-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
62 lines (48 loc) · 1.65 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
from mobile_net_v2 import mobile_net_v2
class NIMA(nn.Module):
def __init__(self, base_model):
super(NIMA, self).__init__()
base_model = nn.Sequential(*list(base_model.children())[:-2])
self.features = base_model
self.classifier = nn.Sequential(
nn.Dropout(p=0.75),
nn.Linear(100352,1024),
nn.Linear(1024,2),
nn.Softmax(),
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def single_emd_loss(p, q, r=2):
"""
Earth Mover's Distance of one sample
Args:
p: true distribution of shape num_classes × 1
q: estimated distribution of shape num_classes × 1
r: norm parameter
"""
assert p.shape == q.shape, "Length of the two distribution must be the same"
length = p.shape[0]
emd_loss = 0.0
for i in range(1, length + 1):
emd_loss += sum(torch.abs(p[:i] - q[:i])) ** r
return (emd_loss / length) ** (1. / r)
def emd_loss(p, q, r=2):
"""
Earth Mover's Distance on a batch
Args:
p: true distribution of shape mini_batch_size × num_classes × 1
q: estimated distribution of shape mini_batch_size × num_classes × 1
r: norm parameters
"""
assert p.shape == q.shape, "Shape of the two distribution batches must be the same."
mini_batch_size = p.shape[0]
loss_vector = []
for i in range(mini_batch_size):
loss_vector.append(single_emd_loss(p[i], q[i], r=r))
return sum(loss_vector) / mini_batch_size