-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgpu_pca.cu
244 lines (216 loc) · 6.84 KB
/
gpu_pca.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>
#include <iostream>
#include <cstdlib>
#include <device_launch_parameters.h>
#include "helper_cuda.h"
#include <iostream>
#include <fstream>
#include <string>
#include <sstream>
#include <set>
#include <map>
#include <assert.h>
int row = 0;
int col = 0;
using namespace std;
__global__
void mean(float *A, float *means, int size_row, int size_col ){
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < size_col){
for(int i =0; i<size_row; i++){
means[idx] += A[idx*size_row + i];
}
means[idx] = means[idx]/size_row;
}
}
__global__
void center_data (float*A, float *means, int size_row, int size_col){
int idx = blockIdx.x*blockDim.x + threadIdx.x;
if (idx < size_col){
for (int i =0; i < size_row; i++){
A[idx*size_row + i] = A[idx*size_row + i] - means[idx];
}
}
}
__global__ void gpu_transpose(float *dst, float *A, int col, int row) {
int idx = threadIdx.x + blockIdx.x*blockDim.x;
if(idx<col){
for (int j=0; j<row; j++){
dst[j*col+idx] = A[idx*row+j];
}
}
}
//Print matrix A(nr_rows_A, nr_cols_A) storage in column-major format
void print_matrix(const float *A, int nr_rows_A, int nr_cols_A) {
ofstream collect("hello.txt");
for(int i = 0; i < nr_rows_A; ++i){
for(int j = 0; j < nr_cols_A; ++j){
std::cout << A[j * nr_rows_A + i] << " ";
collect << A[j * nr_rows_A + i] << " " ;
}
std::cout << std::endl;
}
std::cout << std::endl;
}
int main(int argc, char*argv[])
{
if(argc != 2) {
fprintf(stderr, "Follow this command line statement: %s input_file \n", argv[0]);
exit(1);
}
string lineA;
float x;
int rows = 1000;
int colm = 1000;
double **a = new double* [rows];
for(int i = 0; i < rows; i++)
a[i] = new double[colm];
string filename;
ifstream in(argv[1],ios::in);
if(in.fail()){
cerr << "file can not be found or opened" << endl;
exit(1);
}
while(in.good()){
while(getline(in,lineA)){
istringstream streamA(lineA);
col = 0;
while(streamA >> x){
a[row][col] = x;
col++;
}
row++;
}
}
cout << "rows=" << row << endl;
cout << "cols=" << col << endl;
float *matrix = (float *) malloc(sizeof(float) * row * col);
for (int i = 0; i < row; i++){
for (int j = 0; j < col; j++){
matrix[j*row+i]=a[i][j];
}
}
/*std::cout << "matrix =" << std::endl;
print_matrix(matrix, row, col);*/
float accum;
float total;
cusolverDnHandle_t cusolverH;
cusolverStatus_t cusolver_status = CUSOLVER_STATUS_SUCCESS;
cudaError_t cudaStat = cudaSuccess;
const int m = row;
const int lda = col;
float *A = (float *) malloc(sizeof (float) *lda*m);
float *B = (float*)malloc(lda*m*sizeof(float));
float *C = (float*)malloc(lda*lda*sizeof(float));
float *V;
V= (float*)malloc(lda*m*sizeof(float));
float *W = (float*)malloc(lda*sizeof(float));
float *Mean = (float*)malloc(lda*sizeof(float));
float *d_A;
float *d_B;
float *d_C;
float *d_W;
float *d_D;
float *means;
int *devInfo;
float *d_work;
int lwork =0;
int info_gpu =0;
float* d_C_T;
float* d_c1;
/*int devID;
devID = gpuGetMaxGflopsDeviceId();
checkCudaErrors( cudaSetDevice(devID) );
// checkCudaErrors( cudaSetDevice(0) ); // or just use the first GPU*/
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start);
