diff --git a/can_baybe-inhibitor.ipynb b/can_baybe-inhibitor.ipynb
index 4e98bce..7132fe4 100644
--- a/can_baybe-inhibitor.ipynb
+++ b/can_baybe-inhibitor.ipynb
@@ -30,7 +30,7 @@
},
{
"cell_type": "code",
- "execution_count": 164,
+ "execution_count": 297,
"metadata": {},
"outputs": [
{
@@ -68,16 +68,16 @@
"
C(=O)(C(=O)[O-])[O-] | \n",
" 24.0 | \n",
" 4.0 | \n",
- " 1.000000e-03 | \n",
+ " 0.0010 | \n",
" 0.10 | \n",
- " 15.00 | \n",
+ " 20.00 | \n",
" \n",
" \n",
" 1 | \n",
" C(=O)(C(=O)[O-])[O-] | \n",
" 24.0 | \n",
" 7.0 | \n",
- " 5.000000e-04 | \n",
+ " 0.0005 | \n",
" 0.05 | \n",
" 12.35 | \n",
"
\n",
@@ -86,27 +86,27 @@
" C(=O)(C(=O)[O-])[O-] | \n",
" 24.0 | \n",
" 10.0 | \n",
- " 1.000000e-03 | \n",
+ " 0.0010 | \n",
" 0.10 | \n",
- " 30.00 | \n",
+ " 20.00 | \n",
" \n",
" \n",
" 3 | \n",
" C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O | \n",
- " 0.0 | \n",
- " 2.0 | \n",
- " 5.000000e-07 | \n",
- " 2.00 | \n",
- " 53.85 | \n",
+ " 24.0 | \n",
+ " 4.0 | \n",
+ " 0.0010 | \n",
+ " 0.10 | \n",
+ " 30.00 | \n",
"
\n",
" \n",
" 4 | \n",
" C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O | \n",
- " 0.0 | \n",
- " 2.0 | \n",
- " 1.000000e-06 | \n",
- " 2.00 | \n",
- " 58.55 | \n",
+ " 24.0 | \n",
+ " 7.0 | \n",
+ " 0.0005 | \n",
+ " 0.05 | \n",
+ " -23.95 | \n",
"
\n",
" \n",
" ... | \n",
@@ -118,86 +118,86 @@
" ... | \n",
"
\n",
" \n",
- " 986 | \n",
+ " 510 | \n",
" c1ccc2c(c1)[nH]nn2 | \n",
" 24.0 | \n",
" 7.0 | \n",
- " 5.000000e-04 | \n",
+ " 0.0005 | \n",
" 0.05 | \n",
" 97.95 | \n",
"
\n",
" \n",
- " 987 | \n",
+ " 511 | \n",
" c1ccc2c(c1)[nH]nn2 | \n",
" 24.0 | \n",
" 10.0 | \n",
- " 1.000000e-03 | \n",
+ " 0.0010 | \n",
" 0.10 | \n",
- " 60.00 | \n",
+ " 90.00 | \n",
"
\n",
" \n",
- " 988 | \n",
+ " 512 | \n",
" c1ccc2c(c1)[nH]nn2 | \n",
" 672.0 | \n",
" 7.0 | \n",
- " 1.000000e-03 | \n",
+ " 0.0010 | \n",
" 0.10 | \n",
- " 95.00 | \n",
+ " 98.00 | \n",
"
\n",
" \n",
- " 989 | \n",
+ " 513 | \n",
" c1ncn[nH]1 | \n",
" 24.0 | \n",
" 4.0 | \n",
- " 1.000000e-03 | \n",
+ " 0.0010 | \n",
" 0.10 | \n",
- " 35.00 | \n",
+ " 30.00 | \n",
"
\n",
" \n",
- " 990 | \n",
+ " 514 | \n",
" c1ncn[nH]1 | \n",
" 24.0 | \n",
" 10.0 | \n",
- " 1.000000e-03 | \n",
+ " 0.0010 | \n",
" 0.10 | \n",
- " 50.00 | \n",
+ " 90.00 | \n",
"
\n",
" \n",
"\n",
- "991 rows × 6 columns
\n",
+ "515 rows × 6 columns
\n",
""
],
"text/plain": [
" SMILES Time_h pH Inhib_Concentrat_M \\\n",
- "0 C(=O)(C(=O)[O-])[O-] 24.0 4.0 1.000000e-03 \n",
- "1 C(=O)(C(=O)[O-])[O-] 24.0 7.0 5.000000e-04 \n",
- "2 C(=O)(C(=O)[O-])[O-] 24.0 10.0 1.000000e-03 \n",
- "3 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O 0.0 2.0 5.000000e-07 \n",
- "4 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O 0.0 2.0 1.000000e-06 \n",
+ "0 C(=O)(C(=O)[O-])[O-] 24.0 4.0 0.0010 \n",
+ "1 C(=O)(C(=O)[O-])[O-] 24.0 7.0 0.0005 \n",
+ "2 C(=O)(C(=O)[O-])[O-] 24.0 10.0 0.0010 \n",
+ "3 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O 24.0 4.0 0.0010 \n",
+ "4 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O 24.0 7.0 0.0005 \n",
".. ... ... ... ... \n",
- "986 c1ccc2c(c1)[nH]nn2 24.0 7.0 5.000000e-04 \n",
- "987 c1ccc2c(c1)[nH]nn2 24.0 10.0 1.000000e-03 \n",
- "988 c1ccc2c(c1)[nH]nn2 672.0 7.0 1.000000e-03 \n",
- "989 c1ncn[nH]1 24.0 4.0 1.000000e-03 \n",
- "990 c1ncn[nH]1 24.0 10.0 1.000000e-03 \n",
+ "510 c1ccc2c(c1)[nH]nn2 24.0 7.0 0.0005 \n",
+ "511 c1ccc2c(c1)[nH]nn2 24.0 10.0 0.0010 \n",
+ "512 c1ccc2c(c1)[nH]nn2 672.0 7.0 0.0010 \n",
+ "513 c1ncn[nH]1 24.0 4.0 0.0010 \n",
+ "514 c1ncn[nH]1 24.0 10.0 0.0010 \n",
"\n",
" Salt_Concentrat_M Efficiency \n",
- "0 0.10 15.00 \n",
+ "0 0.10 20.00 \n",
"1 0.05 12.35 \n",
- "2 0.10 30.00 \n",
- "3 2.00 53.85 \n",
- "4 2.00 58.55 \n",
+ "2 0.10 20.00 \n",
+ "3 0.10 30.00 \n",
+ "4 0.05 -23.95 \n",
".. ... ... \n",
- "986 0.05 97.95 \n",
- "987 0.10 60.00 \n",
- "988 0.10 95.00 \n",
- "989 0.10 35.00 \n",
- "990 0.10 50.00 \n",
+ "510 0.05 97.95 \n",
+ "511 0.10 90.00 \n",
+ "512 0.10 98.00 \n",
+ "513 0.10 30.00 \n",
+ "514 0.10 90.00 \n",
"\n",
- "[991 rows x 6 columns]"
+ "[515 rows x 6 columns]"
]
},
- "execution_count": 164,
+ "execution_count": 297,
"metadata": {},
"output_type": "execute_result"
}
@@ -225,7 +225,7 @@
"df_Al = pd.read_excel('data/averaged_filtered_Al.xlsx')\n",
"\n",
"# change this for campaigns on different datasets\n",
- "df_active = df_Al\n",
+ "df_active = df_AA2024\n",
"\n",
"\n",
"if df_active is df_AA2024:\n",
@@ -246,7 +246,7 @@
},
{
"cell_type": "code",
- "execution_count": 165,
+ "execution_count": 298,
"metadata": {},
"outputs": [],
"source": [
@@ -255,7 +255,7 @@
},
{
"cell_type": "code",
- "execution_count": 166,
+ "execution_count": 299,
"metadata": {},
"outputs": [],
"source": [
@@ -270,7 +270,7 @@
},
{
"cell_type": "code",
- "execution_count": 167,
+ "execution_count": 300,
"metadata": {},
"outputs": [],
"source": [
@@ -338,40 +338,9 @@
},
{
"cell_type": "code",
- "execution_count": 168,
+ "execution_count": 301,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "________________________________________________________________________________\n",
- "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n",
- "_smiles_to_mordred_features('C1=CC(=C(C=C1C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O)O')\n",
- "_______________________________________smiles_to_mordred_features - 0.3s, 0.0min\n",
- "________________________________________________________________________________\n",
- "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n",
- "_smiles_to_mordred_features('C1=CC=C(C=C1)C(=O)SC(=N)N')\n",
- "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n",
- "________________________________________________________________________________\n",
- "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n",
- "_smiles_to_mordred_features('C1=CC=C(C=C1)C(=O)SC(=N)NC2=CC=C(C=C2)C')\n",
- "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n",
- "________________________________________________________________________________\n",
- "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n",
- "_smiles_to_mordred_features('C1=CC=C(C=C1)C(=O)SC(=N)NC2=CC=C(C=C2)OC')\n",
- "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n",
- "________________________________________________________________________________\n",
- "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n",
- "_smiles_to_mordred_features('N=C(NC1=CC=C(C=C1)Br)SC(O)C2=CC=CC=C2')\n",
- "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n",
- "________________________________________________________________________________\n",
- "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n",
- "_smiles_to_mordred_features('N=C(NC1=CC=C(C=C1)Cl)SC(O)C2=CC=CC=C2')\n",
- "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"df_no_target = lookup.drop('Efficiency', axis=1)\n",
"\n",
@@ -388,7 +357,7 @@
"\n",
"searchspace_rdkit = SearchSpace.from_dataframe(df = df_no_target, parameters=parameters_rdkit)\n",
"\n",
- "searchspace_ohe = SearchSpace.from_dataframe(df = df_no_target, parameters=parameters_rdkit)\n",
+ "searchspace_ohe = SearchSpace.from_dataframe(df = df_no_target, parameters=parameters_ohe)\n",
"\n",
"\n",
"objective = Objective(\n",
@@ -398,24 +367,24 @@
},
{
"cell_type": "code",
- "execution_count": 169,
+ "execution_count": 302,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "SearchSpace(discrete=SubspaceDiscrete(parameters=[NumericalDiscreteParameter(name='Time_h', encoding=None, _values=[0.0, 0.25, 0.33, 0.5, 0.58, 0.67, 0.75, 1.0, 1.5, 1.67, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 8.0, 10.0, 24.0, 48.0, 72.0, 96.0, 120.0, 144.0, 168.0, 192.0, 240.0, 288.0, 336.0, 360.0, 384.0, 432.0, 480.0, 528.0, 576.0, 600.0, 624.0, 672.0, 720.0], tolerance=0.0), NumericalDiscreteParameter(name='pH', encoding=None, _values=[-0.6, -0.4771212547196624, -0.3979400086720376, -0.3010299956639812, -0.3, -0.1760912590556812, -0.1367205671564068, 0.0, 0.3, 0.45, 0.7, 1.0, 1.7, 2.0, 3.3, 4.0, 4.4, 4.6, 5.4, 5.5, 5.6, 7.0, 7.6, 10.0, 11.0, 13.0, 13.7, 14.30102999566398], tolerance=0.0), NumericalDiscreteParameter(name='Inhib_Concentrat_M', encoding=None, _values=[1e-07, 5e-07, 1e-06, 2e-06, 4e-06, 5e-06, 6e-06, 8e-06, 8.271845945141117e-06, 1e-05, 1.2e-05, 1.5e-05, 1.654369189028223e-05, 2e-05, 2.481553783542335e-05, 3e-05, 3.308738378056447e-05, 4e-05, 4.135922972570559e-05, 5e-05, 6e-05, 7e-05, 8e-05, 8.271845945141118e-05, 0.0001, 0.00015, 0.0001958863858961802, 0.0002, 0.00021, 0.0003, 0.0003566333808844508, 0.0003917727717923605, 0.0004, 0.00042, 0.0005, 0.0005876591576885406, 0.0006, 0.0007, 0.0007132667617689017, 0.0007835455435847209, 0.0008, 0.00084, 0.0009, 0.0009794319294809011, 0.001, 0.0011, 0.0012, 0.0013, 0.0014, 0.0015, 0.0016, 0.001783166904422254, 0.0018, 0.0019, 0.002, 0.002139800285306705, 0.0024, 0.0025, 0.0026, 0.003, 0.0032, 0.003566333808844508, 0.0039, 0.004, 0.0042, 0.00427960057061341, 0.0045, 0.005, 0.0053, 0.005706134094151214, 0.0065, 0.007, 0.0075, 0.0085, 0.009, 0.01, 0.011, 0.015, 0.02, 0.021, 0.022, 0.025, 0.031, 0.033, 0.04, 0.042, 0.044, 0.05, 0.06, 0.08, 0.1, 0.66, 1.32, 1.97, 2.63, 3.28], tolerance=0.0), NumericalDiscreteParameter(name='Salt_Concentrat_M', encoding=None, _values=[0.0, 0.01, 0.05, 0.1, 0.5, 0.6, 1.0, 2.0], tolerance=0.0), SubstanceParameter(name='SMILES', data={'C(=O)(C(=O)[O-])[O-]': 'C(=O)(C(=O)[O-])[O-]', 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O': 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]', 'C(C(CO)([N+](=O)[O-])Br)O': 'C(C(CO)([N+](=O)[O-])Br)O', 'C(CC=O)CC=O': 'C(CC=O)CC=O', 'C1=CC(=C(C(=C1)C=NC2=CC=C(C=C2)N=CC3=CC=CC(=C3O)OC)O)OC': 'C1=CC(=C(C(=C1)C=NC2=CC=C(C=C2)N=CC3=CC=CC(=C3O)OC)O)OC', 'C1=CC(=C(C=C1C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O)O': 'C1=CC(=C(C=C1C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O)O', 'C1=CC(=C(C=C1Cl)Cl)COC(CN2C=CN=C2)C3=C(C=C(C=C3)Cl)Cl.[N+](=O)(O)[O-]': 'C1=CC(=C(C=C1Cl)Cl)COC(CN2C=CN=C2)C3=C(C=C(C=C3)Cl)Cl.[N+](=O)(O)[O-]', 'C1=CC(=C(C=C1F)F)C(CN2C=NC=N2)(CN3C=NC=N3)O': 'C1=CC(=C(C=C1F)F)C(CN2C=NC=N2)(CN3C=NC=N3)O', 'C1=CC(=C(C=C1O)O)C=NNC(=S)N': 'C1=CC(=C(C=C1O)O)C=NNC(=S)N', 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]': 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]', 'C1=CC(=CC(=C1)O)O': 'C1=CC(=CC(=C1)O)O', 'C1=CC(=CC(=C1)S)C(=O)O': 'C1=CC(=CC(=C1)S)C(=O)O', 'C1=CC(=CC=C1O)O': 'C1=CC(=CC=C1O)O', 'C1=CC(=CN=C1)C(=O)NN': 'C1=CC(=CN=C1)C(=O)NN', 'C1=CC(=CN=C1)C=NNC(=S)N': 'C1=CC(=CN=C1)C=NNC(=S)N', 'C1=CC(=NC(=C1)N)N': 'C1=CC(=NC(=C1)N)N', 'C1=CC2=NNN=C2C=C1Cl': 'C1=CC2=NNN=C2C=C1Cl', 'C1=CC=C(C(=C1)C=NC2=CC=C(C=C2)N=CC3=CC=CC=C3O)O': 'C1=CC=C(C(=C1)C=NC2=CC=C(C=C2)N=CC3=CC=CC=C3O)O', 'C1=CC=C(C(=C1)C=NNC(=S)N)O': 'C1=CC=C(C(=C1)C=NNC(=S)N)O', 'C1=CC=C(C(=C1)O)O': 'C1=CC=C(C(=C1)O)O', 'C1=CC=C(C=C1)C(=O)SC(=N)N': 'C1=CC=C(C=C1)C(=O)SC(=N)N', 'C1=CC=C(C=C1)C(=O)SC(=N)NC2=CC=C(C=C2)C': 'C1=CC=C(C=C1)C(=O)SC(=N)NC2=CC=C(C=C2)C', 'C1=CC=C(C=C1)C(=O)SC(=N)NC2=CC=C(C=C2)OC': 'C1=CC=C(C=C1)C(=O)SC(=N)NC2=CC=C(C=C2)OC', 'C1=CC=C(C=C1)C(C2=CC=CC=C2)(C3=CC=CC=C3Cl)N4C=CN=C4': 'C1=CC=C(C=C1)C(C2=CC=CC=C2)(C3=CC=CC=C3Cl)N4C=CN=C4', 'C1=CC=NC(=C1)C=NNC(=S)N': 'C1=CC=NC(=C1)C=NNC(=S)N', 'C1=CN=C(C=N1)C(=O)N': 'C1=CN=C(C=N1)C(=O)N', 'C1=CN=C(N=C1)N': 'C1=CN=C(N=C1)N', 'C1=CN=CC=C1C=NNC(=S)N': 'C1=CN=CC=C1C=NNC(=S)N', 'C1CCC(=NO)CC1': 'C1CCC(=NO)CC1', 'C1COCCN1CCCS(=O)(=O)O': 'C1COCCN1CCCS(=O)(=O)O', 'C1N2CN3CN1CN(C2)C3': 'C1N2CN3CN1CN(C2)C3', 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1': 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1', 'C=CC1=C(N2C(C(C2=O)NC(=O)C(=NOCC(=O)O)C3=CSC(=N3)N)SC1)C(=O)O': 'C=CC1=C(N2C(C(C2=O)NC(=O)C(=NOCC(=O)O)C3=CSC(=N3)N)SC1)C(=O)O', 'C=CCN(CC=C)C1=NC(=NC(=N1)S)S[Na]': 'C=CCN(CC=C)C1=NC(=NC(=N1)S)S[Na]', 'CC(=NO)C': 'CC(=NO)C', 'CC(=O)O': 'CC(=O)O', 'CC(=O)SSC(=O)C': 'CC(=O)SSC(=O)C', 'CC(C)(C)NCC(COC1=CC=CC2=C1CC(C(C2)O)O)O': 'CC(C)(C)NCC(COC1=CC=CC2=C1CC(C(C2)O)O)O', 'CC(C)(C)NCC(COC1=NSN=C1N2CCOCC2)O': 'CC(C)(C)NCC(COC1=NSN=C1N2CCOCC2)O', 'CC(C)NCC(COC1=CC=C(C=C1)CC(=O)N)O': 'CC(C)NCC(COC1=CC=C(C=C1)CC(=O)N)O', 'CC(C)NCC(COC1=CC=CC2=CC=CC=C21)O': 'CC(C)NCC(COC1=CC=CC2=CC=CC=C21)O', 'CC(OC(=O)C)OC(=O)C1=C(CSC2N1C(=O)C2NC(=O)C(=NOC)C3=CC=CO3)COC(=O)N': 'CC(OC(=O)C)OC(=O)C1=C(CSC2N1C(=O)C2NC(=O)C(=NOC)C3=CC=CO3)COC(=O)N', 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C': 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C', 'CC1=C(SC=[N+]1CC2=CN=C(N=C2N)C)CCO': 'CC1=C(SC=[N+]1CC2=CN=C(N=C2N)C)CCO', 'CC1=CC=C(C=C1)[N]2N=NC=C2O': 'CC1=CC=C(C=C1)[N]2N=NC=C2O', 'CC1=CN=C(C=N1)C(=O)N': 'CC1=CN=C(C=N1)C(=O)N', 'CC1=NC(=CC=C1)C': 'CC1=NC(=CC=C1)C', 'CCC(=NO)C': 'CCC(=NO)C', 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O': 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O', 'CCCCCCCCCCCCCCCCCC(=O)O': 'CCCCCCCCCCCCCCCCCC(=O)O', 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCOS(=O)(=O)O': 'CCCCCCCCCCCCOS(=O)(=O)O', 'CCCCCCCCCCCCc1ccccc1S([O])([O])O': 'CCCCCCCCCCCCc1ccccc1S([O])([O])O', 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O': 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O', 'CCCCN(CCCC)C1=NC(=NC(=N1)S)S[Na]': 'CCCCN(CCCC)C1=NC(=NC(=N1)S)S[Na]', 'CCCCOP(=O)(OCCCC)O': 'CCCCOP(=O)(OCCCC)O', 'CCN(C(=S)S)CC': 'CCN(C(=S)S)CC', 'CCOC(=O)C1=C(C)N=C(S)NC1C2=CC=C(C=C2)Cl': 'CCOC(=O)C1=C(C)N=C(S)NC1C2=CC=C(C=C2)Cl', 'CCOc1ccc2c(c1)nc([nH]2)S': 'CCOc1ccc2c(c1)nc([nH]2)S', 'CCSc1nnc(s1)N': 'CCSc1nnc(s1)N', 'CN(C)CC1CCCCC1(C2=CC(=CC=C2)OC)O': 'CN(C)CC1CCCCC1(C2=CC(=CC=C2)OC)O', 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C': 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C', 'CNCC(C1=CC(=CC=C1)O)O': 'CNCC(C1=CC(=CC=C1)O)O', 'COC(=O)C1=CC=C(C=C1)[N]2N=NC=C2O': 'COC(=O)C1=CC=C(C=C1)[N]2N=NC=C2O', 'COC(=O)CCCC1=CNC2=CC=CC=C21': 'COC(=O)CCCC1=CNC2=CC=CC=C21', 'COC(=O)n1nnc2ccccc12': 'COC(=O)n1nnc2ccccc12', 'COC1=C(C=CC(=C1)C2=CC(=C(C=C2)N=NC3=C(C4=C(C=C(C=C4C=C3S(=O)(=O)[O-])S(=O)(=O)[O-])N)O)OC)N=NC5=C(C6=C(C=C(C=C6C=C5S(=O)(=O)[O-])S(=O)(=O)[O-])N)O.[Na+].[Na+].[Na+].[Na+]': 'COC1=C(C=CC(=C1)C2=CC(=C(C=C2)N=NC3=C(C4=C(C=C(C=C4C=C3S(=O)(=O)[O-])S(=O)(=O)[O-])N)O)OC)N=NC5=C(C6=C(C=C(C=C6C=C5S(=O)(=O)[O-])S(=O)(=O)[O-])N)O.[Na+].[Na+].[Na+].[Na+]', 'COC1=NC=C(N=C1)C(=O)N': 'COC1=NC=C(N=C1)C(=O)N', 'COCCOC(=O)OCSc1nc2c(s1)cccc2': 'COCCOC(=O)OCSc1nc2c(s1)cccc2', 'COc1ccc2c(c1)[nH]c(=S)[nH]2': 'COc1ccc2c(c1)[nH]c(=S)[nH]2', 'COc1cccc(c1)c1n[nH]c(=S)[nH]1': 'COc1cccc(c1)c1n[nH]c(=S)[nH]1', 'CS[C]1N[N]C(=N1)N': 'CS[C]1N[N]C(=N1)N', 'CSc1[nH]c2c(n1)cc(c(c2)C)C': 'CSc1[nH]c2c(n1)cc(c(c2)C)C', 'CSc1nnc(s1)N': 'CSc1nnc(s1)N', 'Cc1cc(C)nc(n1)S': 'Cc1cc(C)nc(n1)S', 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O': 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O', 'Cc1ccc2c(c1)nc([nH]2)S': 'Cc1ccc2c(c1)nc([nH]2)S', 'Cc1n[nH]c(=S)s1': 'Cc1n[nH]c(=S)s1', 'Cc1nsc(c1)N': 'Cc1nsc(c1)N', 'ClC([C]1N[N]C=N1)(Cl)Cl': 'ClC([C]1N[N]C=N1)(Cl)Cl', 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl': 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl', 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O': 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O', 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1': 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1', 'Clc1ccc2c(c1)[nH]c(n2)S': 'Clc1ccc2c(c1)[nH]c(n2)S', 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1': 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1', 'Cn1cnnc1S': 'Cn1cnnc1S', 'Cn1nnnc1S': 'Cn1nnnc1S', 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]': 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]', 'N=C(NC1=CC=C(C=C1)Br)SC(O)C2=CC=CC=C2': 'N=C(NC1=CC=C(C=C1)Br)SC(O)C2=CC=CC=C2', 'N=C(NC1=CC=C(C=C1)Cl)SC(O)C2=CC=CC=C2': 'N=C(NC1=CC=C(C=C1)Cl)SC(O)C2=CC=CC=C2', 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O': 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O', 'NC(CO)C(=O)O': 'NC(CO)C(=O)O', 'NC(N)=S': 'NC(N)=S', 'NC1=CCNC(=S)N1': 'NC1=CCNC(=S)N1', 'NCC(=O)O': 'NCC(=O)O', 'NO': 'NO', 'Nc1cc(N)nc(n1)S': 'Nc1cc(N)nc(n1)S', 'Nc1cc(S)nc(n1)N': 'Nc1cc(S)nc(n1)N', 'Nc1ccc2c(c1)sc(=S)[nH]2': 'Nc1ccc2c(c1)sc(=S)[nH]2', 'Nc1ccnc(n1)S': 'Nc1ccnc(n1)S', 'Nc1n[nH]c(=S)s1': 'Nc1n[nH]c(=S)s1', 'Nc1n[nH]c(n1)S': 'Nc1n[nH]c(n1)S', 'Nc1n[nH]cn1': 'Nc1n[nH]cn1', 'Nc1nc([nH]n1)C(=O)O': 'Nc1nc([nH]n1)C(=O)O', 'Nc1ncncc1N': 'Nc1ncncc1N', 'Nn1c(NN)nnc1S': 'Nn1c(NN)nnc1S', 'Nn1c(S)nnc1c1ccccc1': 'Nn1c(S)nnc1c1ccccc1', 'Nn1cnnc1': 'Nn1cnnc1', 'O/N=C(/C(=N/O)/C)\\\\C': 'O/N=C(/C(=N/O)/C)\\\\C', 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1': 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1', 'O=C(O)/C=C\\\\C(=O)O': 'O=C(O)/C=C\\\\C(=O)O', 'O=C(O)C(O)C(O)C(=O)O': 'O=C(O)C(O)C(O)C(=O)O', 'O=C(O)CC(CC(=O)O)C(=O)O': 'O=C(O)CC(CC(=O)O)C(=O)O', 'O=C(O)CC(O)C(=O)O': 'O=C(O)CC(O)C(=O)O', 'O=C(O)CCC(=O)O': 'O=C(O)CCC(=O)O', 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]': 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]', 'OC(=O)/C=C/c1ccccc1': 'OC(=O)/C=C/c1ccccc1', 'OC(=O)C(CC(=O)O)(CC(=O)O)O': 'OC(=O)C(CC(=O)O)(CC(=O)O)O', 'OC(=O)CCCCC(=O)O': 'OC(=O)CCCCC(=O)O', 'OC(=O)CCCCCCCCCCCCCCC(=O)O': 'OC(=O)CCCCCCCCCCCCCCC(=O)O', 'OC(=O)CCS': 'OC(=O)CCS', 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O': 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O', 'OC(=O)CS': 'OC(=O)CS', 'OC(=O)Cn1nnnc1S': 'OC(=O)Cn1nnnc1S', 'OC(=O)c1ccc(=S)[nH]c1': 'OC(=O)c1ccc(=S)[nH]c1', 'OC(=O)c1ccc(cc1)N': 'OC(=O)c1ccc(cc1)N', 'OC(=O)c1ccc(cc1)S': 'OC(=O)c1ccc(cc1)S', 'OC(=O)c1ccc(cc1)c1ccccc1': 'OC(=O)c1ccc(cc1)c1ccccc1', 'OC(=O)c1ccccc1': 'OC(=O)c1ccccc1', 'OC(=O)c1ccccc1O': 'OC(=O)c1ccccc1O', 'OC(=O)c1ccccc1S': 'OC(=O)c1ccccc1S', 'OC(=O)c1ccccn1': 'OC(=O)c1ccccn1', 'OC(=O)c1cccnc1': 'OC(=O)c1cccnc1', 'OC(=O)c1cccnc1S': 'OC(=O)c1cccnc1S', 'OC(=O)c1ccncc1': 'OC(=O)c1ccncc1', 'OC(=O)c1n[nH]c(n1)N': 'OC(=O)c1n[nH]c(n1)N', 'OC1=C(C=CC=C1)C=NC2=CC=C(C=C2)N=NC3=C(C=CC=C3)N=CC4=C(C=CC=C4)O': 'OC1=C(C=CC=C1)C=NC2=CC=C(C=C2)N=NC3=C(C=CC=C3)N=CC4=C(C=CC=C4)O', 'OC1=CN=N[N]1C2=CC=C(C=C2)Cl': 'OC1=CN=N[N]1C2=CC=C(C=C2)Cl', 'OCC(CO)O': 'OCC(CO)O', 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O', 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O', 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O': 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O', 'O[C@H]1C(=O)OCC1(C)C': 'O[C@H]1C(=O)OCC1(C)C', 'Oc1ccc(cc1)C(=O)O': 'Oc1ccc(cc1)C(=O)O', 'Oc1ccc(cc1)S([O])([O])O': 'Oc1ccc(cc1)S([O])([O])O', 'Oc1cccc2c1nccc2': 'Oc1cccc2c1nccc2', 'Oc1ccccc1c1nnc([nH]1)S': 'Oc1ccccc1c1nnc([nH]1)S', 'On1nnc2c1cccc2': 'On1nnc2c1cccc2', 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C': 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C', 'S=c1[nH]c2c([nH]1)cncn2': 'S=c1[nH]c2c([nH]1)cncn2', 'S=c1[nH]c2c([nH]1)nccn2': 'S=c1[nH]c2c([nH]1)nccn2', 'S=c1[nH]nc([nH]1)c1cccnc1': 'S=c1[nH]nc([nH]1)c1cccnc1', 'S=c1[nH]nc([nH]1)c1ccco1': 'S=c1[nH]nc([nH]1)c1ccco1', 'S=c1[nH]nc([nH]1)c1ccncc1': 'S=c1[nH]nc([nH]1)c1ccncc1', 'S=c1sc2c([nH]1)cccc2': 'S=c1sc2c([nH]1)cccc2', 'SC#N': 'SC#N', 'S[C]1NC2=C[CH]C=NC2=N1': 'S[C]1NC2=C[CH]C=NC2=N1', 'Sc1n[nH]cn1': 'Sc1n[nH]cn1', 'Sc1nc(N)c(c(n1)S)N': 'Sc1nc(N)c(c(n1)S)N', 'Sc1nc(N)c2c(n1)[nH]nc2': 'Sc1nc(N)c2c(n1)[nH]nc2', 'Sc1nc2c([nH]1)cccc2': 'Sc1nc2c([nH]1)cccc2', 'Sc1ncc[nH]1': 'Sc1ncc[nH]1', 'Sc1ncccn1': 'Sc1ncccn1', 'Sc1nnc(s1)S': 'Sc1nnc(s1)S', '[Cl-].[Cl-].[Cl-].[Ce+3]': '[Cl-].[Cl-].[Cl-].[Ce+3]', '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]': '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]', '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]': '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]', '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]': '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]', '[O-]S(=O)[O-].[Na+].[Na+]': '[O-]S(=O)[O-].[Na+].[Na+]', 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]': 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]', 'c1ccc(nc1)c1ccccn1': 'c1ccc(nc1)c1ccccn1', 'c1ccc2c(c1)[nH]nn2': 'c1ccc2c(c1)[nH]nn2', 'c1ncn[nH]1': 'c1ncn[nH]1'}, decorrelate=0.7, encoding=)], exp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M \\\n",
- "0 24.0 4.0 1.000000e-03 0.10 \n",
- "1 24.0 7.0 5.000000e-04 0.05 \n",
- "2 24.0 10.0 1.000000e-03 0.10 \n",
- "3 0.0 2.0 5.000000e-07 2.00 \n",
- "4 0.0 2.0 1.000000e-06 2.00 \n",
+ "SearchSpace(discrete=SubspaceDiscrete(parameters=[NumericalDiscreteParameter(name='Time_h', encoding=None, _values=[0.5, 1.0, 2.0, 3.0, 6.0, 24.0, 48.0, 72.0, 96.0, 120.0, 144.0, 168.0, 192.0, 240.0, 288.0, 336.0, 360.0, 384.0, 432.0, 480.0, 528.0, 576.0, 600.0, 624.0, 672.0], tolerance=0.0), NumericalDiscreteParameter(name='pH', encoding=None, _values=[0.0, 3.3, 4.0, 4.4, 5.4, 5.5, 5.6, 7.0, 10.0], tolerance=0.0), NumericalDiscreteParameter(name='Inhib_Concentrat_M', encoding=None, _values=[1e-05, 5e-05, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0008, 0.001, 0.0012, 0.0018, 0.0024, 0.003, 0.005, 0.01, 0.011, 0.021, 0.022, 0.031, 0.033, 0.042, 0.044, 0.05, 0.1], tolerance=0.0), NumericalDiscreteParameter(name='Salt_Concentrat_M', encoding=None, _values=[0.0, 0.01, 0.05, 0.1, 0.5, 0.6], tolerance=0.0), SubstanceParameter(name='SMILES', data={'C(=O)(C(=O)[O-])[O-]': 'C(=O)(C(=O)[O-])[O-]', 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O': 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]', 'C1=CC(=C(C=C1O)O)C=NNC(=S)N': 'C1=CC(=C(C=C1O)O)C=NNC(=S)N', 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]': 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]', 'C1=CC(=CC(=C1)S)C(=O)O': 'C1=CC(=CC(=C1)S)C(=O)O', 'C1=CC2=NNN=C2C=C1Cl': 'C1=CC2=NNN=C2C=C1Cl', 'C1=CC=C(C(=C1)C=NNC(=S)N)O': 'C1=CC=C(C(=C1)C=NNC(=S)N)O', 'C1COCCN1CCCS(=O)(=O)O': 'C1COCCN1CCCS(=O)(=O)O', 'C1N2CN3CN1CN(C2)C3': 'C1N2CN3CN1CN(C2)C3', 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1': 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1', 'CC(=O)O': 'CC(=O)O', 'CC(=O)SSC(=O)C': 'CC(=O)SSC(=O)C', 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C': 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C', 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O': 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O', 'CCCCCCCCCCCCCCCCCC(=O)O': 'CCCCCCCCCCCCCCCCCC(=O)O', 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCOS(=O)(=O)O': 'CCCCCCCCCCCCOS(=O)(=O)O', 'CCCCCCCCCCCCc1ccccc1S([O])([O])O': 'CCCCCCCCCCCCc1ccccc1S([O])([O])O', 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O': 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O', 'CCCCOP(=O)(OCCCC)O': 'CCCCOP(=O)(OCCCC)O', 'CCN(C(=S)S)CC': 'CCN(C(=S)S)CC', 'CCOc1ccc2c(c1)nc([nH]2)S': 'CCOc1ccc2c(c1)nc([nH]2)S', 'CCSc1nnc(s1)N': 'CCSc1nnc(s1)N', 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C': 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C', 'CNCC(C1=CC(=CC=C1)O)O': 'CNCC(C1=CC(=CC=C1)O)O', 'COC(=O)CCCC1=CNC2=CC=CC=C21': 'COC(=O)CCCC1=CNC2=CC=CC=C21', 'COC(=O)n1nnc2ccccc12': 'COC(=O)n1nnc2ccccc12', 'COCCOC(=O)OCSc1nc2c(s1)cccc2': 'COCCOC(=O)OCSc1nc2c(s1)cccc2', 'COc1ccc2c(c1)[nH]c(=S)[nH]2': 'COc1ccc2c(c1)[nH]c(=S)[nH]2', 'COc1cccc(c1)c1n[nH]c(=S)[nH]1': 'COc1cccc(c1)c1n[nH]c(=S)[nH]1', 'CS[C]1N[N]C(=N1)N': 'CS[C]1N[N]C(=N1)N', 'CSc1[nH]c2c(n1)cc(c(c2)C)C': 'CSc1[nH]c2c(n1)cc(c(c2)C)C', 'CSc1nnc(s1)N': 'CSc1nnc(s1)N', 'Cc1cc(C)nc(n1)S': 'Cc1cc(C)nc(n1)S', 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O': 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O', 'Cc1ccc2c(c1)nc([nH]2)S': 'Cc1ccc2c(c1)nc([nH]2)S', 'Cc1n[nH]c(=S)s1': 'Cc1n[nH]c(=S)s1', 'Cc1nsc(c1)N': 'Cc1nsc(c1)N', 'ClC([C]1N[N]C=N1)(Cl)Cl': 'ClC([C]1N[N]C=N1)(Cl)Cl', 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl': 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl', 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O': 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O', 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1': 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1', 'Clc1ccc2c(c1)[nH]c(n2)S': 'Clc1ccc2c(c1)[nH]c(n2)S', 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1': 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1', 'Cn1cnnc1S': 'Cn1cnnc1S', 'Cn1nnnc1S': 'Cn1nnnc1S', 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]': 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]', 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O': 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O', 'NCC(=O)O': 'NCC(=O)O', 'NO': 'NO', 'Nc1cc(N)nc(n1)S': 'Nc1cc(N)nc(n1)S', 'Nc1cc(S)nc(n1)N': 'Nc1cc(S)nc(n1)N', 'Nc1ccc2c(c1)sc(=S)[nH]2': 'Nc1ccc2c(c1)sc(=S)[nH]2', 'Nc1ccnc(n1)S': 'Nc1ccnc(n1)S', 'Nc1n[nH]c(=S)s1': 'Nc1n[nH]c(=S)s1', 'Nc1n[nH]c(n1)S': 'Nc1n[nH]c(n1)S', 'Nc1n[nH]cn1': 'Nc1n[nH]cn1', 'Nc1nc([nH]n1)C(=O)O': 'Nc1nc([nH]n1)C(=O)O', 'Nc1ncncc1N': 'Nc1ncncc1N', 'Nn1c(NN)nnc1S': 'Nn1c(NN)nnc1S', 'Nn1c(S)nnc1c1ccccc1': 'Nn1c(S)nnc1c1ccccc1', 'Nn1cnnc1': 'Nn1cnnc1', 'O/N=C(/C(=N/O)/C)\\\\C': 'O/N=C(/C(=N/O)/C)\\\\C', 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1': 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1', 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]': 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]', 'OC(=O)/C=C/c1ccccc1': 'OC(=O)/C=C/c1ccccc1', 'OC(=O)CCCCC(=O)O': 'OC(=O)CCCCC(=O)O', 'OC(=O)CCCCCCCCCCCCCCC(=O)O': 'OC(=O)CCCCCCCCCCCCCCC(=O)O', 'OC(=O)CCS': 'OC(=O)CCS', 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O': 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O', 'OC(=O)CS': 'OC(=O)CS', 'OC(=O)Cn1nnnc1S': 'OC(=O)Cn1nnnc1S', 'OC(=O)c1ccc(=S)[nH]c1': 'OC(=O)c1ccc(=S)[nH]c1', 'OC(=O)c1ccc(cc1)N': 'OC(=O)c1ccc(cc1)N', 'OC(=O)c1ccc(cc1)S': 'OC(=O)c1ccc(cc1)S', 'OC(=O)c1ccc(cc1)c1ccccc1': 'OC(=O)c1ccc(cc1)c1ccccc1', 'OC(=O)c1ccccc1': 'OC(=O)c1ccccc1', 'OC(=O)c1ccccc1O': 'OC(=O)c1ccccc1O', 'OC(=O)c1ccccc1S': 'OC(=O)c1ccccc1S', 'OC(=O)c1ccccn1': 'OC(=O)c1ccccn1', 'OC(=O)c1cccnc1': 'OC(=O)c1cccnc1', 'OC(=O)c1cccnc1S': 'OC(=O)c1cccnc1S', 'OC(=O)c1ccncc1': 'OC(=O)c1ccncc1', 'OC(=O)c1n[nH]c(n1)N': 'OC(=O)c1n[nH]c(n1)N', 'OCC(CO)O': 'OCC(CO)O', 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O', 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O', 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O': 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O', 'O[C@H]1C(=O)OCC1(C)C': 'O[C@H]1C(=O)OCC1(C)C', 'Oc1ccc(cc1)C(=O)O': 'Oc1ccc(cc1)C(=O)O', 'Oc1ccc(cc1)S([O])([O])O': 'Oc1ccc(cc1)S([O])([O])O', 'Oc1cccc2c1nccc2': 'Oc1cccc2c1nccc2', 'Oc1ccccc1c1nnc([nH]1)S': 'Oc1ccccc1c1nnc([nH]1)S', 'On1nnc2c1cccc2': 'On1nnc2c1cccc2', 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C': 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C', 'S=c1[nH]c2c([nH]1)cncn2': 'S=c1[nH]c2c([nH]1)cncn2', 'S=c1[nH]c2c([nH]1)nccn2': 'S=c1[nH]c2c([nH]1)nccn2', 'S=c1[nH]nc([nH]1)c1cccnc1': 'S=c1[nH]nc([nH]1)c1cccnc1', 'S=c1[nH]nc([nH]1)c1ccco1': 'S=c1[nH]nc([nH]1)c1ccco1', 'S=c1[nH]nc([nH]1)c1ccncc1': 'S=c1[nH]nc([nH]1)c1ccncc1', 'S=c1sc2c([nH]1)cccc2': 'S=c1sc2c([nH]1)cccc2', 'SC#N': 'SC#N', 'S[C]1NC2=C[CH]C=NC2=N1': 'S[C]1NC2=C[CH]C=NC2=N1', 'Sc1n[nH]cn1': 'Sc1n[nH]cn1', 'Sc1nc(N)c(c(n1)S)N': 'Sc1nc(N)c(c(n1)S)N', 'Sc1nc(N)c2c(n1)[nH]nc2': 'Sc1nc(N)c2c(n1)[nH]nc2', 'Sc1nc2c([nH]1)cccc2': 'Sc1nc2c([nH]1)cccc2', 'Sc1ncc[nH]1': 'Sc1ncc[nH]1', 'Sc1ncccn1': 'Sc1ncccn1', 'Sc1nnc(s1)S': 'Sc1nnc(s1)S', '[Cl-].[Cl-].[Cl-].[Ce+3]': '[Cl-].[Cl-].[Cl-].[Ce+3]', '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]': '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]', '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]': '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]', '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]': '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]', '[O-]S(=O)[O-].[Na+].[Na+]': '[O-]S(=O)[O-].[Na+].[Na+]', 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]': 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]', 'c1ccc(nc1)c1ccccn1': 'c1ccc(nc1)c1ccccn1', 'c1ccc2c(c1)[nH]nn2': 'c1ccc2c(c1)[nH]nn2', 'c1ncn[nH]1': 'c1ncn[nH]1'}, decorrelate=0.7, encoding=)], exp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M \\\n",
+ "0 24.0 4.0 0.0010 0.10 \n",
+ "1 24.0 7.0 0.0005 0.05 \n",
+ "2 24.0 10.0 0.0010 0.10 \n",
+ "3 24.0 4.0 0.0010 0.10 \n",
+ "4 24.0 7.0 0.0005 0.05 \n",
".. ... ... ... ... \n",
- "986 24.0 7.0 5.000000e-04 0.05 \n",
- "987 24.0 10.0 1.000000e-03 0.10 \n",
- "988 672.0 7.0 1.000000e-03 0.10 \n",
- "989 24.0 4.0 1.000000e-03 0.10 \n",
- "990 24.0 10.0 1.000000e-03 0.10 \n",
+ "510 24.0 7.0 0.0005 0.05 \n",
+ "511 24.0 10.0 0.0010 0.10 \n",
+ "512 672.0 7.0 0.0010 0.10 \n",
+ "513 24.0 4.0 0.0010 0.10 \n",
+ "514 24.0 10.0 0.0010 0.10 \n",
"\n",
" SMILES \n",
"0 C(=O)(C(=O)[O-])[O-] \n",
@@ -424,37 +393,37 @@
"3 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O \n",
"4 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O \n",
".. ... \n",
- "986 c1ccc2c(c1)[nH]nn2 \n",
- "987 c1ccc2c(c1)[nH]nn2 \n",
- "988 c1ccc2c(c1)[nH]nn2 \n",
- "989 c1ncn[nH]1 \n",
- "990 c1ncn[nH]1 \n",
+ "510 c1ccc2c(c1)[nH]nn2 \n",
+ "511 c1ccc2c(c1)[nH]nn2 \n",
+ "512 c1ccc2c(c1)[nH]nn2 \n",
+ "513 c1ncn[nH]1 \n",
+ "514 c1ncn[nH]1 \n",
"\n",
- "[991 rows x 5 columns], metadata= was_recommended was_measured dont_recommend\n",
+ "[515 rows x 5 columns], metadata= was_recommended was_measured dont_recommend\n",
"0 False False False\n",
"1 False False False\n",
"2 False False False\n",
"3 False False False\n",
"4 False False False\n",
".. ... ... ...\n",
- "986 False False False\n",
- "987 False False False\n",
- "988 False False False\n",
- "989 False False False\n",
- "990 False False False\n",
+ "510 False False False\n",
+ "511 False False False\n",
+ "512 False False False\n",
+ "513 False False False\n",
+ "514 False False False\n",
"\n",
- "[991 rows x 3 columns], empty_encoding=False, constraints=[], comp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M \\\n",
- "0 24.0 4.0 1.000000e-03 0.10 \n",
- "1 24.0 7.0 5.000000e-04 0.05 \n",
- "2 24.0 10.0 1.000000e-03 0.10 \n",
- "3 0.0 2.0 5.000000e-07 2.00 \n",
- "4 0.0 2.0 1.000000e-06 2.00 \n",
+ "[515 rows x 3 columns], empty_encoding=False, constraints=[], comp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M \\\n",
+ "0 24.0 4.0 0.0010 0.10 \n",
+ "1 24.0 7.0 0.0005 0.05 \n",
+ "2 24.0 10.0 0.0010 0.10 \n",
+ "3 24.0 4.0 0.0010 0.10 \n",
+ "4 24.0 7.0 0.0005 0.05 \n",
".. ... ... ... ... \n",
- "986 24.0 7.0 5.000000e-04 0.05 \n",
- "987 24.0 10.0 1.000000e-03 0.10 \n",
- "988 672.0 7.0 1.000000e-03 0.10 \n",
- "989 24.0 4.0 1.000000e-03 0.10 \n",
- "990 24.0 10.0 1.000000e-03 0.10 \n",
+ "510 24.0 7.0 0.0005 0.05 \n",
+ "511 24.0 10.0 0.0010 0.10 \n",
+ "512 672.0 7.0 0.0010 0.10 \n",
+ "513 24.0 4.0 0.0010 0.10 \n",
+ "514 24.0 10.0 0.0010 0.10 \n",
"\n",
" SMILES_RDKIT_MaxAbsEStateIndex SMILES_RDKIT_MinAbsEStateIndex \\\n",
"0 8.925926 2.185185 \n",
@@ -463,11 +432,11 @@
"3 10.148889 1.357824 \n",
"4 10.148889 1.357824 \n",
".. ... ... \n",
- "986 3.813148 0.914352 \n",
- "987 3.813148 0.914352 \n",
- "988 3.813148 0.914352 \n",
- "989 3.555556 1.444444 \n",
- "990 3.555556 1.444444 \n",
+ "510 3.813148 0.914352 \n",
+ "511 3.813148 0.914352 \n",
+ "512 3.813148 0.914352 \n",
+ "513 3.555556 1.444444 \n",
+ "514 3.555556 1.444444 \n",
"\n",
" SMILES_RDKIT_MinEStateIndex SMILES_RDKIT_qed SMILES_RDKIT_SPS \\\n",
"0 -2.185185 0.287408 7.333333 \n",
@@ -476,50 +445,50 @@
"3 -2.974537 0.454904 10.846154 \n",
"4 -2.974537 0.454904 10.846154 \n",
".. ... ... ... \n",
- "986 0.914352 0.560736 10.222222 \n",
- "987 0.914352 0.560736 10.222222 \n",
- "988 0.914352 0.560736 10.222222 \n",
- "989 1.444444 0.458207 8.000000 \n",
- "990 1.444444 0.458207 8.000000 \n",
+ "510 0.914352 0.560736 10.222222 \n",
+ "511 0.914352 0.560736 10.222222 \n",
+ "512 0.914352 0.560736 10.222222 \n",
+ "513 1.444444 0.458207 8.000000 \n",
+ "514 1.444444 0.458207 8.000000 \n",
"\n",
- " SMILES_RDKIT_MolWt ... SMILES_RDKIT_fr_nitro_arom_nonortho \\\n",
- "0 88.018 ... 0 \n",
- "1 88.018 ... 0 \n",
- "2 88.018 ... 0 \n",
- "3 189.099 ... 0 \n",
- "4 189.099 ... 0 \n",
- ".. ... ... ... \n",
- "986 119.127 ... 0 \n",
- "987 119.127 ... 0 \n",
- "988 119.127 ... 0 \n",
- "989 69.067 ... 0 \n",
- "990 69.067 ... 0 \n",
+ " SMILES_RDKIT_MolWt ... SMILES_RDKIT_fr_nitro \\\n",
+ "0 88.018 ... 0 \n",
+ "1 88.018 ... 0 \n",
+ "2 88.018 ... 0 \n",
+ "3 189.099 ... 0 \n",
+ "4 189.099 ... 0 \n",
+ ".. ... ... ... \n",
+ "510 119.127 ... 0 \n",
+ "511 119.127 ... 0 \n",
+ "512 119.127 ... 0 \n",
+ "513 69.067 ... 0 \n",
+ "514 69.067 ... 0 \n",
"\n",
- " SMILES_RDKIT_fr_oxime SMILES_RDKIT_fr_para_hydroxylation \\\n",
- "0 0 0 \n",
- "1 0 0 \n",
- "2 0 0 \n",
- "3 0 0 \n",
- "4 0 0 \n",
- ".. ... ... \n",
- "986 0 1 \n",
- "987 0 1 \n",
- "988 0 1 \n",
- "989 0 0 \n",
- "990 0 0 \n",
+ " SMILES_RDKIT_fr_nitro_arom_nonortho SMILES_RDKIT_fr_oxime \\\n",
+ "0 0 0 \n",
+ "1 0 0 \n",
+ "2 0 0 \n",
+ "3 0 0 \n",
+ "4 0 0 \n",
+ ".. ... ... \n",
+ "510 0 0 \n",
+ "511 0 0 \n",
+ "512 0 0 \n",
+ "513 0 0 \n",
+ "514 0 0 \n",
"\n",
- " SMILES_RDKIT_fr_phos_acid SMILES_RDKIT_fr_priamide \\\n",
- "0 0 0 \n",
- "1 0 0 \n",
- "2 0 0 \n",
- "3 0 0 \n",
- "4 0 0 \n",
- ".. ... ... \n",
- "986 0 0 \n",
- "987 0 0 \n",
- "988 0 0 \n",
- "989 0 0 \n",
- "990 0 0 \n",
+ " SMILES_RDKIT_fr_para_hydroxylation SMILES_RDKIT_fr_phos_acid \\\n",
+ "0 0 0 \n",
+ "1 0 0 \n",
+ "2 0 0 \n",
+ "3 0 0 \n",
+ "4 0 0 \n",
+ ".. ... ... \n",
+ "510 1 0 \n",
+ "511 1 0 \n",
+ "512 1 0 \n",
+ "513 0 0 \n",
+ "514 0 0 \n",
"\n",
" SMILES_RDKIT_fr_pyridine SMILES_RDKIT_fr_quatN SMILES_RDKIT_fr_sulfide \\\n",
"0 0 0 0 \n",
@@ -528,11 +497,11 @@
"3 0 0 0 \n",
"4 0 0 0 \n",
".. ... ... ... \n",
- "986 0 0 0 \n",
- "987 0 0 0 \n",
- "988 0 0 0 \n",
- "989 0 0 0 \n",
- "990 0 0 0 \n",
+ "510 0 0 0 \n",
+ "511 0 0 0 \n",
+ "512 0 0 0 \n",
+ "513 0 0 0 \n",
+ "514 0 0 0 \n",
"\n",
" SMILES_RDKIT_fr_tetrazole SMILES_RDKIT_fr_thiazole \n",
"0 0 0 \n",
@@ -541,16 +510,16 @@
"3 0 0 \n",
"4 0 0 \n",
".. ... ... \n",
- "986 0 0 \n",
- "987 0 0 \n",
- "988 0 0 \n",
- "989 0 0 \n",
- "990 0 0 \n",
+ "510 0 0 \n",
+ "511 0 0 \n",
+ "512 0 0 \n",
+ "513 0 0 \n",
+ "514 0 0 \n",
"\n",
- "[991 rows x 99 columns]), continuous=SubspaceContinuous(parameters=[], constraints_lin_eq=[], constraints_lin_ineq=[]))"
+ "[515 rows x 94 columns]), continuous=SubspaceContinuous(parameters=[], constraints_lin_eq=[], constraints_lin_ineq=[]))"
]
},
- "execution_count": 169,
+ "execution_count": 302,
"metadata": {},
"output_type": "execute_result"
}
@@ -561,7 +530,7 @@
},
{
"cell_type": "code",
- "execution_count": 170,
+ "execution_count": 303,
"metadata": {},
"outputs": [],
"source": [
@@ -589,7 +558,7 @@
},
{
"cell_type": "code",
- "execution_count": 171,
+ "execution_count": 304,
"metadata": {},
"outputs": [],
"source": [
@@ -603,53 +572,50 @@
},
{
"cell_type": "code",
- "execution_count": 172,
+ "execution_count": 305,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- " 0%| | 0/50 [00:00, ?it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 0%| | 0/50 [00:00, ?it/s]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " stdvs = Y.std(dim=-2, keepdim=True)\n",
+ "/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
+ " 2%|2 | 1/50 [00:17<13:58, 17.11s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 2%|2 | 1/50 [00:15<13:02, 15.97s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 4%|4 | 2/50 [00:29<11:58, 14.98s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 4%|4 | 2/50 [00:30<12:12, 15.27s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 6%|6 | 3/50 [00:44<11:34, 14.77s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 6%|6 | 3/50 [00:44<11:41, 14.93s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 8%|8 | 4/50 [01:00<11:35, 15.11s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 8%|8 | 4/50 [01:05<12:35, 16.42s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 10%|# | 5/50 [01:15<11:18, 15.07s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 10%|# | 5/50 [01:23<12:28, 16.64s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 12%|#2 | 6/50 [01:30<11:03, 15.08s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 12%|#2 | 6/50 [01:39<12:12, 16.64s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 14%|#4 | 7/50 [01:41<10:25, 14.55s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 14%|#4 | 7/50 [01:54<11:40, 16.30s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 16%|#6 | 8/50 [01:58<10:21, 14.80s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 16%|#6 | 8/50 [02:08<11:15, 16.09s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 18%|#8 | 9/50 [02:10<09:52, 14.46s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
@@ -663,131 +629,143 @@
" warnings.warn(\n",
"/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-04 to the diagonal\n",
" warnings.warn(\n",
- " 18%|#8 | 9/50 [02:22<10:48, 15.83s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
- " stdvs = Y.std(dim=-2, keepdim=True)\n",
- "/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
- " Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 20%|## | 10/50 [02:43<10:55, 16.38s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-03 to the diagonal\n",
+ " warnings.warn(\n",
+ "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-08 to the diagonal\n",
+ " warnings.warn(\n",
+ "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-07 to the diagonal\n",
+ " warnings.warn(\n",
+ "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-06 to the diagonal\n",
+ " warnings.warn(\n",
+ "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-05 to the diagonal\n",
+ " warnings.warn(\n",
+ "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-04 to the diagonal\n",
+ " warnings.warn(\n",
+ "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-03 to the diagonal\n",
+ " warnings.warn(\n",
+ " 20%|## | 10/50 [02:23<09:34, 14.36s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 22%|##2 | 11/50 [03:17<11:40, 17.97s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 22%|##2 | 11/50 [02:38<09:21, 14.41s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 24%|##4 | 12/50 [03:45<11:53, 18.77s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 24%|##4 | 12/50 [02:52<09:07, 14.40s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 26%|##6 | 13/50 [04:13<12:00, 19.46s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 26%|##6 | 13/50 [03:07<08:54, 14.43s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 28%|##8 | 14/50 [04:40<12:01, 20.03s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 28%|##8 | 14/50 [03:24<08:45, 14.59s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 30%|### | 15/50 [05:08<11:58, 20.54s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 30%|### | 15/50 [03:40<08:35, 14.71s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 32%|###2 | 16/50 [05:35<11:52, 20.95s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 32%|###2 | 16/50 [03:55<08:20, 14.72s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 34%|###4 | 17/50 [06:02<11:43, 21.33s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 34%|###4 | 17/50 [04:10<08:05, 14.72s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 36%|###6 | 18/50 [06:29<11:33, 21.66s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 36%|###6 | 18/50 [04:26<07:52, 14.78s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 38%|###8 | 19/50 [06:57<11:20, 21.96s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 38%|###8 | 19/50 [04:42<07:41, 14.87s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 40%|#### | 20/50 [07:24<11:06, 22.21s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 40%|#### | 20/50 [04:56<07:24, 14.83s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 42%|####2 | 21/50 [07:34<10:27, 21.64s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 42%|####2 | 21/50 [05:06<07:03, 14.61s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 44%|####4 | 22/50 [07:44<09:50, 21.11s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 44%|####4 | 22/50 [05:17<06:43, 14.42s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 46%|####6 | 23/50 [07:56<09:18, 20.70s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 46%|####6 | 23/50 [05:27<06:24, 14.26s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 48%|####8 | 24/50 [08:07<08:48, 20.32s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 48%|####8 | 24/50 [05:36<06:04, 14.00s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 50%|##### | 25/50 [08:18<08:18, 19.95s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 50%|##### | 25/50 [05:46<05:46, 13.87s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 52%|#####2 | 26/50 [08:31<07:52, 19.67s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 52%|#####2 | 26/50 [05:56<05:29, 13.72s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 54%|#####4 | 27/50 [08:41<07:23, 19.30s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 54%|#####4 | 27/50 [06:06<05:11, 13.56s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 56%|#####6 | 28/50 [08:53<06:59, 19.06s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 56%|#####6 | 28/50 [06:15<04:54, 13.40s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 58%|#####8 | 29/50 [09:08<06:37, 18.91s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ "/home/vscode/.local/lib/python3.10/site-packages/botorch/optim/fit.py:102: OptimizationWarning: `scipy_minimize` terminated with status 3, displaying original message from `scipy.optimize.minimize`: ABNORMAL_TERMINATION_IN_LNSRCH\n",
+ " warn(\n",
+ " 58%|#####8 | 29/50 [06:25<04:38, 13.29s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 60%|###### | 30/50 [09:18<06:12, 18.62s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 60%|###### | 30/50 [06:34<04:23, 13.16s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 62%|######2 | 31/50 [09:29<05:48, 18.36s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 62%|######2 | 31/50 [06:42<04:06, 13.00s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 64%|######4 | 32/50 [09:39<05:25, 18.10s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 64%|######4 | 32/50 [06:51<03:51, 12.86s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 66%|######6 | 33/50 [09:50<05:04, 17.91s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 66%|######6 | 33/50 [07:00<03:36, 12.74s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 68%|######8 | 34/50 [10:02<04:43, 17.72s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 68%|######8 | 34/50 [07:08<03:21, 12.62s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 70%|####### | 35/50 [10:13<04:22, 17.52s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 70%|####### | 35/50 [07:16<03:07, 12.48s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 72%|#######2 | 36/50 [10:26<04:03, 17.39s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 72%|#######2 | 36/50 [07:24<02:52, 12.35s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 74%|#######4 | 37/50 [10:36<03:43, 17.19s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 74%|#######4 | 37/50 [07:32<02:39, 12.24s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 76%|#######6 | 38/50 [10:48<03:24, 17.07s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 76%|#######6 | 38/50 [07:41<02:25, 12.13s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 78%|#######8 | 39/50 [11:03<03:07, 17.01s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 78%|#######8 | 39/50 [07:49<02:12, 12.04s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- "100%|##########| 50/50 [11:19<00:00, 13.58s/it]\n"
+ "100%|##########| 50/50 [08:02<00:00, 9.66s/it]\n"
]
}
],
@@ -808,7 +786,7 @@
},
{
"cell_type": "code",
- "execution_count": 173,
+ "execution_count": 306,
"metadata": {},
"outputs": [],
"source": [
@@ -817,14 +795,14 @@
},
{
"cell_type": "code",
- "execution_count": 174,
+ "execution_count": 313,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGxCAYAAACEFXd4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADcXElEQVR4nOy9d5xcd3nv/z51+sz2ql31Lstyt5HBxji2gXDpYCDBgAEDacS0kB8lXCDccBMIEAKY0FtogVwgYMAGjI1xtyyrWL1tb9Pn9O/vjzMzOyvtStu1ks/79ZqdOXWemd2d85mnSkIIQUBAQEBAQEDAeYp8tg0ICAgICAgICFhIArETEBAQEBAQcF4TiJ2AgICAgICA85pA7AQEBAQEBASc1wRiJyAgICAgIOC8JhA7AQEBAQEBAec1gdgJCAgICAgIOK8JxE5AQEBAQEDAeY16tg1YCnieR29vL4lEAkmSzrY5AQEBAQEBAdNACEEul6OjowNZntp/E4gdoLe3l66urrNtRkBAQEBAQMAsOH78OMuWLZtyeyB2gEQiAfhvVjKZPMvWBAQEBAQEBEyHbDZLV1dX9To+FYHYgWroKplMBmInICAgICDgHONMKShBgnJAQEBAQEDAeU0gdgICAgICAgLOawKxExAQEBAQEHBeE4idgICAgICAgPOaQOwEBAQEBAQEnNcEYicgICAgICDgvCYQOwEBAQEBAQHnNYHYCQgICAgICDivCcROQEBAQEBAwHnNWRU799xzDy94wQvo6OhAkiR+/OMfT9guhOADH/gA7e3tRCIRrr/+evbv3z9hn9HRUV7zmteQTCapq6vj1ltvJZ/PL+KrCAgICAgICFjKnFWxUygUuPDCC/nsZz876faPf/zjfPrTn+bzn/88DzzwALFYjBtvvBHDMKr7vOY1r2HXrl386le/4qc//Sn33HMPb37zmxfrJQQEBAQEBAQscSQhhDjbRoA/1+JHP/oRL3rRiwDfq9PR0cE73vEO3vnOdwKQyWRobW3lq1/9KjfffDN79uxh06ZNPPTQQ1x66aUA/OIXv+B5z3seJ06coKOjY1rPnc1mSaVSZDKZYDZWQEBAQEDAOcJ0r99LdhDo4cOH6e/v5/rrr6+uS6VSXHHFFdx///3cfPPN3H///dTV1VWFDsD111+PLMs88MADvPjFL5703KZpYppmdTmbzS7cC3GcqbdJEijK9PYFUGt+Xefzvq4Lp9PgS2FfRfF/fwCe59+W8r6y7N+Wyr5C+O/xUt53Jv+fS2FfWHr/y8FnhP84+IyYevsisWTFTn9/PwCtra0T1re2tla39ff309LSMmG7qqo0NDRU95mMj33sY3zoQx+aZ4un4MtfnnpbdzfcdNP48te/PvU/fHs7vOAF48vf/jbUhPMm0NwMtULve9+DqfKY6uvh5S8fX/7Rj2BsbPJ943F49avHl3/yExgamnzfcBhe+9rx5Z//HPr6Jt9XVeENbxhf/tWv4NixyfcFqA1T/uY3cOjQ1Pu+4Q3jH1C//z3s2zf1vq99rW83wP33w+7dU+/7qldBIuE/fvBBeOKJqfd9+cv99xngscfgkUem3vfFL/Z/fwA7d8IDD0y975/+KVS8l3v2wH33Tb3vTTf5f28ABw7Ab3879b7XXw+rVvmPjxyBX/966n2vvRbWrfMfnzgBv/jF1Ptu3w6bN/uP+/rgpz+det8rroALL/QfDw/7f5dTcckl/g0gnYbvf3/qfbduhSuv9B/n8/Cd70y976ZNcPXV/mPD8P8/p2LdOv+9AP9/+HT/96tW+e9xheAzwif4jPAfn8+fEWeRsy+3zgLvfe97yWQy1dvx48fPtkkBAQEBAQEBC8SSzdk5dOgQq1ev5rHHHmPbtm3V/a655hq2bdvGpz71Kb785S/zjne8g7GabxmO4xAOh/n+978/ZRjrZBY0ZydwUc9838BFPf/7BmGsme+7FEJTwWfE5PsGnxHzv+85GsY653N2Vq5cSVtbG3fddVdV7GSzWR544AHe+ta3AnDVVVeRTqd55JFHuKTsxr777rvxPI8rrrjibJk+EXUGb3Gwr0/th/u5sO9M/pmDfX0kafp/E0thX1j0fYUQCAGe6+EJ8IQAJDwh8IS/vXIvyts94frLUN1PVyQaYiGG8yYF0ymfByK6QlsyQn+2RMk6jeg7S0xlX3V9bunZfUabl+B7fa7bPDiSm9YxZ1Xs5PN5Dhw4UF0+fPgwjz/+OA0NDXR3d/P2t7+dj3zkI6xdu5aVK1fy/ve/n46Ojqr3Z+PGjdx000286U1v4vOf/zy2bfOXf/mX3HzzzdOuxAoICAiYKZ4nsFwP1xN4QiBLEhFdoWA6WI4vTgS1IuQkUeIJXCFwvfGbJ8AVHp5HdVkIgQdQew7G14vyF2qvvF6C8Xvh22g7goaYzlVrGtlxPM2x0SKddRGevaGFX+7qpyddOjtv4jSo2Pmb44OcGCvRUR/mORta+Z+dfRwfLZbfi/H3uiIAoeY9mvC+1fweysdA+f0TJ52Lib8zAVBzXGVbdT/AE7C+Nc7rt6/kvx45zJ7+HBvbErzh6pX8+28OsKd/ehfmxaZi47lo87d2DU5r/7Maxvrtb3/Ls5/97FPW33LLLXz1q19FCMEHP/hB7rjjDtLpNFdffTX//u//zrqaZKfR0VH+8i//kp/85CfIssxLX/pSPv3pTxOPx6dtR1B6HhAQUKEqElyB43rVx7bjUbJdVAVWNsbZ05dlOG9SF9XZ0pli54kMw3mzeg4kqSo6bM/DsgVOWSQ5rofj+ee3XX+9XfOctc9d2WY5nn/vejiumLBsOafe2+7Ej/Znrm3iM6+6iO8+dJxXXtbFX33nMX6/f/gsvMMz41y0O7B5cXjm2iY++vzVLG9vPuP1e8nk7JxNArETEPD0QAjhC5eKYHC9ssjwKFoupu0LGsfzBYnrgSsEIBAepEs2w3mTREjjZZcu4649Azx7Qwv/53/28sfDI1WRcbL4ONvIEuiqzHtu2sDrt6/k6384wqfu2n/mA5cIf/Octbz2GSv4xv1H+LffHEAuC0lJkpAk/17Gj0zKkgQSyEjV5eo+5fSV6rrKMQDVZX+/SqpLZR+pZrv/WIxvO2kfJHj5JSu4cUsndz7Zww8eOVJ+JZNcbsUpD07ZTTrNtknPOekmMcm6idteetlqbrywmzt3HOWHDx6cuPU0dpb9XmVxf/rnHD/N+DHVZTF+rkntF7X3Ps/b1snLrt127ubsBAQEBMyUinCxHd+bUnlcsh2MipApCx3HE7ieV72qqZKEIksULZehvMlg1qAva9CXNuhJl+jLlCZ4SwzH5bZrVvOF3x3kWw+epgy6BglfdOiqjK7491rtvSKhKbXrJHRFRi2v0xQJTZZRVf9eUyVU2T9GVWQ0Warea4qMVn4uWYLmuM7WZfUcHsrzqsu72dSRYCRvLcSvYSJClJNYXSSv9rGHcF2E55RvLsItP3YshGMjOTaNTQ1cckk7B3bv5ZUXr2RN6TCD/f0ghO9BQ1TDhuDnlgjPrYakyoEp/7EQeH5wq2Jc+VE1hkXt5VaU7Z+4ZuLFtna7KAug9s6VXLPmYp7c8SDXrr8A+eh99PYcAUCqqIHTiI5T3r+aTZMLn/F10mndF+Kkfcp2SxLty1Zx9for2f3oH7h200Woh++j//ghXwmW88WqNkjjR0s1Z5+wUN1Yec6ypxNRPl6aeExFMZbtmXDK6qI84Zi2ZSvYvPGS073gKoHYCQgIOCeohHcqYaCKh8awXYqWi2G72OXQkOPWCBkBiuyLAlWRUWUZ8Bgr2vRlSvSmS/SkS/SmDU6kixTMqZMxVVmiPRXmhs2t/NmVy7l3/xCvvWoFdVGNE6MlNEVCLQsZX5RASFFQy0JGliWksk0V7wKS73mZ6DUoeyEqHgskJNl/HRKgyrKfDy6BLMko5W2K5D+HXL5YyOX9w5pCXVQjW7KJhzWKtsPFyxvIGfYp4a4KolKtVhYnwvXv8QTCdfAcG9d18FwHz3PwHAfPsfBs/yZsC8+x/X1dF8e1/X1dG8d1EMLBdZyyUPDznBCenxMjgYdEQ8dyLrzyEnbc/zOGB04wNtjFpdufy477f85wv98ypPI+jV8zx90rEv77PfHSqZS9OFLN+13ZNn6uyY6VqtslhFQ5//j2dZdfi2UYNLQt4+Bj91Ea7ueIkefZf/JCRvtPoIcj7H/4d9QcNE6tK2mCvWdYd7pzTXr+idvWbr0KyzRoaO7g4K6HKGQGObL3Ua55/ssYG+pFD4U5sPP+2ndgknPXPpSmNOHklyJNthI/F83XeNL4Y+E/RsCaiy/HLJk0tLXx6D2/n/yJTiIQOwEBAWedSsKvn1Dr56lYjofp1AiZSj5LOaG38i1RlsY9GoosEdJVNMX/BjiQNapipqcqakoMn8Gj0ZwI0VkXoaMuTEsiTHNcpyEWoi6q0pIMs3VZHQcG89RFNYZyBi+7pIuBrIHleDVhk/GQyMlhF7kSKimLGIlx8SOfJHjGwypTXD3KiHIJcOW++lgCORLCy+eJmkZZoNgYqkaisYV8/3HM9BiuY+FZZYFiW7iug3BdHMfCcR1cz8Z1bTzHxROOX7lfvvp4QoDwcP0XUo4NyQgZkHxVJikKkiYjyQqSEkKRo2iyUn5vJCRJLr8vMhIyifoWlq27hBP7HiGiqXQtWwFAz4HH2Lb9+ZzY9wiF9BQNC88SnufQ3LWKsYFjOE6eaF0cx8mTHe2vro+mYmfbzAl4tklz+3Lf5sIIUV3BKYyQHemjqbw+rM2gOrWGatK3GBcwnocvXGrXlTW1cCU8t3KMVD224niruIsKWZP2VV30HzrOyInRadkSiJ2AgIBFoyJqDNtFkSQKlsNgzqRguliu6yftOoKmuE4irHF0pIiqjHtlorpafQy+9yFdtE8RMz3pEv0ZA8eb2qefCKtlQROhsy5CeypMSyJEXVT3AyLCQ0YipMmEVYVURKMxrtMYD2E7HutbE8jyuADpqIuc8fULzwPXLw+vChJn/NO+sl6Ue7i4ruOLE8/Fc21c28ZzbN+LYtt4ruWLD8f29ymfx/FsHMdGeC71qzZSHBsi03cUIbxy1ZCLAJKty4jWNXN878MVNxFClnyB4isvX6QoCpKqICsashwB2RcmmiT7IqXqBZGrXqW50r5yC9mRvlMETSE9RHakj/aVWzjw2G/m5bnmC9soMDZwjPrWbiyjwEjPARo711Df2s3YwDFso3C2TTyF6dpcK06q9wKENy5cPK9yXxYt3rhwobwPVNopOP7NcUDYeJ6NEA6eZ4NwEJ6NELVhTqcc9rR5Mvcoo09tYNP1LyShjkzrdQZiJyAgYN4RQmA6HqbtYTi+ZyZn2OQMX9TYjqAuqnLhsnr6MyauJ4ioKqoiURfR6G6KcnykRFvKb81ftBx6y7kzvScJm+JpeoDoikxHXbgqaCq31lSYkCr7NjoenueXj+uaRETzhU08rBHRFCKaQliTJ3hWNOEisjls0xr/WqrroCiYo8NlQWL7IR3HD/l45ZCP8LyqMPFcFyFcXNfF8fyQj+O5COHhCK+cZ+KVS58FQvKzQjwJhCRAksvi5KQsWUVBkiVkVSHTtxtJlpGbU1Uxokr+67EQ2Plh6patPKPnaLEZGzxO6/KN1QtwhcqFeODongW3wbEtLKuIbRo4ZgnHMnBMA9cy/ZttISwT17IQpoWwLIRls3rzdi7687+Co720tK7k0c99jIOP/nbB7Z0Lqy++lote/7dw5ATNLSt49F8/xOEH7kbyeyEgeQLZ85BcgeR5yJ5AdgWSEMhuebl6A6Xy2PUfKx7l9aDOU87+ie2/YPMHPzitfQOxExAQMGtqRY3puBi2R9awyJsupuOLGk94CCFVk24jqkoq7IecToyV2LIsyfGREumiheMJOusj/OeDx/j9/hFf2IyVGC1OHXaSgJZkaIKYqYibpkQIIcB03LKNfk6I5fifthFdoT0VJhZSfWGjK4TUicJG2DZevohXLOEUcpRGhjDyY5iFLIZdwhaun7NSESWyhIeHkCTKX2gniJOKx0TUiBNJV5BlBUlWkSS9XCEk14gTacE8KEuVisBpXb4RgKFje6lvW0Fr9waO7Pg9R556qCw8KuLDwLN8wVG5F7YNlg22jWS7SLaNbLtIloNiu8i2i+J4qHb55gg0W6A5At0GXYA+G+Pv3MeY0kjbrbcy8qUvEf30N7hg/t6aheHebzAWah23+QvfZfMim+DI4MngVm8SngyeIuHJEq4MXtn76CoS4ugjrL73t9M6dyB2AgICzkhV1Dgepu1iOh45wyZr+E30LMfzS7QFqIpESFUmiJqpyJsOBwbyLGuI8us9A7z80mW88esPT9rfIxXRThIzYTrro7Qlw+iqH9ZyXK9qp+W6DGQNZMkPRUVDCu11YeJhteytmUTYeB5eoYgwSnilEsbIEEZ2DLOYpWjkKDolTFVgKyB0HSWqIkvaKeJEKXtOloI46d54BYXsyATvSIXGzjXEko0c23OaYZLzhGNblAoZSvk0ViGLVcjhFvI4hTyiWIJiCblooJQs1JKFVnIYKjlkL7qa1R/9J7S77qdu63Ucf9ObMO77A20LbvFETBVsVcJWwVZlHE3CUWVcTcGt3isITWXllddT/+pX0/+7X9Py6ldzxBjgwCO/W2SLZ8aaS67xbf79XbS85tUc8cbY//i9fjd5WfbvFQVk/1YNb1aWVdXPx5JVJEX1xbuiISkKsqz6t8qyoiPLCoqqI8kqSnm7NEkHdpmph3h2rFlNqnN6DYQDsRMQEDCBioem4g3Jmw7Zkl0WEH7XYBCosl91FFJlkmHttKJmKg4O5fmnX+zldc9YwW3XrOZLvz9Ez1iJq9c0+cKmvixuUhHi4YkfVxVhkzNsLNfPd1FkmZAmEw8rpCLjHptw+VaLEAJhGLilEqJUws6kKY0OYxg5zGKOvF3ElB1MBVxdRk7ohJQkIUUnLqlLLuwzFYXsSNU7cnI4qHX5xmmHgzzXoVTMYuQzGIUMdj6HXcjjFQt4hQKiWEIqmSglE7VoopYcQoZDuOQSMQRh2/eSpGZov/vr35G+6Ac0lj0Ohfv+gCODpZXFR1l0OJo0QXh41ZuK0FSEqiJUDaHpCEUDVUdSdVBDoISQ1RCyFkJWwyhaBFWPoIXCaFoYTQ8jK3Il15oQ/m0yOtaspmvjBo7v2UtvxsA6fISL3/Zemve8mN4DB6c46uwyweaxEtahI1z8xnfQvOf5S97m3Q89PK39A7ETEPA0xXLG82kqoiZvOv6yUyNqJD/8FFJlEiG1mhw8F4QQ/PzJfv7j3kNcuaqRmy/vZk9flluesYLrNrSSNycOhbRd3z7TdstN+gSyLBNWZZJRlVRYHxc2ukxIPbV6xLMsRLGIVyrh5vOYYyOUcmlMI0/RLlASJqYCtgpEVNREiJCcIKnoKNLCDTKcCadUp9T2Wauukyas63nqII4p0bluI1ZJsO/h39PRvYKWZevY8ZNvs/+hX+OVClAqIZdKyCULpWSiGzZ6ySFkuERMj4gBCfzbXCjpUIzImGEFK6xgR3WciIYXCSMiIaRYFDkaRYnF0OIJ1my9hoYrbiQ31EvD61+Pee3ljPQcRivnf4Q8aTwx1gXXkfAcf3SD8GpKl8uVPNVKOVlUo4rV+znq1wmioSwSKvddGzdMWF4qnIs2r7/icupamjm+Zy/9hw5P65hA7AQEnOdUSrgNu9KTxiFr+MLBLJd6S5Sb05VFTVyfH1EzGQXT4TO/OcB9B4Z55tomPveaSzg6UsATcHy0RFdDhH39eQZzBma5+3AlNFYX1UlFVKIhlXA5ebgSwqpF2DaeYeAVS3jFAvboqC9sSllMq0TeLWIqAlMFT5ORwyohJUFE0UnM0WtTK0JOESZifJ9qhUplXaVSZULFiwSef+Gmsh5OETQT+szVNIwr5AfJ9uzgqe9/gU3LNnLB376PmKVRd+GVnLjtNkL3/YEtM3x9pgqlsIQRUjAiKlZIxQnrOJEQXjiMCEcgEkUOx5EjcdRIAj2SIhRJoYeSqJru9/6RIUylT45/kyRRFRySBG2r19C1fgMn9u2ld/8B2lauoXvTFsyiyvE9h2qEzPgxvnDxhYyiieq6ynuykCQaGyeIhgqV5URjIywx4XAu2qzqOp7nUchkpn/MAtoTEBCwyFQa7BUth6LpkjVsjLI3xHY8RFnUVDr4Rmt60iwGBwb9sFV/1uCadc18/s8uoa9cUTVasBBApmSxuTNFSPM7/8ZCKmHdFzaT2So8D69YqubZuOk0RnYMo5DFNAuUXJOCZGGp4KgSxBQ0JYIua9QpoWnn0njj/fUQ5dJa1xkvvfU8qoIEakRJjaChRuwAfitbMfH5J/R+k8odc2vWSWVRgDRxX8suMnpiB+bRfejHe2juybAqXVv2cpB01wYab72VoW98ncN7HsDo0LHDKnZYxwmH8CIhRMQXK1IkhhKJoUaTaJEkoUiKULQeTQuD8IVKeMJrrfmdnPx6T3rtoizeoOyBqXbnlar7d21YTdf69Rze8RTH9hxCkmWO7vIFzootG5Bk6DtwcM7emPnkqQcenHJb74GDS040wLlnsxDw+K/vJdHQzOarL6b36PQG2QZiJyDgHMawXQqmQ8F0GStaVXHjlTv0hsoVUIstak5GCMHPdvbxpXsP43iClkSId96wnv6MQdZwGCmYrGyMUR/TCesKErC65dRhvpU8G6+cZ+Nms9jpMYxiDsPIY7omBWFSUlwsVYKIjCzJ6EqcqKKhydppbBzvFeK54Ll+CMSxwbWl8voab0xNxXfFKwHjIkUGkMUp4qX6ePyZZ/x+eq7D6MBTFI7uQj52jLqeUdoHbFomOVV/o8LosjpW/OmraXjVLWSHh2n6sz9n5SWXzTo8UbV/sga/s+JUw+vbGji+Zy+Dxw4SrunD13/4ILICqaZG+g8utQtxZUBFuYfShDEUUDv7SXhe5aCJ9wiEVxujrGyrdRf697VePCY8V2VbrdKWqITyasdbVJAqh0q155zsNdY8nvqNmLg4yZ4SEpXRnBISnhC4joLnqNi2imMruLaGY6s4toprK9XHvpEFjj25mytfsXUqKyYQiJ2AgHOIWnEzUjDJGQ6m4+J6grDqJ+Em4rNLFl4o8qbDp+/az/2H/OZfV6xs4O3PWVfdNpAzaEuGWdUSP0WQTcizKRRw0mmsfAaz5AubkmuSV2xsFRwdkGQ0RSek6MRk/RSvTVXQVL00ZQ+NLeHavpehInIqyLKf3yHLoOjjeR6LSXbsOOmjOxFHDxHvGaS9t8TqSarx0zGJgWUJSsva0LvX0rB8G5FoHZedlJdRydOApZePUWG+PA4TBIgQCOHhuf4aUW7XK8rrq00dEdUO1KLsipogTiqioiJghQRCsHLbNnIjo4z19Na45vxbQ0cniaZGjj35BJSHgEycnVAeJVJRz+V11eaOklpptV2jqKWa46TyH6tf/YfitytAkpDkGltgfL0k0dndTSFfIJtJV8doVJ4/VVdPLB6n70TPSSMhasZC1Ow/bv/4PkIIHAMsA6yih1USWEWBVfJq7j3skjhZI50WLSwxOpDh6JNTpYpPJBA7AQFLGMN2/cRhw2a0aJE3/IRigSCk+H1hUhFtyfZc2TeQ4+N37mUga6LKEq/fvoIXbO2o5sSMFSxiIZXVLXFU4eHmCtU8GzeTwc5nMQs5TLuEISwKko2heNiKhNAEiqygyVFiio4q+x9nVUFjg+NKVU9NVdDUJLRWWAqCpoJpZBk5+jjW0X2ET/TT0pOlKyfoOmk/Q4O+jgi5zmak7pWkVmwlWbeMtpPKd8+VBFQhhD8XS7h4rlfumFterswQ8GpEiaiIFaoCpBIVrFyIRTUpWSpPNpcA2e98XU7mkSUZSfaFgSTJKKqGJKl+9ZWiISsysqKilMumq2XVsoQk+/2RKB8frUuy6pLLGTjSj1kwq/O1wokwTV3NDJ8YYfXlbVWbKoKj0p6g2hiyIkzk8dEhcOp9rQKZ7d+rHlboWhElO1zEMtwJ65NN/vpQd/2kvy+z6GDkbUo5C6NgU8rZ/nK+cm9iFJyyp2p6hKIq4bhGJK4RSeiEYxqRhFZdF47rhGP+70cPK6A7Zz4pgdgJCFgyCCEwylVRBdNmpGCVK5C8c0bcVBBC8JMnevnKfUeqYav33LSBda3jtTwly88l2lIfQu87QaGv308gNoqYwqIkORRkB0sRuH4jZXRFQ1d0opLu58O44DkSjgWmU67EOaOgESgqZ1XQVHAci9He3RSP7kY9foKGnjFahxxaTtrPk6CvRWOssx63q5vYik00tK6nQdVpOMNzLFYCakWsIARudYq5VxYrfhde4bm+t8TzKuVS/rd/RHkWmH+R9wWEXBYVCroaAmQUVfGFiKoiK+XxFYqKpMhlESL7xyH76yTlFGEiSTKyovhdpSUZZMU/F5XJqhN7L82U3IhB28qOqnioFQ2SFCYSC8/5vZ5PLMMlO1ys2miWHCRJItEY4fATQwwdy50kYCyMvD0rERNJaGXxoteIl1NFzHSovK8nDvdPa/9A7AQEnCWEEJRsl4Lpkjd8cVOwHAzb8xNAy71h6iKnhmOWMnnD4VN37+OPh/wBfVetauSvn7OWeGj848b1BKOZHKsooT/VT1+6nzHFxtQEVshXKLIkoxEmIulInorngWuB6UiUJhE0EmUBUxE02vyUE88XwvNIjxwhe3QnHDtM8sQI7f0GjZN8MR1JyQx1JjG7OtC719HYfSHxUJxTs5jOzHTDQbVixRPlURaeL1A84VbFiucJfxp62dPie1MEkvDDJRIgl9WkLPuiQ1d0ZE1F1jRUPeRXZKkqihZCVsrCRa6IGL/5nKr4zekURQVFBkleMr9L8N8vq+RSzFoUs2b53qKYsUg2RXjGS1ZzbPcA669o5Zf/8SQ9+9Jn2+TT0rmujmv/fAOHnxhh4zPa+dlnn+D4njMP2QzF1KpYmSheNCJxX9TMRMRMh1oBadd4o05HIHYCAhaJirjJmw4Fw/HFTbmvDUjlUmqV+sjcvlkuBJVEwlMrbsSEdU/15/i/v97HUL4ctrpyOc/d1IaEhFP5UHIdBo/1khzrxRJj7FVNSiEJXQqjOiFCnornyLgOWJ6EMYmgkRWBrPiCZpKmqwvG+isuJzcyMmnYp2PNahKNjVVxUcwPM3r0cZxjB4mc6Ketp8CK4qnfhAsh6O+Mkl/WitK9mrrlW0mk2mlfAPtNq4iZz5WTlsqhH68c7KmGU0CWVJClchdcGU1RUVQNWdVQVR1VD4Gmomg6sqqhyDViRdWQZQVV0Xyxomplj4mypMTKmfBcj1LOppi1KGQmipnKY9eeasjTGHUtES66YTmP/fIoBx9bWtPZJ+PgY0O0rkxWbR48lqWuNXqKB6Y2tBSKzq+ImS6qrpwSdjvjMQtoT0DA0xJRTl70hKBoOhRMh1zJYbRoUTQdDMsFSSKs+NO0E2G9HIMXCFfgOO74eeCkcmVx0vL4g/F+K6J6bDWMI2rPN54IWD2HVzmHGH+K2vNNeIE1r7OyyhPceWSY7z3VjyugOaLzF9u6WZmMkD1envTseYhclmz/CZzcMHZcMBLR0NU6QpaOi4TLeK8UWfYFjarV9kk5u+RGRibNc2ld0cWydWt57Nufo+cn/0nTiQztY+4pgsWRobdNJ7OsEdG1nPjyzdQ3r6FJUWlaIJvbV69ibKifgf370GWNVF0T4VAMdJ1USyORZJKxvmEURUNWx0WLIvshIlktt/FXlEUV4dGkjmO5k17Q9LCCqisUs1PPTDsdQghswz1JwJgUasSMkbenda5QVCWa0okmQ0STOtGkTuuqJKsubGa0r8DW67po7k7M2tbFIprUaV9TR2aoyIXP6WLlhU0zEhOLyWzey0DsBARMgucJrJKDVXKwTce/7vuNe8uVG6Lc0ExUqzs9ITAsF8NyKVgOOcP32liOi4SELpcHYSpSNcHQFGDCRMEC42qjcm0R0nhtaLWC1K90kMYrShFCqpZAAzWVESfVCJ9UWTFeHz3xfRi/tkmnHCuXK77ylsMdj5/gsYEsAJd3pHjjti6iNeMZRC6DOXiC/PAJ0k6RREuCeCJBSAnVPM/MS7AXm9rE3rFDj/PUt/+dTcsvovuaD3PittuI3vcHNtXsP1gvM9yRwOpoJtK+nMbWNaRUfeLIhGxv+cH8vn5XeBSNIpo1xtY/fRkJ10SxbSLJFJIsoafqSa5dR3b/XhqUnH9QJaQ2b9fl2Ysjp1hHcu0Gsvv3YmXS1fV6qo5kp7+emvW1eJ6gVIBiQVAsQDFfvi8I/5YHZxp5rbIM0ThEYxLRGETj5fvK4ygoKvhvmFW2r57k2hVk9+/CyYyRS9fTUX0dY7N+P2bPmX8HeqqO5JoNZPfvwsqkEcOTv/dLkkJhWrsFYicgoIxju1glF7NgU8xZWIaD55bDJBLVb7UVASAA0/UHYxZtl5xhY9oCy/OQwB+GqSskI1q5wGLi8f6C/+PkdUstjDUV+0YK/NuDhxku2qiyxJ9v7eT6VU1V+71cltLgUUrDPRSdIllNo7WphdZEbD6asyw6ppHlD1/6EFulJra87yMsGyhS99KX0nP77fQ9dj/9q6OUOhpQ2ztpaF9DNJKi8+STiIX9tmy6FkapiGo4RMNRwo5LetcOVj7rerL7dmGlR9ETDf7F7Sl/eSlijQ6RfcoluW7zuN11vt0jT+5i7PioL2CKlIXM+K1UnN5zhMKMi5dozeO4vxwKnyzEJxGkNb/Oin217+tkr2MpcS7aPAF3eh64QOwEPG2puLLNkoORsygVHBzL/+TSQjKRuDYhHi0EGI5LyfJ73aRLNpbtD8eUZdBVhXhYRlOWViLlQuAJwc/2DfK9Xb24AlpjIf7myhWsqIsC4BbyFIeOUho4hunk8WJxrFA9zeEQTfHQOSd0RvqfonDv//CMi5/HynSMwn13MXrBpTTfeiuDOx5i97Yuum9+Ce2NzfTu3rHo9nl4GJaJkTVRLAU93EG4sRk9nKIoNPY/6dI38BQbr9vM2K4B6la38shP9zJyLAdM3Wjx7JOjcd9eLnzuZgYf62f5yjZ+fscujuw888XX98pIRONy2SMjjz+Oy0RjEoo6v3+IaqqR7OFDWCUbQuOVh1bJJnv4EGqq0d+2hDgXbZ6APb3fYSB2Ap5WuK6HXXIxijalrO+9cWwPRZHQQgqhOn2CV8V2PbIlh6LlixvTdrE9gSyBrihEQwopZSlfLOafrOnwhYeP8li/H7a6clkdb7y4m6imYJfyFAePUBw8jmPmIRZHT7Vj2YKwBA2xpdXw8HR4rkPPrrsI338/aw76rnJP2037Jz/B4ft/TdOfvJj88CDNWy/l4liChq4V7L/37hk/j98XSMJ1ZVxHnt59zWPHlvBcGSFOHX7qux0qrodBXDVRTUB98M6lnzQLcHDPEGpsPHG2InRCYalGxEinCJlQRFp0D2mxf+oyaCubxcpmF9Ga6XGu2Ox5otzZvPy43O08X5he+DcQOwHnPbblYpUcjLxFKWdjGS5CCFRdRg+rRBKTZ78KAcdGiwzmDGT8fJtY6OyOXTjbPDWc5zMPHmG0ZKPJEq+9cBnXrWzEMguM9h/BGDyGWyogRePoTR3IkozteDieoDUVmnQa+VKjmB9m8IGf0PHAXraUZ0t5wIE1UewuuLq/l7U3vIShg09x8P7fs/zSZ9K+fj1HH99Dz94RXDc6qSg5nXA5eT7WXFBU0HQJTZPQ9PJjXaJ9TT1bntXBsR0n2PKsDiQ7x1hPet6ed6Go76xj87M66N3dwwXXdtLaXAIzizrPXpmAs4cQYnxMS0XUlKswRTldUJYlJMXvQqCFJFRNQtMglJjeZ0ogdgLOO4QnsAwHs+RQyloYRQe3XAGlhRSiKb2aXHs6RgomQzmTukgITXl6f7B6QvDTfQN8b1cfnoD2eIi/unwFrVGH4d5dmAPHEIU8SjRBqLHDr97BL/Iq2S4NMY24vrQ/boaOP4F5752s2TlIezl5NR+GQ1ubSW67ktaWNTSs3Eou28DR/36SbTesJ9waoaG7g598Zke5J8kpGTozQKAoHorqTXovqS7INsIz0FybaFgjVZ8i2VRHuC6KrsuoOpP+bevJJMlVq8keOkjYzlI4VmDrjRvIHjq4ZL65T0at3WoxS/5InrYL1ix5uwMmIsqeGLfWK+MC1XaSoCgVMSOhhXwho2oSiiKhKCBX7yf+jcu56X35XNqfPgEB08S1PcySg1n0+2LYpovneMiqjBZSCMfUGbm0DdulZ6xESFWe9kIna9p87qGj7BjwK3ae0VXPqzYncdIHGTpyAqmYRwvFUZo6T2l6UzBt4mGVuqi+JPN0HMeiZ8cvSNz/EGuOGdX1PS0aw5esoXHFVcSddrKZOD3Hw5j3FoFdAOjR8dDKib3D6BEFPaLiWTlfpJwkWOTTCBlF9ZBrhobW4uJRcgzcokHYhmQsRbKphVhDE1I0XDM6YHJqBUNFIFjZLNlDB09Zv5Q4V+1+OjJViKmCJPliRZZBVcteGR0UdXIxsxDhx0DsBJyTCCGwTT88VWljbpt+boKqy4SiKoo6u3CTENCXLlG0HJriS6u1+2KzdzjPZx44wpjhh61u3tLABbExcgf2oOaLhLQockPHpJ39DMtBU6QlmaeTy/Qx8of/R/dDB9ma92P+tgx7N6/CWncdCsvJ5+KM7NFPOlIQiVms3pZg87PaOP7ETrZcs5awsotMX8+82mgJm5JlIBk2MU8hmWgi2dxGuK4OKXSyXVOjRqOTCoOKcFCj0SUpGs5Vu883phNi8ht9SqeEmBRVrgoYRZGq92eDQOwEnDN4rodluJhFh2LGxDJcHNtDVkALKcRSenm679wYLVgM5k3qovp5X1U1FZ4Q/L+nBvj+rj4E0BZXuXmNS1NpN9JgiZgahvpWUCaPlzuuh+OxpPJ0hOfRf+RhvPvuYt2uUTo9iUK0jf0r1jKw/EJcfTWurcHIhKOIxk0SKYN4skQ8ZdDY1c7aqy9l/713kenrIT90nLVXX8f+e++es+Dx8DBdB8s2UA2HOkIk6tpINbehphJI6syT4c+VBNSTOVftriC8yZtxTng4SW7tVMdATR+uqZ5zsu2nND8/1ZBaezxxaohJliVkdeYhpqVEIHYCljSOVS4NLzqUMia26ScXK6qMFlaIJOa3Esq0PXrTRTRZedomImcMm39/6Cg7B/2w1bZmeEF9H6mhErqkI+qaQJ36o8MTULSWTp6ObRXpeeRn1P9xB525FtJ1F7J74xpGG9bgKTXTpmyQJI9YwiSeMkgkS8QSBoo6fnFItXeeImwyfT3sv/fuOQkeF4+Sa+KYFmHTpUmLkWzqJNbUgpKMVXOgApYWwhO4HniOP+/NH85embTOSc07J4qASb9InWaddKZ1k51CmrivJJ161Ml2qurih5gWg7P/SRQQUIPwBFY5PFXMmZgFF8dykSQ/PBVJaAs2i0UI6M0UyZuu3wvmacjuoRyfefAIGcNBk+H5bTm2S1lCBQURr0doZxaXSyVPJz14hOE/PkqiNw6xSzi8+hUcUCMT9pFkQTxRIhFLE6+ziaVcZGXqr8+x+qZJBU1F8MTqm2YkdizhYLgWmBZRSyIVSRBvbyLc1Igci56zF5bzCSF8EeO64LnCvy//icjSuBAIhWS0kF/9pigSijpRXJxO3JxRyJy8bpJzTXb+ydc9Pf+mArETcNZxHQ+rmlxsYxkOruP53puQQiiqL8o/6FjRYjBnkap0PH4a4XqCH+45zn/vHUEAzSGX1zWMsVxycKNxRGh64u9s5ul4LuRHJfoOnMDul7DV1XjqJjLd4/vIike8QZCod4nH0kS1IWQs0OPAmUX06RoGZvp6piV0BALTszEdE9XySDkyiVgj8bZm9IYUUuTMSccB88tkgqaakyL54RtF8fNRYiG/rF9RfUFTETZLNXwT4BOInYBFZzy52KVUsMaTiz1QQ3NLLp4tluPRM1ZClST0RX7us4kQgr58ms8/coIDI3699WVxg5sTGbRYCDccP8MZxqnk6bQsUp6O60BhTCY3qpAdFhQzCqAAa6GszWS3gBZL07S8kWSTIJIUSK4JxREwciDroCYX3FbwQ1WGa+HYFiFL0CQ04vEmYs3NaKnkjJKOA2ZObaKt644n2laoJNCqukQ05PcmUtVy+EaVUANBc04TiJ2ARcO2XErlKcNm0cGxXWTZ730TS85PcvFsEAJ60yXypn3OVl91tsXJF20yWfOUbalkiHhUo6c/X13neS4FJ8fDfYN854k8eUtClwSvSGW4vEEgIknEDNxb1TydqEZimnk6HWtWU8hkyAwNn2pzcxOxVGrCZHHHhvyoQn5UJjcqU8ye2oxPN9Mksgcwk4MktnbRvmo1klQPeP4v2sxCcRQ8C0LxRRmnbguHomuC4xI1oUmJEK9rINLUiJKMI50m/ylgZkyoHKqEnLzx+blVQaNJaDEJXa/x0JSFzdmqFgpYWIL/soBFI91fIDNsoOnl3jfxmfW+WTC7ShaDOZNUxK++mqlwWArkizbrVtez7+DYBLtTyVB1PYDjOeTtDKPGCHfuz3PvURBItKs2r28p0FqnI2aRDFs0bWIhlbrY9PN0CpkMay+5mP2PPDpB8KSam1h7ycXs+eOjjPUp5EZl8qMKpdxJmZRAuDRMXeYAdekDOBxi5KJWWm98AZHopolP5lhQHAMzDYoO+sJ6c6qhKs9CcTxSlkxCjRNvaUJrqEdJBEnHc6EqZNxygnDNMM5K5ZCqSoSjfrKtqvkl0LWhp4CnF4HYCVgUbMulmLOJxDW00NIoRQY/fHVirIRSE76arnBYSmSyJvsOjvn2HRglnTGpS4Wqy4OjWfJ2lrQ5ylAhz093SxzO+q/3qrjBiztddC3sl6BOb9RMFcNyUGSJhqiGjITwznwMQHpgmH0PPcq6yy5m30OPMnxihFC0hVXbtvHrr+zk4GNFqvGoMjJj1A3vpm1oP3XpA+jmGAfWJRi76Wo61r+dlHLSR5oQYOWgMAKuBXoMpIX7+6uGqlwbzYEmWyUeThJta0JtSE0r6VgI4ZcQi/LcLMYfV16Sv11M3F6zX+V4YFLxOdmm0+zOyX8UopJ0W9k0zRNN9dLPlLwrmETQlL0woUiNoCmLnHO9cihg/gnETsCiYBZsHMslHFs6f3JCQH/GIG9MDF9NEA5lwVMROk/tG2FszPB7aLgCzxN+IqMr/HUT1ovx9eV7r3bdpPtz+v1rHnuTrD+4rp4bbt3MnmO9rN7Sws8/+0R5jME4IeK8tHZFJsLQPPTDGznzLpNQ5MDDu7nhjZdgFnrZuL2DO+/YxfE9aQAiCQ9FH0Q59nvWPfkoiZLfWyUfhn2XdJHcfjOtzasmP7Vr+yErIw2KVp7oPH8XPyHAcyUEEo5wKTkWnusRdmQavBjRcBy9uR45EcMJh7E9ICfK3Ut8hTCZLqiUAku15cvlRNnqogSS7HeklSTJb+om+1E5SS5XCcnS+HGSVL6f+rWcaZ2YdKcJd6e2cKkIt5pzntxH5uTtp5y3/HhyD00gaAKmx9K58kxBLpfj/e9/Pz/60Y8YHBzkoosu4lOf+hSXXXYZ4P8DfvCDH+SLX/wi6XSa7du387nPfY61a9eeZcsDailkTBRVXlIfTOmSTX/WIBk+tXlgJmuy89F+Nl/Qwp77elm9qXlS4bDUOL57lD339VbHGCx1ewGO7xm3eefvjmAaA1z6vEaaUnme+ug7WFk7xqFVY/iqC2m/5PksD02RPC3wvTnFUXCMeffmCAGOreC6Eq5kYXgmCpBwJOIiRDyRJNTUgFYXQ4mE/Fb5FTEijQuYWgEi1QqaGoEyYR0n77N0/pcCApY6S17svPGNb+TJJ5/kG9/4Bh0dHXzzm9/k+uuvZ/fu3XR2dvLxj3+cT3/603zta19j5cqVvP/97+fGG29k9+7dhMPnZrLp+YZlOBh5Bz28dMJXtus3D5SQCGkTcyfskkPfw0OM7MsgvcSeWjiUe2xIcvl20mP5lPVUH5+ybdL9pYn7T1jPpOvrGyNs2tzIEwcPsfHaZYwmhjm2t4fvHfI4bPo9ci6vc3h+q4s+x5SRvGkT0RSaE6FZlZm3rVpJ57q1jPb10rK8nZ79B9lwZSehwkOsvvoqev72b1l5zMCRYf/GeqTt19K26krip8t18RwojPq5OZIyr94cz/NFjufJyJqFE0oTVVw6HYWUHCFR30iorRmlPoWsz2+zy4CAgLkhiUl9k0uDUqlEIpHgv//7v3n+859fXX/JJZfw3Oc+lw9/+MN0dHTwjne8g3e+850AZDIZWltb+epXv8rNN988refJZrOkUikymQzJ5OKUoT6dyI0aDB7JkmhcOuLz+GiRE2NFmuLhqldHeIKhPWP0PzqMa3l0bWzgxjdvoX8gT0dngr17R0hnzXFxsYS+WXe2xRFAR1uUu594hJGhDMtjKS65bBtf+O1BDCHxld8f5JUdNpfUTTOp5jQYlgMStCbDhLXZi9hVF26lubuLozsf4ZEP/w3bn/FSWv/m7Qz9679y6Fv/wZFLV9K4/X+RqDvDNHEB2AUoDINtQCgK0vx8l/NcCdv2X6MacnC1HIICLZZCk54i1tyC1tKIWpdEmmJ8RkBAwMKQzeVJbXjWGa/fS9qz4zgOruue4qGJRCLce++9HD58mP7+fq6//vrqtlQqxRVXXMH9998/bbETsHAIISikTdS5uhHmkUr4KhEebx6Y6ytw4v5BjDE/IXn15a085882sO9wmkzWJG+6bNjYdErS8lJBAMuXJXhk/35Gjw8QHc7x9f4x7iukeNeNG7njrr28c7VFS2ju3238fjqCljkKnVRzEw3tbey/66esvuxZJG56A3UvfSlHvnYHHW+5jfhll7FiLHPmE3kulMb8GxKE58eb45ZFjgSEwg5y2KBEmqghaBUxGts6CHW2o6QSQWVVQMBiEm8BuwRmbtqHLGmxk0gkuOqqq/jwhz/Mxo0baW1t5Tvf+Q73338/a9asob88KK61tXXCca2trdVtk2GaJqY5fsHKLvGBcucy/uBOGz28NP7U/PBVCQSENQUrb9Pz4CDpw/4/jRKSufAFK7j02u4JwmaypOWlhO2ZPHqgnwtWrGB4z3H+73GPju52bnvWKr53z26213sc6p+70PEEFCyHxqhOIjS336ke0XjgH99Jw3/+ivS73knjrbcycmg/A43LMHbsJNnYRP5MYscq+Lk5VhH0CMhzDx85joxjK8iyRzhiE4rYGFIewzRoMVRa6lpJdHejNTcEnpyAgLOBXYL6FTB2BHLTawOyNK5Ap+Eb3/gGb3jDG+js7ERRFC6++GJe9apX8cgjj8z6nB/72Mf40Ic+NI9WBkyFWbBxbEEksTS++fZnDTJFm/qQRv/jwwzsGMFzBEjQtKGO9kua6ViemlTQVARPPKotKbEzUirwk/uOsH+gRFv9CB95xTN5Rd1xXnlZFz/59UMks/0cmqfnKpo28Rn205mMvkMP4nz0hzRmPCLP3E79a15DbnSMhpVr6DAceg8cnLTZYBXP9ausiuU2AHP05ggBriPjOAqK6hKNm4TCDkK1yBhZYnmPznADbddcjxqSkJnk9x9KgBaB/OCs7VgQTvcteKnaDOem3YHN84/ngJUHMz/xPt4Cm14Mj/zXtE6z5MXO6tWr+d3vfkehUCCbzdLe3s4rX/lKVq1aRVtbGwADAwO0t7dXjxkYGGDbtm1TnvO9730vt99+e3U5m83S1dW1YK/h6YrwBPm0iaovjdyWbMmhL12CIYOnHj6BlbMBiLVGWHZVK9FyTtHpGgZmsuZZFzq267FvpMCTgzl2DmY5PFYqV+cqMDDK1oeOc9s1q3niiX0ks1N7OGeKYTmoskRDTJ/13CvPdTh299fYfNdeVA+k517H8v/7KY7v20/vgYN0rFlN18YNABO6J0/ALvnjHswCaGG/SeAsGa+sklE1l1jC8ENWqkfOKeGm87Q4YVrbl5PsWoaS0JEaVvrfKGsvDqHE+DfNpUbtt+BzxWY4N+0ObD4Vz/E9sJMJFjM3cXmyx44x9bl3/gBu+FfgPWc0Y8mLnQqxWIxYLMbY2Bh33nknH//4x1m5ciVtbW3cddddVXGTzWZ54IEHeOtb3zrluUKhEKFpDjYMmD1mebhnOHb2K1NsV3DoaJrBPw5Q6isBoEVVOi5vpn5VckklG5+MJwTHMiWeHMzx5GCOvcN5LHdiSKpVd9mgm9y4tZ2XXtnF/t372LB+BfmhAYb65v6tbD7ydPLZAUrf+RwXHiwAYLzuJWx794c5vvepqrCp3E8qeDwPjAyURv0pjeHpDe+cDOGBbSt4noSqeyTiBlrIQVEElmeTzmeJFTxa6tpoWbEGvbnBH+tg5f0P/9qLQ+1FYQY5BIuGmTv3bIZz0+7z0ebSmB8mPlmMnCxUphIsdml+7NSi/sDeUNy/1+Mgq3Di4WkdvuTFzp133okQgvXr13PgwAHe9a53sWHDBl7/+tcjSRJvf/vb+chHPsLatWurpecdHR286EUvOtumP+0xCjbCE4s+1PNkbNPlwbuP0fvECHh+07XmLQ20bWtC0ZZGeO1khgpW1XOzazBPznImbE+FVNY0KnTGClzkGTSbeRrWr+XSZ13Ow/c+wFDfIEN9A1x69RXV5dniz71yqJ9Dnk7P3nvo+O5P6SwITBX2Pv9SbnjdX08QOhUqy4nGRqhss00oDYORn5M3x/PAtlQEEpruEIvY6CEHWfZHPGTMPCKTp1lL0r5mNclly5AjJ1URVi4OqWWw92ew9gb45fuh99FZ2bRodFwMz/576H0M1t10btgM56bd57LNxx+CDc+DH74J9v0C7OL8nF+LjIuUWsESmmxdYuKyHvWFzcmEEqA0TOvpl7zYyWQyvPe97+XEiRM0NDTw0pe+lI9+9KNomu8tePe7302hUODNb34z6XSaq6++ml/84hdBj52zjOdVqrDOXgKnEIJju0bZcfdxzIIvFpLLYnRe2Uo4tbQmTOcth91DeXYO+N6bgcLEUFlIkdnUHGdLS4LNzXFC2hgjhR4ahg30TIGGjWu59FlXThA2Q32DPHzvA3MWPEXTIRZSqZ9Fno7rWBz/xX9wwT2HkYG+JpXin/0ZKzo2s+/Bh6Y8rvfAQV/oCAGlNBhj4Nmz9ua4roRTLh/XQw6hiIMecqrVeJZnk0uPErclWttW0bJ8NWp9amqP3yNfg1gzbP9ruO/T8Md/n7FNi86xP0Ki/dyyGc5Nu88Hm3edlAujhicXKZXHocRpBExscrEyFyrep2M7p7X7ku6zs1gEfXbmn1Leov9ghkhCQ1YW33uSHijy2C+PMXzCz79R4yrdV7WR7IotiZCV5XrsHymwsxyaOjxWnNBGX5ZgTUOMLS0JtrQkWNMQRZVlhIBRY5DBwjHqhkqEMnncZII1F2wkM5aeVNA0t7eQqq/jwO59M7bTsB0Q0JqaefgqM3Yc91t3VDsg77qoheaXvJXQVJ2PT8Yx/dwcIweq7n/YzhDXkbBtFUn2CIVdQhEbTXOrIsfDI1fMQSZPQ7KZzlXribe2Tj2JXHjw4BchPwAv+zIc/j2s/RPY9WMYOzxj+xaV+pWw+UXQtwPaLzw3bIZz0+5z2eaBXdC2BY7e74ehKoJlvsXKXKgJs2WH+6bVZycQOwRiZyEY6ysw1l8k3rC4uVFm0WHXPT0cfHwIBMiqRHxDiuUXtZzVXj+VvJuK5+apkVPzbjoT4aq42dgcJzqJuMiYo/TljxIbzhEbK+Am4jDVhXmOOK5HyXZpTYZJzLB1wPEn7mTFD39NvAQlHfa/6GqWX/rC6R0sBJhZv6Tcs0CL+7HHaTJeWSUjK4JQ2CYUdlA1b8JYENM2KYwOE1PCtHWvprV7NUo0MvWJXRt+90++4HnZl+GJ78GyyyCcXNo5GXBq3shSzyOpcC7aHdi88NRUkJ0XTQUDzk1c16OQMdHCiycuhCc49PgQT/6uB8vwxyO3ratD35gimtDPitAZKpjlvJvcpHk3dWG1Km62tCRoiJw+tJa3sgwUThAdyRFLL6zQqeTp1M0wT8e2Dfp+8nku+KM/WfR4u4776texvHWas+ocyy8nN9N+Xo4+/S8flcoqx5VRVZdowvJFjjqxY7SHRz49iiiZtLZ00rlyA9HGxtN7/KwC/OoDEE75QuepX0DX5f62yRI8lxKTXbiWus1wbtod2Lw4zKIUPhA7AfOOWXCwDJfYIuXFDB/P8divjpEe8LP+U80Rtl7fRTYskS7ZREKLkzc0Me8my0DBmrA9rMpsbPLzbi5oTdCZCE87pFZyCvQXj6ONjBEfK+LGYgsmdGA8T6dhBnk6YwP7Ub79VS7o81/3E1d20vmCt6Bq0wg/CeEP7yyMgGvNaHhn7WBOVfOIx/zycUU51WltGkWKIyNE4yk6Nm+mpXMFsnaGasHiCPz8PTByAJ75Tjh6H7RsOOnE5YuDFll6FwYtMvkFaynbDOem3YHNS5ZA7ATMO6W85U9lnmUvlmk/T87iid+c4Nguf0CnFlbY/MwOVl/cwkDOZGQkT2N05nkenW1x8kV70n46qWSIeFSjpz8/i7ybGOos3hPTNegvnEAaGSY1WsKNROBMF+g5YNgOqsyM+ukcffi/Wfvje4lYkI/AkZdez/KtN07vCR0TiumyN0eb9vDO2sGcmu4QTTjouoM8icjxPIf8yDDCE7SsXE3Xig1E4tPwGqWPwv+828/RidRD01pITjGny8wtzYvC6b4FL1Wb4dy0O7B5yRKInYB5xbU9ilkLbQG9KZ7rse+hAfbc14dj+SGKlduauOCaTkJRjbzpNw+MaSqzGVmUL9qTjoVIJnTWrKrjW/cc5kc7etk7nMf2Zp53MxNs12ageAJndID6YQMvHIIF7BHluB62O/1+OqaZZ+i/PsfWx/wPzCNdYeTXvImuhu4zP5nn+d6c4uiMvDm1gzm1kEM4YqLpzpS/azOXpZjNEG1qZtnK9TS1dCJP5w+j/0m48+/9/KFkJzzv/0Ky48zHBQQELDkCsRMwrxhFG9twidUtTAir/2CGx359jPyoL0IaOmJcdEM3De0xAFxP0Jc2sD2PZGR2oqB2Dtbje4e5c3c/ckjhL/5kLW/8+sP8fv/4GIPavJsLWpLUR+bP4+J6DoNGD6XRXhqHDQhpiAVsqTDTPJ3h3l1Ev/VNNg85eMDOZ62k66Y3oqjT+N3bJb85oJH3K61CZ/ayVAdzSv5gzlDERtNdpooEepbpe3PCGm0bN9PVvZaQfpoE5FqO3At3/W9fhDVvhJs+BpG66R0bEBCw5AjETsC8UsyVQ1jzXN6dHzPYcdcJevenAQjFVLZeu4zlF0xMLB3OmwznTRqicxNbmazJE08Ns251PY+O5HjlZV385Xce46HDo1zUlpxV3s1MEMJjqNRPfuQEDcMGyDIiMs0L9Swpmg5R3c/TOd1LEp7H0fu/x4afPULIgXRMoveVf8qKDc8685N4brkL8hgId1p9c04ezBmOOKja1CIHz8McTVNwSsQ72li2ciPNdS1ntq3C7v+G+z7lV111XwXP+YCftxAQEHDOEoidgHnDsVxKWRs9PH8hLMdy2Xt/P0890I/nCiRZYu2lLWza3o52Ujl0wXLoTRtEdQVFmbsA+dQ9B9k+3MJt16zmN0/2c11HPW/asmxWeTczQQgYNgZJjx2lfqiEjIQXj512//GFmsdlM6ejxQzbQZGhMX76PB2jlGb0e//Ohbv8AZwHVseIvOqtdCZbT/8EArBrJpRrYVCiU+8+xWBOVfOmPAbAKxTJZccgFaNj+TaWdawkNN1uy0LAw1+Cx77pL294Plz9t0urv0hAQMCsCP6LA+YNo+DgWA6hurnnlAghOLF3jB13n6CU9at7Wlck2fYnXSSbTv2W7QnoHTMwHJfm+Nyff+dAFqHLvPKyLnYeHOXqDS00SQrpjInrjF9wq0JD+D8mFR5CjGsQ4d+qa2r2F0JCkgRpc5TR9DESwybCVTDjMSiV95VqziOBhDhzLq/wzz1xP1E+h4TreZiORGM8hOyoWC5Ikm9YVShJMHTsERq/+z02pj0cGZ58zga6r70F+UxVYa5dLifP+Cc6jTdnqsGcinqGdmCWjTmWJq96JFetoGv5Ohqj9Wd4Y2rwHLjnn/32+ACXvA4uvmV6SjEgIGDJE4idgHmjmDWRZWnOYZ3MYJHHfnWcoWN+FUA0pbPtOV10rKub8tzDeYPhgkn9GXrVTAfDcdmZLvCZV13El391gEtScfbkHTZuamTPnhHGxgxfaFRskSgLj/Jrl8urKh4SWapeM/3eeOX9pPFeeZLkH5QxR8mOHqPeGiES8nDrUiA5NUJlXNxI1R/UrPDvJogryqJMSNV1FVHmeVAq2jSkdBpjsi/MhB/BEQCenxB+4t5vsOXXT6J6MJKS6X/ZS+novgLHBuzx55AAIQn/uYTwvTmlDJJjVruwSubJQkogAZ4nTTqY87R4Hl42T87MI5rqWLZiDV2N3Wgz8cbYRfj1P8DxB/1fyDNvhw1/Ov3jAwICljyB2AmYF2zTpZS3TwktzQTLcNh1Ty8HHx1ElLsfb7iynQ1Xtp12YGfRcuhJG0Q0BXUewle7MgU+8pIL+P9+uJOXrm0h2RzDkyWOjRTZtLmJo0MF8qaDL1rKB1VDRrN//qw1xmBpP6n0AHHh4bTXo0plV9C8cOp5siWb+kaFrgYNVTn1uXLpIUbv+DzbnvLHbuzblKL1DW9hbbwBhFtxaFXFVHXZLkFhFOGmIa4htCjC8xDCQgjJ9zQJ8ITkHydA1dzqzKppVdEVDMxcllxcJrVqLd3tq2mYRqLzBIqj8Iu/g+F9oITg+g/C8mfM7BwBAQFLnkDsBMwLRsHGsVwi8ZlXIwkhOLxjmJ2/7cEq+V2GO9fXceF1XcTOEBLzBPSkDQzLpTkx9/DVwdECBSH4q+88xvb2Opo6ElUPTdHxOD5aIhpRKTqnzx2ZKQU7x/HRvYSOnSCe93AaGxY8hFK0HBRZojUVnlQkHt15H3Vf+glrcgJLgf0v2saGm16JNKUSEb6rqDgCxjBgQipRznmxT2tLxdM0rZdsO7iZLDnZge4GlnetpTPROjNvDkDmhN9DJ9frd0a+6WPQsmlm5wgICDgnCMROwJwRQlDMmCjqzJvajPTkeeyXxxjrLwKQaAxz0Z9007pyet/QR/ImwzmD+ujchY7jeXzh4WOcyBk8c0UDz7ig9RRPTd50yJ/aa3BOGE6RE2P7kI8cpS4rcBrqmVWDoBnguB6W47GsIUr0pMn0nuuw9wdfZtOvDiILGGhUcG67mY2rt57+pFYBcoN+c0A17DfhmybTEjmeB9kCJdsgXxeivnsVyxuXU6cnpv08VQb3+B4dI+NPen7ux6Gua+bnCQgIOCcIxE7AnLENF6PgoEdOrcKKJnUcy63Oq6pgFGz6DqRxHcFYfxE1pLD56nbWXNIy7SnpJdulJ10irKlzDl8JIfjxzj5O5AySIZXbnrN2UaajW67J8ewBnCP7aEw7OE0NoCzseAshIGfYNCVC1J3UFyg93EPm819ky2F/9MaeixtZ/vq3EI6eRny6DhSHIT8ECAjXzWhw57QoGLjFItkoSF1trGxfQUe0eebeHIBj98OvPwSOAU3r4Kb/A9GG+bU3ICBgSRGInYA5YxRsHNslkjg1hOVYLsmmKNnhIpbh4rkeBx4ZJDNk8JxbNvLL/9jFigsaueDaZYRnEAITAnrTJUq2Q3N8bo32hCc4OlDg/x0aAuBNz1pFah6bA06F4zn0ZA9hHtxNU9rBbaxfcKEDvtBJhDWaE+EJHpVDD91Ny9d/ycqiwNDg8MuvYP1zXjL1iQRgZP1RClbe74CsznN3Z9uBTJ6S6pFvi1Df0cWKumWktPjszrf3p/D7T/gZ2Msugz/5EGhTl8AHBAScHwRiJ2BOCE9QSJuoUyQQW4ZLdrhIsinKsT0j3POdfdS1RLnhjZv5w38dYO1lLTR2zvzCNVIwGcqZ1M2yS3IFzxUYOYuv7u3F8QSXLq/nmnXNczrntJ5XePTmDpM/spPGUQuvvn5BB3tWqM3T0creMMe22P+dO9j8u+MA9LZqyG/5c9Z3r5/6RI7lz9QpjQISROuZ9sTQ6VAOWbmuS7pOQWlvZXVDN+2RJlR5FoJQCHj06/DIV/zldTfCs94V9NAJCHiaEPynB8wJy3AwSw6h6NR/SpbhMtKTo21liguu6WTj9g4O7xhi8zM7ZhUqMmyXnrESIVWpXrBng+d4WAWH+0ay7BstENEU3nrt6gUPXwkh6C8cI310J42DJUjVIRZwsGeFSp5OZ32kmqcz0neY0ue+wuYePxFp11XtrP7zN6OHpvB2CAFGGnID4JT8oZ3yPNteNKBgUIgp5JvjNLUsY3m8nZQ2dWPF0+I5cO+/+l4dgG1/BpfdGvTQCQh4GhGInYA5UcrbeK53xuTknn1phDfGRTcsJzdSmpU3B/xrbV+6RNFyaJpD+MoxXVzDpRSW+c9dfQC89qrltCQWbvZUhWFjgJGjO6gfyCIl6hALONizQm2eTn15lMb+e39G17fvodmEQhhOvPoaNm5/3tQnsUtlb86YH66KzLM3pxyycnWVsfYwaksja5OdtIcbZ+fNqdh81//283QkGbb/DWx64fzZHBAQcE4QiJ2AWeN5gmLGQtXPfCFyXY/NV3dy6PEhVlzQhOt4pyQtT4fRgsVg3qQuevr5TafDLjkIRxBpDvPv9x+iZLtsaEvwvAvaZ3fCGTBmDjN49BGSvWOo0SReZOHFFUDOtImX83Rsq8ihr32eTQ8MAHBsWYjIW17P2vaVkx/suX4/msIgeLY/tHO24mNKA4tgO+QbwuSbIrTWt9EdbSM5W28OQCkNd77Xr7xSdHjO+2HFM+fN5ICAgHOHQOwEzBqr6GAW7UkTk2vRwwpbnrWMO+94kvY1KRraoxOSlqeLaXv0potosoI2zYqtWoQQ2AUHSZaIt0V5cCDDQ0fGUGWJv7puLfIChzWyVpq+448RPTGIHk7iRRcnMbZkOSiSRFsqzGjPU4jPf5NNA37fmyev7WbdzW9C1aboPG3mfG+OkQU96ndBnm+yBVzPZbQzitbUwIZ4O23hRpS5VHRle+Hn7/Z76YQScOM/QtsF82dzQEDAOUUgdgJmTSlv4Qlx2lJxPayQbIrws88+wfE9o2x9dueEpOXpCh4hoDdTJG+6NM1i9pXwBFbeQQnJxFuilCTBF+45BMArLu2iu2FhhUfRydPbuwP9yDEiWhL3NIM95xPH9TDLeTrH7/kxq37wICEbslGJwVtuZNOlz578QNeGwrB/Q0Ckbv7LyQEyeWzhMdoRoaW9i+XRdhJzrY4a3gc/f48fbou3+j106pfPj70BAQHnJIHYCZgVnutRyFjoodOHM1Rd4eiTwxzbPUo0pRNN+UKlInhUXZmW2BkrWgzmLFIRbcbhK88VWHkbPaYSa4mihhT+7Vf7yJRsuhuivOySZTM74QwxXYOe3p3IBw8Sk2O4yVk0wZsFlTydhGIy/OUvsPHxEQAOrYpS95Y3sqqxc5KD8Bvt5Qf8uVZaHNS5zxublHQOE5d0Z4JlHatYGWufXd+cWo4/CL/+oJ+r07gabvoniDXNj70BAQHnLIHYCZgVZtHBMhyiydNfCItZi8M7/Itsc9fEi7xlnNpscDIsx6NnrIQqSegz7NJcqbgKJ3WizREUTebRo2Pc/dQgEvBX162ZVUhsutieRc/AkzgH91AnwngNdQvyPJdc/kxGR4c4fGBvdV3OsHGH9rH6yBiNl76YoR3/we4b17LhJa9DVib517dNPy+nNAKSOv8JyLWM5ShINqXljaxuW01XtAV5rp6jfXfC7z4OwoXOi+FPPuz3/gkICHjaE4idgFlRzNsgQJbPfDEcOu5PL2/qmnm+R6V5YN60Z1x95VouTskl2hAm0hhGViRKlstnf3sAgBdc2MGGthkOjpzJ83sOvUN7MQ88SZ2j4zVOf3zCTBkdHWLdBn+cw+EDeykaFoX7f8yzC/V0ffyfOfCB93L07S9i05arTj1YCL9fTn4QbAPCyYXrPyMEpHNkZQd3eQvr2tfQFm6cW7m/EPD4t+GhL/rLa66Ha94DysKX8wcEBJwbBGInYMa4jkcpY6KdIYRV2Xe0twCc6tmZDumSxWDOJBWZWfVVpeIq2hIhUh+qXky/+cBRBnMmLYkQf3bFwuVxeMKjf+wAhX2PUV+S8ZoWdrBnxaOzbsNWzEKO/R++nec0XUDnv/wzOz/7McybLmN5apJwjlUsJyCn/XLyhRybIATeaJaMaqOtXMba9rU0hVJzO6fnwh8+A7t/7C9vvRmuePPC5BcFBAQsLTzH/wybBoHYCZgxfgjLJZY6cy7HaF8BzxWEYirxhpklFluOx4mxEsoMwlfViivJr7jSE1pV6DzVn+MnO3oB+Itr1xCZRsn8bBBCMJg5SmbfI6QKAq+5eUEHe9quh+14PPbEE+TGhrnogsvp/F+3Ufeyl7Hzp19HfdZVaCc/v+v608kLgyAcf+r3QgoET+COpknrDrE1q1jbumZuZeUAjgl3fxiO3AtI8Iy/hC0vnRdzAwIClhBCgGv5//Ou6XdwB5AUcKZX0RuInYAZU8qZSBJI0whhDR/zQ1jNXYkZhSqEgP6MQd6YfvhKCIGV8yuuYs0R9Nh4GMN2PT5z934E8Oz1zVy8fOFCSiOFHsaeeoBk2oDmtnkXOq4nMB0X2xEIPFRFQVcldCdL9t0fJ/36t9N4662MHdmHtuIk75VgvJzcLJeTqwucMO0JnJEx0iGP+nXrWNO6hqgyx0aKRhbu/HsYeNLv4Hzd/werrp0XcwMCAs4inlsjagx/dAz4vbLUEESb/C9nWhS0MBTtaZ02EDsBM8KxXYpZGy08Pa/I0PE8MPMQVrpk0581SIanF74SnsDMTay4quWHj57g6GiRVETjjVevmpEtMyFdHGRk7wPERnJIze3zMtjTE2A7Lqbr4bkCWZUIyTLJuEo0pBJWFezCKPlPfJ416y+n7uUvJ917lLrlazFxGOnxc5TGy8mHAGnhysknGO9hDY2Qi8q0bNjE6uaV6HMdL5Hr93vopI/5Ccg3fBQ6ts2LuQEBAYtExVtT8dg4/sgaJBnUsC9sYq0QToAa8YWNGoGTiyvs7LSeLhA7ATPCLDjYhkOs/szfzD1PMHzCFztN3dNPTrZdv3mghERoigGjE57H8bBPqriq5fhoke8+5A+5fPMzV5FcoInmeTPNwL4/EhocRmnqmPVgTyHAdl0sV2A7HrIkoWkSqYhGLKQSUmXCmkLFsVbIjZL9539l/drL6fzkJzm09wEsu4RhFWhdvhEQjBx4xPfmWAUIxf1vSQuN51EaGqIU1+ncsIUVTcvn1igQYOSA30OnOAKxZnjuP0HDwonXgICAecBzx8NPjuEvg19EoIb9ys9wXdnTHPa9NmpoXvMcA7ETMCOKWRNJlqYVkkr3F3FtDy2skGqOTPs5+jMG2dL0wleViqtIQ4hIYwT5pMGgnhB85u791Ynmz1y7MD1XSnaB/n33o/b2oDd2zniwZyXvxnJ9l62myER1hXgiRFhTCKsyyiRDT4uFNOn/+0k2rLqMzk9+koO778d2/W9IIz0HwHVoXXUB5PoZyfbM/3TyqXA9CoMD2PVRVmy4kGX1nXMfsNrzCPzy/WAXoX6lL3TiLfNjb0BAwPxQza0pCxuBL1oq3ppok1/xqUXGhc1krTDmmUDsBEwb23Ip5mz0yPT+bKol58vi077QZcrhq0T4zM0D7ZKDZ59acVXLz3f2sac/R0RTeNu1axZkornlGPQf/CMcP0K4rh2hn9lrMjHvRqAqMiFVpj6uE1EVwvqZJ7obxSwj//xJlvdYaC+6gINP3ostHH+j50FpjJEde6A4RKxlFSNHd8/Hyz0jwnXIDfQjNdWzZuM2WlOtcz/pgV/Db/+PX33RfiHc8BF/DERAQMDZQXg1uTUmuOXPHln1RUwoCaluP9SsRcbFzQKP5ZmKQOwETBuzYOOYLuHY9P5shiv5Ot3TuyjZrkdPugQCwtrUuS5CCOyig4RfcRVKapOKmMGcwdfuPwrALc9YQXNi/qeLO55N3+EHcQ7vI5pqhSkGe1bzbhwPzxvPu0nFNSIhhbCqEFLlaTtdzFKegX/5BCuPGRRDcDyeoVM4fpWVVfAbA5bSoIUZObp70YSO59hkB/sJt7SwatNF1MfnWMouBDzxXXjg8/7yqmvh2vf63xADAgIWB9ceFzWO6f9fSvjiRQlBosFPGq7k1mjRJdfnKhA7AdNCCEEhY6Jo8rS8I0KIqmeneZrNBPuzBpmiTWNs6gtZteJKl4m1TKy4Onm/z/32ICXbZWN7kuduaZuWDTPBEy79xx7DPLibWKwRagZ7TpV3UxfViE6SdzMTLLNI7yf/hdVHSpR0GPrLl9DVvQayfX6/HNcE5MVJQK7BtS2ygwMkOtpZvfFi4tE5NmwUHtz/WXjyh/7ylpfBVW9bWj10hDhr31SfVghxti04iaVmzzxSmzDsliudZMUXNnocksv8vD+1xluzgK015otA7ARMC9t0MfIO+jSrsLJDJWzDRdFk6lrPPNgxW3LozxgkwuqU/zfCE5hZGy2mEm+Jop7Glnv2D/Pw0cpE8zXzPtFcCMFAz5MU9z9ONFIP8eR43o3jgQS6IhPVVeIJ5bR5NzPBsQ1O/Ou/sOZgEUOD/luvY3lTCkYP+t+0lDCEFrhnziRYZonC8BD13StYvX4b4fAch3k6Jvz2Y3Dot/7ylW+Fra+cs53zSmFoYgVJ9YIsUb0YSlJ5vSj/TiR/nSSVH8snPQaQa/Ypr5tw7MmPFwnhjb+WCY/LN7yTHpePqe7jjZ+ndp0knaodqu9bZXm+XkQgTE+PVE4aDkGsxf/CVJtbs1Bz8haBQOwETAujYONYLpHE9FyTlZLzps74aaeiA9iuoCddPG34qlpxlZq84qqWTMnmjnsOAnDzZV101c//RPPhgb2k9zyI6oXIaVG8klXNu2mI64SnmXczExzL5Oin/5m1+/JYKvS+5mJWdLbiv3GLL3AqGEYRY2SElpVrWLFuK7o+s7Eep2Dm4Jfvg74dfvz/2vfCmufMj7HzgRCQG/AvAp1bfDd+9QLujQuByuPKes/z53Z55Ztwy/vUrqsRAp5bFgHeRKEgvPH1iBqhMJnIqtlUEU6V/arnnuqF1pyvKtZqxFfl720y8SWp/rd9WSnvW76X1YnrZHn8XJXjq+erWVc5f8DCo4Z8r8054K2ZCYHYCTgjQgiKGQtVn/4f/3AlOXkaJeeDWYN00aIxNvlF0rVcHMMlXB8i2hQ+o3j6j3sPkTUcljdEecnF8zfR3PUEJculv38/mT33EvFk1JYmUro6q7ybaSEE2EXcQpbDX/4P1u/JYytw7DUXs2rz5Wc9pFMoZnHSWTpWrad7/QUo6gzi9PEWfzq5mRtflx/0e+g0rIJnvQsS7f5Qz6WC5/p9fiJ10Lq5PCx1vp9jGsJJ1HhRJqw/zb6e6yd4i7JwkZWy8JhMZJwsNGq8TVMJksn2DQhYIixpseO6Lv/wD//AN7/5Tfr7++no6OB1r3sd73vf+6p5I0IIPvjBD/LFL36RdDrN9u3b+dznPsfatWvPsvXnD5bhYhRsQtOswvLzdabXTDBXDl/FQ9qkXyQcw8G1BdGmMJH68Bm7Nj9ydIzfPjWELMFfP2ftnCea265HtmRjOB6qLGEX+5GPP0xXRCfZ2TXrvJvTIoQ/kNPKQymNZ+Y4+P2fsWF3HkeGI6+5jNUXXDbPTzpzMvkxlLxJ95otdKzZiKzOsIGiXYL6FTB2xBc8o4f8HjptF8DLvgL9TyytiivX9oVOoh1aNvp5CwtB9R9hYcaZBAQ8HVnSYuef/umf+NznPsfXvvY1Nm/ezMMPP8zrX/96UqkUf/3Xfw3Axz/+cT796U/zta99jZUrV/L+97+fG2+8kd27dxMOz9GdHgD4VViuI04bOqqlMGZi5G1kRaKhfer5R44n6EmXcIWYdE6VVbD9iqvWqSuuapkw0XxrB+ta53ahdD3BYM6kLRmiMR7CM0boPfoYkuyR6Fo+v99cBeCUypVUaV8ICAcPlf0/upONT+ZxJTh480Ws3Xp2hY6HRzo3RrTo0rnuAlpXrUWajcvbzPlCp34F7PsF/L+/gq4r4OVfhaF9S0voOAbkh6BuOTSv9ytOAgICzhmWtNj5wx/+wAtf+EKe//znA7BixQq+853v8OCDDwK+B+Ff//Vfed/73scLX/hCAL7+9a/T2trKj3/8Y26++eazZvv5gvAE+bSJNoMQVsWr09AeO61AGsoajBXNU8JX0624Oplv/PEIQ5WJ5lfOfaL5cN6kOaGzqSOFVUqz77F7Eek0yWUr5kfoVASOXfQFjlX0wwyqDnoUgcy+732fTY+n8STY/8oLWXfxVXN/3jngCo9MboSEKdO1fisNK1bNTuhU6H8SHvoSXPNuuObv4JLX+QJoEZqMTRsrD6UMNK2FxrVLy7aAgIBpsaT/a5/xjGdwxx13sG/fPtatW8eOHTu49957+cQnPgHA4cOH6e/v5/rrr68ek0qluOKKK7j//vunFDumaWKaZnU5m53ebI2nI2bJwSzahKcpOKCmmeBp8nXyhkNvxiCuTwxfCU9g5WzUqEq8JYIant6f6N6+LD99og+Av3j2mtP26ZkOmZKNpkqsaU7g2QUOPfobiv291HWtmnvinm2CXfAvoHbBD48omt8qXfZfr/A89v7XD9j88Age8NTLtrD+0u1ze945YguHbGaUBkena+NWkl1ds2/SWBqDR74Ke37i55QkO2D7X0O210/YXSoYaT+k2LLJ90CdZ0mbAQFPF5a02Pm7v/s7stksGzZsQFEUXNflox/9KK95zWsA6O/vB6C1dWKH1tbW1uq2yfjYxz7Ghz70oYUz/DzCKNh4rkBRZ56cPFW+jusJetMlXE8QiYyLkkrFVWiKGVdTYbsen/7NAQRw3YYWLu6eW9Ko5XgUTJv1rRE0r8DBJ35P5sQR6jpXIs12sKdjjQscKw+e7Ves6JFTwjXC89jz3z9iyx+HAdj74g1suOJZc3pNc8X0LPLZNM0iSvemrUQ722cndBwTdv4AHv+W79ECeMZfwRW3QX6gnLRcnJi0fLYo+O8/rVsgtSxIuA0IOIdZ0mLne9/7Ht/61rf49re/zebNm3n88cd5+9vfTkdHB7fccsusz/ve976X22+/vbqczWbp6uqaD5PPKzxPUEibaKHpX+CLWYtC2gIJGjtP8uyU0mAXGSm4ZNMWDfEYkgtCUnEdgVOafsVVLT945ATHyxPNb92+cqoXg+dYuOWb51q4toVwLFzHxnNNPNPANgqMZDLUaR6DhxUGXBsrnyO1bDmyNsN/F9f2c3CMrC9wHNP33GhhUKbOR9nzs//HlvsGANj1grVs3H7dzJ53nim6BmY2S7uUoGvTVkJtLTMXOsKDA3fBQ//hixqApnX+2Ic1zxlPUjZzE5OWzwZC+DaqYb/iKpi/FRBwzrOkxc673vUu/u7v/q4ajrrgggs4evQoH/vYx7jllltoa/O74g4MDNDe3l49bmBggG3btk153lAoRCgUtJs/E2bRxio50+6tA+NenfrW6ESRZBsweohSIUMuY9CIRMjSQVawLA2ERrxRJxJKQCmEkDU8RUcoOkLWquEdoFpG69k2R4ayfPfhYwDccmEcRg4y5pRFjGngmEU8q4RrG3iujXD88lvhOgjPQyDG24lIMiUPNF0jFY0jyTJqKEa0oQV5uh6disAxc2DmwTX8fiJqpNxh+fQiYffPf8KW3/UCsOt5q9h4zZ9M851fGLJOEXIFlmkNdKzbjN7WPPOT9D0Bf/x3GNrrL8da4PI3weYX+SXmtcKmNmn5bAiexSgtDwgIWHSWtNgpFovIJ8XIFUXB8/wGWytXrqStrY277rqrKm6y2SwPPPAAb33rWxfb3PMOI2cjPGbkZRmabB6WALK9uEaOIa+OomZTF9VxPQer6IJnk4xnCblFRI+F6zoIz8FxPTwBrgeO4+K44HgSjuviei6WB5882o3rRdkSzbKifyeDA+Pt+4Usg6IgKxooMrKqIulhJEVFlhUkRZ3gobAcF9X16KqLkphmmT3gD8CzimBm/Yuza5an/EZAn/6U8d2/+h+23HUcgCdvWM6m626avg3zjEAwZucI5W06Qi20rt+A1tw4s5NkTsADX4Ajv/eXtShsew1c8DK/cZkem1zQVASPFllcsePafrPARKufo7NQpeUBAQGLzpIWOy94wQv46Ec/Snd3N5s3b+axxx7jE5/4BG94wxsAkCSJt7/97XzkIx9h7dq11dLzjo4OXvSiF51d489xXNejkDHRwjNLyBw6Vk5Orp2HZaQh389QUdA/cIyI4jE25GAVQXgmeihHfriI5zkIz8VzXYTwELjg+fd+41cPSZaQJAVZVri30M0RM0pYdnht51FSIQWhhhCKBpJS9ggpCElBSOppNYfnCQqmQ2sqMj2h47rjuSVmxg9RSXL5Il7HTDsL7rn7TrbceQSAJ69bxqYbnj+j4+cTD48xM0e86NEZaaVh3Xq0phl4OIwMPPp12PVjP9lYkmHDn/qVVtGawaD5wanPUQlpLRbV0vJuaN4QlJYHBJxnLGmx85nPfIb3v//9vO1tb2NwcJCOjg5uu+02PvCBD1T3efe7302hUODNb34z6XSaq6++ml/84hdBj505YhYcLMMllpr+LBSjYJMbMQBoWlb27LgOpE9QKJkcPHAQM5/GUBVsN4KiOuixAkIBZAVZ0ZFkBUVWkGQZGXnKmVbDlsqPe1cB8PKWPpo1E8nxwM4gCaAybkcqix1ZATlUDo2p42JIUhCySrbkkorqNMVP83o9z08yNvP+Bd0xypN/I37YY5atk/fe82s2/48/3uLJa9rZ9Lz/NavzzAeucBmzctQXJTpj7aTWrUFtqJvmwRbs+hE8+g0/Rwmg60q48i1+WGqpYhX86rCG1dC8bslNaw4ICJg7khBLbpzsopPNZkmlUmQyGZLJOU5qPk8Y6cmRHTaI1U0/t+nEU2Pc/18HSTZHuPGNm/2VmR7EyEF2HR2m7+hB4s0tCCeMqtuEYway4s3YNiHgX490sTMXZ12syLtXHZ28i3G1Vb6LVJ4/JImyl8hP0kFICoYDKDItdUlC4ah/sZPV8Tk+nltONE77fXHAn4ekhuc8ruGp+37Dxh/tAWDX9hY2vPAlc+tbMwdMzyZvF2kuKrQlWkisXY1anzrzgULA4d/BA3dAzs83omG1P7xz2aULa/RcMdJglfxGgfUrg9LygIBzjOlev5e0Zyfg7ODaHsWcPaMqLIDhY5WS83IIy8xDtoehvMVQ3wn0RBLhhNFDJqGYiSTPTmf/MZ1kZy6OKnnc0tk39biG6rwetXac4TjCw3FdbCyaIyohrwSFfM0AReGXh1emOauheZ0ovu+Be1hfETpXNp1VoVNyTYp2iTZDpy3VRnTtCtTUNIT/wC744+dg4El/OdoIl94K6270heJSpjDs/17bLghKywMCznMCsRNwCkbRxjZcYnXTD2EBE+dhCQ+yPZhGkSNHe3E9m5DSgh4xCEXNWV9Xso7Cd3r9vkovaBmmPWzN7kSAQKboONTFYyTik3mwysMTayc8zxP7H/4D637wJDKw+9IGNrzkZWdN6OSdIrZns8yI0FzXSnTNCpTkGZJzs33w4B1w6Df+shqGra+EC1/pJyIvZWpLy1s2+QnJAQEB5zWB2Ak4hWLWKg8tnr4isQ2H9IDfJK6pKw6FYUR+kGPDBbLpQSJ19eBJqJo7py/Q/9nbSt5VWRY2eG7LyOxPBBQsh6iuUh+dStRJE0ve54kDjz/A6u89jixgz0V1rHv5K86K0BEIMnYBBYnuUozGxhbCq7pREqcROmYOHvsWPPlDvzEiEqy7CS67FWJNi2b7rPFcyPf7HrrWzRMTpgMCAs5bZv0J+4Y3vIFc7tRqiUKhUK2WCjj3cCyXUs5GD88whHXC9+rE60NEwh5kTpAuOPQdO4YSDqEqISTZQ5JnnqNT4YlsjD+mU0gIXr+sD3UOoslyXGRJoj4WQp33seVTc3DnQ6z69iOoHuzdmmTtza+YUWn/fOHhMWrl0FHpLkVobGglvHrF1ELHc+DJ/4L/fA088Z++0Om8GF5yB1z7nnND6Li2P44i1gwd2wKhExDwNGLWn7Jf+9rXKJVKp6wvlUp8/etfn5NRAWcPo+Bgmw7qDPN1KiGspq4EZHuxi1mO9AxhWXmi8STCk5AlMauEZICSK/P1Hr9x5J80jbIyaszqPOCPqzAcj/qYRnSaIynmg0O7HmX5Nx9C9eCpTXFWv/pm5LMwVNIVHmNWjqQcobsUIdXYQnjtCpT4JOEnIeDIvfD918MfPu33EqpbDjf9H3jev/jDMc8FHNNvFljXBW0XLq2J6gEBAQvOjD9ps9ksQgiEEORyuQkl3q7r8j//8z+0tATt1c9VilkTRZFmPA6gOg+rTYZ8L31pm7HBHkLJJLIk43gyiu7MOoT1X/3NjNoaTbrFi9uGZncSAAFF2yYZ1kmGF6/E+MhTT9D1jT+iu7B/fYyVr30Virr4QscWDhmrQKMWo62gE21qIry6GzkySauGoaf85OO+x/3lcB1c+nrY8PwFCe8tGFbBH1USlJYHBDxtmfEnVl1dHZLkXwzXrVt3ynZJkoIhm+coluFQytto05w0XsGxXUb7/Hyd5kSaXMGk58RxhAZhvewtEDKKOrtp1gcKEe4e8Zva3dLZR2iWVVwAJdtFVxTqo9rUVVzzzLH9u+j46r2EHDiwJkL3616Fqi7+Bdf0LHJOiRY1RVtRJdTUSHhV16lCJz/oz7Da/0t/WdHhgpfDtlf7XY/PJYyM3926eYM/miIoLQ8IeFoyY7Hzm9/8BiEE1113HT/84Q9paBiPe+u6zvLly+no6JhXIwMWB7Po4FgukfjMLsSjPQWEJ4jEZHR5jH39aUq5MaJNDdU+ewJmFcKyPYmvnGhHILG9Ps3mRHHG56iey/VwhaApFkKfwRT3uXDi0F5av/I7wjYcXBVm2RtehabNrMptPig4BqZn0ak30JSX0ZsbCa/qRg7V2GIVYce34Ynv+Q0CAdZc78+xip+DFUvFEb8RZNsWSHUFpeUBAU9jZix2rrnmGgAOHz5Md3f3zKcfByxJhBAUMibKLETAUCWE1ewyknMY6e9BToRRy6EO4UlI0uySk3822EifGSKpOryyfWDGx1fwhO/VaYjqxEOLE4LpObqfxi/fTcSCw8tDdNz6anR98Tt7Z5wCCFiuN5PKC7SWskdHLwsdz4Gnfg4Pf9nvJAzQthWufBu0bFh0e+eMEH7FlRKB9guC0vKAgIDZJyjv2bOH++67r7r82c9+lm3btvHqV7+asbGxeTEuYPGwDRez4KBHZt4IrjIPK5kyOX5iABeTSHg8AdTzJCRZIM9Q7JwwQvxsyK/yeU1HP3F19pVcRcshpivURRcnfNR34hD1//ErYgYc7dJpfdOrCIUWV+gIBGNWDhWZFXozdQWB3trke3QqQuf4A/DDN8Lv/8UXOslOuOHD8IJPnZtCx3P9Ls56AjouDIROQEAAMAex8653vYtsNgvAzp07uf3223ne857H4cOHuf322+fNwIDFwSjYuLaLqs1M7Hiux0hPAQBHK1JID6AmkhNmWglPRlbcGfXl8wR89UQ7rpC4KJnj0tTsh0IatosiSzTEQiiLkKgz0HuExB13Ei/B8Q6NxjfdTDi8uI32XDxGzSxRJcSKUCvxvIPe1lIWOhqMHIT/eRf8/D3+hPFQEp7xV/Dyr8KKZ56bIR/PCUrLAwICJmXW/vzDhw+zadMmAH74wx/yghe8gH/8x3/k0Ucf5XnPe968GRiw8AhPUEibKLMowx49nsZzBZrukR49iggrhNWJHgzhSSgz9MrcNVLPoWKEiOzyZ539s772up7Adl2ak2HCi1BmPjhwnMgdPydZFPS0qaTe/Eqi0TN0I55nHOGStnLU60mWKfWoWQO9vYXQimVIVgb+8CXY9wu/y7WswZYXw0V/fm6XYzumn1hd11WeWh452xYFBAQsIWYtdnRdp1j0k0V//etf89rXvhaAhoaGqscn4NzAMhzMkkMoOsM/BwHDB/sA0CMlHDtHuLH+1OHfkjSj5ORhS+OHfX77gpe3D1KvOTOzq8a+guWQiugkQwsfvhoZ6kX//E+pywt6WxQSt72CeHxxB8uWXJOCa9ASqqdDTSFlSuidrYQ6GpB2fAt2fMef1g6w6lq4/M2QPMcLCqwiFEeD0vKAgIApmbXYufrqq7n99tvZvn07Dz74IN/97ncB2LdvH8uWLZs3AwMWnlLexnO9mScnG+lyM0EFWRpETkRQpYl/UkKANINmgkLA10+0YQmZdbECz2pIz8ymGgq2S1iTqY/qCx6VGR3uR/78f9OQE/Q3KUTf8nLiibqFfdIaGldfzMjocazBw3RHWmiS4ohMDr2zjVCsgHRsLzzyFX/nlk1+8nHblkWzb8EwMn4fneYN0Lhq6Q8fDQgIOCvM2q//b//2b6iqyg9+8AM+97nP0dnZCcDPf/5zbrrppnkzMGBh8TxBMW2i6jO8SLgOYvQYQ0P+n5ASSxOepAeL8GRf7EwzOfn+dJIn8/5E89ct6591LxzLdREIGmIhNGVhlU56dBDxhR/TmBEMNsjob3kpyeTi5Yu4wmNo5CjrL3sh67svpYUYIpsnHBslNPxLpA3PheN/hEQbPOcD8MLPnh9Cpzjih6/aLoCmNYHQCQgImJJZe3a6u7v56U9/esr6T37yk3MyKGBxsYp+CCuSmKHrPz/AUE8a14kiSQ7hRmlCUnIFz/ObCUrTaARYO9H8ha3DtIVmN9Hc9QSG7dIQDRGbqYibIZnMMPYX/ovWMY/hOhnlthdTV7d4c6IM1yLvlGhMQ3Hn/TRseSbmPd8iPPRtlGQ9vOzL8OO3QdM6uOY9oE423f0cozK1XAlD+xZfxAUEBASchjk1HDl48CBf+cpXOHjwIJ/61KdoaWnh5z//Od3d3WzevHm+bAxYQEp5C0+ImQ2jNPOI7AmOHffFjRrNEVYmv4j6ycnT65z8nd5WCq5KV9jgxubZTzQv2g6JkE5dbGFzN3LZMYzP/5D2EY+RpIS47YU0NC5SqbMQGKV+IsVeVtp5EsVBlMc/ibT7IsIv+zJEC3Dxn8NDX4Ir3uyPejgfCKaWBwQEzIJZi53f/e53PPe5z2X79u3cc889fPSjH6WlpYUdO3bwpS99iR/84AfzaWfAAuC5HoWMhT6ToZ/Cn2iez+UZ6PePiyTNKXeXmF5y8o5snAfKE81fN4eJ5iXbRZNl6mMaygIm6uTzGQpf+D4dQy5jcQnnLf+L5ub2hXky4RIyhgkX+wgX+wgVewkX+9DcSYahHrzbn06+/a9heD+sec7C2HQ28Bx/mGe8BZo3Qnhxk78DAgLOXWYtdv7u7/6Oj3zkI9x+++0kEuMlq9dddx3/9m//Ni/GBSwsZtHBMhyiyRmMLygMY+cG6R22KeX93jHR+OQTyIUAOHO+jj/R3A9F3DiHieaO5+F6Hi2JMKEFHAdRLOTJfOF7dA04ZGIS5lueT0tL57ycW3ItwqX+qrCJFPsIlQaQxakVaUKS8fRWvHgXcsdm5O6tSF2XQctGP8zTsNLvoWPOvkfRkqFSWp5a5r++oLQ8ICBgBsxa7OzcuZNvf/vbp6xvaWlheHh4TkYFLA7FvA0C5OlmAdsGZE4wmnMYPDaC8JqQJI9QtDTp7sKTkWSBdAbPzg/7mxmzNZp1ixfOcqK5EH6X5LqoTmKGg0xnQqmUZ/SO79DdZ5OLQOHNN9HW1j2rcyl2vipowsU+wqU+dGMEiVPzm1xZpxBpIR9uQUmuJBpaiRANaG1thLo7/GGeoQTUrxgXOGZu4vK5SrW0fJWfe6Qu/myxgICAc5tZXxXq6uro6+tj5cqVE9Y/9thj1cqsgKWL63iUMiZ6eJohLAFke8ln0/T1ZSjm/eNCsdKUnZGFJyHJHvJpkpP3FyL8Zh4mmhcsh6iuUh9duAuhYRYZ+uJ/sqLHJh+G7JtuoL1z5ZkPFB66OVb11lSEjWZPLkBsLYERaceI+rditJUBSSek6HTojcTzHugaoa529JYmJEU+VeiAfz925NwWPEYWrHxQWh4QEDAnZi12br75Zt7znvfw/e9/H0mS8DyP++67j3e+853VBoMBSxejYGMZLrHUNMWBkcbJ9jE05lIa68d0/Yt8KD71FHLPk9lw+WaMfC+j/UdP2Z5sXYHjbUAcPMrV9Wk2zXKiueW4yJJEfSyEOg/jINZc+xoKo330PXH3+HNYBv1f/A4XdF2K9vwLOKYcYFn3mlOOlTyHUGmQcKlG2BT7UbxT85oEElaosSxq2ihFOzCi7bjaeMdly7PJ2kXq9DjtJAlnHdTGOkLd7SiJms7MWmRyQVMRPFrk3BM7xRE/Ibl1C9R1n5sjLAICApYEsxY7//iP/8hf/MVf0NXVheu6bNq0Cdd1efWrX8373ve++bQxYAEw8haSBNJ0xIHrQPo46ZzJ8EA/lmLhlFIAhE8jdkAiPzrIhc/+U3bd99MJgqehbTlrn/ECPvWtx+c00dz1BIbj0ZwIEZ2ncRCF0T7qu/xRKH1P3I1tW/R86Tts7byEzk98goM7fsOyrILslMpeGr8qKlzsJ2QMIolTw3aepGJGWilFxz02ZqQVb4oqNoCCU8JwLVr1elpNDVUS6Cs60TtakNST/nXzg1O/oEpI61yhWloegrbNkFygxO+AgICnDXMaF/HFL36RD3zgA+zcuZN8Ps9FF13E2rVr59O+gAXAsV0KGRttuiGsfD+l3DADQwXs4hhuJIVra4AgFJsiX0eAhGB04Ai77vspm7ePC56GtuVs3P4C3vzNx/j9/hHe1t1PbDYTzQUUbZtkWCcZnr8y84pHp75rE65tc//f3sq2tovo/MQnOPbHH9K254uEi73oVnrS4x0lUhU0VWETbgJpeu+3h0fazqNJKiu0JpIF0FJxQt0dqPWp+XqZSxPh+RVXoWRQWh4QEDBvSEKI2SVJnEdks1lSqRSZTIZk8vwvZy2kTQYOZ4jVh5DOFBow87j9u+gZzNN/8DAFvYQodTNyrJNQrEj7ulPDUwCeKyE8hWgqj6wIGlqXs3X7jTiPfw/twpfR94N3kdl/PxHFo1GzTxmnNR08X1GhyfKcIhwFB4YMiYwB+aKEWZRwS7B865+y+a8+QPp736PuZS+j57dfovuxD0041tLrxkVNOc/G1lOzDrnYwiFjFUiqETrcGFFXQWtvQe9sQw6d54m5ldLyaDO0bgpKywMCAs7IdK/fs/Ls7N+/nyeeeIKLL76YlStX8rOf/Yx/+qd/olQq8aIXvYi///u/P/NFNOCsUcyaSLJ05t9RuadONptluD+NLYrokTjZIX8sRCg2dQjLr8Tyqp2TnSP3IYf70Lf/Ndz3aToOfo8OGT/xeXaNks+I5cGwrTFiamQNlYKhYJcURFFBLUmE8xKJgkS0nE6TLN+qPP5T0q0baLz1VjJPPUbL3s+TbtyGEWmvhqM8df5KoIuuSdExaFGStBRVQokooa5O1Kb68///yS5CYQSSnX5puR492xYFBAScR8xY7PzoRz/iFa94BbIsI0kSd9xxB7fddhvXXnstyWSSf/iHf0BVVd7znvcshL0Bc8S2XIo5Gz0yjV99YRgj08/gqIudG8KKa8QlDaPgX4hOl6/jeTJ6yOLKP309meFe1B3fgov/nPwD34CL3sS/PdXCS7a109W1nL0//viMXoMnPEZzBYRl4FkGZraImzOQchZq3iaSc4jnXBIFf/ibCjSUb1NR0iEblyklFMyEipfQWXvdK6h/5Z9THOohuW4bY6/60YSk5flCIMjYBSQkuklRb+qE2prQu9pRoud5PxmrCKUxUHR/annT2qC0PCAgYN6Zsdj56Ec/yrvf/W4+8pGP8NWvfpW3vOUtfOxjH+Ptb387AHfccQef/OQnA7GzRDELNo7lEY6d4VdvG4ix44xkHbKDAxi6S0RL4tgqjqkDgnB88nwdAISEonhkhntpX7UFuj4I3301/3x4EweffIIvvfblaKpM36EnGYutGn9ay6CYG8XKjuHkspDLI+eK6DmDSM4ikXdI5jyWTW8CBY4M2bhEPqFiJEPYyTAiGUVJJdDrUkRT9STrGolE4jTXHNe+9TrquzYxdnw3fU/cXV0G5lXwuMIlbeeJE6LNDJGIJNBX1JSUn69YBSil/Vld9Sv8ZoGRurNsVEBAwPnKjMXOU089xXe/+10kSeKWW27hTW96E9dff311+w033FAVPgFLCyEEhbSJop4hhFXuqZPNpxkezOM4WaRUGEWSKeR9T4MeMaccAyEE5Uovj8Gje2ldvh5FC1NovYSHHrT4iw2HUb1tPPm1z7Pvzu+jp/PEcg7JvEtsBs2TcxHIJVWKCQ07GcZNRpBSCbRUgkiqnnhdA4l4PXWKTN30T3uK0IGJScu1y3PBH+JZpFnEaLFDRBubCC3vmFhSfr5hFaA4BloY6ldC3TIIn+dJ1wEBAWedGYudQqFQHQ8hyzKRSIRodDy+HolEMM2pZyUFnD1s08UoOGduJGiMYaV7GBzxsNJDlCIycSnsbyqPiDhdfx0hJJA9ZMUjXt/K2H//PYlYjPAz3sHXj3+fuhtu4sTb3oZ63x/YNNnTa5CJyxQSGqWEjp0I4yZikIjjRWI0tTTT0dJGTNOJzfbNOA2xhvYJQqdCZTnWMLdSaIEg6xQRrkuXGaVRTxJe2T55Sfn5gpX3PTlaBJrWQLIjEDkBAQGLxow/WSVpolfg5OWApYtRsHFsl0jiNGXaroNIH2cka5AfGsZUDUKhWLW4qCJ2TpevIzwZWRZIssfx3fez/OA3+ENviC093TTeeisD//V9Hhl6HPPSBtx4FJJxlHgCLVlHJNFAKBRFkmUiQDVjRUDWtElFNJrjoQXtL3fgt9+acttcPTqu8EhbOaJCpd2MUNfQdn6XlJs5MDKgRaFxbVnkBFVWAQEBi8uMxY4QgnXr1lUFTqW/jizL1e0BSw8/hGWhnqnxXr6ffHqYkWETpzSKnVCJS744ch0F2/A9POHTVmJJqCEHSYKG/CE0z6Ch7WbqXvpS+v7wO9pe/DKuuHADex+4c9r2FyyXsCZTH9XP2Ua6pmeRswo0WhqtcpLE8s7zs6RciLInJwN6DJrW+40BQ4kzHxsQEBCwAMxY7HzlK19ZCDsCFhjLcDGLNqHTVWGZeeyx4wxlXOz0EIWIR0SN12z2/Sxa2ETRps4QFkJGVv3trbld5C77GzZd/Q56br+dX22q57mtDX7SMkxL8FiOi5AEDbEwmnJuKp2cU8S2TTqKIVrqW4kuX4ba1HB+eUWFGPfk6Al/nlWyHULncQ5SQEDAOcGMxc4tt9yyEHYELDBmwcZ1BMpUnp1yT510Jk9uKIPpFZBDflJyhWq+zum8On6fP2TZQ/ZsmrfdhHT1Oznxtr/giQMPs/I5f14VONMRPP44CJfGWIiYfu4NgXTxSFt5woZghRensaubUHfH+VVSLgSYWX9oZyjhdz5OtPlenYCAgIAlwLxkQ+bzeTxvYmXO06ET8bmC8AT5tImmnyaEVRimMNbHcNrFzY9QjI0nJVeYTn+d2uTkxsJ+lO5X8eQ/vAvlvj/w/7d35/FRVefjxz/3zr5kZpKQFRKIEDYFyuKCqCiCiEq1pbZVVBD9ubxABVRaal2qFdHWYlXEqgjWimhbtbb9qqVYNwREEBBFFERAIOzZM9u95/fHJANDEsgGSYbn/XqNZu76zExezJNznnPO10ML+UH1cTUJjr9D7hFjr4xESXHY8btbbjmI4yVkRigLlpNaqZHjzcTXpTP2rIzkGVKuFIRKIFhWneScUp3kyISAQoi2pcn/6m7evJmLL74Yj8eD3+8nNTWV1NRUAoEAqampLRZgly5d4kXQhz4mTpwIQDAYZOLEiaSnp+P1ehkzZgy7djVtUclkFaqKEqo8wlpYkSDRA1vZUxoltHcvlfYIDpszoTbGNHTCldX1OkcrTtZixclZZV/w3XNjsbz+XwwNcvr1Szj2q+XvsPzf9XeLVkUMbLpOqseGpZ1195RHK6ksLyGnykqXnK6k9emNIzcrORIdpWIjq0q+B6VBdh/IPwPST5JERwjRJjW5Zeeqq65CKcXzzz9PVlbWMas9WLFiBYZxsD5k3bp1jBgxgssvvxyAKVOm8O9//5u//vWv+P1+Jk2axI9//GOWLFlyTOJpj4LlYUxDYbHW8UVbPadOSfEByvZWEo2UEfEeLEquEapwARpWexirPVrvvZSpYbFHsZoh0iu+4dPtAQqAL/LdZAUaPuIoapoYpklmihNHXXG3USYmxcEy7OVhOjvTyOjeFUduNpotCYaUKzNWjxMqjw0bz+4Ta8mxJVGXnBAiKTX5X+A1a9awcuVKevTo0ZLx1JKRkZHwfObMmXTt2pWhQ4dSUlLC3LlzWbBgAcOGDQNiBdS9evVi2bJlnHHGGcc0tvbANEwqSsLYHPW06gQPULV/O3uKQZXvp8xl4rLULihtyPw6ECtOtlgNMio2oJkGnk0OALb36kbGEc889BpQEYqS6rGT4mw/SUJERSmpKCZQoZGT2Zm0gq5Y05JgSLkyYy054YpYkpPTD7xZsYkBhRCiHWjyn8ynnnoq27Zta8lYjiocDvOXv/yFCRMmoGkaK1euJBKJJMzg3LNnT/Lz81m6dOlxja2tinVh1TORoBHFOLCVvaVBwnv3U0EVFps9oSi5RkPm16mhW0wyy77gizI3mQdikwSedMopDY65IhzF47CS6m4/Q7IrIlWU7d9HZshJQbdT6HDKKe0/0VEmVO6Dku2xtaty+sW6q1I7S6IjhGhXmvxn83PPPcdNN93E9u3bOeWUU7DZErs9+vbt2+zgDvfGG29QXFzM+PHjASgqKsJutxMIBBKOy8rKoqioqN7rhEKhhFmeS0tLWzzWtiJYFgFAr6tWpLyI0gN7Kd4fxggVU+XRSNFqf4mZpkaoQfU6GppmYlflpFV8y7JtHegKrDkpQH4DRx+Fowa6ppHmcWDV236djolJSVUptuIq8lJzyOnWA3tGh/Y9pNw0IFgMkSpwBiC3e6wlx+po7ciEEKJJmpzs7Nmzh02bNnHttdfGt2mahlIKTdMS6mxayty5cxk1ahS5uUcewXM0Dz30EL/5zW9aKKq2yzBMKkpC2Bx1JDqhcoL7trK31ISS/ZQ7DJxWV2zc+GHCFS5QOhZrBKs9Uu/9TFND0xVZVV9imCYZm2K/Xgd69yS/IfGaimDUJCPFgetokx+2AVFlUFK8j5SwTsfOPUk/qVv7HlJek+SEq8CdGpsM0Jslq5ALIdq9Jic7EyZMoH///rz88svHtEC5xpYtW/jvf//La6+9Ft+WnZ1NOBymuLg4oXVn165dZGdn13ut6dOnM3Xq1Pjz0tJS8vLyjkncrSlUESUcNPD4D/uyUiaq5Hv2l5QT3FtBUJUTtVtwanX/OtQMOXd4K484e7Eyday2KNklX7DqQAq+Sihxa/Tq1YC6LgUV4Qg+px2fs+0PM6+KVBHcv58MVyodT+lNSm5u+x1pZUZjNTnRELjSYpMBerPA0vY/ByGEaIgmJztbtmzhzTffpFu3bi0ZT73mzZtHZmYmF198cXzbwIEDsdlsLF68mDFjxgCxVdm3bt3K4MGD672Ww+HA4Uj+JvmqslD16uOHZSgVeynbt5P9xQZa1QHKnAqPXn8NRrB65mSnt+qI91OmhksrJlD1HXu2ZuEDPivMpEcDFresjBg4rRZS3Tbacu+VQlFSXoyltIqO2Z3pWNgbu7+dzillRqHqAETD4E6HzN7gzZQkRwiRdJqc7AwbNow1a9Ycl2THNE3mzZvHuHHjsB7yxen3+7nuuuuYOnUqaWlp+Hw+brnlFgYPHnzCj8QyIiaVZZHao7AiQcL7trKnJIJWXEKJNYTNakevoygZqueNa8BkggBoGjnBz6mI6nT8NnZf85S61jU/LCTDxFSKNI8DexseZm4YUUr378GtOcjt2Y+szl3b55ByMwqV+8GIgLsDZOWDJxMs7fC1CCFEAzT5X7fRo0czZcoUPv/8c/r06VOrQPmHP/xhs4Or8d///petW7cyYcKEWvtmzZqFruuMGTOGUCjEyJEjeeqpp1rs3u1VsDJCJGjgCRzShaVAle5gf/F+Kg+EMMIlBD2QotXfyhWudMYmCrQY2Jyheo9TJmiaIqficz7dk0JWBHYGLPTo0uWIcZoqNnlgmtuOx9F2v2yDwUqq9u0jNT2L/O6nkNIhs7VDaryaJMeMgqcD+PPBkyFJjhAi6WmqicuU16xyXudFj1GB8rFSWlqK3++npKQkaZa52LOtjPL9QTyBQxKZqgOUbVvL90Uh1K4i9torsNmdWOup1QEo2ZXGgR1ZuPxlZJ30fb3HGVEdd7SY4Qdm8tbSbLps0Vl0ej6njBxxxDjLQ1FcNgtZPgeWNth/pVCUHdgHoTCZnbuSd1Jv7K52VoRsRKBqPxhR8GZAoHMsydHb31pjQghxqIZ+fzf5T7rD18ISbUc0bFBVFkmcW8eIEtm3hb0lQVRxGRVaJYZVx3WERAcOmV/nCIt/QmwywY6Rz9gdspK3NZYIe/sdefqBYMTAomukee1NSHRUrI9NqdjPEGteUtX7ULHn8cPNQ44/5BjUIaebRCMRIuEI0UgYMxwGwOF20+mkwlghfng/hA8LRav+T6xAqvpnPfb80J/j22qe17W/BbvxjHCsJUeZsW6qQH6sRUeSHCHECUbar5NQsCJKJBTFkXpIq055ESX791BeHEELllDmUnj0I7dQNKZeR5kaHUNrWLbLR56Cb7LtdMnOSjzIjIIZRkNhGgozEqWDx4YzGoVo7eSjXvG8SD/4JCHRqD4oIfHQE5IK01REQmGikdjDjJqgKSx2L9aAm5SUAO5AB9wpqXgDHfB6A9UJk3lI4nTIc9OIvT5lJv7fNEBFDyZaphl7zmHXqUneMA97/TUvVh226UgJkxabI0cRKzgO5Mdqc47QGiuEEMmsycnO/ffff8T999xzT1MvLZqpsjSExaIdnA4gVEbF3q3sLVPYykvZZ49gs9jqLUquEQk6MA0Lmm5idwePeGyKsRtfpAj92xwANvbsEl/hvIYlUo5hdaGAcsPA503Bm+KKtTRoFmLDsCwHv8QPTWBqHofuQ09MbLRDj6l+bZpGNBQkXFVJNFyFEQwCCl2zYHF6sKVkkpKWgdffAafHj9Pjw+n2YbO38AzBhydHdSVMtZKfw/cdsr8muaoryVJR8GRVJznpkuQIIU54TU52Xn/99YTnkUiEzZs3Y7Va6dq1qyQ7rSQcjFJVHsHuqv5olUm0+Hv2HSjFPBAkFK0g5FJHLEquEV8Py3OU+XUUdAyv5ttKBx2LNAwNcg+fQVvFariinmxKDCcOr0ZqugfN0nJ1OqZhEAlVYQQriYaqMMIRQGGxO7E53XjSMvGkZuHy+nF5/TjcscTmSPVnLUbTYgkd0oUkhBDHW5OTnc8++6zWttLSUsaPH8+PfvSjZgUlmi5UGSUaNnB5q0fHVeyldM/3lJQpbFXFFDujuCzOOmdKPlxD18NShkan8Gd8sD2FAmBdZw+Zh69wbkYxdRtB0waaItPnwtaMRMeIhIgEq4gEK4kGgyjTQNctWJ0ubE4P3oyOeAIdcHr9ON0+nB4fdoe7yfcTQgjRfrVozY7P5+M3v/kNo0eP5uqrr27JS4sGUEpRURLCUjNXTSRI1Z7v2Ftm4igpp9gSQdMtRxx9dfBaDU92UiI7cUf3krIptozH9l7dOHxgtm6EiVjdVEQhO+Bo8GrmpmEQDQeJBquIBisxwmFQJrrDidXhxOVLw1OQhdubitPjx+FJwen2YZHh1EIIIaq1+DdCSUkJJSUlLX1Z0QCRoEGoIoLdZQEFZsl29hcfIFIchkgpFa4obt3ToGtFQ3bMqBW0o9fr5AbXsq7MTYfi2ArnhaecXOsYzYxSplwE3A7SPXWvtWREwtUtNVVEQ7HWGg0Ni9OFxeHEn9sFT2omTncKTm8Al9uP3SWtNUIIIY6sycnO448/nvBcKcXOnTt58cUXGTVqVLMDE40XrIhgRExcKXaoOkDJnm0cKAVHZQm7nFFsFjt6A9cwO1ivU4WuH2F4lDLpFF7Nu9u8dAU+65pKl8PnoVEGStOIanYCbis6qroLKtZaY4ZCoGloVitWuxO7x0daXiFufxoOdwpOTwCX1y+tNUIIIZqkyd8es2bNSniu6zoZGRmMGzeO6dOnNzsw0TjKVFQUh7DYdTCiBPduYX9JEFtpJeVaFWHdJEVr+OrV8fWwPEdeDysQ3oY1WkzmxlgXVunJPWsfZESIYMMMVhAsKsew6FgdTiwOFykZHfGkZ1UXDKfg9qbicHkb/sKFEEKIo2hysrN58+aWjEM0U6gqSqgqisNtRZVu58C+PVSVGViDJRS7DFxHmVPncMEGzq+TU7WWVftT8FdBsVujZ4/utY7RzTBVmgdLuIq8QWfjz+iI0+PD5QlgtTU8ARNCCCGaotFjbg3DYO3atVRV1f6Lv6qqirVr18rsyq0gWBHBNEwsRgWle7awv8zEWVFOsS2KpulYtYYPeY6GrRhhO6BwHGHmZE0Z5AY/Z+/WWGK0unsW9jpWONdNgyrTgtvtokOnbmR07EZKIFMSHSGEEMdFo5OdF198kQkTJmC31/6istlsTJgwgQULFrRIcKJhzOouLKtNI7x/G/sPlGEtD1EVLafSGsWtN26CvJp6Hbs7iG6pv14nLbyZSKSSTtUrnKs6CpNRBqamEQ5H8Ph8eHzpjYpFCCGEaK5GJztz587ljjvuwGKp3VJgtVqZNm0azzzzTIsEJxomXBklXBXFFt1P8Z7tlFeCXllCscPAbnEcnEm5gRo65Dy3ai0r96TgiMKOVAvdO+fXPqi6XkczDNKyO7b8zMRCCCHEUTQ62dmwYQNnnHFGvftPPfVU1q9f36ygRONUlYcxw0Eq921hX5mBu7yCUkuYqG7g0GyNvl5Dkh1NRckOfkFwc6wWaF2PTuiW2r9OuhkmrDmxapCe2bHRsQghhBDN1egC5YqKCkpLS+vdX1ZWRmXlkVsERMsxDZOK4hBacBd79x+AcoNwqIxSV7TRRckARsRCNOTgaPU6GaGNFIci5G2LJTi+w5eHqKabBpVY8LiteALShSWEEOL4a3TLTmFhIR9//HG9+z/66CMKCwubFZRouFBllHDxPiqKv6e8UsNRWUaJw0BHx9KIouQaNa06NmcIi7X+QvPcqrV8ttOHruDrHAedsw+fM5l4vU4kGsWT4sfry2h0PEIIIURzNTrZufLKK/n1r3/N2rVra+1bs2YN99xzD1deeWWLBCeOrrK4gop9OyipCOGsqKKCIJVaBJd+9IU+69KQIee6CpMV+hLrt7F7bOpZUPeB1fU6eiRKWnYuVnvTYhJCCCGao9HdWFOmTOGtt95i4MCBDB8+nJ49Y5PIffXVV/z3v/9lyJAhTJkypcUDFbUZUZOy7duoLN9NtBxsleUccEVx6I0vSq7RkHqdzOAGvqvQyN2lEdWhY98+dR6nmyEqNS8WLUJaVm6T4hFCCCGaq9HJjs1m4z//+Q+zZs1iwYIFfPDBByil6N69Ow8++CCTJ0/GZmt8UaxovOC+vez7fhvlYYW3opx99iiGiuLSmjbiyYjqRKpirS+OIyQ7ucG1rPo+hZOAdZ29ZPl9dR6nKZNKZcXrtuINSBeWEEKI1tGkGZRtNhvTpk1j2rRpRz325Zdf5oc//CEeT8MWoBQNZBrs/XYjpeWVOEMRgmYlZbYQLr3pC2OGKtyAhtURwmoz6jzGagbpULUB/6ZYjc6OnoVk1XWgMjDRiEYjeDt0wJMixclCCCFaR6NrdhrrxhtvZNeuXcf6Niec0N7v2bVtJ0ZUYa0opdgexaJZsGhN/0gb0oWVFfySL0vtpJdAlQ261TWRIIARIYoNzYySlpWL1SHz6wghhGgdxzzZUeoIK2aLJtu5fRclJRG8VZWUWSNUEsbZxO6rGg1JdnKDa9m2LbZQ52dd00hx1V10rJshgpoTGxppWTK/jhBCiNZzzJMdcWzsLw5jKavAiJRTbIvgtDhoYk0yAKahEa6MJUv1JTs2swJf5UayNsV6P0t61tOqQ6xep0pZ8bqcePzShSWEEKL1SLLTXpVWQHk5xQ4DwzSwN2Gm5EOFKlyAhsUWwWqP1nlMTtU6Vu334q2CAx6NnoW1VzgHDtbrRAzcKQE8vg7Nik0IIYRoDkl22ilVUUHQDFOuBXFZGj9T8uEaMr9ObnAtB7bG7vVZt2xstnp+fYwwUWzoZkTqdYQQQrQ6SXbaqagZoVwFsWjWZhUl1zhavY7DKMVauZVOm2OzMkcK+6Nb6p5hWTfDBDUndjSZX0cIIUSrO+bJTufOnWXenWOgLFpOWEWaXZQMoEytuhur/vl1coKfs2p3CvYobE+z0DW3S701QpppUmVa8LicePzShSWEEKJ1NTnZGTduHB988MFRj1u3bh15eXlNvY2oR8SMomNpVlFyjVClE5SObo1ic4TrPCa3ai2h72KJ1efd8rHa6xllpwwMTScaNXB5fXh8UpwshBCidTU52SkpKWH48OEUFhYyY8YMtm/f3pJxiePo0C6supInV3Q/ofIi8rbGfl0c3U6rtwsrVq9jRTejpGdLvY4QQojW1+Rk54033mD79u3cfPPNvPLKK3Tp0oVRo0bxt7/9jUgk0pIximMsVJPseOruwsoNfs6anSnowIZcBx1Tc45Sr+PCrmmkyvw6Qggh2oBm1exkZGQwdepU1qxZw/Lly+nWrRtXX301ubm5TJkyhW+++aal4hTHiFIQPEq9Tm7VmvgK599064qmK3S97mQnXq/jlHodIYQQbUOLFCjv3LmTRYsWsWjRIiwWCxdddBGff/45vXv3ZtasWS1xC3GMhKucKNOCZjGwu0K19nsju9hdcoDc3bEVzjO6nY5uMalzAFh1vY4RNXCn+PFKvY4QQog2oMnJTiQS4e9//zuXXHIJnTt35q9//SuTJ09mx44dvPDCC/z3v//l1Vdf5f7772/JeEULCx7ShVVXvU5O8HM2bE8B4PPOXgLOABZr3YuEYoTi9TodsnKxSL2OEEKINqBJq54D5OTkYJomV1xxBZ988gk/+MEPah1z3nnnEQgEmhGeONZCR5pfRymyKtewe2OsC2t7YU8KlVZ/vY4RIaj5sBPGL/PrCCGEaCOanOzMmjWLyy+/HKez/r/eA4EAmzdvbuotxDGmFATL66/X8UV3sHl/kPRSB5V26NytP5p2hHodTCpNjTSXS4acCyGEaDOa3I31wx/+kMrK2l+Q+/fvp7S0tFlBHWr79u1cddVVpKen43K56NOnD59++ml8v1KKe+65h5ycHFwuF8OHD5fC6AaKBO2YhhVNN3G4grX251at5fttHiC2wrnL6kLTFFpdLTumgYGOaZi4U3x4pThZCCFEG9HkZOfnP/85CxcurLX91Vdf5ec//3mzgqpx4MABhgwZgs1m46233uLLL7/k0UcfJTU1NX7MI488wuOPP87TTz/N8uXL8Xg8jBw5kmCw9pe3SFRTr+NwV9UuOFYm6eVrya5Z4bx7H0wz1oWl63VMKGiGiGBDNw3SM6ReRwghRNvR5GRn+fLlnHfeebW2n3vuuSxfvrxZQdV4+OGHycvLY968eZx22mkUFBRwwQUX0LVrVyDWqvPYY4/x61//mksvvZS+ffvy5z//mR07dvDGG2+0SAzJ7Ej1OqmRbXyxV+EJwn6PRrfOvVCmjsVa94rouhEmpLlwYBLIkfl1hBBCtB1NTnZCoRDRaO0vvkgkQlVVVbOCqvHmm28yaNAgLr/8cjIzM+nfvz/PPvtsfP/mzZspKipi+PDh8W1+v5/TTz+dpUuXtkgMySo2v051y04dyU5u1RqKt1SvcF6Yg9ViRUNDt9ZXr6OoULrMryOEEKLNaXKyc9ppp/HMM8/U2v70008zcODAZgVV49tvv2XOnDkUFhbyzjvvcPPNN3PrrbfywgsvAFBUVARAVlZWwnlZWVnxfXUJhUKUlpYmPE400bANI2IDTeHwJCanmjJwl30RX+Fc9fgBSgHUU5xcU68TNfD4/FKcLIQQok1p8mis3/72twwfPpw1a9Zw/vnnA7B48WJWrFjBf/7znxYJzjRNBg0axIwZMwDo378/69at4+mnn2bcuHFNvu5DDz3Eb37zmxaJsb06tF7n8BqctPBm1hVZyDFgW7qVLtldUKaOpiu0OpOdEGGs6KZJmtTrCCGEaGOa3LIzZMgQli5dSl5eHq+++ir//Oc/6datG2vXruXss89ukeBycnLo3bt3wrZevXqxdetWALKzswHYtWtXwjG7du2K76vL9OnTKSkpiT+2bdvWIvG2J0eq18mtWku4eoXzLwrz0XUdZWpouolWR3GyboQJax7cmiKQLfU6Qggh2pYmt+wA/OAHP+Cll15qqVhqGTJkCBs2bEjY9vXXX9O5c2cACgoKyM7OZvHixfFJDUtLS1m+fDk333xzvdd1OBw4HI5jFnd7EG/ZOSzZ0VQUVfIVedt8AHh7xLokTVPH7gjVOcuyhqJSWUh3WvD4pF5HCCFE29KsZMc0TTZu3Mju3bsxzcTujXPOOadZgQFMmTKFM888kxkzZvDTn/6UTz75hGeeeSZeK6RpGpMnT+a3v/0thYWFFBQUcPfdd5Obm8tll13W7Psnq2jYSjRsBxTOw+p1MkLfsH67nc7AV7kOctNq6qE0LHXOrxPFQMcwIngC6bj9Uq8jhBCibWlysrNs2TKuvPJKtmzZglKJXRuapmEY9ayf1Ainnnoqr7/+OtOnT+f++++noKCAxx57jLFjx8aPmTZtGhUVFdxwww0UFxdz1lln8fbbbx9xZucTXU2rjt0VrLX0Q27VWsqqVzjfWNiN3sRGbmnUPZmgZoYJYcNimKRn5mKVeh0hhBBtTJOTnZtuuolBgwbx73//m5ycHLS6+jdawCWXXMIll1xS735N07j//vtlwdFGCFXUXa+jqzClezeRs8dHVIec6i4sZWqg1z0SSzPCVOHHpUXwZ8p6WEIIIdqeJic733zzDX/729/o1q1bS8YjjoP66nWygl/x7XYnJwFru6SQ6onV7ShTR6+nOFlDEdIsdHBaZX4dIYQQbVKTR2OdfvrpbNy4sSVjEceBEbEQCca6qZzexHqdzMrVBDbaAdjRvWd8u1IaFqtRuzjZjGJgwTSiuFN8uCXZEUII0QY1uWXnlltu4fbbb6eoqIg+ffpgs9kS9vft27fZwYmWVzNrss0ZxGI9WFdlNYMU7d5OWlkKlXYo6PqD+D5l6nXOnFxTr6NFTTpk5GI5wUe4CSGEaJuanOyMGTMGgAkTJsS3aZqGUqrFCpRFywuVx5aAOLxVJyv4Jd9vddEVWNUtnVx7LHFRCjSNeut1KrUAbj2CL0vqdYQQQrRNTU52Nm/e3JJxiOOkvnqdtPLVRKtXOC/t3oea1EUpDXSz1qgtAE0pwmh0sDukXkcIIUSb1eRkp2ZiP9F+mIZOuCo2NNzpOZjs2MwKtuzcQ4eQh31ejW75h9TrmDq6VscyEWYEQ7Ngmgae1HTcsh6WEEKINqrJBcoAL774IkOGDCE3N5ctW7YA8Nhjj/GPf/yjRYITLStY7gI0rPYwVvvBFetzqtZRVr3C+eruuVgtB3NgZWrodRQna2aYMDZ006RDh1wsMq+REEKINqrJyc6cOXOYOnUqF110EcXFxfEanUAgwGOPPdZS8YkWVN/8Ou7S1XT6rvpXofsPEvYppScUMtfQjQiVmgsXihSp1xFCCNGGNTnZeeKJJ3j22We56667sFgs8e2DBg3i888/b5HgRMuqq17HYZSw+ftSbNUrnHfOOtg9WTMxdl31OgAhNLwOp6yHJYQQok1rcrKzefNm+vfvX2u7w+GgoqKiWUGJlmeaGqHKmpFYB5OdnOA6jO9iI6/Wde+Mrh/8lVCqZqXz2vU6UXSUaeLx+WU9LCGEEG1ak5OdgoICVq9eXWv722+/Ta9evZoTkzgGQhUuUBoWWwSrPRLfru1fQ/73sV8DX8+BCecoU0PXVK2WnVi9jhXdMEjvkC31OkIIIdq0Jo/Gmjp1KhMnTiQYDKKU4pNPPuHll1/moYce4rnnnmvJGEULCFV3YTk9lfFiY1d0P1u3VdEZB191dJATyEw4R5k6Fnu0VnGybkSo0gK4ieDL6nQ8whdCCCGarMnJzvXXX4/L5eLXv/41lZWVXHnlleTm5vLHP/6Rn//85y0Zo2gBddXr5AbXsnNTbHmITYWF1GqPq6s4WSk0FEHNSrbDIkPOhRBCtHlNTnYAxo4dy9ixY6msrKS8vJzMzMyjnySOO2VWd2ORWK9TvutzsvdqRCyQ031g7fOgdr2OihDBgmZEcaelSb2OEEKINq9Z8+zUcLvdkui0YaEqJ0rp6JYoNmcYAG9kF7u2xuba+byLl4AnJeEcZYKm1Z45WTMisfWwjCjp6VKvI4QQou1rVMvOgAEDWLx4MampqfTv3x+t1jLYB61atarZwYmWEa/X8VbF628yK1dj2xRbvHVH994EDjvHNHU0XdVaE0s3IwS1AB4tgi9b6nWEEEK0fY1Kdi699FIc1StbX3bZZcciHnEM1KrXUYp9O74ivcxChQMKTupX65zYZIJRND1hIyhFULcScFhwp6Qdh+iFEEKI5mlUsnPvvffW+bNou5SC4GEzJ/uiOyjeqkgHPut6cIXzhPNMDYu1jnodzYpmRPH606VeRwghRLvQ5JqdFStWsHz58lrbly9fzqefftqsoETLCVc5UIYFTTewu4IApJV+Rk71Cudl3fvWc6ZWZ71OGBsW04jV67hcxzJ0IYQQokU0OdmZOHEi27Ztq7V9+/btTJw4sVlBiZZzcH6d6nodZVL0/Te4Q7AvRaNr59oTQCoFWh2TCepmmKDmwo3Ck5lzPMIXQgghmq3Jyc6XX37JgAEDam3v378/X375ZbOCEi2npgurpl4nNbKV0HextcxWF+Zg1Wv/CihTR9NU4rBzpWJdYpqO2+HAG8g49sELIYQQLaDJyY7D4WDXrl21tu/cuROrtVnT94gWotTB4uSaeh1n8So6ban+2HvUTlYhNhJLt5joujrkYhGimhXNMEhJ8ePySXGyEEKI9qHJyc4FF1zA9OnTKSkpiW8rLi7mV7/6FSNGjGiR4ETzREJ2zKgVTTNxuINoymDXli2xFc47WCjI7lLnebHi5GjCNs2IEFaxep209Byp1xFCCNFuNLkJ5ve//z3nnHMOnTt3jq9+vnr1arKysnjxxRdbLEDRdDX1Og5PFZquSA99S/Hm2Ef+RWFnutdznoaGbq1jfh09BY+KSL2OEEKIdqXJyU7Hjh1Zu3YtL730EmvWrMHlcnHttddyxRVXYLPZWjJG0USHz69j7l1J/nYNE/D1HFTnOUoBHDaZoFIopQhZdFItUq8jhBCifWlWcY3H4+GGG25oqVhECzq8XkdXUfZ9t5MANr7pZCc7UPfyHqp65mTt0JFYKkwEKxhRvKnpuFJSj8dLEEIIIVpEo5KdN998k1GjRmGz2XjzzTePeOwPf/jDZgUmmicatmFEbIDC4a4irWoDVdVz62ws7F57hfNqytTQdBNNO1icrBkRwpodi2mSnp6NLvU6Qggh2pFGJTuXXXYZRUVFZGZmHnG5CE3TMAyjubGJZojX67ir0C2Kyl2ryN4XW+E8t3vdXVgQG4lld4Q4dNkz3YwQ0nx4ieDOzDnimmhCCCFEW9OoZMc0zTp/Fm3PofPrWMww5Zv3AVbWdXHjd3uPcKaGxZJYr2MqjaBFJ83qxOvvcEzjFkIIIVpao4aep6WlsXfvXgAmTJhAWVnZMQlKNF+wPNbV5PRWkVb5JR2qu7B2dO9T7zlKgUbtep2oZgHTJCXFL+thCSGEaHcaleyEw2FKS0sBeOGFFwgGg8ckKNE80YiVaMgBKByeSvZvX0WgnNgK511rr3BeQ5ka6IkjsWLrYdmxmlHS0rLQnM7j8AqEEEKIltOobqzBgwdz2WWXMXDgQJRS3HrrrbjqKVZ9/vnnWyRA0Xih6lYduyuEQ68kvLkMsLC2W4Asm73e85Spo+sm2iEzJ+tmhKDmw2tGcGdIvY4QQoj2p1HJzl/+8hdmzZrFpk2bACgpKZHWnTbo0Pl1fGVrcWyKrYVV3L0/WUc4TykNqzV6sDhZmSgFYYtOulXm1xFCCNE+NSrZycrKYubMmQAUFBTw4osvkp4uNRxtzaHz6+z5bjWFYdibotE1v74B5zHK1LEcOnOyGSGiWVGmic+fhssv62EJIYRof5pcoHzeeedht9ffJSJahxHViQRjdTUprj1YN8da3r4ozKxzhfMaSoGmkbDSuWaECWPHpgxSpV5HCCFEOyUFykkmVD3k3OoI4S7/hLzqFc6Nnqcf8TylNNBN9ENGYunKIKi58KKkXkcIIUS71eYLlO+77z5+85vfJGzr0aMHX331FQDBYJDbb7+dhQsXEgqFGDlyJE899RRZWUeqTkleh3Zh7f/2SzJN2Jah0yUr/4jnxYqT1cGWHWViVtfrdNAdeAIyv44QQoj2qVEtO3/5y1+46KKLKC8vR9M0SkpKOHDgQJ2PlnTyySezc+fO+OOjjz6K75syZQr//Oc/+etf/8r777/Pjh07+PGPf9yi929PapKdFPc+PN9GAPiqMO+o5ylTw2IxDhYnmxGiWECp2Pw6PqnXEUII0T61iwJlq9VKdnZ2re0lJSXMnTuXBQsWMGzYMADmzZtHr169WLZsGWecccYxj60tMQ2dcGWsrsZR9QF5O2IrnHt7Dj7quUrp6NaDS3xoRpiQZsdmRklNzUKT9bCEEEK0U41q2QG46KKLKCkpYfPmzaSnpzNz5kyKi4vj+/ft20fv3r1bMka++eYbcnNzOemkkxg7dixbt24FYOXKlUQiEYYPHx4/tmfPnuTn57N06dJ6rxcKhSgtLU14JINQhQvQsNjDhLZ8BsDGPCtZR1niQVVPq1O7XseNByXrYQkhhGjXGp3svP3224RCofjzGTNmsH///vjzaDTKhg0bWiY64PTTT2f+/Pm8/fbbzJkzh82bN3P22WdTVlZGUVERdrudQCCQcE5WVhZFRUX1XvOhhx7C7/fHH3l5R+/maQ9qurA8rgOkb4q10nzbrfCo5ylVvdJ5HfU6bpvMryOEEKJ9a1Q3Vl2UUkc/qBlGjRoV/7lv376cfvrpdO7cmVdffbXe4uijmT59OlOnTo0/Ly0tTYqEpybZsURWkblfI2yBrB5HHoUFsXodXVMHW3bMCBEsaMokJSUVly/1WIYthBBCHFONbtlpbYFAgO7du7Nx40ays7MJh8MJ3WgAu3btqrPGp4bD4cDn8yU82jvT1AhV1+vYdn4CwFcFTvyuI61wHqPMWL1OTU9VrF7Hgc2Ikpou9TpCCCHat0YnO5qm1arfOJ71HOXl5WzatImcnBwGDhyIzWZj8eLF8f0bNmxg69atDB589KLcZBKudILSsVhCdPp6NwA7Ck9u2MlKx3JIcbKuooTi8+tkS72OEEKIdq3R3VhKKcaPH4/D4QBi89zcdNNNeDwegIR6npZwxx13MHr0aDp37syOHTu49957sVgsXHHFFfj9fq677jqmTp1KWloaPp+PW265hcGDB59wI7FqurCsbCRQAeVOyO82sEHnKg4pTlYGptKIWHU8mgNvIPMYRSyEEEIcH41OdsaNG5fw/Kqrrqp1zDXXXNP0iA7z/fffc8UVV7Bv3z4yMjI466yzWLZsGRkZsaLZWbNmoes6Y8aMSZhU8ERTk+y4DnwBwPpuXtKtR1/OQ5kamnZIcbIZJVI9v47XH8CVEjhWIQshRKszDINIJNLaYYh62Gw2LBZLs6/T6GRn3rx5zb5pYyxcuPCI+51OJ7Nnz2b27NnHKaK2R6mDy0Tkf/sNAMWFA2nIDEimqaHpCr062dGNMEHNgV0ZpKZmo7ndxypsIYRoNUopioqKatV8irYnEAiQnd28kopmj8YSrS9c6USZOhpVpBfvZK8POuc3rF5HmToWWxStunpLUwYh3UWKGcGVkSX1OkKIpFST6GRmZuJ2u+XfujZIKUVlZSW7d8fqUHNycpp8LUl2kkB8PazKb9BQfF2YRvYRVjg/lDI1LNaD9TqGgqim47HL/DpCiORkGEY80TkeqwCIpquZYmb37t1kZmY2uUur3Q09F7UFq7uwsos2AhDp0YiRaJp2yPw6UaJYUJikpARwpcj8OkKI5FNTo+OWbvp2oeZzak5tlSQ77ZxSEKpu2Uk/sJFtmRp5WQUNPlc7ZDJB3QgTxIFTmQQCmVKvI4RIatJ11T60xOckyU47Fwk6MA0LmhnCW76N77rVP5ni4ZSpx5Kd6uJkzYwSsrhxK0Pm1xFCCBF37rnnMnny5GNy7S5duvDYY48dk2vXkGSnnaup1wkUfwuY2Hqc0+BzzZqZk3UVq9dBI6preK0OvKkyv44QQrQ148ePR9M0brrpplr7Jk6ciKZpjB8//vgH1sZJstPOxZOdko1syrOQ2YiiYmVqWCzVMycbEcLKAipWr+OU+XWEEKJNysvLY+HChVRVVcW3BYNBFixYQH5+fpOvq5QiGo026dxwONzk+x4Pkuy0Y7F6nVileqB4Izu6Nu6XXENDrx6JpZthwroThzLwBzJkPSwhhGijBgwYQF5eHq+99lp822uvvUZ+fj79+/ePbwuFQtx6661kZmbidDo566yzWLFiRXz/e++9h6ZpvPXWWwwcOBCHw8FHH31ERUUF11xzDV6vl5ycHB599NFaMXTp0oUHHniAa665Bp/Pxw033ADARx99xNlnn43L5SIvL49bb72VioqK+Hm7d+9m9OjRuFwuCgoKeOmll47FW1SLJDvtmGk4MaI2NDOCq/I7/N0b3oUVW6z+kMkEzdj8Oh4F7swctAYOXRdCiGSglKIyHG3UIxgxUEoRjBh1Pm/IQ8X+MW60CRMmJEzy+/zzz3PttdcmHDNt2jT+/ve/88ILL7Bq1Sq6devGyJEj2b9/f8Jxv/zlL5k5cybr16+nb9++3Hnnnbz//vv84x//4D//+Q/vvfceq1atqhXD73//e/r168dnn33G3XffzaZNm7jwwgsZM2YMa9eu5ZVXXuGjjz5i0qRJ8XPGjx/Ptm3b+N///sff/vY3nnrqqfg8OseSzLPTjkUjfgB8pVvY1EXD505p8LnK1NF0hWYxQRlE0YhadDyaXebXEUKccKoiBr3veafR551d2IEnrujPKyu28bNT8/h/f/6UD7/Z2+Dzv7x/JG5747+Kr7rqKqZPn86WLVsAWLJkCQsXLuS9994DoKKigjlz5jB//nxGjRoFwLPPPsuiRYuYO3cud955Z/xa999/PyNGjABii23PnTuXv/zlL5x//vkAvPDCC3Tq1KlWDMOGDeP222+PP7/++usZO3ZsvJC5sLCQxx9/nKFDhzJnzhy2bt3KW2+9xSeffMKpp54KwNy5c+nVq1ejX39jSbLTjkXCXgACJd/wfc9C8hpxrjI1NN1E1xVEI4SVFZTC50/FIfPrCCFEg3z4zV5eWbGNG4d25U/vb2pUotMcGRkZXHzxxcyfPx+lFBdffDEdOnSI79+0aRORSIQhQ4bEt9lsNk477TTWr1+fcK1BgwYlnBcOhzn99NPj29LS0ujRo0etGA49D2DNmjWsXbs2oWtKKYVpmmzevJmvv/4aq9XKwIEHF6nu2bMngUCg8W9AI0my045FQ7HiZEfVRjK6nt2oc01Tx+6IrVCvm2FCugenMvD7O6C7pV5HCHFicdksfHn/yEafp2saDqtOxDC54ZyTGHdmF8xGdE25bE1f5HLChAnxLqLmrA/p8Xha5Lzy8nJuvPFGbr311lrH5ufn8/XXXzfpPi1Bkp12KhqyogigKYM9GTvx2xyNvIKGxXKwXidsceBTUdzpUq8jhDjxaJrWpO6kGjZLbF4yZzOSl8a68MILCYfDaJrGyJGJiVrXrl2x2+0sWbKEzp07A7EZiFesWHHE+XK6du2KzWZj+fLl8ZFdBw4c4Ouvv2bo0KFHjGfAgAF8+eWXdOvWrc79PXv2JBqNsnLlyng31oYNG47LYqyS7LRTZftiQ8a9Zduo6NaDi370E7yBVN6Z9+xRz1UKNA6p11Gxeh2v7sCbJvPrCCFEe2CxWOJdUoevGeXxeLj55pu58847SUtLIz8/n0ceeYTKykquu+66eq/p9Xq57rrruPPOO0lPTyczM5O77roLvQF/BP/iF7/gjDPOYNKkSVx//fV4PB6+/PJLFi1axJNPPkmPHj248MILufHGG5kzZw5Wq5XJkyfH1786liTZaafKtpcBsS6sS257GH9GJiV7GlbRHqvXqR6JZUQIE6vXSfEGsMv8OkII0W74fL56982cORPTNLn66qspKytj0KBBvPPOO6SmHrku83e/+x3l5eWMHj2alJQUbr/9dkpKSo4aS9++fXn//fe56667OPvss1FK0bVrV372s5/Fj5k3bx7XX389Q4cOJSsri9/+9rfcfffdDX/BTaSppo57SyKlpaX4/X5KSkqO+IvTlrz95FI2ravizPMq+MFPL6Fkz26WvP63Bp1rRCxousLtr8ASKaHE9GLabAzo3JP8sy6UbiwhRFILBoNs3ryZgoICnE5na4cjjuJIn1dDv7+lZacd2rd9B+deO4isJTv4wfD8RiU6UFOcHEbTQFMmYYsDv9TrCCGESFLyzdYOffDKX9iwdDv9L+iMUmajEh0AVHVxsjIwTA3DouOxSr2OEEKI5CTJTjv0o6nT6Ht+ZyqLy9B0nSE/+kmDz1WKWIvOIfU6CoXf68ee4j+GUQshhBCtQ5Kddqpkzx7e+MMfKNmzG39GZoMTHqU00E10i4luhgjpLlwY+AIZ6G73MY5aCCGEOP4k2Wmnlv7rdQCWvP63RiU8ytTRdYWmm/F6Hbdp4krPlnodIYQQSUm+3ZJATcLjDRx9mQdlalisBhoGUVPDsFhi9Tqpsh6WEEKI5CSjsZJEQ4uUldLRrQYY4Vi9jjLxp6Rh9wWObYBCCCFEK5GWnRNIbOZk0HWzej0sF25MfP4OUq8jhBAiaUmycwKpKU7WdBNMg4jFgds0cHeQeh0hhBDJS7qxTiDK1NE1ha5HMJSOYbXgwYInTep1hBBCJC/5c/4EokwN3WqgmSHCygaqZn6dQGuHJoQQogHGjx+PpmncdNNNtfZNnDgRTdMYP3788Q+sjZNk5wSilI7FaqCbEYIWJy4VJcWfgX4cVpwVQgjRMvLy8li4cCFVVVXxbcFgkAULFpCfn9/k6yqliEajLRFimyPJzglGt5hgmkR0Bx5T4U7PQrNYWjssIYQQDTRgwADy8vJ47bXX4ttee+018vPz6d+/f3xbKBTi1ltvJTMzE6fTyVlnncWKFSvi+9977z00TeOtt95i4MCBOBwOPvroI8rKyhg7diwej4ecnBxmzZrFueeey+TJk+PnvvjiiwwaNIiUlBSys7O58sor2b17d61rL168mEGDBuF2uznzzDPZsGHDsX1z6iHJzglCmRqaZqJpEaKmhmmz4rHZpV5HCCEgNlw1XNG4RyQYOy8SrPt5Qx5KNSncCRMmMG/evPjz559/nmuvvTbhmGnTpvH3v/+dF154gVWrVtGtWzdGjhzJ/v37E4775S9/ycyZM1m/fj19+/Zl6tSpLFmyhDfffJNFixbx4YcfsmrVqoRzIpEIDzzwAGvWrOGNN97gu+++q7P77K677uLRRx/l008/xWq1MmHChCa93uaSAuUThGlqaLpCp4oQNjQUAU+q1OsIIQRApBJm5Db+vK7D4CfPw6oXYcDVsPAK2PRuw8//1Q6wexp926uuuorp06ezZcsWAJYsWcLChQt57733AKioqGDOnDnMnz+fUaNGAfDss8+yaNEi5s6dy5133hm/1v3338+IESMAKCsr44UXXmDBggWcf/75AMybN4/c3MT35tCk5aSTTuLxxx/n1FNPpby8HK/XG9/34IMPMnToUCCWVF188cUEg0GcTmejX3NzSLJzglCmjtUWxWJGCFm8uFQUjy9N5tcRQojm2PRuLNEZcissebxxiU4zZGRkcPHFFzN//nyUUlx88cV06NDhYFibNhGJRBgyZEh8m81m47TTTmP9+vUJ1xo0aFD852+//ZZIJMJpp50W3+b3++nRo0fCOStXruS+++5jzZo1HDhwANM0Adi6dSu9e/eOH9e3b9/4zzk5OQDs3r27WbVFTSHJzolCaehWE5RJxOokxYji6iD1OkIIAYDNHWtlaSzNAlYHGGE48xY47QZQRuPu20QTJkxg0qRJAMyePbvJ1/F4GteyVFFRwciRIxk5ciQvvfQSGRkZbN26lZEjRxIOhxOOtdls8Z81TQOIJ0bHk9TsnCAUGnp1vY5hteCxOfCmZbZ2WEII0TZoWqw7qbEPmzN2rsUe+7/N2bjzqxOAprjwwgsJh8NEIhFGjhyZsK9r167Y7XaWLFkS3xaJRFixYkVCy8vhTjrpJGw2W0Ihc0lJCV9//XX8+VdffcW+ffuYOXMmZ599Nj179kwoTm6LpGXnBKBM0DSFrlURxoauKQLugNTrCCFEO2axWOJdUpbDWuk9Hg8333wzd955J2lpaeTn5/PII49QWVnJddddV+81U1JSGDduXPy8zMxM7r33XnRdj7fM5OfnY7fbeeKJJ7jppptYt24dDzzwwLF7oS2gXbXszJw5E03TEoa/BYNBJk6cSHp6Ol6vlzFjxrBr167WC7INMk0dTVNYVJCg7sStonj86VKvI4QQ7ZzP58Pn89W5b+bMmYwZM4arr76aAQMGsHHjRt555x1SU1OPeM0//OEPDB48mEsuuYThw4czZMgQevXqFS8qzsjIYP78+fz1r3+ld+/ezJw5k9///vct/tpakqZUE8e9HWcrVqzgpz/9KT6fj/POO4/HHnsMgJtvvpl///vfzJ8/H7/fz6RJk9B1PaHp7mhKS0vx+/2UlJTU+0vT1rz1/J848F0R/o4djnpsNGLFYjXw2r9ntzWLNN2k3w/OIeOUgcchUiGEaFuCwSCbN2+moKDguI8Kao8qKiro2LEjjz766BFbhY6VI31eDf3+bhctO+Xl5YwdO5Znn302ISMtKSlh7ty5/OEPf2DYsGEMHDiQefPm8fHHH7Ns2bJWjLhtUaaGRQ8TUTqm1YrXYsObltXaYQkhhGiDPvvsM15++WU2bdrEqlWrGDt2LACXXnppK0fWdO0i2Zk4cSIXX3wxw4cPT9i+cuVKIpFIwvaePXuSn5/P0qVLj3eYbZaGhq4FiSgbumbi96Ri97aPFiwhhBDH3+9//3v69evH8OHDqaio4MMPP0wY2t7etPkC5YULF7Jq1aqEyvAaRUVF2O12AoFAwvasrCyKiorqvWYoFCIUCsWfl5aWtli8bY1SgKawEqTC4salDLy+NPRGDjUUQghxYujfvz8rV65s7TBaVJtu2dm2bRu33XYbL730Uov2qz700EP4/f74Iy8vr8Wu3dao6uJkTYtgWB24TYUzPVPm1xFCCHHCaNPJzsqVK9m9ezcDBgzAarVitVp5//33efzxx7FarWRlZREOhykuLk44b9euXWRnZ9d73enTp1NSUhJ/bNu27Ri/ktZjmhq6HsbQqufXkXodIYQQJ5g23Y11/vnn8/nnnydsu/baa+nZsye/+MUvyMvLw2azsXjxYsaMGQPAhg0b2Lp1K4MHD673ug6HA4fDcUxjbyuUqWOxxup1LJrC70nDniL1OkIIIU4cbTrZSUlJ4ZRTTknY5vF4SE9Pj2+/7rrrmDp1Kmlpafh8Pm655RYGDx7MGWec0Roht0EaVoKUWTy4lIk3JVXm1xFCCHFCadPJTkPMmjULXdcZM2YMoVCIkSNH8tRTT7V2WG2CUqChQItiWG24TIUrPQvN2u4/diGEEKLB2t23Xs3y9TWcTiezZ89u1iJoyUqZGpoWxdTAtFrw6hoeqdcRQghxgmnTBcqieZSpoxMiolnQNfC5/FKvI4QQ4oQjyU4SM00dqx4kbHPjUtHY/DpSryOEEO3W+PHj0TQNTdOw2WwUFBQwbdo0gsFg/Jia/Zqm4fF4KCwsZPz48bXmznnvvffQNC1hRPOOHTvo06cP55xzDiUlJQnHHHrvuh5dunQ5Tu9C40myk+R0LUzUYsetkHodIYRIAhdeeCE7d+7k22+/ZdasWfzpT3/i3nvvTThm3rx57Ny5ky+++ILZs2dTXl7O6aefzp///Od6r7tp0ybOOussOnfuzDvvvIPf70/Y/8c//pGdO3fGH4feZ+fOnXVO/ttWyDdfklIKNGVgahrKZsGLVebXEUKIJOBwOOJzyeXl5TF8+HAWLVrEww8/HD8mEAjEj+nSpQsXXHAB48aNY9KkSYwePbrWyudr165l5MiRDBs2jBdeeAFrHX8Y10zEe6hD79OWSctOklKmhkaYiK6jawqfx4/Nm9LaYQkhRJuklKIyUtmoRzAaRClFMBqs83lDHkqpZsW9bt06Pv74Y+x2+1GPnTJlCmVlZSxatChh+8cff8zQoUMZM2YMf/nLX+pMdNq75HtFAqieTJAwQbsTlzLwpKTKelhCCFGPqmgVpy84vdHnDc4dzO/O+R2vffMaPy78Mbf+71aW7mj4QtTLr1yO29a4Wsp//etfeL1eotEooVAIXdd58sknj3pez549Afjuu+8Stv/oRz/iZz/7WYOu0V5Jy06SUkpD1yIYNjseU+FOy5R6HSGEaGFLdyzltW9e49pTruW1b15rVKLTVOeddx6rV69m+fLljBs3jmuvvTa+isCR1LQiaZqWsP3SSy/l9ddf58MPPzwm8bYF8u2XpJRhomwKZbXg0ax40tp+n6oQQrQWl9XF8iuXN/o8XdNxWBxEjAjjTx7PFT2vwFRmo+7bWB6Ph27dugHw/PPP069fP+bOnct11113xPPWr18PQEFBQcL2P/3pT0ybNo1Ro0bxf//3f5xzzjmNjqmtk2QnCcWKk6NEdB1NV/hcfmwpUq8jhBD10TSt0d1Jh7JZbAA4rc6WCqlBdF3nV7/6FVOnTuXKK6/E5ao/eXrsscfw+XwMHz48YbumaTzzzDPous5FF13Ev//9b4YOHXqsQz+upBsrCSmlYSFMxO7ErQw8XlkPSwghktXll1+OxWJJWEmguLiYoqIitmzZwqJFi/jJT37CggULmDNnDoFAoNY1NE3j6aef5pprruGiiy6qtVpBeyctO0lIGTpgYNhteE1wp2eh2WytHZYQQohjwGq1MmnSJB555BFuvvlmAK699logtqRSx44dOeuss/jkk08YMGBAvdfRNI3Zs2ej6zoXX3wx//rXv2rV97RXmmruuLckUFpait/vp6SkBJ+vfSyn8Nbzf+LAd0X4O3aotS8a0kCVEczychLQ56xLcXbqdPyDFEKINigYDLJ582YKCgpwOo9vt5NovCN9Xg39/pZurGQUNTCtoOvg8wSweb2tHZEQQgjRaiTZSUKaMojanLhVFLdX5tcRQghxYpNkJ8mYhoZSBoZdx2NquNMypF5HCCHECU0KlJOMMk2UDth1vDoyv44QQogTniQ7ySZqErVoWG0aKU6ZX0cIIYSQbqxkY0Qx7LZYvY4nIPU6QgghTniS7CQTBaYJymHBbYAnTebXEUIIISTZSSLKNDA0HWXX8VpseDpIvY4QQgghyU4SUVGTqKZhtZn4nD6sMr+OEEIIIclOMtEME2W349EiuLwBWQ9LCCGEQJKd5KEgGgXToeM29Vi9jt3e2lEJIYRoYdu2bWPChAnk5uZit9vp3Lkzt912G/v27Ysfc+655zJ58uRa586fPz9hIdD58+ejaVqtR7ItoyFDz5NGhCgWNIeGV7NKvY4QQiShb7/9lsGDB9O9e3defvllCgoK+OKLL7jzzjt56623WLZsGWlpaY26ps/nY8OGDQnbkmUB0BqS7CSLaBRDc2GzK/wuHxYZci6EEEln4sSJ2O12/vOf/+ByuQDIz8+nf//+dO3albvuuos5c+Y06pqappGdndx/IEuykyQ0w8Sw2fDqIVwpqZLsCCFEIyilUFVVjTtJ19EcDlQoFJv34/DnDaC5XA1uRdm/fz/vvPMODz74YDzRqZGdnc3YsWN55ZVXeOqppxr3Ok4AkuwkAwURQ0c5dTwK3KkZUq8jhBCNoKqq2DBgYKPP8ww5k46PPkrx3/9OYMwYvp84kYolHzf4/B6rVqI1cDDJN998g1KKXr161bm/V69eHDhwgD179gDw1FNP8dxzzyUcE41Ga9XjlJSU4D1s9O7ZZ5/NW2+91dCX0eZJspMUIkQNK5pTkSL1OkIIcdxULPmY4r//nfTrrmPf3LmNSnSaSinVoOPGjh3LXXfdlbDttddeY8aMGQnbUlJSWLVqVcK2w1uO2jtJdpKAZkSJaC5sDvA5fVg8Mr+OEEI0huZy0WPVysafWNN1FYmQNmECqWPHNrgLq+a+DdWtWzc0TWP9+vX86Ec/qrV//fr1pKamkpGRAYDf76dbt24Jx2RmZtbxEvRaxyUbSXaSgGZGMXQnXi2Eyyf1OkII0ViapjW4O6lO1UvzaMdwyHZ6ejojRozgqaeeYsqUKQmtL0VFRbz00ktcc801STeSqiXIPDvtnVJEI4BNx4OSeh0hhEhiTz75JKFQiJEjR/LBBx+wbds23n77bUaMGEHHjh158MEHG31NpRRFRUW1HmYjWqjaOkl22jsVJaLsKAf4LBap1xFCiCRWWFjIp59+ykknncRPf/pTunbtyg033MB5553H0qVLGz3HDkBpaSk5OTm1Hrt37z4Gr6B1aKqhlU5JrLS0FL/fT0lJCT6fr7XDaZC3nv8TB74rIpDppizohgwnA9KcFJx1EdbU1NYOTwgh2qxgMMjmzZspKChIupmCk9GRPq+Gfn9Ly047pymDqO7ErUdweVPRpV5HCCGESCDJTrumMAyFabHE6nUCHdClXkcIIYRIIMlOO6ZhEFF2sGv4rBpuqdcRQgghamnzyc6cOXPo27cvPp8Pn8/H4MGDE2Z1DAaDTJw4kfT0dLxeL2PGjGHXrl2tGPHxoymTsLJjsyl8nhSs3pTWDkkIIYRoc9p8stOpUydmzpzJypUr+fTTTxk2bBiXXnopX3zxBQBTpkzhn//8J3/96195//332bFjBz/+8Y9bOerjQwFRXDgtYTxSryOEEELUqc1PKjh69OiE5w8++CBz5sxh2bJldOrUiblz57JgwQKGDRsGwLx58+jVqxfLli3jjDPOaI2QjxsTC8piJUUP4ZJ6HSGEEKJObb5l51CGYbBw4UIqKioYPHgwK1euJBKJMHz48PgxPXv2JD8/n6VLl9Z7nVAoRGlpacKjPTKwoKw6XquOJyOntcMRQggh2qR2kex8/vnneL1eHA4HN910E6+//jq9e/emqKgIu91OIBBIOD4rK4uioqJ6r/fQQw/h9/vjj7y8vGP8Co4NU7Njsyp8bi8Wr6yHJYQQQtSlXSQ7PXr0YPXq1Sxfvpybb76ZcePG8eWXXzb5etOnT6ekpCT+2LZtWwtGe5xoOprFjU2LkuLzozdnTRchhBAiibX5mh0Au90eX5F14MCBrFixgj/+8Y/87Gc/IxwOU1xcnNC6s2vXLrKz6x+G7XA4cDgcxzrsY8pwpGJYIqRYFe7UDujt/PUIIYRo2zRN4/XXX+eyyy5r7VAarV207BzONE1CoRADBw7EZrOxePHi+L4NGzawdetWBg8e3IoRHgcWO5oFfDZN6nWEEOIEMX78+NgK7ZqGzWajoKCAadOmEQwGWzu0Nq3Nt+xMnz6dUaNGkZ+fT1lZGQsWLOC9997jnXfewe/3c9111zF16lTS0tLw+XzccsstDB48OOlHYmkaOGwKr8uLRYacCyHECePCCy9k3rx5RCIRVq5cybhx49A0jYcffri1Q2uz2nzLzu7du7nmmmvo0aMH559/PitWrOCdd95hxIgRAMyaNYtLLrmEMWPGcM4555Cdnc1rr73WylEfe36nDa+ukeLzyfw6QghxAnE4HGRnZ5OXl8dll13G8OHDWbRoEQD79u3jiiuuoGPHjrjdbvr06cPLL7+ccP65557LrbfeyrRp00hLSyM7O5v77rsv4ZhvvvmGc845B6fTSe/evePXP9Tnn3/OsGHDcLlcpKenc8MNN1BeXh7fP378eC677DJmzJhBVlYWgUCA+++/n2g0yp133klaWhqdOnVi3rx5Lf8mHabNt+zMnTv3iPudTiezZ89m9uzZxymitsFu1XBbdDypqVKvI4QQzaSUIho2G3WOpoHFpmNETJSq/bwhrHYdTdOaEHHMunXr+Pjjj+ncuTMQW1Vg4MCB/OIXv8Dn8/Hvf/+bq6++mq5du3LaaafFz3vhhReYOnUqy5cvZ+nSpYwfP54hQ4YwYsQITNPkxz/+MVlZWSxfvpySkhImT56ccN+KigpGjhzJ4MGDWbFiBbt37+b6669n0qRJzJ8/P37cu+++S6dOnfjggw9YsmQJ1113HR9//DHnnHMOy5cv55VXXuHGG29kxIgRdOrUqcnvw9G0+WRH1M9ht5CSldvaYQghRLsXDZs8c9v7jT4vr1caF1x/MuuX7KDXkFz+b87nbFu/v8Hn3/DHodgclkbd81//+hder5doNEooFELXdZ588kkAOnbsyB133BE/9pZbbuGdd97h1VdfTUh2+vbty7333gtAYWEhTz75JIsXL2bEiBH897//5auvvuKdd94hNzf2HTNjxgxGjRoVP3/BggUEg0H+/Oc/46nuXXjyyScZPXo0Dz/8MFlZWQCkpaXx+OOPo+s6PXr04JFHHqGyspJf/epXQKxUZebMmXz00Uf8/Oc/b9T70BiS7LRTmq7h86fI/DpCCNGKtq3fz/olO+h/QWc++8+WRiU6TXXeeecxZ84cKioqmDVrFlarlTFjxgCxyXdnzJjBq6++yvbt2wmHw4RCIdyHTU/St2/fhOc5OTns3r0bgPXr15OXlxdPdIBag37Wr19Pv3794okOwJAhQzBNkw0bNsSTnZNPPhldP1gxk5WVxSmnnBJ/brFYSE9Pj9/7WJFkp53KSUvFYrFKvY4QQrQAq13nhj8ObfR58a6rqMkPRuTT59xODe7CqrlvY3k8nvh0LM8//zz9+vVj7ty5XHfddfzud7/jj3/8I4899hh9+vTB4/EwefJkwuFwwjVsNtthr0PDNBvXjdcQdd3neN37UJLstFMdfD5Mu0PqdYQQogVomtbo7qRDWayxuhurvenXaApd1/nVr37F1KlTufLKK1myZAmXXnopV111FRCbquXrr7+md+/eDb5mr1692LZtGzt37iQnJza1ybJly2odM3/+fCoqKuKtO0uWLIl3V7U1bX40lqiHrmNNT2vtKIQQQrSyyy+/HIvFwuzZsyksLGTRokV8/PHHrF+/nhtvvJFdu3Y16nrDhw+ne/fujBs3jjVr1vDhhx9y1113JRwzduxYnE4n48aNY926dfzvf//jlltu4eqrr453YbUlkuy0U/aOHbG2wV8oIYQQx5fVamXSpEk88sgj3H777QwYMICRI0dy7rnnkp2d3egZj3Vd5/XXX6eqqorTTjuN66+/ngcffDDhGLfbzTvvvMP+/fs59dRT+clPfsL5558fL5RuazSlGtO7mJxKS0vx+/2UlJTg8/laOxwhhBDHUDAYZPPmzRQUFOB0Ols7HHEUR/q8Gvr9LS07QgghhEhqkuwIIYQQIqlJsiOEEEKIpCbJjhBCCCGSmiQ7QgghhEhqkuwIIYQ4Iclg5PahJT4nSXaEEEKcUGqWK6isrGzlSERD1HxOhy8z0RiyXIQQQogTisViIRAIxBefdLvdaJrWylGJwymlqKysZPfu3QQCASyWpi/FIcmOEEKIE052djbAMV9tWzRfIBCIf15NJcmOEEKIE46maeTk5JCZmUkkEmntcEQ9bDZbs1p0akiyI4QQ4oRlsVha5MtUtG1SoCyEEEKIpCbJjhBCCCGSmiQ7QgghhEhqUrPDwQmLSktLWzkSIYQQQjRUzff20SYelGQH2LdvHwB5eXmtHIkQQgghGqusrAy/31/vfkl2gLS0NAC2bt16xDdLNE9paSl5eXls27YNn8/X2uEkLXmfjw95n48fea+Pj/b4PiulKCsrIzc394jHSbID6HqsdMnv97ebD7g98/l88j4fB/I+Hx/yPh8/8l4fH+3tfW5II4UUKAshhBAiqUmyI4QQQoikJskO4HA4uPfee3E4HK0dSlKT9/n4kPf5+JD3+fiR9/r4SOb3WVNHG68lhBBCCNGOScuOEEIIIZKaJDtCCCGESGqS7AghhBAiqZ3wyc7s2bPp0qULTqeT008/nU8++aS1Q0o6Dz30EKeeeiopKSlkZmZy2WWXsWHDhtYOK6nNnDkTTdOYPHlya4eSlLZv385VV11Feno6LpeLPn368Omnn7Z2WEnFMAzuvvtuCgoKcLlcdO3alQceeOCoywKII/vggw8YPXo0ubm5aJrGG2+8kbBfKcU999xDTk4OLpeL4cOH880337ROsC3ohE52XnnlFaZOncq9997LqlWr6NevHyNHjmT37t2tHVpSef/995k4cSLLli1j0aJFRCIRLrjgAioqKlo7tKS0YsUK/vSnP9G3b9/WDiUpHThwgCFDhmCz2Xjrrbf48ssvefTRR0lNTW3t0JLKww8/zJw5c3jyySdZv349Dz/8MI888ghPPPFEa4fWrlVUVNCvXz9mz55d5/5HHnmExx9/nKeffprly5fj8XgYOXIkwWDwOEfawtQJ7LTTTlMTJ06MPzcMQ+Xm5qqHHnqoFaNKfrt371aAev/991s7lKRTVlamCgsL1aJFi9TQoUPVbbfd1tohJZ1f/OIX6qyzzmrtMJLexRdfrCZMmJCw7cc//rEaO3ZsK0WUfAD1+uuvx5+bpqmys7PV7373u/i24uJi5XA41Msvv9wKEbacE7ZlJxwOs3LlSoYPHx7fpus6w4cPZ+nSpa0YWfIrKSkBDq5JJlrOxIkTufjiixN+r0XLevPNNxk0aBCXX345mZmZ9O/fn2effba1w0o6Z555JosXL+brr78GYM2aNXz00UeMGjWqlSNLXps3b6aoqCjh3w+/38/pp5/e7r8XT9i1sfbu3YthGGRlZSVsz8rK4quvvmqlqJKfaZpMnjyZIUOGcMopp7R2OEll4cKFrFq1ihUrVrR2KEnt22+/Zc6cOUydOpVf/epXrFixgltvvRW73c64ceNaO7yk8ctf/pLS0lJ69uyJxWLBMAwefPBBxo4d29qhJa2ioiKAOr8Xa/a1VydssiNax8SJE1m3bh0fffRRa4eSVLZt28Ztt93GokWLcDqdrR1OUjNNk0GDBjFjxgwA+vfvz7p163j66acl2WlBr776Ki+99BILFizg5JNPZvXq1UyePJnc3Fx5n0WjnbDdWB06dMBisbBr166E7bt27SI7O7uVokpukyZN4l//+hf/+9//6NSpU2uHk1RWrlzJ7t27GTBgAFarFavVyvvvv8/jjz+O1WrFMIzWDjFp5OTk0Lt374RtvXr1YuvWra0UUXK68847+eUvf8nPf/5z+vTpw9VXX82UKVN46KGHWju0pFXz3ZeM34snbLJjt9sZOHAgixcvjm8zTZPFixczePDgVows+SilmDRpEq+//jrvvvsuBQUFrR1S0jn//PP5/PPPWb16dfwxaNAgxo4dy+rVq7FYLK0dYtIYMmRIrakTvv76azp37txKESWnyspKdD3xK8pisWCaZitFlPwKCgrIzs5O+F4sLS1l+fLl7f578YTuxpo6dSrjxo1j0KBBnHbaaTz22GNUVFRw7bXXtnZoSWXixIksWLCAf/zjH6SkpMT7fv1+Py6Xq5WjSw4pKSm1aqA8Hg/p6elSG9XCpkyZwplnnsmMGTP46U9/yieffMIzzzzDM88809qhJZXRo0fz4IMPkp+fz8knn8xnn33GH/7wByZMmNDaobVr5eXlbNy4Mf588+bNrF69mrS0NPLz85k8eTK//e1vKSwspKCggLvvvpvc3Fwuu+yy1gu6JbT2cLDW9sQTT6j8/Hxlt9vVaaedppYtW9baISUdoM7HvHnzWju0pCZDz4+df/7zn+qUU05RDodD9ezZUz3zzDOtHVLSKS0tVbfddpvKz89XTqdTnXTSSequu+5SoVCotUNr1/73v//V+e/xuHHjlFKx4ed33323ysrKUg6HQ51//vlqw4YNrRt0C5BVz4UQQgiR1E7Ymh0hhBBCnBgk2RFCCCFEUpNkRwghhBBJTZIdIYQQQiQ1SXaEEEIIkdQk2RFCCCFEUpNkRwghhBBJTZIdIYQQQiQ1SXaEEKIBNE3jjTfeaO0whBBNIMmOECeQ8ePHo2kaM2fOTNj+xhtvoGlaK0UVo2lanY+FCxe2alw1du7cyahRo1o7DObPn08gEGjtMIRoVyTZEeIE43Q6efjhhzlw4EBrh1LLvHnz2LlzZ8KjtRcgDIfDAGRnZ+NwOFo1FiFE00iyI8QJZvjw4WRnZ/PQQw/Vuf++++7jBz/4QcK2xx57jC5dusSfjx8/nssuu4wZM2aQlZVFIBDg/vvvJxqNcuedd5KWlkanTp2YN29eo2ILBAJkZ2cnPJxOJwATJkygb9++hEIhIJaE9O/fn2uuuQaA7777Lt4SdOaZZ+J0OjnllFN4//33E+6xbt06Ro0ahdfrJSsri6uvvpq9e/fG95977rlMmjSJyZMn06FDB0aOHAkkdmPV3OvVV1/l7LPPxuVyceqpp/L111+zYsUKBg0ahNfrZdSoUezZsyfh/s899xy9evXC6XTSs2dPnnrqqfi+muu+9tprnHfeebjdbvr168fSpUsBeO+997j22mspKSmJt3zdd999ADz11FMUFhbidDrJysriJz/5SaPeeyGSmSQ7QpxgLBYLM2bM4IknnuD7779v8nXeffddduzYwQcffMAf/vAH7r33Xi655BJSU1NZvnw5N910EzfeeGOz7nGoxx9/nIqKCn75y18CcNddd1FcXMyTTz6ZcNydd97J7bffzmeffcbgwYMZPXo0+/btA6C4uJhhw4bRv39/Pv30U95++2127drFT3/604RrvPDCC9jtdpYsWcLTTz9db0z33nsvv/71r1m1ahVWq5Urr7ySadOm8cc//pEPP/yQjRs3cs8998SPf+mll7jnnnt48MEHWb9+PTNmzODuu+/mhRdeSLjuXXfdxR133MHq1avp3r07V1xxBdFolDPPPJPHHnsMn88Xb/m64447+PTTT7n11lu5//772bBhA2+//TbnnHNOs95vIZJKay+7LoQ4fsaNG6cuvfRSpZRSZ5xxhpowYYJSSqnXX39d1fxzcO+996p+/folnDdr1izVuXPnhOt07txZGYYR39ajRw919tlnx59Ho1Hl8XjUyy+/3KDYAOV0OpXH40l4bNmyJX7Mxx9/rGw2m7r77ruV1WpVH374YXzf5s2bFaBmzpwZ3xaJRFSnTp3Uww8/rJRS6oEHHlAXXHBBwn23bdumALVhwwallFJDhw5V/fv3rzO+119/PeFezz33XHz/yy+/rAC1ePHi+LaHHnpI9ejRI/68a9euasGCBQnXfeCBB9TgwYPrve4XX3yhALV+/XqllFLz5s1Tfr8/4Rp///vflc/nU6WlpbXiFkIoZW21LEsI0aoefvhhhg0bxh133NGk808++WR0/WDjcFZWFqecckr8ucViIT09nd27dzf4mrNmzWL48OEJ23Jzc+M/Dx48mDvuuIMHHniAX/ziF5x11lm1rjF48OD4z1arlUGDBrF+/XoA1qxZw//+9z+8Xm+t8zZt2kT37t0BGDhwYIPi7du3b/znrKwsAPr06ZOwreb1V1RUsGnTJq677jr+3//7f/FjotEofr+/3uvm5OQAsHv3bnr27FlnHCNGjKBz586cdNJJXHjhhVx44YX86Ec/wu12N+h1CJHsJNkR4gR1zjnnMHLkSKZPn8748ePj23VdRymVcGwkEql1vs1mS3iuaVqd20zTbHBM2dnZdOvWrd79pmmyZMkSLBYLGzdubPB1a5SXlzN69GgefvjhWvtqkgoAj8fToOsd+nprRrMdvq3m9ZeXlwPw7LPPcvrppydcx2KxHPW6R3ofU1JSWLVqFe+99x7/+c9/uOeee7jvvvtYsWKFjNwSAqnZEeKENnPmTP75z3/GC2ABMjIyKCoqSkh4Vq9e3QrR1fa73/2Or776ivfff5+33367zgLoZcuWxX+ORqOsXLmSXr16ATBgwAC++OILunTpQrdu3RIeDU1wmiorK4vc3Fy+/fbbWvcuKCho8HXsdjuGYdTabrVaGT58OI888ghr167lu+++4913323JlyBEuyUtO0KcwPr06cPYsWN5/PHH49vOPfdc9uzZwyOPPMJPfvIT3n77bd566y18Pt8xj6e4uJiioqKEbSkpKXg8Hj777DPuuece/va3vzFkyBD+8Ic/cNtttzF06FBOOumk+PGzZ8+msLCQXr16MWvWLA4cOMCECRMAmDhxIs8++yxXXHEF06ZNIy0tjY0bN7Jw4UKee+65Wi0sLe03v/kNt956K36/nwsvvJBQKMSnn37KgQMHmDp1aoOu0aVLF8rLy1m8eDH9+vXD7Xbz7rvv8u2333LOOeeQmprK//3f/2GaJj169Dimr0eI9kJadoQ4wd1///0JXSS9evXiqaeeYvbs2fTr149PPvmkyXU9jXXttdeSk5OT8HjiiScIBoNcddVVjB8/ntGjRwNwww03cN5553H11VcntHTMnDmTmTNn0q9fPz766CPefPNNOnToAMTqf5YsWYJhGFxwwQX06dOHyZMnEwgEEuqPjpXrr7+e5557jnnz5tGnTx+GDh3K/PnzG9Wyc+aZZ3LTTTfxs5/9jIyMDB555BECgQCvvfYaw4YNo1evXjz99NO8/PLLnHzyycfw1QjRfmjq8M55IYRoh7777jsKCgr47LPPas0TJIQ4sUnLjhBCCCGSmiQ7QohjbsaMGXi93jofbWG9KSFEcpNuLCHEMbd//372799f5z6Xy0XHjh2Pc0RCiBOJJDtCCCGESGrSjSWEEEKIpCbJjhBCCCGSmiQ7QgghhEhqkuwIIYQQIqlJsiOEEEKIpCbJjhBCCCGSmiQ7QgghhEhqkuwIIYQQIqn9f9f5kPfO/DBQAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAG6CAYAAADZHEiPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd4AkV3Wvv4qduyfHnZnNebVa5RxXSEJgBDJIgEkCCzAyyTY2tsGYZBsbP0x4Fn7YGIQBEUwSQoCEkJBQzlrtanOcHDqHSvf9cbt7enZnNk7aVX1Sb1e4VXWnurrq1+ece44ihBD4+Pj4+Pj4+PjMOOpcd8DHx8fHx8fH5+WCL7x8fHx8fHx8fGYJX3j5+Pj4+Pj4+MwSvvDy8fHx8fHx8ZklfOHl4+Pj4+Pj4zNL+MLLx8fHx8fHx2eW8IWXj4+Pj4+Pj88s4QsvHx8fHx8fH59ZwhdePj4+Pj4+Pj6zhC+8fHx8fHx8fHxmCV94+fj4+Pj4+PjMEr7w8vHx8fHx8fGZJXzh5ePj4+Pj4+MzS/jCy8fHx8fHx8dnlvCFl4+Pj4+Pj4/PLOELLx8fHx8fHx+fWUKf6w74+Pj4+Pj4+EwLz31i5o9x2okdwxdegOd59Pb2EovFUBRlrrvj4+Pj4+PjcxQIIchkMnR0dKCqJ4cTzxdeQG9vL11dXXPdDR8fHx8fH5/jYN++fSxYsGCuu3FU+MILiMVigPzg4vH4HPfGx8fHx8fH52hIp9N0dXVVn+MnA77wgqp7MR6P+8LLx8fHx8fnJONkChOaU4foAw88wKtf/Wo6OjpQFIUf//jHE9YLIfj4xz9Oe3s7oVCIjRs3sm3btgltRkdHefOb30w8Hqeuro53vvOdZLPZWfwrfHx8fHx8fHyOjjkVXrlcjvXr1/OVr3xl0vWf+9zn+OIXv8htt93Go48+SiQS4eqrr6ZYLFbbvPnNb2bTpk38+te/5s477+SBBx7glltuma0/wcfHx8fHx8fnqFGEEGKuOwHSTPijH/2I66+/HpDWro6ODv7sz/6MP//zPwcglUrR2trKf//3f3PTTTexefNmVq9ezeOPP85ZZ50FwN13380rX/lK9u/fT0dHx1EdO51Ok0gkSKVS0+9qdJyp1ykKaNrRtQXQazzDp3Jb14XDXZbzoa2myc8PwPPkaz63VVX5mi9thZDneD63PZbv53xoC/Pvu+zfI+S0f4+Yev0Jcsjz+7lPzNixqpyq6SR27dpFf38/GzdurC5LJBKce+65PPzww9x00008/PDD1NXVVUUXwMaNG1FVlUcffZTXvva1k+67VCpRKpWq8+l0eub+kP/6r6nXdXfDNdeMz3/zm1PffNrb4dWvHp//9rehxvI3geZmqP3bv/c9mMr9Wl8Pr3/9+PyPfgRjY5O3jUbhTW8an//Zz2BoaPK2wSC89a3j87/4BfT1Td5W1+Hmm8fnf/1r2Lt38rYAtRbN++6DnTunbnvzzeM3y9/9DrZunbrtW98q+w3w8MPw4otTt33jG6ESzPnYY/Dcc1O3ff3r5XkGePppePLJqdu+9rXy8wN4/nl49NGp277qVVD5cbF5Mzz00NRtr7lGXm8A27fDb387dduNG2HxYjm9ezfcc8/UbS+7DJYvl9P798Pdd0/d9sILYc0aOd3XB3feOXXbc8+F9evl9PCwvC6n4swz5QsgmYTvf3/qtqedBuedJ6ezWfjOd6Zuu3o1XHSRnC4W5fdzKpYvl+cC5Hf4cN/7xYvlOa7g3yMk/j1CTp/K9wgfYB5nru/v7wegtbV1wvLW1tbquv7+flpaWias13WdhoaGapvJ+Id/+AcSiUT15aeS8PHx8fHx8ZkN5q2r8fe//z0XXnghvb29tLe3V9u94Q1vQFEU7rjjDj772c/yjW98g5deemnCvlpaWvj7v/973vve9056rMksXl1dXb6rcb609d0I09/WdzUee9v54D707xGTt/XvEdPf1nc1Hj2nqquxra0NgIGBgQnCa2BggNNPP73aZnBwcMJ2juMwOjpa3X4yAoEAgUBg+js9GfoxnGK/raT2QXMytD2WG4vfVqIoR39NzIe24LedT23nw/fev0cce1sfYB67GhctWkRbWxv33ntvdVk6nebRRx/l/PPPB+D8888nmUzyZI0//De/+Q2e53HuuefOep99fHx8fHx8fA7HnFq8stks27dvr87v2rWLZ555hoaGBrq7u/ngBz/Ipz/9aZYtW8aiRYv42Mc+RkdHR9UduWrVKq655hr++I//mNtuuw3btrn11lu56aabjnpEo4+Pj4+Pj4/PbDGnwuuJJ57g8ssvr85/+MMfBuBtb3sb//3f/81HPvIRcrkct9xyC8lkkosuuoi7776bYGVUCfA///M/3HrrrVx55ZWoqsoNN9zAF7/4xVn/W3x8fCSeJ3CFwBMCIcATAtcTeEKmiamd9gSyrTceK6MoMuZTqZ1HKb8DB88z3r7SFoXq+qn2Nem+D97XCWbDroTQCgGiPC+q82JCiFDtsoPbUm431XqBXCgOt695Ec378qT2mp7sepZvyiHX7MHXc6X5ZPuqHOew+zqJsrufysyb4Pq5ZEbzePn4zEMqoqciiqoCSQiEJ6er85O0c1yB43m4nsDxKtNIUeUJvMoxKttQFlvlfYNgUXOEdMFhJFeiIo2kgFBojJrEQzq7hvPAuCiSbap/hHyaiEMfQJWNqg8fah5gNTuc+ABUDmlbXoxafmi1x4MUHIdc0aseqyJyIgGNsKHTly7Kv5tx0SQoz1c2gMlFU03b2jZV4VUr2GrEYqW9gqj+W1mzqClKpmAznLVAkee3QmPUJB402DWcO/wFM8ssaoqQLtqMZK1D1p1UfVYmXs+7y9dz+eNDfpo1F1LNjwQ46Jqe7HquLK++H3o9w8RrurJeVeX69kSQou2RLcnBDbXfoWhAJ2RqDGXGB6PNB8XQHAtQsFyyJYdsJs1Fa3r84HofH5/ZxfMEJcejaLsUHRfbkcLJ8TxsV+CWhZHjeTjuuOiqCDBRFloe4+Jo/GHOhGn5rpQFiVIVJbXvmqKgqgqqXttufBrAUDVO746yb6RQvemDvNl3NYbYN1KgIxE66nMwwUJUM0/tshorU1X0VKfH/1CBFKDioH2P5SxWdsTZ3JtmNDf+gG2ImCxqirKlL03RcidYFirWBrX64FMmWCaACRaLCRYMJlopaq0YR4uhqqzvrjv8ea47+vM8GxiayumnYJ/bp+l6hkOtprXX8/g8VTFfsUBX9lVexWhWXtMvHkgzlh+/puvDJl0N4UOWzwsErO6UfU7m7bnuzTHjCy8fn5MMy/EoOi5Fy6Voe6SLFpmii+W4WI7AK5tPKq4FlfFft7XiR1UUFHWiIDpYTM0k2ZLDvpFC9aGULTkTHlK1D6/DMe7KLL974+7LWjdnbZvKelccuu5I223pz/Cq9R38+OkD7BzOsqgpwrmLG/n+E/vmnRWmwqKmCK/dsIAfPb2fXcO56vz3Hvf7PJ2cjH0GeL43dUi/T+Sargi7inW7+gOnat09eFntXKWNV7UQV9cJDw/5g3HZnjrecu5K7n3xhRP++2cbX3j5+MxTXE9IC5btUnQ88iWHVMGuzjuuQFEEhqph6iphU6curFYtSvMFTwiyRdn3ZMEmVbBJ5a3qfHdDmFuvWMqju0d45dp2/uL7z/HIzpGq8JkohKT4qRVFc8FPn+vlS2/cwB2P7+OV69q55fYn+N224Tnpy9Hyixf6/T7PAidjn+Hk6vd7Ll3Mg1vTPLj1KT5z3Ur+bK47dIz4wsvHZ44RQroJS7a0ZOVLDumiQ67kYDkelushEKiKSkBTMXWVhrCOoY1ng2mKmRQtb1IrUTSgEzRVhjPT5y4o2q4UUXmbVMGqTleFVcEmWRZXqYLNkfRRQ8Tk3Zcu4av37+BHTx+Ytn5qqlJ2e5bdn4qCVrbyqWrZLaqOL9NqltW2rSxXFWk9tByXB7cN8e5Ll3DncwdwhcMFS+vkQWvclYciapscshwOjqGZrL2YMCkOaTfue6qN9crZGX67tZd3X7qEHz+zm5ydZsNC8zBnb5K/YsrP8XB/0WE3PCxpa4z7th7g3Zcu4X+f2UnKGuW07iNlQZrqHJ9IW3HIW9UFX+MWFgLGikPc+9I+3n3pEn749A5Gi0Osma/FUWr+8NHCEPduKff7qR2MFoZYs+DQTSZEoSkT52vjzg5qKeeVmg1r/j3W34olN8//ffMZ/Os9z/Hg9inKTB0vJxi/dTT4wsvHZxZxXI+CLV2ERVsGh6YLNiXHw3I8POEhUDA1lYCuEg3qmJp6RLdf0fImddHVuu6O1K+qYKoRT1JY2SQLZQtVeb7kHCZT9RREAhp1IZNEyCARMqgLy/fTu+q4fkMnLxxI8fYLF7K8NcZgplQWSlOIILUmjuwgwQQCVRGglGPYKJ9X4ZVjXbyyy8Irr3fH23kernBwhYcnHFzh4gkXVzh4wi3H1Ahao/Vc1NPCpsFdXLW6k0Ckl97MUG3kf02AvKh5YJcnlPEHdXVBed0hAfOKcpCIGm+tVPepHBRsrXDww60j1sQlCzvYNLiLa9d2Eo0N0ZcZqTnixP0fuvDgx+hkc4c8aifb0yS7nrxdW7SBC7oXsHloD9et7aIhnqY/OzbxSEr18X3YY48fo/a8TDJ/hP1N1delje2kijJ4/qwFPWwb7uXVp/XQ3iBjkBLBMNtHxkWCqA45ZcLgiYkjKw5aPh6sOH7t1OxDlAfHyGDNmnZezXTtMYCVizoYS0l34vlru9m84wCvWttNo10EBerjEbbsrPkxdPCff6yqabLmkyxTlMmXy0u7xFNbtvLX16yf2VrLM4QvvHx8ZoCDg93zJZdM0SFnOZQcF9vxAAVdVTB1KbLiQaMsHI6dg+Ol0kUbXVXorA/xu63DvNSfKVulrIOsUvL9aOOpajE1tSqexoWUSV3IIFFeXldeFw8ZEyx0IB8SkYBKT2OUncNpCnaBXcMOFy9r5KWhEZL5fFmIlsVSVUAJHOFQ8hw818P1XFxcXM8tiyivPDhAPnHktFcVV0KIsmJRUA4RSBXxoqIIeeeXg81UEHK6M9HERT3ruG/HJnrTY+wbS3H5ktP57Y4X6c0kD/n9P/6rvuazPRYD0LEaiw5qv6a1E1BY29bJAztfoi+TpDeZ45LFp/NC/wFAsGngwOF2MetM1uf9YxkuWbxmyj4fP7XWRnGo8JlEDE0mkA7YKS5fswoB3PfcZnqHx9jZMMLl61cB8JunNzMyWJp8XxO7MekxgRp9Lsana5X6wfpXqdFFU7z3jaW54qzVIOA3T71I7/AYe4ZHuOKM1aDAb558kZxwDn9RHMM6IUT1u5Dz0rjCIaIk0BSNYfcARZGnUW0npEbpc3Yx5g7Soi2gSeukz9nFHmcLjVo7lwYu50BmP6Y3S1VophFfePn4nCDVYHfbpWjJYPdsyaVkjwe7q4ocXRbQNRJBE0NTpiV43fUEfakCe0by7BrJEQ/q3HrFMu7ZPMDrz1rAO7/x+FHHaagKxGvEUiJkTiKsDOpCJvGgjqkLhCJFkXy5VeuSJ1w8YeOJEg4uw0UXx7NxcHA9F8dzaI7EWNG+hvt3P0NfdqicdsJlX7aRSxZu4L5dO+nNDKEoSnlEVzkvVcW/I6BafENRx+dFZfC8gkAru+OU8f9qfkof/LxQy8MG1eoeQFErgw7gnK6ldNU18ujerRScEg3hMCW3xJMHdnDF0rX0pkd4pm/XCX+u00nQ0Fjd0sWLg/vIOzkSIYO8k2P7SB9ndPbw4uA+EiFjrrs5gcn6nLOzbB8u97l/H3FDn2jBKV8bE6xDB1t5BIhyihPKlqFai1C1DRP3AYdamGp1DoBhVkQ6mCWFYEnFtNWqZTMgVMKKVrm4JLUCqTI/qXhSJggWR9gIIdAVHUVRKXlFXOFgqgF0xaDo5bG8EqYaJKiGKIk8OTeDqQSI6XVYXpFRZwhdMQiHmvA8B0VRyWmDxCJhwkEND5enBp5CNQxiEYPnc4+RdIZZHT6TRqOV57OPsqe0jeWh9SwPr2NL/mmezDxAT3A5FyWuZU9xG3eO3E6D0cIbW24l7Yzx5d6PAfDX3V8G4Ct7/x5LlLi149PUGc18r++7HLB2cWPzn9ASXs99w4/wTOEhrqi7nkWJhbyQ3sPDuZ9zdv1FXHHOn/Bfj3wfz0ge/4U2R/jCy8fnKDlcsHvJlcHuINDLAits6iRC6nFbsQ4mVbDZPZJjz0iO3cNSaO0dzWMd5PZrigaq8VJP7R2jsy40UTwFDeIhjXhIJxbSiAVVYkGVUED+hJaiqSygcPE8F8fLVUVT0nMYzTllkSUQuOWh6uPuO5j4UBKAqqiUx1giBCwyW7lvx3PsS40ihIbwFBTFYHepgONsoSnSwoExq7w/ZTxlhTqeUmHCaMxKiouKKxJVvqvSsjghpYU6cRtFUWpGc04c4Vk5lqooNERMNFWhqzFMQ3xctkWMIKoqhevS1ui0fN4nSuVBHdZctiW3saJ5MZGQR1+2D0VRWN7UzkB+gHDARQsOYaomnbFOHM9hX2YfAAvjC1EUhb3pvbjCpTPaiamZ9GX7KLpFmkPNRM0ow4VhMlaGukAd9cF60qU0I8URIkaElnALBadAf67/iMdwHIf2UCf1AYPnezexsnU5ViZDPlmCkMfSxlae3fkiCaMOkhn6SweIaQm6zB4yTppthc2YSoA14fVYXoknco/g4XFR/HIAHkjdiyVKnB+/hJgR5ffpBxhxhjgrfh4dwQU8lXmU7fmtrI2extr46WzOvcCjyYdYGF7CFU0b2V/cy08HfkSD2cAbF7yVnJPltl1fQiD414VfYMe+PfzgwHf54DnvZ2A0ysLmBXzp8a/wi3138d5V72Phgm5+1Pt9Hhl9iKtarmFjyzX8bvi3/G/vHaxPnMHbe/6YlzKb+eLOf6E90MnfrvwkKTvJX7zwfgD+Y8M3Afjgc+8l52b55Kp/oj3Ywee2/ivbci/xnkXv58y6s7l97x08MPIb/qDtdby6/bXcO/Qg3+29nbPrzuWWRbeyObOL/9j3j3QGF3Dd2v/k6Z0v8PV9/8E/X/LP5NIlWuob+PD9H+a+/ffx1Qu/RlwP8+3h37E9t5WV9T101S3it9ndPJX9HQuizXQ1nMtWN8eOoRepD8boagiTzeiMDAwQ0HW6GsKkbRvngHS7LqgPoSgKgQMmwvVoSRi0B8N0pFpxlRLt8Shd8TArnIXYaprFiXa5T2MpJfUKzmg7nR379nJ6ywoWNi3gfbxvlr9dJ4YvvHxmjbGcRcF257obx4QAbMclVXDIl1xKjjtpsHvY1A9xpR0vtuuxfyzPruE8u0dy8jWcY2yKfDWmrrCgPkhXg8nlK5q56eweXhoc5h0X9XDWYpWB7FiNpSmPJyaKpqwQZIoeXtGrutuqKTirCUrlaEkVtTwtRZShqiiYcl5RUYSKh4wZcz1RTqoqj+WWbQSVmCxNMQnqQZojcUxdIaBrZREEjaEQ0UCAFa0xKXrKMVxQDnBXlHHhVZNTTJnh6rO9uV5SVooF0QXsz+4nZ+eIGBEWRBewL7OPnD1x6L3lWliuRUgPoakag/lBcnauKlj2pvfSn+unPdpOV6yLPek9vDD8Aq3hVs5qO4u+bB+/3P1LYmaMG5bfQNbK8n+f+b84wuGvz/1rAD7+0MdJl9L81bl/RVukjc888hleHHmRD5zxAc5pP4d/e/rfuHfvvfzl2X/JTStvYjg/zLL6ZXzpmS9x9cKreXHkRT758CfpjHby+cs+T97O89HffRSA71z3HQA+/cinSVtp/vnSf6Yr1sX/e/7/VY9xfsf5/HT7T/nVnl9xw7IbeP2K1/NI3yP81wv/xbnt5/KhMz/ErtSu6jH+5dJ/IVvMVY/x9Qu+hWcLPvXUp8i4Gf6m+zPkdMG/9f4jTQ31fPHSLzIcTlHfFOVPf/unNNqtvKrldbxQfJo7+m7nzMQ5vLvnVoZyB/ivwf9Le7CTMzvOwLJtvrPn6wBcueBKFEXhF3t+RNbNckbLGTSGEjze/xBbsy/RE++hJ9TN9uGX+O3YvcQCMdabGxhK9fNI8iFsLK7UriLn5Xgm9STtwU4AXOGyJfsiAAcGB1AUhbv2/pwF9R28Y+076B0a5MHeB+kr9HJgtI/2+m7ybo5Re4S8K+PBHGGTdbMUveL4deNZWEIOhql1iFfEdMXyVf2RU52XP8I0RStbw+RyQzEIaWEM1azOJ/QEUT1G79AgOafA9uEd3L3zl9y46g30Dg0ymkmxKrqGkbEUzYEW1sbX0xpoo95oBGB9YgP1Zj3LoysBWB1by80976bZbAGgJ7SQv1j2N4RUmbssqsf4xzX/B0MZt65+fu1XJlj+b1k0UUBtLIvTCqtia1gVW1OdP2vJep7e5KeT8PGZFM8TbB/KMpwtMU0GoFlEBrubmkokoNOgTx7sfnAAdzV4uxyUPR6v5FaXj2Rt9o4V2T9SYt9Yif2jNgMpZ8pRgA1RaKtTaElAa52gNQGJsIei5uiMhbls0SLu2/UEfZkhdqebuWzhGYzsHmI4O3JE0STXH+bDEeAIgVtOyOq4Ml+W41WieT0UFDQNNEVFVxUCQYWgbhDUNXRNQVfV8rtCPAjr2ldUBUyFipDZn91PffRIo+6OH9u1KbpFwnoYTdU4kDlAspSkM9pJXbCOLaNb2JXaxeLEYlY0rGDzyGZ+t/93dMe7uWH5DXREOrhr511sXLiR/dn99Of6+fP7/xzbtfna1V9DVVRuvffWCYLltmdvmyBY7tlzD7/a8ytet+x1dK3o4qXRl7j9xds5u+1szmo7i2Qpyd2776Y90s4Ny28A4KnBpwBwPbcq5pKlJCW3VP6YBK5wsTz54DZUA03R2JHaQbKU5Ky2s/jOlu+wN70XAF3VaQg2kAgkAPkQbwg2TDhXdYE6dFVHUzQAYmaMhmADpiY/n7ARpiHYQEiXD9mAFqAh2EBEi2LnPURBpd6sJ0qc1G6LdMmhTqsHINNno6oKca0OTdExgzpmWCU+GmPz0BZeGtzG+gXreGDXg2wf3kF38xI0U6EukKA71ENToAlFU4jqUZZHV9JkNgNgqibrE2egoiLKzuaz6s+l5JUIarKfZyTOZkGom+ZAKwBr46cR0aIsi64AYElkGX/YcROtwXYA2oLt/FHXO4hoEQBCWph39fwJao3i/7v1n+KyFRexd6CXjsYWPrD6Q+we20d7UNYPvqb1VVzUeKm02gHn1J/Piujqap8WRZbw2dWfx1ClQInqMT6/9ssTgv3/YfXnAQWzLKQ+vPSvqq50gDd1vZU3db212v6Spsu5pOny6vzS6HL+Ze2XwPPAsoi6Jl85/UssW7qM3gMHaGlp4W+WfYRUMgkWYOW4LnIlRMsu/mye07TlnBZdLneYzdNOHe2BM+R8Lk8YheVKt2yfy6MCjYTleksO9jmaQRyTkUgkWNbdw7ZtW0kPz8+UF4fDLxmEXzJoNsiWHO7fthtddwjoM2yWmGYqI9kqsUtuebRbJajbE3Ik3OGCuou2YCDlMZCCwaTCYAoGklC0J7/JBA0psNrqFNrrVdrrNNrqNIKGWo5TUsuWHjm/oWMxHfFGHt+/jaFcqrqf5kiCsxcsO6rYI2mhKufJckVVZMlgdGkJ03SZnkFXFQxNJWiomLqGoSkYqoqujQsrXVWPaIGqFVm11qODxVjWypKzc8TMGGEjzIHsAXqzvbSEW+iJ97A7tZsnB56kJdzCxQsupjfbyx0v3UFEj3DL+lvI23n+5sG/oegU+fKVX0ZTNd7z6/eQLCX5x4v/kYWJhXzmkc/w/PDzvO/093Hxgov5xqZv8Itdv+A1S17DG1e9kd/s/Q3/8dx/cEbLGXzknI9gqibL6pdxx0t3sLZpLQWnwDvufgcA37z2m5iayfvueR8jxRE+c9FnWFK3hC88+QVeGn2Jt699O+e2n8tdO+/i0b5HuXjBxWzs2cim4U3ct+8+FicW88rFr2S4MMy9e+4lEUhwzaJrcDyHB/Y/gKmanN9xPpqq8dLoSwD0xHsI6kHGimMIIYiaUUzNrFpJKuc2WUpSF6g75BwfL54jyi857Voebglcy8NzQbgyrgoFVBUUrVzRQANVO/xDNhGNsay7h8GxUVrqG9i2dw+pbOaE+zxTVPpb6efB8zOG54Hrld9dGVTmVpa54ApwHXBccGywXblOyG0Sra0su+h8tt3/IKnePhId7Sy79KLyfP/Uxz2CRhLl8SrikNEI5fsqlUEt40uZsGx8ae1WPevWkx4ZYvTAfnL5Aq99/4emr2SQn07C51QhXbDYl92NYeZRywHRHbEmGsMJnh/YMce9m8i61iWM5FP0Ziq/pMZHvnXGmmkOJ9g0uKtsOSq7vCrWIqGQzCn0JxX6kx59SehLeoxkBNVA8BpUBVoTGu11Oh31Gh31Op31GonwkVNI1HKkX08C6cKs1FasiCyv/EAEGfekKwqapqBrClFDJ2ioGJp86ZqKpsrSKLoq46cqOJ4cFamrOslSkv7cWDW+ZzA/yIsjL5IwE2xo3cBwYZi7dt6FqZnctPImdqd30xZu45mBZ3jVklexP7ufP733T+nL9fHx8z/OkrolfPnpL/PM0DO8Z/17uKzrMn6797f8bOfPuG7xdbxl9VvYk97D97d+n/XN67l4wcUUnSKP9j1atdwYqkFfTg7lL7klwmqYoBaszgM0h5vpjHYS0OQoqUWJRZzfcT5dcZmEaUndEm5ccSMd0Y6qiHlh+AVeu/S19OZ68YTH5y75HIZqoKvy1vr5y6TlQlOlpeiDZ35wwufyysWv5JWLX1mdX9O0hjVN466UplATN668sTqvqzpXdF8xYR8rGlZMmK8P1k+YrxVdFbGVtbOTCtypEJ7Ac8siy5Yiy7U8nKJXFlwgXFENEld0BVUDzZTvinrsP7YOFi2pTGZ2RMxxMpnISmbSvLRnF8t7FrF1zy5S2UxNCpGa0ZQVWeGVxVP5JVwP4TrgCRTXBU8gXBccp/wqT7vlUQIV0eV5UPPdrh5JUxHlkSJCAaGprDz3fFq7unn+kd8zkh6CqEE2PUT+sd+z/vKL6d+/l01PPlYzcmGy4ZSMLxcc0mbCPZLxmM0KKuMDYuRQGKrtKwmhVaUcioBKIBwjaglEo0ogfPhUOfMRX3j5zAp5q0DJy9Nk1mOoJs2RBGctWMoT+7fTEGye6+5NoDncyPq25Ye1HtUF0uSKHr1Jh94xl94xh94xh76kw1RhbPGQKsVVjchqTUgX3InydO8u9o4Nc273Mn63cyv7U6O0xeo4s3MJ927bRF8mhaYqCBxcSoR0g5ZQDMvL0l88QFgPsqx+GUU3yyN9D6FrGtcsuAbXc/l/z/8/ik6R96x/D0E9yOcf/zwHcge49fRbWVy3mH994l95rP8x/njdH3Nlz5Xcvetufrz9x1yz8BrevvbtbB3bym3P3sbaprVsaN1Azs5x1667SJgJblp5EwWnwPe3fl/GxGR7ydk5LM+i5JYoOjLuJagHCWgBvHIMS2uklWX1y2gMyniTzmgnG7s3VkVSc7iZd6x9B1FDBrrrqs7fnf931f0A/OMl/zhBFN1y2i0TzuklCy7hkgWXVOd74j30xHsmiBhFUejN9Vbnu+PdE/YR1IMn/NmeKJNZEXN2jv3Z/Ycs99yJ1ivP9nCKNdYrZzzlQsVipWqghZXy6M/jv5ZrnS/xaJSl3T28tGcnqVQKPMHo6AgvOTbLFy/lpZ3bGUsnZZ+Fd8g+KlbqynR1fXl5bckauXx8+9p4KmnpLa8spyCZkMqhshyFRCLCky89y3B6dHyd5zGWGiCfTRKPRMkM9Y6LIs9DcVwUV1qpFNuV77J4KorwwAPF8ypSZby3qgqqKgWtqiAUDUXXwDDKoyblemC8aDaUB7eMx4SpKGiaDoqCqZmEjDAqCqqiEtEjKIpKQAvSFGxERYYpVP5etTw6uFJftCbT2fjgF9TqweVAlepY4apIVyvDPMv7qd3fVARsk85zzmRk0x6G901zAtVZwBdePjOO63p0N9SxsL4RhD5BdNUKm/nCgfQoHfFGzl6wjMf3b6MvncRUY5zRsRTHE/zH/fu489lRUoXJk4gaGrTViKuOOvkeDoArHFRFQ1M0cnaGpJ0jLKKE9SjJ0ggjpUGiRpzWUCfJ0ig7M5sJ6xFWJk4nbWd4bOC3CBTObroax/X4Td93cYTNZW1/SLZo8+jgV3nPGW+neUxnddMSbnvma9yx9X94zZIbuKLzCn6y/Yf8aMf/clXPVbxzwTt5pPc5vvTsF1jZsJJPtH+CVCbHt7bcTtSIcs2ia1AVlfv33Y9A8LY1byOoBxnID9Cb7SVrZwGq1p2iK0VSJf4noEuB0xRqYn3zehYmFgJQH6jnD5b8QVUUxcwYb1z5Rl4YfoGVDSuxPIuPnP0RFJSq9eYDZ3xgwkN9Y89GNvZsrM4vrV/K0vql1fmYGePqhVdX5xVFYVXjqgmf0/GIomMRMdNJJX9Zbaxgxf1dnS67tSdMIwhqQV4YfoGRwoh8lnkKnisQDgwHxogFYuzu7ccrgbAVhCMQLsgnoZCjSDVQ9PK7Wl5XFReAVZNzoSosBEp5tCseKEKUXVuiLC7K0wJpufEEiueAK1h68WXsev5ZDjz/nBQh5RitAmBmsrS1tjHw8CPVh3UFqQmUao3S8aVK9aE+Ho9VqUYgR9qiSBGgygmkbFBrd0ytdKguKwuKBYvqyGUEsb5h2QeU8t+t0FAXIxxuwBvaIXPCURm0AmgaiqJBoCykNE1ur2koqiLXc7CsqXbgoLeKhYnJ205C0DHJ7h1i5TnnMLJpD6XRDIGGGI1resjsGcQQKi3h1im3nwvMaIjM3kHZx3lo/TwSvvDymXGyJZeH927l8kVn86On9nPZogV84LtP88jO+RUUWYk4UBjlvGU7+dxrr6AlFuaFPQZnLy9geSXe/78/4bfPJlCD+wl23keARrrV62msS7OTrxPUdd675q9QVYV/efYv2VUo8qdLPkHUrOcrm/6evvw+3rb8gyxLrOWuvd/l2dFHubbrDVzY9gqeHnmEew/8iPUNF3JNx1vYltrJT/Z9nbbgQpr0VWSdNL/t/wmmGuCqrlcRMjVe3PIIjrB527qbaIsk+N7Dv6Jpa4R3rH0Hw4VhtiSfJ2UlcUSBoKERNmUAr+3JEZLxQJwF0QU0h6TVMWbGuKDjAiKGDB5WFIU3r3ozuqpXLUXvXPdOHM+hJ94DwM1rb+bmtTdXhcx1i6/jusXXVc/ryoaVfPTcj1bn44E4b1r1JoBDrEcVAQNMEDAzXbD7aAlpoUPElSc80qU0e7w9BPUgJbc0QRRVRNNUwsgT3rhXZoIVZXxeulzGXduVabU8KAIFNE9DERqKUNE8TS4XKvlRB90L0+pG8RwBDriOFF6e65HxHNrUdjlyNChQVVkDVCm7lioiSbgCxRVgewhXWmqEK2OFFM9FOOVBFmWLDV7Z/eWVI3S8sgUJVYou9HE5oJhSkMiSBBR2DLDk3NMI5lXyw2NQTv8RbmqgY91q+p/aQnfDYoDyYJ1DLSkVoVVNjjXD4cxOMk/rmmUENJP0jt5yXhKV+OJ26pZ3kdreS7R1kho800htri9veBCvkINSCbV9AUokiijkcR57EGGVEKWiXLdkIW23vIPM1n00rukhu3UX0e5WRr/7PRpe+xpGtssYL/vh+3Eef+iQY6pdCwm8Vn6frV/8L+62LQDoF16Oceb5ABS++q9QKh6yrXndDWhLViAKeYr/7wvV5cH3/DmKaeK89AL2L3966DHPO5e2P/sAmb2DNCzrOLGTNgf4wstnxhkrFLh/x272DASr+aV+8fzgLPbAQzGSKFoOryhdUWbTPSh6itLgteCFCXV9DS2yi8K+t+HmlnPf4B382QM/5v9c+m/cckmInFXgQ/d/gJ0lmzec9zbcgOBXg5toC3fzrjVxxko2Tz63B93VUcvDNvNOFssrVUWOVh5GXbCtcqZ4E1MNkrc8hrMlNC9CU6CdiB4naKosSDSxMrOW9kgHqzsSlDydSwuXE9ID1VxRr1/xhwA0RWIEDJX3n/GnXNx5Mfsy+2iPtPOude/ilYteSUNIxjpdu+harlt8XfVX/+rG1fzLZf9SPVPxQJz3n/H+CWfvVUteNWH+4JiiqHl8eatm03p0sMXoYKvRBFFUO18jjBQUBnIDVVeUUrVaSAGULCWrYgioiiJFUdBUaeVUFRVd1dEVHVVV0RU5UlBV1QntK8IKr/wS0nqCq1STfgoXPLviHgTFQw6G8OTLs12E61DXEqaYL1AYzoJjoTglVM9FUQXhhhhmfYT0tn0yAJ4ai5WoDKwoa8LasB6lHK9TFhegl91e6viy8nqlZv6oBbQNIy/upfOcdYdYYUY27cHLuwQj82sgVLZ3DMUwqFvZg6sY7HjsAPWLmogvWcC2B3cxumNoQvtYVBAVGTJJi3TSJaQUqTOyFAseqbZ1AHhDA7h7doJjo8QS6GvWA2A/8TBe7z6aky+iFrMMB7pxhE7Tqg4Sr7+R0RGHsdvvhNQoAMbGV6N1L8TLFbHue67aB93O0Xjvz7E2b2LBl/6Nvc8OsOisZaTvvpu61/wBz//Df5Ffeg4IsPsV3LHyqESlmnCGei1FM5BKOgwNmgT6CtSntmMtP5OxHVJslZJxsAPl6K0KCvpe0LwiC5pt3C3P099yJrYRozvrEGkwGex3SGZbKs2r2ysPDTC0ZitrrlrOkz9+dPo+xFnCH9WIP6pxptnUN8jvdu7gpg1n8rNn9/P6s7q4e4scidUcifDk/mMv/SGEhytcdNUgbQ/RX9xBUIvSHV7LSGk/D49+D1MN84rW95B3UvzPPjnc+uaFX0ZVVL615yMUvAyv6/wbGs0F3NX3RQ4UN3Np09tYHjuP51P3MmRv4Z8v+yTLGpbRm+3j/zz+79QZraxtOItkaYSXUs8RMxKsrj8D27PYkX4RFYOF0VW4nqA3tw8hFGJGE5qiU3ILciSgHsTUNIKGVh4VOB7AXnkdRyzyUY8QnC80BZsouIVq32qFTtSIEtSD9Of6J7UcTSakKlYjhXKW74NcMWo1lca4ONIUrZoXSVd0KYwUXaZOUDU0Vasur91eU7Vxi1NZhFRiYCrCqTJfWVb5Gz1PSLHkCoQrcF2vHLwucG0Px/FwbQ/X8aptK+uhJmZJgCo8EA6K64BbfrdK0rrgOgjHJdgYp/ncNQw98jyFwSRK2ZUVam2g6cwVDD+9jeJIeqI4OlahdBDC8xC5DFgWODai5l1bvBzFMPBGR3A3P4ewLZRgCOM8GU/nPP0ozpYXwLEJr1hG263vJnXvfSSuupKRrX2URjOU7vwB3h45KMe4+Er0084CoPDv/yyF40GYr349WvdivEyK0jdvqy4PvvcvUFQV58Vnse+7+5DtlHiC4FveA4D9+/twnn5MXjdrTse8TLqyS3d8HW9Y/pB00ci94h2s/aNL2PxQL6su7OBXX9vEvs2jh+x7ZXuaju98lD1dV7FjyfW09T3M6pe+xXDjWp5b996jOs/nP/wxQqVRHj/zI2RiPWxwHqTrTX/AU49m2b/HOuL2CZKcH32avBZnV8dVvOJda1CsAmZdjDu/9Ax7Xxw74j5WtqdYfvEitm0usPn5Ap2RMU5r6mUovIQnNh+dO//Kq8OYWx7nob7FpK0Q51wYoq0zxJMPDHOgf+qbYdeqBs57QxetHU3+qEYfnwqW67K8pZElTfX88TefYn8yyZIOi+tWy3ibx/dvo6dpYrmSsdIwaWuM1lAnQT3Mk0MPsje7ndMbz2dRfAX3HPgxD/TexYVtr+Dqrj/kqeFd3L//GyyLr+Hi7g2YeY2+3m1E9Tg9TQauqMc4YBLR47TW24T1KBdYVyKEYElTgoRpcGPsrahoRI04uqpzVs+NnL1gGQDbhntZWN/KZy/5Ox7ft42+bJKgWseaxMW4nmAkayEQNOmrUBWFgu2iawrd8W5CpiZzWOkKhhqXaRfK4uowYRfHzPFajyqByeMlecYDjw9ZVhuULMDDO/R9kn1VBZFQyh4f6Q4ZyA4glInrK6IlVUod4k5TFKUaDF+xHGmqhs64SJpgZSqLKlVRx6drxNBkgul4EGJcSMmXrGLguS6e6+A5Hk5ZSLm2Wx6wViOmKkHgZdGoako5NlqeL11xUXAAGxwXYVt4hSJeqQi2jXBcmSqAsmdS1VB0HXQdJWhglTxGXtxL8/mnMfLMdvLPvUCwpZ6mDcsYeXEvVs5CDA/gbt8Cto3a1IK+4RwArN/8Am//HrAthG2X3y2Msy7AuOQqAPL//HG8wT5wbELv/Qja8tWIoQHyf//hSc9X+DNfRqlvxOvbR+l//gMApbWjKrzcHVtxfncPAOmH7yfYXEfjO9/J6E/vpFR2Q3t7d+FuegYAbfX66r7dzc/JUX4Hf0aXl5Nw2nZ1uwnrx0YnXa40tVSnvYG+ahuloWn8mDu3kh3OEypIi9bz4WvRFvWy4RU9bH2kl8JImvrUtqogVHuWoASDhMIq6AZB8tRndhLVCqjdiwnEmmlqluJYFAqITFJaGM0ASqJO9rdYAMch/M5bCUZNGvZGMUuCyBo54jUW12hqOfLjPRprxTzzBvRACO/RHHufH2L5eR3kBpOAQktnEFE5n0ptFNn4RHSRTCYbiWm0dhjUt3RiLF9CeNShLT0+4vDg7eRk+RoPmBjnXkzrc3liOY9QWD4TGjuiYDqHpPZSFFBNg2DcoPel+RWycjT4wstnRilaLkGzpjiZVmDTyHOc3tGDrhpkiha3bfonsk6SP1r8EUJ6lP/e9gVGSv28YeEH6ImuZMvYC2xOPUFMb6XBWIzn6nh4jBTHSBVsAjSyMLqKpkA3qYKN7tXzqgU3EzUSpArSzfeBVV9AURRsG1K2zRn15cBrV5bi0agDIFcStMcinLVgKSD47Y4tHEiPsWN4hCuWreKsrqXcv2MzA9k0uqYQMXVC5kSrla4paApo2niNQagIElmGp1hjvTh4JFatuDlYBNUuG9+noCvaxfPDzzNaHK26vyqCZqwwRsyMVYWOIpTqe8VCVLEAVQKFaxNCTkyboVRdZqqqjs+rZQtP+b3apixoKvus3Y+iSDeaa3tytJxLNT9ZbVLXylBzTdEmxkEJ+flNtNlXzktltpxVrexFcwGvuqFTXV+7+YSUQ9SMtqvNK1RZ5Apcx5OhTOWcZ57r1XRFnmNVk9n3K4JK09WywFLkA9m2EbaD59iIooMolfCKBUSxhOc6CMdBVParKCi6Li1XuoEaDJUDtKcWjoUXt9D/wK9pe9sb0Z57iLqLN3Lg/R9AuUlac9ytm7B+cDsA2mlnVoWXu/m5SQWJ17N4/Pzkc5CTAy2EXbayGOXEt4YBuoli1rxX4tbidWhrzwDDQG1orO5PW7UOgiEUwyC0agV1N76G5MNPknjFVThb9lMazWBccS36GbKPWs/4oIrAm28px49NRO2QIQZKOErgre8ZX1E+Z9qylROXV1YHxi02+pnnobZLkaG2tFeXbznjPexPRdnQtJe2cJqL1yxh0RVdFIfHWHZuOy3NkPztAGg6SiCI0lCPYhhAHM78JlFgCQBnAX9IGBjfexyYLLC94pmR/Vm/cOLaZatCLFsVmmS7Q6m4cBNtg8S6W0jvGSTS0cDF17UQ626punqPRMcCk44F4wmP6xp0zrkwdlR9qLDqtPCE+YVLgyxcemi7avD/3kFE3dyPHD5WfOHlM6OUHJvf7HyevlGDL71xA/e8VMdVq9v48G8/zJuX/ikL6uoYKfVScHOg5YkH62kMtuDhEjQU4kGD9U1n0xFZwNL4CuJBgwvbL+Pc1guJ6DE0VWd1cCWrG1fWHNWgKXLBcfd5WXMLCgoP7n6e/dkDKJpH0snw6IEi5y3YwIrWBly9H0OTQkIWioaSAMtVwKFmaHSNyGDisgpVQcJEIVT7AiZYcFRUFLVsrSkLnoZAA03Bpgn7qD3e2ua1E+KPDhZcFUtR7TYH7+N4LUNClN1otodjudiWSynv4JRcXEeRwd6UA7qpBGEfnJej8sSWwqcSY1VZVnOwg5ZNHOk1AWWSyUkaTrWtghRPqgqaoZbF1UQXnRCA4yAcG2GPv5xCEbdYlC64ck6mSskXFFWKK10HM4AajkihdRy4O16i8PlPABCMGNJ69N3vUdizn1DZ+qi2dqCfcS7oJmr3wuq2+nmXoC1bBYYpxUL5XWkdD2gO3fIhOWEYKHE5ClWpbyDylW8f9lrRuhYS+pO/OGS5vuZ09DWnj8d0vbCbYk7BenEvjesWMfL8LsTy1RO2Ea68VvRyMPfBCCHwbBtUFe2M8TbCtuUlVNcol08SeeOVSnKQQUsHWnM7QggGBz3CgzliMZVQSz2kHNKJxax6VQ91K3tIbtlDekcv8SUd1K3sQVhnk962Xx6zVEKU91np2xSdnnz+oOVH3L72+yBqr2VZiijSHCW1ZReJFQsZevg5CgOj5FsbaD5vHaktu9BVyI2OHLl/k3Hw538U2ygTv8yTttGbItU+77z34SP3Y57hCy+fGUMIwXN9fexN9bG510RTdW65cD0/3/lzdFUjGimBJnj/mbcS1IIsSsjM259s++sJ+1nWdulBe56ZIsSWa5G38zik2TTSSyhU5IL6pYSNcFWApEsp6kNxTm9dN0GUAIcIFBi3IB0swia8V6wiBwmfkxXX9XAtD9tycW2PUsHBKjjS3WZX6lxKl5qmqxgBFVOzZPLHMpVzMj4uvhzIXXtbVkTNcqrra3Yyvr56PpXJRdQJIoSQVquijVe2Xh3OJQgc5BIMSaF1PMF9B+GNjWA/+Bu0ZSvRV65DXbQMpbGF6LXXUvfmPyK1/QCJ170Oe+EaisMpBKAuXIZZYznyMhmEEKjL1sCy6h85/i4E7piM/xGBGitFJlNRxdVPYuKjc9xkOWF9xUJbPkaotYHG1d0MPfw8xUEZH5VPJvFyORmv9ugmigOjEwX3hA92YnzflOunWj3J9p6A3l6PHTs9MhlBe7vKmWcaLFqk0tFh0Hl61wTRBZDe2QsK1K3sAVUlvatvwk7lpTl+bVfE/Pi1P3G6umWl7lr12i/fb6ZYXt1QOWg9Cp4ZomFJK2M7B/DCdQQW1eEByd3D1K9azNjOAQILFx5yvo7E8UWPH91GXiBEw5I2Rnf04waPzao2H/CFl8+MUbBdhvNJAobKgiaHG89ayLde+AE3rb6eNU1rqjFHG1o2zEn/POFRdIrknTy2a2NqJhE9gqEadMe7iRkxDM2YdNuYefJ92acb4QkcR1qwHMvDKbmUCk5VcHmOh1CQBbENFcNUCYZ1cF1EsYhXLOLlstiZrAy+dqumQiYVUJWZg+ers8rE9od7EFdH45W3V8cFmoJSfrDJ9wkPQkWR1igFUFSE51VdgkyDS/BEsX59J9ZPvgOeh7f3dPSV61BUlYYvfJXG9UsZ+v2zlDIFisNJms5YzvBTWykOp+TfW026qdQIAhmLWJ0unxfl4PNRc744+HxNELuHrhtfPL4u3BwneSCJaGgh0NAyLjkUSPWmiSxfDI2t459ldfeHfuaT6akJbY+wvWO57HphlG2PD5LPlC1rhkqsq4nAqg6CZbEcbo2QHSthheoJrh2vdWkrkEuWCHe1Ywfrpvzs5opg3CQ9UsQNRNGbx3/UukB6pEiguQE3cORA/dmk0mcvGMNonqbxgbMQVF/BF14+M0a6YDFaHGN58wLedNoaPvybv+Kl4T4u6j5rzkbbOZ5D3s5TcGTQZ1AL0hRsoiHYQNSMEjEiE+KbfCRuRWDZHo7lYRUcrIKN4whc2y3HkylohrRiBcI6mq7KX71WCa+Yx8sUKaUziEIeUbIQnieTRAYCKJEIqmHUxFNN4mapWSYOmp+wzVTvMG5VER5VV6YQeFPta6pj1zBdLsHjQWQz2I8/hHHxRhRdl25Cz0NdtgrjfGkpDtRHaVzTw9CjL+DoQYIre0DXSY+WaD57FamhAnZpinILc0TRAtQAWixwyDoHcIqgRiIz2odS3mb7k4Nsf3IIqyAtlYGwzrKzW1myoRkzNPHxmRoqF36eRFjn0/NLuNRyuL5ZRRerOL+uDZjf5/No8IWXz4wxkE3TFotwcc9pfP6eF/j1/Vdxw9mxWcn0XUEIQcktkbfzlNwShmoQNsIsjC8kHogTM2PVxKA+crSdU7ZYObaHVXKxcrYUXLYrcz0JWeRY0xVpxYro4+kSPE8GhqeL2IU8TjqDKBblaDhA0Q0U00Stq5vUraZMZoWYhJPXEXviCCHwdu/AfuBXOE8+Us3xZJx1PtryNYQ//i+obTLo2rNtdE0w/PRWvFg9Rl199dTaJY/0cAEjoM074TWXWAWHTb/rZdezw7iOtF5G6gKsOLeVheua0Az/h5nPieELL58ZwfUEB9JjtMbiPHFgB4/vGQBcAoa861fEV0gLTbvwcj2XglMg7+RxPZeQHiIeiNMUaiJqRIka0Wp9vpcrQoiyFUvGXdmWW7ZiObiOqD5wFAU0XUXTFUJRA1Wb+NARtoPI5nCLRbx8DjedQdhWdQi6YpjSohWNTkv80ssd+9HfYf/mLrx9u6vL1AU9KAH540FRFJSK6MpmEaUi+UAAo6MdPXDoD4z5atGYC7KjRaINQVRNYe+mEVzHo74tzIrz2liwon48fspndqlkC5ZDh5HDi2uKgRfTc93DY8YXXj4zQs5yGMmP0ZsfpTnUzJDyW2Krfs6mwkXArbKNnZs20VUJjC+6RRQUInqEzmgndYE6okaUkB46qQPWTwTP9aouQsd2sYsOpYJbFl2urOQC1WB3M6ih6voh50sIOSLLK5VkfFYmg5fPI4olhOeCqqEGAijhCJoxeWycz7EjsmmUqEwf4O54SYou3UA/8zyMS65CXbh04ihKx8FLJVGCQczFi9EaG1+21/7RIITgoR9sp297iivfvoqG9ginX9VNMGrQ0hPzz92xIECWjfKkO194k8yXBVRFUFXmq69ybplKVfZK6Skh5L5EZb6872x+Dv/g48MXXj4zQjJfJGWlaIzIXDKOKAFg6ubhNjtqPOFJq5YtrVqGZhA1onTFuoiZMaJmFEN9eT38XdcrB7WLstByKOUd7JJbTt5ZHm2myNQHmq5ihsxqiaODEULIPFLFAiJfwM2kEcUiwjo6t6HP8SNcB+eZx3EeuAd33y4in/2KzO5+2dWoLW0Y512KEj10gIeXz+Plc2iNjZidnaiho8vl9HJDeIID25I0dkYIRU3MoA4KjOzP0tAeoWdt45F3ciohkILHsydak5jC2uR6ZVFUFkduWSxVRFFl24pQ8irTUwTCKwCVwR2AojE+WKNcOJzyAA9qBsYoCoj5V5XjSPjCy2dG6E2N4XpFAloCADNzFZk9F3DeK47/hma7NnknT9EuIhRBSAvREm6RgfGGDIw/1X+duo43/rKlS9Aqjosrr+ImLCdP1fSyFSuko0YPn6ZCOE7NaMM8bjYjcw7ZthyhV3YbqhHfbThTCM+T59Z1KX37P6GQA0XB3b4Ffe0GtI4utHIy0IO3c5NJFF3H7OlBb26e1SD/kwXX8djzwggvPdpPdrTEivPaOO3yBay5uIPVF7UTrT/5knEeNZ4Dri1fXvndscApyFdFPHk1lqqpBgzWjGiVQYPq+LSigq4jhVE56bGijosmH194+Uw/tusxkEth6OVs44DlqOCFiQeOfiSSEIKiWyRv57FcC0M1iBgR2uraiJunZmC8EKIqnmrLzNglD7vo4JZL0khxpVR//KnlTOhTuQkPPQ5gW1Jk+W7DOUV4Hu6W57Ef+DVKJEbwLe9GMQOYG69DODbGhVdOyOx+MF6phJdOodXXY3Z0osZmJs/dyYxddNjx9BDbHh+kmJPVLIyghhmU96dI3fy8j1SrWtTkOKvkGK5WsqhWUbBlLjzXQriOfHccsPMIp5zuxHPBtcerMygKQlFBMUDTEIoJKOUfVjWpQQ7pWM30YW41E29DB5WEOGL7g1dOPlvIT1M6iVnEF14+00626DCcGyFijv96zEd/RKRhKzvzr+MCrphyW8dzKDgFCnYBT3gE9SD1gXoaQ40y3YMeOekD44UnaixXFZHlYhfdsuVKiivPqWRxl8lGVU1B0xR0U5flZo7BujfBbVgo4KYncRsaBmoi4VtKZgmRzWA/fD/2g/cghgbkQsNA/OFbUEJhzGtfe/jtPQ8vkwHhYXZ1obe0ohj+Lb2WQtZi2+OD7Hh6CKc8cjMUM1h+TiuL1jdjBGbmWvc8QSln43miqjVkChSk2EGMZxkTolqnEw5tU/2eCxdFOCieU3YLSteg4hZRnCK4NoqQrj8Vr+q9UzRdVhsIaih6QKZwUbXxtGyM1wU9+I5yiKQ5OOtKdUIcNmGqEFPva7LtJiyb7Jg1yxxx8lnR/G+pz7Qzks+SdbK0h8djUFx1DDUwjKLah7SvpHuwHAtFUQgbYRbEFsjAeFMGxp9seBVxZde4Bi2PUrFcJqdsuRovKydQNXXcNRjUDyk9cyxM6ja0LIRlyxus7zacU9y9Oyn8yyfAKX8fQmGMcy+R+bhC4cNuC+BZFl46hRqLYXZ0oNXVzWh/TzYKGYtNv+tlzwsjshA5EG8KsuLcNrrXNBwyOnc68VyPXMoiHDMxQpUyX0o5hKk2Ae24qFIUpSyoLBRhg2uhuOVpOwdWHsWzym1slHJBeunBM0A35A8mLSSFlvbyebQHMyff33ry9dhn3nMglQTFwlTHzff24CtxlEtYe/oqPOGRt/PknTye52FqJjEzRmOssRoYr6vz/9KULr8a65XtYZcc7JJMNuq6QmZv96TVSlHKxZI1mcVd1bRpfwAIy8IeGMRNjsl6cJ6HUFRU00QJhtDiiWk9ns/RIYpFnCceQm3rRFu6ErWzByUak/m3LrkK/azzJxRknnI/Qkgrl2NjtLVhtLejmNMzYOVUIJcqEUkEEJ5g9/MjCE/QuCDKyvPaaF+amPEYUNfxyKctYg1BGjoi6IZWuxJcC9xiOb6qJOetLFh5Oe/Z47FWUB5ubMhi46oOWki+n+RW/5c78//p5nNSUbRdBrJjBIzx0iieJygVm4FmFNVhKD9ESA/RHm6nLlhHzIwR1sPzMjBeeEKWwKkJZrctB7vgTnAVlqMvZA1CXUGriKuwPuWowentp4c7Nobd24eXz6GGI6hx3204H7B/fx+lH9wOxQLa2jMILV2JommE/uozKLGjFwPCcXBTSdRQCKOnG62+YUbqTp6MOJbLg9/fzsiBLK987zrCiQDrr1hAfXuYpgWzU96rIrrijUEaWky0fL9MsW/lpbhyrfLLkSMBK449rSKqDDCiUmj5wuqUxhdePtNKqmAxUhwhFhx3l1iuIND2QxQtT8i8mfXN64mZMUxtfv9SF0Iw2pclO1YaD2ZHDtTRtJpgdk2f0+SKXiaLNdCPOzKKYppojU3zUsQeTKy7BStboDSaOWRdoCGGGQ2R2Ts4Bz2bmqPpc3pnL+5zT6KtP1O6feoaoVhAaW5DW7kGIYR0P8Xrjvq4Xi6HVyigNzVhdnSghE7h0XdHiecJ9m8epXN5PbqpITwZZzS8L0vX6gaWnd06a31xbJdC2ibREqI+YaENbYbsIHJocY2wCkTLFiv/0ftyxv/0faaVoWyaklugWR8fhVWyQY9uRTVShEyDxtDJkSOnlHfIjJZkWZyoMe/EjLBtnMFB7MFBhOOg1dXJmoEnCVa2QOOaHkY27ZkgZAINsery+cZh+7y6m/7/vJ381/8DkU4RfNcH0c84F23lWoIf+Fu0ZauOOZ5OpokYQzUMAosXyWSoL4OYvHDcxLEmz6qv6QqZ0RL3fWsL+ZTFGVe7LDmjhTOu7sYI6oTjs/uDzrFcilmbumaTenMAtX+XdBnG2n3Llc+knDx3aZ95j+cJDmTGUFV3QvJSyxGUBq5DN3O0h9vnsIdHjxCCzEgBzxUYwfn1NRFCSLdiXx9eJosai52UsVul0Qwjm/ZMEDK1omsyq9JcM1mfjdwwjecs5cB730vuoYcAUOJ1CEsmDVZUFX3FmmM+llco4GWzaI0NmB0dM14Uej7hWC7xpjDp4XxVfJXyDiO9WVae185DP9hBPmURCI+nTkm0HHlQwnRjl1xKeYe6hE2dtwt1eBBCCQg0zXpffE4e5tcTxeekJm+7DGfHCOkT8z6VHIGTOY1AQFAfrJubzh0jxZxNNlkiGJ1fXxEvl8PuH8AdGQbDPOktIKXRDCPPbKNxzUKyO/cTXdHDyBObSX3pXydtb77+baiJOtzefdh3/S8ASixO4MZ3AGA//hDus08csp26oAfzmusBsO65E2/3DgD0cy9GX3cGAMVv/jtY1iHbGle9Cq1nCSKfo/Ttr1EE7HVraPvzD5LrHSXSuIwDH3g/uYd+j7Z8NcYlr6i6GY8H4Xl4qRSoCmZPt0yGehJZMqcDq+iSHMqTaAqx+/lhtj85iF1y2fj21fzqa5sY7ctxxtXdc1q02io6WDmLhkiKhLMXxbIh3ua7EX2OiH+F+EwbyXyRMWuMxsjEX54FyyHQcieabmK7p89N544Bae0qgmDiqKQ5RNgOzvAQdv8AODZq4uRyK06F/eC95H7+A7Rb3kXjO99Jes8ghQODOE89Mml78zU3ASAyqWobpbGFwI1yvXdg76TbasU8cD0A7s5tuM88BoC6cAmUhZfzzONQLByyrX7OhfKYtl3dd/qpR4jd9Gbii9pJvbANy4wT/vi/oJYLVB8vnmXhpVKoiQTmgk602OwEhs8VwhN4nkDTVQb3pOndmqS+XLJn22P9DOzK8Ip3rSE9VGDVhR089MPtdC6v45w/WDQrg1amwio4WOk0DcEBEu4gim/l8jkGTv47t8+8oS89hu2VCGh1E5bn7CJm44MIQNf+ak76diwUsza5ZIlgdO4ztgshcJNJ7P4BvFQSNRpDjcfnulvThrttM+G1q6l7/etJbdpOdPlCit3tOK9/26TtK/UJ1eZ2zHIbpaYeob7uTJRE/SHbqQ3jD0XjgsvQlq0CQFu6oro8cP0bEe6hMUVquUSPEgxWjxlaspDIgmbSewaJrlhE6d23npBrdDxNhIPR2YHR1n7KJEMVQlDI2GRHi2TGSmRHi2THSmRGi+SSJdZd1snyc9oY68uz7YlBulY10LO2kWh9kKd/tY+dTw+x4RU9DO1Ns/aSjjmPtSxlSzjJAZqCA8SMIkrMt3L5HBv+1eIzLTiuR38mhalRLRNUwXbAGrmESMjCmOc3KOEJ0iPS6qHpc+vC8woFnL4+nJFR0DQ5WvEkdisCOFtfxP7NXQTfcStKIEj8Xe+h6ew1jLy4l1K6QMneQ+OG5WC+/rBCRm1oxLz8mkOWa0uWoy1Zftg+6Gs3TLrcuOSqw26nBIKYl19zSBxacSxzQnFpnm1LUR2JYCzsQaurP+nSRAghpHt+tERTVxRFUXjszl2M9efJVUYFT0F2VMbCNXVFWX5OK00LZMmjpgVRbvzbs0k0h8mlSjR2xibEfM0FxbEk3lgvTeFhYvUxCHbMWV98Tl7m91PQ56QhV3IZyA8RNg8d5i68IKXBV9Le4skMzvOYQtYml7IIzaG1S9gOzsgwTn8/wrJQ4gnUk7xeort/D9ZPvou76RkA7PvuJvamt4wLlrQUu5MFr88nJgv+P5E+e9ksolTEaGnFaG9DCU5/mojDjRA0gxq6qZFPHxrbdjBCCEp5h+xYkexoicxYkVLe4axrFyI8wZ1ffg4EvOrW0wjFTNJDBdJD8nNVVIVIwiTWECTaECBaHyRWfq+MQmzsjNLYOV5nMhDWJwTY20XnkID7WUN4FPr7INNHc32BSFurb+U62TntE3N2aP/K8ZkWhnIZck6W9tChbrB0KYWeeBovGEFRLpyD3h0dXtnapShzY+0SArxUEquvv2wBiaI1ntxuRW9kCOtn38N5/CH5B6oaxkVXoJ9/GWY0NKlQqQgZMxqad8JruvosXBcvOYYSCGAuXiwHSczQj5LJRgiCFF2V5QeTT1sM7c1I9+BoieyYdBNW6h3WcvqVXeimRrQ+gPCgVHAIxUzWXtKJAGL1AcJ1gWOKyartW6XPVtElPZyfffFl5cgf2ItaHKaxI0Skybdy+ZwYvvDymRYOpMYQwp5QJqhC0u4n1PEDsl4LqvLOOejd0VHIWORTFuH47FuXvEIRZ6AfZ2gYVPWUcCsC2Pf/CuexBwHQzzgP8w/egNoiU4ocLjlqaTQz70QXTE+fvXweL5dDa2rE7OxEDc1sLdLJBIuqQqwxxOCeFKqmsueFEbY/OUjb4gRrLu5geF+Gx362a9L9hePmBKtVpaDxNX+8dkIi4bYlx5/iRDe1ScVV5W/RTW3mhZcQiMwA+d796KJA08ImQrOcI8zn1MQXXj4nTMlxGcwlJ5QJqsXzAjjZFcRDcVTmp6vR8wTp4WK1luJsIRwHZ2QEp78fr1hEjSdQT+Lae6JUxL7vbvQLLkON12G+4g/wBvsxr70erWfJXHdvTpHJUJMouo65sEemiZjhkk5W0SE9XCA1VMQwNdZdvoC9L/ax/Jw2fv6V54g3BVl9UQd2yWW0N0cgLB8J8eYQzd1RovXSNRhrCMrp+sCU1uDprN5wONenVZzcbTqt2AXE2D7yg4MYoSBN3W0Ewyf/DyGf+YEvvHxOmHTBYrgwQjQ4eQJDw1lAYd87WLDMm9PSOoejkLYoZGbP2iUEeOkUdn8/bjKJGgqjNzXPyrFnCvvR32H96NuIdBKRGiNw4ztQojFC7/mzue7anOOVSnjpFFp9PWZHJ2oseuSNjgHX9kiPFKhrCaOoCo/+dCdDezMUMvaEdpqusOEVPTz9qz0M7k0Tb5YxZW2LE5z/2sXEm6X1ra4lzGVvXjmtfTwpEAJyw4ixPeSSRQJ1dTR1BAgEfdE1r4i2gF2A0vyzih8NvvDyOWFkmaA8zfrkeWxyTgo1OAh6ZF5avDzXIzVcQNNnx9olikXsgUGcIVnLTWs4uZOgVhC5DCKdRGlsQV36MnxoT4LwPJkmwnMxu7rQW1pPKE2E53pkx0qkhgpkR4usurADIQQ/+bdncG2Pa9+9lmhDkELGroquUNwk0RRk0fom1l22gNHeLOuv7GLR+qaq5ShaHyBaf2iYwMsKuwip/Yh0H7likGBjE01tOmZg/t2zppXDiZhADIxQue7kPMIuQP1CGNsNmexc9+aY8YWXzwkhhOBAegxV8SaUCaplRDxNZNGP6VfWoyrXz24Hj4J82qKYsQjXzeyDR7gu7ugodn8/Xj5/0rsVnZc2Yf30DoJ/9G7U9k6Mi69CMQPo5116SiR3PVE8y8JLp1FjUcyODrS6uqPeVghBLmmV3YTylR4qkB4pIjxRbbfo9GaCEYNYY5B8yqKQs4k2BFl7SQcokGgKYQT1CcHqju2RHi7M3QjB+YYA8sOQ3Iso5si6CcINJo2tOqZ5iosumChiasVXIDa+fL5Rysh+1S+EzMln9fLvjj4nRMF2GcyNEjSmFhCuq+NRRzAYRZ1nlh3X9UgPF9EMdUYzYbuZDHZfP+7YKGowJIPn53lqjalw9+3G+sl3cF98DgDrrh8SfOf7UQwD46Ir57h3c894MlQbo60Vo70d5TAC2yo4jPXnUFSFlp44g3vSPPj97bj25LmvdFMl3hQi0RzCc6UIu/zNK9AMtXpNNXWNZ7yfVyME5xt2EdIHINOHp5jkvEYiCY3GVg3DODm/n8dMrYgZ3i5FaCAOdT3Q9ywoNffs5F5wLfBcEK5891zwHDlf1y2LgwMk98DQS+NtatsLF/QArHnt+L4f/arcz2RtPVe2bVsr2265C3bcCx0b4OwPzdaZmjZ84eVzQiTzRcaKSZoiUxeoNQvnk+s/i5XngDLPXI35lEUxaxGZIWuXKJWwBwdxBocQwkOrb5jxgOqZwhseHE8NATI1xMVXYlz72sNveAoR627ByhYmHb0YaIhhhAMkn92CGgph9HTLz7t8yVsFZ4IFq74tzKL1zfRuT/L4nbtp7o7R0hMnHDNxbQ9VU4g1Bkk0h6qveHOIcNw8RLTr5tTX1LwYITjfEEBhBJL7oJTBM+vIFTSidRqNzRr6y0V0VciPwpZfwBl/BNt+BWe8Bb79Btj1ALzrnvF2d34I8iNT7+f898G618vpfY/Bw1+Zum24caLwev77UnhNRfe548Ir0wsHnpQvo/XIf988wxdePidEfyaJLYqYet2UbUpOERQP8ziLBs8UriNdLrqpTXvQv/A86VbsK7sVYzG0wMkdQ+Pu3lEVXfpZ52O++kbU5uO/6R1JxJjR0GHTN8wFVrYwaaLUQEOMxtXdDD38PCQayQcayOx3ST29T7oJhwuHBLp3LKtj0fpmEs3hcnoGeX1E6gJcfcsaovXBabHCzvkIwfmGU4KUtHKh6bihJvJZiCVUGls0NP1lJrqSe+E3n4bhrYCAC98PD30RdvwGFE0OOKgI/VBdNR8fqibXV991CNSkEIm1QedZ5bb6eNtK+8BBdUgrgq12v7XbNo2X92LRpdJCV78YOi4G/nLmzs8MML+ehD4nFZ4nOJBJYmjKIWWCaslEfkSs+Qn22tcCV8xeB49ALlWimLWJNkyvIPIyWaz+ftzRUdRAYEaTY84kolTE/s1daMtWoy1diX7GuXg7XoF+/qVo3YtPeP+HFTHl5fON4nCaoed207xuIcMv7MZKZsm5QVpXdHPgoc1o0QRPPTpG/84dk24fjpvEy9arxs4IAPVtYa5997pqG0VViDfObG6vlyUCKIxKoVFKQ6geVxjks4J4vUpDs4amnXzf0xPCysKP/0S+r7wOzrkF0r1w/p/Aimvl8lpu+M+j3/fCi+XraDn33UfftmkZdJ4hxdfe549+u3mCL7x8jpus5TCUGyJiHP4h4SJrsQX1Q10kc4Vry9guIzh57rHjQdg2zuAg9sAAwvXQ6upO2iBz59knKH3na4h0CnXhUkJ/8UkUVSVw4zum7RgHl9rJDaYx66I0ru7hwBM7yQ5k8DyB8KTI9zzwPFBVaGoxpPDfa+F50LXQRFUVdm8vYlliQntRnRbleWjtMOhaGGCgz2Lb5iL1DTprTg+TSjo88ftstf3Bx5aM0bUqyyvfu5bcvkFa2pu5+z820d4dpGdxM4mWEmP9+aprMNEcItEUIt4UxAienNfDSY9jSfdUqhc0FaItODYU8oK6RpX6Jm1GYzznLWYUTn+TnL76szIuq5QBOw8Niw4NuJ8v1Ab+l/xRjT4vI4azWTJ2jvZY7LDt3P43kbMtVm7U502MVzZZpJS3p2UIvRACd2wMu7cXL5uTbsUZqLk30wghQAgUVUWJRBHpFEpzK8YVr5yR440O2wy/OMiSrEvXuYvJ2f00rm7l5//+Avs2j065XTAIG68wcV3B049J911bXRFdV9i22aFQOPKxTdWiPZ6jOCIYHVZQPRt3JI+bhlz2yANA9m0eZWTzflrXL2Tvs/3ohkKkRZZ3WntJB6ddvuDoToLPzFNISitXMQnBOtADOLagWHiZiq69j0rL34pr5fw5fwwNiyeKrNqA+/kovozQ/OzXUeILL5/jpj8zhiesScsE1WI5CngBogF9Xli8HNslM1LEnAZrl5fLYfcP4I4Mg2GiNZ2coxWdl17A+tF3MK58JcbZF6ItXUnwPX+Otnr9tFjt8jmXsRGH0WGHhUuDxOIaO14q0nfABjFIXZPJorMX8vSv9rB/yyiaJi1biiLfVVWR8yoEAwoYOqoBzS2eXB8KoZoand3S4qWqigwPUZXy9PhLURXqGk3M1gCtdS5nt9oEQxpGW5A6R3Bxiz3evrKtrtbMq4TqQjQubiY3nGXB2lbibbFqrNRsVj7wOQyuLd1m6QPyQoq2AAq2JSgVBfVNKnWN02fxnvc4JXj0Ntj0I9BMaFkN9T1gRiYXMRXxZYTmn8CZb3nFjhFfePkcF7br0ZsZI6Crh71xuZ5A7/gapjnKiP1GFC6fxV5OTnasRCnvnFBsl7Ad6VYcHETYFlri5HQrHpwawv7VT9HPugBFUdBPO/O49ul5gnTSZXTYYbQstoqF8dQI0ZhGLK7R2mGi4NG5MER8yQJyIznWX9nFwjX1WAUHFOQDs/ICQKH2crts9cRjb1h+bH1NAIll4/MGEOo8/DYT0zN42K6flmHeUUjKEYvFMQgmQJcWaKsksEqChmaVRMPLSHQNb4P7PjOek2vVq2XwOxxexJQy8090nQKcfE8Kn3lBumAxnB8hFowctp3lCFQjiWqOomtzn07CtsrWrtDxWd+kWzGJ3d8nk2NGY2jx+Az0dGbxRkewfvKd8dQQmoZx8VUY115/3OflpU0FRoYckqMO7kH6Q1EgUadR36STqJcDMRa0OCxZnqDlvHWkRgrYJQ/bKZBoi81bEePnxJrnuA6k+yCzX85Hmqt5qEpFgWMLGltU4vUvE9ElPHjue/D412SqhlADXPZX0HXOXPfsZY0vvHyOi6FcmoJboElvPGw7yxEU9r8VRSvQua6TuQ7xyo0VsYrOccV2efk8Tn8/zsgIaLpMgjrPEsIeNXYJ58mHAdDPvhDz1a9HbTpyagghBIqi4HmC557MMzbicNEVMQxTpb/XJp2UosMwFOqbdBoadRqadOoadPTyMH0hBG4qRbClgZZzV5MaLmKXpEVsvosYPyfWPKaQgtQ+Gb8UjIM+PuinVPBwXYXGVo1Y4vBW+lOG7CD89h+h9yk5v/AiuOTPZZybz5ziCy+f46I3PYaquFOWCapQcsCzWggYEDaCc2rxsksu6ZESgWO0dgnbwRkexhnoR1gWSjyBasxOMe3pQhSL2L/5OUo0jnHJVaitHZivfxva4mVoXYum3M51BMkx6S4cHXZIjjlsfGUdmq4wPGSTz3qMjTi0tJssWR7E8wQNjQbR+OQPN+F5Mnt/KEx4cRfpkSJ26eQRMX5OrHmI50CmH1L7ZZbzGisXQDHvIYRCU5tGNH6S/lA6HlL7pOjSg3DBrbDiOng5CM6TAF94+RwzRdulLzNC8CjER9HyCHV/DR2DgvPWORVe2TH5kI8dQ2yXm05jHejFSyVRI1G0xvnpVjxcMlKjkETd+QK5O38AkSj62ReihMKYl77ikLbFglcWWTajIw6pMRchJrZJjjk0NhusWhdCUxXqG+VtpGvh4c+rcBzc5BhaIoHZ3U3RUoHJhYovYnyOimJaCoz8yCFWLoBCzgNFiq5I7GUgupySLMUD0HkmXPhB+V7XNafdmpc894nJl582xfJpxBdePsfMaL7AWDFJY+Tw8V0ABdtCj2wHQNfmzsRvFR3SI0UC4aMv1+Nlsli7dyMse967FfVwgNjCVkZe2E1pNIPwPHAcgm2NNK5ZS/rOMZTmNgKvuRGC8uEkPEGx6BEKa+SyLg/fnyGfO7Q+YCCo0NCk09Bo0NCkk6iT57Cz6+gFrCwYnUJvasbsWnDY2oU+PkfEc6WVK70fXBciTTK7eQ35rIeqKzS1aISj8/e7O230vwD3fVamh1hSHsS05vo57ZLP5PjCy+eYGcwmKYkigcOUCapguQqFA28kESkRUANzZvHKjJVwbZdQ9Ojya4likdK+vXglC72hYYZ7d+LkB5OEW+poXLuQoV/8ltSXPk/01a+hceO7UIBSpBnjo5+jYKnEFIXkqMNDv00TCKhsvK6OYEiVIw8ViCe0amxWQ5NOKHxigtnL5xGFPEZHB0ZHx0lbq9JnnlDKSLdibkgm0gxOrBMrhCCfFeiGtHSFwqe46PIceOp2ePp2GUz/zP/A4ksnFrf2mVf4wsvnmBBCcCCdxFQPXyaoguNoOOn1hAwwtLnJ42UVHLKjRQKho7vche1Q2rcPL5tFazj84IH5Qmk0w/CTW2hav4Tmy89FH7gB87obEK7g8Z++xNYnXDKpDLGExuVXJ4jENFwXLEtgWR6mqXLh5XGicQ1jGgsEu+k0eC5GTw96S8vLI6jZZ2bwXMgOSNHlWpNauSqiywgoNLVqBEOnuPhI7ZdpIgY3y/mlV8FFH/BF1zxn3n86mUyGD37wg/T09BAKhbjgggt4/PHHq+uFEHz84x+nvb2dUCjExo0b2bZt2xz2+NQmW3IYzA4RMY/OcpS0Rgm0/hQ7eh/KHF1umdECju0eVbkW4XnYB/bjjoyi1TecNELB2fwcox96D/vedyueatK37GrMeIS7bnuBJ+8dIJOS8VKeK3BdgWEoXHFNgmtfU4dpys+lvlGfNtElhMAZHUVRFczFizFaW0+ac+kzD7GyMhfVyA5ZNDnSPKnoymUEZkChuU0/tUWXELDlLvjhu6ToMiNwxcfgir+RZYB85jXz3uL1rne9ixdeeIHbb7+djo4OvvWtb7Fx40ZefPFFOjs7+dznPscXv/hFvvGNb7Bo0SI+9rGPcfXVV/Piiy8SPAnLtsx3RnI50laG9njiyI2BjD2G2fB7Sl4DmnL9zHZuEkp5m+yYRTB85IEAQoDT1489MIBaVzevY7pqEVaJ0jf+HZFOsiX0FkYf7GPDK3p45p695EdzLFkerKZ2qH0YRWMz4/KrjlyMxQgs6EKN+Q8Cn+NAeFDMyCSo2SFwSxBpPERwyaaCbEYQiig0teqYgVNc5D/wz/DSXXK6fT1c/tcQPXI6GJ/5wbwWXoVCgR/+8If85Cc/4ZJLLgHgE5/4BD/72c/493//dz71qU/xhS98gb/927/lNa95DQDf/OY3aW1t5cc//jE33XTTXHb/lKQ/O4Yj7COWCaqgODFKw5fTEjNR50DIZEaLuLZHKHZk4eUOD2P39qJGYydFughvsB+1pQ3FDBC46WYGMiFKdWtZdWEH+5/t5bTLOll3WWc14H5W+mRZeKkUWmMDga4uFP/Hj8+xYhegmJJ5qEoZQEiLTnDyEcWeJ8hlPMJRlaZWHcM8xUUXwIKzYOsv4ex3wmk3gurHTZ5MzGvh5TgOruseYrkKhUI8+OCD7Nq1i/7+fjZu3Fhdl0gkOPfcc3n44YenFF6lUolSqVSdT6fTM/MHnGI4rkdvaoygfvSxWqrXgDV0NU1RMeuupmLOJjtWIhg98mXuplJY+/ejmCbqPBcLolig9KNv4zx4L6EPfRxt6UoiV1xBJGnyirPb2PTLrbTU2Qy/UKBp7UIa1y6cFfHlFYt42QxGextGRyeKMa9vLz7zCc+RqSFyI9LC5RRl/qlQnXQtTrWZJ8hlPaIxjYbW6Y1PnFc4JTjwJPRcIOeXXAHNqyDePrf98jku5rUvJRaLcf755/OpT32K3t5eXNflW9/6Fg8//DB9fX309/cD0No60cTa2tpaXTcZ//AP/0Aikai+urr8HCdHQ7poMVgYJhYIH7lxmaTTh1H3KJa+A20WLzchBJnRIp4r0M3D/xr08nmsvftACNTo/HeLFf/zizi/uweEwN22GdcRhJvrWHNRB3se2UFzQib5LI1mGH5hNwoQbq6b0T552Swin8fs7sbo6vJFl8+REUApKwPE+1+AwRchNyjzUEVbZY3Fw4kuV8Z0xeIajW2nsOga3Qk/fi/88q+l+Krgi66TlnktvABuv/12hBB0dnYSCAT44he/yBvf+MYTclt99KMfJZVKVV/79u2bxh6fugzl0hScPBEjdOTGZVLuDoLtPyKlPYQyiyNtSjmHXPLI1i5hWVh79+IV8qjzuOaisCxEOZOped0NKM1tBD/wN6hXXc+D96U5sDPL8HO7CCvFCZbFivhyCqWpdn1i/RICN5lEeB7mooXobe0nTWyczxzhWDJma2gzDDwPo7ukxSvcKEcq6ke2OLuOIJcVxOtUGlu1ajmqUwrhwfM/gB+9W4qvYJ0c2elz0jPvf5YuWbKE+++/n1wuRzqdpr29nRtvvJHFixfT1iarqw8MDNDePq7+BwYGOP3006fcZyAQIBA49lp9L3f6MmOAh36EMkETcBLY+dVE412os3RvFEKQHikgPIFuTG3tEo6DtW8/biqF1tA4b0fdOS+9QOlb/4H5mpswzroAbeFSwh//FxRNo3efRWrM5YEf7OTSqxKT5iwqjWZmxM0oPA9vbBQlHMbs7j4pi4X7zBK1gfK5YRnHpelgxkA7tnhK1xHkc4J4vUpDs4amzc/v7QmRH5F1FveXR/B3nQeXfgTC8z+noM+RmffCq0IkEiESiTA2NsYvf/lLPve5z7Fo0SLa2tq49957q0IrnU7z6KOP8t73vnduO3yKUXJc+tIjhM1ju0nq1iqK+5fSdZo7a8H1xawtrV2RqfsqhMDu68MZGpRpI+ahlUYUi1g//jb2A78GwL7n5+hnno+iKNUkpB1dJmeKCMGQOquJImX5nyRanSz/o4aO3grq8zKiGig/BKU04Ml0B9FmOI5kyo4tKBYEdY0q9U0a6mz9mptNdv8O7v9neb40E857L6y+3q+zeAox74XXL3/5S4QQrFixgu3bt/MXf/EXrFy5kne84x0oisIHP/hBPv3pT7Ns2bJqOomOjg6uv/76ue76KcVYvsBoMUl9+MhlgmrJe0OooRSeFkdVZj6WTnjS2oWioBlTCxFnYACnrw81UYeiz7+vgbP1RUq3fxUxMgiAfvFGAq99U9Uq17vPYrDfYt0ZETq7Z9d665VKeOk0RktzOZ5r/o8A9ZlFKoHy+VEojB51oPyRsC1BqShINKrUN56iois/Avd+SiaIbVwKV/wt1C+c6175TDPz74lzEKlUio9+9KPs37+fhoYGbrjhBj7zmc9glG/2H/nIR8jlctxyyy0kk0kuuugi7r77bj+H1zQzmEtR9AqE9Ppj2i5j3E9k4cMMeZejKutmqHfjFLI2+bR1WGuXMzqGvX8/SjiCOg9rBnrJUYpf+iy4LkpDE4E/ejf6yrXV9ckxh6cfy+K6EE/oLF4+e9d6tfxPZydGR7tf/sdHIpBJTospWcqnlJHZ0wNRGSR/glREV32TSl2jNm/DAk6YcCOc9yeyDuXZN0uLl88px7wXXm94wxt4wxveMOV6RVH45Cc/ySc/+clZ7NXLCyEEB1Jj6IqCeowB8q4bwrMaCYWix7ztsSI8QWakAICmT34sN5PB3rsXNH3eucdENoMSjaHWNWBcfT0inSTwujejBMf7WSx4PPagFF3NbQYLl86etUuW//EwFi5Cb272PR8+MlC+lJZxW8UxcB0wQuVyPsf3fRdC4LlyV44r8ByZM7WhWSXRcIqJLs+FZ74tR3KeVn7OvZwKWwsBCBkDKMrvMD5PZfnB0zXb5LJz1//jZN4LL5+5J2859GeHiJrHIVTGriGXewWLLrbRZrhAdj5jkUtbhKdIlioKRTmC0bbnVeFrUSpi/fg72I8/RPhvP4da1yBHLh70gHFdweMPZSgWPKIxlbPOi8yKu0V4Hm4yiRowMRcuRKuvm/Fj+sxjhJCuxGkIlBdC4LoyYN51wPUECgqapqDpEIqoBIMKhqkQiiinlujK9MF9n4X+56ULduGFEO+c2z4J7yARJKYQPlMIpQnbeIAyHptWHpUtUWQ7BUAtt1GkWFfK75VtK8vQQVVlslhVl8tVDZTi7JybacQXXj5HZDiXJV3K0h479lFrJTcHqoKuMKMB7J4nSI8UURVQtUOPUyl8LXK5eVX4WngehX/9e7x9uwFwn3sS9ZKrDnnACCF49okcY6MuhqlwzkUxDHPmg+mF68ryP/EEga4FJ0WeM58Z4gQD5YUoiytH4DiU06MoaLoUWpGYQiCooBuVF6dmHJcQsP3X8OC/gZ0DIwwXfhBiHXPbL6cI2WEpog8WPqjyI64KIx3QykJIlyZJVRt/V8siqSqm1ImiqvKaIK4mWa/U7GOq58dJmADdF14+R2Qgm8QVFqZ2HG6ttv8mFtrDkHMjmrJm+jtXppC2KKQtwvFDf3ELz8Pevx93dBStcX6kjRCeh6KqKKqKcclVWHf9L4E334K++rRJ22/fUmT/HgtFgbPOj85YncVaZPmfJFpTkyz/46dgefnhOTJeKzdyTIHywpPiynWkRati/NB0BV1XiEUVzMC4yDIM5sX3csYpZeDB/wM7fiPnW9fC5X8z98lQhScFdcMSSHQeWQjNw1HgJxO+8PI5LJ4n2J8axdSOPbbC9QQoMot6QA/M2I3Vcz3SwwVUTTnE2iULX/fNq8LX7rbNFL/znwTf+X60zm70Cy5HP/OCKesa9h+w2Py8jF1buyFMc+vMjyL0CgW8XA6jvQOjo8PPRP9yQgB2FgoHB8pHJg2U97yDLFmAWhFZpkIkqGAGVHQDKbT0l4nIOpj+5+WIxdygPJ9nvh1Of9MJjfScNnLDMkdY4xIw/IFpM808+MR95jOpYomhwgjxwLGlkQAoOYL8rveD4tC50EJTZsZKk0/bFLI24cShI4Dc4SFZ+Doen/PC16JUxPrJHdj3/xKEwPrZ9wi958/lQ2gK0ZVOOjz5qAweXbgkwKKlM39T9LJZhGVhdnejt7W+PB+SL0cmBMonwbXLgfKN0oWELNMzwZKFNH5ouoIRUIjVKRhmWWTpMk7rZXP9RFukO7Y0SbLiQAxa10B+WMZxXfE30LJ69vs4GVZeWryalp/6ouu0T8x1DwBfePkcgaFcmrxdoCl87HFRll2O4VAMDNWZkRuwW7Z2abpySDyIm0zKwtfBEOocu8nc7Vso3n4bYmgAAP3Cywm87o+OuJ2iKAQCKuEGlbUbjr5G5vEghMBLJlF0DXPxonI2/xk9pM9cI4QUCoXRgwLlo7gY0pKVF7iuDKJWVSmmAiGVQJCqyDIMGav1ssYuyJxbY7vHxVd2EBoWjy+/6lPQuUHGdc0HPFfmDmteKYWjz6xwzMLr7/7u77j55pvp6emZif74zDP6M2MgnGMrE1Sm5AgiS/8BBci6N89IYdB8yqKYtYjUTRRWXi6HtW8fCFDDc3uTc/fsoPB/PglCoNQ1EPijW9BXrz/sNp4rsCxBLKFx8cY4CjMbaDyh/E9PD1osNmPH8pkH2EVp1coOIYoZPNfFUcK4aiOuraDY0pKl6xAM14osGfR+SpbpOVFKGSmu6hfK+pPP/A8MvAhv+Ma4GFt44Rx38iByg1Jw+UlaZ5VjFl4/+clP+MxnPsOll17KO9/5Tm644Qa/7uEpiu167E+PEDrOJKMl20M1UgBoaNNeMsh1ytYuU0WpESWiVKK0dx9esYg+hyMYhW2jGAZq92K0tRtQYgkCN/wRSujwQlAIwXNP5Rnoszj7whgNjTNrmJblf8bQ6usxu7pRQ6e4u+HlihCIQhI3PYybSeKWiniKCWYczdDRdIgEFMxQJeD9FB5ZOFOUMlJ0xdsh1ACv+6pMGbH2dXPds0MpZUA1pItR9xO1zibHfEd/5plnePrpp/n617/OBz7wAd73vvdx0003cfPNN3P22WfPRB995ojRXJ6xQpL68PGlECjZkNvxYRrjLoHFIY6nNtvhyKctijmbaI21SzgybYSXTs1Z2ghhlbB+egfu1hcJfeTTKLpO8JYPoWhH93VzHBgbdSiVBLblzWhfvVIJL5PGaGnBWLDAL/9ziuC5Hq4j5Lvt4mVTMr6olELTBHo4QrA+RiCkjqdv0H2RNS089h+Q6IIL3w+7HpifCVE9BwpJOarSL7w96xzXT+kNGzawYcMGPv/5z/Ozn/2Mr3/961x44YWsXLmSd77znbz97W8nkTjxMhE+c8tQLk3RLR5zmaAKlgue1UJQ6KhKDnUahZdre6SGChgBrWrtEkJgH+jFHR6W8UlzMIJRlIrk/+GvEYN9sp/PP4W+4ZyjFl2eJzAMhYuviDM0aNPaPnO/RL18HlEsYC5YgN7W5pf/OcmQGd4FruPhOfJdCCHzUmoKmirQrCRBZwhTSaLVa+jROrSAif5ySd8w22z7NYxsh8v/WoqungsmxnzNF7KDEO+Auu657snLkhN6MgkhsG0by7IQQlBfX8+Xv/xlurq6uOOOO6arjz5zRG96DE3luEv9JEujhHpuo1D3DZnYdBp1UC5VopS3CYTHBY3TP4Dd3y8LX8+RiFACQbQVa1AS9QT/5CPoG8456m0zaZd770ox2G+jGwrtnTMnutxUCmFbmAsXond0+qJrHuN5AsdyKeVlHdLsWInMWJFcsoRVkEMLjYBGvDlE04IYrT0hOpqzdAS20BHcSnN9jkRXC9H2VoKxAIZ5imWAny8ceBL2PQp/+F/wxH/LkYyVmK/APIqZLKZkLrbGpXIghc+sc1xn/cknn+TrX/863/nOdwgEArz1rW/lK1/5CkuXLgXgS1/6Eu9///u58cYbp7WzPrNHwXLozQweX5mgMjk7ix7eje3FEEKgTFN4vWO7pIfL1q7yA8QZHcXevx81MvuFr90dW7F+dod0J4ajBF77ZnjNTSjho0/BYZU8HnswQyHvsW1zgeZWfUYejrL8zxhqMIjZ1YVWVzftx/A5dirWK8/xcCtWLE/IZOGKgqqr6LpCIG5gBjV0U0MzVDRdRTdUmb/OykO2H5J7ZUkfMwTxNplJ3GdmKaZg+71ww9dkRvrVr5bLawPu54Ply7WhlIW2dTIJrs+ccMzCa926dWzZsoVXvOIV/Od//ievfvWr0Q76tfzGN76RD3zgA9PWSZ/ZZyiXJVXK0h47fpex6tVT2P9mFjXrMgHyNAmJ7FiJUt4h2iBjuyqFrxXDmNXC18KysH72Pezf3CXzcv38hwRe/7YpE6FOhecJnng4Sy7rEQqrnHV+dGZEV235n+4u1Mix52bzOTGEJ0VVNf7KKad0F6DqihRSpkY4YWIG9AniStMnDiKpUkzDaD+kDoCVgWAMEh3HXaTa5zgIJuCcd8N9/yAD6WvPfUV8GaG5F17ZQZmZPrFgbvvxMueYhdcb3vAGbr75Zjo7py7m2dTUhOfNbFCwz8wylE1iCwtTO37rkeeGcDLrqG8JgJKelpxQjuWSGS1ihqS1yysXvhaOi1Z/fLFox4O7cyvFb95WjeXSz7sE87objmtfm57JMzzooOlwzkVRAsHpf2BWy/80NxNYsMAv/zPDVILbZfyVh+eCUGRGd1VX0TSFYNTADOropiaFVeU1Sa3RQxBCpoNI9UKmV5byCSbkA9V3I84NoQSsv2ny81/KzL3oKoyBGZEuRt8KOqccs/D62Mc+NhP98JlHCCHYnx4hcBxlgmoZtXcTaHuIjN6FwrppCa7PJktYBYdofQBh21j79iJyOdRZHMHoPPcExa/+q8zLlagj8KY/Rl93xnHta/f2Iru2lwA449woibrpj7molv/pKJf/0f24jhNFCIEQIMpuQdeVAe5CyPWV8lW6rmLETCmwasSVPpX16sgHhvwopPZLt6JrS5dRpGla/z6fo8ApwT2fgLU3wIKz5LL5KnqdknRFd5w+v+LNXqYc8x34hhtu4JxzzuEv//IvJyz/3Oc+x+OPP873v//9aeucz9yQLloM5kaJmSeWeDTt9GPWP0qGFLD2+B40Ndgll/RwkUBIB8/D3rcPd2ysnGF9+m54se4WrGyB0ujEX6hCCIKNcaLXvoKB//0ftEXLCLz+rSjHmW5jeNDm+afzAKxaF5qRYHovk0E4NmZPN3qrX/6ngvCEFE9eWUR5ZSFVXubVrC9vIf9XlOrPB0UFVVXRdIVAyMAI6eUko1pVXKn6NAWye67MLJ/aL91FCCm4jNlzrfvUIDz47T/C3odhYBO88btwgvfLGUMIWXOzbiHEOua6Nz4ch/B64IEH+MQnPnHI8muvvZbPf/7z09EnnzlmOJcma+foDp/Yr2jd6aCU3EhrW6vMvH6CFq/sWBG75BCpC+D09WIPDaHV1U972ggrW6BxTQ8jm/ZQGs0gbAvrZ98n1N1B44f+lJFNewj/5WeOmAj1cOSyLo//PosQ0NltsnTl9CYtHS//o2MuXozecOrk6qlam2rFU2W6unx8GUKRKeQEgCi7/BQUtSyKFJm/SlFA01TUgCotVroi5zW1LLLGt5HToGpSeB1cnH3acG350Eztg+yQdBGF60H3XcVzyiO3wc77ZIHrjZ+Yv6ILZEmgQAIaF0/v0HKf4+aYhVc2m8WcZNSYYRik0+lp6ZTP3NKXGcMT7nGVCapFdTqwhptY0BMGxlBP4Je/VXTIjJYIhHTc4WHsAwdQY/EZcZuVRjOMbNpD45oehh99gbG//yjhpQtpu+VvGLr3YWwzdkKiy3EEjz6YwbYEdQ0ap58VmVZLVLX8TySC2d0978v/CCFwLA/P9SZYoLwprU1Cih9NAaUihMrCqCKEVLUsnJSycJLtpFiqFU9ymaIqVTE2L3BK0rKV3CNjczQTYq3yQe8ztzz/fXj+e3L6sr+CzuMLM5gV7IJMltq6VsZ3+cwLjmtU4x133MHHP/7xCcu/+93vsnr1PKm27nPcuJ5gf2qYkHHibq+0twOjfj95lqAoiRNKJ5EdK+FYDiGKlPbvQwmFZ7TwdUV8NZ27FuP9t5LYeCVD9z6EXdd+wvvWNOjqCbB7R4lzLoxNa3FhL5/Hy2XRGhoJdHWhzMPyP57r4Vgeji3FFooi3XO6imrKkX2qrqCp4646VTvU2qSUhZOq1Myf7K5UKw/ZgXJKiJS0pMTa/WDo+cLO38LD/1dOn3MLLN04p905LMKT7unGpRBrm+ve+NRwXMH1r3vd69ixYwdXXHEFAPfeey/f+c53/PiuU4DRXJ6RYpJE8MR/HWXV5wm2PcCwtxHEJcddjsQqOGRGixheCat3HyjqrBS+Lo1myPWO0nDDa0lv3z8tomtowKapRWfZqhCLlgbRjekRCsJxcFNJFMPE7OlBb2pGMeaHdcR1PBzLlVYtT6CqCnpAIxw3CUYMjKCGEdDQjZexuChlIN0vY7isjAyATnT6KSHmE33Pwm8+AwhYfT2sf+Nc9+jw5IYh3AQNi+dv0P/LlGO+M7/61a/mxz/+MZ/97Gf5wQ9+QCgU4rTTTuOee+7h0ksvnYk++swig/kUBadAh3HiqRmE3Y5tr6Mh1kk5lOa4yIwVsbMFjLE+vGJpVuKVvKEBjHQ/kYvWkN4zSKSnjWK2dEjA/bGwd1eJZx7P0dltcsa5kWkRXUIIRDaLVyqhNTZgtrfPaX4uIQSuPW7RAlHNQxVvCmKGDIyAhhHUji5twqlOIQmZPkgfkNYuPyXE/GXfY+DZsPBiuOBP5/dnZOVlUH3TMjDmn9X75c5x/SS+7rrruO6666a7Lz7zgN7UKJpy/GWCalGyZ1FMbWDpyigoo8cV41UqOGQHsyhjA7Na+Frfu4XWP34b/Z//At65V1Ecy0wIuD8ehBAoCkSi6rS4xDzLwkunUMMRAksWozU0zHp9Ss8TuJaLY3s4jociFDRTxQhoxBqDmCEdw9TQA5pfgLlCJSVEuleKLteSIxTDc1PU3ecoOftdUNcDiy+d365fz5UB9c0rIdo8173xmYTj9kVYlsXg4OAhiVK7u/2imycrRduhNzNENDA9bryishctXMJlUTlz/bGLgsxwnsKBPgLZkVkrfG2qNk23vJ0DH/4w3gXXojEx4P5YxVep6GGYCj2Lg9Q16MQTJ3bTFp6Hl0oBAqO9HaO1ddYSokq3oYdjuwgZnoVuagQjBsGoWbVm6cb0iMtTisoDMbmvnBLCg1C9nxJiPmPlpBs41iYv9uWvmOseHZncEERbZJkin3nJMQuvbdu2cfPNN/P73/9+wnL5a17Bdd1p65zP7DKcy5IqZWiN1k3L/pzELwiHtzNkv416lh6zxauQtUi+tB8tNYLaMHuFr7WBvRz48G0Uk3lCi5ZWl1fElxkNHbXwcmzBww9kCAZVzjwvcsIJUr18Hi+fQ0skMNrbUeOJGfN4CCHGhZblIQRouoJuqETrgwTCOmZAxwjIvFU+U+A65ZQQe2XcjaJAuMFPCTHfcW349cdgdDdc+0/SbTffKWXkyNem5aDPbs1an6PnmJ8Cb3/729F1nTvvvJP29nb/V+0pxFAuheWWCJxAmaBaPDuBKDUTMWKAckx5vIQQpLb1UurtJ9o4e4WvvYE+hj75MRCC0Ec+dcj60mjmqEWXEIKnHsuSTroUAx62LTjewaLCcfBSSRSzEjzfNO2pNCppHRzbxbVlDizd0NBNlUh9kEBQl4HwpjpzeatOJaopIfZBYRQ0AyLN8t1nfiME3P85OPBU2SIp5rpHR8ZzZMxg61op7H3mLcd8537mmWd48sknWbly5Uz0x2eOEEKwLzVMQNenRUw7rqDQ+3oAlqyPUSJ5TJaZ3IEhRl/aQzA6u4WvrV//DIRAW7sBbeHSI29wGF56oUD/ARtVhXMujBKOHLvFTgiBl8mAbaE1NmG0t03biM6p0jqYQYNQk44RlNYsw9TmT36rkwG7AJl+KbhKKfng9nNwnVw8/v9g+69B0WDj30sL0nwnMwDxDqjzw33mO8d8J1i9ejXDw8Mz0RefOSRbshjIjhCbpiR7JUeg6CkQOpoWQXWPPsbLyWQYeXY7wnYxWxLT0p+jJfDaN6Ek6tHXn3lC+9m/t8TWzUUATjsrQkPTsVs5vFIJL5NGjUQwurtk8PwJiOKjSutgaujmPA4cns+UslJwpfZJl08gKh+EfkqIk4tNP4Znvi2nL/lz6DpnTrtzVBTLAr9xKWi+wJ/vHPMn9E//9E985CMf4bOf/Szr1q3DMCY+UOLx+LR1zmf2GMqlydh5ekLTMwqmZAvCi76IqucYs/6GsB49KlejVyqRfn4ruZE84bbZN5crkSiBV7/+hPYxNurwzOM5AJasCNK98NhiearB8wqysHVrK8oxulpr0zq4jocQflqHGaOaEqK3nBIi7qeEOFnZ/Tt46N/k9Fk3w4pr57Y/R4NrS9Hftk6OjvWZ9xyz8Nq4UWbqvfLKKycs94PrT24GskmE56JP068lyxEoihzxqismlDOOHw7hOJS2bSO1bxQlXoeuz54g8PoPYP/2lxhXvwa1vmZYv6xhc9TDxwt5j8cezOC50NpusHrdsblJZeb5HFp9HUZ7O9px/JAp5myckjee1qGhnNYh4Kd1mDbsgrRqZQZqUkIk/Niak5nhbXDvpwABK18FG94y1z06OrIDUugnFsx1T3yOkmN+yt53330z0Q+fOcTzBHuTQ4SnoUxQhZIjyG79O+oigtiaCBb5w+YGE0JQ2r2b9M4+SmaCUGR2zeXWXf+L88Tv8dIpQrd8qNwpT7qNrJyslWeEQA/K4GhVL7+PW3xdR/D4QxlKRUEsrnHGedGjjo3ybBuRTqGYAcxFC9EbG48reF4IgV1yaVoQI5ww/bQO04XnSqFVSsuRiYUkOAW5LlQHhp8v6aSnrhu6zpNJUi/64MlhscyPghmTLsb5nFvMZwLHfGf3s9OfeowW8owWk8SnoUxQBcuRo4CCug4KqEcYFGTt34+1czcFPY6iaGja7N30vL4DOE8+DIB57fXjKwoj8samB8EtgpWVYgxFxu1ohnzpITACvLhJJzkmME0456IIxlFkpheeh5fNgm2hNzWht7ef0GAC1/bQTY1QzMDwY7VOjIpVq5CE3KB053i2FOFmRFq4/PitUwc9ABv/To4OPBkGQjgleY12bJAlpnxOGo7r6vrd737HV7/6VXbu3Mn3v/99Ojs7uf3221m0aBEXXXTRdPfRZ4YZyqXI20XaoideJqhCspQkuuIT5EUI4X0SRZ3a8mIPDmLt2ElJj1As6gRDs/swU5paCLzh7Xh9+9G6FsmFVk6a8PUAmJMIIc+VN2jXKpfn8FjapJIcbmHVkiyR4hA4YTACoJrjIk0zqBRPksHzGdRoBKOnB62+7oStU1bRJRSV8Vs+x8hUVi0hZLHqcL0UXT6nDnYeHvl3mZU+mJBWo5PBciSEzA1Xt1AWUfc5qThm4fXDH/6Qt7zlLbz5zW/mqaeeolQqAZBKpfjsZz/LXXfdNe2d9JlZetNjqIqYljJBFfJ2EUW1wFMRCqgoKJME17upFKVt2/AUlbwXRFG8WbV2ASiGgXFpTUZqz4FsPzgOhOsm36h6gw4wMKQTCnrE6z0uOiePIjz5EC+OQr5S2UEB3QBFR6g6btFD0U2MlnaMjk6UUHRaXBuu4xGKm7578WjxrVovXzwH7vmErME4thte/cWTw70IsgJCsA4al8AslwnzOXGOWXh9+tOf5rbbbuOtb30r3/3ud6vLL7zwQj796U9Pa+d8Zh7LcdmfHiI6mVXnBNC9RrLb/4Jl7Qp4AkXnEDHg5fMUt27FK5VwIk0Ukjah8OzeRKx77/r/7J13fF11/f+f55x77sreadqmmy466QBaSmVYhgxBVESggIIKIiIgyBQFEUUUWYpIi8rwq8BPUZZsSimFQssotLSlM6OZN7nrrM/vj5Pc5DYduelNcpN+no/HbXM/Z9x3kpt73uc9Xm+08ZPRho1oW2m7k4w1gX/fEcDmFpV3VgdAgflzwuTlAOzmjtmxQVg4rWGccAQtN4Cem4/mqYP6kBsJ0wOgZ7tRNs3rKk97fN2+8NuWg+ZR8QWlQOcekVEtCbi/79fucJ0uzQeHfnfgOF1m1HUai8e571nJgCNlx+vTTz9lwYIFXdbz8vJoampKh02SPqQu0kIo1kJpdnr1skxLRZhFZKteHMCzS5G5MAxi69djNzejFpfSstNuCyL13YefvWMrxhN/BSD4s7tQC4shFnLVxr3Z3bqTDPgEBfk2igI5Wc4e93NsgdMSQ/X58Y4diqcw3507KRy3HdwxXWevdad7gILrAKjtDlkW6P4Oh0zzdUmJmDEbb8CDV6YZk5FRLcmuvLsE1j3j/t6PuRFKJ/W3Rd1DOO4NQ/E4yC7rb2skPSRlx6u8vJzPPvuMkSNHJq2/8cYbjB49Ol12SfqI2tZm4k76xgS1s9P4jODIJ6j3DgfOQFXURKpR2DbxjRuxamrxlJURiUIs4hDI6uNo13/+6arUz5jrOl224Qpgquo+5+jZDrS0quTnOhw6M4Lt7N5Pc4vno2Bb6MX5eIqLUP2dzq20v9auryfcGX+24UZnIvXuXTp0dFPqftdx8PjB48cKC3IL86XKvIxqSfbGJ0/DqqXu1/N/CCMO7197UiFcB8FiKBg1cCJ0ki6k7Hh9+9vf5gc/+AF//vOfURSFHTt2sHz5cq644gquv/763rBR0otsb65H17S01wSF7Wa0wFYMvAgECqCgIITA2LwFY+tWtOJihKLSGjJQtX3rfKUTe9tm7PdWgKLgPfF0906ypQbMMAT2rsUkBKz+yM+Oap3pB0cZNsTardPlxOM44ShqVhC9dAhaXvZu69x2j9KpGD/p1V2HzDHdBoBoEwgHxwEl7sEf1MEMui3m7REyrb24v9P/g+1DW0a1JN1hy1vw+m/cr2ecDRNP6l97UsEIux8+xePcv23JgCVlx+vqq6/GcRyOPvpoIpEICxYswOfzccUVV/D973+/N2yU9BLhuEFVax25aRoT1BmfNYro9rOZNCIPget0oYBVVYXx+Sa0vHxUr5dwq00sKvo+2vXfJwDwzJiLVjHcjShF6sGXy758ow2bvWyr8qIoAq+3q06GcGzsUBhFVfGWl+ApLkDxpKvuqpND1umUZtTB67XxBi1X9iLW5DpoicNUt0Ve1d2RInoA9KD7/65OmeZ1981k52yvUa0sGdWSdEU4bopROHDQIleZfqDg2K60TckEyJaacQOdlB0vRVG49tprufLKK/nss89obW1l0qRJZGdn94Z9kl6kNtxMyIhQmZv+P2Rh5WK1TqbEG0QIE01VsesbMD/bgOLzowaDOLagJWShefo42rVjK/b7b4OioJ9wmttS3lrdVju19z+Jmp0ePl7npgUnj49RWpQ8qcGJRHFicbT8XPTiIrTsvil+NU0oKNZR/XtokkjUkrVFy6KNbhOB08l+RXO//3ZxWD3Y9vC3OWy7OGd9PRNORrUk+4OiwvG3w+pHYfYFmX1jsSutO91B6wUj+9sSSRro8Sen1+tl0qQBUpAo2S21rU04jo3eCxfQBvEBviFraGAygimohom5YRM4Dlqhm8qLRBxiUUFWH0e71PKh+C+8HHvrJrTyCmjaDJbhRkn2QqhV5d01AUBhxDCDUcPNxDbHtHBaWlH9PnzDK9AK8tzi+T5AOG7Uzbc3/bM91pJ1ol2bzDFdJ82sc6NmolPTgKq5zpfSyTnzZrV1Yu4ucrYfhf4yqiVJB/EW932qau4czbkX9bdFqRFvcW9yisa5N4eSAU+3rrinnXYaS5YsITc3l9NOO22v+z7xxBNpMUzSuwgh2NK8k2Av/SGH2YI3/x1aRRbCmYyvpg7bo+AdMhQAuy3a5fEofV4Mrqgqnumz8Uyf7dZ1xRpdTZy9YBgKb78XxLIVigospkyIoSjtxfMRcBz04gL0kmIUX99+OJoG6F4Fn38/f46dtMn2iGO1CceaYMfdtGaL1VH4D53GKXnaolFBtyvT49195KyzgyqjWpJ0YsXgmavcus2jr3cbUQYSjgWxZiidLOeADiK65Xjl5eUliq/z8tIrOyDpH5qiUeojTeT4eycVpsXHEW/WqBg3Fr2xGV9NA/rUSYn3UTTsEI8JsrL79iIa/3+Po42bgDZxKorZCuGaNumIjshMzkHjMJqaiNe60g6OAytXB4hEVcZOz+eQQ31EN67vKJ7PzsJbWoSam0rxfPowTUFugdo3wrNqWypyTxcwITqcM8dy07jxkOs8tftmCq4Dpuruz93jcx0zx5RRLUn6cCz4381Qu9at3QzXDbxB0i01rjJ9fmV/WzI4WHNTx9dTb9rDTr1Ptxyvhx56aLdfSwYuteFmwmaEsjSOCeqMiI7GaBjByMkBAjUfge5B9bkXa8tyo126rvSpwrq9ZRPmc09hPq8QvOF2FC0CiC7SEUZTE0VzZlP/9kpiNTv54BM/9Y0eRkwu4OjzJtPw9gqsxmYUzYO3vLSteL5/ZrsJIRCCPh+ztEeUPXVjdkKItnRmm3PW3gyAIqNakvQgBCz7HWx503XcF9068JyuWJObIi0a2/f1lJJeJeXf5qZNm7Asi3HjxiWtr1+/Hl3Xu+h7STKTqlAjCkpaxwR1Jur5AL2ggVjjcLRwBGdExzyxSNh2o105fa3b9Q8APLMOR/UD4ZbdSkfEa3dS//ZKiubM5vOXVrF5W4ThEws47tuTqX/9DSKfb0XLz8VbUoSalV7F/1SxTPDoaUgz9iWK0pFmlEh6g/f+Cmv/DShw1PVQfnB/W5QatuGm2YdMg0B+f1sjSTMpX/kWL17Mm2++2WV9xYoVLF68OB02SXoZy3bY0lRLVprHBHXGCKzEX/40ocg6jJxsNMVN5VmWoDVko3v7NtoF4F10CtqkaXi/cLSbdvDl7rGzqd35GnnUTE69cATHXziZupdfJVZdg6+yAl/l0H53ugBMQ+APKHj0AeR4SSS9ybpn4Z0H3a8P/z6MOqJ/7UkVIdzpGXnDIHdof1sj6QVSdrzee+895s2b12X90EMP5f3330+HTZJeZme4hSajhVx/+vW72rEjozCbp1GsFWHrWkIuItxqEY87eH197yhoow8i8J0foAaFO7B6b+kwoGVbHa2bPmfozDFEPluPZcTwj6psG/eTGY6ObdPnGmgSScaybSW8+iv362lnwsF7bwbLSKKNrgBy0dj96wqWZCw90vFqaWnpst7c3Ixt27s5QpJp7Aw3Y1hxAtrex+L0FGHbxHYegYPC6FmtROMNqIqKZQpaWxx8PrVva7u2bsLZtgXPrMNQWqrBiu9TOgJgW3QYQ4eNouq99ZQdfBCOT8MMdX3v9xeWKfB4BliaUSLpTQIF7qNiOsz5dn9bkzpW3O3srZgBvpz+tkbSS6TseC1YsIBf/OIXPProo2ia643bts0vfvEL5s+fn3YDJelnW3Mdnl4YE5SgrgkluAENgVBdB0dRFFpbLUzDISu7b+/ijH/9Hfuj93G2rMN3xCHg33dnrrekhLmLpvL8nz5iwuhmAlkOeaPHEtq4ASMU6gOr941pCHx+FV2WSkkkLkVj4cv3ufIwA61BQwhX1Dh/pNvJKBm0pOx4/fKXv2TBggWMHz+eI45wc+evv/46oVCIl156Ke0GStJL2Ii7Y4J8vZNmVKIx7O01+Cv+D1VvpoXz8QgfTlylxeqHaNem9dgfvQ+qij51fIeQ4l7wlZZQNGc2Na+8xlBviNyyCoxQiNDGDeSOHpMxzpdlCQpy+r5WTiLJKGIh2PgyTDzZrdnMGqAjdSL1rsNYNIbdDn+VDBpS/u1OmjSJNWvW8NWvfpXa2lpaWlo455xz+OSTTzj44AHWOXIAUhduoSUeIacX5jPiOOg7ajAjBk68DCdeTlD1IwTEWzWEEOjefupknD4dNT+3W8Nlvfn5VC97h9jmbZSPDKK2fQi2O1+eYN+MAdobti3QNFWmGSUHNlYcnr8W3rgT3h3AUkdm1BUlLh7nCg5LBjU9EgepqKjg1ltvTbctkj6gtrUJ07Hw9oIujKehEb2ujnAwn+iH55PtERSVh9kWCWF7NQLBvnW67I3rsD9eA6qK97CZbhdjN2j+ZD3PvZKNrg3hyOG+zrOoMUKhjIh2mXGB16/0S5OCRJIRODa8fAtUf+Dqv41e2N8W9QzhuF3WxeMgu6y/rZH0Ad26+q5Zs4aDDz4YVVVZs2bNXvedOnVqWgyTpB8hBJubawn0wpggJRpF316F4/cRczwoeh26rmPFPIiYF2+u6POUmPFfd3yVZ+rBqOXDux2+r2/UMC0VRYFgQWaOGDEtyC2QaUbJAYoQ8Na9sOk1dwLCF38OhaP726qeEd4JwWIoGDWwBndLeky3HK/p06dTXV1NaWkp06dPR1EUROfZbG0oiiI7GzOY5liU+nBT+uu7bAfvjmrUaByrpIiWxjjZY3+NBUTD14HqoHn6/gPF95WzMP6l4F1weEpindU73T+L8gpQtcyrtXAcgarsYyi2RDKYWfM4fPhP9+uFV7tdgAMRI+yO0ioe160yCMngoFuO16ZNmygpKUl8LRmY1LQ20WpEKM1K75ggT0MjnroGrAK3WzDiWAjHh6LYqJYXPC0oqZcT7h/CQfU7+L907G7V6fd4mIDqGvfPYujIvet89RemIdIzFFsiGYh89iKsuN/9+tDvwtij+9eenuLYEGmAkomQPUAbAiQ9oluO15e//GVefPFFCgoKWLp0KVdccQXBDCgwlqRGTUsTKEqiWDwdqJH2FKMf2uYVak4uret+ytiAjWeUCXYPujj2A3vDOuyP30E/eDRKXgmpzK0OtahE4xqqKigblZl3oKYBeUVKQpRWIjlgiDXD6792vz74dJjy1f61Z39o3Qk5ZVAwor8tkfQx3boerl27lnA4DMBPf/pTWltbe9UoSfqxbYfNzbVk62kcc2M76FXVqPE4TnZH+jJmuA6BX+uQ0lH6UFPH+NejGM/8G+O15SkrP7enGcvKQPdkXiqvPcUfkGlGyWAmu3T3AqL+PPjKEjj1Pjjs4oFbExVvcQdfF42DXqi5lWQ23a7xOu+885g/fz5CCH7961+TnZ29231vuOGGtBooSQ87IyGa4y0UBbrX2dcdPPX1booxv0OQVNiwzdhM9viHqbEqgPMBp8+KwO11H2Kv/8TV7TryCykfX9WWZqwYmf6uz3RgGsg0o2TwY0ahYCQ0fu46KY4Fqsd1xsqndKwPRBzLjdyVHQzB7pdBSAYP3bq6LFmyhBtvvJGnn34aRVF45pln8Hi6HqooinS8MpSd4WZiZpxgbnrSZ2o4gr6jBifQkWIUAoyIRtQxUFQLhfZGCyWVbN/+2ZXrRz98Lqg6an5+SsdGogqhVg8gqBidqWlGQXae2i/NChJJnxFvcZ2rgpFQuxb++W1YcAVM+crAdroAWmogpwLyhve3JZJ+oluO1/jx43nssccAUFWVF198kdLS0l41TJJetofq8aRr4Kpto++oRo0bWMUdd2x2XMWKqGSZY2ldfzUHF5gQAIFA7YtUYzyEIsL4jjsePKnPoayudf8ciorAn4GpPCEEQtDnemgSSb8Qb4H1/4MRh8LMc+Cg46D2U3CM/ras58Sa3OkZxWPdVKPkgKRbn+AzZ86ksbERgBtvvHGPaUZJZhI1DbaH6sjxpachwrOzHk99A1Z+R9rSscBoVVFUsIUHYeWTS3v3pOj1mJew4hjPPYHT2tojpwugXRe1YkRmfiBaJmi6TDNKDgDiLfDq7fDo1+Ddh2HepdBaM7CdLtuAeKvrdHVjXqxk8JJycf3NN98si+sHGHXhEK3xSFr0u9RwGL2qBicYTEoxmq0ajqmg6oIa3/sER/6eHcH22Z1KSp2FKSMc7NVvYjz7HJH7/oSIx3t0mimV9RxzRCujJmVumtEfUNC90vGSDFKEgI2vwN/PgU//C2OOglnnQ/N2d4bh7gruBwJCuF2MecMhd2h/WyPpZzK6uN62bW666Sb++te/Ul1dTUVFBYsXL+a6665LFGsLIbjxxht54IEHaGpqYt68edx3332MGzcubXYMdGpamzGFhVfbT10q20bfXo1qmFjFHR+AZkTFjGl4/A6KAjGlCS2wHTNentinN5UPRKQB4/n/AqBPn4HiSz3iFYmCakDO8Cw8/sxM5dk2BLMy0zaJJC28dS988H/u11O/Bif/Hpq3uhEwa5eC+4FEtBG82VA0NuVOa8ngI6OL63/5y19y3333sXTpUiZPnsw777zDeeedR15eHpdeeikAt99+O3fddRdLly5l1KhRXH/99SxatIiPP/4Yvz8zIxd9zdamWvw9TL91Rq+tw9PYhFWQn1izDQUzrKF5REI6wheeRqR5OGML23/+ovcEVM0I9pq3cLZuA48HfeHCHp3m40+8VNcPZWbQy6j8tFqYFmxL4PHINKNkkDNyPnz0FBz7U5hzETR93uFkdS64H0jOlxV3uzQrZoBPlulIMry4/s033+SUU07hxBNPBGDkyJE8+uijvP3224Ab7frtb3/LddddxymnnALAww8/TFlZGU899RRf//rXe93GTKc5FqE20kTufk68V1vDeKpqcYIB0Nw7NuG4dV0IBVV3EvvaZhF2pISSQsPdCbV3arwcGxGqwnj5FQD02XNQc1OXyxACWsMqjqOQW5SZavWG4Q7F1qXkj2Qw0bQVPnsBDjnP1eQaMg2+8RiUTkx2utppd770wMBwvISA1lp3jmTOkP62RpIhpByGcBynzzoaDz/8cF588UXWrVsHwOrVq3njjTc4/vjjAXd8UXV1Ncccc0zimLy8PObOncvy5cv3eN54PE4oFEp6DFZqW5sJGxGy98fxsiz0HVWolunWdtEmHRHWsA0Nzeck7d6S9Rb+IX+nwfMZAre8q1dkvCJ12GtX42zb7ka7jjyyZ+cRDvMm1nD0F6GwJDNTebYpyMpW5VBsyeDAseC9v8E/z4dVD8PGlzu2BYtcZ2VPjlW8xd0+EIjUQaDAdbzSODFEMrDp9jvhe9/7XlJR/aOPPpoouAdoamrihBNOSKtxV199NV//+teZMGECuq4zY8YMLrvsMs466ywAqqurASgrK0s6rqysLLFtd/ziF78gLy8v8Rg+fPDqqdS2NCEEaPvxR6/vrMfT0JQklNouHaF5nS5OleHfiJ6/irBWh6uz3gtdjYb74auNOQjvl07C+4WjehTtAmhpdFB8Xgoq/Bnp2Di2QNEUvDLNKBkM7PwEnrwIVj4AtgnDZrsRrsGGGQXbguKDYD8zDpLBRbevxn/4wx+IRCKJ5xdddBE1NTWJ5/F4nOeeey6txv3973/nb3/7G4888girVq1i6dKl/PrXv2bp0qX7dd5rrrmG5ubmxGPr1q1psjizcByHz5tryNqPMUFqSyueqhqcrKxEitGxwAirKMru60Sd0EziNccznEqgPeKVRqfBNiBUBTgogWy8hx+O9wupq9SDG7l7a00uz79dSlNTZt6RGobA61Xw+qTjJRnAWDF46z546ntQvwF8ubDwGjj+9sGXhhMOhOugcJQ7/kgi6US3BYvaZ8Tt6XlvcOWVVyaiXgBTpkxh8+bN/OIXv+Dcc8+lvNztmqupqWHIkI4/3JqaGqZPn77H8/p8Pnw96HwbaNRFWmiKtVDg72ELtmW5Qqm2jZXnRpOEADOs4RgKnsDu3wNGy0QMZxJDi+IgHDfelTafwa2ZEPEQxhvv4Jk2Ha28fN+H7YGmZoWY6UHzQG5+ZjpelgE5JXIotmQAU/8ZPH8DtOxwn485Cg7/vpuGG4xEG93vrWDUwJ0nKek1MvNK00YkEkHdJUWmaRqO49YUjRo1ivLycl588cXE9lAoxIoVKzjssMP61NZMZGe4magVJ8vbs4iX28XYnHC6AKyoihnR8PjFbj9PhAAndwV64avE1Ua3xiudRV7RJgjXYW+pwXz1VaL334eIxXp8uuoq9/1VPlTLyDE8jiNAyUwlfYmk2wSLwWiFrBJYdCscfcPgdbocy00zFo4GXXbWS7qSmRLdbZx00knccsstVFZWMnnyZN577z1+85vfcP755wNu+uqyyy7j5z//OePGjUvISVRUVHDqqaf2r/EZwI7mejR6phmjtrSiV9VgZwcTKUbbVDBaVVS9QzpiV0wB3sI3UH11RCgH8lAQqOmo8bKi0FKF0LSOTsY5c1H2Qzakus7tYqwYmZndjKaBm2aU9V2SgYQQsPkNqDjErW8K5MPxt0H+CPDuv5BzRhOpd9OLOT2PxEsGNyk5XjfccAPBtq42wzC45ZZbyMtzC64713+li9///vdcf/31fO9736O2tpaKigouuuiiJK2wq666inA4zIUXXkhTUxPz58/n2WefPeA1vOKWybaejgkyLfTt1eA4iIAbLeuQjlDRdGePhxoOmC1TUKPNFBbk0FZdv/9ul3DckSFWHPz5eI9YgPHG6+gLFvT4lOGwoCXqdbvYh2fmPYhlCnILVDRNOl6SAUK4Dpb9Fj5/AyZ/Geb9wF0vndSvZvUJVhwcx00xSqFUyR5QRDeLtRYuXNitAumXX355n/tkGqFQiLy8PJqbm8ntYWdcprG1qY4n1r7BkOxifCkq1uvbq/Bu3YFVVJBogY63aJitGp5A1y7GztQbCjev8+FVBL+aHMeyHRpjTcweOo7CYH7Pv6FwLTRvc2ecpekD7bP1Ch9vyqGkXGXhlzLvLlwIQbhFUDbMQ1a2TDVKMhzhwCf/gbfuBzMMigYzvgmHLD5w6pxCOyC3AsqnSfmIPqLL9XvNTd07cGo39+sFun2b/8orr/SiGZJ0UxtpxrSslJ0uNdSCXl2DnZOV+OCw4soepSN2JeYIPDlr8Co6lhhORxnhfnwIGa1utEsPYm/ZirAstDFj9rtTMtPTjJYJHq9Uq5cMAJq2wuu/hqrV7vOSiXDklW6d04GCGQHV46ZTpdMl2QuZmV+R7Ddbm2rxeVKUOTctvNurQIBoS9U6Nhitmisd0Y13S9SxCAx7BACLq/Hg3T8BVceElra0p9dH/Ol/4+zYge/kk9EP7XkDRTzu0NjidrYOHZGZfwZGXJCdq+LJwKJ/iQRwC8lXPw6rlriaXB4/zL4AJp924KXawg2uoxks7G9LJBlOZl5xJPtFSzxKbWsjub7U0md6TS1aUwir2P3gEALMVg3HVPD4uycfEnUcrPAovJ443oAXB0DpqeMloHUnxJvBX4C9di3Ojh3g9eKZMrUnJ0xQs8OVdc0rUMnKyby7UyEEjgMBORRbkskoKmxd0SGEesTlg0+TqzvEW9wmgoLK/rZEMgCQjtcgpLa1mVYjSlGw++3aWlMIvboWOzenI8UYUzGjGh7fvlOM7QjHT3TLRZQFHNQxBrZwQFF6plwfa3YdL182QlEwXvwfAPphh6Nk7V9NViQMqiqoyNBol22BR5fdjJIMxIq5si455a7jteAKqF0L47544NRydUYI9+dROgl8PdRMlBxQZOZVR7Jf1LY24QCebtYZKKaJXuWOWBJ+N/2WkI7w7Fk6YndEHAPV24Sme4AgAscdkZ1q4MaOQ6gaNBU0H/ZHH+FUVYHPh/eI+SmeLBlh24wbFmHC4UXgz8yp04Yh8AdU9MwsP5McqGx/F167A3zZcOq9bTVNle7jQCXW7Db95A3tb0skA4SU8xhbtmzZrWq9EIItW7akxShJzxFC8HlzdffHBAmBp6oWrTmE3a5O3y4dYatoemoTCuqUWrLG/IaGsgeS1pVU3mrCceu6rAh4cxBCYLzkiuTqhx2OEty/aFdro0lMDeLNC2Rs4bptQTBbycjZkZIDkHgLvHo7/OdHrvp8tNH9Gz3QcWz3Z1MwEvZjNJvkwCLliNeoUaOoqqqitDR5/lRDQwOjRo3Ctu20GSdJnfpICw2RFvJ93ZPF0JpD6DU7k1KMZkTDjrnSEaliOA7CCqI5bfpfbesppRqjjRBpcO8iFfdY38knY7z2Gt75+xftAvhsS5CtddkcbBpMnJF5o6NsS6BpCj6/rO+S9DNCwKZXYdnv3L9LgEmnwpxvD34h1O4QbXRV+Q/EuraBRD9KR+yOlB0vIcRu78JbW1sPeNHSTKAm3ETUjDMsZ9+/C8Uw0HfUgKog2mZXWnEFM9w96YjdETBH0Lr+BqYWWDDUckcGkUJo1QhDazV4fEldUdqIkQTOHpm6QbvgWBZmm1NYUJKZXVemIfD6FbyZ5xNKDiQ6C6GCm05ccCWUT+lXszIGxwLbgLLJkGoHueSAptuO1+WXXw64Y3quv/76hII9gG3brFixYq+DqSV9Q1WoHlXR9i0VLwSe6p1ooRBWkdvF2C4dQTelI3ZH3BGAwNfuaYk2U7rjxDm263RZJrSJrVrr1iHCrXimTkPR9t9RErE4s6cpiCFF+HyZGVEyLVetXqYZJf3K2n+5TpeiwYyzYPpZ7g2RxCVcB1mlkF3W35ZIBhjdvry+9957gBvx+uCDD/B6Ozx8r9fLtGnTuOKKK9JvoaTbGJbJtuY6cruRAtCamtFrOroYE9IRhoInkFpdV2eqfO+QPeHffG4cDJzu1mt1t6sxXAuxJvDnAyAcB+OZ/+LU1CBaw3iPOKLHdrXT1KSQNzKHrGBmRrscR6AqihyKLekfrJirxQWuo9W8zVWfP5CEULuDFXfTsAUjDzy9Msl+023Hq30U0Hnnncfvfve7QTNaZzCxM9xMyAhTnlW81/2UuIF3R7XrcLWlGO2YihVV8fjEfnWEm5goikBrc7QcBKCiqvs4aTwErbXgzU58kFkffohTUwN+P/qsWT03qg3HNFm9qYjwWg/zF1mUD8u8pl4zLtB9UkZC0sc4Fqx5HD74B5z2R8gqcaNbR9+w72MPRCL1kDsM9vFZK5HsjpSvPA899FDS81AoxEsvvcSECROYMGFC2gyTpE5tuBnDMvF59qJBIAR6dQ1qS2sixWibCvFWFUVzswr7Q6BlLq01Mziq1IEgiRqvvXY12ga0VLkaQJ1SGdrQCjwzZqAWFaME9r9jqLXBpjWqoyhQmKn1XSYU5Cn7dlQlknSx81N47VdQ/5n7/NNnYOY5/WtTJmNEQNVdsVRZDiDpASk7Xl/96ldZsGABl1xyCdFolFmzZvH5558jhOCxxx7j9NNP7w07Jd1ga3MtXm3vNRhaYzOe2jpXOkJVEQ6YYRVhqz3qYtwVy9ERlp8cxaA93rXXLKNwoKXGnccYSB61oRYV4z/jq7uVL+kJ1fWuQ1oyRMPry7wPTOG436dPphkl6SS7FMyoK3vQGSsGW1a46f36z8CXC4dd7AqhSvZMtAGKxkKg+wLVEklnUv6Ef+211ziirdbmySefRAhBU1MTd911Fz//+c/TbqCke7TEI9S0NpHrC+5xHyUex1tVBZqGaKvRMyMqVps6fTpoyHmR4Kjfss33rrsgQHVDXrsn2gSROvDlJe4eheNgvvUWIh537U7DXaVjmNQ0u7VvmapWb5qgy6HYknRjRt1apM6q6tvfhbf/BIec6w62HnMUfHUpHLRIRnH2RiwEehbkDe9vSyQDmJQdr+bmZgoL3cjEs88+y+mnn04wGOTEE09k/fr1aTdQ0j12ht0xQdnePTheQqBX1aKGwm5BPWDHFcyw5kpHpCnIYmmNaP5qHCXa/sLssbTejLRJR3hB63CGrA/WEP/X/yNyzz0IJz0OYazFoLHFjXhVVGao42UI/EEFTZMXPkkaibdA4+cdzlf9BvjkP3Dir+HpH8LYY9xaLhnB2TtCuCr1BSNd5X6JpIekfAUaPnw4y5cvp7CwkGeffZbHHnsMgMbGRqnj1Y9UtzRhC4G+B8kFrbEJvXYndn4uKEqHdAQ9l47YLY0LiTTMZFx52911W5FXF9fLsd0UoxWHTjMlheNgvPQSAPqMGSjdHHu0N4QQ1NT7AIX8oswdii0EBOVQbElvsKvzddAieOt+mP0tKYTaXaKNbsd1bkV/WyIZ4KR8yb3ssss466yzyM7OprKykoULFwJuCnLKFCms1x84wmFrqJbgHkZWKPE43u3VCF1HeL2udERYwzbSU9fVGTNeim2VUaTGAYEDaOpuYl6ROog1JKQj2rHWrEbs3AmBAPphh6XFJmGa1IbcO9RMjXZZphyKLelFWqqgYaPrdGWXueN+xh3T31YNHBzbLaqvmA66DDBI9o+Ur0Lf+973mDNnDlu3buXYY49FbYtIjB49WtZ49RMNUXdMUK53N+FvIdB3VKOGI1jFbV2MMRUroqL5eqZOvzeswmfwe0I0K4cylPLEkOykIi+jxZWO0LOSNHCEbSeiXd4jFqCkKYJqhWPUNRUBMHRkZjpepiEIZqvounS8JGmmeRs8fTlUHgoTT4LWGlcGwWjtWnAv2T2RevdnllPe35ZIBgE9ugrNmjWLqVOnsmnTJsaMGYPH4+HEE09Mt22SbrKztZmwGWNIdkmXbZ6GJvSd9R0pRlPBaJOOSLfunyNAyVqHx1+NKQ5OrCcp19uGe7ctnC53jtaa1Yi6OggG0xftEoKdjT5sRyGYrZBXmJmpPNuGgEwzStJNwyZ3sHXFdDjlbqj+ABS1Y7Bz4+fS+doXtuk+CkeBthepHomkm6T8SR+JRLjgggsIBoNMnjyZLVu2APD973+f2267Le0GSvZNVUs9qtC6RK+UWBx9exWOrrtpRgeMsIpjq2je9Eg0dMYUYNQdRaz6SwxRXCfQfZX2RKNwI13xEPi7CvB6xh2EvuBIvEcdheJLz2gSYRhY6Pj8bpoxE8fwWJbA45HdjJI0U7cO/v0D1+k6Y4nrhLV30exa8yXZM5F6dwh2Vml/WyIZJKTseF1zzTWsXr2aV155JamY/phjjuHxxx9Pq3GSfWPYBltDdeTsWiDrOOhV1aiRCE6Om4JMt3TErsQdsFqmYjXOo1jNS6yriuJGuiIN7nwzX+5uW9aV7Gx8xx2H9/B5abPJicYYOVbjpG9kc/CszJwzZ8YFXj/ocs6uJF3UfOR2LMZDMOZoaNxM+21Qgnbnaw+1oRJcrTOAghGQhkYfiQR6kGp86qmnePzxxzn00EOTogeTJ09mw4YNaTVOsm/qwi00x8KUBouS1j0NTei19Vj5rj6WbSiYEQ3NK9ImHbErhqPgLX4BDQ3DmUZAKHhiIXQrBvXCDdd7vF3C9cK2MV95Gc+cuag56bv7Fo5DJKohzBxKFFcjKxOxbEFBjpaR0TjJAGTHe/DsNa7TUD7FjXgJe/f7xltkqnFvhOshfwTs8vkqkewPKTteO3fupLS0a8g1HA7LC0c/sDPcjGHbBDwd4RIlGkPfUYXj84Kud0hHCAXV0zvRLoRN3LDwlbzoPg8XoDs6nngUFS+K6nHb1nfzHrHefw/jxRcx332X4BVXpkVCAkDETbY05LHxAxg9Ic4h8zOvG8m2BZqqZqSSvmSA8sl/XKdr6CHwxZ/LiFZPMcLuCLP84VJUVpJWUr7CzZo1i//85z+J5+3O1p/+9CcOS1NBtKT7bGuuxat4O4rXHQd9Rw1qNIaTneVKR0Q07LjbxZg2hECx4qhGC57oTvSW7ZjhWoyGeWjNM/Hhw/EEsTw5CE8QxePf7YdX505G/dDD0uZ0ATixOKpXx6NDaUWGzmaMC7w+ZH2XJH0c+WOYdQEsulU6XT1FCLc0Im84BPL72xrJICPliNett97K8ccfz8cff4xlWfzud7/j448/5s033+TVV1/tDRsleyBsRKlubSS705ggT0Mjel1dR4oxXdIRAhTHQLENFDuGYkVRbRMFG4GCo3ow1TziNSdR7DXQh+5IHKiqyp5HBgmBfvg8rFXvoh966H4YuMtpHQdFCKbO9jF1YdZex0X2J6YFuQWKjBZL9o/Nb0LZZPDnuan8mWf3t0UDm3jIbTrIl6OBJOkn5fDC/Pnzef/997EsiylTpvD8889TWlrK8uXLOeSQQ3rDRskeqA03EzKi5Pjcu1olGnW7GP0+8HhwLFzpCLWH0hG2hWqE0WKNeMLb0Fu2oUeq8cSbUISN4/Fh6zk4ejZoflqw8OS+D8FPk06ztzeZ4vHgnTePwCXfR/Gmr7pcxA2ajCxaDR+apqBm4BgexxEoihyKLdlPPn0GnrsW/nulK/Ip2T+E0yG3IVX9BwdrbupvC5LokY7XmDFjeOCBB9JtiyRFalobsR2BV9PAdvDuqEaNxbGKi9wUY6uGYyp4At2UjnCsRFRLNSOotoEiLEDgKDqOxwt49hi9aiJEYOhjtNpZYHa6495DNb+1YQNqdjZqWVnaIz5ONM7HW4ppXBNj9pEwclzm6e+YBni9iqzvkvScj56EZb9zvy4ZL1XV04EcDSTpZfZLxlsIwcsvv0w0GuXwww+noEAOWe0rHOGwpbmGgMf9oPXUN+Cpa3BTjLjSEWZMw+PfS4pR2Ci2iWLHUa0oihVDERYK4KDiaDoovm4XllpCxwqPJQ8PtEXYHJzdRryEZRH/5z8Qzc34zz4Hz4QJqf0A9oJwbOKWSmOT+8plGVrfZZmC3EJVDsWW9IzVj8GK+92vp5wBh35PFoHvL44FRhSGTnAL6yWSXqDbjldTUxM/+MEPWLVqFYceeih33HEHJ5xwAm+++SYApaWlPP/880ydOrXXjJV00BRrpSESJteXhRqJou+oxvH7weNxpSPCGpq+i3SEECh2HMUxOxwtx0BBtNVpeRFacI8Rqn3htYqJbvkWU7JboaQusa7u5nzWqlWIpiaUnBy0MWN69Hp7QsQMaltdgdaCYjUjFeHbh2IHZJpRkipCwKql8O4S9/mMb7rF9NLp2n8iDZBdAtlyNJCk9+j2p/4VV1zB8uXL+frXv84HH3zAcccdh23bLF++nBUrVjBx4kSuvfba3rRV0ona1mbCRoxszecKpcYNt4vRduu6EAqqJty0odGKFq3D07oNvXUHeqQa1QghcHA8wU51Wt4eO10ArSKO6qtC0ZoTa2JX0UbcaJfxyssA6AuORNHTmwYUMYPakNtwUDEiU2czurpisptRkhJCwIo/dDhds7/lPqTTtf/YhhvxKhgFWmZ+bkgGB91+dz3zzDM88sgjHHnkkSxevJjhw4fz0ksvMXfuXAB++ctfcvLJJ/eaoZJkqlsaUISKt6E+kWIUAswWgQgbePUIamsY1TZQO3UeOh4fKL2Teqv1biCr/Gm2x0YBixLryi5FYda77yaiXfqcOWm1QTg2llDZWe9+j0Mz1vESZOepaB55wZSkgBmFrSvcrw+72E0xStJDuN6NdGV1nXkrkaSTbl+VampqOOiggwAYOnQofr+f4cM7Wm0rKyvZuXNn+i2U7Jaa1mayLQfv9u3gsdHMJpymODR58GtxVMfBUTw4Hi/OXgri04mFimNl4xWBpNfrfDOeFO06cmH6o13ROHWxbBwbsnIUcgsyL5UnhMBxIBDMPNskGY43CCfeATtWwdhj+tuawYMZdaP9haPkaCBJr9Ntx8txHDStI1KiackjTqQOUR/TWkvBxg/wtURx8rw4cY14OA+hqQhvALsffh/B1qmEaw5nWmED5IUAmHzIXJTWFoi0jSxRVbzHn4D1zkpyvvQlvMVFtKxbnzYbnLhBbci9Y60YkaFDsU3w6DLNKOkmjgUfPQWTTwXVA8FC6XSlm0i9m2IMyAYxSe+TUh7mT3/6E9nZ7sBly7JYsmQJxcXFALS0yHlffUlw22dotVVY5cMQuo+4kY2lePF4jT6Jbu2OuHAAB5/SoZDfsLOGhSecQuPKd4nX7kRRVfSpU8k+5miK5sym/u2VaXt9YdsIRaOmxr1BqKjM3DRjIEvN2NmRkgzCNuB/P4XNy6B+PSy8pr8tGnwYra7Cf36lrJWT9AndvjJVVlYmaXeVl5fzl7/8pcs+kr7B0xzG9AXBF8SIejHiXjy62a+fGzvzXyJnxFusj8zhCGYCsGPLJj56+UWmHHUsO//xD6Lbq8g67NCE0xWvTV962onGaDKzMQzw+qC4PDNlJGwHgtkynSHZB1YMnr8etq101ehHL+xviwYfQkCkEUomgD+3v62RHCB02/H6/PPPe9EMScoIEKqCbWoYUR+qZqOo3RRK7SUsxQTAR2eHR6Fpxzbq33yLkhNPpOkf/yD/kJlpd7oAhGGBP4u8ApX8YtUdVZRh2JbAo8k0o2QfGBF47hqoWg0ePyy6xR16LUkv8Wbw5ULesP62RHIAkZm5GEm3EEIhHvEjHAWPz+pvc/DUnkhr9QlMKamDhFq+QFEVIqvfR9uwnqILLiD0yadpd7ocy0LRVCrG+Bl2cADH7l8ndE8YhsDrV9DTNx1JMtiIt8AzP4baj0EPwvG3QbnUR0w7woFYC5RPcZsWJJI+QuY7BihCgGkEsUwPHq/Z3+YAYAgdYWeRoyR7FQoq/pGjyP/qV2n897/JGj0KX2l6W7ZFNE5MzWZHtQfLEhk5mxHANgWBLDkUW7IHYk3w9OWu0+XLgRN/I52u3iLa6DYq5A7tb0skBxjS8Rqg2JYX28hC81gZUw8aL/s/gqPvoErflFgTCAoqhlFy/CLqV6+h1bSpf3slRXNmp9X5EqbFjuZslr8YY8XLsbSdN504tkDRFPxSrV6yJyKN0Frjzgr80m+hNH2jtCSdcCwwY24no0eGnyV9i0w1DlAswweKjao5+965jxB6I5pvJ6rTkfasqBzFhCO/kFTTFa/dmXC+0lHr5ZgmikfDG9QJZguGDM/MonrDEHIotmTvFI6CE37lDrvOH9Hf1gxeIvXuaKAcORpI0vdIx2uAIhwFRckcp8sREK06HUULM6rYSgzJLiwpZd1rLxNc/g7mmtV4xo5DnzMn4Xx58/P32/ESUQM1K8C4UUHGTXPTsJmIZUBOiZKRRf+SfiS0HbasgINPc5+XjO9fewY7Vhwcx412qZl5kyYZ3PQo57Fhwwauu+46zjzzTGprawF3pNBHH32UVuMkAwdDKDjxcuzIGAoUf2L9g3ffIrSjCqemGvvDD7F37Ehsi9fuTIt4qrBMmq1cdu6wEYKMdGyEI0BBphklyTRthn/9AN68Cz55ur+tOTCI1EPuEDkaSNJvpHwVePXVV5kyZQorVqzgiSeeoLW1FYDVq1dz4403pt1AycAg7qj4Kx4hMPSvRJQOMV1FuFMNRDzuPvf70vq6jmGi6Dqfrvfw6n+jrP8wMxoNdsU0cNOMUkZC0k79BtfpitRBwUioPKy/LRr8mBFX/T9/hBRLlfQbKacar776an7+859z+eWXk5OTk1g/6qijuPvuu9NqnGTgEBcKnpy1KKqJE58KiXSfOyJbxNocL59/T6foESIWw/Fns7PafcFMre8yTUFugYqWod2Wkj6m9hN45kpXOqL4IDjhdregXtK7hBugcLTbzSgZ3Ey9qb8t2CMpO14ffPABjzzySJf10tJS6urq0mKUZOARd1Ri1acQ9MTIzg0k1gW4d5bxtk5DX/oiXkIIhOVQH8vBcSA7VyEnP/NSeUIIhJBpRkkb1Wvgmavd6EvpJDj+l650hKR3ibe4el0FcsKKpH9J+UqQn59PVVVVl/X33nuPoUOlHsqBSlwoWM2z8DXPxYvuLgr3HxV6JdUoTBPVq1Nd494/yKHYkoxn+7vw36tcp2vIdDjh19Lp6guEgGiTm2KUP29JP5Oy4/X1r3+dH//4x1RXV6MoCo7jsGzZMq644grOOeec3rBRMgBoFXF8pf9FFL6ctK6goijgmTABz5y5qKWlaXtNEY1BMIuq7W5359ARmdmka8QFgYCCR5eO1wGPEXYHXw+b7SrSS8X0viHWBP48yJPBAUn/k/KV6tZbb+Xiiy9m+PDh2LbNpEmTsG2bb3zjG1x33XW9YaNkABAijrfoNQzHB8ZBQHuZl0BBQT/0sPY4WFoQQiBsh2YjG9MAn1+hqDQz67scAQE5FFsCMGoBnHgHlE0GTQp39gmO7Tq8Q6aBHtj3/hJJL5Oy4+X1ennggQe4/vrr+fDDD2ltbWXGjBmMGzeuN+yTDBAc24dRfwSFHhs6ZRN7K8YjDAPV66V6pwewGVKpoWSgjIRlCjwe2c14QLPueTeyNXK++7xiRv/ac6ARbYRAEWRLsVRJZpCy4/XGG28wf/58KisrqayURYoSF9XJIV5/ImXBMJS5gqiCjuL6yN2/B8D/zbNR8/P3+/WcaAxPQT471rhpxooMTTOahsAXUNHTGe6TDBzW/hte/40rYfDl+6FoTH9bdGDhWG5qt2yyHA0kyRhSzn8cddRRjBo1ip/85Cd8/PHHvWGTZADSRAhP3rtYgY1J64oCihA4VVU4O3aAuv8pN+E44ECrk0OkVaBpUDY0Mx0v24JgthyKfUDywf/B63cAAiae5I4DkvQt4TrIKoXssv62RCJJkPJVcMeOHfzoRz/i1Vdf5eCDD2b69On86le/Ytu2bb1hn2SA0KDXEKj4P+rzXuuyTTXNxBwfxb//Ol4ibqL6veDzUTZMY0ilB48n8xwb2xKomuxmPCBZ9RdYfo/79bQz4fDvgyLr/PoUK+6G3AtGytFAkowi5U+C4uJiLrnkEpYtW8aGDRs444wzWLp0KSNHjuSoo47qDRslAwBhBbFaDyLHrOiyTfHo+M87D/+Z3yAdOTcnFkfLyaao3MuC44IcelR6RVnThWkIvH7kUOwDCSHg7T/BOw+6zw85D+ZcKFXS+4NIPeRWQFZxf1sikSSxX/mZUaNGcfXVVzNt2jSuv/56Xn311XTZJRlg+OKjiNZN5aD8Riho7rRFAU3DM+6gtLyOcBwUITA8WWz92KBihIdAVmZGEkzLVauXacYDBCHgrXvdFCPA3O/AtK/3r00HKkbE7RotqJROryTj6PEVa9myZXzve99jyJAhfOMb3+Dggw/mP//5TzptkwwgWpUQqn8beDrmNAoECqBYJk5TEyIW2+/XETEDxe+jqlZn1Ztxlr+0/+fsDRxHoCqKVKs/kFCUDrmCeZdJp6s/iTZA3jAIFPS3JRJJF1KOeF1zzTU89thj7Nixg2OPPZbf/e53nHLKKQSDUgjwQKY+632yhr7O5sgMYG6nLQJ16zYif/kbank5wUt/sF+v48Ti6GXF+KMaRaV2xoqmmoZAl0OxBx/ZpWBG3fEzu+LLgSOvdoddl07se9skLrEQ6FmQN7y/LZFIdkvKV63XXnuNK6+8kq9+9asUF8vcucTFcXQcM4+g2EWgUFFQ2sYF7e+cRuHYKApoOVkMH6IzfLSOEGLfB/YDpgEFxQpqBmqLSfYDM+oWazd+7jpftgnL7oJDvwvlU9x16XT1H0JArBnKDgZfdn9bI5HslpQdr2XLlvWGHZIBjrfpSMI1X2R6aQ1kRQEQjgAUiBsAKPvreMUMFL+fhhYvkSqTIcM9GRlRcr9v8Mk04+Aj3uI6VwUjoW49PHs16EFXJ6ruM7Ci/W3hgU20Efz5blG9RJKhdMvx+te//sXxxx+Pruv861//2uu+J598cloMkwwsYsIARcOrOom1NrcL2gdk+/av+1DEDPTyEjZ8bLF1o8X4qV6mzknf0O10YZqgexV8sptxcBJvgR3vQ/FBMP5EmHk2bF4mL/b9jWO7RfUV00HPzE5niQS66XideuqpVFdXU1payqmnnrrH/RRFwbbtdNkmGUBEyv5BTvanbIoczQTc8VHtjpfSFvHC33MnSTg2qAoEAlRttYDMHYptGoLsPBUtA7XFJGng8zfg1dthwZUw71Ko/kA6XZlApN6VjsiRo4EkmU23rlyO4+z2a4mkHUcxUYBA57eUEKCAYrRFvPZDPFVE4ygBP3UhH5YZwxdQKCzNvFSeEAIhIJihEheS/cCKw1v3wcdPwZij4JBzoX6DW9PVXvMl6R9s030UjgJNzueSZDYpXx0efvhh4u3F0p0wDIOHH344LUZJBh7xrefR8ulNTLRHJq0rCigLFhD80Y/Q583v8fmduIEnP5eqLW5EtaLSk5H6WJYJmi67GQcl65/vcLq+9lcIVUE81FHz5cvpZwMPYML1kDPEHQ8kkWQ4KTte5513Hs3NzV3WW1paOO+889JiVGdGjhyJoihdHhdffDEAsViMiy++mKKiIrKzszn99NOpqalJux2SPeMIMIUOjp+spNEcbWOCAn7UomLU3NwenV9YNoqqoQYC7NjiphkzeSi2P6Cg69LxGnRMOBGO+BGc+Si0VHUU0ncuuJfOV99jxdyahoKRaZkFKxkkrLmp45FhpPwuFULsNtKwbds28vLy0mJUZ1auXElVVVXi8cILLwBwxhlnAPDDH/6Qf//73/zf//0fr776Kjt27OC0005Lux2SPRMXCsGRvydrzK9oUusT6w6goMDWbVgbNyLC4R6d34nFUIJ+mqNeomGB5oGyisycvWbbMs04aDBa4eVfQMMm97miwuwLoHlb17Riu/OlB7qcRtLLhOshdxgEC/vbEomkW3Q7bDBjxoxEtOnoo4/G4+k41LZtNm3axHHHHZd2A0tKSpKe33bbbYwZM4YjjzyS5uZmHnzwQR555JHEnMiHHnqIiRMn8tZbb3HooYem3R5JV+KOihpoQNGi6J2F5IVbXi+ef57Y5i34z/wGnilTUj6/MCz0kmJ2tKUZy4d6MrJw3bIEHo8cij0oqPkIXvoZtFRDw0Y47Q+u49Vau+dj4i2yzquvMcLg8UH+cDkaSDJg6Lbj1d7N+P7777No0SKyszvE6bxeLyNHjuT0009Pu4GdMQyDv/71r1x++eUoisK7776LaZocc8wxiX0mTJhAZWUly5cv36PjFY/Hk+rUQqFQr9o92IkLhcjmC/F5YhSWdnS1JuQkYm0/6x50NTqWhaKpaNkBdmzO8DRjXOD1K+je/rZE0mOEA6sfhZV/BmG7HXJH/NB1uiSZhRAQaXBlPQL5/W2NRNJtun0Fu/HGGwG35uprX/sa/v3oUOspTz31FE1NTSxevBiA6upqvF4v+fn5SfuVlZVRXV29x/P84he/4Kc//WkvWnpgYTgqTnwIXstCZ1vSNgUgNwclHkcJpD5WSkTjqMEgEdNLc0MEFBhSmZmOl2ULCrK1jCz6l3SDSD28fCtsf9d9PvoLsOBH4JUK6BlJPOTW1OXL0UCSgUXKV7Bzzz23N+zoFg8++CDHH388FRX7p5lzzTXXcPnllyeeh0Ihhg+Xf7w9pUUYBIb/CfDgsAC1rXTQjXgp6Oeei1ftmbMkTAutPAdLKIw8yINpkJGpPNsWqKrsZhywbF3h1nPFmkDzufpc40+Q6atMRTjuTMbyKeDN6m9rJJKUSPlqaNs2d955J3//+9/ZsmULhmEkbW9oaEibcZ3ZvHkz//vf/3jiiScSa+Xl5RiGQVNTU1LUq6amhvLyPYvo+Xw+fPs5vkbSQSsWnuzPcISGGl/YaUu769Wzi5djmigeDS0rQLZfZfaCzC1cNuMCr1fBK9XqBybbV7lOV+EYOPoGKBjR3xZJ9ka0EQIFUrhWMiBJuXDhpz/9Kb/5zW/42te+RnNzM5dffjmnnXYaqqpy00039YKJLg899BClpaWceOKJibVDDjkEXdd58cUXE2uffvopW7Zs4bDDDus1WyTJCNtPdPvXydn5paR1B1BtG+s//yH+wvOIFKcaiKiBmhXAVLx8+E6chp2ZOxXBtCArRw7FHlDYZsfXs78Fcy6CU++VTlem41hgxlyxVI+8gZYMPFJ2vP72t7/xwAMP8KMf/QiPx8OZZ57Jn/70J2644Qbeeuut3rARx3F46KGHOPfcc5O6KfPy8rjgggu4/PLLefnll3n33Xc577zzOOyww2RHYx/iOH6s0HTyI9O6bNPMOPby5ZivvJJy2kZYJp68XKq32Kx932Dla7F9H9QPOI5AUeRQ7AHF+hfg8W9Ca5vmn6bD9DPlhXwgEGmA7BLIlqOBJAOTlFON1dXVTGmTBMjOzk6IqX7pS1/i+uuvT691bfzvf/9jy5YtnH/++V223Xnnnaiqyumnn048HmfRokXce++9vWKHZPfUq434ypYTJRsY1WmLwGO4nYh4vSgpiBs6hoGi62hZQYJxhaEjPRQUZ6ZjYxrINONAwYzAst/Buufc52v+Dw6/pH9tknQf23AjXvkjQcvMJhuJZF+k/M4dNmwYVVVVVFZWMmbMGJ5//nlmzpzJypUre61u6otf/CJCiN1u8/v93HPPPdxzzz298tqSfRNSm/AWLCMcHwKik+MlQGurAUx1TqOIxVGzs1F8XkqGQMmQzP2QtUxBboGKpknHK6OpWw8v3gzNW115iJnnwIyz+9sqSSqE6926rqySfe8rkWQoKV/NvvzlL/Piiy8yd+5cvv/97/PNb36TBx98kC1btvDDH/6wN2yUZDiaVUC8biHDPDok+VcCzXQjXoqv+46XEAJhOXjyc6ivtdlZZTF0pE5OXuZFvNqHYvuDmWebpA0h4MN/woo/gGNCVjEcdT0M6Zoal2QwZtR1mPNHyNFAkgFNyo7Xbbfdlvj6a1/7WkKsdNy4cZx00klpNU4yMNCMEozQWIbnNYG/KbHuAGp712sK4qnCNFG9OlogwOcfmmz8xCTcIjhkft9rx+0L0wCPV6rVZyy2CS/cAFuWu89HzIMjrwJ/+sebSXqZSIM7jzFQ0N+WSCT7xX7nbw477DDZQXiA06TVoud/SswbADoNCRbg+P1oEyailnQ/NSCiMbS8PPDq7Njiznccmqlq9YYgO0/Fk4EjjCS4RfP+PPf/Q78Hk06V2lwDkXgL6H7Ir5S/P8mAp1tXs3/961/dPuHJJ5/cY2MkA5NG/wb8+a9QG5kKHJ5YdwTEhw4hMP0wuivlJYRA2A5abjaNOx1iEYFHh5IMHIothMBxICDTjJmFY7kzFvOGuc/nXQpTvwqFo/vXLknPEAKiTVAyEfy5/W2NRLLfdMvxap/TuC8URcFOUatJMvBRzEKslokUULKLQElbQ0QKN6jCMFB9XrSsANvXu/Vh5cM8GVm4blvg0WWaMaNoqYaXfu7+/5U/gT8f9KB0ugYqVhzCdW56MW9of1sjkaSFbjlejuP0th2SAYzeOoVo3RwmlOwEPZy0Le+DtUS3v4pnylT0GTP2eS4nGkMvLEDRO9KMmToU2zAEgaCK7pWOV0aw8VV47VdgtIKeBQ2fQ8X0/rZK0hOE487OtC3IGw5Fo8Gb+qxXiSQTycwrmmRAEdHqUP0CodnsGt7y19Vhf/IJasW+71aF44ADak42rSGHUKODosCQ4Zn5NrVtCGRJp6vfseKw/G5Y+2/3eelEOOoGyB3Sv3ZJeobRCpFGCBZC+VjIKpVdjJJBRcpXtJtvvnmv22+44YYeGyMZmLQWvEJWzkdsjyxkNhOStqlxdyyL0o2uRhE3Uf1umnHHWjfNWDJEy0hhUtsSeDQFn19eEPqVhk3w4k+h8XP3+bQzYfYF0MOh7JJ+xDYhvBM0r1vPVVApJwlIBiUpfzo9+eSTSc9N02TTpk14PB7GjBkjHa8DEMfOwjEKyU4W8cLBofXgiRSNHY82ctQeju60fyyGXlyI4vGwfXMEgIrKzLyAGoZA9yl45XWh/2jYCE9+x1UzDxTAF66FYbP62ypJqgjhDr02o5AzxE0rSskIySAm5avae++912UtFAqxePFivvzlL6fFKMnAwq45hbCjcfDQ7eA1k7aZIyrxFnUvzagI0HKyiccc6mrcJo1Mre+yTUFeoYoiW9v7j4JRMHSWK4q68Bo3NSUZWJgRCDe43YoV013HS828DmaJJJ2k5aqWm5vLT3/6U0466STOPluO4DjQiCtRUHV0NbmjVSDcItluIGIGit+HGgwgTJg4zUtLs0NWTual8hxboGgKfjkUu++p/tBNPxWPc/Wcjr4OPH5X0VwycHAst1sRBYrHumr0snhecoCQtnBCc3NzYmC25MDBFuAbcT8BXx210VMpojxpe8WDf6U1EiXwrW+jDR++x/OIuIGntAjFo+H3wMGzMjeHZxpCDsXuaxwb3n8E3n3IndX35T+6F2pdXqwHHLEmiLdCdikUjnFHOEkkBxApO1533XVX0nMhBFVVVfzlL3/h+OOPT5thkoFB3FHB46YXs5SubyfFMMA0Qdf3eA7h2IBAy8nCtgTvLY9TUelhyHANRc0858Y0oSBPQc1A2wYl4Tp4+RbY0VbmUDJh7/tLMpN2TS49C8qnQO4w0DKzlEAi6U1SftffeeedSc9VVaWkpIRzzz2Xa665Jm2GSQYGcaEQ/uxqVMVk2MhtXba3z2pU/Hues+imGf2owQBV22w2fWpSvc3ixK9n9ZrdPUU4riisTDP2EZvfhFdug3jITSnO+wEcdJwcGzOQEI7rcAnHTSkWjgRfzj4Pk0gGKyk7Xps2beoNOyQDFMNRAAWfoqEmy9aj2DaK7dZ47cvx0stLUFSVrBzB2Ek6voCSkYXrpoGbZpRq9b2LbcCKP8CH/3SfF42Fo29wZ/VJBg7xFnfcT7AYisa46cUM/LuWSPoSGeeV7Bdh4ZA17mZU4SVun46PjpSianTqcPR6d3u8cGxQFdRsN7qVV6Ax4/DM7WoyTUFugZp5I4yyS912/HhL122+HNAD0Frb93btjb3ZXPuJq1gOcPDpMPciV99JMjCwDWjd6Q62Lpvszs2UmlwSCdADxysWi/H73/+el19+mdra2i7jhFatWpU24ySZT1hYqJ4IEEG3kx0mzYi7X3i9KHtQnhbROErATTM21tlsXm8ybJSH4vLMuydoH4qdkWlGMwoFI10h0c6OjC+nYz3T2JvNM86C//0UFt0KIw7f0xkkmYYQEG1w67nyhrqSH4H8/rZKIskoUr66XXDBBTz//PN85StfYc6cORmZDpL0HcIJEN7wQ8p9YdTiZIfEDAZp/MYZDPFl7/F4J27gLS5EURW2brRY/5FJLCYy0vGyTNC9GToUO97iOjAFI6FuPYR2QMGIDsdmX46XN8utoQIwImBF97yvonVcTNsvtHs9d3ZHtMNodS/K4M7ii4XcQusd78Oy38Lh33efN34OB5+29/NKMgsj4v5OAwWu8nzOEDnqRyLZDSlf3Z5++mn++9//Mm/evN6wRzLAMB0NxyglS40B1UnbHN2DVTkET27Rbo8Vlo2iamhBVxJgx2Z3TNDQDFWrNw1BVraKR88wxyveAtUfuA9PAI65ATa9CqOP7IgmPXYWWLE9n+PIH8P4tq7kNY/DqqV73jd/BHy1bbsdh7+evnf7jvsFVB7mfv32n+Djp5K3jzkKvvJnGD7XnbPYsMl10CQDg3ZNLkWF4oNch18P9LdVEknGkvIVbujQoeTkyI4UictOtZ5A5ZO0OHnAoUnb1HgcT0MDQvOjZHXtUHRiMZSgHyXop6XJoaXZQVGhPFOHYjsQyM6QO/iGjfDx/4OqNdC4S8NL4SiYdym01nSk8BR17yKjnSPX+9xX3fvzrgckv86u+298Bd77q2tzzYfuzD7JwCDa5Gpy5ZRD4WjI2v1NlkQi6SDlK9wdd9zBj3/8Y+6//35GjBjRGzZJBhCtShRP1iZMowR2EanP37yVgheXERs7lsD5F3Q5VhgWekkxiqKwfbMrO1E6REP3ZlhECbBMgcfTD92MwoGmLa6D5ct2o0PgXvA+/n8d++UNd1N0k05xU3QtNe5FMN7iPs77b/df85Bz3Ud38Pjh2y91/9zzfuA+OtNeh9Za42p07VrzJck8rBi01rnvyYppkFMhNbkkkm6S8l/KrFmziMVijB49mmAwiL6LMGZDwz7qPSSDCp9ZSnTbN6j0mbBLIFRr72r0dZWScCwLxaOhZbspifY0Y6bOZjQNgS+g7k0HNj3YJtSt60gdVn/galiB2x3W7niVTYKDvwJDproOV6AguZA+3gJGy+6L1zOJXW2ODwCbD2Qc263jchw3slow0nW+BjC2bWOaMsqaqei6jqZlbqd7T0j5KnfmmWeyfft2br31VsrKymRx/QGOsLKxWoZRooSAZKdbsR2EoqD4u7aRi2gcNRBACfiJRRzqa91wWaY6XrYFwexe1hb76El46363bqozms91tCpmdqx5/HD4JR3Pd3VgILngPhMdmYFo84FMuyZXVomryZVVMqA1uYQQVFdX09TU1N+mSPZBfn4+5eXlg8bfSPkq9+abb7J8+XKmTZvWG/ZIBhh1+lZ8Za/QrBQBybMYq6dOpODIo6gI5nY5TpgWWnkOCgpVW927zYJilWBWhtRQdcK2BKqWpm7GaGOnaNYaGP0FmPZ1d1uwyHW6fLluFKt8ihvRKj4I1H38qeqB3Tsq7Y6MHsg8J2Yg2nwgYhsQ3uk2bpQd3KbJNfA11dqdrtLSUoLB4KC5qA8mhBBEIhFqa10NwiFDhvSzRekhZcdrwoQJRKN7aTWXHFCEPDV4C94iFJ3Ero4XuBEiZZcwsWOabpoxy00zbh8AaUavv4dDsVuqoep9t0ar+gNo3pq83V/Q4XgNnQVnLHHV2fdZsL4LexNHbU/hZRoD0eYDCeG4NwpmzNXkKhwN/rz+tiot2LadcLqKimRDQCYTCLjXidraWkpLSwdF2jHlK91tt93Gj370I2655RamTJnSpcYrN7drdEMyeNHjw4jvPJohehbsUsqVv3kr+qYqnAmTUcvKEusiGkfNCqD4fVimoGa7DUBFpspIWJBb0I00o2O7HYbB4g6dq3eXwLpnk/crGNVRm1U+tWPdGwTvyDRaLpH0ECMMkQa3drB0EmSXDypNrvaarmCblI0ks2n/PZmmeWA6XscddxwARx99dNK6EAJFUbBtOz2WSQYEaqwSIzqBEcV14O+kvSSgdO1nBD7fih3ITnK8sGw8ebkoKIBg2lwf9bU2eYWZ8cEeLC/HikQwQiEcR6AqndTqO4/fseJQ9ylUtaUNaz50L1jzf+h2F4Jbl9W81XWwyqe4qRq/vDmRZCiO5XYrqprbYZpf6Y79GaTI9OLAYL9+T1NvSpsd6SJlx+vll1/uDTskA5SQbxO6r4WoJxtI7m7q6GrsKK53DAN0D1qWewfj0RXGTvIydlJfWbxvrEiE3NFjCG3cQEttE3r7UOz2YvB3HnIFRnd+0lVzSg8ki38e9EX3IZFkMkJArMlVn2/X5AoW9rdVEsmgJGXH68gjj+wNOyQDlHD2Gvw5q6mLHAFMTtrmaQvnd+5qFLE4anY2is+LcARvvRyjtEJj5DgdzZMZd59GKERo4wZyR4/Brn2OrA2Po468rKPT7qMn3XotcFMx7SnDIVPdC9a+CuElkkzCjLoSEd4cGDLNHfUjNbkku7Bw4UKmT5/Ob3/727Sfe+TIkVx22WVcdtllaT93JpLyX9drr7221+0LFizosTGSgYeIDcUUFsVqPnTKFApAM1xRVKVNx0sIgTBtPPmu4Fddrc22TRY1OyxGje9tgazUMEIhIiufouiQo0HZ4I6yae/Am3QKjJjnOlq5Qwd0S73kAMaxIVIHjoCC0VA40p3ZKcloFi9ezNKlS7nooou4//77k7ZdfPHF3HvvvZx77rksWbKkfwyU7JOUHa+FCxd2Weucf5U1XgcWTuPhxOwFjKvYAR4jaduuqUZhmqg+L1pbl0p2jsqU2V4cB1Q1s5wXT/N6gm/+EJxr3VE2Oz9xIwMAw+f0r3ESyf4SC0GsGbJK2zS5iuUNxABi+PDhPPbYY9x5552Jrr9YLMYjjzxCZWVlj88rhMC2bTye1COehmHg9Q58mZG+IOVq5sbGxqRHbW0tzz77LLNnz+b555/vDRslGYzh24oW2ISjJEuMCCCWl4tTWIjS9sEgojHU7CwUn/vHGchSmTDNx6QZXQVW+xMl3kjeyhtQRx6OOGQxIlQFRWPdGi+JZCDjWNC83f2/fAoMOwSyB7YQ6oHIzJkzGT58OE888URi7YknnqCyspIZM2Yk1uLxOJdeeimlpaX4/X7mz5/PypUrE9tfeeUVFEXhmWee4ZBDDsHn8/HGG28QDoc555xzyM7OZsiQIdxxxx1dbBg5ciQ/+9nPOOecc8jNzeXCCy8E4I033uCII44gEAgwfPhwLr30UsLhcOK42tpaTjrpJAKBAKNGjeJvf/tbb/yIMpqUHa+8vLykR3FxMcceeyy//OUvueqqq3rDRkkGo5T9i+DIP9CgV3fZtvbLx2Fe/B3U/HwAhC3QctxURqjJZvmLUbZuzLBRHbZB/js3og2dgvjKElo2b0Rpre5QU5fOl2SgIoQ7wzNnCAyb7Y780TIrxd+fCCGIGFa3HzHTRghBzLR3+7y7DyFEj+w9//zzeeihhxLP//znP3Peeecl7XPVVVfxz3/+k6VLl7Jq1SrGjh3LokWLuoz2u/rqq7nttttYu3YtU6dO5corr+TVV1/l//2//8fzzz/PK6+8wqpVq7rY8Otf/5pp06bx3nvvcf3117NhwwaOO+44Tj/9dNasWcPjjz/OG2+8wSWXdEzZWLx4MVu3buXll1/mH//4B/fee29CIPVAIW0VlGVlZXz66afpOp1kAGAJsK0CUExy2X3USukkBKpAQhh0++cW2zZZWJZg+OgM+fAXgpwPfodeWI74yp/ZuXoNwfwgoMpRNpKBT7TBvXEoGT/g5yv2BlHTZtINz6V0zBHjivn9mTN4fOVWvjZ7ON9++B1eX1+X0jk+vnkRQW/ql+JvfvObXHPNNWzevBmAZcuW8dhjj/HKK68AEA6Hue+++1iyZAnHH388AA888AAvvPACDz74IFdeeWXiXDfffDPHHnssAK2trTz44IP89a9/TchGLV26lGHDhnWx4aijjuJHP/pR4vm3vvUtzjrrrESR/Lhx47jrrrs48sgjue+++9iyZQvPPPMMb7/9NrNnzwbgwQcfZOLEiSl//wOZlH/ba9asSXouhKCqqorbbruN6dOnp8suyQAg7qjEtp0DwKiRnydt0yIRRr6+HK1oA5zwJQCEQpv31TEUe2gGqdUrRhPe+vcQM8+iZfUbRGJl5Hk7pWDkKBvJQMWKubpzFZOk05VGXl9fx+Mrt3LRkWP4w6sbUna69oeSkhJOPPFElixZghCCE088keLi4sT2DRs2YJom8+bNS6zpus6cOXNYu3Zt0rlmzZqVdJxhGMydOzexVlhYyPjx47vY0Pk4gNWrV7NmzZqk9KEQAsdx2LRpE+vWrcPj8XDIIYcktk+YMIH8tqzIgULKV73p06ejKEqX8Oihhx7Kn//857QZJsl8DKGgeJrRHA+KIkh4VYAaDlO6dj0iuyrheCHcUpJoxKFhpzsUe0gGqdULXwEN8+/BW/8BoUAZHh30XWtF5SgbyUBDONC605U6yRkcs+56g4Cu8fHNi1I6RlUUfB4V03a4cMFozj18JE6KqcOA3nMl9vPPPz+Rxrvnnnt6fJ6srJ51s+56XGtrKxdddBGXXnppl30rKytZt25dj15nsJHyVW/Tpk1Jz1VVpaSkBL9/8KobS3ZPzFHIGnsbiiIIx84hh47xG2qblAS+XT0XJRHtKixRCQT7X61eiTchvHmgKAhfAfGKBVgtDtl5asZ1W0okKROuc8VQi8bIIvq9oChKj1J+ALrm/lz9++FE9YTjjjsOwzBQFIVFi5KdxjFjxuD1elm2bBkjRowA3JE7K1eu3Kte1pgxY9B1nRUrViQ6JBsbG1m3bt0+dTxnzpzJxx9/zNixY3e7fcKECViWxbvvvptINX766ac0NTV18zseHKT8Lmv/BUokYWGDUEGx8ZFcp2VnBamacTBlhaWJNaXtnx0ZNBRbMUIULLsUq2Aioak/As11FIXTaUyQRDJQMcJuUX3xeDdFLhlUaJqWSBvuOsMwKyuL7373u1x55ZUUFhZSWVnJ7bffTiQS4YILLtjjObOzs7ngggu48sorKSoqorS0lGuvvRa1G7M6f/zjH3PooYdyySWX8K1vfYusrCw+/vhjXnjhBe6++27Gjx/Pcccdx0UXXcR9992Hx+PhsssuS0hiHCh0+8ry0ksvMWnSJEKhUJdtzc3NTJ48mddffz2txkkyG8fx0frpLQQ/uxF9Fx/eyM1j22Gz4Ij5SeumBbU7XK23fq/vcizyVv0MT2QHesOHKFbEXXYEirqbNKNEMpBwLHfQdeEYVzJCMijJzc0lN3f3819vu+02Tj/9dM4++2xmzpzJZ599xnPPPUdBQcFez/mrX/2KI444gpNOOoljjjmG+fPnJ9Vl7YmpU6fy6quvsm7dOo444ghmzJjBDTfcQEVFRWKfhx56iIqKCo488khOO+00LrzwQkpLS/dy1sGHIrrZy3ryySfzhS98gR/+8Ie73X7XXXfx8ssv8+STT6bVwL4gFAqRl5dHc3PzHt/AmcYTd/wKM2aQXZzfbzZ8EAlwf00ZI7xxrhpalbTNsB1arQiHlFaS4w24BZaNIep8laxYJsjOVTjujKx+HVKb/cHvCW7+fzian8Z5d2HnjnZtjwuEcCNymiZTM5IBSqjKFUatmCFlI3YhFouxadMmRo0aJctkBgB7+311uX6vuSn54Awckt3tiNfq1as57rjj9rj9i1/8Iu+++25ajJIMDGqVerIPupHQsHu7bMtf8wFT/vpPlJdecReEcNOM29ynFSM8/ep0+Tc/TXDz/wMgNOOahNMFYFkCr1+RTpdk4BJrBo8XisdJp0siyTC67XjV1NSg63v+A/Z4POzcuTMtRkkGBhFMFC0OqtFlmyccwRdqgVgsseYIheoqN8Dan/Vdet375Hz4ewBax5+HUT4vabtjCwIB6XRJBii2CbEWN8UY2HtKSSKR9D3ddryGDh3Khx9+uMfta9asYcgQ2ap8IBEwymn97AqG7fxal21q3HXGik45GV9pCe4QIYVDDlUZPUGnuFTDm5tLsLy8T21WwzvIe/enKMImVvEFImO/kbTdzbwr6F7peEkGIEJAaw3kD4P8ns/sk0gkvUe3Ha8TTjiB66+/nlinCEY70WiUG2+8kS996UtpNU6S2VjCizCLybGLumzTjDgAsepqiubMxl9WiqrC0OEah8z348vPI3f0GKxIpE9tVo0mUFTMvIMITbuiS3u9ZYJHl46XZIASbQBvjjtbVO1baQOJRNI9up3vue6663jiiSc46KCDuOSSSxIqtp988gn33HMPtm1z7bXX9pqhksyjWt9AcMRKdtpDgalJ2xTDncEY2bSJ+rdXUjRnLp+s82GuiTB1YQ65o8cQ2rgBYzddsr2JVTCJhvn3gOIBreuYI8sSeH0KHl06XpIBRrs6/ZCJcqaoRJLBdNvxKisr48033+S73/0u11xzTUK5vl247Z577qGsrKzXDJVkHmGtBS24GTPa1YFpF1BVfH7itTvZ9spK5nx9Dp8s30HR+KF97nR5mj7FyndvFpzgntObtgmBAul0SQYYndXpcyv2vb9EciCQgR2NkKKA6ogRI/jvf/9LY2Mjn332GUIIxo0bt09NEMngxB8ZS7S1hBEBAbtMnKibOZ3GsSMYPdwdrBqrrab2w01MP+YgwtVVfep0+bb9j7z3byMy6jRaJ313j+rdoq3zUvdJ4VTJAEOq00skA4YetZYVFBQk5P4lBy7CKsQKD6fUWw8kzy8MVw7DphylbWhr/vBSiqePILx9O4GyMsxQqE+cL0/jWnLX3OHaq/n2elGyLdA8sr5LMsCQ6vQSyYCi/2e2SAYsDYEP8eVsp1EdCiSnmRXDpH2KkK+0hMJZs3n/n++gqjajZrb2SY2XGt1J3js3ojgm8bLDCI8/b6/7W6ZA9yrsRTVFIsks2tXpSyZIdXqJZIAgcyqSHhP1bcFb8DatenWXbeMfepgp9/yZQCBI0ZzZfPjvVbz1Woytm22MUIjQxg3kjh6Dt7cmBdgx8t65ES3egJUzktCMa0DZ+9vdtsEXUPpV2FUiSYnWnZBTBgUj+9sSiUTSTaTjJekxautE4rXHMtQalrzBcdBMCwXwlZdR//ZKaj+rA0ik8dqdL08wmH7DhCB39R3ozetw9FyaZv8M4dn36zgO+P3yT0IyQIiF2tTpD3L/lxwQLF68GEVR+M53vtNl28UXX4yiKCxevLjvDZN0G3mVkfQYJzIeo/5ohtvJXVRqm5QEQGj9Z8Rrd2JZrsPVuX7KCIWIVHeNlu0vwc8ewb/jZYSi0TzrRpzgvoV9bUugabK+SzJAsE3X8ZLq9Ackw4cP57HHHiMajSbWYrEYjzzyCJWVPRfOFUJgWVY6TJTsBel4SXpMLGsNesEyYp7GpHXH5+WjC77JunO+iuJxywjN3ThevYWVOxpHC9By8Pcxi6Z17xhL4NHBI+u7JJmOENBaK9XpD2BmzpzJ8OHDeeKJJxJrTzzxBJWVlcyYMSOxFo/HufTSSyktLcXv9zN//nxWrlyZ2P7KK6+gKArPPPMMhxxyCD6fjzfeeIOWlhbOOusssrKyGDJkCHfeeScLFy7ksssuSxz7l7/8hVmzZpGTk0N5eTnf+MY3qK2t7XLuF198kVmzZhEMBjn88MP59NNPe/eHMwCQjpekxzj5b+Ev/zctnrrkDYqC7Q9gFeQlljocr963yyg7jIYvLCE2ovuTFCwT/EEFVZURL0mGE20Ab7ZUp+8tjPDeH3aniJAQYMbcdTOW/NwIgxlN3nfXc+0H559/Pg899FDi+Z///GfOOy+5geiqq67in//8J0uXLmXVqlWMHTuWRYsW0dDQkLTf1VdfzW233cbatWuZOnUql19+OcuWLeNf//oXL7zwAq+//jqrVq1KOsY0TX72s5+xevVqnnrqKT7//PPdpjivvfZa7rjjDt555x08Hg/nn3/+fn3fgwHZ1SjpEUKA2ToOxSigSM+GTv6KGomQu2UrIjeIUjISIJFq9PaSRpYSb0Rv+hSj7FAAHH/XMUZ7wxHgk/VdkkxHqtP3PrfuQ4D2jCUw+cvu16uWwqRTYNVfYObZ8NiZsOGljn0rZsCFr7hfR+rhV2OSz3VTc4/N/OY3v8k111zD5s2bAVi2bBmPPfYYr7zivl44HOa+++5jyZIlHH/88QA88MADvPDCCzz44INceeWViXPdfPPNHHvssQC0tLSwdOlSHnnkEY4++mgAHnroISoqkn8unR2o0aNHc9dddzF79mxaW1vJzs5ObLvllls48sgjAdfBO/HEE4nFYvj9/h5/7wMd6XhJeoQlFOJ1XwSgcsRm3CHYLr6anQx55gViJUUwdS7Qy6lG2yDv3Z/ibfiQ0JQfEBtxUkqHO45AVfsmGieR9BjhQGsdFI6S6vSZQv1nrtM171JYdley09XLlJSUcOKJJ7JkyRKEEJx44okUt+kmAmzYsAHTNJk3b15iTdd15syZw9q1a5PONWvWrMTXGzduxDRN5syZk1jLy8tLjAls59133+Wmm25i9erVNDY24jgOAFu2bGHSpEmJ/aZO7RgnN2SIW29bW1u7X7VoAx3peEl6RFwoaFmfgtBAESREu+gYF+R4vYlAmGm50aS0O15CkPPhXXgbPsTxBLtd09UZywSPFE6VZDrhOggWSHX63uYnO/a+vfOM16NvBNUDtgGHfx/mXAjC7tjeWcImWLTvc6fI+eefzyWXXALAPffc0+PzZGVl7XunToTDYRYtWsSiRYv429/+RklJCVu2bGHRokUYbZ//7eidhBHbpXranbQDFZlbkfSIuKMQGPZXgiP+RFSNJm1LOF4+L0qb62XZbREvX3ovGIFNTxDY+iwCldDM67CzU7+LskyB36+gafJiJslQEur0B0l1+t7Gm7X3h9YpXqHprhOsed3/dX/yvp1/V4rS9Vz7yXHHHYdhGJimyaJFi5K2jRkzBq/Xy7JlyxJrpmmycuXKpIjUrowePRpd15OK8Jubm1m3bl3i+SeffEJ9fT233XYbRxxxBBMmTEgqrJfsHRnxkvSImFBw4uWoahy/SM7RdUS8dFDc64VHEwjh4E2j4+WtXUn2x38AoHXShRilc/ZxxO5xHIEvKJ0uSYaSpE5f2t/WSDIITdMSaUNNS260yMrK4rvf/S5XXnklhYWFVFZWcvvttxOJRLjgggv2eM6cnBzOPffcxHGlpaXceOONqKqaiFhVVlbi9Xr5/e9/z3e+8x0+/PBDfvazn/XeNzrIkI6XpEeYQiXy+cUUeiyCw7clbVPjHalGcG/0jp61EzweAsG8LufqCVrrVnJX/RwFh+iwRURHnd6j8whHgCLTjJIMRqrTS/ZC7l6mf9x22204jsPZZ59NS0sLs2bN4rnnnqOgYO/ab7/5zW/4zne+w5e+9CVyc3O56qqr2Lp1a6IgvqSkhCVLlvCTn/yEu+66i5kzZ/LrX/+ak08+Oa3f22BFOl6SHhF1BIpej76H9Jyt6wifWwshBNgOaOmqS7EN8lZej2qFMQom0zLlBz2uebEs8OjS8ZJkKO3q9EXjpDq9BIAlS5bsdftTTz2V+Nrv93PXXXdx11137XbfhQsXIoTosp6Tk8Pf/va3xPNwOMxPf/pTLrzwwsTamWeeyZlnnpl0XOdz7e7c06dP3+3rHWhkfI3X9u3b+eY3v0lRURGBQIApU6bwzjvvJLYLIbjhhhsYMmQIgUCAY445hvXr1/ejxQcG9bSQPfZXREf8rsu2xsPn8v63zqZxvivt0NKq8szycv63PE0K25qXyNgzsbKG0jzrJre+oodYpsDrVfB4pOMlyTA6q9MHC/vbGskBxHvvvcejjz7Khg0bWLVqFWeddRYAp5xySj9bNjjIaMersbGRefPmoes6zzzzDB9//DF33HFHUpj09ttv56677uL+++9nxYoVZGVlsWjRImKxWD9aPviJ4yAcL4qzZ6dHaRMjbZeS0NT03enEhi+i4cg/IXz758xZNvhlrbIkE5Hq9JJ+5Ne//jXTpk3jmGOOIRwO8/rrryfJVUh6TkanGn/5y18yfPjwJHXeUaNGJb4WQvDb3/6W6667LuGJP/zww5SVlfHUU0/x9a9/vc9tPlDwm6W0fnozBwfDULYzaVv22k/RQ01oE8ZDERTm23xxdnWbh5Pf89fc9gK2vwSzeLq7oO7ffB8hBAq9J+oqkfSYiFSnl/QfM2bM4N133+1vM/afNTfte5+p3dgnzWT0Fedf//oXs2bN4owzzqC0tJQZM2bwwAMPJLZv2rSJ6upqjjnmmMRaXl4ec+fOZfny5Xs8bzweJxQKJT0kqREX7lvHr3SNYuWuXsPwN1eit42lUBTQNVeyoafo9R+Qs/oO8lf8GE/Tun0f0A1sCzSp3yXJNKy4O2qmeJxUp5dIBiEZ7Xht3LiR++67j3HjxvHcc8/x3e9+l0svvZSlS5cCUF1dDUBZWVnScWVlZYltu+MXv/gFeXl5icfw4cN775sYpGzzfkr2+OvZUfJYl21q3ARAeN3i+i3bdV5+v4SP1/u67Nsd1Eg1ee/ehCIs4uXzsfLG9dzwTlimQPfKwdiSDEI4boqxYKRUp5dIBikZ7Xg5jsPMmTO59dZbmTFjBhdeeCHf/va3uf/++/frvNdccw3Nzc2Jx9atW9Nk8YFDDAtFNVGVrgrE0RHDaRw5HJHjzuuKxRUiMQ+GmXpkSbEi5K+8HtVoxswbR2j6lWlT7bYsCASVhDaNRNLvhOvcQnqpTi+RDFoyusZryJAhXRR2J06cyD//+U8AysvLAaipqUnMgGp/Pn369D2e1+fz4fP1LPoiccmJTKK1fjKzc1ohL9n5ql94BPWxVipyXH2ZxJzGVCNLwiH3vdvwtGzC9hXSPOtm0NI7WFXWd0kyBiPiRrykOr1EMqjJ6KvOvHnz+PTTT5PW1q1bx4gRIwC30L68vJwXX3wxsT0UCrFixQoOO+ywPrX1QMN0fAizkFyRvfsdBChtby/L7JnjlfXpEnw1byJUneZZN+EESvbH5CRsS6Bpsr5LkiE4NkTqXekIqU4vkQxqMjri9cMf/pDDDz+cW2+9la9+9au8/fbb/PGPf+SPf/wj4A7cvOyyy/j5z3/OuHHjGDVqFNdffz0VFRWceuqp/Wv8IKc2ayXB4o/YYR0EHJRYVwyD8if/TaFHI3bGl4GeRbw8jR+T9dkjALRMvRyrYM+zxXqCZYo24dS0nlYi6RlSnV4iOWDIaMdr9uzZPPnkk1xzzTXcfPPNjBo1it/+9rcJMTeAq666inA4zIUXXkhTUxPz58/n2WefTYw2kPQOMa0JLbANK5JcAKzGDQI7qvCpCkbb7LCE45WCk2PlT6Rl4kWoRjOxYcemze7E+S3IzZH1XZIMIBZyBy9LdXqJ5IAgo1ONAF/60pf44IMPiMVirF27lm9/+9tJ2xVF4eabb6a6uppYLMb//vc/DjrooD2cTZIuvKHZRLaeyxhjQtJ6YkC27oV2AdVEqjEFJ0dRiI45g/DEb6XH4F1wHPD5M/7tLxnstKvTF42V6vSSbrF48WIUxb1p1HWdUaNGcdVVVyWJhrdvVxSFrKwsxo0bx+LFi7toc73yyisoikJTU1NibceOHUyZMoUFCxbQ3NyctE/n197dY+TIkX30UxjYyCuPpEfYRgl260RKnKKk9XbHy/bqKLRHvNxt+r76Gew4ue/chKe5d0c+ObZA1VKLwEkkvYJUp5f0gOOOO46qqio2btzInXfeyR/+8AduvPHGpH0eeughqqqq+Oijj7jnnntobW1l7ty5PPzww3s874YNG5g/fz4jRozgueeeIy8vL2n77373O6qqqhKPzq9TVVXFypUr0//NDkIyOtUoyVzCeW/g9zTQpI0GOpyvdsfL8uq0x7es9lTj3t5tQpC7+tf4q99Ab/qU+i8s3a8ZjHvDMkGXwqmS/kaq02ckETMCQMATQFEUolYUIQQ+zYemasTtOLZj49W8eFQPlm1hOAa6qqNrOrZjE7fjqIqK3+PHEQ4xy41GBfVg0mu0P08Vn8+X6OofPnw4xxxzDC+88AK//OUvE/vk5+cn9hk5ciRf/OIXOffcc7nkkks46aSTkkbvAaxZs4ZFixZx1FFHsXTpUjyerh/Y7dqXnen8OpLuISNekh5hBT9Dz3+XuNaStK7G2yJeup54c3Wnxiu44VH8O15GKBqh6T/uNacLwLIEvqCCqkrHS9JPSHX6jGXuI3OZ+8hcGuONAJz59JnMfWQuq2pXAXDN69cw95G5/N+6/wPAEhaPf/o4lnBD+//b8j/mPjKX7/7vuwBsbNrI3Efmctw/j+vyGungww8/5M0338Tr3fdn5g9/+ENaWlp44YUXktbffPNNjjzySE4//XT++te/7tbpkqQP+dOV9Air8VDs1vFUZCWnGo3CAhoPnU2jT6NAURACxowwMMIGXu/uGx681W+S9Yk7j7N18sUdsxh7Cbe+Szpdkn6iXZ2+cDTkDNn3/pKMZm3DWs47+DyW71jOYRV9I2P09NNPk52djWVZxONxVFXl7rvv3udxEya4Nbmff/550vqXv/xlvva1r3XrHJL9RzpekpQRAmKhqQgUhgS3AnZim1lcRGNxEbXRZgoVBUWBiePiWI3NePSuFxkttJHc936BgiAy4iSiI0/uVdsdR6Ao4JVpRkl/0VmdXpVJh0xjxTdWAG6qEeDRLz2aSDUC/OKIX/DzeT9H11x9nOkl0zFtk0OHHArA0ZVHs+IbK1AV93c7On904py7vkZP+cIXvsB9991HOBzmzjvvxOPxcPrpp+/zOCHc2bq7dnOfcsopPPnkk7z++uscccQR+2WbZN/Iv3pJyphCwVP4Bnrha1hqeI/7KSgYhsLmbTo1DX52dXWUeBP5K29AtaMYRdNpnXxx7xqOOxjb1e+SjpekH5Dq9BlPUA8S1IMJ5yTgCRDUg2htdXg+zUdQD6KrruOlKAq6pif296gegnoQv8eN8KuKmjjnrq/RU7Kyshg7dizTpk3jz3/+MytWrODBBx/c53Fr164FXPHxzvzhD3/g61//OscffzyvvfZaj+2SdA/peElSJi4UfEUv4y/7L6YaTdpWsOwtKv/4EEPe/wgFCEdUVn8c4OOtBV1mzwU/fwotWo0VrKD5kOtB7f0ArGUKvD4FzSMdL0kfI9XpJb2Aqqr85Cc/4brrriMaje5139/+9rfk5uZyzDHHJK0risIf//hHzjrrLE444QReffXV3jT5gEc6XpKUiTsqZmg6dvN0skmu29IiETzhMKrtph81TVBeYlKUE+vieIUPOpvwuG/SPPtnCG9yp0xvYdngD0qnS9IPSHV6SS9xxhlnoGka99xzT2KtqamJ6upqNm/ezAsvvMBXvvIVHnnkEe677z7y8/O7nENRFO6//37OOeccTjjhBF555ZW++wYOMGSNlyRlDKEQrzmZbNUme8TWpG2qYQJge70oisLQmWMoGdNE5JNqUNpC68IGRcObV4A48mrs6uo+sVsIgQIyzSjpe6Q6vaQX8Xg8XHLJJdx+++1897tuN+V5550HgN/vZ+jQocyfP5+3336bmTNn7vE8iqJwzz33oKoqJ554Ik8//bSc7tELSMdLkjJhx8GT8wG6oiEIoHSq3mqYdyihaVNo9CkUA03bG9FHTsCpiQAK+s53yfn4PiLH3kv26DGENm7oM7ttCzRZ3yXpa9rV6csPlur0kv1myZIlu12/+uqrufrqq4GOIvp9sXDhwi77KorC3XffndThuKfzdfd1JMlIx0uSMiFiBIb9DUtoKPHkEU5Wfh5WXh5GLISqKGz8MMTaJ9dw0OxyZg2tJe/Fn6FWziFn/DSaN27ACIX6zG6zrb5LStRI+hSpTi+R9C9Tb+pvC5KQlyBJyhhCwYqMxK8Idm1V1OvqEIqG0pZNaVett+uqyZ82B8X+MeKQc2netBmjNdKndtsW+PPlYGxJHxJpAG+WVKeXSCQJpOMlSRnNziO6+TuM8EdhSE3StvKn/oPe0kLLaSdC+YiEar0nvA1l1VqYdynRbZv63OlqD4l75WBsSV/Rrk5fMUOq00skkgTyKiRJmbAwUbw70Txd04QdQ7I9KAqYput4BQuyYObZ2O/8BX/5cLy5uX1qs22Dpsn6LkkfIYSbYiwYKdXpJRJJEjLiJUmZas82ssc8QW18CIhTOjYI0cnx8qICpju+jLwZs+Ef52M3NxHJnUNuW2F9X9V4WaZwhVP1Pnk5yYFOeCcECqQ6vUQi6YL8RJCkjCVA2H48IlnDS7EslLaUnhvxUrHbir2ctS/Bhpdw9GyMUIjQxg3kjh7TZ5EvywR/lqzvkvQB7er0JeOlOr1EIumCjHhJUiY7Np7WmjnMzW2GosbEuhp3o11CUXDaWgctWwVsPPXuqArhyQJIOF+eYLBPol4C8PnkfYakl2lXpy+ZAFkl/W2NRCLJQKTjJUmZmAMg8KrJGi7taUbH60VRVBQF4mETUInnTKN20l9QsjrmkxmhUJ84XbYt0FRZ3yXpAzqr08voqkQi2Q3S8ZKkzI7s5WQPfY3PI9OAuYl1syCfTRdfiDAMBA4KJLoadV3F8eWjevs+9WKZ4NFBl4Lhkt5EqtNLJJJuIHMvkpQxFRNFcfAou7x9FAXh9WJnZblq9kLBttscL40uml99hWUKfAEFVZURCEkv0a5OXzRWqtNLJJK9Ih0vScoEm46kdf01TIrMSVr3NIfI+nQdvh1VoLiF7EfNa2X+7BDlzUspXPkj9Lr3+9xe4YA/IN/qkl6ktRZyK6Q6vaRP2Lp1K+effz4VFRV4vV5GjBjBD37wA+rr6xP7LFy4kMsuu6zLsUuWLEkakr1kyRKUts/rzg+/39/lWEl6kFcjScqYthdh5ZGrJKcN/du2U/bf5ylc8Q4KbolLdpZDQa6Nz9qON7QOxTH61FbHESiaTDNKepF2dfqSg6Q6vaTX2bhxI7NmzWL9+vU8+uijfPbZZ9x///28+OKLHHbYYTQ0NKR8ztzcXKqqqpIemzdv7gXrJSBrvCQ9oLnwWYL+zVSZM5nO8MR6R3G9jgJEwh7WvB8ky29zguYq1Tt63yp4WyZ4PLKwXtJLJNTpp0t1+kGCE9n9VA3F50PRNITjIGIxUFV3ra2JQlgWaBoiHgfH6XSgghpwb1IdwwCrTdzQ40H1pn5HePHFF+P1enn++ecJtJ23srKSGTNmMGbMGK699lruu+++lM6pKArl5eUp2yLpGdLxkqSMpTeg+avAiSetO34/sfIyjIJ8UMA0NBqaPBhBBTUvCoDQs/vWVksQyFLRNOl4SdJMuzp94WjIqehvayRp4tOZh+x2vXLpUrLmzsHcsoUNxx0PQNaCI6j84x8BELbNtosuIrzszaTjvGPHMObppwGo/fWvaXz4LwAUnHM25T/5SUq2NTQ08Nxzz3HLLbcknK52ysvLOeuss3j88ce59957UzqvpG+RjpckZZydi4jUz2dUvoBON2ytE8fTOnE8hmWhiBjZORazpkbAsVDrXMfL6WPHy7EFgYB0uiS9QGuNVKc/wAm/uTzxdXzDhi5OV7pZv349QggmTpy42+0TJ06ksbGRnTt3AnDvvffypz/9KWkfy7K61G81NzeTnZ382XzEEUfwzDPPpNF6STvS8ZKkjBEbgi1Uigq2AVaX7e3qXj6voKDcglgT1LVt60PHyx2MLdOMkl4gXAeaH0onSXX6Qcb4Ve/udl3x+QDQKys79unkcPsnTmT8++8lpxkhSc+t9IorKG0vePf0/PIrhNj3TsBZZ53Ftddem7T2xBNPcOuttyat5eTksGrVqqS1XSNqkvQhHS9JSjgCKP0Xfi1OWJtICR0jf3LfW423rp6Gg8YSqyiivt7LZ/V+ioMawwGh+UDtu2GJrn6XdLwkaSba5P5fNgmyivrVFEn6UYPBvW5XVBVlN/soioKyj05A1euFHtR1tTN27FgURWHt2rV8+ctf7rJ97dq1FBQUUFLiTk3Iy8tj7NixSfuUlpZ2tUtVu+wn6T1kfFySEqZQ8OR8jJ73HkJJ7lAMbN5C7ocf421qBiDUrPP5Ni/1TW3zGj19XN9lCnSv63xJJGkh3gJmDEonugr1EkkfUlRUxLHHHsu9995LNBpN2lZdXc3f/vY3vva1r8mZtBmOdLwkKWEIhfjORcRqTqSYrKRtqmECYHu9KChtcxrBo6s0FZxApPKkPrXVtiAQlB9AkjRhRFyR1NIJkDu0v62RHKDcfffdxONxFi1axGuvvcbWrVt59tlnOfbYYxk6dCi33HJLyucUQlBdXd3l4eyaNh2ITL2pvy3ogkw1SlIi7qhYzYfgVRxy8rYkbWuXk7C9uut4tY0L0rw+motOxj92VJ+J1wshQAFdDsaWpAMr7up1lYyXcxgl/cq4ceN45513uPHGG/nqV79KQ0MD5eXlnHrqqdx4440UFqY+OSEUCjFkyJAu61VVVVJmoheQjpckJSLCwVvyHD6hYzMCjQ7BSDXe7nh5k+c0am2FoH14sbIt0DwKXlnfJdlfbLNNNmKM28EonS5JPzNixAiWLFmy131eeeWV3a4vXryYxYsX7/G5pPeR4QBJSrQKC1/xy1DyvDuPsROdBVTpFPHyO7Vkhd7C07yhz+zsqO/qs5eUDEYcC1qqIX+EVKaXSCRpQUa8JClhChWj4XCyPHFUb7Lf3jp+HFoshhHwg0LC8coxP6W4dgmRYBOtBeP6xE7bhpygIotMJT1HOBCqdmcwlk4ATXrxEolk/5GOlyQlhB0kXnsyQ30xqKhO2lZ/1JEA2KaBipNINfqUFqBvxVMdB7yyvkvSU4SAlirIKnG1ujy+/rZIIpEMEqTjJUmJkIjiyV2NUHVgT3o3AqVTxMtHk7vaR46XbQk0Tep3SfaDlhrw5blaXd696zpJJBJJKkjHS5IS9Vo9gaF/p9koAef0xLqnOUTpf57Fzsqi9fhjQKiYZluNF40AiD4akG1ZAo+uyPouSc9orXXV6Msmgz933/tLJBJJCkjHS5ISjuPFCo8mT+QkvXvUWAx/TS1WdjYgUFDJy7WxLAW/cB2vvko1Wibk5Cuoqox4SVIk0uAW0JdNhmDqbfkSiUSyL6TjJUkJvzGMaO2FjMoJQXFDYr2jo9GLAyia4Ii5YVRFwbs2BPRdqtER4PPL+i5JisRCrnTEkKmQXdLf1kgkkkGKdLwkKdFKBNUXQ/EkKxqbhYXUnLAIoWnulGxHJRpV8OqgOhGgbxwvxxGoKug9H4cmORAxwu6jbLLbxSiRSCS9hHS8JClRE/iIrCEvsi06CViQWLezgoTHu1IRIhbDigR4cU0uWUGbbxaoCNQ+STVaJugeWVgvSQEz6g6+Lp0I+ZX9bY1EIhnkyHyMJCUsR8OxsvAJf9K6YpoocQOEQCAQQkVVBboHtlXeyrbJD+L4S3vfPlPg8ytomnS8JN3AikO4zlWkLxglVeklkr2gKApPPfVUf5sx4JGOlyQlslvmEl5/PdNaj05az3tvNaPu/SPFL7wEQCA3zJeOaWH+nLCbetTUPrmoOY7AJwdjS7qDY7kdjAWjoGgcqPLjUJL5LF68GEVxxaF1XWfUqFFcddVVxGKx/jZN0k1kqlGSEjFHAA4+NbnGS2krrhdet7hKbRsnpKpgI6APxmMLR4Ai04ySbuDYEKqCvGHu4GtNfhRKBg7HHXccDz30EKZp8u6773LuueeiKAq//OUv+9s0STeQt3iSlKgv/jc5E3/CpsA7SeuqYQLg+LwIBM01JfznxRzWfhilcvPllG64pddtsyzw6NLxkuwD4bjzF3PK3Louj+zEkHRgxu1uPWzbvfm0bcd9brnPnbbn3Xn0FJ/PR3l5OcOHD+fUU0/lmGOO4YUXXgCgvr6eM888k6FDhxIMBpkyZQqPPvpo0vELFy7k0ksv5aqrrqKwsJDy8nJuuummpH3Wr1/PggUL8Pv9TJo0KXH+znzwwQccddRRBAIBioqKuPDCC2ltbU1sX7x4Maeeeiq33norZWVl5Ofnc/PNN2NZFldeeSWFhYUMGzaMhx56qMc/i4GIvM2TpIStuA6WT0n22dV4h5wEgLA1bFtBESaqiKMIo9dts0yBL6Di8UjHS7IHhHCdrkAhlE52hVIlkk788Qevdmu/BV8/iCkLhyFswYevbuPgI4eheWDj+3U898CH3TrHxfcftT+mAvDhhx/y5ptvMmLECABisRiHHHIIP/7xj8nNzeU///kPZ599NmPGjGHOnDmJ45YuXcrll1/OihUrWL58OYsXL2bevHkce+yxOI7DaaedRllZGStWrKC5uZnLLrss6XXD4TCLFi3isMMOY+XKldTW1vKtb32LSy65hCVLliT2e+mllxg2bBivvfYay5Yt44ILLuDNN99kwYIFrFixgscff5yLLrqIY489lmHDhu33z2MgICNekpRQqr9C67rrmGhMSFpP1vFyELYGgFd1pSQcLavXbbNs8MvrqGRvhGvBm+2OAvL13exQyeBl55YWZnxxBNUbm/vsNZ9++mmys7Px+/1MmTKF2tparrzySgCGDh3KFVdcwfTp0xk9ejTf//73Oe644/j73/+edI6pU6dy4403Mm7c15h/3gAAGzdJREFUOM455xxmzZrFiy++CMD//vc/PvnkEx5++GGmTZvGggULuPXWW5OOf+SRR4jFYjz88MMcfPDBHHXUUdx999385S9/oaamJrFfYWEhd911F+PHj+f8889n/PjxRCIRfvKTnzBu3DiuueYavF4vb7zxRi//1DIHGfGSpIRp+xCORrbaDJiJddWIAx0RL6fN8fIpbY6Xp3cdLyEECnIwtmQvROpB9ULZwRDI729rJBnKhb87slv7qW2R9fIxediWw7AJBQCMnl7c7XP0lC984Qvcd999hMNh7rzzTjweD6ef7o5ws22bW2+9lb///e9s374dwzCIx+MEg8kzR6dOnZr0fMiQIdTW1gKwdu1ahg8fTkVFh6bdYYcdlrT/2rVrmTZtGllZHZ/t8+bNw3EcPv30U8rKygCYPHkyaqfGlbKyMg4++ODEc03TKCoqSrz2gYB0vCQpYQ9dSlBvot5awFCKE+s7v3gMajSKlZcL2Di2+4fmU8IACK13Bw3bFmgeBd0n04yS3RBrAseBIQdDVlF/WyPJYHSfltL+iqKgdSpvUDUVNbVTpExWVhZjx44F4M9//jPTpk3jwQcf5IILLuBXv/oVv/vd7/jtb3/LlClTyMrK4rLLLsMwkss9dD15mK2iKDhOctNUOtjd6/TVawOw5iaYelPvnLuHyPCApNs4AhRvPZqvFo+aXBhq5eVilJfhBNxcX0fEq8V97undtI5lCnQveOSthGRX4i1gxNz0Yk55f1sjkaQVVVX5yU9+wnXXXUc0GmXZsmWccsopfPOb32TatGmMHj2adevWpXTOiRMnsnXrVqqqqhJrb731Vpd9Vq9eTTgcTqwtW7YMVVUZP378/n1TgxzpeEm6jSEUotu+QWTztxgmCpK2+XZU4a3dCbbrkNntNV64cxp7O9VoWRAIuto2EkkCM+LOYCydALlD+9saiaRXOOOMM9A0jXvuuYdx48bxwgsv8Oabb7J27VouuuiipJqr7nDMMcdw0EEHce6557J69Wpef/11rr322qR9zjrrLPx+P+eeey4ffvghL7/8Mt///vc5++yzE2lGye6Rjpek28QdFSc+FCcyhhwluQV/yD+eYtjfHkcLR0CQSDX6lSYARC9HvEDWd0l2wYpDuAGKD4KCkVKVXjJo8Xg8XHLJJdx+++386Ec/YubMmSxatIiFCxdSXl7OqaeemtL5VFXlySefJBqNMmfOHL71rW9xyy3JkkDBYJDnnnuOhoYGZs+ezVe+8hWOPvpo7r777jR+Z4MTRQgh+tuI/iYUCpGXl0dzczO5ubn9bU63eOKOX2HGDLKL8/vsNWtMjV/xIqrQudk7Gz9tzpdlM/r39wHw+Xe/TS0m4U8OQQiVE2a+R27kE6zKQ1Eqp+7l7D3HtgRGHIZUevDKGi8JgG26shGFY9xoV28X3UgGFLFYjE2bNjFq1Cj8fv++D5D0K3v7fXW5fq+5qesJMqzGS1bESLpN2HHw5H0CgBLr0INRLRMrOxvViON4dUTMRAg3+iTyxhBSi/FmDUHf7Vn3H8sUbcKpvfQCkoGFY7lOV/4IKDlIOl0SiSSjkI6XpNtYQiW64yvkeKLouR1vHcfvZ8u3FyftO2REHbmebDwesOndgUGWBbk5sr5LgqtKH6qG3Ao30qX1lrsvkUgkPUM6XpJuYzk6VvMssrxx1NyqPe6nqILiISFG5XrJrX4CO+YQt78CFOzxmP3BccDnl/VdBzztqvRZJVA6CTy+/rZIIpFIuiAdL0m3aVTCeEuewVL8wKjEuqepmZyPP8HMy6V18kRsU2fntgI8eRqH1/8/AKrFl3vFJscWqBoyzSiB1hrw5bqyEd7e1Y2TSCSSniLDBJJu00wLvuJXieW+nbTubWigYMVKcte488mceIDqbQVs2NzhDTl671wILRN0ORhbEt4JHj+UTQb/wGiQkfQ/srdsYDDYfk8y4iXpNoqTjVE/nzJNg06NJYqRPCBb8RgUlbZQEjAhDo7idUe19AKWJcjKVVFV6XgdsEQaQFHdUUDBwv62RjIAaFdOj0QiBAJywGumE4m4o+d2VbwfqEjHS9JtPP+/vTsPivK84wD+3X2X3cUVWM4FghyNXCJXJCCHEZWKTkJrzMjUEkRN70U51KptKUiKHC2eJRq1g5lORNNpsbaOZghRU4kcomhsI1FixChHVA65Fth9+gdh4woeKO4LL7/PzM7wPu+773732XXfn+/xvH1W0LS8BofJHYD8tr5drBm4ZyOTDvyjEMu64OJwF27iVuAqoBOZ4nmdXj9wfhcVXRNWT/vA0BEOfsBkW77TkHGC4zgolUr9/QEnTZpEF+eMQYwxdHV1obm5GUqlEhwnjCuUqfAiT6xV3AqJ+VfoM5EB+G4k+iE3yNaYou3OJHTIWwamxZOeS92l0zGIRICUDjNOTL2dQG/HwJ4uc8fHL0/IfeztB24fNZFuzjxeKZVK/eclBFR4kSd22+Q6TO0+xJ1uTwBz9O3iBw419rdbo+6OLcSqHkwVATqx6XMZNFzbj2/H76LCa8Lp6wa6WwE7b0DpzHcaMg6JRCI4ODjAzs4OfX19fMchD2FiYiKYPV2DqPAiT05rhv4Od5gzW9w/Gmr/ZDN0v+CIPqtvh4vQDnytpOJvbx8kfj6HGvv7GOSTxOAkVHhNKNpeoPM2YOMOWLrRrYDIM+E4TnAbdjK2jemrGjMyMiASiQweXl5e+vk9PT1Qq9WwtrbG5MmT8cYbb4z4ZqDkycm7vNB94y24d4UZtN/zn46G2MVo9/cFADDdQOFlImHolTuhT2L7XA419msZ5JNoozuh6PqBe00DBZe1OyAe0z9hhBAyxJjf4+Xj44OPPvpIPy2RfBc5JSUFR48exd/+9jdYWFggMTERixcvRllZGR9RBa+Ta4NY3gaI+x++EAOYduB/j8zMBU1OWdC2tEE2ynslGGMQgQ4zTig6LdDeAJi/ANh6AtyY//kihJAhxvwvl0QiGfakura2NvzlL3/BgQMHMHfuXABAYWEhvL29UV5ejpkzZxo7quDdNfsUCvNq3OwMA/DdDa8tPy2HpO0e2gL90KtSAbqBwsvE5NuxV57DECz9fQBH53dNHEw3MCq9mWpggFQJjZhLCBmfxnzhdeXKFTg6OkIulyM0NBTZ2dlwdnZGdXU1+vr6EBUVpV/Wy8sLzs7OOHPmzCMLL41GA41Go59ua2sDMHCX8/Giq6cHfT29EHd3G+01+zQi9GESOI0IXZLvXtf86pcwaf4GPa7O6DY3R1d3L1hvJ3p77uBeuxba7l70dnaBG8UKrLubQSoDurolEPVQ8SVojAEdzYDMApBPAbr7Bh6EkAlvcLs9ngZZHdOFV0hICPbv3w9PT080NDRg06ZNmDVrFi5duoTGxkZIpVIolUqD56hUKjQ2Nj5yvdnZ2di0adOQ9ilTpoxmfMGqRSWKhpux/YqxoxBCCCG4d+8eLCwshp95MWNkK/Mb4fIjNKYLr4ULF+r/9vPzQ0hICFxcXPDBBx8802jDGzduRGpqqn66tbUVLi4uqK+vf/gHR55Ze3s7pkyZghs3bsDcnG7r8rxQPxsH9bNxUD8bz3jsa8YY7t27B0fH8TOW35guvB6kVCrh4eGBq1ev4vvf/z56e3vR2tpqsNerqanpsQOtyWQyyGSyIe0WFhbj5ss2npmbm1M/GwH1s3FQPxsH9bPxjLe+Hm87TMbVtdgdHR2oq6uDg4MDZsyYARMTE5SWlurn19bWor6+HqGhoTymJIQQQggZ3pje47V27VrExMTAxcUFt27dQnp6OjiOw9KlS2FhYYG33noLqampsLKygrm5OVatWoXQ0FC6opEQQgghY9KYLry+/vprLF26FHfu3IGtrS0iIiJQXl4OW9uBm+Fu3boVYrEYb7zxBjQaDaKjo/HOO++M+HVkMhnS09OHPfxIRg/1s3FQPxsH9bNxUD8bjyD6+jmfGD8aRGw8XYNJCCGEEDKOjatzvAghhBBCxjMqvAghhBBCjIQKL0IIIYQQI6HCixBCCCHESCZ84VVQUABXV1fI5XKEhISgsrKS70iCkp2djZdffhlmZmaws7PDokWLUFtby3cswcvJyYFIJEJycjLfUQTp5s2bePPNN2FtbQ1TU1P4+vri7NmzfMcSFK1Wi7S0NLi5ucHU1BQvvvgi3n777XF1T76x6JNPPkFMTAwcHR0hEolw+PBhg/mMMfz+97+Hg4MDTE1NERUVhStX6HZwo2lCF16HDh1Camoq0tPTce7cOfj7+yM6OhrNzc18RxOMU6dOQa1Wo7y8HCUlJejr68P8+fPR2dnJdzTBqqqqwrvvvgs/Pz++owhSS0sLwsPDYWJigmPHjuF///sf8vPzYWlpyXc0QcnNzcWuXbvw5z//GZ9//jlyc3ORl5eHnTt38h1tXOvs7IS/vz8KCgqGnZ+Xl4cdO3Zg9+7dqKiogEKhQHR0NHp6eoycVMDYBBYcHMzUarV+WqvVMkdHR5adnc1jKmFrbm5mANipU6f4jiJI9+7dY+7u7qykpITNnj2bJSUl8R1JcNavX88iIiL4jiF4r776Klu5cqVB2+LFi1lcXBxPiYQHACsuLtZP63Q6Zm9vz/74xz/q21pbW5lMJmNFRUU8JBSmCbvHq7e3F9XV1YiKitK3icViREVF4cyZMzwmE7a2tjYAgJWVFc9JhEmtVuPVV181+F6T0XXkyBEEBQVhyZIlsLOzQ2BgIPbu3ct3LMEJCwtDaWkpvvjiCwDAhQsXcPr0aSxcuJDnZMJ17do1NDY2Gvx+WFhYICQkhLaLo2hMj1z/PN2+fRtarRYqlcqgXaVS4fLlyzylEjadTofk5GSEh4dj+vTpfMcRnIMHD+LcuXOoqqriO4qgffnll9i1axdSU1Pxm9/8BlVVVVi9ejWkUikSEhL4jicYGzZsQHt7O7y8vMBxHLRaLbKyshAXF8d3NMFqbGwEgGG3i4PzyLObsIUXMT61Wo1Lly7h9OnTfEcRnBs3biApKQklJSWQy+V8xxE0nU6HoKAgbN68GQAQGBiIS5cuYffu3VR4jaIPPvgA77//Pg4cOAAfHx/U1NQgOTkZjo6O1M9kXJuwhxptbGzAcRyampoM2puammBvb89TKuFKTEzEv//9b5w4cQJOTk58xxGc6upqNDc346WXXoJEIoFEIsGpU6ewY8cOSCQSaLVaviMKhoODA6ZNm2bQ5u3tjfr6ep4SCdO6deuwYcMG/OhHP4Kvry/i4+ORkpKC7OxsvqMJ1uC2j7aLz9eELbykUilmzJiB0tJSfZtOp0NpaSlCQ0N5TCYsjDEkJiaiuLgYH3/8Mdzc3PiOJEjz5s3DZ599hpqaGv0jKCgIcXFxqKmpAcdxfEcUjPDw8CFDonzxxRdwcXHhKZEwdXV1QSw23ERxHAedTsdTIuFzc3ODvb29wXaxvb0dFRUVtF0cRRP6UGNqaioSEhIQFBSE4OBgbNu2DZ2dnVixYgXf0QRDrVbjwIED+Oc//wkzMzP9eQIWFhYwNTXlOZ1wmJmZDTlvTqFQwNrams6nG2UpKSkICwvD5s2bERsbi8rKSuzZswd79uzhO5qgxMTEICsrC87OzvDx8cH58+exZcsWrFy5ku9o41pHRweuXr2qn7527RpqampgZWUFZ2dnJCcn4w9/+APc3d3h5uaGtLQ0ODo6YtGiRfyFFhq+L6vk286dO5mzszOTSqUsODiYlZeX8x1JUAAM+ygsLOQ7muDRcBLPz7/+9S82ffp0JpPJmJeXF9uzZw/fkQSnvb2dJSUlMWdnZyaXy9n3vvc99tvf/pZpNBq+o41rJ06cGPY3OSEhgTE2MKREWloaU6lUTCaTsXnz5rHa2lp+QwuMiDEaBpgQQgghxBgm7DlehBBCCCHGRoUXIYQQQoiRUOFFCCGEEGIkVHgRQgghhBgJFV6EEEIIIUZChRchhBBCiJFQ4UUIIYQQYiRUeBFCHuqrr76CSCRCTU0N31H0Ll++jJkzZ0IulyMgIIDvOE9l+fLlNBI4IRMUFV6EjGHLly+HSCRCTk6OQfvhw4chEol4SsWv9PR0KBQK1NbWGtxT7n6D/fbgY8GCBUZOO7zt27dj//79fMcAAIhEIhw+fJjvGIRMGFR4ETLGyeVy5ObmoqWlhe8oo6a3t/epn1tXV4eIiAi4uLjA2tr6ocstWLAADQ0NBo+ioqKnft3RoNVqodPpYGFhAaVSyWsWQgg/qPAiZIyLioqCvb09srOzH7pMRkbGkMNu27Ztg6urq3568PDW5s2boVKpoFQqkZmZif7+fqxbtw5WVlZwcnJCYWHhkPVfvnwZYWFhkMvlmD59Ok6dOmUw/9KlS1i4cCEmT54MlUqF+Ph43L59Wz8/MjISiYmJSE5Oho2NDaKjo4d9HzqdDpmZmXBycoJMJkNAQACOHz+uny8SiVBdXY3MzEyIRCJkZGQ8tE9kMhns7e0NHpaWlgCAkydPQiqV4j//+Y9++by8PNjZ2aGpqckgc2JiIiwsLGBjY4O0tDTcf5c1jUaDtWvX4oUXXoBCoUBISAhOnjypn79//34olUocOXIE06ZNg0wmQ319/ZBDjZGRkVi1ahWSk5NhaWkJlUqFvXv3orOzEytWrICZmRmmTp2KY8eOjbjfV69ejV//+tewsrKCvb29QZ8Nfj9ef/11iEQi/fSFCxcwZ84cmJmZwdzcHDNmzMDZs2cf2teEkCdHhRchYxzHcdi8eTN27tyJr7/++pnW9fHHH+PWrVv45JNPsGXLFqSnp+O1116DpaUlKioq8Itf/AI///nPh7zOunXrsGbNGpw/fx6hoaGIiYnBnTt3AACtra2YO3cuAgMDcfbsWRw/fhxNTU2IjY01WMd7770HqVSKsrIy7N69e9h827dvR35+Pv70pz/h4sWLiI6Oxg9+8ANcuXIFANDQ0AAfHx+sWbMGDQ0NWLt27VP1Q2RkJJKTkxEfH4+2tjacP38eaWlp2LdvH1QqlUFmiUSCyspKbN++HVu2bMG+ffv08xMTE3HmzBkcPHgQFy9exJIlS7BgwQJ9XgDo6upCbm4u9u3bh//+97+ws7MbNtN7770HGxsbVFZWYtWqVfjlL3+JJUuWICwsDOfOncP8+fMRHx+Prq6uEfe7QqFARUUF8vLykJmZiZKSEgBAVVUVAKCwsBANDQ366bi4ODg5OaGqqgrV1dXYsGEDTExMnqqvCSEP4Pkm3YSQR0hISGA//OEPGWOMzZw5k61cuZIxxlhxcTG7/59veno68/f3N3ju1q1bmYuLi8G6XFxcmFar1bd5enqyWbNm6af7+/uZQqFgRUVFjDHGrl27xgCwnJwc/TJ9fX3MycmJ5ebmMsYYe/vtt9n8+fMNXvvGjRsMAKutrWWMMTZ79mwWGBj42Pfr6OjIsrKyDNpefvll9qtf/Uo/7e/vz9LT0x+5noSEBMZxHFMoFAaP+9et0WhYQEAAi42NZdOmTWM//elPDdYxe/Zs5u3tzXQ6nb5t/fr1zNvbmzHG2PXr1xnHcezmzZsGz5s3bx7buHEjY4yxwsJCBoDV1NQMyTf4uQ6+VkREhH568HOIj4/XtzU0NDAA7MyZM4yxJ+/3+9fL2EB/rl+/Xj8NgBUXFxssY2Zmxvbv388IIaNPwmPNRwgZgdzcXMydO/ep9/IAgI+PD8Ti73Z0q1QqTJ8+XT/NcRysra3R3Nxs8LzQ0FD93xKJBEFBQfj8888BDByWOnHiBCZPnjzk9erq6uDh4QEAmDFjxiOztbe349atWwgPDzdoDw8Px4ULF57wHX5nzpw52LVrl0GblZWV/m+pVIr3338ffn5+cHFxwdatW4esY+bMmQYXMYSGhiI/Px9arRafffYZtFqt/v0N0mg0BueeSaVS+Pn5PTbv/csMfg6+vr76tsE9cYOfzZP2+4Ov7eDgMOTzfVBqaip+8pOf4K9//SuioqKwZMkSvPjii499D4SQx6PCi5Bx4pVXXkF0dDQ2btyI5cuXG8wTi8UG5x4BQF9f35B1PHi4SCQSDdum0+meOFdHRwdiYmKQm5s7ZJ6Dg4P+b4VC8cTrHA0KhQJTp0595DKffvopAODu3bu4e/fuiDJ2dHSA4zhUV1eD4ziDefcXQ6ampk90BerjPpvBdQx+Nk/a70/z+WZkZODHP/4xjh49imPHjiE9PR0HDx7E66+//tj3QQh5NCq8CBlHcnJyEBAQAE9PT4N2W1tbNDY2gjGm30CP5thb5eXleOWVVwAA/f39qK6uRmJiIgDgpZdewt///ne4urpCInn6nxRzc3M4OjqirKwMs2fP1reXlZUhODj42d7AMOrq6pCSkoK9e/fi0KFDSEhIwEcffWSwR7CiosLgOeXl5XB3dwfHcQgMDIRWq0VzczNmzZo16vkeZ7T63cTEBFqtdki7h4cHPDw8kJKSgqVLl6KwsJAKL0JGAZ1cT8g44uvri7i4OOzYscOgPTIyEt988w3y8vJQV1eHgoKCIVfAPYuCggIUFxfj8uXLUKvVaGlpwcqVKwEAarUad+/exdKlS1FVVYW6ujp8+OGHWLFixbAb9EdZt24dcnNzcejQIdTW1mLDhg2oqalBUlLSiDNrNBo0NjYaPAav+NNqtXjzzTcRHR2NFStWoLCwEBcvXkR+fr7BOurr65Gamora2loUFRVh586d+iweHh6Ii4vDsmXL8I9//APXrl1DZWUlsrOzcfTo0RHnHanR6ndXV1eUlpaisbERLS0t6O7uRmJiIk6ePInr16+jrKwMVVVV8Pb2fo7vhpCJgwovQsaZzMzMIYeKvL298c4776CgoAD+/v6orKx8pnPBHpSTk4OcnBz4+/vj9OnTOHLkCGxsbABAv5dKq9Vi/vz58PX1RXJyMpRKpcHeoyexevVqpKamYs2aNfD19cXx48dx5MgRuLu7jzjz8ePH4eDgYPCIiIgAAGRlZeH69et49913AQwcmtuzZw9+97vfGZxPtmzZMnR3dyM4OBhqtRpJSUn42c9+pp9fWFiIZcuWYc2aNfD09MSiRYtQVVUFZ2fnEecdqdHq9/z8fJSUlGDKlCkIDAwEx3G4c+cOli1bBg8PD8TGxmLhwoXYtGnTc3w3hEwcIvbgiSGEEEIQGRmJgIAAbNu2je8ohBABoT1ehBBCCCFGQoUXIYQQQoiR0KFGQgghhBAjoT1ehBBCCCFGQoUXIYQQQoiRUOFFCCGEEGIkVHgRQgghhBgJFV6EEEIIIUZChRchhBBCiJFQ4UUIIYQQYiRUeBFCCCGEGAkVXoQQQgghRvJ/Eg4L5RuOYaAAAAAASUVORK5CYII=",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -832,32 +810,59 @@
}
],
"source": [
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "\n",
"max_yield = lookup[\"Efficiency\"].max()\n",
- "# plot_results = results[results['Scenario'].isin(['Mordred', 'Morgan', 'RDKIT'])]\n",
