-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
173 lines (121 loc) · 5.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import matplotlib.pyplot as plt
import gymnasium as gym
import numpy as np
env = gym.make("CartPole-v1")
LEARNING_RATE = 0.1 # how fast we learn
EPSILON = 0.05 # how much we explore
DISCOUNT = 0.95 # how much we care about future rewards
EPISODES = 500 # how many episodes we want to run
SHOW_EVERY = 50 # how often we want to see the results
DISC_STEPS = 6 # how many steps we want to divide the space into
STATE_COUNT = len(env.observation_space.high) # how many states we have
DISC_STATE_COUNT = DISC_STEPS*STATE_COUNT
LOWER_OBSERVATIONS = env.observation_space.low
LOWER_OBSERVATIONS[1] = -4
LOWER_OBSERVATIONS[3] = -4
UPPER_OBSERVATIONS = env.observation_space.high
UPPER_OBSERVATIONS[1] = 4
UPPER_OBSERVATIONS[3] = 4
temp_array = [DISC_STEPS]*len(env.observation_space.high)
discrete_step_array = [0]*len(temp_array)
for i in range(len(temp_array)):
curr_step = (env.observation_space.high -
env.observation_space.low)/temp_array[i]
if curr_step[i] != float("inf"):
discrete_step_array[i] = curr_step[i]
else:
discrete_step_array[i] = ((4*4)/temp_array[i])
def init_disc_state_table(disc_state_table, lower_observations, discrete_step_array):
temp_target_count = [0]*STATE_COUNT
temp_count = [1]*STATE_COUNT
disc_state_table[0] = lower_observations
for i in range(STATE_COUNT):
temp_target_count[i] = ((2**STATE_COUNT)/2) + i*(0.5)
for i in range(DISC_STATE_COUNT):
for j in range(STATE_COUNT):
temp_count[j] += 1
if temp_count[j] == temp_target_count[j]:
disc_state_table[i][j] += discrete_step_array[j]
temp_count[j] = 1
def init_q_table_v2():
return np.random.uniform(low=0, high=1, size=(
DISC_STEPS, DISC_STEPS, DISC_STEPS, DISC_STEPS, env.action_space.n))
def get_descrete_state_v2(state):
cartPositionBin = np.linspace(
LOWER_OBSERVATIONS[0], UPPER_OBSERVATIONS[0], DISC_STEPS)
cartVelocityBin = np.linspace(
LOWER_OBSERVATIONS[1], UPPER_OBSERVATIONS[1], DISC_STEPS)
poleAngleBin = np.linspace(
LOWER_OBSERVATIONS[2], UPPER_OBSERVATIONS[2], DISC_STEPS)
poleAngleVelocityBin = np.linspace(
LOWER_OBSERVATIONS[3], UPPER_OBSERVATIONS[3], DISC_STEPS)
indexPosition = np.maximum(np.digitize(state[0], cartPositionBin)-1, 0)
indexVelocity = np.maximum(np.digitize(state[1], cartVelocityBin)-1, 0)
indexAngle = np.maximum(np.digitize(state[2], poleAngleBin)-1, 0)
indexAngularVelocity = np.maximum(
np.digitize(state[3], poleAngleVelocityBin)-1, 0)
return tuple([indexPosition, indexVelocity, indexAngle, indexAngularVelocity])
def select_action(state):
randomNumber = np.random.random()
if randomNumber < EPSILON:
return np.random.choice(env.action_space.n)
else:
return np.argmax(q_table[get_descrete_state_v2(state)])
total_episode_rewards = []
def plot_optimal_policy(q_table):
policy = np.argmax(q_table, axis=4)
plt.imshow(policy[:, :, 5, 0], cmap='coolwarm')
plt.colorbar()
plt.title('Optimal Policy')
plt.xlabel('Cart Position')
plt.ylabel('Cart Velocity')
plt.show()
def solve():
t = 0
MAX_STEPS = 500
PosWithinRange = False
angWithinRange = False
for episode in range(EPISODES):
(curr_state, _) = env.reset()
# check if the states are within an acceptable range
if curr_state[0] < 2.4 and curr_state[0] > -2.4:
PosWithinRange = True
else:
PosWithinRange = False
if curr_state[2] < 0.2095 and curr_state[2] > -0.2095:
angWithinRange = True
else:
angWithinRange = False
print("Simulating episode {}".format(episode))
episode_rewards = []
is_terminal = False
while not is_terminal and t < MAX_STEPS and PosWithinRange and angWithinRange:
disc_curr_state = get_descrete_state_v2(curr_state)
action = select_action(curr_state)
(next_state, reward, is_terminal, is_truncated, _) = env.step(action)
episode_rewards.append(reward)
next_state = list(next_state)
next_state_index = get_descrete_state_v2(next_state)
q_next_state = np.max(q_table[next_state_index])
if not (is_terminal or is_truncated):
error = reward+DISCOUNT*q_next_state - \
q_table[disc_curr_state+(action,)]
q_table[disc_curr_state+(action,)] += LEARNING_RATE*error
else:
error = reward-q_table[disc_curr_state+(action,)]
q_table[disc_curr_state+(action,)] += LEARNING_RATE*error
curr_state = next_state
print("Sum of rewards {}".format(np.sum(episode_rewards)))
total_episode_rewards.append(np.sum(episode_rewards))
print("Average reward over 500 episodes: ", np.mean(total_episode_rewards))
return total_episode_rewards, q_table
q_table = init_q_table_v2()
total_episode_rewards, q_table = solve()
plt.plot(total_episode_rewards)
plt.xlabel('Episode')
plt.ylabel('Total Reward')
plt.title('Performance of Q-learning Agent')
# Call this function after training the Q-learning agent
plt.show()
plot_optimal_policy(q_table)
env.close()