKnH5W;16B!(d+*`*^< zmOo8ErwvWdM)IAp=b{H09cxU<+Jp&HxO$fPmCXP=ll2aRD@t@9`!5Ehv-XNq%SsTU!y)C-IeJ`#c^EJ5 zBy$^f7+JWrRjSB_I;SLw;#RJ*-?@kb**dFksH5m}U!*cCaH#*PA%|Uz_O2>7$`n_E zEnHbRh#nt2qQJ93ESvba=L5CcO1P-?O1$TLU0aFCuHE#@SFt@!B++C3 zub1e^S9-=OZ(9iuAK8I>Gsmi|_zcZ);7Y}LwLRN&37tu+FDGb*MEVm$Je3{UBBLv9 zmnRtT*H-LeRRk2Fghnk@^R8djiVfw`z{`l;N9u{n{PgB*X$xxJZMKPcNWrEkr z!Q$-jv>+Q%%RZ!PN%wh*88Bm}nvU&xVMw)9C>mCaySl9oQzjFl=%C3f?^gP4KE%(- z&(0kI&k6yN7k1G)^JYltiYYn(KA7E9tH~%QE-n{R5a^w#KdZ~9XOBK`;AuEdHu*AT zm;P0*W#FOY3US4hrP$%pX&XQd_uc%yukW2~)aZFX+%BmTrm4P#qtk_jm@L(SKz9ma zB7zK|uc6BQ4M`d%v-qy33tDIKx%x_r&ub)9wj?RqdT7SE{<{d$bTPpxTnQ|#Jo|FHxD~T;Y^fp7_7AN z=4zL?Dle+bjWH@_s%I7-U>TEw5#&sziGPJPmdLz^>wQ!_zin+tK{J)KFAu>G*Dr+< z6fA6dY}MC+M{3W55pv%wiLqU|j0WDK&!65|x0RZ+PiRsJOH3&c@>ZI9Y%j4;L#s(d zJV=Jv^a<-#ynH1>Y8IY%;lGQT5yLx&x>=F33E=U&bcod^T1=zGH_jBpKbmX@cZcZH z0wY5l#8fX9g$84)#gR}_ozCU1uEA(-^L9QRoUt4V7F)Z%*EXL=XF4vR|f1wqDtC9SWT7A%e+$D0ohj5?g zd=0u8x*tsYSu&&uJLP*8dWGRyboY339Na{9mrNOAC%ab=^fkaK+|0>;B`&aEM9{Qn z+PPD*I~P5a|C5qCt5drz$dv`6&yeFda#9%WAH)UM$*|d+expwoFzw@A^y`I5J!4wf zfIuLt4vagC7a2Osb6K9Ed1x<5Ep3HxWGN#zDrGdD;`&MwcT_#UyNIUasNrC#B7Ea! z(b^uD{I82zxRYDr$|WOlPLrhA^GP6JeI>=84NX~x3Q|yg+T5BX``GVz{x@m0lVfMS zjohj5E7E5BY%?cyX^|5KhiHm+h2U?BZgr7YMiM>GN|N53S)4VjI%G*QSPJ@hwb-z6AFjtV6+gq1qCffljWoITCRHaYHVe5_xs*g@Jd|Q)I2(V~Ebv>ym zV>#>pJ^xAm=Pt7BOUe!mbVyVbAgjMEui&;vazh{DQF31JS#OSUy5SYG8WT%rh~Ach zQQ|U|`>dFNX8N;W=uG#f(B>NN2`Ja@12<=zQc?o1dPaJFl}T6%i}bZyOPF%#R4EKu#zu5|N%ieSqB^N&S!}j0=15mnO)Q zaz@E+tRvyDvGaZT?ac$kncKdmQ+R)$S{96Yp!!%}CY4?CR%xI%Q^>-PjYlyZErYo3 ztudgj$IAq=GzSPA3D_ZJx*wY=`H1MXk|FqcI5j0xG4T3n2|~xg;X`49(6=fJe7Lei zJ{XQauaijVh1QO^zeiPJJqB5{lSfKKh($YgFt~&Rm;iLLAEp<5AtgZiHjL$&3ORO& zUjU)pL7Dyg+3q=mzaip92f%Ne#ao;7R!UyLXt+EP_uUc7!mV{uv(iQ?H4qgeS_2ko zfrqR`>sbyz*hn&iD5xe4?^VXvqf!TXO9yt7=r1HuvC1V4@w_|z!ci@~ibQSfuZDTb zo+ZndB5?`L0D{yJ_3vGlQ36CtM6+6{p)7Iu1Ic>J@TlVw1Dp}cCJCd`^!a9j#s(PW zBFy_7+EoLmuT`+T9S))!QH3M-&-1J^v*wBj9C4H#mQ;+DiLNy&KxPlzJr$z-MJ+-1 zW%$#_WEyCGHLzce@ykj-bfge6Ot1Oamsm9tM4Nkx)E@P{ zb&-7P*VwV&-eh4#4)jPxJ1Pv*Q{%wZ_Iir%Hz;FCqzE&W68j#QP!vQOrr(oMgxK|} zUaI352{I^COP{KR)2n0KVc?1J+>y8RNivr3?mdzQ;%PprZ2pp5`FecKGONl%nohdy zVm1oRZIQR>FZ1?Ni0B=K>CAD7QN1dD32rDS)e%6gs65 zogFXK0EoDP#cXlg9ocu-sXI=`?+0=a*kZy0r@2{L5iBwO?OI&P2q09+?^j8eC=p&Q z>7>~p-LJT3iYeT{%&>ALb?TsH(MY0Yx)O&N-DF+>0l60*2%9(%WsnJDN=#(=37b`} zN^#WSwUFH#7+;S~6@NK&VGy$-stq9*N<5G9%GAMGRE+bhyz|8!i`IlFD18!055&_g zCP@g6O4OIsg}4uc044uP%6Y5wBQtH_cOdan}GT*C4H|Y z%hokHwS^#bUabm+YjZgBbA#cvCCwW9v?l{_QJNJ%qGBNMz%4Wyy`=}Xt}(PK3~=Q- zQcnJ^B`Ksp65m1)l8J6XM)|g*9WGzWvQwY#qJQ`i;pLIi*S;HLS>VP?H&kD+zeN9} zpvGS5@7YTGr)G_`sM8DTC(TD0G|VyTaCpqjbJJnx+dGPcgenAo>W%s)I1lJ20lM6R zT*;n=w50~SJ@HqhIYx9C8^_d8vzTWViwDXC!9O*TPKCk$#v}Qbc2Ljc?ueTaF$gh4 z7&0z#9%SHZFc#W7^l~Xqqn?G3y0uCFonc+!Z3e~)(2`5`UyHgQM-a>cNu+`Jxf=Ov zOv#=N9iAhFKalP#5qPnz?64$UR|9JT#(qUo`5JXb)omx>2DQjV^*`&hnFD z%Z#=^uQGP6U#PL)2R}KKWOe>hVKjR{j>Kf)824 zOX@InQ{kk!DY;g^5;}r2Vr(V{d7rV`d}Q<1uNRFUG_W)V(e^NXOhV|-I6O>GCSyTx zqQy!a!8PqVZP=&n=0)09`uOb_x59XQ3Og_gEEC$gw7th?eT0ved zoYEM_DFQ$!#%cbOMG`K0i;y7`cH)#CSw`2`XT%H5q>nSSNlZxpw<;MAgU=FwdxlqC2qhL)(Yv1uenQ~hrn8gCSEv%U_ zb}c@&?qhprQfOimplnO2prts} z*W#QvZtMD!(G+%+@gW*AiG--8hT^UCuE5*i%YDy3;WuFJ!=PoO+ex$}>Q06GIGI06 zmUrjl4J$WF28?o@ObiM$)EbtAxRTRr?B}#FA2*0Ehg8wSS%+ouwQ+b%p$@WNlB`;b ztuA)&3fF`|s|52O<7jb(Sp>-oO;yI^S|V)oi|ir#=E6DgKXeG{b5`?7aY4#vViPc3 zE`-lMZ(r0K@6suHtJK|3QGx2I%%Zz-v`_>xO6@RS&cxBCwOCCP?LYf*Bs9SlWrsMA zGr0vnDNA@h3XA7W(C2YByN5`ar8l+sa(7-@AcqLSe0eszHG<@>?@Pz`1sVQuzGVHN z=}g0dO(T6P=K{Z5XI(XDnd$H z@&w;@Q`9QWWyOWXJ3ah5UG|Y`(DJ0#+`}vty_L2kK$(sBVY*{sh8;G3vwcn^C>j-j-7G>2bC2KgI?nv#@58qIv9L6EKDbp#BGZgy_s0 z_We$BW%dK$S`^v%7T$B|}bq2Ci-qhGv%hhlyn9>OH6fcUq@PjCR;_YB~_%Mr|}LdZBL z;8!MhxPk4yMdy`}o684w6Qwk}f`#~+ac%F&T)$5Y^}Z|09P##Xi6p@9$K1a&aerk< zK#Sk4KBdkX)qGdkj!5za;e-^yp6C?#7{&f5)0hdbW6}3K`~8ghcROx`^G_)5Qy|Qk z!bWJl%r(K0Bs!sxm;v)A-|e@OZaDXwET*rFOmj}~Ybxy9zkddBZ|#8S@9JxXrUbZ7 zN2O-BT!k5kiF9)HtHxKlPw%gA{3&~@Duy=D`nVBy9CtxFhmz1oN@f_n-I2 z4N+jDiD(etVS(MdL}UbV)YASv{j_Rw%52cBaEzgCe8$b)g-^T#-dbDtF|ul5PW!Rv zO*W@`ta)af6&gas6uwP837I3@dn2Nd_0(|q4<~i}i_XRYT-Sb;YU(s3nhHe}6(ljaADgG380oJYZ#dT$3wdN56pTt(M6!xhK2UgsST*}~ojFhW zKVUG_jnEhZSfczWaGc2l;Hx|8_LRsWB24~hhYl}^YA9GT$Zek27ARPI~etqSdUzk zg0PmR6lZ+jzX7ql!lIa{FvU9Rkt7N$WIS*8C>3)m{Wk8da7OGon&gw!nyDWJ%RGB# z^Rh5Umhx&gf{0k`LMLB!vSXIcN17rwE>8OQp~Gc_5FnAc$+<(dmY2&!Vi%7b;}srq z`fPbs2dCy?m#rNZ-)SA5p&3&EP~f=bMeerPyT%x8*$KBJjf+CR9jJRPMBv4wd>s*t zuBFD)_`r5xu!Hl}ur_&lG~aHq_sZ&7G2 zNduL3g$OFnhz3T{E=5e-#|}ctm30#8Xm2TG>0C*e6wfp3)}PiF9((oF+AANA?ygEC zziK|CFP1qiFLV)%z(a!gucjWU;}ciCK9~KPsh}zjA?8TW7X5SDa1Q{k0t_!)QD+M8 z<@Iex1s?9THn@0?2u3o!chRgosBbo(6e4XN<$Jj|GKCAQZNKPCoH);f&&>Cw&q1=t zafn;VBD>=+0u?Y4q2x|4JD?g?`R1f?ntVGylRSbRyNO?=5POQ$oI9L^6PoEnd~s9* zm@5T+xHV;sqJ?rlm(7tA9i2#=>|}KSxW!!$4P+T?edkb`Cu3d79ddW;OZtE3Brkku zcVo3VSsZ?wgWhDa`J`W38#H6&b27SBN@Gfr>LN0~s}w{A=x3h# zpk*zQw&~K-0+IgT1o$>rBS+tN_w1(YQ&HRvMH(z*nP=9N%F}`X-u6v@3lkbE*+KAM z;W!W|kVmYLMN?N}y!|mp8bSZFSfi|AAl6PXd!hy(jyD>9en8h#IVoO!X||I1p1|>T zpZk*sqO7nBWyK2y;h}MG{NhqXCicJ^)AO;*Xz(G<;5}w-M6zc0kf5*|KAZ-ZnlL+^ z=-(DUZsF3ghmbZ=@6;#sOP~MV;!?kws0CO4+(t)-Rzo_$Uc3N?G&`}`lA{Vt*ofgd z$15h3$GQcw2WUDvl7Ve_gj4f5CQoG1v|9ehfRk*B@^Wa!w$om`P_oWn-N`J5sS9ye z*Ln69Jmt3(cndW>y(_1~ERH-{228a2W%NKG62AmR2i-Xvzcfe+yt92Uq!*3?WV*Xl%V zp&}6dyt0OD!~zT2)1Vk8mnge4Pj=7$Sb04b16LhXW$apX+jiU#Mpf}3He7kmGF8jg zVB+#_b56m)04@iQ-j|m<>aV5peMYvU6Yz2fup64PiB&uz6jzn7pafhhR61p^1D3Wx zWDok)QI$MVF>U&gW=#Bt&e*F3OOKa{#w8$xBY4}C%e;Uj_=Y{W&4_A|9AKVmsx%u8#6koboKJRW*zajuN#05aEW(LRTB|$2nKj&B{SkRxl}H|Jen@_o=!mMmCihD z8hH~2bUia1SfHvs00wVnkDS^Z-|3^IzNE9UU#oVhYD2wwE8|GmBaV{;&3}6gB)1Y9 zjCtRf;B(Kpe|gj~Di~hDmLc(PQt6P~GfEQ$OW7XB2S^|u`Y+9>U)9B9n>n1E%%$%6 zCLNdjp&!+LCpHviMjfE2c;=6#QOBcprYdu7K5oj|BwU(d?2_R=!D%i|)OOUFZGXm) zm}Mg*XD>e)cgklsV?&pJ`NG*fo;MKL>)1Z*C_>8?7m%%mdoHZ7rL!a8yp32W8}-s& z=TE5VqxB}iD2LK(K`$gye`7#^uPaRGUPzP}vMX(&vzV9qz-IkaZ$Rkb^nDWsFmpsc zS9k1IRzMs$6dES=%vM-AQ9-fFvmMToFI;_}ouzf-OjL-$n&mMmsU#kB%-Td7mTLD&N1}t$gnfe>@p82LVJ-@c|tfS4^N-)CUDH;T|a9_;59J8Qm z=~1C7o+zwlxKd7?B9rM7I(*1KEwgn|R5R=dw$I=r9FI@4y5~E=%@QLBr2DC`%ak;A z;x)gIPZOef9-~z53f3Ng_Dp+Okmbs7cbM5LaoLXd7RP3d2rJDs)DnqidT)M*QAxng z1T3ebyI@lHWgz= zIiw*Z$b1Bh*l@jq^R!g+B2>B64eQTq4%dQuU>ghwl1{M;B zW%UpXdSWJK(MXRcqy-9P4qFMbB!iN==Oe2HODHzwa!NFhOAQHITI8JZ*>X|>&+*Th zPI3XJoL<EFbN0DCI`yVCQ9YQ$gcQ$d14hhn{wRsF!-bU~IWKshT1hBh)?!Hu$$Jb&CnbLiq#4ii$F; z0@y^=_AV4aeZ}`Dr>|elM90opW+_X%#vIt;J(R#rvNz;FE9*kFv>V03N7=ng4y8zTjzq+@i7pok!-V{}TFfTKf1NV}uBqT*d zR8UkzonJoZ^F8-D_c`~U@csv0zg*XKu2(&uj|-;<&VVr5ey^iiEPf=P6b`g%$V_7g zig~lGaT$4XLh;;2UZSWt$5epW%Gi8P<{N^$MeXHA3#X*LqbJGwf6DCB@DW|C$67mOmzf6!7+H`TeH{btP}A zdcu|z*xgGGDV%=GTp}KvyFgV;wS*YW$c-fKit^kp`EGJ&{?e-aAX!2>E~tkpzB;LS zKr+}T1xHusqs#@h#sbx8{-2f$e{J@dFvvi$?5*BvtPH^#2@ncy4(ixB`a;235a1=q z)qq4>eXR7fjHg zkU7_foaMF1oU!(hK>$IP?_&nTMSDqPwDp?FXkbJdD;wWo@irg?tGdnPlEB}cLvyxy zJ*D9)pipHw=F5trxwT-x>>z18n)A5!ML|Kr_c!wLzMiFqkO?fR6{Hw|`zkRYpyMax zm#Y~DTOPiSniW%%lLjqKb=AxE>Exre>5Z68IrX&!&2Mlhh6Qu&W zh2ugBU(2)dH#fePUj%vbm_RzIA`M8zhPWTD)W?YW+ZBUq0IDEq#GZ4WtEa-@S)%%% z)4_KP6*g4-0n=IpL?d3_7&~uJ1>&0aXF2k_w@wx{WaqPM2_&?GW)s6dQ6x;G0YAZSYp|6i{P@3G#8{ zcqdsD{7U9o(^P_ibQwU!Vj#Rf=pr;lBRrXySn~%ML{=PNIBH^lFce`;WoI2o3Voj; ziRO|;1gm8bRf%OwuLp<-v;2Drqv`2dmRtnV0oD6lJ5}Ons zhn>A1i2(+As@?kC9;p9yKNe+BQ!(NxATG*!iALW>+H4w-sFI9MiW=DO z8)*izxJJuQW{vY*uQR7Y3}E^|X&*KSWpg2P$ib06pvIUBnewaxG|_a)NWy?of}}*f zBv;;_RzSV=uKBswvPv^8SQhg2m-jkIF<1@D*F0wG$0zrB!5t)JHr41e*J0$Q&6 zZ$r<&9Q=IJ!tt+0G+_b)=vQmvmOCu~NeHsk+U965y2;p2Y!(n3#QxHIw;I7vtOb6T z7G}5T^4rNM?&L!u!hlDPv5qaUUx9&%m85he=A@GVA^FiSE(HeNN6M~oyjKC!t3{h9 zpC99ft0qmuT`kvlAm*eWR-_D0Q`FSBd=!~0f9e;~j8!Z_%dY;Jr39~_;Y7}`Z$jJ3 zH7>5gEk0Dd!`RkRBo=VgkM=9&eB553zsiyCD>K08+Oqgu+8yxmki%gQ)hCYpEE!~h z9~9`PE2t}dP*jytoY|E(khD$KOJR^^9k9(G;2U9Wz0_{)$Xp%w=}r*K&8H@6gaF}! zc6mDcReJ(ED|U6ZI>|jS)^RD1M@XDq{3~wr-w&GN@;iN&OZpBQ(RKdfCB$>Ky&-yY&c-JX-P^!<=;27Xk&%6qpx{b?p9*A@16SK_PscttcD|cQ~ z{OGpU<>nQ{swH~l#32vu;@3VcYQch~B421T$w#k=;WXE-JiOwe={Mo|;K%%%;i}gX z2EC3CKXiR*02Hsi;g#Sk&sY4g`b@2G>{|DmYbiS#*!FJy-(e_ZoZ}EyEcRsshB3kp z%TUbrTI`Yhw5|A~)*i26=F%#gu*;9}*By4*YONr#fo}pG?n)1~_$*5XxIlf8s7} z{kTwZJPiZ!$R|BH)$zP4dwt=AqQ+>hzXjx`sQ@d@{w zAo4T3^<)%zTiZq#$7 z6+mJeBu;2uZdgR@dBLgrPfJRD?_aevV-S{rUW0H*m}%J-zD9!d$|y+^;|hUs_xn? z&A(1AYAfZ=l#VvWY8HtK(U2#i6lyAK+zsQumwvW!$r-X7;81yhd)NNh>0|{L)dw?phT>kl*1ia8ii2CH@?>l;OjQK6Mg1Vto8*3dK;_aXZsP)63 z9oz+7FoLz;^3Ho2NKtejh^}!dwga%H{OQYY%;ZWM?f5NEoHCbS@Z}=xFeEKqPS!Zz zZZyD9@k0wgf%^D*9WZv&=)lV3cM$ELC}+j2$R6tL&gv&Qh-J+08@6pWf3T>ApRdIA zu}284Y~nqvm5(E(wY49QEcY?Y*UG6HH01&vH1^PQyp8XOo_#CuDjN^=`npqV*PHvU zFO1?U?;2G(+EsWad}pq=!&gU5)k4`|G%vuq+BgSuu{5F##BmVu*!u^easuvct`R(J zF6ZFqK}+J+)!esl_b)-K8RU{Vyj-4CxcTuYbo3G*Y38X>Syo%G-sN}Uvc)8_sO0X; z^b{Xr^>2mP)xrlZc#jvUD9z`UeDlIX-|*B~0bz>S+#dnh@X~9+S!Q!Lp%;s z(&C+Z$l1Q13K=hqg|dyphm&9q&&r~|)%F7hM?Y9D)*rPf!Do$#JbZGWTcyw8Aj3@&)!WewfPj#)Jsq{A-tmWDibHbcjj-8)$=!RlQ%`>`-G9h$1sI9b|IL^eg68Fn zKWN7m@`a%hd&(WCe=8Zblz1QL12R|ENcEkwX$?&vlwQe@h8O@LWScT(ox#-Ode`Kz#vZS^-j_r~0b-mL|sD+ET;m7^0f_1u5o|zZrjqurD^B=x_ zC406NaNcO)`^x!;C02|F>*L;w^eC0*JY$2bFaJSJZ87kr{BM*0Dkht0+Ld9r37Bkb z!TD0f zoP;+yAKONUnRVQ3yk78`I^8@iOW26aMe_Sxi9+mQe+A+z zEl^t?&dLr+IM?+wBz%Z2tk;ludEluze$)h>qoEHjrhce5{nx;A(b7F2<8s(ZXUNX> z8^)%Ez}s#WngB{&`6EL);HcZykI$ca?rIw{QLwav`;xkJjq^Y07!-qM1pFI_Ket%V zKW@-MY%CE!E%xtXU30U81Q*DixG=#a4)}3O%OFH){Gj;T@jR;y91Ez@&JgW1el{eHVSeNcg;JFD z5%>U(2u`*W{34%3>>ZFKcIY?OiwTfTxpg+yLJZ~D9SF`&F;uUzY*rzGQg&qP;O-2* z8hV}ZYG&15I#r+tq?dJ*)$x1p9e|D&*PygfVrjS)tMC>Rm*Wi7x06Re@EiZ*)M5YV z^>{&rcrYTPE-5Qz$ru9^oBEZVovhU_V(3jqi{#{Fg4a)%oB*&s&>NYsDOo<3;jLaN z>(F<)DYZL9vjTvCyX#CpNyZ_*n56h(?^|hM#ur;!QCGGtAbSB1Bs!_Gw~wohGpwZX zCkJq&<3b-x6w+8RuY@5!Sr80}%gw;)hUJK1+Dr?3g|?Vg+erMe-}N3ydzWp5-%*(( z-LruKRLI4W3WDGG_>g|kt$1&o*qL##sR^T@poL=iPO^hLiuw6=iWr;(h-B+<>j;3* z#WL0}zT5 ziCmBU+DbM>#KFHv-1{Y+FNJt~#m1CR*x07Evs$&&pcxBB1oXi90h>IX*+UBX#37HK ztZLH_!(vY!n_F-zKrhRDaO&Nv@F~WrS_Cw;PM)^PYw&BlxFj5dhN7l_45Q^A-GgR!oiN~4rL0bhD(CaKq5^4tUYgR(O?=)Xn0TQ>?aY@9?>f>*X9F#+OsAQzu( zhv9&!dd^Kr;oC;T%pW}&^8^@@wWc)&?)Y|LUj(o+D-+#s6=|H|+J+WEgW*G9!}0&dsxNR)q_SscArm zI9I;gPmrQm99s|?#=wQ^X$$5Qz)^5`<_kG%p^@TY&NuRMBXl_~VHPK;(#^R*W?^i! zIm0?L;j>z99PpVGo-QqZ?X6|aDt0SwIh@xC5JuG z?t#0V(%lQq$0?t%h-LG63Grqj0Tv-zJ-61ARdhy&#KD4c>Oe;FbBNX4KmR1C9ppxg zCHXV^t4jFUHFlmjuf{~)+YedsXQ~vkRQ_xR$&@6$dVSj9QY@DcRxHSnM1HH^Gx2>F9I=v9#a}K@VLg4SqL4X4_Ifo{iX7Y;Q$0y z*#r&b(W_+g>1R5TnyFEe?4mJE5cldHM$Xe-uridPGEKXtx_Y+0Wz{Pyt}~l?^0AMA z3Q2I)_$OJYaS7wMn}g@@yBza(KuOq`n)I8q#wxoUe?_*yb?-Qgf&8*51xrS_H_^kl4_0I#38kOS+ju4n(zl8h9f;`s1Z;(Bkq||JhRob>Jjx% z28GV(#e@d4L;5+ah&FyimnDnOWHa`ehp0bPCjTmmgqViCc%Kgtv8V{}4cYx1!d*-W zbq+3>^%PjY4|^gjVo6&pr8alcL%qy~f8)16WB@XkrnuhEXYY&72doGf{7j;7bW7Do z%CcP!L(ffYcP4Y3@rEBIgEC~r^d$&O?YKe*iFN zs^#9uxGS9J{b>N!t6hw2#ac@UKu=|bA);Hv!e}RcVj*eL!XjA`6YKmBtgE+a9yNn{ z(z-f8Zm=xH+j3aR<5yuUP-g=1sCSBl`Jxwc({P#`~(rBoSXP zW-SS~`5_HIoE1It69`rl+7N`+72_=qSAWYQAZn>z3J_LQeYQ>GbG*Przt5G(Byp1( zMj{Dyw8%${Q++nEdRMBpK4lw$DR1(O3-T!z-!DZ+1qL+aW?)2811{i|&^#a9C za#Pb~WHxznNw$ockyVEzk;{CgUt~SfM;tFOmW{}L+~mUop?Gg_1(Efkg3>%`;sztf z4>Qyv0$@X$+{{sPhKhPX!F!)GrIQOy_9u(id5%#4!h7`;>#78H6&#tHXpWg9s`l=v zM8`8pyfPj`^ULR|M*GYhFodXIm9GKvV`)r(WWa>5Z|1W#xpDTSO%8$uDi;Phn6+>m zrYE{XiU<9kpzn{z~p~3)3?$xppNl5!$TzI>&I9)nZ=EdMd|Z$~}y)Iu@%s zcWHmmHo-YyBKHa-G!e{h7X-SaKvq1?&CyC`gUf$n=D8ERh=YpR3M)&Bq%3dkqI>x3>kG=nZHilELe( zTz!N&3xl3q>bKI3tvcV;6C%{E+EP3Io}DrX@P1SYaejM-Io0e)Y2COOb8VF zqkcikkP$j(f=J}C0dA9src4+SSq(eP1pgZ{>Y$f>Jdt~@9{G0KbAvYigR0{Zo zIr!y+H@(koI}K!OhNe%axqO73{;18{J|K_kK^YX|R~L82*fcr%UG~ym3wU$AfQbF*QO+_GQ@MtfknxbO%qg)U-+A(O0mBkkl5K+_at zN8|5jQ_5r#a-4aAp-~nc86+9;;acJ!iaq%BK$a3pC#`Qs7Q0ra@qn1btYxZHQWR1A zStdfRMW6_30HnxB`Ow2?i@7U1E_;J37KMDlc}4t^rvUkqBnm#(;JXT*bZ2+s5c$ry6G2E`#UfyYi$2`tP&;e4SQ zr8s`-MIRv3_Eass}Kf5DjVzzx;fFR|6CnKAfmZ=izLeq*XBA%t?T9n?r~B+k?FBW@;#XHJ4#-JeBmfLow<~xES^Ej#?JsqM8Acxg zMaG|SKZr%q!+rC-8)-(&sLepYyxR%C#JVro#|sw@5}82dRr6)*U{!lYd?#l#g#SG75$H1cZmQ9%4p?rz#;a^~%59f^>3&L?^er#Jud_T+Mc|yu1!jnaXE=4Q+<9a0uX-ev<;^PyOA7 zVrPyU`PF1$S<7(1q33y1uAj$hBjz*sy-;uRx}mj4as8^Zr1ERoo_zikAQGn>RODG@ z+I05?nGZ<Fv0yaI<4b;7jv^bQF>n(W)?SX<8EZN+W9aKjST<^F3%oe+j(}31IKK!9*szT}s0Mkl7fDJmdVPWR zbwfUNTy^>aqMW26w9yK8tvEc1ZtFiVRVKR28hSX&4TZ3J4v{c|=LHv;uV;*g!dbmt z>`$kCA-Z&>TWD`L8_V?$<++KP@L?ZZ=+Qc%&?&zk^ZS0$T>`vv#tzq9A4AZ=vHaot zV8i#Mk)7Y9D&UDrvGgy zS9+2PMyv2l6e{)#I)rLu5!!Ar(8u^F!e{G+5|v}q^`$S3>p(^3%Sz`PnkV+7-7V<&kisDVs4HR3vV9``x5nJBR&`Rjy zeGnMoFC+Fsw|^KwJ8gnyGNN@}BnxA40xg{1c*u_u%H}WPMT%)7vM6ZSQ(G=!c`Xtk zwp>0d4$m((z>~bVP&1x)tU3AVp&#SE>{i_o_5Ms*Q)u5Uz~o}f;+&)xk1G(4y@&|| zOkML@<q;9 z0r&XDpts`oX0(J=zrXINknW5dejy>(=l-z}&E))S|AiNuyv6D2EU;1Tj-1=oVv>Rh zX=Uu!8;_OUOm!Zf4Uia?`=|DU%QS@QE%oicP8v?K4V#CBy@%JU1RFk;UR||)Dt=lF zf>gdOFN-mH1CsJq=v}V}54*LxUQ+ShWiq;j#|m9H;~aW6?nk0JG#g0&so^97JCnG) z^fP>OleCF=-1+u-)mI>Z6EGnpT6V?}yWV@_-|BP*pRp>SYVaQRCQLxS;XS4QtSQls z0zg!;Vk>-{`chP?hcgA8!nXrhUMHqVvEI~^85cLp@9>%YTJvsjAO)A*b~jnA{$;sd z%ufFMm-W+?gmi(kI!bR$V7itC1~84LxkkJDClbaOuM~~(QkCB@&E~~6pYhVO!Sm+< zTJDo#zrlm}!4%c6(tYV?9=?4V`}^e60Gu$0aHb11GZ=h!<-M&p8Pu!V?lXE5PXLEE z%x_Q1>HgAI>BdjqwND%q*EDkd@Vfc>;~4Tle(!u|@N!+bqTC>z#dYR{&eo^ktPI$O zGA%bdwO`OjP9;J?V@p|d-`D<2>qJy|&Zy*0m7mvqJaii-f(V7VC_v{?3x9yFbPiyHPG ze&YvC%8j(r9?(%1or{5>|DYQ>I(oh)GygEGF_6hsbb85$=tWJ|8}$xMaE%s^hdwdv zWf;r1;EQi+{81`tA#mTUgH_s7zk5JxB*HN4%CH^G8gdQ{s`tQvSi(g)1oN5NHa4`O zqA8bp2HJBjehlg8QE&SMxkU=udX%+~!mwAzE=%YJ5bW@(Uwb|}t6$JV5_Glxu}0`s z55mAI-^G&WXMWx&C=&#vsF-n)S9=G={I6LK5p4vlby0N#y16de!l(hC!cof+y_ymCtNte13VokR@XC)3AYgvo7Dw%iDe$ z)epgKnpz)UJ9{e#CHZJA;1|8V`2N_1zG?k*6?xpa>v#Rds<@n~v^@~nGgsVQtgrP> zQSb2c4om%hOI|1hr&*A-Id(V3nHd38$(Z#wReE}PEVGIM0G)`yQSCWhTOYV68np7i zth7pgSbNt}*kE~ebn#y6)a{v%{B5~I`Tpx(6+RDEHle}^e(KnGCYeGTkmSv#Ft1tQ zmqI4og;8<-J2y_Zi^9wHOhd1Xrz}BG6#CgfV4VHda@jm8LB06_O&et*`unK;8CNBg zIXLDe1U7T-#A5hX+{u8A?0SOB_JKr;bi!LsBka)Wl`GyJfJ(xGOk`}RqAtn?{P4Ij z@R;OMH@(g%mCVY4uK_Nx;7hu?w7+^P1oL_s&CkQ-5PvEyZfMW5#2FeKBuI&=StYP* z_YeG{^&{GB@P_uA%;y$ASmLA^0}G`%ypO%YD$CO}{ z21F`ON`E$u5EQIvx-Idf6G5ie1W-U;xG-8OqT*{9WAAK zpqJQ?pK=O$f}-KNZ&fTu$tElU)g@;$h^|cm!m1ix6Mk>-++rqmfJwD!J0$GDutCxmGc_1#=MO^%j{Z{od!%-kvRvhjIR-Y3NP0Bk?Lb& zARzl4An+y%U6kdU>8>&)CIcXgts}kkzS~-Jp&3fK`y1NsBg6tuDx4$4FludgSWGHs zn&uhP(k|`iF196&(~mIc1>^$*n*1am6cq5!th>G+DbaZF*DL*r3P|)w+hOm>R*#e| zYD_Wg$UD5&#iLEIk|BaH({?5`sATV-TUkEM=;-GPEpaP{(9b16{%Z4=SLlY1j8WAW z@7e}3wI{7UOi>N2uz0Cdbums1?qk_IA?f~gq-&n%qWJxkLdc(NtEFKDM6!)AB!ZYW zNT2t=D6;~QU1!;XX<-lehVm<@uA`n78P`vM4|M8>-Qh%rCUx}uSi74;s71vvz`wtk zdcUuEs_)PCyYfHCdm|H@JO(|lgq_>mfAwD)^0yMc_5Js9h&nLb+LK6#!ma>WdNmG} z6Z=s9vdxKfd{EJ&CFe&w>0m3q%!*7ICoNv*c{g^|BmcAAgRh6}VXm zU}KffeC3i%WijHFt z^85F;0fu2;WJS0|kKYqrBt-^NE^<^!RYJrC%5iYV`(ChjCjOe8uY&z`J7W9&Py?}( zgYh4%Vv4MP=jq9?=kwfZNOYuteSdOi{z|Gq&mx6b zV(9C}fp04=Y#2(O0qRLX43qBduR@do@yeNvwSsQ_2X1`9K`GqKt|LWC{`E;UKM1|v z4(Wz}rkNieq}*Sg%%P1@wX528^)@%sYf0p_p~PgF5MfvpR8r{jQx)2s&;n+i3u11~ zN8)7o1Y?PH!E+f$RS_zn8qvJOamMpli0#GMG{E)(A{r;Kxx?QkXw`xpij<`!`1cE) z{b;%EvUMrLcrzg!<2ay8emYp|2teXKr0U^m`Q~Cb5AAb?T`W*(a>2_Um~x%rHSNOt zN)*0r_3;4}(a4k(Do0!x*YC*27l%DOk?7Qmtbcm=ZAEQMry6%Gx7*mB{?^W=U-mGt zi?Lz%f|eZ)N||X!!e3^K`SXuZ^g5;%quV4H7+A1Zaz9?X)O=RVJ_C3i*SE$ym+Ysf zuHz>M&as1aq7dyKbK~b!7Xz=1^FCJ6x7)<`?&}GPbpmJRZC#u?ZM(NvaeHFHJ zJK)D$vXTk+8XT@br^{_ z^B@~~`89~3LFSv0#*8Su1;y(jTrUu%f~g)Z(n-eF?2eKOx~=GQ)ByUq9{X`B5C({& z#d$XLYh!oquZuZc5xbQ>aZ|Rt)x5? zWVWvdH_0hvH(H1U2oF$l$o2hFWAvO98c%ZD!pYtW>Iz^jvI>^zWGpo7<;B8cDv zBVepSsy-v)4)tn2G(#65>qT~&GBQJKCIPXq(p@uRj&C7j!rO~!Y?4?2m{hx@ha4vOdOw46kLV_a?P8+;zetZho{TTMTzCUrZz9I6)=fkiFy4a;v`a=V zx(&k>kN_`j$L6Ke7eNY5@P09f@ z<1h?%PMvWAl3Cr!stpG`wF>{Cb#`#wbE6VGZ*tx=8x;EE!jfYmUnP_fCe?M-YEvsm z-SaANliiUUGzj-Evtzpe5CJmfS_cXYv_>GYvTlhQE&#xZ7MgPL>|_{gS)npZHE%V> z4jGrtPYZ>8xMip;=}Zke+G4(qV&L!;)o{4oy`jrtecCS?&+t{$3WmK0|}%kZH=0CYIh6Mk)%SK$bR&RVz1)ZvAS))L+5AZIH_ zdEPV1adC(C`R3%S=Z>Iwe~Zyfl>z17BV68L;N@s)h z-q}txiaf-cz*T@MVJ7JyE@^x4xn+)+^ILw^QIaM)^{iT@XqUR!cyToDZR{1wMn;jAq`| zv^b5L1F*I;NMx}(9Yh`$XP`H>mPw(rRI_!=;~dk}*dmO8-eDBxeyra?skK0@>WG*t zEn^bEbiq4A(bQ~wy;d8Bz>o~Q1yrMaWyE?oIp3&CHEAtV87>^;0P%V^B7wzK_4mfO z-mPo&h37hnv03KTCfvxVKB&Fw3A9ko6jz4o-8lF4P)9gOyh1q>(<&ZxBfZ1kup~%v zW8KAKFL-6MkN4-nBb!gK}+uHYS16z zSqB(_VQP(XPuAcr@_cXeJpsv;YDT+cNfHd;4!=q5)o8w<%}puB6$;94GD-2aM8&hX zbP0AwAr?ST15Dj>89(Pt$Jv+>+R6+ z=vL-lFG8yVHwi4OQuNBC{8}mbfQm|$YUaO7`AmdePA0NQv)xe!oHRA@wzJkNGiu*x z*Pmg}pq$&|Y3VT|^Uz@WCCXNtXeLoO_QvN-HsV7Pqb!OFGIk5U?CsF zUSm2#**Fn)RZw8By@i1082aJ)5OC&}%l&jti(A<44Is>L)BiL4{2Tr!uY(0m$B@tA z=o)2!pN5UgRhSR9oBIGfzW&$-%`r}j3qSK1nuvJ#4VE=q$2@TR2@{ODgRx8w`H94q z8}RhseXb=GNjMNjt+bJUZAp8B^FGkuI0R1|#MC0{5tZN`E0)f&23gw+fEUoqhKxh9 zK1d`Y08Z22IK>=lhXGW%KCablxm2BMUlsd#--pwsAuK<@Y$3pRG0*O!sfZbHBeC_< za_jSx;EqZ*mB)++CoW&JYq*sePlnQQ@IHB=C;9Eh=mV(2FUu9VKxT6%;fM$H-NAw1 zw0duRV#M{`u`FoYC}nNQvu-#ALV+im>5|C}b<3s@L+cr0#W zoXv~zyEM-%YMdY5J35cM0KbMLc0Z04{6Jw;=Yv)+Gv9`%*9XQZr3^jUXgRw)k*@oY z*;dkg%jp>^e0bW)zu=PckWzj2z|_oS$t?TrJmu@yN8#~(Y=XB-UFqdsBd5t5&yHU& zxz2J33L*@a-9|{)o>P_Veq?~fyCMNWkrDk3r`}R4E#D&yCEo2sVlA1IhVRH+KJ{c*L!_gfjGz`mv~>p;eGs~pWL$p z@RrMP>Q?W$8nB4xqnGV{uS%kpeFV>gVUn@dAK~nwYzsN7JpsSh$y$YL@}$c2q5qWOVTh{tkG7e{>;b_L%IYwIm?jY zEEk#t<=sD*+DTh6pGeJXM^kdn4X{sS?uLqRylyo?Tfw56vLqE0D5P15MLWI#QTC(t zd;RPb5^I3SUhgxldx9c&h-+Ezbk74pnbUiS@8XwaKi-|2x6s*r{CQu;GwkWhO(E_m z=BtcV_Yo|iixx9)mH3v=|JmONE#9^O1}J|L9MZbXyXZJR%(U=HMtX}`;`6tcTs`~< zpY>hGeAbI^7^cA3o(2nQ@z^@h|0wi8ONCB@AA(WxM6M%!wF4%2Fc5dZ@`Zj|^_hQY z?1A9F0odAp+O^`OOoGv8$FG!fyBYRpnp_R#Uj#jtO+tb7B2PDdJ$nDrdV>R_v@^AWtQtA3H*k_|tfXO=0cF?T30F z)>&%I%a>Bw1E@vM5B!}gep+xG-?y__me-(|!gWCUn9Xrw_ij_p zV&~g5`|QE>{$cheeb5j9IgVwFp^Kh$TrQrk*%80|?KUIF=yy2p0o0Ni=#%}uljCIB z3MR^-{x#e6!yod+2RgjjS%XS{b%5-kfX`(F_HpW>%Pu@qq% zh<9RHMT_73rz;KBe7iAX0+CvIZ!)!jO6_xIuPOtZi&~%f2G3{itS= zX&c26b=|s+R3Tg=KU#+V4uTRrX^$?yf9s~u7kTa#urlOLh_02q((zu|yl{uql#9Sm z_ci*>Kc`{x>dQPL4J=}hsrf(pn=JKVm@87}7zHB^a8Q=C_eB61$7*aH`(RL2n%L2S z0o(wrAmU{%t=N32c_1y>c8v4Tkk5Oct=zM7LqRZNVyO;X7^ysD$RCfqVp3P9+t30V zAtjHbZ>wCA##GbuubAb|M%UaGf5@q zdZMIIQ{_zZlTt@TOa0$RT*KW0-U?L<6X~<%J~h9uS{r%0CTliJH(;meedph+WWG(G zf`kivKY9f{KQIRNl6^GC$`vwhGLS+5e!uAWCHQ>~OyUWVkM(1`ab^nM>QUvj^}PLF z;S3d3d!M{_Y!%iOPl)-FU(%V7{%^b+%6&GMr}LEyzW-RB+El6Shh>j)R9KZI+E)ga zV&P_CTLnLrqf?lbQ^NQ%UhrPQIl8F*$_{Q1vUjO79R39DL)) zB=YrjbU@WA;V6|w@z2iPs=JX(5=GI$^(7ctdEl%1j(Ht%zuMFjwd++gUB-&tn!ooG zHUsCu-o~$xIG)Q!F`=FHy;)?Jt7qj!JkJ~%hCXIkTN1XJd;LWD`k%cVADZAj-3nXT zKI+<3Hh;0p3$@#Sijq5EN-B}lt&Ue`XDo*km?bU_%+c7D{$8uE)sB-?10?^AT*)yj zsb!hGVthB?DsM&TrTwJ|8Nyv@T$-KPKQX7)4~{;+U6HflKK+@HS?Wxu_x6m{}+x)8Hf zoPq74bclK3I0>LwOqzdn(^pO z`9B)@KN|Tz8u>pO`9B)@KN|V}rjca;hJaAuIPiaH zI@(QuX&XAe88dDE9~wDLNOmm160TmAG7?A|!?axa9~#+lUGK`ZhvX>qP#U*POt^FL z*X~Ojr!+ECZJ_NTi)@y#M+s+1|F-#E&A|Vmkxfcd?Kqlw+1U$aRx!7JJf)H4 z5-t_>Ck$mioO5?K?A{hEiDkKGc~ir}YDi|?qGiSG=esN?y3hl}>Xq-`cDJs))PM5( z`oU?j#gOTi&EC=RH{;sih-Z-DE}9g@TYbWq#!}Q;yGCXm>#XonGY?-Ttv@xU#K}44 zmPWHh?rxZG4i59Oby}Egq-MP);wAbw%olT{HAGFya>vk>YC*CTYp`3S~Jcm&`lQn#%ayFf@y-Nqywo_^!}C zd$`EMGfPG)?2n95)%B>BU*)9-xM5!3+mkX4!M3T={A@M{`~p0|_Kq9Kmn9g(%S~)S zfu6plk#$v>S70JFPreUt)Yhb(X51x1KLl1w+aLB@)2D}=_L?o(xW|~aoUTb;idOu| z6qV5qs}OYz3rvjCeobPQDwy31vFduO?g1Hz?rv&bbVhqvLREk7ck6{?;{7GvW4v0k zU_ELztFDZx&RbQp|WmMAK-FCxwXA@u=g|Q!$5;Pxj)C3sqiUB z+sJ>1r3XW%?rq}f5hDVJFPLXyc&p~UG7g@)|4121M|GQT4^~LtcsP2aqPRWKp>_Yt zcrt%eV?xkN^Q)!OrO=WV9=pnKFM(5eFO_t62^XH6w&r}E4#w|@a$BjgwZ3|OK$Pru zEGmEh=$4sgVuO1;OV^_Dg9BMh?pETDRWqA7dAem^^vaJip2V9MZHip47+7*QTMfm; zY~EB&?D=GYYd)Z}9lz3JZ9%%+MaH26?wm@`=jc!2hrrV7cHYmi?r+jQh%=g`s*yEda>>TM_ga_@bhQU z`vo!{hTlxQEN)I}e{FPSV{|6ce%N~5iv4=@dwid})(LL-<@NjfLI>J$YssJ@?Jwwu zx1cL9`Y|UYmso+pD`!6~CKcRXdS=TSJ$R6S?XjB1r zEJv(x&6hC;0w}LOxKJh5cUwqG{;+9jhM3HLG!WAog;cl_9_SHb z!5F@Y->wZ$C2bE%?ih(`weM-JR*HL^#wee^L#W9Ug!Vy=1hde0oEq2_7M^Ycukf^R z+g2cyv3qFoET>isVeBW}@tl36a%M>n?U|O$PW$8!gYvIu8q0j-NY|< zYBI8E#^dfTCOvywhUF|=-DXJx zG3pc2OoUBsdW!QwH<7P3W}pLJmYu2*DRU4)l+HEg0J8S$swAT&+g`AGs*$9$p+bq> z;3_2|xsxq4tf|<>=24S=!9C!kQkyQ!RBCLh*t7jWNMewGI^IyOZtn3*tbJWA4`kc= ziOC48j~d}wPEq^iWnZz!E&nyDlyBi=>;e0?auFeEIVB*rd71*d`ry94$HHRr*?EO; z#m4_1dw==YNOucJw>Y{RX^;>EK?xDT96dl_bi?RQK~f#vjYvzk zN*IW`_sREnUOKOwf5GQJ*rj8)+i|>}_lIJb#H}Y}^G#A{k|>uXbC=VpadX^`JFn3* zySa(*Yxg#I^=}+~dfUBmbFmzjC2smg>VB`3z>ei}RZEW927|b}IYwU) zvYqHv^78~;?#@`Co^*BtW04bIahgO&nP2}*daTBXsaZz~j;H4Rkz1)`)#IyI8`}vY zXKcrHhVGpBOD^#tk8j9WwspTWvamzj>-3ZTru4o|xkY}>c3`kyox~D6Tk$ouRh98| z?4BetK!scEI`6*sjo9(u9L#SU!G&HjJKH2}#XJlLgrqcfB0x^hG~DON12+?5*3Lc~ z^E9qin+c`-&r+>o=|QD_%;D|>Mm52}H*OlIf8B1f_OU0POfIdDxhwe2Lir~2P;FzL z&Sk%+32nftzz=bQS6P|%#vB55T#B<@lQIrR&E>Zq;DcYQ&pp>LN=k%!$e&-n8}965 zkjhKdU%|}JW}T^Tp3*ohH>ilpwkS)RMOrD>-|5wO%i$G|3}MoEr%)OCLeA3RhJA-r z&s(`$*J{6b1#~Wt0rC_JapQ1<9QrJb<4V!Gj!-LW@;8Jn_EFCb=JM0TpJj55pB}8e zx+SyDJsTA%Obol$dToIr&-eYun;$WXDvL;3<~WjV#0L0D`^xv?plWO43H>X!^@Ic* zel~1%gtSyE!s&n>`x}5Cbl}-(YZ|ff`sVpWg1&}hh4S0VqeCH9-d(QVoLG*n2UeYt zx_nP&qnQGtPqJ>@u4qm-d6)M5p4}_96{W0>uSi`3mZ``fL4ohJYBiVkUzSNB+AARF zf4ZQhfzpzOYYz*ewpLf4PU@=YhI&IaK__1?XK9{daYyE zgKh{M|9WsbO2wJxGdZNf_jS{K7dh(e_uMp8$YI5;#)mg6GpV`tvDD00YNm;%KRGA{+m&%!-Uj#tCP) zp{`P-jwjKnZ82HD=+C)eQ8tk!`;X#;=+BUpU{iQiTWq&voLC`(1rIvJ(B|pJseX)O z_J@<7P@ECtiudCrKE+C&+F$XzQU0%ohGM3e=>9J^N`y~Vyq?Z{G7F(Q#DiEG;sz?> zmn(1>GdLJY*{_hWvw&T_K%En4uBb$Y(}XYk_CFU;XHyj5b@&h6gkM7OzyaMZ7R0uW z_>T!+dO<%201wt*5G(LTE^(rgv;h){Zb^xB%nayuy8oBeOr&m4N>RXz`A2eK@w|G; z8PiGEL2y8V6vgay^WZUE@;Lq4(17~M}tOs6#tWnlGa+kT3gyD7dHM*UwbmMg(TFN4Vp8f_~Q zNKaPtCX=lj4nCm>P|V;^gr$WDD{zA*PqH2qXR&m@p3u$oR%BZ%b1E&OR7V06_^ilb zWW53~k409sBP%1HmC(`7NdScx@~gk-51sLN<}3z9S|AEsdX^NPmEAs!oW~~|ks#T3 zD_xf)u2(EjF1Jg6h(Vn~03uSVJuA1g2*K6>@C?iB=%M~BBp&|G?)A^B;7g1aD!8mf z?lu5y4TxXDSu@cEmy!r3WCAIMfHupewIzs27F;}r#Qjn z{}+SgWKJgjF0898RHLK)3rSb8D1x8}wwXnuN+@(Tr$l9fWK|Ig6(yBbARk*SwZwAO z*QCbAUrno|i&9#>ioI+~YP)Fw=QIP6QgX>us00F5SYVjVK@k(fd0vW?L_pV5O_d65 zI#?8A^0$O<+`UBJ_DXi@D68&BS|H90N8vN2k~4fy$|eIU zXj}>ORbcaldvUP-^hdJ|bKlwnh$) zAanIz53tnIO(!ibQi=%kZQ%j7soV*&>Ru3R`~tbHlpymv=FSwoPH5Jj4czyAxzvuF zcOkV4P!#*`+AkyY3Lud3NuFa;p66v%YHS=Vw*G-$%5x^ln(J%gF{kICpQ1mu84Cvnss6CV_4^{lZ-=U>m-C(q(%KV%(?y1!%+?H^R&xI$)#XNx(V!E*7{8-7>-MNO zOAMzc6p>HcnGK4`ms)6)@n`EGW^7ZDJuUS*tJtECjz_^c`K&!f*I1%iu9otl!+yX(kons-{tDZuY{1J%)gbb*v* z1{b^3m7GRH+lCm{_uAFSk8PzNSs$IB)J!57&j~4A4R6DQK0qYP*J+5SH28BQ<`h%w$Uak{D~R@nelK&* zTei_YhunDT(AYNC(eG1l*^qBt%y65Ee6ga5C0zsN)cz8SLxqO4oVL*qx#7!1P;&Ly zkNfdzD!lJj`l&!E-LSz*t&WHOAde{!;_r}{UZrl_yIRq)EyJqGntQ}!#{ZxI42hUI zoIt9zRx?lBUcmdW)2|L@xd2mKp^Oj!Q0GG28=87?Sref=`P~6Ij{&ISr$pZ7;@B8x ziC{PYfRN;$iKOriQRJVYZYKC3RnlAb7nA4fMdIv?t4MOPtG@w&d|4tKy^6G5uAMNP zmAnZ&0MHg?Dc6n}H}PP=6hJ#eF>tg*NI%$U3N%=!U+emzv(FEOxLOR~#mxP%uAfvI zPGFm3w?jT(s4vU3<7B(GG&(QWJ~MY5k<&R4^d;xpK)szJE#!KgOXGVH+^6r@ed7}&X#%&i>ZS*CD2e5Tv~5Y_Dgj}8`VtIYYB5nn@Y zhEIPs>9(@Of}(XHMzO1RKfC|F7cu*cbX|u%5c*1qxJW-yu4hn=tZ^!J292 zNBmTX?ZofZkGJ;LC46E#|82Os6qc|PDUB;Wy_;uy_+D54a~W^Uzh2mM=mz}uZkgetEB2(DqKL$Ok;0)#md{$odkijnW})TWGzZAga=O2J zs{ZfqOrR{qC;oLV8A&eWl91{-Yg2>Ub}yGojQ7jL6GLGejwhAP;;0Vq+Lp}54uesP zy1ibV($>1Ju?7$_4_>_%q#L`>|C@edq_9uts2>5`hog_3VMbTaE~a z=476FnMC98& z@buR(FnaM8rI5il1KS^tc6&*m6DU*6I_a0+S9+qzOipNer(6~MLB&&~6SLC=`}})? z6LaTHM<&syD&2@a%r^!JG81R$*c5DB;@fkxGk>*;MOByJcgxBXUm5E|wngc`Vqt2| z{2aberAe6iXV?(e)j9QgOy-%s(1pQGzP$Jc-23Sjq%ybMH0(^rP= z2MLfbI5nqJ9TVDI#aTYd3lqN+w}ziF^%o_#evA?!T#@wmx%QN+K_^+iR8QOgl2|&| z`muLn?)mZyI#YgVfXzr;mU8|bJ%Lo3fIR$AW#;SZliS$|-`-n!@urZm&IJZ zM(dLtnAaPG_q!LE7wgW5 zHnDOC^AK~!Xnd8k zL08c+j-nDT+m~rE_C7Z9@66GSH{1q%%YQxz%K$EO_eqpru6^$b=>kqz#GW>5#_dW3 z`(68f-wMh*kg3jW8?fym6azwqgxc(Wy!FZ7bp6XC|Mse^YpK87i7j)80*k;3@o=gF z#nl%j@0ePxS9kgmV2-me;hs;v*}I$7@BWle6jb*TTpWKyedqP~{P2DJO48N8lqMZ* z>EM{#6#t2O6_EP%Z=4W^DFt9sz&Ep*lwcIjk~|28O%yg^L|de`GMGB~noHM) zh%>OjbYAo8)Re&k6LRs}Q?iJ8Sgo-hYwTb+?7{(ukr3l`%UpqKwUoL~HDF34r;<|h zb>43n*4xMjJd(K&c)DrQ$+pm&+#EN`ABKXjPqWM zI4A&Sw^w|(-LA|r+McYRA}JdXw0b0Cv%daZZ#n(FKjS)LC1KcSKkl`%xlN-a`3su? z3hwg}bd1L4Mvl=QfVrkEUv}^F2L;kIw|kw>JrdR>=rVVi`YfZ8y3$#nGw(KOE^)IK z9-M1~5I?t=xr_F)1rY!bgY9}~H{cw8>zenmS1Y{KkndVq`=wII(#c!zdYzYbvniu> zIqGE603ozbgh_2Q>a#~~X|JY;OBOM!*aIsbwQ_OPUcyr2`Cidymzw5f1R)IB?9l3; znRUe!k4Evn`3$O>W)*pJ@Q4ztAaKXv(G)_HaDu}4FMX+C^`&G6(|2N0sTI*t*3aMk zc=tskkB%-J?Mk zmbo=7?<9rfr<42w(E~EU-$)68A2$7XL5`XE9!&cMcVskRe`tmg=@b}1VCy-Lq=r(E zCW4Z$)cfSoh{|Cp%`Zc|s#Ci&!Y-}5?r&l^!dqL)MwSk$Qpm=ZJjj|_f}w9Wm3{&S zzBK9d?FE;@03oo@dRn)|LWARfe?C{{y63xNyj?fekxuIAio7HWeWuLhz09Fp58bU8 zXHQBYLqA3f^f#|fw-`qFkF<;pGx=|HF|=>hxLaXZmb-InkJ&t{`F9Oi`~ZN>O-j1< zbx#6q=iNiT*_@klx(NX}l#%(MSZ5uH#f&~2!;#b8pB&$SrmT+*HfF4n3)7X0UwW()nK2;?uQ`DLAu1%6@JIvG4 zWj@EJPE)O&yqv}ZH_61OM*ECOlQzr(Iu`07m=XI?GKNf0kwW&4COeTa;XX1H;m2p9 z5M=?sP2vbE>Z|8vr?I?E_mPDiT_$#NpA)?tt@anghcf5%Os1}Eb_x{Vb0*HOWQ%!3 zkOAzO*Ud9dyYW}99wNL--&!f%C?Gk}NpXNB5R*g06-4`@?ThOlB#xP_g6#fN;~jDN zhWx|(z&mJ_sTwcb90oK)Q9>*Y+u;8i4G7loeN0QG-Jp=rTjd223Q=eK)$~@{=lfz2 za}s5n#9q4v*A%;ODcal@*V`BGYv0Hnh2bRJZci5x5mmYs6nc*vs&|Y;OZ{QmSZh8; zCSSS$@3ph9g%Ab>Q%Dv)?AdL!pYq`~5b$$iv!k53L;^!)IrG_Ff{dIesT-?z$wc~E z)mJZ4I&GcoGPUTjL*|$#5joC^;|JQPogLzXNFJEciAXlCUbJ*tHM0kv2gJJI|H^`F zD5;H@?64$hV3IatblI9S=p2q9ec$4Ps1KocH6DUNk;3L&kZ?ozM4-orz-XlOehL2h zV$W+QJ}$6P8crW$78V#ER`Tq7td!-m@s;P&s4+{jYdmNLvQ zkhG9nI3fIBDRZAGu~4HLpN4ZyNUtn?O?Z0y*h9VrG=4w0qr=NJ!y5T=;c#Uw@aCT; zmOj$V!VBMzubo9P^JxDuAt6PT3?sXiP61IXIBTxUwdIu#t)4iIs|#k*eM-$dn!tiZ zsRVMO{Zix8A7m037|At9^kx|bqM8JwTy3j28+Vtx&1$c&4jI}Lf6FnF6M-tZ&Rmc5W!;>^ZRxsl z{t&q=YkHQ$dEzoS&!o-G)rRe>pPKO_sN0ls-g@i<02hgZr7NcUvZU`s%F$fR%``j; zT*-72u0Y=-T_T}|CF9j-YQYzH+xD<$)wplsmoG|A;~3Hw$N)&>ggtZ+8L1=r@e078LP>NyX2=J<8hWQU#Md=MYt+&j zWQTr}pAIW!_S~Wk)a|Lx%D(C!j1mY-Z{n>@T7pfqg)iUZvcRzjrL>? z%MVX-SBT2#Q&pd49fhrMB?Zt>ds{h@w~n+S?Dscjp9{EHLe1aTxiqDI91$K-(|wiM zyAP#CN`&5uY4HB5^tx-Xr#Jk?cf}l@*axQJV1g(KIh5Og#%?1sh$>gEN>nb*Gb!ze z09ESn_s<;q8d#MFmLb7j08r6&$5!qALYkbyaDnr%icge8u->g)8f^?NX}!a^ci1Mi zUt3207V`QJJidqkK#%|#A;F1Fzdr3@m6UXCymx5o;wQJ@n8IpHy{ zXQeabP*tv`T63fG8C~v2MuQ~{H<`$26p&KLLIM$Du{_q~gSbuKKh@WIkItCT&@Ku{ zpen#Pd*fUclk=Hy9?zt{;4sfoYCgKC;xVJ#eRRO$L>lpi?pfGNFub3KT!=__c6VYh z_5Jr_@J*ZE;7TS!u>A4$*vr0{L}6mUwy|DPlqm!dKbf31tqG*3MtZ)n)tu^B0jo}h z#f}op{=}$Xs=mcfw%$lNDPdgRUxW-RjUh%@m_9?5Ry_P$%^pjm}*g^P&^hi{>dB zclx$7tUDo5^(5RLT*=<4gmP?PNgit%%5gc4}Q zocQett+Bb2A^@d8cJm}$?;X}9AGTU4YqNKeR?qd$bGQ|n+#eHrBTq9=TC9Ngp)zAcxU<*I+Gz`6Yh^g zFFt;x-~U)|ZvxPS$-Ra=8UiStXL}##naiZ>=v7AE^grt4?C@)ggAOQHri0f01zxS9;Eks${ua@ zroVmeMW14L=*#h0BVJ>%HZ3;iX`GO3T8YEuRY$raDg+m8>IqD}SR8+$2894%2{Kj8 zn#k?7TacN5z3qk{I~a5w=G~lBaea43wQ#y+jiJjUw{hQO@q#u~AvWM7h0j6mDW~dK zGNDQPO7leWN>QR7?c97#1u*-=$~DI+uv6tCimtcJ5`lWFX`=)n;@Q@VS3Z!(@bzUp7B>H^bA`x@oG1V zn~zL1CbWKBSBPt~2DrBysSqYNnaW5lOE3y=i)v%}^zQWTiw)0^_5H&9Xs-$w-pc(y zQ_*BOvJ}$2IW%>Be|rLj#Oda32dA3vuzNRO7}BAsr7-H@er7JD17+^RHyrmLDBOqI z-d47~4{(u{e`WD;savj5J?>j^c?(;^|CBP+DI9P<$MCkgEB=9 zq(6v*MBf=%Ir2RE@CA$pu-tg>cZ&7A3nHioV_lSUH5i9H)(10;O{!^qcw~#RVmYyr z1Dwyz#udFd|1|)=v7GMnoY7Hr{R=m+H9BxiyIO?=W+vy4{13f%Jv7f_`%s9|Fs?$g zRmWp=S{0-0m-(-OMAvWP3HV)P|K=C;#h0aSF=Pu&XhG~<)CB0u$DOY;wN9dxv}Mtm zRNOO_er)>S0XK^&&;RBh21$5;IN@Y>c2+3?w5}h;FPDJjBbjss=x2*PE!USTG*p*{ z^WwaWFT<)Pw(bg?($Ss_l{F0qkrIu0$*w}H*P{Jz0Sdq5$b3t^F4ko7HIM`iHO?E2 zQ9@K~L(pJ>GoD}HRJC_Lnx5W%7;sJgTjWBms00LZ;LM91<61Vawlwj9sToA!@8F{y ze}@qs(Z}JbOd-^4NPp>j-_2Fs(R*>S)`tSG&gAbvUdHPq8^EG_9`om5o;vIg1u9xo zApHA5N76n2;IQC_->nj^%?vPF5*s0}S8%ndkEJk&gG> z;GcYnL5K}7FA{ry@No>Oq2cbE0PcT}A1#A(IAYc}B6pDRCl{23+P}gI_U>Nn>lXYt z+6VJOfRKVGIIamIV+=hJ%=#_Je{Hdz92h^OG2+Gx_=WmPTqIk2cx7gNkVv)f4(9`~ z)D1xng2uCJAG^nc!3_6!OR!({C=0}K%7_>puHY2G%fX3FHP$${wlvf_2!#EOOT;Zh zr#8O&$c#PV&V9r9TMsUw8wdD{dXWWjT{ad(FR5OZ<4}~dq4tGXY6upx0ItZut=D}( z{jjZ*YrV5KgP9@=zQU}DAQf*2p`69s2HnK@?5paZTb9psUv*2zU@`bVxHiAXG>^qD zFf<=75q)5i_8&cRQ#mB(xrNZ9KKb8)rs4g9(8V6Qx3^NjLSbzM&vC?BUS#OH-$~A` zUOsGSZ5S{m8ybSACt#YlSbk5Z)mMgm z`!AO0VnQyW?0Z8k6#j0>zkGrT9Gr}yI;yfi1*4Dv$obV_IaU7|SU;I`{ljniA0%cn z9270o21E=|-F$k6p)PSASna~m37XeV1 zI)x$+Yh)U?3iO<1*s>p2i`w$-@JmZF!aG}vbW+NgCO_E|qf^KpJ}~zUWn^@it@}df z&(WjdhKvUelv=Xv+|o;~~R)#zNoKazs8D$6GTxgur9ev!&3Ci+@9!(?j4cs|T8l^ti`A&%NM>i8%Z5tf}huAE7 z&ak_uj1+=%p(W9=!itP3BR6BL(;m}Rj3YF>e$Se@9R^xP=pOG27S{hzgP@P&@#Hxs zk1Gaq20=xfuds_D2c9RXDMtDJA8qyxUl?)`vkBQs=A2<%-5ikDax4WLmW_f3VgmC~ z!gXxj(&J2+Ot3NXDXD#@vi^&t8YqnMnTWX_R$`9APRQeKansth^4hhXjt5$u$=s$C zB}2Ru^gScr51M%X$$)^7GVepb>oE7w>Ui_&RF204iR)@9;?~@)D_@l;N!e%_7b_*V zOd9%*Zyfz!QQ_}t4$WS^miR{Z>-{A?XUgrUG^<6s1(e(gxer0Pi_xct_p@$l0t-!N zYN{E1_3|JUpy?ys_3R>)UthE4ZKF9yVkVo|qn|=a%83pDR8!DG{$xaKRKrZ!TLx{> zd%%%)KA~c-9`P?T4pqnPn5-7RRVwo+ra?>bBBq#HqdS!9i(G?FU$61(i4*n5jIJ1V zcS^vSXBE;mm6Po5R znoq@>t9Dbvoa=EfztMfhntfNcSvAUQhFf>nL>2_ctV?|XlA0RcpX*Q5iKgyAqt190 zF9n7W`D?#g0nR=BLBy6WC>LdYy8dxcCHi{6K@0?^SU3*b(56GGr=A>Y(22|8QJ8MK zx8BQ$2a0qL`!!hHGSl|ZA;N*F-a-b!lN*=LsJn zqsb+3L4HamF!Vq!6zP|n$>j=Q!F;G(hpL5sRV$FG$aua$H$#ws1TsBTBWopWQ7#R` z-Ppo)g;is2{#z`*IblFkhu6Bre`#V^3Wn?%3Z7(JWpS`gkRgLTHDyPN|5&a=Y8LYK z|AbdQz&2wGHBw-G+8`>G?+{7;RG6Kq@za$}Qn^$b?op35M!CN?SO{fLA%Zc|XKATA zP_L2{mxyBY=i{Js6wygeBBbUYLUfQsa%ZoPEtkF=GfYQ-nmk;}5?oUhVtknyNe)uL z)cX88s@$E9*G7;-N>g#I8ano-1Na#L>6&)Hax%enl zUCv4@H<`KX5R0W;*vQL#QClzs8rZ_ixs!K}D5lvhHT(5ag=je#*^H_$&}En&Nc5T- z<6&tVKj}YT96priNq}qr%&&TY;i#}%`H~&YZl^I!QT20WKe>!e^>6KClpppup!MBN zx`P+VdQOKD^esqDY{E+Q9hz=lGzp&c?RoVZ$yLCK$z$&bkHUgHjrP~7b$C-d9pvtSl55TAM#Wtj85q1x{@ z>CB8bIlk8^gtvSyG~Hghts%61oIgod&JZ&sbw`Iaae*>_=5L0q;KI1xybo}t_<3P6 zCeCrua&ugavVCBipS9yA#QA%-co#c0ghM5v@3w<|G^VG{Y823A_e{QU--DOPRB6p1 z%He$EAJ!WR6~B0S7IL$pNX&kZ!6`j+%se08M@0*<1c1zmPlwO;zuQm+fTZshFC1ff zi*NKrqh)+&-hVyyS~CY#INGv%3)w)%OygY*_`F4r=k!J`W635GkhozQqUgRkiO9n^k=A#r}E9F`0#-P*wX% z^+p4|Wjq?M^FmzSICr!1>l(|N%lFHu@3_QSZ{45tW3GZe6)1@) zV#j=|lYix~(jvNzgk?Dls`Nw7AMz&&05erVb&rk~?)yFKxt1UtfLr=np`;FcfB&n+ zfRAl>q3v91-mW(D6$Uw5t9y8i}g8v*Fvpu(fG^gGefdM)V)5ihrT5+!pUzu6-k7v>nvwaoyV=4y?}(`U^>~tPI^Q&? zL)xJ%q71Ru;i!@?*{?BvLDlf5{P!XTAX%-4dCiB!gMM+_vEcDdG5O={sHdemV6IGRr{!y*wC2KGh{fe^9~Zom zKH}0w;FsA-Fx}WdLX+?ctvK`Q;~sZ1p><#VlI!*&V_weRNZat%~qhgr|qRb;r?C%|J33mxP{RNFj9 z$0BE$)^{TtE{ttw+XlA?lU7Nugp4zfw&qZGBy3x4BG{HsDqp!m?VIO1KS#F3232Ro zh9FOoN{tQHP*2!A!Uj%31`uImM3De?fEo$v=UG{2pqS$!XL1rJTa`1lrux09X&8QQ z&Xoj4x=AWI(!wJV#|2VR8uDyrU^b$JHgD&PB!A@0uQc1Mq$RaXs4_XX%+ul+_D`mn zfb?tL*kKI?ELplGMoM#-vXQqlBm-u&$~ezEMIaY)fNz}g61%U_es|59F21>GN}JY4;F<9;y&4ZwG&_2=9y+SviyA{S{WZ6xaND|7tBmO!`YIsl8V!RW zjz9fi7D%`L{Pt<%9i;|7lb_oo6gxn&wc>uhCUOUEtf|5U)^Uy1=pf#(i7+?j7RU~x zSjWl+#9zrbJg~L$V%sKy&;DgmJA8(`Y`EA? zbH~&WOEKl{ShpE{8yINM=B%Q4_oGyw%-y-pRi$lnxtkCw+K2hOV=PxD@3Cy-mlGNR zM#yvaBpxo6`;JZ7%Bh{x7=(-yU;Ty0Obn_?=)bEqy zns(6deG+!hOs5{vT}s z{~v7tbG0Hw_<5PL`qKVv+oK~Vh?TfGQl^9}=wC-$>Y_mM@bY+<;=>TR7o06f zHviM3{(4wNTm+{C+Z5uClsC3nfmx>f?Iu?>w(wY&_aNRTUvNu|ZN z90)#C`$n6l}I*2i@ zv3s0b=q>s7=;PE0{r1%xEUkk~GU3M`^L?b#o`{>(ew`Dq=-m zlz1xIF!|wvcqdfL@~Om3_*eUt8Ql#6yxO=G`grPgj06QE$<9w>Mt-@5y+~XJ9JKH% z;b!_`hEI;L?EJlaVE?V7j&xw)3@L#Fs+&YMoF z_xj3m(12UV&3+o|nR8#_j$p9rK|*-$<-(q_k#3<#v4+#})Z;3H{hx#t%(;4q=*ujwQtZmO7bVF$E6oeH` zG9%9o%oPOvkggP)pktb26;5f>G|z9sq}jWprH2PZp-m}oWX2a7aDC=V(%~KCPVlOx zj=;v5v>cT((G=Tk4S@jv*=J=6DZ$jNXwPRu>MSv)Hij);Dfkt>c(y@BegB8*^ot}7 zs1nr^Y1gy8=(4zS74J%2CX#pt3*WjpRaUp5W}%2+MbGD-x)iJt*ev;mzDsibtdO&& zR2s+qZ*%uBnn{=O9m%jfalWL`92LX_m|ywr8X%hqpUQjEmucnk6ypwqbF9pjR#JD3)KYe?DDTczlz7E&;7sE^St9a-aJ-ch`&YZtkTjil;~z=XIl?1U z*mE#^ zu1~#Y!*Q*47!KPK=Z=ih+IZVp`qiF_Rim!#33jJ%3d&=t#nAKi=>|WXTd~_hbCrv} zB=_MnD#NAHP5MwvE@N97G)0lB_=ob4T!9K~1`?w4RceSP}2ubp|FA+?{3N+X5n8hGlJvT%ptR1lihR=ei6 zk_)Vv1%4wJ##giU;?0>`scK?LEA7?-^0vN#C!e4~E=y!bZ~LXkB1n-ox}n#eKgn@o zOx&`pR#w`!>V1M}dMNEeVacJz{Br;Y5H?3m}QQ~hL~V>jXE_cjAV zV{)s^I=p|*8k5H+^yONfwwReX(u5I%tL;efb@sEDg ztZBDCp}(J>`}NAoweQ^Td&)B!B6xIEbM||x!`m+-ewF84d%ei$z@w~a2PN6)j&8oP zpq7uHW{dy+`e;s)d<_2U<;iQew9fD=j%ENE#acgJw}U#<|A_H@sT?qJ{OsrIl87Hp=dZts>IjsS(0TCS#tQUnomiam z*Hf`H@v)*}aQVj4lt|k%3Ny%Ful+>D;6L+isVDXJvZ_a3=PMSGs?CrF(*TK=m&;1G zF5e_OacP+_&y#-->Wve7?76X&J8RbBK3o06HoEiZUBC+enXujWbhZT{PMQf;c}z16 zZ1L&?^Cda%6mDO!;k(wp+WXj5_~P2T3E0~ecGZhS3W?F(_kIqc567mFaSw8u_@z-!yXYq)a&p-iztW!Z5IIeOGJtHMnQBD zOjyt^QZ6tU`~T+qFbxHXXTjJNJiyVwO}ZhCyBbAbtvOYSaa551o6?WdOI`^)SDSKj zKX{C1Bmx2hrYHk0Wb*g1hXfF8O6sOXEL?&1(bZHRiJJjK(0#{r? zPdv3Q0)~xS_KZgg(LOkd-t-LL&cuGg033d=>*x|Cb|Oqsw09(c1c>;Bkg2Xe$dkY@ z2>^F6@mm!MO7J(qoTCA#Vq!Q4V*M{fLAJU#bZLJ~Q-T{J z?OdXRg_2DD-wXqNdl%D{#_{P z*G00p8iEx7Ni7PgGt)Y|A()6DTqfu13)s7!6b=v^L?9D55w^08J!_z#kw7@8!NF4$ zKlcTlhf(M2(LEAy*WOs)DVzg{mIDv0Or>7?O+Q)zY++LkdZH$P1l(_Wf>11tV&<(Y zM!_`kj&1CkL=1EhU7i`6w3x}~kM{?%Re2)vnh-451pAHH2Hk89sSNV1=>LMVl7(sS z0GWYn5|S%5G@-K2x&_xy@(|aF&smHo~fMV1Nt>QFyNV#M+W!X&z5$9_cLY0 zkPdRLOVZ9LPyq)qTLi$qAwyI1Nea6^rHAS z^lE<@0lyP^?Ta$|VFt#L!ezZe$-+XCP8KTqE~Ui* z+8cnbSCs3uz4jhv+{1&!hReb(=};ZHQA)JOrg&3s+PQ|pd-|v{J=$lAIiiQrmiH@* zJ4zif0HuBvWA`mnv(yJuRT9Y&Gr=j|W;hOHxp+}2vkL+Sl(S5iahfr3`ytmb09LYW|S1 zTOyvKvq4l6k*22#?W{*OMss#haIvD)b@PfB8Oxa}C*4R59NgJgF|l?fdCnz@i$yy1 zi(I*7#+u=3cAhs90abwqP3I%|B2{@3sE7*1f`{FWor_H@26R_m3Un$dhoz;WJJuIk zGj$*JudU2GDYwV8$rsd2f0{dO+kE#385kUEr-)X&h|gYP)XI9htI^EXnCU--@?dSM z$t?4|j#gu;TJ2ywy#h-x4Gv+gEJ?YVPitO3YoYXy8i2N*pELxGGR7&^lIYu+K)GpE zZ|Uq~y+m>iT~JwVz`tR}dys~_xE9{&8fE3?239&BAzBV>ae7>GY$qcsyQ#kOt&ew# z%tkxsbtZe~j`E`@prPuaOEgPE$It0jHtt0a&!{S!J>>cMOfvyUXh+2NuHf$FiT zsAIbii?Kt4m$8rH`cs}G9U-wfV_B8|ANKD0t*OWVAO8Y27%(;(Bt}Y!bSU6JK-$qE zASK-@jgHYFp>#P?I;F#r(u`7CQbIuLsi-)=yg$Ev|A*IpKG&{uu9Md}kK6rT0nhJ3 zf^q>~)w=$Nh_Nhyhihk+Zf7g^tHRKZ$2Z2LxL>8PKBziG2p=?XTaDuEqL@PlA2z^k z0oMf?qc0@z&6i1yN#Nx3X@p2}?K8wGm^ZHKAu0 zHAh+CQ#GN2WiZqN>eUN)t7J=CPPXYHjdB5|V7A+ z01bIpPkm>Cdcqc_qz4qMr%^dV+NixxqP_4j)O@Zz9JB?_L?VrB31iT_9V;NK2pH4(X4t@7s5my2846by^Pb zOXkKPNBqio_sT>)wL=Osvp6hcoFR&(?TyMHb?*ntidDN?k*geZUpS^r3_uRHupN%| z2_p3f79wE*d`n!j8IPq5HOAj!x$ZVN@zNhb<-nV8HIQe4! zcjFmpj|&dtp<(0yE6mVI^~9_3#c>_k$)>pSp2sAx@DIYLb}yxydgf%W^2O%~!fXi5 zoTbD^=|d*^T7*>6hdJtlbMfZlNyHIx`fvV9VE4g5(&u90ya3=^U0-ZesL2a`+QP~O zZH_HiZbs!d#2=0|rma9Z@$sAx@1JPkFcg zUBd2dr&Y^TZBbjnHw-eem2%+%Mf#o>G0Vw$D*W>E0O1Qf=oHh?$oGY@xd1WuYYz2~ zLB*wya;)N3-9}>4caaYVmuu7?u|&8QjD@!DOZhbW%ah&1kMhgM{Z@Tv-{2$ItyScO z>c6A=w@-)B5Z5!YhrJEIsD)pwO@%5SJ@G>J?3EgD>JX{bR|dZP6JG$# z>nAfWN&c(U#rV$;dcg@i4f(4-O{Qj;b%|>^-8W9;EHzZG(7z9PZm#Zs!R9|+AqhYr zs?kmsO?cJi-;RGwYbOiAl+og4(uZ1Jl#12MH?j&$db!(aF6rvT)zT9z#NL?7f|g(p z-6jX~6ug}B2e2%pZXfN2t%S2a09GSM*lr%V3j`CYWcr7iRAeK-*fDx4mk~bq7Jn({ z&B1V4-cMxGf`Kg@hBt`nb>}J76>>CEgr)zMKHrv&AS38BN-z?Y6=YW~gMTRGa)j8Y z^%V!K(RZAqvAKWiY=6xfLBTW~MYWy(*j@`L-p+Y1hO)(#u(H7?OF z5Q8j`k~?p%mORM8K*}Y#bJZkz%Q@P}q{dZ!Ex#f;LPg(DKkNEG-w)_NpSXLJs|nVo z>SEA#@@KWB64`H$V_;77D@?mhyW?ttfBkC!sv%Tv3%x}dteW>t7mUu5HPfBBySH@N zEF*8`7@Y>Z!!keRq!|aCH}GehG%-zfhh&>OccUl_UbF5P<8Xl84!Ta3i3wXOVfwoO8>#LVt4LOiW9fgj0%(h|GQ(lM;TX^I1ZOHxOFzBM^5#Ad(0fhk z2f-;+%QoT(+tO*~)UoAOW7zVypY*6;DdEVQxJJmsKL$35$`|b5X&w%KpW(Aq0_Mig4 z=npO3xfVcbp3uEPhqU|d)Q<8AmQoVT=~GX#0;mt3a^1h=x1JfYuthgX72M*ajepM` zKuU4IhF|am*F7jEiiCaP_@fbq>m*ASak~ud!nS|f4gyzxG`i@P@upi)^&f8inZ#<( zLa+^twdo>$gyo29c(>{A%3i-7|47X$x$-j7Wxkf1K*U~0IVyqyzNojGB#OX%Cl=no zyg!qYKje7rQ@oV!N1yv093$@q{J--{$~- zDl0n;0P3b{zUmrgxN&$rZ8}%?(&C7+6uZ@o=H@+L@Q~1tdnMJaI@-5Ao%PW%MnZTn z(eWBHm*Br@I5}k&V~bQ*#-FU4LI;?mcrav(y?wCr?hg!l`5_A9%yc)~{aO0G&aE`y z5Mn~8X%lOdlr|-2ug>g$p3pV2n*s(*V%Jlah0JjuUGb+grS(tK>Qg6Pu5iB+xGXoE z9^O;B`+Ky5m7MH1k2P3Ez6wd9&qh|7AaofQ5kUcAn=UMBFcxB&b=gHfT(=|tI+Dl^ zKru|)jwB=^xo}tj4WB2~c~|?Lbf!@$4TTl8%uNzJ#=1COx>OtM@$;=@x^2P4HC;w? zzbaiQ3F`rF_-6HXNm}D6g`(WDtO7E-$RM&@Y>#8LpA~`A<3KV0fdD)bb1B4G>crr_ zy^i;aJfj~$YpNR7rLx_fmpoNEtaRV`TIUI(6poL;}Wfa|t2w(;*S^O$*bgnq)!+!9lGwNjirD|w{d zp^MbwZ?h**Q~FgpX;zm@FY@YLMsHCpm~6%^SW7Au`Z3|wnC$@hP>!YCdTTSaJ(z>z z7Z1c!M|qXUJiL9GTG|TG#b|y%rJg65Bzpm?|J#0QjHi!gm*RiW8>CiRYn&k&DF1v z7zP*NPi;Cin~Jy?y%Ro@^@ga|KJ6bx3$q53(&)LRipQPdV|r*`B9>A*@9B_ZbEs>Y z?N@VWMI8ZOumc?W=k~Zf>r)GY?RGlD_xES6ZbE+2&Zc3TrVKGnm|F#b^7(qKpo03%4S9U}eux+91#t-pQ0&)-S05F!myL4;dveN#8h+#5-2M zNbu6?b%_A@vr`iZ3JU_BbtGwB;^&@`EJg;8UNkV5p^fmUH>}YJbttH10sHaZOxr&s z%Ab?v`*WPj8;P-A^~(KzRIn`r)fMFBA2EgrK?KfWPlk8pniVBH@~LJ)gctO+}LrB5nyT}&*;|CHzodVnXrWj&RCyailZaTp@N*#6TSGz2aX(^ z3%o?{Zp_Jieu~Du*IkOlv%y1dgxbP)+Cm#a1(1I4gaW0YN+)xzk&Uw-{&wNM4h$Ta zc*n&Vbkp4*#;;AHIgVrNUF8ffOUdH}Q`b}ML`-_T7B@O{FbkU5d!Ao+sXgpVSwY{NIcXVyj?X95`dcEwx)nF4`LmO+sZY~M>zbiP_o zclP03`P9zr6^)J!LA}$OlyMh;hENZ_1XZ;SYyz<(aF%PT1~k zihxe4SVBo3(#>OPu=UFh^1uD?7b87`feMP6vbZ*Y3;@o%QnpSJC7`Lw%fsR}-R8F( ztMjy{vaK(jrRJ_x=?%pWds_f?+B@(f_?`PKQ?JP>jCw2G?bVrcTlhqCJL$ zm$>mqgMykWz$Lm-7=S|!!5rg%vZ|Hg0YEGz&E40TMtASvxc>17wrFOXm!xw9MqZrI ztrew{dSmGp8*9KH6BmTm&{&WQAoS6&SV{c#6gdchr9S~H?t_&uxB)6Sa=WZj;$BLL z`p>L{kHKu1XB6?L!s&d&Ic_7`hQry$4@hkQG6aBcFG71ULJ5o0(B_q4`*7BoORuQ? z<3z03maNQ!!WjUVQH`_VyB#1NAvYTyAuRpWDwPF`qg>EdMl`O4G;?5@`8G43AjsuJ zwHdnFU|J9#A(2#Tqp(lnLibIq4Ahm_)oXFRi zodAIOMDH`bW2tz03i5w+Jyg6O{*fkI=Dp{giB<`_gn)U%#biFM4SK0A2(U=s9sm@P6nGRkMA%4RrLNZr@4Q&Do7>@@f=ns& zs1%g`wb!R1H~gg=BO@MP1U4Y;f$3PLmBgnb1KaPkwT6O8NhN2QSjqcbni8frU@w=$ znH*yutG%LHr3$o#NK?e1)MtZypqP^ia7B;yJ{ZYAEnpI>EUu=eHr|q@7b<<9wrFCU z4aSL1ue6V?dad(nZ#qg`b1R4}NOKnTDh6ZADz`J{WIV$vI4!Um5u1?lJ-&u4U#-%Y zi~kC*-c^Ougq*hD{Y#LjbJ5a}0Qv?RYbucwvJ17<)vrl0!|Ns6enLy?IP2jGfSuCcaO24F$_XQKiWu^+Zka10CY=@qRl&kN@^KA(uHsF zq*OmJqvm;C%{i(+aW~&VkA32=6KS_C^4)KPK?o={lEKJaKP=zG6~X)mV9s@6${@ZFp?7yc z3dU8A%5Ind8JoQ_E~Zq777#9swEduGN9}q};kP~$%4iWb5p5)~$lIK(oCO420(z;< zeAPSo5e<(6k%N4MAuBWgC_YO2w42(owSLhbH#+{XlbiD{6)`S))>B0pEzwB-pG8i8 zwRD}EQ12mRXp12NKp(B-YyYEEDB``V9m`yO*MA1{OdRsZczI|768Wo><~uhpvxfQ`T@hkEqCVKx4Hzr67IX<;8(zhsF;mZ}PpnB^)3NuvcmwrO6T2u(&ozeeNh7W$?xs{Fo_t zp6ZhAoY6K}6DprkX~PfO(s4@%+-zn!b@lvk&oM}vKP4R z==`A?F0%~L)(7hmeAlflQ0!yqSFkcmB$vJh6_&g~Yd;`N` zZ%#&7WH`Kkx)`~Cn|+AS6&+om3J|t{41;G}0gDc@&dI|N>K~YDm#@;wbT|quNE75% zwo_n*TOj3?S$&#Cl8IdZ3uFNcqiB@l{_<4Tg=RIH15U-9m9E`@bzuS^G(lRQVk`dg zGgI_T4a&D%M!k@|)o>8&frMKo-n@T`1=Y7s)w(E` zgDpC+l(I^Wef=1Oc|rg{F&iC0GpjWR|L{_ij|psyd_ zy~i-1&z{W=X{gwgybRGDr<1Mo@cIlTKDk|g&1eDq+H=G{ zH&9H%GutlOC=kb2f)#ss2qk+e6&)k-Hl2q&{0@Rl+S^YqZk9jYZ&l-N*HMn8wpYQA zeWjm%)PK)`(J`*52sx^7{u3}*DgGY%VwF>uKYvz(HZJf&sTj|HxVkTac<%AlR`(}G z!0<)U>V^Kpe11(bivRD&pzXS`RM_N@|%-RDbYKeV2%FP{^N6s zT&O2Ygsab~71S^wD_WwQkN)I8(=2k^w^3>Y0eiXU@+LDl6aNRK?_km&cO@EnZWvtq zUV}j3(b_MFicGlUrN2*Wy!Fc_IwI&{Ah~TopzY7dmi%q|I!)`H`Ji{FclLS^my!1- z{OFc{evKa3CH(}aLXGMNaL}K6ToH0oz+2`~mVuWs-chE6sMPGsfbXUNY`Co1e?(4C z#%{c$rmx?bF%y*OuWbKgOprM9)8tzeS((4G-~G1miQ=Znia9x!+8rtD4orOKD@jHZ zX2kPJ>lAeHlj0sCkcIq!H3~QROhRs~JUOVcH6+H2j3*0lP7KaByGZ*lD6!SZq7u+Z z+nOzNZ_o4(V_b}-Iu(ZSTs#1(;{87JF}Y>ipK++asUV1STz2W?u|!L874&e><&-8l zGn?G|MDi5qAnqp^2X!#_w6utDYxa?##ko1+IzC^mIg<-6e4p}O8zm3PxExiv93cw% z=4Ji3_0Me}da5r4>S!x1jc{Ks2<0v>dH68$+4sNSGo#D^FP<=wu<5JQ%vZ`3WSrhd zE0#P?;^d6?cn4l=G$@zDSfYpF7pMi&Q|P~cPzsA0rYJlnoKrP8j7dy)?}U5c|Dp|a z+dfiYX~Ts54);!Zhg0a7kGbu`L8GXl90~Wu>cvJQM-6=S$d=ii)H?xwd1iW0a+$-g z$Xjj~{}*kL+V@7bOjQrYox$fOqr>#6+OpN}h!j81geqsC`?1)ca?>&?Ox$MSdQ(=~ z=>O~)_(|^E&KwVYC4o!_rPwL#&_NU)E*C%3VU}{D_GZhb61<6NLpP^?9?$7M0EW}q zai};`^&dUuBakbXm^G0!{o)+c?&?e2l_|5GfQ3U_k7;}hx`z5T<=ltH z72Ua3E;L+Nj~S}tRc@<{36=0A7$XV{ znR%hwHP1r>9SSdt^q=snB&*n4r*KA*#Qg&{e2)0ejg8rZDR^S5Ju)aTf>D?O&O55c zKr#TudeIw`;0tDok#UEe=Za!q^(FOU)!#C4DDSeTa@Ee<_fqqTLuiY}p9tjB6-MS! zj?XQ!86FQjElgHPY`4q4U#3-(nloXTAaWlaNX%tW+edSTSpLS)X8v|!xZ@am=A3K? zXH#XWntT1FutM^qHnsh9Tpu+^8vijaXDL|3PObEQv||;Mx(>{f^)em`&Lq*#!dqCE{ZTBOtpGqCk8%^ zjQ%fZ=5!*rLDj3W>B2WN>6r`$&G8-H-CT2yr5}ih%z-^`)O%;~!ztvDy4V74TO;$? z_cLX(!t&(_D>*97B4IJ?+s)x1rSlE{PkuMNs%ZBT!Lr&nH5;qHq&|%rres7{+FHQL zuw*MSA+-)d=dn^6dN&yio3<;SrVqp4nk;-I%MBnY9Kn}Q zCdwba;Q&p%)!lQ`o^w*HIX4!kb3k}UiZ51df_4HPjISwP9`@2}d+^I|hMeq=&1n4? zdI`WHzr@`8;C-4$_lP_JU)OU`jWFm6C<5R6HC>0Tii?q8cT5p&!@Z1YT&u(b(tlip zlYymC5OTHK^q4Y`?jD&b{wq3n9%sAsO^<8MIdbPoeN<2Q0wqd1;!h&cyBy0MUDwULhx02AM^U&3R$C0H(rFV@zF}f0H6Z`ixl} zUpG&WPN2$TMr+46qxA_ik*^hW!>fxZn-UYa#c^Y9jZ%DvnEQI@6G~4nsmKPw0s3Si z{W;Ge`o-mK{okkw+WPu@NU7$r$6V~+`G(v$04_R3E7sRPit%6Cn5CrZL0D+U4EXj1v^K$0M#uFG+R^n}YoC;?DlAX6(6}Ov+G+dsUYq-OgfG`A6JW-L& zjhe39n2XR?kw!c(ETz>VCUFi|n!TfI5V%Jm|DrrFzPn(b&VWx;u|>?4?Nr+W)m4G) z_0!#!r>|s?s$!trvR*g-L_OP5&W#-5N&ix*$ItaRU_|VQp=|8=C1eXl1e=Kar>70L zSxxX$kVD?XK|TO3^JPm^bbnsVa}{pQ+%nAxpImc*vT0b zZiMQ^U-ZIfU`tUWqe(L8Cm<8I7rMkLh zSD8gwEb&wdto-SX16>|U{l|%vSbuxPMc>;jB`W=hy!I(SYcgwop1p0>qU(GA18F{| z6i#`bDTAS!%Fx5synM$&_+mfV>z__K4#dU)Ke1;VHNr{^j65r(`;t{7!pYt%M_E(q zP1T)^P%4Z@U&Fag?a1#~Pd++T%PhD02}X)Fa66X~&B6_ywPsKcdHz9rloR*1kWn*yHFM;+%ykXRIuDPM~l*ko|QECPth$>D&C4K`qw! z!3$AShK+3i9)L5i-Tsp=Q>PBb?b{I@?qQ4mA7y*@;4i^T%FRLkDkjZGoZFq-ssR+I}ohT#Fno0!K zpm->Q#zSA+xo0)4R45>jReV4;$=HzK3<{_qz$bUv=b`c($7{rWN1Na3W@zZHj?(wr zD{!`AN3wrOKe^*mKCZYci;O&MyvzCGCT3gplLHrRWO;Jsw|-X6;>*2XzXjY(*>M!J z_j>*tdAt{RY440;YzHG%A{&bb$g$4vZL<>=j=ns0uMZ3j)NfB~91G@qQ5!THYwa6pcS`sJ;i<}aVptZ)9;4Rw-U|8?_{1gVZBX5^U5tM#N6y4BX2XWi(hj0F? zVB|iq=geW$77f3N!UeLZ>9G{(h-~vn7;YkZQ>hSdX+`^_^zEgSHf7s%jeXbvUJlaN zVF%JS#%)*KDdvX^o`M^gMKQkGV(^ysPg|%eSfN= z;BeZ0W7$Nm{L_O0il#nY7*C1SlGgk3>0-^GGTvWCW#l4xMFRQS&6OsZ;<=VtLO6Y6 zeY5^}4jq5HPj7k3h(W!KV*(XVwnp@**rG zZb+BP1i)ON+upcXD)F*5#eTnPZ7SRADvxKeaep>~c1+iuvfg>Bu+^|0p-yi#*Y?!R zgvR)E_j9d+YdlY`>d|t?8<7tqcaQj&>xv(QRk>>W-pIZX`!dP#$DV}` z%@1d-M18x{^jB&b&30i*2P~W~Lljz;9(ywi?RaI$?65zhmaK4m`AUh2^_5Zdh*f$3 z_oDr4(WK0;_Jv9sY+3e0*{`jwD0fgfE?$(mF8W%){5zG;F!+0QM9pME)Yud+W@&$#=*bBO~WYWnjfSEsd?KtM&J7!j7{_{ z88T~aoXVW5RtAW+^{@6-HEUcw%i`159pFLz-luxATezowUfujowfvia54l>57cby< z=5mc^g3Y!LD&;q`t$>b3b#E^}5vr_#S(}?hwGINN?|YVLBz_$K84jBe=sF!)TiZP7 ztYaDsy07r>ieDyh(czT#OIXm(=O(Yxe1+g-d*kc{R4zG((c9o0ty<2oZUdIu{68|d z$4Dnb;JwsQKli7fD@@-h;xDFT0HSndB`MNdj(x$qe^`D9XVo0-?-(G{@HR`P;gyS1 z=IvtzV3EiMg!X?p{Z{?$V>&#PAb=7tz#hbOa76cyl^DYVg{M^gf ztC!J-d%P@)iF_mg3liSuMuq=sqkT<`d=SYcBr($WPogQ?AkJ>_%7NRl_IAeS&{Z>g zO)wgCGw$2@V^lwD>rH!i^o)u#`;>!*f5&$bbCS#IHsDN)79dhTVqPHZ$M<;122D_gn_rZ61kIp?gQZK!W+ z52F!x@dha-Q}Q$;?n_URU;iQlRYE^AIQ2y*=v zx@lTG^k1E63YYzzXJ+QB(q$6j!b||F1s;Y6WU6j%cIs`PvU&)0i4)Zh%eYS?_Io0? z(}fMHauyqGHtNh$Koo6$nuy>GO^#Qj1B?YKN+hr4eOtFGL;Zhgb=^PI3M49ATt!S* z*gnGy*F70S|14jTF_&3#d%6Bad|r0?0V5vG-pWmQyBlv??yXcCxDjj!(%!(m-l=u% zqOzGuVy^lmBW9SsYxJM+$4<+*@DPJPHba)o72=m8%QNneJILfJwL=o0{TZ`uZD;hp%xSKfjAs#I`~-{E>9qUR zXV&wM@i5YoeUq7fhftL7``kd+v3hO2;pbU{x#m??{Zh-Ytk;Q?8NCI+8ToLN(rHR7 z^}=9J>ri>RsxR6{llhSXzpj5g=}qCd6ZD+9ombPx+d9N45B;D`QY$BJd3^V@>_?}5 zAE$nvM?xuRyK(*tZL#$-d~1n3LX1 zg+Z*z|qvhZ(t-mAG`-cZ90}eEllT3^rRtJyHe~~k;l+6Zv zz787R00gKsH^_vp{0+}q6o`v~G9h5};(kjBNg_-ns-4+S*jmM*9}l`3u(t^J+14^B zDT**2VvoZ+25(9BY;}Bxe3O54%e1v54~Uf?ci>zk^g8UVe!00NJ9~X*w;6;k@je|C z8Do-vxCQ{YP^;ab9u3~RHhUHQ!Gy6!002cswS5xyYc2zX@aq~8BvV87VEhC$8;xX;U z5THl=B9gF$WDM=CZ>rr}rt7JZ#zzQ*MqkE^gIO-t$?x0h?Nb``ZlpmEqrZjy`sheX z%l95$fcm_O9_VK%{Z6xP^m0}B{hE+80hD1+i+t{KT|D3us~C&K-Pu@Kkd1YviLBGw zygk4MrntZLg!DEs5M0{Q^`V^x@b}F)?U&z(>=-cs;P*v;h`{+;*uhg#%X2fXzf`Fo znIY>mKOFnXPt2aS&3m`{TbhW!C~|t)75$RN7fww89{V6s51wj0fQFemwCsdzLql@{ zUQ!Pu=2OC!&5)8mS>zCbFEeqtkLGN{DvXHG-Jjuy5>Nn&n$6%@vH>_JIyhVAglM!FC89X=3^u}mF$+B=J#OL>A!X)G)nXY-{IuO~0+{Z%hor2gQPkiN! zf82~T)kF{h0B>=e1nFvp8Ry(z3t=er&$)!F2E;Q zF?q3wbF>e{neNP%dZLxB`Kv$N$?Ly&K}@fGtFn;i1Ygbox-(+f0MUz{&vR6u#`k71;L3~*$ZPJWN!j=br4U=lei z-3l6@>P)YlvN+Cgwkzq@%^r`0TA^=f8Rp9>t`;+UoyBCLM45t_fnXznYQQ9dn zDY@h&m_Vb^OGS=&lj4^SjY)sz2xkF=Ycx;+QXqE#A`V&^&T7}R9>QBr-?bjIgb?*! zO#8-6{h%;|0LV;j%zVa2Yn=knG-oil862#YWvK?YXp2%mr3MhPUIqC)ON;hIWhtm+ zXY6M<1ZkY3BVGnFkjXtKZf1$i#U=+b5XAw$#9NiDsww-x6D-35b8aJR&b{sUylnc< zfZPMg+~e~Ej!cGy&yZiLd6Qt;WevENFAW(2GB%QnoO`9~%1}VMB%gQ9Un@>B{F$q; z5jS`JOvWmINdcG>XS_DxiOvPcIX~)@04)jl+pK(Q33|K2x8oc6-BPKH*$nVK;AJ~P z1Dc_k>gYzrt|e4Dke*kl%Bq*8c|>2^~5 zO~N57C)5dMnYX5|)ki2R`Yk9pLuL^H{RnsQVVu+g@VU`@2Nej?=Y3aTJRtztY>V#% z`y3&d5WgYfqjZw-lIK2|M{k3gN5-K#fodiB-;WB;B~7R43=f z<6wHp)U=?Hc}CDOSf?fgP>z&@La+E}hV( zy^bYF8m^wt$&q%6Fg;CpWKr2&`R?;UnjfZiKd`2^FUO3VmOV3Tu(Fo>v|^h8@b0L5 zC5A)>}KYpShx47ydfB?y~NqLKTHO%b{?-WnleXUfM90#0~9;DReDj zLmshQb77kW#x}UX8uN=h8-p1G+8f}1NCq;&%T z>DL=LM`|yKeq`b`&D!t7K?R59O%E3vX@NB4C*&XMYm=_~tRFSf-sL|}N&Y6plrYi+ z56?IKR_+uBOs{N)^1h7-W-JhDp_%q$A-3G$ZVENeek4MtEpijR`^rHj+d{a$;DJBz zQL8r9GkW)?X%ID1n<*_WXRfl=%rfFhRp?`4eLR&&)6Zu6!g`-h|4s53@eB=bdX zd!6JPR${5C9StQuH}wYcN*kZPj5x84?5u1q4&j*zDzQ(^eS0^U^Te-t8DVgzRD`?9 z?kx2!E7QVH2%TMH|Lf%TyYFX62{ml>fPr|%5D|WNOC~gH_r+)z*SDa6j!x#nEA#D^)k)6Zhy`$YIf2v_v4%I{TxO6{6M--bc=kVhDQIRl^*k<0}T=cwic zj+Z<3_T0Qv#e{rL=hlo=@fowECsTv$tqaw)NBgQ2GVAs+76v{>^k3k67AkAbmgoj0 zAe-V@e(3fGi9osP0i;SHJE5azp<7=8dKE%9nI9{Xf= z;}dRLPVv@%?#Sz)m%xCJG^x=tRV{v-aavbnoT%Pjkr2n2_tD=7pawXn&wFU+Sle_w z`R;_Ugn!TBDDAg2h=@>=DB?Qe0_ws0Ds=1vdlkLMB(uSQKJ_5Tx8+$#^+G6@hYs^^ zx$4;!MAIX@!_`#47}ci7l$~nJQwe{7?SxaqB&eaZPm%CXm$pFgE^*Iz-mOvbFpI$K-|ESA6q%{pIoFcQk zX8$z@UDJr_s#Q^b4Yo0AokqAPa@!~4UFgK48_$ogre#!na1uFLB5h2--lg1`VrTf` zqbbtiOk`ntln8Tx);wePG{`RRth)7v9%Q-xh2Eb@$jm!wUFN5rGc<+$1?hd-iX7+ zn`gah9L(O2W|<5k$!ey9mMg(2pFLmkzy%2r2Fnd&^a9n(tSZ@K)XOZO3a@UuG@%(s zQW!EhcY!Ij1|~k}`FF*UoA%2c)&lqCbiGtV&jqKA&ntQz{$XtD6n&Avu1#xXrO1$? z-O>eN>Q@M=`PUK-_+{`F(z0TeQmKRdTg4A+)=Nd!sT&`9+Fs=6BhP$%PHm}|Q(EzP z^B+7>0b?^bWZq8DFblGyJ{NgRpe_Q?o}ExJuY>06o0}CIAw6qp(_`Mc%-bXDti4`S zR>)%%%|jm`lQ_*RCRmI}{U|rOXKdwLc$4BS<~2Nkt9FE$yS3&D@qK-ZQ4O-0;xB0j z8pEtXHWDetmxU!ter@EY^%D9I6Y?y(;l4W$2`YC_s7~wQi7C?DXlh#<1nDSm?YHlG z#Psm9TP%|++XvRI<}l>*1()E`@peuyP_-W&+H9fo-1uj6@tr%2ls_H z-r>Qs_^F4SLoJgWXZ1-hYUwmR_Fn3LSQ-L&C?RSK{QL9|2bD9<){o$dA?yVktH9Ym znykKx3&l3A?3u^^Jvv+xKm20z{XaPJ?&{%~UBJ03tJLDcQ4cavWc8uPcgV|=K@y_% z+gw);r*7A-eebAyEi#@Nauj>Q^7eG6vKo=RvLex5!m(#{=ae;^1UI+d9LJvudw++g z)=;6=l_vJ9bp5?-Si;%n4B_iYU6}7AxTEU~?cFMU`Pn9)-4S*o`!Db75#rdVokpC# z2XUctFL5#D-PPzJHjFLBleIYKh|+G3e0u940(d%7F>(q`L=8fqn-7E&DpR36E|c(ycC~`ZwmD}JE1@z4vP^JYuI1t?{IvI zG&6b^R=C13g)DjqVUMR7*;siu-Avzou|&#P#ef({cyK9Vzr^(qnv1p+ykR9!=`B#LC_8odZ8T%X5@WNu5?w%b8U;ix~ z*b7i0+)%=i({QR~{XbNHV=_bvn|nXvTy!!d(4bg7=tj5D0-g7k=4*bvjI;-$WaKbL z&gTBu{|D~{*9NqD2a3JUd`M($7iI0_oGX;qiI{?FfVmfLR)LM%ci^n!T7x-^{8IFy zLe+7ZDMIyG+Tmx1F4KpWEtG}8z^$eutETg9K;VxHd)2_%QP+7ECxQ$i3aIl`WdkSC zOwo=M*Ji$HJdz$UnE)naKbgE21SDb0T76XlW(tfco&>Hr+f`b>9dFq(TWTcV31dZc zNZlXp4C77QRq1W}GKhTfDXb}Ae^%5wQc9Nwo%?xStBiiJbA9=?-7B+|Ki!vYMQel1 zpUF{KE{VrEO6}|ExFnD0k&t08>z5-D$BKMedy2ubbUt#lH{D)em)O3c0du_c zfq(?eUwo(XZ#63_QMihaw5J1~`{nyy;td@HtMGnhwz_q5c(2F@XX_f{?UNS=4*0r_ zVRPtveUo~EXDXxPy-0Vxhh_8i;e|4^Y^`PA48^qBZmZA;_#F84~~ z_08;Bb5-7anm==;iwBzqaitEc`%N_MlVk6fBfh#4b;HteQq(iLQiaNIwzD-RV6PWb za)CYg3G4pt4Q(6gwhi0xaI(46FOkB{(+;=kFL9h-H;W00zFK`wP@|1SOg^=|`Gd^^ z#Cbfm#MOX*Yp4=wO$Pi}9eyw-wic4gk0SQEA=V+-!~y{4kzZ(b3_Fc(M-wMD{WaH|%QBW;KN4-m!9DSIG^*wmA21 zDO^wYb6{*D0oY;rPq}-`e7_%!c!?Il`gvo|RhZLSlQ8sE4pnie4c^UqBcCH))u*{j1IUZH`V~m6(?%5i!!k z#6IRBV!T9G6g6i#iy@)kU1>byqTK9mfcO@rqb-ltww>B@;|ewrSIWlsAX+%t?Pp=! z;L)PzK(fir_?Kx>+^}^8nEAT#mx}c)@uwBz5>QV@+i2rYE+5&`zgaP0`VkHGLVYNB zvY-Pc7d`Mk8gvE*xM0mvqBO;WwM{5dAHR&sL$<4-7`SYlxSf2!fiZ;~Vg zV~8iSJc;DevCzJIJ%`P8GRk7V-(%|L#!i`)_pwMGoiU*K+Il#ps;mKAr>Mei9!~$9 zk15#|VWccT>=Slt&<$?12Z2%GPv$d`-k7GG5JLkTDP2{H?IE<}vXt!uLf_0Y0&27I z&Un}$P1?|vW8BC2(`E%a*d~?nr5Xqjn*s|nBtVx>-km2J7t!y#bDpt8oi3zd(nQ~z zO#Ftd3KGDcD}E+&HLow%Sf_&g=gQ;J01!iAJbiU7baB0~z%Qzh=dU*JEIM0`>ZyXa zrYO7K2~1G)9g^OFx4c}6NoQT?VR4I0wA%H&u%mBm8Pf^bEXLKE(HP4NNWX4sO1hlPPBf$#*488EWk~rHh^-UIA64hn0t3GXq0aU zUty~I%zS|E2Os+2oGRcJ)&Ixddj~c3u6@5NA%PHD z5;{^s@4bjp483cpf`HPCf&!v|SV9OLBvk2!DkaiU1k_NaiS#Z_M5-bn0xG`w?LBAq z^Uir@&Yb^uX0qnWz3x@BW|eDQ-_Q3APv4-j)4s_ujud~=T`RK*04OIUr#ERw{`Zxu zBSGYAVIM6Blj*Zef?wJ>18D({%Uq}M@Y0s&y|-5)B7`GuFuH5t8LXVqYe>0Y{Y0U6I|};1Y9lUy z&TDXJ*B8_nRG>Y(TvjFKV5CuJKCb=be00m_9Rcr%c(WWqz69-tU)rC}*1V!&qW$cN zXc-}MU82W*wWl!~?0eaop&!*fciYm!`MNd)4UVJ@k_t764l<4&dGpE%_ggaAh^w0S z20){{g}uqxAnj0+dF5)Wa{U1JF&~c+YH>99!Zd&Tc3HXhM6Gh<}7EQ?1s$&;H|#)GIsC!D`xjMPv?@ELa_U zohRKqykV3%=L5Zs{KXg^5d!eTQZd5&){S?!5^PHE9<)N+Y67O}nN(pq&W7jdXmAqQ zN=2aa*f+h4*S49JMNU}&XzlkXvq+TW5Ol8-7`_Ot89`NlDRDJrx}|WlSwa) zDOcMbdqP}yE64znoDkam)R~C%ITZkzI|@m6uii04j(^!>9>a}79z3c$%dh6Ge6dAT zrVlJ)fa5$jAo!3s(jTpENy#R=+EVT;;pGPUCtlGm9Bw|u?D(*-{!9($) zD)i!Rd3R$wN*rRfVFVdKlp9On)@*ga5@<0vflgVyG|tO9WTOw2ht{$O>?rMmvnz~)(5I|rJMP3i@`k0#_KLeJ} zVN8{vb8psX-iW^KP9JEU^yNf9j^5yy5~npyBa)?p#6Uc6bXyI`_}q}bKL!fkqGcg; zHKAqMXta=faNhE0_bz~?SKzXPAp{a{wH+yf;cv2n%8?Bjg(E(;$T_M**>K46QxyEs zmd?dMcnnv2m_&@ERn?j#WA-^AV@pBFV535bZV@ifQV=0rrO7K7M-M5n$3Vq^2snxE z%X)=L*XyAGI%XGKrB$pF4>Sv;eMdqoQv!4dN))SS@%!gb&Fyg0Yv?EOucZu1qvpx*cN_U>4mM zui6hFRuCZw4Qyqi6)%LFm@Kkh-K?qcp{>YdUD4ooaoK&-<8s_72aG^fzsZCmS&gGl z8VYVP!igqI0UK}Vk#&)IF`==N`O~Ikd*SF&mi_~iA;9#}LA)?v@d{GXD2yLXC-6&@ z!Eq6o^=bzSw4I@J(>gUhosnge=kG7xv&-)nG@+aUgYO{XqjSqjk9c#`?>0G`2B?V(9s#S##DR2njhzrmVXr9A(*6M=iaCeQ%Qz>p z7`t_ZUk+fBIKYDFM@lU57i*1J{}g-O#-YoHSS3!eyyjTt-$Q4h@qS~l5I|bs&&Vc_ zeTjyVncaXb&`{L4TVNd`rdr8nTVMk(<)#d633YbfSB+#F%nhx^&BgkvcgS}mFCwkU zFavFsRH;Fo8Xu6p{R>gg3y!cp1hxR2g?lYRSQAk(Du4YTM{I5;>3S?HBXpd};rZ(X z-Q%NSw4{L!#-K(WWS9Xphl)6qiW}d-AC*(Bkpb#$i0*F3RuR-lA%b&RT(i_7(ma_7 zHe^|f%H*+04Txbjux0Rxz*KYyXBokXhS$^0%7O`F2XKZgph>yu3O34Y1(d#LGtf*r z6BOZ#u=QfU=({di560bAdEr@GGk$80*Q%YA(#MD8;aH8KH$C52DOv0{;JDBPJ>yCp z8P(hD{i>Ez(x_D6R64K{YW#g`M$>Ss*{?__J*#=`AsufuS3p(!W~ZStS#q$An~QXntmgacx& z?8Fp2GzD)A4)vRH0`+r{WHABbq=YDaESQ|Za;{rZx~0c(hs@ay@}qDRTEM6V_pM7& z?^3j0-kyIt=P;7QLw99wgbx^Ld( zxepQFjZev+OUQ`3%tLn?3WKIAMpSJ%l5upeZ5gk{#(cn?NjGqc#LjE?atzA6g4Y5= zypD|SrZ!l-pFjOX9>u|@jL2}_i6r`1RKCR^HV_N2>Oxy+$1@y#KFY!|;6DEDwu&OgysUtg z@hu%G(WYDSL$Z2l?VOS;I=G1}s2ycuo6E8NwAS!U_idcMW~<{-B+cOvepjcEQu@He zwbPhR#pN`vH_(-V1f!dLVl_x3gc((RFiz~cI_qYiUus+MQQi8CTNnsxVC_arR*9}D6&(%Fow$cr2Ecue6U*Gq<8n9VbRiHWWtw2)Pe{X9E>?+? zK=-s*I~G+fP7croiZj>RY+YcFz9&5jXIqSi+5jH%hZBpcQf$LU^DWhv)u)0g)poI; zl;dLYY|F+kV6*wU_hLb|cb9*i(CGB85=d^`YTb68^hmVDi^!;40}CPb&z_%*{TR>R zZ!K|Cb^B8ar*i(B440APpE(yIsb=S#Wijw(K$go(s_j#qWVbLj9}Yz5E!mZ+%((<-d$LomF&j7 z=dmF{iQ6Csg#wPHC3q1=V4(-6E|YHI22*9jx@hAjA#r zEVqQAJgp^~7c%VQiHoT{3O$k2Kg5Q0$MGMGQKZ4hc?j@}@0oYzD6UBCKzqrv1&kJX%hd?=bDET!07!*;YMPP;sk#s|>C z?(BWsU^0beX1RR1|JLre!iQ*Q<6z?mJ-FE(Tm{!KDrvKS8mC9_jlq;|Pqmt@slEPF4IV7dHx(Pl!li@q@<{N114&{OBXIz$7V+UWKVz{4Oi znVh1y_V7FcOads)Yq#SfK(yF1)K(7clUuT){pZ_<>AhcIPH#b|qJNj~kqX0 zUlu@#BR6oS-{#DgJ9s)yBX&7Brn$y2=Jwra@0u*{xtw<0>YfzqmS8PbnYi=Vr)g0S zU0ZNVMH)Y%Npcb{Uu`eV7fkxtD%el{!U4Fq*FB(@jzGtumt#mAZMh7_%fmG3m$U)^ z5C*K*Og}4yKd*M^{?j)%m{6kKN?&s@=LXeR0Pmk#OUGoD`_;eTRlLdi^M_UzPV7-o z21(%7*oywLSI=d%Bv*tDcx-}jis?U8TZNZ8)MgF zAb>LrzaFV+eC^@2JA*c1`K|2ZV84-TaaJ?;#*zg~NX405 zPp(fJy0XS7i{BI8iL@31e~o#k1;lC}(4u5~cF`RKIH!`|bnS-%QFaNe&8P`SPa@CR zpzZRMi5TFXW@=Zgk4bDCoAh?T>U9po82D@CI_i?x#hCpUJ0yh>Bi0PIAe5|W%_RXg zAQl!3LrPi|TRpR~Z5GF7GO$T@VNM|pBKE0w0358Uj$KGX_{E7|*wzi(dmX@FHs{oO z+bx~xi)~v^&{m~-N4*625BZfYSPE*?Eu!NS>(%#GL*?ZIEXU7a=d1#*J&Nh<9sjv+1=>c`dYOoFyUz`xNr16s5QntBA!c`CdEMXq?N=2S zY=}l-tEbK}^Xr>zcjIRneG`7()E2i98I-(=@sw_MFo5w$>`iYHQ{to?v||#EW`S$- z!Tee?T7qm)!K`7Ph=x)CfPa=e7iLk1oBHrYaz4mkPT z_IJU6{M~GCG@et_wO`>>OCfYw_W=S_NT5%7C!E51xctt0`wvLSJ{pDqN%Lg)azK@U zpn;hBX0c0LGzcXjAJby!I^~{F-Xxgz6c18 zPYl^UXD0{jp%Tg~(jsUlXVflbsb+?WQB9BB6IrE39EgIqQW2|ejs7i?R*!mXGoZ%1 zGhYnv0=w-dCeNe zSA9T0^9J^`adarohJWH_6GV>eMKDG&12~GE-Gb0;*xr2|;B0)iH51R*4(a~3ACq%~ zNjjU89Ef$eCfzi<%0GOKi227|7DjzFG!)k))br`7%vn}{_dA@ ziaTo?b*uultXVjJn5njJLhm<9V}NdcYZnf&)bg0-Z&fxk=HLi51Hog033)-|mxnuV zzvwSAqFCB>d+4wv3S;>#EwPA*zzlov;Fb(&W+2qia=txrXI1iQM5`c=?49@m zvIi`@Hz_2V>Sxl-sAr5Mpt8GTM948gortjmQf8{g3NSON`##LaN-R31dlI+Zj= zlHlp|+%R)tu^m-LwUZJU!MMosfE06%e?;;=48rC?H1hqve6d`LAIf;gfZ#$<*Iz2~ z?@7VQHtUInYYa2yqT_kJl)|4hjw{@!lu@7L5rO2+`=&Dpo0cWTDv!w&k0yaD+)0_y z7|NHd5Poj}&8%SF+j8-;p&MUA*0kOjw`^(I9|>2)REjWo6Q{uq`aYOiX$SL z?uw;FMvGt-o0!g`Tv!SB$+sMjb0uRptlfL|JtRN9$Ls;`x^@{rMj7kOlOR{%1l{j1`LD*i(PdliKWxM&>y$Dh9NfoXhtU4->mcQm^f)ArORc3K zMwUvM5|A@~!8NSxf7v3IUYMB8el1-Q|OX9bzGc2N)!SYPn3Td)}BBEkBPvt{8qaab~9K#f#^&V8!Fuua;d9oJ$qI z7-Dppr>uDjX-c2DM7M_#MVN1o^)nc}vNUmv+0 z{n_Mp3kW}Px~%p~9o%+DUrQ5xZkcvM=IZUo8?0M1A(^bU2o z(2h-K)$BuAgzt0Os8LO85Vw5@3WFpcsq^)$2JZbjpo`96=-Lv@`3AVqYXnzRQmMV2R^lCkC_ zP!e-Qw%x}~-`qql3{ExIlL^PY-ah%VC(b$K<5u9yy`JswG*3}V3?gjeGyVMC4|`lp z=B-*64y{;=O3lG>irsUIUcG^e&Z~jKqGuyvx1on!-KRpBhvjkaB+=UtcjLK*Z+^9g zb*|9qdtL*+kM9Q}iCH?uD=>#0FK9+naS5v{nM_kqjvxFgWgW$c!Q z?!9$dS2KqByn`k^0t?`L8aH$^DrHsno8=g#-R|x#L-p-^CM}~6AB0!G6@EFXCVFYC z^cg}5f%ZmdO1I1r8b|55FGY2{V0nS3vG&XVw&+RN?pTPSqhEN8etU=bBp`T}QSZLDa+;qy-E8f){ddF}#FBpEYjPvAW!qq*q)`H$P!_Q+_9E`&g zsr$7oUVT#Kvk|ZuO}^MOC5<=~i1OaOaPf6>?zi7*40w7WHT|?Y^*DXGz4NQ+&dXE7 zpNC$yaQ7YQvoteUsti2Cy}$CD`-C1`!&h*UKaV`HOqF#=>jNJ<3)t4uoYuYL8Fu{n zgH247M&by-*FrCzstio=3Pk6#dB7Y_R7ngx4g%SLlnl3_gf57X7Dm#eJt1(*OxEpQ zqm$EvO&TK<@JdXJgiwp&(xtKkV)g4Kh8O%+yCZhLM=rY%V(rnkC6U}D7`MF@-POE4 zeHx|vco@D%ygaALcixSweN|S_J1lcnmBgmIi~yYpXY61%U4XzcLmFu+o_De0T)E0D zxeEm2w<*HBdZEi_P`V6(P5^IC`X#?vUfpHNMB&zQ`-C$^K%YKniMt*ds}YN@Md%4G z3@asqS44IcKe3t1SrJCEg{_X<&aL&luZ6NX zB?kMtI`z^h_L@$rep0RH>7N(=;e5dv+-7(@=!rwE>dB2;r<#kNk0v zB-HtRz&rg|oc1ez^P8WyWI=@z5dvHoi227Tzs{=xFv;M{Lxm>X;C3Tg9UisJn?LNY z4q5W$U$RBTnZjl+A4VG^#jd}}exUW9UL6D2vnP98W6zUt zap2mxMaJ#Ck`t-K;vvcr{l<(PqPxMzwTFy0|pLd*J^RB?& z6je6mNM_ApMRfSNGK>W+Q*4Bwd4LZUUW(>s8!i!>^uAu;gu-OJINbqcLv>RcJ9$>) zckuNuG0TAY-ld@84s2Pa?o?vIU&-p=_X-yXAaBI;jvG=r@JF zkse)1fZlgagb)1<^LE_+B$^+`vL~j27per-dx;j^khY6LXRlg1(kg+zU5-W zuM&Qn4|$!th=`JqF-WS85#;OX8tx#xqNC6B{R|i}el_(U`IjQRv2oaXf{e__zDtizD5TvJ82hb zNsU2|w@=qcVRJgq?F?ypbQWej$^PxaE!8ekdPVESkWv5$Aa)3^%Gze;cj(ggeV4fY zRp()kE$V=0a`a2zgbpM2l1vhQ=44DWnC8mKhy->^uqd6yV-3HY_a$0a8P|d5^(!Zf zFKP?ADlO4GoDgu5y^NRjU(!JiS2Gas>Y86wBO(!iM8sNghFjHyhh$-x9PiOn2~A>( z!YxaQr^TboeLFg+UQ?J)`&NNuse02_zY@s_kTz{xbt}#<%FU-(6Q;0+bL1tf*fAE`RSyB+|Ak>t6dy~~rJ(QU-0A4dw-+kt!qjpI} zj|;$XQ=Vs*ntY4PhKhIjR4(v{^TnJL39N3K4pQ#t%nSaKKmq{^`S?#c&N^L@@_EKk z#v<^Hmm>Wpi<%xcfaCJ0%aqkCT=|UVgp{TPa?gnfTSJh8-|Xzjtjb>{(>r-%oZi7# z6qf>dRB3nt;FOD0PZDE@#NM(!u|PGtAd1)YstGK+m0Ppq>6~5WtPWB4Al=?hB~2{! z2sb%V>TlqyY^&LcunXP1^Cv(6lz$3${YF;J?3s${I=q88H8XU5t?9!XtNB)LpA%~zlX!-rkrurj%e#2j zDP2$P`V!xiyE3r@2&S;yol?rej|9cyuVB2o_v}uu6nKc1sebQ1e}~O6#3`$j*$&|G z3lY5gGlcHC5q}6!)2=ujz+!Rzy3*N|S11Vgcb0~&?wnw!v9oRgg=uRcp`X4horb;) zcorm?9wPG`)LqyoA7BL?ufO-x?T65v_U!(LC5krN5oa!)?I~&`{OxAjUt)*}sxqOG z6v5G!&q{$q3rRY$A$5w7AgDwHR@%8nFqB44sgifl}ASUbqW1iH36k?SElA}&1apG!(qmwc1EXdjQ6p>y$E4rrVc$imZ9X;*rwCnXPypEoe)O*JmQ1W8!~6z&po{aRlk<61Xl(}>4J|OfM>_b z3k)Cn$fe(}q?`+zyeTTM3aTCHWPPf8-sN7Ib(E(4M>|NnJmVG8qoC|-z$p-W-i!>A zx_gx)aAblGFG0+6dFW!sH618QqI2Yog@#I|CkC|Z^w|Tcw9?i4M za%V;KT)T$=w?B>CwKOjrdoONRGZ68VqJ62y5v@YLJP>7Y>Gcb8dh2%)n>@5t(yQ5T z?$uh+Gm|42dhg{A{kjtzS=a(x{dJcpYzJM!fF&qOn<3@`@`NVpU7g?i`YQTXiUcuI z(}$+}Wt^Wb;^!Z#qt>yCQip;I4t&r;dCR&CE5u7ZYq+3M$;GPLECmBky!a8FAElU*R^7mQ|xwr}cM}xt6)`7*Gv?8#tF`BrNm! zHPiRki+?pOX-~gi0g%06Ek$K3+MzQ_4?pG7Mg2siyIJ|m5+yZtQp*XSYr>R+sW%IM zo;;&Z%2dyD{I+~9)I|PtqbgYgB4ohmR^E|DJv0b`u!?Zb#YbPqV}c5cVqaY^y=}E^ z#Spx~@)q?k;D=qL^ z%RSoX)W9HaOeS(SL_ipXoO+;uJOL_bn694UrW^UL06T1aDri`sEugarI+yBUk|u8U zwOy~P!!SwCFeBF}*~=pLY~b4Xt2FORPcKB!vY)ppZ@b2+CZ%{->!yo;){`FK;7V8Q zP9v=5c!;gCi!RJkV|PqJ>v(uvx$d-#^mKeF^l>dNVqDZbNI7n8qV>tGYi}QZ=4Plv z_SV#*=;V~y?`%FcddK)UYMmY6C8sK;IeUr8LfP&dHM47-2n%RGjCCrZ>@RLvlVk^`&(bBM} ztIt@N6*F=@T?|7ShN?nZWID+&X5oy${Q9t79qoy}RFdiNiZH85kyQ((a%-fN@1oAT zChm4d>%p8}L3d%+;ZQtg`61&d>G_g|4~c4krPn7ajla#tI$Ml^NF3s}y0p#biph3>9*Z)GhPL#?tNS9L}v11aJ`Y&%vNUkEU=6-yWMET_gA(N?U-o2>zh3@Pf* zLv8$2+0l`2H1!#2B`6AW@Y5-9whp7RI@Yq!Y=!d+JIl4`c8>=9c;}OXELya1Kk&7TJU2M%3Uo1{9hSkc_R5Yn_;yvw zC0jv|zgivfJp0rOpKhUfmtSSx=W)|>mg}ib{OQHxC()5A)HK^LO6VM}T>p`QWj{b#CteUSRJBDPCRH%5pR2kHmWzbvpY#}hYf58cMmdiZfm*nBgnR>ms!2Vq)QVcCe~#uA}06cb-`?@r9K+Fwx#6QqMs0VNW2>xX-(bKas(lt_4P*nO$eP2bD zcu++i)S>^);2`P<^nbW?|BL|uSNGciI#{gvzkmI2!^24c^iTVk?Eg0Q|Dz4=;d$Gg z+UGa*d*3}Eh?-Fag;HaQkl=uSViGlGbGz}cxbdGjh`NH*_TGPD?|;Yh|LXJac=um@ zY^?OCTLqz3kTZJ!kJ#;h#MI^f{b#}de1vp@f_=R_L($f^yn;hqgFMl<|JfDPU4_O5 z-SYDF^Za+e|Nou;$8`TQ4E7AAZX5vU-3kZ`^7Zx!M*qLoKuJMS5%|xav2XdWoebg_ z{7>6|=J=nsTSWk%{sRDLi2rGGqZUiOi~<0z+5fct7dj|Q^Y_2d!T&-B{|g=bFLdy~ z(82#g2mcEl{J)`t?o{aDRnYkV4jp9qQW|Oee?tfLM$?WGVtW4{=%5)Xs4!)2X3>M9e z&(i&3a9PIXeSf~$%WBMX=P1)A{m8X33(FlUbTIVG=+hhWzTklktHta~oH4Rg=%DB0 zP;W7>L9Q{TvWun0Z_Ha7eF@o;ertp0#+cq(DVbSm8{pjt!&SJAEhu^5_^4>b-1^uXVQ9P60rgQetnD;qA4`6H$!jt6 zV`IHc0xBh0>Q!VP6|(fBccX$YUtFv(jpy9@vs2Nl->=>;pS*|6yHLo9Cfi;NTaL;5 z@pG~I1;-iW6{RR&zN)$Jn=_PvH)&o1gM(^=DYxXI9gWBVNbM9SS4J{b7!COjjKZNcEXQv)T{JfLveAjbqb z=s*$gl(|hWB;F=@UK#&R@QKO`)w8maMHfC&yoPVy)sV7Svi18mdbHQlSE@Wi5}kNx zdjE&HO0RE&jZ;n1ikP>xi=L<*@sGHDa46l2 zSSYTQgIo|>hza-cSy9n=eUxr_RjC`EYz;hZPW{#Vl=}WK;rMg>t(S3M7Ax;WwU+*E zo_Z`>y-?L&^JpO*DiiA6&W@XSQ)**;V(|OsV8hhi?8A=JUkp}Gf(DWHO4r+xEuF0* zubp{W*;+O8=AyyXp`?jMZ^pHc}{Nxa2nxWM7;X-~`IeAO$kKJZN2m7ozW|7|S z`T;}AA8oxfi9G2?iID{lH&B_kA0uxt;lAg~q->}fIh5Uux` zv4se4W|*7Clw-_(Y}00OT`N5O@&stvjXAZ2&4egfYVu4XZkF^5js~xvL#|6cus$ke zgW5xRLdE^}l~?X-vo&Y8xm>Q&b9G<%sli3Qg|p5pLcBHBkR7FysV|~GGi4~s_?;NF zWme2TbD8EFnS}BWE~ZWpp8k z$0v26c^-vA3rgh@(s+|?ChwSjF;LLS^IbXM;_kn4MbNTe&r_&r`WGXUo)B7OK=fvR#(=!r(d1>z{?F> zE^NLLH+c5*=g6e~Mx&vP>2E1?r}sHD;x=?|qK2RLki|}e9X`y;AXM06lNJw61|D`a zWL_pd>qXcPFK@@3eRJ-L5Yx0CmWP!D_=_+Wt98a3#`wEbVan9vwU@#U3TFtCw2?7Q zsW~?4ehH3~ViMTiE>fXlMg_L2{Mm@fURk57Bc~+JKq@dOQ#Waotp?Fmghy6zKoe`d z!05k$Y{_=JUcb7eY^~H%b5)1O1Zd)H$L_-zo+OH><{zcGf}6HcHgi z!j&rkM%|C^6|5%)v+RO{9R0JQ^=I34qI~ie!+bTzmet!{NQ^)HrN}UqGt_?5BU^)e z!#!Df#zA(rt@&I(&!;=Hm&j`Mb?*l(64m9?55Hz~=KG#W$<=fc3H(ta^*NT~jMC1+ zLF*;cMuDm_SP;KUCGz8moGm3N^d!O`}9l6%;l&%?k(3?i(l z5~HX~`4K1FpX`?WwJ%AQyR4W`ct49y*}T?067~FSome}Y&zA1fu?K4*$;J!MB4`pW z+Amloh86gG{Os};`4;w}$K?HM8}6+(TF-BsRkF$4gI}D_qgp!xRav73t#tM#wKX#7(ORj$TnNbr*l5i)Uh; zRghpG>?Hvho(%xKL9mGU;2g_ngAjnf0*iF$y*3V(O%e#c#KdoppH^jQ0f5`+$kwjN zFRIK8B+wU%x&Cw{l{?gdCZshIrtdI8mO#5iQ>$2KD)o#8V6yMU8&5#JZBvFNGK%HRH@+Ec`@Z zYB-_WhyNA;jANy()?;oVVh2K#B$k!$ynf~arjqt z#J&O@m1x&wtUhQQKBP_u)nye6h(9!r8_l60RSTv^#EjJNl5-R;u z0)gBhEXNYh)iLwnK$}=}I2SDqHi?HmmCcfgrWShH{#1j-0cmpt-B(AqEyX=~nQ~AY zMWc|S)R)%(B#nX)ng9UB*bv=~L@%y%nK0H@>cBigXq5u+lM>ln@BNuZP{DBw3Nfk5 zX$UIwjsy~w6s+rgYPJvK^8|66(gD3O4V*F0BR;` z#WRRw7|>ChwXJ}EqR291pDWFs%Wzu9Jm!ycVCYls zB#VS(abQ>x&oUDOI`NDmY03z};y?-vAi+$FX#*4cvWktRQ2V$7gOlR(m58^tAP*OW z^?3xP8G1I1XmK7fY79tmXJ3P}hGrMeRG`=pVAL+Ka1P~Q%CZ^@;_fSAUrt=idK7pC zx!MbSktp?qBjaJTr=Q|V1Ep9bxQp(ZBEOKR2Xn!M5{aQO-V9!Dcm*lNMH}Q(9#M(7 zz?H9juOg%{`S;PI@O#fN#t-v(kgfm_AD|0sYj}*!VdHYsKE3)JtRo0%6X+bQ!6hPYaIj1X=d|bx2 z3bH^uQ~ykgp*HTm7v^Os9?3LOEvOLc|ca=&&nzmolGy2T2w3IA*>F0236VzIykOk zU(U3QKYc8ifMg4=z1oj@xXx&Fy^fBG%-bzT->9~gd=Bfa^FNn0`m>&1vHmOr>kO<` zDmP=sxbSm7Yr15HK|%xba!d=c5xtz~FxSAP6ScoluRoF_;n*Z&Ndo)IhF3mS(rDmN z%ys5!(oD%S*=UkZ$#t%JVYpR?m~CXUBwfQ)zwl|4{#83~)J&I>>s$5G&JiJSQue!o zJf96PYBVS1BG0#0c!j_GP~IefERMNR{cyTI3136+N_GuzmWimoMXU*jmp%#S)OE-q z#@5y)AfcvJm8~f94K#rvagVFzt$b-EKA)_@{&?A~$+uw-Eux&$hg~PoX0{dgPa4H!?0H z=6GO0*A;qM1grVT?{L2ne!t$yjJ#7e?-EGKJo_8DzQnLWB5POlD5AQB6>HPmPr3B$gZgewQ+s!jB-mF>7}E)paEd>3p1_alZ#n#gOjSH9I|T zz2BF2g|dF7PP~q=PfRPh(a}RjC^9?>A57`2=*-$imR5ig83#C)W7{B-v~ zEZ4B*WWUDr3Sbt^G&Y#l4sV*Cf6u7cMAUdK5mBBqHvpZFI}-ppp0B9P>K4@PKN!yG zZyTiW(DG<}fF>3oYjf7jkpVZ_A>fgB_AlA|`QtY8-sYYHJUE*3wZm&Uc@c9TUTtT8 zA9%0);7LdPXm}Nfo5=WiX*5+MDMJI@G!KP3kLIK3BrC>xauXnkVLl7wf_=v)&`8f_ zkJ?Vnxt;9rlM06i$iEdGEU$-PDS5EO@v+}E=6oo9p1yJOHsz0^9{z|uQnH%k^KVXL z`@E=6h(w!@we+uuV?3j`oe|j#Lw~nE9AF##xu4zM99&^Yd46w-@O+w~khr-u6ra?1 z<4?Hwp9v1Z>I~EIC}+f<@b^9sP~!wo06E`wb0KA z`PF9dO~D0|ss>RsS4d$4vx1fx*-Yad+vTxZd{pXQXY=#v(5g_wGYJdvQxTh)I>rJe znk=9SHt+i%Tm9SA{cA|h$d~7*S1kuD$`|JOru5@KLjC&RJa{)OId7-aA7DQ}@g7w_ z+j5?drK^_d<(YT;f0{l?2_T+7jdAL($^{_W^MeTZcQnh}0FWG!sV=;}@YMnW+0T4+ z_Gmq(byp((V=EO#Jh}^EcL9wlFx^-O4+gyI2pc)}N7nzIDzhATE>+X>dL=Im@ojhI z1`OnmW`28)Rg}o6J(T-WYq97&3pc~Wi{(YlorU@Ls0BnaX?;b3iUOqa1&5iF5jO-8 zjF#1i_2Z8WSCNBgmdU|IBhbj)ZD&x%7PB)ybJs@F6`?r)lwAH>(X@X%~K6# zq#%)TopHwD=1R!OkQD#aeQlOGg*6rAdSrFRcP!jIf@XG?eD;VmAzLXJ01xf^&}lia zq%l69*sdkTlJGK`4M&5o&M4z#c~(m^MvU5b8Ml`kX3+t0E=STTeAs zS1y96{L4gs-sPQ%vx1FT;;H+R-yqj^IqOO{-emsd2hwkR9jb1)l*HOnnc?5Y41M(d z`%UBnr)Pmzk#bnthMe6ypb>G$)1lE*q?{a68RzpaxbJcTgAT_tht=en-KTT!zYSev z@$&yN6Tc^a6{LY<&f-j1JK8h+TY7NGTj1&?+}5j`jAc`U&X2zDVHkPkm@FT+Ao*w5 z+Q~M5Kb@0*D){CgfAjEC2~FwJ&OWg}`N~h|TP8mvkf_2J=I_(d0_BhAe@22vo>2i% zS3ZyJLLOBgt<~-rYB3Wp?QZVE_@cMFcBj;3S1103B+PsJ9AW-zVq?1WYQh69@}S^678(gF)A&+UkEn2ZPA=Bl;4d;ub?=P?yJT9&-K*UD^9< zI{8|+;WX%XUxuI1I_u_%vq*NR0oAfmEjIjh2ubdyTyLd?Oz3JXs`US`cVACUJnjSU zHw6+xOQ@lT-aAN#&^ywlDoq3gr79?DAoLn~$55pUN=K01k)Wvb4uYV9q9S5Ghwr&N zGv`nE?fvfT%wFtH^1R-U+m@A5#EmgYlG~ew*yjPO+=}PzUtV2-)J*)FeCcJ|_hSoa z{&4MBJ7U_*A@%onX@ytHV`7p<*;0VJ4abdA4%U}%!Z^|SIax&-$#JI?}V*jJ4o27{Om#i-plLVVKxy`OSB` zW(vK$L~5zk`j-L`WU%*~%8y_h?FiC#wJE+^WuRP^R>NpUN4wXe;*H!!P@jS6RvfS{ z)cfM?pZUx1qzFAiI3X!~KW-jhlQ?^AzM5C4B|>H<(2jWsz{xs@zHc=2>#u+NCN8sV zoG&G&1m>{ZxocX)D25Si$&WF%w=X8LZ6w2=elcF8@&w1t#qT)Qmm}u;C$G8HLRsrV zaU@oLxAmHP>gY$oV|b`s>__1U-K<;5Ebl{}6@k8)@5v;SjK)6t0a)dYs;x4Ub;AZn zx8(a@Qa?O%Gs;!)==6AVS-DgmuTlP6N)~a~OV}ycQ%uf0`PrFiZcrzaE*=iXH@&s{ zC={mP;Ko@LQmEYOyIk`}4l|_Z>6y?xx5*ct$?fJ_osn7nF6pwYu3N{rRy(27u~zH% zb1wt`Vq>(urW^x(F*wPbUR)anV%{1Qv`PkAQs3UGpM%&xw*%k z8jzVOT=|2X)Gm{b%FXR(`Z93$a^Mxq2ga~KHv2Wp+VJgd)e!S^3D3YX{&-uqY;tO^Z>N(y)-92lsd_;8FJD~*2 znI#;F$2ZLzlyLH%1blTfU=%rf4NT%wjdd!RlDFx&CPamQ`GVQdV|~81BYd~r;!%pk zs1TVMt|^&S^dAu;ds;VYjlb8~cY}*}c47jV-3%^#wqy}RZLXR`7;KA4M*RvXPIt8Ic8PCL4|TyTc4Xdzp7cPz}UraKaW3RH1|sF(9daI z-Ve;FrX1%ErgE~xM|wu9lj1&0 zj3NbRuBI@qn(8Zog`bC7RD?v$?kf8reZ6iIX9Nz^oAVhg)scJwM*Yeu&{3+vQ}6Q? z>Pli#7q_b)fSkIiy`fFXnJr&Kul>JxV2qNEAdMs+N-bN&>X}@8(UlVeu(F{+!Sy)% zTc;VilOXc^b8Z1H{!|k*yx;nB4S$NMfBmP=4@yDmqDgn{(iLlRKKAuBiq>nVI^7um zFf7LMLb$-5wOd=A?L(Wa1(Z_V!C|rE->xWrVB1@9ak1}x4i{(5s+|A5cdtTu0RnnR z+JRc-@bqTkSuH$Z+wP;H9sp4I=&13HI+v&5L7E|S|&1|7hS|S@v^3eanOng0G&KY&LlU%wjr8nb$Dd)3G$wRZYe76gRL4v zI(fAOZqM+(hBMcN{RG?Thr9~I!=2b!kwoL*;0`h`EA4rvs7mVjI-g=B{% zA#Lcyh*?nxA3wWe^JJ+jf?lJ!B{bh1=C-HsgrrTWnFj(?eEeemSi-sjgc2Aj-OP55 z_h-fnxW{7>3IXqZ^G}6Z2bTCgb^w49*+(Dk<9RGM0=oQlX|N%r>r#5_ z_>PX1|60~#86Ds;XIKNQS^n%I;`*>`9AT|X`q~gy@GnEUmw(=HyuG}}IUxp&!AbhV zs(qyqr_%z(rMm>}kN>_B?88F8RpOR*9E1WN2_mfnss$`;fmqTBFpG|9#gSAFQx)khCmg z{cIG^WkXfTTMIi>&%124U~!a0Eh@7%AQ+Ym5+-j~13ft3;~ZvQ;8R6~B0LL;p@hV6 zGBjwO)k9znc(~UM83#f*(3;~pUDhF-N0R80OgK>2;uNp`Yvv%X@0#QiJBXDN@X0sfUe;1Yl=CJ z?IEfyhoQ0%4ME>b0bW#MV3cGe$G!Y6hNDEy1w18uNS0F%<)O~Kg|jtQU(JUFY^eTJ ziQVl<3wJ{e*69WTIyZtuH7^iaJHx6A_^axT-F329v5^Lu1TP$K4}|qM8+Rn+75xB> zRw!`U)DhUxx4b}1EP>y4V`Bng8tgU6)My`KflGy^v_G|ZF#tji`$F}JAtTo(4Px@+ z>;$9$hZZf*cuxn_;85zoA{;ouAdGCw|IV7R-c(&QlH0^ajJJqKZbfj#NzR7e5@5q4p z8i@{Ab`$DwEJo3;G<1P~FFRu6*|x1ZmGNOyfUaN4IyyF6B+4t__>McjPdJCS2#8gr zzotg;Wkoz9AxeM*3FM#9#DKCCpcU#SL}&iE+Y@P6_In!x^r9fId=u-S_@o~Ofqy6~ zWTS588y{~qJcTN~pqbP}PiEOpje5S?#&*pF#v8)3sByXr5nalWA_gMGNCIvAzRs$+ z+0Za;85GBhofzSiCf~b={!K2(o_@I%pX&ZQw`pgv2@zN}6 zU2jHDLGs>#NNrI9LYZP(AZN9OdLa>JHJ(dNDvz+Nk8D+07qEyw!ZQJvPXEnTWL;7y zx}h9>8C3fuki!}AtRoS2qvnkvhLS>^DsUM;C}DccY4P3GII*jy-t%P-G-s0E(y{=7 zf0q}x1OK{m6~IQFoX)O;R71vrWbw35iM^j{+t4OWgcz-Li7B?rmMnopm0GJKpm{yq zw8Mj)nhltaE_Rw1NXCG#N+gn|XSentd?Is<`c}ZXCXK0Xmgwtih{2()h9m%_j)XEY zS!F7aqj_kpsUWK8FiK&Cg8$S=yi@$vx{0VWJlD*e2<@b(;+&ZI%<~#7n*zpifYG#D zFSruNK#KkvYMFUDM-Nyl&WM$V51^T~@DIQRwhWvx`ZrLjl&kOspihq0oLd77+OW~m z*Btd!I60(@kpr1P3F$IgzD|_F&H7mw!;AT=nU}rc8e3CE3;Bl5xj#iVa7M;`GZjvt z*=ku({8{(#!kRVKwFp3v>(-de(`=NSai2+DZP)Ic32QMfu%j zfuN-U@t=V+pJ^z5sTbtPWd})^UP#bs!arz+z4sQB{@=heJdS0CDseoQYJuf5nK-Dg zlVQa%ICJ*icUJ=jO!{jiQj4(u8w6b)H29g1FsuWN%IWS!;H6@@sl@D}Qf=)d0ldCL z9x3-ddy1)`odbLce>^F-O2+A`7UWs-8{iG=Xc4&Xm57Se9eJi!*u}>D z^r9wzrV1yrvs9Q3kK!XNjrNZ$tgd7M8O?5MrC1AUPTN~AI#M3hHYTb+5(Q`OKw!sf z-vp^1MU~Y+ozi^Joew+kfiSPhso&~w-1{*Vs+gd6teNxpTM{Pc`iV*CC_y9eZZD39 zDHTYS$BV$^(br-yf?mN|1|`{ydK+M=F->K|nX2{d%d`xjq>k=PYR3JXPYfBy%@SXP zZnPyIf8?ji1=(ApO0zGf@n{j}uJG|EE}KcpQG94Jbe%H>oo|-1QP{s&r2LLD(G~wV z%4*svzD?DmXl_^o4&|%Cy-+t4Shzman84rwX8m=ULx=JZiH75@dBAI$BBlr|rM)$t zFoF7^+h2tj<#GipT$#Y;J0X2H*LL0v(m>GwO0m;3tEPqdAxpU|I|73bJxi0Zj9>pb zsq;b4+;(S((}arPy}5kaYye8Z4OUE~1n0}q7R80uCCCOsfQ@J&^v!2) zt#(EdFXMRBfGnedIZ`D`DQ?&B&8#LGjLvip`0^AzFB5Ql6QK+sAHE(g|3Jb;v(yy- z4YKpO9xYtDcmD&P563&)n`o9(h9y^U9R=_GC;DmTi~w5xlxUX7hyyD>{xryG`jrMM zLR=Ms!|La79MP=dBJlwL*y5;N-oEKEw+f=Bm`WL}$mQd!xu5xK2ulJl{fxS!oRp8X z4+ljDBVlo^z{%GBRC7WA9^}=ob?@G-tSbi^m>4bMDp#{>mJI*>WVB6we9*#6c+bHo zCW;>$b?oAa^V+#b`ML3z?&Zr;6#!{++{nbed61efOpp>z_ItHIQyrO4lYY7|Sc`c9%4YSp~Z(g8#OF%zk&87Lj{O)d5t~I+f{TsQlxQGQep= z?_IscV8btnw&l?*Wd~W^=f;8v#ec!b=!Te9BRFg6ltB=;0W8FX=i_>6z_~cf{vSRpEMmW3WYjYfc4^y_uAYQyiO4gV4a2U z-g-eI4mZ=^_u2m!5XIkNZxEvW@n>Tbgn~BtRcXAge|?f$wDtyvw(>3S?9igBpN#Y! zb;KnE;kH)zNw-kwRi4o8xFB`Q>lg1ikz?NxmeDq8`78?#uSj@4|7Gu|=>j;=&1bM= z5wI57ZPoQg$ipYMw9o;QDX>_;;Mt1=p3dtsCH72_*n3aukx^wObbgU{gLUY;CKM>d zmDc^usZem=Ooedxk%Uj*VN!mS!u{}dny{wPU%uQi=Naw>`@sF9hP60mbFJtv+jD%y zHw>HK%Y5Qxc{f-qKWaG_5Q-~lW^-B<;wGG{$=Za z-DBzh5J^?D$ec4g>P<)&CQ5*CgPF{Y4BEyX9~sg?g^YNRM&MT+kzA7C3nCXKc9vZ0 z`mk9h3W76;`R21g7rK7Ydy0yhOutF~@bLM!8LR{N0)C5g;S1s4McEkvjQ;l@=(JZ0 z{L=Z~?Bjp&TFc#g5bZ!P^+G$)*)}ut=xI#?7>?t?JfbpeGS~Wt*92R`K$77XQ=i^! z!Ti|9@aXYeN*@3o{&-gUq66I-Sc(%shcDc__5G8D0CAN8eLaBn$p|G}GwK*grM-#K zL7aw@ZtoxS4ks`OTQ~Te@Lfg+xqcn&2k{#{zls}JHI-;5`sWUDvgR^6I3w~>Y((=hAK*hKBE{`um<>8P z{XTedvnnO;s~`T7Tqy~U!#ONvuc(K({r>*tA*$NqHRs<*nLl>TqcOs{P`}&lH6(4d zVTLHq-*Vms5KmkUffOqe^aGhCMf*!^D@_0}t8rW6)1gj=olL0D)2GD9Z#dB{Ew_(p zJWdEDbDEqU?o4Wzv#hinUxx5_g(R$4&Md|s1oNlJ!vB)i1OM!ZG7QS=kj9_Ayvx(l zwf+f+gZe$smksZD=pFt`g5UCSej+T3N2~a^qfbRw$42x(n4XiNDA3ID5T5bV8h7Ww z3i`mTcL#kB(l;^|$S=`0ByuR*$@lR1=leMt#$PR*Iv*b8@w$*7id;_cF%vBf1C+gm ziX;AURSt>ni;VMSO?8c5ivcQSwr{gs&wHAnO#!AzXTn(;Cg`@?Z6!X-f9aLw+xKhd zdYiEkIH%GvkvClb=0q08GE_u|L8tKj2W}`^Hi51;8(&?RsDrlgeMAESii5cY26NQ{Mz)riXm~-*y+oacmfbppO@-cN zzp&nB^;10N?RUL^!0=+^GDFXv>`;xFppR6)bW>p=83l?Y8rrqAZM<#Io8utzT;cN4 zzDY|x5~6CO^sw{ zIBf5+qS%+DygT(05g+X!?^RHRjbid*6%pH053^PCd>@Yjn;nN3u;^&FzM9wc_r1f& zxx?lC@M!at2tSbdI%7N4IM@HC;0XB0%B9DG)BoEDd!k`Y!Z+M4ckl)ALj-e_#UxVKRM;U!G zY3hHTl$km`r@#;l*Qi_!fIlsXBY~{O*5;=oPq#PO`{z=^f(@FxOk`sDlKRP`6#5 z)IRF(A4eUf@OHqM_>VP8i0>mc^0_z9Z%(96N9m{y#7H4 z4nGr=s-g z??_XO5rM!7LUK)` z>MpAhZ>+Jr>4q=9C+k+a4hpg1sF~c6L?#n%4@@qP@`-Gm9t&kgY$u&nKQy_rpTc5p z^5$CzK0(EZ0*b+XUNjJXkPvkta*Xeb_?ox+eLRrCFv>d7lZn+$NVQ`(kDYk{1m3rO z9Lm&+zmSrTJxUCKGWX97LrV6CJ&hWe60l|)C95e@-1&qVMqsw6GTE4(`M%H->(+t{ znwpI@SY7m>JT}I%Wa>2`FP=mb||YKEMH@6c-x;#p97W98ka`Z@JL_9j~zebUO_-=NE@*)T*K2 zmECqB40bVbqU~El9~~5L?XoaU$0wB{V&I|p#S1t8W|%Ao1wqetdF?~}S5G#Va5ce* z06E|8y3MCXO4FO>*;80$TjWOH>9 zhykzP`x-*-)-$5_`7EqCY}a+1`b|!h1XiCP4ZdG>S$>zugU~D?%Rzs z)2}r#k9C9c>==eQY{{0`O#!vk78OiM3;85Llme4ll$g$#!Q3ipj5WE;^n@hmmB8YB z6^SXaO?B6iY;(6OmOA52kKoi_UL3#L=y8qWev-cW{x1ppFXLPZkQuysM7>q}7X>G3 zUAkK}cC3LFwi@_)sav_%^Z_2_bBbulvuNK6(m`QK)-4|drP)4%l(^z!NZ z&r!c!=Deo2Ij{+-s0AOU89EB8%b?*;nIV{nElWYvYJ=!gZ_Zan-S6v}#%zeSP8|%Y zfHS$C=!xvgEx`FHSJ}I$*e`x|R~qJQv9G`=l<-`gZAw*sP|$GmyH7`A{=$c9L)CEt zQqV;SJDrTRi-<0&JP@$dMc%5-eHh^J3_`nKi^a)@DqVdvB@uyTS4iB5XCqn%eZJn& zwtA9qfA%*iub}uxWP$7QjvVh|wofG}ZR38*ppmQ_Pq@%W+}Z_`T12yP5DYy9F(};4iqA8&_0#%_?zhZ=-%x zsd;fXl{Qj28n}u+shSZ=`U|mZoJ4d?1g0 z+@|~Ge^CJDC2kP!XU0$C#|O1KyMnnLvTJ?RM>>9f%0 z>mO`>8;RcB!hu7XYz8O9bi&<|Ru0MEk1U7U0}fcynpkmE1KMpx&mYA%Lufs$z(x93 zAE9puH7#iU`}OV{oq^B7C+$nRo1~>1Q!ZF_kB!3g-Sa2+34BFjN>kSo>0g=7DDW`XS*>>K9@%0Qxen$)y*&yak8!eSr z=5>wtgq6jAY;IJem<3tg+6=C%l^;Y=SnuRvBZGnn4>tym?WrN8RMNYDsOIu%c7NoL4>QBAx8h8%9$~^>{rfEizC)z zAm(w#8<%qs0@Um3fkfH4-{hQ8MZL( zL+r1L7$W2OC=I1{7x;Dfc)KAYubk=k2Xa8~_IJ@V!F*y@pz1`I`@`c!Q5eu253%5K z^$VT6{&m<9W}|9TViH679S#kp=*}4w{Z%e|W%x4TcZ0$cL~~W`gp*&P5Th=_4~1go z)3T&xZYZ!!o@PCN@{}BEEA^QJA^#6zG{}0jse-V8OU~!oeo%;Vr z^hkb_VxvIrkz};I-^zGP#aKEc=eW!|o86=Dz1wR8bdz$#?e8>KAq7@8r}E_u z&DHgX*Q;2r>$T`~x9(J7+kLOkbhjD3@zZ`C7)cR)u%wTbc%Ly-ez@L`myYQTzjv@b zo}A#|r&D-$lT^{6SrqoiX?y%-Uam(;bfVX66*-wlT1hr%LFJF;hc{~`pQ>016Z}_S zYdU-mf39|C_P@!8#jIxx>5rf+KFs!iqN=%{(CFlDP*l?RY{W2qh;_SvFgLmpaP;0@ z-=7&*ZXGL-t32nJe*t5svGL#E3c6-HFlcSw;<=To%x9Y|lxMkF@c6KIf%lX|C1n$~rI-8G2aLcJ#UQ+a-XV{u%xL7giq>x6~7B7d+= zIL<;x?BLnBv8-cAp0}TvT~TFWwf~c7ww-Kp(_^;SJIar)eXi{U=ZIycM}NNkL@W+- zqiLADv+qPru5%?4&p*227+AyuOs_Q-x)Ub7r#3xpr}MK!=Pbmf%*UD*KEGH(AjCV? ztStwG`P0Ou4GP@C);uIyJDZZH{W|V;S8B6BQg3srd>cT$x1@TCWk4Jc9obp!SYPM$ z57H@e7_g_va-}{Qqd9;7!I?GBY}U~(wD@{5X6Vn|O2tS6P=OGCq`i=R>um-K@#Yn| zerbBY*!&tt`yZY90l|sP=3o5>y8ivUI4)y4Bks=)uN8+}=bJ|sQ79RuHZ5dJwc)RH zc%(l2V4j4G6)d*>-bO1;>FV^_;6Z%E5!GN-&g6m(_wC5mHx$SP5S&*SY7n0 z+eSpAW#{QWM^&P=X(N{6WGw8fN49m-{h@T1C~3_{w|sR}ug#jS+u`nK|1__@6_|Nr zHRkk%I8@B%cb4OIY>U>(QCe`^OViWG9Rn5q9*8Vd)U1;?2SqnrPP#$|`q3I4`=7+YY{P_d9&}c-y>T6EsncV_r8Q>jKrI-`gYBrXA)S5YNTwU`^C&m z)5a?~Ygu1wz3p%N$88+*LO!P<70h-0BgONVyDH~BtqRB5M6t6exZzEvtJe}0nwm*ST{GVQf( zzth$#ECuUv96U-9SK1)^I%rQhkgT_EkE|g1ml1D2c*J@7xAZe9$U0@$$(M)GR=WG@ z;l(=P1+LQ#cdzkNn5=Bb`}A%*TxB0Ge$dg*X|@tJ@}ybCAIYjvUI_!L+y0^oK4S4!9h)@wfA_wX-_SkzG>*!0P`=f&W$i%p zV0~xbPL6C40#X*7%YTn5OCfldS@n6wSX*DbhqC0#BkyZ`A270z6V6S^VkT{lCBNVF zQR3ZYt?>`c?hhvC=5_8aBy3D=JbIB;wxlINB6_myr@=*9_Q1?HyA*q)i(%$i(e(&P zr5Y&j-&g7ufRl9e-q*<2NkeYj;SU^Szury5D|U zP$7dMU0W_8SY)%CwPC&FhftMczuER5%4YkQ4gXviqqg)AkPl&X9X&_eU+dmKDD%(y zqvp?G{`MtPg3b%t26w9EKOalueA}{4*C*ili}j<2R&pl+de^o>x8GR56)^)*GqTqe z5{JS?4}IOoobT(G{ic?>*fM5R_C5U7)}xUy|Kxe2$hCdCblKuNcu3~-IayI~{Gh;)?OXe+MbXi9{v5dgOl!(ffSYBju#QnBO1!m#9JGrgsVq?j!&%IA+8r6 zZaXQ>oyx7aGOvhGOrH(@Gv{q0y7H;XU7@JNx>RPB>}9WpPiDn1!c(+4?x&BZEyQPu zM9#HP!Cv_WSOf^9;$Ywe-6e+SgkV_s@_x~u3AR3wfN%(eO$PRf`7YA~=kWHhT=fOZ z>wn~Cwl9Uz=-#y_NP7D+H3iJsw*|?+7FsOVR*V4H;Ml|XVhU@3-Vvs=f zXSV?WxJ!6^Hip#KrYe?;_#iBK32#ErtIV*CX*}`D#1O0DEAxO+NpRP8!*GU6 zN6(R;{#}IW6pmU8e7qyVDBu(QpEB#|S;E(RkV8T;0N|-q()Z8)C;Fj4nvOfI(tZjf z6$|JO@} z2x11a0?n0)=;UZd6oH1dB?}Q1gASzA-HbUy>t0$gL0oo3Ii-qQs<~qZtt`EJbG)VO z<>rD|+1Au)H*f(1ednhniGyq^?Suh<*){*6tfm-Zu?u)!kYhTHHZ2&QE$1Fr z(5Xf3D|Qv0&%m1pw~FQ7$dE_TKNwHzf)s>*&toeqpa9WVbjDb2#=Bz+gtiO3zsC%c z3fwNeJc$y5%hc6=l2D^w<0zB~r(q8&0=p+iP%*@yVQ~?%uM!1yYKj^}^AV_&AvE)) zeMcWB5^Rd+GP00C#XS>6pU5~+3!Iq^4s@I;%~NqHqriT+@Q+$+^8yT*l_@!O#4H7-O)ero$Ru7YKBaho)ESSmc2Ch# zc}nGnq3=dgi@`VtiXe%PtwDuQH(EdW(zovAA2B%E&qP)y`~#a1(qC5{ zTvvmLJ0ybM)}&jTJfXpqSX;%iVR90j>QA*xzV?Hr&QZw`$RJffz=ZjJ?L)Lrl-V6V!Ys{-U3Kd&`mHU%+`P!%4F zFcc=%|6pgXG;WA^+ZYJKyxwORQK5HjZssj3_|gUFsW2}(6>WPo$PdKLBs3?h(mVH) zTezkw?y|9DiWCbvKgX7(KCMHtEmOQaf8oGhrZR=1O#q!ZNC=5DLOfpH5RGM519*F$ zv$3b#LaaJZ@-6e9HgE5{X_tA2a1gOBtB++e?P6OT4 zmD$M{l&v&@%&qTwI8~7Pm$-%nnAut6MO%zsbfK&e%p|~nyxq4xD|{(mk~hz2pWuP2 zEKd}#p+=nmm%$3k{R8B4j(pkuu0UsE=6Of|WI97#&rm&zr>JMJrz6t2xty%pL;s-H zeXjn7Q^RaM%Jsb7MV#@KXku7mFU5IgL=h@T_1Uu*J;<`EyT|$S&b>5ICFsj*`F6_> zWW=5KttX=zl$(=!`Y3~nbUF+F6cHEMOFZXFL*e~D#TgLJtrY5vaGEM=PVP*TF833f z!SUD3;MeqJ&te}ULDOwqXPuNZbyOw^#P$E0=Ib+cv6DWuDx!Y77Su-(obtUsuxY9$m zi7%ziH4-_Y)Qxf%bPr2TBpJIfpCrY_C67pmCUyfojFDC3p8J)?=L~8SW4;n7 zR?+5&i?Q?kN8AmAs>QYbs^c*$h0_tEa+~oOKOv?=Mi22CLdt-(*tqLTCarS&O;F(t z=VuSpQJgAm!yFTS4=Vi|Ui@4r)lg%}gx5DrkFR`gGJQB+>PttxQC%*PA8pDq`v+IN zGKtC%<;=^Q7ckp}-qX)Mrv6QDWv}F*4O}=Hn4ZSRcBqjrWrl0%9~JX;9j!eoraf798)ifuXyw{B{*kjvd_4?`59pKIn}9(#li=gsLTsAsaCyfEoF{2svhAw+xLoG@9Rm&Ap;O`6BE9u&m62( z54#0skbAH!){?hk0mw_+4F&)qH-#~Olxxx(FI1(186Ttsxqd(+`;RgB534pU=oxA5 zbfMo_g2lFWM)~bLe6BQvW7_&3QJEKza;3Z3n<_OPA2`rUR_Ap~MfQq~Jm#F0I-+}P ziDYVqAh4q_t_I*ZHfXL-z>zQH5%Mt_wm9+bkc$4cC5Y0BPEx!V_OC8n1Lb}8S}1dY zLbgA(WO3ODQ6P>C>71wTP0frLwC0URtt=`vB0c>FP7fCr9qH6?kf*DZ^(pUv$c*Ni zv-~!SN#I&WxDS>!wlCMv`ne+Sl9pkq57WtJEd0q!zcv>scw;yVS8hKNf2@{s`FZsN zT`c1|JerDp{%6Umab=AbcrmfYX*}z7S=mA6m_1s9Wi-w%y*qLhV|N%EJ8BNGYTFU} zc-A;dg`8ViU8Ush+4$G;fs5tDn0MjJNaP9%MqZ@%d!-$fHsP|cs6?c^v)rSS`>wZ@ ztF#xz#=IP!J|oV$H}=M+a1)x*u)4eeM3l))Z~efu?XEJm9+0-JHX(D*lMgDgX7Phycx~|k6O#px6A67}2}_}0j~+aR)KsrI$eaVBXEb%hE9 z^izBx9@B3w0p#O!sU)dG^3fVqu9eHT?=lD$;t7~Qd9ZOpcWK3s4z#VRo%@&C%uhsS zOH{RbzV_2xJ!XaXcl)@>gajq%^sxut`GkA;{in}cT@<~Rq_(Lxo_Lv1d=Z;^(QS$aPvm&A8 z1e(eXuqg_7KA5(}%9|{5mBx3VvhA|L?b{EcmJnVhT9#oTYh9gm~kx1f%FZjr$8hCu!;ofnP^x zTo+|ff4^=?@sf|B)y*_dpZ+DT(+q7uBIRja(vh;o9}(Y)CGw!K472DGnkV52E$-{>0My`=8jG@3E! z7NVNBxtL|Y5$`ag%~Yi=E%?u_~BmPxLpD;*8xM(V3P#eg-hL>XR-QuL_` z(=axL8gh^S{g+ei0SpRuhj$#^QkbK0-@_fQYm$_9Ym_KBv4`A}?48=TA%hNm z;*rY3?RR%FQ-x=|43Jp2*-@z%?XfA|B*`&RX&S(Ne4xjU?s2IU&@b~$>&CTD9KeU- z(W$sS9RtLB_b1a*SnphIe2eVc#OFe{;rlvOQ2uvE+7aE#UwYv@5;Zl-0C7*`f&}NS zKuE!LvTs85G77wN9U(C(g>aZ|?$)9Q@YgF8(YHH2fWwDLtWX(7B^5U4mTIott^1hi zTiwh=;UAZQltq+t{D=`SLIZ-hq;ab517LB{i0pqh!nc<2EHb`I z(eq9Z?F1+jQp^a|Q|evD{rHv99G`{X`?oQU_kQ@ZTu&(9O&_+-f7RjPZ89kW^}HC7 zE0v;j$a348bd}uA5>*?R>LEO!c_^thaaaFE;8~Kb`7u@ZSa z9}D2Xa$=i_)*j26e`k1tT1|FjlZ8`2#k^0yWBAjr&=A=VOu3H8BBVZuCFZex%MB>K zjc|$?0P7jd$Y&2#1+D3Gu>-k>^BtTit=}Gbl8T{r31~|P1iw`NC>e9PBw1jCJ??PB zwNn;HnSz;bq8RafOl}Ds zHoAywX95D;)oj)Mpo>gd{p0*9-kbFvUR!TjdHk%DqG}-Ez8Wbx5ziDpQU2c+WsO-F zd}?Bm+0D2sgHw@6$m`mQ>T}C@u!tMXy0#xph$_dvsm@}_8kIQ>%k<=AP~JXc7Qi!) zwK2t;PPq$u3nc>3Gk5q!1Xxb9t6a;eo^8lSXVjXUi2-Mhr8Rqb1v^xgdV!zO-}3>$ zM?@H(Of}VT&5f);@6oH|7V-QGr|6`Y6fKr51$UyRLI{6`&Q5vhTN@xeU@PcXw@ZaZ zNJX{q8;IPztBX@@($K@l}Ka2oEMHMiX91A47^xmhp(TQa*UbXdtoos+sfnK%E6ZSJE$9N_2oP6KDxz=Q^gAhzEXe3;*YkRhA^QSW=(uc8oU_w3BX&3>j{m&+1pV(=;tQ}%~5so6da zo=?HdBq^*cL8t6DVCl*RSq3eRDQ5t_KLgfzfna;fx9f7(;cK3?_!JyUY@;aHahGn6 z8@)5%LKq3Sy8d9H0JOj8obezQ#GaTKLUf6*-9fX8np7 z6E1SKxq*s%ClyNeA9y<{_uJ{b-=9yJgA_@;Wq`xdjMKeeS}`3J#x)0Qkk$0Z77Drp zU$WhMxM7IiqBqEo)%4bIRCy=uHXdB2BUcXez);()wBLu+JAdFm-IkT& z=z5f?NEXp(DC-~B>Ais#Ls3DK zK2H_PY$h)wWds(#GKC^0;O#?;|D#T?>g>B$D55-)A7-*0kq79d$Y!*az zmen+NxI$tidJgEi#UyFQaRYcIHd)D_mt%>1P!UqEDiVN^AWvGUY^Ow17NV?V#%qD- z;2i;OGn6!EVm%{wyn51(U%IY3JYqQU(+lG}#Wl{^8OCA&?0BM#^a|OPfW$oKoaYiL zYZ34>_O`?i`GEt`)N(sOvKd`*YhuI#vgq$bDd!{%WC9}@MD&PCF3>+%=n)hh<%Y<| z(ujSVNWc(HD)*m)NX=D?6S>3;s8RBB=u|3=iN*q?8wY0HZ++ybnHOWqJePD8Bl<8? z^AkHTUSve0UG*;0pc!ghP%Z!+$G_o3kl|5=KGR1i3NmXU?r*Zx{hBfkaAvPRm3kIC z@21%tXWFf3;guaKhQQ(HB7D~#PQA;f^~J<~TD}YuBu4Zrgb!0UHc*XB$VhaVuTDV{ z5a!b)ymrlNYD;|8t1AyD*hgsy?#kGdjokl-y}Rs+@_pk*e@(&AGjuaUOGyaQ4&6vM zNJ$C;0-~VK4Bg$~(2aD1bVvw@NIRsoi1EY1&ArzBVDAU}9sJ+G_269VT8LoSOd!9Vi=}<<{B{Zuk>IQscTl3Gs_krN=S0w{pd;JJolFFAiD_FvEw9mP)D}u zcl&5p|5zOxvu#k6Q>8l4ycB{b=Fw+8(04)LWggAq5id1v(Z!p_XMwPC=V?b}*9rZ4 zvhun7JdpQ-(ROd{!(VYlTd~eU$#u7kn{%SkiYU^;w+t|mLHs=PdyTP6(1T{7tA>c*@**S;a$k64v9wej2qCZ3SPfl@d z*X-9H;09!|6eHa=6+;J)Y&jY-G%*d8i60&hATpaNLuL`A;@vmOs z-!JnL#i?N-+=}iJw1?#$bNIxAL^>mgvlYpoTs`4xGP4EXrcxZwN$hr`KF`&jsmNBi za(**3SCCh>Ze-g?6Bc{l{CZ&@7tBCrWYtHr&c!KxJIvmYFu?sBX1YOvbE8}SU}D)g zS19kgm~6Bh?i%6Zr$3@S^CPZUfdimvG&yXxsMHpa=UzzMGf#ZCq&xtD7vxGCk-X4r z4R}w!AsHFCp}^q?y*?wmm26KB4b_D4yf(ccqmf*ODSLZkHz{!9pGg(KhT?LT!Pv}9 zdd%3v9667}f91Vp!m~RlmDz1+n;AnP2=gGKT|Dpxk?oE2Qwix<)1SI3JW5i`Hs0P- zGfs^H%vu$H)$cmDG&x6c2i82bGwex>SzEd0EC6fXh1c)t1!JzO?L4qSE7K~>olAnZ zN;B!}jMj$pq$e`zjPv3WC&?a%-Hd-mcHMvr#;`2Dw;C`&P+)*}8UwF*BUlR6g#VP{ z1J`3*EHew~o#B)j2=%9ej4idcwWnl3m~a>^0MgDiIJHDqV@bsAX=U*Y8xZasY*(F3 zYa5pdrX%JND7uYtbfC-xF#@p{+w_SI){Z*#09;qPw%*f|%WfhrCm8l1N)xw3$-5$2 zbF?_L=;l6#{>*=iWRC@yqg^OwIN%|I#0))$*L<6o7@YE>K}B49oRArL3J4##p{Znz zoV@ouU*fI}$y?9F`w8&8;a8u&Ib>s_J+X2NcHlcPSNb~g_t=XoV0K$y5tCiD3NM_a z*f}k35pRFAjv`LN>*L{lfAJ?Axjb&My!;R?mQ+6N2DoSi4e*5KvVWDtgF>hj5!m_GV$bzB~x61)w7%rx13j8cLKwAEK(wMvm({4B)-1i`RhE$6t%4k zuTA&~{UqIQih`&%VB5{DF(hRSxMil?>2QzPY4e@v7}qOtkf;?*w|!T)2zD36%fqk% zE!%z=RHY2>PZ-QoTCY;kTrof6`(!G=#}03C#9k&C9`x=#o8PlJ*n3z6vtuqVklrVx zk2F(e73qVKM%lSKcWy>Fn7P>;8N4?(a%H~?S)r8R6s2{1tR3}xZ{PfU{~`Z@#d!qF z1pMdv?)r$PE^kg<4FuE!+#=kQ3aCA}zm{?TzMw?pr=4s`Io6NMx=(l=JB0>(`42L( zBCT^^7UyI1{S%SF{JetL=OX!}yh?HVyvsrO@$&9OU!6{>;Tt7#?kUAQfuyeDhjxq} znZZZ8Zjs#Zv7+}Y45OO4SIa6Xs*I&WP^m8WXXxwo7q(1sA30s;oRaMclM!4uw-HL0Ep(y!we7W*US%FMVSBxKfFF@C~@EY#j!SH zTfF#~pnEY9Fl)fVkZNaQr!{);YGx{kXO+eZx!3($A3 zI1ARO9re)<94VvOr}yex6o@C~Yp+A(?9R%3zF30H2lFqCA^#Ht=G0I7&pL;}a)+9G zM`sP;e6!iZyy>*?r!z~#^CdpYWV62Kj2*7Ze#osp*|?gcg`|p;jEAqtp@M#NEFoaC zB6%00z(3^~E@hGW(n-I;tCL?QU(z@4GeuwM?uQE``Tg*%ly7`Xk(`V{MBIUc+7dd= zmOLUd)6Zh9q+-k!H^6o3g=2E(656-zD+dnpQe$w<$x5 zru;&fy89-f7w#Fu_vK!Fv&xP%ukz_Nv?%aibivJ^*d-vhzcTPq5q6KvE1v(@ z{O`(P6Vk*TuO)otaA%VQ0oo&NRhrN$S2G(y?fH+BI~zeXH1BGyL~)(a*tdse?*IKv z3bzK6(u#Pbpo)?7g8z4k9>HW%h1!l8NnpJlu%1%}!je!bq=|T5xQ;77gL)cw&W%>N zP3MVvYnt-66v#imI63?(Fh{_|=K8Dn7gL+;m34Vo8QLM@1lVWfJ-!Pq)!B6TYFsTk zqu(S@+}uB;`|)5|8LgV6e*ELqIy2%5OYi_^%(zPXke?p^_sS@DcrmQp$|?Fr;Maqh z{H3|Y-T;>q+L|}tCHHal;w{~Z!p1a>emd;)r3)hKi?qK}03xCOXt^0(Q)l{k3*IZ^ zEe7eOtNctbo9yhVy8fQY@_DG%iM!}{Yv_v#TR3(;k1e+c1H8C#N{DW(v^)*6o;@H zhM6gZqx(H6lKF>3Oo~oPSsIrlvzw-*fG!#Ry~-40a6C}LkbINLOk4#PKa$3id!Kxf z47mY%l9%Q=0{~=n?Q#NILR1TCF${`0eZv6*mW-Fm^R9eZ<1BPU+b_&gJTNBLFLAj! zr_7!zb-Ye0Px*DUD=X9h1iqjkPIoO8v)koP7%Ie_(&3XQsj zgWEhLR4RCVDd!(CemBmuIxtJxKh18zR!?`kv)g z?<{RRkFGk?2hImVwZ>dyV=S9Jr8OhtlnfD75fZh!!Uy`(lv0{kVf0%B(T*1B3W$bM zm9uphlIhlzaM7QE17iUy+lT63IP*ouOMVoSBGD$m$c?M3-)vGN8&4Mp*Mbj3HIx+} zY?RTuFj5Gq0HO4h9iFVN69^XP6DW#FsZuwTe$WFZnNf1_8jsxPGJy-rCCex*N0N`o zn|e_Q894SDQ9f(rj)C9ty`D9H`-Y1E=vvusH=U~BnkY-_PSS6UR2iSEN(dC}Dz05( zQYj)ML}ij%Qf5Y0=tofSu4V-7%SQDbrN9U!~C$J=h?57iN%ggA?kO(L8`D_ zN3s(};|I$)l7D6Z1BENmVwR7LFXtu+{jRR4;ucTG=)>@DUkQ-Q0aE0CVnk#y2EJ&N z{zs%Va#oUr^2>h(i1!DKvLkWS@9#5zL~={D`(bfQvA zjsm&U@7W!iD`Lj#)R}3FrmMhARuN3EWhHE7uS!VWd0b{CcVcfLzuXE#*!OM5V4LTf zV#6<0iYBm>@5`%_wI;JpLsPIxYi-ibUeboEIAK9g7 z#q0i)V7Qw=rmKMIPj|{vv)oKLsc=2tJM@M2*p$$D6}!0~ihC>3vEdUf`|5}5vn7jI5yEr&Sf~VgSKKd5F)UM-=Y5=pxKN?b zt|KSHQQ!4fi<%I6<*gtB>Re^yw{YUFf#y#360hS{8i?%V=I~)A>|=Y zFN9SMv#aS={x~RxOOyjNQBLVjR-dmj78eii^z7H!VZ1DbBMDBlLQP5|8JwtraCy0^ zXcBth`uQ$YxY`!&V4_Y!Fj9LV)I4v7|Nio0%o|nqiYZuOe3*L+*34hs5Z_oI`~nW; z|5%;|hXdCM_+!KW8gIw_2}BzJyv}m8NdnsC2sduqpWFw-eHS$hF@iZ{t$ufU`9L55 z3;f}(Ey|QF&SLPy*O{#$A3aD0^DwLP-b|M&QVBvcEuYv0Wx)kBK7ox02R$N2*mo5c z?ahM_WYMRWTD=op9C9cPF=F3|wwV3n#6fg`H)3{w;(Ge%i_Fr(?WsCKmwc|xr1r$& zzT4c(-)T5a@>n$EBzms$6U$X>aPcStqyCW+05}t)f3i6!e2p{G})?jI6N_({0 zQPa|6)U38!aEpLOMI8UFijJ%V{Eb0mU%fUZ`%LEddFFsNKd8LaN*)VT=3RrK!S-yt z^uH^kw{lktYBkyBMf9z|-uG+9D|QcZFd8&2>dCZQT%v9bI>dZ1y^?O#YmV{}oE5i; zX~9oWII482H$DsqZXKp#lAds3H*mD$#_J(`)>cu&-&-VaM&KRddp23;NtEU!h9e6G znold}J&2-Z$|2;|Z`*GVad1kGcrH^1+U`wRG$Qh(-_>w*lj_EfizRsOy z`2J*h@=XR)-|dEgrz3DLcjk90i=r~IkJ`2PnbOcnesy{cy`R`(qXnZVr&6+G88j|e z3ZS^wjNf)UmSZ`zff|95U!G{{E2si#AHLOVmCe+Z0m!l|4cFuE2rFmSi=5e@2(~DQ!k7VLO1%ijF>{6;omA>_V`-;#SEhcTBVpIQG zP&q)&Zu~o(7yqdCyCX!_`tL%e8ddO@|MqGxetka1{5dj=_&|77EwBA8=lJtq#w`+b z=kg+lDzaeqtr_NT;!BJ5q3wg0jmtRonZ1G(zCkrX@i*{Ws@#Xx8%icL%O8UThY%UWlw}nKV*+_rkzx*5IFbx9mgdfa z3p5@$Vb}`NS4AE;+U?>Xf#&2_j(yi#`hpStuDE4;(l6F9?q!bniGhnzj&#wiT+ccB zUjzo#O=&8lDC_X>tk^A4&_8w82nvU)2G12TbHXGyi${9%#k?ppkT~=om+$3jKGp*$1o66; zJ)W2Mw`-(~KKrBOV_otDg5_O3n8-{3y(6Vi2(d?j#T{0Fi?yd59!39lkO3>%ivcA#b8yG6?(E<^6Fh~CzW1BH86Y>@5 zmF}}jDaMzBu z8s--xXUL~cyGViEmulxATIc}myzt47jc4W&T&^Xd{mi4WV+iI!z{CFe4^G{EvWdR} zZqvKb<^b8E0V?c0j$4ptcajBFt|)n+(x}>E1VFDk$0)IwNQ;lKeI3RD_UI&QrAQA@ zhD+>HzL}~4qsKv114^d|v-grRK zUtXOTtfsJ!6}lAoug|l9d-sN5RH4n5t1+jSQr_`cH?r9BU}5A(g>LG|Hqd-vwT&ABu#4>02=szBM&hr3#LO z7b1dZC+5O|c&-A>Z7-pk%^DqQcvOwxRdf)ZQ9GSxxu)sNwSjsi$Ac%QpSiJu;qp7a zR8!b&R`4_CFvpX-k=n?E#H;4%@tt;-#T($WIlM3cuFspMCe(Isx~&x(pldRO2dWE# zkNax&6-9p{}ty`i#f=QCY zm$g$fk82l&SF%n^1IQNt_}~)bJeOC6*K2AO>4y<ZtAH z`L-6RZZ|%V=@eVPz{pn#u*{uZK%xI5H^9(quJ(WAhSmSb4F~|CfG|SPkpGbz|06fp zh1mZ`Zv2nj_#e6PKXT)LUi}L_b}fgqXUB&AZ9zA~6oKeRj#tQa+&kI_rY4h2VLjCU6!$cgzRQc4(?n+CpuVYqo^^e1~ z&PNcL>gpSdU0GfooJG~}eZjohBZt}bSH}ekFXLiNJUhRa8w;5<`jvh;*e4EOS=Lhq z{n|fX^1eH7xTVS8x4ko!tmDw__U)2Gp<<|ijPLJPm>@yx_IE~(yZd{U1aFH*tzo_r zD#5J?N+ovh}^zh59 zM8_X)X-(oxR@`<{ruu@4lk&SJ(8+pKTI0C;H?(#$%F8=x?R6!q_xSv+9T~&SqPi?` zmX6vgc$@B=J$$T_+o-qmSanvW`&lP3Pf0BH6Q8tWaOC3v5_wKbhs=(Wtm`qBpkcFh z1`7eNX+u{yu+_m|6fe`I^B~6nR9!}B52WMA>$tm@xl?|yztXip(Cqs zMJ4U`t-EJY>4w_m*<2NzUTZ!*S$IM2#63ejGJ$M@aA8w?u)@0cS_SJ)FLLSkk%qgW zlTYDX!|`e}qT{m6&h(kPUsT$8Bq}42F9mp8O__T3JnP)!wzQsqe5i zma{0>G>!7dTjTC#8zUk;K9}Ux^kn%iSCqcc%$Les^UP)$K>cHT^!mWw8FH7QxBAsH#^LqvJi^M#9{Oui-WAQ)wGqY_S5am1Tq;`(614FmBEg#SPT3?fFVxI6fsY8c% znU%XdpIjGfPDkw5!YNa5n5i2OTsf~N+Y+JZ;i&=SDao*UtfSZADFXyc}!7|u;dx{>eF0Siu z=K^JTD53@W7x5tW^$ub#YjK_h$1$j+DPQej>?PHsas3*2PHP!it6#YIq=w)i0#73c3!MS$0us?UaT0cq=tD zJcHgTc; z<8E5`CXA@S%osVc)_M;oQ1E=D&T1G}KeB*?=mR#xPSVT|0YF)MVveQAEH zO5f311z9)nL3sKNw+wbTorTz^sDxJ%{U&o|2sao&v)eanrvWU@yke>A^DB3rp_ zt?q5L;hwe)F^K8ej4cs^^S4e${anq5)Qeji?_ZrTJQyfq5TtLeNnCVQ`MtXQ%c51o z@ve1Tp6!N3kP}1IiN}lIYl2un!(zYb|WMYTv*-2H~&pGS5@SX8%Hq1b7SS4H!W z;GTm_{C^lnmG!vCs=p@5oIl2G{<<*l%PAhJ+zc(rQi*Q<)b{y)Hrtx8-~*Z8d#@ry z%r@u9mph!Dj~*X(!PcX7|A^Jp5W55n2i z7%EM>?Q?P2SD;{tdrgiX;r}fp@rvo*^w24amlL69WB z1B)*or**Ke$ut8I*2UP2HYAPEP1lZwz2>Vtm(cK4A$nmC)K|rQC$|VQiUIH7ra02+ z4>G0+o$9gU1)uEP^Ubnhe_RF~{ww$-eGlC^mnmjIVsM~Z>S3zYzmS$ab)b1O*jF3! z%}CJxQ%9K0Owqo$%M-g*!w*caH=)PIf(Gu~QY7*_3A$;S1zxA!^6h5KAQ*`Y=&!Ck ze_6j@!oxYDedwd=MNJTso?B3QPPp5g5#HE%7hCwZgyn<^P{hm#!;LQ0pFaz?>-y;zDYU2 zO71z%+V}(fF?4;D=k70J{8c0PDp7@Xb8Y}U(e!onkp&0y9I(qko2>OM0k(AWlt}e2 zv_F7LMy`#-f1kN9b>$&Xo#|9*$XH9P?sprS!v z_dol)O27mso|f`48liCu7#vK(1JVh*|Kmx)eQL@S90E-var;r^<7YItZT|a@o?#A8 zD&cXhBfPbIE?s55C=U2IVyV%A>RKQa=Fw|XAN6GnT@@lDE7(&zDngp(5daLOAT6_l z7(rm$YpY0BmBS{<)jo&H+-ZkgEhptX0hSaW9QI@Q1y~1X+)6 zLU6huotwMqej~t%jbQykrFXB6*426DP4!gZR4#T3}<6zCQchh%5`HA|rz04h@!%<4N{r}o^b0{+ zMR#guENCB){@E6HPNQ z7xnH7cKy?{E^WlM$>8uLO>vxxYyfmj$Yg>ghLO@eIIy23v6b~i#)TjfqchDWABkV4 z{hKgRcF&!N3K}oAH%5U)1gSpzrG7<_K>Vn(yF%!6p2n~ktz!T)ExI*AtmCfj@NGj) zZ5+EGf{PhnFNZiIg2)E)M066{D=E~r9yfN1)g;Zh z5=^ZbT2^4{H3T2BbY&K7Vh5mfSj?rXaeE@&Qi7Tss9cpxymIdj7S=_SGiP||>KQSY zzsLjbAu5SFG%aNL_jM7y2k|#qwdj75SbfR1B^CzDR{w}C3$h8nAO`rzmu;;?i+M4; zh)oLjidM+2Nvd|JSt_& zP37_T8@hzal4o1X%fG!Q%e@$`S&k&3I<^}@#lMP3=0nKDOP|VDgLcyb$s1TxK(DnM z-dW{ZKdFW}g??OZ$cNH^z0xd^1ZJaG3-XE8x#0(12#dqqx+CrVym}op4JWa&RJQIK zC@_u7TbiI)>ux%;QG6sv%Jn;w6Z0y(J9SY!fiM0FVWgF_^Q+OtwHQLEvsP(3&1t4k zp{^5bVh07~{-m7JRaYJde#S9mYFCi^U%BJ1? z!msDO*UjnPjZ$RBalD~DOz)}=Y8eA4Iw2|CZ8IH1+x{t}f4WaCf23N2UHpcNB|lJ^FW^!~?%`1<{SwSDsE(!xMv)xFO;( zKGde*Sa(3-L89s!W67s#rxU~#R;a9*twUsLbdZ+tb#fenAa(qOFz{}rs6|i-H|kGI zBYT(>gsPQvTS67Oy;ia~y(b#ef&;|IZ{phWD3R?U>_WHLUU?5@rpnjS zpgSw{i@k0X{ii^e!X~2eyVV<1h1YFB47NxpOi=ho;p^({!rR>K7}#v`C;lK}{)|`^ z6gq{php@k1zcD&G9XApGdiEfo?|70rHTa?U44LjIp`_y(?zx`gC^EIA{si#}^?cQ? z&6EAcnfNQdX~wOZ+67i*$>XWR-;vL(1}lX{$xdf=kPTB0-YRI5g9yO8#;HLO#0$@w zOnou5?(0yem+A>q)Dl-zOxG-VBWR{^jue!rL^=IWM8M*N=?gIg(lG^f?8d|ASM> z>ldl5u75jcwMZ0GmSCw>Jtv3-9r9=cG3MT7r-8P_za7uulq2k^0S45}DWFnOx?vLX zUs_@xtXC3NR{oweOB>KQimX7k(s&K%lD@)Efi=)jMG7eV`L9J9P>q>)Uw}c*cSSnJ zCdeMJ{`Cr7(NfRoxHhTCfh^2j-MxJK1rgq=PbbzmAEU&pxVG*y-}SN&agneFbsE!9 z+1&Ht8Oj-YF`re>HiASJ{G>#V>HwA}Z@>C*KVoI^iQTyT-SqyNyi#aKI)(laZ6V+% zp3E@$bd8G^Oe?WX{tC-vFnkAb;I=yiP4+Pc{+()7`WQ34@uskxDvZz+#_j%Q>{;qS zQ}&kOQNWts>fTId414rZ!bJ!J4ykurVO?i0#whNb`NU)CL*nT4h)k%eJSoL|58!i zi_D>3rWvFff-j+!cmw;^Qd5t18j$;}M`T6FyBO+ZkCV^Gr$qm72;pNSZu`rsn*h^ZBLjtRU4@j7#0F zLe(18z0d00>lIFA2Zf~@!sF;IYIj3~c+Uw~na`R0Jj{4b{^d4@|E2>qGU0p;UDT5> zd!in&sq&d=&SqBfBhny$f=dPDmO{<-aZiGp^LyWgB<@(jXZB8LG1>{~hS*>SH3C;N zP~Sv@q<8X#2h>iXXR}Dgc_?uXiJ<;*VD;2%Oad({SE)Avp_!qh=Q*A_KlPD(a~iqE?X`w(&aHM`XFUqLL5fgcgYYsk|^ zN`ppaF)S6|@s8fiH|SY_-b3P3>O-B0&lZ(CY+KZmbI{%=EMkrCd#*Uc{kaZf@3G1$ z5h_998Fx-taBrD$e^fE)u{p4+6j-(~cs3ack=@U{gEFbSs@Q5DO1>m29MLpUPo6_} z=)rm^@D_23PAmyvd_5mUjO@;<I^d?`asz z_s_&ZDT!s?g3fK$Ab-G)r?%-xQ4T0DPq>{pZCu2Z!F%P!XW3e3ft9tqguX2o0|KDJ z)YgnY9%QVOgiY$@%S1{$f)ijOJx5Y$bRT^8SH8N>&6j%0ZBOTKXa!K-LM`>BcmE&U zx`4==e-aNG3(#Vf6wwwNw#nIP)V4L5e~9AjK0K(aXEj4=uGX=j5`L7m3KgK1*Zlb^7^+1m#fFLAeAIM+S0OEJ3UC?cc~2!iViT-AQLD=Ay5EZ^)i;xt|PLQ zjxR)LFvp3Hn-oGhQEl3Jzo*0vs9H+YF|_Aa)LA9xCphB4KnhyS_aB2-=EIMyZg!{a zkbTQl@w9O^`mIc_A~^uD?-X;Vgam7U@YkbW00DCX0|`Kdv`6NPY_a zhQ&cYO~|wqmwVJph%bU~*$QBYh%P<1J(^ju5LdTY;ukDn*b_RH;8~_wP?9`Fck6qi zqeE}0Go5a}rKrWcMJqi(RBP?LdG~7YYxwax+%b~% zoO^Av&%Y$NLIM(?d0Ok@N{n1RpSLoSz=hnJOV#F}Vq_l29Js&j2g4nd6hluRn&zl4 zMqWRUd9^#d7e8OA50iqzh+%xSu(S}>D0feH=WaOa!TBe7@{<8`dk^rBKOKmNf&>bd zMZ<4?+)(vGG6Ua71H7E@M))t3`d{=GI3u$Jlr%@b8v+3cxM8H^uD8I+gv=04;Ct37#D)AO z+hHBz>=>ICXvmK?-JjF^(5CIiz7O(Q^lM1IgdIp0YcbhI-~ zYX1tVv%wzl;NKHk9tn+fRoxK|FYTn&ES?S>6af@Bz`*!DB;J9xPKoYFuiG$I_OX#* z;v2h|KZdTzWQ}z2%Uq3m{U0EZnQ`_%uTfFuA6dQg;nKDA0>U>*TKbDk`B_8e)g{9V zJS+h6&JYyxTINi%zrc0M4sWOq(g$3pl@YYh_I`elgkd$W#>mg5ZJ4k28%@+ zUzKpVe$+^D-g_&vl60F7-DXcGB(jWJ%|%R7+i>5ouk_VafJ?u3{mL~AkAk>v*0lCU z#(r~t0#0^Dawm)OIZr8yTEfx@`79nCSU~wG3p$k3es}e2Up}e=nE@=mA&g~*fiO?2DtZ|nsGE;gS@$ze4rOPKt{mvV>Ycptj zYsUF{utAC1{&|!B{A@(9A(AHp;37Y{3wlTJ8`1BnGb)D_w&f#%KLa~jKQGgnu;76= zT9Os$PS+b*BWc2N5R^U<0G2U=Xc5^*2j?LP)6+ZnRw&(h(p2YABwdIzNRYWxE(*Yi zB~PQR1m)Txo+>CC9EE6|CBUamA|WliXL5Q}1#<8Qb+S-foy%2X>g zC$1%GQPgN&FARC}gCxCy*u*u%gM!h|6eKn_?WRDl7H@{iKEYqAi%`VM|6ZBrcVKMz zRkg8)eBWKhCX|D*EK|>8=>0zO^pzz@lVB@R^edMKMdOIj1Oyulj*gy4OEn~$N8QobPzuK+y zkya}%Ix%7v#R%p@vZOj_DC(xvh@!%g!@MFMP8HDprn@LcBQ@pR)_w`hz;w_~NiX3_ zePamJeD+|W^wByqV(5Lzjb>`)xl;kc@sZR$c2_2OJ37m1z8^*4vl<<(zscLp}bub@;quL8))%^ z5IGfYsA8TQgq_hd>MitW^T{n82>`Dhd2oXmezSt@m?R)>1|4;u`c7Ph>zUAt*laxT zD5m1Zva86#pM#1=R{?uGgL(YYDI9`Ltrh?1CA+{kMP6XW|7}A6kCzoaj|7pn>~LUB zsW>OHDjyK0eeJu@yERq8Jt-^{m+`$6;9Mp#T7$>fGG>@m-yf8u>%4>gsr=Oj2Aq&- zF=MPJYWw70el%^_ooFjsWBdrdV~v4w_|XYIQoih=!<+Ph4hIs#Rcv;`ft*3&LZvSS z?#`STt+-^DlZtvZz!V~{6p-&tdqsZN5AQn+k_(j`;K{lk7N;GhE7HB>NY5`39-7UA z*@fU$zCwJqWh>;m7{AFV9lTCE>`VXIi4(-#M~T*k^q+{=nBb8W17u25U35@p5}Q1p z_(<-~d<#0N3tcsO1-Wv)Byw5YjT0e~JispR5Q^@J3pX{&d^DjC>jZctICevRqI_CUbK-iB?Ahf+l&h z&0Qv*zJ~7aitV;hY_b>_#pM9cS{V8yo4Cn3`D3UvS;jO2kHD9W07*fc&Rq5z9xB3d>@1p+ zawP53YAPf(tCSG^tQ9MIECd;mDJDeTf#ZCC;|vjTO~d{B;&M6zBPz8D&aK=mfz)%V zKlnBOBfL&mY36Lf#a$am6FjqZ|h`Q2%yd@~|TA)HSo`6r)-GUwYigV~%uX&`pi&Y)Np zN~VaTlGSvylTa_lvNZM(PlQ}fWTlN^Wa}W=FXZFj$R9ZZ)SXhJ7@4Yt2Cn#Wm6X~2 zD*g{5vpY~NQf3xLMe+`-@$L9G=s+#%)Qmzu5PR6GRrZ9wEzY47{WX@Cbt938r|~KS zI$P_tLw`nlzCzhbfXhGtwj2Aau8Ks2C6*q$Iseu^mgZhpoF8+fFJ`n>xP1iMA^E4p zx--(84Ng%tI~5BwiOd#vMk4Y65CVIQE}}z3kSI-Fc&bw$LTM?P+IQi9jUWd%MwSAu zZoe9kD-*=6Nod>UMm$s}7hUd{a*AYwjlQp=vDAj)Qo30paZ0kC>>G?7J?-3E{9@gJ ztD{MLNFVuiFxijyZE8w^c6&mLVh_4V>e8gk9}5;7m+C3_UOfEyDB@cN1ve~bc(FQT zYxrKLX&fd_VD245D&3)NW@(rbzwBJxs#@6u*b*p;%`mGVljUEIO_?6?3?*1bc7y$} z8XQy^UD-vBV>#L+j{zghx_qr)T?f&i;t4EsH}+Wf?wfQo?x4j3qZk%#YX3k}-y6-W z<DrE zZ}PD8DG@{K99gGUR+m<@2QkVA5EU$bnftmn)#fS`C0jnhZB56%OvComrtxn~fHP3x zTuC8^x;wEz#{>1c1u_S6Opa@9hK*7h*LY$?5wcK?#nS#v*j3?3Cj1CjNWj!#?2?Hp zC1_g+!$!X@ld>Nt42pJz?Q zN`|e0TTHH8A{MJo%0!2XVqtxBOi^gk9&{Im1(afjscrHZmRWq;1rwmYBZu)REfa$NT4si=i1b1iKH$LOv z=9E7tfnO#uLZh3eZFi*;=I`}kd%lOS9mlE;zYk3-*=wayM}hlC zl(e)XxBwwUP$nxiYVsHD2v8Z;WW8MmMw)_2F@_m$Qw6&lX%5nD#_3I zl-jN?hbx~$m{CRKDe6BMsA4Ix%J8@lRp|9cm}GZsx*|myDf}}z&UWERyY#$K@$zRv zR&)4wvf+)wv>#QceYSXPcgW5fZI!T~j*zM%rRFBcYYPnYTOz+yFf86iO|mopkxRjd zM=H}7=8+w1jrL?4tB8XMyd|;Ty0bs6DN^+Sbjh5eJQvOqvMewFGcH1Rs9~=Q=<&Z_ zNol4RKDEl(*j>tu2_&S+_z6Yfmq)H#_PKv5b(<(qqhFbyHCY{OfEklh-$S@#M2n}~ z7X&4<7OEs0G97vTq1kcKWyh(io+qH(;Q#=l5fm8gfrSZkwS@tA9C zU4pz%>8dhqCcKZ>HK2lonrEI^4!;On!D$OY=$jgB%?>=l4Q^F-J(l%c&lgSI&%&HH z0A{d6wjtfJw(A@5=?{Gm!}V1XWo*FW(Aoc zHe}xOus?4l2fUlaxEA&i4KTK{mWGk(gk7B1FzI?TsJ1%I`>JkIESK!vk~Xv zbAFD#c1|^#J}2#KL2@6vlW4T&9;T-f+0XVG-KYm(Mb?*hiU^pkMEF;ZRbC5Pv6<*8ty%umt~(0|~T{kt%le_0$)r zG$)+B>grw;;QJJa^g|`x_8>KCq%fXy!K#Sg{K4VtA4$Vg#G4YSCJ2zKO7WvKvNYku zK7V!rS7s6^(T7ReMZ2hb+iD^CyL*gW-e3NuMeTV8JV_xPC(4H)V6y;Dvom0KEYpw~ zf3F^U2NNlgeHU*5mwxLT!?JP*VN8wz%L)wGFKwlfK<^TpeGAbUhY2!Qr>Zx!cm*8rlj}JiZqHf;X_C#sUJR=Yh zpzs>FC~-O+ZC3a`o@<&x_O2ZWopdYg&ViTzUP|nr0-a6I+1Kbcvk=PhhNzDUg}?6F zdJD?skVO@eupcTQgq#Zwvc6t{bd>K>FoTNCg9o?v`2jlg{MDEIw2^_Qmo#(sQa9C) zeaex3V36Y*-rA^olG84y%}HT%b9()+?X43-j2P;zo!6(W0lAwULAxT)927oCJLQqrIV>c3vHMpHAHOOT7U$0$C`x zMYaH|6%d{Pc2nO@Hb zbE(Rm0t*`Vc*u~82SW2BNvkq}>yep{=@~d}+oT>f+BDyLYQ{6;9cF88WU^i86%ybc zb&Dj}eTHUsH@7|%-8vikR#gAmZ7ZcI?^p5QM3|`a=?|sL>ifUbdw$PDu#TOVu}hAm zNQ!q7H>IVIwAPNg9xl1gV_QR>%jfbs1&14}#$ej%{v^Nub;!Aya0R_l`uiG+o*y*q z!E9+U$kjSh_lSoK;WB}t*wSKx@bmE!U@3c9Br~@>39V4SO&ggrSp$5_==ImViCZY{ zM<0j*_QA)Nqby7Wa^vBWoDD?ZI?2sg7;quZBHOCe^XLDK+0yl&t)c{Q2&PPFevAAB zjPBHBl~xabWxVHi`M0E8ToaL1<_h~g`yu?vE+6PV`ZQ#5LzJ)+UV;O8#=QMEH;vUy zdHBtlh$3@K)g}w22GREYGTy1}aIlX5B*?QCc6+T_prnjPKABUBJ#v#iRA6KeBLrBG zRztQfNrM>Uw==MMWy1jJ$#2D1ay05)I)W{n9%&|z@OO{0ibW0{*Uge7zNTuo!Nv;? zG0IWipvN|PindwRCaP?6=*|KGk%jC}R4vBhMV^wKFa;^`lpI+`zz@U*G(N!$VBbbj z6X8*q(J4GJn9Ac!EWz#y%5s!!{6;MdKu~3TzFl>W*4(9&%DO)}Qj#|Q4F(3Zg{EO- zkr&)6lUMtMYjReW!C>6msZb6Ig=woaUc@!-Im=Jsnm8rpxzDChfio<{_(l76NLm?~ ze-|ppsH;i#fJ`QD`ldH=9>QWp9~}QyWE%iSt~pVPFi9C{(tlvqoda{?hP{+b)#T9R z31Vas{pH{q5tz8&mw7UW=2Q6{=1+tA)>Wy&$%bv21_Y_vPcGzr{P zJjSo1zkaQG=SH!S)F{kco^8m4gcw6I9Inz zsW{!@PwBVUx3pvA>I{{zfT!OiJEaw+IZz1+x<^K1vZXVIizA|xN?P6wp@0dyCdanV z5Q`KIPv3W;{d1(v>4u#i1M$-qRs(P&>*{IGI)%>Q1l~K?ezn#P>2)PniWdTzx8`Mx zFNJMcCYMQh$u_fJ!e^vX$Xhn#eA9G&37OJA&)k-<%p5ODlG^Oh_vSa!F^+_64hd^& zXT2_!r!#U}Y%o)Y4r*Mhx6O{%sqUZIW<+Jx{>5BShMj&E`qx-F&4DPX;T!NnG;cms zDdF4-phxY#u$!7d*1zFXH_*vGeuJX+-78|UafYT3W@PY;;yKt|05SbOYR(_8P%^XJ zgzkOd)?1-k^D|b9!g*CVqSC-i%gtDYESYnq4y=hBvj`cX2BWHzJ|Rec)`r^DGa|sY z_ZU0(qxCdBD(-p^<#6;}=KL@esJhKB;=T?BoDHNnUn7S}%T#WBUWy2@(XDr;T}k5o zVn&R?83_%`q+q_H`OD`qhO)NlU9Eb>LW_xEtp1@nDH-*r1xtlrMM-3 zI*NvTI zgR^3bW0%Eda;Tg_>7kfPMS||aa`{{_sbuAD$Lh~#VAV)snc@X1FS$78XxTQU&)7{h zIXfX*FAopj?@4uo`gOTIqg*`3th7667R|yP3Nz3fQ>99yVqPS9j=$q2X|DH^B7ujq z_uQX+a)r`18`I@9F~EtDB+T;U^i4+{VJ?UpvpM66oZPz>r@`;(6Mxr zV9=DK4QbG7PAtv?GDKB;ypACUpg8Nrm=E&V(@teMq)NLpRRT|#UzLB8lbJz!%H}kH z(1B9R6aj|rX8c8$@%uCwA{2==Kvsvh=v?MekX9J9e+}IQrK_ngO<-)xpaugMfLohwx1#~BBKVD8l7T2$W$y`u0X4e{ZzUzXJ zvv>Upj`x&&4mS!fhT3v2XW(rpT1G4?*m$0u>H?(-e&fgen3xP}rUo9?)~;m zO0aL~akQT~t#R8cQ_+~LonGu+FI~~RT`3>)`x4=QLz-DNl1C9JEgb#Js1X*}4XclX zAXUw;W6I}ZSYjSZMA{&?NmIg=r%AmJ3n|eIuV&N;2$(aVdGO~RC`nR#ROzouo@RU7 z-R~7H2H4~NBk}N?;t!?e9^_WiTT!(_lGX*U=)Lt-yo_=O3Hejqc}h9RO#EXm z=~_&kDNN^DXNn0#6+FM75p|FDnedqk=dh}|$3wES%-vibhE<+OvU31F5vl$~{YCn% z^u%wik-*Jc(A=eTttiltQRF~@}9I<;eAR!Q%SN-&`la#&By3DQ6NcFBoTLVG!igUf46 z28$kDa^@nNq}rV47I2#v=gBb9r7Rqjs$Y=~=JrH^`AKH|ZkA0uU1w^maBtD{4JZ?W zJ8#QZ;W^8x6g)cEeaq_!qeuIqa zVz+)MvCB4=$gb@OYk;p?qc$%z!6}xzvph%{y`NcwQsHGI;={x_AUMmY8ZpsfmrGrJ z9La5@vh}bk-tn_^l`x&7tQ#Mfz_6elxxUdu>YD)7j~xSf;iMLlOaitB9u)tM1SAL1DEbYlmv* zVjU<}*D{Zjv^1%%N1GHt1^ihSOx|-1taSr>%9eu1HW_)fP#%l>dcj7Xsquf`@LLz} zos8DfWF;yf-s+oDvGXLT1Z#rSi0hPj)s5JL2lgQf!%{N>8P-S-4J1qA?zQ5rdJ7b} zny2v8&Tsi)Nht;q={S?XkwhG#Brh)73dbzPE1bdO*2v~uzUS3ftGmYKNjxD4#*wbu z6#sr3D3XILueSf`ZBL^Oby>(+H?K&xt{WK^TNN1SAj478nmN<9b3pJY<2RXO4@?_gp>`OfKJMG}9xt zH?lTm@U-=c9J^gEyf59q^75+E)MFd>qNozdBt3KJwttYVwNnn_34Ci{ZHhYQs9*DO z=e@I|NOJI-JC5FfQizXTUyU57FLf~*c0R`ivHFY{en^toFEsKN;VE%XE&y~;2BE~5 zMIO&m9FkF_LhsfxH&KEGiZzc{KTG?KyldUXlye_a*yO;R=D5O*Ps5D2c+D_vVDE0D zgCWgu-nT7CBJV_@rb;mJ21q+pWm0Yvc|93ybXif;dW=t%)(R^Kg&=0=z+ym^hF^M?d=B9G)@~uxNeKn5T4~OUt5*&XfatJZUNtc}4 zIipMxu6ucz>v=|X_;t)ZeqKC6f10TmW9GO=xj3Rn);!oE;%{_kEgkGVqA{3rRQ1S} zW&Z0t=Y=L6_SJ*P=9{f{!&-I2D$Q<~p&WViEiYoQ2oAh&tgN#QX+~og{e#b4x3h;v zE|Y1yj{3t6H4)pdnshxtDD#`M+sY(|5Zz1S) z?9IuwowpK1EBS?#QbW=c`}J?g#wOXE8^mojNq)4ATKAw>ersi`+?EXtC`Su(l@Ikw zn1{Hi(HpS!V`b78X&ch!@8PQ}0US1fl8^BPdHjI^F6-tNx8(60xcpSRY5gwo0NF7T&P znqxFqI{Sfv-5Hg-`FpyJA|uY5DBUNKMsZ1YJiUGCsxymD8k#cUAD2B(gk$zR(?8B! z2GVB<>22!tgWfksb5rCkluQZ5)*iRvKb>@UG<_EEdQ_}K#;k47lfMKJ4V@rzs%W-j zy;v7;2LC+_I}9W`VWCyoH~oTsrCHu=+qT)ZrdK#3KGq_ee?at8q8nfM*h4q4(xcL83_1l~pKlUuH3~=i?@gMvp3KM!3L*o=b*{bv0s03m^k3#4jCQE2 z1WX{N74LZ~T~E9o+Nu|=k7X3r*7sbFK5UdAVyj;U49bX8wE1|NrA2EsrcJJO3Rt9q zcTD5CgR$vY@oGKa^T<42zEQZursENwl%08`@wp^PD= zTZvR^m@E?ck&K}NQ)2ijX!7<4+LDD5%xT?2jA1WMC`*`5R9+4&2U*!a+VVMf3OKth zu7A+1ztei2@rhajzb_oKYDgu{?ab&@USU`Yuuce#22D=dqw{Ndc)*IkJBa@>kh7)UpQC{^+_-6?Ejmgbw)MghD^ zL8`nP>x|v0$}ItOIFiGiVwWd>)dm9`H&Zp;d~J|~4^dY4ori0+lu%5t;&i=%&*Y{3 zS-mFN^RL5qBvloMrKP}n@<i^?=II_%{wO@(dpig8|)l#|J{Z)^@nQWze%L$r8)Djt6smt_!`Ue2qv%U;UAqb&4T?ZrLc6 z6C0))mNB^7Tdp}2pmIXf6cQTmP448E<+nxnTQNgy^FHI-X{cXX!=STDUET=;;;*o% zWA(N?T7S9dH~G&N1tN9;Mf@goZS1)41{q7+Wt^zAxG1%?nQ#uh@H0B1+FK;p+D#kv z&-fUb?2|3~$Mo`cKV^$T!}$P!sq5WUV^>DH(arK|xtVBE?O)n?om-QVqozMEc|>I| zqHA|rL5vRSCGk}L^5w$ib3gk!N>oM?hk#&B*>$;+jfh0QALW@o+i3aoa^L4+GOACS zLcd4vW3-e^qG(;iuU9ucfAW-h`kwvbJ*H-5q4aPg-abzWp+Iv5A-Sf=)S;ULSI-oG zMmbbVBYtm`0z%2!_ZV4~fpcw(#xsX+A=CFXlC*$GpqxV?;CO$4NwL)J*Os{USRJiU zxKQPGXRIv7>Du`8cuZ#v5$n1w^-iSgV{h3k!r`G*a$89#UU-g?#IUKK$`fsr<3|MZ z>K^pf-q-e*WhQzcnn^CCHarbil^XJlZ>PSlcA5 zS@5iedfrE*u-I<{3OY}Jp-tHqfhsB~sL^?eE-pNcmmI$fW%og-2b-dP=>7kZ| zxesWj(@P}x36v-jA&IY}K=z$pGf)8?g<3F#;>#iAShk&3CykNAN+<-s4O+y26K%cwCUk2kOafz5iZy~LK{yG83>Bb**WJ@&gYa>|CATRWug zW6xd=d395*NNjrg{;-X7YgTZM8wuR6M(tQDk37s4ym20B?~x>7^0i$3{;_SQz3N>X zsL7opc`uICLTQZi7=^%0cwS(rdPFmSfiy)nj7<8N6iqMT56;8)>`a5Gptz{og-kHL zkKaAjq&oGY-K{UHgVFyCMHWTFJr&!M)B>BNLkZXEK zdsN3DH!qVOxuyP(`Y9JQ#l5%-IM><~nffn_b<4?Y9qFwx_559KiA=EO?8KCQM$7cy-ZDZ^f%2uuQ!xVwyelYY7*MQXG9Q)Zwe2^XI%0QxrYq znq~Jt4Ba_S*(|b2NP_2!NL9U)VJWj7^i*L+<$1+QyAx9rCT?iyKk&oYl@(OquyjM# z;=pB}iF$gFKIaZ&k+GBWnD-c`i(v=PDG;C(c=>grW-B9@>Ou@rg^fN@7a;qL!jbO} z_tV5!L?v@elijUwTdOWtcXO(p>(~aP$nhI$Z8yi4F-4 z=4HlF`Q(qlbrxTkMMEU3D0;{M6jGaM9vM29RsU0hR}k015WYtIdi@5I!>+^E1ESKp z-dZ6_|81z}UkLRO6u^Nfoo-i0;&!JGgI{GPQCySH_iT4K+*-CO_b`Z;__LDFqW6$d z=GfVzEytt4GX|rhfn5KC91#=||49Ea?E{g!9IemFgptKIl~F5cKdEb?h=1r!ZD z*!qoj8K*Q0HZ)zrAa>!4IOr&#yLFMB(fdf6vLH*3f?=J zsN^vj%i(q%yL{ILAy*}5;!kc0WeuztEDgvn;7)ukCr46fV5J*7Tr-1bvDzEifwMFM2X47M z@e<POXNw@A{rTDm`(FkI(`}o`AugonHpMg_B@+~ zYoy$Q7*$&`xQ=10d_A{yrWhca4*z9n-OlJ4o4E7v=5~I10v>Kx_N&sG6qjIV|H^iP z%o|eNwq*awhx*!{dE*%C%9z1C5_w_aqh{Oi_#9{qelB8A4Wj_c-E3iNnV;^t`8@DoB?TaaK;^7qA$% zU%FA?%(vOQw2*Cw0^Sp46O#8-%a*T+HY?~S*@}gU7yG;3hw%-Z6X&27{@NsxH}AQ zJslyw9hn-~a!Cn^fz;+dn)Wx8p}O~zDaY%${)yYZ8?$6@K|(LUqS0LaN(>EZtMqk^G>tgOvn+F#wm2-%i(QL%49iX`N8*_E1BO7FU+N*HhcEKEjm@Z3 z^-uAQ*M2O0?Tq80^(jSZlt5tBF(Ib%v#({IO{UQ4NpGFTGOq1$QuxR&#vMCH5%tpD z5N%=Of$Bz;YF#tUO&dUd1#bAduwt+S?TXP1ZBpR?(JRdp^N3&o+fC$JMwFYy3>I- z&Htz-bc7u4mZIUBTwo6u{_si&J{MNw$md8jD(KP&pe(*bnd{?yI}6IcKJKd8OxO@| zPBi=4&rbB_8A`bgxmT<{l=dg_2-F_{Z{ag@CkRwL!XuY)xuBBo}?y|`5&&_>)BN0 z^3lhz#QZ7apy={fyezF@n)()@9OLF)`6G72hvpSwtF+gKA-)vC21_PuOLNnl@+ONZ z<}s{;blU>iW2*Ls#yT%shZer$b>(IZ**f$qU-kE9>$P8g)PKqD9z4tD!*d4G{SS{ zX&~8&$-02dCVVObn6`jA26J|!djt>w9n#&x6ULHFI#`hjMgZXw`VjjII!#L zq-FjB00k5v+`xooKwx+%VFltpisV0Q2)%{wVZoXf7AF6`_rEQ_y#+x3l)o1L-`4(L z$|yWM!`umV2zEIT;~pFu4gjD?LM(JQJouj&ONilae*cQQ{)s~g2S_NN_$T)Mcf9_u zI{%I@{#D1?N}KSki2q?hz5hq-_CI36e*gZn<9}{EnxWx7UIaq;1o1{vVI~pJBLXB;m;cfOb%DRH%>l?Qq2Z?+9e1q@{uXycnM? z|JBGK#+m<={b!5+DGRCu0Hv=0K$P{LGPfcCc$NSF%xnKCBmA%ce`(_Zp!=13MChG= zZ;H@h0003f09pVJumGF@FCYYn12TXjpb8)XUBC!12dn{mz!`7{ZW9c#P~a{Q1E7IK zAPvX@9s$L`W1t#n09t_#;2F>l3<6`oG+{#R67UY#1onUv!Ud;qz%LL8L<*t?(Suk( zTp)gsC`bmR1kwQMf(YM?AbXGt$Qu+0iU7rc;y`Jj98fW+0@MI%2lavmL6e{b&?;yP zbOgEt{R9(%slaeB2Uq|s304AYf{nq};G1A?a0oaW91qR_7lJFn&ERhEAb1+Q1l|On zfWQ8i2rZ;+qnx1JqP+Sq5&B;uv|MiGzeMPNiO~NNq5ma9|4$+`o$&L16SVlh6QSga zH`|eD@JQPKL4*qD5QtDXsV)3JL}*wwfe3AE!`cyuP}cttq23!a9tpamb>=tzClUHu z*cztTZIF}Dj&)n zdU(A0x@r03D(4YH&`Wy8mupu7dFFmjZv6uuGh^Ta3_5W!00A3v{+2W3GUas zhdM=!Z@WkeF!Ny)Ex{j*!t*~E**)yHCvv<%H*bhXa! zmV$yjaHvgL_cgH*& zPHueCc{!oJFgw*TY z6!;#*PbNuQqO{`$#cTWhBE`yItuAcXP4V-W7i@j`CO zh}KsS!Whoj_2z|H-uu@EJEYqHbQly7Mk1Ryb(joKSNmKt zk&_=Xo{Ov8|1NDXeB2zC6R0b>&i-pI_f_E8x%&H*dm91^3zrmm7CmiqZI168&4kH` zyQ%ZoGk*(A=_eFiY!2VNB{0o@&-2Zis1f({0g-vsnE!IpMeptnTlus!&vK0?iGO|% ztZ%1rrXTBfe1wCDQ+hEu-=2x&Dv6^9bIVVGLw3sSbckgehM^S!xxYnzpUOIyh%!R3 zeZedkyi4Kf+x>*cX^Vn&-G!81J7G8>_&QBB8$;?|5j@Aw0UyxkLgH?qBWj{~i(%r; z`@ll}R``}MLoy~QM?hF)Q84+_B!Vi9d05nPt-v ze&fR62I!87XQvxiLOVp<^uPb14X#S#09Cl5KaPCLVvTW#Mc&m{+ZXaHt3q|xG7scE z(xo?Tu;;F_ND${)q_7imV{mS(e5^E)eJ^waQ@)5bgydk9qUfxpeoQ*}W|7pKzF)EM zsVqSm=!CWNJS`QJve(m1>lUjNOi7-u&q^+E=rbIy46TY9l~l7U-Gk;%&axuf^zx8U zxe~j=^QFUkvBc~RYt@qsaCFHRg9kK-qfttAR zr}^+{aC_urbH9mdg+GSue4g`+U97y>RRh<;RjLVxSKvdiJcG4JPMR#48sZXe(y2w} zxeGJSKSBme*O|3gri#m1v$&;G4bm>ZWKG8iue9BHRn(ZIRn&%F$}^}wkoK%5sGi1k zQ=`0EmMMC(*@kkOiccFttcj+1Y*Kz)kBo&qbf0OAx4o|PdBn@rTzpeu+~@{%w6xS6 z>ys4t_q@*@0p7xmGXwh$%MSUE(r}CUCSRjVOLRI&mdKZ`4eCt~gP*o_$DmJAr&h*9 z>eVDyXb0Sm^eDSF%YvzDZuU-GUm9BIxbVjdd~~jRIfoxF`01u8zx6erqKCedD5Ax+ z$bO1J?R7V|Y58!YPsJTN#-8~EcWRAIbtunW(@95XA&BvGdiNI!y9@2`7nI{sw!~no z_VWn!=>b&+=+h*)gpI55a(A(z!pT{tp-{z>k>;+pFP;s)du;l}{K4oe8(PNONEp>s zJhF`V!kQ>%m51VMT&d~BZG&&QpQ3*}Revf{i>Tc?wc8}&Z2_n?*l%@o*p0vq+#HN! zN{w!V>G_%$NM25FUqyeil$IDu_ihNj6%e zmHF)VB<>9m-dNS)U3I;j!DMi9fj=03)78Mp)@_T#ZR}j&+ieyJ!R!6=kHlBR=ni&} zIptO^EoIk!Yf<-Qzq&6GdQuL?2oW>S-Wj{iklKbRzKNnr`6edlHFBGY=I;FU7A-i< zdqBE}_jPf(zz0;*zLM735^;+h_xNTSBpAt2|F&zq^}CP7a3|TLUL12ZC^M=b1Po2c z-w|~!U_DhTnvU-hyif7UlJ@q>1#_}INn65o(RWG-?Znn)>Kiwfa~6f4;@V!QXGMm) z0&jkFKUTJ^8|g=2J>>5){RP%7{VvHz^d@8hC`r@=+q%-EG{kw+4{Zb@5pKb??Nnq% z1S3G}N=ieLHZVpVyQ29BnLd04&nH5b8_s?J$-Z9^5`3$-r%Wt-_+|_d;)c$OKv1%> z6bcm9)vsiqt0nw_c-#5bm%}PEMO-I!_CMn_`(3VH`E}Z;jO%`oU=*skmlp6am>0zE z^8Jl>=aP*Z88JFAaJLP%iyVqiC1nLp89bc^1_D8YOAb zf8Nzg&Uk5tB@YWb=~Rf?1U-S>jYI(~`Z3$zPc(mY$gMebDZn)^;(e0KICDRcNdfaD zaelE1ciugPs0B>}%cTi)QY5b_WugYPbvRgE0A*+M2s1ly`mRK@+A__kbU3g>Zg^jB zUz!v+9Qr=8OjD+Z_eJksf4Uzu*sB_jK0PFj<=p^&sdT)&BJH6208ViI@EG%XSepn4 z!r_tCnXsrX!Vp!gKhr$D9KTe_C-`>-3*G|e6Fuk-7H|xXBprOf+#Ucc^c$8!CFgT6 zU=-Xxg>=h3xVwmgY|*gKhf!#vp)guUDd26E9|5T1Z$lrsdImfNTLX?+`VVd@q64IW zrK?TqBF4x|De7lW z$%|bgycwf;u!h$4&}El+yZQ&z(zLsRq`~#BFUBowy&zFcOgde0ipz1-nlx0Kpy!Hc z`(zj%QxEES>n*av)tGk|abac^2{OJ5BM6WLq*L&2GIZ+!08mBrI6s_-FTEqEK&pU> zgpD%>1@*wzkpO3KG`~XXvr(x(qj8IfG$@SfEmLa!cnSeK{Wz9tt(V6Al>E_!oUUww z@;RW=VV7sk!u`1o;<@^W#uanp2WUN2`@QA*+})bO)N&j4mNBM6Z&NLyIdLpt}UG6@gAIf}JY>OPhtwS6rVri`$gx zE;d0_7x~YMV7g@aWurw$pGpV{ttL6$wI7)1s3OMi#nY=L1NbQax6m@K_Gl*ivW&_BQt#_jjbH$U8Ack6l*_UK(M_vyuLIn$U<59 zT3JvXDJVPqb`7!ReNcU^ek%0RC7UEwF_e`a?EuBU0f2pSfUlqKdV)DUYI~%Lz8` zO^f9E@J1>atup|4VyOlD8mQ0>0d3V>+>NhNU}Ha_=L9_yS(cSr-;$gESeyS0_@>-+SO+{KsXdK`2}}U=&)a0A zOUfG?hWZ}-C2fJ1z>12RSnk2NR`HO7)K=-itUp2>gmk2pQN`y2f z?}ec5M)}UnZD3=lV?E$A-KF*m%E+4ID@xCJqgzguuBiv+R2=#-wLF9^N%$EhYekdF z(ZgVe_~)oDzbSwP(WLskn-AS=#@ftV0%au4^%Cu+l%^ias*X8%d>QPIW$rB%rL$}7 zy&@bVh}P+LeiS7g6O@?TB`e}2qHQ8~?e$Z#_JE71=Tg!IL(d*0I}ql70qzzw75Dn& zlmW3~jeb99=#P}?d%eDR!-6)pTI;xfC`fk%O@eA=y#6!Pbf5YvWQAp5zo}rwxc|ft zx`+h>C;$#6KEBtN|2=olk72$3dA=xpdC@?L--|O90E}#Cx>xQ@@dEu0`t;{>+%LM% zh`T{-&k=((>;M2o#{F%A`K$Cle}@wkBn2j5eLqXU{)1d0wSWtlzKvw533h35e=9|G z!4WD}I7Ci`yJk1|jsmFIq&$KSvs$)BK37q6g8pU2KAIW^TsndqA902hRT?#tiVUea z6br25%nq>qf-O7963KUiES60Ye#3U`_swrK>af%Qz8d}Lh!I?A_hl;~B+IlgRxn%- z!q9a^NTCcq(2 z64}S8G^-ZbX#FfeyqeAVQ#E^rIESH0;-CE}F?wr}7oVjl$WCFZq;2_Xl>{QYQB=M( zy&#-@P*QsOmeW51Di5sv!RbWVj|V)B<36R(TX)BvQ%zl`i0D$IU7MfbY=8DRrhGZ8 z_y(JFsR^yF5~--zkggEvI}=>L-LPX!pONV7ic^pI^SSTo1aQ0lxPO+d(+REDTpgcg-d;6&nwlsnl1K{W&1(8u(>BI5YpL3X-yClHgx4~_hHlIh<}l= zAU<1aXG(aSl6wIMp9h*17f&g&5Q9aS+s|3lXGzh`QT_cg?L?kgEpjhjeF3ufqh1pk z^-%@zls41YQ*x1Z9cKPBDH}rLaq^PL{{?+%bI-%r9ZDtM@6heM>G)b+f{){bPKtJ?t0LiRyHJ z*EX02sV=j+=6=3zT6||Qxi+^>*Xo$h>+@n*`3V9Bo@o2fOxd~~I`^U>r%gAtcW4FPv(*VeU1+w!!l$!gz}~r%LgPCQR@4 z(#zz&fshOT5sxOMoeI2|BDH+e~R25tO%qpIcMZkqp^3Fk&V z6Uoo%ZQkr*a5;>D;GiPrluP!U=b%c*bb?f+E%nbtjpzt~WaY0w{}v&9YiV2X+-PX* zCLj9E+h5q`6RKDBtM)nbf@Hm$FWz}Mc6>6R<62!l3RqwoU-7M6(7rlw-WWA@d{^HD zg8w;8IC+*8$kuw=NhdbMCpLkRpc^{erF;Q{D9_xxBxKh-a^#?wJsk~`pi6$ZUH5LZ z=DD!>Ly%tiy0j*h0>>$LMSb&3(UZuL81UPajbrCn5SvA8t_EFMC{??o;j4@8sAU&24YI-_ucFXuV0P4GFjwWObS;@{Ou&=<0TULq^F zvR|@6zx>RA>6vUOht3&`)$^DX2ckXzK||M)NwC;6+w=3ZjPozZ$RGfB^T{aIh%WBk zo6_Emx24}GxbE{&QRU8jZ7`!{JYJPzqtjEJ&*Ur-t1tPMab7?MDB(V@&9z~;zFU}e zGdQ2Ww*!=tb74^3-I5L}oSB8JDl3%`6 zT|5AA<$$L7CK3ao=F|}i-WZCf=HQe|LdQK%`XW?lINr9chYkUdJIo!MS`T?38f;L3 za>IP_o2h)tANNeq=Sosi`nkM@Wwgs7n{BN;5DJf}$y4PE7L<}fE^GRc^{zQ&z1(>; zTFT2ddz~yMd)!9UydC_2i!c&xP+oj(usZ+&e1#-1aXo(blomHn*KNeMV> zu(b(B^(DVT{5-AN#E4l;VpQn!Cr@fZ7+2hC)*06gIDJVDhen9Gbrxi!2ABcGA)Yr! zFNpiO>&p(suoA=kbUvPpPOMSl@vd6_hEM0<=?mOG>z@#4KWC3%rEMt#Dn0Se#)kms zQLoelWn#51qrB%N#E?Ru2gk&8<%@SmiT0*-R9Nkklb{r!BUU)IKaB$X$o8S^+NiY^ z>2jYj+{KK}q7$Jr5RZF;vE26%R&}A7m0pOOTfp@qKmDc~Qtq0Tv1#65M!;n*!b}!z zMMiD%ZGqm+c1q5Q3H~o@E>>ce6%IB`7Unep7B2+)Tb4X;r5;cM2!to|WH^9Aa!guLrxYxkNa(W-w3|gMb;uru*JCxDO;I^KJ}A)DkQC)@In&l%V5i zBEVOm^%*w>COA*l@(;8-@5HtIRN3Yc`ssqu@OD*?#qgYyA6ng;u92S!_e%TeD6z7vrex1+Do*vS2m zu~&oB`%P!fdL{*DrP?B|wZ-|k!6=o>eJ4|$-`#V5VKVbbHETihdL>9dw?6wALj=3% z-)%CQqpQj^xxM-m0GB+cs;@&rTU4aLNszdv?s>!RQv}64B+GDt#tAt4r0epv@NGuG0K%fE!Nez43Yv4rJ8ZsJrucX5J$z# zy3hG&G6@`mC@QN;5HXShjl1x1Bi6w*kKJa!2aK`*Tt`F%Z-Tiw#i@v-W|baPsZ&tN z`ijfxfGjTN=9acS-*6MDK;0$lWBc?8Hb6x z!rLF_4s1+s;+pFVbQ7k2<;YaA@=p-Ib{RKrsM3!RxDF#LL^^j)DVqzS%i%(rvejA{ z5S=;W_*v&ibg6cjbxGmltmGq|9d5*LbAyz6F;2r88&xg`pE_99wquA-m2eIi76BIDg^gL7d=`KQe^UMU zFo=$3Uh=`ChS6~oEExNPMX`9_89O?dNmom?t$@bMn%E69-9g@^ ztaW$#6dBWQpq0f8$_z6YiK`1pQIis&qWdVR$@wey*4m(?Ypob#e`N-JV2C@FsMhdH zcL-bp`HG@`ko_XNFxMVaF3!H1FIr2zkY3BwyD#G@+?>EmIMFu$y)f=qtV6`QxhHwI zl_3_(z>2$o-Rd5RbaxjoZK&xcsnhGw5!SR3-RqFC!jhIEy~J!Y`Ip-#A|gcOV4YW*j#$MqCIcnGQNCLYi`=f?qtLi@Bo(`Ao67&{otSM! zJRgXsNeGIZvT<&^!KX#uec!a|0a^L=z~BvWL-w=V9Zy_T_WQ!A_vQspNbkGDAP|e6 zi_3Cpc6{5U4SEe^Mi-U8YTEDH*7a2SdN~)|&JhxD0k3>Wp%mPNQ9QtNPyktXq^^fE zKFK16R<=qnN2jkU28HJSf9&1mTa%Cb2mEWvHfp1!9i1XA?dVpzQCeC+5Kz>O(d7W? z?vO4?rAv?!2~lYWf`Xu6?Q`?HpWVlC{|Vnc-jf~2_2Alhp6}P&pZAz_-dEE7u}&-w zUCxK46y8gCk+zozc4ta0gG3i0=$@ya9uWU%rQtCly z&*d-^4(W0grU>LRLs{gylJGpAe1y>BKXr^iC-)Z?esWpegWh+4ihi&oN6bohz`2q% z$kR9pjqN_DnI#^|BF!MXqNuU`Cg}4nmclAV98pM% zblYlPlkc4>&+AouM~6#CF?0AQk*c`h_%KhYP~qW^Vhm0+6&LjBgp!IHrMBjibC2@y z(~yWba0C%RgI!5FS^Xoioq(B5!d1PPhSzeRWZL|t`dlvH)BdvglT6Xv>f>^MIkpS{aX>Iw^-)CC*FTq$UsyEJ_|$Dqdth)$bK+SNSEOAh zoHaV8jyi`1=_SP(q#yd0U7SL2kK1@cAM;>vE#W5HVkvI<(gV@fZG!UL@`Kf)> zBuS4-*5t)648zUpXur3UU>DexaVCNFR|Z|83x5XCvXia8am$QIY6KW=!||egG|Q99 zjYNm?1b}fYHCDM-yfaxGYqy?}R}NswQL3vFA19e>r6wqYvPNx51#SVcJ#p70BMf8X zVh!yTsIUnvM^U!3MtPf4A15{Jyg*LrFijjDp)hR|03CFg9zfLuIpGb{rpK7#Q*)#g zL@sVsGoGXm^}dxX&DTIV5j1BdrtErb@zKipy}QA0_)idd=}LW_y88e@;D`vy1~hQ; zr~r^<|MhPN^|oY)9q7VJjs7s0H)gN1=r&VeQupl$Uz?}cb=1p`ythAKs2is^Kwu3F)HFAI;uqq+EH#dH$&_k-hnhp))#6S_?qoli*`2vb_+3qqw! zI}D(*dGo`~bPp-=`p@9PM#8VQSBK{5)Ety+avNh4?9exVr;{v{Zvqm2zknyd>iCRN zf&T}PYKZCsnxakRM;N`mzW<;Gb!O>SM^STpDC&M9_lIUTyXfCxNdTgBm(e^ITP>%+ z`4X?Tr>wF6{QB%~q9s1s-?rpJ9$ja=bR95Mt*ExqgZ)L|eQGMy7vujd!};B=!}VlB zA0k6-;IcH?f8I+mAOJOmX)AoBZw+2%{4Mt|FWRxYrJN3weQ{L3Xj*?kXfOJJYmf!; zFOC%j`^O_w&9plkt!5*as`27SIOBh10}iIBVuLYZs{$K%sH7B3QhmELUZ*|d1_PjY z$YRrJwZAUo&vn^}nU}BH$d|&lRLH6U34~V}AwEaOx*@5|HQ9Q&Q*`R4Nke*AQy_h#Iv+oItZ(njCzzkIM31lJy zfoJT*r!dC_2aKz(fx+3=&ze<*KCq-`uyfv9iOhki0)!b25af}qLpV&AOt3ME1JUC7 z$H4^^cp);tV114M_H@sV5``S{4uk+Ri*pjHoUHqp6oxBkr8pb44 zH>bf737o%rquy&{6NNgj6FPsrZGJ-~>2?OJEs0KmwE9=K9sy53sFbC++WFm=RD3=ZllUTkMF zgS(NS=CnqSc6U}AHpyCGe4`{o%mfcb};<1!aF|=HjRVCGX6p zL7ixf%nhMjhz1RlD&-r-iN(N$v#GjFjPqEd9$!oFaCu2iCqG1)lVXF;uNrNcvgN;Z zIf3q80bS3|jbTA#z9FiTiFf5)_z`$yfOl@8HorHGZj05 zYYwbBfdp`c`^74dSb6_TT+A?aws)<^m=71 zPnLLF{ys9`%L|D_H5?d}jnAs|X`&UmYXdO(%$rDV=qxW@-6B##cSd=_7{_qVwsDR) z|G3e@FFE*wi;!_;gYWAb(n(00HpOTo+o+k{#%Mntn|FFv3Si$4ezzVY-epp&RTIGh zKvtojS>-76L|+|=%0;jJ%GXT|&6O?lKGQ*ZY7#+G4YB?BVCO!dR($Z;WBM$-t(ckQ zhPX6l12z$B)5qb}zxdlWMawi@+4nn$lfSE)?e*i(B63VKi1_S47*?tJ}-}Aj`rB5#A2YUrbwez3`GDP4i zUTHZ19D1cP!Q|CC8Oj^=aTRB3P&shwmg}_7I(DKW?5TG31e{gr%?8kBQWtV7ugkM8 z(BgSM)eRWQ)dhUfd2*l{fCu9u)z0pXppw`HlY+@!s3ri%x_Mn`Zd+_(gyP2k8D;V5 zp4I1oonJ6+G+y=x&3zn1LId`SuHsI^5bvYFtFKP#fcyM<-}H46;Up#=EzF{-`4pdnhCK{qDvIm~xjQ0PUaDVF2vI%Mi)uZYD){ zlo{I`J3{C*Sc&f`IZWsWH3Dz> z;wq!w1a(NG&utJZrt~ z^DmrJWd8KScBjN{y|=5sVp86KD2y|CO6TR54ZXwzE!0U5Ri6CqzW!Ye4HYKKnN~1k z0kL!}^AGl?0pu}!_&uUJ;Tf&ci;D{sR?roNN8v9%NK=y3@Sdjb;6Jkfh&|f?u4FQ#Y*Faj{b8b!f@`$awPwV(-zuyZFis zS~xOJaGU?euh^!BSrFm@n2JGM*yI)mFu2R+OFrTmj@cVEskRxoS#R4SA0!LzM~sm; zoCVCxN_eB=L@$U?1wHsA>dGC4gLH6zlA3Jj_k+EY&r=D4qZcXT$Q+g2cW~c$s#B4^ z5bqmiolS@=JzIX@Xo8|7mdTH`C`o&?JVuXt=Fasq2LwdFX%G55Z)qC{%`u-cVrEuK zb~X%igqu7!Y~|vsWq#9-Qk(#RwRv7C{g!%nw5s;#d%1CZ*9;oCyy+t0_xsKWV|bpN z>$`)u^kox3Yp{H=@%#d2gJ4#-!>p?YR*QBEKteaV)pGW zI-mxsXHC$KJ5~?8nuc=!tn-bU;dB&5RUtT5!~OGd`S<4lp?xXFhtv@hNd5eB#6eFP z#WV|!+^E#xRuLB#EQSutW4eaa!E5>PF)ABC$-92hANJNrX~b+lxAXlehe)Qs-I9X= zbia1H=o2(NwUs>~!s;i$h0>|;q?%TBJOA&_lM0xbE{G1H5`15kLS~-|6y$6jte7<- zP%oZ~lN8yUoah#u7fz%cA7Sg;CR|?coU-9=7|X3qKbwy&y>2(;h%h6b@s{%5y`js4st(978k+OmCCrG6Af!pp6Si9WK;+oN>-R{v$taQ2D%>IP#1q4clH zAb_|3TWZ}lvt0s$>1q4~SLc74n|Vz4j9q%PINO9AkKMEFS75SH{;BS+LnjRUm0czU z(v~@(9u`CLQfXuYL@cV=$5nO#yyDc2sH!=m30ZS?HCD+ed8YAByybN!HA%J+jS2QN zIrLp|JY@g8guwbE2gw8=k>!q!Q7%n945@L&0LWmxSPL!S#$)39l!tHIGUxa*4B+M|xtO z&qJ+({&JWg%h)fdTd#=utB5;Wx#~1qmeH&q`*HAomN$NZR1QTeC`_@wNMaOD%GK$P z@UR(zF4x!!ou&%LXtBqt<@5sib1N+jCsGcmP{Go}PiN6$C2je3GD#YqrQzCkIr zwfden63^rL%n6q63e94hPfcUW8y&xFKsPI%H7`Ixa~@zXCPR_AkM)c_NqkXO)!9P8 z^Qy!xk*beS3zTeehStuSX;CC!h4dnh({G)WHirn2Be2@E*Z#AxsY-wXk8V#J*$^}$ z>&4}AYj`w~u_0ra;wY-@efLWPTYWD^lW!b{Tha}J-t;u^Cx>k8+fODGIPOP#7k94G z84cKUe!R<;)CoW@?k7x)GFvds;*OH`k(zG|j6V?bWOdZ5(>sfq$^;HAjT7LaJUGxy zK!uN&9PUX7Gl*irbcb)a(<57hs;?GLt#xd_o|`B)Y(k{YT#3BfCf~JU=kI8O7lYyf zW7{Z)O`Y&X^X2u>vTDK5%Vfu+lzUW^m!7fVdFe| zefl$Tk9MP;NqExqBXAAcfmhaO@U7KW^tX1VRpn-9m)%%6JPXtSMY}1|Fwwtur`JaV zk^vyU8K4l(3 zDuM4BPmklc_*bBk9|O{-zi$_wf{@^B95=X}i-Fh5=B}TRbcY?GVDMhgIP1Nfnf%?K zB`Ecv1K2Pdyd zQcLN=AagP9`J#z6KCXO?p#lp0OVwgr+klt6FltjE^iw%p!nB|2Rq?5E9uKY5Yjy!; zg=oduh%b|yO-tO$?~@QNgk{RA@~ieXFUKf3EX=;pdp!7Qq2CuTNW<*CjiH7gO>NCw zpd@4mwdG@r&)@t)+4h1uHWQ|jzIA7V_cP^t;xoVOVGkda&lxdP5A(h0o|t!pY9mc} zA)nIPM)Y?HBBccZa@~3N9?TYSGpM4c&r6_c`sE3?uhf~Y0|FA*Xbsg{BBsTV4Zgb* zx#8bAKR7pHXO1;*M>wXkWN%!`Y3VGx*=#J+n(cjs`!muhX{~50WFvTv$n_w*Ba44b zLfE-`p+>|xhjE5#JDd_#_7wCHCzJD~C?}OpYACjeDCrk*1fiMyidJf^+%)-bCtd{D z$gXPAOY*$mIOP!9^Qmt;ic(DfD}#y!QHYJYqkP^S(JLoOc{o-1=bgwW|JUi-GTBrg zJivD^ZpgZhVq>32VU0o5*(Ik7?mrbA`@I%FNs^T}ARIEEHdJQ)lu@<+7VbX%<3<`N zPJbyX<5IAFCw=Ji@SWCUugJghf+U2~+6`E4fXy|zarX|Yf18(IumD`+D1Tm<#qx`$rf8M@7ed*ghdtok-oZ zF5F&pdc~sCE8nv(smn2Y^w(hbv=cV^lhG+bW@8?4SbXTrX|N8Ab-}k(3y{)pURg#_ zCq=plIOn8lFe+^@zH_1~Fvl@#8QDxW`x(f{(pV;KkOVBE+CIIGDCu%4F^L-_qSqAk z3u$Ug(wm(X{h~2Y@NeV@8!jXN*`Ry|ARNY%`mFeJP=c^RQlttv&3Sp7hnHQQXSTo` zk<<_NO0}mol@|epM`-M|FQDzrw~_|8(0QzMmqm0iA9o6z*9kIm08-8_pOtuS0ozm5 zQ?7TUw4|oB5WvpNn`vAwSMQTVTA+wtRHP}e;BLFdN@O${fmIVW1l9$4^P~W~r-)C& zxA<)Hqk_V@B7-d<&u|NDTTM(8R*nEW4cnhZ-a&=jsHU>koJa*5J{9?4zTmBjKW8n(afHAR$i zzz-e{RL3uzbR~1LR#Y&5WRH8_>cvaWaqf=J*D!OB!D>dRZ0j>%x3^uD)gw)nD6V{} zh(E~{7>P9VuUq}c*2$c5C2y&VXMy@rKfqZ>Sa0S{;6-wRhx+PT+;hj;lUpLE@YSB2636BisOdD@-M0C45zTUUZnv7zuRw! z7*($G8bkqW#;g?MVji>4DI|!tf?GSN%%Oqil0HNv?6VuUk$VeVAoEVtKX(2m z2Q7D=l|$J2@7z)pj4w!hMAr{rui&%&AUUj4^RLQMUyo8@FVb5^7(^&jstJ)ELYx%K zep9NOpEywn6C~T&l9eTI;loVr*V5Q-?=iQvhh0EspGabSEd`3!l;sz3m`<8@7Oe2{ z9MHeDkNnb)_jp>Z-o#m`?+k#>BW;ydg~LiG5xgzo+us5NJ7T6)$b#WoHX;HNl|r%5yAq7_YTR=T<$h>D#4c%V`O{dNUX@z`w^btU&GCefy!&EYo64>a9U zppWrw1PBcC)j4+ch!J93@vwS@32_^k-t?K;rr4&rZ&;LGVVZzQp?!XM_#)#-u=@sfwNpOpZ5gX8dD)B6JS{SBO^RxR| ze>YhgTsg>8!J+4AlTb6m&N*9oHP+cTx}0@Kp2!i`n3g7DFw6dX^Qt?KCuzjLl4-}3 zVf(Gp`+w{Kxy=yvVW^Ik9WlZk^0~%|LKgrvJSyHGTQsLT$svUGJoNvGzQb#r5hQz# zV{W7dSc%vR7fWJPk0c^Bzjrqw1~hNlMH$g0%0{@;`L3j9)K5A|(BCWgsPy%-fidkR zsaGN8zjASM5>h*lcDK%PP7@PEhC2(nH`Gh>{9-h}x&-F7U)&?tU?}^(A|@1TV?N#!Kq)5T*2h8nrmt zqzjk%x$Kr8jqa+5Q$GYvEOD{p;q{k&axeFnWHtGs_6&bj?*LULq5Q-%&H;!w!2@W3 z&1ju7?^yMEjS4?85rG4?sgoH_a2$d%3PvFQQ;o)ZnnL-qaYM4%{V-nuRvDySw8uV9 zl(!g?{Tr$K<%mx76Z$KRl?dY)?>_*NYcaVQj7?co76=i|)MiEfi zs0P#sY7KQlO-;>9tw?Q3?M02J{vXl8k-*WyvC8=$_iE&n50{ztU@ ze~Fe3AQH$LXGHnoCV5IyJnx z@`t=w(*F4Uxfds&YaMSV|6A$&F>6iYlXJ#&pM49Gqg)<+9x`(9h1{rzX;!tpcXYI+ z40{uK)og`)^7PizQ?T^2?=WGkk%!;+RaC{I8+YLEy(;d9^1sp+@Jv<+hDY9(PPd4h zF4th;*RHs4#PRFME`}i`-r0C^1(B(k3;Zf9;$`1?qGJY|mwEk0Y-3?8mc!$g%JMAw zyp~#Ao|nxQ56R`Or6YPE_B~cFcl_xUebD1yKhDbot>bivR&EyIJ2^9RAvP|0ma|~b z+w;3rEPExonqKK8H9|h~eYg+dboZCbvVO0a*rBTrYlNNW^}8w%#Tb-FzRCSC4l@;U z2e~o;q|2QiU?#dBvXarU_AtK^#q0=&hhBE2C?$y26qA`jJTQsis{ICBO?a^#Q~v|5 zf}zKXVzJg*sSd`1onv2GmEzCX^Yoela`iG?X{4S4LL9yj;jvu|E_BR0>{5Amf28Bz zKWU!MqX)s8ZT(idEVK7+d$DBa-JNM04fit6DJ`g_ton-G*AxiG*$`l&XZg*6v3wDCYxFiq$uAxh zO@zKb`=`nzltI!BdmB7cQ15A`Wi^28*74tt*KIw#ZyaT=@hmLog{@}YO&1=!<)SAO zms{WD-rCx>iw_`vsY~#QC&^kge@}Tlo2(pb9%W(<<6(t#ePg=u@^|Ktk6@v5zJv7c z>DAzm>nEixJ_}cuTrU^p)>NHeJ70hD1i7f!hl~Eze*Bc185@-KXPd9^{8usqw5$j` zofgm0<^{9pWc}U5TuEVjEp_euEi7X0CFtjQ|jWYYqw>*z!?Z=%Zz253dT!o&E6OP#mFc&`KvN>pIfnfSwo z6-FfGJtJaq|Hm%?Q^^^D({%KDV=(!aC@UKl*s14BWRNgX1jVnuwgCb=T=d3^tTStk zcfSHPM`gWsL8jin+!c7kHGbhHGo_kUmfH;55A<^=Aq-yNNzc}LN;^^Ilg{ks1j6(D z<=@K!VzVvRZ<1o-=z{2Io$%6qNz}|sg4Y>XPVxlTv6F?CE-fyR!X-bA2s>xOXQfL+P)ny`#*$H> zyXi*SPc508bwR%9^J!hRmdBPQ`jp9E6*k;LaJv?OT~#SH%-0!scO+s?dOQ1ojy~>_ zvZ$GL?g%`y5+>&6LDL>=?&Yt=3V1@Uwy!cYpqMKdDvE4==vx_Um8d9f-NwC$G*79% zs3AOpJ64!w^<;i8c_8qdPk{P5@4G0dj&G`fOzuR=V>j+@pr3QIYdO`IF}wb~kCs59 z_9Dt1RmwaQrWXVujgY?;(z^$qM=tk@4{ zVBDm|R6G+fh^@b?+5%R}KW)wp@C!^-dWT&-P%{g2W|gU}pjL5a|2ie1->DAJn}qbN zRp8%?J86Hbx2Q-r{u*{^+~8d_Dt?5`*FH;w*3mnQ@0dIYR1C`$R1Zi@Rs0gmRVoB&#xL+R@-_;-JKT^u+@=b?mL<)~`1{U=uRKhM=Bd0=QQOm;>Bh>2PF7a0 zWI>_PoQzFPcL>kBxGy=^q@P~9n6f{SXw#G@4(@%xGX6LHUg}zWe8zMvaD-r&Ii*Ajir$ zZKu(-SR}rrM>c4-x6D-&C>5PQ@1qPErQ3D_EE((lOI117H z&IFYYBh6eTzFXqnr3|5r)pxFy($NI;f8aHZg|nLYrMX5)U_BTDOv4=#E~z$(RA^4+ zFdrssDNKmvjB$Qs^DYt_7Pq?bYtr1{qifYOhR`iTWZ@CuV9mw*H3Dwf+YHcE5A9#C zG7xZaBZ!4@z0p|`TV`Ye%X$(y*=O-eZz!ZYahXSKT@4W%H!!shgE#A1AC`T);m;#l z@a?fKQbhrK9*!;K`MA6{F6WXAD$hO+oQa}+pcmbf$FaA0YwvZ|$56jsYHn`w-_MtV z+-Q0q2^=khLA8m$|B{|Z9+`{;I&-S|)R@ee;ee0+vX9lOLp=}*q=|FJc4 zx0gUkc&4rU_D9oyy9ZK@$#g+MpsmiAx*9!U8JvpE8+ZS5RTO7%pnVs~RR+0Dp&W9L zR+eB$^po#nn5a|u@-<9xNZ2o-$AhD)IZf6(KX1=gF}L5jdz)mlbcUyrqC*8d5Lc(` z(e`BYY^G7(^nNK%0pjh^+fC(9c&7Fp#jN4 z&g>Y5W4Ny{+Nu+i^A66dfT7F+z!j@l@o}Vj6*kx; zX7AEN`SU2bIRYCf?t?Bpu^O}ce+Ec2cc9zaSe&3Vla(MiwK}LeI7WUWmUZLC@KQW0 z;UTq&n`xF|U_hLhCrc&}o*o6O(TWMUuecdS>{!ACk^CU)iA+-TK6(-27*AFps#3vQ z8#qlI8Z$no_WTRp}{j)0>vvuZUn`UZiQWrD!PHNrJ3{7N4Py zm43%CU0qHX&-Srq!)PGA?Q1X>Jj@R`qmr(h%U-HR;4Qh5sMCAI1F9fge1`jdO`h?@ zFX*tBy9{Q!A)#JT8iBAEyfHM|8G;jN0vm?5Bk_7yCQZqs3IwCCP+0O_cAkmTz<14$ z!jBFwVX}~zwRNYwi5%+YB&~6Vgr$@uPnL;tY(Ep&+aw3glSg};o6DBhn;kdui=ko( z#&IpzI#$szINow1cd!fH=oLpbmrFyDqC-liOJSU$Xpc9F-kaM(@3+#~OA3be0(;8~ zk;g=(<43Z4`A=3bU%Sx!2-0Xg=2m93RG=HG*llYMtp@^)U=!#AFVL0(=VHg`c+6>R zULBj=EyZG5Q?Tn1uqa%@)P-5wD?pSK!{?lw*%-I`0is65%PM*M2O^; zw5C_Wbg(2S@kD7N%R*RbEIya<8W^*hl%b@`HFiNXPRVvQw^?gS9b^37V#_!Q<**B) z#i<9lJzz3tFl+nGuOE{Oent~1!(-~OKL z7~fh@JX>kF5_(Azpa}df((8zK^G1_dt1~C6HAcff&sIO2M0d!Ol%(jp+6?3E(BF^T z*Ve0bQMIS|hoxO;DfT0+ORUR8>!PTxm&W`SN^swH%%xc+ANB3#vA z_u%ri=PM$$9dU{FlhugNWewpbPjag<26ZEoiQk)G=R!5~tPk#WF&2oLH5kx;pM^n> zYUaC(SdU?EE34Xb(H_6+Bze+9?9vG_CJx@UrK>PdZNu_ea9l0pz_o}5JKDgIGOTIi z=@ATyEnXJIn2)6@gECLTliPlgrr68aj@^sO8zXb_l>%*!vZ@zRA@JwVW6$ARxy73M zv>(`-i{vOFd)1|~?Am;Jbzi#CfdMVT_O0;1?D|zke)4^{+&DVVW?s`q{P?q2lli1p=|WrN6lLHZPtnCEzkCzB`3}Ij7Qjp z@AAdMKPAkR+cAM1p46D4>M}K+XTSIIHFEOr{mEqHNoC+E)f_F4$!*+1-qmO8w6g7h zgJPqf7tbO*u44#6#qH6%7qC^UD+hxE%34dYi)2V2P~AlzSSqrgFX|InMBQCsh>p3| z?U@)B9oPMB*J}XZ!yFT!E#i^1nn_<>e8S#%GU9Wy_S&UlX0;7>p#NFQpHBMo7emi0 z7bulYDwxVXZ>5R=&}$B`8mMUAkijZ9N8GTv%P3y*I$hQ+KF2gjhqML5}n3MemRil^Twf1(aBX>e=Do{-SCA7(yk7nyvm%EP%abgJXM*Y`vDDN-z ztAUzjj7GlcJYlV4(44G%{5NTkt;Bevxh6sGfw-SNkZzMd5@A=a!da%2nBV)yRDxrY z-)w^JIG$U)v){hkX1~f(G;f;(G*B~jGmnM%j??k9(IvcIz|rl^(iMfebsUVA2)?|^ zY1YmrUFn;1J%3!p8RRhw^`2$v*avlb7v--M1+Os@_d&PBBwzQUFPb=NRT$iYD1m)$vU9%|zS3cdP_Dj0rW=oHHza6m+c5tf>&4 zu?ZtR0Z)54`^B#7Xo{(0)Lz)JpJ%RHg5^!2HJuv{(6PR^5QCiSWJwcs_V^Kd(5n&C|3LruM-`DdB} zT8xb_%`4+I1g6rPEAQol_I1G8PQN2PA-_(Q!GU8=8~hOwIJ$55QHdHFaOCB!QnS_t zJG{a$pu5@&{s1X4fAoF{+WTQ&AB2&7_T0!WKM|Drn|Tmd{huQbR03VXOhe}ke~*5T z7S6lia4!5X+)B|yT4wH^wfwY=jR$X0QUb@oW@rzZj}D;kr@8bpqda>2HV-{h_lMrp zjZ=K2Qvv$ZGOetCJ54hjeNiu9qWZ_!&bwy|ONiX>713%iUtU2gnV=4uwg)D14oIJ< za3BxKonz>nQ=p^qzqRlG(!cVL(3;ZStS{uU28>C<6v2;AJK{Qxo1^`c1=&(+T_tuE z?L)Y#K%a`o|9LJrAHV6**p^iy??k*)Ql^784X31328wR`P80^DklEDxVkNd)a*C|f z>W^isquH7B|KwcUjU7bI$@#C!8AgT~d^or1b(ZoFs^4k5f&PZ>XneHvlgpcbdHm6h zipN)22p!#t8r$%8;N;=HWJ$rJ-u=21(OyxOqo2DEHP*|}^a0U;bikL6dUVp%Vcjh> zg@fhx;hK)dIt!MTXA$@veYo;6^Zm=O5cS*dQ7lXH0NryTs2WJU7z6@9e+tP`bGc3X zlfX^-Sp8#X^}Ct3c-dY;TqFVRCOC8PSLU0PB{tl*8e{ZTwU5Tl0V0nDq5h~He85)# z#Xs}q%cQ=o+75KC$qi(kn{YJrF^QRTv-~j`rCuwTv{wzDbOk;CBYs+ZtCAh}{@T+M z`i}Wd|7W5;%ceZ^FKJISFCRq@w-6uY#1tMt<{ldU$E?2gQ(j~H-SoGAx1OKi8^jxS z!BVU4hfEoHQ*xV|R#V@_9nYS`oMAo@Nh&OhP7jX$ak*YaGt!?8sUG;mYpFgmw(;(k45)?z+*S}KR*Gzm_ys=7Y{q_rJ z79d=E@P9;0Ht8em_VKPr6szgxa5(d2!Td@v4(iLO`Z&t-*ja_1dX%7*V`Jyz?ge8sjY-P)x`v(K1iSKl1?Osx0|5AZVRJ%LYeP z_8%yQFL{a5A|{={q@zs&3$xk9AOkEM<}2`#29C3~?NM9`*XytU=JebNDU^SS3NXs$ zd1K}j%o?a2wtzOn1K4@1350eKg`>D#W;(ndAaND^uCZT)eaPUqzR&^3>c#x|?tyrO z6@jpJ31KrwIGqpSxoj+m*tIpS+6q^bP@l;?DeuDhJiOJ?ir7(w00*7pVU7rNFr8VU z%dLn7pT=beR=ncZM30kW!-qYBObn5qd{h#d9`34=I`#3y5E>>)we?akUNm3SpsHq0 zJZ(2MYP6+MCN;mLQ4>y|Ae00`ahl4J?e4`w;MsWrBh+G>2Uvd~PE%__{JS7Q!rRD{ z$MXVk8N^bxju&{OoW$TS-;?&$q4FCx9UBri(}mEyRb=1|>%gw(N;D?v<_ZNv-pD$} zCCqEG?R8<=cRgt+d`(i!x!-89-%h=`?}w2a@T@1=xO*>5 zn~j+|nd*eD4(h4(*uC=&|FqHRqk9?Nu0- z6iA~G?!b_=3jdJqpXjJBH^&}S&sJ;`M4KU$v(@s}$yS(NyY1}-<>K`5t*A6@b|704 zl@anxpx%1oh<0n^sknsAJPm_<0Jk^bsp$$CV9eYsMZ7f2I?8poT{N8;0JhIAP|}U= zY|B^(Y?fjkzGJ4Fe&Mg+xx+j~ewErnw%Vepw>sNp&f=giGI0&XOA&9cGT=Y-o8xHQ&-e_L zjW^b6?udD(SHAH497@|=81{MnI7To08P%J78l_N*;y0=j9nhnyMjAFcDz5t#qa3f7H^a!THTb;`tcu0^}k9V!(p^PPUtpz(Yk{?$zoN%uFQw z{y`%9_dm|)q4~1^YwM%cHf_c)#gOu334)wPmJIJbjhak=NXEB9d$KKm$E zYg205q&f8zmn84)V_K70on)o3VLpSSY^gY+!-*I19Go?%7VVQ_wNfT7yEm42C}}Z zXUUVq1rk4TG*!G;zahmj)yk%GWtx9}D1D(eUq0$rHZ^pEaYC<3X>oe=11qE`$Hkh%z)g=>_r%y;hBOz2 zQrX3%Dl?p{={DCWRe0*UQd^~aCNJR3x%n2wU^pz%oQ1i`%}+;q++?}6T0PdalpWY^ zTC9+}LJ#8Fx4DTgUqi0G!}AvQ~V^Z4D1ai%L?Joi>51gM_)yZaf`O5r=FL$X?v z%~gbW=>uq_?~h@jWx)zCn?7fa)nCkA_>xS2P1OE|Xzl&)h#g_V;F8DN zte!LXQR#Oi9aLwa(NlYqS$0FFaJ*M@^CN%Vhvmi@CND@svY(}nl{YNZ&c$zDREp}H zy{;)(5?#?NQ2e{I26YV(V)F@zmc&Y4D>?RVdx)P%sVwUR`FzjXJ@n~UP&71S?-yaX+fvq_wxqi`XGtlo z$VPnln)c29llg&DV}lXq{B+ocUU^3x3;@v1-djIiB=5-cNqZ!R5nM!Vr(A>^p>GIr0|!<>bK_oj_2)x&!Gm(u4fLPP{{Q@O#$ zq8GC%?E1XJiqQ43&OOJSjQmsW;HFF7G(x1G;7X?uA5ujfhw=kn#%i3|=~|Wp$2b?W zDHU9y*y{G>mKTF?zr?)2Bq3J&D>Up(K>mjBDP?0>R48B&f+oRa|0yhtm29d6d85y3 z)nD{W$aO9zB?(m@H_>#vq`EQtzUX)yKui`qCg%3~wO!IF9}9q%3KRM=(c5uxjS#pak)`G+4yjlY@poWY@0c-X8H`D@zk``Xo@(0q}n<}B7z1h8AG?$kK@!N@hQ#M0%m$cP2{{+HEP%Lk+xVcPz_NU zmNoEAR>Kh%z7W-BA-s~j*z;%{(}?_oac%^{VJNuU}%+Ft=}Y7mgMJKq4BDa*kw%U*#CZ-fa9JI1aFC8ZwyD zSzIO>ZS3FY<|aCF(xpFz>&Pfil=o^diX4w2>~cC>pT{3 zK9h{%Aq`z*>?3Ejuh@*X3WF{vB}ogt5Vvs*iT9ET#Kj3No6zikgkH#Q?S3#a=NgR^ z#@m*UJZ{rY(*mWd#2ME?FkwlVT2+!s6OFF$m^xLnG(w(MrF(JT816bOp9wx*_}E)X zvq?vkGuf_JvtpZ=E{kw90#h{9GVI`#=abJ2gzET(xSXO~B}J*r0M4*VvAtw#8N+13wUvbKLNk*GWb5qFn^2-La zv3i%2jX=QB_*NKuLD&eZ3f|CS9vIJb3wKyVj&~ukoZsoH1vVwlXy}miUSDxeLEe^lHDG_>F_# zU7yloZU@L@y2X4Lx)j~2Kn=iLv306t+L~xQGR$bqcj^t9$Oqu*(c{MlMD=r!<`k|t zPjZS{!_s?9^S2?2Bc}C%u&bU%&UqS0m?<%xH#wp!+t386Yy$J^rw%hg2t=^~jnsKJ z&5Wu{10plT)#Y$+SomT9M?P6jnhH%*zDVO0U(-vE=7uhk{0IsjiM|=XuEi@kEZ9GR zh7N5^iK9G04Q?~f7`iwLZam1Brt9ZkKR2Up8tb@tb9WzDjWXhI(or3sj$8hJ0@fTU z<3v8d(#Pu8@bSQNYU}r5B=2Luk+^by7L) zizqG78P(H12m~h3D;)qv+1o&@d`O$z(vM>UM$IAAVE|BRjfYx-Ko}>DG(FVg)X}5U z(dYvt5C8|LQjh2ZL4X4Ok^zM5yHpL$nnZ&`4Z3B>t;Y~AMGTi)EKGLLCFxRk%(gJ9JJjhdHB}gAV0Z|x5L`$etC4&f+F|Sy^s3MG9o7gwxg8*Q>nw^OgP=!{2g+x$-j75M3z|)o3#3b<1 z5I83bCC1NuRyC4Orj@->aHt)~2G)9p1N6@CbUX$G03?_Noi&RP(1IKkQ0Hh@1h9j6 z{Rp|FNwi`Fyqqx4Oh(Zxr4GG3{G!^&Ak3}e76rh_nf=xE`n_@m4k-Cu{8@LB7xOyfC6Y- z*p1yDD5>k%-ch2hEo7uv=C8@Vh`vWUGI#Kz0n zP@^%(QL_5X4Sftl1z6xjCZr-LWV4D^6x`$0Cl`dl_LYevfB{Q=4^C_V0hnLvt;yX8@c#SX--4@=a^{wKV z*u*{HgDgl99R6ab-~&Dg1Soix!rFmTxXLk*FMma1{8Cwv3ocTMRVeXE;kDxQrNyBv z%0KSmO(cXA;e!YWfE~7qV`XI0l7T0%TkJ|%QIuK$*2};1(QCztNvRa$00ck;f=&s8PG?Q*3k<%1xCO+an`e7= z&krQo%d2P#@PR0+iJ5|8mDp&-M9T>%W@9$VgNDrC%fr4%g4w-*+7-lkUgB*2s}8hJ zuuMOhh!~WsLy(pTOO&GZoIu7)|Ft_kwAUsBq^5Dvz(CPj22K_i5znK-)xdqZ*NJ~-{pbJoQ|&cs~Q zYx*@$91UzR)NK6~Y|Co~03G1|n?8utvYJh`>WGj90?pY74&=&~3`~?mQ1yyU6a+pD z;-8yJbd+c&Q@&;}D|4ehkQj$q#icn7W~;zz#ysuEeYi85UwDo<)qH# z5oYRjYGO?eZjV^R@-ps_9A{Z5+~sEO$c{jzlF6em18>mw2J1dx0{+?oV8rG@>}+Nr1~U-rsMITXT!|rp>y-d-(QQCpHShwD;M*i| zwxDe-AV-AESNk@qbRzx+HE@B4GyyX>1;9ItCde?9_}jpJM7ie2-!n?qR&N@-O{N6a zXMWowa!H8JOTHrpG;k=Ocyc$^JpOuuH!2s<_2jF{acUEA^iJ;}ze5Ja%}b0@{%T2K zd~om;wv=A;Hm?8~Sc73Ov<>`9i%tpSTAM7_a2A{eK8Qc9F7aIi@xfS70HD%PCkkD} zgV_xMl-6v`ZSi>)HzijC6X;hLSc5b6taK6uhnne!Nelqk1^UVJu3g`Yr9mIJYb2Ob zK1c#v4C~B9GndZ1L}%%y7Q<5@gC;j3M^D*mSE)9G>W3*I)HOM?x>pjoEzU4sO%L(81fM2u1J|bq2u7ne9JkNBTD9E$O z42_?FcK`DCcwhj~_{2>OdiMbxlxH37cPTOfHSk^vBSO+Df%2V*IAS79C-1Jcg+<6R zrQmsIcXx}cG>A0t8tuZA{omLN?2@(H6EK5c2zv@6H)Au>yT}tyHupK51y?|YAILHU zm^PdDbJf5MomT=s=<(^sU^7N@pnLU&VzV)r-7kXjIR34o%4DFpC4`rB>N6-0Z!R{TOF_ zv_Eu26FUs9@QCOiX2WSM$8plL1ymqaa%urSUnfOqe-!&>={W2}3S4h~`2@3S-dGYw6OZ zyfy%Y&3kF{COug?cgn))^QTXpvtprQf-+@=8GKmnBy=Jp(5OBs(=T5Ugg%UNI_d*OoOd%)20aY?+pH}-|9UJ=e%{_J+6sThwHSCvG1!)1n7Svn8 zBqcVhcoC_KHO3(7E)Mw7+KfTE)w~I>%YbT+A;)eh)E25HC^1&ROlUJ?ot}1lt}c1> zX!EGOHbCH7y?LuiY-cQid!%6eB@O;EgBQ4P2pKovZp(mDLP|Si)7(q)I0HZ!@@N%a zY?KvcSOpct@ZBuoLAHt#<-x}ldasRGRv&qQ_1=l=SyjhV8C~$mG6a^y%qjk4APC?w zHu@NsC?=%j!ZZxJv%HWAcv7ZH3^zfuS99V z1a58!-jyCI!lj65R)wCXTUixB0cUm^npJ+p;HDaL1twsQJEqhE8^#pG=a0J4I;$x% z3_0ja=rQvrTT3P8%tPs)Vs5gNb?Noh4U?v~bsyWCHNRffetv9xs z7X>ABR8Xzy#?{Oz%<3r)V?h`=>X7u zx~EnxVVDk}{0*EM!_1mH`Xmu%*dy)GGY>ETym7KkE=R7sWmIM^J^wlhGJ?UpbiKM| zZwN!ce{i0`FjVkwb+5rXGIpy!V@8?fTp_Wvl#;Zz<^>LV^s2D0#HcMR&FHRDB`Gt zX@p?_&PbH~C=)YsT_A;39OMdB5uz=INs&CGAqx2LNJ#pm1Z4Qn6lruxhfr{8aMXwn z(lCH7K+Zan+es{<6gyQ7T%2vt_iW9%4ljJ_jFuYK#5|Jpcd+0%}sKDC8Jd%ZLTcP@|U`M?VT> zNHc~3gp54Y4e_YSD>j2a=3x$_KFw&(+7_R?B>@IFw15Nv@PRQcl`92Fh8Zlt9Wo?? zI8=3GZ$<_I02II%5?aD5#u_P&@bs*X4bR%t8XL6K0S46M9t8#)f<5e^u6At(UXN0N zCoB!H>v{;)*oBvehGHJgbA%HN)6p61!K{x>n{9bw3r9dJHf_}>4l@gY2(ZYrS}Dl- zQbO9lwhdDWCwBu39_qcYEO{Bh5^xBG2@sY7XH2hpiI@@} zoI<{Yqwgbj5IYxqA{-LxhCwx=g~W1KyN`8dQvi5b&}8HUOYlQUtw)3a6rjKm{)s|@ zG$glJSY60qgoY&v3J<#^9^weXkR*ZP07DkH{6oZlP=jC?D;0Z5D8K=1eB+ZUWE8lZ zBoKQnCuBTA2eI41D8i8_ZO{W9Xkberm@H?=w1O3$=z*4};s-&1^qNR0fO%KE<*5{; z6mc8@CBtYJzc7(^|WJZGJlIHR~2S)LU})My#v$_+@u2?nj+ zW_UTAG`dxMgNP7g0Qt<1{$}D$-0_ISEdm#t-gF@`g-ElMD8>h?0|FYL2S2EqECn%z zXEFi;Mod-F59!TaYz^tH#A6f_tH2pz!N1)8x>BsjXQ(%2&C~Uv4h2wlwwk?_Sq-CG zP*p=;_k=#@j&DjkxOG|L0gA+pxZJm;6f0Q4(R7b))T82qyOrHpd6OlpK}g)Utep^J zWIHb|0Jvo0VG7YIp_$ty_mw&=y|fCtS`OzTvRh+pioc{F#JIRdDi-U)@%z4k8ZxfA zB9C7frU#1fsmcxB3PK?0Ve7_T9okb|nje=L$QVOjbPm&N`%R0tQFC?Xk&NUd<>&@K zaVrpE1id1qdrv3+pdQ*|hnZ8|B?`Ivlq@iY(vlM)$6$odWe0Tlh#gQ9fPpG%arUz! z;s_2T7wXww7PQme*4su#18(qPnuj)I+5=T+di9!1I}|XO5!t(v1U`F(SBiuss z=|l+H7CsO&#RDqYV z5=c=6yy9Oni^WMmszLGd6-P1PmB5&jfsB^@RsUpN;sG=##7 zD#VN~X~3OA?<_)&P81>(L5aG+AC%!BUP&iB%Zj$hkpe&tC@GVUsaD8?G3>|%Xn{uV zMC;ifx%g#+j$15B4>n2`(KG`o41fxVDVg?ZR6r!4Q~(pqql0!Px#VM(j_4~ufl$Fs zGxP!hbU=;xDWw9%U2239ctYdlB>pAp=0sMPss}UlLIOxCGgK<7;>77S)B#?=V(A5F zdMf|yR--zMH26ZKPHL*|>Pu_`t3qgK%Bu9tf_H^#Y%~L|W`O>#^6IXJLpLNJRFq2) zDxR>i5Fek&Gkgqhkr_GaUkg44bxSE4L=YsebFORzNb$ zLpYEl2?#>9qEZniOfv+-yT+@$rYa~%NI4`Z2*@X38eAcTSi25`0xST04XnJP15!>A z9>4;fG8wu~R4ssru}Vg7V1UGWE5&{*JKUf~^xD1>k}J?6_Kk?uWxxUigUOyOvr<~( zgxesZO~*n8k;W{1R1MAY4bIA|9}=9n4QbC3LBVti(Ix;39<98_gOh566D%#0nX6;9 z!l`r$=4n6zkiyMUEw9SMFo@QmCQr*o&n$F;7CZ&mGX6sc5I`>otl6GzGZ@|yv_hO# z>)UEU9OXrr(Cq+_0^a8BuAZJu{ebGJO|`ayD-=Q%HsBiUh?f{HDM*9j%4_?%3j_#3 zE;tj{X6Y>40w6@@zoEla0!oX}EdYc<*>>*YegiqiAGNmaPPD=;ID(n!#R2-l70v_k zP6IBDNHcK30E7bP(yqLQ!xJQkUans0@&xMsE_dwB@DeZgV#BY(2Qw(I>^kqjB4|pS zfG7NIxt*@>UQQ4o13Pf9{BrL%L~qFYMDoV&?2_-U+8};iz`s;$C;WlvAw>`v13SpW z{4Vf39Bh%EMl*N;0Kh@>^6$60!xl>09ptVT{swMw>c#uUF9VNoI((?mRvZ{i@cvqG zs=~u3AO*{wRrPv^C-}kOR>1qJ!wBy%@v;LWcq9aifeN$mz`g?gv5M6qrB- zys8frg9!6555vQ*-LFeDLkh#e3KKD^Cap$f!J2N)&sIty`N0WTAr-GN@pc;!i);$J zK|**j(q64zC_yLKlaRJT4G*qlZZ8|JvDMmXSu{f#000;m1RcvO+8V}0eySDGf-3;R zC;o9DUo!E^12H5=Xf%V1mO+dz^0z{ytHeMjsIS{juIiq`3}Uh?LnI+@g(m}m7=*GY zGi%|c#0>D{iA{0=r$i{GgDVenCL;s><~F8_e!(2y^0%H|aRNau!~%HCFu=^hBsXOR zG(j*3GckAbJWyq*&N3J9DKqnGWy(}uqOylbvLiHFN4+mMd$TtiZ>tG)sR2sL8USYAH0LN44)Cp7V^!k;O`b5OH%I=p45Jt_gHKu9AsuL_(gHi95t zNguOkRiCx4y)jN8Ypyo5SEK&wAZx@Kj4@A4vJ*GpDNyxUS2aA0f?C^zpCo_=^wnDr ztR}0t6LX#rIK<=7#;gE_5q#(AVcmHA8imH}`78`@ICw)@&Dh zH>H{aM<+-%n74WRs)!IRcVD)9_bCquvpJ9fTNDX>SNAq_bW1G5GGssk_(FT{ccqrF zM*PBnm$yrQhHz-W0RHqsgF85-Qkn()&V-kDIoR(Mp}_`>?S^x>pSpuIxI>7W_f@;e z0VKd9tbvMC?28ZhI-o&@P(T3$faTmcj_0^}ufr7=002P11PJ+%6FGIe1JO|c0tf&E zoG_F7sgo18J21mZW>zs?d6Q@PStIC~nZo*kc{9)NHyopw7qmN&I1fxFntLwyf`bpt zQJWWZGgyEO8t9z&De;nnFYdrL`f{O#YC@bSptN}cP_?CCMWGXtdd$Bvt&J@%4Hax-O z#W^2ddpXO4HlTWWZ-c9ZqP2^=C=LHIlg1|i|>1LqjfTf z`Uv~Gd(Uq=Y{RQ#a;#T?3%De$6a0R2FFTll3Dm1A8@sosgeb@_#H;u`z=O(`fH5Te z4ljJ!?7+zTdB=;iz+uD$T!1fp6%SAQnF+7TuRKi)J4RfXa*Sa)_!#3;y52zW($NjahfjoS}H{`wEUwa8`LrV~E;MYw+0029c COs!4; literal 0 HcmV?d00001 diff --git a/fvdb/notebooks/img/SparseConv.gif b/fvdb/notebooks/img/SparseConv.gif new file mode 100644 index 0000000000000000000000000000000000000000..523721311730209ac7e5c2e124642712a9c90002 GIT binary patch literal 135305 zcmb4qcTf}E+xDg>Ktd9F54~eRN+@dRT|*TRHAt`0L~Iy(sD>g^CG;wWDk5qq(m@ar zMAU#(D~JWlBcIRv&Nshz=KbTF@0!`&Yp-+fea_xzX74>`_gGq6ko3KdgLxp|0Ra3L zC~j^Z9tegH#xKIh$1f-%DkdgIkdlIm$%{%6AhN0=N@{?j7NDZTrK|_l&_@srxegwZ zm6MZKQT-POb+rG&!00c~y2coNQyzUgJjsO5z+CXKmGBX3jDZ8j#GcR0Ufje^#L8L3 z*@IwyOwG*3(9A-{k|J;8q-^ghYv-YQ%uUDMN!Hm@-N8f4`J|z?Sdj5!eZP*BhAiTa0)-~ z5_!QR=89+RRc~)^ui(&-kPz>%h`@6fqW|LJsF4H2fCYWBWmA%R)rKPIn zW$Bd`C^K)UR1_YpE-|bs)vqttPUtjCNp(t1bD-y16<&8OE%BqJ`o+@&;_1Q38DaEm z=abXI>DPkNbE7kJFJ|YT$;msZmzP&iTvA$E$}BHW zDXB=mS(Q^>nN?AnUDc3NS(jVWSkTZ?)Yx*PiB)>Ly^PgaRaMp0)KuBlb*rtTw)1ZN zoqNqa_d7Z|I(zQ*_V%(LKD^z_Zhg>y?;*Rh?@{;Q@V%kY2cr{%e=$7LH!(FaF){u4 z@!-_V@bv81?A+9|=Z_Z_pFVv$Kff^h;^orP()=sV!t3RwmDQEiwUv#{wYTryzW=cO z>C^j9+aGs6?|%9E?fc&My}kYYec|J=DH&NcjZHPT+td%60RR7x-se7Q?(Af0OflEe zAVNTYJ^YodO-&swO)NEunp*n+z=i$SFZl01G%PyuZvny0-GlJ2_J85!9Tjd&q1gT3 z^Z$MP_6+#fH!!RIzsvrg3YU*>l=ok&-+#Bu-rwk|;Q!(s z|MJMc4g9N*{LB6Sn=k#B&42Ul|FUs*H2r&5Pyj&k`2P=n=6~?N_3r;$@xPEUj*JfU z^Nl4qo%M@8?-l7wi264ae?vu}M4t5v4DtPMyZ?XV|8d>_q|v^ye{T)|OwWd2hz#@( zh$j567HAPQHG%(h#;(JE1sNnb@gMC!9{;1AtpotlR{(%8{-d2K0)RWo03f{hA5D%4 z0Q3-kd)z&J1s%mFU|4zLEi1Ga&0 zz%LL8gaDyId>|2!6i6PV3ep0RK!-u*AUlvF$Q?ul`Gdkh=RlW1iJ%NnE~pq(0crrX zg6@L)K%<};&~wl-Xbbci^b-sL^MLum5?}@J0Wb+{47LS3gHM9}!4cq#;3RN1xDZ?k zZU%RO`@rMiIWPzO4*V4YK)4}-5NU`yWS;~vg&c!;K>Q$)kT^&>qySP0X@T@Wh9R>M z4&*)L2NVwFgA$Om%(qt+3*?o8~9fQ0wID> zMI1sLLwF&g5h;iwL^I+c;t666v4`YFN+Gq77Dx|d7%~A_fNVrQKt4fkAb+8-D0!3t z>KMugbpdq^RgLOFJw~meesSTr6uAy@IdcVZ#d8&MwQxP+TH@N}=H`~+*5`KM4&N4S@{f9&(%c~p2zc|3W}@nrMV@vwQG^X#J0XazJG?SYO)XQLa?1L#-iJq#a4 z17nTx!Cb|ZV7f3*FdunQyz;!pyr+0C@)q#6^FHQ%k40e>u%=iqY#g=(dlx&8{fgtm zY2uFILUEb6M%*ZF6OX_v;LY(q_#}K4egOZ555gzQXUgZzm&jMm_lR$eAI`7HZ_OXX zpTU2Ne~N!w056~|;3^O+P$F<&fFlSIR1mZl3=zC0*e3W)@TZW3kg<@jP?}JS&=aBW z!eYW?VPD~N;oHJ(eNMVUdP@42jG~N-OoGg9nU}I$vLsnQ*?if4*=;!~IeWRw za!qoJ@+f(de1QB7`C<9*3W^HH6;c)MC~PVUD_SdFRBTdQQbH>oQHoHiRC=lmS0*V3 zE0-xxtAJH>R032=R358>RdrPZRm)Uo)L?4*YGG=XYV+zm>c;9Z>P_m)8iE>j8VMSA zG(H}XJK%93=fLoRKSUj32(g;@LKClPqnV)Dqxo4&Max^OMC<86^g)Y*R}Xd{+|gFu z*Y?%EslA}Xr(>^^s?)FYkFK6>q;8AumY$p*Rj*WUp2Sb0kTOXl`Y?SH{j2)D`acYG z4WbR&3_cmE8wMLT8g3dX8u=Pk8@)LsbI9vZ#UajN!eQ!R=3&ke=_6i8Dvzv?WywC| zTJnamvT=}cv++k0qDiDlr^$Cy1Jf&}Y%_?NrCGY!lsVqq#k|=3m4%FjzeSV9wxy2c zB}=vy%*xg($7KBlWno>ik*sGq+O3a*xtrI&wlBs{L!$Z zca8zatdHd#dr48GL{RQIz#S+KB@XM3nvRzphn@JGPCGR^eRDQ(zUKVGMakuy%YMHr zudAnPgX{O>X2)}nbKDNNU2z+C7j+MG@Ag1=xO&ujd_7@);`)g-PaV$`&u1qUPsW}c zJtcZ7rr4OEar5Yd_mBd+M6*wVMn$BaHDZ=SWU{E-v?C?wdUOysmsgetQ0w>!+`e z7HAig-{87&?gppOuCTjEu82|eyEveDuEeC|cBy!2TIu&PpRy-6$v0cdCCW3(e=-A^ z3l)|XU6l%z1y%5>n5y+^*XrRKQcXjxXl+LAKXqYsoO;Ll!3MpChDPzmYfa#$b4^># zp3T#@%x-nJsJB$y7QCIo0$Ar*Z(FIY&)RI;`rAqEEgkY5rJa18>0O|%3tiiH_5<#4 zy4|~H?%Le#?=kG@yr*%mu2;IZhaOBWP@2J7(-7(VGopIgqt_huq&Pkog&MDoguE%i3;`^#p_6Dv+DFWz{+dAAz1`g<*D9lc(#A+^!4skPa=WwAB=_Qcz@ zcj51Ty-)do`%wB(>0`$y@~4Syx9zo^$esPqnY$vpbzii<^nay%ef2H$+pq8Gdm?-F zqCZGKhJPOax$*1#Z^ZAyf0X~}`D6QMX+Ly-ACUe5h57*dfZD&W1pf}G0OUR}ixRhD zG5Zpcd@7zJtcrnDtgKC`Rcqy=4B>-8OCzmS!`BF=>EhOH)uVYzPK}EC8VggOQY>|kITu4ToN`N^)ppgc`7HzIvQr{C{;FPHl2-gO>XT$FULBY=5JF6 z(j{!WnxD4^%r>4J@4EHkPWYR#GTS>XFYm?fzI{1<=l1J|Gzhn(T{mlafX=6SYNEUK z%`ijO_NLw4wzcuXgTb#R?zV3{W}0S5+V^y9&DJ|Loto_Fd^gYX9=~aSuj|8$?x=UK zChy((^qQT>Ep@cFd*{tap6cnT-n+XS(^ancHu8b^S> zS-BS2XGMUjiq9Yjq(3{UQZ!F3lQ=Yu$<1(1pR-rfTt^tAEMzWJN!h5N6r_k|oSTTQ zQm3_IkLSbv40G^`Z((%GmLuLpT4{(+#%vg= z{@Yt8CRCRoEtRV9W2-f0kt-q2WBcv9cHMYL1``vq-B>mxlkvXHHa`o;$>A2~Z5GOH+|1#~&H<(p}UQItZ^g%1F>WSU1 zSHcXw9v?Voa@M;cE=jWJbMr|tu9yWq);}Z90}eJ%F5+_cyR~K&AuZ}sCYfA)vai>! ze41-AA%(O?4ZPHuO>>n*3RGFJ>7?`w+o(5*hj03(CrEERJ-_U#`R-~VnQSGIa) zT)6i+FXMtN;ZndvqR!lY?4cx#8QWLt&T*c&&!q;FjXY1Q%cV)I@xzf7JKm>&bAD>% zO{9&QTgso`kn9s~#t7(7TF%m3Z<#>w1%YOcLJYH90PqgtUd52YTOmj?6YoHu#%XIl z1PujQN6EhYP11xO)CcSdJj>@q-Au4MG*Or7YtVhJ3Y5^go$FGt*A&o-lGX;C@NVXq zb4n5s3zexKrSavx6)@>D(%2W3rLbk8!+k%DLlpRP%;(1}-ZQS`OEc9}=7K@}LQLPWw6 zb3+|z2a;+;J`F1UYL_syOILt65x#{VQ_^8W zu1yc|e^)NidnF?`O{2znh9l1hWn^+ZiLM7Kht$%*eZCe zNde-DKS|lr(S*&;FKUBmD~vsv?~Xq0o|k0RfipW4%0?nwJXT59XKSxNHH8}V$-H%O zUfd>TtFmAYdSHy|<_1XhOFiMF+Y@0cnhS;$FDJJ+_q^8ufqhZ05@(qk9^Fcg+N|>M zckk%}pMzbe2cA5gh&jm-XwhKG+H?n)qAu^02#Tu}zP+0;Fm4B_c2j+0o<(d6n%w)NTS?XAXYCahzi1NE{ISt}@WgY)W z>D#zis(&i>wVANW^f4YR&ij1!W7f|=a{M`QyjT4!Xq`ukdg?pt`(;{_iI)ZD%RoZ* z8QnP26R7l=ZRvj)g#BTQp%E>&@Q1$xiw^uAe`0anfj@McJ(+}6`pB4j2GRpsqYqgh zG>NexzJ9LZnf>N$R(}@Za{zC9rhg@~SxP`ocS@oajyT)>#B#nyyfs!h-jl`kKn5o6 zP7{@e2KQX-;;_=Lr0G^pgFI=APyKe_WxO5pwX^|@#XCUGE!OY6JQwz>cpq)8@Lgf7 zsmMckjC*0L8j`g*XOA0}30VNi;I+f9av-Uw)j&e<3GGStW3HdF0#R1|b_&(tV302H zTpo3iKux;$T3wV%jHPrppI6gn)|}B5OPTJfyO{|GL;OoPUngP6NMBg^5!l0&UoElM z`RQv%e@!~?5AFH);xgZIRS*9hjdbQWYJ_j=4W+6m^B}8bGMdD-wY}rvHf30!X3ime zA>JiK(+kNWFauAu$L*RXnA3!nH{FKPu41k~E^Fe_5VATV0Vp?Zf=lX_k_cSr`Nq26 zNYTUiCpV(1Xym*H0&7@A+5x)#64<&y;h zR4gZ*d}}F=#_xR(@JDPD%xaEjkgQ@g1d*nHANod4g^f~JcIKW5D1|5Nc0o9UHHl2L z*w^p>!++LI`u>BV!<32Eb4B1drSaE&9q!wKE#hK9U6g&dpCV%wg^52>j)$I-4)eo< z8fmdV=W#D6Xbms)pH%>b;C~SwEwOs(j05Hx6Xbh?rjAoGoQ_kB=aFJcNhtE?Y)h(9 z<9)m^V+5PkX`af#czG|W90aI?gD2jQ%9`h!XG6eBxF8dO6(+aQG-y&LQPw!|;xKGg z4{tH7VnFpjf=lFU6H&D8AdJoH%k=3N89P~na7f7iRFKd7>)7T_QFU$$H3bLPneV@SNLb)Wt z0#Vu^bA?= zbHlAOVH#NOn{Ip@CJY;%q#U1#-IX-JW>W(KF$DQPh_p@w*ex8HKt3hrV@hDey->ov zVrS2+q$3Z`>kY@(f&gdR{XDbrIW zq%oO96+94>XdBZ(H4I%Rwo-8$V}s{o z52j)knOv!(Q7W7Or)9JQ?Fh=cIADkF2*mZD$w*Le{8))frrNkrZWt?IDhkatsRwVl z32>-^TFeYoe5MPlAOx3{TUh)@hipO2xVYbzsFI4wW$0kB5Keb+vsSv}GTH!;NsKKE zUsY0D5nKb(9u!JlX(*P}JEh-_IJP2bKrKUi*)AP`72x7E+GdkPg(IVvS9o@xFu`C zm%STBt0p(t0lTB|N)08hJ7`a)lq8w^6{Wm6_kx1RMF)a!4<`qT!#p5lg?-CExb9%5 z4b^y4`9%POw8k7%5g4}6RV4)GKH~3WF@C$@cIN#)8Ry&x&uMcuh#EjS1M*Td?k}Bs z2Gp`p2aM%dR9!XK*cKm$f%MrQP~^%M&m9hGY(>wYe zxl+XgCFaJMOp1Fhvy59Bb2q%$-vpND(a`eMBRNk8Pd;hhsi!RCd!tY=tUtqY`N#`_0`rl(0`@N`sHc@Tj|2+#aUI7KLmeo!wh=cF zb*h#6*m0G*&IN}J*QTQDMR)P>&d`zqHrQfUQVUxgyj)~74Kp*dXJnL>R=P*#L_6u21=+f?r{AIV$ll5>Us7%Jssb764T31f=-K z#Rw&V`D&>gD)z^ITFnp5qCe&hPktVKnP?_ISDdDD@D=Bn^po4QK{%xgHVKP-i&&K6 zJ3xlWQXOw|JwcLyRvg3eC{6?V>{H-~_Op*vt~^IfFCJ=f@eHt49deHfU$AJ!g5DN& z2zhZMtMm0iCAn-vrC_K_aHs1DxCs$l__;t>OJIxua~!GgFv*eP(uX{1AKgV*kkfwP zAPIPZYbK z_b_OM$!jpl;v>vC#68^#bUwKUPws5G*GuNykpbi-8HG;qCpyM;ztqPZQN8`!qLePf z46E&w*oQPKf`Yk=6m(kk9GXB7G3eFtURN=w+B?YO69g8!!6v8Nkp+pj@}d)4gAMO~ z{%LZFSn~0?rhG7Bl#6eLU4QA!L)8l1a+I_v72NRdfglg`2;oGv&GqlUE}yLdby8h_ zEQ2o5%cO`m>OBxNt==WXs0CTH5C?`BQKxDQZ zDIHP^h8osMeKX+SJ8>_Qmb}bnW2QmrOjN?RhaiZf@{;}4@P>~wpmq-XYULweHAv?^ z;enDDhI^gKvBd{D4S`Se1vL+acpfb?Tq3!s#RKuBU119Hd!rFppqPh&;84gxL@P!<{@J$>t{u!vDY2v@1tG5m_~;F zBeT|SZsygccCKVtL6iP#4|(>swB^0YfSr!Z+#m_^)cWPAjpnIenr(+b7(+7nS~yxd z2Gc}5Md_sOEULX0WC7OJX&y`b;oFUpkQKJYqD)?--xOS%ou^t z&w!x5=x{Uk9pBcrF$4Wet#WbWTDJAS3?H{$~9Ws%H z9UzMhcy+(n#^iPzRceU&~$|QhT-X&r3>T0!hZ}Wn?K!u5ZvpJNWVML&DnnGy;-N zc`;eM>a~IXxKNjWU+lx=;Z9F(#grD=-dFa06VU}7Ru=>$A%A?%!G7ZQ8>X|MT0P&j1bf-@pTp#(`j7g3RdmwSaH0B9uGaz^zv;V4{X8NKxyV{ky%w2hBH^}B= zONO-hPn`afYf|K5tiuj-CLW;yH>hsx+V@%^@kEaUO$+k%SXiSZA zrWpj?=%-a<)5%Tq;<;x&qvS=$5xgE{%b$4m-n}Dmu0{Trx9Pn5CKMlSEt9Jo?eg_w zvqIIooZNU=s?iTidD|>BRoC#&jSYPdyelEf^Z94ri6a@3b4cS9_3$FG$`b<1OsKV! z`R${MAHfNs=)TYyVQKijTi4xlpVm+6j_~46-kqMaTA9&#*3@aPxk-lPkg84wndbh z5$Yd92??8_#&9vYCg=_P!J{R=HFho17cT>5JzLP(B&_u2Y(VQrm8WCrxCqS%b3ygl z^@g8^6Cd|Rok2YYA>S9anx}lr1A!$6D;fj3qn9xlGKx+C&o%uJpD*vGi?^= zp3-W>f$+A?kZgO>dlri~6}!X4Y*ItUL4i@scua_Lj=jOVYC2BbH}zvK{dt` zC+-o~d`u`~`tE*XA$_8C)eaX&A==oe+D{{;tw`-4R5vrl$gl{U$_b-P?9lzjbi#P10;AhK+A%r5G`>_`-26k@qT=NzTdnv09F|Mp{JqA;T3fyea04ME@6(QH^s=ouKzNhRSu zB+CH1FGIIJ_{^g@YvB5Hw*O~Q2yk4~ambAs{FX0iJ!!Lwb>!8_tsy=6`u$`c&2eT3^3f@goP$Oq}XD1nfi~K z*V=ivnODyzj{T^bR0yx}T({SE&*-YufNuo-bl)Y{~3+2Zz#qrifrR_)vP6xsA8vFABL?9qVXKoVsj&EqM72^4mF44K?p1{v6pVcv7Xv z+cO1y2ZyyfrsI)DGC8%54vJZ$s;7IkluM2Ljy=dxLk_NJ4FF^z+6r2IKfp5PsOOs7 z1NlcVt4Ib;IydK{nTqzKGo^=vR}Yl5A6CtO3+Z0)J@}!hJdiR8(xm#ycjAaQW2-2~ zBjd4OwYu6s^5QT9N(#h zf?s?6ZQTT)p;8N;Xdk|Kh4%z4riJfBd=l8oRB1h6@H&B#pm@vi1SirOa+rbq z3|gy$F}+PEq*1eEGM>=sWVrPWZ(yb)u}U56wDV09SD^@Za~f?W-f&|B%(&p_H_GTU zupSe+IvdA@U6sTvNIU(#c~>&1hb~wg+^09kBE1Z$sU0clq9315 zA^HuPBF#+9aC9hHd5a&_EYlu#ZsJ$*K;q2@IU+;@!lI;1wu$lw!nN^Wm$q*6S_a(F zazu1UcMrlx%dU>0skx*}1M+03#29kzalZ6{9sAD;yA9W@m7iw`3!8y!d_P<$(CpCr zz`PSQDaRY~f)UK#OzjoO5(d~Ajim#E(Xyb3do@h0Ju(y@&R1(2XT{`BrO*8{%S&(6t@5B z)$qjQlB;aopHU%TJDsTIjXP6=()fY``QLA~aNS=qIcJzz6tqpPEh~kK+!)HF+sSgN z31(?yXi0O6X2L~FK8jNVYGtoHQw?1%^_*qzn6-Ab@6Y~#JTXBiK(ssUg*+)CZ zK~`n+ap?E}H^AuAn&4zM1aSz>pk=rWjrKcS&RQSgE5=_Be7&ibX~R*>TBauP`i^BC zu3OZ6DXf6P`c~pkrHBX^q2ZTy#e^xM%21@~iNw#)=2d$UYKL9z$&D<0FoCNh2Hrs+YzXkeOVA2mSq^SyhN7X18CC(w@~IgOOOI6VWVg&u)bz#?o#!TVIILzB5;P%%|Wf2h=qn z852Lm_C}=jkIb|yJ&PS!M0i|udw_Z{JcaToJBpbJOxSijM>t+&{lm)8@bKwW3GuKa zzfN_urqgzVHiFK2@&xpSe=0nn+YGX_eCL$V7X1M<{?Ai;Eg~pPuNQEYvyh8PmMbe|@>vt~T39kL&>F?1Fs{_GieeJe?