-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessData.py
64 lines (39 loc) · 1.16 KB
/
preprocessData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import nltk
import numpy as np
import json
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
file = open("intents.json")
data = json.load(file)
words = []
label_tag = []
docs_x = []
docs_y = []
for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])
if intent["tag"] not in label_tag:
label_tag.append(intent["tag"])
words = [stemmer.stem(w.lower()) for w in words if w != "?"]
words = sorted(list(set(words)))
label_tag = sorted(label_tag)
training = []
output = []
out_empty = [0 for _ in range(len(label_tag))]
for x, doc in enumerate(docs_x):
bag = []
wrds = [stemmer.stem(w.lower()) for w in doc]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
output_row = out_empty[:]
output_row[label_tag.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = np.array(training)
output = np.array(output)