"\n",
"# until 10\n",
"limit = 10\n",
+ "\n",
+ "# Create a figure and axis object\n",
+ "fig, ax1 = plt.subplots()\n",
+ "\n",
+ "# Plot the lineplot\n",
"sns.lineplot(\n",
- " data=results, x=\"Num_Experiments\", y=\"Efficiency_CumBest\", hue=\"Scenario\", marker=\"x\"\n",
+ " data=results, x=\"Num_Experiments\", y=\"Efficiency_CumBest\", hue=\"Scenario\", marker=\"x\", ax=ax1, style = 'Scenario'\n",
")\n",
- "plt.plot([0.5, limit+0.5], [max_yield, max_yield], \"--r\", alpha=0.4)\n",
- "plt.legend(loc=\"lower right\")\n",
- "import matplotlib.pyplot as plt\n",
"\n",
- "plt.xlim(0, limit+1)\n",
- "plt.savefig(f\"./img/{exp_dataset_name}_simulation_{N_MC_ITERATIONS}MC_{N_DOE_ITERATIONS}exp_{BATCH_SIZE}batch_first10.png\")"
+ "# Set legend\n",
+ "ax1.legend(loc=\"lower right\")\n",
+ "\n",
+ "# Add a horizontal line\n",
+ "ax1.plot([0.5, limit+0.5], [max_yield, max_yield], \"--r\", alpha=0.4)\n",
+ "\n",
+ "# Set x-axis limit\n",
+ "ax1.set_xlim(0, limit+1)\n",
+ "ax1.set_ylim(50, 101)\n",
+ "\n",
+ "# Create a new axis for the histogram on the right side\n",
+ "ax2 = fig.add_axes([0.905, 0.1, 0.05, 0.8])\n",
+ "ax2.hist(df_active['Efficiency'], bins=2000, color='orange', alpha=0.5, orientation='horizontal') \n",
+ "ax2.set_ylim(ax1.get_ylim()) \n",
+ "ax2.set_axis_off() # Hide axis ticks and labels\n",
+ "\n",
+ "# Set x and y titles\n",
+ "ax1.set_xlabel('Number of Experiments')\n",
+ "ax1.set_ylabel('Cumulative Best Efficiency')\n",
+ "\n",
+ "# Save the plot\n",
+ "plt.savefig(f\"./img/{exp_dataset_name}_simulation_{N_MC_ITERATIONS}MC_{N_DOE_ITERATIONS}exp_{BATCH_SIZE}batch_first{limit}.png\", bbox_inches='tight')\n",
+ "\n",
+ "# Show the plot\n",
+ "plt.show()"
]
},
{
"cell_type": "code",
- "execution_count": 175,
+ "execution_count": 314,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGxCAYAAACEFXd4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADa+ElEQVR4nOz9d5xcd33vjz9PmT6zs70XrVZadVmybMsVg3Gh10BMCdzYBC43IZeYErg3JpcWvnB/5AJJLqRxKaHXUI2NDS6yLav3stKuVtv7Tp859ffHZ9ruzkqzKtZanOdDo2lnPvM5Z2bn8zrvKtm2bePg4ODg4ODgcJUiX+kJODg4ODg4ODhcThyx4+Dg4ODg4HBV44gdBwcHBwcHh6saR+w4ODg4ODg4XNU4YsfBwcHBwcHhqsYROw4ODg4ODg5XNY7YcXBwcHBwcLiqccSOg4ODg4ODw1WNeqUnsBywLIvh4WFCoRCSJF3p6Tg4ODg4ODiUgW3bxGIxmpubkeXF7TeO2AGGh4dpa2u70tNwcHBwcHBwuAAGBgZobW1d9HlH7AChUAgQB6uiouIKz8bBwcHBwcGhHKLRKG1tbfl1fDEcsQN511VFRYUjdhwcHBwcHF5gnC8ExQlQdnBwcHBwcLiqccSOg4ODg4ODw1WNI3YcHBwcHBwcrmocsePg4ODg4OBwVeOIHQcHBwcHB4erGkfsODg4ODg4OFzVOGLHwcHBwcHB4arGETsODg4ODg4OVzWO2HFwcHBwcHC4qrmiYueJJ57g1a9+Nc3NzUiSxE9/+tM5z9u2zcc+9jGamprw+Xzceeed9PT0zNlmenqat73tbVRUVFBZWcn9999PPB5/HvfCwcHBwcHBYTlzRcVOIpHgmmuu4Z/+6Z9KPv+5z32OL33pS3zlK19h586dBAIB7rnnHtLpdH6bt73tbRw5coRHHnmEX/ziFzzxxBO8+93vfr52wcHBwcHBwWGZI9m2bV/pSYDoa/GTn/yE173udYCw6jQ3N/OBD3yAD37wgwBEIhEaGhr42te+xr333suxY8dYv349u3bt4rrrrgPgoYce4hWveAWDg4M0NzeX9d7RaJRwOEwkEnF6Yzk4ODg4OLxAKHf9XraNQPv6+hgdHeXOO+/MPxYOh9m+fTvPPPMM9957L8888wyVlZV5oQNw5513IssyO3fu5PWvf33JsTOZDJlMJn8/Go2WNynDWPw5SQJFKW9bALXo0F/N25omnEtPL4dtFUV8fgCWJS7LeVtZFpflsq1ti2O8nLddyt/nctgWlt/fsvMbIW47vxFL3/Zy/t2f77uWZdmKndHRUQAaGhrmPN7Q0JB/bnR0lPr6+jnPq6pKdXV1fptSfOYzn+HjH//40if11a8u/lx7O7zsZYX73/jG4h9CUxO8+tWF+9/+NhS55uZQVwfFou3734fFYpKqquBNbyrc/8lPYGam9LbBILz1rYX7P/85TEyU3tbrhXe8o3D/17+GkZHS26oq3Hdf4f4jj8DZs6W3BSh2Of7ud9Dbu/i2991X+IF68kk4eXLxbd/xDjFvgGeegaNHF9/2LW+BUEjcfu45OHhw8W3f9CZxnAH27YM9exbf9vWvF58fwKFDsHPn4tu+6lWQs0QeOwY7diy+7cteJr5vAKdOwe9/v/i2d94JK1eK22fOwG9/u/i2L34xdHeL24OD8NBDi297yy2wYYO4PTICv/jF4ttu3w7XXCNuT06K7+VibNsmLgCzs/CDHyy+7ebNcOON4nY8Dt/5zuLbrl8Pt94qbqfT4u9zMbq7xbEA8Td8rr/7lSvFMc7h/EYInN8Icfsq+I2Y4/wp/o0YGMj/RpTsOP58/UZ885uLb1vEshU7l5OPfvSjPPDAA/n70WiUtra2KzgjBwcHh+WPbdsg/pH7HxswLCzNxAZkWcLWTdDNom0FYk2UMRJ6/rVyyoD0XNGXW18VVcJIaJiGeEBOaEjZ10qyhKxIGJqZf40+kcSSFbBAnkohz6TzE3B5FEzDwtAsbNsmeXoWPELsBCaSuOMamWRp8Zk+PYsdEu/jHooTiGuYpo2hFVk2JJAAayyBio9kTMM1mkCdTosnCpuBLCEB+lgCtzeMZVhY0ynUmFZ0EEBWJCRFwsiY6GNJTCkhjstYAmUmPWfbHC6PQmYiSdqKiGM2EMM9mQIbVLeMrEhz9jNzJoppzopxz0ZwjyXyz3n8LkzdzO9npjeCYQtx7JuJ44vrZHKf5Ty0MxEMl9hWHpslHNOyx98sOhzZgzaeRJ5MkZjNIM9E8U6k5jxdvLkxEsc9k8bQLYyxGJmZDOWwbGN2ent76erqYt++fWzZsiW/3e23386WLVv44he/yFe/+lU+8IEPMFN0ZmIYBl6vlx/84AeLurHmU3bMjmOiXvq2jon60m/7h2SidtxYZW9rWza2bWMbBrIsYeoWlmVnHxdCxbbAVhRxbdvYmo5tC1HhD3uITafQkiaWZWHb4Ap4qGrwMzOSIB1Ng23n/5Ts7H/5+9l98wZc1DZ6mRiIkY7recuAL+CirqOCif4oqXRhHExDjAtISGRviNeEXNR3VTPeHyUV07BNC8my8Va4aOioyD+ef4GiiAVSkrLfB1s8I0n4Qi5qW0NMDsbEYp89vt6Ai5omH1MDMdLzF+7cHOf9fXp9CjWtQSYH577GG3BR21HJ5FCcVEwv/B3ZRfKw6KfIlhV8FW7qOyoY75slNZsW72Pbhcf7o6RiOpI67zfCtgpCoMiy4g26qOsIMzmcIB3X89t6A2L/pwbjYs65lxT9HUn23L97T8BFTUuQqaE4mYSR39YTUKlp8jM1EBWPU+L3dd7fp8crF42l5x4Wx7+9gqnhpJivbWObRd/3eUPbkoy3wkNdW4iJs1EmBsfZfPuaF27MTmdnJ42NjTz66KN5sRONRtm5cyfvfe97AbjpppuYnZ1lz549bMuatR577DEsy2L79u2XflLqEg6Xs62g+Md9GW1r2zaGZWNaNoZmYpo2kmQT9LqYSZskNRPTspEk8LkUaoIephMZNFNHlsSPsiSJ3xgJSTwmibM1WZJQFQm/AmnNxLLt3O9XfrykZqKbYkGxAcs2s7dzC5O4bdngViSqAx6m4hlSuollZRcPl0JdhZeJuE5KP8dCP4/866Lp/OskScLnVqgNivdJ6xbzLdO5+zmTtQR4VJkqv5uZjIlmFH4k3Yp4fDqpkTEKC958zVlYOG28LvH+E5E0Kc24qHkBeFwyVT43symdjGHiVsX9maRGOjvXxea16Nyyx6zUMSyX+Z9b7v54JEUybYjP3rKxTEt8P00bw7QwDBvTstANS5zVmhYVQQ/Xrq1l555hRieT1Ff7uPGaRp7dP8roRLKwyNpF7giJogUkd0eiqc7PTdc2sa9/lLGpJI21fm7sqOTJvSOMTSXnHfP5poqixyRomPaxfVMDOw+PMT6TpqHaxw0rq3jm8Djj06l5p+uw4EPNEUtTnzK4YUMdzx2ZYDyaor4qO9aRCcZnUuUf+NkU9XG9MNZYVIy1unLpYwH1ca0w1kx2Xh2VPHtsgvGZdH4Xz7ursSR1yTTb1tax97jG5GyG2kov166sYtfxSSZnF3FfLkY8Q23a4Nq1tew9PslkJC3G66hc+nizaWoTen6siek4dZVerm0K89zxCSZm5o614O973nV9XOP6dfOOWXt46cd/OkF9JMUNG+o4MLyIa3UeV1TsxONxTp06lb/f19fH/v37qa6upr29nfe///186lOfYvXq1XR2dvLggw/S3Nyct/6sW7eOl73sZfzZn/0ZX/nKV9B1nb/4i7/g3nvvLTsTy+HqwbJs0oaJYYmzuYBHZTapk9QMDNMmY5hkDAvNsNBNG9MWi4dl2ZgWmLZNbcDFptYqjgxF6J9O0ljh5UXddTx2fIyR2TRI+fNPxDIoFdYOOyt4sj9mTZVebl1Vy85T04xEUtSHPNy6uo7fHBmlfyopFjLLxjRtTOzsPGwsW1ybthA7pmmzss7PW7d38OO9Q5wYjbKmMcSf3LSCf33iNCdGY0s+VrnX/3T/ECdGY3PGO140XmEpLHnulh/rHTet4Pu7Bjg5GqM7e/+fnzjNybGYEHlljFM81k/2DXJsJMrq+iD33bqSLz56koODkfwxyglV084ev6x4tYqfs2y2dVTxyddt5JGjY7x2Swvv++5edvZOL/l4AWxfWc3fvX4zDx8d47VbW/jL75Qx1oKdFQ9s76zh7/5oMw8fEWO99xu7eerUJKYNlp39DpRpc79tdS3/8JatHN01wF0b6njXN3fzZM/kkvcP4LYjQ/zDW7byvV0D3LPxwsb6r7ev5D/3TfIv+wbyY710TQ33f2M3ABuaK/jK4+eIu5k31k/2jPPPe/rzY93RXX1BYz36gdvZfWaa+7+xe8FYr9rcxHUb63jp5x+/NGOtr13yWP+3aKxbu6oKY62tKXus4vH+6RKMN3+sA7vi3NZVtJ/rlr6fX7nEx//Tr+wq6zVXVOzs3r2bl7zkJfn7uTiad77znXzta1/jwx/+MIlEgne/+93Mzs5y66238tBDD+HNBZUB3/rWt/iLv/gLXvrSlyLLMm984xv50pe+9Lzvi8Pzj23bpHRhUQh5XZwcizEWTVPhc7GpOcze/hkm4xkyukUiYxDXDJKaSSJtkNBMEhmDWMYgnjaIpnViaYNISmdreyX/8JatHBuNcX1nNe/6xkUsHtmF6MSuGC/f1HRRYz1+cjL/I/HH17fxX/9jzwWPBbDj9NQlG+/pZTrW0GyKDc0VvOf2Lv758dP88uDiiQvn45cHR9ncUlkY69BFjHVklM3thbEePj5e9muF9RC++l+uZ8+Zaf79yV5+sneQ99zexdee6uXAmSnef0cX21ZU8+ff3F3WmP/5ly9i39lp/tdPD/PTeWP9/Zs2sbW9mtd+6Ymyxnrlpibef2c3//1bu/np3oH8WH5F4otv20bPWIxvP923xLH2zJnX3LF6C0J6vp+I7H0bDvRP8+br2nBJNj/Zc5b33L6K//fkKV6/uZHXX9fGT3afJSSfy0pXGPfAmUnefF0HLix+sruf99y+mv/3RA+v39yQHaufkFzselzEcgUcODPFm69rx4XNT3Zn5/VE8bzmj0Xh7KrkeGXMTTLmD3aJxlqcyzXWL/YNlPWaZROzcyVx6uy8cMgYJomMSSytMxnPEE8bpHSTgFth24pqHjs+zu3ddXzi50d57Pg40bSOXu4pchEfffla3nN7F199qo/PP3zioub8gbvXcN+tnXxtRx9ffLQHRZZRZFAkCUWRUSRQZAlVlpFlCVWWUGRJuMNyt7OP33t9Gy/f1MRDh0f44Z7BEu82d1/P99f9putaednGZn59aJjvP9eXj53IBnVkYzRsbGywbPJBGvnnRDwAlsW9t63jldet4pe7TvHdJ48Wxa+e7/jbC2695UUbeNX1q/n17h5+tOMoMuJ4yZItjpckoUhi0Zez1jWFrAvRlpBsCcWSWNley2vvvobDR4fYuL6VXz50kDODk/k3syEfLArk/JLZ2xS5aKCjpZpXvnQzh08MsXFNC7947CD9Q5PYkp3d3C5yi2WPFVbeNQk2b3r5jQwMTzI6McNr79rOweO9bF7byS8ffpqGukramuv51c8eQUHsp2ybqNio2CiSjQIo2EjY3PTqV1Lf3kb/0eM0d3Vy9ugx2tevY/h0Lx3r1zF+9izP/nxuBszc74OVP+Zb7riDFevXM9bfT3VjI2eOHGHFhg1Mj47S0NHBmaNH2fvoo6U+snyMSc5u133dNjbefDOWKWJ/+g4donPTJmRZRlYUjjz9NCf37C0c4+yxmxvFK8bsvvZa1heNdebwYVZs3Jgf6+jTT9Ozdx+Fb5mU/diEj9mWJCRJjI4kseX2F9Gxbi1aRqf30FE616/D43fTe+Qkh556RrxWkudJk4XfDwmJDTffQMf6VWhJjf4TPXSsWY3b76b/6CmOPP1cfkZzl1i76O8i67YGNt16IyvXd5NJavQdPU7n+rV4/G76jvZw6Jndwm0uy0iyJOaXdZnnY2Lmsf76LbR3r0BL6vSf6qNjVSduv4uzJ89wdNf+kq8p/mhtCn+1G6/bQseaTjJJnf6eXjpWr8Tjd9F/so+juw6cQ8blD1/+2K2/7hraV4t5nT3VR3tuXj3z5lXGT3ZuH8dHJ2hsbnjhxuw4OACYlk08YxDPGEwnMkSSIs7BtGwkGw4PR3n69BT7Bmb465etzZ8p/2CeEHArMhU+FxVelQqfi6BHJeRVCXqyF69KwK0Q8KisqAmwfWUNfZNx/uTGDja3VjAVzwYhFsIS8gtHPlTBNLF1DVtPYxppLD1FTcjPts0t9Jw4wVuvW8EqrZ+x0aFsTI4QCjkhYZNbIHMiQryBZYtFqbG5hVu6N3P00F5e0r0e99BzjAwXn9WU/oVY8GObpbG5ndtWb+bIwT3c0b0e19kdjAycEUGKNkiWCPC0EcfalgALJKkoDkSRsGWZ5tZObtvYwuH9O7lz02bcY7sZHuwrXiaYf3ZbfAxzz9nYNLet4EWbWjmy/znu2LgJ19heRgf6kWwJLDkbL6UgGzKgINmKeA6pKG7KpqGjhevu3sTeRx5mamiAgyOtvOZld7H/0UeYGhgsebwWPJKNj6prbeOal25g/yO/ZmpokMMDbbz2zrvY/8jDTA4NLnDP5aKHJLF65hdIc6Sf27ffgGUY7P/tI0SGRjg2eobXv/ylyKpK7969rK9S818qSZEAGSQJSZZAksW4isTE4AB1rS10rF/LcO9pBk8fxxcK0LF+HbZlMdrfR2VDbcnvBHZWo5oStiVzatdxJCtA+/p2Tu3r48TOASw9zOrrVnL06VOc3HUSyWoDW8rGFBVp37wulrBtm0O/neTMvmdoXdPChtua0VNhbEti/2ODDBwdJDozBbSXVOJFYbwA7P71OCeffYL2DR1sur2FTDyIbUrsfqifvn19xGZnsK0GbFsCS8rOQcp+WWVsWy66Vhg6MELbugx3v2sD6ZkqQObnXzrAwLFpMaclcGbPAG3rEtz9rg0kJkPYa4rHalrSWEP7hmhbl8rOq3LevBqXNBZA71N9tK2LiLmNebFXSUXjhZc0Vv9TZ2hbF+Xud20gOe6D1Rc+Vu8ThXnFL3JeuX288c3lZVI7YsdhWWHbNknNJJ4xiCR1puIaCd3ANG1URcKtyvRPJXmyZ5Jne6fIZANNb1tdy1tuaOf3x8d5x00rqA16mIxnqPCqBDwqHlUsGIokIcmgIKwlsiweUxUJtyJT6XfRWuVnMp5BlWVmkhpb26tFcHAyjZFJY2gpjEwCXUthZlIYiQR6MoKWSWJoadB1sDRqm9q49ubXsuexnzI+1s/k2ZXc8KJXsu/JXzI5NiAWbcR8kAFJEv1bJAk5t8Ah1rfqhjY2bL+TozsfZWZ8GCMyym0vuYdjzz3G7PhQ0RGUStxiQVRkZX0La69/Ccd3/Y7o5CinktPcftdrOLn/KWLT4yDLyLKcXajl0nU0gNWbb0LLpKmua6b36C7Ss+OcOW7wknvewPTEMG6Pl56Dz8z7jJljIMIWCSBrt92MlkpR09jM8b27mBmbxIwb3H7X65kYGMXj83Lo8V35cWQZJNnOXmcv2WluvO0WfKEQJ3ftBhtqmtuwTTi9bz/b7nk5qViMw0+eo05JEcVjWbZMVXM7ppUd6+WvKHss09AYHz6Jd69G66btMHicmWceombLbfCiF3Ho//5/9O54GDQdyTRRDAvZtFFMC8WwUEw7ew2qaZMxbXq338aK//MF0pNezCMeJsMqdc0Znv3//ZzhwyOYihtT9mAp7uxtcW0pngXzO/lsL23rZsUCOa2yYlMzv/yngxe0EM2MpDl7+DTYsPXuVex7uJ9nf5qLrQktaaz4pMlwTy+yLLH17m72PdzP7l/1I/5oasobpOjrO3BsmmM7htl6dwf7Hu7P7t+FsVzHWs5zu9RjVT1bnoxxxI7DFSetC3ETS+lMJjQSaYOMaSEjMnGqfC56JxM8fmKCJ09NEkkVUj0bK7z86S0r+C83r+DYSJQKv8pYLM3rtrYwGc+gGRaqIgRNzhWUvy5yE2Ga2KaJ5HKRiU6jRqYwM0lSqTijqoeG7s30Hd3JzMgZLE3DsoVZHQlQFSTVhd/nRq4IorrchOta6Vh7A4Mn91AR8lIRWgPA8Kl9bLv91Qye3ENitrwsgs7Nt+Hxhxg4vgtVNqlrbAAMhnr2seGmu8kkY/QdfLLs4108noxGZW01mCmGevaydtvtSxrP0jPUNXUwPXKWxOQUsq2SmJhmZmyUupYOJgYGsBIqtiXlrQF5o1XOSpAVPJlohsaVHYz0DjDVNwuozKZnmBoapWllG2P9A3j89qKJO8UYmo6sKATCYSIThXifQDiMrCgYWunaIBczViYTJz49QGp6CGNmAmamcc1G8c8mqYhoVMYsZBsSwOAtN7Pl859nhRym8o1vZOh978O142nWnGcuGXeYSEUn0xWdRMKdxOw2Wv7tJHe/awPRyDbW3NLMQ/92hIGRGqgpTwjIpoZiacimxtTuEXo3V7D17pWc+P1p4jt2UGNbSLaZvViFa8tEXuw526Tu2tVsvO1Wxs9E2XhbE+ajP2Nqz7GS9kd73mc6z+BHzbZ1Yqz+KJtuayLz+x8xtu8QyBYWFrZsYks2tmxlLza2YmPLNshgK+DyuzElm2te8WbW3NlObGiALXe147f2cfC3P0BxucgkEpSDJxDA1HU23/kmuu+6TGNJBzn8+M9w+XwkEwmQFSRFQZKVwm1FRZLFY7KsIskqVS3N6Gmdrs030LGpnWQkwpa72qlumuXsyUN4A0GmhkcWnABJklx8Bwmoa2sjHU/QsnotbWvbScVibLmrnZq2BMOnjuMLhRg/V0HIIurbxeubV13ascLNLWW9xhE7DleMlGYyOJNkNJompYnU6+awl8b6ILNJnaGZFL84OMzjJycYiRRSHMM+F7etquWGzmrWNYXY0l7FyGyKztogFT41b4VoqBCB7LZpYuu6cDGl9extAy2dIBmLkE5G0TJJ/E1tRKaGmRk6jWEZWCK9CsnlIhIdJ1TdgBKfxO1yoyhu5HOsuq1d1xCdGlkgaBKzE0SnRmjq3Mipfb8r6ziZuoYsK3gD4TnjeQNhZFnB1LVzvPrSjGdZYJniYlsSWkYjFY+TSR1iamCQVVu3M7B/H6cO7mb1puuoaWzm6GO/YmSgh5nRyawbx87WQCmMW0gbh2N6D5GB1XTfeg9Tp/Zw6uhuVq2/jvq2Zk48LsaanSxPII6cfoZV669jw0tfTWTgeH6s1u7VHH74p5w6Wl7gLkCwSmVmIETHlu1EBo5zbOcjdLWvo7XzpfR+5/9hxSLIX/lX6lM29ecZq/Ld72Ky/wSHTuzBtetpmu6/n9GnHuNp9ziN7/tjKttXcfyJX4LiAsWNaddjmHXoei2GVo1p+BaMOdo7zeCJGbbe3cFwzyy+iiRN3VFk2UZWbCRFXOfu5y5S7vmiz2P1tdfT1NVJJpGg+/aVVLTdw8m94ljlFsNC/Ipc8rYkyYTr61i7fTuyouCrSKB6XWz99H/j5HO7iIyfLxh7rhwK19XRvf0GZEXBX5FA8bq4/hN/ycmdzxEZE9+HfFwZ2egde+5tO7tN93XX0dDZyWhvLyd3PUf39TfQfc9rqVi9iZO7i74T88sbiB2b81j3ddfTsGIFY2fOcHLPbrq3XUf3Pa8lvOYaMVaRm26BZdTORRgJVmXnNdbby6lnnmbVjTfSfeerCK9cR89zO6nKRjWJP6DiOJ3ieLfsPhuw/qbbaVy5ktHe05zcuZPVN2ynfeNmXL4AJ599Bq8rUHiVnbsuOm5Z9+30mSHW3nIrzd3dDJ88wfEnn2DtbS+ibe06FFnm+JNPze0mPs9rna+bZNtMnepn7W230dTdzcjJExx/8inW3nYbbWvXocoKJ3Y8hSu3b1LRD0XhS5b/HGYHRum+8UYaV62iZ/9+ysEROw7PO6ZpIUkSvRNxBmaShH1uGipcVHhdtFb7+MHuAb664wynxgsl7z2qzI0ra3hxdx0r6wKkdBO/W6WzLohuWrTXBLDSaYzxGSFmNA0UGUlR0M4OoOkpNE1cMoZGykihWRq6bGHINigqUt8obo8PtakJn+yaI2ZsyyQ6OYzXV54JfmZ8gIaOdWjpBFNDhfIKNS2rqGpoZ6z/WFnj6FqaA0/8kNradrq3v4yxPTvoee5hujbeRv11d3PgW//AqUPlZcnkOPazb7Bq04vY/KZ3M/rkI/TseZSudTdTf+1d7P/C/+LM048g6yaKZqBqJqpm4dLFxa3beHTwWQXHhgEM3HIzmz7/edpGpqi85cUMvuc9yDuepgUo77xLYAODt/yY9Z//PM2D01RufwmD73kP9o6naaT86IWad72L9Pd/weD3f7FgrDBwy7r1TP3bv5U1VuDwKC2f/zyTX/oS6++7T4z1ujcy+eUvs+K++xj6wAcIpcTikPTAbNhFPOwlUxnEqgwjV9fhqmokWN2C1bWRdX/xPuqGhmlY0UFkYoKGW17CbXXN1HV0sutnT2H5/4hU3Esm4snGmsw9Qm5fBm8gjS+QpmvbCq6580Zsy+LMgf20bdhI06qb6HluJ2cO7Ct6XTaI2ADblCiVc7T+thfT1LWaoRPHOfrk46y/7XZa1qzF1HWOPv77BXUDxAKeDSzODi9JUN3Smhc6Pc/t5MzBfay4Ziurr99O9w3Xsf/h3zA9NDgnpNjOnVgwNxauuqU1L3R6dj/HmYP7WbF5C6uvu4Hu7Tew77e/YWpwUMxFIu/+zb0+t++SJLP2pptp6OxkpKeHE88+g4TEiR07sE2TptWrsU2TE88Uu1zt+borf3ftzTfTsGIFIz09HH9auDCPPv57LP0WmlavxtJ1jj/9dP7Qz3+9OGswwDJZe+vtNHR2Mnz0IMcf+xnYFkd+1Yv50tfQvH4LZjrOid/9kjmDZd3LyCI0X8qJIElizYvupHHlSkZOHuPkU79HkuDkEw+D+RKauteCpdPz9OPiuIgCYUiSnHWhQ8EvLLHqupuoX7maiTM9DB7aTbDSy+ChnbhcMs3da3CpEqd3PUXeL01RQkP++Innum58CQ1d3YydOkrfc4/hcUPvMw8hSwZN3euRJYOTOx7JvsQW8fNzAv5zw0l033YXjatWMXLiMD1P/KrEt3khTjYWTjbW84Vt20wnNM5Oixoz17RVMjCVZCKeYXg2xZ3rG/jzb+/liZPCVSBLsLW9ihd313H9imo00yKpGQS9LlorvdRXePG7Vax0Gn1sDH14GCMWRbN0NNvAkExStk7K1tBkEx0bWwEkGVVRcUku3IoLVb48mr+mZRUNHesY6z/G1NCp/P0zB56k58DvyURm0KOzWNEYROPI8SRqPI0nruFLGAQTJr4iI0vglptp+fznmf3Rj4Tr4wMfILHj6Que36UYz5Qg4wbNJdH1gf9J/Vvexvh3v82xL/3dBc8LYN1f/g/q733rBY9VdcPNrPvE/+bYxz5E440vzo81+uzv84/PPFfevlqSQvjGl7Dxbz/B0OMHkFaswxg+TdutG3ni699mbGgMd7Aab6gWjze46Di2ZWFk0nRuWcfam9Zx4rkeTuw5Q11TG9e/YjW/+dcjC+IXVDeEamQqamQqaiVCNSoulwjSrmlvpKGzDduyGTp6muRsDH9liJb1XUiyxETfIFMDo1nrxtzg3+IMOdu2aV7TSXVTA9MjYwweO50Pqm5d00V1Uz3ToxMM9fSJFxRnrOVMdblAbCRWrO0iVFnB6MAwE6MT2ZdI1DXW0dDaRDwao7/nTPbV81Leiq+B9q42ghVBxofHmRqbytaxkqmur6auqZZELMnImZFs7FshjU5CRpakrAgQYzatbEBLaURGY4X5Zpe/yoYQbp+H8TOTCwKn7RKip2FlHZmUxszw7NztkKhuqsTtdzPaOw6WhW1kwNLAzICRgUwMTA1MHSyTplvuIhOZZvrkEVBUkF3klGXNqjW4Q5WM7n4aiWziQH4y2QrKxb5g26L+xjvQZqeYPXag6JDKSNiE1m7BE65mevfjpSLqszcKFpXqbbehx2aInTyywLIVWr0BV0UV03ufLhpgvum2MGb1luvRY1FivScL22SPdWhlN65QBdP7czF5dv7atosfEvtZc+1NZKIzxE4dI5qIseZlbzzv+u2IHRyx83yQyBgMTCcZiqSwLagJuKn0u2kMe/jWzrP80bZW3vedfTzZM8mahhC3d9dx2+paQl4Xs0mNjGkS9rppqfJRF/LgdSl5kaMNDRKfGSfmtoioOrqtY1gGIOJy3IobVXbhmmetmU/7uu0kolNzLDE5alpWEaio4eyxczTqAyzTYHZymMhQH+nhIbqaN7D5T/+KqV/8jJqXv5KhBx5YsqAwZIj7JRJ+lY0f/FsaX/NGRn7zC57+l4sTFAA3v/t/0HTPqxj53cM8/h9/j+12g9uD5HEjuTxIHi+y24Pi9qG4/ShuH6rHj8sVwO3xoyhuJFmmeVUXbevWkpiNEKgMM3DsOMOnTl/QnC7VWOG6WrpvuB5ZlvNjWZbF8Wd3MTU0haGBkZEwNAldE9figriffc40xHembV01d79rA8d2DLPulmYe/reF4qRcSo01eGKGqkY/VQ1+alqC1LQECFR55rpAbMDSwdSobK3C5XET6R9Em54UlgIk3BVhwqtWoadSzJ7oKXIJ5M7YyQuT3HX16g70RJrYSM5NWFi0Qk21uPxepnuHmLuYzfdZiPvhlhr0lEZyJl60jViQ/VVBXH43kcFJEbxV5HIqCubK3w93tKInEiTHJoG5bV/89XW4gkEip3vnvMdciu7PXTUFsgqyApLK3Ej3ogtS9jkJJIW8Kym3fc6RkxMzpgZGGrQ4aEnxeRnZsxZJFi5K1S1EzWU60fpDIhaPs+oldzip5w5XFt20GJlNcXY6STxjUhNw43WJ9g0HB2d55Giad9/exbd39tNW5eef376N5kofumkxm9QZi6aoCrjprgpRG/TgVmWsdJrM8CCpgX6iM2PMujRiHgMTG5/kI6AGLshak4hO0dCxDmCB6ylnocmRTMwyPXia5PAAxsgorvEZghMJaqd0anUoJPweYNbfTP399zP17/9OYsfTmBLEAxIJv0I64CYT8GD4fZj+ALY/hBQIowSq8ASr8YXrCPgrUVwy3au6aFi3lvjMLI13v5Lr27ouWFCAEBWNufFefBc3N7Rd0Hg5cZITJbn7wJLHuxRj2TZoaYnYlIdTuyfo3FzDmUOzrL4uwGPfOE7v/iSwMPblXEgSTA7FOb13lK13d3B0xyCZpE5lgwutRDdy0YfKxLYs4SJQVRSXG4/Ph21DfDZN74EJtt7dwcCxaVZureW2P16Nv8JNZDwhFkdLh1Qyu3hqYCTFImoYYOtocjvJeBRtZlJYBCQZsNFS00QyUdRgBcRHmeNOgKL7BaYnexbd91hxiE2RNWTu7fwGREZzDxQFoGeFSGxIuCfyD2UtGPb8qWWv04OnRfCyLWrmgKilJEmgTY1kvTm5di3zwlnORfHcc7Wi5hyTIp+dBAWhmBN1CvlUyZyANIQIJVsqAtUFshtcAfCGiw/SHzS2Xfrzzl/lbs93IS74+oob6XR59hpH7DhcFmzbZjKu0T+VYDKeIehx0VLpm/P8nrMzPHBXN788OMybr2vjppUpphMaY9E0NjbVATetVRXUBNyoSlbkDI0R7T9FdHqUaVUj6bVQFRcBVxCX7LqoOecETk7wjPcfJeCvor5lNQf+40ucfuTH+MZjVE+mCcdtFnNYGDJMVSlEa/203vM6qt7+dqZ6jlL9X/4Ls1s3Mtw7ArYL1YSAbRNAQiRY2OK6xA/2pRQUl3K8NdtvoLK+bo71JXfdtm4toZoaTux87rKNZRqQjsskoxKpmEwqKpOKyVlrzAwww81v6GLr3SvY93A/vfuzlgsJVJeN6rZxecR17uJyI257bFxum9Y1K1i5ZR2Tg4NUNzUwfOo03de3UdtqUdfelp+vaZmkkzGMRBxVkvGGqgg3tBOqbcQbrJpj3Xd7ZCrq/CSmY7R0hwn5Emgjp4icTQrrgGVkG2Rmo2skKeviULOLqI/kTAyQIbgwLFrL2GiZCPjLTM2eR25BymmAohqT5Duf2/nY0+w0Cy4yKdcjhJzBJ1sUT5JE9cecYSn/fOE6J1yEsUgqGKOElsMyRQsV2wYzN0cL0fB0TjCScCtJRUJIkrJiqahMQWGfFz0ahXgUM3cgiqxStqj6a0sukP3YkiyOhJk9Llou5mSeSybbeibc3oQWT5Kajix4Z191GHfQT+TsSF6LScVDlJhruL0ZLZ4gOR0tbJ/d2FcdxhMS4xUb6KTi66LbodZm9ESCTCRaOBTZ/fBWhnEF/EQGRgqHYs4xnDvDcHsTmXiS9EykKPZYyu5nBe5ggOjgyKJzKvKIUdHahB5PoEWjqGX+7Dtix+GSE0vrDEwnGZ5NI0sSjRU+kd5dxPBsigfu6uavvreft2/v4PREnJV1QWaSGnUhD82VPqoDbhRZwkqnSZ4dZrb/JJHpEWZVHT2g4nX5qFb953RNnQu76IcylxI93HOa2aEhVm+5GfV3O6l6/Z0M/tf/imfH06yf9/pIQGK6xku8JoRRW4tc04yvrpOKqk4U1c3GNV10bl5D38ETDBzrozUhs3LrDcjqcYZ7TqO6cmei5z4zmS9MYK4IKL5fDpdyPNXtxrIsEpG5P9SJSATLslDd7rLndc6xTAs9IzE7ppCKSiSzwiaTLIoxKEJWJIJVCq3rAmx4URO9B3rZeHsrkjpKMBykurmWk7t2LXhdKWpa67JCp5GePXuJTEwSmZhg9bZrGevvx18VJjo5gqKbuAMhatvWEqxrIlhZh6TIwiqTjmQtNBncPpmK5i6ix/ahTY2hV9ZQsX4r0dgoWiKRFTRe8KhZt8m5MU0bLWOLmNc5i6m4tqXiOA9pztPzyT8uFYRBPvaVrOZSsjWqRAa0aG6tZK0rsjRPWOTGkuaKmpwAKXqv3HOL1XSaj5Xt5m7li3jbc/6Wc/cN0xba0QLLsPONyK35Rql5d6Q5t3JKTFl0+7x1qVik5Y5DkVFIlqU5Yk51p6netIrMcC9WKlZ4K18IT9NKMiO9eFvmLtXFomK+SJNdaao3rSY52IsZj+atJUoghL+ti3j/aSqq5OJC6EJE2mStbgWhayQT1KxZxdTJU2RmosKjJ0l4qyqoWr2KyOnT+INy3qMnl9i/3H4rvjTVnavQx3qx0zHyQtQXQq3rxJzoI9ihzhU5xZ9H8ffHk0ZqWwUzZ4hOZkp8OxbixOzgxOxcKjKGychsiv7pJGnNoiboxqMu/LH2uWTqK7z8+bf3Uhf0cM+GRlyqxMraIO01/uyPqhA50aF+ZvtPMj05SMINBH0E3EE8yrkXUcsqEjIWhTovuRRqQ8I0c4JHPDczfhzz8R+z9sg0jR/6IDX338/k1/4f+7/6f4jWBMjUVEFtA57adkL1Xfj81YWz1/x/4o+xubuLjvVr6T96nJGe0/kf9FJC43ys2X4Dsampkts3r+pakvXkcowXrqtl1bZrOfT4PiYHJ6lprmXzi7dy6PH9TA+X0dOqKE6juqmWTS+5loOP7WW4Z4qK2npufN0WHv7qYc4enin5ctVt46+w8IUsfNlrb9Cmsr6W1dddy8nde4lMTFBZV0f3ddfmBctS9m/1tsLrLNsmY6QIhSu45tYXc/zxJzETGoG6eoKhMIorK3C0OOjJfIwNNrir66hYt5XoyaNo8biI30DCXVFBxcouor2n0aLR887Jsmw8tY2kIwkykRhuL3h8BXeOKxRG9vnRJ0eLvpdS9po510jgqmrA0pLYyVhBiGQXbNkXQnb7ITFWnhgJ1oOeEoG48/GEwOWDeJm9wC7lWFlsWwie4pVvMQEz5+Hix0MNIh4nE5tXSkG6sHl5QlC1AmbOiH2df3+pXMh4OROdZeSDp21TB28lNG/BHtiFlBiHYD1S6/UwuAsS5ZWCyBOog+LXzr9/AWNFj/2O8OaXOQHK5eCInYvDsmwm4hn6JhNEUjoVHhdB7+JGw8l4hq/u6OPgYIRPvnYjK2r9dFQH8jVyTF1jqu8402dOEJ0eIe1VcFeE8buDKIs45U0D9LSElpawjNzZXaG0ffG5rDjLsvNnXbNTPaR/+yPWHppCtrNZSl/6ErNjw1R3rrqgANlLJihyp66GCaZZuM6dZucDT7O7VziVLpw6506z8v6BotfmYhds0WnbtkWciWVZ2Faur5OFZZpgi8ct28YybNJRL6mYl1TMR317E3fdv+myBe8OHJsGycbtzeDxZS9eDbc/jarmXD25YwY1ra1sfuldHHz0t0wPDwkpJUFNSyubX/JSDv7+UaaGhops5LmYkHnqVbLp3LiZ6PQUU6OjYJtIqTQeC4L+EPWru6moqyU9ehYJMy9qCm4nd7ZmjhA1/sZGjGSypKBxV1Sg+v0kR0s3GLUsGz1jo2viLDpUH6Z6zSqM8V5cdrwgQi5koVzsNVfTWJdSOF3svGwLUjPi/eJj4jpQBzf8GRz7Oax9FTzyIAyUf9KxgLYb4K5PwNGfwfrXwK8+BGeezJ3t5QWN+MEscpmWousO+KOvwt5vwrV/Aj+8D04/dmHzusRjRe/+AuHGFU6AssPlJZLU6Z9OMBpJ41ZkGiu853QrxTMGf/ndfcTSBu+9fSUel3hN2O8inYgyOXCSqd5jJCOTmD4fvsYGqlVvybNJ286eQCclMikZ0yi0EJBkkFXRSqBgJp+r62cmTpN45EesPTCBkn0q8/bXsvYjn2LgZI+IZUkbF+QqOpeQGT51GorHsiwwLSzDwDZ0LF0XhRBtUR227ZotRGanmBwbAZcLK+gCbCTTpqaunopwFWeOHRYBDEb2lDVno88HVWSDJi2bzs3XEJucZGpwQHg6sgu7JEnUtLZTUVvL2cNHROCnLCOjIJleUlEv8aiL+KyLZGyu++js0VlOPDvC1rs7OPT7s0wNzuKvmC9M536G9sKHAJgcjtCzWwQCn9o3TKDR4Lr11fgrFBRFiDMJkIr3EdG/K7eP1S31jJ0aoiLcQijULFKAs6fzo0d7aVu5AT8VhUJqtiVuW5aI/bCtrNtJJ3O8F7ep06jrYGRwuV2EKitwB/xI2jSZ0SiS7AbFe8kDUW1LiBtNEzvn9kpU1Un4/DJubxI5cgZ348qLtwhkYuI1l8K6sFzH0lPnFyiXal6x0ayImSiImUSRsElMCIExH1mFW/4SdnwJ9nyt/PmUYvwoVHcVxjv4vaWPIX5I4eyzcOB7YqxnvwKDu8FzgYaBwd2XdqzDPy5rU8eyg2PZuRDSuqh+PDiTQjMsaoMeXMr5UyG+uqOPn+wboq3az2ffsAndtFhXaxEbOc30meNkIrMooSD+ylpUpXTkmWkKK04mIaFnRDSC6rJFQkoZ60xk8gzR3/6AtfvHUbMaoGdVkJV/9TE23PGqBZacC3E95bBsG8s2MQ0NyzCwDB3bMMTFzNbJkGUsVUKSVWS3G8nrQfJ6kV1uVI+Xmrp6Vq9azdnBUVJpLdvlW8Lv99LSUsfQ0ATJZCEjKN+hvLhTo0U+ytQf9NPa2cpg7wCJSAwlW24+WBGkoaORicFJZkZTzAynmR5OMTWUJD6z0C8eqPRQ2xakri1I27oaGldWkIrr+IJuopNJtPQ5zhTPgdurUFHrJxXXLnqssrCMbJZTthZKJgF6HFvkpheOo+wSF7cXSc3VQlkai7mrih/PRCLoGuiaiJ1wuyV8QRu/msIjx5H1GGTikImKRTbUBFvfDn1PQOdt8OyXYezIhR2Lhg1w43uh78llPNaLYNdXYfr0POtZGbcrmoTbZPQQpGaFOG3aDAO7IDqUdTlmLwtuG0IAF9+uWQXX3w+nfw8rXwS/+jAc+0/QymgVIckigDzYIKw6K18M298NY0ehYSOc/A1EBs47zKKE26D7Hpg4DvVrofdxIbRktRDsnku9l+ffd2VT8rO/6Tkhl5wSc75Q99plGCuqVBOuqnEsOw6XlqRmMJ3QGJxOMZvSqPS5qQksbCpYipFIip8fGAbgvltWkNJNpGgPp08cwYzFcYerCLd3iQaU88hbcdISmaSEqYsASZdHZDCVQ2T6LNFHfsDafaO0Z0XOqa4A5t2voLHzBlo23lBS0OTuh2pq5lpk8nOzsQwdQ9cwTR1LF8IG20KyQZYUFNWNoiq4XV7UoB/VF0D1+VHdHmSXB8XtRnF5UFU3iqwgyzIKal68xacyrGhryS/8OUEQnUzitf14ff7yDkKW2FSatq4OopNJMkkDPWNS1xZm58/6OPb0COlcl/ciwvU+aluD1LWFqG0L4guJuKniuWhpEz1tzLm/FC7lWAuwbSFejIwQNXoatCjo2doouTNtWQHFjaR6xA9z2fnM50eLRon2nqZiZRfxwzuwBvbiqqrDv+kNpH73T8i9zxEwYqhmDNWKIxsxJC2OpMU5ZyC7kSmcwT/2qQuf4JGfgOJZ/mM98uCFjzXfjfLtP75wN0qO3LwOfLvwmKcCgnUQaBAutGC9EDbBOnHtrynU2Sm2CskKRAdh3SsvTcwONkQGYdVLL2y8+Za0TOzC44kux1hnD5W1uSN2HM6LadnMJjUmYhnGYxmSmonfrdAc9pWdOQHw9afPYFg2W9sq2dZexene4wRG9qN6PVR0rCpplrFM0DPCiqNlRCCx6rLLbggJEJsdYua332PtnhHas+vl6U4/+t0vo6nrpvx253Q9nTiJaejCQqPrmLqOZRnYlo0kSciqC1lVUVU3nnAV3kAQ1RvA7fbh8vhQ3R5UtxfJ5VrSMcuRSRmMnJqhfkWYiUOTdGyo4ZmfnGK8/wLPiID6jhDXv7KT/sPTrLmxkV9/+VA+zkaSJaqb/NS2hahrC1LTGsRdIg5rvjgB0NIm0cnkkkXKJRvLtrJWGi2fAZUPFs49lo+ryZ7xu0LZyrWXEdtGjZzEdexJ7P0mFa/+35A4ANe+Er7/NvzlLLiqFzxBsZB6QuLSfouwLvT8VlxLsjibvxDq1sJ1f7r8xzI1GN5fsL6c0yIz7/aZHbDvP4RAefof4Owz4njmYqvk3LVa+H4sdrvpGjGfU4+KeJuaLvEewTpwlXkCUsotV8pNVi6XcrwXxFjx820NOG4swHFj2VahUV5x6mEqYzKVyDA6myaa0rEsm5BbxeuSkWUZSZGQFQlJkc67gB8difLXPzqILMEX/3gr1XKcwX2/pdFjUNu2Yu58bPF7oWVdVYYuIcsi62a+FedcgcDVjVV4xkaY/ciDuLNrZF+Hj/Rd99Dcfcs552tqGdKz00LQAMiiMJysulC9Pty+IN5AGJfbm734cLt9qN6lCcBzoaUMxs5EGe2NMtobIR3XszVjOtj3cD9P//jCCwrmyI134NGz9Owez7qlQlQ3BURW0XnwV7gxNLOkCHF7FVS3QjJaXqPSJY9lGsJCY+oFi42eELEZRRlQgDDbK+7CIrUEF1Q+pbkonRkK2TyLXeeKrXhixwlM7iAw8SSuzFh+XPvuTyPd/BcY+76Pvf97yP4Qiq9IxJS6zM9CvJRZPH8IYxWPl5iCwEW4US7VvC51xtlyzYa7TGNFY3HCa1/kuLEchIiJz2RIx/Vslk1W4Fj2nGqWIj7TJp42mE1mmE0YpA0Dlyzjdyu4JRndNtAlUbxDUrKpqYqE7FJQ3DKyKov7akEM2TL8+1OipPtd6xpoDcDpXTtQMhFqVq7Lz9OyhBVHBBxL2KYQOOey4sSmphYEEMejY1TNjtF1+58z9M9fxW3CmTYvqbvuonnNbdkYFpNCJazc6gVgYabTJGYmCDS34Kuowe0N4PIGcHuCuHxBXKq3bKvSUj+nmZEko70RRnsjTA0n5nguOjZWs+G2FgaPjrPpxS14fRCZSFEobLI0d0u4zsfq6xqYHo6z6cWtdGysKdNyQjZF1SQ5lcq1Qs9mcxSywbSMjDYnYyw3z+x1LossS0lRZNtgamgRDS1nldGSIiYiV2U4536aY6k5f9VaUeWYQt0V0y7UaCmqwSI6AwjBLcsSslpUR0Wae/hlCSRM1KmjuIafwDX0JHKqkOZuK17Mlu1YW96B65rXYs6OoV7zBmi/9uJFACzDs+5lNFap8bQLdKNcynmda4HPuXqWwqUc72LGyld7zP5RzZ4tKuxjUcgalcWJSvFvw/l+y5ZYbgAcsXPVY5kWs+MpZseT+aJfC4t8SWQMi3jGYCqpEU8bWNgE/CoVLjdyriBgUY0NsVDY2Ka4NlI6WkJYhnJIiowkw7Ojs5wci+NVZd64qo6x/c8RHx2hvWslli1j66ClRCyOoYl5qW4bpYyK/sXF8LTELHu+/CDXuzrp+Oz/ZuiBBzh6ZjeJt9xCc8cWqiQJZvopKIi5ZT+bN20jNjrE0OmjhBsaaQ17cakaWCZurxs1YJEcPQZStoqt4imYtSUlW7JfAVnGX1WBoVtoGXuue862cHtkVJdMcjpKOpZhrD/O6JkEo2fTaGlrzv5VhKGxGVZtDdNx03qix/bgnp4ibtSw5satRI8fQovMZlfabKCh4pprcpeUbLChkq8C5/Z7qWioIDqRwsjoRMdiVDSEiI7MoMWTeTFTqLthFLmAjIJCoGg7Udc/96WiIHCKBM+ctPiifkOykr2tFm4baXH2lnND5ERpNqYGVQXZt6C/UE7AW4YQ9ZZl5+sr5VsX5MsQSOKjk0F1S6iqhMudLZynZOPCqhuQ9BSSHsuWLSj6PHNnpNFhGDkggkDPPCnSinO4/NBxM3TejtR2PWqgLr8gKpkYmBe44Lp8pV+TW3RdvvLH+0MY61IKlEs5r8tFcaVnKAiPOb97xSd7Vonn5j1f/PhiSLnfgeK/9xInOdmTy7nj5m7Pb9+xYOcKYyZSZR0Ox43F1evGMjST6ZEEsak0vpAL1T3XB2TbEEsbzCY1ppIaac3ArSgEPCqqcnGmi5wYymgmH/7dCaZSOm9YWcdLPVFmR06h+0O01ITwuhWxMJmgqDaqu7yMqvlU14fpWn8Nsz/4AZVvfCNHP/u3nFBnaFm5FSnXvA+KzhhyNWgK94O1Dax5yT2c3vkkIW8QlyJSvN2hEBVdq4j2HEebmcpahcxstUJz7h9ldvF2V9dSsWYz0Z5jaNGYEEKmhhoMUdG9gUO/PsTRZ6eZnZl7BqO6bBoabRqbobFFxh9ScFdWU7F6LdHTp9BiMXK/FHPmNTudFSYWYJWeG2TnVkfF2s1ETx5Bi0byFRjd4Uoq1m4SlX2n5xXdyzdJVLK3lXn35cIxFt+AorO64h/IeT+ixc8zpycBKLmsEJFRYyPPscTYVqEabk7E2EW1lArWGCFe1Kw+UlQ5W/U3Vw04pwEX+eIt5p5QfVC9Ap78e5FplCmqneMOwopboPN2aNkGqufcY12sa8bh/FyGAoUXRa7GTe7Eovi+Pf/vZd5ri3t7iQeyPwtFJskiKysUCw6pxHPFJyUK+T+KOX/nSiEVvVTT1Px7FPcRO8f94hL2Cy4lnmPeY6Y4XtFolHD3jY4b6w+VTFJnajhBKqYRqHQjF6WFa4ZFJKUzGc8QSxuYtk3QrVIbvHTuGUkSbq6H+8eZSunU+FzcU6sRHziJGfYQ9Lnx++X8H6fbe2Hv07yqi4mhXoYfeC819/8VNfffz8SRfcTXrWdDSxuBqlqGjx447zh6Js3w8cMo/gDdN7+EwT09jPXNEmoI07l5FaefPklsLAaU0f7AtmAkQWjyKJ03rafvqcNM9k9h+WrZ9poN/OrLRxg4NkuuW3JVrUxjq0pDq0JNvbJg0VVDlUR7e9FixV2kJbRYnGhvL2qoEi2xsBll6bmZqOFaoqdOoMWiYq6yDJKKlswQ7T2NWt2Mpl1sBpIQfbZIhBdvnf2vuIdO4Tl77skkYOvzTyBtYYmRCy0KXF4JVQXVJeVFTbF4ybUzuKg4quKz/8keEYyamoWb/xy+85ZCJo83DCtuFQKneWs2Nmge57IITPeJ53NWoSWdiRdbBIv2dc5+SyVvzr0z/zjZpW/bi2xjL7J9SRb5TM75Wc2zCC5YUOXFX3+p3UXzyVcgzhXqKxYzWWsoFIRK3tKqFqyVnpCwGOd6cSAXek0U73uxxaSUoJnTg0Oet+057l8O//zlxrewQGcpHLFzFZKIZJgeSWBkTIJVHiRJVBKOpw1m5llxKryui7biLEYkrfOzEyIg84/a/aSHj6N5VGQlQMiroijnGaAMJoZ62bz9Vmb+6D4q3/QmZs72Urt+C7bHR3XbCnqeWpjhYtugZVQyaReZlItkQiIVr8RiNb2nFXr2H+Hud21gOjpM27bmrDi5kGrAU7QdOMLd79pI3CxUAx7rm6G9SxUCp0XB6z+3sFisoi6IVOZy2gvkkRSS49kffXWhn1CLxbOiqnwM3UbXbAzTzjf2A/IJT6KQc8FtOr/Ac67fjpQVJbnYFyUvYoRoUXLxYeezxMDFncXbtuhlFTkr4gxmB8Ql3Aav+KwQFjf/uaj8Orwf1r9WCJymzQtcagvIvaeegtT0PKtg7j+5YHXMWR4XLGrFi1ORda2o9UZ+X/LXxbJzntqcf8e2C+9VmNy8m/OeL9WHYo4Ld47sLU0pR8OcueeKZuZixLJWkLyPsoQ1c8505wmj+VbH/HVuntnbObfLAovKnIkWatVIWeuHyy8y6FQPuLzZ53MZXWrhvpKta+Nw2XDEzlWEbdlEp1LMjCaRJFH0Lcd4LE3/VFJYcVyX1oqzGD88OkLKsFhZ4WZjuo+4rOH21ZLWbTxlZPqcj1hkBPWzX2TmjfdR91d/xcDB5xg+dJCVN95GXdca+g8cp//wDJl0WAibtItMSiWTcZEtG1ySgWPT9OwS1YCP7xggNROhtvHCfohSMxHO7BfVgM8eGKS7O832mwOXLGPrSmDbNoYuit6ZFqiqhMcnUxWURIXjEmKmuCGgNH/Nli7S8lKKcqrlmhpEhkThttmBrLgZEPcXO8tv3ChSlk/8Gta/Dl7yP5e2SJmayAKSZKhcAYHaeW6A85x5X44z8XN1lSwef7l8Z/ON77KB8cUB8nnhU+L5OW0SshaX3DGVs7EkslK4n7cclXL5lBCfuUJ8uVg52ZUd12E54IidqwTTtJgdSxIZT+H2Krh9hY/WtmE6oaHKMtW+5+cjH4ymeKxvCoA3hKIkzCjuiloM08ajSrhLNAhdCvHICMo/f4mutdupede7OLt/J01rtxKdraWiqZ2ff+lA1hrTVPL1kmTj9mRQlRShahcNLVWEwirBkExla5iqVc0kRkfo3t5EY13pXkblICrjNpEYHaF1QyNRX+KCx7qS2JaNrheq+qouCX9Qxh+UcXslXK7LIFguhmLX09gRGNojFp+Nb4CHH4SjPxUl/ee4f4qRhHWosl1YdCrboO1GWH0XxMbE9VLiaywDktPiOtgo5uWvXh4CYjkKmnOREybO8uWwBJxvy1WArplMD8eJz2REILJrrpBIGyZJzcTnev7MpN86KJovXhuCBnsUKipRZZWUphMMuDiXB+J8xKNjyP/yJZomDdS3bOHZnz/O8d0urn35KFvv7mLfw/0MHJtGdUOo2gPGFB6vXrj4dCwrhpGIU9O6gqb2FuTs2fn8cv56NLqkbtTFXMqxrgSWJdxTejYj3OWWCIZl/AEZj1dCdS3zhTEyAEf/E667T2RJXfsn8L23z62W6/ILIRNuE8ImJ27CrYWgYrjwlOVcw0ctJQrNVXWK1gDOGb+Dw/OKI3Ze4KQTOtPDCVJxjUB4biByjpRmohkWFd7LXCE2y4HRKAfGYigSvMw7ghEK4Fe8WLZwa1yM6EpEx5D++Qs0TRiM1tTx7OkakskAbeuqWXdLMz07j7PxRZ247GPExgdKnqim00mMRJy61k4a27uQsgtPqb5FxeX9lyJSLuVYzyemme2sbYi4GZdbIlwjGk96PBKKuswFDoiaHYd/CPu+LYoMyi7hejr4A1Gi/9YHhMCpbAdfGdaVC01ZTkcgHQVfFTSvET2sFOcn18HhSuD85b2AScxmmBpOYBpWPhC5FPG0IQJAn4d1yrRsvnVwEIDb/XECYQmfGgRANw0R36Fe2FltIjYO//JF6qcVjqx5FWNNL4WkTNv6Kl72Z+s5+eSjxMcHMOK9rH3xHfQ89RiRkaE5Y6TSCcx4gvr2lTS0rswLHQDV7y8pQnIiRfX7yxYol3KsHJZlk0nbmEYuuFR8oAsSNIriYBaPkyl8GQxDCBzDFNlOHo9ERZWIw/F4pXMHAi8nLBNOPQK7/l10lQbY8nbRXDE+BhtfDy1bl551s9SaKlpSBB+7gqKhY0WzCE51cHC4Yjhi5wWIbdlEJlPMjCZQFJlAePF0aMuGSFK/JAHB5fD7vkkGYxkCssXNdVH87or8wqobEPapKBeweCZjE1j/8kUU6Vqe3v5aDHcYgDXX+7n9bes5teO3xMeFsImMDNHz1GOsvnWu4Emm49jxJA0dq6hv7VwgDi9l1tOlHEvXbLSMSOH2+iSqapR8dohlC2tMPv7SFJ3Wc6Uo8s3Pc6UryLU7EILJtkWAsdsrURVUcHslPN7zt/9Ydgzugp1fgalsC41APdz9Kdj0xotvOlhuyrKRgeSkSB2uWSXcYZ7gBe6Qg4PDpcQROy8wTMNiZjRBZCKFx6+WbM5YTDJjkDLM58WFldRNfnBEdDV/SVWMSl8QOZuKK8qEWPjcS3dhJeOTJL7xY2Zb/jvRihUAeDwZWjvHWb11Had2PLrAgpMTPIGqWiIjQyTScYinaehYRV0JobPcsCwbLS2CglWXiJUJhmQ8vvIsLbkqwvlLvl6fnRdBuSxbl1tUDV7ux6QkU6dg5z8LsQPgDghrznV/CrWrL12bgXNhGcKSZEtQ0QZVHeCrvDRjOzg4XBIcsfMCQksbzIwkiM9k8Fe4y2rUmNQNTNu6bLV0ivn5gX6iukWtanBTrYlLKXT9NUwTlyrjWWK8TmRqlvGHR4l2/hUAkmzS3D5Dfe0gsjfEyDkKBkZGhoiMDBFPx1CSGvUdXdS2rljWi7qhC1eVbYPHKxGulvAFFdzupc1ZWtRtuXz3fUnEx2H3v8PJh8nXN1n/OhGE7A2Dt+Lyl/O3TOGuMnUINmQzrGpeGBlNDg5/YDhi5wVCOq4zNRwnndQJVHnKjqOIJA1U6fJnYU2OT/OrsxEA7qlPEHT55zyfMWxCXhW1zHlbJgyd1Jk4XY0dbgYgUD1B13oblzYk4iHKIJ6KoqQMGtu7qG7pWJZCx7aFm0rP2CiqTCAkE6iQ8fqydWscCmhx2P9tOPRDUbMGYOVL4IY/E7ExOS5ntdxc0cFMDPy10LBCiB2nKJyDw7LFETvLHNu284HIlmkRrFw8EHk+mmER1wy8lyBep6UxSDypE4lmFjwX9kC/34VuQ6cvw7bKeS4zG2ws/B6xGDSv6iIRiRCZmFwwVkVtLYpaxePf7kdP+0GGQKyP0LVJWrraRBE4WS1Ulj0HsVQUV8qgsX0VVS1ty07omIaw4lgWuD0S1fUyvoCC2/MCdSldLOeqeqz6YLYffvSuQg+qpmtg+3+F+nXPz/wsQ3RbT0eF9ajpGpFhpZbRQsTBweGK4hR7WMZYlk1kLMnE2ZioiBwuX+gAeEIuKoJuvCVcR+EKDy2N5QdPxpM63V1VhCs8cx4P+2RWranjV72zSNi8rtFEmVdDRDctVFnGnc3CSkQirN52LeG62jnbeQN1dG3ZxolnUuhpFXdmls7TX6f6lnFaVneKfkR6umSbg2JsbKKpKO6UQdMyEzo5K048YpFJg88vU9+s0tSuUlmjvjCDgy8VuarHnlDhMduG6V6oaBQByJmoSBm/5+/gVV+4vELHtsWcklNCZMfHAQnq1kHbDSI2xxE6Dg4vCBzLzjImOplieiSBJ+DC5Vm6iTwa09i2oY6e3tk5FplwhYfuripOnp4pe6xINMPJ0zP510WiGcIBle5VVfzNd3fzZM8028I6KwIL9bNmWfhdKu5sDaDIxCQ9e/ayetu19OzZy9TwJJbeyJaXXsNv/vUIA0fG6Rh4lNrx3zBx35upb92U7SU0m03hXVwM2NjEEhE8mk1TxyrCzecXOrad7Z5tCoFp5Rqa51ryzE/dZl4aN9J5t7EtyKRtDBPcbolwrUwgKP9hi5v5zA8gPrMDhvfAnR+HH/wpDO+D2z4Aa15+/h5UF4pliNRxLSHaCaheEf9T3SWsOZ5Q6QafDg4OyxpH7Cxj0gkdxSVfkNCxbRiYSDCT1LlmXW1BoBQJnWIBZNs2tmljahambmFpJqZuifvZ26OaxdSJWbbf3UHvwUlWdlbxy6/vJ3owxislF5tVmemTC+eiGxaGWyE1p+BhlNHeQ9z8hm1oyWHW3CiaZE7tepwbD/8Qi0lG3vU26ts2i51JzQCW6Ay8CBYWsUQUnwZNHaupaGrJNkEtLWZyRQ6h0CFbUSTcHgnVLVKyRSZT9vVWIatJiCG7KMtpboZToXt3oZGg1ydRXaHg878Aqg9fKZJTMHYUul4i4mLu/Dj85D3CmvOiD4qKx5cS2wYjJQSOkRb9kNwBqOwQ7Rw8IXHfEaQODi9oHLGzTLEsGyNjolxgAb60YZLKmGBrnDw9w+rOSnoPTdLZHubxH5xk6MRMXtjkBM25mhHnGGGSkFdl690d7Hu4n6E9MTZmv0bGpIqxyOv0Eo9ND0WorBtm690dHPxdH/pv/46X1odw/ekb2SXHqG/fIjbUsgGl7nO73eLJOK6kQk3rKpRgPfGYjSTkBkqRmHF5RKq1SxUVgXOPK4qIMV2qpWVBmvecJsp2vreiY8VZBMsQ3cNPPwZ9T4gg5Ls+KaoeH/sl3PBukeV0Kd9PS4iLZYHbJ6w2wdXgqXCsNw4OVyHLXuzEYjEefPBBfvKTnzA+Ps7WrVv54he/yPXXXw+IxeRv//Zv+dd//VdmZ2e55ZZb+PKXv8zq1auv8MwvDlO3MA0bl/fCxE4yY6JZJmHVxcCxabT+eF6gnHh8+JyvVdwysktGcSsoLhnZLaO4ZBS3THNXJRte1ELPM32svbWFX5ye4ETPBHfWmZTqJKCbFoosiTo/2efDtTWE6+uRlTTrb2miZ89J1m5roPElN1Jz//0c2/0U9Qk7dyAgMS0Wn3MEJeumgT4DDSvaqG5vwO2RcbkkZEVCUS9OzJyPxdO84apJ9b7U2BaMHYZTj0Hf41nLXZb1r4Xr74fJHlhzz8XXxMlbbxKi8J+kgtsv+lT5qoSbyuV3rDcODlcxy17svOtd7+Lw4cN885vfpLm5mf/4j//gzjvv5OjRo7S0tPC5z32OL33pS3z961+ns7OTBx98kHvuuYejR4/i9b5wS7QLsWPhVS/sI4qldWRJxkgbmKNp1v3JCo48M8yG21tIKzA9mUJxyyguRYiZrKCRXXJJMdDSGMQGWpqCnNxxhJNHj/H/HRvj8++8lmf39dDmszh1dKEPK5rSqQ95CPuLxxyjdU0Dde3djPaepud/3Ev4nrdT9/73c2b/c8QTRSamdEQsUN7QgrFz2DZEJtPU1gZYs7UNb9AJGl2W2DZMnhAWnNO/K7R0AGFRWXk7bH07rLpTCBwtfvFFAE1NdCl3+8FbJZpxeirExelT5eDwB4Nk23YZzosrQyqVIhQK8Z//+Z+88pWvzD++bds2Xv7yl/PJT36S5uZmPvCBD/DBD34QgEgkQkNDA1/72te49957y3qfaDRKOBwmEolQUVFxWfZlqcRnMoyfiRKs9px/43mYls2RoQiWbaMMprjlNV38/rsnCK6vpKraVzJm53w0NwbpaA3R3zfNmcee5F8mdJ6O+PnInSt5z0vXcnT/YU4dmSt2TMsmpZu0VHrnZISF62pZve1apoZHqK2rZfa736Xyj/6Is6eO0rZpGz179oq0dC0J0WERp7OIW8G2IRY1UIw4m2/aQF1r05KPl8NFcK50cU9IFO87uzMrcB6DaFGla1cAOm+FrjugZZuwspQSNqUacZaDkREZVFWdULPSsd44OFyFlLt+L+tTG8MwME1zgYXG5/Px1FNP0dfXx+joKHfeeWf+uXA4zPbt23nmmWcWFTuZTIZMprDQR5dj92nDvGAPSFIzSRsWVTpse00Xj3z1CL7VFciqXDKrqhwkoH8wRktrmBNVQZ49lea21bW889Yuju4/XDLeRzdMPIqEW50bYB0Ih+nZs5fDj36LO5q2UHP//UyeOs7Y0BRpbS+BcJjI2HjWtWGfU+ikMzJmapb29XXUtjQu8Ug5XDS5dPH5QsTIQO0a+OUH4MC3C48rHui4GVbdAa03gFok5pfacPNcFAud+rVODI6Dwx84y1rshEIhbrrpJj75yU+ybt06Ghoa+M53vsMzzzzDqlWrGM02W2xoaJjzuoaGhvxzpfjMZz7Dxz/+8cs694tFS5nIF1g9N6kZpGfTyLh4+N+OYIVU/DUFwZgTPEG/q2yxMzQaB9Ni7FgPN738Rfx17QBvvaGNfTt2MjFSulqtbtqE/C7mF00ePnUaQ0+zccai8i/eyOgTv6XhtpeS1GyGT53OWnVikImDd/GgZC2jYiRnqGqQ6Vjd7QT/XgmK08WH98HhH2cDjD8B33ubsObIKrRtFxacjpsWz6i6VFWPc0KneiXUrXXcVQ4ODstb7AB885vf5L777qOlpQVFUbj22mt5y1vewp49ey54zI9+9KM88MAD+fvRaJS2trZLMd1Lgm3baGkDpVTEbxnMxnVmdk4yNqMRavbTddPCfYtEM0tyY9m2zVOnR/nmkRHe56nkPbd3ceDgyUWFjmWLwF2fWjpt3hcfofvBT3P6bz7C8G23oh07Ttu6tQAMnzgOyelswbbSQclaRgFbY+X1G6is8uMLlBBFOTfKuRbRYspxybzQx7rY8fSUcEVFBmH2rLiODAgLyuv+r6gofO2fwA/vF+Pf/tew4ta5hQIvJ0YaEpOiLk7dGkfoODg4AC8AsdPV1cXjjz9OIpEgGo3S1NTEH//xH7Ny5UoaG4XbYmxsjKamQqzG2NgYW7ZsWXRMj8eDx7P0WJjnC9MQmVgXknauGRZnd42hzWgoHpmOFzVdtMVjLJ7hq/sGODQe47bV9dx7fRt7Dpxk09oVJCbGSgoezTBwqeSrJhdT01zLyttvY+iBB9hbm2GFr5LhU6cBhODJxBne27voAqlrCmCDNoQkN1C9+qUwe2bxOI9yWcwlczWNVc54U6eFoJkdhEiRoJkdmBtUXMz4Mdj7TZEufmYH3PwXIgbn+URPQWIKaldBbbfTq8rBwSHPshc7OQKBAIFAgJmZGX7zm9/wuc99js7OThobG3n00Ufz4iYajbJz507e+973XtkJXwQiE8vE7V16nMHA6QizR2cBaL+1CVfgwmMVTMvm16fG+eHRETTT5sXdNfzTW7aw56mnmRmbIjM5xnW3bmf3UwtdWYZpU+lzoZRo/OkeGWDoy/9KT88u2l/1ifzjw6dOg6kRqq0V1oUSQUu6pmDb4JYnscIQrvAjzZ4Ri/TkSRjcA6FGqF8vMn5i506zX8B0H3S+SNR7iQ1DqPnqG6t4vNO/g6Fd4A6JdO+f/jkc/qGoRbMYngqobINwK4TbxKV1G7TdBPExaN9+8eniS0VPQnIGaleLiyN0HBwcilj2Yuc3v/kNtm2zZs0aTp06xYc+9CHWrl3Ln/7pnyJJEu9///v51Kc+xerVq/Op583Nzbzuda+70lO/YAzdwjZtZGVplh0tZXD4N/0A1KwJU7niwl0HfTNJ/nXvWc7MpgB429ZmPvba9Tz1u98Rn0oAMDEyzu6ndi4QPHa2aLDXvfDrNTVyjOAXvopiw+x9ryZQ7GawLIb3PyPO0EsUEDR0GcuWCAaSpKLT1K1eT024rhA3UtEKqd/CulfBd+4V8SIXQtcd8EdfFZaKda+5OscqHm/ypHA9ff8dhfEUlzielVkxE24VVYzDraIAXzHzs6UysYtLF18qWlIEs9d2Q80qkC+sNpWDg8PVy7IXO5FIhI9+9KMMDg5SXV3NG9/4Rj796U/jcgmLxYc//GESiQTvfve7mZ2d5dZbb+Whhx56wdfYWWomlm3b7P51P1rCwBVy0bK94fwvKkHaMPnR0VF+1TOODQRcCm/b3MK9awI899BvmYrM4lEKxzYneMJVlXmxo5smLkUq2W3d/Pn3UWw42R2iZe2L5j6ZiUEmUTIo2TBkTFMmWJHBio3gqq+htWVVYYP+Z8SCd8tfwu7sAh5uvaBjwORJOPKTq3us/Hg/FeOd+DU0bBR9p8JtIq6njM7yJdPC5/e4upyCR0uIWky1a6CmyxE6Dg4OJVnWdXaeL5ZbnZ2poRjRyTSByvLjis4cnGTXL8+ABF2vbKeiYek9hA6ORfn3vQNMJDUAbmqt5B3XtBKWLJLH9zFuTOALVCOfZxGMpw1CXpX6eR3SB48+yoavPYQhw8Bf/RnVDd2FJw2tUINFnStUTUPCMBT8oQweO8JsOsqKrdfTXtdRNPkfwu0fhDNPiQX7YhbZ3AKenBJtCq7GsS7VeJc6eHopaHFIRUTn86pOR+g4OPwBclXU2flDRUstrSdWfDrNvkfOAlCxsXLJQiea0fmPg0M8dVaU7K/1u/jTLW1sbRLuCntqknRqBjvgPq/QIdv80j+vealpaFT/4rcAHL2hhY5ioWMjrDKGtqBSsmlK6LpKIJTB50kTH58l1NVGU01LYSMtLoTOD++Dbf/l4qwKl9Ils1zHupTjXap08aWSG7t+PVR3OsUCHRwczokjdpYZpmlh6BZymWnnlmmx8+d9GJpFsMlH5bryM2Bs2+bJs9P8x8Eh4pqJBNyzqo43b2jCm0sZt0GfGSMl6XiVyvOOqZsmqizhmZdyPvDMD7hm0iDmk6i7+x3zXpSATBQ8for9d5YpoWsK/mAGX0DDmIqgV/vp6ujGJWe/up6QiNP4/jtEUG1l+4W7US6lS2a5jnU5xnu+yWRrMNWvF/N1hI6Dg8N5cOy+y4xcT6xyLTtHnxphejiBy6NQd2M9PndBZLQ0BglXlHaF2S6ZnkyGr+w+S1wzaQ97+fhLunnHNa0FoQOQSpKJTKG5ZdQyqtBqpo3XpeIqKoiYSkyz8rcHAOi9YzP+YHXhBZaZrZQsiQaNuYctCU1T8Qc1/EENKZ0hjkbtii5qilOaLQO+/04RWLvlrYXHi6vulks5FXxf6GNdjvGeT9LRrNBZ5wgdBweHsnHEzjLD1C0swy6revLEQIxjz4wAsP6lrVgeBa+rIBjiSZ3urqo5gse0bI5Hk2zorubRkxO4ZIl7NzbxqTvWsqo6sOA9rFiEVCaC6i5vAbTshS6s8Yf/g1DKZrRWpe2WN899QToqgpKLxrcsyGRUvH4NX0BDsi0y0QhyYy0tde1zXWm/+wycflT0VqpbO3fsTGxp8SLx8cUtGlfLWJdjvOeLdERkXjVscISOg4PDknDEzjLD0C3APm8hQC1t8NzP+sCGjk01hDtDmJY9J0azuA9WuMJD70ySn/ZN8Iab2nnfd/YxPZvms3et4zVrGlFL1MPBNMlMjZBWLNzK+YOlDdNCkSU8RS64mbEe1u8cAGDqlS9FUYs6kuspSE2Dy0vuq2hboGVc+Pw6gVAGWQZ7Nk4sqNDYvpIKV5EgS83AiV+J21vedt75ObyASc+K70vjBqjqcISOg4PDknBidpYZRqa8BqD7fnOWZFQjUOlh613t9M4kcZeoy5MTPJ0rwuwYneXB16znQ98/wPoKPy/a1HpuUZVMko5PYXrdyNL5i7RppoVHlfEohW0zv/guqgWnugK0big0bMUyRUsI2xJdzRH1eTIZFY9XJxAUQoe0RtJK429rpyU0r9Hn4R+BqQmLTvPW887P4QVKagZMHRo3XVyqvYODwx8sjthZZmTSxnnjdfoPT3H26DSSBNtf3YklSyQ0A6+rtCA5MxbnqdFZ3nN7F7/YN8QbuuoJl1GdWY9MkdYTeIKVZc3dMC2q/e68WBs+8QTrTkQxJZBe/aa5G6cjcxp92jZk0i7cXp1ARQZZscGyMaNxkvVB1jZ24lGKrEJaQtScARGr45zpX50kp4UwbtgI4Zbzb+/g4OBQAseNtYywLBsjc+6088Rshr0PizTz9bc2U9MaJKkbZHSzZB8qgJhk8cfXt/HdZ/u5Z2MTbTV+LNPCtmwWLbOk62RmRtA8oMru0tsUYVqi4rMnW0jQMg0qfvEQAEeva6K2eUNhYy0pFrGs+yondFweg2BFBkXJzimaIOqHqrZ26jzzssyO/VwInnCbaDTpcPWRnBKWv0ZH6Dg4OFwcjmVnGSEysWxc3tKixbJskWaeMalpCbD2ZtH8NJ4xkCSppHEjXOHhVZvqeO+39lJhSqz3+Vi3voajR6aYmU5h2wizCiAyomxAworMEJuKYQUqMDNZi5FkC6NN8ftkb2d0E5cio9gKpg5nd/6ILWM6CS9U3fl2LDO3EyYkZsACSXVD1nXlcs8TOhkdzdCw2qppCzejFAclGxk4+H1xe8tby6v06/DCIjEprHWNm0SvMwcHB4eLwBE7y4hc2rlXLf2xHH96hKnBOKpbZvtrViLLEpYNs0m9pAsrXOGhu6uK9317L0/2TPLxl6/DqnBxdjLBhk21nBmNE03qohCgZeeFj21DKnoK2x8hUNmAhCkK/9nZvlcWgJQtICjQLYuQz4MEpFJROh/dA8DJF22k1d+AoYvt7GQUkmnReFITIsXlsghWZFBVK7uRLaw6NW4a6tuocs3r8dXzsAhsDtTBqjtxuIqwbUiMg+wWWVehC2t74uDg4FCMI3aWEYZugU3JoOGpoThHnxLdra+9pyPfSiKlG6R1k5BnYQxO0O9ix8FRHjo6hkeR2bSiCkWRSZo2A9MpAkEXqVJurGSCRGoQKsEbkgBz4TZFmKaNnjGoq/Hg91iMfPsbtCRsxqsV1r72Tahq9vXpOLY1CEEPKGlAiCVZtgsWHYBYkoRXwtXcQHugYe7xsAw48B1xe/ObRcNKh6sD24bYKLgDIkYnUHOlZ+Tg4HCV4IidZYRplM7E0jMmO3/Wh21D2/pq2jcUivIlMyaGaaOWqMszNBrn4eNjAKxvCuEqytaKZwzimdLzMCJTJBKTqHXVpTeYR8Y08bpkfB6ZmbE+up8Qnddn33g7tbmGrKYB6VFQLfC6AKv0YLqBpenE2wKsDjfjn9cni74nIDoMngpY+6qy5ufwAsAyhdDxVQmLjq/ySs/IwcHhKsIJdlhGaCmTygY/bu9cl9S+R86SmM2wals9t7+le46lI5rWS9fIyXJoNArAtR3lCRcsi+ToGVFbRy6vc7xmWIS8KoosMf297+I2obfTR9cNd4kNbCAxIQrWzet9NQfbhtk4sWo34fomGn01C5/f/21xe+MblnelX4fysQwhYIN10HSNI3QcHBwuOY7YWSbYto2WNjB0k4raguAZODpN/6Ep2tZX89L/sh7bKrh7dNMmll485TyTMTgxkwBgS1tlefOIRUlMDWEH/Odv+gnkpuN3q5w9/CxrDs1iSeB+yxuRchUOMzEhdjxBzllEKJ7C8Klo9SHag42F/lc5Bp+DqVOiK/qG15e1Pw7LHCMD0RGoaIHGzdnviIODg8OlxRE7ywTTEJlYetokOpmkolakh+/5TT9t66p5+Xs2EZ9OoaUL8TMpzSRjmAuabuY4NhpDs2yq/C46asrrhJ6eGSWtRfF4KsraXjdM3C4Zj2KjfO+XABy/rp7mrk3ZHdMhNgJI+eKBJTFMyOjM1Hqoq2ykxl3i/XNWnXWvBm+4rPk5LGP0lGhNUdUpsq4cS52Dg8NlwonZWSaITCwTt9eFljaJTCSpagpy/StWsP62FmLTKQxtbpxLQjOw7LktInJYpsWRyTgA17RVnrf9BACGQXqsH82jEDyXMCkibVhUBVz0Pflz1g1rpNzQ9OZs6wYbiI2Lejj+83Rjj8RJV3lRaipp9dUvtCqNHYGRAyCrsOlNpcdweOGgJSA1C7WroWY1KM5PkYODw+XDsewsEwzdwjZFYT6AyHiSo08OsfXuDlLRzAKhY9swm9TwLLJIGEmTY7PChbW1TBeWGZkmPjuMHCjPqoMtav+4rTSNP38OgNN3riVcna2Lko5Aaiobp3MOsZVIY7tdzNZ6aAk0EHYtbEiat+qsvhuC9eXNz2F5ko6KS/06qF3jCB0HB4fLjiN2lgmmbs3RA7Iis+6WZg49PjgnhidHxjBJaiILaj62ZRPL6PTNpgC4prWyrDmkpobImGm87hJiowSaaeJRZcYf+j5VMZvJSplVr/pj8aShQXxMFPyTz5EebpqQTBOr8xIMV9Psq124zXQf9O8AJLjm3rLm5rBMSU4L91XDBqheSUmzpIODg8MlxvmlWSbo2SrIAG6vQnN3JQ//2xGOPDGUj+EpFjwpzUQzrDnp5PmxUgYnE2lsoL3aT03w/B3LyaRJjp3B9PnKavoJwoVlJ8bofrwXgKnX34rb4xfuq/g46InzB5xGkphVARJVXtp99XhLuc9ydXU6b4PK9rLm5rAMiY8DNjRtdjqXOzg4PK84YmeZoKVETyy3V6Gi1s+JZ0cZODaNN+hGKwpazgmeWNpAkRe2iLAtG9uwORZJAuVnYWVmxknFJ3AHyw/8NU0LfvUjPAac6fCy6uaXiyfSs5CaFLVwzuW+Mi2wLWarVOp8VQv7X4GovXLqt+L2lreWPTeHZYRtQ3QUFA80XgMVzVd6Rg4ODn9gOGJnGWCaFoZhIasSqlshOplktDcCgC8oXEA5waO6FSwbIkm9ZONPI2Wg+BQOZuvrlBWvY9ukxvvRJAuXUl5tHd20SA8dZv2BaSxAufd1ItXc0IRAkV0imPhcxFNoARd2yE+rvwFVLmFROvg90Z+iZRvUrS1rbg7LCNuC2LCw8DVfI2rpODg4ODzPOGJnGWDqFqZuoagyyaiGljZJxUQzKV+oEO+ipU2SUY2kZpAyTLzzUs5ty8YybGZlGI9lUGWJjS3nt9RYiTiJyQEIVpSXtQWkNYPGXz8MwIlra2jp3irO4ONjIibjfHE/lg2aTqTSRYO/lur5/a8AUjNwXKSzO1adFyCWAZEh8NdC8xZRHdnBwcHhCuCInWWAqVtYho1c1PIhFdcA8AYXBvcmNQPTtha0iDAyJqpP4ei0SDlf2xhatOBgMamZYTKpCB7f4llY2264jc5VBcvK7IFHWDGYIeOCrX/9GdrXbc+6r6bAex73FUAyTcanIFdW0OSrLS2yDv8YTE1YdJqvPe9+OCwjTG1escBzVM52cHBwuMw4YmcZYOgWYM9Z8NPxrGUnuDBgN5I0UOcFEdu2jalZeMMeDgwJF9iW9jLOpE2T5MgZTLeKcg630/T0BN1rN9O5ai2ZVIJ1j4iu5tZf3c+KzbeSmBkT7ivFc373lW1DKkM0rNIQrCudaq4l4MhPxO0tby0/mLVUY1OH5xcjDbExqOyAxo3gLq+gpYODg8PlwilwsQwwMgsbgKbiC91YIGJl4pqxIOXcSJuoXgXFr3JwcBYoL15Hj02TnBlGDp97275TxwHoXruZ2acepiJqId/zYrb+6QOM9R9l6tjjovR/Oa6KtEbGLaHUVNE0v/9VjmM/By0O4TZYcev5xwRRpC4dFYurrwpKxQBdCSxDuPZc/uUzp8uFlhTux+ouqHNq6Dg4OCwPnF+iZUAmbaAUBRsbuomebQsx342V0EwyukkwUEgnt20bS7MINPg4PZUgoZkEPSpddefvM5ScGEAzU3jdDefe0IYjRw6TiMe57s3vZlaupupP/oSx/uNM9TwnFrhyXRWJFNE6F83hBipKWXVMDQ79QNze8lZRq6cctDjUrhJziWaDYr2VVy7F2TLEXAwN3EHRNkNxi1YXahnlAF5oZGJCbNaugZqVV7+wc3BweMHgiJ0rjGXZGBlzjtjJubAUVcblmbtgJNMGtj13/TYzFrJbxh10s69nHIDNrWGUc3RDB7A1jcRYL/h8izf9tCGpG2R0C59b5viP/5GOVXdSc//9JKLTTJ05JFpCqGW4rwAyOhnZwlVdRZN3EavOyYchOQWBOlh15/nHBNCTokFoZbtoPxAbgZkzEBkUXbSfz5iRvMjJiODchg5haUrNQnRINEW1TSF63C/wxpemDpmosOi4fKJYYNUKp4aOg4PDssIRO1cY0RPLxuUtiI2cC8sbdM2J47FtmE3rC7KwjLRJoN6L4pLZPzALlFdfJz07Sjo2jaumRPsFG1K6QVo38bgVWip9hLwKbruOyje+kbFdT1F/3S3UNLQyNXkCvGVm2sSTxMIqLTXNhFwlYjkss1BEcPObQTlH9eViUhERDJsTNVUdoq1EdBhm+rOip/ryxo9YZpHIqYGGjRCoL7hyXD4INohA7ugIxEchOSAsUJ6KF44lxDKFFS0TF1Y3byXUrBLH11tmqxEHBweH5xFH7FxhhNix8KqFjyJdIu0cIG2YpDImPndhUTQyJopbxhNyk9QMTozFANjadn7xkRw/i2kbeFxza+ukdYOUZuJxKTRX+gj73bgUCcWE1R/5BGc//EHGX3czdo+HhrU3g20z1bvv/DtrmGRsA7WmgcbFrDp9Twjrh6cC1r7y/GOCWHyxIdQ493GXD2q6hMCIDAjBk54RQkQtr55Q2e+fmgE9LcauXy/es1S8iiyDv1pcMh3CyhMZzAZ3u4QVqswmrM8rti2sZ+moqJ3jCUFtNwRqhYXqhSLUHBwc/iBxxM4VxtAtsJljwcmlnfvmxeskMyaaZRJWC48baRN/rRfFrXC4bwrTsmms8NIYPvdibibjJCbOIIcKdXgyhkkyY+BxKTRW+qj0uXGrYl41Lauoq1/B0Pvex/7kCbp9dzF1+FHQEzSsvx0kianTe8+9s7EksaBEc10zQdW38HnbLjT83PgGEdBbDpmoEEf+6tLPe4Ki6WSoCWYHIDooWloEasq3HJXCMoWVRksViZz68sf0BMWlokW47SKDkJgULi5f5flrFT0fGBnR0NXQhFUs3Cb20VcF6jIUZQ4ODg4lcMTOFcY0Fs/E8s5LO4+l9TmxNaYmYn08IbHdviW4sJLTQ+jJGO7GNjTDJJExcasyDWEvlX43nnnVmT1uP/3v/+9kdjyN94HXCxeMpTHVdwhkF4GalnOLHdMio6dxtTfQ5F+kiu7gLpjqEVaXDa8/7z7kySRErMj5RIavUlghKpqEays+KuKM/NXlxRvlmCNyqkQdoGDDhQsn1S3mNMfFNSKaZnpC4vJ8Wk4sQ1hwtISIxfJVi/ldbjegg4ODw2XCETtXGC1lzikmCKXdWKZlE03peIuzttImviovajaIuex4HdsmPtaLJsukUiZuVaGhwiNEToku6gCPfvFDbHjiMMMNKm2NTZCaFuIBmDq99/xWnUSKuE+iub61tFUHCladta8SoqQc9BS4vMKdUg6SJLb1VUNiXAQxx8bEGL6qc2d+2VbWXZUS216syJnPlXRx2ZaIwdFigCSOf/VKMRdPhRNw7ODg8ILGETtXENu20dIGijp3IcnX2ClyYyU1k7RhEfaKx0zdQlZkPBXi/mQ8w+BMClmCa1orz/m+kakxxocHUEIV1Ie8VAZc56y0bFsWtU8dA2BmWyuNmRkRiFpuSrhlk0kmcK2soymwiFVn7AiM7BcWls1vLm9cEC6WUOPSA2NlWbzOXyssPNN9orWBNwSe8NzF3bZEJpWeFMG4tWuEyLmcbpw5Lq5JMbe8iysMZXamF/66cz1tiZRxywR3CKpXiSw4X6UTh+Pg4HDV4IidK4hpiEwsZZ7LqFSriKRmYFoWStYKZKRMPGE3qld8hPvPzgKwqj5I0Fv6Y03rJtNJjcxYPyFFp7mlHr/7PF8BPU3/3kdZOWWScsOK7TfnLTplk0oT90BLQweB81l1Vt0lYkLKwTLFJdS0tPkUo6gQbhUL/JzMrUoRM5OaFe4cXxXUroZg4/Mbq6K6RZfwYKOwKsVGID4BZIo2uhiriwyhFgg1ZONwrsL6Pw4ODn/wOGLnCiIysUzc3nlZVyVaRURTBi5FnGlbhoUkS3jDhecL8Tqls7CmExqGbdESUonr49gN1ecWOoYmFtfkFPpTuwHo21TN2kDlUneTdDyGq62GplBWxATrhSsoIzLHmDkD/TsACW55n3g+Pn7+gTMxYdHxLRKYvBRUD1R3ZjO3hiByFiLDQvQ0XwGRMx9ZFgHVgRqR9XU+i80cziGGJMkROA4ODlc9jti5ghi6hW3ayErBsqNnTAzNAgqWHc2wiGcKLSL0lIkn6EL1ZsWPbXMg2yJisXidtG6wvjmMPz3GicQUgfrm0pMydWHNSE6CniaSStN1PAlA+Jbrlr6TqQwJxaK1qR1/Lt1bT4nCczNnhGDZn62rc/NfQtt28Xg5aHGRAXUpRYjbD3WrhaVDS4iYleUmBlyXMG3ewcHB4Q+AZd0I1DRNHnzwQTo7O/H5fHR1dfHJT34Su6jZo23bfOxjH6OpqQmfz8edd95JT0/PFZx1+Zi6teCkO2fVUd2F6skJzSRjmHhUBcsUqeqesDufrn5mMkEkpeN1yaxtXFgpOK2L11YF3EyP9mFZJqp73gJumpCYgqnTwo0D4K9iaNdeVAvOtrhoal+15H1MRSO46qtpDBe5mjIxIWiqVoBpwKnfQtcdcMf/LAig82GkRdPRcgOTl4q3QmQgLTeh4+Dg4OCwZJa12PnsZz/Ll7/8Zf7xH/+RY8eO8dnPfpbPfe5z/MM//EN+m8997nN86Utf4itf+Qo7d+4kEAhwzz33kE6nr+DMy0PPGHPq60BxjZ2CtSKRMbARHgcjaeIJuXD5C0a5XBbWxuYwLmXhR5rUTIJeFdVMMTvch6eiyNVlmSLFefo0zJ4FbJFO7fJjmSaNu4TwSWxfveT9szMaScmgoamjYNXJkRM8Devgzv8Fb/q6KPxXjtABEZjsrxGZQg4ODg4ODudgWbuxnn76aV772tfyyleKSrorVqzgO9/5Ds899xwgrDpf+MIX+Ju/+Rte+9rXAvCNb3yDhoYGfvrTn3LvvfdesbmXg5YyFwQn5yw73mzauW1DJKXhVRUs08a2wVPhniOScvE6W9srS75PSjdYUetnZryfTHSWcOtKMXA6IoJdtbhwBfmrKDY19R3dx+qIRdwLndfduOT9S0dncddU01jbWnqDvifFe9/ylzByUGQalYNtCYtQRbOTEu3g4ODgcF6WtWXn5ptv5tFHH+XkyZMAHDhwgKeeeoqXv/zlAPT19TE6OsqddxaaRYbDYbZv384zzzyz6LiZTIZoNDrn8nxjmhaGYSGfJ+08lW3d4HXJGCkDl1+ZY9XRDIujw2L+pYKTTctGlWVCHpWp4VMoioqsJWC6V1hWzEw28yjIAp/aM0cA6N9ah9u9tDgR2zBImRoNLR34lRKuoNQM9P4Otr4djv4MGtaX36wzExXb+hdpOeHg4ODg4FDEsrbsfOQjHyEajbJ27VoURcE0TT796U/ztre9DYDR0VEAGhoa5ryuoaEh/1wpPvOZz/Dxj3/88k28DEzdwjIs3L65H0EqViR2bEhmNAxdR3XLaKaJt8KDhAkihpmjQxE006I64KIt7BLVb4tIpnV8KljJcWJne/BKGsxGAEUUjlukVs705ChdPSIwueaW7Uvev3RkFndVFQ11Jaw6tgUnHoJXfxF+/RHY9s5CDE85MTvpuCjo57QrcHBwcHAog2Utdr7//e/zrW99i29/+9ts2LCB/fv38/73v5/m5mbe+c53XvC4H/3oR3nggQfy96PRKG1tbZdiymVj6hambiMH51VPztfYcUNkEH34DOGkjhpx4XFBZdRGjhe2P3JcXF9foxMc3QmAZmroWgZNSxGPxvAqOv12GnNiCHdTE7jP32F79JlnqLWhd4WHFY3tS9o32zRJZ9K0rl2P31Wirs7ALnjJR+HH74Fr7hUNO4uDls8leIyMEDnByxSY7ODg4OBw1bGsxc6HPvQhPvKRj+RjbzZt2kR/fz+f+cxneOc730ljo+hyPTY2RlNTIdtnbGyMLVu2LDqux+PB47myWTaGbgF2iQDlgmXHSI6QSqVQFS+GphCstpAUKV9hxdA1do1KgMJqzySD/ZOkUzGMVBJb17EMg3TaQA16sLweKurbwXv+5pKGodO2W1jG9BvXLXnfUpEI7soK6htKWHWG94uKxT+8D1qvF7VtcuQET078lCIXmOytXPK8HBwcHBz+MFnWYieZTCLLc90siqJgWcKH09nZSWNjI48++mhe3ESjUXbu3Ml73/ve53u6S8LILGwACkVuLJ+NlkqStr2ougekNCktQTyZRk/EyCQjTCUNTsdE7ZummaNEEway4kJ2eVCCFViyimxLVFV5cZfI0lqMvgO7WJOwiQQkOrdcv6T9si2LTCpBa9cW/PObRian4bFPig7f3S+DNS9fOEAmtrjQsS1R7NAJTHZwcHBwWALLWuy8+tWv5tOf/jTt7e1s2LCBffv28fd///fcd999AEiSxPvf/34+9alPsXr1ajo7O3nwwQdpbm7mda973ZWd/HnIpI0FmVi2bReysXwmEyfPMjkaQzJVXK4pZCWOLdnYkozicnM8Iyxbrd40Tc0Le05lNBOPS16S0AFwPSt8YwPbGlmvLq3JZSoWwRMKUd84zy1omfC7TwuhU7UCbvnvSxoXEI0qncBkBwcHB4clsqzFzj/8wz/w4IMP8t/+239jfHyc5uZm3vOe9/Cxj30sv82HP/xhEokE7373u5mdneXWW2/loYcewutdvlVmLcvGyCxMO9czJqaRrZ6spBmfHCeVsvGFgriqvLhcQeSigOKTURG3siGYKPk+hmVS7VmaWBkfPcvKvjQW0HDz0tLNbWzS8Thtazfh9wXnPrn/WzC0B1SvqKtTKpbnfGRiUNvtFPpzcHBwcFgSy1rshEIhvvCFL/CFL3xh0W0kSeITn/gEn/jEJ56/iV0koieWjctbusaOy6uQjAyTSGZwe+sJVti43XMzj2wbjsZF/M2G0EKxY1o2siTjUZbWuXpqx04agd7VflbWLq3BZjIexecP0NA0L6B5eB/s+Zq4fev7hWVnqRgZ0RH9clVMdnBwcHC4alnWdXauVoTYsRZ2O8+nnatEZsbJaDJen4rq1heMMZpxM627UCWL1YHkgud108KtSrjV8j9iTUvTsX8CAPumDUvZJWxstGiM2uYOfMGiqsbJaXj0kyLepvvlIlbnQnACkx0cHBwcLhBH7FwBDF30t1q0VYRfJjo7hW27cfsMZGVhh+ucVWd1IIVHXvi8bln4XSryEuJ4+/Y+SzAFU2GJzg1bl7BHkEzG8bp91BdbdXJxOqlpYc259QLidECYscxsYLLsfGUdHBwcHJbGBa8c9913H7HYwqyZRCKRDyB2KI1plM7Eyrmx3F6IzM7i8niQZavkGEeyYmd9iXgd2xb/ed1L+3j9z54CYOS6VmSlfA+nhUUmGqG2sRVfuLLwxPw4nfn9scpFi4sKz05gsoODg4PDBXDBYufrX/86qVRqweOpVIpvfOMbFzWpqx0tZSIrC9VOzo0lSQkyaQ2X24dUwmpj2HA8LtK6SwUn65aJqih41PLjdUbOnqJjUMOQoeXmm8p+HUAyncCveGloXVGwVs2J0/mrC4vTyZGOQqgJXMs36NzBwcHBYfmy5ADlaDSKbdvYtk0sFpuT9WSaJr/61a+or6+/pJO8mrBtGy1toKglxE7WsmPbUXTTwutWQdIWbNeX9JG2FIKKQbtvYXd33QC/W0Fdgg8r8vRuWoDT64KsDpcfBGxhoUdiNDZ24q3M9uYqjtNZ8wrovqfs8RZgaiApEHS+Uw4ODg4OF8aSxU5lZSWSJCFJEt3d3QuelyTpivedWs6YhsjEmh+cDIVWEZo+iyK7QJZK1s47EhMurHXBZMmYHMu28HvK7xuVSsXpPDgNgOuma8p+HUBCS+LDRV1LB5IsZ+N0PlWI07nlL5c03gLSEQhUO4HJDg4ODg4XzJLFzu9+9zts2+aOO+7gRz/6EdXV1fnn3G43HR0dNDc3X9JJXk2ITCwTt3dh/ZucZUfTp0WXcclGkha6sXLxOqVcWKZlI8sSniVkYZ3Z9QwbNBirkeno3lT26yws9Gic5ppWfLnvwb7/gKG92Tidj194nA6I4CM9A3VOYLKDg4ODw4WzZLFz++23A9DX10d7e/uCjCKHc2PoFrZpIysLqyfnYnYsI4ErGBYxzPPETtKU6UuKgnzrQ3Hmo+VSzsusmmxbFlU7+wCYvGEFdUsQFQk9RcCUqW1bgaSqQuTk43QegKqOsscqSS4w2amt4+Dg4OBwEVzw6fKxY8fYsWNH/v4//dM/sWXLFt761rcyMzNzSSZ3NWLqVslMLC1lYFtC2EhkkFRPScvO8bgfC4kGd4Zat7FgHMO0CLjUsltHDfYdp3nMQFOhbXv5gckWFno8QW24AW9NtWgD8dgnATsbp3N32WMtSiYGFY0XVm3ZwcHBwcEhywWLnQ996ENEo1EADh06xAMPPMArXvEK+vr6eOCBBy7ZBK829IxR0hqWc2HJqo5bVQAJSbIXiJZ8ynmJqsmWLfpjelzlZ2Glnt4HwOmNYYLBcNmvSxhpAhmJmtYOZFWBxz4NqRmo6rz4OB0AUwckCDiByQ4ODg4OF8cFt4vo6+tj/fr1APzoRz/i1a9+NX/3d3/H3r17ecUrXnHJJni1oaUW9sQCSOfSzuUMLm8AGwlZNhdsdzS2eLyOYZqoilx2vE48HmHl4QgA/puuLXsfLCy0RILmihp8dbWw75swnI3Tuet/XVycTo50BHxV4uLg4ODg4HARXLBlx+12k0yKNgW//e1vuftu4baorq7OW3wc5mKaFoZhIZ8j7VyS06huD9gLY3InNZUxzYOMzdrgwhYRmmnjcykoZaacDzz7NG4ThhpUWjvXlL0fcSNNKA3VTe3I00dhz9fFE7c9AJUXGacDIjDZSEO4xQlMdnBwcHC4aC7YsnPrrbfywAMPcMstt/Dcc8/xve99D4CTJ0/S2tp6ySZ4NWHqFpZh4fYtPOypWAYARc4guV3YmoQkza2efDQmOol3+lP4lYWVlW3bwlemC8u2LOqe6wdg9sYumsoUFSYWWjpFa6AGX0iB3xTF6ay+BHE6AHoCXAHwO4HJDg4ODg4XzwWfNv/jP/4jqqrywx/+kC9/+cu0tLQA8Otf/5qXvewCmz1e5eS6nZeqnhyfFZYaVTVAkpCQFlRPPlfKuWFZKLJSduPPMycPUj9tkXJD5/XnD0yu7bqWQG0bcSNFOC1RWduAvPPvRZzOlrfCyz5b1vuWRToKwQZw+y/dmA4ODg4Of7BcsGWnvb2dX/ziFwse/z//5/9c1ISuZkQDULtkgHI8IlpvuD1C4NjMzcSybDiWbRFRKjhZN2zcavn1dYynDwLQd00Na73nFxWpyASt176M2I4YlelpAjO/RxrZJ6ojv/qLMHu2rPc9L5YBSBBquDTjOTg4ODj8wXNRARGnT5/mb/7mb3jLW97C+Pg4ICw7R44cuSSTu9owMqUbgAIko6Ltg8ubEzjSnG3PprzETRWvbLLSv7AnmWFZBDzladfZ2Um6josaPRU3X1fWaxKTA5zY9VPW3fxH1LfVIh35LnTdAW/6uhA6mYVNYS+IdERUS3YCkx0cHBwcLhEXLHYef/xxNm3axM6dO/nxj39MPC4WzwMHDvC3f/u3l2yCVxOZtFEyE0s3TLSkiMFRfLlaO8yx7ORcWGsDSebHN4uUc6nsxp/DTz+NakF/q5vmtq6yXmPaJtqJ32P84n/ivvYVSHd9At78TYgOXTqhA6ClsoHJ5afPOzg4ODg4nIsLdmN95CMf4VOf+hQPPPAAoVAo//gdd9zBP/7jP16SyV1NWJaNkSmddh6PRTE1sbgrLhPbZkFBwaPnqK+jGSYuRcJdIstrwTxMg+bdQwAkb1rY22wBtkUwcpLKkccJJwbEY40rRC2d6PAlFjoJEafjr7l0Yzo4ODg4/MFzwWLn0KFDfPvb317weH19PZOTkxc1qauRXHCyy7tQ7ExOTCJsOTaKywBbEm0ismInY0n0JEQV4dLByTZhn4pSRtnk3iN76Y7axH3QufWGRbeTLJ3Kqf3UjO3Akxafp40Mt7wfaft7ID4mOpHryUvowopCuA08wUsznoODg4ODAxchdiorKxkZGaGzs3PO4/v27ctnZjkUEGLHwqvMPeS2DRPjk4ALRTWQJLCsuW6snoQfw5apduk0erS5A9simLnclHP5aRFP1b+1nnXuhcX/FD1B9cROqsd3ohpCWBmym5ngZiru/CiejS+GmTNC4GRiorN57v7FYBliZ0KNFzeOg4ODg4PDPC5Y7Nx777389V//NT/4wQ+QJAnLstixYwcf/OAHecc73nEp53hVIDKxQJpX8C+lGSQmpoBGYdUB7KxlJyd2jmSrJq8PJha0j9AsE1WWsy0mzs3UxAgrT4ng5ppbts95zp2epGZsB5WT+5BtMQ/NHWai/kYG1BWs7r4d94YXzxU2mZi4fykETzoK3rATmOzg4ODgcMm5YLHzd3/3d/z5n/85bW1tmKbJ+vXrMU2Tt771rfzN3/zNpZzjVYFplM7EiidjZOIiE0txGaz8/7d35+FRldcDx7939skkmSyELBAg7KBAWQQRBUQQUKkLLlVUEKziD7SAgkWrKFZAuuCGWBWBWhG1gtVaRURBRUAENxRREQWFgCyZrLPd+/7+mGRgCFuSGSbL+TzPPM3c9cxN6Bzf7XTpSsHeA+z7+efw8RWDky/qmEKzprns2PJx+PyADglWM9ajrN3Tuv8ISg7sZvcX7wKw56O1ZAA/5DnoPWgkrtRsdv33QdL3rCGp4Bs0QslVWUIO+7LOpjD1NA54i0grAXfztmgFP1ZOaCoSHquzZslOoBTSW4G52n+SQgghxFFV+5vFZrPx9NNPc++99/Lll19SXFxM165dadOmTTTjqzf8ZfpRFxPc59mHUV75wWwNUrh/H93PP59NK1ZQWrQVT8DMz14H57RpxGXnd+HrNa9HnK8rHafdetR7lhzYTWpuqH7Zzo1v0WzjHgBajPsDqbkdCW5eSt7WZ8LHF7nbsS/rbEoTW4Cm4TcCmEu8NMpohdnwgO8YrUcVXVrV5S8N1dOSgclCCCFioMb/GZ2bm0tubm40Yqm3lFL4vUHMR8yWCugGnoN7wB/6NVisQfb9nM8nb62kx5BBfP2Rl7VbDnJOm0bMvaYrX6/5DwfyfwqfrxsKEybs5qMnIRUtOqm5Hdn92ccklyrMg/rR/sKRaJ/+C+tr4zE0CwXpv2F/Zh/8zoyI84u9xTTSEkjLbY52jHtEhdcDyU3AnnTiY4UQQogqqlay89133/HFF1/QrVs38vLyeOONN3jooYcoKyvjkksu4a677jrqKsENlR4MzcQ6ctp5iV+ntHA3BENf8hVjdvbu+IXP3n2L7gOG0NjxBo1+05Efl91F9q41ZB9+XaXQAGeh+VhrFVLw9b/Y13oE7QfdQMFkg9QRI9A+/RfB/03hQPa5HGjcC91aefaTzwhgLfbRqGl7LGkpNX8Ix2IEQRmQnH3iY4UQQohqqHKys2zZMq688kpMJhOapvHUU09x8803079/f5KTk7nvvvuwWCzceeedsYi3TgrNxNKxOSK7mzxFHoKl+zH0UItKRbIDULrzS8wbd5DT5zZY8yhtv3362Dc4bDb6r34L3xxMwLPPgWu3max9GjCPgoMu0seMwbtnOwc+e5uCTnegzLZjXrK4tJAMaxKpTZuhxbLyuNdTPjA5LXb3EEII0aBVOdl58MEHmTJlCn/+859ZuHAhY8eOZebMmUyYMAGAp556ijlz5kiyc5hgwEDpCpP5UNKgVGi8jslbgmGEkg6zNUC/K69h3649+Le9C92upnjNU5i7juHXfUUk556GM7s9Py4NrVDtC+roRoD83QX4dhbh3ukla5+iERBRL/yi80i9+moKtn2Nu2UHHAP/iCrv4joan+HHVhwgo2VbzO4Ydi35iyEYgMYdZWCyEEKImKnyN8zWrVt58cUX0TSNkSNH8vvf/56BAweG959//vnhxEeE6AGj0kys0kCQkuJ9WMoC6HqoxcdiDXJgz26ad+yA0bYlLLmKtd96WP1TW+6/6k5MJjM/fLqaT3YGMf+4i8wdhWQdMGhxxP12NTZzsEUKlla5nHH5eHI6nsXBnV+ze8u7GFYVHrS8+xgJT0lJIZmulFCrTqy6I4M+KPNA4w6QJF1YQgghYqfKyU5JSUm4PITJZMLpdJKQcKhqttPpxOfzRS/CeiDgC1ZKGkp9OmWeX0gIOKhYPdlk0dm97XuatG6LyWKF7C58+8WnDDVvA19Ptt4zGfXGu3Q77DoGkJ9p4WBeCpaWuWS16UBWUgpZQHbnAaTmdgwlOuWJzeGDlg9/X8Gr+7EXB2jUPg9zois2D8QIQvFeSGsZWqNHxncJIYSIoSonO5qmRXxxH/leVOYvq1wTa5+nAOUrAD2UUJitodWTk9Mbsf6/y+mc/hPOM+/gdz+9SMrg4fxy662oNR9haPBLpoVfc93YWjWnWfuOZCUmc7R1h11p2RGJToWK9660yi0qpUUFZCWlk5ITo1WwlYKifEjOgUZtpeCnEEKImKtysqOUom3btuEEp2J9HVP5IFal1PFOb3B03SAYNDAdNu3cHzQoKN6PuawUQwulKRWDk7d9+il60ML3a/9O7rd20seMYc/Sl1ijf4e6qispzdpisSeQHDRokuLEfpTCohW+X/X8MfcdrQurNOjFXqaTcXorTM7KpSSionhPaJXkjPZgOfYAaSGEECJaqpzsLFiwIBZx1Ft6wMAIGtichx51iV+nuGwfdp+PIKECn5aKUhFoaOgknX4VKcOGk//KS2RedgX9unTgm/XLASjz69gtJmzm6M2SUijKPAXkpGaSnB2jMTSlB8BsDw1IlmKfQgghTpEqJzsjR46MRRz1VkW188NXTy72+gkW7yHRMOM17EBoJhYASqN7vx5ktx3Nz+PGsXLf1wz+TQeyW54OwDfrlxNUOm6rPapDXUr9ZTgDGpktWmGyxaDFxV8MQT/kdIEEmWYuhBDi1InKfN/i4mIMw4jYlpycHI1L13mhAqAq3O1nKNhb6MHsLcCizOjB0Eysim6szv37k9OhPV8+dDvWNR9ReGbzcItOdsvTUQo2fvBf7CdZ5fxkKBS+Ag9NGzUhsXFm1K4bFvRBWQE0Pi00VkcIIYQ4haqd7Gzfvp3x48ezatUqvF5veLsq/2LXdT0qAdZ1QV9kAdBSf5DisgOYyooxm53ogdCvoCLZScvO4uAnr5O//H/kohFMC7WCVCQ87owcLGbTccfqVFWpr5QEZSajeSs0S5TXuzly5pUQQghxilX7m+3aa69FKcWzzz5LZmZmzGZktWjRgp9++qnS9v/7v/9j7ty5eL1ebr/9dpYsWYLP52Pw4ME88cQTZGbGoIWiGkI1sQ4lJqX+IKVl+3F5/ShbEsHAobpYAO/+6yU6ly0jpSD0PBMaHVoe8Jv1yyn2BUlyWjCbovO8DQx8BwtompWHq1HGiU+oCqWgaM9hM69iuBKzEEIIcQzVTnY+//xzNm7cSLt27aIZTyUbNmyIaCXavHkzgwYN4oorrgBg4sSJvPHGG7z88su43W7Gjx/PZZddxpo1a2Ia18kwDEXAp0esnHywxIcq2YstaMJwWdCDkS07AL7SX0kqC/2c3TgyAVEYOC3R68IqLSsmwWwns3krtCgOeAagOB+cKaGFA2XmlRBCiDipdrJzxhlnsHPnzpgnOxkZkV/2s2bNolWrVvTr1w+Px8P8+fNZvHgxAwYMAEKzxTp06MC6des488wzYxrbiVQMTrY6QkmEP2iwv7QIq68AKxZ0zYJxRLKjlEZBYSFuLBxI1EhOcIavFzQMzJo5al1YBgaBgkKym7XDmRblQcOlB8DsCM28ssVocUIhhBDiJFQ72XnmmWcYO3Ysv/zyC6effjpWa2SRy86dO9c4uCP5/X7+9a9/MWnSJDRNY+PGjQQCgYhyFe3bt6dZs2asXbu2liQ7Bo7yuk8l/iClpQcwe0vRzDb0YHkLjWZgModarzRlUFoSwI2FPal2Ug67nj+osFs0bFFKdkpKikiwJ9A4Ny+63ZD+YtD9kC0zr4QQQsRftZOdX3/9lW3btnHDDTeEt2maFtMByq+++ioFBQWMGjUKgPz8fGw2GykpKRHHZWZmkp+ff8zr+Hy+iJIWhYWFUY8VKmZigVY+vqbYGyTg309ymR9lcxEMHKqJVZFruIwDlBWFkqBfU5Iikp2gYZDmsEclNgODoKeQpq1Pw3HE86sRmXklhBCilql2sjN69Gi6du3KCy+8ENMByoebP38+Q4cOJSenZl+iM2fO5P77749SVMemBw/NxDIU7C8pQ/kOYAmC4bSgF1cer+PSf8VXGNpemppy6FqGwqRp2M3RGa9TXOQhIcFNRtO8qFwPOGzmVSuZeSWEEKLWqHay89NPP/Haa6/RunXraMZz3Pu98847LF26NLwtKysLv99PQUFBROvOnj17yMo6WrWokKlTpzJp0qTw+8LCQnJzc6Mes79MDy8mWOoLUuAtxuItwKos6BZzpWnnSkGisY+y8plYHDaOJqAb2MwaVkvNk0pd6eiFxWS274I9ManG1wMOm3nVBBq1kZlXQgghao1qfyMNGDCAzz//PJqxHNeCBQto3LgxF154YXhb9+7dsVqtrFy5Mrxt69at7Nixg969ex/zWna7neTk5IhXtCmlyqedh5KTEn8Qv8+DpawETKGZSUcmOwCO4B7SypMd92EzsYKGQYLNgjkKLWglBQdJSk6NbqtO8Z7ymVdS80oIIUTtUu2WnWHDhjFx4kS+/PJLOnXqVGmA8m9/+9saB1fBMAwWLFjAyJEjsRy26J3b7WbMmDFMmjSJtLQ0kpOTufXWW+ndu3f8BycHQzOxKtbYKSgNoAcPkFDiR9ncAJXW2FFKo7hkH44gBE2Q0yg9dDEFCnBYa95aous6RqmXjE6nYXM6T3zCySjdf6jmlcy8EkIIUctUO9kZO3YsANOnT6+0L9oDlN955x127NjB6NGjK+2bM2cOJpOJ4cOHRywqGG+hmVg6NocVX8CgoKwUyg5iDyoMp7X8mIqWnUN1sYqLi3BgYW+KCVt5Yuc3dCwmE7YorK9TXLCPpLRGNM5pXuNrAeArAj0A2b+RmVdCCCFqpWonO0fWwoql888/H6XUUfc5HA7mzp3L3LlzT1k8JyMYMFC6wmQ2Uer1Uxwow+w9iFlZ0MsHGeuByLpYmhGkrCgIWNib4qRiDeiADglWM1Zzzbqw9GAAfAEyO7TCEo1in0EfeAsh8zRIjlGldCGEEKKGZBRpjOgBIzwTq9AbIBjwYCkrA80S3n7kmJ2E4AH8RaFtB1IOjSPSlY7TXvNfVdHBfSRlZNIoq2mNrxWeeZWaBylRaiUSQgghYqDaLTtH67463L333lvdS9cLAV8w1J1nKApKAxjBAzhLvSh7aPaTYWgYeqiFp2LMjkvfj68wlNR4y2dihaacm7DXsAsrEPChGYrM5q0xW6wnPuF4lAGF+TLzSgghRJ1Q7WRn2bJlEe8DgQDbt2/HYrHQqlWrBp/s+Mt0zBYTpX6dQl8pJr8HS0BDJUaO19FMBpop1CXo0vcRKAglDtb0dEw+D8FAEKcJbH4fBKoeR8Dvp6yklKC3jLTMbBrZDPD8XPMPmJAuM6+EEELUCdVOdj799NNK2woLCxk1ahSXXnppjYKq63TdIBg0MFk0Sv1BvMEytJICLEojWD7o+PAurIrZ5Gbfr6R6Qj9nZDZGQ1Fsb0xaSgqmpJNfOVkPBCgrLCBQWoTJ6sbVtCVpTfJIz87D5IrSNHurE2wJ0bmWEEIIEUPVTnaOJjk5mfvvv59hw4Zx3XXXRfPSdYoeMDCCBlaHhYOlfgxVhLWsFHXU8TqHmms8xb/iBkptkJGUhAp4MMw2HC432I//qzJ0nbLCA/iLPJg0M46UdBp37ElK46Ykp2VjNkf1Vy2EEELUGVH/BvR4PHg8nmhftk6pqHaOMijy+jGCB3GU+lCHtYSE62JZDi0oWFJcUl4A1ILDBAFDYbPYcNiOPl7H0HV8JR68hQVohsKWnEJWx+6kNm6Gu1ETLFbpYhJCCCGqnew8+uijEe+VUuzevZvnnnuOoUOH1jiwuixUAFRRFjAoCXjB68EeUCjXoeTjyJlYJhUgUKwDFn5NcZGrFAHDhMNhi5hyrgwDf1kx3oIDGMEgtqRkGrU8jbTs5qRkNMVml64lIYQQ4nDVTnbmzJkT8d5kMpGRkcHIkSOZOnVqjQOry4L+UAHQwrIAAcOLqawQk054vA4cbdr5fooKQy04Balucgmio5HkCCVI/rISvJ4D6D4v1oREUpu2JLVJS9wZTXEmRL/chRBCCFFfVDvZ2b59ezTjqFf8ZUGUScNTHECpImxlpSjTofE6UDnZcQX34/OULzaYlgaGgWEY+A7u48CBXVgdTlyNsmjUtA3JjZqQ6E4/5Z9LCCGEqIuqnOzous5XX31FmzZtcB5RW6msrIzvvvuO008/HVMDXXvFMBQBn45fV5T6/RhGYfl4HUfEcUfWxUoI7sc4GMqGnI0y0AwDv+cgjZp1oFnrDrgbNSExpXGDfa5CCCFEdVX5m/O5555j9OjR2I5SbsBqtTJ69GgWL14cleDqoorByWWGgVcvQ5UVYPPrqCOe15Gzsfwle0gqC+3LbpyBUjqYbWS26kRu2+4kp2VJoiOEEEJUQ5W/PefPn88dd9yB2Vx5hpDFYmHKlCk89dRTUQmuLtIDBsGgTqEvgNICmEqLMAVBHTZex9BNKCP0/Cq6sTxFBwA4kKiRnOBEGTqYzDgcUapMLoQQQjRQVU52tm7dyplnnnnM/WeccQZbtmypUVB1WTBg4AvolAUMgkYhNm8ZymQ+6ngdzaRjMocKnHqLQs06e1Ot5dcJYrLaK3UVCiGEEKJqqpzslJSUUFhYeMz9RUVFlJaW1iioukwP6ngDBqVBL4ZRhLPYizqipELwiMHJZsNPsChUMmKfO6n8OgFMVjt2mUouhBBC1EiVk502bdrw0UcfHXP/hx9+SJs2bWoUVF3m9+oUB4IElQ+jrBCbP4hyRA5O1o8cnKzvh/Jp58XlBUCNoI7V7sAm3VhCCCFEjVQ52bnmmmv405/+xBdffFFp3+eff869997LNddcE5Xg6qJA0KDIGwR8mMqK0IIG6oiK5ZWnne/DWV4AlLQ0UDpBPYjNmYDFGpkoCSGEEKJqqjz1fOLEibz55pt0796dgQMH0r59ewC++eYb3nnnHfr06cPEiROjHmhdURrQ8QZ0guZinGVlYDITrvRZ7shkxxH4FXNB6Bh34wxQCsNQOBLdMgNLCCGEqKEqJztWq5W3336bOXPmsHjxYt5//32UUrRt25YHH3yQCRMmYLVaYxFrnVDiDRAwfASDxSSXeDEslafoB4+Ydl5UtBd3EIImyGmUDkoPJTsu9ymNXQghhKiPqrWCstVqZcqUKUyZMuWEx77wwgv89re/xeVyVedWdY43oGMQQPcWYvMF0e1JlY7RK4qAlrfsFHsKcAO/uk3YLBYI+lFK4ZBVkoUQQogai3kfyc0338yePXtifZtaQwG+YBnW0hIIBlG2yvnkkd1Y/mIvAL+m2kMHGAo0C3YZnCyEEELUWMyTHaVUrG9RqygMvHoxCT4vaKZK43WUikx2LIYXo3wm//6UULeVYQTBZMHhkGnnQgghRE3J6Nco8wa96MFSHCVlRx2vY+gmlAo9drM1SIK+H3Nh6H1ZaqjbyggG0Kw2nE5JdoQQQoiakmQnynx6GQTLsHj9KJu90v6KVh2TWcdkUriC+0kqn3ZuTQ8lO3owgNlql2RHCCGEiAJJdqKsTC/D6vVCoHLxT6hcANTsyyfVE9rXKCMDgGBQx2J3YLPLmB0hhBCipiTZiTKlDKzeElBapfE6cGgmVsXg5ALPr5iAUhtkuJOBUDeW1e7AYpMFBYUQQoiainmy07x58wa17o5mBLB6SzGslVt1oHJdrNLyOmN7U82YLSZQOnr5goJmc7VWBhBCCCHEYaqd7IwcOZL333//hMdt3ryZ3Nzc6t6mztH8ZZjLvEftwgLQg5F1sfQiHwD7UsrH5ygDpSvsicmxD1YIIYRoAKqd7Hg8HgYOHEibNm2YMWMGv/zySzTjqrPMpUVoQf2og5PhyGnnZVA+7fygOzX0gzIwlIEjMfVUhCuEEELUe9VOdl599VV++eUXbrnlFl588UVatGjB0KFD+fe//00gEIhmjHWKqbQQTWlgqjxeByKTHVdwPzZPqEioPzU0