=GuR34={GY_Obw~cA8;+d@$_sG z0N&0a@Pww&@d?GH5k73drE|o^@)weG+#J8hSB_M5UbEr+sks1;htef}t5*@@AZzt1@L;gZSjJ1mIk`ZpCJR~56 zwMq(L9OQlv`xM)vuz(t2mMApw*piI|cVMbJ8iLk+=G)S!X|P1J@h8%OEH|n01}Lbv z_Rqb{vxUF|L*D&mm8x+AlR6MEW`mi0lXj9?l31VM_=GzOX*|JBlilqXa4`Nb4J`dl z7*NyHJyv2kD0WvUa?d1 zoSi(*8)}u*{RDIGxzunW+?r`-kwg#Xr0coI|FW%$WXlT?CC7;}aw^v%x098KO+Tl> z9~Mza8@*>EGNd;sA5#3?l{5={Pn3vo*RI9PHY~!}>_l{?W+ZU1P64~dT^YGP<1O%!dk{uBSS=UsA|{BqTy~+i(Mtele}U^fTtTRY#?f&5b>pCm)Q<_#$k#0~evr#vz!!>D1u^nmQ+eW0c&M;s*b*FR%2(Ep@hh3&KwO^d(4FGpM<7+ zJQqT-k_6wUHQ-eQ^$)%6OLm;0xml^olYsSR>rcDJjfENuPm$OVsk3gj!<+Y)LU3)f z7y**?%Mje{kkW(A*4C_COR9Ye(9A%{Hs$YaazC)~(m62en-vbJV8Ps9RDk`793rW^Xu zA^bQLrzo9u`!tc)pQiEiGSYUs6(-TmpGnE0!3=lcdJ&DEC#HW-CkOW#AB!^OiURRN zxPJBDhI(7HH$qDm?kOBXeC*FLBlS6vWOl~R5*|bk}dzv!~JLGKX z=!-jGep#T?B`s=@esu5=dAY5fXQs0<>EV+q zu^Dh`UpghlA`jGbSvF#%Hv2jxgwJz9*Ceu8sXPPG~x zN~g&MOGVJgkt%qHKKJy^?lKrxG&zC%!EQ`??B->AG%zxp+x}wpc%OvKKp>{hNP%?7 zFr1lqWsA0DmzwWf47{KIrkSd)Hl7CP?oXe@9r)GFWRSsMF%P+4stBLVTF_ixPKPu8 zW)QJx77XGM&uXp?i%m+^SxO<}-()7aj36-rFVyu@ZHQR3uu)ooLpm0*dn+wl_LMS= z#<9m_o;egyXr8n=bF*Goi1|$W?IA+~NO{2nAG@RnM({gGf0FPlYq<7}0eUIGjG7h# z?5D)C3ct@KORy5tUZO&_yDN~hPqeQ!G&V+d59dZ6VFIaJFQt(m%HSlB7rSPA%ho0x z_T{Nt-r5uUh--Vd_|Q&xB>5p7ISa|6^R2}P?*O2w%pU^jQQhO#>b%^|1JTG7f$i6q zOc4QA&l0C;C%56zj+q{@FZT^1EG3+%pKhJHUcr$bD!Si?Qxiv5^uB&Joh%)0fuJYN zZIY6H&sxQTfbF?mYX3(fqIY{n4Y4!UK#2z9M~CuG9o;y5 zX=ava92=(W%hcJ&GhG`m!BZ))EH_ZdVcs}Fu7wM?LNp#`s3Q>!g;cs^pfYa+D>**p zk#IfOSIHBWdrd4Jkj~n?q$SSl_B>jty8GmkFa=~==>CZ?ANLLA!@MQ2`6^F8WzC+a z<{Yv@&aH)So$*CPvNBMj5iYT3UiWOvyE0{micE?@1_*C8?rl~SCPZe$D`B{zuqkV> z5t$_RJ+sxhdf03LO`K!X8k1Q`le_Hvj*TI3uiEK)1y}4P0HnOp!imUO`@D~*N9|K_ z4}c1REWha&!kZ^PaVoHWw;Io-AvqxS;Sk>z*dz0*BX+54&3r*NLFGgltpyL;KWQWN z-0NqQ_oEn9Zzg$yM&h%kUPDG79%1RM7IGL>}dbc-L(B^yj^d%Sh{ zn%a|KX1A>?K{~4kY2bObl3H$LHMa+!i&`1_EsoJBCdfLw@$Nr zdB0m_)`}|lIc5LodSonr_@yL)*8-65W**Kd%AI+qnM)Pj4y1wUFr`B!gxPm?*$xfG zCpbP^ToE^>foRDOpQG|_Ov}%;RO=1qnA0N+iXx8qfkNUmjU~_l?8x!(@LG1t+=-lh zn?u*8GN$-iGNX_Yzr7+;rg-cu^0c2x2$V-oO1L5kX3UE9#18>;X5fljryk>@h6%eB zBPpnnrO)?1+L=XW5SkKz_`Q})Kjy8do4a$&)!F)&l$jJ8H;~KpE|U%Wb1UKGOM$bo zE;PAwH_bX?f{|1=eFP`rMlF~5!)F13j*T_JYUg;qo9o+>;<+~PTDeibG#*-YUyrNc zbGXffyMfkkMuwMq=UEF!WogjV^5HrfT|eu)9SBw>EQi;)UMUJ zpQ#7{H|8Q;UV$P4X$4U{X6#PGrv|G~Cg3+Gpk0%09YVJR!#NQ8+LbqyvRMe*^ z#eM^NY#o#6Q*qMM4>Id2o>Z{NF~BPhW2!LPU+IgV;zyqU=&N+372q)oU|{<>fl{S9vgW* z`Avw}mG~Ri^J-#jC^$pr)@}1Cs2i z@l!z`8m*S$k6>>KSj2(~IGJGa{{GC>KWdL**{21C>Sw>f>Cs>Wo*#KMBgti*ODkk^ zTiR3$h&67unl5dIVRXa9HGO!QM`ZSa6{m!%B=-%qHn{*Ups7I1-@xpA69h$tJT|V{ zjju|?xaQBO1$|L^Qf+fXEA;Ib<)`&lkCqqzE+nxOY#b3VpEskm7I2c(^SK-*%xcz> zTyoeEeRP>r=#PeXma8WZE9jaqD1kLj{@{G(!Aty$h-O0Meo>;IqNXLG0VUxkSin7preqcm^^G~ z_HIJSMH2t)EPu|umb0L2{t+zi_9JAB&6OO%zj@jl0VO;5pG-jOCQoV8L~63+R48{w zE(@lUWcjt3r@t^EB|uICicANmwPng3=Z&fZ6na;4&_n#B;D zn#@tB0bo0czHXFI4Z%9M+9hktBp+2*Was*ti(l;Cui{z^xS&vMm&W(#qD$eAeEkz7 zra-1mMO6~;n3?A4roM*EM?`|~PZ-H7HP+Id`czAj-IarVK@N?T^%B%t{k#JbBtoBT zftH+tCEALesB!buMU_S<$`ovA)Vsy6-P+spRF}__y;}6GHDC5B9@&~oxQYy{KWp-{ z0ww(`G#?ghdk(}tAY06rQR@;}ai&qLg3mS-OH6oYx)DC|HXFy_3hUZxRGrq+XudI^ z?P2izQTn`9C$*e6EidDum^!NuO+b;;kkIYan;QoGfOpW1s@LzZHBddq&lC(J%n*vo-|!7ou}<~AoUvWFUX*ACdZMjkKZ@zbwmTW@zTXWQv)F86Tgplh`e@?) z{TH>!c~8rz=TeRylhkILlwnYBOytGJKiJMXknI`riUaC;A3TEiV3vw|m1kYBjO`vT z$JdMby62qkfVGYt@}hBsV6(2bLA;*zCt-YBVlo=x(Xozo0CmidIlBy^u-sO&-gd~g z_g`!=Sj{4~&mTUL_R6^rha&M+@1LK3YToaDK;~P1C?`x-4mp&36WbkMSQTLy#75Bl z4tXsXm_|e{{;e_tg&AEZy(c5WcRs1SaDpxB4m^Soa4LxSqw2A-`D^N? zA|399pP=%O&RBYF zgB%q4XOYhByv&-i8rTP9^3zFzn$|9t+oX>X0IvKwoH_n|Lf%0S{wsW=*0n84+kqyp z3llJg;Vg(>hmVSTWtLSb)u}+qMR&kjHd;I3Nb5wEKfwY%kpBkPnM0GisLu#r0z-dC zuo0_xB%m3YGq|z={Slt1YC*s^=a1@X&}i-!zM@h}Z$utF$46(XI=e9H%nk;Lghs0u z)a*_qP`!nt23u^9DqJppi~;!4`VsTpI@oQ5lNYQKdE7Jqw{zVa>?7W?*yXK zN55>eW|QT=w+^a;h2i%7BlIAmzsDSxJ9RdRJK@P(OYN19evN&}ezEKB?3%}q19k;R z&|6*EWzC_7kKYMV6$%YDZ z-Hd{o-h28yAL=b?Uai@kkPitKA#G`2a)*i`Mrct3Be0_;jP8l&9`9&%^1e@X9x8;P z_YH)-?yLq534;T`L1m8FREpP;cRTFcOr&dX(%?NWi9*IVq5`6KTIQ-MTWDY|6P-F% zEVG_TOc951m3NORJUIC=I#R?H;P7*bTI115LW%l&t&Flt7E*rJA{~l-{=(s^^va9=x8bG-4_E*tH(D_K!tuaK#N6fK1Bo33(R4N>xJ>4J_Ewl-08(}K*{ zOl2nf@idrGzAT0AEF9yW(wWfdzCcB;%Dj~1?UG|SQzDL-TaW`k``QH>Pdv z0rl|h${)|k9~15Mo`6{TNy5j1=(@tK{@U?xRvdHAImlv@eJ}TJU37jlocq+GzBF;> zA`kq2yh(x!KYSjl4wgFe@%_~oOI>6IN~ks!bq6D-!xvC+YexFrbla~7M<3qvoi@(E zXwwk8E;hGP{6+Gk7?uO*8Ioj#lXTLRTJKNx>}!I%IRR%dFWbCKV}jo8N4m*u#S9y6 zq7yNm-PS6*V}@F7*+(qgs?M(0Cso=_@7Wzc_8D5<3xhe(gY>D~0S6HWLt3$?0K%;< zT}uHH>G)}e(U++kTrbMB+Q-!rj>rWh{Si&bc8MN`-l+e=&X`+xk@xU@-VxVIk|T_o zc^hK)7!HP>4)(DkZ^_3U{^Q__kth7n!enW``|4r9OjK7&=LrGteJ!cYIoYSa@FTDv zr(_eVO%^OnJSza{$>HB!lS14~Pxe~yWhTl&nO#dJT{<)jfzwuWy6?w}1$8kVD=Uf| zIImuCuNiy(_esP@rdY*wNfgzznG5j1&(Z$+9`H_y3x+VMH@$#chR%wMfaXQGtSlQwBw5f1xvQ~J)YEw*W? z?nyfA1WZhYln316LyoibqyNLunTA8vhhhB8K4#1`1~c{sL-u_g(u_S@_MOI>kew*? zj$O7aku8mV-*>6T8Y+!KL?tAZO4_t~eLEk{mvjBE>zwD@&wc-H*LWU#w&h1s(cL)$ znzAN79K)Xfj3dB>p?=P~i90*ODO(h;eVYhWB6s*#*Kr#+rE zCn#RCZWC(&(q_Q-fn4$vw1U{jpT?#;H1g=8@dF1XxpDPfz+`E}Y{2>S+#|JZ)`bD! z1yAzo1g}X8&{9~XAp^sFD3_~)d_MWWX1J=0LH&L*MH4xf!(vF5FY{NtbOM2uE-(_P zEO5X9l_wWQ3rONoqw;L#X-UmTu#bp^B%_iAX!c3!ZTH;$HZ=5nZT9t_ea^R#GwtC? z>1eC~iTe6!rL|e=>kKhBj;|=#KGOwHz=KEFyihGuaAEBju`Rb!VpRbNeO$unp?=ix zqi?V&n8u4RFCK%ruUPoj2tOcq5)vV?^Rrr;z~utDAV#qp7FO6xtakZ zya@~$U2wD1X&xZSYLDz1!ZqJ3v~}ef-NK#rpiBuw7kM`)W`CuDhjw%qj#psX!%g{D zSvR5?W}|)vHSmtPt6H0-oRTM9`n+9@>yCXCKD{(D$d!zlg=+1WfR5{X#H6aq9Xv2* zu{@hzDO|V?`A*~S@hWJnv6h~Vp1|1|oANj(G+guhda^F$@%VNL4q9$Gpo@mjCX<85 zIbydo^7F0Lx{m^Aw_SBI{Hi!GHuA zRHN3aC1n48cCiX+ksSpD^$&XM2%p$ z5Qn8*gQ#U~`z>u#TTuUE3k8afa+ms&Q!}8Z33_HQq&ziwhh<(db1dUEVmzQ=w$avk zroGYBIG=hga9Xitkt${IN{xk-TEBWyghZ_(o6(du>+G@&Q0aAB%$YI`DWaV84Nnnzjxinz^7@CAFb%uzupVv7H)qM=K zYk>egqgwmm+n-H1wQ6FM-|6XZ7{{_icAi{MEYvmjhM1N`OC~kzL*wayiasWj-UkaUeXwqeM!H;V?A3=FhT5k3=X3$W&J&Ao!40ugwpojvJ0U3D zK+Lp^vnC*Bd~`&=b=5U_5YICHvoSQW_S3m`%~pe2Y=oG%|P`f~1`#96UIZ&UjSxw&ZadMcG>Za8zy!X@Xj# zlAVXP<;`<3D^vz9SigglLog?#IVW9>hsv9ZQ0J3Y6F9O@?TNNwcXRzmyFdJ?~VA|_g%-e$OwF|l*u>)bz|mBSF#ch7P`A_Y8ZrA zwTBEdzUP}tUWOmutQ4`i4-cdLQNXXwsHImzRxwS?iLe<%)s7?4xh&C|CY(Kb#S}o} z7@sSz(4|0|`r|(&pG%>XIF5|ReDsk|eAc*RYSWVonr1jC$P!6oDm+wfcQY#959w$y zk{X~??#Ch6ZbV4d;B$lQP#1O%rq_93>f=-&u)Hb{{0}U&wC9t-HOOa*A@b-_ogqyb z9*%p{!Qe2YP#6eiFt6fgi{c~=dk8pm=8i4gd-Qn;&LIBlv-geE{>RDMy7zK$KKB#D zKPOtNsz9~mM&~_H==;gqat4GBmRgj7e4U}YKLF+=mkvDVv)icIHMJB-QAC=QC^V7K z5&o3q<-W=8s80sKO+tVfgbkw9Y>+>%Qg=^(skstOOV(zO@sEymNL5&$jLE6F}DTHLI|JZuX){& z05ZRf;+X8!4^g0l$;F`wg!M{LdB*ON!=Zx)YF(p^h%!e`VpJnRoa;tX2D%3Kbj{z& zlr!Xcpx3qCON-xY2$o2YuJm`{jkp@92&Li4>{&T$+}?9V&8QnT21`&j<%XH*rw=kh z*M(yZ*f*$)@oH8_ms5J=HZiOl9iSkyV$Li-&aYlp1-tEY%9gA8 zJZg%U)JAA0#%1gatpz7MdB4_9RqD7UD>(1w1OUK^Xz4Mxl&U1fbSuuOv$3QE5J`=e z4pA#^O%Y94=$riKXn4?vG?RLVXjZ>*;ZYV3Oq++jz4JCL+D5^AqI&9dsV=wekI=qz zP(74^w%|eEzH3i~lw29#8Q1<)Z8}Th_d{62ms;|*2x_vX)@OQT-x+k&+DUaw9>IUx z`Y~!<1UV`!SjAon^aW~g_Q_PD?+4W&kYiTFnWx|PL;P$RNt9A$fkIN84T-6B{m&;oB!jN6lk4z+wG<<@$g#kRL#msGR2hvzU-JK#gab z^hca5>DGDBsr!?P=m-1Tz>Ol&4_0G#X68d_uGl~BCDGOB&=MXEj#KAX&EcO*rz50 z;OT=y)&^5;XJEcSjo_qj(tQO6D<=$;YyzXu`=+NDATrHM@z=nGFMr}8u>COy{` zG}M0dzsT9jZZ}@!m`1T;(}~`#Y~%#fxcU0N1rvhb?x2zkI1NV|-Jnl%&$e~jj(ww8 zAvX0-X6l>t*yv`|o=(-c|C1U!R&M}P|6}-ls8Bdby|+wNRP)vyt?`VYgY%FnhMmqh z!gI(=X*a#57`k~OW#BoZ{US%RqxpZ6D!FD8Ed#vB@5TW-mh-m#ZjO^&Pik2I!MNrw>w=P5sHMTG z!Efbx={3ghjc$eE+6cS-(J1=_(F@-)&rNo|jFWvi8igBLB%f;Xh6hT&F48%TpCAr2ei1ZP)AlkR*h(Gv%b7y@ zlW`&A*!1F=^$Y(LjIb+uKkf#vaozG#gNQr-qoP@R5JO4=goB_K+rg9uhH)Ae^$$`Y zS9I!xp~npLdA+uTVs@nbD^2pmPZp`g;r+}CWnKEBe&YQtN|e$-+bT~aD8;kT_>s5{ zUWT1iX%$ENv`>uowFf_aNOhdAOd4hr@napNdJf6 zZs93Xi0XY$V8%7ukve@c>Ip&ki+?R@U})Ght?!cH`H<&gCd3z(5o#sPE0VrzS`pvG z@R+J%G-4=314?8b^j#Ld7}HAPe+PHMY5{gm6An!3Q*laQCRHc};B42H0B4=;|L^F3 zmkYL3cvy9}%B1j(ZPjy=-S5gdaZ`2G3;45FR59d$(wrzy`!6uV8;4Kh zLQ3RwjSo*wvly(XVf=l$Zv8IebN1(nX{q72Q-$dEy{7v~<5#Lc2m!`pm3G&;{8`F} z;FINO+|rgN-AYR)qhG*#!lD`JS1Wp2EO)n93MPAK;j9@dcx)ywzpW-AG;xlfu#}%r znkrZRrD;t-raqrv`S(^L$Nn(SqVrohyMg!2yh=-iHytjjf2$kyc)Y`4&&ehGIALrG zAW7Z|jG+g?d?kgaM!g#;tsEaNgIJorxBq@03X^GAbJ!vH1Z7%Y>J3!aK`ANdtjkc3 ztX}wl$v$TJ;o?IOe~)&9Ym;j{I{~D?e0o5MD#cN!FA86FR?<%!I#O^-;taObzxPkuRC;%|wlo!D;FEwqY*PPmE|gLYTq$HlU@xJfRu zzfWmuj`0zd)Ro`E;Gn(7b0Y9gxkIi(My}UrDf0|!YVl5Kn}+a@8@ys3CgH`o$oXbU zx6Q3knPS-=o8}sC6iXw&N{VTEI7=QJ4`3wRsHteYb*f9P@Zipi*|14`1~kW&#z(09 zT$-F|vmTl_)mz=_w);V|uU~F1t_nEyoD9-~oz0ue=|b*g8*=;`Jawk;{0YQlhK}p{ zOQoJL9{ifV%!gkBZsZQ+o$MMknB*Q~+t-VzU|ao>X8eijIRT+Vgxs~v5WzM%-!74y zLc0>z?eS`VaPO#6JXJ+iUH};%mWNm>ebsb!-u)9_ax{1%gW1Y&SfFC>OeA+$$a$TBP*NE zrhj)45z!AA&BzF>8`6N+;lO&5V7HzH))hUGYdZ?UEKjfcX5>%1`VJz!bFAy2f+Fji zA$vW?PThG-@k5Cf?MzLz1XqJG!>6EL%lB6djRE~9FQs}_B-~z{aU0!xt)gsK;o~h$ zn|gx6dlnyEH!Ubx=HWb58fNxatKgcGm+RVY_g#7*_l=7n?;BZZmMsC6Cv?r;=zj2? z{l%V+9U9L_@vJ-w7t5;vwVFLzy&|!ZttflCy!O(p@=Y!jPnA{YGwmgp1kNlUS@pME zm*t}R(l19zCi|WV2V8m0y=_l)iHn%JyvvW2+o^>2N*VWhtCCyxG;>rLYOc@hig0h} zG5J{iPVjvGMkbjXOa2Vqet|q+SUw+5_Z#M zsNd-xfm~>~U@K!c#!D_yQhc#{6LJ{na6d_w7U#z}9BqF3=Q)R)*R->rBPfB_bp7-^ z8|3Dmt9RAD4SZF))hF)kv6)l}DUk)VR^Y3lsPg-khc7Y%&!(>D?;KL(YV7Jpt87-H z#!#l+Fe{i!*PC~}2Er=2J`tf=WxdSqU%d#1wX0qlkT@y|=d8bc>7cxQ{1|`8 z`9)La+itJ3IVoHNwpm*!vA6EH;7{~6{FMnu?$6_Vjq8HvBvb~`jkmEYjmt6oT?Sd4 zq2o;~La{VLe0H0GRWqph^POz(&D$~L{FC&luiwy_`u0Kb7#`1HiOswU(lr-~ug+W; zdY8Cm@ZK9Cc)sda^jWNzpf3lX<^xCVTJ%FgCASQJBET{UcYkm!7WEHj{(pe0~5mf zA;dxz$)2FD^UgH9B2)2+rw$&&i}4u83IK?ammCJ)e43sTp!UL!u|)$dgBqmLpiO z4fhkqVYq8tfC{??I#IJhPZUK76?@vqg^ed?2G)mPK74T}y=O&jh7*2%CB z9|?8DCZN-liXQOdjf6*+vOfCOezFGt%~=O&t-+tI5yHc{R~XQPoez)*(LZvKbcWYM zQwCRqC_0mC8(^Nxn#kd4Ae(&(5c+tekxOKmiqU8QQAmV78>L-Y$Z!IBG*2jca@7#& zvNKg^T*ZHNl<>+%)Ml4cpY?(a@J`w&71sk5Al5&dGg*P8E7RgFBVSWHkVISZlQqr` zMNbfkNqH{7W140#!^f6Xe0r9~~7+K0L!V zOP2Di&}jK((c>W?(@mUgLZpF|3L#DPdIb&nSBYF`cf6!P-kXUN4c!ZPqG1I7DkR1i z`v_FU6l8rd`x?HQGZA}eW+9QFRp9~)cE=aIAabTWHd|pKts3UuO2@(ccdW%?8JM4{ z2Jh?~+eWZZ5?rVEi6t4EeOS7k5Tk>@SR%vUZo^|bJ>WyPVAZw&?GugNFc zgVT4Z=GQE2tTFmbO`l|fYt%;+z1DD4U~$y4g(}vmrfSdW*p|R$^~eWc09M@=1=lPd zQK85%-giBusaFC^^P*Aj5Q5%V_v3;xdB4)xoM1Z0cmX*_wJ$8dn6X}HaVuf; zh2p&^&&gbTy`mO5j2qVXcQG=z``u8xt(yZzPG@sT_kXvfO`cXG}<_Hs^|+iePXW+wZN-=Q%J=vG{j58fyXNo1&ZkQYfskdG=w^_JWsMv zbQ&>+MvNH2!skF*Oc+Z&V1e6r+3rGxs(i^cXpx5OgSU=Oqe9HDXTRyYMjApj&Bct@ z0=pfFU5-HqADBAAYaoDe`W}Ip;3)cJSIQpX7tqIBF}UnwWcMFQ5UftTA*edq8Vrr# zgYCui)&kGdf_@i8{nj`%rGt>fa3Z&elasO?H|7Ep5&?r|J$&8+aX8e%9&d1{$63aJ8uO!}kB`tjTVfM>xuuV1)ojR8M}govK^(bw~QB%!cwC#4?y z4crigHpqAyDa?Y@u<-kRaW6H4bTp$mNZ|QOOjEyMS|M`Y8uGDIrRt$X9SsqY0&9zk z|FnKz1uEnX3Kd?1EIqySig@`vh+xe+B}@W`(JiJ4|MBO;wV2TGN|oMkwQRgU$fzXovsPnH35F}GIE%%FjIFIwekCyb&X*XPpzzk2K-|a0L<^LQm3hRz6fob{rrvB*e}`k^ZL= zWF^V{&sPLkkYF#l$^n_GSv^lJzGfD_!#NW&m^uakwj@+eFO;zqmiCQPPwTH32_Ys* z3{IG|RXq4Q8sn=kv<+lQkOENW_LUXCu<->3w;@ zIGUFsIEtFz8$uMeU0=(fh9I_>7^0DQ;NX&JbUpV5 z^Li_NLyKN?)`k4K6F$plEJnQ!8jOk@LBaD3H#KDS15DyH@nY2FqUDKyVn@y=;a#X( z!32VTajDaCDF`UL=z<>p4*B@BjCYT7J^?~^hRnER_EIs;I7O{%=WR+V+Qqu^3l-U# zfA^Pf9+Z^2XagN3QQfSdlT6dR`O^zjVX)@68STun{_CJ0QcY_*-QN1)qe9n2Ra7rX z7>j?_ua14Xw^$QbXGF<$abcb-#ttt+(n*yE(dp)4h?t)@iIqB{48*vmoZ0rVsxJzI zYdHx+5`-94DdkH?m+<b6BqbAWS*8ceGL=Hf*i185mF=NMnhaf-5{k8 z3N>FP#(!mP@2fogB{7-sbM&#w{4;zb^HRaDRtJ96AzRy@g0E?~{8FVo+d5sa^j9nu z5Ab(Geu^KMqztaB@$E>2(I6315W}TTFYqZ)Y`rKdl-RNV&7d!Yb2YIP`7f@UX9 zzi@jnPf(!qF<(cXTjP0AyfG`WBKG;3lw?D~$>R)kG3Z+4MUn!qDl37&Tu!g1^ES8* z9K;bdbU5=b5anogqD=TwXqJnBNQyJ$&xIi;x5f{@S5^ne!|Os`>s+i`{F9G`B1(sK zMjapN+-@#LIf@p({Czu9kh3c`N_xpyl#zCifT_^=dq8F&!0uzOoOm^w|HH(SC&B!F zU?FB@%UMx)B53lSrjV}942nOV%}(vo~)9B`6N7b_U;7=+jZ|dl@EZJW6dQ5?~hXB ze9o3a*ZnBd*C~Vu)^SFt?7l5|hE{AoD#Qnh3-Y@6hS2#*-+y^Ev4>bZDwI=+B2=~<*B9DhWS{jKcH;B@ zl8AR>2FgFbZS%MFI^#+AA3_uBg&1jm`aArXOq>Lh70`zvx_}m_qq?lK*W~ z;0lEOojg^^C9-G#XjRmeOEIha;mhG?1-it10NA><^hg^mfII!%7M8LE5n;@Tzap&v zNmaf?3`kf`f=acIK6&9t8XxLg_U2l1#0w~ZMG~r2p9P9sBAa$URy_XVKxkPw;d)~n zdbkg|%92;^(*fxjw^2F_JPW&*gQTCy;6AOKy`-@M9iA4Jm=z_=v#~0dOF+f4tH(_j ziJN|U(+hd#d^{}*mBu$L-B z81O84*%duP1i%C|0xB9XT`OBTn!+haiAO4X>$^(>TF)f7))maiNJ=_YJbNnd>@1tT zmdAvPT#N8}fK;usNK-hFk0wv)yA0jXz4+@72T#KQC%opH;o^=vyVjzNatWp0G~a07 z?0P#xy?L?K>Y=psZkDWFSf?*FU@hFR&|xU%cJk}dYB&XX=GpE0N=6J5#m^tRdPYIe z5%r}kwLz~Acj0Thl*_B^4+;Y!v^D)>1Sx)?P37W0PD;=AT#fme$rw`7z}$-&8G?nr zx!iTm^Aj_#xDt7vk}mEU(}*%EU65k6j9 zfggX*dIJ^dn%R1{e|_6oN&5&}%M1wZ8K_RVA>p`^))yz0N}7;g`kY1#gK<7x@s z&DtnU_Y#PzC|_~KzcjE(8;gh0HhRb-+=wp;17Z30jvCs^Xv$$r)5 z&c##HdJ~L!m^169liOclKdW3^> z;xXUc*tI#-fr1d10uP_I#D9HrHlvY8hl5QJB7-=^SqQk?`YM8(C#BCk!6yYOeTj}x zGXpK40AFTf<^pt?wm0p6^Y*$m!Z)c<^FyBnOwK?9Jeov4)K5Zr_zvN(9nQ4TNQJR1 zE^#&P`9x;in;U4Nw@z--JT*^s{F1Y#!N*gNd6>^i-Yo5bTyegyFwg34&U&iBNO^Gw z_N^1_2;Kg^2i}54LIG>dXhJ4jfwKq(m>u zp@=krj-<1Uunha)3@rt^*wYCy_#@E~f_*X78JbGsngWA;2JTA#{qWzB#MuL!TmtT& zO)7~nHoJGt|5oW0slz-Ourd$L<_nvFu^XyHkCb4~NQDPkDtnpv^WIGv5i>a2m?-~o zN$~VI7z8)ns7bAbY0RV`l)CSqBV9}3cqp5my9|@x#x=up0Y105Iav!Mj7aP_K7B_5 z=>h`m)L_D^4TjkfkZIDh)O=u%d)B*>0ePS#+Ro`}=J*&NHC z+!g12L``#mhdo&BP3}r(l_rAC~vQLqfOVMeVR3^1IQ;vr^?~0R)32O=R z4G>K^*d(2`gPn1(i*PX3njsiiXF&;_woS=qdVZ}fe!USWpnUY0+^r)}_zy?@geMBe zM+@8j2yj=*uuxdb>EA4^nt?l#@DBN%oG34}PT0J-Q_8sfudd8gBiSz7=}C}+b>DrN z^Mk)ui&bL}O}pbWX^Ow=&k@&$k81;Gf8{5Gz|{JKBdjC6_~{fv#TG!oeIHurgo(Q| zUR>Rzc7kph5!kXR+xVPXh$dv54_Q4LN$F94fsX92d4o1%hkLupQ}~4m`4_*fMbuDq zeOLO!BIUw|Jz@@PYl-cjAQRY%3#*n_CP6ap_40r0RSGhqebX(u{X@GK!$pyZ?Ff^E zpPwpimJ$I4`t{duFNjWlPDe!i)lZnKggr~ankWC&@t}g^u>eh}#+$Pz=bF)4LqCL! zOHtOKB5cY1)0fsUeo+DZoTjXMtsNo#7E?C*0>T|RK#BQ;Y1{Q?Z*l5TF6xG` zFZa}c(tL~6`gMGjD4{&0abwdfdqe}3@63r_O~>#Jco;}{jXCz;FP@-d{6lAKJ!)~v za$Ii7B48WF#b}Y2dWbMOvXBu?{`dD-?0?S95zCeyjl$8ClO#mGNWPoBGA@xpB3f5= zF29hLr3Vjx^}F=kg?aDy!ZmSx;$P_-&*iyeH7gpk<W_p1N)WbmtzO~m~TRO9K>GZKOokOi&UjFAmj}n9Q zSO;#AIIbRo1yUmct%Ri!JCSf#9;A7gxaNqhU=9vQM@Xyu(CO|M@5edw@;W3NE7~|& z3E&c9oT7WI|6^C8JQuiskOA)rkvB}vW~PM0+=aw9!lD5#FFQ~cPXP=7Qo*6e3$brH zP*;-_5e@M@#@yH>ty_DVf8OY6*KvW1p^u!17W+EK#hgPNqDTA?a=Q$!badQ?oXxHp zp2V@q=Gp$D{@x4gwFScGMmx~3nM!jm$U&;ygxAeY@cM8~mT5spxkVKFk}yz(ALO zBrP`|{a*k>FP3Ol=cz5h|0u>HLisc@AqnvF9MDHJ3~;ZA1CJa8=v(JR=A_+7c8*@y zeq7G_lx>3v8q3e~a4mc~DKh^ve)m|~$m^^qv8X{lu3JkEq(bC>kGRC{6X@1A{X51Ybeh@6dhP0F`W#!$kJ!lCZ!(wUu0Aw{GE znDGq{zvr2`7NoOFrB<4n;R;>6Fz)OyJP>n9 zx-ey$=PB;Oi5hXuX}R414ttWBJjAd!5&^K&P-Td7G2Zt=|&e0 zLN9k}-D1;k4T_uao|`~ibs%!2Jpp7pOpbpRyTK)}WevmN%B)Y8)fL$);9%2*{4eOR zZ(lCA+TS?BRep5WT9OHus0@%v2)(sP@B#oUIzy6hvv*Ga7ypS3UrRg0K|0^-avn|d z6XA|qq5@M)n3q#UKuiUj8+3;%@QR8Uo;VMokiWzks4?NGqWCkp%%PFwTWdFgKodBO z59fVC?WA08JxE(APVLIYhj@$<05NeWyEJ<^=}Gr9Z0?@ldN5F zqwPZS1xv{ccmNeIk;lCF=AzDC6-wjc?lz$#EGWxFjw(Z(+IRbhO!mCORb;IsOhvz$ zgMpbUN6A>%4sgxAnzIoVZ;tV)Sfd@J30u@!kxs}yF*85m@B*Y6Rz)7E6(50zCkPQH zPWY6PBKw%RT}BZ$Fz6R+M5B24yTZIqlt?|OiDg>gz`Mmf;AAvOZgn81#4jhzh*<@S zr)D%%cwu*bkn|*~K$`WrKZOb|-1K?Cb+9{isJh1~Bwn;>Y5RMd<0-$|r6RB$yIP>Qi)ht)2WAJG)_BCcN8Ah2KGJ=} zt5b=>T^V?(uLG&f@cc4xQ+8RfC-=OsJxBALdg0Uo&!>!Rfl=iCjL7S?D*}%lR98gS zNif!o*ft%V1_4Qygi-d2Y0V%>*Pe@Ihld8aT3vwi>U0Wg;e+=^lt|6bl=n+WKj2GB z>_omMVGd*Sm9g0SOqh2g-jP~S|2RA68?w8xFC5?U{`2uJJO@WTn#25%dF$#C4*MWgXR7l16@cZjiJI6 z&dxnhjJkro3YQnfpXbchdwj`4NrN`$K*JBhzgB~Q`6BN2G#qz zticFSo^2L#O{1b}MeL0=y7WHmoy);(`&SsZSe5%q#?guXNW~6Q%5ays7R4&U3NW>0U zYhrK^^HSES@Cy>@8c%XBWGu^_ktvS?gItG3>~!%#IEsKi5s(@sxA-{NCOtKb)z_y! zO$R5Nq8{v@qY=RG^%T=QVq*VU+Wx z_dSW^d$`fcfDMcb>mbs_LNvav1IGkiE1k+{net~(aWP@2PH6sWK>Jr4Tt4Iuj2ng$ z?uozKyFoa=1#kcWfsSdGOKh?hFONv=quxHVQF-A!jtWQHQ^RGHdxl$P$>H$q2USB# z4`N9p+VxJcT9?+%bX1%02%A#>Rb8EEDGctgr4LR_dsx(qX*Fwj?mo07hRxbl%@N-}E*aPBv&n>~<;o79O^RLj}WTMNi+nt{e)Z);Y zxKd09fZug#k7xV5##Elk>0`6E6BF;r!W@5jH47H;dqA+iTSQu?tpBzIcaTK5V7!%Q zZdhDg@jXa)$bKOEm(MRxkXt@<@b|@@4x~K8^Tys45jxs;<;j*0)|NrY6q~pA#db1e ztq+-JVg0Q^Q$q4fcG-}2+QS?mdQjrJ_B*#P773JHz;JtsW+6p9o-(dKZ?{=P3)^BdGuoKvDCTch*JE#sh{6or^#<00TDQ+P3&Lo!pzqQPotPCh zDh_hkF{osj{a$Y9d6XL#`PWl7(N%`vLM5qIk18wq7ep((1_`uv1CXcR)z(zX6o%FOOsthidiy-s z?FOlzja0#%=3=b=y^+zuko8S6-NvC2;%h2;Ll1HLwwHbBQ4G`jkh{tLL>x0N_3H5Uf!RRz=(^ zw&~bCw8G&yYC{ewT?gUOJt(T1 zosH0)_{?pg+qLf>)Mkh*M~#=IXeqtf2`gDG&t3}>c~Op-T32Cg=?HNmhj~VsIU-E7 zre4fBsB&`)rhoUXgBs>d6G(@8^W1pLDTO6}+(OY%|E=NLBRD`SY$P&|boG4GzL24i z4S)XH%E6zDa&3^S5Mf7VgkvQqB`hJ$7n6yL!ZN)ppPMgsKoq3;1laT2p4dlw0Q91t*6rt+6huix$p``}iY+wP_$=V>rV zw*x(D9qQs3p>ssPwGuMI#$3+QI%oYg`~?1b2Hd0_E9M2Cbivuvztx^Z4_WT{-Vt9B zC5{B|=_M@&KGze>g?WTVY~{jqndr8}Hvw~?l`G#j4G25juq`&mb@!+m_3MtpkKqac z!u%*bR8>xq;Dqfzg?_tqGmLki%R=!4$Or9ub@}3({WA!xpAW`{4GO*S^Re^7 zUs?(@9d~@U!`^1oG+)B9!mz~lb(^z}2!)}POfV``H}~x6ZJ01eV8jeTjtbAMtBkTm zj7sg_+SXa#&=U^C2-!C|w0cgIIs`fTD>Ox|2oRe4omFBf&XuU(xyT}|QO?S(HTR+D z4=;|V`zr{5p#+tvC7X4lq8Rt`1toHgQCYU|35~(~i@7=2miDgK{5-7Nm@m zbMz8WyqONyWg;6rh(;#oxR58eJzq}Va69jCPFX-Jz3N>5$8)-*KdIaL=WL@o)ksdS z;Gd%2E!0<^+B+D|9KeEID+*E#9>v9lMZ#K&SF8CzE&D|vm}5h zSzi-D_4iHhD3NK!8-oc&7iX>?6a7VP!#^^7LQ+LqH?)cDZb*0LZboKViG1?S!eaDR z^Nb5a5;pHV*60x9i|8Z26LQzxo1X?b_gth(~J=mpb6A+Zrvr-Qs5`%{l{>^qX5PEokeIi{FWNuT~qv6V{`j-wttzeJzomEyCAo0rok;@O>!|9g>xI<|M1IJIhh)J>7TqbF7qK zZn9L`*P<@yc!Js7SjmTSNT#qM>rTuoF}3EaESs8U|LT!|FeQHtuJNMoHgmx5AM@j_$V#aqAA1>|LISUzn|gnyxH^b3CJgAlu|)KOa3=QV^psT~oTtF%l;HXy z21-Utuio0nJK!e|!YBZHdiW~sePl7@PL$NY*o~kb8QR~SHww|53_ygMg%wlQ-I^Pf z=&4GS-!7nvse}?Ju_t%E4=VGztxb$J!qXN@Jtn&HXcK`Hu#$La#+?ph^tz zH3{j+2Wn%s>oAP!MN{yamWi{TB(a+(Oa8a%_z4;Pu)=AY63?m4}6=bt?Mi@a>chTA!&dFq}#tkearP$-f_*R|>MVS`p8A4Z9(hc!EK z(~upeF z$kZV-*q=C`E!9Egw=UUvWAUvF9?V39`k5Y~?CN3;#l-&I6mf7^g8OoU|6!wo#J*Gu ztL@;8GGCA#UTjTgm;%Ct1i}uw-b48 zqo`675kPflD0FeiD`?|WTPGyv$-`sM=VkmN;0-3uu}M!>Zba9qevzPR~T*sVf|Ke@vPIw4k6h0;<3bos?y8p zgQNP*&(vd6wc%8b$MjWeo@F+3YFtP5%7VXzT*QNch#Em?jv>7p((LT`4)~BLe?C03 zH{T<=$KbkJwYjNII<&0hJlFE5%e_(#Idd)kVaWHqJN@538~Kl5o%t|rKz1_?_N>d7V6j~DtfTb zUC4)I3v-MJw2r}}*Pa$iUiISxI+A~_FO&Py!5X3@nCn-YM-T7EofV@d(SEOfx`#A4O}UXTu-?Gd75P zrnXspWz6}PhO@bYd8^Tk5*^Wntsc{Hl;Jz>ii77r?tM!ZdLafn={~b9rGD!&o0enb zOi5OK7_ku)9`~RgE_{oWfEswQ8I*XbEXKwFV``<$ztizL+E$1AAg1isq`Q61Zuswb zrFizy%SQ#Hfb(21{Z&wNMr!H`%4q2Y}%tpK-TnT$*)wiAYF@QJ(vr;M@BYz z^eUG#~zMrM20B3@8$c!yMizaCO?vy z1p6c8YAxLkmW}Ly%CiUlQ$g4yrXxF`Q<*FY_l(H&Lw;2bmo+3J2-$5;e7Z+X;Gp5v z>g8ES7;`0Gev5lSUH-wl{cwcSfa@BR4a(vlVK27zjZpz zLTyrO;21HzYtjo&=bLzEfH=90l(#l=?3t{wPCfsaA+imU?I|=FfL$-k^B4dFxDh8i zng<|5NtfK}|*9+VDvaA%rCK9(qSW zI;ivxhAN%VJBBLu5PA_qk&e=YfGD8~h)VAwAR>Y&Rf-MlV#&+z-g)QVnfH%xzCDv< zWu2WEchV&%Ib$myo%BfcN@B6n8e2oA4OhvAt%5qVxph9Lcw88h z-AD85o;t;BO%BSXXcw~&;*_-U?bo3ewD(YJbK!J)ZNV$H1}ihEidguCo;sni6uI9M3@t>6H4j^;RMZS?LkkoEAQUM= z@}#yGWjOC*DgZ!wIL$V+Z?-pZDN<~}8}he=|Kf7Dy|qz9Bq9;vWQ6o zAa2^@r0R+N$w$jieyO!3;rffyVaAB28ZO=7snbKS_a4Xa zGQF|EtbTmpCDy?%iPMR@*_T0Vu~ZgW1}qOy8frDZRQnWf!>~o7i_;s9vZ%of2)hAS zWx~iSY(>!yupe6fN09hRKh3?%0M<0^xtRF=4;!8Y4I8VDp{FeKqu)fMr2z`-U;R@( zDYxGtPaI~Ss!m#tEq*9&#{qL7?j&m_rXv!ddz@KE?1_JF_zeY6GM{0%z*%_n{#NGM zPYoI~retT~776w6Rq$4})2kiSCM_`(5DHDe;}f8U5d-eP5F`Uyn&4;}mu!4_{_k9h zNtfd9!TDgD!M;By?E8{0MsvQBF+mS<#?n)s3@%v9zK}>_5eDFKo-dXusTonqGuj9z z-uXr#_0q87K!)+v6~*{NaaE(Dw0--OznWzxi$-m(Hbc!PnH93JV=yObx}|=BGne?z z8pwn9#dS|w*dhq84?oaG3|>S9V$0$C6cgh7G}(1p|B1(}ePJz^7-6LRn|3*uM!OBe zFbm>#4V-Yhp&)`HRLOv?VUY$o$koINf4A(E=dGb<(ibU+J-Ww^+cZIVMysifo{c~H zYkzLmp}q{|NU=^ZLC~=ET8Lm8^gT|*pH2-Z#{(Z&kmgIbKP;PbAiNo8UNKVHt2?4z zrAPpjt6T~*B&cn)q%5gYKO8a!a~S`tx%y2vH&%`3=dxj(9lPk#!R+j-efaZk!Fd}` z`8L}P2ITr}R0Q4P%sRFCM8>a)6i&M5;n>VNv!vO5%(EgNkj17h(BWXYV;aS;4i#G` z)Tg+9DsNr3o3l^s=@=mqm-Ye-+XUx=4}sZXwrQ%+g^N~;@3YY|Z_4gyzY=28j`q%9 zgO{YRXkcN#?|S)&>92fr?5` z*2@NqHs&)eK_GqDl{l5s!8Q>Nwu&!DHB@+`V&+-KTx@RAX_xiG56Qm^0Mi}sG`>8N zi<5;BB7%`j?^rj|N%I?9xT}otWG>!@oQHCyE+(%Jm1sHVj;*Q1tI+3Q?v)Up#fMrq z{pz*Ef4D#-U;DKQIe1Zp>|ruGuf1Ymm_5(UoTvc|Ft-dK-pGt!_~vWgnXpwN47+tf|%uqg&aMVHr!nzi-OF3GXo z&+28)K%TiX6@vDnOw!gs?s3;5(y8&&oZeVB#0>p=4RBP_63#L9WY`SRsSaMXMkz?a zedsz{ur)eGi$JA5r~G3Yi8N7DtEhl3*|siyr$*g#sv#JI@|e1&q40&YZdm=>H<|bzgy5x z^P?3UQC^~;^mh;H<#-2TD#8ECy&jI#s{H0M2}F^JsfHhU*$s1=hHraR0uXc9kSRNB z;CsIWuX-(>^cj$KarlH%t1TsoUxwGKaJ*U{&i#`zmaRb20@*gX`_m|Qr^23}tW_M4 z_IE%*K2ms@+#&(*()+*lxsQEtNA%Oa^&XsZjyWCkX@KtBz$kW zDLl4VDA=?5i0rp7;L|_B@ptL$gzYK-VR14CPN%Mpa7Lu}yrBVWYg_{wz>n9*#);5h z+^^(zLSa!$?ETQc-?g)P5Atds?JGiYYGo9(SjMl!8-F z-BOd^Nk@!rY`~uxmVGNJDRBQZXjGW|E=P(-i%fc|Kvb~zMbJO5u?Q8j^kt?%Dgj-@ z>_GKU@VO8hT$(XK2wD8rStIOhnh-f{F;MGEhT@BNb;WlK&#`@h@zBpSfeo|D9+vyF zTxd=iqkJ!Ip@tmeISP&4gNe2?@hf_ZveJ|Cf9RIq_|~R$4P#!I?422t$`U0cauyl% zv$nMK#VV(tFyI)eyH=p~Wcz93e!ksg;uGf0}!52u+9JRE984ZV^{uGCK>U|}i z(5|~kUhowDcLoO>RwqsW$7N-n0xkwb`FU5k@;d8-UHdPF;Y)THO{V2H9Wh0UkOO0v7NMI^rHfT z{M?LEKPs;D#D7|U!g^e=B9q_u$@4q+1=S6qoX~zTp=w_HtIUjHL(Sa+af?X29^NZkHMh+?kua~48J9#1_CdH2 z^4G3kxNT;b?yvo;_Qo0C@mcK_1~O4%(pB3pa`psQab~vx&HRRIj`5ou$Ap2IIP=!7 z1-P36M7->5i1_#gE(>hRv9OP>^s4<`FjYvxD2SZEhTz$%g3kT~4_Mm1*R?8!s-mf@95qiYW( zR5lDtvxP6(9*+%X92H4^f}=YIXnjTxcm@UArX1|rQ1?@-pP_k5Go7%kPbiaU7U&24 zCsr?d_1fmFZn@ajTaU&n2KAVT4!S9IZGBKva^!@lG3BfLY$PNcqm<@@j@j5K3%q#l z&FMtU*09)~F`z-6kbbsKTn)6ZE%Wd7vF>Bpu}{SJED71KvgB=S(0D+qcp0xo04Zm; zL9e0gH&^WZf2dS{Zh7GnFw0UT9`^GV_lMN(cU(yvDJ#8eFu_`1SD)|ib}M79?W_j3 z>^wT*^c55;=y|*|B@xr};LB>yOJDJ79w&_Q{V#{#z8t&3@#Fq$a!Vniofy;QGIjCs z!^5W1!GNszSK%DmFC1>3SdKf-aVp|%te@=Lb>%TN5k`6l^v0uaqWi=hx=Dqgep)@( zZG7%${pLUQJfr=mPi~XoJierBA98DOxG`spDP56C5>!rZ)I}xGt}z_aHO1llkh*6Te!P)Op z)_@{aX9l+ruZ>z<6U}?SPPg3J5BFk`L#Ok={FLvU!?PI!&Ym57%%$9n%0*s02hcKax)oj*c zAIU+B29PeVxY8X9`F945Af?5v>))Me98jj;^&q=px$9Bm6+|OMn2*7NHK)cG_1hH- z<@NU&u8*ldRjr2P&Bdl=xyTBTjG%)+h&iPP>I%8pq$_qp;DW+M)HFzhVI4U?vF;DQFlE!i90j-t)W+5DtN)zU^z}xIO(^QZ~gjkCoizTPA;YQ|FV=L z7J$E*t|1d4JJPD7HYb+mh9hXK3YM>~ zjP<7r$$mUBK}bB^vFEHIlq4nsq-q5O<^+WIr?4#=$~gF8tcb=n`zoVq_CFT}rI14L z!8mm8L_b`IbmMdOb!}2EEK*FPjfwR4HK|s%s9T9+Wm5~}nmR8QYuuq->Up;wRWcI# zl~u5KD_xS{K0WW2&7V!?3%mG0Iv8C`P?{0$y3h)_kzC6S>k&{TyQ_pL8+zW@SBz^> zyCww9C%@qjHLzyElXocH(;s+r8gZU2;cY#8AL`zt45{t$tb&V*>8SSKxBx;-)QnS6 zNG&$|;GSk*^{x!ddv`_Z&1r7{UU>eOm3lr(Yd{j5#?|xtWn@K7jmSRiac@gX(nNB= zWR{^aLvD@Z8Jwa5@TVT2&}Es|xmmB^_xS;E@{?qKr}oASyZ3%C3&iVgT81KOWpiME zhl&}+QQ6^k1op-1=CJ{$jYY|y4S8{Ll3OqVs^yVmzGw!{W3*-*k&RJ<^|>}am|kgl z|28!Ae0#p-rZ=c|>u=s~r{47AbMKs~h1T&0399)~Dwut&CO^cV{9b_jGn0onwv*AP_Sz^CbPcPpH42`>~!Q5w;`h zEcXf?qQu9T&dCU#vpTB}&mJkJ3kuRT%5-11h$`p&ZA6<+#mlWTI;s>}xLJM{z4|Qt z)16YZi7_t8nc!`gV1~Xx;(x9$$;_pq054yv-zAOvuJ`1qm-CNdmc%Z%O=`;>q7mWFq z)`<`WWiLQy)g3L=!Y2IUFH%R@=-Wy~!TbOun&4Fqfw-n~2|C>evP*}I;rCL|Y9vH! zrR}QWx}tCw6e6BcYL(#iw#wD7V->?MtV{ud%t4x$Se1v|(0NeQKLPoJRr~}^G{o!M zU!%pA*X7=bY^^IFr1g)l*{~YmLhEI)Yn^JlZ(%`VE19$p64g zbzNNE&1jbayY$!3V8T+9kaDraXV1<^lYi4_DOoevz`&mvO7>Nl1HlY8O{0@-BKnzx z+aqd2zOkHQW~CC=1xcrI&emYss3{l1}S28c!r; z+yd1J9(2y!vanCmZv+geQ0b+9l<{k~rQ6n6-n3y!D-7{<%bKUgZDa21isfk@|5p8{ z#7T02=E)EqPIJW2fc99xdhUX~(%XO>=A%?sUp-%#Zy%xMsx;kS`T>u^xpWPDH*|8|sEP(ZZYcC>0x zjLvq9VNk5)cC39+oZEJsZ%};bc6@ZuxeMFps6h#t+X;C==S#QGR|j2a+`iBnbg^gq z;y}=)iS0{sL6?`dFRuq(+1tMIIq2%)_Em5&1+_!L2Pg9HB#H%7OWpMWK$OX9VPs@) zW@x6OtfI<1!jWQuqXs^Dj);tnKH5NVadjj7$M=7mk6#SgfJn6dzwiIw*Y69!5o`be zo++}X4*FlV@Bgxoj?4Vdf&bIQ45DL00s|5V4rc>n z&-p|j1;hUg#nDg^h|y;QL&5|8yWju+&j0Ik|J#fWNI1GU05CdBJ|7(t6dX(Vf6hQv zSw#i-pD*K!-G2=-he|!>^0KjBV z27u0|esR(9|GlfD0RsRSfCAV7PJj;(2E+jwKoL*{Gyz>eA20zdfzyB^;0kyFen2n~ z0Yn4mfJ;Ckkb0yLPXlfMrNAwq7H9zO0j(Y@4&{Inpo&mks5#UL>IaR2UV&yqOQCdVCv*t<47vv0hyFX7QwqZ5VLC7imd-I$*=F=ddlB1#ZVh{uRI#1`Twk`*a}R7IL1-H?$;DzXsShcLvAB~vtU^yS#(%V zv-q=|XSvQ&%hJR0lx2(MHwuT6Mx8)8qC!!LsAAMT)G+E5>I*9?s~D>`s~u|y>k+7% zmBBj3y2kp8iN>Sl&_-wvbR0SdU61ZVzeImwV`GzI(`R#Ii)G7UYhW8>d(HL}!+}x4 zSYZ4yS21OnPRtzUBRdPbB)b8-7yAYFLiRTHr|j>sELbV55!MHL1zU#g#=gLQ!*SqL zaHnw*xNKY_ZXCCRN8qLKCU}2*GQI{sh~MCVaENmlarkj0any1Qb8K!bMABDxzxCvxe~a_xE^w?aznVKxGlKDxvz7#axZWn@(A%5@C5K=@Z95>V z6D%kvXfJqCutso7@SBjZkeLu!s6=Q`=)Ewvu)c7paDnh6;aw39k&_}JA_XFkMfM0> z1Oq}ip_nj4*cTNPH5ZK&trDFU{VgUf<|IZHYZhA(M~Q2R2Z|Sn4~Xweh)CE-T#~pW zu_VbNsU;aKStL0s`9n%t>WoyH)P1QPXdN8DwaUvXcoj<(s!ET_XH_{>Kh-kT`QvQIO^;ta-gW#yO`fS1 zpmtMjQJq8GMme?Vrbe{JJ&j#W2~Cn_x#kNkPA#HVw$_+7OxsZVs&=pTFC7h? zSe;g#Pr8b_VY-dFJ9^T30eZE18z;n0_?)OZv3inll6122-+21 z>2Djz8iX1&8GJNUHjFmxF#KVpV|3Z5&lqBCW}Im}ZGty(GAT8AZ7OCOWO~PR-%Q=? zqFJ9g%-qU6*ZhTrkcFQ`gT=n3rsZYJAuF_%gH@^3y0x5jv~`aS*v8T(-{zIAq-~__ z{nNl{i_`h1SBTQYDB=ST=BGvdg3^ziWtVmm9*(*{#m)o4bko4fib%b&ph!1y5PFOlv{iIn3@FAkrYn~7C^k;T$;73^t;L^=FN^kaQ4tGs=Hd_*cx`)W3P}me8%NTZfe)m5Wto zRh`vR)rB?in)sTxwa&Gpx3z9J)bZD4)%~rHtY4+u(}x-~8yXq~8?WC1--)}k+vL$S zbJzH8*FD91Rn6SZSqy*?$JlEjwJfw+wGOmtwcTr%Y%lNN=*a8@b)N6szt0T5zuM*6 zHQR03J6q4-?tH5Gv};Ctre{`f z_R-v_x&CLy&qn4g<|m)qKA&B1T3CGH@nUt+e{tt!_{)Q(_@&>=lvl7eYj@4Hnr}szP#bL@oqC_^UqfDTei1_+alWyJE}XqyQaG{d+vK%@5t|d zzfb*u`%wN-=41OO{ZCW-F8f;t(Fe@W*O)^B7}P4W?nmEz8YYs)w_<1{;>gT53kG6O1wiEm~{G^JN?wJ;qyaPZlZrO_W=- z)jcWGiiw{O4Dr*<)=xqSS+>(>Ys~ZIJSW;49I}@c8px~q_0R9Pw1uurbliE-Od9O@ zy6~(9!Z$zE=sDSWclkbfVE1BOo6asSRZWyfYd~j<|Kjb&{?U%E*E_%fO6<~~pTCSQI+)?AsWl3L}H?=#=>rfZC!qUeOW zq)b2f{bPUQse;u?*ZCVxTkqaHy>(S{>-ow#`)H9HU*;2$QuI|ST4QH5iTy&&gqgq; z)B^FVfdi8)7{9ZYMo5)ePlx5IS3ty&{fLMwWAg@Al}BW1B4=BaUy-rqtFAUzk*%W$ zzG<0Fn(_DBC0-bX?|g~c73ypmL{r(V0!Qavl22)r<1L+qjsz!&lA6P2v47!tCv?0z zwjX7BsgoY+;YDk=8BJdsbdaO7YOhxGpPQyAMSLs&h|2zKy6R%ks8jlN zMB-s%dCa$$ff^(pR^g1KyTjcUjnkgjDkFZ-%33N>n(z$fGjpgrDx$RLya8Y!c24?{ zxAOVO+KCQH1ETSr2j{I))-r=0i4)sak-M^7ku#bI&+UibZ`oy zQ#ZtDxswSdrYha>Y%C;9s(%9HUyrF;n2|@7lh$5+>ljm2_x4BLg*VZuY3M zhFiaS;wQ~qKp*NW?&`RV%sj&}(|xq^D|-?FF1jHREs-_I*Dn^ko|PkGeZF|AR_Ypl zc%r;gyeycj*3`oCq+*n~ILTP-3}60Q!m7ngXev68M_FlQQ|qcDf;X)V_gfMxk8m74 zbP3T}r4NP(x{egbYj-fFBCiiky()BGV+%bhDFo;jT7{403Q6to&!V^8dri4;yw%j( z$puA=3q?mY#t=kpPAu_g;=3~p`EJjWKP1WI@$dZ-zUVM2d(H@B$~z5OFdC0KBqtlh zOB6G+gU##Kf%wC>xChz#xWhi1_kR+r#IfwhBrWIij47-F_OG>leI5#Y1zmaOFnSl* zn$BC|X@PDJ5e6#;6{lWHBIopoi zQxB?8Jh6nz!+!5n?160DCSGD&+(x>CpWajH&!@z@7fs>JOOA#Hb^WApR!%q{e{$SB z%w|*cx17YiCG&`H2XLLdJ#4_0+L8x8L68~4#fjEU9C+E>HC|k5VMsrq@PkmUTAu5+ zqj~k#WaFjR_egCkYgCUU zE2UtsRISnHPwzSRFYdW%%B+~*aVccwrMFh%m%Abjrux%)RDO8IpwWTPTc|9<>4IP! zLKS@R^(?fFn|0t#Kq}?c4L$k%)vjUm5w2cop-62F6nRDg)%GFS==>@p1wAyJ6qf#D zfOjGFV#^lQg>jp2Is&5>`ir!2U=2^P;&4-*TCcSntG>It?@kAu=-PQ9$E|oxD}H$y znXVR~h-sCQ-o>$dhX)GUr9K&}$`Y+z1mR>7vDV6STm+*r7t_~AVC!PJ#T1<8KU7@m z?-QjqVWUUVl?5sL5CYK8MAYzOkkL`A{X165=bR@4`I|TnO#?^uc#Vzd~#6-b-iY zW(wJ9MdrSJDar{qMt0m|znsiArkq5deuY01mT^lkUC?cgl4ruX#v*`%SG?|MPuhpz z!r$V2(HdtQXJ6|Zv^o2LzIzOauD!NrxMD#I`j`bD;2h`{QkXestl621AI()k-SX% zru9PXwV$o~pLHH4I~5ljP$X2)wWjQC=~%ZREO9HjJsOWtN+>&8yA49_ns(2uc)&&V zqY(?~-E-GJFLht`hmpS7giEusOOB^l#(I z1)d1ai`I=kj^yBeB@wL?o%CnjWj8R;9;_whSuY=3AF$GX{UkP9dD-3L!k4nNAI0sD zaXbJfx%^+@2Hgw&F0FE-n>&g2{uDKkRx-oO*V-R_H#y9{^QeDO2u`H7Y{sML^t}n2w*eGxfC^zk&Q~^&`?cTNL1wwH6Vh;zC|L^1N7E#*cr;b09I)&K{f{1k)edG zgsoC6>f`aN`mD$3M@jRA&JlYNH47gw;g4$a^-i)TMbZ~NAS~+j1DH%emh13swT;OE23E~PyvN;d1v23TvSEj0~ z35+HpJ$EFgMKhuO{&;C4dv2)1V#fJksA&*Sfrbh1=MKE}(7Hn6a^90BB$(&1q4Ev0fP<}Rp$n6$aQ_ix0MOPI2LaJ@YS~^)JP$=hhPUU(yo$$QKlh4FQ-@_=x=cbdqmT8cNKR7un=2?5KwuykQUCXK`)P&8xLf5m~%bl%~C0~J!V;R z*;oKX=TXw+L-=4UiNMo+Tzj9jz$!$~wN}WyIHVO))1}|RsBj%g$=L-I&a-^c66kKI z+<4fF}jJLt*_XCMZmVUfZJ^ZD-{k8lY-JV~!*X_G_^KSW&w~ zVXoo&K*LTyi!O-=exA=C0Pa;{A7L{r@aJ0(>BiF8(2%erdgwExu+@(uEO(xGB=(|8uBHWlpG82axHDJ8>fy@ht3wjoK`FD7oxNh#`g{RYMW=B213x-uxo6O&5RAn z(8P?ob~$JSGgc`^w+*6#na^TdWjL^{g6`I*=tp7hklS~MarNg~o`PibaA(+4%0?d4 zf6VM~&J-*qA|I8&By@NdiGaEOBb41~A`-H~S`8O?bV2mKlm))@9ZCe`MmYXhC>Qf! zzw`;H07HZ25wns7EJ5KN%&e~L)`77Wmi#{JB1cY=yB=>pE1(bOup`z(`&$nmic@;H zr~2RqXz)Jt=O9v^jJAAMp`3?#nn`t>tuEUecrRDv(%Y-BUWo@1d z=Cs4y=(84<>woj$7LgbBX!QXb=oSabS|J8gh%Gz59>9SB#a$R4>>2*B)X?Trqd0m| zj46iUQ3kD<;I=DKm(SRW$Q5rD2h$(mV)SsH01*8Ck@;GO>KrI_HU0bISFbceB=kMswG2|XKHp{sX7UiOUhMq$QX(Z4@ic=}X40I@<} zunk(|T~xmA;nDkLYCzb=l0rdBy#qvOxn~d9xK_suLFkztUfiWCCrRK{<|Q>d^5F4) z)B<_}(}I&Gi+h65^5h3aAoLewEa1;0tjtn6Gxc?9>dZR?m5dBv0rwFd)JD~ z|AqBtPp&j63Q&~$B#yWl|30^js^ZJ!d`(;y06}hR-wCV;77HkLrhrIGoY~pHz9zm> zdRe_Y_J}fMUUYy2I=5E|yR_CXqK6f=W92mzl&b8qy;k4jdXqJ$w@szb*7Q_7iOqMm zrm2z>DB#ssh=mK-3r9VByAK2Jk6Ry<^b+x=FM+ovQqX@~;D214dnwYh*v{25Niq_x z)AXryGxa@!;|kJ32!qOCwi>r8O}c6$fn&b+M!>G%d5OCG~EmRzkcL+^_FPqYde)6Pz0)7Aed6 z8`eFpUhC^Wf54#du62rkj|dpucU$wsx#> zg??{4k?6F37o6dV^))~jJ>v5A=MmShy%`KG_ z=|KuOTt7jVXo;l!9k@BM>QrXzaAD%Y6_$V*FvF}qm+-Fo9){2d;ce!ewA{6=Vx3Z} z)emCGuWk<>yzAG)J|zI2gdO7pR3$S*M2Nz=5XZLVDVr3G$M>TjB?qw^)T#Jtn!u9 z(^YJFGrM{xC9)_5@+!C|L>?>y5GO$?*R~xG?Jx3wM6$L>RUoaeV&_+#Jq*6{k?9Eg z{XXf2!pr^Q2JgO};Ph%NhcvQjAEE1kdg_mMTOYPxbdXu!?CHPr4YmS_1cb6OaVzE& z8wg)g#2FCw358#9Q~(Wo{yKO*_GOo|UirOY>n{Nn>p#A@7pv0)Eg);5xqt7L>U(vP zX?_W35ez2QyQ%?6P~v37 z;4yIKUrFm+G{rfV>sZ}8>VeOKs*u>3^HJwQSjZ`g64#t) zRlf^9qq60B`8{!_!cvFqXRto}_-KHuM(>rsiL=K*?4^hEAt>P3N=g<>LZ0qn-226+ zvd|yPx26Ljlh1Lc_7#Gi#(Ly2q5at%Ejy%W#lxPQ0v67 zU|Lgf!6(y3$K%HE@1%U=vKlclyCeCl9jw6`r(F77FW@J&++6RXWnNjS1Z1!lrAMZ- zOQfe5&4Js+!JOL0$8_?g`Gg`8ST{JN#J`1qUL@JmE>A zj8=b?b0bD}5GL!r!T#L(;_Wdmz#8-nlT*scU4_A}gC)aJ!2>$p0!x8Z)iJi2Y(y&kCf@o-4UtswY`( zg3APMha6Wn^QM+zNySwpI~hSTPk!|}u4;VEJ^T1%0U!5>eIo7IM}-g9^%p9CfEM}t zi`IhGH?e+++SOkr*p6TcP*6E#uucgtEv%!UM`oKI2J``zLr4{hv>FznT%J8CC9Vapu1kJ_$s(taSZrv^H~{spIeoh7IOEN zEr>)~5v=10h@s&Pzj63TK=})O^1lmeRkyrC`zgOmyOVE*BjoIDYIVuUTmyKOnYrNyPE*d2@sV~J0oj@Nb5U^ zcx82oqnl-P9+!o)AJWeFl|l6~;$a$?Y4)n5ycq&0XY^9tb^nYPjg8^{7TobuP2p51dB}JfaA+lQHm00xF|xe zCXGN!u@p9jpKzTum`)j$EZxAdoIf23Hb4shn$GD3OLCkQlSJzI`Y4qwz~UDQ&5L&l z&xqFCDb#B%zdi_X6a)XTd4twc`Nkbu$WdQx*6B{wf_EWL*$#=RTukFtCya}Mq?eS< znb#7oNEJt`^eEW@;-K!MAqxyYA<-4r$n^4Qs<*aA68!=AiZ zf4fJoMoX~EIQpj;>PajL`KoBPymOd`rTez=+w+O8mS3_C=f_=YDTz1ICorLVwdaUB zPH!2cM(LJD9sX5tVC5ZaVW+e!`dB^2NlqE39b|2`6dc4`!&L6qM?$$tz^2oCUg3!W zuMZG(Y`D~(y7)VEg+luz&y{$8a24mEOuPr9(OYCQTDoARn zmQ=EJbaI)Zby{O?jO{zWlh2;<7j0I#OAo%tiJ-Sw^U{>4hHp8Aiz6HF>87ijIw`Rb z#NA?buN(E5xG4cfolhmv8W;jkjN^2(A1G0&*M;JXG(n(+0!pT%c=@YYNyzbjugR8l z-gFdqA)l4P?64PN=d6n1g=1;B&mi|1O^4oJRMjR%V#>a~qbGKXI8pDZ$_D{#$oHBZ z-=A5JHgfb^yG5UqTVHzRdv(K@g|_@T1t_PConQ*z7_6=@3z8tAYQ^T*`iGvZUkM&y z_xY5L>GWa0t}(^ZyVC!nkBqr*v9?AM<0G7(4r6rlDp^GtuHsaTCoMV-ju|Jc{HdwNLpR>d?NO zF*#hyH73|VoL04L-#-Y+Ywnz83THOOecq}Ylt|p8L>c-jac+YKgE#c4y)BTz%mi_1 zlcyQl1q6zg^ojZ&%He#;KaMTIwk&HJv(o&JCKn8Z$njp%Q8NaGY1Z;3KFC7v zW3*%Z^&4LB!GR%tTv!)Lq2uisZyJ*-1M#|PZ1iPJ&gCi(3)JWXUUYP9*|2>p?YL-_ zrh-{r&A>#y-1p%jTQ&PJ+=3?wZtkSY@fq%~@twRJl|Ci?5G2iWh6 zL)uMRLZ)3;E6y8IKkTQ&Ng&c>!Le$wuV1jyq-3~G`cETdMyXtEUm=E4T}wIn`wN4e z{-{IiK@c736m{~kT^Tbg$H!1U<%rGZ4p^AMvo*=dIdHO?rD=!tMp0QOd{4LICsLS^ z^lPc_-74~PScco7c1>;uheRiF^oA8>nvCp}5gi zzLHwJf!im=6W4unSpI0vzDu7POi`2Ic(05wT`YV$$dY;CUIcH0UN+|P#^b-yD7HS$ zltsBQLQ9Tl$GukAx@yf>k_qyNS-q+0J1;E~XpK%tu45#%>a@k^Q+*~IPCNG3>{FrX za>@E8$)se@iGm1yphC2C3wt+qAFk=BJ8%J6f4nQnMH||k6GrAbC3@1X;aa#p(0)P5 zMxd_>S-$%Pneppd3|TegP#Z}Dlsxq7SdZ&e$|Gjvt$K$$qftT0*?x4Y5VC7vk@H*= zg_R~z#YlRgWx^yk(5}n#zwP6``n7FJ7pbUFHcT{0K|f5D&pu{fTY+u;WNu*8bj@3) zZ$v)dJU^@24#vjOe!aXA`K9=zBhu-o)R=Z=oI$#_V|IghPC;zej?SqHifNq833TH4 zdwot_w4|@KZb)^i5E;d7K5;X=K~J@m84RCvNP7Uzd?Kf?NEUIAWercyy8VDf{UwMw zR&aiTQaqpC?MQv3Q1(~6R5gE~WlB}_5=-a|DA%sJ(q*hd583tAbU<15!#EtWYSlx( z-4|X8rjACgfi>jWg_WB_YG6fwMu#qCZ1AI8^^nc@$u2$B|0Lro8Hq#a-}t^F%4h&N z!@i&79f6xeNX>C6rGDd)88M*ci-G*W@ZU(Gxz%?w^W`X*to$p#OR^AF*`6U3uYjDdm3DZ;7Y*Zj$I>>ug%)If1NdJkW=gXIMYn zN8%LwrFLB-i7E}GOxTyL+uTLnui6oyZxA;T8LCu-C*mnMp(K+rB<+-*j}Y{Avp?a_ z=Hle0A5S19a5V9?JSYWjsy^3cyiOtC>3#IlS*$=b-p}{=57N?&=|XoLCujT$YtfOl%EBqf()wJOPL-X9hZXU|sG+*{qW3h!aodWj zcJ$`D+0$W4rT$g=7&2x8W=RI7F2l@ca_AAoHv9&$a|5N^Zob~>yg8^M-F%pu&2NDH z_~jur5kVg3Gk46<$_51XWk%~CX)_gea{=0+ot$M{%c2ckWH~m!5NG)NhNuD=_nxoa zETTH(1WrEtus%_>bx3TcWg`nvxcWQ;abo%xZB%D?azjI99|AIyk932;-7jR1%zJXk-;B5diVMc7xDBX7E^ zX2s0y=|6DI&9fNbD^~zCWB6Y)4D-#7b7X~+A%&4g5k5H34EYn_i%y`mX=o5Ix}gODMe$6B%F#JmYPDO66u8@xrSN#%F@%~5VdPBz1q|C z4+{F6`0`ii^bS2U0;f>SN;Y7ou&uy>f`ND-oILa@0(kuOvi5>oYT2?0x3H3%oXYh% zRD#%2t&E~WP_4;<7ZCr<^5a!s?Zar$3F8@n5>3WRiazsj2t#b*hQz<~tpcHFY^Ulzg!K`zU>61)`IMar1&E1!FjHL{eE(A_H8f*Q<8bcSEKTz~zKZ?i=i~mZb709h{!5QkWzHwhqXvNr@^T0wO@o?x>_0=WrLFC-W#*WProU-OE!Ci5rWI6R*k&b`){8Ia0OHoRTqlM5APblQQ^m_{r7s!?CRovvhb@(~Xe%|6{`h~RIdYbhS~4`*Qp z3KqWirQm&P<`h&YM*gaWljoY0bN0K-VOokoDo0uSrlT=h;U2Qt>#1nQlo>G8d%P-BhuRK7_(L<(PREw?9q%@5My0O9xQF&20hAXNxg{D&^)tNzUoHPbpMtYMJ&) ztt}xHivq7SnA)fa;Y%h0J}x%QXU?J@ySy8l?KfWJJt*i;28yb`<;P_RXQp0B=b5{* z&O?m0ehhJs@uN@ymCIkoXM}}N$;Y@A@rv8-Ox_+M!~t-$+A69TTIShQ^1$$~aE#j* zg`rHp2T>|PWte{m#H&Uj_S!MT*ZY~TY6cJRuQvt1>uAl@yZjh)GWc@}8;~I#RoZDO zKO4Pr@_N)n+VMk+(+@t_RD8|re0c09D>bb=ngP{k0uYFlA(Sq~81-&_BOe9#?a)79 zZ*zJXgkFrzL@X*$KM39j{%j-pdPQVyUD?mHUwoHbYwW8*$v8O?n7X;z3s~~zOkKg* z*s2$bZ+Z%IT6iz7^c+PjSjyc8sC!i-5(MhupIEm(Vihz(Ii|umW7Nq6^U{&eA!b3p&T#T1~IrEhZGfHfY_X)wj85t!@T#Q(uN`99s z-1wjn3|8Mo}u%20A z$mHEZ*Ca?LB(Ny;4`v~)*l6U2@C_JRC3p+po60Y)r4p>>hKWT>>Ff8fDoiuq;sR15Qu43l z5G@K+LcWqlif)C=&SFi>+KLoX|0f z)6I@ej@LuKzrTJ}fiKiWag203MpibqXkFfawj)$FbaW2TTjB%LN-AF8R$HpjluvrR zK+9qHSV>*WP2}gb^k#|gX@_s(lxBxW2DL`=1?{V24)!SaL=9N`QLTlrWJap`Mry_> zO^n=%LVHxpXLDsn|KjFiSN!&;kN4?;!o-2LO?<(#L*t`na-Zk86m!+iOMA~VyY4FY z3qH2QSX{2@6oj{5P(S<6C~%^ zk$_L;Q=-lroP(Nx%#i)N8c=te*H*gEJD%=j@~dGGabq z35kJu*_!hSGI<;?1+ka|z?*e`=gUx(R3y2bZ2oLD;hCOTRda#V0W%+4+ZPH95Zj@6 z*r~)T@z-0&u5y{Z^20{@TatYAM%iI$S=Dw%#DT-N{B3Pr@p+EQsUf*iD19#fWq9nq zXp1S4*lfHMQIqY=b1yD3%vRCsm1Z^@%p5x2`iyzyfTcrr;UiOu12~h%TBj^HNA$D^ zQ3_vM<>yR`)^-E7psn|$CG1=bLyH^zJxteoNTseW^)N?>pIx>s_f{?jxy9zRK@N|+ zw|$-ylS7%e!_?eRIHTQjd8OjKT0WABD*n%dAae!I=3bqGiRe!BV8{Gp+fm!nrojBD!Vd=f)+`&I*pOQu$yDM%CQG-)B{y(I1x+!J4vu=>EfXo> z1NT&Uw)aI8h>3RO&DQ$Oz)LeRHsTBEb0*ii1N>t}W-yV{Qy?y+|}Q7f97%oiNB{VJayP5MHXEA0EkHqQWct zb)0iN{bUTUviy4q42`9LHMHh4O=G*G+ewBzy~yJD4fb)G4j@Kkr{)QQ+y8t0!T2M7?iJg?SSFy>N-!KuKpk&JMcVYmd^A1@ zcBZTRo~u7|ttC^x6Ll}PJ0eABO8xRmx1PsUt zc_N)kQ+Kp9#r--tY{1qqtc);$nLehACQwm1{{6r>o{!1bXh6k!tK}?#Kze3keqS(^ zM8sqsTE12GZj3`b*lwkZieTP*;V+@Znvl)?E;s^xlFl0)#x_r-f)EXR9w`#$r08?f zpNjm=V(t$jwTQ__5y_e+ZspXN6UC<%N9AW(h_2TbCTSy~s;A1_cwu6Auc%vkuL0(m z=@O2GCzzA2m07M(aBE;%`Lx%Um4&3*Tv#g@rx!JNUCX$f19_u#CcCLkDS`PT_7=BJ z5w0)G(B(MGgempp$e|R95B7(^iiwqK@N zc1e=Y3J?Yt?qY7cG+*`p+j?R$StpBrU1R=RwrMR%M2f+8#bVEPNU6vL=hvx0zYSD! z*&anjM-XIMpS3!ZMyrlbd^(BYFvKcul&PcmucJ8-h#Oaqb8$tJ(Z60}U*^%eWC1r-aF4biC52Vn$o<+gHw9N)U=AqI3Ff+El?9Za@XPx zM1;s4u@|Zon(;~FDA>17Px66+T~s5>g73Wge(j_JF~z_@N9nG1CM=5t+^}j4I(~Jo z*Q&PLDG4rhYc*^Dcd~g8c9+zm;^kd-12k5}J%4_Jxo1u6pdYCo;_S|d5%SGXeN1W! zQWbK;83-6|VQ{*x)`{LSXTy}GlmEs*Hf{zrd1TYyPi6}d*g-nWE_^wZ{T z>hBX;Ni}Py?z#6D=(imx`}@RF(WYX|vyP47C>Fzgl@B|u)$@dKhWoB~&p7u^>0(43 zImfew<_EtUP3C{C67Zedk5*Lqbfc*EzpoRw1$@BXFzUuevP8VTzCnhTY3*~R;A>!lA#F9ZsG?}j z$4xGW-ym<1-G^I0GRO9u8}xbT6}=G8yHl@6+UrH+ngOuzQ17}Lbhd*DbOdH#Qxbok zA=tSv z4f&1tvCUn!nCt<;eK|Y8yKnUTT;%N-t!maSPl|$K0epQzFnVxy_H9Vb^;jpdP&x;D zPw`w@ar;pFul9LW;qdVp|7V37=O_@Z#PE9Gh}a!X)jb{ir#Y0nKAp`Q7V6EwzS}Vc z30{;nT5q7}w=n--Wjb3r!pxm8O_xg#ZguUD!T#-LUQC%mXU%+atW<0RHI(Gg{P@Vv zFzL`)+rHSRSM_TrWW>2&zVQ7Lj)Ol!@13_i=iVh^0t~mgd;&m!hP~hR_VH;k!{iM~ z$)<&c^Mz>fh==^e|BQ4WYuAmz!w%LaU3hqI z+-o!&z2nv&btuW}y9aS}BH5IL&)Ht@1s|f8g-48UEh#u@F%Ia*-iZW|iuNmQ7e4=p zZonQlAU9V0iX$8bh+lgZ>;~rhMxARIaF-f3pn-u|=FiKAZX>)0`h_06ePzu_dFP)h zo3rRwRBYJ4xOBl{-+?eabIMjv_Yrnj zWgo&f#`2sy2Y~)@&-ts<12(SNROD0`L8W^pjmASb6?@vB-o} z80zx?Q6i-=W-Bdh4F!qBh}Y-X(v4}hID^*;pNMDKrUR6;f_ubNHstFWUtrAZczX5c znDN;y-<+b?R7t9j=}fS~A)7_&#rn(V+^(ppji?&DVU1;rrAoYvF*zs!5r`Xz;+W!Sv0nPlLrqwmp=L^7zs zJupcL1G{3)PHJdOik2iPadV*c@1Q`O|A5YbpjtfxFd}=j(sZ4k-|SLH%M+ErSX5^a zANakb$yj2Ge&m=U3$nmT0PGL`x70Ch|3Oy&>H%2V_F}R5QoY|tmVT}aIEf*ZbAUFL zi~ML|Md~FE6I0RzxWO0)VgXfvR4fJeMkZQJ9m_j|bomjq-lD!pF`CC$~pl8)m0L#VJ4bAc8Lu>2#1*#1>#tP?PqdM)YjsY1P z2Qa#B6BqQ0|D_I@J8T5NCW#oCylaq()@)Oa5;v@~ScAp&kM@(3A%&b4#U;2E4P4RM zmrO`8=*Cmx3U%lw6aB%;8^W_*S8CMyaZ++%O9pBR>DJSF6}qHrxS^e5*;9=AVZ^*wdHJRgfWcB65G zz$CmEelK?VTHYkf!PH8H&%mwMvN$kWwz~wrO7LzTT*8 z??e2z^?&}aZr!~4xgQs(FWluI7QlyKvTC>INRK|*>vcMnR}AU6CF`w1Q>yK~KUOp5 z4)9r~oMDATsjaC8*7#Som;(4S!^*wAW?Pn08#!$Kb&+)0&4h3tGE%~Ct_RNM7uZ4D zEqey3(i7cO_#XK8zMt`vl<+m%^fK}aa({85->>voes|R7#J^IZmntp$WFWGVH#cSC zfr^XfnZ%vyEjBH)``vV+yU$jmA^l9-yR^^OuX-~-{^tsSaA*qEs`G8o4_{7VcT-~$ zOBSmw63RaQ`;!bo;5HeUwWAEyl z@MdX(jLXY~3o#U6$MU~b_mt3ZH8Tgyw1UG@+U~iMjYc>VrOd~v?&$ioT?Qt5uY2uW z^S)5a(2yoItSk5^*H-r<+h;d-``cmS6EBBGjnV8~HIjP@l0C}LXtPWJ@R{bG8^(U` z61w@)YV`GRTc|o;tVu_NvX$G%p>#gGMVG7Qj^7(C8lqbN=~qp6eJ)5ad2`J9{GCxj-x1t$$VhAHN}9ee#2R zKLOV(VWh$Z%?rBQ)cNwM2ByaR4Yhx|)@=1tjE-rLY+o^*+aPsMOKd`gPVVJU-Bzge z8kd$Jy@@5LLkNL)Xv1bY+UW^(5#*#gXdiq9lM=K^*ht$#&aYY#ABAX@4Bvu_?oci1gmhCDoJTE7Jo;GE$!+*`F^Y1SE$w znJf%j@iE?;$CQfs9=T+p2YF$cn$B1qGOpC>sn@ENgdNKM7Qgae=^|HfTK)PH*rnVL z%+Oz8`L){;eM17z)DMr%jMGVO!9g`;kqw!`@nqgPbNt0u0g@56#ilZ|?) zaiUCWpv!serMD;k+emNSWG8z*!@n=+21U9TvW3;l{kEq3)(3A7AHJx8bzdtuP5k0{ z-`QDn5Sf73b$RTu{XMu0tmWJT+9!zggKQ3s9zL*1e>9E%kgmVH2NGW0nx7U-(u(ue zj}r^#MXQjDER6%;qX&ZGywh%-N(JxZ>!`~i+=(^wV?W%)EFnh5nn#}Uc67q-PfIkW zsckYoZnh_lnL`8C;>+$JAG%|x%t1yV&0@*`FmO^lUe7Y*go0j~{!dT#9dDx_F+WdX z+>F&$K~n2@h(B=3-0^7QU2DyozKpB>fD|nL^zOZlvt@mnRdJjc9;*GW`o3%IQGBX1 z^T{Xs%0P0&!q4rhsN;GNZ)N!F!_(o-`SJq#%v)=TYrSd;oynhj)pUA893aAM0^jA! z0Gdi#-|au-;7~|w88@DJNI$c(GhaDDCWoB5$tWOCeSET~Pr5yR*=0<}=s#1cYigEx z;k)#ZpLdwIe&z?=Q`<}?83hUEaQ}6%N{GMyv5*@@z8b4A{K^pH=N(v1LgwjvB`16D z=<lek6IYYNAtc5N96iI48dYIL@E(rU;CZ6F1T*Fb;#@*pynB$LC!*X7{ltf z*#n|sd$xXw=>5*K2C9p@l@7YQg8X2;`va!>2Dtt!`FoK1Vx-LS9owD6=1WK1RSjn3Bv)%b?$=IA?DSy3}NjikOKQ;ZP zx6u&oh*5qwkRGH|TRwHbFNqVzXkX}_{*ZjW@2=RG-b<3!#ECJQIK?^x+>yTHSD3xCvTAed9C0K=fwD(_t3#k0ZS%TA{La56ZUY^VDl z#Rlv+-Cs3wtn<~e?`JQ5`8~ql;l*QjY`sG0IrrXiG~NIGfJO|{7%s)3PqF2rW%ol- z{R^oPyulO4|JHTMc92u4iKBIAe}YX7nP5JwP6Eoum^rU>Jz{HX1pxxmf@$%SNQ1P4 z265kZG;5R)!bd%I&VBVY&;lUHG0Q%z2G6eG=N;!ngX}IJIk&WUTiF%Kl8&eWpTo2a z`GBfPvAdX1=N6|H*V~DQrA#tV1O~fMevgu@Z$>KXkU^gIXkNB4WVgSsqD1$$lIXwM zO)yqn7k_;F9lxf=OJ;t;ZE#Ig>O!AgtfZ|R^cyKuJaH$F@qaIg%Xj<X`2 zUrKqq?`+=`>Q071M`3`2uWU~zAeaLB?+esDjNRKLy{3gfK5U;pk#Or4@AsnqVfasu^Pmn`!})(4ogTec9>fS5S6>#w_2lp4O+64bSCmhFaY39 z)AEn=BIcEG_ZseG5ZzJ_qXb6Z?J)!fCq;(wX;q_@ZoUay!2isDrS^V)jmHCzRzPI) zMe$k2m4qwCBP7hJ`SDD#FWDR$t>_oT`fhiicBuTUGdknUzDhzwOHQ8&P~@ zBEvxafyg4o@UNK_hWVfjEb7U5YVymdFHn9!Z^R9o<$m z>>|}pF*+CwNQS#M*I^uBf7Oh%!v{=Z7(Yg!OWN=~vviJh%yP=_i~NNHn%WoQoV+%- z07S)`7_ABr8>KN9{vg2Spmm<9NV2=7&)55Qf2K`R1kQ><3nghWl=8Fi3hOMt!+;qe zTH#j+pEX~K?r}Sx#k4(+Fn)f;13xsv1B7f|E_>b7F?tK={z3oebGcVII#3ZVBwOTI zo6rnIr~cA?INv=@&Y&u2eyb6dej&T8k)&C+Tz!6C7LCS_0_X52LK|M!7rUI)Z7HhC(E>=MK)_-^8W z6>ec04+|g8S^r1P^ms29f*{ZKQZ^tNaOo)kR!#Ow)z?wgM}O*f>H)v4mqJ1OPumZm zcp^7P!XxD#ExrqhO^(+*NECB@{-sg?H8=Qq@#FqN4gDNvhKUtxq6rIVN-h-=?Fv#C z2qAAg^{k_IL-w#zcp~GQm)-1=d*@@%2VtAiL?90T2*4G8IddYm(n|2?$WOkEvyQ^- zHT%1)KKyVnH8SSKqP4~s$%tSd9DEVR-?ZTUzI%3G!zK&QAn?CJPYVE&d@dX)a!R=a z5_y^+kNH_gQy8Ni7RgFh3H2?^>*omcC1ir{AIMQnM=^l_F3_bD`o3$8+<99;AvoL2 z6Vs79WNMyb=}AlJhjT=d(j$mrjtG?ez|`;x#f6ri+{+XIOUtQGoxYqC98(D~rNeJ6 zOTS2(Gyh1b%|tRhx1Xov$s?8xtfpmR%hu6|etQg|gZMW`o+?sMi{vJgF&eW}3s*Zy z@4abpVc7b?n=gAoo#$AB({r`DiJ#@~F-!$_pdx%m$$8TuP{44z#R;XMgI9xn2VFJb z%bYN_)9xJDG;qMaih0T?*e#|%QUGiW3FPR%ycov>N*a@3SC^OM!J>61HH=|Z&j14N zqU*$vi2nyk^S#}ljPy@I2lBTMsmP)CUVaqvbF`$RIr+F{P-)`*pH=QjJ_k)Fdmc%M@(Df~a-?bPdBIkG>-t1FL-O@_o$?wz6a()w=qLOIcY# z32XS32z&TCSE4P`9y5heGWb`Rt2Je>EwIe8r>sJzPOjgI>R};_b>O-5y1gddh-wGI zuygb7x^rEvkYzJKcJtbdmHn>NQ4-I~YXCAXxpnpNm~*9{42~juBilG4IO&Yk`yL6a z(P<-mZT_(0sW{E+%0fI-WROb+zFa(AOlUU z3%#hu!7}?iVxuF@9}l>kLZ_*IP^fXc?+~Qu#a&JkIz5x!xe7-223$P*eMaF14pWVY zh&vXMEpmL|($iQ=LFHd}Je+xesg6w9;d$UzmY)2>b~71I+9*rub}#adsi=$Y<+C(8 zh)U9Q@q5w3Sr#9Z0%PEb<*!!%T4*`|Ge|-zCQM`N9ylW{J1$bne~QUe&(ezMm}N-@ zJN2Fax2R-1tA2`_VF1_}C}|2sdeAdG>B#7zsKXn$D=^2gXny@Lhid?=EJ5^Y*Ar*GKZiLX1ZMBKYb;UX^F?6`Os#du@ufr$dl zq-wqwiI}c+L&a(zeiQcIX@SU}kx3Tw_}C{wRqDrUm> z7>Y}g?=%eKKWeG+LvDa%rJNS7zkpqS4zL@tZFD$<7vtS96ASI4dSH^8?$U1-#%i2S zp4>WqRY4`-$s`1bse37HW}#xpy$tIlU;HJublp@&;e07fv>~_mky!6W@Lmx7nV33F zE`s5<1Jb|OZrpv2oc(_H-Avq>GeNJ+>-M;g2G;-#MdOFZBEpQM*4xwIbSO~D-}kMn z;P1amf1_wg#zKGQfqE#%Ji6p|BxF{*JdTqEF52souYP?3=?nbg^xO0`=qYpHL20&x z!Ls@I9h*CB@{?Be@po6}5E@hl5$j*ORHF9d#`qH$lH3n{rhqVD)Vz6aH~ab0M()D< zBmi`-SG_taMDW_juG9PvZ?&Abpr*vn`PN}Bc`$eIO>y8hLWd63v1e%vOMu5Jr7(vC zUbGKM^XrX02dcTHlShGqiu&%KsL~xExd;KCMsEYD9WtSPxGqzscw>4jO{!v--Q+un z0nnje6a%9X?5n4BYY({cR;kOsypc3dY zA~HV(Li(2f14&Ue&^-<95bYew+4j7>y?3iGYCjrz(#5FI8+L(7%e>8C0012Xd?bU> zSP7GcCz50z!0MPDXF(Awdib6OBLI5ICN|4zE711mw`(=+XW?Owwf1?Q9uY3yTW
hE?*6eUA8vmt4)CCr z{ptB*VAOKB%A2Hw9swt))-4yu%k=mqt2S%uF0zf4W zAVErJx-zg~ShN9wnW01W{^e`0Qn4GKG8`!YIlzyveP}}}_$D19B?vhqQm!K?7VkS+ zbX7|dtd)Mljthh+I4BJ>Me>9}BrdXg@`f=0uzQ-;_@&;MfSd+EROCTpn&RgN#c4GF z4Xzlx?@3PD!s0vZ^6&`gy3{%2l0*yfa6#oy3i;~}b`z8XgEXZvir707@N=H1+qHz= z_iteoOn!rkO)^J~2x{hGrO{8iMZn+2sGY_cQLihCo^-$dECcR)jsnk;`oshwvX3_; z=}eQ7FR;;TSL66FT2HgIo{CPBAsQJgPh|LezbHznh{@d~!of4w){N@$PqVB}him?v zpHd$k*Qfhv?cMAFXyGl|91Y!QS`$F=V^4w7^re2stksbvqZ%P|fGqJnF@|Z~fd|`Gctqdk8;#SHq zDp2clMpgoQz?i9ZlG}K*?~2-5le95>_epM29a^s7Q}D`f*Ja+zT4+H@I z#%`;A)>!gM^4^WVwHm4->LQr`l&UBv1GSG{1qlkE+C5}&nA1?CMrquL^8G9=YXFF5 z4BwO9AmVCNotIA?``QEGDja8HQ++9CTMs|lHe06~ToP86mh;sr(!vcq^F?9#oeWZe z(8M7jLB~kLn$$tRP6g4cv}E{?*Ya-8QtkN=2|{=G8F5JyK_oR8gPK=aHF9xSrB zl!COn%3t(UDKDLRppSYZ@-m$%TbFXca2*_>QM&W^hOrN7o(t_Ht*QBncYY%()TkPf zMdl~PhjsYAZO(WsyGffu(W8h*&(7Fv{nzfRSj{{78Kcx((~Sol5=oWtUpCTb2*E}M ztcoN|G$B)~qy(OWJiNF2F>+DIMtIQijTZj_0<1*zi!WJ#ckHLQcu8+`Wmcb>FCxGwWCB75QjX_&B zfA$BF+IKyWh4s8_P>RAG zrEZ|O2G+EjB47i8ya#w;EQIxWa-W+dta-8$JW>QjBXK5b(?!bMcOmurnIxd_u9%Te z?rQ+Q(|bV+6ElHsY*31w_>$%k>2{@@W>66(Sett2v=wN_Kj9m|YA?(s6g>sj5$p!bnZMl19kYPbD&Tu`ZrBE1%Ot zj--cTXp!t&LdJA?TOwSoSDb&AvpJ(-;Wxto4GGZM(ScswJ)Yc3yAaway^{N|b9(6gr=r+UQC<^M|&DZvqHTUpyhq3T3f zC^PSaDGrkjx9Wjck|fSHr2L1;7Ilxp*8Cd{eX zJ>q#r9jY+w%GQqzV~TM*!a61&=eoT^)S>gDEDj*H2zGd3*Ucj_6Z(qvDc4EPcE-9G zch00R(PQ~o(y;i&c>cC*k*&K0e9zB~n+ojh3_#zFxf^{*zw~Bbln63Eml4Gj-~|fU zy^tAP0U^nE8M-*5agxNZn=$bH4h)fsM+&xxN-T$nTVM|Hiq(zLsRy_YAdnT_T&mfz z4DdW}pgSjpunwt7LC3!C@L2z*u%!HuffbiFC0F*qoXnF;(B3;NUd?@fg13?>iTcqR_)Pf&enD)dAv&kqtNG&hDN89`-p? zhLs=`qPe#jT{XfEH>f=D12?C=oy}a;c_@ylx`#x!+rz(ZD72|O{^W}DWy-3G5Qzll zZ}Wp=#o&1c2J%%f!qKO*KWtW_V^$Bbpflbng$=uJ=RzcF<<& z@j^qGceZ*|;P;p=?=uvm5bN=SRd-b9yH9u1?VR$Kdu4D>zu>MvdAu|6)l+Qiq?G=~ zQ>VY)XR?0qf^x(RVceYapvE)vk>;(-l-g&x5sT(iRo~0_-rxt&8ZnZo`Lj8HH0We>LO z?Qax8VCN6VE2#UP!Q`Y=QL5U~CVm7;Jo`g#=_=3q(`Bs=3fz+s^da?`U>|s1fbj1d zX*zNF^7#w)Vf$}CQH8M-)dQnR#tWtR^VM2K?--}1KNHlCwSX5U5B*d(f`)Z0zd0Rr z@~#bz#9NZOuhqTc&;E>CPkk1Hf3ZQoDO`JC^%wC+SK)UP5naG_pJ^<%2MW<`$vG@; zC(oDu@5tWA<#ky@^P-0ZgzkmIX-GTvNzq!7yJM0#$_Ley59gbDGa!;V8*a`3Y~U@= zjNbjM=p&gG(lIWyD(t>P_r*&@C}bH4+jrNFHjn}6F%mk8HxiSy7ULuGsRdZ=LAdBM zd*|Bb-HQ)7Q1N8a=J#o!GZ}5DL+D)T{F02+ztsQ2Iq%NG>5;+mP_OUtts)gDo1ZBj z0grMHFylW&h)YmzAde8%T^}zVIe(8%lHh?S&QKUDX}0+S z{B*iz3hJL+CTLceDyF!1)tF|~o(Iw0CL3%j4KMH?Zk=wif3Wi2{P5N1&967fbOlQB zz3cvu+d>&pX{0j&8Od*wwUT*Wh!67*vi1I3O4d0zwKAer2e32%9z5n5S=xYBI6Ak& z=Okx~&^=3d80L0^zeuIXAQnotS(vQ1*8YxFhCwVFPaaW~w*<{u_<7y`F<8s=IJ0h* zonk%ld}*aW`(RPR1d}3kG731@%-M<_n-;rIZeiv{b2vf1`8^2v?_aw3&o4H-H#9-> zDtwQyDODeTeJiakVHWh?-n}#KUhr~)_;$-;UiI_~IiwUs$j37Uxnw48EYVLM*;5hZ zhcLw!J{DQSKwMwxbHr+K0pU{(^#kddu@+8{7AJtFVNtMW>Tv^Q{tNA0&PFed&XlI2AKtcMivv1Tr^oL$G>PPdne@wQx_Gs`^lr;vGB+HZ? z&njdB=OV0IbbVS2RaKYhf?Dp&b3`!2g?eAn@OBKDExYlsYJ!~Ai5I6BEFX5@Dcqx5 z<`7;uQh+V2(9?FNPxb$cN3l^V0Xg3iUrh4b$2@KoG{fT^d;!Z=!%nq*)H^qlHe+8n z0WwVEpc z!IUa&)Xo9eSNYvxKc{NOy{pzfd=oiaTc51v4L9kHjEukcX^&D6W7&J{xKjl0LAL0U zlUh#uL@Ag=o|1o)y>?U2%H2lE4l0_oZE#6J@2u{8op!yk?5o6FK>;Y?u3_Z;38|Eq zV29oYxWa{YH1(GRDm1Y7)eDw@{13Ba+0WYl3Z&j?lb|QP022c1w;Lo|dC+$d1#Og{qk|PS}+BUCDUU?Gy4~CuYu;x`Ee=tU-@`Dwl@~jFCllxB%9$* zvvv*s`DG~JA+1MJ0uo)F%zy<)k|EFGl4JVLu45w54h?^(aB8(~D_KEmJ}ueNIYVt& z4<%&uj(EF_0rYUdEzXR(snqfbY|;hHyFV&RyY=tkeAfS?R;3b-(1##u_&g=o2`Jbn z9X^3BS>wB*vpkUu_Z2a{4v?`{(r2R{_@s%RA?J(ML(}Vh2P)}96B)}*jy19 zAjkwr^{!y)Hg-3h4m87H=#-fk#v-Z;REU2>A>yz0iO4jLil7Gbzlvg?oZuc^d5Ha$ z3-vPh%gm5n6&hW;BjUFb6!)biu$Y}`eTfGGhDkl(r?e8CbsiK!^GyqxHin^>KSVWY zIb#QTaWlWXU(Q24_NrKMopIU5s*W{)fh=#l1;=SxAQF~MHOsCsuO#Q4#5m(;Ed7E6(B7Yf;_)$VSCK?b*O^cK z57#Kl<8pnV<&hHk`@CY_RLrR{`l{@1Kn>Usl_O;RrKh20z~kVDY*udFK&KtWvbH-8tBA6hF&I~xz7h%7rr+S}R(rXzu&n+IxirSx7qG>9Ad*~skKywsOCWctNkl~hejIlB!$jZ0M^Gr!p{F9Y%WmFP;}T&Yb1 z@4XkMEJ)1q7u)xXYVj!Y$jGn%N_BeakvI5C#dT$@G|~xp9CmasVEY1GX3bDtO*Z4E zGr}}%909RVu}ZfR8zzX>kPW9yM6&ELK6ohx^wrVpxi*6~mCG}$&wtitJ7bnVC=@u1 zA6$7-G)E$y-7Az$SR2(dm$=e3p%YizzWG?xP--F}+$4|BC1QejhFRLDkQctQoZ^d# z+Oor62|uJvpW#0!UMNT;NWb_TAfAT+Ks)qMM`BCEryEAB2F@QpxS}IFUgNN_SM-Vq z5g5Pms_SK}puq48U`@*Opc1kTi9r1O+535KOI`?@L%uY;hRwzwL~y`*gbM>V_5=#{ z9Wnp`hzJlXc6cc*Ad&;l+VWp>&{s=4DL<1Kcqb&f)S&k;>a(8bI$6LB3iMp2U#Sx+ zZU;ecT;i==`fI@-%hmDZ89`X_{nO%THn{I5V-P5q2LM<`Q0_K3M8z7Pcpki{lX~yA zcT0_}Gdq|+CCm(pb<~I#(2pH|?y2Gr^?zfasUMWC_b{UpPgu1PyY-rE` zL{uCt75Q3#+6lomAqz?`eg7^msI9$FWEE}^eJ9Pz0cF1U;s3krV1!x#{BkXSnhPG@+|y z$gV94Dnk45KD?EhjUk{)Wl;wBz?}wvR&&6eh_jg#0b~l=famqE_LOHC`p=JqWqpZp zuCx#eT1-`3#HTzfi74OVdx7Ajm%16HOGPn?|l+fqT&(2vW^0r(|EGEx!o6G=KtYg754dG+Gj$BuFgpR;2K@Am_SHPsM~T|g_X&~u`JzJ!Wq#u~`0 zJvokZq4G$QZyn_2B!tues<2fle5wxrp+_|?4)u;P5(|!Yf6L0R$X8Vg+_>(^x(R^Nv?xpPxR4WCY~JY~dxR`rVX z9a{ZwnJf#L#VCSGUa%uw2Ftt>?U5v}sw|L!$=peBG-{^5znGcP{1uJvZ_+%w6d3j# z8(_tKVxaLJ0DFqAe}F7cFy`z<)}Be#Cr(cIcW}iX*vG!`1A1AQ8ivtB1u($LNKE>YXTbr7uC8C#Is@Ad`K%+c zxOlUhbqBwc#-ZPSTZV)CUKW-CdE1k*#DrAF8`|!+X@bDVe&$L&?n-{ghI4tOWQpVU z2b3_dz?J6(>i3{}4tP8hoB;$|n0RtjLE6NNjW$)9)Q{?uF_v4`tuxzc7x5n=Ii`@= zEI8)a3*#%}UD=`WrL4m1vXT$vAR-m&_jZhe_ob{4rcf+#x}`);je?@8jtY%#{FvB{ zhn?kw7%-F9JYiIYhW_3R7SkL|fTSPeT6@83ntCG#(_ckJ#h2gvBZgDh1e);b0}M4N zsEPeU>KX~svk{bzzblppyD$j;=^NajPi*?)*X`{1_y=X4)bmIUt5303UgGb!=9Fai zFclu&O-HTX1>3(6SX;t8Y&6BHLis1;#v&Wa_xd}fJ=cG+y-;+JIs-YcPaJ-Pe}QUy zvwuINv!+h|-n-_3IKp|^C~%g8x>fDfXjSAF`GB^Oo5m5z>Q$>5dY>+j0 z=>F>J&0JJyNqsk2;DHC;?{{@s!2>H(unfY4(1C=Df&M_@4;Xh`%q}RZ6<4GcaZM5} z{7?q0(9mJX#=U{W$pI(wQD=jUugznFqc@VAFrW`y?W%@Ki$ka5+h498*D%A(Y+lM{ z_WF?swe`|kC477S))Ef2Z?=T?z84pWL3my8vt;(zoiL370Ov649!*APPCh=|fY79C zHvtsqX^#EG#sEdKLzatN^&`DPBrlQ&6_0tqfP$8gQ;sp=9ljcYsMT+vOtNCVU{*kJ z?Q2OPup0K47=DcW_@e=S*3>bYGI+nT+506*hwRv6E_IeX@+U(r*%a?VYSbhM$Z7cSZ!Pw__a>JeQ8|0@l*|9eq zpbsSRSpYL9VbbWFErejeRzG}}m8rA>&ScQ$wvinAqb&kvca|ItCSW|aZv5Fq#=&Z9 z6bDJT$3PD6(}0GkIV)N~J+o#q{;(VJ&>+v9nWsN^pi$#OlK7{WT=2~N5qCo6{E^u@PYaRM|Y~bg&(3BBUT3{mrHEhGg{D{yC;KI+~2nH{n{N z7o3sCW#+c%6~0hpG3(2qnEQ8L?+fu&^~n%HCggfG9{wBr_h?EB0^8V4YfcTFV{Njq zI@SWAac;8_-ck))a=?v!NB-k*StFrV?nvnl*(y`+*Jpx&o#(eIFwQ!@wQgE1#6WV$ z(AoZI%JkxG>>C9-y7(nm!!vh%Rdm+%m)Vcu7e?@oj6N(GJlGrlZbwwugT|PYf5iof zRG8X2f+}e#X1SrR%(`$Vvgyo3+1OFKSG6b5S1s2Z@!v z-9yzyWa>Ky473XD@`TC(x#0HwWSAi_Y=!uua$Y45R_D>DMbv7}_Tk$c@^{3pF93>6 zjusThNYo?q6+j9=2-*|4W^$V>>MEYb`!FWAVAFvAL85@R1 zm=h=IRotfpK;py31{a);##^JV81SEI>u77oh_KqDt~^)-+~o4$u9It70_d7tguvQm zZzf0XcJO-^JN$yt;#msoxu%JcbdRUH#nJt9IKL@IVhcm@^Nex2Bp zmz-S6(x+erDy8rYr1ZknBGZLq8Wcy~tnGQ19sZHyO7+V(Tu-PEp<|z+(<3k+jLwr4 z{=idr@tW9>F!6S}Tov+I!Kt>F%C~;oPpaCf)9;;g#buE|8iwAR{noj&?uSSS>DP}T zHw$a1sO#g^k`%ZAz>s{q_=UcgR_;@70{k#_jTp=Vo#oMa6?$sa63N0i$OD zYY5v~fVKEc9Sc)i8~>+{7{x0y&_#x#OBBSyG(`L8!}Fg~bZ%Tm^-_prFC8gzBy`zZ6{cgN2VwRgUUG^{((v1799OWbJ} zAQ4a3q959pdSZ9Wz626MMfg4V#%-_|NMgw&^zxOYYeyLlv&6{RIRd}q*mqmopufs* zA5iv2+Bu*!o=!vWjU8M3&R*ormzO_*j~0*A*>eXzwpG5LQTgy2`T4i%6B0BC#wbHE zq(EFo^6cwWm$&!hyvVXWs(*%kjzHScc2+^fbWI(`LO1GncUe5(Sf8vHhvP_~__MJm z^ir_GNBrX>To8%4ZE9kv{j2DM_}@m^N79_W9(4%YXmP2~HfpPIM6_wLIq$R_=v&QDOx>I?Q4w znt~b@=+$U8oplXM~9JvmyJnl|rKgBHI&18cqBXGtAOzA4>atSsz1%3D2Zulz{3gV zuIJuTDF2CEU3ID;nfWd(8H$Far2Ir_<4UXNulY4=;A8B1vnglb|*&0RWui+|GHn@XpZt9-kak#U5X zR7kDEBy*j*(?5?(77f&6rO8C_BnT{#Wc6&CW~ez*54D{9&sb}h5$v^sJQC$=7j?tC zdOQ3Sjw*Oo7@z5sO{eP`@Gq*IRO_t@Ao4YC+`EN%YFo)Z5kJ;jjSQmJa4xGy4IFTM zZS*-o_YL77lXNxL(PCp9a_lFz~sstdn_zq1Q*`)D<-Yz%*9tO6=)S0wM^nbcY2mzggOWIM;UM9q z>JydQM4d&mB6o6(!X!gFnPrsO^nS_YYHtoEu2Wc9)6czaGEKKfwM0?J#$lZ=9o{el zh^)^<9Yiz=JzoWQnZ~(C9g_jo++McigsEkI(18M2W08{oSEF@`>DRG$4jH~k;k$Ty zOV1_gt*mOC;xC~aPDyq-bO{6HrUY%CKphcM>kU54aM@;V9rrH{TC!q;QPEIG{Wi0V zTdN>Yl8Gee%{G|9;0IHHgflAvXAaZ(E>4`EstGaWvx50?IqOM8z4!H%KJVJ;Kb+!J zL~^drOCqDnO{E-t5lVg=_B8aZbfP~YW_T;HaM>uKg~WM%p(2c9qb13)t4Z*~@nilh zv)8fQA>57i%3r00wd2Vr^YpS+gg{h|HD|d(3%6sMq-5{0UB+*HbIFatWW(#vyY~E2 z%9-w98;UsmP!JF5J)?6znhh2Bp>DxZ?x=Iyj5~`+5t5U+_ewi$lq3=~6ns_;1=Lbn zMMFb_u+<=iw6?ngCgvxHFIHW4F$G)f3u77R1 zXx`i~?h|WZAy4|m+cw%VKD73ukb=2acEtnq-ZOuM6H#6Med zFUU*1RGa`3c`rW2c2-N3oN-T=`b;Ig#E**G<>ty4z=XWrx82junS5P2msCdGjZX-= z39`2u9XDNk+^;VY*}n;WAlqry2g*AAW=|gPK9uw&1M|p0TzHKY-7qYUI}`T8Olb=c z0o^-w(%k%z>Mb<4^C0J`B@kfQqug`0-=cb(!pni$1q@Yym%7 zmu+g1x%1w$qaM+d5D01Stk2Ncwr3*KC z*U00<5W?>%i&rY@%>ITJBO>=usXto94VZ=ZK#Zgr>c$arT7FQ~bF8SfTMgwEA_(yO{V|U9b0u9Q=rqE)d|dg>$E2$nR>U)1 zzRY0cR(_DoL*9ULdG^Q6#RB<(cTo= zo^ux$dspA)P3zC!lJ{FLpSj4@(54+GcrtvsYhsU_9j|x=UH;x-ICb<3rD=^KP@0O| z#m_5ZS@f^mIG9KJ3iVgN*@yF=<7Z+BsM*9R^aS!SHfk5tXnc{8!jV2Ptm{P9zmL6a;bT(Qp`pYRaQ?_uhHVe8l zSvrXD=A*ci6^9hUGr1!d5-wITJ2CJ&f>8JpsF}%EJv}q*y0~<)IOQ6iAV$BNI;dT8P}-6+#2#+GbLK|x(=A+ zyf-dBu50LyN00y@9;iq5Hv09Ph{c3AKm!~`9ud=BEKTClprP?2V-0ymikXoXm?l|p zhK81aY`TvPkeJsur_m+!EiE(``d|g?70b&TR%9W|Jh!L(s{nNFLM|dVQOB#wJ`yr{ zz|8LsxUPY`nb?5Z;T0W_bJFO!X~ODmeqXhDT>pqb2f?8UmdeN#C#yRklXc$HMuMmb zVE}*W079`BId*J?Og62;gk2cxpMfWoc4Wr(WI+|IDQRdBt%)sLW5#9m;a8GT4;uBW z8tI_EmHTdFf;7m~}8cu%!-=OP~s(2f>3NZrolO#sX#AA|h-DV= z4b~D3jLxEc$W~2Blbr)rExBcu)w0n$#;Tq)zetAX?@5vA@;9V-k;wmg}L2Dzee$QTiZz|AaVNuDI z8QhQ|53mSUNv-kLAw$h3euq4%-N|KT&~SZCKo8x8TO@PoWj_8CHg@QGbu< zy^~RW$wREQLBpluacqORY}2!_YV#uY{$UgYhInn~lbfKjPo=!K+)Yo?6i+j9cy|96 zG%t*!iIo5{D6mkq|6z;>FP&)+1YbyZw(GE{e3X0}pBarz!L0G=QBxF*5z4~#g7k+j zAXwx!AR17#8%w=c-H@Wm*SC|*F~wDVd7l<-en#-BAgSO~^OF}&ozc^0?>7#Yd-2pb4DbsxeDLYT=!)ebZW`2 zJiW4NcyVRNcrh_8f+;FlU_*?tTLUax=o*DCf=j=-p3I8I_P|e@F7^mxg2j)*A#h$s zvNu*Mq9KD2naB$p=T@Ic*wIgwYP>K@t#J{RlL8e#S=4__mi+1>C##my)0A<{F#wvn z91Gxr65H1@?D(KU^t6qrZo+0tr_U?srB{8&)J=Vq=mF%GS*d9$F!f$Ws&Lf}ELUhe zH01Bih49z`8I05@k;ggaksh$lP zww2An;>dfIc8lzn-Dh59>QCdig6El+po=ypVfWwshM@|oXEM+!)ph9Z&Wx*Dw#PH` z5p;CFDu=09+Gfk~656~<*IUF7ByR3h^Dn?hY9@uxe#jc(K9(;)&xpRLtn}U{4!V@Exmv!Jg^o-%GJH>l9QLw zbU;3Aheg>t=+D;v&9Sboa;bdXXxV#fI{J&25q=3kiqb!SMVkq8odBXQxvwh2lb%xC z^2X(crF+_<3kptmaY$(J<3Gqq=N2t$I?kS3|GMn&*=^++lx5S_z5a(pvbID{A=4)K zQIQ)fut5KAE3GN~lcghbu(lLqVP@?~owjGDtQ4`d1gGbLz!ULB$kWbXx8ha5G~3r_ zPcEr6!e0841K(VJt-(3*?~=yy3Y&1oR1x^T_FEz(!`FPo*7u`TAGkIg+Ro7$`4r7}de17+ym zfQ8}pCW}YaJfD9~@qW3L(Q(UgU3n?cI zQV*1dmLw6K@axZy_ht;kfI~U=wRbpDd2e2U-pbMVQbcu$-+HT)()4_XvxFOTyPNC5 z(#qLg-m6Ooq)1Nb@7hR5t)-ETw=xLkyCPS4Teyl_kSRlE2B%C@L)@WlUw5VK1u=Jz zb!|WU9{5G>TnW41$t*Hj-aK%rJNmI1B4mNKuHV*x3|AU`r$Y3Flq7%;f7O1t_CYi1 zaLL!!_@vYaE|yfmILcSur$IU6C9rw0xktE%TuesO=|3AW2|v0AbP)k#U?KLh_MR)Z z;UjNT`)}4y@iPb4pI!8I_?taDY8h8(HXoq+d&AvlcYY$;;q>?L(x_(qbC;t9NY*Yv z?~Lp1PuxpEJfBX@8ijfzesJi9X&9yAT~bS3D&nq-t4bW>JNM)CQ`ZG;nZpycO?*En zqd(GGqvG>?n;GB25I^N55gyWM@(W)h=cD1R>Ou6aX|dFwUyf}h|2SX&^G!(XNb$Tk zOWfAj}^zWN^PXewn@vPiP1`&W5CXUy5z} z6>S#3snfQnYmfM(?fZzl-6@1wg?_tDMf5z-f1@9y6l-5+0I?-RFW^>a@p^!)Ch|MTQ_M}UL8Z_2Ig`V3;p zpP8HD2TufB@8&1%zt2mqTLoR17rkJda;wDW@(cU@1#{u~k-wd9f4o8byM8`+b?wi} z;eV?#822XhVtrZYp?_~u0l)gP;Qa6J5SNrADYuLeLAlQ}E??Y2Ty-gfALx4`QL?{w z%-I@wr|#&cOq&1unR>PLCfx2Ee}g@H|MSL2J;6WkuBy;rs$ahS`+W7_CcpX2{`bGH zyV9=@z|jIz2U_4Y_OEN~3wLAU=$8`ke-9im1i$~(-bQamtl}1eTNwY@tNqHIgY8;c zjQv4XeXjhi46g%_im&VXPwk5jS3}WAK#YyCG%;~9H#S#ORa0jJ02&V*6!5_|JR&yw zpn~M?;dwCa{%`T|i-|OHaIpEW<^M)Mo&yK5Q2_8v>Hn_z|L_^@9}wer;P>a?eaSB} z`XKb?AeILJWY5J${s+?!Fqd!W|KQI5;OK(}9@xkJgHQi2e)T^-|BHA2$H&>pMaKpQ2E>z&p9zdT=Mx=3iuq4h9CQ`QA^J>Ua9F_q z`u+cR{y+BnKVfV@{K3TmfXSK2^U=YlgJMbluNJ7Qs;L40y%}E}|EH5dJd^*m{r8Cf zwVkOxV50bb@T)ENzc$}80Jxic5R9|4g>lC88~(z$7T;W10KLhzz+xl!hvYu9B>Js0VzNxkP8$6<-kp# z7H9<8fDYg;&<_j%Bfw*T1xf@S z3{n)Sjx;`u7|%7H4xZ;czj=jujd%li(|Ox?XLx_|3G$Ko0{AlcZu8CY{pKg}AL9?@&*Q(# z|5^YlATQu3a8BTcz_7r!AeW%Npr2rdV29wM5F0EcFXSY2QK&{}Qs}#|h_JbEq;Q$= zBjIfk9ucxgh)AKx1CbA+oT5iWgGCEPABt|0xJgE&Fj6ULh_oXnBxWHNCsrjkCAKdv zBkm%eAbwl?wFFv1Md~|AFAJ^|K32xAi$v3VAW9E z(8sXKaOnu?2;~U<$kI`m{r(KdayU|TEO0^3)1Qg#t`ckKatOZx)*1NKXYD2IEFa7PEn3dap6 zHK$8XqsKXqpE}-j{D-r#^EKy}F0w9hF6=?qL$2Pgjjli4Ox^O`mfTg`FS|eX5by~0 z=8DQ9IGr(YIni zF(+brVh^HWVkhHdE`3Gor}ljr5nr=Nd!!R$iaMd(Gpi-VWM zF3~P6UpBg2bp>?A_sZZ^iK|Ih*Qw^z1{#`83#C0tP)*2B_?GCF*q0=nL`_;vHcxI& z!KFl}%%|$7-b{n01*c7=YowQ@|I6^tn8;MkEYAFs<(D;)t(IMy&CUtTnYyNZ?M5y< zHzN0W-qE~6g6=|6VMgJ%qEkiV#hS%8OVA~8B}=6?r9EYmWw~X4%7e=1 zDvT>`R|-|8SN^>2e|_c#`9|AK;hUK^f765M3svS--PO|7#WnDnvo#yFuC=3eI(3b= z1a4*C`dc4SztrH=Fw}Usv9U?0=~^?mIj;Fbi+2mF)wH#zO{uNwHqY%$2Ed48Y_?O{ zpLbYy4BpYX)7B}~S=q(emC+6AKHt4_mmPF>smG&dy4R|Auus3Q>z?wx`hKzgiu>I6 zuRTCNNP572c;Vr9W+Zca;Pk-i;HklvkK7;44ml1@4OGw{sx*~qNr?BhARx#{OF z&ll#s=a&}z7v8@Jd$GHCc5(kD^%d+@#%uiR;x|HXs^7}Jy}hKpbbr}&d2;3W%F9*1 z)vdLdwLj}g8`zEFccSka->bjx|6ulkwdu9Fz7@H(zn$`t@Uilf?5EDpFdHu&A)`{ z6+4{G2E_KDFn?ehP?S5E0`P+GfdM2Nc!mUm{xAs|5{uV)2C}`&^?-VIKrzv5hH5XA3yjaJA8G@wl6Dp3`eqX z?^^8nzO``YrIxjR>qpVaM_cS4pc8%aF^kWdPdz=-_~K2ME%lK24c)(@QY7bOJnHg3 z8-UA_j23O?7W|gx>X#x^$;=YrWe(ZpBrf#NlhM+$4Pr57Ogt?S7YVXUmMjhu_kj(T z6hoyH?^dN4@rgmxa1P5)(sec(YTV>phuxq`4`lr#%s2=%&!Zn3*79x8amy!(Y1(Ur zwJ;ygST~PnYsKDY&*%DHI9B2cy*q8bUZxe4>k3iqTwkw<+&~8URrSVilpP6L;-y6W z_;8vUqYbS19Vv`@SLK3kr+F6s{qVkKKI(2s>=&_+;A+v9J&^L8(dLKxiYKVLOGc&V z8|%!omTI8wvFOca2AqBCiG;k~&h^In8zDp03Z5O$ZZqKu+l(Qe(Czjy>HR$Ct}FFk zZLEB=8=i!NKcc!80-HZ}zdE}WZew`CbmLHu8Rp|5iR~^6-S+OSPj2(9O}|+G#o)Hy z_h+Fr;g$Za&kwEY;^~DydBSd@gp+l|nH-0`^O*G4fjdLXuOmG@9bdiQ84(hd8Apj2 z(S?R3-@mt_S>^wxjt#kCHe5Un{O_?(wz0ykTLBG&Ld6U^)Ctk@gk_+a9hbK>BExWiP7s` zS@)I5;Ci=rPb77EV%bB;aC|8x=~c8~6x8!_J0x>4>+q*vtGO}v60Zo2Q;fhQV|pTC zov8ecARg~Lu6v=xu3ASFwK>QQ_QoIEQ04e^e*S3Elw;SrY1{s%{-2-pEibmxGY;QA z&}i53+UDNh?tD2lExz_g`R}(`x7)4P@I91qZE&0zp!R`!CoNGZn`!V-Dw69p52oVN zzYBhMRsr+kNR3<_UK@t3`8CO@DWsjg=o39t35EDa7mzk|Fz+uS0(tEsG%5usWXZ+0 ztoY*apkAnKC$6pqWWs_&%q<3q z0}wExlcvm8=kAs$3`v2%%tpgbcD)EH5g6L zbWnxKk6fH=Bz%}YnO+V}iar$v8+&;iA&q*|Ud@_-ei zY6Le+?6GpPye4Atg69K^W2SBu11u%WrCLt<=0l4%V<^_$YBaQWp4j5jz#kpo1c`-c zquPNrWVw40LDE;CO#lw`Q6{6y3kuWx%^?Qr{pnnOm4|lCxEkUh{3l}~jyBK`njhG- zW0ljSw?P|+rz}|s$_~7G^h)zSM}k>5Sp0PZSjms_^kO+3LULM1ZUa+E21dXm)dmZ5 zPeb;=nvjJoSyLR0Q)a1~{8Y4^ZZZa6Rj-ZrRkiqJG4bq1ITortJ_1r^sTAkfD*?4@ z+gBLowpS>GS+az2(gj-7uWwE6T7pnD@hKIDA)!2$6e7V)N9s$IiU{4rTsQ$I#l_?o zp(R6~kLSD(_}&&DSIL)vDsT}RHxk^TIaQ6!-f0_$Tn`(U11RWR8;#q!*j*g+~Akln`ness+fL*Re>@;up;T&UT0xyapg zS3R0e=HNRt-4rsKzaNgiNffKCw>*^p+70I zF>kt680AkYG_6YEaCL!fi&&+LE@mFCrxn<5o{6>Um_SEBh;A^SPh^zvr$eLKvb1V zNv83XItrn9G^YXVaRLB-<*Z=SXF`$IR|svT8Aj?MM(hcz@f5OUHHXs6GTP))n&q|R zqkpA_1-$@A=;rxb66)M~bHlqB@KQ$orB1$cIhtZeIZp*xI-slx=HfxU37Vm4PlO%o zklPN~D|yRut*SR_-3%>|X$=aE+OXqe(`m?9(?k>B7(WZv_?%?Tg#ADYNS&(ZDyUEE z1qQCPmY3$x5D9Bzwz1<0fwb{zm?NvmOOZvS@QX;7`FMupF-dQSmr zc%DOEgMIHeUGJG!eitj<6&5rsOP3RfoSAt!>{%;Jv+*upamwA07oR;35xtM zMbtih@jchm9GjPZj@%i7Wyi?6{ThLwEQ}DY{2&QHC2v?;K;Gx<8B^2uzh-KZ5KUgk zR;QMq7a7+rh_ole^cY!8g|*&}l!=((C8CBt&~WR}19PevWKLgM5ZSPKe2|tYYzl03 z(SZ@UFH`T2!1hcpr;jC{`8{j=iI*8+#cq%L0Pr{)3y$3kKi2&^yn+6xDEDl-u+7xp z-&@cxhY7b;vx|zkovS4#3qd?$&K3-AxmkBrpHS(*i=cYRmk!uP;l;yTN8j-l z(<44Gut*0g_khi_pIo=R^8Egjm5#JPY_SJx=qHM%HzCeu4u4xRh)K7Bn|(d5FcI?<0W=d?i^u- zjxk_?JXui|K_{hB<6bxgZ_^>_(lT639#m*%-ul!#!1EQK7g=ytbZ2KTQ-z>Ax(PRE$3tMJv(s5)Y=>F5wy zSv5-9qAyl=Cr)KLP0*avO@}b!09a9oR(!;)SwF9Kw>~6cgT&#Y>J~B$>YoAhRk2kT zV(*zq5-nrS#NVH(bO(7(oMt0L<3Jku_ttYS&BGqVbGXn!ithkHRcLA?GRRTaq96-g z&9O434U)zL0dvx zr6TjVv`1W0;_F~JiFwLV=?5d^>R3vvJMb|T|C&O4$_ziT>zGuJN6CRiKw$SsWWo+Y za}Pmfpr+U*JS5g(o)-no6^_od041X$87= ztXQ%r&B=3&JG1EGsrQ$@<`=2IDA)2ReY%IZM1me-00;AgEvJg)*pwltdAuy4lWs_7 z^Ks3|aN6#;o@fuZ*umbTlz(-~Y5Gw4Mee5Y62TiU7C6rTijG!f@pUmpGUt-C*3BRtn=0LMKgY{_ zd70i~xLzuFe_7C2wTeftrgg7KAj9ZL$;~txZc#OM)5Hq)gW#8X6Ka$)>PzP{@&_++ zJ(Pvzy&!B@RB7tn&PF9kY=RNy#(~n1tf4f z`YpTZe34~94UJ6Dt&3kQHzVcXzHo|K8RpZigrmrtg*-AOjt>;$pfQUz_8j5E5P`|! zzLi3l0_<%ZaZK5q^cUhzo^?E%jT(Ij$}>QZanf6lul6TF>Oe^CoN?ZwE0~n@zDS9c zMi@*9Zg=O3UL>fVM{=W^&g<2s(o@2sni4@L#e86Ee#TDpGvnv5A^hrtHHualgvlh( zECZI;)XZE6Y?MPf>D4d=S`yEr4$oet?$%3~Vn=qd-b(}rRe+BUdFsafZME1D1sqyW zrfWj5JD@&?Vl)Bw0H5_3RoZ6RhTf_?tP2%!#REU_XTLRvS?4 z$$NsR(oBYxFpD(x+6K@~m1J0X0*3IIyD`J%>pb6!8nhRCg4?vaooCrfBUk-dR0-Ay zC$>fKXe^g)W|-^Wte~p9PJ=pgn^h{fUNcJFwA#g{k#F)t^t=eCNWgs-(q0}F`Wvqp zlD)YGa;9`nm33k&>MxU^F>?UX0oB>q_QvU)L>$KGH=({)DL<94GKbk9cgZ_;uN^+6 ze!hOXw_9toC|tkp3La^`BZdb+>A*3^P_CDx%FTnUr@Fg%0b$jVj920(y{rjxLukP= z%tSEvT2M~reoqIc_iAL#{%%N_AeVtaHNV!mc1o=Tx3B^OX2wJ`b~yMASX7@QIG?3& z?=%Qisp&~^-0IC$6F^>j-0f`DcIpEnfePzm4~3nzR%9*3g|y#gcA&R2`1bjupA{Mk z(e7WxhrAI#>35b;bm7(x0rjjoS6Hm-Y(~{$MThg^{hOQRG%`|0;LfU`VuCoNo!l_6 z0t|cd9e*4^B9xx`Ku~0PZtZhtb>{P`Wug&8UAhUF)(GE{SYJR0wDjD0*?pP9l)G5R z>z9RJU=9#LYWRWCgn^u|{<8Ro=Q6YtdAXvCK|!?~PZkME>4ua1%#)4xPv|n$6mQ~t z6+#G*_~u6_|A=6d4D<-WJQ4-sXreMvcM5sr>18K;9vbah-jgG)<2mduFw(uM9$pwW z4;|(Sf!1t-A1@8(cQ={N6Wo~uO}2M|SUU>&jL^HpeNk#qr~<@EvJx8@vd<`YXP^Ww zG2LwLU1=FTDc6)W)0Cv>-?>vG90e5yJ-U)hw5w3`Is1@z`odgKMhFO!MtZ0!G=aiQ zLi-VagBx}WCLR_bMby$>ibEbx5Yk)5!Ud7vKM=^xTqpL!_?8XP<+#$tApr-BE1gG# zfna%*%IZ&KDYU)3*r9nIIlK)>;v2_oh)EY+NM*z|0b=Ps*NLqQR1ENtM8q;DUz=3ps5Asy?w$_;Q<;A$GWJL zkTAe(ni8zE8vXLL?;cWd^r)L5J~7kCgnA!`eQc>Tc?Ce4N2>J{OoS{D+EtxWCWA$c zhUGAMLha)-&0Oz-tGnh*g{#hP(9u~~h~{fnyYGGX}sB#x$%533M$I`{xINcTGZ-iBNws)mc&BXISHg)+Ue<%>8;>8>gDI zc~LQ>CR^>H_;mS~V`h8(oUJlkZz&+LcswZzgDp9KNwwh4*61|0_X-2GnkC86($>j% zK{Rf-I8AsG%(-a&P-u6+oCeKIBj5sK!jdtjYveS1TZ`?)yRc_p4>Um{k?O2K923$d zS9oMDFaHC9BYXMl3&P2HK#j>^Sp}_f=Cr~m5vyVq?}9l$y~+-K27blDH=@#1557K_ zy-b3*vQwU6eUH?W6}?BY$~S#pct&`0spgDpEE_Iz5Jt&@l1t4`UiY~EnX{-^Xhp3# zlcE&FVJGfN2Zml%uE327&2z-!802ZCc2QPkkL>PxmG>}JRS_MrE-^h6jw7yo$8fQY zqO+Wk_Bo4sxJQ8^%Q*zt08^QznrBv!An#x!Lcy5l5PwV%zF=R!&l?@=zS%bAJF~kx46>geA zdKs%JdqE%fT3Zg87P%2L44aI6^1&fcZM49%o|pBL@J41@a&0@#rS>)sL}qj3X^MWl z_o@7KGb)DpS(A2@o6@B*aD`6{XAT3AD98$j`NLONH2IOqbV!h0l$Yvf?6lM7Gf?}K z>IMUywJae$P~d;wI5zI4U=Zq4=mE#p3%(mu2MJ^BmxL9JH*X~9vog4Y3jcZv2NragNF~(#t(Cl2Zgq86`{?kg#^qExgh&@v5cmA{057zQREV7M zI6V6<3CF!hgm~{5e5w@n`DJ+YXWX@0B@Fm{Z6aGg7E@T$;qHnsDfZ5x$@Orq{P z5MhI)FX-j?MC(8B0NB@#%TfcZ@ArRP(B|ZI`)veTol)hA#NtJSbb?4pPeqeZ+{*q7 ztYzb)Xb8VRhtCrE>~>O__5Adzd9K*897&IvHOoRdmp1TA7OY5`NV9?v#xD|O>O ztu-EhR9k*187I}GDn3|)yBJu=__ooF;vVXi+%u(WG)X4r^|&V-qF4I}OMmBd3Yu%t|#p?cIMX1Hojh5nDa6EC&dC*AMHeI9wqq-DB{#d}NU z<;8yJ7(GP4K46<@S#+7naXI zt-tCO`M30a&+@xdUsqB~bDUaakNR8L^+L>#v&2ljdlUqrxyai!Zh&gQ;I%ZLs(wx+ zL8*NM?|VD(i_i`e?GyAU@)(boH|ly;wM4^1ihEk!(KiXb)7>CWC;OHTE(ONzmB`-; zHIXxUHiM{i5SfFwB7M1<@cfsm;hK%#nJ${aQZ@g}BQuRWLXR~$%l~OQ3{U>+P8)~N zv-Te`M}7l&OlbB>GYEfnT$ZogBF(ho;|vX-Zrpp3ZAO*xwy7`Ag6A)#;q%lLw3G#R zI?7^%u4839CEaPZPSzhWBc_!O$xoPA%XPG@RcTtRDEEX20YpT zq)*HS&Sze8c7}hy-NN}B$GJqD(;G015Oc46`C2lMPV;_&s-1C@ z=6RNQyWEQf>L>+J2{v9fCM^Gi=Za7rrtO_|W0uGbyF z^ctSuxd`P{=^qhm9Gj~{E>9a+7N0ZL1bJE;FW#_3`&Zxiy;w04Fsjuic=}z)akY&L z=5H^pW)_zUsfyJYSmLZt(mDNpp-9_wGwWl6Ch@EwPCbVMa@4oW*V!QAL_h#H;&^W zK;dhAQdI|eF3z`-pEj$InD$yF`ti@VCC?l4OG%WZc%UtWgr|C6jmXP`4-LV38?nl{ z@2EUNgE5?@Q>_b*DP%)qLA$({8T}Bp$iF2pbe&)~PAtpq<*{a0IZ#2V7+cfBe<%J8;>FPad(lWr??ywHy z^8bgT^Zuvu{p0xA1IKpkIym;;GoN#gb&x$egbvxsCbW+2SlQVfdzLK~b?iNogeZiR z5h`i=`u+p=^}~HVuKRvm@7L@3dou8jf0$PnJpY)Le6xHn}l7JuQ~q6uPt1< z?k1d6&`K5dPchc>`G8Gw+ZG7#hou*P1n}be8MyxfQeZX9`Kddrq)l{CfNA`5iAIknsGW>nebFy+^gDNNAGb?VK_wYWZ5rIs(ouC(NM) zpmT+a?xFsUFb8aeiAOk_T=9ru1H{ZGmT51tqWH6o+xJ|gG9YCN?##vu(jW-{jx-LZ zxXl?QI42t$jhxv6NOB@WtT+zud8^k;h75I+{^pJJi`n14H$_8NH4D}0?BQ~u?r%qz zJn3Tg`e?oL8z?I;0^ED9Ss+uw5fXJd8tGTj9wihF!7VzUv#fY_H}1N*J1%4TU$(0H zs=)R0SsVm9?b;uFqSAokAmhVYt~1K{-CclK!H9<#YjZybXeMRWv6{cp!w8%Dm@M#W z1ETbDh?wVniIpi3!PR*n5WAJH$65|$J;li1m6~Hfe=qO)UKVR+Tg(=%f&rls0J#gv z-2c{++14$uX9q2(I(xQd0*)DFON=%Oe>wZMW;uZ1o5O+O+~; zChGpG}OC$Rowtm*>{)lMGEYIvbHD+R2{&>5w_9K zHsuxs{Jl2JLY!JsCrRGUt{hiLhRB>M(@u0EcTR-Yl4=bj&5htA`$ebeqCd`j&?Or& z0sKJZwlcd`PEL#T;!z)Uv>+Tof!G_8v!7>mcVe;(B%|x58q)@*OD!A+=!uChLhNNp zFQN~Q`9zE=mVMUsNOP8=WqSq|O5=Ii5A+3iHE?RMi~LF-f6*mmSs?QhC;roMQ;0Ij zZ|=e8*W<(Ym5t+AWKUZ-GUv1tSjI=NGNV__|HxhEd2VVvBjfpFA+;3-TlY=^Y%ru zCG0#VdeA1?BtlrdKlSYI5|u%9bwuLyYO*LrZ;8|ZfWqxpz)&hAT2G`Xsr_#e^=eXE zK1ExNFPCM4`t)~KQF8Y!rSsp|s3CNLQda71pP20J|0c5w#q7uuCTlrecM z5zgvc`Us`ZZ&BVh4@DGvou0M4Uwyp)3tvD1AQhfve+HeQJ1gs{nF@(amH_W0#gHV` zs|QJ()EtRzMSrTnJ9FnH$0w#sT z|Dt;SQ5b*WG~f%-@gem+qX^^x+x#rRmgr`rV~oNF((hBj%Z6 zPZw)q>K_)WcFmQqb+a5)LLG`VDOxS0+CO8wR0FO}Rw~HoRiZ*4V$YpRiWXBr7U3z^ zXQ+C+5~3OazlGH2?(n8$nBk(@S0Ia#P+tKhKG&P0^MrCQ=VE&bm1Nn@O-MX-JP{o} zj3+igasm@TmY{nPB4UaS-=Cc^Lcszzg0tWEqOTjrHKZ@pzXua#(WZxsEYKAP*^xhzr@p( zRxg~>1>>$Q7VJXGt=O6i+7&9iEJ}iMN0^+o2g%K^GFTIRGWv&pa)ZO>@9`uu659(_ zN7;cx1w8iQ2yojU)i<0v+?zE=NzwQYwA&^!kQTc(il`^dZ%~n%9Sy=S%UmPOuKi82 zyWP)d*7CG(MUGAuok*=e4M8ZQM!Eq<%r|%5gf{bD z_ka`i1qssB5%)x&z{w|zYBe^bf_#`Z1}K>X>RdHQ6us|punNJELcTYN3v;~b-pv(zqNOHv9?*Oa2 zmlYmx&37-_wQw(AkPMBu*d&YmuZ|JtIJrdB+}LEkzKT_obg^h*Xj<+B4bGW7Q!Vyx zUplDW3PBy*CJEM0u(u4XEG$oTpkBX5xz~cuMNIhR19n3>C%mn=I+7ucg)rjENRYFQ zW)_itC1>5)D6>^*4mIDA1{@ks9bvv!CSOqdVr3zfOH@)GiS`PSjSTyIA6-yxlY#v7dNn-@2F@Q&$5p2orvJgFuOOSs@Eg3MaEsmr zG6;bMeVy1z?uFYJ3oCKae5$}nD)J)rx)14IvuH>Ot9?gGIw&E8N)fEpHr=62PRN~| zAi=?6J(Vo*6M*Gl%B>!xZ8#@2%eWA8S!I&?>N%P*CI8R@SMLUX}h|M2v~5`{j|gtsk^?~fA1{&Tf9-+%w4pZZc&=@`c~ZK zf8vdem;9~FMafskDc;#xuw!xd}4Jj54CgCc>2tVnrmvIE9tB- zMpR@m4P2k?h-ax)`Zr?Pv-8LynP-Ad$c%V252boy?jaaI6^&TJs!?n%43y_7CM2L; zv)dxT>sicB85)W2c3DBp=xw4mHqsx;tpyKIe_t4SnkCmZL_Ja_t)|7L5PYsi?&N3q zKJiDot}@&$v<|2FWz5+8!HwG;#!DeQyBF$`cw0obSZdO!15;G>@2bxav`;lZbK$EW z-%-!qDjeNI_B>BJb=ngO43hZzHD~j7S+{~CFv5UI)BV}_#{$wki|+J0v2#!Nk!+3k zNH<|>Lh7;t2owpTm4|xOiN-ziQNKC#dMZUmB>JG5;q8plxmy1x%kC}L0Ni94cbWa| z{!GE7>4NR8$%xt{E7kh%KGB=$`F@!mr77P!8MDT&2fl54%ZmL`!8RJkV&{|A+`%aB zx{Dr7f6$3)m`XynTpjbhR+F(E(!*FA7Z~`V;~f-`-Jc1qrJ^-TSQem*wPQ)hnMh_9 zTdT6Oh7r$~1)X`u;P9Y?wsoKBwKfq9;4@+FviM_$-}30TepA?h1lmbxJWKRUsNUmZH0}*4>cO5C&i!fnKPj zvN&fhwA&j6?4yl)R<;uEggsrsNv$I?N=QP770DL&c&6G=v!01unMz;N6)#Ek*}p&% zAE!lAcBVt^4|5aVChfymqf_ZpXZM9d5tMwybm?~3HEPqtt5lE2|Dl>eJj`E_l9mQL z_k0$<%5>k$Ge6GfVL3|>y(35W{S&8TdoBSgg?sBsYe<<4YUCSapt%1}Ut~xGWXB^- ziUd0?K9jE;_|~yaaWt>VLC*0CA-IT6QIC;RQ^{GS``N<%OA!$qRBB5d_2)%ox?LfB zAVoFkJ2HAU=N;7DP~u!~ zb4t4;m`y`4WC%HBQwZ)<%hrHz>4w62f(prOCX+t@XiyYMNX~LPg9N)BilSL~cYGA@ zOp0FFFvFqUpB?PN763vLYR69*|6`5Qt4*14BO4)SG{nD^96VjoJ@{EJJo@S0sj$nR z(3u3?(xLs8KTZKbPurjmZwUNzP9Cgg2w^?Tt#i+l1;S~;ZzGs}CR~dTbgS?NiqENR z|1B1?dcD7rNss-(<*?;|MVg-cq>10D(TIjVrg|QW`&Ls0|L8s=i!y)_;UGA>jQ0Vi z@4qA`4e#w3ho?#G;)Yl-g=a98Pd&J}wi4GKJF^|(y}*j@i`mj@^&7QvN&qid&o=tl ztR}-ykpijPW($)vLL$4Y?>7nSxH+X54n&!2EK#n;`r%S=kyQ{kt9yg5d45hbitiTd ziFlpmf1pGaR-!PEX-a?NY{`NFrH%TLhMfCE!zapkL+4ARVDyH*WYJSO5s7}{B7rrQ@AYG$ zL_xld45_!48s(H zDYMQ25bXuux6Rfq=L~?6s=TNwwz3e@@V)`|Pr+|52I6nLH70=YYzMa9?zCUOq?>!s zeFJh!mVoGzyslDu{&UEnk@GK2v}HS9JKmJ-Tr|8^1QFvhWv!dmC_sUDQ*XpTvU2pw zG|do}Ow^Cw9LPro-=$=p|NQ*SSxfcFPAY!l>1aCZP5oz0IORKVf8e^>&q)Z^oYXl8 zHABxe$~_}u9QnksETz^?NJnW@^pe;Pl%x7;x}1_e;1uuAw@hvxMeL24bA)t;+NyFE zWcNaZkG#!g1P6Xx_xPl5gM)2(-zb*X6Vg(BO|{g}TMaa&sp_~q|6=-ur@0|3^5=d*xB;1PI|75e}{T7{J#QSHBH#&FJ$BKYFubQy?s<#xVu6 z4DWlujFvNYMrvHcQ%C&XFZ1!kPmi$5axyZfi?Q4SbY17>#L9iP3?=tj17HAqo@B|s z3{ocvj9E>YMpc0w$*@M@brG8bB%cz+gz1Dkv;QDQ?o9;bh42xb3q5GoP8PzC0aM8u zgIKu}PNu~*`sQ~?xMZeTu(!3ip0i#M^T-4ltHcBd1)6--!h^#B>0+DB$tsa1UAEbF$4-=ZoAww6=INWp2u;?-1eN;=C! z38Jw+8FMx!ImX#A$JPq-bCBpbVG0yq+(hYQ1Ktvti6*gPGvE$}Fjaya_JA72?!fj< zEx0d6AHy(CE5}^*VJ*?8pK4KMn7EO_0_XA3%$YKv^KPSwsDTOgoprV`Lb&PR36V+l zQ$9Xt6zgD}Ehz5}XZh1PQJ+(B!Oe&MiRjJDnPr5yg}KW78&_(cMU=+Bt#)e-qA(Ga zg*Tfa(iN*(hZidg=LVp_%xKnYq|aVTY(!DvOHZWA+k`G36lvxM@nd-a{0A}6bFVCg{z`s0 z!m_GX_Z#7)lF-mrYU`$g*&J^YSxO|~#>;lOc^gn;SJFs5u%jVSq}DL%D`Rrw7>0rq zXL7}y8x|chCY-X(nTaW-=j&J0hxbUke3fDgVYL%>)TGQv2&WqS6@?{burZxl!g#uO z4R^OKVx6KJ#i0i9+J+Q^{hBwE!JTbyZBf^}`}EMTwv?;BBRJYij2i&Ql+%G+X3RK-)d7LLi09mTfo+ZjCS_J#yz)Fh+A{ zfc_mzYZEi5motUep0h%DE}Ox%mZ44cWBG-A-b6@7MA0{N99!E%Q<|3vR|wC7F7~%G z-dYG?%_rqmUFd0Tewi5lO+_&4b$*`BL*F!7Ec(I}vqqzKhLO%wh4(Z{Zc3K$i6#Jc zyB3=UDW8e~cruP_z||NiaR81_3OvysRy>ECx_Sx1vkJIZZcf|21UkbKX9kw<6lCUk zDgIh4Z%4BLqVq)rneofj;n~7KiQ(Ml`YmD`?$)7K8o+$E;opyXE3FLH_gidauF20C zZkMBTR@r+Q=l`W&$gEO*X_;k)uFX^$44rWhX#i`CTuNhNmyy4pBXk3xTF7b73t3pQ z`q78*XHC9Fl;D3n#%@*e*$Y8YU3#acddaf&I)-AOf`^0d+QB%mb{M7qMrKzREXrnD zB<35s=5@aE=dTvb;7+5Mezum0hWAoXnk!Aj#&!_-Zw0I@)+BcQ3cv>S>>j2U-g;cr z-~M`seELkO)Sb=6sTwGvz~d-=m7jocT^U9WDQdf2sC!nTBx1-Ju09xln*Pdzn)71& zz1|BUde|c+8HuEJe-1=64@%1Hg>lG|KiAow7Ds9HSazoj>me(&t!;l;7{On^OWdHxPh28Qou(_AZAq zV%g_cZ^b(8PK@jKVw;|)1|wVJD^!L%Y{X5nH{aTBTy&P@)y}ZN1Hg`caSxVrx8rkm z{=_fQAH-&4gpUk~b`@J9qTx8oUdLr+nv;=A;#3{0ZmzrVwa2niZtVso$#xnYNj;sfU3pwCf zGVyj%*~th`L=sFa^?XF~6%`zW6s>QTkdnJfwk1FiC1x^iL%=Nlptb2wLSp6dBq5~M zTpvPZfIG&ubGH{SW9iXNxc2vo^<2zeC5*$vHR5mTD#b-?Uf8`b@QX*~Nv418_np&Og*PH1t%Y9G5g815=%en~&f=nxJV7v8yB} zUPLWrtLT|`4HoQ1v$mg;pHFljEGy&T1USSew^(cXngz`9o1r#RQ3Gjg$av^{whUOW zxP+;@z&I44E6e~y8>nJ1e~7r-dqwkqKpdMwM0+bhtDXji>bo&t_U!{c6u_+j*7^q% zD8wW#LkUmy4O?TccxNt|ndPFcDEoVOIU}`;?}z6sR@nB#3*zkfk_{q0MA-IyL+A%G zLAg`W8+N%DOWvz}uasG2&(vQ^KcJ3kGDH&TG8l#)O^>tiJo*A}bUVRn;VO$yn)}ZO zxOEQ;LTc^>V|}(b`IcC&jReR*pS9d+q7#o;_zch%5oZn6Hs#s!9 z8JLyA!TP?1>=bfG+^=&|+0TeIZ606TFI7yDohS+jOcKp;1$P71ux7_jukB*Q?>ypr z`7$|zvm8z~8!m}09D&xR7OE-qAqQgWC+!S2YhsVEju|D1Nh0Ndq^1K)#NyhX`+RJ; zgigycnKU3Bh=?~gyJ==NYb9#yO(%LTDr}RyqiR#r5n3lPXI4h0Z9zF``bSo(M$*a% zHvety=m|28Q=yR2)53V_R3clLL38c_t{Jz=m2mBjS6404YoSs>pe9dpLDX7I^{0V# z7f))mA-BIpOtgOD0NrPj?iAw$R;w#MLXyh|UBC5_Wn#JfdT-0Yv#bsEGsX|mTLcwJ-_~g(_af~89m!D1Y#Q$zia?ppT;fpr3}`3;ma8AxK||PIIs_P2=!{r z#cS$+#OEQZrsCo`gw)RsYvXSIJi;eirqXriu3*H}}AU|k2g?+=msw`MiRW5+%o zLFxBo)~A{qth(1{Q(|Qm#z9ydsM55>cMSyxB>n|@F z#3axKAsRCTW|b6h2A!FLf&}(XK3p39D>bTQJopacEh}Rskl1IAdMQvS*mq6N+^{fh zzT30W7)M8tfHE5(!RAV^H}HIQ;qBvw7yfVS9O46j63xYHAj7x;YZ+AqkSl7Ud%nRq zgTgfsBexs#MywBZ63>ZQsAt<9$dg&Jp5$mI0{3D_XQ~kE_<{1leug;p8PI&GGn!6# z6aMhc7D!}w(wz9AKGSmPoZRc}tNvmcktSyPB&@ZitQS+9np4A&uk4%8F7RlSoYN|eeAjNDTQ8N%CRtPgO0N8zUVIA4(xSj@dlkLGJud#}z&$y?M_b|kAET~| zW;p3J142D`2Z)HzV)EInBa%FE=ti%INWJA!hb$o|%cB2KFbuij|NhATOVpm+pGTq> zjr1CEDOx;Q%kj=~uU^Io)-r#t1ijYxhTi3aKDYCKN1z|~#e9tVvXvlz5+g6u4zSIj zLwp>RC7VEuBT5I9Fw&MfEmn!tTUG%1<}dnJ&et>othC_oFf{xxyy*-E@_wuD%RWJ7 zRi=Pum^YfulYM7w6%3ZA9R{c*uTAs)_7*W0$`r;ooNzWM{erw9A{ zeKOmWzb^^xOLm4x+!eWIE^e4i&M+er01*oCilCJLwPmTfXyxSh&VP44`GD=~BcycD ziSNGL41qJET59*R^IF-G>7ce)1a0BT6-ot)AS z-6PraLF}x=EIj<-ZzT~pAQqZdV=;&H0)3`m#|FRB^t`A}ft zNcYRv_ikTLe?5|u0nHc!7ZbQ~&;1Ea-wb8W>tD*2kMq}qkPY3zh`^zsx&6I$<@Yh6 zMtVm^UzOE&2&;t#NA5oc*gK)w`-LB8QeY+C*6`exkp4dU!ap z9FJ{aW}Z;e4F_f|DGKEFrfS!2sK_*bvZ2s{A@;N3YBu7{eo|DNA6}!OMTRsLX!8BD~-#xkD9ajB@ibJ<5zdQ(62$*uOK zS!g1?LU6;0=nQ2u!30leWQ&yX>B_%~9vtu|hFYl)Fw4X{uMEamX)PHp(HNkN#bWCx zXu}W6*bMmsl|H#;AV8rvqT;FUht`j!%`Q8A4>Q8-1|=U>$U;Qouef_pF5fUTvXs3c zE3*-$7YYzzebyp!)9C9BY{j!5jszt6ILF0S$?Q~nY1Y&AVwIo9jgBEuS`DJ&-TN+4$}_OLnwi1UuQBcHbU)YaWB*tNEkH0nBKA4s4Uroi z!58&HtKE#qWcc6>T&1xK-=#4!+&9{%PbCxY)Z<1}!UBH{f0RM`^~zw+p8ACy zfCF{?dhz%IKlq@08YEat88T-US#^J1yN?gJqg>kG?tgD}mZ#=b4C5c2&o{quH9t4r zpzrkSF0233)zjU(PZ?sjxwU|Qes1haUHcdHkIFSCYa>I|MUmszRA)?IsNDntXt<|C zfK$SM|6M!zGOLU9-h~sRMQ89(FeFZ9b(Tvdg4LA}&&VtF2SmA~N9B;TZ;xQRYM92a z8UF30#Z?|~Wg%B3lHJ23SK6U7)Ms|e_z1=;cr!M=WT_dRg^SvtP6N5=|n_Q<%=q0%c`?CEd6Jd}I{9J8P z+Gm?gc(qmgO3%r4P<+56pEsSi`5#{o;bnIJ`unoSPS=XtAZ3OY9b0@k!ll!X6US4V zLsSrC8;v~PEs(xfG8iA{3O`?2`&l!TyOKqn|A3ZP70&5w zt1d^?T^|BxCDFC*mm6CYwc6sK)w<+L@v+V}25H8y(W*9wP7S1{5+0Eumg$D=q?*u{yHby&boc;-~&C96$fFBAW>iZ*9^>OnO#dQD+Oj63%8vjcq* zmb|a^OM~oO!Zx0Re#~7s0lq?51D0}@hAq1m&R0>kkLlkHU<^P$mDhGItE$6&4Ut|9Wf^^Z~_liRXa$;d3I8wQVeC~XdA0qATf8YDf7aTY#xApsFD6dr-}jS1>6kuBwFFLC&U(Pj4FWsU`mWKUSgU zOjIg;6STVG4(SKGB0{2p&wImbg@4$K^7btJNj`{I~v z-T9LS>2@<;^0BQ0 zj5Z@xOXPk4@4-E}QAtH*7qZ%u!yzeR0tZ~5!ss$l9Ug2I4ay1BZiy%c!@_uN%v-M5 z0eCp?FJNUZyaMLbr)g$n)CKFdI}UiKX!-QX!!t0~*lS~?xos`S7nHdKOX8U!RnSQP ztp{p{WAOSnnoo?UDh!a^H+5+#i;IJtfPAcex_JXDt&03LltZz! z*sn@gp^=BUI@68`*#2b;g{`oP@p2T==|`WqJX=|cSfZp#}46Lh|oMyU@x=h_y05$1S$H1&;q+qwg9;|h>$ z`(=E}DaIm`$@p2qOC^*i^hQR4V88K(} zi}%9dK7nh<^DyKe#06>4J8+?8fD;~O?VkPS1!?S?nJp!?%W2$o)jmSc-`L;y_xAF4 zeo32OX3i1(6i`>h?1Qb0ddXba1zKfS`=z~oJqJ)3765Y^dO34NPGAcW?FdusTMNR| zYE45w$?PU@NRgJ(pA!v$QkVwatGQL3lVe{NuFq!GG~_sZ1;`DJu|3~Y*-||3^hnm) ze=W#=;nMoUU{7@TN2V1JUk!syBLK8yk901jUIPF98)|)g>W)soz$07#C{sIycw$Su?+V|MFwsR}EgmhTfIy z?4M%LDS^NrO5rVuBagqozvDQEZQUs@{(W5WCO)lA$HQ#DoE=n4S(+C4Bc0+2KAD&M zDcJmE>)t!%6mLAlo}H%hod8%C{{4K9UxEgbk`ZDKSY_UDub!mE#Qk%k-%TIo#^M1o z^p%CF5BV|Rd=#m8S}NF;S%V^3DE?>5=kYF0%vSj6X?KkX`2zqxGrzQ*#z{C9n>?0z zRFCPUn=q~H4sr|N0Sc7q#)~>CfcF&hKWNt%{%4R6g>T`#Xj@AiEiys^&uv}K5L%h( z-aH@7u)|c&uV9u=pWeqtj}qylwR@H_3efaN42iTwvBb05Jo}@8rK6^j6Dr&UMEsT_ zS&1`}Fr4h3nV4~%FU6a)2FxZ)ep|mtX#N1XTMmL!fW)*#0ZWTYB7tx1pWh&wy$m{V z6>LsWblh`m?FGn@iyPZ_rjDI9JvT-Q~MBIBoYXj92GIh7ay43n#5l`XM0XDG=~ zHN#Az{8C$GxQ0;1xPrp~MskB?PA`W~7o-LKGmf`0@at?6l(YxCIF83s=w@%=8Ci0; zf+6)wekrPuxKEh6hpx3$QK7Lcx^lb3u$%Wm3-KbQ(BsC#zLPVEhbvTz2;~c8-`lnb zCU4{%M24zYYF`vY|$j$mwD)dTpYejV+)JB-`Cqblu08JMXVf7z@%(n6{0M5?S zi$iQZhtBlm2gOq%*x-}pGcz+Cw94Gk3^6{T)|<;fYnpr$a5$p8S-O}HX||`d7XYGP zwWl-rWa)dCeLRt@3w=~jzd9|)00m%>?wh&!=9=432Hs!>7HiQnCy2l-HgHY-q?(JC z)#ZXevq}Ro7@^2}s8jI%``UFh877YV68Ze-Z;~i_9{|XwRRl6xI*E49eE3rxc)B`` zy(4Vq<_ZsvgMnG(Uomi>185r3NzK76yA0w749THNG9Os>1%QA&fQYf=7pAK}2@?q! zY?3bs%tpbtO$Z=znYT#5w11xd(^_88j8WTcQWoG) z^0~qmz|+>dP|6j$##ZwgdR*0w5jgiCbO8nWD##aTax*>FI5WHqmoloD73lXJnrAb zTs8@phA^*L7*wq@IEB9E5qgSceH^}q-d@EoPGXk_lkZgga#|PgOxucUuc>!^U`Xb+ zd!>nW1sekxi*ms5P^oSJpqReTJc>2V>DJLRt+=LQ4kCrxiiQfYnS);Pm2*iAU3_K2 zUyjQe$~3F+dfy!bDF=L-KQ!JAWx$2vg`-d87$TXV$~Nl^NG>DYHqm1duzjo5xG{g_ zsx&*^THKC19kR4;Vk6tnUEXd3e$_DN`JT21)@d=`%7msXF#O3lYzNyeioku1h2}qR zp1S1L(0dv3383&z;D=11yKY>>u@Vd!GS4RLFlpXHw^7{4X8jBvU^|`V5M9W2i081o z5(6>sJI@VbddT&V-pjl%#yIu;4~^Nhk_;aBAQpimcgEVh>8OxOUg^YXDfTPZ9>{(@ zbO~~ou*317K{tjbuLvazpx6BCX|C5_Z^%S5Fr}{emt$cm1=RpajG7y2t7I-qUoM=p zL5%R`$OMsF;zIbY;^%(8UO=jhFe%m~_F7y9&)}5zz#oS)0e~!6 z!Pd7TV-Ww7#p>^j=i{qr_f^rOb*}Wznh95~u50Rx-+V5sg<>hbix|`bne)`F52F4^ z@e$^_$h=UHTk|_n-Z~cK*F6qXH?&Jk&o5?wA*7&R8B&n^!?${4A05A+;QJDTngyU{ zD5yZXf*U~LMyFzBMPN|KzRCD;MvIqFJ9Z*i>w%a2cCKL5M{Gu0a3q6ZC=gPt41+cP z%!10qQ+j20mR4Z|5zW%(dZrQagpDw56X}*ttot0gT}9tE^yUR|(Q|9q8P{O} z$q1n_?&^`KB8!tp*(;7XR5AD6ulHfXbZL7sD7G*3*1Cj%zG_F}O-GDFN&Dj1{cd3u zQDGUu*~Z&9O?VTI^g?a~%ak!Vp>=)EOuTA$^&&!Fml5QBl@f&gPs8yyue_-cxTsVrs8J~I3?4v1u;JtX}sYyK`|6_{5= zfixIqMLHBOQcwikWw^b6{>B}$@3iNpTW-ra8#jpyxWWZHoqGX!w|{Clk)8Wki^7m( zs9LuFbmq0lq#F*!9KV?K>2{X$7E_VhTY&6?=W^D`;yxl_Sa<2&aeizIDi$y zum7uTqL)2SEhyz7iS{@0yFo+#(1Nv>KK)jv8(8Qt4|@-7N(HP|P5v|k)e^3eQ> zg<$}5UKM{qbpd+*MXaFDY93@@z)oh>L&v7W`>0bg{pKPbKCub%<6C8}if#Sh<-nY$X2ex2MVkLt0{ z*S%E3<+Ymp{C_k?LQVO5v-l{0YK*2Ve^%0)h*Nc?Ns_NBpxvM-RF5CEx(Z{`i_fZS zh;4n>URl2LJ(8&l()P8bC5J7Ta+7bBjj;4M8o^@@0j*!sPU27NcZh4?d%{r&V~T}v zu9hciNPL+i{M=Ma3GSPDI)Z?*2zrYH8Gyp7R2CuTyTqa0Oy5 zp3MA1C&qB$=;SoyVk_q9nQDbmTM6YWda8qC%fFzFeUPOgQWoQJ#?}y89y018 zfN_9d8$Z40ELg1V07d#jNXU7AzKo|JoDX1@2dc(LRSQ&h0isfJR5EZCu8hV$bnyW_L|d$!#E(QK>57owbbOLZ1b zRmlOupjJxWi-PrE-QyN3)6*Cr43``>9}?riIHB_|I8dyZ6V%pNAGXzvEbCnxTb%jJo#eI=UTa0{DlmcSElaVq0DM5=~M6XqTQhF6v9@ zB<0*&CCg?1dZzGPOd^m|`knRPE^(6-06U$@@JFa=KGc2lJkq3c-`>|CXLiV$K%oS;X}fltb*_Th!gWt$)t${X48wk8k+h zG@dKJA3ykgiNM9@7GZJygnBw;x^lvSi@SfS07BJpXk0?~y!=lw#Z34uQWcip{pNnz zzGUrhU`z=;8p6n@lcZ4A7th46bqk@m#)JTMR6R>lysC8tD-iJwhfN#F#F`fBP?a`~ zRix|+ks0JFE#$dV!CU0YYuvJ0vJ&W2PDO8hXMHN{d!1=5!BCMQe4%f*c&N^{!LcV< zwZZ7(%g@xjrHAo> zjy0nS(q-3IR=RIycNcM26^@+~Ig!cFDcRagS605u%q#J%SAg$A_#J0*MXZxy#Xn}< zTc6%+j2Hda)Eqthfwg0=mKX2L|Nh%f#jOhFCKEM%VGSN8N6x&B7#GVKS(vfWd1S7D zw&IL!HoV+e)a5iD?Gj-X&F4Q-c8QsD4&}R|4?NH8xA1Y^Nusop`J!YA9t@9*tRy7r ziK010;rRQEHmrBBg_=Cf#v3=(&Qaa7+#@Rt%vkd^vXZ3=RW_4*7SC+x;w4tGspt7r z5@nx}Z(u^)^Qc>LFrVHGx#!;`z?5@gGlKC3@2Fm-QTwA_4_3`895q5UBKxWK=S<$1 zvg8bG!r-3(y=1=7FtNfsIrZv7wmmmSEDO6~&5b+hCY4#$rOEYr>k8}cNIT)E?HrP? z0(+`UUm`2SdO1r9uP=0*>j!f+!f5}8RuifllN$*!}6aZ0R}avf7y`Q^%&`cPXDW8~%*+b}arYGE8AvpyTmu z+ZapFC*E40u6@*X%BhB-gjl^4M;3A3N3-KW_9u5z1GwfEc*ecdCgBR5B<2Hp6tg#_ znJ~zl1D4soaNmLSgxLEI&#oroK1>LK2EVK=4Reh!JsdN%F{NJKNw zLZOTUE_Wv%;V;~z8z_e}rybiFHcfW+4{)Ka$BtWGib9Yi*%@ZC!%^7#ExF?HiN|d7 zfJOeAw21ZOioa&EpxbA(abr-$s^e#U*&laQdBkQw0M=%(DC2pFL%ll>p7T8GWQAZ( z7d_>fpBY}C-Y@*H%bMrw2p&un-s%o=P{5bU3t7fqS&NH0suBrh6oDC&2iIEq&2N6c zI(RW-vW~z3e#N$s@#JzRfzpoC!vO&tnvtRGBnl&a47=Num@rMS|WQ_yK=cg)yJir<4E({7vb?KDV#$foGL4Q`&tABFE`JJz1kac5a3Qc7V z67wtPK$WLS{rUKx%tSGtn@UBr43pxs0|L}*p38Y)J?MF>?US+4p(NEWHf&Nwr|fkx z%+4|>$Wv0e;FqLf9c!pSXogMM228KdeGl{ep!`?x0+%bwJqTr4wtD{6r+PR;& zl1FaL_O~n10dpelrHC={yx6mXI1c$ow1dwN5DcO^gmfdIj0vJ>9Sl)cvmKvsGA#2* zyU1?96%GiapnrXJZzKGCv4^p7WKE_^y2dB)2hzM08*I6Ot5BnJBWNoOVo;!bQc3b` z49HXNtyRYrEb)qzB~h(-KYrpf9s@dbPkeq64YK_OlXF^M#_@^i$L+2&0P;b?{rLh> zc`s9M+aLsK(dM%XZ5sDjhqdLCU+P3(P5mx|(DHs6U6?~h{g1Nu4r(I&+J-lc1X4&s zkxuAHlircgt5O7{YN*mgda+>Wp-7V|DxrupHFQwa(4-?pI%*JUf&x~odHFrhyz@LW z?;qcM_e^%LJ$rKR-e-4bHz#MWE8+3G)3s*S(0f%k$ET4vssJuJ63)tt zrbdFmDAAF;bQ&VC)3D%-Qufu}v<~pq!ELVA4 zo??|x0||~R1x-BRjZ@D!kBZcjU~fiui~Jc65Kf}UHozBodgJOmV!uO5eu{Vn_Y}N} z&TYG5Zz|_%wY;>XZqZS|>)izxX7c@MKf!X)Xdew)(jjPc74b9@xji}Os6~p#{UOn2 zogP=iK*ao^2R4tCI+@}$C;CTT9q9wLr*C?W1!ZP^fabgUJpJ_S#n|2;=VOnH`=pfM zPOtqT$dXCpy!#W12}V=`E1PSQuSD603w=1x_I9dQ^>hX2{Fy|@5exSR7JF8X-nxm< zSHxi)%JUrR#^Q)(j#^0gBl=Xe+^q|&08d{|f-d&^q@kJ+tuMJa%TDSh41AfR#h%`T z&>BAj&o_4tvIhXOtV4Ia4hFL#fcwE#4LRo&KG^AbUeRq}%qvV*j8(88s@WUX)T!)z z^okhECI3-_<9F^ZRwT#}m|`ys&!i%kj&Iq18E%{rp&-c#TMze31hptI(oF){TxwVh zB;e#N9=+XQe=K^^*#II+r`*k0@~(>>8YtnO@iOxfgIO9h3jVz%hkZY-_WoT3T=_MT z{nRlXuJ1JXgW!}E$rbjdlwjW8R_@*Xaj<_xe!N4XBM_7apK5ELipID_e$yxYRd*V? zhUIGMdvHqYCB~Whq*A>Pwyv`0OcD&3(RMx-?R?Kn&h4VbNt>A;r&kp4JGkS?LvI~H znuY?{B|(HF@SZiyrW}=;m{WE#Jx|jSV0(VT$Y*F(Qj!_Fl21Z(%XhKVA-p zxdu#)Ov$FsOMmv9Qg&7-k9&S!K_uZvi_KFIa%n662lvTn6Jn9Ua;n%KWc%USbC1}@ z%dJElbKiX3vs&|>ulC=jZMvx-+OKIH(FWPZQ}R ziG7sfZlwY&*!Zm;gaX!+*Z=%RE=;WnHhnCSc+aUJMhBZ4UK1nJ9%_GbH566B!A1rI zX8G`aoIDYZBh-tVxk$n$;FL?w^2Kz`Cvll#ZI8wH`sw$C%1GD-v?_uS1SGMV!_NG? z6E&e)1a)y8XQvqM9fcXA!|VafYg$T0jguWU+*lJQ5i2gWA3rIQaEj-Op;8ib3J@m2 zCnv-B5>T?X9J)lbmoH|V4zuC_<jNC8@wGsKDU67OS+eRa5tLeE!#AC<`1GmbH; z*;weQhj0tHQu2d>d#^?V;JERL+TBRnrJ#~!xnQI?)h^-=6g#B zw`6FVQa-1mPppKJ%CwP8oYWf{Y%KPC`~AywMy9@+&U>*eFb)H*VCsSM5NeW+CK8xh zDQqc=DN6+#j08fS31~c{ucw-JMHF-2+=)Sg`5k~dusL-d@ob(X!9oLX7jFp{EYlej zRF|wBhK-C%PmIQl(AWqRzN_NaO}T}&&LVGVY)T9qwC4sS0n@b);!ef1(^Q3eV6cP2 zgVw+d2keu{A}%av2k|rvq!*=iZG)b6#9T)Qgx=@+^*Y1yc>M@p;#m^{xh3OVB(YhX zNTOrD0+5hZQPQ7syj3xYv0&sNO@7t|Yghz~h!}<)CLarO7%si~4sCEeW;{*@DgxQ# zwV5wcOkYLTGK!Ys1PwUTp{t;9%5AImv>|7GJdFu^ixt`kMUG2*Pg71znPZ#Gy`PZT zK(vxvCCQb#%w!O_(3z_2hZ)6YBzq=(9M)eaq*@PxRXzib3}*^V3-Mhxn*i`I$}>c; zDxH}Hn&`4^IR=dlTQ4_9hcWyw$*{%X15bR^6vIq{+a*w@aINQ}tl(U*PO}an5N^Px zvr0REdqHl907@yYw06CG+Ew+uJ(#j!*W?cm$-j4;$|Dht6=5sPY+>^=$Qtv)I8Fiq z^))X`#XW~>8aJ>6Lb=I08DaqEslWGx=&pUFSZ03YU-R22+b=A8ED`0Z7#Wx$6KW~c z8j6vOBnr`3O0jHIpy4hV0(@qAn#@K)J>gNm?D?p$GHpYr<5{v;)Mz4RqC<*7sV5OamIDp5Y;5I3*l`JLm5Yt?AVviMjuVmY`!x{(Fh;uB8+uOfA?O*Q z`m#92l?J})YqnY=gkxMGh&_NE)XxPzs3u}@Bv#c8Eff{37W+`_minMGhcF2_Rf+nV zp}s*w2pNE#hxJG6#reppsaiTqGT6T#9x*RFVSr%zeWx1?;TR)es2#+bX~)1?_b!0u zXQ^XU7#|%RC$0J(>x-ELb?iUvE2>|Rys@H4gL>8@S8aAlJkgW&J&$BZP9N?$g#=J zKM|OE26)SvZ8_M%J8dZAJtpHjZnY{8-JP zHp3fJw9hNFmGb1b+$22|5_WfN8V#!u5~i^v5sprVrv=CkBEqt$j?3dP`iN?IM6;XL z;uyXIxMRsyrX8(o4+IR6A3AS0;@C=T!DFsAJRoe*8QqGNf~$f}a#`ogo)#>#9&>-*CW*ZfsJElTrR5u?1a$tBeD=54j1GXs zZF{RlpRgu0!|+I4Ft1r6GHp~&DXaa6=~zA>wtDB%I`BlW50!aO?!;9Y$}pxRLx}cE z^SnJWlcNuoP=v1Vte0vU(Fv{*ef(Ypt4u;ZIv#`Fjb{z(xsde&JOxg$sJJg0KzNKG zgK@7zz0pK)l&aG+UZ*1-%)a^o!4~v|ftr<2r<4maR7U*znf6i9K`)RmF1%0Qu`+2C zu}#7>U_nCU!6#Qv@U+JU?!@mjUH7*hxflGPoB%&;5dSiSx%G={IZcg5X7;743|n~* z&Qek3tDttpQMasqpRmp?;t&kfd^2cd@al^S0yYZkqW9scKoUxhh7jZ6ZkT>tsM!D2 zepI?1sa#gNm=%8*4wkoey10VvbH@_>dxpj)78=H&ID7M%O7rjrZza3v#wT&D<9?oP z+xs`2lg2rnD#Zd-?Q_rPf5*<-K9N3-eX%mZ{-DQl`BtDWMtdEUchzi*it2G|tIx!( z+p=OsK|Mtt8@8+jdgr%hbqo!1$J}Xk{}~eW0A}#?A={M3ofj}W*i?`ZVnwR1t1T8f zGc@;71ce+NJ(HD!X<`VA{T-9|G5Syh^@(c+e1N7=!75;|i6Rrx!oe0t1lL=0=VXfS zRkKAjcR1$V(!HOujzW%)VKQ^Otv2-!1KiSzafWJwr$w<Ui>+3X#6e^_Y}~A;B59GwNM9-04Y|9bW!48Sn6}fE*K<4eB8aF5Le(;VXxY zzbf*M(PR0};*Bk}mrA+S_zI_Gf}za>@y)`*(eeQ|jqbfbUz_30S{nQ_e@`)F(*XUn z`^g9ua@*Kxj)o{a!(lhM`1G1gxFXw5*4T?{E9`$Kc7bM3&!~DStcX8mp0vmZ!b}M2 zY?9zZ+#tyo$Q&}ZxiIliCTc_$b%70}n`?BV@$EWJ#jMLC z%oftS%r!|@=UqiA(1xqMFi@eFgI!NFhahOfZ1XA<`#FN#$h8tlI7aY|Qv6tRAot;| z1&>w6k8qrfyJkCW2-^VTmdX-mOsBA6d`@BQCPCee@7^mtcWGx~$giC_JyK3I4g2W4 zO<-ku>Nk%`35US8kgc1))@F*a_Ve$pL|4Fht-H2U|T|I2ShfM(zzZtKju+zvYL*HK$JEHS2j)ix^0b%BK4fduySe7Pu1v8bWFH(>l4Y{WvMBfM5=f0kK$mClglm!Ep)wytatfwFqw(;Z4IH?7H59Ne~Ipk>G zeW9vF&#e-D*30wljEzvb+D94*_9tGb+IFW_v<%XOy7SD3G|`03MaJ}Z`x*3(8KPxv z--VnPc`~4?y}x)$mFI}6*u>3YD=Q$1v^02XzY+9(L8Tle!nm7!_>BWr@kwfq2C?RV ztN?qkX%zK%mNGf^MS%s522&4Lg7xm5Xkk%2_gNGDT{BcpWaI$a6uO*Z5wv&5m4<3~ zD|aN4Kz-p{`V#ZdckupE~P4MWCrPS8Dc}>G!dO!CG}-=fNF}MFQM&Jzq$vA1|3EG`0UJ<@ z=_GBajtq5uuHI1H^31jIgQTF@DMx~tVtWqtr6vjv=4D)b{?wD_t*u)oyX#}eCTY00O}^srYMR%`4I(Yi{ zQES1|rw{_3h>PkTPf2;6(owQ(+@e@X+^9UowC6oNbN@^G`MSwMSuh`i%<*boxnfB6 z`d)C&>p?G)Uqy^mh{e4uFaPX!6ndUjqV`Eo*|bs_8JjhgYrLZ1ECTEvXI9#0dT~ll z^~O5OX-&Tkhq~cuABrfCrEj!X7|5E!r&cPUlV3>0*f^(NRJZwjgVtcS`?<8)`$WqS z!_4fsfwO!5D_))Y#_3gMJULxqC(GTr$MWXcbi|43#eheaR9%z!I`J|afug0{(Vuq6suc(Go zE$6&xy}@SWHunVq&ZRk`JJ+zT{#bZM{lbgvDv_m^-&ea%-jQCHmAUYsDqs>~e`Qts zmlB?*;%{7&s7RGW86_I| zWl`DG87HDfWD#QJ*HKslDbHqLj4fWqP{0Y$=Dte-J@dEYjo_idp~qYI3#|>A$vEo= zlL9v==1{pN!{t>l)HBgQQhb4x(w{4;)>?R?M2yPvD_8mEA&J}6+c*`dG83tOXO>vh zqj`72o+sTlhoCHwp+$yI_n_K3hsx|8Z1M%WQ#30H(zrQ0G3jIqt6*J|FDFG*pOcrQ z3*;@?1smvbj4D)`;P#uu5;=?|q~A?eU8C`8MphC- zNg~EYil>(znv&x3U5>KHn&e&G@}cB*0a_yEVEPuaOq@%H3bOKea5F@VZ6dZgQ^Yx$ zrP$h6+bAy`pWNc+Yc%-&VO@uBBf;h9U%bD$$`+>1Yh}qd!On?I5ausENw6B30-Z@8 zIZdjBc}%6~+C`~*n9G$Bre3fbgA)X|L7-WAI>u4Uk683AV5pgcu2B6w5o zm9#&()6ra2Ujt@+O6mO#8BKV+)J2NM)q^QbQxa}{$klcopB`CI#m~(8V3KW@QV%kN zAik{{!bU4KbrnR57{{*CW$+EA2E4o(Fq6={vr!d&ks*CB_GA_u{xG{)aH{$~i%SFl z&=xNJDMp*>3AaySHEv$HaUhCcw65TOFlR6*uO86sfn^pn;hIcMcj>SZCr=0&&oOY> zwhgXpSiEq2Q0ycT=b|@n{&~4kMtQdUWvY)CWHuji8W_krsw*l#CBS}4GUGEE2F}E$ zT^Y-RO?GoX+|08R|Af3}X>6SGy3M@dp{H_pV6xsK)EZv9-f}GLi-!B;c2toF=rg=INbkKqv)#GJdu0IAmAWX(yywL!o!=sJqQ97{ zONzCAUC++Pu*#@@*nR?pwg~O3ObPdW?jJ-y@%!gllSG^D0yruwIURD5cD77qmB!LZ z;zgIL1_|1xC&&I0Rib@+6n-%19wE+FQemz(-QH`uLvWF$_#1ltEgh^SkEDEeQlzi! zsIDebHxB|UQVh~o1(NyY?op&!bV9;k)^OT&qD~FB?-sjK24AJd)F{i!Z>!oTyk=xv z`TK*_{wp=+!2M#70S}C{tMLZToMr9I49&S}6yYEsj^OQCf+a}v%%!wnnXEut5yaLU zPYyb0B(<99{$5*LP1h{q&Qr_nz5b7diF$_!30*HV<1BxBWs<2dSEPX0sF<~%*@OYCwDY8V7GFlL+0ZG~>ze{~Z}T??-^B@%3@cKkx--S5 z69k-~ymE(R#jkI$q}wDtK7&*!Q*-I^T8_k*BWWl0nUseCZ-#WI_N+0Y(_m|#5mIO^ zsN~kuEZTF;$610yI>`%N->s0FJ&4dru1SW@4Nv|rG`)#V7SnWuHT~pn5`>SEn}O8= zAgy{{^gUYAptM8=gC~=S%-B8|O-p$m!5>mfQQ4x0L5OGoQ@ABiWx+DamR@Y{wNpndz2g@S*rxKZ!A3@=&^apvZX4&#o zYaL)b63D3ETmdrm(hDgbsDVq+L7n3-d;|s!k4OvY^}=4r=XuX5CG>N$^&(rQo>_SR zEd}>X%Igtzbwjw@K3Va2f?cdh)Db7B4%-`ggTtS~Trao~59j6NA=(1|%55H}>0?k( z%IQO5=1?N&E5?(MpcvK>6v!e=dQLIM<=H-~ZC3Gp#dD;)g%N19l^znz0Q)Qqq7H@% z4TryTv{IN0DWSL7mRUKti6wVU=igm0fI2*B$I4v;l8fSfjmBoCFXBKJp(}EjYn`9Sz zW7KCnbJD7sm^1+WUcOwdLj|wvNWDSh7$RZ_NKg4ZOE~t#-M9My( zLuOG{p~z;6MN(iQVPxT-*re(w?mH~phyvk)3HHCj>_z$_E@}VWbziU^T#dEdE}IgWMTSvXcs?S69fY(=c4qI?L{sdg z^X$q4SQHKiH+a~%JMGqStf4!IhndrgdIo=V1#QED&N0d*dvm3y(r~@}a80}DP|Lu+ ziA?9=%?g&#ATrl}X9^GPo%c*_ct7zT!rvC;(=Gj=yOgb!qM1dJ7ki~Cdgdw9);g2Y zV}7ydIdn!o&fNN5*MvqX2v=&VZZg82%W*j!*0O`L_fAu^7bL*;Dy2x+DiGI2^j8q4Rz<-{y~}Xrt64JM=DUzM=hH14V0zrYhZ7|6_>QIi7efV}m-54t z(!<~$t`$?yg_plZQex6@JGc!67=k_yAA423vG$3 zmo0_f^vwN?eoLxyGQ!nuZh7GK4#NH9DXXx_#0u&Hh2m_pvqA|4z0`fJ)qS=D1V<+$ zavCX}Fxp}p!uZrVg|F85q;oLsgszm1cd*xvPv0D@qu-;KxtL3CO<32@zUOHq-O*SS zI~CR{VR_e|bMNAL8#(yRE7~VsB|`CO&o2V#PC1x8x7(I$HvR1%U((&JC3CD1OxrMe z5^$uRzky9fhA`0a>FZC+r~5lsxK?qJp1Yc9zK7@OlZfVTLLW0ItfoSkBF~Y|DnFtd zX<_pwDxUJf-hgrlxC(6~ltA*lYgeSQ zhY*W1GdB`%%)V2++n0y)QY!K^C7w%efo_1jRk+U#Y2`dKU#&7U@34FJEox2r+Z~-e zZ)aclg`F%*AR9wXk(*dE`b4Q)zoGpR^~w0XSv)I(NlU&hhd$A5RdR5Y$CEHO^|?5i z2p1h>#-1=)Ja?Mg`50m@Z?uW?r`wrm-yE#ksGgzrkmsJ}Th-(BF*2(j8|&vn5YrNN zBRH`P%KBOL4a^zWZK_8mea$<1V-uHVdjoOYf9-|z{5A3bXmW`QvJ!_SV^$i=*HE!cXp`*aL-rKzP{jSb0Ctm!N>&9k6NRf06 zrSC7m|8y3wu9A4y)3?HxX^t!^{X-Rtncq-L z=4JOR{{p{_fX{-PZQiNH3B$E70&kYGq=_sxeh-XVwNkzlSS`8JtiFSuW+}`7uKfGZ z{*Q}wU#_EQN7~|u12heGH^^N5z2RzZcgSX(Q}Md3XSDQ(7WLge1zSJq+*ek`so50N z_no2dIf4GDYku(U!rieAl+`|IJl=PIoD+R`_T`(+iPN|-$%|)CZ@lum*gkZ&-DG#6 z=;Pw|V^^yvH79etLM}E&1Lwc7XId~`3vJ1hyW>k!^S%KY+@ID%(q}*DupVk}6ouR& zNx*Z-*X4tk=01Jg2pQ1)^o--~F(__vnXqtQSIl zMfo5vTuhPoMIZabnia}^A;g6Hpb3EhM3_hmBO`k=Lo+2sC1oZ6uwj9t20ofz42cXs zT0wAjaV7l6_J5nFcSNXxt*!O{UH*UP-{%0(f2=d||L?m0PYaumZ-n=e*Po-$RqxR7 zNB{uE9%1R2$k6{_>JjGj3i>bH`X3yAw1Y?Xq5t3u|BYAv%jduG{(t#6*c%;<3JL%S z)P?_rz5W+I+Ai}y8~#rdH3*Lk@bir&oVnx|8RHr5ONjVSD2_r!unoWD7ZB|G-+ur9 zo&VSO{x^*DjXfG102o~gjSCOB;2%l&fA&CGQAr8-pM&wm?!STz;vV}S+yC_VKekJi z0HFEpsB|s&e{5c*0ML;F06a_oV-u$W0Fyl#0NP)AM}3lsvkfO4Q3r~@7X z%|Hjx4fFsnfKgx)m<5&r2Cxq70QyoEqCi(cNuW&7QN9gS0jdKvfx19FpkdGyXc4pu+6H|F{Q^V4C@?2j5G)Bk z0oDW?fUUp|U=Q#Ga2WV9I2oJ`E&*498^P`19`Go57R&(efWJWi2ok~#IjXaQFf}1Y z5F3aq#19e+nMa5+RIG zMwlX85g~{~L=mDM@eDDI*hKth#j;AUYO~s~`mn~a=CD??K4yK%y3YEW4aX+MrpM;M z7RZ*sR>Jm>ZGdfs?F$l#6h&$w?T`UTGO`3oLk=NVkw2LzJW2*-gmOnkp|Vl;QAZ@z zs4r+VS`tk}yP_k}+2}fSANmdY5W|5{z*t~>FxN3_zM? z>@V4Ov8-50tP$1|8;>o+c46nS-*6l_C7ccJA}$M8j~m8q;o*2myb0b1pNy}<_u2{6F|G6MDjR|KjA#st0z3JIDCh6@%amWKpjAv&uB&va9H`1NRee?OsxGK;sGU+vQ|ndxtFECQuKrMcTSHuf zq;XqgUXxSPRx?X;NDHQAsC8YdTkEH`x^|>?v-X~jyiSl#z0Q`dl&-ICweFgpsGg@@ zg&yN1;UwuK^&~@IMBh`tQvV%MjOatGA#NHRHwZLnH27qwXc%tTX86NM+vu7R-56qQ zW}IO>VS+btG`VH+##Gewf@y>4zL}cY6*Iay%-qU6&wSoO(8AlI&SKwE!}6MCzZJ^r zjMXixch)l2;nt5&flpbUx_N5lw8ZI<(;YT|jfKrko7c8dwqdqU>{#qcZy|;L_;| zcXe{DasB3I;#TOk?ylyZ>OSWoKb|(8m7d?c zEWB=e?Ry(}7klsc5Pb@Kwte+{^L;n{^!)Puwl3&hxOrjQU*EsTe>cD=;8wsvpm|_< z;Ey1ip!-40;IqMxE+Q_HE_Q|BLxMv3F9}_Wy)+dn8=4x*2-6NL4BHR43a^O(MR-JX zMsgnA8^@xgqf(+)qfbVcMIXjE#k9oYVnbrb;$-5|<2EmwUcPq)dd2%n?^Thj30GII z8C&r$8wIl!;OSEYB?eMGc@XRG3w?S4vhERk2h>S8Y@~RS(|NyjNGlSCd)u z_kPHIMy-8qf1O5MUA;hkP6N0hs$sj)y>aq^@q^BX@((K>aX-qW0kkOEhbB_fT(ebk zZ;NKj!&Zsb+ie_e8SS9`0u^Nj6T z@-yc1%g?{jL+QIc7kbuu&-X6(IrqKlx9gu6uo@V8VfvzP&|vWSkls-Du=a4*h~`Mg zsQPI8nA%v|xY~Hzg!)ALOO2PElUkFHr*x;DP3uqh%oxwScxCZwboTV@)STno!o2%D zW5H)(YcY87U@3a(_cD0}wvzE0`?~0jz?;gq$KO6;s573f8n2GMJM(UN&3kR1e z>&YAFjiOEA&AKh+t?q5p?a2>rAJ%t5cYg1te#Cve{Ym;$>mG4$Y~Oi*{UH2+`8n$g z@0a^uRloLrv;Fqw`^E3Se`Fl;9@g^x)ciU4>+G-1-!XsSe@gxy|NHo#)xQd_;>1<(^PfM5bMtODjVYEKe^L&klGR?(M+6|=m(g>~1;;86)&8EUE; z%pn+M2=L~W$?&?qsdFE0zBgK|=sj}VqNQfMOf%xc%5cm5m*vDHHpj*BX*M`oV0Y5A zxo+mZZI$I6OD-=BM>9cx6B%#U*+-|N8b zE|)&=I+N1k{gu<<76x>fru6r%HP3%_v%vYQ*v_&v^X3a;2)BTqwH#YhEpAQPpG`W; ziRKuee2ez8FA#F3Jp~0mMcV}${yl@0EGId;B#MPj&x?qNH;O}4{Wj`0P2VcQL77-m zz*4IDi1Suix1eFKlbmA9W>v0oat-pj_E|74q<8pU1x50)w0(k!%!k@*8*Przj&(_? zE4O+VJTIF&G28L1&$0r8?!IYkz7LsKbXPfzyimxI>dMtC?tM^|t-*{4a&Y17`{_}08 zAjWWlt%w&ii_&*6dVBqs5?N$V{d2$O439bGWe5&4Mr7YOC8wmjLkB0a+>YqiI2O2e zALGAzYSN)Nr3PhcL@+FK-B?i_#&=x4Mexm~S8~2~co6MqbPT=4mM570Fv{w>M|0GD zQ1jq@^gfd`zCgkkgyDNV;d!z{{Av)_8iat%Au(cn&NNR{YZI4ulo@>SkxGTtZik}p1%L+*;Cm@uWSuh_Z$;~ z$E`n?h10KmRDk}mBBg8XAgMrUp?X4cAI3a@2&EBp7sDRLmw9o0W;iGTT%SmgF)GV9 zBW$>CqJ$Bm|Ho%|&&Pmzc0)$F?ipZd&TanHKX;EPxllU zSe>RJbh&&=83pHz>7FSMbP2K51%v}9UI;5~2qcx8EZHWV8@hBe2G45tXHJ=!#!}N# ztm!SKbk;UqN#gxog#2q`#-J|iSWecX-%?TEI};N|T0~gK{hultW-IL9k7dHrZ1Sjx+UA<);^g8mpIavS243#~u&bIVkUc{uLnWW+= z){p8(ormT~Q0tsdlG2`^@~L$;nKPZlA!7pXL9cdt?kIOi)GA-9&!oOMonJcJzA-4) zM$dC10WWTr?)!vK_v0>)RIZA9@#!g5y1{kIa~R;j@W?>kW0{s~FclX0pG47DA2@pO z-<$P8>52}tLLP!)Q{-3~v16LdUhOCyJkS^zhsXQ9C)-seOTV+NVl`y;la<^=dVG*& zOS8Y)CB>##*u$+5CL5dm6dOv;5W1+V5tcNJj|NZ^li{9>|rK@uxjq?_0D!tB(Gr37d_*$R;Q zrB)>LA+J~hb$r2Ksu1(d%IuCDH?c|}A^AqVN5-~K(<{xEIsXT38Mob~3T8)sWk1?u z-SuI;vaq_M_Q;plxtXA|_%fxg`QFa%g_&l>!UyebS}wufW@T+lZ=$*HUy}_KwomyPl9}K~+x@g_W$1=`iW?!w~ZW-z&*3SuVpY zP7hCJ$NX7;ouN7&^e;3zDcOymr&lEU?z5sND`J3qQ6xo3uPCwaoJc@O^FMmzb{v`e z4SfJ(diq2zS&Yq5O74p~JrS{j6mMf(URbtFlMeE&x@ncXH2-h<{*J;?AzJd{_CI?; zhm6n&_G0tHPxfxX9-3}Ni4zqH`PCf%?iL1;E!mpVEwV%QbKp{OUJvuR#(Ku%#QG6D z%r9fIXU^?m(MVUrD2pHo__?^;?SMGWqDG=bBFzHzM)dblg50p-k_Ap7?@F=r83}Fw ztX89US43QK(uoUD)W25%o>NM9{QkY^7oGUnupsfpm{sPR3)8BGATPxJHuqtlK5+sv z;3vb&)KQHV_|85Fk`sA0ewCLZ!Z-jldRhQ0l9R680NY)1z7 zdyBV{9{j*;-^ZU(;W9ixoRdiS;O(Bi23PfzCNuCxBsqd7(hZcj-RB&atk7(dC||+p zG{DQCK|J0k?wpAqYT;L$0`)dQe&g_yB=lBa(sZAQw_|*$p;Ye_S94ABl$fCAH`)B? zP@xN94u^>!D$K3@O}!w9+lmn8e3+4EgvWyX2Or(D&VoNRuDO<^>UE@6ojLXTjE3qE zUWkVL>KUn8ks9487h9m9y$WQexh86!OX@VZ#55O^S#>;SlonMITDU;@q3rY^pWM`f zcO!uQ&LA>k(>0qYH@1}RW8}nr1!WS%Wb$AJAj&J#j1nFWyDH%ZgyOA9ydy0^z#!et zIa75NsS%c-=b82Xn1SSskUm{E|3X;LVOVc0#dMA1{1?h;)x>U3C_nY;qA7lc!r{_~ zSJl*bWq-=GIj!-2y6SYc8CJj?2Z?aXIEBkT*#u4_osBhe;-pCD_)E(sa0;izeK+U8 zGQc$2DVZKG#l&p$-t=!qrzmH5FU)6yBQI?TbBtEW4x z`U+=?kFzZ8!@rci$%rk`G{DFlMDLOH=WDYr9;S#NSJzWbcW^0m(&D_tQ)DY{pct0A zS(A4mj$?y_G(-?&6I6b67TFGG3s&M&X}a=CzKRE&VWk{xRM43^yjW@WvJrty%aqA0 z*$YKqSHJn)P%zge%B|wmUT#|GA^rmoM@3hzCWNEAf;II>f<08kQ{n&J`*JZHBL#qBuUmkIYN<-AcCaQlm>fDkeE3I5dMMKx|p@s5&(97z?4&7bry z`1Tp(K8ecy5sMFnCXzL5N{c@n;2#-fzXILK{f6l^0J{_Ye#Yg0okqR!ylY)7-?CVm zG2;{UrL_B?No${I?hIX< zw+V=I&v8NA<}DQut@>V3xiwr>a~KTWqH1iLzgc4ll|r z)CB2hRpEG#HBPBf`sX`|t3roJ}?5U-7J8 z=dW5+;}xkT;$QXhnXPawDu|dWXOnp6hbVdRg1QV27V)a&3eQ!{2SA33*S;lC1tGX8 zsx3;P+G2`rc$H)fjt7d|Ha01#hJZ>B?g!1IE|FU=$DO)-Y0g$h z4ri*8kYzlgFCGX#m(jo|deBq!kS|SdDMC6rw zhD))wC)rXSIRt3y{feCnud%Pg7n0D`H)%$uO<(*TCC?iYRH+|8H2JVAU65uK$>uM9 zX@?xv^*>KbF>P(DGA<&JEnM)#+8-Ep0`!XN19F(%T~C^>TZqDyOC9^i6GTNV!oZc< zDc_n}C+;P8GVsMB8Se^OFKxF0@b*zH7p*I;I>-( z%(p94pqz5OV$wSJ?%R9YhsW>W^M5uum4zI$y8Jx4^IcJAs9Cd)o$CwE+SHz;EdKVS zC-@f*?S(su#hG1ix%dfNojLrE9fGb`yFIGOY=<3oQ8QaBmmik~J!}|#yjuL&TKkEt z2!AuO>srGT5&kC~$nKw(-JR;){W{HutJ2+>-MB^bCuaLVZOJvI6;zdy@WI#!^E|466T zGe%67E_A!c=>`4UQV(lzFQmUC@kh_m!;r_7XFuMfyL8M|to!y^`joC75t+wG-|iL9 z>Nyfk48>tw+}a#X`%Qu`>INgnD+-%B`z2QTkz>6lKm)v;h8og6@&l1xAdIU!KP9%I zceLLT&i#&z%se=aBRnd$lYR4~*IC!o!2lzj=4OEdi7_CexndXss7-M&67}LtLYNA} z49lDxBu)-VGEVP{fR>djj@|Avmg0Jsi%g5rlVCt@{24abKYAk-&-(KQBI||DSyEgh z_fHaVc1&zNdlTW<9sMA-x!nsNgzkX~;Vjp6F9qs)Ckv2IaKf}Az*OzE|&Q>@6 znH;oNV4S!Q(cf2a>w$r5d50UvE)I;De4yfO!G>69kKA~Z^@J%QO=eZRBWqOl7~U&b zrgv&&J$Pax7@FC{^|W?;Ie4IAu6lfI6yi3Nv?y ziNs0R#g{qVTspSsw5dt)L0r(E@f4NGV;<8@!Af_yu7oeY6c#+=`r|x~rq&ZYCCR)t zWvCc&=a`l3ctli|A7|5xfCFA=CZr-U|8iRs%81Gove51{JBje|~ir^2mKIR&V@z zH-1y)Sn$r=4VL*fvYMO-ND>&2yR&flMy$#@p8S0tDz)HT#ch9MA>+Y9zq{h#pODM zS=KABJeDLCM^zXS5ARCt@mVkpBvKw%!$dr{&wnZ z&o0Dv6g)zE^X6~b?o;d4k1yWoGVquY!~H?3D9`WLuZHGOH^+zXy0dTyy}K~3A)MR4 zJNmjS=;FMhyW6U$Dez82Xw85;cg7dVqm{843GU=nux0D}aMLb>j98axI8l|5A-azbxS z!T?(oOAWUeaYOm;1htlH7o|BQiQ!TNy_8}#Z2{4(H}OKy?W-G(%t^G~)!=8}QD7>R z$AvWubjlcbpB%DenrrBWgVE_Q8dBtl9~&UC$=i+al!z3?Zx>&K&NXs<9%Q_@6|}Vv z1v5|z2FRUlsyGo^f9`FM95|$S=j@gD=({FwZ9$y-X!t5pc>lUk=={^u%RTN#7ol28 zM0?x&0kkIyJPBpRp=9Zz&iIe_PEAPKehfKgW|{Tw`0b$k0MJOqPLj-n>>%$SF2w7` z;IJ^E*+kmik1i7yo0HJCXV`fHL=Jy6_>Vu%y*dfxd=Y>>v&AeELHH-1b}wV-81 z&@t*RvImWH(=-Cs(3hs!_ssB$&}ZZa+mlcbU7Ux>zTcvb^7w>(Lx5cdfxNGMhW*_) z#DnayD1}uvk8`XlIqRTulNtbcxQ~64YnqJ%Y2<$RaSk#thPNl63d%6kB!D+}{7b`X zf*;1*7MKEX?}+eDi4B`iU&{YL*lp(R=-*g9F_yN#1g+}Mxc_1(;3%p_?>vs-ZW|6=?jKdR?|K=UV=F{fC7qTKCx4lD_RaDNW8qND( z3vwKN0HB+Q+a$4G;5y}`&j>#OUNX3EhecIi$F7Bf;JN7hw?8iUVR&tU1qMe0&?X)V zZPR}Z%l?GZKj08y0ruH=o!2hA>yrZf9 z|2Y1+``TPw*Q)EBr=GL^pC*+2uVkzRAhW{e~k6A;zj4 z^MOw(U}3su;5@%vxVY=gnsGM2V9@%)%sW%M7($89ZFb$fNY>fq54ifJVW|o~tH%tJ zlFT7R-dTS&w`p5#kPLhg!+}%EIdMi`itRQW(`*5DkBn%4=N7k91e0*8>P6;~- zf6+n+QVJ)~h`7ge|ee|!f>4!5n0tKP#_p1o`)!mjIkEbRFXu|MNL3r+y2*bM(; z+Y_TTzb01W=$jZQ#DT>jrMOT*ZHdCR)(a0>?(q*wSfjMG|GE^sCb39|2HnWRwh*>I!_95dSX zMh#{<)&qLR*jot}hz=8`1gpv>`~enzU;O@{rm)X8=uYMs%c zZ(GguV3;fs843ejro$UCfXR-9EuM=v)~*QGv{H_raXU(#I96h;nM+@6vV_7ViJ6_L ziT#RpsfXgtMuaQtMUDYy)J=x$=epk~*O?@AO2cHG^T(2vkKxx!4iO(D?F=X6tbCFs zxB46%tPujJ@R${dSi&#gejToX=QS+lX3le-m-$^Ji4Qrxi%3EfMi$~y#Ki7!+)x|? zVMH-o)zMaZSO^mIH;8I@|9gBl+YkPD;Upf(>r&Gur5zN(kAFs|qZ~8}F<1Udw)kWi zN}7)pu!*O~JRLsT)Q z@?u_`vZR^}_J^i_T}n;LMdjQj+e@;|`Ik4zE=S#@T-r$DU^ur~grVNF`35LZ3(sQd zZF(B^xFu5T%ahjAvk8&-YhT#R&WreC!Nv2D!>+-sb^{eHE@CRXd0Q?bPgQ_~z)|j- zuI6*g4x-W!NZnHlu=BRppV(=`Yi6bp2Bnw$pVQh`wwPf6yU~Ir2B-}A@cum*tou+F zg}rHT%FSF{k*M{QKPm|JhQ3&&QDy;WymrUfsp0$uE*)&bLp=S{3Ie z6k%emAQ|RPYp8n!1(nybXXIDs{-_7B>POq>h=21luiNiGC3r{f#f_!b8$_d$Ru$)n zmdqN=;cdNs8_9*zm&=D=&txg%#1kb1PCli{sq~rBWxKEcRNv6`_N)UH5Z5LIk;Rzo$9&oTJ08kYn8VPD< z86f4T3V2|5-#CsHlcGEs_D^y8bI1E1?zz~p^&l<(+Ocd7)*#mq-*6YIHDa8k{w5$; z?<94^9K}-TYVb~e{0<6Z4hVR}HB_AmDG7(kq?UUQw=n1LfbPc)})|<`MH^OCk^@mvuVmP z84D0jk4{>rbo8ltDK$Z<_- z?@5O7G)`3(-qgg}*c>F$oLpexXqlWVS~e;1dJPN>#O1P9@3(ka$s5#T71WFkwQN^r z%+b``5LXG4Co$6=w(pl|$N)CJuI{vWtXN@ondg?r zme8}5#{`5gOkUVoH&1zm4vO@L3~r@q*(FR=-7T^M!nZbDyp+Rr>HW(KTa&?Sw@(!$ zH9&m>fd^ks1E@tdY;4N2n(vZPmkDFWT_>=89lla0zG7m>Wq%Fr!z*w z-Zv!xr##Z`#&wGasc=F3qu7dTrnC7GjP7UTZMKgqe*)Cw&0Tf>+;9;hQ~h^z>{!*m z-1KK}yR!NneD>LxC=%N{RU_^hc|kpuzww5_Ic7n}2cbR!;*HG{*QA}-F4}T*P~$dS z1QpV`R%ak)+|cvz>+*ab@o)Z+QjC~*Igrh-)$w<`=W$(OGvmzPd@hBb3|+LS(AT54w)dj0K!g7~Yy`Epppna@AV zx0H20@8w#(IXD9xT~(th%Xhx&EJszou0!m-0V}_}DPGsFSg@I7>nYa!=yhKL+n47K z+{uaSWyA6X(L+XqEwzPXu?D$|A9m%Vq^==EQK$PZxpBquslR)6^5Y#ngynk+5^a*_ z>wEj;U3JF6PyceWVBgfO)ef--?EbW_2y$BbCo)>(qAvTrwZae4JrMJ9u5MyV(sdQ#`K52K`Fy?% zK`)h(ns(Y}9?TdVz1)0tnYYTPiK=>F#Y9FJK5u_4sum`ih6aAyg9e7`@DKVAvY)h|OR+AkH3syW{BDREshR^?*HQl-9#=#BOKd8w`H zL#WrwR|Z&cN*$U<{&lyr1OgKCer3_eENi87>!Is7>km5a1$8K%lkB~swzB`R4vD^c zhJPZP|I+c+H8um`o(kLc|6a=S+;kAvNj}ZrE1Kab^-7NCy=6}>M2(}le_H2kpoPKC zGi41`F)W{`gvfw`ERTepat{yUJU)Hd;i1GI5xL(60RsiQA34>cA358Wb8u`^{$Lf2XZ-TS{pte+kRPe}SXTGWm&6K|8bnDJ?BQHm7jtVDDDsjX{p0 zlm2e7V>z4obXr_BT$Ec;fE%91sQqAQY@_l}tLS#?K>l}CbW|hE-4l5nSf42XsXHMR zx;1^)i|qEL?f`=aD`hu-RYWqVaUHNq$ViA4-{#iY07Cl9?coEU^k--uF@-gX0T~QI z+P3#ZKkp~Ej|7Bq{i`N#7P6}ZKsWT*V-p5>dQC-YRN@mAxp#8^3TrQL59+0my=Zi2 zL$f1wigY}#C2fZ@RGuS>F&OSAa3U&mccJy#kl8ExXcPwb3ZE651hT5`#i@=pFObJ zJkV{d{y9oRf4DJ;^<$W(0@z4bd0FYs>pn${ip~DjwGsltr&3TUE5oRF3j10$uh-B+QZnh)Zj?~>* z0`QECwo1SC$6C1H9;l0jdph+Z)Fw@NIDX*7J1BR>rJ*Q{A(94)V${%(WLQ@QCt$jr z#3~jbeXbd(hSEQRZMdEmdNh3NXm|&&kf*&l;C=seV)EE{~(4McJmwZB8H$ zGo1A$swt6=gP8U$C1Wj4+WfNZYh=170|2n(IwI(qRc%{4InoX`Ra(hlkE?oc84iAIzX*XuE=J(h3c?* zrC7ZnPkwls>28>yNRIVKo-ch_hoxwYLX%*yqby074v`PB_cE2c&#hx1T_zpr%w>LP zZ{BN`@BRqLNX@0>!xI4R(uK_Xt~Vr8b)#-0sv+ui;_eQEsu~DBNt&^Yqh_4wWz-!O zv0lRP^Y}|-?owC#YPUPZ?wWS@${FCOk2kh!Zp#$1#8$&99C(zFQ_-EZ%{%oTU+$eJ z!vrwq;b73^%2#(P7ww{wQD&Jk(`ox+ixQberCq6v3xIrriPO%5QlZ}4t>#D~MHiE5 zSL!i(`<2}&grDgVv>+DXpi`Qep{q}Eiw0aVrt~X~j_rVzbN=-}PY3$aXzH>Z6MDl} zK!8YwU@S~}Dk>-$vD|4g+NCmB&m(h*fvdA=$^d!ODgXEY>&n3Fw^HV>c;8S=6;1%+ z1<4$X1i-8}O*vg|%K|kGj+9wq$JoU8%=0tsxl;i?(sE;}_YYXAolL4Io)tX$CZMO6 z_zk8h1~RFJ1IA}RhD%2fUzFp0-g~|NVNEFJLBKJNRm1n> zKd5MzJ(30$m@l2Puw}8Sk8Dg4PP5S&g=zwT(4MaxJXMRE48kI#0wrQy(}GKZYgSWe zMZcae@CV;ZOD9r}8c!#Sw)vgB3IUI*E}B!@2d!adheFwp1jU zcbZgn)ko;KLGbUxyfNfl$+APWdAu0NOF}?5H^VE3gS5r*${9ZQ)p7dO%9xiC5=)WZ z{Rrg*F{?b<(K}km<72pVI82$MO-f|aluJ0mRzNcyVAc2zAl5wR)yj0HYopit(SMvF z{gJP=Fk}R6*=CDk^&RlodpCql52LR(EN}+A$cdnX5j0AOo&HU)ibyi-PEdhHlxGP1 z(^byh(HF^3GvGAM(^dw&PD@>sN+;65=*G~ez~kLLxQQ!#?l;U+N7KD)t8R}xd9d}L z4dm;Y&);&B=f9_9_pxx$p#o@xj|?f^9J-a8@hR7$t4jE|^#}W&gR}F$>m4v{vIkA~ z41KUMfBzLD70@Gv-=jZ$bNgIy5r;>uvyb}Hr&}-+3R!3xG8O;MhV*{l=F6Seo8oz% z4ooN)ZQc9~8|x|3=PS@N&vSlkt%rE__|5ai0ZVlxii1qF)|*Xr?AIgc*=Y3!H~Z2Q z=EPD%>Av^I+s(*4U}SXW1#i?I(t}uBP6Ig~kR*M+uE0NTa=~M~4eh6G^FyqU@xxL?9JWv^a^35xfdQ@UuE4 z`R3v%g+iq46|?x7h46#EC2@l6q+@tbT!6(x;vTaIREL++Q+SCfx-U_Be!B-U2orip zxZ3bXMoaceshb$ZY73g!wr1lRZTn-(E&&2)N5D8!trj9sc46sAM8s$mIWE-x6K5B?aByXwPRWb{1ngiLZ#aSiP}hiV7%Jfy?SXqsI)ovcIj`q7$L`os6eHE&Ml?@^9a8`A#~liaS*0GU51 zip9_-b=^Bs<+AulX~-3>MT#rL)^5ed3^)Q$Lug#_^s8@d?2=KmfcP)}FQC47!lQKZ zlrEBsg?wI`7oltzv}}NIMJ}Ik{S2M|)7$XszcY{nsjKfU0_*4gEpd}PPZ@%uX;?gcB#o=rz7hCUDO@e~!o zlc#H)WKy9gxup&pg0oo67_XEdO310VbVh3N#w06N<@$sAZdc{Ev#ntl19(A` zx%;0!{`fo@_dwq%JKy}db4nuWNP>3jd$e>*2sj1!u3^j0!Y^EEeDTLu(`Z3XGl=3` zg=$3oxqBymMi5fZlY{5#MYEx92su^BGhJQV?^Yb%LZ??)z7AzdU<|&7^Li=2Xgym1 zS_w@wiyde(TdC#IOPCvk#zmh&iL~BS3B9K!XO$YG&0?r%Lv+@@njDS9kZSr3Vos{# zyxbqeRS&AKMmVtpwn+k2@yj|)K{Zx)*XyzXW8hq(z6L;HYwpy-*-v-Tg^`gGPB-yC z-~T8UhC=D(5NUk^(S0mQx#k$OcsK#$4fhvQ5?UV-R1%O2Db%sxDsLR3$sTiEZk6ld|jG7;hct^QzuoKH6DaNg?2Cm8=r{k&n~|5>(v`g zL;!Zu>`jYZJ{#jtccZ30$qgY3n|XpM_4U&*6PB=g#RNcPz+9s~gcoMaK?kf7`hdOR z)V!@%<2qSmy3O{3z;vq5$C+QjT6H#CAgO$mlTSd2+_z$(z*#c@*y-HJ;pe|Xmxy0t z9^|C11a!(jeC_hY^5N>gb!)V>20#_7Ww*T3jui7C#PD7vrt`+xAUFlM*WI2ax4d^A zPhDgE)1YIHDUVmf=~nhnChzpbj4IkoP$W0X zq;f!l71<>^Pn_D#{u6oi=R57#w*ynmBfnPEWpIx;@l@{oAm7fo;*fr={K7m>atk%s zM$+G$F%}0C*khk}7ybZJKT+AI9pMKsfp@Q^?jJx-_ZpDlP=5L4KqZnUPjI}I_;-^T zzUdU|#x$5JdG21xs%%t5aKN3c1W}#cq}x9vhPPOf?lKdxRNVt~ys& zzEu}nlvC~XFpX2a?cPQPA3$I^?&gV9gIJa11Qny0 zU~n~HmEsrc`UU!0$b?73%TV&&C==Qd&HSL9Dvoh^(BVJWzC9Gk58R#)17Pw3f&pEX!X(&UyiH;VKI5gxWtUzJfWHx$%G0YhP z12ANWF81b6cAT4@SlLmdcA*lIi3wAm08)!k=ewAY(<0)qi%j15I9p+tY83A8H#QK{ zKG{>(OnTmqx~W5k<}={#BLLa=50CoR%DYoeRCd?mj$#cRxUEA_Cac5HQFy+{j2bH* zC^%isF(BvLQSXG-vwNqg-934-*xu+7&6>R}X(Mj>%W;iPL3Evw4Bd&cM7@t;acCSJ zG+WKk3~0e|0|wu=a1RPw>;&(T~C^#7FI8DA-PR@TnkCa z6_zlCCphMv%)F60ktb2_fTrrx^qzv7pQkB4Q7FBt2U6$tDMOG%6g7?-6l7+1XP{z( zVY>4zjnkt7W_>4+NoNT{;4wY z*%(pdCm~ZKd_%t^4TUX~GNx6QAp0{dZBTfXj03FiYKn;A=tS?0cHU>KEIr_6aKZOY=8|aS+@%_I^bn&`+nI~REIF;~$#n3#b`D4& zir$}o1X}CzW*Zi1$(2v?Eb=hRFp*zi(X|**FN@MrWKY~V?JJB5VI^V+B{x^9)p1-y z)MQl}`Ll}|3lLc+(NdbB*+gfP%~}^!>}$}Ww$nskuJZ%jgT*uHIZZEGEO0`%SkoL( z0Zn!G99w|m0z0aKaF60JZKW`)dXGI@e5&8E*!}kqGS-d`HI~ib@ULa7GQ;!#vCg=^ zadjL|Y{%ZBSS-^5Lk_kI8<5iO4dh}lN}GXY#bitvu4B}XCZT4ymH3lUM# zG)(yyub}-A&{g-4w4Ki4xihmZTHk4LYFzQr)D2bDKTm}kT5GK1Ry`2FL#gi?IJJMt zozx#sqkq^W7$d?1w>Fp-+z&HOMcwjBY>+UlIa96E#Z<}t9g;QLdhk*q3kbdGf*5Ei zc-Iud>swLnR8Va`mZm!xq)@AKk9A!$>fe3Orpt_$_fJ{OoJ4DuQUs;fK+o*g7Bt>e zxFqeQK96uIaI5b-WzfK;-o+hX)YZ-A#(sT4^>uu7WyjbwN8FP;Zr2^Npu(`d6JcvD zSpe&JKlhuED~EocxbC{MdHBpz_p^4%)cd`A7UMYSM^ z2dh=SNU?36{cQZ(=+Z!c_CkvEOyCcCQhK-G^}x^1EZWcTySBYY{3DSYL>^4&yBDck z3CW0jZ5gBVTQM_CXY{4WTfGG5bu&j0(LO8%A`mBR*0t>6MCev=mXDs=hE?ATK#nS~ zeAGFfSPd!~P4bEWe>Je8aW40G-g=M>XKEZ{7YYMKfvFH;oUzka#f($mpa}BhntngO z^%He6KGMn4RDr{*g$i4AMDppS;r$GGO0tF69D}1^~u?hU;WvNQQTc(KoA9?zJ z(AT|9iwu>G44|Zbn+V>g%Uo3vYvESzH(ADCd{6z_KP^Kwy;U^Ef*fR%#hG^Dw(L{j zb+w>z1Hik~C`0}t3qIQ5VP&=a?nz@Z*;R5`V{hnqRH$I} z&PUz1t4M@6N)kpllB*q`S8F!W%8*yi2jLT zwi)8XZ#bfrkwZWGCD<)0Iaxx%@dDX^RO$Z>>Gm6nM=T6{G!C#egLpXI=<@XUc}{@` ztTXYIUn5d3He0+%@hQ@)@RTHEM2*5m- zPu{{yv>Jfm_BHmuhAOg`+eX*JX<*?Yt21{NQ&Xm{sWZWclSt$srlUNJ0}l~#b3GVh zj|p%mLBxKgAa+t@!spx*JytNB()Q4Y--Sn0hX5FU{!^gsir6auqEJi$qNU##VNaZ`eF{O?w5^asnrATcQtEm_HlGNK~R z>oW#Nn7r79Ik zi(6H&NsPv1rraM&i`@=7GYd^z2c)k6!9fj|CfGd=HZHRAs&V!wlr)gH3E~0gAdP@( z%VyDws@Rz4+cQI2aWt!ac&5&az}b|GzeIA(n4H|3WX>(69jXK$mvKcVl{z$_(_r^v zq-YPi;`M5LeKnYDc27Tg=Ug>4$ zJs;lkN(j!UIC82Jl<3lVyIV@G12uNg+82^$8c$dFU`?11_bwj`5=7CYuNQ&5uuhB>}l_2sD$>x?O_8 z^gBH~AYPQ5cU+u5mUcQp8`p3~EKHWf6itOdpuT*^jD~+NQ?eo3$||F%&1$?Q*K2TH zHQWH9YzfxR=En}&1T^#3FSbWO?{E%dkvGe`pNDjX8b<+KPSiS^qvpQt0i^|SC3vag zbiJ+TG2xw}%2-dRz}T7%*zif%u1K%9ruOd-D`nTgjX`}TANv+RDy>uR?Uwsf`LqH4 zJ1hXWE)2jWd;c=R9t=I*9};3Gl&kK%$#AlmZk#%u*XsgS@@$!8C5_A)M1cj8#0LMX zc`c~vXM)LA#}aK_hpw<%6OuN#{yNfl+=Szqy=xyQgB0hL1{SsP{PZ2gr^lorBei~i zNEcpS1P?Q#veVh!7B*!hOn{!UH%Ug?3)CVfI-Gs8GPL#WHds9F6K9Kf+{B#H;)=4v zkTZ&G+ejAKOPj`&jwc#v+eO$in~L3c-tLCeOa}7Cj+o+9&kvO+lz!zt+!z^qkUrO@ zB-0q0{mDpi)X4pUQQ8Bs4evV}kxDe1Fq+FiUJvtfWl8vrPd@p^EIXpExOJ29NL^BT zQEw=xJ~ek+>AOXfWEbAJg4wugL!E>kj=ohZ^S^NOvpl6?+X9cvuJ_hGETu%L2 z`zUAEbX`hlfz%IwF`|vhF8N!dQ)dMiT@-T7U}ui;G|F~i?yBr9%_S-t2mSMWTz zL*`xc;}h2W%B3MPt#H2f;y(kef5hTqUPr8_aU!!=-*#j%DCdvY)19BbCIAp9nRk8n zWS(jrDpn@Bapd0(h!IGOVWKo@aru|n@BYp1`eap+wSh?l+q?ZacPkmVr;LI9yvp&TGZmh>jr}wPNur7DWLo*`|5Ltq>+xOk z2vycw9^(1k`|JJPw4<%M5?18SfIWNjgh+)tv^w$hQy&>0+i$Th`kF3X4_uOrMVHB+ zwgJwsjo7nyAi^&fplDR=HpP9v-JP713!O#3Nbe6(pks3i{}Z`=vU z@LuxSY!+qs-ZlXc-%>bbHc#FU)+W6zd}zAu&}G1+S)U7KR|fC?Qdc@WWNXx7aRrxf zc2j~wX!GELhrUo6S+@ejLCStSgm3Je-3q;_Uw}N=w%q1q&s_?DkjU)oGT%1{)of&O zXj_ckfLXIz?cJ|^C0e3IPrn*5k&T8zJBdOI%)6Blshz03`w4J9eDV)-mPX_SHLllY z@z5ds^~>>{iJIxAp{z(iZU-!3RUsW1(ek;i&O1bDrLFV&qu@EPXtlOKLHF*%N4n}( z-nvKcPV&fF?Ru$W095v%S5)%ExHX%RJv8d4=f{JaKH*9Mz=J|*NhV@8Nj; z&rYm4e)irZ!1(ZT>urz!2|>+3iUAjmYNBM(?#A81o(dr4@ zzJye^bWp-Rr=L*zxTN{f1eK&NZ3YI^6Rb^RN6z;jZoe zPikdBAlVe-HIoMyF7J7yvb?pMzkgZa{7_fy+XD@nO)(t7qm~N3fQeoktbw;DRlhJe z4sZo&=D5dh2YNYO*=Qo-i{F=bcLrSGhLn&dnlHLo4-w?uk)BiZ`&TY2lnaycV?dh% zU4%F6Ggk8s!*^Z0cx6aFwjV@{ zmvG;Y$LAL(ItFnB$eVjFRu7KO9y@#K_-46Y7EXiY1Q4EmOC)I;=K^TM2t}RlVuc^^ zEW^B7W@Pfi(ExH?@6UQ&+cQ(_W|B>w53t;K_!Y`NcZ_S^O3mWOW@R7A1AX8bFfKl09>jBqrCbP7fJmJuk0(|l%EUXU=L zD!l2rmC}3?)T(31kt%YcJ5bH}c1QH$mw1*JRdzEb2fvOC;?}iYU+KFTHhM0yi zlV{nBjehokpY{30;eyQk0wSl-#rEOcd%FL$*PG5eCa=TKFy05M0;Kov84t_w<~NqW z4d@fZKL-#KImlvgh>qiT_u4R(M0d-`s~MbOA>Fo`t@Ev)G}T(9*f`wop6Gw%JgFjF z<9Fk-(hga88@x}SF7Y+}+=6uUt$I3mc`jYNBtg#A@6ZLT7`mK_)^%m7Q7`bHt(aPh z@Hgb(l;~LhGR}h91VbO((I?*Z;yED}Mal=+a@DSg9mykW0k3bjlHWX#w((UVg5Bqh zRM4Uch1Hp9ACeQ}GjJ;w7nkQ~XV=vT$Mha^@INqMx{E*Iuz@Fl>iT=B+FXgK8GuV6 zKg$ziEN@7(I50`?nT{~wU%6*I63LVL*UUG0F{`rV@$jv-(a%xec%KPc0A)r+h6$T= zZcq;tZ!9JY3HPn~>IZ;mSeTTmn1#~ftzyg&HLgxAKQx|_3AS5_vw4)tPZ)xHiGas< zu<=0OJW=Ai%A=*gKI4vkK>?uEAWbKyQ^%?Kjr>9Mw0sRT9xphiRy(>D7y?Y0=i7@x7jkZXp z4V~ullE?|}V(pXPKh$MVjWE`BWkr|(1BcJrH>*ytnDD2;I3Tl`e4RCooDu+F<2oxP zR;LOH7!0pD9;x&|jYJost&JqgAZFYwwVg2;{xP+%1d~Ez`nWUq^xUbFPi>l6WQ>d) zig?wCoIwPnFdR?i{2@7Uzi<6UwD@(LW;H)bc_7a}W=sieKIt|Pi3s^w@}zgc@@IFf zf`+m+C(>9gR>mOcN7A%BfQMiG$*VdWhMjihWjQZ449NmEE5;2+E3;!u+CBQwGY;Tv zcfLj+14u6&1tFDA@bRMV93>yV%u3836qsv~>Z(<~^{Gr6m2Ef%|CPo#H!v&xm<|P$ z@DDu}C@Gb(Ot_rTbMFpEQIY9P*4*Jb5)#jH;3*d~5=~(VH#|ow53*>Mvulu?@QY)F zj3^hXm?D`qQav#7L}VFq2+!tzC4*ym(d~$P^){zAMY&WWmt6!9zHFSU#!5dYE=IR( zklV4^gtCb$=CEaXO~^kDXnj(T&nPYnXIFqxFv>V9zQL2hr9vn_Zoh#V0Vc7i6w2a%j$G36I9_Y3tV&3Qj(3m&_8?~zi97?*tzdShchZcHz- zC`7_*g*z$#{dP`9UX@;1-+?g@n&sN-`yBtp{dk04qHy!}@Vc9c$@9>tibV;|znmC( z<*R#y=2_$#N}<}%!7Ds+Z;nsA&Ff(Brsxg;MqDreY>HJTO6QHf-vl^J$F}Fr!9>4Qy5t%2ZLehPiRIHUpx%jfNBNW^1{#*R!q7bK0I2 z)~ch98ae0n^d7|4pLej_CS@(?2|@tx>camj7yax@rj#PZQn`y)UN9c)|M`~;SECV$ z^n8Q->;O)q4?>bT9bX8eVq@1j%AP!(w^Bmqn+jk(-t_DlV*n;p|4C$gNe)PJqKHi% z30D*u)oigR!S4)9898GwQr+zx;?5hz3_6(U)LK}#MiC!WjojPnxy_HZ8yJn+c*q-G z>$oU-aY17iCOSU?;#2dyx}A{V?pckLZ^MbPkk-0VvA%7*B#`gYAxn z(3YlSh@g*gI%4R0Rp-VAO8btaon};i&FA^b4%&1go`ZPtx~|cR+&$h)wD?hfzP9}8 zTT`!bOL+V%S=1rk;gXE<7R)Sqe{saOCl*Zr*

c*91{elRWd|uM) zV|u$$Q(qG)Tx(eWkqk*Hm;0QBQ**eDKrNan$@a)%v>`)wXF7&uL_1(<23A7Jz|mJ`^(W4;!ATrkqXUo zZzz1A)PeW1gWO)wTYXouRn105<%{w8JloZiN;BdZWf+bA`JNW)V10)DbLLbzd$gdp zvxH?t;5aV>IYtIL00YT<|1lOQxcX--u#d&b`Z6)0%hbknM>-lHe}}_$Y3QKFZ9F^D zPuJM8D&JuR6G}?nnk(0LTOKg$^EJC)Al^(`GW_c8z zo#bQPV@Wkv5lFkb;+tC_(^_GVu%^M&3Rvdl!*O>e&mAN1W#Lh+rpqK~V|`OBQ1G5S zKdSoDJ80c-u4{f#FRu{+WUnL;vCDV7hi(Im>h`SB+}a%-#CF+*&=yLEDKNxS`3wBE zOlo7(c%SCVo;8T%S~oOo77YC$ps(U7FP{X@2_LB9dIjB6lrD)@73M~KsWOb8isCVx z`{;Pt??aJh)aQftfltLyiu+S%w^QR~=7N^%XdihzcBdlm{w_;>XaB){#rBa#y~Z7t zgs*yoMb_4aFk9WKNX7R2Ugq!_D?!{29OAktF&N^wc3}Fct4Tp!F$6k05$2=HiRWJJ zIuLx6flQ8HJmK9H$xrFx+zmrJA>x06d<`v~;~dp07rMS#(p{EdsS4pt2^$G=i>mNV z9twQwYNoeva;8`i9HzW<-eg)aPzuaJ>S3lAiFPyVBHt}0(;vxLQt0NuIEgi;riTfK`J^=BaF2iy zQ|d%E9~L3Lg>Xt@_m19BY}LdUT~?gk zx>ndOtsYPqW?qVki5wC8EdXcx6Dk+t6?j;CHps_scoORl${z%>z@ zC)6f@=?yNtyEJ6qra=a0F%V^~EqUf@7*tNzoh@5afDo)fOSGKE#A);Bg>kYuo8)!$ z-c-vcO0c1-LOxKX;P5Y_v8rfMKr&uLmdT20N;n@t z1hpQRG~89?I3Hb#I+t&Zs-ZoW=6xg3)VCGGbULnUZkhq{Tnc4xan|{XOZNok=iDuM z&XhtHvDB2HiMzru#IgJ-G<7qG(;$q{;BDG6BuST=R`HAHn>}RUcW|~?(JB?AFM}6| zu6ak;egq|8jPFsaR#m-e;C^Uy8Cty`J}2I;kSNeWzHW=MDachbYkW9hyaehx7z%%mSDT9;af0lxS{{O$RgEKY;Lj2~r#b9O~+!dwhfYgIM(8S7^FY-{8 z&*ztWW#zRHPj7RuJMRkLbx=Mw$TFX+`A{Sc6F)`gyxh;aeA+a)FEH~4xqHVv^^m9* z%=oSXv-F!UttO$mYeS$~BZ-n}S9FOZGfExe-SpI=e+_J$= zc=s?c2bi%FWnp6`A?1JOJ2Cpn;X{8T83@Ww3i2aCYM$9KU3 z72m&BV^(5T;bAuD{q^=c#lrtxkQ=C>?+zfV>S3NATvOnamai)Jxa*7){P`_AzVQsw z)!mN{6A>5eHXL1Y(qkfr=LlLP@G%!6ul<~v{7zdsD$>NZQCX^W;yPW{BX(x*lVnWs z`BW8U|LtZD(-jWYfLqzCoh=%?X^P^|_iw?MA!55tdqVsVBC=2wL2x#RZt_n)t(r0D zuA|-D)H*eE3tr0Gc{;jpEY1~R-hCi}B2m<4di2llRV@5vW|#6`@Z-eW?vjXpssm`? zACpo~t?Npj;{BCSxY_)V*OV|Nb2^ZtF{l5@MFrWY*rn|*|Dq0Xs$o9pe>VI^JjYol zVq5Wl&I51on=B_`cJ%+|i^_m{lc-{t%9iy#;^{y^q$^uA#k()%lYu{0oAS zpB9c6Gtm(W$H&~pXq+VHc93m{E@SF}W|}0w9<;PQxRFsZNaV7=B9iwaRa?~5>ym8- zZ)2+6IleaERl}lhqbTLZc%{cd#v!!p&mNyYScl0h$$ewESSW7Yraiq3Z5GHH`spj1 zw;JR^%DQmC@e;4iEb!3x@-|GzJZflbx8|^z&ygbl@$+$*F-r7wvA87sTqRMnkp-*4 z#-&*2Y@))j7SEjY$5GOYODxj~iu(m#Dhkk2Gl*w`Y9(mp-d;x60-%&Z8TWlO2Wl?i z$Jb7~H(`B2IsAX7BxB+o1s_pStS%hn;cWVo3P_nfdAgp^M{H@~?AxruviHczi$AqK z=aeJ~k-YjNgfy;s8@9N+wO{jnb!D)9F)?vd z5;|?lC)f_H39@QexGM?mpPYcwu&H)+SW>IzmVKUm>GQ4p*)>*%=e!OImOcZyi5|QV zt#SyK=36Yak+tCQstqZV@v89356@LqYRKm*@1}if`z-#_-6CN)j7K$YiW0J;;Jb}P zC2c1nhw$aWIjpw!DP`tCY8tvCY+C~hOi|!1Orx!**61in?WB)aml~cU&!(++U|%;- zzaaH5L7Dz7M3;5pKEbCBJW&yX-EVXzZwdNBRTxEvS5|Oj2paRbUw$Ye0i}6RZt<<) zIYxa3lpEu|y3E|>hHs?_W02L9YK%$INGY97y=thvH}mzg5XVWB;X7`P2m!xMqms1CNqb4!^r&{xe|pGncZZ)rn%L>Hf6|_$YM9S0F5{7 z;%>4UBJ5B0s?fORr8kS%Y42AULoa_lO8GzhcWuoh5}{ES=7o)hSIXfmT;Gc`ZOUzR zt^(nQpW<+85a)q#(X40xp}OdoM9F%m6@{~B^EeR9O`i%aRt9=c%0OZB`e1A{C;S)0 zHSc!NxEn|i5C7_X)*}wg@Ws>5v4ej%zJ=R?$r=!6xEZ69H~_)qe_oe7L2iO-0mapY z@9|ex8$6`z_g;f%4`lDEbxR}J5c;lKXP#-L^HtGgx83);Vcq3+>X{akF$?KY`3hn- z0!3TLPu4$NEG4_=O+FW0Z?ddTwJzB#PBGD>k4WGN&%nhdM0|HapM5>44|~wt)hjGA zUR>YPn0TIhWKfLiohDy5pZ=o1HW(%(W7Qu#m|eS3Q8-W)Z!r148#k;u+i5OB<|Z+M zb)EksSU&`Ubieq(V~o>PLcb>i<0(n>vimz)o*R5(sa0!-d+LK zJ5Dpp?sqe%%BX7}bp$Hjd-6XO?Ifd*jHMt4vy9U82-5(!uH*)q__?f;hzY$Jl>GPb z?j40a0yc1*{5@x5P73$yG^O#U6MFCpyU`1M7Lj%W!fJ+wx34jS>AQ?MGFp20Kv?SZ z-TBz2-S@gJ1Msi=l;778pkRm|*Gq}avsN4Tx`ue`&MrK_%dtkq)!fvvZXUja*eY?5 z6Oz}f9vbaIAn3lE=hpn>>mjmi*RF=K+}W+V%{t_87Fbq3`fx*D(};QG?Rd|l@iCic zpz{;=l%iu|mrysjebYfEhxX06WU))gQ*DH#IhAd0-D5jOMnjlx9Z@z*hVR@1VXF{) zT)(iohEP#WjYP-tMaAf*)O7iIPgykVA?R$JSYI&3RkGa%z3zmt*DObIlJ6o8N$)*DZsm~}%=CfMO!+ux z?UX*dq*VcsqiN<#62;UMSa=U!-{dk5)*Lg4;-ev`FM>$__|8I5P^1Y7o z&=|d@0Om7kmcRzZt$X(krXEUh0i_)TQ{G`taqtHh6FvW*btk5Dl>!T(y5QSls#2m~ zqeopVE*alJvHLn5u#zqT-x0updZH-KC4=3fD8DK_;QbM}kYs_00mzHL#22iAhkY|x zQL+L{k2&j*q)7&1iE%0+l40?R0kKNrTxJ^Bt!|34BN&qsFo~fO2ks&In2*ELgQO=9 zLp&$q7K{f?dVB>iXyqp_bZuIA1b~RnD9EmYmW`Ay z0Sk$Xstb4E{b2*=wf1)_>7jWk$`yV7zC>JjRRSZf5eND(@auzbpn8j@AbcnORD{y0 zFm;WCS6G3aw$^KqX)Kj~LO1}#MSpgrz%MK2Zx=wL{<#5RW>NKn5fTF@k7#F|XW?h! zy#3{k3X;b({v_p?n)mPhWGm^0%Sh5VRE`(U^FOyROq)LX;_tS7>8j3a0Cxaj2R=8% zPY|0Q!ECCDIY|6Bxyln9ui)n|uoY#%R7Y*T@vrKY^LO>i^aXZu{oe@+|28V{3;(uP zkgc9;qGHxWBu(OD+(cX%r#G9H#j4UyJJr1e+@B}jv6~)unA|vqsZf@VT9$Y<+tzJF z>%4iMeQ&&B)?V+dHB=(dNKJx-_O0iT4dIz&vO*%DDphPbYN*p%Q)8q1mX()|4#SJg zhfNLLQ}PN|PHC#^MvBwQg5J?JdXHRL}&-etn zoZMVfU#asMA3GZe2&~u|w7T*8%swu15gn8le@{S|Nd5yWhX3n_IqI(o8?BGP4dqzTtzy}A|m zrM+0_LnE3+uYF49x;wCr?x(^hBPI|*wbMzw_lZmuiDy?!k?yf`^Z4OtiA1-sfRO@U z#m_1cMi&n_6|bc;?f!Lz3%bgJFtb>e5l4oZy3un*p_So0C8)ME0(3Yg(=}^rPr~%H zrY$M*kDRsk)ZqNC8r$j}pr$*d}~yXq+bd zp*7`Oa?zyhJD!$T~uX`x4K*Afr)2Hd}QE~mwBkphikxX~Ur%Jzu&^*1j$02Ta znWT_MpV^1E%F^Vj;wQP|;>v*;A1T8d8uJxgfg4pCRTm!euw9;!)5r4L6_sav7{8v> z3ud?d59np(bH(#)=cgCny-LqBt<}b?+M$zUtE?|=pAW194$@+59AvJ(_3hH=^9dIy z(D#ajvl-FwyRK^Myw5NUXO*x=5EVA}GXj45yOc~A+X>2ToewL3TPwb0gI@@DnRbtK zSaLB>i{Rjx-6=eFW$Et{sEV{{0>hf>E**rrq8x5a!=xQz{53%XWn(t1GBfnZqVO~EtWZ)5?D~Wv)vtXQ{<^dHK5s>`<;kD`xt$u z1U59BbW|VaLL`MiQ3CW#P2Raa&vZMNB1QLk1^>btgQ;mSDdCgMTNe> zqrQwvZ1y;5$bOisDxL7!~}9fxOs8 z>$=&TLIV4xu4-Nux=*ACnFgv`Vx3Y8D(<0$#;dB$6uF$Gi>X;!&QG`(qw3q?*2lF% zunV6G#0B$ULBH``Vi9=k&#Eg-Up53k2%~#4W=6 zT8uei6zf;`)dUoWs=mbw#Su+;c^-{)9kv)>3)L^mhA((zh4U}Ub?wz$332WYcMczaS<~MdZ#m)cV84 zEn23OaGvl4H&D!#K}+HEZjilRKXpuDwuNrPG&@!|4;yUV;87me=#T*#Mm2+H*1e-6346+t$`$uUGxVo&>qu1n zorzuec{o!52$tuoZ4 zr~|&kC0Pgjh*~Lf0s2y4+B9YUyF&(=LaU9Nb(H&Tt1_XgBi6ql_sn-?H-*<$WrDR6 z!PqqFETCUDLI&utZNk#itE;QZs@&_U0H0sBWAjNqYiJz9HiSmOY!N@Ao{{U^uNaX1 zKzwgmM%0;c&ig}^Xd`5x6OUhbAkD*%2l)j9eqL`@asmsKHEgW=ue<^R3UtoD0t$oR zUCl=ZU#dj;hp6O%>OekOpMqz-By%Zn_HCjN=G&wrAPc{m7_K zYJkRruKLNX!04+q3yUj-jYmL8@~&z7{ZrdrQz54u=Q|7ShteE2jdfdIy%g(w0URs$ zui#ILSmxRqzcSB}_yuv2?R-9X57uCLiC(bn(qu6fkt-Ej*<3VJz%Vy9>K) zaM1r>RYwit26_*%eSTwi&6E9WMsAQrF+Hc`D`Gm9M_8|Dq>9@sY>%3DVXLW!ghQ}> z$1oA92GyC}Zg5Z2dp%NMeFDyi%(9a7_~1ut-$ZsmoPfU1yFp}!+a$W77`89KrvK^Q zyiO%}GHXU$Tq79!8@{CHG-Kck6?iD@N31u{ZeElrSDpNV)E#P%P780I@qNpnD*JZd zopSzM4#V)jh9P_?U`YQ40}TnMiW$&~#FOcgF1Ag+!Xk+na2+f=H8C{)V9s&KED`x} zGgv34{4%JUv(gMqvQXGQSHwAP58;7)fia~EOs5~Pr@o}elf1agoV6hfqE2O4-1^19 zB0!4*=mG;~lt8{J>{s8>xl+HlJAN*|#=`yEi}81`!*BCNP;g_Gg7^3Y?Wcq6T}BQPuc_!J4ACj|E+9G?Sl&edqLa)5P89`YTbKw=JBv8M?!}0T6hJ=Ltx*G=0NDTd zKj=vZYy3twnD5*H8tjKn2Wwzf^PyQ28sT|XB;V%vbAz#Ff1>~WmD450bDoWGvl)T| zM1qis2ZHH@M+dw;bLrn-Ps0nqzudYyoIk89VFHi_EHeA= zCt$*Qac!G0{qfYbrb9w-9e|+?MpShJ_Fr56uU*C)C9vy(TL#$CzxOy!*fHp?GyH-) z0Yd}r9P}F*(Yrv;2?K3+vfpj@_#ZO>5D}uAol;NlG9L&1UaXB-jF}6a5}zdef=nq~ zR39}h83QL&z&S*LuY>PmtW@VIGuOpf=V7#aV`16`J5)=&QsqSAJGn;_mpp6EIX(Jr z>9WMgt2-VA*FF$AbJIBy80<0`kwYFvi%K|K8B{wxgeOwJGK|qGj_VxHT1np66b;*nWzlER=XuB*2aG>SPkn4H)c)T|bwLYG8Q+2*s z8t;1tA|?b_6<&$MD>Jyl!_h^0hvAOgZKp zdU+ikT12UB?eB?p^;=J#3ztH)>KQxuVQsn)L0oK(K_ zT#P19ZhMxQrlz4$<-;=--5MHy{co9e>7DVRD(1-`S`X!>yt>v*sM;2>Ea}Y*jiB~L zz1=S|(T!AtyL_iL6eLv24sM5VNK2DA6muu+6O#L3X$@)Ee|Cc-vL#$Hm3Z~br-M_Q zE5!@7=FvKv?ThwziVB#q+RPG~30L4M^OA05*+ zBhl10vHVmc!{R2w$}-L;91weD%>`9nRBkgaTfUq^z*z7Jz#t zCPu2?6t?Cl{D(=Gk7xuVN$CfI}BZ`Pt3-PWSMspnLHJy_NFYfF?pcFOOxzc=i#`WzY${)k3s!z;sE`}sTQoMTsPrx56y3niCZFv73&IML#Esc(gnN=`(07Dj(Yc0HamjCQpJ0l099_8X&AZqjc@i4=q+ zscfy^UsaBSj+uX`c|20O2)SF--`2mRLl=rm51rQtD{7ds)6h=uCdpTln!2Q_O3vB^ zj2bVO=J^yGFf|ac z9PM(eS(GyM^C|DtecsG6(~**gaSytU21@j4!$vGmo!_6yG`C^Nv zJ(9$)F4#;x0SW7@ky@hteeaJ9u~9YnvD-|c4|6?;Gt?(guFkBcBc(o;<|2{hAq07$ zTDWHdcLPQ^?!44}3ToJB(1P z(;?Az?2cgj*GrFKKk)jDmR0yQ0ybaCcE8UKkT`JHpD|wB!@Gf}9QMJ6yS2w3^h%~m z&RKGf+)EMmdy>SWWN3t4({^_1^d`!)w}%=QPCSZ}l*JSie zXd&RfOabS$1A-^#U%Vf<6n9Owb>~gCd;XZ_0#@;cFS>;!p|we&VFj*?bsr}l6Xm~H z_IoQ9uqHpa;UWIP#a+giO^U;7G&lW8aL`#b`m4d^G_30H)*a|g?ma_OEf=a5ellXW zhsSqoB10;MKV76O+f$ca`7zGS@okRW@Fp>C@LG{b!;^Rrv@AQm+QS(V4fv(IdqVlW zkPos`aT7Yd@}>@2O{tLpa=sx$*6o%zz^G3e4MzdT$+&CWG(vmw8+Ta!0@pd+Y3%5^ z|3TtvekvvrBhM@ zpC`zG^)iMch7%aiXvxa3oDN4Y;b*47}(wXBq54MZjv8EyEYW|$#F;K`=a z4jdki(?^e-PpQiU7x+?bt=YxgNNda`udZJ&=H4^DL%W@FtRZT>6xS?tg_qEEJ)P++ zUH0Alld%P6!Ou+O_|(J92CU;8_{kHiTj7Aw4!O*;N zn2tIdFDQdnnZaZM@SS}BE#_@UXLesa>^;N#NqZ{P1_ahk^LumnfDTvQ1W2dFqos+gq(62*wt_D!rI1BZ4q60P zWWnSoM(H>B!OUVz(w-1tkPAsn`3o$7Abw*T@0)Qz3;(_Y(tW}pN>~c%zyb_7xdS~&PXBL_ilW#JU?!a^4&lFDuAdA%(!*I`Swe9> zL|MR3?Gg`p8hHODgMoOOJfMKLm6p#+dul2gbIMFUr9=rRSD%@&Q^A{j#7KT(hDN8% z*MU6Tk%TBb9tXU@sy+Zh78%@o+|m~;L*+zs=b(Lc2Q;YGnexD4Y?-TL2XLumYFuY^ zz?Qc%&wZ)n$m1-qHY6p`fk$G>;oG&#cbrsK3_yF*OmyR7T2xhdr)i6qHu0?1i;8Gf zEC&-3z;ipMItz@l=1MEL(TO?4r>?)}bOp4^KpQ_TjBeBfh|yuOci1Fv>o$By$K+{cL;z$__4Fy7mvLzULz)MTx*lPN5&lhc=h$V_sNCreTnJI zi}~l6&Z9S+(ap{n9Y)`0u~82}A_D_N2~If2dEZ{-HY27*G?2jf)G_uHXvUX+f= z12&5M3k%f|EY`bP+B(mA8VwBa#i={2#e@qq8yT6XvF3+MGkN1VRF0A!#qCT_2+5M< z-WI$bpsGrtsw8kH{5AXo*O3$^EkXVS=(SXyPE-vrY1JD97S6q0G3AXHxY;Jo@4{aziRXtq_b4=HcQ!BX>HQl9qU!CN` zOU6W`EiEaL2}Uz1+u3=x z#m5M_k&eu>M|06_nxBTtv%;@WCnH_;`ly( zVq|#Hh4gfgcs%dRwh~7{Ucy#arY>Te7a{imOraLcd$&uTUUif&Lv(>ahLjZOZcD-M zzorVA-=-?7(04eD>x-zpV@HqB{+QI-dzNzHS|Tz8t76|R?S>9GVCyYPA8?Vg+V){l z?#zUH9-*9!_ynMHwfTi+y>|)nuVDIg=-B1jK{r{%+7>HsCYnQmx4tRS`SkfsCW~Sk z`;9V=h$k<-Xjm+A0*qVkGdOLEW>lEeAM#Lto4J|TW)flLIUGluF zitGkkZkoyL)ZlWI1DbEH@hxpQ ztENH5EXYe01mZm>67ClS*PtV~9W0%X&#UlGk9k%R`bpjxDk0}F;2^sZf zv<-r#ijmG*hgtT1C_FOK<%G9iFBj_w`^uRzjFVhmcD$8Jsb+xoIchrP8>kq6FzoL# zv!h`OY?z1}K{#yV#KASt6E|F@F#-rj`@wDg^@|hmX-nL zh%PMCDQOB#8#9xgXZcw9i-$uoh!cEy(WIAGIlmvg=zW=$5)y0gCY+=aQAq^nj2=vw z$A0@Qa6>GGb>Q3OVj008vl0JrJRCs<-`)8iWd8UUVu0cTv=R+Y_omoTUPP6mH(lW9 z&u&O`RJ%?M$t=Ns8Szo=e|71(tKO;bc6K_DK384(V8=%dzrp^x6UYo4<3@GosyG%e zRhz53!5-w>i&9pE>~*!xzyD~3h+T{IxA(S{iWY=h3U^N{3S%j?GNZ7Wo}suqs0nWC zO=LtIg+0H_7?ed0O{%=c*triVWvfoO(Ay8(oL~b9IC1sS>r?JIbNRBO)2 zs|1SnXyb#Qmpkx%%c-#X{KbK{NBtUG+G~R>qwzkoupS?c>!_+I)~xiKu0^i*gHTd! z4}WHu1>_B_};gvQ*WaJg$rBA}FG%K89{+JUYrOKvF1wAIMV)QRaPeitxD&v<<63v$o$Y&gHNFlvJu&N;2v=Xw;+?2!^tAnf5`e(|s%6Z(1GHhLr1}QR7HN zWH-yCp=*3l`I{~Bkh;V?SY4&^HP|+7ckg_XQ#bM>&>`L?b7VqPly z{V!i7cE4VklJ4x~UDrqw6fWrSqSNlqae=|>E1klnEI1h?pH{>aK7WksKu@jT;K3_1 z7-RCpNonxYs9a<(#ctq;CwDZ@IsYp91KM_seSEW}yopG*OxuCl#1~ z@#YP7etswfG7AxaDE~AEMoTj01tO;hpu#aPpo)+IDa?gL*B%_9WiGu3Pq~JtK##08 zYM|v0YCf8OYQC<9fA!OmGykZnf&C4}7%2(Yp&Aq-w>7g|;H_?lHN`(CVqj1ZKIbnM8*)3zq~D`zdqxBF zK{bp&)!Yz|XlQf{{R|cEVBnrLcKU8^EWJY2Dk+Y0BGVbw7BiAlS?zYDs+j&gk1zQ|kr~ z-et>YRS@#ViFx8^bej0shGM^7hVk9US~r0O>bidbJ-X%5=Kj*cmA4J4IIQNo7 zgxj!1l+y0l@WRgUKwnGfF#ham+o2W+x2Uqs!7D75>0#3C#NEj>Psx&Np5O_vyW}bh zgJzY4^HNlJ!W7Gm2MeJFq#F)n>LsEEhqUFaeo0rq-177B(LVN|K^SXB^-ix0B1zmh zkT{J2*K*1VI*m8?O`C!rkv93Pxun-Lz}mcshl>Xl1}ZcO6N7j@FXI=nI%*PF<){nGiNETzQ7JSw*Wkg*Q1Lg8~F&Bse?WYHxAAy)y2b;XfV7_=xj z_G_0JEllP?!yIW(PZ1YP0hQ({fvtPUM4^In*#TITKwTf~hpy@0qbR34@Voe@l3xf* zgi}jbozRk&sb&dC;T-K5qmUB0dIP3MvF_wWP$AFsCaO-at5o_9FINwP&#k#SKLFm@ zPZ=;yD8~SgIgAz9*xpw`8aV9Nz$s}s%UA|tF$t1k~~X9tjXBxhr9DOI8Sz=mS*s zTzN-=CDao5VoNYz2cr8ipkV*1G#6tJ9JJ>j0a=PLi9xU~4@m>~3AO&)-*S8XcNm|5 z+svptR0G~DV<7%mj0lL}6@zv8E69QMcraw{oEyy8nrW$*2SW&$yUoEUp8QoZf+)o!;F3I9MGe0tO_yJlP88Zq^Pc;AmI|JHh56%#7d0-LX zwvX{8cz#L0dh1P+hv>gp<~f{dhXjdg_)*w#sqOl2&$m|E85w3woTUp&owvx8W^$l1)hP< zI*PVS(&I0OU!hYiWp5Nyg=_oecbVYhU)-(6)s{w+qX;S)J3kQPnc@(7(Egix>90wHvnIeAoPRZ#?6IoF_Rbr!8_hLg=erY zR1q_t1+t%d&p)1tjJk8TpKgf){@O1{zLvu>1#fsuQ;~{&lG2i=^=P>j@JT7HMjR%D z+Xut{+JN&B949U0Ih}Kv*P7zUf$TeEFvrN@$^OMg;q|Z80x_C_~qCl)&x?$vxm5gsZ}?05J{@MBgF?N3nxSW|)ib z0?d<HHucKka`!vw@o*v;tA4$SXv zyhB3l!NruH_mYzz;h07FEM6l#$HeF#=TyiDCu5Upt_)~wk{3OV)un8ElT2;_xh4 zPMh1y+il_*sjsF`1(+7cn?5pMqa`$zKkOoh_ueM_bn#OVdWi3@N>ZscmlYR!RzxjH zE31Q#AGNtgi74T*(r$qJ$7b#aikIXH8#W#$9!NT`W5+;B`>1;MK#o2wsHaj zwf^BiyL0#5FUSyF1(XS=KTog4YvGV4 zXxr#<&7tUOHC&yjNPC?}Q5-ZI1Q$_#SoSQ3P>edFHBUVIeeNocM-^#8TgEcek=LNZ z(Z^i@;j|Q{`Rt7xqRTXnsA*S3z!rgvABy~uqf68NxISBE%1)_H986;q`8B3#n<4SU z{KI%Knl0WP)^HCIHS7AmXj=3rtr%y6Xd`%KfA$=nV4L!$YSN%kwxDP!LmR~=YT+jr zqZ72IN|Xc_rhZrCF6_T06%{sx+)-cs7ab1Vt}Y}Dg4UaYb7oBF3^Q7TKRI(&eTZg3 zYTsy32)LbEaCyG7$b}wd{7l09F#|-kU9ji|p|Z$lg3enn?WS~J-~|~$#TTIxvK8w{ zE_B6i1 zL<|@SK=LzTS=5i`rXF~<_+QGNUWFW<65cL^=@O^7TR|F|R%4D8!8Y&??-dS9;X|2C zeq9JQ(0F?Qoc7cMNiL6mQq@ykx)>{xH3tE$`kxLMTYx#pVqL3h=B-U=2YOo?Wue*e z*^XsQQhEuS^&Z7sz9e`IYTPalP))e|se1Yu31D75d`Dg^tGr<3LtP&I)>g6I{u^u2 zP*)%{m8KeEMwDAf(3#NU2$$S zwznv9=T*J$GEN_8(eI7xv1TBT;sFT(y7B#fmDJ)4SneWPlgA+Ik3L1NJZT`%=psCw zim13@J;KEWU8u}Jvo$;;KE+qV+y=VVa~e(M>@;-uM4WRm#~AcwC3WCNP_Lg&$3UWY zGZ$u8@;el=kkz(F;Zq^IuxeO9eWhKx`;!|eGg-cMf^Huvv;N)g+jviTgZbDE+wdGo z>qi+axV7cp&#K;QmoxVkD7YoG(VWjM@T_pMuF-}W`)gVHHk-t^^-#DVHpOJZisjt1 z&)Knu6eAkbr1KMnBH3kyeU6afi%+|n^|t@_dO0)ZoheB69#>XFz5;RgQgX*Qu9pN^t=(kjVEa@TI2 z^SKn;xd%M<(+=C$41~5L#JaBV4&M3}8R%$7WXwB^H z;W+N`F|q_X#<>M#oR8eq?ZACF3*2B#TqM!M7#krW4<%4P2oyi<#6(<_O5j0k?IX(1 z#VU3M&q(8Kmk%co^U`)j>l%Bw*T4m=+aL@ME&~1vXb{{4lr@=4 zQ1)Kdo5DL90?OKSP0*f`rfMr@6xVOs9;o{;<(@#(f44>3fi>=B>+Ol}To{gFcL(uN zS}ouhB4{L5rsc0){&pExAGEqZM1Te{CXzP!_)kdfy9sXj&!9$2!eOxmX&@}XM%Mjz z8B|@&--?4~(gC&H$4p=bP*yxpJwrr%oO}$%Cy~F$Ck@mva7p_kR}~)-!M4{hp}|%` z{WGhzUIiu-UIn;tzFh+kWx86v%k-?D{d}=#WtN(LU~Ly7Ia6^fuYBhansa9kLhpo+ zNcB}ct`42WO2P^sB+)O;2`ZAd8%&h#9BYZAtKjXHx8!0n2thaR$mMK3yl_%a+J?WV ztctty=*dJ;M!>4CRx!`+GVX2XFI32>i+EW~5Fv(lpS^Xax1hD&u5eJ4WE{FdBl;oN zbV4rCjIwY?^YLx|Zk|Gun!6I}A1_Hm;JkoR(-vvJyTYw)2E-8sd@sr#-xFG|^Nefa z61>=6fS%28xREUC7SZOWOzR(zTF$a$TS%+MN7&jquVP)y1Z8kGr1{+9;%vWf0JFTVFcue5Wl>6w2zxJI=r#CtG@NK7ipge zZ^;_zcd|-NSpm|K&J5f*(|*HRXLeKwcD!OPyZvtLXBDl}Z~>Hrep3BKB@ac$0xqfitFICtwax-lkVEZkDKAbM#PL@UNZjsa}ZeZO3_<@S&j=56Ld)uW`nT+p#?W|^kj+wEvjvm{8=VhK0aT^ z1d5(rMI2rRc9lK{uG+{av{-4p`8luH4x+_q?kz4ls88kdA>cBCPeyMNLM&KPF@xDr zIXMA%MgO}s2dePm$bB%UTw5Ih&m!hxZ`o~&Ux1!lK#sNa%ruPP_^KB2O9Y&tR)$>s zH%Zi2<&6tRb1|PHnn%XTKQ5eA4(mDa*>9v;Q%<3ng?pccOi+F(;uwq*;b@ns&&VPtkv?QJZ;JgM`En+(2P93H-7UhU<11U_<2y|ydrXH_0|v7+Y5pz=710Jc;ul0 z+YeWY*U8>rUo!D+H@?xNbvnO=@Me@g}V&UcNzd%zUdaiyq)W?SA}mqkNXEO16~JVDr6${l3mTy zw6%&8TcpxCz0{AVt>W{XlRlW*nve53KYSC!MaaJR>Q!z1O@(1+JJ-o+%LLb>D2Ru- zqQ`aVD+FTlkEMi}BeR?|n$@!yEiTEsDY35Phyt8Re0wktQq`$gW5uH+k^nL`w=nV* zNfG>Kq-U=|vl#DM8FZI?%Hlb1D*rFJ2gf1M#nidV@V^MIfu_-A(aO_TWY7EiRvE50 zuC$l2wyrtM)Io$HmolJQvh4h}ddTU_(gsGaW8tLbX0rlh3z3AHg(HCLO7#5ENaER` zI%A&M`Ol7590gf+^yNU-u3qvy5h*!F%3BaT06@S*>-6P`u7X^;0dKy}ol4QLyl(^% zQpE$5Y6q)pcp|iVBreAI%(Vu?+J&RcJl5XZ3IgUa+3vpX{G)eKPx7se?#ty$Dvo6u zQj*ua%a@>%`gPvzpdE9~;%OSLDKQ6^%nd1Rr_u>aE^*PrSscej#<xaB{07!stcK-qAbmLu%xw zI`av&f<+@r;{x!tJTdZqWs}uFx&+qho0| zUz)yXdS0q4<(?LA?cPvu5G5WKk)36Rad~iMvdB@wo*U-|-m&4+aC1X#_M2p(UNp0n z7G(&r2-p`T$uh`whYS1^rm~rPeQpl)IO|*mh?UNz>RPR6j#j1ZWmRo&u?P2XCipXM z59xb*nxe8JyZdp1{K(^^eK%??LFm!*ke=6Sqh~g$)kA7Qd^$v`s%JLc!jVsFhE(Fd z6>BNUqv#X6F(%pJ;c*w7WFL!S#ujW=l}+=PL0Sg$`K-`!e*}g?lt#>X?qHhigWv z)nAF6z&?Bv1ukWpCbBk=#xq(wgRSv%g;o=ZhK(6QY0cy+Lx~)&vJO3kSrd%2F#aPN z{!q7&>1B~&pLFNmV=O1fJ$>`)nM!rKuhua{GI}9-%jUWKW7)x1@6a7?iVaV4(!lkL zYNO!>5s68D-BMi?O-hzosWNg!>|7+eebg9AYI8l^z@n;jeGLVF>#y&*h{U&MGtO;0 zHOb=AMcwd2zf_iXszt>4MWWf|H|=Lq&Rh8DAl;88yn<^NZwT&c^0$I(SgRvnNcAlh zzf!B*=v_dSTuf}axuU1#YRuaTwVcv@K)_De^lcYiid;Y9axU=?$#K8XNw62p_!SU_vkfggVkCIwBI}YvPl{Wj^JyxfAnBWzoGt>;Cqf} zkJdf$==Z`I<98c*3sxzU6C+gLW=Wj?WNb11fU|Z=5XV{bX?=+EvEreCmO)dyLB@{> ze}P|$-X*da(!Fk8!TB()3hV|wOXOx>XHz?5{;H<7FbN7X(p@vzecxZ!jR~_dg$?w) z8SElx^^tEBmN4CL_yjkC>$Itfk5MVbMkS0l9+b%SXqIS-Gl+)k89)yxRL<^HwFmLuMPVX zSQ4kxY7vI?n$4%aMYX% z`pYkU-W{L{*xmAt``P0kX!`v^b4`SO2e*~Z7tNwt3tDvb`40={ivzlQ`V>FBGA&IyGe)=6@Ks4Z@_R6Y*Lfyr*L2)sU49kHz0&t?AP z=w-nC^U5I0WM|8T@Q(~CS3c*_2qP7_|03|t#P?9^-+;*ZIRIzZ1UKbc?Z+SMCH9n7 zey19qn6P~|k_e|gB6{hv;D)=r9jk2E*(Syz_T4l|{vvKAda|t*F?NrZVE#6&cxD^Y z=gdmUauzlSCr1p5hFmQ7dA1P z2#MZ5(@aB~9;9%wXV*hDEikFHhihXe0!9a+a6vb zIR1+utj=mq!loI;NMAB&r@QuiEc-HoSGvV~XLu}Buaf2J#rI`0-&8s^HdZC_Pr2?0 zEHzSa6>VZg7_ug9?yIkgTFcYrnwi<0I%>vlKcc5F+$79q)J}xuSp2B;w6EcxnLi>Y zQGZjSfmH5Uv&cS6M5Il+4w_W`MF0>3>d0`(OSU)abX|bm*$rTKRv2~1_JuvOFo6ZZ z3tY>NOB(idMI+R08rNSQVr!a{aQNIJ@(|^)5nd&NKGgQ`rn1AaI@Bg4?TgQtfgo(I z)uN+Ud%katr2!pdoKd(G6kFX7hd0?V=B3pT{*>1&H`=0#Ralk2{~j=@y7%`Fgu8YE zGiM3;R3a9Iw7tGfu4g}GUMFuwx%$VSb5uNugKe|&$RwQt&rV#9CiaqIUk-)~aqd21 zA^qRgu;#Ka!?3fDTf1n{^jkLvkLxSrp8WCsEFm;Xp010RXur|>K>A8rwIm+~nq2~9 zJrEfLVY>7RQViI$On5eYARcD7uacAv0&wm_5ub?e?OQt+kbEQ&u6uE zwhN&gAUI~c^&c$Pm+_iSgq-a{G?YjjdF9axbZ+b8vQg_@tT~fzJD@N zdxg`?cB0OdcMVk>?z87>;tT8_q067$ZnDv^JZYQZmYF2ep!&|>yj_vQXxXlO%G3DL z<$1GKvPUL^*#7CE*e%HWy*jU4L~cOyGZ5s~({HGVDt93Eeavi{r?a3cb79tv7?i#i zutwSum(V<_#$mm&^JRYXo9i#9oKwyTS1&AM$U29NGnvpDir;OHbY9^g3w8&V?U=ah zySit?13N~{pYipje3{)7jZ}z@`%Z(-M^owVqz}9O9?B8cp_&15u&VQo~O3kGyB6mIPtTG<5b=#Jmf(nK+6R z!_yQu?V2dPGqd{ldctIqn{7%X@;`5cMkpiv){A>7tBT2s1+eV7Cp_P4D|W4?$jFNn zpiLo>8Q7#+BeuE-Qdz`PZzLcls!mz5a#0F?(j68r_4>LMZW3?TYeH*lKmoDuXGvySydAx2mv4wKw zn_)O_J92>u^I+d7Dw`PtG;TNNB9E{B8&biu5$F6<99j^El%S(gI&>L>m4*L3Q2UT% z3VruGJNarx%7zpT-X6IhWDc8#NP(*wpO%}EG99MM3;Mb7FmwN_8Oi5>$u}!L-3Bzi zk};LPn^xI+U{&{bu#n%MmbH~6>o#a4X|virO`(4co;(CjIQqxiz|7+dFrJgf+p68i zdwl%IAGH^M+tcAK>O%4EAlih$iSF+|8DGI})OaU5`~mRpb-xdSHxK#Ofk!@)8H~WxzCH{S#qW{M<-1tPz%F9~HFm7H&Bg@V(xH1MPxRTiA&5i!jVR<;Z1 zT!J0~+CxgcOAHS87R{L2cCi7Y+G`$A2s=(FVZkHKug=JZ$=_Lz4#Fj~I>$euL6Mc* zS3ni`XhM9As)2x(xRVG$CQopXHsQ-%3q)x4!3%b$GvhF|C&~M}xDM{UNc2=0y{Y&t z#tFevtotI^GQwF7yihY;2`W)-z~>az z$UhQKeG$vA`iQk9D&kE$oF(d$?W?S!%DmYE|L?&6^UVJ4TI< zxHD@GrJyyX2DJ3IS1B3Nqv6puWf>t$1%^d>UOGbdOH`1dJO?YbjY)6=ESL09wRwvl zi<4*RpswqTXT`3ajTOm8J@jNK1>#x~TH-L6g}#M9bm0>8EKoq@OjsZGiTp?&*tI}o zBQSr*nYp_3t~O9@Poo@BHAUfdBNzRdtJsNm{N#UA#(gMj)V z{}fcK%m=C&07>%TZQzJ9ptB-2)4t{?#T+pNAdDtjs+_KL>zgMgj8|0UqFV?~3+Uaf zL?6Es)_ik!KI{cInLa;`dTuTMv|nWrR2LnK&AoH>k~PSB7Mwm38+jfqE#Goi$Z@5; z8nx51Q&8)ejqj)xh9;t~$NogO3B7;#uM0xr7jp zE?Gapg^JFj+m4h6Y1=85u4(t)c~3F4lblLFRU;bHTA;3Ug>-1dMew~R{lb9x!Jwn% zlwDmMGhoo~pwxdLx7j+!*;x=L(CwU>xEV9yT(AC%iM-Ke?y`~)^3d&L_9kGljhfl0 z@G&(vc21#Es@s(L3{v2!;FH(puzfNwX>dA=8>R=FHQWae`FDYMhOgBeKX|AYW5PCg3Q-lHjO`t4ZY3Q#{Qh9gR-%x(` z6|}PM2`GDn0X8{fVOVmt=@Vf+z1t29V+`17Pd8eyz;Nh9L9|NMuKS_9CTECYac6H; zEy*XOFq&IY*jPK^y4{M>sR~sR{0@Jc?ETL}v@GKy=tQ$-4fUQ{%b(KPTY{K~zHcj5 zub?{^XjARW!H1$FF_S;iCWbdarM0&|kC`hP-O_iAJPrfaYNkruR-U+b(}*j;uib6N zdP-TRAS&R{2o3yOYY?B>_X?QCqmWlzPlcG4w~GTwezvvCvbJ#wRI#8-qUV1Iqx$qNk7{(q+f?AO*nP6NOoH8apVh_0v}mZjzqC5J z9??)aZP2Ugc+60>U?1&JEeF=IZ$OpoNlPs?UIMnU|_rAJh${>gv-H>B|Ofkr?!Z*Z-f?|#ud;mYsxs# zEv9wR_yzpP8cRL;EU{&1nSz<8Lf|DGlbHJl3g-zv4B}v|*WPg1bKb#_54W-w0T~c~ z+Id7K3!F8V66zGvwh&JYi$p8qs?vsAAQ|AaTu|D2Hg)CufHP6e56^9s;L~Hs+r*#Y)(?K0w(O~VHTB5jZsc<8w7t&m?mdn&9u265#t*oy(lL%0K5 zP#L7DLDw^bqcFL@kYg%ri4QGiO$ zdH~m4a}$?(e{Jaco&GAG5XW~%c>X z19jz09(A=H**=*KqkYNq8F>=tkb3wyn;~EGQJ$kj!`!vpj1b_m83?LxMvEMGr{-}S z3JI(Xv~{PCMKg{OR)MTzwJN1kD0ktW3-DhM3*0py!I|a0O^0;`_t5{Or27AxlG^ka z!7kkn(^(*>tp|KkTwOLz;F@#nO?=*UB?CE4HFmoag)*GwtTZzAlfO6E!qdj4g-g-B z>J_!&BAWG;02er{+m?$e_Pn5HT5ig@@Cspvsp-W%7QL5N3$6h3DQQ98ksqh3W$kvg zZbvPv&{gcQ))iKdiXPmyx(- zuX)rS=Q9V6fL{)mRa1eVI_sd_a_PIY&B6q=w!o4ORVP2?2W0%4bxN6!=4vCUb$=wd zY8~!Q(sJprkbMczze8dL& zBC7JpX;BG0;aU!INxR`5jGOXdcymOGrgJCkro3kgd2*{qjWAp2)vH5~F0hS@qKvdB8kKbDQ@msDCAxt7;y6yUQqe z{7P{4ReG`9Kz|)%uKxP$^oo|?_N1t7^z7}u1>ykj?~z;dB?KkrtdaK;e?htmU}Q_H zud0QLYj~=Sz-&=`JkC<2dbe5#X?DbelbaXcVq9ffz5Qk28n$z%+t*+kr5Z0)AzonSIF+8VFzL3@0LeJNF({ed^Ua%!7QZB4yt7_YHIsN z1+~~`4JgoBk#S0f9=IWbdshrW(HrdO;9NlGZqFbn?|98)m++C~%l4xPZ9na@>+Lb! z&Xj8Uah%GTOSzjpI)f>)-9oOQV>C0pUCj42ZI}38qnol~zPaVzSs%`w#$ki;to7y7 z0RwVLi}pt~vZnrie0~H3|EId!88n~Epz3-k&m1I}XnygX5T6jixxtuGQr$aQeYA}9 z__nhdR}UWQKhN7~$@tU1|D~n+Ba41UJo-#iBwSFJ{Q8PIFN-OiCclK_zC)l{ft?f&#l5>F4totF{+pSp~U;9^ur@!Zm=0MDGr_L|;^V_L!N(N$cHymfC#(Y@o-iCR9BRwR! z?LThXA025Eq}!G@y^p0tJUIN|QfPIyrSeU7Pq-J1#+T1zQjD#meMV9@W#eyq-V6{H z%2Y$lz3;ayS;kBNzP;YVJ==sl_u@?`sHVFuxee~AhZ z{*ZTjgO!s0B^fB~+F6{QmOcI!{8GjE*p;Nv- zQzz9W$a1^_qx~-oblfQnY=a)3>-{$_`m6b@AAycsWNu*EECUX$2o8pD$_x+|tv?6u zO?`Fe4D|Idz>tytIxo%*MZ2J(r=*~}%U%;*-_dsnY{x2N!CPZFaE7NW4AOM>;f=qk zBT+XRZ{pb`coF-~)_Kf5DLY1+a8bd5Yy(*}>G*Hq)n`-tE7bdu6rFboh~?FOk|)^r zKU(wcnh)m*6$>@cy3srH{@v+C(=JUV!i)>^@?7F9e@j!oNGi!M;XAl9y=TEokDcbuh;QF|NIV18l z7~u(S=xYD%aPAB?$cMq}uI+FN9o1K_sQhk6{fyEV$5>(2;QK>9y++t1Yy`KhcmsRY ziFLy=5~qZd!Erz$K*i_P;tI$k!&!Lerp*6zZW907xru2z$|lhP8z%ZRKjqnp(^(}e z0|EPWvFNe+OGNC%*GH$yPmn^}=2?qnrzyx4I^1LY+s}XA{z4uzM2NxYyrJkhE5Pd+ zMC|*7Tdf$f{}d>AZEF0g(OP=?Fq(*}ll`{6mj_|z>!^Uv-&vo6r;+b;jm`oNn9i6? zb&XegQY>yol`SSDjG9+@I^}4#!ND6`ba%bX59K$oNcYI*23N<5&4ml}BgqEt&EIYU zt{vj)=~1Y1_kXV!kf2n?A|pI~#%SS{TBcUccE(gK^Wv0OQ&{z}O~(Nbd7Ztl?&(e4 zXs?!sD<^`P{P#9H)oJ+FP76Mod~|d_&ZJ#^_&_Ck)sS|FwI%CiQ2zu|3!`G#sofZv zWc6WtR^646wn1MTmFSU0(*|J=WO&w|u6KMRgpoDJ61ha6RS)?lO4@6w=b#wsfBbCz z1SXw>g*H|>+S@NKZ?TX@ePVol=d+>M+ul#~rezqnZQz2K*y%iY`^NXH8-un9ES;u| zUZvip)T4%XBi~=x){J;{)$+@rCWnyvNl^mQ_jzV?bQasPPo-h~vApv_-zP-brFjpH zja?JTm(>hX;SbvxwuKp+3auY7v)L6b+qz8AhB6%;nIoFh+6qKC! z)Hpu^27*GwHLC*tr?-nmI61sZPG>-ZagTs*+F0cLUjzil*;e<0cgopM7I0Fg2L+W$ z*{9vdS`8Ih;`jBa+6B|^C(*VuACJUASzO!PBpBP3L+=z6qfi=Zm38qWtrtHKkJx0p zhj7GR8D?wGSsA!*YE|qY8wIU6*oFRLWx~DJ)ubrkyz*Kf=U;GVNFcg>%jgrR3dM}i zAU~UsQ?S3s%C3DF&J)B&pM>Nzzxnq9r2U8P7kWldzuF1Z(tql&n}7GVhax2d`RKNN zMewVl+Pfc6Y?2(>W?L6}O4bbT{GmQLlp`OV!o*=g7#r2ygA}J3RnYiEYh~0kGDy1u zhU!c!o`Dv1ql{_?309XC_VufK=lnGjkHby5e!>&O7kdSk>CGqIJP5O_9_cPIr==HB z2*N^aFTK25YVm#pot66dys7wE-fdp{l*WoV=zf#K87XHqLm%0B_3GmaZC>Ea$OfvX zjJ$c2>Fq+}x_ZP@J1CyeE?OY}(XZ9|qTyrC?2mQ>0;3ap+z`_nf&(g-k7Oj15uB@b zTyz8)!<88|bY6}eQ(^blPhP_GENs)YY%fw*WW=(!-pPE@smhsLfXY(lzDcEJ_2{!| zNvE_9->jA{ivP%$okFB)L!YGeyVG_;D-kZ;4VbPgvAUQY7n7g|XLhW;pEVwwZvYQ5 zi~pEjZ+!b_dhP3?9rWy0i%uDgITn@-Pa#$D*DU7V7S6Zfp?bWe%t5fiBWc}VTDw%W z^78i3gjjk`ObD?jKTKRx;_)6uVo%Vbf_L4S2;l8$$>cb}zr0a7{WX7Vj*N>lCEGnZ zD#!3Z!s|};x`SfR;hJVa=6G10D=6P#Jz0BRzS=m z%j`FmP<=waolBNk=esFFw>=Sgy5+E0N3^ljUCQ@BDCSX`xv1 z>CtzGfy??XgG%>5CO(OjZi?JFvw8Bofr3rGm~dHlitVR$>^Md<(6?O%Jx;M3mfEt5 z;8V0s^;#H~C`_{~4jH=gM1V|bv(@SIm$D}y*knT!9x`8OFJ)}->}DrHF2zqd@v1UI zBedAh+BPqknO8nfjGq@Q+&y5ww)(JD{eq)t%2$sMX$rFf5dWoOF{WQOZmQLHWm@40 z=N1wKCT?1JH$JvQcJ1>Q#nzga?q77XPFy~Fa|5gpMFr^t8Ddhcn%h$iE(Tr`YLQ^0 zolOC_sa=e)5YVs$*Pq`6v@3Gl)D5NkLQWxLB?I4I@ahUyR)1}Esj*MJOcb)m{fb2~ z+iF4sZovM!OSiAQ{9-*Pq=^EquG6DpW9_c`99JEkmO80vxpBaMT*M>kAU_Y&_qvG9 zOv6x1)U!r)Nph}VgzM!G82VNsKISLCQF3TGd9~!j>!9kLKKdg-3p&lKf6N~0|MOW3 zJ(-MLoG+)l$)Me^^wP(&;LnZaRRPm%^mbmADy0X%T==ADn?fyzl zb|@MQPrn*8N}3(9ICI7}OiC_0>@kXKX4z0%<^CFZFf}2c5+k+7VpqN)rXx>6Owpdr zX&|}Zaj@u_5P%gbvgXOxAA5?5HWhjw$+qT4X|lu>jqDWMZeBe0gzJe~1PFLNhL#9S zJ)XMpp=f#6er{^yI{!|^z$d7?&nG=5&WBfPjY^vpXY;yntT|cpUVjnHLKaK(V_CO* zrV9>W*n}?AsrApD8fB@Fo((3nZ){^j#el$vk!26A&+$!mnT2pY1#VNfug5x@ChBs} zLClMXH^RYMyvR##c>lPj(C9_{5oD~co8O>Gq+`5?-jr2}Q~ux<5~G!X(RKKX;2frr zu%SR`Th}mcv2oUg#Ysz@VaPunlh)M0VTG8Z8CEVhwaaBHh z!b`;vbbcg8+72vCkIwM;kCw}b)X;ZKR~i+D83!b&D+%gI#dFzr`EW+yOq|mn#@=@| z<}U(HXpOHLe|fp2qmdns6-aSxZY1<4r3%FfM@dmtu8 z4l54I;H`^&&uMuWj&u(mfYqL#K|K)Pb z=woPWZbI}BK#!ouLi3-#AGph6;%;XAz2TVd7U~^VBK<$UOlOq+MA*i(3_L2?8IY(j z&m;$cYmXg7qi*5|NHTHX%LZ`J@d;Ot)1;EfBwE_>esQ6>E%M{EQ9){OI%fFRe**L0 zW%~_33tGTk9v+e4*qi&b-P$!GeZ+;>b=W1d6_=!`_Waeb2p*z{sQGDnBL;)DTSxE5 z?Ngi8p4>J|#897J%{?b4m?Wi|!$Kd=OiFok4Ka81R0SI(V4!~F0KWDA`l^fGB;aF$ z<$IkYAA$E4y0c;c(h}uhu^hVM4V%G6Q(80V;ihlarT*`JE(1*$!r`etAHq!pS2#~uh4#Ba8M|f8UIq9T?5#J?l~-i}A@I#};A@QT ze+Gz0CS^T7AUz{K0c-`_4EabrIP&cI+j^STn?!#NpF9rXfE#|=n+Iuun9MAKhkm@j zl?~v`gF^xN0FWxE5~>5yx4tS7P)LkN1Cv{Q)$;^w>{&no0m4Z@#`=#JYAUUGxp)8H zKO6xv+JR3o8tB4-j$%9_mY|b2#FtkdFQl-71Mr0aM4aPy{|w|rRp}ShR1QC~(n1?*$|-r&C^Fz1Z_lnoS;Nh>FX6#5h2!*`yA{F;#aqv)Y`ExMvMoc|DRt=5;3 zF{umhZwC+Ii^ZREym53x_UY}CN^5k#Xd}-j|Cq5nt*5#tO-zK^x?r@?du@ejmv;qc z%N$u@Rl6w)uTeAzcsUKPFxflYs}3lhA2$huxeX_m7g6ziJ6k)b*%k9GU(B-1^CjOh zDjJCj{_Gz5c%-hiZ!;rhZescAXOA!OJ=B&FjBK+3#pj5x$w=FolpG+)EOocTD?+sa z0KTBmb=sk5%5~*6`3=X5FK-8&Be|``gJmAyj5_TlTYcCOdSrWWW4T3Ey}(g+T=T=e zn}_B(;V{2XMrF;tvk8#(!_$$!2<|3)@DjZN2;&QXzx_C-rf-2|y%mwN>mH*}^P1jc zSYhNRALHZnK;MBQ&jge-F-2N!ZF;{;3Y{TJ$dh5JenDa43gD~d(-62uzwwg-%zD%3 zmjU4`*?F_V$n$59yY(0SZmTKlhJ#N=&89ex3G$PJw?I%yg$ilk2GYV1*FW%LpGjr? zT30iOfMpEby+?tyIw^@YNs|v*5efSH(&3{l2VMr}S~28*`)>fU4c>o4yBj`D#I(cw zFDSIU_1^@y8PE-T7OVn`r4Jct1HTz=Kz5JUXAnG73(*Hk9EExD|61ps0rcY2p}PPB zXd#AmRug=UnViq^RZwg*pWQCf`R@^4kRm>zJZKsW*}A!Vl&~6c;yIVkI?c0~f2KC- zFAb#xG`cGQ2;`NzB*Os*S0x$G|ClwnfLX&=%ae$-&(@4=c$3TuRHR0zcUetaXwqd? zTJx{8Eaza*Ip}s_qhN|SYUO8Fj^3nU3;EHr_>vBPzi;EpQn%-cVW@Xa!+8Rnj&`q_ z&CWVfyS)XhW0aHW^h?GNu6NzRNpb?K+w;Fqk~{M5wpJP1!`UOfzuf%lSyrA%^a+{< zxCG^}o_oFV&?7{-U;Illy`So@tpu~QW4BZOBfMlD#A5whGcP*-C2~zu zf0?p6P48fXuJP*tT_7-e&RrJHavMJLlG)l8BMm~M$2+GLyHIi&!I!@?zt0cJWc`p# zKtP{51b7WiOakrS3)XIBEg1YC`6^r}KP-bCoMC04XsIUnbZK#K@Sn}0hOP*p||M@xIWOTImy zN@x^>s+{I2FH^Z@y}>n{CuuP4(~iEu5jIwW z2N)Sf;v!3s7DOM>ckU_2Wzs1=P1tQXLPXAbj^6LAV_6v}H?^`%I5P4o17q(uYM-`+9w(SOyV zx5jz6KC`gdApdkOFHCdeAP^z*7r{N3UHNPJ|CiWliTWXxk`N_s9Lh6-WvKQR}GR z^39^iTROV%;xVI@w|RVDUj{$Nc}leAB~A;_FMEfUU-@!5z}lToZJ@&ENz1LE7;&KH zv<@!SHZY*G3(QDLN)Oo?TrH-5*8#%3W)`()gzx zRP5Zf)fcW4D<003OreJZ9GvrZ}UXt zd8?=P78P#uWT`=ER18v>A~=J`ZJ)`&mT#tUn07-_l7)+#};F3bAX^ z+P_k3;}^7NNitsfY4A&VA)n`B8-y6!9bz*Rgif)2`sS9D1lN&`Aix58!Hs%CDbUCD z{)%v6hm1g%!^vS9AmIenq{V7o!(@S2I4kUf{WBfb(szOOk6uw%&$gs;zR=ccyXRu% z8rL_`^BET3>fDz&Q$9pM!{#S(QU5&UFT>_R(9<7Rw9f#{OFf zu&KW*;naX>M|Mxvocs)(mJeJUBbJcTj(qx|DvN_r(?t50WZK!@+H*@$DeH8>xXo(d zxNyPd(Fa!=-_14d%pJpZVpbU;C5#rMcL(n(H=4yti&v3p_NCLCB4foQ zIe}weSLxgtX@@S{xuMS5niy{<1ifuU10k`?$K0!(*6ZHfoLN7QAz>|hwWCd4DyW5_P|Ww}G#j!DmMjg) zJXA^UKPaPgYuyXG7Fx{x86A)YU(_MpY}FIodi%v7E}S@K!_eyP((}l60Xf-BjPDZL zi?fTM7S!`2I&>ZVi93l_BX(N4hw-BI^`-TK1?%O(Rkw_`T0i~ zg__Pd?c^1hh2;BtuP_CG7Fwy+>g;mt`+5~NP;LTmHN(&;|3wf?*&UIXoekxBJPRux z8@+EWTuk>(j^u4IzDKqLVlicyzz_-U`|qGFmsUhs?=Unr{36$oHq1EZX(m;qgS}2c zcKMqukL9c3j*qjPj(W7wHB9$Q(Pf`Y?vGhV_gD*GmT(q~e~K<{%|6oXb`}&=7Bl&v z-5b(=xxcjHvMS|L{pEG-XP`n^5};E{jXl?*rw4&{^6eMbs#I{w(q!w7`vJc}yKBUx z&#u~Ne~A-oO|6iq3C}2e7!uuc!)V(mP+W5n(WH_!W-TeR1=)BnE7(0cRrcdKN=yd+ zO9FD2C#bC#Cq3n)H{gaS1i;a$E7oV`n3Q!n0hM;3$CsAmdeb4>mbQSMl5`^{40$nE z#&FASWO5%%mTSV<`YO+AB4?^(FJIJ^Q>_k zmxeM-d(0=DO9#g>gE?c5iNe30nD(Ss909k+G*di_;_K%OIHWF;`10 zzT0hckgJF(&p4BqsTq#MDIO(kpmD-H@oDjC{!PEqu6f@mT&4I`=^1+|S3af2<-6cW zrgi*r;qoO>>}&TQrW`>`+*du#%2|eiX7sHyK()6%uMNL999N8dIK3ng&o=&qd%;m- z&W}0bBGp^+CZ0N)7a!URGY$6OmoW z!kjj`r2V39ZYYL=T8gJ*zrdZG>brZ-eRt$nz-D})1O`+F%2nYu215;uhS?vX;m)-M z@nQO{**5Q`&$8U2HH|B9JvL62>PgIFrto_olP~#dx3PWNx!l%pci5Xr2zwVrF)53t zjlb|v(ZPDt+2-I9v$fW+P$FQC)bl9ha-oAGn}Xjo$Z(&m=T&$|v&b%OBjyk1n@m#OYU;fxrP zi;)%&IaIrsh!(@DeW_PaGeV&iN~Zb_HCme+>Hg@y2vYfUtkAUsk6~zL2q051${2^!$X(*9irs zKwNVybj;|YJ9uaNTO%xIvhkR?TL3Z>>{)PqX6%;X%oBL-@ki`^@A@i07ji|sb?EK^ z)h9K#vP+SkX8i;XdB(h+B!O69ten{Ud#>H<#2=oR+dEzx&ke_2SKHS`rnO>@?LIBl z*^X@YM`jFp<9OP;Oi7+?FTeGce0l49U{+)b>c{DQ-quEY*Uixj@R&%2Z#$qR51x5T zawZLkuLCZNu0yS>uQwP)`qr10*oz#HYMv&R-Sst4#;8e!s+Bzp+RNczhFC@WW2a{B zH|__~cyzjCanv^8qt(_yhZ~{~i}iR7m*(cci|+k^Cojpr_|#@0^L4~fwCuk&Sp7-= zbonR!6F`_Md$b|EDr@qF9$#7Eso<8o2IR}GmNZ8IO__*|cZvvdVAfmI? z-+m>H|0LYpS5pk(#qZAgyThI*j85wYEjoTE3>qA?5H_aU>yL%=T4^hMhN2y-_pc3Q zt@xN5=Nue|ud3KGZjF3Lara#;I3Vz)t12|Q7C!!bBCS?T)^@s!KlBF0CRK!(MTI@O z#07UB6c)$=kV_X)UBc9qmWho>hVFb?4fp)rUyLi(R#UT^sPD=xaAxFwH@`n8v08sz{q$G_0p*9^M~;nM_f*HXx8V0BbxB$* zi;evp2$hw&3Y0P~z+<8>#1Q|f@ct0Lah%^i55Eth*#GYXc8gKQ65wGPQGnI}m`-dq_rLYKWfZm@Qyhv`o!vex0WS&q#uX<2v|md!V+zqLsfhXQJh&A-U{ zx-R#W_MW@?>M~l)os!e8j9-ndFEJ~9VLH(h6bHhU-evC(bL&CYNnxp&Po*ZIwf^7t;?`gMK< zm4+eOjnw8WyV;?iEltj!Hu7>ZCZ@ccQ9zRsjf>ykp_=0?(|nPNba27lLM$M6E4*xg z3e0_TeL=@0j;Q_awT@0u5y=u${EQe9c$FY|aT}X(-NSOL+L zx9jOEifm{XD#-$B`h|V0>*>0yhDp^7MtL9dsI0}%K5QO&7;?;OQCif&1=^)0(&&=5 zSLd{d%8EU!JY$PCnC++1a%6WO?v5Zrk6+j5-626<8aPW)77Op`@o8bfBhnS}m|)7`JVEp!hl& zoBkqIvDs5Llt&=km#)Zwt7%nj%j>d6giOpj^@nfOHnG}=*GSi=s$L2+v3h>+=HU{Z z?uQ$$t|2Oz78?&x30Y6Bb}1vp(e=|ur)nU7uTdwlvLfS`AbL-~7F8PjL8eq+E{enC z66xjle17ixRQ>=5l!yg`(Lsj_#gCEG2^%BSr}a=5%k8Er8YUK-F6H`FknI7Uqh22Y+0%PT~flJQ0d6qPvG|eL*rYD>huLw~eke$4%A|6TiVq2#u zXfBx(fCJk>J~_B2qQ!Y$s57Gz*)c)D7itffuA|Qwu>D#NJ?WX)iah6t1etaNA`? zPb2PI9lq`2llp!q@}8KGT@TsA^PYJ$#s3WfdX93&fIug32)YHfyf(~r&u&IW;;nTk;I1f#yqOaSodz+Y(1eNYO((T%Mwp>2t^k|1B zia#_r$K8=FSnudRP-h~-i_CZHYSHoUp(U9v3=V}b+(})a&4`Nxk@WBnhy3wYzHe!F zWz?3Q>d{($W)ipi+I)xj+QnaxA6TEckN5Yr(-a$Oq;Wq7z6Qs|ekem8CpP`QU)2Xw1-G>Cwr-JRNy1RD#3!+tM~? zGY}NLoc3r~M3M|~?Ym~~dVD7>unE`Ulw>jWsd)5+mtgxMbvHwPNA!hqs)aHSB7E9)bBeWFK%}pI|5RN zl#I?k)h1XK{0j-=Je&AOX*pHyXGY;k7KKcA*$MNFVi%Bm&P&W%baKH$s)iHmH| z^Dz%L_*bT8>z_=`&B^Nl0%(E^Qg!3tYfajLAd1O6PwWevyc}g8!Uh%1DI#ND7sgBQ|C6xDA!^KU2L+M2}9s16EXtybQjx@=M!+~jm)^ns* zoDM8>?05=XEgF$Z{Z>0iJLDr3Cy16g?al5}x{^@a@B}u!oy@JPO@`UPO}=Pa9mxZygb#C{E=wk}6Ehj!)o3^0A<3IxD%bS*;Q7cxcuPUBV?m=E zVoVZvaWYctsX=P`8)#2Z+CPOquUgY&y1wa*71)7*emBJ>Tx6ZwBj?kFKQfcmKQhzf zq$5E>uIlR?)epK9IVL!=8M84%B*#oY=a=7p`|eUW_L{~rxT2C93)3}I`u^%e&oG}( zJNDtWz(9X|u!!3$-L8ejnm#Rs%W(?y#SybTX;A|Si^e7#nir%Wvt(*4#rOEjFK6l% za+%Au^gY#bG*z6uj>-zSmrQr;^BOv|H>sMd5GUj&5jo`^CWXk&CnZ^Cga??q)>;~aaS<=Z03bK7OY$U0h?1*QG-*Ztp z2Qa5Rd$V_|mo2*M+N~8%t!F<5Vf04rm;Fg78*W{eDvlV7hdQ7!beSL{B zmb6+EBV(v1e*D_-u;HaKxSMMfOcYOHcqxGPz`9~ z=p*-mux@(95;I^pE=#$1Bp7+u<9Qbp;gjkF9}xvgg6uD}Z+lAj%G{Oxv-Zi$0(4#Ma3>IyP1h$#)6N!hQo zu;-oi>8a%0SPI`d;~eIhyOQGP>XrHSrr|->dsrC>jHtR$q*HT=vUBuVQ!$|%Q5?|# zlYAfYVA#yx44aAM*cQt_^Rvmu`HrG+iA9zpNchnm7qm}d_u-vpVr@D?#Mrq0Fo=)n*>Jm0Iu_g1Lf-t!2-q!BxhlHTGj?P&oI4yovk5=ZZ3twLL{r$YehRDl9Y!DyBpp6Q(LPoAnAu@Y_X{3XFMrS zz0c79iZ%Kr*-W99J(f6y9g$A^mPxYhh1r$r#cWG!XXZ=HrREglZI?LG=o~w~mOkJJ zqP^ZBn8Oy>9oFLJpWfnE3(cF%#Sk|2D`Y>8NcL5)=hbyJ^zD^`-)kAa^6ksy_Le_Z zbjDJ;czeLFC9Q>xvCXijRC#CtUR_`TJQZvw@$ZZZ+j*XhQL7YyMD==)i= zn{hRs?bt3xI%p6r8tXA(E zKOzu_rsIG?lk@Sa_RiGK{bPk6jMUp9k>-;WKwoNij_fph`z7>Z`zMMj%_zyY_kfuK zvY`XkZ*Fw$Wcza6!YqWns;Y4riq>}74_an4NDrrN7vqgNO`VtOdL_B(-gUbqb9t++XvE1=9&$F0kk)-*XzqSm84k;BS<#HFK3vgqj(D## zMCoZuq~s!zznjuwP`jMrYG?Li=Mn)u?DOhvS>~D~vvKOyiWCO#@TWOU{)5=j+937X zA+Fd`trig;eP$imiLWI;^WH5RO*@O9alAy9>c=b@b|>W9ZT(vZEHcN>)Y4GD1w zV#1JpEZabPZl)RgLN_<7bO-0e@J_ojcqV6yG%d8eN=)KIqr_kuyQW6PBGrO@Wiv6i zrh`FFwXb2|y=x{N_nCyUp?@aHC!OAqm>HZ@-hal;B!5ibPUTHg!5&Y+0A`)?@3?vS zI|9t%{PjZTY?Ao}XJN?kprg{+q7lr8%TZIkbTiPI9GRsQjuAvt@#n`j#Q*ocmRpTw8#sq5#518Nm3GJ_^JbFy<$|u>)~Urc63DryB76;45&oy}^~y^HY^wb3d0X{`6340J zi(D~Vt&T+B*A{+$MWHSRBS^2{x2EpuXlg71d=HoND+?EuRjP%Ie}1R=dCS{! z1azzQoL^Y^;b2Dlw_7cWIy3XXe;P98KrJ07&=V2p#48064F1!AcRt$zz|sGq2g&}| zSHs04|NO-TJSmZ2T2NRAOb=j&RhQEQLHz!8qEDgP1H3@9F9<=Scx(o!PlG&n>$73s ze{taj5$N9|0Pd`FlZ4rMX+*GFU(OdIkOk>^d?`#`$-MsszIi{8sG1-KNm3AgpYy^# zf+o-!e!