Skip to content

Latest commit

 

History

History
 
 

pretrained_models

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

使用预训练模型Fine-tune完成中文文本分类任务

在2017年之前,工业界和学术界对NLP文本处理依赖于序列模型Recurrent Neural Network (RNN).


paddlenlp.seq2vec是什么? 瞧瞧它怎么完成情感分析教程介绍了如何使用paddlenlp.seq2vec表征文本语义。

近年来随着深度学习的发展,模型参数的数量飞速增长。为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集非常困难(成本过高),特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。为了利用这些数据,我们可以先从其中学习到一个好的表示,再将这些表示应用到其他任务中。最近的研究表明,基于大规模未标注语料库的预训练模型(Pretrained Models, PTM) 在NLP任务上取得了很好的表现。

近年来,大量的研究表明基于大型语料库的预训练模型(Pretrained Models, PTM)可以学习通用的语言表示,有利于下游NLP任务,同时能够避免从零开始训练模型。随着计算能力的发展,深度模型的出现(即 Transformer)和训练技巧的增强使得 PTM 不断发展,由浅变深。


本图片来自于:https://github.com/thunlp/PLMpapers

本示例展示了以ERNIE(Enhanced Representation through Knowledge Integration)代表的预训练模型如何Finetune完成中文文本分类任务。

模型简介

本项目针对中文文本分类问题,开源了一系列模型,供用户可配置地使用:

模型 dev acc test acc
bert-base-chinese 0.93833 0.94750
bert-wwm-chinese 0.94583 0.94917
bert-wwm-ext-chinese 0.94667 0.95500
ernie-1.0 0.94667 0.95333
ernie-tiny 0.93917 0.94833
roberta-wwm-ext 0.94750 0.95250
roberta-wwm-ext-large 0.95250 0.95333
rbt3 0.92583 0.93250
rbtl3 0.9341 0.93583

快速开始

代码结构说明

以下是本项目主要代码结构及说明:

pretrained_models/
├── deploy # 部署
│   └── python
│       └── predict.py # python预测部署示例
│   └── serving
│       ├── client.py # 客户端预测脚本
│       └── export_servable_model.py # 导出Serving模型及其配置
├── export_model.py # 动态图参数导出静态图参数脚本
├── predict.py # 预测脚本
├── README.md # 使用说明
└── train.py # 训练评估脚本

模型训练

我们以中文情感分类公开数据集ChnSentiCorp为示例数据集,可以运行下面的命令,在训练集(train.tsv)上进行模型训练,并在开发集(dev.tsv)验证

$ unset CUDA_VISIBLE_DEVICES
$ python -m paddle.distributed.launch --gpus "0" train.py --device gpu --save_dir ./checkpoints

可支持配置的参数:

  • save_dir:可选,保存训练模型的目录;默认保存在当前目录checkpoints文件夹下。
  • max_seq_length:可选,ERNIE/BERT模型使用的最大序列长度,最大不能超过512, 若出现显存不足,请适当调低这一参数;默认为128。
  • batch_size:可选,批处理大小,请结合显存情况进行调整,若出现显存不足,请适当调低这一参数;默认为32。
  • learning_rate:可选,Fine-tune的最大学习率;默认为5e-5。
  • weight_decay:可选,控制正则项力度的参数,用于防止过拟合,默认为0.00。
  • epochs: 训练轮次,默认为3。
  • warmup_proption:可选,学习率warmup策略的比例,如果0.1,则学习率会在前10%训练step的过程中从0慢慢增长到learning_rate, 而后再缓慢衰减,默认为0.1。
  • init_from_ckpt:可选,模型参数路径,热启动模型训练;默认为None。
  • seed:可选,随机种子,默认为1000.
  • device: 选用什么设备进行训练,可选cpu或gpu。如使用gpu训练则参数gpus指定GPU卡号。

代码示例中使用的预训练模型是ERNIE,如果想要使用其他预训练模型如BERT,RoBERTa,Electra等,只需更换modeltokenizer即可。

# 使用ernie预训练模型
# ernie
model = ppnlp.transformers.ErnieForSequenceClassification.from_pretrained('ernie',num_classes=2))
tokenizer = ppnlp.transformers.ErnieTokenizer.from_pretrained('ernie')

# ernie-tiny
# model = ppnlp.transformers.ErnieForSequenceClassification.from_pretrained('ernie-tiny',num_classes=2))
# tokenizer = ppnlp.transformers.ErnieTinyTokenizer.from_pretrained('ernie-tiny')


# 使用bert预训练模型
# bert-base-chinese
model = ppnlp.transformers.BertForSequenceClassification.from_pretrained('bert-base-chinese', num_class=2)
tokenizer = ppnlp.transformers.BertTokenizer.from_pretrained('bert-base-chinese')

# bert-wwm-chinese
# model = ppnlp.transformers.BertForSequenceClassification.from_pretrained('bert-wwm-chinese', num_class=2)
# tokenizer = ppnlp.transformers.BertTokenizer.from_pretrained('bert-wwm-chinese')

# bert-wwm-ext-chinese
# model = ppnlp.transformers.BertForSequenceClassification.from_pretrained('bert-wwm-ext-chinese', num_class=2)
# tokenizer = ppnlp.transformers.BertTokenizer.from_pretrained('bert-wwm-ext-chinese')


