diff --git a/baybe-inhibitor.ipynb b/baybe-inhibitor.ipynb index a4b7f6f..c584dc7 100644 --- a/baybe-inhibitor.ipynb +++ b/baybe-inhibitor.ipynb @@ -10,7 +10,23 @@ { "cell_type": "markdown", "metadata": {}, - "source": [] + "source": [ + "This project will focus on exploring the capabilities of Bayesian optimization, specifically employing BayBE, in the discovery of novel corrosion inhibitors for materials design. Initially, we will work with a randomly chosen subset from a comprehensive database of electrochemical responses of small organic molecules. Our goal is to assess how Bayesian optimization can speed up the screening process across the design space to identify promising compounds. We will compare different strategies for incorporating alloy information, while optimizing the experimental parameters with respect to the inhibitive performance of the screened compounds." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Initizalization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Loading libraries and data files:" + ] }, { "cell_type": "code", @@ -20,43 +36,131 @@ "source": [ "import pandas as pd\n", "import numpy as np\n", + "from baybe import Campaign\n", "\n", - "df_AA2024 = pd.read_excel('data/filtered_AA2024.xlsx')" + "df_AA2024 = pd.read_excel('data/filtered_AA2024.xlsx')\n", + "df_AA1000 = pd.read_excel('data/filtered_AA1000.xlsx')\n", + "df_Al = pd.read_excel('data/filtered_Al.xlsx')" ] }, { "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Time_h pH Inhib_Concentrat_M Efficiency\n", - "count 611.000000 611.000000 611.000000 611.000000\n", - "mean 135.801964 6.342062 0.006808 26.736841\n", - "std 201.683867 2.529080 0.014059 288.788317\n", - "min 0.500000 0.000000 0.000010 -4834.000000\n", - "25% 24.000000 4.000000 0.000500 30.000000\n", - "50% 24.000000 7.000000 0.001000 58.000000\n", - "75% 144.000000 7.000000 0.003000 87.950000\n", - "max 672.000000 10.000000 0.100000 100.000000\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, "source": [ - "print(df_AA2024.describe())" + "# Data Processing" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, "source": [ - "# This is another test" + "# Data Anaylsis" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Bayesian Optimization" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Search Space" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Objective" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Recommender" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Benchmarking" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Transfer Learning" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": {