>3n`M*G%0#9G*k3H|3yLaKd`dc2G+7h3xH;Hrpq3Wc(G^fv4jFX> zZv&W;z-DdO&!31*13%IL)=IH1&@)e6#LDxiGD1Ta1Wt?zSHFqg&ypW2dJEltvy5iR zKKG*(XMuhUhs1`*8#=GHxg(9c{gQRBrquG!Tz}S351$W}6{07fboDZ!;NGZ(!KEBj zk*ZM`hRBt^#R^j?jsbQoxzdEhM(90Vmo@pt-O(Y94|bhKiUrv1Yg|jtA;qruhuE8K zs#K~slV&FvPj>jLYR5!derj9(93^&AiP2Q>j>Nq7=)5fA^DgnKvdYVHG9jgb^(m!+ z!r5w6B;8CLWlzN?X>}iBf(ybMx{RYhtq8j8+M?WG9kC#ESeA{I)$S7UqVtGhZ$H+@ zJxvC(ba4UV#HuvEIxM7?E<;ZuDc@q$vtVb=gHK0_uITZbC=&ue?`7a@TgTBXk5-fv zW?bo!G0o*@FnyRg@DX@;N{z@YZ5SRukJ4vtT%*|?hhJ3kZQc~O>vQmZ3^E)SWSjR+v;XY+R&zWqBIlf0u{}k zgyw0r%z9DL+C2Kn^iBa4)7|i_)tHC_-m?e=9iAi9)Mc~oH)XumQr}paMkPe*7u%ng zmwr6fsH?u~a%$!7?lLL(eV%zdq=CkWb)&!6Lw#n$VtRPxi2X1_am)M`uTGjT(Gu$O z{hUYC_r0%zL6a_-E9D(pp739&V%8NMWk#x|!102T*xDRlBpGJ^8I{vYTd!n@z zj@ksdUM;CB_8`}*Qrq=FaD61yz9yIldrO1>ySfO(n~q#}d;VXtQ-ijVYLU;2fZorCFpLlKf@% zMlBm60IP}ojG4`g?>OkZL#0=x$weDF=Jnshs0jEF|JM%m23zk?{RKksrhvE>z@z&n z{Ap#vf1G~)%C}Z@^lBwqXX}Vn!nQiOx)Q(bUsJFedM8(K~KR0B$kIK$l7e zcZA}CloP93-;4W5-KLk7K1R>4>ACg2v~5-tC;#X;h2LNz+lLyRJ2q(kCQk5{ga=7NzNRO8 zVv@&QG-RPr@tV%c5W4ya`(=~i;&k}IQdmv-6nV=7RxTHTdT+Xy14Gv1wZQw|s!4u; zH1Oxh$Q?Y)RhU@A-8<;j|F}P_^L9ZAS$0%6iJlDuOQScw6R3dQXOiDG%ng@SS&1W3 z1B|c3wI=x37&eI2l;bhzz;tSIE1wK1J+=(0`^En=wxfOiCX`QlkqevwE~&aLYkE&L zU+vrOm<YSDX%~i;0~GpI9DoaUFflkbPVz`o@2;q&7qv9~Z5xzv)%few&woi+i2${ij>oQjk6d}vs{+;0e3t{Wn< z^fbIGwV3KZYKU%K*)Z~MpTNXJ(VAY=#f2r+AgV2zfXJ(DX-1zOxLtYR$(j95CtB$~ zoGqr<^a2I(S?b-PZ=33Lp>bj`FCn~-haW3n*)<>>J+7^;hpsE#M2XbCEo9i&C)qM` zbKvvll)p4s+r(WfCv^ExK?i}htpQ|wc*|VMTYFpnqsWDNbZwj{_dx*hkYhFYZTJWu zP8)Wf6oOU0n|XQ)u-)@ThDbzs`}*tpM@T8;LiVhiKv%Zuo3~cT%+QOGbji{r>1_C{ z(^p&y-hu18ElSaq=i`i53*B?Sn%hytpF{e#s;93i5eo!muV~%LSaYYWHJNeKkvnaz zqF#ixCkxN-&t+2%HVHEa&9L;Uo~9qWPsL-1PsQAXj(8gMJE<1|t*r{W?4})XH-!+})fce=M^LE_u6W3NSO{aWY#^i!#g% zdyT$T0(XL&6NB5qor_KF3h+MXKEvf$$N62{!HdeF=5>6%OV+dLA(?shvjS{)^7(w1 zD#?tB*ChMfosmqa9olP0dAn=NE}gf>4_=~)>om33osm2NI{I3_bd7BXy~Q~go=#@R zy!%kZf!DYo>|ivdM8VEs##g+_`x7o>za?& z8*hr6BKQ0)j{R)a4Z`hV>L`aV7dtG{eRM)Ay_=<+3LccVTl5gC1wt^O)5(jrr&f|` zM4(;NeOMja6gtZv^%MelX%~qJf=_7odbUrxIyQeHt@rzm9-|UluV-WTLMN9Mt!YCA zKg_9qfvZy8I$cbC%hy}%)l@lTET-#bJOBP{5)5O|_?obM!giX!wh%ef9b%=kfvUa( zvlA92qmrl#``kS(b`dq?wHm@Nul<;waaymncw05N@2S_~d{V1*hVlXf)Sr)vDh$I8 z68Nx>8VqZ1<^^QF9c!$y)%G+=LA$2V_D0#bX<>6$Z9oK&5?YMDCbJ=JwCEYGbi7QOp1qE{eB zp)SqD?Ij;A#FK9#2*y3)t4{~f7>;!bt?S3e?Q5t>H0DNK&1q#3+l%*n*QF%yOf~A> zvg+r$U!GH4x-vg9PP%1`z>JF+%Fn!p5D=U7!;gnRM68l+qYo0#yZ*_xVse~ z$P6c%p2Hc^wtzZV%bpp}fi^7H2cZBf=sF)T2Cek2)};PZL+kkTY|^U)o8crlNRpJV zN~gmZ<;7{>rjh7W$pC6>)@9&~qeHSsF#J4^r`v*lIdW-}7B3{yZwi?YHjYnuv{A!L zy~P_m0$j&vet5KyT*^t^Y5Cyz6!jySzCKR>OmQ-!XJs&($-P5PXsRWcQfGvrGYn(m z(YDXxQ`8$75+i*!uxs^mJ@jTiY~kx(kC&iK)_pNGEh2Hw;2_!K%);PRtxW$Qf)qEh zhvO5vQmE`0Pp4;OmEPKp0VMKQ9!D4Q{D6|_d*JRTgKMMHZ-`EHQhQy&@M*G15>-rg zk~jCbHhJ9B-;e@KUOiHpsWGpP83~Tc=E)F@*&p!)VTZ=>RE1kWuXLg8`6>54BD~o{Ob)C)Szix0$_^u6x$QnT(*;h&gU)JKoi<}_((zj&pY(! z4E9?8$T?W1h%dFhnZOt_bE@D@Cu_ejHrgEiEFrdJ^uvYV64q%)0lP&=E3h9woz6z= zh)XPwP95JsCC_v}fs*oolS0bUa~*?t+2?gf-*+@R)iC23n9nhY+_1O3Ihnx2ZF|Ft zh0XEPkBE1lSc_;8#LLb+zaf;YL-7qlCj;oD$w?j0i9?n3QjE*k2jW{oQ<(f^Pxab+4GTa_Y&Qfrv7`%>O2HIhuDRUZ7Smy2rHLcjBh- zknMe^G)OvY~O&u%dI(!A&CWzBvEtjhv zng^@bO+JV7+W?6<`Tf9sJ|`CWT{69OXtO6CdKIsb92?(j+4~JSiQeu8zEo2^n$s=p zLoiZ(wNm~0eKzHyR%S!$-MZ`M>dhcgrfzR-ez}{IgZV;7$72XyD_b#Tx1xiXMY0T^ zbIuk(1 z!>a{4l8y4iww{vzv>&^%{lE=dzJC9XY<{QR$;z?y5ld80?%_b41Fl{==?8YWh`5oF zVVmE}`J=!w{4IzMbt>4DC%H+ZSIi8CmxDiKbJ#I=sS1Try^i?%|oqS9#F-P-4~yKk0s?F9GixmT3ioPtr8cS9kR6Vfl2 z>y6c?POCkNHms|VKOHhjc;a3<<2F+`SFEdW0m*0C){Gabhc<0bn}XU;r3#WG&hlT5 zEIymMH%8dIsUI)q(XFOA=AkCiiT>!=E-q*bx3(u~fb)HS6gX2jkKb;4U(XIh06&$9 zR=}$z9QOmb@vicq2a(Xk@E07?KTD!2&@w!I9>=%wU4Pb?4 zrmljB-QZ2sq!P#rHqh4y89Gf&&k57Cd_h7JE_2P!EpNu8A+RwRda+@1Ybqv1*!XV< zhG$pMtR>U-e6>3P_qe(!-#7&g&?a@mD`056W?u@HPV>i7X1l29kAkcuZo63is7}r` zbv1V3dYkPsGGpmFw>xL@D(-tcyOEBaFLijB13uhRftaK(_}&1_jdc?(9W#ZKF5CW; zFZ?4)s_3IAvIp6M4ShF*2L32w+;03`Qj?-W7e>R2GR+0p|3-|l2H1U77??QF=SKY z1&sKXL0Qwxno^;BPeApUvsS)ae%j7Uj;_C-yMgSDgTsDoW?HS`Pf)8nC#Fh#_%9`_ zyog8hH$-8lC@5R*ha}}Ql9bz4C}3g~12gad>W zEB3!y%{8SoZ(*QZo~UOQc(iioX1kh6?72FB>Nu5As}P_GUO9f&6Cff6K7j7VAd_VdRoT*bN~nRtg&Z6^*KjVYsP>1mnb$~pn#sV9DD)g z2v-&flhNmXfFKO_7qMUG?bM#p%iohxBoCSg2O1pA<`~2NnazRA;6JlD{rwO86AZ!; zd+KGot*7bhUoS6BOvP>_auZK-2-C0tsjRlo^M>+#Il@jFP{;zU)6B8a$Zb)vKLXbI z?wspZ|34M1KZ4ljSfGB9;g{bP2Z9*!@17F_0Kt5*4N$;M7yiW~225fAHvShH>F;Cd z|MH3d!zpfp0E*JTKBWJklKz8C`ul(IAAa#U!}!k!bv${y`F$CGg_@-HajUoqJ5giJ zYwMCL+MqQY(Q=p#?wgiiP43s=B4>QScJD^^L~5V@amdlo7VLW9y`soifPg*cAVX&N z$@i5h*G3%@YkS8mIAkO#D%LFW5ToQ~^TCGZdiI}034Y#P;l=arSlkX6f|ZzaOA8c zBaH!rRUBi_!4y~dJ!iQq9&vLffi5UR=O}(Dqc9tYU^86+aVV#rhZydj9dIODgO!0@ zg}(a4V^{2ph5fNj1U6z{FsF#;^hT42z6fLXVQhc`T#+D!<7{}YGN?WLp@c@n8=DC_ zf_IhR5>cVcbEL=hHTqi^#^t^EK(a_F&D>*yXVjB@EhM2%(dt|>19y0)%X#jgC(=)g zK6$FQA9E?RS|6F=*3!$0c);l9>5hL@*4Y+xJwACeb}vmZSx>yarN;Tx<=a?f-^yro zQvOI*dPX;8XKmcb{VPQw=OO#^Tq|Q#2e>Y@J_B8zlz&R&^RC(YxwO6l!t_QDcd*VI zEiNq}CXb~#eO3wN>=gU;m(2zIsk&j<&x&fe?^@2duzJw6R>Oq3_s8%vb#C~{bfcb{ z<@uW(SvCM3;y(~@dVN3i{G(arQ<9cH*q;r~pluX3Kn%zM|Dpb5-D?I*3J8CulV?&v ze<*E5i8ZZHS)7qpm5yoCIg-_4dpW-Jy@zQ4yfj&z+US- z4PFL4f&J|D>5~sfAUfZ``?ndQ58V$ znMISCIbUd3uSfYW{1S6&YDu}p>bIN9RQsufPF+RL@EgI-E5vpj@K`;rR?2rrZ2^++ zS)^$;7ExY--NPZBc=rrBWBsqxre&m>9l7z;johHWV=g846hQRrmd|(O2=~|qF$|Lj zdlpj1=p1%HesIQ$YV{tD=|1p6k=5PbZR7A0a4o5amuW)uypKfC@j2eJ74Ym-Vs{C%JT(bJtp`J zR)6Q3XQ~=qRPxM1W$axSS;EiS&c+qRo)eD1G-XZM7&OaOO<7{#E4w~<@XW%gEZ?1e zQs*(LuzSAQfaHP>3rzV?{bGC6%cXsDk1CiLdRN_&0XpJf$gM76EgjPyWe;Y6cQi`S z5>LfLOIcG-eit;P|hHX-C zVuRqtOd~J5xGU@se=zAS;DRTM?)%VEt3E8Dqmv_jokOiUUojcCR7f#-Gm%p!Mx8O} zv&6;wi~0kGiAuHvA3f|87*gWp)|KcT8<(dWw}OV z=XpQ*N-XIxS}9U#YD^htjg4~JkQRwGF&5I_`|0`Qqbv1-yQiyjc1BPzj3LL&vY%v| z?L&4M`?=FEZ;HjokiC#ac?+@7hQ?nM+QtvzKD)zWHn-*(XLq6njS8bh z^_C6Q*6rO2`vm7oz zhJ$ipo0xWc$2X@PO+qS)57j5#-Av9<9~{;`Mo&KaEbsPgiZv0CQ1ahCm`hH2w4%8t z$i92g%HV-c+Ru;yoeS9v!eX$54VyjO9Z`fIF7!9V&Q_QI(OD*qhYczl1MNw#MAb}d zG{Rhv+`iup@YjWIjFE4q6X`gSe9eE4U;H?Im%3hn%c8>z!(6Sm$TR`{CB5)@Zm2^~ z)VB4&!X8H^wR|=NG9n;>K)L>gXQtCl96IgAme!g3VW`l~d30voGQ4(2v69XTH71nN zV0MVt{36kb6!A3FZcFW`NUPGV4A^=tH%3mxq{-k7QcJ{T>SRf6A~K;{)QRliu(RDOE9H2=l{Asz3QeD(wg~FkM{D2jeawrW5x3 zU+qJu#(#`VUjG=G%;bU-H4r|AeCF3{ocaX_e?#i6O_+LQ`_|tJ|S~0ko zZZ+~F`4qsAdk}V7TW5%o-MXLdNDq5uqH7zUY77tWMX7T6)-Kx79opM)ruwV}`RW!1 zF2fh6Rq;zu31;~Siy|w!P+kpM57J*Mznbhjt+nLIT<2lW>N#^OsxEr}B39wcQR0lR zhA&aRp0w6^DVy45M$@W4!bd+_b@Z-XV1-KMi;`tv{iQ@Mf>lJEZH8UzINRDEzMTu&6 z_>LHbUr6~J{Q~cs*eA}2_RV{Xk4}b0_*1(`RF)PGm#a<>ym75`nrp$*&wA8CAbWyWSjq z0-y7$+)aD@CF(_dHs6zsJ@$NJaPVAL_n z{)?_$_T;FxWvOb=dtU^}%I9SjmvfVB>x@&dvSf$9NOW(hq;p;D~ z7$!{i>xDVh8sEvmXW9-lA%!9HrwP7!+qcFNqh3>-)Q1sfMrCLS@@71E5=5^eovLz8 zno=DGxrYzA0x1Z47l7kZ_J^)tegm#XJwwk+G-2;kzBV8OMNvf&%kikJmZwO`nT1w4 zYer;QjaGA_9^-LHUhwMZJgt%Gk*_#okJ$29nWDX$6-%@Lf$xvOn+Et~@9vpe`z2pb zG}X7<(0Ar*$<-Sl*M2^sAZO6)8Mfuo7IY!)0g-@ie&~+zXs!CIY$Vm%!O->;59sV$ zFu|Fo9OUIsd(_8!NqO=-@4-T|WireJi(hFyP2rv#6$oSu}xVmycOl-RDlxHsFvr|Q7=1Q(Y778Rb}}iCz+e*8x=wkm0EM;fVafR z`Br)uN$Nt1VvRq7-YA-9u1&qw*b;d0R^TtZ-U8}I!@xexdadk-jGsw6Bc6^%-Lbj1 zt68qApcY8*;{K+k!4JVn_FVJ8W&X7%MgW?y%Aa62jC}g_Lvx&XKAp_h(J#rIS|_rp zVPxGySP?Z@9wXybt^TXnR6qmg3Ok(##uhSpxZ3PQZAH(zh(y4HMES?#0t&GnVLT?- z4O~}@m(v`3@chP#0Ngx3VA6TsKay>h~%$FKn?Naku43 zntVo#EDkQSYg#it*#$d_n0AvE#2L-wG?Djqu4^g^M`%XNJfYFjPx>61@an6ys9~m6 zMeZW9I!b~BTKR`?t>(vuzp2KzT;$}we^tjetYVj&fY-V}Q=MZJNWCmSH|G>`7HbB1TvlIJ=qjtyd_jt7Qta!b@E;iJv8vFX z4rp+#kmJq`IgP4QzKRsj3r%ie=A2@sBd(GLm6{W%jn}a{yc+mX!Uxqe0`8XX-3%*( z&fyuw?HLxft#saPZGD=)z;bzUIuy+Eh&A5lNmw`?8E>OE>%m<(UbHyso_uEoA5GAN*`9=*b#=Ze|pj#96 z-4jRXvJK`0>Xn7FPa_+@A(l?K;jwoq(BYYdZFSUfRQ;x&^{<&j{yW<*QF*8dE9+ky z_rQe9y7?wz_xdmF*_8e1!%g;*(0bF+rsT;nC+n@GN*d_Q>tj`(1eIi6aZ!bwF&)iD zs3ybEzmMch&7~-S>hX_q@ORe#XZD}|pDHElwDbC;e|`KP z*#hr(?};fzWs@kqieB6_S<_wiZwAq^WQQQo_6y|XLd`+6Oz51@qXj@dP3!;x)b+Wx z7kmvci&lZX$Pf^QN)!T#_&|D2)xhUcpu}g8;sD_{P=XBDK<9uT@Z%{U6<3+|nN;-` zzNa5W8Q=)1l}Lfa+ib8}uI=OI*>h*m`){4}z{dl={Yu&SmJL8U4{(KO09Pm%#N`6z zJwaUV-nlT-LSYbd-rpQ3*ta7Ed1J1>^Ba;2Dvd_LA_>0$DzK>+G4~q+rkKcbATpa- z+EwLvK!q@+S?I<(7R+t5Jjnm)vOQ=6h9+QpQU!Yl7|^yi@&BjS!t!5U3&2r5aEhIy z{FmE;=O4Gli*Y;!rL@{TZ}{CuivWvrzQH7r@9WZjv2E&qz}eEDS+Q$1|1Dy*XL4}n z8{U)J!wt|(gTKIq@@c`R=ZcC6;tyk3Rmjr0ThyXh%q_sCU;^oMMHxj`oZ3`E+22P` zBu#Votw%L!h8Hjlc+OYk(pB8&J8CAz5$*ZpvF2*tsxYNNA#+$naj2-}SvY@i3rTUMNuYh({F5z|4Ow|8yBLEsQodJD zf1z40m*<=Q%LG`qIS+wp!wsHk274~#~_ zpLVhG^nb)NUQ*M4JT|FldGTCx%Wh#J)!FDOx)cT%`N>%YYNW>M;!Sq0^1!`fL3SU=3C^)jj)WhW&9b zTNibjgWpn&=g4?>@_#% zuEz2xaH6BateOF*D`#a?Dq)qjuu-D|c+&brnu8)JjAQ?__{E&cG&rO0<8BR>x7$uB z%D6C`Blct7AWZKeC~+k0Cy#*ow!+<_2-YjM0+#0Fv%`gmBRot6gCj zY_(+Z8)ED-1cuU|Lh~sDnG)|NSk+rFVL%dw?_UFJAaq^ij@=c{l6sD}D zLpb48KMqYv@cO{u#ZD0)#0si7V6Z9Y{AvQZ+<*%&PX zpX3GBm1Y>?<6JwPAm+0wMt>)2YStFIT~tfS(+R51EXYT7WgOSPARLXV9|}wM-xHN& z^@*@7ZxZX}-h%;So7&7rQy+{}?M)nM89VD>oK;<7gt+HWqtFBZM*stTc$eeOTC_H7m% zZ6qnj$u5z&A0^2+;^&<;&fOKvnC77U(ai*$)vPgvvw2J zw~nfIdd4*yBBP8EQ^?en3ydU3c&Wd5k@&9F3}+Y5_^I zG?~q#nWY_>m_GF*C{AJC&i+?Q6Qlm0g|+T^mHzwJN}FurqZ6;mHCc_XxJ4&|lu%9^ z%ku3yCJQNs?S%-t5gfJv^7C>?jjN)JPW?v`3#SC=7z*(SvJqa++THt*H`Hw|)FFC1 z0ueBSgVAPV!EiC)V7F>^@0PC2OU4+>^R)=rBbyo8iupQJ%!>h%2a798BJ`fg*ZOky z4_9Q%T=dY{578gSGjgQ|a|J4&FMeprp->RGocSSN9@nO*Us5gt z487M&dbk?jJ*j#$5fn=-h9HSxBRgK=hQQ`Pyj>()5r6__vbp|pfzutOIll_qM^&7kWg*Gss=ZX=i4s;A<&w6p+ zF^3&S&Z|TT6yK8Y&ZqPEd(`J2=+6iDyN=*2*7y&91ovOnWT#3p`pIzFJ%Plf!e70I@t0zSsG{=UQH*48E<4*>0Yfcg|f|;8;5b^3g%9@ZJZgP_d zjp%6L$6Jlp!I|8whF%>t{q9y4yOKT5gnd5{o;q9s3*2YA_6mNCC=?VikI_H50|X#Y zt-btbt|U&%blL<}$0P@2n`geXRoI^WSrNk9f^9tD#aP@3+$wO`DYI4gqJG8x%TySw z$y5|Tx#Z_xHk@^3AE#rU+kjhY%y~8_DI|Gd1!fX}pJ^@mHq}BjmWZ?K(G{@>q}H!- zxK^PUlMuy#bTj+K@rtU}e0$wDmPC{eiyw_yUl0}64Q+9z)B0w3T6P=6ruSJn648?o zxshsBTQyr+kje4tKge!^UaUbhRvewmFu9*TWVb&27fH_Qd$WygmGvwd;9ndH@qdmS z{f3lVGrxPZvfvqFZ6EA0c6fdVu+BUneR4e4j^mWsTtrPfooS#(!*~ioXk$`e>7L-H@B{C za4PkqYWjV|#cjSCOR}tSs?heb_~9~pnTiG(0LR-A1=lMM=EKjhhCiyapdb4>xF!dx^NLrPHD8U`g5QJS{FgK3v8nIa2nQ&Oj>#M#O*8D^G_2jFUzjK zO_zP+cT;#SnDChtwYoa>dG*LNiE+Y5rugRSl=z4r9s;hNQyR8)%8&h240E2R8htA` z-VBR*6*&cu@L>!wd_cl^V|stu=pb`1I}2eR6*D7KPk#E=B^0tkbi5>U(m*#L8YB#OB+@}6+zgR(zz|;iI7jKNaHhwAw zp^~zo|LAzEQPG&w^Xuq5o8peNDZvS0fJ5xjJ>p-}Fk=#KtDZ-By7|u<(bcX-!UBtf zSEjbV3V$84A?Z7DpH@ZKDylB7RUfYI>w z;yE{#^4X>Mr-L!{2GQPhV}Is~?t5U>9ZdEpo3N6MrhaUFVdMRGD*7_T8)2wxqd#Fi zzOwT3S1-~K*y>hr2JIYSy}?RfaZ%K7NH(3@{sX2h2L#{)yHPWNTCw~+Q8B;(RUJxp zonv>+Y~niK>{wVC_G$HA)#=SB_@URB#E=*cp;UwGB-cxDX;yN#m@SaO>ik*Uv<8ct zU_CH{Qv%G&$I{ST;#aT|pYn!waV7fE$pNN+r>uKj*J3l9L?S6J&U1SZ&u|8PNha+WD{4xH&mBv%v$7EcJ#csGuefk{V)cFg~%FDaX3z!(Tl?&V~$p6A+VypaQ^^> zc?(EAfAk95Z$gv-#MoeG{eu-Qw_*VCMM z<%}LuHccT~pY{GX6i2dQ8H5H18epjy<^=Dx=a6!J8vW1mbHeNYvl1Q6ZrjNPim<2Y z0>Qx#4o3=u&p;6|mDe*jH^Zy^LgEOt30@$c3}-go4sPOR?~l#8&D+Ez?|28GFep}m z`T;Z!fK0}>RR9Q=^BC6)UIkgAQxbM_bMFo?Eer-elfDz@(O|U|-akSNb@mG)fD*bE z=tM~U#n4^lJfdZFui1S6#qHR1hTP#5pp;Mpcn~2zjlwx;Xq-eu&5w(hw23-f6;GA` z{0GiWn#cRuuT=tx1cAr8>$#inQBU^UDqT3=_L_29tiM69 zQ?^0iV^G{Rm?)fn!6)QPUx~uwX0Q>P%q-asl|V-dZ?GHSjea3A@KO4fPC;twp?bzX z0k$98a^ZaUJ9()!p0*D06!vXaOWN5F+53M8%Nm9;Vh-`GDTBc6kLAwLnVU9Zxjk^a z$^ON$m-U{hBI2W)%vCoj3BkKk0Xr4Shr~;0-E*JvLMZ;J^Q~ZdUJ6rzN-d)5GD`h z8dh>1NV(HluH~^1Zxunf~NOlc?JI8+Y+pw;v^S(z!&L0oNCI*PEikfP-| z@XR<;M3-JSE_EEESfl%-A#}^{`|$8-VVHW8Yj+ryCdcJVgMD^g6|Z*Z+ry)Kes^AF zqGE0@1kUo`driEE`h4vhiOt#qbld+o#1Qe*3Rsd#Ut*pK6&`k8`(%5|r9dnyw1?_T z!g|kovzkFQ`4@lk%R%W%FY?=ZQCwBY8~f$^o;OosYDn)=QOYOy>1jk&!8?wuGpi+n zl-v8PJmhA&$vvd{p{T8mw;mIm%DcD$ep~A?@y(5zpIs06LgOfbymzTCX^NIG3YX>f zj)3T19CRtenM(Sy>(w1pdpHU|iqK9bXxS~f^viMb_A#AQZ_(Q#hf_X*%`j#Byl(K-o=auvmvo>qzG?lBMN zTw7y9%dE!V5GU=C=X)(-Tccw>*IKFRtd0qI=P8QxRR(BBch&_`Zn`?}OnbhQsqk)- z#Pd02{pe}eS+;pc_JudYmkTX<;6m&=^T7r#KaM)<41U(a*J&aHIQ^;05UL9M%7;Kpcg`55Cd9qY7q48AA{79kp!2=fREA3^D z6@!zar~FP%w#z4Cg3Bc>^p*mFdn5ykFzhUIjQm@xyxs93~IrQCu4+K07Q^ z4Y+NpIlb^52riwEvbgMm(Qma<_*JbX#~)Y#)A{ z)xV-|ewf3Zq8cq!^C`|s7g4&|HNt&|i_^y&VsZ-tnTCi1Ga)!#f7&@RH?v?Q?EeOg#4lZTW8#~Bt;PsMwW}PDf+KyiKcNf}UA799MRf)X6 zAVO0v*v#QmXR`L{Ehb0n38#EupINSzxj?JH#e@aQl*M<7dqh3^1+5|8D@%zIAH{Eva z;)?fqzRqY!6HaX+QyG3!e~7kzMN>c|Mq9q2%f+vMiP#})!uCRqyz}wm2do}|4or>S?XWE93 zTISE^t}8sQBv_MLMBaeq^wT0wS0tcMo$J{Dd0O)>;Ds6uq zp;9>pU92Y-Ac!ZUzgFTa$ArFch;uL7Y<=yo)r@IqCvjn0(`uGgIsY2%(|)~)dRHYv zSh|gvG7VlpIQs(oxRe~ryF=6Vj1d51h3ODdJ%`eCRe+t#CC&p+2a3& z?%&d(C=hAd8-wO;ZXl3P-C?h%&BAZw6SXx-!|bF(mZYvJtk~h^4^Rk1kHs^!5c>*3$C9Sh^HNv{8bbo2Muvl%LivN-(Zj-{}}-J6-}>N>@~ z!>|_xrcVC_>57@p8mKjO6v$nlmYu0Ok2j~F=`|Fr3HpC~cIf0cP*e{p8VUqf7f zK}sEt;H8Uk;AIE9xRKoxk9pUh=7bNww;4VtVz$XYboE&1Kfpc$4HF>b25@&7P+jz) zA#Y~<;>(dpvGyyg`bzS5-x3bw{jg=msCCgeq4tyoF36|2bt9rxBpmd8&~YkEMbFGo z$?W7mq)qlT7x+GmWJC#u=3R=|ry#i2%7j zAUE;i1%v6~K+5qaKbD%ytz3cJ}OQ;h!dN;po zgO@Y_VPo6|!AG5!25bU3M_H)NoeQPjJ0Z{cXTvrSkBu^m^_tC{Mh&wLKa-FAYI@gg zbey);UUA10p>*}bT(^f|$iW@*xHsYVQ+6_|#OkcDT+|3E+r5W^`BZ7eMfcuZuf9!C ztgrFbxro1fsDE)?zwX`IZ)5+IQ1d&hy2U(ea|MO|Of@jJNg|@8xVRr5s0-hSIWRPv z;6662sO7D;Q==xG$vphqV#$`5gjd6P4-WG`RMW?yoyiqRcDjvQ3K#Fy!Sx?~Gpkgp zx-hE#K)f?C#WK(R@spvSHu*ZbQy$u5%d$~6JpvW>B0a<^ihF42<1<9C;91SpntbWk zHV?jiY2Ls+g}>etp5zK3Je=|;CN$ef{$*%TU)^McNIvEYaskm3=D0UIfG_&iTL1Qn zPFlK#p$tQ{x9VzfJ!3{JXR*qkM=Q@0;dEpCu=7-Jy3gmBl%L4onpj{26q>JhZ;x+{ z)3m8DC}|k1iA%f`#j0|$azr)lOnzrs^3~r#|2{%zR^>2;P*d9dMXV0e^^a@N{!GX2 zIO41nSa*-9tCcI#)(=~^9@SLTy)*2(uPYB^<^GCy-wX zG4ig_ibFr-8#p%aS}Xn2w(_pyeSDLop++|F3{tqdr&G52&OZuVBWvn0!sFK_O>QyD8#e3?oF*f%yk1yQ z99`yGgpYDQ?sgrH0eNk-o4Mq)&nhc9XSKR6(Mt3wUV`#(iJFLMy9hJAr^ciMYBomC zkSn&pp|Y}G8>VHMj`CquV0O?$gulni{}1M56NcK!K2tJJM zkYly=>2wuNq1pX-$3*;-tzDgl9}LIb{1l7*VtB^{SpMj_f^wcBk-gS=Fr-)TmufvK zH$rPnIIP0LjS=x#miU z<9_jcv}`?;Sh2F&ybi^_$*b~fE=*+Ox7|Hyc42u!@i2dzF*k)2LIE--;=p`P!B^?8 z=4<-BRo6Dct*`ufA~rf~OJ+wd|C_}73ty@#%fFR-byeM@PJ6VgaF-+}@4j}>cgXdO zeM&Irny)?d?Z$eFDO5{5@U-u#jX06Y}lQ)_%rP4;k zI6XBVbl-!tg7-VkbA_=9W0XW4JCY=Irsza&E11kq5#E$l?+I4IXM-ZC$B&F_=9@)B zaXD`@UbIKFygiDON8h~ok=lszqrSs;2vx6i#)_wqzwPT%n3xy4c15Xce}=r4pD?A= zC3{HkSM+ODt)Ui;PadqiZr}QSx>UaRxF?qA6&h@rrk%y5`b|EU;P^#hTy@+m$V-my+%yyp-@tIfVRp!h9-Qsgk#8I0PZOHg%glCm{{JFqpzHq! zLT}8LzSHK3#7-g>#)X?KNxrS6pJtwjF{E0FWUB&v40whIr-~QBk1{a^z>CaNyvX_f z*@VOL7toKiFmUX@xPj*!?ojwWRYkdS0FL3a=ZmlGErcKfcc>K7YsIgU(ZYZ26#O5E z8ou>PmS3v%Fdb!2;r5yAuc6cTK)M3x4#22{0!Bnt-o)ZCdw|v$G#jhR65XK&G)6jO z%y(P%7O_k=Pas=Cxo|`HR2Ahs@p2c6%^0JCKDAqVgZCDim!*XjpL=DBq0qJxVP-Jh**Cezrt-E~xZH zCny zz0Ch+N#-hRHYJ%>4G&3%8uoqOxel)w!{5tc;b+caSh?*LFyjNkj}epj-2yVAdaXEG z@zl_t4gdZWaSQYe&;9qszcAyKHCrd_)rj*qF1+W^mj;1k$Kih)J!jtjWAKOrmsg6k zIJ{nla3uBFiUk3`EFS=25!WyvN}Ys%{V5q+bQ2YAcyqGmoN#4n>Y0FYe0Rym*?THN zI~SvvpghK3Cw`)>YVzeWD1|5o4&Uk$o;%l%r zwpss-k@Xxc>A%~Rr*Cm}K*U?NcuEH&j*YkEGmA~Qc~hy?=u7d9XYai1juj4kVBr+2 zj*VnfNze9NF4sjA*k?9YTwHG7{odAFi7A{01`R1^I+fHWUt84tCb)ck4ZPz?C6pnU zUu+of)Yu(j^d|4o=?HCk?5z1B&I>zJip)FhVXWBsVt(#2v$c#YlFqR9(1#+!+e$d=L!l6^Nf4V}ND~th3DU+FI6v{@S=peQDq4Fo{R~xTd@ekGm$aj5^Uh zubeCWwFC%mKw)a-I}DrgPK>FRIcX*L+pZ_iQ7@DwFR+Hk^ z4pY*dl~;bP6{v5^XM)>syCn!rL~-%#Z`hlU9R|Mu&D*J$K=1K?tG6@fFiOh9SZ?c_ z)!XFYPMEjqbHk-7H_@YVpQ%!e0K^^x*WzZHG)u5t;Cf)w!8PTlf7#6R1 zE_v`}MI;>v#SkCd8;!wXdWQz1rvY3}`UoKM0fT^s!b#Lz0em5CtpQ}_03Fx4rwDRZ z6AWbjOgLu2A+C!*-jxR_-X#0uQ}{tXIs^M8Kk7mYEQ-=v=;3hKc$Mc&jYuI4Z-|?& zLau3s>yrIj%7sX)3%$*>2c@6HN1spMIe3S8>8~61Flt(+%`jf%2hAoAuUu?(?N!|o zDk!yKM@qSn$!^>_*1F+3kXHWrNEM}P(5aC>y1|>h9}d1%K}N%@boP^a1)cOqM$|lt z1nVj-=>+E#0+_!z0*}16OQGzRww+Es5{7^}IK_Q`cLKyL9oQBp< zt1FpJzJwDQE^qQU$+F>d&J}?+f^0RtSdS%z@>PVR=C;A;$2 zV2OCAE?q@cv6vH@iret32Q}qG&Ix8iyrzvw-2}E5qxc9kuee<0jw~W@j8@J`HxU{pX-eD~ zf>R^Ddrp>Bu+Am98I%E{h!PW;k2Koild#v^{! zC-XYIOdQRO1eUh`k6g8r$lLMDb`!0b8po>kqi-7>a<^nZS?VNILc&jU}9Ut1cjJ zZ&$;Qvo?_%f@tLG$XX?HXwiY_r*Df#>D!r%(KucD{^sG++6_#B>$g>&5eXuuDV+j&gGPv8w$|+FxJ2&(E4^l~3fe9J!la)%wlDK`ZCN;V&H>1=h!o zeC&6ArQ9Foz*LhE};s`F3hz}1*q{Gm2Tz_lx%JU8N{xH8eiBis4Dn@k1XdS28EF9kkT-jHbUR;pXa@iHFV#<}?^Pbe>%oC~g z__JCG!^KGr9d47l#-WS_I>sC~A z?FV{NrrR>rgz|{b)t)K6o~sjyxo9Ikj$GQC388O)q&k^%OTxQPCtG7@!G?Qn<@;h3w zKdu?nrCS@z(2urC(k5`D>n7fM3O^SbLlgxXR-A@*)6}NEhBYl<3KgKM{S_z+FO|5^ zW}nu0^~Fb!o?|x7Y-g%ys(#NOU+ToH2u{(PI>+c0#>?dy1WhrQi&S^8@9Fb|YaB^j zXFfx;jw7)F4-$$Zy#4nl-tFmy&-3YDR(o*Ar(gV?0^t&k5wa0Eo9`>w7O%j(Xp$?# zS}J|kT5*%TBJ#ZmdHWAPRt42W%sQ_o$TYbyW+yn&1wcfAHS5oyn^boqK35Tn5Qj_a zG&-*dLQRT}bPZF5e@7OWE2pa-f}1dP3Khl{XoKhR+TcKSGWy7f&b5DgIQaF# zQF2%naY0}M)`ss-dFaJ<7X`Qk2k~H8zf3-J5~GTKUQCvm{_*kCbbJuJK}ANWA)cNmW5!2;)7f|t4(0esSa zk6!W8w943@KjJ?&UPA_s0FP0Hb^Y~r!&61kvQ(k7Mc3WEeu`d7wKQ46>`8W!+Hc{L3fX(^ zJFF%)Z|8t0@2w!@1`LWzDp)UHu@3&fpUPL%U=8OKF^Q!}`j4!wbq3`EgN!;3sxwP*vSy}uwV zHi%o9$PD)_?b`PVX=PuFT~~wVg>RE4tT!Y0h2)?@1nqa+1e^av8nS|mBgo3M`Br59 zumAfQP@nyisc8NO=7A)PA7E%ty`M$(2Z$+5gXR?DWF;w53bjNXJf3k=2E z{8ENO)d<)xg8z3?gw}l5t%Do(GYCqO_@?HA?WpE*0&o3P8d#_V zf`*a(wQlJK-McN^nFlE0f?YbVfT!0zP~)1t(iJov&w;GQ8yo?5XRaatvFh6x1Tr5x zBb)w$RLE}u2TVBL0R!I9z$fg_R|bETB60vCq+Qk0qB9~Z!&Aw|8ml=l_FqW1{1<3? zQvYLPQ84%Y4@R6&m7!ez^&4#Bzu(kPBuQn;TXsl%Ccbx|ptfMAp(AChdu)C2qQaOo?mc33+n!?JnG z#COdlEcOMRWvlVCJQX9V3|*+0w0D4hTzaW6R*|?;WlLujyiT63l17w}oeT z+%2>!+)i%Cpjh}LRl;G)UDSkK@}cF;3Dsa%4d#@AXT?{f_1blmkaHJUVWrFB#k+e0 zu><>tC|fwsD{Q$yir$IGs^Y3AZ;LP#`w`9^{=D#B6HZYmA0L$pjy<`Vp~GpB?frQ2 z)zg5`Y<mWqbQuY2!`J+&`Q04-6F1X`H|quH1QF8D&a)xXftRQa8v`Z{MMJ~FaG z&V*exSD8{neq!oRmd22(f`RnnVd>qb|OJ6Kamd!iQ)cZlnoUqNb ztV84{=k@~L<7b#n$!By=hwWJC6L4*;S+~z7wpvQ%K3)6L<#yFiek1T^>0CCoSKXnZ zZ<{(_Stg@Jlk&Obc^GQjcjX+`WfvZ6uTx>S2a^h)Pea{o|W(mkij9Jpeu{UwM9_rr+-F79yoY@9!$%tX-sjwDcVqAz5bqVo$b=x(8tFUjh{bvCZjoK z>$hkQ4%hhgZ8L4Meh8;t#Gr)R^1n%WO1cnrTJBp%q(pU;w3PInMCB`rd=liWfqz7$^q1B7j}XXRbV%*;e&GS6S4|)Dz+?2=zy8 z7rt^jitCGh11?)$smoddIw{Xw9A)*E@)U>}I7nyB{eF`v_FC}kJC8IunH0CJz!=?& z^^dpa+OT}!cE#jLT@;E8gr6!t{5VMYEN~dD&<32}v$C)r5mdY#pt1alaBn!j-Fzmx z5zYP`cM%A{Wn>A@NLKQ(3Z7xv&D|FTxp*%4`EVA}`W zzOV6#9j;iFY8qGH^()BawWtzYH_eQHHomX&O@d=KkG&~%YOpZb@ELA##oF>asgpiB zv{N^0`L4Q~ILSN)o#2TYm!A)@gV-{h;an<;n;y^SBDc{JJQzDHQRZ@SJojbni-xpw zee@B$Z?JyYB+|77O#GZ3PWB7g)Dp-mLy)4wiLxDqx~lOHbqvNs;O`WW6W|n&=dxLt z!(oUqxpKd=kJfQYTXGU^E^l|4Qe8XX+0e}Aq5;R_3aW!75NOoUx3`ITU*l{!YF)f^ z?k^fnl_I9-$PcPVzQxu(z!tn-iEG_me6-i?2-6n#AtBD6f9Ff9X{#jQR0TEzv;HRqdudJrp!aXTu*zUBjm zd6_cyNK$)oK_{>#tpj%)|~qO(ZV!s0fy^_!Yvq`))~vTmXm5s)bfejJ|U2f{D+PCb7DCCRZa5VmWnDuC` z?2D;^1&z8T>XO5YAFqoOOIQbpz87qjLo5gt<}Ye`jW6uy^G|NBBAE4u2ztA+0~uf> z%LLv6{#d1)vGOXLqEKsm7{CFI9sx{`@D zqW~+;6>(iv@Pm!i3y!58BdYfZj+|>sPNWXv5+zqX{)-{k{=tv|-})2wP%BJ>3&GSy za)bNi;WfH!P2YZd2BdlOuj>cE?4izmb7hS&S@)jOMK7785yo z+Qj{I&>zmY$WB3psxC<_fo6I`K?}D#i$+nci$&4~rp@X&du}sja7*vSlajq%hP#- zXOKg?GXUeao-xE^Dyd5t{@8%OXr}Zua{=Y6uJxJuJoDOJtWbO9Q7`4hBVo1ubJcFu zvv1<32fuzkGao+jU`b4K7_T9py`rb$kMuD?<|_Rh6$JyL#F^O@D!_v)sc4e;%z zn)tEjiH2onTO8Wutc{ZEOtgjWDX-I814~^JAt)=lXkKZmgsI(cKZQywr{F$J0_=)4cW|~bQHmp znvt!cJ)*R##rQ@h6ccq%_2^A)r^4*lDihodebK$to0C)466FTfCq!Pb@$bdDl7oAf z+&}ua!8tJ#YeVx`o#1{e;5!B@nAYjWPskuuPi|x>r^!_ zv6yJ6*wevMuLpyrN$zNy`JQ$onJ~eQN!L8TOA5Ugic~Rt+s7O;qu5yV%7iqA{qgU2 z=g1D7>39pEBBLEG<2|81@X!~f^AVJ6x<$|#HM>|vO6I;vE)St>#f&Ga1Yjl7^yn~> z!$gDGaYv5P++Bsz6Rgddnf81T(q;&R9zrZ5^Q71%lTq24r%UDt#>9$3v+wR{yXx>( zX%jg}0$s7vj+uY9T+6 z-isMRk9Ir47ZZD}Uds3RLGDeiz+CQB;otNo)kBNSppfi`(8y>#O-)H{C~Kg;lIGv5XRF(H z@;N}XEpryEo|0YZDn3#meY=6ftzpIOQRbDG+1<+HZRU$SN9WgfQQ)_Ap&#vQN7m(% z@eM4gb!k2tg`Z7u&G>wt>T$ZV5O)T&s?e7}0S_=DVk9v};mEiy;D^|9;aNU%if6EW z!m^z}<)P>7A%!VcG`K(C7h&jS$YOs+qK0Eosngx9J{vz_E>EjWJysM9zAku9wI--? z5KqO*dxz$%hEiy%!N}n?pA(kQ$I4QYd%Ly9{so z@byg~^HF?-9&g-kzy|BMoqIk8Z7CyFiRT+W&=u#lY8r1EXU=Z|gKo;MM+N81M_`4D$r|z* zr!-xKw*Cbw3JH#`Cd!IM*^6!XB)qLYGRRn zre;E~b^|oOe9t`md`T4)wPX>3XP<)^D95jZbTmYm0yLrm{kui>Tr{Zs&;!M__}3j~ zT!;u9m`g@I#s3ol@Xh1jSnmZvLRzwP27l>`Q#BI`JlSBRHVPm4=||6g(CVPHR)Bol(cu&aOq>Y@W9AVDIw0vk5|&cFn9mMxEI zkN$aV2P00lBL%mBWOrfiv>kY7eLX338RRQyuon|VL%Ku?8( zuo7NmU0f9}e${vaCway7gcSkS(r1zF6Mpvc60JlI2At3xiS0g6EC=coY-)@CKchWG zLFo-8_ymg<$^Y&GS|W-qEB;j}dWj=!j1Au29*?)Tk5_i#e3=30zVi2Ux3a}k-2nCo+IJU`GMW;)PJ|8Et4nI-oIW!^(dKYp{RZIh*{6bK<`6Ihp?;*L0wi z_sqnx<19A6{{^W7Z0AjE&j4zn(A#77s`W>%v^u4He5BF{=TUU4I>u&O_it}|Cq#re zibxvV+sT6Lj{6@xRQFj-QUi%fDU!gRQmO}IysU8NDe2~Tlcf@o!Dx&JB02rYpixWo zta8j_9PYB=8XHvL?j}20TQT(IXT)+xijYNiu&c1gi)KyvBM9N^mzDPJbHxoM;vPP` z(`#{Ys_>s3CRRG`H33S&L5%l){4UYG)+D0NVqTw>gUWl)v1{UOWV|p zSrWIT0sjZNKf%j7_Sv$EzT>@Txqr$=oUqqkQmaM9mzUty+`xWAO!kQB483-yVe6Co zuwmQN%kvDXxx0DK+4O`vZP#`37AHehoY+Sw=cD3wQo<}lFCLWeDs*|>=HGi^u)EFwxEH2@dm)>@UJICS+JO0{ zD1N?Kl>TGM`K5B6b5(5Ip~6}JG>7h1jehUvMzaU$;MtSX^;fBNj6u3vbv2)eQYv=b z)CMsJm&3w6%sDAM_Ni{)FR?Q+xaIcX#vKhh4*_H8sE~|2%qrD1;|_Pn*Xo^1**-2e z?ao-DlSP*(+lewNN|hekkLl4wgcxNJdQXL=|85{%Lxksc*(^+T__I!>cUas1hI}#b zat)JxO0XL@v0DUXZxhQuHfa_XYV3OcOrSX~=STWm&37*&b%~EcAEnqC<|W{ zFPEO_KB$$@=NM1gRpi|QqfsAtjZ9CmGv})E&`gxV`MK}0Z!o$aD>&PG{UmieeDyF+ z(sf2)<7*q$dDTRX5lySIz@T6eGm&26&ST{H+dZEOjcuHyP2#UJpKv(ONg=kwyY_r2 z98>H)>-)HdY;gKG+@OD!?>JaFa@ccvwW;Srm|v3jd8T&wHj`q`<(~nUV2g8n8hTYH zCrMj1`zz;6W6PsIh8>remKvtdMd9-0jLgGtIHar_U21kWtTTtaBw0fPyMkXEU}8f`?vtNS$X+F#5ZLg@IZyAw0s40UlcOj%dvkTet z{{>00#=d*C6FaG=UQom9;?vo_9LJL%tf;9U7rdz{_hnV{`?2RNa&-w@3ZxRzO-A)G z+P&Ax{p~lTF8uvmN!E^Lk~Ne|q=+fC1rV;(>b@HiaLw1$0p99rqW%UpxmfA)sdCyz zL)y|dw9S_&iTi8M^Yt<(e}tOetG2y#CFfN_$3RBS%?>7V)Ifg$?XFQCjD(#vx$$$6 z*RjW}f>|WZXdwqhNPBjG5Mko%>UTqcP0UKQKnDu?6Yg!s_q3z zLh|dSq2y{1{_(Pf{@D0T=W3to07A-AZVFWN;}#dP>%=(P9YA27DwOo06RyL{ogMyy z#472W?k+2nicroXsUHla(3Oh-x8L*!xP(q0A~POYuL^{s$OkU7x6fpNJv{#9EWaLE z6IH7}ca4e&tcSGT!mn2jIr9Yc8Ya2x5%Yfgf!>A76wuFci2wBB(14lO7*ykg-F6wZNnx> z-k$LvEs)eP1mq4qXHkoC%}JkO-qGo{ZevQlRzLXtv*`rvMT@h&u8{^z<_^htxW82M zt{>$ii+2_^5SXX}5#&i^kz(M|Bt`Dq7s(Z*B#>=rD6KpEDpu*9Nr4c<{;Q}4eSh2z^eH^ADiY_?)m(=2-;vXNQ7ztqQq2BWV#PJ);*0xeiV_mh=a(3=Qf`;I2*th4ywA>O zZ8a?Q*-SP)n>ZlEwI~|LzJk&SgJI}0E^#4x4R1Kll)@aOxsG3YOSUd^ij5Y!>&jb{ z@94(ipqC754E)n9{4dYtM!6V32M3K8jO!#@J2Z$XgVKIc5TZ7X%AYsPw(aK9$mi%! zx1Ev{MJFb{N)X#HviAyqIq8hemsE;|{46dfR%_tHzV8Ow$&odN5Al%*Rjmw_X+MX) zBk1Fa?V>9UVY5YLyv2I=Uspe;l3uzCNZA1FSW`;v%T^H#C^I^&$?nv-Y$h8)n(%|p zkKVCPR@70Xh_rl2rnLxt2X}Sf5F1?%AE_gG;4?O*t1?W#sTN|o(4cMxU}|~xP2Cp9 z;Nj0m9$DZ9;E+@e_wXeB3sR!qFv~nJ2VY&p@c%edd>~JEmL_{a2)RYu!10wS#{h8)`8`nn;~7% z(HjvhJFgYy&0Py;D0WzGznDQCcfm#uARCp6tPFR# zS9Ysiv=7+MNS_j4~7@(Y>w`!C2h0nH7dg?k?J!`y+cGoAa! z%O!SthK{3n(6dD?jz}pXQP>>_Fj*_aty&(jp3*BjzNr&c-~stbGhRhi%uwZRLqH@n z56zYD70$PZZDJOxE2U%yawVD+n6j>%XuR2VUl_$hixwHhVNS83*qM*Z>iMGKi5Z1L zCL{K^khp~o3`P+#|FXQs_g^7#&m14uUWgEJ3M>@2&ahm2?nAUDVT#VbAs-kN>{^P7g&G|yH z(+rlQF-gyd%!A&`p{!RIP%;uEqW3|*oZ98N8h<^NCc_gpNhnxJYoy{nDDJ<+t-^QY zb|Y6FpO5^hZ;2sLK1^rG?-AcAi_f>fOZ>_`G07kZ=EsOwLX`;0Lw^1wjoQ^@>*4E6X zx%nt3{z3i$_&XU`s|S?BYj&>3=jgzt`lOEf<>jXN%MxN6uM2%l4@zLXefJH<0>`?& z{K32TSZ)i$Tbo>OK4uoCpHx!e+UW3!-h80K`Zi*__r16baD+8VXOA0tJlw?%k~(fo zg-*ETw%QAXOUp^p8dA{v2pT$pWA`4IIPT3Z?#Q%(KpP3ND0KOa*GpRi+%zi04mM+@uOYaPRJL{Y688f(njjEk&hQ0E5`Im~fC zI#UtZytC>C;ZsN~3iuWp7>G7N>!Qo;^nNg~goC_bhC&WlFxatkoui98L}6dD7&Cfp zO@qJ+A|*;s=OboLx@YUY%=jfOq8}1ek?57ggQ~hdJA5Yo?zocWO?6U;n9|)lH!jcj zp<1)3%0%`QMcr19HcZ6@bsUyroVNzIehn1xUIj+QvTWpN2Kfqopv-PE5Svu6`1p&+Kz*&rSe z2%}rz6bV4aEX&b^(tFMiJ`kh|-sl7;IzC#k5-f(Jrj^lKS@3tI}eLU+B2)22ppv;{<-0YX z9Q5Q+@3AVi0$}Y16g(4N24PqK(QDKE54|=B$q=J327+xfppvIZi)j6`AMnRU8+AdQ zp>Dr8{B=blW~wfRt5Gm&=}C~%4f*GK{+|fjKIaFp3Z)ad>KQMxQsf*`c0P~g#L z1AGDS=uZ$B2z$(5wVr`m#xpX0s~c*xO!PZ%enk1ovH;aZQDJjYKyLSZCApO(@<+ET z)MjTXyCwEr*2i1tV|JMWy^Nw;Wfd3hP0C)Hs3#!xAc9Rd8?A9Vdtjh$`3gmz`od@N zUoeP9^+V^X|2&12xIRj0u(UMZIj+>zag*KnKjxBz-w?>c{)H;uV;PrVoVPSuza5SH zHr~t{Lkx8@xwl@ra;2r04gTF#ePkN49a`7yHZaCI{F93jmbB#6G0*8(uQz&6;ReT| z#@{;6r2@U_;|16)G6-P$LB=@G;99+)0|3Z~8JZN^II zm)+<*$mjrw=v(=!L}JrK-_y}|^#MdFPjl}E3J&J%ot6q&aPHe;pf zyhWocz^FT01%@P%xwd~(iJ1}g0i~U=op(j#Ld~|wIGDO*q@DOI0?B5bhg#Ltn^w)! zZr0mfd1LGcyTv0DIuqKua^~i=GNkgrFK$IiPVrJh-3S8tPUy$!3C=`!?uvYIu^G)j z*8+aEy9tH&z9U;&hmjk%vi=tBvqrHqTV|O)k<$Jc1|iI4`+T9c|KR*S*$36G%;H*H z-@p{>ndnC;Yns6h4d;{FaO>!w)4!lK9nwcN_6JO{iZ*NW*&Vs?9|A*-FFwty@#(hh zTH@sQ$6>cHr;~p{cGj~`+}96tqr^{bcAuOa^-TZjeMRe9C5-j4Vl)u-iJ|}@{XKho zn9zoB>fJgtj=EyEV%a46*Th_uVfdnxX&^D>tY>Jv{{}*m+{p}(gA*Z~p0-iblwLkR zMW$FxKhQ&COh%xM&}kG)oH-ccy|d zZDgHjadrk>$%!xRjt#Pp zG4RiFx5>QYAHH~k(6*VSbI%lpkzCO-s(elzCc;)ILYXP9Oet%nK3-i>y+0*cQ9dzs z$`~p-^zc>YRefE#tkr|M@~vHQWe?KSoy{nP&AdmEYc%D#j0y0}7rTN~EBVw%UC=Lt z5MQ&prS&GiFsiRJO%uq#D&Jy7Xk$jbXTt#egd-f#C2tZ>zyNz&{KHsx_>BDWFYom2 ziMPjQxwX$5ooM|$Z-uE09SE+CCf<3{0}HGj4FBi{dpHm46#q054qQ^P@xPxG3+gN` zecLECbnKgBBg(QnLY$5eO|l#mNzuC6u{?DSC0jDYawd<&Nx<~%b`XEJ<`x*X{)w++ zeC%PJYPGa!L+xB-P%{uHis1IhPBTaS7GLt1+^I+)JL812UP#Q~rOb9=q=;OTTSql| zztz`h2x40jEt-iew&N@kycSo-kP>U_)Ekw0dbuEo$CcZmucpiN0=V7-B|@K!`Qg*J zw(PDsrTpGYRyUuhbmeHXpFTh!XAL}e4SrUc3I4Jef$uz7gM?Lw24TO{w3=eZBj zc9)MYY^j+NT)XXco?U-md5{mzp#A0vF}j>r*pyP>&T{K0hzFILF!e5^*3DdQRX zF07d*mz#D3&VHeq{Weqa?_fL1ic1g*(pv7=ckaurXbHIhj4pH!+DE)xFors8*F(f( z%?WCumLP3}?0v)jk*PtT{{QOxyl-76LioLi{aD(__*iMy`DN#dD+EW?KicP}`8#nB z`F`AOOcJ`H2_^*^SvqXzdlyI&l+F_!_QDsL1$n0wC9QW~MM;=_ot- zoLIuaD*2uIjU0^bZFAjFII`vbuhRb za=Wc~{5qU=O1dr*EM3D+Hg1R^15tw>FipL#m`4Vt$}dRzXiunK zVpyeIg|g$>T%RxdS>ZWp1GM zZxnRnO!#NMW0>p`93IhE!gJgH3S;l*sj*(cMt44+EFWtvWv1HU%-tVnO&gIdMrZGp zUzIyn!tD#~9f|vm9EMlaayji{S)%&wTu$#f&pHgRzQ|=4(`G53Uf);QyoE847^tc% zFCCtvFVTv&go|HP@_O%{L>$%a1nr8r%_+==WgEYi+A*ghEaUKlHtK|*a7=TBs>~I( zM--;{+WZcsk=Q3y)Lva32a+lkN4WVH;ezWPro~z3=BCXFH;AGB!L1-r22_L7*57}(qwYfi_ zYUg9Ohs;%(Y;z!#We%q%=_M_!jWT@4u$}oxOZ!YT?kK&wLctQa#^{*KDL`ch++56> zVYpfeh=J%B+cbE&xLl|MZg01V5>|5M(G!N4Uo^>doY{`C7DaZ=U8CCkUt?ZVkuvIs zID-1J2jNu5Ci+#@3{1Fb>zHS|y0DxSzRQ|>Mj}!7Gv1k+5~*AyZ1Hg6(@>{#sP!%w zoh}R`4lE+`;l8brXDFBkJr9W3$(o$h;XPtDb^g9Wc~6`2!al);5Qnf!*Ko|`e?hbv z%ErSKLQ1cNZx+}raYzQVr&mySJ5#4qE}l^ry;V`!o!GvAh{0OI*Xx(z08bOe=vi?H zeuTRB(vTNrndvq4QlFgejG{)$s>!)o{1 zswBFscZoFA1R*rcoXz$kZ1iN(%EJirW2B)Ybkk6_0otVUbFhWFKxJdfU}AA_%dugq zCcI~ySgIiOmXA_ATbSnpZeW~s$;0s`yt=r8x>be1OV?Y~`g9kl z<#?mVS$W@lf2qDey_J(>?M6dQ>8hmmDk8<&O5a~uE6 zyz*E9M*3eJ=08D%_CyXsAX)v7H1nUQas%AzLcJT=o3TYcL;wgfMk*vN5q?UEBzw;J+KCz;aiETvj{b6A*8t_#wEr z4@Z`|zKb#>FW8XwTgF9p(4#aW<0y!$9Z?L$rLQ?pyz!snK zvzRJ$#u%yZ@>yrLNV_=Ln1XFv2qNYC5~VO=t&QP-wFlYdi0H+4pR!pyb^hhz6@PD3uQqEIFKEv~1Wp zduf^5oa(7d^Ym6nN)op%aZHU0vCGUID*9O%bF;7TzyZUB-I=E6lWWtj$!I&wsm~rx z*AOUueCoOzv2d?F!$a8q_TA!=LpWeJ4JOAe$$dtYZrCo*M|3#YM>c;Hr?58vP0z>j z`rsxS105N%G2O8^{R_g|aJ1rcRl_I7w=})xxYP$8KYb1-XxL7%7)j;*z*IA!jU1s{ zp}7-$RyV`4`@ufu3#XHDau8Dxi*j-RlL`C)WSN*INffwYOcvLn9&}p(rsR zASEEuZPC)*3L+)lAa+|jeH0RY_o%()}J&7#%6h0A+a|=Jrix$Eah@7XP zg^yS&k3Jh1$~v|2k3T@>0~wanT1r`Ja-qn$@Nr898dswnLb3p!f>aIOo%Yt*cnJ8Z~@;i1_+K+V4>G~{vfI5JeV1v&h8Hd&nZVJ zf#2*5cm|99b5di3`eQ4E4V+b;srcy$)HqM@&rduB!anfsrgL_M+Jd^to;pn4?m&id<$zXaw#t?kYQvf;T*RtXLXGb5fk}T)bn=)sd@TwB{a&S!a9xQvst;f*m zRsQ~&T%QsFZPDwGO8kjVhG6d*^jbN%0iv+?cvx0p;BZ6J58GR`2T~O?3JCW5YwV9P zHSCwd{3-_SzLe8UnQi5rz-gI7eHh#$ zy65aI(B%!-qdaN%i^Y#Jaz?FRU00)+Lc}npuzwES7chn7TJ8G;Y0#VgEW|Vl;89 z-QL%&Z_KdvYElcoT_(O$_C^c;cPR6;)>+IPK;vCfODWkb=-%<~Y`;sw-?X{1Mlrwi z>o7#xCX-Y{?|F$mQYuy7_c<{zDNfWKQ6u75)m4%%Mwix^2^N-&AwhS$s`=)Xj*&Iw z0ou5hD14+^;MXN)zZ}Bn|H>FlK?jXa?#^9CJ<^gQPIjeMfns)}$9f+)-ePoN4XeVd z2rBBH*@CJO*31^wkzw2OEZE_(xbB!WNi@>vnri8b;c>LW`dG$=Ck{Nmcz+ zg{@m-d;vofb&f|I99kVY_qf8JXzatCu{44W?l4RQR{3a+aq23TL1-5oQ$UOI&F8kj ze%z4i+1wAa)2V;&!m?{o-t1w2aMeh`>(`iZwto#IOoauklf6ZTrwZSyf))p!CvXMy zFtJiCJ#l4y`<~zf{~d2Jp?-`0P#ldrCf@QfiJic+qN5XiOFysQxPJIgpY;k1G%lb@ zpn_Eeg+RszcU2L0s|C>Az&3b57OkUQRjVn>k(}gcw(A1-F*O=Z9&rTFE1yvt>4r zH@4}X4ARXmH3*$;M1=98Le=wRua4u*<6YsPCyluKdSElDVlrW{kvHOwSu2z`A92hW zP7E6E&7Pqk4}c66UKUfdL-L7?9$ht#2TpJEAa`Iz;pN zaC6G3X@e^e(hb`e5huR^`$Bri8Dc2An`E@sBhr1)n3(^iguCw4T6oK%K!h%?ixf+8NmY$_vq~ooc{6cEZ8NKq(7sB&2 zVZ8BllG>qYDJ|u(H}=Kib^TZuXEP<+6U~_b?r!%hOr+boDiN1YnM@4b+7v+NvNtoY zN;ow+4rx4EYKP=#CjV z+hikUeFTG}J^3O{m(f7Iv;#4nUA@UQJA1+CBAwXxiWD3# z7=oi`t0!e4wP*wVvdVG{8~VgwSwkWEp7&mHwjh+4!9WMs{h&De)eS#J_|zgVYs5f> zjjLd2&zoudTktWl7w_E|@=@euUX)1HkcUjPjB&$WuJ@}3P;oT(n~H`-`-o^hmCC6U zCD3yQa0{Qb>(7v^-v}_}CR@@WjFQs{gFl{!ubY$P8jn2@an@^{x=xK##HJ(U!?_-J zs;XiZb3UGKCQdTCoW<{EEkSk)n3z%+K^y10!?hcJ=5MB39=bpk$C)iN5hzN z?1~S45{VjNpFzK2euZ0%oba$2P9DAH z{MZxDB{ffTqg|4O(D=<#IZG`29Vc#azE~IA^25temfbvs_Jya31wzk$Hcgm!OBi>t|%s+x|asZhl&s~*B!MR#s?As?>* z8a4A|PHx(|WZ3M1$G{>FSh=fGPIP#TW3_9wxv!<%o=UL;lGy%FoX^MMo5dJ|lM-{8 z5I!vtN19~fZP_wUEl|I-cY|8F;}kb1*BlFSZNFGVb~ zDVUguf9hFJ+9LMZkH9S0c@{`-@kaqc{iawBx*7AQj|L!%`$cOFoKraCDVMf21B!u(fu04Tqd7R@wqcFRWRsr{snnZb}Xs5v{EE0Gp5A+9y+U2OHgP6 z$9%Vl`+VaUfj-%fv8AztF^NtwN_|V&XfYP%sHk9_*l=Q&Gi_2iKdG-R4(cG%73m zZ>;AOai3oQX=uIc)@6a39Ai)=ZnSTp6tkx!=k}C)5&qKYA^H(JhPC$K6Yz|_9l^z} zC7lTLwjmE@AKZ^Jxz>X(@34l0UnycQoimNj%3MM1D2^hc$@8i(oSZ&3hwLw~3hPDo z_Kr`5kx^euD(^*eSc)z@XB2IH4%*N%c0}UZr6UL94$Yl-eb1b>dDX{fqP8-|1D7T^Cij);XI5|@}Ih&#R2d+6IlX@$PQiNPlsd-;ht zWC8{+WqeM;EMCCgs{tpnqAoz(fvYq>W|}0xBCwl?F56CnFT&lfZiT%nRA1ky?4I}g zXt_hp>SzVhsJ4pRVedUOX&ix(@?l53j8?nIyhP7YjXJ1iOigPgVk6S*- z*u|($NGa61duJT@*c@c+V94^iv27afyRy6JSIGMN?m7{p;^wosCap|Y#w;;Gb92l~ zffX-|zvf9@d)%C}u*VW4uatWhI`UF;e=!4;8??597)D!Fp^DEaBhdkpdAC-o&8knK6UuL{fS@-u0P55QDK@?5-XSEI;wiiS! zjveFL21kdwb02n@vKGN zT1>>YJ-OMAA(qGldHEh0kTb%1?c}U6Hri_4}bP<3$`!XPd?qy@C(WaYIm2A zwZA>E6Q^hp_-lNpa$I-{AHCtpKfQKUIK!RlPRWEVnZr#noc3s%82<6-CQ2p+WMBYp z4nr_-8l_`rKjf>i#U8yyqesQSB#|MafnH`*(l;;k{{`+7kxh*Z@HweR>LC?$IiD<* z!ya@s%QK1H1J;rfF8a8SFW*Gph3Mdwf~A8~(o(xnZPILVV0#iXlFXZ~o4r}gBf~J= z^#y1K5erc0*(=a}UVWm|p#KUuvPSyB_K$)7FH=MJP-z>vZ3zbY*)g;yi1sV#2>?Y8 z^}1e?;~cmCgG|RleR}b%Gn-m@MFIR(@&_22jkOW9a zmg5Z2IDh3Bc-LJjT;Te_#zdlI$Qi0+Xbh(PDPyS1wQx9^GFz#GZ*y87q=VQ)Lyp$F zBuXBfVD}l+<>ntR1xiHt2bPoQahcQ;mJ3~p_1LH$&7E}WBi7R!94 zkzR59&1>}mt2o5lTfx{%Y*7)ik7e)t_R_)sf@9L^45gC!7nG?gmNVOo{R`5{*Fofm zn0$uie5C=7gC-Cr2PlCL4>Am7d1$k6pXy!R#>3t}hx^z5z zE|7=qRH1?{ysF5DH+-)eZykuh_ta7zBCx&ho$l=4Bcyivz%Ze4{Gr@`=@ajbgTOep zkICI{)n=9B4q!`hjeF6XjNM^svz_Og2}{u?-NT`Jcp>5+Jp86@^j4@&CbceyXaLU>_AZT8j;j}#0&+bpe-ojTHA6`CyYq#m4o5X7wM zRox43G=9l+e|qEN!}fAFlI{ujb_fz$?l=>%`WJ)Ldxfp@|kBZJ&^|* z+49P#jVZP!GBY3PFp93&A_+U$wVMwI8YQ^p8Vz&zZ^_}&-dMYSdh299N$CVsHL?!) zSGNajjDI(ToNck6rNmbOp$~WW0spBg$o90fJfdeDEq=?kgZ&g?pSp4oQ#hf!Vr3eG z=n;A1%Dvb_@4nimgiMEzQH1KG7g%yCsqT1E(H61HJ%yqRG5@-;R7ZrQ?5OFyPXqhcRL<>TovXuvL(erPfX!Zg944dXDx#T^7ZEc#7Wd zFmMG2o1Hw8K*L&KvkBPf?s0na@IeqJOoofg&8P8TA#tp!AWZ(_uiTrG@6;b0ywfwutv~^n!Wa72$hLHy|Y?~pfP=_qgK zuDHQiO1E+ZIzI&+?ts0y&Qo9syJ?n}t$dl6b{=au>0{MjN6=3n@u>v6f_J>sVEhv1 zgJ>o{yTz`{J#RJ}fsKx!i}`_`DdUw=nBS-AGCT4v!A6{J**BbtaE!@ZHG7mqd1Z7o zTAZpK)1~Al=-gjDAfNI(YP;*_TUO^d>tP{aU@cigf)LxpF%^IMt$n^1DdRrFS)~1B zr!3#~eUmmzC2=Qgema}xKq?|Q+USJ@Y_Ys~C+@AKsn@l3{Z3qON~-AXXNoc?QhUcE z3Q-h%BZ14_{_GWQY=VFhlx=m22tM`nvEN@1uN{~`mk;7yJ#$$y2 zo1GLBR!hFg2muV-B)_)@yKHkUy`Ojj-y9H<0!^zUSej0bI!{h^i{;NC2R%A#NNX$d zOr|CZ$clA=OQ7`4UnVXonf`q2!Rhus!&fqvDykh%7iXZu4crgWUzOH(^ir-YuAi`^ zn~{QsyDKB)$ex}fboE4U@FwGH$7i%8spk1B!&eO-LuiZMPjHcO2FZPN4}GdFw@XCx zPH2;xzZh$KS$x%@NomoMj|@WsSKi2c)+N1^DmUoqm49o?6M|%8`}tk1sxFo6yHz2# zcSx&C?~|KVg|zAdxj~PNiCS|Jb8+R+{kzs6;jXM`=^8EIR4ZYBI>OjM&=LMDzE`?+ z*da3)u@wIM?}RrbO%ILvPqRG*#Dv+RzEg~DA(TQsVl!gV)bmm3cvPU$&&b)lzR!z! zWHX78cYYq_e_(30^!u;<%B&4J{ z&9)X@4GrKFVQ@ne^|k_~RnNyT*oXFef>_3H+2VbS9cC2fI9BZhG! zx3&#Lt}6w-y(&gkKcgq%@7+zHRW~GUpE~@wKjB7U234Zg4Nos$9sEy;X`jl5KT+{+ z=slEYdGUt-I1Ii*Iix8$ME6(+Crr)TC->U5)Qa?bLYJa&ieRYMlG-9wSGecOj23B1 zqCnTWuVkQ9PRThpcEl5@RB;NQo-79GH z<^H+^@IZZC;K|RLLyLC_UMYva>0<$GHlZ>dn=ZQgM^FeCmER{qZhI2x!D2e+MUVlMIkC2K36~z=)@8_%gmDil>=zjeLaizfa zlJ&#MNa8$P0@ydofo_gy6jaQ&-@LbAnZ2dRigDw9L>n0j>T!qZa71AHf0D@g|H*7l#AKqI0@Kri*-ooVWDQ-_M3*QfE2VOK8p#{(D!{G)$`48V~ zv{@d&D8|6ZY<2MJ^>o!_<1p-A3Fb9J3HgJFgM8>5F@Vum5NB`8Q_jSU^t5tqeH_A` zpM)1X(-hWwO$%<8{H$S?GkA~38X&`!@b1HpfiNMfE}jPFUX;77GP#PM>0bSbyyFp} z=fUq@*e|(`B_`47n<2ebr?(jTEqcrC+KlN*5SDp1KFM1f>+c7a`LYP0;oQBa?ML5K;gzKd7RxdNrbkR+dA7!`F$u+vI6UQ*I zm7AY9_il#ItqF#RP|!qJHo;^-9MZ-U@N``{SEfFl%uy|n*@z30{u<+}a$GMw6RAL+vo z-1g}R(ml7D*BZVbKGfx#L{KMwxI9^!){_|IG^J>c^UT4V2#?OANIXKOMHsP;nyr;x z8{S&{HNDx){)>NF!0iTfGHs|?bBfF?=rnHJ?1(r{Qc$n@I3=YPF@s6uZ)~5RH2N_9 zS>+aAZM*rE35?4PUS3Mk81_Yu;o_aw!T4b@hDTJ*B@=Bqw)~Zu0Qu%R=ZMu*OEdi@e`2AnMmMZ6>Ip+*! zEZv-L7$`8k?hO(JN!8CdeaoMx*U76Pil=@h*`jroqrACaNgzI3tYo&*{PH%}G>-@B z@sA)+9?nVpeYnv#OuP><)afM>VaCOITP=%GNYck5o2Cx_12n=Gm@{F>dD!Zm{RVxl zqik@i&&vKzuz2$A9Aj3Az4_Wko0*>Y2Nwo_(h(&K;GQ7?FDJ2*lCcIzu;&NBGV}=v zr*-Bt0ycoNaAbLbX5JbUn@vwh?s5*s0?1mO{_&EsGUyIJ)R3j_h5prl(n(#Nncjfc zeC}NbOwmI%hLdC=w1a{$%qt%&>#vNhUj{1h7gg&?uxq9t_QlQ67HhyiOa!8VQcbTVdnQh*X)y-= zkc*E)bY)u*)>^eqbQa_&v-b$;2&QkqkVw1m-;X4%R~O5{{x`Ix3$R{QO$XT4K|onq z79!}+>1_jtP-5q}eQsr^4JF^1cZ?-U3(BSm$?W3IcQmWpmLfdV?%!)bjOpDS-|FrW z8WIS#qI=(ck6Y%{wF~%8T;^`yK18@Lpa69j5pxYTBi82UY^W=)n~>#z?Wzo(ekJ0~ zk^9B1yH_A|TW`I)La(kWd;f%$PU~PwCQmbj;?TyjdYgfp{f>lxH>byn z9g3spC~DDv9uPICL($Cfw6}9$^`Y7#1NsV+nQw9^RRUr`WhR zv?VGU@q71fW~Kd71F0OPOSb%o@6?tGmeU`cHu=}_K#+QpGN`9V^jwXlz*!O-#{Qp{?*GxI!XYWwSy>i1Z%%+q zPGgfM%SV^2Z0-ut!<~#_-q|Ye9j1^G?=qU7y0q_lSX?05_|fAw@+=H1zOM|e5t65XOvln-7M{ML2u5>ytc9lCRvp(S; zV5P~Ef4ogIIw@9BZu<7t6$y*eP8RP6YN`C+XnUma;;(5OZ6Jy|&6>8f7s=tBCn&_s zv(-KA zw4;!`d2FDeCrGm`N{bcH%MW|Eb^VY0eEhoB;fFts=Fm#WLH@SQCzO$HWrspxOOPPV za!#`Er{%=kiP9|#5y##&(AZ5*zVbbWeAkDcpej-C>^fWjf;2j0Li_W~8og+cro#Db zOXA%_to7YGFEvsidM2}BEdE75YD{)`CG5%W)9&Gg>PQJAyAvBMe)zbYr2r{id?{?@ zXOTP_5!FZjrlkrE4#E$UXQX1GLT~4vIY-1BX*4kfBEJ=ze(O&jby*{?-9CYC7c7+N zV>~m9#8-U+FBJ#HIzhdYr`(=DRhHcs1SzonNvK6xvud-rg z-oGGz7Z(N!v_meM$S8EX*0{)tBy5v>(I6gWC_I0tB=y#Nl8k>x>3*v&nPPsj>YC5k zTqH%7ZQBE_JEED-QTM5h62s={xWJ*};!LpZC1Uet6fmyep)Ts!BfUB64vqbyCHLIU z`?aCQ6sF?Wb>_SU)fTN15s|K8RofOVhXUp{o>s%~hYdJbZT+uq{1w)6L+>0m&zz*= z^5E6WDTPdeEJ?nud-=(3nNAS1;v;f!c>T1J*JvB{o{~SCM$_1MJlta%6!A}%^I#`d z6(>s`O7dNNV8tKy5R0mXh?DqllukU{zW;7XQ$(gijCK{dNAo&wjqc71gA8|RBgp-U z1}QyJ=oXHN(+7_SMenC5U6sw7nqcc+UjxmEP!d6lR%-M$J+0nc{8zDO;%a-Y;4T1k z9erUMj_x1bL>=FAQYW*bT@>*64mRqqf+d70Os>|ukcRG%QqrPNfn^*g5JLV^4>~_8 zGna|>tgPX~CJK?PIXFB_+_S691ua=}>?BKGeW7Z?xyS7FS>NjI8eqBA)&V1sgw6k` z;@LtWFEj6qplN?q)CH(s^t_x5Ww$=r5DWd{9G$&KyI8Ci!n0#RF)b$n%ZcUKJMH_m07J6%q{{F; z=9Jw4nu8-khyEioK&(PWPYt|X^};&dEY;Vp|4h^c?Mdd=6qWJAsmtfzQ0!eG>C3>&Tr}5 zc-|$J^{Z8f{dP{*7ro}JU1_Mb+Ir>~6cZ3PVqT31ekVgFDGghrvH}KFly$ay&K)Cp zh&k9NWSDNt;6Ci*$0Fz~fbJh0XaDYGuZn{uUZ$Dv`1TY~ReV!P!Nz2Y!u}{{!S|kX z1+51#Tmr=?sH|oi&&x28e+siuQa!3|?qxJtp?S)>qdjX$Agn=ZU(7ZR?hjhDDL$Nk2l%CLPqVQ`){`dWgu)wA(ZzU227ol?% zaa{o-{5H3CsaG!1Pj~kMR`Ru)*80jG4}Q_cmGbaTIGR;pP3{)N{RNxr=Dm~sx5T( z9{03JlWemEC(%rggTZ~&^FhIuoAw{1emjdCgq1$Fh~IU&_4r;py>KtnvCivsi2plP zv|g}VXUh7$Wy`F&@HrSQ(3}DqRBXU^BHITi9@$oo8d%yx_W3M zo2!C$tTd5D@+l+29;n``LYy*^sx+=FpGC1s8|Fwi8eK&u6L1U((WxDi7>E~ZvE`mV z#OcMY)6{ewwO}Hp-*0;$Yq?Q~?wF2PKG8>xWpB&AGK)_MjI%7TN!a;pXQ0=uGtt|q zsY6d%u8NnlV8P@hZ_cfmXS#ZDGxXt=hs4?UJqhAynnZs($qB%JW1AF22Y8EKB2S}A zYoEH2#N7FCv-oMCoM;;!!5YudnIJ}H=54N25~7%IM+BVq-zVpc%n}~}`G7*GP+foo z$BQ`Quv=XJsm8Eg@ljWTm!u)vDG&D4ct?h6y{zN0j0bfPsIIAFg@K9~{YW0RyMb z0cg<0|A=1>z(d0GKr8?=Q%U~|93418EeK|{&r4Gg+Kj?;VCoEi;tO721wzmJ;ig1} z{HB4kA+mh7Ksark*_KJ~0mRO5lk)SC_Xj{C03E<{7Td?KPO8^?j z2qmJl3u!b6>(WpjD5M1&u_XL(@B$xq5bp(v)v9h~q6Yhz?++z`C~;(tU+m%lye>Y} z=lo6K7aeGX694%VW03Q`g%6THx_DU=*h&i3G!LMJ8*5z1yF<_SiqmuSKXL5kR%CtE_CO27aoC*MmsASQj|CRN5I4RZvju-JN&D? z;rs^B7uz(*lhgP1>if!WyR61A4;$%6$;a=q@lJ<+`iY>iDema4`v89Zu9?m>h@meP zcq||Jkx})rzA68X2ho``Y3}aDoWr<=>-)zn?-HZOM9y^>j=z^N2+E1SAO+E5 zU9VR4hqC=(-p?I*v`_Hpa6)%`q3DS3BI0qaU8AcZtRrt>wS5m+!V-`!^x@>RG`-Ga z(GeEVisJoo$0n)zgy!t*<4vv7fepct(3@^ojnX9GE%4W(c%tfrP6Wo8<8s{3qjeR& zS5A(^{ckko+Gab8{hy3Pe-o^s?_3Zj=rIGE%7ulzvT~H=mEr(!W(J%}=FtHpoX)@! z5m!Tr0ICF;t=9wB_rK627|)MDcz!iBVehf@_Jp>P}g`mW%}53)#IL9n4==HFl;zV{7DYhIMB=bE94qnThw~N zIPBNVy*(z~Lf2Zv8$XGni9&3eZ7_;Lo?+o}v-?e4)sf9xoLpoI%=);Oh=OD-{a?3< z%ZS@ghMfdaI+pIMc6&Q};y1bZ9u5`OKS(!NA68nwf~wc!F9;yK#6_guM2Q304Uz?S zeV-Q*&rjluov&p6FV0!&sEA0(_EpCi%CUFWZ6SLDRW!`ocP>^M;~5#BT`Ags;kd72 zfhS05vGuavKOV*>_PaS!YYS7J;;?;?4Q_G5*Akzr9a=Vi?2+_ZZycT={_K37Dz8bq zL+Xy)=gL3&kTBedp58Q7SUXA50TEd1mPd|)J9=EfpuD^-TIgK?bgXB61ve}UQ zT_dYaVfxr3huu~2h!n0I5D_XBe$z&+hkHlSiY5etrPrJU)XwM#uBJ&A$|?jVD!TS_KyBg!uor$%sTZfhRbd_{|wBzM1PT< z`T~2a;s;g>4)8m&ulxleRvSYsh~%#!$6LjY@RLK|Iaj)ep69GDw$ZPoqaP2VsDyn}gUaH-3`l9~2oOq)URj8g|W|{7N(cDt*PwD%u<049n ze9KODZfLP0PxXau)$gwF`%|Q42HXFFq`pW2(-6gW2wlV7Fp&tTt=R$T0B9z;qdXs! zdKJslVPvtiu+^&)C9sx@c752oRsI(LIJ~P|Q`Y+U4iK@bUj9MOV!cZUb{3ui2#bNa zD#npt-dRVg%?_UcNFCVU#%wMM4Y7SB%5sqaubXpI#m~SHv4Lh%wv5n9;#mkR6xBnmC|Cs_CZ3#3BellMEqxM?l^q5_%>c! z;xp(T>7dM>dz?F;@Fw@~i`jI>H;uGDuL_FLTY1IS{Dv#_8murL>lZFtw2xYKqp-%h z1?VAiFd3mPkXSoG4uo)#2Sr<_0x(u>`;1VxRB}PDX(878h3-h7r=~;i55~zjaL^UD zMrF(J4AT3$ljTYrcn+=lb2Y^w9rABcunmbc*y>z&9k(DvkA3?wtd-9WH035Q18jHA zebsV$D;CxY?P55RIfTCgb45YJ<*AO7#l5=PPayf%b{4O%aQCb@e~zqD8qm??P6;=L zyoxI%ozM=njK$F&4Yut>bQ%=QssedCq*7c*`E~1)+nNX_p1sxMy@J!=Pw&vh11adX zbsh6362nbGOD9Qt($DUXvgDX5UQHN>e{23((Dd++J>e zgN^;oICdMFdIKAmVc#?D_}vRSZ*cwa?l|wNfx25K1%YPe;GxJS%}1a4%c%A>=}&o! z9(|W&Sn5J7%xWRIM+KMdLiGJw_y$st5sQY-Z($8RNQ}6y{Wa@mrw>1N0bMMq8|z8= zZ3YKiBsf^1XwiJ`yBZH9eD>pS+j883t{qvHBv&V&+j@oqY+C)h^e?G+rlv6RY*}6%! zt?|$^sGzKvt9GbAxvoxWqMBe4Qp)6#oYXf1CudZDjB<4Y_IHpMt0LadBHah&(ar43 zrpfiW?8t%0cj}gsgVL14vTebFqq~P2vyR~yReeVL#6x~zC$BQWjN=?1#gR&J zhV?@`&FE#)kJt_b{-!Bh0Q10WnU;uwV{l`i!tz_9SR_Mc#?vO~lR{@{fx2D4N3$~a zFU-z_%#d2HUu_aYf6OiYqnwp(&N;cdYEp5QQkwR=a1$Ie>RQ-$@%#?5B<@up4?y+v zktWBzBDS>s`C4U=hx~-0=VQul_X6RJn@*I+x4k>qXDj}$m9-fLS$u^Hs^e*lF3aEO z2(igIM2=66r+SVVz)aq{#fQ=9+2=i0<+% zU_qjt+>3d8GR+gR{iR)uGi9m6M`Y*Yp zO{X-2OrbY_`Kn4Au4R~J^4N4t1-(^@om{PBG#tjt^fek?&Q~#K-pMn=vk~oKo0=PC z4MD$B|6m6i`$k-zNJoY?yIrpcl|i?h9!0CL+wVC}yI3n7og#0MUb6|c3xDvVQi{-8 zDcLrSwrINGp;>EIqv<+EY8n&UH^P#Sca=o~lZzj#Jxf*$2kDgKVe6eFVQLRqR-Q&>L(H8Py+~igm#oZ}jdp-wx-;zi2v_b61V?!1UbNcpy8#E<>=^O*9Xqs& z*_N%$B4bBr!Gr#O=-6GH9%*jU1=NLTW_ekrp0~il391RxkVLeO1#Vh&v|Mm_EWg8 zyr{zPxR4~AB>#(rJ)P1zFbcmsO^N`8i7)oMFzkexyDG=NkY~d_qqH=PIha}>)axYg z;dk@$?m{3>ahhmkhHFY_bPNY_YAd^6%F1dMtnn6>0NMi(YpmnV(+8KzfI!r(sAKKI z!)UynlGgkYYqY|{^jo1|rG!9ku%ZcErpZtacN(E99(pD90*^As;La?v;K4 zHndE8g|mMf(bdByt$>76Q~ZSUJ{WWLUdCzmdjPa9|Fq1Vjn!J9#}L30{4t=4tMC{p ze)vzT4JbG+WTYfu2Qq386?BLpM2d8e@U`{E(HF;Z_r>nFpM9DSGg=yS zr*+FYdGGdX*hV}2u0v5@RByy*++krNh%oi$=E;`~%!{;j1QxdlIqBGhI{BJ`(FNNR z7n^JDJb)}JNYNbHWUi=+pu1p-SUEcR&w~~aG#!A$wmD1N@zPVP8!T%|u^L6mZS6ZQ z_mp+Lt=+0LXw--#Qx`fD`7RAu7%FWz@*frkhfaz0@Cs|*NA^YC%kA?qCc0x{-+GVC z7uP`)H{$r--lprbS#&m^$@K}uG24pM^k}2#&?|dojdx0qe!Y7V_99MUo^WaP1_SZ& z`)eiNK!$m?rv!T7hbetUssB^MuT|gHe7-uHOi)SvxHWAoUvWFO98R(ftN~wG#J^x4 zM%%qRvI;)(PFH<}8FO!FDV$tP6pA*WJ@oXr^V|E5q9oF#b_k4F5|z3bZJ_=%CL{70Q>)~ z95|FW6wNc__kswpcjxph!_j}N#hE#PkXtX=>5?oDUjGGZ4j(+n@g;1?z1FzGLjB1n zZ!%L;W`*O*OC9O$! zXP)KAJC^Ytp)jzq6v^)D&TTxdJImR6a&U{DSUd2i4o=(Pvb48Mkj$$TGz`zoiWuW^ zTJaYo@F)bFT{N*6>$Q_WhF6^>k^Yu1^mjy$JsrLi(Jn=>x9ELQyCbaF`@wlxvCTbN zR-5q+?dR}!DG8}F?itj+Vlr?u53omygD5lnS7)%9SA>j7vu6S-^$D79FHfqby{L|i z_iS6q2;524nStDe(7DxLRfhLdgwmuJgl3DWOsUTQVKfR!TmDcQ8gSF|OXPx@(45hT z=l}=Fkbew(H7UmdoC9BfAjriAM-jw>$7(f}e*_G~KZFK&OmiE4!BH@t=aXy5O4vhS zAnP0qx|f>+p#UWiv)?BM`-emL6}v9N#WPlwL;olcfOLT41U!EU&S_%}H1s8k7bFMZ zcBsqMaTL#~SB`9ra1Igx0WDtgVn^ZjL> zKMtY-02fpKM@xVIT)1`4o1hfKIUqm;4>*|uauV{R%)RN89ne3JEp($P7}ODas2*Ebfq*{BOlUD= z)vTyhEmL}v-|9fR!z(J0@m>Hzjvp1^B*i6zk}_NllTmXL&z}_k@z(b#-zO&ah`0=6 zvT7C@D{u!}bAQY;C;MRlCM||@gvxMVV<{0KGkGS{`^n|Oc+3_! zdn{5;uOUEZ11b{Y(C~1qMI;xy8g0MUA@x{6jVL@8_CqLBxjVJk%O}bW#pQrSheX6? zpS2j15fah#n!^##$nvnYQK+TH>y9ciw>X}`iQ|cBG_F3(%Yks)x8&#dnfCvu^3$tN zQ=muEQ%lOk#hRN-*Ex9#gBliFELDehnJNre?`JQv#X_9OSxH`FDb=XVw$rRNb51*j zvjsh(B>mw9FzaePNs8zPH}E7Xzl~{r*Q;1$)LFJZLw<`Vt0k`{9FK?Rvkzoi_1jEOXl zk6v$Kr1SOHv}VXqKByLd)5lQXQgyGslxb|*=`NIC^f>&bA3xAv)`Rx_)6aZo>`Fr* zcKz%6b?)4|c6KYhte%x!i^g0*2I|$P+rbj`xpU+`)jo) z(+=-4!+&xj^Hok0D>hde?TV*&#P6tczu&>QreVI7i!W9$3)~xvwk z?(WRT#2-s?p(&f!;lkVlE}Ux_G(lLv1CS#2f_49ingrGxocv?J)KZCGSzZYemREMO z+?$3x?mmTu;5KnKs#U3h|Nbw(Zw)zGV+AyGxxYyEQVF}8c)4+B2!$Nx3_F_#c-|*PHq0P(T*Tn;4IDrDtA5qK7u_?#c#xvflJCj}N{{5)J;H1p-QUD80_G}&cAhfxnwF#5ue8wFs&$N_##C6n} zr7)Fn2q3!O)DuL1$pNe;wjR0Ak@WtgfD(4-@Qg*Q|SO z5Jwxeh*xOi-3k9pEn=Pn*g$Q{2^{r;n)D`(M%g0OC0-Zq{5nZp!6=6t+0TsIKD>q_ zD?_8NsPFu!up9qE;z1eJH-?)(R_zFPDaNn}r)~pMZ}M{S*;^EMcKC)|jX4NoM;Sv~ z@{eAihl*o8frHoXqtp6uAzxL2{szffzI8XZQw>bt%G1eh>NCA1Uq35&{1C$B-B}bS zpH?9547rIg!+56VJd1xE_&nzDJvH!=B6VwnU~gAb3r;Nbx2YYx(NAEHz8(&|@U4v| z_)jx-=P_8F&dkZ$rpO?g9Rw$x;(`m#_cLxC-p3ZM^f-z?C-Eo411I4aAi?t6)}fGt zI?BU>>fR}IPU8>BXG@{Y<+Gr(efr=L}rpc z<#fSSp%j;&<=TNH`2Y<*lK=5%Er<^pha$z8*cHPaG~R)=oRp>gr@bbeh$R9ikrzvH zU9I2u#wp)u$}n`LI5m&cjIABo&IFpe!*0{THzJ}%mvzS}1a(W2wsR&!uSu3LZg>l+ zbrTO=`Z(liu0kdi1A>inYmTaA^@ z62NJ$x0wTGH_k(P+^08J{{FE(;bS(a3~iSUU%F*|3iGbdhVu8(nTQ{^?EaMO6)wo% z`IXUU;?(4SMP<=eczS!$d5I6RTWvBy1~28M^||(RIqhU-Y$EQZ-s9*^+~Q-6Po>t(yn@^Q{iU6(l+s(-Yn9I6MdBd@?uRjcLyKgQlVE~<8I104hf2@y$2m2MH~ z7*PQM0qF)2l#=coKEAF2A%I8!xWy zIJ~2b7&+@2@=}7&D-Ik3NSy&$4zn+tim^VXspB+Uo@4|sw#XIYOxpOhRPkEHmLX>% zLl3p6BI1qGfaX;Rh%dWc6|;isLK~mS@O&a8b_d@JCiV_-&Lfk1{T@UGYZ^{AWgGR; z4!5dt$sE-DhHtf3+5|A%F|lA}lTg2Lk^wY|Xy88J+-^l-fBAVCBfcIpwx#-H_Etw0 z%d;Fo5py^Xd^^aI=>$T1i3N zS?*1B{D1qMXQN6^h6Hv#WE?^3w6~BNyeHiPJI~NtR%ceO8eyVxA6x=vDuOg5Yy4-X zd###w=n46+4I&Jg0%vAnF@I=;`Z@Y0JI)e4eAWRc&6_zU*7khK@ve-e(GSCaRJ>7G z9`RwZ%eAXq7Gu{y5pl}NA0v74CdTGcZXG9}E*X6_;jI|;+LDxeeea%#Vkgy)#M`?K zeGBp2b)5S;4|2gx&ZC;9*YEPo#||#N=k`WNP zv9idll$g2iaaTU;_JsAWmKpd@iO{+?sL3U;tvC&MQF*LCIr0N^9V#FNF@v7il^4!| z)^F{MX-cjqZB}POySsyVGvf0j?x}x|_E*dPX|7Al|EIZ5Po1QVxi(Ox1)FB|Vl9eH zPo2QEkyD?DM_q`YO*keuEu=>g8*I=;HzasYW+Y>sig%j}!17??p2;schde)bBSO9H zd?MDnsaN6r8QF~)Qm$85BJ+E5sGp8cq|tw*t9tP zC4FD~C7$LmHDp+&`r!R^3ci_hP)?)elD=dl&BR!nqdmoczf@jore<~d!m9K@H_vt)<+$X|gaEYO+yt=rj`QF`_?P8S)cy%qpyS z=IaPOqstnyKhF*S<=pf)H=H0NquIp3+)3D}$KlANJD$=PA4mb{B2+C@AKe4Bw zI3M;-)41BD@r&qL+vYw{oXR1I&dB$d!_J}%sH2cD?jx*2;mv3;nRa#Vd^>^9)+hTR zbOH2`7gyRS=G}se4wAffLv&P2^xtp374a3j^*Z*s7<4d)HW7b)bX0rzOL@5xgA(@y zfbP;n6EVDna+ZO}I;jp?)c&z-i2;v4g(&cFQ&3 z(Lr|Ke#$4T^1K-&xpm7=P01TV0m1kJQ7u(#Ni^C{6H<*SjqW>HW+YjCtezJAh$$t}3|bKX)!0D2{mw4nxpPaRL1!Rto9l(v-%2m7c4{XBTS=3`t%b4QYkuUkpH z0q=uD0GlEW@OtnrOI<|E5tO_EnS_kE04*&bql%E_NiIeI5J)D#uLZya^rJv;f4=J; zcu7qwme%v9`=FnH@%5MV1N5UA?pY(Nw*#$>G;p1{+|n?-zct1hj>Ka*<-?0D$msZ! zY!70nUCBM3I$*qz9OoIY{-%Q&*;eQu+@dt`SllLQ`o^n%?}*S%ser*C!3-l4v(XKMTD+nhvVeK*7L>)Q=}{H zM7}z7-x27QVtU97G2sXnLbT=7&Q({Vs$u$mh`zW{FN2|ddl<=6bq4Km8MaaL?3atr zh&(!7?Rchf7U}UllvCyLbj~q{0m;4lX3jkrBwCx}u=Kw(-2OxFdU1gzpeXifQd7C}#D9Fs- zbNf^eK+%f{dUrMj=fdQ8dGCEyQ?-*3g|L^TR(w<$Q4M=oPnI%nE#=jfZq5}4v(+A4 z97K$Yi~&l?i(j5FJ^pHFO363+P&FWp-fl$66amnJ=p3}r`>uW~Dnr{Le#FwVu}DTG zPuL=@VqAda=|R4{NfU~4dnq22Dpx*&A?taFdgH%C)S*Z6C@`VDAx5WOKZYtfqgr=| zf@S^YrLw7H*uZ9s_{-<^4%@L=q=KyzTc1xSQwBo($x3I_(>4!BJWpZjBB4s)kJi0I ztPBhg#go!oyrjY>80zA!UFnk*OH#!J)ht{|h@vZL02luCmG-Tat5fE}A5YVDbtzH- zhO!hBH|UG!`ee6KhL{Z7;#wu9VqR~=4jZ>57%d<2DjF(4o3iW3;0ttB2?_9!TFwvS z1^%C4mKQrdxNOKpls>x5RlJH_tO+U|AXGN&zE6kGy;d<^U|pBYI+tfaqilIToNOA@&pDti zQl&-zjEZnq`>AIqU9CIak;Wul?QyN#;+mD)Pl#DX5}7n^hxvukmQ^^5>5O`don5Ca z@;+F;F8OEHFGSQJX2VCwwixeETtyDyf59Me!*Qw&VtHx zJwNS{p&uDIrO=}Zw%kw%SmJCh$_G1=P78Qy&D1$Q!+orhoz8wa92jY&dJ7u()1x@i zVAt>S1_WZ#;lt(=j=J79dR#K(dgBVm?kfT0r$_00%6p!5njK{rCAJ;_vgu z8Xc{f1R8}oBFlRzo>N@4xkn$KTGXS<6CI))9!9NX#VNQaXmIpk%c0QYW{%v`kVB3| z343Far&41t!bokd37Q1o{nB7$VV*95``g;9?NUAyZ!U&q;@nqU@Ii2_-NJ~hFuTz+HJ3!V_|9;MGXQcg&%z~FQ2AlR zf$KyimqfYRSGKI1*eUC*ibuQ^(S18(TMK*3Hm8*KD3W?b#a3&0{EyAstUS$jqt>B& z1o!vvx;{UpO+Cg`tZ5QpHtl#B1|LkFj<|DchbGJ7Dtlg`c8rM(qCYI$JSIzi)Vz@& zc&Rv&1_h}rTrw9NEfAhpy+BQQNj~yP`@0ooAH}hIp%I@q@6J4{kIg1a34OxbnDbL3QtX8=K?`h|Gmo%Cxw3GKw8;a&S#N*@2bg=o_ZIB+zPkb3Iu( z6%@X+rJvN;$HqUXXP#$JpUu94ukeToI9@vCyfNm>(@j z*qd-@-^AGqCVS521}jh&6TH3}hnugq1YpvviK%(V(bS`XItNs}w5yZUBzsK1;{>lP zZpCi;%VVOCP~OOh*sI`P1G$K`2T@~>Nmzl+8acE7gnYudeM2m8*rO{c^tHP~3xm@E z8UA7mNmzR8+i8!jaKEuUTDK^9q6`@i1yst=vJu-G9eB;j88$R1v&OSpKBm`cmy2Xf z3TGAPjcc7SX;8eVN#R|~jDbxlt4ulDvku$Zh*Ps0jaPm`R)_jT?PH9eSx`bLjvRFB z63K1HyNOAn@N~yz{S>G?Yyuo{T^PJEzN`hWgi@ELDO#r>3BM9wZZ~KQSOacU+hS~k zqazeDOwSFwR<6tvW@CeX#oHSyyHI~qfvcc2>=G9fd@x@$)oc0`zfl=YLAIpPfFKtn zzI0reQXP1KX_@Wg=5;n?bBIT_Pmj6;y;9bGRF)ClBu=`Ec9$a#5;TaEM#^qg8v!r+ z0d+D?4dv)TR)88$~hSf%Qz_tXsY@NiGTSMG8emWpFJz`wYKnaYTP0{Nwb>bwogsg z3c@qP|`=pL9t6-dSluGp{05@9c1qW%`6X&w}ngXn`=Zw zhmG+V+`Zd3m8x8UpP`54=1@mf7{e1gOz%eM16_rh83KBJqW9nC-c3);i}k)szVz~i zoNEQgb{nFQQi$B_i4?^JF&vJ&dnq+5MKdUMHr_N&#?2F0Jd$TaF=vCuf^tdi+nRx> z{)0Jg{LmGFLo>*;@G)!}*c}b#|6(UmOx6ORufitAMdgA-G($DtDF4v7auf}G6o%WfZlA9Ts1kdGq;vBCMM*Ka~5}L4SSZAe3 z^0l4rT5$zUs~ho{-bZ}xv z6&L=*DR9yBYxsB^#U-aO7oi*ML@P6^&(iCX*h{OmS3Hsf_p%kQ4Ke=S@`G)3ldVu& zRBMc;>Q`v%1c|Gi_R3gt$FmvReY$U@lZ&{&wIpgiJ4LVtCqzo08}i9h9!QtOP*|l& zU=n~&_nI+vA>IwFtI}8+G6!(F)$!rcQPUlCcH^d(Aj|LUM#pMc3`CVod9=zN+2Xbd6X2gYS&B2g3rn;SdbksjZ(?{&IxEIOSkPAuox z1ma+u9lv^RjuHky*vkqpvGR)WAC;j7+PYH2-g3NOZJtHSv5Xggu`*@8>>J>( z)syznyK;@m)o78eM704RRLYE+%ECAPqz4797ok-w|~CR`9AL{O^q0CC1p%;DeBXv1#{s+sT=oTtEVo>%1ll!YO%<3 z!*tJ}AUs54$N@^I!}*IhDi~&56?^l3(=`&_H@x01d!()A+Thmdq?loLf>j+`T8Zyy zTHk6`h2!~|v7PEw=!N{auJ^@vZa2Hh(=~`w|0tA4C7Jqe^mVwm$t0{k{3c>t6;s-E z34-y~n*_AP4zY_Z1-SCUwsscvDX$%Y*r;9_%lt`tU*>!8fbS3p3p}P1oH`U^QbyuV)MXGmwHIB4=zfS(xm%J`&_D19fQ}5tWlIJhi^|FbFOQ*10Oyuh171#}g zH#q_eHzz?{dH*jVjoKd}O|Cv@pxzw%Lw{ROR~1RqL^P>p$s)?;`s7Y~C&!SR&T~8i ztM_9UELt<;4>Rg2j>FJ>aZ#eUSHn}Zeg(s@5~92h%G=_%Xg&UgM%&iA=!cD>cP7)^ z(_HAa2KI&!o1Ayo-pzPmmd*LSyMiuUr$f~@-(_k7`^Nf+%&d4zGh7K=Gz zm?0Q#-|gVUa8Mcp%#=LkL}4G4#+uI@_NE|DVM7+QYGMp#4cEGK&cP=MK*+xM^O35@*k z`HJCG`(df%VH&2;O0t1`Z~m>LXdA-_3r(}D8*id|We!&6cSTpIOT@cBwa_muTnwPM znvyA!CZ$X){V-8Ln{3(UMc^Q^!<9%X$TE?=ziU}Q9<8U~e#)#=4L-z--PmQLGJ}$j zG@nOYCAtrdmAo$rFWqmI>2sK9X~Ftc;A~1eTi3QG=gSmOvisiskhGDr*q%SSP@e?& zz4xDj$vC?a6~V!84C4FwhbeUqTAbq>1Ygj)mJ1DFbPj+Ef>yNH1;emz#Rfnimu5pT z(5Oia8Z6PY5<|;jFn^s9SWFjzX@qz2WTNtH95_FmdJi*FeTIQz24Eey4d|BzFo=%~ z@I(OT(Ciyr0HOF#&w*e8^jY+C@Z^vr=7jx+s9|XgNIZmCiGW}Npk?7j=ORXVUv)!o zf~-TuFR9*?JW^t;{pgfM9)&MyAeV7A)H!1@&YMaG9fEKPa7rA{9|XYxV!-(!EkhWv z0N$no%?^JQ$Va#b-UT{T;35$67y+y9Cl}oR931_00NJc4q@j_V^EV(sqPz<-9Iee| zT}YmJUza_%t^hCGOabPoKGKz04j{de2{29W5u|4U49e;fOAAO^KqnsXfYGdY30u)S8RQ+wd{Y*!@?vWdPK4}8I^%4E;a5( zfT&HZ@M#Y+3xSM~rR~x*J4-TJDXoXSTj{S{XU9HOKWLmEN#ItbjQcYAU7(nDsf zIg4AN1oMN<1p^s-c#hB6)HBs+`XS6v`=H#;IWDq~_3$$PIu zWyWo73|eXYD4CmpDR`%|(*^>uQ-o+x0WSdJMshkXKZfcmC>zb4>s+aKoC3$2GA9LA zA{hcnu6C*^SX9T+mZ`bfSaNlod~#S;%Pvw7&=0T<79Ju3)*OM9DM*)LZ8KZwMBIsy z=+0c>shrI%%ciH6H8YQlzVQJ03Qlraw*4%P)utqDzkCpbxB_{Qqbn?_^6@H@)V|_HmWmi9u!0G9(t3#C`vdn+M z?w!ti*BLOjn(b1ylScHA^|ZzPjt}~&+|j8BX7p7xw{_YB!s>OyDrwqr=fenizf4~1 zEmBb{FZL@k>f$z`^_-%&7ErN%SFcj~{Kz22;{)#Mjx;|R9lmazgMl3!72|v4@-p%K z`^AWBM@~~$x$5am)emGchVNJFeGFfeO4v!l!Xe?S)KR)lAN8<{oXTcoT!d$Otz*;U zLH??Mte4TnTHh8%nC9pYY1?8uQif!Sh`K88r*M2ISa_ZPViH~= z`vy!-b37{HOsSbMj^KeU`0Uf=dh+d|08x;Q>#!zAC}REoK+`C|YkXtklay_A=-ziL zBXGsEQWRZrWE8TOpGX#6Vy!o;`Ba%Uu2QZ1tb~`CW;x3#)rXq-zba2>(kA3%T7$+j z{bRwn_FlO)C)E7GtBtGT!ZcAW1+Nf^PkjXo7waznwb7-04ak}w*SOp1ZGcj57){p% zsj7nCMMykZFzN(B?2XbrYG(BCwH~efl|&C;o%xzPKsO#`HnVk#r3FKagM;^YenPe! zVNE|Fyl^ViE*giqE*IXv4nn88Fe(eFnqQ%q&q;!{=On?c3zgPnghweyMyLh^Y~}Mo z9X0t59h%UZ&I`vzN~5j=OP!6Kdy8@LK>mBlDr~X!BzGcfYjL=^uXO`3KX=A6l;ufQc53cxPR#ItUBiz zn~HAU%=*58^JjVcc~kV~~?&?C>`yOD$1@#&KE?f4nWn)MqbbM6-=? zFbOR&T1YT$FXc^E!0)M_Xet~ODkuubsh;=JZrz;lL?HACitf7?N*@;O8bm}bJAw>b zTX9%;DKyH$#j(bCh2u*3P=?oPj{jqwZ*%^xSU*_X#;%T%mN~%4j;!^nETQt%ie;&; zQCjVkRM|hS3dmTp$h@(;tp&M}LrtW_!6`}Wa@w;A*UwvwOx*61OAs#N9;*0Gp9<1= z6`Gj{Y^i;Xz#^PRg3(}xwzMp>KE*Oi0ccE3@a#*Vt0~YyeWf%(Mf9^*6+QSXD%trh zD)FBN@j2PefF#`DAxgJ%<1gx5bpbfVy+Sb%quU~Npe2d@?##Dr^b;}(CYeDf6DNVQ z#iBf9%Mii#9<0e1Z7?@=VpmnTMmm>FxKrVOw~l{HHf{;9Y1IcjI^+cBYpTK&(rg}x z)m68#G2t8s`z^T6n|O#(#@-&Fmlbdh?`W6mH&e)@waubhqlu4+xDVRu$jolK-33q} zrg7$dD7u}ZzeAfgi>Fm8M)M;?CxT-&nln|7Sd>l}CvNdMJsv`yNYb6;ll$B2*}qa9UZYn@|7lu=2*K&7RdP z5g&pn1Q>(fkQE+1(SHpU-y=iOL&bBRF#ysTY+8n9FBKuC^t4TP=whS3P*okx3+w7K z*fJ@$D-{?lVB_Nvgn=Qy`v-jw6yvUA1&VuvpI9=o;q$0>`KRilc1l6DPl<^o#GmqA z;0@Im+lMX44}RzgV~6)w3S7G&TNDfF{1=|hjJjrh)f|T4SnjR$RG(9Ufj^$$%_r#< z5{))kalazvHs<_1Xi zeW!|CWg*WbmNjMPy`K;P3%9)3?k0J0U_^wkqqnAaI4o5!q4d?bCMmTn+U!_1J^#zR z<+097{1hU-2Mb-JPLXs{7EVzo>MH#$z0xn=R1;Qf3&ljY&)7^1P>|Hs3BqvEv876& zn~^!#j@Vu)N(Ms&WXue7=0cyf&<@}C$+EHMyG3tQ?Q##^aHxN_gx)p@dP{AOD4g8v znjCGP6cKsU%koTu+P39FE*pT?K_ad>60N@ zlFQ`=H`fOmjxr*U4B}*9c?XO0%lg9U;2ETH~NcJTO39pc>(@(??}^254}K4Yb1mCD&OnLOUg7I<>=j%8)=Z`x-ZDY#req;h9c9&T}x44tcx?by*8 znGut(;{fu+9!o7Rk!lO;ix$MM!V)|?yq#nR_f+=nVh;#pJt$h7DE?K zmC6jtZUxTO1eOZ$WHW4p&)x#=g1)5w5;wLV6~^Bk*N_yBPCw46fpTKwM!#BoRe}%= z&^R)&7i(YT*N}0%Yf2wf^dlsD_P(ryWsWw5)kl2bp>?zJ*_B7uiQ*auKOv#Dtfw{e zv6gAmOqpS#ng+24t8re2{-Zbjuj!9nrZ%qeoTICn4L5bS^FUz9t$pktO9+3_wmMXuUab8B}qvqZYQhGk@o zy4>AniU$gP=hcB}FdbjwnLHVS96RO=InZRA!m6UPN>163MCI@0NwKJs+5}QtPa?1DNimNvBU^=P_;i zJo8~K=&W&cuX4^nzBCT&H;_T!SjwE$8jotN2arM*%->0>t9GxR4I=WbG9&EvL>R+p zJg=(-+|c;w(?js8;OB+-E5DWgPA59M?X?r;K@NR7ogw?8lDt*hL%z%>-2rv|~c>3~a{GlpN0N?=fN7jd%9e*YvaS$7)7P zBS(X`>Cx;)6xW|)r^e#O!UCu=4!QLMC&BmPIFnO$`|HjW-)Zs!FsZ)NtQahttN@d+na)186G>-aaaoZk2Zb*CX*Lxf7lDv>1Kdt~+Arb+e=15rKQ4 zQR-ueUYlQuKK?S766P;gqhixmR-$O|XH8r4^`hw}r4hD;_E0p`| z74cTc?U#JS5alUW`9f^7j;9(E%WW^0WiaXSRZ(AetO~m7a?j%E2Zv-sB@q>q!E*0B z+H^1%v<%6<4-{Y4dq3c3#_)-cM0sTlHKF7AZ7`j!O^1k&q}mAtmZ?wK3DX$p{XmMD zS5%)Zl!bE4@mk2jn4q*6;NPygGq3dw(VO z)dI0u6vv%UqVuB@)#;{b3k-UXnx_3AZ{qi+s9X$GYvsAvQ*I%2kDcOe+sy1%(-@;B zXN+Q_A;|U&FJ)dtqGPPIa_`>6i?+RqXOmQUt~~YEd%(!{O(V;fSH2k3Hj;Ly+Po-6 z5!Y75uPX@MysRu}SsHZq{?rVJ!>pH!^-7Enk>cC>OHQ>9-m%p9+B4=dCfz40>WwA0?<$CgXc zV*J{=nAbL#K@un%-W6LKH;PbE6NQLR2}e#|YeyMV6G-cMr=i9chZT2VHe6J5kbyvY zNn3~Sxogl_&UIgrv8PSS{&r$HUieAcGMiop2uDj>F&|+$U(|uTrIcK-dGwt5bF<4n zOMiNA4i!v~kST*QW+GRr(N;z=wW?F9S7irCgeo_rL;x-Xf>SeE&70%(ORklb1-H4f zUGw9NxAQls4P$M3)G?v;b*1$N7|qV6*Z+hh^An|{U4LEMY(?uyo?APkZ0SomJMC?4DG()9P+dnjV2WElr$n_gwY{ zRjk~lX18q8WyR4ByelCI`ZW(0j(DrRx&%!f2leGlQ2;+W7N@VBoz;99{gG_0D>~fI zI8u%LM@~@Xvg`3n?PX#4^fjk9TS?;UeZ2B)zC3( z`*Q*J(iq6AUa%<%xfASlkp$8MlzxAo-vYu^jOw@uIDaF3_!)B~t2}7RSC&y38nBxU zk6C>TlwA=S!g1c$&+$U6FTiv5AHYs58}sMT>4jjHqI)~w>j!6CmQ?RbU}1~Hk{S#F z|FCURgIVzWNR;mRf*+%I`LmnPMeyJziIU_6@Eo6Uu#YcSisnmY4qaFQ~jRuXe}sBVU(&A&<{?LT!6 z@eo0*76Xf%ks@TBHj7-k(xioT4cEYR6L0?)H;u}htxW3~dORc+nd13Zo{lZ)d@I1; z-t6k;zkI)gcKS|Dzm>j}q_vtX&r*hhXkM>eBto($yLU$9x+{ zUecr%)8FZ&tHKY}dx_POv9)gX>y|Av>0FtKC~xD~c`ceM$&k3KAVPSNhcUEHw^-RDHO+P6dJsEvonbyQ#877sD@-oimV4jkZMCG*br#&9YbQUJVuctTa}lW0yWq?j z{xVZf0c+#i-a7N;fbS)-R~1stq->(-R>-)U%GD!>72xB^KRlBix*vSj9I?BTbsZ~| za?|1mxWdr!vBb#k2b4b{qvj{@PH?o{ZgKQ!Mvgw01+9YsVj}PH0F-YbQ)kR>n->26 zT@3ykY@Tg@M=ZPOI|YF+4S>(}-5*)fbz21L~LY4|Wdv}G{f?s8Z|9Wd`c4g^5m1ahuz8Jsk6~=6(ST@2c;b5S zmP?XA;-;%tPeoWTsS`1Z*rl{PzJ)((`HSsAPOw-cz5lJnI}gngu>|li#qX(2#L|2x z9ovtE&NZMcqz~6oW+f$SYz8f1$OG8IVWxzIqoung%|=YnUEW)5)RAw#EjO~YH~Qkt z6Sc6p%~{owKIJm5|G~v|*KEmdx6UV&A-|QYSK_YS7h|K)j)miNh``3|2h_k$Tu4`q z(Up%cQ{2`bk2AI^Zx}Jn5?zuYQoI{_Z;bAHnPOf8>`O`;sK48gNyt~jQn0V_=&g=T zX9U52@RL?a$A^M7k@vP8U{@VQLf+5&r1$PErwE1*d z^=e0Q2kKg##edNKVyjvwCnKtN&>qtBb4OQB_ITcMNSEsVSkNt=nlQlKdX5nJOI2n-jv1@=6r&B3VJKzY^ub&XY`bW;V#YpXq$i>k5GQ90 zmaH3=2&NS&b!e`+IIvS~sD!4%ll!@54QI| zPp%!t4c;yZ9F%*f%)lXW^MMeiAQk}7vO@Cc3RV4ZwRgqNmf+R_!1+rIUrlX4H!@95 z-(>M{qXH#spR(;UqPIIswIQtvbqEQ0g-%#ToF^=^(K=tg_3X>WGYyEucKhIHYs1#_ z=adidg){R2g7Q&`$dStX9|r~`)6^)G+3)UYot)_91J8sXRzD%?D34RoVV%O$=P3)< zAq$wU&95hgw^zF}j$+}T?#?+o+Bo7-#O=d+3mIy@RobJ%Bai(UT-R$qd@6AbspH>k z31=$1tdz$`?ovj!@j0p&Pd`tRrfhgQj6>4=TAI3yNM`EZh*)abYN^uLw*$PCW6FH^ zTKg6l!P+Ks!+r6A0lK`oc*D;#!(#2mv$RUyD4oH?y1wiE#2;Z?IE2r zqNm@L%v4cXRu$b{>ry!LBKVOJ0m-A((K{bvm?-)Lk3Wy_t&{G)38#&fjZCmJ15lu8 zd^GGt@z_RPm6b(Grab;geX9+A#*D1At~mM$QJHON=#vXVtylD2Uy7h{9@X(7wxY+h zoWgxTD-j-X^q|PPYUfHx_5|iGh2=aM4@2^&vJc^NPv_ZWL|@Ul+d~?wQY%j8(~vCL zC!AjL6GhQN^%achE$#uZamT?E8+`DeKL6k-$Tu|Er4-SOV&J%UG572uWJ7EDKEsuB0t3r{E5@-zSh}=?dK&@zjfxv_Ww| zcc9yVw>l3%gXbI0(`YEm1U+&1@%1N!=sc-OPMDBt{8%4%U>@3-HJ;MWln)IiteAlZ zYC83zP3HSkh!%)EM26B)o3TzX7TR2-5_HG%pBuo&SLw+{IQWPV*!o27{dC}-e@tAF zL9MK$e|-jB=%8yF40PFZ6%;HG4FW*jK5RUIK|v=^)H;FcG{nER$6<+Mpj%!J)w(<{$p*+Hd9Ipxd7vB!`~BWwnHhuqK00KfI~#nbN8QUJxA z{h(}^73fQk_q(HuiAhSObU#}vd1zL=Ds#Nmu&CMcZm)1^L;HzdUwf-bqy@oTUD=3K z%gU|VF@GwFW6^GlY_0;!BFps8bzw~Y#yoA*!PjXh4A1+rt1iv%&{5kw)V_>dx5=3+ zJN+Q4Crt4$!Cc=Ry4I#eJ^6l4k#LnfC#{2fc%S?mrRU&kjqBOB-tAiQo z9pWj~`U=MHUDES~ilx)tRvQnN2l>NPLmo;qNl=CA2Tlp;pJhx~Oaa*_bMiOaD3t6T z4x2QVno`FOiMd7pmf__u|=v78*wxVS^amMNmPw%tbCn0=6&pwYojP(6p{B*2XO?^II zh1}j^8cNV=Px~>u=_Gbs;d85Pwuo-2-K%H@yuYa&czzhFS3)HzpJYjocCT;Hc=cB= z*RP#WX=KQfthmdZCB?zb^+PtRu#wEw&$npFK?q6BR&khDm#U2x*OF<0@u-(_4*P8( zDlhd>R~V5abVA_|at>}8t43z@<&X5RCpf9wWfp8ItrkI@^8b00AYp4+6?D_ygV&nnG?NN?_7F-sZd&wdgM1T!>)+vCG^wN6&_%Ds^&D{h zvHb9V0bjaHNXF5)41|lpqngTYTF-w_sei#i8q(Vl=WtM#_HQ_-bV!*=VvMmfBh%(K z1i(SL*bt0f4X8LJ9lk4iBo6)*_0mvr+JA2n0B+dCUvAicfk6$wxM6$_Fq|Xn`&9xb zj;VMRid=GSa`KM1jA=gWwriUJGmEZ!xF2jFG>oLzng?QBiA&wj@t>e)xn=FYfg!Le z>Pj=B8#)P4SA$RwLexD_!5)zJLiZLxdV|f>Rq*Ei1LgUby@bK$zY1y_!2Ciem!_Oz znZr(?iiL}n7HGX02x9Q%`yaj8Ccs%E&?Yrk^|Z(I$7G(nQ_ACiGl~)-xg&hLk)0Kg z?r-b_&%tIe`Z%h#>%LD0jdc_|o(dN^%E=7sXdcqN{roUr!S(pP*mqJt4oPjPNTkjB{Hlck8SRHOWUXwU-n7Y*TC{ub}n)(;8u*$(e13a)$6$M ze8I4f{n~|fK{0Y~LPM>16?4jg(m0-#l>@UMtvBHN>!C;Z-KGz94QBDv|Eza(R`Bq@XrZ)Ri!XwFo@hcvHW4~PlF`o zUf4!)t!-7zJBT|6ZV6TRQ<1C^v~H!(g%yxI&aVFuq!Vh}-41IIvVbD}G7^45%E$a^ zwP;>Fpm_8i`;FG+E}>~7Dij%cz&c8i*tMEIobVt4=Na~ql9dnoPI~*%;)@nL40XKm zK|ULmENe^h!l9892e0gwqVf!D=U9h|+_9|QRs?rZy?%T}Fm6%3 z+u;56FHb}gW@;G$qwZX?KCBNt-f37j~E`N9P1s5I~nE8vioL47AKYyHJlRQh2(f66tGzH%P-r8Fr7G&Lf zLUuh^7cJJ~B~e*Me>DnracG&JBhbONYuKu(6<6L8^5FZw@=zmOzzPt%g? zT(Jjq8|ddz_b8?V#ozBklVB(UE?XxU^?(=pp#1B|&ywWsX}%Cl!=y%U-^S%Z?=!A! z6pVf$2cQ(xzR<`c=cAC`jA2;%>n*0CUmd?SgSP+VF;E8v|9T1#73G-X;R6~bkPK1+ z<>1~EcKl|@`Gc*b0R=7=4~Lo*a~i8PdFOSdx=FS-TR=plOE7>mp{ z%Bu4j*e3I4mt_ePu5^E!{<4!50AGcgL)T*KPJsHOM(eZUnaH{%NOvgEu7-wq2o#Q^ zYX&qsBf^B`_JowTPqm!c{l~9jzZye)(`_Uj_M`JnwWZ)M%M+R|3)2VDGy4bM!_m5B z>mM%JHoE+P`x$%5m~swMbL21#%rq({I+pB&{`DU8kmHe|t(8;vv)(EpSi=u9}X5F|2AynvYd2BTm`4L4x?5 z&SG8cI?_Apk@>piZ!9P~?C?-%@Wno6oL-=k71tBf zQ0ypnzufFDtFYpzC$3ZU&49Z}7{>E0eusPeQ7Y?B|C_bIw+Ct?6f1EQZ57Y+Mkd=W zC3tk%HZ5GG+8`8I8&Fq?Ik$z&%kmZjA`{{rN`VjDDZk}9GyPkdS;QNqbVS$oc2~-P z@)X`-{cT>H7G$DrLf5&^r8zbExQML_I_86;42YFG^eueyO5)#bbm*8q+Ei(6_g?VY zjlX8R&5yfT;Fu?~q(c?!t`m1!tZ<>^sqy-am}t!Cg%V2?2QB-LmH`9p+{`KiULLwXU8aO^#7Cis0u2K+8x@w>Z z35`WohW6nWK&ISRPQGP+WbTpUC}(}@I#E=|?$HIjZ#ZqX7vyqvU}N2ChZ#m8AoyTf z@kmoRDP3DEl$|U-ONPi7%P%!@ss7R<{o4g3DYuZz4+!#JAwr!DhLbsa#62;epnA}m z*7tv9TJyZqFop6yj>kW}*B;g7a(dmvHOE7ue{_(YhV{K%-}^Iq&ovz6=@zFxOIUS& z04MxqS5E20JD0|j;*mE#>3h^O^q0}7^Lz=Oedy1bwUr*J)oK-;7J5l0PO=pO(WKKL zSC>saX;vNLa5$=OA4@%!fqvQNQDexgt5Y3F%W6JQpCE6SNgP;eNx^b)Tbz^GDQhqj z_Df*@{!*v=qGqmt&HeFuQ^F- zp7D0U(~dj$JHCu1eRZ13a7)LXQX!XQn0*GT6pti09Hu6Z z#9bYn4XW_5%Ho9A`5$}4O1&h%9hfdUE6LHc?f$q9d3PN-W_y}uLRarutvj>y1@2Gg z2!Rj1E+Mb>1Ew+pk#5 z0VApJ;=#xEOB}8(B{T9&r_Dbm#{56mBoDeW)O@yPGI7zKxOL}_?d?!n`nSM@EwWh$ zQS122(5rZf_w(qa-~SkTp;;gFYH`q|UqF?{1MMHp@?ty*qfDjFDi!jqiw}i(i%dm3~Fvb7&0HYa`jUIfe#wjP)$M>GO&oRWsY9qbn z$V4)VfAj%<+J!4PShoEdtbm#9xf$F2YM=Ebk=H^@J6C?dOPt~Sp47q%lK49h-%>ob zA{goj$l0!!Udlb~g|~P2w?-2}{SYUs_4`F&YvW5AX%nnLE#FMkr9?LFs@MFe$@}c) zb-!nRT%<<~DfI1_bhYD7LmHW@2`@^F6XGIl2_{P4joiKRS!zt7uk6hm8wqM>ihOg! zTov73ZD;MGI@9MW1j-4EQGL||o@@6vSwTforC@;%#%R4y*wNFpo_p)JPc;ZYYjj>?n& zq6;Fk0mx`Y&^-;`0yvb+WW@QjLKM^|zor#?Hn3gL*Ba2FhMi}ii*!gB(g(N)3ahN# zW?zcHZM2mdMORwW$|}XIrl6*yKr0nqu(aMq*I0kcFV!+mmB(oR)IqMB|A)m3sM;;j z)+ve#zwJ{C&aG3%U+x-O)ojGUVvI3k2nOT`)KeEj9e`f{Kw4guPo~hcRpFEyZtOIz zMsrRUXYMZx3AE%)`){J3-PB03@IXDaBD>&hr$!8zJpSCLuc~_2& zU(!83sM&_Kc(DiLaPet6bm+Kx>=!5U*HOuTO4|(`4V0#%k0r8XNw=osnOk9N7_3EK z$XAZ#3iKMScIPFCZv&hB&~zfgWQ}=9U`EgljHrulZy&eUU1xb}Sfp5X1a$@=#_(Qo zm7n>YCtq9pHoORdXr|3cTxqAB8Z#0i!pLBo)I%~wWY@W)y-V8gC7mryyzVVW9y!+BOYh{~9gjdT%FfIlj zmp?;F?r;_4d58^ZNcD1E%<0`c)SF8AlodZO2;(9nuwP_7&12wUhbV0G$BoC&bS6v| zk-=xjni4ii5Rs*8j-PIc+gxl}v3|1fUR`NY;N&+Q_=fCFEdEOza~QDH4H zMig^qf|a}DT0=P{oxaT71q=OC>C_QW@~n*6(<|-_`GCb=aGaQQg=XFmXbAV;hM5_}71ym4l_*#Sjcf=>IRyD|ssk?2q^fdXW?cScifyjD& zE4tauaq?X_K}&b(C=Gm#uDfDt;eMU-cs?DsAjQ*qD}Fyh^JGf#zKQTKkUr}f`vRrV zniBHy!6 zN^ltiYw7HRt&rz{vg<^;I_X49wO{1?QZ##vwBeQQD(Yz=Cc#vh#^*i|?w)J?yQ*f> z!tH}=VX#Mi`IvXB5IOC-R9LBe-!0zelj!TUe#IhlcQ4!ZJ{8I(6?HC+Bx9HQLY)w` zcY@v$=NC$lB1;61(9PgVZqco-jHR{`M6+I8XqP zDoXQ}+ItCBD~k$u@mIZ{^*nhaf7Z4CT5q8vbXL$~jR>uxx|g$}q#$r*z@iJ-B3028 zM1*YD#$iQaoohcKlF6n+lTEtV`uw~H#r>rx0xV~f2z57OD)SUSRyEKx1_}n=nCIGw zD^}uWbuAx5(w+fRh&DHALmOpdWN<1|$stB?!8$^Eea`|QAn6vivWCdGLlvd-BK*%u za!j{E77?Zh?qhL75Kg{p1eNu1|D<)m=GZx3ZbcONnih&VvU|Wc)V;_In{4NZYdi62 zrS{MT&0~FOrjnD%QzqvGw*Srr8GxJeeB-fQ)0;m>-!;-LbK|p*y@hd~(0NPb5Qif9 zxEwXqM~Rrt{LNWIB|4&~*5^fKNL^tY(OxeMPKJZrs?5XdR`;^%tzPq?+3epOYe`fn z&PGr=U1WQpou-!TU+TTwr;D{*^Q%vog~OV6Y}!x-wy|-@LU2o!9kRii^QV6#*_#f_ z{!tvo8mv9Y!x}Lyz#w86G!U0Sf9tK`3L!n@xT>{(k%7BwM?Fa7DkG~IwXJ4m!sppI zc*%1~NiCs}_9y&VOOInLD!aB-Ua-WSM-ue^xL}bH%k^l^tB~6kc!hBmBt5kV*;Be3 zcg}?G^cB`>`#-ugB0w=Wmud;-Mp}0sf}+m{im>M67A8QS10DBxo$=|)NC*~WNDK&z zd#C=;8<3h`Laq$+S&`Du!Fy)b0{8*Uk#TD~1E2g<(fQxCG zedv0ifWTE}bYP}k(foFmrup6#0b>FVVflrn%!l~1-{zzYdL|F> z63Gha6W4$2s7{_a9XT8K5Utu{{!kpRpk8)p^8vl@Vg#Lg9n z;yTD=4y2P4BLTr*{BqLZXtA+J_W|=)4vG^F%1KgGo*r{a;u|t-V!(+Ke&SAGrWM5mXW3elE9P$I2$Me!7hMY3-+8o z{SeeR<)J0TraU-i$B+;MS+hu|<@9-OyG5PmP=+q08)qSbpN%gO6NVkpj|BzW3{V1A=^VeA^y*373bEHl_D(`lvtXoH%;%5Hp)*jhfDx?BBx zj#>%>ED5RutlgcG-*Q-!?k`nZ!|(+Fc681sZUfs3+f5t^AC390@C&xEoYCQ{ zzQ-i^&Sa!$&EC(_jdllt`fw zH+f6G9qVdHz?bKSBWdocU(wVy+4XfOTg4jEGL4E3F-eCz&AQ(*L3V}jM7@bS*Fe+B z9N|}NtLWaYsZ%-#7jfk$u6rVtL%l($85tMKR2}^E<%Jdeik#>s(q9HT0bQ~^qLDgBvd%reBZ~_EB7hrf$;A7N zV-dYQ({}P|7j_~(KI{&RQ+p1nPH{8PUhJMn*6981m^3oEpIBG8O#@)k7RJGaWESqA z&EU0N7%95GlR~0un|>o_ULP&XIP=Xh{$9AhL7W0B$qx{haKHEI>2klUJoG=~5@w~P zHtUjdtexaOpeD_L7jM7HTPfW>If9Jkt8<3jNzW)QzqvRV*2Z#nobE*5%FK$VX)wo7 zs%YN~84$8Owu=x?>516Gf?bA4=FQ6CFfRwl{a`F6LLP|8eE@Cqe9#Mp%5 zLd?o0eCCyIMU-|}O2Y~fh8ul#eSVW-*r!SKsHHvyHF4h`y{A;%GdDvW=t2NE#EDh4 zuQ*{>vpa75gaER7Nz#ZWaPIPpu0Q0fibnh0*>ErGiYGT?LwE6N8X2AO?R?#ll0SdP zwpj6*dWQ-pTIP{^lY&M$Foez){mYnbq~8{zbin5g}W9YehshADgexxyWPY1H{_)o9~9TL)Ic z=MzsC1QhiH^^up`Vq&z{>aHD#pn%!BWAxhcFSGU4|7Es*Y}Dox2|kV&?&HL0RhbEs zVRnps??|~YhdoklzTZrFc$RukI4stl&xJ4Rt@<1StF*HvfokaxNvNV)BE%Y+%_6-S zY9HB2b8hqmVG0iv%jkfl)iZ7{2M#2y4r4W8Gc00DQTp{8Z+;j?ex2rV!RdzMfo}Np zqp1$R`F16=Kuuv>lH2p%Mq4mOa-QL8H=SpiW7-YQZ7c3%p}sUw4n=pXTvp;>9cC(N zYMM?HJ#aJgHH3ZV!&G^5%1$SUW`(Z%;x_+)PVo-x^2IbB-5x)j>8aQ4UmXl)Gghm& zJ+7sdw7RQE7et){QbTG%YDgKU+q)iS1_9wj9hNY<+|tKxEc4e4TN}QgZA>|t=WIhT z8H9nDFg`PHtn@mXf-g@V+L)D4P@kISg5yZ?k+y(lc+S1Qn&C)XGraN({+D;FUml*j z#A??#C8I-7oZTBTpKFLPl8CO2@QJh49&)MrY=di5?*39*YJAjlH^q6UZ&kHU9faADSXgXtexxEgqP-Y?d@hNfytAx;5kam7R;bo+L#x(cPZES2U1 z4^Lm8WTp`*PdKbyV2i<4aOk$WecmU3U0+2K3J8Qnz^b2)w;G`Eg8U@zC&ZK9;cN9BqUbg62{Peg;h&Jpi}hPVHg!)4 z=8m7l%^UB`_{Ap?F4fG~%I<~NtUt`H+}3R3>Ii7m8@5mF%$j&3f{6%u=PuSX(s5*8 zg5DYHWuJ@!<^^57yXf=Hx>?&z`{l#m;D`2Xc{yMmz<_xBmY9&d<#Ac%n9yupH}v-vrvS5vQoi`B!6xPO^G}S71~ob%7LhC4NVhxXqk0fQ`h+W} zgY704Su!%QJg%UnEa0 z<(Zm@3tZIQ&E?UQ^p6ET8mb>CV(!2Lel(+ui{(=sOIwcb$ptLOmlFZuHQFLVJPwa0 zHn2tgQ!A_?I=~2uw3>~1DqVoU(3o{v?b|QLSUJmc3(60>@m)eCO_EI*ncaj|9gIBq5ztGuTWr?Qh%hjvmQc#eUk@lJ_4 zK4Q>AP`ejK0(S|?jkIktEEFpP0x~2i%C_5H3IKPC(*-a#_8mw)F-UB!P51H{bo9IP zk0#3OFEbp_L;+P${IX%%mnnb7wVD45r}&ZmDpzbyysafJ;$&k_Mz?hlAc2We9Bb(X!+n5<`@=s&t^>yMr9;@aF#*OvZYV^3sy7ZLe z`Tqfe*^pF32hm2?XA5HT_vNf@ND}XlaM>bV|~W;DW4GHU$)I{ z14IMjjeI2O42R#;K&K|T+;c1KC;VPBKVf{@;vD<@`gR8{5G98Y8CDUIwTWIoejG&T9iCwTAi~w{IUR5)*Pui# zaHwd5FXl?DvxyUV-W%Tzu73r=Qt%2a;fbUr&Hz*#N9-8`cAx<%mCysZU+4Oo*Rgrh z@0i6g!fZ*O!^>!da6;erB+i5&oRJ>$p;M7$2cBK_f6c$R)Xx8yfA2h#=N6y-)GZZ` zx*ZpN92b?mDQwATH0oi~Gno-+D%tpSaV)m?AeoZ( zm8X6I3uwH$?81(5_5`>|Q~tLtPJoOjXe49~|~SmTeo zFEVfYb#d7zc^Ay50gWynhP$5309b-;mx>epA1qI^l|g7Fb{A^{`wsL3R%!c86ZK#D zFvP2i1uQ+A6Tw@mju$JQrm#I5LhTfyb#8qL^`>{~xt4fFT+*EGZs}g#?NcJr(QhJA z$p0h~X?-3nTRQGMuEx?8CdzEY@%RL6Z4Gar{rV(9^l&%VNCCl1P)zIqD;^gv+h7hT1KZCWP`b~?|Gk$UQttcw9OX>$fV{ETx3`v18)ypm6deomq-WNW%DXn zJ9OG4;iOy5N(GUxZntl~&tE3t8$k z3&5J|HgA=z@-tL*K8(gM$9q(czp^$to_Br12Mu*S$yO~ac&$`t^ z6)@@;Ug+|vxZSP_AGt}9l&z3zW|fs@Yf^?$Ti&Ix>6?ul{ZWWYh^r^K+TV2am#k~H zzvP#!OSAiztc$%I)J_a%Tw2LPN_8Ryv|`I*{%dvTX)KZoou0Ry{A+QyRx9PWNpN=)flA2 z`W8rAX`Vb0gFpn7zLU&g3K{I`Z?0Z^_0;<;euW-F{l>XyXo<{^K>9OPx?e~-1Ls=` z1N}r927DqASC;jhB{~^eGge)CJ1)-rC)qRYkup^HcMFcVOOsrnRTUkaTi+vZr!%z7g#?2AtG5+le@-u`Qbp727{h!Fz5BFDwz4 zT(W}jcx6?(N2k&kB3=n zt-ZkODle>6L#<5+hbsZRh?C&u0l*orosT>|56*DpS_Qa-kpNQR8~>A+k@D43{~rpR z`cnlCfSPV|0#8~1aWUjTz)AqOy~v3dTUv=Y1-|fOC>rc3Fdmsg5EQs?sBve5m9Yb< zoz^Bmq#QsI543bRe2W5t!}b`g@nW@Fs58MWF$0u(U}IAiA9%HEZ7zX;B1;}#E*nS( zzj{Mv%Pkx>Mhk$eKcP54f5Hbess;+YpMA$H6#iTz8MOp$xHK?0y(V6%TQ;6bAhb ziCrA{fCtdL6yP_EyFfg7V%+6xPQL{xNJ9wtnjxG3dc;|ewbA3QADrDOfB>i` zDh7r0=8YIkx4T%@(#pP^q%%%nocK~!hJo4De`a-2>d6`D~z^C+;L9W!<-nZ&-cOJFPcxTR}HOlY}*LF0Ly2IedUGE zsMsO$!tvr1xxu%q&*&%)Je(^ENP2+oCnjyzC>0#M3xCdqLn4AwdE6Cwg0-m#&9 zt)e)yotMF`DMjl)Oy;?qxcsfslsD(MM^8=yY!3C!^cVU{z3YkgcMr4Y9>waBgC&dJ zp2E5msq0A;pb@2-B|U_#4!d~kcZwcKHdS>miSA^A3xaEXtM{BSQfFtIIaclxDt}2f z{T?=i+MpTpvSv1Z;$nUDDQ$!8>s-lk`Ee4}AQ0?4<34nCn_cboud!V! zqVYs=ER0IgEL%ku;awu_G7U~3V9)Lc8TyAvx5Ay<8B*;N@5Axp&V3d`wZjRzI6}tD zs>*SmNv-!1X`&v7{Ps-J6en~JNlV;fVANY%I`p61Xf^G{2vY(VkbDFhv0IJS?})iK z=|1zY!^z1>fu1~MCIBq)zX<+T^1-XW<@0jbjXm*IiEmw6-N+lErW<%3{m9E?c?=eO zwvs8x^9T{yltvbsD=P&Z6|uA|`+OtyF4M%lW)W>Csrp;x=SXUJJR2Rvl#_p~DmW^g zOeVY^BeB)DITjs~@I#yg1b>os_t=0Es2rb%K{_OoDIcMMCYsV0ze-Eh zgwZHe?JEGZAD9@UM#hwUeVJu1a6XP!A_k5%@lPxQAq1?ckWb2M?Mi0%l;oUdrm2Dp zfkT2fYBu;4w)2jVIDM?>Y?&ND!PhFH zH7*d*zH0n3FK7ElX5&-KzK2T#H$Fv|{Wx-n%d#$4%39p}hBA^%dD{?5Zx>U!dJh5| z=^B2R21$rnn}6CC<>=b$bwp3D&6!r)jfLrZP20MP@|dD{j*$S2h+CJAu5azj*!`GT^GMfTV<@u zd#q?h$7Ix3l9HIYrhdIGJy`haR>iDdzu$S>S0!v@L=3*F=_4mA@CdS`}xYp@2~Dgqq&2=pX2FOBn)ar z54e*NAHZ8geo(y;b}VX*k#(h~)#eY6mSygGu2c{Ylk9Xe$%|^BBXW88%Cs7!zEJ!y zU-kn);Eu0>Nuh$pr^LiUlFCm>!boI4A`Z3VA?dH8-7jSHCpF@~Jdl8oUYbopjhE@r zy3rbAqwul#sXI~nsXI~IFO9`m$5J)z0q?FbAGr+_<vLn4C@|@iXCNT9K+uujhjWJ2ri83R{^3fUAmUjgSRg)pj&pVCT1I2HNTJVcs)T z!jslVLWTRLd|znP!f&Xg^1GVsMIrz|BZP_SI)sszLD9w{De$)5M093-++ZcUNVMeR zSKs{mdb=~D;u@zS4`hToC;YTrJ@fZQ1Agqez%yzy&ynUOsdv##KOtfg?Lhi=(Q?Q9 zh-1NU%k~L+JbV?Jb;AnxIQ*B;d}IsLIBHmFzO9wqGvrfPsoDIZ z9sUAV9?5sK1)itg_`z?}RZAEx;5^^2H5Ht_+-;@55%HqHIR9jYkD>3wYZJpxp8U4> zbJ7~AX!zT8g)nJkv27YWqfM=S=uS22Dwl3!e%huT{a&G?0cFvBmXJ>V*sKxN$hpZ_7QuV|Me=)f7SeRTo+^BSA%L$+A zTKDSVF$Z~NsKUXlS(rekWz~+|J>V{6vsyO!s6Dy`tqmXn`m>{y7Rn~TggxbNRVXE1 znsl)j{5p`nC$FEb@+#mQNBdS_+qx)2*^o_Q>ic~CECk$G*7F~cpL+XL1fvl>`(zP-(pKnzmTq7(9$_`ih?xHCMB9khk;}H|yIKsQjLk9K^ zQhz9Ih3&1<2T3I#T9z*m(cl*c^vu+fEj$NinWNCT*hQR^-}bFUDI>+1wakF~Brc-L zBGKr1PG;nzkdGPZd_K3+mInRuJQS`7#j@r3Li;N^+9>U2@`=aWvh3u5rJ#vL$gsxf zmG&;DT!J8LE2)Be0@CP?{IUqti+?jPJSueKD~9?E%;ck+1gK{t|!bmQ`TQSx2{Wzh-YLNBb^VzTNPu}$xk{o)h-tfLdA;5fh^BQT#AKK@a9u6_O zGt{K6-b@gN-(AU(}yf7u~P zPKy*yCou&l?qm)pAEb-j zltjCNAIYM8A~@STqq3a$B&iaPKAyR@<^&rKCN4`gWyTaSdHc`xTrF9kA-Yp;)@tzW}?uaX1 z3#&<~=iguI&EF|KCgg?3u{CwN70~5GOi=_<6o@*YaWD_K-2WHK(?2>jwW*%eA;DLh z58a@`8oE3PZsB!QrJ4X;)&{e~hp~e@f6k z{KRIDm^rMx; z*(;n4T&JcsWRr&F_7xmK-ke8g>Pu;ASD(eYxl@SF3APdH^+Nm9W%B*Z;?R+~Ke+ii zqNnDnFaF1Ufnx~%ziy04IK8fGi*B+vU8yfO+dell$D3TvEz{28UjL4ET*-zCl++_{ z7YXr#Xg)k8XuKtP=maB&{zF#hF^JY9+q^_RbquUHmza)R%L|tO;SlX4x|J93Dm^j z+B>elwRbF8H@e00a#!tC`Vm(vwD^+sTpHeczxS~;moW(@%GkhL;S&Go`*oyJUiCQC zjO87;jaZIF=Qpy_J+myL9P3v_f*p@4F`?mDZSMZga%*X`Sn`)BnC(Ho+=59_@Pl&o zTK6o6%QHEy|6%>$fgPOYo{S$FyqS>hTYm9-q~aqs19kP?4uvep7w{+_R2`Njy)W4Q z3AwpFcUN#fp)=B9=e9`4r1D3FD?%jcHOoti1o# z$6+oGLKVk;inSC1gdvM{Yrlg;`xcMpqo&X6B6}B}kz4QZGXyKQ#DJ$?4gBT;@?tB+{f3cz zT2Xhcro8A`vV5_L^4oOtb0jqFGz}b#&nq9DQ~lUtk{lJ5IbdGUZKV#x*$KI@5tjSF z*)RMq^3$d|saL4+pp@)1T|KFdx{K-#e|~q?`olLDJalJ`R=qN-HH#IuZcty9QtV>l z30eUV@uh(>Xj%(x?Odz()=iqyWA{f5k8g>h>eh996YeTW%2V(m!Wcz8BB}nBn~~p&tsNuJHzDr0KWgJ9mfkAz*qg`C&vddDCO)iC zVkMuopU`t~5{y0r=pr@;>w1T7Uqu+$rGxC%EJ6N?5G~&@yV@9dA|3g` z+LWPO#FVMH{4`K3-~3;JV%j9%_ew#N`XbeK!eV?HM^^-sjXYD+E6n7tEi&vSQi1(6 z3S;yS{~F{1P^mLeu3l5L2lDNQJy&jt9oFfLjiOLS`lz;3Qw`3dHhNp2gn6W+{qWRX z??yM7EjP)#kh05K@xPo%S!m;ywRL0qD^6`mfu1i!4IVNl-rB3ymd^`01%p-rMrKd3 z;;e8RhZv2(AvhT6HE=HejJb7KN5805!6%(!@67G#{UrQxy!>r6I#iI+;0;HN$q;w& zfiYl+Krg~Zm;vcmsSjDbiLJq4IQ{ZU5Wqio&Ao8i3aDV~LI7e1F7W=7x1?|cpsC@oC;*lL3od>+NqUVJ_W?cz2e2LPZzHC|p5XQ+K!DG{ zug3fvOS1<~S`-$EIMnZ<<~JPb8$;iZSBit`P8n>OZMHH1Gz(l+K8r)@{s1jTrl0-C z0wKm4A!}7L=j3>~xQy{bIJ2EdxSXu<;~JDXTc|U>Q)mME-5Q=8g@zLeC!87q-gRza zlMK|5=W-6=#n(^?QPu+>=j5nY<#C4q2lT|_gfn~uduzyX2WqIiP&`8g$w&Z6 zj;Fh`|8=6@2W020Yy?4!VOo_hGr}~K!G7|bm1ih4XDEybar>>R;VvXPG!WQa6yVA6 zl0r0`E`t+AaE+UTOW>DlW~2DE8`n6v0B0rKA#fK(&-4;D3lgD^&x2_rtCM!^$Eyv{ ziw29R5KtmfVUup!RTtt6nY>OX7mffvkPXHUp3Vmva@2(q3lI$jWn=TuXDw(ifg!s0 z!s_R{j#S4BEZ;WZRiuopSvWt1dCZN`&6>o-(cSxWqaMSWdabwKecGSb#zMW;A5n;6 z=HAyy9APSBDRGYwo7X0MqDerx&Mz;i_o2u>SJ$|6^AOsxuTnH##FMM@dn+x=Ht|WB z`TwN|DNvvC#Kb@^;B)OV{YN_o%y8#nvn39Z@EFO{<5dF@VJoFT939__L)0C!!M^~!U&^`Kg30h zGYN>je4O%uw?6{3f;TFH{DkL$I6K>53F|Q_y7E@x;z`vQvQs1Z@yu;Oqq6z3S3#xI zV{1ER2PA+XUEkg<7IH~V&Jg04{{ zm9EZ$ALNTsZ%OC|Q)G=$HT@pSxbTy)NX{pTrYyK|+Qc#y8QHtd7Zmt9*IKuwtQEc@ ztyw)_jt4J3Ia_3pF5$8quolizUO(#kMu?M~sp%ZWG^w{PxYb>x6NX(jRM={{SRhr| zMv`hDp4n$_`ogbRvRtA>kWr~%opQ;-t}onMEd?4nF*q^a@k7oMv1fDArpsH#ITV|& z?(aS{thZ!|ILh9qXTn@hs2D#8H5_n=#k8LHJ`<+Ik!NqsQaK_{60Lr%Rn*}jwOh6H zi*zrK!Mqx%C6Jgx-}R!Jqpq7nZt6g28VIBVb;~H{v|Dt*Vz&Qu{km=SCP%nq0++aA z2nLwx$~Bia#zRF@sw@UoCaQ6(g)=~MHIzSReB-&ngUX)}18NK8m$y>)WyXW5A98Wq zx?8Dk-x(Q7QMv>EnSxH21N8X*RXDbCY_bp=QkKRFRJP^KW{0+e`S1gz%&>!DV~3s! zLj4vBEr)|kh|PrVI7PKvd>O0Z9p6lT&W&iXw4=QUmNq)2Lp%TpyWFZyN)dRexOoOt zs4->Vf=rwB%qkFC2fZchbbOcuM`S|xf?gQ{I^Eh+hoz*AYDeTL7`qA76m{J@1Ddvbd6~j)J2wgG6lUA=Y z`h*+BwmW7LTWG(ELll~qBPd1>vChZ0HMvmnezX@1i_#0k8uI)qzlQ(&V31`8H9DK1 zB5o0%jcc#_d%8C+voKu|iahns(8wP41dAxXeQhXM>{TfK&SpL*N1>PE8aO2lFsyno ze?IaD98Wb*Vf66%jYU`s^q(*3!Qa7t8R&Im9D#yl6WYazXu(~~xo%^?dKk6*2{F}! z9SNYSZ!8oLVRYinc4xpi1HAe(T3odPc1~dT+_VoKEgcmBD}$w~E($O&DSu~k@kx7L zbNk~&T@eM;V!(`M;N~Xj7ZgNhi}Pd|JbjwMuUAdlW$>%Naq$~z=4-~(idx`qf{CP} zM(+U0Z*}^#3?3t{??>$&brf#mMLNuUAgyhQSGt*3AGsP8^wcnt{(@9=Q50G)0<6J^ttwx z2m{>=&5X6w;e8lU{R#5xA%hBUju1k{s_bO)^E%MtOm5vytU*p+MP^zjPQIGdN@0eg zVkFvz6bRIik>ssao|3coNJ5mXbO>&q(eD>hKTvt9r8^*XMpHzDaQ*3j?Ij8VAgO|E9u9qnqVf2@6b!`*(4l$dfN(yC0k|L zJ>|JU@u@>F#$Mis&2pozPzR(lCQjw_X6v-N*dur@SB(0b0tggOAb{l{NpG-@(XKON ziHdn($e!up#~3`$8(o zF{g+*^4L|b=g0eXoIo2H@SC1(XUE95G4#TvIsoqReD#|WL-L)h>L>yE#nlW_!Dpqj zpDy7?dufF)P1`Auop~P2T~j`|da)L|I$Pr5> z`7TG|lSs{DwaHSEjLSo73N$CP73F_0Nz!k!p1s@M^#n`1WdG*_ZTqhWdRh!#r8!jG zJ`)$gWl)rgr;AT^pe*%o6yiKUA;K~N;PIQNi&|s zU0o}ce6O^o3Hq%BqnaS}!uYjU@4Nx8QXvpGK@%&nn< zZG#TNqQ`{y;m;{aQ~;C}$XX$H?J^ymr=`s#i4c@TiLIw;lu0&P`^^(Y9row2>mH39 z5f8tzWSgB0gt>l`sTOQ9yKVlL{;M zH{P;VY4#e9<@)=Db;`xBKOw~cprokhWB`c6FK*QT{|Y(3Zout?_qsGfN_SE1TVHj? z0!;(Yv*e4hMSU6{ld$@*C2~eCQC%*+5|E@zWnJKVY`eBT*Sqp0rsBO5Y3aj=^p`Kb zE`7_pU)9iK%rt74@)Pnk*QA>3hoiM$Cc($E8pqRjux!>%5NR0!vZ&R<4Q{O2aC&fY zMeFK`2hgz5QXQ4QN32k7XR5OMm2xb+4f8AdaG1OW(E;hQx}JLl2>&e`5r+^TW0OcO z$f9ECiSsp}b-wv1aH`?6gf6Xo5@Jo{600h^R2#v<+lU~A<8E)MBKA_}7H(}{qz^0& zLr6a`vypoQ%5#u7l#FdgA`i=aM?t$K%cB{j&3>oc>PhPVXk*~oEn%VCrq;jH9$xoL zN0-U@@h=_SDs^tSn1Xg0v(A&jr2g{GHBc%kg$&JKm!r_CJOet4FEGM|#s%pgQP+|8 z$lJWhf$N)$(ilUR9Q&OwgxrC@A|)u?^0@|6M8B$z9$MRx#AF?QSiwYGIVNgBDM*~n z-}{(=D9EKwm@})Q(7Sc$lBLkm*TriDfB1H+=Rox*q$EK7s?D&^6ERUb>3(bQ<>kfv zTU%Pr3ncgFbA-N<1r+(7e>Yp!U#{FMkSx$W7fL&7*@pUzY zbN$TzzISUj3u30vtBlz^JsX;<=+LKajj!PRkfEl*W6C2r`MU+GtbR%?SnJS_#!93( z`<5jxT{-4x^_iqy-I4Gw z@&93RlRtsU4Q{4X8tWW=|A8zsz5QGJPCIKX8E(`^1tp!vOGa;L_M0faCwiJ75dXdb z^$V2-6sh{Dht@+(e4*w^G8}6R_gm<1N}j0-QR1mcrk9&Pe5W}kvTZWx9k*=$u!^;qh5qWad(Nxr^jZ9$&|r`BE^i@IIu%LC9ZWbJ9H-y<#tg|b`0 zT9`&(n4F`XuDiV*GNjhbMpK8!4*80r5>ENmm7Eg{U&eQFIDsb)C!p2CK?6C?at+E{ z&hlL2xbi+0l=QeqgrZUi53I;Q<<1Lgd@g=a^lQig;2;bTiE!^`W;?&4Fi$ug{ERhm zF9C-qfK!0zDNyhK{&=V80uH(O{_PAE!OwwXNmP7%$f}exzZ?%m;C&4cdkA?)L1M^> z$1j7(2)qJd361-NdvFAJ*O7tCc}YbMa%~CxZNq&4Fj!{-kV6i_QO1r3{_N~bA2^nb zC@KM@_!2mA*;r@c``Z9(A4S3jcrEV08SxlF(xtOg1kV0J@C!L zoK*n#D8$Sbyp%fd4yYgTDrZ6r4Y>l-l=)TUu3ZY@0*Az1W8i%f$-Z8hb4qF%?@r^% zGx32-6*z{o{26d1*@?RfK91qZTF<#+m4(VyvCFEblJ)~`*YD7~|aiq2X={!{zM|J&zLht2;| zU)}381od>K*@1p4W6hxy|AJkFm)T0`71^jS@<=v&mcP6S|W$-5frFV@{ zWyxbNLdC1DhgMp8o2@w{)1L0xxFi;#3vDUA?S>IOjvCvQ2t7z$2V|6=5Esb|?&txG z>lEoP(upY`oizTFbW%BWk!t=JF06vRr06JZc6r$+BA@!Ztn&@oi~ak3ih1yg2sh`z zFB0vQ-y!D-K)=@Xea1-Ed$^ITjr~;*SqH#3sf?G@0L+@0h93&Nv`klAc6$9+&E`7l zN!5&{q}k_|GLBIgag8sqM!D%#mHouC!R6Q6V{|I72AHQ+_9|TP6o`=C>Uvu|OIkG! zl&deTT4;kM_G$$R(bhthETykz*3K*Kg}!oa=cCws%U{Y(+E$YhnePH*&*YIEKOrfA zEHY>DL#n>%`Cpr}t`edzY6L%wr^u?FrgeSs=Cb*Z7>-llMUd(_o1^Q_B&=kTT#_RZ zndq-AxcsHL7 zv=_%W%+e<=E*2hJw5dw-*)(wFDDN5#7n1>AOn|Sw^Tod z9Mwm(C!Jj1ObjlLkQW)i<%|hKXr|wYgt3dBg-!{^D4h(4t+4k42r=Ou0eaMaxyyki zj9QaFeASiyhB(SVyUa6I559}I%}SpE-29z2Z&m5b z=jFxFdQ5&jWEVxnF!`_xbwRnlroBJqMTT zV|sr=Vz!jfdt|w-u+MRra@Z^;KX=7b+ajc+w+zkFd^O(_-W`(xjk{*b$OSo*5qA-U zu(P;15b)hSW2bjv>Qs&7qI{7oUb*Z0E;-=GoEH1IM;ce`dlgVU086K&OxOq$=s@;` zOCzg+A0|mK&JUBp9W+T5FwkSSmp|l*lnuGN#ni~AzA_pn3K6RA3lnmY0^Qx>ylWPkco+8eI$1xy zW0}7}6-P7sBzP|^QWzFV8WV-QC$@EVMskJC~_OhNeFPboFw3!yLh*=#X zP}lk;!n4^P1X9EVX49B$yzGP>PhMU|h0pAsca$8FrGfg%m&JqlZ&Wr9$lz8^ZyR2`Ep`uUHx+5E`fXS^GO%C)nVGi?Mf`=ouHPB8}(qLb9m zNop0k^k-!W{BzfK^{U)hV@e<0-H+8e8jIX8hcDGntPOX3-c4Ydl2ho1)dIdwB;1;o zD%d`;vuRIv=u*jHI76P&<*V25TOQygLj)Jk*zJHx)v3cJxhiX|TS-~dug@nrKKnbG zcWZYy{Pujm@Hzgvt>#Zk?B6bVw|8vxl${;ehQn@NDY2Qa*>1UXu-9X}feuc3ovp9FZcUN4HwoZ5M}6~; z7&N)&pLz3fcN4HawTc#DO?ii+8gjEIklk2KFZ%1pP_Vmv?;k&g@nj3%A-gFK9JqaI z%j{0MDa`TWrBQ#PA%n;@^0caj_6t2arn zwnbiT6Ak`y9IVB!aQ@H=TvWq$!!g5u;yQO9E5ogQ~VXOg$#sP2pW&)UDtdL{0MzWGq3_R2muje}vx zKu5!$X2Q{PK;w58PvVzi^#g{up2JloI6#v*^nnC`?a4S%X^M!RfDFQ zwLU9{G;a=)fO~YkX0|s9bezr(w&m#g>*y`-eArRj>hD4C97|idE2yQ=I+yMHC)gQb z(QCD2Y#WFIq<^7TQg@{h(?OC#70=y{vHFsyMaQEtHg_v$ItZDj+lYE^x~X!j#*U-z zO6{5COU}((&IHA6t%y+*Za^3y1$K?lty^B%*v3r|m)nZ0?x#_f9^zT=1OyAHXS;q! z@q&gSul_2Qf*q1MgOCWBkxIYCMWpNwyfZX=?-Q=dP{!rip}-@ryWdPz4jy@sr;wvb z!TWcff-vZasK0hsKfEerkSd+){0Ta8-ID&&M@=9R8^>cS=7PK(8ABGNUd@~7ic9c( zT+6#sr=Wu~>v~+ewvsRbw%k_%GJiUVQsD+s#s6y%Z4d)1sF&&ngH<3sO{k;Zg_Q4W z|0C+fmEQaN7cg%X(&oq`(Q77y|9_*X;nt({O_ij6x&1QW?U3m5XzJHiJ@(!_thB~6 z7nArT>0%5MTF}x4mSz7mIb=E`Xe&{(T zmddS$L)6(Q$Y*qEj!@ly!1+VAKBj;liL)NT@gx7!dZaeY-B6%eIYrSZ0bS#E;6FCz zki=_>Vk{6qaOuU~xI5JMqf-UlMV9ISZYfKDKSHPOFPG&nShs^IdQhV8%;!=^3vL0{de_8d*$e`Iu z)7kHId@qLF(G+8@Hk{5;cAM+e6oEN^m2k~Ew4#GnI)K_Ruj^$Cy(XyPo`FL1EpAw9 zxUY$aD-BnTIa(N{Y5r0S?@s8Q+mxL@a4r}t-HYE*;5r3>)m z^xz2~LI^D7C}2XK4`CBFK80OtP7<1+A`RJ&AeYnt|3dDAn%epUVG9GUFm+aXhC3IS zRz93P*6i!Oe|9Gj8q7+{~5eZSOK!0Sh zvvg>;z}5s*ca(Z zX&sIEZapy@1XQZ<3tMtLYqXkDes{87T2D}L6A_;Y)p$9eme#jVFElkxMT!=Lu9;yH z4(XZp%)o*>Noydz&qC_8Tjh|AcEqh=J?q}~mwwIX^+)I-&0Le_!wrnIA@jEtG~et> zR;E}+%xHL2SbaD*8kO$B$zl>BW@yt)BE?W&c~B6yA?iiG?VRv9LpA_IsU z0MP$L+$PoH7XRWU{!JaxxbRKR`HIp1N7`G5MYXqW!y{oJ7J?!nN{50VC9O!S2uPO_ zQqqmUfC?fhtw>2X(kY0fAR?_pr_w1ojPJEZw|npVe%|MMkK_Ae@541PYZkNC`mO7{ z&bS8YtF2NsDG5?#>xj-CWGJ}{VSOG?rv`F{`mMMc~>KB&Jy}d@&oHFV7 zwg9|Nn(bDgomYRN#6J!-GTDz{`ghQaKeA2E*%VP_!qMA1)K7wG}S6a-d;| z&tZ+HT1YH)TGF1VuPdvh(YI+ek4)gpfCh&pM*htKc8MRc>d{;2SAmvUIVOz|??xf= zJ(GTAN5~&NME#R{SF7FN3Ro8(Hl=#H5h&?xob~)t@)M2x^C9iJiBmB~<<6M>Q%tct z8vb|8Rg&kYTDP6hU>OFai92VT(aI#S&|0Hjaomg+V*>9CdpF0TG&@@ z!Gf$CeH}D%;Vq7p;ZrDb;^2lis>*K_9bIQOFOGcRzQA-nU;Ot5)g}XueSm9c<(Hd8 zU1g=&r#QR6E3I;EiN5)zi3v@#Gk4~`$D(fwKd>_&-1hgGl6E~a^=(Yk5C4qf*6lg?WcbFf&#_AD7Wr$S-zWBff4eVT^=kXe`+}g+026q zv>A!}!sJFB^W2o`uc=I1X{~oYs4PK8v;Pn>mwv)<^!`-(%~MO+`cK(^T%lXwIy*bU z`7*6OrO8u;Kb^jvJ@k`WUnfT3+NH!-8DD7PQdp0oq2Nef+bUA3?pgZ)1&77esy!o5 zshSS{Q!`V8#b7%g2#*>X9uHJk>}R1HZIlE^3}dItLObx49fFWyvmh?bOzVDtQOx}y z%Ok19nqQApUa-xZ_+@faB+S)MH}KXW3lE=;`gYRl*8B}+n9IzqEDH}4hZ&?{%#Dd# zK<+6WmVnyHyUS(2=T7}_E^oB)WT7)#(f7@{JFQ{0$Tj3B zi=ScG;ED3oCN_{vLL&wquuiNgV3ajPq>8qUnq11Fe%ijkDWtp zsYL{iFTwT4>;kU2W&8|;Ry)Dmd3cVNq+jU{i=a)2@_ing*n?1Ahj$s8V(6%jtPA-R zdbHiVaS4bQ`Vpz}Cs!YlzPZV8+*xkTSaC~nz3r@siiK;E^9Y)1FHSwtq{=(BB*b?6 zT6NassO5IFDD8-!Lx8YvQJ6lDL(}(jYB8!rMyLGGeL78KCw=8?QubbcgLAc(mWH9z%4W3`x*rSgr z9t-%br$pvjQVxB5k}PGOrkp1@a9%NrUXk!4yP(J@jUC-`*1G9>?fim}Nw;d+T8ge1 zwQ25`1zd*9Tzc=SSKfCj=wyjmrGngoqCF>9`;Yu%G2{F^QTO4FBO9ApAz ziMm5Sk8-#wgO>2KX0U5;qeM0z8uEf~`$Q#nLaE)-ZL7NKG?G ziXk&T2UbuM>58>-QiU*s+@KtM zn8CGwgc93GOuxHz1G zKCT}&{YRGLHD=Kj%MK?kj*i%wk^@S#7RV9tz5am1??xe)V37Zt!+X&aL)zbZe*B6Q zoeNww1xP`|Mm~yGGo(^7%`JIG zVUHThETesksndFR2dbXB~lh(1Vfx{fZMu=ST73S^UTePl3JZ{A_GfCrqGsQ-VZNLI#ax+|zLm)xs6x z$dYx|ajD>0#z;ahiMx3Ri3p@Uj@XMM&K3orxD2&k9(T{S%uF8`lM)Hb)8k0mtvtg? zE5USa!fJRkU0zsSSLCLa?WE$ZcIKLIuX`0wC?Ad#6&B{(6g_$vM;3B?2EBUudl93D z)`SAOtij*qcIT5{CWEg%1cx424M2ln!)KgB<>A=w03>u`OT+r^z@Z#cZjmJ-I4XKD zH#m+Xrq7*rEY5Al@rZn9Tw0uo?iHgn&(PE&wRpE z4U&wB(T8lM<6lZftfrW^q_umCAzR7Y$+g6|HHBVJ6MHF6ct7}aAoUFNf_Iq#6io*L z3mQ&7dx;InWmu3E`b+?!3Zf9Ix*u56=2VEZ031e%FCYO}fq4CYMUCZ2(W#KZ$_;XK zX*Mr-T-xIwM)*q;rFyH;&uk&!y^EcLM|(yQOI(o``Ndv z?60FdLGi_90(OO0&7<(>(iCL;cws#N(?lY~_mSF&f_X&+(xMsr-ew>Jtbf1&Ykwy} zn3j!vVRQ&4`LDnoau-dlxq1OifC=>bH#KPnVtQ4k2qAY;Gj>f;g zi51y`Ll1n2f2__U0Tfomkj23*aR@=W$lf6;1IhV-V?fLUal!B&emMLEIFLY?M6@sB zF8mCH{>AgKKzmVp!~0&~58eQRIsnlI_xyep*&CQ2;FHRn?_1GZKX6?%a_RO6aGYTRT;WDnkbIKRNV(Q z;>!`UZpRj}mS&R;wQFQWM=ri5+)C4NEv??~G)#3c`b;@fFHgx% z2KvfKpHWi-yX?7OZnXj(-Tp_p_bS8hEEjjA=*doN9x2~H>`Do8dvio?f7a;tAvo&! z=eXSylPN{&R)wQC#cdeC4 zF`Soe`&jrk_JG}W{ZI+Ckt;MIPZL{+H0-A`eWG9#vbZ3OKV+U8vd?!X-E1zrb+8#u=gvft^yC33Xnvu)V7SdQoOZEZV zD2zyp#WE4L(b3suL65;>qMhU?YMeRJcFbUB>?Vg&Am_`%I~TgYl#YlL4rHn-f22}< z$13!J(yG5>D;(a~{I=#*inOQ0!>3_8zoRdtLmsd3=*VVCcUIHZf48L+@{gl4Gu0Ax z*j1jX9SpInAxlbEi0|BVo7qV1Mpw`V^`_J9P#7I31KPb@d)vI>8@ zUTntqd@}+`3+C=M4v`C^6Vux&)+QEamWCFzK@oDKmy(*vZ8ISL!$(!gi+rEg0hAhV zc2|8i+m&riRvg<1$XuUA3iW*FV4j*v=Nga0O}dYbb&$Eses>;sb%}e=%ZnW8EBkljz?IRonb=SvB_ zH2AWlR3n#3&pEsL#@D(dt7#)rJL;z$M=eEkKA^{TU&WmocjgkF!D+~8e$t(MWI9#G z!`(DfUCZlr+H;sAFU^pu%l^>@54x>vB&Tb;qB7@vaDyx2PjUL>Up)%pYT(+rp)4jomm6#pcjf%)4;F!=Roe>h zW*jW-WmkwZt2*<@9A&s=PyZ`U!pHc#L_SsC*%bBSVbQ*99O0^yr%brAk8GYtzhfEp zn2gD!5*QsrOPg`kR!BBzu7gXS+oWM*srYXZxkYlL>m3~14$dzofmBpn4WB>cKvQqS z2I1iQkrf&8o?tCSR(K44vypN^;z-`He>3AkRr3$k4`dwMs=$cvdH+z{W9`oFtV08( z?u*`$ge=Gg^jI`5tO*MkEYx!ZS5GC5WZG53T6W?oRs|@g4N7PMuYa@Dofb?&FG7LP z$kn=!Ytz)NZPgEd&#VRSD>nQUA=$*56^#jwOMTDDcV)cn+5q8=*??FRROx;jAvMK~ z_Pr%4rtorFqpA_pghj8FmvS@ULftUjD&*Fb&oP)EuI-mJ?TU@;>RyzQ)a>6WO-Os7 z{o&H8N!zo1u5?zH3wenLOs@!EeK)zH2~H$T+&8RG{!sL5|8~!hPn_DUU|PYZ@ofo0 z%1;i(dvpq2kEsumF^8Wu^j>R`k!0BWCK9g^-Y&x@Q&^V2&9%lA73=K0{uA{WC#}B` zT=uZ(rST+`kx~7DCm(O>p1=9Y<_a52gxk@hPWc>px`4E+SL9kxVCN`I*!fKVYrVHM`cO84?bZ~?R%Mh;lQ+6*w~0Ebwrf?h(VxJ9>ygr)c z{qUnofu3g0mUW%jkrM6Qi&7%zPnHLGy^nsQ&)P{!)kbc^@dNLsWcB(43^VL@lG+N5s?pkuV zd0^M=BL7NWdsA~KPrHR^S?Gr4)p(WS8;ola^Wrw7nS7Y<-7*s#Y279ICq<$UzDn!L zVX$OYqGYgWCk?~|%Gjz@+z&eA;Y$K^uBVbZxzvyM zQ?l8IJLiZQN75lH`SL}-saunSP)>wI)OT5;(MKOG0+mzgCmDl zOX%3ES03ybYK>0?SyShwf;?|ta|!oBxfdiQuB!r>=B6gB&MA~jX^^#gZRzFGTqjrG zT+4LRomA4Bw`6sPe!nn^9wUBwXS>?W6(p(&g`YBM!@}G4Sx|Y?6Fz!0`Kfb(SldZs zqqH=tl)vDsrZfy`yI?Ct1?hN{s;ZPI)Fsp?Nl}P7H>TRH+&_{`#f|e7)Ay)=$q>#| zw@8YV^@T#cXQsZ;M-eq8s0g-&y38L5dV}CH5E!C98bE^usq36XktZTB8A#Cwa!pIv zP&P<`Ekf_D2SoAY3UK47dboO^twx5+s;XnAhgN#5{iPnzoQOSs@SJnxd+Y_el?U$7 zAiVpKYmY^KiCZsNd~Y#-D`DDs0zGWLQ~ME~yYqm@VDW%D6r$vyjPwEz=e}YnB%$s- zDyh7z_B2DUCKnY0_@I>ou zxpjP7u8n&wxSOtU51D!1_k=IGLO-JTd66OIxva?i4YSS1yZzt0^f%VZ(n@e0Vk>C3 zJu3aJlfqe$r-{LxH^q)PwL#1zU=Kd?f$x#Jm^D)n(wt0`_W{pQI1ir`f} zw9X0?STBOej6AQywdt7)sD%x{@TdSZ&?KF z(d8wWFF1-+jmVgc2!ps%q-eyzunjye@aLY90A6g~318sbD*S@&Uy!W8POo2OKL8fW z>A#@Kf1n#Yz%a$*1>{16>rw{k@Rd+DiUXWLFc0ev9>LH+?w=(&^acT3z&;>~Z$=)_ z6W(C$luY0y{U_X%^v0eJT-@o_GhWzZ$ zr^q8e4?`$Zr9U4BBqz+S^&+_e;$Y+hP@WBZ5?YG{I&+to zh*#Mygz!jxy`oespH!vA;ij6dfX6?Uw{m8%$FMaE!O(MvQaWG;c({Fta>J*U0k|m0L1;xn}wE z_44*QzF~Dft&{0imhtVDd!90)@;vDl3*B$vBq-@jBd37?k<@_Pn0yc7h!w55+8AbU z>#(0a5hWpBuE%y<;95(4RxH^6%tlsKO3=H6GiW4S*Hth0Pr9x%C^{g@1FRxI zhy&8WpI|wEkYlr%!gt@^!y6=i=SzR+)I>)#Jy{sDZCu#-qc59|cJT;`s70z*R+bc$ zgl%kG_ocl3fidhjj6%5Zu^GjRgyN;Pq%UHo>OSy&sCYKz5^`($%E{Z$(2t}}=on_w zOEugWigYh;zENJsyx?16h-ND$YP8F)$W5bWLfs`J-)5+4V>)a_4>Xjzm-pFV78mv3hG zb%6LCNxOIWRAE@yJy$Vp{$YW;E7#4(?iuqA>_*Q)zs{@5^W=Pnl%5zIN_3l3?K0i! zH}UZ?3-PsYuiuSm4-^LdM0t*uy*#kzAydAoy4|s*E=F6ujaB?+k>|O&k$mWN%b2Dm zN?UeFed-7e`F`s3I( z+uwC>^{?VM4!TFbb)!O6t$#&rT-D!lK-VK~QRHTXB@TaMPCF(XGTmu!oqdpRiKaR@ zUQ=StK6Zz!)u(x9hWEI^{z<-WC9UpkA?uh|1-U|Dh=ImcWNv)q=vG+g%aMi? zxv4GJ4-voper;p-gGZ;fymKUqxa=^cNR=0LVJFxp_ME1Qch5i!7in7G>=`76>)LkG z;U~e8r)~|6Ihjm-x=OyAuuc5{J=X*tNNKI!c9W}}*sJEHZtaz~{Khq&fxV01lt%15 zuy;9C9&f`ks&-||r=%|=n|MqZcY4ItEUI*7Do0Elv!FJsES%l3+_a17Q9rczY<%zV zW;|VwI4D*QU%cb(Lqp%_N_rm@E1KyFPdyT?lr=xXfcMWqJ#P2Q^<`>a_6g?l(T0lT zHIuxNJ@dL8(!0ohr+0mKk>hjYigUH9(Z()VMPC^{byF{VT2Ftfw!`{zNs>RXH`l@u zF9Ci{#V@luXQA3=5(awV57LgTo26S-DTcdv79z6K)suhCj0E`M3lkoJ9Y+TLK5el6 z)fnW4^N4f?Ti2GJg-cqGy|CguV;C%|Eqnj|Irfa6g=cVs5|q`BF&CFl$oP6l?qwUF zRibU}I4`Sx;1R`#4y&U)*~;ASRc`KOdfw*Uu!}lHlf9s@`m9s+VO5)`*ihb5sx18t zt1xMjWEMik(W5Ro`V0-5gE}{fA31P55ZM--q=-_zqqEL_&q|0Uw6s0_sl!8IpK4k6 z58c8naWQ6hP6TB$rpBqC*}mG$5`5FueGN?tLyCX{_r2nJp6=P+NN>$tB$xWj^#L!&5w z@o&l13IYvsDGblZD?5k7HJ;;@0*|P_9z)}c)#$Moc`4n+U-eb0o_$ob1b=?D-Q!{z zVQEsQsTUOcor7GioZ~og;N`^7!)fn(pDjb$p7mPg%g0lC(4RlxMrVYnRT(cOm_`c zf{ef>*O~>iE!OFFMTG3dE6}g>w~oDrh0%CxQ+>NcRGyapa?4YNAdp^99C36CqVbdY zC{Y~b{f_in+zv+IF;@JwPRU*b=jM%grOL`E?d*^X&)r{(*2|p>U~rD2zVF&3mlxv? zx(~rsnV}Hl^pTNoc1+JQV0y4_R00|u*N_wU@4Gg@W<_@2;S0Aeb+%Lp>mD@5k#Xqx zPd=I2pL*bauxaaUWE|I1mjlu(dU3B6S$s>#!-#qvRd-LN_$v98Q2QLF?c(|9dxMTg z&ga7iA}(U>VgPs3v|Ljwsj(RLkmv=Kh=*h{q*5P^a^zx(1ULxAMk$<)uVDodm_Gq9 zzZsdJQl0;h)-SL?Rn?SbNwoOkw%KOdL&4USDCVSWq8|@UH+O5+TQ{QB%K8e1zqEu) z@>~d&I|D&{JUKan?D)*~y^t7+Gj?WwS@k1^o!KQrYs zKv_q8Cx^~@W$_uzgcW9WEFVaT(a_es1Cu6m7r${wpzP0;4~3CSd1+PuL}hm;EZ=`i z2OK_TU^*eRah|PXOJ!SBeAJWU^Ac;GiS$Z{uj5==ckw{6fN8u@l(MhyEHBZKE^T=- z)BZn$>3f@%BW7x}LW_2THM`>k+62Eog9m<2;G=&Ret&AVZ~`dIMscUmAGkpc;yqux z9>)QXi!l>yI2~l}oCT%}GIv`4k-1a*D|6?boPrea4M@!bz4HI6Gc(NH)S~f9#DV`w ziCD;&K)GciQK>5oK-B3wV{q#^#L&m!;MBSQWsl_*_9v*6SYp8syXX+d{O$dkl1b8U zjd}@&8dZe@^wy%2glLrS4vwUD)fHcUGzIQOjJ;3!2$< zMAN_Re{#`X+=BUaqIsFng-honyX1&A*h2%eiUow99GB)H(H1TL+9ch>@xcsJ>xb1G zzj#LENp(p#7iQ*%wrN^vS(rdUrH>{<1szY3yf@Xb#S>%VFHIzb!&+O1uboz!bsP0C z*g369U)AFzzakWyeU(zxcQBCi#);-C^Qbn`eha;TX6X|a6Ol1hY9+m8Td8UN7U@-~ z!QTP{4f>lo_?&Vp%eLZQ>E^{RdP7J<$5~2csK4+9k6xHFchzXk-?=7P@#)Lv z1mCbqfzD~{dActnZY>o7;1Aoi`&keTPu>X zw8tQzSp6`droEtVZDVam6ja4ss2|#sUZgWKtf=DO=z2Y29nEoyi04todE$fyQNyX) z%A(GDyE##)VIA8Rhl+||!Elx-*1kgb#4+!CMYXf44A}dx=W1~TZ>))H@8ZzX&0o^B9@@(}(A191)}FM((pJ6cXF!(he_ z+wy!l39N#5H69dLK;UJ)lCDg~tddx|>&cvg!C6j3IJU?mQFve2?&CiCAqKtEBm^0> zrL0YCBF1-e6^HbPx>ts<0|)#wA~Sch+Z4CBrkmj2Fei5Xc5u)jTlXtQf1o54E61z& zk3o`Z(CfLz#v4;a)%o2X{bh3p-I1hIL3`u0)f$5bqn&Y3@Ne&+vShv_O{PhXbf1ba zk>ch3Y`+IQ(kw`pUfb`qPxm0r9s8@uh({a$mC8t?yCj97j}D3)mocyZ3YFiHfwpw) zvC!ILWgLC&v`wWK%&hts9{H#qF=AQ(een|x<<+8v?XTo}UJ&Fgql&%|1fU$Rs|}TJ zKRk5z5TlWR*apFMNtAp4!bM+YZ}95O9ltXf*a>O#v(%MGkG zsFHPVAK(M{#^4yT=Q4z(Hfzmr>nwZ*g;pg{7uMnkbD@#vh9>_z?S}num4d~b<^}5{ zU^q$br09Wbr8G7cp}-p;DO2+z7P2mBnFk-houE~eo~RQF`C>4$A>4vl?L4r@t;oZ6 z?;S}dmHas=N)2yeZ@4AOHpCaP&K7&2A=?i}zL|Z)4VR`z27)6eg;6+mA;j~t?gHC- zzT}+Fj(Uhde8){hB$DYvyR-VL|&N@EPw(`VZux&s)CNv$xhi zO0hdQK_O~e=1EfGKYdf>eYaSsGepQyLKygzGWO&s)oq8a!3^0iRx+UA%`V3W#6p=}DnA3g> zF}wBsrTxnszb3LBK#~15kxgmX<*9UGIlrR7OCdw|;~X%wh3Bx;aTC=#n$TdGjC`T| z#kj29no64CCilVE%DgCk7(^DgR;}m(p6AbXcjK;Bh`GnwmLxrkJS}?lqyXi%ou>-! zL;!pxlb3lhPc6$Xh$IQ`f5Zn+=(*;hPgh0_6EJev6MN#LIO1K_{9t`R=;9~Vprvt= zFD;>RXN)pi(xRmGL>(D7yW$j{1S;(2~j9P)KM?>6KGgq#s7i++yp7*dfYqa zJ1oWOw{bE~WHu`9p}RaISgxrp%3;CI3Fv!RPsWdrkD6m-$=c3OI3-&>eIQrLD17Kf z5*xd$=q-<1kU#!n8tvRu8mhG0fS{Y1X<_1UL znlwVG1MAHVsty{MUGfIQ9+jFkL3(QAMc0K9HCs_f zL(^2=^seVfF+=`h9n2XBM?hpFepCjl(oeTR*(Z*8b*DL=Y}ts9CqP`{gmsA~3*SSt;Gyl2YVT#M=tHFlrTA-M3xiBDb#Bc{pZr3Wgc8*aoKRo zuS(DAnN9bLJ`%dsx8iO2fP@{M`FxWGvzJA)dlxEKu?Pk>yuWlG+Ho^XR@T~TJ z(-Et26$_fa{`xyZcH$Qeac1sQla*BZ$HZbo5ax}J=`$imiARSxaD`d8IJOzhTsVqE zx6fuix&hJczOF={****$$5524Tc378>s4BcHK_;BsI>D(D=ApmPCYu^eq4vqj2Q%ar`^Gfc(SAr5s&YA+4{9v+bP%I6e)cRc}vIDU)Ii$0_VukpX15o8*t0`5Fm|x zZUv+QEl)Ri1tqQ8t=b%I7yGMkSB|V!UA<>{u_u6%xb>RP7gk2nQ7}_jjF&6=C#>EO zfgARh3V80lN|5~eOxyh~p*KAf%Ejj|zLM=()(dhR>o{O0cJ{52S?uhgS(sv9PqWI3Y?gf9~57$l0dzA*7aK zBQGDvC%&eQdjq=y(k@a6pw;7+@Kw6iOqtT0N=Sy_EAoRksN{8k7y5sLS1LZVfUcB7 zWx%=PO5UpAAV@j2Za+JypvAcOcy=!Kr!QUv-@8|5nE>vehFW zbz(1Qw}U_zZ3vI>^k}5w8xmlN3@kz?R}053hI?}BiqHQ*m*cF&v-P+6MvSa?{r><# z0Y#AKC1fKlegz~NLb~dsy4S22_sW6CSVPAgmxSvsWVrWTpM)FA{boYtEHAc2l~;$i zni`0k1zmL^yu4qd>jo#p!s1$277Ny9-C~8Vn}i;XrUIu%6V>br)s^ERFTBmD3B4$N zg!eAoC(-H5ydovl#3npsMjoS6Hqh1V$#IBrLRneQ<3{>LTy_LhYx?YE=ch<{{mv7}o)GT$5o}1c?*tc=^%u? zP{syKkP9@3CuWhy8%g1k+_`;#Faru@#ZHj^9?L?{NXO}pQbOJb-HJW(fWPelZa8_~ z*(F=OV3w`F@;&phLgG-D52V<4n;uVTcTH~TyIghJnw5||(3M$35u#fJE7uPI&4gG@bB-OW+P^Nzg%Nb zIx<$5HDcY*yA-Wlva5V-+oh259j(HY{j<7A*d)X$@E+Ouw9eQ$nM-ekXMgK7$mPbj`hgJ5u@wSdeH(K zYFilne&d}lB_4TZLPqcVW*tu!E^0gMmxEyl=l>dpz@D%XT;cIYf|c`If@Ry2;(PM5 zjeVIx^NntYjGHyl))d9YW#m2-TI6Xdj_NRM(Rjz9}0`)VWNW6S|_t7DD?& z#;NhSyN)ts4T>;Q0H3={j?dlIAEU2Gm`78ax|^QiTJshR-Wg8_&c zi34v&a@&g|NvMzJfN=hH4v!h8L7fN_>=nD34r~{;OQB+@|3F5_KjeN{jrk!CC+*Kh z=S6oer8)+4+>|j=KI2TQJCdm)_}%B1|Quv+s+@6pt~qZL{^F5z))Q6 z@_{nxx4itXr5$Fq%!i>j9$gllID$u7+JBH%uCtc`z^@5>03@j?Or3Nn$=gi5C%!2U z2E{4DGw4c?*F;ErLyL5tBeVx=`Ff_mBSm|=zkg+vFEvn6B(%uOP}Bby=g3E*2WA*v z1{SAYMmyzXYph6(Dqvqvtk+?amMFhJ?L23sM;;J9Q&M`fYbUkXYYP`vCxm9 zy;u>e^x@mB#C??vVOi++Wy=fSI>tkUb?rB6ODJz1l_8lkCBR6}*0P$8sWsWj-Dk<4 zT_3}m2Xu*T&L&&OVS^Ly9Ymi(Gl4*`c~Ss(>S(k_vyY`U->2Pq2AC2+b4sBCL#@eQ z)~a?zv#w=ewX_!pM^c9H8Z8cj{V8sG1DP5j;}!wsME4E~atBzx%b?dGiyR*9>ipqv zgFC|e*5e!asQ`w*UKpbrQ_&Yi@9JYCCV63LSC^~#|61DbLtRqAu9m5~b|)P0+piEV zo%^C@w$R`bi+tvXkw+tT1Zd?xC%sLuPfGBiGN^NA6rcbbN9v1OEiEFrZQlcEI#pkf z-Z%jNfJD8Wa(y2dzmvZ_0^A20xR0tvH(-i3D{IHmFGqlycg>#tiQ)!@^Z>aNaN}oS znwGyOnCK}#gF5VN#O?DXAvs&)UtN4#F*pia`bI}GdGB}UE~yg{>|+q~Ed^26 zdiF1VDO+YHgwB@TTi9-mVAC_rUr>E_-1%^9@0xyn+z#QE^-KyW4S{#PEPNR^6(3#u0}An#ru8`g{$lRN37vyZ4+izyW}N9KT^dft}1kxZ01t0 znZ+e&DC2lfu6@PPW!-mrnPuiS6zCQoWPfC+xMFp>%rT4~BOjOdB(si)#({yt#ea%V zoann-(Awe3{6H-Q z1kh>bnqyrgWn+x>--=~U&pco0r7-qc)ZA7+__&opyn3+8A}fk2SE`*N-2-A&f@56V z!gV^eVDkHtWM!kRv!3W@sh*hozWN$9J|FG0%&M4N;%=QWd0tp=B~49W#xPWzWp%F< z%!N;wb@exEcxzuNv4j*!=zVJ7l9sfjdGawh(OTgpv&yH>S&bIOB}Jugii4Y)7=0;~ z4ER_D?&Tbdsq8TQoTT0=XyzidF8Z0*8& z^*nA;h|!`;l*_UwM`neuaggBB6B^3K($PC7I1kBx>2#+a%O#j9q2=!+9!QU7noLcr z3gtQamDBj*<&57EoBJea1=kZDGUC~jLl`~2Y-oAx>3^D3ILTjOxY%6SjidW!`y%;l z1XlTk|JW5G0!YD3@;;IR5;jY~5}gYE;I0vbO$<0=UZgf7VmT1&ILOXtI7XEN~%76Wk0O5Fl{Q~}n zz{-+>%#Vot1-yq0q9G%;x14+{Vh24_+H>^nqSaTW= zYfhR?C}>zEcVSfsXHJJzHXe_CY$+1xlr^AxY^cJiBl_fn*o?t@O1dTLmBpaC3v1fp zjX4Bkd6oYf%d0GSZpDARc8t82_t>xt{nCeL=;<@AmD<-1EMFU$vveWxJ6?Q(Yp9I5 z((+n<{h~NF8r%N~moeO9Zn-F4kL{nB4c-W+Xw-7)>!Z$C&nJJkBQ=>5dRKoxZy8z`KbxWNR(@&8R{oC%99?haad>QlM^f?o3;G6M(_YToQ;sZW^ zi5}rxBAP_PM?L7t40xb#9OxBaPrjA6Mo~8_zN)hRN2c@ee=NnBKzkW$gK*-cEw!B& ztfx*J@gh#2>3=wV>cHufrDyVtcO*(Sx#yn#M9>of%I^oFzC3$XCGe7R?g=GoJwokh z*xQNp^dE-Cs+cZynSES->sLf>TH5uqk<}SGemewlot@S(JuEN6ERBY+!d@*ijh1Mu zLA{kkjA&~@mF@ZC1Myhy{nE-}bIsJrMt3I|trSd5_!`vhrKsEXFR@GC))XM+@9wn| z6wKy}FzczRE}O3oEzVK_innbC)6BQ`GEd(=b9kE-Jrxu-Kl(%F<)-jmo3q@9W?cja z($i@}-_8RioZgJuO5onj47M zi~jzy@9>GLD|BAaSLw65S6muEJzeeyp#s+etBxll{pPGdotQwiRB6te(yZ|?dUB^v zf%#I_D{I!e}-0Hc^nB+(PXbcQ2n}_j_ohyU&4t}4Xo=7~A^pXOX!0DrP z(mW+X{X%i)Ui8L8V2GMK@7_}m!~m{HO$(W?EgI=-l4+!SrY1(+naexkcl;;HXz)X( z+2--$8&G3h>O9`vi~JS~>*_`Cm`>R}U6Be>Jcs#2ux>^#*sVl12+jY&w- zVqBpVxTzd?q4&o_3+uuXZO)=~ZC3FyVqDiYRySkV{N?1p(k@@(5UxWX3QXp?;>lx8otl+-ukicP*i@ z9lgiQMo0IfubJmo?DK%hk|rBnZ0e{3hO;(tE4VkmTJ)hMnm|0NORF_3(PkgJ<{^~V z)#ld})8n3nW3Iy8t6QE^NuFwol_Fq%*Ra`)8=G3*YrBrkNeImc?JLIzkvhBr0>7l< zMbP+V7{6d6i#U?Mge=&CbUymfn-xHMvvi1%-&Tk2ef~BR4odPjq9M5OROgcK6F*V^ zc3U^VdIHM+zt`CmSm05}D)VcBF_}eVF<)w;bAHKU>TCkQ9_)KYnuzB3!HGv4VNeVx zXm(v$_RZxb@x)T4zsi(cobCD;&5mUy>{#{cSlp!T9q!bJEM;Tze{smtDse^6FQshzEe$LK|OOxYq3eaEc7c% z19SI@jO~;c|AiU)eW7J$=a$-iGgo9nx6Nz5<$qfGj9F)?oLcYo=+JMTbS%$1JZ`e& zPHmeeaAHTZR@rlx&JfuuOl|E-Y~M9?+`ae7#JKpaD$Sey zg1C0!QrSSu64iI4?O_woR(_%yj**u75a(rc%%~sEnz{9PR<zE?PSJzm5Ra@NUsnxknPxZnz zuGx5j<;6JnoeL@+Wy&F_nLdq}Nh?&^R{x$nO~#rr8`+}nr$qnPwau8#c7pmuZMx`_ zSwq8-BHRR5#M%k-4h1e&sI^9^)=Bo8!NrrLkrtgafTStAmtX8O400xGHa|zgBgX>C zCdmWJ=~znl;o7I~-_r3_UfL)g!?MDr?+D97=PR_A-{EMxt;02==t^hhV$B6!z;O^= z3YMm;kc`^vIZv9M2jYD=hz<4&xXpQxJ>R&dbgM3rL=spO(-Z

5tf{Tt8ywxIvgDn-Cg z{O>Z6Cn|g6-x^NynLtS)xaaqKX_SBM_6B~p$PsxX(QHcKJr_kj@k>f0!X>cT%I;TE zfN5*+XA~e*6YN$R`ME?Y!E+!78kw&&5+I*W075Jnb9b8qdhV2|b!pu2`_dQ*)&IY> zSk)+NqoZ=et(d9cAtCex1|r-_aqCs$>IMA*NBq; zH|~F&Ia_}sxFT2^F9{xz!O44uAQGtGeOQafFh*SW2p!$}@A7aL#)$t{@QNf{C*k0| zpofbRg`BrvmmjbT`{5kL5>uPOg(m?4dGZ|LJqSAH-(J_aziX9xc3*c+0pI7reK%L~ zcOtGRO}8pD4OYcnrI1`epWq9LdEeC`<%ezE@dg2rjnYDHJgA@||H_K`^nHw7Q{HoS zty__)YMa?f=CClE0%(vu+MHKqoI!AQLG%>NDO-M`;^Gxj?ND_1{o`_rmqz{rF5C8} zUrmoaelXDDjO9Qd9me8V*Gj$~(_fH*wE6dy7*uI!Wq#{fLDhoTFwJL6+?edWn1s!d z!P@qG>;Y`{UOe@~jz#_HejFiA=hzn6GlTa|Jd zx3AU{)En<{y^E*lvJO}E?eBOSK+nskl`x z7%K=$;zh>2*u@(Kd>7k}IXVFb#W_>!oJ#%=S%q_hIx%AZ{nOdYdZUl`{624ekGBEq z?#UJrO{c*K8$iKU(=mhI3=~RMkCc)uI49gHP;L6 zb(>)%#izs)RHJ7tFYnE}gFe~E*d z2DZNbQXdBB5sQPmerfVQN0d!FKGagdU3jqDtXOYd715hit~hV~->uZzU#-;AHFm6G)+?pW4Lb+CB^P% zZ9ETojlr;}nh-8$V`Q~uMV8+4h%*Jl+6HmiAKsnG;hGnxw5Y9K*`K`k>d@#{Ge(-su|Dk&$z-LY zJh=qgBCZVf$MXc%#SgnYtoJlDRkIlo+4bz?;aW1`h~-^Ph*zHsTWmz86XW=%*mj?&$(7HUB8)tfYcJD-M>)NT`hm3-aw-{R**y!d&xG2d(5u`=NQ zboS=)P_OU*_#i5A+D0kSX3gG$5UMkT!i=IMPPB-SLZz5=S|>|cJIWF!l_*6~wnLMm z1xZB_QVCg-o%4O(uTkfm_xt^M{2q_rKj&oTHTQkL?&Z3!`?{Xj^I}$i$a(oS(I--_ zO7`2-ZL5cJobOmgWvn?uyTuUITJmhu>Gm#TCH-xcS+WVa1q2EYNal&d$akwPWkH1xLjG!%RjCA|`?$InYZ`YH&H1ry<4A5e2H2=s^l&`?FnQar1PbS6ECHa>0RdiXg0duG z2wQW^TJ_Rg{cyihypPfQ-uaHHwlf>nm_baiP=^>qbOBVYL@_ zb%GPqOcAM%tReW35MuW-H7Y`aChQ0~I;)o$7>78TG0^VW387}^CNdO3+=j{UGVv3U zlNZ(viJ0K7s-{;iOvB@ifu|8`c0#E6SYm_~Jdrg@bs&g=($+~X!5kyf&vFW!$Uxy1 zo)96Ek%{o3X5Q%x2Ef4-=81nE-?b|Z)Ps<`Jr{a6 zps7AwtgdbDVl+D8Z>{~TcCTBxrYYwO_f+h%QerNQ<_5P^M=o<|uT6RDH6w0W)`>5w z$~-HB(1Xg?nUju+XLducxO*FdfyTgo9Y}Dzjx&5;3P0thja;Y7ORPPy-024`i0HXL z#|M$Jpc9bom+GFjMonM+WzSrwk{!~TY6SQ zyesYbhc%-c=NY`<`Ml=seVL@|8Rc5v+}zx9=_xDX>iu<_2V0t360jN9U0-_?Tf|s# z>Zifb;YjhhqlGmoqY=Aa)F%4=0YMR_6e5a#V{A$}xp!{UFJY&5l?AA%zZ>!*j9 zG4|aqFI2^$Zy>Mf+UcL__5P`v`zoyl^_^RH zIe9&wrnBpVvAtyT(YlTC$|oN-=6T8j?Erq`C=x6KC$6EPn-FY?Pe{G{7|bBj~# z{B&ZN`$`=(>imo9W^DarVLNNhg1P!P9tkY8aau#$7P!%{Gvq)LoXY2Ju)5u!8#+}U zF7wE3i~7cn8{H)2R^03UTCY5H_m+{#Mft=rF(?tC_1uecOz2XMiIETBt$lZ9nyG?p zb^i0omQB%1+NJaR1{pUDYPzjXmM9OX^8W(v0$dzH%R-}zYfRoOSfTcP*EmOI|Hn>Q zC!a)i8tmZga~+vEFX}bBXu8&oq59eNPp^cRyh%{Ug)V9Sosd;KOzGk+`(#TG)<|qj z+u#3`#;>h#3AGizJ1VQs8+-wd@X*Uh!fb7J)-$in%$vqrnm40HO3&qX^PfNK)iA?M zb)?-^MR0`oEMIQ0%fl;Yxxo(Diva+$u#6&DeGn|^lL!ULB^V;FrI6!O8LWGMG_vr^ z!cnyo#Bg-Cr2_apd&bO=XKe~ybNi8`oP0YET2m{x=@?>4)cG~Rw<6_UlRMP+f@?1TkQWpTqT z{C5`j27VTI!sxp$lau+55}W+*yk(b-hSNhs2V0&0P_S6T=(cOpQ5$7-PEIvu7e)@p zg$~DuS#;byG~s#w;)1B>!|{<>{vqG!HWtA*J{!npxpho--0WBw;=Id!yXjdSTBORc zBS!O@$~o2T_DhZ>3~akzQKFb_ut`}X8HpWwURG;r>>M(Qh*eXB5Pcu8sH?N!L45D{ ze5~018%7V6kMyUZ?AHCiKQmDWgM8Ac;;74403CBHzdQa>S7DN+3cC@YB9ga4E_SRb zIHg|TUen?@as>lVn*z-knknFeD$p~lJumH>6BXm}*g;|SiA^6=Zq}YVQ5d(T&wbH_ z^X}JxEb4lG%J9%ZpOHY%YMtE=v}dy0{0 z)%H(r(y5b{-e6TYu$%MpZFINnbf_5CbG;k$w1|)BYyJ;JpBt%7Vsa|LQFN0(2S=)G zG>v{bez4j3{3nl<#@}M<=ja|x?7-& zZtykQ&UwOC8gzjdO@i^6#VwV+xaAteA##K8X z)n`4MeaRn)&3KvC==P9c$^hn1Dz!L9(s9cVPs#LQO-fe}{IMJpG{x1vh#_&Plh ztmn|_#MXd;7-;k$IfeNG*+8nmW|Dh9lpqQDc$v74late%V+D^uW`33PMd0bUJhbf$ z{cAN}k-Ok`g0}0UI}=Qu*GlXZP5j^J1oC96js_l=gI1^2*r5PB4b|KA=o381&&AA? zOw5RyM~hITFifm82yuECb{jqK3eoi_DvxqWYKkQ~5(^B$-yTo$xmxwl5XE*-zwwxypoMbAeOkgYV?A#>YQWRTr z0m*#`5>7A_xHJXHNHuPf7Fc|jC!u)|EJEYd_{YLxRO;DH$_GkD3GP7r7DV>|6;eSm zfvqsh&SOkJhGQiXkdoZu_wG!K-_uNO-^!-LGbh|Ku3fXeRAbQ|Bk*CTuO1TO$;b@k zDjn*r_439&<}V5o@3lB72tUp}w4&g>U#h{AmK3`^ z_V>XFG&=s;?Y6zM9fNxA*M6w*k^ETseb$oZH;%#~rdn5>KjK36%si(Bs~AAF@mEBeagc(u}gmA$5!GYnQI=`U$Fnl*fSZrQl;H3!o3b6iP) ze3@r=cXv;DGioB#tGp~ok8_BbBSP-MCM3N;3s^uxxEoO9JSXp7EwJt+zXf=_ciGx4<49urgl7LhhT$s*HAKxB7)hA@Ps!Gqsd#PW>Aw%m=lRI|~G_H-?Q2o_1f@U>C zZ*sq_ohlGKO%vt2CeE4n^4G9K<`P;e@~Gh=x9q3#2=&t4_#D^{KbyhSD0*NnhhG)?7=A8Jh8J`Pz{ z>vsOgvXYMzZ!Vd0()_~trqhe}aA#LqM$FMr(c0g`{DDpBsKAWL6`Vf=c(T>d_mOGC zzpOUz)IPZsnR44tw%-feIXn2H{5`2av4!VOezj^Y@R_hCdY?OEyu_;t#@?z_R_ezq zU-yF6HRQYW16bXv5`kw~@Pz(-rUECz(|K7_*Oo&0F)Iq%#3A^J`8Tph7bc=KF%fSN z6Y=wJ1*eexWjHcFwtv}B$>=P0i%Q2;hz8&n$XWkQ4i3??6TuLI1CFC4LjFD<;%L`- zA~|>mdhPU)RFLgBx_4`O|8;Xj#vi$;Kq2^^DWBe(y`5@QnmllKFX+ydah9}i*-~2_3 zu^9r?E9EwPAbXp;*&m}nhHZH^7?z!CIoC!0i>mq-^(4o&t#fQ*q8>TeIv?LCD~8Mg z+XWM4YjZZ-$*A3uwQs{ER(NKUXKRXa-Y>2ZJ1tF9*<1AUh~)aDdGowP;jqozF1K7$ z7;J7GBMN>Ut${!70TI59@IUNuD*uHGrk?iaR8Q!Mr!zGh1UXczc ziZpC|PS}%=AI?duz4WSWS8;#%fGS%$zqR)6YQxcK@7!#g{v7=E#iEgcEKBXR$DFS% zDx387c6ajJ+XKJu?7I-{KDYCDz3XuQ^Ys_3g7Zg$Ca9`d==^zllI4QMon7nnGYl-O zrB?Ofprx-=^O&i~D-!j`SBE6hFiBVr zYw<$|;sXJqUyF!-ns<|`t^|GhU(JjmDAtmiEKpI*H7aO@Qf1IwiByRelvsn3&%}pN zqc_Jsr23|gJbI!1b1VWsPO4xDxNno_$?!%fr+$!jQP14$n-sAMm~djA49&1^B; z<$VOti}PS{gwyR&f<_Xcb~K+!dQlV7}%L!PyA3AmV==r1LDuh z7JH~jA|ZuHzV10sr0lYwI|6W5kad^I zN=Bgz{d`Iz!Cb@KBUrESns^LSj0;N*^ZKI){Ai|-_WDZiJP%$^o@)&Vn>9bK8`_|a+2-LwNrVL_L14m=r`5mt|nZjZV9hx@DGu1#&;#=T(5nsBcRs9 zu({YK%A{muZ~lYu6xrJc%e*d*vsCgsB$_|t`n(8LozzVQ`+a+|u77RI$*c8vzF|Xg z)iG9Za%5J(*S;5SdU@*HyUy$e(E`-|ic8VDB;`LOIo17t9QN<`93r`&eKlMB5byW> z?|6T;!|BE}J)3*(^4^EU&6X~HoU%pocoFaHxJyp^O-_B7yjW|Sc=t5vO(vF{Z<@>8 zKdYvT zv>MPw@5mWrX39aig77zw-q zu924d+B#UyWsUdMiRH|$bRw4XmfcHWIZwzpx8EsTU+N%Y8LGcB;Xru9+|xI5^$7f9 zmv%+womN)6FymY@elqVg3?&a~~XObLNR@0NL z&7S>!dWH+Dkg2oPEl#04cX_jXn!%f$?>=mP5W4I^t!BaFyQl3oX$el+y*lflj?l8_ zf6;awsDCgww_Np7rTabZ!&E8rrAc>c6_Zar3`(9-S$gZL@N9wN$p&$=_i`@uIludy zk7}ekmrh#N9f0VvU7JN$oV*4QunKv?yN7C4L3|l(b z;VGd*hiXPWjU9VjKGrntj&roja(gd5%OkPMC&$C*(3RNjralw(A8eX3`gLRbS-I=1 zc{G)CtAc~RML8WhY!h8<{bpamJ;M_>$~F#qtMw?g<-{W@H*nY>cCrE1-uZ!DeaB(z zYftH(eb<*J^}4M3zQOIRLG`oX>NOt%?G>MxO;YwAR6m(HS-fUh=*it_*XQm0Hd}dP z7+uXsn3Eu+L)%$C*{mi>B695p(~_{>(Cvvs(VucIc1g(Rc)Il3spn9NC(u56xiQl+ zK@4K~Pbh^@*ZoAT>4+jDtKAgPY3Pu*koZVHBl@Srl}0I*npm7uh<7L|8jdNROML%R zJ;o}gRNw^BvvIbeE(p~K)Eg6RqzmoYrPQB@!v;-5inpw_Mwr81q={qZ&+mXoqXhmi z6Ry)NC`QEWHO&a={Fx&)YyJ37JJYQPMWJ(?_-c{gLAsD;O~^|*d8M}^jbT5vhZWU* zPm&-`woYllq8j%X~nrOlECo1p;l5{a%b*8w~1Dn*HWARnhV&1%QDmSx> z84EtNpA)@>WIc%|f6;a#UTgpP8{2)8`tUsm4fE_O-=nQkJ8BXZ$rb+6W^TGycz=Im zv`pkH%c(jh=UQc+d-l&&mR{dAjYDw`kB%=bQBCZ>Z&LmBg83?3$98=*-|C&ep>)yN z>kX3!AN?*J=gnx?A!)npMYYB41edx6nVVI2yi-{7)_m$#D&o79iuk@+AVKJ{&JT?b zI=tlBIqlx3hz*u;o5tM_HgQqQxZ{3JFwvgY_8>EQo=x4eV9SPlTeuh4pFFKC%r+RF zpqvY+c%Em`%lYW-IMb!(<(ta#y!1=6J)??R4yQ(Jn7^rL?)P&dditNw6g|;Me_7>} z{e=bAsAW6$K0|bSQ!18&v(`r5iEIE#;9Picqg7LrZqbA7bb=7{Fw|DKl&nyKFV(wa zV3A$PNMPoT5ydLReC$PHOL(fzhCL#c1wBd38|LD}i|QL32iIG)8Fsd^PoiAM={k7X zlCt1Rtx;mA!&a-n#wB~-3+QWX#s-tDdC0Wwrg{jkQpu8)^I(+*UxzZvzeVcSV#r?ADV z=S6Ofx7udfeC7#rfyyqAsW}6GuvWIyo$jOrd(YLHx;KBQpu+#L;S#e0&z(9>*x$(S z=yBX@`Q%fkp=kfUVh1-D8>?E={|>qQL4}?JqFc>FUBB&Q`N%!h_T6KFJm(8Y8dp>N z?6!DZ3q!9igoM*C3WL&#Yyld{Y|f^R;GRS*zmiNuCe{eBBmy@Q(V;S*vw7;fMX_WZ zu4eF7LPjI1T3}~?2y9PaSq|sY2n7@c)-vK2QYRfTdz@kfHL20E< z``Ex53h|E|-=uQ#%w#jtGUBBe6r@h&*#~5MI>Di;mqs$2xq{Jf^-{tI62Y0`uuAbJ z14bD2mk2UqNorVaR01__M}eOSBrNZ$_&freB7=&iXZP?iVK*&*dyoOjo5SOuB&mB=hxHpAEY z!LzA9W#)S2Qsp1gbWZ;1#&#*Yd+th;YQ9Xp6t;O1w>zD={`k%b?CM`7+rA~LPtqv5 zZ)>?}c6DIV0nW?a-&4I~7ka5MvJWKFjz`Uu{O4$H9w;f+|A#z(G$zllNlbe`-d8R; zM=-0`8+cIh?)>MT;i%H-7jsDWUlMdMD#w2&uSP4&yT&d$t7@U;;{RhnOnV^8+jv(!Qm0&B7!hX!EX8*imNcC?h zC@Sc=68oCnQ2iHe^60zi1#s>INH(7k_)@##=h{*K&}3M>T;{I4`X=9XR1McrL$xAu zt?$R4Vul&X^y4;IwDp>seZSPYA@7Cpck0$u+jy*)$6mB)$D>7$7p(ftM`3r4lw11$ zmC=-+zIuJvtJC%P=%m6ODZW)IvD|kfl zvFycPvhJ$M#C60Dxa5zF+BmFz6?J??{gUnqc6@1B)dz#8T|y26pR!M`%nCSXbjIiK z%ns#QACLuE;h;J0i-xb+-dR39mLdn7i~H7HX^C=CmloUWP-^FvGabRKFHZjqW>qnn z`ddt7)(mB|WeyD%#6FIaci;Pi%F+u9mu;a5rvuJVA~_EDhae$z75G2b0SiomEYtyH zlGFI}@WRJ9MwiWR0jH2Uj(;Cv;-n&bg)cIQ41gbs&#y?D`u`R>|33Qj;28$C1RDnV zER+Zm05e1p%>`|OjipwcoY&%l1 zq!klXP>Shu0t|2XRDclbLc%3}3|>8a-o+5uO8zZ~Rs};QFQow{#4p}NTGfo8anEZKkLDptfSH88Uug{{bDw~u(TWO}k?o%70 z``4s9KI(EjHo9f`j#t<9R;yH`_0SGqJEwnC=j(K-gK_I4SKXc^ze6BC%)-r zCsp_l=S4p2!D?kw;ZbxqQ?wS3wo&-x=Hx->ZPsu6c$dV%>Ubxo3=E>9q z8@_+ok(<_Uvi;k~?wg0~fM7W;1*3Aae_waT!%R#9R`9VY4&jYe2$LLgAm1@-F4qWzBh9&tuf z$N4?DT;S>>@@g2S<3rqj)%XXKFG7d_7}RM2F%OYlBFF*O6T(apwkjTIBv))DFOEeO3N)xwpM)I|1y%w71Q3k}tIv!8{h+mIOe4r-+?*&& zUNJ$C<51;=G=hJ(WLkp+C~hIqcmHgtg>)+lE7Ta=uEKO6EC87hj3!n-8ByMq5_HG} z^D1x>gnyNuolH;y)EGyUpn;+>y|A*CvN0r9IT?~9hkVqw6ImJ?=aYL4-H2W8k&2Fd^k@3fn?CiTpB)x<$J_kweP<~5%&9*bvVRZI9?+f= z0og3<9;B^~y1nTK*hTvrZVaApA3x%CrwZ^fhMi@UVNZL;%u&0Xv=zaN;{S|{-?h0j z>P$y-Tl%iHtLsOn--hLFk~lPQNI7;y;`!%*f9ZhAf9Zf}7s@>xY!`~$o81_@{6)0v z%b1po$2w+{qgg1@j zBZO^xh29`4L@GbiA)xGU9sL_?Z~-WL|M_y))VYUSjAzYX`F2^=ErxsU;hZy1zwP<+ zj{661R&iBoz?#qb&0l&=7>kxI;v=#&)R+esxcoss_#*O|%t6Zzxd2o3g-Zw)@s;JROP2j%AN>KAcT6FIlpWeA1vKhUn`^Y>R{){FhaOjfg|7r)~!xg9ZkP~&rkSsMO zcSsGGs8G@>iyTaQ{8x%0$&1OM;4a0fZ*$gD{g#N4N=- zO5F((yn($q#*?qGNId&Mi26btv}P^|B7qzo^b3rX0DdBMw-PkeR`4E!8jZ?>Q#y`O z0`Vk#0v_WlxcbZEi}@siEoLT6-hujH2Es%fjP)&x6ogSQvrN#xrW~;pPWEZ1~W2gA{@|Hl7%3ksTag6O_xj_d~qc~ zMZpylMALRxBv%H+g7KmtwbK=~1H*QgIr)n2PTra{Kw#?dJTQCk?$`I#bR73qpLWnP zb>+Ry{&kE87M*Wb7f20XIAvx&<7W->bheCc=c|#mzLfO{i7{q9;zHM)8q+gd`Bt1f zlXEP3=^?`x*9Mjaq-;}uY!YVHML|xQony;$EiWB_?YO|dvKF=@_kY@sg)dGHZ&|T( zwD6woXoTys^45H*o3C=Oau24ZyZ8CWeW_keukd(iw6NJ*ZbOWcMC0DnJSmrSnaM&2 z-Ypx7wX>YMfcr8n?}DlDF}MBAcKVgS*6j{6_57G|@wDX|UyY&DbI1A71Fkn%M;*Rv zbNl`f^AOK>OSJQyu;T3XnFAhaI|Ew2Mn`Xd-I0}c$hfolTAkbei5?We;+R|Vpxkch zbCg^1qhZ6sE}Q!Z@y10{A>Mlhf4Kc;h_`vOU)$$6@y?EuUoTi?9ItB+FV)^}ZSJ$L zdD`R%g`9(OQ$3_|Z`KO!3ku)D@cP!!GCcKTfS-B}J2p4O!EZ|c!l$i>(G1i+f)qBI z|1!W+s%~A{)lY5V*S%h+%50ppu}bC2FJey3DK5QNZQey0V2ka0d4t8xsXMcsluOGu zmRR(Rn-h2D@?$@_#3|m%B}>03Uo7;fFcSehkVHbrRt^Me?EFS|)qfr=vLE^9N^UN6 z`lN}-{~@OUf}+AmoQG!-Fd$GtQL>vv8jlc4jRhezO>WB41(D_0r!49akV8t)kybON5FjK@KKB3EW?kiU1Y28(AU@DHTEw7%y!e8r zny3LyH0?=YuCXL^kqKK5D!^6(I>gjzWx2^yJxKtb+%{KuDB=f$vb-qf`|^NL2jk6FjNm2}zk! z1OnxjwnDafqo zG0~Qk(Ht_})YSm)hiv*6GhjlfX~4xFSt_K%S;&Zm1k;9vOD2KtWeG4oPXWDS4)|?i zv-p$#u`RF(pce2I2>&rZV%Sw!Hh6e?;7ka>N0Nw7Vn+Db7Bc%FrO}NdESI_*5p9`> zi^K`y6g1mc$%T@$glNi`dT|t=#%MtF)e|9n;(cXfEPhR`!jw`wA3C-cHCk|svntDH zNFiwFqbdkqKJ6B_ zV1ferx!Q$Lb_Dq1K)sYX|KS#FEER3~Z$DQ>px`(;A7X_GqSUldtBq}e$vNRo?I8g& zAN*Mv8!7Sf;Kc*znPl?7@#}M;^!18sF>@2F}TS46< z$SsCx%)dS0OGz$Cgx18}j~EIf_yt@*uwxP^{5GOPOq3@#dH~DGkD$0gH3|!8OQuuc zX(WS@YYT#!^Tuu>q=vUM%qpiqe9ZaL7A_A|TjXvLMAi+Vkz{Nlx68XYCZlLmg` zOulrAcE|hSH{{9(<`@<|bxjYAO4@FvTZHFff>#!0N-<#yuF*&#{7=kpw`c zKTkmpLzOQ!Bu@v+>8^^PIws&XPa01^=VTz~Ff8^pzVc9VX(2IK4)Vc>DEpd=SJS3v zCZ#F(iO7>=gjlp31 z4VsybMKec+VATXTXb-_1iHwkGWr2}ptpM=#Y$NrlY+|rp& zQPHF-Y9=9FfG2||(?hG#0CIz5aPnJ4QYT&n5JbYl?0*&M888N{$%v3m34ev0svuby zwCW7w;x)VoaG(=+2`Qfwc2QVPa2gqD1%83b4^aBJa$wU(pl;ey_*CBMz!i+?=C%

6dw=`<27AZT!DgtLME0)Fg6JOUSz$pM6oFRJpmSp zpmM~}L9L86jS7j#yCRTZ<%Dq{U4q-nAhA?ECTdwzn<((Oyi!Tp*pp6p4}zf~HDY5( z)YL+HmoPx4aDu>FV`gWMbxn-sBFj{05B3EIbZY*nM=VO_$AyS5peov78BiNZSWc$` zUZ2cNghr>4#T$nO+iwSsWMqX_hxCwnC~<|`DKX*~Dm?lbZ-PA(0%(O~3fU*zL?pHT H_2&Np!kEc> literal 0 HcmV?d00001 diff --git a/fvdb/notebooks/img/first-3d-brain-reconstruction-strip.mp4 b/fvdb/notebooks/img/first-3d-brain-reconstruction-strip.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..3c7b202ac42e520c85eddf0eba7532be1c81f2ad GIT binary patch literal 122178 zcmb@t1yoeu*EfD=fMMuRx`t8|NfD47N;;*x1?dif8M*~TLPSzZkWlFw8c_iO0i^~B zL6Gjc|MB;Ie(w|OS^u@(wcfMl+3`VyU+rT54S+}NX76l+gFv|1|I@GkW8>fb z`UjuS$==ob-=_SX?H&GI{!2*>aSRU?8+UtG2V5g)y_>VUBaVOF-|b(Z|J5Zf`+sE2 z_TCPE+x$&`<)nVzu84oiP(L4ETUT5;!^hX>UxWP*ABeW`w-dsZ|EB+n`40z+W2xYZ zfAil2!FLiC75S(9zaQyA5GN48p(;S+fm`4rK>tV{!`e*gsbI~43ji+sxI+-@9SbA` zz;_y!LgSj#`}q3${0H7&C-?w>r0E~N&%gONy?;4Ki=)iAPT1k--}JZrf6aq9S@6Fk z{~T~w+;4DWv5BjS;&2TCfaog#;7j51eOxxf`IC>!JGgQZ01y!3=+-|x*h5@h6IYJI zWt<;W$pAn}j?03$IQ#+tY8)OlZZOHza6AfJjsXC2JRFZ07ciU+=sHgCIZh9UN$?jN z7aYo29R321kMj{~imT%T0L4q34g&xXN8+$ja6Ft2(Cg!C=kXu?!1aOfBW_r5K1f*M zas~h>Z2*9F8vr~!0RUrM0L^ju*1P~<&jbKYWdPt-4FKM`0N^hP03lBSAbbV@qH$vu zHwgeaIQqs509pzGUC-~b>HR{%ow1b}cr0Ei$y0FfsLAc_kBM0pT^sG9>2 zb2|WHvkgEV832$#ApjCe2|&;Z03>1=fIM3RAVrY?0|>SpK-_gzrLwpAm-gQ%14OvY?CbC2 zj-%KAs{mL3+W;qX_&a6(HyMMIz5n02|K9*{b?7HPT>7i*=3w&|7_jqjLYMi0s=}}90&x5ldrF*gn&RmK)`=Eh;#LCOCJFpZx2rgZ{Hvd94sGBgWulQ zo{f|~Q z-rhF2#{Y@&cVzxMf|S6&bp`%uCh#9hf6d@x?qKKZ;qCMP2+z~o!`{yhH}3zB@cxGE z|JuXgM)j3w=*un|1bRg_wfEJ$}+f_tMY$4m6eS36>xf#|8*+k>TpM# zqX6VvycjmDbx=zpFH6-kC;x=iJ%`(70=CvO`=rKm>v(!8`z5;Pk#M zxC=LwgA^cu7*(NmMP)+-0CV#!grOlA|6B%-E7qMV4r}k2aA;RHDL>@`Ufni&oO7Q% zrmv+01by+5cya{gu)`0qX{NFC-5Ixh+28zGHqq9q8Mm0lH0u48FA2hF&D*|XF7A&E zCg?9+-Fr#~hlq_D#l0N>rw#}?7C`<=7K{7@u9#q zvK9PQH@YRuX(SB27eC@cQhIgBc#xl+nOr5xS(rs+gJC7`Wj9sBlK0=FjkDpkX+`$6 zw*ENRd_ie6c9+wnt~{hF7r+O2Xo@)@+cma&ci?-BN_&x}(XOlUsUG@}21+yl#eQWPUt&3w%_yz(fF1YdRdFVbx zZ3VNnU0zdol%PFYn2C?3*xo&pMS;DNDJNGXf#hZCA)iEF`p1Aw=~pLa5d`Ic>3N4Q1(~K*Pq%)8bqG;v z28rJ-(uZb9fD(`H)y1pVvU;)Sl*|z6>J%D^nuw9A!kJinfRyU&rwnnD*Kr#VMVUdJ z(DvPx`ll!y?<0Xh%2+}S_d~ezD{BD3Dv_W`lCD~I&1xTUfu$@*0a_wx8?DR#!iVP+h$ZZ7!+E=YlN; ze?2JSQ7CBqwd%9Qa53^Wv-jQW^Ng%zvO78v*%47ag2kkg{N5Ty$ydBvODz;a2FV}s z`I}E}ZQ3^lyXuQQ+a0(Y6Eg6V7Y}iv_i!XyMnFCDb9X>{NeRWdePEsOS}k)uM4p1V z7T{Q76nV;B5*~JSo5wkU@lz13HeskQi6x~r4 zW@XKdR;KXR7;sPhk}e{kZG2nir~zJsql|I$gjHm{osl(M?wej%C1}x@6>2cFS=ZWVYs+y2^A}mUu)*O zMyoiFXGY}xRHtL-amzpx!2Z5fQc{v8PEVn~3qgSako5gb2VVrUP~coR>hkgFK&6+C zh@6b(AHUFk*~<|^(dffWloS+=FI*KKEKjBTVs861DMn%^LHF*T+aBx~w6z+C+){64 z2kIORgqt}KX};{HxaqwBHd}rm1XWO`HC=>X;%8>p5@iOmMJS>OlEpZ}w!MFy;7s57 z39sU1=rMW@g4LbiLHD!rrCtd*luvx41~p4?G$NGk(asZbh{eo~!)j`N3h@iDGbIGzg2wcK!c(a(c}qNf{6r`rEPh9bqVnzh z#DFgMp6Ua+-%ZhES6C?PG1HQZlyY6!Rf_O@*u|6w>zBOiUcFr?yelxxb@e+S4Sn2Tnfo9ix)oY^cDL zHjef3GNOCCt1A3s;)L$^jtG=RGI>9MPZ$K-2=?qxf@r^hzm_IL6C;;Or`uk3Hh1pN zoIgdu9&MAHU7+>#H4a>T92kB40#7Sr$ae8`8(EW`0%3Txq21YYK0c>YIqwsb{2qw- z$p(mB`&qMZAN8QQm(WY>H7n|Sct92bkDD?Zqg$gHO1|i|d&bPL-t`CFkIZSztW^6S z(tN824s&9=pzq`-i?iYC*Za0}?YT}U9 z(W&M8%icw5#Gp5)Z*eCc?q=qJ}m8t%!T9`FoTu9D)% z2ezmbgLb>KIa)1Gh#=87zlafhvlN=>Ty0>YR6S*n7Mi>bX>o=e@LPi91v{b9)=uy{ zP(wb|$>lwh8YqC2x*?}^c6*8t-0GPHNSJK_mS8wp8ZW6&2kK)%K_Zs#t%1_)!`-{H zC)KQYTb?Wc-X5A1&;Cg*0gU(y&yL=BZod0+Cl;!(=uY6EE>A7b47TBQn?reCEx`+N zu~9Wl8 z?{)89=<ccrRUXPoP+?0QRdv?wUHQ$`SB9s6iq;QRZDzZ((#l_0#kCzi%#GF`b zf1OEb$+aF}?NRchYB%3venQ<$d7zA>8^ib;g6;# z53$uqY>1qG+P~oxjrX~n%)pK(OCi+m{iiej#=8OXPpLfz#NE1I#9w3nRx1g(nj)ZS zU2$zsu+WE%))fXn2qg7C2&Z<($$RBbMOqw{C#2SKX@GTF+Y@FUS7{X6g;^Z1+OAA` z#-m@PUZ3)@a>dlmUxfl>p-W<4I;bonD*$>?ssvY+V{niRM&;e3CMuH92wo1gTRRyN zzbTi!Lg}ataHjQY);)3_A71^qN;3NU4#l7R#wxjfmU$)p!cq?bvX#G$DZu&6FgllI<_^Gi{%kUK_V#z4J%w>x9HYoR2S{dlt?68)*gq~`PECa-5pG{Z5eg~w);HfleUjC}EfzY&Z< z1_{4!=?NF??I=y?G@MFAFtt*=4Dgz?Kj2FMOGc`93aXg7A<@^qt?oO}Im*XqzR@*m zW#qPOs!t$QAT2pwu%Nr-c_Xk}7$1?%j6=!G{bApC0r;vEZFa*4JPnadKJ}2#;4Ou4Rg+ArLS1}bf>c~A5_uT zh_0u_e~UD8AXB|-#P?AT;VVf#nv3Wwq`_-xdvWgME7I(lh7DKIiTo{0)EteU0Wn*= zTa<32^Co7tDIYxZERDvkn<0r9A~N+qLXyYC%(FJ#)(gO^`xai`QD9x#rfcv4{&g-v zPP+%`a3Aj<)m?uK%d;has2v_d8bU@9=Ad-H`$b<^Z+I7OEXK-Bv+o8fGi|`j7zoEuaQoPTE zq%?AuZ;9`)HPm`<%p2)`p4G&#fxhUpf|9z^-hp``lgtI%97jXN?lj{yC zNh<6W*~S1}uD6cp8NtEZ@Ld_^A}#rAy0hd^rDdLpS$ zrcd4um;V4KX6ROrV&$we!U*79Gmm-F-T_QT1CRZ)cI=Psx8f>;VX|;UaULoq@3r~^U>efc{<;C^;0NmU_O!Z-81&#kW-S4fWZ4({cmIs zjkByIh=UUbo=;4)9dzB2o-5vpqoRzn>UhgyzPfP{RdpGoyKvZdcP_>S2Hdwn6QtbY*zSEX3L_NfG&DlxBI#jc?g z6l3E3z(7=YIsnM&05@pxAMp`|x`Z`qG@ zVkX;XZ^qdzhPI_+UfWzn-?8e9q&%Q+;+dRMZWpuuv-zOp!IWIs0^YVq_+|Ys<)Hwj zYZ8jzWmCU*tm$TKAHBM&yy^((`~j{#S(`;FR@@WQkl$@pLl$diqOMumV1yz->)n_0eA)W%0(S=zNdooB9W?|n~x_4yq_q+ot&0qY6Z~G)bBVJO^v9zJx>8+sA|ac zWD|>C9c{dt{BS8@r~AsvLp}B5{qA??_2-PqUuqvGoTqh-e(K(Azf(V%)W$8d+QB~C zsJJnoLRPeJzo}QFp*Jr06SyPa6-5GN&0VmC+0Wp$eD{%iaIAvTh<)dLgC@tl_;vJ_ zBXs!#@wmy<$OE~NeWR_GQK_24EIPMd7bXs0xoSD5oL4-;SY5qvj2)$Z$xCe#W-x@W zZgDK>gTTr;S#OKVm2KdK_A{OR2#Vm1vF?6)T70ypjaM=~nIi>{ntbz>>^ZSD0U94J zaqilAVytW^w{&Slk+LXF+i3-!yuS6cR0?mV;MXW+qIh2ZnZudmS|r9%ZkjRmOuKz} z;Ao=h`4W43VHo2F>R;h2vYq9yYf#(DIQ?G4e7m`- z5H-v%SgDq$Fm*zYWS2ujoNoSUNz_+4dajP(UFPKtV`Lc~HglXDjw2F(YA{kzt_b7# z7~p?Us95RJ*nB{2z{R;;{XV&1u(SQw$sFI~>NoGjRKmUqeYZW*)*iX~_6OzB*_NjE z+6@F7jpmP<|$`Y%dcSpjuk} z*j0=RZ{mz@Bk~jCTQi+jX13$uq)$=U-}*kRqfh31SSA$u(eaM&>l9v{Os%jZ3lsxdz%RQVkw& z)`4UNbFa&~KePpZ*fDdXqs)eA`xc?c&oekXvurrCjk;)r!Had?E61qyM{XjqU$rlP zk^Nx1r=6sxR#Cd&YewT?mlUX(4*`xmwa?2t zZ!Rd|bG|JR6@8I;obj`g+Um;mwQA%8jeZi;;i-~mG#I)FnS_yIJ!Xed>qmVX-J{(L zqWGQ1OUnDzVfd_?*FUksvYFM z_%l6nM3`ft)WEi$@h0MHx`7e6)o`4G+KvS~cm?tf&WkK-mfwh0*D))MP7*h|xX2H| zYd>GZf1hcTK@|}BR=+hTcp#XRe>6!nuNbt%@wqZ8w#N*GFe0RH)C_ZnL5^LO`R1*k(^o~MnJ}q0Ne{J;_ zmZ>EFPX8}e=UlF~Mf!`A7d3uVly4LxsyZ*}2_ElC45oD6+@E^6{!8TRa`B391hsYd z2bv5Gwhsk=_6=Z8rtcItZ4%entqLG4Bx<&3D`NMV@4zUO9mhb+E!duF$6c@5eG+dAA%Y^$6< zv0vQfgO$2gAZ`;OZ4k2;l)O22{+tYTnl^Xks!(yqaEzblNYsYeQ*HGFC!mde?6~G43vR%QghUlo6G? zg)X7glJ+F#%q`b_GrN+n{mPW9R?x8Xc+?Vnwb&k0qWki4MZ|hzzpUcPH_^LB934T6 z#OCXFnHl*9tZkk7^fyZVUi**-M}4Zh=;J3QYg2t#`c~Emg}Hcuo)|OI;+rDPR*CeZ&@fuv1C|FAY2+Z%6g)lCurDLueX` zE5TC~(c}c_gcuify6i=+fBaSLHP~GRIY7J?nQf`XU{X(?i_Z7 zG$Z=w!Fvh|465t53m+ZuCP6o6!mi#z%LEh9`H?wCF`(#+!aFDOg~8s^Ym^_lbX!aL z;u2dCeX|7SF$cCAPsQt5`46cr4xUc&!oI&$dLH>~+fJ+gOJAW(!^fs?nUp{=C{jp z4a~{198jEm!7u657+>4EelR<%v}S6TGT|7Mt^G~*Ym3CJfEXwLdxUfxBWVkVnp#JH zAh8s~d>5n)(XRStG4C2j?h--y2LEFw)paU))v||guEwPMMcc<>#usTWg2%HMZ3j>; zjPj?_HNApILsSyXW6v%338+GqEbE2J<|QS*NgrRG{)t*?cop^Fye!%p8z)q;hf42L0r~&+26}Q@-Brc>yjO!>YpX!y!2Ysl-JbA`f zlEVgM&*ua!P0-c9{It=U5E}!%Rz!DsIWqI7b0+zc*Yi^2iE0;kQ9c33U+gJw)E!$% zW)ciKFR`G#$raz08B}#JnTJohkg0V`XQ^5`ap4b>Zpndmd@|)y*8XB=$ElZu{KV$% zJIb4OZWsEGn?aU5g1CdQF&06y5c!MCik4}G%bjaPa^VrSO)6xJ`%{ot)z_F3-HAaBLzc`7jBUv*o|O-n){*zWx3 zYUjIwhi`2R7yU|KJZIA~nea@1`DVi)WusKjW2pf#QL$x5bw^uw-eGXjP0PGSz!A<) zk%oU7I$T^@>EnN43c~KjZaO!V;hD}jX3`nQO&0xpd`BxU@D9OL&`W8yC;6yi*Ojsy zc!iNv_oUu$K1fMv<^_m0n}I--V^_;l=jezS1;$HJ0(w%Ih_UiI*fKW#;xa=cg> zC^OJ=-+XbC?B$0wK?C;KI}Jk8{i8a;;?!gWW-Zlo!#+tuO(`f}*us0hCp%e#v4S5s z@&YqoXGZlNxz@W^^-#TAhg{W{E7(*ea^;P0n4w{KJOJXkHC_R9b!sAl_IxPnRX=O> zICzzJy>18au`&IaNouIuIen39Z5%a8xQyGzVBt4_#asU{uF1$LFhQsTC;fEe?z6`8 z;{y`Zup?kH+Yh&B);>f4fp@PzJ%N*{{n^u^IQ&T%+R7UY|DoJW6=}K)_tex{JJmIaxHkt;ccr zKHbVH>Fi%BKlR@2wodGSyE6?i-Lh>_ZUiaPE#BjcLN z`n_X6jX5KSH+}}1KLYR?R~Kx`7t`M^<^O4Yx^TAeh-~I}-7UJb`$Dr3)jaPXDoyZ) zbe~pi`|jN7zxM{^!gEof6#(0M*(CXVW{>P;SWnjYXQ|tA*Mqr1Pt)1shaa+3xHfIr zU#Ne$Tgk(+uvn1Pa1CSixj=h!*>kS80I%DA`8GAfFYxj_5jB};0N}bYMRoaZ`|6kQcSeOd?v^BR=>lwd-f2D0CAfw` zOE5#_*}v;)+kUw$6k`LG@Hg{sn^}RK;&7$H^2$%q^%~&832#Nvnkz)jXZ&~PnLIcy z_}z?$RKdUb@&ox%2^HESq}!t^uQJxLFCr&(bKv=(%Y|5C3Sw&NZ0foqswEG;xE|x= z>k(m^Zu7F#t-?iWug*6zB4`w?b;VzU;x4N~weQR9;v>(?2AP`3v7UI=f~2-rxn|?G zM@Kvpi-xsLPkX%s<_0dp%gJA?;Q2D%iL5PH*>u|OwP2a?_@u%=P?(NUZ+ zP`zN+$pQ+1U34YgLwFr0SKaaW|)40#|eDE0JpChVFx!<@BDIuAD zG1D!54(`X?c712pyc28f7*6%|A<7OsmS|$s0gNg8O-%(voRkf5TbSv|k?}(}%A8_e8kuriyH(1e9Np=$!=eU1X{npLs zs(}K_Zt&&7>e%$cr4v5Yn_yud8$Nb$`&2;z9qrAUSlQRyd8SHt8v6dSmXWfz;JM+- z+bwVs^9P6xkY>u#%#sE_APLrJ<_*INEb}{=WeZ9)W&B8k4DTaxA3jz@JFjdPGo%3a zcSQHqsvPet7JBGnE;=*x4fV-Wm<@YDCY_&bp&vr;`4liF8uDz@CiM&nv)MTU zG;)N9^Ez!J_Gqb*5=#AlI6EzMDbwg*kbYJH*bjbE)-`+i#D=?4{B-Y{K8PTwU5LFL zV26WIO+VzX(vlQ~thMm4mwr0B{1k2k#2ajw2IM)$BgCFjnfHQT-SIaRb6S z70oaV2scqaVesT#`rKCV3&ady@Rgw{kH`rm0`lwqz%4{%mzFM;=UK~|;z%F~Kxmh@ zue7<^9+-g{qC#=f`M!@{2)gX1!hN$f(75&_>d6;_5^&188Qa>4g01M>a)HiqvCTL3 z&jl!#1NgWl{V89d?#t=}VHp~9o#blyN(~x75Mv+Zoz>cs{dq#UqyoTkn+nk%i10CQ zfC7A)n+YWi;sp_v&6Vffh-!YLSg8fUi@V*AsH%PrjVXo-9DKMbVVouDD?wRhVNGcc z2ogUqRj}2)2=!MM0}v*2%mZ$B(nJauE`kv3g*7m{$e*Oc%f)0TFs9ld`&WEfUzv7~ z!8S-**K1^KUd=v5RxK<29yB(*k$9a#u1APn_{$~w8o>YB`4MG0yk*}sQpb}%+#y2* z8J;p(B|GJ*40y*BHFJzCigQppsW_nxQxcl{Pp^XNYNj)s;%w=|R11Vu@nvq)nBxJ9 zJiul+$ze;OZMvpvg_tQ|FN7v4AU03Ox0&vLEr>B8pwwwJT{#1wBmjU2^UvOa0Z94k zo@EYWJ^Dd}Raaa$K`OgqwWfT64_Ja5B_1LIK#KKnB!ai{0f13NFV|WuzRou|-kxF^ z0Wjj~)&Lwz37IzTWeF~5{(5y)Lkf7~=cP9%SWJ=HpPrFns=}aESo)hhyKgiZ!sl)Z zz6U`FkV5l){cy;%$Gh!nkF=B_{!XXO@SRCdTVlHOHNF>SzPH z%$zljo~Y@v-TeVQhjsIk`C)MzUf1Mu;CI+Ab%(`@pWZz6ig3sX7CDm%iY=VJ%b{h%3$DKCcy5uq5A_T|pD9++ z5R4HKiP~MP5xp*VLW%=}kYQCpTWSe~>2}Yz&NnJ|G5(!NshZ;l?7)Kaq(OF}BMP#e`*+YIcIA1K% z);$tyZe@g$d^P-av)TLaC77-l#SAF5!4gBv1Oi7}WtV5|0d}t1nIk%n#v-lUskvkepL&xXb6` z8>m-9k7mK9Mz) zAUB*=t`q_S6SrDj&aJ)B@0c_)e9QeVfCoH`@}ft!I%5*oRBaLV6m`+rf*2=2&geBO z_t}@|^MFh8cZB7@-IfWSL8%fY8na`Dc$KyXQ}+m$?rqRt+{H2_RtT-!Gz*KxqNzvq zgR9qW#!A{^|I@@;DsA5e+BkT`w3kj5B50BDM`ISN@co6h)d;ApcuBO2QLHRd=T1 z0+HXU)h=T6$fc=2WY6kqRwdXbecAQnXH+WyWdn&!mt$s8nWDz(si)t4@m~Il-&rWO zdDX8bgZkVEYBoGpGICr|Wp6jWO;;lQB&x8(DB}((bZkb{&4S*Y`2L}=L{7#X+FF(oY)?-PnTXa450W8ORaTyAL*?bl3?;U7 z;!I{8E~`?2zj&5N6Pr?Nt;{#faaQ345`2};tq5jFyi|l4Z)^JfircjPweUt@f!-)| zXw3A9RRx}3Q$A04VUK)Bb_DeX(0CDo;RL@ zTxR$&EeT2WyQsG;kHB%Ouw=NYI;&>3f3#%~%Zc*)o>~s~ACf16ifJ1|g7_%oxGr@S zW{1;`BS9XUso;p*IofnVAoxD+H4(dtH!4oEAmEI@2QoH4uC{vak`n%)>4g7=Z$#sMg)vB?HDx_d>H`^!zGdtc4U1_fF`uq)3kx%k6kC;CrWTCa< za@+f(gjxrRt=oUpQHN324o@u;t_grANPK4BS}dj47=|E|%1fQn(y|Lm*z2 z0ig=dd7dF#!79WJokA!9GMscHR!06u!P<}8j7CF{dhH1v`=K4)LXA&k&VM`&xqo0N z`Yvc9K^4k9uqOd9=4|R-qF)iujqTiE-@-!Fngx$Yk~cZ;W0u5&ZQp8H2dwY_!#ktl z3!Niya<5lHB%&T2qjSTa40ny}C?m^d(TW;^euD1r+k!vqZVZpXgpwCbh}?#(aNDA} z$y#y$(l9F_I+sNkb?NDbdwwmrTWVddK>Jy<6fB z$D=DJGxi&b-S$hM?$JzLH8_K043F-Xs@H$%YyvhR&$6!({npH5xf4_nuct3NOyQ># zklBpsEXJeFyf>&$q#Mfy?m_L*nXeIRMUOpO7ErrNHPy@ui2F$#WQuqClOh+O7;fXn zBUUJ#W0E~#e9|E#4qvTza|EA~7HiS`%P!b72rWtfz=`~LmXYh0O&)R_&3lD?p|wV( zUtgjH+`_bX+wFA{Q3-8z5mww)E1G5oeew%>${lX{KW<@NawWyY-4*3zU$`th+!JQc z?)3-;3~Ud+$>y&4m~>u#QqYXL$H_?KjQ{tB06=k1)<~%WK+;YoIsC8#J* zua(EPV^1#mnR1p(<^rBjesYtbPiq9xpBmz z`+A-_LwgN_j;6kV1n#r4Q*FN%PjI&8<5;%EQ@y&QG^(V9){9ZAF7k$=6TbCJH#g~k z9ruN-U`xun7ygA7*FU0P)mUC|gf$l3=-gtjy6lU4skS{qCo(w-gKrJ636G9X_==F9)8}M6s0!$vY478`@Xkx>5FmE? zEXU&**HcCO#e#n0fthEUr>$(4hQzD(rO%91scI=5$%{J;P+_(CxE?a7H$~;$BAa&Q z6ZQhHva4TRWP248xrPpF0Uw$SJtJnr`k(JM=-5|+%dCONI| z)Q4g(Xq{Nd-X%P@jR_agEprgdiTwGf({IaR{v|X^{bQhY6e5Zmun> ztmmnQUBN9(86{ITrEKgO!(eZl_h$%UW(E^Ji2{MZfQHW5GKN|;*k~K{7jHrcd*)H? z$i(0|`Nv4`lb{K^L!Yi`6yrs9*(XwaYSv0`mEBE}jG-ldvR#|u$K7qbkFw@+^pS(? z9zhF;fY=;qeG9chrQZdf6kQH4@2`)3p2S0^b4>F*TX5J>V5XF{WZoCK(60){vt}q; z+FJ?VyUoLntXrIsAbE3L#q`w!Jajtl`qbbSHTHqd_vv-on0fl2YN2wXc zFIwSn6w_$~BEP9GM+^;YBqzsa5^zRXjpS0#R&iDYDb!$Y>#gdt1!ngxvmc94np$qN z<-YUG>$h4B#O8`|U-xvqm9fd_KcIjObzEt5^kx$!DqwL7Hva|KrxocQ!vH-{GHoPX(YB3-SN#Q^{imdl~kxYjL= zQ8|2hN^e;uFm-Z^XyvN9W;GJ)Bm?LYVJk#N!jHY#0;H)py{I@niAQmN1=N$vp?77w zG^O0qjbK(VUOLg{ddC}MKMh={y&Nv3Owae!5;JkK#>l^ixsFN<%?iWZF@#7;2oQct zH1_7_&-30s`hKr)YX&T60LdLpoLq!{%=9X8+>BI)i~e$0oc7izm+^||snw+u!CYRn zvl{|TDerE$NlBByRz^{r9lO=!oq#2Z#1Ig_Fn%i8YA58jNgi^uHYJd(l`w`tuZc_n z+Yl})*Z;>DwGbVZ06%ZBp}EJ|=>D6ho&Q=c()DIPRK|&&Jh}I__?;5#k0*-7tkB!o z8+Qk-S%hBP@;ENt-#-)upn!#6`x{#4?g4O|aa9l!+k=THLm-KwT;iNzaiJu^caS&e zpX`u+*h0ePYNY=FRQ}C2)C4>oN>OcT^8h|eFtXkvm*ZW1GXA@XtfAK6%-sF2^UWgN zme%#jeH9G`EKkLOi7g%F)bE_5^nki@2 zR{(&d03)9CQmeO^EZbfS5SV|zUZ`oZFP$$ay?}izLkcLjz!s9Q_Co6*0D&kN;5jaL zw*dvrZkJuWHF3sxR3(IbC!$hR{r413MHAAE^@&7jwmXIOVjyiRQT@0`P{>;Y$h*3{ zxUK(p*YFZ?t5%pIdLWSe1n>A!Bq=T2HOCvdPR!_Ox#>7UtTpsQvifVKPt2&?eqOrLpuy@+Y$!*?0Rrf1=4^ALi7JGeQDqTr-C`J~Z6U zss)tD9{#LX>Xk-6ZR>s;!0iEEEq3G&pKkY`@~~cxiG@Pgp$u66vA^J?;OFFsX}L=)YPBz1Bsk7ZDk(G7qEu4 z7=xz3`g~kg=w+S9Rc%CAC+}C~De&TSgT|SWtmSoGJ-ZEyU|nmroyYVjY>-TD`^_N# z@&ycI`eMO|LU;2c0!l$4$+Pog|764AV-XElw+m-Rq7{v3|-r0zQ z4=07~;o97)6xj*AsiH(=5#wdo--Ld?kVKQcN0L5teL7Xrg_QVYJ$*vx=O6Mb+#2#- zp*ZzJcb6$C&w3Tv?S$y{*$9%(3o_heRFA|Tu7%S=*O(XAh%!gT8(7~j#)_nA@FdJ7kV2yvAwmZSnW`_;H#9&9R(n$dN> zhGUfS?gun=E_~;u!B+tkJ|~r&3aMw&n1ciprp*sMsi0W^K#QYXqUf_=U=)BPFKDd)<7=Z%QHa1aI;!_%7!=tShjz!`{`VR zdyHiC;Sd+TRRNv*qFf-${TIqiD7J|G-T1uN2GJ+LimBucm&X`SK%4*yg%k5=;6IFF z{)D~#E$^eA`U>%-)F_bXk5?JVG$R+igp??+C5#6p^opNXC*1$>a-3s|f%PNo__ zvsRQ`0S~^4YZnx`9oU<3@k7E=Khm?!fj#z-v#W&G)FtP}sZS^)Us$6rJ>N|eQoOMC zZXujhc!q9IxCJvMq)-q4ctFlpO?bCpe%ec7DfU`*$n63t!wW^NHdXNaRh!qZ3(JOs zF@{V$7Ji~>!Hjndo&h1WhuY;bAiQ>xHaKYCko#rIptRJR!YwT6-VllEI zzXs8vsxcn{LP!LaeVcrG+StuRCUBtg@sEx--?*HMWgIN%eV-9q=3>OBfBL>v zQK>`)(oueY-x*osmtvi1&3?~LcBEqUYi$=i=!{tQr90}>crIOnx~!m&X-31Z=AO80 zAeX{1##f_<^ELURWqs-lc|Ff}tbhvj#Uep$v$`!0&qBD;5FiL=+eBg|-ib%jCBzf^ zY#-6kr6JYO4B#K9l8rFI)mFcG>Ge;&q_SgU?oqezskp+O>^9inkdW}q^rN+Sw>5vh z?>}#WX9I8mx3r2z%A)}!Gj2hBXcI0VB+!9m2l=qxP5K)$7oXF;69?%g1KnvtQ!*Oq{O{ug)&ZHuAwnw8xE7H>0rTh`3 z#EsG7NNd2p;kFBtw+!pJC$t3^@M9C(fhM;xiGzOWOqi@YgYUt_XWczF)}29cH>S|j zcyop1#h=pIdpB_lHI5XN@fGnAC^Gle>(h98DJXHC5>638-v*XC>X86o_3{As9Rqq3 zcWXgl0Av#G$%5^cV6^fG9Zpfa+jBB?;oA$Z)X7dW8TeX&%5?s1@GW z^1C;5VDxMSz)ifC%i3yz`O!2kv8++`UzaX%BxLv0VBj`4nIIsyceUR2!bM~1P>ps6 z2oIL-2#zo5W&6^(m#lURC`Mh>@e1TEZDYvQG23ADCJ&f;bsyIFRHHuK| zy*1rmxo{+D$7s>u;RgozJ?0VD{?Khvm>C7!F~@Z* zuhbClo%ha1#G73;8}go-I1jCjTh-01T>t{A0}033rSk+R8O)_1XMBnPu{AeOICq!9 zpeK1zEo7FU_R%?mU67cqk(zjH&FU@@E)J9=5BSxwq?8)Bx2s19|9EoN{C_-sWmr^Q zxb~i4Xc$1cyE~;j6e(#D1_1>`LP44t8j+T6L_$zNLO^P0lt$@p1f)A=4(~bN_5IyH z)}MW?=epNjPxNYW$K6i~iIY76z%V0iWgti$!e~z{2SBcZNfI{y9_1U%#|?rx^{BaL z*Oj027SfA7`^%Mq82)AC{XUSwMPS4LfWuJ$3lZ+!Io5X%RaQYiTnz{IJ|1@JE}eWH z{B(cu`x6Sy+Shb;24Beh$o1a<5V_JyF_mB{n8J4yvI44Jz;qO~-S0*s?5OW`ANX}w z+)&m6vh!}QGD32gaDSpIJcGfZplljA82CyI5s<^TWm^Ji^|RU*zWGBX;(+b~u%9pY zTI4!pzXjCmKQ$-VMmL`x)5$0s^>}?&_2Hw|J(4HYTV`U)85V%7Hkjk~y5F2$*1gL) zjc(xB+kMop%&P*V6IuIRp6j}qhP1w1u)8axz#mk}WQhrYzwrTiTla;UK~$7>Y%+;r z3AE+40rIGPDJl2-N$gH{N4E$|6=d--@pBYe?#)bVwepnPO(2PFzJ@q^5o&*);JJJ< zq_wt5D(Eyr>GaJ9+N*7IVHCUh?ydOIfXFWpKuo6tjQo;{T|De`1@ImhzTbYIa(*Oj z(j~IO|61beskO<+x!HjFC&Z3n$FRdFDZu#a@2qGv3!TK{{`1 zMngNx01 zbAU-~E+jv|=-I?DLXBz1D()lP{}xo+-aJ8Uem*Z)^^KJ>ev3jG?#@d%MH2R+XNC@*&+7FW<)WA!y@vQ6DT2co2r5=qA?1lKE9xn-xh4%zGHj>S zzjkzuPsm$_VH&-b^5$6C-`%2J9tO2^nOOR(I-I}mIw-EVL##GXM{yJ&*c|Mv!=&IM9)F+J%Yyv$yc{9Fp%kY4GXth>~RacHaOmeDde6OgB8hKD}P<`87&r=Q>hR zc!{(uJ6&{`2wDY0{|anvZdm5c7t3WNKSv)6%_&^O(8LK7(3cbYRos**Bp)o@vRhrG z_(Pu~^9}fmn5g~tKeS2kU||NM>41)WE}j94XcC?B8r68@t4FTV)>S0N% z01ATluJ#8UR?4j>KExrCNMi&%VTo?=fGk2eQ^dGw%H$IZ(TaPlKvq?sLm2h8Ihn_p zT6sRWg5m8xEhU3L8)?9$3Xhwoyld(uEPVIUoxH1^VpcT@GI=XvOwE{R0)Cs+rtBzJ zg@Ery3-KrPt3>#29;xjAa^>gBhfvHC}cu@S-kN{a`Fo-iGzr_>vwu z?c(;x*xYIHviyQ&dOvxhZC#Cv=5=}+^U4%om~tV990yv$`^qpuEZ{z%na=QX@*CEL zX(>F}AIIY}#9%PAke7;%nnr#JZ=ivnYH(Me>Y2?LL4fy1fS5d!f(@&3*uN)%jm$&Y zXEU)+u=8=v3ci&vUt@V1num3MgEz5~&_#fC6Fy?n6h8_1pvOwEuo3HPdtc$X9QIbZ z1oLk`KYkkh-sav%0QdlKZg5*B#b$}IIIgF zXBrE_*V{}MO8n_GUM9`?_5k7`JD&I7*#-Yw-jARV?fcfP8om~fy@u9vQm~cOk5hF% z%6WI{`3_OO^5J3K3Ft%7w(ZPG@uLnyI%GwR!A06$GMM7+lT!-hZHr@OK8%#$@~tVK zMa%FMWliGyk&*Mu4>bnEyxmSA$7?teE+9=Q%u{b=X57l{(alJV-@KMI5r`7A3&LMj z(cpboIrJfXjUn79E!J4Z>tX@J4(W zipLr_OT5f(;@Wj?|u-ynFza71luf<*w z#{k)*Ze^N~ep2SEkbkl|iX!`tY=?8(kZs^{=UtfIG5@b?$<#n!m=O$zsttpaF9&E@y9lKB zoqa>9*Wp=sQy8ff(y(XNwg6Bi1_$s%KEeRr5u*sV#dsM=8mOG*MO!4bSGR+@Y2`Bc z7?;sPhU|-s3gekqd&db+iR;cg1r-RQGhwf@Ue=Fa?8{|%d}@HtwJkphHvlFfZ<7(E z9Y$N$^IXLK=C)R#W0EGNt~;oAhx@|S3<&gS0T92(8ZKy2)*WC6VZ%M86V?oO_2qz=M!EH!=mEX$u@N#S3O6Ku~=KgW2@?`iO0tYxj zAuPZMfi%A$yFM5BTM>7X@l~jAZW-~pAs9=vNKBhQJF$4~3TXVr@%2W2a*F3K&r1@S zuV^_>LJp^qc;xe(TVs?|!9EJun7Pl5TbUhPRXB!$%&5DzG8vUjo-dT`B>3G2KrQ!h zQOeUStSQo7s#KSFIv$6m5dR5W+7%R*WNs#+vTAY`y9jQy2E-awf>R}VkKzc zxd1M`y$k70m{>6k#v~rUiClAPRXH2E@Q6f_QrZ@yacq9A!g+cM-m9T9oa7^LMtLOi zJ%pj{4+8RuWHd>#PY^pl(Nw)6rgUF$VI@P6S06Kzk|ldiA`y*h5i+<$rSwmxmCrd} zP5xYKwkz$Bd!t1l`F8sKQ~n0WN&m8Sv4V%qKaZ$xdEc>nR7M&zqQ7bIQpMO{zP$LJ z8mf|6Ui#z@6=3fs>xx2qobByCX`76h_S9g-t7m`x}3i%AM?bFNmRL1p3=#zN&W5TvD#X!zrD>Ed7vG7CVm%ZkbOM__?;djPI`Y<3^f%SUuFO4ZMT<96obzGA8}@;Nb!B z4<=7s_}{Z!3so30MvV zecfaxEzA!S$`jqlb*;tXv_+s+RQ*_Z{)U>0V%T@HVjTfJCfF6%xRn>nCoI_UD;R#* zc4@p~*_7!XH%RN!@$77$-L79NYxt4gKp~@!x&Lh+yZtX4#>3}s^c@Qkcikk{_H5Eq zhhgLX++{ZOt@oP8YXca+f}V}!kt6}%(pF9>qqBac=Ekr~);%_4jApeF1n@m`1z!>P z*+#cw`c}Q)f!iH>%Xp*euA4AEY`-}x6oNB;muyH)EU{Y1)%n$%g@xvry!jz`-IJET zJ;W-HK_stOMETn&jrw?Z;6tCdMu}WWVl#SCLM6S+SupYmp3mifv~FIF4RytHu37Yr zsw9N5AJl*9Y`#=PhP_&Tt@BNBtV0DwR5=pXqA50h6^*nHHF+Cq?VGhF3?0-^Taa~{ zJcrfmmhVKbD1zks$$#+u3mTIjh(RwO9~_Y2C_cIHQ0BO_JM>53{MAF6+zx^Nvgt7* zuLovN4i(sRJ}ut%Mu|Qa5O9B1oU?Rr=|h=+H#;O%GDQX`Z!Ph_u7J4z=bxA77=S74 z@}#=F9@B=J!}$FY;mHS)+MFt4F`()gTc5``hA{`C*l+Rif8;@RQUiF^(t{UU2(%pt z0?3|{#WG7Rc)j{s@m#j5pu&xd1;ww(l=DX;=^zZcaG*37C>9gO{RkFo=KJ_vxNY3d z^4#dJ`^R84=Fjb=0wD@#w2)&^;TqAsta+U&3TN`FkC{Z9z4kSFvnY^iDG6hUQUaj{ zt|=X7sq{*4C-Gj+T=%Q5&`P%9#8tdT`3>ki>~yP;7y;UGoMvM+YC(p2CRVbp=V37g8cg4IJa+g;#7KE&l0t?LRlWc$+(^%kf3!-xfY5(G`sa#u;MK~)*x zaCB8~c(IYnEcjg1j)$HSe_#ArES;FxJ;rA5tmSNw-;38WGG=qu54Mn-?YPRytd^`( zA7m-6{kdd`jgzGx9q&WEzLoU5fd~SKvpiR0zOE53-NRbu|&WPv>pX*rO>oD=0!Nj;KM*5;iPR%;c zn|VC)bc{QK?o;hgES=zbR7^^ukG^Yk)Pz6>Y)v5AW8IBu#PzphiMEbLAxn>nFbbk+ zLFE-hkECrY7lo>7X^NE~l+{X?Q7tufU*RE2Yf}RX;ziY=rk0Yi2X^yAbdhFeAxb}W zA^Ib6>$8lqPwep)EvC?c}*YC&WUi|ufA8bAx9N4pd6mpq*am|eNE_ws$ zLizuQ!=Lz&pRla*Zy4Ry*LjyU?Pg>1?|SVl{`s9XE=~d#`VB`MU$yOi16*_a2Fq)W zgL9l7(I-I|%KJpG*{!f*DOyqL0CYfOz4h=Gq-fCv#j)>UX+;mER|CFucqw|M-fA?& z-*b?IsIRr0@Psy{9P<9YP6Fq@34vFN*v}Yd9(rrR-V0M@G~nJ&j_Gd427cxW!G1+x|Ju2ZjmFLn;Lh6!G3bJsj;hkVt%|3kDL2T%eHt(PvR@2`d{1Aaio zeQn9yE%K#A$mKK1@?nO0KTD9aKr&2>$Kv;e1=)F+o7!`g!5OmzJlw|Lol`FUGl}o* zLPl!HY(vm?N~D%i-W6i;fpmn)+`=djC&ZV=EV_$OfZyjKc&84v!?7f?HR^Flx|{|W zcQxdBJ>ntn`|wIU$>OEIKt$#e5rL}jT>+tL{jXe3xOwE;RE1WJYd$HSM%zYu8h?Oe zr#&h2orx0RjV@{T3?J_%(?|$QvF&|CbfYBGOcv8Ju@7^xL|}Qo?lG^EM;^NH^{rA> zNmR3)mV}R@lDo+)0-pl);4IaQN0dZU?g(#TX-bUC*}%PR=>cgFmmlS{q$)&0+@ADo((!z3Vz}i(CFjL{nP_7C9 z?6x>$nW|;9M3~bYamSi;x(Kqz)sTd9+$?Jw;jseFw`}?Hj72|-Gr{V;FEVlFF4yXA zu3B!%)8@OXaeLqCpMB2E?%c^duoY7&=b2v3KA#h3r!Xqnyo=?0KJs)bAyJ6IC1=aX zgd?}cW?k|=>>BJSj6Ih-TEUq!tt=_2B@lL5G%Bp@ ze+Emw^+>BoC!G8Zd+^|>%N*5%e8z;I;o zanI8DI#-vsB_r;U=ji9Jj}dkqdiIRox-o6(utznz8hSQlgm3bGfJ&L4CdpDO@;w-R z_xtK=!181ets1shR4gKOh$II;{vv$)TUi4#)GEZalD#g#>!X997l+ZNx%88cO&P)` zo~0V4Cdv$x_YXvoi@ib4=Of_?F5jY`fO(7-JfE6#J&~v~Ky4>Pcl%Xxs5m~SbR6nv zBj5p%$2(WD;<;~+SEjCNEcmKRv%Xc_l#SCWcb^}$H>=V%kbVnC$rig!r(MWgD|6`O z;un7YRTrO{nHw%kf;nD3`6<$wSCkw}Jk}C%y}X4y07tLIuy6P`_4b+j4o2R{6bk-} zSY17)9)zSi$qYS$_*UA!_ee0c!7_Z%X=z)yPQyaf?{uOpl}r^P=~G9RjRPVtd3QYm z88C6vNc=SA03?{O|6UtE30A`1>Eda8I}a-k4gY#lqrqGSe^ll1YqhZpZfiu^=cH0Q zfU({2{V&(N^WZfzkt52Xkpe~0wfi8&O_EoOlNa*gucbG%=@_<_o;s1dyXc{CfAsom z+mZhxeWh;qBFOyqXRwM;?;2^~=PdO=KC5vNxQ<^Y>tYZ8HVX9_)zw z;2jgK6_4xt04ny}Ym{K_cc1!gZ=nlb{qdJ@oTTeE%ZcI3JlWSTpF}`>UtChQ{6lVu z7XTqY$3E2);>S}diW-!KC`6xO#{7>Oy(u%hUkI!RR3k@Vt1*Y97+p-KXiDW9f+fd| z-5jC~)4j!zCY|Dk41Zg4vMBzri;1t?_Nd}KMh{2HHQs$#QdqkSzbl$KSX)}ak+D~ge$?t z`TzqvM)3!Le+(4}k3VW(3~vD6x%?B>It+eS87{7A zVo?Od)ED{xYZ%DhHa%=I}Mj89zw*WPD=8w{xw< zMlEczAJZ{2fG~UqJ7K|r?(%EW58sujylKf&9(qHr*>3JavRSU?fX9p&DsC?%-SaL5BbKI69i*sV{mCj(VPB z@(gB8Gqr86YP!5l_{^t_Yaw7iOo4lVm_EblYUQxX4qrw-@Dtu|4f1>zzbKxBE4(=T zHD!6c-Frj`dGomd1}fpO7i>ztsC46x?Ojb~VFXZmE)rxA<)qir`3cU!Bbm2vy73^H zp};s#99t(7?X8Oh{8fB&P$te1I)Tbu_ROZoWok&oz%H0%#S>O*MY-N_*nr>RNdlq^ z+f$<^hywzE=(Q9h4*4&j;7>MMOLy0ES0z(Nfb!NFPj6qg4YK$88JKk`x0x4i z1>_OX&v3S2uK@{z)o;xIz+Jb|>&3|HTP)h8Qj1+Pbb0k=NTc;gDF3S*zy3kP?Q*bd zV`?l}Uf3KU5Vg+wP=Q5&b`g1?tXCWUW>gW0-NTvjWr$261z9s2Qhm)y|9Z>v`8*M1 zcW!Vnqo715jPkXbTiP|D)hPsGf2YVz`pVGwwrSA`M;2%oeF_5F481SAcWD9j@y!Vh zpT__+OFL#(UDE-30eI_(D-iO90j%+<5q9w7q&h{j@2(y-4`YfGj1y z{5y)!oaG22XODx6#L_oln^pat2(!XDvNvsa8RO5;&u%Ss{<-;!?sVVz1=ge!6xZKd zFt`0_5q_1Cdv&^}RbXNpJST+2qN3=5XN=b~g5;Srz1oxlyl9*-)>IeEtXjgE4&n&C zQ2OyJuKHZqBEz61a)zk-NtPQn(`UP?_izr9B)cMlC9nav-{4C~QL9ycjwOng5o|;% zb8pjXI^0EzEfK*>Odz`F90zs7 zrYpEU(wZznh%eK~6bIYpW#br0rhbbY2VN5Ml86f#9Wi6iZ67|3=HomLerRwmukr48 z6f2Uc+f3JyR~47siEqcoIbajSCdR=)RQ(IQ4p4Q~MlyOhdFW%WL-^nPU=F>d3em`k zU}vCtJC_c9rs6w2M7kfu({Alh^wdU@<2hqgl@M6?5gu5^p%|WM8Ck_w@RK`yI4{;Y zqbHDc)krjTfOBjN&rL3IrPCM>8#hW;8f2MUHO&G+{t~I+{i_J;MEq3G_+q{gL{7+wvqp z{;)8B(}+OE&bjh$wnu9R`gfaTo6VG$3B=TSZ+VH&HPn|uZNe`3H{MqR1 zgJ%P!U#9brwnwzS?^BqoM&6l_zE`7Mb%9wHkyM9Ni`L$Nb^l0Bz(x5gW zm+?uP(?2bUW-X6+rIMi)nc50mB!oEFzU@H(KMO3hl&^+?L~wHD{bxU1WH(jdjpi>M z^+CJa{iCmEiZ&Ymf+s4m(E8wfi%^JJG*7JtZNuDKa%71zOZOT2jv|Os$u!iZyfvKS zT0@gc@_)Fy=tJ1BYY zyDjG1-tcaTfSNIkj{%z-2DnR|hTa`F+dyz9_?w}JkdY5qUSbLu6Jhz_v}GhSG1?$I zSxrcGxXFJuXi1I8CXc)S21_dgKyloGuRBL~Dn9*r`-6d=N(__1;ViK-z(Pl027rJw zcjsaPhK~8q!uV_{XqlBws&*|}Ei_RO6R`zu$8Zn~f&7hd9*|msw$g!jkmA!FZMS^@ z1W}gC0H#r|0*VSFf0yG~Pjx;}i|Maz!(wj9IifxZMA61m2Db#C>McCRU1WtNnZ%YEFm%+|x(OSsqv8d~RG}!6lz*r> zu-*F&C@Zs(q6BNi6MN;)B{4L?H_w;9MT^XdVYA`wXr(oJ=6yh+PGbLG=2?XFn747n z`gIZ-6xohcH6P2JZzLJ#F@}1E$uK~ABYrF<#^Rs5Dr%r!zo90KGUVIure8OZXg=-U)f7k5PvZ{6O z{>|s3%|u|aYhjq_pz$yYNubNf+JKZ>X&ewwCF0(>JP)l8Oo-d8QrI|jCD=)m_DmpZ z!=Ap{m^GJgdab9pob&nj7q$9@%ii7KxbrFPQ#`2mfhyRA7ob{Y(`5CJzQ0Q0{a$ex z1R6e$hX{wqa0f$O?NaQg4ZSJ z8A#{sh5LF{l5mJ3xR}Bn-1jHwWk|sBYwQ6qTg0~9p3L>Sr=w=sN!5zUbDGox-lf#_l7DKv9Y^SVH2@_b>NylTJ94pyV*cB6O?)ilGe z^2hR!&d8R{T!W_>UsLA|ZEA1`O(YQ&E2-T@wknu${;N`$Ep9OTmrCuozjq0ih*$gl zO_a_sAvkL4sEq;cjASF4tS7}LuYZM7$+#6d3Rl%p=6`wZpGz{$m~Bt+-Kq9j!2l>q zQJ6+fL-?}TXWlfCHt)x;#`2)Qp_rqNsb`qAqE6GrTNPbSo@n8uR8W-rbo$@*@2@j8 z{?yI+uG^qU!d@5`EBl-p>X+c|Ym$7U zRHW-o!HQD}t!h}{>|*qoxinSb&|#DH{q2{;Ug`7CW(y;?;s|cnQeILk&$}Ucc72CE za3Cs~7A};!H??!U19VL)ADy=p~6?Zh235Z+fV&(=rqOUu5||CvSbJohF;X#%_Zu(#qnRnQRb-h!?T zM9?>bJwTE$D|7AAXq;8dU3)SVB5aa*=-hg4isKgXa~sVlUlOq z$fg&>FLs43xXkZ~Kd!)(E@i5eF-I)+J}mQwyw)5r@)X?9&epKa+m{!eF>BRhS6YlP ziI(^$%iNVceE+fS;Fdyzc;D(UO_Ad8axZZIFps{{mnu_{%~4x7}rnmWsIS7o4*%HoNgMA%4))(pi$>sMCJP9j0j&5u% z)Rqv!9x4S}{4SA5OTG&Rr2-=LxCEL?qDue^C!YrcnwAoecnJu5A6>%QxPq%)sXu4Z zDT7cJr1=9jtrU#7dH~}|7ZF|M6KeJ^Av;isweoPQgtCU9lUtSE`s4Y74PZV3xI=*+ zZ1bTp-4n@vAF5{+7W7qamU~b?RdA9hR?Sn8f?7Z5(fGHzd~sJy5^nml_XX6*cgj2B zXP%ph6~DSG`GsaneJ4O{ZF60jG2*o^Ucu+vmx^}OxLCNi1BYT5?nPI<^lC@n`+kP| z<^#5~f$%c^NGPUQcsa#zgVB*{98TmnjelA9^wHX+>6d>7*9?9m9g}u0vAvz4VZB1D zrsc@a3P6PNw@=FEHG_ynTfN^Lbq(JmX&zTw|%5@HAY>kb$E2lZ5UM07mtZoq=1dr~QDMxPjnF^@=g$bSxH| z`knI6qPRRsQp-$991bgf!t4}>PTHS6;`roQgg=OY2VG@T#5JzB;M6e8)OJQYkT zYVcCVA7**#dynJYL*^A!x3S~B<9J6(jc?$*6Eo0MIj{$x43!OF-t|JgklN2JxfJe$ zDo(d`wm&*2T7aj7>n%OmK^7^hq=Z)x^xZ=UvbU?c*an?tj z-AYY8E#T+TyuXwHj~!%ygCDpH%49f#x2%3GgrMD~`Pv^cvozxpLTZAdI`*1xuSd@h zA_$ulef}yhK(FTwM&h(%_bu|5?F#;d1`aV%Z~j?rm!^5;1PY zxPDMP4X(F}7lfkZHmXu+(`jl!DQV)5(`A*iFsAYz56tG|y4IL+H8HbJB@Mi#m-WW6 z=1{T}Rh@pyA8*H6+^Q4-gUSiS5X6;boT8&GdSy&p2B`iQB#6OxDIg+eqaS74G!Sv7 z6e$%lHyrc{7lu}o@~YsFRsAjv=H<0R2Whu#$zNWJ$o&V&wpB81V<_86r6cJY9s?Tr z0UD*mJ8n0i$fhwV4fJz&2WAArjjz-8pgw zkh~@*cuQB0{>@qeaAc5BMqSs!-rYX??3=rIxxwD|;>l99fSEDX{6_Mu!*iv+eK&sW zmicMYAFs&+825V-w+ox5NV7$$S&5cgR{~o49MSJ^^2LwC|CVi7GyQ{q=3a*zrR{Pe5N54)A`cEMt3A77ujr6q8||sOIQ0$yj?QjxQJmD6?v_M0F(IjVs0qWk8uPj*yCsgv;(U1fh>QW~Wu5 z*aA^ZBKO6+2hqs~e1Auk5y++Mwvgx*{CN%y+x2dV;$nmNCDq?UyaieuW{LMrRXphJ z1V3F;{2@WJC`m8Rf#x<48yolAu-`*K0lG^SCznlkK@re-@wC+K<@R%yO}q~G7_pzJ z(vMOHf`xu+U6dbuI%Y59iOle-5vE}nL;hpao>2@0nXn06Gr~g4~u~VaQG`! zf{q=nlmpd3;b9#W)C9X!&LO8053p$GF16(eeez9}ZHruOV(d-F>L=YIGin)=>AZZ3 zbJu;==N}Fzku-rW62YmFRzTxEb*dS$_;pwG77Aa-6_OB^3OuLwqe#QDjnZ&!?=NQ4 zNb)_nJ&?-tP;X%UQCxkA`>xZ5owT{|v)Z{I$vw~hYo7xd9CieeSvr9@xJGxLRPFp` zgqnqFx$o&qMnXPnspaw++F-LMG{%cu3(AKvPxWM~*l3T%Xs;_=!~i5}D2tp*E|6uy zk?scp&M#eHt}*KiicrNcAr7zgf+08v1$}QNwnUtMvz16Q+->rwiiUgS#e4TKBJib) z@$g7<0NKsRjw{W)qL!c6K^Y47Z?C$H`Ti6;42^ZcNg)#?OMFF^Y|%VW8&O+#x0*&_ zTwcra&RnUSI_y44SslmyORLAor%8eZBy3t({~FEt4MViMGu+zmcmBK!6WSJnZYxVK z7&UTP6mqF;`%geK0Gd1Pd-ZGsO1v~Y>Mm&pXsc&&{K_tZ_UUj%rOS=d7*fgNOxU-> zgSMaiA^)qd`~wQEV$qFTPWgWln)Lsd&^}+B^gO+)Xb_c{k7x_{(J`tadO`Cw5j&vq zFXyXc7#WtU$M$cIU@~3x=ohz8rakvR$Z!#F0oAP+3fTWEXsS5XTo@$hq)R#Oe6$ywsgxXLP@> znS4FuXUi&gQk^e_Arqb(rd5)*`i}KmJo;SxfhC7^U)i0pm0iWRDLt{up=j)!uOuyWyMzd z=E+$Wmhf?>se8q>3*jO}yfn(c28sWl?KXElK-W=cny;T%sp;=7O!+mV&byIU@Au zM(AnQb#7u+$`q;K-`%@<@UX+y`Q!*Z?n#Aih?N_G0z7R&cj35yz= zk;pI17O*i->EoN%RYM9%SXVj@V(`sW&Cen4s~h_Bw{3r4{F|$-*@y`3bY|F!WXrSB zNlvM#J0jY%@$#(y93dTO|`qo7zq76Tu!RW_b`Cw)?Eis zYB7sk?pc>=HyS<9*I=S2V&VKFrfg%Y(+r>ptk(5K@0FvBH6E%nrc=DuIe+sOMpk5p zvD6if&cRb}cI)$F_6NoPDPH)C{pJYZ-6SKNmGdXOLBSSZ^J?g*$vI6OnD?e43oZ*1 z%m0LG%D^s{G4~Rx62C}byfb+orHi6J(jV=NZ+VT{DfGz--{wkVEqhq!-zBNUTGFii zak(}VTiDEcg<9wso8MY3}M=b!< zpFl?m>{Of~;mDSQh?q$L!v97UDOyh~F=+p44Z32LI`S`uX&4t@vqAQQW<>DjWc2>} z!DAD0>)rZxjj&)8LBCtlIWo9ElgXE94eVBa^)2-BQ5MyaIoI~}QX%(q;?v+^x@j*# zvdy^rXlesI#=yXQzDTab7o|lg`;*D+UvwM*?{_+yw*~KH817?HM9i+R<_r%|lG%4r z?;`emVD5ra;JiZX*&r{bfT*C7#o{uJiEQa+>{-sHZ^$ozDh~W*CDSgKGkza=KqyAr zcfNWC`5j#Eq0*k2F3mGV)RLutJx7No42M^yxY1f?BFyHn7Y0>8Sug?zhF0a9@LqaO zS`8Ei9Bl)k!b=ZV2_Uan)We=`KK=3%KtxJ7qU5A6vRfCG(K7A9CZY8mt++~hRDMio zTEM7dM@%3lz&qIQ>{m7=^0L`xjzIS(2Q_|rLvnF6Vru~+w_ksIH3HvYk2>^f4oiI} zsQ!q&>5=fYqgrAnAGT$CrxbL*9(MO8l& zg>6Z;(~le0{+LLPf$#^FF^^K-cb8W`0FgvCMHqcRFVd%caJz=sH2+@BgSD8}cia4`>w5f?j+J z^0*pV6?_zVnTcMsjnSt+FB@ixr6jR6z(EXWC9&UZQ6-Vce4w0{4b>K4rEg0|(JrhI z1(0EHlzAd~KA`JSylOObDl`gP+zH7koGliphs-=?Fz2?C@G7lTF!gogjDI}?W5r4p z%{_TJYQ~QRwrQI`c=&Qd?_C{vuphZu zqVx+jidm^Hcx!86Pd&d`qDhGJUL-;IRPy44#+h>}#k4xhpvEdJ^tb93lUR*4FC4}v zJ}jJ@e}CNUP{>cOtNWAwiRw&x<)x$Sj+pC{OD8Oi9pUFGep(T&SwB8UIO{ zH&ZxYe;wF|%c0ugH%y4Y-IA19~Uscp^&n|g^0s<0fQ71X_8fb`t8>8YPC z?>0o5QX=mx(QBcw?1m=`a;=X&jcK)JwwSkjSiXKFvF9Pc!Ul&jz6k3}$mjywD`!L+gNV%8EcvLB zm>9LAh`)DrQ?-2bAsnt5c5~Y#Z|hlzn$RRqwA0+C)RNAAz3BPv)Ym4st@oCu0hXcy z$qz^%Ef!#8dA(%Eq@~4(TTOWNge@~ahz537?dHgw3+>Z}8AcQ0^fHHgg~fd&5=nB< zB>#&gY@Og<{0wd^yewNDR{JeGi z^R9yag4ky9unjw++ML((qU$2=&7CU~`sH_~ljPMfD$>c9340f=J74ZlHY%1;J$D;` zw_5fDj5szy5Dq`S!muRwo!mv@yBm)ldg(T zIbbgB98J);?ehbsJ85>#o29Nux>Oz~YD2aKun|^75gr0X*y+2#C6T8+eSdAJNK(CX zsl*Uw#SAS$%c{hpfMB-Q9uI1;MMG5vbaK=@usb(|PxyS)?Nd8_2$oxOabuD?dz{=y zo^{@kxS@}4o>QQ~;(?Q1*j~#%cX@1H*Bj;~Thdsxbzfj34?qhG0Wa|M1Q6u{0;}I* zC&>)dHD5ev0MZDdt}v+)01tu}yoz{ze~QYzrhPF-mw)R;KliB48S$&@)b3C#VGe0y zQl`TR7io`^ying1$``TF9rvd1I4t~_?2Ze%p*|AAbE}sv)gMW3Ko!SsM?JL*{@XAv zjV`ykfbgXKsCW|eSJe`N1td3XD4S1)r!n^nEPgH zH2zVlX=$mQ5EMZn<{V2^=J(FV_FZq8l+)C@tuBsnOep#CLrDtk*Dd(LMzHV;w^+Q` zTVMsLxt_4PS|H@CbMw;pyXJ=83BS%S7U>tNKIEZ>Gf&~DW?C5@%mq(=pKb4{i_A#M zfH;FdHmNC&T>#UR@G}{Ht`jwLOe1!P1 z@VCJcGUC51gU+l-L^W96;Of@o7^jK~zO)3O)QGCD$&~2Qq%#7LZ`793G%||KyZJo=+*Ik zl|3I5Wk`vX!!^l+nrqV6Q)vMoALxo*N{@iWiOe2KMxdq zq93NhIXrxUB^U?5$@nZ85DBo|Ai{xslTZ;9`^G2Oo+XnIW?>s(`0V|qY6C(e&Ie9Z zGc0EDV3UJY;-5ME&4@6uz8?IOCvOx}P_rSB|-<)*bu_g>^9?qZ7|G^oH%sp%QxjrfDRQBR8OLWe4I-a~hM z3VDK94(2RO<% z;Q;-w$E~r%Jl-0E=LZmCMk8(?ZukZ>$l({FxCQx!#LyH%i)@e~o zJPh0YN`*KHxh{-|I9kJ8-eA~s!$L?vegOwjksXF&t8zsk@)&3&3Zx%`_y*!3GgO>o zzIx+hi-s(?Fj@1*BxNn(jr;hDkxY3qe+{`It$}>UTgv-pi}OYxWIkO`)}yA>kTT+Z z?)xnJ3qxi4!_O!ixqwc#>XI3U_S97&sORvVyXFTn=9R-q)&ocf5P_*>^vrPlqlyR#?WMUiUve7f3^`|kYAomD<*dA=#fie%&zyaP?e%S)Ts{oiCAF8?yao5YXIZ(vQIDtq&1a+DdiN+l# z9acEokjmh!nr~hNV7V^*X2nnfMe8CwTt;O?W-gtq$d}EY za8DU^ryQjL{;t}uzuI8;!Iig{@2FR}y4Jtr7dnbKkowh*e5di*Zr)k011O}|o=k!L zuaz`$J#D=t3ot(Iw63ClbM~bt+#YfivoQRR#g2bQKh7uJVU7Du39iU-dAxn@Wj5+%OJ9b^7VoRNnFO+YmYEk)SFw8z~xPl!3vxD z_)^lq{GJ4ofLqs5QM3L#rtQt-AvH&e_id9rHS-;54{=k;j27TNbwp-$z8|o<=SlQE zl<&feQ^-t6gbYS>@4($n*cNvb61|j*0QCNcsH*^KqYJkQ?o!;LxD+o|oZ?z24#f*C zP-v0j3GVJtq)?y*iWi5ZxKmt<7k9U0U;a1q=FMbwGMhV@-Q2r3-*>+AokPj+Y=JM1 zfwxDv>Pb@G9eLgPX-~fexstd>q1KNgEG%8^!NkleUP4`@Fg6JiTkWLaE(MU|5bC!zmu1b zg*#VDLAiglhv+9^2$bdpa94dN&?~HB#`)vIa+G5r?fW?TJHfB2h8N!9tB952z8QqR z${pD@RlVV(FPpU}s0P9v!um6AuEbAtL=zv_-^#pSEj3|*GqbW! z2EXz{hrIs`LSJ2yy*0>k|C_YTP#IkB;3+!L>QuD0C$VVG1%kLU%i# zH8u$GD^I7)(}5rMV1-8-f*7J?-@+a&Ih?|4JVD9_)0#p;y-l12mgK=`%bFA}jy0*A z44})cK8OEqn@HAE)m|JM_q(Apl94XU{~xl|l*6j4+5cI>@VlR3+CbNPQm{uP3pZ1J zmBv8Q{Y=fs82_Do<+GjD zRorGxC1+8{DG87WWd37L&XsHLf&hoj&_+Wi5)|L3Y6#XqWHeL}j~fFH8<@oB%n7YPir%t%n8K77!J zhB$s*>l+Nw04^#}Lk2)`Q%u}(Q!KclwEnA~mmbl|bMr}(hr>SW5`D7^fIk)g%-;lC zeVC%g@uSRtd?d?k!fbqttmP|s1pt78G>ETQHF^11gT@`4-Ar~D!~7BFyoa55op}B` zKZipeiQMW5Gn!!w5twHgIL!x>*|Ui8j6s6jKa&1~eiq?XfO!L3AWMfxQ0wq1_^g=A zh`9i^Yzm*>{DcHi-<61wp8CU{7psR>;pb8x`uUvwA)>>b{egXUAD{H82Yvi6@?JfA z?b7|*yt(zp4#pCn)9&!Eu{F9^@^Z?FtEBs^Yt2dMG4EIeA@hPVuR7^%ddGmUvk?B} zJ|?EDETPT3K$hrPr`aQ)*-^3+S>kU|?iT32ubFoSR+mI}@o$>CKv zny&h!>TY;u5>CnwRv3yCSzFno0N`#R8)v(`gFphP-xIV^s$m8R({_ULPfaD4CW4zA z+0B=`UC<~gUW9GN77#yyoA5vJmXT#bf}RnwXcO9D0YEdD?6ItRqWe@_>zd12HH?oL zDrf!zqX1M_BRx*`y37jtFY9NNRKe=DYvPW-J-RE6rD(M#eOXAu>nQ@JlYc4_Ms<`? z_lS8HE|IK9jiXZ8aUE4mW@y)~yQ3Ns*N$`P?Or{1Ni8wMu@$&CM}hF3W3^MLGi}AZ zdVe4j1!WTyfhTD>j7+9!X8e`bjHammBscFIX|++aoP1w+02^-)$I*qd-rjaND!*q(vZv}8{yHV=sd z8snD+;fKF^0$&4J@I+;xJ+~hdz(yn4U=N0~5Ir@2RPEea8DV**1OjF4de%a5l+-d9 z(MTpyAA^$iJZnHnZ)D00@HH4gnAqx1{?dETiLicv`NFCM)`bf0*;~g{XThF2(%=abFy>1}s-n$Y zr$^yBzAWLp0lDmhgr(WNbS{O(eZmj;Qm^FLI{3D*x#>LUgsmwkV~}XnV-sFT(tyq+ z<#hfgb$GexD30;jpYK|%R0c{sLbf53c-&a~!Mf0@Gc2K7Lky)UP_;lwhyaOXYa z%@+jA{nj)@IGhG`w=WyAYjgI8AisPX%e0bT+fs#pShMxQ|9*Gwil=6eMNn}C474+1 z+)8Qt(RZBx=8kZA{3~RF=LXby7|Bopq{+1sN^=%%RXJowXL1m&^crmA!zDIo#N&hTW~nd+k86x;@?qc}>uvl&(y zaL3>M<0O09iFL0F2Pf!?gzx?)N>`pdUnQRAJ9R$Qd}5%iHu9xR&{kSBO?@Zp9cs_W z0#Wl)V*}#=6zl0>)<{9(JWn)%MY%7CmC7ATQo2lxnq+)@%w(6!Hu25n&-1^R_IBVM zJ+*3&d(z!x5u(R}(jv%Q-&8!U4<8qP$NT*rlLa}nOWSV|R9j)^ASM%T3wm3%Z z`n?p)>HP`WwhoO;d?yZMCBr%*Ds1}s+@2ksml#8GY9bIUy$y>3Ue!aEK9>%`#d$Tuci-~#OPtDcKH6aI#3x?R$76fkJwDvy zSrcQuP-Op3|I$2(?a8gJcY%i+Qh}7;W+2+5pz9d)%JkUa^UOOn(5$ygs@&+pkFS(r z3#ynzeuacV>WwLnvIx1*PThi3k9Xm8*>OLgd>_kmrU~1!?&Uo$EtN!auYBVCG$>Ue z&HS`rwAi#aEW(kUqzgNcPnk>88!ztr8qukVi;2c?s;2ZgH-%2d^iX4TiN?~V)of1` z-Un`Oe3t{W*4)H__o9QTq^53ddQGS9IFblf-2QDk7_~~rVl*kgV6m}JgwzqxsqBO-nPZ1yGiF6%9>9aRE|bg9 zPuiB9p3@YF$O>CQ9~o`!U53_ib9Sp6K78?PG}y59!{{hg$&2*c0yU$}lz!!zEv1{L zJxg_=fP`q{@Kx_xdX9SZhWf-B&9lGuFMJO?c#==M-QgOyj{5HT1nfSFXf5j%b7##= z9bKLEVG}P+9H|x>uu^=d`;zCEB#J)iq}aqZ|9hH>^ffc`)JszVV=8UpF-Lro{+R1W_!QgJcmNT&XNIn}n=|caEAg*-v z)bO{PJWiRT?JBVIhw0%W9#e8y9RB2HxP)W5{m^yZ>*ujxz(KX{)!jO~?}Na>G`UPF zNi;|43q&xavmx5@dDNXJL~fwhCa<;SrYiP=bujVj(fYOht)h^prTr=x8TIT7PbTYa zLUBem#*~-R*X;b&;Nm8n61R?Wqe;B>fm8O!KM*^=Hm`*xy-3sjuR4Lkr3|cCQ=BU< z{K9tJm-Oy(ho==~tve^cKCqSX5SWW>*<1~PO=sF}2qudWa-@zQr^$8iT6^sDut#O$ zWIyQSjbb>azC*C=_k~Qd$ZdP^GSE=3f6ROedaAq7Wv$eO>scrX9a#NJ0co{SWqxd< z^bndGHPV{I5%pVTe`~#qPo6WmlNp2%>)yO**_|T;W~(?(VE-gN-r98z8@_D1I{}6$ zc^31AmeOP{C{HQhj(!g-p6JkRh!b0Zc@T1pZ3iCR-Q9nhk?0IW{|0ywHq~(t=TFN~ zLsnGo-6L1pVhp}tebt3bl?2Y;?Qh*0Ci&fHWBVW<3%IB&oe6lvua|lWF`pyhmx|`$ z(7n-2fodDSi>-QiwVJpbwZ_g7^`t&zgsD5g8?JG7-=n~IMVg||h&4#Ov&#)#|7<@F z`dotRUzUW{y0iW}(1Qs7;0u!5XHA85{Q-a%+#!0nvpdoKr6uwI zn9x%tQ?NK6!{jz&FcvH{ix!IA%!qIO*xsvxc~%x>kBA>-@fy;UbIb<8lgS!8l4;5* zLpp@7b32F95TVvb;2a*oLkW&>&yG^^Di<&X2fg^siruGKHp{$fiS`~Qw1fUg`I2szM)Vssb0?r zJqRZzg2RauK=#{>@0>j0O=ck4)n(nxVG8LGL!KGr^a@d8B!eB{$(`f&Wf%9j+g89S zwqttUKPEZVGbR!ngX+A`j9SjAOvG`~=#jx{b<8kEiCuMJi7>Fv=MXh!t!rQ1bvXbP zy}{|Kf)X>w*OkGHenF74&Y>|A|9@TYK?4XH;>1xPiJ{;*ws+aQ*ry>4E8OqIu9}c& z?>?lx_uPedrvr~w*L(au7rIXaRs{w6lu8`}z`8gZmOU`%qVY$me|?}p3XvCXt~?in z>x^juG7vcN57FpOIm@!;rBkRJ8G74< zu12zv_!zJ^N7 zlkwGKnn=EZ!NBkCS~BBAxREW#LgAz&snw7nGB{}HUDVGj8lVRB`q`7&?>|uKSjOT= zMDDLO7yJ0n!g7cJ%#Hcv%j-^J7`%;|@dc;Sy$O+HW&}N^ zzw#}(U86;apj~`%$bBjNy!;g^G{0=h7`K_IgsZspGftC6p4@ngrjw`mIN+|aI~U}G z4$S(l$!Wr?frF?Bbdgb~$xjRs7lyM^EXYQ1@w>&vRhPzHwVpT#tfEgT@<*7(VZb9i z`RTy8V{T^Qe-gO6PFic$i4yp6!~k9Zu9D0BFhw5hs_=vIe)d2KtJj){^sq{FDGqxL zl*yYb-Vc68`QlOx)t~fE6lX(w#Z=E$5T{Sdyw3-$O!=1W%`AQ+&u%Tn1G4a?lZ#3% z9`^&{_wVpTorVAXoWkll4Y+2!v&*x>|}F zHH7p&ekC<^CfsyZ)bJ+&pr2l3u^Gw>RASfgr9Fi1^wHZ`a!iZkO@^C4St~CMuLdUV|T*(;5=$s0dlX#kFn$Y}6jDq9|prD-i zXIX(CZ_#@a$vXqUAo9W#B<9E7*(smF$WN@YA zu%Q>@k6eXl%!KLL1IGoOz_U^GmP$}d;h)HoCxuO-@)#tBW8`{l#|n41SP*$6x8b(F zv4pm~I~u0b4;Nwd8JAsK@p?^-B2Z*|Lqxrg_HL{zD$fl)|G`A z!n#mdv01)}JLsA2v&Q>_buEzZi=;y{XC@0*Q3I3Znzg6^*gBkKXZW-f6s)4SYrKP| zVC@dln(T(6z0Cwrh2+FU-I9Np95)i;(`N;rS43I@2!!T#$uc z`Gu;UhZPBYc@3g7iG*a|Qi81ubtT=OL7iRNm2T2LI6)Og^JV$aiR36GJ%FxYQQenI_$G9{332dsQYC4M zFfuconbhu_O$4KLhR^cdPRDe-nXo_nYSekp1C^G;p}7aIaJo*FOE*?ZD0OoJZ}(%%A!=KP}m` z*QxAuHh+}?Vd%cMnf6_|MIQnJl@gUN>`kestyX=ku9D^wYq}~JAN#jp0{_fyIW9J& zRl`ov4ypQOL`kP%Ynak5TK~!~p`@|R6n8>(loc!TIRBP+P!A8By8S8f!zt0zXCvrj ze`lLnJ7drIfvuOCNoP+`b1K-C#r{^R4(ztbedQOu{Mou*8KM0!#|%`zs^2&NYGu(? zG}$|lCaS2u>@G;dFe(45I{N(EjcROC_^sK8WIX*FM2=OdJOhM)&pcN%O6i9?~uIOk2bl z*>1-$5H22ogvjz1jPKk+;RBetHPZ8aWPPfgqoFU(KX+a{F&RLrxBd(~r{yeuO?HS) zG(GS712eZJ_HUA)u;zZgJEjGh7hAEIP|1Ym`?tjPW;~xL7s5LJkTl|%(V1?BWV}+} z;a8sIZ#EQ{o1oFH*?8zi=W8sZrmO6AbK|g;Ql1QMy9rl$g9WA7%}m&FGfK-^Y>eES z30=*fiY;H99qQ2(?t*2|Q(f1UHh7LOAgZ)!y`tCfm{-=q9N2@&q6Q_!e#eiPEs)Zc z8L~a|RpId3eew=X3*FJ0q1nV}de1}-n1DvBrB^mh&mXaR*Rp_0&qs^kdDI<52yY4HN zGpmwQcd7vius8a?+^?p;ps)C@;Wy}kc-((QNxy%ZxhBh>?4-UzO~b__36@B;pw?TF zHu1cZRH5ZfncVWM3A;;6vd2bg50lMuNvSbOalVnaX1#P#IL1g*W1w#h`ht=CujbcO z9wN<^C-QCTA!WC6}sD!wmSy9ZdHT2&(xx^H26&S$s*d5^JCtm|1>aP;pQZknU}j5vcf zfN~&K471-rjsufiCRv4>10$4MWE4NyXlVQKU{#OXw1XG1>9oYK&eA(_&0lA~eqJ;3 z4S}MdP8^azQx4v%VK=D{j^MoTYBOKG*=(00|4pf8{zv2cb|Yss-sDR0hqr(NAivfl zu#bIaSfl{=ocl*F0o*7lXuzhwinV!CD?uhV3U{Q3Vc9_51&XZjdHf8MLfC)p5kcK5 z(e){s*5NJj4%}ww69n?_hk0CiL^PTsX23nmuRl0Y<@;b9$oklGe^HYnYyb^UTCZj?#KcHBRTbTweKgy*{bvmJ zPbnw`nrP&tM;(aR`(A0DI5QAwk2o$h{6#$1ox47$69=YE(V^J|FF(Ze{t(;;s)98M zExr@zG||L&)F`!dII*(HZ2!I?@7Ai(`L3%I*+_lO?Pn}ANJ`9ztj*h6%J+GH>C)8c zMVc_t`V`?8pZ;5wv2PYbg5c8X`_tx*aMlf9(nPtTu8e^R&P8|M@$;9h5n3gERqL|G zI!e!`VlPjt_s~McS{ib3E&6<FNPY^$4!~OgmBmb~uu)g&F2GM64M6z& zFLkf*c1BKK#*!3?O2$rimkO*^B*o!Ej@@s0W}MZ(>3>WKqst(SGNCpE<5Gar4-U>M z8})EY&)2?zf=dD(j!qZ8T2u;J5y*pN=AYqtA502Oe`U(cZe)o!e|2df^Y?bimfa@z zDV|7~lvJel=VVVihFPDaK$GR$L{^q2gwB@HdjDQ5Zhl>2nKX8w)+8VN=T2|iQvlkX zp{I3{)N`k zKj5xO#g)KL|FzhRxw>ym*W%pM-F5j8l_nY^drH#MYFz%Me}RRaGA?ESXrnG}+sfwv zHt?M25;ku?k1JOU5x=#5V_-6{0+$zyS{-dym#ff$QNlH zZtK&JqWW-k{i4T5FcHs06jo;v_a51{@P9cFfv!gj(+akPpTC_^P&)jR4?$r zhwZ{8Iii`)3-?=(QhNnwBu9@QvBy4YeN0-_e6;^?u+-&`pww<={Ju&gxUr+?gD%L! za!$nWtzj2YyNAWudd!3(*|WU*+%*|_%=ghFJx1E2x(rDP$3Hw^?NtJC8hpgp074>h zfi*k|{=H}6f7|hboV7X73L7=e>dF8FfTG!e1ZSR%#T|KEt}syw$8%ROp=oc7rTm7UY?3dLR;jq$%KrPF<(6(R&T)t zMIx-9eLxZuNtFuZ$fF_m{~eL*5FZoQCSP0eI@-A(K*l6Wyx*^ApxMU{CgK`!rI$Nd zMXki34-uupQtGET(ODG(AxHpn!-L)1$dIU}$^}*Q_B?2Zf|xm%fr5H~(^qc%Tpk}( z_rooRNMIW4&)jyKzl_hbCTg!0*vbA`LGTYgT*92(?L)>ST6h+Dtak-<739W~AiBA-%bWyh{!A4);XL*cRgHhUq8qS>6CweY8dN8y!!_N?8XlJ8lAdb;nY1slInf!Ci^5%rhc4ryqpW3MxT;Utmid~DVjdf&jG zp!l|CiZNL*8)D!A#)!cZrU^NF1pD|U74x_XaHDXjBzNIqF8nk&6D>&iD-k2Ph~Ozm zm_b>S7!*O0;uwlb(A7oG=;=ZD*rxiZwA@5$C2TqJ?eP~E_vP`Cw(xgZ}Jl8`PN zL|=&#+|=WG1@xl6w(xZ_ALuqP%65K-8Z`<1&^YswV7SV&$<>XuHCD7Qc>$3lQGH*KpUq0J1qIXOl#Q6@AOr}Xprg{2qh&_0q$d;&^oP7%OH_RsP#+qrT9kx&xR>K5gFDs zFQ0B0m7Xabaf(LHP}9GSVt~$4=m-)P!yPCZR*}Dh_K2uTkjvaqtQW?kgExRd1ghU| zpbD=EeTUh29Cz(Wj-CAG1ti4plXQd~U1)MiOuK~fFxDIQ5de1$OK>7#7KQm>zK$Qq zd1-1bs(qOJxb;#UlA_Np4WRxh@RLhw)~HPFf8_VptT&{OSE!)Q(7N6&Mi)${?64-ViW_kE`O_mUC1`(?LYs>Dezo%B z@`enlwE~R+CPM_DzEb*9#-WT^8qGpsX{EJQ432J8(@eL0Y77)D+ZIM7>`HGDIlkmP zfhEtHLO9F9f!Waf=k%L6M9o2L&7UP zgElL-u#j)^a33BTvaweaQU~d65{eiPNX0KZ>(H9|Us%a}%93)bE^A4SA(#f$4ykfL zkW50&!f>G$^WR%~NYGp@d5iM+78qQbT6v&Y#6E zC@||Qc^TFC4-qc4V7GKe|2?t(2=VLo2L=(HySE)=#BVDbg)(4RpzGm$@B40NSGz9B8nizAJu~)4ki#py%#| zq4Z_;LvgBbPej<)v~#KqTsf;WvCVQF3VuF2%sG97oz6hR zm&B7HmOUh5{*dUbHKM)yL(p@kcaY%W^K&!LR*XLwOvZuC;SMG1h?;i>{#Ih7vIs6< zbuR5~I+{w^ysK}h%NZi}q5A|y@DzU(EwsLT%AD|c_{QC=I}(548}^DHg24eI3@gha zUD3u-zKstWRU}O62FFNJ%c4`|3TB6VG5K9yvB1VCeu-t9d#cd-xud>|t?F)7uAume zM9`jASqdpQ6RgxmKg9bvxE_}XIZHw^%G&Y9r;a4_tFL!Ou#6@;dT=MFWR||v>FmmY z^grqMxlcv}oeZY-^6+Ae#dT_sY?Qh}Nv`{(i258Mg-C^-j2_Nz`yHF45{rqP)(o&0 zID3bN9WWzwGioc34}Sld>!TenW1V;PGk?Kq%75uh8#Nv(YXuEErx7ks=?& z1zosbF={oqTL0SIuSupA6;DE&%FA%_hj^@E<@87&(hB983Rg(zEJD*?2(uwv;pu@7 z3Uo)ahI)Ur0m;L+_hy~?!uWJT`*!vb;c7+22;Mw6x zS=`&sx!A(}9mx%|=Uj2m{5oHw)VtI%qh2TxM+r>VtA7+rxYz}X|e4Adqhf8o8pZ8EtDsfyK3 zOyxu+v@2ao2garP-DH$_X)xWvu}^Vnp0&37FNgO5WR39HA4D{M!TnCRJ*_{)nl3=q zU?+MiAs>Wz{K6F5cy9r`Slx1lyPixnkkQoN2%9|jxOse8mLmaMsH^yJHg3;6eOKp2 z7s>X*i{l$Fa}c5hg9zJs?N|r7p%^-6WXN>e7I56cN@LuLSt8^&)%b6ZBtWvkQkp4nG zb2Q?gPy#b-X;*Gzesf)#?be%}M8cX}vL_br)0*kXy6Lqhb>h97`|oPqn2L@Q$3rzn z^PY6Q#?0qLzV7KYKoR6%zBkyi-cHZ%qPdysr}t*TRH#M!i(HqJ|FSk!zbJ_x&Cfs4 z(AKUqAY;~)wYH%b0oHuH(1jMSn-LyJnel2aeq8jt*xN5GX*}|Bv02KXS2@m$a_)5d zf9Libh1#F}Tw2|eIHj7gthO8Sy(W^yovKS3TC~N2E-`IQ*_^r9&{2v=->6sJ1q|%w zsY$GcXFh-d*kxz4_-W@_I_$@=uL-bZ zU)pk3LgNOwX%+o+p@s9+(`Gt+Za~=SD&N>N?ZxawY`HS)g^3^8e#Sn9lgVI*lhBeq z?{-vr`OmV6gvaQM%C{DRP6;ybSN3l$ejJe3W>i`xAkK=6<75HWFZ(sJw?pmy<@Ze) z(R(@(1exaKrC9W_MzB4!fl~QYz?<2LyU!(Ju`zynshWZI3iw4w+@pY0vCuyk3>c?w zQ%rXHzSBy)dHaV@x8p?kyLUiO3pDv6b-C94t;_oh52e8?9+8 zQQSVyQu3OAfE&9A5p$m_jOt1vp0J;SAd_rZmGHf2P_b_-qaSN#)cuphG^|pqM=25a zvicV{t}n-c$8%JqD){zk$&-)|Yu>?hA*MO`aUQ#CoZzotHw6t?sE2`1t+gZhuy-VA z&afja_7yrjr2yK*+lqtu(Vgv^dd^tWqkk71@0dc$ty@y&EjzZ%egDbEbwA{Ry+rKh z=M23Yx!$_u>+Z;>24LI;H`y4+ETWJTpMzeD^K;bz8r_K%(-6ffdq|Cn-e~>ea#fpP z!S=H48?e-@!M8rU%g-6iD`7)t4GXmIXGMQkp!M4)FE&j6cb;|HUg$Umd>$CrUy-+w zVQ~4m`0i0PFW@V|+x_heEjqA!7|4Yp4!vdG9py=6&6r40$JE>ckQAES?pUdjtBRJ|;Hv_`S{G)b*^d%f$sgBA zA~n&WU?IIdH&87ReKvLz5x=`1w5DMWTwQ_+%rU2&h@(vZyOXfmtRE&n+uqQ!Nf@yr z3KeNp+1TUg0OTDAMGr>RO3{8B3y8LZPt(4YWkE}rV9SJdLi$OEO5R_ku|a4yu{`Dg zIus?^OAjXCc=O-E1fLV+M5g|NG0Ok|9#OS*^xp(s`QKnDV#B!}^?02S!wxeD17$*A zvKbsTCT6BBCrkbObwwB#GHwj`4G$BHwsvRzPs`JmT&`M)*o7KR$X?T%ko~DTvwKb# z2wf8{&pB^}6-k%ogi%frM6ZC)2NLovaZz6NYN`5U16QQu1K1lrpRn-1aebPMRlHve6 z-UhK~^P6`HIM!ah={_U5VeR3~9{mx*{N(3R_UPgx&QIEae`S3juzWO!d5=3Ey66W3f^YQ_|)8t%RdO%bFI`%@;Qa1t1E_Ept4X-hv_V$^OZTM9c37s7c;Z z%P+xG(&2z6}=3Lpuo}C9ebiLo47!{90nN(4NoZBP0zg(;6$7tcf~WA0)kZJE`OBCbH?=V zLhj!{mCkE{q)B`Q5(N57I_4({=n2=zrw>Y%BIAebW{F6f{GVoasLGumZmY+Y@oV8)|wO5B9x^ zeoWw$Ta$=tLO;0zaCei4Fc+FX5|>55L5{~a`#YhvmR_UtRhbb?2<&PANLI=(2hqgC zQa*raV(+U@1}AbQcu!&Dx1T?gpf#sfqD^BJk;|K1$;-->wfQZs7ub`!h#Wlmu^CWU zP#3CEx39i%g%^#_x@hLN!vH(>aX_2-On{7)Qb%Cy++VhQ{bIX5zlW(PjA+MQY4WZp zLb+fz2W}BH)x7>YNF(u+4Dq*Qx82wIA(P@`OP9kBg#Wj*;Y3JJ$+u)};EJ{ET%oH) zMX`F>>U~_?I|kbH#IIinHb<_%tsYV3yDOAsSQ?N^PJe?L7grA(+w}2Fo6z_0MU^Wy zF6~Z~6Sc)~93uR-8s-8W@PG0OIDKYRjZ4CM9Busz3^r~d8XjW0YHsbEx6lI}ZERFO zi8;W}YpurN5>62ZV^S2?6Bj}^y0Q9->U88M5ZcpXVZ+ONW@a*&H|0f$BLr{yx z;EpRF1IC?bh*5xyL!i}Q2Ses_@rMg_;Y#xAmEY2P;g$JTN9lh%JRP-&4o1=EMV1wV z1WIJzv7AYb0d7diZ2}Q$D@!ZHY{4nhg<)E!ZRSd6q!4>2)99^Ls*H$<%vEA3m8I95 z)#2FM?DtwJIQq$pBrft)##@Yi{(*kK+>`ICS3l%p%`WRFDOK-ZB+lHt50(c{&eY%S zg8a@Zo=B>_?%&j6Vd^NL`@;Z4TxXXVBo2w0aviljOT(dd#{YTon5&MjgTra|Y-+v; zcEa6vl)4;)hJi*gwN*=e8@MOh_=9il7&s&H}ot1v9pd}a}DMV&co*p?DkG!PVvtc-sM^7UNDBOYlb8o8h` z8x^aFA zigo|;;RQyDJHnC+rCjCG@h@R)A{`%wtkJ=c3^s1V)-mDwAH;fltcTQZA~P$o_5vFy z_JOO%1KaOe9RTE&pI9k?SS))cK8o%8qeIu^Eo|R?a^|7d6ERMt@-^Ue!FaJv{&OGP9!!(!QBD*^G3v)wOR8|4sK35ug0JUYV zfb?0~804?Iv4kh+f$*-bCt>wP(e2<*g>kyjh@76V*n)$Xlaq6nJ`j{=6bVSNjl;%G z*+`h(?j@r(@|qwDrLuzm`}dOlWG3P=k;T)3;u_6!YVgokZ+xb@+TY={`g@;M|Io;L z_X9o!p2zU`EuV({!J}K6g7sNXv4Es)W4}+#4~ss{O{;f1!Jqt>1~=HAJ%39fB3^FA zEUO_yjx9T`;dXW2*8DJgi{>l+b#PGP%~qe^mwN)(EJ*WlE=K(W%pA7!@JW*M!k5mb zB>igywkDl;dxwX)1IrTTsEnbS{9^Iq!y&>o|eePIV+_tnP z8&yVteYj57`tVJ$di^2ln|i*g0h%}AUz&+i%&nTw1eFehes|T#$&S9!Hb{rF$@%gH z-CYHm)0xFg0d@nV!7f!K>(v{%H<@`)&-x15_x*)sfC=W~Nxb^{C{VK3-+~_P3dhNj z8S~ZpGDtsN-+d*-Cd7=I%&}H%`nBcBTGTUV%p}BdHsP<4Fe*8n%fHc`eHY{yy`O0p z+b8UOC?5nWTPksro1c4oJRoHWPunb>Zr)4bV5&{4XT>}a454wB23feTOV8Rql@?gn zKk|J;RfT`An^&0R@l^SBX7KM{spH{0O_brn#LN%93Lb|JF;3>Lzb4EX?F*2|Y)hxy zkG--ly(OQWs{;0JN#g6QQ~>80CFC)Tf-I39qSYYvhqJAz;mx&z8^0Jo-4XiZpPxIb zT^iDI4`e^EKjP<$1v=~gw+R8r?yTYab@9iw+~mZ!-d5V6$d~bn3T#wV{-cL*v)jW`$JX!`G zzOTIad{tMbp32TCw`2$Y``Y5UDav>)XzRLifyz&(C4X_4$x-ZuCAg#IZkee=;qVUf zl9WwMiOutXxEQ@8LTfiGTkn-2ovx#K=sqlHvfD0G13C$@3ZB|6l7$PSNjhughV>s>q-bCOQuoX^ z`=*p}-?lMTi${FXs==*2We7S^o1| zgw;wVEjtcu+^QgVD}WBuJoS5jiVS_S;@81uGZ{bJO5~F{gx7xKe(py(piBR&4#lJr za5tyHw%*}bW~rKWcjfx?w!uvnxE`jV(lO$GHFsD2HQvzXJdl0R_DxH~b6WF13dXN4 zK8UzKehM1A#&UZ)z00k)uUq`bxC##pM8^))tJ|uG9+el1BRde}-Y4x66Gq6j;S7OB z#5atIb{bKuQ^KyFc~Mg*YLhxJrjUPnm)V&iIA-y@s?di$~+Tw zm`i0k;E@hd#8cV2o;rIgwNU2XSP=O0z!}m~HKl~=GdHW4OS;y;{`>QaKv%`OLra^y zD^s7rf#Y3iaCu}3pk}$5kp4A=i9OK&E(M`t3PX^t?yZ5@IN8`S9B)j7GJlhPE-Sv7 zjZ$d6U^yvL{#j?XA2GF&|KPj#uRPvMbEb&T!&6&gIb?vuN-<+>_-pdfkEQJ+x5gsb zmqALMUm!X!2?(m0X}>31RpVd(i=>c^m9VF7Rf&^QTCg5*86tzN)+BsA^xtK?aejCG z>@%_{3sF*Ofu8b_s8|N8SYgaa_AD2@(~0Wrx;w^?jW=qW&Gpl1#>~bX z1I}25+&A^wJ*K1jpH{U>t76*sH*5QLOLU%v^=H z(BWB!hp#8fEdf^)*R6Li9_+}`lEkK@Fx$o5)SUWS?2(Dy=^X#=S#Iuy@S3bXG}RVC zjJq#I&lP_>`!3qsW~Qe7g_(I2_5*>t+IDS&mp+ot5bv?Fs+73p7Gtti)T(770r_by z?Gxo@46jIGxmeZJ4)WC!h@a3If#RkYPB)YgSO5GUrrrW7sxNH&K0|kRNQ!hz2uOFA zgh+RXASy9*NTalLiAYIG4Gl_3cZWy~-E+S2|2*IOzH7}oi{Z?P*?Z49=f3xK{ciCL z|4$zflrrq6=%iLyx%~a^`V6Owzb;uY;=g!3GM51Jm?LG!S|jeRMU(hNI|8d^gC9J# z_#ln=7YUeUjju&H*54T)zMovXiSpI?w0iOE@C3!9+Nlw}ftjxgfk<057@(9WdLZMo z-TU!wzv>5AjR*q+^+Gp`r*%~0o-ZBPSv<0Q#9(oAjJ2B#6O+HFzZbGOSH2nfSWCZ@ z=RYRM60G{@qM+ttVc+?5wPjFhaIq{O(*!Bld`>y)_OePh9t^V9KHV^LcQq7n#3IBq zSx~b0b7=EkrBBb{3f^wYwW6f*R)QF^LIE+$7FGY~#FK1HB6&5d zS=MXuS8csn$HnY6y=PtcY$ayQVUrrp%GaIP)SMNG9Wu0RsN=pn!YOTU{w|TZzaq$= zYe}5vM+nV3if$wCXf^|H()b|*f659}<~P3HuY13Ip32{ONE^dg3_r>X zG!db9p*#^T)NT28=0ysltYG^crbt*V-1>=WL;1LT?;U;Gb;R+&PQ&+49)31&MBe~a zOPb%YvF~m^SdQ7wY3bLarVI`sj^*}w*sxm<4aW6;v(N`WcLM5Pe+4goaqF*2y*xjg zbd~{@kEWZrv;war_Fm=e1iGqt9NJwlY5Te7*(@yXehZkNdUin4zvkI@^URrI7I6%p zSr_qA6$%!kd-Q-_Hn4{rcKel`T@;;Ej9WiPgyV(Q50K6jQE?YDa#2tgGoNq!UJ-kz z-|@_M?`3PohwU6Qr+H7eDls9AKMF)bDFAlONlPEls8fnwmkY)GX$zLFZtwk6vD0`ZyI*1+Q~3#@@mfk>2R5`zYx45o;_wBuE(3*A zN!u)w&}CGyEjrm4LMBd{WJk;ge(%}%M%rqDv54)ks);y5v*xG7k1_ac)#JnXLpx{1 z_hLp%AHkkZHbz|aEq}g4`fEbkfQOLQZgG^!V0HD^%bepeHsi11o3Av~P!Z>Ed-V`? z_XL`ssa6-$Z_8w{%R3-MZ^|-nZzfB{l#xITcPbjc4}NZ6GahO}9Ub%Oi*G3_Q1(su zo@U(HeGm3#7Hu%x*ia+Cbe;JyhgPcLlJh)c3biiV@Q9(fw{A-_m^T{y-rO&_2*wR&RYHcf#X@N{jxIT071SYYM#twf!DM4 zrnB2kVHySg7PmyR2imfc;;fy#Z!hT1I;8l0ZF5UC;N5>XvVz<9{?C>TcW%lF6y?fa z#r=s;N{MUs7oN?K+x@Djd7oCQo`>B1yMNa{I5jb~Bm13QlqXBs@=KK>vg@cChG`=iH>3S?qW;Of9rwY&nt(OgDZuj^`1 zm4`L&+H3tg8b8{DuoGq&Uu#hl0BzHaiHhB5kP+lei;cF=8%?l(|fky(JzTmw5>NOF*3Q|GKS4eob7EqzenNodC z)}}1mAuSSoz)JoTiwY|U*Q^OK`BIb60=&bndlF&jY$ zz{IMvMezN(RM2;d!}<9E9H@*5S`ShHgo)mffuc+09?mS*QS69rfDMCSrPH9hLge0% zC({rW;OI9ZlCTUi@fjDbci$<=Yv`LZ>oi>RSYC(8pb|V8#*WTccKp@-v&IFn=2*zC zOzbgtdWa_Z8V_r8I5TE^i%Q!q6n8BevQm^GN0;8dvPSq3z$3vi?rp)F@V*EyIHuEO zf4B6m-Rjzqj0q;DhRhl3VBs=mpui$bpw>9i+4^``*v$YIi7B#KxVa&+(TYu{IkK|E zVXL5jU(yQ>J0~G9))T;vgZ{>Q--Y?2Hom|(rJO_;o9XUSq6z}_OoL%Vym<8oYgl!_ zU>zJ7Btw_z{v^waqX~hRs^23bpYTN!x~$RnxQlAj)F<9C`iXGo!(JVUPkMf|+WSbT z437juB1zm2<=(^#K0NEyP`0~e_3O^Hf!pM`w> z`yi1Sb9_u-0j~cM3-oy%1OOz0vRPQ%FdaH)#Yix{fc1sLQgQb1kBjP^##{s4cXJPR#Jk9i&Mq$ zUbh9p?&kniB+dSuoGxIvIf{bi`9U8{?kpd1*jyTbUmjRpTk@vKmbzs#tH9f zIy+Zm$k!kuwNEk?StzasNbaWOc%lPT^HJ9SZ26d(B2N$s5J7-_7m&mebrk4Is^LBQ zm$QecTp!J%) zC(2e7*SFDTPnz@CTNMb>(~EMuqfws&kIu3{(qi5%T3VoBK0E-#(mxmO={YhTX*Uz! zmi$rZxfTSlUm!E~S`+utS;qcZ7SMS$IiyY=XCwWd2a0Bmt1+#Sca0)sFLs%q*SUhO zn2ar9v3`xzLlNNY1<{dD^ru?CxtFcMnAw2M&LUXn<|M6zUU47`%dq=(Gh{4RgO(p_ zVaqUTv6-;a(W>0KvS!UN8uOlGG$a7t5$$AOo zYN&cxtRB&Mb0jpkoB|}pHMr)ZQfLo1NMMsTz~ffyClEET0}wZ^a@2%inY{0c^$SY* z72>86qyq`Lia$#BU*z;(;D3I9TKTfCK1y@E!3o1Ut)W=8ndZ2Q;jI!ZTw8!+VvW^b^(f@$eLYz3tWjkF}k% zB^ooaASsJFa%a_m%bSN3Wj+#lEB~jn&nn*LkAAus6HDZFIdJ!Mo;RHo>6z z{Ru+=)eh&5&3%HZAVBa4gGPtdse5^BQE9SUT8PPK)uicXh2OGD^N39jF3b*MnEDdan$>2K5zGX;hbdO?dn+4Opg58kiZ?T;`xv!&kIWqD!U)#TIi;i6zvyF?J6$xJL zps$)-0lNWrW4nJ4zCHecj)pF6ka{Sq!u$Z7BEK)u94PvuWtw9+)|RDjLoONMatrcN(K`PEIBT?kFyDFwR2lNC-H)ZMt?W{;%vp&JIOB#Kd)`M+W0f7o@vLqvK71|Ahi-N(We#ok#F|e z-=O;lt9gX2hauqiDf1Sww%t(EhmQhV?`-;bScGi;L5w;fUU+6edsOVEq&`pSo8IdNUZ zCri7hjEoek;=&J?>ay#(bT@g_RW6nqmaSvUL^yWPS7UJfCkObYMZJ+Pa_uNAc1}m! zrWte&3VRc&5lnrssRdhSH-3Qz>!pW|r&+svsX@|X@tUPJ`cA3$Na5D*HK&yZ;ImA& z@Fw^#?)h+V0BdS(zMb!I02xY%0!=} z@8i$?$m*xS#L=6w4gO-@lfC3tXPYr>4AQ6X)+Y!`HGeBfOMf&72~*pY)XugQd?o(M z-St!LQtfJDnt6x=(xfL)HSS5Dl#oVy+vd)fy zrQVP4n(V#%M++Dtb0Ge;X0e9y3A!Vh$2PjVM^6@h4=?y(g1ZjVu|k3P zEG zJD7{zH1xQhuevkwg0tP3NI=rdKt)a)wAK8B#jL3xd7#@gb^FCDTA}oJ3buC zANXv&(x1GNDkg#^?Z#V+`0j#42BOqIJ79GfYA3->{gOKAmxZOEmaO(@^rGNBw<&