OBlDR8OEwyUtO0IIIUQ01GjMTkZGBpMmTeLzzz9n/fr1tG7dmuuuu46cnBwmTpzId999F6046wytzIc6RqIDkXWxXPo+3OUFQB3ph5IdTBYcCQ2jvIYQQggRa1EZoLx7925WrFjBihUrMJvNXHDBBXz55Zd07NiROXPmROMWdYcy4Bi5Tmj15EN1sfwl+SSXhvZlZWQCEAwG0MwWHA6ZiSWEEEJEQ7WTnUAgwCuvvMJFF11E8+bNefnll5kwYQK7du1i0aJFvPPOO7z00ktMnz49mvHWaYZuDk1JB8yWIJ6CvQAcTIRkZyi50YN+NJsTp0NadoQQQohoqPbc5uzsbAzD4Oqrr+bjjz/mN7/5TaVjzj33XFJSUmoQXv0SXj3ZEkQzgb+oGIC9KVYStFANMSOoY7HbsUkRUCGEECIqqp3szJkzhyuuuOK43S0pKSls3769ureodyLW2FEKVegHLOx3J+IqT3b0YBBrkgObXUpFCCGEENFQ7W6s3/72t5SWllbafuDAAQrLF8oTkSpadizWIFZViqkw1KXlcTcKLbasFEFDx5rgwnKMRQmFEEIIUTXVTnZ+97vfsWTJkkrbX3rpJX73u9/VKKj66shp505P6PHrKZlomgIMCCrsLnccoxRCCCHql2onO+vXr+fcc8+ttL1///6sX7++RkEd7pdffuHaa68lPT0dp9NJp06d+OSTT8L7lVLce++9ZGdn43Q6GThwYK2d8n6oLlYAR2AvaQdDLTuulEzQFCgdQxk4k2RBQSGEECJaqp3s+Hw+gsFgpe2BQICysrIaBVXh4MGD9OnTB6vVyptvvsnXX3/N3/72N1JTDyUDs2fP5tFHH+XJJ59k/fr1uFwuBg8ejNfrjUoM0XT4mJ2Swt3YgxA0QWZqZqgby1AoBc5EadkRQgghoqXaA5R79uzJU089xWOPPRax/cknn6R79+41DgzgoYceIjc3lwULFoS35eXlhX9WSvHwww/zpz/9iYsvvhiAf/7zn2RmZvLqq6/Wuu60w8fsFO3bTwbwq1vDYQ3lnMoIopnM2BOS4hilEEIIUb9UO9n585//zMCBA/n8888577zzAFi5ciUbNmzg7bffjkpwr732GoMHD+aKK65g9erVNGnShP/7v//j97//PQDbt28nPz+fgQMHhs9xu9306tWLtWvX1tpkx2wNoheWALA/xY7LFJqJpZQOmgWHU2ZiCSGEENFS7W6sPn36sHbtWnJzc3nppZd4/fXXad26NV988QXnnHNOVIL74YcfmDdvHm3atGH58uXccsst3HbbbSxatAiA/Px8ADIzMyPOy8zMDO87Gp/PR2FhYcQr1kKrJ5cnO5YAWlGoC/CAOwmtPNnR/X5MNjtOp6yxI4QQQkRLtVt2AH7zm9/w/PPPRyuWSgzDoEePHsyYMQOArl27snnzZp588klGjhxZ7evOnDmT+++/P1phnhQ9aCZUR0LhNBWge0KDk4uSK2ZigR7wY3YkYpc1doQQQoioqVGyYxgG33//PXv37sUwjIh9ffv2rVFgEFqluWPHjhHbOnTowCuvvAJAVlYWAHv27CE7Ozt8zJ49e466onOFqVOnMmnSpPD7wsJCcnNzaxzv8YRnYlmCJBr70csLgJKSFW7ZMXQdc4JDVk8WQgghoqjayc66deu45ppr+Omnn1BKRezTNA1d12scXJ8+fdi6dWvEtm+//ZbmzZsDocHKWVlZrFy5MpzcFBYWsn79em655ZZjXtdut2O322scX1UcPl7H7N2Du3xBwZSUnHDLTjAYxOVwYrFKEVAhhBAiWqqd7IwdO5YePXrwxhtvkJ2djaYdo9R3DUycOJGzzjqLGTNmcOWVV/Lxxx/z1FNP8dRTTwGhpGrChAn8+c9/pk2bNuTl5XHPPfeQk5PDJZdcEvV4auLwZMdTsJtkBWU2SE9IBa0MlMLQg9hdyZhMUSlGL4QQQghqkOx89913/Pvf/6Z169bRjCfCGWecwbJly5g6dSrTp08nLy+Phx9+mBEjRoSPmTJlCiUlJdx0000UFBRw9tln89Zbbx23Zlc8HL7GTlnhAQD2ppoxmU2hNXYwUErhSJQFBYUQQohoqnay06tXL77//vuYJjsAF110ERdddNEx92uaxvTp05k+fXpM46ipw9fYUYWhRRf3u+0kairUjaV0lA6OpJQ4RimEEELUP9VOdm699VZuv/128vPz6dSpE1arNWJ/586daxxcfXKoGyuAuVAHTHjcKSRBqFSEYYBmkgUFhRBCiCirdrIzfPhwAEaPHh3epmkaSqmoDVCuTypmYznMhdjLp52XuLOgvGVH14NoZhOOhMR4himEEELUO9VOdrZv3x7NOOq9ijE7SaZfSSyfdm5LyUbTFJoGKhhEM9txyurJQgghRFRVO9mpmP4tTkwpMIJmADT/jySXhrZnpOagmULrE+kBL5rdIcmOEEIIEWU1muP83HPP0adPH3Jycvjpp58AePjhh/nPf/4TleDqi9B4ndDqycWeUIvYwURw2VxUzDIPBnWstgRsdllQUAghhIimaic78+bNY9KkSVxwwQUUFBSEx+ikpKTw8MMPRyu+euHwNXaCRR4Afk2xoJSGpoVadoxgAKvTjsVWu6bMCyGEEHVdtZOdxx57jKeffpq7774bs9kc3t6jRw++/PLLqARXXxye7GhFXgAK3AloaIeKgBo6dmcSZnONKngIIYQQ4gjVTna2b99O165dK2232+2UlJTUKKj6JhheYyeA1RNqySlMSUVRscaOAbqO3ZUczzCFEEKIeqnayU5eXh6fffZZpe1vvfUWHTp0qElM9U7FtHObpZSE8mnnvpQcQCsfyqMwDIXTnRa/IIUQQoh6qtp9JpMmTWLcuHF4vV6UUnz88ce88MILzJw5k2eeeSaaMdZ5Fd1YDu0gaQdDyU5iWjYalLfsBAFZUFAIIYSIhWonOzfeeCNOp5M//elPlJaWcs0115CTk8MjjzzC7373u2jGWOdVJDtGcDf2IARN0NjdCFSoG8vQDTSThiNBurGEEEKIaKvRaNgRI0YwYsQISktLKS4upnHjxtGKq16pGLMTLPsFgH1uDZvZjq4r0BRG0I9mtuJIkDV2hBBCiGiLytSfhIQEEuSL+pj0YPljLskH4ECKFZsi3I0VCPjRLHacDlf8ghRCCCHqqSolO926dWPlypWkpqbStWtXNE075rGbNm2qcXD1gTI0jPJkx1b0KwAFKYlkKC1cF8vwBzA7XNgcsqCgEEIIEW1VSnYuvvhi7HY7AJdcckks4ql39PIyEWgGzoIiwESJO50MNDQN0MDQA1jtDmx2aR0TQgghoq1Kyc60adOO+rM4tmD5tHOrxU9SeQFQPaUJSoHJFCoCGtR1XI5ELFZbPEMVQggh6qVqr7OzYcMG1q9fX2n7+vXr+eSTT2oUVH1SMRPLYi4hrTCU7KSk54DSwkVA0YPYXTLtXAghhIiFaic748aNY+fOnZW2//LLL4wbN65GQdUnFckOxgFMCsps0CgxJVQXy2SA0sFQOJNT4xuoEEIIUU9VO9n5+uuv6datW6XtXbt25euvv65RUPVJONkJhgYn/5pqwlRe6txkUqHVkxU4XO54hSiEEELUa9VOdux2O3v27Km0fffu3VgsUsyyQsUaOybffgAOusvH5ajQAGXD0MFkwu5KjFeIQgghRL1W7WTn/PPPZ+rUqXg8nvC2goIC7rrrLgYNGhSV4OqDipYdW+kBAArdobE5oZlYCmXoaCaTrJ4shBBCxEi1m2D++te/0rdvX5o3bx6ufv7ZZ5+RmZnJc889F7UA67qKIqAJhQUAlKWEVplWhBYU1P0+TBYbzgRZUFAIIYSIhWonO02aNOGLL77g+eef5/PPP8fpdHLDDTdw9dVXY7VaoxljnVbRspNyMNQCpqXmohRohBYU1IN+zDYHdlljRwghhIiJGg2ucblc3HTTTdGKpd4xDA1DDy0qmF7e3dc4Pbu8WSdUF0sF/JhdabJ6shBCCBEjVUp2XnvtNYYOHYrVauW111477rG//e1vaxRYfVDRqqMRwKx7OZgISQ4XhqGBFurGCgaDJDoSsFgdcY5WCCGEqJ+qlOxccskl5Ofn07hx4+OWi9A0DV3XaxpbnXco2fGgAftTzKER4UorLwIKhh7E7koOT0cXQgghRHRVKdkxDOOoP4ujq0h2zMECAArcDtIgtKBgRTeWruNIlDV2hBBCiFipUnNCWloa+/btA2D06NEUFRXFJKj6IlwXy18AQIm7PKkpH7OjoYNSOJJT4hKfEEII0RBUKdnx+/0UFhYCsGjRIrxeb0yCqi8qWnYcpQUA+FOygFDLjslkoAwDTTNhc8iCgkIIIUSsVKkbq3fv3lxyySV0794dpRS33XYbTufRZxE9++yzUQmwLqtIdpKLQgmiLb15eJ9mMjB0HUxmHImyoKAQQggRK1VKdv71r38xZ84ctm3bBoDH45HWneOoSHYSygoImiAzJQMoH7NjAkMPoJnNOJ2S7AghhBCxUqVkJzMzk1mzZgGQl5fHc889R3p6ekwCqw8q6mLZfR72uTVslvK6WGhoJkXQ50Wz2GX1ZCGEECKGqj1A+dxzz8Vms53gjIatomXH7vdwMOVQXhmadq4wAgEsjgRsdllQUAghhIgVGaAcI4ZuQhmh1ZNt/kKK3IcSmoq6WEbQj82RgMUmCwoKIYQQsSIDlGMkvKCgUYZF91HqrpiJFaqLhaYwDAObKwmzuUZVO4QQQghxHNUeoKxpmgxQPo6K8To2f6gmlp6Sc2hneakIpQewu2RwshBCCBFLtX6A8n333cf9998fsa1du3Z88803AHi9Xm6//XaWLFmCz+dj8ODBPPHEE2RmZsY0rhOpaNlxloWSHVd6CyA0Eyu0oKDC0A2ciSlxilAIIYRoGKpckOmCCy7A4/Gwfft20tPTmTVrFgUFBeH9+/fvp2PHjtGMkdNOO43du3eHXx9++GF438SJE3n99dd5+eWXWb16Nbt27eKyyy6L6v2rQz9sJlaZDRolpYZ2lNfFUuhoaNhljR0hhBAipqo8WOStt97C5/OF38+YMYMrr7ySlJQUAILBIFu3bo1agAAWi4WsrKxK2z0eD/Pnz2fx4sUMGDAAgAULFtChQwfWrVvHmWeeGdU4quLQTKwC9qVq4UKfSpV3YakAmsmEw5kUtxiFEEKIhqDGpbaVUtGI47i+++47cnJyaNmyJSNGjGDHjh0AbNy4kUAgwMCBA8PHtm/fnmbNmrF27dpjXs/n81FYWBjxirbD19gpcFsP7SjvxlJ6ILR6skuSHSGEECKWapzsxFqvXr1YuHAhb731FvPmzWP79u2cc845FBUVkZ+fj81mC7cqVcjMzCQ/P/+Y15w5cyZutzv8ys3NjXrcenkRULvfQ7H70KKBCg3NZBAMBDCbbTilZUcIIYSIqSp3Y2mahqZplbbFytChQ8M/d+7cmV69etG8eXNeeumlY057P5GpU6cyadKk8PvCwsKoJzwV3Vg2nwdfSqNDOxSYTKD7/ZgddmzOhKjeVwghhBCRqpzsKKUYNWoUdrsdCM2GGjt2LC5XqPXi8PE8sZCSkkLbtm35/vvvGTRoEH6/n4KCgojWnT179hx1jE8Fu90ejj8WlIpcPZnUzoftC7XsGEE/tsRUbHZJdoQQQohYqnKyM3LkyIj31157baVjrr/++upHdALFxcVs27aN6667ju7du2O1Wlm5ciXDhw8HYOvWrezYsYPevXvHLIYTUcqMUqEeQpvfQ2raYdXO0cpXTw5gS0jCYpWSG0IIES+6rhMIBOIdhjgGq9WK2Wyu8XWqnOwsWLCgxjetijvuuINhw4bRvHlzdu3axbRp0zCbzVx99dW43W7GjBnDpEmTSEtLIzk5mVtvvZXevXvHdSaWMkKtRpZAMYUJQZKciYf2ocoXFAxiT5DxOkIIEQ9KKfLz8yOWThG1U0pKCllZWTUaMlPr6xT8/PPPXH311ezfv5+MjAzOPvts1q1bR0ZGBgBz5szBZDIxfPjwiEUF48nQQ601dp+HgylHGQOuKZSuk1Cx9o4QQohTqiLRady4MQkJCTEdeyqqRylFaWkpe/fuBSA7O7va16r1yc6SJUuOu9/hcDB37lzmzp17iiI6McMoT3b8HgrdNg5fNlBDC9XGAuyJ0rIjhBCnmq7r4UQn1lUARM1UTETau3cvjRs3rnaXVq2fel4XGXqoG8vm81DqPpTQKEWoAChB0EzYE2T1ZCGEONUqxugkJMgEkbqg4vdUk7FVkuzEwOEtOwF3Rnh7RV0sVBCTpuE4bCyPEEKIU0u6ruqGaPyeJNmJAUM/tHqypbwAKAAKNCAY9KFZbTilLpYQQog6oH///kyYMCEm127RogUPP/xwTK5dQZKdGDCCoSzUEvCQnto0vL2iZUcFvZisVuyyerIQQogqGDVqFJqmMXbs2Er7xo0bh6ZpjBo16tQHVstJshMDFWN2ymwebJbD19EpX2Mn4MdiS8DmqN4K0EIIIRqu3NxclixZQllZWXib1+tl8eLFNGvWrNrXVUoRDAarda7f76/2fU8FSXaiTClQKrSadKmz+Ih9GppJoYJ+bM4ELFZHPEIUQghRh3Xr1o3c3FyWLl0a3rZ06VKaNWtG165dw9t8Ph+33XYbjRs3xuFwcPbZZ7Nhw4bw/lWrVqFpGm+++Sbdu3fHbrfz4YcfUlJSwvXXX09iYiLZ2dn87W9/qxRDixYteOCBB7j++utJTk7mpptuAuDDDz/knHPOwel0kpuby2233UZJSUn4vL179zJs2DCcTid5eXk8//zzsXhElUiyE2VG0AxaaMxOWeIRma4i1LKj+7EnpWEyyeMXQojaQClFqT9YpZc3oKOUwhvQj/r+ZF5KqWrFO3r06IhFfp999lluuOGGiGOmTJnCK6+8wqJFi9i0aROtW7dm8ODBHDhwIOK4P/7xj8yaNYstW7bQuXNnJk+ezOrVq/nPf/7D22+/zapVq9i0aVOlGP7617/SpUsXPv30U+655x62bdvGkCFDGD58OF988QUvvvgiH374IePHjw+fM2rUKHbu3Ml7773Hv//9b5544onwOjqxVOvX2alrKmpiWf1F+A6rdg6H6mIpw8DhkvE6QghRW5QFdDreu7zK553TphGPXd2VFzfs5Kozcvn9Pz/hg+/2nfT5X08fTIKt6l/F1157LVOnTuWnn34CYM2aNSxZsoRVq1YBUFJSwrx581i4cGG4oPbTTz/NihUrmD9/PpMnTw5fa/r06QwaNAgIlWSaP38+//rXvzjvvPMAWLRoEU2bNuVIAwYM4Pbbbw+/v/HGGxkxYkR4IHObNm149NFH6devH/PmzWPHjh28+eabfPzxx5xxxhkAzJ8/nw4dOlT581eVJDtRFjysAKg/IzNypwKTSYGhcCS54xCdEEKIaPrgu328uGEnN/drxT9Wb6tSolMTGRkZXHjhhSxcuBClFBdeeCGNGjUK79+2bRuBQIA+ffqEt1mtVnr27MmWLVsirtWjR4+I8/x+P7169QpvS0tLo127dpViOPw8gM8//5wvvvgiomtKKYVhGGzfvp1vv/0Wi8VC9+7dw/vbt28fUcg7ViTZiTJ/WWjRI7vPg5bW6oi9GkoZaGjYZY0dIYSoNZxWM19PH1zl80yaht1iIqAb3NS3JSPPaoFRha4pp7X6RS5Hjx4d7iKqSRUBl8t14oNO4rzi4mJuvvlmbrvttkrHNmvWjG+//bZa94kGSXairLSgCABzsIDU5MiWHU0DRRA0TYqACiFELaJpWrW6kypYzaElRxw1SF6qasiQIfj9fjRNY/DgyEStVatW2Gw21qxZQ/PmzYHQCsQbNmw47no5rVq1wmq1sn79+vDMroMHD/Ltt9/Sr1+/48bTrVs3vv76a1q3bn3U/e3btycYDLJx48ZwN9bWrVtPSTFWSXaiTC8LZfRBUyEmU1ql/UbQh8lswSnJjhBCiBowm83hLqkja0a5XC5uueUWJk+eTFpaGs2aNWP27NmUlpYyZsyYY14zMTGRMWPGMHnyZNLT02ncuDF33333SU2oufPOOznzzDMZP348N954Iy6Xi6+//poVK1bw+OOP065dO4YMGcLNN9/MvHnzsFgsTJgwIVz/KpYk2Yk2vw3MELAWRWwOtWqGZmKZrDacLhmzI4QQomaSk4+9Ev+sWbMwDIPrrruOoqIievTowfLly0lNTT3uNf/yl79QXFzMsGHDSEpK4vbbb8fj8Zwwls6dO7N69WruvvtuzjnnHJRStGrViquuuip8zIIFC7jxxhvp168fmZmZ/PnPf+aee+45+Q9cTZqq7ry3eqSwsBC3243H4znuH87J+MeYBQStzXF6F5HZuyd9Lr2cxJRU3pr/DHrQjDK2Y7MYnDf6Xhm3I4QQceD1etm+fTt5eXk4HLLeWW13vN/XyX5/y0IvUaYIPWw9QdHn0stxZzSmuOBgecVzIOjDYndisck/MCGEEOJUkGQnipRSNOmcB8CAG8bhzmiM59e9rFn2b0BDA3TDjz3RjdksPYhCCCHEqSDfuFFUsOdXBt3YiS1rdtGyR7PDEp0jSkW4pNq5EEIIcapIy04UrVm6mC1rdtH1/OYowwgnOkC4VATKwJl0/MFhQgghhIgeSXai6OzLrqHzgFzyt/6CZjLR59LLw/uU0kAzMKFwuGRgshBCCHGqSLITRSlZjSk6sI/3Xngaz697cWc0Dic8SmlAEE0zyYKCQgghxCkkyU6UffRaqOtqzbJ/HyXhCYBmwpEgLTtCCCHEqSLJTgxVJDyJKamAhqH7MFutOBNkQUEhhBDiVJHZWDFWMUhZw4YRDGCz2bE5pRtLCCGEOFWkZecUUYChezFb7dhk5WQhhBDilJFk5xRQCjQUSvdjS0jEYrXFOyQhhBB10KhRo9A0jbFjx1baN27cODRNY9SoUac+sFpOkp1TQQGaAt2PPVEWFBRCCFF9ubm5LFmyhLKysvA2r9fL4sWLadasWbWvq5QiGAxGI8RaR5KdU0ChgQbK8ONMTo93OEIIIeqwbt26kZuby9KlS8Pbli5dSrNmzejatWt4m8/n47bbbqNx48Y4HA7OPvtsNmzYEN6/atUqNE3jzTffpHv37tjtdj788EOKiooYMWIELpeL7Oxs5syZQ//+/ZkwYUL43Oeee44ePXqQlJREVlYW11xzDXv37q107ZUrV9KjRw8SEhI466yz2Lp1a2wfzjFIsnMqqFBdLA0De4K07AghRK2jFPhLqvYKeEPnBbxHf38yL6WqFe7o0aNZsGBB+P2zzz7LDTfcEHHMlClTeOWVV1i0aBGbNm2idevWDB48mAMHDkQc98c//pFZs2axZcsWOnfuzKRJk1izZg2vvfYaK1as4IMPPmDTpk0R5wQCAR544AE+//xzXn31VX788cejdp/dfffd/O1vf+OTTz7BYrEwevToan3empLZWKeAUqAw0DQla+wIIURtFCiFGTlVP6/VALj8Wdj0HHS7DpZcDdvePfnz79oFNleVb3vttdcydepUfvrpJwDWrFnDkiVLWLVqFQAlJSXMmzePhQsXMnToUACefvppVqxYwfz585k8eXL4WtOnT2fQoEEAFBUVsWjRIhYvXsx5550HwIIFC8jJiXw2hyctLVu25NFHH+WMM86guLiYxMRD33MPPvgg/fr1A0JJ1YUXXojX68XhcFT5M9eEJDunQvnqySZNwy7JjhBC1B/b3g0lOn1ugzWPVi3RqYGMjAwuvPBCFi5ciFKKCy+8kEaNGh0Ka9s2AoEAffr0CW+zWq307NmTLVu2RFyrR48e4Z9/+OEHAoEAPXv2DG9zu920a9cu4pyNGzdy33338fnnn3Pw4EEMwwBgx44ddOzYMXxc586dwz9nZ2cDsHfv3hqNLaoOSXZOAYWGbvjLFxSUbiwhhKh1rAmhVpaq0sxgsYPuh7NuhZ43gdKrdt9qGj16NOPHjwdg7ty51b6Oy1W1lqWSkhIGDx7M4MGDef7558nIyGDHjh0MHjwYv98fcazVag3/rGkaQDgxOpVkzM6poEDpZZgsNuwuSXaEEKLW0bRQd1JVX1ZH6FyzLfS/VkfVzi9PAKpjyJAh+P1+AoEAgwcPjtjXqlUrbDYba9asCW8LBAJs2LAhouXlSC1btsRqtUYMZPZ4PHz77bfh99988w379+9n1qxZnHPOObRv3z5icHJtJC07p4BSGkbQh8Vlk9WThRBCRIXZbA53SZnN5oh9LpeLW265hcmTJ5OWlkazZs2YPXs2paWljBkz5pjXTEpKYuTIkeHzGjduzLRp0zCZTOGWmWbNmmGz2XjssccYO3Ysmzdv5oEHHojdB40Cadk5JTQw/NgcCVhszngHI4QQop5ITk4mOfnoPQazZs1i+PDhXHfddXTr1o3vv/+e5cuXk5qaetxr/v3vf6d3795cdNFFDBw4kD59+tChQ4fwoOKMjAwWLlzIyy+/TMeOHZk1axZ//etfo/7ZoklTqprz3uqRwsJC3G43Ho/nmH80J+t/zzyB5+e9JGdnhLcFfDYCJVvIbtWUs6+cVNNwhRBC1IDX62X79u3k5eWd8llBdVFJSQlNmjThb3/723FbhWLleL+vk/3+lm6sU0Kh9ACOxONn00IIIUS8ffrpp3zzzTf07NkTj8fD9OnTAbj44ovjHFn11alurFmzZqFpWsQqjl6vl3HjxpGenk5iYiLDhw9nz5498QvyCKG6WKApHUdSSrzDEUIIIU7or3/9K126dGHgwIGUlJTwwQcfRExtr2vqTMvOhg0b+Mc//hExZx9g4sSJvPHGG7z88su43W7Gjx/PZZddFjECPd4UYMLA5qj6wlFCCCHEqdS1a1c2btwY7zCiqk607BQXFzNixAiefvrpiIFVHo+H+fPn8/e//50BAwbQvXt3FixYwEcffcS6deviGPEhSmkoDNAU9gSZiSWEEEKcanUi2Rk3bhwXXnghAwcOjNi+ceNGAoFAxPb27dvTrFkz1q5de8zr+Xw+CgsLI14xozQM3Y/JrOF0SbIjhBBCnGq1vhtryZIlbNq0KWKBowr5+fnYbDZSUlIitmdmZpKfn3/Ma86cOZP7778/2qEelVKg6wEsdoskO0IIIUQc1OqWnZ07d/KHP/yB559/PqrTA6dOnYrH4wm/du7cGbVrV6I0lB7AarNhc8rqyUIIIcSpVquTnY0bN7J37166deuGxWLBYrGwevVqHn30USwWC5mZmfj9fgoKCiLO27NnD1lZWce8rt1uDy/EdLwFmaJBlS8oaLXasTikCKgQQghxqtXqbqzzzjuPL7/8MmLbDTfcQPv27bnzzjvJzc3FarWycuVKhg8fDsDWrVvZsWMHvXv3jkfIlSlAebG7kjBbrCc8XAghhBDRVauTnaSkJE4//fSIbS6Xi/T09PD2MWPGMGnSJNLS0khOTubWW2+ld+/enHnmmfEIuRKlNJTuw5bYJN6hCCGEEA1Sre7GOhlz5szhoosuYvjw4fTt25esrCyWLl0a77DCNDRQQZxJ6fEORQghRB03atQoNE1D0zSsVit5eXlMmTIFr9cbPqZiv6ZpuFwu2rRpw6hRoyqtnbNq1So0TYsYCrJr1y46depE37598Xg8Ecccfu+jvVq0aHGKnkLV1blkZ9WqVTz88MPh9w6Hg7lz53LgwAFKSkpYunTpccfrnGqGUpjQsbtkvI4QQoiaGzJkCLt37+aHH35gzpw5/OMf/2DatGkRxyxYsIDdu3fz1VdfMXfuXIqLi+nVqxf//Oc/j3ndbdu2cfbZZ9O8eXOWL1+O2+2O2P/II4+we/fu8Ovw++zevfuos6Zri1rdjVUfKAUmTeGQBQWFEEJEgd1uD/9HfW5uLgMHDmTFihU89NBD4WNSUlLCx7Ro0YLzzz+fkSNHMn78eIYNG1ap8vkXX3zB4MGDGTBgAIsWLcJiqZweuN3uSgnQ4fepzepcy05dY+g6mknD7pSWHSGEqK2UUpQGSqv08ga9KKXwBr1HfX8yL6VUjeLevHkzH330ETab7YTHTpw4kaKiIlasWBGx/aOPPqJfv34MHz6cf/3rX0dNdOq6+veJahGlwFB+bBYTTmnZEUKIWqssWEavxb2qfF7vnN78pe9fWPrdUi5rcxm3vXcba3cdewX/I62/Zj0J1oQq3fO///0viYmJBINBfD4fJpOJxx9//ITntW/fHoAff/wxYvull17KVVdddVLXqKukZSeWlIYKBrHYLNgSZEFBIYSob9buWsvS75Zyw+k3sPS7pVVKdKrr3HPP5bPPPmP9+vWMHDmSG264Ibz8yvFUtCJpmhax/eKLL2bZsmV88MEHMYm3NpCWnRhSCpThx2KzyurJQghRizktTtZfs77K55k0E3aznYAeYNRpo7i6/dUYyqjSfavK5XLRunVrAJ599lm6dOnC/PnzGTNmzHHP27JlCwB5eXkR2//xj38wZcoUhg4dyv/+9z/69u1b5ZhqO0l2YkiVl4qwO5xYHFVrphRCCHHqaJpW5e6kw1nNoUVjHZbolTY6GSaTibvuuotJkyZxzTXX4HQeO3l6+OGHSU5OrlRUW9M0nnrqKUwmExdccAFvvPEG/fr1i3Xop5R0Y8WUBkYQWwzLUQghhGjYrrjiCsxmM3Pnzg1vKygoID8/n59++okVK1Zw+eWXs3jxYubNm1epeDaEEp4nn3yS66+/ngsuuIBVq1adug9wCkjLTgyFurF8JCSlnvhgIYQQohosFgvjx49n9uzZ3HLLLUCotBKE1qJr0qQJZ599Nh9//DHdunU75nU0TWPu3LmYTCYuvPBC/vvf/1Ya31NXaaqm897qgcLCQtxuNx6Pp8ZFQf/3zBN4ft5LcnYGQZ+FsgPf0vm8PnQ857IoRSuEEKImvF4v27dvJy8vD4fj1HY7iao73u/rZL+/pRsrhgyloWkGdpdMOxdCCCHiRZKdGDJQmDBkQUEhhBAijiTZiSEjoGO2mHA6pWVHCCGEiBdJdmLICPox2yxSBFQIIYSII0l2Ykg3dCw2MzZnSrxDEUIIIRosSXZiRClQehCbzYrF4Yp3OEIIIUSDJclOrChA92NPTMRkscY7GiGEEKLBkmQnRhQaqAD2JFk9WQghhIgnSXZiRWloRpCERFk9WQghhIgnSXZixDA0TChsSTLtXAghhIgnSXZixFAKNANnggxOFkIIET07d+5k9OjR5OTkYLPZaN68OX/4wx/Yv39/+Jj+/fszYcKESucuXLgwohDowoUL0TSt0qu+ldGQQqAxogcNzGZwJEjLjhBCiOj44Ycf6N27N23btuWFF14gLy+Pr776ismTJ/Pmm2+ybt060tLSqnTN5ORktm7dGrGtvhQArSDJTowYuo7ZAk6XDFAWQggRHePGjcNms/H222/jdDoBaNasGV27dqVVq1bcfffdzJs3r0rX1DSNrKysWIRba0iyEyN6QMdus2BzyOrJQghR2ymlUGVlVTvJZEKz21E+HxhG5fcnQXM6T7oV5cCBAyxfvpwHH3wwnOhUyMrKYsSIEbz44os88cQTVfscDYAkOzFiBAPYEixYnNKyI4QQtZ0qK2Nrt+5VPs/V5yya/O1vFLzyCinDh/PzuHGUrPnopM9vt2kjWkLCSR373XffoZSiQ4cOR93foUMHDh48yK+//grAE088wTPPPBNxTDAYrDQex+PxkJgY+R/m55xzDm+++ebJfoxaT5KdWDF0bE47ZqvzxMcKIYSok0rWfETBK6+QPmYM++fPr1KiU11KqZM6bsSIEdx9990R25YuXcqMGTMitiUlJbFp06aIbUe2HNV1kuzEih7E7nKDSSa8CSFEbac5nbTbtLHqJ1Z0XQUCpI0eTeqIESfdhVVx35PVunVrNE1jy5YtXHrppZX2b9myhdTUVDIyMgBwu920bt064pjGjRsf5SOYKh1X30iyExMayjBwyBo7QghRJ2iadtLdSUdlDZUF0mI4ZTs9PZ1BgwbxxBNPMHHixIjWl/z8fJ5//nmuv/76ejeTKhqk2SEGlNLQCOJMlPE6Qgghoufxxx/H5/MxePBg3n//fXbu3Mlbb73FoEGDaNKkCQ8++GCVr6mUIj8/v9LLqEILVW0nyU4sKA1NU9hl2rkQQogoatOmDZ988gktW7bkyiuvpFWrVtx0002ce+65rF27tspr7AAUFhaSnZ1d6bV3794YfIL40NTJjnSqxwoLC3G73Xg8HpKTa5ag/O+ZJ9j/436sZi9nX3EBTU/vE6UohRBCRIPX62X79u3k5eXVu5WC66Pj/b5O9vtbWnZiQBkKzaSRkOSOdyhCCCFEgyfJTgwow8BisUipCCGEEKIWkGQnFnQDi03D5pRkRwghhIg3SXZiQSnsdhsWKRUhhBBCxJ0kOzGhY3fZwWyNdyBCCCFEgyfJTgxoKJyJiSALOwkhhBBxV+uTnXnz5tG5c2eSk5NJTk6md+/eEcXJvF4v48aNIz09ncTERIYPH86ePXviGHGoQoRNFhQUQgghaoVan+w0bdqUWbNmsXHjRj755BMGDBjAxRdfzFdffQXAxIkTef3113n55ZdZvXo1u3bt4rLLLotrzJpJw54g43WEEEKI2qDW18YaNmxYxPsHH3yQefPmsW7dOpo2bcr8+fNZvHgxAwYMAGDBggV06NCBdevWceaZZ8YjZExmE06XKy73FkIIIUSkWt+yczhd11myZAklJSX07t2bjRs3EggEGDhwYPiY9u3b06xZM9auXXvM6/h8PgoLCyNe0WQym3AmyrRzIYQQ9Yemabz66qvxDqNa6kSy8+WXX5KYmIjdbmfs2LEsW7aMjh07kp+fj81mIyUlJeL4zMxM8vPzj3m9mTNn4na7w6/c3NyoxmuymHG4pBtLCCFEdI0aNSpUoV3TsFqt5OXlMWXKFLxeb7xDq9XqRLLTrl07PvvsM9avX88tt9zCyJEj+frrr6t9valTp+LxeMKvnTt3RjFasFgt2BNkgLIQQojoGzJkCLt37+aHH35gzpw5/OMf/2DatGnxDqtWqxPJjs1mo3Xr1nTv3p2ZM2fSpUsXHnnkEbKysvD7/RQUFEQcv2fPHrKyso55PbvdHp7dVfGKJrPNjE0GKAshhIgBu91OVlYWubm5XHLJJQwcOJAVK1YAsH//fq6++mqaNGlCQkICnTp14oUXXog4v3///tx2221MmTKFtLQ0srKyuO+++yKO+e677+jbty8Oh4OOHTuGr3+4L7/8kgEDBuB0OklPT+emm26iuLg4vH/UqFFccsklzJgxg8zMTFJSUpg+fTrBYJDJkyeTlpZG06ZNWbBgQfQf0hHqRLJzJMMw8Pl8dO/eHavVysqVK8P7tm7dyo4dO+jdu3dcYjNpGnaHA4vDGZf7CyGEqDqlFAGfXqVX0K+jlCLoP/r7k3kppWoU9+bNm/noo4+w2WxAaDmW7t2788Ybb7B582ZuuukmrrvuOj7++OOI8xYtWoTL5WL9+vXMnj2b6dOnhxMawzC47LLLsNlsrF+/nieffJI777wz4vySkhIGDx5MamoqGzZs4OWXX+add95h/PjxEce9++677Nq1i/fff5+///3vTJs2jYsuuojU1FTWr1/P2LFjufnmm/n5559r9BxOpNbPxpo6dSpDhw6lWbNmFBUVsXjxYlatWsXy5ctxu92MGTOGSZMmkZaWRnJyMrfeeiu9e/eO20wsq8WMzeUEU61/tEIIIcoF/QZP/WF1lc/L7ZDG+TeexpY1u+jQJ4f/zfuSnVsOnPT5Nz3SD6vdXKV7/ve//yUxMZFgMIjP58NkMvH4448D0KRJE+64447wsbfeeivLly/npZdeomfPnuHtnTt3Dnd9tWnThscff5yVK1cyaNAg3nnnHb755huWL19OTk4OADNmzGDo0KHh8xcvXozX6+Wf//wnrvLZx48//jjDhg3joYceIjMzE4C0tDQeffRRTCYT7dq1Y/bs2ZSWlnLXXXcBoe/4WbNm8eGHH/K73/2uSs+hKmr9N/LevXu5/vrr2b17N263m86dO7N8+XIGDRoEwJw5czCZTAwfPhyfz8fgwYN54okn4hZvkt2K3emQ1ZOFEKIB2LnlAFvW7KLr+c359O2fqpToVNe5557LvHnzKCkpYc6cOVgsFoYPHw6EZi3PmDGDl156iV9++QW/34/P5yMhISHiGp07d454n52dzd69ewHYsmULubm54UQHqNRbsmXLFrp06RJOdAD69OmDYRhs3bo1nOycdtppmEyHOpEyMzM5/fTTw+/NZjPp6enhe8dKrU925s+ff9z9DoeDuXPnMnfu3FMU0fFZ7Q4SXDI4WQgh6hKLzcRNj/Sr8nmaBmarCT1o8JtBzejUvylV6Zmy2Ko+msTlctG6dWsAnn32Wbp06cL8+fMZM2YMf/nLX3jkkUd4+OGH6dSpEy6XiwkTJuD3+yOuYbVG1m7UNA3DMKocy4kc7T6n6t6Hq/XJTl3TpFlbbIkJJz5QCCFEraFpWpW7kw5ntoRa8y226l+jOkwmE3fddReTJk3immuuYc2aNVx88cVce+21QGj8zbfffkvHjh1P+podOnRg586d7N69m+zsbADWrVtX6ZiFCxdSUlISbt1Zs2ZNuLuqtqmTA5RrM7PNitluj3cYQgghGogrrrgCs9nM3LlzadOmDStWrOCjjz5iy5Yt3HzzzVWuFzlw4EDatm3LyJEj+fzzz/nggw+4++67I44ZMWIEDoeDkSNHsnnzZt577z1uvfVWrrvuunAXVm0iyU6UJTVvTkJmdrzDEEII0UBYLBbGjx/P7Nmzuf322+nWrRuDBw+mf//+ZGVlcckll1TpeiaTiWXLllFWVkbPnj258cYbefDBByOOSUhIYPny5Rw4cIAzzjiDyy+/nPPOOy88ULq20VRN573VA4WFhbjdbjweT9TX3BFCCFG7eL1etm/fTl5eHg6HI97hiBM43u/rZL+/pWVHCCGEEPWaJDtCCCGEqNck2RFCCCFEvSbJjhBCCCHqNUl2hBBCCFGvSbIjhBCiQZLJyHVDNH5PkuwIIYRoUCrKFZSWlsY5EnEyKn5PR5aZqAopFyGEEKJBMZvNpKSkhItPJiQkoEnx5lpHKUVpaSl79+4lJSUFs7n6pTgk2RFCCNHgZGVlAcS82raouZSUlPDvq7ok2RFCCNHgaJpGdnY2jRs3JhAIxDsccQxWq7VGLToVJNkRQgjRYJnN5qh8mYraTQYoCyGEEKJek2RHCCGEEPWaJDtCCCGEqNdkzA6HFiwqLCyMcyRCCCGEOFkV39snWnhQkh1g//79AOTm5sY5EiGEEEJUVVFREW63+5j7JdkB0tLSANixY8dxH5aIvsLCQnJzc9m5cyfJycnxDqfBkecfP/Ls40eefXxF8/krpSgqKiInJ+e4x0myA5hMoaFLbrdb/vDjJDk5WZ59HMnzjx959vEjzz6+ovX8T6aRQgYoCyGEEKJek2RHCCGEEPWaJDuA3W5n2rRp2O32eIfS4Mizjy95/vEjzz5+5NnHVzyev6ZONF9LCCGEEKIOk5YdIYQQQtRrkuwIIYQQol6TZEcIIYQQ9VqDT3bmzp1LixYtcDgc9OrVi48//jjeITUI9913H5qmRbzat28f77Dqpffff59hw4aRk5ODpmm8+uqrEfuVUtx7771kZ2fjdDoZOHAg3333XXyCrYdO9PxHjRpV6d/CkCFD4hNsPTNz5kzOOOMMkpKSaNy4MZdccglbt26NOMbr9TJu3DjS09NJTExk+PDh7NmzJ04R1x8n8+z79+9f6W9/7NixMYmnQSc7L774IpMmTWLatGls2rSJLl26MHjwYPbu3Rvv0BqE0047jd27d4dfH374YbxDqpdKSkro0qULc+fOPer+2bNn8+ijj/Lkk0+yfv16XC4XgwcPxuv1nuJI66cTPX+AIUOGRPxbeOGFF05hhPXX6tWrGTduHOvWrWPFihUEAgHOP/98SkpKwsdMnDiR119/nZdffpnVq1eza9cuLrvssjhGXT+czLMH+P3vfx/xtz979uzYBKQasJ49e6px48aF3+u6rnJyctTMmTPjGFXDMG3aNNWlS5d4h9HgAGrZsmXh94ZhqKysLPWXv/wlvK2goEDZ7Xb1wgsvxCHC+u3I56+UUiNHjlQXX3xxXOJpaPbu3asAtXr1aqVU6G/darWql19+OXzMli1bFKDWrl0brzDrpSOfvVJK9evXT/3hD384JfdvsC07fr+fjRs3MnDgwPA2k8nEwIEDWbt2bRwjazi+++47cnJyaNmyJSNGjGDHjh3xDqnB2b59O/n5+RH/DtxuN7169ZJ/B6fQqlWraNy4Me3ateOWW24JFycW0eXxeIBD9RA3btxIIBCI+Ptv3749zZo1k7//KDvy2Vd4/vnnadSoEaeffjpTp06ltLQ0JvdvsLWx9u3bh67rZGZmRmzPzMzkm2++iVNUDUevXr1YuHAh7dq1Y/fu3dx///2cc845bN68maSkpHiH12Dk5+cDHPXfQcU+EVtDhgzhsssuIy8vj23btnHXXXcxdOhQ1q5di9lsjnd49YZhGEyYMIE+ffpw+umnA6G/f5vNRkpKSsSx8vcfXUd79gDXXHMNzZs3Jycnhy+++II777yTrVu3snTp0qjH0GCTHRFfQ4cODf/cuXNnevXqRfPmzXnppZcYM2ZMHCMT4tT63e9+F/65U6dOdO7cmVatWrFq1SrOO++8OEZWv4wbN47NmzfL2MA4ONazv+mmm8I/d+rUiezsbM477zy2bdtGq1atohpDg+3GatSoEWazudKo+z179pCVlRWnqBqulJQU2rZty/fffx/vUBqUir91+XdQe7Rs2ZJGjRrJv4UoGj9+PP/973957733aNq0aXh7VlYWfr+fgoKCiOPl7z96jvXsj6ZXr14AMfnbb7DJjs1mo3v37qxcuTK8zTAMVq5cSe/eveMYWcNUXFzMtm3byM7OjncoDUpeXh5ZWVkR/w4KCwtZv369/DuIk59//pn9+/fLv4UoUEoxfvx4li1bxrvvvkteXl7E/u7du2O1WiP+/rdu3cqOHTvk77+GTvTsj+azzz4DiMnffoPuxpo0aRIjR46kR48e9OzZk4cffpiSkhJuuOGGeIdW791xxx0MGzaM5s2bs2vXLqZNm4bZbObqq6+Od2j1TnFxccR/KW3fvp3PPvuMtLQ0mjVrxoQJE/jzn/9MmzZtyMvL45577iEnJ4dLLrkkfkHXI8d7/mlpadx///0MHz6crKwstm3bxpQpU2jdujWDBw+OY9T1w7hx41i8eDH/+c9/SEpKCo/DcbvdOJ1O3G43Y8aMYdKkSaSlpZGcnMytt95K7969OfPMM+Mcfd12ome/bds2Fi9ezAUXXEB6ejpffPEFEydOpG/fvnTu3Dn6AZ2SOV+12GOPPaaaNWumbDab6tmzp1q3bl28Q2oQrrrqKpWdna1sNptq0qSJuuqqq9T3338f77Dqpffee08BlV4jR45USoWmn99zzz0qMzNT2e12dd5556mtW7fGN+h65HjPv7S0VJ1//vkqIyNDWa1W1bx5c/X73/9e5efnxzvseuFozx1QCxYsCB9TVlam/u///k+lpqaqhIQEdemll6rdu3fHL+h64kTPfseOHapv374qLS1N2e121bp1azV58mTl8XhiEo9UPRdCCCFEvdZgx+wIIYQQomGQZEcIIYQQ9ZokO0IIIYSo1yTZEUIIIUS9JsmOEEIIIeo1SXaEEEIIUa9JsiOEEEKIek2SHSGEEELUa5LsCCHESdA0jVdffTXeYQghqkGSHSEakFGjRqFpGrNmzYrY/uqrr6JpWpyiCtE07aivJUuWxDWuCrt372bo0KHxDoOFCxeSkpIS7zCEqFMk2RGigXE4HDz00EMcPHgw3qFUsmDBAnbv3h3xindBUr/fD0BWVhZ2uz2usQghqkeSHSEamIEDB5KVlcXMmTOPuv++++7jN7/5TcS2hx9+mBYtWoTfjxo1iksuuYQZM2aQmZlJSkoK06dPJxgMMnnyZNLS0mjatCkLFiyoUmwpKSlkZWVFvBwOBwCjR4+mc+fO+Hw+IJSEdO3aleuvvx6AH3/8MdwSdNZZZ+FwODj99NNZvXp1xD02b97M0KFDSUxMJDMzk+uuu459+/aF9/fv35/x48czYcIEGjVqFK4+fng3VsW9XnrpJc455xycTidnnHEG3377LRs2bKBHjx4kJiYydOhQfv3114j7P/PMM3To0AGHw0H79u154oknwvsqrrt06VLOPfdcEhIS6NKlC2vXrgVg1apV3HDDDXg8nnDL13333QfAE088QZs2bXA4HGRmZnL55ZdX6dkLUZ9JsiNEA2M2m5kxYwaPPfYYP//8c7Wv8+6777Jr1y7ef/99/v73vzNt2jQuuugiUlNTWb9+PWPHjuXmm2+u0T0O9+ijj1JSUsIf//hHAO6++24KCgp4/PHHI46bPHkyt99+O59++im9e/dm2LBh7N+/H4CCggIGDBhA165d+eSTT3jrrbfYs2cPV155ZcQ1Fi1ahM1mY82aNTz55JPHjGnatGn86U9/YtOmTVgsFq655hqmTJnCI488wgcffMD333/PvffeGz7++eef59577+XBBx9ky5YtzJgxg3vuuYdFixZFXPfuu+/mjjvu4LPPPqNt27ZcffXVBINBzjrrLB5++GGSk5PDLV933HEHn3zyCbfddhvTp09n69atvPXWW/Tt27dGz1uIeiUmtdSFELXSyJEj1cUXX6yUUurMM89Uo0ePVkoptWzZMlXxfwfTpk1TXbp0iThvzpw5qnnz5hHXad68udJ1PbytXbt26pxzzgm/DwaDyuVyqRdeeOGkYgOUw+FQLpcr4vXTTz+Fj/noo4+U1WpV99xzj7JYLOqDDz4I79u+fbsC1KxZs8LbAoGAatq0qXrooYeUUko98MAD6vzzz4+4786dOxWgtm7dqpRSql+/fqpr165HjW/ZsmUR93rmmWfC+1944QUFqJUrV4a3zZw5U7Vr1y78vlWrVmrx4sUR133ggQdU7969j3ndr776SgFqy5YtSimlFixYoNxud8Q1XnnlFZWcnKwKCwsrxS2EUMoStyxLCBFXDz30EAMGDOCOO+6o1vmnnXYaJtOhxuHMzExOP/308Huz2Ux6ejp79+496WvOmTOHgQMHRmzLyckJ/9y7d2/uuOMOHnjgAe68807OPvvsStfo3bt3+GeLxUKPHj3YsmULAJ9//jnvvfceiYmJlc7btm0bbdu2BaB79+4nFW/nzp3DP2dmZgLQqVOniG0Vn7+kpIRt27YxZswYfv/734ePCQaDuN3uY143OzsbgL1799K+ffujxjFo0CCaN29Oy5YtGTJkCEOGDOHSSy8lISHhpD6HEPWdJDtCNFB9+/Zl8ODBTJ06lVGjRoW3m0wmlFIRxwYCgUrnW63WiPeaph11m2EYJx1TVlYWrVu3PuZ+wzBYs2YNZrOZ77///qSvW6G4uJhhw4bx0EMPVdpXkVQAuFyuk7re4Z+3YjbbkdsqPn9xcTEATz/9NL169Yq4jtlsPuF1j/cck5KS2LRpE6tWreLtt9/m3nvv5b777mPDhg0yc0sIZMyOEA3arFmzeP3118MDYAEyMjLIz8+PSHg+++yzOERX2V/+8he++eYbVq9ezVtvvXXUAdDr1q0L/xwMBtm4cSMdOnQAoFu3bnz11Ve0aNGC1q1bR7xONsGprszMTHJycvjhhx8q3TsvL++kr2Oz2dB1vdJ2i8XCwIEDmT17Nl988QU//vgj7777bjQ/ghB1lrTsCNGAderUiREjRvDoo4+Gt/Xv359ff/2V2bNnc/nll/PWW2/x5ptvkpycHPN4CgoKyM/Pj9iWlJSEy+Xi008/5d577+Xf//43ffr04e9//zt/+MMf6NevHy1btgwfP3fuXNq0aUOHDh2YM2cOBw8eZPTo0QCMGzeOp59+mquvvpopU6aQlpbG999/z5IlS3jmmWcqtbBE2/33389tt92G2+1myJAh+Hw+PvnkEw4ePMikSZNO6hotWrSguLiYlStX0qVLFxISEnj33Xf54Ycf6Nu3L6mpqfzvf//DMAzatWsX088jRF0hLTtCNHDTp0+P6CLp0KEDTzzxBHPnzqVLly58/PHH1R7XU1U33HAD2dnZEa/HHnsMr9fLtddey6hRoxg2bBgAN910E+eeey7XXXddREvHrFmzmDVrFl26dOHDDz/ktddeo1GjRkBo/M+aNWvQdZ3zzz+fTp06MWHCBFJSUiLGH8XKjTfeyDPPPMOCBQvo1KkT/fr1Y+HChVVq2TnrrLMYO3YsV111FRkZGcyePZuUlBSWLl3KgAED6NChA08++SQvvPACp512Wgw/jRB1h6aO7JwXQog66McffyQvL49PP/200jpBQoiGTVp2hBBCCFGvSbIjhIi5GTNmkJiYeNRXbag3JYSo36QbSwgRcwcOHODAgQNH3ed0OmnSpMkpjkgI0ZBIsiOEEEKIek26sYQQQghRr0myI4QQQoh6TZIdIYQQQtRrkuwIIYQQol6TZEcIIYQQ9ZokO0IIIYSo1yTZEUIIIUS9JsmOEEIIIeq1/wewwf9o7vHCaQAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAG6CAYAAADZHEiPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wkZ33/31O2F/VeTzpd7z7fnX3nbtywwRSDjWnGgCEQyC+UJCSkQBISepxQklBTILSYgMEG425f71U6nXovK2l7mfL8/pjVSjpJZ9357ixg3vfa25nZmWeeGc3OfPbbHkkIIbCxsbGxsbGxsbnkyK90B2xsbGxsbGxsfl+whZeNjY2NjY2NzWXCFl42NjY2NjY2NpcJW3jZ2NjY2NjY2FwmbOFlY2NjY2NjY3OZsIWXjY2NjY2Njc1lwhZeNjY2NjY2NjaXCVt42djY2NjY2NhcJmzhZWNjY2NjY2NzmbCFl42NjY2NjY3NZcIWXjY2NjY2NjY2lwlbeNnY2NjY2NjYXCZs4WVjY2NjY2Njc5mwhZeNjY2NjY2NzWXCFl42NjY2NjY2NpcJW3jZ2NjY2NjY2Fwm1Fe6AzY2NjY2NjY2F4Wjf33p97Hu5e3DFl6AaZr09/cTCASQJOmV7o6NjY2NjY3NAhBCEI1GqaysRJZ/O5x4tvAC+vv7qampeaW7YWNjY2NjY3MB9PT0UF1d/Up3Y0HYwgsIBAKA9YcLBoOvcG9sbGxsbGxsFkIkEqGmpib3HP9twBZekHMvBoNBW3jZ2NjY2Nj8lvHbFCb0ijpEn3vuOe666y4qKyuRJImf/vSnMz4XQvCXf/mXVFRU4PF4uPnmm2ltbZ2xztjYGPfffz/BYJD8/HwefPBBYrHYZTwKGxsbGxsbG5uF8YoKr3g8zvr16/nKV74y5+ef/exnefjhh/n617/Onj178Pl83HrrraRSqdw6999/PydOnOCJJ57g0Ucf5bnnnuO9733v5ToEGxsbGxsbG5sFIwkhxCvdCbDMhI888gh33303YFm7Kisr+chHPsJHP/pRAMLhMGVlZXznO9/h3nvv5dSpU6xatYp9+/axefNmAB5//HHuuOMOent7qaysXNC+I5EIeXl5hMPhc7sadf1cBwCKsrB1AdRpXt7f5XUNA851iS2GdRXF+vsBmKb1WszryrL1WizrCmGd48W87vl8PxfDurD4vsv2PcKatu8R57/uhX6X1ZeOhpr1/D761y+5zcvmd7WcREdHB4ODg9x88825ZXl5eWzdupVdu3Zx7733smvXLvLz83OiC+Dmm29GlmX27NnD6173ujnbTqfTpNPp3HwkEllYp771rfk/q62F226bmv+P/5j/5lNRAXfdNTX/ve/BNCveDEpKYPpx/PCHMJ8rtaAA7rlnav6RR2B8fO51/X54y1um5n/+cxgZmXtdtxve/vap+cceg4GBuddVVXjXu6bmn3gCurvnXhdgunXy6aehvX3+dd/1rqkv4vPPw+nT86/79rdb/QbYtQtOnpx/3fvug8nAzL174ejR+de95x7rPAMcOgQHDsy/7uteZ/39AI4dgz175l/3zjth8ofCqVPw4ovzr3vbbdb1BnDmDDzzzPzr3nwzNDRY052d8JvfzL/u9dfDsmXWdG8vPP74/Otu3w6rV1vTAwPw6KPzr7t1K6xfb02PjlrX5XxccYX1ApiYgB/9aP51162Dbdus6VgMvv/9+dddtQp27LCmUynr+zkfy5ZZ5wKs7/C5vvcNDdY5nsS+R1jY9whr2r5HWNPZe0TOznO2yJ1+jxgZmbpHLMB7Jc4l/hYpi1Z4DQ4OAlBWVjZjeVlZWe6zwcFBSktLZ3yuqiqFhYW5debiM5/5DH/zN39zkXtsY2NjY7PYEFkLijCM3LvQdcyeHiSvFxQFaXwcKRYDSUKSZZBkkKWpedPkQkO3hWmCELl3ps2LUAhhCjB0GBpCCoWm1psuTgQYZ85ANApCILW1IQ0MzFon+x9mczNiYgIhBFJXF0pv75S1bAYSZstpRCJpzfX2IPf3n7WKlF3T6oPQNBAgDfQj9/XNFD45YQVGXj4imW13aAilo2NaP2di+vyY6Yw1Mz6O2tkFgL5330ucXUjE4y+5zmJj0boad+7cyfbt2+nv76eioiK33pve9CYkSeIHP/gBf//3f893v/tdWlpaZrRVWlrK3/zN3/D+979/zn3NZfGqqamxXY2XYl3bjXDx1/1dcSNcznUXg/vQvkfMve7L/C4L00RomvUSApHREFoGMx5HJBKYqVTucwwjZ3WRFAUhSVPXjshmxsmToku2RJciI6kOcKhIqookW8slhwPJ4QBZRpIkqx+6jjCy77qGyGQgoyGECYaZFVVm7vslJBlJlqxDEiaYwtr/NJGUy9abvlwIa31rjdnnTFHm/y6ffa7P+b0/a11JnrqGJwWi1cnZ/Z3eByFwVJRjxhMY4fDs7hYUIAcCaP39C3I1OiorMeNxjHCYSDxO1atutl2NF4Py8nIAhoaGZgivoaEhNmzYkFtneHh4xna6rjM2Npbbfi5cLhcul+v8O7UAf7O97llMf9D8Nqw7/SZkr7uwdSVp4dfEYlgX7HUX07ov8f0Uuj4lrCZfmQxmMomZTCJS6azQ0UHXrG3AEk5qViy5PTgbGzHTGUQiMWsfst+H7PagjYxMiSLTnDmdzmAmU2CaOKur0CNRjNGeKd0jAFlGLSpCCQbI9I1nhZuCJGcFWvaFLCNlj1stLsZMJTFjsy03k/3SR0cXdCoXa1sAKAruVSvJ9PbOaFP2+3BWV5Pp7UVZQC0uIQSy34+zuopERw+GNo9LexGzaIXXkiVLKC8v58knn8wJrUgkwp49e3KWrKuuuoqJiQkOHDjAFdm4kKeeegrTNNm6desr1XUbGxsbmwUw6fabElST72nMRBIzlcx+poOuW+5CCcs6paowKaxcLmSfz5qfp56T0DRctTXnfPBLk1ZJRTm3a1FR8K5dc8621Mk4r5fATCVz28zX1kK5mG1JTifOkmIyPT2z26qpwQgvLDZaCIHIWh0ToRCeNWuIPPEbMt3d+LbvwF1dTbK7j/jzL5CZsFyprm07ECZogwNo7WeYMhQKTCFwFRdS/a57cdfXMHHg1IKPabHwigqvWCzGmTNncvMdHR0cPnyYwsJCamtr+aM/+iP+9m//lqamJpYsWcInP/lJKisrc+7IlStXctttt/Ge97yHr3/962iaxgc/+EHuvffeBWc02tjY2NhcXGbEVU0TVpPuMn1oyLJWZTLTrFW6tZ0k5axVzro6y+oST1gCa5p17HytLrLbgzY6OkOYTAoSbXQU2e2Z07rz29yWHomh+P1WWyOjSC43Ijo78WIusWpEwih5QZw1NWQ6OzFjEaTJtoZHiB84iDY4CG4PzmUrEAJij/0C7UwrZiyG++ZbcazfjKEbhN8/lXjh2341VV/4AhM/GcS9fBmh1kH8bhj9zN/l1klXb8I0Qd53CNfPvzurb5GCEo40rGHddaupunbjgs7NYuIVFV779+/nhhtuyM3/8R//MQDveMc7+M53vsPHP/5x4vE4733ve5mYmGDHjh08/vjjuCczUYD//u//5oMf/CA33XQTsizzhje8gYcffviyH4vNS6MbJrop0AwTzRDohknGMBECZFlClkCWJKTsu/WybgrKS3w+H6YpMIT1K0kIMIXAzL5bIRVixrLctJmNA5HI7nvu/crTl8kL75fNhSGyfx8hBAJyf1emTQtAlSUMU6Ab2b/9tO1VRUKRZZIZA4G1wdTnIJhqUwBORaLQ5yIUS5PWp+JfXKpMkX/28nMx3zaLsS0hBG4FioIeQmMxUomk5XbTDTANyw03GbCuaVZcl5bB7fdRsnoZI0dOkBwNgW6JL09JESVXbmR43yGSYxOWxUqxrFaoHvAos74zRR4v3upqRlraSIWjgOVKdOcFKKmuIREaIxSZJ9szewxEwuD14ZEc5HudDHz1a5Q98E4m9u0n/+67Ge/tRzp8iOGvfAVhzDxfUmkZrg9+GADtlz/H2L3L2v9NN1Hz8Y8x3jtAXnExE3v2kn/7bfT+xSfJHD+OkU6j3HY76uYrQZgkP/0py2QjwP2B9yMXFmC0d5D+7+8hKwqK241r9Woq/vzPCe/ZTd7rX0+4/QyiuYXhL30ZoesojQ243/pmAFI/+AnGyebJC9Y6TgGOa69jyd99mqFT7RTXVxB97gUKXnsXvY/+horbb6T9sefQ//YT2ZMz40yh3f9uKCxA6u1GfeQHgEAuKKDpl79Arall7OmnKdzWQM9DDxF/cWduS6OugfTr7kMArn37UdusmOtocQUp2Y9AkOdyI+ka+PxoI6OM/+Ypih98kIFDxyhauYxdP3gUV1U9AuuQ9naeIWNCUTJFY0U9JiCQct/vire/ledGJnjmxzu5b6mb3zZeUeF1/fXXc67YfkmS+NSnPsWnPvWpedcpLCzke9/73qXons0CEUKgGZag0g2BZpq56ZRmkNQM0rpJRjfRTZOqfA/hhEYonsl+9wWTgRLFPicBj4POUesXnixJIFmxrjKW+JEkyRJqQFWBh2TGIJbWUWUZSQLdNDFMgd/lwOdU6JlIZh/Y2QezEBjC2u30h/KSYi+RpE4onkZCsh7KZ/WrYyQGWEJwzn5l36vzPSS1qX5ND5fyu1Q8ToWR6FSCx7koCbhyx3g2vyttAficMnVFftpHw4wnk1Z4DSZBl4sV5YWcHAgxFktbwgim3qcJMQSYCIp8HjZWl3Csf5SRaDIrsCRKAh6uqC3hQNcwo3Grb3LuYW+9CyHIGJDRDTQdNFNQ6ndz86pyHj3aR8dInLoiH3etr+JH+7tpH4nnxJo5R18mE9Qm12ks8XHf1jr+b08XrUMxmsr83L+1jm+92E7r0PmNujG5rdVWlKayQK6t04PhbIdmZtMhTCRhWhlv2ew6yTRpqsjn/pvW8bNnjtDaPcyy6mLuu+0KvvPTXbR2DpF9wlvbwExXnCRZgerZV1PHBPfdfiWPPn6Q1t5RmupKecsVG/j2r47Q2juW3SiTfWUR2S8lIGWnm0YzvPW2K8lvWsL3HttLa88wTdWlvGXzOnTT5Ee7mjnTNWh9F02DZcf2EIiM4Y+M449M4I+Oo+o6T7zmrYyWV7HK72T9V7+Ky+el6MEHOdHSwZLaSp57YS91PT2zzu9EMs3je60yE5taOmjq7wPg8OGTPP+zp3jjq69j9JFHKLvvXkLf/CaxaaOv7D3ZTpvIA0ze2N+PnH3W/eRIB7G8cUr7u7l+YBADMIDMmTY8y5Zl+9VGQ209z/77f1I3YGXo9zh8PL2/D4HENV0j1IbGOJujzb0888NnecsbrmH0pz+l/O1vJfTNb+KurOZrP3qe9uNtvDcWnfNa+lKXQf+4Qt2IzB/HreswZCo8/F/7+dLbtlJy6y2EvvlN4i/uJKU4iDp9RJw+TsoVfL0zHwFsKb6aMu9Kwi4fZ9zV9HXnAeC85a/IyCpIEu+/vpGP3bqcIz0TrN2whs/9qoWvnXLDlR+c6sykEdN/JWy9clZfrxHF/PPdG/nX59pRGstmfb7YWTRZja8kCy6gaoNmmIzHMyQylqBKajppTWCYltDSTWvaynIRyJKMKkvZl4yqSOR7HSwp9tEzlpzx0Pa7VGqKPPSErOU5q4Y507oxJaAg6FFZVh6guT9CKG7dxGVJosDnYEVFkNODUSIpfZa1TGKmUJpr//P1izn6Mmktm9WvgQhjcS33A6PA62RVVZCTfRHGE9MeOudgvm0Wa1v5Xgerq/I42htiNJbAEAamMDDJvgsTQxgYpoYuNPTsuyEMqvIKuXnpen7ZfJCOsWFq80q5c9UmHjl+kDOjo5aRxQRDSLnp3DIDDDE1vaKsmPdds5F/efYQh3pGWVVewh/ftIHPPH6YPR2j1o8FHTTDemWy0/o8yZHXNBXzz/dt5Af7enjzlTX84fcP8XzreQQX221dUFvXNBXz9fs3oY+M8D/tSe7fWotqaOz/xN8iP/MEP2y6kZ8uvRaAH/7ikwS05IztTST+4cr7eb5qA4pp8E/lo9zxwbfScqqL5euW8rlftfCjxw5QGZvdt5Tq5HSBVQ+rKjZCUdLKyBv15NHvL7FExM1LaTnRwfJV9fzH95/mf5+1Yo76/CWEPJbwWDtyJidUWwpqSatO/JkEDeGp0g2vv24lb7/vBlpOdub69T+PH7L6JUlEHR66g+W5vvgzCUvskrUGSRKvveNK9o5orKnK42OvaqK5pYcVy6r58mPHOTScZk1FgMd/Pnf9r15/CZriwK2nqYiH+PsHruFIxygvxhz8+9s349QzaIqD9313DytqitiypJAHvv3S5R4m+fYDVzIcSXHr6nJePDPKq9dV8tixPq5qLOGpE/2UBt38v//ciSoJVMlEQeSmVUmgMjV999WrqCwKcs36Jgb7R6isLrOzGm1+94indUZjaQYmUoSTGcv9J0moiowiSzgUGbfDEleKfG4XW0oz6RlLzhAzc4kuwxRkDMtSltHNqelp75pu0joc47Y15Zw41EfbSIwlxT6uXFLNj/b30DF6fjVelhT7eN3Gah451EvHaDw3/8N9F6etrQ1FF9SvEwPhy96WJSJNBAITy0Iy+S4wMYXJ0p4A913ZxH/u6eHU4CiNJXm866q1fOmpAxzuGSVjWO4+y7UMumkJG83yUKGbkrXcgAe2N/CjExF+8OIh/vm+Tfwg1MOrmmp4738cAiRWVzby9WfPUTxzGu+7roEjXRHe33VoxsP/D/77EACvWrFkQW2pMrz/+gZOD0bY3xHi0cO9PHRdI9/b1U7HYIjXry9lWVmQ7+9pJ2ucRZKz79LMlyzBPZsbaB+JcLhnlCdPWW3974F2JuJjvH1bKQ0lQX5ycJ5+TX6tTIFk6LxhUwMd/WMcbevgmcNBHrpuJT/d1UxsoJt3riujobyAR3a1ABKCKateblpMNfyX927jRPcoP9l5hqcPd/HQdU08srOVyMAgn7plKatri/nU/+ye0Y1Z/co2+sk3b+Nk1zCPvHCcZw8HeOi6VfzfzpPEe1v59M2rWV1Xyt9+79lpLt6ZFsf82AQNwx2UhUdYJydwPNlFaOcqKr/8ZR66rpKMZvDU332Ful9ZRTbXpofocsdBgkONGwGJMX9B7hX25mEoKp/aXoMEXLf9Vna1DrJ9fRMvnujmD65bQqVqWd8febF5xqnxAhuIWwvc3uwSeGj7CiQJXrd9Cbta+nNtveGe65AryxEC/vfFZmqwvk+iZiozfwUaQmjgAgIVvH7HCiTg9duXs/P0ADvWN/HCiW7+4NollCuWVfaRF5splASFUtQ6S1434AakGad/ZXUe7729DsM02dXcx/bV9ew60c37b1llFRY/0cmZWg+qJHLCRslOb2MMBTP3WWmxl4eu3M67DRPTNDh0opm161bzjQe2IisK3Z1d/GlZ+9S1nr2yJCGmvguS1UMJwdq8KyhaVsNAVxc3Lyun+eB+blq1hrHBfl63uY7xoSH+pLw7lzwhDAVZFkiKIB3zoSW8uLwp3IEkZXEnp58aJfJiki2vr57jy7K4sYWXzbyYpmAiqTEcSTEUSZHUDHxOlbKg5yXF1XwIIRiNZdjVHkKS4N4ra9jdEeLVayv48PcP8VzrKBndclWa52GLvebg1K/rO9ZW8N7/3H/Bv9QfOz5ot7UA3nddA880R3im+WC2LS9vvrKG9/3XQQDWVdZPEzcvfb0c6Ynwz/dt5A+/f4gf7Ovhoesa+ddn21Ak+PK9G/nYjw+T55VRZVAVaca7cta8LpJ87a2b+Mozx9nVMcBD1zXym+Zuti9z8/atq/jhwVO861o/DiQckoQqgSrAaQIGKAIU0wQhUeHR+eC9mzja2sPaphqOtHbz+itqaAwK1jfV8uS+k9y/wjMzZkbM/V5mpnjLnRs40tzN+uU1HGnp5o61NVQ5BeuX1fLknpPcWeaZebpMgaxpKJk0SiKJqqVA0ykfcHHv3ddz/GAzazY1cPxQM7dvXEKNyLBm0wqe+9Uu7s4zc+deksQ0jTMVw4gEUmiQt92wjqsq3dTWV3PiyCnu2NTAmkKZpcsbOLT3KG8smbQkSbnjmXSpSqaGoqdRtDjOvkLeeuM1bC+VqVrawKn9h7ht00rWBCQa1qzg6Au7eVNwHNnQyetowz0WwjUxQdctt4AsUzhwkuq9z8y4NuIv7iT6q19T8MY3IEuCquUVlH7uszR3d5OXSHCfy3LHiRs2AJAPWLXYdSAEwAp3Neu2X0X7iZNsXtpI8/6DbF6zit4zZ3jrTWs5unMnrvyhWdelJM2+Ea3wVrH26qvpOHmSzY2NNB84wObVq+lrO8PbblrLsZ078RQNZM/W1B/Tum1KOWGCBMsCVazaejXdzSfZ0thI2+FDbFmxkv6OM7z95nWc3LOTYOnwpKc3F54xdWlN9a8sNYhTbcA0YEtTOS0HD7B5zVpkWUZWFAoSQ9ziD+Ws/FK2f5PXgZxdKEsS2nAfLKlBUWQG204zdmQ3IwE3lctWAKCNDtKU58hdR5PHM/2IJbJebkMmNhyioKSEiro62vefpG3nKbRxNyuvWcmRp3roONRDdLAJLaOiaypCSDQ09VFQEKVroIDoSAH+ihHK8lLIJkRDKaKhFHmV51EuaJFgCy+bWaR1g7F4hv6JJONxDVMIVpQHMEzmjedxO2VGo7NdVGPxDGeGo7QOxziTfU0ktdznpilyD9hfHJt/tAGnIuNQJZyKjFOVs/Myrux7MqPzfOsID13XyKNH+zBMnasa87JbT781TQZOi9wNDKZicECQ0GI8c7qfh65r5KeHO4lrETbVO8/7PALEtciMtqJamA11jln7z/Vo1j1+qu8T6RBPtVhWkp8camM8Pcqa2rn2OvVUnIzFETCj3tBYaoQnW3pybY2lRlhdY7ldJ2/J1g158tac/V+auqmmjQRfvX8TX/zN0dwx/uxIJ6urnHzwhjX82wsnuH29F4diCSKHIqEq4FCkmctky7LkkHX2dLbyrXdegUCiZbCfB7bX8a4d9ezpaOGOdSa3r83PHaUkSTNiRCVJmhYsn+ZQ7xn++OZ1CCE41d/LtUsruW5pJU8fPoUxMk6VAYZuYhpm9thAUmRLgckgXJYlN5QO09LTx+ZVS2ju6qFnaACnA7asaqClqwchUlSWeObtE5BbJkjR2T/AlrUNVlsjA7hcsGWNNS/kFNVVXoShQyqNnEiixOJWBfCMDg4FfG6Ew0v18iqG+gbYdPU6Wg6foOtkM5KUZtNV6+hr76KyLo9oohc3LhRJIS4SZMjgwYNbchEXcaIijlfyMNLRTnuRh6XLmzjVepzeU2fw+Z0sXd7AsdbDjHR0UprnotO0hvapkapQkOjTOjH0KOUZF15JZsgdZ3frr/GUBWlcs57WY3vZ//T/oPZeReNtr6Hrs//AyXgbqbpaajL5VD75RO56KjES6ME8Out03LVFOIurMIqLSW1uYPvr34Pi9tB59DBVq1ax4r43c2DfkySGZWLuFP1SL6WigDrKGCNCm9RPAC8rRC1J0hyXOih3LaHvdDMNq1fxfzv/i5Mt+7lb3MPKzdvZd/JZYs4Iqj9DEC9n6GNcilInyiilgD5G6ZdGc/sQTo2dJ59ky4rr6Dh4gNNHd9OcOskd295M/+lmvC6ZjkAnAFewFAcqR6V2UmRYRS35so/Too8xIjQ51zLS1kLV8uU8vucHRM604xAaNeuvYM+pp5CdOqVBFwkzzVHaUYTCJtGEQLBHtACCDaIRh1AIOyZ44fCTbF19vZVAYpiYJgx3RpAYYiKaonfMiw8XefhIkWacOC5JpUgKYgiTYSZQkNgUzMPMJDlzdJz6dUtx+/MoqqzgzMEBDv9mN84MiJDGBA7SOHAbDmThIImbDG6cgSibl7QiDTzJzoG/oPVwM++9+asYt32WqlXLiIz7adpWyS+/doyeU5Pxap4Zd7Lg6K/ZmHiWUelqYsHV+KQBcKxhwnOaqpvD3HjDGxHqRY6WepluxIVgCy+bHNGUxmg0TX84RTSl41JlCn1OHIqMYfKS8U8TiQxnRqYEVutwjLH4bDEmS1BX5OM16yt5+1X1nOgP887t9aypzGMiqeWElVORcSgSkmzFB+mmFQdkvetopkZaT5IxMxT7fFxdW8qJ4Q5etaoKl7ePvujI1ANPmhI1OSFyFpNCoypQwrX1lZwY7uD2NVX4AyMMREMXdE4rAkVcUzfZVjWBwCiDsTGyIfnWfqUpqZP7tShJuc9XFNcQTscBia3VNbQM9nLX2lpKfZYFIt/r5/TQzGE+Jts6m2VllUwkLPfHloY6Tg/2c9faOsp8mWxbPk4P9s/abm6DlcaR7jN84vYNAJwe7Of2NTXcvqaGPa0t1PmT1HpdmMJEFjLj6RCjmUECch6lajV9qW6OxHcSkArY7L6JYa2f/+76K3ZPXMufXfkJUhGdZEGcjz33MW5yvI1wSOe/E3/PmDnI69wfolpdymPJb3HGOMx1zjeyznkde9K/ZK/2GGsd1/DW2vdxwH2AlcXLOTG+n8aSO+mP9/ORE2/BK/n5WOUXcDhk/qLzPQB8auk/EXT6+Ye2TzCY7uf/NfwZjYFVfKvva3zmhZ38dfLTvHbFnYyIbior8vi3g9/gwfUPsHPoGb7U/DmW+VfwsaY/py/Zy183/xl+NcCX1n4VgPccehsA39j6XZZWV/IXz/8FH9/6cQxHnKVllXx57z/xreZv8q6ad3JVZg0/G/05Pzee5Xqxkfsdr2Z/oIt/Tf+QZeoSPhZ4L33GEF8YfZjPr/o8I909NK5exi7HPnY01dPTdYaahqV85emv82jmF3zU/x6WOxr4XuznHNROcL/3tVzv2sYzyX08mnqKG1zbeH/l2+na+RNOvJDgzjd/gpqCCvzFRXz3sc8gf/OHXOlajRZPEE61oBqCClct6Xvu4gs8wtrD42zZ5UQ1JEaanDx8RxyfvhzXp35K44f/iKLCNeRffwu9H/gAyRd3cnqHzLHGXj7qegORlfXscXcxUuzkroAXw6nycNVuuB++KL+J9VfdwmPpPeguBck0caoSuqljSgJ3fSkNxfU8tfNzPCr2cr20ljVyFc3mKN8XT7GcKq5UGoiIMN83nyJfWcaOJbfQfXAPN2x+DeN5Ok1Lr6Bn/24ezTxFgbuAQsaows0e5RgHpHbeYl5DIwW0SO08Ku3nerGGNZST8Zp8t/+HPDv8PB+/+s/AA2VNK/mTpz/K56/9PKMdZ/gvyRrzcJNWict083PHTgbkCT6afjVFegXPug5yQO1kq/oqVtY28L3nvs5rrnob+7zPUrl8HU+88D3+N/081xdfTcNEnIg8xnd8vyFgutkWr0JI8GPnHorjVdRNbMBIBek+HseXdDF21WPcdf/tbLjySg79uovDRw/xtg/exncf/ynBga1oTMWvOwATmByFU6UIAPdvPgk/fp5Ho//KjeOb2HhLHcI0+b9fPIGnvya7dn7ubjA9LUQCwnoIydDoUa24uJRwIB3+LwbjQ4xXf5mNt9Rx5sAQIt3HgarnSDgjfFjTWZI4xIerHDR7k3xjqB9XKs1T5ft4wneCD6eD5DXcytPjTxLKS3F74M2kY/NntS5WbOH1e45hCsYTGYbCKUaiaVKagd/toCLPPS3by7J09YSm4rIGwkniaZ3tTcV89rEWHjncN2cGmyxBTYGXpaV+mkr9NJb6WVLso8jnoqbQQ/tohFgmwZnRNFsaijgx2M9IPELUSKPpaTJGygrEFgam0DEwmdJQEgiZykAJV9eu4ekzx+mPTtA3HuW6xo280NHMQDSMImetN9nMwknT+mTG5GSg/bJiKw6jqbiS/b1nGImHCSfTXFu/kdaRfoQEp0f6c+6VqUy2KduVyAbYryytAmBVWRXPtbcwEJ2gfyLOtQ3rOT7YBwhODPWd828jhAANBolzw8qVCAFP7T1F3+A4HaXj3Lh1JRLWsuiwPmXunzzG7CnKCTtJYkSLsmPzcoSAnftbGByZoL9knKuvWI4kwYv7W8iMzI4uF0Kgo5ESSQJyHkIImrWDOHyCjbV1OFUnnROnqSwMMhofJRUy+FHXtzip7eUG1z2scVzD7tTz7NUfY426nRs89zKkD3Eg+TSVSgNXem6ipqSIUNsQj7Y9yv2VD7B+WS3fPv5tdvXv4tOv/1u6Tw/yw2bAhDIv1LlkvDpgQKFHYokPWiKABqUBF6/aupJvPf8tTo2f4IE1D9Db08upQStDTVEkqv3Z4KssfkXgk6eioRRJIEkCJVs76vRQK8NlY1y7ZAffPv5tjg+eoLWgC5dz4dZQr8dNa3cX+wYO8L+t/8sDax6gv7ubI217AXBpBgyOWlY3ALcLvD7IqHDW12tX/y7+8oVP8vlrPkd4ZIQH1jzArzp/xY2V19NzqpljQ4etvx0Cx5EjXD0wysawYG1iF77YXt4YHiFyswPnOiflDUvwffc7xF/cybhRT9GDDzI+PsLhnT/jj/OvwL1yFaFvfIO12X2bzgHSCAqlPAr1JM6oVQ0+kHLx4fUfIi+qML5nN96f/ISiBx9k5Cc/YjwWxvjIg6xZEWSg40kARl5/E0+Yj+HDjVC8SEKwlAokJGQknB4vb298O98/+B2ucK9k+eptvHDiV/SkBrh30zsIGz2Uksca6qikEIA8yccaUUuVKIJUBrehs0atwohbfYwP9HPU2csDax+g6+h+EqER/uSGj/PVvQ/jEy5AUGMUkZY1Cg0vmDqlkp81SjWVZhD0NELT+OK1X+B7T32F4VPHWbZhGz8/9mOq9YLsF8ZkjVmTvY4UcKo0SVUUEcTnywPFT41RRVqAyNY280oenmt7irvWv47+MydRFAdfvO6LPHLsB1Bfjtv0cn37reTHK2lNrSQRVnlHZj0wJaIm6767vQGQJCKjSVZdW0GvdpTWI7spqy+mNbKfEjmfWqWMcSNCu9FPnlDZkJEx9BH2OXScQhAYfQFZTlN4xQirrqskndBwelSK1xscV3/FZoooUdzsd/TRK4XZqJaw3FHAYXmEg/IQTf4qMoWrSBeH2V37eWqUACe8n0BZsoYVa6xMxMZNpTiDVfzPoVYkwPRdx6ixgor4ThwizvDyuzimFlKQPMI6fQg5fyMAmyuu5NYNd/PYkR9y/dK7F/z9WyzYWY38fmY1pjSDUNadOJHIICERdDvwOOf3lycyOh2hOHesqeD7e7tnZSpJWOUdciKrxEdNoRNVFehmBt3U0YVGwKWyoXIJO7uP0xcdwRA6hmlQESjmhiWbeKr9AL2REBIKQshIQrHCNoWMjJJTF7IksaO+ibrCYnZ2tjCaiKDKMgYmpd48ttYuo2cixL6etlxaP8ys/ZQrSWDCmrJqNtfUs7+nk6OD2dRyIVhXUcvmmnoO9HZybKiXyfC2SXEjSTNjJCRJYmVJJesq6jg+1M2Z0GAu0HRpUQWrSms4OdzDmdDMoS6ELhA6mJrATAvMFKALSgvz2T4pjI60MDQxQVlhPtvXLkcAzx85RX9owjpG66AwTB1DGMioSJJMwoyhiQyNJdXcvmkjAsGP9z7N8FiS5WVLuHHjCp7qfpLjHf0UZJYyqHXyYvz/8Mv53Bp8B2FjlO+O/TUOnLy/5IsAfG30j9FEho83fol1lctZ31DDt49/m9Aw/OGOt/KBxz/CnvGnuS7vNdxQcCfH4rvYGf4NawObuK30bkLaEPvGn6dMLWGHdwtl5cUc7T1AqZTH1qtvYfhMGyVLGzj63NO4cRAoLKL1+EFMTDy4UFFIkkYXBi4cOFFJo5FBp3blGsxwAh2DFdddS3/raaqaltPy7PPEzDi+ggJip62Bg6MiCUj4ZA+yLBEnhQl4JDeqpFKysoGJiRBOycnKrdsY6OqgvK6ek3t340TFnRfkTMtRFBS8uDCEQYIkEhJ+yQtCEBWWlXHZ8g0kJsKkRIY1V+1g6Ewb5UsbOf7cMxgOmYLicobbu0iLDBmh4ZBU3JILTeikRBpFUvBKbgxhULq0ntjIMEWKm5odO4hMjBHw+Oj55F9CLIr6qlfRqSjIyAQ++1mU0OwYvuRdryFzzTXklRTTtGY1Y7/4BcWvfS3xWAx/cTEjJ45TuKSBju/+O5GWU+BUEU43qE70JiuKSorFkaIxUBWEy0Vw+QqadtzIWEcbJctWEguN4C8uZaSthcKaelpfeIrwwLl/dExSuWo9SFC1ZgMIGDpzirKlK0GCvuOHwTTpP3LQys4wsumtCKtQqyKDqoDLAS4nOFTyKqpZdsV2AIYGOimrqAfg9Im9hMeGyfnnpz8WxbSJ7GeV9csBiaqGFSAEQ73tlNU0AtDX0QwS9Pe0MlkM9pzHWLMUgKraZdb23e1U1TYggN0/P0XXkQnqd4yjOODEL7ykItPu0ZLAHTDx5Jt4C0yqm8ooqHJR37Rs1jH2dZ8GoL/nDJKpIyQ517c1+/8Kf7Qj12zMX89E0QbUre+mbOUOTNNgqKeNsppGZFmhp+Mk/T1Txc8XSmXNUmqWrLLa6++grHLJBbU3/ZxFIhEKi4ovXlaj7Wq0uZgIIYikdEaiKQbDKeJpHbdDpdjnQlXmvzn0jif45bEBnmweJpExCCc0Hrqukf/e3YUQJm+9qpL6IhfVhQoOh0laT5I2w6SNQTrjRk5YiWzWy1rvUp7rPExPeAzDkDEMJ4qs0jee5mmjhRJ/OSNRA0W26mU5VAmXIuNUFassRTaTUpUl8n0OFEmivshHSf5Un30OL4osUehzsqYqb1o5itm1nyaFWJnfRVe4nw1V1bidGuFMHEkyWFdZxelQO6VBD5WaTjQTId+VR4GnkLgWYywVwqt6KfeVkTHSDCYGSKEwlHCzsrSKuBhgODHMupJ1VPsrebH/RfqifdT46nALL3v6dzMQHWSNeyNlShUHo3toSZ1kTWAdm8o306+08MAvP8NNVTfz9g1vpXW4naqicj67+7O8vvLNlJc4+MSpj2IIgy+t+VdkZD528oNE9Qh/1vS3VLlq+HL7v3Am0cxHKv6UE+15PD/2G96x+X4O9h5lR90qvnfox3z+5N+xrWQ79xStQ08o9E20UuIso67IS9IohjEwMagqdKJKKpvYTEbXqMnLY1VtBXs7D3Hv8nvZLx3ndFcnH1j7Ht4wejd+RwCH7KAq73puK94OGQ2iEQIJqE9cCZoGehcj7V2sqKmiaft2WvfuIzw6SnhigvXX3UTrvv3093Tjyytmut/TI2V/KGUtV67sa3woRF5JMSuv2ETrgYOER0ZJRBMsv/5aWvcdIDwwDH4fCAjgIZfJIQQ+1KmHrzDJjEXZsP06EILTz+8kPDhErHuANddcDZLE6edfJJCZvJVmUCSJANmxYCXLLR/IZqAlxidYtv0qEHB65y7CoyGikQhrr7/Ramvffus4JCcuacqS5pBUHChI4+OonSdxd3XiKClm3Sf+nMF//AfGGhspqqwk9OyzSGMhqr7wBTq/9nWU1WsA0FetwojHMPPyEHl5mEHrXS8swtRhYniUsdA4xfe8mbaDrQw172XZ1k0Ur1zDmd3H6NTyYemOGeee8dxfAcVfiC+QxjAkek6OofraWLp1FSNtLRz65QFqN25g2baVnHzuFO37Y5hGPqYpY5qS9TJkisqiBPOTjAwGGB0MUlAcp3IV9LdpHN/TzI1vW8lQbz6FdRK//sYJek5NOrdW5Lq0/vp+VJ/EiWdLSMVUlt0YI1AmaHvBzUSP5VRr3X2CW969mqFTTgoLybaVBvLwl+osvylJckLm5GM+VJfJ+tfHEQIO/s/UOIIHsjammpWG1Varh8JSq636dQU4ivroP+Fh4LiLkqYMtZvTjHWpdOycGcNktTWUbUvjlnevJtTmprLW+gHXujtCIqyTnJDxl5gU1OroaSMrtAw8eSbytKd4aY0rJ2xOn9hLeHyE8PgIy1ZvoWbJKkJHH6PpxL+QFzpGy9r/R7TAOnehki1ojiDjxRuZKNpAxl1IZc1Sys5uKxLKtQWct1g6V98W2p4wIRoOs3ztlQgkmo8cWnAfFgu28FrEjMczJLV5igqdB4apowuDkViSUCxNxtDxO1WCXgUhaSQM07K2ZP+ZwsQ0TQ73xHny5AQn+qbq4ty1vpS3XVXLyaE+3ri5kvKSUfqig+imTn8KSIEsySiSiiqrOGQnbsmLIilohiCtmQjTha7rqJKXfJ8Dv0vJZqPJFHq8BFwuJDWIKll1v86VEDecHCSuR6kOVtMb6yWuxfE5fFT7q+kMd9If68fEpNhTTCQdZv/gfmRJ5sbaG0loCf7l0L8Q1+L81dV/RVQf56FfP8Sq4lX8y43/QiQTwa24+cOnPsjG0o1cW30tT/f9il+0/4LXNL6Gt6x8CzsHDvBvR/+NTaWb+PiWj9Mb6eGTL36SUm8pD9/4MJFMhJWFKzkVOkW1r5r2wW7+9Nk/I6xN8Ke1n6JKqeXJwadoSZ4gv6qQmrxquiNtvBh5hqDHz2b1SjpGuzk6cQTJlLmt7g5WVi7j28e/zZM9T3JT8A6SRpKEkR34VzJRZMVybwCKLHA5ZNyqE6fkJByNkHYkGIwM8lj7Y9y78l76R4YhI9hWsJ0GVyNBj4MmRx3vqf8D8tR8gh4HARHkn9f9Gy7ZnXNdvrv6/eT5AzTV1tHa3YUZk+g0+7lq+UZauzqIjyYpSDshGoVEEuKprMjKXtOqbFUt97hBVWjYsJ7Cygqa9+5lLDSEQDAyMoi+bx8rt2xhpK+P1sOHpmLjYCpuT+TMkAAs3bCBospKWvbtJzxiPSTHh0do2X+Q5Vs2E+ofoO3wkakL6RyJUYVL6kGykuUNl5uMy4vudFsWAyEobGxgdDyKENYwf5IMhj7TaDKJv6IGLWOiOhV0xYmGatU4RSIV03D7SxgftqJtUmETeWgIo6QMoaiobW14fvEYmiSTQSIhjRBPfYEVn/kkwung1K6TeAtXUvXVr6ENDTLSdCWdxzUMHczK12PqYOgSpgbGkITZJ2Ealqn2xrc5Kamr4YlvHuHa+1YjEaOgbgkv/uQoR58KAXNmceTwBOLUrekknXTScaKS7s4Q3sKTlNY1UrrCw5JNlfziq0ezQdTFc7aheMLgnCAWcZOIuXGoE6QSMYqXrObAb05wqqGfjbfUcejXXdOCsWcy5hMoLgMjm4kY0RNkMmkyZhFWNBP0nBrj1Itzt6ULnVAmTEZTAR8mglAmnP1bzh7Aea626tYVkEyPkdGSgIuMHieaGCaVCXB28Ph8bfV2tFFeXcOWu+roHmgm4ZkgndbxN0wN8G0AsTQzXNBVzhWYplUrL54eIz3RjC/dgrRiPRgSxcYoDGfd2qP76fRZdcFCFduhYvtUQ5kJlheVYpoG+w8/zehYPxgGoWSISDrC5k03ESgqJdS6l1k3aGnmd3FyZmZ7lrU/NBQmosXZvOEGAkWljJ7eny0lAcK0KtVjTPsuCZBkQcWSlSBg/4Hf0Dd2et5zulixhdcipn00xlAkzdnGKDNbkDJXmFIYGGRjoIRhufTMDLrIoJtatnCliYzA47LEzEQSRFLMCj5PpOFwB+xvk5iIT6XBLauEt1xVzH0b1/Nc5yEGY+MMxkrYUbeOvb0thOKxWcN96KZVuT6mmQh0HIqCx6kgyzo3Na2kK9JD2py6kUwKpt5YL27H3E9Cy0plFWZtGWuhJ9rDikLrV1uZt4zHOh7j9iW30xvr5bGOx/jXo//KhpIN/OnWPyWUDPGNY9+g0F3IjbU34pAdHBy2Sh8ktAR+px+vw8uu/l10RjpZVrCMJzqfoGWshW0V2wDwql4K3YV4VOsG6lJcFLoL8Tv9AKiySqG7kHxnPlrCZDwxwQHjAA+seYDOnj76O8epdzaSUOO4XQ5cPpm16bUUeQop9ZYiyRKrg+vwqX4afU0ALA+s5MG697G6ZDWlBYV0D/XzluVvoUFZBhq4ZBefWvmPqJKaE1x/s/IfkJFxypbV5MONH5txHt+29O001dXT399PaWkJWwrWsVyusz6MJ/CjsMVpxY8QSyBhVQ2CKRGel5dHU00trS0thCcmQAjCoXFaR0I0bdhAa2cf4Z4+q/aXLGMoEsKpYHocGAhMYSBEBswMZMDl9yJJEhlTQzf07JUn0E0NSZLwBgNoxlSyxpSwOSszFHAH/EiSRMpIEs1MVep26j4kScLt985YPvMaAz2pkEkoaAmV8YFBMvERnD6Fm952Bade7KdpUyW//Opxrrm3Ec3I0LLbSTrqoGL9GL7iDEMn8ogOzn7IHvtNB9BBzcpCbnn3FZze38uyzZU0HzzOs98eQ3FILLkmQsl3/5vDVX+EkJdC2+TWa+GKtTMbzIDjZJiGDcWgOChrKODYc334yycwHH5C3Qur8eYNltB5YCdDbaOc3hNk3Y2b6Dt5hMGWVoJFxciqSmqeiucAHo+OW3EiqSr5ZU5kWadz7wug62y8ZT3Hn20jPNBDeX0Qt99DbLAHGRNZMpAlgayY5Lkz+GUf3gqdktIR3Hkq/qJiNH2Yt/7tVvx5TobPnGTdDU2s2FbCUGcrQnYyNtiNrCdRMjGcLpAkmdrrRkGA6jRRkKnfPIH/9Y0IoLRmCS6PwsiZE9m2iplo2QOmTur0c7iHY4QL1lPzRg0wKZloJW/gBbYsVZCNFIqZQl1/L9LQUdSKlbhuvp6J0Bgbbq6loDpC1d6P4qhaxZrxr6OXuFDjaZx7UujCQabES+fqDxArtv6Ola3/Q2H1Mhg+iVy1FtfN16N3H6S6fgM8+SkaImMUbv4go30mjuQIK/Z+4px/x9ElG+mesP5Om9Zeh5xph01vgx+8FQCt9lrG6l5HpGgziWAj1VOBr9PfAEiFxhnv7sIT16kRbuvHiSRDOErX4V24A/lUS1ZdM0SuQkl2+CIrQ1xCtoq8mpAc6GcscgL36BhVwpUd9FpCxMZpTb6ILz+fsqSbSQ+opGbHK3dYI0tJikCSBbIKfjXBUPcLlPrGcVf4FnSNLyZs4bVIMU1BKDGOLiVRVciYGXQzg2ZmLNedMGcIsEkkAFlCUWSckoIsKciSI/suM71MgDRtujek83xLkgMdaSaNbF6nxLalbnYsd3PTsqVUBovY19tKIiMIOvOJpjUO9LWxrWYl/ZEQB/s7SOsGKc3AMASyIuFRFcrzXASy8WMehwKSRl+8l/q8mllWqpOhkyiygilMHut4jLHUGPcsuwe36ubTuz5Ny3gLf771z1lZtJJftP+CvYN7eefqd1IdqObQ8CFe3/R6nux6knJ/OQFnAFmScw/jAlcBV5RdQaHbCsJ1KA4eWvcQPocPp2IJlE9v/zTFnmLqgnWMJke5ofYGmgqbiGvWA+wNy97AG5a9IXe+t1dtZ3vVdoQp0FMmFdTyj6v/CT1hEu7SyM/L540r7qFvYIjqijKSWooP5v3RjL/1rWWvnjG/JriONcF1uflSVxlNRUtzlqVwLEo8nmR709bcfIV75qDwXmXyhigs156mgaZDRifP76Np+Span3uBcG8/4Yoymq7dYc33z1/Sw8wWTiVbpd+1dg0nn3yS8b7+qaKqmESRiEfGCBaXEA4JkGQUScmOFKCgSDJOWcWhqDhxoijWdRruGCSwIZ/123Yw/OSLJLr78VSVU7ZtBxISic4R6sZNxOQ4mpU1SC4XIpVEDPRah5stCRLddQj/q65jw1XX0n+khXhnL163TNW2HZZA7BiiNlCHNDpMZCTF8LgHt8ugujjOSNjN0fYpq8zotHyts60uQ8+NwNgATr2UNFAaNSmuLifulIky/ziJU9aNJUT27KWqbAkSo8jI1PsrMFFxaDGEbMUnSQ51ZoFWCWRFweF1M9LcSXFhmpVbmjj1fCeRjk7WXXsVou05GmsiqLKJqpg4VIHqkFBUBYfTKsPicEioqkA6HUGV4NY7iijaUk34VDPljSu4dsc4qYFsbauprBJyYneaWU+YfnDChtf4yITGgKWUNK5g4thxVm5tojjRDpKGqyRIpEVHdruQXX4kp8M6PnXyZf14cPU/i7r/SRz5hTiW/TmSmaJ06DdQU4PHBWWhF4kGrsSXX4i7+5cEj35x/mtX9TJa8jOcwSBunwNJT1Iy9CTU1OJxgaf5n6Htqdz6vnUlpEo3AOAdieIPHZzZ4N5PQ+ONcN37ME//mvwVt5EaC1G7bAXyAR1e/DJOGZxMZdypkoaqhKkMeMnklwDgd4P3wOdybXHqZ6ir74YTP4XtH0b91adRQmHK3IXIpsZLITrPoPiWo+ugZ57Auf1DaAf+h6i8kkTRNgzKoWE7TsAhpv6Mk8lC00l1jyPpGQIpE+GqgmAlkurIrZ+OCvKKrspdB5Ikpq4HaTJ33LpeJAn0uMCp+Cgsr0YSAlmVUR0yDpeC4lBQVJni7RUoqoSsyiiKbJV3QZq66JFmvksykUgUePdLnpvFhC28FikZw6Q/3k3cGMPjcCJLCtXBUoo8RTSPduOQHciSCxkZWZo9uCxYgdzhVIKReHjWZyW+PAJOLz8+2MlzzUk6RqZKRFQVKFyzwsMVS1w41Wwdork6Kazx7MCybI3HM7icMgU+J3keBx6HgtepIsuQ0lMMJQZQ0grVgWpOj53ml+2/5J2r30nCkSDPmccfPPkH7B/cz3/c/h/IksyPT/+YpJ7kptqbqPRXYgoT3dQZT1nBJcsKlqGbOoXuQnwOH8vyl3Fy9CTXVl9LX7yPTWWb+K87/isrOKHQU8jHrpxp+bmh9oYZ82W+spzVLa7FiWmxGfO5QxcCUwM9ZaKnTLS4iZ4GYQgkGRSnREl5kGX19TlxFEnGZoinhTLdnTe5XTgWpbW7a+ZyTQdNw8xoiEwGkilEMoHI6AhdA8Ogacd2SpYs4cTzzzE6PITwyMQmhkjsfoH1113DYE83J/bvnrb37A00e7OTJTUr2mVMtwPT70MU5CFJVhySKluv/LxSfN4gNcE6FElBkeWsC9oSWZPnkEwayWXZ0lJf+yq9eV6qPv03lO64gokfnCH/uiuRTIPRU73oEym0f/4spK2HmefP/xGlqpbMYBfJf/ocipFBQpBx+IkpThKPbqPx4X/EV1nLeGsUqbwSQzN5/msv0tYtU9fgouHgL4l1Zeha+Q7yx1uoOvIwHk8p8pa/wJfvxB+QcR1/Ac9AM3Wv3UHDzTeQmoiz4VW1VBz/CWOf/Hck4IrsNSY9I3B//FNccUUNRnEbyS/9nXUavV78f/EpMDJknnmSQEM9ZTdfT+LoUQJXbmbky1/mpuaf4X3vu2ACjBu2c4uzC6mwwPpuz2HdC6xaQ2bcKnOSV72JyMljLNuyjCKtldCuFyhtKMWjR0C2HpbCNBG5ga01hGEiUgaSKTABd1UlRVu2MPLc86QHhkj19VN8zXZGX9iZFV+TDzymuZOytd0kOfc81BNxSm64FgkY3bOPzPg4ejpN6aus71r4dAvupiVICJTEIEq0BXW0EzXaSWT9x5j0+/pa/xO1tAFu/gf44dug4QbY/iHEzq8iOp7F/cZvk+7qIROJgKRiKvO78YTiwRkMEmxoJNJ2huD4c0jbP4S5598R3fuQ7/kO+uOfxhw4gVA9GN7y3LaZ0i1EXAUI1YNQPAjVi1K6BP+aHST7OvEsvYn44ACe4hISA/147/sRkbYzZCKz77tT3ymL2JoPkLn6EwQbl1rbLr+T5EA/nuV3WvN3fhZnexuZSATTU8rwq389dUxCWKM/ZAR69vatqDIOp0RBdR6OuiswJgZRN7yRYNUV+FPT7jln3dBnusWzXpBkGDIJyKuDoiWguqaOQJqamCqcOrloKlt88nCl6Quyk/I54orPC+W3T8b89vX49wTDNEgZaYKufIJOPyW+PDZXL2V/7xm8qn9BbfidbpYVV7Gvt3WG+PKqfjZVLOWXxwf47vPWl1GWYEOdk2tWeFhSos4SckcGOuiPjLG5ainPd7TQOR6iKpjPVXXL2NPTSke0hbgyRHXeUqqC5TzV/RTP9T7Htopt3LbkNp7ve55vHvsmm8s289ErP0pcj/O1I1+j0F3IvSvuZSg+xK7+XThkBwk9gc/h48baG5GQcCnWF/69696LKqsUuK2U7Tsb7+TOxjtnuCiFJOiL980pll6K6e1MbhfX4vTGeqn2V9MT7mUiGkVPGmgJgZ4SmJoACRSHhMNj/VKDs8RSNGJZWSJhWrs6aKpbQmtXB+Gode6t4H4za1HKTmdj7RCCovwgh1tPMBoOWZmLho6kGYwP6cRCAwQ9fsLHjiBpOug6kimy5TNkcDrAoYLLhawoCJcTJAnZ7cHt8YMkoUoKPlcASZbxODyUByqRsw9S2crTRMn+4pQlKZdZ6tM8LNm6mtCJDtJjU+fZVRigaHUdoRNdBJxWXIzQNCSHJQD0Q3vIPPUYZl836sYtuN76kDV+8+gw3ScNOj/3C7Z+/G6GVtyOX3Lx9L8dprctZpXu2PJ3mJIMyNyhWk+bJ48UoF3zRba1fgVfepTjS97JhK8OBDR/9Ti3vHs1RmEFdRsqePwbJ+g5Y4nJWNRACgTJUzupDu0lmOxHKi7FB9zs/A3uW+8DIHm8GfemYqre/WbiZ9rxL2sk3jdEybvfTaanl8TevSg5a5CAaA/yeAoRG0DJs4L/JbcLOT4Esox/7SpK7nsL0aefJnjTTUQPHKDo/e+HdetJT0wAoNQvneMKnSZ2gGhHL67SEoq2Xklozz5SA4Mkh8co3n4tI8+9wMTBowh9yuomyRLIWSuColgWJ6cTyenAXVpCwdq1TDQ3I3nduJctASQiHe2UXHcN4TNnsgKHqQfpPDiDQevaA5ylReB2oAate5YkdLzdP8V/6v9QY11IxswaTPGl92EErWzJVMV1OJddhb7//zBWPoRv/U0kBwfwbHkvkeKboKsH1eslE4mQqrmFVM0t8/YJwOv1EmnP+m2veMASS1c8QLTgWugeRN38YRKDsy2+el4Tel7TjGWOknISQ0N4qxuIZIWRFokQbGgkMTiA6vORiS7gx5Uko/p8JAYH8FZUTrUVjU61lT1GJAlDB00T2RhCCUWVcLggUCDhdMs4nRKqP4BUuATGO1HSUTBiqKXWPOkF9Mk0IDoELh9Ub4Bg1YyyKzYvH1t4LVI8Tgfl/gLSRmqG6JrLejUffZExKoNFXFndxN6e0+ztDBGJefjIzcvQBTxyqJ+gR+LqJjdXNbnwug2cioOMkaYn3o5mZliRv56MbvBE70+Ja3HuS76LVy1dR1z6NVfXbGB3/26KA4V8q/ln7Bvax7vWvIuqYDnjqXGax5qp9FkusEJ3IQFnICeiyn3lfPzKj3P30rsZTY5S5CniR3f+CF3oOdH3tlVvm3E8Ff4KzualxNJCxNekJS3gCNAy1sJIcsTKwjSt8CMzA4PqOAFngO72EasavCqQVRNJMpFMExImUswA00QyTBo3XUVb83G6jx8HXbduZgLCEigTExSXldP9wnO5Z+lkbJYsyTkXsJp1AxdVN+LMxDE6x1Fly1U3mT5fWpyPv7AE3TUAPgey04GsOJBkSzRJyNkyF5ZVwqM7iXUPs2rLVkInukiPRXNCKdo1jCKknCv2pXAH/US7hylavWSqrQI/RatqCe89hDIxQeq//xujtxsxMYbvC99E0yXGJmTU3iHc6SRnElV0/3SCxmVult7+eoxRN8d78wm8MJBz6bWdmPawUNy5SanEctdIigK6wPWBP8OXr+J4NoIyqiPJEkMdE7TuH2LjLXV0Hh0h6E6yeRP4/AKfL4W64RZKb4FSDBBrwXzVZGQvhM6AMMh/3wMUXXUV0eZTBFasJHLqBL6GpURPHqPqHz5D6IVnSA8MTEXWSwrIMkptA76P/ckMa4CrtISiLVcSPd1K4JpriJxuxbd2LdHTrRRdew2hvftID48wH8I0EZoOupFtazMjTz5Lqr8fFIVUdx+jxi5Krr2Gsf0HyIQncu47Scm68RQFVHmGeHKVlhDpaEdPp5BcU9mUWixGpL0Nh9+HtkArrer1Emk7A2aGYONykqEQnuISoqcOkXf473GVr4Nwi3U8sgPdX4ceqMcILkE4psr5JJa9jQTgLMtaqs4SOJH2tjmF0nwkBgenrF4vsy09kZjRDkAmEiHS3pZbfrHaGj11hnjUzCZvSDicEoE8CadLxuGScDimavXhCkBB/UyRlY5a82cvnwstAfEQBCqguAk8+Qs+DpuFY9fxYnHW8eoenyDf7eWRQ73cvbGaP/3fI+xuP/9x+bY1FPO5N67nhb5n2dWa4mPX3YaQDP7kyX8kFE/xphWvpT16nP9sfZhKXx3vX/UXjKVH+OLRP0OVHHxg+ZdwqDIPn/x/ZMw0f3f157mq6gpKvMV8+/i3MYXJtspt/OT0Tzg6epRb627l6qqr6Yn00BProSZQQ02gZla/zhZMcwmohVDsLiZpJOfcxufw4VE8jKZGMYWJZmpohoZu6mTMDKYwrWw4CRyyA9V0oJpOHKYLJaVihjX0lI6p6ciAIhtI6KBncnFTU64bI1eSwEQQqChjyTXbaN+5l+jwKCgSCiqB8hLqtmygd99R4iNj2UKRSs66JGWtStKkZQkINlaSv6KOieYuIm39lnnf4SDYUEFeYyXh9gGiXcPzniNhGIjwBCI8hjvPS8mrbyTaP06gtpTosWYCTfWM/fRnFL7+bkKtA6THomQe/ynG6ZOz2lLWbMB54x0AyEd3Uv7g261t73kD8aEwvvJ8Ql/5FwoffJAzn/gM/ccHiPuqiPkriZevJJ2xHhArCgZpXB2gI1zIyWNpKmucbL7KT0Z2Y3jyaNhYQqhthOLGEiZGkoRO9aJF48hytvitDG6Pdb50TWRjnphhqXXluSla14gExFqb8TetQAhB6PmnSQ+cXZ1/MmZk2iu7PLBiFUgSgRUrCe3eRXp4BFd5OUVbtxI93QqQe38pAsuacu+TImu6GJtsSxgGQrcElrBGE7cEvyyBoiCpKnnrVqPHE2SikWyMlJIVViquvDxUr/e8xMTFRMpEyNv3SRxb34G07SHigwPEe3oIHv5HDG8FemAJenAJhrfS+sPNw9lC6aWWTyf3aMuGpTmDQfKXLmX8zBkyE5HsOuDKC1LQtJSx02dITUSmhbFN1cU7+z1YU0EmmiA5Hp7hppMk8BTk4Qx4CXcPTL+MznK9TU0HqyvIxBOkJyKWY18INM3al784D3eeD31iELfbciM6nMzySOTwl4KWnFtcuQLg8EBsjnuFEJAcs+5thY1QuATUCxsm7XIz6/l99K9fXoN2Ha/fX3a1DzMRU3LjGD52bP4H69kovlYU7xn0yHoeO2aS8f4TX7zjvZT523GqMl/f/yOeH/kxq/I3oioSTsWFQJDUE4wnMiQzKkWucryqj/oSD0G3i1en7kCSJBoLqylw59M20cb9K++nM9KJZmqzgs5rgjXUBGcLLrg4VqpJRlOjuUxHU5gYwkAzNDRTYzgxnHXXWZYkh+LAITnwOXyUKCU4hRtZV0BTMBMSwYCX1FicaG8IMxZC0dKosomEwFNeiDM/j/DpHsvCIrmRXH5LAciyZVWQZ8YsjJ3qoXHHtlmWpdCJLpS0SjBYuqBjjA1MIDmd5K+oQ3I6iXYN4ywrIlBfQceeLhyJCVInTzA0oEEijrJ8NZLbgzk8RObJRyGZZHpQR/yJX1H/L19k6PQoMaOY5FO7KL3rDto/968M115txe4NOzDDgWzlNcnKTEJCHnLjOJNiyVI3sV8+yuF+nXV/8SDRth7yVy9l3/+dZt17P8Bj3zhBt3ELrJx2INmERI9XRq1rQKl0U11gUlrpwu9XcBUGqFxTjwSM7G8mNRpmNDxGyeYV5JcuY/TQaVKj4ZwoEpqEIDuwr7BcL0gSCBN3QKFobQMSgtEXd5IaDZEKTVC8bRtF19zI6K7dpAaHmDdY3CS3PB0KU7zjKivWqX8AJIlkVy+jGSO7fBdmKj0thuXsp+1kzItEZmyMom1bCe3ZQ2poBGGYJLt6GUmmKLl2ByNPPYc+FkZSZEtEqSpqwI/kdiGpDmSHiuRQwaGSSSdBlVAL8mZdM5lIZF5BMp3JkRZMk2yWGQhTcK6f4/PFe06ipIYpO/oJnBVLEevfRKz1GJ76lUQHwwws/fjUJibZcWbMqTYkZkzn5XsYOn6G5NjE1DkFiEyQTJzB6fcSi0wwJ9NOP4CzyMfwiTOks6JrcrkeimCYZ3D6fDBuuVNzg1nLkzpcmqHJzcgQDhlcRdnYPlnKJX2YIoqIRgnky5PJfVPCbdprUtglBgcRwrqVWO8SeQEJl1vG6UrgUBNIJQt8VM8lqiZJR+cWZKaedS0GoHI1BMpt1+IlxrZ4sTgtXo+f7GBbfRU/O9LLmzbX8HizZZov8fk40Duz6vPp6C76ks2sz7+VQmclTwz9K52Jw2wpeB3r829hzDzG9vqlvKr+VRimyc9anuHoyFEKXaWUuOuJpFIk9Th5rgAFXg/5Xoc18LVjqko8XHwrVTQTtWqGZV8Cgd/hx6t66Yv1TX3G1Dq5uk1MBv2LXGamLMm54G6X4rIsXqoHl+JCxQGajKTJGGlBKq6jZ0y0jA6pFKQTeDwS5ZsaGdl1lHQ4CS4XkqLgLs7LCab02Owbl9AyVo8cDoSmoR/Zh4hFEbEowbe8jaL1jcSa2/DXVzHwpYdJHDk2tbGq4nnoIwDoh/ehvWhlVilLmnDe8XoA0j//EWZ3O4G776bsLfeQbmvD2dDAL75yjMhgmOtelcfon3+Mnev/bEHnf0P8SVZ/4j34Gqo5/mwfa6+vJrxzN4efGaJ5MP8lt1cUePUbCtGPH+JXp6qpXFHCnX+4Hi2aAKeLX/3bcXpOjeFwSATyFILZVyBfIRi0Mupg0m2WtRxqGoUbl+GvKWN470nS41EmA/vdxfmUbF5OvG+UsSOtMwLNZ5WU0JIQH6Vw60b8jU0MP/UsqclMTckKIC+94VpiHV2M7dpjLZ7+kJkeOJ4VncHVK8iMj5MamvZQy+7YXVaGs6CAyMlTzBBv01Prc90TBNesIhMaI9WXHbVAtgSW5HTgqa3GVVhAvLfPsmA5VFCVc8ZTzcWkmJoUUpNiyswuEyYzvteybAkMefKlWMumM+dzWGJWz5RoJ3m7/xSlah3ijd8mevoIGdOLIxAkUN9IrKsNLRaZFZ8/ffD1sy1CM/shzejPPBp3luiSJoXUWevPSJRjprFzXqvSJWKuwdUvOZkYJCcgUAklyyzx9VuGbfGyuWjcuKyWB7+7n47QOEsrM7x6lWU62NfbSnvmcdojLdxd/zaK3GU8EzrAmfgJVhY3UVdcxxVcQXEsyOrCBjZXFHNl9XsBaB3tp76gjFcvuxaPXEJfeBzDFFTm+8hzF+Bzqbgcc2eanC2yhBBE0hG6zC7qgnW0h9uZSE/MEFKTL0MYM34RD8atB6GElCszoEjWAyZshAlLYZyyE0VWrCKskiMnqGR5MjNOnrGtLMk54eWQHAhDQksZ6GmDZCxDLGWgpzVMYQk1xUhDJoE6MQ7JBELX0ZwuQsdkSq5eT+jIGRIHD1tWqmvW5ERX+offwRwZygqrCCIWhXQK1zv+AMfWawBB+lv/nDvW5PYbiJcUkLd2OaFvfpPo9/5z5ol1TmUKmaERjBOHrRl16qtpdreTOXWCJ503sraim/U3NzF24ATxUy3kN1Zbq9ctoTDdC6oDqbAYyeWyflGnU9YyRc09hAqvvp/A0moGWkJsvKWOwZYRSrZvpWDsJKWEZz6UrD/UjIfRpGFPXbORWjODw68SGxwnWFnI8JkR1l5XyborPMjpRO4BInQdoWmIVBI9qiFlMyUlhwNcLtT8PHC6Ge8ZQyoqx11RM2UCEILwcALVH8S9anW2U9NS14WwKpbGhhHhBOT5kFxuJlpawOfCvbRuxtN4oqUFh9+PZ2k9UzUasp/PeiJDxkgj/F5Udz2GLnK6SghBQkB8IgkVddb5zlkysmn02TT9yfFFx4ZjIJyI8jokIaxA96y1NJqASGIc8CJpgJY9zhk2prN/J0u5JdK0Ty0RlRVUEqguKxBbUUFVJWRZmiGyrHfrdcEP/cGjsPMTULMF7vkO0uhpgiWTP2QTEO4kuKRx4UHev2dcVqEnBMSzsYSlqyC/7rcyO/C3FftML1Ima6qYCJ7te5w15VWk9QzxtE7z+HH6Em00j51mTUEhy4JbKHHXU+ioJ5zUaPBtpsG3mYpAPpurlwKCZ9qa6R4foy0/xE1LV3LT0lU0j7aTNmMoClmBlCKWMbOFWadEkylM6gJ1HBs9xlhqzHqgICHLMhPpCZJ6Er/Dj2mayLJVtNOqWu/IvU9WU58UR1OlBeQZwmm6oHopTMPEMASmbmLoAkM3SaUNxuMxtLSBkbGsaIoqozhkXKoByTj62BhmLI7QNSSnC8nnR8lm3KXDCULHOihaVoVy5EXyb76NwX/7FuZqq4Cq0XIcc45x5kTcepBIDifKqnXgciP5ArjLi/FVFhI+3UX+W+4n4y0k2dE9teG0+BZ11Tok3/usdgqm6kgpN97ByZo3E1xSz/KrqphoH6Bg0ypu+4CL2IhVYyr/vX/AjjnP0kw3VC6QvnuYiuWlRLqGKWkoJNo9zPq7VlHdMLdVby5chQFu/YDVlq8kSKRrmKK6Qhzt/QRXNTCy9ySpgRGEEJYr1uFA9nlRfD4ktxvZ6bICuR1OJAlSBqA4kKZXBcheB5ZhTLesQGeTikC0FxIhJK8XnMUkx6xq5LJndokBPZVETyVnBJFPR5hWer6hW+8CS7woDgmHS0JRpBmWktw4nZPiVJam67xpVhdptqXm7H3P4X84e9mcTgph7fdsq9WkoLrkD/XO5+HJT4ORgaWvgvEuZoxlA1NB3g6PLbxeSYyM5Vr0FEDJcisuzOayYguvRYgQgu/tP8E/37eRx0/0cce6HXz0uY+wNv9qbqy9kR3lryJlbGdpcBVBl4Nt5dvnbKeppBQJid3dzfTFunF7BCkSHBnR2FC6jkKvlzMT/ciGPEP4uGQXqqziVCwBNWl98jl8VPmrZoil6SKqOlC9YNG0ECaFlaGZmIYlrAzNQMuYaGnDElxZ4TVpaZBkCcUh43DKuH0qpNIYsQj64DiZeAyRziC5XEheL4pz7gdveiJOrKOXogcfZOzHj5AaDOHMGloct73OKtngD1gvn/WOx5vb3vNBy+U3PaYrNRomHctQ+sa7CB1tJxWair8xNc16uhaVohSV5p60ZiqFEIITE7W4l+Rxy7tXM3ikC2lsGJFOk7+mEU51EWntmfkwnm4JmhyZIPvuK/ETbu4kb1kdIzuPkhoeI1FWSMm2tYSbO1BliUQoNKuYohU7NXOZr9hntbW8jpFdR0kOjpEot9qKtPXhLi/BcHqRnE5klwvJaVU2v2gYGkQGINpv+dN8RSCdY+yfORDCSs3X9WyKvgnIWGn6TglfnoTLJaM6wOGwrEY2c9D2jPVAr9sOVZuszNC5mC/OyObykIpY5z+/zspadHpfehubi44tvBYhGd1kT99xDGWUd195E8dHj3NN1TXW0DhqlNetun5B7bidJqcnmknLA2ysrqLYW2wVs5QUElqCQnchm8o2TVmeplmlLheGZqJljJnCKp1dlrVkmYaJaYqcoJNlkFUZWZZwuGRkrzojJkWkUhiRMOmJCcxoDDJpy6ri8aAEZwciT2IODyCSCbwbN+BfVUf4TB95r7kTrXoZqeFxhGkiL1/LZDTy5CDbJJJIyWQugFaSwF1WSNGqWkZ2HSU1NA6SRGJiAjMep2Trakb2niA1PDHTrZVFmmYuaW4xwJ/PLe9eTe/+DhxRK7M10t4Pskz+yjpQZKJdQyBZWX7Ik6aYyaKWlr9JkiRM2Unh8irGzgxguP046gIYksR4xzCFKxsYaxvEUV832ZNZ52i6phZuDwUNZYy3D2F683E15iOcTiKDcfKW1RIZTeJwLKzm3HkhsDKwwr2QmgB3ENT5i2fmNssWnDR0ga5NilFLTKmqhC+QTdF3kK3wfvnjfH5ruf5PoGQFrHndbEuXzSuPMK3Ae1mFstWQX3vObFKbS4v9DVmEpPQMdUUe7lm3mf849iPesvp1+J3+8wpgT2gJBmIDBBwBVhetpsRbgroIbohCCLS0QSapkwiniA+MocdTuYwgpMlAXynnKlGz03O2hzVY7OTvazORwIhEEJk0kupA8niQF5AwYQ70kXz4b/Fu2kTRW+5iZPcx0hNxUqMTFG9axuiRNtLjUSRZAUW2MhgVJTePnBU9WZ+TtyyfiZ5xRH4JrsIypGmxQ+HBKL5ljVCcIJcmMCnApvmuTu8fpq2tn423+Ok+PkpebSlIZUwGCWtAfCKNt6YCzZ2/oPPvDjqJhFKYniAOz9R5MYFIKIW7tAjTnZm/gWm4sm0ZLj9qyZTA0gRERpOoToVM6uUP8j4DLQWRPkRk0Bqk2lOCEBJCEzMyxkQ2EGty3sgWlVUUCdUh4c+TcLkla8gcp4Rqi6zzw9Th4H/C6tdZtZ4UJ6y755Xulc1c6GlLdPlKLNeid2F1+n7vuAxB9ZO88k9im1kYpskfXvVqPvTo12gbG+TauisXnD2oGRpjqTFUWWVJcAmVgcrcgM6vFIZhoiUNUgmNZCRDOqWjjUUwxkMo8XA2JmXuh54J5xjxbjaSLCN5vciBwIIfpEZ/D6l/+lu869ZQ9Y+fsaxUE3FcS5eC3090PEPJpuVERhMLFhIpHVAVlDz3rM90AXpSzBl/NEnX8RBHn7FqTekZg/zyuQeCTUQWJpIWsn4mZZyXULqYbU0yKcz1tIGZqzIgkEwBqXHLtaglwBNEUp1IyWzc1OT4hWRjmuRslX3F+mHvdFqCS3WeVXDS5vzR0/Dkp6DrRejbD6/5Z8uqavPKkx3twvrVYVpD/mgJKGyAoqXgmH0/srn82MJrEZLn8fClp3fx1L4mrliydkE1rkxhMpGeQDM0Sr2l1ARqyHPN71a71GgZy6qVimVIRjUrJssUyHoKKTyOYyKECijF+Rc37uc8MXo6SD789xCP4dl2NaPHO0kOjeGsqUEJWKnVmZRBZDRxaSw4czDQFmbfLzoBaLqylOXbys+9wW85pmHF7Glpq1yIw63gK3CjOmRkRULKxJEiPUjmIFKFG8lTlsvYm1FfSZ5uNLSF1SUhFYFffQKGjoPigHX3Xh7RJQQYacvSlh2NwdrvtD/8jOnfEkzDiofLvetWvOKkcBLT3pkqpzM3IntO5KkvhOKE8nXWsD+yLY4XC7bwWoT0hkPs729FDfaRUoqA8pz48iieWcIrlokRzUTJd+WzLH8ZJd6SyxqnBVYmWCalk07qJCMZUgkdI2MgyRKqU8HtMDHGQuijI6BpSIHgvMHtlwtzsI/kl/8OknHkukaSFcsxhyeQ/X7U7HA0k1yoBedCGGwPI0xB7epC1t9U8zspIgzNJJPWMTQTSZJwuFXyy9y4fQ5cHhXFIVslIsI9kOwAKQFlJdaDxOaVITYMj33cykx0+uHWv4eKdRd/P0JYgfp60rKuGdkRoFWXNeC30LFEyKRJ1DzL0nNWKfnJNqcjwQyBIskz1fusz6bNn0vgCTMrnqYLqenC6iz7vTSZgqpaiSGyao2vOn1envY+oz9zvaSZ77LDtnItQmzhtQgZjceImt14qn5EyGwCrgGs6u7TRVfGyDCWHMOtumnKb6LCX4HzMj6YDM0kndRJJzQSkUwu01BWZRwuxcoq1HX00VEyw0OYqRSyP4B8jgD3y4lUUobStAIRi+L5wJ+Aw4lITOCsrUF6BUShltJxuFU23FxDQZmX2tWFl0d05Sq3zyirPceD7OzlzN5mdsVLa0sh0DXLjWjoAtUh43Ar5BWpuD0OnG6QlWzxKkOyhmQa64DYoFXUMVh16c+DzfyMdcBjH4P4KPiK4fbPWu6ri4Gezr5SVqYqWCJLdVmFPd154PBaGXiK8yxL0LRX7lo0516HafPmdIE0KY6mvefK+BvkRN709uazPuWElAKSmhVSHlDd2ZczK6IcU2JKmZzOvn4Hf2jZzMQWXouQWCaJgg89vhSvd/awO6YwGUuNIUxBlb+KqkAVAeflqTisZQzScZ1kLEMqZrkQAVSnjMuroqjZquS6jjEaQhsaxIzFkH1+1OKSczV92TAHepHKKpEUFfeDHwbDQHK70cfGUAoLUQoKLnufEpEMT/1nMw3ri1m5vYL6dcUvvdGFIgAtBskwJEanWQs4S1RNrjyf4Dr782n7kKxmNR20jDV0iqIKPG7wesGlgkMGKS5BfGqbqT5mRVyg3M6Se6UZPQ2P/rFV5Ty/Fu74HPjLLqwtI2OJLC05JbIUpyWy/GVWoL7Dm315XrnMu8kxlCYHTJ/1ElnRNs3yNt06NV1M2ULK5izsO9oiJJJKEqSJZPcKaldO1VkRQhDVosQzcYrcRdQEayhyF11yq0hObEXSJGIaesZAViQcLgVfvnPG/oUQGBMT6INDGJEwssuNUlQ8axzDVwq9+Ripr30edcsOXPc9aFVOdzgw02kkWcZRXvaK9LX/9ATJSIbuk2M0XVmGw3UJHjiGBqmwZbVITVjzqjsb+zEto3JGeYuz5qXpy2ZPm4ZAy1iD/ILA4ZHwF0p4fTJOt1ULCzjL9TNP4IotuC4f5xpcuXQVXPsxOPZDy73oPg+LtZ6GdMQSXKawLD6q28qw8xRMWbIc3sVV3kDOxkrZj0ibS4B9VS0yhBBEMnF0ksiuCLpUDJSS0lNMpCbwOrysKFxBma8Mh+y4ZP3QMwapuE4ymiYRnRJbTreK26fOEntCgBmLog0NYY6NgepAKSxaNIILwGhrIfXVz4GuISbGwDBAlhFCYEajOCorcwH1l61PuomsSCzdXIqsSpQvCV5c0SWATBQSE5AYgUzcGhrE6Z8VL5Ub4+8sr+PU/PThcqavky3SioksSzidEgV5Ei6PjMttlXCYhW0EWFxoSSionzmcj2lYFqiCekuk1261RNNCmawdFawET2FWYHnA4bOHp7H5vca++hcZGcMgZaSZ4Bi+hv+jh40MJx5ARqYmWEO1vxqv49JUG9YzBumETiJqZSLqaR3pHGJrEjORQB8aRg+NWi6lvFc2U3E+5Ko65LoGayifBz9kWbsAEY8jez04Si+vK9Q0THb+5Ay+fBcbX1VLw4aX3r+hmySjGjnXXi54GMu9h7A0ja5lBdeY9SA1DXC4EY5CJFMGzRJKk3/RyaasoQtnlmiYLDE2Ob6fpEwNTSPJVhkzSba2cboknK7566793nMuy5IrYAmT2PDszy51W5PD+RTUW/Fcu/4FHH645W+s5ZJ0fqILIDluWbXK1tgB3jY201h8T8ffcxJamoyeQRYOTCOArDopdBdSG6gl35V/0d2Kuma5EWeILVnC6VZwFbjOuT+RSqGNjqKPjIKWWRSZinNh9HUjV9Ygud3ZIPrsoNGAMAzMVApXQ4M1sPRlQgjBvl90MtgeQVFlll5RSrD4peutpWIavjwnLp9jWuhIViiZJmQiEA9BfBhJSUC+A9wBUFwzQk1mTJ9VhmG6x9Eu0XCRmcuyBJZQmlx+OdtKjFmDJSdC2cD5Etj0NihstN5PPQoFdS/dztkYmuVmLF1liy4bm7OwhdciI6llyOg6RVzNydbNbNxcyJqiNSgXMf5B16ZZtiLnJ7YAhKajh0bRh4cxk0lkn39B1eFfCbR9L5L+7ldx3Ho3rrvuQXLPFDdGOIxSUIBSePkC6oUQHH2ql+4TY0gSXPW6hgWJLtOwxqQMFHnwBqcJ3EzCenBG+iAxbgUEFwTBWWkH9i42pluWJgXTdKF0PuMYnqut4VNWUPykoIqPWtOJUbjxL6asV7/4CIx3zGzX1GH7h6DzxQsTXWDtz19uvWxsbGZgC69FRlLLoAs9Gzdj4FbUiyK6DMMkFdMuWGxNIkyTTHc3+sgwss9vBc4v0oe7tutZ0v/1ryAEYjyEMM0ZMWdWQL2Eo6IcSbl8gb0tewY5vXcIgCtfvYSKpfkL2i6d0HH7Hbj9Dst1mByH6BDEhqyMM4cbfIV2rStYXC49YVrVw53ZYZXCPXDy57Dl3dB/GJbdCk/8FfQfmtrmygenyjUc/wn0HZy//ZV3wpb3WsLKnQ/fvw9afz3/+onQVHkOf6kV/O4tsqxdS66z9j100orpOl8xCFYcoaxC4RK7aKeNzRzYwmuRkdQyCAQD/JrAyl9xPH0jcOXLbnd8ME54OGkNLO1W8J2H2JqOEQqhj46iFBRecBxXoLaUTCxJemz2Dd1VGMDp9xDtXthDcb62tBeeRO06if/BBwk3d+C6910zRJcVUB+57AH1HUdHOfZ0HwDrbqymbm3RgrYTQqBnTArLFORwN4T7rCF0hLAGic6rtq1b07ncLr3YEITaLLddbMgSYvGRqffiJrj7a1PbPvnXVhbf9g/Biw9bMVXTWfvGqenRVmt4nvkwNVjzBqscQ6htSnS5glbNrUlR5S2y5icFIMBt/zB13Uw/HiM925q2EISw3JfFy+wxAW1s5sEWXouMlJ5BAgyRrY8lvfw/kWkKUlENp1vF5b3w9sxEAq2vH9njeVnB85lYkqLVdYROdM0QTK7CQG75y2kr8+yvcfS2UPWFLzD43e9bZSPOzsKMx5G9Xhwllyag3ht0omdmVrvvb53gwC87qVlZyMrtFeSVLHwMzUzSwOk08SRbIdZrZYj5S+2SC/MxlxsuE7MEwe6vwUjz3NttfnBKiBz9wZTgKFkBm98FzY9B907Iq4FbPjXVdstjcOA78/cnPjo17cqDm//Gsnh17YQt77FE0Vj71Dp50+r3LbvNClCfj8qN1vaxIcs1+K4nANOqjfVSzCW6Jo95rnP4UiTHrXITF+qitLH5PcC+ay8yYpkkkqRQpN9C55mrWb+9+mW3qacNdM18WaJLGAaZ/n6ElkEpXJiVZj7SY1FCJ7pmCKbpomsuS9j5tOVdvZLS//cQg//1Q4w122aLLtPETCWtgHr3pQn81TMGwWJvbmDt0Z4ou37aRvWKQm57aA3xiXSu+OxC0GIxCh39qLERq6ioculKifzO0Pprq+Dnstss95orD/7nPmh7av5tNj84NX3iEYgOTs23PQVv/BYgrMDzA9+Fmi3WZ/m1UNRkiWF/KfhKp6b9pZYwmsQdhKs/aIkZh8eKzVv/5vnFTeUG6zUXZwumdBSqN52/i9DhmXubSfHl8Lx0e6ZuWQcrN1jr29jYzIktvBYZ4VQcp6IiTBVML56LUDpCyxiYhpmrKn8h6KOjGKMhlMKL4z6YLpji/WP4iv0Mfv7LJI6dwHH9rShLVyB0nfR3vjLn9s7XvAm5tAIzNEL4G/+EtnY15X/4fuKhAL5r1jDyzB6MlZvndKea4TBKfv5FO5a5mBxYO1jsZWI4zp6fdVDVVMBt711DbDyFnjFfupEsWiyMEu3GWzgBwYrFVWhyMZKOWq6707+y6kc99Bzk11hWLk+B5ZZbCMtumy02undb7sHu3RCYVr298Ubr9VJcLMvSxW7rXDFqk4LupYiPWj8KAhUL26eNze8ptvBaZETTCZyyyojyOL6Gg7QmXg2sf1ltaimdl1Ox0ozF0PoHkH2+ixqEnhoaI14QIFhXythPHiHy3W8CoKzdhLJ0BZgm+sHdc27ruOnVAIhkAv3gbiIHd+OuLKXoHW8n0jWMpvjmPGIzkwEEjoqKSxpQH59Ic/zIKMU1ftZcW81r/2gj/kIX0VASQ5+nUvtcpCJketvxe+I4Syqyg/TazEv3bnju81b2HhJc/SFLCMSGoGgp3PCJhYuRK945c35S6MSGoHrzhQWeXwzL0qVo6+WiJQAJCpbYPwxsbF4CW3gtIlJahrSRwak40Ikgu0bRROJlt5uM6SiOCxNeQtfJ9A8gdB3lIpaMMLrakA+9gO+6fyDSNUzeHbeTiqZJtnWi1GWzuRQF5z3vmHN7qdAay1DOL8B5zzvwNNaT/6bXEukaxldZSGo8OqfL0oyEcZSXIwcufvmLaChFMpahtC5INJTi1M4BXF6Vxo2lFFb6iIfT5ye6EmMYw+1gZPBXlNqi61yko7DrK3D6cWs+rxru/DI03jDTDXchZRtgbpfehbR1MSxLl6Ktl8NkQH1hI/heXhiCjc3vA7bwWkSk9AxpQyPf5cKfvoHh/vWs2nGOoNoFoGsGWtpAdVzYr1B9ZARjbAyl6OLdUEUsgnzkRao+9VcMfOHLiKtuJTUepez+N86I8ZIUBecNt52zLckfJPCGe2bEeKXGo3PGi5nxOLLHg6O07KIlAMbDaXpOjdFzapyJwQS+fBe3v28NpfUBalYVsmJbOZ6Ag3g4jcfvREvpMwLu5yU2AuPtpFPgKS7C7bVF17z07oNn/zEbwC5ZGYHX/LEVSL/YXHq/i6TC4AzYAfU2NgvEFl6LiLiWQTN1VMWBpBdjJPPId5a+rDb1tImeMXB5zr+2kxGNog0OIvv9F23MRWEYyAeepeKv/5K+T/0d3Hg3EnMHyS+EuYLy52pLmCZmMoFzyRIkz9wB9XNlIk7idCuoToVEJEMymqG3eZzuk2OM9cdz60gS+AtcaGkDp1vl2jc3zQiw11L6jPm5TxAQ7YfxToTkxHT48AflRVsrbVEwWSA0WAXX/wmUr7My634XXXqLDVO3skXL14HT90r3xsZm4az761ds17bwWkSktAyaruOSVSKup3BXddKbei2w6oLb1DIGCIF0nmPnCU1H6+9H6AZK8OJlKGV+/kOCtaX0/cmfYV5zB4p36mY9KZicfs+ChZfT75lTqJ3dlhkOo+TloZ4joP7sTMTcPtwKwWIPzbsHOP5sPyPdM/dVUmtZt6qX5+PyOqZtM7Ot6QH3c4ovYcJEH0x0gstPWnfjdEt4fLbomkW413InghUEb2SsQqSTFdl/F116i5FEyMraDFa+0j2xsfmtwRZei4iknrZcYBJoShcO7wlixtUvq810UkNSzv/BrQ8PY4yPoxQVv6z9z2iz+Tjar39GCHC960M4KmtmrZMemzs2az7OVWh1si0zkwEhcJSXn7P+2NnCKJYt+VBcXcxwZ5in/7Mlt25RlY+alYVUryjAE5htTVSdypzianIfqlOZ+ZlpwES3JSjcQYTiQksIissklAv4+/3OkonD7q9adbNe+y/WWICSBKte+0r37PcPPQWmgIIGu7yJjc15YAuvRURSy4CwHrLOxNVExpZS13Dh1i5hCtJxHdVxfm5CIxKxXIyB4EVzMQIoTStw3Hg7IOHYfNVFa/elMKMRHCWlyHn5L7nupDAKFHnoPBZixVUVjA3EkFWZ+nVFBIs8VK8swJd37uKUiUjmnPuYIboMDcY6ITZglTtQnOgZgcMp4fXbGWI5evfDs5+FeFZsDxy1hJfNK0M8ZMW4+S7ejzMbm98HbOG1iIilE0jZzDU504Q20UCl78IDVrWMgZ4xcboX/vAWmk6mrx+EQL5IxUVFJgOqiqSouN749uw4lJcHM5FAdrpQy8vPGVCfTuh0Hhul//QE171lGQ63yoabaznxfB9Oj0peiYcrX73k4ndQS1lxQvFha4gV2bIcpJOCvCIZh3MRW7su5niI52ovE4fOF6zP4sMQqLRiuSpeXpkVm5dBKgwOrxVQb8cf2ticF7bwWkSEMwlcWZN9yrUHZ0mIUMYNNF1Qe1rawNBN5AUO7yMEaIODVjzURcpiFEKQ+u5XQNNxv/MPkLy+yxYoLkwTMx7DWV+PPEdAvRCCUF+ctoPD9DaPYxqWIIyEUpTW5REdS7Ly6spzB8O/HLSENUxMYtyyGkiWQDZ0gaxI+AKXIJPxYoqlizke4nzt9e63htW584vw43fB6tdbQ+zYldFfOUwDUhEoX2v9rW1sbM4LW3gtEoQQxNIJHFmLh+Y5gMvVwVjmwgfI1tIGCBYsdMzwBPrgIHLw4rkYtSd+jnFoLygK5vAASv3Si9LuQjCjUeS8fNSz4tS0tEHX8RDth0YIjyRzy/PLvGy6tZalm0pzYsvQzJfORLwQ0lEYa7PefcUzanSlkgJvQMblvgQC9WKKpblKKsxVeuFC2xvvtKrPv+Hf4RcfhZV3WeMS2ryyJELWoNvBqle6JzY2v5XYwmuRkNYzpDQNZ9Y6JSfWkoyXU77qwrOFUnFtwYVTRSZDpr8fFAXZtYDBdRfSphAYHWcAcN3zjssrujIZMAyc5eVIDuucjg8maD80TNeJMQzNGrJHUWVqVhXQuLGUsiVB8krOMxPxQkhOWJYuLWU9wKbV2DdNgRBcuhISZ4ub+KiVCZhfC6G2bAVyYPikVRRTT1tB1Hp6atrIWLFVS66x2mt7xhqzsGcvrLgTfvkxq7bWdO74/NSgzU/9HcQGmZdtfwDr3mSJuDf9h1UY9cp3Wa4tm1cWPW1ZvAobQD3/EjU2Nja28Fo0xLU0GVPHo2ZdKJEdpBMmtYHGC2rP0E20lIGygMB6IUAbGMSMRl/2ANjTkSQJ93v+COP4QZS1V1y0dqcTqC0lE0vOyoQU0Qi+piU4q4uJj6dRnQonX+inv3XC2q7ITePGEurWFOH0WF8Dh+s8MxEvhPgojHWA0Oes8p1OCdxeCY/3ErpjJ8VXoBKaf2kN+Py9N8OW91pj7QHs+VcYODJ/G6teawkvgFCrJdS2fwhefBj2f2v2+mLa2JSh1nNb1rp3w9KbwF8G0SFouvl8j9DmUpEYhWCN5bK2sbG5IGzhtUhI6RqakcGpWq5Gw3USVU2RMKovqD0tbaBnDDyBl07zNsbH0YeHkYN5F8XFKLQM2rO/xnHDbUiKirpu84zP5xNLYBVEdfo95ywTMZ1MLDmrgKqZSOCpKiN/ZT2//tYJAgUuVlxVQeOmEhRVpnFTCcU1/lkWpfPKRDxfBJaVZ7zDiuXyzK4nJoRA16CwREE+z7pr583IaWh5fEosdb4AVzww9XlBvZVtqbotS1Xu5QbFBeXTRlSo2WJZwHr3W+Itv8YqjTGd6eUGrvrglGVtLqo2g7fIGhPRVwSZ3/NaWYuFdNT6+xfW2wH1NjYvA1t4LRKSWhrDFDiyA8yKwl/icQ4zmtrAhQySrWcMTCGQlXMLKZFOo/X3gaoiOy+O6yD9w++gv/g0RlsLnoc+MuvzucQSzKxCv+B9TatSP3S4g67jIQqLXdRsWcXp/cN0HhmltC7AiqsqKG/Io7wh76Ic43khBET6YaLLEi9O/5yraWlwui5TwdSuF+Haj8KR/4Gr/gBW3DFT3Oz4fwtrZ3pMl6xApNeKxTpXjFf15rmXn93eyx1f0ebiIUzLRV622hoVwMbG5oKxhdciIalnMJn6ISlSNRhagLwLvMmlkzryS/wqFUKg9Q9gxuMXrVCq9uJT6C8+DZKE45pXzd236UP6HO8kMhjBme+ncFUdnS+2IWcSqKpEf0+GeMygosqJP6jQ1ZZiaFBD1wS6JtB0kZ0eo3JZlFvevZqhcSf1OyoJD8UJFru55k1NlDVc/AGxz4vogGXpcvlBnT8bL5M2KShRUNVLLLzCvZbo+vG7YdNbL3zMwYs9hqE9JuLiJTFmlTvJuzALvI2NzRS28FokJDNpJKbqW2UG70EzYEmw4bzbEkKQjmkvGd9ljI2hj2RdjBfBdWB0tpH+wbcBcN71JtRV6+ZdNzUaofnJMyy9ppG+kX5Wrqvkl187Ts+pMa7ZahL0Q/spibEJCZdI4qmQmBiBwb65a4D1nBrj1Iv9bLyljq4jQ7iCblSHQnnjK/zrPBmGcI8VGH4O0aVrAkWVL33BVNVtxWb96AErm7Kg/sLFzcUew9AeE3FxYmSsoPqy1VMJEjY2NheMLbwWCfFMAkWaioMxHYPIqsAUa8+7LT1jomVMHK75hZdIptD6+5GcroviYhTRCKl//xLoOsr6zThuec3c6wnB8KDGqaNJIuFxMrKHjbfUcfg33Yx0hfHnqaiVJTgKVMrHw/jCGoFKN2qhQvXSNHnFOqoKiixQFROHAqoKwYo8yrdWEu0epmZNCZHR5KWpvXU+6GnLvWga4M4/56rplMCfd4lKSExHkuHXn7QC59/0n9M6cAHi5mKPYWiPibg4iY9CXhX4y1/pntjY/E5gC69FwkQ6jkO2/hxCCNw1/46sxgllVgO159WWlrbqT7n9c/95hRBoA/2YyeRFy2I0Q8MILYNUWoH77e+fM0h/PKRz8miC0IgOQP2aQtZcW0l0PMW6G2qoX1s0QyytvrVsxvaVcxSOF0LgdCvklXgJD8bImC6M0eSlqb11PggBEz2QmnjJDLDJwq3+S1Ew9Wy0BGx6BzTdAs6zyjPY4sbmbDJxUJyWNfQiDh9mY/P7jC28FgGGaRDXUjizmV+mAKH7MZFwq+c/bI+eMRCIed2HxmgIbWQUJT//otWKUuqX4v3Tvwctg+SZu97SqeOW6JJl2HxjKZvuWs5E7ziG6sbIGBckllweNbedplslLC5J7a3zJTpgvTyFTK/TNRepbAkJ96UsIQGWGJQkKwjejtWxeSmEsGK7SlZYY4ja2NhcFGzhtQjIGFbxVFWx4icMExIdVlZZ3etqzru9VFxDUef+dWomk2j9fchuN9IChxI6F/rR/eD2oi5bhVw4M0A/lTRpOZEkEFRoWOZm1VovHZ4UG68vpXLTEkLHOhCFpUhceKFS1XkZam+dL5NxXU7fzDIKcyCEwDQgkKdc2qGUevbA4e/B9g9bxS9tbF6K5JjlIs8//3uQjY3N/Ni240VAQsuQMbTcOI2GKUDSARPHeZr3DcMkk9RR5wisF6aJ1j+ASKeR/XOXNDgfzIE+Ut/+CqmH/w7j9MlZnw8NaHS1p2k5mUTXBfmFKhu3+PEXeRnZfQxdcc1wSU4XSwslEcnMK6wyKeOctbkuCdPjupy+l1w9kxI43Ze4hISRsWp1DRyBlscu3X5sfncwdWtkhaIGe1xMG5uLjG3xWgQktTS6YeDMxngZJviXfxJJEoS1R6hidrHN+dDTBrpm4vbN/tPqo6PooyMo+efvNji76KkwTVLf/mdIpwi86T58N11LuHOEzrY0I0MaW3f4qal3EhrRqGtwzSiRED7ehuzz4qqZnXH4sguVvpIIc8FxXZNoGSgsk1CUSyi8jv4QIn2W2/OKd166/dicH5PV/KVF+Ps3NmqNYhCoeKV7YmNzaTj613MvXzfP8ouILbwWASldwxACJVvsVDdMJMkKuHapL115fjpa2sTQZxdONeNx9P5+ZK/vglyMqtdFoL6M0PFO0mNRJFnG9Zb3oLQfo+Iv/oz+5hGeeixMMmE9TIYGNMornWzaOtOyJgwDdA21pPSiDcS9aIgOLjiuC0DLCBSndGlLSMSG4GA2e3Hb+xZkhbO5yAjTsoROlmUwNGu5BCCDMJjzesktkrOB7ZIl0iTJGv1AmpzPLpuzjXNdh/N8ZmSs/RU2WPGANjY2FxVbeC0CEloawzSZHCXGMCHa8tcosk7AeX7FP7WUPmfykT40hJnJoBZdWDHRxPAE3tJ8itbUEzrQTDqu4dm4HnHdTeg6HHp6mGTCxO2RWL7aQ2n53ILRjMWQg0GU/N+x6tfnEdc1STolyCuUcTovobVr11fASEP5Olg6d0Fbm4uEafx/9u48PqrqfPz45947+2TfSUjYFVAQcEEEwQVFi1ardautorZaW2utrbbWtda6/Wq1tlZbawGt27d1qbV1q/uCiKLiCrKvIUDINuu995zfHzcr2WYmCZkk5/16zSvJvTN3ThLgPpzznOdxghY7Bla8VYClOfWvDI/TFN2X7dRTa1rCk9IJzqTd+FE412r+3ALbcvp72hYIs/G87bxWmM7H5jqAHde6a36vRORUOAVTFUXpdSrwSgMhM4LearlBooHwoWsSQ0v8f5xSSiIdJNaLSBSrtg49IzPlMcaq69n56XoK9qsgf/+RrH/jSzauERx4fJAX7v+Mbat3M2GSn1HjfJ1WXpdCIE0TV9HIwTXblUS9ria2JdF1jWBflpDY/D6se8OZEZl12dDsrxetcx663irokG1njHQD0BpnlfS2H7U9HtAYYDXNYDUGWFI613F5nF6WwRzwZTnBlcvX8ujNP/dNAVtTkNZRwNVloNXJOSmdgr+KovSJtA+86uvrufbaa3nqqaeoqqpi6tSp/P73v+fggw8GnGDj+uuv5/7776empoaZM2dy7733Mm7cuH4eeeJC8TBGq19F2AwRHHM7GgaWOCzh69imwIzZuD1t/3G36+uRsRhGVs9a50R31LD52r9Rct311BkFHHh8KS/97TM8dpi5X8vG00XBVgBRX+/MdmX3cwuf3pRCXhdANCIJZPZhwVTbhLd/73y+3zeG3k5GMwyhamcGsniiE/Q0zSqJxodtNs4eWY3BkwVCgG2DNFtmlFp/bFrua5rByswDTya4fX0XYHWmaclRLQcqyoCS9oHXd7/7XT799FMeeughSktL+fvf/87cuXP5/PPPKSsr4/bbb+fuu+9m8eLFjBo1imuvvZZ58+bx+eef4/MlXwNrb5NSUhcL4zJafhVx20L3VAPg0hL/FZlxG9tqm1gvpcTatQvN2/NWH+arz1G/02LXW9uYeuwI1n+yk/2n+HGZ3b+2abbLM3IEmjGIbhRJ5nUBCCGR0imY2mclJIQF5YeAFYGDzuub90hHdtyptK67IX+Ms2TmTWIHb9PsUfNSn9122U8K0F3OTJbhVUVFFUVJWloHXpFIhCeeeIJ//etfzJ49G4AbbriBf//739x77738+te/5q677uKaa67hpJNOAuDBBx+kuLiYp59+mjPPPLM/h58QS1hEzHhz8VQAlxYgtP5iAl4bXU/8xmzGbGcVpdXNXDQ0IBvzqnpC7KzCvWsL+95yC66MAOuXb6VicjGS3OaE+y5f35TblT2IcrtSyOsCp4SE19/HJSTcfjjsR3Dwd4dGOQBhOcU+hQ1ZpZAzIrUcJd0AjKR+n4qiKMlI6/+uWZaFbdvtZq78fj9vvfUW69ato7Kykrlz5zafy87OZvr06SxZsqTT68ZiMerq6to8+kvcjhM247hbzXhpGIjICPT4qKRmRGLh9on1oq4OpOhRsVQpJcYXyyi74//hDXrZ/eVGjJoqdn66Hg3I338k3rzO88ekEMh4HHdR4eCZ7bJiULPemQFJYqeglBLThMxsPamgOilmuOXzwR50NVVXr6t0ktbLDoSSA1RiuKIoaSutA6/MzExmzJjBr3/9a7Zu3Ypt2/z9739nyZIlbNu2jcrKSgCKi9v29CsuLm4+15FbbrmF7Ozs5kd5ef9VZo5aJnHbai6eClAXr8E/fDEU/F/C1xFCEguZGO6WwEaaFlZ1dactfJK4OJnzjkVqBm8//jkbPnWWQZsS7jUgUJjT+csH22xXc15XbdKtVMwYeLwagWAf/dXb/D48ciZ8+d++uX46idVD7WZnWbF0CpQdBJnFavlPUZS0lvb/Qj300ENIKSkrK8Pr9XL33Xdz1llnoffgH9errrqK2tra5semTZt6ccTJCZsxLGHjapUgG7FDuDK/QPpWJpg11FI41dUqsd5uqEeEI2g9zHXTDANZUMZ7/1rFiqW1VFW2JHU1BV9WJNbha53ZrhjuwoJeaVGUFlLI62oSiwsysjRc7j6Y7bJNeOduiNXBrtW9f/10YUagZrNTWqF4PyeXLaccjEHy50tRlEEt7f+lGjNmDK+//jqhUIi6ujqGDRvGGWecwejRoykpKQFg+/btDBvWUmF5+/btTJkypdNrer1evL2QbN4bIlYcW0hcrQqeerVsottOIdPXuM09AWbcRliiTSkJsXs36HqPSjeYb7yEMflA6oGcgM0+E3yUlHnaPCdWXd9pjpdoaEDPzMTIyUl5DGklxbwuAMt0fs99VjD1k39CzUZnFm4wJtTbcQjtcvKw8kZDbgV4Uy+RoiiK0h/SfsarSTAYZNiwYezevZsXXniBk046iVGjRlFSUsLLL7/c/Ly6ujqWLl3KjBkz+nG0iYuYcacEUKv4ykUQs+YQPNEDEy69ZEatNnWaZFPtrmDqlcqtlZ8Se+xvhH99JbKhnswsg/GTAuTkJRavt8x2FQ2O2a4U87qaxKKSQIbWNyUkGqpg+WLn80MuHFwBibCd7y+0EzKKYfjBULLf4PoeFUUZMtL+bvjCCy8gpWTfffdl9erVXHHFFYwfP57zzjsPTdO47LLLuOmmmxg3blxzOYnS0lJOPvnk/h56QkLxCPoeRVLrzZ14Cl/B8magcWRC14mGLIxWy1d2Qz0yFk25dpc048QefQAA98GH8dHnGlI2MG6Cn8ysxGZsZCiEnpExOGa7Wud1JVGvq4mwJRIIZvXR/3XevResqLP0ts+8vnmPvU1Kpz5aPASBAsgbBcEilcOlKMqAlvaBV21tLVdddRWbN28mLy+PU089ld/85je43c4yz5VXXkkoFOLCCy+kpqaGWbNm8fzzzw+IGl4ADfFQu+r09VY13oLXMK3ChK5hm4J41MbVmFjfUrurBz8Dw4XnmBMxX3kO7WtnsOXFGELAmH0Tu6YUAhGN4i0bjeZO+z9m3WvK6wokn9cFzmyXP6Dh8/fBbNfWD2Htq05hz5mXpWfT5UQ1tcgxo06Q68uGYQc4zZpViQdFUQaBtL8jnn766Zx++umdntc0jRtvvJEbb7xxL46qdwgpCJkRXHrbG4pHyya+aybZvmBCt3gzZmPFbbx+J/dKNoQac6tSr92l6TrumUfhmnEEmzaYCBEjM8sgKzuZ2a4gRk5yu/7SUuu8Lj35m7+UEtuGzGyj90tICKulQv2Er0NBGndskNIZrzBb9Ry0nEdT9xpNc37GhgcKJ0DO8MFfEkNRlCEl7QOvwcwUJuF4HLfe9tfg1wqJVZ1IRjEJ1fEy405LE63xpm7X1SFFarW7pBDEHl+I+/C5GMNHoOk6mzc6OxbLKjwJjUcKgYgNktkuKwY165LO6xJCYplOQr1tS3x+HX+gD2a7NAMOXAAfPQIHX9D7109Uc1BltbTgaQ6qGqMqDSeo0t1OgrwnA9xB8AScQMtwt/3oSo8NMIqiKL1pgN8VBzbTNomYJl69bUuTBqsaV9anmO5MNO3obq8Ti5jNQZe0nNpdui+1WQLrzf85j+XvErzpD8SEh51VFuAEXomQ4TB6YBDMdkkBuzc6TZa7yeuSQmJZYJoSYUvQNNxujUCGji+g4fPrGJ00D+8RTYPRR8CoOb3TBLupJ6GwG3sUipbehq2/3rP5clPfQMPlBFbugBNQuQKNjaM97YMr1WNQUZQhSAVe/ShixojZJkFP219DtbkBf9n/EbZGoHFxl9eQQhILWc31u0R9AzISRs9NvnK3qKkm9q/HAPCccBqa18fWVVGQkJtnEEygDIIUAhEJ4xk9ZuDPdtVXQkNlh3ldbQIty9mW6nZr+IPOzJbHo+H2ahhGH7YFqtno9CKE1IIuYUH99rbHNJwAqqn5smY4yexub2Nj6Mbm0IbL6VnY/Gh8vuFpXCoc4L97RVGUPqL+dexHUSuOLUSbGl4AbjKwGsaR4el+95wZt7HiAo/PCYrsmhqkllrtrtjjCyEaQR81DvfhThumLc3LjIkt+8hwGD0YxJWbk/T7p5VIjZPX5c0A3e1sWGhcOrRsiYaGy6PhDziBltvrBFt9MqvVka0fwrM/gX2OgzlXppZQH6t3an7llDvBk2a0CqJaf3T1zmyaoiiKogKv/hS24tiSdgnXWfpYIpsuYEy51m1yvRUX2JZAd7mQsRh2bQ16IPkWQdZHy7A/fh90A++3voum64QabHZX26BBaXn3y4xSSme2a9QoNPcA3oFmRpDV67DiAsvwYUUEGuBya3j9OjnBlhkt194ItDKKnGrtscYita0T6kunQWaJU+cqWfEwFAxvmTVTFEUZzCbf0N8jAFTg1a/C8SjSBtceswkRuw7dV4kwAnQXesWjzo4wTdOw6uoR0ShGRvKFJa3PPgTAfcyJGGXOjXjLxjgABUUufP7uZ1SaZ7vyBnCDYmFhbl9PdFcDrpwCvF6d7CB4vfreC7T2ZEYgdyTsXu8EX58+5Xw+/gQ4/HKo2ZD8NZtytHyDpH+moijKAJH0+sT111/Phg0p/EOvtNMQDzs9J/e4l1dZKwiO+gPVnn93u8LjNMbWkBKs3dVoHm9COw/35P3W9/BdeDme47/RfKxyixN4DU9gmVFKiQiHcBUWDtjZLtu0adi4Aat2J3kV+ZRWuCkpd5GT58If1Psn6AIn2Nq93gm+pIQPFsKYo+DUvzpBV9NMWDKsiFOmQVV/VxRF2auSDrz+9a9/MWbMGI4++mgeeeQRYrGOmyMr3WuIhzDoIEiRLoSZhUGwy1qdtuUUTjXcOjLUgKivR0tymVHs2oG0LDRNwzXlYDRPy5LiYUdkMW16kGFl3QdSMhIZsLNdUkgi9XEi27eRIbdSPCaX3CIvbk8a5TU1BV8F+8ARV8Fpi5wctFSCLnCWGb2Zzs5DRVEUZa9JOvD66KOPWLZsGfvttx8//vGPKSkp4eKLL2bZsmV9Mb5ByxIWUctE72BLfT6HEFr9S8rEN7u8RlPhVJdbx66vR9o2ehKzTdKyiP7pdiK3XIXYtqXttU2Jy60xfIQXt6frPyZSSkQohKugsE3gNhDEwhYNNTHcop7iwBYKywP4MtO0YGfDdqcf48xLnR2N8VDq1zKjEEysM4KiKIrSe1LqLTJ16lTuvvtutm7dygMPPMDmzZuZOXMmkydP5ve//z21tbW9Pc5Bp6l4qtdoH6hYtg2ahaaLLpcNrbiNEBJNCqxdu9CTbBFkvvQMYttmZH0dWqsq91JKXnuhljf+V0tDvd3tdWQkgh7w48obOHW7rLhNfXUUKSG/UKM4sIlgUKD5c/p7aJ2r2QRTvgXv/w2KJqS+TChspyu7N/XOBoqiKEpqetTUTUqJaZrE43GklOTm5vLHP/6R8vJyHn/88d4a46BkCpOIFcejt9/fsI2XyRx/Ddv0J7tMro9FbXRdQzQ0IMPhpJcZZSgEmobntHPQWiXk19fZRCOChjobfzdJ9W1yu7zpX2lc2IJQTYxYxCK70E9JhY8cNmCYdek9A+TNhP1OgaV/huq1LTlfqQRfZtipGO/N6P65iqIoSq9KaVfjBx98wMKFC3n00Ufxer2cc8453HPPPYwdOxaAP/zhD1x66aWcccYZvTrYwSRmxolbFkFv+6VGW9ig0655dmtSSmL1cQy3jr2zNqXaXd5vfgfXjDnopeVtjmdluzj2xBzqau1u61LJSATd58OVm96zXVJKYmELK2YTyPGSXeDHFzDQdnwJdVsha1j61qryZrbsatxnnnOsdcJ9027HRJlhyChRLXkURVH6QdKB16RJk/jyyy859thjeeCBBzjxxBMxjLYBwllnncWPf/zjXhvkYNRcw6uDm32+OJrVX01nynhXpzNeVlxgmgIXFtbuGnR/4nlJ9uov0UuHowUymktHNBFCEo9LfD6dQl/3gZwIh/CUl6P5klvm3JvMqEU0bOH1uygckUUw24Nu6FC9DmrWQ0ahUyQ0Xbn9HQdXTcGX259c4GWZEMjvzREqiqIoCUr6bnP66adz/vnnU1ZW1ulzCgoKEEL0aGCDXdSKI4RsV7UeQAoXCD+eDs41MWM2dlzgshuc2l0FBQm9r6ivJXLfb9FcLvyXXYte0vb3uHO7ybtvNVBW7uHAQ7teihLhMLrXl7Y7GW1LEKk3MVw6eSVBMvN9uDyN/0lo2AE7v3IaNbvSN2gEnNZFL1wDpVNhwnynD2KTWH1yQZdtOu181DKjoihKv0g68Lr22mv7YhxDTkMsjJQ6RgczXlXaiwTHvMd2MQM4tsPXW3EbicTeXYPm8SRcuyv+jwchHEIrH4lWWNLu/OaNcZDgSaCUggiH8AxPv9kuKSTRkIltSzJyvWQV+PEFW+32jNVD1ReABN8ASDDftgI2vgPbPoKJJ/bsWmYIPEGVWK8oitJPkk6uP/XUU7ntttvaHb/99ts57bTTemVQQ0FDPIyO0WFakaXVo3t2IbRIpwFVNGSimTGndlcny4yZFUV481qSr63PPsJ6/x3QNLKvuJqsUcPavq8l2dZYNLWsouuyECISQfd6ezzbJaVEiLYPmchDdvxoLg/hdVE8MovC8sy2QZcVh6ovIZ7myfStrXre+TjmyJ7PzsUjEChw+jAqiqIoe13SM15vvPEGN9xwQ7vjxx9/PHfccUdvjGnQk1ISsqLonTQ2zowfwdbNkygd33HCurAF8YiFFgkhLROjk9pZ8YYI+fuNYNdnG4hu20Hs0QcAyPrBjyk88lB2fda2A0HVNhPbgkBQJze/6z8aItSAZ/hwNH9qgYCUknjEIh6x0Y2eJbU3db8BcHkM8ssyyMzzYbj2+PkKATtXQf229E6mb80Mw9rXnM/3Oa7n15M2pHPJDEVRlEEu6cCroaEBTwc3erfbTV1dXa8MarAzhUnciqNrHf/4DTsPEckgaHScXG/GBWbUhPpqdF/nSfWx6np2fbaB/P1GsH3ZW8jqnQSPO56Siy5g12cbiFW3zQ3avNHpQlBW3vXSZdNsl5GXfIJ264DLE3CRPzwDX9DdHAO1DqJSYbh03B3sFAWc9jq71ztNp9M5mb61dW+AFYWsMijev2fXsqLOjJlqE6QoitJvUtrV+Pjjj3Pddde1Of7YY48xceLEXhvYYGYKk1DcxKN3XGW+xvUqvuGr2SUOpaMcLzNqY9WHcEcjaDldl3FoCr6Kzz0b/+iRZM08lF2ftw+64nFB1TYTgLIRnS8zOlXqG3CXlqEnMdvVOuDyNgZcGTnelmT3vtZQ5cx2+bIGVhmFlY3LjPsc1/MZunjY2UzgUYn1iqIo/SWl5PpTTjmFNWvWcNRRRwHw8ssv8+ijj/KPf/yj1wc4GJm2ScSM4TE6LngaMzbh9n9BTO7T4cyTGbUQdXVISKh2V6y6ntC2anKPnkPdhqp2QRfAts0mQkBmtkFWdud/LER9PXowiLsosfyofg+4AKJ1TjK9pg2s2Z66bU5CPRrs0/Emi6RYEcgZMTCWWBVFUQappAOvE088kaeffpqbb76Zf/7zn/j9fiZPnsz//vc/5syZ0xdjHHTidpy4JfB30gPRFz2Uml2jKdp3dLtzUkpCu0MQrkNPsFK9O1pLsGQidesrCZYVEN1d3y742tK4zDi8i6R6EY+DZeEeOaLbKvV7BlwF5RkEc7y43Hs5qduKwY4vId4AmcO6f346Wf2S87FsGmQU9+xaUgDawNjFqSiKMoillOgyf/585s+f39tjGTIiZhxbSlx6xzMPRnwsZs1IcjztlyJtUxCvrkM3Y2i+7mdvvHmZ5I8Zw5YfXIw15gCiX5vfnHDfFHxFI4KdVRYApeUdB15SSkRdLe6SYRhdLG+mTcAFjcn0Xzl1sLJKB95Mz+QzIHs4+HuhK4AZBZd/YM34KYqiDEIpZxjH43GqqqraFUqtqKjo5BVKk7AZQwhwdbJMGPYsxVO4gwb7wHbn4jGL2M7d+Lyubmt3efMyyd9vBFt++ENCb79DYO6pbRLum4Kvhnobr08jEDQIZnQcIIn6evSMDNzDSjqMX5oDrqiN19/PAVeTmg2we11jMv0ALJ/g8sKYo3rnWmYIfLlOlXtFURSl3yQdeH311Vecf/75vPPOO22OSynRNA3btnttcINVfTyMho7eyYxX3PsR3qyvaBDtuwPEdzcgGhrQC4Ldvo8nw8/OpZ8S2bAFLTOruWBqU/DlyfATq66noMjNsSfkEIt1vKVQxONgW7hLR6DtsaO1XcA1PA0CLoD67bBjJfiyB1YyfRMz0rtBkhVzWiMpiqIo/SrpwGvBggW4XC6effZZhg0blnDFdKVFQzwEUqeTuAsjMolIqIicgvaV5UPbq9GEhd5J7a7W6jdWARD4+U1I226TiB+rdvK8ImFBOGyTl+/C5++gfZGUiLo63CUlbZYYm4qVmjEn4CoszySQ7en/gAsgWusk0+vGwFxaM8Pw8GlQMhmO/GXPvwdhgaaravWKoihpIOnA66OPPuKDDz5g/PjxfTGeQc8WNhErhtFJKQkAveFQYvWCwsltZzxs0yKydSduf/IzOJrRcUC0cV2MlZ9FGD7Cw7Tp7csMiLo69IxgmyXGNk2n0yngAieXqSmZPrvzfqJpbd0bEA9BzcbeKf1gRsAdVGUkFEVR0kDSgdfEiRPZuXNnX4xlSHCKp1oYdB6omN7PcWkR4qJtwczYzhrM+jC+guyE3y+66E9omZm4j56PntO+vY+UEsMFBcXtA0ERj4OwcZeWtllijEUs8oYFycr3Y7iT7jrVd4TdmEy/3UmmH6h6s3YXOEFcVhm4up8lVRRFUfpW0oHXbbfdxpVXXsnNN9/MpEmTcLvb3rCzstRyRldMYRI247iMzvN37OwX8Xu2Umu3rQwf3b4LYUlcnsR+bTISxlr2FkiJ+5iOmyuP3z/AuPF+9iyQ39kSYxOP35VeQZdtwq41rSrTp8kMXLJ6u3YX4PSB6llPTUVRFKV3JB14zZ07F4Cjjz66zXGVXJ8YU5hELROP0XnejoxWYMcDBMtaloZELEZk2w7wJV4t3t64FqREyytAz8ppd76qMo7fb5CZ3T5I6WiJEUAK5/fcrg9if4qHnMbXdVsgWDAwk+mbfPWC87E3ancB2HEw3GqZUVEUJU0kHXi9+uqrfTGOISNux4lZAp+7i16IO75BJC4pntKyc9GuqSVSG8EdTLymk1i/BgBj5Nh256SUfPx+mEhYcOjsDIpKWpahnF2M7ZcYAWxboBt6+gRe4Wqo+hzCu53G1wOlB2NHpIBVjYFXbzTEhsY2QcGBuclAURRlEEr6LqWq0/dM1IojJJ0WTwUQrm3omkAysvlYrHI7tjRwJ9Fqx16/GgB95Jh256p3WkTCApdbI7+wZblYCtFloVRhSwyXhuHq592sUjozXDu+dJYZs8sGXoHUPW1bAfXbwB2AUYf3zjXNCOSNHrhLr4qiKINMStMWb775Jt/+9rc57LDD2LJlCwAPPfQQb731Vq8ObjBqiEUQAvQuggSjdCHB0XdTa1UCYDeEiFZVI9x+Otmc2KGuZrw2b4wDMKzMjWG0jKW7QqnCluguHd3oxxkv23KS6LetAM2AzJKBH3QB7FrtlH0YcyS4El9S7pSUzoYDX+KbMRRFUZS+lfTd84knnmDevHn4/X6WL19OLOb0+KutreXmm2/u9QEONg3xCGDg6iJwkVYGwszE15irZNfUYIbi4HZ3WnS13TWEwHPcybimH45eMarNOSEk2zY5gdfwES35UE1LjJ7SsnZLjM3PsQRubz/OnsTDsP0TZ6bLnw3+nP4bS2+b9E04+x8w7ZzeuZ4VBbdPLTMqiqKkkaQDr5tuuon77ruP+++/v82OxpkzZ7J8+fJeHdxgI6WkwYygdVE8VUhJeP2PCK2+mpJAGdK2MSsrMXVvwkEXgKbruOcci+/cH6B52iab79huEo9LvD6NgkJntblpidFVXISek9PpdYUAj6+fAq9wNWz9CGo3O7Nc7sSahA8ogfzeSaoHpxCrN9PJ8VIURVHSQtKB18qVK5k9e3a749nZ2dTU1PTGmAYtS1jErDiG1nlqnRCAFgcsNE1i19Vh19ZiGr42S4LdkeEQUnbcAmjzBme2q7Tcg9YYzIn6evTMTNwlHS8xtlxY7v3EeimhdosTdMVqnRpdRucFaAekLR84bX16kxmFYOHgWIZVFEUZJJK+g5aUlLB69ep2x9966y1Gjx7dK4MarExhErNMDK3zH7stIGOfG8mccA0hqwa7uhrLFNjSlVRCe+TPdxC68kKszz9uc9yyJJVbG5cZK5yZsOYlxmHtdzG25gRy2t7N77It2LkaKlc4tcYyS5w8qMGkfhv856dOm6B4qHeuKRub16s2QYqiKGkl6TvY9773PX784x+zdOlSNE1j69atPPzww/zsZz/j4osv7osxDhpODa84ht55cGMLCZpz0/RKiVlVhe0JOrsJE1zhk0IgNq6FUAPaHtXqt2+NO/U0gzo5eUbLEmNJcZdLjM51JbpL23uFU80IbP8Mdn7pBBD+xEtpDCirXnQ+FozrvWXBpjZBKr9LURQlrSRdTuIXv/gFQgiOPvpowuEws2fPxuv18rOf/Ywf/ehHfTHGQcMUJhHTwt1FBCUkNKy8HjSbvLEuRDiE8BWAZifckFxWbYNYDLw+9JK2/Qq3NO5mLKvwOAVv6+oSW2IEbEs21vDaC0tXkd1OUdTQDmeWa7AtLTaRAla1ahHUW+IhCBQ4yfWKoihK2kg68NI0jauvvporrriC1atX09DQwMSJE8nIUJWxu2PaJpYt8HWRq2ULCdKLhsRbWw++QmJxkkqs10vKCP72fkTVdjS97exUXqGLUEhQVuFpu8To7j6wEbZE18Hoy6VGKZ2lt6qVzq687LLBt7TYWuUnvV+7C8CKO1X8FUVRlLSScplvj8fDxIkTe3Msg17YjGIJMLqoWh+14gTH3Abo2LVnQu5IzBqBK8nflBbIwBjZKhg2wyBtxo71MHafTKQEu3o37tLSbpcYmwhb4A26mxPye52wnV6LO1Y5DZ2zSvrmfdJJU0Ps3qrdBSAsp2CqWmZUFEVJOwndzk855RQWLVpEVlYWp5xySpfPffLJJ3tlYINRKB4BoWN0EbiYtoXu2Q2AEbOwXT4sy8LnTzzYMV9/Ea2gCGPcRCdZXgqo28qXq3SyMm2KCwTEBXpGFu4sL5oVcfobdjOzJGyJ29dHLXnMKOxcBbs3QCB3aJRAMMOwtrEFV68uM6o2QYqiKOkqobtodnZ2c35Rdraqgp2qungYNL3LZUMdD6F1P8BrWLhHurFtp+Cprie23CZjUWL/twikpOSf/8a0NGKVW4nURVi1qRTQOOrAreQOyyYwupzojlVQ5wbD05iMneHMvLi8zsdWrWaklLj7IrE+UuMURG3YAZlFzliGgnVvOsupWWVQvH/vXdcMQXbF4M2LUxRFScWKG1o+n3xDJ0/qewkFXgsXLuzwcyVxtrCJWjEQBq4ustglBiJagWFYaIE64jGRVBkmsXEdSImWk4dpaeTvN4JdoR1ENcnYkXHCEY3csmKK5s6hdv1aJw/ItsCOQWQXNGx3LmS4wPCCJwCeTHD7kHENQ+9kJqqpPY0UIBs/Nn8t9vh6j/M1G53Zn6xhQ6unoNsPeWNg9BG9W2tL2IN3B6iiKMoAl/S60bp167Asi3HjxrU5/tVXX+F2uxk5cmRvjW1QsaRTPFXXDaceVSdCZh3+8oVo0oXwnUosJpLaRWg39mfUR4whVl3PrhWryT9oKlhRJubU4M7IpHDOLGrXfIUZCgOaMzOy5+yIMJ3m09EaCO1ACtDCLozAOghnOrNSwnKeI6zGYEo2VoBtHWw1fd1xMVc0nMTyrNKEv8dBY9Rs5yGs3rumFXN+N1612UVRFCUdJR14LViwgPPPP79d4LV06VL++te/8tprr/XW2AYV0zaJWiZGNz/yqBXFlbEShAcpdSwTXF0k4+/JXu8UtzVGOY2xY9u2sG3HRormHMHulespmDCCmi++wLbMri+ku51HY1seYUkMLHS36ZR6kMLJCdM0p1G1pjlfu9yNx/X255WO6b2YN2c25nd5VH6XoihKOkr6X/wPP/yQmTNntjt+6KGHcskll/TKoAajpqr1uubt8nlu4Sey9ZtkGBYyT8PG6amYKLGhZcYLKSBSzfYqyQ59G1OP3Yf61WuwrDhaV9NuHV1XgO52YQR8kETrIqUDUsB798OImVC8X+8GpWYEsoZDgjmBiqIoyt6V9L/OmqZRX1/f7nhtbS22bffKoAYjJ/CyuyyeCuCOali1B+EOTUNaOlIj8cKppolePhItJw+jYpSTZB0L4RlWwYSZpax8cx3BkRV4s5LfIGHb0kn7UkFXz1V+Ah8/Cs9d6eTW9RYpnYdPtQlSFEVJV0nPeM2ePZtbbrmFRx99FKMxiLBtm1tuuYVZs2b1+gAHC1OYxG1JsJsgqiG0HW/RUmzNix2fg9H1BFkbmtuN/6Kfthyo3Yx32DDGHzaN5/7yGe74LoqL42SNHkPd2jXE6+oSvrawwR1QQVev6IvaXQBWxKlUr8pIKIqipK2kA6/bbruN2bNns++++3L44U6l7TfffJO6ujpeeeWVXh/gYBE1Y86sUVeBlC0Ih7bjyX8Dy8xBWkem3p7HjuPN9ZM/YxZLHvuYTV/UM3mqTryujrq1a5IOvoQA9xCp8tCn+qp2FzjLjN7M5rw8RVEUJf0kvdQ4ceJEVqxYwemnn05VVRX19fWcc845fPnll+y/fy/WIhpk6mIhwIXexYyXHg7jiXqJ7zocT8M0hK3hSiLwij54H9G/3Y29ZSPE6vFkZbHrvfdZ/6lTkDUj25mhbAq+XIHkbtCGS+UN9Vhf1e4CpwhtoFBtZFAURUljKW2nKi0t5eabb+7tsQxqITMM6Li66HNoNIQI2FnEquZT7ItBTuI9GqUQWB+9B9EI7rknQKSa+pVbwZtJOOKUFgjmtJSMiNfVJbXUCE5pL6WHWjfE7u3aXZqm8rsURVHSXEK30hUrVrD//vuj6zorVqzo8rmTJ0/ulYENJqYwiZhxEAZGZzdbITBqaqlzhXFlf4Cle9H0/RJ+D7l9G0Qj4PagF+Y5PQ99mZgmmJYT7DXNeCVLCImmQzf7ApTu1G+DrR8CGuxzbO9e24o4S4wqv0tRFCWtJRR4TZkyhcrKSoqKipgyZQqapiE7KIipaZra2dgB0zaJ2Sa6ZnQ6yaFHoujhMLs8u/GX/oNItBTDSDzw0nJy8X33x4i6WrR4AyBBNwg3OEGXxyOTqgfWmrBBNzS1o7GnVr3ofCybBhnFvXvteBiChU6rJ0VRFCVtJRR4rVu3jsLCwubPleSYwgm8DK3z3nl6KIRmWhhaEKthH/x2Lnp24oGO5g/gmnYo2HHY9ZXTjgYIR5zAKxjspHJ8AoQNhq6WGnts9ByIh2DYpN6/th132j8piqIoaS2hW+k3vvENXn75ZXJzc1m8eDE/+9nPCCSZmD2UmcLEtGx0zd/xE6TEqKlFejxkh0uIbDqfCl8UfVji72Fv3oBePAzNrHeSt/35TZcm4DXJyEy9YbItJF6vnnA9MaUTuSNhxg96/7rCAs2llhkVRVEGgIS2qX3xxReEQiEAfvWrX9HQ0NCngxpsLGERs0Sn+V1aNIrREEb4fURkGN23GeGqTri2vIzHidx6NaHLz0dUbXB69TW+eFhRnCMP2M7BM1NP0BI2uNUKVnIyijoPhLyZzvneEg+1NDNXFEVR0lrCOV7nnXces2bNQkrJb3/7WzIyOm7Ce9111/XqAAcD0zaJ2za+Ttq4GKEwWtxEZmexXfuM4KinqImMBb6b0PXF5vUgbLSMTDS31qaOU7hB4sKF3536jJeQ4E4xP2zIMiPODNfu9dCwHZ651GmIfchFLcd7SzwMOSPUWrCiKMoAkNC/1IsWLeL666/n2WefRdM0nnvuOVyu9i/VNE0FXh0IW2GE0DvthWzU1CJdzoyUtF0IMxvDDkCCc15NjbH18nIneV9vmd1a+nEmDZFcZhdAcWlq49cg9UKuQ1Ws3gmuckfC5vdh12oonQIFY53jsfZtt1ImbAjk9t71FEVRlD6TUOC177778thjjwGg6zovv/wyRUW9uFQyyNXHwiANXB3U5NJiMfT6EMLv5H/lxyYR2nAg4zIa0BLc+CbWO42xjZLC5qR6cPK7TMt5z2BGakuNTbtXdVVKInmxeti1BvY9Ho75NRx8Qe8HXVbM2cno6XgGWlEURUkvCeV4TZs2jd27nern119/fafLjEp7QgpCZhSkjtFB4GU0hNFjMaTX6ccTt23QTDRNoCU74zWssE3vP02Do6ds5WvHRghmpl5KwlClJFK37AH4YDHMvBRCO3o36ILG/K4MFXgpiqIMEEkn1994440quT4JlrCIWyZIA6ODHC+9tg5pGKBpSBu2epaSOf5aqvKeSej6MhpB1jsV6I3h5W1WJ4UAKcAbdKe8I1EIZ7ZLpQ+loGYj7F4L074DG9+F7OG9v/PQjDj1uzrJH1QURVHSS1on19u2zQ033MDf//53KisrKS0tZcGCBVxzzTXNgYSUkuuvv57777+fmpoaZs6cyb333su4ceN6bRw9YQqTqGWC1NhzwkuLxzHq6hF+Z5ZK2Bo2TgFaXSZ2I9V8foK33IVc9T5aVn6bc1sq3Xz8WRnDd+lMn5va+IUtMVyauq8nS9iw5jU45X547VaYfEZLzldvLTc2FTFWbYIURVEGjLROrr/tttu49957Wbx4Mfvttx/vv/8+5513HtnZ2Vx66aUA3H777dx9990sXryYUaNGce211zJv3jw+//xzfD5fN+/Q95wdjRaG3r4egx5ylhmtoJMYLSyNgoZZrNw2i/2yGtCKEwy+YvVoBXntErHCYRBSR+/BMqEtwOvWVA2vZFV+AnOvg6e+Dwed56z7tk64743gy4w4OX2qfpeiKMqAkdbJ9e+88w4nnXQS8+fPB2DkyJE8+uijvPfee4Az23XXXXdxzTXXcNJJJwHw4IMPUlxczNNPP82ZZ57Z52PsjilMLGGjdbCqq9c3AFrzMpEd15C4QBi4ZDyh68df+Q+aWYNr3/Foe9S0DYUaE+uzeljDy5Pyy4euYZPhvz+Hoglt2wM1BV9ufy8EXmHw5Tg1vBRFUZQBIekFJCHEXtvReNhhh/Hyyy+zatUqAD7++GPeeustjj/+eMBpX1RZWcncuS3raNnZ2UyfPp0lS5Z0et1YLEZdXV2bR18xhUnMEuh7rjNaFq6aOkSgaZkRbFNje8brBMfcTlXGW91eW0pJ/L9PEvvXs4j6cLvzze2CUmyO3cTlVuuMSdN0OPh8mHBi+3Oxemio6vl7WDHVJkhRFGWASfiO+oMf/KBNUv2jjz7anHAPUFNTw9e+9rVeHdwvfvELzjzzTMaPH4/b7Wbq1KlcdtllnH322QBUVlYCUFzctu5CcXFx87mO3HLLLWRnZzc/ysvLe3XcrcXtOJYl2+1oNEJh9GgU0bgcKi0NbA1LD6N7qhF6tNs9jbJqm7OeaBjow9r3FwpHnV9vRg9mvAAMVUoicbWbW3KvXF4nAOsLwnaWL70qv0tRFGUgSfiu8Oc//5lwuGVW5aKLLmL79u3NX8diMV544YVeHdz//d//8fDDD/PII4+wfPlyFi9ezG9/+1sWL17co+teddVV1NbWNj82bdrUSyNuL2yGsYTWLvDS6xtA0rzMKGwNKSG7YQahdT+gJDK1+4vbEVxTD8A1aRLaHjl3toBo3ImYghmp7miUaLqq4ZWw+kp48nvwwi8h3sc7f82w06FA5XcpiqIMKAkXCWgqpNnZ133hiiuuaJ71Apg0aRIbNmzglltu4dxzz6WkpASA7du3M6zVjM/27duZMmVKp9f1er14vXun+WCDGQb2KJ5q27hqaxG+ljFYMQ3dAN3OQUTz8Qd2010+ux704ps/r8Oq5ZGIDmgYhsTrT72Gl65rqmp9IqSEN+9wEt5j9W3aNvUJMwwZJeBSCXiKoigDSVon74TDYfQ96hgYhoEQAoBRo0ZRUlLCyy+/3Hy+rq6OpUuXMmPGjL061o5YwiJixkDq6K2iKD0cQQtFW5WRcHY0aoZkd/Ad/MMXsdv3ZdcXt+PIaE2bSvWthcJNFetT35EohLPMqJYaE7Dqedi8zGlQPufnfbfE2MQyIZDf/fMURVGUtJLWZTFPPPFEfvOb31BRUcF+++3Hhx9+yO9+9zvOP/98wClfcdlll3HTTTcxbty45nISpaWlnHzyyf07eJpqeFmAgctouREbDSE0pyQ84ARd2BqaWxJ1b8UV/JJYQ0mXOV4ytJvwb+9ELx6G7+yz0fxtA7CmVeFAisuM4NTwcnv19hsDlLZCO2DJH53PDzofcvouZxAA23Qq2qplRkVRlAEnqcDruuuuIxBwllDi8Ti/+c1vyM7OBmiT/9Vb/vCHP3Dttdfygx/8gKqqKkpLS7nooova1Aq78sorCYVCXHjhhdTU1DBr1iyef/759KjhJUxijVXrm2MXITB21yJaLXUK08nv0jQINBzErtrR5Psy6bRJthSI9V8gQ2HsbVuhg+813Djj1ZPEetuGgFrJ6pqU8ObvnNY9hRNg0ml9/55mCDxBFXgpiqIMQAkHXrNnz2blypXNXx922GGsXbu23XN6U2ZmJnfddRd33XVXp8/RNI0bb7yRG2+8sVffuzc0F0/VWqIXPRJBD4exM1sq/9txrTmB3RUbiRUaQ5a7mk4DLzOEvd752Rvl5R0uJZbmhfH7BAVjClMevxTg9qjZri6t/h9sXAK6G+ZcuXd2IsTDkDtK7XpQFEUZgBIOvF577bU+HMbgZAoTW0ic7YsOvSGMZtnQuAuxKb9LN5znhALL8QR20uAqB62k4wtHahFbtjrXG97xslaWP0beMB+ekh6sJmuo5thdkQI+/Lvz+bRzIG/U3ntff/sNFYqiKEr6S+vk+oHOFCaWbaM1JVpLibG7FulxNz9HWBpS6GiNkxfRwKd4C14n7NrZ8UXtOMRqsbc5dcqM8uEdPu2TNdmsXO/HjKe2+1RKiUQ1x+6SpsPXfw9Tvg1Tzto772lFweUDb8e9UhVFUZT0pm6rfShmxTDtlhpeeiSKEQohAi2J8MLUoDG/C8AV2o9QpJBMV37HC42xemR9DXLnLgCMDma8TBM27siAHTBhempjFwIMXVMzXt3x5cAh39177xcPgyfDeSiKoigDjgq8+lDEiiCEjrcxqtJDYbS4icxxNiRI2ZTf1TIrZdQfRCymk1+8o33gJQVEqsEfxH/RRYjtVWjBYLv3lUKyT2kNdjAHl7sHNbxcqpREh6I18NEjMO1cJ8l9bzIjkF1Bt0XeFEVRlLSkAq8+IqUkFA8jpN48a7TnMqMUbfO7AEz/l7h8EWJ6Dpq2xzKiGYJYCM2XiTEiB2PEyA7f26XbjKuI4R9X3OH5RAjhtDlS+dsdeOePTlL97g1w/G17732bihb7VJsgRVGUgSrpHK+NGzd2WLVeSsnGjRt7ZVCDgSUsYrYFQsfQNbRoDL0h1Fw0FdrndwHEc1/FX/oP6l0dNFGO1AISe9NmRG1tp90Ddu7SWV8VZHddT2p4gcudevHVQWv9207Qpelw4Hl7972tCLhVfpeiKMpAlvSM16hRo9i2bRtFRUVtjldXVzNq1Chs2+61wQ1kTvFUEzTDabvTEEI341hZLTdNYTpBTZvYJlqBZfnxyz1azjQm1UuXj+jf/4QMNeC/+GKM8op27711u5uN24PYmYK8FKtJ2DZ49k5XpYEjVg9v/c75fPIZUDR+776/GXFyu/q6HZGiKMpgMvmG/h5BG0kHXlLKDmdBGhoa0qJoabowhUncNpG2G5emodfWIw2jOcrqKL8LgB0nELE0CoZV0aaOV6werCgyqiNDDaDr6CXD6Egk2tgcO7Mns1VS9Wjc05J7ILwLssvhwAV7//3NKOSOVvldiqIoA1jCgdfll18OOAVLr7322uYK9gC2bbN06dIuG1MPNaYwMW0LXfegxeMY9fWIVoGpk9+lo7vaBl62exu6SyC0VmGXFBDZDYYH2VCNlpODFgyiud10JBxzAq+MrJ5UC1HNsdvYtNTpx4jmFEp17eXpQOn0J1XV6hVFUQa2hAOvDz/8EHBmvD755BM8npZq7B6PhwMOOICf/exnvT/CAcq0TSwhQWrooTB6NIaV3xKsCktD2hqap23gpZU+TNCzi7rQ6cC4xouFINYAvkyMikyCV/4cGY93+L5SQiTm/FqDmakFXlJINE3taGwWD8Ebv3U+3/8UKJm098dgRp0lRpXfpSiKMqAlHHi9+uqrAJx33nn8/ve/JytL7azqStyOY9k41d/r60HXQG8JhITpTGntuWokrUykZuGWRsuUV2NSfesthpqn4yaKkYhESA1NA38wtRkrW4BuqBpezcwwZJU6bYEO3os1u/Ycgy8H3P5un6ooiqKkr6RzvBYuXNjm67q6Ol555RXGjx/P+PF7Odk4jUWtKLYAtxAYtXUIf8sN08nv0tvndwHRjRdhS43C4U5l+qaketx+pG0T+7/H0UvLcB92WIdLjaEG52MgqKHrqdfwMnRVtb5ZsBBOuBNCO/sv8DGjkF/QP++tKIqi9Jqk16JOP/10/vjHPwIQiUQ46KCDOP3005k0aRJPPPFErw9woIrYEWxbxxOOoEdiCF9LTpBs7M+odRB4CWKgmWjYzoRXY1I9Lh9i+3asTz4h/vprna4DRsJOsBVIcZkRQNgSw03KgduAlVHUNofKioGwnM992VCyf/+MS9jObKnK71IURRnwkr47v/HGGxx++OEAPPXUU0gpqamp4e677+amm27q9QEORLawiZoxhNDxhBtwlglbLTM25Xft8dMXEoLjbiVz/LU06LVoUjYn1aOB2LQJAGP4cDS9419dqDHw6klivRCkXPF+QDMjkDuyJcBZ+md46mInvy53pHO+P1gRcAVU4KUoijIIJH13rq2tJS8vD4Dnn3+eU089lUAgwPz58/nqq696fYADkSlMIlYcLPDU1rUpmgrObsaO8rtsCWjO7jWXpqFZYeem31i3yd68GQB9eMeNsQHCEedX2pNSEkKAxzMEA69YPexe7wRZDTvhsychpxzKD3aOx+r7Z1zxMPiz9/5OSkVRFKXXJZ3FU15ezpIlS8jLy+P555/nscceA2D37t2qjlejphpernAMdzyGyM1pPtdp/S6cwKth1bWg2WQP34EWr6d1Un3zjFd5+8bYrRmGTHlHI847Dt1SErF6qF4HFYfAMb+Gg86H2s39F3SBk+cXyO+/91cURVF6TdKB12WXXcbZZ59NRkYGFRUVHHHEEYCzBDlpUj9ss09DTVXrjfoougS7VT5WU37XnvW7oHHGS7pBuvFZEfSwDdlO6XkZjSJ2OG2E9OGdB14HjKrmkFFBjMzUMuOllGgM8VISa15x8rtmXgo1m/o36BKW055ILTMqiqIMCknfnX/wgx9wyCGHsGnTJo455hj0xlyj0aNHqxyvRqZtYls27tpapK/t8pCwdKTQ0PT2gZeJTXDsLSANRO1hkDXGye8CEAL3kUchq3ehZ3Z8Exa2jWm78LkNtBQT46Vwkur1oVxKonotHPELWPkcjDsG7Fj/BV9mBNxBp1WQoiiKMuClNC1y0EEHMXnyZNatW8eYMWNwuVzMnz+/t8c2YFnSQoYiuCIRRFFem3O2qaHRcdcXUwp0dy0AuibB1bJ0qwUCeOfO7fJ9G+olr304DN+XNid8q+PWTt2xbWdlc8iWkoiHnaDrn+c7Nbuacr76K8fLDENGCbg6rtumKIqiDCxJJwKFw2EuuOACAoEA++23Hxs3bgTgRz/6EbfeemuvD3Agilkx9LqIU4nU1RLBSAki3nEZCQBsCK27hPj676MbGWitejVKy+r2faONOxo9Pj2loAtACIlhDNGlRm8mDDvACbps0yma2jrhvj+W+2wTAnndP09RFEUZEJIOvK666io+/vhjXnvttTbJ9HPnzuXxxx/v1cENVBErjFbdAN62sxTSBmF3EnhJiR5rQESHo0Ur0Gkb+YTv+C2hO3+H2Lmj0/fNz4gy/+g6Zh+XepFPYTulJFIN3AY0tx+WL3b6Mk46reV4U/C1t4unCgs0l8rvUhRFGUSSXlB6+umnefzxxzn00EPb3Jz3228/1qxZ06uDG4iklERrdkNDFAI5bc51ld+lx2qJmrvwlz+HIXU0a1rL62prkbW1oOtoWdmdvrewLLwBL+5gD2t4DdVVrYYqGHEYnP3PNsu8gBN87e2lxngYPAGV36UoijKIJH2H3rFjB0VFRe2Oh0KhoTlLsgdLWph1NRCzwdO2pU9n+V16PIQrWk1Y03BlrELLaFsPTWxprN9VXNxpj0aAj9bk8+LLHjavM1Mev5QS91Asntqa299xEt7eZobBnwdG+9ZQiqIoysCUdOB10EEH8Z///Kf566Zg669//SszZszovZENUHErjlW1C+H24Gq1s7Cz/C7NimFEdyIBtxYksvU09O0n0Sq9C2PCRAKX/xTvySd3+r5SSkIxF+Fw6j0aG0c0NJtjr38Tlj8IkZr+HkkL24JAbn+PQlEURelFSS813nzzzRx//PF8/vnnWJbF73//ez7//HPeeecdXn/99b4Y44ASD9Vh1dZh+wJ4Ws2aSFtD2HvU77ItjOgudGFiuzLQY16s2gNxu0zwfdE86aJpGlpBNw2SbUE45vw6U61aL6UEbQjuaJQSlj8EO1cBGkz7Tn+PyCmaarjVMqOiKMogk/SM16xZs/joo4+wLItJkybx4osvUlRUxJIlSzjwwAP7YowDSrx2N3YsjnT7mmucQWN/RqE1FaEHKXDFduEyG7BdAdCgnhDeomcRua85z9FACoG5dCn2li1IITp931jUxrKb2gWlluMlbDCGYg2vyhVO0GV4YOKJ/T0ah9mY36US6xVFUXpmxQ39PYI2UprbGDNmDPfff39vj2VQMHfuxNI0hBC0XvFryu9qYsRqccXrsNxBmrplN+hhPDlvYVmZaA1fBzTEjh3E/vU0eDwEr7u+0/eNhJyPXp+WcoPr5hpeQ62UxCf/cD6Omwe+nH4dSrN4BHJG0BKpK4qiKINBjxaVpJS8+uqrRCIRDjvsMHJzVT6KGWrAdhltkrOb+jM25Xfp8XqM6C4swwday43VYweJ75pNpmY0z0U292csG46mdz6TFWqs4RXM6klzbInLPcRyvOq2wPq3nc8nfbN/x9KasMGf09+jUBRFUXpZwmtSNTU1nHvuuUyaNInvfe971NXVcfjhhzN37lxOPPFEJkyYwIoVK/pyrANCVMRA6k6n6UbS1pCW0xhbs6IYkV1IzQV6291qXpFBrOprBHfPAZzYzW4MvPTy4V2+bzjiBHA9aY4tbIbejsZPnwQklB8CuSP6ezQOK+bU9FDLjIqiKINOwnfpn/3sZyxZsoQzzzyTTz75hOOOOw7btlmyZAlLly5lwoQJXH311X051gEhbkURjf0OmzTld2lYGJGdaNJC7lknCmjQQriy38cKftny2s2NM15dNMYGmhPrM3oSeAlwD6UaXvEGWPlf5/PWBVP7mxkBt6rfpSiKMhglvNT43HPP8cgjjzBnzhwWLFhAeXk5r7zyCtOnTwfgtttu4+tf/3qfDXSgsKXA3iPwsk0NTbNxRXZiWBFsd8c31N1GNf7SfxKOF0H4WDTTRGzfDoBe3nngJaUkEuv5jBeA4erZ6weU1a84QU7uSCg7qL9H08KMQN5o6GJpWVEURRmYEg68tm/fzj777ANAWVkZPp+P8lbBQEVFBTt2dN7OZigxbdmcWC8l2DENl7kbw65zgq5OinO6hA+rYV8ConGJqaEBffhwZEMDWlZWp+8nbZtw3Fm2TLWURJMhVUpiwgkQLHDy7NKhYGoTKcDXeYcCRVEUZeBK+DYrhMBotd3NMIw2lepV1XqHLUBIiacx8pKWhhYL47Kqsd3+5h2MHcmySjh3319Tv3MHWvUSyM0l8P2LkUKgaRreokI8OTnUr2pb2R7LZp+KENFAPlk5KZaSEBJNZ2gl1mu60yIonVgxcHnBq5YZFUVRBqOk5jf++te/kpHh3BAsy2LRokUUNBb2rK/fy33s0pSz1ChbAtFoBCNci+YzkHrXrV8iRNi4czX3fPMY3n1+G1rUqdul6TreokLyDzmYXe8ta/c6aVkML3PhG9Oz5ti6oQ2dUhK1myG76w0L/SIeAnfQeSiKoiiDTsKBV0VFRZvaXSUlJTz00EPtnjPUCeFsaDR0Hc2OQd1OwEAa7ZPp97Tds4GPxT1c9cp73HH8L6m89TZiGzaR+a1vNQddsar2y7n19RpbK4MUYFI+JrW+frYNhj5ElhqrPoenfwAVh8K8m7uchdzrzAhkl6v8LkVRlEEq4dvs+vXr+3AYg4ctJEKCjoWroRIrpoPHB9jdvlaTbkQ8l+UbvuLtp//JnMsuo+aJJ8mZPavToAugpt7N6vUe6qKpB15CSLx+fWgsGa9oLJjqy06voEs21iBR+V2KoiiD1lCY39irhJQgJe7wTrRIPZZehm503uqntfzoOELbpjMxWE/NhveoCcXJv+AC6lZ91WnQBRD0WYweA9lFqf86nRpeKb984GiognWNPUXTqYQEgBVV+V2KoiiDnAq8epklBC6zFlfEJqrnIIWBrnc/2wVgYoMWQ9cs8g44gJyTvknNG2+Seeh0olVVHQZfUgjyskxKx7jQg6kX4RJyiBRP/ewpZ9dg6VTIH9vfo2nLDDtFU92B/h6JoiiK0kfSaJ1lcBCRejyx3diGB1v4QJPdv6jRFv/HZI6/ntID1jHjlNPZvGwZ9Tt3seu9ZeQfcjDeosJ2r5G2zZbqIFu2asSjib9XRwzXIA+8zDB88W/n83Sb7QJnxitYmF6lLRRFUZRepQKvXibCuzAQSCOAHXclvMwIYCOYUTqDXx3zE956/hlClU7x1FjVjs6DL8vmi41ZvPu6SUNd4u/VmpQSjSHQHHvVC061+qwyJ7E+nUgJaKpNkKIoyiCnlhp7mW3ZoLsRto4QGoYrsWVGgOLQwYy2pnDfk+8wcenr8OrbREaPwX/OOc3Blycnp82So2XaxOKNVetTbJAtbKd+lz6Ya3hJAZ8+4Xy+/6nplVQPzm5Gl0+1CVIURRnkUrr7rFmzhmuuuYazzjqLqqoqwGkp9Nlnn/Xq4AaipsU+YRsgdTQ98eU/IXXue30DX66vQrcttHgcLLP5fKxqR7viqeGQ89HlBo83xcBLgG4M8lISZgSKJ4E/F/Y9rr9H015TfpdH5XcpiqIMZkkHXq+//jqTJk1i6dKlPPnkkzQ0NADw8ccfc/311/f6AAcq2zKQJJdztTXjPYJjb2Vr5ptoduOyYTfrf+GoEy0FM1IvBWHbEsMY5KWjPEE44udw1mPpmbxuxSBQ0N+jUBRFUfpY0nMcv/jFL7jpppu4/PLLycxsyUc56qij+OMf/9irgxuopCTp/C4AU4ugu2sQsSi63RhwdTMNFYk1Bl5ZqUdNQoDbow2NGl4ub3+PoD3Z+OfE13k/TkVRFCUJk2/o7xF0KunA65NPPuGRRx5pd7yoqIidO3f2yqAGOilcSed3AeTWH8S6XVMZHoijieUAaF3MeElhE443Bl49aI4tbGepctB6fyEE8mDcseBOva1SnzEjziycyu9SFEUZ9JKeJsnJyWHbtm3tjn/44YeUlZX1yqAGOiFcSed3AegiCxEtJyiy0URj0ObqIvCybCJxJ2IKZvZsndDlHqTrjOFd8NEj8NadsHtdf4+mY2bYqVbv7r6tlKIoijKwJT3jdeaZZ/Lzn/+cf/zjH2iahhCCt99+m5/97Gecc845fTHGAUfY7qTzuwB2Bpfhz11PlTmGmtEjKB8xDnduXucvsGzCscYdjT0MvAZtKYnP/wXChOL9oGhif4+mY1YMgvn9PQpFURRlL0j6bn3zzTczfvx4ysvLaWhoYOLEicyePZvDDjuMa665pi/GOKBIqSFsT9L5XQAx9w5cGSuJumqIZ2ejjR+PMXx45+9lCcKxni01CiHRBmtzbCvmBF6QngVTwVnn1XTwqPpdiqIoQ0HSt1uPx8P999/Ptddey6effkpDQwNTp05l3LhxfTG+AUfYBlIm3iaotUDDFLbXj6bY40Unjgw1IAMZaJ6OWwGZcbt5J2KqM17CBl0fpDW8Vr8E0VrIKIaRs/p7NB0zw05+l+rPqCiKMiQkHXi99dZbzJo1i4qKCioqKvpiTAOaFE31u5J/rTs2HCsSIDd3O8M+eg754d+JHz4b7/HHd/h8ly6Zf4KAzGxcKbb7cYqnDsKlRinhk386n+9/CuhpOqVnRpw2Qem421JRFEXpdUmHB0cddRSjRo3il7/8JZ9//nlfjGlAs20XaKm17mkIrsBb9F9qPVsSquMlhHPe1YPm1raQuFwauj7IZry2fAC71zu7GMfP7+/RdM6KQ1DV71IURRkqkg68tm7dyk9/+lNef/119t9/f6ZMmcL/+3//j82bN/fF+AYcabvQUgy8woGVePLfoN69A0041+isnIS0bdbvyOJfT8DH70ZTHq+wwdXxSubAtvK/zsd9v5a+ZRqE5bQMSNfxKYqiKL0u6cCroKCASy65hLfffps1a9Zw2mmnsXjxYkaOHMlRRx3VF2McMjyh8cR3zSbXLGDz7EMxrrkW95w5HT5XWhYR040QYKS4zAhO7U63Z5DNdgHM+bnz2P/U/h5J55rqd6nG2IqiKENGjxJfRo0axS9+8QsOOOAArr32Wl5//fXeGteQ5K6fQizupSh/K7hr0b0etM62G9qC/fYJM3FOAa6eJMZrToPsQcflhX07zo1LG/EQZJWBMZir1yqKoiitpVz86e233+YHP/gBw4YN41vf+hb7778///nPf3pzbENOLLAKV/b7RIxaMjZvRXz0EaKTbgDSsnD5vGRkGvgCqf0apXRqjQ2qUhKxemio6u9RJMa2nKbdiqIoypCR9B37qquuYtSoURx11FFs3LiR3//+91RWVvLQQw9x3HHH9cUYh4xozlv4S//JbnclhSs+x37iCew1azp8rjAFL72RwcvPhIhHky/WCk5yvq5rA3vGK6Oo7VLd5/+CR8902gR5M53z6cg2nYhXlZFQFEUZUpKe63jjjTe44oorOP300ykoULuxepMWLceyfQRFEM3uumVQLG4QiWpE4wJ3isnxwnaqLAzoUhJmBHJHOjsYw9Xw2VNO4tqImS3H01FT/S5VOFVRFGVISTrwevvtt/tiHApg7JxHxHIzrHATuui8nISUsrk5diBDQ0uxFISwJYahoQ/kwCtW7wRXuSOdEhLhXTDxJCepfvd653w6MsOQPWKQrfMqiqIo3UnoX/1nnnmG448/HrfbzTPPPNPlc7/+9a/3ysCGIstdie4CW4811/HqKLle2jZh00nIzuhBj0YhwOvX0LQBvNQITnBVvRb2OQ6O+TUc/F2oWZ++QRc4043+nP4ehaIoirKXJRR4nXzyyVRWVlJUVMTJJ5/c6fM0TcO2k2+VozjsYf8g6K2iuvbErguoWjYR0w/0rDm2bZPyMmXa+eSfTj2smZdCzcb0DrrsOOhuld+lKIoyBCUUeAkhOvxc6V3SykJqcTy4sP1eyMyEjvo02jbhuDPjlWpz7MZ37FENsLQRD0HVF/D1u2Ht6zByphPcpGvwZYbBE1SFUxVFUYagpKdLHnzwQWKxWLvj8XicBx98sFcGNVRZm84ntOYXDLMLWX/CPHxX/hzX2LHtnicti0jMiZl7MuMF2uAIvLZ84ARd/70C3L6WnK90LUwaD0Mgn4GdXKcoiqKkIum79nnnnUdtbW274/X19Zx33nm9MqjWRo4ciaZp7R4//OEPAYhGo/zwhz8kPz+fjIwMTj31VLZv397r49gbbD0KWhy9u5ZDQhKOOr+6VAMvKSSaPsB3NIITXE2/GF69BUqnguFpm3CfjsGXFCq/S1EUpS+tuKHlkWaSvmtLKTtMxt68eTPZ2dm9MqjWli1bxrZt25ofL730EgCnnXYaAD/5yU/497//zT/+8Q9ef/11tm7dyimnnNLr49gbvKN/R+b466g2qilc/jHWKy8jOghyLVsjGnV+B6kGXnZTDa+BPuPl9kPtRjjgTKiY0XK8Kfhy+/ttaB2yYmB41TKjoijKEJXwXvapU6c2zzYdffTRuFwtL7Vtm3Xr1vVJAdXCwsI2X996662MGTOGOXPmUFtbywMPPMAjjzzS3Cdy4cKFTJgwgXfffZdDDz2018fTV5wi8s5MlwuNgo8/wwqFce+3P7QKaKUQROLONJXLDR5vau8nbDAG+oxXQ1VjMTIDOtqZGatPvzwvMwyegAq8FEVRhqiEA6+m3YwfffQR8+bNIyOj5cbh8XgYOXIkp57atw2J4/E4f//737n88svRNI0PPvgA0zSZO3du83PGjx9PRUUFS5Ys6TTwisVibfLU6urq+nTciRBAw1e/BE2QP2xtp7sapW3j9ursP9VAakbKpSCELXF7NfQUa4D1O2E5OV26C+ZeBzkj+ntEiTEjkDUc9J7k5imKoigDVcKB1/XXXw84OVdnnHEGPp+vzwbVmaeffpqamhoWLFgAQGVlJR6Ph5ycnDbPKy4uprKystPr3HLLLfzqV7/qw5Emz5Ya4AIJbnRq9hlDseFF8++xVGYJ/H6d8fv4Uy6cCk4NL7dngAZd4LQGqtkAvmzw5/X3aBIjpfOD92X190gURVGUfpL0f7vPPffcfgm6AB544AGOP/54SktLe3Sdq666itra2ubHpk2bemmEqbOB4NhbCY65lYgepnLODLzf/CZ6VtubtLQtttf6Wf25SW116jXThAC3e4AGXtEapxcjwEEXpGcCfUfsmLPrUi0zKoqiDFlJ9yuxbZs777yT//u//2Pjxo3E4/E256urq3ttcK1t2LCB//3vfzz55JPNx0pKSojH49TU1LSZ9dq+fTslJSWdXsvr9eL1ppgc1UcsCbq7BgCjcRW0o7BIWhabq/xs2x5j6gwv2XmpJWlJGLiJ9cv+BvEGyB8D4+f392gSFw85QZcn2N8jURRFUfpJ0jNev/rVr/jd737HGWecQW1tLZdffjmnnHIKuq5zww039MEQHQsXLqSoqIj581tutAceeCBut5uXX365+djKlSvZuHEjM2bM6OgyacuWGqG1PyK87gcEhYsxjz9N5M/3IaPRtk8UUFAEZSNd5OSnWEpCSjQGaGL9rtXw5bPO5zN+NLBqYZlRCBR0vBFAURRFGRKSnvF6+OGHuf/++5k/fz433HADZ511FmPGjGHy5Mm8++67XHrppb0+SCEECxcu5Nxzz22zmzI7O5sLLriAyy+/nLy8PLKysvjRj37EjBkzBtSORgCBhoiV4UJiiM/wV+109jh2cJMeN8HAyEq9TIIcqKUkpIR3/uB8A6OPgNIp/T2ixDnbVlV+l6IoyhCXdOBVWVnJpEmTAMjIyGgupnrCCSdw7bXX9u7oGv3vf/9j48aNnH/++e3O3Xnnnei6zqmnnkosFmPevHn86U9/6pNx9KWINPGXP4CGjoxNbTnRalpKChtbGmzcpJOZb1FQkvSvD3B6NOrGwJosAmDDW7DtY6dI6vTv9/dokmNFnPyugZKPpiiKovSJpO/cw4cPZ9u2bVRUVDBmzBhefPFFpk2bxrJly/osb+rYY49FNs0Y7MHn83HPPfdwzz339Ml77y0xBK6MrwDQw1NaTrQqOyAtm5Dp4f0PBL5AlBO/lVqSthASw9AG3lLj8EPgoPNBMyCz8xy+tGRGnPyudCvoqiiKouxVSQde3/jGN3j55ZeZPn06P/rRj/j2t7/NAw88wMaNG/nJT37SF2McEgzpJrLlDHy6SVMhVXQdrXW9J0sQjjs7SoMZPSglYYPHq6VcA6zfuLww7Zz+HkVqzCjkjlb5XYqiKENc0oHXrbfe2vz5GWec0VysdNy4cZx44om9OrihRJNurLqpGIaFHvzQObhn8VTLJmK5AQhmpV6AU4jUK973i/AuJ68rWNj9c9ORbAyk1TKjoijKkJdaklArM2bMGHA7CNNRA2G8Rf8G3NhiGNtnTqc8q21hUGlbROKNgVeKPRrB2dU4oBLr370X1r8Fh/8Uxh3T36NJnhkBdwC8qn6XoijKUJdQ4PXMM88kfMGvf/3rKQ9mKAtpMTz5byNsP3boDKoPnMKYkpFtnyQhHHVmwTJ6EHiBhmEMkMCr8hNY/T9Ag5yK/h5NaqK1kFWq8rsURVGUxAKvpj6N3dE0DdtOvZr6UOYRPmI7jyBD08BNh9VTNSAUdk4EM1MLnKSQaBoYPZ7r3AukcMpHAOx7PBTu27/jSUU8BLp74PSSVBRFUfpUQrdfIURfj2PI88gg8R3H4ffE8Yt3GfvM84QLCwn88BLAaY4tdZ1wyHl+qkuNoqmG10CY8Vr5POxcBe4gHPzd/h5N8qSEcDUU7AOBAdJPUlEURelTA2HeY0hoIIw75z1szY1WY2HE48hYSzsmadtEbTdSgqaDP5Ba4DRganjFQ7DsfufzA88ZmIFLtBa8WQN3iVRRFEXpdUkHXjfeeGOX56+77rqUBzOU1ei78Q17kmg8H32XU0BVc7WKjiybsNVSSkLTUwu8hC1xeQbAjNfyhyCyG7LLYb9T+ns0yRO200+yZDJ4Av09GkVRFCVNJB14PfXUU22+Nk2TdevW4XK5GDNmjAq8UuSSfqz6CfhkgIaiQjZ86zTGF5Q2n5eWRVx4gJ7taBQC3J40D7rCu+DTfzqfz/ghGO7+HU8qwrucvoxZpd0/V1EURRkykg68Pvzww3bH6urqWLBgAd/4xjd6ZVBDUaZVSGTbuZT7Ioi89cQyMjCKWqqzS0tQMUpn5EEZWPGOq/gnQghwp3scE8iH42+HDW9DxcDquQmAFXNmvPJGD8ygUVEURekzPalJ0CwrK4tf/epXfdarcSiIEEH3b0B4dmBEovgqqxC7djaf1wDcbgxDw+vv2a/NcPXKr71vlU2Dw37U36NITWgnZA0buAVfFUVRlD7Ta3fg2tra5obZSvKq3FsIjryXmvxnyN64mYrHniD2r38BTsFTNHjzdZ1nH2mgaqvVo/dK21ISwoLN7/f3KHomHnJaG+WObNNnU1EURVEghaXGu+++u83XUkq2bdvGQw89xPHHH99rAxtypAsRz8NlZ6I1le9obBkkbRsMg1ADRKMy5RwtIWR6l5L47GlY8kcYNw+OvKq/R5O85vIR+4I/t79HoyiKoqShpAOvO++8s83Xuq5TWFjIueeey1VXDcCbZZrIj40mtO1g9gmG0OwXnINNU1O2jeYymHuyn3BYIysnxRpeNmhGms54RWrgg4XO58Mm9etQUhatAV825JT390gURVGUNJX0LXjdunV9MY4hz8QGPYqGiSac6v9aU5Nsywa3G3+GC38P2v3ZNhh6u97b6eH9B5xluvxxsM8AnDkVljP+YQeo8hGKoihKp1QSSprY7PuMzH1vYFvhk2h241Kjq2WpcVcowItPhvj43WjK79FUw0vTUlhqzCgCb2bH57yZzvlUr7XzK/jiWefzebc4iekDTbjaSabPHIBjVxRFUfaapGe8otEof/jDH3j11Vepqqpq105o+fLlvTa4oUTglIjQpdYuxwtL0BDzUFstetQc26nhleKLzYiTML57PcTqW457M1uOp3KtaJ2T14WEWT+BsUcmd6100FQ+IneUKh+hKIqidCnpwOuCCy7gxRdf5Jvf/CaHHHJIarMnSjtF4aks33Y4kzPqqZyyhfjBB7J/QRkAEghHnSAsmJX6z1tIcLtSfH2s3gmIckfCztVQtxn8eU7z520rnIbWTX2IorXO0ltn4g3Ox9yR8OkTsO3jxoT6X7YP7AaC8E7IKk9u1k9RFEUZkpIOvJ599ln++9//MnPmzL4Yz5AlpAbSjVtzIXUN6fGgeTxIIdA0CIed5/Wkaj2AkWrgBc5y2ro3nBY+X70I074Dj5wOa16Bbz0OGcXO8168FipXdH6d/b4BM3/sBFkTvg7HbIeDL4CajQMv6Io3gOGF3BGg/hOiKIqidCPpwKusrIzMzE5yfZSUbQl+QLDwPbZGJxDYlkNmeAv2WB2toABcLsJhDZApB15SSjQtxcR6KWH9W7D0PqjbArEGmHkpvPMHWPua07W7NU1vf2zP8+AEWTu+dK5Vt3XgBV1SQng3FI4Hf05/j0ZRFEUZAJIOvO644w5+/vOfc9999zFixIi+GNOQZGlRdHctIh4lf9UaCj/5AusIC/fhc0A3CNU7OWDBzFSbY4Oha+ipzHhZEXjrd07T6glfh0O+B/WVcOjFsO/x7QOmE+9K7LpN+WEN251lOjM8sIIvVT5CURRFSVLSgddBBx1ENBpl9OjRBAIB3Hs0/quuru61wQ0leQ1T+WrXAZQHLTT7JcApJyFtC1P3YzWmTAUzUqzh1ZiClfCMV0OVU4Hdlw3uABxyoRMoTf8+1GxwAqR4Q8cJ94lonZQfq3ceqV6rPwgLYiEonQJuf3+PRlGUFNm2jWma/T0MpRNutxsjLWsgpS7pwOuss85iy5Yt3HzzzRQXF6vk+l6ii0xENJOgbzexrAxiw0rw5mQjLZuoyweAL6ClnKNl2xKXK4Gq9fEwfPworHgc9v0azLrMOT759PaBUeuE+2QCpj2Drp5cq7+Ed0FmkSofoSgDlJSSyspKampq+nsoSjdycnIoKSkZNPFG0oHXO++8w5IlSzjggAP6YjxD1o7AB/hz1rDdHkvl1EnImYeRn1+KVV1L2HRmFXuSWC9scAe6+EMrbFj5nFPINLLbOVaz0TmuG86sTkcBUVPA5PYnHiz15rX6gxVzphBzR6VpGwBFUbrTFHQVFRURCAQGzU19MJFSEg6HqaqqAmDYsMHxH92k7xrjx48nEon0xViGtKh7F66Mr4g25IOVj0bLPwKRxlISGSnmd4GTB95pDa/Ny+Dde6F6rfN1Vhkc+n0YMatlp15DVecXb1oqTFRvXqs/NJWPCBb290gURUmBbdvNQVd+fn5/D0fpgt/vpHJUVVVRVFQ0KJYdkw68br31Vn7605/ym9/8hkmTJrXL8crKyuq1wQ0lGaHJbK0fyTCvn+JPPyGvtgFrxky0vCLyCnXG7W+QV5j6HzgpwXDtMWNmRuB/N8Cmpc7X3kyYdg5MPFkVAu1MU/mIvJGqfISiDFBNOV2BgGrvNRA0/Z5M0xyagddxxx0HwNFHH93muFOuQMO27d4Z2RDjiZVihceRm7+LrM0vEty4GTF2PK6iYRSXeygZnXwgFCgpwQqHidfVAS31TQEnyAoWOUniussJtqadAz4VOHequXzEBGfTgaIoA5paXhwYevR7mnxDr42jtyQdeL366qt9MY4hrzb4Cd6Mnew2ypqbZDcV3lqzSuLxmQwrd+H2JP4H0AqHyRo9hto1q6G+FkPE4KMnYeyxUDLJyaeaeZnzPtnD++T7GlQiuxvLR6iflaIoipKapAOvOXPm9MU4hrywbzWejE+pbziipUk2GprHw0dvxZAS5p8VTCrwitfVUbd2DdljxqJV/Qvvv6+Ckv3gqOlOPlc8pGpQJUpYzo5PVT5CUZQh6IgjjmDKlCncddddvX7tkSNHctlll3HZZZf1+rXTUdKB1xtvvNHl+dmzZ6c8mKHMG96X3dF88l3F6OJjAKQGwu2hYoyLcIPE39WuxE7E6+qo/fhtcg46Ck2/xFlOXPU85I/turq80pYqH6EoShpYsGABixcv5qKLLuK+++5rc+6HP/whf/rTnzj33HNZtGhR/wxQ6VbSgdcRRxzR7ljr9VeV45UaT2gS8aiP4qIqtKafoW7gCXg45IiezbAYnzyCFv24pTVPwT69MOIhxIo5HcZzR6vyEYqi9Lvy8nIee+wx7rzzzuZdf9FolEceeYSKioqUryulxLZtXK7k/52Lx+N4PJ1tnVdaS3rKY/fu3W0eVVVVPP/88xx88MG8+OKLfTHGISHi+wp39jLC+m5qRpQTnjgBLSOT+pDB9s0WkZDo/iIdkZKgL+40tN78vtOax6t6bSYltNPJgQsW9PdIFEVRmDZtGuXl5Tz55JPNx5588kkqKiqYOnVq87FYLMall15KUVERPp+PWbNmsWzZsubzr732Gpqm8dxzz3HggQfi9Xp56623CIVCnHPOOWRkZDBs2DDuuOOOdmMYOXIkv/71rznnnHPIysriwgsvBOCtt97i8MMPx+/3U15ezqWXXkooFGp+XVVVFSeeeCJ+v59Ro0bx8MMP98WPKK0lHXhlZ2e3eRQUFHDMMcdw2223ceWVV/bFGIeEcPa7+EqfYJd7K1sOmULdCcejFxWyaSO88XyELz6Kp3Rdn16DcdLvEE9+H4TZUh1eBV+JidWD2we5Fap8hKIMYlJKwnEr4UfUtJFSEjXtDr9O9CGlTGm8559/PgsXLmz++m9/+xvnnXdem+dceeWVPPHEEyxevJjly5czduxY5s2b16613y9+8QtuvfVWvvjiCyZPnswVV1zB66+/zr/+9S9efPFFXnvtNZYvX95uDL/97W854IAD+PDDD7n22mtZs2YNxx13HKeeeiorVqzg8ccf56233uKSSy5pfs2CBQvYtGkTr776Kv/85z/505/+1FwgdajotXWT4uJiVq5c2VuXG3L0aDmW7SZTZoDEKZ8qIdz4H4VUqtZ7srLIHDEB/u87mHEdr8s38Frz9CcpIVKjykcoyhAQMW0mXvdCUq85fFwBfzhrKo8v28QZB5fzvQff582vdiZ1jc9vnEfAk/yt+Nvf/jZXXXUVGzZsAODtt9/mscce47XXXgMgFApx7733smjRIo4//ngA7r//fl566SUeeOABrrjiiuZr3XjjjRxzzDEANDQ08MADD/D3v/+9uWzU4sWLGT68/W7uo446ip/+9KfNX3/3u9/l7LPPbk6SHzduHHfffTdz5szh3nvvZePGjTz33HO89957HHzwwQA88MADTJgwIenvfyBL+re9YsWKNl9LKdm2bRu33norU6ZM6a1xDTnu6qOImB7KSirZ57+PEbAF4rgTCIWcXYfBFKrWuwIBQh/9D60mCvudhLfpxEBpzdPfItXgz1U7PxVF6dCbX+3k8WWbuGjOGP78+pqkg66eKCwsZP78+SxatAgpJfPnz6egoCUdYs2aNZimycyZM5uPud1uDjnkEL744os21zrooIPavC4ejzN9+vTmY3l5eey7777txtD6dQAff/wxK1asaLN8KKVECMG6detYtWoVLpeLAw88sPn8+PHjycnJSf4HMIAlHXhNmTIFTdPaTY8eeuih/O1vf+u1gQ01lrsS3QBLFwSrduCOxsC2CfVgxitcWQlGGfX73UBJ2R6/6oHQmqc/CQvMKBSOd5YaFUUZ1Pxug89vnJfUa3RNw+vSMW3BhbNHc+5hIxFJLh363alXYj///PObl/HuueeelK8TDAZ75XUNDQ1cdNFFXHrppe2eW1FRwapVq1J6n8Em6cBr3bp1bb7WdZ3CwkJ8PnVz6ol48dMEfVvZ2XASmnAS6W3NRSzqnE+1QbaUEg3QVeWI5ISrIaMQMkr6eySKouwFmqaltOQH4DacFQlfD4KoVBx33HHE43E0TWPevLZB45gxY/B4PLz99tuMGDECcFruLFu2rMt6WWPGjMHtdrN06dLmHZK7d+9m1apV3dbxnDZtGp9//jljx47t8Pz48eOxLIsPPvigealx5cqV1NTUJPgdDw5J/ylr+gUqvUtaWYh4FB9u1h1xGMXuAD53DuA0t/Z4k1xqtONkfXgL0eLDiGQfiW6oxPCk2HHILFXlIxRFSVuGYTQvG+7ZwzAYDHLxxRdzxRVXkJeXR0VFBbfffjvhcJgLLrig02tmZGRwwQUXcMUVV5Cfn09RURFXX301egL/e//5z3/OoYceyiWXXMJ3v/tdgsEgn3/+OS+99BJ//OMf2XfffTnuuOO46KKLuPfee3G5XFx22WXNJTGGioTnQV555RUmTpxIXWPfv9Zqa2vZb7/9ePPNN3t1cEPKlu8QWnMlw8UwqkePIDZpPyLC+cOYymyXt2opvso3yVj5NzRDa9unUemaGQaXz8nvUhRFSWNZWVlkZXXcY/fWW2/l1FNP5Tvf+Q7Tpk1j9erVvPDCC+Tmdv1v2//7f/+Pww8/nBNPPJG5c+cya9asNnlZnZk8eTKvv/46q1at4vDDD2fq1Klcd911lJaWNj9n4cKFlJaWMmfOHE455RQuvPBCioqKkvumBzhNJriX9etf/zpHHnkkP/nJTzo8f/fdd/Pqq6/y1FNP9eoA94a6ujqys7Opra3t9A9wop644/9hReNkFOQk9borNhUSFi6uLtmOL1LFiLxi7KoCPt+UR9lIF4fNTe5/BFnv/wpf5ZvUjzid2nHfo3SkC11Xs14JadjuNBAvm9bfI1EUpQ9Eo1HWrVvHqFGjVJrMANDV76vd/XvFDW1fnIZNshOeSvn444857rjjOj1/7LHH8sEHH/TKoIYifeQfyNz3eqrZxkELH6Pwjt8Tjji/nmR3NGpmCG/VuwA0FB+JbqCCrkRJCVYcMor7eySKoijKIJRw4LV9+3bcbnen510uFzt27OiVQQ1NTpsgj90yARkxnZ93skuN3sq30YSJlVFBPDAal1sFXQkzw+AJqmVGRVEUpU8knDlcVlbGp59+2uluhRUrVjBsmGognKrQ6p8jNcmRx+cRnLmV0NvvMG3MLhiegSfbCcA8WVm4AgGnTEQXvFtfASBaehRCahidx8vKnmL1TlK9J9DfI1EURVEGoYSnUr72ta9x7bXXEo1G252LRCJcf/31nHDCCb06uKFCSJC4QLqpr9xO2R13EJg1C13X8Ac0PF4NT1YWWaPHYIXDXV5Li+3Gs9Np7RArOxIpwOVSM14JkRJsy+lnqSiKoih9IOEZr2uuuYYnn3ySffbZh0suuaS5iu2XX37JPffcg23bXH311X020MHMBoJjbgfNZv3aIxnx0+cp+93veOHB1dS+WMvx52SSNXoMdWvXEO9gV2lrvm1voEmBmb0PdrAMWScwVCmJxJgh8GSAP6e/R6IoiqIMUgkHXsXFxbzzzjtcfPHFXHXVVc2V65sKt91zzz0UF6uE5FTYUkNz16JpNi4pCL39Dquuv4Ojf3Mtq5ZuJXtsWUJBF0B02GyQEuHNAVDFU5MRrYecCqeVkqIoijKwpeGORkiygOqIESP473//y+7du1m9ejVSSsaNG9dtTRCla0JqhNf9EDSBtyDEJ6fOpyzgp+7L1Uw+agKhym0JBV0A0ptLZNTJzudCoumoGl6JkMJ5BAu6f66iKIqipCilsty5ubnN5f6VnrMBEXMKzHlc66ktzCdnwlTy9x9NaNMm/MOGYdbVdR98SQlay7KiEE4vMVW1PgHxpmVG9Z8IRVEUpe+ofihpICYF/oq/gtSwzRmMzs5jn9lH8NZDHxEPhTn4+HBCOV45S36KHSwltM+5CH+hE3gZYKgZr+7F6iF3FLi8/T0SRVEUZRBT2T9pIC5tXMHVuDK+oiwzl1nfOIPPbrqPT98PUb1LEq+ro27tGrJGj8HTSWV9o34DnuoV+Db/D2l4ABBCousqx6tbwnZmC9Uyo6IoitLH1C05DWi4iGw5E2vrN8kuKWXLT3/Kzo9XAy0V55uCL1eg4/pSvsbaXfHCg5CebMBZajTcGpqmlhq7FG8Abyb4cvp7JIqiKF1asGABmqbx/e9/v925H/7wh2iaxoIFC/b+wJSEqcArDWjShVU3Bb1+KpveeIOa999HeJwlr9aJ8fG6uo6Lp0qJd8urAETLjmo+LGxwqcXk7sUbnBZBLk9/j0RRFKVb5eXlPPbYY0QikeZj0WiURx55hIqKipSvK6XEsqzeGKLSBRV4pYEQUbzFz6AXvkBkRDkfnHcm0UMOBcBI4DfkqlmJK7wVafiIFc9oPi4lql1Qd4QFaGqZUVGUAWPatGmUl5fz5JNPNh978sknqaioYOrUqc3HYrEYl156KUVFRfh8PmbNmsWyZcuaz7/22mtomsZzzz3HgQceiNfr5a233qK+vp6zzz6bYDDIsGHDuPPOOzniiCO47LLLml/70EMPcdBBB5GZmUlJSQnf+ta3qKqqanftl19+mYMOOohAIMBhhx3GypUr+/aHMwCowCsNhInjyXsHct5tPiaFEzAlkp/VtMwYK54BrrY1qFTx1G7EGsCbpZYZFUVxxENdP+xWM0JSghl1jpvRtl/HQ2BG2j53z2v1wPnnn8/ChQubv/7b3/7Geeed1+Y5V155JU888QSLFy9m+fLljB07lnnz5lFdXd3meb/4xS+49dZb+eKLL5g8eTKXX345b7/9Ns888wwvvfQSb775JsuXL2/zGtM0+fWvf83HH3/M008/zfr16ztc4rz66qu54447eP/993G5XJx//vk9+r4HA7UQlQZc0kts55H4NYknvJPSr1YSy80F8rqvwSVtvFtfB9ouMzZRifXdiIegYF8w1F8FRVGAm0u7Pn/aItjvG87nyxfDxJNg+UMw7Tvw2Fmw5pWW55ZOhQtfcz4P74L/N6bttW6oTXmY3/72t7nqqqvYsGEDAG+//TaPPfYYr73mvF8oFOLee+9l0aJFHH/88QDcf//9vPTSSzzwwANcccUVzde68cYbOeaYYwCor69n8eLFPPLIIxx99NEALFy4kNLStj+X1gHU6NGjufvuuzn44INpaGggIyOj+dxvfvMb5syZAzgB3vz584lGo/h8vpS/94FO3ZbTgFv6ie+Yh7f6aLzbq6hY+iHa9h1AS3J9Z1y7v8SI7UK4M4kXHtR8XEoJmiol0SVhgaZDML+/R6IoykC0a7UTdM281PnYOujqY4WFhcyfP59FixaxcOFC5s+fT0FBS8rEmjVrME2TmTNnNh9zu90ccsghfPHFF22uddBBLfeOtWvXYpomhxxySPOx7Ozs5jaBTT744ANOPPFEKioqyMzMbA6uNm7c2OZ5kydPbv582LBhAG2WJIci9d/8NBAigjtnKUJzQbUAQOrOr6a7GS8rbz92zfkrRmgL6O7m46p4agJi9eDLAl92f49EUZR08cutXZ83WtX6O/p60F1gx+GwH8EhF4K0W85rreY2AvndXztJ559/PpdccgkA99xzT8rXCQaDST0/FAoxb9485s2bx8MPP0xhYSEbN25k3rx5xOPxNs91u1vuS0077IUQKY91MFAzXmmgVqvDN+wp4vkvoQnnL61oDKISWSq0M0cSL5nZ5phsLJ6q2gV1IRaCzFL1Q1IUpYUn2PWjdVqC4Xa6hRge56Pb1/a5rfu+alr7a/XQcccdRzwexzRN5s2b1+bcmDFj8Hg8vP32283HTNNk2bJlTJw4sdNrjh49Grfb3SYJv7a2llWrVjV//eWXX7Jr1y5uvfVWDj/8cMaPHz/kZ7GSoWa80oAhvZj1EwlKP5rtBF5+UUNhTpSs7M7/cmpmA9IVbNMmqImwUcVTu2LHnX9A/Tn9PRJFUZSUGIbRvGxo7JFXEgwGufjii7niiivIy8ujoqKC22+/nXA4zAUXXNDpNTMzMzn33HObX1dUVMT111+PruvNM1YVFRV4PB7+8Ic/8P3vf59PP/2UX//61333jQ4y6racBoJ2PtHN55C180S0xinYEnMVh4yvZuTYzmdjMj+5i/xXvoNn+9J254SQGK7uc8SGrFi9s5NR7WZUFGUAy8rKIquTjia33norp556Kt/5zneYNm0aq1ev5oUXXiA3t+uetL/73e+YMWMGJ5xwAnPnzmXmzJlMmDChOSG+sLCQRYsW8Y9//IOJEydy66238tvf/rbXv7fBSs14pYEIEQz/eoRLww4EqC8qwModjmxwkxsFfwebPzQrgrdyCZqIIbw57c4LAS6XCro6FY9A/lg1JagoyoCyaNGiLs8//fTTzZ/7fD7uvvtu7r777g6fe8QRRzgbsfaQmZnJww8/3Px1KBTiV7/6FRdeeGHzsbPOOouzzjqrzetaX6uja0+ZMqXD9xtq0v6us2XLFr797W+Tn5+P3+9n0qRJvP/++83npZRcd911DBs2DL/fz9y5c/nqq6/6ccTJ2+GqJDDyPuoLn6Z+/4l8dsrX2FBwBG9/Wsim9XaHr/FsfwdNxLACZVjZ+7Q7LwS43B28UAEr5lSpV7NdiqIo7Xz44Yc8+uijrFmzhuXLl3P22WcDcNJJJ/XzyAaHtA68du/ezcyZM3G73Tz33HN8/vnn3HHHHW2mSW+//Xbuvvtu7rvvPpYuXUowGGTevHlEo9F+HHmSpBsRK8Blteyuc7kEfo+F29PxrJVvS2PR1LKjOszxAomhZrw6Fqt3djKq3YyKoigd+u1vf8sBBxzA3LlzCYVCvPnmm23KVSipS+ulxttuu43y8vI21XlHjRrV/LmUkrvuuotrrrmmORJ/8MEHKS4u5umnn+bMM8/c62NORX68gtC2nzE6ECZj1xtkbFhP5sR68qbth3/MyHbP1+K1eHY4s37RsiM7uaqm8rs6Y0agYJ9OAlZFUZShberUqXzwwQf9PYyeW3FD98+ZnMBzellaz3g988wzHHTQQZx22mkUFRUxdepU7r///ubz69ato7Kykrlz5zYfy87OZvr06SxZsqTT68ZiMerq6to8+lMcG/QwmhbHt62Soi9XI6t2YQs6XA/3bnsTTdqYWWOwMzpviKqKp3bAioLLB/6uk0sVRVEUpS+kdeC1du1a7r33XsaNG8cLL7zAxRdfzKWXXsrixYsBqKysBKC4uLjN64qLi5vPdeSWW24hOzu7+VFeXt5330QCtni/JHPfG9le+I/mchKfG0fy/HvD2LyxfeDVZpmxA0JINF2Vp+pQtM4JuryZ/T0SRVEUZQhK66VGIQQHHXQQN998M+BMf3766afcd999nHvuuSlf96qrruLyyy9v/rqurq5fgy8bJ7jS0AiNHkmt10B4fGB2sOnOimCEnerH0dIjOryeEE4ZCVW1vgN2HDJL1DKjoiiK0i/SOvAaNmxYuwq7EyZM4IknngCgpKQEgO3btzf3gGr6esqUKZ1e1+v14vV6Oz2/txVHJvPe1sOZkFFHeGwtVWUFsNHrBF57zlq5/Ow6+mFctasR/uIOr6eKp3bCDKtlRkVRFKVfpfWteebMmaxcubLNsVWrVjFixAjASbQvKSnh5Zdfbj5fV1fH0qVLmTFjxl4da08IqQEGbs2JgzU0pHRmZDpcLtQMrJx9OzjhkEJiGGCoGa+2Yg3gzwNvRn+PRFEURRmi0nrG6yc/+QmHHXYYN998M6effjrvvfcef/nLX/jLX/4COA03L7vsMm666SbGjRvHqFGjuPbaayktLeXkk0/u38EnYXPgI4IF77Atui+Fz1VTtnkzHxyyP+BpEzxpsd3oVhg7WNbl9YQAjyol0ZaUTv2uzJL+HomiKIoyhKV14HXwwQfz1FNPcdVVV3HjjTcyatQo7rrrruZibgBXXnkloVCICy+8kJqaGmbNmsXzzz/f3NpgIDC1GLq7HhGPYYTCeBvCSOlMRrae8fJv+DcZqx4kPOoUGvb7QafXE8KpD6q0YkacprSqN6OiKIrSj9J6qRHghBNO4JNPPiEajfLFF1/wve99r815TdO48cYbqaysJBqN8r///Y999mlfyT2dFYQOILT2UsobZjX3ahSNv5rmPC0pm3czWtnjuryeVO2C2ovVQaDACb4URVEGqAULFqBpGpqm4Xa7GTVqFFdeeWWbouFN5zVNIxgMMm7cOBYsWNCuNtdrr72GpmnU1NQ0H9u6dSuTJk1i9uzZ1NbWtnlO6/fu6DFy5Mi99FMY2NI+8BoKdBFExEoJ2NnN5SRkc+DlBFCuutW4QpuRuodYycyuL6ip/K42pATbgoyi/h6JoihKjx133HFs27aNtWvXcuedd/LnP/+Z66+/vs1zFi5cyLZt2/jss8+45557aGhoYPr06Tz44IOdXnfNmjXMmjWLESNG8MILL5Cd3ba7x+9//3u2bdvW/Gj9Ptu2bWPZsmW9/80OQmm91DhUVPk/wp+9iip7DJrdOOPVuNTYVAS1uXZX8aFIV6Dba6odja2YIfBkqGVGRVG6FTbDAPhdfjRNI2JFkFLiNbwYukHMjmELG4/hwaW7sGyLuIjj1t24DTe2sInZMXRNx+fyIaQgajmzUQF3oM17NH2dLK/X27yrv7y8nLlz5/LSSy9x2223NT8nJyen+TkjR47k2GOP5dxzz+WSSy7hxBNPbNN6D2DFihXMmzePo446isWLF+NytQ8Pmmpfttb6fZTEqNtzGoi4qnFlrCbm2o0mmma8Gnc16hpIgXfrawBESzsumtpECommqeKpbUTrIaMQ3P7+HomiKGlu+iPTmf7IdHbHdgNw1rNnMf2R6SyvWg7AVW9exfRHpvOPVf8AwJIWj698HEtaAPxv4/+Y/sh0Lv7fxQCsrVnL9Eemc9wTx7V7j97w6aef8s477+DxdJ/Y+5Of/IT6+npeeumlNsffeecd5syZw6mnnsrf//73DoMupfeon24ayAzvz6b6ERR7vVTPzCVUX8PY0q34/Zl4vH7c1Z9iRHcgXEHiRYd0eS1VPHUPUjiPoGruqihK7/ui+gvO2/88lmxdwozSvVPG6NlnnyUjIwPLsojFYui6zh//+MduXzd+/HgA1q9f3+b4N77xDc4444yErqH0nAq80oAnXoIVGktuXjXh0QF2xuo4IMMmzxvFcGsty4zDZoHR9f9qhADNAEPNZTriocbdjKpoqqIo3Vv6raWAs9QI8OgJjzYvNQLccvgt3DTzJtyGG4AphVMwbZNDhx0KwNEVR7P0W0vRNecf4dE5o5uvued7pOrII4/k3nvvJRQKceedd+JyuTj11FO7fV1T719tj84dJ510Ek899RRvvvkmhx9+eI/GpnRP3Z7TQE3gM7zFz7Dbsw7NNMGUrNuYyxfrMpBCInUDYfi6XWYEJ/AyVJ/GFrF6CBaBK306FSiKkr4C7gABd6A5OPG7/ATcAYzGf1S9hpeAO4BbdwIvTdNwG+7m57t0FwF3AJ/LKWmka3rzNfd8j1QFg0HGjh3LAQccwN/+9jeWLl3KAw880O3rvvjiC8ApPt7an//8Z84880yOP/543njjjZTHpSRGBV5pIORbiyfvHerd26n422KmLn6KbduzWLMlCLpGw/4/Yucx/8AsmNLttYSQGIbW7n80Q5KwnR2NGYX9PRJFUZQ+oes6v/zlL7nmmmuIRCJdPveuu+4iKyuLuXPntjmuaRp/+ctfOPvss/na177G66+/3pdDHvJU4JUG/OF9iO08gnxrGNgCXVgMz93O6LJQSwDl8jtriN2Qqnhqi3gDeDPBl9PfI1EURekzp512GoZhcM899zQfq6mpobKykg0bNvDSSy/xzW9+k0ceeYR7772XnJycdtfQNI377ruPc845h6997Wu89tpre+8bGGJUjlca8IYnEo/4KS7YgS4lmh1lZMkOcnNN/Js+IDbscKQnC09WFq5AgHBlZafXEgLUhpRG8RDkjVGRqKIog5rL5eKSSy7h9ttv5+KLnd2U5513HgA+n4+ysjJmzZrFe++9x7Rp0zq9jqZp3HPPPei6zvz583n22WfV6kkf0GRTtt0QVldXR3Z2NrW1tWRlZfXoWk/c8f+wonEyCnISfs1tNfVsk2G+7svm9GGljJtyKCteXkVW7SdMi/0aK1hOw0lPkDV6DHVr1xCvq+v0Wg11NoXD3GRmD/HJTGFBQxWUT1c7GhVFaSMajbJu3TpGjRo1oNrLDVVd/b7a3b9X3JDcxScn+fxeoOZG0kAocxm+4CqqG45h+24fVe9+wMYVeQS8E5mWC9a0CxMKuhyaKp4KjcuMWWqZUVEUZajrh+CqKyrwSgNGbDimMMiygwTXrWaXWQkciRHMgmN+jeeQixIKupomL9WORiAWgoJ9wVB/xBVFUZT0oeZG0oB39xyim8+lIlJK6bPPM/zdjwAwrHqYeSmRXdUJzHQ5ifW6rqk+jcICTYdgfn+PRFEURVHaUIFXGoi7KzH86xGEAJC6M0tjZGRjv78Yf0EhngRyz5qKpw75pcZYPfiywJfd/XMVRVEUZS8a6rfotBAt+jeBkfexW9sMgN1YEdmo24B460/UrV1D1ugx3QZfqnhqo1gIMkvVD0JRFEVJOyrwSgdmNiKej99uDBTczq4NI1aN1N3E6+oSCr6ELdGNxsbaQ5Udd/K6/Dn9PRJFURRFaUdlHqcBfdtZhGwXw/2fAmA1LjXqukC6nUCrKfhyBQKd5nsJCW73EA66wFlm9Gar3YyKoihKWlKBVxqw9QhIF5q0sT0eLJez1BgPjKP24EObnxevq+syyV7Y0PjSoSsecYqmDvlEN0VRFCUdqcArDYiK+8j07GJD6FRyf/BddlYGoRJ0PbnathIwXEN4xsuKOVXq/bn9PRJFURRF6ZCaFkgLAgAXmhM9SSd4SnbSRmOI53fF6p2djGo3o6IoipKmVOCVBuJrf0r9lzcxqsZP7vsfUlL1DiePW8yJxvlkfHJXUtcyhvJGPisKmcNA9RZTFGUQ27RpE+effz6lpaV4PB5GjBjBj3/8Y3bt2tX8nCOOOILLLrus3WsXLVrUpkn2okWL0DSt3UO1Uuo7aqkxDQhpABrB2hoK315CMD8X97gK3ISxEmylKYREG8qlJKwYGF61m1FRlEFt7dq1zJgxg3322YdHH32UUaNG8dlnn3HFFVfw3HPP8e6775KXl5fUNbOysli5cmWbY6o5dt9RgVca8I6+A68eJ7JyKgBbCw/n47Uz2c+bwyQ9ktA1RGPV+iG71BirA3+2059RURQlRSIc7vC45vWiGQZSCGQ0CrruHGsMUKRlgWEgYzHnH+TmF2rofr9z7XgcLMs57nKhezxJj++HP/whHo+HF198EX/jdSsqKpg6dSpjxozh6quv5t57703qmpqmUVJSkvRYlNSowKufCQmauw7NiGMFfdSNG00op5CIlUHc40fqVkLXcdoFDeEZLzMGhWqZUVGUnlk57cAOj1csXkxw+iGYGzey5rjjAQjOPpyKv/wFAGnbbL7oIkJvv9PmdZ6xYxjz7LMAVP32t+x+8CEAcs/5DiW//GVSY6uuruaFF17gN7/5TXPQ1aSkpISzzz6bxx9/nD/96U9JXVfZu1Tg1c9sqRFe/0PQLFwlMbYeX048IpgX+TtFsTdAPyah6zjFU7WhWUXBijpFZ1XtLkVR9qLQO0uaP4+tWdMu6OptX331FVJKJkyY0OH5CRMmsHv3bnbs2AHAn/70J/7617+2eY5lWe3yt2pra8nIyGhz7PDDD+e5557rxdErTVTg1c9sQMSLAfCyARAYbpN8sZUsawcNRmJT0UKAx6cNzXX5aB3488Cb2d8jURRlgNt3+QcdHte8XgDcFRUtz2n1P13fhAns+9GHbZcZoc0sfNHPfkZRU8K7K/Xbr0ww9/fss8/m6quvbnPsySef5Oabb25zLDMzk+XLl7c5tueMmtJ7VODVzywJ/oq/gDTwrR9B4fJPWDv8KF7N+SaTPBrD9MQqogoxhIunWjHILFHLjIqi9JgeCHR5XtN1tA6eo2kaWjc7AXWPB1LI62oyduxYNE3jiy++4Bvf+Ea781988QW5ubkUFhYCkJ2dzdixY9s8p6ioqP24dL3d85S+MxQXptJKHIEruBZXxld46usJbtqCbWawLTKaelGE1BP7SyoluIZiuyAzAm6/2s2oKMqgl5+fzzHHHMOf/vQnIpG2G68qKyt5+OGHOeOMM4bmyscAogKvfialTmTzWUS3nI6rcYZaNPZqjOUcSLxgWsLXGpI7GmP1zjKjJ6P75yqKogxwf/zjH4nFYsybN4833niDTZs28fzzz3PMMcdQVlbGb37zm6SvKaWksrKy3UPsuWw6EE2+ob9H0I4KvPqZlAZW/QFQPwXDdtbtZePWRCs4GjtzRMLXGpLFU60YZBarZUZFUYaEcePG8f777zN69GhOP/10xowZw4UXXsiRRx7JkiVLkq7hBVBXV8ewYcPaPaqqqvrgO1BUjlc/CxPHW/wvDHSosgEQmvNrSXSHohQSTRuCpSTMsLPMqHYzKooyhIwYMYJFixZ1+ZzXXnutw+MLFixgwYIFnX6t9D0149XPoph48pag5y5Bt51p3abAK1