-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplonk_verify.js
398 lines (314 loc) · 12.1 KB
/
plonk_verify.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
/*
Copyright 2021 0kims association.
This file is part of snarkjs.
snarkjs is a free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your option)
any later version.
snarkjs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
snarkjs. If not, see <https://www.gnu.org/licenses/>.
*/
/* Implementation of this paper: https://eprint.iacr.org/2019/953.pdf */
import { Scalar } from "ffjavascript";
import * as curves from "./curves.js";
import { utils } from "ffjavascript";
const {unstringifyBigInts} = utils;
import jsSha3 from "js-sha3";
const { keccak256 } = jsSha3;
export default async function plonkVerify(vk_verifier, publicSignals, proof, logger) {
vk_verifier = unstringifyBigInts(vk_verifier);
proof = unstringifyBigInts(proof);
publicSignals = unstringifyBigInts(publicSignals);
const curve = await curves.getCurveFromName(vk_verifier.curve);
const Fr = curve.Fr;
const G1 = curve.G1;
proof = fromObjectProof(curve,proof);
vk_verifier = fromObjectVk(curve, vk_verifier);
if (!isWellConstructed(curve, proof)) {
logger.error("Proof is not well constructed");
return false;
}
const challanges = calculateChallanges(curve, proof);
if (logger) {
logger.debug("beta: " + Fr.toString(challanges.beta, 16));
logger.debug("gamma: " + Fr.toString(challanges.gamma, 16));
logger.debug("alpha: " + Fr.toString(challanges.alpha, 16));
logger.debug("xi: " + Fr.toString(challanges.xi, 16));
logger.debug("v1: " + Fr.toString(challanges.v[1], 16));
logger.debug("v6: " + Fr.toString(challanges.v[6], 16));
logger.debug("u: " + Fr.toString(challanges.u, 16));
}
const L = calculateLagrangeEvaluations(curve, challanges, vk_verifier);
if (logger) {
logger.debug("Lagrange Evaluations: ");
for (let i=1; i<L.length; i++) {
logger.debug(`L${i}(xi)=` + Fr.toString(L[i], 16));
}
}
if (publicSignals.length != vk_verifier.nPublic) {
logger.error("Number of public signals does not match with vk");
return false;
}
const pl = calculatePl(curve, publicSignals, L);
if (logger) {
logger.debug("Pl: " + Fr.toString(pl, 16));
}
const t = calculateT(curve, proof, challanges, pl, L[1]);
if (logger) {
logger.debug("t: " + Fr.toString(t, 16));
}
const D = calculateD(curve, proof, challanges, vk_verifier, L[1]);
if (logger) {
logger.debug("D: " + G1.toString(G1.toAffine(D), 16));
}
const F = calculateF(curve, proof, challanges, vk_verifier, D);
if (logger) {
logger.debug("F: " + G1.toString(G1.toAffine(F), 16));
}
const E = calculateE(curve, proof, challanges, vk_verifier, t);
if (logger) {
logger.debug("E: " + G1.toString(G1.toAffine(E), 16));
}
const res = await isValidPairing(curve, proof, challanges, vk_verifier, E, F);
if (logger) {
if (res) {
logger.info("OK!");
} else {
logger.warn("Invalid Proof");
}
}
return res;
}
function fromObjectProof(curve, proof) {
const G1 = curve.G1;
const Fr = curve.Fr;
const res = {};
res.A = G1.fromObject(proof.A);
res.B = G1.fromObject(proof.B);
res.C = G1.fromObject(proof.C);
res.Z = G1.fromObject(proof.Z);
res.T1 = G1.fromObject(proof.T1);
res.T2 = G1.fromObject(proof.T2);
res.T3 = G1.fromObject(proof.T3);
res.eval_a = Fr.fromObject(proof.eval_a);
res.eval_b = Fr.fromObject(proof.eval_b);
res.eval_c = Fr.fromObject(proof.eval_c);
res.eval_zw = Fr.fromObject(proof.eval_zw);
res.eval_s1 = Fr.fromObject(proof.eval_s1);
res.eval_s2 = Fr.fromObject(proof.eval_s2);
res.eval_r = Fr.fromObject(proof.eval_r);
res.Wxi = G1.fromObject(proof.Wxi);
res.Wxiw = G1.fromObject(proof.Wxiw);