dFGBwna4a0UpRuK$oGkI=p*77DKwHK2V8{1Q~bl72s0c|P5wexTvZ3WI0PSEMs)HR`!H?&Y@>B+Ew9gb>k z{!9J1Altd92OEil=PY+EOaaGPWYMyJ; zadsW0KQnr5fp{^UON*Ohb*U6}CXC8&tuo|!)(-8|DQTaKS4&)-6Z-~wto~*=4nW#u zkQgcym@x+dYwu%YYL@5wjBk{83{5hK`61mXJ026*GU#OjnVO_glH-1+D)ZRhTPr%ypN~wuCl*T8fGPKrHox#zJ`bx#zN*_DwGq@{w3{@(suiM63 zZ(6<&vKc7|tR)+apl;*6{VvaO=Zc}2OpV_e3_c?eZTPGjx6cLJ;lW8g8DBoYm6`X; z8y`%!cl~p1Fomtvsqn6wwHsSi!!OHZa@miEF1j%c`p zP5U~KUOeQb_?}a`_|6E!@C^S4cIVhtx^zpsCu*c;_8vp-<7ZEEw6X#_FODMcEv3+sRpKk8zvPMr74r?+pue}e!az+NxEBk}yNti1(8Aif)vOf# zZ6%@e)dud#7q~zV`{ge_=g`x4}%`CqKD(-Edr3nZtKFEn;2PL5*A8Vy$ zf;H2NwA-doeLLSiQOD(IVR$stw-81+7dPXRbT$A_){8u=KJkACJciV zs`3>;TKtB1od_g<+OtPFpw!I_>~=Q0epkbyW8)0ZfN}ixOoi~A(pPQGkMcg&W$PoT zp7F;J5bPHYMGbXQgS2}V9WU+Q6#x2ygHdfLoGu;uY9>E#_RBRxr|s98V6#Vm=$CDs zte!?I${E5Is|?JQG({Y-9)u@hl~|ZcGSt@!U%}G16|C4;Q|-@WOGTuwH-fNd?vS{$ zf4vDWj0%K@?|*)}3ihBXnItI0;f`8vv1R{gz`V~alop#3sP?)cd2lmDHwv3<&u``R z=vfs>-rtcbb74$j;q6^P_@T?n3yS$9(}s0jijWh`z^O#hw-swb>jM&iks-7oe?#L5 zbj%`IxeuVj@!En=S|XK-gIF{-S_9VWxu2N!oKb&ijs4JG0dBoKFA8vu$0keUa5;^s z`wp{h4m#Q9!<}chfIzE+;s|kpe88NEWNSCQ)^dTYM$cThh1Phpd3aI92H{Itp8dkq ziSaD=`Af4b#;k4f=j8$}c>Cz4`sGaEOfK#r=DpR~VKH^wn5>T{?J42>EwjbB3V}?X zY(p8*Z$^d~y$zynvu8zO?^-Sc9^_lEQDmEG-Q5wGUG0{8tD zJ(Z$y@-bDwIJNgP9xEefF(rqpkY4dv>OTYE+4+AyK==X_O~-u@f;rcXebvSzst@@s^8SQvmQ&`h&BKj8#r^NL*lQ^1 z0{e5N(icq#fNS`h$^zJHDejLI((K|_DTBM`S%&1r>P;#?+%f_&dT>EB&5+`s#u-mV zd3tHa(G9+%S_H#+qeTF)3iWU-98TzN5FABOf_z=`jy@A1O7t2SL9q8jE&f6foyf?_ z=9m3{dcH9J27;IA+bY{Jk+08UIeZ4SAzcnm9$+$)Iu*|5Ec9R{iZEvj63k2LiN+&5 z5fr>8z91}w=!&8_p->J+Hs5{<>1rLh6@2Mw5fM_ucTd+VS4y*FEZaAVE~4=GdrKlx z62>o!^Th+^nW3mI=Z^`{aM9~q5|c2I7wZLqUVfOJ!|y&DJm%_()^@Yk*)mON(Df%DKz$sHt0kRVXR`0oAYG;>(U*h_P=$FBiy-c){@D*9NepWA=Y;5jzX$=8buv?j?o8ESs1j?H0qZdc+5(U@ zoS5J!02M}0f^4jRZz8&x*N9kt$vsayvv@cLp<-2V$sXx&IS2vpia^O*T=uwIM<`9h zEN-k5PI3nYgID4CG7bQqyhfv`2qA!@*&J(g!+t;cS}nR*B?gu7fxKT1W1*X%PB4xn zTQUkfqk>?0sfKKXGH*ixs4)`*fLF%4W!YQOd4Z(O63tW*Qxa@+;r;Z5R97Q;OaZRp z)iy@RF#uq|G+nx-=>Z0+Mnj`gzApZ@9}#s?{Q&m(P)Nitq9!LXX#yQMpw*uS_a=_# zmISmSH3pDbkfEF>VdF@5b{G`JFO3c$erNoC{YAL+sw#l3hwSS;t8S|jXnFrfdZhFd z!ubmXd%7`Ui%>Kg;Pme}K(@LzuY7#*Hk9gX8rJ@qTkG)}jYbje@ilW6TB1Fo7)WhE zP^{M$$$Nks_OH)2>UN{(xrDK<#&Fck@V@MXc-3GtR7xY8y41NqgGt%dp%`ha+j_+< zHPM@M!!9ZQ9CaD__YpK^nN^}G1`8KjoR=eemLo|%!Y#`1z7o-cCB~O!Oh-P%6FEQ= ztqmE9FX@Ek??&(MG0UZk&PXyue_Y=p>)gQfOg`Dr^Uk~gTmwEMDjd&Lmk$S!(CRL4 zO(i-76D!z{UlEXxc*%izSV&wo7*W_gM}YFe$pwN5e6oZ7V3}J#%ccIWMbN(Rf!F$z z(olj0$3u(G)l;N5(iPcoSQto@Q3OAvAo3=IL#Id*6FV{u(j6VYOy~D>=;|91B;Zxe zL(}v7*~v&EPQ*-4z+zX!C?@t<5KHD+FJ8RgUjY6*lb>{#n_ zO$A=t3pa?g#F&moFm*tMEbV>*3pn0P-AEht4Zv66O{qkdh_BUqO|uq?qd~xia}kfj zPIKfs5zVv!mQ3Y`R0g(F36)k+P5!aQ(0i*R&Nx+(;d0M4qe@o)QK7BpgjFcF;?f}G z<%pY^yc(gzh-66nG}U6A*J^S8Se)2c9p3No9$Brm!SBXT25x?|P3LIsRkTlVA}1A; zYM8lVNj_CpRNh!Fu3LMvQqnl{wjj>uy$TE$VhMNRXcH~qH}=u@+T_b!KmYEvg7_)N zLJc-K*X1SbB*qm}zve=msTNU-|cj4_qy;sjz649Ha1>uafnKZxPVZR&=rU* z9!}~Qz_9HqRuOD5nYq$Ca8==I8O4a}ZdRmx*myoN{n9J=@v(!vmDP(3UEhjDGe><% zt-?uH!Gilq9u{BoB%)jlja!p3wfe_M z>$^A3P?z7EGo2xr9iG5DYNC5nv0121Surf*WR9`w)z4n_m$_ilu;kC8z0B#SSVN!9 z`er#p;mxyYn7Wv*+L?Xi!C|rSD|Tky*S=xgDfvd ztCrQtUW6g_Rx=dnv9RZZ(_C^%9qxP_31(?))oWM(o0%}bY}hL$TtL0^C(h}O5ub^E zaYjn#!ykv_DU4a$gBo?~7k;!|bi-@WdSP^T{U@U(<}|wrKFedGK~C3+^zVmS-WBWZ z@Z^EDcbjN_#0YTq-^0*7h)qZyK106d_-N$2a1GkRfbLmPmFvJj{H6vGG1v%r7gXZk zH}os9y+6{`o+Hh4B`F=|#X`;jfv_a&)#dUtys39f9GImH#rP357@l=q;(N5WL;2Hd z6)hO}C%NgRLj7;Vs1Z)n(HBs6pi^SI!OR`20Sd>tnMWm*tg$-eIHP zGtaIK`5?i#uJRcW_WXN2>~F-3PzRSIU_s1hXi9|8+6e(#U;D7lowz& zKt;@0FM#Xhc>v3h65MgL9ujZEJNlJ~?UM0szIjmEY!b$D-WKhvUc z95u(k?DC8p#x)6dmd*Qd;$x1JFqg$;`FR=RbCUD=MvMK`Pke4;2a|qzKB5lteEW2l zDl$*>Ur_pNS$Bp^rZdTi{rb6CKcWD?uv>kt_VN;q@(J8_1+jc}3TqO_uvF!5U&-N1 z=wR}DVg0oHi5}6TFP6(3X#Jyx#{RN|r?oJzO z{>J-4DfO+b0^rjGKhL|!ahMT z^*LO;iE7KB%5<5Xc_-hnqxr~cOMp4z92t-`Egs9@y&D}h9vK@G_jslnil-tytt1J1rNOn~cwq=Q%7;NkFCH_~ zPyHZjlh=YwE2lCMMqhuAj~`Aep-r5MSC9Y7``u%EJf;!rSIs2+qA*kImnp8gJbbM- zYvbNX&u^}(c7=+}wLjrw2fDs$Y<<4H*C`E1a$@qhoiq5m&?UM+&*Ly(SwVj)DsmmQ zAGHE;&IK{C&wY(s=2Z?=itJdte&lPmXhLdrm<K2V~%Zcfk{Q_982@)OC@qFvXZ6+aZ$6t#lD=5*HTP*Uj=V7b2ZW0-A{<0X4- zfDDUWbIXexLFoE0=amAC;M?ssg&-IG&T_Ca+pXH0MZCfLi%gxZxH>y_Zm<+9gWxt|;7wE1$AnMI##SMXTEv*-0e3$CV!g2wWpcEN zr>ppRmw_L)oT~|g*+h(;37x8=5r_A@_N24(GOFXW=5hB zhiKY1Iw=oj^j5u0Jn!x|thu>~>}0Uyv@DGhx%YD8?H8QjD+>qN!g?+6kM$}tjjT|R za49OKO^!DL&QlHbbo<4sp(4hWi>ZTxH#5VCuG@8tN6}sn@P$&x*|YKjf4#@r8IJR4 zMm0_KeR(sNO?Q7!pBR^M)hBFl2vzR{qY<_eyFRoN404X1shJz5pgUwOvcQM?f8)-Fa%?fK zo(6a1@87DpzaPY}a>T06pZOs-a36Mclo#?<mid10C1u9p56VT9BRoXswLfVYAPw z22DS>a*v;R^)GvHb1!$&m7>TfI=qQ#o>lK(rH|KIb@}xZ(Oa3sdRV<@$=PFcKWb`W zj_`HCdVq9WdXx8Ln`%^;p-u<)G;2WNRooyl{C#0D^=2QYxt6FMNQVD)VUj9fiQ(w` zoDamsnIV^d`xCf{+1UBRIPkE0;r=U$`=f^+0&XWAMuina!VBNc^Rx1LJ9mfD@n;oh zr5dZ@Yr2y}LAPIgnCmfjmt@d*ep&3T>kR6Bc2&k3HU3CQ&ATY&n`N2m4GLHh`cI#n zd{N$n4~~Qy=QC%A9vj}(uQ3)m$)gxAUhR=c${ zhzP}VPIG-6B9*TTSKimjn*?(5ETP|bD@L!VXzC9pg+mD zrpU1u2_4n_Q#PPY^4Zb~ZrNXMckvW$iUsyJ%hqeYLw?#RVvA|I6rX|3-^eNPe|qJA zkBX$KLWCEbO0zVBNr#f~ODDnp{3s!LCC^cU7$X%eNs}7IjDaT<$pj%UGw|8E8RHE( z721&Cvwt1?zq`0+X5|n>FfICw+3#WC1*pw%8Cgyl{&}&N1FvCMnc!;hnvqH${l}>K zzZ>04N^_wqjGH}@vL9q|Y>)f@X;a8x{DYH7ULFXgmFj&)NW?7Jj7+##r@RCS(C=&L zNM1Y(*d2tt;-(VcsxE`zQ=*c1j}Hv0@`ML?j4Qm&z5@rMu`I<}*kt>L_ygMRexR>C ztH~T2YinJSnDeG=TR4FYxBV}i`AH76uy zZ24l`hdf{?U13MkT1R>mB#>JScP~JtgD`+vUDcAacm%9jLwo0f-AsT>ma=;7$+sP^ zpqEyI(Y9P5vzyR6vN0jI8Jy{$=`h4RU_pga;GNsPQF| zrtKng$$z=tH`)`*BnXpmt*zBR42G8!MTT26oC0wMHET*poVPy#K)kZ&0Y||A^A)jHp4zhv@H1 zIuXG6(>PgD{!buMPD1=4{o0c#@)rRR=i0eW>{r<4<aiwo5-#j3Med5eX&`DONm;FC!)wqY~rYvV$4+F{*DQYT&jz14XdJ z8agc`_)60k13bkETS1d0O6f_)=3DbbW2zhcY3!-YW{i4LVx5uR0)j^ra;2Q*=Nr3> z#6xN2EGgukxhPl=XPyeQ=gkBPPL_1`x++hO$3l!3->KHhpp}zb!AOdK2+F^k$Ok)- zLK?<5Y0S{;#-8f3dNYL`S!{DE4ENWxf&s*bBydA`S#oq*r%P zs}INJFD=4sSt|;67nYnj^<;v<-LunE86r7-0WE!JOSTjm){Ta71< z%rW6B$!1ZxlHZf~1IO01Ag+W_-o`a9aes)3|8P&|2~>$=Vor=W_I1s_Mg2ckE=zaj zcTl?w2|&6H6m;cCm%hweaAxWCN1AkHbV|oSRbH8{Q#cS1la0>WBcugR9TRmf>BO7o z`Rmtx<_K-*oUKt(ne|}-rp{xC|` zzaaewDMai>(qIR|(P3}C*p1Nfzxm>fSIrxP#>kGOL0goSz3v<+sY?5{h005p);Z^w zt^EBBW~e+4J4&mw$Jjkz8kLmUB@woH;bcG*`UTN@I5g$Dcw1;ga7*c5u_;`#Q*Xhe z0H7>BS*QXIA$>5H3jGjwcrhDV>uOOEfaryIa6>K3)}>D>LUL7n_K;s57)crfF=PNX z^^fT5Fo>X84;00=Zf{G#HS*giHlG!?OP|h z>b7rht;EvE`udD+O9cCmo(jaT(kePi(=UccMKB)B5~K9azw=m1Oo^mrjo>~hLKv}V zVLl6XP|?7HCEGrdzz`gKidN`f5%5kCkDZFgyCIj4w)29kEHC79H5a|wiDpq}rbdM0 z7~bZS@@Ct(x`2iX1rny@9pmae)4IXuo*6n0#J2pXVux494jHG8hhM_{FHU6%uXMZU z#iDI-9w(us`-YbF)eK)^`_ZsZOLJmNgpcRtuA!^E^)ztYBO%S(qJD8*1C^Hzv~2BIqFxS; z!O)5E;iz%yll*1N-|iM%_hhH+x2TY(EOt`@21f1F?Mj zi)Jian}6W?2zKw#|hgGr7fFxM(M#)e_ps?xbMWa~~mp8TApb9i2ihDJXBX zZ-($z7Jk@0@dNwOH}6-$0oD()-?=&MXrI5uO2wP`!u^|SQ0iH^@%6XN=;s_o8Ldp`{QP2WwS(~74iaw1#27DEV`rJSRvu8#454+=7)6z)gH3dk75beDG zyYWeDHANtMkFx$(W#7uYukR9Z(RK?xu6yvO`I6$l&)TjOMi3y{7PU+q{es@Up_c(m zIorFnXTx9FO*Xnya!i`2ElD$1<(@a~Vf1uaQ|X|#=&pS}Qv``WS9f@-bRnr`gWEUf z<54jKXs?F)i0;0gM1RDVv$lEb&SZq*Asmm=!E*e;StjzQe6(h0f6Ej2?cTzjSKm<0t#==xNB;T1^zoskWs|L2)XLn=68AU9OwIE-6#`8}DA{vdZKO8F=j5N)4>bIAqTcV75M);1+~ReIsv4TfhNE&nkmi=iF6PXz z11vTheP!>~jr@e<_gxvtkFd#=s*)?;J5}}r-X9_R zc|2EEBIAWTib>%Fx-F`kJ|PC|LJF8=tOWTu;soF9Q3u9uHrK&Oqi@oCWT{6f^B5?k6E*r6JM-HH`lN0kQ~!+_v!Z#7=VO#{eQHar1V86ObDXzpXzzk?kVNG7%w%Ie*6GN{w&jqorg77O38Hl&fp8fT8D9Kv zq!o|;w`10TGw0lB(a3gVTVQ&^Z8tABI$4EEupAG}adSw*z}gwyM=fEk+p)$q zf(7Y4=f#d4Uf5f*+%@ev{IcvmF6_K0T^HD7QB-2A%V4lA<&18r zVf5Dh71j1i48*Dsw;uX*i8;8n`y~-v+mv+pfZ{H+CQcyeWSW$uMu5|Kiu-0DzRnM! z{{%DSZ{=_}fBZd$TqoTNaF_B=A)5iA-61J>XUPu;Dqzjnd7I~Vw_hsn52m;Fz@@Dz z{|gcjczDul&pVds?!dX61xIOwY6mq1iedg69xu|>hvWk<)X%=nmjbqn(A7_;rbgyy z{7OQ6ci~?%S}mxRrM-U+(&y!*g%S&86$!SMy?y4W#zd~j*mb%@<)MjH?KjmV&!QmX z>EoRv%`A8;ctSv3ZY6`ItC=V({Wf^LgyCS|`k+Oo$_NKmGlNxl@#xGt*rITgzp;B_ zhVV4x||_GeA0^RC}h2qQE@W(``t7a_J;F9S!9I8WQX2G#VJ_B{RABTuKfPK1nI2>dYkB9?3*p&YdcXMl=7wk} zzB#}|;!7D4ef&Qm@DT=xVpPC#KM*xShOgjaOx#Uga}{fP_Y(4@I*^76*X@_Ar1=wd zg~cz9TVZpf4V!l(|0fpyeuF?(yCkK=FQ~*an4d+K^YtnO<(tFW$=j6B$LgPN{y%%bGM0#Tjojbb!HNF{3p2h zcX|$IHwfcDhvf09c%g^S4sdohBKi|lw~lji{x=|h0*%@I2Qz^&IiED*#wOx-tV$Cz zmh_74D=1AVN5e}|l)v48*TnRb-K2DFIdTl z!+LL|{=q+nTT&q%DzC+@+H`Zx^laBLSR1J=AVn4tG)GSP0nT|SdfA`JivfskvJXl$ zJC+ShMGu7tc)P7oS)t2t2cjNO0gc)8o>ov~VEMyX^4|=9`afzB)5M-f^qAMbgC*hw zgO@Fu{)xovn!)218=}amNUk?Nshy`lQb-h%APRKM6EO(n*Jjp22`Q9S28;8q#^5wx z0p4_u*~2E8>3G8AFr)|oFFOxJ4&nV&6oE?oJ?*M>iPeE&p&~c{5aG&ZF~*U@$08x@ zoscf#gESar)}XD6L7_BwgxOunr|Z=7;q!PKz%<=dsF{C@y0J)y(UJalL(3LR?FF7` zi_>GvV&q33AwyzSk}d@C8YJ4P!n~Wbk_re%mSg=VzCcq4_!vsKr4Fc~z=zdKd}2IW zE^Hz^7#hUWf|HHU#z$WXpqGtAlJ&IsgaRpvbLx zDHGI8sJM_7VF@8rP3l2N6NfFbp^=E&&QM4Y>dbb?zW1C|Kn?1q5~upJv#YxT4YwkY zDWGP5dy_K47&BUDZ?g46F4<3Ya6=u+BopEGZ1lOmK7f@t?V$=jV0Qq_IjN<1YGUFD zN*GFy{^fqHv5Gi=wdnD2?kR~1s(u_1V?@gaOYsuN9Xa~epxs-8yw24@CK_WeG@fCx zP>S8F?pPE~-JdE0iT!k>A9y99THFl~u@XLDM+Kkp66u1tXD^yrYKj`qcrhn~lQHYC z{tH}xiUgjsHp-xVhtu|NMhT!(0l**)^|0&D_d5oJP8 zSM1`HS{%?&)`)R%NiiR8Z>Dq5`7uFGe(oIwOs511gV8QXA8ZXzsQ@v=FCfqzFmGzd zW6;o)W@WzF*Aw3IB@wgp-Ha-=M?}rr`gffmK~Wmosutzz*B&r+pi&Ytkxvl4enr@qHpiaK{LUI+q8r1Ad*?4rN3AK642hW@BbOeXv5 z56)^*5k0S=HRk5#4)TH$#t?;`%ZlDT3<6lDX);VEe8}3){ZLj8AQb<;7x+)qKw4iz zxR-gL+$j!WOo5>U0QXJrRq)Z%n0pKYueLRiXcm^j{u-tv8tt4RKp$2E(hQ*jN~+D z%dsOVpC;2;8u3{g5#voyi;eJ{YCZ^hL*?*p@Ut|~gM3u`Dwl6u5{wg(_r9~pATpTU z#UK#)P!OEAdingtPq9{l4ofn62%>!K74nx2+He{T^zM*;WIS6} z)3CeFXT1+3cn#p>5OJRU)rC?KEO7LQvGL5D!w-U|`E#3JqClK=SJOZusa1#jG$)PP zl$hkB=M9Ob+@e-y!Y3k!U9|;6T$DhlpCOC8K5j~fQ zKl@@O5#+SR-(K>9UaVH(FEG9-;FR9-=X;y8yf3m!a?D1z7(2TE zWgfvUtx}Ki)`Y~qfIxTU?_et9^GThd?@Qjo7Jmw?Wqx9F-$*}N1+{wCg6u_Kaa7KG z|E;3(K3p}v!eThF_ch3hoPAp*3?Btv(rhug8v6#vQidoii&^hWeJwBhm>t4!bb5j0 zDhRM=eKc|^%zNS~5TT^TT6saRoxCDPf4X+DQPNl{$KJ*3|HFm~Tq|xQ==4!+Hj!zu zK1iI}lU~j9qU$=y;G2&jDGCzYnG>pz;Wa9!@2;-sR=588h&C+(HK_usFPxx&XL$DO zshR8Od&d~k4dr-mzw@Y1Qp1x|(^J8#DJAQe5%gPP`Hq6*tL{%V(b_>u*0~N$rX5C2 z9)QXv)LTGB(Y|rR zyGwU>H%NDPmz0zsozf@*QcHJtC?MSkDk&@>ARv;`u#|*!F0ioQ^8DZTJ1>XBSva#h z!#y+i+}HK1Ti;1fl5NJWYn#=8;J&j8tw;^oXm3ok#;*By>yIggGNhl5;v(0FEne^3 z3SYkyOZcv<{^y6hWPw*3Xxl=EQu&n;!Zn;)tg zqoF#qIpNp64193z2p+Kp*CXYy!{!koU!MNp*Fgfm5DQzsNqFoC*hBN$s5TeHu_?W_ z{n8LPmR#XATypFvst=ut3t!HijgoqkA0Jt z&87TZ2C1MJ$gSXTV?AcmNsJ}H`SZ_nqu-ph-6z4V8s}%XllhHXJn~saQjluQ5}AQ3 z@xFu#mbmYErho=~4yAAR-TCnEeGf@K-*Gd~|L{qiR<~_sCDm0BPl!m)@<4%5tn-D> zgNZn94Yq+vQgkiBQ|~bu|9)N&F(Nq}=p0g{Niqltz#rxKA-i>fT@~qL&psO)qy17s zN>OJpT@r4)BXXv({A(zQc()o@F^b_Qr|i|$8B}!5@Ek>{wKd}j8Kdk&nD2$N;RfDTwIs3IN~Rnea09+7|Xa}&^5o>KitoHqi6jmqgX~;6Qj*U zr$r@+=t^usc6`^7ig|}jjP;91?3ce&m)NOkb5XCA0xB`6GW3P@RD4!tx-1<1{(6vq zvqiUhuTkX|{+5+=d0hYYs%M*H2SRil>L9<>5paH@wDtib&{MK_2bZSB4x@8Q?>DzW*SNO09;qaX+m*=+ zXI*xmI_0zHfUP)9O3I2ddQeT=!1J#^X5*N(ISHf{K9^9@s}lJ?a?^<9|KIPt31mYv zw4}PEZm+jbuW87YY2;EYeHzsZA1#e zX^e)xl_QWn+P4pwtrQ9=deV%{g0M=!GX%SWDT}eCB~2s*{d2dIav^a25J8B}&mu8W z2=t#yG0G1(Vmqb(As7(Oz$aEZk18_a*V%=Gc&H1ccrEN^;r@5DXWmw1k|toHwnt8w z<)ZNmde%Wzmv3GyqC{qpO#r6~8i6}Kf9HJwW+?eJI>h%jENpPmSyxu90zE84KIx7!i%0)er-hx~MIZP+5Ro4Q!K$?WhezzprlR<`TJvY|biFDFGcKZG zFYW%k(Et9yNh|EJpY7s1QoII#K%K?t(z)+ld*mkUO^j%=tv=Gp2bhKIwR4+0T&cH{ zu&6Ci1crZK(A{52ms2Y5e!iEe*j^9_e|T!W9H$~9$EE|+9$TM8hOL@bK?5xLBA=(0fx4IX?w&VOy!Y?3Jk#h z+Coo37}o+*v1Z7?*lx+-;$yT1{u|&bxgZjxXY2-9FoZJP{43>Sv_ws5xXoMTKD@r- zz3v@*80W)4t5e9Y#OO8s=V@lw;f18YS9Y&_eWdL%qcb@}df*o1fYz?lma#0OPHFR& zEa3TXQuAlo2Tx9QeAYFPkT8;3PfVj7_5|5>n?8`siE=S9ToW)NGeV!sZ22PVN|oS) zb6PLB1ckYcK*CDQ!|ge$dhYL2p2%=QAlmGYV{SPzj4JYxCX`cbIWD$KUQ!#-3)XM0 z{!)Mb6ggrK5~-iuC231iZE5tvc-5W;>#q#XdNKvt%lAQY|CWe7vX;2s&k5)L68&dOha z?5nIb_nyR-1ONeL8@z)_#SDdKw@`A$GYrEsI0l78(Cjz5ztO*FHF|&!C6wFCe^LEE z*z=Z*ao!N~0VK;MRGp2Nen3Am846P6x-GjrvNi()uIy@fUxy*q!H7W|D3H)X#UR;$ zte+Y)>$B7BBoNjmCDXvLevB&en#O8$tgk;0g`snpLLLrK6I+WHv&s2nU7Z_DC7Dwk z0_TeK$nD6?A9e(np$N8rNx9g~>9KCg{b=3)@eAU>4H-hjybW4yhD(M$l0t|qUaca- zk6^S>uHG1}GD9SPHGU)RpVac7SyP_t(vZ#eWcw?jBhpOpoZ9{6 z<}MGIDg$I&fp`qnVd7vF&^(pzxllm110oa)IP1yaD*z*~Tl#Q{u%Hdn#h?lo8Fu{D zChCKLn$aR)4QUoOo4Yoj zoSvOC*2{;rGvV-zxWpWVa+LHK%a;o&Z%3u|MsAS(%dzV4qE`}RYuI?B@lnUQcVJ*p z9SrPb)qdu3PUKA!%;h@{0Gt*?fIH$mn?d~Z&$l3r|3U|~(5TXVK%qx_s0yGLIiNp| zOc%RI8hwmiI|_<>rKOxLPqXQxYPvTpzoNI#MP(iZ%-#^pQv$?@3yUv$bD4VT)j5Qc za2#?ha23)j@mKmSdbiNJ40{Qx0m@9=olloFd>r63iSsR17PfTm%2_02fYpv7Iwm3~ zFAgW6IOO7bD~?j`J5cV6)YQ=CXSLlL`t}X66bB;{ZScv?5sW;TaDmLEsOm0jj7;Zy z@a^z~_JGf%%2XCNp&HT}8>v1R%0X&7KIrlQ-fy&B34C4O-QWap5=aK}V?h%(0wuZ) zdLIT7)s$Cv^V~;1tdYcgv2Uuvs7bxP>D+KYcZe%6ClcvpEzi0@Ak(?%5I;jz!5pq> z(A!4^iW>o_^~!&J$cq>yIly761KgJX0`=2;_%o0JlP1>m<{X{lSa2iFTq0Jq0H-9U zMJFs%kA+hKM7=@CNLsgLXzfR7z{vbQt6qSO2oaC#9*MmV>YuMfWm*Hl2`Bcmweg(U zDd%ztnQc!fjbBf6-W`A>Pscp7Srt1E%xQ~Yunv&U(zE6&L9ckj?A+bSR(aGWi^SZ_ zu@k!_SFqk_*`B${uWbx{(8)Ti}#L>fY7F*vt8j?Ow%v$(N8%-7h0$~!Ngk1&)Mm;{8<}uxRM^v9O`C|D6?INj!}g=H$5c5jB=*}eLzJAj2ANke!9X0 z2d{v>(jJQdOB=(?+q}|~e<-!C`N`CQJsiKMp2iY7C_%KP;Epc0QwEk4Z)VLy4|1&5 z3$AKn2NP~SPyj_OdPE4AR!WP2FuPXoys^*2Hw(IvFOZx8|D-Z&)8b`^inVXRqC_p- z9i>dx4BPA%s`VegaaEql-o`POs#mz7 zhCj_RjhBfvu-$G7`rX5KcGoI1&xN**(OfaGl;^ckZ2TE#Cb7jRMyGf|#Fa+f%4X7V zQ9qq_|NSB};m&6hH~Ip}zqaTrkn7%jz%Y${eI(~wXBj9gMC&pIk8ZI*Y~gLUK~7PL z_`mQRh*O9N8&q%NRf4)f)Ts-j`mGo7o~9=oVC$lQ?DG55(gTi*Mg^$zwl5GC-y(oX z=C`FD_!xzs$sPD&wwU$Yb$VrDJZyhp@<`xX6{{eoY+8XHr_x-Q%`7vD2j}hDWnOp% zr)4@?pDF8%ODrsmqe!#MVGMZnWk`5j`3!hyt0T_LizM#7`*>H!WOJ;=UQ$ezTOARl zFuzZB6XNCGSU;=#7&QlR$5A-KYiwaqqdi*iL|0Bb-zSWfM(6*m-1S%&>KNxz-LxBe z6P+{hQJQsw01?apVc?uP1NTt=J83!6J0@_6@)Q{DjO>j0$FpG!Fe1IJ!Q6}zeQ=Bk z63Q->>iEU_slLCsPWCECaIVi&(1KP>1GFUPu14YP4^KNxp(j3jhxyx*)v;dwlI(Nk z)l5#iHU>%oQwB#%F?j&<%KUb4YK$g;jb&>w_1T#u&5>K8SW9kX?VHNYEc0#;CqXBn z+5_c)zp%$RxKK%Q9m7O*;o6FzZw6gtBvEpc&B*oGQVZa!_U{+_ZAb>OF5f{sC+z{- zdd+y0!|7OS&h%%Vf8E7+?Vvc9y_6UhNpx@aE*3#!{4gLghOoV;9j;JvcczuCh}imF zr=@_>3q5`REQQDVzIQsr4T&?rISLVU9f(0xP=@Xn!O>QN-lWF|Z9p?&OZb}DLn>C>p zBsgYJw)@(L$z&rOaoVLBHr#OAR&87A>JRa7RNwx2Czlg%B80pB_>WF5PVI3)7sC8) zHnL-VeZbpjMJ<^|{F}i$Pli>u;EAT31MSHL&LQs7T$I!oT|pn#+qftUjccblm#mXh&yQ{ppx8vXyLD zoP@nO#^)m0Ao!`wUFPhQ|DFXpYUBsI=PP!1HV@y3*SyBBvlj9x3-i|>ZMtgTv&gqx zO`hOT;KT1(7gcKRYQ+Y=u?zEg#;pD*baFyEI=QLeUaS}Q;#yqp>^31+lCryd^CzlL zXG0xwhoz?6Fr-ZQFX3x+k9Kn}mcSQqE7_VF+A%*GqnK-UUU3sy?PNTq-gjxkaCT8B zf4Av~t@hE$Un~;G#|w@yQ|iHdNnqzZ^_fb9Bp!5&dM=EGFRYAnXDCp}zIBseRg1jv z!IPjgB||V>)2hCkX zn%FyLPQOzzr9v02vF*+_j4aVP&wjHZj>gYadT=e@-C%8g7L6y)Z%Ybo8J?EdN6Y!C zEJZFb6;kj1r~QMduCV?v3{@tQU)C4S_6a>DM~A-5Ax751EYVR z7t%kxr~$&VT+f@%%8>uxbS9)=d}g+sMbqoGb&%kXVNu1Glv+^Jp}Kd zj#vfQ6v~Y+BdeZ3cRFQYRwczH&}tVTdDp!Z z?2Y^Qc8hxuav0Gqfk&^ybJ)Q~Sd;yV>aKZ4dkJqmthY7Fp3f-VL2AyqWon0?x_R{c z8GLwA-_tK6!yU!{eq~t-M2p{$bLoK58|RUvksV{RHG=h0UxYA(`mJim{4Vu=;;TnU zNCH($L)Hf={cjF_*Q%lFi@HB?1|g{2!+)h82`Al{u)g^TmbEq`DZt9;ZzDm*UWIE+PUN^2Yst>~%ql!C%l ze7)}BTEW0nvr)NK|F3Q_D$$i?uJ!>I2{imM5xaxg5Ug#K6qpDVQ`7c1od>})BNrW+ zjoO$`z;ZC%q&`j7v<_jpcdVW5ooNSdJg0IyN-05I1^4%weqo89D$XP{GtUnVX!3uT z|!=u?n5MmOP8>5+HeW}$L(%nMIGK0np(St z(!s@7+xVNwnSAphqoak+y$V7erZVHS^`gs}oB&MRE|fB5@7=7Y#mrzpG%R{63OoL5 z1kPy?wE@X*Q5s(xVOZv+*!IvQhB5U_Y1>*aT2A#KR+Pv}JHQjgzvQBFx6|{T0`Mhc znkf$08;vbowBPCPen+7kzj-RMsDFZ%htO12v+@-~ZCf?t1mg;j@CdV5$+Bj2UH>t9 zsc3@2&QQm1ueqYvqlX7vmUzr!HDNOxdF_`E9w3I ztG_(yBHcPa<|C!yLQqC5@DZ2)!Rf!wC^hW=u*U%!-(7^)KPd3Ec4J`4)5^U`1KnA2 zfD0xU2yW&OAYr)xdZk=Ig&wAcFVdb3xynZ=E}T4hIKh86E755kk)SPRU@D;p4E%?# zzh=)HK{YNHLlkN|D4vJoZx+5dC%+-2;Ok_#zNOm#4(~<4_#Dwnb93n@@G=`tH^GHa{$L3gghlJGeo31vfY*g4fKDubV5X;k1=mlCd%fO(-0!Q&Y zZYw;huS&E?Mt(m6NfU1i81DZA?J`{`BqeXwKcOHw+;AY&(vGK!f4K)|vo-&RgyONZY;t3E=I<0PYeiy~x;~`20K| zR{*A*ya+y4Y>tACNH<6*=}as3KMT3~-Vp#ux$=K8II#c1aAJX&$okWr3eaI^J%%gM z0ZDclKZ=Vzxd}^+8_dBJRer*f8*?y#l=IpFfOK~kr1iiM#)DDP7nfwpr_5KS{N*te zzXw0KD-^WhqJ;8^Q#TB8T#a-S+{Z@7G$D8~Um*QDLBJRE$lVfRmzB>KQAZqroa)v2Ygba zWx_|efiRgUAS;?$`hKc$;|xg9`+>L71p|NrCNkiSjY;l+vw5+qlRTk((NJ|08%SNS@MJc zR?RTP@2j{?5fDI5M|GGfL3IgsifN0bjq0oThH#Ln%et`621)NmC>98elfj((#Op+x!VXCOHFYuAW9Qt3bg_>BAbjMK| z)Ef?4L(9>rGUA6IyGjoE)YPv}C1*6o6HUA6=%)E+i|;EwH_~jFN)rW2sq; z&Hof5tHbxC_a>}5lSy7eXoIBW0yS1mq)t2#EO#5@0J#E;ogwnMP{fYzm|36T$8S(@ z|940VCcZUR?onHWYk(Or%AnP7ipmw+hWVunfp{^5pw)Qmdy@;kal<#e+{*;+v|^a3 z#xIQ_NVpo>6*W2Fgqma@onH19RgjN-AZ@VS0y%4hrf$ez*7uB##rCs9G}qK;P(MYs zE4qDinQUu3BvdLYgJ74k`RTQzE*?)}{`3rrev7laV(j%#CBw!I&kDMpb4}7)!(+om zDS~R60h-1N9wMx5uy%}kJTZK>mG@kF>1W_goTm8d>V));1}ld|Y!=xt=E{mJzS#sX zp(NS@dp)!Jof-T2S2`$K@ZBo|DANomGnA-KuQ$c^E%FYv~Dwvm-z$~3@; zt$DA&J$Corid>(4d<2fh+#bFnbE#s5{yPIJZZQ>?`n-PSr28mp;<|p6z1-g@~zB9>g`hjS*w>pJuz^rp{Kb0#)K2orh0HWX&5zK3)3HFa6l}L|p5@fq{epe7xBnADRaFjwoPVd_9Qk1gsBX6y zTC+YWgpBQ*9bkpt1T&1Q_(Q~vS^2ovLzRc-U!8Rh?EQOnEF1;G!cQLSKD0(QkmCOG z^_i(+%smE#Q|`|c#V~=B&O3){Vvg_of|^`j{(cahEa&Fhy$!6#`f}d8Sj05O{GGD4 ztX8%Pm)uS3n#^}w0ne5O@kAIoz@X}ylFgIg5x6X@a;w86I&8JF)4TdveR%~v}3nQFeF9Xdku1|f;S#qiH zJ%sgESx)A2uwc{{O2^el%Ix;xGMG$SHt5zcKPM`bXoE_Ock=nEmENTFKw!@Wv$zTv z&E+v}uK{yo6}=#7+)l1L*wa~#o2B|KO6Ca#(L;@Jy!w|bH{?^MEg80R&I4f>1gLz2M*JRfZ z7^1MhNJj&1x-aE@5mZ;$SsMzgggRt6IAl0$4CA4VD?p@03@?$tC1vP*`0wU8jZ4?3 zwbaa{;85`KVONt1>kS{=)FIih`tD9^nF)NOXE}@LeWdng71P9{a>627vH88#rYG&m zeo(3AZL+-49yq(`-&@)r#JLrhiDCfP8EGOsym7&CSaX#0knWv@)4i^J+!r`85H;(O z)IBdLWI1g_El*OR({Ostzlu>8nYI%4J}j20UFgOma;Z1rD9sO{rPekW_$TEN!Fy?p zI;)Mf4ANpX{_1|{lSsIJHAP`h%Ygl6^wL)ofwGwGhSK!Uxjn*4m~{sK!%mu`@H_1Sh848LM7FE(4im{g(A)8k zdGFlSUiMy;s~c^xv7COl@+<_aVUuA-aLUEc9 zl|w&>-0f(%$UfP~f4EtSnhqCtcNOxG;hD@0eg=Jw+WpGVE;!L}z=#o8vnAsHN@Cvy z@C-+PJCoo37inr8P{cm2Q$5#xx{5w#9!(=lu{$R0aRXrN>Cj9%&az1SDUrxHrTl;x zcT^4}97Hxih;LGo*{Zsh;yi)BwUy0%*v(fWn3$=ddh;NXy3k9n=TA_m?4$Zg!;pbe zx+LWJRq%qb0>c~2ZkA$%i+qo?xyeTFS!tjScOBlBjLKiz;xD8vEul+G4ss5j%$5n}JRRno&?qIa83HD}u748Udy4rWsL`%)HHPjINXD6ikE zB9oQXV6rF(u^p7WB~*6)_)dg9{flAW{?B*Ad_lHDzjCWR`1Ld1hWfq|%P4Ibpb2Vh zhj;h*tnv`w#e8m|hmf1B7=9Lg#`HZ@+nR(#;E~HZ-@K&RiN}KnelfFTVO;S?@0txL z)RpnUl7KP^vpX80e&&PC?de?MZ#;!&Yw!-*Vi^Qsi}kI?{S6u6hz;Xcw>5(ry@9- zXcSHYK7Tf!&=XEFM{_>h6|U2HR{->2%Fr5{Ule9lG%CHorF2eP6bjxNo)ucGE#fd&o>aE2y{zYl3lU{gk!Lafw%=Wl|ys%?@ zZiuXB6lYG>M={RajgIW}_H2sBG*w~44R0Qp|7y(#`*E~r@bKYcosDb#OOZG?#BgRe zb-l-+Hu3ks=ZwZqdk%E}Ec3|2DlZgXTTAqFol32f6%ucU0X0kfd*B}d=Zrb!zZ$8Q z2^E9f8x3KgiPXCO%3W*%YCH$O{{74Kt*bexY?uTatj z$SwbS*w~C5l>Pv-*OqFf5EYAd91EGPV!ml}5;eBa&If_MwyA`_02l;=;p4r7vUYs=$ z0{hJrIj#Yt4I_(SH~IzP=b9Uf{Ev1ck-zN42gnE#TT`O_a&RPHK~SzxExuBly#Bd{ z;*6$_t>@~kR!ee%iy8O4^yEyikEgjL4~I%kC@FmHXWU8q&-#DBmnT;u-LxsewKgn; zv-jL0Zx9du&IPb#2z*bt?y@SxeG6oSZFxz7ZuH0D{c9!HmG^1?lu*t9KYyX7(R{Hd z!lD~+Vxq%~#p8dEE!oe+=wlg*4sGYkN*w{h7pse!*+vE<6j_Ks!DK^&3Nq-|aC?On zif@-n1WoLsp=(FzLnI-yi2hG^&$#BLb}b(mey@|AdM@E7Cug$QJB%zi=)|lLoew8P z`3yhYUzwmiDqYGRzO@x6vMoHY|HEJZF3i&I9+?~d^1d}%_ z!&V;>u6`?ZC4Lg{3c^#F)+rsy-MXe>xPD0IGQP-TLKItdQe3uc_f(rt!5^Yl078bw;`Lf%4oOU2t-S%(Op1IJ^7-KjR zKs_!?Ijco%r}zcAyGR85ME!rwgW~=G6av@wurmq-fL&)U5U~JY-(}C;ePk@=^NGq( z?uDyy$DMwP+5LbxmB{ArUjR1#U6n+HbKLHZu9O;kt;ssJ>O@{rcqS+h3N2c<`K=-a?e)*)06$`rt z!3@F>CFD$2qzJ?UHtA2jDC;-%^38b`SkYKe93hpJ>McMF3fyGY;(h21xI^jDSuZrC z0g2*I!38XVZ?&|x9T7;gKhTCT40K6`~MoKaPG zwY@nLp#*k^yMdMiPZ%WT4=FPwS-o(IMZ^a4N2kS=4~Gz{D5pFH;2bK$)(t* z*7yKM>~FnM+E3{MikM)TW_0{$puhj7E`SM(TqvJ*wG^t9r_-!J>b;OKbVT_Cs}Cn4 zqYZfQD0uMmJKX7neIfi{yLUa1GU;TBSz<}s2zB0A00>$zNejSyi;r;`!M3%WAFCFbEQy)xiY=cpz#oYk?l@K{4|50IY?dc~9Cf@Th&|yQaizq zq?r8H)bs7T2!oiuXO13JnMUA)I?a&z1g3+i44?6BFy9{O{XV7Z>b{*Y16cmzAj{li zWP}3WFyc7i^e4loJeB)?a>gU8=O2lw8lz@(EL^s&p)4YeQQbig))Eke^((8HNzu5J5vnUKTUBkdF_&kT^QMZdMy~!zu#;ZPfIN7MK8d zl#7yhQ*&;V@h>s5Q(JE!&GKRas7L&mS4YhlsHt2G@*{xwjDZp=cd>|*4H{ zl9vP6G;P?;si?btqig0}UCsxishRx9i1Z}BZs;8` zAQiq2cmCJk;<2n4HXYoH+Lba#5mmUvps^Cku(d39AEsyEZDqBTRR59QNB>v<5@zMx zaLYn?P3Nq2IxlmJEhw8xYlI&bud)o}RIxb;UyDd|@uVUwU;91|*@pgj!+Fq5PmY?{ zj_b7w>9UizD_x^J@0e*V(6Z}(?pL~PJIBuHVkjkQnHl3gP-U#ng10Y1jymxNO32a^73|6>;oj*ih=}wK7qItJcYW zTW+H037&}2*?LYNO!>Nv4Bw2&OTL(&S=^W^WauSEOC>|n!;*aD-tHS$(8kXR8X8&^I~af1678=VX{@gl8ee+N4t1!Xs}bC}jmtYWl6-SxA7 zG>zXj-49Tb%$|SoK`f+dP5xwdeI|&upCc1(jW_e|O*f~xoVf?&B)D{hlirDT@v3E242lWE8(__*u^Tx}6%Hc5)iV9TFZX zb`|{+ahk%z$x+Qz7*dh;8SsX>1$sIQU|@@;nNLDk3eR|c^OJv&uxYQ`u%@bbpDJKt zlc{siKuc`+k*>k{yWuzLK8ih)>I#~Ga8%xbKln@rCa*DbQet7pr!_TEfZ69w5t)lQR_DTLUdgZl zO4QLG-ey0pChi3~Uklh8=F?O(Kx_T(?yWxvW{-@~Al>2cjzsKgeQ6%HQ}_B7cwt?3 zzBww0l2#grUHbH2Mu~|OiMAU1z;)2_f)g18CpSkh#4ZOJBmh%a4kDj9G^y8FMPpRFK;1SZFpY zcioZ2bPZrmB^sW*|7*Nc=e7P26eFl5GkuDhthcJHzC?oeY%dBks2Cmz8~&g5)kYh@ zK?0Q=(e(ZTC5QS`@1*D)Loh2$kitfE;_;vI_itKZJfIVu?<8UR_rHf;^#n>AqgpW1v}ypmYw)HBPtj zR|lFGqXS?mcF9@Ne_&c3xJQW{^<^JN6FGO14r=5unJl1#U9ZgFtvD;0k#S zpW9=%9?S6N7%73S&%Kif1o5DqD_mu3QA0Y>rY>yV zhi1T7)V&Gix^uEIjZ86NkIyex=^(G}n~*t{Uz({dfTy2U8+OeX#kv(*eAE4(FcRL} z4HA8>reG(3!_jQ)iefN$?;=worx=BS+b|!drqEl7P7t6(>8Onh!sk&9J+qX8I_I|n zlf^aGjV!N}5y_K+pf0OPtP&jDUpsOkarCGe60&cj&=&TD-={y`zDapnczY5rc zreS6?eC+Z|x`&yf9+3nlmmqv@PmG6?(JzI5o-^ye7!tHB*Cl5u9}}E!rGXP!?0KOL zMn);6j`)XdjsAG$#YNHc9D{~IV( z;EG_4bRuqt(p8M3^Mye~*_m>U-poUr9LQPdS!!PG_C@S27g9&0iUg59$N9O`vBW$R z7$f(8Wl+SWxn4p_8uB;yt6|K*?(6XwZ;axG%wE)Lsg3y=wJ=RNt|_{albH(9-j$nJ zM6`Y*8QTm)WQch*5GH{zRKLHLAPWZ@y&xoAWZl%80}Bn>w7hen1%7!R$11LaYT1W5 zx%q}p24G{{-XdAs{g#8!AZ>j(CUtI?fl=8e)n_}45E>4efp9P z=A~WS1nTvsBAV7?;225<`ZhtU0y>2~?ja0z^CKt@y`S?fzAXu7pcmYpSU>t+Z6&qp zblVTIt=AqqILsp3Wv!vE$Lfd^?GAyIvuw+ca$f-RRw`JNb2@K?K8S^fohKFuyc6ac zTPP2aU=DrHf!9tj#FWVp(8i0yZyjK(q_`9IY_;D!Mw*?i1ty2lElDO50D=2KG-{wb zFNxNuO0fUTFYzSHM&%yy?{EA7;=WBryRzF@**F0IaYZvk(ZdROmH!TwxbZ1iRA9K=y`L>_@iqdiErBh_2`y`2MjrdfnFq+@^gsddZ zZMhKc$h%gO}cu{=}qDRaB-Xp(!(LsT)&ncgxG&TE^<-SM8u)J82>whs`?ViZibT|Dhex7n@s2Mx=jxkc?dl5eT z`*)XYHu!QMSc(drD>F?Ux*gYy!mJ^?9}Bjbqrm}Lm592B7g~ASDX+=va|6%hP%xjP zaD5Oa2Sz$6CZMf{_eK&CRTIF7Q6e{$nKmv+x;%ehIkVgUCqKzsET4EHN&E+mBi;WI z@sVJrsPa5Y2@s{0X5Rnv^CMOy_#=pXUA{{R;dj8+XBl`&d?I)HLK%z6FlN6i3e4&9N10L2X zU^wZ$dw`Qfo<{d|k@5n3$0=TDo~lfpe{Ghv1WHnluo&e>v;F^i`Trg5z@dY@7MN9? z&wnoeca_iqAINgxGj~YwQ@`SWTRgpZjL2qY#;eJL@wCFEhHB!2Z|C}ebauFxL|A>j8k1Ut8T|L9b>DHO}7~f>;6%U3J%=`8?7W6-ZxiqAy9n^YkAPy;fh&$hq5r2v37n*9k zKnyB)1En$Z04#ryM)4^A9QT+j*`#rUbs*9Qgh2$RpEgQ_tuc?ylM7toC9K{tsl8 zOH3z(fSiM%Oc>09Y*o~?VsMlnHX6J#|Md~nMB=?5sH2zLuH_8DK7QYIM4N4%P=9Y^ zjsVOoij0W9pI{v+jYk`(u5m|J=@{mQ5GcS*YBVS6j1izV8J%w7hTHrog{gxcvEY)~ zJ~#!yv=u^n%$Z5;AWQqcdH#3`2o$PJoW^$yLpBZo03qrpe>)9&aqNw=+g>Q@l3+jK zNtYrdO2|wv9Xma4`HKQFE#N=e!hh)r+v&XjZ*%}O0!)&E9F`}SJLE-0;Q?ClOOxnW zhhTFRu|9h!f&RywK((uYA;*kI{L^5R-d8v;*c(VTT`L46%(v|$%nz1$%6vo~9thrx z*g*bUs`hN%gf<+cp88P0hYIBGkizT@foTL{&>PFihbW(KQbLEhqH-@TD&9YGkgzs~ zo-z7G+avP}fP53xZ8iX8CTIu;NI+j&1Su3>y8v4z$~VpANmks6<&1g&0MIYR0!3W1 zbqc7grv;%KinV%=89tlHIIWgz-ZA_Cd6oYWKO{1tz=@^(pTfH(neHzEs(Unj?3law z zQZ^u7PQ~4%zBX6bHo@Hp7C=C2i@|z5_#@RsdSop+86^->40%q;Nq{(T4pqM1nzN)l z^Rq$ir!e_a7a0PZeN4Ai4)|Qc{?%OZ-%tMrw!j2gT-L-T@IM=R#nf`Z;a{+sWC4i6 zw5e-!iA*~{UP`4bE&Jl877JjH;t8N1|9CKtMRQ2Z4mJ8DCF?Q+3>*C^StUo)I+w#5 zS4e^D!o~*pdQ_<>ib-dQElOFvXm{SIu>2uk-U=z)Witp>Y)2i~m z0$ML!eq~taa5~1`NU;Z_oR-g1($_XrY32ndd|lXkF?fIJux;Y^Wzx$&ZcL5bRzN1; z&Qpn%ta_gy89)iS0Gs}KXOE5S0Fs1JS>g)`nATla$6_IM?N^0I2B=5zdT0ve^MX$M zxdIX?+FW|a<%}HO9&*IvT7OR!DrnqO^9X8N22-0c%sP~Jl*^H@I% zO1;P54ck`X@a7=c8C6r}pOhO4fYZh+l zwg|S24@0(Yb0HV`vKcbVz2DX&T!N1Y$%9lHOjp211HW9OIy z#7=TJgrSH1X$y&(N~a?E=vCiS@-dW_JQL&vy`xy5$wSshfc6nkW-&5982Ex{-;Obb z4L|+aM~BprzYM?tOqe0qQIwSqI3vO|m7JvVOJUtM_)v$#6#ilv5e`Ay(%4p{lvbQpX?>3YWV!4|vuA7Sh}{BD0cSfJv5ySgsq z{mZvKJkAGo*+olZaBB{R-_~nmwF6D{{VGT%?B5DX8GMl*a0n|82=w*GkytOk93t}u zW#+3;TL+EU70G!5uhcy?@={~YQ^6-e?%llWQ{ZQIvw0Kt(>60As&LbQ=3{`-pl5vO zLpslyEX<{zgH4=$iRGB1wwB!^Rcw*H9e)m@Li z(ZRCD-3ar65cn~OXy}IRQfp0Om@?j|YMw(p2S#2JvN!~)?Ftz-01fNH-MPFwDVLHb zon?M-1md>{)XW@hn4$yjFqdPv*W(BieK>t+iAw}7?(i?UPU}W@U!Z~J6SKhj7AYsm zK2`Woj!Nvupm^-~<}QZop*rm;8@7NLk|qw5gO~v%%fiZQffH1bTEM6m2cXkhmzd$k?saVTMQv001RTvA{rw ztiNat!=>|7y@WI=3iYgLL4MC}el?m06NqP>eqE0F3qLbovDW+d_MhILtk(oG0EoUS z-iJO6Iyx|r1ak{TMh7Ak9_2)Vx41XLS+><~nWo7i{M%^}^`>Q_LftqRA3*Yj6c2_emD$TAT z`7WKyZke<;n)B_yOsvlWH;7IcR2{*HUw-6YVLE9nlv6Y}N8$#DBqrXQV25|uBfNWK0vE)2-I5>d*xfhn>@dc_o_GW&&zpkH0*+wChJrcJwI^TL3g|HL{kj)2QGS? z+?I^b2AS?iB&7Oyfq#fHHqqw_|0PG|isfAtW3{XAha-ZOW-;O6;2d1L{#K)~`ZaP0 zPWw+aTGWFTKaR4057)n!-W`)KqQ*zoMCuHj%_!l=y+B@^WItYz?AXOBXD9R@1NvDs zqR=FP4L4$d%?4%npl()s@*LO1;|X_NH@v>qHcsWmWJ86;!%FiRR8t0^jj63E0FU4Co-V{^4V3iV8cx$;};<`yS0y`lYG@ zl549h!~y~J@8JXRhbTuDaAo|G`X+afs@Npl&9yuqkfZ2Z;BLPf4R$-jkmR;S*Y)*h z54ny!d!a=^deJ$m??SzV?YfG%tGzbSk>BDPzO3_N5ChbVvuB+;OxHwYhXS4LJ88tN z$UhjzUL-Hrue_B4c@*U?z2uiM4QRwV4LTkD>PCDw;3>JD2vkl-f!VPscF)=q+5-RJ zewg$oi=u?W6q799qRfS6{OQH6CZwo|nGgJC>uy=bDHPURmx{F-b@2g>9q=)4foLXE z_4D-eeAaWWzei z-{~Dh6^dM~Vjzv2BEu=Gw0)SNNGqjh8c(oWxQR-$j4Jj6S|t)Nd)aIT+r+S+M*h95 zB>w-HJb}J_pq-|rRo_&F5XR!aRY5t5^=5!zZ0&Gq2L>T?y3QyYNg)K^PfXDn$uIoZd_w5G_uhM#4hg+i5oyw!NCyECB=p{qE+Sn;1Ox;`2)&8Yq?gb; z1Oe&f#P9i?wPt3`yny*5J1i2`0`g>M?|t9b^$G6%mx+a5^4{`{$7nrlJ|qQVlx$CE z_hlZ2!?Efzvk#t*pxshX02c$0t3ciI!LS+@H*nV;xZPhMfqs)8XIei4aM5m*CK=q= zI`Gw1nkePSxyns2t`=GfhJ1lhox zlVpHyd%}qlPxs~Pw2VIxGQoQ1r4Eg@V_y16$*G9*@Ot z?s|C3G!l;$9B9YI4?`Im7uS(g1O`jem1g~F>Q=5!W9!J%?ytqHorIu_cxT~Iw+9EHsYiLj3t-jjgy>FAR+ z=&Gb@9&jht{L=DU1!~%#o%nfQLh-&QZ1E2<>!l#c@B0;8f`~5nsRy}=S~J#%Rb5{V zDB!XZuUUd3CK&5>iEX3WqwO1)ImoxA9PSuk6X$ue$HQd zh&m#EZL0Rg)#Y~!p=rI+S?(jPl{Eku3mmyjjy6-KsrI9tQE`Ie%DT)~p*PehyI#uR zaX(N6(L;a{GV11gkKmPfiIptifAzz_>9P^HXGfRA5}W*p8A`O5-VgLv8rXmQqr=KVFg!j?&9GFZ^0{)Um@#?FqDPGzi7rBOasK$< zqd>ql2=Atj_dI>WQ~A(s5Yo10)d&mBsXf<-RDTmIz(^?S^O)V`-vcMcHzwjFjFDU#hd8KlNpe9m+8SRF4k=7@6^AsE z5k`oM9%$L|&_`bh#L=Nx39)Kk81G4!l1WK*y?j%O=)Qrx7x^eCpP+K^HLARMO#s_@ z3l}A3EbBJ^@Qa&^IK5ZwCcdR-7YZjC5*U}GqFj62to)x~phzm#kQKM7vTi%>vhhS( znA{j`!ax>dFg-k63SC#HhPJktbkc60%hl`Xe?Ko&p)Z8ODZwy%o4Ndwv`3~NQ9(Lk zr|+M0qewGu2ST~1dNmn|r9U`TG*ZDnSi97?mvT?8Ws7F+Z+;JwiY{!Zp}+NluwGfd z8Qidg+^Bksit^PzfEW+Yw|r}fdyE^&)$KOqo*P9Zsb$Qxm7$B_wvzkFtX}YCXNQ(H zp$JTkc(teh+g)FqSAjNnpuWSQJ7n`=TX=gvk(f5`OQa&bBo6>W7)Z-Gc;E`;sC1f^E5l z7X=9^EUOUI{TK8Fk3nlqt-3LLM;Pn8hM`T4y$Qmh2hrQKMv#&jkw#h`&c{TZv%4w0 z3U7o8go?HF;{{x9!8uv-b6qKU>9%*t%pXBb)W6qjb^DFK-79kc_!oasN-x$eDkz=f zOTD~vn+9maCl@8l;UTg7jak;A@1xayY0E{F*-ny&kg8Z`HRwg1Jpn_xRdR-A%(cG#2|i{@@TJiCAnN& z-h?bB-=86pd1pYKIHQ{LHmd1iOA?Q0vT58<%}d>z+Xr;yN(;QbW{}n7{+?Q}YiX=x zygiS!pdq5BjPv#Q^s(=OdE4MgT>s!cY$Zn66UyNajN>!Djs2uFKxXoFRlGp-GU;=o8Gmz$Iy1XJ)F{*4trxjrhd^>8PWKo)2!gH#>LWqqVI?QpS5Z$I zk|AcJHF?_Uab=$?n)ipzs&9O(U15<-<9+$Pz-SJUb!;^(jWVOU6IiR8@xd!ECjg znm?esTR_CMT@g%`5x^Z%V6gLgH17j%gFqbX*M+d6D1mz}M|VP!K>nMus9W;!&@j{+ ze{`AoNep#ME?*xiq@KJk)-I&s6y~EzPP(UzBjxRMh!M>8F$qbh_t>VBdXmRQlSF8m z?4&1U{hO+nYTPaEXYXIz_$`!?8*sHv{FwA-M!Rf#+cxQ^K9}8NRU$|t%PYzw=6!03 zR~ufY$a*CuYqu{5?zt9z^{VQ4yf=q$6q5MwWA*NOc5&oo3yjJ#7JnoV`rY+<#v-{3 zynG!>!$z!~ErQ;eq?6qyNj34BSVyf`SBX-O&e>$}(x{z1xo3-(LM%GF5E{qgdE6bj zV{!S9^*lbx7nmj}p$4!7A+X=A<3&(RXtd(6T>a1w%-_AZs*885SFXaQ;dqEom0_s^ ze`WK~ht-!{xcJeHzO;#&D7ukW7zQC0gqiqZk)FXp8P(I2IFj>APdJRSNW*er2uJPs zUC2+bn00S0Q^N^Eg&lmE^SS36Pb8$a9AquOC<7D+dA|IS#wM7 zGySSgZ`nL(v&)=q{d`So^(wN%6lGo&qoZWX?RP!z2kosq9Yfmry*S?V_-Utbx5ma* zNS^)yn<2V?sYxGKLg~C-$iW}rrzi4awX7d`1RqKV9A60o-?<~7d| zVKV89!E?vZ<6!b&C1s=Zsi@j)vz8!m+e(!Sh zfRy#*8+PKGUTa~P&(O@8wS;aN&zZDEI5KErv^1sJlCuEj0x#(KT85+e( zE9LCQno*ExLzhwa^Ux7Pt4-J|teTf9hL78nW>>`Gobr~C{RiHHjH*|iFMFJJqIM;0 zp3@x#w^rhR77#Q8D0i~x&pc}F0J!pVaR8I_37lFwJu39k!sPG}9kvENhx;O&ub}%O zW8`%^Zj@T^#dM1;c&z*mi%6B-&UUPp!;QSEBQZZ|6Te?vjTjV$1nac1Eh_%&y5M4<{ zbpA3vM}=f2$Xnym%U%IXeH6wtt7=WE3p6|ESnm}%tmlji4vaU{M)#?fBl(JRJMV_B zaHS`ncx%7w*?|xH{jPrKGl4o6oTkV#mHvH}X7tK}NTRrE7;xZQtP_?#n-<{~-5aM}>emZsIzhSEop z)(BpT@hZ@rotkiLhUc}*c7P`m5zq0S{u#F<6x zql9w}KTqriVDMgrGCc_vl-fPszF*{tH45*9(-wB1J{`k^I0;bb4=5bb06d)vJeQZx zj$42O10pSlq`kkmggV+!XZb?jc3cu+E~?S41Y0YCZ%yX2+4#@&W0}#@DUim4O=o3p z{Op14EioovE`af!LuZ~9c%T8`c*xZBpjFbL8h`(7oN z!NiQcBm-eTTsE$?)+#iyfn-Ie`JirzLAXwJ2+~;H7*QYwfp1~Q)d!<4ci}TSUTSH^ ztYFBFz!q%4q-}r;H2Yo?T-q7Xb%&@U$hj3 zj@Ic;^n+aE)d1EI+SHeY|8kK4QZS%C5{(3r*fD0a`Dk9D;?QcQoPQm&HUOgWW@356fMJ@AW|jLXEO(uzSGK55M-$WXs3P}r5*#E7X^)Hc zTw%p47uY9L%}B$}|8yCM!~st;z@}s0llQ5aeLzWUhQ`8?0A&zJv$*8Aj+iHb{95&eV}4YLF9JXn>Ab87 zkM_Au<$0uYi=+^qPc>x6FX~Hf{`Lf5;@j^s5;afjJsP8H{Qj5N<^kDhQ}p9dTDC!> z)$5#te3ONt!GrW6yj2C!X>bttuaIAut_#_Z+k@X&tiIFSou-EK%afb9;?L;Hn6}3p z)vCv?B&~K0(D)`it(l6R0)9k(e?qCflrp!C+W!cFN?>Bcew#gBO+OyCmk^cPw(XDaF#XZ&%KBzbm7bw* z;(HJ6V~nYXMnhT&Uk>P!jO5!&e5FmjzWDui8pBpg^hp4l|w zzR6x_Zgp)54^RG9k-B!PcmBr5VeIKtvLV%nV;{_@+AG?on)_F|bT_4j7bSL-V-$P{ zI8hI)`-#&!{FT-@qT-BN4WZ6SADa&7w%5PAO;ow>qI@k`?7uoypx~wWB}Bou+qYCz z2LX`fz-pwm;lNrb_ic3&JKr;+ZHB$3oD}t57dj=o!LXQX>#}@a3CFw6_xPNDY z^3S=KSU;@C>vbmf#ae?x9*`0821%(`l1@gmz)x>Z4SGyK=~9kcwJ+ExG7MD; zWmzPAM4~ZVDm+B55OFjEw@<7Ff^o87vH;tkx}0pG>Tx$UO#l8DK-qn)0cZ^-0e66P z!(^$!3OGe1IAl_TqRp(cJZ~5!HKdubRhq_170URP@{qKSpF8o@00mw^jyx(7Za<}v z90y}>Kxp0Py~PHc__^!20*%Kflt_SItT230X-=k3o%Y8C4|FbtC?Z`$`j9|} zM3zCU4~h=3;n-T+6Pr8y+*&y}!EDxxo`Z2Jy)3&`iemZpF5D`;Rn(vO<>{_L(D4wz zVm`jd8Ez%u|60|IsD9$*avotTdPsPS3W*>fzT1{w-Yx;TbAzdTgZl1KA!AumXl1{8!$p`ZCRs9o+g>3=bq%Mh1hH}VtDau5@OTKobl6$ z-T%JBJ)&0`N5Z}~qvv7=<$|X*RNd{1pxU{t-)wAYI6jqhy@bopu`vhSdtJ=299%?p z;Zy26L8T(SU&YSx7|E1`fk4{SM5A{k7+vV3Qu&kFXn=pDH=Q!n@5$K_pjArBJ@&nsZp~L$5CODDTS>njFl62M5laIFqZc0K{dOFtWx$ z`{sIu%913^RU+$;tEv_^I+7KCqR-Li#l|xF1So=1lFhG1OtXpQ7KZOoFe;W%^Dumj z>EHAyHT*2#_7Nyz$QASu)LKuoPw$RtHpF!UsbZXON>( z7Qhe?T^Vc2r-u=y z$aZwC4PVT3gp>n)lJpI~9dzW>!=b8KQv{rj(mU@s)dA>^d&X2il9FpPbK~cTB{O~` zoNzD+1pP2U54I79VwZU35y~O~_Og-i!VWV5RdyF7jtPauH0hYO)q@W#q$zr#0RAa6 zC7rZ&D1e6`a}81SR1mG^zIiq5XCze|zuG3{A&FtppH_Y)t2j111t&8$f@dIEI_RfG z!ol9NHV0WQhM%5c-cST)yNYenjDB4>C{!snN3RE$ZI$;T{P$HzR7Kb^no9K#RwcB2 zVzx6qt1Gul{ghib+wt5>c%r{;(gy1IsWl}9ltzsf3>b`cFz8q{=xG$VTE!uWKsfZ`Na3B!wX&v z>|NOe@VNEjJFUoHt+vT1*`%BJ51ngk_C$=dF8UGNLwTfXT!QtinWL$8go;kOXHkiD z+{M^+R2v9s8+sWE9PsM}I!QO~cSJ(T@P-!?vy_e*LxN%pq`}*a0SHr4gR_*iGiMQF zasNK%GW=RTFyJop;HE`90?vGL)_)!;<@X%l?Vnlz?K@o`vo&IQ^S+y@zXyEOCMRfUiA{l!m}LX>UHcRB{4 z5;nCpr*B7`QWqPKt`JTDsLsq9;7U{vFq{+#2JE?`Oz&c)2LUkjQw|h}BxrT&VKwFA zv--61krhZR>|2w5hJp({h%T4K`f#xd@qr(%3r3`dt~okY48QM}Y8@&>Lx9O%qyTH= zkvSJ1W<#d?tNTkxw^?0L_q&eIcIxa@N+*N1ci||Eu3NO(bym5+_s2h=j>Y%enC1p) zKMFh7lkFU7P!m$|RuaCyd_s9tXuJbTS8mv~RZhPx(JL4yc681P-Rtl^Ev` z2Q-9j-Nyj!Z78=f06-0M*AUFs*qF}gobt>KZ~)3nnFc3SHYR&%7gl$C&#G*PfxP3h z?)VNt9rvIT5Fo;G^qKvC>|77}$4Nos$l}piT=s(a7ZCHf@6eQ@jVrnBs%$kWQ3}Up(7uNWrTnQZzjE2ho2P~@w zx$8G7po4l~RZbhy1B}t?xp8V1;rBT4nYY{}pcjVEaE4Hw2!ZcpDr@Xd!{gANXGCp| z+pYK>&d6PbPQ0*~E4;Erregz4lezpf?*Ce^r1 za}&bbA;OO=OljSClN#_r(xKHsz3MMBXP}^M#E`z8OVR0j4p;j)b(S>zlCtX3Vx)f03v(s8jmYKX4r@yFH7^5qLg(|3kV20A1&9Sl zm!Z2{QpJ-3Btdq{10lswtoOl}(+pe1Q_o9P^?ww+_5m4Igwns&%zfsIwfLigdF(5L z*Q2D<*S6Ih`)7$@t)M0Q2`9Z3GY659%e6D6>Yc%jpUFgD+D%wyzw27D>yHJZFST#z z?zUvDYxB=X`6eqkipahx-bY^92?cK_xn(rhexFAV0qFh6U~^Z1yxlK@xzg*NM8MuS zvgL{GF+sd3?)_V|>8;8xe?MVw#)D~Gx?H)_AhsP(h9g z>Y=vN{mvlyjJZN#7J}m-y?1G^TrTq|i1d575VyPZD7|{p#VAIF;)56IwpD0XRmxav zTg@$m5Os9#m(-H}!&z*)8qYN0=xMvuqno)d0t&jYrMvJ&2^oGXi$g2u*l4vf?ZT?r zU-%kx%lnt|=NsYZ9`e<8fZR!g%oQ9z6>_seI~y(NIn&}m;b@r?hS2O(XePYomgbB2 zmK0oiyo}r*A>|^=7%zQU-*WTYGzQZ+_=<3WNg0#m3l^7>h)_Vo-F1SL=+kHbCl6pSzHUuFAp2EeMiJpIGJBR|0SZOjMG{iIh4tz5a| zzUZfQjeoLv{s+<;8`4*v)oUp^;!!v^yZv;}3hdtq;)w5{cPGzR&NltQ>FrqrwQP&m zY>zbt=fk?HVwEVXe~*GaSo*6P9sL{6T9F@$Vi|9ZcK&>vqS!TYp_ zEa)TX%O`L;VhrlZneV}b#Ci`>Y(TZuH>=X{UTgTXuR#S&H=e5=$n)I(-LAMukK}ewU`Ru+1zx>Rf0Df{#^iD#h&004 zhj&V?!U|;!7^7Q%W68un_Xx`#BNUoWhMT^Q({Vp2L$^a7G>UV1NNIs_Q`ku2#ej_Nr0G16Pl#+3|r5tS5wj zKX&l7t#RqP?OyGJY@SYV#Q0#~4!?*G8tZ+Y$}m zjDy_n21vQncSNUD%I{4E+w?4i+g^#LFY1A*HZvLPpjBf{d_whMNngm0ycgOuAAMf^ ziW!QnBPRN#Zu@dCext!ZZP`ca2VT}t;1#=UB`k>APCpDq7>g-aX*S#q%H>in)s%*2 zd;sS(jdi9J946;zgkDaKVK_}c4L2_m4J-S{azvQRp*I#o-H&wAHh)>s*{rN8tO^8I zd$?!jHtw*6x;(S$HE@AqzU3xe#txJCf_)MhK8N#TjQ7X}|Ky&1cCt*8Wm~@45MGG1 z3ay;y34Ef(c!oXq+Xg`0CNQM5yAPxkOKEAZdV@2yqGnnV4)Mru>?&HS2BLf<6-XDF zUt)#?4umYaJ}Qw(7BUR9Skx*=<99{A;XDx1ekbuIu80USsbzvpRqb|Wl(OWH{UjnU zS%Y1$+VSi9SRe1hRc!ZWJt5)B(S%}*{}lUfZzAn)ix`qU2IB=|(HjA-eoTyvy2yGB z|E-R6jF%;oSnRksx%H%vGk8TlQv z!M3-Qx}e&`j8-!fyMd?gCG;WkYMI|*^PyShI287ME!j>Oa1Y?=&9y?fHqL=)mx1fA zDO|Rv4nm=JRdeKgJLKF~8F{bSdo2qSYsLmkIItyKP9?>q=?5o1>qD@VUB5H5L`R{b zZXnU9m3wp)N#q#veM|@#lcayuDI!@do;Lse(8n`p<~_i!^%!>#iA?alvF&<@Z&3R~ z0U{~&=M5g4(5&2~hB8O8zqne~9;|sM18`m8+Lc%`j7$f87c)Jkx&Y)2mLF2^zh?~d zhk{imlVEtUi+EA%lNCiYl#F3wN9=*rf9ux`^r0UmRxf`)Es$!U6Bj;xsFp_?KlJHi ze0XMQs~Q`|0`>|b23WpA2QUG}5wxMLWKype283Tvd59Z<1+gthIJ{29*5jXV>#MaJ zcE?X-buPrzQLl=scvYH6^v?x^K7X;gCsgsyFi3`=oHSS;rJ{K|LJNMWo1fi@t;2!v zy)`CV!@1=~kp71L;*@oy^Z!Ln2vNW$V->wUc0Iki!W8LFM4LmRC{66pNg;(1|H=@p zm;b)Z`!~E@jR1-zs5JPF98Ol>4jk}3$?g_62ew#!xPRBpI z8Ls5AB!H(u=t-Ol_~y>(F2?K6YlFOk&}})lai_O3B|w2ofs>QM&y@lw-3GRt(-vV6M8+(S7Blq&iRbycjwT~M^$tcS)GpAgKV{n2bVng{JD?IGCGC+@AIFn zHxX))w?MS;IC0%wnwF;^(evTA|Bx&b-Eaie#?VU$IvRxL&k4*n#vD%5^%(t7`n(ki zgOuU13Q7&*+J>23mxPQ9O&m?z_~P6_x>(l70^$VaJJ^(i67na1p;%R#;7_juSLbQ)<{wnEF|;gO^ZxX+P6ywVMf(gw}e`oC4b0u zed0TbK~nBGyros2;bdD=sCYwAmn)hhgNba$Vcgp=s=cu9)y&0P6;6G7si9AQ3_;4r zMgRW-8SClCg|2d_Xz$}7m<2HC8Vzt9XHWp{a9{hd!23!NzT@V%^`uXG_McP%HbQnQ zf@t+iOl1c$JPy~3nZh4il6C zsEJ!cwK{NUfr!jHG$RJuFnx<86on86qunb{!TqaREG&ihfPNWT413cEMVAKg{-DEa z7y{$bV%s|O7C9GP!Sn%A_2kn2M|caM4Y;J+J&?eY_r{-i2`@HIb1CW^ydBD`T&3)9kZP9NrtSfssI_d{) zg0aE`$Sm;7y09^PH8zO>ym{Lm*uM-*6Ye+PNdZ0 zA_$*b1Ov&m4P#;lCf+N+2whOZWOV>H9t?<#BL|`RwoN!+Hp3%h9au01v6vZ?k<|Ma z^^_0ael61Cnc7sPVzjRq73o0kI=~k?j~-o&-JQtaC3FuvFhRoSe%FcUPmh1wnHA;b zyP3hg0nR8a{Un#}`vW-X>d9(UQMbU-82-5w09SK;CkHeK7MuaJ22)i|mC7oBmsKa#!Z*4XEqYVb86k`M4 z(yxQP@~jA2uyd2-OA7mD<+{!#m`B@Iga~NPdS8tx987_Ln9eEgW z$+rYQFe+ziuzcb)OU{#28>!|%t$2{pYFg;e{C-mTCChf?L&mqW;pMlu0yaQEB~ zttqji$cNO?m1&Xp#$^!m?>_o=G^DY1^Sl@{RCYx30LW?Si8aMu7WHR(J<0bt_CX*o z*uhiZYuWB)f6>bqe2*3bz;-4`E0XoZ9PTz)%~Y%A7us{58m+T6C)a59x8#+Oo*L4-~M(u+FYZCHN ztO-*|^D8y93~hM7zcjDPsW|u3JQM|jER)~Y70yRM1!`<+E&|}AHlAePYcJ$nzGgpOX1J znGwPG9o1;BdI2gXE7){)24 ziiXzS<-rPqR&MH$0OHG$TgP+5*hO4it*3HMIO;7mR!%M za@r?*R8%q3m!8qve0+x~vRq7S#Pfdh={CwiQ9zY5p}e}6qEhDteg{K&;KK1EIwgxh zrl77k))L6qk+oJmbA32D+b``-$_nEK(0%F3@z#!qi@IDs&e`+eiIw6*FY@s!Otk6>Vd|3{d2*d^%lAxX zj1$YIk1R6JARA1xG+Li%hC+lRv)QZbr)e(JO`moCn(6t7Uf4RDev8ZHV#LX*Gw-bl zUejdv+v={xRY@#f+!LGmGfi*ji`@3?iM1SfY)eta*}FuqJ71I``k2pU;{$a`Wm$t= z-m#usjGj!1X_+=Pg%7y#3c7hIQ@W5o-94H6%(3X&gfNvr(lfh*!3T@mL8Z3Qq~NtV zXMnSn#F?s}BS+JR7e0`46%MY=0d+-A&Vz;5^t7Q0=H#Cfw;iZ_zDXF77~QSv?W7vV z`8&L@fSgJcKj!o8&L$$c`9% z=Enj|pJ(><6#QZuD8#t5FXa#IYf?5+i|>zIn=}^_ry?S^I11}he73^VaZ>!&UWXN| zrknya5E0W`cw$x zE5g(kG^%T+T#)z=)x``Gji~q;b|y{N#g&K0%pIea@tM9!cvXwMI%Tht;^~i~RT-ZH zWfw=<`prAQ{kL{@=<_ogU&K;x(c=@19Hta7QeP!MMUqsd_L+^01`7)vdf8#dmHnnF5zt z!5N>$x~KJ`Oy$rWc9F94llSLx)$i3rKJ7hWe@j+oBx_2&J_zqjTSaD~a5m1VJ-KfQ1u=Rk3v#d^(SkqRX$QX%m zG~O#0qQxc|SW~C#Qt(%gVx^i>P{9y?&B%O9XV8Gx9exO9>o?FlETxyf@xg%Fywiyq zhV*qr;;3W)QQZ$t>W>#rC3i?B?{c7D!SKgV2uZ3aHled*BQi?Y?UHP^hZ`~VQq@yz zeum73l3kxszI9|oqj+?1bU6-CF38kFb9lH(ND#%>KB;&hz-YhVDs6OD3(i9Yv#zq6 zFyYMfiEm-llkN_4`icJnU6L~Tz-|uzXX)e){?FOT6#)mTP055VVNi37ALdmV85k#g zkU%4V1TY2hVy!I9eesZah*fKKOVVn8A<}bX9yW5zimMJM(2vCN_-&tcgTl%J#jp?N z6Dy%Dn1Xc9m9M6)tMHwFo#ube>9F!d54N~D0L3%vQ@;L+4-SkR8B2kkYbW6$dAjP> zNqG7Bf$#JrN5Z$K|1O+_0@gYdI6G0HXv_&HG%y%8@NgSQN-**gVNn-FA@NEziY~-N1DqS=3!gxC=+U_{H{psDMKO{Hdf@#Xfo*)qp zh7q~?C#+}}0bvqMz)J>pDii#;ylHN06Djk!ybgW)imdEuLU&a1)l?=vL#Hx+kvYC( z6xfW&r0GeUk@s6Fg?$xbhVL4(-V53 zUVMSa`BJwc^)ZiJlq>6j4x6=ok;P;7Xjx-{9}6cKx$JMMpK>J^}}GYd;s4(#_t{H9`9I`bu&`{mpjMz{6VQXVof`JrZ`GEnA37~jThqQuaVb# z+V9$JDN3A*zUj&=zp}b-7!2tmZd3ObuNtFjUBV_6!@>{BD5S@XIV%^#)}Ha=fOvK= z8?n{vG>C{NK1LzFOgR)0V_frmWc7ob#X1@g=k4NGJ#_Z&r)Qv*t~34)O2aR( z|5e3kH21#W%p=&0*5bkP_oY|4(W@j~;c~52Gk19T9~>vO<_gre%c4;6zBbv1o}kX_ zfEOciUxniKhnElEoUZnXy)9V=@T4+5^T{PdP|=KvC7k~FB&5T#4k#~XPP8MW?&CI< ztBeQ*jAXy|^cMp3vu*qMEmHV$YR2^t&O?PyWIhXI{sl{ znHL7ZEhhz~DIn|O&DS@<&QO}9+9rsO=FMCb58|2z_5-ECq;Fe38rnh~qWZNGa&+|q zT)onaZaAGX{7Z9wcP~MOtJHK=W3+{SBl9_)wY_4?BC3$Sip{2q{bO0d!EnoN_BYY=3CAM@?}8Q2hwxm{g!mlP-pJESfc#6S{}Qw z@r4TyYV!1`B=Fk!ZXx!MNrb@37lzvYwC)zL#}A9*>M9h7;uXCMj;`5NC{e5$GzU#*7<;<049WTR-;bzLm z-*wHvD`f$)o1&DL!=0LTU(X93O)PVK?HHx;^M9|JS4}%%=Cm0^+5sF)xWwei-!m=I zoy8=qiq=@Al5N+F=c!V1Z+?9wMnq>qJ5}E)>4Xqud|`CP!D~}(;HPIPB!5I)4jRBF zc4z;yW0)Ugp-;8{T$Cg#c>0S^3ef3iPS$1<%29~%+4=}QJ7R8p_km*;DpN=w*ys9fw;JYb_pxoLC(w!k zdO0xv5z?>qYnLmAS#LpkX=}4Rt2j%3?i!sqV8QPGDhBJV^1^+R?82)q07z?8vjQJr zu#JIQo~>2u0Ypg8?;QXpK}jw77TDrl_ifuuY7al~U0%l<&U15VMeU(;ec&Or3;LdO zYBF~Jby3krUik4l`=Y&!+?%>uDxj1r#*FcC>8OdIzp~lp^7F}w&f1JX*JUoMP%Mbs z>zpfn7iu4j5niIi>Wb6j#8buRu7hr$qkgHlI)T3gDT9owdicJ0Vs(XyKMq>Rv8D^H zcIPIUyWZzOcnNKAsT}4AJnE#y>C3w$i}5mH4}6S_9%7qqz8ep}vc!SCHXyt0_Sun) zHLDQkpYubTG&WEC9h4F*zMKFF6<$##;e!Nehx8{537l0@ez!6b7 zYm|aONk9BjvU7meQ&#B_1=L)uTzqj5eu)Dw9D(A)*T{|x8JTk+&A|TCGR;SOt%*5- zWp9kdHW1^9tx9H;HG2FAU7BMLf4wIc1?_cfIOFket(~8Ga662c%4$KPehhmHR)4nQ zZPF;O)Y%Y-u2H0txVS)>Vx~%ri^P_Gg_|cD#`1f7R@7;IOr4GR>+{r%kJlNt4Ij52 zUVd|2@c)@f{#5#n4FKC_{#-BHLLd4 zTb;i3*BedB&+E9dvwo0u{=opoqqNfu&_r&M*I422wCAFHPSYEZ#fxzM>i+hNEsx z2NZu0qk)a;=wIm5+IOZZt~@;}@W#1=>?oW2K1E+5hD~BStjLcTKlK=ObXKw`KONWl zI!M$o&YKvv{QXPx>nO%+2nezYF}YWXyVz7#R*d2@e0Stt4qeo_FJ?BPR{fRzDLx5m zc;n7jfDd{9eYZQ6w;Y;sUx2jJtI$*t$ozXuu@T6;6CcD^(w-1DqV3ay?!gR$5c6VO zcoeCCCl^j=`XW3NFAtMQ74ugos%?p7{NOY7LxWL!I}Y~K!O<8Sw%kM&k-(cUB}OBR zP}noc^c$LO>AIPOh+XhM6R6_cG+I6k-ucZkg1 zp!22wfc?H~zz>_{A{HMcM*Oww5#hxDV(Kh_+G@LKeG-DZySo*aA|(`x6fLDlf#O;y z?i7MM#i2-Xt6-%RDI~ZSDDLhK#Vt4e{yTT>Oy)2HnS{xC^PaQ!UTZxhT=|lj3fdP9 zCJCoA*C&bJq_40$0*#hUeiAFKI&NbWO0Ki6v(VVs+ID1eT#^b3@ffYe3h!|T`#N^3 zeyU|L^w7Yb7H;Syxc5g4ydP~P`fNOGy=J!~UWM8xN`PioWZn`WC8Ijj~J@sA%- z9FYwv9XcEa?fyHE&)mu>FLb;i|8Par6cITYFrKM5!mxM>tRZ-&$T7};llI`z)n%4A zx`Hp1r_J2+2eiK9kS^_4X6Bw{t+mc_9_8-e=M`Oeu6Ft)>c3Y3a+5ZxKS01%BYA%x zFY~R$eEs++IQSC!S@P{pvNs&W{rw{F!_3`YXB>`RM!u4pO`1d*amLj*8k>3t%Q`EP zk-1{$2v=jFC*Pv~-2ZJsot?npt!r~l8(c|K1H&(f3db|*pjTQ!t)wmoB5PB;mG3?K z_u}@<|F7lj{#c4-AY2Z41=3UJ*UE#-pwel+*Zq9J6NoXSL|#BC4Sihx8%`OcxBv(` zvco5C?RiN4xX_xMZgm^h639VRxuq#QM}Ru^?g(eLj9s$ zr~c0!GLihWBRl{eb`03=XqEgz0T(x5jZU_2_hB!Mh3@Hf{xa;*qSM%`XdxL$5kz%k zs@KR8(2xWdjuC63bAsH}hY+e**fL~@#|#+)h%pVvECM}xXW2>S@dWtHJwr)03W`O^ z%*YookjSUk6bPL^3}vPXg$Oc(b2V4nJA*yNE}sB{k3@FQaG+OrOAi2*6TZ%c;0+z>DHk{|$fAjffG}|b7nF*#V^y%6pQsFZ z47&QB7A-xD8eF1cUjSXT2eQ+;Af#*R*%(UIi9}V8Z>bWDP=>RmtB?8UvqI7aYisvw z2w)nwhX0N`Pws*eW$1@Nyiu`;|C?f=o%jv8^>3mo)^!kSmW7DZg@;QZQ3cnEI+*xV zuc&a*mK*b@OxRWpd3BKmsWmtS&(cgj&6Q70|{K$sz)mE}l&XA0oW zIj7DG5@TD{Q(=WQd<$+P-c9d}cy^4dO4X!l!}1-YG9@8Q!7LM zVIZ4DB8U`99~lSImB0X)q@|=JfQ1$z{Es(LfQMR|LMhaPR^2{HEunARWzD^aT_VsF+Dx-^=LkBGed`= zOXsAuWg-1n?T}p^zIKH1qO1df#Idj^?li>oXL9!qK45T6>Q9u2mw*Qqa{2GLw7N`? z9E){MxPImbK)*>zsP1?bq1YQc%pzsRlkpr85FJ`R0^(lB+MNH=ctBNSWl}Y;t&qg+ z9axkaDKNZ_G^b5OwE=1brCAi^i(?f2(J4UESw<(zsJ{#SJ3OHxMqeKZa`W;IxOzv% z@wlUA2YeaP@`rrNA%hy9IU@3M%f}`k+Y5ZSi;lgF*Hc8z=s%71{x`ha{hIO|hikm| zatq1CyAiKqEkM9&jQZ*$5tKL6OH+3$aOVs;5&^_VrKW6yL5ooTC`!PR8VSEZvK!Fv zVr9OtH84jN$5|E&-Cf5;E__O|jP-k%Mcl8WG!Tym#mjT$=Nnt>eC3OmLi-IS5<8d}B}b|na%LE$1$`wm*CsuNBAPvmi_8{q{hF3KwoDRK@m z9h^AELu2q>m%E?m)u@t(yWcBwd+B^yCAdQk@5h1WrabZEg{{z~Nc3ShI!f7IEx^Li zS<%d-8d2{3zi6KaJKWaYqu(mfQ&g=`d2+@|OMs1(~=Z z84(0R`7qYHXX{FfK+8)d z9OEbB#!I+soQMx?@FK|LA*d^+--Pf`6>QW3+KvI{ zsQk!OY*C{^(u!`6IqAYTmEv~<*!xZ~mQogTzxF_-Bsp&J1GF)^`6MRG71DV9+6$j& z&VGp&2v8o8A}1Eg9j@Ls70FmZzIR7!xNsbSlWrq0-WGkKG32_LlY8N$B`n_>ubH ze36C?;Ca!tlcP3S>Ku(w9TPnOMBc{DEwGrzUku*%Gp?5SV^};dpExdYT!{#lYv1ZI{Z{fGw%HZJ3&MX z1_M2Z>|xMM!%5ecqoExo<8yZ|I$sw2hP9$bF@# zwVw&@3E3-{Pvyy0jCQnByx^c}H+xSxt23aFnX@Q!Puo8n{lee~=~{rXN=E8=A%XPCrDCCKur zz$@XYLt%k~v7Um5%m{)|-<16`U8)Gz+!3tL&Vu0vLOUu1pVL0zEelLfk??!C1?|DS zRC0P8J>j9qnZ~GZ8uH}%-dokS=5JT+A4z(%aibH=dP+<3C>HjnV~g9hiNCiEpU3vI z*LfnN8_dfeb%$Mi#;iIhd`PSpT{)C~TcV4)SOh(AKp{peal-kvW4Y#1kB+S9RD%s^ zlxGUcl#jDMZr3Ya7r2`mq-Rs4VXn!;ejTXdn{d^9Cwwy{9-FC~n9TKPwVxE3dedR7 zG>4E73V!taQiz0Cs4m#UC)YDldd6$GMA*ZuYei5pu{`^Z`4vuWd-EB(fy10!DfQAf z(jy<7-*bPKS%aqk6w2=yG)HOeE^ndoF&=_Y1!sNg0F1HR_9*k`tW-!3qWN>)`>*bA zLGoX?>;;t*vmO+Jusv>sQyeO!eoHTTe&tzqbfYQTJxq95b!Rhn-Em0byBU<>z;bd~ zvbcHn&?);@nWeiYGov~Svp>oc%Gf}#ez;nGITr`V%`1EdWJT(6^vw^rAB z#`xaB(Zge?-tOOVhu};G|5AELUD2A^Ne!$`4 zu%46We@2|OZ?P-pwA`)B0xhfMph`&nu={IC7k@@iTW5u7T1W1^VL5E>Gv>Zf(l`BO ztUdGZ+N__suW}=mhywX}80_Zsb27hl|qk&YXLLO4&7uo-WRjOC=awD7Fu80m6hn~Mx z#xK4B#U~Di*ADf%K^8^y5Kiq!6yYK1b=@ink8O{1NqO;>(NBJy7Ny1>#bifa)&K3P zl^W67^t67kt@#+=E8NggQKH`1f|(}}X$*w%;>D7c;lEs!QcECHr&XH3;r*=j@@M0> zDctFU`HvO_>BKRQlZfQy^A&xV^=lqJQ4`=LJnJWIPp=*W68+}TCi!3=`9U0lo{QN2 z&&l=Yb`Q3#qTA6Z zl0L~gVEg$lfO0oh?z5_TMgy!QU?=b5xaa0+OOsH!YsZ{CeCPNSM)%?&Kqx*y-V{Ey z4X%$j_CJ69yqF0?cbd_3*r{LnWBrc`+kQZDvKQ%^_* zg5=saSvNVe-xIs07;7;-jh~EVJnvObpBZ11;T-$lsc8q9U(tUIkpI$9buvwm^Zv_M z+3Pz@;|+tzTI1Lj+d9b&4<_UT-pQ&fhnY4(T#^zK#YE~2qlJ!xZEk?m@fb7knb3U(O>I~alD-)=evdi84@azR9twKNW14kY{F(UWr0VEN` zbH7rlmQd9&>oIt5D$uY&m}&C!Ez!%#Oh&Ky=Kab!Up}>oz1P6-i`QnjiYLCQ2icFU zwMREY<-R^|T?#?ze3I|NMpt8Z3V460U4D8!cah+U=~=Ghx5jTYhhMF6uW~r87OjPx zAJd$i*4zYpC26M}-}EB`_mi`?xseBL&q27@1a&v8R%X9mEIsf7XmRd`hUWaAbyaD9 zyqFV(^dxYwq8#nQLgz~8y8%H_*ez?yB6#aX(h<;u87^w`D5HT<9lmL_P=O7`XX3*C zF=M-(-I6XPuN2vZ;3yWu{Za?52(Z$)i3_ZoVSj%;Pah>0fXw@7{s9u zO0o%(L9EWfTZZr@qL+#?DEwj|pdaXKQ>*qskM5pCU!DBT@tkw{aEpPd;)d|p{V=r% zeL0UR0B*2A2hy~mcQ1Ua!iBeP?03qxOJI=;Kko$J9>9YJaFw$Yld#Qvuws|7S4Xlq z|JIkvjGVqemE0}{#py`IvOo#!M^?cYiiAgb+7axTLHrA)u{7L!frR0GBCiQR<`)$! ziv-?XgINa%SY#TsfTv>`oLdiciiYN$&ob_aP*4O#_UKG>#$>^al@}$d0w^m!-UyvM zPKBA$UqMKHEBId-1Q3z)q_+zZ;V`n;2~0eJL%?dWDwysov|*k8WSc0Kff*}FpM6t} zQrh`Sa9V83C>1XG5_&jXj4PV(?;_bD-cRIHbN7#r)93c8+F-Cq09#J9w4EZA(5A<8 zeru^8O}0Wt^JmXQD4i$Z?{j{k=W03bbz@F*lH9|%aHL;q#Q z=qQcE2|^;}eQ;rYX5f_zCKemQa=D;p$2;zrx}V66KQr%}r2kStedYDjU|1v1# zq)@Z)N$6qB8b1vy6RIuX{Tcu+?Xl_Sosoz4l-M%c<`uzXqkJlg*0Y3H)le1? zO}urA&~ZMIZhx+M&(JUO=c$rH%YdS0Ks6PB?k0{N=)AS|>;g5OCn1;5DvTq)Vn_C2 z{gCwUH@Y*0Va>F1H(tn)67-p2uE%+n$QuMAy#-rk{=YFc3QWntL;oL`Qh~jh62b60 zer-0GDiDQ`WF^}%13CpCTJU7c{{vH2+w-s`W3DbgLX5oi1>Wuu0^rbM6iife3A=0Rl8Sbk-Ur zC8)4m1Ua<~P$;mP0%lSJ5+9Lhd&#l_K(8km%3upvNyVsNNn*MF_j&*}oiFDL>@I-2 zn;4&H4Gx#Ccl~T!#;A8Zz`)&dr<#vNv|Lo86@1YV3xI%p9l6eEN->(;p zhX3{oGEJh7At398k|r=ka~Lq;NIEK8dc}c-G}Bj-0s)0zSz-R2&d7d22;&I)!Za8U z)ANew8xg9Tfm*yL0sm6~08ywgRQc(LgXv>+X?7ULjHR-Y$yebQivUMoipmVb1zyoY zoS_|>-}LC~AEplr3>BsF6QaFF0H5J^8w3-|s{9Y9*b9J(OJJ_{#Dhz4NmneC`4fB5 z@PA)1IC4b>!wQ_jB)GbT32^$FF_N=B1gvg>Ux`jEVn6{-d$T9OfB(|Im+K_Dc(`7U^sT zGlr3R6(BTbzY&XJIDL{2@W~mtHql140%_EO5F_Wf+RK$0D^ijT$WSXq)u5|SXoG5e zM7jRQ0g9^TC2VC|SDZwepiS)W-gb?YQUrzV8Yg=&D-e(}{v4 zREa@ph{NZPOIYy8D{hp*`gX1?&^1;AC0+!MV$ogc56MhkCVb^gov1QE<=NS;`>*j3 zig7fu_~UWQK3K(!WLGQ>^wF1B&||pAcjmP>>$KySbwbv0m%=Z8q@qb5dJ%9v(y@^N z=_UB9WQHcY$ICMj=hs@|lVG(pY!am)@4G|6n;`v5uJGHN!vcgBTWN{k)lZY+IHH|z zZMag1vYgS!PP)%|1Nvxk=@N|D;HNJ1&KcJ}0ak3dwIB;UCJ;_VzGKw>c6cp7BnD8O z76A?=Vz8fx{?rcT!iHkuNP@agq-Z{b_5onN*8IzDSgQOVGq6z>2(>D(%0zIt=?Br| zHVOB7t85VRRk_u#iEdxV(e18?RNlU9GX3H5>)2FA;?38)&~7E3j$LZ;wPGT_jN^<`>nC!_np5at zckH|pukmT4dQ-$JDU9>2Bg5p9Wg?901cwBpwC^hL2P@JU<9oC5tq1pc>?@+a$kk_Q zs^3mHu3tXR`E!vI-XGy6;pi9I`u*Cvvq^gn#(-G3%k=C~K!y$c$XSoyJS{4)QvPjS zvYn#0-jpm^N|`?V)l~CV`aX23biZ!T)N9`Dk(8gMo@NWOXYu%`;B$C(SjEfFT1RqT z2=-m^?UdWI`bTY}{dLsHBuVZj@%V!@UD{9%TY`X7k0Z6xdh|CBH{u^h17D^PTPz$vX#2hBC9?#-V|$j?>!JY%KlX;#S%f|0vL>Ab6d} z>BP-$Gny;-n(}S_iVl>$XODlP_JhqG zFH9r~hqb*^`9XN^M;%XU28=9xTH&|I?NyU$EQVF#tKg37OuIoD87srVEc#q3E`(TElsvkxJZI^>S<#I9U&EkK2FjUS>>meP(nfUb;X(4?;z?skou_*f(*U%!oZ#D({CMep#_LDZ+SxSrX zs&6LI-qa>iky`658Zq7>SiK%zC2>6q#|wl-@`~eSQ@#QWabvcd=Mm|`Z!U@cg(^MXL254f5i0Psyh-)<(Q0fzs-Y4Q25042vsB2d3o2Dd> zW z7L50m#(5e;rjRZC;XN_P?XH^+L7|q)qjw}v1P_v$>ix_9iU=QlOMOaV&5W|5sf;Q5 zs=VAnx!A};4(!s6=HLrhP8HoZ)4apvfBjkbdokul#aXN_Bh&sve?L7Ztl(r}IrMFO zs`X>ZyX2|?9fNO`e_O0lJ1!!e9@fH?^uO8rQQpHeq+Y?u4t{iqe7@|B!3(X)t+r#n z%yIN_ShLiumL0-1V!9yCSx?52(G$Pnd9^ZlgyNM2$sw#lZt1? zVXeOR>p4Gqnq)nn&lCN)h#2ZPH0cI5R3kYgd0j=v5v0c4(fiG{{oA(m!j)f@czE*p z-~6=evKW^gh@h8$3e@$c@0txaUcMQo?zh>LAtFcR;8HtLGgMnQ`$UXh^tJfwU2(PB zsGrd2lXUC$R?*ct9P`vm;bejz>2!8mi3e1Y$kVeC3*xGvdABfS-KqjB+{1Mu@)$&1 z(^mf47idfXTOo(|m&w1#+X4_$oR`D*LDRQ2qrGqXCsOB}V7JV?FU1{D`Ya|YsKlgw^Itq-$#D% zGZd&qMM_Mab`O{C5dOwQC?a2)o{T;dc`K89dnE>8ex9aSmDx~i?vy`e*fQ94--`eg zjD4dYB?eu-KNBE$DtdDN%!;*sTo{@Aa_KR7P;JnZ1@yx`<ngw>T(>wiW^*ZO#S(stX_Lx}#6VMV(2dHms_& z;gz~V1^G4fN%@PQ2zuTF)Bs9!&Fn&W0E=A8&0Ak(I)vb5P>bi)w*~fJ+r4b#3mXA8 zu>FFV_uW>VRTIHmdFD9Bxh%u}H=&1Ji&*cd36^<33O*y*9Lr2-CKW3-I5z4bR97y5 z8*Gi%iQc}{6dz;r9>PYoUm52+z`Y@5T^bL@mZl{{O-W2+;|nCTyC&34&reLpmRY;d znXY9Au|YlJ*4Ped%Tz5sz5yI0aSnACHL-+ntbm3BpSczzAK z6TPT49+56nIf9#A*65(OS}{H}4u$i)OKQ_IOJX}5i1aNJakcXTz@PyVEdWZ(YCZ+# zhI#N0A=1VRhLQc&d(igOqm5-c%*OLyhOd9mQ9Mv7%o3BYxsZX60B_fDK7EP@XCA7o zA}y!T)>t|F`aWmh;0BhGq>QAqsP%GE&W0$zRm~oT1APc6_?DwGR3m-sWR>;37h+7} z@{`zWk6uvhIi|yDfd~MNc#kSsI`WHA`VKVaaUE0!E`~yR@$kX~QMSm5>(?OZt$=^^ zILf?9-CRkDpf#j<;*Y#i6jbTRb@hDm?i2RZ@FKd~=+uzGACQJ;sel07>Ye$*^O2!H zhYvRbT~v#@p=Hl;K-B^;q0fbA6`?5!lJ*aR*HcqRc^fr3fo2nc>@#V8mP<6vhPI^G zt8!->eS{*=QB(H>y`Z9S9oJ19E$POMMI8@T@j*45FLf^B^COv8l#(Ou^5YOm0_RP z{dD7hYvcdD?@5uQK#hNPH94bT@goslUWx<{n=fl97W!%A|MrNL|Kt(hmXIi6*9NL3 zfJ>IVbmgI(4w@f+jnY!DgM#=ZDN$fYO!V9m_({PbMFGN8ts~^d00nJQdGJ9YDdRrq zKPW1uqa4L(DEQ76?=m&QHE8L6NkAe_!8(F$InQL64c|GK5?E( zP={BX?v)#9+kU^%gN{x|Y{`|Y82^)iJF>74S`h@9&ces7pn=eb6&VP0T^!BiXG{WD z0;EIA_u%R1`xO$hnimKGwT9T+89<=qgnbPLqF@2RGVIVsJ64}vWc@eYMSc7a5N%i- znAu+JO#tm^QX;9^&Bqc??aCG`#>5YTqzR37FPCIsfDqxMvTYYYjF9g!K;-K@3qRJT zA!dlG;KTb}rm2PW$0V|-GyQeveqpFJit?r3pW z2mwHL^sb4ZZT4^pnND;hvcbF3PbRX!VJD0qdF3mK2F+5PK3gGX#w)J9ItGK<&G~?Q z%-eio(bNn==`Df~hAs>=i(ay907!mJ;8-4t-9wuy z36Rp0pyI1nyv-Ia(J(0`VPMa6Iurx+3Z26`m*}6ZorA(O5`_YVDJgM2wssFhx&bI< zM@N_iJ8G(q!NUa_;3Htc11vT8qZ$M6M*Y@+@LGt7K@O+-L=bX`3Bc1$2hNg!uc^j8 zcSz)a_x^-fF)#qY36jtH{FQwA6K@7gz;oHz%YRi+sy>0f{zG2uIu#Q-38m(fH18-f z;yl3=t|sO#lw1#^^z?WXShhy*UDLkZuxkx;n#R9l^k=a(yb0KkLwv8HB<7PnT0J~G3QA~h&Q-WnB4O!jX=VRE?T@{j@H zN9a-xtN}M>Pm`2+1tDYnk?V-nCxx%}RwM}hk$v~qzA^!Uw~G%X3zvQ?vTes#*gPAw- zuxlxUk-cV{tOe>L&hu~gX?RjKg{2Ws{nDC=;1OBMCSkox+UAN=?M2m;(S#QOg#0nu*?5J z*B5R6_bM0Vn4DT`nU)z~r*U}s(v9o;PpFcsj2hDRt1JeyED;(5PaW*9K)STxhFAnw zIroj%G2HD>M1pIcGW@dW^Vu1Xaz@JjV?#XRt3LAffbK(lDjKj4{{A0r&msE&@nym! zN;L)d9Q&nhRYT9?mUlsN$uc-j&x$R2FOO+>Gac}(Xt@LCIa`)gz4=8kzceomwA{@} zqFo#r5|98~b_Pi$LbL!l2HY$PdlDeCYLkzlz=q%b@U{9T1m3Hf7XhYBRnA;^(Zq>R z$!S0`5Vlgr5GhBRmCI(f&r1Hz^z-mBgbwocYG1e4nfl9&y3(cVj8a@GL4SdK0Ma7b zP|nK~CQyStPLYj_r5+>tw|kYYlOqfh&?*B$hm@Seu!#3d81YNOeP{Q^TH~9#8EZb zn5qczpR@=ft+t&jWfdiVG;SE(&pJttfH0766qwE)AXnnLtb$e9{NfEC~ooPd{f9e{YtLBoF6@b_2n9#VoJ6ipyn?q^+Kd`C* z-y$XHWylT}XQ5Pl%uM*S)AW^{F%nM!x2V5;P;ze15FZ7A(R4~2Pw-1f6>YMgaO`Xx zcg3cckOf;wum2GHJDk8{0skB?lS`bl#GfKAp9!}jr=hY#OYfo{Vs?b1-7B?A2`pI1 zLin|u_j;bR?AS@OW5O$7A_LeEx&}8~(V<^la$$O8pV-2^$So2BZxZiJ$l`1CmyDQ1 z5*IOxB&EdL(WC>jKWIH#XuU6%+Z~76AdzLevUlF71*vHt%j@XW_QdDvUL-XY^R-DSa8+%cPOuNbA0y0OrAb3(Qt7m zal#UQ_uv~p?57kHFrLU1ch7ITIaclX z`SeKk8UM&Km%2qrajO@u(v>GdXOL}l=bc7@>Nx|gwjv_Ym;|5UIC288))O6gbrdnO zFR%HX1MBx-x6>>A7tcq}2iDrW<*?ahWnm)XKSrQ(L7rjrXs_a$)U;wfQsT8gF3Wut zTic{uzQ8tOddSY~_~EhQh$j3r7Aq>~fUeD1tM9_`mF9Tb_td}<4Z*2Kp`9<%YW?d+(1c!QHfU^DJR- zH>$aadhzcs{4swuuc5au@>ck6WO!~`)ui;kC`V)Bl(-FtMp3^gCMsn6rC3m4;GG8k zkjeJl1oXB~rHNcSr?@$}pkfW~eCK{d71_5c*Zou$Vi~>2UmZq3X459NBNUBrjfy9O zRjYGzkyVIXDB=V!Jo7-0A$8$&7N16r<2Fdm_qBLXwLO0xHR!V`jV_-r)V8Y+Wg#T8%QN-lhW(4r-=l(96EQg_6FsXF%*g8|GH}8TKlg_IxmB zQ3S^Mz_R{!{#zLfP3V&?OiY#}gCTP;XR2&2 zQZTK{`N!Sg$PHUQ1Bn80PetM~Yifnrbp9mt?*qVzwH%q&BkF_s)m5h8+N;mx->VLO zwkybBgjS<5f#om_HdU|3z{Q#LWWE;VzBxlIuo=WG`B~~5XR|Nt#4cDlM_5<@A~7|R z-BT2_TT&!P@9p$E3GC+lrA?W#5ekF*kY&Y6YwUwG6;BM%aB+BwtI=3-rK@j59kfwE z9Fhn}%p>?`4OpJ(Jbpb_^mfq6@YH4Yru}#@n)z#;VqN}HD9kzPJbn{e+vngK_pWao z?R~TP1e!K<$ZD8^STZ^Ag3K^j*R{^R$YHoJJ?=@EhlnXk-39wXm3}=-AtH;x!8{2i zTmsD9IT;7H@+831>w7K!7g4jxtTkg%TwFp)$s@0~ClICMn84t2RoCEHnSY$Am|@up4>7W1c< zkIwIW8*@rI+m|%6wG)NF^PNI8qA}$(D>14IBwER36K_+4w!sceIFvN&x&Ea6M6^HkR%yK< zwh6>q?pSoG6@&C`4LS~OvsAO|&@4P%|9aSWTJ4b0Knj#3X zGW|Z${gX*KaMVZQK-~@CwnJ-|@?QQ?G1ZK-_P5V4Vr?{n+bJz6oX@2~MUHQFf+{-AQX(DE3phfyrc!k-mA%2 z3?>A;_17l#4nj4P>^u<$A+Q13Dn((Ynk)Qkkz2cAotCF#_6J%RLe;x42%x&Q{5h8CBRXxk_%}RpM#v(?ifHuuqNh>#quBO|7b|{0gPAV8ItBP2!z8B=XkR|`V;%VN z{H=ugvjsDGp`DFWE*}}Sbr?AQOkO6KdL6Kc_L(>zco9J0$F5tSKZfcC`(CcHM zW$Ms#x4^Vqq6-D>LFpR&z_}}$LZ5M>nsA-)=ayz)h4$Gyt_w8^NUcKxQIH1`DATC|h!LTV~= zTr&jdyE@X|PPAT&t}m{>om}dyr2#@Ga4RkxPQ%b}L4DvE8BQPb(H;kgM{FL!pOk$o ziX+c*QdzM0h@G~X0O;#T2$Pu^L}HJKqKmiMk^TW~q(oO(1@PFdOvW@K)^;3q^wFI6 zWl9oYgi5@TYj}%+h0(b9GALVt=yx+4MpY|@!JS|zP87v);@Mvl=hR)|+NW!7nZ}yfpD7SAKV3N=s{4-%qK1Xe+pjGzGPv%O1qDBTDt0 zz6bVZ69$z{Vp9b=;*TNu^GL7URj6N&tuhQ(j8D_~Q%FC}yM&`#3Za2gl_Kfzv0)bb z3{u%>H5N|jXF^36^7eOdwwdBIX8SAjWyNSci^x=`CNm28Oezm^lJbMkXP29{Dof`vK3@=rI$?APB%T$ zo3}fzSvr>Y%>`tqAhhP_bbEWjI930ipEHm5FXeZM{wF(|SKjEr!3-$nBHeKqF$}7_EySt!_}P#5g5i-P z`x3juK|u-d197?Njq2>TA&Chwdom!NPoxX51dUIfoJrXwdQz)TrImI2*e>2%UumJe zCw9zF>hZq50O^w%G?E)XPevoVx~%4OwRo0@v(dCrjpI82mQEHla|}N|1U2oYGd0cU z5e*fUBAaZp%d;Gc4E5~8no&(NeCVCSz=LVfo?h&yiIeI^%sjK8>K!c2x69Wd69!Ld z@GE%GoWGAsu!u*xu+`FJ&?@9mefT9%`fwmtS5kSs&glqEySV zGAhrm3*#r6 zeo|Wr;Hf(cTQSCfsXu3FpUfgAS>MN)w-tnHWBjF|#&wGkc~Tzz1Ev|a2)(N=irkE_ z%)=`D5tXP)^ied^Ro*ZOD}t<*Z?$cbeW$(Pc8gx=8-PUrK1Fr9_UvGip)F-6^x{OB z8cX<3*se&`(zvZ4ZF%oUUtC+CWg-kCf*guJ9V@3~?T?Qlw8hx$^RmslF1M4udQNI@ z<2zkk6br9C^%06M{{%95n22N4a7${HGJ^FSX^y1N_GnK|9m?EjU?YCwEK|PU5P#y= zkX=?`9Gp7wQ$bi0@o5O6uEx)0SF{6oO%M^RAeBptZ zAJHp){Dcqzs1{H#0V+fzB^--%p6ujIRQ?YUw~3}!lC_Euv`B;A*)lYpURgF5YE}M# zWECb$i47GHUm$`=FctPXf3VS9{Z-D}Fw9iL%FaOz?f!K=bxsai- zu1Sxr>~rf&jo6&hnoLd@SR)o|@@NH*EgAj*8D%U7RaN)zO22Q=LbG8vR3Q9Fku2xo zIp_%SUr$0v6@Sie>k5@_$>hxJ*@{?RmPyCGdiqi73yRUuxtmKHboty@W;AV&QzfN6 z?Te~_>H8u=1vc_Mc)1td*ZnO_Q6YAwn*+8MMzKhNPF9)ZvEt3uKzz8P<<^hAT)P7H|{JWBvx#9SuK;r(ykW0Hn4-3 zTM{E$H!G2sHvUnsL6JF4bik{&;fqvs3=D!I~#~ zg`<6bOu5+yO`?IBtbJm<)^bS5*nGm)a{Zp>?L`XL#DLZcI1IGmaQ}sNsO3-c^od1Qjc~ z{B#THs}Qsbo67!5PybsV?v}lZ(p9iQ*bAEJz3aW)6Obc_&IQ}@9K-6Cyg4b$$ivpw z_9KY+=I#C6-6@t>bqDSfY+If7OkB5l;`YOwC4;glGbkGtHeXTrpP}|lAZXYdTcvd} zB~;z)u%}t;>!e2^W7}uJ{wM8%;*~+pvb|@1ri(DT?y+_syqN;7Z+9s#cc9nLB(^>z zhSPe;6w{Z22``ee!*Sh<K5LJVG(BB`-dUpw0r1TEt^*-uR_iiF!E@LgPyZ6*3OC-@6X22(*j?G4>C zV1jlp^QsmI(iuLRmF&aVb;^R0?USM=0z`@OSxx(>KJHA&G9?cBsU!{ohWiLOzzQO- z^@yN5GGY;IDVI=B5Nd@`E>3mD=BPg`%~WF=5UZ_x8>rSMpMXPmM=se7s7sn!li_rG&3DqYL(C zN&Mp2Bx&u!;#KTN4_GfG(pfp4il8K}2Z4a0_n6L3B95{!@_I7}rDN<(mSm2fHfmH8 z8O|5???(h*d`a`uvf7-nv*8XE09{$z7ZEX=_-iE}P&ZUGv>~=6V@a&PW?8K7MA?<0 z{5h19k`X}~Ngi*HAyp)f1b8@x%R>6HAekaTd5KXw?g+^;@fSG#ARa(Oz$9*GFjozN7$7xMs?IhciDlWw{ockxoIr3n1rup# z10_9a**wXIx&+JT3lOK{|Ac%MHGMaKctK_K?&jf0?%st7OR&8NKPbdtPwtX=D=x^w zVr^uqAa&*1k##gEr2Lctm+7VVccAmlG_)~^mP!b5>V}w;!k?g1es+vES`2eV7-LW< zxW*C6Zcixq5O-ozS{WBv;2e84;+417DeDM)PLK6YpUyH)6S`N{7%^Em|_1~(`{BUZILo3wlXN5V`^f5hC=8|~_O%m`=dT@XP;JM|h!2x3QlU-S z&wov=7|i8};OaQ;`xg$md19%o-&b+ra_1;XdA*RTM8u_PUwisb zGZ%8J71-;oU_mYukeB*#p|F*uj<^LTN0`h@RI6I#3}tR60(C~Uc@ZGaTowVWu6cGF z6&>#;tX4F-r0+g#F~gyYS<&Z%$vxs8yV8mzGFS|l8qH5f9K6p zl~4Q;>l}N!?b9<1`E$8GJ4t`Ep9NP_v~t4_Ee?dY(o8k&^ceA9S9pyh)NAlg+PROy zsLo^;*xhnl)JpLifL>W9EIxJkJ#ySguuXw4<-U!0f2dJA^8W-p48!v;r@na2zJvgu z+zt)+4Fp)T#ri5Dhe-eg21UblJ9wmY2gQdEh=lL})w$rJe=L%Nr=!uBbP!(#K{w0p z00jnD7 zd_{m;Ra_p^nD8!JHbJixoNX*jL|@P9P8n@ogWlO-pLo8#xOu=U8#C-07`KAC_u6UL z(#k)!`jnqK^kJp0D_cvY4fU=2p~Z2QHMt2Rla4-(NXfE?;r((F-Rnb-T2OtD!SNV& zksitXO!>&@X{?)TeCxOjBqsqtz_1dTmo|-W7OkE&#to;j{1Jb%JmsFzKQn7Et|`0eWYubLfGg+z`$*FL{H2 z_vx_806>2F)=I>L9N?bTJ1FDX!kGd<0cVYXZ2-Wy`7MeN4}ApARRdnUhybhv zPE46IdEn5=yTooJ93}-kBz$DfAaSM*N5D2+q&8Qoxdobm1?jV*~_y zP!a$!Qb=F`nVW()Fv{={HSwQX6`wU#?b7iR9AQA3WWYHAG`uNr-Ae+*$;QS29_nsR zUatTF0G1;&WN>TWL)^0f4A4*10TuW*;*zAj& zh=Y6XsN;rTM#VJ>!umd#{8o$>rg8hL=3Zi~n#On&PGNwh&AG=TX8gBDHP>F@QUYa> zI+$7{iSV8PvrO-@JDl16+}ZG(#iK-c5P`7yaK?dW<@&+=RndBqNEIq6C~d$|+*nG0 zmJvHMKgFcNEgA4reAqym3d3&1BJr%@5CCZ~*vAzUQLv;Mj8%ay4+Sf(8s-5C;|pwG z2ofCb2qJ?|Ab`P%BuBqG5M?NGr~gizKOPErXg4WX~3WYhLk9XD@4+hV7I_QdyM5^xZ_aCAOSaw z_i4E3kMJaXUPNZ&=a90J$a9N$Gi;iyv`bws%)r2|DCLN%H13YHWS+<@#dFsH0uv9W zig+zSN~bj)J{{iA*E1NOEvngzzU7%gl}? zt4JO4gqd=Zx~aLNK@B}JnXR^HreMdMz~#vDktKsYPk&i_k4KQ}fPTrE%>DS)>0PLz zWLle8d4LsPHhS~Qah7GU0RiW5Oa6e}B$9MRYA5J1u^t^`!Ntm+}R8LehNIo7tW~AnO2^> zNx?-5t!#G8kOF%A7A9&V52yj!=w4Xgnv(V>sD|duS}*e%=eR&6w-DK&yP<;`$_w*L zSiXzjC!&Q^3;f9ql~#)L9~#iiV;^AWr9O5;GN=nuUB&oHrQPW0V6zkAvrfJh!f32! zuU~rd%DP;Wb7C_-Mm{7ABCVU|98Hx9t_NSxR4u9}-yn&3V8u14@AwIElj#gmZd-9| zB%K^#OF-L_3U=_YA0Si2^X`C?gFrCkvI90?AQ5JY0!jk=*{C|^A{B>CJNFL*`D2M2 zXl+2~+y){I>#2TzJ;D`@9`hF{AnfiYs?TQ%twHw|k4nWd4*(!I8Uca8 zumFM=VdZN0RxxtO9tB{4&FxU&sQ?5WiwFW)R`vm(z{qJLkY|7&8!=(W*h63{K-L3{ zzyLr2Vklv&6f1;tIFPyjRbL4^m7cYC+RJF6O&GY5guastU@9$p(yFo}@w4uyDW!Kb zjGi5mL06$ElDJy{Kg(6fRKCNs4tW+>dy5E6Y?;QE>BOfjhP_ZqqiIJ8;4VxGGNPY= z&uc&Za(1Z$)d6?89NMj6+5VjZ=o6L&`eX(t=oOFvR_9E&^4zT$ZEC26IuIQ%ty+P@ zJ;#%Ji85C3i2;756IMfIjSP{5N(i#s$5VFD9)RDjdKnj!*Vg%1g7ytwS zo2ZC{&8sFD5~>;P?%R#82uLD@V`zB#gXrH=kD=a)`$j+juzgfx^_TMEJtI{uDU!78 z)Ti6-2z_mfRY}4iwcdAF=lTr~LnZyT_nP&k4-x^!rC(u>hEWjSGyjuFg#{xRRczc@d9BI+X$3COxfxu9|ETAK4H{b|Ym=afyhO-F< zMq#1t!{eH2ba3y}5AVhAYXlnDty<5PcohdE3zQRCPq4UUku11rP7-{;;S zEStUSU*zk;*aR%?hripJuS$?mv|smg(j|GXLWJ;S&j~UW?a_z!PJAT>$RVA7(UIEfJ}DCF#fR9N4U7({kYIj2AnD^lrdBiE z*!|(sKnG<23bjiUhj1$r##9w#Ogaky1X-L;;gA3)YnVI2pl1IL_M~GQ1ONhdxrYD* z?Q;SNfoyt00~su1){r;cd*RYRVpPnXdi}roKX(79CWE_u`Ix3Jk)8?zp$#6!+QAdc z3wU5g(QgtwW^nP(zpqxX-1DvXbzTdwJ-~`g*#Y(zWNpQ#TzZ&C& z63cIrJ;Jz^Mu0=~PDpN^nS3_jK?W9MOYC6%;c3KIHjNyw}oE zMvZMq-{l+yE#DW<2TBMX+Ipm-c!+cG&WGbN>%RXH95Oet@1WIrRKZu$k5)cJL z97 \ No newline at end of file diff --git a/fvdb/notebooks/img/gridbatch.png b/fvdb/notebooks/img/gridbatch.png new file mode 100644 index 0000000000000000000000000000000000000000..65f06d379721b3e52ed723c2b7e476fc4e33875c GIT binary patch literal 194868 zcmb5WWmuG9*DgFmH`3jLbf*k0BHc?scs*)_D=GrJ;n6LyZFf0PvMxJktRHP*VW_;2{f9B!_}Vk1G00Jm~SG{v7bI_Ku6E z7(Uwz#>Y7@u+w_j&piz81UU)21n{tB+uZ?p_uag%r>mH?6Ulkoq}gYesiwjmy}HRO zheFAHtztdSM3sD<|EC`lugvtHnR6MvSS&5cKltiDf8UhlM%%OYYRqe&@!Qya(?5T( zRmF&5j0-N*>QkVPZBTHeM zll67rH!9G*D1&e61MP5@Or&+qX4W+mC<6!f_XGWHpUsNV>X!CaX`FW=%QQiuD_3bd zfpV?gP3*%SII~?dd{XJcO*qGvg3GV)vUQC-k>{KHSGVhML&dS!-eey5(d+Hb-J84^ z?745I^_M-PA5sf3^3|s=Y_LJFEM~MyEYxOK#L}Y$cYErINobaIMpa zs^?(V_4F5RA+jCJvBIZ3(C@0=E=&aSnZ7Np@%vGZUvW6ezk9q-)}Q4b`kv%n67k2f z!UQ5?bjoJl)@=#;mo-b&o|Yruv+|udSn9QotD+Oc*4a^aMG!|$cHZ}AiFJDVg1dwM z-a_a1o)fg!6`^B)Kl?2I6K2skJk+y>LIYV0>4py`%5yf>Pqr6fv>Im~|0zz$=l?1Wg?xwsW#h)jd*9*gktESZz)40 zK6Mo<2LGo^)+cV^1bWwL(uzlnAiPI*#V<%9Bt|>z&)HUDgzG2fKS>ojFYepV-dAGe0(*a6h zR{=K{USp3uV`OFNd9G0J)B{BPmAdTp|D4L}x&D8fHSis<3}BFd!guSxy^_vD$^KE$ zAhSX?Pz85bi&fNXhoe8^T|~r&*=bPTk?g{k++TM24o>%{@x+r64%L8;TnP&7cFqNL zN7@*LiRrcF^mRn81YUZ4?2(sgc15HMbZOLIItMf;(9CW>&BmD$paReRrK=HUH!dMV zBfiYq?Y*HcAzz&L4z?NSy6(u!6PR`Xb=K;-w8ZFIR6b;{?my%8j3WNuH+c_|uUNOZ z#yBQXb=ZDFrdm{HvwTL^G^RN(oB7y-)43h*V{Q6p%~Y|y+S~9|RSJ`wxt%VQu#m4B z>C95nt3P`ga$y|3tWR{0ITl;g3`s6jyA9im@joA?F$;^vc8Gpl9tD2?>_x=coKB2c zS(s}G=>O&(q|)xxF$hi&yAxK}w>^Sb(aO7#V3d>bcY7IbLOwa8quL#n9*jKy|eK=yW8c#cHnB-8g^evj`z2? zJA9mkTE*V@yEc3LPbqlxc;A_KHus(N{uxv{pMzz0u>8QSeZH`SbV_S^EDq{P7gM&QmoPON?Y?tQdV_ zm>h&>hzLqp{B)j`3sHh%m?^z$ZBxf-(liQCa3xz5Tsh-8pcJVfoTXZcou!h&QqV$)>Jox-N| zOAd{#OPeE_1&W?PY_UV6Lp=qD^C`jhwjuxB7dtg{9E^#d8ue!Db*FECm|Um#mOc+K z{+|OG|KBZAYotGBdNr^mNp%wQpfIJ_fI~U>Qh#!Um1a;2j%iul=XFZRAYvv3;aK)m zqlCw-U^svIzAR~DlCnASLEuRO`KlGBpW0Eds1^ol$>4g_2@1@QfY4@Pd^JJbhJ+P= zR^?ZG>^RwdxF7+zlVqm&fcg&x)UeUz9%sKAKcH1OIr6eLQEQ83x4(SZUo1`SSux@l z>1xJl`qtTX*G2Uy5&{FWIr(rf?8VFf(v?7B?;w>SM}sH6%g9N$)5aR4t}o(GQZD|j zRg*9o)8*_(hR+Ij*OD^?)A@x5o@JG{(6H9Vm%JPl=}R@Z4<2-TWx`lfBA#m6B*fDV zPj(DD6923oPo6{m&9dUNKvgd$23an6G*)zCr_4UT2|Z>dOV0-2QSiy~W(b(~#V7-G zCG?md{e!FauTDp{grr{Em_?d2!oUJe@yGnpJN5gw>bK!1+%R{Y3c@Ll)l0AmVb2n1 zdE2wo%T^jX$ty4c9_!sNm~JiQC(wsf3cYdpZKR4MH`ijMc=G$D|8tZF{|nqS^IuL( zcLJODc)M)7q zr2!CRrwJVKvl1?y(THsiSy) zNd0dk#h?N`-kiDNufq>Y0cYc3Hsz|`r8U7NCXI7xZ+G!+!A;sC!?GAJA=zKaBql`;@`h76X zukW)rV76e z)+_Ry#8@Px?0Kr0hwQ+J~QLU}lf!QdW-b{ZTLdn)){IBvaH=gyKo1s5*U%Ys6~K*Btb$4w8?s z7i)B#l3S2TSeEJw?ri5B?V~NSVL@jpKp`b=m3%4jg}9y5ua(_|t`VrbG*+Q!PlphW zrmcaw>Xf)&jJ&k6f|z#y;Siova=wghkwKhhw*l41ID=40QhfOe+xsZp1kw9!h^~O0 zDHFXfofc#(lyv=luaN(5`uBQe;iuoD#D~i?kLFI0b2oS`4<%wK%_LHMm;(gWS{)7|e0xhT#V;qn;`=gf88uNzQ)Am66izxREuBBCXvyiWY;t-lqYeCPomnwAC z6BM;JbAw>P23ucvGx* zqHsU34vTs96LA2bwAwc&%kzUU$TJV!-A=cmXvAwB#<9?jbPoGza*jA%VzkntRg{MBs2}A)*j@G7D^=xq zF$*B|So9HswNPkL51xUhz@1D1oI`0H1nMp(LJa7z=}4x{Xh(p7RI zVXu$%q=EMrwc=_Gr3Y}5YT#})#Mb@h=0tzRoAVtW?i*;L-*T0Xl~JEX_t#Hol|Kd~ zrcM1vG?!Gy{owz{G>C|`pF z0EH5o2jUkn_P*fiLq988cpz3`wBDJ%^y)5mrhm-mkFKw$XBE(eG-)(TpoeL+D!wo( zM^G|HSA)t8ajgvSG6(YsDC1L)CBC};EUpe3R=Mf%rJn%7F15Rfn}!KjXVfYs6kHP9 zFYcAYw)%UHl>a1wn%CskPIT-?Tl5mi23U#g~{F z#gMd=O5Uw`u$di@Ac!Xsf3N6rNY!a9fN>R?k6WQk&m1xP81K^HnCEWeJMz%OUr=_c z<71g8O|qs?Fjb$!FsfYo>((`-Y&+G1bIP&o(M_!UsvJt~XpM?&)Sen8r$@k*?_;8l zd~IoE=cEdS2&9C8y`B=~7|_T~Sl%U&L7Oes3$YzF0DJpvn9LFCyESOo! zm3-9w<9e9m|HHW^lC|-G6BBP={lWOh1d@j&5FRQv>6#q8N1-2tGzJK1T05687T^+g zthDvE4Hre$SrbeLS^jV-^6UhuZN@t9T|y@Y$^$le zkw`~~hc@($w^c+uaN}1?5lW<+@*3GpJ5y%k&Z^UsFZ>!spG#!z_{%(x<*=`WTX+zu z?(A$r>u9!`QcUH~JGpYxst=`eRk-C9kLWOLTvKz!#}J2Jre!n~w8ogVo9tfwmQ)82 z2B3aS@=wAj{E>w?hx#J^$VX;t5xKHjqFuu9T+;>5nZib>5^c<41HKxvToTBkz;sR!H*eQH5$(tBZ`by~WN9bBlSQopQm$)AhR=cC_e13z^JhxUAteGN#OVS@VeORg^uAOy z@eW)AVMz~9qxO_qVL3!^YTtlxP#6+j)RLYfb=RTJ5w(Ui=Tg`%s@m%lZ!7MSnQPNh zy%7BK&S#FqsH1F)#FhnyBG-2;(CLg(_iQdPVuy|-FBw9V8`|_P>cOAa$S=TF} zZw~CNlhJPc{c{-jXbwy)hzDu7ac3To`I@yr;A1T#bwG!fsKXetx98{rj>OE0zcgXqiC z6c#7kjQ$quzdKB;!!cDbrS*M13H<7z5@{Yr7h}yyYtv_^yD-MJM&r@-eT+gQ*f3aK z{xHSw(%wrdX~AQw4tg9%>I@TlSyHbd^_+tpML3`>s03B){OH^uNQV|NRo|-(aB z{pio#>wznurXn6qK$(n-tSfEVUX5Xf?zwN_r*#CS>kjQodeE@qFSI+764ciJ`1W+q zmW`n>%Khds>?NpQdsBG90ul&ZD|mQK_oX0uMmaoqO1tBfdj+&EOga& z__K=?PiIN*uY>!q)p~}mOEx-nJy__P$eo>~H%{!qBf|{?FSCKd*=1KlFh0kPM`3^L zUK)M-u_#THd5S%-gkvrEkuIkE;S%YI8# z<&MF`pu#1CQ~yEgwpgp1a-8Atkul>HGDU6LA9>$5&kdv>I#UbTZKv5VocGNRMDWABZEe9gLHY=FO6U4A*rVc*dMY_9A}f)nmG^`-c8&x5S{?Ml{ch?-roE!L$;`X- zy{Cb_H8tq3KL32~`mmWGacYWPs83kQjZK0+!c00{7yg5= zyYYL+E>(*3QIz{I*=nbU^s;io$g(rB22LZA@Oe-Q14}3wN*4O9-CK)U>ie&*y&sK! zMl(|gD#2bZKcTkDSiva!)WlPnL+Xq|s!C=`QG~%x8rY6#)WU>0-JMGYe#;_iu-?qClw^{l`MTcN8+8{x*+Mx%`oP@pomf63EF(FLSJpl zSllXM`SZEW4ED~nUG!iiidf3m)@l?ryjrSNLaoC4T@Lp?w*D*^dB~o%bC&@6*I}Iv zXfUxTY%nftk_(?I(n{`dp&I2V`Yh&8t=sjI&FxtMG5DAWC>>D3JKQUDU!jj+rXMpWth)WqjR-3Apwj z^5`sKphLBaF!(b>339RuZ!Jj{yR-6qI6?MUS7=LC^r>H|d5k~!bNTnE2xK|v4q`68 zw|4h8Fow{yZ0?wpQboF1M=1`Fuen;8o?OBdwCF6khb5fXM3M3&x{`?Ot)}vs>0J5? z@Z^xM!nHda-h%9}ctUNLDwN8DYiP6xy%_{FdtvmvI#~3Fl&A0WJ%OBR2=9hzcD?JQ z&djubg5 zI@-o!4>cWr3u4G7(!$Q>$@G5-ARHmG=VrtrGbD0|IN>2=Y#{FT(@<%&(>P-?x9Fg5 zcZ@XAt~CP=Do^N!mVclsw9%*~KBB=rDA>01eik&*o?t)mS#lk#`_xb_L`b8*tp#kB zx2Apb9n4MkI+!uk`s7|bY6Od7QM0elGVewyEe^YR9f8b{@L&=833-w%?MWMHM?HV4tWIUOL>or<==z05P z6wXjN&Q!dG+z_6c)0yQzSH~^#kG-I*xaez1uICZjkq^C-Pdk$EkUlzozYHOJ@FfY% z)IH<96W8N^@%}H94fOt($(rlEeR4b&LH_fif5WUYunOUK= zxD0?r9%8NKO}1Pt-TN!lQ69p{+07O^{anERm5QzDjkru#9XTW4yH2^#vJAXBE_DIA zEbFe`R9byV$w^@rIe)ZwuU=7IY#n}fL^b3+0Kp9}r}O0#LO>BmE($q}@Y=ZBm!bMW zr>Nxv+xvFlZhFl<7W7ZIJ-{fUh+REV(GfpGp9*Gf3O>x=?oM2s4jiR^On0giX%-!f ze}&?`;J9Ih>Z3 z!(m_zP!N^1m-0e>)M^$`Bg0K|Z8=0P1qr4(W$Y+u2jmggOLm{1V5L|+Lf!Jo`95eY zzDkr5pZ2=<;wYqnT{1m|76} z@;A6yJmE2%W_@N^stXAcOVKA$xM|SqVJW@^F@t3_5?*e9X>aE|U{jOmm;$L~^`RQd zm&bakQ|wl9uq6YS(6O*~j;M7f@Tf=Sh#v3?Dv?obN;#r6Pu`s*=*^vpzIbS#RgFcZ zVa>0|>vG&@TBD({IDEa)?XK+CTHYKei&(?A>nqFlP1_igLadLv;wUNkGXY{b_N|YL zq;BbqyR98(vYurMy`i{F2{ENG+a0MbIX^hO$-PSdyDk&@*PXwQDk;gWWTHLHH}c8$ zz-}3)*>)x?SVs*3YA4`}i*72y?KSDV`1K4)<3jyf2i<+8$mHfRASiEgYsvsbouJVG zn=Oof3xJ#|k#CgH6C60;i3`KE@sU%5vctQza0djJ#DgXp;v zf{QGq_rR9lgl8EsyxC~yykMXf%XU%ldVNgFdVUeu_uXsB%vR&_nNNU~{~_%J<{Cu% zL)~!dTMMbm)wzCZAAvyN9oBN~rD;uI8xp>d8_KAEHAfEVsxp;xbl>Yhq7?R)O&E)>FD4&A2%1FV8LZ ztrRvyx&t1WMW|Hv1=fNoSg3+frlvOb*2gP0Kk7i)jbe&smy{JM%x_1^{mMH)2#gqX z;SCK*b;J0W7t73R-l8^TFg{eyYr|X=SCmQ-qwsbTdj`jJ(pyWnc=|M5eD;pn2$<@P zK?7Ab+@(`@ln}f@#nDgF8;2=gAL~Vv$wbPoV)rHiX4J~34B|Vs2lk#H?Mtv?##a)> zac7#WsUAP=mGl?z@9Bt3$3EbcB^%iy74zWsAJi}ulPzv;DDV!b?8ikLw2zISdxf!c zD$u+~@kor*!QNFd2;(J2QE_}*cpuQ4#)xq1ID|KtfVi09YIwz0nImU%Nq5lpPl zmlLI-(sKjffAWj<%KNvj)5}Nil{l?CnckyoVp)xFLDgm2flJ!o`kaQfJts&_BuM6} ze5IbPgs1zO$yL2}3|7e(=AlUV* zmvroaMa8l&`kia%Ah4Eb7P)i52w;mz&wU}MS+NOmG@DC?cI*~A#}aZ_UdAl79MSLA z&7#2A`9sdR+(BMyGH@vWGGbxX^n_O+Bvhw2fEgj(PKm&7MMzHy0yc+_0WCA0%h4Z? znnQ2Z|35Ju`tSTj==9Za$Zmqsq&T$j2&|iGd2v4WfV}s;xzd zc@Za~SH;GxXus@9R#V0>b>(ANr^c^RkCr-U@Z*%s%6!X#zNzuC5lWMUw=l<^x)s)- zX39sMZ;+`4^2(ei3}WJwYbGv&iLW!NZzU$l`5slZw)(3dMICzDXo6&sgWmV_IH~Z=FR>ekwfD*YlxrdnApH#%QZtcn9mNG9zyDYj)qRr zpKxW&lxMTT&9TX?Nyt^&C6h5F@6>V6JTB-Ho?E=Be}dI@P>WL>La$|>eA4tg37Oa-zAj2HoRA*V=kkNSpj zO4kE-G!42;j2<=;`dxZbw4K!g!%W!zMsPbDz`XPmRWAuhO!N-V4QeMGcK1VKNc6V#F1(0bF3b5+F zwo?|_ihX^rIL7qAbAbX2NGUwX;6rPv?{PI!BqpY~LmDsDy-#ri!YLgUE2uN%FuFnYlf;T^pvRiE;c_4FWkYD7#p@Gm!e zQ1^zv`~Q*ZPs@&6X)-h+{BXN(JI$Oe0^y<7ZTY{;& zNNtxir9*`A8L4$Q?uO8?RD)jqy0^9z=^=Ed1~6IFjxlY3LdYnu`wI8Vy1FD2Q|@7p zPfP>eV)Tk=P}%nm8g|=p-lJUQiHSES-+HWCX3vZ?iu1hE?{hy*iVqHYclm}*a%5ar zd_Id9Cm9zV%n)0rj5SuMzLQBxMmZNCitZ&pIqN2vk;V2HGIMnn?h^XM|CXz6pFHl& zL5tlbdeysC7F(fyq!O2k*L;iC!4_qAwd&PnVTT7lhx?o#s zSBt5`tmHj>7l^n`hJ?hMR6Kbs+_#{oJuG#m@~qX~^$I-el2oG0zkrt=j!)9TfQ1#B zpJGJx<-f7BE;qjBWaEkMU^xzDVFP+L=7MxOkf9wToLFL`i0SkIT~M#Ao$185MG-3k zozUd7(={;Ue7dy2AIF2ZT%jJl;gTK?!FuTI*#QNzZJP|E2fQZ?MOLM7;K3 z;eJ}aGe#B{XG`bU7X1@)e(&6H1*(zfPM_{GhY>c>R8eDWw1OAC^jtaR4UbR73lKO! z@7kbG)sfoD7q!rW4ULNn&VJ9KW~5K@5_|6H=H46wJgD7sb`{nHghHMZV+1@#Lh zGH?hB@6|qmiVa>)BSSpn)l)i0v`88`0sTlkMT;+L+p-DEFR-0BmEBcw7@vdi&65vg z)8Pvq3BiN5Ms^jDsXq4cK%pH8N$aaQt!Q!YHI2~Sp<^}1gt>s1Qf#~6_2-c#hDrgS zMt04KCafP+O8;;WGP!?V$^_$R23FIb%;rGG+vASmlM1}Gq22rliyNZ%JfYAR7Tb0N z2A%OxW}ZXPOit*h!KfBBWtMlk$A`{Nfc(&q6&!AUJ=W+s1!T-gjYOv})ZFD#=0`RV{D_ChD zRC5-=gEZELQq43Kp!87Q&zYBFm3I7u8vd3>8kedEWiUtfp^$2 zf}2NxM+>=cAgPLmEC9#8p>Iase|aOq%=lw7rb+V5jQj}h4tu{F{F!0*^akoh>xNx5 zRDMpF(PQvKm&`zljI-pih4{&15w0wi=qx_s6u+v~^jkYKN(<4~ThBTeez0up;-kK_ zfAEMgf(t5@;51j#EyiA{QC7wq8#h#3X2=3_Vp?QKWj!<9PbA$~^dNXR%R9{Jyh8ULj(?Em6wQLf~tv9q5j*UGj$-N!w3Nn&5czEaXwQF#SZ ziLU>`LkCbFRTo)r-`r zNNG6`iFT9n0z($#G(T!ab#K8ZcHdtb#9gmE`%21e5Yy-tbZH8EFDasTECzRkrA%Bf zfu>898sah5!yxQk0V3xk5$rt(e>(Ytr3Vf`tTa(PetQ#sdjA#yzVZmT0KF2w?Tvlq zKYNe=*Dd0V0LkWWh?K>*xFMJ6N->-Z0GFGF!4xiFkB z!<#zJo|9A<&A|zx4w9(B4OW~zDB{5A%b3Hfij(OsxZ$G0)tDv(ZkXSpWdxP(WLdkX z>XbMspiSgg9mId(`7npw@QgPv!#8|LD&oQ>N@4w{2-1UboA+#nD`RzaFV0&JK~R&A z?qoi%OwDv zFMs#i$}B*q&xTh{sAeJpChyk|H?0;FLw7{}WUTUIem&9m-t~RI5{0hT;Ju5gLR+sN z@DXN(q!-Ss)-`PO*^~2&g?7iGxR;@fCteam41w^S-SdNQf8$iz|L(PzQsbrvw=o}* z#8wQEOMaMGh25TdnVmIF2OtNFZZOjW26SfVnkRUVPnuR8Tc;lM={<_#2aghM@3&vu zapVc^+C`myckcd-Kyy}$!^CD++$GT?R75Bvjboq(?(2+1{vr5wq1qb`R3pyp>B8t2 zm(%Ges6p(v99K!J=Y5wezxtXZe|LZutO9LPwP*GK1LqT^ZT?8 z!PpNrRo&ipnsWy<mT=pz_!md(vq=%bcw0Pa80(ma(8AdUnQC7d!>Ne^&Azk zgg7T>mZyfFvcSl#yILhJ%wV+#N77OwJ+d}=o6T`_2z(X}cqba{ zTeJTLTIqIYH7{ z5D81fb|wv<5MWx|b-T3x0^53zS*_j@2KjsiQ*ZqCgUZt<^0`BD@MboA?Shfmob3;5KW z(E5C{k*>3vMx&g56g(tlG9)t7K@jF=bRiiT`d@;+VFYB>+9+Hm2UZz!W%nw z2r40INz#n1CHs|I7Xb%*|sBQ?s)YCy?}5JZ1jBr-{c z13W0DY0uK2y%Kj;w84>;=gM}x8&}A=oI@l_;b!=KlOEw1dd{^Hy;g@B)_%jvNNma7 zN|LEWO6&p8yp)D^!TX1gtmla_$`g}O`?Nz|kvYX>rK=hv`z6}co*x?^dj&gIPwJ{S5gcC8&HehQ$uBY>kIVKF|#)#29()&&PwzM z>g^-7mBj$d>Wc<%3AEg3O7XyjBYh4WD13B$)OTGXqJF`p3pZ@iwN=yEm)DM8hVtm@ z_zzJ!9OiVmnqfA3$Rh&5THlqvT~5q5B#{o+q*7a~dNBW+KHE@>-YO2cKlVF@ zVTE@~q-0hsgC%>HZ?*F&{I!R^zExd%YC9MZP9BD_b?G0@U|}?6QASb_4KgIPuZi_C z-e~kcg&3JT%#|_bD62%s7yQAC+#mm&F!yJLw*K9kt*F1o3x3WBUiqXNMBj$r=zOSQ z#j;qj8NuHNmFmv^^?Tyt(r$pmc5S#Q$c`pP(ZK$9J3gt*8!57;*op z4mZBU&T@^|Fi`veFo$7ei#+~JD%N==X%Ts!c~;(xYKG;QxFU8qBACEbODa)6 zDvP&?E{hIZojVdla9ZbV zT3?{at;gPHIiKpSc_gt(?_SouXj?Hk3KA1I^`-uys^$(kcQ3lFz7@hlIXNBQcq#Hf zeu*6T6w`8v)K(3ox7p3@n{0G({Q_<>J#Ez$IiiAn0P_H? zY*2-sv-L@JUF2S~GhzZ5Cp1bmA)wdi-W|H}B1a@Dbam02aLN+A$mqIeKy(&R$AfA| z3(D@e5Ox^B(ho zBF8)Rk9{1$_RpNkCn1_Q{067(56HVDNzqMUJXun7)0OM=fR6$6y1-5EWVAUPs?0e6nkI_}`Lf)=XSW46@z2$A zm9NMVuD*R$)k>MKC(+h8e7J(G=Hq-*!|8MCUy(S14p3MLLO0#NuKjKbj1l=Tg&l{N zUDalMOu%YR(v*8h-mGBe{=lm$?)XKN!k}3XV>Ly3piAB(!`J-6im^tC*MIySwzJ}X z!4>VrRa(1*hm-qI0JzI7fPEwQh*hIo&&+(zu8e9)I*o!FywW6>Z)$=Y)BV)4{D|(; zFiohn_VR@odfrxR()vo>Y5Nyww~tI9QtV+M?GE{&{t{L%k_*7@`x7stg?3e{?HNl5 z2MQv8&NraoD2iE$;$kjf*eTvu%!dV$D)??ZbST=hrRT6GHHorwD#*6wMPJJo)< zECVVFC@%%KshXopY+yza-!aiqn$^tRzM9AnI1qEMPKP)sn2tT3I>-$FbR{m@v0_QXpa^g0+G{zDd)2 zUux38!}e;1h-&G+<@@3h{Fc*8e15DfZr^q9*aD;6@TyiFj!gXvs+11?Nn8A@3nwUy zwj9Hwt*)3IUTUkJc*lEV)9659okHRGjpn0dc0v)+ke_kUC~_fR)neE>&46!uj6KEx zi?#9Nxi=ob@as<6Bf3MQPH^yHE9}QdRt7>wKz3DZgL)4_P~QqzfEE8%-jW8TNoV9a z4z}}h^n<&7meuiCZdQXY2ws4cce?#Wro=CCu&QDsZ4RYvH9_oE3oCVsI){bQmGQGn z)$$b%>GXlwNRJi`w1-sFlLSpANTcor#P+(;pI$cn_2E`Q><#qkshKiQfK1kL0sRFn z$ym!w-#`tklP?QeKUPsBuwsFuZ zT-0G93Zu|c3pQ=%+i1l2zL>L}6^OdF_PRA`So{*oie0|yl(5kNaU*zesHqUHce}1W zZ!+UHLEuiH!^KOUhlR^c(;19LjJ4GZ5xZj|2Qz`_egB*ai_yEHxZMwfzLy6O_l`Ez z1}>D^Vvwx9El|2FZNKIrQ2S5z>Xq65no>Ks#R(#((KSZjnvrWr9YY0U@2}p$OhSX; zaC}bD%IQYc3hPHTUjkWOKV;+zWga4TfXM4&*iKfUvWgJ|=FjvIms9{_U)DP{kR6t? zqU7fh1Zu&kKM+-`=L<_KnF27bC@EZ&u}E)sUt|mNq#C<7bcPR3oLPXp>u3Yc5(x-o z=bmUG=nLeI21wgRR`E)5)GzigeY1dX+lMtp+nqRlkCvGvvWWIme=?<)?TWm_82jvn zgYb01yC-??uuiS%sx$jayUtdm0WbFimQT!c#*rDT5FjJXt~UQJoOI}YZ)qz`yUgqO zaA?IFNR#lvufm}d=AGRm&Eli^%V2XQ3Yn*ZhuRFeE$2vJLSi7dXGWjOT7 z`h0aXDE!!qY$`?I9Yx*2)qBuK3A`;V^a?)BX@R+~$iN8yAPBGjPC0t^m zTb6m|Sr<4XK|5v0wOCqaD2iSB<67bgl{~qSc0P05C3L0;07tvcOwk^3Qbectr%vj8 z3btU{Y)pxw6q+nl7a)3(QN+=wNkvc@n74o0DO3~_=5|+PfD`|cwpG?MUFA|dh&gBs z|C<3Hbd}ka&}{?LrjZTC2l5m>WOOBGYUz8`4e>1_QHeZMksla<;MN-*4~@(?F`!vk+Nn?al19s z+>uXfvDfWSCwT(esryTNL?)%$jz3s!G-=ULw%MUB#x5#@f;Vo51de?LSIgiQvRL(t zU|`q5eBKYK{Or*dp3e6_W!X44C;iU{zBjCAQXr%i5U(@}Zz!K0*r!eH_PXmY)<3lU z-=_{-iM*HUGeLYkb!@cLpWeS`i@X>&P$um|vp_&Y*@>ssE%Wge-U1V;tXu~jwEU^Q zrIfWv=#cR7$`YA;`XkMo&%EI6rewz=>jzI#F$nk+T-`=PFO5<2&Nc9bvk$jzBXkpi z%lK)KDwgeh&xdg{digO5?KPF?L*JCsl%ojhupq~VH3P{g3LCA2`y~N(c=TQa+m^`L zN5HIGhQR|;>K9udkfA{E=^4;$NiF+r`eL>ljBq%pswxBFwP>j>B{Lgp5^UX0RyV@% znPQG}uofsUNZ?d4WK-D4T(5WO3d3R*9cV#!r>tEpW;xQ^fucK#Sge(kARqLH^JY$6 zzK7V?NbKA~ULG<7{ME9C>D4Zz4@j?mwv!^jp$TG zhcFy{$Z6Gb@oO0KB4rw3#jOb2q;_-U?0KGPY!<`#IEiVBBP@j08sbQUS-LK2e^c`0 zqDDFWRi}b&`iAaF#P)c-Z%|q-w--FK!JDVn?yv5-{f9G1XEA^KdZKd;bmeC##nKXa z@Q&F_^6fI}OjjQ}UxgTSkUBv>;U8#O2914!%?S~c}fW3K>MI`aSYWX z*iakyRRLwJ$x9i{M5(}zL0!_5VUPEjaQiJOZ#|Ih*^qP3Vy^sYs!gN9!t3kCyA@Vw zLzA>DG46PsoLsB@&puNW_5EC-GsDr}UspV1Xd2Bb=p^2sg{(|c9eX0Ql`xt`T_=xE zJlaogC+vb|U%Cd!4smWCex0u}tBhGT0Qo*lY~x=m&S?4EN9QL9`_bfUiW|5l8Z-bO ztzwkrYurf})C%0#mi-ZVCoxtp+c>B-1#an%KYZV8e38`A_GHK`jfMV&nCybxx>@Jk zRf;JHs^_sR^T*2GwA8`L@q{JP9kUF`2lW3&-!>02!fKJ)N0vaHYNQcAq*>Ir#`jd7QK|v)rj!Il6X_}CVb@8TCYSV z*-<-x*lh);EZvRk=l{djTL;CV1#R9lgS)#!@ZiBUcyJ5Bo!}l^gS!Nm;O-h+g8SeQ zAh`SB&Nuh&?zi`?+W)6&rmCk;pVR$3zrK(XEyawRrdBV)^-Q$~(+Rm={G%pVn=9zb z<^nM2#8Fnxgeo$M^gBjmjbx1=1Q`^x*>J6uAA=?k8Jl>|(l9(T0@O8Zn}ov%G0w3U zFsH2c?F6o1l&~~y#HoX}Vd&O1yjK5OAfQ zG`<*@r8x2hEe$fv54*95Fgi164n;ATxA1N*x7a5#XU2BObo*7YN`z=eE62-qrz#?H z)HG>anh#gk)Z+M2s9fw(!H=)I{-nw4bIw`1(AN^&A>J0E?mXy`M*@gU!t4h@=-%Dh z9!Nttu_1Z1_?_9>gXPX3FtW2t|#`n~w`CO$;B(9wEREC^c z_nV8#+Bnx!107lC=j9&!cS}MvC0H>>n}0^r97})aRcvXS|KObRxb83|^hYJ$0gOZPjDCC$h2s85& zxk`(7-vC+_n5*~{Cd~^82#Q6SD9OM%-akk0uO!LOad9s*DU71CW_LJpR8p=_zTNPd zV@jZ8E_E?e?{$o}g2l3H$|7z3d2=rk?s+AooHz&1ZePd=&qQ^G0X&fLZLUf?)r1xLqhR(tc7S#nh+kCA6V!%UfH4hIn>mf2`#*|t9S;((i4%r zM$jig1rrJR;Yilz^|xD0h{@J6N%vI9868kNm${jlOX9X+l2P3){jCWWy*8oU_ zo;h0(65;IWM^xiZD^oZ5$*<2F6J6OWmZ7f7`>rAWQ~Bv9zqT%v>=BQyH-`7Yk$q^s@IOa; zw1V7(UnxDi_uLy_ZF(NJ&4JEeASXh}+-bzTGUQh5Crzgn&{m&*6!wxY3v=HFBrk38 z@UWxKr;1G%&y87_(hKaupDt?m`9|@noBm(z=9$W{ZT$ZNrMy;B2keqQp2^FXVg;ES zu4!Z&wQHZ@U>^f$jIcHk9ME{4;7~&@|j_Ed-AU>hHXhI3ckc+`;=e zxlArJ8a#+Bi09WqenXf_5f8wn0PN@?9S~t{3iiyQ%V{i72}_B2UPmTVBmrRNaj-#K z$@UJHjd&_M-}KyEO&f2Yb#qKj@y;YzW!X^z>s|1CZ%`C+mC~9+rwanwnqhG8FYjaF zktV5Z*2%oQZ3roqL%rf1@!_8cJ^jN!#I(4JcGwx?Hun{)SaSytljKl8`>%G~Q;0V_ zSs!@AGqt?EzLAhvDd3cv5&+*pVc)C}I>ttgh_pZFXVI|@m-etsBzAPvotM zP<{@#0U=Zmw)RetF2sbe)&#*m3At|RK3`G15zXzdRw7p_p9z7)-fCN~C~78)cO|}M z{~k%J7h;j*Fe@b&u_S*jBOXuD)F=zY8OQ`xZl{Q(@5&!t;+_lY5Pmyg6TK5z+&>e6XTzw!Uv)wo4ol8y^^5g~nQ=S?Xp$@exLe?R%65EozzDBse4xq) zm=(M4>Z^T83A!=+vl$eN(GLk+M+kBO&WGL0Z!~4k#BCz`U7sluRrGqQJ4GhBH(uRO z9uP+S(W-zX*?0hhP~1!!`nWs;DJPSY@lkP@_G`}A| ziq`ivx4-|I#G@MUFs6KHa2vxnAP|yp@}ao!CSF4y+Tq!L1XkV(2XFof+P~W;Gc1B0 zlVy-AeWCsHMDChr!sBZa3-cpL6FgFWn`aZz*q4YQz87 zo04<>?=XBmN5gk-wwWnqN&+>>0Yc}D;~?&UJ1*caXnyUde3oVhLRXKKOTY{u-N1bC zW2g^wlKq2NCgAT=IS+#~lDh@|jUE>cM*?_h@ z-kuz9KFJylO~2`W@b@GMS<^RpK1oC#wo5%K%oqD@2K+7NZEXG9z-ZDaBW~)#OF0cJ?a$~G#@F*%?^a9$j6|7De-LO zCl7D?RY6AlzN>-_g}o)=xw^ZsV#@f6-1wZ4rUDDP$)9LFL0QTkhFJJ08*y&v&ZoaY zpAdJYJ-D;EaIZcQw|(+5kS0ABa1Y?@=xebkRz5U<)Q-u+6P;g?5mJnk40t@h@)?)| z+^!<6P_>HkE~e;C4ekKMsJ>i3T_m+QCS`2*h_n%Q`~(ba!Tc?g1B^PbY#f)osw&9j ztEgQV7Xa_U7SzR<3#X3S_;nc(^0n+HgAzT zwgNfpi}gabwgr0wd3uvj%fUfi(%SWL$0m*L?iU-8e_sdG|DB5LiObr)La}4!EKN|? zOe<9FXjmGfp3AFH`j*IhJ&kT;46j4}M8nmZjVWe_UuH^T`xjN#}s65qsiY zlG6@PS#KscB%pCR{%NY`VS+m=#U-4gKH-PV32G>px3GEw>LTW%KN`%f^=mB4R(jL9 z%Lf=ebEPG=Dluq(i^`5AKLoNI+Ine`RY+iv4z;x}%4r>yWQYb>HxZO7#$oKzN(=_W z+=d%9*Y3I;AeO8S4_<{3}?;DaKp&K`OurAofY4M42Y zr1`cUwTqf<{!UoL@O_a*yF%d*7yNW5TS`bXmzDO23eg$dfYy#3wIR;@*M!XFQqPZz zInO*#y0>q}|MZ2`;Qk{87vX9uukNaFTuXlI%N&yX_1E?blU^r_FuvGW9LW|QbPADp zNvq(H=pl|-OyF8T!tNP~7!pD+r4z3pNQWo8iPsO#k0Dr+)J=$>vuHqZSOO|u^i$SM zLy))ldK}*kKbzlrcqJ(cWtyMMeW%pmY5FcxKEcUH&%Tt7oViI=R*W{J%}=10=zDh0 z>nvN;y;D13OwRip5!2a-x!ELUK6$||wNDy<+^oNW&F}CdhpZ?uL~xc^G+977;0wu$+j54{aXMkbJFO)8EI}pU4+uOhMy$oHN*q~ zWZ=5!8U!~d^w#;XewVO)JOjJLE9<@H95T^9&t|A%;^m8i`+B_E(m$hn5twjVhzslf z@2lJ`yJP#P-GML{wz^j>84vHxvY2mdPJbERC-GV8*E%j#ZJh7GmD$@m8_^h|bQEp* znrn4{>Azflzpe4^)dyzBKwazI%;fUjqeP=dItnpF0;kpu09ELtz^?ot{Tb`p(wWWr zz35m0bbfZ8AgI&SHul=B@bAMS_dn;ZMKOM-$okdZPw4< z>Jn-kgm~@;C47Dd(@u6$KBRn-;0ZPACEq7^U`ixUILg(csYG%XR>eeI`#ZdE6bVap zhuLH4tTb_Bvey66a=VU2V`Pz>EdXbnAMe6_camBL+ZYU0W$!)3xU`%iMGaU0czVct zKkYvMGzARLDsvLDCg)26-aV0;`5CYwxSjg+{qQ7!QxLq>lY3B)8xdIAPVkOMg#%e? zPEz^BT9D;+BFei`uD`hSR0m%|EuQoiSTHAXu?R8!BkGZ|F*aFJmRIXCen;SF4)d@aE5;rjfo;P?s z`v`X|67>&}akzerApymtMc1l=?^35m!X!=aR;^0luzMvO`xKF<6a*O7KJ?(c#+*wU z5CIVQ9nP2vrzvp)h|tpq9iP?p_oiwh>EvY#TJhPm9@2XTJLG-*bW106{d1RIDWXci zq50wPS~}l?)P_zHZfVK9SQ5{lK5RR^q~ldhmrMhTtxShEYz)g zMUvENMuL+4A_L_;q*cvrB{t}#qp#vxR?Wd0@&wmWTq?49@q~2FV?h4xs5@oR zIRxmNvu?M-zF>72m@h*lgzlLdlQAFiJD(6NTBF#xX1(CbB%Cz` zh2Q-hS`J{!fxF^>%0#%m=p6W7vW5y|z7h_LWC|Xa#98>Pzxw~1piHU%BSA~rHQwfN z2Cgp2h96xY#H|-C^oQFK9g?n#N$U-Ai{u%0W{*_^31HU>aYIq*eXs)JnOcJ>BIrkI zRAR<)Y?}i_g7W0D?k68o-w9zF3_wweaKR^vJh_CM<$%u~u#hX+_y;qHt(TBLlW>OM z$P<^C_Jn=fKl0Jz!p zc#%N^kj}|65hmk~wC=oZr*6n){$Jguq+!QYA?xN2p;CvJ)zBt!j=bB>FRHy$RX=!% zS&|lcvY0pO^}*(Ij}vzcKNoAeo*YQJV0`6rhKUD_G!G`)Z9nfqwtlY~j6WH^FIdNm zD?oSfr`+6lcoynWk6dR1GzypGP?-Su8xKuA$Skt(m0ctxyp27`{q*@V$Zg-+N@z!d z$kwm*U^+4ZyHEkBT==oNc2Mc3$FF4K~%@~*^;BNe|nnrKEP=BWh;;hO)} z(l}4@`NTXv1-^LsaXd(}xufdM;CasjgvVXRnkskb8244>nJp{0o52ZD7sh-r+y8Sd z`TLvKdt@__B%$GFL9G}~BbPw+kBw(~s}-et2FZ80(~5`B3t(4VCZy{eLH> zMI^r8`5~)|31L??urm9wEkLKUQ-^1lffA&Q+xuoFanz89rVR)&s+L>R>fLaiamQE_ z>iIaCl-LzuM&kUmF)~WnpvzSHRZ-x*lohpIXy1f~K9(AaWe`E7#9NG7)uIjKJlGbEfgy&~{f9-0M)nLV*RKN#JDvos<1H@Y-b!vVaaTBRfu z*VqW&ti8u8A)8I=HAZ}89;r^~uj|GeTN&R6A`q>lOY08L5ziUVJ~z7b>=V*JmEwWt zW&lup(>cTdv;GDAn<(x<{lO2p66tyso8A8DYe2UJjcd#WHB1gL9w>7WyCoIqLb?DF z=5!*1JD6t#Yu~#gW*G~K4l$xesl6My5du|C?{nB)-x{r1+`l9}Ja~waRRgK&?2U%p zsc@fp9}3>3V#dQN>lf_3dZq?&JaK85`BJ+eHu*pKTHie88?Da_gOl~t9Tl|GLIQQ5U3oV7=>cHVohUJ3o(tJ}Zg0K_yO zp(-|ET~2Lr{l9s2ip!o)rUIYMInGi?IuDwE4sn=uomR;mPpquooP&4YuE;Xt{uQ1c z{6}L1&E3(O*GaCTD_xN%xzhn97@jaDI{^|61jh}QTWZl9_fH$>##Qyx7+&=k zE-3Y`MbV4kL?^?B9laE~?Kr_$a3@FdLkZeT zUrvn*Yj{0(+<>oLD0>sIevlSh?%miGlc<)+M#>%=!RyzdKF6^$-)Sx17Z|_S#Rj4B z!CVa8>PkUi^bL%1oQ$`3Jv$lLlrJvfq)PqN`7(%k*^p5fr6%)F4}Kvq%{{zLT)%Nns52v!vHYdi`|rN5|1lHT z6#!2bU_a9)e#x3MNhGJZ+_8m(c1wcc5j-?Q6vm%WVtqH%u~=>J)V_+r{lD%z|3kK_ zpwS2gv}w9*Gp>2WF=;!#s5Qp41uIQry$Ldytwio<e_6< z$cxi7;CehMUI!QTQtYb*4lBv?$>tL8LBzEm+Z#`N-2X0}zW+%-|3(3{)f-X5HZRED zBdPm?g%|iB zsJ1^NUvkoYLm5{MbiGY_aoIzD-b35_X?kH`M=#@vb{ojkps=pqAyz9q5B*pO;4udI z9oq-bz(IvIrd;GbK@pE?08=HLffApvyfL;Ms!>jV4_RIt2WkNEihq-bC>gkji+t@f z?)=Bk+TK|!qaMP#oxcLeZFL7!Zl1!a>h2;Cz)#ROm;b`+-Su%`0(M5E&1GYlQ*~5M zSXLSR&g;_W%&4z9c?*B>)7MHC&H=Bnql0RPDK#kBhEI1W1LZp1b>ZZeS3d#_65R~a zVBZOdo%|Y_MVNLeN-Vr&8Qf~{)=iSz%&CQ-X4@<8(bWAtd>GZfj@ohW6}RR%Tf^Tp zkT3Z;5_DSLul@|hi8T{DytqBx}KLn>X{GsTS0>;RGa=yn=1pN2ty7Vk-B? zpAexps9Y^WtMH4wl9FXLLLu?iSWzHtON2q4v-{hI50q|q2sC6XA@1~B)BLC&nQ3crvE zRu>Iyl#tS;bV)`aCxc%Qd8(ER1Xt$b0}3t+hi3_cY@!I3RIK9!Vo?`^RLG3Xd8Cez z+(N)PM>fLsSijdW_}&|(m@Kt+p@VVArvgQAJ0TSjgS=xb1oi7A_`pjxkmT)F1e*tcWEoB4*8m&biYEg~>X zXO{XQn*VC)QUcMS3!N>9**d9e(g&?i?sN!5`{0jPhJ zE@lVI8p%OUOV$=ssTMdmNKT$w8^iD5sH%&aLYSL7zEfc0HcaEU=6MDO zfz6kz!fnys8YLLG19wV(qPdfm(jiGQf9^m5l|%$Bw3f%NrMLiAO|E{j+Y-2*bVp?S zwx(p8g+DjOABIkpw2c=V;whSGedrVtCV4}oQyCHqWuN>doFbPq$$Fu;0Q0uF{#{(a zqUc3>Hu4W>W_Y{tJ5#=~;=Kp1p4aPLRM}tM^G{l5C4vZv+o>N+=m#+NT=$z0Hl#zS zY=q8ejJWMDzWzg~H0P{rKllF7$H9lcHh+zT!06Va1Leb+z|YYnQ2ntZjPu5-?9CXl z!Rk}FjS43JEt23$8RDo!5=;7|T|%DMO=EZkHI3oUTJY26nOy!uceSn&I!9}zBkbsA z;7Mk;6z<#m$dvXy5`5F0<%D{NM}9gqgWw66)(E)i|8C9ZmB0hX z+(z9WJsFL@QX7}eA*Kgi__Xz!7`X=tXa&`^S{~9AmUqa)>D);fjYq_nNw3$ft1oZU zl~))iZ$tm)>g9j-96T1>*p94rd$xTuXeEhP(f+l&QelpRS_?x->5nm>ng22H`+yCo z3^5({peKr8{f%anxZ6-1wIJ5eM90-gJuY4mw-Jb2h`LVQ`gIE!1rmrQKqqJS$nPH$ zcq!aL2iXgPBThnG#0au0Btz$+H>_!{0reMe+Xa~P%PXTCMTFH&qGT(53@GEM z%4cn8*9-Fu5v;y^F9Djl<$Dsu9E?2g;f5LCh5LQ2?yN7>z~%v1<*CFF>c6=CJr>IT z)dL3Tt({1`XE*3cDN3+C>-iUJIa)}^!(vn44pC)u8H+kPvI%i)@~5+SwoJz`rqL~t zDM>Y4-dw#dI*{LrI`SW8%Z=G)bvp>GEn zCAFTl`&0_531EMV&{KP!q@?&T)3m8`(LR@5LtC=kSm%_j9X)gv!oz&qGUXw{<2?f` z+weL^q5YNh8nUuMY{Uii^a;OJ}t3 z%iph|jv)BWRiD_kRAZY#)BY%Auw#XDwhd>Wt#as0wekAhRoWt*g(BbcTY33`&F!1{ zzYSjP{}k6ZyU+78&CoR`Iai_W-p?05+wEkrj2ZG^H%EJG)1a9fD#6P7zW zleQ43`s+78a{>bpQx!<-(*<7rZ`TCdVwpc(X`~*PAEjqk|4l!gZMT^G^Y?J=&mU{m zcR()$8I&myWyf8xHvmy006^uX91q)hw?;CZh|NeGA&tAsnBbfw>8X1e-D$Ymac;gg zju628R%V}tgV67t&g-zI@bO_R{N4oOs)>%)xOcH+;O=+v8hb1>t6Sp&85R={7r*S2@X<>a*NLiWB`j1LV%WxA8x&&EG-*mjJ$R#pn$?Uv zp+=WdHJ#VQ20hR;;ft%dHEH=E81;?8;QKC9$ePaY10f{#W%Zlf89m&o`0#BN#>z9}|KCn}Yuqxh1vmhFh=#Hw5cQ76!&TvwVm)iCrX;vPW3AFn!^T15SGE|>$+Uq z5YPI=;~8OL`F!)hb5%^+%3wQ^yIG#``{U9|i`2|jC*{~4J8-Tv+*mQ;7E@93akt{( zSpvJHg}SqiFFtsj&fXkbb7>Sy8SdxpiyFS(z0+1%&YG=&1T%dW)`@rcYw4RE*Vpkh z4%5N+F2H1`X49Y7AzWWi@~ZYgFGHbRxGNqhZamq=PdLiL_g&u>WiYUg&yh@&llBwx4*l!V#Z8{{s7%j1L|?nCVyGR!Emf%!-83Z9mw>yt#L((C8= zGQHo$m4AFvjfGrBxbf|Nd%;CPgY7PW*{a6=U6Z4gIeTAY=hjH4w^)G%{zQBOzWd9W z#2iF`Ia;m-wc0Eal4mmJvhRL^8-2>QMYP& zHYe$Wkhjj`_lV>#KXY#6eoFUcqEBD6ooduQiL7TDxJ>`tciTeHd}P77Gq4_$GKhv`A1m2b%?W8Xfgn9Ev+#!8htS@3sD?B$XGk^%GebJf@V7O}@lXZ$RItBvn`>l944 zt8ee@j}jsz2*|kQ8U~|@pkX%ee)_x49Kg92`u4ck?RgQ-Vd`In#v=T9mtJ8&!a(lk z5Q)%OL!9@{JB55B@0ac35UZ?O?p(7ZQ>nBfpIjfk=m<#kmH{O{bRcuxOiMh2mVE6d z%s2ow7f>5+nNi(^%t2HdBCaw_@lhRP2S8K!n>=Z>D9hd|EN&LF_#yO|MRf>~gUY*6 zM#>Xl#)ModdIA$kDII*RB-vAFVnqp}4>3Daf4uy{V72M;q4IFf5H5Yxe4_YXyG{yl zVn@C%l5^Yfx`Uz7_Ch`|!8eB7zKeOVX)`0zU#m;0-f|cV$fE(7Rl~y78^ziIxvZ)d zt<0`)k{T}I&SpyupK|SiSo!W!TV2Eb%P#WCJbq!w-SN@ws;GxWDW zRhrAhFhd8KTsff;zU>j*D#u}`-@fOlG`iN^O8sOy;_ib@6QPT>$YIVex;4F)%N%5* z0GwEXy7=1!%G;j7kcsZux3z!b3QgZ$JypSN`yqit6pL}KFh#LFQS>a2N{{|)6j9JG z4LdT4y|XxB8w{YFZ{#9^NJ9k7$EjkY(=k-HuD=w+N&Rk=Qo>UbxkJtSI81mLQ{jF< z*3WVUUCJB3wR@?9eVrG&es60a=Z@>R#au3Q>|n#p=u3zD?P!2I&>Svbn`F8+1)6(r zYU(e`g%Hm9*{2Z0#qG@YM!zuT?FvYJK6kB3hx$D}7C-xm`eS&6mD|0-Uw5Lexxt_Z z$QVikT7%0dmQ=wA0GT=7r3YpQz8jjwy*xZ5>cJ(7+^`qb#ggXX3+L+8)mPS%Mr!Nm zVLEG`ywa#P@a-O8NMQTXn7jpEMP$HNyK8?IU80$E+qAlM9P5sX+P`#YpsA@F(F&Zf zMZ$YScr#(RXIW?c0cr7mbR3FVu>^y^LM@aD>OT<1SynlkHombeyI(hr_4T ze3jKWzDNUDN{XDWP$NGOHWMdwhsE0AslaFC zlY(I+bkOMT;m=3j52R&8sj2rWcK{D*;(|M?Qn$4#JK8oliyHNc^A+7!g4O?;w;e8$ z-pJXvihn|Jn3^h9ujW1?G-FNd)~!;OR`8CzT%h?phvY>H1>Vzvorz1)cSsX(a`N0# zp3J-|83PpN_3$0qXlO!z*=aNq^&qDKRocNX^h|$m@hb}Ok%o6gQWprF(M87$GBc-% z2cNn&JWsrG3Suj9ecr1$j3p>?gw^X)a5%!BerAjvu<8ZzIe!smE2v%I-r*0w8sg8b zis^=n45QH}!WudoiQ^*8!;2sb1)UYxm$?Xuu$9=4s57?N6U6-V3;eM!{AnJc`$EV; zL=;fa@@3itexESBToiM0kKFuy+m>?Gja=p)0U4(A@)c4^E==+K^2bik>%x~gF7rqV zOrlkxz4zXl@P0CaDaPEoR$`mj>6$h{!rpVL{FHdqAD8e|hkxT8Gnk!79+9p~3aC(r zXs&lF--03;43vati$5_8r0H1OrUr{e;RJBv+Vw?!aVEjh_1%wov+#KJ_v>%u;`le# zYyXM$l7#loJ z?UcU_kpk$_V8p5(F9`G+B2pN!EthNl^!L5B#5g!wv(8}Iz}iwLbJ*P2$ys&ME^Ia0 zosxq%S-$x4$S4Vdr*#_9fRbg~O{sFD@o?dF3%JyR01e43s=e)%o9~rqsGyI|(K((h z@^G-p;ZK1D1t3<{lJIXPdNBCgNSvV{VF2bCvt+C}@(oO^-yZVtz{6aG%asB}6ScdZ zciTDFS!zVxoO@~dg#HW2oV9h-YR15neLRAHBZJy2T*E@pc1sFD^1GMCq_gB&hnEi1 z{}S7{D<^_rY%arO=(myELThKf7h&;GHexvjP_^fU1O9p3uWVN?#* zeqfut1uh36VMVF!VhemElkO*DxTyQ}pO|Eg4$Om>IyjA7hdGPl2?O$Fx+YwGbZXXu zR;S7*;$oK`Hz3?pm!Bp2WzA6m2A$H01yvwA-~`|g`4)X&9hp{GvcvfYhEs~`ZkPX6 ziPOwkb2-o4DigaL2cw0Pq~^&zKlBDFAS}(173SR_Fxa0pe5id*g9(02wcCA^Ap5~L zn%*7wM)uiVBNC>{_b((qI&9A=^KAIw&t5y|eOH2`$qKwmPzrYVB&EK3n3QHDo)MCY z_)ghou(}xBcG)jR&*Ss9jj-R2vm~n&IF2JR$DSno@ULiEApkU^erA2#0F;5b%A&{=k%?w*#+0M zyaMlqwh6Z*92m`~KSx>#$)<0uYERK4>K#o|zRRt699~Rnx}=TF@%usL8b~;cg4#)H znmd{JRAb*tU;SIL3!Pi0>tu-#)g@rhfhZ$EF0+1vx{uZxczWZn4?CAjQAqYJNi?)g zS`_wykkyo)A}>Mlsbv7&Ab!If&YEq->yL>$qHta{yT!njMk@x3>{>}6%efpCZQN;R zhsUfwGDUNiI1YXL5i2k-oabmi5DfG)mWr~{I@LT%VgGbn*ckD;)I3jxbE;)Rd>iqi zOJ)%12IZkWzORN;vziuwo0i|_j(^=hsDF-s zeqKNF-~acPmBulqCuY8SszvX+8BOHPK%(V)unyZVR3o7n958%QE)2p2t6b)1esF$- z1M3&O{Od;j+qoq1rCL4CzVr8aVyKn;r{HABMC@rC9tN^)+Tj-jw!KqNQ; zdMZdFUF8&Yg;eMte>LnjiXT~zvYByTh3`V=NCZP#0^D9&+Mo+;W>+swuE<`=Tz_O4 zc;=cmMQSlilFbt67k6;8aTb2m3&#tMqwbvdMkDnjP7tVEcO5lwN-XGlAX(cvI0#0+ zUe<`!(bWsOmip3SXpskyBFa0xC&UDSvO-hyUu)Lj%uu;O#T`_$GE@<=1vhn5<7p#d z{M`7A-EMgL&;85PiiFd4tx9K4XuaH0nFb}cb*$l~-79tBiM#Jj8cyxx^gTlAH9LAvCCKUOgAg2rS|rMFM=R3D?49N8 z!*Yk63*GP?yi*4!Ju`mniwx8r-_%l!Con}?YF_5s;PPI*ADCSbb>|MPfKnWQdUjke zM|DKga;jKx8B0PgJcMkIGFi>0RJYt+R34rTsEu4o%9>l^@SBr(x;9Fh`?TP>spg{P z_ZcHxw5+!DH&RijNx)2gOf#d^q&5-S{*8Ow@2722xFnjk2*g&9b;otjYaUYKGs~y= z;_}}Ff{O~VsD<4o6q4{yyELFf4X2PW*yBuoP@veA)we4kuz1!?BVi?Vsrj>2({~Q6 zT~dvvbankawF>HF{pqs-C)*sjk$^GywXW_on!eIb=~?*v1wZgx97mVGXaAfj@jo%G z+xVZ=R&>42A8V>!6M;2Gk^sY_L5jV9>MR3Lo!{ns zY6))9(s3JU=&=bS-GDpul2&Z8P0&ZE2W2LKE7hRMnsp`iSGgt0jNsUvU++{XnEkwx z_6ti(aBdul_&i~N;yQWVTIQO0_|`V?0>gJim?_U^EKuZQHIc|ZN57C(=|K;{>$%pB z>?%s>3#yk052i%Mht+9>&psGhSFE%R(fDd}Q&3eLAwwlEi9F-v>{+ z`aKnoX>8YGx4UYBVVfC1EwDmD1rW*v8wjtOk*H-4Ah( z>wKpFtLA?FA0-!!xckmOs+7N_2kt|_czzS>R0J;h=gzQDQ9m`nzEo^!*?Ax%__2E| zb)D)jP9Wdmn4wz_EO|Z_1f&HTr98-Q#x&052NFIc%?jrYmWhVLFi^$9uvdzh%^#J8 zd7zZXf7O0>3;pr0>~RpF6j4;pCa!EDmjHDDK&vp*-Y=EL;_+2z(CPY5hoWbN;f6up z?Um8IW`!^UY~T-k;i23ExCA$cV{f?3KKh)Zw9wA_5Y$CIH`0J4IeX_ZE?mLWcPP|< zXi`sGgBAb$fIplL7lA=dAb+VfmE~T#gWFi&!PO5ZbuC4o2XRQYL&QOgd=~Taxa!S6 z+hU|@q)AE<#gG-#cL4BV0{qmlRW4`U{7LII~ z8?oLvZ0`ZP9uIjAB;)2|v9xns-g(TAh!_jqIAUa~9ZB8>w7}*zSI+cXZ~5I$8w|LY($-*+!oJO z`3G`0DIQ$^@?_K10n(}*-1?1D&L^0GTjP)@WCeePeEWA)f=1XV+N%ugBIM*o`Y9r9(b|;A|Cf`OTE$&WBy&+GGi>e<+4&uQq?V7Trjw)lL}@Dm7|{KlB;rooc8BsG+}0ZW zHs7&1pm4qz_y!CSitLi!yX|?fGbvwJ!dPjWfdh7SV zYL#E7hAq$?#EO7i(!l_W^gxP{Q%3eAf@SDn%>?F|AM!e|6O8j|8pQ~ zg;lnu`_21Azotf%_>*dM-8D3gL_v|BJh-;VEvOZ%G(Ce=)MI5eQpaZcMlU!YOqM<6 z?0vK0{2o)inZa8Pue&S4Ls6CdVyek2u(*GdvGOP}{;(3Pd`!Tx&a$ckBXv{xVa&kO zgu_Uxnx?ZqF%ok>qyYxKHDPPFT>`=tHj8-~jn8IREpT#2Zd}PogI2sr?|*Qn{LQ~l z-?tn;kta=_TP&lAFZ-pMFp)N*%xUYzxYL`EAIV^>Ge)b#GT6$@{uNQ=kp%^ns+>^6 z?BGNGP!5-#ghI)!tQaPeC{|O5BN`>@kjv?L&KSn~qYsijNNPF>)se&+StyS!vFW}c z$jxguyoyAOZFPwlPQn!Z&?c(uj4w#6#M=iwyeuCm#mr#8%t0)81^WOEaO$v z*-Q`pW?~Zk=AgC`1$RlxP5tdmVJe(lV$NR)p^N86>{4>9`H`3_PPQn3Ib0iwA*I3u zMTC9`-I#^}3Vy3%Bz(a=s?jRFOA6qR;v7reCp~u-Yoe&*@Naq#L;z36U1{QjAWNKp zOz`1=OaT<2`TyUlKK!TsT&ZXyBHx|vobjqV%MaD%$nTSYh3@M&cfjk(r?0`BnjLZx zC^-driY4!GQ|yZT$i+qUYP4%d-vlLk`nPd;_mKxC+j`0yA4Pz}tLKkO#eb?XDX9k2 z?%tQ={=)k%p@FCZ10;|P&Gka|_zfdqO`9-Cj9UI|8V<>0M=8>nBi&kG>h`%C(&IWT z-ACCXgy9a9WoB7*%$%jD^M|ua&k75`?&LK$9Zi zu?zvA1AvFnoEb9>)>Vv9mw$P;$KK*BECCY~pFH@7*}d#dF9~tJG@YQ#=t@w>CKKVq zYfnkiJ0qn9#!($P$sQGi0{{&PWowAP&m6OzK#aABSV0MC!JHJh{)fFxHEm85TvW?z zs||Fkg{N|a_qHp_l%PQ9iM&qjA&Xp^%lF6K$>t+gJIYj{zn|HVza&IV4fOy30f0}E zA2mMN#%WT}klZ8*{z(8Ht2Zj}B25o8QLJ*3mOY}Y9x(f{Iq1|u2^Wr|H03_}o0n~H0%evCT=jIK#>Ee{zc3scdBdyuno~ zS1!Mmy*=Ofo>b@imZk>FvFCF8zt}}q|Lwi`5z9bA$z@dz!%4PpA~nVJCGQu6S@R#j0`K<0B&R+MLgt`bECogqc?=FN{`q)^WIc2O(~ite^#%dW7lJ;nl# z*@`d|S_lM}*>Ga#90~(N>6Be=qJmw>3WoNnBGg+gEEG=NV$sXHl1qK(j_G!9>+zx< zI~{IG;Rg&rj~c>-kFiwh^8ABo;pMkro4ku&+AQKIjW60@Ynai^@IZK6OQ$ND{s*+{ zDuSni;#s+LJa(%uJ;_79S?bnK(ZgHjdJTU*+r(Y&r_~dy$65V5iV`sTPwe>>dUpNO zJOZV|5f)iM?B@|V>&QLN+Ww`VC%4#Sy6^+8(2H38V&OHtC8+YVs=X8;Pk?nLU?K^F z4yng@T|B! zg*?;pZT9>nu!`Bf;fTo^W97JEM9iG=x401^AeKQNvL~3-b$}fNn_q-IwQ4GB`Ic>r zlkf+UQj5~Jo6?@taOA0^UL|oZ8CO~bs)vMi7lV5Cj#iS`-X@7_(BqwT`Em4SLw^#7kr3S>SNVXSC48BVw|%`V3XlLSC*U|y6Ca@ zk<%R0dVg*9$_o1Shj<@RO4ELyhu9vAR1!?*ye_-HKSP1@RQu!bfH-sv>qd~#Vwc4a zl3N|ohK{hlMkkD}cTZPQCqlA&6T0d!iAj%S|3%vL7FBKga$Hw5!Z%)fLVy2O)9CnxVD znN9Vve!q2Bc6_G+J)TJA*8~YCGZdn_N(lt`l9pr@1g9KBM@a8(*!~`ojhGFuZa$Dv zg2a;e&VN+i92?CkW{<&C2aVzG2Y8LVzaG{I6eBk}a7NLb{`IbPSDTn?m#}1L)Qub} z9&*N`l79EzWgyA~otLn-rN#tdFh2eYN9H$YO1C7WA-nK<69R);WmK1@HOoq%f)9oh z9U?DPJ^u-Wie5yut^Ddk$w5P zIjS|;@e5|Dck^}Yt3M4BUyBLZz?|JSt|^=4;xV0Px9a@+DX!t>6ky_j8*G{zQ51j6 zv9P&a1u20Gsb)j+<1WkIv1QyZ@ei_bT_y?v@6}8bUQue@7cHr`h*fe1JSn+(%6(YQ zD-5V}{mW8*J#7|DyZ)a;-L?NeK}I2*UJp^^yMB|N7j<&lX++UzIn$5@PzeAGUF`m;>leuLw8mw+iy}p=(a`#+!51poVE7g&st%-&W0ZB#5Mt=^%EP<)= zVs%|i+tEHCz_f^;@HM16NF0Fh=>_c@wEmDN4<6==XOh&dkn3q5k9t4!vx_8UtQ#Q= zLuH9{W*9`L_m7tHiT#>pR+bs$FJ9_djC=>y%bPfM;urcSNcpROKkrc%Qm_!QIC*ou z;3M*20KAD_{KaKa=KH$inslCxxj(?5xn!5+)@a+oH%?u@{6@pz$PrFP9c^8d8CM;yM?keNVXcdhP|(G*~AQ*-sCAzr!q0T2Dfc4*>|r{ z5sepo;q;)$*L0A*4@}K|V;j1QyDtEYxL17XRnqT#WC0M5AM_sf<8QQo)-&2Z;Fk1o z!r6bZKZuodq@sQLbPoS6>BxQ700dThhNb$7od`;O)CK`!z(iQ`7N$imU1T%glwx=r zY9Bp9qu%C;JLC7EWY(N2&6h{F=ERa2f|Plp2il%FHRlEs=PEz+$G({|gy2rrwQns| zxNO>$rw2ceEzbNYp6w&CDU>y9d6>rTueBB$sx+uIy#2EVWM)FYni0)ver8cVE;IEb zBWyoZDVl}el(PwGF=j@lLEX( z`^9HtNUKIwb5CKPGX!ZzGq28x*QK1va_A(x;=yc%kS z8pFZQ@Z22x8g)ra;)>Ugt!RIEX&HWCRkdc8(bPCx8B%K2BfKp45bd*%SO2)vH2?aa zOYXYWIex4loDOv_4t37ebMAgEDf#_&kpn@$KEax`xs@jDEk9!umF^P@DOpx~eKCOA zy_4fLUNzd_q8Unq#M?NwHFh=TZ z3NNYI#RdzQEbkL6h%a+#b>aCZY=T^(>!WC4B=$`8$G5~{FRlZ=`{5pq;SoUD2>?tT zF|*U=G}Tv^RG(52oY#MfE7CUDxAA)xeAl(^IQpl1RXf6W*-Qm2eqa;5c+~ILw4WAw zrD>aRL?_y9LGlj0WyCRp$Fh^~*v%>w`|fFVJHp4;{Y*$*8YBM1G1AThI>}h-89^9n z{3Xt!o7)BtdF&Q+>lL6by{^*<7-l#Q-IO?0M7a>f#Y@F6l>XE3(Z9S=yb;6ENb{Y# zk;;4zYKe)d}u0cr1`pNVKjB| zM%|vxmIS@=)(wH9o!vsRB(KkC89|H(Rw#?Kh}*)(%&d3Vqy|t?B!>d$x#x-e>jCRx z45MlGE=RddkdGwugv!o5yVfNEPRi@RqB`1yxl{7%u3OG1mcSJEHZ{L&&1aba~J)+FB>oZjjU#q#W}pwT39>4l)f^J9q5L`zBHF zhUPxe<{}KW)!dHGF?jcb+(<}Y<^G?TPvNf9*|_>;rGA`?K}t5M#-M#S&q@?&pBSvr zevL}xEq}DcF+92M%(B`o1}lQw!v5{-Vv{GyANG|fmwjPKW!pmbZTni>tiFEb=Om2H z`nD6*m+0|KBf`Ueq886IJ*-QcGmwRk6bPy zt_hCf1fp|%Z?BeSy3NJZlAg>_@i>vYsn~B%>B3%?)O&;D5^Ty=yHNXaOXii@s>zTN z3r~5uZg@YF9J!xOQ7GdSO7dZDI=!adv>~BhWcj>;Uv-%_=M@e~4rg{+IguYKqH zy!nZN*CwHf59IeJ8GmnEd}RNg#4dAV+c}Rs)F{Tt3VtyVPb*X{QFex zTPe`m!?lcf`9%`bAYnPthyqMiu-E}nfdb^qe1m5WHu_WH3wW+pg^)8+da-SKg<{hd z2zmNWL89MJC{#&QVcy2rf$!r_00>A4Xo{FADP;-MCI-k}IJxGnqdS$7Tc4>qe68DH zBDMF{034*hfV`#Q>V;*gT~$-XH~sM%(De_0^0NI6v2vq^S5Ql-)G+BzY}HR;#^LsE zGjXJU^`kJ?j}!Pc#AYFM$ka@DoQR+$Z)hLz?)WE5%C~k9oFKPpe=lp}S{3+Krleu4 zzb{&2qm>=$zlCH;%N5REsz=Lq+x6ePA$hrpQ&1<}SlGp_!QogjcP&(aS5RyCew?0l zfAf=K!{9DUZ^t0Yk`602m-=X}75H;)CSUkZPe~?7Fq;vXsxZ}DBJA(ihL1q?y1vU80+h(ELeXq1@#t3fxizz2Ya%_}?d$@n&->!=NqiqlR zKi)~O{7rUkzijvWi|n$~lYhvTc%}L5^~AFgAW>mZw~A;7zMb%ERz-WKL7d-NxC!&z zg_g+M>4j0&$uLuQ)o2r>Q(GRmX4j=8(K{tzy0biJ93aPwQKvtF#8G2w3u6544_cIv z?TtBn)<&AUDub|kcrZv8*n+hGHZXJU)-wx@C8g)1JXl@!1kgWV4e^?>*f2_D`vTD{ z#Wt{(b*ZY*zlmM5I!t35wtVJ!&P9tJ6CSTP6;Yoz7gnWK0l!tt<;Y3Eioy?lPB`Hi z`y`_3((gWs9AFr9ODQKgjg*|`5k{|i2XuM_ykaNgNORY{=_me3;C?NtDRQXt@UHm< z+z=nj?mOY?zi>+Vd5R_Sm&>HRj@ChcNivI4S3n>vyerPYWK+sZAMTnk|p9#h)ZUV&Q6Z{Cs|cg4VsVjoW7zL(yw zT!0y3lRN63Y9*(PLBypgQR zk3A%M)k-rPVdm0qWcRNw?ewT$=s%H?a(g;ZmHk75nzdDw93O36T!?cCg9IWCPKXT5 zislp0p0)+)c0K7y3rli2AoIC!{n_2NigjZma>jvcC9e30TE%zokoBL>`aPe{)X4v6 zH4TtZG3!_MB-WxorE+2 z)sxhrX;2{brU>e4xMP;5lz8$x9_`~HYaC2*Y7)5n91juNEKg*ZujJo%&lBz;i1w*6 zs_+_B7vfiQTUq+dt*qdtR39KwGXKQXwId%b3GKj`)Wu7CXfLC^cg!DLy9ju?RUXF; zc%>xbAhjL#DAZ4~HcoFt*dR52U3UlLmCW}Epb46^_`n0DT_7`RNU&idp}I!PLfMoh;m#Y6!&BX!DDh4Ad{auIJ=F?ojqMD( z(`io!@hFBDE2NifigbOQx zhV^Jp0W`+75$HO0xvEpl3jjihxbcy^Cx;@S=)*ogaKWZfWrjmhw2w0)*a=B#`Hx@v z6gtcphRSOs&Arlrrra5a9n6SX@yaHYnI#w;nv>tF**`{1Tk*Zuc(=!vkqY`?n^SNL zQbt-R>n?k-ya}Yvmz1ixKf)iQ+KFu*^p0XHGL%w$+)4Cb?ge1{J(vGa5Wz*)_s@t) z=qxoJA^v@ZuwQ(Ic&O73vwD zPi1qX5B5aY)IGEjq>gX_NfP#eBlh^34W{U9Yl%xguzj8(Bn9j3vyMoIQMvdT=UAYN zsI|mmQIlpR)|f0m-nbS_BMMNJw)L{mwogm~b?@%BPtc-h{`fvVXBcp^KFr)L;3$`J zZ^Jgz;`2Uy^XYNf zImNib>57VZ`1M8Ho&VKHGV7!kVF>gfHrBpl%d$}5#e`wDx(ICmVF;7>G5InUxF+yn z`J>cUGK#k@UcX5{ZKU6rGuo;3DjwmaTv*eK+1T0}uVbG=i3|1*>r_AyRrem1DTkS7k5aI?mtZdi!y9nV z$hRRg8Jv2grq*dz={-!SF&ci4RvNWB>@st0-p}DClOF&EiV%L|jBoy#co@Csg!dg> z`O$TKDp4`M>Zi~^h&<5*<03!?IVlfk`Q2yq6pVZ$f6cC*$<1BZ1qs!Mn7#>1mOHGC z<7l3uG2D+zLMzN3*1P1zO|Oi8^+t?-(z0xZIZA+Z_H}Wf@b};Y#=aL5@K0j=h~Jpk zVs+u-Lamf)y~D>m2p~-Y36DKRB#Al0u-H!MU{vX6P}{zYi3W0ru)JL%MOr2dCIz>| zx^Y(~w2o91PSG3RMpjRm5)M5xHC)H5(GQlg$uT{#zKgw+c z#84_U+5$f={Gg;XZjZ~xB@~~s-e2ql#(8U!5OxH9yEF_6TX;oE9W0Y37y8o8aEMSc z{K5=owlhx5G3R1GNcds#_Zkf*x4!Z+Q64;o@|m=>@H_W6X#;!pf_SKbF&_u(a`dOZ zoV+}E`m{a3pFISgDf;cQX^HzeelF3bH(g#+LFuF~?MTrq{n=Uj%p>04FawWy;=i8u zl|0{gMat+zfW5F>7uD!^)NP!EpJDS|&Pf(S_%1%G_fw|gD=)TYw*KyRLPF?Z++khC z-N87+h3~Lcfe^cc`tR~iT$)rZP*fB0Bds5dp@Z53<=cMsg zd&R#}7Jr@dA??HI)LV2rE+n?*68U3Onx7>guN~uEy)H^eAU4?cJcCw}LX0G~`E$za z@+OjbC?^vhj+=^WT14CLUqqyq0>FI}PC^tII7l zY?iy4gDN=4NxDEL-XN*{3)!T`Hie_{cE?D_cI>x5jAWSAT}(1e1%mnnu-n%_?w|o3 zmv}C($r?a@0+?kpa`n7s47U zV^^B2F3FN;)qnBMRk~tthHMndi8Wp4Yn?B6xpJPMSm<1|O-&j!r%h=zHSdS3!6rV0^7Q-OcPK3=3SNBRhfSl#DBpL z51%*#(C*zgC~i-PN7c(b0pG?v6U9j-)GFTP1^D+l#@6nl(-nW-%}&aSDxSRvcrQyT zH`?64Uj!&X;8r+^5Vw(yZNcg{tC=mfi*>AqE|`06e3tuat=V~)XFUpM!3|NL_PK4%cOMfNx z=9wh1#N{s43@BD;ss_@G{<09mwK}#2!S|XwU2W1mO|*6-+`zw(3WD+(gU$%e7u4!a z8DF;32pzqmG(v>JtlOZH`z*&rX#x(XPseATHgfre&FELEeOD_b#BE`*y3(^pf!LT? zl+mxXz3cNU|7zPZqgEO&D8A2l1_BV^vvfZt$dqn-H$LOz+un4ID>y@R&D|SYmnv~P z`2`!b6-f+~%77$DeIz!7)h}#=X(OrOf3g@m6rTKSY(Jm}*miffrM)Uf(Q2p_LLv&q z9`FCAPmO-;<-+*15tne?{g`=y`V4fE`iZsT;Y5%vfTRT>t{K{{RtH`_j1vmYiCyYa zKb-B6v8!jFdRr#ss+bI22c`K~G&n9en2Ka7Vq*G9`{XN=SGFadyqv$vUEv|0$}VPM zRSzRPJNhafx?@IV<5qDKCb1hp{?F==`rlLJj;eOM=ECQDL|f{}m@n{aLpRE)PG`W> zv#>3cdXgZiH;cPp$t_JIsrEm9XGTP*P5ZF=U!ehC14>`4O>A?x)5BdM4sL=n&kS2feTG zE_j+oh;#7CkI~1nhwJgb%~*<>um3CBR<-jeI{5t#pl-NtYetTfHbxp)JK;mzgKDV= zL>|^%Rg;NG&ZjSBIS3Xm+Ac;xI+aQ=np^d#|5$&u|jV6KysH-P6p>vTqqvP*;Y*-h>p)cMK+JtdGB&!w!uMj|a7;~kqE z+v(bE4u9=?3{rdFAgNM%gyhw^%)V9c#15LLgzR2;1!h(aG*HxZXfT0@vqR$TiiJYP z9SMq=fn$+~9AmWKC=5Lta&gbG{D9XWA1gWgVCYF>hLc(EWXjom?(#945D6P zM{)nTrBgDCa^H|w0?)Qn6rnixV@Fk)&H-(CFwr4;m589rkToKimou_Kip%$e+D@5t z)t}vYbxoE+f1GD*u!thE?Z@1r1HDXfN?B3;Plb-RfL@%{ZK0eK+j(mPYxHZ1c{HKj z(~~g+Zl#G~-ZJQtoX(ghqUdf3$17j|0^VHj?d3A%y&~8G6iSu}w+{G=69aLMq;KDi zm_4`HosJ5JGeN?xMj_!zYPk;dZqxgsBG}2Uvh?Ouf)*aCJ^B(c(puzZl2J$9O~BSO z2RJ<)WS$*+d_)rZr6-JEU=eNxwKEX1qhjrejx3)faTpXo;xBCtE$ZX{JBe`gU%4Ln z!dw;Xpczcv2&~PA)bg`1@=5X(fYOBHUEh1r5f; zWss^7RuWy+8AIe(x7gkx!5!6V+@Wg#ii>WgJTpumus_zj35qbzOQ8>NDoagrsTf+m zrhru^t>*4`nW$C42s>Ql`d})8SDYr{5i=i(To+q3gY|#7d4TOy7F;@5XxZGpqoEI_ zO;*+4 z)@^~eNOz)LUZ?qFpv8^x)#QwEE{EA3-^Fjd7nA*b&ZVB9n`63PXI!4uaD3wtFZf7= zTZ9aBaD9S6clcS?3#Wy9Fi6Yt)S=8XNcD%bBH z$vH3@!;rgWTgajYx?;wu~o15 zlgx|u=zn4f|6UV%OC6TiC1j^)io%P7Du?4Zwh`e;w8A<~*XGAZn7ds;^~kHQQQBbG z@cyh!$o@Y1OE9r&!=zr4Ra1rn_8eGvkL3C-^wx5(-lGu>x;N8cv1~*&UeZw|v938h zr>COvu1>^Ao4Uc{JKOBeZW1Qid}TFKg4>}ep9SkaLf3pSQRvcVb_nUpVq<=&sh$zv zWxGAmbRxW;*cr58ovHVo^@(q|O|+$R1|cMQo0)O~<*EFTJ)kq_D6$<7u?~&otkzsd zR#j{Wxc=+hje4|HcrJqL1u{e$MYb{L9}CF^VDHK@l#8iCBO%ZnF6w@eoueS1Aviy8ga{RsEv62F3%u9eX6cbN}p+E0-<+Ka^*zE2sedLejHYl^di; ztMDhBsI!fhn6S@&>D)Olt%PxEb2@IaTzAn3whRBXJXHbU)Jf|LTqxy2C3#^VLUI6< zH}lnj5~-;bLBd@+>WzB56ybOgJv*k6k(gC;?!U$+WCJQ5{r>a8_x_8-x_bHk?Ki(i z5KRmkm0`BSOgiVWWgxfV&NSKwmprGP5{56-V5jAwOj~^0-5{v-6dh((3}v?cP{`O zfrY#DVLV6IYz3&{0x&l28JX$K{V1D{mmwgo@RxcJ*?p0z@1Rz-2COY}zkn?QQiZSA zB$rC*19cyb5rXb($q7WJB7V4y z0#)-7@yo=i$j}-Ud&egxI>`RY3VYqlYG0Ju5qA}JyVnCv=tQg)S4Wyh7D;nhBtrJA zv+@vX@~orM=u$_R!%HU`wY-wTXX=r1Xx6;rQCs8d%7U^NwI;{D`{_L44QTLU;uEvw#Z;VT zJ@Juje6i)7)yGQ^=72{4)I1+aD!=XnS!cgsk-@t_lB-ItlzaTzU6*=b5aRnhqUSqmSdfUf{Lkj zU3Yj?sXT9Nu)NIPl;HUe(0;0CDSUj#LlfOyC@C|=2| zbpFQ&ZGW__RFXbI%7m9+pEBq)$7vo(&+hnOlKik?|oRnGr4#`~VQ~!hW ztRWbIHs`LAcqGwEVoleK(xKI!(@O|a5#!tW5wGv_Qw@-}a!u5Z&!Vr4f&}7s=RPkf zpw?xA{idSLWu<@->mg-k#u}(;!gr1fcjleINJ2(-F2Hy*|Cfr z2Ynv~ft0hwfYZ||O&I1Iom5~wC}&~AMj0`00=?f;t5$Pz!@NeJBumw@2+e)G{_e)N zl<(O3yyUb`veh(39S4c-4HsOXJT-|Daz)`48v6+31@trgPye90bXexW8mAHm<7;j$ zfNkm&b(}!(GUElJU~>@}qIr!ZA2WRHk)X?w`I<2B1z*xCVm%T=*Az~lMXgEM8;;k( z6zmm)mnL`(%H#0VU-HQuu(ZV({hX6yW=A;9F?aETaTFPU^p>>t=_oZUI+uQqg>2lo zWu!E$idys)JfQI-NfGS=%DL-+#P6NA$NPK5$Y>$bI_nsc%fPQ!^3T>>b%)<;>xEQT zfH+!wq*z=3BEWR(!@TpA*887H5~|5pkQl?*_8EZLDC3|!)7S{8H-Mv{XJHL*T(?#t z5J0%kMj8X5-212m{J4y&Dg9GE@6bIe&Z_d^$ZTwcK{Xod(g4cc(kp;&s`Dp)hj6YU zUOQ-?fCLpZv)_zQL#K5fL|hUb#M}gXd}X zbm=u=UFcs~6rjQEJI<6Vf@q8*Heh@cyMx+~nV0vMoMHo24lOz>XfvxOlP`AaY2yq^;_bH1Lj=`&f9VKr6pzlX7nEr; z9GF=2=&f>H{QQ%VjVBq@pRY4ecw9WfV>9nIpyw60*kKCpu>S^Nhn_8jfzf+^e`RxD z-Fe7_i<&*aH?rMpUHd|*Kk))sC#;D-WM(5%JZf8kqn=@`ZIr+l^}=50h;V``2w9oBF;Wsj*jkOd>LEW5DU&A;$6 zfH_OWfe#^mk{XhcC-Rq>P!ctZ(KgTBHpd!E#WQ3ymHW3uR|<0e z2mUkvMTh>^&7b35+VGgDILJf<5SkJgc&(kMhor8yac6DX0Acusu;2@=5>hO6OLL~o zyrnu1-6rA=Kwv^z!l;W6;e7iTeQ`)X0?_>g$VjmB+O|nKh#CB|%BW9<&2EpZ??Z8~ zQ+K>eyx@*#K@V>?dZ6Mm;bpP#DOw&!vvL=+m{eDaic9Vk?#D$@AKT)Tp>MJ_EVpNT z@e{YL!4`{YBA~Cu`NVFSa6Cmdnh%lmYv^l1ES#_?S=ZWHUB<&8&CxGM1l3L`?7dQ& zLO%1j1LUfhPS2pfNkoB^ghyyB5IYjLu-m8BB8TAz;k&iofmu<3EHtL%_neA<1tL-a z(sa(j{OZWmN>)`FWzc~NuvA1Mm$Ixq&pb^-f+ttn&2x!~Wp|*SHtkh-%5d5BjqjK+ zbanPvK7@1S7t^c}k}nGWZXnCp^xmbmi6wvQN%VA_o3GhD74}Ui@zw?{e2bR1&;g%TD|SekzC_SE zjEtTRD^Ax*do_bjql6d@jz`=l<6UZmrhQ^m1oq?mJ7=@`QtdjokK(Y|8;(AIz>_T> zUc2n?6;3TJncV)3Om%_UuqoEyYt}Jo=4&;G2wWSxg7iEY0&u~a{a6i%6N6A1+3)`Y zc*y-1@R;MCO8M+Ba71$NvS~Fyg5UoEDGJGLe7`lAS^yFqUWN~}#hcRM@SCM5C2=fA z`9}co@f)YW_=mh=XMXlrJdF#C31~wTHIhj=63T!;!BIq5g?}yQ)=&Yjl;az_in@@DmnUgJ44)|G1 z+g0CNssG!}HzD`0fo!mrxk!JL&%mO1EDi{w(c zDmJ>qKU9x;c`Ol`h~8CSw@wMEI?m*h08dubpo?npezwPC6}OHjwQG+Q5p6 z;FGAP#wZtXU2X%o5{<c!eF3N9Erv&^t(voi|E7uw9Fhsk4>ad*k7DI zWSI+63#FU{n(f&yhhGisdq#P?S5ND*HG~7#{}6EEa9ihz&tnTg zELX|)z7^+d3T>0<)hD9C$D~67HPdovB7eHh@LXz_#4?g_NfI2%y3*0+jt=w}{wYP` zTJ~5dELyQ9ScpKoH3Du>EuxQ^mVBpJ<|g2o+OPI-iP--eym{YQ>cxCte#RiiMiZ5a zYAQbInj%j4_&|5Mb`N`trq)aMhB+Pf?(@a&8i`t4CWNhl@3f9wKs^e>yH*ltOXA=a z{_ADyYYKJ~(yU8Yz;@%X{BtK7z=?GfDqiL<5{nA2p!HW0cwjZH+6sUr9VOfxMS%dT zs|g_{|7#7+sYjCVS(enoX-bcCV1Ew~gL5(t38new>(KOGol#|(5z z9zieGkg^0^prgU_poOD12%eJ`eO>1q@iyERp)-bA zC)F*rTj*58`Kroo?+}?FNif13&}Hy*@tUFn#abRir+m{t>8hU|`^*!%mwShLm}Ms? zbgA^!`m!{QeKD+C0R2rKTJpXar(RltdkakC0$%F$oi%z3SenhsXW4%f$)9T-grX#) z@%{_S?bMYa_P%-Dd~&lLP65I4S@Gl)eFXf=tN60GamA7XW^oM5eH+y0he@jnY8EAb z#3b7gi8s_XghaEFD1$mxf@&=LGDlYRbE7lGxhmVX`x(6HJ)ft3OMA_J8_f(&XtVz3 z)1Q<1m;Pe{7s$+8osu~7V?OI>&ELamqx1Kt`y+S%mNF`I56NR$4IK`G)6c^%0K9|C zj=_|#YLC{YM)$~X-iqs5)5Xh;XMhA!OaJ_^s*~Wsq=jIOMWnlgpntBS9qAHd7K{Io zz!LMZMhbaDL)M&_{Lvv1ykbhbYw9(U&D|yR?no^xTV*b%es|`*%sgn7xGF z@N>CayFY1z{I%=wfaOCjI+q;gcM5XC$6QaY?bbDyqFz}g&`%SaDI&?;n7_Q{re79p z^Ij6Wm#40+mIQ#LrbFR8?k2iF!r1e!x!ifj0OYzD9$$U>1UZNl67IxZpo}6LX~#aN z*a|5g852q3%(N$5vpMe2<+&4pw*BTWM#iD0jTHOV5Y;PM0O?!=_Vk+DjbLNTZsh=ji6T0JcpBi{8$ zOn5Ow$w~a)Poz*K)>AOkF@DmsMtj*_M0)7p3RmuvS_?9U{Q>8k?Vj|WC!tbh5%vKK zr_4tyfA;tuo=qAB=kAr9(z)EjIexlB1#AIf&Pvbi+MxS)P(VL9&n~|$Ji)v%lZc38 z%c4NY-n1#eAp4wW(%%pA0+Ucu#)}#K))|k7_55zw{VCLIe`mmU*4#3iXFofslN*|< zrPEMggH?$g6>oa!KfQ2;Unbvz z$1nwaK|S|;s%$!x?Ez$^Vj)67Hs zfy&~tvSwxY7~Ze4{FOaE4Vhm$$=?6uZPor8&AY;`DqM(rv@*S~a;{yMw`wCL(WgX> zk&0(*yG()Aclld_MNZfvQ=Br;WL`)>^4&BonK@zO2>#>V7MRy>AKzREnb;UJeC2KZkk&hWEdzaihjG zhdm^F(h(_*lf^1T#PL3gYJpPhHWU+J zZGWxC-Hy0&q^x3Gpq4??_E?<>|AKELTHsW2>^EHgQg>{mg0v6Q&^EsWXh_bQn^P9n z%(+WGNJl~4sZrE2*!DBTN9&MRA1pu+Mw?8knm?ZWU3b!}>?}uY7pwL7;fxsBCr3#} zCw*HE(nD9UTO4tE!{JDx*NO~a0dt}wo#b9=6?6133v3^|q;_2U)K_51Mx z&*zd3RP9V7?WD6_rHYuOtwJ*#3dT1d?_;;OP4)sL{_zUA?>3Qm2r&Na#h-@u`{f|H zhYSx6EgU03e(L&$Rz6Z=S3DS$RNq*;j zJ<6riV3de=C9$0Lj-CD>%^YT$+%M_R8flh-gb*48WW(+m_9RMyWEpbEfp209rd5^INsM6T@`wx*L4$D2h>GFVp@6 z_Q8JH{vPqcaj}!dAYIdMrNP#-}%F+z+XM zrK*h*q68`L{0|qEOK4x0iBg3=&b|D=vW)i~!n_JpXeNV@t`}Jn_XOTTgd=KW%0mDx!9#RUo44EY_ zvXX0*vO{j!!|N>j*cTtTO7h9Tk`^0w}Q5SHu_+Jl3aFe>*_80dEVLgH3TYwJ(p>ONC4PKIspB*V<_R@h2or z+XiE@+{`}xRiiVtSM!*pm>3Lmo6m1_Yf_X(Bk>wl8|KU$casQ7QvW+}GaEnF2 z5XmiEkv~u@M^t`fRA~~3LE!Z{(_H(QgYEQINxi})7E5Tazl zq)2h8dEVsvEd-(u6v&UGl4Kc$q9y>I0xX|5Py!2)u=xkH+3YvWg(g4VqYKaS2qn0; zcW(+NBY+7F;0w1 zOxmE7Jp!QJ>u~$qNixFm*JSM?K#aO1AHiu2wq}~mT7%q=AkW)`rXELKl76NyIo6`Y zJh7#kf%+%y+l#ORtf})(12_BuZCL z=aSj}o_Hr{VHOO0-}wGE?cRoYrp~s7l#$G4#Hwmz-5{?W(rH*pc+Vj5bM^8bW%G~H zR*QI6sl{y5%UqD_^ajcuxvh69{kq+ErmiiiT$c7BX<>M-891T2*js(W``~Ur>JB}2 zur{$kPxk3uNA^%^i}FlXy_*SZUzLmYN-j{9gVdA+2R%q8KYIFosHWWp%h%H7sXP7K zLYo+U<%rpKM~Vi1sTAf0hAJ2?ZBYT7P3OG3DpboM|3T>d_nf5$!U20HUYE)cxIw^k zlo;XSOoQV16d`L23>TYxuNn_Coqi9sJ1{0Ls>Obr4&ShNs5KJ85ZhqgLCZ7BC8PJI zNWt87&);9rdIubDt1+-V0g>+-|{&sQw?GcU3eR3!7 z`={cvJ@r36vo6(t17U~c@6_BvA5Z!hWct7zA6>O`6Q4YV#@kIr6#NE0D+;wzH2H-J z_7S6l1glD-S-yHH_MNqOK8!ObbDVlritqPw=vkz%` zu^OYQLqA=V-_k}k9=l&uhl?jY{!~?Hy^~t`M?&#(S-CBI?szj`~2Tk!jX}l3V13 zQVuwUFCg3^Xc+4&*uznd?$YRoyI> zsTGnshXJ6`Xo*BK6-?PyA$F6Y3`i2~iUln&)<^k>;1%hr7@@T~TIYW=sa4`T0v~AW zqmf*3Tjoh6P&N96mJ1K6iIZ0lhSDoRA1QvR|`!dS@btl z)DqPeI^5;YkGfBdMiv3Z8sx_L)kfDvzSnZULZn6Z7CgTrUkR-8mzU21bbs?jzaqbX z{h0dCPiCF@f8+lCQe=AmYnk*mc*8EBL2+dfEw(blt~t*yW;=%YKV@f8Jr$~`w%~aC z1I2*WLgBL-Yvu-OpzCel^;`yZSS@LbAOeGj3bVYH^!G>leN46FB`xl;Motf*Vobu+ zS_^KTTslNSFSB-A5SnmTf^2Fi&^9)$tv*%Sr6muLDM6wc(^cPH0Yl zcPoo4wN2Er7)RLltOJ;Fe5-6F!T>!$EDrI07IF=Up50mC+*qYt3mt8^GS9f zv1%rbRb&5#%mYEKmbeJgiYKRza(w_fWS{r?)IjllW_4C*@RRu}Qp7hU_wvk|3E0qM-IIs4l`R}3eJ_!bx!-l&Psrcn3%`44) zr1Je}bPwWtURw1-J<9T(KPhoL>X_>hPK;})Xsq|P5OFQSgt+@qe2|W))nO^K6_h?$ z^Y};T@6e}mfu6&$?QoZ7sc~ZW!4w1FKJ{ypx@f-j;KS?BWE`*0M_lf?Cequ=Uq9FJ zlX0pbv1{ogd@hO0UcZoI4cBCPbX?X%+Ppo^xa#x;&9DgD*s(U!hoI#Az_= z*{~moHx(}3PaHp6#y_YQfyddPBS>k7@Z2x)Q%6mlZf^!Yq%6ERl425p^lTaY zPOGGWE4h;p#42NUC}-R;$jOx8`%7)LSS%7(?5aMO>#i~z^;7s7AXU1f$iW+Yp;Lb6 ziz)a{EtB3vWBZFueDfOQcXt{sLGW+Sy!QI7#!%IE3cdPI-ua_W(|1*Ux*MVySu8$M zQ5nu@kY3JBemznwoI{b>x@hOZ5qH8dfm&~3WWc!Lst^3JV8<+~S~hepz!g_+Llyb6 z3SB7wCI+Up34I0FiaDeDs~tInA&c=du>vqR8qXsP_?D`cLF!^6WB*BiZ8$D#=q^5@ ziK8^=sHa&H^+$&Gkjv*Xau=Ck*H+!GywY!roL(s<8F3*|r8cnNGDRM`%k~2%*TSp# zb}OT>H_(?Vf8_H-R?I86H7#vKTfvefBx;x9^EK^z8B<`wXYG^!)591l@GrHI!6x5C zb{c%dN_$FNdntK=NAPima!=7-ed~c+a3W{6Zkk3m_f&kV)GKKEZ5J8?o%$~7vngYH zg6FITVYEkNMX3Z06nqC(Va4t;`G+5x2F@rta9lnXDk~sMxk_wH`m&dK96EStnVcT@ zaICLZQXZO+^Vi+*@yrHa9onOftU3N65O~Y8;0(PDd$F7ykCw#Z@*5khWsy8ms61@^xSSti0dh519nYG#(~HRLe>+DIlH7^3pSP2v_e z2=dL`ZIwP?y>@!z==!(#__YpK!Uu^pVbv+6ViNNX$kitN=cg#vg&FF*a9C$*eElgz zuKaXEN|xaagzBf1hmbg1fs*aEIXTBuH>;Ah;*EHtrVO2@>2JcL?t8aC*->bIzU*XMRIJU3b;0 zRo7C22>Ns?e2_gMQDoa!1OCJ+w5MxzCy||ahgTmEr>W{k!ABLC%19M4)u7)JMgxw! zy8sFENrK@u!{^X*YJT2r<5QDkDMWvb3zfhls96y7$+gc8XQ3jteM7TnueV|hAz*3T z{TR23ZdXTK0h^kzCb-ZPYR{G+KeAWlNNX?dM|wfV@62n-+V%c4ko93{8y>bwaN7LF zzLN9~nUbTzrWE8=z>4@s#n?CG47pv3VcGet7<%RPXQ#T^jwfA1Sd^X%e; z7`nH~K(Z_C)}=PfK3uOGIxNi)GE56lRmE%*JOG9`tE@_0+Pz$1D(Ojp2Wik&NTOGB ztiTcKBiKhgm_m^fQ@7aB9yWYJ=#3MhV3j?zc!>4Uta;T6?Fdr(sy>~!r~7Vz1r364 z0W*$}cxGY>1%9%!_fcwTh$j0RNEraN_Ro+_sk#joPve?*P$;q7s&2QNkkeo!d@NXZ z128kszt2uwhw9#qm@&tRa#=7?e7GeOzM{(cX-En`TvxcfX7--Ep0`x^vcX!QTpqnj z;G8DO;SFR@N+w@ljOF|ssX@e*_S;1o=-Lk$0{rDGV6|1LL>Zp@6;EBd9u4aVVd^G$vrN+X^{sB zaX?XrCF*p5LZ4r(4{T*L^iEo2Kl|A;_EXA#nD+r8|9TZd7P}86-|*F3?`;c;ikQ5_ zWsa6W3T=`mG*HsfKSmxiYmxp0RkF2qbxokOX{RIUEG!-Uh8Y|4@*lB+vtAfU7&tZk z)S3;wj28mn2O9hjNoSsM)K1Uu7yw99pX&vI1*H%TQi2}QH78WdB|}{8+GXQqByn>8 z@EblBZzZdG5k|@rGA{#?c$lDg3H|yTa;S|dR>QgW^cMev(fGUcw$ZmXc^Yyk=<%QU z66l#rL1zHG#icIDAK$%|s{5Es%9$>B^O7YB_I-z{sLCqV`>h7y^AODdym(!oYkTeJ zF?`VH+C53-7IgQH=WR9zdGTx*U_`U_JsR^zC*~-gl~dJK8q`kGr)-8kzEn*AEmwo6 zQJM)CM{xcr_S7H9=e5#bb9X2O-bG6Jn>g-JTB_}YvJwmLA z1S!&#I4itPL(VIi80u7C$uB7N)3snnZ#+Tbgfnw5KHaebhUD?B?vA|sv!Q-xvENhC ze048GQ>iPhG&?Q3)T6w7z|n!)dk&hj=lfoojmP4}pXH!GHwLa7q_t4A5^v z5)yNB5)$i-jm)zSqq;ZyoEN{nV^@(+D_)gH?k9!~C<+3mIexK!uby7*UkE1nYm95I z^$PCYmE*^&%9xRhSG)|Yi_Y+#GVbZK9(`l1 zUteva9^&0>$&htRW6hxxcokmkm(AYOGgV~3W>6VgAk0+?eZA_)?3d zKnzsv%7t=>)UNs;lLWQQ2iSweicr4fsQW}ymAk91&3U{@xPnEm!f@%)=WY6;>k`{` z+%q&XZnoK?zj~$Q+1;YDwaepe89~)*zbBLTaaUwJj&I>VNQ}&W5{e}o1<<{p5iHbt zA!U|B(D`C&PL6CSpL^ASmZsgxG`>jd%HFT+kX%)lJT#8e=uSB<_NF*eB1;N;X!89l zSx(zkD$%KZxI~;BFI>+%q)7W}CNccSZvwO8)z^A-*$F%PmZ-QS(RF%9Q#|lxw2EN;BYRo&%pB&2 zit6#-;0i$ATuno^FN1Ca&ZOqjGZ7Sgq{#krvQet1h5R=qCmTVn(vbTr2!O(D$9vT6JF0RXw=)XY5Ay(BBjMNadE#7&!y<;e|>1Haut*O1UX zdanb^)Bex(M;L-Hd2XNd_k!aqmDY+)b%$nde; z6vOk!32)G>D@=*EHLu*>eDp(XqUte0MJ1A6p4b%ZJvi%A*E62~{DMiSSV`M=WXxBR zVd`l!)4X1j!`xJfwEB5Jvnr=RGTqu>4UL<%Orwo($2@qztz7o|SwQIatO*W79m-u+#pvX?N(!8+R zulK?aaT&8*+07r`fTd?CfJ`YK=$gt!IK4C`!Fm# zu-`p7obVZVwA``WwZTEeexo8JAc6E#65+?s`V(us328vEW%_s5G}(vmd*$1kyfDU> z1zqXeni)bSE?j}0+41z?5}zfBst`B}Hxkt1Suw}_WvO8^mK?kc@? zg^R23Ut?Up!{Vn(5qnZyUvHlfB`L1+cOI9i#~m*WfIJsZ2z&N~vZXnj&B(6fswv-x z+VR=Gxs2xrZIZE}JIM}nuK2;;;zSUFs4{�J4y|;E)Dk3K+}}m|GN}~4*ajT z;PB`uV7BYfgcXP{dN2t*kE#$9DRJH^akW!PHU-Yb#osPum(bE~msCpn?`z(>?|Shd{>pgV zAcy_Sp<|rFl7ndSxa}_jKr7?@NGfJJm|rX?;f4S%Vrf%^UtY5;aUw$hJRlw?xl(*Q zcILBY4Wgf)Lk9fd_Uyz@lE(nX0e_NFG&OFt4h3l$@FKxaF;*s06L+xGRx_h(kz%^} z`?;p5RaYQ%U6n(N6pjfgzdwN_OL6nk27V18#}Wxg?h-W00sJ+~Tr^;*5?>Xcf`TVo z$%9R&U`Qg(;`~}JO1fHABrbKm`-dAuV-)j6oJ?3c|3m$9pl0jFm*RRnR@Jq}J2=w3 z?A9AxJBVTO*;}IMxAUcJ{U1mhQiuG9AXnZs?D?+1YS=qiG5WDgn5&~izN}5`yRanF zdM(p;Ny~s;zqZ1kmnENROOI0Nw+LtH|G*9YS0RYz!5~mgb3**b`oifSNNxAH7!a3s z`Bxvsj&wt94vN6wsbfbQb-yMM7B)dhtb6@fT%KEP@es&L@7n9AJs%%BG9aC0e(>dN zNr5i7e;Jus3&4w30&{=No#s6_M;oI)TOlk?-PaOdRyv{dn_^RC_{c0b@$uRDzl*4vV@ zHGY4rLTBJz8V0Z^+^yyIJ*d>0VrSaums#FWgxTwL6&*95sfl=-M?N7)|C~HYHe$o|(1^>D#2c=e}OW4KH zZuRp!cF?KqMLdM@Mmt@3D<$}KXHy}dUmcR8rpYe}=PNC1zTirX$=t>Wr zJHe~r%UBLA(bTE_W^n3Eq~Cv&psFjmb!2f;i0BJ@N*)}<5KFYFKXTA1XFYHg>k~qJ z`b-BAUJX02@Y%-Cj&yi^^vEBp%M^vz`^>#vx1;az35;xZOzL|QqW2`+&A>(Wj^) z2Zt%{wrol>V9d2_xyrw@xmwV^*{cktb^AS3M-feT$se`ii;%c zX1X>90_`vpa8;Ei17Wy=Hy>hB{eL7`u;SGhs!rgE;L3fzVGxXyfc_)ZX|8n-GjILy z06znFmWi5MX~y0yDRr1Ns^UUC$kZXVtdS5m6|E^uqm)ohrB3E4fiO@IFcj4={TGQqXd&1IEee zUFq^H$lS=e)#mK<#E7>xm7{oQ~ zrLwy0{VV6uPNF(-*60nBSpD|*0)K@uN|Mp$@8d!99>5#9EXgdKV!=7Ns+bi-sH9UK z*czK=S1l`iA*Z{xeh|R<-^~H_;J;r5=zS~Z^Eym)ESt%aUOe47C^9VIGkt~N?;C$l z_U}P}25j3L)qSv&_|P?nS6~_94RSn+Yx@4wR<`S|rw%=cAX?S3qm7IHkc@VL<mNz>EN)xkH%_@ZWGP$=)Hc00v)_*w2SRXvEkaQTdv1U~<2&f({tU$<*!7N{S z?5Kn9-Ho6qJ?>8VyX=}XQv_Vz-yTw~+458sPr!)k;x8j7h~%BNNw|&l0pQRKbZoay z5+8m56FPoU^@+GPndhOVvB;Of0k5MnJY&q2&7m30Y~S>Ok|&;L25E1362*e2W9oTB1Z)igf)- zc&X^0;ZzI(Ri-DqGEzzPSs;`F+g}~J^jo%3WN|x`s$d=eiv{BRk6lEzU2(%wfX#I~ zDJ`Xd-E4m*omgj>^u;+E!=<0n@Y8&Vw zrith{biyn7EbxU?uK4667wxHOb7{KLHz2=Q=o7L+l{0#IFKJ0k{35k%(XNal-=7Y( zWp%`;J!pAWB0TpJCH1;DZXUoIz-?_5tLp9}?*iU}(ZI5LH>DlqxNeKE zj%?UY7C4C$`$jqD4+V_%^E6y&5$m;uE!UNBr*MOL2o~QL!mJRulHkwc;FZ?i+II_| z2)H9uqdvyE2$$`Gp9VMb#7#|aiemm-6mTT_U%$N6!&(4J^@=Fs`S)AA64<_|E||E< zJjV()0T8S(je^Hi&F4M-9i;%hiB&O@#GWh)wee&RTSy)O>Bb+nzssA8b?U9t zRk^vGIi?yU5XUkRP>Nk6=a*g`oDME9S8iR=zInK`fyU>wh8+_o zKD~Vl0XDsi)p8IQR4iHh^4xJbcXeah>1?(p7mSY3rmAX+me{!E^<^MPQ@`D}9`|pUZO`{b_K=Z?QDfxLpsE2D8*wz;qqJd}I=bdfqX3 zBLA(V`({I6qsC6f8lLowrY)Zj8c}l1w>vyFS*;19qf_&qjYUwr) zE3f8(%n3dZ(&DPI=&+>JWT={|tQZ!UbE%>^$*7B#Q5Niptr@iHb_L9`2kZ?PjI5fS z?EK+<$d*W$BlD&1cgpZ`|rS#iZpuT!teSQ__6z_ox`Ld31!dDJas8aX>Us2AqM z*U+8AHd4qWu+Q^LJ>S`$k`8$HM!|KH`d?C!RlV)=>iSCu3>^-0-`9Yrwj6Sf?G(|T z!--ds_R9^q_Wip23V>3HrRSz~%{xl?b621&k+6PHO3yTZfrUt5#{H2?UyC>{#cDexcQIiM#y9=Vx8hM`jNE=2$E ze38KLj~Iv#V5rxNSH;M@{6-&K*pZBOkSS*@ZLHip+0&v`K~jtp24BATo&DW(fL2FI zst@EZr@J0lmqV?%sb+Z#+^ap_#)!}aYCl+<~L zFG{UTvR)O}(nS>QP1ONb3{`1749^%ms8GdtLLRi>#w+~^8tfy={CK#gL*7N* z)-t>#QvV=U`94!CH(nTFZ;{VqsZ^k8brH`5E;YzYdGC8^wmg-@9B8RZb`Po&u5qo773bJa>s~buB=~oCI zk^+O$?2R||tlOM_mUT!y5&7~3Y4ga%+`NfoJtyGVrZUw+LE=^L(gIw?RTR%Z^7>jO zJ1nH95u$V{KFc0%Lv)*W+!fOH4x<>deEllSTrtPk$JeqeHuQ$+Hn_N4H!rHp525yX zpZ{qanbA`0tb54*i2@wGhmUQ3)bS_bgkrJ4=wGUa3*8nfQ0L|m37@~!Y&;IFxcRen z-%7WgK4=LP$Uy@#s}Gi6kmov~-Wjdt!lEqZDHM%q9b zX0#KcK8p1YCSNh_zdQLO3}U29V4D?Rj)y7?L;guHK`mdd2p>7U=Ml>Y_E2h#mzH?x zFgnESk7Z24BiA#xI*pn%h47UZPJBM`T-u&wE0C|RieVn$}QmBY;{ua zL&F7kWSOAU3*!lQ>5`BT<%|eHg?W(fKx3%^T16cTAnIU4CYMu{B+7F>4jg)d4@Czo!0A9@jlNT1CA_`#Y2)oRF zzHg|a8D62Qp_d6_24SG$CbI1|vXXnREr^X*(t$Q+q}ahhVj)nuN{UEduh;ddU`Qs> zp+K!pS#9Vvj(NL?a-zaB`NC%c!KCd}U3`Yt0ULq9kPleiFt1^RwM|^@Jj{nHt5wHP z&0RybQIiia0yV?gH3J3pQ^dyp2mrF3ndlZkUQd2H@yNZo{txJ?QYqgH=Q6w%{}GkY zILR&ktt%1VNOhHo%DlOr5D^>rZN(MmPXFEyRWfA?51tP3mS6<|#TK6oCB`Jm(IDu% z4(>RuMQ^1uHJE zP=6%N4b*C*x9?@vR=&BaCoOS)$^O-^H=rmWKLztHOgUgljq@-^mTeHSJKg0V7^C+s zDRiuLzr^Q;0`cJ25URntheL3y5^&C4cQT)Q@H&i7dr!(^1mnrMIV2qMg9N{n!ViCG zk`mcNp$Y#a=DSH;5V4M|?o1+bM5N6C%=S;MIpjW3?MB)51p0G7(SJR9O77Y8U;Ks$KG7dGcw*?E5LBVI z%9Sm0?=-sl4qm@M`RJU@Vn(5mW}R-wX_Jq7zjqB9cj~uDsxIH+~4`s2*N2CN@3b zC!Ib;qqzI`xh1ITTx^22g(}60(iJ9-wa`XX8@35VCJqMO2TUDin9ZSO^~GS}&nrwd zqKP;|`zaYZ}sU5hp3k5miv{m-npHzLO@8IX^G`>%n7b!?Q&iy^8+TV-O#%b35 zFo|YX*pH;t#ale*TP2y0e+r)rY)EvyUiyOn+ElNcEEy-$SG*fm17^(z%o_s+@9MJ{qahpNcVP? z?KuB|gX*$XjHMg6U?pF=;EK?avPu|o>$d4)qSngRCFKj82R-N<>+Z+aeN)?*sJ*g& zT8irVYA5VWR>FK^Tn?J3@m1(=RFAQ2b=t@VNJ!SPzsbKX|9`dr zUjov5>WbInb@UuBc5chrv9Bi$i8eGK$fuGYY@tL=ugsy<>cAYLqxIce0u&RA)?;s8 zLcmI7qsuZD#IE(x&W<&wBxF?Yj={33McML6)V%mpCgujhz|`-XV%WWr&qo3|L0H}C zb{;U?%KY;#tRoIeL)T}tz(i9$fY$CG54~@okR_@!mo9A zVb%*%gddmFhcB>l^rtPk9Qh+<7NeeQl$Qxj6L{!US@ipnSFgJDAz&>rZ~w^7sgWVZ9cXTQ0M>`1k_^Mm&F-pKr^w zl%^>C5HQW4??^*K9(>_1-J+3?i2mcCbe^!hfwPUJA?5s!UbiucPcW)k0|+bcnF$(7 zY<7S@Dd+vS9tCYf#gHJ;7)+~!ClcU-1MZMaa0_3q-{v^T=!eC9{zJVzuwJbF&@8%6p2oHP2bPqHhKQq`8R8UE3Dss$<|+EmK> zXM^-THZ;HDmm|Q2k>7&d%KC;YkWe@`_~5wHkNZe;36j1ro$VMPOeyCV^Fb41qAKDv zY^D$s#}c3IjlLaR=&rvNysdIU>pZmBM{9?omMAvE{u6LP)D=Hf=km6WSt63jEOtx_ zg40AgHTV3hFK_1=!oj;z^eeaoGw}~25*>a?F>%Mew07&`XTT0jFv_C(hxS9tdG{W) zBF{6w;s~h0$*RgLghRVyu!t9B0TRVHEo(}}X?KCj^=;S7`4~3)MCqM-12!~6Bq$es zS{BG59MoO9@)hrmSFn37tDxCyqSm~sgT*BXu=8BmL@(J*Lm4*~<-ocmWX*n8M!kL! zatmeu9gwf$T#vO3frhUIH3AX zTci7JTgju|r?4c~gYYGxi*-Q#Z>{B$fGIoV5}0s6bG9%KzX=~s$-s9r{t^e+n_)5I zKg0yj3wK9}gf?kGnz~SHk{+|3Eg-!8b_!1iggff=_?M};>QkMeDhm9)v(m$N??v9~ zgqX1FB?aOB#JKm}oO!+^l4j00-W>>MKJ)?B0Tv72hcI8Y|9)*5vy%PQA0^aigc`A* z$(MzIE8Y=8q#{k}r@f4E6mxTuAP}|3s+5x{Bd3nXyp6l}<wsw%m1d92328<)Aqk&a5{+$3R7(*!%pV8o}z$ zu5DekwBJiVU;)^lo-hX&7leg@fPgl zDMetYwRfbpl^K7pRjID$_sx=HJpt242oaz*?(oYK-b01t+`bS3de;|b2GMir@`)_( zTLuh&>HIxm=5g-%9fXQ1!>nT2OGRKON7n3GvUJ#WtaAfY!pIgyLn`Qyhv#x46G0g< z9GYi1lP+xzP*sK<=uZdydII|mIgyTN?LF+tB0OP3;Yt7PBl!It|(>(2LoAwQ732Rva$hIWKv=%gk@imiZZt z9rY6LN7ue(nDsp%%#s!%G2+c(@T`;-^pr+BFBLDiJDt3*VxHX$-{cCQKKuG60&@da z!-<<&=ud&)_h%7X5Db}Rgb)|i5q|Pdso420BQo5f#DH# z#B;g<6r>z?s34=Vs$KW>a=Dz=#ir{I82n=(0I^0V_4w)2IWKaDD*FlVIKx>KF*kJ8 zKfwYJ=QSW0w~Ph~5emkCxA!SD@8j^`IDlbnGvetsT|u)eOA=?bgUiUxAhm>7KMdz+ zmIw{oztI{nm%GFM5wX{b$O%R-AFu#zQ2iJh3aij#QQEy2TX{FA8OZOZV$9TCCSDZE zVem;+B9g8x)B89KpMq^qoFpl`w2r8;218|^S-8T}_xmvgN-tHtVIcjxISRL!R*AuZ zrcu!3#5a>60jMn~G%N1nHwv!2@50Zn7iykITVx*St^$WkV~p!%N0y)aMa$kG)QRuQ{J2%}) z7D>LSpC&IS{<;*1N%cva5h6m1XVGsDeoW+Q0q5p`y3eN_E9`o*X5D;+E3R^PfaN** zYq{4Aye%p;8-1A6(CFe5++EWTu%3q+^=WyB6Hadv`}BK#cQlatdWxkSC;h}9CorK^ zYM-vGnL7>20SkDio^c%7hTE+}KRWK{JdU0+zd$M2?Y%&qY*FxI>o&+?Prdc$5%mLk zgDD15!HiXnTe;((q6%n> zg$H{!y-V0*-u4!Kd8!cEWhtDjpn)*j^B3zJF0(;ZB}$*0eQyRBrDqlQCMu2OE23MtlrTP+-seS$ zVf~FhM)a1fI5dx0{In6%qH_1z`h!j4?`PTDdI%7%g9ULe%S29mHQ7HK@Zp7WQ@z`v zKX8I5ee#%WoptpNo~F9}_kh?cSn~rfGTpc0eiwNMcWOpwgEP9@-v+>Wd0;=!qyLKe z%zWP;p|WZk5+Zmt--{kYmfeW#452+q<8y-xzXFQw9U;H53^Xs05=5vGnWLXO1pmus z{q}z8Uh|kj|K?YNJ)J=Aplzl{|1IN!5BdI@bE7XN4UsLM%t@;B8>#|*@{2K!umEcH zLi{pn8sqW{xbs}yLE3^ATRUV2@wGS^ExR>PC)70GZUL9h*5j0<@s(>>{n{ql6b8Z?y;_jx*%Y7R+%^*Tnq#XcV z&ln`x4mkwPj}bAsYEN@kIbsb;ah0EavW9VZB;ZlcIWEl1E1y@TDmW^|83q5yGh*km z4*5>46yiI&{RlKn&=PzwE=h6cyHeLp5JBZ#+5Cy=;>VTo$xBH8+4pnJXBNsj@Bv1^ zz51^^7AW9bB1;y2msKe&(-oaaIPGzVrv^L9{`VDdR=vxrq=k*-lCi_7Y4*|P7X!lv zZs{M@2Eo{hU0nS(;xSc582fNNWzwUFgmLop=?=o!?w`6-r?|#~L;vp>N$~F-^!xl* z%9oRS>UCKpT|opb7(c9*y$^b}Oic~b8=6|BA9{d|P}uOw-L#ryDWyD!!azxOyo*U} zlkR4Cc^{dcAqKxRSrtzM?mSx5j(Md*=v2g+et4(^674vGsSwxpZ3CV7v=P(v`| zqwD8I3dfgZ+?09fuqWxB#L2g>dbqh=rav7TZlD)~NFnmKzevB;vPMS}#yb8HLrZxQ z-FByfO7)rAy|p?Tq_t#+hQJJ>qctj~&x)OCIIk5Mg*|4d_Zh&GmRX zr6$X5Xema_77O70eGkorZz(@?RyMrAC#WFaRG(@TQGpvY+=A01CjvH_q-GXHXT5F z9ax`nwhsg$e@gwmEWsU|&!86!cE>RZ#vMtvV|h8Pn3@j31tHH6(K*dFn zZlLd(%xgDv-Fryf;9ufDVLoGQ1sB&UWa9vux}gEl+lTfuG`ZO` zQMCxS0%P%0Gh`dl_F@d&l-WK}kvSI^^+#ukY)Ov<)rHFWn^a6O*?$o+0?ox|rSx3( z?jwXmOZrsK{SuZpn&oD9(skKcft{l0RZ9YHqshF{KmId@{xRl&MlSx30;wV*&oUWM z>h(jyUPU9{Q_WYSPbVp?t56NKTHeXThK~V!CA8zvsZj1ZU;kK=VT9_4JOvCI49SChg|+6pxOa*K4qy3lMf+L{L{@z%ZP1zy9{EN ziJMLsopAG?#ARV$IrEe*#fz()!q=ozFIQc=veT^*?kX77sgYkcP`*|U7@XIE(!GMp zasxQeHB`Lay(2u{A`p^=9Y9PA!&5&oIC<=J=?|HjCInVW(o*DOX<)h<=D1+YO;m?b z^h}{x?UZwAkJ4LRB1aN;{mhcERKO<5WVe`u|H_UHuUej$ou=UR#s>5nMw2Pq+8WNFyhQ7kp55tFI8f!*A1pea*OuCp6LWQt9+B+=M1df_d(WRwDhhg%Te&y=;4J5jH(? z)i|A8yK6Y0xcyrAex+9|-Pvt>r)1O)o%9Lk&3 zbVu1jl}MZ8A0yE0AfhTu&4zR|dYJ2PChB`6x~{3{Un1d~;axLsA}`n$pkW{V%6K&b zNA$!{k3^{D+Xb^KD&y+5*V=26kFDz1dtx5_vX;Ocg+VmtmBXdDWgkt7qVVC>#FcYw z5~2o#lvtCHd;MYE7lxS3mk<5Qg4EqN6;DD!cUfj*D=%_bY&=24#GD6oc&AcP5nosL z?C67f)xzUwdyGC zX4Q5NfaWi-8o%Bg-d@d`cL zvy*8<^WI#oR!p_I>#i#njkZd?0Q^h-e6z^EBzp7#rbyaPO!8a=-CKYct21x#rkpU!C!@BIpBGjG+y_Sl6G%h0SaE)HFl z(bk2oWrWAwhRZPE%p`RX9I7osk06+2UGi5g1>@ z(#noWiF(4DSJsGZllI$>Rygi=85ORCwd03dSrps1JZ=cJUtoEW+R3t)17*YPtDl(j z1X}8>q9vlP9|<7;Rrok8nV6m1M|aG%{^i|!EpbPTt)s~bOI#ypDv3<*Di2@^du8QC zx{YR{2x}&G66$vQ9FghN({_tpT2r>pFj_PzOVAakdK5NGvBA&aHaW6^G|Z^3>Qgjo zRk8#5`yQY|yT9$T`okKfS>G%TC+RbH`nV5_tO4C(E)4n9EqrP3uVjuI^kTXwpZ zHWY08UAY{~X3~khgN(N5nHIs=G7r#UIDHslp5K;-sne|XVH%gYnZ;jhjhu&hqN^1tWNDoOfZ7T5LIAcXP*x&j*pKC3~V zBpCPt?dYEDvdtGRU~t>vU>MZi!tqhHWIG$9E&PAkad%nGs~?Lx+`@}Aa-2_1&;!2_ z+|_;J_;9Ds8DLMG(2kGD=1r%fmW@BEjAv86}Nde{{iAiYXC-dT6wj`!CKpM zE})ZE!=|gSr%3RaRM2}U3WH#&QQV62uBZA zc_=>O7KbO*TS5%sQMQK?i5v9(Vju57ia~Ycj3}snXcCjgJD_9?@Ak?G#`q`F?gEaKjEv9dj9eyBjYas00MlH z64!j>8PO(P5>bgps=pQ6*z>ze*7$qBnz-hfrBSy0gBj#_E)F+c7N#P~T;<5#`+b9_NX$VYe zlbvgGFw!V8_L6vI4Seo5r^|Lq^o9#&DDOuGXyjPTGT zlzL*Kj(hm3m+vUc_=B3p<>^y>JFIO>iuYrI#8s++&0lRWx8X?^Fes$Db?Lok%h6W( zSgIP_5cPm*Lsy=DkXA7=ZAX`tng^U}WW5aVm$(@McrJh(v^qVvNAY3msRFDfdtfS+ zCJEGobm#?3y$jP^YKZy6-ry6vnGi8bZJ1#e;QAJnTrz>MWXMqq1XTr274RnPq&|Gj zWiJA8Nl=g=CR?zkP60&13l*WSOdDq&CPbCqISXg!?xrRKm|OHs^#CCSQ??yCAVMKfw{rTF*{lb4BNHjQ z0sI~-Z`deA+z~NZ;OVV}I2pW-n=>r0x3K#eJ3Edyf&c4^L6gOqT2~ZMdDHYhKRVwM z&iR7N8cGpP(069Y8ciPPPU@wgN0Bs;YxwAC%qH1zIA0ejNm2!M!_6c<1T{VNR zD0D}B1&ATD-5`s_WOxKpF{Hym$US3aLJ(mr#)Tsi?@2Tp1HJ2d>249*$0uIjLZZB!3?xul-Op|MTG|gkjd!#zB<_= z&Ce7#s(;QIyGam??hUm-aZe0Nts+}bM}?i+!CA*{)#_)?sDw*uU1d2@N9_GV&1WUL z0i|L(Eu*PU)iob=Nk%E$s?g?^+@U!btw><0E~SEwJeiqAMy*?%odD-GQa&P;`a@yI z(%Rm?FQB|gZ90&JY`~N!#6Fn=bSs}B+3_oxUvo(ok%0Hje&QM$WxbX@_2vKiTB1WY zBG(}~d2hw1Tsx4gLY!IJfOf6sqf?!d;A?N&Z=GVV5i=hyus=6%`-O@^uEZT-AkJka zvtOjXRtKKlF)xZ!?-^_~;yl)NzzDOTHg-wcqU+H6^g?&E{w8lUUVy@)$Ei1)5)@ue^uTTjGlR zl~bRttFb3_f5q%Ye$!21f2Wt}Sr*NPARqw?zYvQLF!rA;rE8=Cz(7ChT(zrljbq${ zm9n;*vIh?(!@rLr5-pt=Ic|Yl)>)<+9|>s=80-|@C+(k=hyjLbY>REg7BOl=iw*ZK zCkECPW?nemS!Gc1otcLitLlOo5~-g?x+wU}%I{mR<l&KX@&s#Y2UIP>2lQ@8XEhwn8J9i?&rWIc+Yt}krF&LL zB!N+L`fo)Q@tZPKKL*IdqB zj<$_vETB6TM``}%Y zD7Ma<{>xbv(Fu)S`gdfAP|844NBQBTk&36_1DJ> z${YH%-v{X!;WeaYK>q~{X0~>97A!sR(o!se+90~_%k8k?2q3e5E3}+P6SE*cuZb4MwnKGvSgo914EZVlbQ-e>Ep3gy_SeU{1Tu{< z#ej5~QLnk&Tklfvs~>RefuuCRl9L41YZY_i-5pj{#eN(Amm4?sw>C}4w=j*E%{dZk z6CL9W7J5{}y(U>cZ-4xX;_o!9jeg|X8*4Di15BQwzvk8puK$pjp&RFJ*0FlGPBtQ? z*@`JWOc{ zl5o`?=5M~e8xl!PAE6(g5%d$8|9CqZ@8GL#=7H6_L5}UvzVa_Gm9M$ zF!rLR;JDUJJCn&5hfiiAxL@>N@G0p$wE&ipG~ym~$o`K; zxSH>9V!GNsr$AIuNLmBVzzCN$oFd{re_nx_9aGI`1N#)6Z-G?`haKu)qYjngqRWIro}!DfAU({25G}Wi?64zK1;l|87axzR+IutrLbL7p|8O z>9m392pU8E?j^evfYwV$XFiMiYznwTkrrlvNY!eyaRvFD4tk|LgXZxE6E~WEnEDT1 z7dLC;l}1^Xp4QV!SxuC|XyUHmR%E2PB+F36E`bB6s)oWA9eMo1gynwT zKLMzKzB6^x4#p}xXumrDxUc?EE<7Eo^Xz!0pJ3bDY)CZrP{|fI{AqpFaW(HNGoop} zCiBdjolw)B1W9O0aNWkIn+u>8Zj1wrR>AltQL}2g&WhsBuQ9rfH;g;qyd6mvkzZBw z|L-bfb95gTa4&m`1qu`? z?k>TlxH}Ygx1z;0cwq9~c}DJY=YI1yKa-tv_St)_ch!_dw2pSt3BzRhgfM`(c{ODY zp>RE`=%)!h2TicFgtaT3=Evd{BKPb*#KK;$0kN(li@=>lk{G`>vARb^p@V8Fl0am= zP|#Rev4H9-m1b~GE7G?gYVbKTaG_RqTcp{ABzmzq?6;%%)|D@E#jwq;uYae;n;J};23{U9c^Ngdd`^4i3d7kFgJ=61qaRh zF`2Zd+(xhj&YJ$Q7iFQFPmdSMO7#y5;0R~ae+HJP)x7D5xr6I7Nvlh2Lo$wIruP|8q6L?=+3m|4Z%?kn|B7JInp=^mLR-yT;7(L(Xcx zl52I-I;G}dSqh`g^(wFP`a7+eXZ;KKwW-A!YO(2;uFisnwMh7}S zT*l*Z(9U+ZSQw@YdG01kY}#WRag-LiTx~x~O%c=e<=i5NWm9`s2*~zs6ERi{m)}90 z*eSM3_J7sfke0CXT%fy3XR&YLj(jj}D#E4(u){|P1>b<jn<$`H{|d#@;cPKNLck`oTdxW2ZuqKb)V(h# zx7YCQEn@lnu8$m-c=rcxBvV#8afvS*l!toHe0d+7mw|Yp64z;Z^Xz2jo;DAe*PQ_*`{4@JmIj_JM5c|)d zB}1m_o=tJB>dO8_YDgs+kBkThcc>020%Bv2+h3n@4c`Z1ev~BfoS}m_FcT9OG&KPF z*XQAbS-vP}GW&%y-E0s6$YeCZ~-i8^oj4o z=CtRD@Nn>Zb1x!JulYOVA2NPXFwH7Y({Q*vg&R&1@hGQn$|X=V?J#v>Ysal>pR{Z; z&y@`xw7_}8+r_bv`UkNbbQnqAPv#GLRernvNzM(mIe_GsJ!M0N;i@8v12@Ewm8R`> z7mawp+)1>{bm|_*EF^TYjm$$T%ClJlhnirGhBw!o$b>^n;h>#1H;hm?IzdZ%j;tv4 zPYI*{t)PmGll&zVZT>Tl_k(t1+4>|?KTdW_15iY~=6Ul49y{PNwNmI0eGK5)QE;*V@tzO%(&GKX@D zet!zAN)$+NZ34hoGxJGWAFJxoJ1kjU?}b^%8qD80VYk2rtNQCn0f^khE=)@~eGNWN z%HsvSnRhE{g)}hX9RDO8ruf6-ZImd9a%bd+DY?y1w}Qc_yBGw6F0ew*rAL^XzNs^n zSI`T^F7o&V?NPjwi=C(b?K@&vyKd;#HR}DYyNTTYQgjV3u-*sh1e$U$_~_G1J6v}8 z{P>I5MEpOU59R;9^C=)l-oibrZLonU)H!92Ry8jkc4XtM`OFfH9;Sygxa zsjAH^X5N~4jsJ5PEgt7`Zexgm3jOnfJJLNMD+t#y22BdW=CBLYny35=A2bz=U~svG zX9V1;ZOx!ZB%+7Lu=Q3}@X*0!`VF=f7L$(}#jinhO%mr&^Z6gxAduz$nA7=%jT)`o+5D}i0*hmP*=}S2wJ}+@mPgs_%3m! zrhR@!Sv!Q)aA&74>xg2--82VhR>hTB|$^|058^{f}L}wGr_0Lm5hh3_bBX$Qz{s{aNr6t`Clp;avQT7;{A!34a zs>)-2Iq+S7K-|~&jGzB#B@t|aa02(HnnN&~SB12R^*=m_W)MXi+<+FJLcNJW)P*BV z>t*ko8+ng4vWb?oBEdn$#d#V_XmEx<{C>PgL?>OyoAJeNku`v-po?&}dw z>|db5n_6UXA&250|Io5BM9BTz#bF!--U$gVlsRZ&V9chGo~~-+g?s;03ZgT29le9E z^HPdI2w@1sRfUr~q=Qu!#p(<|q@G0CH%BLuj#EgcLBag>&ecW!3vQ|ke&R8@JfCg#~8!A|CE+9ov)W?zMl3ful-2k01<%! z=1{cPd|k8c`0~WoZMrgn8|^4pJ8Z{;Ro~b__6~)D1CzJip@fv1ji`*o{rypFGl~`^ z*@e`alY&P$(>of~X8n_Swnf$6Su?su1?|dB_lP9+b`CI7pdlxlJl+)1hjabN8GF7x zK`U|9XO^xKGFuLCB~^Ee>#DG$Y(G=~r%q?L%B4Th;U>okysj-YnFWeG&dTVh*ELX? z?=Dreu0Q55qFRp@GLrb;q-5dBp-y;I_kETVL1LdY@>DJY=Mf(doE>2;GJf}veF%-m zQ^_X?eWn7q#uykdmOBNHt+~(9DBhx55v|zGg!1dP5hJ$$QRJxQHl%)8&Ay8A4R7Sq z&)6`#h|UNIJ&%G5*Od@?Lli!!=>j9_!fK@(n=f3olc?8iNZtdMidj(Cu8t*{%*ixF8j}7P;&H4#c^gjU{L0 zv;iD8^L=Q(<@8u#3j4sYbXKCaiKQ~%5P~-$>@_1#%C&>Bhf-51a=(W#N20K}3MVqm zOffMqe(43KkPaOnS$?U6oIV+rd;cWpp`M+H@Vjf9(X|@>x-#|NW`!&F?L><$Izk^I z08wi*u_&d~_5k@Cc1Ym-lplF^>;;mr#l)d~iCm){OdZRrQVi&zU+^)wQqLQ3uk@ z89A=|fx*g!+Q0jpzQJV~vSN=d*~DBy4jfWEM0$L2SLtd2WhEHl{i?W&bur3GyXjJ; zUl)x*xlj8a>Ut|?j4wskdkF0<_0G_Mm6|ZS^1#ne-nGVNEiCX_bto}(@qXuaVoZYm z=H|oW=ggY4U&@t8ySH*7BW!tkY2?cj*GFC0OlKErez5ABu2JjyC)bYW49;naARE;H z;&IL$;Q!0CaLV}~Cu^(8{NJe;?Qrq$A^#C~3b^AOtu$l0fQ1+WH5zE+idjsqMvFRh zi^TQ(p2IXrt{d0l*_bNe3F&({_1DcT^E}vA>Vor5$(Fu%1!nk$4B~1G%wHE5?8zuv_}9- zBdzj~V0JHNsmC)PApb$p;jba6H{whr@GFF5eB++p3MG{yy57hw+QanbyAn%{(d(u8 z=S{-eb8Qv3g{Ge8NBlPB(6^jaq(U(H$PDjvw8pMad!V@$tUq-xSj?7rdgtos?3$MD zJS;_z-d+@Nh>=u7R1m5D%rnz}6tjcuB9llTG0xZ^y=N_JdAr)xmp;<-CwpJj3kO$# zsy*@twcrpbdMdXY%SguMZYP#FxO@zu|AljTnm~ZSc7QAQD|!=s5NXNcyD!4%pQCfd zOG!ZB|ft&&?H zcL3uSpw-|gp+gDqz&rE+bU*6c&fa)t-4W>D5p!JDId-Hhxh~wT=D% zQhs=l+_-MWBgEdoPXpeN6?oR;Z>S#V$aAMoQx_KZjwsA7*_r``jfRwrWxBT_cEJ91{0_7?S_q1w9!_@;^cu!*vNXzkJ5m1 zua+35a_29vYOu_g1_|a`Z4;DG6%xkF#~%(#IE&wtDa!`XsHV}!KnE_x*~`)Rd=ISA zsn@In6LVAzh{Lq4(IV0QNKd{=Yn@*8-#BlkV*fcT{=%+5mw29&kF&dxXWkTgk(ubaD{La zp#^?iFGljQe^t>@D1U*8fmmsBd#x%>b7ve-iqM1x(!!WPY)a<#>5RO{9h7F)1@E5Z z1Ws)=>D(Lx9lgwG+!eETzQn+=T!Q)T5x^wZUF)qj zzz_Eh7yaez2;~5`Mkvfw-M_?*XKg`XT zXN!Cl$e2eQdn@H5phD{;cRWaqS!3hk}}fcR-+@-M-RC_dj0raj(rn5;i-$u7eb4H4LZO76ie8~ zQW=N+@;_dsIUsYSocE{kTn%44lID+njq#OzkBH~`uEGO%$P()Dnv&RlrLCa%oFBLn zGB5)j!!ZI@#4wI@Nay2!-%`_>jR?n z_QBB_9N(~eqg`bGet;;j;{0IKM1t9#sYO-;;J$M7!LZ}4k()tdzP!P=kHug#0ZH+!S8IhqofCOZn%%JUa_b8lq8r2-5wwWRoh_r~j5{O`L^cAX7wJ2pW0C!-mKj}Yx z883Qmw*sXTPUY4qJ1T_W8;P=Mg`FUm9-;g-M7!_FbURbYwyOusY9I-AbOp&}Vv;EjH6DlPupW6ox(z4Q4J^Dab7h2&^ zX(fTMv|}Q0=2LVh*(2k}(&SRBVeogiEI=3~R`4RoA-X?LK3DoospGcKw;tf7?V!a-taLTt_c+YxCchY5^Az zm;6n*-|f?Y;$8*3_t=ym&)9IL)q|wV*YC^ezkukfn+KV|l|4mhkngS#WkT1;l|Pnl z7^&lLeDmB-9GDW-$}Y^;7W`bD)QpE%JD79-y(c*RmgB(Lv8921g00Qtd5nw?->v`0 zxC5C_RQujKw2rS+xB4nt7yzo#cxOU%@R+WNV^)mNog}f|>ywjg|K+fgLjcpO{{($* zauJvItRP!(X6aM*6UsY&pjyj;?Lena($rZR%ibbD8yG=zU{Wjz{G+hm@Ts90x%m|# zQs?(2>SA|9%JGCe7&a&ldH9YSwW0&y@NrNWUK>{X&w!D#KI)J0xC5g@NVVJKK=OIh ziF_nBTW?)5r)!VA7Ba|JZaC8c))cErohNqtC-JOMt$N}KwV5L7CVZD`Ere%HRze2gk%QSKu9 zNS{BQAc%QcMsxIAG1{p`oV#~S2aqOdd*PSQFbp)2qY9eQ50{VIOL8U+?w|5ZL3A97B(V@gh$U02dS@(TR(+{BL z{Nxw561MSV-$FEjlO+C0?x3qn?^75Tmkndzx~BDKC+oua$5eNvlMo$dxy1q4;ETpX z;v`wyWbq`dR?5(+3kzrORr^)gad6W7zg$_bxwS`Vu;Md$pZZ(g@iJj$qW-9zbyS9z z8__xR!tP!(?SRAju5Tc$yzV?_+}CJQC4q@D14YJwNBWNE;5=*n}7iNtB6AK3YG32`s zHZbMLvbB*B{1u}&#w%HIrNOf%i2r)W`DMwfJ$s6isWr!HJ^vCOiLrB1GFF_Bu?DUl z_r0Bq+irmmuzPcdnUbex5!x z#F8WrRwji!Cf!EuOb>mK#D#xcu1(*mE3za#JwTcOY{bwS@W};0;16u=i1PMOw>~+) z+*57)nW5#Dc%-N^=C-?I@V73be>E`EYTHHXYCEdJcttZ@O15A;60i62dU)j2-+f+8 ze4T{w?NXC#<>u);w%1x4Pp+he(<5~>|GUG#{q_~}<-i{a;EajY5l0l_@y0s<_JP~m7aNY2S~R5E8@ zIpQw6^k@=?)OOj6`s-(SIa&X=a_T8~VTH9m;={VO_uOv#XTKW5iG!D$0XJQR=&3<{ zjB`S|ktO#eS_19;eLoTT5&{*q!4XbHqyKC&SN@d+Skhg-^T=RZ@>wlwdEUT|;4UIy zs-e7o5qdUj`vM6pH^v8hCCE zVoxUL>M>hvx@9rVc>m3gs8&x%Z#tFYhXg4cAoHCSkVv!Pzg_BbWLQj)Byi6e6)uYn zm^_$(^9J^u{Bq(+jjgX~7z=NAd?kws0tbTNBvaEp_DGY9%mVm19`M2P3!_}N-!J6| zcz{B`U69HwA-ZL-1pRx%F(6Yt=Pe1>lig8?;Ehnexj1xUlaXrHn{3%k^$vHiu7 zaiFyJ4&l0PajyZ${cDBTxIPAm1H)3swyS2d9KKQ8&;k_aJ7h2!0&@BqlBLp@y-1z_ zaRAPc@;g^j`o1JTQSY;}mozmNno)jrJ^upnj@cKm&T;)Q;w~oZy4*CMFO&0vKJ&`n z3pqOBmFLr^myTmy#&vt>iiU3%LolXqO?KL-;q~u~ODe#P>!i%4;=zi1DuP7W>Eqr9 zwWi(WwU>VHu}l8}qDs45V-KLIJsLkt)wchRo^8gAomLj$i_H;x4jfN82@0Nf^*#Q@ zm=+e*@aY}?H_kwtF=OAzoB{^=ImhSc+B_@d)}f?lBA81ZiFn3;TZSM#W! zvySu+8@iN2lH9ZX3n&UpBmFc|jP@-6^jiWMv|BL*l0Y&y^r{~z)(rSk^B_ZO`1pLH z@Txs1n1pV<5-t7DAj&h2*FEFj%{?duCivk{sE9@q?=O@&p%44d67 z>$6VZC2*ZboGYpH$|m9=DaKCnQCXfqY3Vt4xve>dV) z5gAhB7`+Xcz#4;uJ0BvDzJk5BV^1!k4Akq*rzgV&A#-Yw5QIowo?T#FyM~{3&ICjM zWG}i-Es5$74j!ZQxeW=O1BV+Xyqk85RTA-))11!=yyV+@yXvl-Ic8VR37m<}<_sW% zyNy``Vl|2!A19fzi6l74%rAowG5k*KnfDQBnCi9ECo?;U7&~QQ^qD^|fp5g|LZawJ z|A(l^<@f(j!M8st-<9-8L zE2{LK#g>CSNikc)F+vYyu8!k+(DzcMnVtZ4s2WzC92CBwH-@-T%qi_VHp^R$-&t1L z!qe9F>NDC-5rW+`#^!#{wRNxZC26aa(`z&y2@EMP!rME%Kn$Mu^;%{n#&gm3cG2y! zPhEvSq5oOKEk5W4$`PM!nZVY*`J=xlnQ(}?7Na>3|72?va^8TH_M;}=DBE-=pvM`( zGM^srunvw;|J^h7Z@_l(%LZx&q2=u`hV$3&DAgj}Rn@KKc3Yuc-yNV|hrh8lX8M#& zmcS7t5QmwHtwE6mu2xzOlyBG!_l>qc1zv0}XOJuftS7gc+syM+wY?e6EoZnD{ zm#iG&U$mBuwPvoj^%*Y5rep0?Ko~mT zA(bZop;nEGQXjw}*-f$XEms+h%=$kR+lq#|PmEhSWz`f1_4}9&M5W`dozYnjyrC(l zmJ+j*(Nom8t}z}AYQcFGx8-Y_&T&l90k>R^a8=U2bU{k);QUeLAF5WkEaT`&c%NoL zYktx@ER|(zz$BbVv$r%8KvX3C*JkG5fJJ~Ip2WPy1%QDwlSHdE=okthkClybkVVIj z^&{aPcm|{chy=Rp-rMk`p(3T}DbDGDGLi84uex50)25S`;~c~(S=|0j3pAUf7qNBq zcEvu1<1=5hX;J%sxO~FYWJS!lCyMFG+abI+L$xnT;U?iO%kGU@;5H2HM^y3wWcxS} z7GBBfIPNrrUzK-GHpH(q{wrACZ2AbQ(x7z{cPisNa)!r!6&vp)#yj~fy^VIq?xs1@ zrUW*u$6E_NS>z9(HhsEOKfm#YhmdnDOjgNBq1w#Sa+wrL_vH?Y>8>$kmLD&bUP*=D zN5t^1e=3Nq_9WJMQQeNc?t3(G;PL1GFN#=^Er8)dc419~jcw2mhi$9N-zz*fc*eBq zEU0lG(aK-)BjQ}WbN+_SDh@<3l{93>AN~#n@&9gWAM#^{`r!a5ZoGHXN1e`Vu71Gs z{FBM!4u21{og-><6By>-zKsh_S7waNY-NG_EyJ$zClK*)t6O_7M*Mi2_XDlacKz5z zFF-MZCF}v&U-&zeNgRyvOrM-r0oOm>Ps2O66Sv_c_3IZklv5{R;;N}3?!~MLG$Osi znivCsL}zb9$qezZAA5D&scC0^qV@+{*L7+)))JCmuxFv&5z?WA3dWe!rwYI>T$95B z=bNl+5NVvZyI1+at}k3u20DJGe@UJV2p{j1z`=`AJMSIG*I60)wgN~~OUs3PGz(!y zF3|*JX#M_%%gu+ZdBCLrNdO21;@l2(oxIprBE*o7i4snQ5Hg!BkJ?JqR@l_vRrgPJ zDEYiqGno#+JqU>^>(HgWy-vU0=^FwcoyDcEKYzsW55GB(!S+285VQTWc}p>%b)MLe z(g^NN)9Jc{Fp=wZYQqPxU!C@))N!{?I;4QhnPusnjDXP>3&pq{hqreK%nV1=!oL;B z1sD<~8;k`g?0Mas>#1rfV`puERdRNO7prt;+)e7!N!lXs0&N9WzWAKD-t=OKs8(oT zRsR*sR5Nj-Y-Wq96vG1#UHTS{o4vJaZe%$QiSqp3Zwae>xm)>}Gyh*s949g;@}bM| zgt`mP_3^}v;`YF$CQd+Omz;to{R!di^epbv@kKaXGP1t?_-XFvUoVet1lpa<~|qIcZWl9oiFXn_%FxA;X>{v9$Qo^H%H5}vqW z?KOXQ;O!+rFWGYOh4j2#5nmttL-QvTMt*IFU@2K7eM(7Y$R*x(&B7AhR~91q9@OC1 zS32BZQn zVAPfIqn)+z>zcsvDL=hWVlvuKyhk>?qPRbFt{0ymyn?@8eNr&?N$ZXJ&=QD~w`g%Y zYBb?6!vapTQMRLMSQzSNG}4=%o$+(r>x`PS5ZDK;2+`$YLw*-)2tgNWdLwW2RGQ}P z>2cK5grl=r;oodUifd%L>gwapQWkFUg~8~}lEx9S?&L`Q3KFIC4c??mO8=i1Y&zPt z(VZ>gK8k_xB9qvggUPdu=7R|@$&!DKpT+VxNhh_wndcKcK7qtOSRJ) z69J_tkquWuR>Qk_ix08(9KB>{F^1K8iaYv_1 z3GRd5fx&&ITDg%1ig1JeI>8~tJ7aU#*zZJ#1;C~^si32UctL>bg~0f9>p#d|B=i-a z;6vmLZHpV6?2_yh%@NukIF(C3*MtMrD%P$Va$Nbdke4Kv%}R{MwSEM!S0Sop)$QsV ze@ew!_LWy?TB~OK4?X@MS1X_GlkFuIP?n-nc*;T(V3_K{AfxIVuR-dfkyQC1PuFw; zan*UYdC=hs0W_M3dOfjr!B5B9L2r7UPf1L|4gRb_e5Y>PgQTJ_^T_JscvN$Ung(e3 zyTin4!!)3>HcBbbor=O{9EVmxi4Ygz?NudJRG~Z25mhEE*;kx%eb3p$pF>E6w-vg8 z`)kKjkw^^)y48{=2^>Sk-~PKD=`?+f%UBqGOzmfPvA4C9suW>4UOZZf0ik^oA>Zx_>$-j`RQ!mD#i?$SE( zyZ^b`WIqq}VT)H}Q{%CH*DHbJUkgrYst%Jjtt(mxvb%N?96*7c1RRm#ha54+J*Mw- zx!rnX6zsf$BGbj<-2*;usbLo;6P`WC$xix);Sw6>!`ni{XTQ^6xYF@n^67i6VwKue zT{#Eks_E02CX&?h z6UHCICKAgtG{~36$&rsdm)4`PYwh=9@ z;%n8fO4&EI`Bta~MN0(g4T@u!JvXzYQ2>Mbdf zv>#RslyOZ7XCB#`95DLWvHt)khC&nq2_Z%uU{cW}K@#WTH?Hsf> zkM}J6>PJ@x_aUTD;k?Y4$vng_;yG@eoa__!Ke(J{>&e3G&7;cf z@vQpEj-&CuO|Hmy8@?P{&Puh)F8rpP#TMN+xI(}>)PsPH^EEIZ*!nCflP}WLCi}p* z<}6DXygw$FdH2$Je&^&ZWALVBguV+8mYfssZ5{*IkQNnnD4cw|lSltBNF2@;PI_D4 z)8JWw)Imo|YLl^%!