forked from swimmer008/Ag-Productivity-US-EU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path05a_TFP for IAP_GlobMalm.R
121 lines (94 loc) · 4.99 KB
/
05a_TFP for IAP_GlobMalm.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# ------------------------------------------- #
# #
# This program estimates the Global Malmquist #
# TFP index for the IAP country-level data #
# #
# ------------------------------------------- #
# Open packages
library(tidyverse) #for data manipulation
library(reshape2) #to reshape the data
library(tikzDevice) #to save ggplot object in latex format
library(ggpubr) #to combine plots
library(kableExtra) # to convert data frames to Latex
# More packages (productivity decomposition)
library(doFuture) #for DEA
library(progressr) #for DEA
library(lpSolveAPI) #for DEA
library(plm) #for DEA (The source codes rely on "is.pbalanced)
# Load the required source codes
source('R_aux/aux_globalmalm.R')
source('R_aux/auxiliaries.R')
source('R_aux/globalmalm.R')
# Set path to Latex compiler if figures should be stored in Latex format
options("tikzLatex"='C:/Program Files/MiKTeX/miktex/bin/x64/pdflatex.exe')
# Load the IAP country-level data and arrange by country name
load("R_output/IAPdata.Rda")
IAPdata <- IAPdata[order(IAPdata$country),]
# Calculate and decompose the index
globmalm <- globalmalm(data = IAPdata, id.var = "country", time.var = "year",
x.vars = c("x_land", "x_labor","x_capital","x_fertilizer", "x_feed"),
y.vars = c("q_crops", "q_animals"),
g.var = NULL,
orientation = c("out"), parallel = FALSE, scaled = FALSE,
window = 3)
GlobMalm.levels <- globmalm$Levels
GlobMalm.levels <- GlobMalm.levels[order(GlobMalm.levels$country),]
# save results
save(GlobMalm.levels, file = "R_output/GlobMalm.levels_IAP.Rda")
# ---------------------------------- #
#### Create table for the results ####
# ---------------------------------- #
# Prepare data for the tables
data_GlobMalm <- data.frame(matrix(ncol = 10, nrow = 25))
colnames(data_GlobMalm) <- c("country",
"TFP1961", "TFP2020", "DTFP",
"OTE1961", "OTE2020", "DOTE",
"BPG1961", "BPG2020", "DBPG")
data_GlobMalm$country <- rep(unique(IAPdata$country))
# TOTAL FACTOR PRODUCTIVITY
# TFP1961
data_GlobMalm$TFP1961 <- GlobMalm.levels$DOGt[GlobMalm.levels$year==1961]
# TFP2020
data_GlobMalm$TFP2020 <- GlobMalm.levels$DOGt[GlobMalm.levels$year==2020]
# DTFP
data_GlobMalm$DTFP <- (data_GlobMalm$TFP2020 / data_GlobMalm$TFP1961)
# OUTPUT TECHNICAL EFFICIENCY
# OTE2000
data_GlobMalm$OTE1961 <- GlobMalm.levels$DOt[GlobMalm.levels$year==1961]
# OTE2020
data_GlobMalm$OTE2020 <- GlobMalm.levels$DOt[GlobMalm.levels$year==2020]
# DOTE
data_GlobMalm$DOTE <- (data_GlobMalm$OTE2020 / data_GlobMalm$OTE1961)
# BEST PRACTICE GAP (BPG)
# BPG2000
data_GlobMalm$BPG1961 <- GlobMalm.levels$BPGt[GlobMalm.levels$year==1961]
# BPG2020
data_GlobMalm$BPG2020 <- GlobMalm.levels$BPGt[GlobMalm.levels$year==2020]
# DBPG
data_GlobMalm$DBPG <- (data_GlobMalm$BPG2020 / data_GlobMalm$BPG1961)
# Add EU-average as geometric mean
data_GlobMalm <- data_GlobMalm %>%
add_row(country="EU25",
TFP1961=NA, TFP2020=NA, DTFP=exp(mean(log(data_GlobMalm$DTFP))),
OTE1961=NA, OTE2020=NA, DOTE=exp(mean(log(data_GlobMalm$DOTE))),
BPG1961=NA, BPG2020=NA, DBPG=exp(mean(log(data_GlobMalm$DBPG))))
# Write Table: "TFP decomposition for EU and US agriculture (1961-2020) using the Global Malmquist index.
# Set global option to produce latex output
options(knitr.table.format = "latex", knitr.kable.NA = '')
# Create table
Tab_GlobMalm_IAP_TFPDecomp <- kable(data_GlobMalm, booktabs = T,
digits = 2,
row.names = FALSE,
escape = FALSE,
linesep = "",
caption = "TFP decomposition for EU and US agriculture (1961--2020) using the Global Malmquist index and the International Agricultural Productivity data.",
label = "Tab_GlobMalm_IAP_TFPDecomp",
col.names = c('Country',
'2000', '2019', "$\\Delta$",
'2000', '2019', "$\\Delta$",
'2000', '2019', "$\\Delta$")) %>%
add_header_above(c("", "TFP" = 3, "OTE" = 3, "BPG" = 3)) %>%
row_spec(48, hline_after=T) %>%
kable_styling(latex_options = c("scale_down", "HOLD_position"))
# Print Latex file
writeLines(Tab_GlobMalm_IAP_TFPDecomp, "Tables/Tab_GlobMalm_IAP_TFPDecomp.tex")