return res;
}
function fromObjectVk(curve, vk) {
const G1 = curve.G1;
const G2 = curve.G2;
const Fr = curve.Fr;
const res = vk;
res.Qm = G1.fromObject(vk.Qm);
res.Ql = G1.fromObject(vk.Ql);
res.Qr = G1.fromObject(vk.Qr);
res.Qo = G1.fromObject(vk.Qo);
res.Qc = G1.fromObject(vk.Qc);
res.S1 = G1.fromObject(vk.S1);
res.S2 = G1.fromObject(vk.S2);
res.S3 = G1.fromObject(vk.S3);
res.k1 = Fr.fromObject(vk.k1);
res.k2 = Fr.fromObject(vk.k2);
res.X_2 = G2.fromObject(vk.X_2);
return res;
}
function isWellConstructed(curve, proof) {
const G1 = curve.G1;
if (!G1.isValid(proof.A)) return false;
if (!G1.isValid(proof.B)) return false;
if (!G1.isValid(proof.C)) return false;
if (!G1.isValid(proof.Z)) return false;
if (!G1.isValid(proof.T1)) return false;
if (!G1.isValid(proof.T2)) return false;
if (!G1.isValid(proof.T3)) return false;
if (!G1.isValid(proof.Wxi)) return false;
if (!G1.isValid(proof.Wxiw)) return false;
return true;
}
function calculateChallanges(curve, proof) {
const G1 = curve.G1;
const Fr = curve.Fr;
const n8r = curve.Fr.n8;
const res = {};
const transcript1 = new Uint8Array(G1.F.n8*2*3);
G1.toRprUncompressed(transcript1, 0, proof.A);
G1.toRprUncompressed(transcript1, G1.F.n8*2, proof.B);
G1.toRprUncompressed(transcript1, G1.F.n8*4, proof.C);
res.beta = hashToFr(curve, transcript1);
const transcript2 = new Uint8Array(n8r);
Fr.toRprBE(transcript2, 0, res.beta);
res.gamma = hashToFr(curve, transcript2);
const transcript3 = new Uint8Array(G1.F.n8*2);
G1.toRprUncompressed(transcript3, 0, proof.Z);
res.alpha = hashToFr(curve, transcript3);
const transcript4 = new Uint8Array(G1.F.n8*2*3);
G1.toRprUncompressed(transcript4, 0, proof.T1);
G1.toRprUncompressed(transcript4, G1.F.n8*2, proof.T2);
G1.toRprUncompressed(transcript4, G1.F.n8*4, proof.T3);
res.xi = hashToFr(curve, transcript4);
const transcript5 = new Uint8Array(n8r*7);
Fr.toRprBE(transcript5, 0, proof.eval_a);
Fr.toRprBE(transcript5, n8r, proof.eval_b);
Fr.toRprBE(transcript5, n8r*2, proof.eval_c);
Fr.toRprBE(transcript5, n8r*3, proof.eval_s1);
Fr.toRprBE(transcript5, n8r*4, proof.eval_s2);
Fr.toRprBE(transcript5, n8r*5, proof.eval_zw);
Fr.toRprBE(transcript5, n8r*6, proof.eval_r);
res.v = [];
res.v[1] = hashToFr(curve, transcript5);
for (let i=2; i<=6; i++ ) res.v[i] = Fr.mul(res.v[i-1], res.v[1]);
const transcript6 = new Uint8Array(G1.F.n8*2*2);
G1.toRprUncompressed(transcript6, 0, proof.Wxi);
G1.toRprUncompressed(transcript6, G1.F.n8*2, proof.Wxiw);
res.u = hashToFr(curve, transcript6);
return res;
}
function calculateLagrangeEvaluations(curve, challanges, vk) {
const Fr = curve.Fr;
let xin = challanges.xi;
let domainSize = 1;
for (let i=0; i<vk.power; i++) {
xin = Fr.square(xin);
domainSize *= 2;
}
challanges.xin = xin;
challanges.zh = Fr.sub(xin, Fr.one);
const L = [];
const n = Fr.e(domainSize);
let w = Fr.one;
for (let i=1; i<=Math.max(1, vk.nPublic); i++) {
L[i] = Fr.div(Fr.mul(w, challanges.zh), Fr.mul(n, Fr.sub(challanges.xi, w)));
w = Fr.mul(w, Fr.w[vk.power]);
}
return L;
}
function hashToFr(curve, transcript) {
const v = Scalar.fromRprBE(new Uint8Array(keccak256.arrayBuffer(transcript)));
return curve.Fr.e(v);
}
function calculatePl(curve, publicSignals, L) {
const Fr = curve.Fr;
let pl = Fr.zero;
for (let i=0; i<publicSignals.length; i++) {
const w = Fr.e(publicSignals[i]);
pl = Fr.sub(pl, Fr.mul(w, L[i+1]));
}
return pl;
}
function calculateT(curve, proof, challanges, pl, l1) {
const Fr = curve.Fr;
let num = proof.eval_r;
num = Fr.add(num, pl);
let e1 = proof.eval_a;
e1 = Fr.add(e1, Fr.mul(challanges.beta, proof.eval_s1));
e1 = Fr.add(e1, challanges.gamma);