-bNdrGb3IwQDE%tz2FgT8P_rM9ZoCSQFHV3&9Ve%&;$yr8{Cq ztNFmDA3INRKB7{fWq$@LzEXbgX?dgf!pI zb|8%-ll1it8_ADbJicCKB@$!lK67NqO@#gnc_vY!^9&8sBGWYQ9R+rAKz*%13r@J(IRdeYRDu z!VULLWM(jQw(PW!rfmM6X2zErpiRnsjL8@zf#2aVd!|N0ItO^O>VUua8Q<2zIk9Ok%i%_>O=kXtbBA3p?DN5qB>e@@F#mnz%z{;BSiAH@wbZTw z0QvI)@){q9Ua0|oWrA^}1o~lJ#1Z|2NF0JCNDDk|St8pD>ujJN3FZ(@$4@kK(_7tDalF~nQ3ry>+ zo5sjhj?cR~_6XR(^nu2no6^)r)f69`TT(&pIj?cer5ebGo_lKw1vNQ2aNq-3e`f=PR{4V-s`|F^XEiN|EERZS-NPX zpIt+@a_WrD28)JrctvbU_M?V<&|(~~Rv;3}HrU99BC5!aA=}p_w-?><%v%?#Z$GE_ z_}wQK`%UYj0-IGqdy$WS78f@K=1j3)_(PgaL1)-E4ZprQiy89=4w#%Kn5az1=QX{f z8WWO{51BF1l435M06mk-z9DyCO;7)9Z>%oqRIRznFo(ofF;)v1jkk_+i{DgF z{hTIrI;ceqWR5iDR6XmL$@m@Jsp%Kc>o#x1LEQAu%VYPis@PG(Zf#e_EqPPf%|L9j zKux~+sjn`k-d!RiITAZ8Or(zTXepX_zP2vnM^z3Yz!)3+r@6nMc@6!yoNt)sP*1 zE2IgvB>$q?3 z&yiXN^TipPOZlYEEg+`7XL-FK1Hu8PAHQx``YE8llAe4%*E^*!_}1ua7b$aTZN$OU zyQ@som%^N1H*~RO6Fg^A0P^-vm$d?MOyIYgx~suMCCF)Xsi+2a{Sw@#U z(hTpP(@cm|Fkk|(PL%oCuvAm4e0x=~P>zI9aM;xsK7+!{+_UDC=M_J%j)5A?neG1Dp~R=7pt1Dz zDD9A!D04PDN6Z6aKjYuxfd(a$U)^e<8!Qv<`m4QNCL6`3Falj7oyr8A8@9W1k9t3* z#_nzLNX8KwuiLe7u9f^#kw$=;3=YQrpR8uv*$j=Nd@fH2WpvA-3ptwe{dH#W@ut81 zvpN(9U3Qk^3Q;{n@B3`Vug8XyhDnqq%$3`GQupB-gRg&QFcWYet03RtXP?@`yBvZ& z9D?e4|6j$o$2>s{N`7Hye!7^;50P`|br1rn9NNQny4I*gt||(Agoz8en2gWIG;iIg@fC1DOXY>UmQvLk)}J$&H5u zUNuY~NLOCzh+%BDr-s2(wO>1JC7%aHjMYjn{O`{0qh%1zOX(}XWU26!ur@!l65`7$ zk+Ykf%6ZrjzukVQuiha`_N>;a1{i6Z@KbAG5+hVyPZCRC9{t8wx$$;*_P|BZyp6O1 z7|sC=jv@%r_kw&EvW@$)YQHq8tIEN(TnlWD^N1)_hP{kRY6}a7hY@P>=zURnble6- zaqAR#dc`W`j^6ISscP;d40R~NO5q6b+8;dHLZ|4wVO+bedd6x4JBMsi`cno8`{?WR z+0BdEyu%mQu!-u|D}fHPxxM|GrSFuhq;oDNukl^ojV(7k?G|9Ej9i^8*i0KO}?}eij03m>Qh`z<;`nMCDdAohlvdOwx zP&!2S%$!F(RV?Ye^yN5P$1g>+m^)dVSxqB3QRzX%6mhD;TcgOxGyJIOipxSyQ|B$t z)U))A`Ye$cq%K+fi!tmyA{JlfzLU4Sd%Ayyz3?GD1NpoJekISzWP1Q~Zq=f6FehT< zM;i7K+lUi)bEBzJI%lQIKTW%Xz;sOjIh1(m&F$JGUSO~`pFGe>@I`jsRPE3GHw#MH z*ir3A(%U~NXoYfj`Y+OkEw?g`WIuyymmDH;J|OKuOgoaZr>7nR3k%X0-XHV*bH>W- zvc$S8dqmJdC9|&f?Ua6Crvo?yW^rKka~=jB{y{m}mQ;*Ya;dc99G zxxM)g6mh9TT035WKNQ-2ozbCHs9V6|B3ggoeinB~p6fJtOEfSeubY&e9HLW}{%HJg z%!}@K*q@oOk-|4?Bezn1N33n`WX%d$OnOP}(X!N1J7d_vwQ9Tm7nrUzN;+c>RMS!` zh<}U@bFC}tY$Ap6IT^U3Lj3)$hTIrfJjpf>>yl+&vvG@t{Fj^l_s7<2!sitgDBpOb z_^j))MX!2;Q?DEJ=H5cKh1c{tg7iyYj?ABUgC^1QND{PSW&sG+>Ro4QN3Kqu0!Z~N zf3EBPL)mIK8%O`Fy`bz%qi%mq5$oHJ%6dH$x>~noLpNL#rPOVkS`Vb{@Z+ARW(yNt zy&0?BB^L$J~WpWz0otTm10t^(p@!*22#F(A9MIOT;&m%=WI61F<8px-x5hc#^iBcz{%H z_T)SB{p}#7M3zL}EnqJ70H3#zlRDY^jw8Cmq-WN*85rEFu~Xf=$_=arEPOxadDjf6 zlKIJFK1O3|SbWBJQac?y)$t<|r8->s(^-S#{(QmkMg02aoMME25@eDJaN58(fAk3> zA({WjrOy{rl-=4PSU#ZSwJq)-hcxA2GX@o`$2Cvf<+{&{Mh}yl6KTCeL$MK=(U9K6 z+ef)CpJqvQRy3kh>6(jA_b;LWUC7Oi8Z$~bjeDz+`8jFIoszdJ%ny<`CX^m@)J1(5 zXjGd&6oxBl_#?|hZMOJ|JN*@WPLfUs=M={oUy7eTh^%xbem1?Nl)>M_5%E3iBX*kh zp!f`c{GYGGwbxo@Bi?6v=niUA`3qibX^79?`?WV)SIx8Ov`EMRVpE>ytxupt;)_Ip zQN?_Cn7YKT(2_PrIyITXlD`W?Z`gr+bA0NETv5v~8}+vSW!~NE!Y#A@gsw|LyJNE_ zULSE)G>5vCPl*bH5(ccL4b7I^NMcga^vSPRD8ts>W?2=yJsAC{pamZ#O4F~&{2b!So`Nb^=VF|Gibd+C(C{k#5%~S8kZj; z4G}}C^PVb%weAG(eps-}3X3(*PRWq6oK zb7RJg!*AfR#90ivfeCiUzcL0&=XyiSwUFKyf1l~9_5Mq0_c;j7epB_)+wa?4O?j9L zp_LkjjmY`CS+WwNAB90G+T-CB>blWu)D0MTsm?1!Cx!HX)9oTlNyKMa1RVb$n}uB#`m zrY2L(3G%;_K3CKl;<7f*yrq+dWe!{+207)t&+){c4TBN=16N%^hi=mErk-#^ihW>& ziE}n}su)z>$${%W`e5yO-pLNTsE>(-_x{BJ6u#aW`J3A1gbfT2Xih-`0r={PpDs>X zur2Ck;K(vyZsdF7u>@ha*AM*m?AYa$(Opm%7_S;dwyRbLWQWJ|@*k3fd>O5~zFAd` zN00pRPax@>l9b0*MEy*c+{pV%B{jMJDF$h}k3|T^>dN8AuPf=2TZqkt);Np0TEdG{ zLovU;s;$|C+cL&1YUOVnPFhxf)A|{q)`muE>EX%%~_{YC=mA0wD6HO@*5v#20s+g^ED=dpFmTyRI%4i z2Wg&Vx0*3!3kfkus};i{57e5$*QyfQqIpQ?yhnUnFsy!eNaZwnCS=$ zr$rBf#elGq2O2F}0&l++E$sf-C}xSDi{$SY+|FaDBM4UC z`J`dni>f05w>hoU?1}hH^T_gfXRh89{r>XwD^FCx?i#o@LTp}X=+#k&9^<5rQJvr` z#az3t>Z9Js0hGv1@nD>9GuZ*3$p9PB=$?4zE|#b~Bg(><4}n%0NKxDN_$THt7x9Y( zu~AX(Q{}cC$Wi$2{u^Ra|OVum?`ys+z(ne%#xq^^C*JZN; zrQ1cpcuR({P!V;JRx>N6;Tk}~DFb)SLOu$SGyK$-!EQVc^O!;rX4n~45=>tGPv*n| zlnSgtM-_a{i$$b>uc&^I7Y=nFsH@Ud^8VqIhi&!5_WKbQkV{}`Qp+o@D|C(ANfB_L z9{{b6kb&dL1$TA=%R~UeSrf3+8a|398NRuvVydA0^qX3Nb z;NRz6@50*;rrdj|{yD;`g0!Xi+HFc0_3vw`4-m7T#*;kQ_*zMZw7BX}A27PL#TCyp zL{;rM*lcy>(TmqKJ}rAq*{l02XIW#QK;3-~B4DIPJAA_fMvK^?Nl-(JF&c~c^E_jC zH%+5qSa>SAL`C2eGzI+lhbKz8&=H=%FVxXUn znsoVB63=FZm0elgdg2%II~VVIKf3?YR#)%RyLv}GCWVdq`LT3-od`_M0ry5f%{3u5Gku;m`Ye)3&Dvo~dCIWuV-O>dq-d#g1y-6Qe z>}>7C?5pj?7B*RCgeHB0N@4ZF+7pjNZyqf%kj39Nk1xbI8G+Zq@_GdBlWqC-GX>l) zt*Pi)+WMoEIx=l0st}L8bGfj!^fAK7gOirU}TiOUZ#ZFY^X z&*!h7zaMqn{5;}+r3S;O5ArvQ(Fr6F%4qgQqLEm&`DRK`rM>T%mj4gJ-a0I*unqSe zT0ubR4rwGD1StunySuwvx~4Ro|wmwU!Dg>s*-c;{3=beMNHZlW>H|FZzwcSf(eKGM}PGdS-WRMQEg) zVI>z{fiS=wwl=X`%>Vb@%^>dDMA%~>aY8cotxc1M5Kj3+OH45}_w+BpAC z)4Ysn4*z4w5iQ?njMSJ|gZ@9vN7Kar*Jo()8f2JHwFD`pz;yHX(8uHJ zLk+^vdZf<7q3#=QV#IuGG04R18OzMtSv{)#G8gsspno<1Nakiw+-5dhv`Y0&U|%PB zPiR}L)$rClr??nE(H2X`(au`a)_)kMi$e9_CINDd#>ulP!fwY8$6Tv z*Toy^JX3WCH7ga@^&wBEO$^-S#X;${42)uu;AoWHVtqjn4?-Qcsrq$|AIRz%Ky_SD z&|F==U7-;eH87a^Y1w5xveG}tUZcMeLF*lAW^?br?{%mK#X(yKEHC9n$yfMP5;CU+ z#q^^X?7!&Cd#$}Qf8j8272I2KYBsA9OY!>!&`(P6xrjDvbR71YSiS?HjRsu`@GJ#D z??83|is-AxwV0h99w6u3gCi#euV#k{Z8B`n6P`UMmb1}+TNSH;`5NS1z!fl^q4d z#FiDDIP8V?y~#`$CWUM^e0+J=%FnFauCAulkV{ehJ<90+XHMC)$e_M<2L4gXavO1C6iEkjDhb~^ta&Fy2Thojyxj;a8W%jNIexE9z zR_-0ocm-jLCFw^dmBrY6YbVj(KImuhDb-R7suYCLGEJn!Prr0B6EVf#2 zolFlmk|dn8XmX56zhRVBzwjAIBHBqi6K8CRX1Ej9K}in#C%AL&@!cS8d9CEC*v7Eb zg(=_A&|S>xvb_D_fms*fO_A1ZItIxp7IY*HgU5weXHZQG3NHUz5x#EO;QXzu5NyUa zH{ahu7p@ps5Y>t5yzuBxj)hqW0U$0il9R5T%|Jw z0fu_`@uB`ahZ_BApdTD47l+I{K?}TXV83aU(wNOMK?kG2SG^{R!mG!G%5vEZBcFR$ zvf=Mf-~Q!*p5!d{Ec;xp%?6V}TSWu25uv{j(jJNm!@;?Y72@J5*uCsDep@eRw6OC;lGH^f8TSW#;9UMf(mu@aVxd`L zRxeQP34ywvuU|v@u;ISc#Ex7}x5AT8gjl}5qb@PN6QAaML%j~C5e>Fbr2n(nze7S& zs3DWs<|eMLj(rc}|Fy%0(|WnmMW0ySWZ<~6{?kQUTtOfi5^ZF^Za7?T^F?&F1ee82ywo+s3pv zM-U?VPuQzM~weO$^i7 zLZ5A3!RF6%J=@u3P=F{)pZ2U-zx?}89(#OTT{O2*@g+(F7lQBFgiq)&092revzoA$ zu&9Q*KM`KD1akfdE=w&zqgBSj=K@NcOx_t}xW12te?7m|sK?LJBRv>&P&7p#w&z!Q zv_PK3{ODGu;F4b&m?j8&b=65#ARckQj0toTo2W&@jVmhxl0$Rwm0`3 z(oK4+I23RGI*!T=+N~+V9c#CkYkBXI*LzX|DNg9MF){n0L*IqJpIta`97-C+t#nC^ zHM69kV?SnmALyooyye4z7?bLQ zLb{3RYy9S6C8IEdM8K1?IN)P95O{+=52{L4EcHu6i}(;+wGkqX@S8vr_H*JmqI5`t z`&l$*ZY`(2(>~&D;Y|f=&svDkI~M(HD$4j-g>#anC#Eo3_8k9MHd|^|R)YmA*UCOk zu^;m|O2@Pd6xOjhE|xboFSkj5?e9Fk?o{Fd+;ez;?$)srmCl; zE;uoB%Jd5}Qv78SZ+RPaX0$x<3;0+tRzf)I)C?iNm;y*Rl-wHd&6LW>WzajcLAE`_ ziDzYss|zZHFl-e_X*VXU@-*QI>WO=lL8_6x8TlUgCH?AdNFj%>lQc0MHr#7$9?Vg0 z-EVqCcU!IL?jncJ32g4KgBz!#SE8FXY5BOC)iNg@yc}e}3RE^_z3W)eO!7f$u>Cf4nAg6chxc7#hr7VX=RrN|o#Je?v`uhlkNeVVy*o=^_wx0*xSRv6!tU!r3QBHy zO$8Bt-?KR6Y)=KJ)svs}&y^kdq2_nBtyI? zR#HzZ(eszA;im2)j5MAkL+=&q3Dn)!$#4vqTz}ZJDY*+{ID?lBVDgznPJw?uXX2wI zl{>G<>x^@}(UV3`zlr+k+T5hi=CtJxtTMr6T%hbW%@JS`lUFrG)LzD7;g(eupRrvF zUwM<=M#vm#)NeVsCA&UmzclMNNj}MxBUTb@O%#iH_&n7;!?q9& z-NnFIyUnj^@YIJZT*W=dsX1S|`r6#6oa@1f7VwO^&5U0KUt6EC3SKks?Q&Z2vqU9t zlutT~!Pj3MVJ11aUa~);xcDY3KcYO2qh{o<>-)uHUL2^o*T8j6LT2Ar*Vd958Xji0 zi6<`~nf`+}!P@Ba{J(Rxqd`|NDIpDD^Hl(|oF-qa7D|lc=f6{LtQrP0c-4D|U``9<%X4E@$cdxp1@mDf$u`<2KdFpg1{QFaS$DqSPC^y`yk=v?M z5q)UGR({p4o`?7(c!N78x$27OYcIhIT!=hkO@4so&Yt!C*C)r?m>Zj@;*nqo46Dz6 zmpYtJT{G#A6lyqiM0O0tT@~mdh?}BSVyXn71pq4Sz2FBq`T@xn`&r9ADNi5N_uTZd zJIo%7$ZN*3G(~G)+kK>djKgmTFEPq=dmn0U zoA>e=Ah*}2@-gq+j>_vvvzxYY)2om|t>g!fTnbX77_?&#&PS9hddG{&U^oqWGuq6( z8%;QX{W&Xz`L$A?_k4PLPl_G&nCB^5{Kr}d2NIWc{U4FGb_nwXewyIH;Bn1E!oTlv z#p+Dh=%TTqADwo-c?TA2{|FmjQiYDXYdrCy7MU9Eny{e5=?E)=^jH4| z7PaH}{yJYw{1rez>{m$rjilS#T4jB!2uFG}fS^XMQ40FGF?8J=G(Ns(UWLQ zwGa;fP%=jXnt$;Ae4aa0!zhq6$w=n80BC1v7Uq;OA%~e1Q-Eoke}0YfgXss^6xG}##HaOiR0Nrg-u~;v_Q~CYGNKnwteCst=0DRqqE|jvIdo)59Wtt6 zb(FzZapy?Z+dnQS@xgmI01&u~)S*#k#ITS=H1=Ur_6Zu`l8baSrmwe z9nSY`FBU5sCjM(0SSGCarZR_H-m2kkr9B)&%7o$k8^!+aePWePfUUNyftSL#G4ioD z16s^Vh1k%3B}1XS7H0xA#9>Cq9cFep_9zmfuyiwk;N4h4Ma`Ebwf)%7%Y09t0sM2N zTRtaI5yhGKX2^Z5wFMvq$@yydz<@{@6ioJ`D-07@ex@-Xo|HP=wm|WAJdd#MzzquQbmqz!$ za(QTw;gG@)XC!N5c3u$-%yx>Mkdl0c-v#9UvTL$fnp^qjZ2u$yzu6@{^2;89!)t!$ zTEA>#x8ELsLIg8|(uBO@({EI~lLgi0nTw4@)YBek46C#cHeNAipSmxWTUIgb2%EHv z?W?In$uAx`hLsv!J$jD#N zz)Zhjb~jm2L}tzIJF?Vupz5hR{LS*kOSKp2lHJ51QYpMM{$F3(Xgslgfv(_M$h0qz zvTd1YkYQopZ2(e#pu)0Kb%CXj;b=kd^H$b?wD{+MWa;`k-i7Zaj6@N!R_@X=S)rl5 z6)?XQ5j+sEJ^!l3hVWmD(*0OekeRz(wfd?j?EX(J$~D*CwzV;XL5hFxGCpJV@1+^` z97OF@TwqT_^|g-A32*8@lWYIE$4X@Cwl{{ZIc_R97fM}!qF-^U&p=!C6a>o2^_eIGQv;y zd)>cGD8aDT=lJi}E!IM}EHFeDty!TM%BCMoS&JS`Cmkx*kM?cKK6mwz+yBQc@&2z{ zLhb)-1v((Raa=pNApgR10~q*5IBK;h3m_EfhmdIHu9I=FGoz~0!z$5I^T3c5QyxrU7_;e>_ZCSnv#2#r^^}In|fT)qofCWKlwa zWe8r}#FMxBnf~KUx^?Ewsm6j$iBsa<)p(tKY-rF>HPkM>ko9{+G=GZFfjEF|)+JW6 zMAORljh?%NqXnceMO=5n-AO1nGJb5j;&YwfXJxEE>;?@C94p}sAxk_6S3%pHy<=!T z3C(NS@Y}=W z%QJMZRSkkiySo-mkVUm@p-95|jTB&~$f7Mv(jo;^CH5y|&l zeO&mMF6mjV(u3FLZkw^s{`@Ss2=S0?XvvZh3dobPO(y&X#W~}wDl58z(Q8;V%s704 z6b_s{e3g;!P~q!8sQMk4qJ34u%lfqc?e7d`!`pTdGQO`EnZwWXB6W>od+xi=2a$vS_Ar0iKgn;$_G;JpM4VZ` zz8jg`ShI?ScI?AX!W_4uG+xr*y9V#$SySjgEFVR%Q&NH$0vX4n0vTTBMMjqzRPpMP~0lP#k-dOY9Nhoyp*Jo zo!m=}u)ia#VpZP%{#*_H%-9r^g*zzIoo>zp>{ zj7~qge78~XsQ8LUHbXBq1DI=eNZDjT zke7>iZ2_l$QHp=Ym(oDUVmOeouu^57CX)*gAy?)1x~yCojA_j4mKPIvz(7KO{Ke9> z6xQiI@vDv{k4Bh-Jc11{MT-X>s`0SpIOx18VBFNDAS`_O6({J677YEj zbk=#~7Pk_SCCqzQDPmG$?8U>P@0IGKXQIF4_RYXBM(tv@bob6Q)9A4b8ocK27XpwXqF8?GH* zzp||edrre<^Tl@nIfP{oI+OeSXRoHA(HwWOf>*Jg1(#r9*!FXX3Y5E4*5#H2_B-N? z;7yJm5k8&XuB-S{ckB9EPH!lJp=W1{zR&$@5Hg10TVvD<*3Nw1O`SBLckHBi&STzJyqz z{0b2}>dJ4MRX=4ifi zu#bhXu!B1X@G({yK%Ia*)R20993Gm7lFhPci|So0e&xkIM$5tWsnQuult}0{K0ky;5)?*wo z#~lx+I7>#$7cq-IlLq{e>_U~b>BQl@oK_N?ih5~Io4%;AMi{;wlGdX?22M z=B+$cN1veZL(d#goyjMKdafJQU}_*B=ovs4)CM|ja<{%D7Y-76Rhph5NaG)hK_NUOAq`0CyUR4 zE+`(h5Z#T6SiY@vJadYb=CNbPgdIt5P-*n$VZD+M=O#>V^;T8+E^Is`94U;EU~5qo zIcY!vqC4?CyFLy@?JBI#i~SO)Te<+hsuu?-B2o0BWlu)xe!P=VRBzHE)f~#Bn}5sV zG0P*PUA1BxEl=U=uGhsq4+_XmGXjWm<{8V@!Yyi#1d#rJm63s?lh?s}c|$U9<6X>_ z%F(M#i-*TbiaBxZ{@Q-eGwRaLw@WA>BlUCPMTn%02aLwyX3KLVlx!|!x>Cbs9zccJ z7;?x*iGd6XUD9||;#HlY`+Y)7kKx$>Nqcs7ag`l?!d%t6)2(zF?j4V`I-l)Vt7o>k z6D_z<%i7q8Sr-|85m->LgSjDT7vh+I6D@y|SE?L&eRI7$cK?Gs>X+;Yc^;seR;XX@ zH$Xzrv(nQVwwcf8{5lahosc-8$H#upk-ov2B7N1=dnughx>8e>_W8HD7HEN#X84d$3r- zH<-Xmfvl@Dn>+K{>)?Cr!Zlo0l})T+-V!OOr^SuEEmZdHzqTR2@n=h+|0wYPGvyne zI7p%YlNi4>=v-$I8e=tqGVs%;^9Wvag}KD>2+rd^fHr^=d)U-|5E+&plCWfBetfd+ z6w3#X&Zam*th?~S3hH!y{vNW@fI+yd-FszOEAjEceT{ZolCgr=n84>a+IC?TmAh?P z!;8gQ(zhiPTovF4T@zu?8*d;LC;ZiMT+D(EmE3Vpc17M{U7x5PuM zs|ND^8U3L^@?-=ccXsoaV8y(@MorFODd=F&NGc!FJ>-(7&Eb7>fr(z^9|19Fm?CEr zO@5spdf4TNnj22uBTgupSJk?Yv)l~cWY*#%6Yuw))Ht3Bc3^gB4ftcSfAu(s)04Ny zU5L5U^gE1nBX6)nzO%Vu&fsWVXJr$4hP^MYuk4XX|L&*Gk_ct_gN>$0!E+|wYVdgW zJTZVm-fbDN9UGZE%SO4CkBNPY>2Jo0TXqX3D^GgiIRp59uSU}H24!Z9{r)G69zAXx zVHw#;*Y&D~#n~Hpa{E5a z+VTo9re3zq<%7ORtB$1EkJ7k)Y98>>cDnV{0J?*#kAwI?w36@ezNqsEkF=*LuPE-j z1SB8-xtdmbtu5+oBTa+YM}KFbV0;w4(-^5g8=z;0;|LX7K25P^Bl0+0YCi0~VocXp z=}mb;Bx@MoF(^bRK9PJwFWyB1M4JVg%jY2UXI%=D?40~S>B|~x4|hyaa;X=69MkWl zc=%F*Z0gKm{nlXkv0%hQ4{Lw)&r*Jk_`?UJ*N7s0n}w)rs{up(p*rh=mg%32Mk=Ho zST+Nj4U=VeKRmvzmWD455p=m8-4I?h_NuhgF*lBm(<$#8kP`a5l-rB^`*6`|9vnb#spp zIgfBhikGDwXh;KW?oa%+&#Y>C>-_!!Duwxmk0B&ADEVD62q)Z z6_c4aqR?UsMh!b{F_L7TJp!*Ma$Tq$IExe2#|0OTmT4hg=FP^M;Y$NxYfA1FyqZ1d zNpb>z~Kt_vd+E_wo#f!nYLmc;9^NMgWI|H1lDc<`%>Pkjr|!n2Oh!nh*$Z=J+;=XM8J z2<_~$+^Q5XvZpNQ!i)9+ya_Sm1|uCOa+V50s`R{ap)=Nmi7IkX9!C1@9&?DWzyN;M zmDA74K}qTW5`YoaXWO!+nn#t+X?WlCiFV zdW*qyiD;C~E~b=WzJ80m4ojqcMM~C@Rchums@}3e8`6_-v`98dR>zqWf7thLO$TE2 zNC%i}r`XJu29R1#2H&)KTWu(}lozHlDX^1_|@c&=%{!|SCa%6sC3cScxpcEbhV zO9!QFirR3JN@sPA7BiUH4s;W`g}qVFoXkQPj%qgW=qfeTEG!Wzu!RL*V}x_h4a!XR zetN8Oz9@IMBg@nyfdq3XojzNVztrXt@27{rZMI7stAnAMZ_|Ck8l3-E8Nved9{ zTt~9(kurWEtz+ulw&BEo52=SFt0}3-k>QLwR(FV}++Bfr?v9IogiL5-L$7P51XNRdbts&9;F^9&Twq; zR7#=t=Zt)%?$_=9aiO5}qNA;ktO(~i0OXCZHP1Q*oSf==I@boBv3W=B>o#jsSXjmpX4t$hs9|%IY zjOXKB4<5<@()JuD<{b*3o{@Xv{#=Q4N4eBGXMVRfsDj^Z5e-(*%zdd67f`GjjfC`a`fG2lYBMZv2R_fFVF*bO7hO@ zrg%vK#@^`u0sEWJfOlN+6Xs|}4F-YT)_;ADo1~wPzIimB9R%;i!?}$_EUcH!WP=wr zn+R80Uz?u<58PPA`W@|^EgVv*Sou7|?v%pcXl^H=1^;yfmS}sZSxxR=o6-@cT7B#*&{W6P(d@E(7q&bc*}=;$65*e=eH z0xwdr8p&)gH&yJXxvl#dWS<*g`WP6n-j>DxFkDT8)ZM25B7h&u;sSJ;;8hf`MmRzj z#pTyD;)L|#%I4L*cdZ*@LR;K|!K1`kdBB9Z3>?)->tN$8uPD7mpK>PLZl`XVjM!^D zPtu=nwMh|YF;Ma>{${IjAa-zb%vG2|pv?GL)s4PMZmIfvu2P6X-s%^bO2#JKgN6dX{>Mh7qV5+1X#>)HWs%ShDF zB#SIGuUZA@|{ugxIT(Ma~E}(o=+SC5=JVF09;srHY;PJ>g>| zoIti5gxPh1KSraobwRk;+{_?Jf? zd_c@VlbJhFZcr6S%sur9uuVJjh12}l>gRvowI6#frEf(pOCh(yP;-YRC0bm^&F)veyi0_7GsQ`lrOUtl^iTYMIMj zM_oRw2>qCkp_{L|MsY{vZm)!^35adIFzIY(ah@})B`Mwi)4gT?4Y5FAxL0Z#S)w%? zGCpq+tt7CZH~@&~O-ZxkZj#pqwZZ0#q0J$+tKd$ZDsaaku;In!s}!S!Zk`c=n!Uax z!^2TpqyG>wl?;oSAqFzXSFe< zQBDvCmNYG(+-fuyM7KUFKXoD=6h3Sjj=M=fX-jA0%BUbXaP=jsYbJq%tcTr}-*S6K z%W?>oRMRJ|(FL*}cWc9B1Jm(uDxELPLO|oD5pT@ji_&*ZxM&X#?p;`bi)ia92q+Ec zk8U8rCP6`Ao|U#W={aq)+6Lanw+k{>uz-3W%WLZjcbZw+x1)YIucCc)0?5`Dq^Cx& zBM{uP9m6#_*HyYk?CmDe*c5>tqeH)NtXgoiwU2qTIpU3>La}n{Vu%y1oFi^V`sqit zXpLz1ljh5RmQXvS#CnDSQl{CXDn-`$z}f&m7r2817{1Pb$<%BJK)~QbeMWrGs$wn* zD^QM8C$9zI>E{aR?KRMvBZt85?d+C2m-zFBmN3oEyIG?b$%voPp`=4!^)CFG2X%lA z8h2V_o%#a>^ISoxG!e8xBm#FoUI4~?qIaZ&*g0Qkjz1Y$NId*;Q~i4Ts|W2(#!lki zL<-}xa<^5YHP3V>I>(-q{-gWean_fz(*gcVX#}`ML4&D6J*wtO)4gXza{v6WX?11Q z=)S&`qf78vPnJaFI>Rm{YB_Ttzfr^cf3xVsd4WgV2`@1xSWGl0qb@KEh$+axEEANG z;%HsZdWF1}*DZ0xD%ph35dn5nIgqIA=7txl54i+$sEnvyT1tn^=$IS@vq1`V=f!>Jr%b`epRcNhW@N##$#$K2>sL8t*I zGC$hk+Y84|`glMn-`L|9%%n0*@#o5;v4z@q7Yl#roPg&~xU@mENk;N8)%Z7`8^uTH zzFRaEiRwO4V_pfDD7aaW=@Q*kG-U^csZG@TfNtOFmuB!@FoeXEY%9z^Xv+?a(Vtw6{nVrI!Umkt$}65nsj*o7IHGZ6TFalQ>H2TND#LOr zdTGkAJ%p7xFC|+Pm*)Jjo4nqsSeB@2|AQPZ6+N5^#Z?3w2W+CKm zmT`Y9+Us`9iLXYSn_KR_$lm?=;K$Pu9BzxYwch6c;9@I&JB22QeQFD^*F(TA?uYbZ zomYaWiehe5qRID1Bu&}7%)@~{UXIg2YVqlQE&L9kaGH^sANZ}qRS)9KSh@!nwYWCC zJE-bD+rIhJDwMleZd2>E^X34hMgEHVXOeu2qMFlS`@$+y2&fCoMg|D!WNP9T1U5DG z#k;^G>7M=lUpAooFpb~PftUM3L~=}lf976NX27(hrv4@@B~fP7!Iwu$8TCQI!=V2N zheo5PD)^_C9EFbT&eBP89|$C-QT(z3+|Xr59ERs#aN_K}TOe{*0#lelT3u9MqP!i9 zH|z7$B8NX-5!&vjed?v+f&S%$>CFkv4K^Ir)SV`H5Cm{^;;m-`M2w4AZxS42l*#%{ z%-3vIcNp^R zg1vZFx8r!W;NWzY%Oj$V zQlIf7gP-{X|E4NL@%q|C*^x`ZAO|=R-*IUQ2D+WFXSiG+iW4GY`_6CTyz7%1iu*uL zN^^+=4$%|Va_>s>7~Avr8J?`sJeFP!p1I8)HCIxo_zmNT@+J-D^-K4s{Wf6#GyZiZ zz*6-$Re$tb_Bx}i*t;1lXHnJ-% zdXGGD48tR)d?pihjrUwEF}rY~2IMoY>TKGl1`eMGy^hPYGOM+cEuycim~C{f>}MU8 z1^=%-=)aJ7eYwTCc&+{aqzvvaYY<8!V@MtJqO=EMU1y$b>0+@|A!zXSLoY;wiYDbR zWns&?9oB|V`%kDTG4;>5t|@0cHJ)}?UeU!l*3D1tFbX1cmyZ zX@8Hd9!YS>bu=&``f5JgH4Xz;qCAEy-$&&QVSX0Nti2UA_F?GFcy8*n1PO(>B3k{M z`fXUg5JvqF!@a*fL!6}xiixxp2MOEQw zP`q(YUuh*UR^{_D>oTr}_ZyTw#B_gxZ|mNAe)u(XxrB*b4cctVf5}rqo<$O`>E|<9 z(qK;Zo6fU4?#nKCpmHf0&tue+)a|o%BZ40{3X;FCBFGVwJUg~`cqbNS^(=<3MjGhA z?iUb<67@S&dZ-+G{)Gde%1CiH*=~Pq@FLQE&2kp6ea>_@+`Qq3DU_5t3k`#X9jfha zS@yv_aI;z*?AY+%FQBByTs-l4f8^6LXu8P-INhx4MBbGs_5BXC6WP>-v4LA5B1ysMF(MB4KsshbdOfhAIGh4(qeME+76?| z%PqN6B$&KH&CoW{#_mYZaZX>eMO+Zz)H5|Z_P6y1LqostcI}4huJ=WIfK%U$NF%&q zq773L&-V_Vsuon@F%t6e=VokJ8e>mNBhn7aR}TDECG3dZ6soNr4w3491WOI(Avl%G zH9+~@Yy`BfK(>ntd1+WP*pwUEN@=_3a~6Q?UYSD%oq0hdt2l>wVZX=UJOrxCEM>Lu(4I^-Kj$t_TNrMT~WNt4a3l_Ja_N> zZoL-lc&-KdZd!PcWeoeYYxQsb!s1IP@hX+E&f>w!oWew;W--N;`18eJ=SQ=nY8E-R z41&(`a|HNm-RZqwI>efK#|STq$jp370%bD#Vz5_KPg4P{hHTdrIhR-JA*6AmW;HA+2tBuTfTJXBq0NDB8DxXh2>QE2Zc{hDX=2E0Y2;VAQR&rWgFs5bLfFB5`XV(B_m z+o5$s$v4)Yvf9*01q)8fpH{;MZAgF9YDNkQ0zS&7>cFf?SaYM^+wmn-6QmfAeo`@P z8X<=cXt3la^w*7ZlE$`V8qJT78D>fb*X<)SHAuIw;s{}`SQpW#QxZeWl=0IhES1*B zcTmm1nSIs5hQv1M3qEh+a&L3sUoX-P0dy+5 zkala;QEhO9X3>){xfYYIR`;*#0Fkt)}j_$RimbcLf9K1(%Ybi%S;XxaPH$`r4i(sN*+Sjlw(X@FJ(v>!AG{T1bm#XHgs z)NN-OFR=aSg0^AU57md$kp-JXubH@`FaH6z|65}~u>8N+5`n*=h=tMB#wh7K$oL#d z*RoXEO!-xQbCCw{=*jVOetH=$r4xzESct@YE`Bqy!9gEC$$_-zWInj&Fj|K#u7eGt zy>GxU0idt3J_Y7=en`Owh!Q$O2J6d1u zn#x21xa$n5#K}t2BK0anYNAVnYM9OO&=`Ft{?%r>{Cr2H=TIP9sv)JaEli0xa{t5Vp@%$S1xGiWGrg!*8ZyWGB z&C4<&Ypp#o^cg;b$J-Y-MVP-Ic1@H?ueP9;e0hGlmn&60K zbnPhyUf>FBu16re=a0k}CPMfB<+ro^`<^M>P@JFrG^?;kKkRm^$si7$zeQT$`Tsj> z8eQu&(re!pgh?_GYin&`GO649p%cv+H1@VDG+Cv7~i`4Rtu9*R~j zFQFA7e;B1ex_BLjUtZX`#TAG~NOMj;*9#}2SsG#kD3~`wYLYZ^87v$guB~g*zvRa2 zV@)m0L=-F^*8o0+u7cB2K4h@qsTbUYGRotlljYr4MqTU!Q=(stWmXSdtR7clPyC?v z&v(3b@{M}TYTf@NY7!#_0=SwPL}*_++K}c$+$*K*Q404uYV?sNYXF7PS=*5~c8B%B z2|)}=0=?1Hgp#jpKfAJucpn!!8$2e`G>qOM^tj~7lQ8p9XPf{bBvW=L`DEmL9{l^= z{oqCQLy{rpR!(ey=jL^9Mm-V^@jheCUa3R8G4FaIsBKJGPHsfGW9%oga+1;oBP$;@ zmODGV`VuEBQqWmKDlxRuWS+Jtm{JqY!s zYa#dD7CkM0ImN+#1(z{pZnlAbu}w;9fGQ*v{N)g+`9C!lHLVyhnar3?*G-4wwsTn}s2Ln+kbHBIssb zuOTFLnfd3Ctj5J`jvNMYIg8cpigjy=$R5l~r?+Dh$3b`X2}^%NPC z#>I>So~#;NNm8*8KcZWB$uY9(VC+fZ5HKBS9^K_nhYvK^wyKPQnnGFhTn{|^3&|hjx$=lmX`Sea zk5?{(x3{29Ej7z%wfi6AeCya*wL8vn{lA5zs`r(z;{JC>TgxvE=Jz@Ij*Vd*-?7P# zQUu90JTA5S`0)(GKTVnLf24duZyDO7cpe$x zjtrfJUmJ&t`#DvMKpd?K|L+utz{?_*5-*4xXU9XDZ|qDlI$EMk$qc${zaA?O#Q zeSmk?mpop@E>9y*9AMZ`-)4jM7xR*zLqoNbVk$;S-^IV5F$6W`B*?!Y)ZQz@R{r=H zG>jI@mL7&$V$Zj2EN!$bpo|3Y za)0GC!cVw~q2u*hx(E1W)}n^6CjBwLJ`~Sn{3_Pl<|elT{58xXhKd*;ZwMXm@$y<> zG_$s1U!BPW?V_jTrW5y6qX+W)aJY;kFl+Y%-_6K&OpivB|F=NfvN`$qh6U54W}&u- zGMeX*_g%w1yA9_}_4$%K*5t%*vBb}wfX7=91m!eI4M5N5si$+F%>-7ump4I`;ZQ#S zmxM8z#X#}4O{i=8MTl0(-OcFTX#U{r)`>-oF0Im5z~kn_SZ~iJh9!b-!wZMg+D~&vduFbn;W6?NaXQq z^H1Iz+O609Nm;HT=U zMf{R3)Gr9K#evfmU0ijb%`hqJP!R0aTt23vf1$MKa~5}!-*}ht>?zD{2HEm+-W#5d zO&i)@2AgucN7x-T$U|R#vV8S3oi;%J1rCJWUpFEzObynV>~VyOA1bgPe-yp_Nu*FU z>t6ziS!KW}sS2)KajUG6NIWkrQhInj(Hir> z&MAi@t5|$v8=E^5z}l3Uxa`(YmM7e=`}0~;rs_rnVV949RAK=p-vddiFFBLZ&-Z2g zqyyUF^_QTO?(l2cmK>%?<@Hw3#&u^60`FMTHr6HIcWeM!{tfN;_{r=_=09}p*}!pe z3_J^hiccOSB)Zr~HK73Xbb(2__on=T7$ZL7BtD?}`zl0iPsPZlH5bj}G=9S3p#HQR zK`>HWWxYYuKt6fXXnP(JIy-?@*8-FEU*ipYo0egc((qjot*y&qABItC9vA8t3s4hh zH#I*C|L`t+$sdoXk*?kMv&rPm7JnhvpgkCrF-H12s%9``TAnWgL9V^>_?!hvYiC0W z6x57d%ZFQX>x>Pql_8%~r*uBwX<%K)Ug)a$*jCjV;@N0KDQr9PxQ2yrCMZ^w1g<4X zm*BhQ&xS13-iAnh)2offOvn&aoIPn~IP-m5BE$k`S;XojU19dnO||Kv2yhF9upV3- z=4#o^#A7wITA=KkeOFE`=^Gkqa{qHn)i4n>dcKK$1@2uX%$$AA>2W2^ad2@e`6YR0MOm^;EfiAKMP ze~nbNpB$t)D+@Fe{lLW)>zyfqnislc+jQ|3)jHHxH1~S&hY|k6T-;YXe*1k{??pn5bpVIWnpcY(jDGPar5#$1|CeCrLug1E}AI^`9{&4_X6ALn3~C(B$!Q^Xs~ z_MpE**1k4KL zK|e*9Cg`Q6XKO^9yl7^~}Spxccg-FUmwrcxwwKu|TRdJ1`pnDL*Ab{h97Q zR3FvHY5H~Y{wtCB#!{Av|G;eDGpxG?5O6s0+zyg1b_po;Roc2Ac~RlLN|RJ5C%a1f z^#AH8|CbA?FWtQFqBgLCB1J6Alg{kDrL+i@EvLVkpZmTT*-vJGRBmn6=OOlu7i?ReA!)ZPsc{3mh|Yo(KH|PiJ-@4#>RXr%pN_V zE$;?HO2~4My`XXtYBK%8k$^NKbCdE(>|rgXD*>ufFo(nIT)PES<#kI0;Z6U(`w-6U_n#~?kjB47`)|=Ij?~6)SuqC22G74}wg*&8 zjyn>qaiPnJ6e@S`Fs8+=*O}l}$D?<>Zu-Jg^MO}iJEy&Yu9VD3o>dJHK45T01JZf-sSp|p+T9lxsxV}>u zS&T@_8?Qi$>Ru!G*#Nm5rE>xJB%w^QCOD8r)XPIW5_1*Y|CQN4MG+ZYf19;UUeWNW zA_mpAWN!MYBbHa_c>pR}Ey{V*Z+Q4u80T}A+hqLoljD%S3Jqu)q^O6XpF#SE^K3l8 z(O0&5;K@;}rTgBO>{W#wI!e(T?`OQz05pk1s*x&djv`8BRd%~UK!2!mTyGj>wX~+b zYYnoqS={yyXJz;y;thq(5>7tY(tC9gvmvJZ#B?UH6>^6{8#rW9z=0qn6`}q8K%2zV z*f)4-qvl{MSt_b7QAYZYAC)bcV`mwk6w{E~a;aya={R{=JMzFAf(R|6*|Tsm~v4~T=fH~58N_>GycPFF4SuJP1&NOioxOjeQ8aF#QexcI-nigFf)zlA#%+Z3V zx8b1quZNuVhj$6P2E#_~n&59pj!KF`hpE>Cfl$36eYt?J7@ZYK>4bGXdzGPm1rg8V%AJ6~D69w}`8GQWb; z6a%SSc+&irR^y0pp|hx*)a*1<8OEK1P9fcL$_*~odqKs%*qlD6!w*!maeT&?{QG9ZSi@7!It7s(f^n%}*Hnup3zMO5XfZ)4DLzmHY?Inon3oWLLniF%g{ zZXZfV*`3OA+ucUNKk2fH;<2r#>uG=)m$NpErwVeC?kBYM1fG7oM`YOj@kpk8vrI|y zf5Bvm`)|>#RFakPX}8~$nQwWvpQ3_X$~j}YsU6mliBLeY0K9=Hft}2wMkJf+Q2bZ2 zhG`vF>bU!v;K7aG*#n}$QYrp}KWjH=>BVzXQreq{!gmL%UGQ}mw;cN?aS>$e>hLyY zH-G$cyT(1an8J2NVM`7_lO0^7iJ+!c9FO6EmhI&2eyDO68d<}!Z0o!U zJ^8lTL#Pohlk$nMBN9K9>^pKw*Sv|Isp9(FWbSKzbbI3fZIX*9+8MbE-bn5GpN6vN z?$YnN7SvHP&<^S@2OTBM(^$Tn{JoOn`-^tF-@4%W*N>bK=_qIoL&^Fnlp=srr|fR0 z4b*~qLE0W)mezpL%BPFVV%KvpkMYMGRfp5R@jytaTP>!rV^1+V(x%`zovMHmTu%)r z?yQn=+~{9o@veoW0l6_`PegEaQd(LGfeG_NK8l1@Yk?4MbSOnxB-9hEr(d7f9f&P` z&+V!huac~7T4hVoGgZWw#1zXKpWQsD-7TWUQAXvI-K?*pPC?_Ho&r#v;6;qnN<`GX zsyf#_3od+d;&Ye-{WSl5h!D;aq7?0rGQJ&f(2QW_qO$?LLs>fYZ1Xz{RBpj!aA_T&OZ1Vb4xyJi+OxA34-qv53up*~AV`^`I_fx+ z1Dl$(Y?K@wpENZjiF)W)lO_s-2oh7ti?ikzEG7xUQYnk73Us%kagGYMP^z4t$|>B^ z)D-gqbtGigrz(j{`@f;*vpaF{#f8yi5Lw{cLjSta6j4Pr*!k9L3z@tpkeJB+cDP?v zf}u^M;dT|sUw&9djyeA!@T9c`EPKy#fm<}qhvD`9$A|I55Ugz^qN=c}P$;4K9%$l^ zl+cRj;2LR2hRxTzU#GljVigErUH@q4Z>osh#keu~`0#jzSl72t?b1})xb|*lGq0kv zDsW$~vEcI^pPChZ8AIUVyw+s4&<>AbiVR;=@XUDXf0op!?TP6~x}?|(J*n9lZUITz z$S+KID-Lm1 z4+lz1$;1a4`^Pehmx9wl1WGR0P7#;n1I^2DL)0?~<2^8h-K*z=PWvebzRNt?xLy8a z2#H2YX1fNFm|4Pvzs{dq;j6mZd~KTQHDBe z%^a4a`>f9{8$D&=1iFI+55O{*1>;znV1ce$l)`L7HT!%6v!yx5#Lk+DV#InGJOO z&5gW+^BNeLcRF{E+U>?c6XPZ=cIvlL2%1yg$3E>4j=9G_UQW09rgWWmlCVDCkKD5o zH@{dJG~4!ifBOG&2W!7L|NlLQDRvH80kBiBYKJc;u5$Ys(IoUcnMiE8L=PMz@h=MS zYg1&_1Mw$>t@sNdO|{Wc8ofae(foDcl_GfYc{cFcn9WoMvRqo%@Jnh25e$V)Olu*+ zK1B8`_9Y02%mx`$XNzpv=D;qc^IoMxRXIHxK!U)*w6>sI6eTroH59>9TRKyNDC0gE z7UL~kCIVV^v*D$o z^K|GgHjAr##f9Okw#&jL93f*Qg$Hia8KUItqBtVFDGeRcOXhvjhdO;<7zU%rUj(R} zz_$%~ZfOY0W*}ssC2Q-UC4u#z7QmE=52ia7E@MX1E*oONC)FUvT(t`_+x5=jZBMX6 zWi}qqtKGt$b^61Z=nN?NgRI+?tZBxDVUfO>z%}f#kz<&fgiMjAr>8DfM)&O+Fz#jn zFGHtC0#B=XA?fP0shrK?A-uDNH(ro92_|4lQQeeV&W`JBNK@uI*e zGHfqEG5nIhMC&of8F-+3w}slrwD-;=c(LhYZ&l@~VpXmd1A3DZY4;n$)*0bYFMFv9 z?=0H+y_^yD_c4!;(G}mD9?$0WN=k42%}@|VkHO`ax`O|Yc=qyQb1L3bBwF3^blv<9 zeE7@c6#Ps%XV4_6DELMM7D`9Y$B(LFMrLMa_KpAJ57}{%=xh&dDUrf#52-h)9PIjw zsg?Kh{*a1?&#TMgu`fqQ3td-Yu-B8Tvp2fy&a?i(utznrPug;>$E~Cm#8jIuYO|CQ z`8a(vl}YWccCpmBrVq{49;ZVVsL?;Lvvy00{Vn;GV)Zvm(ip_wxPIJ~p`vIwSS&h7 z6ZDbDdXz3|k|S0{O`}l)ABSA2S7ckomlcfFlvn{!Cy|@W>}3H38v6{YpGVjWgnb_b zOK|MGej?+AytAtFl$5%Jv}~7nP<{Mz?w&@ME>R-dAWyIo*oE^u4Uso(>ro__H0a)QQ1_Dr1JEvGgxEs`-zq~ zY~@{Jk>)($Y{il;n(Lt6Ay+fQ3R8P|NJs%(fon-D&GahVeb)K+r&;hspZ8df%%0nd z6(>XDZ~F)PKeTVdD<6cBMM8?4b+yA~0uO;Yz;8{KwR;~Ll#x?G{iD1Ne@9IdiTIo> zV?=1xD!D=yrN}F&Ratk%DC~R+j^W30EBM3?Nya-)|s3HC{B363JI-`voipc zY1m|74>~_YY0D4&W$XY!jt${b=CYseMj)@mtDa9yYNxCv-d0jH6A|GfF}P09C!IMc zsJoR5ae*gIaz%(LnWX|z&J4Z-06bOom0wLJFwnoFxms~vt(ONjPDsx>YV(|4qcvQps^iyy$7^G=BBSP>S=~2EQ*`pJ0RZ;1JqON+V`bYl8 zeG#WpFI@i8=Bk0s=%oQMj&(Xu4qDHbcs8CY8x&aeZyJWd|GvTb9-L?W9*4fF2DAM| ztK(CeE4#LOkGA%};jizN7c6I`*4B&Z$z_SNV@F#oNHn?AiD*#cfD_ppA5P<=)U5f5 zqGrtWiwFufV~mYP2`NONu#vH`vi3|X^M?;5q@&`mGL?6o_-3#GduBbN%WR4|n^;U3 zrN|Du7pja*OHcoL$F9d!YsF&`>79ylNpC7+ZD`6cvC#)I9)QR(A(|pDUoEC5(j-y< z7!-C29(3^=cP#m0X^k=&DS|XCzDR}Ys+>Ak|40-h6}8n|B$c3Yr{}gjZ?Ec_pe9UT z=tJ2#POVb(!QY{tn%YtKtryx!@4zK0-=xLQ{>Gx;)VpZ~`%-&B5P1m_9#XPXXFuyD z*yLcn;7McdA-b7RV+a4hQJLJ0TVB8eW;dKf(Ky&wvB>_qTgCe;MHlY-fUFmu-(@iy zOCH>R*hGJ?XG25+q=+LV^_jglr>QyRX{u9sPj;@LPE!oIW6W8A!|X->a~U?9MH%}R zj1JFFy%=n|y-S0|;vc(-3BSKXhicTzi!ylcES~Mv1k=@q%MuCl_`V+Cg};N(O=b{{ zNe(V0wKz#@sDsSPSBuo#k|Rp<1vIw-4oKW(soI($z<%ONKLvXsCx_&(BF+LB!ad}J z+vCzm4Lw?$_k-yB8a8f+mtBNhRh9UzBxso>)Yqt?+Iw}7IvuKQuL>C2xG%tHFNxW8Ric8n`E zXwz>KuB7V33ez4}4G9cR-tJi#49pQ4U3yf!ns-%Hqd8&{R{E0#W)WIN=t$OyHMGjXPeZ zYbQJ@$gxJGY5p%~`f4|m21Gc7kL7$axinA~T8t7X-B?`fxlDH`d#;SM zzrU^NPv-Ols@ld?MomFm?9M&{l%OI8D~^lXwYgJEu3Zd!?+jeSdFm8`AX zm)dV$IkFmVT0+#HV-arP!1b~akhi88wgz&5#=|YYeaXYp0wt&i6|!Sgg{%gh zN?vN%1eh>9@ehd%QKsM7{zW6Q@T#q>z~G*Xn4@Sq;bSRIu_%pXQZk>?)n04)!W?gR zi>c|Bx0{WonbTN{BpI;&K2dGd*Ef&8yvWa3wza|Gtr@}BI|A2;C6zp_`LEvu^h2^d zwpR2hZbVj+k-7{BHABPZ#xGFCUDa$n?7$mW&?-OBs@Ng zgtGODv3@Pcr(P7v0E3NvVa?eCA<0*KP7MI>4~_E)D*?BPM8o>KsNsHZIur-H%ssm-BBZ*b zNw0wXb$LHNMrCr7V5QD)%Efv#0+1l+19C4|BnnvgkuwnQ1UBut)3va4W{Q-TY+B>{ z#zXIvSJ7TZvD`Ya8qUYns}eO);`T$as?p(JMadJvN3OOq1BSJiI`GbE`!k>I|6&e~ zm8`gfMrsEQt&(Yie|WZavF9b+ONC50UoR%0sM|+5?p9I7&*iew(mgrLy!|vyODQ+iQGe0TTPmIK2w;aQPOH z8=QBUt#X)lqx0Mb)48r2EKsYH*ZRP;33zD-TE2F|6N;0m94*oOE#wNP6Zq%IZ9M z5|Y|l(-yIr6hb#{%jMdqnoLSI^}Q9^RHK2}cX%;BxC|lin_eE<+73z9DqU=qfM={( z%MF~+PcEy>aZM(uRGJV|EN3NL**`g3!*pc**4=t7(}o6_Vev0! zxrJk8STe8g5wz6&tIShokFu1cY(@2tIxI(&+M=O9G1|j%EW6y7da@#sZ`Y$NEGXG=~?yh;Bm;s;enKKHF9Nac(f zJh#9FZ>UpvuS00A#XxkHiCkIYT0kzfYRflL)?o#+Tkn?L?wugZ9S_BOGoq@>Xi`j1 zlv#u(bZpdK0f^1*)m5SjvjS={lh&y7KNvR8bRB9VzxCtWGf_=Z!(>OElZwtaKV#;7 zdtZff6THT%yHTAbtzLQIMk z{UA8Pw1bAnJGt@*K{P~vp>=v|H44})QeuuR#+goXTRudgfLi$pbs<3H8l7ok9IrOI z*6>leXq3TRgFUsbc!dg8M2x&G)l)Rq)KEEX`EjeFTuhij{*u#fq8Q%Mv^(l8dDBBS zpkcSTK_$GS7sjJ>uPwp0A?CAO0dbxAj`ID)Ln~a>uGmZd87@B?5<3C;eP|-;a@$1E zggPf#4D(U5LS3gO=2=BLiEi#Js3To1ysv`7ny!d5mIF;>dx6Onp{+Mx+6Po3Ju0#G zS2o(nylw;SERyPXBzT(>DUe~j@ttmbt|KFmi_00vp#XHmBXRBsajefe3#?Nm)=G$uG1LyajL|i)`5t!5(5zd6gz_mc^gZ9g7OA{i= zWPW=9GUqbt8`-+d`Cfss4ImH^L`J3N-8`^b(H`@U)o!eNqb2Xltv$konp%d)D}T(f z&JlSZ57PS#97NCm!DQbHd<6!{0uzMD$aiqtX<=zWl z3v#Yf8Nx7R58vcs5((1OsiCgze7*eSs}lC^1p^5zWPEt7s>wnNX=c0gXoZCgI$WaZ7Tc&jd}E!RM{| zxFod-dcUNH-~Cy$rYo^7bqV*sb70!02Sc~XMPboD)d6tAPf{2BpdWQ<5|w<+{X)N` ztm|L<7hB_55NX#~Cj5Q)`Q<0%$DRV*rt*XnJdd^Vqbbvo;CD&Fv}3NP@*Z9BEDA3{ z1!YCW8dHRu9 z{>yI@fq%#62LhWeH}1;kdhUN2*B}}nPIbe8JU6B)ezM-k7)gSU2{VzjmJ&8q>{JvLv9+zbA;#w&sy<~&n)9Xoq+3{Bb8ewkQMXi5SX zP-4B@tuab!`It3)bo6HCilt8|6>W%T-uX&0Kk2?uSc}Etr2Wk>4(2mc~hxVp7wCam^$*FRUEFUf6b1};8@$c`%y??LBy2Oq*j>HM z_2zD=_&)fxB=kJz8}IF%e@!q zm)sv?3lQd?6{656LJge!J&r&P1l~(NfWA_waZK(+OEu#7)#OgKI1^`WZ1*#_5~~uu z5}m8a7l9$99^#Y(A0mjrC_~Hqnxk2U$B*0$1X8uh+HLb#IrO7;iL{~V+i+-L-aoB8 z93vF-9!5xJ1(ve??hiss0t=(0Tj4>RB6pJzvO)AoUsx@S-{(PO`xbztgApS+*JBYU zuL+6|N@xiJ&BnCN6u}`qCxg5TjZV5pVw&yIxF>V8)8)E)DV% zvVVnkq_O7;mlZFzigx&A5g&fd*r36iu#0S3-X25K-qN}^p@lCXHU}41MH&;wptRiW z#N>E0Xaslijrq*E1}h+GqUcn`Un=PKpvavMc@B|}l6VKFt8p^=CAAjsxs8VY!vgc~ z1t|`h$I;vvsgLKON7muG!u)ZQ?i?O|Zaw-}r~9gTZEV=WAK4L=)3N=PuMwl%+%Eh( zi>3nmBD;p`4~&64!LOs{O-(582GLah>y^so!*Z44)?A@HT=U|gHZ`YLGhtHFi{-^> zhI)jbOk#f)LJ;D(6Do<7j9*H+mD`LKv@+j<%yI@0oN4)H9{r*19fGvf$|M^f>v{pg z1X`XX;}ch>8Skxd=G*3<;e((>yAcs1+U2cpdX~#2DQ4bD$%SESgx+g6oU;P8^Kk9T zLkdnCa}!9ILNX#Sm-`ZZIf~rHdYmCp^_hzc8Qv;nOGg~85EUx+@%n}_r2RzctWbp+ zlCKCXOj}{s);_KgAI-0YFBIYz*D)9;3<{iu>%uH^)G% zL;)B}Ka3+-#aOj!M|dV{1~;Pz!%RAsfvdCtt6={Ms=@2%Un$9yzvw$hRU!+zv{u{x z^q!${22r@PB~^heRPUJA5s54K?-{Cg9h>#65NJj1^dS}7%x?x*g`7~{nOzPb;kp@P z?mb7f2K@1%#wj`G9NM0}?Dk&{ex>)Bn(=hma*|Ea!3!2M&ylKRm|P;OY^gR43eyI~ zHJ>lGTerXY<_;sP;U;fb)6NXL=MS`V|CJWOMm3^0k~5+I+4*ukO@q1j=b_6BWYq z*elwK3!{*A7!M5G*(A(59Gi@YYAzd;r}TSKzkHzQOi`^3rgs#)?I|u|g5!4~Wt6Us zUVB+uOa!mak3^6+%DL==;_!@eze6HGf2XtDP2y)9Bg>nW^2V9^@GWs{Q}Z-(tXClJ zsVm$YsA4(sQE_EoLrO3rgV<@3?mwFOGKdpR6n^Hy$TTzoAyD@mI3!MrZ0@pG5$NQ! zC9X5d<^=s>EP=wC7_4>DbhI9?6dpT^s@?Gl{@SNo^ie>S`tdJX(@oL`5GR@1ZoclC z*9|k(B;QU-%vHpZCa%Wi8*Wt<>T&lT?{-`Kb=&xh9VP9mg0F$AO ztZ(dvmxw@I>KdL#(lkC1;OZZtqJJb9kv5%~9W)0ok}2$TwEPH}ri{GZ*ycsh4_e9d z;|Fj%`QjxolKwq(2%}@pJ`UrDzs(y~&42Wo7`jQO;6=$;Wx`5mU@>9EF`&XvKlhXC zajCY~Y-2|z1I>#%EELI?gpblP^3z><*P2jAi1Y^XZ6_G8Jy99r88AM*M`q(rPF#v| zXE~?__$frniPyOhLEzsd_eri>&W8yKVWku=n6fx(Tl34GxBdX-pUGQ z${mKweUV5ix=WP%4%r`PWP=15Clw5^xeSocc+X$78o(TbnA;{g<+Tl6PBq3St|2?? z2BdC&UPdNSqQ2h)@}in)*rQznpUCS{O@JB6pP*VXF~WLFr9PkTqd)ga+^hcSk&$fU zD};3iU1X)nKR$84{D5)flEZFNcAa6_joLz|pFHW#Ur3kb2(>2utQ;I0a43&+z7$QAM2i$ygnD3>#YATc_sbAFJG7==1b#l+8c3 zYd^CkL6nWlDo9FjD%O5*rAPKAq*G^5mmZAw!TR@Bin6-i9Y9fq#M!G1+3bI8;fH<< z6xaOz-e=js%`bMgxx`ls`RYed1@t??ny=bR2GKIJCAFVx3F0!9*+{XWAy+~LZ0QOPKH zR!?&{bxvx${NWAiT~M${|DeR?gx7CtGhtXzhm=+(!IEYXuO&m8{Ew9IWDS)Zwc1~n z7P%!Ml?gO&u%}RR-w*qhfAqz3+ zq`#tM*vm^;Yz~kzSd{Jq7PJe-LBT?fr-q5c-)c2vVZ`6}#VV_$7O0nO9!>UsrcT~G zTDmPkT?%k4`~)lq4L~j5u4UT~~f_5}v4;?(`H9AIvW%Za$%vW_R0=cGw-ajSf-_z zFr@c@#an!a-Dc&`0WdnC{@t`aw~N-}qxzv2)l1c>F=K zZLIld`PfB!8=~(|6uxX?H)f`%G-SEg4;wx>YEH&T|6ChQ0w_lprtg339b&0rqH^D- z-k`_Uko^?bCgK*edgG6ZSsH5>D?9<8*EKRvL0 zwoiG^nz~n2Tog0Y6jXf~lKhq#;}-KEDx{!8-SvQ<5$UIhM5)05OlmME>afh(|LW^} z|6#g30}~52Q5c_odEhxW5K*)MpNR6>+xz2+|F4)O1hJf@_My1}O4G46MXn{ON;2s~)tYPPdb1g1p zmG1B(i;|qa2?93gji#bgvR+HnH}=qI*m*GdtYDQ&qx(o=sn)S}ldYYA-GOA3ek1^B zkefY8vBlcKk8$o`61pZk?q~vHv(`MOi7Fy@>~wV*NIroj&R+ z?FH|k_T;~+Q0Q@^uS=intrn+hi~e3uXDLIuGkg4nQmCp$tiVpUf^9=#m(skxi?=cG z?q}AN_Io$pOOd=}?ZpKe8Q%aC?ZUP1;|lgPXAbdI2WQ50(j{FS-edd{eRQBb0Reod zE05;``=0~g23h5MHVuqdty1WtDMx(esWN4lVj=XEG@gIX#X{TlQ0e5%xa*MkdlRLOvwR{dCtctztv3}0GG z#)-gAp%x5e=yOBE;#FHq)4x-}l(eg>IejKvyySjc+p9izRa64G*~gFgt5(a!+ISN^ zl0qmv99!Kh`ew1Wj{2tauB--U8E%w0Oeb2g|6mnMi}fgm=?ky^jv8|S)3^lwn2)}m zEwXI4H)&J$dPBPCKT!6^UyGUCGTN^^bn-Gk8{sH2+;|@m{eiYV&COVL%0a?5gC#d{ z3A;zsD-n&&awb$+yPnRW*tE1lsbCLOgFT7T(~rF`uQw{Z77C#-3Q%v!ZRu*o=J6afn6=*VsufjR%7dN>Fa0}J#pKY%$0d0n zTCZqROPELojIb}^`98s}+PPn@Z@7cA%~VYrY*781ze+ zAbBAgzK7N#u%bv2*C{te1Y2Bn!3x1&y@P;m*~&1{`Weu@zuUQ)6Ae$GtAK8hc=r^o zbQz?)9xXyuG<_9sk_XLST~`8%WWXVmvY!Yd1eeFdM3iorgMwH-jrIXRge+WD$Y(a8 z!%ZY^vwzQfDA~@J24ld1!qsp5WmJChOfLGW^^69_75#DcH`qvo!au48g0$-2@#JS131%vb0?>G5W#J*l1mVY~3kG zIaNb^hUkPZ_5^GtixA9pmFRVkcDV{Qv!iwD7?odsz3iX~hO{(hPWh=#+d5q3ZXs2; z!O#Ve`%d`P|BjK}Fue_iwfElOYw>9tyWrb3j=R-U;YF79T6X1Mvx`!fP5I9~bszI= zP0{GN@FN;*?m&?W@62#4;kKUVLNA4j>hSA*L-B_t##rUg5}+E_0aISoE$^uS>qztR zX1xaT`?;FTOXI7~ym@=#yG*F*^vl1zs{f4$nuvFml3GZpH$yRkpxA^oUu&sX%x%XF z-tSMTbnNbV6Yy(-oD(guzbtCj}GjGX1GStOJ$$giIh_ zC5pqGarNg!#&DwT@){)etL#c0DoSJ2Y4-#5MQs^Q4At^#^lBmS)=pKxM=!EwWo?u9 zn1K>Ca6uEZ)JuJBFp&|g{^3!G{OR;|%Eb`x*>{y%R7x93(JsfZ951ux=3y7)iO zy)WCQFINuN033SR$B}NMODl%eDW8=n<;-{yzSiA^!eAi9xD1;G;&bjgbEZ}z1^P(F zpU)pvT`vTfG_xS2MDd!&U@)WS{Pp(u%4V8qdjgqF1COyvXM&zn6=fRai_evJcbJ!E z66(a1t7Pl)1t$sgS=%c;;6wJuFu}|6FJofE8;BaFiW3iKJ%sl$MYQW8XAo&Z9%6R< zmd#;G+%LDi&?}8t=BJR4>D~~cQ4HR=;q0cL;ybNS;R%y&Wna0?hKt;M7LVtZc$c#f z=nVN4q4p#sQFCAAvrx2v;*ki*S_2s5qn!Mk7q5_hRt(jq#Zka(`~2m1&qbtMER=_v zr}3Yf~p*= z2fLNLFg~0DWn~}fGiW?i+t1W5Mc{Pl-asJsnlpte_rNBnU1 z2Gj^cs^m_BN)O>QJ@lILtv5mw{fxssPLbrwS@${ z2(=W-I5&|;!(Vca;eq1Y!~8@a3eE=^*#V*Vns(?POUp{a=CL~3%FCFZJ~tsxRhDZS z8Zi4q#JDl)bImy4s|e@Uk*v{I|30x{%Ikhch&C6g>)b+&!*RhJ^J?n@-imB)jpK#d zVI7DYCphM-s}FFHVS~JC2HJCXFhOw%_88)}C;pF$`QPz<^Fxl@0EJ{XNBwPY9@N(Ka`vTV2cqEmG7^0KKdSTPpZ|}% z%5`9C=)UCu;Hhy2eZKUn-xRAvxY3K2RNB@;tjX>7f)v|P1llJg=_$D}ewBwh77Tb@?=b%ZYs)MCNT!Z1?;UjB$8-#m^~&*Rwl~f#8+Og+ygdJ$=U>wi z`EZ~AO6TyaTMVOkqDLQZlg}Up3cho+EksI$@rlSRwPAA=k(g8ER#LUl2(+qu<)u%9 zna}6C&2N7;r>8yT#r=Iag-hx+0{io1+qv@=KtQ934mgpcCRpQP#^2z9n=gAGJh6Gt z7W(Ddyh(2NMBODKJK}vHQRFZ>08Fz1Gqf_}3meYw? z*El>=`Bj-hG*t0%h>kw_ue}jk&6d6SrkSl~_{Qb$RaK2ph>-WyTgXTi}bRH?t3AO?S-7WEqU*Rd-SO-U88!Ga$sab`+*UQN?V+Ee@>7_09TE zw@X=h)Dzpb)V^rj()Mq3!Rwni`j3qtv1J$OWv`Sl^Hr0Tlv6Q$FBo=b$&h_V14ZMM zY_EDd#NxLrW^9@ysN=(`@M*Qfc|<9h$ME7w#>@yVXXQyYs(3TGPzS zYAlm!s&hd>M{>!y7Gc2}L}N`!E^oA`dXh>`9fj?7*6jW`O|N}XC9bZA6;>jPmjPQV zsFOsZn>%dpopT4RSDgDFTzsUxvOm`kXZx@bWKbS{>xAs4hyBM9!G@-))qRKXFud&Q zAKf8ous9=@jc*RR<|yW%k-n~RjWElf`hFa6ReRY8AWFFWb5XRQSUHBXA9&&}!tSm> zsHvzE<+jLM7tN}G41QC}lp-o$o+kD$w~V9Z55dAe`{_#?Az`5&18|X9K7(C%N!%+e z^}*W+9+-7V^9y)pBnfPo4K9~gvF6wz^l&bkUouHyYzMupC3}d{V3BH-=F|)Uh@Ap- z@kw9{LMZ?sXH$x5G9fEYj&?yMW zP$~=^dwk!c|GxI`+WUZ$Ipw*Y?{lwvtEvNMxPFJU3E!ZvsU4WOIsq zOuqZKcAZcWf*E$*-4k1CS~E1PemYQEw(7N*uXc=pdKOk*C%ZeB#J{dYZ$5>ULihNS z8r|=6AR=~hTElP9W*2rN6z=i0Xs|QI;;NqWgWkL+tpQKqaO)ri1r2SN^U0Z@$%Sqh z&1EIk>?5}`Zl9%!A~DiYb4oeFcvN-Wy4MxMb0VUeq_x;&-Z#2V(C}W2K3THv!fV6^ z(+vI@rP7h)MH;HzhzXOFDSVVtq2BY>sL<_SWPwhjQuqgFV}?Y2TRkXsB@NZyPc)p#diE*0*Qg!9pf1JTvMzJUCCwq>4Idn%$ciBYXb8g z*&-J6I0<%pCmB&WO6=EJ-%FpU7wu-G;=ddTe@Txch^|2KImYtHq3{G$KcTX%@eumVC_WAsRuYqvpEz&#n*s#R|%T_xko%;zL|$Zbz2D zW7P2Q=FrA4F`Hy7!ToK#ogpJ+5;ulHb9&|b2GOp8OKw%>Xl9n->aRbDrWZTZ1Yd$2 zU|>BHTLBT;f^9|M$=yvN>aLJjt< z7s$d7Y%Yzx0!6ylC%g4z47yh|v^DILXPbSvKrEr% zrdEs}V*ai!`Y))#KCOBbsJeo<;HhsT{b>Qw0p_7QA`(RNP+{%5#_O=%|9ee+o8bUa;% zr26qQoi`UUoLG)lO9Ndk`~9kVw@m&7ER0L>m1a)qCTG@7q|i2so0=Yk0T-pQE64_gRm@ zg0*O0`Y*bUvy>*CcyMG&yqJYwhD3*J@&)swfudcqFZm;D%iW<)QIM9zCs1)*FWtQt zNYSrUkQ~Qbt`3bLiXoHJHt)IiuU3c#w9|(cXm}Fb?%_zS_-A`viAvcL(A>nC&M)7M ze2u#)4J{t+jgv&8tW7y=!ztSyfJ%FcU&nXnzDk*5%Q;Q(*I3nPy1lyv+gvk@p#AQ* zrs1bfb5tq&<`IW$&G$r>?-x3G7CBccsZP!7m!Yatn}@sO@tGP39tUgenqVl-J{Rdg z9m6#28&^p!Mn0V!J?RY2`4IdJz-d$+JR2B&_r3^yOy}Zm^`{R(`-1iQ`Tp3c{sv45 z-g}s`03RW)F_FA^5C9#=e z+)5AbtoHa-yoKDUI8H>8sI-J;$R`j==8R*i-zwSXzTtCO`}W-nt{}9N-0jwUO-n?f819%Qr4*H_Z z3t57iE;Y)RNTE;bzsvA6#{Dn$Sf7s(;KY6f|J*v%jSXuO1x69mm_n3DdUVIzGpL`r zslGK))BLpVZKtH&d8P(*A8Z}H7111y3A;dvXgJd$TI|E5&kqH(o2WaCk=gE9h>kmk z`>pw;pMOGNZJ=Et_A!oa$cwVV*hFa9>>2lT989TS#{{m*sH^}&^FB5^B$``0MOe-P*r%j}H6b%nR)MA9xaF3oNA1c6VlraZKL%}eyt>$?G6PGYP9^wZ8`40IjR0NbtowPc zS5~$j>?8FEMmjZY>gDjShz53KqGQ0+&f2HyV~LEGJzz@5U2u9|*0byo*}WM}oJzvh z*sQ0`UL~&hAM^4!u|{M4-w4xcDnYE}ayZZk;)~w2)!;pK&6_u4mEc68j1}mCiuT4J z9u8%;n5nZc){538x0qNKf5RTS)<(j{k!lAQGq^$DS-n435wO$54!{^rUm({2hYs3O}NDRnbZ+q$w1!#}hlRB*bdSv3csj zkYri)qmdhZjTZqiYJE3yHITMYwkB?TQ`|B%#_Ti`< z$kOIP{^M?(haZatnm}bw<){CvXW#1I#&PP){pq8uOYhJj!88{Y|7PZ=hMUBR=UHy> zrUer9@@GNOq{~3)WTsk)tCIx%JsY+lu$*h1vAi53)BPl2rLzvLFIG?O>A~b87IzX` z@xBXqunQ%sG; zGo@N|5H5ME6Kq^WvakI{IcD#XP?%DEKGVP!R|ziT9&a1Rs~15)TyUrPoaVtU5Miej^FC9Ms|(Z|H_bL&(EYxLL2 zx3HG*580LmEY-M|-eh6e3n88wk8F_`4`sE~d6t8VpgSXKjlg**vsTOY&Hu6VMp(;w*WlgucoClac7wA)<@#AzTW- z)lwdFT4(MQB;c!i?yo#h)vSK<4hTEQPf1jK-;s9d zkF=CH-c*~KpleVcxg4%0*tAWyeHIXY>Z^oV44OI9l{C9KVFp^JZPt?HDc^I|N-4{+ zPYq~B!Z&}ZedggAqq!SjL@kDz6Xfk0gAUl!ou4{QJ2?7Owmke@72}Tm9F*~YU-^vu znz5YfIXAer+S#Uc$)3@?4(k9}V5;75WGPE0NhYJTBSE%$%RKE?o7U&&`sja$t=iom-rsug7vTRxO3f~uYZ|-_2oSLQO#(sTJ=zN!|nTS zw*dO=mGNKcj!V_9yKrB2MBZ8cJXG#F^LKByg z#XUMjtY1z9Az6;Iydv+?ZVV2S4VE2Hv*EYQz5EK@C@>*hr}NB1marZo6U8RLXKOTS z==1SWqZq>=eER|gdfll|Wfd@1Hx!;IWG{WUtKS7JpSxqlsU$0Q&7_*V#OecLVhgr0 zzd1$@<1*(M*0_s})}6D!hrqQr=0Js1YBDNPU>^2®qY7~tvDed-2d2>?xXeN6#& z{bk)kkV!gk@Xzx~p8OR^AKg5?OEqlHrTg65gJA?;zp37)OiWZjXRM$CPa&eqg4%B%QE6)=N!tu1B&J51Ypiz;+;jwL0w`N2y|UdZp|yKl ziKMz(V9=9m;kS<|#zRB)Z;sD^=EWDppDK4iGV9)ldsOau%+2a^llZ(oG*+S}I?kCWW3`*)+R7vUG$|Jb%J@_i3!fn%t>@{cDDtr9(qfM&o~oVQx+$Cg?eFkzUq`HveG zEN(t3Wt=DD{fgxAi9Woi`@~Mm7=nDS_ER}MDbp=;3#)9g$-DA+0u|Sb)Kdur=_7(; z-bRRP$RVaB;3K&N9uTIm^qpbTKS90t$nxrTo4so=xansXi-BB{?3(E-67DXM7rs-Q zIV{Tn1}EV8eoD)BbR~(yi80Gw!6JjOe$b|sFwT>$mrDcjxJ$(G2ZDz4Jcf)VS{BTJ zdm+$w?e%9b>=yUu&Q_?4Ls3MY1mXNOZmFb!)lPj6YMV6FRv@tvSiC;?WKu2 zIXov(lmxx5{SD5imNXBJl*7s0i8DQO?)3v(DX@S|1DNg`wfqX)gS6Japu_ zJwrZZzb>{mNV@c83rDv50s4y7(nb2siq9R}JSr7Fc%aime)*1+MT>Y2faL2E+$7(P zi;*}b8g>;IN!Kz>C#2^k+KRKRTpkZ#nEp;h0PTU|#6;2<;sGb-&(a08GrtG2*)UOJ z7K{_FKe)jGLP)-4xaA~107N=E$Gq!CuiiWpkV`hNqKx>_Efv`}YO~(W6Uh$wGHzKN z+>&U*gLROfzBlYmtE!sUB%z2tzwN|>@Kh!Ya1+PfKt-eM>LtI@J4=(XVug3!lLlAe zgbICM*=eNoRjp$Aez{Mg2d)7kwS@ zEhk(5{dn~cv_EUSjhfgtYxbYPOy3Av*`vKdl75hjc@x$oX(OSRwX?Gc5$L=2HFcQp zM|~E{2Nf!a5o}#&_*VAu#gg^KIJ^i=uIPGl*WMT$hy1*#Imh*G6y0Y^#Z<*!$+dDI zC9RpIjxK}nnR_;LW%jilyx>$}a&;10C`TkdBYfV$I$%d2JeGh)vAl*e!iAhA8S4BvZ#uo#S!Zax<+@c^J zY2wj?=r|7$m6GPxQ8v+}jQ7#IIVG#~on?*fFro0Al4t>cyT#CiD-f>Sz+CO-9l})h zu3HD)Owf320GNOyO^ubn0?|SabeA~OhDiqbok8a!)DiWgZryPpMtu23FySBL3FUGm*E#C!Sv{_io z($R*i42cT8w9@ijb{n?;=OaPQW4;!`tRi~!B^R!{5Cpe^?}$;+xPJBA|LHEn=9n&Js^ttav2<6aax!|k%l9nx%IVC6LVEkj z{eAvI+9tU(=LfF8U241HFLRL7JEgD|e6F(k(157=OVgao?M#q#)& zm_{&3PE}Vk5yyxy~?5QI0Ay5CG|2i^8ee~AN*XfK&NSteT>7?_8yZJca zExsWHEvL{(U9`$D<}LR$YZhcYh}pPiMU_`kTIjxUc~~ORV(bhkSNt)_?2HyujewCA zd$u(3e8%5JnaW(@IgTBM%V%sgFeb3(-*rK1f1>p*HfS$_Narzz2SVAZVjV5<21nXN z(@u0R9wE33P4{oDsbO_oXF@{#(!m9TB;^k`RCU4#D z<>zc~tGpEn*6u>=g;BiXB!EIP(2I_OADz#h#MSp$=sumbUZ`n>u84Ja)g;Zs^irI7 z5?I5Or!j=*%j8dH*DpRK5xyj9UR`8fJwIH9_tbLQJ8M5})EmHI`1+u+aaX#@T}PdI ze9?JLa_)9^4j29z-N*np+RsNd{v$VZHq)E$*QcUNhLyMA}*yK5?%7*jF%*((Cbpyx&7 z-EuP#x?oNBg?dVbdHLhYkb>v-weU6Z-+A?kmk zl~b}=D6^c7zAPQ=B2INUAoh)oLn|58V?r@+{MJG?7!$N#&Pmjm{pwv@Gw|S#QNvsIDQ(1E}!@r zhpvx-EDL@jqh(|eJkldE!4D33s3>-B+LXok3>y)P>C|UGeA}o zCT&xnmlh35j!l+Dzj&`8>K;5uP2OCl;lVKH7Z+Q;u!Ho}spn%WBjy{1*S_f$v};3% z1jHd)&P}e@LaQOq(lysx$?d9s^i&I8WnbwBQ4dUuRgChn1gplrD9RngOhpZDsn~D_ zpQ+Ve;o5h~cH^H*LtW!M8RkmvXS<7*rwM|8+tXOMP6N0!KKM16aSnNTdRqjlWw_Vd zqf%G^R{g@bA);n!0hqmeS4k^#TF$!we^lH~091WjD!@||C)QvhJPU+!)R``y|M(`WPO;I;%kbwpaX&mqrV~urek1PPbE3Z3DS>pgk+!= z@qI61KY;iCXE^>WCc1v7$H5@r4vX5dyokmfmHzXpfwP%^nYG;|sfU#8Rd(U1A-FBG z4(gP^dsnT8mC)hTOi}| zS--+r-BwL?j7v7lRx~8b4K-RN(fJkD;g84SXM`a4q+s4G&4ZnC8487YN~{5GPfO+1 zg++OP24U+qC39^ zjB0Vo=*F|rvCc+Lh)mRmvvIdlBu%%GA+1TwT+7lm7CQh$bIsXW{;kb*LPszz$Ke?= zKPz{kHqv$G(9Hzy>t<4(aVvr?gEt2hv#DwKEeIkQp@vMrz6C#8#i z7%M~*jSm9@@y@F%BZa2c^&56ckTh5nM0C6Z+KtatxpnDf9hzYc>}G9rhB@7dd?+?% zjVFj_x@Z&x)GqKo$!FS4^>(<-bi8qH-;+F687M0|JlDSQ+BN}35O!AU4~3q7fskz) zyFy}NM_9tkT5arcqBq?LiOWVlv8TTt4diMx=Du-Yf3Jzg5SXk_6FThRNK7YQ<)pvz z%A$ME_|FaA9UJ&h2&{eh+lR^<{2!kzE`rpa=N(l;c{GdmYe0e+krBG-M+vA8m(O&1 zg`=;Us_XYKolu*Ia^a|YNYGJ!BXH^`r9YZ z(0(JVA_p5VY9&OR4hGNr=c3CahDCUU=1#;vw{+ocVV<|+ymRc0Q1}-6*zW#mKhb9- zg=o+o+!fnjqJHKNibtCSFJf2sprLm&I!FcrrN9KgtG zYYYoOgH7b?eGEBH&7<~c9n@M97LK_%xE8s-)gd!Rw0S7usr@jbpm; zn^m5R##u~M%cE^x^wX^huS#=w-5d*3wWm0|?9j#B5=WN?_ah`q%BZ?%&uDLbq-!@F zQ$%edBrhS|H?#Uu8fMS8jwEFO+(z_hienTI>O_H6;Tm9E4%9H&QIo)J|4Zh9q>0=s z3Tcxrl?*gKWZs={yGg74jRHLK)3u~CjRw&t0Znm;-#uQNx?Hh0WHSj^tL#6Y+1LL=*vFiI;pSeH)Adb zSBvlT1Fxm{`Up%#P&dvf&Hp6)bgO8D)kb#jH3Vsx;eJ% z=4f?CW%d$3KHHZvfM^Vh*y^FnT2Xj@f4!cCU8Sj+ZSe_N>n>w+^|wME${LN?R2en6&8Mlkx@(BbU@TG@pVA^)EluQ1||H{z$Uj zSdLDzzszMj@MTES2BB>lpRDU6x80Zp^L%zF>G=2xTXPLrM3)8_DoAP5DyFJ;wH0ud z-ar0)t_GqBHkow66z@ z4MPAe>WnMHTvJp=02OO5^YIUzH^9$;TQ3~G)$ZqDE5tFGxIG+du(^)K6V_j7l=)_% z!$seuZ?AxKEixSC+mF|!#x_Em7huUF5`NaI*!hxh?dK1weZ?nDm42tKcybFte7jE{ z2#DS5i(ZX*jyQ}V53i#C>PeQF2jsAjwZn@H(?$UbK8`t(BHK5U2Q^aFGd{9!W_}Gl zylnm1vvH$xWBTBQ!ddZSjsNF244>wuWt{Os{n3>SeL`-+Hr3m`FRi0mO3NsN&&jf4eTQ)hMm`Fm^&!9G{V1q`a4!|nn;G1pmf!}NZD%#wAr>FIxE1BG=fwGrLlkT2+7Tpy@ zAA8G@ReOVH9kr1^&clJG_xe+RN`h#W*{Ho2s0R{|X@aXywe$(11MP2OoCBCpxPUf& z7NN_sG&oJ+aC^;VxQ+q(f<9GsS=y_LfU%RL1$sbxj0RSw-PFM6n;tvxsgQaTZIeP1 z$0|y7aFDyVMLp|bDB{^LGI+)Gg%yS|G}FfJT|vrVe9n1|pW4lca^|VGk;ZmN#}8nN zs9O>&NkAoN+`s3lEe7oAPVp3No9=xYsX7n5U>b3DAq(TX%%F1j9vA_zeUEgV=A7?b zYGmg7jqog?EnXC=PRyi&TVurd5i%bGmT1ba;|aDERj8ao*q6|84U$5lWHdYYR^ijf zH8>^>Mu)xI()a6QCLc;0M}Odax$Vr~x*fdyeENPNWK}0Lpn+ti+-TXmG9WNIYTQ=k zEyZMwjmw#uPCF9Da1c9@|UdOFLwX z0yx1DkRLK1prlGN34R@EbwFMBw=E9m}NE47(?H&iQ9^<||Z zB&(gqE>(Iazwc}o(ExkO>^j%DDE3XT7rjS9G&k&@%2&> z7m9g#LxW6$K7uqL^nbocGgL{aiXA7EMID(RaAXuPBvUEoT1ua#k7j?6eZ2f4U0#+) z#gDFrmb#+mniC^b-;!@o`{1n;;!qwgJF5w_R7o{F2tUUDdZR!vU)Fz$@Xpl=#c~VC z6Y^sU+WUD3Fd9l>!z9Gj8BF(wZ6ZpUVo>>Ym~@O>m;fM_r+oXk2H4K4UN9mwIMTPk zG|P^CR@4cIi=y)G=4BZz2w#)QLRH_Q%+mTOYSrwbnItNB5$*SDf7x=<3AWg|x=XXZ zUraKtU^-ka;H>F%KA8KFclIOGRvQ_%1HaWGwZ&h!<8PQWTBHK5AtbqCMby0z1v0lz zu1sk(w7+~8Ll{C_kvSWRL^vFLv%eWN9LB;ph3u-)FO#%z8L+~%Eqqm{jA}_Pe%#gYG$O{kHPyZN-_{V|j{l!4kmeE3 zzv_3CaNkSHEFDw=I7&!fdf|)BZ^>5AxUFnERu{qaESmO3#ELEzzW~d+8Hxv%Kk*@l zET{_zR+FA*4;uvkN=EQqestxRa3MRk(asXGS`N;|kK`x6Z< z2n{GN0}fN)o2_99YyGsUg26$VjP|C?lM=spg}1}q{Mj3}tW{I;0m^r8bjTV?K@oEi zVtai*nxsS7*(UohyUWeLCNJvkuH88aCE~gln6>b%GQjkUz8&fe9ki5%5b)^!f*s7VdDAA0i%$4vtIV#xKy89 zb&`wGI&gB~h^U)!eyjz8q=Or4Tk82h^>S}9UM(jID^*X#4`KvvV!=fSR~z_Pv5x*y zM0Rl8vlZv^GkB)13@_)BE@^>I%QTwQ8`7EYh05;ndN)u5w}e{-w9D{=TJ~x>@sGaI zKNjykdlN#MW%8&!3v*a#pMRop{cQ|_m4nppy0bFPW-GnvN=!GJ$d$J5Plo|gf8#fU zQ%~8DIp-J(Gt9*lPg;h0CorR9>~4uGNRaXql`l~#NS`fBsj3a!t3UDD zj4l6V6_DgpGU+n4T8wQa;hc09NEzfCeFKqcMz%7d;9z5H>k6TTci&mG8iYU0HP~a(`K(ldn zU)BZ-A$bCp{O#pow_K=uVJ=4V3G-r3l=nN^fqC-hEmLVjNGddDkuD35?a3E;hc))+ z370=xza-|sH3w5v=*a*vV4d0cB-*5Lh0Of|FE|=O*X*2jUXf1Tz=4j-jVMnnN6NP( z3GVUq57`8=re9gYSb=;TEU{mmca7!}MbBVrornte`?1O{ z*Rq(9*#H*BLnH=&up+7XLkzW;Q5JN}GJ3b#-LFb2-e-xyr|X#D#cV={+FRy>J{vA& zk_Dn+Ykv^WAy%VJTj6@`6t|0>&u?5kL5{AgZ5J!~J7y^?WSXa^(aV43PLbcy|9N!o z{zK7G5&Mwg^!88qLKRE4&o^1qDA4WqClMdhA1Y8w^=y{? z;CfcJa;gQ3lWHLSoXFlJ|8o&L&sh%({0thoq7ZM4v|h$X=lz;>uYf*>APxFg^i@d` zjG768Crvxxq{7|YkL<3`s}>-tl@d>el-sLXhj9Fa)`qt_2b|7G<>}{!FSMq;_0cdnn)D5%<4Pl6`)(?)%Y+A zOABHeEw1XRtlDW23n<^gP55+g{UrVI?SHApZjE`LcC3%9+aRyZ-c2xRetC~t(zQVJ z<-5+CnMGez7&KO?1}P`2_r9RVrc$`iwnI>Z(5l?njx`5gQ6$krTwXWj;{F8S*+`>j z$pY2He>b!GLh}=45jyPA38T1))n6TK>%E_C`MoYL?Io6G^CxomkIM`e|>b3+f;uhPemJuKB zP^t5}{4zOtagK6~GK}0hR&3t9W3%i7H|W#(A?P(|j`KXqJ3*31>$&T%pEUQ+5qLy* z{Babh1!i6jgo&R8o%;!xle8K~!D0JQ;^Z?z?9ybD0Bf&sfWW;#(x5dFjlV-(v+0&e zHog-V8PvsGK|a8NbRZhD)vI4^1ih?3R0D8NoLl-Hgg(OP?1;Z{-gciIE!X2 zsFApQkn~fhWjWF&cv^mZzW9D{vY^N{c31p^qZ1T8>3sfs6OGfXfyAR?&y;=)6o-X^ zc>U5&#H_8C)k$g1B-@0EWJ%$N!&+bgYY{v+F`Nc#1Y;m9>Yw!#mg+u^6^}=gl(`D5 z!9G|D7B(mh-p*^dq62(5Q-QrxV%OOua5i++&iDRfZ;(()*M~8j?p$a)ry44+WT5Gxe#tjXd0AXP7rm;pFslS^X}kQMITLkw zRCbS%aeVIZ9ueq%Yu(KLmPVtF)>6w6B*=$Jytr&}l$l{$xk`pSy3!%5 zh3-j2u!59mJ}Ie&{5pgf>CWZh56cGAd{`f=&xH>ayldiK|5Y*5AS02BpWzlN8;Eo6 zysL=i>3RMKs`IqG{F{4?_V$C9S8hfkVu1%4-qT?yq51R#K6Y=DWWGoue9Vr3EKkX{ix&w^|bv?1^4{4k8e_~KGxB=OJo}OOoW}WM=3mHkypPIThC|jt! z)`Bcv9=}zGO$xZ^wNW)|7Qa)G+wJ>_HBBl_Q-EG~moClt)cP#J7d0WOw$XTjwVZa? z>ZOkYyd?o%(A7j6{3Yg~J%T)krE5*_vkpAvxdTJ&i#=?c4hZ2a|2jjvWj@wDWH$~YhYilfOoUFpjbySw#gEO_mfo9G)gWL_x0t9ZKUpbKscYGu`P&q zhz1_-t>u{=@Sc>v{A|rO7v(!FdT7DSrOO#&@@(E59Rde-eU&fBm%yto=$^1h{KEFx zCuupb|IC6=ew6i~RL1l3NMG-Q61&TK1FRoDr=@`iqtglxM#RpkM)+S*o}!jtBPCS5ge&0Er&%^CD=e^`EvFh-U(8fg+w^rv0d(1(e(L>oK0Ix9Q6O+# zATjbtvSpihPoZlsTUQOIO4k!pOK%;Gzbw>2-!F%VpUbY9#`oR)NW($-JiL zpSl8T7HxehONc!i6}?PIe$zn{FS4PTWHscJo`+&x$V`m3>ocsv0SR5H@KNAf;!}rT z3Cpf)&exK)d#pbwf#%bpx7GI>sd+cx?m45p4X~HXha{NCV@IOmq#EWejU*=j>rVTd zlpFC1&*t)a)^2UAQ3qSKG&o^|s`ZaMw3goMta|!M+zr?23VX;lMfBVe{m)nYX4c-dN zI-tlv0Yv^$MByeMQL$q(hgM4OEh5PJv-nJdu5j0uMU9`Ch1_Ihbv`ZhWX@1{kPuZp z(~nO;`Vyr-s3v<(vV9!{D|Ucj8MjkyB&jfORT|T>|L*#xAu|JQWup!KE>nUfa$9v2 zazv?V(4kS!R{GaRE1+R-lO54<+1_%nY7`1bdD4*K>H0s`j6jHHzwjZc)Whaai&-~k zcbe8bt!i4~J59X{Yb^F(;9jY$)o@eYQ<=9ZpEG~-m@N4G)|RUBM>f_3?nlrvKCGxn z&r#jMqfxo4K%)P6@9O}Qa7G74<7 z^tJ>MYx~P$is0cy2^Z`@!Wm1(UF{omXI~)P1QqxBltPz|g6W$5ogg7N$OH0BHpOK$ zzoF9YqGvAeN1?FPy3 zxy1)^%%{SNfZ?o)l^Cf?R8yj$yokranxgGWcnb((kmwKlIBay*RAnmPp2Oyq7lJ3tyHA!m$UtdGC*jlMSnWf-{eQUej7AHR zZmiYx=)hbvSSSk}H4ujEt z;pB^rbwOlW3qO4{ zSjff9wVjOqem}9|du*#Pn#dwQb>J1HuA?MtMv%wU z5W)RhoH!aynpH+&%6Jc9`-Wb!a4*oO?5`)&jS((a>wEdVs$FrlvujyX%W}K426o<) zK@Q8Y3I+MedP83zz^ZQz7e=j^QO5V`+t4SZwwtcatjG)qgApzwoxk{mBuB(F8B1oo z+%buN8GJ08i#eL7bzL&&M8-6%=A$<(I0i(1O2jU-JQ;o7pDm4{n`Bm^%|JZb{M%h` z^%OH8?hp2pQA>QU?jd4*k#}jYo|^uxBsmogh#(mgidulsDYqM`tVVmU@re8qBb(d{ z2y1Zd`=U|(MS1lsYwW!>z~19yG!J}B3A5y+r*o3xs7HLN^o9pLUAN0I-JIvjajEu? zfB1dY9B)51SZMvLKff@yqv{fOfRVSX5o558?zc&zjcT!gn?~;ha_(i^)-&UTu8Wrm zbqL6eJHn~(j1n7j)bk??1Icc!;3b>xD3f$U78c6KWshS`&jcNat0u?W$$9!qU6v-f zzY@vg!=CUtFH_?#wvOj4B=MwykV(D5M-z8OBht`|{%T zubogIJZrcgDznGGcA1hfL06n>LEAsQxaSqawN7C}Udjll-FFESyD>BaW92w89TmPI zqc}7v&R~skOc9&H=70LM^to!%{@UOS7c2VSzQd)Gpo#1w&z5nZ?(br38%X9<@C(v9 z?=gkNzg#qIA%GwE7N(ocUUpd8raClT13mN}$~$4z6VNvP3ZBQ0)=mLuV&}vN?E?n0>YihhvUOz;z@2#i9HoL`i-jGbvl= zrFz}aDG{20%Ul$?9^{TTXeExvtWPra^vB|B&zY{j0(Bw9b85HLrmDlpW?%;UYxlG{ zq|i_Nf3Ff*wdcBTwd?C&=+WXgE(vA$!MhF5%RCeq&& z@Yt1YNp=k(0pM0HEM`rr<-imFzppPP@mzV_oqkMGaHIQE7NcVeS3Zi}aS#=j@^+f|GQ>A4yG+Y`xqrj|q%;l{`Zt>^A=8Pz# z{g0ALL*^U`*?uksf5XNTus#EO;l3f31s;7^Plnv4qF?3=GZP0`p6NxJQ=4q1y}4Qi zwH{&ypnu-vxTo7XBbd(uOJv#jc+f%>L|jJ*~S0bCcJ3QO>`^E{yG$z6W|fT3hCMJr>7=(_Vy3 zh5s+Q-uf%*{fiqNnh^;Hkd$taZt3nuy1S&C0feDTI;6W(q`MoWL%LCF=)7~z_qpr2 z=ZE_b%$l`6`@Q28d!rL=SS@w&p>ybqSj=WE(Yo#kP`b}^Xbq#aeN2|_dU*5g>vBSe z)jDISqyH*)sJ1RW%UT{Mde;%PDrzDDoz11TVL#~|(c?Q{MsnB^56TjiwcKVR>$|lvBDE3mS1e#5ljRoIlPVvK;<{@&U;%kAF!2b4xQT!4G&M) zRhm06(%gesRgVB~t@t$$cd6qV*7$!`u3)Cyo?1WHd;8ImsvXF&S?=)a6Civ&;Wf;!?Ux1kOMr>eepAQQpVb!lW zAE4wv7OqOx5O_jOSxVu-6D}I1;w|3|H}6oM><#~f1nqywSDzQ`R5))u}4iVdr^|#G$FhR^*pk>yJE}$ajNWp zuX}nI`#cR!J>BV}Rq#;>eFH6MRvld%)~L#l`WX&~MruK-1J+lJe}gLg?ns^l%Rr7> zCNPab*NO?}!lG?pb5FVM?V_K8gAV;ID&Akg!BfzO2E0g*;boR8a5l{EHr;ejWPzm2eJcRe3{ArINJu%Cf0 zVB_SwrbhbDVqj}@L??|Gvc1DG09LVHsTwI|S_;#TTLHX%euOBs*4})O&UIPG5c%p7 z=8TUoi69cP9m>MOOXPNxm>;IkDA%9$4d|Ntts@>Q3MwJn3^BnZ8@7YUl0ENL&rmKn zN6SUMknB}s44Y5cb+JLTt_*D@6Kt&`b$*rmFnlr}j~97U^?}Ix44kgSyd2 zBlzJB>kXp~Me^_W&qFd~*+g`4l0Y{nKj0&aaA&*O=mPY0j(ru+_B5E299u9=(ZX;~ zokqCpG9=?^iG4Yg^#3Pv3LGwOa;Ty|rOf&63!cGq&b-p*B?h8MVm~V#N;56J(8QP| z5gmtV_>M;j91IvPe`P_<5G-DwBpCy^#jG%HkKNYqzMF#E1A#N@3g#SCIP<CXuykHpDTg(c#ze3~AV)XAn4H29p@%4x*S0_6 z@nW(+#P_25cKHMqichCRr{@4$(&UzOB9>#eGHP|gL^=;_d}kbf`8k?eG>3ZJubN~3 zgAX;1baRXcL8Ii`OmL8q?i_c;FGjfQJ9a9wYuEgfC4_w6Jr6dot&XRlO$9ms3%-Ga zEE*{gH`>oGMO;v1?lMO?Ia19#!SFjifP*;R=+K8vJQ9_S%qdYxhei7Mx_$4Pqp&M(Oh1CBM;*a>*tu^>F2zf}Gk zRG*(tGfKPv;u#PzPIifrydEr+1b}s*$^jlPMVL>waRK#;FA@4@@h8MBpZ5vVE6kZw zTV(bH(m5=Y68UuYCDO6YW1E(Zp^z!V^W|ETokujZ^#4!IY8MZGjbvC|r0Bfd{M(Ew z6-U0$F_?5lyLp}F6DDJHfjCcaHLAJ3Z7^wFd>SyO4b42{-YPxRIMQOK7BMxn+`cP# z!zoRQ8qJ<}^2fY+a{ZVGRm~~V-T2fp6QX`FE+J6uD#_&wf8vsbUQ9@ypQQmeLH#K7 z-dk_OW4wrybSF!LutK<)9QZaUH-FC&9CaSX_K}bi`0Mg|iwlm^cd9itcy9tq4%fv> zD3{?M6+UUu+Y+v1+&vtI(dS52*zLe&(?bcthYIk+L7Y}XKyN71M2=_&KT|30w$zpc z=7_qN7QFeqVHQU;$6cij$EjO5UfHM>-|#+hu;I3TvHux#e1>N;Mp|<{7P$hF5=v*x z!Fsm*O^-a;7Bc6!7bLgHHqtA^urU4Z)HY!(y>%A1+6QE2iEr)!Da$i-Zq3(aBbjyftku2ct?&r zjGqeW%-c~swGwSV8Q`9ECUgQ41lNQ{PIGYr>?rot_PfvssfzLTbuxsIlG0fr@!h5suV^2F--=;Pj zBc@^KJVwjtT-6?OUo<0*8b{bG9DSJ-M$~|b8O^pnuS+j3!!m#tFc1H0{#TG-#s#jE zz2=U}4>5e5ADS^dc?92XB|DWSC)X|s=W(w7BpXA*NnHSC&1uxur&UCpGs4`aV<${; z#GOaf7Ti=*MadPSW7!FTr!4WrnjiBcJtJja?GQO{GrTd!ID_|w-}rN+3RCdoR$ZrF zwBRz8s(o--MA?tpegf~WDOy!XO*rgs|m+l90e;-_l{z zq!`&3|GlW<2l6};2CB&dgD)rF>82z{SZ+%DzJ=sVUb@{r#4Nf9%E^Q=7x;c0jjcnj zL@_cjcG9i7!Pd0>{`O74Dgto&@hgk!d39s#mE?0 z)jvqKLl7wV!xeBsWV<_@(zMo9a_2X)L7L{!117N4>$yc8Gz=&qVvh#%9?W0xg(WPr zxwl)-a2V;YSEn|gAEUyO&ENiz#eN7wTEGz*^OqGJ{WXF3+wX4eQqjq zUiXLN{I52MzVF!-o_k!6q>u+&b@Ll(i%q}K9 zsa5=j)8jcWfXxG^RBo^xm5Qy&f@%0Cxjkhk5HkvYH}tqgTVuBo=9#j58bF3Fxx`cf zvSQ5)PBZ#RU>PQkbo7sNwJhEtHAB?CCpu#5;|m)6N4OozXi7G6pm1L^tYAPP*7#&S z<8&0S#eiwi9;9i6AI8Rr+DB|(c;pEcmz-$U*j6oT-ioyFr-m*x-LDnRlScd)xQ)0A zn$Nc(jk|{^0Mv`Dh3%`>`f}f4-*j%Qq2T-=dCaJN<4WD!$gk)mX53p-D>mV_j!`>c z1{;=CpT}D+%mHL>XUvAeYte9^eZ#PQo0R!&dH8PTb?HEsz+euMXCtg`8%}+jBB(x{ z-5!%Nurtv3>Zq|?@m>GP(bq)|aX0$a!Sr*8uJT`G-Ji?WZKlYY#N zH3QoZoreufrW>^Sc4ky-`I%a&ZK1&m#FzynvBV>3j2XUQI4m!NA_|6p56P|>kG#SG zFSqY)xu#adv+$^!@XLA+NdG)PWkoKGbs;FD$fem#Hb4=2w}-*yh$-OB)pabJ%Z~1V zJ_6w_-e!s&S3c7rUpP%{qnk}AzyhzF(I`&8g4?Rs3VX7ilaG*Bm6LRHJ!~+7Qs~~* zesBfqAK+g9SBA>vWF!MimZgM<{>f7&ePWj4=>P95 z-n_EiMODffL%$kOfjqWU-|^>By@29oIOjI}YZM6@nh^vUhy|$GA~M=VYUW1HfB5n0 z%H}n|ahZ828(fdFxcpn=8W5gUK@~0=K39v4wi)jfrAl}F(>6#~V}_gIOBMsBs{=qi zu-GGOLYI^&s|bc6(q_^FyCIi{8nW#mkx2h8dtio=BGfPeZ9 z?OgjzfXd8=){FUCIV$<^3+kSXl2W(4{$+twZlfSIvEUGQ8hG1TRRcdExl$^bnSeemBjT(q+i1m$6N zvI1m8Mc?ub1}dC_HyDsoL6zr1X{Yr)8fMBXR+I7HT2gGwPw=}EBBnmfT@U{WAy$MB zpR>~d7xcJp-#eDBkW1P7|GpNg-Obn+I8*&fQct*7H+3mkwR#5(knY?xiX5iI$gmj9%uH+(ym#a(S~(zBg@T^xJz0E%oQ$w%tr4R{`0ic%@-T4<_g}bPMwo z4JD)5U~0Ty20IPT#IP84UhAJo`C9vJ8L*S-Iyn!pXh?Yqcs&~`0b7B9xF`YGdWPyW zeVf#lQsFqPjg!^V;7s=(ZS^=hoNRPSDAe!B+3_oLJ%kLmaTx)xZqT6 zyg5y15RbmC83CP{it-#?$N_4F%JuZC)-6&U^2C(H!|_2sy80KqtkGLgWtK=-N6fIE zQH2kI3*1MROx0|B9jrH@57$G{Ylfe&_(7Y~G_DbAT@%%=&btcpa5umOD+dTC@KbxO z@^@-}yc#@Nj#xG4D;IK)VnX^$k}N~E&|YuSq>q7uqh`|f$l;-{34r6zBSQH1rR@6c zapVWBd!$c60Or~W8?~J!wAUvksJrNgV3#npjop?e#vMjr#Qo}eo=fxr$KpHYi~Hcq z->!eYFyvQ>ZH{Lxjm7q*M5Jwv@x8K}3l#~&W-H^+-tcU>r&Pg)!2V7%gKt25$th|% z_cDdzDbFmu547a$78wFxz9K4c1*j~93~ zWOG{oO%X6gRBdJ}-wj@2kDgfG!B@`5w%FWR(nD+37?eC7Bl43%C{{E;>uO~XdaMbs zPEqk*mq~r~l)C%djBnjMp0m+#3QKaeUgKIz|=J6Dajp z<~~Uv^S*H}S@`ktq-Uui{}@A-tQRK1PM)P>eo5`>;YU9~YF{NJIp>SkTElLpq?T4W zx4PIX3(Q}1sK?}4W`en&g?T#Z!innSB=)LITda7e7r)7JkOA{mYOl31)>&T1ma{R2 zsd(k_?NhlEN9lx6wibdwTd^%;l40X58m<$M-Y>gHmzmTQwo7X9jh8dJzk}+O=?sQa zk?-{kv5{bYw7ot{W#{Jp1Ng2*HgCq=6BouBZRM~()N5f2BiQ0|ex+%L;wi5$LpcS% zDp=a+osF0pg6(rx-+C>^(k_ON~0 z7CgiE(|)0JA}uQkMcx^@YQM8a(D{OV?qf+PUvzUIQ6=|xxGU<3fNw=#@I~POrM&uD z$_D2Y*mBl`$BD36vrmJXO9S3iwRpAcxVFpFH4bsufdb>SQXg!!Ms5Vn z%PmVl76*>d*>JL?iL+#zOEz7gNNzXl!9%6QyQgawAd01Wpxn*3D~&Eq zGNrw1Gt*q;s=wZfI18@J(AmfHMM*ZXJxZL7pgfz&9^ZO9(Im-C%ILr5%NX3?4{2}e z7o70v4y3C{hdF}v%&Wa)jX-V$E!iEZ`z!A754u!Sn_Y1BDt7?yG=xZyQw?9GhEjzv zHI>OzTv_I^8K44;zM)2E9y&mzZ$*?J~W8D{J*n#D22%jJtUaX~F zX8_AfnaU3y%e{rqpXcs&vl|bhaAn&Yzv7oUITQ9mgFJeRP}B`DgL;O#O6~cu@gxd|Vly0^ z?t>{>>bU5!JgVI*HdjJ>{6vEa{R(^L_ek;-*V>@wxZX;{1{`QpmmW)F$cTSm*O+TZ z{$%5pH-DaG6*#+rT_?1%2a7e;K04gVkXYVH1ZXZcGAIJHoeWKt7)=<0)s{02jGu6< zYxKHl-J8RK;x;|DGoGX5Fn&uX{^vIRjOWd>Mrz{>Xo`Bnmj%lu8%?RfiRv$(e~paM zOB()kfueUDGRtiX>UlMm-_q$!8@T@k2`{WC{lENBvyb!~1lvkFdCo1IVY!2{ z)%-vhXZWwxR3Wp~UglsVAz^OPqPh)yx5*kxw9w@j|B&hA)+hQKRk8R!8PFAq*l$FL zJAp66HX~H-=F8^~`Eq4e*6ga>y7f`Dd&G`Gu6b_U4tou5AGj8G6jENk_=>+ZxP9x( zyG2$ZZ&p_O_ZcFX(TrMMVc&3kD9p$6?f@Q3>`0Tk4J3dGmQDP=&T*!hD+|px$ajB$ zzYSrVFO)-a2Km%~78rFmsZxn@ViWSZpXEH70apOTSyDB?)uovO6wY&s6yOmAeM%90 zJ9r7&iGVbQiqFy}<#P-Z9n3+pXK&!;drK8fyT{ECq4fwkQTYa>wY$lW8b;HI-=GZ_ z6k}?tBzpB)$@$y*Dy{l)Wz>zP$XctP>GA8{ktDf`Eyu7dD>N;`al}Qf#jq^c{xL81 zX#UW8#Kn(RfYSVWr6&}8COvV)8xGxA7b?SLt+LwCQ3eJb_d zHQnl7gR~gwf6eLE+yB68lXNTZ9baX`o<6F6i28XNL(+Jb18Kh`45IluXtcg!F;4z3 z3YnRX7t@0_72wj$AIRw0ho%wcM6`*HS2!Y{ZQMfh$Qbn#yA==(=$}+!79Vu~qa_H5 zCCF&iO1!-{uxgaWLXV!7ZoQIKp5ASaH#mDI$LfJJ$OK?nbSC6#_NWTQTs`McjT57S&;4%%gTk)61y%3T(x6;0-nzU6PvI24-6`g^ z`wwd_V|ch$i(g*zc2U>pZW>5b?`vN#pI`^JY~~K_qiNalR1u1qJ+ImCde{u(T;XY? zlJ%LOi|hdm&>^AK;Q#d@?f=at9I^Z2TG`mbwvMK$b<(Gn1k_UBqgTXfwUe5~K1z7o zX#wTlaEgzqdCzp+ikGXaFqEP6ymbgi-%TU=Kt}f*HF<5gccT3pZGVwM%5=l$HC9X7t<;0d zKwT>NcYAidF9mP$9+4=?-Q%m?n&(1p@Ehc_Pn=b2pC@XiWK{B4kr74K%~lLFVks}V zk(rmAtC!v}O7@n1=UqV*Ii0U4m6zFi|H*B~&O}5#nFiC~5$E=;ZSwuH$nkx+N`Q_O zfhB3~DGV;5tB?a~7<(AR)z=ot{%~c=a5V(Z;IzPTAx%G$K)O@qbWd90M3b@b3k&&cS_=1z zX9~M(bqd#c4qE|5!DI(N|J-^{(uOb&Ap^lOz(`?4K7!$DZkc}p6Y1%$M~;zfW5%<0eXy5H|N<&z@0kD7ojgj#^X}bIgD6r> z{bZ*zt#S}2^x#J+$uM&f@8H9og)Am$nF0{odn7?3R)z}4u(73n*O~CGBrb|CGp;oW zuCs+N!gG*Y=f`EqYxRlW8Z@G;(=*i#Dx7A!4gh8_^ObioleZX-ytOFMj(bkN3xtPZ zI6k+}$@krG$4@%RQtV#r>_d_+1NXH?4}cw@SQ-|wgAw)f$aM)*20NMhwl0Tb&B@2g z7K-ynSfs&KveBB&m;#rin?Xu$*Ky%Y^e^6nAB%^7H@iMVhDF=*6w0|IJ-vq59|E%c z1=l>p&!_16hItZVzvpf>NuKfK>D2Kyq=z91I;$^sxCGO0+{b}|qkNxxAI8m?c({C7 z=7;eL^xw;ApSjF94-3pVTz%%xf=|mE&ATFsWM1F6)K#z+TcFJYH$P>1)~u0lIkJz* z+re-~g`b4HvJ!Zew8n;KGiSp)Pv3yu2&`fjkf5VKXBvX3*kUBoxS6MQvyx+Q*t~We zh{Om-uONy5uB~_FB{~`M!%19B-dutZ=SCFHY-!;Iykct8et*d?9{7;;&d@} z``QT6n6t!zC5LQFPd_Gz`AWKTC)WtGdm_o3Pt-BnP7Q*=nkAXE%r?J$C;1MtHYN^2 zr4G6pUCPMWN8@QA{G5y-s5|QKKGxDqYC+)L)4JIv-THjG2NPWE_>CV#utQm{aXsN-p1i_~EBV68_kH z6zF%}R0e3ivc&#zqUm{pv}7v;hxeNgy|a4}@9N^b-H(x4BZBUk78*th~H%jrFzFsK85WJb{*Gxs;ns@?THJvsEG?ukacK=yup2v3ZM94kopYdhs?o01~dQ(T@x`GNlIVWG#>KZrC zkLx`xDS)3aF_J3;6@amqtnvW`#%Fo!a|# zBS#cHjyh=-g2$29FBNkt4!lEQ!x3YLLjGtpO3O2 zb8Fo1p@i*Uwn;LraaD|Y`n`N^=k-I9$J;1W=0aoX1=k;Q-cpG^$jAFaiA)b;SVjcf zl3kfPqTStoadCs;Opqc?6xP|x%`<1cpp1w_i%_SD@(nI&_>Xeo6OE=dd4o3@wQNFy zYJ|&U4s~REt)E%06XIc_;9~j-edWoFESm)uw+g(6vb@qko7e;P(FmWO90$LopFJcM zIDofn$F;z6V6Hx~;(wyRujyZ;3$4_?75mZr%NkE?S^`39f07nU0m0Og9`6_^u!PtO zQ+5ebVK;r$cyiYVLNu&tMEsS$!irLkqc7O7n1zF|4`YpJfytmLlyIcOdQzN0p^(*5 zd)sLUl*w_HHRAC+E%KRMFpKH_bdsOsJn;LETvMPL*T%D=wQx?1&T>YBw-zpMis=@$S66ujB3 z(uvl?Z(Ez;?^ITR^R*7goaJr+Gh(Z1tsI1M>Nw@^JA6V^UVmg-FdI;7@M-g<{2=Qa zF10JP7Kj?u6k*K9-uAOX1@q4&gQ8A}e>K`;eJz4`HFmdulU}&K!3t}wny5Z@*`3Fz zSK)*DMPfcF^V=7lyw&M z0wq-&wP+!f4XW2~&d%4sqy7Q6sDqxd6Bjv|j1f#$74+WGHHIgGX-SOQWBM2EF|s0^ zHHr`(-$^!lw5f_xP091|Bp%aNKR%XY;`eF9!dzu8*S&&rTDKAxjrr$nah`U$(lSiz z%Y1`V0w1wD?!D*-mad2?Uqr>sS-(uH%V!m2DORA^GP9v4OsKM?6``hoKs?+EIst^2 zFt-jF{q&U+TOAU>n;Yf`cCnyH7C7)IcW3oy6Y1lCv;Gjuj14T{j{4f5Tr1ry1g`Em z2oasxxbvUZ@fst_-}piK#}m>Ldk)niEfUTPk@u)kC-n)L@_r( zLkO)IbvO$|g}?%Ob%{UWTp+2E2AoB3bdW+IGmcVH2E1FNUIm^x_g_t=S$ew0EurAM z%J*l_GKDo>YFFR=GhLac3Zn^)w5J6{+x`YSl&If(!nP5afsdDC-$ zAu#&eBbA-x5`o%>lT8ijv`HzEESjh10-`RATCj_EO!qe07%_fQe<~ZxnVLP&8u{uq(JNJHvb5& z0OkbC4QddBhi@GG46uM0C^CVfP+X5XkM$Zd^Q}b)|Cl#mkQW0$kMpU!jJ?izYD9wj zNVOLRPi_dg`fE$#VJ&mJlJ}@34~1qRZoPaC);yxm#w==qu`p#WmWx7&w+NAY-{zGg z^Gga)p0B}!#vQMB z^7=PfFpUrM7q^>b=T4Qq8DPvxr8H~@@4GRp<5#J zrcC&164K_-d^dg|^zs@)oYxDZr1#;{UlW$6oZJ4_6hu|+UK+;Ne2?=gmft<0WB#6>Z@s+)L>eAA;$3HnnC3Zg zg#qLX2;srr7*c(ZU{!}w2v;87B&Yq>%9BOgiUpTGX-T#oFwIgqYlsap|FP!&w} zBd_?@`zfIH#6gQ8dIc52XH_{qr-drc2H?0HmHFq;t3Q0$wq&t!6GqI)6R#D+@sC3G zJ7X@G>zk;AP;XoLs$5fhY4b@?%6i5WUIJwN%{xIqq^zK<=lDrCv10habPWQNrGiIV zLGsy}*q>8rMV3Z4q(lqmGDL6#IBUa~df0B)uDMp&&*c{(cGNN(%y6s%cRNsQC(D$s zu0X}o{g6+}NTXI0Ly$thvx`T}S?VM#v(Ke1#V5P|fJn-EJoRVv4x`T7jtV9D;iuhW zB|hJOm<`q(9?pz?A;Z8Ug@c`Q{P8YGkFr^M>ZpLx{uH?9f6?$X6YuNiF1|m|xq0yj zz7AGsHza;cRxV5XmjK(@!2Ayi^->j{;k5ndP?akJ#7R2y#>D>UOFZifzGiP}f&pSX zy?9ss=NmS2iYsJV$!k)(-O!nYtJjOqg_!L!<7>*L*;1HR)`#MP#F-4(GpnO z`f&U0%k&eiNiwC<6XgfiYD!|Pi~}``<{A)Zp4{MyU-T{FLFK6c8Ldwzz~?PdrL2bC$*Gj`$KEHqYn=O-&IWeE$@7&nCj+z zn;GYb#EkPH#XCMf3+*Aj#s$-vAFp1MUWoen2h#%U5Cy?e#G)VCn7*HMJWfIt2=`>d z#ciA=CL_sm+hU36`QPf$Jt(YCflhl3NWD#y$TrtWyl~YGH_w>?$=ATr|^&L{yl>xPAcT>1{18y0Q3djV@K< zc6C+`h!_<}&D=qEWw76yoCgQ&aIYN*ETlg;dqp$Hh4f%{|AB!`$Li0i=#3gzG)BL_ z9Ys5IwvuDlG)e6*vU7;V{!=~BiC&fdJ3~5#-qn;QWEc%a^Rr5bEn^3cTLT>d3Rm3u zx9=><=qv`Tv6E({;vkpW;tkoI4QIG8b)2y<u(wo+BMs|5HSLlubiyw5VY~(XO;)HnYF`m^-$Z;jzgr)p=~5`(Gcx0w&v457X1x|7ACduY z6DgwCVGSeJfd)M1R+^m=dE6x<;d@+_m6Ojnp!1lp2AyxGly%` zUoS|UO5G>c+ysP0*chzp^oJ^8tj9}_t+sweB5DuLWLn{gDg|3EUNj+&d$4jBKK4_B=+<40G8Yndzv%DE@!qi8_WJh)mJcl%Xi#UlGQpDi z>l1!a5Xhjk8epuRheo5ZbGU!h=CDOgnWM^_4-~eU5=&gm~0^>!zuthHiq}D$<8qI{D9i zxRGU&Mu1r0-%opF=rNgR^p0s|&wbOW`FjNYgb>c-1Y}7oo#di2V2izQ#g-Gnx!T|QEX-+@=RcF{Y5Gt}=`S)8p z(*E~bF9bze>L~iVjbta!7-pbI&kkj+U!AU}B|haz^39W{SXo2s`6B8(NqD_jru6&MOvjjbpTol_2rSIPc z3cCr}@(in1W~%w2-)F84Duu`_-ZF1>UVrfr$_GIRFy(0Y7~Ni;T^y#=2H4{&l;Lfs zZ8}_>Q#0V&e&Z~mKG7QoL1t8jz7766sQs+OE-7ecnBT7mKfW3`wK}J^ zd%oht*WYWUaw}ek^cLbt9M1s=_NG=y!a&O@LKf$)=`2eDz;1iG=T!HBCiL{cG4jsM zkm<{Bl>f@*2D`BTqqziE%#>XXJHo)6WXbnm0*H>ulX_qPP*gMfwWAo(m`)xi!=lcW z`u0mwQDYoBTxDM2d%T|E{J(S~8s`Asz_0RWI=3KucW)*QMf3~^I~&iah}$e8+7qF}4(H?~$F%MCiApf}e#Gn^n&J*otr)cAw zay$V3UdKL66~qw6)6pMKkY=&W(0IeHjxIOx5Q7UdE%9bhftQ27uFFH88mZTbQjU8^ zJfU{^XG!92_FOqE=k1^+(0AcdR%b7JN-AV4lX+S$o+0 zs1!02%O_8b)9TCY4ll84FgHG82x{&6khft@4W{R4}Ei_wc& zg(1}6XUhWYx87}?GO+DItIt1+s7Q<%oU;%6yin=%u8Xo4d53eTc!VPnd*cNrplzij z7Rl{@4>>^izYp2NtQSJ+KEB~!hFG6ILwVa?&|Rh5A6LEKF87a&@h?>#=5y?y7^XEs zC)a@|N$7Ucn{){0m4w&;=i~9WH=IUzFf&@;I_xdy+vDXfNoKd5^zT4)1iFwFo3}g? z>`tPc=`e;NXkRkhyIgUl>WSYp&-CJ;b`*|8kyN;wOHT_NIG3jqKbz=>qlhFr;gfLc z6w{gD%2ArQ!)zgI`0{GbV_g#KKOer*JhD<(TIHpFnMlkZW}^wU7*cUu@QGw|e-ygCt55p%nAe~h;5unKi8#{d@z<;S4uLOI4Aw8e;QY|IFM z4yEv34yGOtnz`+yklQHcy;Xxi%VG#g>)1bt{=}E0qoV1Mqb zvgC3|w#!tK&>^G}&O;nO@P7RP3%^p*+v!q*Q%nj|%K;T`$!mZQ>&ADMAC zc8}5myw6B8JhR*uTDtyhqhUs^tVy>GFCeGO9PFr&*bzQup4i18M0 z7mahrt~&fP(GT+cW5;0if0)g&39Q$Vf4Lj7%DMqBzQg6pQ~fjiTdO~Mg@?8khB6YK zB>he7_W0JosY-!n+~>f$-$N|_^mYjXwS)O*5SUW}D$R3dU~b?p{?@zxKlbY3wW+lk1X!H2xkjtU%&V34$5%eJPRQCKad~ z`)sx!2l5qHm}1|4HGRtkGV(I+8fOtd@7(=;#g6Od7qOYCH|AmrjJsdm*gGVsVUa)g z9%x?`O2jN(PC2Ak%;zf%5orui1pEVX~YzHwFN zulcW}^VHns&cwqe@MFNxXX18U_+{I4qgup9uTSzS@#R*(gvDJek7wq< znXG$o*6&Y6Yz}8Lr6cNx9{5|~*EVr7IA2942j@g&&2lbn->KIJm(x4mGA14N>{coS z$g;?J!6m5}V$-fMv?_LHmDA#AfrUgWkQMdQ3Oq3_O6XAf1IiBP3!<@%L($wA!u+S_ z06gXsiHM&?JiwWT^DXPR%RHSR_>9avdh!pC5!Z136MWw-drK|)V{iMvU9&_{MBh5K zzwZ_%{%Z1+zi+sJ;p#-I`K1nK0fXw>?(fpGS-)gaR2ysNIB_>uoVV6QD-jnP(eDx-Ta=mZUps-c~k4_ksN&vh>M4 zf3I7%+DvRwk6{H<9$RiD@MWr zQfZ^&_YWQ(v_omb2e9TT{1yDEY8=*?!*gC3?mTa&f-X5?rrxewm0y^2ZuVT@OG7q3 zHBTQu)8wu{)gS7&XG_WWJg;N|g$oux(|3<{mfymXFrXLNP8%D?EPN*CKdTw5%f z(G-MAqDMb$=*GC+Xk`e0A`P31n|(v`*8hbH3ZJ8P>@V}2%0IXmAMlp=DE5O8Qkfxj z&j5SF1d#>c&e@Rn@&B}QB>ye)R?gnN`3?Ly_KqZ)tyb!=wvJ^6lR)pYVyT2M^ zMLy_u2I%;ia>i6rNEK?U>*Jh_A zkMn)4yLUA-fa!-Q$xU#X7yNapUVn+lDB!St&xBu2Dn4NbydFF|A)Ki6E7q!}gRm!I1ks7yi5BV<;MH9aPbBQ&pM6g38E_usS zF1z5SGo309`9-r!G$!unB6fTgS~Lrp{Y8>UE8D`@^kapdiiY*Ce;o4dHRH2Bdc=;G z)-aZ*2Y%))EN1f2eyi(6>dT^9Zw)h#&M{~`lw0lk3sHnt`ULH>Sh3&!@@A&1RN)N! z;+1a6k;%6_>w8L#9m)?90Hh-(y_iW})l%o*LTsxGxKU~E=1Tc;0jrndd5;lO@8`yZ z5^u0OGg%R*ZL;d<3KdfK#lQ@_7?6%61R6TlKf-MGd@O)>WFZ$+@A^_u$QBr#tGSO{ zB{WXiUk?*iu0L0iqo(unEX?!>(}b8Q8-JU%vLDvQt%{U_Wjed`QM1`pp~Dpxs!^jv zyfqeKp4+JCWaZ2YYvMl_-x{Z2{m2(;f!0pmZe1#wCPmHaCZ@dk=hSA$Zk&6gc1)Pk z5H|-5YY1qf1y9y;Ja1aQ&ZIXc_lNpsa^Km|Kv{&EdZyz1UhmQtMf&WO9M2(V2b|nnlj4MuPnUIB{p73(zPZ!0=rFA?ZwraX=$gQu!e_A4d z;pR}3@U1s}6tQ9gI|m@{un3V!3<;6!$WV@}&6#~nV8Rsu&t{8A7T%H)$OujAhTe;^ zGB`GdkL&!gAt{XQ^Ga~e_kLy5a9!;|Efvn44S1WhE@ZZJTN;N_nXiR?;`pmUgY&P! zDKP!+Ly%88%p)J)uq8S9L*m{ZJlc6}xHA^rUq6xWp5ZCXcvB&M13Hz3c4}5H4zjUC zAO*Bh(Cone_tCclyE(eS17s=mh{;Zvo^;Me2;EM0iht`L>!(ZT%Ji|e8 zE~Xk9C(wf2ZKO8PPUXW4QJIy2M~(|ha*b1N#Olm!YQsw*{!fzAhBHVv%Kt;xS+>R5 zEm6902<{M^;7$h*?$Wpu++BjZy9f6U?ivCixVuXT?(Xi>?|aUC$hl_rPoUZRsamzx zU7!%)LOVHR444%6gIG$XS)RTW@@IXhMoI?ALpnO0Ez(;Tw=9&8Fz~TIn<%J-_JK45Fh!0?x~JX-ja8!>K-b1QVV4qxR*0z_I^V!8w>wf z)MYqzN4S-hrz)Za0$`j@i_;{|B01HjN86=oQ84QEU*sH!8B>L%Bv+#}$VILaU zrt7ftr^9~UfBGuTouK*DpQYWrb^z}?yr~d9XVYHM0*M~{v|iHQ z?0W}CQ+Su(&fer|R{pul@BhcFV~2nPXl8$%FG1nRyiYcse9d0d{d%6(yE%jjmz9_5 z=$2VjinR&wU|ZR+Oxh&jfTHZ2+Hw7aJ9e7nfZxN_Mmnt-J}pO(2Jlnj;x#@ZGQJkM zv&1$9aFnc+J&HvCpub55dy2rekB(@KWuoop!Atg>hYM$ufW%;7%#LBG?{+nz zmB2<&=E6!+J-0M`6SNd<9t*#i8j22(1GhOQLY1ikG)6l(MihIf=b`auNVjesUn$f? z(;qmk*oot(9kMO+c!dnva2|D{c}^wHkOV&g6j~?l1-hl*@8vq#mxh3R z+*(&m<|1;of4WZ=A_n;8EW`N3-8k3Nss}Nj4mdY~G7j|J7lLYDr#*k0q)8Qm`1e|o zv3%_fXN6#BTs99X=pMO!iTvL3NH|s^}1q$6Bg$ip!1#$*AQFSYLsy$5%r< zl@=nKusAr$-I{Ze@4yY5O&}D9{V;oWshZt=K zwVl70%NN1kl6S0*s%4-emUxroM4p7QP)c6S-0RjiRzvY38Lq4BK9{%#Is@~ zs`ogs1BenE)WmmKO5R(I+s&34ea{GCKvl_3u}Tj50$=Q-FVF(R76#NP&GD!Tkhgn= zkfr3Tb{-t{liM~QS|!u>Z@y1t(;7=wUJxCon}9e>Ma%jvE((1*@`|2ne>(78du*oj?2NumE{h{TFq2=O6?6NY-x1sQ!%;0$Kg%37rEQ?EDk$YXW4E%&or<>2r#yikfvdo8%vbY*F^32h$my zP(V2iKH~EzVk(sNePYk5y9KrjKW#CNs3B|E(~c-J5S<1gvlf89@qhN0XQE( zfVL1t0yr6PuNQ}<@kx1&Y7TY{?IOgU8Qh$pnCThw5ldhM&P;!y0rY)LhlcWH=NFHA zO@=#Tr&|EcI6^2Ub(9j@My<~0_WT@MkC0;r)RrO7+xZ{r>>O3+hx={(lhayGo}5<%a+#ygzJ03$cd3w^mt z5+uKtga+!>x~rZ%b8Lby!>8yHdo-iCtQvY!XDO}bllVUO;#O-88y#{eI+O7`EL9dg zv#xr#_6Pio7dzpgNczaET70kGDHCFFhlu^=3|?b*=Grs;A%Axo*}G+^6{2EYq$VUY zVCcLyss?_|7+ky6Uyp{&;&U-0&A5s3%-}Nih5EdaI@KntWD6GE376kyVzH%szDTI) zjKOJ2Y(FhS>~~WS4cJr<+(o4EJ!{}%V9i(0y0bTk4fo&b+w%AS7GreWJ)uOB07IUp zGV{ysbN^Sz6;%18;?WetTS>qu1G-%2CnjSsPU>kvR2t7~`aW=%Tu!r$FK(5!MZQ_0 zkl8z#hI%*DQE!O-{iikj7xPtmKFwof=puukG0ZCx&7r)Q_R;UlcFjbs;6TtE>WX_B zjgkSoumQVvOb$hIRc}5y6>+dQ@|B!6J0|(6Q#w3kyUs|g^;zbp= zG47W}&o;2ShKUxxpPQyIK{LV;$mQ?fU?K7#mJco$_f9@2p1`U4THPYQt~dNA)_;{a$sV-7 zX6EhD0YLDWzu%eaA=L1!V;8;>g&$-yfc_Z5n9fR_;fOaAYN&TbNHdH2{(xF_Lvxk$ zoXAv}=u1{7wNdrnEOx%*9X)xS7x7c|o4FGAhlWw;2t5VY{u!e4pn zpkz}~hBK??L2Z3R-^$;WNqW11fckQqo3)#e_Ojjm+#w?0EI6VP8JIXeaB!(b@C+6r zHt_oPHVyr+b@I1m#NXH39n&iYl9C0#f9@*To!kgQ$MZ9;DFQv` z{l2gT5@qYUR06yLvYpI+1@Dyar!cKhKaTxW6qR2w^J4?jFW=H^U>)W$Fuusfls|w9 zt9&%56nMtlK@7AjyU{XNty!=H;lI|SHO>+r(ZHU!Q}5R(&f_)1nyV|$t5M)E%Qm0KdmUJWH= zsMaW|r-!sZ()NHl#gjaiK3S=u_6WylE zD9NRO%W~xi(XIBhgUtJ&-eZ4T0|Gn&W03-zoRF(49PXH;;PR7!M%+Z*SS4t-M|BBBTU&mTSY5s$PXYG{*RU%T zLIVg8!N8FZATrl8o|Tyn3fF7%1duiB8&kpTDy4=v<;{UJejHNa4mV%EPaVM8-{A8HlAviP(S7Y;?3_>#BF5prnZhUuj{CuF`(n^UqWPT-) zR?kdPRHTn2-2E&ULo=mN3lO>Dp_27_c?o8E3DrT2fCll7*#p#yBQa3};k#-P0G|Rs zDrKQ(?;>TW)$Fj7gpcl_44J>QE@1OG95PiC6?InUN(-5Gui%2;HM)YI`OBuQ&$JtG z?|m0vzJ-jri^*rlRa{W9RdgTC@6?4@#F%VAfb#smv6}~=t+S}*H~C189v=_Kf3h0P zLzswpuebH9g53O>0ao3G3opA{fFgxpvgE_9Gql%Nu;Oxg+P}g`0ma|Asx?<05$w3Q zv_V^@h7?vFVS)0g#l3$0=@w1%rDOG{0;!WHZ$oqQK8hgy^Sxk72vPg810ngT9F`{z zMf)1UW--fh92;G^=VvXKI<5AOXyxkZ@<<|8JzGCk2x6I&xsD`F?2OI}ZcE)yi6LqH zOcnPDi*8FDP#P07S%4%3Au%+gn$yv+(OD`5U~1Mz6_BgouYOo~ZFxUaf0ev1^hS}$ z^XgIS{@oOP&(c@`U^3d#d&Fgs_R+KY!~rhbvQBE;Pa|k|-raItwe`+qVQZ}N>t67Y zP0fY3_B2wh^1G#bK(Z$_0C@n$XVL)?vMR~rqtW~ErroRA6r~Ee+gvP|y=59cG(BQK z-XAQbc?z4rh#>=cwlA5}>7LB;LFQ$wfax2ik&9g4FfZb0u8poVI3=}|KV|Ea$iSOi zI*UICOcSmZ0Sr(-(mNLQt2;ai*k}NG^Q0F(E<6F+o}9v(eddHk^%ay%IHp zqaWN4q)pQAd|6O4)Hss*oegw4ucco{m$D12u#n$e)pc*h@SCKw9mgkF_Ya+WjGKF% zlqJKwncBa1ui-RnziIDE2+m>K|F^K}N2mV#f(nWT(@4TU_m_l$dt!Q!G7|w~a!csM z)Aqj~Kj+K3y`WN;0~njzMA>7QG^i^8+yQ#T=6a8)L4ZsMU5&1OA;*-E4sZqXLP5$@ z;?NWvQPJ9K1tp(#dz6l(_Y7l1G*x(JI2E`lH_oy&4%1m8>p9MOBrP@Tx8kKgqzeaN zi6!&XB->*J<2|cG27oFNOSCN4Q2r1GDUI&dgE9*WF1}ftk~&mofLKi;sgK@V-Xz2c z+*iOcTZXtbjI0#;H591ZSyfVoH9HBD7kN#67e3l%Dk^fMcYvBfw{)yZK}qc)Q4r7W z`ulN;W7v^eBE=}k&;!YD|DqBX_%m!OWC`L$ka!w>aIF}@ z5-zx$$H+IV#;#t#X<&uYc-PYZK;b3QIi*2jB3xXMoRUEE4Rg3 zX1>?H)cN(k1A6^b?MuU;)@?1_C#5%mB0k@B<>HuIe zlP>KK|DHDPezSakv;bm7rn}^{#)058Bv#zZyjdGX%i=j_9<=x+iJo=0R85lD3h+-M zw|M$rnff{5@7DK>@!AsmTCyty20xg_(vAOV*`QA!^AlAKgplMe8Mpkvxu+&8El1$4 z)*By&6c1ciZd#$-WF!_y+~Le0C@gS^<7CY}N}?lyFcb-M3$ULUj5Z5~^}gAQj=}O+ zPZnD98YjUP7N{{pWx{sm+qvY;LF#RE8=It`JdPA-lfv|7%Mt4NcfIcu>z<8L@8a6# zP~Ad=0(OI>#P8_cmBvELD+Y=Th0gg8Dimae5rbU&Hdq%KGa#`Yz5%?G&WDwnr3~VW z`X@0_n{Qk*Q+E#}pQo-OROGSw?^~3(WN{f0g&mC~GOT86B|=y&tQbb!`L^xIzng52 z1cb&9@7PC1a-dn5w4D#@Oz~Dm4$cuz(aKKOWJkqOC6;h0b!WJKm;LKeg zTS(=m>}kp5B~|2)n4=<{oMdf zbV`u1yn=zkcFoHry9-ty$Wz;Mo<^d#h};?JqX*Znc??l8io8E;8UENpU`!tEPdjtI z7CbH3xFtVwYo4(mUCAN&el^uIMoiLQKG4p=G8w`2M|2ac>)4l^(SGgn_7q`rTx19E#rQ*2b|)adB-428!xDG> z#GMSy`?mdU0;32FsKwZ6s2~GgaYsq}PcYs#LTGN<)mGKfHo^6bcgWP)H1}OTCGzts zCi1e2!R3gZz3&0p3wL3k$_ol-5<{qvx=FS(mn_C{?HW?kUqbsYB=WU8*eUt^QN8(l zZrrU0du`xDpy82XPwp$x`BR?V3L1!0T>nq;#Ik{|qnS`1 zH(RD`@ys>?M3uH?n+xzPg80QEt&w~(%>K)-c%J;9i~0dF;}Mo=-4l*l!HF>M}t{sc~@bJ8t6`TV&sIL zF*$ZTu?9$S{-M+?N2I8+Dj#Y`DP!Ga%MB%xV6_7>(}xzF#OX{KCixlQnLMOX^gYl~ z<0rk5EIB6BH5n$KBfuGLuM$%bzCaKfU@YXFg*6Ou@|f|wDP&L>0;03stvkF2PPq+! z`DxI#06ls9@yRcd6^h$Ztw1sfQclGm)@UNp<}M*gwk&Y+xyvYtNO&@hcvbLI$d0vV zv*d@fen{X-5{}i*H77IMcLr?_ViMe@V~~8Yzt%S&$0ymb00^Y(vz1#EP7C~aBPh?V zQcccKSSRqzg=i*J0p&}8e8)kv4!TDnWt}DTgrC_@k=j*k1Md({4_{uR4C<-kS|ZO< zptXAjONnsQ`O#(FEFx*z_~pXiT+MuLef@2hESCQjAm5%UArr&*Y@AB}xWztRxaT)2 z-WcdpT)7J_`TwV_@w@+@-j&45oCXJ!JS=M0DM10i7EojMDK8mTXK){{VLkA2UD%8y zLH;3#{jq$PLsq#!&YkghCEqASVvSU~S?`n$CNGV~ddBJ}E6D&gW0EzOh7k_e66KkY znO;=8i!I9|X?qJ|(aYsx=+Wk`dthCQ`u zuT`#mKOoKBB8^?#K937#ir6(q7z~Fme?VE!`3*%46nN43am5-mvcW3RHNPN{H-u0M z$SnRe?tGx47l5BUn7&-3+jAozwh{k9N+r0cQSAfuAXG#F6#)!~Qx@<#gHXvlM<#{K z8%m^BeHaI>%4i+1!^1O0UL-_hL>6oV z^1TegX-aJubo_byWm}%a*Z76--uKQz4^WQkcfNzeK*4fd##%LgyZ9>iAOFw4;uG8J z9{%3HHn3dZTSbMZ_L9j%YT1Q#ChuIuvNZqevRC@#p-p2<{8;lLViuZ$1ffrF6D!px z0&ZUhf|w_yEuY>;86TGlFu`n(g5rRSlzg$gqMgx+on-@bT40aW5e zn%qWH*eH5s9nO9@C~i^gKI?vxn4lk!Sh$c1-sygYwUoklFgsxCZ%E%OWkjl9TEp@! zA^qCfsPt=1cIAQ*jM{L zuiA#ftBLMe9rFNj_(a0e#Hh2&S-XZccRk`N0_efYzq-nwB)gmB#UM(I4{CkE;Ax^Ylkc>8ThwW`hEZ3hGuU3 zKWJ26{BJ9!-&ocuG0chm&&#H{=rDBJT=XsZSn0%Mcl`Xia3kd(<x(iV>aP$~#psO1~ga{C2gii&w6qIWlP7|>pc!%D{@Jde= z(;81%l(q}c#MXVx@e!9G8ZS}yG;Hs{=|7J_#kt-YjhD)aY}QFZwB^AcA;z{45{oZP z(!0c%6yHkpcA+)P%$j?T2lpXcJW4JFC>n%=wV5fA?a?aq`LF}Y_m=rc z;_qoIKK^B@9xrYA$U7EK`NMp}FW*KkS_zY{=ys)lu5Z__2UfLIdz?m@ zv-r{WkS=xyn{b)a`txPuHQ@(;mixm)h)VeDyK7!(NAvoZYXeEbGXJIv@7S*%g|Eg# z$ZW2c?rZ+UaZ;X4?djdwD{`i7KZKR<-m778m@0T!|5-s9{i6fsPJ=EzfG+)z=NlIOWaL)-(33lS06I9M z{n9G2;gqnO+Wak)Xlo0mpW|0+SKT5Z6^5`;Y!x{8M2$WgMPG&5kAo5QLDZ!FQ9J`ZX96&>c z?L?^l1k=;wJRnEs9l0?*|mZ;(!@mObzJ9XF^mtnA9rtfyF_J$J{m=!yaaWC%#r zZQ~7?j427`Y$>vN6+%4s08?WFosqWvgm2?j%O=sijaV8rXEvkR*S`kpk8yWOFCQ|| z9c#k9=Sx(+CmqF(8qn&XoC82_nM=hJcvBL?KEsS#QfK&ep+ve$RoG7p?C!X0nwn>p z0AR(dtGdsv!Q15bk@SXfUe>OQU&o-mG${py#Yf@dS8wo$3HuvX(e3cl%w&U;rm#BXmv#RzZ7(V|dh~AjLQ6*3F-=C;r?yW8=bA9-1*J_?aLm+n_(~BFHwvldOJh-bhlzQHnB6d9yS!v zS*Q^M8_q!+{z2OviZ>*Maqx5svy8s~X!?>wVcO=rycJI_@F zUW*goTkY(v2BAG>1FLY+B#WybiKs|{<}f{480SH-YLw0yZ3ku=Ugu<{A1U(EsN3i( z46b41>ow_d5&~@*fOR_qLQdHRIvRylkJLx1Kjw_2L|$TpD|Ejl)_W000rUf?7O{T^ z_GnrDsSkLGti2V!#enf)8{+VNIn%nGU(lY8!nZ_!xpn(GsP-%68)YFbV%U?oIg{DS z0JCK+aY`ITshIyZ8eV_k#g`thmXdLcm4R`JW?00Ql#|WJmM<6sc>&6%Dpr)08bHtl zW5S}5A))+gQQ3F3;?JO-glk*cxE_6&N70AXE;K2$*9!w$cudbP^R>;9-nw^5f_cv$ zk?H2+(^hk8?ITCEkM^$0#C-=uaNjJ`68tZ#-HaAfaj6>O9^DDQY0&Ot?!Up=2hcyU zjs=i?fSiH~b$DP6h&Nz3cdEJzXN+p6yHG@rrz2RgdP zxLfvuU$J_vS;4yqunEKr-p&cZDUrUjxrnaH-6eyuIWRM@Tko8iQ0oNJPJF*#?iKoGL6f`XWRYjty$+1^z_6jC&!`yNhIL@43WN=Z@hr&Ueu}x zb%j&{uYDN|iW4yael>w^AhhjW>n9ts4(T3C!?d8tb{GqRqmfr=U^K633(D#NPi=O6 zf^p|0^rLslw?4H@fxZUmt+p$7=y|>jiVz>7P#2%U%P?q&r%~A(GU? z3cwB!&rl06U-5(i0?yp63 zrp|NsXukBye zhxISF4A+3RyD|)Vxh|t?zcA0f?RP$Lq!+)%lxUx2euUoSt*popfM5tE2-WUmjq4c% z2FT8M3Nzv2zo0!O_W0J4CM=q1F?Z<$h|q`%ZIB|o;|zLRsD%!-3g7{(KpV~~gnKua zKw~~uc(fu28#e+8d2krkd+Y5FH1Obk*qqWW))Vtvj>};3Bx@UY9okN1?G$EDQm(0Q ziO|LiOS4FEEiGn-%Dt0{IhSX(+e;|^QoqI9?W;YEx$oQVr>7Pl3z*Ol>3EV$9&X4M zrmZ*Jd!zCkYWUD^B~J*c2OS(h$Z2UYBflC>hA9Q{z&sT?EH_b@5+*naTP?Mvrqdjy zj;U<`Cs9j|r><8^p*hYDmK|*4M_mUBM$r9(+64{+vt52K&CtTbl29pq8!#23Lg)}_ z@LyhE&&g~saH{pr>ck4P&9ml)o@81F^BPaFwsN25VgYvagCvnM1J(vb`&LaawGZ+8 zT)PcaSIw(;cFHdM1B*~3vcrmEosQO98XT*So({$u)9VcOSIf8CL+NneklBU zZ$89>z{|1It=?G;(;)zVHH^hE02YpRjFMGW+b{B%l%GI371n?cBybuOf`{p!@KtLgWwmo`k{h2NjiZ~U3+Dr7OnA?s$~QdeZN<#*Z_>*X zA{%+oTNy7LL^CvgS*Un5PFpw(^Ku#P&Y1oR?x;wJ^i#g<*mh)kWHo|P6?qF=J(6X5 z{_eUQVsYwQs0sImCb{Kp8U8La4(R@ngNkvf^*|zZtAcjl_4e^}%c)}LsDoos?mthj z_WwM+Usu!jbGj4ao|xJ15q2D`4T^J-5*_LD#G1{-^D{ZxI8Ou5lSfIl<8wBJALz{( zc!l#3u-3!Bs0o{)gv%$FZPE~N&+nfdsk=r&M!XqQC_<1uROBnL7!f8A7;_yq>?#?Hb!b2?&9&k|L z0$@9dU-zwshvEMyaso23<6okE6c8pn#8uYOwri zJ8=h;$_}Irv}>CCt<>}@a$!0N1dX7&NQAMqC8v@Ovr`$LM4(y;`e&TGzo7jL1QuYy zk5v;I5(0)JK*@XKU*MFHGHNlP2q=jTn-qdU?@VVNEYR~tUWvIbd=FCj(}3Xo ziJ1k}=&dPkYZwoKc=XQ_v5W4SN2iOaLWaXiM#{|2cdu--!h>hc-)TL2FUih>qY!8O ztxO@ug?UhTH-#QSDZ>%|R%Wf)L2kMqmOHYR$kHhCl>sS}L9N{JU`li~WY{+Ru9=3L zBieKFBg-d#hmnRUv+yHj4MI)&;-P$gT((e@4`4-*r$8TNwEGO|k9U~?nVHT8UyG3H zBlbI(R`0kEqi3O{W6K*1>auhE&3bq(jqfp@`F7;nJjRfT6BJa1N_}*1qxH?w7I;jy}$HT_?2J+uE&CD(d%4SeO7q#eP`~m@{`4>lq?tqjw zxJMXZT4mIYDxQ?SFX=%YJEflZmL5|JL&I2>q;Ki+zwh4@alO$pwKyUNQu;6{GgNdG zqnPR?-W+#QU}Xq^TH!bjm82F$LDG%hWM-bWYV#@#J?aL*<7L|Q5%n8V62*xy@4dKx zQBQn0!g$HFw46vMbU6`FG53DqB{8z_Et}x*Ru@hW*OL_=*TGAyO9rOrgj*jilh2@; z)^ixqRJYYe@d2F*T^Og6%5!;jxOEcr?%~&!=`zD z(zi${5p)$+1efw%QI9NM;B)zOO_U<2wSAMyu+P&$`-+WzFMkgUl1w}Pc9iHFe(kYH zaT!9)cScL>XBJ<4#R(&^Q#Mf=-(av~kH=?@ca+#3)t7u)L@JNV0ktRqq10O*06qji zf8Z52l4SrUQat-mnBeox9|StX$CpxnN(?CvCT7bsH49Hm${MA73FL*pGhdvji110)LW>boMw!)(ELnW*>tT%XYX6m`W+$>w;}5` z>rSlmRCB(}>_10=9cZNOdo-@<_Wn&{d@K6s6I$78v!3Xw!)KQh&AZ^G(=!WygqyR{ zcj;c7L9gljl3~vmh}w$JZ{$jEMgO1QY^htG(w;zl(uFbS1{M(sj0IHx=+5`!fcfs$ zYN6&k1Hb!~10}MXZf`6{vDK#Jdze5azUVI^&|~x#LklXaj(6pPL+}$`QAJE|yo{d; z(2l#};Qud^f>Wj*ie?q%8O5VbWQcsv6x_qN%{=c=ic zI=8SEM+!p~RjufR;TKu1X}bGi_Yf?-5IPd>wz;5zBy8KYgu-f|QwB8Y+8w%Yz{!MJ ziMSigNKzh#&*KpZZM1@1kNtEgt#fROTz%^{L8arpcX<-PcU*qP=53fnF%B zR@aHQz1`P%W5CYKBCowk?o8&^9h8T`*pbEnDi^{ln>ZLKU$c0gggsmSkxEx4)ffDK zYYvUSYmN@FL22npwYHDHK5v?T#4sJsQojkCYa~AFC;I`iP1E9Ul-g~<=c$~7+21TT zH2IQEQ>6lr03ISc(u)J+V3{U>g1FNfh=4P7l=m7F276QW`yi|S9r=cENEg?a zZn{>W`XuaVeu*L+N+;SlR5Prp@o?!KFN4^Q^q7?4Px~Q+vHkMu&oS_W!HG`nNxD+mxQQcUE|N05yzy! zGQhXmY}90R(z^RJ4gpPnGOxkhY0QQR%*l;s9?b=I=fxhD7x45rtakw7M#3_u6`p*? z+`{8(G(cq-(L8@*7AfZNAvj#odT2|jUXc3}{pW%7bY{DFml&u% z(|y(Swh2t|EYmw%7HZn(^-*v5^f@+Rjeg`o59MAgUaoXt_>8Ijj3V_u5$RUa{i=Bp zORPKQt?1ugt&!=kUhOpp+Oqo(teAkKb0ib|@QxBRql3mAO2qq1-j}ciR&1{;0lO!+ z_w2syCD)y6RBHXHWceU{-5r^}VN*q}b|hs+t<CQsnt8dvy&;^d*@UwcM(%&xjR)ite$}N6ndH!QoLYoM_*!q6Ei^G zRKMq{$txW0A&>?bxW^84r3#l)<6s1h})ZMkr?u-W>I7#%7Cd|w5_MqeP> z4LHX9CWEz<`-ejxi%@#cPk^|G(Cb1-%m&IZSmohx{oOE|TNvk%l0{i1esM$Ul&d=l z{l~)7C#jcsQ?vSH34D9!pw_jY>;gaH`ta;1yuS*Ic{`3L;9OfMm9mZ zB>9+BJTTo6-8N1Jxok_cyB%){7Rwu-mcsV5MMT&yf01uJ7LR!e5M(LOe)OJs*pHMF zbQ7jQnEi3F*zr@Sd94y$%zZl_-vqP9{*aSIeUugq3V9xv?F>mtBtCaWh$muZUq=Y| zw|0aSk0XB-kN!=LA0xA5557hEF)e#+_Nz0Osg9gqXK8UyUPB*Lp@*Uzrq(->gb#J( zPq1f-QCIRmg7B0gM@eP1wrs{RmZ91KxpWkLnRPb$#ybN!V0v$|nT3}yGY7v=TqEd{ zt#PF9fU(gkfAbG`FJIv?JOii0m;-1G(Ptc?nxFxSN@18sCL`!x2zWy#A@RGPDjm-Z z76%viY~$rU>8?c0W4@(gmP1f5Y|p>D>5gc}!!9bt!t1&wOz8s)EOl;V9U*Kp-yqFb1Zh5cvL zxIMGMN>kH$Sq9$|VnbOL{ZCB3p>z}SS!esqa3NuFpHT)|BMxe+x+QBI+!lhx^xA2G z`9VRM;%iH0o$04m6>c7~=L zy7xPLN!y>0d}t*;H~FXNH+8A{`-gi&E+fsn(-xde#rwAxA3ohsyq1CHno6S=!N};ZvoSEoEfH*@kTzw#`q42C zoPUdxHLXyH-h-B)_7^l6$wTD8F3!I3vh)&hWaF6|`NRWFI0p4G z*AOYmttHi{1&;h9r445^^U|I>3$*-eF1C##o8tTzXwnxg0ZW3heL|*T(qyr=$TVKG zjDgzh*w>md5$E+|3+>bD4opkqX2sJV3%@&u5J+C4SHaV3?_VDqS{Ef0=Yi0Yrm!#7 zNj=PfhAYI3L}t8~Z_heVG5c1@HdZ_;Px+J15`ImE_O2JcF-wS}0sq$jnQeSi;- z_Rl)YGy}s&qVt4p)tH1ML-DExA0{F%bxp-D1Yg3Chd5v44u8>1Jcbxdux7cR2wgpK zugxqxExL>5ogrj^!GoVayOI!O^ShgQyw0ZuNlkd|b(PjVo%)n|Gvv<1B@L7d?UxF@ zmd3;JY4{02;wl+ZL~=fB4vnM#Q8hn&(EF?Ke=(50nVc0-HRrg=(h!)<((*mDRZ~(@ zx+XahC}=5SS;13pz0)(j0`Syw9(;U2iO%pykVrYcF~4PtwS*GObPrG zs&q{QBEqr22EWm}T~{vq9ab&du0H{j)S@8!lf)nCt@P~ahzUzWc3SbMg#iNfsvBqM z`d^D}Ecoa1$as&9pPS-OOJ>FfzUsEss6Q`*%-BVNo?V_}0$SwQxXGiNZci5cF1aK}FyD|XhllbXlR>k*g1$|DgeL6K z!P9IBu7>F>zGL@-Nf_Gr@pNx?%b^7oWB-zj1x%b0|AD<81)_bVdI?Yo1|7nYT+!(v zKR9~Hxyosu)A{?$p%8ZSLJa`)llR^7YNwr;Nlsh|T0(rCVU!(GU5}3^$PP3;CU>65 zyAt2dqZ79*Z5w6eXL?Aj6=sNpBo z{{Ccu<>D15^+TL+#p4RUSYmNDfC3qwg!Sp%2l=0$FXjh>x2Y)EqLI%cDqWR$+d z@GWYUxsmqK(2r2~S2}QH`$Y9n`=zo#At#b7zmuSr9~ggf%s@3Z?%DHRuz$PCJh&v! z$d@+nT46~YCSl1+x~HfkIgx}nv?EOdqE<94>_XP_^d5gv6($wAyZW$-m5C+0H&Ey7)PSXTx%i$NxK5 z`S8J=aIh8nhV1Qv3=0h6z<}greQQ=*x?v|>t|rAZa=e10g;v(F;z#zjW2+5z;lQ2- zO@US`w3U2)U8l&b>l6(`6pH4UW!bKqQ13@!FmU5ZHrG9q&20UG)pK5^p%Me3+ro;% zSBsFoZ!J7$?wt4}6;=6Xpk}_9knMZYuAI^$9+|<=h2a_@VpeLLH%~}i5iDly-%=u? zZp44MzUehF*8dpY_V@E!zMvW|5a|nve(dWR(u|36yR2F9 z`GJe}p0986uP+$U<9ZUWX(T6K7K8(1Y}L@#vTV_|i7%Jya}XKaNtzORHu>=q+arW0 z?4-Ybr=>8E_gf)gE4&Se;_Utt`bzXtTnQ%3>ZOxNJW7y7Q`0I>3o#OW9hd8kQGR18(qC*xN+RId;7pB^av#oXS;uoTC)iD zoQJQ1;c!Ik2>^WEbd8TfYL@ubs%k-PDS2t5Oj|O%@$tMA))0D7P3voqUALX00(+N6 z@&>edk2BYUSV9h}#3IeG$ea>rRIy4>uOR!jUdQ<*NV;{XLVOd!A)>z>UK;U$}n8_rTA@7F#+E~AZ!_Z+Ru?6GBS zx|7^h8l!kNHSazd{v8wtdkErUZ^ZM-c68*b5_`I|AWQKIG#dK_9vF!+b)Aa+IUHz9 z5R%jsRUhv4Pz*>_!Q+2ae$tid`$-cGSyqK#!;G*NVY^QZP1adX?6W0+pAxL_&9?Z? zi6|st<0$-iXF9L8Tfl$A``a;Q;O?I35zysz0@1}cV|K@{hN6uk)OC>QOqe_f)R{4l zF6);gRzWv{p8^p-{RXcok0MQG8!rXG+*pf?gVzuX`KaxDXmCTjLOXXS-7Qsi&50lj zTg))&Z1c1p>_Fh71`^B6{ZAeaEa6|Ecl{j*egvJ{x`2vPk#dn@Sn(Grf}6T9LuEKn z(-x64Q+wWhZay@W5C$Xzh$oRwZU_HNK={w$RQRh_(vyL zB|WG{JMI~Wn~8KFPrS_HH=mZS)|=A^PTt8xK(q1bqnuT{o(z0K@n`%Pgi?pTpWDfq1e`H z((lzam_PTuM;SU$za}68p3up!=Xh-AJ^Mc1O2!V)7_cQnmK`Kjn%*~FkLsSajgO1L zRZ3d0mN4b>vF-U0{@N zW{0!fl!UCP04;BP^W+^=bBHn<$~%_3B3-&p{q^`=o~|?k5(8#b9BPjS@OP37OPkP= z6am$fzjm98C#UA-1JzBT6E`4wb4jJ+nh+vEVjI)y8y7<5nrfuwRC|Z=t^xv6$NGdK zAJU{x3TpZVPRc&CF*P7R`G=4fEu)e5m%-2a46+szb-jO*m>8T1qepe8=@>D8`-^Ye zZ;~HnT{4JZt6EH@5hOKytq-@);OuaA8tmQH7}keScONxQjZM;Ck~>@2=ULP(+6}dr zR!s}iUc!Kb%AubSr`cxz4^?O3P*t~e{X-r)1wl$cN=mxBq`Q$W1w}x*yZZ>z4H6Ou zknTEww4{V|cjx)G&%KZL{r-iu*IsMRF@Iw$R8oD_=?M_2zNLCGlB;Y9-shRFmUN-_H-}w_@ij(zD;P;kS@*gP%7@W@}1pHvu#L3}Y!P-x1bJWdyVcVs7 zB&z6cOJhg?o0ncf+vDp#MKxLq_HxKeUvhHDzI+&bCt%w~pkG^T9QgG91qT*dVFpBh zT`iUWf;_5{Uy|;dd$hRo55pKDx8_XSkIoa8&j+QT z@W&zF$r0!63yC6cwzgf8D45%;>94M9YBfDeYEF}}VxeZnec)l@-|mES zy8p!TT0Jm-S?mIAe;ZDOnTb)(`B2-%IKpnv7DCt7jcVr|gJZ$nrVj(6{>Tlh9!5gq zd^xH`Z&VhX_sIp>%k{|ZAZIH^{y*ZYKS;%5>`|$(T<5s#Ur)N##=)xY-+L{zJ$(l| z3co**$$U(G8MMV{**~glO0bCSKK&vo$0U6tR~fU@ zfII-3y*1e@yhQgn62?oY-MQ3xqsany`q)0|f)v2>l2H(Pj~y&b4A)HFsNQbx@u#{c zvAkuE`KJwgbmNS_IZ!<0SXI?o^Pl|Nk0}s+&`BVYa9!tB^xy1G9+lFxX4CG_TA8p2 zLsm{5KmUe~5!tlUhJz#+{ne0MzvYU3X&5)+ zko!560L&CBK>S6f&v$l1$u|Hj+R)ZzY=<0A#%#BAEMlyCyM3m(h;pU1${q_<)#*n z-f3p@v3c{7K;`#+0rQP3hc>RxNAj}N*B3Q$qb-JCmxJJM=?V7`zD&S1E=}@wJI+m> z{d288906kduat!~&%4n+Q1M?(<1-5p_ey;jnc+?@6Boarsi%=7Sh+DPwzW=sCg6=G zarp&=(%UdlcfX)pi=O#`X<)Fxo$rC-5(omCquyM>f@I$ zssfo$rtpm;I)Do)>Oats!2&b_>5aLd9~q)5MXiF0L_WK$nw_@&lnC!am4qbatrJe# zAY^2QPHFTJP^KbsTgjd=MzPFx3Sv7R!Sh!{^NaCWWR&!Jny|`pmtf&7!`#$-4p%cs z!}I;@(8M4=8(Qn^{IiI+b&shcJRona;kHL%>ez;VVoh)TaE&_m|{O)%~~6EQJz?4mewqr$N$-`|_aFJk{FJqdo6IQ<|Zj zH*4V3knHafihhTWzuPn`96S|UE^j`M@p3X13{Qd;`jBYdQb(NWjtW46h+_{FJ=ugj?1_Xz1 zqv~S|$JM5rh@b#?yD8em!0w}mJ6u{1+H6= z5OaHvv+KodM-%5f9wlt zXuzpzP6SD1Jg~ zX#1m6pwc2DDgqw1@*7xFOqL2=i@#E9bjow*+4bAY2o$(CEXj4hV%lu((ncFBNeYNK z>uwUFZjBaGTT>PrZm962-ecBt*=2`_LBxN@QRl;@T~3Jc5q>5=o9}(-9u2`S2}i1~ z_JtT0U^EtiKO!*FCgxuZI!P8jb2na6vS?k3>zhHAS)LQLm$scBTm+yAv4S5~2{0p? zy)aJw(=nE%?$t8YNlP6><=OOO7yqtxqIN67IKO>=X6fNMcKz|Cb^;@sAbnSuzIjx% z>5dsf8c4y>cO`!(UGVNnD={aq>0jav1mKAT`YY-sY!knr0Bb|D^y3mtiiDr)7k(T& zhftbQTlj3$PbfmS8U!GX-M`7<&f4*G7)yMfdf;K-WPo|&%JE~I`%eDgAESTI0t`1+ zSSe&Wtfj98A(N)+Z7+>YEH5nK1&4m}djhqC_RO5APT!hF?$XG23!XBB?!Q(fwgJ^L zjPs}sINoBU@LUQY5^`AN__AeyvoN>({nnK=FJrRyR(2M*ibxBwvHGh8Y4tyZ+4kkn*2qYq|Wxin^6R zjRSpKV}q%{ibmY1dpWeH6?Yx<&xbe^V)CbNx%yBWJSSAHENDnGlxJ=Fv%>=Ig5Dtc zN9luYt>{E_|Z%@o9cQibSkgEp~RrZQ#$LqnX^&}rQU zr-91l`{BJ#^=*BCs-3*?0Zu#TzWsa?H;t+aGSyyuMyvQNq5kuTYLb8gP_1BF>< zz777uCo*k0f1=NgJ>v}9A?X1dERb&U-&$EwOWn~7Z@cW{&b4`w=Zq7pj$V8G~{8Q}1wwp_tlEu`FH6HIOg-cmE zfagd5dq*7na#L8Y=}~6;;L0&Y(EchX8keufSg%$pOp!+_e@Shqe}~`S`fLn;t+}{T zfJnb~Pto$moLLnwzE?Y^_K9z*ImY|dpJ&39Hsf?&`bszIp5&yGAoJdVQJ7SXC0xk9 zYks+^Jcd1K3Y?<}RuloH(S?bcTIf8+UVQV)@Q4g?C?=l{!m`PppR}YytdelW6ODOi zl1=IV)fC4T9|bYIbxc8r>8akQao1gZte_Cou&RpuB4qLkDgCaWy)43RQ9#jTkkPoI zYCKjh_#lAIyQ}$q4%5%mojNY`PAQMYUTNtaqEai%w4E}i*11aLsot;AMAXY`X#MU_ zJx6==PX6iD2L!AgN3VC~=RYBpNMn6GIl{!hSy`0MOR8M^J|BrpyHILKRFcIXx)`^<(?yl_A)TYVLdp6s&-$LgpTVPK_)qv4>^Lf3f0b$d~jeY@pOoSy`7!Y zE8>Xgmfg@G&l4ne_*;(hKcwuRn%_+w5S6mFIHn1-lRh~8xi?I+&tvY`(B}vj*1Omc zth^YPgH)-oRuX&?sz}gYois#?=a5bnysc?SRxc3{;hYg8)o<8yMr6{9)XHA}=oSf$ zTCz9AMn%Z9Y<=nT{W)W$vi^k-KoDssw;iJFN|k?j?zKaVoEC;++a*W1lzDo8YCupL zmk6g-5JN)9<%^dm(-{gNN>y@vXuJBDM)#B427f1t$+_Hjb<9WqI)y)rw|ZHBwZ`hXV09ELSQsRQWQwAMu$> zGrobHjff*w3*UHIgv4w9dV>n)14+vrjt-&@4BO(jm6ryAN>f=ql;Od~>i!kpaqeQB z@@;L(!Z@bAdv05Ph@OB-y^EWAUB7aK;6>FX(QuX%iF>p+QQvo)t?d69$i&;KpLrnyyr}c_P5bDn zhiz$Li07pS@DEC8F2OXp8*}x4#C0Wc0>6Mqpwyf$M50_!ewx1ZWgLN;M@<0vwWl_D z(S8v!o23YNI@4U>*W)$_)+c)bToRkfGkTH-=+n)+Bo~3D;!ic3;!y7N-yoxjW3h-& zq(B=^kt|zjDowJOD^}6K-(^NDD5wWTEl#JMUe#4fAq@u)*xY!Dt$ZopC9cAY_+dPp zcQ&n#TV&`_ftAKB6xnS%{W4G->#7q(TZ%J?b1avk z-pB8%EZ4_vBN27;Tbd8K$k`@5TH-ypY}cZ-wbDnN_I}S0l`p);776|!{wEKTa5~ic zFQFKFuxvEna0Gkm3m4)iYN@Uu01bRd^SNa z)HQFBGT|F0Y_wh7*0>Ox3hQdZt7_lL>|-QlfT9=v0cQU|&GLHp3xhK$ncx{WS>tbk z>B__MDrxh{C?i)0@`Z8yJN1gLu=?Ld z)-5zh{~g*CvVo+WT8ECD!nv+2_+iNrDOM@|N9csJvO{B;>aXCy$m4s8QD^^Bu&`{( zAuaB3Fq7!=;A+}n3{N4tdf_n|X-pWkacH9lufk~)HppJkh7l@}r_ zzL8b3NI?08Zhz-A)?orZtM185FSeIyuwow^{ zP)R~#Gv($?cPGiWk<|s4e=9sT?MZv=e@U$N?lDbb5h;&N7B-ig^~9UuD-HhoQOt&~fl`UaNng-{hS zRpv?SfapBbR78ge_Sj~ByZRS34vNb7oR(4o&AyF*p|RCN*_G#eA(*ViAAaeVq$`sT z|12U70`yv_sAcyR1Iz1oUl_au$b>ImDH=W~iVZ;k1+prd)!{mTUcAw!@7Yrr0jXR@ zncoE^ukY|#`NvVi^_!iogOWgcu)R^GV7Oc;atAD$4q1=U?f`Hkgv2_JS}KSsb}&xo z*M2USC!f(@KX~8Mh)}hdXzk>FK{ZV)WvP+yK10TphVk3f%-0!^DOPsXmkW}ov&BiC z+BaTNY_pcCH!kgcY~6PH_T$8XO7-PC-4Q6+wHQ>b5_jdLIZR@eAX!KkDx$PEA1IyC zOXh}ILCRDv@F?tF9Yt&~r+|1l^B1cb;S2CRNyk6d1HgPRz451n>=4}{yLyuXl<`u8 z`V$yDX5tT;r#+ddd3z<)9Zbr;HW3ONp2(-V@$gzTg6+GijclAjGgLcDJ*8bqv{sI5U!c{7t$-BhY7=+{ z8t8ERwQKT8j)SmX?W-?5*Q@~i!EumOZ$IV*t}a)3cJU|iWNDmXC~;{!O*oUz2`kcK zHZuisnRd4rdcAw*%JwVtZfb{y?$v)NzlC2MZ5qCpkd7^N>%{~gX%7}o2rJ78Ehb1E zXS?%C^1!4|+Ilv=BNkaL(gGoavGV`#T|C4skZ5{M85rlE1Nden%v1j5=m? zN3bWh_V)C&z!|%Qct*8KFq3{b&%1s|?W6&>EjT8^Es@z%Od#3=nw(H5Uo6pq@)xZ zq6>V2V`mKnb)q&hm;z06#1Ysx96@Wf|4VW*W2N^0+3lRri){E!_CJH%<-4V;-EU=D z4Fa;MRD&o8!2K!r9hEMCfLpr(QWepUPbsu6m^!RABfWT;UxC#0VptzPq5VKvbq;~! z4KeX^&5`k79jsOaWOD-6dxo{LI8D-TKg9FOx&20k$~PBebO6XQx#_-L&!}^LNJ*R3 z>W$o}IsT1dt8WIsZr9JVa=x%%@f@I{9b~JZz1XUgvTPf`!06PGV+eAZq?&WuQv`_kKJT#mEpi?3H50q{0^!5Sau-f7F6SPH`gdie`MGAw z%O{Q<`-R?=7o!EpO84=BKVEP`cKs>"BmROay~a-;N|DgK(R@QDNW|JE&bQnn>? z{cA3i>?iz|5ma9ngQ?2-PTWKK?Sx|u%^$m`=;fwI{^MVKqudo!i>z#EtA_CvN62x= z2$0uWOLWbW;G|C+?V^55ypbI?BGazDdygmz_!^M}me`TmZVkTT7Y?pKL0@7vBKh$C{xF5aw~ zR@QAs%rfAac(sO3oY|f*XdyQ&Gz#T|2S{yi#a;viil1$_>+Q~`===GysV-R{?oK@Y zHL1C{TwF`Glgu4tibYo$(8|e?>O#NQ6M$<9#zS7;Nu~w7x#7_!hryv#YY}IFK-{=)w_~WQWYyZ4ug+$uw3V|W>izy0jcUP_oIfI@h?Q__1O9>WjIM)x zZ?9dNScmk}Cjbb4{Pm5d-@fr7pu*x{H1(GazQ~vDc4_zv&Uh&Nbnjes@Km21sj4R% zG}=e$@CSbb0JsZ`t7enaYj9kQu+AC3T?AFJ3(wXGTb!!<{%Z9CfjGwN*7<)Vg+KR! z8;?9IcF)sQ(IG(O&2)iupaRtXHB{b?@T~&@DPS=KY@}K0iyA5RQCaTWNL032mem{J z17Gy5W6q64xc ztsR4LJ}|S<)`ANsj-4I`mbW|X`sNq-yyhcozvv1A zYHHE+Jc5<=B#l$?$w^#>aN8fmcMiVH{Ya`A6cT3q{habzKh{Kc?zI3v40{`8{f~!i z%Kg0@qJ-U3oVzz+GX!X~L8Ypxp9||@Fhq#@hbRqWqAG+`SKM9Q1JA9NCFouF=b7c} zZqdsvML0gPpY8*@pR8iM1g&o%e?``k-c!9N`#iFS zu875c&-?dkb*q!Nwo{V~H|7G$bom({M5K@(l=841M>Ks`vR(Zw*q;}@qsR|cEWpzGiD+xz2X`XY4Unxsu$oQ|0f| zDfm;^?Qiqj65LqID(Oj!@1o|RS*p@H>uAb8@!xU%2Gem>HSB6)7%j-sSgC$3;aqd&$(TUgX~I#lPhDsRDF@z5S9J-wK8`*3_9b4b6TUXG)_NFJ0%dIgUXpC z(m!nBSSa*BzjoWoCT22|pea!GA%_aQz}Wyvr8GL3>wZv-Tb$z+W@lt%?Ave-qv8go zR6SL{V^7G`z5DOfC^{Okgf1>ZxagF`CgLUI8%oL&SEKclz*9G5-|gfszoCA(B|1!N z#2%Ew2t0zRWQ^b?+ruz$9BtW(GvX)%x zBN%AWuw_~QIfuR^^Or1sN|%Q>omhhsax?hnF<)FlV@%HMbR17D*kPS^TsB)Kvp^0+ zPL?VV0Zx?FoNCPVwilDzUk)rTGFFe?K14kk>%jnxgpP->aQX@9SLM_@O~@BNM9}j8 z)XBL1V#*`vCD2JUf?|j_MbL|B@SO+amI>htBe+kELMdiyh6WS}BhOPM(0pemK)^Z8 z_qE>vjtWsveL1L~(7B(+oj&rdG6~7!qY5y_;|g^aIA z|GqI>4fnOt>HChN;nkQ zbBe-C)jcBRr4PxR)IaHpZjvYb_D0JBoJ+bMt}6Gp9tYPPF8$!+1Y$X5U9H3Blo!bj zn|!R*mu|^l3fM!uXdYaquABe=FQR|l0pK6!)hkaaEJG3X(_c40o=5asaf8x^&8fl_ z2C#;HokEJwf2Sk>GyF%-nXJNz=`W|<$f@Qu`)lQZ!&;C1ad|}`{oXWqpNIeah0?-c z;!~0CQ@1t=wGt@`${?aa|5R1XxRHpk>zjJbMz%*$>#3-Km3SoT7Pb|SRJHF@4rn+P zC?a7ijp>Y1FC}Vd#v0kK2Q9*!pX(e*y;1^e>ImU>cTiE;stYgy_&y$`5`@S%<;$_c zoP42{_OPq073--84Jd!R6`9|af+Mv9*Olgt?9ZETNb4HyFD~9jMq3n9 z^PDd|OrOm3_ZUFNyOs%!zbq!UB6+n)n5MIY5{E=*9qu+V0nwuQBD-0_Ypq^Xu`lDZ zsf3P6ySFeNQb0-&_hpC1yZ?^-NJ&u$IQ<(|`o$@0XT@!sZyYF(3Gag1BSTE~)cvS0paCh+zV?;L{W!WYy2dye|{<%r(F!?qc zB>H0neINWuTX%Cw8NHYgv_g@U^+oqmcI+qir)R@fp=aGtKC!0&uE`AWr=@~2sfsHp zjbXQ32-!aT-j}IPu^tM)74_vo1i~$$_M)iD0zDHmt){<1k=eYy2|u7HE}zTsx{o*` zC&R2|i4Uq*j?3+cp_eC$++#LB7y6kd!Qm5TXfuRa^}TkV5!GD5$~a}kqE@7Ft*~2_ z`4tj#WYdEl1l&|JFN+GA0ofMogBslB!I(6io=Zj`M zmiU345=*%vjA0ZS%9rd*SN)?>moG@3Av5+-jtPnvRbnNhUd{dvM~CW3P1C-#Ty5wi zckefSb|4(622HPCt~ufvLN8Bfpr3!Gbi{}^fh&>K^J z`sR`>htyhTsL0|uI$lP*>7hT0-R~z)CGxdU<1jXk8dUq67(VwGY#JhJrSGZg0VLGd ze^#FLbs)V0&iF6XKO__+I8y@9;#<5wJW|AzsVY7R2x`GF#=JGQ&$zpR)^lQAiC`da|7- zAQ~`GK7?<4SgX`^>$z2Rk zG!D5z{Hbc-62u4g)-e@~@?qEuVPuFl*xp53Vxf)Tp0j z6)5H7#K*)yX{oBHg@#{WOwXLDm$+NR%>;AX0+3v zZ5kqi*d^xUH)Q$+i@G~HG%SNw0!Bsb`S!NYkCY+%vX&LApqAhcQt{GC{0%6%_ayPW zNZN?cR{V|G*$1Q|!&NX2uu@8Ixc&>b18e1yPdBLOwx>FK+e45l!{0&2G*Tir(Z~DdfKj{Qt9CP_k}*!L{TDz+Us1}dd9Wi9P&O0 z;bgbHDz${~aU{jg zMhE&@sp^}c#Kt$#29Y0KP)geCaWlD?*dTh1DB7glgp44N0Cf z7i&{^gigiy(IL)^n6}h3Gx@3nB2lD6deWEgLa_?k`kIM@f;6lhXAMVI@Q;SjgE(#R z#;!xiKh_$;A6%~1mzA}svQre?S-N)6Av zYd-I-bf;il`%iX(rRDkXt_-Dv-s7Ak8j&|BKwy4NWBG;Us@z#gGJK4R39^@0plgu2 zV2yqU>1+EA$#9Jd9= zG>4F8995nl+zkuN)WRu6!k1L}7&BABduO4d+>;aub44+C+~4@{Wkd)`}F(vzlUJ`oQMMWbnRK$|FV*S;ogxskR0t0fS+5g+~ zv0_jeFO1PT2b-v-8Ft-kUyMO=ZP@8vmr_e;`YZ)C?8s$;k>gU^BfHnVv^a+X2p&^O zP?4kXpj1q=Bc9rn3}2arZWE9gAD}7!Ayc4^%zh(4zoGs;Ry>@(f~{yp%%@0r1XcK! zJ2ShZ${lxaA5jE`m{-Zk>%c?Cb0j?Ey)UEVbE)V_acxVy{{RL&z%!Q3G!k5;mh2a7 zf+HcPv-owE$^@cj0d5m7_obSmGY*YZlPO)g27`l0IU(-2i+zY_4>f+=BCh;J{Z1t7 z#~80dHqeDdF3vO@w!RAPmPwBm)XI(znY{I64Omk`H1|9JUA|~gQTo>Ff$$?U?CvTr zQI39DP8{%)RTm9?^!o(~BgAaCUuL-40C&lawA>s{UvnVAgZj}N?^P%NWv)nlG`k*p zP!$)>+us2XoL{+nn?)o}iQm#w6L$G!r&4VyD8)x>_Q zM`sY1(vMh6RMRcy5hYFhVu^Cg1^-i9wO261C#1c_S7gG|eSdxmGiWO>z(~RI*OEk0 zCgPMFFFL_n$6Ikj!NajQ)uKMSO zn1zfNTo$wk_ax`OavU?dv=gLKun{Q)lYay^xGM3gVdm%$FPzm0p-a#$8;cv8Kc z-{+^AHG8eP-9YCnjz*%zD%aAMw*I-X3ogQ>`Bo|s87<$NXimMZ=jm2XL@jbGVq5RJ zo*%5|MlCIhQdzG6&5&5U2zR!(ad+G3nvl?e=GcA(%5?W1wLQppq1>r*&_`2{)d}M`)hGN!0h#0m)Sf4b zT23eggLWG{?6o~U9#UO5do0zy*m2}TB6~OO34e*XIu`V_uVivM=v1Dwub<~Lfp58y zQ{I`z%;z)3#h_sTcw)0u_V^#`%rpIlJ3>%l6^FpEXTH7bDs|-p+AUL(?qlp{DqV@1 zEbYwOXsZw25p>B8Zb#ttk4V=Dz;H$7+?U4UnXY5BOLkQv!ZAp}vX#Ruw_f=BYJt$t z(i{P&fl6s>2of|{=EsM9{g{XYOfYI|?Ie?d~ zc{{=K_;V)o<8z{|I<8D_Y!IQoRwGU_jlYBbs^UkHX;iu1tYA}!NpTgWM5r4lrefwA zpWbUpdT7n+7fwWzj8QMPXEf^}KRj{1z~51%_^$p5<*IBxM7@W)W?TJBbVf(FG5-Y= znx{k3z1?k_0*WkhRFSA_QY$oVg3`Dn8Y>myj?^WJu`krv9XUkgMS_a_WH&ij~6g{U_&OoN1x|^(!2RB*WPwy z8eX*j6(`vf#C>+v(jCfvk0N0wy=0vrKw+#13g2@=G4Y@6kcUu1e1Ye=&1h+$nZ9-d za3@}DL_{=25*Hypi4_vaT%-~WXC{B8C>omStjFw=X^$SQK!b8eFP{!Z&Wc$nNL!xV zl%uE+7n!h=poj70>lL;1(#)vmgm%_Oz#(wNj_aXOzc}8+(2}VISDf>E3!3~7RRh}| zO#XM{WF&~$n)f&{Q)aT5ag6^{6Se%QiP#vw%42aFP`@3zlun^~PzrnwO+EQ62aqym z?6&ku9vLx)R~X>VnOXn&2MEGX2}N8b$Cw|#q`O1bJ)~vNuoS;|NA|8)So<)$se9P3 zWYv?unp4wqCK>+qz)RM8&-aN9t1|#xa7b7p*DsL-dxpHHrV<4;@QK0lx45c4yPm(P zr6lbV-;$-*)QkO*=PTdpt%qtQAg7Z5wswMH(rUF#k1sFwLTPPFA#+$VDZ{5=Vz(g7 z$0zUSjAO+u4idBIrs-WexLa=Yq4QwaEN*gw^YOpHm#plv%wM&O6dkCusla&ReLK{O z(VoeaX<49L#3HP@^pfOX6Sq0^!>b0tF(Vj5bN8Q=ZpKH^kr9He?wBwmG;|$^p}WX? z+ECW#wl@+4RtQ_KRL9wf4ShR=TBpHj#j_nvN%jk+CQx9eCioo6fiU)C@j{pP(+C&K zORtdp1#Mh^!}{?_J?}Z3&6T}`o1Zh+h@gII0cVsb)`k6p&z~^G&1dj6uRZFWKN`tS zI$rQBIpbtWCt2j5O$!crSj}pFFcTseF#E~s94Q`J2L|tb&EWaO#;5l_Tkjfh5eRHi zMnBUXJ1_cWrasXHFmHYTQdIy}#qh7X#7|4TaIJ`|4B=j~K*#MiRkUPq8H0Q*K`gp& z#+u9DNx^Py+hJ`r@aWqL*|PUYmNFIDS2pD$5PpZcms*!4lR`z!AKV%tx*&_Ij$_a* zsqu7N;MF(c!ukkJs$!<^1l*1lvrrKhn|?#B$5JFqi@e<*Pg(3Hsr1-!Vse>A-Y1e%U*cNv@jf+q*yC`q2T+Zx+CnzF$lYI2k3*VQuKPTj zO?$p$p>V@xyVS>jvc>+PJ<2PZ4?WS<=%0nduj6t&hZu7{jrGJQe@~v2BJ|sxQ`9Fe z3r(9kPaa+!rB`-{v0G%WXN1~bDROM|@0xKT!g@?o0lzpR_fQ=4xP=v2fK5%xCxJwg zFts`0q5@x>^o?tHD7=FJCCIbj0&TAN$$=%3wP>%C+e6Hh@RIvjxroUqpwIX8u{|(F z4HznmCfwE<@T^00{mBOP$Gf+!Edo2v_0F~OqKV??JQz_?Se?rA>yQQ+gTm!2xZ}YO z32gC9-}J}WBkLNBeP}B9v%eTc%^YS4C$+FrT)yzv_El!Ym5pNzy=`#!Fn*W)1@5}H zT}$Csi$nIOJabq*f$RU@eev?|kcjj~F_8W@NdN0*^6}Wd^$llQ0BABl1S8*fn*REz zsJ?#t;W%fv1ZdDrBH4u8nYiDl!jzn56LKO-YAC=0gM2`+5legc=`3Joed|8vuRofY zO-G?w8x;zFo)qD$lrS!=FsGz?LdhFm$+`e%>&(Z2cy{pBn9ijC38d`G3xawQv3$zl zN@w6oJpL-3{lddaqsRry42j(TZBLw9{TkALx)#DS-~_L`EYLr9Mtqi#TQE=;#LVOM zgen{n%`7R95zmrF- z`wahhG2>ITI6+%FNCjxCG2GlAIPaAG62*KYfy@Fwp>Lf9vx!o0EUdKqlR?dFXmr1^ zWor~4ev1df`}pIU^B^J17XsnbUT7WX7YT?8%m@3~FjyqPl!2K~*GyS!rlm6HG&q=( zIid~(G%~v4)&amswQI$q4LH!iuf{aE*&ej9&~Ek9<^*%VFS zlkT25w!Q;N(DoA8crqUrA~H~Xuv+7HnLidl*uK2a2GOps`q!5NNJ&#K{&%Rj$>S>f z(|6>e#D%e{3u2C)@71&@nNs8sNCo5h`lN|9Y<2olgsEgM(pnspQJ|_c0hyifhwrV> ztZn}C54w6w$tjZktlt>E%Cp>mRW|BN8g9lZe~X`-u_)qmQGMLbA+O=VQ^CpMKu)=X_dUHE9a8KDbdV--q3?00|qGs(C4U1ZYmSJ=p{> zki~YA^rhMx<{3gu8bX*E#FGahpO9D}^cgxCA;_$n(Wb7GD9PwTLWlxY8_yCW`-j1x z0-~&o7XehL^CB@uA+uowNCmiWbD`mSHaH5_D});PvRPVBIioKR>t7rYVlIWjH(K8i za02HG>OCl6;@w~Q!t#^Lz`tSL z(OgR$-~lEoG^*B(Y2r)`zmIZ5z6W3}6-YcCmGNA$Pgv;}Z!9WtzaW1w0qk zl*hHe{vRTg+E6&5z;A|%-50=R94eD??afDLds!kfOoJ)2sTsJ5M#i1ch-}*R=by`- z``tu~P+Xm7S!*|8KW(+nowkp0hX=~Su{4I!!ZJn$%~(V4qSF0Imk(E0vEFhkhz z_FWSW$ugJMS`x>G9J>Z@%_{#M%3e~W6r>R%9>HQmg_GU-@|D_arAoT7^3wqNa%CW# zGx>sTPTG}1(3B}hW+^FQt_+3ybom8=kU$;a}O3K`XnSq~OL z2a(UMs8B)))7NTBEA)fmG)X(CUtnsklo~Qgwj4XW@r&sGeB2)NQB1Qvo&`VhuD(`! z@KTfX-?v)E zAFM-}+onXs9X4{uMAmvtI(WXbQ7u@TaJ3%XTdq5&;zbhQ)*moqwtEAkf%euK_NTSAJt|uAH^&)1`IyOag;JjA6Ukgo z>^uM6?b4Z55;fV#ts9#$y>0pQsJ+Lg=U)sBI5X(}o*DUl==v`^kfAygQZ-R@&`6M2 z+=jmt_;u-M8L2W6ClW%bZ_Cv^A~#ng8uvkT(ecniFTvhO&2`!&uNtKl$Nh;hQCNvL z@f@HlI!`LkqljQ75Vh0iqo~u}86q4OX7K+DoXOuTG|K zGsnXNcYUBORx2WOWpApdqwia-d)Su`Ro;v*QOc+*o<@}PDgs`dNIJHYHut5}X z-6AITMC8NXd)&)y8v$Ti@L%uYpEI8I|9me+gY*t5!kmD_f$zz<+;p!{1EqLAjY0ZR z2S4uS23fmL8Xg`_@j9A&NOz8ybh;5HS&pZm=e+p(!Yipe+Fq6aM?&1@dJV5PWf4mr z8Mo^*Zu!|5OBQQt`AIaIjaO8&;a~00mt>XbJEDH*t=6GYS1LgAN(&pl&(L{u03KfY z=d#m8#@S|bWcMS?!aO$kzXuVdx_&`*0+gB|DJFKGE-_5tbjCKXdG>@QA(yMqnt`a$ zFpMb=F9Bfa*fle&>D>M&Ec3IDh}>}F&Jype-L*-c*8E?gg!GNj-`0`q))UCZR3cWO zPd~G@LAN73w?(`L`DMu>|3--qr{?6>3EbTPX#-;?@;D1G-nXu*_P^Q+i4tU*AMvzX zDn(1(d#ZS{H1BbKIY6p)URi`qEg8kfe}s8u{L0^xn&bkPIWJY zV0FszY(9y5aqn%(rHQM5z4bgNdyi99Gtde`DkUeA34gCX^P0)X-HWIc=0E>t>;wL8i{4`>p!)AfG}!uiC%jpF!B3bOL~`l9ts5WRmTM|_Dj4KPxQzjdLW z-0SpMdxLwv!*9R40L0QbIDIUCD&>c4OFu0#Vh;G;VKiorf&13&q^cUST&3>pR;YBZ z^0Em?B`oP$JLm&`ut{L6q{-mTczi@rPL*-RJ1(j`dX-}YnYm3)6hZ=m5XP#>+ONT}X3*xG8l{4qd+USw1)7}vkbSwvTGqJ`=tEMk1V zYf@@JxpuPk0n9mc{YO48c;^T<#$Y;Y%d^*iN0M*6{?CWbmiM$(7`qpwOatcZr+TR| zKyJqFR>uk2%evN^EZzsfxGVf&_^54j|IzYyh=1BFQ95=fXm6YD+ISrBd<%Xx^ zFO^Y#%2=`HM;Dawpn>9$-o~8_>A|+&BB!A7ImjdOzZ?4f6xjGD zIKGHwmO|6FXYWitN8dRV$N?Uv;Y`MVLL*g@t%}MCQE%Mq6{MRiHL*)s(bQ8Kw{GeK zY1*-iWawR6ryHj-r@5)TZg{-i8~5|5r@M8qg46wN`eEDif90YKz(!2K?NB8xKzDoj zJ9lmoV?nc|D|f!V1aWP{Q_!UYvZrku({eJB91(|Al8O(M63RrYt1n}#ze>v#% zk?)UGZ3ilADMTh}&fSqPg50xO`t?4IC=BB4j^4@qiOuxd%CI9%5Z)_lHpGS;txba^ zQA4cW^Ao-CUAMS+<^_nb4nzK;soOQ=S`t3F>Nn{~w_kbx8-+%k#$f@E<$kF#nq?@L+ zz~8|vF`7oVz-XCE(#wykuNmX0S*XcG{Jl%1!uZFy9n5g};i-B@rMwS2K2Un)9UgE# zZeK%L=Q&P#lk8rJrXse`+S|}H_3;u)7a-rXX4m#|4P_~u+^qzS?<>E zh`IXs4A|X|W!kf_x5FRoa1_%vlVM70VMzDQY5(g}?R5WF7Qwv`xC_JR6SMvN`#*p7bLxyDj1~Gv>T*3S1nkkZdPg@5Zw#Cb3J%0X#aV)}4KibAiun8Z*cz zs?Byr=&m|1hrRgQu zLnMYLz{@P`_X}Xh{UYp+^-G@oGX^QvS;^<+ZrshZBS8U}99Y9Tg9C95`-{YUOj3f={%9RF z-ZPa!(6qvfk7Ln|^_b$$4<*|ZQrW>)4lmLPaLQBW>DJ*FonO}}>g)C)!4^Ru8km~2 zl?+s*A1}9PFx`AmVe2#39>0uJN9)ljpx3uW_2;=~s3 z(AuhPi!t)_=X&Tiac=iSmlLn?F@)lp<Y`)6M0*MYfB0eGQOW%C#q~%Z)?v_Oys`$95wPP==08O!gnLt7PB?%u|Naz zvafZ~M8&SCq(l$|*$xbxZL~b~f(eC>574EpeV43@L!V1g0RfxrA6HywN=?gdt#(H> zw=)jY21f=^@50CI?U;@XKXeet|3j&`%v7OcBvRO1VSHYF!tN|4it@qPBx%}HJsdgh zDhzGZA5Qen@$sa0$6M?Q2#)3l)2)2=@bPRP%exp{VV`MjH_BP}lVK{=&b_SnGfQ6Z zie}N%I*NJ`_bT+5Ws$Q}A<=rX|5w_TMmJmbr~fF1ZGn z3yM}ME}^Aqp#r9(PVZFOhKjoe3T~;XxgeI~7807GsVOxLE|A)YfJnd#c5=RRzQ4Zn z{r-jLdamcb?)$o*-#PF+y~kK>SLx|f2_5s%-kjNocBk;o3$g}HzoO~-*%}0+efd7H zD1N9zLK}-p@><=u|FK5Fr*VJoS#?!>WHUVOljyX?mpGg@C>EWvTG}frT&X{3SThX~)LmVenSu#A_)@p*DJiUy@nUY2 zs9`y|HmM2nF08x4;<%Z^xo8k`6w^w5St-A>&008|A%)X_I`&tjjJ=!tnfljP7bPX7 z6|l-t^6`6+y=V5C9l$aCMhdA+9AfBA3FcjdJskYO#PRV z(l6EyR zRLK4X`yaN>36Yfc<7PSj8st0vz>c&%3!9Bni78o2L!Y%OE~9erNs(1inKZrw1(FKjHY`d0ePEizzKtVTbnixX>5EUpSv@6>5T>)S=vX6bGw3x5=U7POxi zUbbfQB!Z9Fn=LYMLl;|=ePD|`Py_y26&0-@_v;@{2*0Y)38ag@@M#kIS5;TzpzdpP zF9*B)U_rlcs;+jcwVFr?{ko5RvwL~-H0UJtG zq0oTc=b+GQ0mG@gCV)u(gw|(^x@JizSx(HBNvOX z&YkkQ=)6i+*7C~kIikLIrbzkWR<{L!#T2oy#4O-2Z}}SWm(h5TGZlTy6Cj>53`#)h zV?g~MzpC>~t`9Ezu&|;eni$B(!QUuKtn{+ zA7%r*E^`(3r(|^xblQPcLiOrxc_!N_r^MTkP1j1EPM{lJGj&0UDt+%{_K>;&JrKXPCVMuJ6D^Qr``Hdi6{h(=D4jXt86IAdLVR@*l}=&3}s zPtpITScg|b{I@F6jZ*c+Jin7d3+uamS!%?k2D}qPl>gRONl91xAJuqeZb=T1QxE^Oj z>PiDL^_pL<4N6|f>itc*v=B*d(^2g2w)M(HsrJ6H`jNA=E8B7uY_|LZR#HqNJjJ9F zZA+(n$XPm@;bz=9gnQKUy_}UEKZ=hd`tXf-uASEwSB>no&+M^8KrT`Y=#YW2+i6$i zn}id0H|#R4%)$-=?7iSLf^h)c1_%)e72Nolr-fq!C2Ky>3$xeAttzeoKx*Ye$D&Bm z!~!o;gHc9uI_Vd_``fc;@=R=a@CnBll;3Sy;+c4`QS+j~ii#kG7D3OGdHV*WIV9>bv{+sg$L99CX;2k=EcdFs2NB|>G5Xdr@N7cNx~*!LZWQJvURH(ViE0cUFhWf=a=s@I zPBH#R=GCX6hs4`**+xWtkJ4wAUuf&qV`Tr&yyaOHdbTR(p5V$j4K>0&9J!MUAkihv zo!)eZqab%3(3Q>+sf&uMwXFXAc2&6sMw%OghuGIr@>7a&V-bg-Vlyp})^2{h4?ylN zgliEJ1pAB5s=ULXq z7k|?PY3*!$??r?2m5Ww?D!wHpz;*vvcegY64Vw%r^K}B;Wa{O8!lgb{CZw=$%m&u4 z`;BAj_W*4|YVPDK8&F=9tKn5~s(BMwRC=5skQ^}Sn=fBfr>)ob9$cKK3o^Mv3L>HL z-}dum0pF7@8UDJMWQm`+NxIhmjl{$T)tvjvPeYILM}5=Wo`eD$We?YFrtIz9TVp(CVI?XXh>m0(MF9k^(x=sy3S=jB`IC(^}qZo|9}jdk6YC(4=O-Jv5CkewI) zM3Xv-IQn2q!}qbjgC+Ll9Us?rkdCX5P56h2%;Bsg44fywP5=jI`6g0E8^4gcB~Lcv`4}twiuy3Rufi3DSa_YpMhqUw-QB3Kikg4A_e005o$q2?4WoQS$3ZP zWn}Wv^yRp|c5=(8N8jE1_I>^#4J<Wm5=#4CQzJOSb>z+oUYT1ck^v}%wG&E;TKn&13$sChHso5Ol#iil)gUmgzOvaHd zjBb*N+cVMFde~olm7IARskJ3;K?9HVTB=`6JZT+m_D)*D&JwwjYyG6i#eQg@kyTsZ zv-iD!M^Fj0J01o%$jc~tAX`FsSl|Af^Pb3*S1{0l*&lI zL*mGi8^OOX&R0KIj7{$P09=^A=-0FMs(&;!W1za*WM2E^QqI+(5}oby)Aqa;Sl`!k zw1tE;*99$R)!Zjba+1vtijhIT90Q{bnSp-O4Z2)++NA{y_YBxzm~|eue6Vd#9%HS* zBQDBgx%mCDV9dLipyR?T@^>#KrO*eV8d^Pnb~rcx%)AX{Ihl<5CpNGVZn=v|+Uafs8jtd@FFRoVIc4v#T7#D5oGGK*t5 z(Jm<7MwG7UT0P-ltF1EYS7^AdaXx)^63-C&%vQNjwp|>v3PXigrc4$aK={e*ptkpC zS+FfZMdKrS1^8--+6L9X>jXwfrwa}}_HSf@qA_S{|{^mXbbDk!m9uT!;xkq6l4FfyPptXbjb^17U~2u{ZD+75mN}h zXIiA?N6n82u1_0(4PA0-Y!oF`vX_|DgK5)L4?ckVFXuGZ#;Lh`>v81O0)jinVv>ia z`|o)Am68)9)f)#4c#(8$Hl{zO?Nc5@15_mIS$;dl%i|I>eAKIuiPk0%(yYWR%@xqE zq5x5Q&?Nr@Ltd+4ef5g6{)Ijxgy|Fm7Io8>hcaR&f+aU&1NcA^<`DBCk**J$7LLy} z;);g0|7LH%YbcmhAS7QJ)IN#riYb=gT-)3B7zkT99ekFuLr@Q0a^)YSAu)uOa-DyN z1IvMR07`$%WB?r@H-g@8JwP$L{Pd{Bj8}0jN0^zg!raGlbF=-F2LMt5N3O{QIz~q< zFh))R3$G6SZH~)+yH;oTtE*yOU0b99B>D!k&Or5gf?4LU@8g6rZlKQC+P2)%rJ?0_ z%twF$_w#%@H1l+khYR18YzPMM9s0F!h%;E~3x_@hfnUa_ yC5+5^o}^C1jp9~*DmH($Zo~?-|NWe}E7h<15_Z<^!5O6DQ|EK;_BFOaDgOmmZ&S(u literal 0 HcmV?d00001 diff --git a/fvdb/notebooks/img/gridbatch_concept.svg b/fvdb/notebooks/img/gridbatch_concept.svg new file mode 100644 index 0000000000..59d992e359 --- /dev/null +++ b/fvdb/notebooks/img/gridbatch_concept.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/fvdb/notebooks/img/image_index_grid_diagram.svg b/fvdb/notebooks/img/image_index_grid_diagram.svg new file mode 100644 index 0000000000..a6b253a4db --- /dev/null +++ b/fvdb/notebooks/img/image_index_grid_diagram.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/fvdb/notebooks/img/imagestack.png b/fvdb/notebooks/img/imagestack.png new file mode 100644 index 0000000000000000000000000000000000000000..09f810ad60bf7248f1ddd47e84e60e24356fdf0f GIT binary patch literal 18768 zcmZ^~2UJtRw=YZ)f^-F>g`!9k=`F<26_8#k( z5EKX-68DaeZD(|0gBQC;s0Y^GW^(U7k<+ zKXl*Pi=T`OfcI1{35fc%+ zr$EWg%?e!>B0RkUt2p*1YG{!y?+J$&+*^&gu6KXZ%H0L z|9PzI2NeDHkEpnanCSoHeJu+4#|0ZY`gpn_{$+3C;R08XfczKu|7HJgY5y&y=k4Nn zUEhCV3gZ6}`M-JpFJ9Ht9p>%mn?|{deE|7x%hz6euC0|I^V5l;f0m0U{zLqNk6Qjs1wXW?hm! zOig47{7(lM#lr51YX=jncM&s@#k>ZIQ&4{520gAYG$^mbbO!9a-B!05s9{w2WK*Yk z_g(}&gL21R;`g6y4T+UUZqO^=qqy-n`u_H1PT*Az;z)iCQsQ~!Go}+@vNd=1r)6@+ zwYvV$@6hM8;;4B|p3d)L)8-0yby|I897}~j=}4>J z{>eb=p8@i@na{L@De|3PbBA9M>#8U6+x|ln%%MBX)z(LiQ^KQy!PY@L-P_=+^Sx>t z;|>mbm(3-vtK+fi)>FJq;w_KwE9vzwkE1=0qfLzPc)hEAJ=3c_#Vg6Tp_`T8s#-5M z+d>YCY)*^HOE=aIl)~ zXIMXql%3XVgkWuy^3;%{%YUqsE$VviOuW{az6%=QoT$ya_%mU1-fdGccQ$vFxOkL_%>JW=+}8DN9K*LBwQS=( ze4BpV3#tk3&j{+rZ?^v3d}eCt)%~)c=<}@F-@LQ$d7Isk01>vIcI&l63V~t`=Xj0W zCB{*&hyKo8^*~yU?@}Q!hIqpXzlEE!L;yOkD05RC*GMReH<@$E!oO%%+Ec^|Ar+HR z(|5mWOUFN<{EzgNKyVE?`KBRXi5-pw$i^#iTc2D#Ij>o;{!?VA*5BY;yQc zOy(3s5g&5}OUh296TYn}R9BZ^U@T+qG{G5sM=j=`@0=~ieh%sVMZZk}`}OrAad?Jw zu7@rNN4h3`i|c1+uf=E9V;I$|=1t!gnhi+~a;UT+rCJr({Au=A$-<(CUM9MVyHR{R zUbz#JYDvtMtQ^qivLSvmfvS6b=tI5x$N1VVy<3Dbt_h8vkE@ee|=9U~!;LLld zI1qkZO$vgIJnTsNlVSz|bY!FD9#~Xy zD{Sv6cpl8oU(A+&eR>n)cD`bBxgzAb9YO$v!tUr51hk!&w*{<2vslxw$-m_Zwner&(H>37=Nh%ify;9dmn~`wa#< zjdJz37P{l0D$ zbq-6yN`xOJ3mYz`t&|OCy4lX3i0vp^NufzfEl8V>gq-(OfesrMS{U;x9Mt(a%iAW2 z^K=6)Opz$KMdA;^@R215VKHn`K*nnY1!=&b)h%<{Mqh^_E7mOh6GsHA55`Xe&&Q?H z6*HJ~eL#X#9*fI*|7V0jFP0Q9mwZC-B_a3>o3ojzzn~Xv*e_*1UgSL8bXNqrYED8J zpd$C`e2vbOY+=fPE;m89h-T>fhsd7qYXrlu7D4dk-wBpY-Fi?|Brj1ON(3=EyO@`J zWxHj*W|7h7lkBC-X2$x()SF{L8=AZHVbmZOVb3TsFF($8wZmm2^}{f^^!%otUnh+5 z)kaZ9)kNm0NHd{x;oYI<#iVCtH-9$AX>IO7#YFWbzPhSKDzSj$RPVe?uOehgHpG5n z?pJjsI%n!1)~aRGYTJC{e3R(P^CaEVtmR_MbN+;>8<=3<>3R0mlO2w)@&xxVCe$DL zHU3#a{hgp6uGY1xwYox#TBRYh z-an+LDpa|UX9`E(hj72O2;$9G7u#(CqwjO2K<`-XI6$i){&^^jQ-$0M0P43_CO05|V`-i(T`zgD*-iPL|Wl#Ceax&m6* z#msv)GKRefA$%VS-$G(b2romHOGSBJo;(Lj**gYvn)NukJs5INYy-cPPfuMU&6asciqcf1*zn zGP|Lc(FEA^?2!E!dE;71bx2HT^|HP{bi1jqPU@n+5gm_G1gMc-?TTLQ4l{K6aUAE~ zL9TG zztZGdwkWyUI>{$o-w79CoWNVb^GCrpdBOWZAH(HcUJUfDqv@|_{VSRHthq|Pa32Ni z*5HU2Et`$fMnNJrczR?nghO1;wf}Ej68v+A|j^nHO!xZ`(kD9P}PUKTLxsOlcB5+?#1}O_DFS&VR2d95L><3e*2Z zR0q=79G*ql97p9OEC{~lMXMQb%vD=tPs!Y=%lRmC1}+%8y#sFN%1xR)pN~?S;`@-&C~X4I+vomj zfd>O`y%HP{QdCxHlE*WeRq*2p}W@m&S?$5GX@2b*#7 z*0~$-4FRsKNFW_nb3{DCrR_ncw_)+ZD7DUr%47-RS6`xnmUo#{G9KGKjNYTV@$KS5GfdUX>8@gcvCB*xm%_5| ztbyNv#avC}<>@AX&CeyfPH?I_b^Bs&+p1nx4LwCFS@^^=7=?Qz?R8u7m6ni1z7aEr z{9fh|5O3}+Nppebx+HLL>>qG_UCT*HlUNL*{!~C+#;g@7z##%WW)!F_>Gg|$9nH{Z zYJENDr``@|cl|p`q2NVCTZl>~hCLo@4uS;DAG~c{e@mX(A3+;BuZ?KZ;_uQ+1`LxN zkAhdeujM`heG~juudevwF$%K9gt|3KE^e-rG&vyO&R;HryGdY59m$k=z#|GdhVzRa z90l#gD+Imw{jkIV)!~t<^5k9#?-~`?g}G+#>V$zUJNB$h4gzI@1DF%IA1Mgv18qsG_Lx^Lj(?S~Uc)MhDT(wJp{2r6 z9aCa(E~NTxM1VH)ymL79u@N>-hT}w)>vXsbQAag1b5_w)EnGhI=o*cluv@C>iC7=%onuH{za<&I=fazgqy{ z9B))QmNHvoCWvw3e?2c(J!!ebX%%;~b^~!?tYjCkBxUWTO{Fy-(Sy08)*~@_fX$hk zN9(Roo40dGki<5=SKc~!GT@hz|!bZljxcF9-Q|%dux_E@zuCn1KcXrD9wayleF?jKm z1F5#=U9rCwdb#HMG+rWew3m>k&JWH!Je8mMw|ko~F||UBdWVw|d0QB=dpe|4j&~KH@LZ)z z@+NwgND)mxdGl#03{*_`w*h?AWBVCYo`N=R;L=ZE;a>=&ZextU(P{W1etcp~pu8EB z{t7L7;ce~0t^g*1_w@e|nL*2S`4Jy4Oh3Yh4POrSGa|eEmINOX`?)aBAVTtm30Xen zN@ATk5R7oCUk2#9NcrLIcqR9Ise&6y1<1#ujQc8MENds%TK;f>K_Q+uKPAt~tr!uc z9XtKmPdCTzJYfzapN$)!bJftN1M2n;JH=gf?a%Mb zb2sB&%QUkHB;Vp2vRi>o@cLmjOm<{)_*5NCO~LQ$B-}}1=k3F_O3c`>qLJt3pz;ID zscq+S5eV0v|hGkUkm%74k3Of1?aY7;y-9Q-LkFen8=}FgX{R)#S*KkWS zzWVB?Z!-6mCV#!|#75mnBJ$7ZhO>-+u5iw%g8S6h^&Red&zy(uX7+#$z?;c(;3N+E z@mJp|g2fC~As%H?@=}Ewn>8Y$EAo}E-m6_JYaz(_A&;XS7rL4Aiv9yr7 zX$(z#>3%*DYrV7<6RoD&*0cwQD6|HdhFV>TJP-oVad7ButmW4sv=jNhRl})5e1=D2?~Cn>Ouc_2C}4wa$R`ax9(ZFWN$2NrlyO5iT%_3hFxcImfxbUMaOwzVeyCF700C)@qsDQw)PJ>UR8R*jFX!*)%ZIme5PE=L zcd54wf`ZmLk#|w5)u{rBc5<|941srs4UVs0$52`nB@e4reAwKZ=Xssw`W*TpNDDVM zgfrGwC+D*Ci#>PZ3(P^II7j|2QmcgF$HI6`T=m6_6#4Rm8gZhFg1X0K5r&v^zhHLM zi330|Bi}C}wMUp__F!Cd!Q;Z#B(Q$E(3?8248oiqa$%iPm3B(@GjnqyiQv*3#trW` z&sCezvW_t}Fdh(FGs*gLhy8GT1yWL!yHhpSG}}3y$l6-}Lwef|dz+VV>}mgBVfyn{ zlr6nkoia44+}=MlZ)EItSUgD(_-+$a-O}3V+f_u%Zq_5uZ=LKR_+-F*fORl1m}8hV zDCZ5$B=PrkidLDa#$M<8kze0mqQ#ppu&!UH*;3t%xtEQXSZG8X1Mez@zglB-zmMSd zhzwV7tsi5O=_%XAX^{_*qPE_RXk0K3&^rv~M9F=}{ldA}6UxzQGLUsu+^5Np*sKLg z;D@S@syt3FH~_~_!i7?uD06`A%BIAj*ccH%Ot~e~JRhRTod7q^ao`xH;YdLbDn-k+ zo5p~aurFs2U8zmP246o!8h78)Rc+2(NLJYX;7Gjob zF~UMs&AXWQ%Vo#GS#}(KlKVf&);RO_N{xO+a~mQEv5E-&Y^_0Fb{pw zHp7=YW^2>=lCsRlh=5+-dcWk1 zSHR!#YS*hjr$h?nyykrOcVldB{cTlz@=P`Am%{?DnA@@6B)O3wrY;BSn@T6hV~!lP%QMRx~Ss^e;7_hIlf3=ce4P)hfcH_1y4cNU;OQdXYk zVnc;7?HGRYhdD>a6dm8sgzSQ?NBmunN`%DF$x|V-P{lk&&DA_7n=?{TQ+pP@Yx(JP z)=$j5l-T*=ZnU7x=kc+r+9#>Ww`dcfl#x7%?{I7`B;x5%5Ytdo420!g{HgI%1O~ZyqtuV(Su; zVpqSBrlRmyi^TJ6#xok)d<{33yQzdP_aA;;{+y)2jx$xVFSX~>H%*-U{p8sl4fDY} z$H__ZGg;>md{bsR%xm?s32R^L4@k2_JYGuBP=Ec!m-NT!FE7r0MK*L#Hnd_RH1!3j zar6ZV!<&w>u+rBOAUb;k1t3WvxgUj+y;NKZS=}xP@Gi;|Z>SiM=v^^86Q|8IRP%W0 zh&_lM_fAWM^^)s@%rt?*C!;U8b=K90odvw7*mNFOpfdaW`R#_fzheg%+sO4eBeL}_ zAIabNZqbmP&q!DTgK=gVsixxD^pN$%&h^HgJ0oxKh7D_QvE;f#=g|4!P=)p7ZU)_^ zh8=u3TiocRkH%u}K@YpRYHPGi*Xm+5`X6 zolqNB{_ynhqvJx)W>$|8C}g55zPP}V551B+83}qb1X3nFt5Q8y;1HX~ng=5>UeenK zzOUBSTn3~++(CTdlCB_725hlbBfVPgF>+lVfKSb0?eiU~B8vvy}0PtbLbQ|f=$ z((A8g?wQ3x@@xH_FK3&6LflPZ{(-IkR`fd*5*E{pO5Nt7yc4UytA!AJ2xPh3RWNJ z--*HYX?_^KUqzy3#`Zz&K{e%Ydz|S;?E~uX=IJpJQ;1+5x@A|MAo82 z7LZ9ZRQYHi?C`S?$jWxoGe>v`ZKbjlGDA5)Yd$>At1Z24XjmLUG3uEyoCi z{MrtP)`@_y-{$hcx#7RGf1|j{-9E|9F=(x>4PE`+s{1ByTR$NjRT2`T5dF=@A8v3^ zuoaP_wSHHUE(;t{uyHr1d8TMBHZRP^571kYseI3$FwXm|N0-%%ClUmApmZ0VZ(Lig zm`et+Eqs#w`dPBk!;7NL_S={>rOlqSjijadj)Axew81r7wmW}^#X1CHacr%}V zEi6@pOEg=kTD&EzqK6{y%LhaE!(p&FD=9|tef#?IZBqB7s+VAi4l)>id{YjNS<*(5 zTc^8Y!n}{cRbkaEkMn{#Fzbr0hK&*pJL~~J-s$J0FzDc~dbdUUWrG4N5qz|clYd`V@;({oi(~L}{QDL9kRblowjCK+o zJ~oqj^l0f*!0k1TfP*`zGfeM|pEHtaoFB&V@*qtphms)stzfT^2TMQ1zdMU4)i*of#x$77V zY~79Y9RHI8Uh&xvp7zL#86zSoZ>EJS1sNg9#R$Ul76+=`rA z$!AURn2)1fz;Z=<`Z;nW&oWc9m+%gth;X(*4CCI^D?;8E=k*mmJk`sEHp`=Km8)8F zOZhuBfrL+tI4=OA{It7dQm`Kt>7>gyA9D^7US>y1GNB!htqfSo>|4w5gj!bq3sMB4#fsle_ zEG{txc}btA?ve8&-pJ|Z&F>vji^9{27x{#9BMDDi>>Jp9o++OC+~m<5{h%b84DDR? z2s;o9!oHoWV%Uc-e4BdCArjI|h!VAg)HK#D+P|7S)A~!^kZL#nYNYFmt~|O5B_~f2 z0$n|yYUSQiH#%V9+%NR8@mq*OTaj&_3g>B$VW`>uDCa5V;#h{|$>twQ&K}W{_KrT3 zfs?%8^Y5Ut79*4n@HNzPI1ihP+z92)I%YWe0Wtb44m}X3pWPaO~*RzYIxcYD6kYv z5pb;J4>TK;Bg0|xugKBUbtc?zeOynFk2oS)ymKT2!n38O$E>~8MOK&~n?znS<}&G% zcfdK3335WbkLYyJ0nmvzl<_!+j?=-R#swowq{>oYl<{dxF>1dk=rAJbE7*$TF6$2; zU=oBt<|vrK#hJnja^4skU<8j%@71ym!9`i9D=b=mFXa0{RihN!859pwb*(S~+2b|C zaTzLl^JDIVW+oqZ@*m_W?UvW}h^fV1Te5vvd*EdA{-spiO;I}F6A#Cmt*@MnwR1m& z#D_WES((vR+?CIsDQ{huP+M&VCciHnU{~{BC`cSem2Zg4ANZGQ{mzKW0E3P~&}uo- zoi7=eZj_;3N}-*B_8$`GuHCP+4k^PE5oX9^FBg=QvS9ABGzF&)88i zDM?pI7l@`biEc`N))Vux4!HfYY3a{y$Cs~@zCT8pw1PmwRz7x)`xFEvbnJxk)ripw zUB*_KQ87fO!{*x0p#E)M^eq91tOvgvL?|`jVVeZK5{RaqMjTW5`v}(i(bm1$$}I(U z$zMWK!{=s%H|r4RhbT*n8c1g~I8yMJ-jdEQr(5c#A-7TJj`Gb$xC&&Q+@{x*0Qy7( zF%9&3PzV1+i>hA(?I^(`Xe)`jN*U-NV+PAh47iE{tvTx@Vb|=pB8|@aeTJ*?o;x0E zUt>9q*`I`yOc!cPsJk%vKKx-ewwa)B-<~q`vG$#a0@eQN~GW?Y@x2JmiJ4~Voym54wD!Z zDUa*Eny4SKf5g{_WvvozHosz@gN5xPB344JVqdljDBZz{xB=V*g7g9BoXZmcAA>Jz zyN^w+{Z|Ni^2W_K1O~_bryVnNa>XxyCSCkY>=Y28ja7{50pX=MT-+E99Q)p=mwM=Q z6b#RTgdEv(h7&r9p)swx?h~BiFsIExnt1n9*{$sFgWP7-onwcfL});~(IRgj`jPGp zx*K{~!iyE)*Wav1YJ(1=s;e@ZmwC~i?H>^zAGY;jIwr`Lj{+(Xv>JiulD}yPky1^6 zi?C&DX3aji`<=6xFLhNI*|^vg*J;bF(Mds(p6n%~fxaXsmq#GBps=3W=N9n$Jf+@W zxJ46V_;%5yLAZ~=L?~oIyPr>yxGFqGvN$o^_RL=CbF?mh?;~2X6V%@Cq>9}-AHnv# z$burT2)V9Sw{KD{_eS3cMisY$_)hmBZvrx8;I@9lC;L4M|=Y{asC!dD3q7f-Xb`Tcj}{9cnsA zTpk{ndoZ2)L53}DGJIrUXl&_&1HjJLMec^x29fon_d}A?i#K4d7O7MVs=2%<)?B}i z5_Ls}cjSv7cNU%9?hU!&O}Pb;lIW86mRmDLDswjL4VWf`eA84C5>G z;-9cjzB3hm(hhA^xTlA6W(gP@;gcT4N^k^l=-2+L6-eoWsMOW#Y5#!5lQ z$#u(&HYz5}K*d=DfP)4V^b zN550`=iobczz4B~++VLGzN@Kl#i` zoCuNzd^%tmCB4`2t>f8HDlM*LF1#a4vDBB+-5#r{LAg-JCd7e*Y@`qb!t4a{b*BXx zdIjw2sBg;ZQmBU@Cn&m~r~XLBMhWsn$GpuL7P?tYdEw*mG$cOrTvKRv4MkPC+jf%O z#tKXyY<2ARhpTMySmYE7DF%@>ubVyE*~QFc*1dgUyj1;{m;FaLPU^~S&`i%Lx88w~S-r$kmwgFZNBzFcA&$27 z{6@oWh6r(=az>lSAB=;++n#5^iktrEsB-@f9`F}9Fn z3WmWNoOimZ#<4L~_+DdAMH2pA*JZT*Yz3p4t}N%ZYirPu@3qan=WJY0OfQ4YOfEv^TKk0BXa`Axba^wlNIB!G)~6O{Z=zlnFiJkO zkDgvA$cU*9@>lCv*SFdoUD#3L>5Iw8?5U+^?cR4;PP>zeBI|gc-ZuZa$oFTI`e$Ay zpsTE(8_VxoA7*YcSfWNhgP-WD6|)@}Ja>mXB=-^v!DO1CJqGHGRQ%EJo~iBFjpe>N zwV}Xwqm8w8@cMrlHepf2bg_p3EX#cxQt9WgWH6i(O9H9O*uK6F5Ld?7%htlO>{w!&s@qB=Cr((^QkBD*7TtDP zCTmO6I)WA6*|9E*C;1OzGkKwvaA_-lt*O&@y1$on<$ZwO6k#ZFg?zmnY&dx75q?q3 zA)=ZiMK8pUMG6>dR^qKR5MKK2?d}dedgUj)h~rP0bpU_KDGBCVb}gQfoNMKaqGC-b z#b-UwrqmpdX2;jNwd8=mTA2(OTa;c28Z2Qr{bNjs zgZ(b)a@7Dpmxqpvhl77==b@m)V$`dLd<<;Rwi&FonvUn*J$B?rp`;nklbPgc5x?ES zvE?7#CUo|G=!pAcyu|55WE1s+EIMqGeC^Lk)4@Wm@fu%JHPXXs>XcbyhGiPUhs}Jl zW#k_veu+L{JxGnwTR&wH?)^MxBO&4WZNrG8YRNIH60$^ZN9)4(CUNPfLz!!+Uq^wF zOJdK+k01j2+IRo{`R5Hddhtf$;2Y*Af z@{WuPq$j?9)g-t1<*PV?uAPl(AA){#jQkbohh;kl#jVwa+fxA1#j>6epmvrnV!67! z;rx1s#fljQj=l_LjoICg7ZQ`zDHE!z!(@5yy`KkI0pL-lL#WZ~r7`R7RLIuUokw}( zYaT?rSYlohFW|i))s9$2!J+l{5+~p&B{^{HH*tk;awQeRZ~I?L+F$(E3uO{@393wS zcOI{&?d#b9{te8@mO;IJKcMyNqa5A2Ec=#R!8fB3!GH}&47OI{ z40&!XA~6vV|9e_!{QL_XPp}axd0~&m5LZM=KG43I9Hc2r=D%inHSiR}pm@2HG;hGo zTatp=NoLO1*OVe5GxPvU?@AJxvHsXGQA@%ddHJz*unhFSmcFMiLyi|a#kXJ1eng>O z{;p6RQRg)JzVXvVDP%0k7pP|5RL7cwJ2F4yw9j5Kw;5I3S5=g1-YKNgeL_c0d6mW+ zpaUgn%Q~-YXkW75Wfyu&y-eaKM>3|I(^*0KN;z_f@md4Rb#9+yw~-%z3*KFZUO0|P z9+4$ohZ}r<6gTo&fQgQ#DzOylwW5AAR`8cbA@UX>RyiUPN{3<5t`PA`D;VXY$)hGj z*gT371g$LJ?qq0{2-8D6(^d7{MO#4iI7|+~Ia5K+)0#QR>#!C1MVi~?ipsNirpUgB z33MkfbI;{8dOvhtPoIV#N*!f4C*v87IuB0_UhK-7+P^D^85ZLt?a;GM3gpY{2lIKR z*=l0PiqPzOjX2|t=6Y-?+~Mi0)^grry;P_@w$V6jcG2LSwa|5Rj>xbg^l=#v6WCRI zbIgqo*zHcz$6&u$?Lj;qgsOlZtB{=lpH|4H(TdhN$7?PmwCcsEV^Wu*ux?K95`I$c zN)*P>MU_srpm%nAO?9oJSk5yqo+Q;cK}F7FgnD5bJNqfeN)TniHK5w&P*xVy8=t)U zAPG*BRyEnbP=9C>{PS~p$TfI-xQqz?Nm@cG(rv3#aKzCg{#4@Yg#Q!DwDxNoSgLv*W;sc*h|h;Z89|$4e*#r2Kg;y zG_H7(eASLR(fBh;3HkmJuqaI~Nap4DZmAWi z%?Apz-YxT1I=#ZFZk0^>=_}z7a=sFKK8Z&RKd=-2_X9dKXzV_AsXFx!`7Ew$A>lUZ zYiviy!NE+X?B3^q>fRrQ(X}pb5Bo_oFUHkn3!+NU0nu$OE%MFY(RzA#Y6Z*W#vMbE z8>u6KikOn1w#CZBvk%Pmk+ZUO^Ao>oTg<-aZ_RB_-DrU_tjdV4zpTZMJb!fY0RE)u zqjKl9eW3zk@91;(rZEFuz&lxEhBp&gOE6Ai8o`ToJmQwb?qH@? zZcuODhTVNCCdQ#0{S?! zFe3@Tvnencu#o8&{|sOn!y6m$Ah`(hgWy-rBheAVBdWit1vRF-wh$P4sg$58VO=RY zEkL85j}FXAysoP4Q4@pKTX;PU~a5(Aai$0uj#8D`1U^5~sB|MR$$U9b)9 zJKacP_5c@JG0UU0)F!x!5P>A#3i760hPn-W=Z7rZ6jD4ZJ}c#A<0K>$`?q<%FS1T# zg6beof2wiH$K_NVL)rZV%Lj;>f4`qhEUlKElyQxDE52TQttQJdAb-7*EF3gCT|P^H zo&z8K@@h!scYcm|hF}w1E*W7J?ot5`P~7H>e*mMT)N5^2^5X~vUotCLJC{*+bnt|6 zD)6AbSe7D;FL(RNO%>+8OCk+4VRsT-*>jPCw)hv=Y$p_e&!Fu5< zZ<2FTYF|<%Ki>3`tr^@I#R-5VB!cAO-F1OY*9_g?vP913lY;}aiDmNmlss>7Gs2hq zJLS)|kGg>n@B4hAR<%yXD?!MeIH4+*zjq%yd6VJR^PN|%^8j3QSF7u#dciMibYqt) zyo@(Zd>GYRDp!sACZQkjAV-n04>! zeHIiy=-I&K^S+nhDdtU)E|M1DD4TK;sZD}zI!ZprdmV1^Lv&@oe)|@)8JHpoTHn1* z6nf;EP-nvBa07O+E|!xJpLkW(h%YP9J^0Kz7j`LhzistL(bPh(8N&U}8H_5Ocvr6; zHUObW=A0e4r-&_EFpz-6RVPFJGEa-HEpuEb9Zt*S58_Losjbz8H*V-U)pn1J8_{_D zaH)mTY)nzNid1pnamMLf1maWh!Q#rQqNS+EL%=-?I}rX`5UvhiTRK{R`)IUKZM`{K z(Lb@RiTf9$MnjrX4|fQ6oteMiWd@j@;X-ZpqX+q16=~*>?FqYolF#OV>5QHZWbx=v zucqW-BB<1`L^JaoJ`$F%vi!br_dgR+XNlL)m9uC^SQd79z^pm{fGXLTjcgyDN{FTrv77Cg3 z65mN0({H|q)Y}N5$Rm1Q{&~rjKvmW6txn8He31BO2stzrXJS1HQyEw<);~t}$=y{q z!fp%_c~NupFpB8Op?YtQS6iQe?VU&tQY^kpa72TbQQ z?W7V3!N*tCi*H)iT`~zk)A+867l!4^55|P7cj9a@sBwY3!m`35d!kK{F7Bs*zn4Dz zFYQlf<0#X}2`~;ou+#2YO$Cm>BT+!j+;@cUO}OgznJwKfMelR?gKhwLsno@?olwy$7^@$%BhB^v-CTCbMZwr@?5~L*z+<-T9)dWvW zHq<1Id@u_U)(fSPDSv)$HIA^Daj>&?_d7W3?NB3<$7+B2I3(_{TA8=cf9h2xbN{@b zVzbjnuGpL!NUJ+TPB)$)0NH)Vt}p|?(~!%M&DzH~tRQ*ooZYk8%MYQ=9AdEf1DYe4~5w0 zZ##a1pnIQqP#&g$f<9Ji$%!eUSqb;-i?`vxlhU^05pg)?<5>8z*K(a15aN}_u7g=N z<;Z_){c+-!x!34S#{!8T?AcoTGW?IDS@BjYe%Ckj$oEkVtK-Ia$U^%(O}>Eq14^yP z5|ekcPSY?DNMx6aRt+ zx8q+fplI(R_~v&KWYxqu)e{!R`8m`zS{4bV-e)RWlY!Kmq-}89<=y^)_#jv z`#UVp#Tt8WE<tU`kit;l++MWA2F{ezegomhuO;5IK(uDi1=N?(upCR1afv2p)IA9w ze#^>7?iG*zEaT+YN2jsIYJ=@(@iO)dhY0Pdbh3)gDF}D@x4b{P5av-(k95rnzWz8) zdb~(ME79%uxR%061h&KfUhN^SdQbzajF8HEb0p2i!`Ex{_YDoqaENI)zMAHKuF@k= zn~c_`en;iLj|*fCr~k-xUJO(4Nr^ENx&w|fwse7%INMQsbuxM!KhS#<1dLV1F!RIi zxS+njdg>Dm$^jkl>dG(T1efA-ca~F;d4tD%`6;^mhPibTLrl2En;(Vt8|weS$Fg5N z6aL)irTFT+?fkEycbsgYexj7)vo|AM@!BqoSv0`N0mLOQ|xK2whceg7d z2(jq-y5$sK9%C?D%fqKd(SXoM_f(q1=( z-}AsYR^nV1n=b~ML|*1D%}Pk=A>%gx~vm_8WK-C-MM!af-cTU zV^SRLY_fovzM99Q=;LB**tXwuJ7OYv)R;9wa=WR2$UU$IDp_{;sNio7b#>5jUXoBK z>UKBePGlnl061VK8C)udZ(m+?Ur?3Zk~S-+Y1gf_PO^m9#nVAEu<$K4rC$-P_e7AR zi|X;mi?dtX*?Za)?^7lW+pVVGSIR3(W$27t$H%<&6+sv|<@?f;qn`K3f=~U)NIT!Y z8)5SgHqPj4&dnp($Lw zx0^!C-1qOdBPvqowHDN^ztr@x%egk~?9iBhF~|n$a-R>9x1`AII}}hs`i&3Ra|07( zw<=aC=HS`tTPAjcSv8U?j*UGs(OOK%Skl-8Ydd1GAnMmubPLKGlR;j|aEhULd;WxP zP*?3o4ngu%qa>O3O3`1JdbBcw?$SP9Wr2Kaz`c{>5j#1DzoBk_O8k4OhAs z4atE#&sc?rVIP*HZuA`&TlqQO|7Pq3cal?5XiMr`su>Vr2VV_c{u!d3A{$BOnSaUK zlvwC~b~F3c=*H(Z=aPXkSyN3QE{-ld{2DDV*O|IO z|K-wo!`|uAZ!t2D)QsCV&UdA;Su2!~d796$Z>g^bi+>6`7rXKlX)vn=bcv8T-B*YO zm4{M5i$}sQF#a6*sIflr=um+i>6X0R&GqgVUe7e60q;zi@*&(?H8tO4N8@9e34`2t zyRPBs;}3i-&$Kh)YHW#?p`zUl)EKW$x@wS`UC%vP%dzT|9{~*ck~He%eouwg{AkY; z4q;;+TVGn^c|KkDCibt?{evY_|HX1@cZC<%ma3I7Eak)MQ8@@2Fcz(KUsH^d*CC}EbxAC~xChi!pDaeD*WWAQI8y88*r>g1?Vnl0gE z!4at{1@grTSiHk!W+deJ?`=?Z-Pg#Z5*eZ%e%VV01E-4(#NU++8-?>iM!K=@dGB89 z<~ZMQK{Wqy6lDj~pHtSi?4~u1t_NOS0+f&2sY3mBiGz3q*IKWACNbxO4=@N|4S?XK z7C)tBz5C8VuV?0JU0pF?jlI$SO$^qom+i|GBpUa4G9Yz;TkQsIyK;O!GJPQxy#`Z* zY)ZLczUp3&YRPv63(JJ1hwDWP8l(q(487~rqDhu&nuv0Ki9#cOw)3L?EY)EDi4jA^ zMkPZ1UCEpNLL!_I5T24#94VF^y!+Bq>0)vO%$YeweBw^Qv&V8-0H0)uU9^KGlxIl8Ob+rj$uAsy|dnmz6FlD*;b?Aiwm>}exD z++ljiv0C`DjyA1}Bh&H|k83xkJB5OoAy>ePQj?I)28JORw(!0U!|%!QI9jmz+VaHs zxPWB6B)7GIQDcO7Uta%q$Yktje44>MN1!m4#eT8U@*zxu=O#qm97tm`^lJ3qhs`lA zQ@S}z{Q!qfK;IZ&HY-P0HeZGg5nBVEq<*PSoxL?U+f}_QPm&m(1_gKN|GZ4r^4|{H zU00^=!c)8s%{}5#fMd%>QaRAwI3G-Y1CF=qco#&}Yv(X#|NjLr2haGNl>>8{I9-er z`p|i1ymTJ)4$tAMKN}7IoVotWHhdCu4l=-Z)82V$HZICIL>wC)J%GrS_9adkIfE0L zf$#)v%Ho`3Wywoi9g==B`=oro<3s1H)`X5u;!M>jW6EJ%7e(x>pZLTlj-j0N@ryZr z%BITue8y*ZAss6Yk+Lyi;)ruNV{~_fyhG=#&FL;`uSW0IZqVPStqHf=rsFiHJ@W6*HUZ#*8GkT^n4gyczo~uLGv~u(U z;M~e9zisZ>wEzGHHc3Q5RPe2M!B>`iozna zO=gwjrThQ)&^c?{Wnb0QkY6CUdU*d9_Vfz`M?}sVIUU0py|eyeWV`$rnqbzc&S6#I%wBiaqKV@lK#Y-B`@P$XlIIHI# zB2%9~^^D&f99Czg87*_2-%{Y@!_=0s8))m(k9*bX<~#+*0C+G$|196qfn&H{$SHe3 zmys1uKLAAIJNw>bRpx3{;~p%0fryajVM>-=^d7{PS{oxy9@INuzdckw!dclUEn z5*|8&O{4FEEdd>YEKBgo&jxdH99CyFs`^cr_kOMx?ddlZ%~iUVbJJ$^1H>U)=uQN9(}=UU;EmXu*7KCa10kf zuD$l!okRNx_B+{(?Q*o20_(sM!?#@V_s)DB7@7PJ2hQ!2piA1}h8E}co2(`HuJBo! z(9;soUZedIe9kIli899jusW+Xt8)_9e2yPZjx_49Z$!G;Ar=5@1fb zwfY#N=FO$ybHJti;R?Hv32!6cQrK-9vSwe(AO0N7m(Echj51Dp>Na$jvbD3*+fMU$ zNqdBT<}|RU>GRBqc~sMp2KKntJ5u102F|1gjz-oqsqLe>_N0L$XWf(fj)>2s29BKd zOlte6u03hs$XWNKz9Zr@sevPBJ)v!{S?6B$^+ti~Om-;^yrr*l)fL`L`3HYDb)2qD zy)LGn$s{a=b-0K9oOP)lX7L=1w>LANYL{7>t#9^{Az_lP-6uHP+nII`_SSX*eC=6p zdk=qBdsTUMdslu-dporjzrAWbtKB^~yUBD*i`U{i;BW8k&uN!sZfO^5Ze8NE4S%cQ z-`p+sv#w_96BKD*WN!S+>|=Qkd{?D5VP-rj;c zARn6*up!(bpuHnMuNn6d?Tae+XwGqd`^n4$n?v2ZIpJ;p0IJhOQ~u&tp&jYs$KBSk zY5c{4?*Xyt{gZ$6M}PG0#^MxbJz54dt+Y@5xYl%)WDDCZxN>-Y3zNU?YGp@ohBa{H ztfwm6`Y>z6#HV5%$Jx!ygx7BI)w>&-F*%brR{vNY{It8TdkQ}^`-QKb$dGvdzC=yh z&oH2*bz50DV+NX1#cuJ(`0N;OtnftMluTo^b28mt_+#}RIcsNd&go*e|ASyDFsihc ze*~M=06Vy^?BiKZ9tJxcEd!b+P5^~)R8Hz2c6h$+AD6a=BRFFk;H>OmFA;}58d;0_ zIVZ*BOBi;eOFMI&c85`*@EuDYc6@D08Kj(q!j0H@s@_qtgaia2Xb<=g;&nsY4SbwWL6C_Fv=)M(*^oe}Gb9X-z$K6zcteojBf;O# zh&^~D^!u@(H~&jskKlIWUAr&`51ASo?>CrkT5!XT-8&5g7eJ7k`-Ss|jCL+RVr{cr z^do3p9Fl}IART)L&$BxY9^B7w!QI2%k^lF{7o&Mv0;oZa-`0=c{oPMu4rk9_09SFq zd(%lrPY2MQ4dB?-`@&gpUf=;ZmO9}&eVoBRK5ubo7dT%Aj^{glKW^k7pZI><%RfF3 zIsvX3=U?wMeJnVee|+Nm@lyWr1xFwLeW6_*XMN8*JDt9;eA9*v82bnwxw)_B z1xGi}<;Ly~9_P<`oVUN=coJOuT|WM=poQNr-VFd!f_mJ>Hkwq&u?wBQMW-q$(oYbbvQ34UKhQ6 zeEov128V=RyB>Bc`u3f>G52EQ5|bV$KS_D|?0HspPHtZQ%U7>UO3TVCD&JPUt8Zv* zYHn$5Ywzx%^nUr;*FP{w9~~Q?U`#TnSp0qoKtkWU1^)fsvl;zb2>K-`EG#4}%I}u| zFf(w$LSc~=8)q%rVJ2#SPIBd@%d@3+MkQnx&r#GkM3X*ozD`U=Nwa$uo!_)BqAgvBr;0`yk^aw#edBfn?3y!`|UM%`Zb^blKA7r z1C0oPHiU(RMZy0I#OH`F_=jJ-P5@8OdF{|#ApxLFLJJ`@#O1tjs0h@ckxFaDT;jFq zFOp=U6Z$jssyiFYu7)WM`cx^6TSD23AmN*;DTMdx%yp}i{2kaRV>ee-BbfxkK*oVb zUB+_PPl8h)X>eFxRCM0lGZKnR4~n+6<2cd|3^Gxv!{>8{sc4Rz;e&HL2zKjz zv2zF!vt)bNEplWgU3kTV;xBH)Vpt+sE%5`SOxa=Y=a-sEvkUj!C-o8WY9u6bP8c;E z?s|yIOYfS63ii9whxnN~%OauMK8iS_yAnuwH&WE-Ru-sl$**~kN^sy9T&zOW#2#Xj zY3AkeE185I9sHuf!}=@yk0`(Dc(q*S?zaVJEEj+J0LyW7!jU<5*yrADBF$Zm8gcQn z;Xyi?7|;%FpT{MXEbN2}vRgyTuTX=S{uYg1lSTPgKXn`($={q|i1NzGdOB4XGDkG> zUO5yPS7#svnf?2}1vu?+u^|s~CAXV*qlPg(7-6h7eF6zeux@uINIzCEi;#2O)A{!E zjlfe%@vc28a91Ke@3H6_y15y8WS0vMVo9wga(U2|5Tulpt6ovt9$ki6sK3}}*#t=f zV>3`!dLf^&z{5w)A#%r;+H*^TT-PjpTI;UbeVx=5ht3xkQl}BScu>JpX95p;)F}sL zJMkcqE!PkoFJ&CvIWJVuoq_|EtCT8Pk8 zzB1y9Y9*ZmlU8%jW~5iN#%)#7U0LXFJhkiYT8UA1kEtj#zc}C7zK6Srz3bK4z2yOJ zYB^Wu&k5^`71ZhC3cfj5LSU)~{bxP@neV z$<|w^6)!5{VsA^@{GU*x{|l=A?<%7J?<1E(c!y!GgE?_(B<_vZ-bmOhLeq0jGEmV< z9#oas!Gl`gr@;NGaS&qV%3cD_p8@Biu5t7|#2vLz#|@gg2n z&yIuGkzp#21o>~GBy)`JN%?{s7D&d*F}FVL-=G zVMnh5(#p;v=@D1MRg3`=!{jRuYIt|J)n|>#YE28|Gxrs#-Ey%%G=Q(@iFFLo&7LHQ(i z57siyLLPLLJHmt3sm!<&;Y=d#nK@PF-?P~@@)+)`E73e?PX3iGJm^{ABoDePJ)G0R zju_V@CYxp)8G;=N*O3*>I<~%#d{0dH%KT6(x=eh&_8OOnrGh5ZloJJ8q2U^Fxyg3s z2r>s?>S||N67pt<2PK^(WU7`d=X|7jmz#D-_7t^*dl5vLF(q=VBOWtjZ0pk9UX0tm zk1gAFtoQEQ`n@qv(>^?%v%+X=*M%1?)!f%`zdsF)NVbqU8ENP?ZN$J-0dD2?@F4EC zYK*y6w3V#Z>gcVGmQS!lUy)AqxE>P)Ix;kZ95I{m*{aUsFnsLUC%a~&8luN=0}t9o zz6|_hJdp=|30C;&On|fj3S6$2hI@!5ccdVpBq1Kutrx(bd)=8QSZl-d3(Q~oTcfs3 zk@8Ks5`m&TsKk#AMpDXm#tG?hOR0d1DQ6j3`d(wOJD#P$kpP-A0fv2@%FGk0{m)fc z!w0&DPyUq-noYDnENy=~C0>q~MxQ|k`^5xlnJ)2(E|L2j{=z3|*T-+e)N$JaXU@Yz zqdML`U;JAv9Se%TWtCGTeBM2Yp}3M%(H%AHT}lJlh=S<(o9GqiUYMErZ(L*jHnD5Tmvu2?-?t zgVCEdm~U{`Bhu(8AQ@GL#4?liGw|Ocw(#LpRLI(#1b6ekk-Wf8)VQ9HB7XwOU;<}0 zz?u~{uAi_kvvT6qq<$dVX}Au|VapXXEgoRTmtfQx?rU_vAK$!NfO!)holY8*DiCe% z`!vNK#^)PxCG2MNCxx%xQUTeFeqj4UeA~C<+dlDfBJSxSD#{k``IjUCf@B1^2h`$; zZR`v1$B8Z+N0|Um*&B7B-El01LOvKw@WDW}UrvP;yuSEWe^fv zBa^LH*Xu{miK&0M<=sB>ayXv{2np7*>4EzVMag`;zW6&{6I>EgI^Omp?-Mwra9t}l zJdNHRf1o$+r~5LVt1w0-sIO7)nc08s1~`x9|EBGK0hx~+>}GmZUzEtap5_x%9G81H zS}oOm`&8B!9lFFHxBtBVZ;Sz&SNAW7QfCI8R{bV{ z{@DG%1cw`7>V05~DYswTP^T}bqXOU!5U@9pIw&ynZ34d}?>g{=^vNUP(Oe8ud6E;G zQi5X(5s-*m#4;6}r}7W6(Y?z1|Gchj0Cw6NLi z)ja6!GfFKRRfqxiwoV;%p}BI-^u$wvg_d1P3{!z-yoJ7y+Ov`En0Y*in&<=U{6Lgd ze{!G~(u5xsWP0!*N6BK4G+ziK8K}0t;fNkvhKm3K&G6~IB#x9UvcI7xg?pui2kl)+ z*h5HshqSz(*t(Gm;(5Z6v69~-`#=9Jlz)R74ctcJM%$vfy0vy=Go9DEQl`^k35xy{ z0IoNB$7cxtQ)k9>x@tMMYjGeBL3i??fxHr8Fd?2e7bGA1nLLOGIdI9y{WGflHe-XF z{p_Wpv=hJ$p7IKoGTSaPu^W;6I)?92-wtH-to+{r*Dr;Z6oN2Q=Ce3S-Y4h)ZCrNUp*33aFWnXy39T}F z;y8DEpCCz>bfz{KpG6psPWCxbTZWb!$IQ3$IqVvf7vEvo@YO1E?46`y#n^h|QFGT> z@&|mDgTS3p#EmRm#XjDzzw9H{mVi0E(dXh<*L(5hCr(8@*?v_!E^Pxuk>E0z*IZ0#3-%JOf&Pn9P`d{t8(ONA(j(UyK6*@qsKJuMhW}K zaR!N~I?aN8w(_NGYZ>=_C7JpmdvfUkwCQ^YPb;g76nrc~(9>1fi z&S(JhsZ4ERZ(}C)oO&SS>JskoI90_F`BC2N-U&>*Z)fGUXsH=~u6Hu$>|6RG&Fa%!tFNLQ>4pls1@u~~Z{m>MoR)Ri9VsZ; zBPy>NzMUwzn%_DyU-zwb%$DU8y`gSQYb`^VE;?M`njZKOM(JXn6(_sI)R!;)m_EI zZcjG%Ok%_K+s{`2y6BVV1FON9VJo&Ib}g6ih4z8GXu`zR#6wK2r=16#GpstOn)9Bnv&r7B zyk_P0s96}TJjsPZH$uJ%aQE_{(w!VZ9+ViJ(4S-;N7ZCVrm)H^ORYk8gl5_0M48<1&L7tc6b$Tvs;8;>H zqCT<*`G<_A`wbJd57*aof&8r&CM%~*+UpS%069i-|XH7F^! zPf3kcyed2uzcb=i@;!}Atp=opOxr6F3eQ324UuH^XEVdCYU5h4@0r)87p%gq}$Pdt+7-xP*8{rNXd%l`lsvrSfc*kocdS=1eF0pU?j*VgFz56#-sBD2Bv!05_B=EkUV@|PB8-P&Gb;qa_>@Zld(7@B&&mLG+s)80)i zsQW^uJwmj2P~96Jkiv+(w&FpGfKL#UpkTO5MX!M>Q!+fN7vN~%PppDX?qY$jpYa{) z=LTAuEzGDf0va%qR=faQuHRw+Va+mSb!VL^DG{&Ueo}W?J%O zErb#tvCJyku5Q_K3E5J*s5K}|&2uVdNKgpUi35y_Hdwmq>XZ#m61wZBJgb(x8MXrv z+}sKJdn8h^3}&vYho|In0Vb2Dq_O@WlA8?YLE}SO0VZ~<{BRE+c=~1csxzGkk(lvw z3V=;2J_X3lw~cVA9`-!QWUtXth`1&mF(eR9rxm3lx0LTqi6cvfC^6inM%Mr%X#E%v zLRu(VEoLdHzem>yfK;_I4~j}1YFA+pSbMhOZj!p=iCf{iG9M6Mio}@$-7)(~LSj)O z4pf;Q2mQM>Ukyi~W+Tc>eK;hpB`i>VNMU1!DT-+_AMfvIFTAeyS&8)fjuPDM!C7bh zTd3vVGXMeRIgkNJ{E-1P74M}r4kV82Zvw*;oK(eLjI}t@yAefgt=TTzb+lwpuR>DL z1SO6RW`Z1v8bAAasYj+{ktLIq zQ0`LgYozaUp$F!Iv=rUnU1;$8Tnr68S8Zgdvd(lfZv53BsPM1XOVS68gak0VfpO03 zQRm1wqxr_EF;XeP+TyVg?#ea>l!hN`FibBDxi4|LHVW>>2X2AuN_~KueV=S#oO9Xq zQY2Eo3=}_rIw}xfC*n?!o|Lw0^kRPM@Hkwm&p8WJFN7{Tt$Id;7f+K~L4Et5BD^Kq z2`%DNP>jy|T#&*fRZM=?eihUGr7+bqz{AbGKO*&Q>SCF?#GA?1mld~qKIn3w+R!{8 zxQaPQW|+94$H(-}IXp`~&}S&)_JREsq-YB!K%(}&`11exD^X6C;A~)Cr=V_-mQA3< zIA%@QWv;T3>nZ-Ws{58uqL9*4h`sBzW0%|C-4k7W(C?OM;_r|MhQAEWTwhO`Qg~e( zgdQ~y1i5A_5AxzcPdda{GA~`K$25jEXqqR>5?7gPVB2tEEr5kA#P>dW>~X*9kFve$gwM znrZ{%49w;25Gd*tvr>?VD&%PStnt4e{w~?6cYvXM13rv*mET-R=S5hV-i;TSuN0wvXyFQzt+LYJ1iN3!zjJQMp7(-ttoGkIxjaL(;}&R08-1o@XvqXx8flEnZ!bGj zujK8Q{_es0y(6~<6(dW(a8!X)>AHp=Jxo-BTjzHG(#YTf!gni4$VYU}m#cVD*bx|9 zi=5FlEoMYc{@KpWN#1i0MZEZUCuH_8ZO(_$MGLUx6#}6T!QEsho^sG^LngV{CQB=q zk?_bkPkXVw+MQ3f6vb?adJd_2Br$M>6o+dkAm$=nc=i%qNl*xCw;Cs4YC+~7)KyzH zBEa#b)efKQlAq(A^ZrPhLeIC^HfAYU+f$dwD zJr$yPnsSp!?r5e;XnCi12{}8Gq+Ci6?*HPbE(KJ2bKZ;cmHq`UrC%uc=4H=L((ze7 zca7g5q6HW013kxyV&&*09LJNr$K^HmMR*d1{CS{OKS|drqvK7z?)-*h$FECC>m(_P z-t@Do;z6?l*Kq(ff5nP(if$Bw_3g@j?i|P5v)(@HbMvwt>*7tbKOgz*>z?)q0P34h zTdl+>Ul@c)H0>a|U7Jx)Q@=)(<%lxfJQJ9nR9VTPNtw}H?)xLQ74;u*=f0FmEquLZ z?mczoPlt8FHi*{4wB4ww)vzQ?RR`1kco_52i>VG`OFg<;bU!Rzs8F5vP5$9}t`)oP zZFE@~{MyVDp%Fg+m2$&>uK8ZKK^2lKlARtXMF!K?>@qb z#RIn{EWwpu6>uH14B!eH?)`vB!L7^T{x((W-YHLwu@r_0h&`+-Ner|P32<`RR*g-g zwN#KPt|Z`KY9Jj(9-bmROD!hQv%~x|04KcY4;S~RxJu&gblDx^fW;SCp?{R!r&`#D z;kTmQmE7BCQ9xkVujNV+9E51gE?m^t1~z#GFxjyj3s9f40pISn9FPW!S!Tx7#BfzM zM!m7OavZqxB8S>v)~sd(gZ|Y%+LzG194`;{>O4HlH~wX|MEAoZ=o{0qAvAI2PqP2A zKOaVZ5!Dg>ri;MZl<6Wc=6eyiHkGbHJ&P*7W@aEA+x)9CG`5I+3UoA&na|~dBJzRF zO|1KvyO=x=&V7$?nB0IKr?_FB<#vQJP4Cyh*NT8Z>9tGw+KyZV$oo?XliU1@Smv}4 z`wMVzoJ$wTECz^awo4PN6#$QYb3T|$yN@826wK|PSz-9qXCVqY5|vM&QrJ4o2}B-5 z#UtyqZs&xIo!P8$wDL=B!Ey2ekNaPA7wA}ZhYr`W58*o|dtxpjl31aSgcmu(n| zG9PdI`q1O4lF@m!vNapb2Ze%y%AJkmc85#tUAO>xJ_{0h1ey0g5=?lRpI;C>{36jh z;ii35CfHBs>D7rV%p;M9jzdvdCgA%#5;e$Mr#?^OKxO$dX+^>O>qJ zxEQel9)zqXK25|qDZIfFe$|!{XHy7h*#Olefk=A;$UGKcW}r}`cWDaqb4zi+pM_jm zh~un-ujxr}s=r@vIbG!DOSA#qg{q8MJne0qC|9cX z8i{G;g5n%Q&G;PPWT4P|tn?oeInV=phKs*|552|Fq_0Yez}mmq6OX1nz?^Ev?(lwU zvv76F>~+Uu!|tL={J@fl?ffO-twN8+yiPR!NxNZGX|67|&iF#5@@x zgoI(rOgXAv63BYojL*c3M4Y3-KTY%@9fmj4*^ySu=xn)=ss%5D|56GKv?h( z5H|DYUK4s!o*9eWe#*C5e!aPGz7P9e2a2X~N(4x2u*VuM7CWU^`%MRnp_R(kV^doTnFoo2vrL?%@*DY^-NbwPZP>fitVqR6D?G z!F2-6jdqgj9?e?Bp@uC#l;zsL&*pSy15-klNoK&{?V+=4D~7 zR{nZVugc3eBKNxHi}>S)fsm`G=xC%o0Ni@dsZ_Ecx;K=g%Y!n#K^3HaODfuazT1^b zJP0+^d^C`dTENJ5TcyII1}NHlJFu84A-jUav>YUJqA>f+Yy#|1@2*sSog8+gxm0#L zQMo-N1s`;U{>C7y`tq2YqfER-tms2uVfEYoS5j1{TNNh8F*8TQN|o&oS3U6=<92FK zCwvT%Q%`q2Oufi8aQKSn&l&u&4NTeE2{2^<@?DGZdP`) zXs*R^MmMl0;xOSOUe|JkVadVBn!LO7G;NpG>|Ma!8x>XD^J`J`b>OOZNDa(b2#QE? zam3=Z?wzuJ@Zp`AW2Q65@W0e3wDyEY(BaLbTy!XLaVZ70IARvNB%k#l6E8U!vdeSc zr;TeC`LeGJJKPZ!?qU!U`Gy1b?d);_hLg%SoL6rCh-p#@hOrXR{uq$}*t#KM-i3d3 zO!{PliF1#*z&ZJm$g*S1$_ll_({ZbDzGs5USdXGkz4k2&ek?1051Rx%n18OB2x76H zrspeX9$5L6KsQ3l2@-Js`#9EMcFInfj+aNKQhrhl5V8N%0LvzY4-`SxVZ zx2FI#1Lp}Jc9s*b0kM#l!%F@&wO8*T(yt|$}q^ozy2I+eBkQOs5 z+-$9KoZS`FB?oUN*sDHjzrMwCvDq8x5j;QxFc%5=01Xbi05q^hXMpS=4p)k2i;@uB zU1D0=z`>xfx;cv9ZTJV=)nwMP_4^ehn0gd~On=}8`UAhn>yHM#n?E3Hnoe5Aw>KL* ztV=%^B5?bpg2XP&*_IoD^{7z~loU)o4EUV!5SM2MgX6DV)OF~Np$>G{F2Zi6;jiUl zWSP|?UM8zc1}|cyU7kL%978V;-xd3Z>B0`Pt*~;L%wsgkGU8TR=#4^$S?MYI@fn3g<)+o!*Q*bAVUubsz9=2v zv_*GG}kTFS~v-^*<|~RSiDJ zs<=Qsl+MxAm!rqrH~}`E;40-5!hOF2)s6AGLoxpP{M&-ni`m~4q6WRg?IW5PIpMjY008s(sL2Ie>2vQKOFLakft%5&e7u5G~pJLT$b-MPHg$XW!OPaKnB!PiRvKX6Jo?BgbE=svw zTOhZ_VyVKM0ZfABC;}2P<>D@wy=a2OU6=D>Zp{OSod?!_2*Zo(s54K(Ad&vq1nOU^ zUhuTnLA^nbYx#8WQx6Q^>kPW6QUVIu5A;D6a2F(<93g<1RuLpxIw-qMtt6hIVcrxe zT60qZS7A4k=%F_-yJ%md5{_9{=$buW7p~U-;GNA5{jb80-Y5$_@FFzCF&nz`Iq|g> zFdOp0OdV}1$)Qfj-ET2Z1~6tw6Xnjc0G*wp5YVf#5M`$NwAy%3=fE- zej6UJm>Uca-zon-JZtp|+2QT`UX9jrHUWCM--QpIuYn>eS=ErUjo!G)_Gkwc8l?Ip zl_MMD`b_DDMNdi`=!U5aWSXrAQp>Ntgfb3ps=Vc^+cFS<4Q9&%X>{qK+(={%$TV-{ zy5vmRC7ECR1n&8djgP7^TahW^a7tk<{l#`=#PGYoZ-C3kUD_sFMs6El=0%un-mQI0PP$%MJj?8+kKR0Y>}GBZXBk)uXD36S^{l5>PVZYv@{!I1?|X`@ zE#B+S{l;~V4YWBJ2wC2 zRA;_!_+OP9_g(J5Q-RGGK~0ZfynwC&1uqI#qik?#$Fgj8k1~@iVg);0HaCwtDs(;j zaDD^80i%_~h+m9D3AYHSb(1czEQ}2biC;HF-Ii~IeMV+|#D44erA7n7<1?_)gjBu* z0#F9xQFAl1;l59Hz#u<(w4=N1qG)uY3~sJZX~hPdBy-51PQ9>J%H`HbR-xn)OYfu0 z(k`xFd|pS6W%^T}RpYpsprHPymc3SA9sq&6EA{oO!}zt0?(Y8`X;5J#p$m9%#-%&}X=2SPQQIzOm3-E#Rb<&7-Sc!M9;V)8MnnvYR@joVLC z=FSV;43Hyx8aY^DVG~4x>6BS$9^P|oeP35d3~Jchp7s#yKtVB$PSFf1vg%M$F7Zws zl83@RZHTG;B>Vn^SfB7%GZEDGL3^klkm$<@{AIZxh8wLz;_B|gI3B*xzYF8#espM` ziD?WB`T=N00E@rF6kt4R0dV~dItWks9tOyx&>m3xp;iz8`9y8IZ4bWm;jRjWjRBIS zau+Y_g{g;W8AK_twzj*~&zan^%1}VpGctD^$Jyj`2^4Go1TE^cY{YaI1?)x91u&5a zChmF7o!MHnbn@3@dmD&-?@6?(cmUOZ(i@Q9&upd9;xOJSh4U2Wrr-C~`wjkbyHy0o zf$nWg7rmkDphgPTJ;ZXnWGdwnbtljEh?2m&8u7e7w8lw_P;LMU#2K+&XqH?dKlpP8 ztZJ2XHS!)m3fQF6D7L~XkY>rdu;sFocg{zPtxt9)dwwC$92St~XuN@cMAWq)&1pa^ zjQA6`k73VT@|a`H40!JPc`fiRrwa4v^Yf2K$cAa{iFun{bW7#3#RI{ePpbw^mE*uV zr=OY=Whem^*#~0N){Y(wcdH5J_~8o~v~zZYK%_M~8b8bQd|L`Nr7Qf{rf*+S(#%HV zxtq4(nftUH-aS)9>{N%u-nXE8=RAd53P~)1bOi%zMV8A6?UoZNk6>Xde}|r?xwdb z!W-r$EvNa(v1Ti5gtvSWbZM9k7TF<37L=$?? ztB%JLjlhQa-qu3ETVmQpk@&RdYd>BIa#4Bi^`tjfi}Vkg-!JTyc!8S`IBP&(;3d-< z6~eKnEH=8%Irq3fpXdZc^0q!^aJGIeh&4|*9No}+aR`%~OP?GD^alzSLQ|jgqgg9Q zvr~790X=^R^c?=H5Y;d^&V%kO98UT43s_SHW$){Fp>eQn;Uh_eBajSI$u&vLN@S77 z($d#M!nJ5a6<*i)xv;KbFivjQ!!!#b7{s9N4IqhwyO+U&@6+#*x|N%B$$2lHEz9uG9+qcJos4)@;alN4UQg7D zK@Kf+18nPSn5$QA-Iy>>ukom=>9GUT=Koi){O=4DIg})&FD6HV>%-p?XzcE~wY%Gg zoeI~1vC3{7{Mk40F&A%)bZPu1 z|9vt|9x08=Awo~u_IIpSTLG>es+A-M!jwGev;A^|+dt=bliSpLR%dp18ul4CF3-tZc+C0(W32M) zv66_aJ@2w^rR`WAIfw89be*Z9&50$K;aL+o0Hufg1QZqmG|%rE`7M>7rt0{qJX7bl zRDPNo3s5!i{S3m699FV=FXr5s6=xGUi1eK-m?r$b=WOrMp)}5Bk9j`tD>lLStt68ko`R0HTH{Ovew%CoQHLFme$^0!MamnBpSwDPQZcH?^QKO4Q7H1yoHvQh09*{y_S-C zvwC1fNuUZ8VoUS*jY`X&rqTdS!2z+;G>bG%zY^~xrht4PziAD;l8uW4EYpndFEk?a z+H8>~8&nCi(2=t6k)6+hNy}RrJpl)+7*7c&f{z&YeG|`&v{)(`gn2AYM{+?5*Vc_^ zFYrQfx0G7S;a)`?Ra@n1;2udpmUtACexnJiZGQ`fW{Su<9ENvZ|CMZ!%nARd@A8XI zOp!}4v(mgU?dCnAr3JNsCCWJ_YEPwP= zsdlu!u~*L{j9s4rp;Rk7ZIK%TKlK?T+$26F&F43Nqohwi1L=U<#9qu>BIPULr|;vz zqTj_Cbnh}$xZnI-K;~6BcOUbUS6vXV+_dnnY*xsjWp~dW{l=%Qga9!eH>J$D2)Yk& z8L7DM!PT~HT6-(IvEqqLjAlR+R}o~v|MQtE6a|GQ)fAAplAj=RO!;`!c=*nQ&r94Vz^W%T;XG}oIO!Lv-`7>1mQ&3gIJU@gOOro^-M)||{KHAh$nyCphnkG>k zxRq{o1M9FkJ(U( zCksOR(E-M#YxX4lAe99U{fvDoXr-TH)O8?OQD^dpmG4UwpK@(&{kg4Y; z2Y6Zx?(Mjjrndg#tHbXnels+0?mQx&(fCfh^U>mmW`0DA8i{sP*BAUH(NZ+ikmE>M zOzKvm6T=ff`vSFJ)#>E>b?SLRip~-0V*9tl7=xb>`aC(8%&GHWuZdsEgW4x1Cd{9y zs_nNAPOet>`mQ@a06M631kV4B-TYqb*jr}~D#{&$w@Fa}l^_5qBM03LlxI%R9NxUf z+~AyuGrh68rRAU@UH|E~p3(yv#hD-2(Z6wDU}M6ML;k`XnEOKvwHvIl=2(MW5J8yZ zmU|zk$#;u+`amedTdMBr>WGR?$1vzZD~JF;}3|6-l8i_bANBmeGE7-T@s)wF$T1+ zu?a`5AAw=YS{IY5v+p&Z1AF=%J^6))A6>#Lj}Y>xFABIp>b!0oSJo4Q0pnC~udbxt z`Ln9`6#i$k=TF@a&Jpv&)b*i?(LsmxHRy!$bks2*(#bqp{&jRVbteGy8|kFB718q# z^YL>`d&`@C)qZ#;0KafzI0HP5rjH?&C~jsx;l*I`A*)XnkuuSdna5y_pCNmC=6>)+ zsslgFTp#y-;M^nF-894OG$y{nZsXm-hBBMZtEbSCgHZw^4|}6_&$fP}q_V{Q@u)B1 z(a$Cg*n!pt#29~#MD?JnBM(*)(p{#73XzGv;;!&ur)Xf>JdfkESgoMt{FvQarN^d8F9VR z@}7u8O6#pd-|_1M%S8NBW+J8~rZpciap=zH@*h05%a0ZK+;WxovpaLulxOElXMPWv zeh5)wu`XPE4oVa&PwxxQLCZ4V=^5?%=(TU?6f8BEwQ{-)de`vfic5}5M1wxIe6s8z z=frUC6UxzSX|G!Din!Y#M7d)=XWt!m>NnkJU~3>TeCYqiPQJxUUDl`i+r+X>HD6DG zLc#O7(K{o{K#_Eb^5y#1V3o#9pKQrA0kkEd7|#%CAdSau8y8zx(x6?Pkfj?}y7lnPY?Z|GC`@TqMHJIVK5h6;6qK>%2;i?qR` z?(u*aAUp)@!GXIu-G{7fVtY2^+}WxnosBjJt6N9(ck`P56^rKnv%1>mKdY<%9adKp zK6tcMa^dn3_L@L-5ZEw4jf7LdeE_#`fP>14=>dgTb(e4N!Hzr&)5oV1!x&*=zgUGa z@emu!76&9;3P%SR*j7+IeC|@saqVLXfTen7HUbnl2gAAF2Z$!N^aKIm1_3)806dB| zhLm>#0%uRpbM)W4A`NL(NH>r=dF9Bq76f3uixnojb&2Q}Q_v2-H3vWRF@14?Ihyg6iJS z=W68Nw~TKG%j-{zzLlHg;Ek@5s0K~waiSOtA#QIW^|EvU+MHPbj0YvttXd`>>J$0T zg#%X;K{gWokqJs?Ct5;DV?!-hgHiivozbZ#2e>tkdDjafOZD?q3&0RA5bvD4Vj}mv#Gb`3a z3+^qr_XzVc_`ygRX}oA?@O2nQOc+RY1hob!ou&cj!&D#uOW%f-1u8G0pk&Y(2;#X` zJus=*+zCe~qps~&3LO|XK_7gk`;eCp${iY3*}o_tQ{S{R0Y$9j`Ub;*>Ol*4w~e=t zsb9g58WxK1pyTs^(iuAtOj4FzQtegms6Z!SA*qvIHEQf#`?e-^u%Njo~s#G^Mb536{KIxA9=AUm>;oq(a_xMeq`jX zja8%c%&I0q2QdHMQPP1j0hxd%DN#6URe_&J>SY81p<0DXz!OHk65kUd^yT3yD#rYJr?gCEL8-bK=vhkmHuij??k}oT zbsX^~Bv=n@kx8r4*ZjF^#B5+xuz3(*L!a`WsI}u2A#2E*qmq&ZtUpVMnGbCDA%WTe z5&d%AL2mwu|#&!Z1)+5JWo0Z(sSf8>Tbje(Uf(gct`k|JgsSCSJxssk3 zN2>~wIJ$RSe;eGYSb}G*{z`n8_LR!Se08>hUjjRA{J`vE90gby%HGaT)YXxj9agPP z;4w)c;9Moa0JfS5$ewA?l0TAb{PAPmP22fp8-+?%jx^bLds+$Z3xjzCrLRWewbKOo#RJkf*7A%pEh z4!BDV<4IMEPU;vbB~v4NsgW%}R|5+FtO ztgTw4N72Jz##Wd2z$~y~b$r6n%(g2g;Q~=9;2coK5PJ+Numw$@q-h}U+=D%0n#x}6+t$+baZJEQQ@dkUlQae5NGWcyLdpq39AhVn^2s#=}*=HS>nX!}eq|EGA z4E*Y;Y9jpQP$GN>qr;2_%Ot^Gvtu69YDhciF{MGej-D6-xm9xW_&oVW@T^j&&R}c+ z`#4-lD#o+d5P>n)Wwo?wfeHiY0&oPgVCoYluo}bnR`WibLkaP5aqYY-V4=wuKn&`z zx56!x*WvNTCdNE$0C<+j0dK~6(D#u=pzqI~cfX2M?6ylCo1TFk8CI3777pGi1g7q2 zgvTlK0xn}vLzvNk_$8p%qJVB`xS@4+(81Pm5SIaLBj`9GN*B}-mG9G?kn)lFuudH7 z8*w*Hf)npij%UjjZsmM)p)^+H(I>b|COW0e4xW)7HKh&%!*QjIa3eO8S?*xPSZXi6 ztpnK$d;?p~jWpirVYMta!ZZwwzkc5L&X{p;l6v>j30#~4NVprW-kI>iCb3t*Z|_hr zYz18)SjwEWcR#$t$W7s`z^=O037B<(W%yAScpfk|Ie7fSoe4c`Cg1#?aezC?03%#i zZ>e^}kz>#gGOF zXH~w%XPa_v<8gS#79KPlQ54{fSs7T39z7JO54TcyP~PT=iB60BjR`a^c)SjO$||cc znJJuT^g_6m3;=b@K8#Jv&!?J9J(r^2TzNK#9+d!D>I+kVmvOHwCQwtNop6gXV3AFX zGsm2$VD46D0TMIit;; z5W$kzj$p!G`@|r`3ov(^P1CL(!y|<5eRcR}x6KUvz_S>5&HsuFR~2@~Tt&}A)RB&D zn}Y9fG@~Z9uEQn)UU@591+Lqg$%9DwXwF3()4sNC7jnHC z$K`^_pyW21KAGGoy zat9vK!B~OEN8yhD52cL*_%cFGTzHM?wJ9TRqaRiC zTo7lQ=*!%XlnAY$A9EaQom5>_b zmJlkDYK}{aPDYYk8-!F6l1kHTgeVy#AvF|I$w(!an$cZC_dBNPe$`BuX*ZYcxAwRk znm*sp`TTyr*XQ&3{a*g?>YTl2@BKW_dY<*H^?u%Kt=fUS8tgUE8(gO*C7Q2w^vQsO zkRa+)g3&?3T8oRqKy>s-ccyqgz4a1wx8hrO1%SBC(t-f| z464v@i@psoD-nXSMy32$zq(kfys)Y#jqJ^MQvc$%SUYcL-u`(;YFpoDE6!Ed zG@tRXF;|pndpUM;i+C!e749d@>!#JxJ4bff%{1KH^A-%a3C;g3KAPxTP=_^uAOBBxB_=Bc>C-Nz7`YbnFM8AUIiui}yxb#8)f`z0X`*nS>9)?|T zdyiAptlxjr&p+OmDrghzT=5SI+J(jKK8Czz)zlGj_5H(Ln7XiWkh<1B__}d0qwj}@ z^bmm9W!3Xdr~hzUy082+1hB76YJciw!{}f>6&FeFlXkPqOJ5=blZ>m`L(r*(=EV=x zUZxzH6mXTiP&lM=z#a7~yOyZ7^w_ZHu=jJo{~ZS%1I}k=1>4e*IqF-`SKW4LB86FC z+Wz|!Dg1)^enEY|pgvHCzo5QfP~R`8?-$hf|0L8$)TjO_i9zhNylFF?2UFMbKhS-; zmTsOn*^M_u?@FB!@P8csEgGr~9eg46B=)2xq*o@g(xn?y}n zYjr|?Dtid2>JIo1L2V28S%PcN_@$}r-_4o($al)N`dxV*cWS~;Lh{kK2F{r#OAj?s z?m^O(wVYFsqJ=h$mSd#GlTVjSi8rJbv|C)=YJFAX`dH5(_w0S!3+va98faH?+=v_Y zwHyZ1ABt3QI_w}zObed#z$~VvH3}`oh5>pu!;L=^ONM-@&p)0BKL%-1=ZGFL>FoUk zvgAw>eI2CI{`1RkvL-HxHOVrax+PI=*&aa zKOOfcTL{2V$Faqk$C27j8h~D9$=uuq7s~e1SD^#o6>rfv0CIYKNFi^x9lKV7L%T*V zzCeqsB_ZtE7^)YH^Sw$qaw_TWPM`*eAnbSxDuQ!3^F%B-rnx3=K_uU#w9BrfNZOm% zq{qtQb2b3J#nxmHg$FOQ9x|^WyR~}9CIP%_o8?RD;!a;*e%-8wqTSpK;9`+x9lb07 zGbeM|5^pkg;W8^ihHrN__B{J+GO-adD=2OVR@3@tB)67<(nCHs=^@|4L>#5s2szuB zz0=eHUw$<1I$Vh@mIM%cJvt0$;6rM(N&=u+ZHX8FpKP><->1Q_9 z!|fyXNto+!(a|r`;J~gHue|U`?+mGH`&%3=6)%EEUZDU-?QkA}G`_eY6h7Rmvxvs* zgfpXCWxWc0iAycD~PeL}cR++$rnT#8anUwyV|>sff*R zoY}EuOTQN*KiT@Aqpb{0uw^}z?rZ=A6s%{5f+IFr#1z)TA{iRF$Y{UB52-DIlg2U) zQkNbxqNSc7LkaSXn?vH&G@k4SgtU$?^`jL~Iu5V_S7@~=B|#9d`ZFuqI9Jk8c5NW4 zjlF#Ch6R||oUlQ7!PshwH>q{F^kAn^F|_8)D@`~PsMNyD3)9)%ozS$Vf)ds(X3%H3 z{p?;nG8_q%zN14Q&9>a9n&v2pHI8X_FN7t(5@uNGzXO%*hj+6_?8fJuG#Dy6*fi1S zg29Ri_hXR2WqtbPX1#+Is|pr9d@yFq-gTQ!?~-ef3(b5!pV@PEpKzfspMmacFK@tn zeNMA^Zs0mg;l2x!P^9s``_|8L@<#zzO#bBhKCb*e6R_JeeQwcZ9&gzGQsAJOiEzW& zb`0TcHE^X6%zymz=+gxX{DqxBHiY2874R8FtHe7IhPuLrlWGDL)lI)j4 z+y?$j&2^My3McZ}efwfh7n#sOb3+Q1r#e5Q>- zo{p-yfk$=r#FEc)8xj(3sy7EH*-m<_DVKKfP_Bbe1)E60bC-lgb4g;gGKAmEYf0%$ z9;Fd+)YD0+n!+piEC+l5CCX4pmn%qv(?dW4Mrz>!)cIC$R!P`TLc900)|CZoSMFoN z6h0FK^q9sdlng?CLKGjPqxML77Us)@oss7Wa9GxT!Qs|%c2DwcrpvyG*w6Ri<#TeK z!jjBnno8o{{VZok6wYQTz-(yqffKp#@|;JTLo1ElgTy-Q)*3h(u}(!$LjclhijXuj z>>a7giaPVNoOdMwGc<_{+7V~?#23=V%QUi|p4iPx*?WkXU?)CKn}n3F;6bL%sm%N} zVg|$~>4+!slM~aNhNpxs&2yEQW0TQU#tDVpW?Lg)&xjbhcT9%*B1PB5FPSC7x(}|t z@8D`thH@|{Z7(;&j&F&jz_xXFjP)Js8%WCX-GCh0YWe!B4`>5fDRt5jtuT3d z*y!)R-2z^|glJpQ$b=W1xgxm&JQwqgI8EYte3=WEK24&>wjHtd zMbg&L-XUF9c+8}C4lW&;?iP8P_KY$q6Fk?<=%<}BeKEY_>7(B2xxG(jQKrn7w&|si z)!bFGIEgb7BHfkKx44~cn~J(P4S##@Lz>6LS2xlhys{a$W4!$OWlIK}_@wDa)M;vb zcXJwLiEuSgT239i{k{APHG(fMsFDP-l-#q{g9%7DJMKB@tj?L0&*LwDY^#`YSvPRm zKJK0+CYC8cfF=)u7(33GB#nFSH7WY%k3Bj4Aa&l{d0`{QZVEpBa{k6iCx=WP?LPIm zKGYXv_?g_>m(9@|8+81|s!8K_9UNS{^Q24Gnl?!8 zxfiwN7p9FxbGVDxgtPJc4%oc?G-dVZx#tLnB{)`*{+PHkvx1 zP)A}1=cVVS@IHh_Yj3Swtz)@nTA;G$tkL0@PB&Z}w3|9fat|9s%TqoULQiQQx2$?~ z*KS|4gfkPW7fj1IsnB3DeyMNh^`<}6_}|Avah-go_p@4na8wz+Gp@T6h#iceZO+c8ouOYwqDeq&1*hw+;-ypNqujd6qwqo zB10s99Z=LpwZiGvK`Xy{yV4yF#uonNtwq-7;V=r+Dy3_K!CaU@FNoMum_cr>-LPO* zq;k-uvG~!|qz5g6*iW9iN;M>2J}0hJqC^;uRDH^V6R>=lFHCx1_`oytt+9Kq%!>d- z?fWrJf}>hPoP~|H%zKD3pL(5Ek@f8FHah8ioc} z5zfVvM!Caq2_J?Z7P3gxuU07(b> zQzrfgbOL1bmp2Cn#6F~Jz?QCmT4db1Uaz$VV^{Y`uHfhPO`g_GZ)vu`Mr*;eka9DK zLk~)D+XJx>vu757r{ifns2{4O@Ez+<$!Ta`A*KpO7U(3QmF`|lw^Je~e1}ut`0NTW z%Q~wOiLbB}s0Y@p-;rzr3RcCgPXS=YAF?9;lOJqE_7gTr$%rILGP}0Wzytdf47MCZ zS^vh8y%a}L>7v{Rw`t1&pprn-)F|@6B*9H1lVmS%An%k>_;oxt;31r5cXgWWn-8AMos zYPJa9F(_ZyptY2NNOmI?1R3j?#t|;8XFX?LqJk^hC+E@K#J9(RIB<(N9m{2RY^IUG z?aKyJ=3dS*VF9Z@N+u9C*_}9>a-aNb#$&SBk2spt>czLlf|9+gDYI$Wq>edMV0p#% zWKe`Q-QC-bwNC#AJ$OL40$fwbXrfC5QU(E$5a)Vrru0L|j0@*YUS_iZcifVs9oP!v z3DHUAEtw>HLa!d(mn6`1M1(7JHwbn(QDKL=tXrielCwvIW~#@WJc3flz3Mi6>Ak`WFM&wd26n`Z$QrV+=?>CVP{2xNUSvBHftxoGDK%He+46x(tidCMg0D2n z3ZTqUQV`$^foYpp59HaJ_CD7hG>a#DdE)|A;`d}i-}K2~C9%Y?bnXR6iJB@fUz36o<*X%=>qu=hmd6n+Hi2ffK*9jo zYXvF`uf7pY#JPvVAl;A_jHyQrL8OZJBw~VNOGQ5yO~rHW#u+8!Uoou*v-GpvCq^AE zP-2HYX#~4<9A2=gdpD<G4q++Aj!!r$jBN`8Qx2~d&CG&ZN899_{z1L zgM6df72;fw%cLrbXn;Kfyz+Ru3 z#Ykj}Z$!XW+tRWE_Nt5!FCU5;?ITY84TZijV?cqC$GHkr_hEw|{~&sI~Ku>=i)BYjuZ} zVCodz>d-F_GmvCor@_q{TCM~o%m$-Ic7ff>Le()BW-%%i3E$;AM4 zYvT>*HS4pqLZriqtpt;MeJRp)(m^2P6Dph`zhpIA;=83CyJ&7jI_;|x{s{L>rp2YO z1%st=H0>?N`(A0v+G&_7lhz=*#kZFzXaam=7oQ|S_7R209^a4QndLpFj5T@+lX1m- z0OlMSs0f7#xJPdp?2XESIPFgarh66#61iwRCtzoj9<)$rT*1^^CxUL)9)@yiti>U@ zt(-1CaMY(VA8YnW6Yw}D@hxrdl^zk4y=nEG6_xp z>_M|Lk&=I7#a^#Kkm#A6G6c(=Of|^`cI^SlEmEtevqY!NI^?=|cv0I+sAYQwFX7Y$ z>|1HIoe`C9?Mw^rjBZxW+wv;y;O0FWrX6`V{=(wujfq!-^8A7|3aV$kBB;n)UPwCc zi&02bF=~VPS!WT);FuMVDI+|xVx)rkvbhO&3QaCfdws@OUERP};sKP7O^wgroe)h# zDQim~%+sk%U=?plb5Tf}yfNwGNvoHO4WHg3Wr3#Lj;L$ zwztB}rhJ?ZtJ~5l&1I5FYO-}b{n0)tag*N7>@~`TmzH_ohsBaP5jPV`*tH@9&`G;S zg@f`O@4yA_W==722dv}4DU_-1@)%jKI#=TNaT4aH+x>xhu8P=e!0{sqwA@{K-xp^^ z`a9LM2(??D<5-(!Us@++t93RhE>Ro^(^Q~Si8MX`_;9KAM24alvdYWpOKX_FOy!;4R#LTqy5l2I|ymcy#{n}Zv=yR zS(x85CNrwuc7+}6KJ%qO>?P7(@UKWjQtKgr7gdho9AL=}r1p-O3Mv`Y@_wh5mgkWN zY*%nWhv3hc(=W4a$-OgZQ{e~fbhhx|RaOGCpKDQ}^^1`cgMN<1Jp42JGr+b!w=amw z+9CNFXl;&ou`unk+$f{7ni*_+tzJEfF9M=vfM`9<-4okjk<4fTJ11ki3!V}-Y-yl1 z*UqvJhN{#6Ot7DE*43XD??1_+NFIZ+^ufRk)|);F;$R$cdq@B}G2jSaOG0e~ga1fE zlu!EkSW0S8xHOoti|kAKocHfQRdtQ@+*hR1v?R}Tf=T1{J=s#6gpAsA$(HrRw@#^a z)4K6%KAuuNC42>xfk~kVM;m~deKMMi z=|N>r_%C+XWOoDz?Hd{51Iep=dwMPGf{;`?stKlvybmC5R$yUdLjO+_dDhq|0s&CG zC|HpGrT6nqW)I9^b4|psXWkwN!a--p!+bs>`*=&yzVN^SP`fl78wPvz2`(T}N?Q;< zy){5UQp??IWQ~02`Ti4yHw)bO%;>QOa4Ag=+ z5VT{cyBjom5h8Yge)hSNyu~*sq-RF!-~I6t&cPQ35wa}_m%YT?h%?CMKGUr&mV@S@0IQ~vud|{Ul0A;Z#S9RI_XUZ8?~VPjx>hiS-ihZl%FpoulHS|yrbSO z5HeTzqUykC>`7yz8ga0CHz0klST$dvae(j5P!dSVLYrHf%rWhGGwP3P&C_OW`E0inHaaj?G%}B!HXoz+cHfe&efm73sHP zHw7-+rL@e@bYPx!VPF-W7%_lf%x=9=fi%@0tIo>s)Q%X!St6x&j%hxv_@(p<@h!bA zO(chvu$9>kh#J)db*Zv=;O@31w7|^lc9i`SY**Hv-^rpEe)ns)=`R$&);@p!yn@I@ zqz36t+){JPgSb6u9DuI(px!GAll*d=7ilC#8e}=KcF*G{{(ks@F(gKkqfJCoED&1; z6o~Uhv$@XW#45at{82#>jYDk@X;rp5jc^<8dPrk?qTA@$-f5PBzaM?)*g`^Q%zTOX za^iAZKg&Hp)oVuiNKV9TM=yNBG?Dnq?FXJ*Ehw1gC3yVWTT9{mxDT18DH9~)!;X{Y zlByyZaXy*O6-&7dCy$W5jfiSfSoz(XKg|mhZI8KqL1XeP71#HVqN(q9t~M%T&WAa= zk(SLNviE{@B3@BM(?PenA02tPknHmI$%A;o}$>$r+chbwFWJq1rua~^ZKgaOHP8)+l+kBG{MYdabe3uD3p^&G}EAAP=R{GQeF z^0%k5Z5{h5d-`I2`v)TzNISH#6`bw^9s>Y0m+ypCJP0=9OQleO#=Dy=Q5i&2Ed7)y zRwiI3l+#230Ya$vE1{Nu5II_~!PgGF2Tol)NhlX{>=o>`Kb8~w12BXC`Cnfom3FgK z25&t|5ibw(QipSn_;uFVj7NZvAZcu2C+vA^?lB*<)aI5^Fmn=@Bk=&mdDn8Ia}9-* zM|jYP2U)8~!k~>DqnY3wFk_IW5yhTWCSm|Jd>DdxO(da-lEpv$g`MCf>@s+qI+(YW zn7MWq<5LqGuNVP*6xmC$-cKBR$6$bCX6AFXL}OgZ60MUg_JgMG?k_(#=IMz;eISBuT#_Mp zMe`h6qI#8Iav&rYvWjov^5%j=(Y^#p!Ad9y_Q|xgPCb%L9T!ab08+u znX+Z$kteui4}J>Z!;vCzy?I3ejRjbsF5s*6fX?qIEe`Bpw35Ii4+p+UN;|Z)jv0-|%KolYBMrjK!h`S< z@F2Y8(0*dwt;l-^m&#zNrPpN;*Tt;^WMbGgrH~;Xn)FxNa)@o+k;?>MFYhIk(g|3Z2*4m&BUo3 zO?OIMkM=U(Ob|feD1^@E2q7L%9<0k&GdMNxdR&0BG`b1BMudSdkAq_1i9L5c$`eIN zXCWx9&39H9Yjo#HmJaF!l8@svu$OAen6(rH#6$P&Aaw7zftL88qv`(Fbjwz7&*P?P z)-cM0ur=&901RzUA;JTA1hdSwm??1@`*UOOhxxv_2%z&W0E%aZ!hR9Ufvz07Dn+9E zUW})wzTT=0W#i#17o5AvSQBOi@>~G&4B+KpDYkGrlTF!Z-hcjRO=BKAsM&f2)E9#1 zL8E*D(XzgRXxm9}n5T{n`c7~vUGUGN-V0l)uN#k<<6-$!50NL3jHBGy7%QG6G1y#M z=E`qqgE=-MvKkC(VIB@)+EI3v(5q~iT^hJ*+`F0|(dOTS4Mxf>cpS|83v&HLk0S-z zOwthH$hTfWTXMO^h8F=UximAQpXhZ%v<-ygC<2J0lme5d>5g@om7td(V!yqK`scxO ztv4Go6Cs${Pz%cr;b5UtaHMoAr`J?12qH7zK@-WNOUtbS=dtbu>f`J4I%A@E4$Q4Q z6mYm5^kGP2@C`iv8QlzDy3H@dQq*8_>N(!^}Vh zM#Kq>@73WCv8Vl9yLnXMy=E;^8G)Jm0jApxP;*oBYt~cdrO$E)7`=OK~12S6Lit-3FS&MvVZ+QCn}kyN3s4-&tf= zzCjvyU&Dzl75j7IQJ0n{xtKkZS@c$vKRJs~~!DX2j{ z;m=tRBqRODtbc(G3lteskD<;Y%Umwv!x`<$8EHReUj^0AKEgqvBCURPz4GBp3s1f| zc3C^`$Zu>bcGY#(5LU9eQWk?auhYS5fp$&z`A($j>#DN6_YH_r-7iu;s`r;+)Ilq#ha_61p^ z&(trbpO7AH0nACH9)>j)BDu+K5dk#iAl2_ESd>3T(;s}FHHOEu>J7(Hbig|M@KSNc zV_$&vsq2E6$K57nu$+JoD??1hBcy)@SPwy@y}J-QFNFRB9abiZWob#VOf-G;g*TZI z8GxcQwtfL^XJM}>9n;-Qu`IeG(v-SJ_?#sZO>ee$kCs0*HyS2Uz&d8%G?2nj8H9EA z)y#$1)Gp*U)C{v&zu%qRHU$=FJ6@7zyEBfT#Q*_<(qU>a5?0}tL#_veivKaV-dgY{ zQrGaR>xLADR1vg*47TzSiCaFqtIeLWt@ITqks`jq0lTOLPoE#*xJFnXBc7E>N~igK z11|+HKFi&h3x^-tP=UpU#bRDW9NE2L9D$|55+JX%v@}ONUf`3Zg=^^>|1e|6|;m*GJsbfFX)n`W*gbR|t zl4qs6@+Ev%{s?P7ACU9z{zB@XUCS#Mvfsd(0zkPhDU~S;vPNyamWR?l%i&K1*w!-p zX1{Zkz2p$_>;kcB*-zo}+oF!q#onLTEnuNF&H%=1oB&2JU=!Zz9d`h3`^aK2uaS0f zdUfe%ID%nh$;g%_VdSSbkAT2I4;#jJt}w&QOCdFn@AC$rF4z>>%oVLhvY+Dzu(8%~ z^i(k6{)IX#baRn-24LvcRk@FEWi7-QU^h-$H2ovSHvMz(J*GU zTS(j_n8QS&YB2a>TR`(qEq&2;`-8GeOS5Jz5p^a(G^G!?>M0u|z|saLkOv0gluPxn zVF@J6IJ|Pj^WhAN1!Xb_=;u3_N-iEtdb^y>vxeX`dkP)5(U?BI{QqnOi`$>y%tU8jm`Ql^hVUpUD%SBg#gsFxE1eJ2JgB zj9+@|S$DTCR^v62>I2-R20ZvQua$$&E&_9N+>Ot2i9xM*EROTzj*vQsNw3kJMm5g! zf=%Fe3CvY(DeDLJ>hRsnSj`$|bY^;fu4uei!#()0|I7nk1s;m@mnSt_Z}i6XU%$LJ zkY_D;B4NHsmuAR3%buzU8^H+4A|*)=xlva{qChziI+y1>?l`lsbF)f5D081 zn8V0~SmQ@i>C82254@_mx&5P0`4Px2#p996RWKj$j8oP|gNUvmX#mzjIJ+7yQGF&z zbfe8{uj>Z%SiyEBeuUV7fCt^*ZesH+qd+dxi862S)DY}^B_i(0r%aT68OW3{5Rdym z<}6lhW{c06JZ9_#TH}Aw%T-BjV3kfL`Va-{#Nh8mm_~Q4XDibdU?q&Wo{Sdena~la zM|D6{%UD#D>N00=s*tlFBQkYc`_n}K#j1(B1TCq1=Rb0xjns6y2z#-}~NW_M@lChQHm1(^fJvELRWreX8!#cnqyIZ3NE+Ga;NUYa` zJH;z zNt*>5MBgxZboffiJ=PF05zXau(l}$NtB%AhZ^=@&UXVG5IZw}6pt(5lK;ju=qQU<8 zYu(??UuFafVq~321IhdJO|?9A$mldAM5kDvysKEt>TIciBzLH@R=FAGbM!~`N_$P| zS_)Fd)$4;^qAjyU=d;{(uZGfi>sJ)sN6OMvLK;E!AT?DWn1UT`XMM695 zrc-qHB0P1wJ-c$Cz!g2gGfP(+%?t7yDTujmc>JV71Sgf4!#cUDw=Qwzc&nLLRTq@7 zJv5o4Zfs!~1{a-=nyKvd8&KAAe?{E?O0M}Ux#q9rn%}GJ{YtL+y#(B^(W11){)x^DArUa9ciUO z_*=+cW@K~LH3iuKQ#^efX(AZ`%7IE3uB@8BwO|!Lg`>-a`>O zJ!0N=%#G%2w;m*>oP{HY>m_jZBiHvIHCeP5I{E}nlt|$DwTp^{!IZ0%C(hzvXFr4k zY1?a@D3J-j%2E6(NAas1#jkP{zsgbkDn|jwsK3fl{3=KBs~p9zaumPHQT!@Lk@8nf z#?JriT*%4m0H8;wR1QZ8{RSzN{FHRhmac2i-DYxYD30T@GSbB*tLo_141#hWPsm)_Xf z+;on3dMyM)0W)U@5MWl?RXby2I}m<_;RC$X87jh5ej^CgNeT!r2q*y3#6KtGC1V)p z*r-`Ho~up}JMix}(H@UDbgU)x>A5*l`P*;jN!&lh<`A8@N&2C-UGl)6;gLDOoPb!4 zAw=P#HKMVsMc`~xO{YuF(-a?V+-AS@V48eg=(14HNxRi*Zir^E_P-G~$p#nFc2mbm z?o2@sut!tpaYl$;t6h{YBw1-y9+^9+y*2nvQN2_2{7cLBG^R~b)2u+aadUxTc8M09@+ zBAiN5Wb*=pz7F7ZARewXs}91(KE_k<8J>S3uW9ryjI{uy@+J}FH=S<=^4koFn~1z} z03^CrvNRB`rWT&UuPo=$;s261>oY6jus=wnNUgU~2!U98$-40_ZLWBiB>XlS=*lZh zZQ&JW87VJx7o{GSB--SKre;%<*DA!n*}X&c`K+uNYK0f(P=!M08M9W(lYz7h zI3PYU0Ol%0FQaBaz>?-w%!XMHtW)uH;0x9yG<)vrS?qQ51#yoB1qhaDyHh|imeq7@ zYyqqR68G^AkcI}|1f*dPt4XcGFs(c%R$!&XXNnj7N$fH<0{$0wF1}d9F_jqv;Z%kq z!n^uq0*Ajh{BL@59~>#^MV|&2(B3i>1F9q1;+T#@x#ZEP*(=o3S-xCs9I+_mph(xw zdBK?LaT7Y{$AqqVicPG}+ORg{QvPXg%OZ&xplRube}w%NWd|`l-y`n6{rAAmrB%7& zD;zq6=aW7lO;1u;rnzR>8ZRB!ct7ZxT`)^5UcF;K zSn*6S5|Ro1pl}y_mEkvScTFn8S7|MyKSBBmJn8Pw-`)3v2Au)StD5-3^M&b4ftgJq z{-8@0#!BbW4_f&g%%e%?jbcYN{GHaCs1yFR#vUQ|MdMIykvXk!G@4r#bk;z}NZGw- zr5s%fO0#VMZlXQbkd7 z_v0#`!!%IObY!^LjVkn^8<<5_Zfgo1&rXgHE$HYD9l9%Yu|WTM$FR%uO>{*AjUCrS zdq1COSFb15@sX^joTH#74ixbLNUKQ@-eHer^DY#z(GRqn`P)eq3d9Ay{vgyTkW(qB z+8P^E0oqxG`McyAZ3Y^^HF=2)5gYQIQ?