-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmainTrain.py
106 lines (75 loc) · 2.62 KB
/
mainTrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import cv2
import os
import tensorflow as tf
from tensorflow import keras
from PIL import Image
import numpy as np
from sklearn.model_selection import train_test_split
from keras.utils import normalize
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.utils import to_categorical
image_directory='C:\Mini Project\datasets/'
print(image_directory)
no_tumor_images=os.listdir(image_directory+ 'no/')
yes_tumor_images=os.listdir(image_directory+ 'yes/')
dataset=[]
label=[]
INPUT_SIZE=64
# print(no_tumor_images)
# path='no0.jpg'
# print(path.split('.')[1])
for i , image_name in enumerate(no_tumor_images):
if(image_name.split('.')[1]=='jpg'):
image=cv2.imread(image_directory+'no/'+image_name)
image=Image.fromarray(image,'RGB')
image=image.resize((INPUT_SIZE,INPUT_SIZE))
dataset.append(np.array(image))
label.append(0)
for i , image_name in enumerate(yes_tumor_images):
if(image_name.split('.')[1]=='jpg'):
image=cv2.imread(image_directory+'yes/'+image_name)
image=Image.fromarray(image, 'RGB')
image=image.resize((INPUT_SIZE,INPUT_SIZE))
dataset.append(np.array(image))
label.append(1)
dataset=np.array(dataset)
label=np.array(label)
x_train, x_test, y_train, y_test=train_test_split(dataset, label, test_size=0.2, random_state=0)
# Reshape = (n, image_width, image_height, n_channel)
# print(x_train.shape)
# print(y_train.shape)
# print(x_test.shape)
# print(y_test.shape)
x_train=normalize(x_train, axis=1)
x_test=normalize(x_test, axis=1)
y_train=to_categorical(y_train,num_classes=2)
y_test=to_categorical(y_test,num_classes=2)
# Model Building
# 64,64,3
model=Sequential()
model.add(Conv2D(32, (3,3), input_shape=(INPUT_SIZE, INPUT_SIZE, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(32, (3,3), kernel_initializer='he_uniform'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(64, (3,3), kernel_initializer='he_uniform'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(2))
model.add(Activation('softmax'))
# Binary CrossEntropy= 1, sigmoid
# Categorical Cross Entryopy= 2 , softmax
model.compile(loss='categorical_crossentropy',optimizer='adam', metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=16,
verbose=1, epochs=10,
validation_data=(x_test, y_test),
shuffle=False)
model.save('BrainTumor10EpochsCategorical.h5')