let e2 = proof.eval_b;
e2 = Fr.add(e2, Fr.mul(challanges.beta, proof.eval_s2));
e2 = Fr.add(e2, challanges.gamma);
let e3 = proof.eval_c;
e3 = Fr.add(e3, challanges.gamma);
let e = Fr.mul(Fr.mul(e1, e2), e3);
e = Fr.mul(e, proof.eval_zw);
e = Fr.mul(e, challanges.alpha);
num = Fr.sub(num, e);
num = Fr.sub(num, Fr.mul(l1, Fr.square(challanges.alpha)));
const t = Fr.div(num, challanges.zh);
return t;
}
function calculateD(curve, proof, challanges, vk, l1) {
const G1 = curve.G1;
const Fr = curve.Fr;
let s1 = Fr.mul(Fr.mul(proof.eval_a, proof.eval_b), challanges.v[1]);
let res = G1.timesFr(vk.Qm, s1);
let s2 = Fr.mul(proof.eval_a, challanges.v[1]);
res = G1.add(res, G1.timesFr(vk.Ql, s2));
let s3 = Fr.mul(proof.eval_b, challanges.v[1]);
res = G1.add(res, G1.timesFr(vk.Qr, s3));
let s4 = Fr.mul(proof.eval_c, challanges.v[1]);
res = G1.add(res, G1.timesFr(vk.Qo, s4));
res = G1.add(res, G1.timesFr(vk.Qc, challanges.v[1]));
const betaxi = Fr.mul(challanges.beta, challanges.xi);
let s6a = proof.eval_a;
s6a = Fr.add(s6a, betaxi);
s6a = Fr.add(s6a, challanges.gamma);
let s6b = proof.eval_b;
s6b = Fr.add(s6b, Fr.mul(betaxi, vk.k1));
s6b = Fr.add(s6b, challanges.gamma);
let s6c = proof.eval_c;
s6c = Fr.add(s6c, Fr.mul(betaxi, vk.k2));
s6c = Fr.add(s6c, challanges.gamma);
let s6 = Fr.mul(Fr.mul(s6a, s6b), s6c);
s6 = Fr.mul(s6, Fr.mul(challanges.alpha, challanges.v[1]));
let s6d = Fr.mul(Fr.mul(l1, Fr.square(challanges.alpha)), challanges.v[1]);
s6 = Fr.add(s6, s6d);
s6 = Fr.add(s6, challanges.u);
res = G1.add(res, G1.timesFr(proof.Z, s6));
let s7a = proof.eval_a;
s7a = Fr.add(s7a, Fr.mul(challanges.beta, proof.eval_s1));
s7a = Fr.add(s7a, challanges.gamma);
let s7b = proof.eval_b;
s7b = Fr.add(s7b, Fr.mul(challanges.beta, proof.eval_s2));
s7b = Fr.add(s7b, challanges.gamma);
let s7 = Fr.mul(s7a, s7b);
s7 = Fr.mul(s7, challanges.alpha);
s7 = Fr.mul(s7, challanges.v[1]);
s7 = Fr.mul(s7, challanges.beta);
s7 = Fr.mul(s7, proof.eval_zw);
res = G1.sub(res, G1.timesFr(vk.S3, s7));
return res;
}
function calculateF(curve, proof, challanges, vk, D) {
const G1 = curve.G1;
const Fr = curve.Fr;
let res = proof.T1;
res = G1.add(res, G1.timesFr(proof.T2, challanges.xin));
res = G1.add(res, G1.timesFr(proof.T3, Fr.square(challanges.xin)));
res = G1.add(res, D);
res = G1.add(res, G1.timesFr(proof.A, challanges.v[2]));
res = G1.add(res, G1.timesFr(proof.B, challanges.v[3]));
res = G1.add(res, G1.timesFr(proof.C, challanges.v[4]));
res = G1.add(res, G1.timesFr(vk.S1, challanges.v[5]));
res = G1.add(res, G1.timesFr(vk.S2, challanges.v[6]));
return res;
}
function calculateE(curve, proof, challanges, vk, t) {
const G1 = curve.G1;
const Fr = curve.Fr;
let s = t;
s = Fr.add(s, Fr.mul(challanges.v[1], proof.eval_r));
s = Fr.add(s, Fr.mul(challanges.v[2], proof.eval_a));
s = Fr.add(s, Fr.mul(challanges.v[3], proof.eval_b));
s = Fr.add(s, Fr.mul(challanges.v[4], proof.eval_c));
s = Fr.add(s, Fr.mul(challanges.v[5], proof.eval_s1));
s = Fr.add(s, Fr.mul(challanges.v[6], proof.eval_s2));
s = Fr.add(s, Fr.mul(challanges.u, proof.eval_zw));
const res = G1.timesFr(G1.one, s);
return res;
}
async function isValidPairing(curve, proof, challanges, vk, E, F) {
const G1 = curve.G1;
const Fr = curve.Fr;
let A1 = proof.Wxi;
A1 = G1.add(A1, G1.timesFr(proof.Wxiw, challanges.u));
let B1 = G1.timesFr(proof.Wxi, challanges.xi);
const s = Fr.mul(Fr.mul(challanges.u, challanges.xi), Fr.w[vk.power]);
B1 = G1.add(B1, G1.timesFr(proof.Wxiw, s));
B1 = G1.add(B1, F);
B1 = G1.sub(B1, E);
const res = await curve.pairingEq(
G1.neg(A1) , vk.X_2,
B1 , curve.G2.one
);
return res;
}