-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMPT_inference.py
106 lines (87 loc) · 3.72 KB
/
MPT_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# peft model py 681
import os
# os.environ["CUDA_VISIBLE_DEVICES"]="0"
import torch
import torch.nn as nn
# import bitsandbytes as bnb
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
import transformers
from datasets import load_dataset
from peft import LoraConfig, get_peft_model
from torch.nn import DataParallel
import math
import wandb
import numpy as np
import argparse
parser = argparse.ArgumentParser()
# parser.add_argument("--wordEmbTrain", default="false", help = "[true | false]")
parser.add_argument("--run_name", default="workshop")
parser.add_argument("--block_size", type=int, default=128)
args = parser.parse_args()
wandb.init(project="vocab_adap_clm", entity="nandinimundra", name = f"{args.run_name}")
name = 'mosaicml/mpt-7b'
##############creating word embediing
config = AutoConfig.from_pretrained("./config_mpt_7b_model/", trust_remote_code=True)
# config.init_device = 'cuda:0' # For fast initialization directly on GPU!
model_kwargs = {"device_map": "auto"}
model = AutoModelForCausalLM.from_pretrained(
"./mpt_7b_model/",
config=config,
# torch_dtype=torch.bfloat16, # Load model weights in bfloat16
trust_remote_code=True
)
# model.load_state_dict(torch.load(f"/nlsasfs/home/ai4bharat/nandinim/nandini/vocab_adap/outputs_fast_3/checkpoint-45201/pytorch_model.bin" ))
tokenizer = AutoTokenizer.from_pretrained("./tokenizer_mpt_7b_model/")
# print(model)
def preprocess_function(examples):
# result = tokenizer(examples["text"])
# return result
return tokenizer([" ".join(x) for x in examples["text"]])
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
# Split by chunks of block_size.
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
block_size = args.block_size
tokenizer.pad_token = tokenizer.eos_token
# model = DataParallel(model)
folders = ['eng_Latn-hin_Deva','eng_Latn-eng_Latn', 'eng_Latn-brx_Deva', 'eng_Latn-sat_Olck', 'eng_Latn-tam_Taml', 'eng_Latn-asm_Beng' ]
# for folder in os.listdir("/nlsasfs/home/ai4bharat/nandinim/nandini/vocab_adap/seed_train_test/"):
for folder in folders:
text_path = f"/nlsasfs/home/ai4bharat/nandinim/nandini/vocab_adap/seed_train_test/{folder}/test.{folder[-8:]}"
dataset = load_dataset("text", data_files=text_path)
print(folder , " " , dataset)
tokenized_dataset = dataset['train'].map(
preprocess_function,
batched=True,
remove_columns=dataset["train"].column_names
)
lm_dataset = tokenized_dataset.map(group_texts, batched=True)
tokenizer.pad_token = tokenizer.eos_token
data_collator = transformers.DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
training_args = transformers.TrainingArguments(
output_dir= f"eval",
evaluation_strategy="epoch",
per_device_eval_batch_size = 16
)
trainer = transformers.Trainer(
model=model,
args=training_args,
eval_dataset=lm_dataset,
data_collator=data_collator,
)
eval_results = trainer.evaluate()
perplexity = math.exp(eval_results['eval_loss'])
print(f"Perplexity- {folder[-8:]}: ", perplexity)
wandb.log({"perp-{}-".format(folder[-8:]): perplexity})
# #################### Now evaluation