cusolver_status = cusolverDnCreate(&cusolverH);
cudaMalloc ((void**)&d_A, sizeof(float)*lda*m);
cudaMalloc ((void**)&d_C, sizeof(float)*lda*lda);
cudaMalloc ((void**)&d_C_T, sizeof(float)*lda*lda);
cudaMalloc ((void**)&d_W, sizeof(float)*m);
cudaMalloc ((void**)&devInfo, sizeof(int));
cudaMalloc ((void**)&d_D, sizeof(float)*lda*m);
cudaMalloc ((void**)&means, sizeof(float)*lda);
cudaMemcpy(d_A, matrix, sizeof(float)*lda*m, cudaMemcpyHostToDevice);
cudaMalloc((void**)&d_B, sizeof(float)*m*lda);
cudaMalloc((void**) &d_c1, sizeof(float)*lda*lda);
int threads = m*lda;
int blocks;
if (threads > 256){
threads = 256;
blocks = m*lda/threads;
}
else{
blocks = 1;}
mean<<< 1, lda >>>(d_A, means, m, lda);
cudaDeviceSynchronize();
/*cudaMemcpy(Mean, means, sizeof(float)*lda, cudaMemcpyDeviceToHost);
std::cout << "Mean =" << std::endl;
print_matrix(Mean, 1, lda);*/
center_data <<<1, lda>>>(d_A, means, m, lda);
cudaDeviceSynchronize();
/*cudaStat = cudaMemcpy(A, d_A, sizeof(float)*m*lda, cudaMemcpyDeviceToHost);
std::cout << "A =" << std::endl;
print_matrix(A, m, lda);*/
gpu_transpose<<<1, lda>>>(d_B, d_A, col, row);
cudaDeviceSynchronize();
/* cudaMemcpy(B, d_B, sizeof(float)*m*lda, cudaMemcpyDeviceToHost);
std::cout << "B =" << std::endl;
print_matrix(B, lda, m);*/
const float alf = 0.0067;
const float bet = 0;
const float *alpha = &alf;
const float *beta = &bet;
printf("this the alf value %f \n", alf);
// Create a handle for CUBLAS
cublasHandle_t handle;
cublasCreate(&handle);
// Do the actual multiplication
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, lda, lda, m, alpha, d_B, lda, d_A, m, beta, d_C, lda);
cudaDeviceSynchronize();
/*cudaMemcpy(C, d_C, sizeof(float)*lda*lda, cudaMemcpyDeviceToHost);
std::cout << "c =" << std::endl;
print_matrix(C, lda, lda);*/
cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR;
cublasFillMode_t uplo = CUBLAS_FILL_MODE_UPPER;
cusolver_status = cusolverDnSsyevd_bufferSize(cusolverH, jobz, uplo, lda, d_C, lda, d_W, &lwork);
cudaMalloc ((void**) &d_work, sizeof(float)*lwork);
//clock_gettime(CLOCK_REALTIME, &start);
cusolver_status = cusolverDnSsyevd(cusolverH, jobz, uplo, lda, d_C, lda, d_W, d_work, lwork, devInfo);
cudaDeviceSynchronize();
//clock_gettime(CLOCK_REALTIME, &start);
//accum =(stop.tv_sec-start.tv_sec) + (stop.tv_nsec - start.tv_nsec);
/*cudaMemcpy(W, d_W, sizeof(float)*m, cudaMemcpyDeviceToHost);
cudaMemcpy(V, d_C, sizeof(float)*lda*lda, cudaMemcpyDeviceToHost);
std::cout << "V =" << std::endl;
print_matrix(V, lda, lda); */
gpu_transpose<<<1, lda>>>(d_C_T, d_C, lda, lda);
cudaDeviceSynchronize();
/* for (int i =0; i< lda; i++){
printf("W[%d] = %E\n", i+1, W[i]);
} */
const float alf1 = 1;
const float bet1 = 0;
const float *alpha1 = &alf1;
const float *beta1 = &bet1;
// Do the actual multiplication
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_T, m, lda, lda, alpha1, d_A, m, d_C_T, lda, beta1, d_D, m);
cudaDeviceSynchronize();
cublasDestroy(handle);
cudaMemcpy(V, d_D, sizeof(float)*m*lda, cudaMemcpyDeviceToHost);
cudaEventRecord(stop);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&total, start, stop);
cout << "GPU time :" << total << "ms."<<endl;
std::cout << "V =" << std::endl;
print_matrix(V, m, lda);
return 0;
}