<_KL^qanWF4H$yKr}!XQ;>kaJ> zF$FD-LJPTi{#4a4sycenRn>E4(Sy0CLPr-}8d18jz*w!m168@UTcG5~b<32PrBX(S z)w$a#Tw?kOB;0=7IO_ohQz91*jcF^;tN2J!KYUZITi9f*#a!E?yr9=l=F=qZ9Vj?7 zGo39~Ptd~jC=nYhvAk=&^mI}MquS&gHcvd5Z<3ZPFP@6}3Rw^4r2mEtb+9lI`Mt99 zdJ8GO&zAL6vjE^ebJ1BijR65SU&k@T!m_*RV|6`g0rK+~AeW#wl0OYkV|3~$@WnD) zx|)5NZA0nT#LFeOjnq*_wRvJ%S&}Z#uUb>@Op^WWmPDHKsf1a4yPcW_8Kfg_Mnh72 zq?ObAwtT~bBkhM=h}YP>f{~!A1F9)sB?qZ(m$4f!Q(^Q|m%_eX<0^DDww8|g6zV#Z zUX6?s??IQ<_^Wf3(=G40&+fEltkdGoUA=93o8Q)qI%Z&}YD4I?Nu_y6-&ZpWqcr9m zDb9F9+XY*Msh(sk`5f|nYW0zPX;ZNxBy5>sWXmU5p_i&1*%fZfP$mH;61z;_?Tpru z>#KQJ?@Sl{*<G^y=B=?rED6SdTQgs;jT1DP38&h+jvII5ugNdwp^{ zHgN?Osg=(BHWPKee)6BL*e_pGqzw?0`O0a@3K>_`)KL?@(w-6ntA`Fe51TPXH&wPT zZ@PCXw&RS7eeF@*PcTJ@-K%NSk*^DIN!XP`g=GAgZ@B*rrI&2a6MA{2d$wM4W&v-^} zo=SJ|up8(yA~cn~W7h4O`mRy79VXnwtfimjhKu!iiDz6Xrx;@geY$jaQ~5iE6k&i? zu=8)LMC71X?;{4k0EN^?<1Np6vxNS}`RD6YiD*3)v{nZ51Wg@9xCH1OWnbO-uSiY_|JJ=L*|2l9B@GZs*pynrSz#1}!ieQyBoYFRAgBM1;jM&jp$;HrxAW!bZ|k5;xKbX$-)RPE+-8bp~^EeFcQ% z%)nFLoI3DDtFHC!z`_S=*(!9#VH2;GV(0YIbH(bexRTd**Q?Ha5k@OujA3a|V4Lxm z_*8pou8fP*f9c+NF5j$qKHEh$?4+qFup+4_k@v``*p28t&{`8-FO0hWZIi3;1 z;1ykEcde$)K)5RSzS=7i9712jh!^naXLXzv@$V+;2c1iJyHRUqs{R!}fuktv##r*z z`IX~$A2qOUy{lL$y7#u#=ndwPC(~fW5@Ov@t}H6)q=OK+@kW zx!-nUkp(ZPdatQEw(`sE)3i5~@d@bL(VJOoEK>`{Gn#0D3O}w_Q5B~G=6w)czS>cuT_o0B@)sA;0HwD`ZYX^A^ zmwh`kUtdGA=6`Se$0Pd?zllBR_t0HbZP;kEkyMQuFQQFyXOeoPiJ#__`Bx%7y=&;r zRA$F`Dfj#B*`cFGZu(ay9pnB>!}H_}jxSLO=EXRwC#ua?Folh0d?O|wkUsK$5bwgB z#{(ia4R<$4=y>;8j?sP?6v%B7Hv*^wVdhec@asJ4R%+Vm`1<^kDX|J^tF|(3l6ZwY z1lBWdB}vyaKK&Tp_#y^NO}dD~i>%24|K&z^2l8zisu^deOCHRjEtr`~I-8YNf{l2Z zSI*{wGHHLZ`hM2o@SF}-!_|oTTpP_s25OJOqWVjHxC%+ee;(={LmoPqb`VJ;gGCO; z(+@(Y5y7_mzRcua0HrarEWlv^dsN+BU@VGR0Q|(S~Y~oMfA;J*AN}u-QN~eLPIPs+LCLx1)lBh&o zR;4vgY+XWK2DakDO82z%+^8~qw-51;+qz=(JcHPT#3?nQnvJlv_1ojIk5y8aF>cC! zNjlm-xLy2BWrlZw8C9fQR7IPIy+xF|A=L`&x1yw_)%bpKwWGzR#8q)LYO?+k)vqOc zrr*pQ;-bt6s&u6;qF6^v0%QN1PLdGAuDA?4w|UeiQ@x}840n`1qiufTF{cj?C_{~= zx8ImB#-*ywbj0I}q`DB=)qJvO)h$-UKq#c+gl5E0=b;K!Odr;4)R?d8>NK2e=J-Xm zjMbRd<~(P&OQ}*DnB@Hpq{W-r(|0CKQ+d`4u*OId0XJN~D)yw@8gkZFfGwz#pk{>* z@f0$4t0jMwca(ie7+Jm*e5r{Ffo@MmYpJ1H?o)^!f^-()uQciI+|An*xJ`zX)* zbmG2P9lbKI>#cr4$qv@2qU+RGJ2&hnYF)Z`&@mdH%zcK}aV8Cg|P;(Ib; z+^Vxu%pG5bj>Ws0VAc{cds8|#rYM~56dLa2I%8|jV##}Ry5)(FY`a-^=cI;jw7oEP z=zB4&w4Xl({zqSVFa-X~yw=J$$oIL`+ga0-;e}M|W~EIqSORlQTkEue{oR&Cmh&ms zX&E7RtcOk^e+bFFt~{J`LlPEtZryT+F- z+f`@?9*F;P+TDSjJ}~nM!f71bdy?*?)Hc3)^*weqoz9V`soNv4Z>SPe)WIj4E>@46 z<1Jc~J=r^ltXbb%^r>r7X`7+a!mOfW3m!}x^Y_2J%xjH&0|9zW>{`vjJ<%^aW-&O` zC)kdrv;}l9zt~(=^6zH10A)O7vc8j5A-u7DKwU4zCC9SUj;SQFF#a>Pdwj{*A!5+^ zKdUEvn16b+L@g{DpS%6`x21~UOPkDVXj95=&) zQQ_;}RSha0^=yY(k?z6^X`4*dWrq%5%Red3mab!8l*SdpJ0i@jpQZ4gmLBVVvKyQ4 zp0=4+63g|YD4;3r`*)P;^u|{{o0}Q3NBMf~+9;7*xZI(W%No2XE*6_gGS-B}`)lm1 zkv{_9gp11Q{;~s6gGDZ=OS;V*$raj^eQJsY4-=9%HW$24v9lfie%l+{7iU(D$rx{U zbl4s4G6U<94Upa+G=&QSmd$rh1J^5DoXO-qdQNxQ=TfWyKg+kpyWYd2>lHS z-B&M#C^Wwr;y6SxiGxEF-y9@^FnV-4yX_du+Y{S zw>M$?lf3`a9w!mtQ%nVS?JTwu)i{OkhNUw{TNBq|v?Mf}@}s zdVCQ^I^v$s|8bYO#5kxAkUN&Tn8!J%!yXIf^!d2v&>1D&o2bko&Fcwqln?QFm#ML5 zDpr};Ql1>KXq{^I*5RX&cn#?*RInub45-k1TZe2jx{?*`-cw1Ze5ZMg4l$L%>|pch4* zhF;XtiJAAh;2_|1*QsTbO*!&8wFfM{DKXF*^;lv>g7e$ky*^);)py(hY9j^Xe$sc$ z|OEUmfr&Yxb9p zeaAKNj+Lz{nX>m^{_rvs&Yg(q98msX1ElJKGS);=7u1*&wgsME?XiK??wDQ zh5Buc^RV`6y>s=F$oO_Yd+4*4SY5yx{WO0&n>!Y)=!6_E)zssm)*s5g7}4Y}I`c>H zqNz?%f6UY+F;NuE_qqMOS+YO=KDSLJA++i4L0pEnuGjDkBFyZV;`Xz;A!`;8P9ufe! zm$rZBrLxlGuR8z7seL=oZ|a1YP0^a)Rm)!k8&%4P-w?2cJd6rk>GPF)h-*htn$HxfH3Nn`Xk%XM#*bAixT!;|hD}cud;?(?gAG=z|(@>n+5Ll9ym;RJ58qa`ot3SI21< zpPc7Z9oQLAX5BhnarT&@dyBU`@u_7WXDy|mZZAKoLh5!v{!CvK>a>_`KIu+czo&D` zX^Tfx)~aPG4*}1SRi0|8>YJ0T`q@z3Ia!=@YSYjJUgCPxlS?_p86B{p_+fmC!gkbh zUE+zAdV0~RjZTSJZ7eqt6#2|yS$RTAid(r z7W1BI8Wpdj;}5%?)St*1(PlA{xCy5Pq;^Om;6(hrGs3%9fS`~f+=EsK?4AR9Y}C@8 zB)0No6?;hDy!b*Q_@}>C!+$*QD?4F$j(`EH<`8V9slh;usJ;*0OPz=e@Y+)-$-^}V zz6*bYr&UAG{IA>xEv*U!^Uv&oM7~Zye((*)l!Mwxknpm`6CPa@0I88J+N>GxQ@;`w zlGyf;bW%@+Bi4v#V6*9{4J97JhgAIAF~th_j*>}&4dOEVUu?WI*o!h*W^5eAha?e# zMTnhdK7d!(zjR3uo%?C0OEV%96Q%;SKUFz`1?c+SD<(`_JKxk`XssN-d5PGgo|VlE z)+XsAyE(l|ROp#)j~@(qi>{YBp7bRX+U?9)i*pm5tjeASR+UHlcd21)c$rj|Rvm6KA&?!XKK}PnBi~F8^^zy~Oe#Hrr1nT6*^L$L zY~Fo*=zBWK@4iLUgH^`0*|tVO0!q{dToOHr%61sgiC+g4sR+jWAL0`6$0fqFtYDI! zLEfx1kVF0#-j`ON-@v+Ix0!>~aB|Y=RZ^+p>jt(h!vO4t(d#fg7v$-7ktLF!z(Kec zU*^TnjWdku6ft_`K_({U8>}X>hfJBCN4hFZ@%CtW6Jb4LlAG>UuqG?HA@f*<9Zmx^hMo9 zEtyc-eYO`yivDO86DV$6cdU@pb-?{~sLB|J!{S___2yq^`h`O{9#EL7cplSflKPbFn)#wO2E?J9wU*GFo+O!)&Mg zVD}x@a(^G!bRvZJu6T5Qx4#k}sQX!MAD|=*=QxSC69`y0NKZ%y+J)o91Ar1V63)KQ zLjqvxb-OY}YcS6$iHUBK;WRl&*>MJ^tnI_fBrn*FTY2)>2wg2q+a#f5ht~;XDk6y$ zxgmLpRRr;Pplt7@x6vzKV5iw~NL3one$(-!%#i;Nzw)c63N-?0A2?le(Se`k22TX? z&V+lcSkcke{iyTH@!+an`_fSX>rX-?yNZDq(i%o;9gUai6->wLYy6HbWRzub$v2~7 zBmtQPrj-rZ@g4HhY}I3HLK6hW)bi`Sg`yc?enOF35iyAZrqt%>W{2M4sl=hke&^HH zw7L07D!1LWH|M(|V_UWq$7FnBdO07ea|pV;Ei8M|(Rop?9}XCB_ML~JW1NWCRteH_ zKF;QO0V2@BO1klM^|M8na%P*yHAZPRP-3wU?5-K;@XvDc6=1b$Hp)B^Ck$MhDp+si z8^&^#xk;CK9)6wDddEx2nA##BRVHGmI0KL>k;P}ZIxnKFDp28E%DW95x4Vq`RIO|DI3PTa}f0Vse;ckW0BkPpPun+8__rv^$5gcl*A1eMfH7h?;4x zP@1soVElXAz0Paq&L#UpowPpn)I5U3igVtOYze*$J1aZv?fISO2HHRKIaHL3+m4NJC1DF}A`&|62yvZ8*ZNe(1Y(wdct;Q2*=UXpgUOrQq(BInpDeuBbwohR`&g}iJ-Kt z6XsoR8b>_784>TIJJzO^_cC_pQ&fPBVPi=mLlb zL^Fte8)nE1AlTJ=1=x(Nf@-0vTe0kz2rSf&sU`DTOJr{j`+O<#I7f_W2f!Gvz0j>*9RW|t!ByM>a4Y00{w%J;(JKz8-K1O@vWjnpTFXF z{p8iD8mYWaa<`48Ep{WH(kGp6KN3*m7p~o+=XUVjOp(&H)U#9fl-IQybUuAlD@Vpv zAwKiJ>%ylFSs(36b~sdAv0}XcrYwK@1+Fa;NwaKi@jfBKyaXFiJ z4LK}Ymd!m3QA0V~Hz-}|EKg!u9D_Kgt)c4xcNidUg;jSDGF`h$)3r-*OfH3TT2~YU zIrh>34*Id;Se|@O4i~b&%QdmP+X&ckO`FGf<kJw;_DHqbkRU2=6{)$&b$EH zox$nY%K)2Y6#Gla^)|e0$Cm;+|KKmm!G?haF~gp3iKRF~(X=tvcdUb94J|`z-x|$E z%H|?nVY9n@yC1U?IwWKgF%RC@O*iQ8y_zXW1E8u&O*9k{*NuaIzUgk){Z=9q%8cCr z(mGxw^9|{Y>kdr29jdS-4J_$5mD&$U+P@}d{}b>$I0BGxu;BfgjazzK@PO1@uzMgN z6<#ZiNHt=n=f=K722X)=al1|Zz>otvdfK3KGb*cdd%AKZiz}_0ooJhBQcX1HM@@8q z$Tf0a0@Y`rb%_QC!6O=oQ|@I>G#z`kV#9r)W<3)mA>RzB{V=h{Ekb(`sG1+*CU?6d z*dO}N63-Q%Gm3n3}GDARONQJR@* zIx}YM>#xHu6b2TN15g(PG%ScCrTx0_( zGbBeqa0EC&Y(wjC#ph%;7@I`@k(NdB;emK1sa;vi1vUVd~Bngo+OZ4{Ll9*_VvIxVh7fdn` z@K;e`m~u%vT!=*^U=TBbHR0t-*6eV};xx&?HNJZ58}!ax zVS>5BQJO20J5JFBDMuY?BjiCb-pwAs%+_MIYG^-e*q;WBE64 zn8SE8iwGmp<0FFGlgu}HTub&oqnqc=OLg+xU4K|TbL`FZg%i^@T4;O_*!4;oo`*Ks zY@M0Z2x1|!usSjuXpg%>%fg(>BAo6n|9Vfe4x;sv} z;M970QX~(~;CDOQ(w5zhqsRdUQJtpt1bA2^m%pJq} zt#>>#c3P3yBJ<5^BkGw+?$5qi%a*VVbC=rBf({*99w@aWB!Yt*(THFSG&~xlCgd9m z&tdLZCr)b$DP;qh+ZZy>t$%R8qn)Js;pXRRY8r@a}={9V-4V%9@ zzq;>#S_aMg^`bU+Wv9NjyUGGGhyJ<9I2hXyp=&G53v#FRw4tWt9l1QUs>FNL!e{Zv zvN*aymlkXB$4}zV6maSw>gBF2wj!oPrE+A(FUL1i?)ZX!cd!a7^W1Q7Pgu%RnK(5H z6G<33IJm@@>e!o0xaq1I4GTAe0`h+inZaHHdWxcyOK9X^(vcy!v+X{lftj?hnc^=46;40O2iI^SlD>dZ!hC;T_aS1FcYrtZ1u(tf+fmK9oIwarq=#P5$ErpKUZ+ zF={i_F1c<;x`}`ze8ks5s|4miMt>O?LHdjfN8@i@O4OU48*w@7UG7#m&j`qL*9#U{ zt$|O@fh9>StyAb3>_db!8z7}iqge$JMIE)3v)qmedS!|!+X3>yb^^WCt1%)7IL0%T zFPm;V1lADj+l<^TnbO&ZEdKrrVEj|}M^?55Jv&U=4i>jqfNq^B~h z+hM+Fhfjhce>43e`DaPGcW7e28JOa*J)qKOId1AWmv7|Ly|nI;>WcWrTGM;vwA>_? zIYymWVIT3sOt*sr!VWFioS2Ath|m++W#ccwJ>@5^t-`Q zgC}5#MEFfWvwh!7#4?kgU-@vBY`ZY}2YOw(?*>cuVfef^qE+O+y0&uE?jgGei4l%Z znP42Kzi}}v=ituFeY6H9`*)%2IEEQxqvQ~nIy8GbCiIU>0nq`$mbVdX)iE9onHW`%xHeVLh zjwZN5dVD0$8o0$BzY5!1)BEiWwkeenj(Aen8CRg&qThi+TyFyku@i}{OQ!94IULt7 z9l>JY_e*I53hk|<>aHdRq%IG4Z|Gw>v}BRgTJvk4Z6_xiHu)r+pGZCVsJz(HeFGd5 z|1F%w$p6i1iGMq3^=1RA@@?O2|{{N?Gmi*DWQMTydI(T4;)iXB+ zRNx3RM)rbKpd3(<@%gW5#O4ruHMIx&q`C|x#x+t&Gsnh?{OfP}7?#5i+TXDvCTna* zs@y~vIamh%KD|hBjmGoAe`{3BihSy&v0PA@1P9Cq0#bBT5X>bi7r`rN9j3G|^9pUT z9n%1mpD(=h$=$YK6bNk3qoM~$ho^Nymn&mTwxE~H5?U$xp9G!uF6SpmL;4j}ecIUQ zj_-=rY`w7^$6ikYX?mrTT8M4~0_7e+nPs}EV_`L{w8*=(} zVOk7OnL4p@^7`TXW&2N^c~<`O#ro?5ew)+F(f_D^-SD#XTU#ycvUknp%<+qa9>{`| zzjcxa(6&VBT}hI2dP_+Xgn?RWl9C-q;{60!d(mO^nQxZf*u%Cuo5?B*zuCiQQJnjV zzQ*~#low^+70g|eQRH2y?W5)h(xSPoBt)i1fMvRi4(UVbh5;9sJ(NAvjH)@k2C^6K z(7BO3;QLlF@arH3$Oj>MoO$b67E(c=B{W7hbL=}Y`ThQTA>(`y(IE~gC(+D*^pXjQ zyUm*^p&~G*eVLYQn6T>nK?FO@b%|$x?`DcI*lrXVFHkz09HyR3YcRw45Q*`H$VxD9 zeTQ+bz16EHndzijqp!Ajck3p#<-;Zg7P{&fYl_S&2`q&8tdn#NEi$K>avj-8=n9d0 z^ifwtw)>2ouOGI3(XVNbv1`l=--ceEsrpBL`8*@*TQ$8vMgHX^dU}>qZ9?E1V1@ri zQ|!MA=yu=#xa*Xq}z61|FmrtYL}J|wcS+~`#pv3rMkp2MSO!V zt#r-~7I(=D!u*g|>CNJ}H8xC_D}@g>53!={jS=Qaz%I#cU}VyS_c+%$3N58aTE9il z-;1n4WMgD3a*k5Zef!cEqv1U{^Rt-~(3C-b56}ji20j4_O1e^w7^V0X+Gm7UV^UCZ zg6+H|pxdZ5T4;;YiAe@EQP5J5Zv(D&zS7!RXl?!>bU3VZl0y49#x)_! zeEYHEK*h0^kApCSX$~p|g6N$?YT&}om2}-5fMgcy&77gv`Y)goc zTo;BXA9Wng%RObkb#Kg$xsNu~wzhmz*&`2z@j=gTfbUYaG|2wvCpb}=u-*(f{CKTSG+t{E8gB69*OJ@)BGnP81?_-Wh(zha^1TMzxHwGO70FsJYOY` zHc5tQ(bLt4q2MH3646;QgGMI56|4*4=O7Jb8<-d3q-#0`Qyp%iJEcjL_&#OTOp)j= zlzC7qojX>HaEnkp?J6+_h+f+S0~@f_BAf{(p67bl;Esq-lh7O&Q5# zp1D{39Z31O=@v0No&Hr$(#-XyDHm2+$LZeOpubL+p?Q9|(@%?cuB4cKX+|=vOiE37}&GaL(Ou9DIu3 z(szMBKa)wCIyNOO$pSq_^-<`ft1|wxCmkNPQXPKloh=aJc#2$ynh0aaBQJRiKHv~g z1^VgBXM(2wvye;nuR-xfH=6JqIRM=DA*axiYk93GaeY_f zrdxCz9$13bo_QG{E`7ELbbe<{nlOq!5dEEVbGJq@>db?;0T{%IXOwT(Tb8EL1_<1#m#foxTt<>v z?;0ZNU0O=Qk=RtK*2p6@;c$#a{d#%7v1mYc%~U%}U$st8ftK8XdFQYq)~Vk#nH`$V zf;TQ1LCYVKP?PxuT2)|J^MiED*ImFGodPJICb@d%o*m~)M<=vNQ6L--=_Q_hgR3Y~>8L-Bx&mn>Y zfLzIv=|;V0up^DB+BzYtqK`(oH$fkBFnR*sC_<4c*Y^zdl~UErlN+H=id*^VJMQJN zk)j&CxS8BUvbPu^Oqn&eAj8WIlKI9w!=O0;4vVsd45)s`WTSmIS?Yu=ueea`%NN=n z1SVIV#IIA1WkWDk3^z;@6h z?~DA~{sCj2HV#$y_I&bv!J+l5E$?1Hrf4?kl`!ghzVErx?g(4h*M4^8bvH%iE8ow$ z9pzo1l>A-&?^F6+*VYldKZ4r!bL!Sr+h);r>#Cnt*MLt|zwMet|7p#Xwc&hiFCEF% zY`;e?Uf znDloC9_;J)+ebQXj=f}0Zr}lWKlTsh=#!W&q>0SklEyr*m!3(xYOss2D!~e@1W~&P zhjT@1WoewV2RAla3+4_1;^@7I40R0EYwmY)A{VHrO(5N*xk1hZfia>bDk0krf^23>lz8yg2Zc=We!rkIwncc_eF)$T!GUrQZ_ z9f#0IIPLGe-!gA`Ij7!FBLivo!og_!nKSZo?cDRt{?SDJR*^YqY!opDfnGTR3}1NC z{0W&aQLhaIpZO{y`@>gY!H98X!E<>av{J{HzKyFF)6^6jZ?+w~XztE{_3NhZUXWyj| zYP(=;L)#jH?!W&W_T^Kgk6M?YQG6tgAK^Mkk}#DZY6Y3(QG(@9U{tZ31cnvJyN zJy1+>{CQ`!3+&tPG9hlXDJwt9Y)zOzKO{`N*p1tUKSuZ5Zn5_Cl$u931VeXv)IYH{ zy9R>cW0BER8{JZaw5&daGhVk!SSJ|8o1RlHO3gjwXmo4Uxjkp)+F?@1h4+j2Uq!#w zW8<&;L3~%3fVp5Y(_!$}rKjr?JCWyrOQBPq$da_DRa@30DMSdUsseYvXJ~`#6!>e& z8BkRFMoXfhMam}dYV~pH7FF%k8Wt1GWGYV%StMG6}rYfmkg4mT>O9;mmzJ4I4qk7|$#9jq0Tq(}c4C z4U1WnQqOy(Hof}9Nj2_E7vh>i6;kW+MJhPByyEN}_$?us?xud-O$h&>E%zUp;a!pj z`myYHtvyb=b&_tK;GgIO|LxzZcS+Lb$0DPtHpAaY!grS;>F&5i6h5!gnm#?DK783t zUU11W-@vS$L$a^ch$SPvix#_40C%&tnQ|jap+-WsWQkJ@WNrO{PI9~QRHN5;##tQ? zHVXArFLFqKXj_d6r$CssY^pCNX@E}pND7D0e1_qVKo77&4gwTWQdS7bm;0bkXo4*A za|mrYh1?)tavC&nNcG$n1|i;IN)3aPVG+`FTm<7bQ&_e#bppI4cOF52czm$fJ` zQjM!*JspvwwGfw^h3-c1VbOq~MQ{Hu(2Ro7FC@rIWitVm;x&%;T42ykMS-Z<1*?54#y%AHA2jJ}6y9>i@ z5^^1DT3}MNzSF9!Ek4||C3q76bAHH7Z)1-+EEtgu*eM(A*0-dli?;(qb*H9(+Ueq5 z5rBXH4x~$R!akN=u3HoNZ=b5&@Bimopn8`iaD6N?n)S$5vJe-YA-)ym1@eZnZJ$ov zV3<~z^2XK~{mr80%A-*O?mQS{pTEQC%c0Vq5EIdCk~6{HUn%61gRY_CG@ddWKF9V{ zwx+}P(c`9+P;qCh5PS;zbOOLxaO7|^<>*v2#e&R(s+Gk_rhsB_i9=lFVpV5r%JR9F zpOa2(wT`1gn_tyYOqvvfw@#N(|JNSzTZflP5XD(?jF(ecvg1@7J7pc|GRQve!3!^^ z@6WBi5n-UF$G`IP5{*^Nv%lIch&-BRGX8<9*b@$w<4WZCZuGV;2w-*=)cjPhY5ZGV zLpP(VS@`%HDO7*XXT&(6XBxflbE67j(foUPM+ezwT$APvdfY3RvFCD+V`*hMF%)!; z8>2ie9O_JtDGsyz<&L4H5#}d(9-Lo5LB|-I8LOZorRQeFepkxmH#6em(aLk7lOU_q z^e2t#IBjVvjnLjI8MW!CD5%`;(HYo=zPIsp5E@7VaT~cc?$S(2#d?{nGx42blQ?b4 z{n4?Kv(5w0ob`CTC%wYmj1ufqIaRH;0YaLcg=7pc}X|>+!(lb6@B%j$$HW1DVz9VVr#7A67#D0>~W=;)mZUUmKC{cz;D#2 z;|;~)da{pHuD5jia^CYgpr?6k8hEy`;3IcmW5T7(0>6iotNn(H98Y~w<#&J0AX+Nd zlq!GaPY0v1BXnB>4QxHdb+(CorB~?PrQ85>Gf#n>rD^YQ$FE@OX7jX)vgICWUnhE? zUX>$5Ln@-)@>lDPhShB-$AlEMgyOy_i$(iSVT3(Jzn04QW*<6}Ti%uPWm8eq3_eWya zCR&lb@5=|f>RcmfnMYML%Azfaum7pEO`vF`;a{-GvjG#m$vw*rkWos4F!hziqJ*3$!lRUZV9zUAdHqc3m=~n zPG8Ebhv;dODjnNh1lZUcRw7#x0in)kY zxk|_*Me9(ZEk8fY>dP4V;B|vGG*dX+CT3MuW=MadmVL#$tvG_NV(#O_HU%}rAePxi zHSDi)PP;5Ee-i7lacRIv=TLphwTFx^^}n@V*>}UTD`Y%jBA>~o2!GjYx|1A^v%U|b ze|I#&^32bxJzri8FenO>m@KsH<=@lJUxT7HOEX|-t>F7F9S)|QTF~EL&42t4e@>;p fqGI>`kDq>2WkyTnKer>hZSQWHbu|yDHy8Xr7X}R< literal 0 HcmV?d00001 diff --git a/fvdb/notebooks/img/jidx.jpg b/fvdb/notebooks/img/jidx.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e1c373e7b847070bf39b90cdd4c12c321146b5ad GIT binary patch literal 128778 zcmeEu3piA3+y8P(QK_7YG8IKhDx`9lPDmvQ31yNbgi3N6RwWcMNhK;1k_wHp3NtyU zLe8f&809oF<1oe?*8HE*-uvCD|M%|q``+vQ-tW5J*?Y2P&6;Q3&-2{(@4oNf{XC1; z%Iks_>@_qtgaia2Xb<=g;&nsY4SbwWL6C_Fv=)M(*^oe}Gb9X-z$K6zcteojBf;O# zh&^~D^!u@(H~&jskKlIWUAr&`51ASo?>CrkT5!XT-8&5g7eJ7k`-Ss|jCL+RVr{cr z^do3p9Fl}IART)L&$BxY9^B7w!QI2%k^lF{7o&Mv0;oZa-`0=c{oPMu4rk9_09SFq zd(%lrPY2MQ4dB?-`@&gpUf=;ZmO9}&eVoBRK5ubo7dT%Aj^{glKW^k7pZI><%RfF3 zIsvX3=U?wMeJnVee|+Nm@lyWr1xFwLeW6_*XMN8*JDt9;eA9*v82bnwxw)_B z1xGi}<;Ly~9_P<`oVUN=coJOuT|WM=poQNr-VFd!f_mJ>Hkwq&u?wBQMW-q$(oYbbvQ34UKhQ6 zeEov128V=RyB>Bc`u3f>G52EQ5|bV$KS_D|?0HspPHtZQ%U7>UO3TVCD&JPUt8Zv* zYHn$5Ywzx%^nUr;*FP{w9~~Q?U`#TnSp0qoKtkWU1^)fsvl;zb2>K-`EG#4}%I}u| zFf(w$LSc~=8)q%rVJ2#SPIBd@%d@3+MkQnx&r#GkM3X*ozD`U=Nwa$uo!_)BqAgvBr;0`yk^aw#edBfn?3y!`|UM%`Zb^blKA7r z1C0oPHiU(RMZy0I#OH`F_=jJ-P5@8OdF{|#ApxLFLJJ`@#O1tjs0h@ckxFaDT;jFq zFOp=U6Z$jssyiFYu7)WM`cx^6TSD23AmN*;DTMdx%yp}i{2kaRV>ee-BbfxkK*oVb zUB+_PPl8h)X>eFxRCM0lGZKnR4~n+6<2cd|3^Gxv!{>8{sc4Rz;e&HL2zKjz zv2zF!vt)bNEplWgU3kTV;xBH)Vpt+sE%5`SOxa=Y=a-sEvkUj!C-o8WY9u6bP8c;E z?s|yIOYfS63ii9whxnN~%OauMK8iS_yAnuwH&WE-Ru-sl$**~kN^sy9T&zOW#2#Xj zY3AkeE185I9sHuf!}=@yk0`(Dc(q*S?zaVJEEj+J0LyW7!jU<5*yrADBF$Zm8gcQn z;Xyi?7|;%FpT{MXEbN2}vRgyTuTX=S{uYg1lSTPgKXn`($={q|i1NzGdOB4XGDkG> zUO5yPS7#svnf?2}1vu?+u^|s~CAXV*qlPg(7-6h7eF6zeux@uINIzCEi;#2O)A{!E zjlfe%@vc28a91Ke@3H6_y15y8WS0vMVo9wga(U2|5Tulpt6ovt9$ki6sK3}}*#t=f zV>3`!dLf^&z{5w)A#%r;+H*^TT-PjpTI;UbeVx=5ht3xkQl}BScu>JpX95p;)F}sL zJMkcqE!PkoFJ&CvIWJVuoq_|EtCT8Pk8 zzB1y9Y9*ZmlU8%jW~5iN#%)#7U0LXFJhkiYT8UA1kEtj#zc}C7zK6Srz3bK4z2yOJ zYB^Wu&k5^`71ZhC3cfj5LSU)~{bxP@neV z$<|w^6)!5{VsA^@{GU*x{|l=A?<%7J?<1E(c!y!GgE?_(B<_vZ-bmOhLeq0jGEmV< z9#oas!Gl`gr@;NGaS&qV%3cD_p8@Biu5t7|#2vLz#|@gg2n z&yIuGkzp#21o>~GBy)`JN%?{s7D&d*F}FVL-=G zVMnh5(#p;v=@D1MRg3`=!{jRuYIt|J)n|>#YE28|Gxrs#-Ey%%G=Q(@iFFLo&7LHQ(i z57siyLLPLLJHmt3sm!<&;Y=d#nK@PF-?P~@@)+)`E73e?PX3iGJm^{ABoDePJ)G0R zju_V@CYxp)8G;=N*O3*>I<~%#d{0dH%KT6(x=eh&_8OOnrGh5ZloJJ8q2U^Fxyg3s z2r>s?>S||N67pt<2PK^(WU7`d=X|7jmz#D-_7t^*dl5vLF(q=VBOWtjZ0pk9UX0tm zk1gAFtoQEQ`n@qv(>^?%v%+X=*M%1?)!f%`zdsF)NVbqU8ENP?ZN$J-0dD2?@F4EC zYK*y6w3V#Z>gcVGmQS!lUy)AqxE>P)Ix;kZ95I{m*{aUsFnsLUC%a~&8luN=0}t9o zz6|_hJdp=|30C;&On|fj3S6$2hI@!5ccdVpBq1Kutrx(bd)=8QSZl-d3(Q~oTcfs3 zk@8Ks5`m&TsKk#AMpDXm#tG?hOR0d1DQ6j3`d(wOJD#P$kpP-A0fv2@%FGk0{m)fc z!w0&DPyUq-noYDnENy=~C0>q~MxQ|k`^5xlnJ)2(E|L2j{=z3|*T-+e)N$JaXU@Yz zqdML`U;JAv9Se%TWtCGTeBM2Yp}3M%(H%AHT}lJlh=S<(o9GqiUYMErZ(L*jHnD5Tmvu2?-?t zgVCEdm~U{`Bhu(8AQ@GL#4?liGw|Ocw(#LpRLI(#1b6ekk-Wf8)VQ9HB7XwOU;<}0 zz?u~{uAi_kvvT6qq<$dVX}Au|VapXXEgoRTmtfQx?rU_vAK$!NfO!)holY8*DiCe% z`!vNK#^)PxCG2MNCxx%xQUTeFeqj4UeA~C<+dlDfBJSxSD#{k``IjUCf@B1^2h`$; zZR`v1$B8Z+N0|Um*&B7B-El01LOvKw@WDW}UrvP;yuSEWe^fv zBa^LH*Xu{miK&0M<=sB>ayXv{2np7*>4EzVMag`;zW6&{6I>EgI^Omp?-Mwra9t}l zJdNHRf1o$+r~5LVt1w0-sIO7)nc08s1~`x9|EBGK0hx~+>}GmZUzEtap5_x%9G81H zS}oOm`&8B!9lFFHxBtBVZ;Sz&SNAW7QfCI8R{bV{ z{@DG%1cw`7>V05~DYswTP^T}bqXOU!5U@9pIw&ynZ34d}?>g{=^vNUP(Oe8ud6E;G zQi5X(5s-*m#4;6}r}7W6(Y?z1|Gchj0Cw6NLi z)ja6!GfFKRRfqxiwoV;%p}BI-^u$wvg_d1P3{!z-yoJ7y+Ov`En0Y*in&<=U{6Lgd ze{!G~(u5xsWP0!*N6BK4G+ziK8K}0t;fNkvhKm3K&G6~IB#x9UvcI7xg?pui2kl)+ z*h5HshqSz(*t(Gm;(5Z6v69~-`#=9Jlz)R74ctcJM%$vfy0vy=Go9DEQl`^k35xy{ z0IoNB$7cxtQ)k9>x@tMMYjGeBL3i??fxHr8Fd?2e7bGA1nLLOGIdI9y{WGflHe-XF z{p_Wpv=hJ$p7IKoGTSaPu^W;6I)?92-wtH-to+{r*Dr;Z6oN2Q=Ce3S-Y4h)ZCrNUp*33aFWnXy39T}F z;y8DEpCCz>bfz{KpG6psPWCxbTZWb!$IQ3$IqVvf7vEvo@YO1E?46`y#n^h|QFGT> z@&|mDgTS3p#EmRm#XjDzzw9H{mVi0E(dXh<*L(5hCr(8@*?v_!E^Pxuk>E0z*IZ0#3-%JOf&Pn9P`d{t8(ONA(j(UyK6*@qsKJuMhW}K zaR!N~I?aN8w(_NGYZ>=_C7JpmdvfUkwCQ^YPb;g76nrc~(9>1fi z&S(JhsZ4ERZ(}C)oO&SS>JskoI90_F`BC2N-U&>*Z)fGUXsH=~u6Hu$>|6RG&Fa%!tFNLQ>4pls1@u~~Z{m>MoR)Ri9VsZ; zBPy>NzMUwzn%_DyU-zwb%$DU8y`gSQYb`^VE;?M`njZKOM(JXn6(_sI)R!;)m_EI zZcjG%Ok%_K+s{`2y6BVV1FON9VJo&Ib}g6ih4z8GXu`zR#6wK2r=16#GpstOn)9Bnv&r7B zyk_P0s96}TJjsPZH$uJ%aQE_{(w!VZ9+ViJ(4S-;N7ZCVrm)H^ORYk8gl5_0M48<1&L7tc6b$Tvs;8;>H zqCT<*`G<_A`wbJd57*aof&8r&CM%~*+UpS%069i-|XH7F^! zPf3kcyed2uzcb=i@;!}Atp=opOxr6F3eQ324UuH^XEVdCYU5h4@0r)87p%gq}$Pdt+7-xP*8{rNXd%l`lsvrSfc*kocdS=1eF0pU?j*VgFz56#-sBD2Bv!05_B=EkUV@|PB8-P&Gb;qa_>@Zld(7@B&&mLG+s)80)i zsQW^uJwmj2P~96Jkiv+(w&FpGfKL#UpkTO5MX!M>Q!+fN7vN~%PppDX?qY$jpYa{) z=LTAuEzGDf0va%qR=faQuHRw+Va+mSb!VL^DG{&Ueo}W?J%O zErb#tvCJyku5Q_K3E5J*s5K}|&2uVdNKgpUi35y_Hdwmq>XZ#m61wZBJgb(x8MXrv z+}sKJdn8h^3}&vYho|In0Vb2Dq_O@WlA8?YLE}SO0VZ~<{BRE+c=~1csxzGkk(lvw z3V=;2J_X3lw~cVA9`-!QWUtXth`1&mF(eR9rxm3lx0LTqi6cvfC^6inM%Mr%X#E%v zLRu(VEoLdHzem>yfK;_I4~j}1YFA+pSbMhOZj!p=iCf{iG9M6Mio}@$-7)(~LSj)O z4pf;Q2mQM>Ukyi~W+Tc>eK;hpB`i>VNMU1!DT-+_AMfvIFTAeyS&8)fjuPDM!C7bh zTd3vVGXMeRIgkNJ{E-1P74M}r4kV82Zvw*;oK(eLjI}t@yAefgt=TTzb+lwpuR>DL z1SO6RW`Z1v8bAAasYj+{ktLIq zQ0`LgYozaUp$F!Iv=rUnU1;$8Tnr68S8Zgdvd(lfZv53BsPM1XOVS68gak0VfpO03 zQRm1wqxr_EF;XeP+TyVg?#ea>l!hN`FibBDxi4|LHVW>>2X2AuN_~KueV=S#oO9Xq zQY2Eo3=}_rIw}xfC*n?!o|Lw0^kRPM@Hkwm&p8WJFN7{Tt$Id;7f+K~L4Et5BD^Kq z2`%DNP>jy|T#&*fRZM=?eihUGr7+bqz{AbGKO*&Q>SCF?#GA?1mld~qKIn3w+R!{8 zxQaPQW|+94$H(-}IXp`~&}S&)_JREsq-YB!K%(}&`11exD^X6C;A~)Cr=V_-mQA3< zIA%@QWv;T3>nZ-Ws{58uqL9*4h`sBzW0%|C-4k7W(C?OM;_r|MhQAEWTwhO`Qg~e( zgdQ~y1i5A_5AxzcPdda{GA~`K$25jEXqqR>5?7gPVB2tEEr5kA#P>dW>~X*9kFve$gwM znrZ{%49w;25Gd*tvr>?VD&%PStnt4e{w~?6cYvXM13rv*mET-R=S5hV-i;TSuN0wvXyFQzt+LYJ1iN3!zjJQMp7(-ttoGkIxjaL(;}&R08-1o@XvqXx8flEnZ!bGj zujK8Q{_es0y(6~<6(dW(a8!X)>AHp=Jxo-BTjzHG(#YTf!gni4$VYU}m#cVD*bx|9 zi=5FlEoMYc{@KpWN#1i0MZEZUCuH_8ZO(_$MGLUx6#}6T!QEsho^sG^LngV{CQB=q zk?_bkPkXVw+MQ3f6vb?adJd_2Br$M>6o+dkAm$=nc=i%qNl*xCw;Cs4YC+~7)KyzH zBEa#b)efKQlAq(A^ZrPhLeIC^HfAYU+f$dwD zJr$yPnsSp!?r5e;XnCi12{}8Gq+Ci6?*HPbE(KJ2bKZ;cmHq`UrC%uc=4H=L((ze7 zca7g5q6HW013kxyV&&*09LJNr$K^HmMR*d1{CS{OKS|drqvK7z?)-*h$FECC>m(_P z-t@Do;z6?l*Kq(ff5nP(if$Bw_3g@j?i|P5v)(@HbMvwt>*7tbKOgz*>z?)q0P34h zTdl+>Ul@c)H0>a|U7Jx)Q@=)(<%lxfJQJ9nR9VTPNtw}H?)xLQ74;u*=f0FmEquLZ z?mczoPlt8FHi*{4wB4ww)vzQ?RR`1kco_52i>VG`OFg<;bU!Rzs8F5vP5$9}t`)oP zZFE@~{MyVDp%Fg+m2$&>uK8ZKK^2lKlARtXMF!K?>@qb z#RIn{EWwpu6>uH14B!eH?)`vB!L7^T{x((W-YHLwu@r_0h&`+-Ner|P32<`RR*g-g zwN#KPt|Z`KY9Jj(9-bmROD!hQv%~x|04KcY4;S~RxJu&gblDx^fW;SCp?{R!r&`#D z;kTmQmE7BCQ9xkVujNV+9E51gE?m^t1~z#GFxjyj3s9f40pISn9FPW!S!Tx7#BfzM zM!m7OavZqxB8S>v)~sd(gZ|Y%+LzG194`;{>O4HlH~wX|MEAoZ=o{0qAvAI2PqP2A zKOaVZ5!Dg>ri;MZl<6Wc=6eyiHkGbHJ&P*7W@aEA+x)9CG`5I+3UoA&na|~dBJzRF zO|1KvyO=x=&V7$?nB0IKr?_FB<#vQJP4Cyh*NT8Z>9tGw+KyZV$oo?XliU1@Smv}4 z`wMVzoJ$wTECz^awo4PN6#$QYb3T|$yN@826wK|PSz-9qXCVqY5|vM&QrJ4o2}B-5 z#UtyqZs&xIo!P8$wDL=B!Ey2ekNaPA7wA}ZhYr`W58*o|dtxpjl31aSgcmu(n| zG9PdI`q1O4lF@m!vNapb2Ze%y%AJkmc85#tUAO>xJ_{0h1ey0g5=?lRpI;C>{36jh z;ii35CfHBs>D7rV%p;M9jzdvdCgA%#5;e$Mr#?^OKxO$dX+^>O>qJ zxEQel9)zqXK25|qDZIfFe$|!{XHy7h*#Olefk=A;$UGKcW}r}`cWDaqb4zi+pM_jm zh~un-ujxr}s=r@vIbG!DOSA#qg{q8MJne0qC|9cX z8i{G;g5n%Q&G;PPWT4P|tn?oeInV=phKs*|552|Fq_0Yez}mmq6OX1nz?^Ev?(lwU zvv76F>~+Uu!|tL={J@fl?ffO-twN8+yiPR!NxNZGX|67|&iF#5@@x zgoI(rOgXAv63BYojL*c3M4Y3-KTY%@9fmj4*^ySu=xn)=ss%5D|56GKv?h( z5H|DYUK4s!o*9eWe#*C5e!aPGz7P9e2a2X~N(4x2u*VuM7CWU^`%MRnp_R(kV^doTnFoo2vrL?%@*DY^-NbwPZP>fitVqR6D?G z!F2-6jdqgj9?e?Bp@uC#l;zsL&*pSy15-klNoK&{?V+=4D~7 zR{nZVugc3eBKNxHi}>S)fsm`G=xC%o0Ni@dsZ_Ecx;K=g%Y!n#K^3HaODfuazT1^b zJP0+^d^C`dTENJ5TcyII1}NHlJFu84A-jUav>YUJqA>f+Yy#|1@2*sSog8+gxm0#L zQMo-N1s`;U{>C7y`tq2YqfER-tms2uVfEYoS5j1{TNNh8F*8TQN|o&oS3U6=<92FK zCwvT%Q%`q2Oufi8aQKSn&l&u&4NTeE2{2^<@?DGZdP`) zXs*R^MmMl0;xOSOUe|JkVadVBn!LO7G;NpG>|Ma!8x>XD^J`J`b>OOZNDa(b2#QE? zam3=Z?wzuJ@Zp`AW2Q65@W0e3wDyEY(BaLbTy!XLaVZ70IARvNB%k#l6E8U!vdeSc zr;TeC`LeGJJKPZ!?qU!U`Gy1b?d);_hLg%SoL6rCh-p#@hOrXR{uq$}*t#KM-i3d3 zO!{PliF1#*z&ZJm$g*S1$_ll_({ZbDzGs5USdXGkz4k2&ek?1051Rx%n18OB2x76H zrspeX9$5L6KsQ3l2@-Js`#9EMcFInfj+aNKQhrhl5V8N%0LvzY4-`SxVZ zx2FI#1Lp}Jc9s*b0kM#l!%F@&wO8*T(yt|$}q^ozy2I+eBkQOs5 z+-$9KoZS`FB?oUN*sDHjzrMwCvDq8x5j;QxFc%5=01Xbi05q^hXMpS=4p)k2i;@uB zU1D0=z`>xfx;cv9ZTJV=)nwMP_4^ehn0gd~On=}8`UAhn>yHM#n?E3Hnoe5Aw>KL* ztV=%^B5?bpg2XP&*_IoD^{7z~loU)o4EUV!5SM2MgX6DV)OF~Np$>G{F2Zi6;jiUl zWSP|?UM8zc1}|cyU7kL%978V;-xd3Z>B0`Pt*~;L%wsgkGU8TR=#4^$S?MYI@fn3g<)+o!*Q*bAVUubsz9=2v zv_*GG}kTFS~v-^*<|~RSiDJ zs<=Qsl+MxAm!rqrH~}`E;40-5!hOF2)s6AGLoxpP{M&-ni`m~4q6WRg?IW5PIpMjY008s(sL2Ie>2vQKOFLakft%5&e7u5G~pJLT$b-MPHg$XW!OPaKnB!PiRvKX6Jo?BgbE=svw zTOhZ_VyVKM0ZfABC;}2P<>D@wy=a2OU6=D>Zp{OSod?!_2*Zo(s54K(Ad&vq1nOU^ zUhuTnLA^nbYx#8WQx6Q^>kPW6QUVIu5A;D6a2F(<93g<1RuLpxIw-qMtt6hIVcrxe zT60qZS7A4k=%F_-yJ%md5{_9{=$buW7p~U-;GNA5{jb80-Y5$_@FFzCF&nz`Iq|g> zFdOp0OdV}1$)Qfj-ET2Z1~6tw6Xnjc0G*wp5YVf#5M`$NwAy%3=fE- zej6UJm>Uca-zon-JZtp|+2QT`UX9jrHUWCM--QpIuYn>eS=ErUjo!G)_Gkwc8l?Ip zl_MMD`b_DDMNdi`=!U5aWSXrAQp>Ntgfb3ps=Vc^+cFS<4Q9&%X>{qK+(={%$TV-{ zy5vmRC7ECR1n&8djgP7^TahW^a7tk<{l#`=#PGYoZ-C3kUD_sFMs6El=0%un-mQI0PP$%MJj?8+kKR0Y>}GBZXBk)uXD36S^{l5>PVZYv@{!I1?|X`@ zE#B+S{l;~V4YWBJ2wC2 zRA;_!_+OP9_g(J5Q-RGGK~0ZfynwC&1uqI#qik?#$Fgj8k1~@iVg);0HaCwtDs(;j zaDD^80i%_~h+m9D3AYHSb(1czEQ}2biC;HF-Ii~IeMV+|#D44erA7n7<1?_)gjBu* z0#F9xQFAl1;l59Hz#u<(w4=N1qG)uY3~sJZX~hPdBy-51PQ9>J%H`HbR-xn)OYfu0 z(k`xFd|pS6W%^T}RpYpsprHPymc3SA9sq&6EA{oO!}zt0?(Y8`X;5J#p$m9%#-%&}X=2SPQQIzOm3-E#Rb<&7-Sc!M9;V)8MnnvYR@joVLC z=FSV;43Hyx8aY^DVG~4x>6BS$9^P|oeP35d3~Jchp7s#yKtVB$PSFf1vg%M$F7Zws zl83@RZHTG;B>Vn^SfB7%GZEDGL3^klkm$<@{AIZxh8wLz;_B|gI3B*xzYF8#espM` ziD?WB`T=N00E@rF6kt4R0dV~dItWks9tOyx&>m3xp;iz8`9y8IZ4bWm;jRjWjRBIS zau+Y_g{g;W8AK_twzj*~&zan^%1}VpGctD^$Jyj`2^4Go1TE^cY{YaI1?)x91u&5a zChmF7o!MHnbn@3@dmD&-?@6?(cmUOZ(i@Q9&upd9;xOJSh4U2Wrr-C~`wjkbyHy0o zf$nWg7rmkDphgPTJ;ZXnWGdwnbtljEh?2m&8u7e7w8lw_P;LMU#2K+&XqH?dKlpP8 ztZJ2XHS!)m3fQF6D7L~XkY>rdu;sFocg{zPtxt9)dwwC$92St~XuN@cMAWq)&1pa^ zjQA6`k73VT@|a`H40!JPc`fiRrwa4v^Yf2K$cAa{iFun{bW7#3#RI{ePpbw^mE*uV zr=OY=Whem^*#~0N){Y(wcdH5J_~8o~v~zZYK%_M~8b8bQd|L`Nr7Qf{rf*+S(#%HV zxtq4(nftUH-aS)9>{N%u-nXE8=RAd53P~)1bOi%zMV8A6?UoZNk6>Xde}|r?xwdb z!W-r$EvNa(v1Ti5gtvSWbZM9k7TF<37L=$?? ztB%JLjlhQa-qu3ETVmQpk@&RdYd>BIa#4Bi^`tjfi}Vkg-!JTyc!8S`IBP&(;3d-< z6~eKnEH=8%Irq3fpXdZc^0q!^aJGIeh&4|*9No}+aR`%~OP?GD^alzSLQ|jgqgg9Q zvr~790X=^R^c?=H5Y;d^&V%kO98UT43s_SHW$){Fp>eQn;Uh_eBajSI$u&vLN@S77 z($d#M!nJ5a6<*i)xv;KbFivjQ!!!#b7{s9N4IqhwyO+U&@6+#*x|N%B$$2lHEz9uG9+qcJos4)@;alN4UQg7D zK@Kf+18nPSn5$QA-Iy>>ukom=>9GUT=Koi){O=4DIg})&FD6HV>%-p?XzcE~wY%Gg zoeI~1vC3{7{Mk40F&A%)bZPu1 z|9vt|9x08=Awo~u_IIpSTLG>es+A-M!jwGev;A^|+dt=bliSpLR%dp18ul4CF3-tZc+C0(W32M) zv66_aJ@2w^rR`WAIfw89be*Z9&50$K;aL+o0Hufg1QZqmG|%rE`7M>7rt0{qJX7bl zRDPNo3s5!i{S3m699FV=FXr5s6=xGUi1eK-m?r$b=WOrMp)}5Bk9j`tD>lLStt68ko`R0HTH{Ovew%CoQHLFme$^0!MamnBpSwDPQZcH?^QKO4Q7H1yoHvQh09*{y_S-C zvwC1fNuUZ8VoUS*jY`X&rqTdS!2z+;G>bG%zY^~xrht4PziAD;l8uW4EYpndFEk?a z+H8>~8&nCi(2=t6k)6+hNy}RrJpl)+7*7c&f{z&YeG|`&v{)(`gn2AYM{+?5*Vc_^ zFYrQfx0G7S;a)`?Ra@n1;2udpmUtACexnJiZGQ`fW{Su<9ENvZ|CMZ!%nARd@A8XI zOp!}4v(mgU?dCnAr3JNsCCWJ_YEPwP= zsdlu!u~*L{j9s4rp;Rk7ZIK%TKlK?T+$26F&F43Nqohwi1L=U<#9qu>BIPULr|;vz zqTj_Cbnh}$xZnI-K;~6BcOUbUS6vXV+_dnnY*xsjWp~dW{l=%Qga9!eH>J$D2)Yk& z8L7DM!PT~HT6-(IvEqqLjAlR+R}o~v|MQtE6a|GQ)fAAplAj=RO!;`!c=*nQ&r94Vz^W%T;XG}oIO!Lv-`7>1mQ&3gIJU@gOOro^-M)||{KHAh$nyCphnkG>k zxRq{o1M9FkJ(U( zCksOR(E-M#YxX4lAe99U{fvDoXr-TH)O8?OQD^dpmG4UwpK@(&{kg4Y; z2Y6Zx?(Mjjrndg#tHbXnels+0?mQx&(fCfh^U>mmW`0DA8i{sP*BAUH(NZ+ikmE>M zOzKvm6T=ff`vSFJ)#>E>b?SLRip~-0V*9tl7=xb>`aC(8%&GHWuZdsEgW4x1Cd{9y zs_nNAPOet>`mQ@a06M631kV4B-TYqb*jr}~D#{&$w@Fa}l^_5qBM03LlxI%R9NxUf z+~AyuGrh68rRAU@UH|E~p3(yv#hD-2(Z6wDU}M6ML;k`XnEOKvwHvIl=2(MW5J8yZ zmU|zk$#;u+`amedTdMBr>WGR?$1vzZD~JF;}3|6-l8i_bANBmeGE7-T@s)wF$T1+ zu?a`5AAw=YS{IY5v+p&Z1AF=%J^6))A6>#Lj}Y>xFABIp>b!0oSJo4Q0pnC~udbxt z`Ln9`6#i$k=TF@a&Jpv&)b*i?(LsmxHRy!$bks2*(#bqp{&jRVbteGy8|kFB718q# z^YL>`d&`@C)qZ#;0KafzI0HP5rjH?&C~jsx;l*I`A*)XnkuuSdna5y_pCNmC=6>)+ zsslgFTp#y-;M^nF-894OG$y{nZsXm-hBBMZtEbSCgHZw^4|}6_&$fP}q_V{Q@u)B1 z(a$Cg*n!pt#29~#MD?JnBM(*)(p{#73XzGv;;!&ur)Xf>JdfkESgoMt{FvQarN^d8F9VR z@}7u8O6#pd-|_1M%S8NBW+J8~rZpciap=zH@*h05%a0ZK+;WxovpaLulxOElXMPWv zeh5)wu`XPE4oVa&PwxxQLCZ4V=^5?%=(TU?6f8BEwQ{-)de`vfic5}5M1wxIe6s8z z=frUC6UxzSX|G!Din!Y#M7d)=XWt!m>NnkJU~3>TeCYqiPQJxUUDl`i+r+X>HD6DG zLc#O7(K{o{K#_Eb^5y#1V3o#9pKQrA0kkEd7|#%CAdSau8y8zx(x6?Pkfj?}y7lnPY?Z|GC`@TqMHJIVK5h6;6qK>%2;i?qR` z?(u*aAUp)@!GXIu-G{7fVtY2^+}WxnosBjJt6N9(ck`P56^rKnv%1>mKdY<%9adKp zK6tcMa^dn3_L@L-5ZEw4jf7LdeE_#`fP>14=>dgTb(e4N!Hzr&)5oV1!x&*=zgUGa z@emu!76&9;3P%SR*j7+IeC|@saqVLXfTen7HUbnl2gAAF2Z$!N^aKIm1_3)806dB| zhLm>#0%uRpbM)W4A`NL(NH>r=dF9Bq76f3uixnojb&2Q}Q_v2-H3vWRF@14?Ihyg6iJS z=W68Nw~TKG%j-{zzLlHg;Ek@5s0K~waiSOtA#QIW^|EvU+MHPbj0YvttXd`>>J$0T zg#%X;K{gWokqJs?Ct5;DV?!-hgHiivozbZ#2e>tkdDjafOZD?q3&0RA5bvD4Vj}mv#Gb`3a z3+^qr_XzVc_`ygRX}oA?@O2nQOc+RY1hob!ou&cj!&D#uOW%f-1u8G0pk&Y(2;#X` zJus=*+zCe~qps~&3LO|XK_7gk`;eCp${iY3*}o_tQ{S{R0Y$9j`Ub;*>Ol*4w~e=t zsb9g58WxK1pyTs^(iuAtOj4FzQtegms6Z!SA*qvIHEQf#`?e-^u%Njo~s#G^Mb536{KIxA9=AUm>;oq(a_xMeq`jX zja8%c%&I0q2QdHMQPP1j0hxd%DN#6URe_&J>SY81p<0DXz!OHk65kUd^yT3yD#rYJr?gCEL8-bK=vhkmHuij??k}oT zbsX^~Bv=n@kx8r4*ZjF^#B5+xuz3(*L!a`WsI}u2A#2E*qmq&ZtUpVMnGbCDA%WTe z5&d%AL2mwu|#&!Z1)+5JWo0Z(sSf8>Tbje(Uf(gct`k|JgsSCSJxssk3 zN2>~wIJ$RSe;eGYSb}G*{z`n8_LR!Se08>hUjjRA{J`vE90gby%HGaT)YXxj9agPP z;4w)c;9Moa0JfS5$ewA?l0TAb{PAPmP22fp8-+?%jx^bLds+$Z3xjzCrLRWewbKOo#RJkf*7A%pEh z4!BDV<4IMEPU;vbB~v4NsgW%}R|5+FtO ztgTw4N72Jz##Wd2z$~y~b$r6n%(g2g;Q~=9;2coK5PJ+Numw$@q-h}U+=D%0n#x}6+t$+baZJEQQ@dkUlQae5NGWcyLdpq39AhVn^2s#=}*=HS>nX!}eq|EGA z4E*Y;Y9jpQP$GN>qr;2_%Ot^Gvtu69YDhciF{MGej-D6-xm9xW_&oVW@T^j&&R}c+ z`#4-lD#o+d5P>n)Wwo?wfeHiY0&oPgVCoYluo}bnR`WibLkaP5aqYY-V4=wuKn&`z zx56!x*WvNTCdNE$0C<+j0dK~6(D#u=pzqI~cfX2M?6ylCo1TFk8CI3777pGi1g7q2 zgvTlK0xn}vLzvNk_$8p%qJVB`xS@4+(81Pm5SIaLBj`9GN*B}-mG9G?kn)lFuudH7 z8*w*Hf)npij%UjjZsmM)p)^+H(I>b|COW0e4xW)7HKh&%!*QjIa3eO8S?*xPSZXi6 ztpnK$d;?p~jWpirVYMta!ZZwwzkc5L&X{p;l6v>j30#~4NVprW-kI>iCb3t*Z|_hr zYz18)SjwEWcR#$t$W7s`z^=O037B<(W%yAScpfk|Ie7fSoe4c`Cg1#?aezC?03%#i zZ>e^}kz>#gGOF zXH~w%XPa_v<8gS#79KPlQ54{fSs7T39z7JO54TcyP~PT=iB60BjR`a^c)SjO$||cc znJJuT^g_6m3;=b@K8#Jv&!?J9J(r^2TzNK#9+d!D>I+kVmvOHwCQwtNop6gXV3AFX zGsm2$VD46D0TMIit;; z5W$kzj$p!G`@|r`3ov(^P1CL(!y|<5eRcR}x6KUvz_S>5&HsuFR~2@~Tt&}A)RB&D zn}Y9fG@~Z9uEQn)UU@591+Lqg$%9DwXwF3()4sNC7jnHC z$K`^_pyW21KAGGoy zat9vK!B~OEN8yhD52cL*_%cFGTzHM?wJ9TRqaRiC zTo7lQ=*n9W5nA+}tJly2ipc179 zIVB`Tw^Vb76iJdqXb_?#B$cMw2vIUfLTV^_y5dat$WhjHt$S43~vIyK8veXV0o2ONe1 zQJ<3x7DLMQ*-SZ@d7o^Ph8?f8E2>pmU1W!$r=%h8}m&-j85OhNaSXa9vh2g9luG#vGv4U{)RTlk1M!J;+#SD&;+x~zRh(J zOt7kOCQ`KY`vfzSAt_5H{lEIw?=&h)YI-xxz3ERHUfdOF749lLxX?gl+xtAZ1*+<1 zvmZ7U2y^VN#!qV%&49APgQR)gwpxDg*e?4y`dfSRA%L6G@{jVPiGG-hI2apA*^1`z z*ksg?v)svfLlQ6hU5d-v&Y1b+T?s+^N497(jSq#God6|oYy<1Is^z;4Y@vaTua$W@F>~JZ;8|WW*S4AT8RJIP0wn2b_iaHEaXUs6%f@`OV~#B?>IQD_TLr14 zPvj$CE$uH)>9@2*!JN%MS=zTkpLfk)q~-}}*AUzg|MW2~eXzd}A?e0{TVKqFVVB(A z;}kXP_uuXF&!6`jXk+ZcyPpiS3zO4x0(r%(`$WXe_fMaK>Vo4Sb+3>8<~SHJk>Me| z1R!=<^?tYMKYiTqSALlS@GDb0o_g8RI~h+!rQ%4^9#&;}8Zs=!sFpPnol#=;E>*k9EBddqpQ@yr(nR08dEo(mOARG3-lVD)L`OK+eSvoRgz9)Ts+RzoEY0P~UH;56t0jsP8w__Z#Z_4fXwh66z!BQr3y%5PJ=8>Kx}0l=Zw1G@qWt zbIbDM(yl%A-QMPWW%ACNUdBe$g{P55SI|>)s-vG1ywT;KbuXT2eO&lNYsIIjl=Ssh zr=(}FMv`jo!TuqrU6Yr~zwwM$p27OVjIrPRUd1-QYtIwTOxZ<9J)W=UoMXKFNHh5X z6kS=*J_99MsH3T`4OF<&S>ox5`qbhMi|gC0udCgh=o#dmw|_@T!$z55_GKpxIAPz~ zVKDrmNfo=(9;(E&;x!LU<67II(Q<4wpl7q)cyq8+sF(WuSZee2#Ew+Qt|<^-V~>G+gh~e-T&%Ijv0WTlWKU()H^RgSFu=a?OkN2( z<#rv-EQVEt~4!*1^ayu42Ah?ys3lK9hFNP;8h9xAVM zJeX?1hd>?27U!Hq>bs}_dR3%y3L0I=JIY^%4uM*-0N1PCGR*aj8CIh*4vWbGjSD6nP*N{CLeG^jv-nGm1C3SOVZLGX$T1VDuX#sGtRQ(gJA^QvyIU= zQw8wlN0V;CmH2n!0AimkPPzaXb1pp@f%Eo%Q zW9)u0V*@Ta+GQ#n*wy2m7ar-HBX#e{$H7w3QuxVB6yT_x&SR0L7qv^HD5t}At2Loac)ez32A}7W?w(=>Cq%M$Fge zEQ{*~Tjzeb?~*taX^M2;_C-qiIN*w@pIzT4R7NrYyFEAHBbvm|8+WAf9n^CWPB_b+ zE|{kRTgdbeFk1k7DlX@Hzz+Q`$62HdSR$`#S@~i8TmRfUTylL+*cX;!FL@J^nP3qlEdtBu@)MB1#jIyf4!&OlIo0MhD8kxWzU zEvegzGUtnwcQpaiH%n}nU4-Uaa z+7USI#>g^*j_TnWa*8D%Z8l#tnNqDZf<&e zdnS3AU=2`O&YZaWqx}mdf+x+d5eG8m-E%iW2uL_T={f1V_PJHh6R&=3ubO>zNuc3= z&faClmgzu%HXjZ-cI*i$Y7gA&(seJMcycy2W8s2@VPhw52|k&&X!F$5Bd3jbpK($b z`U}$izDOmxwe@jjZ4g3&rN7U~+?UK8;9g2JI zL+yAanG@01oTV(n`NaK)Z1X=)Uo(C|mcyl@z(9*rqgzfKn{iU#z?au?kwm19rwl34 z7Td#l>4oXs51}zy+p5=STdtiMsNgwweE5~KjhBb-p-dG&z=l%`6;6cE(mN&@)~@N^ z<7=99Zc44@%f&i#Z`*WGZDpZ8 zQnUdmYBFtbx^>vfufe{2r-PA&e`Q;#^+h<00<%i)-lVqxH0T8pTMioJ*46_HW@QE& zT^^4gT}_Q`<;Q>aTq0jb;uf(J%Ej`8F-XnlTsQ$Ml6b<@Sp8Vf(0n8J0*M;|h&u3L z>I6rX#smvnEs6UOB_8!Evnu!5Kl{>&M<4x*?|ggCw>EL?A8q2Oi?A~CRD;oIa1G%? zB1y&_rc3ZJ{HVY!(CI*QmAPK9M*D{+##7G*j~?~sR4Mbd;?RdFy1nMN-_8s%I+PBa zlE$kLUrHg%N!;zEK4mJDB_?eGOY_K@V@7R7(hoyq>xzPR*eQnPzB-+JR(puJ6aA$U ze=Lmv75$~nfB~@|=^kR!{STXrTQ}&m)nTmKUhy^j+`ie6NlB08&EolJk62a>7@eRI$i-pSd6N- z3f|JmU)iAbV0CV#l3?4H z2cgV^*CzzU%)uy`K-gq;;cUwN(y!=`%|(91@uW5{o;4Pf>SaxyN6jO3&Zhv&E50|I zEU@kA*mT(QYrclvj2@yyc1Vl_+;I)-J2q7~eoIB0XRukX2rSuPA8_XwU zCsnrQkPZ;~bZEXLzPckKSh-{qf2R`#Jk-@CH5x*x1Bk#>`Gk{4P`Y`as_jsi*%1(w z--|DQP;w~^h=lDBN6e0@GZ!@9Lz;_=nW>D+EN3Ec^AwSCGgX`|A1KcpF;>9;Mx(3( z${aZz0lpA~wuKEqo~`Q`a4oh)G|kH!7pOe1HwVV1YYtHoQv^%rK|nuIQwj97nFP^| zkY|qFGPAb^=2bdBp7+|(w8;HpaRsAL-i#$sYe|_sEm&!Vv1vH)gTv5MDy<_7^LD)F=>FX^o!JI`X^kV z#Lfexv8=X9c*CZiJ?s{`xI`55iBw^Sna$w@iBIQ3Mb<>}m_F+LV+MF>^Tp-*qd{5 z>B%h7tq5?nt*tA;S7nEI`H)qpA93n$D2$B}2L{Z1k}F?%KQV>GX;QR;pnQh+N!3dVjC8=MeuAOQ|`0GBywwE`~D{$+^)|La7 zcVKx&-Q+Pc3i|X3m+1VF5EEVi@@I@B4RiCR{~wsI?1`yp=%6YjcN{ zVB!?h<}fG^Gmv;r95z^%=2u@W-vv_r)mDVR6ovb&2V#qS z2=SDn6?$W{?K9Y$o2|rBKfxLq=P=;^`(GNrCB~ERVqQeyuxwxvE%7oYFQjG-sKo$u zYokr*4eRsN5~S0KB@fEIu^j0>?Z6lC2vyEdU$T}Z_Oz4O4AX1lz1N8fDj6i$V(8 z*xfwfsLxMmIS{kBlnpYC5x}Z+jRHJ;|$8zz`Gs! z1mK$;BrLQxwxzpAJEHU(d6KyVH3IV;h%;!*eZ1i}*MVls@TX2d@;*@uNj;nzFj%vm z#kM#T$wjwT?(+%+iJsdfL9pD#P!V5Z)gKbyA+>ori?u7PLvD)3l(wfqFWYl?3#V>i z-}ZOg8C#uiZ&Gq^e2YS%&CATgTla37dF<`vOMk{}PQD&g=ohS3Ts!+EK}p*3Qp!bN zj7+MDQyIa_J&!mB$E}1)8R1b?<7CYY7bM*)F}^(W)j1S35Z226oUGcF7Bzy46^MyI%upw;>u$J*2f(mKi8tn)|-$)Z3|Q@(aJ()|46!{u6vbU80%wU^V^(F|mDs<*WC z8S_^F^;SKH#n*F(_gX*EYQfEG%q3k04{;9U3g#9utnpF|{8fcE7{6xqmJ@w;cx9IW zOPp@LvjiscUi7xfuTj4u%%`*)2Pt8j@xPKeANBid1pM{9R@`4Zixk1A8`d~~GwS3@ z%`Z|xbk$;fHtp)2t0mHX$*R;3NT(we#Q0F4gN4MYx86$ThEM(?H9??J+K+h-L{XUo zan|V2mpR0#OhX(GCK5%CFr*mqZBi@CkJMf0*oGtIgCxagJ?a?+>_g3k<4y|I466D3tkd7YZ)-|91Jb0Q(7C(ky>4TmrtT$Z}0spb2 zXrHW$@#Ku4@cv}RZgXGKm%@Jss=CBL$9-i6RYUwtJD4cDTvJ8D|XB$zMtgF zw``a^KRRvvl#}|0&7&B_&qaLnCK&7L2S}w39byf&9h1qm)5BLn8<=#mV7wlL*{5U7 zF&*ga3IAesPjg3r(7u^2I+VKFx3|y2J_yO6q3RHtNc#ZdW(5&O4vhaSk!y{eArJt? zi-ra1UmjUxJa5=*7ROiwKJ)G{5Dq#o5%l?(XAWHnWM{(|_zdYO|hC!3~?FoOmqj&UP z44eToa;rOk|9rKbI#{(}8Nx^R59<`;8e)$F;Yj;OQuai@_GUbu9 zl)Wz)6ggvX6@odTu%S#h13@V=G{gZ&y%n!RO#28%rzG}W&k}d5`o515avx(m>8J&9 z7+A+pcQ<(HrHIG@#yQ|hs*UgKklxvC|Lm8Su@Aq{i;#SiaLG%I%{YT>VSyTG!UQe} zyU^%^a4qd&#=!dwxDxXYr-O}2c!h9QQ9xnBJUDETTqOYO(Ikm0Jq~jly)yo#S2iGu z!>N-fn%w(AnNH-4kK>EFJ$q1Zj-0}z6JDt)>DxA)S?uF4|H$)V7dcvf(2hjghIWiw zAHAFiP9c581RNiqH{W+MvTu6&l=|(fjO!g3qPdLIq;7M{a#$q6By5Q_spbye4pyGj zHi;#$kUwGMC9@@NUXWV?z#P&4U71AE3VjFIh)h*fM6c9d^-r1?lfb zlnF33oO!ZbAlLv1++y@$!YVmL3C>vrY$|A@hgEf}RYx!q^mc$*5x4 z%})q7j5!hlSbc5>Hu@mghIbyUbhb2Vn$AvMonXgNo|wDxNdPB1)?eN~ar4W!Ratl9 zw*(sQmN(Ql8CGar5?F&5MhxJ+W3}C?LYf;+)aGV;YDJ7>FYBjvPG~tR_qFv4F`w3+ zDU`y>SPCo$M1^9Ey3|<2y1Utg7Mq&hjXv-M+nu}j4|CxQzsUOSx{F1xv@Tw}C@XXk zsz7-Yw~T_yAWm;48=&jGsQ1c}6u;NbOVv`M^m3h;dlvGN|2P_J1ci~LsESCs1!6~s z264V<9>;l-NQrxyCleIWG|KLXMs=IhShq2*N7QyCyN!?Un`s&N$MLt0tt52zoHWFj zolwyBMJg6mt&{N)pNiXoUiyrwBZ<{J4n4VETs+f@|M-=+hU~>jA9766r-&zqog^(F z)kM(~d~%$tmU9|UA2athAgWAf7WHiXyf93-Bkt}cwP|yeT;D&6p}gO<#-M_+2y}Ea zHIGeX?Stqls*GSYppEd4HuJYnFEoPp^ zA~nKk_TS#a;VEN~{#j4wu{`MHQ>Xcwg`J=T8;QeNf7|qTMD9I>HNEIS1ajOX2zHSKf zd&ED|=79`+b=tregS?p?J_$5C2mmCW3M=F?3IOp>?lA_!!8ZNdo+@O?r@|WXNq7F+ z?=G>uYoxFX8t0&%{HLfHm$5=jhhn--)Nw_}gcZc~osG#QabbZv4wG7rKVLn0?;2_8 zyE9mJj)Sy4eX*$HgMkZ_9opOmo9;s%LjW|F?t)c39Gvl$a_B(g-D56R8cvlf|C}sR zAYjJivqU}tQm7Bgqn3XW*&5*B>xVsnOWD&pAcJjEiazX$ z7CN>@_bH^YAte^7ira8|v5U_b4`Xzb9q^`~7%_OR>>u)V{YiMacoJR` zo`jbgI!La&mHECAYYfTzbqYHEaTA6eHw7>Eh9s^KdW^JnMiSld)DG>HlHkCS{!C03wmtwq_h#T! zj^=x1uE+ZrZ>I1eaTHSLUke}~Pa2}jHd8n??|xj2vov}LeFlVKpvOUR@Qc0oJt~uh zDd!<6t=)HS7;}8rX{I*n1d>nS(XliY1>+jUq@IT8p`*#cS2W8u*q$fM zRIj5~24QPi?Eo0sok0YL@C;^&YjM*P)D9NJM~3;nxeTE5ZUBnsgo3|_XTwmAT<=Gs z2VP91WxU#^1#RQuDVLmk%&}(73goE?@(kd<#?tNJbS96y*=+Fo(dtHAR#1!eO6V^H zzXyx*6-3MZ2BPgC!C{^%Hv9*{sa*3PXT6uSQC>BjFvHXGDIP*kAQ?xyvoK~NNvyZE zyuy{&*bX{2JE|4}YC$0mVcL^-mC9h2f^qp?K{f>(BmK(&m0X#VJxKPtKH3h#aTEeXQBDTsX})J&Va4ww2wC~JQU5~t zUEA%(oMcF5*4M!DLfBa7bQ~$&#_lsw34+YbxA2PQUePTQJ=$)G{baGOs{ zyiRQ`LMPlOUpTwBmEQSBDXH}%Su9m{|Cj$=JVW6KWkCp$BG8FPdSrpDb*XD-W1D&Z ziqFN;cu12O*`n+i^$#oa3uoPZ+I8TQY91NOUf>4X^VtmN!E)R!(JgnMFDC%cqtjGR z31-9zg6}oq53#3%T)TZ-_Pu&NQXPSr`2nWe15k5w%PZzn#+5Hphv zn0dbJKT^ls=c%^BLchBi4f@@!)05ylP5$!vS-I)oJh&@LWsy*iYMDtb(Ut z26=>ab0JBl{|}?#1vWZRXhb=IItwieIEW8>yeoU$feHJoD1HYb9Av998`d-^9KEvm z^qUh`wF-|7Wm&OmZZeng=vm}SVrJ+(9{-tV?Sg%^y_Rb5yfC@{G+|)L(h>eGbHh>+K4;)%WPTx~_R|Un zf~+y;8vdl6>Oa~7n3G633TrAve4EuO1Zc{k-@c;|QU07wfB1dw1TMp>FC0hF0qY#V zOT`(F0|C~ju9|U=dyFe!IRPJ5f|!bDNdF439)V1IcL8=$0OJQbtV9vZ^0Idl+4M1& z-sD7N1By=H_7$|9i@hXw&T=oua%pl%bH-Z1bEZT#z3INa8vc}m7*L{s4UB#BT)|Y~vwfw<1<|`vLOy@|Wynvgj5Y;-Xf(e13%ET0ujcXl@QE zi|Y3syyU<5B6Vv49DZm)2Nqig3 zrVYkP6%2y2I^5-{&bQ{?Zz?E#1vO!0YiVDK{vD9&AVgJ5tb{(rKuM%1PU_y_T)Y0^ zF+X*N&*N=5wI6F67w5$|TU9$xy|_63S>EKjhbC{)eSxbgih9n4ig2+!LS#z0n0z5{6+iS4+<`=E$a0|)R_d?ls>RkPv0B?kv1@aJTOS7 zT&{zSP9kAO;ngdjkD-$-$kRYTzkY%#72vs~cPm+3t0-`j3skC<3%3gdzJ1aX9}&49 z5lAzY$p@1g2cG%LetzNS(~ae&)-OpC9|6^_OMDG!I_@lzcR)mb#!q~XDHt%rn1&Lc zNQ_oLarvERJv~dXIo9lZESR2DTJGoZhetT4r;q+agvvCjMO!{{~FCn zrfH!UIDtRJpsQN_tRL{z;d>bI>UGZOoUEb(;bf7Td+<^JIfuN8J>+O7Rj}+L>G)7)As?b@xSQi%A|IPN~aNhi2MyA*zZM{#B^_DDNr@BGI~O9b}Qpt z=vdUFHXyonA}Y*qnLi>!z}C!;%GloVG}-@8<>WnlM%BEY!xj#TA=*~gBXR)X*+A~o zBKgw!W60vUzNs@(@K&qZo5AS#WUra+6eGT=*!bb$t_`G#j_C-8#o9v`sBFWh9~R9F zYu5F*nhh`7TfBK|2lKg(OBq%ZE@cEbMBRGH*l1UCY*l!5X5VE`wc`f4Vaz{a9bi!1t;qwI5FI2W z(&@!F#VcPUH4&R&)vwi0A>EYz@4B~SlKc&@DZdQz0X3hkXrL%^5I=EkM>wI6T>X@s zeXjG1O`IMsh@XGr#fyd2=WFfG2Fm=EtAAAHPu{!T&6Qf=qeiK<&`P5rN?Tbv`ulPD z|L`|SiwO>5V46HSW|jB>bEJrf7Vy}a>dBU=EHNr1#uH-Y~md_}~u$oOsSc zfjxHHDW+#BUb_7Nt9lsU6+Oi@%~Bc94e}eukBihld0IAtok4ufJiWT_Q}U|GR&%Z^ zYnHJ*)EP3jZ0P#Ir5B^;D0mG8%38tijQiikHGdb^{9Ro0N0+_d#WjDlfcsrs^LKI0 z-^Dfm=i-_wduv&z=_69yVw62|RfZPot&Dm+e_yLbar>dhxpY@bUiiK$t+cnpT|Z9Y zMx0HN56|SVM>O$I$OInR8lLzl`BK@3G4cD<<<>@y(VSUxbiJ8#(cfp56h{cMAi()u ztn+uV&fmp4e;4bNDArm0A3_^FDeJ&0wU?0Ef(rmlx%Tj)25)>(o3@3K*N|O5B|qYv zj{ZMp$W!*p^$%F@o$uZmOP0v7uX!vIwMlP7gAMU&iyMV-T_u^8{WIWtI*ci;8Kz zWP#Ho#$CsP7@k(!VPg7uIC8jI24_D~1OHG`h5KNjPtats7=FKg={rF%`8xTDvnbfv z4`D;u_BtnWRMPKu6u;Y1{BB3_yB)>vb`-zcQNS_k?{*Zw+fn>(NAbHI#qV|$zuQry z|J{?Z>;Lt36ea(m9j+y{ge51-LE0H%Ed?C%cy~rSk+8@6B^SG0b+MVX`9o^a*2CWW z#@L^JwY&_qceoHA-l_;K#L$ByNlh0;K+edpHOEWvEd7Jny_z~3QZY2`6y?kkED_w_-d}GzEoi@R<}k^rvtf4?It%0UYh7 zd1L1bve=?o^^gn&%$%J-fLUc<>x@n8M0i#Dv3RR9REQ}JB?weWvIsW_C;h0Qj_WS00MRqoN|?FW`0&XoQXY8dJ{b&pEjE#YkD!8f92$>c)n z9?B%~z3J#7)_BT7_E?c?t&75?6f2GDV+)3Nv<1H@ZE%WNbj5IQQ|43^^(usuumBil z7bqJ+GMmZRa@$!aHo6?jom%_3AR&@*QQ~uu++LP=f`%^{UHcj)#gSyUFsn16twp_# zh#q{62xgGwSlqy%ZxeVEh=;38YlE>@SiGsqHQbDG=+gSU26LE)eY&hu=j5 zUAZM0t=y7a1BJ!z!i=NhWZS~fj66!}dfCJ`dv+>6pPM_IbwIr|-6(Qvi1ucm97(vO zpCvQbhrbAo`~-xY+O3l_F4Au`Ot^hwY<+0vEv^Q7@CK>L7q4EEVFT+2x=?68W7PNa zWS}eq4v3En09}RbWz-Z1Sp9Vs^FZr?bt;+#e8IY;7SH{?e|p`1LELLW27+bgo^+6m zWi1VxSPW}`#Cg0Eq@l($25B6C)ud9TpIP}jo^K`3V~CcnBX%1Z0RM}#0AH-(n9^*5 zUl$z~S%p|C{bS07puBG2n%ZsrhudfZB-m1cu`%j`?`h^d;))EL|xwidY(Q zSh&RAS#!e8gehH%;zHLx#T09EH?0r3QgqhavQ%seXj+#3Utxb|*+CA^kBqzT{~p%0 zyrw{OjZK5}e9{M``AG)zEaRlMGtGjcg)?J}oP97&o_Uqt5m!=`_P8k>?E&J^Z%GU4 zWu6Aqe@G^}2EHiw0-1idKkIOrI-ZLqY8fzw+s?aY2?czubJ;&xye!<}{bXx)gO*sl ze9MYm`HVjfiV6K>a5cZl@Vm9U(J#Z7nXThLL-`84=m! zf_v{O9mYtV@+gnFO{;;57gU5J4jWsM9n^b5bAWO zsT5RejZLTm>#W51Lwtie8x7zXry(On`aI_hjq|T#n#wwJ4^QJ>x3}%6OP>zE9f3a>Doqs0x z4fQV(8GRRxmT+|ZDav6KRrIo}vgfMO*ac@o$Cq9iTfVv2NTs0@Rl2croRJcd|U_B4O2Z6IkPzdiwK33?+%Gx0J;XO073 zET^@*#h1}OigrV^LVVXi6{XjjC1+NoEaCdqs_UFfIdHc%nd*EdX)e!xm%3gy>6n|r z$c*0p&glc+d{gYPjw3F_8!T?|I55=#wd8M-gVMH!tfs3JnEj09;J52s1+GTc{WCtD zvH_*lB9laWQNucaRgOZI1Wxt{B1{YzXBc5n}0r{a?10-MG{7w!Ew#+uL;}NXTE47ZSDmO!vK>$T!Rp`2% z(>Qi>4fp!JS;BR_7VA#V34GPQG9WamTVb#%3%qpepA@JSvVR>Vw^rwz!7TUSwc>D! zGf%ez25J%JC|DX`chEXR_sX^WeO*)B<^-l?`FV#rvOzHiPVUA_y8E~1HfRidm!`pF zZ!TP6*Fc(x$%@wT=6Ew_P&V_HCUI%C^D5mlwB^ITT#rUp?+TR}e4_EBhr^!)=h|GBknW?hb*Hu(eW1jrpGCiw@4qOl038lA{ zcC2WAa3;R%KQ-m|FYN|4O-TJ^BOx|VN zDrrkfZmAh7YsW6M>w?O`Kabn?2+yx>eN>(E8LAFncDaKM-zVw-Kf`>agULD1 zn5{EtE*|#7T*iiGuy)S9Ti4JnW7lcSNzPsVMQV&lmz#Xfm3)Riaroye_qSBOl}#4} zXaqYCT`e>Zdig$L#0xM;11#Q(+&9Z;Z=8RGi*o`6E6O z7f=|%je4DnmNBZU=Iy-{{4Xs%$wkwe^$?rqe%iUpE|VlL3%1+2ZGn2`t?NOW1`|qC z*oix~8_wTl`Rdd0oXTZ&zT$|mc*cc5lRr)OtxMWWT2A6bIU!8}_|a*G4sOmsM>keM zO3rM&U9HK#TjH`2>qyBKCp{#XiI)Y%9}3HPggLjDo-MVv^JOFOUaEQdcgSvTlHQvPO*IT^aw{P>Q-+*=dP zuP>^eyyv){b=!TpGMPz_JZDmm!-Nia3~uM{C4nb57ed2$l%ED`Gba67VDBQe#7jJsR>Jg*SWEKyS>qy~RN z=I_~g>77u)h!nM=jIf*bwgCNgR*3_~B$f>eD&47)Gv||Z4xMHls*5hGEBIqSX_Udt z5c4cunWzYx3wp$;8B;#D?>VQR|LOL^hAH}IohZ8Eu)W-Z%#N|{&YRFRyt%dqbaw>a zU7c>*SX=<2O^ROY4Vw zjgh=Nqexdxy!QXu{7**qBYuj#Sr5?N6fJNxT1bXkofpwIwJSw6%GghR`l4$QpWin2 z0dO@X8RK5K`$mzJW(y4tO+=t$xWDaK-Rd(Anv7m zkB3BU8RM>()cN*{6usjp7?8UpP6SW~!p!<3!f$%iBj3Es@zup;)8l0`S8t==CUHx+ z2&`v3O6p(Fxcbq(@kI=gTK^&rFSR!3`>!y#Ka6MFSW7=YOB_3&syQcvbUrt;3>*8j zu#&|AW76?tO=RxT@YkKp#_JIc1-9xR}|)93pZE zo_-QKl?bujk7Z6PvJ!`HAX}b788wJ6b$TIbKl{QLDcK$Zn9g$-YG02VUG|KMwKd*)=(E>`G|ZElv-g9ElpWoi~Eb~ovpTIu5#m1inK)}2=>3*Br!4Un#<@5TV=MG=o}wpx}$aJ?TeC6IDLpEk209m zacjy1mzs8yv5zm4K7~-P7nuuJ-(f}!gGM?|Xm%WBAu3zL@L|qFjd;qgPGihX9lx5E ziE1<3o#*dyDVJ}DkbJO-w0JXb)~=M9O3(TL))+@3;DPHm!=6%5XP&zaU<=Ar=vkpn zJcCT!X33NBjy_NpW-i?VG02Op)A1N&%(HXmyU20JHgt{l-(ouI52_7H;QIt;ew5~Z zJ{2iaMXxRF&ett2+sTwEy-9hwYtuoZ#+A#59b<519x%O@TmAn6!M-I($f|~%*qa^a zR-2n{=9m^b5g%%jX=}*5Em_!v(r}tnXt>}{|A6u&p4S)TgHvY&f@en$9ayGs*C zy%)hs`}I+<{}?C_I^W;WYrS-%^nj20y6Sqfy^z`^xtUY+mVu6GX`IzNaKAN~>3qg@ zW_HLu>rvCqKZF$AR2aj)B@PRFutng%#c|Z|s6JRh<4DrtiBL`8yRSTelE7ty*ZAtP zT?P8E1My!$y+5qW2Q;4`n90U>PyL>h(#}(@eZZ=v(b&>d)dL9l4P|1wD(uN-iBzNJ zdkfd*P4j+juHMjB`nh{*dAq*+;@r{`nz1t{{PRyX^ja(3NPrO&yVo%Bo#G3|H2-pEu}WABuDgSdx3z}gOP$7TY?tNP)$Y3w27FNw#mnBxYUu;hK=527mF=r*=xfR{nd8W zNgo4n!bR!qVAX*r!9o|*CChfc_!@Qkeigamhe@fMTZ-SO+uMzKzx|Efi*u_dWKXs~ zKKdTVP|vz-6O{J{OW}e*WbH z{SEyPh5GkE9ET{TvT=yw`vyrbj24r{YCpj={`Q_T|9;QbM%D$^gcOTfmOmmba=V9P z1;<#!x3?~C8IJ4gDd*U6DYiC!_HJ)Inos3ZYb;jWm0Q(i6SuYE$0+FE5g4fPpWp9) ze!wmzujUG%X-RoZJ#`oCv5oup*x%qACZ&|B>K@w4zf(k=pAAb?gFlXT)>-?)C_rQy zy`mjoHf)f6{pq+`9(X=J<|{w)%KWmJkGYbA_&(V`UW6KIVf?O^%ugk&b`dbeWjKKF zV^`?f1rC5Z)17W24ikCsmUi{;r%|6ZMQ!bC!3`|FdGO-LL-n1QMc2itUF76z8zNU- z*q5~9N#XzPh*JpgD2A-NRxV4PViZS#xt=c~KU|6Iw1aS?ZKvs7)_>5B<1p|i_+won)&TQ(9B$R835uTtXA zRjoF*BR@H2(Kf?0-{GTxcmo+IREQ)8OsK%ah-iI*T-8GvOd-q9VfkcPkuf*9#@d@n zL}OsjwD(=2sn+l`ABg0y_;e{VH+SZ&9@$P#g8u6>R^~gfgI7w*4R%Vu=nu<$Zg>k% zLukvmg7(42+aT`8#+z1aSn4V!Y%FR23cmGjevE@}Z%5$qw1Y?&ZH#oc=k%V_(}||c zL@#S-$1QwSd>C-Lo0N)aCT!`~^@l9I$#L*Ds`13CBA&Yg%^Y%u;117zrcF;+)1H0#WW+f%wIv!Z6tZ%bio_iw{< z6jHs04;+&iOvSE=lN_yel#!gS3~?=7cW;9%UIVH+L^wGC|g$T|hR&nEYyas9U9Cx{ko#jzQyTx_C}A4L3f z2KD zVVY=ETq|oNb4FaUU&>1HeY;O!#E!#x>fUqnpLXVyz4y7~&baecU4Pu09C2+!)2j3P zk~Th$|DoGIUQ6=JKXltf973Jt9>k%0FYy|aO$5!3d)IM(Nyu7F!kHvBg|^;uXYH*9 z8!`{>x>8Y|`pxG5tlD=A{bo#w+Y+Px!?gT8vC-x9#7zM<=A$X#N}sRVOXL|l>@dj{ zbumh9z>%!&cO>f6w?w&=mE6o4XK%`oS~^U5(B{In%^z!4a+KGaWS+C@OuoK&S*tIf zE#Vx?`vtxGoa1J-S$2{p#ua?&WK7Ee(?N~uXv3TE=q<#QT$rS9P`ZXQZq4`tSI3za zpPlE|9NHC7Vcj-MZr+4Z``+0+@u_E>WG*M8ZfPHtp>#VSeY=bG2dmL%?$+ji*Y6>ef`NK^&?(JC}VyWhR=$P2Pxla>!@c;{!ImdzhFmy92e{ zkbG*D4!>*J)y*`AxvT5~a^t9lxOe`%uFK}JpWl1ey-lR6)%1I^O0lI z_cQ0;e@mXj|Nmi5hJAVWA2L@!_F`%P0!pYR8>OHgHEUAbJmzFps$Q*Hu%g;rGpp)} zjalzZwW?P!iAUW|>ngIxwp)xNZoz2*8J*$?I1zvEjBpq;$i@tFmG&HIZ%s;0W3i&z#`N20FQwVA&LBY#9Px$H504R-Y(QZwDpYe^T zkit3uMJIKX*dnz=IyR4n+L99?eMrf_1Cy(Q=g1o;*&;4u{>7K?Pxc~Dlb9Pv(GhV3 ze<@h-w=VHABi|$rXU-G3aic|s#d^}*&8<1l*Sfc6uYZ2c=5xsI z*p8?-JM@CRQ{?pQ@3z~5pvE-vam%!y33D7_0&^Ub#W3q)bs0~si}}XiI@=|LB(S1H zGQzREhwz|+a-TRFX{yp-aifY!X!Pq!QgfKcR=%q|k0#QfSAj_j6M_UnRKH4~pxqKA zPy}?7v+J+m5@@4$7k=k^kx5BV?=#Hb4Xk!;y@QH_3IGL zJ4VCBHSpJukrKmK-}r143`!+CDX`H^%|wwEao}(FK&eIVK)SsJc`^+B*AbC8zy4Sy z56S^ctN%~jFf@u+o*hIUr;QLPlb&qCXPG9x^A^9q)BC|H!cuF8EL3Q#UGUMJ%3-yvF`AjW8g=F-KqgYK< z9V~7nKJ~qwmG|=z)nKJb?RIU^P=FG(g)NDWSZN1LsN%N?MXG`^|A)9l{BemeEUOr# zXHYjQ6Xa0zmG`AF;5)ExSnXyYHJqGuc6Gnh@O1-jOFsa+W$-EtuLXIwLuiQkdBq#O1{29_0!nMcNI_E-NXX0m8cl9pvit;o? zoh;hLP+4G-eauWFjygnf-lcJA;k~P$^>^o_8EaI;mb~ixtaPMLo_x4YMtXyh8$hus z$bk-lj`}x~_S7N0ORI%zb@jeH0~eogs4r}kF$G$?K8W|z-)0f!HJ2X>^LiA-^wr!( zFPl={bG{E|iuPzO11N4BcdUfneaQNoX(tYN)}__NEwp|m`B$D2S-JCKq0`~Q;3(Esi^LB5pzheF=pJM`Z>bSdmOQu7q){I~AVhh67cUrLd!+2+1b z}029HQv6xl2E;p#%`wr@6$UBtkbtjusee>aN zPx%YCR^J>t{-eXAv|$&mYY>s#FupWbrwxHa=F#o}8PwUONtG#v$dY>(D3_yi;*AHuUrccX6D-q}W&1HVi9fPAbj-0W*PDAx_^y0trmUK0?!JcdOO)dh} zsv#a-v+)I;MjEM2rvW?JnCr8HMPC=so2i+(Apg);kx1HO_$SIXuM)i>X$qfm8Q)^Pp`*K^uiteifsqB-n(v?cz-)gy_7*X*j5*eFeI zLJd8wV2WsSQHpbHiw<+jBhROCpH-hsFnRTA>9bYiE_o^nh}g&wyzq9NvrrMpYsE@7 zQsV2e8WYg)Ok0`aIXr260nfKMUO3X27^aKlV)#YD zH4N`0pLp*23mz`xd`+KLZLQow{oH7Ab!P6(`ELk8FQgkylIP~#Av9&CBPy6Q#h8WV zL2G&CVOegK)3!AWLXzGz?$66Q^775)FFBj!r402_ zRdvqlK^@(4sx^jyM2VE*-ms51Jj)iTd?dkwSJ(=l^kWS*N{}x?nux^oC(LxBZWN@uP*V#JKkZ4j$5z9GLl4Uw9@V~?vaFUq7R_9@!#P7YH8eS5`Qion z{#kB|uCJf6>WbDv!xpVtpGrmOr9KvIC;r4Wex}yVE3phFK6#? z@H{_#yz;ijc}_*a?mKT3{4uHdR0#L&yYWRm{_;FXNy=^i0IjarCrR90KrFpQdO|wX zA($i@0#wIw!0EXNh0Q59?JMN0VcS_vOm-8Gp-Mq1qI3U;y>}0XdTsm0r&KCQ5kgEw zsq8AGgvlx-F-a(5lq94f$;gm)5%P zdo8W^dG6;qe#iU1zxR0mSVzb4UB2JBHs|>{&+~Jg*Lg0b;$Gvma|_8M)(n2$26Yvl zszJ`Qo$oz8ES{Um_QHS7>lNZ`1y@n7ModO@7V`YbFnn*>QdX~;4{A66|K?Br!N7su zr?_s~tP;fc1GYvIBqd6`B4x5~Ph5x4#ajUd_vH79vPh?e-jI6-_Uo-3}3)>PLqn_KN;p9imcsdoHg=RVHlOk>n6|ch6H}V_^BWo zR~Y%_jjY8OlTy}MoseXb=P&;=;+OZqUzbdz`ikmd$61KZJl+EuFdb~uAFx4RxIMQJ zw1HuW^MrEXJjHO#(tHX4W@?1(N$-XcVI$op1OBl)<;Rw}l*J z|IHajyg4@^Q=_l)cje60wJaHNtO_XY4MxL=`6{rtUh2eG4l>y#&ZEP5o+2(|66Y;l zmg-)8C8Vw<6?T3@znmv%xjO5X-DQ6jeM(6Q2`tR=K9SyWoGprV2z#Lrf}^=3um0hs zU_Ph(K=)pmW7RTg;hL0tKVYsn8e&$F0~nQ(@HC)03f;91H_(x_VPO-#(Rx@{ZVnp@ z7AT7Wi0L(&fYaWZ!ggUTfK_m$Pw_T*B6tUE({iRAg|cRJs*_2FcvLP4KXL&A?2Ml@ zprId{{>>Mt3;S6(#||~iN?Io>uaPT&5W+L;0h!ATLFAIrgher&446(8AYc2p0G*U+ ztYhyEfjXD}vH^=SIRoUbv5dyqI)>+5j&K<$>sTOMX+lZim(Og^uS1)}KJh`QPQ-)C z|C7YdVV*xBkPICF_ne^$`0{~i6QhM3hkT=L1$#jkWNB+&bw(O5$&sk?%V*8-S8K@+ zDfrw5(2PM+jVpp|Kw%IvTADa`p{sESM`HLmA%=;5ss&7kjw9K{n zH~(7grgz}~U;h}*>mX0Nl9YbH@ZerVOIQx>6{VLlss4sXiN*>uSJ@)I7D>52SBr%^ zMVovkMU4pM>1NelxV-izTeq5i6WoTZwK*pmInz-@G`$1vZ(1jv0etET&IHgpH&DUf z^Jg0h?$TL93CdrcodIfxmI0dk&z%&%^3T`OL01ddD0yyDh<8`P_Ty4VwFgd34Dp1^tpRpK4Nxv-7`R9axk>c=?u9Py7#nCP>Y zt6satCdw5?^2na8fO$tuf)wuEXr?`{_#-%Wb3%#WOGL;6-5j72_UFip$6Zij*gN1$ z1!M4SIvXJ(U4f$%s*l=oA?In4WbMVR$M+w7fVvXlWs=~JAx~TYYqX`18=)gJZo4v% zA&klJ3^UD9b)!apJP><-5BBqY>UD6}sbRA0{ejAp{BsHWAD8zDuktr(zH_5Wf;d#h zTT5bC@tWbA-g!pES?jo|P#4XynoQCEfY zai_#;G3et#lf8txp38v}Gr5!0JC0htI8|ILc@0So2Xe=9PLOjDC1Hnad%I0|)?XaX zsah3No+o_PnG;_vd)sk3;a>LpN?~~zyhR$Xj%Vnj7miE?fu@px;~p)geujgY-7nzS zg7#ZO&?SaAU273vF0_f*q4Yju$|Tvf&d{q06BNw$<=>~P&cIJr$(X}Il zYP_yk=fp|uN57+TT~#vIl-R1My7@^zhIJL3frL{n^*|?wm6fho=?q)7$YamB@zlQ4 zISo%WiEzh64K>;O;yc`$)*#3P8167;se`V0GS-rz6*!@pjfv&oUhCuuuT?Ml#5>&i zaQ0FFT!HVHOzqz(&HsD$do9ra1J;56$JhUbkqnt-43f)QYAi>LasS|5@e>L4|E#1B^>dEzccf9|}zYvYL9=OrFotS34 z5*N@Bb+cuvWdblHy7+;5oqhOrCH!pizS)qukK~+bE)oI%3cffOq4js)RVXQ10a}*z zr~iO;sAqwB*3C_+|D*pk=ph>40U!xj1KIX}pB%3L{nv<4e^h8iDfOE-!c*lr)v{h6m(iTYGh|yY6v-ahuoIFzxIlBSbhR&A` zjfWNWy`OI+&<*aJ(bGz&)?zio+Dz%bGG(WGo~|Ei=-#2I+E{0)HPfh0Yx?7yrTTLC zHLAoTL#g}k-W^=4wMlnOP$vXd)10j&@>}@HTgEyxWVl7oI9m9G#OIU84*HH;{NI`9 z^nXLH*77;<{V#2N_h&!_jqmQLRJfv9?M-%&S)Vn011+tL;&k=%2aPdCnDvHxT3;AO zTeh>P21oj_s@y(Foew|TAo=5$>K->)16rIX0({S?YapRx`7@X9VPC@BjN&3IWI=!@ z`UAFvBYJ3{=8!RgXPELgj}lpUN}bT}osdw#<)5|S01x{CfRTZC1bz9FBQ!@Yw)p?J z&;L==3kg~NfaRjOqGTbE{BQ`rusa^KdIPLdcNihm77prqT|{uA4UU2kg!lvwc#{$Y z8Q2d{#9JEwFAixzI0A4;$DaCWu#l_4$$0(lriV$#iskc%`Cj@)q7GgC&rV&Jn5fl& zK#5j^KzMJL1A>O2^k#)Ra_@`FSGf;$_6BX0{QZU~^t#xRApx<&ky@&l2L_`Q10{54r*c=nBFTT>*{(mJiVx z(NTB;%6!4=w3;JV5JcJ`f+;>Qc4`~z(3%oqk@PQ{*Lz1@2@n?UE?ZIAgUM{UkyNEG zwioF!w-3}j-!%81ar;8Q*F4t&x&$aS5OTiiT)!wrTKScu!qy!}Nsx|qfqaUF82aY} zTJE<$mUyR1QM^eNSG@vfqWNm~e5x{6s&v!l|EI#bEa|Wbe%{!vHKJ$^6q_=AYkH9g zz(94pMqvQ)55Xrc2|n17ZZ&)<8KlCDWMJ^1a9AU6^!4D3CN~|d5dP`hpy)K5qW~ym z4PFQZ_yvq-KVaYgsqIBe`ak>wcB`p&NTzj3ln`}`(;*8&zYYcnAJ8t^qJk|P$fL&( zSi!Zy86jst8}i^ozTSFE4Jy|I=Lfis$vGg9=g1@2uOfaO?9GM1oTUvHn$amrCIR>3 z4`j3YiFO2T3lNay!##p6qml>lfeQp%Q`8Rd^M9T1zp(C~OSg@5X%aO}F5}db!OV^G zDhN}fghlsU;x{U18}}7QifuYdTUDg%(~l08RL)GU+D%}E8u@PMG}?`RzAhJ)eW>e* zh1Sg#(le+c&sN=QSQc90o0au3P(CulTzth8doNA}AQS6--IgtB zR|A5`^f)bf&{!`n9Km?kN?zC*0Xa0T10>5}e*{NC9nCvQeEFJaJ;vajoxryIfNjX9 zBNn$6xr5DGYG7O~Is=^NEQWJuUtlquADXEk9cHFdNkp__oRD~k`pGjNFB)zwRqPdt zF*wB)BSs@Gp%>Jq0`YUB;1e%B&S`EMvcg-fubko>obpGEcrdGYqVYhy;3+%_uTsM7 z5vU&sQ$0ZV2ukxe3xZ|f^ow>VupbW4JOx6~g~GM0lQEr@O=Ft7{ol~6RiX5Ao);!F zuEZX!aV&$?928oUf!)hZ%0_PCC^PWEIe1B^V=Bj23R(2&3e)0k$kk7IhTHr_dIjs; z_*Z@|V}$|)$3lc3u*)O>;i;1|k8U$3dK$IafULax{o_^si;H?)2 z5!Y3qX$XL_gK8;lQG0wsvO#S}-K=OtJf0qh-3z3N@Kc)b5Es6DjYzS{*^5Ppn2l8+ z*sMVLF(6dGWeItWlgwdevJ+0_bKA~uq8!t=M?ZG7t1+*8=$r{0GcYabBZd6ks$c_s-vbh_Gxs43>)+kn9W{qR`;+%!RUatV{rf^^!4P zwifH&ult+^ff6ldv8sJxr@!2|R2Z^rClcXi^X_KKeK#M=reCI&?~3Ok38g63P7r6I zR{P>Fw7d|!B>-0g_sfs7l6`P#$@Z>|3Dm{}pt z!Qlsh=Dhh+cLC2OXCXAf22DQVfa-D|#v&H4=Mgg$G;eLElq&qbA{ZnuP-RJ=((%)J zU@?QngTAG(10h~$LAHz6i`nU=h`&%TzXCJ&BS7RddS)c+j!(t)Ht zzKu9ac9^=)B8cEtKpIszMJ73HcWX|lek{F@ssBb;Ot?Vsb(X)W|F-q>z%>GsmoC{Co}Sun(@@)&VZNnSyWr%&9s=x!{asB<01&@m`Y3!Auu2ah0ba2riWg;In`m+v zV@>}Lh|CS;8eM5Ad02W+i5V#v{e7%VvP zWCa0;EgOKGvFiO15*5G!k`J3T7MrO9yR>^;q3zMB^a78Z@TP!m;jN3hC^(Mt12)DJ z0ECb+qmdV=u6JsaDWqo)z;ZeK&i;adi&h~mz$TtM`ga<>KO@S2v+3O7r95u z6FwlHS^uw$IwgX0$9kC3-f4Y%# z(BK{bDtBfhPqbhOs4N>0t4M2{deoTUJXnz5mYEkOm(7R^N@v<2cCn!Rl&u*9A@7hRTyQ>YE>^8W|p`2owaEKXGIL-=v@ z(xDWvK(WI}rvB$wzg=dUyxAnyra|1Y-T&Fjl4G?ph69vQPpm&%9Qa{c%s_5957^$8 zhdIvK3$`g{x4S5RvjK?Zdq{efoYL9&>2qo!LBWu{3$w%is>}gqN|EblgvUhrtXsjFkq9c zgdTESWzwEQcyn@&Bhxm0ry?si%1Gjh6QlUxL%)&{7Y};gLYnm6 z-d8zx8ztua_SJ=6gPU8BcQr%+^yTnc@YAkjF~r1K3V!y!^C)QpzFLN%!o7Q|k-ICL z*olmthab%yjs!+r4g==}!nXk(u>RdEv*iZL>{d-4wN~ z*EWHX-m4N+ymyl*biH4#ZgA8g`KmT|&p%h+j2D zoo(;?19p$VI)?=c`MitL;dwJd$NY6ycWhcMg0XBl08lMgwQt|f`FPKZXUBQW2=%3v z2nY%AzM@ufR-^*&JvaqwKyDT^gjZ;$6ow&?A|;u1?C6c&oe#r>L}yW)gI@Q^Ky5*6 z@VnY-Gdp=E6c(7zdlCp|T22x_q>q1ec2C^slwSD6GF`6q>Gb^ax0Y5Yv6l!|$o*d{ zBq%!WYekq&5pvZT9&&9gF#^))k|6Y;dI>N~k80e%q5cXKzX5z`nn5 zUB9beYmS(Tr$=*u@`2##4?xU!p)H)0iTeS&(lGS{hTKHyFptsFQlGyQr`gRZEfC&%_QG%a6g836*Nh+Yy&3NYwatR(YM~lg;73UhMmVI$$VaF?ZYOW$> zlDF?^N2!FU>qXiw9-+D}!R4+sD@GeMDa~+3^^!pYuGAl5d68U710G>Gp0$>d#tY6T zestM)9;42f!$0*@Fkur^@MZFl%91noC&~WnCs1dathiu_lC`thgn0N$-nt7QWhKIEJ`9MM|SaL!y83c^~63Tj9En(Ue zaShIv*##m|DQC9i$CrVA;hD-WooF8ajWsf3*+a7SOcgpSjR+CJ8pTg{mP>Zu-&$n$ z_C&J4(T*KKq8Ezg_B~8Wo%SXslb3JW2gGIMf?NTO8%6>HYI)qsTJ2~g#4q|i?riqs z#GitMzyH&}{fF5w7c^s8F#O*?_3{*YSmY)bAR%qYyz$Q4Tn=Ab;d|-Aong*Bb)m(1 zAPC3Q(SpbY)AeBO2!t&8Vpo+uWU&e#G*zKp3*S1T zqsGj>ljKL|TJTy^nHImo=9DB;h>8aMNFSLSVl~BkWNd=Da~n6d#l>XYtctUOeGsxo zG2{c)yNxPw8a|&5jI;8e5JT0?*BHLAybL42t|TeE2S|=&pnzZYFN@Do0kOffkrr@q z>|Bq6O!AcXyk~B+lZ+RdEu`VvU#5!E26q7YvVn&Ffbq>WN@0wE4GcV&STCG3m;gxQmu9Fk^r!^jNv zi|TP zZ0bJQPGtVCkY?Ec7tvYQ4xw2OpaXz4GXf5bhyl3ZE9Ypc&(weY9T@F4Lp7;wjrsd0 zJn~-mQbzqjh30gg$uJAOh^Yb>W+N@k-55qE=TJ}GGLBAljRG8qE&^OM@bVD<^zx=w zd;2^pY@KaK|=pi}Bd zjmh-42G^zPXXag}tED_1&a{zFr}tmL5AG17v5eAy@^zUfp4L*EH}ZEHe*?CnOdg}K zWOniYw7NZjSOiuVFfKo>F2JTG`2LAaOIY@oKgV`6=6hep1tFY-LJ1plRHQIXv#51e znA_H?P+OcscOH7NY8pw>)fry>$WEl{@Hpy~Ig?nbvYuL)wce8+zN^#xHXuYA*(<_Ypvj8Thq39 z()SrwcN5&e)ztx+yT2bPV|~~TygJ-^?rV=KB3*kyNsQ3xK;$ zKAtvD5D(%yGRQx8E4s_K&V}x@=TLHZ7EdCu3_q)d8D9zzECH+71a_#5PF|GJ@?7!? zK=cQwvQztfQwtM(&&Exwd;*tQmcK)3pl!hk!v#2KNTWAQzKV3nSfNtG>f4?B1C@61ERYto>r zaIkn^nf*kdV}Lp|;HU}(0GsotWq7&g4RD8D=T4!%kot$n%ilm99Yd`X%$qb##wvw^ z5%G#YGZMe2?}Tp|yNb-w^WL)WL=vvIaO>b55fF!4RxMIE1jhjUgzh)|Y`@?+XPqH+ zx9sd}i;;1#MN2N;zqSa@sM7)P{i44L1=J1@outRfX&|7=Yu$_A$&LW0ZOh-l&Vj2) zC@L*GB7(Qg7BgR2pFAR|6XxX%qP!=O4n?X9FH=PZ@3rq2GI4Js>$?mfVZdJ<;((Ab z)2EEkF!WY^*ZWssKt#AFdQlZ1L%<~ljVmOhxfDq*F`^(O-w&bxELn?ZLkLdFL$q@* zIicTmTz-9JZf3q@>H%K`D0!x%I3h`jz+PwJwooo*X0Gc?G?uvJv*+rLc4XYqC)3_l zqKgVBIbH*Z^p-jnwYRu}qnzm)^v%1(zhgI zT##iA;v<|BoOB4RQhx<}(JkuDxtP3zv0`zW^Om*&lwV{9c$dqhozndH9NW-K{a?zq zT+G&TpYQ~$n5w-hep+6AL>Ua##`?lX)r)Gjd%yMl)@Oi<5yS2&-nO1AK#Tz)IbuN_ z0R)vLh*;D-MRZcQahZ{w-#loolN6Bl?~muu@8bcN_tAF?@P0TUXuM((9?o%#j}3g` z?A2DsQ)rc5#cKO#B;la?2mO^plHxU583gg9A?tF@wD2Og`S@2c_MS&jqGNxJ^FH93 z;nO#Mz_#Eg%-aAx5a3LM00znV71LNNLF?dHP2#o5{D@X3kItCu-eA~&1t74Ber2dX zW5yq=_{XRhn%HKX9dH5CYD{RA&SvIt*o)R%3%3TB+?BL_D?IRM^lsC%?Spc5+Cu7} zWbd-izjt8)Fp9Qj;<;W;Q z7*Gcw#OjIflf(MLj1wyYl5Xtyoe7O-@f6CHhn!Ng`7?-YUlwZz%BJ2m79hP<(!7oRfi^MYYf>y*s zpp9!7RlLxABJu6Zvo>|t=uT==qJ^BszX58n_5TsHH=ys6*OKXK%(RLyDH~vWQ*#-_ zAiz<*`wf$3_FFCpbOTNw5gBY4)=F}(@D=zQTl$0>j~__oU;$+8t@#5f z{;B=%EKzlTV_yGLlgt_8Ch&xa<@iXNnvG>Gv8r$;V19oGAl@plH-JFPO}Cvt8Ck>&5m86Nn2EUv9yK4i{t6Vla1E;H6lXX_f% zM;L8|$welbYQ!_9^bxor1;e~Y^{3Q#`PRI7@Un*6Ixl0~E7Uk%0&AjWbe6fUl$T)eq)xVQgieA`-+W-owDFdb|wTbfl%-AV*_~BC) zwqt+mCt#{3`52Em@{su(&M^i)Ld!*rnA+_Wu!c|}`HYEUpULwt)1MKwGi|q{&^)I> zW)ldhcaQd=78ih!%#OO4i0<-ylO!u(Xcld1tvYuwWY7DV0pyS7|CcxW|MF(RH5Onj z{&kJze|O$2`2g7wKKBDAPM&xPkwLIdC7Za+NU_|3S!4R}YEYp-q(7$@s_=H0>O>N& zCuK|TkbzpuXmQ_qB7|MUY>x!EdYCadZ3X^yhZb#e!>1L+BCXyf>4qb-B9&(^cLr+> z5ZWX;t*AhFw&PviHq1EdDg*7eqcs~LY~vg`DznQ~zembNTlKa zL3vrli>XH)2i1cQ;b07nK&(L8m#aC9?}<)nda@f-U#1!fXKtJRZGh5<_>jkm_bMYV z&VB-fU;f*eg%~#e5&SqbUmn&=smYbz!g9v%pKlO8DOhf4`~zmAOK{?SZB7NIk6d1z!v2V{yl`pu z(7{M6)C$1N1!4iSmFaO3Oz&_yf)#RxoJA=gG`*{(lmSCbR$6_9z`2>+Q96wq8gIah ztg!OUjN;s2ex52r`|;G6tS6znzWb&2*jlGQe37*0NyR5G8|cd{v9a5yBtEWq3dGSH z@J`Yy<#+0*9)3sPI-+H$K9u6&u`$CnJ;wTpTwbhx@T#k4cI-*9gH5{`j0~5PS9f9! zAg?|&%%;Y*k13PjmG<;lb;RTWwM)g{&*jo*iT=ruFZ%=skYHtvcgdSL;^Kj~(EK!~ zC>JZnH`niW-&}89V#j3NR~=rHzsLV!2nltB|FDFG$q!iE>!%a&Jg}vX5s2;<5Iwr0 z?3S)3FMDK>-j55NlbBJNya${r5$q9&uTR>gByLTk&1WCugAKjDBXZxA?eh-4*;QHUQ0mCll^OE=ev{_Km*HTl zgZ^Zo$G(KGiYuW3hgb|`JWiqPC{?svagH|@D8k35bTn6HjwR><4}Q2H%gSTIgSR(v zRx@a2l8Kd|{x)jM`D=M`ZQ+*-{E&7t7Z-&0u9kB+_9F0dYdK_aEVNf>((DCiKf`sB z4eG8_S5Hz{o|6;vwJvX*J}Rg&s&7u8Og^8mvG9X+Qn8Q~H%&(hQ&yEE&gl8f7~6V- zW8SNMr>gvrSoD|e;j`2m7hJ6@wjvK5*}CSi)ZJ=6Irknu2BAVI7!Fs`If6aK$Y` zV${?LK8Yjm-YxL({tvE#m~0x$69#H6eh#QLq%gj?z=r~X+At%I8&r_Siz`8)+OiiH z9|AQy^aPypk)1KT^_V0U3(g1Gm-b&M$oyECR5dw2AE&>zqCB=)e{!4Y`++lM!wokN zzxQLEX`Sm~ zlo5dly%7=dURAV!Bnch$9P(G|GHPXvXqTARp3E+(1ee!Vy{YH`C8;-dw|nn;%cgM? zNK%;E(gT>5DuS?5-v_2axwf;7#Zcusi(4P^^fpmDy=$kxj7knBx~)4bt$IOE2S0vk z+Z1q^2WEBl;M=q4Q(OrTl#S&V5tABLzNK^u)1{U2kaV} z>Q{*pEON!;NE;!~l+jn(nw5(~CCci8=hga#uI5H*+z#HP=xoxe)gPVI&(dM41Wj?^ z{qPkaC4yj;4|()uSeCh=Y&4#FcsO1&o$PTOYY;Y0O>#>)q8`_e5X4@9P|P1NOQ?!L zDdn%ag9y77Y9we6PV%R(_OQlRmgmZ{to9EL{ z-lb*M@9K4ix%-V^;liWNi_RN9-Phpl3RlyOtn_#oZsLYa04H{LW#hO6{J=*J9_)J* zz%=97xw)6vI5r@GsvW>QLAmWCfv!+BlPfuX1ged3kU)>V>28BVTr z>8l{E?v6C#O#a7Er*fxFuCtlyyEK6nT!EAN4pP2Xr( zWiIogmF;QV?8o-5T4#sr_$~Lh*MB$mHX4D;@YZ7WpcpV2zO=AxWKf*n`IhhEXL7T6 z^{u<^T~55weDhtCnC|v#C5NTF?W@SR2K@S~&@P5$DQ&~|?-tWDhIzLOp5n&4ZBEUL zOg8R15w-uU+o^lSqZeAhoHrNasu9zQ*kfSAKuZ>F=jLp%Z`g96T0$lh5Y9AF{HPD5 z)iXoIUl1NmHFz+G4}-(ByxHf*aB^*mMIIZdLuvGd3{Qb4uCs-%(gWv}cII5r^4msm z+-WmXktgh3jYuJ{ExP2v6rfxB6?xqW6>SW<lFH6`&u z?)}7$gc8z*K#Q*&L(jJcshF4?DU9p8*?NbLSJnx)cY3I;w5%-OQN7Boh|BJUukC>N zmMWSn6L!Q?$_hMRC2o1RzachK@l?4-wLtU*Q(&(MuOoZmA3z#%d_)<6%}?e<#FFkZ zr-G$QNNbqlq0I+WuibGSWay7nQpMt&s_gTA=CmS!1D(Pc=9K`kNEsxi78$;D!o3IwkrK+glp-+WHv`D(BG2n=n$W^Iyr=UuzkqcXNz_oJiYA zpW@DZa~l_K*d@0t{kFCjq_6UkJ5Nx@U?p;Q zyL?}=4fdcqI{WUwE|w8(D~7ZB)g4x+%yLeIk?-TD^_S{9*a@nDLpa%2*#Ff1NaKLx zv?xFXvSCj6MMG&9juFEquN)tU+s#7@QuWem51!vCr5FzZD_2chtG@ZK0~6qRKgQa7uSn#yGnKyeN;Osd+^>mJt-J} z^nIN;ZV_Uj73&0?Ej0pH)5u=D9&^E!z$QT8z*( z;$Tpq6~mz~?kxBB}>!s`OFU@oI?8RUQ4tI#{KU=x6Cc?Su@ zJ3>L_Mg`i+am}2D#D3r3Z1~E>7Qo@mraMM^3wdQ2oTkQK{ZL3x!#L{2ooc>S{l2%TFurfvn4)p;bC%k*kdVzHa=Bja%>*WyXA->> zHxbFeFpj3SSeWQz$k(1OL$6); zyTk(ex_3WK(hvIb;*qL!(VSd#=NNn%E3*bbt%^19DQZupF${_cn^ZuHHCq30`J^;f z72jv=Bdv0}iPt3kEjQjbDpp17L$pMc)A`(1dAqIE^%s|?=nY>L;KrjUW}0LHosOl0 z@asq6;gWn-M{ir`t%H|0*sUa}`?}lu zFg=d9Y9SeEl}VCcd)X#0)2|hTy?kdKqg6ee8+DlC5o6v}x90raqmLB&Mhgv9?;m}J zoXFFnAhJ-Ug`vTc7aSOs;SJx7R1ai7j4~XE9=Ek-(0EA4ehqFYZ!6DIeUh97&erB= ztFQu)Z|{^yr*G)_ud{-OYNiE8~_j{N?ma$1KuBXF|ciPqwpJHPhU9FoH&>dAW8b~b*Y3D0 zU2iP!w0qBI6CzzMLZy_r#z;ZjtLau>or&RYs#cV*%P_ekfp@BE5**aoKR_+s$R(zd zwmE4A_%Y^77sWEfBYo4HZdWZ+CJ?ao|S<0Y#Hu?SY0>Wj= z5Pp)$Uv;%fw(WWj+gO0!5dHQVsBoiI_QpBRQan;tAoyUqbdlc2x2bUswHsVzXG=+T zTp~^ys_Kg<$z!D5y9FpQ?Q>&`+LY*_3Zd_==*#g}X{yQC*Qub|O7SY@sfQVIo9+;h zlrN}EJSVzwE53aSsNLaOl63!@NOuvhRJ0bzL10 znLOI#_*Cucx{KYkn({S|CiX?X-uJdD#S!sJbcTOYfH766bA%aD^4YSKitlvA?(J(= z*EZy|r%Wq0_gry0Ao~WZx*~^9L;HZq<9DShW~2G!Rs=h3!LkPbp^6iaEK^~xj^Ik| z^1Yz3m|hz zN9f(MHaX;inail%E)_w?NY;lV^Cq>DA04RPVixm$vm=TPqW|h#&UqkL#2=7E*I7ADDv-Y}>7j@Nd(bgaaA~52-VogV0RFy&dLg4X&*3@sw z&BR?z$>F}bJ0dgsV?y+2R_|87z0F_gE@*QI=+dn2v`S+Y))!_Dp^_|YJzg+4{6JB~ zN>KYsgz<+9XlV;-tK89$?HA+hB%TIePeP8a#+JO`9A$@Ug#u_rmtdDlw!9}QWpy<&Ibk!xS|MjAX=^I%2Kfzu}J2!0Wh1v2OQX}@M0 zrt(&gf$SxptvdVS${%4IEfPw;T6eotI~{dm+GOp@j=Lljm30tXdJx)Ru-$PRr3C-c zfl#3&&x(e|Q?RzogP4T!O;n7nQ);e$NDZII>Te{ycc)F-Q&w$1yqcLG(C0FHiev}5 z0-@35pFGNp>ysg-Ey%!`HfaHUEy~#Tgh`=Gu4-OUBKZz5cv&m97oxK=*}UV0!6UuvlmBb_kzO4m_r z!Td_B?k44)iw=qBe1~8%>p;GP9UCux-ifgF7JeIaAGO8B$}uA6sCC$HXUrO-6kN{K zMGii=W^y|@@$KPlmOY*`{1Y8ZG7oFTsdPbkNcJk+US>nuJEyez5R^`7-yX3e?jo7S z6-yf)X7~&pR@KrwLaAP=a`ZhQk;CeFgym&odf0PX8HrSFJa8NQ%T;c$m6(;tv z6$81np@xh4BMX%Nw33L;9H-WzT`9(WE@4u|xguSS#8H-+v5V(h+=Re+Qj>s!+{pze zal|40{WYl=@reLtJI5aSOh*J*<*>3C5xTLZoyIzdreP`~i1jW_v zwr_uQv)f?u=__6nNx9{g3XCJcsP7@t6HU8|jI;yZ*uS!^zLvVeVHM>j-_|E$Gjiw9 zaROgI==ie_U&QpEY!)w;B$ixaB$VBe{um02uLyq?eFXh9TN;w zz3+VJ&I9C)H}?j)p##BYD}H5-855NWRAfN_0aqY6DgvH%UoguXOraqwumNMFq8U1RwG5lnN?NVbXcIz3d z>BS?dPP^Av#2&UWKPIvLyBiIQ-Om&X!y41i&#AyM>P73`uCql6$*_+#FG=XWZCG4nwUhIxvjY2MLUZ&=9D!FWky^ZS#3&4J+&&^&-6biYuQ#B=ucpSjVT_0iUInI(@|jub7X1lDUg? z9T+_ktpn`Sm`;}8XQo#ePXO6ZTM3;VAo|~W(I*WGo)%qs^X&8W5T3HbD(%rcL*+c+F@SEZvxDls_dqSxa>BHsCz&mU1*?&^H+^D#TSReCI#YEz zl;sDhI5Jx3j$yci9BU>k!ZKTMlk_Xwo)=}VBzgMW!u7Eu`=nNd_mQqI&ubka2=|Ojq60l`49cipEK<6Q zi&k!|?d9XF^al^K&n!f33LZKvkRN3FEINc5SNwUyTkL7h6R3rOo9~sskKK`Rtw*EH zlSVySE?J*?+tTojjpkTZwVPl$`pWcH|Hp1oQV0Cud+f9O$S3elL}0Z;z-jsKW*aNb zz#DMWu_Ar-W_^w2_`4c98c_7RI74-Cl_{l6H1UP~AoaZU({0wJZ{6B2HyA2*^^q9d zSB8iz$BN7P>lm?xRcVW>TK(nnuQX?7_q?7Uf%v&vk%8vk%bw!y4u1*wM@&^YN@$MD zPiGNj{Q8uBYd)z+95_4fBIk#WUpbSny9;@>REw zJ=vl-5WC0pJz$c*&lI^&1|4{mez;5g+L4_FI@N(@GqpC5(<|&6sFQ&#Mer9Hy&J=C z_Dnn_#yo8{=B1HIyXG7?IUo0-UN+TRcK@?Ia@!mpOD_7bMu8!^%tUZ;Bk)D3Vv+!u-wVs^d5g^1VWp&QVCb3MGt_xd^GyfjB2D!82>r5`TN38+H8f^-Zak#z_CJ;ee3^>k=K&ue>e14w59~z!0}+RnERPYt4?3YVUH^ zkPOSnKM*moaIs4($>v-1rc?JfmOWaTWtq#PpqTRvRbI^vKX7+lMIo3QtA+>11pXd!?JO-XOUZLr5<;!L z?aNL~b5d~bcXhwWS$?9_5^~2*~oBRK|VD60&AQ+$^b zKoILYqAa6t6nE@&kkr=hq;vjr5n-rlFGLo;r4roP49Oxpd`9%~mlgUT0$dq8(SanX zb&B(vmK<1(Y4!KSHvW$z?;LZb}( za=fG`dfl}aOnkpSL+Qc1>iDAX;})xKXF}o1HkIt(YN~~Gtn?b|BOe}o1J|=Ghv!~R zVCzGL#$Sv07>;EccgO*r2Dh1tEXkMQPknYJKU)1*#OBL}%XZdvk*1`JD!&y^S#%Yo zKQ-$b1P*{kcvU~VVrm`dU@I|)@ZipdTrsLkcXzGtD#_Om6WSHu?{@SGHqqdeuPIsO z7dr()jK>eG@g2$paC5`m()z#P-VD6_%exi_EJEhgZ%i)29V~0e5;#61rc0k_ESV`^ zq1uU6{(9@_>3F4_!OCa5zF|x2y*%Cds-C1gu-khn`~J-pcDT311{!s|43Uj0CrFQw zHh??H<76?cY*w(cr?s`xjk1%`=L@?|bvDXP2U}1T_g*&dkORWrchU;pIByd8v$NvdpmtOrKtrK#p<0&{mE$H@OJZp}Tu4 zUCKSB-D*tS>bm6F3JJDx`73^1#c3lyi4tuQL4Ur<8cqc?M@LeR_o-B&voU^j(W(gC z7U)7sv_Z2hB^$JT=gplHD>5F7(f(n#m)?EszL`#q!Y|Q19!^3Y0Xcu>&}e5)>6)TmTQiX+Q-iey2M(Ua|^Zf{3n)5A$SB zM=m&g?~jxkyzKT|Mzuv9)HbHEjc~PiL4bf=mdSx;qkTuaT}| z23FtB@8?UJT`{YdY6?=hS1A=7ZZbz+yt`jW^zw_mdrHs4sag}kzbW6L>#sIG1}bv? z{vXx_+(cRf(EcbC{R3v3OIWl)qa2p{Kb=7@sFH&bbK`)Cec3iEDAhWRpRD%wy2Rd# z{jKmr;$&KQGwph0roqMT(v4f~!WG8XgS)p`4EYe=Ze9aVm7#K95ucq?Z`HGPGK14j zpOH}B`6z7W;7x_CGkoPqD%^x@1(o&ShAoDCv4yv%$650_ z2#2l}w%WC%s_YE)FVcMVMN-)R(^*5;=PTC{zY_kM-Cg99!1 z+PUzy9vgcz$^`my_W282>tb0iQk4&JK8+^LjgoVA$5Ro3xYeUVZu748O!3k)5~=Lz zCr>FpKDkTfyygs6UH<0qD*jepZ)1)E9S-f$<^~WLer3WgmS!EJ!k9vXh%-K3F>-7X zZxUvWP!Bv>OTK=zLE-z@!ckTUAQIuy7=f~N49aghvaQ+hElyTt7X+RtZFqD(tMHyu zS@MP`{Q6V+bM%!qYFxodYZM03AX_=;3Uj44&UQ|Bs_kDkU zpYMI&@AtzWJ*s)VUe{c&bDeXpvplbJg8X<(2+4E@;s z&$Rrdxv%=SZNA&yw#b1&3BvWekds3NkkEcMHnuv!Lgmv_JbIUUH3RPDgtjC$4jylogJ&C3xbCRY$aFb)_&h3z(v@u?g}ueOim8 zqj{FD=?6aWrcyUjodkNh8%P^DDq;maJ(;RgKibQ^sG9kpF+Rn?Q8qYW)%!Ec=r6>3 z8Z@}tIC;>Za4rYftdgLMIL>#$Y`kpx1=UpTfKm-=YDI~8{0UzjL)UICEzEMKyKTTs z9^Q1u?uGVQlI=Sx0#t?0!PVc?W6~JZ*1&^3d15=Lp#|=82~~CJwtLX8tFPH_vyi>$ zw|?HY`FKS(o)yv6THlqN_dK}*OXt*+D?=lUzfL= z1GTB<~PUdYT z++_Q5!dfD*B1_>*v;6Q68k!0rjaC%f*(Ehd>a-ifv170w{6>xN%2j3QlFaeB}{N5#JQU%t#&Myq~83R zx`8%yhuw!u))*O%tAooRagq+voQ1mx&oykblq{CXa4d`|cL;Znk~-Bp+4xR}`^}JJ zS_is5Tv%zBU0PVg&&j5g4Q^7c)hjT~Spx6_0r85?J(f)3f<@VW`Frg(Cv}(v@7jES zZ*zMFf_K$n4a)BQhFgghY(20~sTI-LI)n#+XXhSJtqTQ_Ox#RDdaG?AC|`6S?ouDT zm|pkM;QpbHt1Azh)NLyp30{u~R{vDGWB-xsnej)R;MY+9GC~7f96S%|%G>GOy;3}J zKc5yK&rHtC7-rl^$IYdnF&rO@RF-9WfLqnM+ILScgalx|5YtkpRvp^F!0VjJylVO- zl60EC43&z^oyVg3rqC~7TfKDgg>pqn4&I>jf^?Xze6H8>b-q`^4MgoPIIF#%eqnj+ zu=E;rD2%D*lNlX{l}-Uu+oO`#w}g^|Q;l@ z4A+(C)rt`}rk=Se#sKoYEDnSPbK^h>4#S<62HS@(@h~5_dIhUW?%D6Y7{5BDU{3Dj zMU+?g$%J_J&I(Ybjc4gn(6pST7+QGiS;mQwqK?A`mYWS#>(X|dIdOH`fNzo7dqzzk zI~A|d6bv~yWqt}5H<`M*bp7n9SVe~cm*x&W=sAKpS8tjtn=?uOiQ!RO7n>T7oWjSGZ)Pr76zH@x$fJmjSf9#-=%+&U5)OMb`?m&TN)XGZCQAbZ+vE~_E&oBzv z*TiiVR|;DinNl)iN(uiBZZ)+c(zjm+L6=g(}11a7u&3K-O9hqyS zxGQZ#4Cw@^ScbRX;-eYq9ewVXgrz5!1#GUARh%EcVs_dzrE3oTs%9(?M#+8t5+?fr z)4H%}VMUJGyQv{*<*S<>Tu%t7D~$^ziNrAkny(rh)h#+hxJum_ zp_g4pdhhqQ95Vip?nAs3>NF_2)LiWDkt)smv;ZIHigX)r4k_41kY?5kjDO19Y~J?a zRrRvBqrqN!d{azRYZ$CB$fhL4x8Ul@c@+c{TRwwn`L4}g@}x9L?wMCeOPqr_Z~oPb z3gkP9kR0#HeTJK!5Wu)HVY#g=@DIfWz_P=*VH z@7*t*Xu*Q|FETyhP@()g1LGiiuZ-tYIoC_=Ca2T=_ScDS-IG4uaCHh|iv}0s9p*?D zLXwazB+HS>mB!SYeNMnjxL3ocPLEs-owH;6NZ6dyPq1(E;}VEvtlh=zXby`Ri@%^r zo#IGT!9Ou@z^_Sq+{4yPGF!Fks*RD?o^ly^l7%bHvpnLU*1FS9PNi`+yrE7nnO={I z=5)a=8jzk|PcEFZO7KX%x@-`8u3qn>Zo?t|HfG9HJ2XFbX_!ZPrnPcYPQ}xx*Niw; zX**E~*ob1(XBF^l!ZBm}ZZF-%SecWoZlqKHL-H}aCJm9x%kQ_nIFhYZNGxm#mL^V1 z0<$dE6Wq`_{B+p^DBiJVwZ@F>?Yf)VcJ!A-n(3M!z0ur!cJad9&S$Qrf{q40&A7|x zO-vbI$(F>6M1%N~=;h_9zRzXWn#nFqvh|o`?zc^L$*hM1cNOINRWHK}1P`coDs(Z9 zZ2@(LBP`$LDV=%ZDfX$QgS+SLN<*6le=~!VGgbvxoY~kWrs!};cb3jJl(wBah@GJQ z;)Eve%_oApn4Y#mGWVngdkPU^QQ+P2?9;&a36_Ss?$y*v-Ayw%q3TbfMq~bj@$-t0 zVBzvcAbVqEJ_eM0_t!9|OjBG8X|MsDUQnQeJI=d{gSh1VuK#6O;h?^3Pz z$iqodauyR8a{`$8c{AHKF!kASXU^KBvop@BxSe`dd}U3ffwJm~b5>3OA!%gQb#Cb+35>&2(Muu1i23LdZK-_r}-BXLKz#i9Jq8BAnm&nrk)=L~O0 zAq#YpHMqE%q-bVmHZMbG!yNnB-J0or>e0r-a~sa1Lg(}1Z|I3sI;&GN&h%p(yxah| zP&de@C7mB-Pz3Qr3D%${=Es_vs($2z(=zc|k+(LGC zOv#JNg;-_HovmAKgCrL%*!f0Os-(zB&Jt%VxQCX5D{ynrO9`l!<55~4vMjA1G~}v# zR+HmSIZT^ga_fb2$LC{OCKXBxYixNK;sy>GSxCQ(Q6w$xJQy`2qG(TT{g(T6jZ1r0 z);*ru+D*7n)SpJ$n|+0rbHm|QYs}OqR*g7=j+)1KVUdg*H(3L4F-nk>PD$)($JWKc zJF&$yo&v-!YRbuc8uPM2uZ0JSO0psfx#^5b$c`Mi2QHT@inp&$&#-0hJX{*jIP}gx zj8oyWnBRb@wru6{Rhc^-nMazIJmJh_ep5FX<4Gc^X9}eKDeb5KRb+dNk%f2{+#vGCC2bhAfy*y zl4U>*OIiDb1WWA9y7Y_?*B39n7OlEaX;C7-KJ22o-UW|Y!2`aOd7NDsd(?#$ZO}|R z>SS^O+mr6E5qPYc2hUx-{=Mb}_8#k*lIlTIt0uSG-j$kc`T{PciW4oFH(NX|ClF7E zq%)DwFSx2eD z&1oXU?-79Z9(@Xpg%IT<5nZ|9e=uRPWd5A36nxO9#U`0)&K6;5=40kqCEkDB*))@d zcoDMRY~2#}u-csu&n7=4*%U63xFjZeuO5#J%k}dyX^69-w$L7-C7}`(rmf(-t1u$} zLbX2nb87|Li4*E(r?N%eZ0fz&orQ;YTza-e!N;<1{Ang_;9{6sv1qU8iX82{YN}(^ zP~?LC>hhUgs4(>;DSf)q$~A`FZxLS{P$?eoNWBe7oR$PaCj0mYcrL-qgtM--Z?+v> z_Op+Xxt(<1{`7RX!e#bd?6L>XOJ9G)oo!4;F>1P%d!1|WymdWzQdxGXVYIB7>X41z z<9eqRkMUa1Snu^f5F*nr5n^ljdzds(x{x+!Q274ZydCjQ#<-llWM z9beeaFLdElzv~W0ud|n| zh;#73;7&&SGtkFJEB>ZKRQury^i-B=5Y;hK9?Pr=bVE%6+iK12MD@<*vr7(CrQM;C z_2$B0=QeOdeF24#e7eehB~Q)_)&z&U>|G%j+a)n(gZSnQcyD*pf_F* zy5!KWq0Gy0OQ8HsL~xKjTF^@2i&aoZ76fx_u>qJtT-E`AFy?xIiu`5od8EzWczq(k zCP;JvKRjUApUOn-2Ec1iOiLshc=u%_P_j_8i_Q-=(C!@(`Lk25;ROzA^qWqgNf(8; ziGQe;&VsV`6EOXKLZW!)&utb}*39gdn#lJqTZ1{e+ zNN&_tF~n&x(Ht=?otiqS0h^=$rcZ_#@a~y=aA076@~^#Yvr6IVGV&$7`NVyP+Sj2N zweR;&I=$xT5@)1IZl6!FMhltwjxGarw&(ydp5x*H!Au{Aq`iEasj#s!GLiO6oAZdA zHGoWc1hBv&gLHU1Sdz@vK7oRA0EUS&2Bfqf()z@YLoV?mA2Gq9z_Ddbq9wo(T?F(N z?V|Dn0mpb0(zzS4(qIiEz#3M%l#b}#(Ea0I0LH&xvY_KzAH4~aHUW#<$nt=LBn!zL zWGpyPprOzY?`aQqVN6$P1Lfju`U0qfr=!4Xzw*`u4EqQ$tP>{_c&Xy8G{8I1h+NQF zXt}e&OZF6Dr@#sGg(kd`4)vCn(nsE;EcsWce$pnY;HEi7phL4dGjT3kcpC|l1+b_f zZKzkX0NzlUh1a1XSAQ~(+^Ow)eNO7xdE0d^x5@8+u(mH$i#ETt*f7KMLEH=}+5?P9 z=bvfbr3T(r5IhWV9iLI|J2X3rwP1n(L^HH4C$5F=FGu%DXkit8G#lytbgIwYxG^tiMEL{o>mo_3pfX_*&#w|;p|SU~C;9OC$4hsj``W!7^@$*cEztw| zEd}&_FGph@GI^63X;qGU1Ih~Z*sHXYIkva})F6)dyHHLXL(B9u`v$0#TexSl#xGgAtE|kP&l~89EQ4a{`J3zAARh`hu{A86oeLd~8T65S~ zc$&}C0_w7;`a)(F)CUV>f-gfH*;uGQ<0Vxb%0;{OP2#wh=8@)dD%yHgcU0Vp$xhMq zJQAc~vu3ML+|AN;x?Yu8#IrY_y$rUF&H@b{=11%W+{I!c0gI~BU{j&~Fn$buKd&d$ zl%sXQcRqsz33Wu1b_JjpRC;h+Jq@dICk(OG05Ms`S`Y}e^y1t63TC|1-k%;){aGxt zV!F}f&b`}C*|quZ-4bVqdUpPUYs6~g4o(|uYIXkZ3)&8Zy?whH6xKf4rvIK?wjZ&Q zL|x!es}*eWrzYvQZU6)vKqzKeSQ~BFl`d>(Q!CYGwH9=$@v9Hb(Hm>xIXbZ zluSzt?=xOk@+sqWm?&1v?|@QNbOw%d%+UxAC@#S8B`Po@mV1&|pPlkP>rV0qBagdg zz+blkBw_X2T2b&+J2F2p9xn5|WG>ikKa?st6(U8#V!GB)r@Zx?BGm!jdF&K}$E}d5;K8i7#NrDa6pYnt^%Df3LEp==P>rD~ zLL)e7LI>@{x8H9w!Um$z0p?W;ed|9nEW4tPKWhkCr-Wkgj~XeQY0AKk8+4xpac`|f z@jVkOXrioqlVR!@8OGJGWfZ?9;C@h_y4V%ZQGOrMBETN5cEy8fq-3)ucey|-ExRHT zmj!8Du^fmSns%R1JShVMreW|MX9}m0dg<+-&?UdjgUq-&idbA+faIZs`%p|D?m$g2 z#|0K2jw9@B>aWQs%Vj}FrSG3T1D#H?>^f)Y=Kk3*MyrDMmf`H(bN>fQYHe|$${~wl zNdGiyoKg}l$oG>z@NGe^kn(|HVvm^xF~EXw(PrG|SzdW$CN^996|9)VjJpVH5JnNZ z%3UkhH8kjX#7=A5Yc%^_S9{x%sMInDNC9Sy6x^|HjlKj0A&&x^P`rOxglrukQLAit?V*lveMGm8hXUe3labD@N#WMvBX0khF$4epM%dv zu8_n5_sTM51n1PLf+a!Oo3e^`3NAKmD`yNks3uO?DOs2fmYbi+51 zR1^@sdALzTJVzCj(+3VMSD|W9X2LW;yc4J_l_F821xq<)ZM}LtX?W&t+B=}Ku6x-V z`kyF@LLV6wM z6a}L!x`Q)Jio?5Xg{(fg*!a;+YaxL2rOF;*vZd_14dAJLb|`El`X-3 z!vVz`K+67p?L^ygi`tk(K#j>&6~y^qm2{hNJOpSfW2AVR zJIqkSTp83g$Tu4<#$49Sut{*#h^d@w*>!2z1=n>Y^47b>B%W^Rxc_*NTIb-`p?fH&2T1UjHezm|^+Ut5K>I8qbHp&(BRm#za&tH*!40gN~_Bfn08~?*;wha4Yr zdrCO|F>=GFFN3u8wM_=?v}8E~Dhqq7eSr#CcHec?P-hPDH=(H-lyzEU5>ukI@`b62 zy{ABGAnE~6fxjC&|711SvDMigs*DTMitd<{Q9YM_d}Hw1 z6tgxl9iCq-j1`UirV>o=3*u(IE$v?ag%C60Xv9d1u#sl9YTI&nVR{i2MV_O7r2bfw zfU;{qKjO`@wLSuJV66Vk3avyk7#JXAz8m=9>9I=Ak&jzYvo_H>nEprEh1QMjt)?-lge z2PnTzrwFv@9a&CJK?;IFfrhS`sosG&olX=J%Tt|U)w3zs57ywoMI8k)He5klW`)R$ zm&+d=Cw6swuD^FCXo@S)=3@s=j=Phqa_Dh$d*c_cDN=0{rwYVO(E$$V_)X)PL3a7c z%ECngm;_)wED1FSLG|4G}eQ&KY`+)GtUBz8I%e%=D@ES z^U)`P|BziPVHszLHS@vsozFDGt)?kWhF))q|4OU9p)TjfL+raZjeuHw)Mq+qab~aI zMZO9vvzY62Gp1lsS{l&Ta|-8o3N<7~t`jqUa=X;#FORX=&vbUojLNlI^vlsWQ}E{B zj>bI!A*yjRd>ZM+mbzKMUGShK!AoeQHL4v<3oq{$Uo)6@BX`sM_U%Pcvt$qX(DZg6 zz9nb>)+EkdCqk=Nhw4p^i% z>9=jJ-nDDyKVST;bhr=s}n{aT53 zm-6VdSLIT}_T-jmf8@O?X)baOP0Fk%=9U{w83Y1tBpf;G-*F?D{d9i`z#gp8rytV_FfI6?_V_lj6Q4~|a zG*r61k@{!F#*+Y;8{>2@@D+X$Yfk~N0Vm+1apQ+b#DO?7m`&FL18$VqLT zoE8LsRe>$1s%{{_eC7upy7WrXe(9au6vqD3&W1mp&y$0~yqteXch?u{NmW#d6C<{9 zuD8Yljp?G|3boI!g_KNQd1UsqB~F^ZlB@T28$GFp53>3xVuD~WmDq^s9^>aovE|HU z&d}$G$8da0cd=$sS_43zFUNQs&S8D->bIdYCm-ZYZJIxO`3_Um8keXu=d{)lUR3%U zD$XZr`(*02g2snBJwI%OJh9|+&Kt^F4vqO>Gk_`N<2VOez2f6ns}-z$sD?fMI&{v6 z^QtFhDOVOxk`+6kG*6^`zo{6I5)%*!DLczK4=mtKLJL^vw=b^()eN%un}LBEDKt>4 ziih02mD%smZ~KIi^RW=%oQpqt;w=HRXzx4PCRJWjK$RnUJenyD)AuJ2IH~8iH`U)b z8g}Lg`uLJItp!C-)a5+X;v@1*?3Q^cN&!PMe_l86K&(g$q2}#EYnY2^@ppr`s+idr zrjpQk@Wxiv#r-myzHvxg+}0lq@L2=mC}#&{QaVY?t8&yiUpfvj8)(bOr-$Wics4JC z-`t5^g(!`C*DGnKM|p^nAVyPWM(1A0mzUqqd0SfPEO9tE5M0kt8sGZ#n1V6tOf^m znzJ3NNj^~Ro%vyf9c9Qt3CA_}qST^>g!9wDk!BH_*9G=@d`EDJy>Gtw14f4ZS-Flv_Mzmc7|~N;J`))fm%p zd5!cJc-xB#O^aPgPmj_!h+Xp+o8Nq3<*c{w&t}Q*rs>t5{PRRvJ`Q?0tU7*eEjoOm zW^zarGBxu#v!;l;;LsLtk2Buui_gR!{pLq)5c}+|rJGzIo}W2;fZ(ER1MJQ}#IdUJ z&q0^muZyDskA+kAPUI50xX{sd%$nKKfD-5I1Fp7uqq1>uX?nVU+pal9VXH5_JHN3+ zIRSH|*IF|oKWrzB(&;($M`x0Z?G5)1D}n!QS>{AIm)2@2xrh1rC9AkNJ=`fCzdGja zTnoF1rNEVX9T=#iu>QuZnZ_}2UX9$EFuMm`kOJQuZ+leY^p?3FyS%LZmrnCni;J3c zZi;ZGm|lX5%i*X{{nHS$Q0^DGkQB;=FgO+XiY#3y9dfBO1?pmg zhI^9jlX|rpKg(7HO@7>DVu9kX+y0wKcYX7OAN($Fu0Y=Q3oOH-Qxyyv8RL*coETh3Bp2)CAy&r^Zt;sVh+RJefZ^NXglGPivbb|x-3OjE&DDe86wls^yn zI^T5LZlP}LcJfKO>q1zeY2$J053A$KoL?lJ2FU?`xSMK=d)VgygKIm> zketvqJ2wf!d#@Vo4_51OhQ#|Q{1k85KekePe^JL|G=BpC9KPnzKx_mr0d;1EbGcdW z#b8sijs*=JSuuV^WX1dh2NUz$v##lKptOej{fjHLPWT z#LZ~Gu+7+=09Z8R)O6*qY=f9shMCnU28$1zXo(Qm?)w0E_{)3XG2t9@ZfFOpY0Ah; zW7Z8EAvrz)dQVsZbAq<-DxLMV%ZBNnysK~dAJm0i-oG&MR6!u7J&Y3o120+V!R488 zt3lKmFatJTbxJKZmSEjx8m!)99ud~JBuFK2tqRupv*B?N_+C?Rv(Hj>yu8G%(mwS* z1V62CSy7;CjRhm+skK zs1uLdV|txq3IlbBZzj*GCG5+i%j=wtv)gq1n2Hx6QT^TZds_7`pDD|tQ$GNv9A`H; z-)nd|FPX4?#o@?Lg!En@sLOglhrdEg7jWj?M(F*ITd(TfnLIJf6<1@u{P2!q)Pg3v zjD)P}&^?A{Vo!mXc=6&5>dez`3KZt#-apz{tkW7{d^j8@PHn%Cq@E%HMsi!t7b0pxw=m_9TG0F>M<5NJ%l5~^Jd4MwjV^dEXo zP3;$8F{lq~AC0M!nNJ3hSMheJPoudB0bY{@3>`*z9azK9o~>^& zzHUcgwZ8D>(OII^KeXpTFY8}F$Ef9icwNaZ5F!N7F##QpIHl5QHqz5fA z5e%D_mvf1NrWDYUUO`jALC1r(hrV^8nTPo9w@CkRFL=3S4Xw1{L7FfR-0cVu#&y(x zT7hQ&<@f$wgZH1;|G6|mj#m9mTIC?AoIYbP*dLWv9T;QJO{2sZh~<|oLq4=u>*^0N z#+^J!IBd9A;YPOjbZnzkjts{?-=NCXv;^#TuNO=MAl(YE4|4W(qxjCjoa4yJ(1)%z zh`(Y832RvmeX33FnXb|fZWwz7v{)3ofa!Dv#qj2F{YDWA(ftgu>Un=?RQ*r2$fwIG zH-R^GO=k}1^%EBe<`P$l;e0|(m{LILGt?myoHB507ZQ|UKdd}>4EqRTy}?X)S|;=e z`dM@iFr$1oGYtf@qBKFQk-P^q?70Pve_D0TEAOLU^($`q#IYSaAup~x)5Hp}A zq|I$G>lo?;eG9(g0|%Rb9CUu^?$A_F9|rGn(kL<}Iz5R^S z^}4jg<-!1EOCTTY3VP|FHP+)wNVpV5@D#uu4WRGR{%#E48LWiaf9TCW*rq_5T%IEX z`{6-zuzeut!+I0P+eBPl21}C~!oLJR=&mnH08~b!mzJ ztbnvgoNo^1D)8~3up#1D*aPmvMSS02UKon0X(fYPM-)SJbwN_ z1Sib(u*a;kpr#RUpAg&}{}DY{Rx}qisKud!V?o|}ph-F4`U&Ga|DrGeXgvnJvhyyQ0exmsjq2UML;Xa+Qck$G0mno!@mcxg4D}T!h#2=_cXo?5;njAY%{V7 zGk8jhvk#X+XIfxJ6iM@-TFibBfP7}!VvK-@IUq51Z5A+BtUiDUQMs3!ED4l6aAk*|HU+bMyvlOE8?eb^3yl@>0kVF{fqxUYl9rE`J1%LAyPR`94*hc z5Tp%yqguE7;3=hP#Z57xtlTyZxofn~LI0A@3{0t%CCBlHNdr#)EWW9Bg+;T(L)!kF?JTAMt<{2Y9kj*@|+gA2W(jOw3xNQin78 z*g?^Ys*k#^f0oME?qIJ6nZ11vK^z}~wGGC9U-n1`ject(Z-KLWvx@*lB==ZCU^ z5gv^PNso5?S4Vm5;{gk^cbE1Fy%(%LF$svI5pN~*n?!=V$JpofuUW;N7#4bAanU)4 z#=n-(YZ>!=^lR09&xKTx{6SQ*1>dXBTMjClP36e9s!9=zUR7_hNw8iK`1vw+s6R5LRg&BJelY>J7n@9{8MwFA#porPf^%j8kL3B}v zdXexs6|3J;Gry*2e*XSFUG?8U3(RQQUm^ADb94v;ufVDA7p{?d#puNqS=tVo`Hzno zrpmu?RI-ydm3Sm)v**yoV+gH9h75#}QW-_~ zWTIeQOELZm>P5_;QYVhH3fS0fu25bC2gDS&qA!7Xekl&tv>MJjOapez_(u&Uj9>L( z!ovpRhxdBr0#Y31m}IIzN_9He>%SC_B7%V_FjI-A4J`G&ObR@U0da<0QOsC)HVE4X z--nu?*8p6583=dcTabcjTp4)AYKYUgfT;kG&i^-WX^$F7j^S_Zy(UvdSTaK+Q zZPDAFd#)VuTI-X|wK+qRkJQvwv1s7h0gSckB@u*);2KiF+2$JgEx0hS{YMH}y%@=6gCNxS)d9JUHycXo;-CBs0uU+ReEvf9I~} z4X>IsDDSSYc=GT3ZlU4$miF}30B?DHvF^m-0ZX99GOsBRm+3AoGQTq>iW!HV1O3jq zm0oeCeL6v2u$&$n?03;IEjYd+*!x)Eu<}EUEyP`EB?U5HjlrXc1&My}ypB9o?wmnY zzO)&*Cj-;6o46R{pHN%DJtrvOK+A(hWYbxNVZOTGL;)v_6L2Jd1??hkjDU}OVS@}* zR=-vs#|~LXhy6n@K}-*85JCW{AYZ^_AcXLkU^I8WgEr8Iz=nYb4Q$nbGr(jpi*>)HD1S$zdeB4U8V#d))DB)uWxuBCY@VbLKfk+P~ zQnC}8NT%_W)cqjnxZWSydxBNkOumwX;6&&#=>;gHeSKhQSJQ#i*aSPB{!`R+_c{gV zyw&JmZje*tTV4rmK;QgonI z0Zt0~29t{V3aBy$Sz95Xs^%M@YM`6Hi>DyQJO;9gHf}#cDWFupg(Oyg-^u<{=r4dO z`fq?L_ZC?4^8mS3bu)-CxfBZxVoW4?f}cTkqc*>Q`Zw`GtmhdC1ZW-{q2z@l;1MD) zLKZ4&!r34-{9%eiwSgaq#E61$Oic=gi%9VNmw2{6>zw_(|6k(+{|@^6HRaw`g04GP zakJoAaD&{MRF=$s@AdCHS{Na$46~1oH&wbDDjn1O56T{@ZNGY^W{K^P8FieZILL9} z=^uRnpi?cGm=jd4JWwCG8xnx)>0~OAf=kXe|bU3u513uMuj0 zg~yGNc2%u6ZKmd_UZpGYF)T5wP-AKatFY?rnOL&7s|4<7a)3MUPPVcrnsZm2GPXbsSo18w5@@ufhY48W({a;_M!0`KW(EVE{|q06jHS* znXq_2hOdcZfa8mLt^mxptcp4^H<$w!#Rc~5`i04sdY{pk2|n`aaice#iM5QGj16ZEI24yGiXMi&+_H_OgoP~*g zTdkJ82hM{p2|#M&rU3YS90|Ft{;CUdOZR2)0QfEpO6lwM;GsFZ=HSc3r7hUG@6JA< zXP@(3Rz5Ue^sL8+9d$Pxj_c<=#;8dQDm0t+P5Bk;J7xlc&p`QK zV3hnfCIm$P(sKkqZPlN)>OaqJ`#WsKzxzA?8lXQo0(LTjE=7=GCzX+wm~&(ba#TLV zGIwPdM&xrXGD2^=yDh!DBnl_aOQk8lC?wr5G2QK?8YVI#+=3-R6st^*b9)qVF_p#< zTAE`&sp%?|su|*5azWhzdw>>k1JCm&-TQ}* zTVc+=Tq0&8&H^ijA+3dN@8DWZPCGvh}0ZswFjH}RwbQ?wNH*d9tCCP#^9M0r$qx+_p%6$5HV7Y752u$!- z$ei8Kus(`egB#KZfs_`lQADHE(9k?f_gRLc2+d}q&$v+x#ysfltuJHga|3$ELH&{M z*RMI!P97kMy~d3B!g$RG7=zJ6PtV(|=`yIeoIkNCPt}T4mF@9)629t-n27*yQV*1S8n|w5UjbTzeWQr&xwuQ}B7%Mn1aIDi7kGh?`n~Bj zPlJ(TlCguoo*(%6TYt>izW)|_i2Nm}?|;YvL*&~&Ar68BLVh3@1eDEJ97K-iSHy&7 z+t*^ppzQ->+nNhsLqII$Ai4U84%T){%%>$tLO(|?wbU+sF5(L zod}J;9?Y@CrGkDDS3yYYpdDx-HP2;DE+dBD#{{S+pi0JER)_Ms1)w@e=SN#`W-{53 z@@zR69C<>u1M(X|p}=QjEdRS5aeM zo-uv-XG@lq8);6M%=*^gNVqSXG> z6!c4`QGpyTAVoBtFUEi{(vVMqA2VT#>2x^bM{9fs(Q83Pd(FLHvKExi3{7p2RdGy2&J&VD@P ziiiU3KSmMhaRLz-pe37a5&&xJf3QiiJMIq=R+`4hxDz38o~oe&J~xV(1u@k?nzc>c zo5~&pUO6V8%$KO5a^3+uzyNc-h5=>Kf?+z(6Z(K^p}|u@YRe`#9d05Iig8?o)zm?X zS5|0YkYDQt4~Mb9xS)s=mMh8!(UMp1K!W&c*@Q3qYQT($CBXw|3=irBdAZGyABH0v z53$10W4{YnMnTX*Hl|5fOaL#)#&jZ?Ab=yPfrr%$CVW**?K~4&`+{QLTVT0Npv%ee z-^H8cuf_KP-q~659coHdNAD%&T-Dji1&V69vpK|UzxoK{j7lp8GJQ*OspK}vzTU>0 z!!AK*a9LHqA=AI}$1L|NmJQTpIhr_pg{Jpk01WjLn*QGfAOC-ukjMNbn6Q6}miuXm z{Iml8oE7j-pqJ=h0^s_m$SCa{mVJQ3ddT0(s`1a6PsEn1gZ4P}`8`-$=$f#^ zWPCxe;P%Z?M2I?+uM5|JQ!9tEG(mFaDVd){p?1bF+G;6@)vygwWa6lx)93h6G=>H9 zyf(6t|80+u>^N;~j35SHMzCqiwNmF$?;A$j&oxhd(?GD<5qms6QdvZS{%r4IF>74R zEtCDxAw?Q1-#GPqfQ>5b4k*(k!e;O!1`k+@Q}RJUfEs`}^BKYl9H#6Z7M~ zf|`)I=C7ZR)XaT9Ey(n8;^aF;Z50U!XuGRvdr<`7$~%Ia_;Wm~(AG$us2q3lDPW*e zO`T1x!HJY9&Vs8>i1j_2Qq!Q0*wA$VRjRp1tSeP&q!7iI@?tMJ6T%8?C%tPYsFf^DVaM3cc^KpV{&MjrH!VbvXNS5-@8Ew* z$tBZb)O-jJ)j`deAPQQZXw2GHZ+m%_lJDV!irrZ+rl-%jVvRn&ZoNXhX#N>`c)uaF z`6(_*M{h-IX&1Gz9B%+$ntcyhzEY*Xe*m67!c#E2a3rU?571L5r3gf}sX@2%x~WVv zTpj7{`Yw_j%j*8ZPEyHj{#H z8oXnK&^$AWua1^S3lA@0ZuyE-r|zs%^r`KLd(qlVcZkrTF~Zu6qO1CiMZmuX5pDiC zS2~vsE^L;fY!;Rl`}y)R1-{B%7kzECcS-zmzu8clt^+5i?W;mxzZ7(u=iB2FG@Idc{d>>Ash?M~F@ z5X`fx++`TQ8|J{6(HRN^i4>a*dj!0-hkG1I$TEP6&L+^|qA<*$Z*_JPma}A-v8zL+ zMWt2{dN3P)9?qpSBN;8sc(yI`{rwi?#c*Q1d)VV9`L1%Wur-I?Tkp6sbH$RGNsnH& zp3|-WhZu$+yZkR}_#)eH!qb6mp`6@G=k}LFgZ?Y|O%%q1Hch@Hk8Q&lVNDut#TO*Z z>gQQiDqUFdFksJ%^sQ;E%Qwa4r_4W~xTz)rJUuyDaJdzO@p1Y*itsX}qPP;Jn^CU? zQUa(Bm^7-;(TMf)i5ik?`_?2pp>{g4;oBeWASRYxOEXxMfSzYJ*Krgfa&G0$e@&%-N5!Al|M~Po3K1>Q|9O7wKf#y&IfuWNZ$wAy{y+bz B;7tGk literal 0 HcmV?d00001 diff --git a/fvdb/notebooks/img/joffsets.jpg b/fvdb/notebooks/img/joffsets.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f6d92adbb129bba5e10103dd7485f724f8afe02b GIT binary patch literal 51787 zcmeFa2|Sfs`!{}@Wh_%>ilWT(5H?Ckk}^}0WY{57WN3?!c_S*!S~t zFf(&Y9O4xe5)~C?v4i58>{?!P|qgT@A5;aT4Hs{R92+2L~4qpMa2vcozvN_(0)q2p0zr4;LSgfB+vK zeA)y29>U*4K($Xufsk6$glNAVjquIzBw`N5yb9Vgt#h0r7wx@vkXJ9;Vkc<1! zVNo%02}vpGqsNqvE32rUIIE?tqpPQHV0y{yvblw&m4l+udJ@EW9Eee;eDGH`1{+$u;#S~%nKJE9}k}hGcO!mXYhl!2cKY{5FwR< zCXtC9^?u=-#59WGNqH5!I7H6O(O$G~C86UK9XK$LncCNx{c98R`j2MzePVyjs~aN2 z!vTwjw+BK%E9*S3Zya_vM&ViQ9%npvSHd8$_F(wTu7$xfDtM5WYOQM!nbX_rml6sD zg3mpDlA5?^cp05(fj1Gu^OHkM+Ft0 z9Xp^~X-l?RUZH8V{z`C6X)t6SU90Y%&OMZY!1WlB%u1+_$Q(UbCf ziTK-)58fx+wUw9K(5nq9^_^MnJ)T3TV2S7S)1xd>g8$F5e8+eVh{KC&G|8*|i>$fl9NI zb}D?hoU0%y-eoOaTHp5gbBZFd5NqAzl=EFViyw8WPPG?IB1>ixEQX+NJMejS=emZdioCSoI+Nsa{g_%<67vxc@3~Mw%?Yf17+)ywnJ#e zN~}%$rWwv|xYZ#3l8VlZ&y!$e)w)gk{spD!OkKJ2(>)T2SImQkB;Q_cTct*;j{25Q z(IU5@OjSrBz=SKXm>3L(-d->Stn4JQ&mbZNCRw3mUZ%nB{%dlI#dd4Q{ zoYKqC>vrT>!}dq<>K~pH8a~94?ZGn=M}$7kCxU)C2$s9XqaqvZobo5AuFUdvoE*PJ zwl(^K=Jk!hZRjWs@y5#l?nK<3KhI>WncGR(M@_uTJ{y^FuU!0yu& zT8^AUVtu-M20O{;DPM)-k|kI^_js`!c&%aG9w7~tXRpSiyQ=B>*jg6rXP2a`-}b)r zsJlb6+qawH9uJk;C5Y%EGJcLf)!Ej1C|J?su)}rMJdVO3GEVzJZnQQBG`uKdH*V0~ z7n^1IQrxe4UHm~zjJoMEX@-WZi4)G7hXID(?`|?*%M3IoU44Ywwc19sdpssP&t-+K zPrLTB_N5@}J}HLo*QbcGAf&!aosM6%fz6#9i_RkRvweJhog2+UrP*5%{52J?WP*YM z-gG(5()YNlwiRs1$~9!AdW|RF%=w@*pnI8R8@hH)uo*IcGLkeQn8ru8uV$!sQr8&ly%^8@XNSN1(zW{YB~srr zy;pU^G+d!~9ZS|1tBw~$uuxCCrdIJ<+tREC&~flKA3DF=G`lxmGW|UBymn_=R=MgpM;D@S`;>B|AXKJg1e7hg+R>0q*C1aL~Jio71^t$c|)y=@v_-#ljVqDvX+LDQM ztFvNXu8U-PJjGmJN}9{ahAxVHe4RDUA&pb0=R=t}GV@m40K{}#s=odeo>U^`(SJNK z%oD@CaL$EQf^CSilyZGNb}e9j8`|Na;lG0x*MV)4+=kf1+7Q0oP4t(aF+Tag+;*=8 z7%?MrUfSD3vY|_v&4n0mx{g4Tn*nd?`e8m{^Tw(%x-x4Udgv@V(aA(kpI`-i9nK&<#M0QKoD|pE`|!#V_T? zqn`fik>xNRSs%5=8VY}IPqHVk%U-s*9CxvhgbzC9>xYoRbCJ#ddn;n7dd8(shLOwl z9$&Ds=MY{)dTAMkQ5?B6)X`=3Nn?#Go^cz>)y_c&7}U-gZ{Ch)1uxBt!OP+McdMq) zW89oL#?4t`a6lo(gLX@x$x|`dp*Q&{dleXK`4~CymfaX{iFH9ScOn@Aei4{!&N`k& z|Ef4L3jonn;1CP$UH0z`oIVRQQQfJaE!xi|jJhaw; z+Oo5=iyCF#j~l(0oW$n~pS|;8sV2MHBk?XHeSScieZ?4;Pr1e9teS(WUrI*37v9*0 zj(6*-%lVYwY64?L?Hnt{0e+ucF?V(>{XLWwaDO-jwwp{CWYPgv3$aKDyuUSOv2;Gu z=wapqJmPmDfcYfA=EFv04$n)-}B zG@A0@f4=@Oqe2bF*{ZC~$V80DwTqNRABiHyqNUytT$F4!-9k!WsYHCmY7@-d`>p;RT>kQV4J5t(+Z)jklvS^~o7wKdliq*QiS*0<6gq9&!na|& z@Hk}WM8>?7TIZz z8O#p-6Fp%5<%oC5N{qPvStZF|t${O$R#U!#GakZwVJEFUTg9^XbnNN&rBI5h>w^16 z(XGJ=_`{z1O@wYF-ShpMcbWmLeSdfoSY9#R^dK98(A86$0PP+<57f$=9<`c|7?7Ux z71@S%>G*|i5Z7!&HQKJ#g+PUe0E*1Djz$NSrZ1c3fsI}1{An9nXIw;V(pQ0xotAML zz`ZJ?opfg#GNCVDP0!Jb7Y5g{RkJOVKih^{t(EghS=ctYZcuJRNjXOWh73Y%YO~G7 zts>CAFTk6Gg4@u%_W1zWgnN2az2hOYpw;-TE)2`Cy{Hn~`bee0cf5ki4MG6O0wm$T``1)deT z4WT37{BkLGiXKQ!tQklRiLTTDQj4bfrPQ!iT6-+z!y0@k!6N)HDqX1o<28J6YZIPr zXp1N6&!s%S`@4b}|3tx>kO>QW=eo9TC2T{g{5&?Hm+5%1mE^R$(*RCajlqtE)I}>$ zgS~TN8v;xD`KL=6ji$~aX2xupr1@<~6SE1j^kPPVl8S*r0_nA>1<2mh0}gQD$Q){m z9HS>DKu<97Ppsm;ooJ776+73Ot(iMOH0x4>k$uoczRMF4$F zgAzD^9M==jHUHQQXeA@y-39BaxfLXv;kF%2$J0BKubyOS$AI*=mPis{! zps@3+JHMNVsK$U5HN}C^^Q8m^a0YvAb;P$@~ zt1$BM`@8kXv}Huq`wy~h5E=oS^eF4KRMi7>?6tr$8d~dB7`r*E19pvBG&;C6<$=`O zgdgqgk-3}O(EV=)5iGG>?xrPh2VA#NQw$COgvIJfckuD#xP^;FruAh0mn zNf-ko@Dl@5i5b@9_hDtdmW{sWrm;^sq>TL(Q9ywV(DLIyy$+zh+b@A)<(f641FU*e zK3w-JSlEkgm%i=-Q^Z`Pg$wv7Mr*}$r%}VM@5-kb%(kHvo5#!NO{Qgn`+p{i9jow! zhq5MNfe1jI+&DjUWR>#MFO-(UHb2!lECZsd#QLUDHZ81thcoz@1<|4N*@pIoV)nH< zVlkqxnEUI{z?-*bF}4@89e-+jbIbI%A$B*^#;*6MaU-#kZ(|eqiAJ~piI6hdi=OgGx?m+M_IwGb7Qxm@dGtB znp0&}-PcKfbUK*53$w}xOjb3}@+)l1)aAe|mi$U3@=XWJDXgL`Ez?%LPdqPipYrWn zkYdRdzM2@}g8$B-5nLR8r?PyR8h{R!8B6JFy3gLJJ!eS;7&GQieEId?3v4Vd@>G-o z1%k?3$Myr8n{lITrJ{U+V-A$9e!oHbWV6 zw!E*DFIvCTkV<>E*%XMq4KRKk?3F)|6)>P)c^KrnA8{Ko#bozwW4pNV{ro~0B=ZW8 zs#`({qyF64y1(4nqt>Wlmv^Wsrmy=f!zRRz7ja*5zU$VmSMxf43E%MC*9pO)mCbA@8D31jSe5EQDR;A zQ@7&q5(I-`$Jmysa)D|-15&)Y{_;6cFf1VX&DZ^@7?@j~);S2A_dXN`W2<893AnQS z{!ga`aH0n7pV00x4|R?40bQO8kFAx3C!rVX#KNM^~P1k%T%Z>&SxnPSlJrK%72F$ z9&@KWK zU~#o)(ZL0eQm-9q{Tw`V%~4ZH^X7tI-R#<7YE;)lM15DTJMK0VagJ!qLw&ObIO1RZ z3Uc)TaX5&2;7&mVS` z54*M^rWiZ`zOv?dl%UvOX%5fnfYD;=C*Nmicvn|F=;VKpTA+#TWjrZE+iychzLS<)8 zccF%jJIW_Jjkln#s&&fEAOrI)4`B9^0yezQfkj1~0X0#5)FPfSkp$XI3U*Ud_6- z0~h-eJ**54)RU<}i>lvGxv@(R;A-t+Jxu-aFJJuF4X0R%<}4mHQ2(%Uf7BFb!n&%h zp_4yAMD@ni<;zqUSe;d>LiV?}0WLj})*s6aOj1{tFAyi7D|G=H)a7H5@5xkm00|aM z-Wbdnz+3CigK$siOZbsS^CX!D33&Q`5DOTCj~Nw$LDOOe4NyK+IR@M!Z6e;2{q9~x zV^HSrZe%e*`0*lE_5v%#BKUQw%(1cpI&5A*RgTTAY_FS+8OOx{?i`iIuW|d%0QrYERIXHE1;d#L1|Xck9Vr57 zKl#if#%rvFwi|@{psbzV3x7$^0Y(51BlT|Z0?m;HrP3*ooMU8tRV)FTQZ5QE3apX2 z0M)d_Bp;Vb^j!CD`pN*rVj>FkOUHFC4pq$};s{7` z`WACfu;AwY<}UxWD6*Jap4M*wv4+=+dVlI`PHhCJ&s@Uh z%^AcL7YalL4w@a(Op*7&|8f8rImN{VIyXAwE`v>0-!Ndjv8&;0?I~?8ug;+$Ie_Qh z*v=d|$(MdY@WIf5ZD@nA2jpy0a};xA=WI7`quGE8S(k&#kAED!$A@Bg1OrSCETYjS zQX7NYM-U#t?V}j+fjnT9PK!_h?F-fg;Uq@;iYDPN$1Wb4PdT*{q%^B$I61*Qz1D{iR{`i+J3oS?B^0Q&?kOs{377(4af!jk`@F+NF z$BF$qAQ_M{X7}HQrVe0K&AtsBQiGFV0is4F~0gL#8K{CD>C1k*0L47`~9JHW;mY{W2J3~iY z5Xby|rU$3v$5;b9)8l#h>xkgtM&VB~JvWt2v4`LUD`#Yt;y96Db<=okGLCj155|ax`KTrHWT}?rI zgR>SSsUXq`kb48#JjpCTo9E$ZP=nyH33yIcy&(X4J%v(0PeQseS|w%bB{#?z*Mi;X z^#rxHzi2G^)kTkJ5IE4cf_j#=0LUL}E*pbNfGMUDpjEyZZs@3af!77rWB;t5xW^^3 zY;O|1nDv2u(jFzjob8;~v=_Rd+-J}O=U2^%*>B)2h*$?E8bl8HeQ*aUdxbc##R2zyxE!1asEO#`;$eVdjUl58x+c z`|WM^;;~iQP3&21H)4!@TUg!yVVP65@VR1=`{E{YzCJ)J>sMXRVpg533E|1l-65il+I#Xve5FzL{d-b2CPdk#aPlxxt2v)U5E)7q1y-Hv`wBw_L$5 z5*b%fz$JwTf+}Lpv+_kD1%V0UrAYy_CvsqG=kW_%xmm16d%T1nstjzj?|ZG{ zDY`^Aj(y>`DOmgDBY{)WEw0TVL!mNhG~2yYzD~Uqx&b^gMidVj4TBlQ{E;B7SDS%x zjRIQ?PC75UKr4AmLMEzz1A$h_Ts57?zrpdML*rJV@j*8=7h0v7_)o26jjCH{A%9)w zWkm27c4@}y`Dl>OW5?w4>d=8!h09=P+}bilZ$lu#vY=!>Ilt8_0!@H`7hq&7OIEjubnS10Ig6a!GZyPFKMs0>G!-q@bzZD2~{z z-*5G$VSq&|Yr4Cc-Y`(cXSWh7{Dfe+&bzpw?M}cXs zdY{P)Aa>_S&p7b0VE9GNJtosQPLt}<2mA2)S-9=x9YuAVu_S~oKw;c$0F`!hK@?5K zx2Mb##4YE@#8bUH(f2WP-sf3k%7qlvPUD(Pe?-Qj#EyJE;k27cCW5d2l$Rz?} zSSquy*k~q@?Y3wS!-d#N=?syNy-g%W`r$>YeM-#DT@)g-@r6H8vr>4jvnSh4Gqied zboa6ORb_2bvuo}3jDyVwPEys~+(4IvvD&>7OTyAs=6Z5QEOdgsH@D~zyDf`^DX<(-c|h|lpX17%vH+nVJ((y&M@b#Cr3ohSIb94>Q%>Yd_;a|H{8 z&+^|K^3t0_pt^+dnk0$Fk4E4nCFjGDoYM>Y|_hj23`oLCsa!3zqK@{ zp=fQsto4-r%yDxf29{S@Y||{}=v&j~7#o3FP_mQEXA&mOSz}#H*dPSnbgajqH~XS# zj_RNxi;9b~&ccQKXE*OQn?EZECB;Rcf-W9xmaQ8|-Ac&>)+!GC)xRMC&`hMy{S3Vu zq`<0DSM@KGfqt@9HQ+ZbCJ~EVNW=;nnB54TBUPj4+uX%cE%R5Ebu6=Z2fdDmxCy6* z<3@-`O4cu8Zqly9va>f;1M4}N;~_7&{CS=B4Y24PwKccHI~3n+XUR&3e`6b>uU3zD z3w`z3 z`cd-$i~dMKe!wn9sj1gd$4FEfKMirT=!9b3GB%L(2f~oW?yjF&b^ z#NDb>mA;OD80~`c0;hy^>cRxzPXHKeps~-*7em4de`)ZC=v?7CA6i}99X=P5HQa1& zi~Bgf`Km?VWlo?2^wk+5Zfw;UsV(^pX@JADpt5}7O#+D45Lgq=FOzqgHmowpjwQO~ zWEL~iq{m^&l~2OZ@|cVIPEf)L8a@3uTH5=|TS(x8{?sov+s<-eqW_q#E=tBN{PpY3 z@&#Edpe9c-Epyr>Mjaf+q1Dl)V0;W!tx9kTdnpBzyaJj*R6&tdgp@=*_al!e?zTCQkFpRq%km$f2bq(h%SY$ z=_z<;ZhCXiQVwv|e+rj2mbhzZ{=m#b;1KSa7Zl&r(lCD}YAZs80$V}5PB!$^s4#_& zW1%0sLp1{do3@Tkk=WLWN?^G|GBcy2^1oSbmtm9Yt*d^lt6;0=azBsb`+M1)9Sya! ze_8~P*Uo-jo|yLI<>shN4X#^GXNrrFGA8Cb9E;8UPXTQkH$d)3@y4H9AtHh)kjEt- zEx(NE!u{Ie2ed!y3UWR2*6E`IEZX|~)8+?8|M12SzT9GW8%i_4zDtPN)z8;NCn*&{ zv{{EKBOSyvBIw-c&q4tZ^M_f;{3wcCc3!Vua8cIgal4jZOXv0-CkVSV<9l$AD79-^_{e$hDlSe`+C}JwQeRK$)*YB#g$o&E2qG zeM8Ww5?1Gnm^%0^$c}t#b=0`5ymd6RQaaa=r#4=`i|+d23sEwZ{Y#C3UCej}#xRA@ zZ1j$dal)$p{-89s#kRyN^$r4MZd`Fb>viYDH}BUZRTZ=`n#KHj0LU&M1d79#=5n@f z4S(%JlY=e54o=-)-bG zT47!Blmm1#j@mGE%LLHv2N=2?`;Km%evWQ~^y4TVy2a6A6`Bn;E@NYl)lG%;RR^v1 zL?EX8uX{e4&g7^tE&iar-JNlzd(z=Wqe=ke=EFg5kJwI34s7Uh*o-zNNBU=30h4qZ zH3_ZWvl_CZ2~^Mh{xshw?Y(qv-p9WPajmS@9x!rvkCsMUfniY1%OnroBHe*q-qGe< zG#Lks2w}#++q0*(hr_=x{LVvsTSlDqrwNDu?fL$DaM;iHz)b5n8tG2D{=Gu-0)9&V-o8P{M&8JU8$GISTxl}mK7GJ#G_ z6Pl}D3*ekUJc4*4=}LC@bvz^e;U|B9PRdg_KU<2oKcZpS6f&p3qG2k4hMnMOI3b(a zykFKLpVE>EV-a??G-nuNFGMQaZ2^Hr{~;hiy4TZbVPZA$C+-~x#RH)m`(y|XMt&>O zhk1@*2}}+)mXt`p0zdm4So=XwwzE=bHKTP`=0NJz2Pi=-Y0-Pvo8@nxJudflN+swBH`^3Kbo)t zy-kHj@896}QN7cTpBcG&X0S2%>8S-Ot0vNh zE8gwX>3=<~$8dZ_aBoQzVef(}9yhKO^I~x6P@!a+{oy8l@`KmzYARXSvvIqFp+_W1 zY`GrY40a=WC9rm&1=ZEj->4h9`HSD2CQ1YOdYn3!HJi9i(W0|Q$t&I&Ub=Jak^5=_l({Z(ch*zwclUd3avK8SA4+c%xnO-nj*&aN=7$syihypFlJrnSFe zNS4^LOT6<7I4w`LLN_fO`GwD=JKImHPHIz@A9SqBPNJ5{0L*JGc8pos3^m{a=l;N{ zom9v6F~il9vrkvk;ECM?SYmfPFSrpTfB*I~yn8W|*>N3aGN>H_;m$Rxg1^<|a_y${1kha=h-F zbc3apBtxQmqyf5fGyVhO>^UU|jFyE1pfGjdF>3tMySC2yFMXfMozY5LYUmf>{T6a} z1fYkiuX%*(>NQ@c&v_=+zqWTtV0{S$j`Cu2Xm5}}q`SWj8QY=8F5YBw1{?Fgo^tH} z-FxEv@0}Kj8t<=CGZPi;Wzm|#E*hC*C&T{-6pj93rTC+0#E>NRGV5X8{{<${b#Ovg z976~4K5V&j8qk68KkIH9m1>rn`G2Wk^b*r&|COKRZwf}5N)V_Vef_aR%NeGj$ocNJ zR9$t_`M}xAup5 zi@iO~f3bu5^|R_L4xDNY^bFAA!RG;k?gkF?c(1JFR=Q`Jj(jpKQin8#wl0J79xXWr ze2fc|8g$t!64#;|Y&ju{6Qd(dQuSHLxNC2e=KPjFPQES*GvIC1o3$4YB3rqr!aCe3 zQLSHS7)n0D$bUca`~)S+oKw+)RWMuxmvFj~vK)HH^oHE9W*Z_GC^#e<7C8YFQEypz4UR>TCcrQ@U#Cg{z(HmLMNp!PSmNI#slqn4w?^)Fuv?V=n*)rZ0 z%r|`J?H-cagT`SzRB!IAJe!c5^sZsu+qr3$Bl}6KeW>NO2XkYI#;MCqx`VJT|4q}N$0H*F)q%7YZNUWd4_UFFp&ac z>OdMeUUy0K^|RWcANYDelhW7I+uzut_JXtc+E{&S8o%IPDr0wb$pA^a3JjfrF6{WB z*1ykJ^o{M~Z;s)QV3o%IWS`poow5k=A5s=!L;&Zh03v`LX=H8WbwvH<@I7F9>Ou?) zfarf00v%zbIaOJw{Npk8ACAWBCWo4je5Fwu*m08o>ySX4wu3vvXcV5F`h&6y#*%`~ zz@aO(GkKO(3MiC7^&Okn3XJLeZWj0Nv^N=8#s7bicxlPs3DcPpiRnz~-(o=ilIdzE zVb)I4G8hBG4}x-tCkNWhRt4g6a*)e!MH)H+Ei*+^mlLD@-~{^__0A}N`LIh{`4p2I zIIPKs{3&M@Tmk;r13M{B_$-!9OjCZw>H&LrM&|)ggl5#;^0q}Snq~b;YhdJW+OFKo zH@@+x{k^NeX?CT+_!V+akhak*c{^aQa8|z1o zw7fD)P>cABOX=5KSAVE2SQrdt)y{LIzv5r|^TC1O!D*dr!HD5w^ORfO{HVpVfKzIu z`FH#sTI<})H=9I$xAe7`vdmv3Qh!oUo!`xcSMw*)+~Xe>^>TO!Z@6P z$`XML9gM7b)N1;PDnN4}G!VM6tNg1I!LULxm1C>Xj|%Y@jn-fK0NgSg)|J{m z*awHdF_`TjtonsQ{5ynI=XbMx`OX0LFcSe9E9+T@(3Q>@egLtrvJZd$qaV__;;uXJ z_RKV&=oadKhq8(+#^R?epC;I1(;O-X^tJ~u>60!%%jT8(obha0vxn+WSq66+t;amD zBg)ag=CNYe*bM&D)})ib+AagEq$&ocilqg9#^$y|$J0r;N7>$OHh@umH}=0!*f{J$ zv{ZF2`qB`f0|X}T*K~jmFG2tIj?)!}j)0A7sW;)b+Ufm7yf@mV)d0O?{C2KuQ{y#M4cG-{S)l)pHWz0R^+q}{5bdjAquPSs0ITreq?^_ z$LbYTmW*PZwEs#F2h8vw{oh-T zcv{fBYxRz5Tjt^ zCD6M*V~(UCayNl7QrKeJhVVg;!-Be#qx;e67T8`GKP=l;G$J zS2U>dA~TXhw3r`%{^4r2_csoMqXOt)a6accYVBZYDL3YBD1{c=#c3VDZQJ3*g!v{9 zFNiOT5qy(Js!5d!_$Ck8It6`J{t&bV!`RVNB}K)t8*;1B&x$SY=G;ftzH^jnl4>3p z@9E-#k(TR(86>FW$;< zK$Gy30}J-13ZT9bxoYbv|}DvmY7DiF=CB4a1MGY1DNSF{}?@r4`${zL;a- zQ<;^LqoBv{7i3gCGk;U3O;rB4xT8#iDc3lhhh=cY7@8=gJK|yQiN5ZPuTo}8tRqt& z=(z`NSTE(vexZCJP){nd9)6HWR$@=xiLMr)=-=r_IvkzOdEGR>nYmI4UvL=VmuMp?$?Egh4ahD-cr{D|$OLp>>2JI&k>#S zld~kJYoK2-E!DWUaD6f3B`p~2F_6LdgWl>?cV$yUD$-De-O|v}m%B1rE{#R~G8Ugo zBFTDOVdU})JG%7U-4$t>xodtn6r*35U4?J5z3nhBvclu5UPco~%_1z_d@St+onsHZ zxlxiGFj3jG@n+-P!@aDAHX7oB8yb(BkLqJ_xCVK0(syFU(=0E~Wyjnx%xAvNdEdF-FQ5EL{qP0XciRx$8K*gzn7ho& zzI#Yrpk6A%YZ3s~!#Bk9;`y>R^#P(1`nVhs_FBPy(`U_-2CN)WdhQZW)bO6F6g3@9 zsuCdLbi4Uh7q%cD80bZDZl?Aa=(z+8cBzL*W~o20Z(ugQDs>qrZ{ihm{DzV${PbwS zH1Cxu4vVSj3q{AR8*^)SQ%}gx>c_)Z%>qy0d_bRDuq(3hdZ*5z11WdD9Ic8QAFJ^d zmO3Jz#XwpdRA9a7v32*F0bcdFwpj+t-3;R(^4 z4Z=Q<=6hoR#a2hioM$a_ycTo?=i@1oee6<1MSHnq(_h}PwKW}NIo?z$Ihb!~!6|f1 zFpz@*hn)iF@RNjBD_NCzhjbt>L511V-TDT4iWl<>eY^KN)A$N{%RQsPiT>0N4pJj9 zIXTo8U14~(G7b2Wq>qg_Th7XZ7pvPrGD?>alpF`Eprvje474YpD1|2UCTvMmeh>H-9qPg#FdPV)P zKZTpSPsy|<>|>qn$@M`YNs+!J;bF?D&_#^1PI+}HOw^Qg#{sWin$%h`x1oAg}OaT#`0|<-k~q*rD~8LcaFRBK@pw9xjHAlhg3$@Ld?zd{0T=p zbj)@p@gUW~v)d4rXJ(B_#7LjiZON^k6E|gkGb3}=orJZE@47pQ zf;d#%adPUY4(}g#-lu&WVm<3fTdsc7TdcHhD1)IoA}XqKnAZG&7EeWxfI`QYj?wW` zh43s}3L}HgnSe{Dwe>>eCF_a$@fK(U;h8ac#;$7(*R7TpWNwED)=F@{Z{`5gc%aK+ zujWpDH$qj8ne$Hn7UT01ujX%AQdVu<;0`|{+BQS0c^vm9^#z>wr*ASXd38?i4N1JG z$|Jf=ZKGqatysoRz(RBeMQzy8&d6{qm8L#jOHK+J;*fhl`8tfg2pk-l_za(hs==?Rh$QPriISGn#bKW+lE0t;c~=nLV~)>MT~%^dZIC9r&xL-*IEf^x z<<46rGCp?tap}2N+M1q3cY8_t63OVZI@y@j*&}o;Go1yUImsj;?lGeFj`l3nu-kVI z_YCA44T-n!Uta$Be7;FmWLyt6HZ2?p|E#FVDuW=Kh2%hI)6XS}S08=~Z<1BM5vg3A zh9Fz=LXA;Mp#8;KOL=eCPcYD%MEWYQ`sQw4#$6??CP{=u--JQa8;_E3#gX@(<`tIA zbCq{=J`p6%A8GBp{7m$XWVXG=gRsLdHO|X7 zONos=C6R_x<=v@1s)5uyv)<8{ueuSquQ}l$1<+oI>eLLOu&WjpuU>mud!`eu_RFWm zrCL&&GA9N!ij-LJo-|E}pSA3xY|kLW6%k;|jm!jfY=T-CWptrHEZY^ju}tPEVVf)&$43#(cv?g}a^7}fflA`ccgkqfgO zuHkU$9*!_rKYqbE;=0+nhlH}u%vYtxCxRaZrs}DW>W@cVTNq**xT%>p9(L%aGRQja zI4+|)C^>bRuBBI>Kk3?rPgZO~cu&xC3QqwxA!hRs6#_>X>0!$C)bVxyqaG$m$FoPs z<}#+6jV{?K%THWHia*s`RXbS_b1hy^K=gf|PLomKV+9)zWGW}5Dv9^v!fFhC)*_RN zNic`M7>lgt9(irt8CHme=lWgY$O|OlUX-rTh`X%G6({iy(R!I+8F>?`2sL9VGdU#n z8=L~qx~Sf|N4tvQ8OMy}7`f=QMzg2wSEf^W3d#fzQ^^Vwogz35BQQK8uRN%CB|C_& zO+R&OGhou%df$<~l8u?t+~?(NQY6nC62#o1L^=$RUO#9#9I%>lV#_G-h^HRFX*t&) zj&}!U^jj_$^Lmq*`xxDv4%aVjw4_KIut-)?Y1cH<()3K!@5R`WSG{5BwKY9fo~l=d z@VaC(9?X6ADeYH7r5Sp}p0YTmx%BaxLi2+U!|Q}HMXE9vOC^-T8CZ^T;4;+C>D(YK095i6$(O2Ut~w99A9FE-GW5}g&%2~O^i zImD#WCTvBP+LN)z+^!+(xi@3aiOY9h-`*#1aO?STDXHmDgWAq;(|7Ltx05uT_L8Iv zLK_F_aEm?%NF}?ZDn&?~$qo{xXH5(ljKPbadv{C7sJCCQ+apvXMl^&tSNl=7s)(R$ z4?FISi-a1d@zLl4LS_Q@;=X8E|5o>uF&}8lC1VeldL$ z9#WwLS32%&0L-f*OI#&HPXvXhx{9v`R(eL*Jy8*M1J&E!jultA=*K4yzG%NPV@6sa z)4~%bE3AAg5~q9oIXmVe?|o3)z=(r8;q-4}I0t zX#R4_;9J)^gO-RlCkn#?nIiESe5WW>_dP8e#tHEaWk$yHw$2n>nrrf5O{0BVp;miA z<8C>>^qyiV+k3-gZe1qd+UXq7V4Wkb19C@#bEvULj}N0*z~M?6K=eeaT1v)?N@{SvCt?2{xJedmb1$sRTT(Nq7RiTOaV@te9z&M=1^5}+u#)fmxjSA%Q zQ-{$to)O2ozFJoukDXtipjwz&>r%ua7mFnJVhUc#eG+iFJM@dAsdwEcB;hA|_gzCr zj%yvom*8mdRh&OY{_Mi-QxsAS^z@wbLAusXmey`KUNe0>xBcjpu1EwI?mQkcowuM2C7|fjm-Cyfnmg*^g`h*SZ_WD7U%s zhEbSE!0bfwxU1{=*pA#n!>9JoI_OXIfp4a&|3Sso&!+B%jn|JD zJ`!nJAh?vVXMpzRZ9dy$I7I$HI@r1bb>Jk)+FY?Um=2@0{w(#yjbgV&*kdT4Z&hqp z(9(Fai{ZMbu6m+1Giz3G;(XJQ^(Pe3X+7s;JLu^0jHC{HR?$9}-^EGxpp8jaWO3)0 zaxEFx(ACbY9QT{L)^(v*<)j3^HpPA$Rg#Z#k)~J?a}=HHEhNkI!@b;T_L;4I(E6tU z6J$!5E?0$kUjD3wQ>?{3U*43x;|nRQCvraGfAJLYK8JB6+@D&eF9wK(h<04TO(uin zx+o!?CH50_I7y1u0*i)stgUVM&ErK5lvTgEs$wrw(@oe~EcIr$;vz%#9rzIF*3T!H zU;WafXHX$B>K?9`{x<%U3d4`fp*7FseoZ&){h_Mby%AYRM={h2k-{fy><2u9<;&snp?DN#;FIQyfPUi3& z_)^;@)o`(>_^^tU6azE!f*|r~rmUs5m@(OYZtZhQuOKiHwSeA-m0UQVRt;VoQ;HZG z8U(%&NX@JXnl2Lma^Orx5OjU5IxA9>wU*asGXe(Y-IZZ>e7PF4Zct5L}+Tz@Ie`c^YC2^dz!fR13h# zvavFLVA;iqYUV;8FQFt=yyB!TL|#~!Skm@}IO_oa0rpz=1|02*QONVgmrIM;?>%2@ zd$I@Zc6*1E6|U0wxXie zl@$T3`sLv3ryn@)PcP8_(5gh6RO_BJzkxn+tAA;nazSj04JsdwRsaW3&Z30QBYyQ8 zdDes)n(VA;^VdCf^GGa3#_T^05RRvLv*-5t5BW2srP+?oEJagA3dkojgQs^d2A8NiE ze8I-trUpl?n3koXdr;}yPyFvm?`-s)q9KcaMe(jf^VAdt61`iUdSkr~O)-mDofbCs z>tl<Vv}1Tj8qHQqTTnsYbbqAGVKqfmhEsp8}4HpG$wyWFur z^BNI<0%aM3x_&-bn^C8qgFoMeviC~k1H3i5b=`>wjpo@PxS)1cK5-4Ch>fi z6XGPpH&(oTIpl7IECM1ttZ6E}$C~FQV{ijpnp;+RPcGX($?Svl{V&U?bwsGjHXJMs z;C_x51G==RkD<|dpl9NFGy2F$6qsk^;B~_EX=>ZxSpBjCOa%4_w~DGg35v?D6Wqzz zf?=EUvPkIfM9eu~2VVw+Oid2Vm2!E>=5ho75b-X$+JRE;jtPdFpoBGi99 z&Dx(#lOvDg#ZRsf16hZI{##q7+Ypg+!sfO6d#h$CU-|4~%(T*fkdBn_q`RmeO0~op zp<%C@ogBdbYNUJszZFrQiTX721$@6rJ0|xT4WFu4dHYH<}BCcXm_jK>|Jdv&JPI&?a)6j8?A4Dz82G*w7OOl;2^K@+z zmE=-vjrM6l2-gTAviix&2yV*FZJfFjo_;@EpYCX8pN%#r70wrXoWmt7bN~7zNA}GT zdRyaPRoKd+5#m-E3NFgz1FxWK*=H-Ix!-{dCyl|xRb*I?en0Wly-8hfp*4%E zcKi;$%A*N=rbR?gbP)ryYZQPSr4p#wIBgaW!EH)UQMx!TM0f31N$AE#>Uqh_*~lNz z<#^dT4!&9wd?R-AIdibQ(dC=hN~O7T^+pbYfjHoYX>4Wj3O`ZhxMNUe=EQ-&+pGfr z+7rY8`1+*L?0lfbZ~DCy*V@-yf&V|iTXDM}kR%GO)ZBFtyw@R9k|Vw91Z8j%GiN2yoz&9lqTU8&y{{jJ?fPOb z&-_22_BA^dnk3mHTajIoE$c`}vWM&< zOO{9}OLmcc8M{dKEXkUk8Sg!uiqSdhJm-1d=e%!!%;z%;n(6;%x z;B}FVrtklg&z}uEG92?-$EQ^Y8f_@Rf_h9BR#q)-%V4(fuxmz%1q|(&9JZi!EpDN@ zsMXH9wk&nNAt);sn$pFptGRHf=i0d}3JcArKtKWHg(Ghnqh6z1tsB1gsBjT=TiPWH zEk~w!L(TkxRr9dlVcmq=R~9E$eu9k2f=!AuGE?MaRD9h?>zmyrtHqMMitS4#RV^K z6>;9LvJFn8K45=fAJ{IxGfwvkbq?E_UD}}S($Ei#OMUA8D#TdwacEWi%Uf7_^dVDh z@-Vu2x-jsRKQa55ZN5-?r3lsVp*&fJxtHlO1-zzulMhUYDv%R6drQ!}G*~|1k?;W< zWc6IPK}wLio9Ynl#cqJFugqNZ%A`k6XpO`qD7LNRZB(d>CCo zr@tW(YTZ0_ss0|U#TA2e3-Cwhri7w8QX6;|+B3q7<({k1&gW5Z?e%%H?hU^;SD4Qs z{_EJu>tpx1)JSvmX~y}(#$h~QQGlm{FW+j3d1Du3o8}aJ_E!E2()f{WRJDp53YGn2{40u-*-6f^)a2h}0Vm39g$^LecjAl6rmrv`C zZ7BY${|@h+cN?en$1O`{=46uc0Y2&5hULNdTq9x)2z?vbU=09(wH5X|(g9FKdr+VC z&xTH4M;?nKU;JsCv;;B!%iup5d)*%b!{GTHfdT*a+S)=3jUGNXeML?248SqJnaJ7{PyK~gAhDI=Ezot$DJY**ZzkaeO+)oQ6HS{J) zOt34F6AXB}WwmjP*6_$TLqS73?DpzH@PMkOgzhL=yJwZvrgR6ZZCVH7XqCLBxdLVMCUQYryRD}bHGOG|xu$R+nzMjNK!7Qm}XZb!8^{+zy=rcmB zkr_as+EnYV@B$XY2{dodWY;Nj29(+Rj;L;?h!MT)7hOP379w3QuQf$(N#P~i_GIA1 zC$4QJJv>2k&P|fsQkX&yK+WDc4K4rtEvO!bMs4oBX-QOfR&GNnu*$){;faB%$ltg} z!;Ni0yGwU_PwUWgi$Qs&DyJj*Bj$uG%FWaxfiI?Qbw`(_Od!b(l_)EN%51h3r?$LQ z{8uEbxdF*e^qYK5>j$v7(ULYBe>Z`KMhjn{5z`ur@blM>m#Rv`hO$ZZauP&-i5tEw z$k@#OjB=1pnby>DFMJs<3-mr~8s)!kby0I<`-dQJ_5=DXY1>~%?2@covC`!I!#P4F z7Yp}SxGIH@S?D^$iV!9dc3~f(Vc^MnvVj~S%js2!^zqc7OsU9u#y?h*c6^-*awCOF z@V1n~C9G#|GgOO5(h*C`0EnC>+_PM;p%>^5^!uduMo?q8j)7@v9G}TYdJme0(hM6t zNz?(my|X+w^Cr|91Edy$dySK&YsDxfr-#Nkga>>NJAHTyam{ol&}Q7(z?e#)?3yP% zMV}|?Xk|kjs2@+?-99#cbf-COMRkzwF^@#e(2s^fY&*O8JRBI{w)QqU37S%r`LDCB zLL`S@*y<@Ab5|&{h`3>}^ITKud`@bXxpCZrll@bH*2(tHkNYerj8fxpI^2TrBV|cn zml+MY3!S%QnpuWwh?q(#G;1`rw(==<9<&kU%EEi3^O>mJfo-xN!tbMiv;Blfn_8X^ zyIDNrsS2^q@XWOGo4CR<3?6w*@tqEelh17mcOcCM!cAAIU6M%2*+Hej(EV39`4BtS zU<+HDgmNC_?dRDh6Iq-oxi`*IaZcXkUorY%-o@6)b7X}{Ki=T5>~e0%o9D<^<-#>P z>HA?J104PSc00IKod|Q&o2-O2@g>_>=5C=QHMBYVm&gM5DsvV8jq!3go)eBnq*~iKP&`z>TtvKlv_2#V%5sGzAxcwxGgt$!q^{Z|jbucHeGzUdzM2X9t_3)H;( zVCf+?p`0q&#$X6^0$2X3?WB|mk^$h=j8a>=1W;Q^hUfiOe9=j3EV zt|nI1x%O>g({-r#sFFjZYPx<ZFQ^9Xd+Pe;(e8?gVvixG_I`pTykYnP6F8RfH(1v95*>yD;y_Ql z844EbFRt^bEl>1HACz(IS&-a^b1%iYIgbq76>n&8qxOobOE!o+{G!2Zs2RIr}=QPw5j7k9gYhD)m<;>{PVG)2TL6`Xr zl{?m$8ypwr2Iru^X@e8UxLYE*y*8)D-ECFDNG}d*Zu~b2B_Ddw-3&Y*~(#%5v=5Cl~Y2n4ot@eZ2mnrTpO*2`L*(Flrc6^qa=_bYK{P? zUWx)4&`2Ny8oP`G!lkcuXKkty6w~7ri37k-I4Eo?RJ%T`rrqEm8b5MM>!hk$sp+8U zyTYs3b^K-K5lTx;yj}e;78ei3IQ9*u4WuwX{&S@;{WeHpo}A@rR^b5tmcLa zlF?u>@f9Aw2Y7zmgGWGaAP ziM$mI2n||GOi%JJZE4`cG)soZ7+;YaYt=zc?H$)cWz?+4((RcpsKGnFV8q+>_{q4H zhZ3`0&wl%!{x%{#t%JkQ%MVvSX^%Od8>_?F8+;O>8QL!l4fB*})sk%Ce*1LDrD3Mu z%*@P2=q6F{E^H~S@al3ZQQ?ymE#B9=HCh~Iq@l0IQkhp?^<2IeJN<#a#P-dhb3LiN z0o^q5pQKLPrW&d_6qDymcHo|U{{kjvV%Oi)6(G@?l7VC;UnV_WO5>t(gB}+$W^&kt z^W+mX)?nfIB;n?%6TxX2&LZN10ZzS(&!4C%jiEfFRSo?Oy{?-)B?uwAhSkXa=*7W^ zAOvJ=*usZ%97jolm!J5O{~3O%i&c)|2?|G)d^a*3TI|+NGa|og6ILaNbD@=4IRI`F z`>EHjfMZJ#^e+b-9qT>2{;$z#e!#STq4Ym#X!aeHKD1(kcB5|!=kRjS0yQAopDRcL zeL*5YLIw^}x(i6lqk?F^`h@|V&}d=)HWU^cfof|J9aaEcwq`-5fGT!bOA+kCvgmeU zt?(76904YKTl|L+LztJN>R3uZ;@OoWQ6SmfKU*)utvs36ROKf@7Gz_M_XI~CHq10* zZ;KH=?d~?jZii85y||D zn-KW2SHLvRc(ghTYyvQU1c--L&{*i(O>MfWiW2@0YC|FczIS96{%$Ou6}A^=T|xjhA+QiK;9_G&GWrkkx0fCPa@f_Z2V zvHs;Y27grFRIH3hL*vPDI`^Hg0xYiV8M-|a``RWTC%b?<|}J<$g0fmsZ9^iWOu8b!_Uk4DW8g22mf7$ht0(M|>d zyi_5t){3tNHc_;`D98=Z0he_;GJ6%`WKy_z)OSHDLw1Q`7P0&p9Ku!1*2{?jw7){z zk$~K9H-uaSr&|MdqP<6f|FUQkou~~4DYQ0mpvM4+8{3XZh=l+%Ap8VgKa>jZ4rfD2 z#i9<5DWKehEl?|s0TBXI90t=zic$Vll=1`6^WSy7f1w|Xd!NkyAvIrFW5KtktjyO78hv@P zL&-T{q}ZpUM~?9$jKH$`%?7l`paKMobs?NKEeY<9xBE|{4t9ek({L%kJrqJWOJ1Q} zYfOy-hidD>H%m;P+4%_;q#WeXrxsLSQJmu>Cmtn-mom@CqaA=2( zREQBtZ~K8KFC9}&?&F>$9SiXNPc#R?LM%+6U_(G}g~)0Z5)6_Q3Hm1ju8 z=D??{@k#>Ngz_BPUW(V!iWo?F((b3LM0JhYb)t^69w=V~M75_A zN6Av3F%v6vs9lya#4gjl{n*-&Z>7*yY^SMgPk908`l{PDfAyoPX{`D2VsdPpE_$E- zHU_UHg;$rlVmz4cVNwoYmm=|VrsNk$N~+Cb4I0I`tFMq(CZF@F{=kYWXCihIJ++rw zhK*&Dy5xXkSv$2BV<7<4U2tm6LS-`LhJ>Vxu229HWkrS`;4WNTxoHPWAClbK8Pc9}}%mKaDdt zI)M9c&Z&I4x4)WO`8y(Ske^BZrz)#i|EHDJHdpP(Jxv~kI!eoCr{((AW@fubhY9&* zA30D$>vv!FTrt2Ro5=a<^i^kKYef9M%3zpn=ANU$%cg(O$~d#kt0&(3kfw|LUQlz6 zEN+%LGlF5&`7 zV150m`zEJ3SrNyb2<_`UEpUuV0zfU@L^N+0Bhj8Sxv?A@F(rK-^UHzys7+-631b)Y!>Ob< zvwM6uQ|&Wyb*`DkkIc35`YkHAHZZf7`&-926Y5UifQ-uVTaX-?4ghtd*slMJsQTZ9 z)_?Z8e;wWb9es0t@h*RgcZqp^`f5?gT)^Ri?`u#fsv=2}^|>(JVw&JV)_KP+-XT$Y zFBKpnV&Nn(rC6|U@=Z>jfO<|qoJZt&(=1X^Tc7=qB`cat?(o6p8GGn_rhj{?Hq7gg zZzN~c{-$v*k8Cu(8E@(hinW<1S2Z2_l-uy-y}&{KL(?VoSMGNDA>?YUf32UjT;q?f zA-k+1({p8PcPB5y?5_uSCc)evUwq5p!xaXZ4P(OEwPO$UJmKHcjtUC|-iN*h-X`A( zylb`wz#0=c8`5P1wx|S(sYkaMaFKn=UpzThq0H^_QRM2Ue!~lcg*gchk4^U{#i4QR6 z20|9g7eZEYAjRiW)13&RBtniPeZRLS5-DK}kCF!U3d$%wRw3v>4;ut}gdotX}UZ*fOyZ?tj6GS=juL!oyY8{g5qogS_J%vks>9NOqn@Vz4+YWweFU$G4XNR*V zQ5n~wG7L#3b)JQrjINYAzL$VF5bS&3l0-x99!))cuxb@@VkxUfre+?#?^w{F?eTyy zg?-cfI$l15`NYQ3#=f(2Q_`rV-6+fFm&J`q0?qc`D32KP-r6mLu+yPr0!)I<+tcF_A0`=k1dDrAqWrvA z?9xS?Vlj2ibC5%bV`J51<0z^X-l^lceU1XkjpI+5k3Bpd_OXwa%vBy2-|zEbFHlYk z9j)l|p?^nqf-S}i&v6UW0Yd?qyW?d)6bcR{_j4=rBCKu%TL;{e3sh|tyf>hYe;~Uf zA&JNnqow(o0DTEk#smw=L}P20Wy$O;-dc-%sqr8!mhfFi$cO7!)&wP%ZQ8yriDbjs#S~-tKV~)K($7(n`86t(s8QDGW z7wItUD_T-og=8ATXBbAQ=1~ZckB6R^mu)pOqYKUBN{y3Gk*1So@gc9iS`r{4#gNtO z!CVpv)w66?w!ydu$IZ7W9T+%vtTVZv4XDV9gG0V|zDUBBVWq*287JzNJi(-q`diXU zu{{wFz4zi`{nam4=Od{M2o F{|`8y?mz$l literal 0 HcmV?d00001 diff --git a/fvdb/notebooks/img/numbers.png b/fvdb/notebooks/img/numbers.png new file mode 100644 index 0000000000000000000000000000000000000000..4211fe6202bca0b504a5ddf744f1a1c68c8292fd GIT binary patch literal 43325 zcmZ_02V7Ij);^4)AR=H#iUb>|2q+zdL`6jeL`8ZD2uLUNnj)g2(v5T^C?ZOcUZf=S z-jQBH3q6oRNkYmO&N=tJ_kVx)+e7xAOxDcoJ+t<#HP1Z5`^S&8_znvn=HTGq(|&OG zDF+89k{$nXh>LxORaOSEFZ;ZoYTe=Z)h)Wr{t{zvqWwZokK-ykeu#r>9~TGbo(RW& z_UZUP@qO&LFvr2a(m6Pc_KEyo+-l$Df6IqCaUA$Z<^}t@cRXN!*t!3?a;ES5cZuoy z|0T_dOy~Spoa4t{w%p74{Ok*l#{*Mu4i4TEd!KzA$*E^JIQH{8Ju~q!(bHA4g}BMs z*g>A#%LKT2?B(K64^U%A-RymA!~@)1-M!TUG|vAep~jByCCi={|4YQjMdQ4Q-eYl1 zh?l*%lFW6P>*s-o#l^+dz3g77J-vJXpX}^!8s{B-d_2@-W&QpAW&Gu3AYKl#H&j(s zWv|Q0%E?KyC8WIr-F<8Vq}{zQ{9VYu%DHRrZR_Ra;o}5x7vC$_<~hXIN8|kYy^8+t z`1?M6oL>C9CU@_D9*g~evU|VC-jKO2`+sG#v#RfsS7_hM)Mr?!9H;QznGKV_-Q?lsqcG~eHS^H(anbAX4{W&f|EfrtMbUb)P{af?Iy z?(Js*`_?8$6L4*wy+ox%SaF@0OW}R__{JBtqTMrZw3yyj)3Myw({0U#b&5)DM6QS5 zScU#t82_NnfDalDmS^W=%lEWJb+)n(O4CPbRk=GRsI+6K_Wv)ORU~+$`dFBo-NBGn z#QNgXzQuCrTNZ+~VG^empw8?>QRPt%bSD8ki-BS7I1r9Htco2+iAUS1o~udE3oMZV z`r~{D)VOV1+CkzIKa`!PN3LU4+)k*MaYaERj|>w^{g*l%oF{YI{@Ls)q#zRha5KiBh4ujxXx&%D_(vQ zfZsXfuf$5Dpms-7IyF@BPUf8dJ8VRAZQGL=fkVMr|69O#pcbubr5Bgd_rF_aHzNd= z1VyB6O)dX#fk6cV*?6u*XwsCEVdHk4i)nIt{TS1+?2__?@Q84LIA1PvQf?eG(D?R0 zZ=lDJb61Y~R?^>Z`ep+rWHK*o!;9ly@Lhzo5b^ivd~+%56YhKy2AmGemy@w)QGF=J zS5lIRRyD&brIIE&wbGY*VPZ7df#O>uUrBIK6Yo%*clyi+c*LoNIqq0mHAXDGs9u~R zPcI#+;YDR#?691lDlzBm(c|>*()ORkCdp!bCocfCR7f+hlm30EF4cO#%owY0>JJR>7n0eGF6zpO=4$$#7R}I_%9XG8K`BZv?Xlc-GP^J{jVT)d+$LH zJ)F{U<@;ZuT7hq^V_qltYcS|P+vnf$==2bVGBP@SKFsPl3x?Bl2_Pffg)74KC*ExT z3aT9!NY6#c2M#1lxw%X!NG6wuXwjoRAjQpTyB@*;sIOq5(vL63=!#uQCQW5N1+30=`F3vye@ChMmzQ&;6>)XDQaTrU2+Bm& z6z^{d@<1)hg^6Q59!t>+6Ze4C-AmDM)6?db7Tca$`QHMi3I&*jAZa~!;J;h< z-?5&jocegkF;w_*6vLjhCSaDo6-F5jicuC?qLmxaq}I*6Cc=93im+kWv|>dApTQFd?*xnI9m zbV(V$*ui`r)aXvqng~X*K+(gJFO@p|B(;EKs(w>M6VbSOEscR|;=!&eCD z+pyQ=yH3-WYe8WYAI#*s>3?*F0VmFdfW`@{uUBnXCGX_QA~zm71yBC1C;#s`AtNLs ze0tpC8aV2O`&1iRcPba9QOUmX{|K z-0>YUH5(9?C5pV?l~YA+yYF?;e}`%VzT5=O`qY`q+`Ro&hkn`Dtj+wayxZMj=i>W2 z7ews}x52ZvFw9{o1X7g+^s@9O1@PcuNuv71*2m3+#blwb#TeNN?-J~V30|YRsj;Ej zdz}7-yN;nhA0wKCPK2%>51TEY8LHKEp6;~Ts9cEc!p610mNqKaEtfYg4D6{M&}mu* zc!}Gu(A@WR&%9yxT^1R{{zGccI5;s;%w?1nWod5axDyjgGe@lM-(pRmcD)7FC%{xG z1a1&a;YG}lcwjRNB zoV+k0gsmc>-}i_G2MJf?NT=eb-}M|@cV+4YK!4S(0@c^$9VR<0q28aXcFj3Ain+R> zh^;FOXVjs7bEXK2=J-bj(G>|v&}J-bzqcu%qT6Z4tQByL#TnvmID#l^CG!aYr_AJl zX_?@ltppYcjQ%tK9t=ykm+)tZHV0zPp-czty+3P3Ele9aMQ@?xpoIx-S-G3i<9h=H z+p;ZwIy!~QD)RrAwh&G#PCw7AoDX>@c%4DLGWE@OUoPUnoDEu^d(OqGR3EU#>Ic(w z62fs3`F2Y-M?<6fq+RpYckfuOb-v zn5QX==Y{lpjm-uz+r!K;oPl07;r6g_TR8Jl9DC%`*7x49cd>Svu2U2j5{*lU7meDk z@cj2XC6E~+V<}^Ueldp2*&3p+?jO0=k8`sU>l21N5(FjOLSdxWe5xevL70QQS(pTgb zo-UjpZaRX#A*hiF-;{y&g|vUe_xlgn7Xij@c4UQk zxeKa+&oNREWQdi_dl^66Ex~pgzNk>hzwr>Y4=W!p*@eIJ!5<}KCfJj~9wP!*S>>#4 ztjyr>b67nU%i2XC7(72%SHFc{7W!a#+qM)5qONc+!s`zjixIRcmhumxw(R9DiC$Sb zB*-|{c|EH6SIEte?2#E#BX6skfq5H|(!y50A0btglbCCL^BD`gwACIM*dU=PYbe6M zNMGH8(QHhkiJ(RKHah{%S~=2_4rk@W+TQORV_it~?IAeGX(%v8EB_vxi@A)jK0isN zPZQJYF{`c6N^?je93hGW}42)36ozU@FCt3gE z44Uvpwwgv8#=yULdfseDDC2o*#yYSI3E(`-n?N!t4DFe4&k&KuOAA^HO1kU)Y_>eA zP7_ufn__1ykQTR%u$oSri_IH@R;+U?k=>1K{Eus z33MK}Uj^V*OzSB3P)BG)BH{_NJ)howiA#+${RxW_&7%0q2uLDWZ76zMW;fuVoJ?54 zxVf@p-l)5qhqTnB8a$GT*5#LeafEX#z3U^s(*6BfD~FNU{`#{sU7%UdvY!{k95?Fc zB6gY~eCmd5cS9fkz+HiEcz(ADOmFHC(Mr&IzuzjDc{mkVUH)-l$)A`??{ACUsEgBu z)8_yfS`XV$f#Fy9qg zOR6Z#o~#_oew%VrH|qTW@T;ZM)OU<564E<08mig=&?s;WjsIgL|krt5*lcFiv=lGPajRIKfA#f*yU=$VGiBvjuiiSU>+WKOTg8tm@1BZ0C6qfFeld zFgN%6E|j~dtIQtj4szi!p19=#mWgS;#j<=b=kH zzPYSPvxOnl?!)fQl-#}p4PX)UPC}bl?Q4TJLhsR$$ zpK$qS0E69D8yQ@rx|Hpxx0uSKw8K$X3w?iX^31mY5Of;yf%fs5@T~lm2d|xhLG!y> ztGl%D`SZ7@ul%gnmKYM0ipU9AB?m*~^3D-Iy(VZC&(+6%SC-jLyq;H(R5ikHww={o zF9xWJxfEEN@&Pub$eL<|M7yz_MfzrnhUJ;%Mjc~niTYKe+AT%ng8bj@Fvpw$ee%ZE z@wlnJ>|%w*%VMcBLnf!OUhXdG-aJM@LK7ya>q=TO2?IE9tQ@H=6Ltoo;TC6+_x`&^ z<9N_ai9?dY2}IX+Fe0h?yPR_V-XNQhx38}9;^o5M;_*iawAO--mbapeFFPeXZ`II6J!*{S#8F+0xzjEkK9x6r12E5#i}vE z->E!7Uv&MN-aLxpvgAJ%?Cl;i+~tH?Zn7F?00&_k9rL(YbP7W5%ymv1$0Hy1IpsW@ z)2`fZ;0{KH$cRO{RqUxlF@*SC--(xWs%{F`W&h;k<1L;2$3yPU@MY8^YTj&?N0dgE za;c2xUHJV;eVX>?m~2zxhwfy%$2u04m-~9QWRN@TsjxuqKBdnvzeBH)p__4}F&Oz{ zU`-xqtb0BMb%~coe{>Vk=WZ2zNDvMDdrCg;aw~Uf7B`X8ZjUpZqk0hV#xNEBHj^V) zPIsT_9~J%OsXD>y=)mvYcjg2NS}BCR2;QB+UYbZ~>nXuD>>KtnpHRzZwpXDKWXTB| zI=OBe1Gj`SR;GW*)kef0^W)%CUL2hAaG8en)vmPAsA(6=wig9fd;)!v==}+3pWn~? z-ZyC8@$sDZrV+_I$CpT3K3yO(xMFBs+I~~!HQOLf^FgFHKSl#C*J_PdjA5TTS4FHB zDSDXm6%4!7H}ScZCal&2PT*mkkPc^RPP>+9;@)T0(d*)Hk` z0v)`oIm+$kHRlG04p+;rU&UH6mQrKT`|jjf3Djkj&~VzOqam|dP&hh1S^?yURu!)_ zMRNX<8=q0yL$oMAxhRKNPhWWnqIRnG17Mqdm$KS(o`=zNFq=9Fpp9Eur?s5J&o=!$ z#q`0UBJG=dQB=GToRo?e5+oY7IihAwJsU;wvk|@v6((0$;hwW`>il6qi=w(dt!hG= zEv;BV$#d8pwA*pz}ceW8l8U}!m*AnnVS z481<)oVhV~+p9@1Z|kCCHKRX=fm^h8D=AK$k?dkmm~({_fp!s})i{WPKm~H5W(F%5 zA1VN>5EUPl1KjC}?{i)>rr)*4j>>?&dTFvO9Hx2}(p-d47^7baD!GdAR*{!cZcdvg)TM=Ymf6%U&cO>7E+MCU1T3u@ z?McE9Nz*w2;1-+Epm?^)z~oK%58iZ$G%Xcod>Lf_~BGfAuApW(N$Ar%*Ev1$Pi5Agq{0W;@= z8Q2(T39kelLDOd~-{H)k&3bqq=vkPS424Tre)Z)DOS$n4R%<$}#y>{sVgTbD3UC3H z!ZCs)oloE@^EmPL}qz|YMcZ!0r&Q_pSEpOL`=Vi-fK2la=k^O>$_R&6f%?rrB`wS%DGdkxrGP|LL6KTV7Na~Uz? zAoGOj^BR=Xbb_j*o=AN(p6Y=she9kH%pyzI6~AmD&!O=;7?b!TO=lR{sWLzs@>C%= z8uH|wIfyT#?t*iy7XG9$jBDhW8-v)_R^Im|KP<}TC zaq@t0;`-We=bKx3W$*tO^RTN8Q}2Vp%d5&22_C|U@J24fZJr_>U=vDIcxyC|GXov& zkf42>grxs$I0mYV#s+u}s8sc^2y2fAAJy31kVQM5^13qb9!dXR^Rj9W>ahTGLL&v@ zU8>aU$-|2);q#BSg~CgkP7o!l84d5vPv{G3sS!?o&>Kda-&v$gSxO9tO@{=(yHwSD z`=CW+J?GAH1C*e#zxpas4$~khDqMl)YP8N3$oC6S)cRbcJ9YeL`%;idjx5idK2W=y z+BLanQTl5)8=#|1ss$XI^%AC5pA~UWmOz$d;$9_!iB-V&uZPnFwS4G>A6gJDk^m{FBR#KF-~M~Wqoe8ZLhZ~ z9!*!Jp9>0rXM&c=RWgP21aL;z@GY2aUGwH3h5Vb=Cg)TiLLB6WfL##lzHIn+N|KLo zR`u!ne8TfPabn-2!8)>3lyBUiGI?V>*Z7DOzhai+3U|1EUk^I*g;;9YLrI^<(%(zm zy$R6{E*eVE?F8+^>Q84CVm=AyaX(o;r>b5#(G~U@9riO)QWNO|rCX3f40;19(vQok zLz}o2-1Q2S3ki`)b93uc57YA+l}+lA)76<-SyEq(;?x>xFVU8MQYqy6p1U^S8B5U)0AIHw$!!l>N5GQ@946 zFs!2t5o}nXrT>iCG7r*JWbAq*yT5 zkK_eB$*nK1IC1T5=T=vWJ-(-K5-uiOu_~|rHEhmU3l{{_DUU{g1*CGa{UJ^YecfHxHv)Ej{+^p!^UVCN$5 zGwKB39)bHVa{XBN=@?l)b#Fw3=`_W6F+Xgnn4*NTl`|*1b<78gSmnV)#`L@``6h6t zlW*cb`3L?A=oyotz5z7T@K`2(ST?bdE6~hp`)RqwNKjqCfu4B>a@UMMbgB}|V(x$! zA%VyZ5u{5vZ_{xXT_!bACrw4-ZCkNnQE;D2RN)7>Cx4X1P~xfXv?iTO4`t%**hDR6 zH`(sA4ndxK!@1gg=f<=?*Kn(kkA8dA82=>!pXKJ|F65r7Dn)EcoI!o^51A1B14rnSG#2 z$|a0b&C=#UccAPK9jFX!zbbexbj(sN{KWhTk&B1%#|IjfU+}A=k54|)75DbMvvx~z znfC0I)wM#cf;0Oe8v)~5a=jNUdQBL-UM%vOf=Aw>zcJ9&!APlv+3q_=e`sHB2s>EQ zjy|=T<7(KYT(2b?{j2B~%-fJTF2aC{!@Ha`fKpitRfN87B{XfdTp%}dA^-VXC9y7n zvTgf0Zk7VvoVBKEA`5#y9#j{askEZe$04FBr5u^(?OxQjR;H@u$I~K79owLHZ&XJK z$>@8@@A^t;wJe^(yP5<`pD1rn?{T1(PAm^RMz%_wur0PHu%O} zcSu-vCeV=y7P;S>!ex6L73Rc$Ve{xE0TlhlNmu~AclrdP`DKE>3Yr)Ru}BB1(}r&6 z8zrM6X0rNfZ>S9J`8y8(7|m56jz zd>}@C#_Zf7DML=x+$EjvQ|7klr0`DBTbua*80*~m7Ndz%VcETED7ARpoO8Ipwxlb7B!ocEJa3U~~W@;nEM3O4{42=wp&G&rJ=XWNED;b4WKX zg?7RLLa+uprv)tQ&OW*=IeRv3-i!O3COyio`VjLStNLBXyxV3eu=bO{M#uxGP-vLR z{x#{Vnhqv)&GN455i^`Ca|Zi;DYhqvtX+o=N-`!|6v_xkq_bWQIQSenGL9=)MF2o{{|(Wxwe<=0}!}FZT=T1st{X3~`U9ZyXAX z2lf2+&}src3|Jb+3N_BTc3ohKlq-6O@QIF!j33F@aDfX#2ZUXNhnBiPYPzPwLB)wZ z`F~7%+cD|&5JNPWZ@9WmGX>LuIh?3#cbQd&P{_%z#}}~|l$^ye^DbV_H*SyH9|vMF z-{FM$VS1?`Xy{s4mC2B#W~Ry)tbISPlLP&Vq#8MQALjHN(wKPI&FwnOL?`t)q<2X~ zvzU|&9rguOvZgE~u6+Ee!6A?lHhnJ7@VJSmSeojQ#*u2>X2C99@uggQy|=4`1ka?5 zNQs6e8%cA99g4Eh(j%PRFGhT^B$Fq4@5;VcD{Op{O%fOYjA^PAd;}5n1n&cXI+F$P z{E^gqJW<&C-wF?}Lj$bNP{E~JV*5WFYZ9loS*BivpXB_&*`_$7*;*Ee#t56Z(Mv2dkWs%5}{@OD_kOx^)g^k zHmqar`MW}TfgccsZ5~KIr4T>@Lq9<5I?Gc8uC}>O&7bPwiJY^=kgB2iwLQTHMd5ha zL#z?pJqrorgO70E9}6^xt{c1)L+7W{qRLjJAkBsXx^YKoD_0wc)*6pX#%gZA2hhfv zg+k%r@D3G1K@^G67Vm)5ts?Mfm&y{gL%&QJx;sLlYRFDq`n%r>+T0U3vNO!?!tz_-z>WTNlh`K4%cabWyT@HEzLez*w`_KYd5^j?(?mNrUESpOKAS}bAiv&D8l1CU%J z5g)+|F4P}DZ0GO@zSGLz_HNC?x1V}E< zL%{ff-%W`DeSxpn0!&g;Kftao{9;D9H(9>Rr}W_DRFysNP34FXsnihJ+nZiA96PWISmg?frIW%;~mhUkpdt*befm=vt zb7n0wuv7>|Yht4}UK}q9>>ODO!p76B%Q3DXFk{77)>iaW-wpVqY>&5w5MuSw2t;d1 zyzjain!N@$+kMo!mQ5Tdk)Zcau zU`ni@rZu+)JSJkO1TLo-f9*EKvHolwG$kUtW~5kU2%>Y9&z(l{S0^3%OSlXJ1x#Ia7kocdBXbvCBJbm!Lf1Dgirav%SHbLug%<| zP&S)qQ_DwrCMv)#-+E45BpxzaQI-t$O}gsmb8HT4DbaUzv!8w?MUisH#VlN(2x7$< z!xMXiHtu=Cg)jk2<)>4B&xT*+{{dnWqhEv&D{ed&yllFF#P37QJ=bGpT04AV z=HAb(9iM8v|K^%Atx6o!;F1ArC9Q#yEI41Zuk0J#@lbyt(DdagyW(dcCS}eTygN2* z1(wh_8h0-E2PN>#kqF|+>8;?zp=7S%GiHcCykDERLHC=)<#fq2c`0=3HVS|qitwP? zHKldANV|ETRDtG2cBh?HQ;m7Ou-J}a;344VHYBq%WvhOz7|~k5W+YYh-ck~~s0plx zP#n1%yGmnt;qD3lx)Jy zJcrI?=)Ng5^$w+&(~-7sPB0HRC2qBS^elR;`()c2B>?$+IaFVAJ5$YZEJvfg4fEi*vCqjSibC+kQ0~vNt)o0cp^xJW-V|JP!r~Y=FW(2=Hy3-3ZZ~z0=??Z?JqT;0;l;ScIJ^! zzC0m5?&=aJ{7V1nn1TgfocvgE17_>EP`vkVCkz=}#S%-d#g%grQ1<04|gSrJ*OLLfceusdyK*@vFuPo8W)K zm0BfVxby0}^u3~<#~?Lts~Y&e_p*LU4M}}(RVRQ@8JzGSEKSEj4_e(;CW}`eZfU7= zY%^iQH^qqAV-S}whLJ==x578B^MwKxc4b=RCW+0i_x^IrIS&c)H-Ow`i1U&#H=hq^ zGeq||J}<<@X}T5tVqLMDpUT6U6C}xio>AXr&qJUMsn%%ztj6L}A}%x_{KnRdnKI~L zoAG-sSZ_tCS+oUR5TZU8J_H?19XpY4>7>7H3u(LUPMiyLAzZu*2MGl7z8gn5d8tL2Lo4p=lTxQ3+@n;EOA%3t@^ZU;}yNXDO@1U zQlfZ=qzW7mY%iq0!=@`+Mf4hNO3Dh}WZ224RZm}AG6UoijL8|2I-X5pDWToxVxd>7 z13&nYB)sW+){{qg8nE^mmIJ*Ti>m3xfwQ44#wTOIy4XYpZ=VBe9#I(}Xk2UB_IPdI z7Fp9<5&*N0T1A?64HKWlZ3iw-%%Zk6w5xQ>AnHgdm1RINW1w{>F$W!5dU;IKUj4|Q zh8HmhJ$O21j-BPa;^8oTR|%{BzRTF7Hew*aJNSptX*9Z-^Mxa2wngQ8U+t>=>3gWo z1uA7yYiVrAJ+09Juss0PKGdB^6+H%nfaIGy&X-fTu^IhV(alQkF4JEWYS&51Wk2I} zM}op`2Y_vN;$l7M9BC*rA9{ZE>KOWdy*`Xj576a2x9|&hsJy=u806J?oIf{6s4<#a zgPAm%`Cw^xqNkNl%f0Zv#g+FnhNe5m;cNt9*D+o6QzWs5^hnn2RvC{lG9_7Az?SMA zST@lvU>F!3?J!Ke@h;2x2#OM>jF`nM0(7<)OfpJm`NlW{>j;jY&r-gXMl{K)m3Y|c z_>p@DjGKmu)S~CGUBTks21Hg+}xVY7vrzP3E~%1WePna z0HDXXlc(+{AZufjBA8J+{Y5}i`NxQP$fLF#B{QB0ctn@;bCgY#T`oZV ztD7skmBRWts&b0lwtp5l#ZB%$$)m|2`JG)6G(&h@0$oiQbb?O(*@4r&mS^*MbjWx* ziav8FEKStlG}#cC=Pa_gvpt7=CirmorIg={{?x)lYfFg%KH#Ye`J}I-?8(XlPFL4> z*C>>|Eq~yeAr1mNam)Rcyj5B|lW2o{v5M3}M`3;k2zQ`5rMV?? zYC1K#RK0S4JDM8+q6v6g=2tlj=-Omj-&`LvVzogs)R*EH?4wk08myIH26s5>-9P?@ zO?>>rJ-oksc9^N=!1lbw9&(OeNbE5S&y#|l1KX~yS#=3c|DkK9fUgiai1|HPgv)6@ z-@_z1RdAKpch^t>x~WREhr!Eoqk-lY1qn=kuWqMxOL5Z|ipH2Nq#-6qkh$}v=5Fz6 zG+*fM{s3yT%I}e^`f>_*u)g&p~4DwHyE+;{KrRQ9)3R6GX-{9%~PLL zKFwxbT+Q?*=*u0ra6@2SkDP&Jw`sDlwLkTF+34+3z@K)A#kCoFfF9EZi13M>@4(WA z%4L}Aa!J@7l7pVlkW1J0Yg8r8kFs>jI~;VW!5THCF!iMxFixDa@p!oU`%t*k2L>fh zZMOgfT{Cq8OkZ7mW6dI;SFC-s{?uq($-iki2l^<^VG}3*`x7RxZ8KFndZivlMfX>3uQeztPf^W*2h6ne;)e!%hRk_; zOeOf#ne;wYOR;9~#Bl@#T6jk^aJ*=p4@8QwiMMl=^{H~S~GtWRe%oGeYC4uvMAZ0d#Z-{$ve=uX)uI9rHdtpx%%IJ`! zh$Kk|VtGI)>wppVO)UM0(Z0xX2NkaF0uXf`ISf&c#QgMlyxMc;K52tJYnD-n+0YZQ z+u+ZJ*H8d#@&Z(~dZCBENCrulF!ytspTq7>?N~APsC%+uMlf}UBAZotZAB1D=~uGB zuC8R$SzwnIu^m%#ww~$}hGWxK*vu%Zq8ZEoY-(s3@3+M3h<*KOqH%^vl&$VxK96JhFqSf+WmL#TPTM~|A6bZvb!*Q# zTWfJ1x5xxH^T*h^x|3382u4&9p_Bv^DPt@$WcwKw>K3!MMU5ZJzfvxHqt%SvoB9|2 zP=p!)0L9U!JjdzQ<^%+52f=z;T4jCnhg!CvS;wM7x$}X$O9a^Dp%7s46c^P z$)}_SsslL4iov`n>>J+u`T0vyP;g(5K(18U%eI%zlqXT0#&hqD&iO-E$xl>GJtdxm zBT2!s<1z6nvq&Lx~O$KCy0nrkvS(p0&jNsH%xM)X^YO9n1>*CXCfi}Imz)Xww7ngs_s=NK;2cX!GoL#=C>_#^JWxF%xY<)w*LW_Pp~pr|XBwc!Q#uHKXn) zeTBw~tk9g}m%zLv3>~SF^Fj55mD(Jt`3otZZWA@5;Vl_7w{S-1(c^toGgxpTc-Mf? z|Hz2>&WiaqTzPD4LGr}sOf41q=i6%U{Prng)$*d1#EK)`rJG)#!my`!8&5e0WJ;sg zR77MY{z&?7QeW6wqlcM9bm~*5&dZWw!0N}Nm+7ioeP&_DR1dw%3vV_%A{C0h&e{an z4or6^-3vpX)1Qk5>Bet&cO`rK&5IfxWF4WsDsEyOip zGCper=UlZAAAPID#ioO5=LR=%ANr-s;^9tK=2dgS^>n$MWy&$2{V7=>mq5X8G5j0w z)pV2R(sBA9YnT(>tBC*>{iY~$_K9qxnx=`)k?Uy@9(!vjT70=c7Xc6Y^RuCI`PP|A zDmk7E`V|@!fPx}^$&YvamR2yv?L2=|O1=D}zI?$g5GYtF7@TAg>MCGRyUqvDBySKC?NIK-Cq%5A}Yh`v&HSz>&uSa&2D_^uenGL zf_ZE4fS&wMK3{y6?#y{CZd_>M8Z>T#`gSS{9ANUpn?lxhTh|xUzNS=+4V4;Y!b#k1 zKWHbv0yf1Ff;MD})5y{?Oz3vK4j6yWAj~XSn`vFd_DDR~>rO2)id0eaU(!7*8MglE zAMu+U=l5MMc)k26f1$LZrQJupJMTtjf~25Zg9yqV?rJda&?2X49m zMildZt}m6a{J=Xa@;Px)s&~E6`?kI4p*Lf&S)n0}EU@5$xOQMa-@+p;c)LD%kQrhr+jZ zmO^vztN9gR6!tmqkD|0fj|N9waZqurSUhQ7NU9f zVsKjanU~F#L+6ny_aEUc%echuaIU$~?zo7~L|As5W>bx*-4>Fnqzu{;wcYf+`&r26 zQ;0w15`g)9sL-=Ho5&#^G2(B5^$4&FHf+&tAr&s?WOL^%kH_ock*bl`Y)GGXY`?2* z4Q_|K04`dacvUF-@3W_`J^3{M)ET;(g&a&50m)4*q`wE4+*D7ylr&$~ zvSQ&)`jZBe`*9)xI@IW3iB+K)GUNQAdy||puJ54fu6430C>sf&Y(3c8qjJzM-xn;R zkIby^vKOjW#W%QrPSb1ef$cZ0E8&AJ5nBi4^iUtfd#@tB;!C%dw@8gpuk#4hqa9cayFRwF1GK+bH-4;)KcB(B= zfN;oF0|Cg_$+-<9PKTbABM1q+^M->D!T(Fm`yN>H5Nr@^-`}HbE-B3X@~0(382`FY zKXtn=^;A~RVk0N;C(43;T&!D|cKG)ul06+<1C$gm<#gSEw2xEN!gQtbwY?*^mnD&} z^_Ir3oy1=y#J(b!FS{2vKMdW;ZQjzjSZ7h-UY-A%qS%Pp^=GZycdDrVnL58&a1b{| zOPHvo%z&$W>!{XSlB_YpVO8S`519eOT9Pvgk^v=RQ+cOe+y04IX)VYNH9l2yyyka6 zSJC$32%D0_Mn>0)>$hu0{XOYy_rMC!Eb3?}^A|L=w|fFdz;O)eukKzXff+dn-`_E+ zKMrqa>q}a;Hgc584IgP)h^A)|t(kvpVmqn1H@t*+^YcIMieM?tI1hKwZ0w4l!ynvlx`TUkEdfKvb!5KR3%2PH zuzYn=og5Yy4XoO#591@>Q<559X()FOHnG{g<#3JmUb116)7FvP=6IXj6cQI*m;~uE zwj66uu?~<8N5kDntKPg%@-GdQfT%@np~A@h7Aa^I_1BJ&Qfh z&x$oqOAVP1ySn~T9bXEU?)!BV=KUf#v+6!8tLisbxnz9?H?k;HES)!rgH3n!tNZH6 z)2OMxT=zbB;B=nvv)O}2FK$|RtlN}{ATE!X5h0*9z}`I8|K~oxHq_0>L>Fc*RwrS9 z*~=UPB;i`A{w>kUXP)UMFO{kU>J7W0Gw)76l3ofuVSH1#Xgsv$ok5>@3f(R){e}6f zr{Q34S%;#s1io^v^^A};Kbm+-7yRs}ufO>as!CO#3ExEnMbLc{aXm>`pUV*txJZqs zN)vENDHd7=;B@9BoaN#EgE#=Yxrd=;!CaQN0at@^u}92k8uX@8zSb7 zYyu|Si9lT#|Ai0)LaK(`d}!xokxIZ*dH64f7n~Ecd-vsPCYJMv`P~K{GOmey3i$Y9 z(wGru;Z2?r4tOZsiaMJt+O1YQ^a~^#zi?;?_Iy!pdH({(;wuR*pO|9f&9euvejC)K z*O!v`-w!=qyw{&~sxLMKY6))}Zz>A6^UQ_4Gu<=dpSVW61uqIFvpwr*X%SQ)xm8Sr zyQ6#*!f+IG2KdhemvECLFd9;QU2vlI5wGocTpDU{(fsD=#nF2xtH$@wo2qrq8su*{ zB^SWc3m0o9R15#@WG$7n*#exZuy7!T;_yjHizhL zZ9m4^cysyD2R&9p&4@zLsxGSa_vER6;?B2Vq zLe3Z9K+eeWu=!J{%0n(lb8waZ)tSz!NK_AFZF{H|rWiBnuwe~+x!4I9!(BLfwzavV zPJW}v&30k3>|&4GQpRTz+G#4q(b&`hY>vx<`mN|zC1^G`ei)KdqQ=BdQ35OFjR#w> zfA1|2$Pc0ac{oNlv`X0R*y!e17yZ0X%qqJDJj34bF)Xh0hToRoUM5=1DomNd^y?2b zts&-jUGplSFV4|CJmPSmrG(J;?7aH%jN>5nXE1H8 zp zAum)Krd=^eXanB3EXJsprPt%`#dtDBPL_}9kYXpprEmNM96mo@t@~AbN}OtBI?U+Q z_>)FpGd$L|2Zm}b(`GCk@yRga=h7Dq2J!(32_rv#Q!iue=3LF}dulGLb{HdfT=SJc zEiZP9()p`~uM(^Qqnv%GJJE>RaZ@0Vkqcgm;}@ z2j!m1ujq!>UP<*j+bTMQrVZw!;Wwv;2c9A5zqVg8k~7lRTU6;WZw?swF8RDP=)L~w zp+G4!Wx7vOe@vpXOIDAcK56h((SuOTboz|G*7yJ! z-1rYJdmvCt?=5sp`~WRKWIZH%cjJ_wiWAW?e_EgKcEk%~ySm8Sr56Zb0oQ#FnV%(8U++uGxDu z{9peIpkKJ0JGe|4m@|1PhJVfSo{rLHlWKMUm1?SwWW4V_Zek}3dC&rvVq3+KQ@oDf zP`as}fr-b962orJB3`=)XhDU|XM|9*Z4VI=0`$stVNfGz@b?6_u@@XbS1E4@M^cFv z!Epu%qmrCX%0*3bD00WPguRdJCb3 zr*Ba|W2v8w|Kcr$n0jpYKD#YscQ@kO*5RSm(A7E#0Y@3S^Sk5UDoL07*mV5cbLrZC z1*qo^x$qC4V`ue^O6F5eb=N)H@2t0J@O`1o-6Kwx&i22fzwA>|V}yYS_iiUKjCuRn zGu6&>ku^8J{gknTOMgV#I^N7SrG*U2=ivg2z*vLy7Mt z&cGWMGxqiTQp*I^cM-=+MtMbcNEgO`3B36KNIL7NCfK)+OM{e(isba66nsc&*hC&h zT17x5h7vx?5_%24lSQ_nyN!{Ihd*cHigRSAD+U z3sT5ZHkLfoz&?kvUG8qfp44N5Yn?L}*xD(X7)rv3MeBZJd8u=gvxVAgC!sWH+hG-x z+`y|zidiG>+`*5?6^&Prsm2XY_Y|#QdyKz48wMf;3>s$J&YvAb1O~JWIP&-0>T%qo zL7;Zy{S(q*@Tt-Ey<|Hm_BBmo8iqiiUSZT_0N$}45c2$a+bgbQhk?W+bM-0pG%$Ys z9>H*hJjvXpW{>vs{9b7VK(|ZcedIlP2M~veU1B+piX0@*B`#`sum-P+9Pg~{-1>ZU zAy{oFqF=Ch-E!9H`N~MF+m>pz=PB{<{xopuoOy5>t8$CEo#w>XE!pr>6g^F=JRiGAYSAf0Egw zzR(0%Lk{xV{xSu@8BaG}s+ZI{_*p|e4f*SPML;7-^V|j zvyM@w%Dm`+{Z^s`TLnxBv=~n%y@ae(s!uKM8`BhPxRa)R z(&NBe##VmV${EEnkI`6Y_It<|6`d^;QFNhLU342|r&*{5}g~+qm zC?(P54oC~J9iraSTBw-f{SMXO7YvT;*ZXr(y3(e8iw$VghY*63<+ZdBJ_)Y<;^+eV8w4AK>AmHDm*xzg}Tamh&9qXnkgc!Exqk*b@HXZ97?nR|l6P#z;cF&`3 znvg=T*&1DxD$oJpZhF{Y>eYz4bx=@YV|V3Ywr1GYwhN4IvylFg?%8lcFI|q5UDDBe zOM8e5wx#W;(d30nse&osI-3=w#Tme8D;w{#34zVlMBW|xzm1o>53yYn zG|9eU8}cf?J!@j;bmW}Xl5PSuWTs}a#7xbvu)EU6V>}@xI!rpXp{Hth)$6NVneUaE z%BI4@^Wli@T3oOh=sA9MRQaILDs91|`y(II@x-mtj8vYn>MOrFPcE2lMk0t-rJ4LD zaQl$y!A##i_bmqw!D2dc!o{CzU*D+gVaZ*R?c!efvl7X-O)l`>adSxn(J|LTEx~$D zM2`-QeknGgj@o@SmA0E|uS=KS}NJ>pygZ2)I?iahC&%v+6?TY|Oj* ze`RgmnYym`2dOo-h4Ce^K*GNMHNwt_!vISi6g@ z4D~Q*h~cWB3{V}~Y5vgJAVE7T7kA<{A;(}3YRP##8yTyc9QMK$Xl^viYoIcv!!627 z-Jv9aDG8jz9X;3B!2rA%4C6fIJn*xfO1$%sHC%`7&4DU%Ulk1BN6j=)uSWtTN=+4( z*g)iF3Afi$$QS8#$u(jPyS_kSqS&#R@UcyLI%`b2%&qeM6N4ysKO8@aa>eSKCL!05 zD|KBjui!P$gyndlaFp%H2m5`mZGX&uT2JwnBPK;N3uw_&r){}8Y|JYcwOl~T$7NZa z^3G7{MRC7>X{#Z&X5Mo7G^IR|E+{Z|N67EcH7&3uJ;u2~-Zbi}9;j|rS~%@=)ctfc z-xR2gr~Z|LIQ9y*7ebA9-@9}OWr(#jbp>-Pvlrji`~7VOl^2E4;zH=RSJtrs%Fn;weO zKO+>ynZawO}m=>5&i*(&EO$~&G z=w@5QEPgOUe-shl_#j75R(Z-n^?kfygaFU$HALT(kNj9LJd62lIP(RP7vykGB<1A2 z<7pgMgWpD2`|hX(`ElX{&mZ74-((k~N$D<$6Jw8c=wM;6%Wdsp`k2b@&D$x5R*GP! zTVvGjy?2Gbh#TnWl456qSE4?;Xbshh>1iHyGxqrAqFED@HfIT378x)>l#95QD8MYA z4>X0ClRRF9o8Ev!n++vSJ>ZHzO#zLojBTuH8bc=TK9ETbZ6;`-ZC9qNYpGsx*%~U( z=y@ew_Cxo4DRMORUy9!XYorp~L`T zw1kFZ*{?3iY1vE%bEqLLs*@0!fL`#9c5VsLtJtCcK^zAcYQOo4oO)D#y3r_nRq5j` z5siUo`SgxbQ79=-&@BF6?Ua1xPdan+(U?nagU%hAb@Vru{_2mr&{HkKDB7A< z5$G)gb?95H-{+M6^z%f@Wwd9&f+0m86P~MreKK&ocy8E#d;v9oUexZ?&ii2DwM~VY zDD+E+`$s+4h!i)R_{eCli%FxB$-fM=vQp)U6cDugv}p-^Sq}Sbdf1f>YekZIP7V$% zz=X}S!1w#}-%ZC!5T14rwxO`Szu3EFx4BYyAd3T_)zVfCD{$xb%HJVnyMp(sr4vt_ z9-G6G%&Cw1Zhb58vg$}uUga-*RcPnx)y4+*LM=?A7O z_UAPrXOxFkyy1Qac|G6bkuT(&5r|u~-9ShfRr$HeIGiUfcF!!w+r$eQLl*H*-*Oxb z+kd2WowvJn)cVkGy@ea{f9`gu&TZM#dmVY-LtrsR zl;?h2WsWM_5*$|F+{vlHdfBs1olOxFw?U}N_K9U2=>5niSskA5IzD}-Sz z{>ZSaGA+9LpRv17=Eqy}p)faF-#s^OwS~6p8w1*+0lqrM?V~E#Dg`YKI%C>3R=%1n zSYCuVydBWe796uhZ&w)8+1oYA7xw<83JvCdR+^oEpkccS5Gyv5GBrIQY|$}S4t`lb-pZ5li7B*pemo>4;A$}L@(&xdbq(^WP>?hVHaum$U^HKkE?c) z()-}M<*R@J(YX}=-`V1E4C9;>>SLN5ZC(yzav8o&#CUNj%8XhsC5pqk2VzB>!}tB4 zP4gJ;EK6EmC?@W*S;?i=s&4U5(Gg?b9EQVABt;nuDJN1Y5Db&e#`J>*Q|I~R&}w@e z5>~u^@^{$&?KIV)Mx8h?L?L0q-ShG8`<84V_!iZvQBA|nzjGONc+qv|pB;MPGArWz zmirsicmS=#f&f3HBWim>z^*?_fJA+e*I030Yvz%@1hT&x2S1m7-y9OPHueJ#=uotXnjK)|6b0?oWZ{R*eI z3Y90erZmXk`Mj+c)A+Q)$tc4=t2 zym>U{&U3TFV$U4dB$qq$APk(N9Gg+O_nPJkN2J1LT@5e~OuW`sveUfdgs>##rPPgr zAe8->GuX|7S43F!6`yF#+s(uU1SJtkxs<{A4SYP9XbWEunh7}Az|uB~ZJgsOoS*w~8p>hXz)$X7g>Ht$|MSiZQfvLm!6ui&rjy;{g!YOU4u4?)n_Xm;TSwVjS%t^aBe)~uO}l{~+g^|{l#F*Qy8+4u3w`)RO?p#8gQ zz|Y8t8>egBYAm^uEt(B~`SxR|I;c7RKXMfdL`2gBZc%n+`pmmAL^cL8t zmA^>o3-~jQ|7;#?ZR@1YcV#7LdQD4h*ZZuxGEW^+y`9T||MMf2Fi&^rqrp9f+Lx)D zZu8@`0&kZD1x=>BSk=6SXMh>lB&R+6FfDDR=eT_y4O)Zd&-cG08U(w#9~5R+snUA3 zDf#<#^$~)No?fd~mip=RISevR-^l0c1+lFOLUy8OdneTBHTPa`D8Ke{^G}MEXSUgQ_ddL)%`R8^@O)guyWJD)*$IEx9o)I-%o`wEgJ2FETzD=;Y3*;hR(hvN zl2ESuGpo3dmwc{1odJl}flkuLT-iL;l$>WRM|UyRMd6~nEbezg5pwyY0iRA8i!Z#5 z%x^~>2b(Y0wq?VgmA?`BJEog{&pIv&{^^h?;y`AsFIo;h7|8Cz?PGUbY)7!Br8tre zEfL@6&5$ZA=o5lEU0ysn4lpk$|5nRy-!)Gim{SOh>RPb5GiR=7ltONr(}^LOnvPz! zs)!D`a(YW@S~drF1x#+?mxVU}Ty1cnd*m%!XmP?z3_f&e66tZ>*^bywbTS0aIULo?Qmeve&bd%d*|0cV-P#Uz4u_wvA@A6i3^Sa_?QG zSxgQ~mLsm1m=jTc&eWMlGS_!cG3;PXbmje6J*3_XnB)hEfu0F~FGv)^TAJtihn;-ed@0W^nEHTGgt z3pE9X;c$2BKZU%O$-zc|uHxdWygNyW54@v&A3S$-wS|T(KLfaEZ}I%Xam+{5Tx{Hx zPK8G}0+Y>$-g}4ezwoh(9z}asLXz$Iu=KV@^+3~?(>N(H<_`oU+7Kg}SQMJ}em2p8zJjTy)@PlU9;?Jx0AHN(3b?8n66?(QGW$xgQ71wTX^fJD2KVg2L zBYfMLGhO<=43Ag&x5+(!qY|=0!xCasA2+rDnfOnN-LW6!HWhi-6t4?9~84(Rx6?d8slGrNCqsghzu)8?ZiU>Gbux#u zCMXZP_ga6g>Ha?{x(@njhP5#VToCI-tmTWn;TgPn}Umg?vFC^D_|-g?*&}VN9aZ{Xa-(@>}tNOROea?4cSou&$i z@Y)Jr$%Yxr9)x~7^HpJI!=vZ+%_)9|tt+j^%Qr_$fIlkGJBObzDO}CVmFbv|h`pOv z=ZgO|`7u|iX~#PEHGp-lAkW?Om1Xco>g;vn!*ojx499$Z&*-`OlpIN?r-}{k(ET_)FG3 z>fH;)He7S2|5L(t#Jq|~RCOo;-fVs*^jo*|!EVInn^Jb9{rn?WxMO!Md^aoZ6i>f} zV23<{S}Cb~$ZnqA*=xtmes`z+PVQK#yK|iRuPY|cub-5CZ7(J0gr5btj8X){He z#k0)2HA>UrHHcVFzmocayZC^jKZK?*Uh`4k^3qvrI%ioPsFDbNz}MSBs$5BRCZZ86 zJa|~@Ha};XuNritI)*~cd;-9`RKm89Esj8=P0@LTV(LE=e3xex0Ce#pGTXB8Ku&TfaVBQ=In$;j#X|RuIoaMWrtshpUv5UsE-H znC9Z0b8~ffUW~~Vg;I;3HJP5#X3kC$!Es9+$D@D3wRS$Ui!+pV=-_z45%=GeIe53qvF)mVC~syr31w*$SN*&lGzlw`anHcROXT)^v1~- zstka(Y?*o*dP4WGJfj|D7Nts`1xl;!oAHp{Tt1K0S(l1yMS9 zX^4XFu7(TSNbb^sZzGcuMc*!*Ifj(B4O{U=py}GyRO(iERQWN>81QDwhB)7kSwbD| z8kHB<^V$pcx83&CRjqNUYNd0YNXGxCU~1nS4t(6$!cr zkDio--|hO9vDW3z>-?!+hUv|%xF@tdW*~Ct^cZ#+ewMs9gi#C z3FNR*M{C(=(D6X5Y}fruC92_;!S}N*Dz+>Oe{)7*6)K|d*V8-O^}}}$dlFY}NY^J6 z2sbbjU=e`keLPjsxnOaK!QhE!6Jy_66RXDf2!EJ3h9;V?ngF|oCrc{P3Y%3w-6uu1 zUwdYZKmI!vQ08_>Y`!&f(Jf}C3jQ0?=6loEk0Fd+i^2<{fRS6WDl9M(VGv{qduxGhViw|($&O9 z9b5ZlA*N@~Pv%r%0o){`6@zp(7#$8Aufr}px%qi3J?g3sj!J2TpUSPl7Q zz}v3-L(TeXfYK%21&l;s+^tRz8G)j582|iLENK7s@G|H_PDS49VV+8J zcm7J9io;QzO7&d@3|({QJ$g>4sEW5a@odK%@#rm^InB-l@eL`sPz@^@pUqe*yw1+= zLtekY8VkTK+Xs+d{Ycbx*eLmc`Tkaq<7N8|>etzveF8|YMji8azIKlZ;`f{)%Ink9q5T@jL$&Ia=fm~t#E$tV+|B& z;Ff46zu9kf^Wg3gV%I}f>cBNaw&kC%9xrUE66QE+6N!yCr5>B%oNSxTfH;y=+!Fc4fdI!QS$tIXg zcce5iFxe&gmeMiG0H(9iYrtCi<0GqVpxgY(xV`C~;#x@W6D*tKZTqcEl~JZlSV$S$ z2*U*$k@r=1$B&Kp=$A?b(|)T^?`y26fhFtZn+^`00hMfJkcaIeMkgtTWM`eFA4q|5 zdg9t3&+V`w!8(CLG!Q4qh!C^ zr2~Hr*xq^77+&LC89yVuwY)KwzC)*DjFK0=AXdZ9s;dGXxd_~ze!Z`6BWY&$K}U&? zZHCD{Y1&%e=%bU5^!t;iEi>21+2-&Ox$6|oU)zYI`o!yvzzA}YX=`gw#Avt;$bRL* zU#PE5VYc%Mbp(7mG6q-legqOE{ZCL_yXa7;YwLc)@T!E~4C=7@i-Z81ZR83aYdG_u zlwLUb(Aq(BiuSh;zz?cTx&RJV8tBvI050wVmDhb&I;JTfs>#&afXABPUiYxosJ8M} zLBQr9Te$76zraTz*y8ljIV9`8JK{ELBeP_&G11bU`-2tU#gs zMtacDrMK39hQEO9^%c)Lp>D&D9!k+}bkZ0Rq_;&D2eL>-jdee;2 zm!av|I9;nW#pjxoL5b%DguojVqMT@ZTwdcmQ}s8oNrUne-s}*isiWTQ@;8Uq-PK#m z%oC=5P=D-KVibIKsK3(Ui zhAL?xg(9DxAGM*uJB3ZnSawFzId5+B z5Qs65gzAg)q%S^|U>rdp$gKbj?U%JZqA|{sASGP8`w=j1+vyTba0kp@q_L~6{AJDl zx{uSv%ePm@>oW3phMe!7t}S>M94<;dvP_Yqk?fz7cYP7EtH?P{Z~#2{KT{sI|H7@p zn|X@JA9dR)|D>O%?DyGi%v?!d+l;~w&<3Ux@B(MiNT6WNs1o*HfX~vfdblyJ^v*To z3+XdGa7^JsTdDQU@a}xC($clF)upGPT$XiIt7JQAs|LXa3z+(KzmS)00$K zrBt7=W~*t+6e38lQFNix+l@gcvqxe)Fe^6mz#h&!*_lai%kErI=k zx9m@f<$a;(6uY`2Omglleh>=|W|ATQ76THBYDWv-jiI&XCu~W5g$1XPV=x>1nMr#=c zyTANc?;K3k@#Vo$Y+oA|*Mg_HZb&U;$i}GuQczs^ewY)7`trHBNser3b4}!4{k3cz zIl@=i&ZC`22dy@&z|$2MQwVwaueah?<)-N?wDHU}$-sd^3E@t?4Jf}m`PcUxIZq3l z+x6DVhSVXc^RjWa%uDgFE}o54KOij*fIah5>#@o^Pwsqwzdk}TIeb+Gk(`PiTeEmYY)~cph^B1Y)sMq-aQOZ~$ZmnUZ zmrAhgNmjoiKesI}c1W-K7!tD5_REhnpmFjhQFnp+7s2^Zb1OEwibvGhJlL{tPV*x$ z=*rCKCy<~$G?{9V*1ZLd1ozh*TD!+6WA@ZHP!quZSwkLw7L8Te8>|s5JBRs36v&Ap zIpR#~XU})I*_%qBgjtb6h=57^knXuYN9W6b6xaGCuW`~Bq1l3a|-mK>%><+;!5&047jOsHZ59npMm3cqgzH!-(Y50F^PrZJKNLChJ zoc?S5<-$E_%tQ@$-&YN^4e8-sBFIMXcojAfKRts(nD%w#5bLdNfLO0La$gqhq3u|5 zNZzEI+kW5D$w1bc^}VZ*t8(cDt}&GZzq$sd=Q(j+mv!Af25(Tipw(au>-Z-krB3P1 z>DkQmsq*u<$#*j|Gu|B%A^c$qc2PG%XIVozr_W?&&$FMsbd7q+CVXLsC;c?_z~92E zXlO_q9+X?JC-5aL*&yf1PlH=IzcfbD+zsSUMc=VYo^J5aWS_0vz*@dtb779p%K2(Y zis$KVOru@<oJ{DdCs<+!qIk)^CeV_zm^t(ZfQVHk&k>(ws;?~mtRz^AZQ;~6L zsF@(Yh*1~8r_|BAXYK)$&BsN%pS-bN;T^Z<9;=N%Y-B}ofuxXDg2)2 z!rqv>LeiMB%!~E;T9i9Mx&k8>)UR*jw_>b0V0D)=%t!_M@i>FDFFxP++U4FFg6j42 zjlgTgFk?tLi!;9NP$6wiy{_-QrMLQu<_vyWdvNN|V0QFUNn)BiNo=NewqPHZoM@Vc z-k4kO9Wr~k=FH!c#rkjp0|7e@v%LJDA zzG5!R=PmKA+28-g>zXuX3`%lzwBL&F(|Xr$=r%CzB~fyz2FqM_kz}4WbyM>pr{qee z0o$4sTdAT*+Hta*t;{xl=~WT41*3Ssz{Bm-L?4SR|1zcVaGBMT%eE^}S4Y*bRkwv9 zbNlSHXf>HR{b*gOAePVF>j4(n9$T2P=UEZ6s9eaQyulW@?s3UO@cB!c+vM7Vu-#9U zn*0g4p6*qZ4&7RlyoJic;Vyk4VVr_8jSF}piPf8g(ntKWCUqU9{?Q6<$HGNn0il~+ z=E#umc28L8#dD{hh@+<~PRu>_^~~+02EQAkW$ZPII$tXWoE8&~*-`z97;hf9N?pee zrfl@(+?7j&YakCu1ti5g)Sp4S{RkByD}B5^Yp@ln$A4H%TQ8R7uc=o*9@)(vZZD>s zoZ2^MDR;Y1Hw2#Oh)@@v|LOVMSoaCy({O3%<*-KF!q-0Q?NLj{VjV`87NfDv{@?1O zYYskNi9Gs2g~Luwx^RC(C)E>^QCJkHOXk0eXBiuf|*_ypU@?F0T zAGK}Nw#{+HT5$9>0yjocwxVN*-`Q57_aRcJ-YTYgi3kmJHbl!N8)dLX<;bx#h7Rd1 zIQZoI|Ir*9fp+-c*|+JBhkx!N;3XaS$C(h3frVmLA*u`bO~&Ir-6tEMn82H93uIU1 zHIB)7dgUItOc+uGB!I0xzXJFC&!rPIwD$rEENJ{=^mSw)eu%{pBGomFTm;z+f{yGU z8I9oc-$X0VtYX!h``?Hzx#$^2V%4SSn`8#wNeO()BY(Ww5by-OF#9z-6Ch_WrURO} zXS1gKs<@?`VKWrnOK!=x+#PA|{B1fz{kqH#hTj4{^ZuQ8XqICrpL{`7v+FYP`@w}{ zjyeU7kn0nd?TB6h%Ss?&)W>)|g=?=vS-e9|C2wf#UgIViI6uC0{=ekmTgjhdzRlc~ zt~|&r^!Wmv;94F`9QwJ{V#TyFG}p1_^EL^+H!h9{e|((_Fv;M+Rnzz0-RFf^!{{rK z_3|lVl{H6$IEQt)46hB7hTeTo3|+7YOyB6U1Nq=FgX>y?{>mL4h* zJmLB2A{ng`2OgpDh{05p1tY+W5fZ$^^`S#76{yay{`7co;^&N=e~u4ceKK%TYxUX; zp=fIpBKEZm;n?*ImN0$}qRiHB>A+Iv6@$JTC)Xs~dCAtH!C3R6F-+J@3oy4y)ZK|) zs6K^Bcxn&4T{lm0suY+dZ*=V~T0& zf5V+XY4vCxWYD+|X>x#m$r)8X3er$tal>)cUm&l?mUdh=rSB?p(j;Yffg{2fg!xp1 z3U7#5#@)~;3Rey*EL~u4b+m6w|B>U4x6%88b`;!Tl;!Te4RZ)P7 z;><`C$jrEwv%wjS%zToEuRoX=iJjl zN3{-hDHj}kc%dJC1c=$}!DE<7i*#>6MIqf8cG zJU80l0ck9)mPMP(2O5uGEsVX(=TOsazs|_ce2cwV!-3uU1Q>dssp$F>`N*p|UYR!u z{@9Z#!=GEBE!7uqraiIx)|==xVo^sHk!F1OQCD9pA+^~d`~usEMuDCQ>*Ao3W_)<9 zN+JD$K8imFPZ)YxXNVv24G~8*d1wZ#-EJg(jC_JBa+k8F(q$fwG`hpvBp z>WPWooAfUv z18`~xYR(yTG&)$uK)IvQYGZa}w8o@X`?`#5goR=fDXy?|UCFp%wvQpPF(jVLT6Nc0 zt?QF}C}1thsRCeziLe`-?{VdlNGc0bW4_m^lJsARnZA>Ja({x&Q~MzQRHo!7w+8NW zx{=$z&ELQ@jo29Fh(~-E|MQ>pfp4kJPN@D8m*l~H> zQax@B7WA-sO>ru>dfkgHn&u$`z^^@dM*rBu*#KHvWo$`1OR<*0otd}Bon20Rh!fi6U{mH>GFie5piYxPy>8) zn}GD@#U1~4$1D%#r578jYKRT70ZaEU+rrn6*Gwu_MXu4B6P`4TV9sstc35v4EPv}u zM8~joH8_h`lYeZ7l7zH;eLhOPFjIp_1nm^|2wxJoyb$qRJb-Ly(RTePdEwq{2-5AU z(JSj;QM^%MQ~nG))?ZieT!kGfbiNyU?_%b6Q6LD=HSnzwvCj6}_VNDj(p}kz%~y}E z@7F$R@3Dm(Fr>?V1@b>CAviI7!m42X_%ChJ!`4fE4#|k$+x%ddCuP7T_Q&q)EnCm` znq%)ouVLmYJW(Cb4(JbysXk+ecCm4IIl%0y-sEx9TI|=yxiiR3_35 z4u(zr&lb6{*K&EL8^b$zbT4H{&0d`5u5U96nAAFi2W9d&p@%pjd9fYNJv*x*KtNjW z%zb=n+4V7DFNh)yxsxEfoWIeEML23H^B4_&+xbsLsie^dcF>Vp$VoTkX+c|#>}ulu zefniOG*Qidop#L&wSm2lkrGJ`1r!OdCbndOPduo1{PKzpNZ7684mv(G0re1oEr3)x zB{}-;KTgk)9pBWPmn4hH-WbV~t!yT~wXqI(x2@kI+`+JUukPHA>l-1152i2cJUkri zfoIfx&VTti+&zX93JDF)Ug8PFsYo9kn}<1{ZYRB4U_5aSS8%mM^=G~kYl^%YL@wkm z9&RseTr!wd)^D0dI%^1db3cgPFsv523nH)EWu2^tb{%W5uZqBP>wQkZX9wUJ#2%Uf zk}dp|l>DbV$EPYVtXxX(ByT%{pLX(#+4ehRI)1#}*hu&d@xTb_Zl6N0gWY{~f9|I)XyM^Cn+%$RwE$#5tD&RTEj(GJ zNXv7ixH&dp0ugvgZGzKc0QlzqR>*9^VJVxeXcO#j&kI&MiHYAw<(VWEYpbsS!%*38 z^Qw0@{ev6t4u)M>5xb^6%Qtip=oQpzy5c{it7S~9=$orf^ZAS|p1H>rdB7<*=~flu2f31Qb7Jx4Ey+=*`EoY29stOT?Gg!M&kW4?OH`zp?cC9&Dq zcRd{Z0CkgZ=vsGs^?b}M2gO2H7sNm3995O;-2~+WJUL_pIcx&Iq44j;o^cpW-GAin zed+f2WQGlw{2jG8S8F&~%?XyV^pA9pa34KCuh6{4lPpW3_VZ|v%P&TMa)Zj}D!0n~ z#QW|1YsrYtVix_y$%l3uvOmVJdS4bmG&{gIL+k#N5^y_Sx6520S)~nmo=Nqkw(e zcy0k!Cg7qATUB-63K&r_rM}JYIC>ZM8c$nwslD`&aVw2@`00A@^Ntzc!^&7@+5KLW z{brATzCwb>h(z!V0$*+JXR#N%;q5fYYkEpG9VPwDa|>7$+wWMSzS7Em4Xpd9`g;9o zgN5w{#6Fu54oPpAx<)wDaE}to-)q;MEmqUL(LOIe#Q&SoL!@WL^ho&S+-VjT66D9)%F?KniwnxR zY=a4rdvRWpB~DS;MD6SzXkzZRrKOkrl)P+`gItqZM%qc=7c*G&7^l*LDb;*EEvhq@n?v*())QSDR-fW1ReuxQ z$p?%+$4O<}1m*|NaR>*#uWM3iChlu$r|BgN!V|Xi7@Lk|*4SUu$TR0?zqr5nIGuLy z@VC0`t!A|(*jwCj;51(8jAH1ZZvFQf*2ZqH#g|)L=LF&jj8;M7{BJ`{Z7!z@fZW%= z=XI;k6wE*z(SB4OcoSn^8k6I{Qbglds8O7QWN&Ld*PA1; zOV?=PBm6=}ajZH$vQLC!&bgYPo}@5td8{(7o3Ww!Jz{Dvs8dT7ddJ?owfZF9i;Kb~!r-X#58OYZ-+qgSEePlvv|f6g z`}ac>!?)ZS+rq_9xitv#}*j1sF59!?nVnuBT~~L zzl~9e2}zr`B|6J7VqCHs9SY4c-om>vq?j$)S3cI({P=uF#G>0!VA}6C&#`+Gx%Sj% zmplC3_svv6DaVff%EDJy{TaTBh|cb~a-kM`4_2Lcq&< zxC-@A$zu<6zcoSWKDzdrHHx(joEB%_gZT?E^v6ujoY6-Y_cl+4DBxLKHh8r80niK8E8yIoNI*>P82(|8r3et=eeF<<~DN%16?ktO=KcC9lwXEo1ajeCy4Jbemj4JA7 zrtfq69VWK&Nz;EIZtZLNhyZE^B|31c?usx_FpV&f6I&L$q+Y#t`_#om=LJGbFxm`v zSs1xK8qSYtkW(6(^AR$dp{|M|qQA^Pw^G4wE?5ObOTo%+0fWTz!{*}qLSzIuCFi2K zDt4ulixCG!KcBISkUI`+S*LgKeW6{~3ZwKwD>~l^TL-eDPDfhvnfb4I&09Ai;xmk$ znF(!!Jh|d9e%5~lu;d{KpMl+y?1cdSPRV&KjmtYBY~I0;lRVJrnw8#A`;grDWteoO zqqmGrz`@t*z_aUD(IBCtr2&&e7mg${3@IWb9cnt~`^8Qd? zlF(ErVdpM7B*2AJhSyYuuV7Y$JQi1}=ral$46JIsXwO&1=kh)X$ZP{)Dr18&R^6p6 z_n~^|=4rNrmNE;mVkxbvlwZKHtH=YJh$#B-`0%1ifAw(-y_G;T0Ug*F{D*T$`Lp!G5+k(_tu(%gb#GLj z%Bwb%XnUq}NxzU^z7Lj%{Y4}f(=z@tQ%SX~6>Vg{&<%_lrgqPHZx^Gq; zU7G;JwnNLIFF0VgIUG29x2Y?d{lTUj)MD+b5aZ6DLu_nr5Oq)!1;@MEDio?Of7smT zwsXnqGo0Nb5`B`ZRA1(|j2R3*4LFQD^_Vo<`ttnOM11$&zY<^5m*U6%v>WMM41lRw zQhIll0*9qS2J{H(TTXaSo(fd4@@ueR8-sJJ+2BjnaOMPBA1`Kyp8aX(ZF~9b+S@iT zn`LoJ8g6oEhPtbk5Cr!HWcZcdCiLH86I1eudmq^3qzM%C-q>?$UMv)-=hbd8htMZ%vu#)<1;L#wS z-g0=N5nKS)D5ffe2i8ANMVjUDLz}_uBB+lzaJB|psp&D!>?@D0+*xeimN;9b3rAl`QEfjq?%WA| z8ID2(oA=2Sb@K?+rN?Mq9;T}p^nme{;W0a_zkUC0xsdE4N4{L`*#i1vrQa}Vb#PiM z16y>=9yfFBX2{s{)AVlltkhG*iO@M5^j=m>k9p0uP~8(>wX2w_pI<(b+Ww!E zpmV;esGP^@t9@fZ+>wuf^=K~Mz*UVje%A1P!a?`Jv10`tzN0ssx@$jl30WU9Xe&fn zI#p66HZRrh*VD`6#F>y^Vb1{*!$-oy@%O2-mNpi07u>dX12*<@O(pB?^d$4-W8vEq zlGpCNYI6POo>}*_=Amf0@x@*zS0%Hkh5Oojb6MRg@!SqTA+}zIy}!G>p1fJmjbsxt z`MFhcBfd<1_j79h*EfJbH7L4kkIPR*<=MVD>x`Ggj-a^5@D>lM+l3*!@8*f?Fnw<+ z*gE~8BCfqP=ZFMGnJ68H>TCQ_y-ZZpepR#9K;NH|a&T)xEcQUT=2*-p4CHmhQL}x_z;`poD;1fXY;x*vaPZ`X zDfgdh@6%4Hyui2KnA(BbDp7dH9Z!hJbm`RisAc`0Acj_dEQnp&PiU&#P(7Mb{3C|ZGClIlU*1#j+lVLE2uO>B_sp{1qP!;=}&i2_kF)_|1F-g=iKK$cU<>%pT{Nya)mQ- zJKAMu6^5ZtZ)Qz6v(ZRhbYoe!Hb}5DZvO6}JfH!ud2Z_c!&Ec#-R8vNA@Sy?fc_d& zm|4mz1?X@vpSj@dBIszPr$lQ3gAD*9a@?!wSgFiOGlttLabz=K?R1 zTMu~HR|d#8>O_sw*O)N~6L{Qm#N|-fjsD#wfu`iuLdg1^)3G?b!*MBhZ`xO*s>LzJ z{hA>&W7pj6ZZSD=$nlc+03+O-8e_M%_ogou>T9{U`R?IiPA25)37a_MNg1^1PgTkG zHzBSED)jG;4jYdCh)l^{R!7k;?JVQ-X?asmEe4Y!E1fCRwpsk!&3~~~KmWy;lpM@) z%iOkv4$*q`UZpBWXL!-3Kft)%c5tJ9!1EyNS*gs}%8|VvPZ|UmPFOAQTlS2UUwVwfyPmC-ZC);L1R_b>D6-VMxgMh+>AT_+Yl^5Ev2HpoFrCkg zf0IB3po_AJb$)BXP2V1$Zzj*6N}ZRtSKthzz~+*o&M}W$Zb0bpVs{v&2G)YOqP1|X zefCHyNC5e(WP4n33B4V8h;DkP+!nZhS^v#c$jYJ8R^cD^!YVIR9DSx=c=NCHbc!(# z_^`*X!S$E$B-gIv1-nkTu-RAhpZdwdtvo&(cIScft_2CKk@|btm+0wTAt52tNw^FV zjV)HV@p7Sb>J78w^hkAkC-nEj4AnYk2Zk?Ul@siCAoLyi1+cuvb}oH{9a7PCnRkd%2ThnW1O(51ZZ}>MdL8@TPyl)-5s6nXk`ObJ>4a|K$+u%wVsn zCM$*K#d*Ck`e#(}4P%X{@Ke_;W88>TIoy~{WIMaw2Jq-d#SE(8i?{sdR8R z*?^_@^rh&)Z-;B)XW1CZmUvQudpCj1Sia*J9B220V3KsFm2(bKeB*>#>KJ^?)MLup zfzJ~NtbvdBSiG4YU#uEwvd*<_tMS^88*C~xG3AjKPsL|)_z|o*QYTYaeSO_?k#Kat zYXd_y)Z($@hP5ChI^t-lL%c-Bv-^xWTNwZFETa51{DEMkr)!bnUsE?xwaf4HinKCH z!*$cUcrEvgnc2i{g}fa96TKMd^teOynMGrp~>-DR6;WKtc zS_DpR)rM^Bx(Q2vflQ9EmEb2H*ss|aQkYaxEGbEUkf1~WoCbx7-}yq1gh&advgsWs_&?_^rOZI{b0+$ z4Cz$oq5gF1Ww3|}-|1V;BZ3A{5iJCttFMFZudap~ONSTjBhGA9R8Gxv+JcX_gH2bL z!atf#MUa(AtX>vji$kZq`5RNMaz; zEu&~45kz07?j?s~<|eEdDI)D2HC)@>WkOX7;QQm)D|~5CC8gl8(^%!UKpAQK=BzK> zJOy=bjw`lD?RCwX=(-ha_GR{QkML^$oOxe#?n<}&w9d1jzGn|8%!hsq zQt8ljBSqJJkM^zMXj@aqi!(%D4ssNXym@r@yTZW3vDg0Sb?teSD{ z_u4Vr@p~sLIc{GYcolABtkTv_qInueXvvVTtf_5VGLkysFhYD%|dkbjq} zRB9&nMHppIjsUI(q68W~$dyG7dA!pycG9;k1B>x})_VGu_I74PF3e}7eM$K0caAIQ0Ph{5Fem5O`5cz}L-#us(Zd_aFzNn2-V`;JcoyxEPAL9~a|aypZo75BD=uVGV~ip-8?! zBVIuoHXOy->DP1Q!XO*EC!!!NGFBK{D^bkG0<@SJ|M`JWMuU=N_kAy^q1olj z@@)Q8G7&y6$9*{#+Mgr(*x|b=Sk^iq@`bA5Zu!K?NhP>?4)`DxL`OraU|!o)P1|i2 z-aXHJb{D$FtFB8`tOc@Z6Go^j6@R5W`(D~7?)X>}k)S3b9g~UZw(%$Wt=GO6e)%?8w=rXV>yXf|}DFdG8w=i?)sGma;jGe28|o z&hf#b;yhyo{<6{PbDa3~D|vcB2r>)HJfernWi>^SqmXso#Z*_idr5SyX_^2$-dIi< z=f4H^cj}`>7MD?VGOs%f&E1(rxt6(B*4usFUizVN^abCae{fGW#(%%S)EHA}oTt%B@_@qavMcv!h2Hm(Q(0UrM=li4P&& zpu#65S4!`eF54RV;;k$07nE?V1@VAXOXs5=$vY@1Lp@e$#~sv4z$A?(o?aRNe{)=U z>0Z99z4$|{J|J70Nn@GeYbg>sDUQlWIP+ovt4!Zdd~7I;d!F!h99HIMV{}X|DOZ#+ z!9L;JHAyjMVSQ?0qTbvlR4w+J5wS`Lqvv(J7e(xsF-b8eV%%;zl6YU?6w)wuO%ATR zv|N)0^FjzFy|$x%L!PFe8wxJ3pgGKTek{9@xwAtzra3qZU(_j~n@SOW7XNGxF>oFM zNwIB0z^OLVQdDiJ5gD{2?Ym}8jy&`?w086(VKK1~MPX7(F*Z=PCgdhegG-5*pq$S!dFtTv?EdrC$3U5-qw9`bPHfJWkZSDC2jwTl75($Dgw`p8L2i~S*Xzv~mp-zo z6Y7%`63{~{4_`ti@~@^xxX-rrFMsHy^6ctf4RDao4|bpB_w%N4?t1v-T-Z+E9FZ4aA1#*7W;z+I$65G_iDYEBboja}DlDEORFN5LL z7M=Io8WoHXJuB3BYNLf4>QJn-axWg@R*2uG=XLeQ<4mby250A6S4;d@iUA=?#w!pv zF%~@sJglVw#g9FfXk{~Z2@_AB9|A!1>CPKrd#72vYed}GGK~!2DjR@uBc>3mvGwXBtTX^vxD{|5$av_)d0H`=oIu4Rq;4Hq>6O zsTnjdX!|^n{lRhW#Cu+N4P%rX(dMw=b_eW;?=tJ3$es1Y_5HkZ_?l&EZkN?zt9ekL zbNDr6LVOH2B&q9$?{U{Q&^iIAyw+F?5L9?iGeae1ET;MAs=P^gnFPA|p`*QDe+7c( z;Nj4)Ki;G+gMZp@n{NuB2Le*n;PNXP6wKHee1_YH`yap)B=VvLmhP}&X#MleHfPZbePn2>BK_V_l!payOixZkl4` zY*N=kxm@IIC}(?T#v^wv_cx|!q6(iFI?%a7=zkuOQlv}(e|YcFC3EPA2*9-VWif)( z5dlR@yN{y*kaTY$sM09tWft3B`aLs2sUDCj-91h;aOzl&VN720bd}xJZDhJLe0P!w z0U?C#qPd+A_RdF9vaZuN9=;@g6;|t}D+bj$STrjUnTx#LV#|uojrqTBEoIbnX&f%i z?^P|b3`y;3r9e&5nj;kiqk)Gh)D2+>w3hFF*?lvWYQ#w=#wm~etN9FNox2y{lB&|y z_?LJZ@2q=ebYg^mZ3k82H}1Ge!I?T?Ex;M-D|n9am>$5Y0Ekq4<6x$VC8MbKOs}p? zceYUL+*21Jj)0&Cg!cP;=U>^M2C3Dq7w^3ee=g$}Vv3aXFg0hl2i+Y>3NK9yr3a^{ zsS+fqp%}C^;WVE3Z5g z;--rWlKPiGhUBL;hw4dR!`Yf5iwkXuF?=<%Zb?fK6rK zjbD4{#zR~y?f^DT3AC(Jc`HO$4YKr6p^Qy)FBQ`$&s#e^aIL!>ZNsxQ#?$L1x>MJ_$40}aTSAl;@fchT|FZFC2`b$&Wi5|O^8n=@&PDZsxY+vBOt?2B# zy))eLlzMbLAt@POlQnxd=OS?L7#$8`pfp3ITB8v|ao=pyFL5dWvSLhSKA1Y%{pGhKCu8a`5-R8{O zsWgvRrq-qj>bQ6Ysg0_!g9UR&RuyUN*F0!>WU*6IsJ>?l!gCq9-tLAzxTgWb^G)%t z1630Ljr~YMa+^4wXDu7o?G!0hk?qVrds~cPUli*9`!Cp$la=xOYYgRi;>Op*kHlMJ zE&Gy-Nmuq{ugiM_*e|ExB_Btty>d$Jpxc2rQpsnzXriS;F%tscV`-yde|HU>YXu8B zWod9z)b7c1==46?emK73w2ipOVS`OI?~L>}{W8e6WV?P=sHmeKH+RWYRE^if zp9dle&M7fVSw_;ookS9!P??RDUWce~q6#hXf`Nx|0rh_0_ztE<&t!hR4KYn_QWaVA zfs9?#8#`A=JaS6vt~i`DI^O9J5kZ9oQ}fnKYpX2X_H_$?sM8I1)nQ2~RP#U4nh^K& z+?Lud(_+-GcdiiZIf)U+G)?b#so}7t>0M z=|^2Yv3z45%YSn+&*ac4;g@8BA&bfD;wR!G?7Ol1k*t~~h9l;b{Z#pOX-iY^;L1@u zmu|!IUeT#bE)#A}?Opi~zBx0ROkb-609$n&8@1a=PVgA}V*@gShRD9l#l98$Apr0C zPvCVU?<_8#(nI?5E&2p9%`G0!o!{7(I?yQg7Pr4^x-Ho0xS7q59ukOd@oi}SPR^ge z`H7hZImO$HN0H}8ks{a(@4$+FT{WG5gGyc$CYk@_>;%}C6^&zP90R9oEMFv0rS!c^ zZ8Q*5c07(+pLQCdhKwEeMIzlwn1a*-GuX5aWK)4=k8QpFt~e3Q(aidQ8kV~{a`P^a zdGEtKXL|hZBitN4>vPMy^tpcQ5DtV3uziNNR;PE4HGud9RyRd&+*NTJa$vr!V!qL} zklnIVQ6cNbftQ2>XHr>Db)$*hKBll;Nfk8O@i+=P?GX_Y;S-0d!Dw8DGtFH2pv{K5 z%Cu(e%1(5w2#s*7s%JRT;}Lb&oeccl76T0v3qdJ0VYxptNX0`#D8E1qBMSNCN}+Zk z0SxDiR`sGM5SuWo08nl;7HS^fCse zTZnoYvyYbnz!ZR?h!SMuQUWa$uP>IEMTzE zADvSGOJXvj(XC4DHFBIk6S_~!7(B5It;#vH1H6}cmlcU=+HHG}wq9`oqxj+L%}Rt; zNk&s0_l;r1Y=>h8#>w7tAoIcT5U}-5=G0DSQtwTi_X%HdU&@vwpPJbIy?NK=`m*gg zW4G;F6Z;#g?J2)OVmfCOuc2X-uO+QcwOvMUuEqe}4)*S_+3A8>lVM#x@G66m!2S)* z1+FS9TRlF=PQSxx7n@E6DGdQrUngtUSa%S}RWdn@AN{nVE{*3^_gr@+rknJoPMMeq z_UAb?KiIqg6KA=jHlECn(47_SNNtRy&F-tkmC3zf$~kovp+>ix^;)7%8;@_Qat617 zeg=JCkd9wWk-h3xRKYTnCxL`k5AmA;=dnq^SvzYfJ_U6Ky*)CcOt$`U82E)nGkNiI zKP#vBYad?ERfapq~E-Q=-~@cpaJ!xa+N;Lf#3WvLd- zC^BLnc#P7_Zsw6k-xwyYQHeXMsIQ43C_jh%rmvUHvN_P&Z|ljbLha_t;JVt@Xk)`XC72g z=TK(D@r*eDj_9i5FhrqArzX{*_`x#TDQz+)BP7sbbiB6PBj4crS=~4t05ZbgKnA-^ zxt5i$)c-3v;pp8_L&o z$(8@ooh~Q2(3JHG@mIt;HXhHF1?oC3YoY4BIP+tjvpF5%gP_!{ch4V8A1uG4_1$OiTuXZkOO^gch}bGa zR3GM&r(@D{tvQHA0Kqc-E%7f^OjT`0U7!O`TW%RCZFb?6eX;cSq4sT+r#G$J=x!QB zaSxk@vJtxYeXVhx$#E&VHIZGRj^NuW)gxz$B;qXrJ_y? z(yGJpTk3H7P#PI%)Atj{;`ZKJIY~cna2X&)c%DEFK7mtxG4m+Wbb0k#F?MbhgQ=^H zYb=NjFbg#wDJTqT2MOrVQ^Y`nDI>)*22EYQqkjj#zmp<9@fzrI@ugu%yky}{5TWI! z0{5Yjes&f{=)Dw4UectJ_h%8^V?6%R0S)qF`I$@(Ozal!9b!kne7y8p#;FZQU| zxKI&~v{BB=a6k#waqg;IY*;D_Hk!K?*e07lpr$F4ry>D*2RRs|d99c0l}FiC^T53W zWeGjfuzB9|9+QHBOk9`faDCT04Pfz3Q17(IG`v2y^EW)6j>#GX7}DtbTns(0#%1X2 zOJg7keffBi7GNq(`U+%F2!7W~z?F%NhFK4$?Oj-ppA>RDq&Sn`c-?qa9rs?%OwI;( zUER-a_7x2?)Cbde5xa#TP6V$wi9-5uTn85T_o4re8dIZRQ^O>^b8G4M zzk879b477%RX&oyu5ODZ4>(ND;N+A1hxvyW8 zmOP^2HD-PAQ-8uhx(TS&#AE&+n!B#-dFJ_;2psLmKOHmbW~u>G@srj904iZ~iMuYd zTi^Qd1GzDiDgeVr1U)`z65K9jdn#W2z<##d?hlJyF^T+0TKXTPe=NYD>#E}#SECfP zXN904;=?WX=eWFAdSk#5<~lb_LLMV-kk&6&fgo@H=u!^GoPq2n7me^{d-(ecT!a)5 zW9|iBqoRd$ZN5hc1g;yiPw^-57 z4JQk>@K5AlqmCCY?&M8kU6)hufOTbT+?L?AD7f|y=X<2`AOHQjB)gx=Ax_r}5Po?<#w4)%t)9iU2 zP=$q2bLdF%xV}ZzSAR6W=nWAJtRgwy!n>8Fq#_g_^_-~7+Be3Q8X}2_)q~s)Gc}U? ziJxV~jJ2}t#R9=+1KL+JJC6bSwf&-lv?ESIBC}t8aJe!ds@tb@M5QiPu6s7yXv)Zp z&q}mS|FS^1r3^*1od(tda$tk8`*;8(HUDju*MMX^;`FOx#EL zpN{GvcVaX$_($IH4fkw!EbG2qydpPFDPm4q`c#IDj!|-Nkv^}$^kDp8vNfIUy?LoHUm3*60m8-kQia;&XX6B z-Fn=SNs&PLSp_(M6JCk7B;lUbnG{QMb&b5OYXObL{d!Y&tq4y6{$VQ}Tp3gDnuaBb zg-yC4b(}4*a5XY-NJ9=WNYPS2L!c2c$0@DIMZIY^y5Nh53$01bZvUuK;ptuG!Fbsh z*M+=Smd;hZ#SEgTH-cr<4}R-vnG?HmwrwR%7S3K3k%p!h1oT+`C)%U(e+rExEl&PG zmZcjoeHv!Uc-b#|ze~7E_+o-uT@WT+ZP;sSv@o@1 zOJ92t)C0%fb_Z#0lAwop2()hKf>ch2Z<5h)Qhr3P-Yuhyo>nBZmrXyrX-y+4o1_OA ztw;Gn-zh|j^&Cj;GbHN?_{HJ)1HtLFs=Aw{3`a{0*8WI0Ws^(fBKj?^mmxk^yFr~T z{S(`f@r^4-*-wt*8^iu?R|!_b-)kizGI4#wul*N2kc&HYs;4-RDyoV=rZY<;M;SpG zMi~K8Gj)5hlB~#`qD4=-JopL1y^$|__9ag-N6$0RxnsJfTuVnOjI^^Id7SQDPU)UA zoI?o=Z}D|sAWsSR0`nI^at8`zBaCYHsPgtSx%L4oW)Z2++JV`5$u3ySQxU`09j6yc z==p!;?iU{c9I#iQ7BU?}(eKwOXjtciIzfL}H2<}cv-#Y7Qo0feON(Q{to@hTVdSn*#KL9F+&ocl3 literal 0 HcmV?d00001 diff --git a/fvdb/notebooks/img/sparse_two.png b/fvdb/notebooks/img/sparse_two.png new file mode 100644 index 0000000000000000000000000000000000000000..dd4e9175189a71d2ee41c41d9bcd3cd8316e70b0 GIT binary patch literal 13682 zcmeHuXH=8j)~yr)r5cc4qy&OA0|L?oLPwFJ0sFw@-p7-@TV|@4ixOd!hzHxr=jEu08>}Tz{=bCG-{h%&g)Sy1jdi=i1fjqAq5$DC%9Tk>&OvF87+jek&ne(=CN<)U;7(XA@HNAd=C)TJfzB6 zJR7I2v~8Yq$39e%R2EE5GdX+Z0phJKRP6+&@yaL3l13wlVFSAg6}(jPyYcpRRrm(vhJ>tfp$Zy9oJ3h-`;?qjG$OGZf;K zncL~z-}2F(*^*DPNhXoy{ONN!Q(vCwFq~t=#M>DvE^Zh*X3Bbg#F}rEzyEmpC0~ri z$3}9_%4=oLPc`B=^?%Oxe0^2DHDenq*%^hoT4>Qc+LEQ{n*B+tuk{|Mf^2ladVg1j z??mdvi?r+89n~udG)7!n>3Q9cOAaZ^e6%-hxJBY4sa|kujPKxJbUakH^ZEHjEqSZc@dI zww0g4G2dCAciLK;bJ$v6;8M$03=p^TU3PJ;3s6V1-}LIenFphhojT<){Ujx=&$&`0 z`kKr8?|AnXk%@_Pm$soco$cb{cEvu&;!jexL$x9LLr2L*X=NIN%l4D(CI6g>HcBcI zLamCrlJael# zfQ+WeRxkoCFt#!u261}d9SB%Ri`u;{+?mYB&ksx?ol>mo%)z9draOzfRBt}rY!BL_ z$EI8lys5Z7TYT@5|4?_k(!M+^eljOcQF}GK$$!XrhvsMWaEw^BW+1L+e|G`4*u7D? zk{~T+*Pi9HhWF5u@L3#!E&89l|197tPqsG~hz#`akxBjhDVTu3P6=P6N!cGenf@Ki zCCm+2#~pqb;UCF=2dJHjG>P_EDyV7uSgcKdg6W{Am{87*;QQZBP3lhBo<~JKM*K*v zDtdLz;78@Wjm=rAGYPC?8OQpm4nVDtD4p!7^9L6`PA7u0MndxKmK)zV|ABe_+Y*lu zA1+~5bq9<)MV_ykufGvzC1d^-xg>jL?UJl!ww8DQ$2Y~=?SLPDlBwvLuTcGhdGG?~ z2QoHCOMbm9N70&{WixzH!(5+BjY0*x!N)J;2-1ongC=Ih&9TIL4_QODD-_0&?}mJu zu73QYp~Dxw-RyS6S!26cAlv^7yI1!O+se7p7-GMpLo(O==HBK6-!8g&Z|C$6x_^eF zf8WkiL#RD!bM7!Jr^poB)@Pfa_?ibQ+s; zId`;2yF%AJ776}TdiaoI%73M7;N8D;Kn{e9OJe=c6c4K!$7fKQ~~^^46}SvgG2cK9Ii~_0TEH+cEok)co}^6#gM!cz+2W8GB5-`3ev2 z4YY1_bfIzb3w+3XSSAoeF{d1mQT47a!+wKZE;oT+{cXi2AJh6b#SKM~=z;SpZLd-*6C(<=MxGR@jPJQ!+n@TQxsB(atDGExaNnE2k zA3R3#-U4h;qxKYwJIyUC?Mg0LJ|o8@?AkI6YSFr4Rg0k}uPv3y%5rvDyb9_Eg>ZEm z9ZPjF%wCQ4S0!-4g;+1BtovBgDb>3)l0t=5Z*Bq|#n2*Lth@YuARb9YcXmP&+B;UB z__ocBoTac-vA5KT?ZWze|0l0LCp)jffOQyJX>Y^2r9^tbhnGP4Z1q^4Mk`U043QCC z%H>!hgA6!Q{lz4UUB>XypoMa`(N?KGM|x~&pR+^hVBmHuW2j1!sVYBix9&3H3Lr1AbNmCnx^J)5heL*53>j7K!0+2_#T?OVj#x@Tw>sETr ziF?S0Gr*v|;fFIdxyVl05T(VWGuf8;38d!?8RTNo{@ylQRfHc%h3;-RNSWJ2xWt$4 zq1j_GCV&F$M}TLQP|>>{bzYzfK<8%#vfYU+^xpvo!sMnlvI z+xqZh6R$tevWhGe#x6Won?ZZYg9FvSkrczMgEelR>yqofwpfid-OX$ZsDWc68 z$p*s5p{DNmi0hN(VZ!5DDBFlsawsbe)YKgB21>waxh8|GB>O85eJ^2#FJZo8IY5P( z`!73mnbn7qpS?hO{_|s11|W*H8H@3-dR&{_g5%Q*>9+G#D{Ti{yFFjo-kK>VU7=V- z<;o%;s^CA7YKN&^-B;S*Y&Q%|JLiUB+Ijz@pt4}Pr`V3+{hd|u_kQbAFAJ;hF!