From b21f666fce10e0111a54eb4a2f4a65279f30c8c0 Mon Sep 17 00:00:00 2001 From: Qinwen Xu Date: Tue, 10 Dec 2024 21:35:02 +0000 Subject: [PATCH] Add llama-405b configuration for v5p --- benchmarks/maxtext_trillium_model_configs.py | 9 +- benchmarks/maxtext_viperfish_model_configs.py | 165 ++++++++++++++++++ benchmarks/model_configs.py | 27 +++ 3 files changed, 193 insertions(+), 8 deletions(-) create mode 100644 benchmarks/maxtext_viperfish_model_configs.py create mode 100644 benchmarks/model_configs.py diff --git a/benchmarks/maxtext_trillium_model_configs.py b/benchmarks/maxtext_trillium_model_configs.py index b3606ec8f..28cf42609 100644 --- a/benchmarks/maxtext_trillium_model_configs.py +++ b/benchmarks/maxtext_trillium_model_configs.py @@ -19,14 +19,7 @@ import typing import xla_flags_library - -@dataclasses.dataclass -class MaxTextModel: - model_name: str - model_type: str - tuning_params: dict[str, typing.Any] - xla_flags: str - +from model_configs import MaxTextModel default_basic = MaxTextModel( model_name="default-basic", diff --git a/benchmarks/maxtext_viperfish_model_configs.py b/benchmarks/maxtext_viperfish_model_configs.py new file mode 100644 index 000000000..039d80a5e --- /dev/null +++ b/benchmarks/maxtext_viperfish_model_configs.py @@ -0,0 +1,165 @@ +""" + Copyright 2024 Google LLC + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + https://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + """ +"""Shared Benchmark config for v6e orchestrations.""" + +import dataclasses +import typing +import xla_flags_library + +from model_configs import MaxTextModel + + +llama2_70b_4096_int8 = MaxTextModel( + model_name="llama2-70b-4096-int8", + model_type="llama2-70b", + tuning_params={ + "per_device_batch_size": 4, + "remat_policy": "full", + "max_target_length": 4096, + "attention": "flash", + "gcs_metrics": True, + "use_iota_embed": True, + "reuse_example_batch": 1, + "enable_checkpointing": False, + "remat_policy": "save_dot_except_mlpwi", + "profiler": "xplane", + "dataset_type": "synthetic", + "reuse_example_batch": 1, + "tokenizer_path": "assets/tokenizer.llama2", + "quantization": "int8", + "steps": 100, + }, + xla_flags=( + xla_flags_library.CF_FOR_ALL_GATHER + + xla_flags_library.DATA_PARALLEL_OVERLAP + ), +) + +llama2_70b_4096_int8_ckp = MaxTextModel( + model_name="llama2-70b-4096-int8", + model_type="llama2-70b", + tuning_params={ + "per_device_batch_size": 4, + "max_target_length": 4096, + "attention": "flash", + "gcs_metrics": True, + "use_iota_embed": True, + "reuse_example_batch": 1, + "enable_checkpointing": True, + "checkpoint_period": 200, + "remat_policy": "save_dot_except_mlpwi", + "profiler": "xplane", + "dataset_type": "synthetic", + "reuse_example_batch": 1, + "tokenizer_path": "assets/tokenizer.llama2", + "quantization": "int8", + "steps": 100, + }, + xla_flags=( + xla_flags_library.CF_FOR_ALL_GATHER + + xla_flags_library.DATA_PARALLEL_OVERLAP + ), +) + +llama2_70b_4096_real_data_int8 = MaxTextModel( + model_name="llama2-70b-4096-rd-int8", + model_type="llama2-70b", + tuning_params={ + "per_device_batch_size": 4, + "remat_policy": "full", + "max_target_length": 4096, + "attention": "flash", + "gcs_metrics": True, + "use_iota_embed": True, + "reuse_example_batch": 1, + "enable_checkpointing": False, + "remat_policy": "save_dot_except_mlpwi", + "profiler": "xplane", + "dataset_path": "gs://max-datasets-rogue", + "dataset_type": "tfds", + "tokenizer_path": "assets/tokenizer.llama2", + "quantization": "int8", + "steps": 100, + }, + xla_flags=( + xla_flags_library.CF_FOR_ALL_GATHER + + xla_flags_library.DATA_PARALLEL_OVERLAP + ), +) + +llama2_70b_4096_real_data = MaxTextModel( + model_name="llama2-70b-4096-rd", + model_type="llama2-70b", + tuning_params={ + "per_device_batch_size": 4, + "max_target_length": 4096, + "attention": "flash", + "gcs_metrics": True, + "use_iota_embed": True, + "reuse_example_batch": 1, + "enable_checkpointing": False, + "remat_policy": "save_dot_except_mlpwi", + "profiler": "xplane", + "dataset_path": "gs://max-datasets-rogue", + "dataset_type": "tfds", + "tokenizer_path": "assets/tokenizer.llama2", + "steps": 100, + }, + xla_flags=( + xla_flags_library.CF_FOR_ALL_GATHER + + xla_flags_library.DATA_PARALLEL_OVERLAP + ), +) + +_DENSE_VMEM_LIMIT=32768 + +DENSE_VMEM_LIMIT_FLAG = f" --xla_tpu_scoped_vmem_limit_kib={_DENSE_VMEM_LIMIT}" + +llama3_1_405b_8192_fsdp_dcn = MaxTextModel( + model_name="llama3-1-405b-8192-fsdp-dcn", + model_type="llama3.1-405b", + tuning_params={ + "per_device_batch_size": 1, + "remat_policy": "full", + "ici_fsdp_parallelism": -1, + "ici_tensor_parallelism": 8, + "max_target_length": 8192, + "attention": "flash", + "gcs_metrics": True, + "use_iota_embed": True, + "dataset_path": "gs://max-datasets-rogue", + "dataset_type": "synthetic", + "reuse_example_batch": 1, + "enable_checkpointing": False, + "profiler": "xplane", + "sa_block_q": 1024, + "sa_block_q_dkv": 2048, + "sa_block_q_dq": 2048, + "steps": 100, + }, + xla_flags=( + xla_flags_library.CF_FOR_ALL_GATHER + + xla_flags_library.DATA_PARALLEL_OVERLAP + + DENSE_VMEM_LIMIT_FLAG + ), +) +# List of all models +maxstar_models = [ + llama2_70b_4096_int8, + llama2_70b_4096_int8_ckp, + llama2_70b_4096_real_data, + llama3_1_405b_8192_fsdp_dcn, +] diff --git a/benchmarks/model_configs.py b/benchmarks/model_configs.py new file mode 100644 index 000000000..0b363cd46 --- /dev/null +++ b/benchmarks/model_configs.py @@ -0,0 +1,27 @@ +@dataclasses.dataclass +class MaxTextModel: + model_name: str + model_type: str + tuning_params: dict[str, typing.Any] + xla_flags: str + +@dataclasses.dataclass +class DatasetHParams: + dataset_path: str + dataset_name: str + dataset_type: str + train_split: str + eval_split: str + eval_steps: int + add_bos: bool + add_eos: bool + tokenizer_path: str + +@dataclasses.dataclass +class ConvHParams: + global_batch_size: int + warmup_samples: int + decay_end_samples: int + total_tokens_to_train: int + learning_rate: float + eval_interval:int \ No newline at end of file