# 使用roberta预训练模型
# roberta-wwm-ext
# model = ppnlp.transformers.RobertaForSequenceClassification.from_pretrained('roberta-wwm-ext', num_class=2)
# tokenizer = ppnlp.transformers.RobertaTokenizer.from_pretrained('roberta-wwm-ext')

# roberta-wwm-ext
# model = ppnlp.transformers.RobertaForSequenceClassification.from_pretrained('roberta-wwm-ext-large', num_class=2)
# tokenizer = ppnlp.transformers.RobertaTokenizer.from_pretrained('roberta-wwm-ext-large')

更多预训练模型,参考transformers

程序运行时将会自动进行训练,评估,测试。同时训练过程中会自动保存模型在指定的save_dir中。 如:

checkpoints/
├── model_100
│   ├── model_config.json
│   ├── model_state.pdparams
│   ├── tokenizer_config.json
│   └── vocab.txt
└── ...

NOTE:

  • 如需恢复模型训练,则可以设置init_from_ckpt, 如init_from_ckpt=checkpoints/model_100/model_state.pdparams
  • 如需使用ernie-tiny模型,则需要提前先安装sentencepiece依赖,如pip install sentencepiece
  • 使用动态图训练结束之后,还可以将动态图参数导出成静态图参数,具体代码见export_model.py。静态图参数保存在output_path指定路径中。 运行方式:
python export_model.py --params_path=./checkpoint/model_900/model_state.pdparams --output_path=./output

其中params_path是指动态图训练保存的参数路径,output_path是指静态图参数导出路径。

导出模型之后,可以用于部署,deploy/python/predict.py文件提供了python部署预测示例。运行方式:

python deploy/python/predict.py --model_dir=./output

模型预测

启动预测:

export CUDA_VISIBLE_DEVICES=0
python predict.py --device 'gpu' --params_path checkpoints/model_900/model_state.pdparams

将待预测数据如以下示例:

这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般
怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片
作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。

可以直接调用predict函数即可输出预测结果。

Data: 这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般      Label: negative
Data: 怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片      Label: negative
Data: 作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。      Label: positive

使用Paddle Serving API进行推理部署

NOTE:

使用Paddle Serving服务化部署需要将动态图保存的模型参数导出为静态图Inference模型参数文件。如何导出模型参考上述提到的导出模型

Inference模型参数文件:

文件 说明
inference.pdiparams 模型权重文件,供推理时加载使用
inference.pdmodel 模型结构文件,供推理时加载使用

依赖安装

  • 服务器端依赖:
pip install paddle-serving-app paddle-serving-client paddle-serving-server==0.5.0

如果服务器端可以使用GPU进行推理,则安装server的gpu版本,安装时要注意参考服务器当前CUDA、TensorRT的版本来安装对应的版本:Serving readme

pip install paddle-serving-app paddle-serving-client paddle-serving-server-gpu==0.5.0
  • 客户端依赖:
pip install paddle-serving-app paddle-serving-client

建议在docker容器中运行服务器端和客户端以避免一些系统依赖库问题,启动docker镜像的命令参考:Serving readme

Serving的模型和配置导出

使用Serving进行预测部署时,需要将静态图inference model导出为Serving可读入的模型参数和配置。运行方式如下:

python -u deploy/serving/export_servable_model.py \
    --inference_model_dir ./ \
    --model_file ./output/inference.pdmodel \
    --params_file ./output/inference.pdiparams

可支持配置的参数:

  • inference_model_dir: Inference推理模型所在目录,这里假设为当前目录。
  • model_file: 推理需要加载的模型结构文件。
  • params_file: 推理需要加载的模型权重文件。

执行命令后,会在当前目录下生成2个目录:serving_server 和 serving_client。serving_server目录包含服务器端所需的模型和配置,需将其拷贝到服务器端容器中;serving_client目录包含客户端所需的配置,需将其拷贝到客户端容器中。

服务器启动server

在服务器端容器中,启动server

python -m deploy/serving/paddle_serving_server_gpu.serve \
    --model ./serving_server \
    --port 8090

其中:

  • model: server加载的模型和配置所在目录。
  • port: 表示server开启的服务端口8090。

如果服务器端可以使用GPU进行推理计算,则启动服务器时可以配置server使用的GPU id

python -m paddle_serving_server_gpu.serve \
    --model ./serving_server \
    --port 8090 \
    --gpu_id 0
  • gpu_id: server使用0号GPU。

客服端发送推理请求

在客户端容器中,使用前面得到的serving_client目录启动client发起RPC推理请求。和使用Paddle Inference API进行推理一样。

从命令行读取输入数据发起推理请求

python deploy/serving/client.py \
    --client_config_file ./serving_client/serving_client_conf.prototxt \
    --server_ip_port 127.0.0.1:8090 \
    --max_seq_length 128

其中参数释义如下:

  • client_config_file 表示客户端需要加载的配置文件。
  • server_ip_port 表示服务器端的ip地址和端口号。ip地址和端口号需要根据实际情况进行更换。
  • max_seq_length 表示输入的最大句子长度,超过该长度将被截断。