(r{ zdC7Urc2f~3*er6Z8yRP_#=aQBL{s%yvuLZ9GO>T<6q)0d5yi=eY}_F8Wwc6H`QUm_s@z3%JIa=@G zQK_~uwBptj!VI3_zuep`Ib!%!7iBf`?fJyjnyt$dY2I8K9G*t*PL+KgIk8g9p~d`F zpNAp@88=l<5~te^ZMh2467bM>>t%kcWS1E->(0z`*la2$DVvspfd?pgZtsTr2`KlX zsBNZaXLD0Kc_W1f1CoIRjg=Fx5QTLlj9v_t6#$GyeAEZph^ViRBf^a+F1z^;ZE&kb zJ`^eK=3yetGrY3P!Y@@TkzdViD1@A!?J|4d#;`uSTf+%dZV^g@Dt>Em_=BOs5+k0x zO|&Q`p8c*ZVPaw3V()(%NcgSI!mH}rHOkWXsl2kHq3o_B{7&X7uanLzC^GzaPNuW~_9{MZX!Q0Opn z97rc1;eMq~Lu-gpDp*rt*#nIRWYzaW-So7H@0mEz$tJfC#30abFAoKp?tgnDV4De~ zA594uF{np#$f<`QV;mQQb(FYMR=ch%9R$7Fj{Q1R-nR82%nR?PQ4ESm>jK{OkV1(8 zKo<~w9H0Zahjn4(d3Qek7&Kpe`+h^zqoPB{fd^+S>VFkO_gOG6!>Zu@S}$zAdV7BC z<;y3+0mdk+uL;J{uedZBM#XTog!BG*@zS>1Po8u>ELI*=du&G=qL^sQ@~YO}Kk2F~ zBQ@iiXWN%Ytxa|C`aZtT_GF`0k+j=KZQgdAM9ylsa&la9S<#e7zp7jXUDPDgMh%29(*s&^A2E*BE`qH&UcGobrgG7ZEg|0Oc*r)xblfPnXGKvoExVB4N8If? z9~Cbj9WKf?Gi2RhhW7;Nvh0Y6kRpGGCbBkCNKbLoT0L3uWAYTep8S1HBj>XtIaB_N z%BbWF0+RmDa|9^;{_THIB4O=E3Km?T+7#Tm=aOLD;lf0R*B#xG+}}pr9IhR)&lSY~ z0!l#PFQ2Xb8)i$LEXls*5klu80S3RUHHo*+s_zp)d&R-lBLIr!mu;sj^1{XXJgSuH z*Bbox^bBKW*jR?ddt;>sy6>?{o{mR`lZ0D9Wms*WDOF2@o@MX%-8$Cx$-u?YL z?y-F)8PYwaR^KmA5IX3{qY=L*X?IIMfS1Hf_;XEAP%$XK)QZ*z`~>WR=#at&39+s? zh+PpkXTVSW;yN-mYtc&-As5^iy>Y>#f*r>(Hy9MuSa95~lhq%UI62S~85{ z;`I1Vw^OKUYDEU$?l0OIi4hBJO_jhomJdgwn2~jDy6)?6F1nioCoPlgn>$`VqWj0~ zp4L8lT)PBgZ+z*u;rW#DB$V|i)KvehFzmNcX&4g?i4BG1!&n&^e!HX3)znbx%BU+0 z)Rf2niZ%w3^9Ugn{l_iqWAra!PO5zfRrxFWunrikBl^#qO0s82vRC`xOz&OHM+>%r z=Y|5s^Y4D7-S`lxMo91JzAF6>SJiW8}gu9)6@ zVo=Mhk2#6>>n6UM8?E(elT$HUg0h22;^voJ*wc%dw-|+uPjU68Lm$9Ozfi&*I)#gy z`O~edBP7EaY$*PW^gBXS!~TrwJO+ap{WF4jmCs-u=l+b=v?y3On*R@9SHJ!#3{agw z*N5!eU$pei{Fkt{!}Sp?o15`njnXRGKNIy7j~N(Y=y(h6rlcoq3|-~F`Zt8=dFy*l ze}UfESRA(fm?Sun=1_nd0cMDJ45Ns6cEFkmLpL9(dlL9yunz$8#%NsF&hA2xUO{Hc zo1Y;U)OyQYTnIu`ZNP+}`Tkhd7Y z{dAk@BsA?L@&sU&oWJ(#!D0zD@?63|HU7X4kbL*l05koKAr2P%6?4paR5JTt8w-R@ zA7cV%RL%!=S~$a92sAt%8hmg)KWB$&wmTt{op+YFvXMdAIgJiuUg_0LMpYYF5Ej&% zt>s$PAH^M6#o?kdR8;g5jSp=d@hXv996FE}60hHOnhI^=g(LSjv-jbZ^Y2~~WOhzB zsJ1@==f_Y17t1zj^D@6w9Q>tC1Ic%m;G(`szeL5HGv8mCo~7V-Al>ImzFwRF23PAW znnA^x7($#K!?>x-fUAtz2aXq&``p{Ev=9<<+ldO=R=e4@aFKbd+9KcV$1iqujdWlg zvx8$KaTf@#%kCx2-X+Y@czP%)L0dT8JJ>ky{w3bpxvFKPU3g*{MH`}3)GFR$&6q`7 zc?vFrSBvQLwbZvN$}ehUjhN~yb762OeDC!p@pI=jm&};H6J^}oQO+?UrBPNtr#ftF zcGo2Ca^A6Lz_EMWlL3)yO|{En!MX&luz57H*yS?r0S9h=9Ejcve6cmW$@)3!HjP*u zF#2{8o$-|o9KfD!P83M5@R+n6Vm<6%q@?Q+u1fJqatd7|GBvwL6sMNHC<8ryP zI`hDHX+7j^s3aX_r|tlX2q4^GyypHhc_gL2QM3;>$nrml>+&0DB3y#F0W35ISP__h7Tu&+1iZ#EqX7}~!g&5n$dn^-Ke)C$Tx-r8= zI8KRnh4l=;rh(k}tmVN9LLM>;+FhMU&=EzA02g0`bZ-Fc$$mV584DhCBZ}?Xr4F1z z;IHJ=u6bkwg}NND3?EV~tXhut9gbkal#in23|8C$YbZxju~=O(v3bzSQbGHQDZ{@> zl1b$_a9vak#`j%n#}gsMdaoZKsm@(%P((e{grC1>{_eKcTEcCCm;Kib#4T%&6tA?& zr32QNj^^5((y;xKt2Gf!LK8)72Ql6-miH|OorR*j@qX{Y%oE{p8l1j-CJhAJieW?H zT-X-KteB1E7BPB!)|#Df70BMGXZveqHEJH9AXbwAE)$}&ux9TLq3rI#sKq2qa@obe z&ttlIjnHAV_{q)5?Di_^^^mej_{x_rVEJ4Iy>P*jqx1)yk$8F#=xk+_lzO!I0roE^ z7;Q==*@L_RH%Q_pNatq>xgX0OBUCS8V((+9lnMLg0pI0nYA7pcVjS!gpt@i1JzsW$ zbpXo_nF|9$Z@~1SS`S=QQIU@jY`khLp#(91TI+>BoAy~!XfLziM=+FG+eph`yzdeQ z{7$2$J{St5wRXZkO$kyapLIsw*Bwd1MaR(~Y5(~V3}9SA!hKA$c&@Zhy@;TOLHPQ0 zAD-csG;x!Q%ib9iIAHq>k2cf@-lJWlVLau!^L)*I;0j>)$q`Zi%>^r;wH~_zvc4Ze zYsQ9dIa#wc^AdJSoqb^~+}hvr6?a8m)}7PQAknAhWe3W#Qv7(^WuY?$a|5=)d$6X> zPg0jbp;kUd@18U|MDhhY7*oR=dCj>3Dk*lCnvKyKI9Ym#=-8W9wNJ8>o`sf=7b#PC zeXna%fd5<=RO&Gy$HWkIWg+SB#fZLxMNfatODE^_sg>WF%6U%M-SSHf^b=U7>u1Gk zcH9}d&l7iLDXp|h=nwg1WHvjLh&XHD8~IP3L;C;7FT?ok@2)3Ch_zD$SPmn*9s@|o z9>IZ9qDqvctaLg-nwjg;}r@vy8h#egjY9C+emPD_N2!cniI?|>K*cL@uy?2{1Y zjKZ25m1o`!_`z>8N`kxAgAI;|!%hPdsw;|5PRgeh9{D^fc5_jBboTq4pxTtdPu(tU zA*nTyvxw7#VBWa5D4le&^>G9x6Tesk+>)Nzdp83ldu1B=#ain`c0nC30K@WeK|*r} zRCz)dwa<#qpEJM^5daE1FyfT|@4Y;o0+W)jm8{+<_{j{YCef_XcL~d+5z=z5NQ;o* zb87i% zy*F!@-sJh^SCEQ{`}jA(88_ur!y5IH3mga4c_s3>bPh_xbH6 zM2Jz)gX>DPvz{R2Sfikn8jc>fWkHHZFArivagooK{H*SCs1C`v`dPU|&~=}1=qc?9b1t^fHaEohEkB7)7av-?~v6)tK#C z6Cy^Uk&B(3$4PH6nNrbRnQHwq7uDx;BA9)AUQKb4@kHghia7fE>hVZCvbO&2)JJBW zhOAG`5~f_GdKRF}+kE4GukN_f$98h`TQPRHW={)~%(00N`DFuXj*po>fV`IKxExm8 z!F=jV6`^_9?ABsPXvnz2I$oU<>?rRJ6huK(CbZKb$B)^a@Y1}Xu+d;mE1UzjW9g7%&wymQ-a863a>Um87KIofpeWESBWsrT_#wruL#f=&(K|z;ox3au}6VYkW*IIsb_U<133^ zR58qKDdmYL%T~^NXEZlUK)9p_{fjqy+5>IZfGUEO_Smw0ee2NG%J(2qGL>TAn~m+A zWo7N~hr1d@psm3F#s}DAm|7F+wvxpYT2xce_L*@FMp2)X5I3NeUYqC2`wz83D%oxb zoIw#fPFC_W&vIJ1@3KR%W6g<)OwcOh#$a#gIaM@uXKNY;9lqLADy4%#FWiP(cIA9=sK0B1nmlvt#*mvFO&m@Tywb%G_4yh9^!@j9O+-Ihv zfy1>uv@Go___!*gBeaFaZJM*75KTlm36!0#=o!p3t8e)MQq@$Bq$iGnw5M)MY}QYOI?OF?ET;u<5&9TB>oq&$ zV*0wk(`WY`yKf8XyXGPElU>5PFJ1sAl#TWL#WI~+0@XNbfs|1;8X1ktE=Wd9iD;H(4YIx~J zCy0=K+j zW!9gy9MN(VhqO4)2!FKy?YZG6WpWM%EN#%nhcR6awn0rZRBv|vyO|eH33mSKFx-Dq zZV>+CRWZ89GK?D2eKRjJf!Y=zqZ+p8+{mF*!5u^DaK!5N0zGj%{36v@)=9-P(!hMx zLP^OvZ%TF=^U9>h>s8b09>K)yh%7PsH0gwDjxX`rMITv}TuMF8VY#lK*zs6l`+ zf!mJ|kez0}LFo8x|MMhfpuKr|*<*Lyo1kQl8$>cz?hU~x>v3ZS?>9|Bb|FTykx=;g zsCeG$WEnDVTv&UVqJoSaS6Lg5I z3rWmexJaZBZn$O8gQee==n*4D<6?;R=9yiS zH+ELq1=5Wgf-fj7?v6RP1J|Xer9*?uX|3P;I>;2|F!fkgn=97?JPF6R)QRepG0XSp z${}x+etdhLXyRNk4v}dDB8I$pXSpT)ZS=UNM%M7w zi5Eg=K_+XiEbAVE7rtLJ4eNhmwJ|Ohl)AkXHD_!mR>6rukQ|coH)_sA$Yr`R`Cr`( zTdWqU5xYtUWj#Qm0mgap;Xz&Shp;WU3+p&?$j6>xxLm}^1`$01kb$N+kQi+kyhlAdZZA~(RwxSE@gh~{TCtp*Cd(9eq^w^}N0^>?1 z8q~!Ko5Hk%cJnmi&XY@^AQtFa8T6gZ)E_ck_M5K|SlL}r1X90X%+$8$>xfsw9H>>A zcEGV!DY@C#stmju=(DPkRB(ra3R?yea+aPmA5??2F$h&j5#9|7cqAymG{UYTpMx1-JBP{VqSP?G?*(HSU@NWfa8GD zMb;Mipuq_}mA#AFCC7dx)d?&|i!AP7nD)2qZ|6F}dBj74krJCX?v$C|y1$$Ncq+HC z2prrw%%LT|Zn!sXZe4LnDdCV+0ZBAC?emMaKE=o-d!j1?bF26O@jQ2X1`V{q8#kllK#%8@3MUZ#n%|L}Uq?RgK-ovcSiFK3){ zvs(UM1RoOeTl)S!FT-8?mj198=eadtkVpV83D|9%ey?Oe`ff!DWHBE_tL5>=$%`NA zya7UaqR!@Iz4ddN{-|jGhpRhQ!wtlOBN1ZYl*YEbsnG#G$OX8$PwBs6lgGh_jJK<> z!IM`G{1yDNPr}@K2rd}8#McrrM-tljwy(SFETcc|IoG2$L7l9Yg~7(3$?XQ*X^9RD zFSU$(oz#eUyKPXCS!|41IfXw}yF7`Gstg=68BPdYrAW1+!5*0&*#sJez06-{z`ScuU2B+uOFw#6gk_PHMs1{!X=E2br-JIIecEHNO+k^6+p}9$^d9f{p|bViVZ4mxqY^pZZTN zO?ddCx$OiA&uN~Ux>R^vCIvT&SmvgxF+4r%meV}A%GcO= z+yzv4QN%x^iGqYIs7|ec(st2Z?+5`2OB-s96u42D_%6hDZGBz9*yzT20lePt<#P|v zTr?Y&Nfe7zoQ=uNDB~XUpgF5BxPKC|s&FEoi1gdbtA(wMzKXAh!ErTKN`A>)9_cGf zA;=|_Q|-*cATwGSSf5*1wiKo57zTZ1<-P+D6qmDK8 zwXZ7|ekl)8^xV}0H0GX#5_I!#17m8WJMfSwwGF{G9Yyp0N)Z1JA9#@r3%_jL!E`jH zoFG-Z_`!B{(bf zEAm3t8(|QmWLE`U-gF4B3ex%f)Bk14Gxi?G)Oj?Ns}IIfq}*X8d}};>8}Vj_1Ow|2z!wpNAp- zcyQ;RABOm!^I*-x1aROXe&iA+obC?*T51;&1uB-I{|g|p B+oS*h literal 0 HcmV?d00001 diff --git a/fvdb/notebooks/img/transposed_sparse_convolution_diagram.svg b/fvdb/notebooks/img/transposed_sparse_convolution_diagram.svg new file mode 100644 index 0000000000..c9dfeedad2 --- /dev/null +++ b/fvdb/notebooks/img/transposed_sparse_convolution_diagram.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/fvdb/notebooks/img/two.png b/fvdb/notebooks/img/two.png new file mode 100644 index 0000000000000000000000000000000000000000..a2cdf248a4d083324b3d124b947a486726395a15 GIT binary patch literal 15234 zcmeHucT^PJwx@s%l0y?EOP18oiXu^L$%2Sil1N4r$q0?aCJ3$Mj6?}yK(YiSrv?cv ziipG}gCIG_ImP#V_s+X_&HOWO?s_xpttGBr)zx)Q)!AqN!rq0wsiQ_sahBrLsZ-P% z>Zn_%P7&#WKm9YL;7CB7lE$f1avB<_tGChjey5Z7ab8b(n!=W#M;?8OS6L+>*wmVy z_na`Dp0qP7iu9^A8;s?)ykh{m&v`g3J4{r%;k7VLR*$eSPgbCqrZTf0a}W`V{`&o4 zrlc3^GWq38Lx1~jc6e<1aiextK5cm4z_b4F@%L}Osox$O?2a8Dnh6EdSw1WXJU&>w zujKZwpj4BI$DTSxEoPnjXq1a~vqyJvMzx3*BHHFU#d%aOQ47M%a@vTc;*vC@@hnWVMJ0=bnE8EW6C!-H0xyQts7l@iKj~ZU8DC;-2Pcd}szBppV zy>GakjFWFW&Fwa-7__xeP!?(8RJ*C2B_7FElph}(9%sp8HP$SBk&!k0Tt5GKtY-G1 z`G4gjgW|mm#dx~OU+;<>CzkcH?TczFQjzx~$;%T^qFGOggY>3QWUUEs(kNK@4eBR| zk?{6){P6)k;x2f0i54k&$|hVpVo&J`{M*9W-e1X`drM35GG9mAqHV>kCz(VgP1enp zkB@R7^y`6z&ZDB|IE5t_+b^S;I|a_Fh!Hw+2=BKXff7*KmCj9|U4qj8%d0kz+#+*TKA^Iz~t@rTw$1=ga_rlAlX#o>gx;SzrqXds(30` z7=iw>Ti}fAF8THLouJ%9F}^`dwtKo1);MXgdd8YV3B;G;bcB!&mB<(7pyWz9vEurw zTWJd39?uau$5alyrlUoSHMJ5q_xloDs0sz}O)Z3nES;+!`te)b<*lxF$(E9Qt^bNh zL)UDQ?_#}$o4QGF)XS$nGZde3B^Y+UxY+sr)6z%rrtqV(TiC=v?Qb!2dkaOGF#Vx~ zDYcB)qo5-(tWLmL3Mw&KfnNDoJ1z}(S1Rj8Z^KtliAl6{G%iH(zffaH=OAI*=SqC@ zvY{bXpP`!%I}?Kv!u_>^#Z&R9b@gm7{@xC$=#piNlz-Rdln}kE1;w}B%tvH9TvW@& zW1jrj%cl$u`yDLnbt`V*v`|e3huCM10WM`43qI&!6)f?jGX1sc$ceNDh z5oks3-D(;UP2HyUpy?{oVafgWzwS%8qa)qL(EYt!SG#{%)BabOq>}}!tiE%dL@`w- zRWMsK-pE>(=Rq3P9W&p@@I3fy9`Ez_sjLGRcdQeL;fdzlI~14I7FpxN(>4D7T=rt) z^5_}j;F3y@E?;9Ye3hG6(P&ml)Dz$VoC*X-uBbP`q7lU)XGX*9BZY>*cCFg5*&FrBX{#@8>2eFYW>MGYhM z?dbS=h8#&_a$e+L#uMnh;IGfXq;f{;BEKGQa58D^YdRHek`Xv3J^0!7scTK)&2?(Y zfk=0ZjpoCSPS3_p-2_9`0<&$@w}Tra@ZWAwlmyjHSw9F4W(yThU`%^SDW-o*>s}q@ zJ-@dt(w2v@c4sx*Rr+q4e@RLci-<-{7U#wO>-89J@L_erK-B#4bZj{)Zr^f#Dp9Ph zA?~#+f!=+?&>6O=mHmLfmt5}}1|uMJh3?9E(m+^w#N&^Qra_mx!nXa`1*ZDBgUD{N z82Ts2*)s%g2}FrZ^lBW4A(W7cOd$S|1?;ZlvShcE4Ux88b_$~@#QOnAt17E<;{1esyyYn8pK>?z4|o{sjew4YJN?TfD)VSt#6gF>f zcj)?kZ4pvjCHL%+ovn)UKbRDc#!o7Fcbbe&WE^eef4U*_v*q*_%SD^&R}I$Om)m@# zHHbuv_iWB=zp-c@BFSSD!th@q6_b@Zh1l^@&0_R>cyTFAX5bN;G#Gz z_qnJ#Uy{YTral777{ zEOjd|&)(}S)s&Jo#n*-Pj(8ft+-6Hs#YT!n^g?0>%{EjS^@t z#INvXWd=@?#55>{fTVFnmcLiZyh8-a6d*UmUHkWai6siSinQ++gWH*$)04+j(L0p1 zGV6ims{ek+q}ri!q~D?ba7)l**hQ_fQ{q$Ah{sU(X)esL8(v`qnXyU*|Fm59$@{Z@ zhIF)Be!7QdDSFk?b7wsCQ&R1sjiAnzd4A7E7)w==&$Q?_!T8t5i{Z!~XYb|O%ArSP z-P#1h1kJwAUQI)-Ba`s>Im;~ZwJb9e<)MK+ajW}Z)w8V{Uc|{cu$1T|5#wVgAKL#c zwb5(BL~S4MW**Nw)~u>}j`?nhAYvAihlk7lPNba& zYf1Hwuwt-5OZIk~@$pb@$BNa|v4ghL{Sk+ewO}iL@Y!|soO>Di@qOj!;OR&MEb6e5 z0nEiPTmB_gkWmVcYN8Fr6ozA${WitoJN_#~08r_CdhD@ttp7ZCV%ia#=Tf-HmzTZOt3y-F6+@14mG1Mm zwo9UX#WXLktR77~mvrO`wKjSc5XQqIPw`;edpLjPOqq$-9^WtSY7xOk4Q@i&|_v)}4-vkTeJ$p|iiQ1GrG2fV~* z4c}-bGb%zWm3vDsRICe@zcRMqH{g_H&jE_kA|l4Ps2hhW4> z=KMR~fi~qoXiezHi8?{KaMc8Y+WMmaZlEar@|;NxwE-(+AD{GGZ(z@r+Y4_LfF zuOAQCT>mFO3IAL6QRVm0>#P~a{X(iS@cN5>gAeknwIr%rPTRtov{mQ~!kr0|3b`ST zo<{nOd{O`>{Q3!PD=g*xel!cT?X{bd=`G_q54 zaG?yeCDLY))^8;U%9Gw_Sb|uCych`&=?#pdi(u-j0AD!Uy*`WN^EV!GxqrFpSX8?u zz1nqO@!Rj(?a}ulr}a5}RvMRfCZjx^{P%}Ug4qu5&!)LW0yNq;HmGkV7DDuqOMeJ> zL*uKu(PAk%3P$~hzR(;8k0usIcywW%T-RZ+9%_2s9TcD=dhKA?;^sI=l|l@|kl zTzYiiXUP9-D@_ttU{p37DYrE6(NcXio29mWTy$7rdl(L-iYQT`yD`RQRZp7CZH-UkhZZY4}~U-s9L92oq$MxH~5^=CeLy|1QMT<7X?U-_H0_ zLXnTniGmqB>m1Ux)`@vxY-VTXI{neI^%)Vi?r5_JA9xhBN0@T3c>kgQ;ob$g97Ygg z4$-I~_3RP#>{vTWW;GTu0aXxR`X{Pl93*hMdhS>|c8zj&=+wrExxl;@=v0amt|8Cg zOFyxFjlqEr>%j+vy0{^SX>mL&IQ0fEL_k8po>n>VQ_ptb?{(w{u?>5kLz&0`ohrf) zRL|T>G)gUOj8>yOf`2fA-?#*24 zMkae@hcV*)w#r7>?x&4Q)NXtgeu-K=`Yc-HUOD>2e%)tBxWOt7y|E%Uwi`( zD1pz?tjuCGlpL4Y{1VngCkr=eDSOyR7+N36%=s__$+G$CaFY8N4W~Ozs*tf8Ne}## zyB&a9xI|QmrMZ9A=tfQmW%`t2Z8{UHJ!=$X(fOrzoaJs3`{ zqkU%wl|T|_OW1WzBs&Ar^474MuIH%NY_*f`f{EZk!nsaK*lCKG(!2UA;fBdI{A6{l zk3M|ABfgub9Pvd>kB`!hQf;NG7|5h=_E^_Hm1i2ZHwLjH4y=js&0OVuh_?L(FbnZG z+Hu9>UA(6nw{JN%sb)%`8^u)gV{h?>kl2azg(mJQ1>)HK%EyCYarZP_~XW{za=LaNEigB zLI5sL=+$kX#_IZ5#sk_v>Djib-?YEgdW-7|idX4PPW;#u*bxJzUSu+m>NBODIObMTK{$80A?PJMC zc4Re5raM>WGwj$$;N3ai+2F?!{R+Lq%J&V=ny$3vcUDn$?SBg?isK(tg*=v5_CGK2 z_Y$N1KdwBEg_0v6r0(MTPx*~cE$gz>=|K4qvS$iy#=F;${1 z%=8Z!txsYSnL`P6;Z>k)OUnqAG3UDG+^l2)_56Aj$%H)@wV7B27sGQo~UKNIDB!(%L19FXxMZmlSD$P7PVOBANfl`wo_T70=6TqWBs z3aet<{lbRWp@gak*PPB|q`BpFepgH2*}GPR5I6TzC;O4nbRx8FB%H2QQYnfdv1Ie~|PyuwY{CKK>EFWEo5v z<8`=D65wLg(}01AAbbyKTT}zJ<2Fqs%b?`ol<^IHN=L%r`y5PCOwA+S`jc9K%5|Qt+{y^ z)q5y%L$rOg<%f+*sNEf@{3w&nNesfpmKj+uw6|Q;8DDtt-bQ4A^j8Z!E_X%fRC^#K z0cP--%Uh$~PM+<&p~;3H-QSp$Si*E)#rt?+*VZ>gR^)wz^)kK$8`b%EAu$x(I19|# z);*!^PQ`Q3A{0^9k0nM1Y~72@IkiB8luD!TRDK2-=j7U(PlrgwelXHqkamfbxIA0j zuo}X#EBb)q3}aBHlUx9>XdjI?g)9Y-&^Vs}5rmQnq6Vd+aYgf*jQaD_RY2H`#AO~# z_1Ddq>&--?B8vGxnPa75Uvp|)pp7g#SsFeti`d1c<;pxh^=z4wVG^Ll238lbVXW!S zVTJo?jXu&@4(7{sC*cFw$tkVUlWFr{2MKA-#5jYKb&o+&nrnEBZx4N?=htITb2B9D zXhN3(@kJ!oA#vbmawU-eVUQaj1ZF3(sS0wYz|W8|CoQ#Tl!J4R1!htdvJJuLFfh}V zeTVroKuh*)r)gpW%$r28w&gLCXnLT(hDEK=#30khS_;5TOSFB z^XH7G)H!{{W3bmVgRZCK+|IV6)mv$3ZzSO(>yNnWqwUJ0pB%S9AGlS0Xyfb?6Uv=* z1A|j6;YJT9K)Mbj@?k0|Ff(E~P+)Jt?D&e-8`PoHOq?!7 zAJU_y%4{p5W+%9 z8_7|%W+j`qVt}>Kq58^b7v(#1*roS1zXTr*D{M%CmbW+i`qEUKuE%V;X9gA+MO_Lj z4J1pR_511M+6=_9Yq|U)Jfk-WAFmHHemm^o#n-#2>Ia48}-j{o6j9Eo%NA|LQq zr+rMFrBp-m_~QHBI2fj(@>Gqw8qw*`ao#K1%Di@F=X)7kE9D@E-qdsCyDx!++d1jp zlQ&qPFM1Sq2tn_QzKihOQt#VS83LmnOiPw&U(cRnxm$S)+%-K!Kdz`eQ22*VD|Qe5 z`b0B3_BHl z1w0xQY)q<$_9lmu`#0Vunk;ISh}cA)G5W%PaE zaRSu#XwL59g=ir}3pgM~P|nV516U&X0U!^6J+1?pQ!MOuVu}LV0!9Ev)$ga*Q?7wJ z3)rnSO5l?6v38e0>EeWLQWE~-l+o@< zoi)0)q;05m{PSy`)(B+h#hTHCF_xAER44(CK5~3GcAQcL7%ADq-9}nJL?>1#V{WD= zeP~UYBAh9lNR$;RrL@Aj%%`6y3?&fuOo_YZ9H&QZBX5aJgm)M?%i8v&{iK`O$dqDt ztg=8xZx1;s!H@Tfj(^cyCYPhd zfRjA7FRZp*cqR{Pqm)oYcTE#kIoT(Dr<^piYic&aqK=DA$wM^qU6tdw)Y3-1Evy0b8XmW)rfN z0QXb!h91~t)Vu4H(ZVxlrmy5SNCTyIf59G2;iFKwp@j$Dz|q==A>y_!M4NonDu7AV zV78OMKFKIAu0t{YpZ(E}N6*jE$8e==;hO+e6v@*d9GpEjV2-CyykelKMP}&H`p#>ObO>cGjsmYd1%13fX4ZmJ+>-MA{x^f_RL74Z zz>nQ^Vs@-Q^w=f@(N7bTF%w+8~{5&DTZllG~tIT;;Yi`~AH++al7; zV*lME-5sM2jhtMWQxmP1h}uVpbzYC}$j&5Nm70@^YezS;@QFBIUH25%bBqrZ_z44S zBT=xKq4jEpl7Af*Z1In~#s{TIwOzoT`$!0+G&T#;Hy=b&afJzR+(vUZ`#-k&nXBwA zDM!h=!yB6 zV?jg*$y7)qGtK!L-9{2QvcYSv2bV1=)LWI}IQc-C(k=>z+Fk8oq=WV2_v1-!jUQ@a zw$hM3{b`LFqzj=O?^k5prhah)!*Vx{N~tgSA;6?My`X14BZ48{*Pi+TM~r$hYO;KdQdh! zJ079S0-~0)U+a&06@7xR(zh3uAb&Yz7*z&Tl;A$PD%aF>MTJ$s4;@jYhr#2odwe33jTJYo?lj#!2664<$m9(7|{8E9+wtJpE zkuu0=u@gec@)1I>@71>mZ^=oz_tp&j?yS^Yy5g~TUXrwDgY}V5ND^_}%bNA{Wp^B> zXBsvq^2+DmrJWLvpqduW(9f`(xsfYWEufWH1+huNdz)_!sv*PHad&N6@Sp}(b)_Nz z(*=)q?!LyO+Q)=sH)^OPdn9z%KaxrG&IO@~ld^o1#}P6uSx0u7aeJ$>exxN7*x@ta ze+MF8;{8XyC8%Bg?kwQVlIg@>uJ!}$9f3*725!UmwT6JKa~X3aBy3tuDy};e3T`vn zpeB7@PdmRA&J-LxUO8Y%8A^^sBl47m0$J5In|?@9S!&;9@VHYGg;}hMofM5_WVwfa z>Am^R>~{um@KOfABOM;JFB*AU7AhyI^CVfq8K@LN8ikE7s?28lgFmzhZ%GY|tFBuT zRqwpba54%en2`RW_-V9aWXL7rY=iw7fq=8ZL3+6wUgSNpFf4j+l>)AnB;lZ=dD+Og zp_1V)uZbBe2~^=A9V1297D)CTLtbFrOT(R&P^HCwqx49?c#3A9>+nl5d7&F zDB{0p444glztYf&(J_#2BuQ+XbUF~`RqB~*vB+DT&vNQ#(0F z&)4lQu?rLkjB=w1n5DU#C`algMu~`Yi)bEJ#J)brxRBV?Z+sEXQi<$YKgo>lyjj-J5Y zFcnYpnn}4~3PvJ=%NtQCRdi$>p%)WzHz~yQ*9s2(4}bVqKmK8QN%D1A!=5tG3MTp# z8F?aPf>ezObUiZ6UzmpoV;^bBo1IEK1eZV|$gcY+E=VY$9WxuttC|)ezS9_P)710X zbt@}QMGXC_=Ct;03nGK_(Jc@)7Pe45N)2)HnPiU$M@WUj9^rJqSQ3%IA5*)nVMR~> z?v>=Bq-?K$^i$fiOA42~Q|Z57Iitx5A46EwZ)A37C=7wBk8$_S^axgH&4x5#A_<*w-zHTBe=y{JCO9x&&b} z`d5U6>4xv3Js0LUz)fXavxNqaUmCQ_nRysU>qp^E;d6Z)=}6%(&|)Aj(li9KnANQ1 zc?O~8#a?v^ZT(Q4&t~5G%8YXb$s2sC08)5S>YPG?lu*eqk|gu>Epz`vMn~qG`hDMS zY1KGeHmy#J9x)n#Ua$4X?9!#hK%c7$b=gtBZ66cQTApNPl@JtL1f{X1AnpTmq-lD{ zyTXqTvl4xLSi@NsX@7`^76rl7eV2x--(R81Nz74Yh&Y3M3L(J_D(DjG0B@#W$DsI{ z!cX)kJm~zICncy&J(PXO-}@)K>21k+b}#~Z3~P)dfth%&i}l2FmU?~8zmf+_Q}l1X zELJm~ds(|tv{Nd9T&tM+=>2Zrat}UJsopDt!?h%UT!}}`orZEw{a$2VaC*q`4CeMh zumCd;s-0e`^ASewGUU$}u*cf|d=-$ZCluC8tYbY8dE7B4!Sh(2ool8gr$7W0aj$rG z2qcvYepFwr+paCzou7qB&uOlXVAO6Caq!_+{~7MM8Cl_5Sqg%f#>>UUfIDAu<0N=_ zQzp|16ih>X24d*jj5s0|IP=PYkWQieeHDr@P8Qw8h=&57$u7W(#K`zRGXO@}9X#&B zEC&h|#zA~A+vG-9`6_+F=U3Lm48Zw3FqubZ237(exK$${Q$rV1ar8@46*O298HVjN1bTz}(BY%M6R=2i+&zdggu}b)f zB?aV8?Tz#S_V1dEO=S(D?1F~%%i1DME6Fvd4B*MZjl`&D)97>2j7JN(n=n0PiK;+q zGDZIzYoMf7QujsAr46TO7*M|QAzAK|5X9gJx`=+3+(`1T9R6%&iti1%I?tK*$bDy;yNzpIHX>i@rkY5Nn$mRr z*5b9+7IAlTK0CxptSNJqjz?{RRjWbL6#rYpS`p1U?+IGz}}r7X6BLbCm9Cu)6)nPPjAJ7 zKPrUKw)bZn;Ui1HIlB4DXEVGDv6K>3Suq^CvQM|Ac&;4a3-LZPNWmjuV+;XheEt1T zk6S)R>zPi1PY7ul5byL^>u~Id73elEF76Oay#RMx;lC*I#ow6&@Dm=UurS>;*)JKo zJt7Ahsrv)B!>D}<*!NEv0goT}m<9pfp_3j8h5F1{uw@ zNxfFUfZy)U8&d9c+&gez298EQ(baKZs&Zf8PcKI*9iidC#0&IpW*;St?zCNcp=@IP z@IDYZ17azjyx;AxB}4bMFHT z)bol1j-t*QH7bH`Yu|7@z7)!cRYuBOCnZ_F^LmQ!a#!S>h#Xe6k;kf@6kXy2-?3=r ztKrG;uf&5BJZ?Y+U&t7lktK2^cs5*3{^l=3g)j(UnrckAgy#iuJfV;q*4QQ8*(fx~ zVHbtLaVKZXbt(u4z5pyXuC@CgE&7DZ~r2XJ?fUo6~CQ<^u<_ zbbMUZiRQC)jILfk-A_g;z2|Sf_Ee((u3PtA&=Q*69VvSBqj1IY}+Ie+5m8p|NXEJ{I?VZ9Wtrnh%FQ8ta;_pXHDoC%_uCkV^8qH>%1JbXZnI#7-)RkV=DsObtJ1y*!Ci zu1BD1EjJ2YGXa^aO)JnQMFnEFGmW4>vGo6)(~rrP%_%snMK9Zlm2%9fv+m4s01UG0 zv~0&*4e05HX<#Ca&pqfP>nwl9VN@9^=RhN=TIlwykcb&zzZiU>50n;%lubcTLC0Qg z*iLf3vPnTEEQxqitlR9IUio#?YVKFcCW~a9(y*;0`!Cm%^s|XI45;(Z6%1FafT@_29t{uyDjz!geK%#D5xvE6?je(G z=@K1Rv`BH$YoZoMB7>{#&A2ZoY@|L{^$5L+>=i*c7gH4p!K5uf$EI0rNS2Ji0>8anT%KkEffNazGj?MY3gT-`a`ecS4f=kTU30l#1>(zG-$_n;}r+ zx>%OO+nZ8fm`N~XX6me5WQEp;dCJOevpo(sVv>mAexROn=ca#Oz;q0;gPVa2K!a_P zfXYez1s zK^me>0oY2-$gQV(oqEVWrtzmr1M#KUgaCw+RN9#G*K<(qIFU&}X{oWQimP=itJ+`n z)%#0QMe*;QX?{KZnyuYV{I%rUKk*ePIBpBp4;&Xs*xti7ub-4F!398P3?D>mZFzD& zWYxX?Q`P}?>lxyms!75DHAcnRdJGxu^}(l*s3dS9wd=o6#BhYgU$##sG*yt307o6ko5 zao>h#6Ui)Dz#AGqJZwv+YYq^Nd)1R37GZFi^oa7D^pJc}=%v@Y)^k=m@T_ZpG<{!m*~f5S+D`CZ#m)ad`rpstzvJQGurIC- s6!o2As@mMH`{zBk6Z+5HUI$7eCZ>06Z&1d8cWX~+T-QMrs+b4<4+Dqx!2kdN literal 0 HcmV?d00001 diff --git a/fvdb/notebooks/img/vdbtensor.svg b/fvdb/notebooks/img/vdbtensor.svg new file mode 100644 index 0000000000..b27295eca4 --- /dev/null +++ b/fvdb/notebooks/img/vdbtensor.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/fvdb/src/GridBatch.cpp b/fvdb/src/GridBatch.cpp index 4032a4aa7b..f40edb19ce 100644 --- a/fvdb/src/GridBatch.cpp +++ b/fvdb/src/GridBatch.cpp @@ -822,7 +822,8 @@ void GridBatch::buildDualFromPrimalGrid(const GridBatch& primalGrid, bool exclud std::vector GridBatch::voxels_along_rays(const JaggedTensor& ray_origins, const JaggedTensor& ray_directions, - int64_t max_vox, double eps, bool return_ijk) const { + int64_t max_vox, double eps, + bool return_ijk, bool cumulative) const { TORCH_CHECK_VALUE(ray_origins.ldim() == 1, "Expected ray_origins to have 1 list dimension, i.e. be a single list of coordinate values, but got", ray_origins.ldim(), "list dimensions" ); @@ -830,7 +831,7 @@ std::vector GridBatch::voxels_along_rays(const JaggedTensor& ray_o "Expected ray_directions to have 1 list dimension, i.e. be a single list of coordinate values, but got", ray_directions.ldim(), "list dimensions" ); return FVDB_DISPATCH_KERNEL_DEVICE(device(), [&]() { - return fvdb::detail::ops::dispatchVoxelsAlongRays(*impl(), ray_origins, ray_directions, max_vox, eps, return_ijk); + return fvdb::detail::ops::dispatchVoxelsAlongRays(*impl(), ray_origins, ray_directions, max_vox, eps, return_ijk, cumulative); }); } @@ -968,22 +969,22 @@ JaggedTensor GridBatch::coords_in_active_voxel(const JaggedTensor& ijk, bool ign } -JaggedTensor GridBatch::ijk_to_index(const JaggedTensor& ijk) const { +JaggedTensor GridBatch::ijk_to_index(const JaggedTensor& ijk, bool cumulative) const { TORCH_CHECK_VALUE(ijk.ldim() == 1, "Expected ijk to have 1 list dimension, i.e. be a single list of coordinate values, but got", ijk.ldim(), "list dimensions" ); return FVDB_DISPATCH_KERNEL_DEVICE(device(), [&]() { - return fvdb::detail::ops::dispatchIjkToIndex(*impl(), ijk); + return fvdb::detail::ops::dispatchIjkToIndex(*impl(), ijk, cumulative); }); } -JaggedTensor GridBatch::ijk_to_inv_index(const JaggedTensor& ijk) const { +JaggedTensor GridBatch::ijk_to_inv_index(const JaggedTensor& ijk, bool cumulative) const { TORCH_CHECK_VALUE(ijk.ldim() == 1, "Expected ijk to have 1 list dimension, i.e. be a single list of coordinate values, but got", ijk.ldim(), "list dimensions" ); return FVDB_DISPATCH_KERNEL_DEVICE(device(), [&]() { - return fvdb::detail::ops::dispatchIjkToInvIndex(*impl(), ijk); + return fvdb::detail::ops::dispatchIjkToInvIndex(*impl(), ijk, cumulative); }); } diff --git a/fvdb/src/GridBatch.h b/fvdb/src/GridBatch.h index 2cafd2e8d4..5743cabd4e 100644 --- a/fvdb/src/GridBatch.h +++ b/fvdb/src/GridBatch.h @@ -464,7 +464,8 @@ struct GridBatch : torch::CustomClassHolder { JaggedTensor disabled_mask() const; /// @brief Return whether each coordinate is in the grid batch or not - /// @param ijk A JaggedTensor of coordinates with shape [B, -1, 3] (one coordinate set per grid in the batch) + /// @param ijk A JaggedTensor of ijk coordinates with lshape [N_0, ..., N_B] and eshape (3,) + /// (one coordinate set per grid in the batch) /// @param ignore_disabled Whether to ignore voxels that have been disabled (only applicable to mutable grids) /// @return A JaggedTensor of booleans with shape [B, -1] (one boolean per coordinate) /// where the [bi, i]^th entry is true if coords[bi, i] lies inside the bi^th grid in the batch @@ -472,15 +473,19 @@ struct GridBatch : torch::CustomClassHolder { /// @brief Return the integer offset of each ijk value in the grid batch /// @param ijk A JaggedTensor of ijk coordinates with shape [B, -1, 3] (one coordinate set per grid in the batch) + /// @param cumulative Whether to return cumulative offsets in the batch or offsets relative to each grid /// @return A JaggedTensor of integer offsets with shape [B, -1] into the grid batch (one offset per coordinate) - JaggedTensor ijk_to_index(const JaggedTensor& ijk) const; + JaggedTensor ijk_to_index(const JaggedTensor& ijk, bool cumulative = false) const; /// @brief Return a JaggedTensor of integers such that if it is used as a permutation of the input IJK coordinates, /// it will re-order them to the indexing order of the grid batch. This effectively performs the inverse of - /// ijkToIndex if you pass in the ijk coordinates in the grid. - /// @param ijk A JaggedTensor of ijk coordinates with shape [B, -1, 3] (one coordinate set per grid in the batch) + /// ijk_to_index if you pass in the ijk coordinates in the grid. + /// i.e. output[ijk_to_index(ijk[i])] = i + /// @param ijk A JaggedTensor of ijk coordinates with lshape [N_0, ..., N_B] and eshape (3,) + /// (one coordinate set per grid in the batch) + /// @param cumulative Whether to return cumulative offsets in the batch or offsets relative to each grid /// @return A JaggedTensor of integers with shape [B, -1] (one integer per grids' ijk) which inverts ijkToIndex - JaggedTensor ijk_to_inv_index(const JaggedTensor& ijk) const; + JaggedTensor ijk_to_inv_index(const JaggedTensor& ijk, bool cumulative = false) const; /// @brief Return the set of active ijk coordinates indexed by this grid batch /// @return A JaggedTensor of voxel coordinates indexed by this grid batch (shape [B, -1, 3]) @@ -511,6 +516,8 @@ struct GridBatch : torch::CustomClassHolder { /// @param max_voxels The maximum number of voxels to return per ray /// @param eps Skip voxels where the ray intersects by less than this distance /// @param return_ijk Whether to return the voxel coordinates in the grid or world coordinates or the voxel index + /// @param cumulative Whether to return cumulative indices in the batch or indices relative to each grid + /// (only applicable to return_ijk = false, otherwise ignored) /// @return A pair of JaggedTensors containing the voxels (or voxel indices) intersected by the rays. i.e.: /// - voxels: A JaggedTensor with lshape [[V_{0,0}, ..., V_{0,N_0}], ..., [V_{B,0}, ..., V_{B,N_B}]] /// and eshape (3,) or (,) containing the ijk coordinates or indices of the voxels @@ -519,7 +526,8 @@ struct GridBatch : torch::CustomClassHolder { std::vector voxels_along_rays(const JaggedTensor& ray_origins, const JaggedTensor& ray_directions, int64_t max_voxels, double eps = 0.0, - bool return_ijk = true) const; + bool return_ijk = true, + bool cumulative = false) const; /// @brief Enumerate the continuous segments (regions which overlap active voxels) in this /// grid batch (in-sorted order) intersected by a collection of rays diff --git a/fvdb/src/JaggedTensor.cpp b/fvdb/src/JaggedTensor.cpp index 3d4ac07141..5486aa10e4 100644 --- a/fvdb/src/JaggedTensor.cpp +++ b/fvdb/src/JaggedTensor.cpp @@ -67,8 +67,8 @@ JaggedTensor::JaggedTensor(const std::vector& tensors) { torch::Device device = tensors[0].device(); std::vector jIdxs; - torch::Tensor elementCounts = torch::empty({(JOffsetsType) tensors.size() + 1}, torch::TensorOptions().dtype(JOffsetsScalarType).device(torch::kCPU)); - auto elementCountsAcc = elementCounts.accessor(); + mOffsets = torch::empty({(JOffsetsType) tensors.size() + 1}, torch::TensorOptions().dtype(JOffsetsScalarType).device(torch::kCPU)); + auto elementCountsAcc = mOffsets.accessor(); elementCountsAcc[0] = 0; jIdxs.reserve(tensors.size()); @@ -84,7 +84,8 @@ JaggedTensor::JaggedTensor(const std::vector& tensors) { jIdxs.push_back(torch::full({tensorsReshaped[i].size(0)}, (int) i, torch::TensorOptions().dtype(JIdxScalarType).device(tensorsReshaped[i].device()))); elementCountsAcc[i+1] = tensorsReshaped[i].size(0); } - mOffsets = torch::cumsum(elementCounts, 0).to(tensors[0].device()); + mOffsets = mOffsets.to(tensors[0].device()); + torch::cumsum_out(mOffsets, mOffsets, 0); mBatchIdx = torch::cat(jIdxs, 0); mData = torch::cat(tensorsReshaped, 0); mListIdx = torch::empty({0, 1}, torch::TensorOptions().dtype(JLIdxScalarType).device(device)); @@ -130,8 +131,8 @@ JaggedTensor::JaggedTensor(const std::vector>& tensor std::vector batchIdxs; batchIdxs.reserve(totalTensors); - torch::Tensor elementCounts = torch::empty({totalTensors + 1}, torch::TensorOptions().dtype(JOffsetsScalarType).device(torch::kCPU)); - auto elementCountsAcc = elementCounts.accessor(); + mOffsets = torch::empty({totalTensors + 1}, torch::TensorOptions().dtype(JOffsetsScalarType).device(torch::kCPU)); + auto elementCountsAcc = mOffsets.accessor(); elementCountsAcc[0] = 0; torch::Tensor listIndexes = torch::empty({totalTensors, (JLIdxType) 2}, torch::TensorOptions().dtype(JLIdxScalarType).device(torch::kCPU)); @@ -161,7 +162,8 @@ JaggedTensor::JaggedTensor(const std::vector>& tensor } } - mOffsets = torch::cumsum(elementCounts, 0).to(device);; + mOffsets = mOffsets.to(device); + torch::cumsum_out(mOffsets, mOffsets, 0); mBatchIdx = torch::cat(batchIdxs, 0); mData = torch::cat(tensorsReshaped, 0); mListIdx = listIndexes.to(device); @@ -472,60 +474,9 @@ JaggedTensor JaggedTensor::rmask(const torch::Tensor& mask) const { JaggedTensor JaggedTensor::index(JaggedTensorIndex idx) const { if (idx.is_integer()) { - auto idxVal = idx.integer(); - if (idxVal < 0) { - idxVal += mNumOuterLists; - } - TORCH_CHECK_INDEX(idxVal >= 0 && idxVal < mNumOuterLists, - "Index ", idx.integer(), " is out of bounds for JaggedTensor with ", - mNumOuterLists, " elements"); - - if (mListIdx.size(0) == 0) { - TORCH_CHECK(ldim() == 1, "bad list indexes. this should never happen"); - const JOffsetsType startIdx = mOffsets[idxVal].item(); - const JOffsetsType endIdx = mOffsets[idxVal+1].item(); - const torch::Tensor retJoffsets = torch::tensor({JOffsetsType(0), endIdx - startIdx}, torch::TensorOptions().dtype(JOffsetsScalarType).device(mData.device())); - const torch::Tensor retData = mData.index({torch::indexing::Slice(startIdx, endIdx)}); - const torch::Tensor retJidx = torch::empty({0}, torch::TensorOptions().dtype(JIdxScalarType)); - return JaggedTensor::from_jdata_joffsets_jidx_and_lidx_unsafe( - retData, retJoffsets, retJidx, mListIdx, retJoffsets.size(0) - 1); - - } else { - TORCH_CHECK_VALUE(mListIdx.dim() == 2, "Corrupt list indices. This should never happen"); - TORCH_CHECK_VALUE(mListIdx.numel() == 0 || mListIdx.size(0) == (mOffsets.size(0) - 1), "Corrupt list indices. This should never happen"); - const torch::Tensor joffsetCat = torch::stack({ - mOffsets.index({torch::indexing::Slice(0, num_tensors())}), - mOffsets.index({torch::indexing::Slice(1, num_tensors()+1)}) - }, 1); - const torch::Tensor mask = mListIdx.index({torch::indexing::Slice(), 0}).eq(idxVal); - const torch::Tensor selectedOffsets = joffsetCat.index({mask}); - - const JOffsetsType startIdx = selectedOffsets[0][0].item(); - const JOffsetsType endIdx = selectedOffsets[-1][1].item(); - - const torch::Tensor retData = mData.index({torch::indexing::Slice(startIdx, endIdx)}); - - const torch::Tensor retOffsets = torch::cat({ - selectedOffsets.index({torch::indexing::Slice(), 0}), - selectedOffsets.index({-1, 1}).unsqueeze(0) - }) - startIdx; - torch::Tensor retListIdx; - int64_t retNumOuterLists; - if (mListIdx.size(1) > 1) { - retListIdx = mListIdx.index({mask, torch::indexing::Slice(1, mListIdx.size(1))}); - if (retListIdx.dim() == 0) { - retListIdx = retListIdx.unsqueeze(1); - } - retNumOuterLists = std::get<0>(torch::unique_dim(retListIdx, 0)).size(0); - } else { - retListIdx = torch::empty({0, 1}, torch::TensorOptions().dtype(JLIdxScalarType).device(mData.device())); - retNumOuterLists = retOffsets.size(0) - 1; - } - - const torch::Tensor retJidx = jidx_from_joffsets(retOffsets, retData.size(0)); - return JaggedTensor::from_jdata_joffsets_jidx_and_lidx_unsafe(retData, retOffsets, retJidx, retListIdx, retNumOuterLists); - } - + return FVDB_DISPATCH_KERNEL_DEVICE(mData.device(), [&]() { + return detail::ops::dispatchJaggedTensorIndex(*this, idx.integer()); + }); } else if (idx.is_slice()) { int64_t start = idx.slice().start().as_int_unchecked(); int64_t end = idx.slice().stop().as_int_unchecked(); @@ -793,6 +744,7 @@ std::vector JaggedTensor::jmax(int64_t dim, bool keepdim) const { } JaggedTensor JaggedTensor::jcat(const std::vector& vec, c10::optional dimension) { + // Null dimension is just list concatenation if (!dimension.has_value()) { TORCH_CHECK_VALUE(vec.size() > 0, "Empty jagged tensor list"); @@ -835,50 +787,9 @@ JaggedTensor JaggedTensor::jcat(const std::vector& vec, c10::optio } if (dim == 0) { - const auto device = vec[0].device(); - const auto dtype = vec[0].scalar_type(); - - int64_t totalElements = 0; - for (const auto& jvec : vec) { - TORCH_CHECK_VALUE(jvec.joffsets().size(0) == vec[0].joffsets().size(0), - "All tensors must have the same number of lists"); - TORCH_CHECK_VALUE(jvec.jdata().dim() == vec[0].jdata().dim(), - "All tensors must have the same number of dimensions"); - TORCH_CHECK_VALUE(jvec.device() == device, "All tensors must be on the same device"); - TORCH_CHECK_VALUE(jvec.scalar_type() == dtype, "All tensors must have the same scalar type"); - totalElements += jvec.jdata().size(0); - } - const auto shape = fvdb::detail::spliceShape({totalElements}, vec[0].jdata()); - const JOffsetsType numOffsets = vec[0].joffsets().size(0); - - torch::Tensor outJdata = torch::empty(shape, torch::TensorOptions().device(device).dtype(dtype)); - torch::Tensor outJoffsets = torch::empty({numOffsets}, torch::TensorOptions().device(device).dtype(JOffsetsScalarType)); - torch::Tensor outJidx = torch::empty({totalElements}, torch::TensorOptions().device(device).dtype(JIdxScalarType)); - torch::Tensor outJLidx = vec[0].jlidx(); - const int64_t outNumOuterLists = vec[0].mNumOuterLists; - - JOffsetsType startOffset = 0; - for (JOffsetsType i = 0; i < numOffsets - 1; ++i) { - JOffsetsType numElements = 0; - - std::vector tensorsToCat; - tensorsToCat.reserve(vec.size()); - for (const auto& jvec : vec) { - const JOffsetsType startIdx = jvec.joffsets()[i].item(); - const JOffsetsType endIdx = jvec.joffsets()[i+1].item(); - torch::Tensor jdataSlice = jvec.jdata().index({torch::indexing::Slice(startIdx, endIdx)}); - tensorsToCat.push_back(jdataSlice); - numElements += (endIdx - startIdx); - } - - outJdata.index({torch::indexing::Slice(startOffset, startOffset + numElements)}).copy_(torch::cat(tensorsToCat, 0)); - outJidx.index({torch::indexing::Slice(startOffset, startOffset + numElements)}).copy_(torch::full({numElements}, i, torch::TensorOptions().dtype(JIdxScalarType).device(device))); - outJoffsets[i] = startOffset; - outJoffsets[i+1] = startOffset + numElements; - startOffset += numElements; - } - return JaggedTensor::from_jdata_joffsets_jidx_and_lidx_unsafe(outJdata, outJoffsets, outJidx, outJLidx, outNumOuterLists); - + return FVDB_DISPATCH_KERNEL_DEVICE(vec[0].device(), [&]() { + return detail::ops::dispatchJCat0(vec); + }); } else { std::vector data; for (const auto& jvec : vec) { data.push_back(jvec.mData); } diff --git a/fvdb/src/JaggedTensor.h b/fvdb/src/JaggedTensor.h index 7bd6d0e4a9..eb94ed875d 100644 --- a/fvdb/src/JaggedTensor.h +++ b/fvdb/src/JaggedTensor.h @@ -129,13 +129,12 @@ class JaggedTensor : public torch::CustomClassHolder { void recompute_lsizes_if_dirty(); - static torch::Tensor joffsets_from_jidx_and_jdata(torch::Tensor jidx, torch::Tensor jdata, int64_t num_tensors); - static torch::Tensor jidx_from_joffsets(torch::Tensor joffsets, int64_t num_elements); - void binary_op_check(const JaggedTensor& other) const; public: + static torch::Tensor joffsets_from_jidx_and_jdata(torch::Tensor jidx, torch::Tensor jdata, int64_t num_tensors); + static torch::Tensor jidx_from_joffsets(torch::Tensor joffsets, int64_t num_elements); static JaggedTensor from_jdata_joffsets_jidx_and_lidx_unsafe(torch::Tensor jdata, torch::Tensor joffsets, torch::Tensor jidx, torch::Tensor jlidx, int64_t numOuterLists); @@ -222,8 +221,8 @@ class JaggedTensor : public torch::CustomClassHolder { /// @return The indices of this JaggedTensor const torch::Tensor& jidx() const { return mBatchIdx; } - /// @brief Get the offsets of each tensor indexed by this JaggedTensor. i.e. a tensor of size (num_tensors, 2) - /// where joffsets[i][0] is the start offset in jdata and joffsets[i][1] is the end offset in jdata + /// @brief Get the offsets of each tensor indexed by this JaggedTensor. i.e. a tensor of size (num_tensors + 1) + /// where joffsets[i] is the start offset in jdata and joffsets[i+1] is the end offset in jdata /// @return The offsets of each tensor indexed by this JaggedTensor const torch::Tensor& joffsets() const { return mOffsets; } diff --git a/fvdb/src/detail/GridBatchImpl.cu b/fvdb/src/detail/GridBatchImpl.cu index e5f860acb9..dd200f6aa2 100644 --- a/fvdb/src/detail/GridBatchImpl.cu +++ b/fvdb/src/detail/GridBatchImpl.cu @@ -154,6 +154,7 @@ void GridBatchImpl::syncMetadataToDeviceIfCUDA(bool blocking) { // We haven't allocated the cuda memory yet, so we need to do that now if (mDeviceGridMetadata == nullptr) { // We need to allocate the memory on the device + c10::cuda::CUDAGuard deviceGuard(device()); size_t metaDataByteSize = sizeof(GridMetadata) * mHostGridMetadata.size(); at::cuda::CUDAStream defaultStream = at::cuda::getCurrentCUDAStream(device().index()); mDeviceGridMetadata = static_cast(c10::cuda::CUDACachingAllocator::raw_alloc_with_stream(metaDataByteSize, defaultStream.stream())); @@ -293,6 +294,7 @@ void GridBatchImpl::setGrid(nanovdb::GridHandle&& gridHdl, // Allocate device memory for metadata GridBatchMetadata* deviceBatchMetadataPtr = nullptr; if constexpr (DeviceTag == torch::kCUDA) { + c10::cuda::CUDAGuard deviceGuard(device); const size_t metaDataByteSize = sizeof(GridMetadata) * gridHdl.gridCount(); at::cuda::CUDAStream defaultStream = at::cuda::getCurrentCUDAStream(device.index()); mDeviceGridMetadata = static_cast(c10::cuda::CUDACachingAllocator::raw_alloc_with_stream(metaDataByteSize, defaultStream.stream())); diff --git a/fvdb/src/detail/TorchDeviceBuffer.cpp b/fvdb/src/detail/TorchDeviceBuffer.cpp index 4ea4c8b4d0..0293050cbb 100644 --- a/fvdb/src/detail/TorchDeviceBuffer.cpp +++ b/fvdb/src/detail/TorchDeviceBuffer.cpp @@ -8,6 +8,7 @@ #include // for cudaMalloc/cudaMallocManaged/cudaFree #include +#include namespace nanovdb { @@ -164,16 +165,23 @@ void TorchDeviceBuffer::toCuda(torch::Device toDevice, bool blocking) { if (mDevice.is_cuda() && toDevice != mDevice) { // CUDA -> CUDA accross different devices std::unique_ptr buf(new uint8_t[mSize]); - at::cuda::CUDAStream currentStream = at::cuda::getCurrentCUDAStream(mDevice.index()); - at::cuda::CUDAStream toStream = at::cuda::getCurrentCUDAStream(toDevice.index()); - cudaCheck(cudaMemcpyAsync(buf.get(), mGpuData, mSize, cudaMemcpyDeviceToHost, currentStream.stream())); - cudaCheck(cudaStreamSynchronize(currentStream.stream())); - c10::cuda::CUDACachingAllocator::raw_delete(mGpuData); - mGpuData = reinterpret_cast(c10::cuda::CUDACachingAllocator::raw_alloc_with_stream(mSize, toStream.stream())); - cudaCheck(cudaMemcpyAsync(mGpuData, buf.get(), mSize, cudaMemcpyHostToDevice, toStream.stream())); + { + c10::cuda::CUDAGuard deviceGuard(mDevice); + at::cuda::CUDAStream currentStream = at::cuda::getCurrentCUDAStream(mDevice.index()); + cudaCheck(cudaMemcpyAsync(buf.get(), mGpuData, mSize, cudaMemcpyDeviceToHost, currentStream.stream())); + cudaCheck(cudaStreamSynchronize(currentStream.stream())); + c10::cuda::CUDACachingAllocator::raw_delete(mGpuData); + } + { + c10::cuda::CUDAGuard deviceGuard(toDevice); + at::cuda::CUDAStream toStream = at::cuda::getCurrentCUDAStream(toDevice.index()); + mGpuData = reinterpret_cast(c10::cuda::CUDACachingAllocator::raw_alloc_with_stream(mSize, toStream.stream())); + cudaCheck(cudaMemcpyAsync(mGpuData, buf.get(), mSize, cudaMemcpyHostToDevice, toStream.stream())); + } mDevice = toDevice; } else if (mDevice.is_cpu()) { // CPU -> CUDA TORCH_CHECK(toDevice.has_index(), "Invalid device must specify device index"); + c10::cuda::CUDAGuard deviceGuard(toDevice); at::cuda::CUDAStream stream = at::cuda::getCurrentCUDAStream(toDevice.index()); copyHostToDeviceAndFreeHost((void*) stream.stream(), blocking); mDevice = toDevice; @@ -212,6 +220,7 @@ void TorchDeviceBuffer::init(uint64_t size, void* data /* = nullptr */, bool hos if (data) { mGpuData = (uint8_t*) data; } else { + c10::cuda::CUDAGuard deviceGuard(mDevice); at::cuda::CUDAStream defaultStream = at::cuda::getCurrentCUDAStream(mDevice.index()); mGpuData = reinterpret_cast(c10::cuda::CUDACachingAllocator::raw_alloc_with_stream(size, defaultStream.stream())); checkPtr(mGpuData, "failed to allocate device data"); diff --git a/fvdb/src/detail/build/Build.h b/fvdb/src/detail/build/Build.h new file mode 100644 index 0000000000..f119f242ec --- /dev/null +++ b/fvdb/src/detail/build/Build.h @@ -0,0 +1,123 @@ +// Copyright Contributors to the OpenVDB Project +// SPDX-License-Identifier: MPL-2.0 +// +#pragma once + +#include + +#include "detail/VoxelCoordTransform.h" +#include "detail/GridBatchImpl.h" + +#include "detail/utils/Utils.h" + + +namespace fvdb { +namespace detail { +namespace build { + +/// @brief Build an empty NanovVDB index grid or mutable index grid on the given device +/// @param device The device on which the grid will be allocated +/// @param isMutable Whether the grid should be mutable or not +/// @return A handle to the nanovdb grid +nanovdb::GridHandle buildEmptyGrid(torch::Device device, bool isMutable); + +/// @brief Build a NanoVDB grid encoding a dense 3D volume of voxels +/// @param device The device on which the grid will be allocated +/// @param isMutable Whether the grid should be mutable or not +/// @param batchSize The number of grids in the batch +/// @param size The size of the grid in voxels +/// @param ijkMin The coordinate of the bottom-back-left corner of the grid +/// @param mask An optional mask tensor that can be used to mask out some of the voxels (shape = size) +/// @return A handle to the nanovdb grid +nanovdb::GridHandle buildDenseGrid(torch::Device device, bool isMutable, + const uint32_t batchSize, + const nanovdb::Coord& size, + const nanovdb::Coord& ijkMin, + const torch::optional& mask); + +/// @brief Build a NanoVDB grid representing the coarse grid of a given fine grid +/// @param isMutable Whether the grid should be mutable or not +/// @param fineGridHdl The handle to the fine grid +/// @param branchingFactor The coarsening factor from the fine grid to the coarse grid (i.e. N = [2, 2, 2] for a 2x2x2 coarsening) +/// @return A handle to the nanovdb grid (the device will match fineGridHdl) +nanovdb::GridHandle buildCoarseGridFromFineGrid(bool isMutable, + const GridBatchImpl& fineGridHdl, + const nanovdb::Coord branchingFactor); + +/// @brief Build a NanoVDB grid representing the fine grid of a given coarse grid +/// @param isMutable Whether the grid should be mutable or not +/// @param coarseGridHdl The handle to the coarse grid +/// @param subdivMask An optional mask JaggedTensor that can be used to not refine certain voxels (shape = [B, -1] matching number of coarse voxels) +/// @param subdivisionFactor The refinement factor from the coarse grid to the fine grid (i.e. (2, 2, 2) for a 2x2x2 refinement) +/// @return A handle to the nanovdb grid (the device will match coarseGridHdl) +nanovdb::GridHandle buildFineGridFromCoarseGrid(bool isMutable, + const GridBatchImpl& coarseGridHdl, + const torch::optional& subdivMask, + const nanovdb::Coord subdivisionFactor); + +nanovdb::GridHandle buildConvGridFromGrid(bool isMutable, + const GridBatchImpl& baseGridHdl, + const nanovdb::Coord& kernelSize, const nanovdb::Coord& stride); + +/// @brief Build a NanoVDB grid which is a padded version of the given grid +/// @param isMutable Whether the grid should be mutable or not +/// @param baseGridHdl The handle to the base grid +/// @param bmin The padding in the negative direction +/// @param bmax The padding in the positive direction +/// @param excludeBorder Whether to exclude the border voxels from padding +/// @return A handle to the padded nanovdb grid (the device will match baseGridHdl) +nanovdb::GridHandle buildPaddedGridFromGrid(bool isMutable, + const GridBatchImpl& baseGridHdl, + int bmin, int bmax, bool excludeBorder); + +/// @brief Build a NanoVDB grid from a set of points and pad each voxel ijk which contains a point from ijk - bmin to ijk + bmax +/// @param device The device on which the grid will be allocated +/// @param isMutable Whether the grid should be mutable or not +/// @param points The points to be encoded in the grid (JaggedTensor of shape = (B, -1, 3)) +/// @param tx Transform from world to voxel coordinates +/// @param bmin The minimum padding (i.e. we pad ijk from ijk - bmin to ijk + bmax) +/// @param bmax The maximum padding (i.e. we pad ijk from ijk - bmin to ijk + bmax) +/// @return A handle to the nanovdb grid (the device will match points) +nanovdb::GridHandle buildPaddedGridFromPoints(bool isMutable, + const JaggedTensor& points, + const std::vector& tx, + const nanovdb::Coord& bmin, + const nanovdb::Coord& bmax); + +/// @brief Build a NanoVDB grid from a set of points where the 8 nearest voxels to each point are added to the grid +/// @param device The device on which the grid will be allocated +/// @param isMutable Whether the grid should be mutable or not +/// @param points The points to be encoded in the grid (JaggedTensor of shape = (B, -1, 3)) +/// @param tx Transform from world to voxel coordinates +/// @return A handle to the nanovdb grid (the device will match points) +nanovdb::GridHandle buildNearestNeighborGridFromPoints(bool isMutable, + const JaggedTensor& points, + const std::vector& tx); + +/// @brief Build a NanoVDB grid from a set of ijk coordinates pad each voxel from ijk - bmin to ijk + bmax +/// @param device The device on which the grid will be allocated +/// @param isMutable Whether the grid should be mutable or not +/// @param coords The ijk coordinates to be encoded in the grid (JaggedTensor of shape = (B, -1, 3)) +/// @param tx Transform from world to voxel coordinates +/// @param bmin The minimum padding (i.e. we pad ijk from ijk - bmin to ijk + bmax) +/// @param bmax The maximum padding (i.e. we pad ijk from ijk - bmin to ijk + bmax) +/// @return A handle to the nanovdb grid (the device will match coords) +nanovdb::GridHandle buildPaddedGridFromCoords(bool isMutable, + const JaggedTensor& coords, + const nanovdb::Coord& bmin, + const nanovdb::Coord& bmax); + + +/// @brief Build a NanoVDB grid by voxelizing a mesh (i.e. each voxel in the ouput grid intersects the mesh) +/// @param isMutable Whether the grid should be mutable or not +/// @param meshVertices A JaggedTensor of shape = (B, -1, 3) containing the vertices of each mesh to voxelize +/// @param meshFaces A JaggedTensor of shape = (B, -1, 3) containing the face indexes of each mesh to voxelize +/// @return A handle to the nanovdb grid (the device will match meshVertices and meshFaces) +nanovdb::GridHandle buildGridFromMesh(bool isMutable, + const JaggedTensor meshVertices, + const JaggedTensor meshFaces, + const std::vector& tx); + +} // namespace build +} // namespace detail +} // namespace fvdb \ No newline at end of file diff --git a/fvdb/src/detail/build/CoarseFromFine.cpp b/fvdb/src/detail/build/CoarseFromFine.cpp new file mode 100644 index 0000000000..6a403165b1 --- /dev/null +++ b/fvdb/src/detail/build/CoarseFromFine.cpp @@ -0,0 +1,75 @@ +// Copyright Contributors to the OpenVDB Project +// SPDX-License-Identifier: MPL-2.0 +// +#include "Build.h" + +#include +#include +#include + +#include "detail/utils/Utils.h" +#include "detail/ops/Ops.h" + + +namespace fvdb { +namespace detail { +namespace build { + + +template +nanovdb::GridHandle buildCoarseGridFromFineGridCPU(const GridBatchImpl& fineBatchHdl, + const nanovdb::Coord branchingFactor) { + + using IndexTree = nanovdb::NanoTree; + + const nanovdb::GridHandle& fineGridHdl = fineBatchHdl.nanoGridHandle(); + + std::vector> batchHandles; + batchHandles.reserve(fineGridHdl.gridCount()); + for (uint32_t bidx = 0; bidx < fineGridHdl.gridCount(); bidx += 1) { + const nanovdb::NanoGrid* fineGrid = fineGridHdl.template grid(bidx); + if (!fineGrid) { + throw std::runtime_error("Failed to get pointer to nanovdb index grid"); + } + const IndexTree& fineTree = fineGrid->tree(); + + using ProxyGridT = nanovdb::tools::build::Grid; + auto proxyGrid = std::make_shared(-1.0f); + auto proxyGridAccessor = proxyGrid->getWriteAccessor(); + + for (auto it = ActiveVoxelIterator(fineTree); it.isValid(); it++) { + const nanovdb::Coord coarseIjk = (it->first.asVec3d() / branchingFactor.asVec3d()).floor(); + proxyGridAccessor.setValue(coarseIjk, 1.0f); + } + + proxyGridAccessor.merge(); + auto ret = nanovdb::tools::createNanoGrid(*proxyGrid, 0u, false, false); + ret.buffer().setDevice(torch::kCPU, true); + batchHandles.push_back(std::move(ret)); + } + + if (batchHandles.size() == 1) { + return std::move(batchHandles[0]); + } else { + return nanovdb::mergeGrids(batchHandles); + } +} + + +nanovdb::GridHandle buildCoarseGridFromFineGrid(bool isMutable, + const GridBatchImpl& fineBatchHdl, + const nanovdb::Coord branchingFactor) { + if (fineBatchHdl.device().is_cuda()) { + JaggedTensor coords = ops::dispatchCoarseIJKForFineGrid(fineBatchHdl, branchingFactor); + return ops::dispatchCreateNanoGridFromIJK(coords, isMutable); + } else { + return FVDB_DISPATCH_GRID_TYPES_MUTABLE(isMutable, [&]() { + return buildCoarseGridFromFineGridCPU(fineBatchHdl, branchingFactor); + }); + } +} + + +} // namespace build +} // namespace detail +} // namespace fvdb diff --git a/fvdb/src/detail/build/ConvGrid.cpp b/fvdb/src/detail/build/ConvGrid.cpp new file mode 100644 index 0000000000..455cfdf9a9 --- /dev/null +++ b/fvdb/src/detail/build/ConvGrid.cpp @@ -0,0 +1,145 @@ +// Copyright Contributors to the OpenVDB Project +// SPDX-License-Identifier: MPL-2.0 +// +#include "Build.h" + +#include +#include +#include + +#include "detail/utils/Utils.h" +#include "detail/ops/Ops.h" + + +namespace fvdb { +namespace detail { +namespace build { + +template +nanovdb::GridHandle buildCoarseGridFromFineGridCPU(const GridBatchImpl& fineBatchHdl, + const nanovdb::Coord branchingFactor) { + + using IndexTree = nanovdb::NanoTree; + + const nanovdb::GridHandle& fineGridHdl = fineBatchHdl.nanoGridHandle(); + + std::vector> batchHandles; + batchHandles.reserve(fineGridHdl.gridCount()); + for (uint32_t bidx = 0; bidx < fineGridHdl.gridCount(); bidx += 1) { + const nanovdb::NanoGrid* fineGrid = fineGridHdl.template grid(bidx); + if (!fineGrid) { + throw std::runtime_error("Failed to get pointer to nanovdb index grid"); + } + const IndexTree& fineTree = fineGrid->tree(); + + using ProxyGridT = nanovdb::tools::build::Grid; + auto proxyGrid = std::make_shared(-1.0f); + auto proxyGridAccessor = proxyGrid->getWriteAccessor(); + + for (auto it = ActiveVoxelIterator(fineTree); it.isValid(); it++) { + const nanovdb::Coord coarseIjk = (it->first.asVec3d() / branchingFactor.asVec3d()).floor(); + proxyGridAccessor.setValue(coarseIjk, 1.0f); + } + + proxyGridAccessor.merge(); + auto ret = nanovdb::tools::createNanoGrid(*proxyGrid, 0u, false, false); + ret.buffer().setDevice(torch::kCPU, true); + batchHandles.push_back(std::move(ret)); + } + + if (batchHandles.size() == 1) { + return std::move(batchHandles[0]); + } else { + return nanovdb::mergeGrids(batchHandles); + } +} + + +template +nanovdb::GridHandle buildConvGridFromGridCPU(const GridBatchImpl& baseBatchHdl, + const nanovdb::Coord& kernelSize, + const nanovdb::Coord& stride) { + + if (stride == nanovdb::Coord(1) || stride == kernelSize) { + return buildCoarseGridFromFineGridCPU(baseBatchHdl, stride); + } + + const nanovdb::GridHandle& baseGridHdl = baseBatchHdl.nanoGridHandle(); + std::vector> batchHandles; + batchHandles.reserve(baseGridHdl.gridCount()); + + int lower[3], upper[3]; + for (int i = 0; i < 3; i += 1) { + if (kernelSize[i] % 2 == 0) { + lower[i] = 0; upper[i] = kernelSize[i] - 1; + } else { + lower[i] = -(kernelSize[i] - 1) / 2; + upper[i] = (kernelSize[i] - 1) / 2; + } + } + + for (uint32_t bidx = 0; bidx < baseGridHdl.gridCount(); bidx += 1) { + + const nanovdb::NanoGrid* baseGrid = baseGridHdl.template grid(bidx); + if (!baseGrid) { + throw std::runtime_error("Failed to get pointer to nanovdb index grid"); + } + + using ProxyGridT = nanovdb::tools::build::Grid; + auto proxyGrid = std::make_shared(-1.0f); + auto proxyGridAccessor = proxyGrid->getWriteAccessor(); + + for (auto it = ActiveVoxelIterator(baseGrid->tree()); it.isValid(); it++) { + const nanovdb::Coord& ijk0 = it->first; + + for (int di = lower[0]; di <= upper[0]; di += 1) { + for (int dj = lower[1]; dj <= upper[1]; dj += 1) { + for (int dk = lower[2]; dk <= upper[2]; dk += 1) { + const nanovdb::Coord dstIjk = ijk0 + nanovdb::Coord(dk, dj, di); + if (dstIjk[0] % stride[2] != 0 || dstIjk[1] % stride[1] != 0 || dstIjk[2] % stride[0] != 0) continue; + proxyGridAccessor.setValue(nanovdb::Coord( + dstIjk[0] / stride[2], dstIjk[1] / stride[1], dstIjk[2] / stride[0]), 1.0f); + } + } + } + } + + proxyGridAccessor.merge(); + auto ret = nanovdb::tools::createNanoGrid(*proxyGrid, 0u, false, false); + ret.buffer().setDevice(torch::kCPU, true); + batchHandles.push_back(std::move(ret)); + } + + if (batchHandles.size() == 1) { + return std::move(batchHandles[0]); + } else { + return nanovdb::mergeGrids(batchHandles); + } +} + + +nanovdb::GridHandle buildConvGridFromGrid(bool isMutable, + const GridBatchImpl& baseGridHdl, + const nanovdb::Coord& kernelSize, + const nanovdb::Coord& stride) { + /** + * Logic for building the conv grid is the same as torchsparse 2.0.0b. + * However, torchsparse has a bug that creates excessive voxels in the void space, it is fixed in a customized + * branch - hence the additional URL for pre-built wheels. + */ + + if (baseGridHdl.device().is_cuda()) { + JaggedTensor coords = ops::dispatchConvIJKForGrid(baseGridHdl, kernelSize, stride); + return ops::dispatchCreateNanoGridFromIJK(coords, isMutable); + } else { + return FVDB_DISPATCH_GRID_TYPES_MUTABLE(isMutable, [&]() { + return buildConvGridFromGridCPU(baseGridHdl, kernelSize, stride); + }); + } +} + + + +} // namespace build +} // namespace detail +} // namespace fvdb diff --git a/fvdb/src/detail/build/DenseGrid.cpp b/fvdb/src/detail/build/DenseGrid.cpp new file mode 100644 index 0000000000..2a37717928 --- /dev/null +++ b/fvdb/src/detail/build/DenseGrid.cpp @@ -0,0 +1,104 @@ +// Copyright Contributors to the OpenVDB Project +// SPDX-License-Identifier: MPL-2.0 +// +#include "Build.h" + +#include +#include +#include + +#include "detail/utils/Utils.h" +#include "detail/ops/Ops.h" + + +namespace fvdb { +namespace detail { +namespace build { + + +template +nanovdb::GridHandle buildDenseGridCPU(const uint32_t batchSize, + const nanovdb::Coord& size, + const nanovdb::Coord& ijkMin, + torch::optional mask) { + + torch::TensorAccessor maskAccessor(nullptr, nullptr, nullptr); + if (mask.has_value()) { + maskAccessor = mask.value().accessor(); + } + + using ProxyGridT = nanovdb::tools::build::Grid; + auto proxyGrid = std::make_shared(0.0f); + auto proxyGridAccessor = proxyGrid->getWriteAccessor(); + + for (int32_t i = 0; i < size[0]; i += 1) { + for (int32_t j = 0; j < size[1]; j += 1) { + for (int32_t k = 0; k < size[2]; k += 1) { + const nanovdb::Coord ijk = ijkMin + nanovdb::Coord(i, j, k); + if (mask.has_value()) { + if (maskAccessor[i][j][k] == false) { + continue; + } else { + proxyGridAccessor.setValue(ijk, 1.0f); + } + } else { + proxyGridAccessor.setValue(ijk, 1.0f); + } + } + } + } + + proxyGridAccessor.merge(); + nanovdb::GridHandle ret = nanovdb::tools::createNanoGrid(*proxyGrid, 0u, false, false); + ret.buffer().setDevice(torch::kCPU, true /* sync */); + + TorchDeviceBuffer guide(0, nullptr); + guide.setDevice(torch::kCPU, true); + + std::vector> batchHandles; + batchHandles.reserve(batchSize); + batchHandles.push_back(std::move(ret)); + for (uint32_t i = 1; i < batchSize; i += 1) { + batchHandles.push_back(batchHandles[0].copy(guide)); + } + + if (batchHandles.size() == 1) { + return std::move(batchHandles[0]); + } else { + return nanovdb::mergeGrids(batchHandles); + } +} + + + +nanovdb::GridHandle buildDenseGrid(torch::Device device, bool isMutable, + const uint32_t batchSize, + const nanovdb::Coord& size, + const nanovdb::Coord& ijkMin, + const torch::optional& mask) { + + TORCH_CHECK(size[0] > 0 && size[1] > 0 && size[2] > 0, "Size must be greater than 0 in all dimensions"); + TORCH_CHECK((__uint128_t) size[0] * size[1] * size[2] <= std::numeric_limits::max(), + "Size of dense grid exceeds the number of voxels supported by a GridBatch"); + TORCH_CHECK((__uint128_t) size[0] * size[1] * size[2] * batchSize <= std::numeric_limits::max(), + "Size and batch size exceed the number of voxels supported by a GridBatch"); + if (mask.has_value()) { + TORCH_CHECK(mask.value().device() == device, "Mask device must match device of dense grid to build"); + TORCH_CHECK(mask.value().dtype() == torch::kBool, "Mask must be of type bool"); + TORCH_CHECK(mask.value().dim() == 3, "Mask must be 3D"); + TORCH_CHECK(mask.value().size(0) == size[0] && mask.value().size(1) == size[1] && mask.value().size(2) == size[2], + "Mask must have same size as dense grid to build"); + } + if (device.is_cuda()) { + return ops::dispatchCreateNanoGridFromDense(batchSize, ijkMin, size, isMutable, device, mask); + } else { + return FVDB_DISPATCH_GRID_TYPES_MUTABLE(isMutable, [&]() { + return buildDenseGridCPU(batchSize, size, ijkMin, mask); + }); + } +} + + +} // namespace build +} // namespace detail +} // namespace fvdb diff --git a/fvdb/src/detail/build/EmptyGrid.cpp b/fvdb/src/detail/build/EmptyGrid.cpp new file mode 100644 index 0000000000..b490125b84 --- /dev/null +++ b/fvdb/src/detail/build/EmptyGrid.cpp @@ -0,0 +1,34 @@ +// Copyright Contributors to the OpenVDB Project +// SPDX-License-Identifier: MPL-2.0 +// +#include "Build.h" + +#include "detail/utils/Utils.h" + +#include +#include +#include + + +namespace fvdb { +namespace detail { +namespace build { + + +nanovdb::GridHandle buildEmptyGrid(torch::Device device, bool isMutable) { + return FVDB_DISPATCH_GRID_TYPES_MUTABLE(isMutable, [&]() { + using ProxyGridT = nanovdb::tools::build::Grid; + auto proxyGrid = std::make_shared(0.0f); + auto proxyGridAccessor = proxyGrid->getWriteAccessor(); + + proxyGridAccessor.merge(); + auto ret = nanovdb::tools::createNanoGrid(*proxyGrid, 0u, false, false); + ret.buffer().setDevice(device, true /* sync */); + return ret; + }); +} + + +} // namespace build +} // namespace detail +} // namespace fvdb diff --git a/fvdb/src/detail/build/FineFromCoarse.cpp b/fvdb/src/detail/build/FineFromCoarse.cpp new file mode 100644 index 0000000000..efa6c41ff4 --- /dev/null +++ b/fvdb/src/detail/build/FineFromCoarse.cpp @@ -0,0 +1,99 @@ +// Copyright Contributors to the OpenVDB Project +// SPDX-License-Identifier: MPL-2.0 +// +#include "Build.h" + +#include +#include +#include + +#include "detail/utils/Utils.h" +#include "detail/ops/Ops.h" + + +namespace fvdb { +namespace detail { +namespace build { + + +template +nanovdb::GridHandle buildFineGridFromCoarseGridCPU(const GridBatchImpl& coarseBatchHdl, + const torch::Tensor& subdivMask, + const nanovdb::Coord subdivisionFactor) { + + using IndexTree = nanovdb::NanoTree; + + const nanovdb::GridHandle& coarseGridHdl = coarseBatchHdl.nanoGridHandle(); + const torch::TensorAccessor& subdivMaskAcc = subdivMask.accessor(); + + std::vector> batchHandles; + batchHandles.reserve(coarseGridHdl.gridCount()); + for (uint32_t bidx = 0; bidx < coarseGridHdl.gridCount(); bidx += 1) { + const nanovdb::NanoGrid* coarseGrid = coarseGridHdl.template grid(bidx); + if (!coarseGrid) { + throw std::runtime_error("Failed to get pointer to nanovdb index grid"); + } + const IndexTree& coarseTree = coarseGrid->tree(); + + using ProxyGridT = nanovdb::tools::build::Grid; + auto proxyGrid = std::make_shared(-1.0f); + auto proxyGridAccessor = proxyGrid->getWriteAccessor(); + + for (auto it = ActiveVoxelIterator(coarseTree); it.isValid(); it++) { + const nanovdb::Coord baseIjk(it->first[0] * subdivisionFactor[0], + it->first[1] * subdivisionFactor[1], + it->first[2] * subdivisionFactor[2]); + + if (subdivMaskAcc.size(0) > 0 && !subdivMaskAcc[it->second]) { + continue; + } + + for (int i = 0; i < subdivisionFactor[0]; i += 1) { + for (int j = 0; j < subdivisionFactor[1]; j += 1) { + for (int k = 0; k < subdivisionFactor[2]; k += 1) { + const nanovdb::Coord fineIjk = baseIjk + nanovdb::Coord(i, j, k); + proxyGridAccessor.setValue(fineIjk, 1); + } + } + } + } + + proxyGridAccessor.merge(); + auto ret = nanovdb::tools::createNanoGrid(*proxyGrid, 0u, false, false); + ret.buffer().setDevice(torch::kCPU, true); + batchHandles.push_back(std::move(ret)); + } + + if (batchHandles.size() == 1) { + return std::move(batchHandles[0]); + } else { + return nanovdb::mergeGrids(batchHandles); + } +} + + +nanovdb::GridHandle buildFineGridFromCoarseGrid(bool isMutable, + const GridBatchImpl& coarseBatchHdl, + const torch::optional& subdivMask, + const nanovdb::Coord subdivisionFactor) { + + if (coarseBatchHdl.device().is_cuda()) { + JaggedTensor coords = ops::dispatchFineIJKForCoarseGrid(coarseBatchHdl, subdivisionFactor, subdivMask); + return ops::dispatchCreateNanoGridFromIJK(coords, isMutable); + } else { + torch::Tensor subdivMaskTensor; + if (subdivMask.has_value()) { + subdivMaskTensor = subdivMask.value().jdata(); + } else { + subdivMaskTensor = torch::zeros(0, torch::TensorOptions().dtype(torch::kBool)); + } + return FVDB_DISPATCH_GRID_TYPES_MUTABLE(isMutable, [&]() { + return buildFineGridFromCoarseGridCPU(coarseBatchHdl, subdivMaskTensor, subdivisionFactor); + }); + } +} + + +} // namespace build +} // namespace detail +} // namespace fvdb diff --git a/fvdb/src/detail/build/FromMesh.cpp b/fvdb/src/detail/build/FromMesh.cpp new file mode 100644 index 0000000000..cda2254ced --- /dev/null +++ b/fvdb/src/detail/build/FromMesh.cpp @@ -0,0 +1,110 @@ +// Copyright Contributors to the OpenVDB Project +// SPDX-License-Identifier: MPL-2.0 +// +#include "Build.h" + +#include +#include +#include + +#include "detail/utils/Utils.h" +#include "detail/ops/Ops.h" + + +namespace fvdb { +namespace detail { +namespace build { + + +template +nanovdb::GridHandle buildGridFromMeshCPU(const JaggedTensor& vertices, + const JaggedTensor& triangles, + const std::vector& tx) { + + using Vec3T = nanovdb::math::Vec3; + using ProxyGridT = nanovdb::tools::build::Grid; + + + std::vector> batchHandles; + batchHandles.reserve(vertices.num_outer_lists()); + + for (int64_t bidx = 0; bidx < vertices.num_outer_lists(); bidx += 1) { + + const torch::Tensor ti = triangles.index({bidx}).jdata(); + const torch::Tensor vi = vertices.index({bidx}).jdata(); + const VoxelCoordTransform& txi = tx[bidx]; + + auto proxyGrid = std::make_shared(-1.0f); + auto proxyGridAccessor = proxyGrid->getWriteAccessor(); + + // int64_t numSearched = 0; + // int64_t numFound = 0; + // For eacjh face, compute thee min max voxels + for (int faceId = 0; faceId < ti.size(0); faceId += 1) { + const torch::Tensor face = ti.index({faceId}); // 3 + const torch::Tensor faceVertices = vi.index({face}); // [3, 3] + torch::TensorAccessor faceVerticesAcc = faceVertices.accessor(); + const Vec3T v1 = txi.apply(Vec3T(faceVerticesAcc[0][0], faceVerticesAcc[0][1], faceVerticesAcc[0][2])); + const Vec3T v2 = txi.apply(Vec3T(faceVerticesAcc[1][0], faceVerticesAcc[1][1], faceVerticesAcc[1][2])); + const Vec3T v3 = txi.apply(Vec3T(faceVerticesAcc[2][0], faceVerticesAcc[2][1], faceVerticesAcc[2][2])); + + const Vec3T e1 = v2 - v1; + const Vec3T e2 = v3 - v1; + const ScalarType spacing = sqrt(3.0) / 3.0; // This is very conservative spacing but fine for now + const int32_t numU = ceil((e1.length() + spacing) / spacing); + const int32_t numV = ceil((e2.length() + spacing) / spacing); + + // numSearched += (numU * numV); + for (int i = 0; i < numU; i += 1) { + for (int j = 0; j < numV; j += 1) { + ScalarType u = ScalarType(i) / (ScalarType(std::max(numU - 1, 1))); + ScalarType v = ScalarType(j) / (ScalarType(std::max(numV - 1, 1))); + if (u + v >= 1.0) { + u = 1.0 - u; + v = 1.0 - v; + } + const Vec3T p = v1 + e1 * u + e2 * v; + const nanovdb::Coord ijk = p.round(); + + proxyGridAccessor.setValue(ijk, 1.0f); + // numFound += 1; + } + } + } + + // std::cerr << "I searched over " << numSearched << " voxels" << std::endl; + // std::cerr << "I found " << numFound << " voxels" << std::endl; + proxyGridAccessor.merge(); + auto ret = nanovdb::tools::createNanoGrid(*proxyGrid, 0u, false, false); + ret.buffer().setDevice(torch::kCPU, true); + batchHandles.push_back(std::move(ret)); + } + + if (batchHandles.size() == 1) { + return std::move(batchHandles[0]); + } else { + return nanovdb::mergeGrids(batchHandles); + } +} + + +nanovdb::GridHandle buildGridFromMesh(bool isMutable, + const JaggedTensor meshVertices, + const JaggedTensor meshFaces, + const std::vector& tx) { + if (meshVertices.device().is_cuda()) { + JaggedTensor coords = ops::dispatchIJKForMesh(meshVertices, meshFaces, tx); + return ops::dispatchCreateNanoGridFromIJK(coords, isMutable); + } else { + return FVDB_DISPATCH_GRID_TYPES_MUTABLE(isMutable, [&]() { + return AT_DISPATCH_FLOATING_TYPES(meshVertices.scalar_type(), "buildGridFromMeshCPU", [&]() { + return buildGridFromMeshCPU(meshVertices, meshFaces, tx); + }); + }); + } +} + + +} // namespace build +} // namespace detail +} // namespace fvdb diff --git a/fvdb/src/detail/build/NearestNeighborGridFromPoints.cpp b/fvdb/src/detail/build/NearestNeighborGridFromPoints.cpp new file mode 100644 index 0000000000..d763990513 --- /dev/null +++ b/fvdb/src/detail/build/NearestNeighborGridFromPoints.cpp @@ -0,0 +1,103 @@ +// Copyright Contributors to the OpenVDB Project +// SPDX-License-Identifier: MPL-2.0 +// +#include "Build.h" + +#include +#include +#include + +#include "detail/utils/Utils.h" +#include "detail/ops/Ops.h" + + +namespace fvdb { +namespace detail { +namespace build { + + +template +nanovdb::GridHandle buildNearestNeighborGridFromPointsCPU(const JaggedTensor& jaggedPoints, + const std::vector& txs) { + + return AT_DISPATCH_FLOATING_TYPES_AND_HALF(jaggedPoints.scalar_type(), "buildNearestNeighborGridFromPoints", [&]() { + using ScalarT = scalar_t; + using MathT = typename at::opmath_type; + using Vec3T = typename nanovdb::math::Vec3; + using ProxyGridT = nanovdb::tools::build::Grid; + + static_assert(is_floating_point_or_half::value, "Invalid type for points, must be floating point"); + + jaggedPoints.check_valid(); + + const torch::TensorAccessor& pointsAcc = jaggedPoints.jdata().accessor(); + const torch::TensorAccessor& pointsBOffsetsAcc = jaggedPoints.joffsets().accessor(); + + std::vector> batchHandles; + batchHandles.reserve(pointsBOffsetsAcc.size(0) - 1); + for (int bi = 0; bi < (pointsBOffsetsAcc.size(0) - 1); bi += 1) { + + const VoxelCoordTransform& tx = txs[bi]; + + auto proxyGrid = std::make_shared(-1.0f); + auto proxyGridAccessor = proxyGrid->getWriteAccessor(); + + const int64_t start = pointsBOffsetsAcc[bi]; + const int64_t end = pointsBOffsetsAcc[bi+1]; + + for (int64_t pi = start; pi < end; pi += 1) { + Vec3T ijk0 = tx.apply(static_cast(pointsAcc[pi][0]), + static_cast(pointsAcc[pi][1]), + static_cast(pointsAcc[pi][2])); + nanovdb::Coord ijk000 = ijk0.floor(); + nanovdb::Coord ijk001 = ijk000 + nanovdb::Coord(0, 0, 1); + nanovdb::Coord ijk010 = ijk000 + nanovdb::Coord(0, 1, 0); + nanovdb::Coord ijk011 = ijk000 + nanovdb::Coord(0, 1, 1); + nanovdb::Coord ijk100 = ijk000 + nanovdb::Coord(1, 0, 0); + nanovdb::Coord ijk101 = ijk000 + nanovdb::Coord(1, 0, 1); + nanovdb::Coord ijk110 = ijk000 + nanovdb::Coord(1, 1, 0); + nanovdb::Coord ijk111 = ijk000 + nanovdb::Coord(1, 1, 1); + + proxyGridAccessor.setValue(ijk000, 11.0f); + proxyGridAccessor.setValue(ijk001, 11.0f); + proxyGridAccessor.setValue(ijk010, 11.0f); + proxyGridAccessor.setValue(ijk011, 11.0f); + proxyGridAccessor.setValue(ijk100, 11.0f); + proxyGridAccessor.setValue(ijk101, 11.0f); + proxyGridAccessor.setValue(ijk110, 11.0f); + proxyGridAccessor.setValue(ijk111, 11.0f); + } + + proxyGridAccessor.merge(); + auto ret = nanovdb::tools::createNanoGrid(*proxyGrid, 0u, false, false); + ret.buffer().setDevice(torch::kCPU, true); + batchHandles.push_back(std::move(ret)); + } + + if (batchHandles.size() == 1) { + return std::move(batchHandles[0]); + } else { + return nanovdb::mergeGrids(batchHandles); + } + }); +} + + +nanovdb::GridHandle buildNearestNeighborGridFromPoints(bool isMutable, + const JaggedTensor& points, + const std::vector& txs) { + if (points.device().is_cuda()) { + JaggedTensor coords = ops::dispatchNearestNeighborIJKForPoints(points, txs); + return ops::dispatchCreateNanoGridFromIJK(coords, isMutable); + } else { + return FVDB_DISPATCH_GRID_TYPES_MUTABLE(isMutable, [&]() { + return buildNearestNeighborGridFromPointsCPU(points, txs); + }); + } +} + + + +} // namespace build +} // namespace detail +} // namespace fvdb diff --git a/fvdb/src/detail/build/PaddedGridFromCoords.cpp b/fvdb/src/detail/build/PaddedGridFromCoords.cpp new file mode 100644 index 0000000000..c45554d361 --- /dev/null +++ b/fvdb/src/detail/build/PaddedGridFromCoords.cpp @@ -0,0 +1,91 @@ +// Copyright Contributors to the OpenVDB Project +// SPDX-License-Identifier: MPL-2.0 +// +#include "Build.h" + +#include + +#include +#include +#include + +#include "detail/utils/Utils.h" +#include "detail/ops/Ops.h" + + +namespace fvdb { +namespace detail { +namespace build { + + +template +nanovdb::GridHandle buildPaddedGridFromCoordsCPU(const JaggedTensor& jaggedCoords, + const nanovdb::Coord& bmin, + const nanovdb::Coord& bmax) { + + return AT_DISPATCH_INTEGRAL_TYPES(jaggedCoords.scalar_type(), "buildPaddedGridFromCoords", [&]() { + using ScalarT = scalar_t; + jaggedCoords.check_valid(); + + static_assert(std::is_integral::value, "Invalid type for coords, must be integral"); + + using ProxyGridT = nanovdb::tools::build::Grid; + + const torch::TensorAccessor& coordsAcc = jaggedCoords.jdata().accessor(); + const torch::TensorAccessor& coordsBOffsetsAcc = jaggedCoords.joffsets().accessor(); + + std::vector> batchHandles; + batchHandles.reserve(coordsBOffsetsAcc.size(0) - 1); + for (int bi = 0; bi < (coordsBOffsetsAcc.size(0) - 1); bi += 1) { + + auto proxyGrid = std::make_shared(-1.0f); + auto proxyGridAccessor = proxyGrid->getWriteAccessor(); + + const int64_t start = coordsBOffsetsAcc[bi]; + const int64_t end = coordsBOffsetsAcc[bi+1]; + + for (unsigned ci = start; ci < end; ci += 1) { + nanovdb::Coord ijk0(coordsAcc[ci][0], coordsAcc[ci][1], coordsAcc[ci][2]); + + // Splat the normal to the 8 neighboring voxels + for (int di = bmin[0]; di <= bmax[0]; di += 1) { + for (int dj = bmin[1]; dj <= bmax[1]; dj += 1) { + for (int dk = bmin[2]; dk <= bmax[2]; dk += 1) { + const nanovdb::Coord ijk = ijk0 + nanovdb::Coord(di, dj, dk); + proxyGridAccessor.setValue(ijk, 11); + } + } + } + } + + proxyGridAccessor.merge(); + auto ret = nanovdb::tools::createNanoGrid(*proxyGrid, 0u, false, false); + ret.buffer().setDevice(torch::kCPU, true); + batchHandles.push_back(std::move(ret)); + } + + if (batchHandles.size() == 1) { + return std::move(batchHandles[0]); + } else { + return nanovdb::mergeGrids(batchHandles); + } + }); +} + + +nanovdb::GridHandle buildPaddedGridFromCoords(bool isMutable, + const JaggedTensor& coords, + const nanovdb::Coord& bmin, + const nanovdb::Coord& bmax) { + if (coords.device().is_cuda()) { + JaggedTensor buildCoords = ops::dispatchPaddedIJKForCoords(coords, bmin, bmax); + return ops::dispatchCreateNanoGridFromIJK(buildCoords, isMutable); + } else { + return FVDB_DISPATCH_GRID_TYPES_MUTABLE(isMutable, [&]() { + return buildPaddedGridFromCoordsCPU(coords, bmin, bmax); + }); + } +} +} // namespace build +} // namespace detail +} // namespace fvdb diff --git a/fvdb/src/detail/build/PaddedGridFromGrid.cpp b/fvdb/src/detail/build/PaddedGridFromGrid.cpp new file mode 100644 index 0000000000..3108545806 --- /dev/null +++ b/fvdb/src/detail/build/PaddedGridFromGrid.cpp @@ -0,0 +1,144 @@ +// Copyright Contributors to the OpenVDB Project +// SPDX-License-Identifier: MPL-2.0 +// +#include "Build.h" + +#include +#include +#include + +#include "detail/utils/Utils.h" +#include "detail/ops/Ops.h" + + +namespace fvdb { +namespace detail { +namespace build { + + +template +nanovdb::GridHandle buildPaddedGridFromGridWithoutBorderCPU(const GridBatchImpl& baseBatchHdl, int BMIN, int BMAX) { + TORCH_CHECK(BMIN <= BMAX, "BMIN must be less than BMAX"); + + const nanovdb::GridHandle& baseGridHdl = baseBatchHdl.nanoGridHandle(); + + std::vector> batchHandles; + batchHandles.reserve(baseGridHdl.gridCount()); + for (uint32_t bidx = 0; bidx < baseGridHdl.gridCount(); bidx += 1) { + + const nanovdb::NanoGrid* baseGrid = baseGridHdl.template grid(bidx); + if (!baseGrid) { + throw std::runtime_error("Failed to get pointer to nanovdb index grid"); + } + auto baseGridAccessor = baseGrid->getAccessor(); + + using ProxyGridT = nanovdb::tools::build::Grid; + auto proxyGrid = std::make_shared(-1.0f); + auto proxyGridAccessor = proxyGrid->getWriteAccessor(); + + for (auto it = ActiveVoxelIterator(baseGrid->tree()); it.isValid(); it++) { + nanovdb::Coord ijk0 = it->first; + bool active = true; + for (int di = BMIN; di <= BMAX && active; di += 1) { + for (int dj = BMIN; dj <= BMAX && active; dj += 1) { + for (int dk = BMIN; dk <= BMAX && active; dk += 1) { + const nanovdb::Coord ijk = ijk0 + nanovdb::Coord(di, dj, dk); + if (ijk != ijk0) { + active = active && baseGridAccessor.isActive(ijk); // if any surrounding is off, turn it off. + } + } + } + } + if (active) { + proxyGridAccessor.setValue(ijk0, 1.0f); + } + } + + proxyGridAccessor.merge(); + auto ret = nanovdb::tools::createNanoGrid(*proxyGrid, 0u, false, false); + ret.buffer().setDevice(torch::kCPU, true); + batchHandles.push_back(std::move(ret)); + } + + if (batchHandles.size() == 1) { + return std::move(batchHandles[0]); + } else { + return nanovdb::mergeGrids(batchHandles); + } +} + + + +template +nanovdb::GridHandle buildPaddedGridFromGridCPU(const GridBatchImpl& baseBatchHdl, int BMIN, int BMAX) { + TORCH_CHECK(BMIN <= BMAX, "BMIN must be less than BMAX"); + + const nanovdb::GridHandle& baseGridHdl = baseBatchHdl.nanoGridHandle(); + + std::vector> batchHandles; + batchHandles.reserve(baseGridHdl.gridCount()); + for (uint32_t bidx = 0; bidx < baseGridHdl.gridCount(); bidx += 1) { + + const nanovdb::NanoGrid* baseGrid = baseGridHdl.template grid(bidx); + if (!baseGrid) { + throw std::runtime_error("Failed to get pointer to nanovdb index grid"); + } + + using ProxyGridT = nanovdb::tools::build::Grid; + auto proxyGrid = std::make_shared(-1.0f); + auto proxyGridAccessor = proxyGrid->getWriteAccessor(); + + for (auto it = ActiveVoxelIterator(baseGrid->tree()); it.isValid(); it++) { + nanovdb::Coord ijk0 = it->first; + for (int di = BMIN; di <= BMAX; di += 1) { + for (int dj = BMIN; dj <= BMAX; dj += 1) { + for (int dk = BMIN; dk <= BMAX; dk += 1) { + const nanovdb::Coord ijk = ijk0 + nanovdb::Coord(di, dj, dk); + proxyGridAccessor.setValue(ijk, 1.0f); + } + } + } + } + + proxyGridAccessor.merge(); + auto ret = nanovdb::tools::createNanoGrid(*proxyGrid, 0u, false, false); + ret.buffer().setDevice(torch::kCPU, true); + batchHandles.push_back(std::move(ret)); + } + + if (batchHandles.size() == 1) { + return std::move(batchHandles[0]); + } else { + return nanovdb::mergeGrids(batchHandles); + } +} + + +nanovdb::GridHandle buildPaddedGridFromGrid(bool isMutable, + const GridBatchImpl& baseBatchHdl, + int bmin, int bmax, bool excludeBorder) { + if (baseBatchHdl.device().is_cuda()) { + JaggedTensor coords; + if (excludeBorder) { + coords = ops::dispatchPaddedIJKForGridWithoutBorder(baseBatchHdl, nanovdb::Coord(bmin), nanovdb::Coord(bmax)); + } else { + coords = ops::dispatchPaddedIJKForGrid(baseBatchHdl, nanovdb::Coord(bmin), nanovdb::Coord(bmax)); + } + return ops::dispatchCreateNanoGridFromIJK(coords, isMutable); + } else { + return FVDB_DISPATCH_GRID_TYPES_MUTABLE(isMutable, [&]() { + if (excludeBorder) { + return buildPaddedGridFromGridWithoutBorderCPU(baseBatchHdl, bmin, bmax); + } else { + return buildPaddedGridFromGridCPU(baseBatchHdl, bmin, bmax); + } + }); + } +} + + + + +} // namespace build +} // namespace detail +} // namespace fvdb diff --git a/fvdb/src/detail/build/PaddedGridFromPoints.cpp b/fvdb/src/detail/build/PaddedGridFromPoints.cpp new file mode 100644 index 0000000000..55a0871686 --- /dev/null +++ b/fvdb/src/detail/build/PaddedGridFromPoints.cpp @@ -0,0 +1,99 @@ +// Copyright Contributors to the OpenVDB Project +// SPDX-License-Identifier: MPL-2.0 +// +#include "Build.h" + +#include +#include +#include + +#include "detail/utils/Utils.h" +#include "detail/ops/Ops.h" + + +namespace fvdb { +namespace detail { +namespace build { + + +template +nanovdb::GridHandle buildPaddedGridFromPointsCPU(const JaggedTensor& pointsJagged, + const std::vector& txs, + const nanovdb::Coord& bmin, + const nanovdb::Coord& bmax) { + return AT_DISPATCH_FLOATING_TYPES_AND_HALF(pointsJagged.scalar_type(), "buildPaddedGridFromPoints", [&](){ + using ScalarT = scalar_t; + static_assert(is_floating_point_or_half::value, "Invalid type for points, must be floating point"); + using MathT = typename at::opmath_type; + using ProxyGridT = nanovdb::tools::build::Grid; + + pointsJagged.check_valid(); + + const torch::TensorAccessor& pointsAcc = pointsJagged.jdata().accessor(); + const torch::TensorAccessor& pointsBOffsetsAcc = pointsJagged.joffsets().accessor(); + + std::vector> batchHandles; + batchHandles.reserve(pointsBOffsetsAcc.size(0) - 1); + for (int bi = 0; bi < (pointsBOffsetsAcc.size(0) - 1); bi += 1) { + VoxelCoordTransform tx = txs[bi]; + + auto proxyGrid = std::make_shared(-1.0f); + auto proxyGridAccessor = proxyGrid->getWriteAccessor(); + + const int64_t start = pointsBOffsetsAcc[bi]; + const int64_t end = pointsBOffsetsAcc[bi+1]; + + for (int64_t pi = start; pi < end; pi += 1) { + + nanovdb::Coord ijk0 = tx.apply(static_cast(pointsAcc[pi][0]), + static_cast(pointsAcc[pi][1]), + static_cast(pointsAcc[pi][2])).round(); + + // Splat the normal to the 8 neighboring voxels + for (int di = bmin[0]; di <= bmax[0]; di += 1) { + for (int dj = bmin[1]; dj <= bmax[1]; dj += 1) { + for (int dk = bmin[2]; dk <= bmax[2]; dk += 1) { + const nanovdb::Coord ijk = ijk0 + nanovdb::Coord(di, dj, dk); + proxyGridAccessor.setValue(ijk, 1.0f); + } + } + } + } + + proxyGridAccessor.merge(); + auto ret = nanovdb::tools::createNanoGrid(*proxyGrid, 0u, false, false); + ret.buffer().setDevice(torch::kCPU, true); + batchHandles.push_back(std::move(ret)); + } + + if (batchHandles.size() == 1) { + return std::move(batchHandles[0]); + } else { + return nanovdb::mergeGrids(batchHandles); + } + }); +} + + +nanovdb::GridHandle buildPaddedGridFromPoints(bool isMutable, + const JaggedTensor& points, + const std::vector& txs, + const nanovdb::Coord& bmin, + const nanovdb::Coord& bmax) { + if (points.device().is_cuda()) { + JaggedTensor coords = ops::dispatchPaddedIJKForPoints(points, bmin, bmax, txs); + return ops::dispatchCreateNanoGridFromIJK(coords, isMutable); + + } else { + + return FVDB_DISPATCH_GRID_TYPES_MUTABLE(isMutable, [&]() { + return buildPaddedGridFromPointsCPU(points, txs, bmin, bmax); + }); + } +} + + + +} // namespace build +} // namespace detail +} // namespace fvdb diff --git a/fvdb/src/detail/ops/IjkToIndex.cu b/fvdb/src/detail/ops/IjkToIndex.cu index 078dfe649e..6a05afa7ea 100644 --- a/fvdb/src/detail/ops/IjkToIndex.cu +++ b/fvdb/src/detail/ops/IjkToIndex.cu @@ -31,7 +31,7 @@ __hostdev__ inline void ijkToIndexCallback(int32_t bidx, int32_t eidx, template -JaggedTensor IjkToIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ijk) { +JaggedTensor IjkToIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ijk, bool cumulative) { batchHdl.checkNonEmptyGrid(); batchHdl.checkDevice(ijk); TORCH_CHECK_TYPE(at::isIntegralType(ijk.scalar_type(), false), "ijk must have an integer type"); @@ -51,12 +51,12 @@ JaggedTensor IjkToIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ijk) auto outIndexAcc = tensorAccessor(outIndex); if constexpr (DeviceTag == torch::kCUDA) { auto cb = [=] __device__ (int32_t bidx, int32_t eidx, int32_t cidx, JaggedRAcc32 ijkAcc) { - ijkToIndexCallback(bidx, eidx, batchAcc, ijkAcc, outIndexAcc, true); + ijkToIndexCallback(bidx, eidx, batchAcc, ijkAcc, outIndexAcc, cumulative); }; forEachJaggedElementChannelCUDA(512, 1, ijk, cb); } else { auto cb = [=] (int32_t bidx, int32_t eidx, int32_t cidx, JaggedAcc ijkAcc) { - ijkToIndexCallback(bidx, eidx, batchAcc, ijkAcc, outIndexAcc, true); + ijkToIndexCallback(bidx, eidx, batchAcc, ijkAcc, outIndexAcc, cumulative); }; forEachJaggedElementChannelCPU(1, ijk, cb); } @@ -68,13 +68,13 @@ JaggedTensor IjkToIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ijk) template <> -JaggedTensor dispatchIjkToIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ijk) { - return IjkToIndex(batchHdl, ijk); +JaggedTensor dispatchIjkToIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ijk, bool cumulative) { + return IjkToIndex(batchHdl, ijk, cumulative); } template <> -JaggedTensor dispatchIjkToIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ijk) { - return IjkToIndex(batchHdl, ijk); +JaggedTensor dispatchIjkToIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ijk, bool cumulative) { + return IjkToIndex(batchHdl, ijk, cumulative); } diff --git a/fvdb/src/detail/ops/IjkToInvIndex.cu b/fvdb/src/detail/ops/IjkToInvIndex.cu index a9bc6586ee..1945bc372c 100644 --- a/fvdb/src/detail/ops/IjkToInvIndex.cu +++ b/fvdb/src/detail/ops/IjkToInvIndex.cu @@ -14,21 +14,23 @@ template batchAccessor, const JaggedAccessor ijk, - TensorAccessor outInvIndex) { + TensorAccessor outInvIndex, + bool cumulative) { const nanovdb::NanoGrid* grid = batchAccessor.grid(bidx); const auto acc = grid->getAccessor(); const auto ijkCoord = ijk.data()[eidx]; const nanovdb::Coord vox(ijkCoord[0], ijkCoord[1], ijkCoord[2]); if (acc.isActive(vox)) { + const int64_t baseOffset = cumulative ? 0 : batchAccessor.voxelOffset(bidx); const int64_t index = (int64_t) acc.getValue(vox) - 1 + batchAccessor.voxelOffset(bidx); - outInvIndex[index] = eidx; + outInvIndex[index] = eidx - baseOffset; } } template -JaggedTensor IjkToInvIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ijk) { +JaggedTensor IjkToInvIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ijk, bool cumulative) { batchHdl.checkNonEmptyGrid(); batchHdl.checkDevice(ijk); TORCH_CHECK_TYPE(at::isIntegralType(ijk.scalar_type(), false), "ijk must have an integer type"); @@ -50,12 +52,12 @@ JaggedTensor IjkToInvIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ij if constexpr (DeviceTag == torch::kCUDA) { auto cb = [=] __device__ (int32_t bidx, int32_t eidx, int32_t cidx, JaggedRAcc32 ijkAcc) { - ijkToInvIndexCallback(bidx, eidx, batchAcc, ijkAcc, outInvIndexAcc); + ijkToInvIndexCallback(bidx, eidx, batchAcc, ijkAcc, outInvIndexAcc, cumulative); }; - forEachJaggedElementChannelCUDA(1024, 1, ijk, cb); + forEachJaggedElementChannelCUDA(512, 1, ijk, cb); } else { auto cb = [=] (int32_t bidx, int32_t eidx, int32_t cidx, JaggedAcc ijkAcc) { - ijkToInvIndexCallback(bidx, eidx, batchAcc, ijkAcc, outInvIndexAcc); + ijkToInvIndexCallback(bidx, eidx, batchAcc, ijkAcc, outInvIndexAcc, cumulative); }; forEachJaggedElementChannelCPU(1, ijk, cb); } @@ -67,13 +69,13 @@ JaggedTensor IjkToInvIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ij template <> -JaggedTensor dispatchIjkToInvIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ijk) { - return IjkToInvIndex(batchHdl, ijk); +JaggedTensor dispatchIjkToInvIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ijk, bool cumulative) { + return IjkToInvIndex(batchHdl, ijk, cumulative); } template <> -JaggedTensor dispatchIjkToInvIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ijk) { - return IjkToInvIndex(batchHdl, ijk); +JaggedTensor dispatchIjkToInvIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ijk, bool cumulative) { + return IjkToInvIndex(batchHdl, ijk, cumulative); } } // namespace ops diff --git a/fvdb/src/detail/ops/JCat0.cu b/fvdb/src/detail/ops/JCat0.cu new file mode 100644 index 0000000000..9054e6d443 --- /dev/null +++ b/fvdb/src/detail/ops/JCat0.cu @@ -0,0 +1,193 @@ +// Copyright Contributors to the OpenVDB Project +// SPDX-License-Identifier: MPL-2.0 +// + + +#include +#include +#include + +#include "detail/ops/Ops.h" +#include "detail/utils/Utils.h" +#include "detail/utils/cuda/Utils.cuh" + +namespace fvdb { +namespace detail { +namespace ops { + +__global__ void computeTensorSizes(const JOffsetsType* __restrict__ const* __restrict__ offsets, + const size_t numOffsets, TorchRAcc32 outTensorSizes) { + int32_t idx = blockIdx.x * blockDim.x + threadIdx.x; + + if (idx > outTensorSizes.size(0) - 1) { + return; + } + + // Calculate the size of the concatenated output tensor + JOffsetsType tensorSize = 0; + for (size_t i = 0; i < numOffsets; ++i) { + tensorSize += offsets[i][idx + 1] - offsets[i][idx]; + } + outTensorSizes[idx+1] = tensorSize; + + // One thread will write out the zero in the begining + if (idx == 0) { + outTensorSizes[0] = 0; + } +} + +template +__global__ void computeIndexPutArg(const size_t jti, const JOffsetsType* __restrict__ const* __restrict__ offsets, const size_t numOffsets, + const TorchRAcc32 inJIdxI, // Jidx of the i^th input tensor + const TorchRAcc32 inJoffsetsI, // JOffsets of the i^th input tensor + const TorchRAcc32 outJOffsets, // Output JOffsets (already computed earlier) + TorchRAcc32 outSelIdx, // Output selection indices + TorchRAcc32 outJIdx) { // Output Jidx + int32_t idx = blockIdx.x * blockDim.x + threadIdx.x; + const int64_t numElements = inJIdxI.size(0); + + if (idx >= numElements) { + return; + } + + const JIdxType jidx = inJIdxI[idx]; // Which tensor this element belongs to + + // Where in the output tensor we're going to write to + JOffsetsType tensorWriteOffset = 0; + for (size_t i = 0; i < jti; ++i){ + tensorWriteOffset += offsets[i][jidx + 1] - offsets[i][jidx]; + } + + const JOffsetsType writeBaseOffset = outJOffsets[jidx]; // Start of the concatenated tensor in the output + const JOffsetsType tensorOffsetOut = writeBaseOffset + tensorWriteOffset; // Start of where we're copying the input tensor to in the output + const JOffsetsType tensorOffsetIn = inJoffsetsI[jidx]; // Start of the tensor in the input + const JOffsetsType elementOffsetInTensor = idx - tensorOffsetIn; // Which element in the tensor we are copying + + outSelIdx[idx] = elementOffsetInTensor + tensorOffsetOut; // Which element in the output the current input element will go to + outJIdx[elementOffsetInTensor] = jidx; // Which tensor the current element belongs to in the output +} + + +template <> +JaggedTensor dispatchJCat0(const std::vector& vec) { + int64_t totalElements = 0; + int64_t maxElements = 0; + thrust::host_vector offsets; + offsets.reserve(vec.size()); + + auto size_0 = vec[0].jdata().sizes(); + auto dtype_0 = vec[0].jdata().dtype(); + for (auto& jt : vec) { + totalElements += jt.jdata().size(0); + maxElements = std::max(maxElements, jt.jdata().size(0)); + offsets.push_back(jt.joffsets().data_ptr()); + TORCH_CHECK_VALUE(jt.joffsets().size(0) == vec[0].joffsets().size(0), "All jagged tensors must have the same number of tensors"); + TORCH_CHECK_VALUE(jt.joffsets().is_contiguous(), "All jagged tensors must have contiguous offsets"); + TORCH_CHECK_VALUE(jt.device().is_cuda(), "All jagged tensors must be on the same device"); + TORCH_CHECK(jt.jdata().dtype() == dtype_0, "All jagged tensors must have the same dtype"); + auto sizes_i = jt.jdata().sizes(); + for (size_t i = 1; i < sizes_i.size(); ++i) { + TORCH_CHECK_VALUE(sizes_i[i] == size_0[i], "All jagged tensors must have the same eshape"); + } + } + + thrust::device_vector offsets_d = offsets; + torch::Tensor outJOffsets = torch::empty({vec[0].joffsets().size(0)}, torch::TensorOptions().dtype(JOffsetsScalarType).device(torch::kCUDA)); + const int64_t numThreadsCalcTensorSizes = 1024; + const int64_t numBlocksCalcTensorSizes = GET_BLOCKS(outJOffsets.size(0), numThreadsCalcTensorSizes); + computeTensorSizes<<>>( + thrust::raw_pointer_cast(offsets_d.data()), offsets_d.size(), outJOffsets.packed_accessor32()); + C10_CUDA_KERNEL_LAUNCH_CHECK(); + torch::cumsum_out(outJOffsets, outJOffsets, 0); + + auto outShape = spliceShape({totalElements}, vec[0].jdata()); + torch::Tensor outJData = torch::empty(outShape, torch::TensorOptions().dtype(vec[0].scalar_type()).device(torch::kCUDA)); + torch::Tensor outJIdx = torch::empty({totalElements}, torch::TensorOptions().dtype(JIdxScalarType).device(torch::kCUDA)); + + c10::ScalarType idxType = torch::kInt32; + if (maxElements < std::numeric_limits::max()) { + idxType = torch::kInt32; + } else if (maxElements < std::numeric_limits::max()) { + idxType = torch::kInt64; + } else { + TORCH_CHECK(false, "Cannot handle more than ", std::numeric_limits::max(), " elements"); + } + + torch::Tensor selectIndices = torch::zeros({maxElements}, torch::TensorOptions().dtype(idxType).device(torch::kCUDA)); + for (size_t jti = 0; jti < vec.size(); ++jti) { + const JaggedTensor& jt = vec[jti]; + AT_DISPATCH_INTEGRAL_TYPES(selectIndices.scalar_type(), "computeIndexPutArg", [&] { + const int64_t numElements = jt.jdata().size(0); + const int64_t numThreadsComputeIndexPutArg = 1024; + const int64_t numBlocksComputeIndexPutArg = GET_BLOCKS(numElements, numThreadsComputeIndexPutArg); + computeIndexPutArg<<>>( + jti, thrust::raw_pointer_cast(offsets_d.data()), offsets_d.size(), + jt.jidx().packed_accessor32(), + jt.joffsets().packed_accessor32(), + outJOffsets.packed_accessor32(), + selectIndices.packed_accessor32(), + outJIdx.packed_accessor32()); + C10_CUDA_KERNEL_LAUNCH_CHECK(); + + torch::Tensor selIdxI = selectIndices.index({torch::indexing::Slice(0, numElements)}); + + outJData.index_put_({selIdxI, torch::indexing::Ellipsis}, jt.jdata()); + }); + } + + return JaggedTensor::from_jdata_joffsets_jidx_and_lidx_unsafe( + outJData, outJOffsets, outJIdx, vec[0].jlidx(), vec[0].num_outer_lists()); +} + +template <> +JaggedTensor dispatchJCat0(const std::vector& vec) { + const auto device = vec[0].device(); + const auto dtype = vec[0].scalar_type(); + + int64_t totalElements = 0; + for (const auto& jvec : vec) { + TORCH_CHECK_VALUE(jvec.joffsets().size(0) == vec[0].joffsets().size(0), + "All tensors must have the same number of lists"); + TORCH_CHECK_VALUE(jvec.jdata().dim() == vec[0].jdata().dim(), + "All tensors must have the same number of dimensions"); + TORCH_CHECK_VALUE(jvec.device() == device, "All tensors must be on the same device"); + TORCH_CHECK_VALUE(jvec.scalar_type() == dtype, "All tensors must have the same scalar type"); + totalElements += jvec.jdata().size(0); + } + const auto shape = fvdb::detail::spliceShape({totalElements}, vec[0].jdata()); + const JOffsetsType numOffsets = vec[0].joffsets().size(0); + + torch::Tensor outJdata = torch::empty(shape, torch::TensorOptions().device(device).dtype(dtype)); + torch::Tensor outJoffsets = torch::empty({numOffsets}, torch::TensorOptions().device(device).dtype(JOffsetsScalarType)); + torch::Tensor outJidx = torch::empty({totalElements}, torch::TensorOptions().device(device).dtype(JIdxScalarType)); + torch::Tensor outJLidx = vec[0].jlidx(); + const int64_t outNumOuterLists = vec[0].num_outer_lists(); + + JOffsetsType startOffset = 0; + for (JOffsetsType i = 0; i < numOffsets - 1; ++i) { + JOffsetsType numElements = 0; + + std::vector tensorsToCat; + tensorsToCat.reserve(vec.size()); + for (const auto& jvec : vec) { + const JOffsetsType startIdx = jvec.joffsets()[i].item(); + const JOffsetsType endIdx = jvec.joffsets()[i+1].item(); + torch::Tensor jdataSlice = jvec.jdata().index({torch::indexing::Slice(startIdx, endIdx)}); + tensorsToCat.push_back(jdataSlice); + numElements += (endIdx - startIdx); + } + + outJdata.index({torch::indexing::Slice(startOffset, startOffset + numElements)}).copy_(torch::cat(tensorsToCat, 0)); + outJidx.index({torch::indexing::Slice(startOffset, startOffset + numElements)}).copy_(torch::full({numElements}, i, torch::TensorOptions().dtype(JIdxScalarType).device(device))); + outJoffsets[i] = startOffset; + outJoffsets[i+1] = startOffset + numElements; + startOffset += numElements; + } + return JaggedTensor::from_jdata_joffsets_jidx_and_lidx_unsafe(outJdata, outJoffsets, outJidx, outJLidx, outNumOuterLists); +} + + + +} // namespace ops +} // namespace detail +} // namespace fvdb \ No newline at end of file diff --git a/fvdb/src/detail/ops/JOffsetsFromJIdx.cu b/fvdb/src/detail/ops/JOffsetsFromJIdx.cu index 70ff9a0230..557bf57837 100644 --- a/fvdb/src/detail/ops/JOffsetsFromJIdx.cu +++ b/fvdb/src/detail/ops/JOffsetsFromJIdx.cu @@ -21,6 +21,7 @@ __global__ void setZero(T* thingToSet) { template <> torch::Tensor dispatchJOffsetsForJIdx(torch::Tensor jidx, torch::Tensor jdata, int64_t numTensors) { TORCH_CHECK_VALUE(jdata.device().is_cuda(), "Invalid device for jdata"); + c10::cuda::CUDAGuard deviceGuard(jdata.device()); if (jidx.size(0) == 0 && numTensors == 1) { torch::Tensor ret = torch::empty({2}, JOffsetsScalarType); diff --git a/fvdb/src/detail/ops/JaggedTensorIndex.cu b/fvdb/src/detail/ops/JaggedTensorIndex.cu new file mode 100644 index 0000000000..f50d100bfe --- /dev/null +++ b/fvdb/src/detail/ops/JaggedTensorIndex.cu @@ -0,0 +1,226 @@ +// Copyright Contributors to the OpenVDB Project +// SPDX-License-Identifier: MPL-2.0 +// + + +#include +#include +#include + +#include "detail/ops/Ops.h" +#include "detail/utils/Utils.h" +#include "detail/utils/cuda/Utils.cuh" + +namespace fvdb { +namespace detail { +namespace ops { + +// __global__ void makeJOffsetsForListJt(const TorchRAcc32 inJoffsets, int64_t idxVal, +// TorchRAcc32 outJoffsets) { +// JOffsetsType startIdx = inJoffsets[idxVal]; +// JOffsetsType endIdx = inJoffsets[idxVal + 1]; +// outJoffsets[0] = 0; +// outJoffsets[1] = endIdx - startIdx; +// } + + +__global__ void getJOffsetsMask(const int64_t idxVal, + const TorchRAcc32 jlidx, + const TorchRAcc32 inJoffsets, + TorchRAcc32 offsetsAndRange) { + int32_t idx = threadIdx.x + blockIdx.x * blockDim.x; + + if (idx >= jlidx.size(0)) { + return; + } + + JLIdxType lid = jlidx[idx][0]; + JLIdxType prevLid = -1; + if (idx - 1 >= 0) { + prevLid = jlidx[idx - 1][0]; + } + const bool lidMatches = lid == idxVal; + const bool prevLidMatches = prevLid == idxVal; + const bool isLastIdx = idx == (jlidx.size(0) - 1); + + if (lidMatches && !prevLidMatches) { + offsetsAndRange[0] = inJoffsets[idx]; + offsetsAndRange[2] = idx; + } + + if (!lidMatches && prevLidMatches) { + offsetsAndRange[1] = inJoffsets[idx]; + offsetsAndRange[3] = idx; + } else if (lidMatches && isLastIdx) { + offsetsAndRange[1] = inJoffsets[idx + 1]; + offsetsAndRange[3] = idx + 1; + } +} + + +// __global__ void computeJLidx(const int64_t startIdx, const int64_t idxVal, +// const TorchRAcc32 inJLIdx, +// TorchRAcc32 outJLidx) { +// int32_t idx = threadIdx.x + blockIdx.x * blockDim.x; + +// if (idx >= outJLidx.size(0)) { +// return; +// } +// outJLidx[idx][0] = inJLIdx[idx + startIdx][0] - idxVal; +// outJLidx[idx][1] = inJLIdx[idx + startIdx][1]; +// } + + +JaggedTensor jaggedTensorIndexMultiListCuda(const JaggedTensor& jt, int64_t idxVal) { + if (idxVal < 0) { + idxVal += jt.num_outer_lists(); + } + TORCH_CHECK_INDEX(idxVal >= 0 && idxVal < jt.num_outer_lists(), + "Index ", idxVal, " is out of bounds for JaggedTensor with ", + jt.num_outer_lists(), " elements"); + + torch::Tensor joffsets = jt.joffsets(); + torch::Tensor jdata = jt.jdata(); + torch::Tensor jlidx = jt.jlidx(); + + TORCH_CHECK_VALUE(jlidx.dim() == 2, "Corrupt list indices. This should never happen"); + TORCH_CHECK_VALUE(jlidx.numel() == 0 || jlidx.size(0) == (joffsets.size(0) - 1), "Corrupt list indices. This should never happen"); + + torch::Tensor offsetsAndRange = torch::empty({4}, torch::TensorOptions().dtype(JOffsetsScalarType).device(torch::kCPU).pinned_memory(true)); + offsetsAndRange = offsetsAndRange.to(jt.device()); + auto inJLidxAcc = jlidx.packed_accessor32(); + auto inJOffsetsAcc = joffsets.packed_accessor32(); + auto offsetsAndRangeAcc = offsetsAndRange.packed_accessor32(); + const int numBlocks = GET_BLOCKS(joffsets.size(0), 1024); + getJOffsetsMask<<>>(idxVal, inJLidxAcc, inJOffsetsAcc, offsetsAndRangeAcc); + C10_CUDA_KERNEL_LAUNCH_CHECK(); + + offsetsAndRange = offsetsAndRange.cpu(); + const JOffsetsType elementStartOffset = offsetsAndRange[0].item(); + const JOffsetsType elementEndOffset = offsetsAndRange[1].item(); + const JOffsetsType startIdx = offsetsAndRange[2].item(); + const JOffsetsType endIdx = offsetsAndRange[3].item(); + torch::Tensor retOffsets = joffsets.index({torch::indexing::Slice(startIdx, endIdx+1)}) - elementStartOffset; + const torch::Tensor retData = jdata.index({torch::indexing::Slice(elementStartOffset, elementEndOffset)}); + + torch::Tensor retListIdx; + int64_t retNumOuterLists; + if (jlidx.size(1) > 1 && jlidx.size(1) > 2) { + TORCH_CHECK(false, "We don't support ldim > 2."); + // const auto lidxOpts = torch::TensorOptions().dtype(JLIdxScalarType).device(jdata.device()); + // retListIdx = torch::empty({retOffsets.size(0)-1, 2}, lidxOpts); + // auto outJLidxAcc = retListIdx.packed_accessor32(); + // const int numBlocksJLidx = GET_BLOCKS(retListIdx.size(0), 1024); + // computeJLidx<<>>(startIdx, idxVal, inJLidxAcc, outJLidxAcc); + // C10_CUDA_KERNEL_LAUNCH_CHECK(); + // retNumOuterLists = std::get<0>(torch::unique_dim(retListIdx, 0)).size(0); + } else { + retListIdx = torch::empty({0, 1}, torch::TensorOptions().dtype(JLIdxScalarType).device(jdata.device())); + retNumOuterLists = retOffsets.size(0) - 1; + } + + const torch::Tensor retJidx = JaggedTensor::jidx_from_joffsets(retOffsets, retData.size(0)); + return JaggedTensor::from_jdata_joffsets_jidx_and_lidx_unsafe(retData, retOffsets, retJidx, retListIdx, retNumOuterLists); +} + + + + + +JaggedTensor jaggedTensorIndexMultiListCpu(const JaggedTensor& jt, int64_t idxVal) { + if (idxVal < 0) { + idxVal += jt.num_outer_lists(); + } + TORCH_CHECK_INDEX(idxVal >= 0 && idxVal < jt.num_outer_lists(), + "Index ", idxVal, " is out of bounds for JaggedTensor with ", + jt.num_outer_lists(), " elements"); + + torch::Tensor joffsets = jt.joffsets(); + torch::Tensor jdata = jt.jdata(); + torch::Tensor jlidx = jt.jlidx(); + + TORCH_CHECK_VALUE(jlidx.dim() == 2, "Corrupt list indices. This should never happen"); + TORCH_CHECK_VALUE(jlidx.numel() == 0 || jlidx.size(0) == (joffsets.size(0) - 1), "Corrupt list indices. This should never happen"); + const torch::Tensor joffsetCat = torch::stack({ + joffsets.index({torch::indexing::Slice(0, jt.num_tensors())}), + joffsets.index({torch::indexing::Slice(1, jt.num_tensors()+1)}) + }, 1); + const torch::Tensor mask = jlidx.index({torch::indexing::Slice(), 0}).eq(idxVal); + const torch::Tensor selectedOffsets = joffsetCat.index({mask}); + + const JOffsetsType startIdx = selectedOffsets[0][0].item(); + const JOffsetsType endIdx = selectedOffsets[-1][1].item(); + + const torch::Tensor retData = jdata.index({torch::indexing::Slice(startIdx, endIdx)}); + + const torch::Tensor retOffsets = torch::cat({ + selectedOffsets.index({torch::indexing::Slice(), 0}), + selectedOffsets.index({-1, 1}).unsqueeze(0) + }) - startIdx; + torch::Tensor retListIdx; + int64_t retNumOuterLists; + if (jlidx.size(1) > 1 && jlidx.size(1) > 2) { + TORCH_CHECK(false, "We don't support ldim > 2."); + // retListIdx = jlidx.index({mask, torch::indexing::Slice(1, jlidx.size(1))}); + // if (retListIdx.dim() == 0) { + // retListIdx = retListIdx.unsqueeze(1); + // } + // retNumOuterLists = std::get<0>(torch::unique_dim(retListIdx, 0)).size(0); + } else { + retListIdx = torch::empty({0, 1}, torch::TensorOptions().dtype(JLIdxScalarType).device(jdata.device())); + retNumOuterLists = retOffsets.size(0) - 1; + } + + const torch::Tensor retJidx = JaggedTensor::jidx_from_joffsets(retOffsets, retData.size(0)); + return JaggedTensor::from_jdata_joffsets_jidx_and_lidx_unsafe(retData, retOffsets, retJidx, retListIdx, retNumOuterLists); +} + + +JaggedTensor jaggedTensorIndexOneList(const JaggedTensor& jt, int64_t idxVal) { + if (idxVal < 0) { + idxVal += jt.num_outer_lists(); + } + TORCH_CHECK_INDEX(idxVal >= 0 && idxVal < jt.num_outer_lists(), + "Index ", idxVal, " is out of bounds for JaggedTensor with ", + jt.num_outer_lists(), " elements"); + + torch::Tensor joffsets = jt.joffsets(); + torch::Tensor jdata = jt.jdata(); + torch::Tensor jlidx = jt.jlidx(); + + TORCH_CHECK(jt.ldim() == 1, "bad list indexes. this should never happen"); + const JOffsetsType startIdx = joffsets[idxVal].item(); + const JOffsetsType endIdx = joffsets[idxVal+1].item(); + const torch::Tensor retJoffsets = torch::tensor({JOffsetsType(0), endIdx - startIdx}, torch::TensorOptions().dtype(JOffsetsScalarType).device(jdata.device())); + const torch::Tensor retData = jdata.index({torch::indexing::Slice(startIdx, endIdx)}); + const torch::Tensor retJidx = torch::empty({0}, torch::TensorOptions().dtype(JIdxScalarType)); + return JaggedTensor::from_jdata_joffsets_jidx_and_lidx_unsafe( + retData, retJoffsets, retJidx, jlidx, retJoffsets.size(0) - 1); +} + + + +template <> +JaggedTensor dispatchJaggedTensorIndex(const JaggedTensor& jt, int64_t idxVal) { + if (jt.jlidx().size(0) == 0) { + return jaggedTensorIndexOneList(jt, idxVal); + } else { + return jaggedTensorIndexMultiListCpu(jt, idxVal); + } +} + + +template <> +JaggedTensor dispatchJaggedTensorIndex(const JaggedTensor& jt, int64_t idxVal) { + if (jt.jlidx().size(0) == 0) { + return jaggedTensorIndexOneList(jt, idxVal); + } else { + return jaggedTensorIndexMultiListCuda(jt, idxVal); + } +} + + + +} // namespace ops +} // namespace detail +} // namespace fvdb \ No newline at end of file diff --git a/fvdb/src/detail/ops/Ops.h b/fvdb/src/detail/ops/Ops.h index c10a7e5a94..0596c373b0 100644 --- a/fvdb/src/detail/ops/Ops.h +++ b/fvdb/src/detail/ops/Ops.h @@ -14,6 +14,12 @@ namespace fvdb { namespace detail { namespace ops { +template +JaggedTensor dispatchJaggedTensorIndex(const JaggedTensor& jt, int64_t idxVal); + +template +JaggedTensor dispatchJCat0(const std::vector& tensors); + template torch::Tensor dispatchJOffsetsForJIdx(torch::Tensor jidx, torch::Tensor jdata, int64_t numTensors); @@ -74,7 +80,7 @@ void dispatchFillToGrid(const GridBatchImpl& fromGrid, torch::Tensor& toFeatures); template -JaggedTensor dispatchIjkToInvIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ijk); +JaggedTensor dispatchIjkToInvIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ijk, bool cumulative); template @@ -180,7 +186,7 @@ JaggedTensor dispatchVoxelNeighborhood(const GridBatchImpl& batchHdl, template -JaggedTensor dispatchIjkToIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ijk); +JaggedTensor dispatchIjkToIndex(const GridBatchImpl& batchHdl, const JaggedTensor& ijk, bool cumulative); template @@ -261,7 +267,8 @@ std::vector dispatchVoxelsAlongRays(const GridBatchImpl& batchHdl, const JaggedTensor& rayDirections, int64_t maxVox, float eps, - bool returnIjk); + bool returnIjk, + bool cumulative); diff --git a/fvdb/src/detail/ops/SampleRaysUniform.cu b/fvdb/src/detail/ops/SampleRaysUniform.cu index 94bf849648..28795e7c4f 100644 --- a/fvdb/src/detail/ops/SampleRaysUniform.cu +++ b/fvdb/src/detail/ops/SampleRaysUniform.cu @@ -282,8 +282,8 @@ JaggedTensor UniformRaySamples(const GridBatchImpl& batchHdl, TORCH_CHECK_VALUE(batchHdl.batchSize() == rayOrigins.num_outer_lists(), "ray_origins must have the same batch size as the grid batch"); TORCH_CHECK_VALUE(batchHdl.batchSize() == rayDirections.num_outer_lists(), "ray_directions must have the same batch size as the grid batch"); - TORCH_CHECK_VALUE(batchHdl.batchSize() == tMin.num_outer_lists(), "ray_directions must have the same batch size as the grid batch"); - TORCH_CHECK_VALUE(batchHdl.batchSize() == tMax.num_outer_lists(), "ray_directions must have the same batch size as the grid batch"); + TORCH_CHECK_VALUE(batchHdl.batchSize() == tMin.num_outer_lists(), "t_min must have the same batch size as the grid batch"); + TORCH_CHECK_VALUE(batchHdl.batchSize() == tMax.num_outer_lists(), "t_max must have the same batch size as the grid batch"); TORCH_CHECK_TYPE(rayOrigins.dtype() == rayDirections.dtype(), "all tensors must have the same type"); TORCH_CHECK_TYPE(tMin.dtype() == tMin.dtype(), "all tensors must have the same type"); diff --git a/fvdb/src/detail/ops/ScaledDotProductAttention.cu b/fvdb/src/detail/ops/ScaledDotProductAttention.cu index 4c269f7128..ed6d3c45c6 100644 --- a/fvdb/src/detail/ops/ScaledDotProductAttention.cu +++ b/fvdb/src/detail/ops/ScaledDotProductAttention.cu @@ -3,10 +3,12 @@ // #include #include -#include +#if (defined(__CUDACC_VER_MAJOR__) && __CUDACC_VER_MAJOR__ >= 12) +#include #define JSON_HAS_RANGES 0 #include +#endif #include "detail/utils/cuda/Utils.cuh" #include "detail/utils/BezierInterpolationIterator.h" @@ -29,6 +31,7 @@ torch::Tensor dispatchScaledDotProductAttention(const torch::Tenso bool training, float scale) { +#if (defined(__CUDACC_VER_MAJOR__) && __CUDACC_VER_MAJOR__ >= 12) // TODO: Cache built execution graph and plans! // Get dimensions: query (B*Sq, H, D), key (B*Skv, H, D), value (B*Skv, H, T) // https://github.com/NVIDIA/cudnn-frontend/blob/main/docs/operations/Attention.md @@ -175,6 +178,11 @@ torch::Tensor dispatchScaledDotProductAttention(const torch::Tenso cudnnDestroy(handle); return output; + +#else + TORCH_CHECK(false, "CUDNN frontend not available for CUDA < 12.0"); + +#endif } diff --git a/fvdb/src/detail/ops/VoxelsAlongRays.cu b/fvdb/src/detail/ops/VoxelsAlongRays.cu index 9c79b36d3f..29b327c8bd 100644 --- a/fvdb/src/detail/ops/VoxelsAlongRays.cu +++ b/fvdb/src/detail/ops/VoxelsAlongRays.cu @@ -23,7 +23,8 @@ __hostdev__ void voxelsAlongRaysCallback(int32_t bidx, int32_t rayIdx, TensorAccessor outTimes, // [B*M*S, 2] GridBatchImpl::Accessor batchAccessor, int64_t maxVox, - ScalarType eps) { + ScalarType eps, + bool cumulative) { const nanovdb::NanoGrid* gpuGrid = batchAccessor.grid(bidx); const VoxelCoordTransform& transform = batchAccessor.dualTransform(bidx); @@ -54,26 +55,29 @@ __hostdev__ void voxelsAlongRaysCallback(int32_t bidx, int32_t rayIdx, int32_t ijkIdx = -1; if constexpr (!returnIjk) { - ijkIdx = primalAcc.getValue(ijk) + batchAccessor.voxelOffset(bidx) - 1; + const int64_t baseOffset = cumulative ? batchAccessor.voxelOffset(bidx) : 0; + ijkIdx = primalAcc.getValue(ijk) - 1 + baseOffset; } if (deltaT < eps) { continue; } // This check handles numerical errors where we can accidentally add the same voxel twice - bool lastMatch = false; - if constexpr (returnIjk) { - lastMatch = (ijk[0] == outVoxels[startIdx + numVox - 1][0] && - ijk[1] == outVoxels[startIdx + numVox - 1][1] && - ijk[2] == outVoxels[startIdx + numVox - 1][2]); - } else { - lastMatch = (ijkIdx == outVoxels[startIdx + numVox - 1][0]); - } - if (numVox > 0 && lastMatch) { - outTimes[startIdx + numVox - 1][0] = c10::cuda::compat::min(t0, outTimes[startIdx + numVox - 1][0]); - outTimes[startIdx + numVox - 1][1] = c10::cuda::compat::max(t1, outTimes[startIdx + numVox - 1][1]); - outJIdx[startIdx + numVox - 1] = rayIdx; - continue; + if (numVox > 0) { + bool lastMatch = false; + if constexpr (returnIjk) { + lastMatch = (ijk[0] == outVoxels[startIdx + numVox - 1][0] && + ijk[1] == outVoxels[startIdx + numVox - 1][1] && + ijk[2] == outVoxels[startIdx + numVox - 1][2]); + } else { + lastMatch = (ijkIdx == outVoxels[startIdx + numVox - 1][0]); + } + if (lastMatch) { + outTimes[startIdx + numVox - 1][0] = c10::cuda::compat::min(t0, outTimes[startIdx + numVox - 1][0]); + outTimes[startIdx + numVox - 1][1] = c10::cuda::compat::max(t1, outTimes[startIdx + numVox - 1][1]); + outJIdx[startIdx + numVox - 1] = rayIdx; + continue; + } } if constexpr (returnIjk) { @@ -146,7 +150,7 @@ std::vector VoxelsAlongRays(const GridBatchImpl& batchHdl, const JaggedTensor& rayOrigins, const JaggedTensor& rayDirections, int64_t maxVox, float eps, - bool returnIjk) { + bool returnIjk, bool cumulative) { batchHdl.checkNonEmptyGrid(); batchHdl.checkDevice(rayOrigins); batchHdl.checkDevice(rayDirections); @@ -228,7 +232,7 @@ std::vector VoxelsAlongRays(const GridBatchImpl& batchHdl, rayOriginsAcc, rayDirectionsAcc, outJOffsetsAcc, outJIdxAcc, outJLIdxAcc, outVoxelsAcc, outTimesAcc, - batchAcc, maxVox, eps); + batchAcc, maxVox, eps, cumulative); }; auto cbIdx = [=] __device__ (int32_t bidx, int32_t eidx, int32_t cidx, JaggedRAcc32 rayOriginsAcc) { voxelsAlongRaysCallback( @@ -236,7 +240,7 @@ std::vector VoxelsAlongRays(const GridBatchImpl& batchHdl, rayOriginsAcc, rayDirectionsAcc, outJOffsetsAcc, outJIdxAcc, outJLIdxAcc, outVoxelsAcc, outTimesAcc, - batchAcc, maxVox, eps); + batchAcc, maxVox, eps, cumulative); }; if (returnIjk) { @@ -251,7 +255,7 @@ std::vector VoxelsAlongRays(const GridBatchImpl& batchHdl, rayOriginsAcc, rayDirectionsAcc, outJOffsetsAcc, outJIdxAcc, outJLIdxAcc, outVoxelsAcc, outTimesAcc, - batchAcc, maxVox, eps); + batchAcc, maxVox, eps, cumulative); }; auto cbIdx = [=] (int32_t bidx, int32_t eidx, int32_t cidx, JaggedAcc rayOriginsAcc) { voxelsAlongRaysCallback( @@ -259,7 +263,7 @@ std::vector VoxelsAlongRays(const GridBatchImpl& batchHdl, rayOriginsAcc, rayDirectionsAcc, outJOffsetsAcc, outJIdxAcc, outJLIdxAcc, outVoxelsAcc, outTimesAcc, - batchAcc, maxVox, eps); + batchAcc, maxVox, eps, cumulative); }; if (returnIjk) { forEachJaggedElementChannelCPU(1, rayOrigins, cbIjk); @@ -289,8 +293,9 @@ std::vector dispatchVoxelsAlongRays(const GridBatchI const JaggedTensor& rayDirections, int64_t maxVox, float eps, - bool returnIjk) { - return VoxelsAlongRays(batchHdl, rayOrigins, rayDirections, maxVox, eps, returnIjk); + bool returnIjk, + bool cumulative) { + return VoxelsAlongRays(batchHdl, rayOrigins, rayDirections, maxVox, eps, returnIjk, cumulative); } template <> @@ -299,8 +304,9 @@ std::vector dispatchVoxelsAlongRays(const GridBatchIm const JaggedTensor& rayDirections, int64_t maxVox, float eps, - bool returnIjk) { - return VoxelsAlongRays(batchHdl, rayOrigins, rayDirections, maxVox, eps, returnIjk); + bool returnIjk, + bool cumulative) { + return VoxelsAlongRays(batchHdl, rayOrigins, rayDirections, maxVox, eps, returnIjk, cumulative); } diff --git a/fvdb/src/detail/utils/cuda/Utils.cuh b/fvdb/src/detail/utils/cuda/Utils.cuh index 94f6c6e1ba..8ecb4591fa 100644 --- a/fvdb/src/detail/utils/cuda/Utils.cuh +++ b/fvdb/src/detail/utils/cuda/Utils.cuh @@ -724,6 +724,7 @@ struct RAIIRawDeviceBuffer { /// @param device The device to allocate the buffer on RAIIRawDeviceBuffer(size_t size, torch::Device device) { TORCH_CHECK(device.has_index(), "Device must specify an index"); + c10::cuda::CUDAGuard deviceGuard(device); stream = at::cuda::getCurrentCUDAStream(device.index()).stream(); bufferSize = size * sizeof(T); devicePtr = reinterpret_cast(c10::cuda::CUDACachingAllocator::raw_alloc_with_stream(bufferSize, stream)); diff --git a/fvdb/src/python/GridBatchBinding.cpp b/fvdb/src/python/GridBatchBinding.cpp index b3ccfa71b2..0c7b8a2370 100644 --- a/fvdb/src/python/GridBatchBinding.cpp +++ b/fvdb/src/python/GridBatchBinding.cpp @@ -516,14 +516,14 @@ void bind_grid_batch(py::module& m) { )_FVDB_") // Indexing functions - .def("ijk_to_index", &fvdb::GridBatch::ijk_to_index, py::arg("ijk")) - .def("ijk_to_inv_index", &fvdb::GridBatch::ijk_to_inv_index, py::arg("ijk")) + .def("ijk_to_index", &fvdb::GridBatch::ijk_to_index, py::arg("ijk"), py::arg("cumulative") = false) + .def("ijk_to_inv_index", &fvdb::GridBatch::ijk_to_inv_index, py::arg("ijk"), py::arg("cumulative") = false) .def("neighbor_indexes", &fvdb::GridBatch::neighbor_indexes, py::arg("ijk"), py::arg("extent"), py::arg("bitshift") = 0) // Ray tracing .def("voxels_along_rays", &fvdb::GridBatch::voxels_along_rays, - py::arg("ray_origins"), py::arg("ray_directions"), py::arg("max_voxels"), py::arg("eps") = 0.0, py::arg("return_ijk") = true) + py::arg("ray_origins"), py::arg("ray_directions"), py::arg("max_voxels"), py::arg("eps") = 0.0, py::arg("return_ijk") = true, py::arg("cumulative") = false) .def("segments_along_rays", &fvdb::GridBatch::segments_along_rays, py::arg("ray_origins"), py::arg("ray_directions"), py::arg("max_segments"), py::arg("eps") = 0.0, py::arg("ignore_masked") = false) .def("uniform_ray_samples", &fvdb::GridBatch::uniform_ray_samples, diff --git a/fvdb/src/python/JaggedTensorBinding.cpp b/fvdb/src/python/JaggedTensorBinding.cpp index 82bf34ba88..e6b3de5d7d 100644 --- a/fvdb/src/python/JaggedTensorBinding.cpp +++ b/fvdb/src/python/JaggedTensorBinding.cpp @@ -40,9 +40,45 @@ void bind_jagged_tensor(py::module& m) { return self.jidx(); } }, "The indices indicating the batch index where the element belong to.") - .def_property_readonly("joffsets", &fvdb::JaggedTensor::joffsets, "A [batch_size, 2] array where each row contains the start and end row index in jdata.") + .def_property_readonly("joffsets", &fvdb::JaggedTensor::joffsets, "A [num_tensors + 1] array where each row contains the start and end row index in jdata.") .def_property_readonly("num_tensors", &fvdb::JaggedTensor::num_tensors, "The number of tensors in the JaggedTensor.") + .def_property_readonly("jlidx", &fvdb::JaggedTensor::jlidx, "The list index of the JaggedTensor with size [num_tensors, ldim].") + + .def_static("from_data_and_indices", [](const torch::Tensor& data, const torch::Tensor& indices, int num_tensors) { + return fvdb::JaggedTensor::from_data_indices_and_list_ids( + data, indices, + torch::empty({0, 1}, torch::TensorOptions().dtype(fvdb::JLIdxScalarType).device(data.device())), + num_tensors + ); + }, R"_FVDB_( + Initialize jagged tensor with ldim=1 from data and indices. + + Args: + data (torch.Tensor): The data of the JaggedTensor. + indices (torch.Tensor): The indices indicating the batch index where the element belong to. + num_tensors (int): The batch size of the JaggedTensor. + + Returns: + jt (JaggedTensor): The JaggedTensor with the given data and indices.)_FVDB_") + + .def_static("from_data_and_offsets", [](const torch::Tensor& data, const torch::Tensor& offsets) { + return fvdb::JaggedTensor::from_data_offsets_and_list_ids( + data, offsets, + torch::empty({0, 1}, torch::TensorOptions().dtype(fvdb::JLIdxScalarType).device(data.device())) + ); + }, R"_FVDB_( + Initialize jagged tensor with ldim=1 from data and offsets. + + Args: + data (torch.Tensor): The data of the JaggedTensor. + offsets (torch.Tensor): The 1-dimensional offsets indicating the start and end of each tensor in data. + + Returns: + jt (JaggedTensor): The JaggedTensor with the given data and offsets.)_FVDB_") + + .def_static("from_data_indices_and_list_ids", &fvdb::JaggedTensor::from_data_indices_and_list_ids, py::arg("data"), py::arg("indices"), py::arg("list_ids"), py::arg("num_tensors")) + .def_static("from_data_offsets_and_list_ids", &fvdb::JaggedTensor::from_data_offsets_and_list_ids, py::arg("data"), py::arg("offsets"), py::arg("list_ids")) .def_property_readonly("is_cuda", &fvdb::JaggedTensor::is_cuda, "Whether the JaggedTensor is on a CUDA device.") .def_property_readonly("is_cpu", &fvdb::JaggedTensor::is_cpu, "Whether the JaggedTensor is on a CPU device.") @@ -258,9 +294,6 @@ void bind_jagged_tensor(py::module& m) { return fvdb::JaggedTensor::from_data_indices_and_list_ids(data, jidx, jlidx, batchSize); } - if (t.size() > 0) { - TORCH_CHECK(false, "Invalid pickle format"); - } int version = t[0].cast(); if (version == 1 || version == 2) { const torch::Tensor jdata = THPVariable_Unpack(t[1].ptr()); @@ -282,8 +315,10 @@ void bind_jagged_tensor(py::module& m) { const torch::Tensor jlidx = THPVariable_Unpack(t[3].ptr()); const int64_t numOuterLists = t[4].cast(); - TORCH_CHECK(numOuterLists == joffsets.size(0), "Invalid pickle format: numOuterLists does not match joffsets size"); - TORCH_CHECK(jlidx.size(0) == 0 || jlidx.size(0) == joffsets.size(0), "Invalid pickle format: jlidx size does not match joffsets size"); + if (jlidx.numel() != 0 && jlidx.size(1) == 1) { + TORCH_CHECK(numOuterLists == joffsets.size(0), "Invalid pickle format: numOuterLists does not match joffsets size"); + } + TORCH_CHECK(jlidx.size(0) == 0 || jlidx.size(0) == (joffsets.size(0) - 1), "Invalid pickle format: jlidx size does not match joffsets size"); return fvdb::JaggedTensor::from_data_offsets_and_list_ids(jdata, joffsets, jlidx); } else { TORCH_CHECK(false, "Invalid JaggedTensor pickle version (got version = ", version, ")"); diff --git a/fvdb/src/python/TypeCasters.h b/fvdb/src/python/TypeCasters.h index 5d0e7c3e9c..070d610bea 100644 --- a/fvdb/src/python/TypeCasters.h +++ b/fvdb/src/python/TypeCasters.h @@ -38,6 +38,9 @@ template <> struct type_caster : public type_caster_base= 2 && TORCH_VERSION_MINOR < 4)) template <> struct type_caster : public type_caster_base { using base = type_caster_base; public: @@ -59,6 +62,7 @@ template <> struct type_caster : public type_caster_base struct type_caster : public type_caster_base { diff --git a/fvdb/tests/unit/test_basic_ops.py b/fvdb/tests/unit/test_basic_ops.py index 7c17ee6952..9885c47165 100644 --- a/fvdb/tests/unit/test_basic_ops.py +++ b/fvdb/tests/unit/test_basic_ops.py @@ -331,6 +331,43 @@ def test_ijk_to_index(self, device, dtype, mutable): self.assertTrue(torch.all(pidx == target_pidx[ppmt])) self.assertTrue(torch.all(didx == target_didx[dpmt])) + @parameterized.expand(all_device_dtype_combos) + def test_ijk_to_index_batched(self, device, dtype, mutable): + gsize = 7 + + grid_p1, grid_d1, _ = make_dense_grid_and_point_data(gsize, device, dtype, mutable) + grid_p2, grid_d2, _ = make_dense_grid_and_point_data(gsize-2, device, dtype, mutable) + + grid_p, grid_d = fvdb.jcat([grid_p1, grid_p2]), fvdb.jcat([grid_d1, grid_d2]) + + pijk = grid_p.ijk + dijk = grid_d.ijk + + for in_dtype in [torch.int8, torch.int16, torch.int32, torch.int64]: + pijk, dijk = pijk.to(in_dtype), dijk.to(in_dtype) + pidx = grid_p.ijk_to_index(grid_p.ijk) + didx = grid_d.ijk_to_index(grid_d.ijk) + + target_pidx = fvdb.JaggedTensor([torch.arange(n.item()).to(device=pidx.device, dtype=pidx.dtype) for n in grid_p.num_voxels]) + target_didx = fvdb.JaggedTensor([torch.arange(n.item()).to(device=pidx.device, dtype=didx.dtype) for n in grid_d.num_voxels]) + + self.assertTrue(torch.all(pidx.jdata == target_pidx.jdata)) + self.assertTrue(torch.all(didx.jdata == target_didx.jdata)) + + ppmt = fvdb.JaggedTensor([torch.randperm(pidx_i.rshape[0]).to(pidx.device) for pidx_i in pidx]) + dpmt = fvdb.JaggedTensor([torch.randperm(didx_i.rshape[0]).to(pidx.device) for didx_i in didx]) + + pidx = grid_p.ijk_to_index(pijk[ppmt]) + didx = grid_d.ijk_to_index(dijk[dpmt]) + # target_pidx = torch.arange(pidx.shape[0]).to(pidx) + # target_didx = torch.arange(didx.shape[0]).to(didx) + target_pidx = fvdb.JaggedTensor([torch.arange(n.item()).to(device=pidx.device, dtype=pidx.dtype) for n in grid_p.num_voxels]) + target_didx = fvdb.JaggedTensor([torch.arange(n.item()).to(device=pidx.device, dtype=didx.dtype) for n in grid_d.num_voxels]) + + self.assertTrue(torch.all(pidx.jdata == target_pidx[ppmt].jdata)) + self.assertTrue(torch.all(didx.jdata == target_didx[dpmt].jdata)) + + @parameterized.expand(all_device_dtype_combos) def test_coords_in_grid(self, device, _, mutable): num_inside = 1000 if device == 'cpu' else 100_000 @@ -380,7 +417,7 @@ def test_points_in_grid(self, device, dtype, mutable): def test_cubes_intersect_grid(self, device, dtype, mutable): # TODO: (@Caenorst) tests are a bit too light, should test on more variety of range #import random - #torch.random.manual_seed(0) + torch.random.manual_seed(0) #random.seed(0) #np.random.seed(0) @@ -1146,6 +1183,74 @@ def check_order(t1: torch.Tensor, t2: torch.Tensor): # ensure output of ijk_to_inv_index appears in ascending order in ijks assert check_order(grid.ijk.jdata[grid.ijk.jidx == i], inv_ijks.jdata) + @parameterized.expand(all_device_dtype_combos) + def test_ijk_to_inv_index_batched(self, device, dtype, mutable): + vox_size = 0.1 + + # Unique IJK since for duplicates the permutation is non-bijective + ijk = [list( + set( + [tuple([a for a in (np.random.randn(3) / vox_size).astype(np.int32)]) for _ in range(100 + np.random.randint(10))] + ) + ) for _ in range(3)] + ijk = [torch.from_numpy(np.array([list(a) for a in ijk_i])).to(torch.int32).to(device) for ijk_i in ijk] + ijk = fvdb.JaggedTensor(ijk) + + grid = GridBatch(mutable=mutable, device=device) + grid.set_from_ijk(ijk, voxel_sizes=vox_size, origins=[0.]*3) + + inv_index = grid.ijk_to_inv_index(ijk).jdata + + target_inv_index = torch.full_like(grid.ijk.jdata[:, 0], -1) + idx = grid.ijk_to_index(ijk, cumulative=True) + + for i, ijk_i in enumerate(ijk): + for j in range(ijk_i.rshape[0]): + target_inv_index[idx[i].jdata[j]] = j + + self.assertTrue(torch.all(inv_index == target_inv_index)) + + # Test functionality where size of ijk_to_inv_index's argument != len(grid.ijk) + # Pick random ijk subset + rand_ijks = [] + for i in range(grid.grid_count): + ijks = grid[i].ijk.jdata + rand_ijks.append(torch.unique(ijks[torch.randint(len(ijks), (50,), device = ijks.device)], dim=0)) + + rand_ijks = fvdb.JaggedTensor(rand_ijks) + + rand_ijk_inv_indices = grid.ijk_to_inv_index(rand_ijks) + + # # valid ijk indices + inv_rand_ijk = grid.ijk[rand_ijk_inv_indices!= -1] + assert(len(inv_rand_ijk.jdata) == len(rand_ijks.jdata)) + + def check_order(t1: torch.Tensor, t2: torch.Tensor): + t1_list = t1.tolist() + t2_list = t2.tolist() + + last_index = -1 + for elem in t2_list: + try: + current_index = t1_list.index(elem) + # Check if the current index is greater than the last index + if current_index > last_index: + last_index = current_index + else: + return False + except ValueError: + return False + return True + + for i, (inv_ijks, ijks) in enumerate(zip(inv_rand_ijk, rand_ijks)): + # ensure output of ijk_to_inv_index is a permutation of the input + inv_ijks_sorted, _ = torch.sort(inv_ijks.jdata, dim=0) + ijks_sorted, _ = torch.sort(ijks.jdata, dim=0) + assert torch.equal(inv_ijks_sorted, ijks_sorted) + + # ensure output of ijk_to_inv_index appears in ascending order in ijks + assert check_order(grid.ijk.jdata[grid.ijk.jidx == i], inv_ijks.jdata) + @parameterized.expand(all_device_dtype_combos) def test_no_use_after_free_on_backward(self, device, dtype, mutable): diff --git a/fvdb/tests/unit/test_conv.py b/fvdb/tests/unit/test_conv.py index 6940ffd9cf..bc57b50ba1 100644 --- a/fvdb/tests/unit/test_conv.py +++ b/fvdb/tests/unit/test_conv.py @@ -177,7 +177,7 @@ def test_conv_halo(self, in_channel, out_channel, batch_size, variant): out_ts_tensor.coords[out_ts_tensor.coords[:, -1] == b, :3] for b in range(batch_size)]) - ts_features = out_ts_tensor.feats[grid.ijk_to_inv_index(ts_target_grid_ijk).jdata] + ts_features = out_ts_tensor.feats[grid.ijk_to_inv_index(ts_target_grid_ijk, cumulative=True).jdata] ts_features.backward(grad_out) ts_features_grad = torch.clone(vdb_features.jdata.grad) @@ -228,12 +228,12 @@ def test_special_conv(self, dtype, batch_size, backend): ts_target_grid_ijk = JaggedTensor([ torch.div(out_ts_tensor.coords[out_ts_tensor.coords[:, -1] == b, :3], stride, rounding_mode='floor') for b in range(batch_size)]) - idx_map = vdb_target_grid.ijk_to_index(ts_target_grid_ijk) + idx_map = vdb_target_grid.ijk_to_index(ts_target_grid_ijk, cumulative=True) assert idx_map.jdata.shape[0] == vdb_target_grid.total_voxels assert torch.all(torch.sort(idx_map.jdata).values == torch.arange(vdb_target_grid.total_voxels, device=device)) - ts_features = out_ts_tensor.feats[vdb_target_grid.ijk_to_inv_index(ts_target_grid_ijk).jdata] + ts_features = out_ts_tensor.feats[vdb_target_grid.ijk_to_inv_index(ts_target_grid_ijk, cumulative=True).jdata] self.assertTrue(torch.allclose(out_vdb_features.jdata, ts_features, atol=0.1), f"Max dist is {torch.max(out_vdb_features.jdata - ts_features)}") @@ -299,7 +299,7 @@ def test_conv_vs_torchsparse(self, device, dtype, batch_size, kernel_size, strid torch.div(out_ts_tensor.coords[out_ts_tensor.coords[:, -1] == b, :3], stride, rounding_mode='floor') for b in range(batch_size) ]) - idx_map = vdb_target_grid.ijk_to_index(ts_target_grid_ijk) + idx_map = vdb_target_grid.ijk_to_index(ts_target_grid_ijk, cumulative=True) # (Optionally: visualize) # from pycg import vis @@ -316,7 +316,7 @@ def test_conv_vs_torchsparse(self, device, dtype, batch_size, kernel_size, strid assert idx_map.jdata.shape[0] == vdb_target_grid.total_voxels assert torch.all(torch.sort(idx_map.jdata).values == torch.arange(vdb_target_grid.total_voxels, device=device)) - ts_features = out_ts_tensor.feats[vdb_target_grid.ijk_to_inv_index(ts_target_grid_ijk).jdata] + ts_features = out_ts_tensor.feats[vdb_target_grid.ijk_to_inv_index(ts_target_grid_ijk, cumulative=True).jdata] ts_features.backward(grad_out) dense_features_grad = torch.clone(vdb_features.jdata.grad) diff --git a/fvdb/tests/unit/test_jagged_tensor.py b/fvdb/tests/unit/test_jagged_tensor.py index 0d66041e4b..1644f0da53 100644 --- a/fvdb/tests/unit/test_jagged_tensor.py +++ b/fvdb/tests/unit/test_jagged_tensor.py @@ -3,6 +3,7 @@ # import itertools import os +import tempfile import unittest from typing import List @@ -27,13 +28,16 @@ class TestJaggedTensor(unittest.TestCase): def setUp(self): pass - def mklol(self, num_outer, num_inner_min, num_inner_max, device, dtype, last_dims=(3, 4)): + def mklol(self, num_outer, num_inner_min, num_inner_max, device, dtype, last_dims=(3, 4), base_num=1000, vary_num=10, empty_prob=0.0): pts_list = [] for _ in range(num_outer): pts_list_i = [] while len(pts_list_i) == 0: + size = base_num + (np.random.randint(vary_num) if vary_num > 0 else 0) + if np.random.rand() < empty_prob: + size = 0 pts_list_i = [ - torch.rand(1000 + np.random.randint(10), *last_dims, device=device, dtype=dtype) + torch.rand(size, *last_dims, device=device, dtype=dtype) for _ in range(np.random.randint(num_inner_min, num_inner_max))] pts_list.append(pts_list_i) ret = fvdb.JaggedTensor(pts_list), pts_list @@ -67,6 +71,41 @@ def check_lshape(self, jt: fvdb.JaggedTensor, lt: List[torch.Tensor] | List[List else: assert False, "jagged tensor ldim should be 1 or 2" + @parameterized.expand(all_device_dtype_combos) + def test_pickle(self, device, dtype): + jt, _ = self.mklol(7, 4, 8, device, dtype) + with tempfile.NamedTemporaryFile() as tmp: + torch.save(jt, tmp.name) + jt2: fvdb.JaggedTensor = torch.load(tmp.name) + self.assertTrue(torch.all(jt.jdata == jt2.jdata)) + self.assertTrue(torch.all(jt.joffsets == jt2.joffsets)) + self.assertTrue(torch.all(jt.jidx == jt2.jidx)) + self.assertTrue(jt.device == jt2.device) + self.assertTrue(jt.dtype == jt2.dtype) + self.assertEqual(jt.lshape, jt2.lshape) + + jt = fvdb.JaggedTensor([torch.randn(100 + np.random.randint(10), 3, 2).to(device).to(dtype) for _ in range(10)]) + with tempfile.NamedTemporaryFile() as tmp: + torch.save(jt, tmp.name) + jt2: fvdb.JaggedTensor = torch.load(tmp.name) + self.assertTrue(torch.all(jt.jdata == jt2.jdata)) + self.assertTrue(torch.all(jt.joffsets == jt2.joffsets)) + self.assertTrue(torch.all(jt.jidx == jt2.jidx)) + self.assertTrue(jt.device == jt2.device) + self.assertTrue(jt.dtype == jt2.dtype) + self.assertEqual(jt.lshape, jt2.lshape) + + jt = fvdb.JaggedTensor([torch.rand(1024, 9, 9, 9)]) + with tempfile.NamedTemporaryFile() as tmp: + torch.save(jt, tmp.name) + jt2: fvdb.JaggedTensor = torch.load(tmp.name) + self.assertTrue(torch.all(jt.jdata == jt2.jdata)) + self.assertTrue(torch.all(jt.joffsets == jt2.joffsets)) + self.assertTrue(torch.all(jt.jidx == jt2.jidx)) + self.assertTrue(jt.device == jt2.device) + self.assertTrue(jt.dtype == jt2.dtype) + self.assertEqual(jt.lshape, jt2.lshape) + @parameterized.expand(all_device_dtype_combos) def test_jflatten_list_of_lists(self, device, dtype): jt1, l1 = self.mklol(7, 4, 8, device, dtype) @@ -145,8 +184,8 @@ def test_jflatten_list(self, device, dtype): @parameterized.expand(all_device_dtype_combos) def test_concatenation(self, device, dtype): - jt1, l1 = self.mklol(7, 4, 8, device, dtype, last_dims=(3,)) - jt2, _ = self.mklol(3, 7, 11, device, dtype, last_dims=(3,)) + jt1, l1 = self.mklol(7, 2, 5, device, dtype, last_dims=(3,), base_num=1_000_000 if device == 'cuda' else 1000, vary_num=100, empty_prob=0.0) + jt2, _ = self.mklol(3, 3, 5, device, dtype, last_dims=(3,), base_num=1_000_000 if device == 'cuda' else 1000, vary_num=100, empty_prob=0.0) jt3, l3 = self.mklol_like(l1, vary_dim_1=True, vary_dim_2=False) jt4, l4 = self.mklol_like(l1, vary_dim_1=False, vary_dim_2=True) @@ -169,6 +208,19 @@ def test_concatenation(self, device, dtype): cat_ij = torch.cat([l1[i][j], l1[i][j]], dim=dim) # meow lcatted[-1].append(cat_ij) self.assertTrue(torch.all(jtcatij.jdata == cat_ij)) + + jt_to_cat = jt3 if dim == 0 else jt4 + jtcat = fvdb.jcat([jt1, jt1, jt_to_cat, jt1, jt_to_cat, jt1], dim=dim) + lcatted = [] + for i, jtcati in enumerate(jtcat): + lcatted.append([]) + for j, jtcatij in enumerate(jtcati): + t_test = (l3 if dim == 0 else l4)[i][j] + t1ij = l1[i][j] + cat_ij = torch.cat([t1ij, t1ij, t_test, t1ij, t_test, t1ij], dim=dim) # meow + lcatted[-1].append(cat_ij) + self.assertTrue(torch.all(jtcatij.jdata == cat_ij)) + jtcat = fvdb.jcat([jt1, jt3 if dim == 0 else jt4, jt1], dim=dim) lcatted = [] for i, jtcati in enumerate(jtcat): @@ -1015,7 +1067,7 @@ def test_batch_size_one(self, device, dtype): @parameterized.expand(all_device_dtype_combos) def test_jsum(self, device, dtype): - torch.random.manual_seed(0) + torch.random.manual_seed(111) if dtype == torch.float16: min_num = 100 else: diff --git a/fvdb/tests/unit/test_nn.py b/fvdb/tests/unit/test_nn.py index 0928f443a5..87d0e98d22 100644 --- a/fvdb/tests/unit/test_nn.py +++ b/fvdb/tests/unit/test_nn.py @@ -245,6 +245,9 @@ def test_vdbtensor_arithmetic(self): v = v1 + v2 self.assertTrue(torch.allclose(v.feature.jdata, v1.feature.jdata + v2.feature.jdata)) + v = v1 + v2.feature + self.assertTrue(torch.allclose(v.feature.jdata, v1.feature.jdata + v2.feature.jdata)) + v = v1 + 1.0 self.assertTrue(torch.allclose(v.feature.jdata, v1.feature.jdata + 1.0))

e_nrYIW_l{&+FiXYZWCYF4qkFJUn+p|Jxg#s)5^1Z zym#6YfS3_&-;BKu^^iP^ZhzDSjUyj5;cC=RtBPyWHi3@*Us8li2}oOYBC_}VcM|Ib zg&J6|IGZ2mh49ruB=N6zZSH~XadQb)@^S3y_P?t#wp-P64~9{Z&p=Li!6WLeLhl+t zeC-w#V2@FdUCH?_#Hbi!yVitF5sC7sA3&p5pNaqwf$ChD>AX>S@EjG+-ujP8-Osdy zSt-Ad^Ba3JBtVAz_S+M!T?OF8CP3~@Tog;N0m40E)F{{4Z{;SPg|$d|ERaw)K7(Oaq0eML9}IF1 z^eaY@%38QEf6nLa*oz8(lC^uV5YXW6`I)$ z17^icZ?O`L*sl6Z1WgO}atqq55Y|%K^*fA_7V^8F{wO=tD#`1|__63ZNNb4;bgUd| zV-Kkoo1_L98uV2)N4gOUPDn0Y9PmjTW-IIOeUrkI_(jI~_PU=$Z~ZV>{-a0a-N!T( zFhGlA&e@KeP`rZ*oU<_2;6 z!1y?tcdesZ@tI>}+ijL;sWCHY?F%SlPh0R-p6%{ke}>8#bG6Iy6rPw5qGnhO+V2!{ zTDPx;)$bPTKVH1#w-fiwV1eRN>kQSS-%md4bA&i4gKZjZ)0*}>31_id@XM3uS02`@AI%LbzEN>7eY5 zC$jNUb9(S*Vg!*LJSIQRLJKCNxM4U;on*>di1u4bJ6&++K+p>ns%ATS;*6etlow?} zpgdwD^JotLcUEuvMdUyxMSj%9IOmcg|4C{1P~oCJO-s%p!vPQ2 zQ6h!7<7)v`)`@>M9sWn-oC3JG??cddWoL-O>Nv7?ZFI#&Y)!WzHIskKQ5|YDt`br z8Do)3=V9_HrZ`+lz_HEO!z482iteLyXU<(%MK9Px$C(EH?@o%na7WFpAPYoT*KV<{ z>|zc?L-(b=X!z?}Ddux+Xi9#PLfK@eIiA)~@w%hFhaeu=8(n9BIAj&K0I4~#J2FE- zZ)*e}RYM4dw(EfSN=GVbQ3JYy5eo>a(N+I#|70yd8%-?XVjCUP|DMRjWSp{EP1~g1+UR zL|vb~Q1M#fGkmhTcujHsc)N@93)uqy#o3uZRGT&8Hz|?E86YylV1$o;W^shFe8Ros zi<*LARY*whl%$xkDO}tptyxoO2uySdz(X5)FFkwwXZA&L%k`b2DKs~mqEb-&1cN6g zquilpWJ~}z(9h{-$Z8aRCD@lUa?USdW%fi<63X)78N+yphQPOn{;tHIBrurwV~ll* zA8rkDgu#w;V{oIsJO}SswJX^TjX%`T_`5dA|3xO8HYC+I& zCkS72N-NANA6zz+pZd&~a^DYgXWvuiyQC-9vEWmPe&c{h7n+Y~Y~&JoqA5AOR4bP3 zdQKAU$$!N>LP2s|Hpq|vMil56Tw5ZBay=9stFg}^c|QwLOY-%PHv)HI1l*saC$(g^ ztlp+cd4Mq(L4%yWTX_3*w;$q0r?L|p{Ll}$3QsWep1wfsZ^8FIh1Jx1$#(FxIU_hC zBLc8!b~g|ok^UloG5n?8dV9#`I_1EhqrCJo{?(K+9Yn7!nh`_WfN`!&e?d#FBgdC| z#N2`lVgegjqxBbY^Ug7fBW^OhxU&vyQZbmjIzQt2QFYajt^m*w5n&;So9;(rVqwwy zlNC8Uv#dW&*3GX+31sKMF#VBn-SL+-Wf!ys#!EG-(X#Xx>^B`#ZWGIUB?Nj5s>BBb z{@g8RX7~-pH^;4bz2wjH%m=Dzf?SC@VpOhc-GLfYG$KV$TtQ&IyH*m*N?sK{t93SS z6?(Pt*2KFIH08$YA8C07(p%LK91g&a@TNa=cCY64T(nBiD&G4U^Ry0CyHbCPDd1Pq zFnB}IwfY99#lSy!od$!wd#*_s3$U&vOc=WBy5>4*ru^N~w+xED*OPp75t}CjH2kOA zf+)u}QqKCyDQvF0dEz|4e(w&Ymiwa-G6xc;h|>k-W_?_N@CxOjts zxSZhC{wLQ&fLt7vmsp>dhQc2cs>$cq6?1|W!HKznvSy~A${=euk|o7D{gV+%lupZX zMt?u+%gm14 zJ+^UDs~+mht_zP8j)zEqI_Uc=odcN?K^>X8s^D!>>;SP4mv-{HRb6j$bU*g<@+=2I zzzU{V?RF9Jf(MKpet!z@m};RigLi zKu%MPR|_!!8nYhoBSQ(-!sObr7 z+@3l=&?JU#{!o88a>*q6*Q>Xct1JWZ%}*iZM;RAad7vwOE~%&!T&OsZ01h+F#pQWn@Aq>Qq0R^0#@-uo13X5b{nx8tsFt>0Nj)6aZxJ`>j` zeqW%^=sXxxceTcB&{-4z^vdH0MGL)GW>C*ZOvH$Yqk*eCzyFatfot3q#Qa$!mtB2a z?EHzIafDA?ZMMe^xsy%Jk(SN`M=g6P219-4~q+6K{pGq%okG zuSjqmIndWTl4KAjzA{|aQs14J6$c2kcz%8IMnu8)TzZ*j4A-EhAQicOj7mtb{G}Z`?}hqArMG^4I`a5> z^Y?}RsyY4M_=`Nb@cup$@Q;?9b`4|@4v5Sk2r9c6Z0T# zFVVO4pUSY1rBmy^8MH~S;`iS7uk8|O-rza_^H}5P>sxG*@A;N1UU}?lku^UBh<}yh zzo`2!Su6F%_k|t3waT982%UI+{DE8p%3k)K(>ie}Y^XRgURfEmA;0bhLG8G~>}+;F zCXg?t;G#h-$4{D4g#xN?XyVtdCH0=U{j;(4=Sz6mat(FD5T$+Ne@$I&R8rX*22xRO z(_FCu0?dP>l{#iO81sV!yv(g^Vp&TkO-c?zC$mdAj^v@4A^z!RhFpr*BdGaTR~)yKhcY19-*ZZ zS_?n7yu49*b}|JmWR1aNd%BPj$s9bSmdAQNKeFzqaYZ@L%NPaXu0{D-2UUW*o8S<*;|+v3f`_pLmR{g9rkR?yjj2iVh< z>%Iq^lrR)=pg_cY5I(9G^eJ!FuA1Qa*RN$4>>Mro(cj|#MRW>?jK*}4p= z^BPt{A&;2vhS)=nqy*;a^;^x^4*yz!po@U))#p#KT2R|q4O8*g^rRJE-w8n^SrUaBC!e;7amY!Ma*`Ibrddc{2Yl2pwpyM8^9lLaGM#XA+HR?jv-~irpeLt&-G)KW5T@Yc{l)#6MLUZoewAYt zK$dJHrqGrIml(gi!}M^`Zx*F@)-j?)z&QN|7~s1|_heA8;(`~gY!sYx7Cz~iLFV~f zzvt7nCZgoX&sPTJITMu+ah$^f#C43^nTiU%f{I;rU)~!D-jbkSygBp~%&-Q9S4#i# zX@1%xUm3j=rm1f*?!=YN&&$0#;uootdM_X{lIuV zTMOa?C`cU?nTnnx$}asPOQz9O6!Kpw_XeDbQ&|W8iCvTAI~j%7!)pm%$-acJYgP(= zrLZf1dg%T}CRTU@zc05N&LDD9ZBM4aO(6=v<}OZpTDEK?`&p>t?JePZtDjc(_>WYN zbR=>KthFpW0G{Q?bVEB(2Z8w^%r&H1W>7>yev$N3z74U|DlFN?+Ver)oOJD$kTwv$ zhpKBNB`uc7TG^dc{{1{mcIZkAuPEE#dA*{R1h%xY7uC%{%z#eZJQ|*OF7X%9+aY~+ z2a=|GA5!bvWrrR>rjDK;s)u*L8qWE7!DiXtOIg!&!<(_?qpCCq={b&`FMwOX94B^$ zVjp<6e|^fiG*qwzjRh-@4q}0zu0vm65}ZPpL}{oI8vIS% zWSdJ(&gc9e8fKnOxoYknWX@09?&U4&ir%D412;8mQRn|O;$gK@3KoEq{&+;q??=Ti zC7sC(d;lXZprPK!mL6I*rCl_7k6zf;uy%Z^tQjMBc2hgls|I6RV=f@qUsfc)$gwsK zY?x~kQ1CnAh0ZqPBa>lYG?ZS3KGTf(#wj*?=kJF6`rhGy!?xy`X&h(9{2oP%nN+Kb zY_a07hpB=2PZ&o1ZfkWvdYQ8ez=9_eY!kuz)nk>qEnK(Q<@4`*I>>&M*8?1y_Tf+8 z04XrU_A0b^PAr|zjNnHrzD0*_q-k#q_vrPznW&+ng*hkN`#{JPjRwBLr#f84U}-YC zeWGgf!{${!$LavWoX%kxE5X>Up9R*H6qi^2A36-^4?dA=E%J4+ zU!U{{J32@NTgti@u!FZH6p`DJks4B=^nHn>+b$yJQLr<@E+In=Nq8NAC@*-kZ@b&D z@vo?pwPU4?7!^=)!FbD$>AS;cA*wThP74NfDENmqM3x(D0t(P#crS?1P~WcB$(A&s zDhP=GO6J&RK-3N7UH9FQ0CKt1-6e8XiFTjsF(?$4hrp_kzN(g6^RcW?K(|Xw)N#`6 Xrt1Yi47|4vN&dH!mUmGA0ulK?&>zl` literal 0 HcmV?d00001 diff --git a/fvdb/notebooks/img/blank_sparse_grids.png b/fvdb/notebooks/img/blank_sparse_grids.png new file mode 100644 index 0000000000000000000000000000000000000000..21aefd1d66c09fcd1c3b5de77e41c7a66c0f0c5a GIT binary patch literal 4122 zcmeHKdr(tX8oxXg5H%_a#a$D!_|`QlD71jVDDskbEZ8D(MUAK|j#geuf`Zbjm8duo zkX%$A;ZdoAAk}bnQfnLtu@JNpO-vU-lEOuj5R-7jo`gO?ZKu=e>`Z4if85Ev=X~e< zzUS}zJ_`@^pE7CoBnX101O}{+gdoc_@Lym%5j^uCZ43nA`_0gb0|3*EUO?QjE8fiexv@&T0jH5Dx%CZ#d2!WK{_1qjEmST@j?E<_x(bu9%C-8pJHe1aV? zgZ+#_2y&d;WdSV>_;I7}?ZU#s90Dm*=Ar2m7J48hRFp2Ep$&}V!9g&sM(y0n1)?Q} zR|Cw&q%3uMB`iOiPWJLCixy9&i?h8Q&lw5TJUEeQjGuM-VYmIF2#Zo}ZF_vWpK#xX z5JCJ3tno`#b-*&wiqueKp%;5W`*Ex`5n6wh&adazs!n{!*GngJ-G}eNar*$v1w5}_`0fG@4Ret1}ryV zKw(vk=;iJLmW{H)$?KmbB{q3#ohAsDb5_g3mR8(QR&c)Ua3|s(MU7M0Cqxjnd0y9+ zo7vv4?KIoUkL9T|&#pn@dflD^ubkgRksb>cWWnR@f5%vp{SkY} zY`jjx$J*H_|_>aA}E}p#*~Cy;`TE1W|o^u^-eI z;vzuk%(q{}lY!t&sMnQh+4ZvNiu~z=TP=EJi-JeiJP`_o{M;snOx)m+Bpp6W<&`Jq z@_O{|x2bJjC!>@*2|r_KvhN?0^0dxd&_6UekB7c5!ITf3M|LbEMT<(u7;KjcLuR}h z$+eD+br`gzj$fnTtIO@utSfsWZ9Rp1Rlz7J5pgwT1PFA?jsuIVFYf#aZ5u*+YIri_ z!B06U|6b4EV_5Dm7!W@8IE&Mfw22hFouYB3WvH8ExXlnOA>D~kH2Vr%*ZQ!3(P4sT zP=>Q@+Fb6~Ya#y%k`*!6S`$0TqC7v5(TkP#IXz#f+2PW4rkE2t^5U& ziFlOL-y)vhVkq@cpF~zqRP-B%26V5YHfk6_foJ`Fa)G@wu&!JC>BHhrtQ0H9E#nW3#qa{(gwS>b7r-RK0uD_l)*#4~oNJ9Q6jWM)W~^ zF&Bp?q92$d;Hid6KOD$|i}2@`>}G(dNBuS#l&WgCi6`{Wrw?9TS4grhiKYgaGdMOv z^|woQX{5?d8cZ)*5iYjLWu?sNJWO=qU8V$?h`#GYfy_2Ua44d~sP|T$I&yhUYW8hq zIMZK+@o(|9H3Y!(Zc$@EF_RO?2hu+cLTf~|t?w;VWcdqjO+AP*MXue9oEEWk637ZZ^LfWLpP&-zkr$`tyFMv zSLH2tPIj0zR7l&``GVTlv%elI6DDPUbxu9)yi~U8qI2rCQ7b(=lx`b>t%Ji z&%;yB;xD%uZXI{CB7I2krbrKR4~5|@KsFaOKN%`qjZ9aBwymS4Gav8UdEt&VLe$lb z?}X6VM$V%>FL8ptSo75xoP*!6-6du}J_|J23!U9M*#VTb7dp_VxpjY%c-^EWaLcQC z!Z$GRtqWKw{WAtzi$ffNq9*S)mAnPR*I}@A3q|T&_kaR){gn&3fIy5z4FnApX-IjX z|5nscuM3SIIUQfLqFf2kjvDIMgqilYMdpBf2!A0FE$zB%skrAj81QiT>$XN^MeA$x zgfTx_JiK9-iHPI&0-q!{O=HDH5Y5BIem{_L^Skb*kBW8MTlCJF6=@=_H-u_4=vBIF z>T_yFJ*F|WBHK$vVVB1Oa?u+5G+wPEXPPBpgg2-!n}avQ@(ok;V~w ze?itYMUeyOVTABXmvD!{=bJ{a0PI){U{_V9go5tYotWzj8sX?o=tY)|{eXX9Ae9E< z;FS6O&NR(2*RH!UnpQxdlOz6=g$2vT%|!4`>kD}-o0=*e|21^`xCxlzQo@3Od2B$6 zSKjeD=)i_8$WjHoRICgX;BUkL8ec9bLs1;OQo>Nxjaz55HnjQd+hh5}@d0-;- lzK`y*d}ECMW3N2}GWF?=ABM#r;F=By^b1{om9q8de*x<;Cg=bF literal 0 HcmV?d00001 diff --git a/fvdb/notebooks/img/bunny_volume.jpg b/fvdb/notebooks/img/bunny_volume.jpg new file mode 100644 index 0000000000000000000000000000000000000000..51fa7e617a2aaa3aee23b3561625ff3924007d63 GIT binary patch literal 331777 zcmb@u2|Sc*|1f^dW|>eiN@Z)oOl6r;M1?e#8DU1-k+M~mA|p%b6jG|mK@yGQx{39aP zl1CsE79JHTaGqzl^fzxqmwXIJ>3YXKmOwDe}1|jV?H7D&=kY^ z=l=iJ)yS2r)&~NYJ>ltqmFok;;JOT$b09Dx5^z?+_b0|iMc`}rMT|&55UzLP>!6|Q z1Nb^%==wDA%tC=9JaZF-spjt=8HA8VE!;PZ2@C=l8eibrB79{?IM8nh*K@dvC@A&53Y6L+9`akJC--TAFw*a2`kbFxZV&F<+>2Ab>MpEs`VVNAI}s-t`q!N zi+p}{q@%-+`?vig;c95DSJ7)0;rkf=*WgvIKj2d|;(`}0f%|lXD3fAB7Q4f>23(u1 zU*m=G0URi^o3R@3X1nrc9;1E~* zF7SbJHY#|b3tR(#C^rNB3H*T;O6{s}haWtl#H?Ds6ypZZlh3bQHJ=05Ks%*nRrn%I zFNV_-5j7951@BVn5o-zCfcw-5tJXT>`xD^Wa(#@~k9VnyqaqjL`+z5PbwrdW<{{uo zjSKbXdcrl}Lrq6+$Pvv)hA0|-1JF7YibDQwyU+%ohQ4t^{wNX!p;gHA$DN;VEFr!L zhkw0L9BN15@XY#O@698=U4>%c{@|~>L+_fR)x@_k#2ahSdsrb1@z7fM91Yj2;GLhV zEkIS8r7OQ>n9!mJWqR1tE0(ik7%!H&wN9+M*a^TEkLhQlq4&fT`i{C#n_+Qum=bI3;67b~xlEx1VC_5?VDAkl} zlslBmlncm^Qc0{f1V6z6OJyN1|BtJ4!^!Xg5kn`%o^*M@6U<<8NHqlwcA+k!22zF8Ez}fhF13_;o_dq|kot!D zg(|11({yQ5Xf`xg+EQ8&EtZx{%c32omD40(OYdmiN=izjluVSYz!rZ~3RT*ql%kZU zbV{j8sZOa$sY_W|d5rQD#$o7OP%VtxCC-EM!>1u$*D1hut3bW>~M9rrKmRM>QX{Xth+e616I|XKLTn z)zyvF?bW^2qtsK?kEq{Jf2H1|p`~G_;i|DxBVJ>_#(52?#;4(`!;OYJ3|}!kZg|%4 zbHi(fw~bI8VLZZdg#U;wBleH@Ys8ZgT_d$dvPXK13>%p;^61DrBU?0;HH|ennkzN8 zX%=bT&}`D8Xid~|)C$x}(kj-HXuV@7F-#b)j8MjI#tFvXj4#@n+LqdjwKr(**S@0t zdK6`p@hI0(Ye%JxIy>s|sJ_v9qa8-C8og`u$YYlS@ZyJ6XuRGpl zeDwH3g#ygBJ7`K?{n7Eq6nH)2D!Bl73F@?-RW<5)ZWzAZ{%45||CQqI*Ie7B^ z$u(2RQ)W&HnUXi9ZYpi+tf}Es3#UFYRWo%kjWIoD`o?UOnVZ>GvkPXQ%qN+9o9{8N zHkVt>uvlwRZ1J3}$>y@RvM;i~PMbU}aN7Q9_0!d-J57(DUNODHa*E|D%Y&9rXK2k> zFk{Dz>oW#tTFs1{d2(i})g&uFs{>X~tQppx)+yGvXVGTOn-xFn@~mE)nKn^2XKg;) zn%b_hJ!;!B+hq2t*~PP)=1iF5Kj+Y#*K-Z$`pqqv``T{2oxfe7oy>ls{Yv}8_RS6~ zhfs&(4xi>(%!`~?KJUAujpJs=s`-@p&htg{|K@0N7IAVpubd`01vwpa`rk-#4Tr2Ko?oFN=&x@DKletZHi*&oVfV_aaVDEw#?ndt6?iW0e zhpWe4kC&b%o9<)Dr zGG8x$cYa?%NWs%X&WFwy8W(02DHX*Oy)Rx|TrIX1A2~es@b1HdCE+EnO9iDjk60Z! za#Z(d+A;F6=wq$NeU8_jn17<;r0K~+r$(LHeHxvPKKdTSeVp+`q10w7pn<$?Q_eivGhj$P5#ZlB|ORPTTZubR6A5x-kx*&@*SHyf8Djdd*R;9d*|=Z zxL^KY#)I;|Xa0S@#;T^Gc2@1hy4iJCrFPP559dF;RqtAV?~(hXy2pziKYil!|90Tr zw)g7qvziT>kF-o{x!mg1TKi$yhj$+%KK8dIw~uT;@QL}U?6dvn`(KuRdDjuyq4=8e zZOpflPRq{gU7lU9y2HBrzl(at^py5m_g42U>1*zf9Z(*~8DtG!l=I{-6k!TQgny(z z5ewk#oxB?I@2@2YssDzMRxQL2%ZBnl;t3+R|8WH=5^**3_g~jTIU@1hOoUEC{LXKK z=;jGRr;8CX2Kd8$5b{((qQQW$fFED|$Dg5`6K?&) z`+xogYNk(z;OT$-ReT_wbP#wfB!C5}!CN#XgpR2o)DP=*Lw>SJ522}$kN7~YI0C90 zg=PrtpN5bn&?B@#NH7kuS4l>uHDq-0H5qkwkkKtF1$B+4podHfT5dx@CwUY!#+!l~ zf+@&xBL%hXqM$>6QjoBef&>>RDEBr6J$gz(X&)#^R{_@}sHkfK73I&QqP1Kq@?1tm z*F&jj!$vB4k_^%1UMhM~Kt;wUsi@)t6*X5<(bn5k6je(_2~VkL$}1}BmQm5(7Am^X zPDQa_sVKRNicEWm$P_^Z<~iDi$ixqoOs3MPR4PrG20zLw5J)L2tI$=5ANr3UHR4AD z|BU$c1EnGgyr>NS8#zpM*vS9iKZ=)7H;PtNp^+*|Ta?`?qzQ;Tl0+FvQrsjJf(_6h zz=a>cm-vD8s5B*I6;=AM5r|BpP{>pY4N!+CH{-GubtFx5JljD@i|?;ILCBbvxaW|{ z#Cd0~X$$JUOqw1LxmA@uYP8Onu|~!wOx9$}88fY{XW2N;=QugLxN^M~E?T?)VJpk_nl{G#Yz^o#_0 z$W$tYs*LF&kz?VPGLlLg&sNfO;4AwJwI)nURAJ29bLh-9)rr#uU$g@v>*%8qP}x)Zb@ZXB70*N+r2PHg;mj6 zQs+V~pnEe(6-DP+^`7K_y^Ig=p|gmh`>?b?DYdLZT$rOOa`P%JpcXO81f)wsdz})# zy}F?wHM7i%#CBo@7byK3sB&nya_DA;p;kE()VV0h(n6ydCS&0RrEs8^cZffp2MpDMP;`HFfFFU)TKmXczyznGT;^F zz+oVb$1&7m(m zORXn0V3APD&BOnjs1vkKd56zA(&?Fiq3Rt;c)@?pz(V8!*J3P72sj}^<9@M$ z0Bo7qkQqg2mpW#6z`xLSSWt~+Z3KAas7v(D5FErhsMI7)QCsg`m@w7`3(}7Oo1jTZ zwuwQ)43*NDt%QPL&b0DGKl$fpsCNYG`#g%G_J&w2G1~mw7a8B3kyA|OyX$8PMJSB% zK^@J^%G%4Q0-=ekbp@nMfh_xiC2H^yJr~YsSc25RD}^zNVzEM=%F@*U(;{h(dSTuzCZGqXN-Q)}_#!5t zII`6hy6Rl ziNGl9K&a}42ZGz(z_A2mC5+?P>Iwof0Cvp#B+x`I$g;sZhGi3V7?wD|oB-Ox^%)y& zF{YizdzA&)T5u?f@lwbG zc#hH(t$Ah9^nH1dE_;gA~hF#0Ae6j2AcO zGKXPemNLZ{l;&PWnHMT<#~uJg21WJKs7Iwu9fk*?yn^Pim4jr*HoLJp}%Pg46;JZ^q z|G{%t{J0-MUtWqp=zil9kkP0;sQY-B-a7KxDwY;N8lR1T{O+#gS3q(TLGMDk%K=32#jCAFgp|Iz(fHFyk16v7M3`r6_WyAi7~o@4i1P4 zL<0DGlHg^6>lBf7F-6$w#0m)ki1z!}yc4CsQzE5(m zDt>Oilr1qV2}l8_8pjuHX3&yldl_x~R5t8^VpB6_Rl(wM4q}NJQ>V_=LtL>>-6=tjr_9kFEmAB;_2XL$C{ zZh=B4bz6p?fMn~*ieO66%+&fey0^c7W}s-Z@hsT00p)-cPfA3{mVJApPX&+iDnHTQ zUN+6lYEnkw>D#w&PZ}v%qCne{?_6E#e>rCM|YySJ8 zL6@{SR=&5rdSKYxr|$+A^JJNVE{`uu;v>yJMEdF$X7}tJm>BzgVvOj9{N5vR@245F z_S7u8kgA;$fAQ?3<8!_?AI#CE$Vc8&e&6~jsHRcVhsz&~ov-6u_TBT4@D^L5e|OuK z$(23y_*2X)+f@dl*U1@;&38jzy!3v0J$&6tmm;@SZ~cx=iCTep2cO*%R&&pVy=hmv8~xYWv*(jJ{ik$Yj!(0Qu%`+oYnt?!3bZOU zE3&_+$J;mmc6{3&sWkhg!FB0?+}UpM!le8ee{6r-Vsl=yL-}FYjrol`eKviupZiF* zxL11jDXYJbm!+W`cFlj4a=p^T+T0fQEoN2GbE)@a?yK0rvA$bJUnng5LwlXo6uG+j zHQnCwjw!!qtav{8pla%~B$E72$e#|KclWf#3G(Q!bC*5;c<15S&n^+0W0w^#=+R0G zSF$=Ut?Rm*H}%Ry?cVW&F{hrL?M(6NwcM9FaeiG`c-yOGyH1VS{@{M#pxN8s&-~p| zw99sKqPGG)?b|U(TW9xqzptF_{-tps>8%2tx>qweIqSm53uAU4J)=G0r8NAB>+==a z?u`>KjoW?v%#474-8ncm<}c-exKRDoaf2rrzsIfp`g_Wz<~e6loA=0~dgTv;jO~)z zz8ZfHldo^Dacf^2r@yZ@5O#7|-;2Id1$xa^povKz_t|CH^-$w)HxDR~mIBq}<;!WV z3Us?OKKP@>@7Xr%Z&#;>t=jcaf7^Y(wf(eP>>B^tz;ZL1!O{{1nj5G z$?STq6ll`=#^*~$4m|OWe(Pd$b;4f#{7KVXnjgONO7nLfm=qU3@a?h!RoR}B&seTR z(qc51%kqBwN9k?9hbLd>UH>$NvGXk{@c^q;T5e&pi1%Rb4gOAtQU^wh#_O|%70QPr zoTiIroj&FMn|W^h_U!jtdz?$AWP`2^5B`HC*J4AZ(Y-2@TlcV z;BQ7lAFM3m1cOtCwY@S?p!`dA1GK#gl)BDhb#-`jDX4T2{SvNv9@y};7)Pjq|w)&Z6K8tl|2(}6PTQbO<&fH>3 zNd9wi+2fd%RCVT@EcosyhJA&`SjNP9umf_nW?N!fp&60 z3hWIS4#aX*hbcqLBm@`crE$H z^U~hNNX`>k*a&o9F-z)TAJT=L(Tbtw#;@T5Jq6T0PaA;@_8W-l#fL|Yak2%bNeoXn z_{0gon^MY=)kg<_6n1zNMVbzrn8TtacNPI%%wcL09oTIlH42B9895C4jbO_*exh4o zFyso_$$?VLIi}7Fev%YWV3Ou$(tYS`do^*1pmx+4cv%XFI%$P+19LSiwruLg=@SZw>71Tu8wUQaBtG)(Wv zQ@qC$%Ow5*e*!UIc%5P#DIC{3QZ@joa^M-o!}~JGZet+oWpY^|aRQwN)|SkQ8g9Ti zj&)S=A(UB|$g_tmr-g+IsD+Tmh$-VZW~@zu5e+L?tXK6_Ty8Xu`wRFk#Me5ORbh-K zC`%wA2dWHVjKkSt3rKjRDXY_O79OA(v1z)VEFlKj?wT3`aeaj@UkY(O!1Sbqgs|$X z-0L&j#zML#NObmg)D-!KvPA)!B4Kg0^&!%pldoR1_O0;_ zVAH*+H?;5f#%mT2zPu4qy5q=&5P?UJYQ`+jP49;5vFq3MWWSTDHGguj9Ia{K^5)M; z>EK`au2sz`q-9;7_&1%B^`~_U_lA8sbvCW{;Go+4h@Rj(f|UL1qBm!T^&U`u79H4s z#aoZt`sC1szml!1`w!17U)`S9ddtO7o5hGEb4w~c{WThreN+3 z<4d3F0~rcbK6!0n#@9&R+sxxvWtHV0!gNYc)(w4Z$|-*wwM=K!4+ zn*D`puMt{3U^JF2jE>BD@XYL7_}jQ`ITN+p)7iIdmpF75fAn!btas_ICQy;BKocVF zo*e6u>$y*XZdUeED00nH!xX5NTO(JXYWa*ST$-N(U1z;X>r;BBK#e;Us3$kS`?uJ% zm*#S(#`8bY#3W^N_}1KDzNW$(nejMJ58){TC*!|O7~AX-TAiy3!t zRAAcTNqxC?XUjLF_RN@-SIwzN9hKIxG{d;hzk2QqK{ums5k_Zz{1UOW4C7+luD!iG zUMqF(vmgaZI2-?!Gww2f-Pg6}E`F|z%6h6mL93sA>v}PVU2XDcuT*=2ysNi3>BE`0 zdB>Oao*HCL3a?x08`3d(;Pa}r3nS;pPW4ISsFR2MymR-hqO@M>tN6ynl>=MSj?{lP z7@*s|HxL|oW!J;7yYHb6Tl-v(z5yUqdSuO(iscmVWouMv?@rX)zkI1ZWn_--3l|p! za{e}RUrVf?!JFGBYIv2SP7(R7`ce`AB%U;nK6^>)ysTowm*v9c@}r ze!qLkvhUvUi>)pR7LOhq=iffBx6Ft@kF3uXcO0vq=O2iKZ516#uNC0KW08Dvi0A3^8st#{xx;`%N7sset9z~`f%RHshjgha`JnqQl}=p zS^V}}tSvZtY&v^>(Hv^_R9%g0TkSs#FI96sG{e{H*yDThSE2#)LnZY`yUr@mg~G~V ztt}vx70x1q=Fu~S&3XAjd%6|qT;<;jp0?&4%Xg5bwQaUnp!G-0Yn{AWxGo0Lknx*F7ttE|}d`x>NjTP6C5;$D{x)w)pZmPl4u`+kKh#QGrtH z_iPBdahiM1p`>BrA+_VDZ>da7cc5&w<=@*bj|C~6lDqiicr+6lI|1*&mK###&uUht za$*CYPG(KL*^O3qlGA!zOpAL>O+Op$?eS{+D#`EBy{8MRte%&Pza0XG9?tbKSedCnXQk`*vOZLNAhpkr)9TqGzx&#^@x{a!y^))b z#zZX&UPZUCsI=UVZudX8|5y_*Jv|!&SHqSL1+vSE?^~oD$Cy5Q(Z-|NCZF!Td=~xi zf}`|MuIyuds{ZlMWBM>J19kRhwLWk8w<>1$djR8g)lq4p&b z9S_TM)C_S`4KO zuOqeuJpLyrB?!7&xir{wOvwovOfghu!WdUtH|To7jskmaGA_(D1dJ9zRhTGi+T&OH z`R#52fRG?}-Z-8_r=8~ps74jHLuPMgfh#PqE(QwJW1vKF%j=gBX<3iKb z;+{jycAm3NF&jys$TK1nO72uWmIajY**1J0hpjGQzJ_}7brG|eJQk`daKqdkiv4V& zQG)AK+ZcJR!4irVlqyAtW>OACqFQL8050A(e7AXYH#)R3xVQ{|OPczl_B3847}vh7 zbi}PtU8#b)P-y|KgxM3YEM_T?c3O|P%e?Pfz5;P_8zp`{r{tV4p8RsN0@ba)@bRMW zr_){8@3iXj`^9!0ysrsK(iB+#_3SqVUZsUOH`{qmfG{249v;v9fblIW!1%e>Lj}g! zu0Y=0eqL`&%|`PFADaW3OTw;(H~t=!@_JqOaXkb1ys@VSx0uT_t}W|&nIbp0iXQzf z#H#0Ds#VX6m-W66Bvw6tNETjs*fv9F+t`$m?g^iUO`eh2^1ENbuT zo+96J?{m<)Cmp`ux_vhR7kZqhK721)b5ryhi;_9pY4)dQ0llX6Dc!Vy-`SR*Qu zh9jVM<;~Q|DJq2;XmU45JtfdRO)ZlxGmnK1*2jtq6V;)G z#7f~prFUK|Zsh6Y6lMYD<%ZDBbMpsi<5lf(*GIGh_j+uhI?OQ~5kXY;9C3v;oK-K- z$+O0Nyzvz!d=7gTp?d(UqA+KhgaXA*N3Di*umU6y)JYR*hOp=#Rbu#8wH|s^1py@N zj_k25skqlelMebG4q_fY`Oy@OU>EjVO*6Fp`N3%an#!HEUg7vv}@e2KX}BzAYrXef(5r zl~{s|t&3Y9XC>OJN*I^vE1n)!wv(NXe>1B79Mpfj6sYCgvVlbl=G`@Qy1v;a@|wx6 z!hnj~8kgLsu@6Ma3hK;_>dTfbm=|&AlWEhwtzQZ*Dj9ByTeAKM{Y3Xl1!9~~pyG42 zTe?RsYr7+7EmI)Z)#;4PHi6#~Qgia0;A%#N#Kar9vpKfqCYS{kvg{M!a+P(ZPy|L> zvl)Id;#PYVjtQfZyMmQi6WsW986%Uu4Il!oZis9DoNsJsB&a=^!{Ej8}-t6zSv5b+r?C3u!`b{TJ z+fQZUA&Pcw{}MY{Wv_O*dEZy;!OLS`$GHdovqH&Y!S#MQwR=$WJ7o0iP)|7 zh>=t69qZ1T3-o!a+mh47xGmj~ty2iirQu>T7SLbK2!y=clN`Ym>k6I8IXA_W$JytZ z#p9XeY$#$tw+oc+7Ve-+OwB`4m;rYMR5Ef@Yxz7U7Rmz;Bhl$BphDsw)#~~QP%iLF zWj?SNm&WxGbpEprSO=340Gnc7FciGM%qmcN4_4%lEiE9s99R8iDRduCa-hiFM$jeJ zgJwcucA~`G+t1j#s39vwKmrw``|uMR{$;iHvOH&~X#gQY=QwEB*9L&iGLS|llyWwg zlCId)NtoiM6BgqdhAb9k4y~07a3Icc6S_hlfhY=?gXQ|^H05$v)CZ)iC<|Q)gEeNk zh+AEOx~6hH8?TE}p}lG+Zfq1#Whs6FLg6#%>{i}GJQwgd6$%=cqY1+J?amM-K}1kh z@c-c+7zy?)TTDBG5rz<(S~3);uw^AG9+z-zQkK*kFkk|sLcTDkAOK2aS2MvUNpN7+ z3sD`^TIdk1y=Ji`2%40EU@eKez=?c>HkBDuj}<4hPp)&X7VF5MA|oO?Ct$dYJdh>_ zN@NgC&J@K0^BsdFwz{%(x{^+@#C%0&0I*ol*~)8#UMHi?a~56+b}==!EA)ZDPr30y zW4>cQ$A^td1)dQ~^l&r1h!KcOUhdGKHD-$2A?z-26fV_=GWMQjZct2T+I4zAacuX2 zs%G_opdn~*qk{q!KECuu{?V?(`Rkq*$3bblEbZOII4EgJ)9J5gcK}y}P~6HX%zG#{ zd7J<-{v0ObCT{pn03C*YlB-AwhDFSn5a7l;DNuSUcrf4H;Kfca9`t*mr~(q5=J6pbwNU5kUq&SQU z80istTZ8#RDg@<6c;b>EFqe>XIc!;F0oh`Z9J3@)nifh0uBz+E7ec#H<>?G&X!KVoTFiXvQr2BCIMRAO1s}(^PsxVHk3dUAxIkaD4vYzSvRq*8aI7@2nPSEyrglOL|0S~>RtNj|(Ww-6Jq0$fyvv-p1(;KnGL#zy@K8gz)}PBpB;L54+S$VfawiR4GbhMurB(zbH_2eos-aOQ*lQmGBLfDIz2;grI;~#DHyr$N(Lj zXaG0Qn)qM?-G7)x1B6L6%Y?H1uud6RZ1#-WCw5`bT3ggSxY0YlBuSF9mO~PVtv+nIx_{5XF+pD*AEMHizml$6 z#LsX|NkDpov{=8~rMU~f`~KPD=e_jk0tK2j@Zcg$%W$T8-8}dF?B(!7`!e5g_oO@M z`laqO63z%4Q}w9K-!%bJh4D72!B{E;LEzgHAb%z(anB>B-|`>_sr;%A9$_uv5g-OK zA4nhK>&W*nAwWQM%+As2?b;rvO&gdf-5x4SIFfc@c$3g z;Atkwg831@%lg4>7^V`<0VYuxc_0&*??DoHm+u5DzGXw$PrRZw37n*R@n>Jp-{AOkxKY>Y7sph)Zzp=-Ym-O@!$# z2<{|i))M16Or+mAwB!=IH+vv$ZngXP^}7Ob#V1q$YE*;Ds*PKGP5Wp0KHh&bb!ZdP zrzCt!{^q0%-7_F)4zme-Eo^4#abB0CwG<)5)n$Hk?2e3JrVXtNh5ds`Id~pg8B6lJ z-i0Vok=dGf{e4M<<$wNZ`ASnNNB^&;&z9)fNb7Jx2Nlous$j$vC=EhH1i>>GH4nfp zJmKV@3bevAzNP$RlBnuS_JAn&XY6v3{<%8-$|7i0!_I6V|Gs3vLO<1`GgR8|h z3F9OtTp^ZnMqVe8ooB+1s@^TG7Mn4FMItx)W+P+>F(&vb4>2`RY=#P8Qs{FEqh6=O3*OEJ)gh3C`6rltrcjS2)Js2H?9PJkVpoG?zB zcET2dX=+u`M;^QaK8D2>5!^cv1pyX*^T$fi#m0qZ-Pj@#xKFDgA7HO~trgn7gk3g3 zm}IY-#k~HcI1SzYD+=-m6S6anD+d%Ja5`Z}%CS2P7fAIkzP~4D(s!PJ~6S`hU z)bUy_B?1`S!g&l0YT^(^{a6a}voeyRE>#p`E7%NGlHK5dJ47pRB9@nW9g_P@NR5fQ zIE-)^G0H0RpdVkDmx%MDLL%5x2hWP*L{LMRXXMzDQ-Nm!8Tb(<-gO{$hX%4LOgIMY z1!nNwt6+Q;f-@Lq!@#>_*}z1OsTmDK<8|6b033%>HI7oT`{bD6E;)qEbZ~t?p$19; z>|Y9`vE@_4`?{WtanJKUw!Xjnu;c>!c1h}=)t>e(XGG0W{$QS_OXDAYh;KEz5?lB9 zkEPw``tvGTTbzp=UmaSkcU<0luh&(s?7%VCDZ+k$St2B&Kga?x68f2#*fN2%131oT z)5y#rXom1wBgW%J&rt*Ow6foL?>F^oa^4Nj?5%lta$^g-c8T439Cl<6Zd?vknR}rv zaZk2Pd|j+SmwIPbPRc&iBHKbY@2|`(&VHTIIS=Ol$Pj*TVfJkU4k=-1&R+NXw#v7Q z9@>4pJA80ddF^85Z9BjTthQ^0&y4a~;qso(-;Y+x;{R-EQlM8yp(rVbrd)NL8{{5; zgZLo!hN!)QAOhFof!QHKd-Wn*n*rfLkW=|}a%gdVC2;>n70dq>A=ktP zV)nHSQUXu`PjKg0d4@=|#vd*RWF`(Z=7ou%Y*~czn1h3X;G3ocItqC;el-RPB24jj zhzvxYwoqn+P6#0+E{)I;DR>g-RXF2Zit&kAh4WJ%P+5!?oPWTI26Y~&0Em2Gv;0q> zw}NE=)i=}!6Y&XaDa>(J5S!oEE^GI!q7MuW(%+uu?#=(X+vTI z((y`yR0vLBO8qr_Arr;IHjNGCCs-oo5ZYr165Rk|F2NoHz$R7_SZ;!gI{|qT6M~;l z3Eug@Rsv114Ml_?BXFhzMg|)?7zZ)w@So-f&I!ZA;}m%!E~X!sIs?F@F^|AS=CoiI6Rh}gS|~n^0f7>{CdALvba43Q4$UAa zt`rebnj;Rr+=&=CrwGctI4&gqJsHn|lsM}YWcWuQ!_VrfeKMyIf(ags1)Qpf4mvOH zGZYXtF7(8Aw;W6z*ArcNy|S}3545NZ>X$?3Ka6xCO9FhLKu?T5=MXWs8?MKDD%)a{ zUH*^B+MnFgEO)vDrNv8-2V^~}1rzRxiibrmxO55)ZWPH41}{2r7#R9crUl6l1dST8 z*Jp3=af0E*gl}%e8ucpRp=@%i!f<>kQ>>>BA=jF$ovM}P~Qv;dn8Rv?krKh+41&-dMxZx;ePKHiNV9QCL%QGw#b za--gZsg%J_X^>PE6;u_SFohz=btoqi)6B3b;zJrB841Ro`n~7^!Eh{iM<)`&uOI8v z@l#Oog7SU_VB|(0k~$83jfP@uU@lDN0+cGo5T_w{fS4EKJfgFRSj7q7X&qXN`1jwi zhO)=*BK@)<+{lD38lxh;R(PxE6s8-L5RAb37h>)Q_z&^%qq+DnO9CC5C0MhFuQy@M zdI&WIXk$QNV1$zbazF~SV-mDZ;A@Ef8OUoxD;#L~p`}tdRRz;u_y`Mbec(ijK$}Q_ zhT1Qrc9^05ff*D?VW)kZh1r4gU&brg_rY$85MElE7Dpf!2y2mCpr>N5nh=c5CWpwe z-7_&`ZG;#cM1mN`P;%{UjhByCJcLpGY{rMaq$VXg8_qGH7f{~-Lad++V-Dlm;IJS% z8YeL?H`T4Bz;`}z{8}7qFg}2Xh=bAbYB5ws5+@o7(Kn#b3evo;6?&5fu3SS8xQP4^#*G85F=CuLwaO z@D`sDN`!I+3}?NXa`0h%T~|A|=G32WR|FlNee>(gz~^nfHT_GgbvrkljC&5|)%Y`2 zZ`>i*TL-y+d)*vet1lnpcPLQ!uF6jFgshafC!}VTQ82WIk&D7-UMRs$upq>tTvq)7 zpd6yN0-^mla+{yZZEg2-K z>jlL%kO!mB9ZE2;J>QVC=6L+9LFj|6$3p5+GL!`5{zno31pw$x)`AQ^)o+G1wzaxq zT>;r1fG`gPW}C}ybx~@9;5Igt1*gQ^;RuJ77$N~ri1765E5t?6*^&%pSqZ=JDU~2A z5e?3>z^OXW5*p-|po6gEq~LC%Qin6+H4}y{;6w+2huF@|>mnT@3n+iba`9~8ZE?E< z)D8&78V`j_KN?bCTeA8Gyi4CGqZ=k51rR;6xrA1PZrc0k<-V|BRfH z_3&i{BvkfQU~M9($MYeS!2ls@kU@q~htD7Ayay(ip%aXvVerKObO0ogo(M(ss;6h$Re0j2%Li!%{b^n2t>ACFi!apj93L^at89>S6E_} z=tUeq1+t&4gwwHFcLh;e26SyYksl6} zI$R)FNM%-+!-NealIgdgERD;(US}FIa#T4iT+M}+jM%IJhDIPawuGq}Ts$D!4-X(N zf!MDhaTlB)1WADiBKzftLRl>~x z!6wh~%#yGoJV{hxS#g*WTw>tOb_raQhYdgOr{Q13yM6@h`W_3b2YPWqAoq&e@cu{U z9p?8x|0)PXF`$no+1L!B?$hFH1@oXSV+;*juL>wVLvY#zxF_R2iUg|i2WU7CZ(s#i z``h1y$gp8=N$5O?xEsK|ViDm{qn!}+0$T4=z{SG=ATO1rhHLSDwSY2oo^V77$2h9- zSZ+o4(D)Bz%j03X7EV9H&9cDq@gN*Vo-HO4HVH_mU}GcD!wAX1aN)z|BSJXNgE>7G zMgfR^6OP;y@MM%k=K&i)KzR`~7j`;OTyN`w0HDmoy&h}S5a%Gb1&Q102BZ@&!QssW z0`8FNDJ806{RQ2F(}e^lq^V^vtknj(kzB`1BEW(@5P2`l2I?As3n zdh>Ruz5xl+AyWap#i6wFV>qdKfQGQ*Rg3jtex30Ae`}9ex-f$U71vh0!aJ9E?zu1Q26ZG~-!-46q3gd*M?~F3yTa2UFGb{FW<<2MHp}|#r?obtu z{x5$^z?i}42oz*>AvE%XI1VN~eo;2-<$v03H;iwNH#Lw~;#mc=DTV(s+&G=IH?S`b zm%kj(cB0{cR|ZK4$3+zazN%(?5W?`zFS8Z>)i``hb9+Oq@3|HCzQy(STx@;5F7HBP z_=dlgIm>$*zwf$N6uTmAQICGI?cn>!mX}Y89&H(l*q~rgA%^(208j7`K_;A#gah<& z$N?tPCufNRHA+fq4!bXP7HVCWM5ruTUNVLnq?|grT{~j$w#=f7W}2B}Gh>|=Cv7$> zIrQwq5|ZPKWs)hhHx5y1_J40^7Ckx{d)?qGt2Mr>38xcT7bmw$B#t8mY;R*YCUR^H zO^xFs`3?tj=ZVBq+}6hVEfC*~NjG zAUFn!@b6FzimTl)5rIQm2sm-%>@^~X5eO;55gkw_d~o$=7C;32L{L5?y~AWU+5})B z42Pj25|OaD<52p?U>_J|aIwWNbp@G2{hUa2KnaF$_y><|@CEGRKlB3sUm$o5J)KTu za6k0&hpyTiL#PjSjq^K#Y(M}CWcZ`ePeTB`3V<#J-J7Kb92nBJp=<^>$cAziO|YjQ zi~|T&ZgfBxD>@!`g0TGYIp@$=F1EaJ(3lcKfdC2+1#l`Q5&DC+V!b0NVM=*UAu3@y zRpMr-;x)ioc_`lLykfhydr0)_Rl*^@fv$!VoGb-LQUPgDBiC)c{mp_daE>J0NsNYR z3>XeAOixa1%g@_?b(!0Frb>oIpfl+>oP^25$4&_O_`ao*|Z zR?f3Kdh8pILOYT!9Gc5KD(kM1#{v4A>2sfqkdLwZ{9J*ydpw3*+@`-)er#ExZ; zr2@%HweBkSLGDv+*K>5vWm`CX2HC~t70aJA8hm44hI4Tfva&&DGoeVwT2pXx&GoBs zJ%I~SwVfB8OLQDHdECfTlV>(7pO4tQeO>rv-Hk#ZAxMFCo@@)BFkEYi^QC_C%0n;z zIAnfeQQYqyM?Zg9D$({Se{c5)(~~cskiF{t+=2M-fQ;(q;j#A1@*m%qe*JX&hD$;G=^VRcR|B#BW8ZJ>a)bB!cMZOEY_WU0^cJ&pZjE_J z@xWe4n2P&>#Ak4V0{{nipM`^UIM-wMGvjL{Juo8@korjZnPdF%*mXT4ed}hXN%yu1 z<0=PXaKFiU#)>_@@dKnt{<1p**#p|WT2fg-|D+XX;~N3#u^wlBgQJoF_o{Ob|G~1} zC5;Nyke0RMo84dWe+D%a1-U%=eH&A+hFsLIoj=f#ChujuJ%9d>B*|Eoo{Fd4zR@QJ zj=|29Q0d^kwcq2DZ*$+s!Lz>vjE{xP0sXnUec5M@Zh7UOn;XA4=B9nEyb}M_$fNw) z0JZWW`NlU-jzQ>dsYgHH`(|;1_*&s3;z{QR&b_{`Dtk2#UEEymFWcYDrpyXJ<0`1=K`FKVh>F1te={PvvEf3?fFf8RS9_5b1P%>$w8zxeSf zNxMgpHB+f738X2p_E`Q`}((|0iwly^LDc&Rw34-2rd$^zX^D&nX3> zECxc2AJg_EU>{O^o{y$NflD?LW-z^XJ{?#%MbI zIrPcTLk-8Gkf{a&V^Djxf5V}0%#kco$(fq}T~?N%ksQriXYQd4WFmpF%{-Vq2U8m&^oH9Krx4P!>HpDi>;~Jv2%F=D*MRn`!Y6WZ>+i4zdQF0m&LtHvE@} z*!osWGiQ-c1X_$@DrKORN%*1|K^W*}A|D^s=%dwQy(gKT0p)}7^EzX&eJBoQxq}0n z!j=luhf>TeZYoB7rOTOjCNu)mUQMB%stY)8JSq{Adz}VTTEq#J@2c6+Oa^j`9@Knn z@z@~lC8y6%xR*GNfA+m^cdC&*RYhQoF5o7(z1(L`d6S18v#v9wOur%TcCM0G`>&t< z)5~}4W8%rh5@NGdIDyKG9+~l=`%FMZ#7FLy>s7F<)aXgrCCQr?a8c`hAxB%PJ=O*K zpi`O|@cY;@v89iv`rv8yAlTwxI^a0p)JxQgzKZ(CC}pn8_k0%Ji#JTJt*%L;ZS|C( zv~=T(f2}U3`Nh>0Ke7*r^%+DA(wL+lJFNl_=_A?7tmdB@8h`PRPA8?-pssU|=d&Gq z5hu&&V136NOo_lIpz$ZFtve|LsmR>dUxN`1GGH*##8TBwrG-i7cBT4oU)L3A-y0m+ z{l$9akrwr0&sFjQuKX|d3aTu|N7fE0?>Yz;I|f`Ah%^8%5l{vNUWITSn0=ikhf9`% z=k<FgxJ=tLjh@*&SN{G_)Sdf&#A|Q43rKgL=0N)O3 zxenie5-6x)gvxL^%mISk?(jQo*92c)3QJ`~C*n;Yzj67H&P2>|2xdSCN(|gD>1^<; z#JCr?#?06DOk(K}zzaCYH2|6fXO|y*tHk&~*d}99?*xM#QApcZ8gh)+q43eV8}oSe zOC#0v0X%CKp#=`Oc0MFIiq4BXIsGuu(`RU-eQX10neFkQTBop(f$f`bxz@+G_#70a zGUDk58(%c4Fi!1F=f8Bn{2jmJ>n}3J2Yk(_>MZvbmtrdqJ3`y1prcvLR7yz7vLtg` z2$O61?oUWm71zmRpniHaGgb9{b4WCub6Cw$had_V%~snuFMH7UE2k5qj+w`N4uw~+ zoofL{7a*m1lrP|xg3-h4O-7?^3%F&qPhYzYfmCjgnYqwL>NniyQ0M7^r?XRNF-o}u zc;;#pSCrf*&E!B=ChGgP+WfYPhRsPxH7E002lJFM!}@vGchT3(Tay>HXCAWhGGYPP zDWy1OicaRz(Q7_Af32!La~-}}$%?+qJ(1xM&738n^V}2%fCX`2COeLjz}3;RVj-=? z^Ay&>Xo%2W3SpR8gd-ifpqrH%c@xNsxGHwGReI41h%u~5KS%LG=DqMEXglXwcx~1& zL=vIANG6CO(sy-Nl8&YcQL9PF-S&?V5d?AXHrqdt3Q4)o; zN6E&N;^`B<4T_s7_^C`?>jCC838fL3`hwB~3Z6wpXfJYGLd9meexP&c*_k_TMA{nU zV_%kg^UPYq^?P;~o@Tg>iH^R!vP4IfkMGkE`Rv#LtC+zQ-w3En1ibQu@T3N}dC4UX~u9=yYmx zXm;_8r;k3%m087^s>j&X9^-2u;S(-xOc;mh5l||3WS+^JzGCEiD$HRMLPt(2L1F*cI0gs;{h(OM~ z=8WN!P{@a+prViuBd~@uXyksNX9{-9P?);$G|CT)!LTqoC1v@0n38Y;^;7aRx;@kh z(?UYvMk`Bm3t-W@Ra%J<^~^fGH6AJNMP>kJ#pu6C1yjkuvz(FsNPE6?J0dp=Iqv$6 zCO+?*sxI!EWmTK6sSRmlNS3RML(Lh4mQJwCz>wKOIuI(NM2bQ&wyo`Dc0SO2>aa^l zTO)KYc;3Ks)B@_y0;-%bjVKQhGzf;3Vo}!_h{nSW!j^q(LmhU@?e$nNF1m%3hHZ&d z6qkFvA|ddgO0(YX>CFPSuy{jVA#jBoZGqOf2KOj69SGMx1fnN}dby z4GEjqFB121R{b{Q5@-?Qdt@f&tu@P&n|TKr$RdX$6Z?GPh;#rE@NvImASbuiia7*e z@$UJO0%_)QLa*NBc33sFzG|=wy{4~CdiB;YwDuetpgLqQp)CAC>Awdzd$3>;jDswf zYQLIdz#3kJNhvN?e+HhN9HmhCzy;Ce4XPS!ZM7vfisB;$GYA8ZkU2mo-4bm=Zt+do z)K3}ZQzsQ)F-~hynW=#f{~jRrAF(%tofWe>=v5kW*UJd0&W7th(5;GfzhFe3RqvsG z(w)~Hr~owq9t-B<B-56bqYOnuP$iOI*-bG}{UhrH7o6eQeDiMZcS zvLOrrYFqvLV6y!$$Afta|NCQ?0qgmEja|o=qH)?5PyA;TH0a03KY9~Hy4g;Nabp&V zKu-m}A*pMM^`$W@ek|aw3DpxKStIZ^B>ttY|EhafH`+gk73u#4$#utaenN8n7iMlR zI?nzTYBAO%OeE(N?+?7|905I^scgVl8%Ox23RpBysTgdCg4KWBwp&u1{m2!7jg>s6 zK=$!tSM_|qIx;Ai$Ph9b5oIxviTIe@$qWjR9pHZ-S_+5Wori_yL!s5o%Bgz%)ItYS z5DCTtj&Zv03A6eKvETS<3bwMwM0?51Q_{^C%>1>8#;idxcXXkav!}r=4T3eY6&rI3 zskS97x~r3y{;}RJ%9>e*^b}l}h3ESp-}O8|?76=XJDNOIOJH<@Hqi6JP$lTZ@CDp` zuivij`M`{SA@X~&u?JLq=D6k^s&drVxPXFlJ){_=Qd{DPsgwD7bu^(4TxtogjHD<7DR94%WH5;bk^~o(;a$A{&s}N zY9ndnhC%rX z^rNS}Ul~BLkGMqehd-zgQ1cp4%dn{;LI-x&VYvuZ>@QwAomjGg0VyefcE3O&=;^#o z$?lZ^7tL0w;}*VB0>v+6Bq+%_K(QM{Hk~yS*kE5v>CZ|5EJMGAq7ErN$l3>*s6#ft z8@3T*Wexr-7imei3)jPG&WATWPke0ovj!as@RgTtXn|1YlCw~lM1%Qa^+&Z z?+V9StP~(t4BH%yrRK0b523bCas$$L@mq!N-}$A4U7u}RxI1oD*AG;bw(fIR+WGp^ zuX=Xu3s>&7xfNop)#*ND-gI%J=myuD2?LIOr%+WlLAJn>oR{^9hY$(J$wQwtBL@&_ zjxQbo#DN}p2#UA{QcyNsbIb)CU{rnzt<4kPB7;o>+FGKDUv{4iG&SC zWDgLj*$RTv6-nQHo-mRsmUE&Sx~8ogM+!VasvvGrni9%VF0}aT;^WRY~>8m zq|Q<4(VeB3_e00F7#y8@A#vzDpL_bBU3CtK+Q*?>kuEv?wc{-+2yZUatSaW4x zPLcK+B?Bp;DmSkendOH)4S4nx>TioZkvQB<(G_@LAQArd#Pj*jk~6ZqR62GMe|#)N z-cI^HNHI#+86GH&JKbh|PRV8Hs_0x9p|2&Cl~md>)dT9oAJoO9lt;~bJ^gbT!el$8 zSms?V4(;0Og)aHD_?$T3i-VbF{cm7JD+(cXi*Q}K#oHW2{s4i-D+! zE-gteN+h{EuAw3-VC{h zkqDCb2yc)C&@g_Hv`bW3<&fbaR%CkhRNF8~a2@XTO|d%RZtK`wAHFqKp}lBvJ!Mb^ zLJQs|$fP3PaPiDJ4N%kgZ^@uy23fT*OPaS`;y0zl!og5;_~+;|8VPnWp~}j(s>r=NH|ctkB*j5cYC5V>gYI29)S3Kwyj7*bXM1)n zO5FR^Nky`X(q)d+UxlFYI|}-NL^CALY-%J>r5A87)5$N+AcOEKx7n!HQ}NS0pz!wA zh%K%N*9Dw*oAaWx!B|D;G9DyDc<$3F0^ItA`DYyHHDpqSklaZal*CSdI{mb81m#J; zOIA1;TpYQ+xhZ0s%bN9Vd>PLTbVF~r#-slb=g&TYut5f-fNN$>aM$0Zc}J4GHeoPL0Y+{8mmL( z`R*OE3N8JnqN&Mq>9Ei@@+(>aid=+ABcf{YO`Qgh=IGfpFIh(oQd8%~KVM$QPRQOV z6u+9JEMT`$hs)!9>+zc0&$%*Da@B|5R6m|gL&nBe5||!YSA8j#chYm_FHQ2y4&*pJ z5^_nU@R-t`cuOY>22~sgHm-hS(4f5C`}N(Gd7Fh?$qv1TW?-M$RzEQTr?8;RsF;f*Rq6KT@)Z96j=u@!R){@w*!QHPwiRqMp!~2By>4gi;vj@h)v%(?Xnios(_R5 z1pltD5KryzV3ojfQx8U#Ce2pe2FtP0P;($a>t)pg#hXJSdc>67+TZ1_7+{kXz_-80%w}&#|@mn>X;OJqx&;yj%NE zFgN;U8=|dZ4=9dB3%JKBAR7q03A#jFbYlseAfmH?qk!klj5MsE6{FrTLwks*a!M41 z`rx%wQWMg74o-0pn~%lMbAXKbOQR?45|O@J=$ZxGk6U|_in~?vi^5m)@tpb)`>I_{ zkn~;I4>jAh+KT^BsM6qeJ%O(>?n$V38bUqm1lOB+D`c_f+GN*qauTy^2Vv;djAS3x z_tOwxkC5jqPk+PAW*JtHFQL;7Vcs+6c^P3A%}|tzZZVIZtNNm>{=K5@W(8{DAwBQz z+;BBcq#&lhT~hFj!}fpP$lsuCD+_1l*Kjhtzy>IupES&z@(!T%`t}$shbnlcyh4wB0V&6-j}fFGgmUn?7ypxe-uAWQM(F zC8Z)?55cq)0ejz!=xiK}e0WS1oqq|d@EZv%(ca?#v=I7!&{&iDqD(1dNm9lBALT-O zJgz9!eZLf9yiQR+Fs>vpWAvn9^ZQ(sR~yx}W@+t4ma}UxWk9#rnjS#1v%huitEeTk zGWZF!vCpJh(pU(RG;7|7s>876TAV@CUbl6++Z=^uPk;Pm?WUK^zl>|+3Xw!u&?_|` zz$?h0P?wJb>0cw;yLuA^kpY)_SR(FpDVHSp{G9cx0tvm~Yb%15an&Y(tC@5X zp4G5}#Tas-YS7WMH3;j%@8Jn0eb2q+jrMRbCzrLnC-6oW~Y9#FA zM}9t$U_)efS-v(IT|?}%qA=uh&1BJ2oV8+2a69RE`YdRJcc#^-YCO6=4;g5IYc7#S z=)%|~&R-x;RWIOnWC3tck4HBe+yxD+A&}X1GB--XZ}z)RSCe%5H>*&;>3GH}3X?%b zIkX@Z#W@P%d>En2Z>3W1jE;HlO;UCdSQc8vzE?|V;;4*3=y~@WhlTxqyzgAoYcS5- zVId5nd=r3)zb(pBMzb#?T2sdYGGgONyBfGl@pb@z9e4@*j{P6_H*H|^dxgV<(w?K0a?vS z_rb&{2tg03GIyZ7V_x>~e4s^{SJGI~08AKgZ9iDNlc(_3P`-o0baV=lnfJ^n`tL#4 z4$Q&*YZ$iw_>Pc>&d$zT<;yHn>60Y-ShCW^Th?h_<>I=H@QY9)&44+oLI-9jg|NV4RIsR^WpK43@^gWbC zfh`keqD)D}4d6i0#WB&9!c$YHwLpS;pOG=ujV8h*JuU@@u@B5S=Ww$j;7tVVyhs7V zOzCHwuKU8@kM=h}r`SA25V%jsa)Q#%!Et9EO)U- z$SS7F=%j*`YoOLAT?D8t-MwGP6{_)nRo z*mO%hL#j2#nd=Hb{bUDa3?7Iwkg0UoKbe`I9Zb$?!$)b{?s59^wmxjEB{T76fO=Sx zKx?x%p7nJgUR63-XJ7X~T2u{`RlH)jf;2>dm_RHtrx~fffMo`ZAhi)>OP*?g*TR+# zOKj|1hqoNnH(4yNeylI=a>21v&X;?|25?!oLOpeo)UW%p&PPYWo|-pbif3(Zn_W0- zUG>>}glk!iw5QQ+pZn%FO&elPRIJhbQqIZL3JMqPs#c!8#t6e``^ih8YVj)k{QNpc zgbc+Ycv^iN==xA~TUe|?CT{3j(-X>X)21g>-g0fp)Zau~+RBsk?d40-M14mB;H;eL zAGu#hDb|6+atF89#1L{X5i|=1q64v!uVE7b3Di@n6F^LnzzSc5(> z#-0lSX5zdW~5XQ|Q+vk9}Tv$qD4b3po}`-sy6%+SDy zJw-+q@vYSbXxBOS_0@_*+?`*TzIAgdD5VAz>tk!?WtmYQ2o-HtT zo9d$*a{VZ$jx#iXEO_)H;xhfTKAtK@FxH}G%b^56R+K5etCC>h_~A32)M*R@1K{Tb z_rRwG2n_M9p3$r&YH4yHP?G3~|V;@!W3rPpUC;a@nkA5HLqovpt{cN&6*aa#M1<4!DwA1zvlH+48EF z2kiND@gL#Vz>}lAjdqwf_ZLO7e*y)O4gdRKEe%QmB!{+F3ssIsH;5wx4AlkP`xsYa ze079bIgsi00~$&l4C}sQkER(Tp@lum7}7ytL(0Kd2F2DJ(+h@@kZ-X;wc#V^%nH#3 z+$L8(rWh!*052Hb0hA67tm3Bl;RoTUFxPfCh`^FKgSwt*rFYqQ--_2%3z>4_MFUc^w<-984FnnooU^Sl)-LW~LCl=y z-68oG9SdXKZX)if%TTsq?RfXKHsgf7N4Sqm?CRel z+-2ma$ni35q-$!$(R=gxhUUqRZqXJEO)W*n!8gPUj+ncJ&e{6JHOQjX-Su?zo7Jv^ z&9k;5ZKSS_fuirzRb}OKTIx!5;Kxp2LjHz8-}uUrshv9X@=p4`hqKGZN_H2^46&Nh zjr_~aEMFmAmKGU=CeLDqPjJ%6TS}x;-IL%KZ{qmXu9{I8=c0SB=vFxGkN@&S(>Fw# zwY}75z!+Q(65Z+d;G`^CZc@|VIo_x^&RX44jpt zF9-GgHdCGSDP3nZ7I3E#rT|Q`K&rKWiK_Qj7?GkTcucfRZ!(9n8 zP(~Ik!$3j~FdSi!-whzY8JW4G_PaM!xyUQV$xSlr^Q*yKlJ5|H=q4QN@s7~7D;m8H z)fQATGuD`8p0@pnG{fyR^B&O&X_|=&k6*?*53sNCyDOO*R?1oN+_=M(a++e}L7Qo_ zAJ{yByjLJQ&24aJ%20B-snJrwa|qhmxK9Itlk2 zDVLms$KLkH$<2%zYu*%C9g}M2tG}LUOZal9mm2JosQj5yQp-F8w$&M39|B`{Ad5ru z|GE_M=U0Ij?ZjYwZ+JJ4?t2-NfXjp?X_sNaI*HeWJYemys$8m4NpDRJ%iczi%BIAFQ5#j=4(1flWHbI5Z1>E-v0yUbZieAeh(71T9 ziU#HmVJ?6|i6nHHGGrO_9Y-DiLB8sY0MJ3`>q#`#ZTAKWqlRq>chFV^<7xV4uCm>7 z^wVBbl?2-;)ouWZxwAs8*nlO7)!Gk5&zD%*m4#Hcd7#cv~1|eB!;% zGi5%J1>84{R%_|wFIW}mQs!wN;?5Cq=|}j^2aU6dLl%&lTt#}1OhLkX#tHHgFDjEh zbgVEollpSt^hUGJ6WhZ)`1*tmbZMay#95!W&3d54FT;y3saP3d+E)4*>hIuza}@>d z@q9);@OJ@>0SvQ(+@sN@SAdogrM@Z;n0XMkwD!`+dq?S+eRMB3tC0KUeCguPy+jSd z@4Z&9RK7%>BU@c_KS_AyDsJ#L#-ucDe57f3LfK$aR3YmNCu7NB=AMl ziuJ2Brt@#)zDjIJzX)n)=I%{up*u*gD?0xzIJ;dYgfD0xYW>J9;l%>(-$yXkMlV*g;k#7#|2kOc=eY0Mnp1de zPji*6UZwR1X&OZ8>q!JJdABqw)Z|}zAyio_r+In`1iL6;>1;((ELKwWO-kwKG5<>P zM8&RGwi>+U#KiTJvWthXx*K#yTFtKlEiQ{&zf0nN{{}}ju3t>pciXjbzp+R5Fese? zgHYkd02sAZ@2_)kfuW{Q&K<1ekElo>>bc57krtsu?4_eeD%Bh~--0|UYbiO>yB0km zQL-!~+^4iqiF6&8q|ro}OvtYvn+5exwx599QO06M9y@@fMErG<>C@;}(M%@f%{a1e zF&RV>J@Vh#6z%*e)T8`o1!P){RH56Ayz2K%_*Mo?l=e6Mf=ern8@ z&<}!fO2Km9+$W@NwMs%DWzW zA9M5&X;BnXTy*CP6`;nza=wHi{RV;TFjkHU3Ao3`zl0z~FRLg`mCpP9)=W%C6*`&J z)CC1`C;>~ty*&qbpM>te6sWX#$n}x^lvq}uR;DSwr~n>$`^0qHBkfs1X?hQyHA(mY z>*(8acuL0IqSvPMj&?l;&+o;3IPVFrGo0XzVcTz<{mywWoKN zb7Nai@e4IIWe4Ni6W+50YBoXcNx>1P?O#gS+^FqV=ql-)xAwaau}h<=A=%HH72ioU#v&+ZdD+5S>d?U zk6i%=JIc!ZPpEocnJ$%Eb9$NOH5sjUV=5eWP^!krV!ch??G(6duW(kOOVZWEccpCn zf#ObS!zOQNaBD)K%eZFxC?=U0EYHpu7yXrh`YGv`e;2PZAT1=Nlv#9pA1xk$dt+Be*Qo`ihzDSxu* zayUgz(z}k*Th#NU+71Uyh6nroumOVWGW7PP; z=#Ba>c&xn5X^=orZ`S+ctna7~rT<&p~g zSuHOWHg#Hl7QXH-d); zo=Mhb2KF;`%c6N%2%I%!wtuwKDK9!OAyLPm-<;^;=vQuOArT&_X8OR@r^Ihd>36pUhZIhLHLlpNBnlp)`MH44p_)p-!bObI=cJFP~fZ|`wmGvkI4N@ ztqUv(a3(IEpMEW`L5r)I*ULqlsy7JlrWs-lP{x@n>LCL{=-NsprOl!10D$(+&%U!g zTp_Ldiz{HKnOJ$a<-GK~H(QAK?<=ubUzncIZ9k?oGsqxVnGBucaWC8c&At>g}0I-J$U2Cbg z@sq1SKfQB@qC4%*@fBgD(cgfO}1)@)#1p58ETZ!w2uMD?LwH?pdOBRHAA_b z&Uk8w_t7B;R>-0!-lO~Ci}C+>(f+(Sq>Bg24bo-_BlF`>?NHbF!P5#qliNYtbQO@S zJ(*#k*aLA&u}9!A{d_=Ykq;Kq57DFY11&Oh1ZSzD4kB$j@0Oc8qq$73{NT&Dm5qY_ z;D7bBkRZ_|`7-Ezz6UW%ql38?!dN}ouajsyI=%>6j8EjhAylbX4s0N!(p-KkzSaB6Cry8oY;Ym1 z+QxNlO-FDox&K>Jae`n_~S5X}32xHp}-ttO|gD~;VZ9GUwkUs9XR4Nqs?J5uvtu3SEzuyR95W_t0g&VlGVG`gm9*=|!Clq-0e+J6h+ zGl3DBB|^=K^EUKa5-F9 zvHrdA+-ozg-RqA)I6yu**XvXFcvs1TVu4_H4aIiis@9)TRc9NLf){XBM98=y%rJEY zeAgNXas3r11e0B;@cFGB>KSI7lSpp{M36U(UB-h;5l%r(bn_>U&-)aZci2XsK7PM# zTX^%<;74ojUBL}3%|yDa2mh6gNiV7^wh*fOv2pUlhlZ89hb+XbRQUPiB$fy{nHq8X z*syIyw zqg8IrZF?pJLisHvRG$cW8brGFo1ZTqE+@99+K09|kC`Z~D`##M zFl4#6LLfCUJ!t9Mo#rQZI=KoZ=Z+Jyp=P>E5&p0Z`-AK_AuEkS(*oEMaECphyWNM`0zNH%@@D!*{&ZVKnV3@@C-U!_1CLPGwGEs{ zcyBYzaaQ#lLYraolt5)(-{y)qfLS2JfA7N;w8rAr-s=x6E?$)sxxVdiI>(v!Qf!uS=G^5_x9#CZE? z?jkbR03-^tRcd=8T5+Le|I-EBm1^Ut=9M$z%T6Q~*zmt&d(1PISDn4(eK%<=2EpcH z&yl}IctR^{D4HNTn;jB&u!EI()s;N!=8;32|Dh-odgXwFf((LO$~6!ubUxnPx=n}p z>XDETPrb~0z6_o6hRjRMy^Lhu zi?2D?DFtY*n8wqNd5bhM{s^;u+=S>2rnF;{3Uw&w!l}L(>odXLX|C&Ec6mb1VW`xt zbIOjyb;|2%K7(s~7`}O8-#jiAm3YmEAs=|tkgp&L!VpVT$^taCqTR^RrNMPm?U_7j zq30{c`0~_@4da$~I|bhhZg@;}yg?Y`0XX9~0fn!aVHE25*R52=T^JBHZg4;v^NFu|ZHvUM5Z-?d|UO!g<@7f}pVd1rJ>T`VJO}`nQck2DLM$xJ9^PRnQ!P8?V z2sQ9R&ux<*`|++@3*LlqyXhUjEAe~~T(rx}A%K2E7X&yi`nQ>0VRd$;^HDcny)M*7 zK_+YHllq3&lS!OY2g9f%Xng(v%D#Y`<)%>m%uT&#J*(nHTuR$Ys_xJJqjss4(s|q} z_oT_h4u9Jun)7MO>lpg>Yqho_jyY|cQp3WNmYZExt<3=;=B`s!`(tySPRYNBNgiv9 zZG0~rH3ir{MqlrnR_dWc8P^o02KoVY+_A^89u4F7u6>_Nyv%!z&@*@S&@C0V&?7x| z5I5#euCX-C)#+pU7#+?#ZS%arhyguz_p-HV!2@DN1;g$j^Js&^5`xtzaQ52 zK|wn_grd&d4(u$MRNJAcmaeeFp7FV;j%#~{`eo!iq1`}!qg@)__D*NWe?x16Xfh$5bsCdbSgX<6>ol1(&)Pshk7kr3N&mjgX$9U{gv>Z} ztZ=N4b#F9pt^*AtpDN&J3VCR0 z>%%m-sG5L7fVSuw=%@>xKy3w8|7DVw}R)tk^i0aPixg$ zReknSPLx1wJ(qM_s9b6olw~b##T`r`G?|bcEEy>6HC)@XC)TV;E5=rBu0I(hfRYb2 zB_q~#(fexejaPzfgt<)@WPTxS>OoBh5!ybe|M4Vr9fbWa^LTVEff1MQII5_NUgzzY zD3I!!Xy>sazzs6-F?*x_X1i!pMCOKrGiiQ_`Y%+i@MP~KL z)J(!Kdpgo73a!atNN*^xnlJyAu6nUH1F~0(Um!R zSq%>~v8OuQPTsAO*T^6@_Q$II8DBnb4qvZ#X<)6yz)NO;=p6-*S<1SO<^`PP2$x6B zJ<$hJ>Gh{-!rp}b;J&ID;3B)RT})W)wL#(Qj@d(LX|u)$0@j(B0O9n6pMYjxW5e&wM2&e!7QMKW}4&Y)eFTs zGVkm%#vPHzWnPw9d%GD(bVX*tIK?|B4_;D5s}p%Hm-AHNxk*pqjBZ8g4+3WJU|HcC z*dK9`v*k0Vyz}lxG7hpuE%VdlIN2DoX1{#cl|*$;qr~w!ipQ>&3vW3$^4Yms_NfF5 zXKHke`%ao?)p%||K9rQ3|0>d{BGHT}GfSZ!5)99)^awL3-dikBgQR65Lp10XlY+rc zAqq26nJP((u%wL5g29SdzzKS=Q&(eu_#uMKt0N(Wq4wxTP>+u{z5%m9W<^4db66I? z|5=!;K`M8p9BeiGKc?SVq|Bs| z#YUKD1HEz=)5H~~a6KFJ&~s#x-GyR}nUv@eJd^Dn0N3X*=C36MaO2OC0tvgj&igg$ z0~cG037}9TQVTJUKo_rLg^QO((C|LkfiKOVCB}ad3YHKuO^Pe|FShtdUV*lulG@B>GQd|)0c}t~t zghY`$2-D-n_=!JD;a-(Rk=S%^Rw`COH4hVo6!v`(-Z49K{8aBpP$0jMWcT;D>g=*_45xV1`3$ z$HATrmDGX{vak0yWUefH&=eJU`^KZGk2(J&AN=%PFSkhMHl<6)TX77;{bw;rwz!n= zE=1zA{lp_=`yjq0D~iNRh!opDS=a+bK}lV4cMD4om34fWFl{Ou_TqNQS(AE*XLD#h zg_@2G9|Cm)_U5c6Kweeq915{#x_~3Pi$v2yI6V<~%wAYBP_mMJ0b*t#TvR;*{S0CU zi{NoSnYIHK#7=(5Fpc1+ewPf#qde6tRo7}P|350;L4A(mk*@?$#9&uS;k;G%y2e>- zU|IHcFwNn1k-=REO#;t+`STj)TFeb_WYoq{@70brGT}bDhWR>q&HH=(kMxA~T|C&c z$!W|mD@eJHsqA%j*}cM}wGD?~pW4}U-pj9q-}v@N{h=X41)+G9Ypo<&2y1Ctr%sB} z>j24_3_$`*(A7fGTiK&fS)z_2k!zjsG^c4IrCVl$dyIZk<>$0!Te-9xc_qn*RD>BQ z|Ho+{r#Z(hx)BD*Kv@TDwv_VN{hP^tatk`53w;|BFqU?4TKt6};AxlTj?JmRKOIlW z#_i@b(ah>n#~K*8kH8j!>3ySDhYoYqc0am&p}fJ5PuwXKTGjwv7tTgX6{lO^d>AOe zWDZ0B)dXE&KI4C^=Vy5jD024&YX{f86kA;;wuIsa!C#tO>6XXKzPicfQGB( zZm@2-2w!678UfrHVTfnb%DEk|pz}ly8MXmAj~%}0Kcdzchc8!BOHuLaWxFLV7GS6CwY&#w~p(5TB7HEbOTXO9lUs6wP z2=u+vWpf>|p^2Cmwce>luSryEN-V<nl%-LKr7 zEYmTa(1UTOTqFA*24cD%p<36)NcnZ{6^@z_IPp$4=r*!%)zL$B(a*%+!Gm*i1^RN> z?Uw(_u~6Ii?lF)-!4~I<$3U$H8$cFGE}sHZHpb=#IRmaR*nEPK)4~=KtHqCHKY1V* zx1T`H0NXSIZGv#z-!T%J#o_z}mjB{G#m@4Ay??(c-s0-5fST@SrxlDE4%&VBZQ!Y- z?L$hpBqEI=6g1Fe$o?Uf^r>saOPW5_VGa2qYq#8v(AJzwP6^bgx{%nYGgO^ZQ5>iGvhf z(Edx6GA3`|Pj@U;uysNjXGmydvAL9U+-|zJw9jRVZ~O8$w-<13MjQ_Xt)8?DLl00s z5h26Zphi3~ZqkQm2<^$xM(M&}W_zFs1o=xAU&@A-Hx)#>;P{`ov0C5&$GmJ1%eU2P zx*2-OLL_CjtexINS(|G2{!$MeK;E|MWB>Y6b&ET1k^J>eD0IaDzA>Ny41{g-GRjiW zcKIPxLkB_!KKJj);Is7LRb>-WiDgf^-X8r>bG1S-p+@Bm+s>Lu?R$O)(+;gJ@Htu~ z$x!Lw9(<+JBqC8Parv?;PlxoJk!b?CPtaGhJx=wB)aARmYJ^gij(fRDVR9DkX@?Gp zKDf!QYR{%2c3SeA3z4%xMbN?HN@S?r<$j4F0XFsc%jx4<)JfG)2{hIc0D(BqS5+s0 z-6ow8t%@gf)z+H~-F~rz=Xt)%8JFaz)~$JZL%Vtc2i`P<%RKuUWgHvfs*F!DN%>i@8&;!GOeSt#;{sZM&yP z8wm|3DU~0L=h+t)aZ&G#0mn^QZp+jc{>RuA#rRF4A_CQyIa~1HCw4}olnlyry2+4? z*+2l&%P-ABh{({n>{>(LLqB)kdh$VGB*tKU|C*o7J0JkErGFhaTzT;XBh?UaF%1u zE|x6H(qbo!lZLY0PeOh(4t=ywOm{9NPOb?;DXGZxD*>$EA4aUdo>_hDcfXw)t4B2& z%Fu2HTjj^l?O}hHxvvCZp>xC;7QDj5yN$ma0+D{6t1+dj3fzp)59nY9Kcu`|iSrYH zN^4G;?_hV1+XIfuF^G6(2$ERb-)arL7jSK7QE}hXiYuWm4nP(+MU1-@#dZm$J2Gq2 z`~y>qWhZ)24>e|Oj?~Wc`InzdmL*Q;LGChA|3}?4%UIP`H1N&Z8|(;2r;m;duUqR)71a#x>7-~O8PYHCb|Qmhk>-cSSrePh*kmm_Ag+00G?>zR8oI!h^?*s-FV)BlnI+8hctDc|2U~Az2t@g& zU=&pNdGVC?c;-dXiUpj8&DYcD0Zzc1iLalQdc1}A732k>r|+WB47s)Ov4wf-(Cn3t zww#ZTLlVMXYVs_H7TbP@3^z!{mXSL{BtDF}X|N4BohTIAV|F;Trydbj zqlQF3>y|6Tv=hF(%=Dt^t4+Wk!P7}rf;LjX4~8`v{6&AZ`9;*Rxs%9H0(qW4CGUkB zaafDx0)Y6~{tD?HRX`|XNqUICv_5@L1DwiJf8`F=@B?;bFSdZhTDF@2hkM6$r1x|! zXs|^*u>F2VcL9Avq^ZV2s`?b~OFk)&XZsp>^*_h$xP|Rjvq33vy%S?2?P<)5 z#A9Ft!eV3Osat2|m5#6!fPAx@vYQV2l4{p%)()y2$c9KFzUE z*8=^VxD9LZ!m`|FfY}5%!Jt_V#uHl(MC>X+IRf16+*s2Q9WNkt1nPR(WmtPC__qbx zmBI0O-Tq^mz<~*`bjM;RiSOq_JuR{R3TsPo=c9oH4#>vb#Gn_2I<)tLJ^ssk{^v>< zzc8@bCIZ<3ur7zX#{;?p?DC!KXJ?8IJM*FltW8HK0M8`m_3hYwD+(`rXw}cs^&PvUt0YDOFu`>7?VN0rOVl z!JaKJ`d|4?e3$N6Mw}EKrp$CXEi#in`pHaMDfrjK2ky3Q!kVo0T=v13KruMfpMHy} z4_cvXQ7hO#OTRP-3FA@F8B>rjZfW%W!#+27h5|^U7^+BPH;UU{7JCPJ6=TN59%lt~ z)_{K<)qlPx0d_0ey0&N3xbS$?dlBL{bo<9-Q(x7qbt!IwQKDBn0x3jG>`Ra`ctygo z+r0rnl;S_DX3z-lpLI3Za`624dLe4|E)LiI=F|r5+?P4HPA8La_ZWU9^KVnmS1yhv z@s+N2N#5vWcJJeuQ>pzY&s@>f+V9U)irHx#jVlnme8S+nO>L0ZV|+~H*g2!jz^aX} zk}Hqc*ghNPy7Q6HM(npQ$jrNG#%8faP=lv-0hibD#LQ4X$xf%FJMzS6Rj5PI0k?m& zCax3B)*xptfH$`zn@CMRR*niE5tNs5QQA~5%QSB^n)~WQ zreaRkR?+kF;-8S4gn4x({`%=5k%$Q+(grE7D#{ZvOFhF#JGY}dgAJ&$)nUn+}oeL_a&8K8`|r$@c1Ud2g^ z1cgm(?3g#+?{c4K(2DZ26@`u4FMf?3;_}d#4h-jaE?{1@^gBpiHIexH6e*XyX|U(e zMEDAn<;={XQ5xpkulD>N;|b{(TSv%J5H1i4&|c73@g+MSP$5A-q^&>2i*F2=06`MD zt$^|30=Pc$EpI41$j4p3CXac?!6eTI`9KOst&%Xu;m3jPCz*tXg8z`Mjk(* z3L??7C=&Sv7rdK~29A>%sf1GL&m8g6b0$c4bl=h+kqOzenT{*)p8Q(9HAsjLXBTP7 znVrGeRqletU4^=5f|X_>>yVB;rko>0bK4lb%OyCT$xCTT`wGz8Gh2>a(RIunu5whN zP8+;XvWRSHHG2N8)b_nypu9e>ho^_|U zmx(+gc_szUYQ+kM)}Q&wB@8{y7pKD6@E9t=5JIX02GEe~go(SDI{FQB>PIr@f`5d& zre_Ojh20;8F;6J_;7ys%@nOgJoI#26rh+|qI`@9!JjS|Sb4sH-gT7oD7F+{i-gvEa zFsQB@ivzC){8aCr67pxxZO;<=1(^ub@5}cZEX`~R5zVPK`7rn{squh7VoIG2+X$SXc~ zOVcWS^cEQb)( zlix1kpiPvZyGeIfgItf!m(j!er}wCd`r%TwR=$_Y4REROx^ba5^fSB5*=wmHr;l(v z5soay|FR^ZV!zx)$Fb>zrC<<2plhJVo7pNE(7b^C7B#ODG=sr9qAUR(w9-Wj2c{87 zK%w(sCbTbPyL@4wc2Q*G`I7)>T@ot=I_Fhj5H;wqPsK_N^wDz^Z0@#TMLL(L*P7VM7bZXeUQ2%`vA_-?20iA5;eioh0 zCRi6J-UN+(fCZxy!VP>8!2N^qWh>fdt-*S{MgSc)bZgK7Qnem#%lp6(v^*3jvSolJ zO$->{d;*Os5Z;N5U%#6RELXwM5kOn70V4p;OLJ0I4r6m; z<2kaNEpy}G*42FAjMwlMxvHEPRKuVu?SOY96_-v6@4_Z&n90~I?xPLF{P^0V3Xf+s zF~x+1qku|#n?uq5z3|b1IZrDx1w4>D@r1DshIVZC+PzmArbS2(n~$ji>H)&_anwf` zbRnn#{b_M-H1=}rk567XxSEGLZhg+Wq;EVwZi+T@uGf|d@n_hQN?|JD)4y#M$Q%DL z)lobIQ}iWJ&(1(*=T`@6wPeF)q?`BSWPMV2)2-*J7q)6ZFE8YSRTWdhLx4zJ=_8l* zjqj&r8pp{r7tHOvp9+um!y_2;2L?PmIqs2=PkI7%=^IA%vce5^nGLC+8isF=()JR^ zS(RNA>76m3gd!V$dPay)cqKf2w#wJuGaIwF?K*g+khj zW#;Jlif`!%{#Oz*ERjs(>Nr9r94uU4Sa1{jHTI|Smmic|0a4RhY%$3};ZAVB%!t{Z zY5eb8PGY~?Zq!)(uDVaLzcNBggi|%r!H^Umlz(B6#d+vcvC4~z*X-C$;X@+b(+(7w zY2(ReJxW&3*Ld?Q=w_GQXS}aH&%4Z%IX(E`O6Qd2HsLq(#aV}Xgh?Jsvi0BUp3dF` z`Sd5+T-2|c3c>52PxoK_)#mb|tp26i)$1mLlU@{-I!k6VOjLW6RT;??O)QKwuH5Ait0Ot{p=^+{MkVElcD;h z#*XwPa^?l1Nx_@wtuBs5VkG5T85YA^5_Uu9rs}6x=0Uz&PtE5TFSd6Vs;gB!uhsc> zusRP|lLU-W{?bB>MGx(KxH0jS;9?A&D)zsg@+gM5Dl>|F3LY>-7JjDu~&HIZ5o z&d>9PwBvsujj-0QV=Z-gaP&Aqe z_Npy2msCOzR(jXpRmB=-Mn0$?eWEesZrOuc z{nR(VIS3v^?`NJS_uiS6*@<@wntjYEtT{?X50Df)M8nJ$H;nqEwml}n{O-!^-H1g2 z43o~O_;Cf!XYQs(>Mkb@U@r84xp=q2Tr>$zJT}F3&>>Aqttw4~ilvo_V; zy%<__V-gS;f^c7J+jxDVokafc0{_8p&;$Lx9uz zSgBX_sOyZodDG7WPM^n&JOZi4-eS9Ddl-(IKN2=!H(YVRJcS_Vk-}6GdK`j-G=nHI zPYK+aCASq<@ZeTH-w--*bsMti35NCd55D^2CY4e_=f$+Afrg;$0U@r=8d;H@nsfbx z;G}drZe#&N2_*$%R-JtAPyBJ~aQ)AT^@#f7)wpuD=x0+CFH9TZnAD!SpH3UmLxz6~ zBPI}!bC31H5Ku`q7?~%oc!q8Z4yOZ|!v|wf346ewggb?+5@MY98L(a`su4+H0@LOg zo8V3r_MZ=M-4N|Epu`nO?RVI*-D z_Ca5_R#Yk$VtXQ+qyzguZG$jZe^Ir6#pg{02E&_)aKi+B`sjaAI(Y+)3}7NL3&aC5 zSs(dY@km3AiY1eQC%Of5|5w-{Mj%;`@%d1+KpX-P{_mVV5I|h|>WW|qA)AD&Hv}Rg z7b^TjMaLnh*k&jUzZjk+UKu}zJ%|~K=&IXRm@cs?*mJ@AT<}~U0ABNDGz^&u8iWgY z?J==g4fQMDi@q1wve)r7B;bzHt$W~G9`)ml62nynfyyiBC{WKTL+a?P zkg~kdJNHA3ND2W6x@R4?F+X&Pa6i+@I1gZQt8jlud9y!muBw8x8N|&Maf(A+pwLe{ za6d$Wg6x1WKEz++QIz9k372^@T;@DO#pgr*G+j?XB{IPR_>ye_-_v4_?U-aOhn!<~{ToH@GK* znPx2ic&wmp&8+zL#^ov{Dhr4t+kx-5sF;J@zomHkOR1FAgmXv(JK>2#zHGeCm<7<=HQEYJ_adE2LzWkI6y~@ z`R42AaP+d;B|=Q@>%?+FBwSQz$;I}|rV$4ia zP59CI>C?=#fEajVg^%URUEz4LxbvH36=DZ1$@?BHEHC%uU3Rt!p-F9s=mqpNNCv)I4e~|0l@9?pzj|ek#UBZa8?p=ZK!NelM{wo?hQev_iYDzVNF#Y_%paby zju7hw&KtOJ#JPl9AB@J2TXcYE{VxE6Tv~s}*|kE|9}-JzAb&R|eQmd76m5bpOUsxzs9n zI(yv<`m1UVFr*U^e>+>QMG@|9wi6&X*aMDJ{D{9D17i9PH3UX=IpiIBoAG9d@i+tW z`pP;k#u{ZjgFROyxRGDdvS9Pvzk55Mn?(a$@A!Anr(6ayM2d5pC+af^uEKsC+&nw1 z7mp5?v#+7L|3vEMetvt{;B@0L7m>cUOsLSpt~jXj`y?3uSDF3au4FH5Ccf10{|FWtvN2qg3tO zuep5-xboRxlIK|Amv1d`Mg8*p^AhB#IUNb?juJE6^CuTV%H}uY!oKPb{Yj|43uVg zvRvrxcp`mM`ujaqvC0FnkJ#QVsrQ>C$H)Y=UX>mHhhgVa70e7ndj%z1GuQRiFH~>G zJq(XD#}dN`X3>~{E$w{9Xca9yZ-jvbtFV6b#e@MMxUMHnb;PIAZ2c(Sw=Adkp$49r zNC^{d{MtS``t8CS%j;V`+8|?P-xg>V72M4^9i82q@p#*gvTUP?*67P8@JrhUsw_Nm zF&!RU;TyXwB{ST<;4#W$&KGo?s%`mYi;SGw@Rh z>-qW70gcNkXb$7ul)WVfDS6q{wDfF+yq<9xCF_9$N}^JF$whj{E-KmA@fi*#uJ0v- z%Mns5l!jaHGaJ}ZlA{CItDt^h%L~;4kj&8~0Xh~P4`@0}=I`g61$Nc(f4=rA_4iI{ za>j|!^=|d3KOVhznW@7u^DzUVVO&M&28h{Uz}dI^!f5*@3aKYO#;Ibr3Ld%}9n-H3 z*#JW;S}G_dY-3fp6{$k=Fx1jlGX9%__wr#t^2_5^Gl^ct#;C{GnE4&epR=m5ZM^#v zrQmv9$Rg%_y?4t#_k7}syj}^%k>nQroj*|oSI4ZP8izwF*!UmblOf?hc|&q~?k{Tn z!_X>h0QCDTinL*N($wq~jHL6{px%JI+K?O`&U zVW{FD-Yrg6+=am=Hla?Aty@Jn*DczVTtdBbB%Kse4D`Meb|**Ttle&M!EO10umm4% zf>{(sBzJRrenxBDt+$cwW9*+*awXd+N2@Ml3A!f7VqX?dk2R#Idz<)mUvVP3Qo1j2 zTIhVs49RW^&be_UFt~!izZn!|Xw~hHOPFcfHwi9Il)BMo%ZAh*Nqpyk<6n*TCKS*V-}cG!1J#)s#j21mH~_rwNI~SL)Kh| zJz%K02m^<=L}}{^4sOMD>;o00nst`h_2t{WYYgcBQ+f_)H~MFryQzN|g{r}(uS)!=m+SDj-G zU5226B!0+F&$;vtH?;|5Hn3n&UO9q(5m~ezs#4pLoMX@1BX!Gr)($%-hTtB5F}-AedMrf@U6G(zJ7Hf(5EEnK!NU#f&jWlKSQ$h806fSb(y3|(=%&`}25uWU z@8@Khf{}Zf4B|t2QKBE>C}R=m7a#`T)`rjN)OtpBQOe^q@X3asP{!D7*vh)B{R=)C z9a!kwx{Z}IXvYD^bwF5Za*E+x=2^tl55LFp3S<=ErABlKh%8Z#9K*^rEDH9lzM`%9 zm8*Nf0E-G7A{_n*ecQ+(w*HT3jz}>44d{lpE(|I3#b?645`5t}{^=NkI(h^jwmAXH z1EbecYel$ixgvj49w(jvN`gWF8UQL0K=Np<+b=Fs1J0G;Z>tN=C@?Xb4E`%M;6e*k z2QYp~;i?7-#U`c@d@7+dLXHr~2SXa&F-`Dt1}{snrP&XE9@7jyBU!Uwj%Z5^0B>!m zG?;3kYSr<04HBG@}*4SQ20OQu`Kch2AJS#l0j-I%MSJc+vp%k`ViAs|{DEo^{`1aV2Q z0o`7-A5O1Ib=Eai#}6BaAHBi#YIsq(jr)w8HO6yTsWPA%LC2;=++Oh8N#$(QGjq2J zn=Bl*NRGp+pi_UyCjb_&7e_Ao3i?G)s0C>S)GC9FDq!sfxPzp3!G8p6a%+M$n@7)l zGwKMC(|wO>@Olj#>RP^bR0`I5%n#IBTK0c0?qI;4njA+-MJnQvHlV*4JFRM8D+(qM zbl+2B3rgZvd~ucl6Z6txedvT;!3@r+$4mrohrb}SN>??0_1yT@b=)__xktClhZ?`+ zUVBAxPY!P?R%7QB*7~VNrkXW}0XpTu0y?)Lge$^d>TJ_h7_ac$axEohCSvye-(UItu@K z(h!;e0AO6CTt1b##UXlr?~4)!5vC`nC(q8Apbz%qTlsi#>z{}TqV1J=Lg#7(j#^f@ zTLt2#LedgO&MFiJ+|~PJRnco|ynMF*rN;8-Gq|BJ?VPl^)1kU;qvT<;=X7brep?4& z8JMWDUvQ_jmuh{CqNB*Na=JfyNaxb~$(M>IMe_L?ccM3$X2l$nRTHW%aAvQ5!c<1P z$;#1i^G(rnym8=-IATt}<(24rn@qSTJ;X6jbBmLo1%On&?r%Aw5qn(c|mYI96tU^*V>^r*s;lA zM~%#>nspb8zr1dg!8TTx3)8B26KG*ABN^z1tFc+(lW0wt7_OcUHy5w3XW4Dj_cy$0 z_enT*C5(xZA>K*DASv_ZW)~Zy&^@uF04yq2omA*TVZ2C|G{pDIpiSg+zJBS$*OlD9 zlBIrCBhsSt=NC11@922KhP~w{es^8;$}yYm`plj4_;slMvF+FvPSa=DNGFrY+By_P zy@F7znh!kG-CD2iAJ`<#cw_s{=^>T%N!i;{M5{8SEC;8aeE$DK1M`FhzRQ@Acd*o} zlbZVv$p*TP#f*1%6+BmMKU){EZE^FLkB6_Y`mimsVQT0yhMN@J3SXf2H^exmvov@) z|L4-&&eF^|Nb0S=7(>k{{|W%9=PfjH9-pGIg1+Z>N~YOetvDpjkM|b z!EGtp5;Ij?0P_ZG#r!lhp%iZufdXj3otl0POrEO`C^m!tb}Ptp4f+c}^;VzQ!op)LXo{_f#X9UNRG zqwH5bs==?GXj7c~e=Wf2HSWsWR@k-G_1ECu(sQ~fOLgtR39py7+G`jKMDCN9pr|DX z8OjRQ*2cT9nTJ9dfnGiUi=P-ID}`A(Df}5*;dr2=72wYm*++!H24>PDS`hG|#9jnS zVJ#M5ylcckFQBI@vX!J@m^TFR4lK*Af!7XD@E|g>*$#DZ(nB_t10w0yQ@Fqh8@7+w zV*}-|y77%_a=-#W0Cb~oIywftTIv4>--uu&z{2c4B%p#v#c#S}4=e+S$xvKqYn%u} zt*Gd?At{xOV@Bf(`Swflrj5;=qIJDq*%eypI2r*r^4xk+Y7J+M&~Zi~upppCxdqjF zSV96qYPk9|zyS@Svr3{3s3bvb35H3IQm2mx>jMSZg;zmj1_rk60YU1b-!i2ThoNht z;I@W{FCN!0vl|$O98eP38Yc&36@v1ufP{aVh9BD9G?+i=?UzxC7xjybB3^ygc(20KGwZ7`=W#!u z0?Kp}zHedV^P|$6mzWtC6dVUU1Q*ywtY>J5+Q#xIx`Jofd=558)E~6PJ-~?|IVcoX zfb7q?^mhg@l>KB9_j?&5*0=QLs;XCivG&+&eUW*NI%}LE)02jX!IdIy}=qR{A>yw1^9l(D^SPO0B~- z)(@t6wjBJx+Gip5z3nNg^NIfh)F(a0SU>bSkJsj>gD&U?nAe=#n>Ex<{=QoW+bR*| zg^CPGv_F)TXMXe%qs2P!N57e6n$B9?eZD19t)B-+PM@%TQz}7wGQ&GFIM9gdvl0hw z^@IbZV?Ts`^%Sd5t_Pf&tD(Q^-aKx0fq&*Ln^nS+yR5Bu^Baa|?T2}Z0dG2D-Qsjg z&lzX#f7iZF_M97*y{iMSqLe<6rs;lm+s_*Wyi03kFHKNVS!}Y08cdJwxmsSgu~9z9 zB4`JDAj#-_&q{kDT{06UN38!nXCpqSAxe#In%rsk#ajf;_&%lT}J&`lea$Y`M2!{-uAaY-*HNp#izLcg?!&3m7HP2!5albgv{xv zmrTExaV?efzhpXH?c}#L%2bb%V+-N_!0=kKSvs+Ll{BwhC0saZ&)E!K z6?BWVj@16Hnj3_qE|J_z6Qy@a==zM&;6Z|Wiw`C-llf=P`)Y4q?Cbv|l7DSS`^PLP>@{1$ z;iC+OpRlnWsnUE#!|ulQ>1dmWUxbWKFP|o|QctWf0NIZeeikq%1jTAl17`FPP9WbC z6^OxGRU{uxc+a8N7Ku8QEh0LcKWbCLe(HjiXx_GT)FmEpDR0;7Ll&tdTm!NEzyRl);-~i~oKAkW+y2FqU(E8<-ZEUZpMXZ=Cu_Ct>gNhr z*5{qsndFl5Xuhc3vC1m#6roLV$wkG^@#4vELpvx*ji~;TpNaS6a!sB!Zh3(g(DVeM z4n5g`+IW}NF{n@O&RFB-38he)|M;F(CV`_k6NDe&{^0l-E?meRg!rcbIl7A#DF$?U zb^Q6<^mC!usRqSP0PIA?SZm&X+SYIX=HL-l5Y*Bhz^Vkgd`xXhHdde=)1{&s}2Ta@i09iS2sYNqQ zx_sxb=cjqj8C>KEyp)>9vjD`VT#bwU3?n4||2aG$^bw~IL>CJX4BoTesR^#&RsLwO z7pXAeF|i6}17&cx?#}$fufhx0FVnbRmtnkrW8TP(3JgB!mRQ>JERg@MymZnkHL&&* z$%oe15lb0&Wice6|3!wau>ofw_?NT*j;#=ZRU4@Rcz{vTd2m?&E3~Ld5Fs*&B%X(( z+6^Q-km&107;2z2un{qOUyCgI#OOx>flyYXSF#cFc##^e3M~dLVD;kP3s&66H6SF8b@|1H~R$$S0k>AUeEPAcu zH^ z)&4|gH;YDSgXg;LL ztBm;HCNCoW)If2S2Ykm`&+OP043!w92?S~3+_9^{X5LEO(%KA$5O0Tb^dj4XebQ8! zFE|8iUgvxqL&1|uGjLl9A+Qa`$M2l?taw*J$%y}uW})eS#40BBbeGzV0}%@M*qquu z+Vw=7a}zQ`GWc(4mb>Yk3VXaEYql+WyZ8k9KIO8#yeNcZ<#hCgj%0Z@E(ce#BBd%KJKlQ&9XF1@Ew5W=D^Voj3i!&*{y-Gw8RhS40(!)LpUY(2DN9 z{F9x5K04Tf*nJ-ANM#n1hJ~tR3D6aW^zX&+*H4Q;|mdMU<2%)61HjJCwg`b zIUKs|W;N_*S98T`f8KQRc|7UqYxyh<)!qj68fVvWU4<_kv=hNtdBtD&8EYPgZRQr1 zr&!N|s#o9Y*x22w+!U8tKkX@vMsj|_2ftGxS%Sn=Vd==`U%@rpmFdl=!;9#5qCFx{ z=7NtM58Pv-$u5h!5Z1r0r?mfZJ*}*yjT#IUq#^oBdjCs1Y9yX5;&YVR4er_8^Anqk zzjJqlVfzjzO$zGUU)Z;al5>~lHp}V;9rE~wFl*5}k7vJh-^2=@myO~^`TZV0dW2)~ zLeJu6uk3z})|Nr<(^v~*!ZY6fJ!Ry4q0$_8+w5(@Mmi#>&_WACotoW} zo7}^#u$};Z0>hw>?ar|EqVl_P0r}&oU}aI9C1*aJuP-|2`~+pmA(O=2aM|YgYv&`M z&$yYS?J_9-dSUPBGwY|m92_tMuBf9sgqs8RFPC;Lj>x$I_*_R9Kx z{Hi*-E!pdF;03RrppC-+8+Qf71Sb!!C3wE%sL42g%=Ah+Ao>;wCPsgPNvA&T==Pt$ zCA?0?Q)lTNgL!XdAd1VHASynjDZuGHtSO+pte}N=x0HcSWv|PNRVF;6qv8iT8AsRj zpc;tm$Hq>%FTAjwF9*gh5)RQ&O3V6IeLrQ#`^JCkg?5YFnzg3qT+Zmpz3X zFmyEK14Zwbx174wdh|8Dv1v1sA%k=&mo82K_DF`DSE^T7sB1Ys`bK29OWZd6rQ+Dh zi^}*^3aW(+3w}w9)z#%>SmQj?5d9|H2nvwgEU{BXkb3b&DQ&PdWVzc6T32YpAtGVx z&=Ibc(1P&PMNsxdB=^Ye1DrkH7oH5<@}kJrCP=GW&qyUA3i(7;SXO(qM7Y01u0%XS z9lUtc<`g92-KF1xwr(mA_t=rD2~grs^&r1qIe)73t!{aL6A7hj@ouFZ0H|zPl-8&p zt&3KYK;1Fpm+@)Z`rW-m4L8~ZDUo*CDYl}r+;$-)n`06K3r*^)mDnTl`5f{|GoCL> zr1yg$5tE5m4T-n`ofl!&Ez;6R@&$Q6B8SgI;_qW9G?-p;q_g)(DEAeC)4-qUhBN^n z$JTmAQScw)2(Y`*??w^+fJAZNt&z^ca|Y1gP_R24)cO9q)D@wafgJZJC=`K?=!Et^ zo-r*4H*J+#NY>#@nLr+oG^-pCL7ENN7+kra^uv(G?BLL9^Kj*a(O(WEgrL?n7RcKf z6%7n4k!FPE&{p_F@@;@vfVU#S)+(Vxfo-$6s6BTxen4h?fo(8h2H}^~+%0wCa=i2* zz3a=fW7lWRxjilCq-r~r3WW|Q81M6d_+Jsmjg#r0%l1q6WAUR&(wyqXEh;jJ`nq-8 zDTqd|TfYU^gL6=YNi@tm1x=HgaEABrK*+aVt&7^!4-bt@5rq~9{<2+%a zl=ZDpWN&_A@bC3`($O5;4W692eAq~eQvEQt)%Do@ElTLxf;fvO_ZzPJ?JM@`-;KRH z?EYFy$5~fc>8xo}Q5yp@6(-_Mpopf873<5|ULVYaiCN*0DmhsNU5GbDd7ih=9mykz zT8RR?vRTZ=bv|KUuj_0KOg+Co^ZQ!INsnBXN&AgSo!`}_K5cnTxN&t0&#|ug-4PDM zvNb}rox{N&z4l>?PXwrOhj|C`%$E86!cj{nlrl%upOsqrl4xn;B)Jb+wIc)1OCKaY zIE!&+$^I&t_t<5O<2>#sLk3;4IBm0z^LO0YEYWXArIX7882 z;XaA8z|1f=Lw=NQm}`yqVVhLqhncryBbR82-Ws&XVb9?pF>ljxa_)+b;46N(W6q3vYlQ0rQK6)j=lf9h_2-;nm9RTUj zG|^d?j$azDQBcrfFNQZs%zap9oi6sgA;79ZlydBtrIO1HjRF)pEcU78FFY)fdFoLA zgIiir|1^tn`e>upPGWAC%9nTHnq2I{1+t%%qdL=`0a3s)d*vH3<#EfypJfsFpUYQ@ zCNAc7QJMOY4tnnkv$tf1tUUYM>TY}DmRNz>8cfU8V1Vhi2w{K8g~c3&RCg7eS(gs(o%LmD!Z;s-tL!0aOeyrG{|vpfL|0D8y(GlNFnZ+PJv4D@KrHL`P?d^u(pK+ z<07A~dQ2zgV_CtZ(BL`Gho9RrH`k&Q3SH3ZG8g5{Dw{f&T;x)hE;`Cl7WghEKWZRL zv;X?-QbF!>a2_HI1H~fL*^%%ZQv$WnCc5>w4NPnrFoD5)(e;I#orSf{2 za+hBG^i6bkxMdWf?vvT$r?TQn=$L0AZC3{d<5}!ZRX6$j=w7!eQItQ5A4sZ{dA(_} zhQVXvJVG>4e6U`$1Davm-l0JyHDm&=|pg!}P6K-Rxf&L*r&d ze}guys$FnVVXC-iN7#JSzY*HE95YA4%yCQwVWtJudnn^m_j`6OlXwbTi{0IvokV8v zH}CgF`4$RshTl>=M;z&yLN#OPIwbr+9C`e&SbyLxhU}2cv53P__ZFw$rLp6F3)3Fn z2N~9S%-l{$H(-hcvcMqffpoAbJ_r44_NnQN5G0x*;-u}pn}#8qyRE_xnd?JFGnj?- z-M9{TZIg~w&DFYjBE>qhO`^B1ji!$T6lem_g^BZ^UKfEtVbGF?M87eMIy`F}Dmu2p zZ-CZw9^>H~M{E5GlgLg~y3OS^T~&x3km&=#KO~CpIAFy^(!%`bgyqbFDV^MUilmu| z0nLa6x*7yWnwa0>nie0%9z2vchQ=n9B*T|vp*a-fGE z@Ds>s0K%f&hhuClDa~<8tKkmogIk+}_HB1HZc7-XT0;ZQ` ztZO0gt+eo~t&e0gTQ3VooE%{4B9|PeiOhI_bH)WDRawN9L{(}S4oAnSr0v+Hq2=yg3{R`wEW^<-M;HPD zEfaD`c?0ST!0YP{LH8jeJPr9vKa}~QxB!hPz<`VzApa(V<`Ditis5Twwg+(n>?PC@ z==BvSR3XpiN<_ZH4y+?X!vaV-MZd`b!r2cUpRfV#P^epM&atiOnPOYZ1cs&X1IH{@ zN=ie3S3uyr3Xkn6l54$At#I^ES%;bq93toi3g8X04&&;z1Q+{-X@UIqHW{ZdUYTC0=;t^_)T#^&?2)x#tYfWoQTMuFEBscE0Ak6h89wq6JHz&6~D=+3(u&9 zdU_K4Z$F@2zYQhir*(Vt^)oA}qbqh!s%u~3rfrmHFr`R&e>rR}S2uyTj(rI`q8;W4 zs=<5^{NNdWmI0{Vdl3Taxg})yKugDwUigLUufLE>Cws&11gC-NeW14}kdps5CoC>0i)q@}g{+ zicUtb;=A9J3~s(*s39Y7I#VuWusgsiz}4@qm08&(&B!ZGFJwz?yJDw>`So0$QN+A% zU5ML4n%Xt5Y+K{KZcgCbK(Tr22`6vIIvK3{gJ+NT8UhYT5?tU^yLN5vNo9_N*B_wnw85RtpoI;({aive>;)nFxsOe_rtwzz0Z(IFfYd?Y*I^EGfgv*#dhkrbo%B z%{A)P@f>5<*-!0d5zi=uqWy;tvXo!&G2wr)Si%@vF;(|M~^4bGs%mqj6g0j$h~4CSPD^T5lnZI%g>i4Gx|MXG(VrqKS1l z6aqX?>W=Ewt`roqU-P3g3WhAcJsh%>c_WE#kZXACZCpjnP&3n?65*_Odbl$PTl_l+JF&Lt6~hWFW)&m(UCKf@?EJ=FUwb&`3V^~-7I@#ltxiEO zm7#SY;6dYsm+rTdiQ!h$>Hd3Bz2EtZzV6PwOcb6r67xcZTxriMepy_Z&8&N4uZuz^ z&A1}n;q5tgHBWtqa~i?da+Me3KW{m)X(KBGR?RN`rO@7z4IVSB;b!6H2Pvp0b~nw{ zHU%4|w-_(7b>CuOvD$jufc3tk8N`IZAc96{iEb)RbQDvY>!_ez^ASH(z|FO+*W5u% zB&E|L9ojl9hVtqaOr+;xW}0{D_1#M!ZsaT2rryhG*$`yQe>UOdnXme0N28U^`ayjd z>-;U$u`K+RXHL0u2Qe|eS~9uUtyZVNWmkOLwSJv`{Kp;7!|>-Ep2mwN|7hLIj6e4L z%=$=Kn|8ewKuiqYQF+K*z%D*cBMEh@(ZnS1-emo&E=r zp}T8d3WkbQES^wsTu~k(4RFXj9)teawUV$3m(1TtAsBSpwx;E0le}}w9 zBC&8t{v`C9Inq~Z(6n#-FL#{dlu_fZ06ka;cYK}|?k05X_@82}68p}z5-uUfwhA+K zz(H`9gN_f(J369C&XJ_R{>yhakk0N}H+GUonBkJY0^`~Eov(^pe5BGH<{rGVKh%p? zt5-ZLWPCons*1lTS>e3hFA*A>byP<$XUirDd5sAJWVn;jf9M^Lna?BrKm`fYsUV9E z{ZNrL2(eyh-UIg@=~Qxt0A@??5!;H1E2mp5|maV7tr+(4WaWJLL8h7boD^Y7;wH%Lh zD%wMYN81*%Quu#@Kun&@MqAmrAFi9uQ4fcywX zOX1;Ib0b7cgSL;W}uBzQohibJcMmkXHW3r+Cs|@R!n#}(I z2=mF&NS!_vI3;^VQRHLVXtWQ`=rhbrtu>WRp=k`CbbYFu^m6zDI>A*eRQU<>6sp0x z&nkOb!$gqm7Y5w49SQc=<5{`{#5SS$1SFXEPRS$ELrmBPi= z^=?LKPp>q%;~e)*V~JM`vZJfryQ?OJMqBn3jkz>;%Pzevsjs{_W*COkDv-|Roi?Q% zinE>gp4{^-|1nKJ_7Rn)i+%$j;SxfXdRVmrLio8oWHR*iPlx8c@iFbd`uco7(L*d9 z6RzDR&+O@SJ;an6f*Bd^fT%2#-sLFf=pIY1)}TI0m?tc#%!z)Y#tOVzPWIh&gB%vY z^E|)fdfeAsA%(hU>vf#Y_N0g(vEn&3Q>w>x=rmXC??W;_qcmiuX2wQTciYJ{I|vAi zFl{$HpP<|2ShY(&=gWKSSrwk#I1j4p7yX9oB(;$X=URhDq@T3WL`Q^ai6weKDi{yX z8ic$n+j+c5n0)a$ZkU4*w*0si{q?!s5A0v%jroL?@`eWCYmo^08p*kgw}13fFI%_f zJ;!NX)z^Vld?vxp7BAxJ9DDAbZeqy}?7lZ-CDyMfIa!Dr(+Ho(#?8mKG@M{~kvJot z^@0Pxtd|}bbszO^f$to)d_G<6;3L` z_73rP*Hl3E$e3`Y)ZUO!XE8g=1X)G>AjvCq?DN%-w#@M$n=ftl#J)gXr zcHnAaM@+n~6N#`%=$BKgbLY<&x;_pWkTJ>=$$&BVl6l+(~KG2O{ai09#s6; zzLR=K8qx}}yD`?VGX53CCI6KzoX6c3Tmn5qs!$pXsGtugAVASw%gh26Z2A;Prn_lJ z&hN8*e*2@q6Wl{T9!!*VmO|L_&0MPIJxHcrSmnUyz-#qjMuD)*y;$*ak0wMObm~u} zDHi(1AdNhSmC6m9j~z^y-AX3|l8Zxdv=b1&?+5}NlH*jd)@V(Uv|j1GuAT(jR&Xi2 z{Tl~U8T3NiKF@d2PL^BKs^&1z_mD9L_-SRl=Ei@e2YhcTR_flXbVe&yD#vH>%LBHn zpKk0UXz25jbOR@;OS623rcMwXWNj;S# zO>=pes-HhV9-)4gJyspf91E6 znATO&M@qWVzpEanzm&KHJ=zQ|EaHmD0LV~LN!Su#5+?e%MR!0UfJJJZq9=<4Cjy6& zxQrx0I+n&~+B^nje8u}Uix1^>znhSUPMl$*{@ua7lQo{_9o6H!J@>zInoyW15YjDI zc=T0fey7`zwkeIT^+4OQ()nzQz_a2n&Odo~B`H;XYI$1J3fmU}q@4Y%jR!)qk=2&9=4*Y4C*03b{NqdER&R~bs#FT}$V_my&;iHQd9zT17f8~A( zy>q)2>-R5|rAVzp4^^FY0NtR~X0jqsOdO<|^41#|sZkQtJ2D(pvDlJ$sFd_^EUfzk zXnnIPtO*x$lK&@kGU*-1v)wlsI$a4Nn@*nU4I>m2`Si9Pd!u zqEk?CK`~29IcB0gCqlhgX4FhQF@>+AK9+yE{Wll(jeYF%Ky?Sx{G02;eZ-W7K3@2> zq^)^hEv#>8-PDcJ@*}hLv$jgR8B}BddaQwMW>5X(|^pa-vC& z(soTjA~q z)uPBGpaw8}zh!+mC-1{lm79iw3!?k40o)yr#MJs3>)I+e9iN$VnaCS&M>*sCa%*4c#&mO281GpoM#09*Z%n(P=~6RRSygnbV7 zJu5gtCs%D9@08QmX{Z=uW?0)W2z1a2z1+U_yLHD&XUtuJgly?6iiX@5jGPWQp2l}q z*OY|iptq=txLKb5P-KFtDU@#F8Sp!JC&J%x^x;-?Y{kU~;YNE~3msY9=e+R}s-_*J zAhlok>2KE6Ofo_;`RCnZJ+~<+*;a>lB`suEm#LD8OHsUe$BvVE_U{wTm5c8ixEx_c zI4CNx-;v5GGuHo2Gy3_mJCy0ijd#971`qPOIn0!T&$S%u|DY=U1l~cX!(E4aHu7j^`QDm#Gp@8@ zjc9T?<9iql0~%`-?COH@e?CI@b4hl0vn*}ybd|fIFT^r+eXCHk+A-%{cW-oA-QCWN zH*Al5%j1FjxD1VP{xt_fN(|=hn!&qtN6-r59L=NNiIZgl?fh7ILSn%9^sX1xz~*NYD;OzBEn9s=6s$R-)X@ z^-_-hcv3rMj8nYghX*`qRPZKbmCoplI+=G>F9u5*Lk?Bs{T};WR<1ma3*W0*c$n0$ zs9Af(jgm7}EOjMPNPWABPsNf)=xIB7!w_zrvr}Wx^L0u~fk?(ra~yJkQLfO$xK8>p z%sM>7eA7)0xgL&&w!%P7=!RnR1ezeVzZ}{;U0Bw`AZI4d8mRU_o!|fqeV{XPz3d8D z0~>T{j&^$tjCfdu8r#4W1DCp({PFW zYvYXc+1R^aw5&n|lmGVeb!;#@!F9;!vfs7%^UVX$4Cv3uLpACrKee*hKF$cH^UJ%UxwEspXS3)Hafm{I^ zMCjCj`O`wghivo#l+daI?{+kXE773$472DJ7KH8bKchi_NzkCAaZ^`9dN&!I_bU!* zgF(XPngfc46VL;)5qd1GdCj7!I)P z7RVn()GQ#F(S+gEH6k;x59C`Tqw+{giK*JYiEzp zarq&>PYLtfQekcP`plHj82ZA&OuGqpYl=y6p5VKPvD|LY^A!(JJ$e-6#ZajS_(I@AB6akc{k2xUT~wqp~g!NvH|OO{nTT#;f~oiuTWdI-7q+cZraKnDp%KMgz1x=z*1Q# z;Ki{Kaxi?xT@Fr>%o9(Yn#0)z_PQAa9_>g`a62v#^%?ihwHH=#Df+T^9+tffIKg!% zTw~jE#BImKUc9KO)}f8QtR3teyy7LquYQo0f`@)ZgQX|9Gc~xzOy9=k&}VE?HQu<2y1^6Co{7Fb)QR@X$K^c=Hsng$H=teUG> zJW7OG)y5r(|1ikB4aqol@3*qE;ni8ieR2F(6%S``xx-xJ9;5Ibg2+bC;B<|*?1x;r zG)fxX)|*>|)4~fk`ENOOESUL=;)It1K4spI#}^I-J-za4Y1n&-0>Phtmk2hGiW9~f zF6uoJ+cs%Bk#<&WhvdzjqKYrA4Kk{?;Jx){b9upL2qIzSSKPw3BIR_$GTej+IFMD% z9E|G+`!$W_FA30`KVnfqDszCGn+gGg8IZ*fEo<4@2-?W#qHhlFXJLX^ZO@Y3kE&87 zOuM+kbny0J_Yn~SjN8=g`F(sw{>4wOiWnH zmYz}>v>;SFnzv?&G^#P<$D;)j+LD$!$0Y{F1b@d(y>D53zVl63jrb$@^>G5H5L{7u z20}C+Xx44MSa#hiA14_L*V?WwuW%pHOy82Bw8m!5=bSuI9=Y z^f^-RK!CVa)@`}(<;$Os{3vB5swEny9WwfoKJA-{`6)0YpmycUJ!eOUaGss9uifl~ zG^ckjZ^1oARirr7?RL(MeDr_l`to?F+V}q{l~R(jW|^`S2~i~5q+&wIzMBdOAz89d zsAQcYlx-^ez8m{w583yz@7eb;n3;a})bl)_r=IWck6y2HhRz)4-1oJ--|y?Xax>Hq zoW5@wqZ2ikU>~q-b0vdsqJUYMbx!}Z-gH6i*`VhW6}oqFL_SV@>T=w?V{cp+{yApf z?f9ryS5Xa;b|hagbHpjuy(r8c1L=DwlY`)#3q4Bw=opqFrmh*IgAth) zJ>7o1M-OKaq^pj9Ab$aOZ=J9BX$(=kOiCvJQkZ1(oKfR8zOzK>3~!xk{zP6ZzUx-c zu?}v#r9+|pCqbrU-&{0TCK30nCB+h(V%LD(dLFPYV_jXeR$qO%2X4eiwWFJ?pw;^WGEMSq zKx@#?djumVXlbMi>qu#&hjJwA7+JB^2eFyybCVpET_D_JH0hY2y)-Dol6B-&Z=HL= z?5m<2$JLa zA_g1xk+VbCRbJqVziDkoOOPsw3?-hkY-jL7nipb`Q!OD&$a{_x`fK!F4 zu_&)6=dK8T;Z%h69dq09vtEY2&8CkgS*6FGGHaEuX)jkK4#MwSv)$@K)aMOfdhoUm z|1|WmcMpQZtJc(t<%evFb-I+BD*pY=^8L`&C}0NvA~fFJPw&Eukh+o6vl~b*^6IbC zZ-1SxHG%1%+G_&jmoQ?AA#e&;u&bd&Mf5geHJB6$TOVA~*_J{sMSeK62+WCI@j~k* zPdGy{V;$*}oQ-c1cGY4*WAtSRbctPZkXi*f*4EgK88>Z4j&rSXd0eL>{Ls#D}{D5q1{eZj^RHh6PPgM^Qf%km}L3(yIl$Zf40LJ~-;ri%O zv#XblMJ;-ubCcecUeDb9YPeTulk3-^!>X4K$;I!PUjG64)CM>mOEmF8h4RNb22U>( z5onP*VLN*NJJkO&ms^*yLT*@-sp|_5Cd+kA4aR*Kw6%|6_Y}D60#gKIZA<;g$ApoD zEvtD0&cMvarz>JB`od%5JS@)*_qPsz0jRW$z-96Y`)3m>-aZ2kfIGoO$36iyI}Ul}odZ&q-7S zDAz7=EOr?y&~3kXc6^>K=bq>x_zkPLPh)LIYxWlgztgdssXaRIaNw&bAI^j}NVoEG z&~rEMKlu9!j_bIIGE?)?9Q&-OCZCJ^b@!BceLwF$0D0^Y{)xG3uj+b4HgNVSy?>Ina?VLC$Q z70?IoFO*IhyTkFX(~UCJNurz`gMKTSrMB6^F_muc_gHJeh)(N+d#qQnPH`i^iA0exeaG?gakfygy}0P+_UZ47vX4AxJQ`7-~(z4w>H>r8kFzOYwfe8SR~@h&E< zPN4|Qb+Q4=R}0)B)s9wbgHd1wo9iQh-8r?oJ>aknLkiX}g0veYrH`LPRbXWDeM1z@ zSt4J(F#S3_{W(=-Go&|iI=As6`s8YRkSkkxfi{2T+W~$rLpQe5GvSHzWTCFiLc>S4 z@rG=DM?^0Muqa#Y+vm+%RfhoI1O+)K_1{aWe15XFbhyEPak+6%;HXq0{SU}Pt5b`I zls$qb4uwfjKMB6!*%gzTxk6AZlptFV>$JAGE4n8R;}q1kZw?tLBvvr6k8xh2b!wvy zPF4y!t6twR;P3--rA%S8&os+L+DTIDK23;tNHcmT5hqSAiFQ{*9i3@KUupAK# zbwx{=2B=)?A2S=*8I|6*qsx;rIZ={moPb>bVH?*|rB|{7QQA0V$_R>cvtY`+8gUEw zmixfBG^8TOStIDeRJym0KH7b^adPr}pVN?o#3a=|pS3ToPshiHgehAHt{A3jqYUU5}feEae7LuwGP71g(*U@gG(ej?xh=jeeasvf<0 zg7R)@5M>Xn^fyz`jSeafN!*U?c><+UmU?cN=h)$THC$LrY z4zg?y;Ws_l@PU*(ZQHQs>UAgjGHG}zI^up1@h)_Gz7&#D-zujgfzzpPvY6)}*hdgQ#L#93&z8B| z54_dGxXc}@*Qs6PUv#S}M5$3Syvk|J`^{5{Op%GD^JG^mC_$KFf3NK2z{bVE!}}X& zNv;==TsitkdB9+P7baes+##4r*6(vMykXMRr`xep*dyz2W4Aty9T)C&m;XCG>jaM2 zVq9wikC(c-#IbC{j#@c9OP^~}^}Jq=BiKoT;X(0E4z^L4cmzyEfyy$IJ(~e6h9G)3 z(XkN($UcBtJOCn)I_)xH1_DB()KE}LJ-_(FMv+8vFlC)<%|5@pndQrM>k?N<_K=;7kbwu-`0#1h?MNA`Z*WS+n}%$Bt%`igl!Wh9z?FoHNGUfBF6+kf+Xpop$k%|!_EN`uSaghFE`LG4cVtG zrk++}WN@VU2o@s^Y@DtWIhzH-INzhAWEuE5=ACH}LuQk2|8qgON(kSst_Zje_APJ+ z6*un|wvCduanIb44HIn`=%P)V$Jjk!pWL;f8-HyW`S^ZyxB4{Y7GTp4^i6P92lk3- zn1Dg^=dh=e0dlM>Lh{W#zrxj<%^Df5|DfPeBL~$BA8~B zwXNV7i;(BLX~=`Ou{A*aph(@L*%|xmSRJmS958dR57fQZP)r*wxb|Ct81w|YS%h>BA}{pZ8qEcf*XGw&M0kgyHMd#4G58c=E%|yl*PT{5+s7(uT}A zP$~KzSq+@+ESjteqM{FQqTu1d_XQkJwaCn`ddz-$TAH7pR?^-W)?d7`vrWj}kVNK! zXS}hphL~}C&hUOSOND6j>Bby;s>dsx0TyxQ=lKT(3*ljnxP&oh&K}{P@%H*Z@wV?g zOX3fRkU4mF*mVh5{+cz}2t2!e$SFqxD88b+z9Z;Y0J%ghpmQyjNu}2WuevSn-Dtpa z;Ah!ETLEOX{aE(yF%Y*BPBDWlKzUvwduK}+aDQ(qKmEct&^sJ55M3#{AZczVQ3Kq3 zgs39-fm_P2121zz?y~X3J*SzI(iKw@;G)Zd^Q(~kXq0(|dZ&uj;Fh>99G0uqq z0ArZ|wSW>WQtY5<2L&T@2ehVXfC!jX#QrEKSvAQ{A;q1^H0bQ6hVnbLMW8+;e!Xm&Gx0%>LDMt(ANF^}5|9Aj&`H=w=(f&`=?!bdsirk%YN1GIg@Jj+!@6Sm+4+5Od zQ@Go{6-r}xs;TN-hlsl=K#Q3DcWb|JuI!E9*D;y_Gm{(_IQHrupF2j_uSUY zK`{?Yqo&KDU{8JkOhO9iv(VGs_uoOG>J+KdxIBXfB!i?(mgysx{lxYP{=)kHCJC}U z;HwrO2jEVpB|dVCzY)L(DDFvVLp#BqnZN_58Xvc$i1WTaYhD-IICeX$d~;fjG17e; z$yw1X9y{UB!X%K@RYSX@yOuC+f8^S6z8t?nM>JmZOZAa zwkqVjl)PIo1JbI;O{P3ixL3t%A1PD&JAVD$4~V`Pf%9y9)hc2BbP8I2#AnSTk=z(t zbbjF8&J)4bwrG2teV_9sIjMevXt^?{-zmBZ_Ea180QdCzG0{ukwV$6^y`B{h4AMGN zAJCGZcjc|&#Pggqzz^1gz}s5{xu!keTicTg8@>?I5z*VQzVjh}$M!jOvQ--T7)U4F7#oo;Tbn9s^TJkOA!>b8eK6XuVlc%+u#}dI%?KgVCjZV{u(vb_rHTj8=g){SQ`N}Llfh;2GW>gJy1)GW$D|1bW>nM zZB<4zVB;E5ZH#S#OXqlo4G30gS>#fk{ctMzDU9`!^oi^CN-13r!UKskHCnB1e=%PDIF%p zz{H=!f|kjM9l35SVF|h#al2f3Lgn~5sM|Fg+%<-6-QX1}?&B}@_R}4pf#nH21HKic zf?w(OxG>0{`Q7{#-MG0n%k*zH1!%?=C$6mZH{!9}2U%FF2ji~oFG7w(d$8ZHr65O{ z5X3;E!b?ig)2Zs`=XgP<$(ZoJ&p^ac6csfSP0If~@@S8UEgWn-M6|Gb|I#7ka?s}2 zr0-EEd~2XZ#^d$M9y|8E%dwRY4h_Z}o0Rx2aFtB|;o**$pxWIMREnC2;Hu{{12|Qj zM3qhD02P=EOB6^la=ED#J5_mb(Wd`JWtn`Vzgkl|pEl=n2=#qqr8ww(rfTA1PbP<$ zS{Z6RE6VU@)|H$e5N#_bVM_r6Nvqgxd$M+y@*@+%^U<~2^SB z1QUDaicp;ThBQcKr3+#OlDi(iFtax(+BNdL;Z4xq!swOK?D(f_UJ(Co+h4_M(4%~N z!-!PT@a}@$Qetq4n0I1pHJiCyoujxEHRG403VIV->$%;ul2%K-^ysi95Q}>!PLjRB zK!A|kYOyz4|_p^K#aIT(tj4IP# z?_b#oO)9`doM%j|brTG0njIwb9fM@b*FO!(aB22JkgT|0Sj@Do z13dM6a83&xZ?FCB;3KXZu-z@QL1C-HlLu3wwikr7gY-?c7X{8esSL+nxfc?Sy5hL+ zC0~Qw-RhSkgT>~IViUM8S`xFFPWhE|w z$H6-Z-D56sR1cuHW$r%!Rwithq5nDp7_Xkl;%B#(YOVo z8~TYZ!0}bOgU-P!UYMswBg0tt^Qo0+ve3^WqF{i>C|%iIsnLxdg%U~(eu22qKmivgx zeut{U!k?agg+7*c(-yP{jwV`{l=z4vN?{kKg$2i^7!Y4|wRmllRCds!gzY;yf$o9> znEO?-_h7FEt_sf~1g&)?jWZfr*E9|HST9nO{q|*-m1{l@riTDbhh`_;#Mf+=ar3>j zk?EQOh}!5Dn4UD1Tb4Cl1>h1=FTWaz;SQYbkd`}_Fw83dd9>a)_kME2DQKJo1f+EO{Iu7hkgLQXqfD&F73nzOb=Ku_d%I*M=En*iAjF|L|(OU93zuN8K z`xc~h=?LevQ;XXM&ifUg*puIcrp&9(I#RRgI_&3{hEE_~U$$IJ9DODIk~!ir+fuu@ zzU^ne_eY73_s@Q8b)(q?Qfm$;AkXTj$g@hNmG|ZxE5xupL-X`2+$npKGB{I=@P6Nh z;jb(b+=F^Ul69I$oxr@nvZodAG&|($C3!zj%hUzeWEfxFdQ`?&h7lN$mtipC{%jzm z`MQUAb7C-7MAvY2v-dedkL8=Lc-JAWW$prE$I|(Ix;~<=xI za}HitrIA_VSM|)$Va|JrErg-<6@pUMLX>i8*E9zUju#E+v4FwFr{eK->u$m_gS?M&pC%Xi! zyC9^@Uh7G+v$Km1n)-<7V1Xk*{^JOAvONUGJ(Z@jojAl>UD0d_5r>CEAXFEd;~)@s zZ3G1Z1*9N_PTdC*kcmgTJ)C$@VDkioI6K1EcYBz7N4JmD5wX1AeaZA3*D5WS#g4GA zx8Vm9hTLP{-hN%ODX+}|p$hmjS0$b;rST|Ax3_^l%CyZAoIq?pcy&v@P4gwI^cDr2 z`ZpxwX-EEi9*n~q->U5QCykOyl<%%S^OJsg)p=%PJNMw8W2o`cA^8L6ai>+H{YD0Z z#wDOaClrXjAWzcMg`NDPTI$j%MU^+f37O>X75NL7pH^R^U)o3g*n zadgD^>+8E7I8jbN$k?eXh=;N?tjnhi z$#)YqWV;OBzaY7SZG5UF6>4pvc>!z6>uTc>4rUQ?%ev)F%gl6?!09_9h+%Ld&uI(^ zvPHMI4ARTcN4v4AYrx*b12F4vF1Q-d*T%5F=<7g$>w?JUZte9@o$n+WzOu%=7y0TyRUwks7T;X)99p&UtopxHmFa42Xg=f z*ni2kvy#f&>SRS$gX=#qIPYc#=2Yf-2-eotdfW9se4{(gps)pBv$`tVH zm075QOgQ%q{r8(RA46UC7xQ}8k_?Ux$V_+O{b$>#0ssq~7g;BSD!B3QKe{vugnODv z$`cEQuO})6>`b5Jd7C~fxzqXOLDSB)8dqW8AdjR{7(v+)zazM`b%cG@AI}CBJ8h@J z>yo($bM+x_1@43Xc*n?mH+a#=X5|tLQhU!{wiOHxzKtIoi5yNIa}v|QS2z3#Bxwab zxn2jbm}*x5eys_sv7Mhrz<+>0@|O_@FE3b0!I-dmrl9dG!kU zn)tI<8i+N2uq&`}Y9N}}N5MsYLB2~rDS0n6SSNYFO7TLi*Rn}el%M~?P0FG~Wce|Y2%4lc1%ib_2as3v|BzR8fF@D25Hdgu!D0evuX)+FNqt#lk>%O(S?*m7iCTk0X$DEITXYKdy zjw?V`!@!espgg&Y*d3s?+0Y4W)D`E<2B!>i3t_y$jUt0 zgdBPF(3`G^+eD;$T`do^IQ01kyFylB&*{@ir%9DYeD(>19WHlWCd8jDAP0I{wq~S$X zSbyNxUX8x6;@v)j??1l=tlr>i@U6-z`_pZKwpXCc`pOd$f)DPSK27JSn3B&~9~_Tf zy3wQMwfM4%XKZaf3i|_c6mcE!YRH{yNyv5c$AgvzCXo{h$~H_mHkZlVQdf;(Mn(gD z8y}{_kb|{%!24wP9FYoG%J#2PU#?kh^mkVcj~le-Y#HUfqH z-L$uwst(3Zy>_THRHvPQH*ns|i*Q!yuby^Y`XVt9R*z#4WPh5tUXYo0>9O#>hct#X z(s8Oi=c#h=S*0a*Cy-waZvthMFHl)BwmhjDTTpEZ3&_VAhj~8OV?W_?p(`(8GXB>o zgBX;ff8aWAQP-Ary&$I9r+VxX%id_k?LKx>U$j*{h&*#YBHLiZm@e3kXoW&RYaGao z2F6!_G!Gf7;JC)ZSKmg5+;b;}N|%wDUPU^r>wAWrW1rc+n;#>q$sb;EJXfzNMvWYIrkYK!Ao)+BF0V*4g{&{tCwY3TEk6wLPefE!@SNH znF>`}SFzp-I)*w#P0_tME9kVtmyRbf&okBMEd1*vafbI<4pq}fi^Fc^z( zZuE6_LuME`&9a;ykhTU&PD=F(#2oC+(*Nvi(0TKqtf6*s5vo83qsz1=3?!UfT(haw zL2+&!TS1~^&OmZS9e9o!cAIn=_aokIBDR*nic<0?hNFqO z*opSLJ_}XP?FrQHP7#EZe{6i%IP*GeiaBMTsbmlAx;=#zH3AXPXQbegm6&5ty`;^c z&aLDF*rV7lvbl4;#uDBBybBU)g3T_jSvOSYyAJ-a8H)3xVP?MVChymJFOwIXz1Cy33b1hv z)HK7-<9f<5IqU!w@V>B(K42WGUV_)o33l)AWOO6giug_c(u|7 zV(vO`(eNP2E?RcT=?6q-pkAU?ZpnJH&g(KFN_kywDSa^)8PqouN__L@9yR7UA!ohc z(2%Qv-HM(bqOGm|9KsHvhS1EA|JeF?>}kLV{3F!LNmXN1H%PoivVd+}0>|3C8lS!L zQNRIEq5}~A9s+^zb(x#wJz&bGqF}%Id81Ly)Dakg0r_oaH~eoGKS8&1^wHk}Kj2HX z)?|X~v5A9fcAiHKuk_hsO^cm}-g=^&IgK7?z`PXSvc9pQI`0+*+zg;vkh39wt3`~r zR`t*p3f-eMgL|D)Yb@+)`SDh2<4dGD4i&~`WVOvW&yH>3QFn_K#;!nD-7ZJX$4+0T z%oP+4PyPp}HiD}Et-7O2d4QemuAC*q;nF9JzTo@#^59(W9PiQOz4b}pJj@N+8-nHc zJ9#!&Iul6IC6r^z*4MCK-|_%i0#5a^FDlVW>%#jWsV6E8&0057U)Nv`3`rNl!E^il z0?^f0-v!ojnRNxG2|Adozi*sAO?gCLE@A_Za2H-6Wbf<=SHxh5XLtX_W~P9ELx)e+ zMttvXk=ILd=Qb-sCDQBZ@u8Qr_514OB9JTugV1-Dlu)rXJ%br|Oj?wAbTv|P(gGJ*1@4Pd{)I6%1r z?&lxn&LeQutWLymKhEk@lh-2BEQ)=XygvTG{|T&ovfaU3yE%A4VH7{50rK+4e$64^ zWcxTja!yI)+omb;^yFR;A# zrVV>u!VJl8BBwH-I8H&oZH$3=`D@9{%mG)=qKx)0exsto9HLK-{Abt5{;}mr{#h-1 zgP9K}uFB~2vYEYhv(bqkznkQG}98*|&#zrS#+kPnkkTDhdbMAFwh zE*`3-6#S>vcv=0}yRuSCt)epWYEI+EOe4L@{$2x;3NNGh?QBP`Ld??Ro0^*381Kok z(+3zL_qm9(IlkOXr{?>l%=W0{OTE|9eekSQ)5zxn_bP12a3ylH7NQ{?(cFQoI``+o z#VlrL6bhJEbR~sQGEINqPgPYl!r;P9d8^qkHwVKjx(WuRT*IWy0uFaXa#J5mJ3NU> z)LsR37~r|(yaHw=F<;#zjHPexpS(-f9K5xnYDErJB z;A#>;`8=5U3##Xz14af+$CW<=h?n<(bfIuI|7($~0f-yOkM_JT;Ljk31Q+YFC;yDe!JgAxj6AdK6CrUCY`#~!L6Mnv4T#E7 zjc10@_^YPuliV_DFOl|)`1hk;eRoSn;KQ&-$igI9e^K8rJKj`5r@D2!bklu;-9l64 z8!=8RJQ>6iyCNJ~?RC004x0ho~TQc*HDwg1ZUJ>_Vd)4R8)?tY)+_1Do5 zJQ*Y1_YYUjggcM148@t}mMB#PGCo9`ITE;TH5u}IMqq|%y z|B2ml#RjnMP8mZAvuU`R$8YIW(ysvhOO~1R=9e!=N$C@Y2m-m&V~8}GV+21Z(uc$y zERrc&UWu^}BcD`G!Mb`TSe>{fyBU2iniE}C6rrys?U7>NJ+>bX-&2#Pi_9mU1b!0d z#^(_Zs}gQx9}RGnQ56(D=lNh)4!^*NYqWT-GIZu@v+XsL_#*h3ke^BOv%7Yoo)&jQ zFV~zC)O@zh@q^Dc~)_YD%2-r_@TJ3zd7%A>kaDV%$WXE+{8I>!Y{qFv9w;iZhGp>!nqxCVO2 zU|z$f1cCYMmjgw90W*>0Qz)R0G^IG<_eet8tQZ!A55{T=E`^5RmSTr8Yj0g3g^WM- zvOP3G-R*6HKXuSw8@i0H5kl?guZ*oqgsYS1h@v213y+JGe+mMN4+N*3ya?r5kl;n! zRdHg04GY_beDd3Ncq3AOIG%ip_B`1INWgvyam1>&*ma4!k)XTc*RkDK0%T9+W#p6- zgD!}MkKDQJ5oI3o=_yIc^TX0=Wmy*Sh0H4|+f5c~YCOfU{Vx)gP1N^Lgf|vo54C$L zB`uzV(jbV^AariwA9-# zJO@fjFzO8Xs-19CsWi8uvM@rK?di9$f^^@Lp`Qg%;ykQ#h5J~(oH5f?20=*(EdPJF zNX+VE6Jd1qX-$I`Q_Iu+gJ}YFg3Y3@BaiDTLT65%x;ZYbQKN?I)hT}#DT*^@zB;9~mK2y;Gp?elDCRz({WzJILvVi%J*LTdFtuu~ zin@ydBZ&;qoKjxUQLp|Ws8>RjG!gbWVhfih17X+c%^v>&VOltCULWa@(x36{Qu%R> zrt4M4N-+<=Q_8r_=5#90tuX~!ri~yPY%w}(LkIIQhv&_%4=Ss6rK-n$rBl5=w$ZY2 zKRivd1DiW6fNaJt=jVy_^@OM0gcD;sG5zbNX9DY-o6BW_N9}~oB8s<1ODAQco#|5Q zkBPQT%Zl41Z!FI-ul zP59iou7eC#z)~UXyxp!WO<`MYybj$l5%8zungr1G4EQ~PlrEzCr@G+2-kOCA$Y4<6 z6JXhjbl?9CSs`ow*zHi5eFH|Rg4%b}Be++5mOOBtpow=?BLQl#Q4wEaw+$ScW`5CH z78vs(Xs5F~*yL0FU1>rK7d>5gw0M?^=ib8#)tU)rpBu#8-WXZTT@)#*+)!;5>8Iwu zn3>R(Nh1^6mB(U=Q);x`$IbHfnEhN7J{I*4gyOvIjb_G9``# z=b5*o8m>rQsg0%Nn&IdpYusNxg1u>{0_;Nyun%)!h5Dc7aXG}Hx!SpPikP_&qvp3O zGNqD=9BZPC2}bqoArCe_8eKcrBc^5DP>OR<6c$_sLgU_3$v&u6 zoL80(@$9K<7bOW$3dYM4TOXZemA?-wk2R61KyQ|a^$!#!I(TzNU$p6OT}`7)4W6<~ zVjxpRHFrKH-nT?a^qVY0t9kPWP>+X}+lbUGD{)fM7HeGDL{|`_k7=QaC=;{JJ(1uF z#C+?+$XmfO;B@#2@bwN;jGHz${olzd{^@%^Vx?7kSk$i zF=JxY5MWf@Cd~<-##6k9Z8FzL!>4rYrY-fK60HbA<*>kVS=chKC1C3W%zf%)Qenh{ z0MSgV>2;SQH8^)ltn6q73b{qiNJ~v34!E?p0mo&Vn`|}uaB!C7GsA`w@N%|W|4_7y zvyZW$<`77ve^7EkGxpk3t>CD++!yhDvibs|nm!j^6blvdCeF0U13 zQ}|YF;N!zt+(B1N{eU-te{$ashz1_K*@RHtJCSg)+0oOsmshRp(tkki(!#;>G0Rp4 z{n$L>L50_&#VRm4f>K_-{CV15BeSXR5{B_iah+>2YnSII%ghT=v%L-)BrtJ4OJC)R zO-6PhO}MSjb75IruvKoX%281ug|cfP8fE@78L#k6AFa!HCC?lTf4CbsKQFW~;Wx5Y z^WJc3T5^RMA+Vm4ZuP@U56!gxxmT0VLWPC6e7_9@4@%b?4?a6KnI!MvJJC>`6<=E_ zOr|zOt~q_LIcj3B@q*3dHsk4FW4PMQj?at_%9n-x$%l$1I)z`QqOhbehEl)CxfxP0 z@A@|KIH@ehJ~sLEk;xYNdL3G|wJx!J#HBfDK>+m#jSdN$i{X(}dH3IHA3n30^^AOy zASA0ITBBa#HHX(1%&9C}IY1v*^XS2dFJv6M`o_wFd=E28rnaD@gcUD(=SQFNR>dBx z;onx9Gtx=sLrI1EjiaZdDuhbXn<|Y?Yps=hw>9_XhOV&0>99Lib9z#9qk4qP)!KGB zBFP68DO<0AA0}MEq6F*pJ3DbSrM&1Xvid67r}E+2!|czvruyZ1mc#Ss?z2L*J?M9I z%NDj}1*60RBp%!3|9}YI$!o)q2V9>lx2bIfhLlfI&mvA5x(p|tu{!8Z>O&^9OE&yI~CsM-aJi=dku%s^HMX4}{#6B>U&o{7glOmTVm zsmV2zG_`A(y1(Ud z06V=c+z9e}n_w*TZI=P^E0A>e%Yu!mFx>HPkShBchG2b9THV#$0_kcoJ%DSR(F?TJ zr~APB<$}TCQ`0-t9IcmQ(=iFXKv@D${r)v{^nvoMX7obd^*xRnkA&v+IBEgkppX{< zTUP4T3Z>H-qa~fN&6Sq;o>cge(+d&#UbDBsj4rHrNMIc>?nnIosy>n*C5DtD|LW~w z&v|84u*{&&$tHEaT^N_~Xv)D#f%V5D)`fz{ z9*$_V6HHs8f*d)J|AIzxAN^d2Bnmp;&s%6~CumA2=$k5UW1cT&TZ4OLD`g*&9a;Af+|(OBE11*{BGvYLqN!!h5e2w0$wumDG@KJ`biqT+*owj zVPUV#|3UZ@mz_6mA(t!_ehUXt1Z6=k((qQ&rvvdTaJ*ttL-LAXuO13I>=5F2-~?TI zBJqNB8%8v8{3xtz71|R@X5_RO{Gh!05az4s3a-1QCw&~;A2w)>QbX5zmPd@iVw5^9(Tl7cuaIoAs`8i(Dq|Jt@)5dY> z`%^5)SxE=303z>KX)U>FO|XrKv>H(zEyEvmnP|%bHBD?WlSRYDv)3j$RD>>&OEe3R ztB1kLtJ!LbjR(SGI59+*OiwZ-`$qYZ*37}~EkIUZzBqa=F?F6sZ(v5J^7v|?OX==FLHeoFdIP1& z0~0vb#L{Ee2cO^8rv5H-q0_~o28RgV+_}G!fuA~wBw`g0v(&coZlJrD-iY42%Hh1Hv z18OBRmEx!Ip2LO7c5Q0v(ujY{NyIwU4lrMmDQvp<_G=;s`~HlCdp>jr=<5Yy*8GS* zAfx%aAK6_Qfx56Frf5Wqa1(W);H3f_+0yH-bZcML2)!LM!caW?fvGavRjoZ~!<$zy za&T~Mv?@Ip` zX}Ct2eiHTJxMa|Y!}BNxpJLex{{?l@uIC^-)TDMRg-nuNs{9F{|AAxX5^vgU3|Orz z4bzNN9eX?3eblMQX5>W)OIve$NIHW(yzhcDio6fHPM4*%1SRf=P5o!N4on)_p}%#l zxVyUZ7BuXcJlu zQ;ORj-J}A55}4zt2x{w)+~gZk&Y!H&C41-s+bs}DUzQ!B1b;}dB4+Pi`C|}?rqIivK=F8A9hpT|s4{K@&-NTIZh0DqmKhE;{9MKD z=OA+TOU_;A5Y>YQV2%cT`ZtVZQMg!lKp9nA!tm`XxWvKCHulYIO-7%YD3f~YVU#i{ zyt9MYrpXLGAbsmA&| z?x+y$zydkbzAMJ;JJVWS+$Zx-u{Y{1d0#1VT3$>*gwh7IyeNT`N&BxqPY-SgI(TV) z-W^VVXiv!VVm2{iFM9p#bT>YPixzLRt8YvS^laJT^!*9ypyuPrrvEb1zcH!B&;AYG z1CUmA?4H8px&MZS4D zu2bIWrK7x7MhwdSa}%Thq_3?eyX9S;$$8g{_oC)6Axlk$Ic_5JRIfL%aFu=*QH0Af z@9+Z8Donn9Z56w*j3Ar@fAMj{|M+qFl&dXv@m41lT;VNgwk8c`VSs;rsC~cvxl0x> zTb(HD8?b{EU@Vf)-ALMtMt2K2-Snra_)}5ir1j480h+jjB7-Eok-C>3(AdDwPmL1a z&OFm3l&Uf7r5p6uoXsuQzHfgqEzP`eXxiiTHsj8d55_~p=78_y-x;Y+Fq!*bszqJR zfR*e3`($`1y~&C-DHSQ!x~RZk9}BfOoc*kj+>MQz6(D_>h(?8OYlZNz`|+RsZw<(7!G86NAW_3g%ii*!abWN$quqsh!2QuI{;I zb^{vh%U|{Y|J`s6Y^#^Tt6gMo><%YDSVDAD?;do%De;ZJAvD}oK_I~}z{Fo)xOg!+ zW`<$1QK>whv%{9(jn}MlvgrzHpNmj)Eym5rz&u@!F*yEnGt0YIu2~q4PTOk|RN2=7 zhXBH=-%DmA?|`IqO*Pdm=At^T|Bc(u+w`H6uz|rR&!2sjzPH~kppOkzSDIRyhm%39 z#~azgnC6FjB0A;)7)md9fGLN!Fz=#${U`bp2eq|XAp5>RozgvT;qFEg^~M#@o3dB>}jKijhZnk9O@;e4k12>?8xfe!jM4!R6d zHU=a=hdh|%sR|koRtKp6?2jFv2tea_+;a-c1X@hzsLKmdP~><{(92qVNjZe_`P@%Z zi*n;&gchasHJCFEhHtK{DLx0y7%QLe$Q851XHxn~iFAeqfVp0#_Vs+M$zb{>rIk?x zn3+kH$nFG2YaY7F;0XFOz0!zsmZA~CdB4648kK@p-lrI1ytF98DjX?Ioxl)qD#}#et*j!I{!aY(>Pr3|+39Tp7lQ}l(5VKa_z&SAVYF9ElmV8%CQ!FtBQ7+(04ECB-P^LoJ1c(#!Ptme}@ z(0duMIuP=C{M~-_+TJLQ3qrlbdKj((3QN~Y74Lz8R!!Gm|E>Ivlo^#2?+(H)-qe${ZuioSRcg&$1D zxpRcx{@TB3e!=YooPmyRo&>}Et(&t>uVYEuU9v0Ksn9@1nR_~y5k{}3scqcZ5HJ*G zOb%T6>_hI(>mML)7+k)5KHBk=bK|5jk>eXg^X&^G2Rb}mZ5d)13^DV>NbjJ(yu1|$kwM5q?rgT#~;CNIF;7nlT zZdifGEbt+q3rO;jWEY3=qTGEYofoe}zX#!y51T8)CCE~f4~U;K=?HS=z$gBaM}xn9 z!Wyo=I_g*G`m#0izO~aCWAE9QJonYoz9^_L^CmhCj5wQ(0z@* zZ6_TMC*BExd$S7*&*rQ3KvD z@E&QY_k$geX&TNr^4+eD{wHs`N;4Blv$0cus3|;ElU>03RR00F^p8r}Laj5b!U4AW z-tv$5+U{_2qf^Qtu6W_UiX%@rctJnA6#h?Oqy~ogd1I%PIw)1=Ha{SrbqcPm&=cJC z-s9%3;xQT*R`?I3{;Zq|wg1X^^ULTu46~I7-x#({T1Uw!c@-}YT9r=vs%8xXB{0~7e`wdyOiame0VB2KvJewsj0b2 zEk^&Y{x2e|wAA$GDL@Z0ej0 zH7!QGW05m$lW%O0+1FrH$sdJ`zSCLAma@ydK8dLUb%i{~T^i0h@( z$?jQJ;6$XZnY&m{At{!vdSu0zxlRZV&$C=lc+c2}8xR=tHaVN<5^12r<{^`c=~RL3 z4hL+Kgmu@Zmw7r1SkB6=hxZ6a9C4UWx1^naTz^UVRjb!s$oaa6L&WfsPH1MRpkw62`dPHXqI7}_^4Z}lw0$rB4{FFfvJp~Cp%{vclN>&>14 zR^ecr>NjMU@c@|?D=vJHHv{xNt3{8qVN1NIZ`3GyXaty~l4({}WzxE6u7g4e8k}N| zKy`dBp^3#5(JqN>XIdB}e=dCD@@zsCq@!oCjHED&UF@Qu?8ut3BH}v=lkqL)fOB-&lWF`u&_9inGjcATw98KJZH z(NdR@U9!S;wq(ys97Xm%D`y_r>u`7dUZ?T-e7@iB?=RQo&inm(zsBSFcs`!bN2B@z z8u?T>qbvXNxfkHZoIG}t-*quAKPo!Y)ck&Q$0OPE%L=R;b59;V-bSjHVx<@x9FxDg zX4Y%YL{RBc{B)NVeTEj8tJeAFIYjfJ%`RZEH93aRUsDk8lFu)M1qg%1KF==Js5E( zhgs9|kD{O*zAdE#94J>XYok9QXE^%o5N#MT_=Q*UH1dd@YlLcfZgMe(65mg_VhCLj z$n>tn%*VE1u$7bJHG+O>#6|z5!TO_en7aHAIL-7C6}UUO_`Z0=5yi2|l^)tF*k(tb zgxjzlxT>p}P=g2*-%d{%I*mo!KizXXjYPFPMhDpBFLD@kXsRq-K3|5@%hw`$ zSDYzdV+kitJz?gLWIL=S=W5*UcZO)9HRsGiFzjS4m&(o2(d72n5v}mGa*#ZshCEeEw)I6Qh^486< zZJT;3bm?^OUVYpOGC%b>h$mu2+o=N40B_vb0HEuUX+FiIPwGrhIhr!iSG6O)5Z{E- zP$8$GH!)upPc_F`P!YGd=}f48_5?@?+Y%r zHpz-IYND?mQB@g&#Yzg%B+?6rjAa|dUCun_y(->=-b{OR%U*L;7R)4P@!oIi(NZTL z(s^r>&axgA22lWCJ>TYz641XU8X%CpC6*P-$6w?VqLK{xeh~6k5|djxm3|!fB4Dk` zV}1HsjF5N+46#RV<>gC+i(|yP3C2cfri*lFwo?=NzN;@5+Q3TB8b7OG(R*@py0W9# z)QjI@@$9Nex~_6stf!5VZlof+8Oeco2{Gl^4qdW#0I6jWfXuC-)88;l9F!YXf&vtO zOnFj_tLsYNv5cYPwq1V4W65mBSJK8DmAmvxRU{;P^;P8WeA@fY_A5=`iSc%1UAI#M zv(1l5`evzn;b*eoejg2G&F@W5@>gk_Ts@WEmp&(bdjj@mRQM2dH@^;CeWAeBH_EbY<6pgIP5)a!swk2DN0goq_Pf{NJHep3 zFx;171zq5y;E!OfTZ)Q4gul7pEhb;QzH-m>h3w2F?2*!%^Rg%OhQo=uZs2@uzp_bf zx__%;b{f_mOuoSfDk7b-)_bD(jvBR*2f2$$6UE>tj@OQq9PemwUIg_3xThM!Pi5BN zZ+E)DKSIr{qEJR&P3svBwep85mDpypeSNLp4@ym?NqQ{3msS(qtMnCO69$=v7&M&I zR2I&_mZY(1$#s%N-yD}&(kAbdTqNxWSB^{}_I-|oTl?~kdxkYi>(P+MdCNQw48l3- zY0L6PGw{D9?w)_!XbYelb2;-Y|Et9Uc_z)XqgURbKt+{mYi zgRB{N4lIkobn4FVtD3aumTa=H3#}zNdn&gRZf^NHdFh##`xR5+yM8l9Fiod%z`LU^|ortT^5ZKyzn+ zchX0fOCyrOJK;x~|9R&XsM!2lHpU3b#?n5Fp02!n8y;)bSS}d;gV$~!u{gWoPE$^S ziR9g|pwCyi+1D9o;q75Xiyw#$+L7kUEw`3#UUK?KGxW|kPG{t4M4-a0FtCW9_);s> zroeRcGe)e49q*zf)q&C*;ABOMLv-N~MEai)S1vJm$F7~fiut(XQecXK3NOT5Zqhfz zcSA5OKS_jbjUmRkD&r<T^FU>#3#?J8OJ~WT!O$$`qNH1P;e!`92>}^3AZP{7hn@zs|()M2Lj0CL{ z&Bq5gbivA@1V`R4kO%~YL!}P7y&o}gAe;zFtOh1q7ubponM}vorp-xP> zV9J3-1hM5x7bt)IvvXA>z>Z$L;?;kmn1(-W{@$rR8@F(B7P%l%jT zXgNRZ^#5zb3^PDVSRnq*2v3v$p^AC(aaCaV{#Wy5X|LXCYSn~Im|x4v@H9DD+$Ik? zG6D~AoEFI1gS=8mx73N;0cSr*K+T=EWEMuRA|5*i(2Iadjx|bq7hp1WyK3zS)tB-u zle4{zb}+X~!_ICm?p!Tzz3ey`=9(nYg9o(3?@aJ3e;2eZ7|uh0$%z5u;%V^jMIc1t z_lOKw*T}}`}DCc8_6qjv%qo@fToU8_imW-MdC}+ zd4P3wyFw`ZKOs!ewP>MYm%iJG&kkTp{PA#snHB$0f&jZ&6eko9T>=}B+MUM~fW(tji{1MUFt_4r;*PE{Pfa`%xd6KVNrW z7kQJ~E-R0=l{-kq1Td?Bp^Z!i#4oxtD4yC%{@|{0Anilp@mxTi(hJwkUy%yG&u7&& z`mGI7+>~T7iXKSzylDeZf_JawS^Z}Y$1h@M#^^qVAlO^B3fsYJ7Ni6TCOy^QnKqI{ ze@E#d&mLE0;FGvV){-@x`1UW)niftlYXoP-gjgP;|0;A1*;^66*nl`hwSiSvV7kA| zLA(RD=65ySz^W*ZHqdboaEZo3q$57#VXfc*4;NHLn}|y&e*hs3hjM6<}a;PZ60MhP|No6mB&ZrtU7@( zhIy>-KPH(NT3f=?IAWS}WZa}Xk-Lm{cTiz8pZ*8y{h~#XYHiJMQxCqiYZp0BC7JhK z3c_CI&A{&A2EE8~0cE`x&}G1|2|Sw(;Oek%oGp4AG%e$mP;65Nwvvi%KRegXCECtu zD2vXp#&CC1iF9E05WUcC-5bc=8y5Xtcw2{7Nti#7YR(Ak3akQw$+ewNJFT4Fcr|FU z7NT>qI%8gI8_?Q9Y}Ba+0jA$HYQVjkjaA(Yc$xw_Urie;QRekHmHd|YYwOVqTe ze$zf3!27`jVhf0UU_A*OEx{c@a1vT+87ceRPz`o)EbzG;YM0ZmiM9%qH9z=VYWQBS z)+wsM{dj>w(Zg(bqxjy(ya5)k1%T)CYoIzXwddQ|HGBo@2zWjIFDjl(7_j?^qJiI! zumO{9;iHe?NMtKYW#hOhKBw{cfxI?1=xRLa*6hrNwcP;xgI z4Iz$GI6;Y*@R~$252B8be0slHdsl%n)&B{PbO(ms)xr&S{dkasDQ@<{P_7 z@viV5l(CzK_GHE=9&_S8TbhP_S+~obuV+cp<26`BTNGIxDTj-Ox{nwn7*1=ZJ@r z#1H<2XqE4<1S}4YN46pI+KO^~mq(r85eau;H`3x0-11c9#YsEAnyzcP|MOZ~7PHLy zY&{ooy`)oo{#-goEA~XZET{0t@?#)kh@|te`ZQRUcLW>npM*xF8qMl7!f9v4Dnvk! zQDd`+nA=xtA;`HO0o=sHW=>Q!D~H+d4BW&nBL(2%0{!fd@<x7*;%i}`tOJ@Z-LltbRL9&u~Kh8 zbuaF6zRv5$gYF=sqe5!C7dFiHzBlNpO!yBHY#<%C z0<#n>+IeZDPChZ3T0xRj$e(|cku+81)Hcpq$9!!?463~>7%snBfo0RR7%Z$Tz-46R zN2+~-xaV!zvS9GqCL(DyNJ!4YORxc}DW*}I-aR?@U+9ImpLlEsO)H(pQ z^xW5I8~HB3tM848X?1ZFuI^)<%*wr{Y9{=&PvS3fv!6Q1Kp*l*Av=G+o@4>rtj680 zoi{zf@lTDkOa()??ui<&m?yyA5=M_m?p-nr#*1^?%LT;2v+b759pmqoDto>-e)V9? zih)Mhg@+6+_r5NBjv<^6&43y@ZXk8U_AZ{onxoVz?NU9uu8pu%<8+*Gww1?&;V%7i z#)q}~rD`>oRccpBIP-d3v_DgYd2tI#@h1e1Dhe~|`BW>cdYeI}mi>)*eJCqEnGeKf zwOSx({L-T#js^OPH;C`zq{p*f;aeM&DW7jJ_R{;(K1)PDc&3)$uz1~ebvONjMhR}v z(|RYn`MIFk@hi4{GGCg$C(em;6Q3NUf9n2tElvZh{n_x0-npi#@>I+L!i;!U_ll)V z{^#jx6Inl)%7bb;ui~)G<-0V6H`?3CSdbnV7tJcFCe}TyQ76bTgE<#B&xiAb9XIq^ zl@I?xlpn74!^kQ04_03+NwkCPGE+0|nTW9RXtoc9n;Vfof z9d1ZmhWq)y7jTH@cuRhR0C2Tn!Gmr!r*uy;?#-#hvXjps0`vmTUNy&w?=mRk#><-3 zIoGFP9g_7W38jiTo2#=DoXZJWpL1W8J)|-G%xMCPTO8li{zw@snyHJ0R+}PxD=7p* zDs#~~zN(FKP@J7_D@pz;Fg|nBrWopXjot2sPTXH+eJ-V$Jd5Z;6joJ{7q@6p;cqHw z$xh_5txJ=o&g(vhdJST#qVtIv`PhJGSDGS6Qn!S*(=kW7!fzV-Wn9e@31IR9XK(Z9 zbLdh^FJ|jfw)PTq%r7mVAkB2{aM)4*2Q}Gp`L?~j8%YKsJQ19?10xlic@kbjx3+eh zAm3>Yrg(y27xXcnf8)?1#rG1BHK3z!Qzx{nSeCfekt^SPM%?^zi!0-KA`yzaRBY|fJl2?wvTuazQEG19PS z_HmJM{56lBU6MeC@N`;^0wzIAc1q%Xxpiw?H0ZCS-?VtHO2oyl`hqx{8K~P=9yboY zf~l&E<&2|Ee$(K?l)yMW&GiE+7~_c7Fxr0I((u+bc74=as{U~Z^E=Qu{p+c1*P9co zy2aa1ye<=aJvkJyE{>QO_UQ^&f9YsP&IV_l2#5&xSLZ;8~Y_L@&OXvf6DAPORHzySGotldvlrDRUtA zC9Se;xPYQ3Y3DwJPT~+`7OquFrT(Um%J;Z|@Xe}_UO}{&g1{1{kZ;lZxVP)~VM$Wg z(Ch_OZ_gd~PA7%dFX^g%(Ba))XL~XbpO2*`$Lf2ZL9n@641eWjnO&|z8Eaq50S#dE*l?^{7G=Y$jhiZb&R@KL45ZnF9wGi|5N}ktlnkoqQUAM&{>wPQ zTpfKZqu=#LLD`#gFx|nPH_gXhM8acKoDG#_-p9i?(y{O)uP%+wSfuquXT zki=w)UdtE>Uwf%db!NR4^Day@J`M}D?BF#BU<^pkriKu#>I7M3d|1(U5lG5jg5n(2 z+cwOkEu7mPT;VU(@vei*KOh@zL|JVxiOy^iON>4h_DIP$PFVXM!%V$9P4pW7OR&kX zm%RI<53wL?Z~6X&Sd0O#w=Doo0y4Y&hoCo;wV&Efb2Wd1mQ}KjrG&rV>(gc7NofxX z1mJ|nwfvxAGD#7NcYX%~(%p*LimcT+f;!S1voVD^RWtDr))~WAiI{H*Q1kyXDMn8+ ztOzDQ2Dj)q?9MCtx_~?#QY>OUY1rCyxGp8aVzTMTz@rKYUPT)PhP-SZ-M>`8*}uVU zS<5jrjmlN*LmpZcEfE(9&v*a>ipv%l`6{-;u9ByU zbDM@fj;Jse%nF#Q^6DTy9vcpvIdEjCPZxyLm_HHqv)+mXxH+*6FTPX<4r!Hle=p!t zxdZ6D2K2-`^rHx>3+}R64hFMajEQL*aN8m+ZUl6ly`tUc86l+g*1JLZ=JBYgnKW_o zX%ul_AFJBeHQhK$WGCrCSQ>bY4?*jDR(WUj$-J%Q5`cGa?<|tJ?aa+xGAS|RcJi%P z>d=jo;~3l|;-Y8QkIYie1})cy%S-XHZK*FwurnkR1t!5T*O^rC{F*RF!_a6Gb$8Bj z(3HB)hfAbCH7GO|)UaY=k3V)OxA80Klk; zqbWOBTw=FbBX2b-jZaOd<>EPow4{qk$(Q6F(HkKDFODHm1pdp;x2QVPACL+zNyo?} z-23zd71s>451xGYRp+?{(Bia*!p9n~f0}i8y#yxHi<_8@gWb@z68l*&%EJ;z!c}Lg zkG@<|c^BGsNCwn)z3i~X?7bACUx20U1ViK`yn(ig;%VRGmR3!*4Ro7RF);y;TV9uX zANx8w6LBFv?fV=zTYH!IDo+95J;(*70AVO&JK>f%{k9UC>;c_Aqu#L%lY)jhPZ9;* zzkl^U&bcSQg9jZ3olxtA{@?{6Myg3g)?}3n5QY5fjsGK}-JAZ`YcDn~7jhAG?sDgM zJ$w-Jyox=1BaMwoOXN>9-?$q}rugXL<9OOn0^uE$EpcWquP|U8glUTOfgcs-{p$j{2TRKOjSN zL|nC~&Dn*~t}1}-&_G%Y=_)d(CN`=|02+gBmJV|IG?bvZk+L^MKLgMpwrH!cBATx_ z#Fu$cw;|U^tqAKgFsm+IAUS$t!lku}R#t&<_>5`zMd!RW32E#1lWn@@Fm({H14Ups zg{lZ#ZX`(nVowKWrU&|VSa?q}rzQyFgI*xj-Fbx%y-7!W5$vOssenBU*^$MigMA(1 z-#?<-?Q=%ffG-eY7~^^em?^L-ZSi^~k8Ah5sVI57uK+bf;5Z$7Im3cpB(V0b9@^>Z zvD$HD=2*3|qjg;gSMe8v$l2awLqd#PH<%RZqA$4p-a<`n#ToF5be_ zV!vYaXrR$yspXcmh%Zr8GEZ(0xclY01DgcXT4?1GHaFPv z!{Ucw@?yc4-ofQTL|i4$I1oPCT_^V<@Zpmu>wf(d$iSW!FTPw1jOT~+z~0MiOLNO0 zuuA{n9tR5?Gdb&=o(gMDgH~zE9=Ta9=!)`eb*Xw0_f@H>`1P#DJTIUsjYJS?7OL;{ z|FDd$fFnMqftJe^Dy6z6iND5B&eu>ikiC#;RyFUGS(!aSa=0_XLi7eUDFXH7DV^h@ z8QcsTeNT!VJ#`z#6Ru1*U-vNcF|y&}_paWl0%@t^HyOVr`Q36EhKL?_h)_+b3G31+ ziqpn~3O#bOMIn`#!a^>6ypY5gQM=cgeHuMx`5E3w;@=jcKtSPY#hgv$o-A^PTU$a-(r2o-_Pe84zIz zjbYl7K@WPNi1px{kDpK!M>6w*>CVVK6!TDB2y@ohz6)%J>lgMn*smR)=u_EvcABK` z=;4!JKFqNWYU=G_>plK$*Pkr&6Blda%}i<{@Un{&vD*#x*lZk5V^8kA|6vQ`(Q47Op>{;XH9jGk}wHj=6|AHlB%75E_ft z+am&$0BCiR@sjVgcFFK(+hQA`)(&=33o+KGyIcu!L%2zy9bHrq zE{k9);N(zKv~tf3-dPp(1mC4@+o)dXXipGyXdh|fO)%j5z`w?RLhci9YDKf!288*} zVEw^cEtk52uG(-DT$foj1V9J!a7uVV-m;)fzC^4h1=*3Y%pBL+3C^{gJIfk< zYs#y{JA~~*W5E_DW9IeNL7`l?lDopWH#MU}Xmpz){7I3t`ggfrolokjwi+3Hln%3B zek7A)`qC`ENJHhR7h3(WvXrVD=fbYeVz{8_�v4+58DFeZ--8ifiCW)E za`TtF^g<95Pf-r`8+#o_c)rYKsX|v0y$~oj3PWc|MdOQoR~E7XdE4X|k*m#Shv)VE zJQr3`_4p@5B(C^JInWvba0w;X``-j~aS?+0@(wYJbAG*z8PRX3O_sJWZ22Z~u7H+x zYwSD_QKaUy9lu7%BR*i=X8Z~SL~~7pr9rLPG|<)0&Sb_j6LGaFB-Yh8Arvl+o&42T zYIZRMv)uK!`v?}V+P}MHup~vfvrl9iEl(auvM*`*SctlYW+!-ZnPlMTTsd&oCtF1g z1n9LIMUfK7u1mFY-I^>uhH)1Pt|8x~iK^-&Q*UOE61NJ0xkn>#3RW{=SKg#tc>sLy zKs3~G0p#WEr%=n{5`8JxaMR=`V9lvI z+JO&GcmNZ0UNG&_oCtpM64`URiu#kqss9FO)!WG{o0RH0z`i8?3!~RBvyz?`iSGda z^H;+#1JJofwrB0nKVfTm|2mPT@z7uu5)}AfYuAkeZwv(08{@izxuy%{I5;6nDxkB! z-{Aa%e6RmWD;?COCOTHzWE|NRigYB(QWHC)b!hEG`qxsaX^~&(0Tg6JEp3vX7XOYN z`(Qw1s{o{wj-HgyAXrVmRNTD-`v*+>{QW!EU}CmVe97Non9G?rL!n7wI1nY|P@@D+ z#8@w&8UTJsJuAI5hj@x0=u*!=R{Paf8VR%9fB&w#U!N$LOae72(Ai(3I@b<{jir=` z*qBKqI#a)il`?!JBQ+6e21|O#l%gLjS;Sz&R^%}i^gc4rnwDv!Pb~ui$>K+(0d4QiO{P=XRsprgZK`Sl^34B^^veZ7Gf*7Qi9~H5C9Rx~0I9 zyzzPf*{aPezKXU=Y_LtS2Iw*59u;Mp$bmTn*Wv}~Hvl#jK@O5lKZA-~5`p!%&7RoA zux`jVU9G9`ToAkISHe{!X?}LEA%(F#urj}lXuVDl%pgrn)UA(zrg5D#!fBkSlxx5O zi0;Wo3KP|wsGe$*{(3)fBv-%2C}Jm*Vxg$1Lc z2z-?empk(!zC`3uG2=AV5!&4=PruP}<&*=+LV|6*L(H7`8>e1gq9Ru;Ukk4RTeXO2 zoBR%)P_cMt9PogWP!_Spzpift>Ez3lt49$1Dmq|^4`gQn_?bpIeZ-pb2*%$=toP(D#;}Z+0B!2Fb7j6^*XoJ<8Pdd0zn`lI>Gojvl$^7dlml&)@w0=!Z1~#X2i_1xK4{rQY5z?&cbP5i1eD zG}VMY;w5tctL!9!wc-9mcfWe3Uk^-(p^X3D8A&@rwOFk^cGO^Y@)S>uSTmPJ(PgGx4xFfR~-dj@BdQq2wb zB}o`xbAlUoT8OsFG^2xV*)Wc?ZNwcgjvR87Y!AOkyaRFtNAv4$LT3(uQ!4$dIbA({ z?j6$EM8uc@(avAe0YJXUjy~*S-?iICcTUEW)idR&2$bF<7wWshHZg4pGyTQ9-0S>HM&!^*O z@%>rCVmy_CqtCgFenK+ty#wcDjziZGV31w@iuF0yJ?P9aDqcFXraH=B5R9cdLAQ+s zqi355CrmJOjr`>sQI499(ygM_M@pY*ogv-(kUO!ZLjL8RyH^a8SVYcltdDlNnJM+De*9;3b3Im=$)u<ap_ivV* z>G-hHcLJv5Y|D+ZQwUs{`!*#L%_Rkf zb*{Nab0eHNHCa^;CmZunW^DS^biT|Cgmr2A!YpnItZj+CVCxYzxesVSaga2kDr=tg z);#)$0=m+o zL(o={fIgAHinD?4rsotyL>MOh#K37Z&#RBd6(6h7ULe19Ot#pm3MKE8wobUaZqP*h z*EUPY&catSdAxqpnCfBiQi&+g-Y9A%bo|ADj~K`ICwYeL_Z$A=FZYJne^SHty}_sP;H2wGRpTiTPw*&$O-W##sJ|Eurtmt0t$)5lE(@I5 z)DuX=4i0!;wpl6$&@Y=;76E0popGo=hmk<8b5vHF#cw;TSZ_cFBh@TYXcs8KX`vMP-GA)K-QJJ9 zthcNLC=JkPR{ff+jmH`&3s@q)1jaqxTs1;qNqp@|LRFFoe-lZKaBec zxrQuqP>}6GwJp^iA9eh;)%e~c1T-D7gNgBaqlPIa0l}J%vep9uJ`}VFJ{hE|?%Vla z>B*>F1)KSgfhxkNXGCF%^!XKF^g^0_=TT1?)ftTTQlK+2E6zHRyo_-=VHVV0qdadtI7Fl=3#sQsGEYb|PND8Nh z2_MwcTh;(&%fe`X5g?gKjVl(nzm53Wvz8~Pqa=si)Q;g2(G+8QCR8k>?oJhK-DU(_ zALppOg)l7;Jq>|RD?v^R0bw1agP;s*p#zT`kA6KaSyWUn%?1jYpPd%Ess#d!FcJS5 zRLXU@ijzq9>lCZoy43pQ4s|5}&Yne~K;iW6H**5**GLFUbWzbKClNc_bcxHI?)XF{ zh@=nreNf-LKU^JL#ixlykbc+(O{DTMYwn5e=5w*s#k|J1!+@cNP%v|1_!yWYAVLtp z{DnfNPv8^PEWAGn%A~kzrKjv21eemksHPY)EPa6ILn%{KbD58m%N(e-{~(oyY%2hj zVQ<^E7ocl5-BF+)?z1?@EAuQlD$C*{ZHq82(U>Jq(j!5zB*M}_kL50yu^IX?;un_T zBcF?}e*GKGIsfJ8(wBq@TB%?oIKuXNPi$-uPcqnY#8bdN^?T3BlY@!j`L+(sSZ*9b zkWW_R<^7wDoU!^H`#rF9O5UM21Bs~E zyh2>LHh_5H|3JLI%%cJi>rRjOvUm%xHk(zVlJ|7d6FkyH_~1y;>^oM<#POr)k5(ICax_b!;iZbR+?BXMJqx_^A6 z%u)kA_bcm7L`g(_s^t#DEOgsk3T#4N(!XG$F8BpP#vf>R^`BwV>+ArJNjfF_&~2_~ z@1GtxgrwotxjHSrCriUtcP_spr%vdb$aZ2Rx&_(%)|6L1-fUI-P!LP9qukQ+>`_xr zck@k&hJJ-ofeXn7r`)6n6~6mG5lL_e1Eu+?3VE;FB3bNFwWWG#181L&<)$rEHb7Tl zF9yyE+q$vvBhU!T;hB0)6gtl@`6(}8V=`gcV(&nYCfAC6z_WK6AIWnuk%sJ6o!{5; z3_a4)Ii6~=dT}Ga`b9+C+Wc6o+8U~QN2f|QYol|ji1uEfi2rLAJI3!;MIR(?z5kTL zi1es-i*`b-wC2eKcf4-GFeK)WX%%FU*(LyMS(rJ->p5=^}e`! zk~S0hdFpbx!DVNWLkukYe(X`4@FaLQN)fclt;y8j?MK{Bm4fBu5%@IL=$VVd8;6AW z_L4GQ00dh$<0f-5U3?5uKjj))UFu<26@MmHIu;%b{qc(;GtVQ>Ss<2r!bzgyEUep) z2M`1~m^IH+ZK;_l=zl?=Rgv$YBlDe=srVf{g0$arrZ0FG%Ot$VOoowE`XO@8+->9CBkXFy%~4%&B4=Eq)M> zf8gY4RWS%7s0DQ@du4lZJ6zhguPE;Q8O6qOZS}@@vCkEj1uu(nN!J3|4OXAHO?4#bh z@qV$7(dzRqH&@5CqgS9TrcajXkqq(583-=)WV4|~)j29tL}HeSZr<*hw}PA_BD zB7J&Zf5147)^g2n3~3?O4s97Yh$=_Usg0us5rnhr-6I6YjlSE^$#}%2{KJ~Uja?u| zAzSl#jjXyhKqHmu?ILiKG1vO`94=QA-7NBnz4jfle>@KzF&Jbvm4FT(nZ|aQMZ83i0gUY3t7^RWYNsWYBxBsciOV$6k?xmZLHP`G|QN*g5Hjp#Ls;LdIaIQ5JNT!cW9VL zPeX3VEA#eQuPYd~L`YJlA^IRRa*<(Q za~nBqH6$hn-GAF3H;8-fZ$_lBGHE#aW~h~tZJJ6aodM_cqqxZqXNt2osf-A}ux`3i zRBB0%t!aB(TkieEvg$kNdy9mkykp;eHx@`D^aPOJVOF?U2^KkU*z_vW(o=kkyOpJ@ z)Cjc+a6!cC@uDjocm*!3j8}Tn)(gTU_JHXtC~ny03CnBxB#45Mo~Bw3(P@hBxyb|W zfQ>g9(&SaCSCnGhfR~Hjs7&tiVT-0+WXbay=^XhBV_qHW=Pma4rG1~eOX$g7OW>NR z5=w2@4u9@+(CNjxPJzr$?xe8^RBl}CTG=wzJb6xJ#IU2qy+ls(y}~z{oI&DV z&5}3?zj&SjJ}GwBrmy(u>tV&p9wKh(jqLJBwq@OMw)*ox#cpQ@Ni0i8Va3kNLidFe zqcuR%fmh`xMB{y422AYx=+<7%f8NQfT>c4JG(b?JNDS{UP<6Omn-!k@2h!(#EY}8E ztuL15VDTXl1m;}MU0QFKAe4vxAqbPA%TUxalRFTcxYQE|oa?%5;OO8snUg^NV)gw0 za+5Q6FaUT0epHL}_Zt#eqOFnc?9&N*tiSPQ@NW9%;0wb3hng1P3|7AZ7r; zi*znVEjg1O-2+$j?ANJo&|B`j4_qa`^PdCE{V$Vu|6Lf6AyYwOC?|kEc5rG!blXt; zh19VkXBNx3qwj9U#ztucH8z>ZG(!|?8&s@Boysi%!}0GE+2i}zF)NV<4dqUf){j$c z%WUJP(;QYWxg}m;=2I{36w{D2{E*II$&GAyr~DAoN`G5a5tIZNx3p^M4JUkzdg~JV zLtX1pqSDpZqdsPysC0m>7)83HAqj3N;5O?8MHtX}dYry`)UGojUxG=RXuy0Q1n@ww zHw==qgGkmZk9IQ%G_#0mpj>r`0nV%U4F&KP5u}K(bE8##lB)W#re6im$UX1v zbUUYF!^|(DKx4y;bvJ{Fc{YZwE$+};g6Lgtc5a{^!LmD_x&H-LkS3ySGJDhK01V`k z=nUCyW5b&%(O_q1_uNUCZB~S7_XYryShH3H2+>~iLzUzE>d=b#>g|Bv_eiH|9M~YQQ3QaAT>?%5 zM!x1TSQ8x7>6$g09lOi`loS7cYZ>{MXH@wo%A^(@r0-7H=p8*gl_PGjrQX9nn{bl9 z1)>iQgbvoZT)Pl8`!_^QLr%S0!oao)-(%{l1-4E~{1=W^;3nk-cHUlY-Y*k7s#~?n zu~XwV@5-mZVim(3_NKOWFYCSJo!lFhjSEF_vvEU?+GJd+`S_-Z#=6FWT!gv|ip^>_ zjgG>Kt3xJ8*FY5fFW_1+>Gwb1`M>VV5hz!L$EjRubWu%rS&G%~5o5RsgW{XHb2UC! zBqdr^PL+L35{^1ylXS`8m<(;yC~_ua-c&b(a4S@Gt#Bta^OoDJa=ND>0rU~lw#-7VxI$4XB?#;t!|&cbma z`k$tf3&GRhd&02#Rmh==EEP^En>(T*dNyh8Zn64-#nvV-VtM;>Mp;T1_r%YxmmR?Q zr4_qAXr0W_PWCfG;4N7YGXh|h6CSY7zOvY|h2%>vyQe1)bTA>lsc1uEeh60Db`&Dl z&J50eSdW`L@*cXdME&`2h8YyiD$(YUyde9|NOWmy{nYcj8P7?7L$}1@lcz z>1y*_Q$lJ>^`T4VVzx` z_WP`^Kd|3?rI`D)Xb_j=NK8=)_tU#}g~u!KC!|{t#Jy@G6`m1sK|ssE{{6sGTfIt` zYBg9hp1B0E8mE}qw%>;?o;!_<{{Tx1034FK}Y5g zFDUo#iIef@Y*NecIb{WVU_6FTbmoXIXB&KSfpJyq0wwzG^Ste^hUYJuU3$Bd15;qpR23TuWqy?bJlIy4pSKn|`mt{ee^@rsZ2kRrI z>OvuXcC_DNLN@z8iN1R&Nz-Mj(OIH*vrnAXn!SK2;TBCwkM5_;$M@p#@w8WNe90l? zKK96cRD8&+CzVU4xmrS7CXd^wQ~C2PSaEg5N1zPR|G<<^W742}_{DPavz$_|aO{h) z_;1%iO4oy}qA%E(bbaib_-M~5zAf!aXlFHR?Y8t=eA_W5|6z|qKOxbfK;mUGw_eT5 zzfAw6#-idII4wnBpzWchwk!@quCv^>osWS6Ze#EzAVOnvs;;!RpeOtXA0bxurdD20 z^NxxNAG4e@*Dz8(Rq|=)BOm!FzSxkCx$8rILX0K{de${#CzHp@);=u=meO%V9yxo{ zL0dE1$aTNsJ7?65G?abg9nP6EHzJgbjAP$VA%&GbhVz1~-|d&3(PoUy?QFq!uGF%k zv|>M??cetW-V!AFbe0+6207=IZyE9p2HU?ff2?}1bu#@kR};sHPI87A#FkS)injm8 zI7+e9D(}=-=JRjGj()#WNNsyEMF)ad27h|`yCPC>g&twQ1|Op*z&So&ny~KM@>KxE5|6Il1bdtmbFHO0dup^n4OjOGP=t9*TplercEsXp4?BR*`>#ivisD5KM4Bt zF<+%F;`50E_Z@w|cC!2GKZ}10N3N1HYk%nC^=z+=^k?vjHc7puKXP1jcCJOhB?7sc zXjx}FaM?li=4X_clzZ*iovCOw;q-CwD8K<@W_R| zbT-N3KV6o4&f4n5^_!w5&PVC=ZLpG}2OZOJD15wP%N|+2eXj3{>J~J7eI*?S(jpgN zq1~IXYsXZ-KVrZGD)r)bH`-b*8Qy(~pfo+zumYToqrV|!?y?r8Mm}K4F zyd$qCx|JLG+^Z@z{!JLBv69a0?$IiMp>STxC!Z0zC6m4l%I829Yq<>TQp3x)EDaLr z{JXf@#wCe`yJ+t1v&o5W=hA}N5%cZ{L2dtn)RZ*?$U{0GHh&zu4S}x#dXL8_{R+hPPm35^Nfg{?=JvBtuht(uKi2F zW&)5{OkN?#p0WOBA~Ar8%m#_$pOF8VIrd0zu4A6{B&IjhfPolj;&@t)3dhpXK;ghCQirqz(#w4v zA$oYKMze372at-M#exzRV=Jkkb`Z2t1PV+YTbeTPX+W_7?WNv0o3$k5HK^|N1sQs) zXt+9%XG&-Qi6ux=gOXg3w+HD@xC#pNWsI(hx9F#qpLQ?E>CwbPZUV~LOh*Fz|48@i z-TsdH6?#^IhePx$I;gs4y>X;@5%q82fdEyS&AK->{Ei}X8e1Cp6v(jS07LuhnOIZx zCS~52Vm&*S#cI;-PfDW`CJl{myXG^N`TKQ!I@-l{zH@gDiS*BdaRd@c@E7-)mknl_-Ke7F(K|%x7F)y^_3rv{R-Yir zv2N6WlI>vZfnnKVaQS?Dopob~q}UgyCY ztSP5Kq|&dV1;D_JXwIAkxUSzdsVsz_kP5(nfHWvGmUA7|AUsd~Hk=3?Y3T!C`n1<1b>PiHtu7rj4G!dBqJOrWgAAAVHx}T7dEP&4`|HO4Kg4DF; zuqO!A@uHRlKTKal?h^#m=OPG17k^Wq#wF$E5O1H6@&lxtzJi-sUV@hjgV;Y&2)4sl z2{8f%`TxMge}d8!@FhTA_u^jzHRl62OWp;azrVR-H+2GbEPikx{L0N7$!0${hD1ii zueKf@I!kL9_T9(uOoCx?$US3-)Y-C)%WVe+-q`G`_R&1jT1>!|VVDNfPip!~Mb$6S z%v-pt+558H&hZ-?hceH9yc!ng0YnIXLk$Sjy*BztO&>sg9~LhNqSlW?qq7{o<>3Td z9L|Jxg!qllxVr$=E8=?W1`olVF;C$fxsylzpV~yAj>lT+vVVEF{ zVZt802@Y6V{*|Ya^=D>G5HX73r-+phz5`XNAUVBA7V?=%FP+NpqfUX(S<4b@9nP4w zH*+6iTdUO&<-aDv-+Z|1i{rR!4;_?^F7>*eZ1Ha7+6c(Mw|wMQElF zEQpB&B7#zDh}b?UT3tNWAle#mTvdN;1l<4aY$*9)%n0tAXy-S?f6!s;XZ~Z5?34R& zErtHXJ*5KAKjfbuKXd=ir_7rnFm@{q!#ORZ3nDb9BhEOqyIqcCV6Q!8BbwTIzrRkB znb+;(<7Eyt==%QMsx;5Y5Byaz3qZ5@-A<)Ty<3H%Qjo9cP!%T1>8D54^gy2-PtHE} z@M}E!X&bwR@c{+Zz}^PIDu`8)74~jDku$raS&?h`l1wf`dXCIQuBw(DP4SWLfiGEb zgS&kXAxErE3UtBm^X+yF-v})FGuCq(i!! zVf>!K6TkDm?{$5DotZhzxM%M@&$I5e*1c{uH8Jn3s*SAaFjR;+nrd^{t*Ei7aerL= zMvay+D2=2=<(@V00JuG-tWS0~uGLe*{1Dckb#=#x=2y&=8m@*-3RGfl%g&_J2P*?# z`LLJ6Z%W)I*k<+Zw28lHs-L*kjkD15Z^XOagJ1XeQ^?}<=d~KfZ6H4vv|hYGKvts< z3knyVoqj0mT@i%1a(K!g#TNP957AphLTr)FPlhM!>U7xf9uNQIpV7efP|_?2tloPO zgh=GRtAV%tQS%$3MIo=F6AAH*u8=zZH9LKFU2yvRPT$(Vn08(E6I+zi_SX6PxGi+F z<-uxUf|F4a+wo%<2A{R97jA3p1AzN!ei|Q4CT8~h4KckAYyl_UMv*u5_FykbbiQ6s zKIHQN2v{|yeA2)m9I5>beWDNK#cO=1DmA~grP^BGybSJ~f$XiT(7g|2DZg2PN=68*Klp$_lvj4ww2yg(h7s#USVj#JBkv;Ge*X{6Ih1y+U&k}K)8==o|fz?O1IXFrlZ zesqdK_wZ4JTs{>XkD@wyfP!)Xdj5Qt0zqwUfWJLFW zLC6UJA>U9Ms1#N%N}$LRBEVrmz+*LLex4H&)!z^UaQS;P3q^jYMn3WV>G|Py51cFB zeX$-c0adBa@!|4p{IOcR!?w`K^0G+tTjTEae~^^9vzPJdJ#cZT(F-Nx(^tGsBA^o= zU}IypFUhLe5}uM<{LMZof4)Fipxc5?R{=w|itUJiiI{&ODu#a$RaErS_eopTR znq1uAyJD-bLo)Dn`bMIbpZ%XE5=`x;3m_5@&5MCg2jlIj=~zHr&~x5@xs%KOeb?K6 zAHEyv0~11jL5Rjae=@l_EUwC^2gZSk!yXL_`C}C;_LoPPHVe*P!wDpHkG^MQ;QCF2 zEnoKen-D=YJE!D%umC>L+wq=sY2~0PDn{Pp5};$i=0IU%8{N&nzxTGlxGCnKci)S- zRR5rwCch%=O)+d>(RZ|{WoUw_YOF>as5M64GM;Ql` zzieQK9bh*COl$?MN#aAypm~87b1fc;jZOjnlT&3@_o9iaVnz6-%Y~;G-wdGUSx}g< z$3}dM>xiDF&(Aia`s9cQ6k-)?`Fw_DJF31Pl0}+Y2~0O2JH^;P3*cn?;CicFz@V|w zN9Mv*3uv;$##x-+LAL=ee6*zEzB19modCW1JFVxN7{bBL1i)ubuf`wy=XXTr1t)cp zby$d{{d`lATy>-PbSt}Nrn+z80OF4=6f5T4=}0iC=d}uY&Zl*||HBIeQAzXpN0Veb zd*I_tiR-=9lqE$*n~7x_n^5Yp^$4t>=D#86(9)t478aeWekmS%nAiT;2=hxq|Kk{x za<-8s*h8uZKd-RUuHd6z*r3TdGAUb7(cX7Y*FJBYjz|$uQ)0~<;b=_p?EE?pR)epEDHYO7 zUj-vc4&xeX{v1WlvFDBC>&Hjv7Gc;vGE@6773f%Bn+ISQjUZiPF|9k4I3(ihYY=n`z3doznTvEu^R?_S1Aoy(*C7O4h?jWH$UbH{`h0Zs<lH^L^*;~yWW5BOzpt>^ zOK8iIRO9G42}s^3_;$XFx&5dcj}S@4d%O(dX>ZLqhthVi)!#oGubU4ZtoTR~q|F*& z4$>3UOSS9p#nhk-#&d=c#aI5t@jl8Kopi69j2$OOGj^WN)qOGC_PIx*pm_|qM56Uf zQ93HiY128Yf=r!eN@Th9DImZ!A1cVxzp3a$wG~SY`iSR!{oZWHAWFzG4ri5REc9}6 zAD{LT8+jFTVA}nV+E!~mdo#=pDs4z?9AVfr(S%RyRyQ5G(Pz3+xwBstEiw{&*kH@Z zVmY>}fBc@rv}>cHMm(;vrLj1wVYWaBy^C&;yK~5vLY2(*rFFbk*j6w$nf%Z*;Ly?y z@J2t;v1r`}mY~NK{oMAZ0aOv!+53c@3n)Jz4b`6d!4z{eoFjtuMtV-+{?Qcenb#VN z*Gd)}a6)35Z}9Ur-*5#BZ5!0kUp4x3$jG4p-`H=+b0aC6OLwe0nB%Q;#?#F-6rgT& z90y`%Lv21%nUs@EKU?aj^!48k$>rZ|p_1HGfly7q&D1W`9eT+f@1P8arazLoQEuH` z!0a+HVcfaPMS)mAf#3X1PmH7c0^OBkCi%R6o@h5SXh$;{$aJSKLSY7iwUG3+1a$*8 zr_Kxf!G9c81BaT~uad>=w&b!uzFbjBx@PTEQG#*DgO-7`y7UepC*$s=mgOI@);Gin zt@pLNLt9q8^HWJO9Hnraz<%O~4YYb%S+G*L7Ng(k{nIr${g2hC6kvzFZpZ~P09ze| z18m>eVB&oMp+R;SY(aJyU?ta!u41syfV-4Q=nH1QDh7<(|HY>XxPFYqDAj-f>;o9U zIf>=ufd0zlNvQI}tp`W?on=)~{37&4h_&Sof(4>AXynfI|FNv42L7FT=RO0Hhroso zI?fZ#S-CK7cMNI)&;qk0ihR=^~;w4pZNy}uKWcA|GQ_F59_eaPM;93P5&|5g1tN8?>31LRf=wEFY6KpMA9A^+WX@aQ6RO~b9& z<-`d{reTW0fMX-b+)zT^ydj>m(*F^3#`xO<5A1Q;2SS9(ep#I+=nu){x(3FbP-hCH zXaIHBBr!mi!@rlq1C?vVj)hCPPNZrr$!5gP@NrdTfBlk4=pZJ=&7K{QbD|)jjYI>X zz9M(&J&0vf6w&C%N*|9%;BZoD5{jfm5doqQ$uO7|gMg@vW@L(K^gX2wR!8NkuwU}O znhi{G0iYQwd=KRY(3I)FlNVQVj^Pbsysa4i&Jb53}$U!aeKh;yLG z+L-bj{?JwHnB&y1z=66*qZ2KcD2HyYU_2Gst!XyMjAh(T02qn%4@O#_{TCxuFdn;N z_LZDOZT420%uGyIahNqb12`d1?=v#M+d=^R9~D{qtINNFj3Kg1{!_gT z&r@}H@cfU%Z!Lez=r!z5<@k3uR4nMnp>zj)UDAcE^cM2wRr>tMQt)&A1y0Xr*Ei_U zx}sXD_A&C~B3H&UyiwpT=-77zJL+FV;)TcXPcxV{G;$kUqd!a9u6BRzrM`90Eyo-sH?E9KrB zaklHK@)IXIyrqOiB?bc_Dai-D2RFAUZB~Tt(=gTA=-+Ck!i%(~!NYae7O{6iI({i6 z8JOdPKnqF@ziT}#9fe9yP{c)q91lqkzLgZy;^WrNd{=6TZD@=L*B5;3lFwUY$zBy@ zZcVB8VVnJu#weAFLet#q7rOmPmK0xo3?gAfJ}R(PVmMGbdyGQKsg_{ZU<)6QlhI9; z03$v+Sh+t}4-Wfp>J0drE?PnVfC^aB`=CbevLw;YGg{=>$F7Aao-BO|bWt}B7+7wqZj_k4 zLUo5&%&?~yTr8L%iltr5MYfZWN3xl zn2{3^Z!S*NT7`1{QV*lgZ-4VnPwFVoYzQ@VSDxGbwi8qRG@WIWn;>~d9!H!Gf;)^33RvIvgss+412a6EFF!ljfZ^Azz@j9S)=>_EjK9u zpbeDsD941C-2)*AgpzF;}KdFZIq0QAfnG1p>0- zH?pF7UGN8Mb3T;WErl!<5cC@`LDL5u%v9zNp8MZRi-Bt57aRu=Ke(?4>9sl>NUz;^ zaz$17wVx$+a^LNqmP8-$B^p5=lTo2jA8ym7I$CM?aUF>I_ZKie=Nz&b85$+pFPTOf z&%Qy2U;RS0Qw(T_754cCJOiw4Saavf>?ALIAwz3gnd5d{@{H|EpKIIxfOUiei&?+? z+8~);@PC0H3u#gBadbur)1()%6o&qcw_kaA<|o9NJ+y!#yakHhl#whH}x=1LJ8MK!aJvy`1jM786@ z#-KDKd{R!>&5rpj_L(%)monv>aTo}g%RL!`#IDb*_28{s*YQ$*S=ydGakqBj`;YJ6 zGa?ihB8@(GjaT(x!Q0+rG!3B(&x^N**O1jSYw!DlTXJ?H^84%~xvIo4i`(_f8`%n^ z62yJKA-^g>0UkuVg@(zC3Ffl3I~1<+rOaNv7FI4NGtE`oHcDqc7JI}pVyN)s+@0bu zvukb3&;7n%t?`CZ{D^V)FV^$;c>s-1jh)_bpakq>D?03#1z^uDeztP+jljocia_jgZG%&b z>apVOpkG4*g|fpE0jR1?es9ufXO;QTMQLzM{$A@E3{lM+E8_H24s1|V(Kw2X(LrH( zIp6cXUtw|60`M>hZlAtz8xblA{bD$7Fd^L#pBcvz@}k%LwF+b*KzrRse^yy#(NM&UuM`N1t8`3R?$mH(htNA?(P%%FmBR7XRz7-H zcPn47JYlCjSFb%dwxEcID;bA@K{(^xVfbhQZ!3eM5j|2JZo`OqD za99G{vb)1=8hk!jJK`|^(KPJSv%PtS(eNq|<5RqTYG|zwa@URDlnwM2=V+{HOdnrD z-QO42Uy)OZT4eq@O=%DF1}iaa>@H^PX1l|SN;-Ja?#7Wt@o8qOic@6j?9$FsdX{IY zwGeJvoVP}g=`9PP0WsR{i3~O4=j*r-3+zmpM>Pqzx=Sv*4XF6Sc9mRKT>kG@yo5OT z3@YR2_dl7hn?Yx);1UWdZj36#2Vyy~``POuK^yaN!%K^36m`ohYJ z{X!UjfDy*WoO$KcgAm5Yis&AoaT?xJFYEbv-a77XT8#1p37hj<8$H{<@aab0`xvKm zW)y)Xf;AHR#mJo382IY<~LZ zxsG0;_WAIeoW2c%^RV}I9J!OMp`UWc3{*}gDDSpxI`TW_eNVtj&U6u+f1IunxtL4q zmCqoqsKp_n7hak7`6r-L6Ex;Z`Dix`lHUSn+CNP$h6qd-jEJ!~(8vm*r zl3tS^hoQh8(yu#&C8y|mvk1EfbpJPHq&3~fAZ5FoL?B~`vgtX8(^O(8hbU&~V06rQ zC@w@Oo|#47?87T98kTJc{mOa%J@8BW03;E|NRXc{7^3Se)l({%N#@x?zs?;_+nTA@ zGLwIYB9NdNhkc$Zbs&>H6R9QaEcM`Xo@$c4Z?{}?5NH7gJ;4Ch^{=euBb}#67 z(O*Tv&@rlp=3X9u^~aC>?WKKpf&4+k)jJt_4$IG^E$m1ROpr3By9gXKlniemllKR|Fe$pU`a z08DWNolka@RU49+V5TZetQG>3D@`cFEu7g3iW4C1TZ3VbGSn$JpuZgqX9SwQQ12xW z1;N(ue+2>j0T-Q9ShD2Sn9l*H^x`umg+Qr>b@A!IZ=iy_jhP_X3dnD~J|)C`KzUQ9 z1%uDRBwvyEdMlxS_7=MsqIJeMGApM;CVakgBv#Y3c$ulESSL?-QAL-3={Pei(_t`j zx7)ic^b-t5Y;lAdQ?(xxz>&oNF85v(BgD}Ch{`TNh^|04#c_+MrZb`%tbhwk!PsdC za~v3Im_1X#6u2iax`HDJp?ci7OA~~y2L)trTA@f+JuOecf)TOkch$4oLe4M&?8{|tk+YU@iFiz?Ud@wEUXY~#S=4pO8Je`PJT zY8rK4H?~r(GoH1AZ&V0t~)6NAs`EN z*Z;#m0H@4_-t;dcF$^-F{-Ub?F&y!+XM;)9e^MH_*g?EOkxEY(-M@v`@LaY0n=zED z)6&jiy%0Iud2wmiy~Kg6=`xuSn#mSNr{!nmue8pmJJjJ3XW`4w8i;b?Jd5m&?Y?cR z`TvjeHx_nWR89dH*9i<4uKG8#|F3hP=p)D&uL7k>=WzIIdmA$aI&8%EcNHWE+b_{M zC24N5ACGElv{@F~wHywJx%h{Q%kR%u2JqGB#xilsW8WFYX7Pt!;-Ncck{yq0Nl;Cx z26hfaQJjZfIdhi^X)%kdX1ZS5Qa0X51oSvo#PaBosMIa6$0}Qlaa?z0dt07Qn|NcB zJ-r4ub$G3sP|;Y8@XHa6+h17 z_Ru;kjvjzsycQvDoBo16X~gdN72h0OFV>f5{>6zF*7trq4dqO4Q5$~wh)>OcKS17G ziq8nDGW1PHVv}&LydabvJJl%44@-B)8LD^#&&U8viYc87@oE8yO~{Ane6ja<*T4z! zBfMGQiWB3tct)bSN1*KS#gsjU1BPII*n_|4Nq*J9!gzoO#su`c7iH-@wdqejOS~v{ z$9RrByc#=Lj@$)biOt2k-!HJTC>EG!jlwBwbJ?Fv(2%*UY$sL5t$c~EEY`H5Z$py$ zJ4G1EMWZ2?&Vr^O=KxoPG`-l{qX#Vv?cO?2c=!gd2B4U0eg(tX-+La^?_7`OB{h?q z!)6IenyVZ4UNK)&Yj#<=*(D=<*4AYoW?eS;KI?_PP+Y+Da9u+O=sG2{NiA!jp&Qnw z*wC}v7A~6W*teycJ#|ZMTdIwxms_Okrz!V!O=hqvT*)%V$nJ(xHA{6ZHic-xfwqlo zV{+7c3&R(RV}EjoBVajdz@p%{Aj2TpH2hI)SgdUJLSo?buTs5%?CGI z70Ydhv>y%jF8K??UT=h5_t?8&zgshh(V1*01LZsLK`2=F`wj&=Q6jb;m90PxmjcC% zICptD4Sa5X#rW_~KCgFFW9VP5foYI6hj9%o`EfR!TKRE`Z1)J4elaPyQ(f@YNhS1= z(<9>D7g{9xuN2LwvsnT^(3Ca@=sN2M?--JPM}5a#Uw!0^Tn@aNs8SzDgU4s|`rcoYF_>KEj2r4fVV9BqqXDl4 zHml?TLnF`cft8xMSZgA{$Z#8!iO8sJ`1$*B2XustQI41957;ym_>@hNzae$NJn%{5 zk%p|3qISYNBdZppcVBb}Ppm&GA*!w;B&AC~j27y95>kC^!^-DvFZCCEvY+Yy ztm4w*{qj$|RmNFzyG(VOEmIU$wiXm^GaU^^!q7dR^sP&hzY=a7@J1kVuT7hhKd(;P z^x*pXp{ht@|LG7I{i&m_)EWUDE1i58a=R}S4;e6vJzYFI-Ej~`@RP1xJUTM3WafR< zB;)9(g)>bd5nSj%DoE1&=y>d@ci_7J8zRcnHgj4}Xt}z!f_5_w_d7#QQTA`fwQ3Bm z7cPa-rbT=7johS&dX8guS+3lvfoR7q#9^k3=_hgZBQM|5yZU33stk+o9ajvG>-pmAu$&%>vr@Z2l2i2NlBGEa%{HT1<>v)M33q~lFQBZyFg^Hu zsJ4#php0~{&eaz2ingDo!eZFyt8h|e*M6xkn-$MYQa3-mhNVirw=yj#;gXZTjgs=t zz1Ii1T}5FzdWMSmb*(skZOyWHju{DN0Y)w>-9%f&X0>~0k<4SB2R%{uzuxoEXPr*o z8RBX7qSo0vZs`7MXL7ow{5gxGp>!bH_9v{p9>(;lSCXy)$h4%~c1lX@aIp=%S3OY9=>t+d9FIx8{y)I)yPu|GdE&qFQN%p%!1?PcyrS{R5q}%1Joho)bY^D+5 zt@o5wlcs*Dhe~z8CN`(7*4>n#Eu-kQe2!%)I^}BnzZi<4mJI86bb6`NLYYiH4)Ev{hWsE8sSN zXJ#xk@FMC=?DgFbRgW4q_fYBXd2`jGfD)q`jt8_UsQ1q4EewyvG+l2bFrAONRF1(r zO=}4eOF1XA*Ec&e8#>YYr0AbJIE*#5ecWarTx}Ezldi6mXGIW_)4#Z}H^7XOydC`w zzdi4XwNR-m;h|1-$LZD=Q0m4j;mv0e^yq`BAPiIQ`yWRbDHr#A^1~;uNZXHMiHWq? zt3i<|p|6G!gH@XG$oLt0>+q$s?$*IBy1!(rm1ZKr%z}n0HS0M3o7az}5xGGw?ggzW z4Z`&Bz+jSD1>yEfl_k34(czgkyj(@aHn=|(Cx+NUz?Ac+m#HZduCOnC6~AxRV1=g3 z-;?Tk<>lP&Gl06Uv-BP`9ASc}gCdv82kZ*X&@_dY^%Wa8mGIiHGY6Hwmcz$Xr4I_` z&KF-Tr8}^nmHL)?R)Do)G4t(C>yJ0|vIIDEv4&CLp#AgxuD}CN@V|Vs&4ZzE^|vEY z4Ztl0?ZB%{XX~<@@$+0xf=;8ViC%FV67-LpFn->FW% zKf7`W7NgyzrGGQg_hF@+2T={0N?=ne1tmqP^*_(VjS#z|Vy5#snIYvpq=g}0lySK3 z8q3@!*=vQ2hqox)Z15cCCBNTPtcmm-O<*+;ug@&sU~h*n6c)86ziS@+HZiVm)E^v! zRvZUK6!_5y;}mq+pe0A(2U~1te;ZBud>)-&s+QympKdvrM}4xLa@ zY!Hl(i4eT+!ua$RsFgS%<_sivUHrk{4}btdj(S_ea~@=eaX0H5#00?IXQ8xLkJe4k zaNd+e{D`*#%yFq6zfNikKfdBWLg+thS3w%kLH}5Oa85DDVh)PN)}felAI9^mtX6Yh z96*EgYAd>d9Q`h$Z0$dJ=0pp{umvxWPDTr)hV+89!XiZwsaq(DZmtA6gGhIM0^<(j zG4O9>e6juK(O>_dA~+k*3}XD@3o`$(e>LL^bwIdf;(m`=9E?Fg+CPWcz_4{g&ySjU6-CV9A(*6CiYO`!{!lOlw1SC=|QjD)`R6eds=sDHy3T7+1 zGI9w|p3u6ORKt!{e7M+99)`ZPjNWGw_j!c89M1ULzreoL(loa|2tr>az7KbQW|3>4 z=(lccnuPgfEZ%zOc>g59BBi~ls5ocNYrtmF94)_g8p>8E)Szv=5Ly~t&2ub&5OxZ& zHa?mJ)fKD8`IlDXebNE=wuA%vLH2=2;{3&sly9r9qOHFnm%>io&BFHK8(eI~V}cxL z_?BT_fET{o`&!9eoe`{WG^SFVFCJtLIoDQ6*Rgs@J58u8ZQy zbG_;wS^;w`d=y^nP1|Tl&-+(g+m-?J(NC^U`y()GZO3ljk;Ln#bvJr@K!^-E~5i*jK%%o=VYCAZ8AqxMt+}_6_Vfp+XtW--Jfw z9?7X9TX#h|FpR4BHqSX;*))m>oEJno`ZD7sKsQ_mTz=CN_;K8t+OPLv;`x)(bbCUBnee2v`iN?1&j~}>))^kSuR){ozM~*7 zqVPP@Z@ppU$k;NyuW9gWUge?PS?QVaq;FcND*9SWBHN}!=OJ;}$*+8a@iE)2v%x*H zM1F~_O%-Pmj-RaM$t}(v9p~EpUpe$uOSK)!I+N$+R1!m^MKUXQt2b`xHWZ0$i$-|73l zIVY{BXUXOyvP6$p$HRDPfAN$vf`&WeFx5jCJ-k;AbK(daPx!-*YSPTKAza5OPF75k%!H4zb21-{CTj@ zZ1w7T@r$T~X^USi;zH4+t&b=^85@r$pw%N#%-6xc3rE!^ckmmZJ~Cd`FWG+ca=$jC zVZfyp>KQ4@@|vJ;gc+YCkDyKXR7WO3htFZ&n82Vr+G*7-(34u0YwEE=P-FnjySJ`B zJD+o&dbD^Hg`YYZxv`qukNiG`c0X4Yy<9@qKF0$WMQ7c6t61^g?T@rG)cbBw=kDC6 zar!Ge^<3cg?jk ziQA477w~>`BO-kG{reg1x|RW*wl(dgA(g3eR(c=zrw!2Tl8-{rmf0cy7@A_qzT)q( zO9APFTq97OtD&5)K6a>S`#-g$;a)A|Kq`c5EeeoyeX7peKOq;?Q-Dxj1|AjU3&1{n z`yPZ&IchvrIT-7td4_a^Q%=K3d=$Wn>OBowDfS=V`d@#bZQ~z%V8TIHb-}$#=TWMu zcKZU34=c|mgo_2{?!Q;Q9}3kiBw}?{AH8Fm`M5TivsWwZN`-$I*^}aP5m1n(5Y0Li z(*C$z?>5{^&oB&A@@NHoNOE0&^DjGB9rwa}OC7m8UpkY<{O5AYR0<7|VEnn%le_x7 z_8)V7obHBw4?gpbQ4fSV52JFax}(elS!`v@m`F@gNH_9oV#?DNS~cK$ z`SA<&XG!l!XC!z&n|M7j0(^&!(TB+VxjH7=_2Z-;LH*qee$M*8A+NkLGut_#1Q*>D zeHYynqU;9RA5{@c8)huSH6>If5h71m=E|6xi>zr%^m$c8)b2ipaDM0K6t@s-;;&3|D-cDOoaa2a{UVzc$e&96DwiYRcMngiaysLhUYHN!KSRezSQh-O3rZGw)|z1Cp7StPP%AU9#mFk4;CXhzP-y8;)mwoA+!ea@f_H2a`icP&pIr$m zoY^I{B7BE*+nDlb_|(ewn+lz7MC#f>*bw!1Bh^~lQy!!QQ59Z+a0;v4Xeil{Y)_?o z+`~w@Y}%A>?xzP?T0GH9`IwlX{c6xy$VrRH-oPX=u!VCMHB^;FNJM@px0{n$;nb1f zNA-!*;3chDQ`0>5$xudNRky=~NEmhb0H8SOX+bVrx!$2XLmhsT1N68OIpWUT6)mnk zHDv7G{rUDM3r^`eti^&z#aR!m3}?J2zlMthy}7ts43!=u%ggKR?hO2R%;J>NdAGtt z3!7yhd%XUREp0w!V>ILGLzOzk`iC)KLs?<}dQ8t57Kpygki<9u-;WSEc*ZWK6N+Nk zD=U79rtUwGUnsAt=(}?(j-xNlESxJ{Tb2xuM!uO|7CJCn`}#pSz5cRP!5*oTtKP&X z^t1P9aV7WXHU7#fSNrp&XNChwM&g`8q%?n7rf_o->eI7hl}d2lVn;r>#iFIWpoUjp z24?9D=$C{e=2By9KNSTM2O~ZRb_8jSi)luvE3Wg&6LnWpb*cJz}Z2Y0~C|i)~ z$Fp=){*zh(<**nr3s6Dwxa5@2=!K-`ha=7$zI&-vOIHN_Z`Vx`dQO0}?$ZQm4PUz`AnDI z+M~~b9rF8U(bLZxpPRmo-FQLvb>#zp$VXusIwAmEW+`5iCo46Am44ZHgXcvQdb6`f zf^XtOYE_dk%hlHDU8aATe>?ApmN|)h;z0*phrDrdhBwt>_ROoF>n4WvS1ZEgQrqFr zJYJJejoY~M%S)_IezV<9n&xk&yuu)27w*~OEX)=@pAVn*%~q~$MSb4AT|PN+?w;sW zNe>?qatgg0KHO)(Xpq#+S9xsG$dWv18npIejd}vbXB?rrS<()-JZ>SMnq1NDmlY|@ zob?QQR`NWMpr^siNW^UBD*B3d8{89~ZY{J!UVnS^_Qc9rtySj7y@1`+R!x6GdOJ#Q zFMSc{V%M?t$m}k;gOY`ePjw@y9!f%v6)3EgZz7j!ZQ`G_>K1Kq+oc*S_jg^9tzPE; z#s+bg%y*OE-pL1ekxc8z&?hLKxRNEN%g-QxvxW;`Uj6TIQvnXVdr+-}XH3V3`? zcw#);{*tXew_cwX^v6%Z%-v$F#3hWG8w9qewc|9sTi1*FH`uZ}7rZiAos+l2*1}QS zYn26S9R+>5Wnh5#u&BpqagL5=D6llUW%|x3<6-$0Sf7fi+Y{kzE7+C_@iSj3A9#5O z>zAo%(Lk^cC2x4V`m4v&HlRKY7oL3?JRZ!Mb*5*GdN-xRHU~Q)v1B~F0zbc5190s% z<<_an_sWApyW1-|rBgrc=oPIWVJdayVeHB^wsLn`zA-4>f3N@*taB1e zUeg_gZV+Fs*T%$=IzMVso4L7hlY zXLbw%(cB^3U|d?*ZOF8yd?K`{i>mOu5;eWyg2B@T2p0du@mF6(m(UU8?fol{ny(BI z*4lmFASxw(OB^i@dFPZ^H_!I|jFF1UD}2!yj*f(Pv|erBani|U&^iK(+C5Z(S0-CO zC}HFd+9f>8Cx%{h-r>_NczQ%o?7)mmA0&ENq-0GFgVpDr*GIt+_lt{JLt0%urc6S! zQ?+p@nyHHzO{HP*qSa^17Q;qiyB`|0;6;(_(OOTW$ zau>RUNN_McU0$)fQd*i2n87WDpT!A;~8|~nXmhlCq>dXOS`Ec$OpL1an>4IOaRX2Foo`|24lB9 z;m@z@w)#%+wcPC%8Hc`^P!A2yC|sIe>1f0TPxNFXD&yhVoPh1=+!-3#66+HBM(1f{ zF!Jd)#OBAeO_*{m8DHYh8OBkgo5@F&UXwqZ8S<@2%N#?$nRHR^l8G$I{>s9GtXZb7 zMd-=$DWUk_akdhbtQn@1z;gL`tR4Q9HmkAA=|!%>t;Ok$Bd1OKUuGH^Hp!c5d7=JT z0dlCD61V^*amNG723R+D1c&?NMoJ7h8|&YUlo;UPEc^o8DD4H4Eq9`V1zxHd0NHj5zw^Y8nyg*fK-L2F1d5kIQ=Y4IxE)N z>L~KWJAWVU2zsSJlh!Nq)#;t(plpn+)p$ett4AD%wS$ zOxx93B#Ko-zy8tcpev_hM$IaqLbPu)VMr0mkDxQ_f(ya;i~pucF8N~2#8)ty`UUy% z*MorM--8F6qZzFN>!6YUuqTEVAp+8zAooCo&S#(i-^~=gbdl);g2G+d`eR8i1v{yv z5J?J!maP-9W5s5Iv?ffpk{sm>pDZpf2;~GZnixHQDG|ZT0g_EkFjKPbi-Z#B3FIry`Pp ziW_f!rT&H>Y7DsJ*0i&r_jDMS-+@x`8sJ{;Lp7>XGZlE`PW|3IKFGvhZDc!r7hrJj zEzi0O?CMHQcd?ju#q06Sp6;lq%gRtG&RcBM9a6Um=Yw52$z8(~!Q5nDHa&m6wQHXZ zzZcN4>=YoVNiJbux*I6tHLCbITT3zf+w-zL?cO?8dCj~`b?*urRY5xv@?#Yg9We1^ zW!ky2S=!MV{FvT+fOkTR9a-*y%?5r8x4mGfox#R!eQ+h|^MH^3A*Ag9b zRffc(M9JLY%fUi!a6V%lnTqPV>Xiw<-B!H_9WkoL%D^We<8#dJ$-Pu=*}J>@%mWLZ z$zR70+)$}Jz56HpzqW|c#S zDvw?mZ}-}Zxq?Ol$w`>Qxm*2oG74v`5{;h#_U8LbJ`|b9aeK{i((QSL<&C3UaeNlG z?|B(CHgqD~5~)p#m^4%fZaR7^kzYGD)~HdI=thri8VgtKQCZ;1>grv6NA(fAS~0L{ zfkf+KQ-AlbBgBTYJoniz8cp?K5#geKwAu7QYDV5r=9>gVL3-0{&JCU=z$EAqf zRQask)wv2Zvjf+{H;vXBpf2Ig!X5md*QEeoQ^<(+wl+TI1N!;=!H7w)PSnBp+Dr`3 zvG4Tx?bevTp4c&hC!l;GxE>gG*GfpEaYsRbqLZ0neOLI-y7!kW3JY;R2LycCWGjVg z#0##4-*w=dXer6H#Y(t|Eex?3FIz^Mi)n$4FJZzcON&o%RWAC4omU8w5?J~d?&Hm< zgP&m2f{!q8%mc^Ms3PqAW*JCM>F{ubf1fu7ddo-nsg#wWJ+zSqC4;7hUkn=udh#1| z#B1;~YElmX>tP7;Hpjk6Ea~ANn(`jwK4~M+sE1ug<}OI0{pr6+qOE2)#c#-K<5MMZ zlIwp{nEBL2ia+2;*Bp$?^4o8SoRN-kfI$=(qUP?sWE}G`chp^30T*0<;$2|QeP_sdn}6NULGzenMtuY^%#e2CKM(0NC^1{L+n2f0**7UsfTx-|`) zQF`)5cZ0Q*UUD%&nSSgP*d^nPWP7;l&=}eLnta%a+alv~O7?lV>8fIrZ%~%C^)jAK z?&}%eV#4js0`qag;>Tq*v@-JD)y9G(g-A`rqI|BN7E{2d$Ofq3!lbqXom&C??h^8n za1Y`kz;9o6uAc|;!1oi^`Zo6B_QDVl#@7-|umk*hjB}(|xia*BJ@ci1dFG8|x@;$8 z^PnPvmx}MC%6MkeSj(zGuPkroE>-1ynv@JR=^nY^LcDT?9Oa@#8!xqDs9g78J)HdT z`iYk4TQaC#GA&)D*xcz4FOaAB9N&7sGvDB_$mnpQTZs1ladb3 zNB=UABA!>M`3oWGiT_m^K1)&8dQNgdZA@+$4z>dU@+-3b4i7$BraTW$@Y?4hJ%Ri! zeE-N>FD`=(eWjKk_N!wHj8oCqsYHMg%7tsN!F@j1mY}$9IxXEWf&qG8El5Z0u$X!e z8MX8HhG|?i=b}fR(lx#JSYq~GLv5KzZO%N7JXwzv(&J4@y`K8SC)&10cznpGKdo7u z9ufWumns;E3Y(---+c5sL*;(9D{yj3+;2L}2zY008_E&gwWsbVLO=#pr!)EdGM37k z<4glP{UxGQlBr~4sgN}iA*oaKo~bn0Tm@?PlS1qJvm9(Pr+_D=EkA-7qK0}LkQ&$K zEvYwDQy2tiEcJM<99JdJ4THi&VW4$C-#@UE2e+RtbUG6{zYIG)I(c}&Av%`}5`-hfjV41m=Q-tt zs&Kp!X+d^+vRytWi_tR=HFrZAH+N9^&UoTjf+3f?Z1h7vV&$a1%_?I_vi<=@KGLD| z@3C=|Q|zoNXU=rN2~e+razUJIr!-$6jRNPg>-|lcN=&~Bah72h1lkU@I7ENmFe>+) zKuVH@oa86)&y{>}%;qSs57jyNb@KS?s$OE+!e|*fa9q9}m;SssCs!m=GKho3wM7Zz+Xhp$WL-WLoGP?`N^xD2Qed)#vw6n+eY}88`zys z&+>OlnRj}&#JF6a4QxyqCD)!M+lJd!&NuYjb(^{yZ01V;9NOt)=skDhl4H2PCZBfi z5EpyuUL5(vGxnl)_HEh1UPwX8&Hdx!ED^%{5O3gcqqvRfxH<~dbC&2$Dl`ZpwX*q4K^3smjz!Plrgx4?Xj zR3s0%ygQ^ILF>R@S8+fLxyI3RxVxn+gjrJC$S}!=-ycg>0g$uX|Fp zC((07rq+FBr7=<2V&qBYu`c?V59dI%>Qc zo<%vkp!3O?2&r51bg!VJbb(ms>GK@FA>LM*`f@a9`R*R3v2G{P1Z=_HcHvbmjvn-W zxYX$r{d%07Q})K`O50K!D_qPn`dyv-R(=F~g80@F zs^Op#Shbj&_=3uBha>2_79G#`&;!b-G+aM&w}a6-NkXQ=cb6O7=~A_$!BPUhGKy+ z^N)j?ahwn(2B$NI}eHwzKhlM z3eYvqKn9Ef=H`2pQ5|46!J1J$y|mJJOiT`hIY0sFNx(+{Xy?a(_I>AP@Fe47pv)}< zMG~WS!8>(8B)uz8!&Q%EU0F`J4!RVDTM1&zeDlZLJMDLc@M+whi?@sQohQ!&Hr<^p z+oY|IBMvz(jW4|<8rxf$`&c~*fe$&Y=Z;E0!f-{-{@@PpE10v|Kwxxxs36tpo18#9sw+pZ_HH!&$0qg_-g z!}LZ@nnw4D85MIN!3rWZhkQSu@$?vW%A~lnmX&TX>1WvyXl*Cav->{!b6 z?|xy>)#@>7@!&}qhu}sqKhN_}{WjBZYIhxJtvAyDA6;J^*L2&q45uJ3i7 z=W!lEK}o&(FPp|;62hJeUS&rCdJ13MZCVsDCmQBf#|0u?k~LqQ_l1$ zVBz~Iqw&-qk;Fbk3;-MCG9px;vU^XBb+S!Do{OMk0MkbCY-7ffYHKF&xCVemW1260 zUwjC-Zh-5~;Qpy5gnBKN4`?8yK;rrh5J!}2f2xnzu;PCLWDG!vaVsn>IReCX2le*- zFax22*=YlB<(;3f z^`o7NpI*E3_cW@Ok{GYZtTYxWG(CsEwmt&a%byO=IFQL=FxVPWJ+>Wl}|AQ zcSO#y9|GRUs^)28J9vwBh4)}T@dAkG;%uSv&mqW67i47`5Cs(OSj~jY zM{H#-qO@{<6P=SrY`+89+q>!1eGZ^2MFsMl{#QB8M4Ao#t3oO|#RHQe(_}4+Su%@n z9@6WaWxR48A+#A0P)_fZt520Ma1pmVYHlx;_k#D8T!%qBLlhM$89n-|2N7BROkXt% zDdk~w7qCs_23M2H0^(KB?LtYmL9vPr1#{adsRX)^fz9Y=^TYK_$u){2>bm8 z)lm-*bk=V`-|mBx>C4Bh{?{M61tPzR9Ig)^_!uX`Q@px%^h{4udCi9Ghh4UYZ^%FJ zz-vS(&mWI@s9v?k--9m+n~MyM^}YE3n*wjFR3=7wsGN1GpG#K$OF!oTuPyCXnq_q5 zqzyG^BN0M{N#2uOdSy2mG%tU?5_x&n(AG3i>ufC>X%(70)c^cs$TELOkf#ODq^Cj7 z(Eqo;OJy;`s3kn4q~}xTnfobuLz3&6QytZIaPKXOvp3v@SpHWV?5Xbg=ZSvz7G)YTKX_l z8Ng^|(2k_z>#r&!?K^_P1>@Iv0)wcIhz`sQ8LicL3$?d@mE-hQw!@?FQkN~~_VOAG zrLxgIuo$QKsYRPZK=EM!OvbmMnD4u&ykh;$X(AML`L*+j^21zs8s>l<9#X`R(B3WOc`fbrGp^%TeOml z^m(}A#M>PTZ`aiF@;2@|UMizkwRg6tD$-pZ=IrCjFWtt2{}PZ9D(jv)<7$~`6m=bI z2-D}&TfYc*IgHgjr@9!5Z}L?WX>}wltfFnQ;B&}Sp`mejKg-<-7Y}%$q4NTrG<0Ad z83PJ5DmdH50c-nl($IDYY&v2Q+$l(_hJXs@Mmw&$LV`-RNl=)llz9BB=jSVYt9o=K zgNoA;hw^~_M7az*SZ@O70mpGY6UP@GB@( zzt_`KCI4t}GoXblvUV#dfH!oNrvPo8168Yk$eme!aJ9tJ1~OR3UsH8M(d2C)gzNbv zG-qt=o26}BTw96UwYTAd{~n-{IvfNLxC%x7rnz;5vK2SGoFxM%)`k$q`;Czq8`USMT{n)BkDm;ebqxpDlIxsh zCEdc$ox62CIBDZfLyvW=eJHR8By?@X0FScTL7Vi@J!=U8#-@JLr-EA%UM=HJ-@Y+9 z^KcxG=|8%vf(M1}67jPyL2Mq(T%ntco_Mk}%Htq3*ob2a&Gicn@1JBOmZzgK!Vz{lSq!Rw z-T9!QsPR2v?Y;&xzv0h)xUihvlHW%gM11a6>-sSE7RQIHY^#C zwNI$E=5zUSb_?&SAJNq1(b6K4U|F7DH4`Fqzq^YhP+OxNh$<0UeMQ`MtJ4jok$3%H z>fMfdK+i;Hrlq%v}^g4w&R7fapf5|vNs?t;Y){Aa?WpP1e$z>yfi+$Dk z`IL#7o{XT3qARjpcuHEMd3Aw*DO>7Z>Bt(%nR;r$Z{e}3-uGuRHPwn&-5np!tyDG< zl0jMfYYOr77YhZcgGgK;fF{4dI}2M0!KBU%K8JLSI!==t5RmWLHX}`!Ug^DBi9axjS9eX?aHH2UL*Cg7-l@62fGAd#)DwC;;}(IFePjVj3w52aqcs@+M26w%7l!hYJO^n? z>RHA!DoDnVPM*ARdo49-Qj@0;!N%SwTT#IkP+I4wST_thpjUbIiH55mb@p!;S$RH! zeS{OI&KZ##ruUc83$E7^w<}R;>^+x?VELLwi>`xei|10e!J4j^Jo4KJk?LL4j+;q( zR=Gp0i(u*6j)JgkWw*}r%HvxPO_Jm7nG{kZHJf;ag0HuS1ITH!J)kY~xp<=MG{Sv^ zI^gp6@H!uA*B<#P#mwitM@RYmoy{*Z^~uhBWH1XL_a$w9RBHcpT!yN#vG=z2pimrP zZ<_@ljbs6{=P-M}P4nh#!WRaRIMi+w9>wpS%d%kvc93=ph20|A8Q_-lL120VM`Q&# zR=VR!r*?p5E(cpH@{S^QJdZlh=AN4uuCQ8rQgEKpmi%3yXQVaOAgvAlmVrkfZ6Inz7EX{Yy z@hBwsZgSq!?fQ}T3U0Tx?Xq4z;DJou#O>#47#Rhd3~XJXsa{%Bu9P#3mf3;K5Vp6y zyeF_nbbDa;dO-u9)N6h1s0U@fuvyWLftyj!xOjfsk0-%>UBG^WkCHKu59MmD@K(c{ zs4Ze(&C+y0fYhluP_Q=t#5P=SMxLH1G@p-^m23$LpAz{MC)F0;&%W7C8o1h9yxO+) zy<^$)LDczKdxHd*&!$-hcjA&Sxol>+v|f8F*WUg;hsaTX@!UOZ2#$9HHVbhqnLCgc z8}3Ce5v~pMOiQ-j7XD1Lw~96D+I^6vuvxc_p?OJ;S~0h2YX^u zBzstK(i2@{!<{=On6TP@iQxR#bY1d3`lBY6h17JQ{hL^@YaG=Mfi=M*j>a}6bG-z% z9B?PJ&$gtK?QADJo^mPj85M~!KZ}o#FXp{@Zo>A+(66Gn(}5)j>I$jZVtcM?a~Iq3s6>G1R?rw7$MOMwY6T;Qi<&GU1rxrJ`A#dkSMl&riAYY<#!;BY&;{_aw5H z2iGm)hV@NU38vq&V8$b38|d6B19TS^r=mvG74zKrhPPXr&|f#n2>vxtLXyq$P|3^E zuhX?drXRxS&;>|um_>+N!g9h~&T!8!{NWIuI1k-nS~0w*J8jGw`r)21$6~|FN(9%W zJ;*iOd&QnGRV3KMDC3n=p+X}!rEg7Zd7kOwr}gwlBg@)X9eba>k?zZvKT|kzSo_^0vrl&^Avx^FMslRAr0N0*J9&XpBmFT{DRfZcM7;G` zg*B7v`SqJ#wjs};vi|2gif>N(Do{6d1&&3j%%gY!kBE_R#HgCB!FqcR<~-b1AqPM~ zze9QH*Y{0IY`1k^bw7gCysYFef$b}ef$0=g>gKyY9ORV$i-TO&B*m(M&>i);jB1oh zp}k`g>XePh=dfvXPR_(klq_>7cJ&m!~xGkxat5?TPeH~?HaxY0c8*J zXyNCCP#k1*d*8^M$<>a@zTA}UxZL<-F6{y05h6_(zv! ztT*%2+*q0l)yM1P{&x7IP?U;|P+c6sW_bM;afX{&%Ypij?|hDf@@i@Tpz%(E)DGOQ z;Br^MepuD&LG~ZSwclrFC7W{$4?cTEVlJRyvsfKE1iPq~;c2*@LQ(ep+e4V17q@ie znj@&5)ehCXuAuItD?)kk8eM|+iorE?4%ALBe&rKAob)r2s{3Ws7_Sq43ND2G3ewSh zKpy$+tW&eQ5Z|69*Fb=AUTdrtrG8YsqR?`Il40xuKElK9UulZYhkHeGt>`*ex`>Ek z%To8x8~g3ionsMdrP8Z2^oHh1b^(2w@pAO=C2rp43~)7#fO9ocUbSF$R!K7*$TK>H1EM~?1x>fOqvE+< z!>-maNfsN4(e_+4{fsF+Qb}VTOCeeD{(_6w=9POUZX`mK_&dct+m`x1na($7vqz1` zF0M4}w1w{9kfqtBBV$@2eOG}Ij!!7X?Mn<@ylRaTj?aw8?q1hC`ArmBp0DH{E@9nS z4pU0!lPPS?aBQnu+A*gmVX|>I!)8x=qUe{lN0+QGUY6c_>^gk!#?^VWt=+C!wK`b` zZBlCDEtfEiLgY+s1okBRX?YL67$-Sw;0Z6Fq+2?y zBFIZ4v+?Z34R(i$lf5^q69q)jaicH2f6R4nUT7yv)t}E)Bb81+D=x^89X;3ft10{P zBkX7@N6s(0P?wGZdX!s1N%Gj|Vn^e$EQ@2+55yI{h0n|1C%P-L>JC&AbzdP)B7%^= zOlKHGop|>tRsKoh|C-X#KmHS*zp>2Jv01ViTO1 zRc>cdGeo+aA$xyPKmQk}VKs zq&5bXmHJ3mpAW}N40Jf3JhQOuq)RkHj7$N@AY54_Gfj^zfw@!6jZ$XTRCh(f%e`4~7>!fiS zXlDWNF7R}D4mwTE>A!re|9DoP0Vc`!&I7er7C%R3dL|K-29ShtMgDQR>js2{7aYLz z#lNrSc-Bh_SMO>Zq!x?bzZa`^wq?j=E8p*=Z>uJtpR=i?6$JBw{OwcgWS>)mK+u^Z zAFo(ioElZ0s;|z3a7kzl?j~OwH?kH{*MI!;smdEY53}L6huC5#UkerX^TuO(*r?(>mMp^y+6O zWO7m*IP>sUe3R1zo)SRjAM?|fwf`1bCH*GS%Edwsso+0XEV-g_v=NZSJO2`_DuK>) zzm|RD?l3~T=YP@AK=J`&J+&8?2}TFOr&6n)#nT!J|9+@%7;JdwZIV!RsJeloI}i`G zN;NPLbG7>Qql%7&^U|J}m>~Q+*%ZCB^$Hy#^$XY!oo9XFPD&0hpQo1w_$rCc_U*fA zXP3h{^5IJ=+s6LjUV08eL+8k|bK5wmG8eHZP8)xM^t3UbU+Ba=&ZSwa>c-5P)6=)A za`|oshvNBZV(+VC3V&v+qu_Vj^_SHnJO#Ku6*g5pI^Q&7$JKMY_Jp_Tm?98`yVim3 z>1zGF?-s>9=7@A@6bMc7&{6P*&r*t|Mu$3u-Py6*orC$c zon*H<_-w4|zm@<4ykWsw2zr~)#f*0zs~6~Z*drUMa|N1YZqODJ-332F$4XB2UJ-2S zJJ%fi1h7|qy=^C&-a^47lf|g0fvl521-iV93`o%sjARaIGc@o~Vl0O;b)b9} z!X^Szn|skO!=Kp1%tWs+zs62RBBDuRgPKouJp;>_CHrPsO=E#1oI1u7*haae?p_`cfe%|VeF8ve zJ;2U=ZCbsyhBb7(ZS4*tHII0^^a$*b;kyLU>}^;=8D3QZT!6Oya|659snMVBmPOG| zT^#1Ps30-vtZ{C2^J`T*SRBKFCg9==93Fwxo_uADGdS@=l^1w!wYV(U%G*a8Ia7HW zN;Zh={3g1HoX6br~XlRL|z*C@mctJ)-100Ep~j6Bn0eu z?5D_TUILudO>=r`gY@l{@wR64JjUxoSXbv&NeMPm)Q3wCE|B?KM-Ag2>?afj(9dK(t4Mt>-ZFUPL_l`1Gs}JS zfmu!ely@RN;#so;G<92Q3AO(hN9@__Ell<)dH6SxBw!B@>Hc94J104f6+3rNg)*CL z=xi||!vyzHeGE$HQaz|&vxjJNnw2j&w~oH!ghnC{<1Hb4S{DL+daG2q0g)VLw(A1- zeZhx7i(HT^(sNc>Z3yq#l+vQ|<^uc0+l3~L9k^iJJ+#Upds%4e`glZwxjsD>w_-G#0UH?$8Zi&+yPF zw7Hy^?DX`TbZl5ohyLyF)pd$R5G-J_L=YRjj>DQErVRT6BOYC=k<2>AH!cW$bnaTP zwK{lL@KQmP`dgyA#_~m}Ydu;Q0}`+ix{WQ?Ke^|e=!ERno@B)ac{u4;8Wg&qr4~Mi zY+8E`kMk!0pAZVHz;gyMnFAZ)7v)g?&6b_cL)cXFZtp5;H<`05c0{q+9z{{KwK>tW zw3IO#f%lDFdzms#p5(o9ZTa<*94eR_m*kRu5;1e-`t}S+2 z%}Y}_PH~}dbY8LmJF7*n*tX(zbS|u9V^cc}l=u1J8-pk2$H|AO2MH+!6?Y#tt4BVy zYbU~JXCT`UHz!3`S~|HF-=HE^|M@WcVp^T{(~JbaCfhHUM-WLm z86wq14%BV=y)BN-L{4dH{MJ0{jDuC8bb`^_93%-*6duofbU07ey5f?}dA{bTFw$(Y zs@yLvejIki?DMBd&K%%-N9taXN-Is*xouf97ygwWSBZX|wm)~`Rcj47*qQQ&fpycI1%os)=ZTm_!#D2m>o}}! z7WXYt(Hq*GJ0ELhuhueGOk?D{YI!MotY)In$z25+Gg(w zONI9G)N!<#q?96F8CwbS8}QCer*;|IRobqw->{xB$UJIEHANOb0QS+`E~W(1r2SSQ z(>|g7Xy>7vExs9=H_Z&D<4?*eeL~Oiw-!k^bI-@`%@&xp+n@>clsam>c8uPlglAVk zc11+vZz4YHcL7at{XDp_{G&{WJ7G{zZ1)6HD@WHjGxu<#N5~d(-VM4TooLDG>V8|n zMY>@9q5$)3l$r;;7G`-eu?c^4f(3kqLdy4odgsP$l!vrNHR2ScziE`JeIXHovCr}E|or;K|PTF(75+v3CbFUxNwfs9h6qQd)tc82-C#M`YL4HHmtOB=Sjw{=*fV! zKPwLg6{t4VEx9uzTu*|(xn)$})N0l9)r$OsXq3P$;nK?`fG*T}GCmV7M!ibI#v*K- zI49|0^8=3KvGzaga|KV4N^|5Mig2~G4cJhT`oVqaN{e`TRND%}&ACs3By8k+eAk1A zIj|5b$k(yA)+vRdTOEfEIqU9Fa|;)GGLR<-Ii-f3?DMSHY-z*5jRSOw7F|rBQRA$?d z^S%tHfSx82NW#K z;ULk@nKr<2D+QjIYumyL zqdrO57fz@ZZs0P(YvTr469YBfm7{Ls#>U zfimr^CymQMN8@lfvK1DfC~V}GEng91f2STZD?EIaZ-w#KllJ?X_omV#wSR>b5Yr*l z!)>h-iWn+xcB5`j7~CH~loW^bs6Zh(1l;L}gtZEcpksE2{?>5DK17Tg6()G>_Ix$1w7 z`Z-f=iKm>b&BZRSDE7}r$@8r5_X-H`x3k5zvkhy>IcgPZ#+A>`EPd@#tx$$FMH?qD zM&NIGn0O5xh{rfkXb>h`@Aio^MRjadLTZ*fJgz8EccLxyJKXwCo(~oMELqxDWza3u zgFV2kDN)}FjXCS|DAd8nt`<3%-@Pt$LMFR~IoQXnRiq|njU2%(VsB$At$(gzL9LkN zG+keJm-V`)km*)~ajwdmLXA1{?T=|I`2uLekyFh)PGkLZ;q2l1#KDARzwH))8l-!K ziqQ=(4RtULeq4r4uIF*(+KKmQWl~MeIuQx75GXpsnX`T7R174;FZvYwUyW`Yn zvEl@k*^N7IuVdvY51z#J0$SvOQrlU^=OJpq&%^z&q?cD0a-93h+RgOl$}&EfGhaxU zxZGvW6qoKh#%=Y-y2N!auMjXgt9BgEb!d#c9kAjKMSY_fBluVzCj0~8I_iA;_Q-^s z*U3zA*SIg-t@SnN`Lm{l{bhP?M-#4n&OX|$X9tcYZ(yC_W0(JnzexuA&9?ndW(Aff z8*1Mab|fP#gTqU*59%SLEI(&`CT3huX2p#{(jD@Jb_#r5C`!=aw|`UA$Q-I52!D0h z0mm3ESN67eR3v{6f3Z}OmEzXgU}`H4F4vU|6zt5tN++1pb{Cy8} zVDG)t36IbznXVDlU^-s92H@w2J4j55G-1_ru0>Vte`zPP{-d2Va;8gP8429%${e+5 zn0v`${KNZmc`Y~Xc)>fHwY9aIDhAJV)80Q~vpAEN7fPxwdg_2CL5I$!Xr%-1YQi9QlR4&?gP0$fJXz!t^Dlv?HU5G8uA@JOI8*%)BvAoi z9nq&RmrmW9LIA2}@?2v#GwoB5NqmAcmG2Y4ahstkk0CMvpYJUD>r?dat`vyeMqNV% zNm_b32x4S4^aOEKtZMIHy_B|@x)JSANttu@(sRK7DKQL-$44Z@p9H)H0S0RxhxCs) z3$mHbIx8oD_#Z~hA*b!k`m@?)Y)zr0Yvgc6YhXQEwbbbHsYHy>ANiL?>=m1iI>j6( z`Q+>+sKP#sS!L%0`83#78agr`Z;q2TN1INBCsy9|SThbt|HEaI|A)&a=OlVFH2)06 z`Lj?70C=gsr^Nerbp>HfR3zS~1qrWejvB0#oWCveQR)k+2d962{^03vgZG5+}kqm$P zO3%)6O;DyQy9_WxjT*anf{BBfhn^_MttAlw-=J4+HBAIbAr8b9uV&s!7=OgU*&(c^ zd^Y2Cl2|ba-}eBVX|qo1_LbhcwFy_8_`H~XIM^Mz`NwQAm>pzjgVlz<(5>yc;Q2Jd zlp}y5;{UmK>M&T43XT%%eZ2R?+6A`y(UrNA%#6_#0VI86&%-cof$s$RUUm_E;bcoo zE}rlEn}9DZD&Y`9@qmnZFc|y+OQPJaCAe|?(ACJD9i3$3K$}kB>iUPDRZBi= z2buNyhj*3(z|5UDAWUUll^|2+;2sT_AbLnL;4kD($Wft`jL=R{#o)^4~44&Zwp~wfN3Dy=iqm{t9CCGr1Qdje67LB_;a`?-cla zx3uJ`Yp+=7NWpH{w)J+VFe~Xq4MAQAmd6{vMDNV0*|{PSozt+(dRXC9&m6sGaZ@MF zrwlc-XC7quKRC}C9y@4>#wK#kk7j(9P`aeqP7g4+UgadG$*sPsr#EDVC8ewqT*4eJ zhCa@=UW!X&7n2ByM_No9M!nIYAX9H;J8;ntN1Q*i{X^KpJ3-qEUO)fNel3*1Xx@^q zK>3@9Csm}2_gk}1Lw3sIFIbZ+5XK0iV47=#vn^8l`>xk`P0m`T9$pF$gq>Qv~fL52jpxN8_jN6KN9nl(+O5Y3kGSqwI|>-7{=# zX&T-Q-gk8=61Sm+TkWhnrQF(|_lQq@2jn|MGdNeNssVlU=2$f=0sX0r&R$xm;J;UIW zah*g6Yk3^5>76d^Td}t-EmXHH#`&iazbN;|+=!(Uyd@DshgOiN({sqB4o8_Nx4zm7aYPye(=Q~qCJ;st+P!2P)_(igd`##@=5zb|>>`75CC z_4Du)mBVR9oy+@`SJi|%VOCRQ=c=UC47+6nDHe>}i^xm_p3!W$iXp@azbsh_U!yUM zCVosmM1(4=g%yj0haOpHm#)b$HTx|YWqvTF{$aU5SJcpTtgb2XfxYlBg1Svss<6&P zC0lVgYyKA8m?KfQ?+pAaR<-r8p(V^oA!{<1r^ogjoI)^6ggep_W=b+SO7a~F-{(67 zyS|!h#qi@5=b85;Tl<&AA-qh4QGuhxhE%hsRV@!jd+0WKgFF^O3-R18SjMt=_4h&; zr)d=@KQQupZB*G3W&KGwIz{if*(3Y%($aw_w~6U4L4{ko>#HuGC`MuXDzR?_Xak5oL&OHeob$g#WGMQTOqv&M=psxIye4MfB3r403LsRjfD64`ZWYF2TLSI%7k1Jpn$T}OT7xA;(w7e2tZx@_-!Ghs6}cym-um()mW`1)n0jG*a(FCydroC*-UXNX zwY@VKpnmN>HQp1fpqHJp@)G&9+Ph~Vq$mDK@C`bq12tjsTE~)xzmew|2iv7tU-iRT z?9LR1%y7WvH&G#w)ZobCQ)@w$qEosf&~sdfv){4lSisKp`zH||g`2r{iyTLg!P4V+dQc~2-lPqyyW2jEH9@P-*C*y?=EiE1 zYd-3E84oBVvHvRf@@i0scFwc?O=Q=zNwb1m@?D4&yKs!!BtsiHHq6{S3NlMe8~z0h`2Z%6Qoh^ zU}vl0-(%prF##*u(C=%DQTPJ)mn@g0X_n$6Czc2|dcUMxpwTr8X~8gy0G$!NIyI;K zLnf{wOIHTxj*l(*cN_*0I{B&viAcw|Oud1_IY*P8Xruf5x%%_34}}J0oeZIqhjnpJ(Z?p+<7l~=&o0e%O= zq%^k(Ub8ZFpXC>PcgNiL19_k!r51jrn{Xe{(cbFx6Pk|62q~{u`WxX5eSp)4@5Q_Y zI?wE7ltBN1z3xFk$ncAhu4-ehPSMai9Tm2EN&&i2UWGa@63vKQg||a>${&!=*sRy+ z%$1LRxjZaJJsU6?|6Nh-bLOF^T0c9B!-jI86RzsSD?cA{*X@8Zwo-IFBex@pYamWW z?or?KVL3)QE0KLI`&}1&Sng1++Mxq7D>#++d%nu8`9pJ~EsD=#NBVYa_x3JjJ8e5V zdY{=Q#+F<-$47VX`Acca!{n@p!$>#en&)q#A-J98(1C&dfmg(8f96_`1inW^)Toxv z)#JX_rJ;8pZHiJ6!?>pq-DXsMR#!s>bWQI#1Ds)QKR33DI!~yU2+V`R@Xm!X+uaEP zNnn_pJ<3~Gk8&kQ!(2qXsz<7`TaE7(OE{;Vx4v3nXlSUf^uqZ}Aa46nt^?9ho==(B z>aKIkEeaPXvc1c^Tr7R%*+jEEpv@ z1LA}Ay{7^i{cEhdJ3I*PX@AKi&JFwOcN$SLMIV|{uQsq8b{v)WTv(|w&VCd5S^oxC z6?>%V*?SI=5?8(y)3-d3bE!Qu#Qsi_YYIj?diV2mmvGOsN~N>8mshX$Ftib?PqFC` z`(ou`B5xPdgX~V7uNuZmpeZn&8X$S~-qJo@ZeVQD z6`7!2D}vv(5Ip+wK7*C0TC@34uBbL~=jH;m?4%`ddgIE7KH|96dtW3`B6T-RzHfPH z+X3z_U@8H%BGr&?z07?}XJR@GI780?Q|q+d(6!~lBLG&g=sXla>$B9}>7Z$aVMrd# z5J(vo#&(x)Eg6%#X5mdrsw;%i*oYj3v)LUX8>$Hx7PP}Q%P_JoCQ6KN`dZCPbk}wH zBx|t2KYkO@7AT;d)h;d#(<~iK_c=RCjrNdqgl~7WkOcUTt+Rfg4f}aUsP2ZPr+B3G za6IU8=J4dl^~2R{1Q-0O=R@N7b5)2dmRHArj56hahJ}D)612JbO+L5#TtPw|pePXf zcK8oav*ZT^9W1D8JuJM?j{Bq_uXkotK2SsIeUSc z{93`6ImI)LCde@1;kf(_efmx^y~110b9s0{X~UwzKuvWa@|Y$_)A+hnKE4aCb{j`3f9^_$3nP6UL!CFi|4r%HrKJFa){&!qcSnO>CW*(d4s>RNfM(0LKF zUYiZYMawF{WV?1~ek523(X9FCptV|RaB9otogy$|bIIV>^J|oAFj|byc9UWV6(cpO zRyU(3$G~De+U_e4h2yrLzv;4e{Erx~L=F56h1fmLPNh36cl*F?y)GX9zG~i*L+s3n z^GR4K1gmIcG#kqN^{#uR0Pkk)!}63TZbuei_tD>mVU`)XGwmEw|4^1fVXk#n(y!>Oy&fdK^W|7>BCz=h#}jTxKM_A#*wiq#%Y}gSVN3 z=J=1BU2RcKZQfA2Y9NPvY=7-w1HSUW9UilhuM;Lt^_2mtx;=>698-nOiBa;ly29#q z1jjDf&$&AqFPtC*ytAZ)S4CS~9ev@?-9q44%t}0en@3?1P04qO%O3=_+C*1A-$?mH zM}kPJ^7+f#tcmt0tDCY&$&#*_7trvtx*>!sc9amHD5pJDl&}A#DBrI8M^P@(BrYAD z<%WO~zE$`SjXp1{jI^22jbFR4@MOlyFM96jRZOU3=Tk$V=g@R~AYatE`5? zHXg5Jhafb=ECv#-W1R`Rsz|0BfCEma-25wK*g=}~WFhDU3RdmScCZybEzyph=fj3x zlcBrh>*%i_G(60@2?FCEOI-)-8r1O}u3y18kbVoQcLgsv#+<-G&=mivPL?Tt>U#df zqZhyxbf41E|Dx?B1^x$8G3WfLNDI_o%3Hz}-t3f@;`YhO)Oa{(=D_Y}?cEC%R6QunFbq(B6aJz6dK~gjLpD1BX!2?V z^7k!s13v}e9X}`8U0MeuyO>^=(c{7vw@5V99l)1fYzQv52rUvzGS07HH$j*B2H zTP*{8#_++mQSd$H0#(^*gfM#5`eQxVtPh@o4#^BGknmE3>_tR*HkNnu0JT5Hbf^vg zlT)?~SiYJ@nm>+kePe>Vx$%H@~Qwd<>XkEfn;U-0}?yXq4}i zH)Xw<1!S9~^fwX00<}vl+lc!S?w*z$61R zkqnsR{UncQ!E=g(kcOQx_h0hqNgI(aeo<#8hZ)n{K z3n0a8w=kh?&tQ)9a}X3WTqV+nI8&#yMo{P^nl4^n3`r;&&0`ZA~ezz2wV$W#^EJMsU5$7wyoyi zpH9 z*)|0J{EGdGywo4ARJ?ixz?>>0yvf83SH60Y~moc6w?!BnC0 zlHdsMZ3ARC_uZ4O9ump14jPT^uqIAvV+E?rfP(l3VSQ_PxS_X_)K1kgw(;8FcCaiO z>{StmNp1mz?;2p-Lz?L#)aGVRkY&F4FV8XUKP1~zhc8|Vl!(DEr zGO1qqO+@FWqFiHrS?yU#Ws0P2i1oY3e^QH>I6rN*2J70EStsV;o|;=a1E>3H!M~mE zuRNSJsWtWg(SA=p8ksJU?*BuHok0~Fx&mShPibOl+janB;5j`OOKrfhh^nnl0LNm) z=W`yRp$w36FLTJo>)k|)bci!A?gCi=Ikj!u#%q)S0eF?dCZ5NzQNj&1~;?P*kp(a|5VQCA7wW7Tyo$ArUi_Q#u zuViy($|iyC*YnA@a+iH|Y3Pei(*({zx?HmijFhm}KWGI+vX-(ZSf9Un&`LxkN(6Pe zopK{8ItFv(A?IWRf3R3kKFVDwu|>5x9#fsQ(b>n9ZhaIlXO`7&Qv%ANX2P|;qJ$=` z!TUDZ5jUn2-2VL&RXhV<^-L3DN3Wu50Nx~&oH_WDn=o7ac&k#Jso;$~B`bB`$p2L( zEa`;3aeSeZ6ou={aQG^|}UT3a%YM5x7I{Lj6%+FsP zRgzw90s}9f_W~mtl?d$Ul5lT}&$6*G-8|jQyzb2u{K?feeH_&);Q#FTMr13Sue4D^S*TNyLi5b(rsZ)Syr6ub(1qkc4gC^# zeb!S!g1SZexp-&*CZM@qzUE z^KZXDhH2!ix}+*x#7ERxa8RW1BXye|9Q7w}Q^A~qXYsqKy>u_aVy%;>5_WNvn>M!c z60^wlHHQ80@zP!i-oVwk54++QFGJM&)~+=@@t3e*1p&Ttf2Bd4Q|eK!4soWQYOj_y zubvW~J<6;a*9g%Vipxj@XU;Cjn3Mp=5xSZ;xQW2=PiawHB-@x;yZKX?WL>vY>aBTo zc(-e1DAJ~xm9)e!X_B~c%Ml0zUd;e+SSSv4jhl#6bJ-wR0CQN6BY`)Nou z+srJNcz?t+(GIgiZ9u;g8ZQ2&&B7JACuk$A3$08_fj|%l1=fo z;L${#znHe$-Ftj%>sJRjj%g=dg@*S)2^Or$y8tSlOb)_16cqIhG^3Q=twm_8=OFx? z(bXvz)I<&$JHULf_g3Brxtuh!EgacCedoo?`)7%ynkBCHX4O$h%92eeqE)cSq$~qFP*+mA#XvLL!XCa(pP+w%lC?yQ>()X#mVCl;(o%`_Rg;_&$_Y=Q`>n_aM@xf z8Ri7USFBTFE0`8F44*g#QbobmHXbV2pQK4y`e6Bo>ab5u=n`K?ai%_!$>yo1kk-`o z$Sb4#c}XWE30)&ww))x_OESZCZnwCe<%p)Q@?{h;l%lIrHA7*& z`1>0;SC1<;XI`65xQpV2BRX%FWWtQ%_;A+&o9`uH}-vJFf-Tp zIj-xv@B97xef}v7Gq2b4wLQ*xoX0tXX;BOHZqjxUH*Jd>TenPR9!W225S^%cm?~msElK+<=2% zQK~@n$*&|w_o9Id8Nb2*l()V#%W2q7`b@PYP8K_ma`T^7`YP#oo4qs~>NT8FKVnW|=9vo`4?AEcqJGGIOKm+%0PXa?mk~S& z7emM%#(mgUoEd&6#3+E-7&X_?e1-)`MT{Re+^zYhA;S1=8qSki>HY|-Sd<(97 za0F&kow?3*nP;&m)xoni}SRJa6d6Ut-42o6pd7WJmUErztI)S>A^92L_C<=H_*eKc{Xj(xIE;X9Nwf*Y;l!&U4l2;FwdV-SxL<3tb(6J#-KT z5hCz#!eY#zKT%Hb;!wQLHEb&PqPeBHGwc$L+(je9fY!bY5Xm_QK|lwdB((?1&BJymCSoCcjr*h-s&|y~tw%5GI?ax4 zfhXz?=8m9&ZI=#pkgBrVs)%SPIdkXJCPYO8}kr^_j8O^Nnm@X zt&jG83GMSh16S4i-6&5C_IEZ41?B@avgaMb-M{g@QXnl)p}wZW=ejIj8!h!Lq)@Dj zLcEUJVK;;~M5)>H752j{=+DA!r`OHz!REs@ibOL547aFI7uR-fKgDArRetymSO!b5 zS7Uqg2-6BPczRZeQJK|36L-lSLeIQyjmvQ7ZW6=Tw~g^?yqZ1c)PM&zorG`}TIn+> zjnBi2;iyeqQeqxlvhQdO^1EpVLl4!$;PyO6_if_D-G}C1)2Z(bJilwr790D-=JDmr zMqgoXsx^i;_q$A*=!Z23-)B#Z4?6rLVSBz(CMLQK(|#K?-FN?37^XD5aZ9!WYm|gL z(yIqjLEZS~CmUM(^RgTUL#5D*%g*+G9JS^BYiVN(;}h*48h{Wa0uBjSiJtdKUjQO|;XvQ^P&oM}Au z)<-PE(EMjA-@;JKDtVT9^?K;ynGff*i_ev9 z$Kfn`9`qKlC*e&iykq*c919PP?Nx3!Y2C7n3z7cuCM;j>&i+z$Z1Jw;^R+*Ky;sRB zk7l}oF6dR|>4iyGfR;F=7xmZ^*hMig43h{8XyFd2=U-858^Rel*-{+E?g{V;6j8cf z=*iK_ePG$*oPVMI{>%?DV;EL1b(ECAhra6hLH`dS8!vGp(a{5h@gMmNy^_8GMmPz+ zQ3X76sz@~3y%nZP;h?)t`s+89n^ovO^ zTce+Nxrq+#7%7}j*;wqXOt1`JP|}ThC@=ohZ$q}$F~9VY{Sx*2Zwd9cm+YWRX9^L^ z`myHMFpRwHl@`jh>-s4DLOzxujT01NTV-cgEtdO&=?)q+;3`BS{WNXsc(Ki#F08jD zXwGP6q;^|J*YIvb%T1ICnH!vY`yB#Mz!qO!eEb8PNygjTyH+| z9PeK2;%7ih32SCD+t9uNY?O|L|F=(j8GyVRjq_KTtrZ6jCLk;GRJp zQDOf>AN-H>i6unXZyOQ9daTBXgk<~jfW&#QQw7P=1i4N0>I`D(@TL`s_6MTXfDuO?0EdM80t_8_Fv&`1o>itmze(Th6&+hxpPt^>0l9L9`v6yK<8FGPfY-y74@!xdN zzj_baA6cY^55%sgiW5biApQX<3?`y^j&&l`o^o;#jrX$H{z-v29p8@6;)H1zg(A27$`Un_wrg9{_Ag;qAHf+_5*?!27Ah3`4tDN^sIy*C*`N z;{T-lu&PxltL6M^&St*BcNcD_-Pg(i9=p)D(~HWgq7C=7v)d20->xlCv;~Z1AGeKM zhCJ1^s6E!A^8D>t^0?ne8e_Ch^V8wAw5hRicb~dM0y(1&Te@YrfbtjD$t z9^L)Wih9fkExUE7$$#?Qe#@tQB1$D;=M^E)#opTnyP`Q{h5l;3O!vTWIIDY|gb+vh(&k!@MH_u^XP_s1sKZ{vXq z(}`~hSL%#A2=d-#op$Jz=~_w;iXOAh6GxLO)@3Fp1jQfIOEi4adF6;nSRQ&Voc;nW z^PmQz7OjW)#q37=%d7q#kb4X(TIRAHB}`kFMl<)`MBKYxd8Dp!BkGlVKxHuMh<|4V-F0@$40VPx5mHHxQ?(oONF{PW0VJ zpJA_hA;b5M^SW%v!sCn;71An_Ix+udF@)9n(wb`lrw6J80Ut5S{gLYMy;o4ByZ*Nl-+N?vKG&y6Pf3lgV zyV8A&jr`DQ_>$q=otu=A-5#G^f3C<%85)0V=-O=&j}coiwiTLpz_;z$&MaQI>hsH< zCBL-BFJ#x#Ln#by&p3)Y6yS`TIKR(J$sRo>*$rV1wlp=ezrs9p9MtA*vB2{OzQ%5- ziD0s**Y_?dXk%?=Y}n*i|@ zV9i|ICFD3%2ESmB6V#gTp{a9&1wJ^@FUvJjpYJ+!xrL^Aaa|0nwRtnp&AcGIw}kq@ z^7(V}Z=IjyGRn<{LrXuL*Qn30?o+@~7xz5c3(g#Ckvk9>8_RT}Tzc~YGvP>mSmYvd zX6c4m6ZKQLnm}PeI^98JrZ(zP_q8?y+9-JXF!zbF0M9YVhh&;6h@Nmh&4Fn7WdO+oqpMLglg$=_uO%UaR6L2}o{b z)mfG|UYpHkW#tv`0tf9erB9@M+w9FB6&8qTUqt`plAZ&5$LzK~8= z_WBQgXujfW_Mo@ZyIV15b|QQh_kI+$^y_~Ny$)e%OdW_kHt3MDIu4Z-KXep6)Ymh3 z%TLMw*VY!?VJ8ipt$*>Cjt*$~d;NaFDxg>`a z16G~1*NY_CZ!ug!aK178cb)}j8U^8TdP*Ti>(!-W+aX6cGQ*q>CR>ZLBu ztd6codD)>aQoAAv3@sx+w3p8DjjlirQMV!td%TA#23^AK+daHX-mGpo?xIF3vI>8I zN_+aN9sQW@u4!ic(O?=v-RmtumL99`h{}8Or0ba$CLXmEmc7;3zyF*WraKopoU&qY z)Fbx9aLCW4>(ya(<=9a5B^Ps(H3{RY=Xt?TMa-XxqjufCOzAm{->^yrfwbRd6F2rI z9y7VX#BGmj;9cG<(RnpjRPs|bY$}$TT+F-D)r#oqO}6l}apv|*T9o5g>BTr%@7omf zlGKc_KQ3GJrpnA4&KTWEON>^y6~W9e<@u{{=&_QXXY(By?wJQxp2nL%2X#nDapKEL zu)~xEn@}nwVN)su`bDSE*Q7A=;}=xJl}LcESTiF$KYxwBUfkv!pcs zT~X}g2K)tozP(G_J9A@5ypZBf;#p6h0t;t;n1=KI6YUB>53%XTC0*)$6y!$FG`KXP zcZY(8L?P40E{7Z$|I0Xos&?p|BhMAeY+&mY(U8Kp{rt-^fw#X|B2Ca+Fql|1|A85&f0% z?8al=<988>-}B9Y$#xSo+;j?~2J^VAOnZg?ni z-V#_b`?+tPJTGzD-Z-+1Zce#Z!unzW$BK|yJ>iM0IY$@zcwI zDtXH_1v1sSb2PqoLPotG5Mo%Rtizipp7=al{OXp5(2uSDZOfl`l8=+7mcLQgx#ccb z2M6bQd&Nt*Z!5BB(t1b&$QwoG#=^Lb2&#Ryh-l!B$4Z>fpLYv9i8f_pQs2+>y!aKIKRW_h9nzji2*-mhZEn1xiMRESu(^Kd)}Wl{Fd9 zYv{kJ%hR_<5QdYsi}zpbC<$%|n}Z_a!qCR*p*j0DS6$AJdxk#Pmv``_Ue%^_E=*Km zVK+6Mbw6e)Y`M$~w%+JY#urEIBgR~`@{Y{wwZ`UB+b3E!g&fxe*Vave57hUDR#iR3 z!I~@16gKT8*B#jR~b7Z2iqO+o^Hjwv;bBI~n2E%g| zj_^0`Mdq+~#tw@cq7Fi)wN=oSX+lSB=|s5JCTh04{1H`ZieC4fDhrwut`9TG918sz zy?d0Bw;gT*deZ(z^HoQSuCmKy*DX|ktk}DW{_sZL+lm~$IM&5^$g@6|wY$PJ;#O*M zbjm%-`34zn@9%mUD+gPbfAncCd)=Y#d10@i?8DSA^w%@*4IsE_|H3|_Wi-R)_MKFP z-r}7j7Nw#58ax`>)nC4t9X~HFoV@5hc+lqB%$)yFnyrqE)dWdk=E+`~n&BFrW|FqB8POY`MEYqFt+vO=gNh1f1ap4rb3*!lq@b?~J`)O!0 zA9A6MeU<%-nxu#8Vj5c70|Ko5on^I^ap%Q9-`!L!^M4isiO>s|f$I-SX5rJ{!_FQd z8i4?7S)961A4XNUoIP*(cI(jJ=i2m7$u0MY>}9C!*djh~lo28F!rf^n*27^Oo{}J$ zA204W1LT&O4%*mp2CAR~AT4mRdy9vZ=dJe5AH(@a%MIc6}B=`_R*+&;Mrd zs=1tgamM?AX8VSaPb}AFrL`qm%*dz_)b@z1$!Js74|_C6NaTL%6_ZWupP6|e(sKd# zo4z`h5*+N=8%yNDO8dYP0#w6JA1$AGyPkSviOfll(FM1$e=iQ_FWbI)&n-1V<_<$wNnbsBbvbj+2+O3(J$PK*8>cWHKF&^mJTD7yXY49Q>2uP8< z{(^99Bt;zmgC$p6v%DE1W_m&QiZH=}{ts)y$tlee1@X=&a38%_5@1!E zmONXK%t(-#BGd~)_g)Xx^K(CBT>`fP7(MH;>}moCDwm7cld{BJ_eT9nENfeaf~6eX zoCQnSul3aXDDrmvt%w76GdAWO#!!fs*&cBEhwWV7h5!QjZ>RrmqNiB{dM_vG8Nf6D zFh#>U7ReE6a)6})2Z;#qD>G;SBnK-aPsWf1z8=@<`+Yh|Y6N1a(wup8?zd!CRwn5yz@*SX zPIXo!Ahv<{dr0ACX@<a@GSc%BPk)A7aH$l zidZ@BI5@StzNXSP``A4EMwbKXQK401`JEx}cf_sd8wbmWFTKPj z(4jAD9kP!+=seb{eYe86!qyW$s@qT}h&r%uo)lKGQT{vwc}mQMcoU&lJZsV?XsHJn zaM=Wt%7=a%%^DQ~BTOb+h!MtIH{jHVxME}QYWr5ah*9x=h`N!rRjZ~|#k)mRN9goN z@8i8~hIiGjzFDI9$wc2=2YaEPDX~5e%%tS{68$zcQB!DkHMXY*t>Va^D1vq=VjxhA`#MvWi@EPutgO$5QMbR0i%lL zRA5vggyTA9g6`0mBtxC9%FdVeDl)o`4s*)&49}lc(F-Suj!aD984$%kX>=bxHr+P; zah#I$-O$MFk{AWeOg!6ksDVEHMdK8%&^(2#E|x?`w`Z>gb1}ARuWVhEza}Mj^MBmt z0k*n5Z{Ok{Oc5m`t3bcega#s#L;M@ix#**;p8qdbaqrc?iA6Ou;O;ov2V4^!$pC$b zNvo_3?3>sqO14093U18t<>mac(1M&9O04O<$iMW?`tyS_HR*jB18Ha&j`o$fv7P&{ zGi%Moqz?&6__n7&pXBV0f>>?wOAxM7JU?>Hzo@p{$|={uSx!IfI~@oV)fa1iKV|ap zRlYWqq~2xZyZOMIlJwn)?x?w4$EG*)vDvvIlb<>{z5l%n4@n%Lk=&Bs`ec&Puh$Q+ zG^c8$f>7kci3%o5nc2@PKK;hV*y%l>*VDc^VW;?q2-P1c4m&OS0f~!jFY2`o8@mgqK^P zsq)R0@{eP;IQs3nm^Ofhm|FJEopX9UA%$5-n~s}{G5BSdN+Tl-;%-Hb9G6ty?tC4kD!ZD!TQ1 zQMtB$=`Y9*EWK;RkFT^cc($axKJI=tg~N-tGA_H_ku7&*4ZSbD;!jF48RBv%uXbr^ z{5+w4l}q-_n@*SYQYw!nYW2J+YTg*{8w;JyNn)YJG*?S`zM^ZvNA!6aOuMyYG2}l? zot#?kIJ$mloQ-6WL3}Zu?eDCd_zUty91JU@zI17VX%w`bEY>~eD5ZE;d8~5l9uB^4 zRyJvBAmZj!lV!dCN8lz!)>tgGMHSt;CA4~%7&P4r?Ow~U7XcKhdR6tuy|a(D;mhTu zHwd?^x0tWk7I1o+JkXxdUN_&`#Qx&q56Dy$nz(YSd_@T@;@znBSK&v42YU z4abw_`2@(uP(08*q^5h@cbrp8GgInBm&z-u z(Oay#UDoC@#fyR7-fpi=w0yS=^!+g_mU zM{g_WDw`$Nn$}EoUHj6^+%H1+4e0P9u2^|6R~_qS5apo-9KNx%K_dz{TKcb3S?Fsn zn%zp?=EzI>wL@)_CLg&=qDePJm6+xCN%n_| z^i#sJUJAahzQXW!OEC#29#4pVO}!FZ-|4iBntPr4_DuV5uN)mYrTN7fPfR6}Kgr!7 zY~ZfcWxW_;kWiqM!Ef{H9~kXBqDo5ctvgV={x-Q#wk+=K^QE@uA)~H=mn|10_x93H zOuBo{tPk?K4QadFmA{SVWE6nFAb)f$W%VKWp2p5k*zW~5evw6Mn)3JGFjZlS zm>&NP5Wpcz$Ubut?`@ut0~=Lcoi{T!={TFD)jr0w{#17+fRw?rre)ZAZ4_i7O()l{ zB_^%F?uogggNm}OI@n@gvK6bW)z^}ZqP%-VauhxMHt9yx-W+~oT z&+BZc9qYul=0tF`{dRrnGi9?|RAx3&i{@wtD6|Mz85D=Ul&%o)*vgIo#k+5TXVGh0 z<@Re2zn50{qbz>;B)$pW{iqUaa7JEU;kK_1zv>_o0gA=Uujs3FfiRjr9O72*%Hs-A zyU~rXnTfj^mQD2T2XwF2cLfDARV*|*uXsp*%(yLoT~>v5-gXPsXuv9749~Zt0=aiv z6~@WC3h>l=&Jv@z-z~U}H}`M;9OXE_Gpv}76T#ZfOgxmeY$P!E-FCX!6AQP0?nIMY zr6xZ7fa-2$P|)w$ET&IN2jIEBK7eL%klT!xpKnB!66Ohr>^5C&*VZWFh{O&$CP~yT zyghqd5sROaK9RbID;!_j72jxd=S+zfuZy~gf^NvcY2a!m*st({q6hXAUHISHw7MM&2!uSaulAKse zYj2;PE34jwEXgB%*!uNSeC{8a!drjjUpae-KJR{InDe;${FeIk+=u$jhGW@*?D&+8 zZpQcXj+>&p{2jMLy{z3|Saw|1w9hjMs4nBEJ`z?w2;pBFuyxn$n2U`%A|G1aOEOOs zsWCQ0*>&(nY>zWY^O+aFpV&jvS#ZIcb+^rll!sJnm*otawAq>@)^xT+lgmKOf) z0#M?{SyjD){o^HlTB&aZyRlhDUSH2e{-iaU&Ay#L zD`YJ1;!zB5eiqn1QZ#ChxT7zc=y%CBjpt$0g*v8~o?Ak+=U%#Ui` z>vA$r!E}eYd$eWuY<$9Oj6PNVOq(r}#6;6pwMj56Kjdu!08sJ-kOj0G053oNrK zOA!ZP)%ksZXdx>L@C7Ln02Q)Pui2v4ICBxpKKmmE99t)>TmDOk1FBNsHOy=N2Kx8B zlq?0}Z$ntOBqagK3u<6+N^|e24kjK@AfBs-DGZ4}w&MFtmUmddG}dhSM^whykFjlR zOjcK#-LOT!v9kSz?-|>XYTO)$bNbn z7)Zpzl{BRQe}e0igj%HW@>E2X@9pC^mX+Z<9#x?d;3LkFvN26Zb`d{f24p)(0Y_T_ z=$@JZ%sfOIzkb(<5=Gv237$!1pfU?Y!GKRn`K%%^Mlbtzv* zUB)q3_j0KM9`ZUL82T3j@okW(XJ0k1PPf8HfrKq#8tX;1kX9qsQcb^&j580H^{cZS$YImT-^` z3El>bW#s_<0@4j+EFy)MHNoG3=>Q$#$DFje5x2?yrMOaAdH(S}Fw~r8jUg8I3H+zxovLrNq2Jw3(yYOCXFCjG- z3?v1NCL{SX=ZWeau*s7VcEoi$ERuV6fM7N8lJPBhRJjX=lumB{_JV4lZQ{R*)O?NCTtq<9x*32vw3nJO-R~U{q}!^RR8jXH!HLLHbNWM z4hIK=)Y~AzM}77#4zdBPJ2#s@XLc05;<&%)B?H$h&*uv`1 z4KA3oFkW8>d#fA8(-~Qv(ixr}6RrRWk6oEBeEF9mjs=g`t+{G<-4IK z3xMloJ{j_JvFPA~th@>P!+dDdEP94}dkcSnvd2fDHxv%emuY@xoiZHvrS75eeN|H) zZR~AYY(IQ%vb8z7ZUlDM-o&l=;fIe5URTFzd&w*-UcUK`AG$T1ZBgQ;!KgB{-u$)9 zmTX+@=aBTfAtkCakl?2eU#WCKQN8iFYVAF3Tc6A%#66$Z{T0A*#;eI81%zUvofd@> z0>G14^Ao6my1KJ(y^Tk#Q&t{IxP0f;5$ieBrd5`Q{K&nz1*E{->NOgynn=S>Qc@-l z3JS9Mbc5U2_BgUc2$u_`sFPHx>WkelQ1%7=@SFWF-TSW#1P1Kn9hvC*{=Rd^_d`oH z0_Qb3x^g9ZB7BE~swZ{R^yf+0*q8%~jZ6l&m+T#_pZ(r1e08T*XWxGA&8luCJcQn8xyqN=U<2dDV~G0?x28BG5?E|^_*Drgmcuos!L zCLz;ACTndkP;`HKI;1y#@&q|tEo~oP>$7d@EK9*4QPfRwkQsheNw(k3=0Sk|cPXm( zYA z&R>^7b7o9z;~{^_)?l~Hy=+ugCiM8Wp0-C~_txCV?}E2krLbeje|>yhVJ9*~%(|9n zmwT(U$)O?r^E&M!(=BIJ-BC59Dqn`WJhECy9Q7|xx}WpwS-;gi!KlGsCklM>2oOx-TYrl%Ad0tD0N$fotQY?E&tO0HcMK)TmZRV zSc?Av*D(sR&32Y7+EgxXyu?%5ud;5I5^otOnW^_d%Gw{t?>MlYxddul6I=LSb4~0O=)W*nOvRntIJT850|01_u zxKOOXM&Z|zM7<@dijN(lcGEtcIvw^`%5?51n17jSVS)B5N9SYJFe{3?{7V((9+%0M zNX1T;ch29vB>(QK_{^_%6tm?v|2iA>r6rJ!Q-OaWpcK-HpE|lAn}XXVc8IOZV)Bi8RJt{xRh&tEGEqJoJ@M+q!_zO(y(A3A!WD{d3Opfg5Z)_ddY^AkAq$ zZJfc3WqurDXXmriq7C7ED+pwbV+{pO9tVQ2-G(oVV4$yE`>tBWi}f2l2&yZhZ>-)8 zR?wae2$tOQWi;=VQO#;C^mN|=xwj6Jdd&szMYYP1;=`e_l23J~w}7v3Ok*YvR*7%! zc~|-lgNU8%S5Dy8letFOm7{gFjeJ~)>fI#?4(ga)iK&wKKwyOAncCtZk=V7P%CtS+ z7N>8(FLU#O&WAd|q4uRxyEGnK%)W88y?v z+PNxsO*Mkj4BP`1$=^Zu_Pul+2?99YKAe)5ZLVjkQbi(-3MbNJ)yg%BJ4WhmNnk;C zV5XHps?RN~*4CI2@ZMi{Y4R5Mih7-68#g>mFO}z8{~~3Bv+{F6yq`ULZJ$i=!!gUwaBSEbmzC{Mp zV!eCW&CtvH&?6EoY^_EPcq$Cy=*CJ8eNw*(X4Ei9R~&gBxo<2wr6qQz8U?1x#tYRoIg%FCSy<~v7TPVp6u=0$jtTJnnG=zryQA#Hs3Na3&#tG_#1}d%331Qc zD(APLKeE5^sa8p4XCP;E_hq*yvc$9`$$lUsmnzWy(!m*lA!}*ZQ5pb4I;hp%rrw5OtpU9tQbM_nRt3I|2W`jz{Wp1E zs(Rgdm4-Y~qO(#;DM4KJEcfz$L?a=;uVTKcHe1$K(q7d95uhD+@+poAC>FY4;l@d4 zGPs0wRe$DI%;{?Kkf_WRQjF`fIh09tAt4h~m3ceU$b6>EZT+|G9~mUB8>fkU9#(Lp zVE_KWQ%vRjwE*o$*ySg|nEYSYMbD^IaTVU*H;Sgc<@1=Fd8QS*Rf7YiqQyoqpp(4o zyzzZ+-$mGMqp4V-vqJ9$r;jiZ4|`uuD$VO-?v?STTvaAfLV8;94%~V-(kSQ~^&|$R z&WO_^Fd&w%NNvMz`~{%`hEblW9}0fzvl(=zuz%=?L7rSQE7^^$L?zbRW_dkQp~>k; z-}QWF<8|&{h9loYvxp!Ku_YFHAeVOoD9sS`Sx#~hBO+SF5Sg;!lVOhM#G)4TaG!QT zK~ZZy{4BscLln~xmpw)}sy@{S7gv@Eh0%TnBxf{4Jm%eJ3s_M@MdOEx{@=`MjVke{lUdOF!+rFWFqqQA&o;=W#N935Y~GF#B^@YuQ==0lmbf`uI3qIFp+ z{bt5Wh_^ow4W#MBws}8jn`gN*U@|JoD@rTW)gKV;mX&Wn^71k+{Vo z7!J$6${>Zt>I?(1Eh&H&=6!$?KUcPzfS^6%1lTc3Dka7sA9uB4fr!vqPy6p$PXL*4 zv|3yQ{lU?>e8Co zEENR+;VGJ;aV0{yW9`x8Q1Cx-6#;Gp(;DELX3${UW8Q(XHCAy^ou^NVK~Ng#v;*|`35*740*U^)-qU|E@vEAd%>ZCpBqN21 zZ%+JMM_z;)fV~$pScrgBGP7AOng}?Npx+CA^YqPli3jqb5(CYe4#xlb--r#g+lh#D zS(VsR9@jZoNCt8TM_GVF0WbueVIawXOl1iOlF>j$XK}Bf7|o4p<&Wv=0y#evh6 z%@DfA{S~q7Tj$L{eV7Nsz!GJts80rkwt=seFBdO1^OP3>+X{9kP5ZQU9g&S_od+Un z9~9vovfQ2<+=wE&6bbc!=2OKK*`?CRA|ATwVC}s9at4@mrU5BJ+vglg+|Sd!wE*H~ z16FS+roJD#c0C6ek?^g-O?@|U5u?`lATeqn&Nc@C_#ajD($oK%*t+v7XGuj9kKBJ& z=2Lbr*kNJyF=Ag{a_SnQ&AxH!;2HuiF#(L%=6uwFpB{=DF#@)6Z_2|g_{{L31 z6WprRW@}HElpO!y|GmclF7ZDr+__pD9#czPAFxZEI+jR3-ohVg6z7|H;K*mDgQ_Oa z$(U+W&Tj$BXwIS3r-Z`;*C->Wy{Z50QvdL@*Bo*vtx8fJNT7jDefjCdQ2AcZiR=1V zhHOE2a*v3cjB9IdhcGv7!;;F>s8m-qoXOjNBq-SIpnOM;TmdA#&gNhBPCVqDgFfpP7sALUpfhs9@-y0N8V}B_2-O`E*T)GCzlnG&J|rtoF0jP+ZlQ zrBP5r+SZjLRb$;Vo0Sv&oyAq;p0n*-hzx2gvLswtzBXT6UmF0ese7?F?AD;xxJ1D+ zVV|PA)rYn2SSdXjLLc!--@I`Z``k${dlG#_qg7I-DN?ePmurcsj3DXWgzonZJ3_ZO z+!51~AOVcGuCi1CpPM~#A2PP^FmQ&_o5#Pj#`k)LxzzNu0d(Li5IhWkF@<))J{**^ z@R=3iTxteh6yZOoV_w+aAh{|vW%9eony!5KRcR~1aFgV*{I7E&Av%?FmnmA=GtiZz znFh?pV!U$3#c)5n7LjZz$Nn%hY099ZGJECg_s)aGIo(F@ioCTAKV7{wl3U+zBzR(n zPH{m(mN8Xb&_-~hY)bi!=%)bZ_Zh>u9U!{6RDn}lSH=rR0GTuG^8as3a?@c98MvYr zc55_N4LD)hHt8j-$`rrIci4S`3F7kSS%TnWBk&Tb-~lM>TL0o4KgazDI&k&;tx?j8 zs=M8Y->4uGiI&hwK5ulVu0soo{YCDB&qMPCobN!f@qq3it5@q=;i}2CR$7v&C2u1Y zG4&36YaWK%eP5VdyBWeI3){rH7#%Its|>K_{QS8b&qgvbm5j73G6SXHW*ubj6BmNH zhNG;lUJYiV7^JrT*gZEw(XAEs-FCu zkGA*T2)*-&WwpZTr6sZ@nM&rlpf`AUU2yuc*@3;G8OzDwqPyJdRgcT&6s3#f;i`?i zdEY(g<^_@E=m@o_$<0R=R8;+_!@}99=Pb=%^dTp1s0YPcaS4{($=0@1w;%TPe#ve9 zD$fKr6R3|$3+I154Y>QPU2U9zP-i1P+4cq44Oh!zs3C2f#;|_m8%FT79OZxE^vna`*E28*2AmR^I`t8TE`l@Kg zmUcw!26*g(JGlQ?`zT$$f{*C%EHL;Jn1kz2(r`;DXt=`!g8rzF{dNo*6onw|QStz6Q zDf{s972kF=rF_pFtU$n)eFO9W(vRMYlG?j`;s|h2ku7etwr9E)y>0Dt3%Wv@4T@*C zNp6(kp zj$@VVm5fFd?A0gqx5?PUrbh~;y*vx^NOK|op55Wm%ZTpPh-g9T=$yZ zJx^NSR`0ILr(`6&@9#C6zDw+mIJ<3@>WOUX#CC&Ryt5A8Ne|aJssupDo8Aca@d7T0^44xBxHd zm)p?~f~(KDG8hh)O01!6cD`cjkY7A8i`>=ZC`B%m z>cEkh^y;pc3c{jPlh)(Bk-1$;*IuAn$RH|VrFuD8ITyAyNF5*!%G|WVFOluO3r-N=V?#R4%y1=h3>ql7cYEuLHUR^|F7^Tv=Ia++3izDE|Z zAxd{dE?D))-M&#$l9(d7E6?(5YdC_=a}F`kNKQx)tv(=!3V10ue%i)tGM{)NsqwzjDv^ZWm>o331NUf5Bg}og7m9jN?({5sBQhVgx0+sb7ys(04JB#t<$C#fgC`!a@Z)`kz*p$GEk<>ubc;^&LB zA2eLdeV8S{r-ah84ExTy4YPwCP=Q(NvAn25b#Zqt`_f!!%?W#1IHybg z{cYrkki1cZi&+Sn>wjGOB>&AEP<(9xN=g7Ay0uzG#*MHXhBc+`NW;?A_^{ux&z}b) zzek=@xvu30LkDrcZ0$bKXajOWo>ouynV#-b2sz|ZYzOW>P+5?I#ryVrityfUP1yVm zdg2-AZ)wY(M^rcBbZ}opPRn0&uf?#_5!g%8|EkV_3{B(EZNx9O%`*nkv`VbzqW}Jp zLHauaGwT*;CH2Wt{dZ(<%1$n3hS(P2B0H^DPb+I;@m-{dp$9#%#eYP;mPkPUUnE=@ zSnJ0>pUD5yfSyd8^SYd!Ho=iMH%&D+ZIJE{f)LP)0pedZ zHvxz!94J(q1p#b11up=?5MTOh@Gymp_|*Y*60jijJB1|{Kza)n8Z_#ph^0NN8nJuS zdx}{^XezUxf?h47k~B>zr2R2(1K1FoAE(>H(=44$^Yk&s3eCxE5QJA(1}~j z38gvR;8$d)c&XLS81jPG8$dH+D-OH}@Jzeulj6ij-r(=S?ixd$^U%zIjVNoy0`CmJ zOXvam%@HMhI>VaP_h&8)P6z5Oq-TOEB-wVP`DW{HMqty#dQQ%n0el&PQanT0SI4RE zDyIWd@9zU<F_79Z1m51tZ-6Q;qWOf$cG(ORXNpz)e;gg)K+frMbry9(D---XXHu-d= z!Fhi-o@VVuG)oNRQ!}SDO=a3Sod5t=C8rpD63q%beN^ePv)AB_LJ3|pT0vv3j&1Nk zL)3l1BD7(r5lwMmFds-wUsV(}(k^M?hf)jBJjuJncJ!)HI|n#a3|T)=GSlFg6A$h% z>oz6f!9^D^SBp5lnO{-_#jxVu-5_3K;I5@_g(Gtdz7-RVt~Aq^tZ$S`OD z0b%qg>FypOAT6!5bR*I&;7E~f5Tudrp5HZn;(g!W_lM8pZm!L7=Xspx5#cqdJ#)3I z`UOf_^YVd%nmx;NtW2t6A+$^UL`c~vkvE|a#Q&7D-Oln-LPDD}F2c1LX=@SZ{(cw9M-fvX z`u0|4fX;Bqk0n&GFnbj9Z68Bj$RUn5TXg|~S+c4TsM}E+T${;}845plE5z&F591?OysV*ellMx! zTC|XvQwsNlJkUC@t&Znt!NV+VDmnYJl{n=!{;g||usq&As)Z-7e=Gp{Cg#=S>ZWFD zj~LQ$>xJ@jjq{MyiHVn1`sQz{@+Lpt=Zb9W%ZPH#cJ zWyW~z!~_Hn)qKwt+wuJ|f?ay>!#DhFadXc^MEueo2WX2Kbh`q$k27-{x#bg{a^U