i/DKNhY7fXGLLFU2MNjbsZ1TKjoiiKMjCoGa9+pgsPsR1H4dUF0dIgOw+cguXzg4CM+qUYoQLsjIouryEEaMYQW2qUEqy4s8yoKIqiKAOECrz6mRsv8Z3HEjQsIiM2s7usBGu1HyJgYCITKCchBOhDbanRjIDHD/7c/h6JoiiKoiRMBV79LEQMd867zpQVhUgA6SwZGpoFCQReUkjcXn1obSGO10NGMXiC/T0SRVEURUmYCrz6WZ1Wj2/Y01hWBnmvjiawchW7p12FrQWSmvEyhlLxVCnBNiHYvhCgoiiKoqQzFXj1M0N6Mev2w48HI9KAp76BgNhGSWA9fqM2oRkvIcA9lAIvMwzugFpmVBRFUQYcFXj1s4CdQ3T7dyj0xMBeDECxeI8j81/EEGF2JdQyyGmQPWTE6iFzGHi6bu2hKIqiKOlGBV79LEIUw78W4dKpmX4wO8fvQ623hKrYKgpdqxNaapRoGEMl8JIShA0ZaplRURRFGXhUHa9+ttPYQWDkXwgVPYmZl0t4eCm7d0zmyV2/ocY1AenqukO8lBKNIbSjsWmZURVNVRRFUQYgFXj1N+nCjhXiMnMw6urx1NRiuGL4PBa7x12J9HadxyQbi6cOmRmvWB0EC9Qyo6Ioyl6maRpPP/10fw9jwFOBVz/LNcsIr/0pBVVnUfjSK4z7++OMlP9h9uRt+BOILZqKpybaXmhAkxJsG4KF/T0SRVGUfrFgwQI0TUPTNNxuN6NGjeLKK68kGo3299CUBKkcr34Wx0YzQmi6iWbbSMDSfAgzAlbUCTa6qM8lBBhDpXiqGQJPBvhz+nskiqIo/ea4445j4cKFmKbJBx98wLnnnoumadx22239PTQlAUNhniStbfOsJmOfX7Oz+FE0YSN0D+vjJ/K/j/eh6KMfdvt6ISS6i6HRpzFa7ywzurvOe1MURUmVGbMTetiNvXVtWzhfW429dhu/TuSRKq/XS0lJCeXl5Zx88snMnTuXl156CYBdu3Zx1llnUVZWRiAQYNKkSTz66KNtXn/EEUdw6aWXcuWVV5KXl0dJSQk33HBDm+d89dVXzJ49G5/Px8SJE5uv39onn3zCUUcdhd/vJz8/nwsvvJCGhobm8wsWLODkk0/m5ptvpri4mJycHG688UYsy+KKK64gLy+P4cOHs3DhwpR/FgORmvHqZ5ZTqx5NGmi2QLSautJ1upztAmfGy+UaAkGXFCBtyFDLjIqi9J2//Pj1hJ43+8x9mHTEcKQt+fT1zew/ZziGC9Z+tJMX7v80oWv88L6jejJUAD799FPeeecdRowYAUA0GuXAAw/k5z//OVlZWfznP//hO9/5DmPGjOGQQw5pft3ixYu5/PLLWbp0KUuWLGHBggXMnDmTY445BiEEp5xyCsXFxSxdupTa2louu+yyNu8bCoWYN28eM2bMYNmyZVRVVfHd736XSy65hEWLFjU/75VXXmH48OG88cYbvP3221xwwQW88847zJ49m6VLl/L4449z0UUXccwxxzB8+PAe/zwGAjXj1c9KovtR/8XNDN9xBpptI5rLRwi0BBK3pAC3p2/H+P/bu/ewqOo88OPvmQEGGIERUC4qeAM0uZkKkjdUVnB/62a51popmt3BQtRKNxd1N2+tqZVdtlqsnrTs2Wzb+mWPmVoSqFFq7k9ZJRMVkPICcoeZ7+8PctYR7wEHhs/rec7zcG7f+cz3nON8/J7z/Z5WofaX24zSm1EI0Yr8VHCe/mOCKf6htMU+8+OPP6ZDhw64uroSERFBSUkJc+fOBaBLly7MmTOH6OhoevbsycyZM0lKSmLjxo12ZURGRpKRkUFISAhTp05l4MCBbN26FYDPP/+cQ4cO8dZbbxEVFcXw4cNZsmSJ3f7r16+nurqat956i/DwcEaNGsWLL77I22+/zalTp2zbeXt78/zzzxMWFsZ9991HWFgYlZWVzJ8/n5CQEObNm4eLiws7d+5s5lprPaTFS2MWBaDHfqYntAAAGVhJREFUSWcAqxWrruGQGKgD/bUPj1XRPno01pSDOQicXbWORAjhwB5cM+K6ttP/cqfBv5cXlnorXfs09EDvGe173WXcrJEjR/Lyyy9TUVHBqlWrcHJyYsKECQBYLBaWLFnCxo0bOXnyJLW1tdTU1ODubt9bKzIy0m4+ICCAkpISAA4ePEi3bt0IDAy0rY+Li7Pb/uDBg0RFRWEy/e99uUOGDMFqtZKXl4efnx8A/fr1Q39RI4Kfnx/h4eG2eYPBgI+Pj+2z2wNJvDR2wu17TL5fUVwdQuHdEzh/3gonG16QfT2DpwKOP2q9sjZM0ptRCNHMnI031lNJp9NhuOhxD71B3+ydnUwmE7179wbgH//4B1FRUbzxxhvMmDGDZ599ljVr1rB69WoiIiIwmUykpaVRW1trV4bzJe+Z0+l0WK3WJo/1cp/TUp8NwP6FELmwecq+SXKrUWN11KB3Kkfpa7C6uVHn1vC/B4OuHnTXzovbxeCptdKbUQghLkev1zN//nyefvppqqqqyMrK4vbbb+fee+8lKiqKnj178t///veGyuzbty/Hjx+nqKjItiwnJ6fRNvv27aOiosK2LCsrC71eT1hY2K/7Ug5OEi+N+VZGUPFDGl3K4nE7egz3wobmVj1112zxsloVOj0YHD3xqilvaO1yMmodiRBCtDoTJ07EYDCwdu1aQkJC2LJlC19//TUHDx7koYcesnvm6nokJCQQGhpKcnIy+/bt46uvvuJPf/qT3TaTJ0/G1dWV5ORkDhw4wLZt25g5cyZTpkyx3WYUlyeJl8b0yh1rjT/uFi/8/u9mAnbuAX651XiNFi/rL6PWO/RQElYLoKQ3oxBCXIGTkxOpqamsWLGC2bNnc+utt5KYmEh8fDz+/v6MHz/+hsrT6/Vs2rSJqqoqYmJiuP/++3nmmWfstnF3d+ezzz7jzJkzDBo0iD/84Q+MHj2aF198sQm/mWPSKaWU1kForaysDC8vL0pLS/H09PxVZf1z5bPUV9fSwdd8Xdu/WnWcwy4H6VXfk+WvbqHUoyffRafhYSxn7JAfUD2HXHHfulqF1QqBwU6O+4B9dVnDILLBt4FTe+i+KYRobtXV1Rw9epQePXrg6ioddlq7qx2vRr/f+xc2LkCe8RIXqzKcxcn0A7WGM9R5d6TG45fET+9CrUffq+5rtSr0egd/XVBtOXj4SdIlhBDCIUivRo15Vvbj6Plg/IzOnLw3hrLKejwrfyTEaALMV93XagFnY8M7uxyS1dLQ2uXuo3UkQgghRJNw5LaSNsGlrjP1ZVGY6wMA0DnXE2TaSz/rP3AvafyKhotZreB8fSNOtE215WD0kEFThRBCOAxp8dLYWbeDGE1FnK/zw+eLPAyGTpzuGkYBhfR0/Z467r7ivko5+OuCasrBp7fcZhRCCOEwpMVLY+XGH3HxzqZOfxKvfd/jXFhJUVk4R2tiUNcxcr3DDp5qrW94T6XcZhRCNBPpW9Y2ONpxkhYvjblVhVBSY8a3umHgVFNlEUHmPfRW2Sjdte8jOuzgqbXlMmiqEKJZXBg5vbKyEjc3N42jEddSWVkJNB4Fv62SxEtjrlVh1Fb2p7PLEQA6VJ7E0zuLPpU7KNePueJ+SinQOfDgqbUV4BMKBse40IQQrYfBYMBsNtveD+ju7u64nZTaMKUUlZWVlJSUYDabMTjID54kXhorNx7B2aWSmqqGptQyzyCqy/phtpbgeZWR660WMDjq4KnWekAP7t5aRyKEcFD+/v4A7erlzG2V2Wy2HS9HIImXxso99uJq+n+c/3EQAGc63sKxn3+Dzk0xUFd4xf2sVhz3dUE15WDsIL0ZhRDNRqfTERAQQOfOnamrq9M6HHEFzs7ODtPSdYEkXhpzru7CeYsOo6EjFb17Um3uCIBBVwdXa/GyNgyc6pDPeNVWgG8YGOT0FEI0L4PB4HA/7KJ1a9W9GhcuXIhOp7Ob+vTpY1tfXV1NSkoKPj4+dOjQgQkTJtzwy0C15lo6hOqTU/BwD+fUuN9yLrg7AFaDJ/WuAVfcT1kVBicc77kEW29Guc0ohBDC8bT6JoV+/frx+eef2+adnP4X8qxZs/jkk094//338fLyIjU1lTvvvJOsrCwtQr0pNc7FGPSKOj2ADlRDIlVtiqKqs+mKB8hqBSdnB0u64JfbjJ7g6qV1JEIIIUSTa/WJl5OT02UfqistLeWNN95g/fr1jBo1CoDMzEz69u1LTk4OgwcPbulQb0qF72bc3X6E/Nvw33WUsoD/Q42rHzrd1cctsVrBqdUfvZsgtxmFEEI4sFb/63b48GECAwNxdXUlLi6OpUuXEhQURG5uLnV1dSQkJNi27dOnD0FBQWRnZ1818aqpqaGmpsY2X1paCjS85fzXqqyupr66Fn1V1XVtb611p67GjPFsFdYffqTGVEaVvoLa6p8oP1+LweXyh6i8wopLBwOG8w70bIK1HiqqoaMzNMGxEEII4dgu/G63pUFWW3XiFRsby7p16wgLC6OoqIhFixYxbNgwDhw4QHFxMS4uLpjNZrt9/Pz8KC4uvmq5S5cuZdGiRY2Wd+vWrSnDvyHz2cl8gCN/1iwGIYQQoi06f/48Xl5XeERl/8IbKyzyBre/Qa068Ro7dqzt78jISGJjYwkODmbjxo2/arThefPmkZ6ebps/d+4cwcHBFBQUXPnAiWZRVlZGt27dOH78OJ6enlqH065I3WtL6l87Uvfaasr6V0px/vx5AgMDmyi65teqE69Lmc1mQkNDOXLkCL/5zW+ora3l3Llzdq1ep06duuZAa0ajEaPR2Gi5l5eXXIQa8fT0lLrXiNS9tqT+tSN1r62mqv+21mDSqoeTuFR5eTn5+fkEBAQwYMAAnJ2d2bp1q219Xl4eBQUFxMXFaRilEEIIIcTlteoWrzlz5jBu3DiCg4MpLCwkIyMDg8HApEmT8PLyYsaMGaSnp+Pt7Y2npyczZ84kLi6uzfRoFEIIIUT70qoTrxMnTjBp0iROnz5Np06dGDp0KDk5OXTq1AmAVatWodfrmTBhAjU1NSQmJvLSSy/d8OcYjUYyMjIue/tRNC+pe+1I3WtL6l87Uvfaatb6b+YH45uCTrWlPphCCCGEEG1Ym3rGSwghhBCiLZPESwghhBCihUjiJYQQQgjRQiTxEkIIIYRoIe0+8Vq7di3du3fH1dWV2NhYdu/erXVI7cLChQvR6XR2U58+fbQOyyF9+eWXjBs3jsDAQHQ6HR9++KHdeqUUf/7znwkICMDNzY2EhAQOHz6sTbAO6Fr1P23atEbXQlJSkjbBOpClS5cyaNAgPDw86Ny5M+PHjycvL89um+rqalJSUvDx8aFDhw5MmDCBU6dOaRSxY7me+o+Pj2907j/88MMaRdxy2nXi9d5775Genk5GRgbffvstUVFRJCYmUlJSonVo7UK/fv0oKiqyTTt37tQ6JIdUUVFBVFQUa9euvez6FStW8Pzzz/PKK6+wa9cuTCYTiYmJVFdXt3Ckjula9Q+QlJRkdy1s2LChBSN0TDt27CAlJYWcnBy2bNlCXV0dY8aMoaKiwrbNrFmz+Pe//83777/Pjh07KCws5M4779QwasdxPfUP8MADD9id+ytWrNAo4hak2rGYmBiVkpJim7dYLCowMFAtXbpUw6jah4yMDBUVFaV1GO0OoDZt2mSbt1qtyt/fXz377LO2ZefOnVNGo1Ft2LBBgwgd26X1r5RSycnJ6vbbb9cknvakpKREAWrHjh1KqYbz3NnZWb3//vu2bQ4ePKgAlZ2drVWYDuvS+ldKqREjRqjHH39cu6A00m5bvGpra8nNzSUhIcG2TK/Xk5CQQHZ2toaRtR+HDx8mMDCQnj17MnnyZAoKCrQOqd05evQoxcXFdteBl5cXsbGxch20oO3bt9O5c2fCwsJ45JFHOH36tNYhOZzS0lIAvL29AcjNzaWurs7u3O/Tpw9BQUFy7jeDS+v/gnfeeQdfX1/Cw8OZN28elZWVWoTXolr1yPXN6eeff8ZiseDn52e33M/Pj0OHDmkUVfsRGxvLunXrCAsLo6ioiEWLFjFs2DAOHDiAh4eH1uG1G8XFxQCXvQ4urBPNKykpiTvvvJMePXqQn5/P/PnzGTt2LNnZ2RgMBq3DcwhWq5W0tDSGDBlCeHg40HDuu7i4YDab7baVc7/pXa7+Ae655x6Cg4MJDAxk//79PPnkk+Tl5fHBBx9oGG3za7eJl9DW2LFjbX9HRkYSGxtLcHAwGzduZMaMGRpGJkTL+uMf/2j7OyIigsjISHr16sX27dsZPXq0hpE5jpSUFA4cOCDPkWrkSvX/4IMP2v6OiIggICCA0aNHk5+fT69evVo6zBbTbm81+vr6YjAYGvVgOXXqFP7+/hpF1X6ZzWZCQ0M5cuSI1qG0KxfOdbkOWo+ePXvi6+sr10ITSU1N5eOPP2bbtm107drVttzf35/a2lrOnTtnt72c+03rSvV/ObGxsQAOf+6328TLxcWFAQMGsHXrVtsyq9XK1q1biYuL0zCy9qm8vJz8/HwCAgK0DqVd6dGjB/7+/nbXQVlZGbt27ZLrQCMnTpzg9OnTci38SkopUlNT2bRpE1988QU9evSwWz9gwACcnZ3tzv28vDwKCgrk3G8C16r/y9m7dy+Aw5/77fpWY3p6OsnJyQwcOJCYmBhWr15NRUUF06dP1zo0hzdnzhzGjRtHcHAwhYWFZGRkYDAYmDRpktahOZzy8nK7/0EePXqUvXv34u3tTVBQEGlpafz1r38lJCSEHj16sGDBAgIDAxk/frx2QTuQq9W/t7c3ixYtYsKECfj7+5Ofn88TTzxB7969SUxM1DDqti8lJYX169fzr3/9Cw8PD9tzW15eXri5ueHl5cWMGTNIT0/H29sbT09PZs6cSVxcHIMHD9Y4+rbvWvWfn5/P+vXr+e1vf4uPjw/79+9n1qxZDB8+nMjISI2jb2Zad6vU2gsvvKCCgoKUi4uLiomJUTk5OVqH1C7cfffdKiAgQLm4uKguXbqou+++Wx05ckTrsBzStm3bFNBoSk5OVko1DCmxYMEC5efnp4xGoxo9erTKy8vTNmgHcrX6r6ysVGPGjFGdOnVSzs7OKjg4WD3wwAOquLhY67DbvMvVOaAyMzNt21RVValHH31UdezYUbm7u6s77rhDFRUVaRe0A7lW/RcUFKjhw4crb29vZTQaVe/evdXcuXNVaWmptoG3AJ1SSrVkoieEEEII0V6122e8hBBCCCFamiReQgghhBAtRBIvIYQQQogWIomXEEIIIUQLkcRLCCGEEKKFSOIlhBBCCNFCJPESQgghhGghkngJIa7oxx9/RKfT2V7l0RocOnSIwYMH4+rqSnR0tNbh3JRp06bJmwGEaKck8RKiFZs2bRo6nY5ly5bZLf/www/R6XQaRaWtjIwMTCYTeXl5du/Zu9iFert0SkpKauFoL2/NmjWsW7dO6zAA0Ol0fPjhh1qHIUS7IYmXEK2cq6sry5cv5+zZs1qH0mRqa2tvet/8/HyGDh1KcHAwPj4+V9wuKSmJoqIiu2nDhg03/blNwWKxYLVa8fLywmw2axqLEEIbkngJ0colJCTg7+/P0qVLr7jNwoULG912W716Nd27d7fNX7i9tWTJEvz8/DCbzSxevJj6+nrmzp2Lt7c3Xbt2JTMzs1H5hw4d4rbbbsPV1ZXw8HB27Nhht/7AgQOMHTuWDh064Ofnx5QpU/j5559t6+Pj40lNTSUtLQ1fX98rvgDaarWyePFiunbtitFoJDo6ms2bN9vW63Q6cnNzWbx4MTqdjoULF16xToxGI/7+/nZTx44dAdi+fTsuLi589dVXtu1XrFhB586dOXXqlF3MqampeHl54evry4IFC7j4LWs1NTXMmTOHLl26YDKZiI2NZfv27bb169atw2w289FHH3HLLbdgNBopKChodKsxPj6emTNnkpaWRseOHfHz8+O1116joqKC6dOn4+HhQe/evfn0009vuN4fe+wxnnjiCby9vfH397erswvnxx133IFOp7PN79u3j5EjR+Lh4YGnpycDBgzgm2++uWJdCyGunyReQrRyBoOBJUuW8MILL3DixIlfVdYXX3xBYWEhX375Jc899xwZGRn87ne/o2PHjuzatYuHH36Yhx56qNHnzJ07l9mzZ/Pdd98RFxfHuHHjOH36NADnzp1j1KhR9O/fn2+++YbNmzdz6tQp7rrrLrsy3nzzTVxcXMjKyuKVV165bHxr1qxh5cqV/O1vf2P//v0kJiby+9//nsOHDwNQVFREv379mD17NkVFRcyZM+em6iE+Pp60tDSmTJlCaWkp3333HQsWLOD111/Hz8/PLmYnJyd2797NmjVreO6553j99ddt61NTU8nOzubdd99l//79TJw4kaSkJFu8AJWVlSxfvpzXX3+d//znP3Tu3PmyMb355pv4+vqye/duZs6cySOPPMLEiRO57bbb+PbbbxkzZgxTpkyhsrLyhuvdZDKxa9cuVqxYweLFi9myZQsAe/bsASAzM5OioiLb/OTJk+natSt79uwhNzeXp556Cmdn55uqayHEJTR+SbcQ4iqSk5PV7bffrpRSavDgweq+++5TSim1adMmdfHlm5GRoaKiouz2XbVqlQoODrYrKzg4WFksFtuysLAwNWzYMNt8fX29MplMasOGDUoppY4ePaoAtWzZMts2dXV1qmvXrmr58uVKKaX+8pe/qDFjxth99vHjxxWg8vLylFJKjRgxQvXv3/+a3zcwMFA988wzdssGDRqkHn30Udt8VFSUysjIuGo5ycnJymAwKJPJZDddXHZNTY2Kjo5Wd911l7rlllvUAw88YFfGiBEjVN++fZXVarUte/LJJ1Xfvn2VUkodO3ZMGQwGdfLkSbv9Ro8erebNm6eUUiozM1MBau/evY3iu3BcL3zW0KFDbfMXjsOUKVNsy4qKihSgsrOzlVLXX+8Xl6tUQ30++eSTtnlAbdq0yW4bDw8PtW7dOiWEaHpOGuZ8QogbsHz5ckaNGnXTrTwA/fr1Q6//X0O3n58f4eHhtnmDwYCPjw8lJSV2+8XFxdn+dnJyYuDAgRw8eBBouC21bds2OnTo0Ojz8vPzCQ0NBWDAgAFXja2srIzCwkKGDBlit3zIkCHs27fvOr/h/4wcOZKXX37Zbpm3t7ftbxcXF9555x0iIyMJDg5m1apVjcoYPHiwXSeGuLg4Vq5cicVi4fvvv8disdi+3wU1NTV2z565uLgQGRl5zXgv3ubCcYiIiLAtu9ASd+HYXG+9X/rZAQEBjY7vpdLT07n//vt5++23SUhIYOLEifTq1eua30EIcW2SeAnRRgwfPpzExETmzZvHtGnT7Nbp9Xq7Z48A6urqGpVx6e0inU532WVWq/W64yovL2fcuHEsX7680bqAgADb3yaT6brLbAomk4nevXtfdZuvv/4agDNnznDmzJkbirG8vByDwUBubi4Gg8Fu3cXJkJub23X1QL3WsblQxoVjc731fjPHd+HChdxzzz188sknfPrpp2RkZPDuu+9yxx13XPN7CCGuThIvIdqQZcuWER0dTVhYmN3yTp06UVxcjFLK9gPdlGNv5eTkMHz4cADq6+vJzc0lNTUVgFtvvZV//vOfdO/eHSenm/8nxdPTk8DAQLKyshgxYoRteVZWFjExMb/uC1xGfn4+s2bN4rXXXuO9994jOTmZzz//3K5FcNeuXXb75OTkEBISgsFgoH///lgsFkpKShg2bFiTx3ctTVXvzs7OWCyWRstDQ0MJDQ1l1qxZTJo0iczMTEm8hGgC8nC9EG1IREQEkydP5vnnn7dbHh8fz08//cSKFSvIz89n7dq1jXrA/Rpr165l06ZNHDp0iJSUFM6ePct9990HQEpKCmfOnGHSpEns2bOH/Px8PvvsM6ZPn37ZH/SrmTt3LsuXL+e9994jLy+Pp556ir179/L444/fcMw1NTUUFxfbTRd6/FksFu69914SExOZPn06mZmZ7N+/n5UrV9qVUVBQQHp6Onl5eWzYsIEXXnjBFktoaCiTJ09m6tSpfPDBBxw9epTdu3ezdOlSPvnkkxuO90Y1Vb13796drVu3UlxczNmzZ6mqqiI1NZXt27dz7NgxsrKy2LNnD3379m3GbyNE+yGJlxBtzOLFixvdKurbty8vvfQSa9euJSoqit27d/+qZ8EutWzZMpYtW0ZUVBQ7d+7ko48+wtfXF8DWSmWxWBgzZgwRERGkpaVhNpvtWo+ux2OPPUZ6ejqzZ88mIiKCzZs389FHHxESEnLDMW/evJmAgAC7aejQoQA888wzHDt2jFdffRVouDX397//naefftruebKpU6dSVVVFTEwMKSkpPP744zz44IO29ZmZmUydOpXZs2cTFhbG+PHj2bNnD0FBQTcc741qqnpfuXIlW7ZsoVu3bvTv3x+DwcDp06eZOnUqoaGh3HXXXYwdO5ZFixY147cRov3QqUsfDBFCCEF8fDzR0dGsXr1a61CEEA5EWryEEEIIIVqIJF5CCCGEEC1EbjUKIYQQQrQQafESQgghhGghkngJIYQQQrQQSbyEEEIIIVqIJF5CCCGEEC1EEi8hhBBCiBYiiZcQQgghRAuRxEsIIYQQooVI4iWEEEII0UIk8RJCCCGEaCH/HxIC1nulu0prAAAAAElFTkSuQmCC",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -868,27 +873,51 @@
"# until 25\n",
"limit = 25\n",
"\n",
+ "# Create a figure and axis object\n",
+ "fig, ax1 = plt.subplots()\n",
+ "\n",
+ "# Plot the lineplot\n",
"sns.lineplot(\n",
- " data=results, x=\"Num_Experiments\", y=\"Efficiency_CumBest\", hue=\"Scenario\", marker=\"x\"\n",
+ " data=results, x=\"Num_Experiments\", y=\"Efficiency_CumBest\", hue=\"Scenario\", marker=\"x\", ax=ax1, style = 'Scenario'\n",
")\n",
- "plt.plot([0.5, N_DOE_ITERATIONS+0.5], [max_yield, max_yield], \"--r\", alpha=0.4)\n",
- "plt.legend(loc=\"lower right\")\n",
- "import matplotlib.pyplot as plt\n",
"\n",
- "plt.xlim(0, limit+1)\n",
- "plt.savefig(f\"./img/{exp_dataset_name}_simulation_{N_MC_ITERATIONS}MC_{N_DOE_ITERATIONS}exp_{BATCH_SIZE}batch_first25.png\")"
+ "# Set legend\n",
+ "ax1.legend(loc=\"lower right\")\n",
+ "\n",
+ "# Add a horizontal line\n",
+ "ax1.plot([0.5, limit+0.5], [max_yield, max_yield], \"--r\", alpha=0.4)\n",
+ "\n",
+ "# Set x-axis limit\n",
+ "ax1.set_xlim(0, limit+1)\n",
+ "ax1.set_ylim(50, 101)\n",
+ "\n",
+ "# Create a new axis for the histogram on the right side\n",
+ "ax2 = fig.add_axes([0.905, 0.1, 0.05, 0.8])\n",
+ "ax2.hist(df_active['Efficiency'], bins=2000, color='orange', alpha=0.5, orientation='horizontal') \n",
+ "ax2.set_ylim(ax1.get_ylim()) \n",
+ "ax2.set_axis_off() # Hide axis ticks and labels\n",
+ "\n",
+ "# Set x and y titles\n",
+ "ax1.set_xlabel('Number of Experiments')\n",
+ "ax1.set_ylabel('Cumulative Best Efficiency')\n",
+ "\n",
+ "# Save the plot\n",
+ "plt.savefig(f\"./img/{exp_dataset_name}_simulation_{N_MC_ITERATIONS}MC_{N_DOE_ITERATIONS}exp_{BATCH_SIZE}batch_first{limit}.png\", bbox_inches='tight')\n",
+ "\n",
+ "# Show the plot\n",
+ "plt.show()"
]
},
{
"cell_type": "code",
- "execution_count": 176,
+ "execution_count": 315,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGxCAYAAACEFXd4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADNHElEQVR4nOz9d3ydd3n/jz/v+z57ak9LsiTLluQhbye2EyeO4wSSNEACSUgXJIXSQfmFwqd8C22BUgotLQ1QaBmFsCGskIRMZ3nEe0u2Ze29dc7Rmff6/XEfHUmWlDiJSBzn/Xw8juVzn+u87/vM+3WuKZmmaSIQCAQCgUBwmSK/0QcgEAgEAoFA8PtEiB2BQCAQCASXNULsCAQCgUAguKwRYkcgEAgEAsFljRA7AoFAIBAILmuE2BEIBAKBQHBZI8SOQCAQCASCyxohdgQCgUAgEFzW2N7oA7gUMAyD3t5e/H4/kiS90YcjEAgEAoHgIjBNk0gkQklJCbI8v/9GiB2gt7eXsrKyN/owBAKBQCAQvAq6urpYtGjRvLcLsQP4/X7AerICgcAbfDQCgUAgEAguhnA4TFlZWeY8Ph9C7EAmdBUIBITYEQgEAoHgTcbLpaCIBGWBQCAQCASXNULsCAQCgUAguKwRYkcgEAgEAsFljRA7AoFAIBAILmuE2BEIBAKBQHBZI8SOQCAQCASCyxohdgQCgUAgEFzWCLEjEAgEAoHgskaIHYFAIBAIBJc1b6jYef7557nlllsoKSlBkiR+/etfz7jdNE3+4R/+geLiYtxuNzt27KC5uXmGzejoKHfffTeBQICsrCzuueceJiYmXsdHIRAIBAKB4FLmDRU70WiUhoYGvva1r815+xe/+EXuv/9+vvGNb7B//368Xi833HADiUQiY3P33Xdz+vRpnnzySR5++GGef/55PvCBD7xeD0EgEAgEAsEljmSapvlGHwRYcy1+9atf8Y53vAOwvDolJSV89KMf5W//9m8BCIVCFBYW8t3vfpc777yTpqYm6uvrOXjwIOvXrwfgscce4+1vfzvd3d2UlJRc1L7D4TDBYJBQKCRmYwkEAoFA8CbhYs/fl+wg0La2Nvr7+9mxY0dmWzAYZNOmTezbt48777yTffv2kZWVlRE6ADt27ECWZfbv38873/nOOddOJpMkk8nM9XA4PPdBaNr8ByhJoCgXZwtgm/ZUX862ug4vpZ8vBVtFsV4/AMOwLpeyrSxbl0vF1jSt5/hStn0ln89LwRYuvc+y+I6w/i++I1657e/zc/8yAz/n45IVO/39/QAUFhbO2F5YWJi5rb+/n4KCghm322w2cnJyMjZz8fnPf55Pf/rTL38Q3/nO/LeVl8ONN05df+CB+T/wxcVwyy1T13/0I5gWiptBfj5MF2k/+xnMl4OUnQ3vfvfU9V/9CsbG5rb1+eC97526/tvfwtDQ3LYuF/zxH09d/93voK9vblubDd7//qnrTz4JnZ1z2wJMDzE+8wy0ts5v+/73T31BvfACnDs3v+0f/7F13AD79kFj4/y2d90Ffr/1/wMH4MSJ+W3f/W7reQY4ehQOH57f9p3vtF4/gJMnYf/++W1vvhkmPY9NTbBnz/y2N95ovd8Azp+HZ5+d33bHDqiqsv7f3g5PPTW/7TXXwNKl1v+7u+Gxx+a33bIFli+3/t/XBw8/PL/tpk3Q0GD9f3jYel/Ox7p11gVgfBx+/vP5bVetgiuusP4/MQE//vH8tvX1sHWr9f9Ewvp8zsfSpdZzAdZn+KU+91VV1nM8ifiOsBDfEdb/3yTfEWZlJYZhwvlWePopTEACZEVC101LVJhgXHMN9uW1RENJkmdace/ehctnJzGhomuTwsdEscm4dl5LuKgSNaHjGB/Ev/dpEhMpdM26XVIknG4biQmVxMq1yGtWE8h1E23pRnnoN+iaYdnJ4PTYM/f1bL8CZeNGa1fj41PP9SvkkhU7v08+8YlPcN9992Wuh8NhysrK3sAjEgheP0zTtH7U6gambmAaJkZCQ0rpMO3HriQDkoSpm6DqmAkNQzchpqIk07/ETEC2fmzpmomiSOhxFXUsad04lsAWVQFQFAlJljLHYBhgTKiY4ZT1Yy2SwpbSkSQwdBNZkazvXMM6KCOqYkZSAMgxFUXV57QDMGMqRiSFrEjIqoaZ0GbZTf6wN6MqRFVkRQJNQ0rq1ongAmRZgpSOGk5hc8gYuokUny1eZFlCkkCLqshxDUM3rOcmqmbEjiRZJxZJsk4uckrHiKkYhomEhJzQkBI6JiZSer3JYzbiGkb6eTBNUOIactJ63nTdQFFk6zU1TAy7ij6WzOzTntCQU7plZ5MxDax9SoCioUdSmKZ1bEpKRzEMDMNEV43Me8N67yjICQ3FJhMNJfHpBoamk4pb7yFz2hvJ6ZeQdIPwcJxAnhsjpZMKT3nWJSSQwOFWkGWJiZE43iwnsiyRiqkQU60zcfq5tTkUJrMvJNMkmT4pyhMp5Jhq2TgtGzWhY3cpSJJk2SWsheRICltCm9NOS+qkxpOgOwCwxVQcpjmnnWGYqONJIIGsyLhNEzPt/ZAkiVRcQ9OmPXejCbx5JoZuEB2K49MNJFkiGdXQ9SmviaLIOE0TQ9MJDyUIaDqyac5t57VhaDpoOrIiEx1LIoWSmc+ZLMu4/XZMwyQ8ksCv6WgJDZtDYWwgitE7gSxJZBd7GeyMMDGaIDySABPaTx3HtjzJ9e9fTvv5cZY5FU4+081oX3TW+57hEq781DLajvVSV2Wf0y6n2Ev91hI6W0Ms3mrn4a8eZ+hIK1VtrXPaDXeP45UWJrX4ks3ZaW1tpbq6mqNHj7J69eqM3bZt21i9ejX/9V//xXe+8x0++tGPMjbtl4qmabhcLn7+85/PG8a6kHljfsJF/cpthYv6Fduamo6h62CYyDYZNamjawamkf6ysim4/E5iEyn0hIYim7gDTibGkqgJ1dqNCXaXQiDfS3g0QSquY3dIBHOdjA/FScU0S+ToJnaXQm6pj+G+GCYyeYt8DHeGiI1bX3CmCR6/nfyKAEMdYeITKu6Ak/zKLOt6JAW6jmmC22+noCLAYEeYeDiFO+CgoDKLwc4J4hMpMEwwdFx+B4UVAQY6wkhg3ac9TDymWy5qE9w+GwVlXmt7RLXWXmytHYukMu5st99BYbmfwZaxmXbp+wEgSbizXFPbx+Jz24F1zNXZDLZb4eyCRZ7ZNpljiRCPGeSV+fBmOxlsHp22zym76HiS4e4J8hZn4c1yMtgWJjYes8xMCVfATuGkXdcEZfU5yE47A+1hEpEUaDpg4vY7KFgcsEQmlggZaA+TiE29v90eKWPT1ThCWX0usiIx2Ga9dqZNQULC7bNTUOaZbdceJh5WMSUTSbHjDliPwUiq6KqB02MjMppgqGsCKe0CyFvkw1/oIxnT6G0eo7Dci8fvIBZJMdAaYvIJKawKWNvjBgOtYeu6RyEWTjLQOpk+YFJYFZy6f2eUvDI//hwXpqbTdnSQ0Egcf46LqoZ8wsNxxges5zKrNEAgz03b8SEig1H8OU4qp9mMD8bIKvCQVeghUOS37EYS+LPsVK7Km9suz03bqVEio0n8uS4qV+YSHowy2hdhpHucnJIAuaVBAnlumvacZ2wwSqAgyPKrqxluD9HfNoyhmeSVZlFSk8XRp88z0h0mtzTImhuW0tE4ymD7GKH+cYL5PgoqsqlYnsuxp84z2h0mZ1GA1TuW0HFmnKGOEOHBMIE8H/nlASqW53L86RZGeyLklPhp2FFNx+kRhjrDKG47OcV+KuqyOfbEOUa6wgSL/Ky7cQmnXuih5+wokeEoKA40XSKv1Me1dy+laXc3dZtLePLbp+k6M9PrZ0oSSDKb31XNmh1lHH2ijQO/bUNCwsTENNJiHAlDgivesYTVOyo49mQ7+399PmOHaZ3jATb+QSWrr1/MsV3d7P9NK5gmpqFjGgaSLCNPt7uunHhMxR1wpw/ogjCWaRIe7CJYVPHmzdmprKykqKiIp59+OiN2wuEw+/fv50Mf+hAAV155JePj4xw+fJh1aVf4rl27MAyDTZs2vfaDsL2Cp+ctYGsYZvqXgoSqG6h6+vebrqFIEi67TEIHSP9fNdCniQ5FknCZZma7dR9lbju7TCKlT7ObuZ4EKLKE0yaj6gZoOnZFRjUMMK1fzFLaTpYl69jT60uGiSwztU2SUWQJ1TAy+mTyM+UEkikdzTSxSRJOu0JKMzCmfeZkGeyyjG6YTP6EU2SJiGYQiWvEkhqyCRUFPk62jdE7HCPH52DdsjwOnB5kYCRmaTMDCnLcbFpVyP6mfgaGYhTmebhydRHPH+5lcDiefgQmRXkeNq0u4sSJMEOjcfJz3GxcVcjeEwMMjMQzj6EwL73eiQEGRuMU5rrZVJPDnlMDDI0lkCQoGI+xYXk+5yeSDI8nyM92sb4qmwNnhjI2xJLkJ1Ksrc3n6NlhhidS5GW7WFOVzaFzwwyNWSEXc1AlL6Wxrjafw2eGGIokyM9ysW5yvXHLLn+6zXjUslmcM8OGRJJ81bJrT2/Pz3Kxrtw/r93h6XYVfg40Db68XVXWDLv8eGK2TfXM47/K4QdJIm9JNoeahhgcS5CX7WJjdTbIMrrb4HQ0yVa7ZNkt9nOkKc7wWJy8bDdrp9mdikwgj7mpKHFQuNjPnqNdDIxMUJjrY/OSQmRZprNnDBOoLM2mYEn2lE2Oly1LypFlmfbuUQ4NDWEOO6kqyyG/Jpvdh1oZGIhQmOdj68pqy65rmEODfZgFdqrK8shfks2ewy0MDEUoyPGydXENsizRPjhGe9cg12xegb/AR39kjOf3HOOqK1fhLyzCMAye2XOQnt4hOAY37NjEotJC7EURHn9qPzfs2IQn20N3zwCPP5UO17yE3dlT3Tz7uxOYcRkzLuM03eSXBth5z3LCe3opW1HAI/9zmq6m0RlfT2V1Oey8dzlNIwkWzWMzw25PL4uW51+cXW0Oj3z91AV2g7Psll1RwqP/ffICu54ZNnVbSnj0GxeuFQUGZtt988JjCwO9F2HHLJvffetCG+s9HB6KU1QVYM3bqjn+dDuxmE5eqUp06CQy48hmiMqGDay+7T24fApNT/yIldfeTsP2Mk799KucfvZnmRWXX/MeVtzxVximQdPvvs+K7bezalsJJ779Bc4++0swwGF30XD7X1K5czvRtvM0XLeE4PDTnP7hVzBUFSkdOlNkG/V3/yUVO7cTPX8Wz5JloKvw7L9C2/OQCE1dKq6EnV+e9RrOxRsqdiYmJjh//nzmeltbG8eOHSMnJ4fy8nI+8pGP8M///M/U1NRQWVnJpz71KUpKSjLen7q6Om688Ub+7M/+jG984xuoqspf/dVfceedd150JdZbGdM0UXWDpGag6ZYr2++yc7J7nPaRKLleBxurctlzfpiesbjlQsekOOjmmqX5PH9uiLbhCYqCbt62spifHOzk3MAEKc1gcZ6H926s4Lt72jjVG6KuOMC9W6u4f1czTX1TCeGT27+9u5WmvvBF2Z1J292ztYqv7GrmTF8EJKgr8vP+rVV8Z3cLTf0RlhT4+MDV1fzXU+c41D5GUjdIadZldVmQz75jJb880s271iziYw8eZ2/LyKznaHN1Lv92ewO/PNrNu9aU8uGfHGVvy/A0Cyltl8O/3d7Ag4e7uW3dIv76x0d5oXl4xlpX1eTxlbvWcKBnnC2rCrnngUOzbACuOm7Z/fRgFzesyOfe78+0+/NtVTx0opv/PdGdsbu2Lo97HjgEwPKSAN94rpU/31bFb44N87/HuvjKXWtoPNjFjtqZdu9eX8ah9lG+8cChzFrbqnO454FD3LyqmPV1eVz3ped4+qPbONQ+ytfSdscOdrGlMnvKblnuDLv/TtudONjF1dPXq80DeFmbi11roe0u9tg+FE3wsRuWYQAra3L54f5OrqvJxQAUCf53bztff7aFD8Wm7JbX5PHD/Z1sq8mbZcfj5/jCbSt5z/oyNjWU8X8vtHHj0mJkSebB59r5r4fP4DDhL3Ys4R07qik0XTQ2j7B8bQ7o8MvfnOMXz7cD8JvH+7nt6sXcevMS8nUvTW1hVmT7Zts9MZyxy9N8nG4JU+t1gg6P/nw/e3btx60lGH3xJLf+5e0Y/RJVAzLGgIxamuS5//gRQ8dbcEgyJhK7Hj1C9TVXsOme69m+bAVF+Xns/vrjtDx3YMaJ5unfHad620auuGcHV1evoiAnl9/ef4yupjHAnbFLoNEVGuXcgX7W7Kzg1HPdDJ7tRlFn5jINno1x/lDeS9q8Fruhpi4c6YIWaZrDeLgxmrFr3N1DqPE8gUgYydCQTQ3Z0EmdDtB7rpg1OytoOzaAcfoIhXPkQRlGPn3NC2M33abz1BDOUy9Q1dGMTUtg02Lpv3GK77yF8uuuIXr8JKuuXU7x8V8y8r/fnLGWN5HEffd7QNUo6EkiqRqmJJH17GlW7wlN2XEa812WYCnoTSGpOqZkkHOonVXHrefYu2UtpdtvJvL44wRuvJHwY49RfuM7UZ7cTXTP3qm1tmyi9JZ3Z+xS0TAOmwS9R6D7wMwnpGUXHP/prOdpLt5QsXPo0CGuvfbazPXJPJo/+ZM/4bvf/S4f//jHiUajfOADH2B8fJytW7fy2GOP4ZpMMgN++MMf8ld/9Vdcd911yLLMbbfdxv333/+6P5Y3A/GUTl8ojmmalOd6eapxgP1tI/SMx+kbT9AfTlBfHOD+u9awv22Ua5YVcO/35jkhp0/cnaMxttcW8IE5TtzPnxvOnEDv2FDGn//g8Cybx04NcKh9bEHsHj3Zz4ELbD40x1oAnaMxlpcE+eC2av7nuRaeaByY8zl7onGAdQc757X7v/dt4EDbKF9/toV1B7sydi80D/Oha6rZWJlDeY6HY51jfOah0zx0rJcPbqvmB3vbae4J8ZU7GlhVlsUd/72Xn/7FFk50jfG5h5t4eJrdud5I2i6b93x9L7esKuEjO5by8Z8dm2GX7bTxxTtW0zIY4VcHu7hlVbFl99NjPHysJ23XRrZD5ot3rqVlMEJj1xjvWV+GR4aHj1jH/4PdLbx7dTG3rC3jt0e6KHCanOoc5T3ry3DK8NBRy+6BPS3ctrqYW9eW8dCRLvKdcKrLsnMr8Nuj3XxwWzXf39PC7auL+YO0HZi8Z305TtngocMdfHBbDQ+80MxtDYXcuq6M3xzuIE9ROdUxzHvWV+CSDH6btvv+C83c3lDIH6wr46HDHeQrqQWz+83hDgDes74Cp2Tw0OF2PrhtKQ+8cC5zbA8d6qASlQNPNfP1plHWVxfSsKOcjSkbNh2e/NZJOhpH8BgGH8UBv+7i6w/1UFGfy473LZ9pd3oYr2Hwt9gBGP5WEw/vHeL6e1exSbNjV2Qe/spxBptGuQsnAAO/6eLRc1F23rucK8aSVDfk8+jXT9LfNMqW9DoA/U/08GhXnJ33Lic1oV603dL1JTz69ZN0NcUolVeCAwZb4LFvNrHz3uXEYwaVa4t57Fun6epZDHmLZ3wejp8A73M9rNlZzdEnOjhxwgHZW2d9rk6cAN9zPazZWcnRJzroahrDngrjjfbjjfXhjVqXwoYKKjd/CYD6K/IJPPCrGSdGAO+WzSy64vqXtHltdr8mum8+u50A1G7Iw/3d3zFxbKadb/NmKurvBKCiLguMPUycnb2WL3czFXV3L4jddJtFNQF08xgT3bOPa9E9dxJ58gmCN97I+JNPknPP+xloa2T48F5UG2Rv2kL1p/6dFz/3/2PJVTdTeM899D/2EM17HmHTl/+D/V/8OANH91G45kqqP/5F9v7rfdRsuYmie+5h4KlHOb33Ibb813/wwv1/hylJXP3Xn+fcMw+xbOe7GTlxiOxrr+Xsrl9Qdf9/8Ow3P0Vv4wFK6jdxzZ99lua9j7J0+7sYb24kuKQOBpvgrp9A71HLy+MKWhdPLlY44f/Neq4u5JLJ2Xkjudz77MRSGiORJLl+Jw8d6+XGFUVzeh4m+Yeb63n/1kp+8GI7X9l1fk4bgL/evoQ/vGIxPz3YyXf3tGO3yTgUGce0v+9ZX8aO+kJ2NQ3y0PHeedf6g4YSttcVsKtpgIeO9aQzMQ1MK3EF0zQwTZNb11WwY+UinjrZzW8OtgGTvpV0TEmCW9cv5rqVi3j2dA9PnejCYZOwKzKKAjZFRpGhItfPjWuqONU6yIrKAh7bfZ7O3lAm12fyF1xFSRY7r15CU8sgddUFPPHCObr6xjGx4l1rl5dy5ZrFNDb3UV2RT9P5XuqWlNDZ0U9NzSKOHTxFwO+mqraavo5ucovyaTnVRPWKOkb6BileXEZr4xkO7Hqejdu3UVW/jL7ObnILC2g7c47K2qWMDA5RXFZK65lzHHxuD3WrV7Jq03oMw0DXdVoaz1JdvwxFUZBlmRP7DnHm8FFq1zawavNGK0HW0Gk9cZqqVctRZBlZUTi2ey+nXjzEpuu3U9Owgsh4nLOHT1PTUE8g10PTwVMcfGY3kmk9H+u2b6Vu4wrCwzHOn2hkyap6AnmW3eFduzOv5brtW6nbkLY7foolDSsydkeefRFJklh7zWZq19cxPhii6fAxlq5aTm5pHo37j3Po+T0YmEjA+qu2svyKBgY7emk8epT6NWsoqCjh9P5jHHh+N5JkJbhuuGor9ZsaGOzspenoMerWrKagvITT+49z8IUXrLAksOHqrSzftJrBth5OHthHXUMDJbU1nHzmBfY/+VvQVDZtv5GVN+yk+amnOPLIr1h6xR+w6rbree5b+2g+FsZQprwPgJXPsLOCo090sPeXLfO+x1+N3f6fN6JoCWx6YuqvnmD939xM9VU1tO1u5vgXfjTvWg3/771Ubn1ldoe+9CNUm4RqkzCddnRFJlBcwaa7rqN8eR5djSMc/M0exkf6UOwKyYkJXD4vupZi2cbVbLz1CvrODVC8tJCDv3mRMwePYLPbiUciuP1+tFSK2o3r2HDrFQy2DlJUU0jz7mc4/vzPcXl8jPZ1k1OyiKyicjbf/kFkWWH0/BlyltRiGDq7f/pNQoOdmEBWQQVb77h3TpvxwU5GevrJKy0iWFDO1jv+LG3XRM6SOsvuZ99kfKCTkd4BfMEAy6+6htottyDLMmOt58ipXoZhGHSdO8Lp55/BGGwhSJiy6sUsvvOzoNghOgTefNBTaD/+I2h5FgkTqXob8l0/BMUBE4NIvgLQU/DjOy2PxCTV260TueKAiQHwFb56u+rtcOePMG0uJEmyErm1FO2/+DcGO7uIKdm4q9aw9m23Eh0fJ6uwEF1VUex2QkM9eAM5nNj1E0Z6mlnccDWR4T7KV2whr2wpuppCsTsY7jpHx8ndBHJLaDv+HJUN2wiP9FKxcusFdmdpP/48gdwSwMQdzKes3kovGR/oIKuwAoCOU3uJjg/ScuBxqjfsxJtdQMWKLQCEBjoIFlZk8n3m4mLP30LscPmKnYSq0x+Ks79tlP9+poX3birPeB6+8NgZCvwuFmW7Kc1ysyjbQ2mWi/qSACtKgwyEExQEXJztjzAeUzPVD5NvFp+isqK8gM7eXspLijl8/ATDg4OYuo5k6JiaTn5+Hus2baKzpYXy6moO7n6Bob4ea43MeiYFxcVsvOpa2s6fZfGSpex75gn6u9usfRpW4q5p6BSVVrDlxltpaTxOdX0Dux//Df1dbUwXOsVllWzZ+Qe0Np2gqm4Ve594iL7ONkgn0ZmGg8LSKra+bSf7HnmGwb4eiiuK2XT9dRx88mmGe7ozz19B6SLWXX8dR558mpHObnLLSlm7cweHH3+Soa7OzHPRcO01VNTX09HYyLFdz7B6+7VU1NfTeeYMJ154HllR2HD9TvLLyug9f5YXH/8Vm3bcTOmyFfScPcn+Jx7BNGQMXWHV5uup2bCSk8+e4NTzB6ndtJ7V16/i0KMnOPPiCQxDAVPCl1VI+fJK1uws58yLrdReUcWhR9toP9FBNDyeeQxefxaLGypY//ZKmva2Ure5iud/co7Woz1oqgnpX/kXxvmfmBXnZ8Ht3oh9LsSxSYaKL9qHb6KH8lo/az79QXRTQZF1Tv5/n2DkwAFmlLUhkbtxIyv/5fPohoIiGxz8/D/Sc+oYmk1Gd9oxHQ5sXi9rb/1DlmzbTmSgH39REb3H93Lw8Z+TjMVAApfXx8a330VR/XriI4O4cwsYbD7B4Ue/Tzw0bp0UZBlvdj7rb/5jcsprSIyP4srKYbSrhSO/+yGxMStcK8kynux81t54J9mLqkhGQjj9QQxd49yTvyHU10WgtJJl192MrCiYhk7XiSOUrVyLpCgYusaxR37JSFcbuWWLWX3z7ciywnBHK0cefpC1N99OXkUVhqFz9KGfM9LRSm55JWtufc+U3a9+wtp33jll95ufMdLZzuJ1m1m6dRsAPY0naN79a5ZdfQvFtWsAaN3/NBJQuek6AAbOHKPluUeo3nYThbWrLZt9u2g/spuytVuoudKy6248zqldj7Bi+00sqrfaIzTve4aOo/vILatk9U13IMky4dYjDD70ecpu+ADOuutBTyFNioq0oMDmhI59sHgLtO+x8ke0JPwkXb7/cjYXu9Y8dnrnQeSy9aCn6P3VZ0hJXire8TEkxYaha3SdOEDZqo3Iig1T1znx8LcIdTRStu5a8paswV9YwVjXWRqf/BH1N/wh2aU1RIZ6GOloovvkbkwTlu+8m5xFNYx2N3PqiR+wYucfTl1//AeZr97p208+9SNWXv9eckprGOttoemZn7Jo+RbKV1uvZ9+pPYw2H6Ng2Xry0+Jn6OwhxjpOk1O1irwl1ms80n6SyGAbZWtuwOaYiuZciBA7r4DLTewkNZ2BUIL20RgPH+/lV0d7uKIql6/etYYz/RHWlGfT1BtmPK6i6QZauvQ0x+ugoSyLM/1hJuI6QY+dpYU+mgcnGJmYQI2NkgwPE5B11q/fwv6nfsVgVxuFZVVsvO5WDjz9GwZ7O9h84+0k4lFKKmo48PwjDPV3UlBcwYarbqK3sxm3x8e+Xb/myu3vIB6LUlK+hEO7f8dQfxcFxRWs23ID/T1tuN0+Dr/4JOs27ySZTFBYVMapo3sZGRwkp6CAlWs2M9jfjTMd1kwm4hQUlXHi6G5Gh/vJzS9i5eqtDPV347B7OLprLxtvuBZfMEDjnn1EhgaRrJw4gkUF1G6+klg4zPFdu2jYvh1PIEDjvn2MDQ1afShkmez8Auo3bSIWiXDi+RcI5ORgd0ZJtHWy8pa7GXrmSfK3XceZz32S4Rd24UhoOFMm7hRkf+AD5P/1h2nf10bZhsU8/z/7aDs+hGr3YspToYWLPWnDwnoVttxWxerrF3P8qXZe/PHJede64q6VNOxYGLuFXOvV2u37yUmQSPuSSP8ftrxnJQ07Kjizp4N9P/4FwWIHptmPLIfJLauk4W134M8uQJIVoiNDeHPzMQ0DU9c5t+dZQgP9BItKWLr5aiRFQZJlomOjeLNzLDtD59y+vYQG+vHn51O7dRuyotB37gxnnn2K2quvpbh2OYaucfK3P0OSTFbcfAeyYqPvzAnOPvc4y655G8XLVmDoGqce/w1jXR1kL1rMihtvRVYU+s+e4tyzT1Kz7XqKa9N2j/2asc5Wy+7t77LWazrOmV2PsOzamyipb7CEzEM/p3BpPaXLLVHQemA3PY0nKG9YT8Uaq+/JUMs5ul7czZJrdxIoWYRhGHQ8u4tofy/+4hLKtm1HlmUiA3107nmO8i3b8BcWW96Sg3uJDg/izSugbMPmjN3Zp/ZQd+N2vLnW8zR85EmSw93Y8xdRsGYHkqyQCA9hAu5APoah03zsYcbHOsnKKaem4WZkWSEeHqJj/69YvOlduAJ5mIbO6LGnUYd6cWTlkL3h7UiyDb33JMkH/xLXH3weefFmpKM/hLqb4cj3Ye0fQdPDsOZuzPNPo/3ig8jv/Qly2QbUriPYiuuJ957GXbKC1FgPzvwq1FAfSBL2QBHJ4XYcWcXE+8/iLqolFR7AmVOGOjHMyInHyF11I3ZfHsnxPhz+XGKDbXgKqkhNjOIMFqJGxxg5tYvcFduxe7NJhgZw+HKID7Xjzl88ZTdhVVHZfdmYhsFI4zMkB1txZhWQu/pmJFlBnRhmqGk3ubVbcfrzSMbCjA73ZARLTl4ZTrePZCzC6FAnOfnlOD1+6/pAR+azkVNQYW2PTzA63GXZubwkk1FGR3uRJBlFsZGVVYjd7kLTVGTZ8jqbmmbtLl1Z+VIem4vlTd9BWfDKSWkGg5EE3aNxWocn+OH+Tk73hrmqJo//vnstjb1hxmIpzvSFqS8N0D4ygaaD12HD57KR5bGTUHWWFvqRMIglwoyNdlOTX4zUs5+R9jPk55RQu/Um2o7vJtvvImflCgB6W45xxc530X3uMA67jcJFKxkb6CTb4yC7agkAE2MDVCxZwdhAJzVV1dgVmYIlyxkb6CToUgguXpyxK6usZWygk7KCPBRTp7SsmqHuLqLdUeyaj4mOGCMFA5QsrmKwowtJhpKyaoZ7upDCMfKcAfSxGCO9AxRXVNHX2oXb6cTQNGSbQrAgj2jYSrCTAH9eHrKioKsaNocLXdWQFYVgbh7RsalEPJ/fhwS0/PYHDP/8ARxdUWwJEycwPiFTdM89jHz728i/epzJdpcpu5+2iq3sPlnB+me6WbNzCUef6ODsGRWcWZm1ZT2JTZ1g9GAHnav9rNlZTcvu8ySf/RWFhoZsqEiGimyqSKZKweqlrLx6K2P9UVZeXUzymR8zdPQUTJZ7pvuX5K1dwcqrtxIairFyWzHhF7/HQNNxJLcMTgXTDqtvupOaHRVEB/tZdV0FXucZTu1+BJvDSTQUwhsMoqWSrNh6E9VbX4Hd0ACrrqvAH+ik+cQ+PNm52BwuNNWgsn4dpcsqSMZirLqugsJqk+HuLrxZ2fS3tFG6tIZoKERuSQn55WWkEglWXVdBcY3MSG8v3mCQ3vMtlCypfu123d14A17QNaJDveSWV5K/tJxULMqyzeXk5N/ASPs5vDmr6T15mKqN12WETsf+F+g++iKL1mykYtM2wCSroICh0wfJWrkKSZGRZJm2fc/QeWQvZWuuoGrzdWCa+INeul48Sd1VH7KETuMxzu9+HKei0Lbnd8iySeHSFVRtsTwTsmKj/+xpml94Blm20/z8U4BE8bLlVG7YylhvN8uuud5a6+xpzr3wNCgy53Y/DZJlt+yaG3jxx99h2fa3pddrpHnPs9hdfrqPHMDh8ZK3eAkr3/YOq+TQNAm1NlG5Zj3lnhC2pctRD/0Y+5rbyMuy408+gdP3dvTm59Bb91B57d+gnd2FbdmVpJ78V5SqLfgKl1E9/muc7msydhUZuzUkH/9XlOot+IqWsSL1IM7UMjjxFPJoCwWbPwytz0DVVnj+i5C7BHd+rfWh6XgWefg8y7Z8OO0BuRZ2fQYppxpP4XLq2n8CdQ3Q9CBS/ynybvwXOPZjaLgafvQeKG7AVrEF29gJ0OLw9Gdgz/1gaLDlw9D8JER6YegsUsVm7H/8C8ivhWQYx6IGGGvHa1cg3I0rb7G13ZtuepcM48ots2wUA8JduLLTNi4fxZUrwOWz7IIFMNaOjziEOqfsnG6Ky6vB6bbsAnnWemZ0pp3LbTXGMg2k7oPkOzSoXgG+AkiGwZ2Nw5tL6capdiwub5ASb3DWecTlDVDiXTHzetXK2XYePyXl9VPXXT5KSpbOsrPbHZn/S3b7rNtfL4TYuQwwTZPBSJK24SjjsSTjMY3+UILTvWGurS3gv9+7lvODESIJjbriAIUBF7IkUVMwpYINwyARixAa6yMcGSY82kdqZBgjFiO3qJJAwSLUnGJqrthJeHSAVCqGNK3PUHR8iPBIH8WVKxgf7LKETmE5qUSUkZ7z5JYuIbuwnLGBTtSE1WhKTURf0i4+ESE0HCU2cQif8yzLtlxLl/oEzUefp6ZhKwUlOzj+4P/Rce4wmFCxdB2rbr2bzuf6aDq6m9o1Wym4ZifHH/w/OpsPEwtH6D70M2oatrLmXX/C0PEXaD6+m5qGrSyqvp4jP/kmzcet3BOXPYrH5WPJ5h0MH3+e5id/QX3xcsq3/RPD999PiWHibJ4g9957CZ9rJFaURfZ738vA4RfJ/6M/oivfzfiEjC+rlv2/HQZTpqwuh/qtJXSdGWbV9jK8WSpdZ89id4DNYSIrAG6qGjZlTsZVW6rxl91D6/GZHVyD+Xks3bgBWZaxO2MoTg8b/vljnDtwkNDQ8Jx2SjyG4nCz9e//foZdVcMq8svLGOrsovX4CaoaVlG99Qb8ZfW0HD9ONlZTtOrVDRRWVDDQ0cHZo4dZtmYd1VtvwFdWy/ljx8hO/0qrblhDYcXM9So3XIWvoILWY8dBN1m2toH8igqGOjpoPXKcqrUNFC5ejCxJtB45BoZJd+MZqtatIb+8jIH2dloOH6F63VoKFy/GMAxaDx9BAnqn2Q21d9B6+AhV69aSv7gCTIPWI8dBgt6z56ha02DZdXTQeugQi9c0UFi1BCMe4tzTD2EaJku330z+0uX0NZ6g6enfUXvd2yipX0UqpdL01COWjHS6kGSF5n3P0Xl8P5Jko+XYYXRJoWrjVhz+IJrNhcMfRJIVWvfvpuvEUSSbh94zTdi9Qcoa1hMsXkRFwxW4/VlMDPRhRuLUrrtu6oWOJEgMD+HxB5FsNlKhEPJEjKWrrkDX0s0ZhyMkCsbxZuWwZMUmbHYnpmHglGwsW30lYPU4ccg2TMPAZndSt2Zzxs4lK9Su2WzZIWFXDUzDQMFEa3oKve0psk58D67/LPKWD8Oe+3E8+Sk483OkolW4ux6D/6xFJn1C8fuxp+2cL34RXrQeihvmtXMd+CIcmGb3v9O6eTt8lvDYcz8894VZ338SgHOazZ7/mmnw7Rum/p+/bMqu/yTEx2GkBa74SxhphtJ18Bf7ILfayoupvhZyKiEZgeF0d+ZwD2QvhrF2aztYf8fap7bDxdlc7Frz2Q2fg9wa6DkM7hwr7B8ogoJl4AxOjVmw3gSznru3EkLsvMnRDZP24Shtw1HiKY2TPWH+4tpq/vrHR1lW6OfvbqileSDCSDRJXUmAkqDLSvhNxEmk4qi6ymB7E6GhHpLxCHoijixJ2G0u/L4ASlYhpqIQGutDdjoYG+yisKIuI04mmRQpAx1NDLQ3MtLbQr6/mOXXvwdaO8gvWMzR//o0bUeemfUYqtZey6oPfBzOtZKfV07jJ/6G8V1P44sZZE/rZ9i9ZTOrv/QlFkclst5+G91/8Rc49+xl6rfELrof32PZJBSybpqyqZk8znvvJfHUfrqf2m/ZxRSy3mbZ5QNldQ2MfOtbeIfslH7pSwx/7Ws0vP/9VMRsZN12GyPf/jY599zD/v/8FF03rqBsSQFXfORvkBWFjsZG2s910NwmY+rrueLWSp741mkwZWqvzOOau1fQ09JM04E9SPIWajYsxZOlc3rv80hRK55Wv/Vq8svL6Dl7hsbnn6P+6m2ULqslFY/S+MJz6ed6EUs3rEeWZZoPHaD9+DEWr2qgZsMmlm5Yz7EnH2esp3uGXcuhA3QcP05FQwPV6zdado//jsLqJdP29yySCcf6Oqnfdi2ly2pREzHOvvActVdvo7Cigr5zZznzwgvIkkzTU09hXLWV4qXLMJIJml54jtqt2yisKKPnbBONu55AMnSOdTZRf+0NlNavJBUdByC/ooKexuOcfuoRJEyOdp1k+Y6bKa1vIBUN0fjsk9Rvv4HCxRX0nm2k6bmnQZI59dQj6FddS8myerRklMbnd1F/9XbyF1fQc7aRxhes99exJ7upv2o7pbXLScUjND79KPXX3mDt99RRGp98CAydE+3HWH7jOylZvhbDBF9uPv78Qvqbm2g99iLuonx6zp7E4fVRuryB7EXltB/YTSC/iFBfD4qqUb1yE3K6SaRkQnRogEBeIUtXbyKQV0hsaAAXMjUNVyBLEorNDhokhodw+7PIzi0iNTaGHotht8385WsaJrGhUZSJBIlwjPz6JehKgORECEVJdx4OBnD4/Qw3nUdLKnTvO44rO0B+/RIGTp8nMRrCnRMgWLmEgZPNxEZDSEB0zzE8OUHyly9huOk8yeF+AvYRgituwPjZ+1DO/obMz5nq7Zhr/4TkicdxrL+HiagdrfcsZk8IafH7MuMGbCXL8K3/Y5KnduGctOs7O+szP2mXOm3Z6ThRxs9Z3ZSnk7cU1vwhtDwLG+4Fm2tKdFxo05q2cQVhvBMUG8h2kG1WInH2YliyA4bOwBUfgtq3TwmHSZz+maIiGZktMuzumdcnmRQp9nQC+1i71QvGnOq/RWwUdA0cHiu5WHbAcLNlZ73ilr0aAzVp2SUj1mMaaIT4qGWjpayL3QXIkLfMEjYO/0yBI8ggcnZ48+bspDQdWZY42jnGofYxTnSH+Py7VvI3PzlGWY6H29cuYiSaxK7I1Bb5yXPJjDafJjrUS3hihHgsREpXQVGwu9043X7sTvfLflhyS5dQWFFHT/NRGvc9TGFgEStvvIsTX/4MY488TN6ohi3dnK/gY39Lbjq0M/hv/z7vmi9ll1JgwiMT9yis+Og/UfQH76L/4V+z/38+N+damz749xTd/I45bfLXbGL9xz7HoX/7e6o27sjYtR54KrN96Oh+TCBv7TVs+Nt/5Pyu0ySchdiZYNm2Gg49coLBTivJM5CbS1l9GZWr8nj+J3tpPpSkZEk+O+9dzpPfOY2emmDltgKq1tUw1NZB1+HjKJJ1Yixbt5KcijJGO3voPnmGRavqyCkrYaSnn84zzUjp16G8dgk5xYWM9g7QfaaFyoY6/LnZ9J1vZ6ijK/PY8irKKFmymPDIKGePHaemoYGsvBy6zrfQ3d6GJMnIkkzx4sWUVS0mPDaO0+UiFpmgr60bkJFlCVm2Ou4WVpTg9rnpamynrH4xiYk4Y13DSMhIWF/fJgbZ5fm4vC66j5xi0eo64mPDDB7bj6knyLSAlKBw9RW4c/IBifjoEAOnD1tnSElJnwtMCpevxZOdR+cLv6P8qreRGBti6NQhJGRrj5KV1J6/fD2u7Hy6dv+Osq1vIz42xMDpQ5luremZBRSu2Ig7J4/25x5l8babiI+NMHDqECAjKXYUhxNJtpO/tA5XIIikKMg2G6GWZtTw1MnMEQgQqF6CqWmMnDxhXa+qZvz8eSKDITTNGvPgzglSsHwJg6fPEx8J4c6dup6YFg51Z1siY+j0eeJjoVnXJ7+VJ8XI2LnzmIkIntwgnkWVqC17UIZPI/kLkOpuxjj6Y+g7CWrcumhxyF+GfM3HMM88glR7E8aTn8bssnosTX+aWLQe243/CEceQFpzNzz4fmjZham4UAvWYay8C8fGO4h3t6NHwyi+AJ5FVcR7WjFikYzDQPH6cRZXkexvxYxFkD1+HEVVqP2tGImp51J2+7EXVqEOtkJiArvfj5RTOVtAXCg8Lrx+sTavdq257psIWYnDetISG/pkl+30JyId9stsstqaTvs/0zwsF15n2nWZyc+N9XfSNr2WzWOFqFxB6/jewl4bkaD8Cngzip1wQuVcfwQTkxUlWTywr507NpTxmYcbuWpJPtX5XgYjSdwOhbriAH5SdB/fx0BnIymXgs3lweny4rBZIa3yuk1EwyMzvDWT5JYuwRvIpeP0PgY6mhg9eoBabyX1H/1Hxh98kKzbbqPnox+d0bMi7gDHTTup+9TnGTqyn4L1V3Lk+1+j+fBzGZvJN97StdtY+8d/yeCxgxSs3ciJx35BR9tZHL5cPP48HA4fkixTsqSasrpaouMhvFlBuprO0Ht+ZrLtxdhMD+1MjI4j29w43TYOPHyUrqYx4hMSiQkZXZVeXYXP1hLO7OmhZEmQYIEXxS6TSmhEhuPWl5JhgKkjYeDP92F3ORht6yOnsgg1miDS2w+mbo29UBSQFPwlRdi9Lkbb+gkuykdNqNZ4B1lJx+pNMA08QRd2t51Q7yjB4mzUWILYaJjML8b0l6InJ4jd4yDUPRnykmZ+YU5+qUrpL93J2zPXzfSJNQaJcUhOgJaw9mGzW7/AbS648Jf6m4BJIRNubSEVDs+6bpommgqKJ0D+8iWMnz+P3ZjA7g/gKq0i1t2KHg1nBIXitcRBtLOFVCSM3RfAV1HNREcL6sRU48zM9vZmGG7G6bbhqLsWY/83kdueRor0QbgPFq2H278zlUCbFidzcv1np8I2T35q/gc9aXfw29C+26oGKm6w+pi8WvHw+7aDhd2nr8B6Tycj6UncKeuiJcEZAFcARlutiijFaV13Biyv0eTnQpJnfk6k6Z8beHnBM/k5lGavM309QQYhdl4BbzaxMxhJcG5ggnhKI9/n4uxAmDs2lPP46X7yvE4UWWIgnCDosVNXHMCeCtNx9HlGelpxFhXjcflmrTnprRnoaJoheLLyyyiuXMGxb3ye6A9/St741LynSW9M/68fZM8vvoJeWICcuwhXTg11G6+hanVdRmxMipALxceF21+L3cWuVVBeic1ZRNHiAI17eqm9ch4RI0Ewz82Gm8tZtqmU84d76TwdIjo+TjQcwTQ0tGQCxe7A7c+m4bqlVK3OJzqeIBpKTa2jpSwhoMYsUZCKWK5sjIzwsX4NTvpLJvcvTQmU6R9TyapksL4IJ2dspcUMRlr4zLye+bE53/ekNP0/079YmfZFPf3XJtZJwDSscMGkuFmgoX1vNC5bFH/dBoxTDyEvvwntsX/E7DhgvVzpl0SxgVyxEXnnp5HOPAy1N8NT/wjdB2cvuGgD7Pg0ND0EdbfA7/4ftL9geQYMbepvxRa47ZsvL2Te9kXY9EE4/mM4/D0rdGJ3g91j/bW5oXAFrHo39J+CohVw5mEY65i9VnaFdeyhbis/ZboomC4ALsTpt/Y1MfjG2MHCrGVzWWEvLWl9Tg3deoFluyVsHF4r/8Ux+dym3+siXHRJIKqxLkMMw6RrLMb5oQkUJIoCbkzT5IblRfzvcy28b2slnSMxmgcnyPc7WFYUQA33c/bIc0RH+vEtKsduc8659qTAKayoIxEe5dDPvkaNq4yiv/57uv/8z3Hv2YsbK6TUVeVl0V1/Ss4df0osPEbhrbexbsly2k+2IslQsaKKivqZImPyb1ldbeb6XGJkLrtlmzaSVZA/r50/NxfgJW182TkcePgI8XCQ408OoakDU+XYT3YwPhimem0+ii2OmhqhvL6UZVfUM9bXS05xPr3nW1i8soxAnkZ+eS2tx47QcmA/wZIKiqpWEczLIZDnIRpK4PY7UMPjpMZHLbd3Kg562ushK9YXqM1hhW8youXif60Zuo6hGRj61MU05XTp9DShMv3X4VTcKZ1fYf07ebM8/UephFXVIQEY6eGPZvo+6b8SmK4sTJT0wFIwU+ArKSQ1ESM+Gsrorcn1XdlBnH4vSKDFoqjhcHqfVvMz0wC7P4DN4yXU2YuvtJhkJEZ8dDxTFj75LLlzAjh8XsJdfQQritGiMZKhEJIkTZ2DJHAGA9i9XqK9fXhLitFiUVLhKW/K5JqOQACHXcPc/01cvc9im2iH6GdR0l4R+7HvzP1ijJyC3Mop78mheez6T0L2NLvjP57b7vyTltDZ8mE49H+QisHyd4K/BALF4C+G/DorAXViAFa+2xJSL5V7otisBNfl73xp70ZqYmZibDJiiYX5mMxpgTfO7mJsIgPpHxSGJWRMPS1sklPK1ea0BIw3Py2UPFY+jM1tPX+CNz3iVXyTkNIMWocm6BiJEnA58Lls+Jw2irNc/NkDhxgIJ7i2toCKXC8AxVlOxgbP031sN1osSrDMGgI4H6YJgx3nGWo8Tv2Wt+Ov3GGFp+67j64TL9K7rhDqVpK/dAsrlzdQXl9LR+MZupos0VLVUIskQV9LC8G83DnDR5PX/bm5cL4Ff+7F2dkcDgzDIBoKzbCLhkIYhoHNYZU2XmhjmjDUFaGoSmffr/tpP+5kcghe1Zosll9VTGdjCyu3leHy9eEN2vDnLubs/kFKlxWlhU4RzYePEBoaJjQ0xJJ1a+k5e4ZgfiGlyzeSW1qNy+0gkOcm3N5BarAT1eclULuS8FgHqVTUEjbO3IzXwzBMDGuodcYRM+nRme7AsSJT5qwB6pIsIcs2FNla2m6XkJXJ1hVSRkBI0wSMnFYJk2sZhiUuNN20HAsa6Lq1TTcBU0nndChTTiPI5MSYTFt3mmDSYjHy6pYQbm1Bi4aRJCsaZ/MGyKquZuTseUwgd9kShhrPExsNWUIH8OYGyapZwujZ89gcErIep3DFEuI9rZCITA5HR3b5cZZUEetqhRwZWYuTV2fdLz4WRtWsp9OVHSBriZV8m0qCNBYlv97abzydP6MkBslS+vCvvAPpwT/NeFHM6uth3fuINe3FveHPSNhKUKJdOBzMTKLNKodlb4fuQ7DxAxBcZHkJLmTSrucIbPqAlVQbHZiZQKvYwVdkhY8i/ZZnp/Kqlw69zJVAO1fY5sIKn/nCO3PZTZKKTku4vQgybsRJ+2khnuliPB2Ctd5YxtT1SRuYf5+ZXJi0x3EyGdic3G6mbRQyHxLJZlV4BRZZVVx2jyV07G4RIrqMEWEsLv0wVjSp0TwQoS+cIN/nxGlT8DltlOW6+bfHzvI/z7fynvWL2F5bQG1RgIpcD929Z+k48DROU8FTUDzrQ2ya6ROcKqGpoCYluk48Qf3PnqT0vnR4au9z7Duwl5yiFZlk2bLaahavXEb7yTN0n2lBkq3v6NKauUNGC0UwP48l69Zy+NHj9LWOUFCRy4abGjj4yHEGO6xk4enbes6N4g3mc92frMyEqOxOg+wSnSVrs1i5bQ3N+w8S6u8nWFRIzaaNNB88TGhkJLO/mnVrM0IHIBkL4/P5WLXzRoa7R1AMCYdNI7CokHDjMVKjgxk3tyM7N5PnYfN40GIxUuEwybhBKgU2u/Xl7M4KYPd5ifT0ESgtJhWNkhoPZ77jFRvYHRLu7CA2jwd9fABHbiFocWQ1gixf8OX8akIGacx0uCtzvkifM0wT5EAhRjKGGQ9nbp8UVYrHj+T0wMSAdTyTJ9GRFoiPWUmUuTUw0owRG7fOZ84gStFS1N6zaBNjKC4fjrJ6jI6DSJFuZCP9y9ubD0tvgNO/sqpwcqph5e1w8kEYnfY+y6nGXHkb5okHMYdbILcaueF2jGMPYo6k7UyQ8tLbD/8Q6ch3kQMFVv7Lg+/HbH0Wo3gd5rr3o6x+N2p/G0Y8gt0fQMl/lQm0C2n3anJPXup1vxi7SL/VpyUxAQ63JcbcWVyUJ9I0Zl4M3QrVTf6d9LZIaSEy+Ve2TeWiZS7SBW9MY9r/TWstw0gLR9vUGrJt2rqTa6fFpeCyQISxLhNCMZWm/jChmEpxwI2SPrm5HDLtQ1Ee2GfF4KvzfFTkegh4NVo7jiNFJvDaPDhycjNrGQaoCQk1aYkbXZOs7wyg/8wjLP/5MwSv3EzWnXcSHhmh8MqrWZdVkBYvlibOKsyhq+kMA+0tVtVjmgu9Ma+K9Dws9PSXo27NfkrGdDqOapw/dIrr378aZzpZ+LH/OU1XUwSwPDu95yKMdDey897VePyWzZPfOUFoqJNFS0K4/HHyyspYcVUDJ3ftYqy/H0mRiLdNkIzHWL5tG427nmGsp4f8ogJO79rFWH8fSDKqmkBWbMi5xYS7BvE7TWLtZ3DXNRDrbieV0KyTR5pUOEysvw93YSHxgQECVdUMnDyPKYXJL5Zxe2Vklx85rxJjpI1AhQ2cCeSKJZgjbZCMpENK0syTmU8GEvByJ1+wTmQvd3KcdsKb9AbNsJs8MZpxKHyZfcaGYOC0dXF6rRyVc49bHoofvRtadjHDt1i9Hcft38HR+bRl8+M7UObKT6nebgmS6LDV2Xayhf4FSKd/iTSZuLv8FvjJ3XOvd+ZXKLd/B4y4td9d/wzFDUibP4ySVZZ5PA4pCh4Z9DnCOwvtPbkYu4speV6o0FNs1Eo8n0zOLVwOvnSIRyB4EyLEziVMQtU5NxhhIqFRHHTNaK09HElxsnucuKoTdNspy3FhyiGam46jnW8l4MvLCB3TtEROPCKRSlgnNFkxsacb2XUeeZjlP3+O4JWbKb3/frpaW+lv68jk1MCUmDm7/8C8x9t7vgUmO9WOhwj19WMkkxipBIauYwLZJSV483LpPH6cslWrmBgZYqTHGvxpAqYEhiyRt6gcd6CAw4/1EB7wWDf0jXPuUC9rdlZw5kAnieQYBVVWGfSkG0KNjdJ50rLpOtFBRWWEirp8TFsRhgz5ZaW0tLSRCARwZAXQ0/kpIcOg6VwT/qVLGHfIdI+PWhVT2TmgJvBoNgoKCwk6TPSu48RkBRxe4iNjBKqq0VLGjFwQRyCAp6iYcGsLkYFxYtHzFK1cgj7cht2YmHFyU7QJUCTQrJOqlFv5+p5UL6bq5cK1YqNWonXeMnj6s3Dsh9ZAxOnkLJnKUZlLdLTsmspP2XM/tL1ghRdsrqkcCpvT8g6df8qyO/VLyyW5+OrZ6+katDzzyuxG26weLZNcrKB4I+xeax7LxaDGIJ4OBXtyoKAMvHnW6yAQvIkRYSwuzTCWYZicHQjTMRKjOOhGniOW/H972vjl0R6uWZrP21YrZE2cJXtgDG8gF3weADQV4hMSyQkrSdXhNGcUzHQefoj6n71AYPNmSr9yP10tltCZZL6KpgsxDQNdTaLH4wTyc1lx7XUcf/ZpRoaHUAJ+JIeD3LwCljesofHkcUJj4+Tk5bOsfjktZ88SDkVQZAWbzYnN9LFkZQWP/++pTIVUbpmXDW+rpLIhj/iEitvnIDwcI5XQZxyHw6UQyPMQn0jNa3NRqAkrYTMRtn7hqrH0DrzpSpCp12PeUuWmY0TPn8Sp9eOTBnDm5CNt/ms49SCseBc88lHo2Dt73xWb4aYvwalfwIrbFs7u9EOw/B3wzOdgsMnKVXB4oGQNrL/HCg2FOiFQCqveAwe/ZXVmTcWsvi1qDApXws7PWiJlWk8WwAo35FRbXoDam6x9TQxZ3qOhc9bzOB1XFuQvtU7i/sK5T/YwJbxiI1Yp9Otld6miq+nqLXUqx2V6Fd/0cI+1YfYac33tG1o6SbcAAiWW2LHaegsElywijPUmpzcUp2s0Tp7POafQATjYMQbAykV+1N7DBCNjePMLwe3C0CERTfeL0cDhMmd9b3Xs/yUrfrkP2QTz7dfR1do+Q+jA3OEp0zRR9RRqMo6eSEBKtbxFDieK20NMUuhoaWfNjhvp7xtBS5p4vW5yCnyMD8UozF5KUY61/sRIiqV19YSG4rSdGGZ0MM6V7yzPCJ3SZdks21RIcXWQQJ4nI17UhDbjOkwJnZeymRfTsBIwU9G012LCcuFLsiVuPDlW7H8OUuEwkTPHCNbUoTf9DqXsesyfvJes84+TdaGx0z/lyTj54NzHcvJBKGr4/dnt/8bM20/9whIsmRDQO+Cnfzi3N6bnCOSmPTYvfsMKgW34Myist2YG2d2zvUda3KoeeqkkWu0iQm7zJeT+Puwuhhmi4sK/XLAtfT3Ta3iyhH9a5RxM5acYuiVm9GkXSCf4KqA4pjoET+/tMnnJrCXP3sckF36v2FzgzbVyrASCywzh2eHS8+yMx1Ic7xpHkWWC7rkT6QbCCe594BCyBJ9/xyJoeor6wmIkv49UXCI+IaEmJFZds4GJsZFZXpn2fT/nykEb7rp6nj/8G0recx/yPCWWpmmiainUZAw9HgdNx6bYsLu8eHxZOLNysfv8uNx+HB4fSlpVqUmd/DI/p3f3ULf5IhvybSnhye+cxuZQWLqxEH+Oa5aImWT6duBlbWYJHi0FahQSEasNuxqzTjI2u1VyanPysomYpoGr6zF8Tf+LfM3/m9HAzUQCXwGSP10yXHUNrPsTK3E3r8YK20T6Zq/pL7aqcEbOW8JioeyGzlhhp9O/gsHGdEv62JTnZtWdlsfp9K/g5M/T5beeqf4tDo91/6U3QKjr4sTEXNvh0m1UN7ldVy3Bm4rNfj4nyVQCybOFy/SOtzPEDRcIn+mlbtOuT2b+Kw6rYsjhm2pmZ3NYfxWH6PUieMsjmgq+Ai4lsZNQdU72hAjHVQr8rnntHj3Zx9efa2F5SYA/XBbC13mKsqpaElEbyZiVl2N3mXNWSbXv+SlXDjtY9KUvcez//ovk4oZZQkdNJVETE2iJBOg6NrsTu9ODJ5iDNysflzeIyxtAds6O5cfCKU6/0EP7yRE2vzPdy+aJDvb+cv4w2GTPm47TI0gSuLxTIs8TcKCl9Dm9Mw6Xgs1hiauXs4mFUqClG/vFx60Q1WT/m8mmbPL8zs7JXjBGuhhEiXSS1fSfuMZPWbODbv8u8dYTuGo2oHcdxe5Qpqo+LpUT+cvZvVRo52LWej2bwS20neyAkXOWjWQDl98SipNhy1mdcSc9KNPq72eInXn+zusRmhaSkuQpYSMQCOZFiJ1XwBsldlJxDV030pWZJrpmcH4oQs9onDy3A8x0PxZj2kuU7mr773tbONof5va6fGpjJyiWJPw5RRiGlZczPWQ1Pe9m7/99hs2jHkq/9CWOfe8rpCoaMqMYoqEQoaFh4pFx9HgUhzeINzuf/LIKfNnZqDHw5nrnFRWSDKHBOE/+XyOGZlJWl8ONH1xBdCxJoMDNSM8Eyag6635Or53cUh+JSAq33/nq82zmwtDT4akJKzylRkFLYsp2VNNFSnNmfoVPBhgu/P/UAwRZkpBIEez8KcG2HyOZKkbNDUjv/i4TXR1IagxPbgD55ZKM4Y0XNq+kxPmVeEXeTGgJS/yqcctT4gqCv8j66wqKnBWB4BJH5Oxc4sTCKYa6IuiqzuRpdWQiSddoDJ/LRiKZtKqvJsuPp5HSdE4PWieWGkcKehPIRcUoioljDmfQpEdnUXUV19dazQKPff9rpMpWIGGAphEdGaZm00bO7ttLqOMMRVV1FJUvxRkMEijNI9w/hoSOlkgRKPARHo5nBImuGYx0T7BkfSH7ftmKoZksv6qIq96zjEjfEGpkgkjSTd6iIsLd/aQmpkIDDp+HQEkW4a4+UhMxVJ+HwBx2rwotblXypGLWr2abE0NxkzICqCo4nBLZ2RI2uzxzLJQE9hyrr4wei2QiFLIMytBJbD17kYqLoVWFK/4C+fpPw3gnfncC3DKoF5QqX8oVPnBxVVwXu8+FINM3RZt20a3LJLNmCU3/v3RBH5Z0f4XpnhPTsBStzQnuoNXkzxW0yqxFaEgguOwQYucNQEvpjPVHMQ0Tb5YTSZKIJDRGwjq+HBc+50u/LI39MVKGSY7bTpYxQMqu4w7YXrJPVtPBZ/Hsf5G8e+6h/7knSfkDSOFuwOptExrvoDk6wNJrbsIY6yPHlsJpjBIoriB8+hCp8TGQZVIohEdzCSyrJ3T+HOePjjMa8bLt7uU88a3ThHpHuPGOLCq3LiHceIjU2AhgkhqWCId7CNStJtx0jNTYMI7sPAKlFYQbD5Masxr3pUaYZfeasLvAk42uyyTiJmYKnC6JrDwZj1e2mvvNhZyAkqqZiaz7/8fKcbn9O/DQh+G6f4RVd1gdcxeiZPiNsPMVLFzvFl2dGp6op6wS7wvnes3CnBIrk2YSVhhpehM4pzedQyWTmSk2fR6YcYG4mWxKJ9vS4SVlqrHc5JgO2S6mRgsEbxGE2HmdMU2T0FCMRFTDl+1AkiRSmkH3WAwtLWBejmP9Vj+XlXkutLEW7O4ANmXuX6OT4Sl7y2Gy3/c39P/6QQpvvY2Uz0N0dARvTj69jcdBkujrHGX457vYdPvttB8bIH9pEXt+3sRgaxxMJ1NnoxEKKk+z8V3LsXX2su0PSnj2+6cpzB5n40YnvkV5hFtbSamy1YgsTSoF4bY2bDnFpFIStpwiwm1tpFKS1Sl3HrvXgpoySUZMJNnE45fJrijGRhxZnZhtPD2/Y/Jkn1VhJes+/v9ZJdq3f8cSPRv/zLKPXoQImJzHM/3vjKqcC9xK0xNaZ3SRnVZp80rItN+XZ5/UX03vlslJ0JOixjCs45WVdJ6JEzz5VmKt4iDzvnmp6qXJhFw5XWE0WWk0uU2IEYFA8BoQYud1JhZKERpO4Pbb0gMQoWc8xngsRZ5v/oTkSUzT5Gi/1fRrmTeJOZTAlpeDbZ6TQTQUYun6dbBqJT0f/jCHykzWV5RTtnYzhq5z5KHn6WgpJDLuJpmwkiF9hX2ZpOITz8/tWenvGcVXMNm8r5tVq1PYbNZcrtjA/CfQVDicab4X6++/KLu5noPJ8/f0Ad/WZWrkga6Z2BwywRwZr1/G6ZKQ5IQ1kHG+3JPRNhjrgM591sWTB7d/2+reu+5PoPOAVY00F2rMSny+0JMhyRd4FRRmZAfNqsZJb58xK0gn03Z/zgqx9BwguMCbYk6rCDKm9OpkpY/isJJg50rMNjSrYk1Pj26YDCMpdkvUOHxW2MfhTc8WSk+DVhxCnAgEgksKIXZeR9SkFb5SbBI2u5X4ODSRYCCcJMvjuKjzQ99EksFoCpssUa71Y9qcOOy2eSukvcGgNYkR6C104ctaQ0dTksJlGo9/6zRdjQCTfTVMajdmseLqEvoae1i5rQS3bYJwWlxNJ1AUZMmWEsLdvZTWFxFunT1NeiExTRM1BcmkmR5AKc0ogpGZHCAuIcvW5GuHCzw+BYdj2pMzVz6KzW0NcNz9ZTj4bYj0ztx542+skvJwL/jy5j7ASaGTvdgq054+g2d6OGbykhmAeIGXw3qwU9tMY5pX6II5Q5O3Zbw2k5VCF8wUyvRuMayEXC3dMDEZsURMMjzlbZKUqRwXSUl3MnaCtzA9NNE9NTRRzBcSCARvEoTYeZ0wDZPxwRjJuIYv2yrXjiQ0ukfjuOwK9nnCUBcyGcKqybJjj42TcmXhtM1/X6cduv7qLzFkJ6v/88s07emjbksJj3/T6nkTzHPgsA9icw5Sv7KMpTtXEW5rRYmFmeiYYOnVyzKdgSe5sGOwEYvMuL6QmIZJMmGiqmB3SmTlWrk2k9O95Wnn8swsqZdjUvAEy+DMw9bspR/fNdVET7ZDyWoovxJqb4FFa2FiIF26HJsd2tESEBuzklxzl1x8guvkQb9RmKYldrTE1F81bokYuyftqUn3GxKeGoFA8CZGiJ3XiYnxJJGRBJ6AlaejGeYrytOZZFLs1LoTSDpIdhuKMv+JaPff30vtyTD7Nn2YdXus8FTT7mYUvYmVG+I4nDpxLUFuoICa668n3NaaESypcJhwa8vcoxCmCZu57F4rum6SjJsYRjqhOFfG7ZOxz5dQ/Eppfc46sW/+K6sJYN9xa8RB+ZVQutY62V9Mt10taYW4cpdAbvWbq5LHasbEjImuAoFAcBkixM7rQCqhMT4Qw+aQUdJemERKJ5LQCLouXugkNJ2mISuxtoYhFLcfCRmbPLcAGO49zbITYzTWv4+CNRuo21JCx7FT1GxYAslmQn0T6Bik4jHyllcSbm5Gjc8s954UMjaPh1Q4jM3jmVPQXGj3alFTJqmkCRK4PTL+oIzLI72koHvFDDZC8+Pwzv+xko83fRCWvc0K7UxyMYM1YyNWgm9OFeTWiJ4sAoFAcIkixM7vGcMwGR+IoSZ0fDlT3YZVw0A3zFd0Ej85EEE3TfJdEjlqBNNfjGKY81ZiqU/8mtbqd+Lcdj07713O6SefQZ3oIDbSSc3W7TTv3kV3VzM+VUEdHMJWOPexvJakYtMwicfMGS1SMkhT+bIAkgmKXcIXlPEFZFxu6eLCUq+EkRY484gldJ75PKy8zRp9kHNB0vLL9ZWxOSEyYAmf/GVW9ZBAIBAILknEN/TvmYnRBBOjCTzBmW3fU5rxitfKhLBcCRSHE900UWQJZQ5BMNR1Ak94Lclb3s3Oe5dz4uGnMdQuAEJ9PTTv3sWSrduJPTmBiwlcOdmv4tG9NJpqCR2PT8LjswTZvNIlfYPLLeNw/p7yQ0LdVrLxrV+Dpz5tTfZWHHMnLb9USXZ8DMJ9kFVmDb8UiboCgUBwSSPEzu+RZExlbCCG3WVDvsD7klB1lHnCT3NhmibHByyxs1QeQ/EGUE1w2ZU5c0cjz7cxtuQu1pT5OPzbfSixM1aJcJpQXw/Hn32EgpxiZHkCyb5wJ2zTNEnErHybrDyZrBxlYcNQr4aJQXjko9BwFzz+99Bw51QHYbj4TsCGDpF+CJRCQb2YXSQQCARvAt5E2ZRvLgzdYHwghqEZOD2zNWUspWN/BcmsXeEEo3EVuwSV9iiK3YlhmDhss0VEx+nzjAdvB+D84QPI8WPp5m5TJA2VUFs78eZW7NnBWWu8WgzdZCJiotglCkps5ORdAkInPmYJnYkBOPULWHm7lZNzIS/n0TENS+j4CqGwPt3RVyAQCASXOkLs/J4IjySYGEviDsz+5a8bJinNmDexeC6O9lm9bpa4Erg8vsz2C0vW42GJkbalmLIdZ+oUNQ0SkqHOyCkxMYlrcbJ0O76CogXz6qQSJrGoiT8gU1Biw+uXFz7n5pWSjMCjf2vl5fgK4aYvgftVhOxMAyJ9VpPBwuUzvUICgUAguKQRYazfA4kJldBgHKfXhjyHoEnpBppu4nHOrTVLi3xMxFRC4WRm22S+zq01PmqX1SBJEv0DI8jRqYZ/qbjEmRdlFi0vZlF+kr6IgaTGpo0gsIjrSVwpiSx/DrasOTwcrxDTsESOrEjkFsj4s5Q5H/fvFV+BVUo+PQSlxuCxv7NGPqx8jyVSfAWvfO1Jj44rB4qWzwgHCgQCgeDSR3h2fg+EhmNWiMk1U0t6Ag4cLgVVM1ENA9u0MFYw4KS0yPLYTMRUllZnEwxYYZKJlMa5kShX1eTxp+/aRng8xOjIGFu3X0lesXXy1lRoPuiktKaYG+6pI9L+a3ILF1snfGUq3KJjkDJUsg0nrvz8Ob06hmGipkw01UTXTAzDxJxnmKOmWmErp1uisEQhmDO3wPu9o8atBOPJ8JSWhCc+ZXlzbv8OVGyxuiS/EgzdKi8P91reoKLlc4e/BAKBQHBJIzw7C4xpmqgJHZt9to7UUjqBPA+huGqNgUxrgmDAydLqbM61jAEQCic5d36UpdXZnDw2yIvnRrmlKp/P3bWaFx/by1DfOElNJxU7wNU3buLU88c4uy9EflkeO++pp/1jHyOxoQanmrAGNU47Qce0BH5NIeDPznh1dM1E00w0FQzT6ounKJJVFp6ZP2VimOYF1VTWxOqs3HQS8hz5Q68b0yuqRlrgiU9aE61v/w70HAFPzsWvZehWno+aAE825C2zRJNIRhYIBII3JULsLDCGYWIydyPdVEInPByjdFGA7pEY0YE4QZ+DmlVB9v2uje4zY6hRlVRUQ41ptCzNZue9y5HGUtRtKeGJb56mq8kAAgCETqtE2xvZee8aMHup21JMx8c/ycSyHDbe9B7OPvVwOnpliRAdA90w8KsejLxcYgkFI2agKBI2u4Q/S8LpkrE7wGa3muAYmVmUM4dvGultik3C4/099MN5NSQj0HXQClfV3ABr/wg694O/8OLub2iWyNFS4M6BgjpL5IjScoFAIHhTc8mHsSKRCB/5yEeoqKjA7XazefNmDh48mLndNE3+4R/+geLiYtxuNzt27KC5ufkNO15TNzF0E2meUE4qoXPm3AjravPJs9lYta6Ix75xipOPdDDWEmaiP04qomLqJl1No5zd38+anRUc29tDR/MgilNHceo4vDK+HCfD3SHO7u9hzc4KRn71MA51lLV//Ukiw0OgRkGZGgWQ1FTkCSd2RxBnrp9AjkzRIhslFdYlr9BmdSx2y9hslgByOCScLgmXW8btkfH4rAni/qBMIEvB67sEkpDB8sac+Bk88Adw+LvW4M6x9osTOoZmVWFFBsDht8ZFlG2wwl5C6AgEAsGbnkves3Pvvfdy6tQpvv/971NSUsIPfvADduzYQWNjI6WlpXzxi1/k/vvv53vf+x6VlZV86lOf4oYbbqCxsRGX6/Wf+WMY1rTq+cSOacK5w4Oo3THW7Kzg5O4eInGV/OXZ2L02HB47dq8Nu9dGfrGPmiXZ/M9zLdyxpYyU2c7Y4AgAkYTKxo0rqVlZj6EbtP30u5S/891I776JrrPn6G06lQ5hTVVuxRMm+ZJOWX0W3grXpSFSFoLxLnjuCzBwyhrque5PYbQNilbO3QV5OtEhy5Pjy4dgOXjzRTdkgUAguMy4pL/V4/E4v/jFL/jNb37D1VdfDcA//dM/8dvf/pavf/3rfPazn+XLX/4yn/zkJ7n11lsBeOCBBygsLOTXv/41d9555+t+zMbLeHY0w8CDRN2WEs4dH6L2imLkfNeMyqvSIh8mUFrs49u7zvOvu5rp6ezmk+/ZTHPjWTDh6OHTxEIhDMNAwiQwYc1jMBWZaChkJewCk847zTQwU5CX48JTGHxzCZ25Kq3A8ub0nYBwtyV0lr4N3v1/Vqfk1ASM6bPnW01HjVnzKkrXWuEqMdtKIBAILksu6TCWpmnouj7LQ+N2u9m9ezdtbW309/ezY8eOzG3BYJBNmzaxb9++1/twgWmJvPNoCU03uOZdNTzxrdP0DEc51zI2o/IKrPNvxSI/PX0T/OxQBwDx4X6aG89Sv3oFhgmlZUUs37SecwcOMvj4w+Tecw9Dh/Zx7uBhatatJZibPaORYCxu4pVS5BYGkd1vsinXF1ZaAYx3wtEfwop3Qu9R2PhBuOMBCPdMDfScnrQ8VxVVbAwCJdZFCB2BQCC4bLmkxY7f7+fKK6/ks5/9LL29vei6zg9+8AP27dtHX18f/emhlIWFM/MyCgsLM7fNRTKZJBwOz7gsFIZuVSzN5TlxuBRKyoM88a3TjI7GcQYcVuXVBYJHAjq6I5QUeSkttJKRd9YVU1O/jMZjpzBNk5y8bM4dPILL4yJ/67WMfPvbFG65Bm8wSPP+vXizszPVQ6YJSd0gzwme/FdQlXSpMF202L1w4qdw9Aew4x/gVx+yPDNb/sYSQPMN7rywCaCWtAROoOR1ehACgUAgeKO4pMUOwPe//31M06S0tBSn08n999/PXXfdhfwKRi1cyOc//3mCwWDmUlZWtmDHa6arseZCscvs+uEZuppGyamZGtEwKXh8HisZtqd/gt7+Cb76xDm+ctca/uXmGrZdewWHdu/n/OlzNJ5ooqXpHP7sIBX1y+m57z7OfOM/6Dx7jrK6WrwBP70nDwIyJfUNePLLsEkJsoMuZJ9n6oCc/qkme76C+XvIvFK7hVxrkqEzlsDxF4K/BN71v/Dsv8L6P4XamyE6OH9uzlxjIOKj4C96dd2UBQKBQPCm4pLO2QGorq7mueeeIxqNEg6HKS4u5o477qCqqoqioiIABgYGKC4uztxnYGCA1atXz7vmJz7xCe67777M9XA4vGCCZ9KzMxe958Y5f2AASZHIrpx5kg+FkzPydp5qHeY7R7vw+Rx8YNtSmhvPMdRnnbB1A+pX1lJWV8uR//osnj176V1XiNLSigSUrVoLWoLepkYmRoapv2Y7tmfGCSjmVAjL6Z/KZ4GpUNGF+S2v1u61rpW1GJqfsGZZde23xj0AJMJWpVXHXlh1B/PGC18KXbVihYFFr+7+AoFAIHhTccl7dibxer0UFxczNjbG448/zq233kplZSVFRUU8/fTTGbtwOMz+/fu58sor513L6XQSCARmXBYKwzBhHrnTfsqqpPKUelEc8+eINA1N8L1jXVxVk8fdGxdx9sRpKqoXk5/ulmxikFtYQGdjE/Ef/9S6U91KAHrPnKbr0G78RZZ4G+7s59izv6N2+624K5da4bXpomNSZMyV3/Jq7V7tWhMD0H/KShb+6XvhJ3fBqQctoSMpsOEDsOFe6z5lG8H1Kl+3+Bh4c8GT++ruLxAIBII3FZe8Z+fxxx/HNE2WLVvG+fPn+djHPkZtbS3ve9/7kCSJj3zkI/zzP/8zNTU1mdLzkpIS3vGOd7whx6vrcycnG7pB5+lRALKq5x85MBRN8V/729i8JI+v372WQ488wshEkpGhUdZv3cShF/YTae/hxJ4XiQ+foTpkkFKgYNkWawE1Qe+JA3D2DKZheYHCg2cZ2yeRe+UOOPp9aLgTfvpH0Pbc7AOo3Abv+G9ofvK1273Stc48ajUC/NkfQ8suS4yUbYLyK6D6OiionRJLhvbSlVbzYWiWZydYPnfnR4FAIBBcdlzyYicUCvGJT3yC7u5ucnJyuO222/jc5z6HPT3T6eMf/zjRaJQPfOADjI+Ps3XrVh577LE3pMcOgKEac5ad97eGScU1FJdCcJFvjntCUjP4j32tNJRn8bX3ruXU4TP0d3bgyl/EUN8gh3bvZ/1Vm0hoe7HFwgydfhGAzsVe8p2+dCZyJNMIT1UVTHsCP0kcE8Nw+P9g81/Dnvvh7KNzP4Czj8KR71uhotdq92rWOvYjyKmChrsgd4kVZno5r9ArETyJkNUd2Zt/cfYCgUAgeNMjmfNNeHwLEQ6HCQaDhEKh1xzS6m8NkYpruHwzO+/u/WULPWfH8C8LUrW5eJZTwTRNvnKgnRe7x/mb62q4ojDA6OnDTAy24cqdykfKLsgjmJPFRHcnof/+Ryo74xy/aRWLt/2RNcsp1AV2N6apkEzaMXyDlKQ0quuqsa/cCSd/Aev+GLoPWw31LsSbD4vWwVgnZJe/NrtXulZkAALFs8XLfH12wBJCdvfsBOS5MA1rqGfxashauKR0gUAgELwxXOz5+5L37LzZ0DUD6QIhk4pr9J0fB8BT4Z0zevLbcwO82D2OIkFQAzOuo0XHkRwzh0/2dfcz1DdItj1OeZfVODBYPxnCilsndElBTSnYnCl0OUlexQpsDTvhZ38Isg2qr7HGIbxUAnEqYpVyv1q7V7NWMgJ6cra35qWEzGSO0MWQCIEzOLPKSyAQCASXPSJpYQExDBPTMGf12OlqGsXQTby5LuxZzln3O9oX4qen+gD409Vl1Ob50JMxtEQU2T4zHKcZ4LTJDJ15AcWEvjwb2flVVggrNQGKDdMAw5SRnDGK8irJ2fx2ePJTVh5M8aqFTUaey26hE6AXAtOE5ITl0bHNfg0EAoFAcPkixM4CYuomhsGsnJ2OdBVW9pIAtgtu6wkn+OqBdkzguso8rqvKA0BNRDC0JLJ95onZME3sNhnbmUYAhpamm+LpKatRnuJEVRUcDhXdFiU7qwSt+RDS0Qcsu6IG6++Fzfbs7rlzX16N3UKutVAkI+nePRc5AV0gEAgElw0ijLWATHp2pjc8jIwmGOmJggQ1m4qI6QaphAZANKXxH/taiWsG7123iHs3LaZ/IAqAloxhmAaOC4ZSSpjIpkFZ8xgA9vo11g1qAkwd01QwTBmHJ45q6KTOnkAutVsVSO5sa5L3JNNDQBcbKnqtIaWFXOuVkAhBfh04PC9vKxAIBILLCuHZWUAMw8Q0zRk5O5NencLKAHHDoKE2l2DAiWGafPVAO30TSW5aUcQ/vWMF8biWuZ86EZo1r0k3TCRFZrznCP64SdQJBVUbrQZ5qQjINtSUDYdTBVsCdwq8viBK6Jy1QHHDW7OJXmrCEjmBojf6SAQCgUDwBiDEzgJiXjDx3DTNjNgpqcumfyTGmfPWHKzjoxMcH4hw7bJ8/uOO1TS3jk91UDZM1OjYrORkwzCwSaCfOQJA55JsbDaHFb5SExiyEwMJl1sjbibwazbcuXlIA6esBYobXp8n4lIjHoJA6cLmAAkEAoHgTYMIYy0gVvfkqSGgw10TxEIpbE6FnMoAw0MThCMpTpwd5u6rK7G5bfzxlRWcny50AD0ZRU9EkV0zc1Z0w8SmyATP9QCg1i6zblBjYOpoqhOHU8XuVDGSBj7Fi83vgrey2FHj1vR3f/HL2woEAoHgskSInQXENEymTwFtP2l5dcpqs9GxbpIkONUV4tBwhA9uq6anb2KG0AFQExMYWgqbPWvGds0AEr2UDqgYQF7d1kwjQUNyYJrgcmukDBWnauLzBZGTPaAlpiqf3mrExyBYBq7gy9sKBAKB4LJEhLEWEMMwM2OxNFWn+4w1HqJiRS4pzchMzHJ77dyxoYwHD3RSkOfGa1dIRVSSkRTJcIrYSBQ1YUdP2VHjMmpMRo3LaAmJ+Nn9AHSVOlGUIhLhFImoSVL1YXdqOJwacSNJULXhzslBHm6ydlq0ilkNgC53tCQgWyGst2KukkAgEAgA4dlZUAx9yrPTe24cLWXgCTrIK/NxfjCKXZYJBpysXlXAB39wGDmuUxfwUr8in+a2ccLRFLIskRgbx+5P4ArqM2aKJqMq3rbzAITqysnLNiAaBiOK6bRhd2ggmRi6jk/2ogQDcP64dee3YggrPmY1EPTkvNFHIhAIBII3kLfYT/3fL4ZmZMTJZGJyxYpcQCKh6hTkullanc39T5zlheZhirNcGD4b3WNxllZnUVjqx53lwNQHcQRkbG4Dm8u6yA4d2R6nos0qx87esB63V8OtDOMOmHh8KewOg5Sh4tAlPN4AitcF/SesAype9QY8I28ghmZ1kw4uEl4dgUAgeIsjxM4ComkGsgzxiRT9bWEAFq/IRdUNVMMgy+/kXMsYTzVZ/WVKsq2eLxNJja6ROC6HjBaPoMcnkJ0z+8FohkG89TAuFcb8EiVVqyAVAy0Otqkuy3E9iV+V8WRlIcd6IBW1mvPlLnmdnoVLhNioNTXdm/dGH4lAIBAI3mCE2FlADN2aeN55ehRMyC31klPixR1woOkmff1RQuEkAxNWQnJp7pSgmUhqDEdSJGPjGKk4iuPCMREmrnNW/k1fbT6SLFv9Y0xm5OLohoEfF7bsrCmvTuEKaybWW4WEJTTJqZrVq0ggEAgEbz2E2FlAbHYFJOhIV2Gt2l5GIM9DLK6iGyayDDFVJ5LSASjJnd3NV41FMEwDWZk5NV3VdBY1WxPDbQ3LQdcgMT7Dq5M0Ujh08Li8yD4P9E3m66xe+Ad7qaLGrM7L+bVi4KdAIBAIACF2FgzTMMku8mAaJqGhOOXLc6i9oojwcIzx0FRp+aRXJ+C04XPbZ62TCo+AMtsLE+1vIX/cQFVgUcNmKzylJcE+PYSVwqtKeIJZyC4n9L3F8nX0FERHIG8pZJW/0UcjEAgEgkuEt1Bs4/eLYZiM9E5QUpPN5ndVs/zqUsLDcVIJnYSqo6S7Kg9ELbFTHHDNtQjJ0BCyc47bmtNdkxd7qfQEYLwrnXg7lXyrGzoBw4UtNxsp3GV5fhQH5C9b6Id76WHoEBmArAorfCWSkgUCgUCQRoidBcI0TOIRleHOQdbsrKC/LYScFjixlI49PRy0P5IWO8HZgkaNh9ESE8ge74zthgn5zd0AJFZWgZaC5ATYpjosJw0Vmy7hcflQfB7o3GfdUFBvCZ7LGdOESL/VJbmgdk7PmEAgEAjeuogw1gJhGCYur43qtfkcfaKD/EV+HC4F3TBJaQa2tPDpjyQAKM52z1ojFQthpuIozpm3RSOjVHZa98tftxnUKOgJsE2JmISexKfKuP1BZI97Wsn5W6C/zsSA1SG5oA5szjf6aAQCgUBwiSHEzgKSt8jPrgfOsPeXLfS3jhPI8yA7ZDTdxGZLh7HSOTslWbPFjpWcbCJfUDkVadqPYsJAnkJeSRUkQiDZmB7C0gyDoOHAnpttzebqO2bdcLmLndgIKE4oXA5O3xt9NAKBQCC4BBFiZ4GwOxUGO8K0nxwGIJXUCQ/HyCvykhV0YkuHsQZjKWBusWMlJ88ulfaeOwfAcF0xqAkrhDUtMdnAAMPAYXdg83utkE50GCQFCusX/LFeMiQjVlVaQZ3okiwQCASCeRFiZ4FIxlSi4wlrZARgdyikEjrdXWECfgeSBImUzlhSA6DowgTlyeTkCyadG7rB4vPjALhXr06HsNQZeTgpXcOZNHD5/Mhez5RXp6B2Rmn6ZYUaT5eYL4OAmGguEAgEgvkRYmeB0FIGWsrIXLc5rKd2PJTkfGcIgP6QlXfjdSj4XTNDVZnkZMdMsRPqOE4gZhJzwqL6TRAfn5WAmzI1XCnw5OUjKfK0kvPLNISlq1aJeU6VVX0lEAgEAsFLIMTOAmHoJppmiR3ZJiEr1lMbU3Vs6Q7HfeF0cnKW28qrmUYqFrI6JzvdrNt4FZVLagHQTx8DoHNJEJukk1vZQPnW9864r6qreOwuFF+6iqs/3Uyw6DIUO3rKCtNllUNuDcjiLSwQCASCl0bU6C4QhmGipz07doeVd2Oa6bLzdHLyYHT+svNULIxpGsiyjdHRIZbWWo0A5bO9AGgrl5FbUkVhzXoGzuy94M4qblcWsscF0SEI91ojJIqW/14e6+uKlrRCVmoMDAMUu1Vinr9MlJgLBAKB4KIQZ4sFQld1NNUSO7a02NEMA003sSsSpmEyGFcBKA7OUYkVHs2cvNvOnwFg6bIVuJdsIDKwlw3v+oAldE4/x0j7ycz9NFPHrpq4gn4kpwNa0iGs3CXgeJNVJ5kmaAlL2KgJ67rdZQ0y9VdZ5eUOr/W4xMwrgUAgEFwkQuwsELpmomvp5GSnFVpJ6QaaYeC229FVg8GEVYk1y7MzR3Jy2/kzhE+8yNovfYmhp5+gcOVmBk49w0jbiRkn+pShYlfBnZObLjmfnIf1JgthpSYgNg4ON9i9EKwAl98SN3avCFcJBAKB4FUjxM4CoWsGhjbTs5PSTDTdwKZIpGIGQ/G5xU4qFpqzc/K53/6IqgkbRffcQ2x8iJEzu8GdPfO+eoocxYkzk6/zJpyHlQhBKmaVyfuLwO4R4x4EAoFAsGCIn8sLgGmaVoKyak0zn8zZUXU9c9JWNZ2h2KTYmRnGUuPhTHLyJLGUxqqy1WTddhtDJw/hDuaRW3/1rH3rKRW3x4fsdlmVWmPt1g1FKxf4Uf6eiI1YeTlFK6zqKodXCB2BQCAQLCjCs7MAmIaJaZjoF3h2kpqBjIShm4wkNUwTnDaZbM/MaeepWBimdU5OaQaVi5dQv+Nmeu67j/YdS1hKiMIV20G2M9JiDQU1MJCSGs5cH5LLCe0HrAWzF4Mr63V57K+JiUGQbVC0SvTKEQgEAsHvDSF2FgDDMDEMMn12JnN24klrJpahGgypk8nJrtll56ERzHTnZN0wqahaysrlDXR/8IP0H91HzrvWM3JmD9hcFNZuBmCk5QiqoeFUTTw5ORfk66x+HR71a2BycKfDa4158Oa90UckEAgEgssYEcZaAAw97dmZVo1lmJBQNeyKJXaGU1bn5AtDWKaukwxbycmmCeG4SklRMcd/9g2ie/YyUOpBSoXB5mKk5QgDZ/bizS0FIKWrOCQbHn/QWqzvTZCvY+hWabwrYCVRC6EjEAgEgt8zQuwsAKYJhmFkSs/tToWUpqMaJjZFxjRNBhNTnp3pqPEweiKK7PAQSah4XQrdZw7S/tufAJAoz7XKsdOzsEZajtB54LcApJJJvJ4AisdtVTONnLcWLbpExY6hQaQPfPmW98md9UYfkUAgEAjeAgixswCYuolpkElQtjlkVN1EN0xkU0KSpExDwaILK7HSyclJyYFNligOunHYJLI7xwFwFmWn51vNTtqVkincXr+Vr9N/CjAhUHppekv0FIT7wF9iiTExoVwgEAgErxMiZ2cBMAyrv46WnPLsqLqBYRqgG8gOmf6IJXZKLqzEioVIaRqYEiXZLjwOhWhklMIRSzgVVFRZpdgXoJs6tpSBOyf74vvrmAaEeqzuyr8PJKxJ67Iy7W96X/FxyK60Oh/bHC+1ikAgEAgEC4oQOwuAoZtggpqa9OwopDQD05TQVR1HwMHA5FysCzw7sbFhEqZMecBJ0GVVaQ02HsQPDGXJ5ObMXaWUXbUGl60Njz/L2jBd7Dj9VtfhicGZd1ITVlJwQZ0lRhYE0wpPGRromlVGrictT46uWjk6pgF5NdYsKzHiQSAQCASvM5f0mUfXdf7pn/6JH/zgB/T391NSUsKf/umf8slPfjJT0WSaJv/4j//IN7/5TcbHx9myZQtf//rXqamped2O0zAMkECbJnbiqoZNlkCDkG6gGSY2WSLX58zcT1M1Rod6yc7yW9slIBEhnh4XMbrIS+48+wwPdbNs+x3II22gjsPQWeuG6u1W6flkv53pqDFr5EKgZKEe+ktjTgohHWxO0T9HIBAIBG8Il3TOzhe+8AW+/vWv89WvfpWmpia+8IUv8MUvfpGvfOUrGZsvfvGL3H///XzjG99g//79eL1ebrjhBhKJxOt2nKYVvUJNTpWex1UDBQlJkRlKj4koDLhQ5KkTft/QEC5SFORlIUtAcgJC3Ti7xwDQyubPvRntaGT48FNIRUutDsSmDsvfBaVrLaGTjMy+k5YEz+uYzyNJ1uBOu0sIHYFAIBC8YVzSnp29e/dy6623ctNNNwGwePFifvzjH3PggNU8zzRNvvzlL/PJT36SW2+9FYAHHniAwsJCfv3rX3PnnXe+LsdpaAbSNM8OikxKU5F0E9kpMxCZPSYintKR1AhZNh2Pxw+pKIS6MLUUBT2WUPOWl8+5PxMTKaWBFkUaa4fKq+H6z8L6980vdCYVmdO/UA9bIBAIBII3BZe0Z2fz5s08/fTTnDt3DoDjx4+ze/du3va2twHQ1tZGf38/O3bsyNwnGAyyadMm9u3b97odp5YWO5M5O9hA1Q0UAxweG/1z5OukdANFi2GXQdYSMN4Fusp4PEkwaqJLUFhePef+UoaGHRueQBYkwnDip7DlwzBwem6hA1a+jt0tqqAEAoFA8Jbjkvbs/N3f/R3hcJja2loURUHXdT73uc9x9913A9Df3w9AYWHhjPsVFhZmbpuLZDJJMpnMXA+Hw6/pOHXNSKenWFVZpiJbZecS2Fw2+kKTYmeqEiulGcjRUWTZgFC3ldDrCjDc2Egu0F9go9jpmmt3qMk4dqcTj9cP0WFY/k7Y99+w8c9gvGNuwTOZr2N3z75NIBAIBILLmEvas/Ozn/2MH/7wh/zoRz/iyJEjfO973+Pf//3f+d73vvea1v385z9PMBjMXMrKyl7TeoZqoOvG1HXZxFRVZMlEsUFfKA5AcdY0z46qIk/0YkuFQItbHYWRUDt7AQgtmj/cpMYTeL0BlKx8qNgMD74fOnZbQid78dyhqtc7X0cgEAgEgkuES9qz87GPfYy/+7u/y+TerFy5ko6ODj7/+c/zJ3/yJxQVFQEwMDBAcfFUifbAwACrV6+ed91PfOIT3HfffZnr4XD4VQse0zCt2Vhpr46sSEijzXiHx/B6bPiHoX/cuq0qeRZnp0EiGkLq7YNIF/ag2/K4pJsGervHrYXLCufYW5pUipxVK5ByKuEnd0PLLrj1a5ZHZ6x9qhpr0sMj8nUEAoFA8BbmkhY7sVgMWZ7pfFIUxSr1BiorKykqKuLpp5/OiJtwOMz+/fv50Ic+NO+6TqcTp9M57+2vBMMwMU1mTDxPRiPIuoHdJTOqGiR0kDGRBxrpCA2gRieIaioF+Tk4s4uYFDqGrlHUa4XXgosXz7k/HQPZlPDml8Dxn0Dz45a4Kai3DCYFj909JXZEvo5AIBAI3sJc0mLnlltu4XOf+xzl5eUsX76co0eP8h//8R+8//3vB0CSJD7ykY/wz//8z9TU1FBZWcmnPvUpSkpKeMc73vG6HKOR9uxMjoqwOyQ0TUVTnMSkBI1dISCPbCXB2EAXstuDnFuCGxuB7JljIAb7uylJQcIOhcVzV2KpiQQ2hxMlOgz70iX4y26aWdqdjMzM2xH5OgKBQCB4C3NJi52vfOUrfOpTn+Iv/uIvGBwcpKSkhA9+8IP8wz/8Q8bm4x//ONFolA984AOMj4+zdetWHnvsMVyuuZN7FxozM/HcClUpdonBkR6iYZXYcD9tE9lAHgUuDV+BNa08qekogO0Cr9V4RxslQH+xk/J5Og2nEnG8Hh+OeL/VSFC2wdLrX/ogRb6OQCAQCN7CXNJix+/38+Uvf5kvf/nL89pIksRnPvMZPvOZz7x+BzYNw5gUO1YYS7FDfGAYxZDxlvgIaYUQhkKnlrmPboDLriBf2Gev0xrvEF0UnHd/ejyOv7gC6dzvrA2Lt4Ira/4DFPk6AoFAIHiLc0lXY70ZMI3JieeWqJAkHS1l4gw6UVxOBpPWvKsCZypzH8M0cSizOwoHekIAKOVzz8MyMcE08Xg9cP5Ja+Oyt7/0AYp8HYFAIBC8xRFi5zViGCZIoCatnB1J1jF1sKWjaAMpa8J3oWNK7JgY2G0zn/pUKkHRgOX9ya2omnNfWiqJzeEkMN5k5eR4C6B03UsfoBqbGgwqEAgEAsFbECF2XiPWxHMzMypCIolpmthsNkwTBpOW2Ml3qtYdTMtKuSCGNdDVis2AsEciJ3fusnM1FsfmduPqfNbasOxtIL/M9HKRryMQCASCtzhC7LxGTMPEnDYXyzCSSEggQ1RXiBuWGMlPe3Z000SWJGsi+jQmOroAGCx1I8lzvyxqMk6WG6Teo4BkiZ2XPjjrr8jXEQgEAsFbmFctdt7//vcTicweSxCNRjOl4W8FDN1AAtSUJSxMMwk2GQkYSFn5Otl2FadsVWvphoEyh9hRuoYASCzKnn9fmk5B6LR1pXQd+Ite+uBEvo5AIBAIBK9e7Hzve98jHo/P2h6Px3nggQde00G9mdA1A0mW0JKTnp0EimIDyWRoMoQ1LV9HN8GmzA5j5fRMAOCqWDTnfgw1BTYZX+9ea0PtTS9/cCJfRyAQCASCV156Hg6HMU0T0zSJRCIz+tnous6jjz5KQUHBgh7kpYyumciylJl4bmpxZLcdSYLBdHJygUOdsjdMvM6ZeTYTEyEKRi3PUEHFPJPO4wnyjAHk+Cg4A7B4y8sfnMjXEQgEAoHglYudrKwsJElCkiSWLl0663ZJkvj0pz+9IAf3ZkBXDSRJyuTsmEYKxWYDdAbSZeeFzpmVWI4LKrEGO1oIAEPZMrn+rDn3oyXiFMXOWFdqrgfF8dIHJvJ1BAKBQCAAXoXYeeaZZzBNk+3bt/OLX/yCnJyczG0Oh4OKigpKSkoW9CAvVUzTtHJ2ZFCTk1PPNRTFDpLOUGp2GAskbNLMEFaioxuAkVIvufPsS0qGCI6nxc5FhbBEvo5AIBAIBPAqxM62bdsAaGtro7y8HEma3RzvrYJpmBgmVs5O2rODqSLZXEhMhbEK02EsqyWPhHJBtZWzexQAvSx/7h1pOvnJZiTTgPw6yJm7D88MxDwsgUAgEAiA15Cg3NTUxJ49ezLXv/a1r7F69Wre+973MjY2tiAHd6ljpLsnT8/ZQTKRZJm4IRHWLC2Znw5j6YaBIkvYpnVPNg2Dgh4r0dtbUTbnfrR4jMLoWetK7ct0TM7cSeTrCAQCgUAAr0HsfOxjHyMcDgNw8uRJ7rvvPt7+9rfT1tbGfffdt2AHeCljpIeATq/GkhUj7dWx8nV8ioZHsUJcumGiSKBM84aNjQ4SjJroEhSVz52c7BhvxaOOYtpcUL395Q9M5OsIBAKBQJDhVQ8CbWtro76+HoBf/OIX3HLLLfzLv/wLR44c4e1vv0jvw5sc0zAxDAPTlNE1q4+OpACSyfBkCMs5s+zcZVeYHvkb6WglD+gvtFHsmHtSe27kpLV21TXg8L78gYl8HYFAIBAIMrxqz47D4SAWiwHw1FNPsXPnTgBycnIyHp/LnczEc83IbLOly8oH5ig7N0xj1gBQtbMPgFBpILMtr3ot3jwrpCUno+TGz1s31L7d8tb4Xqa0X/TXEQgEAoEgw6sWO1u3buW+++7js5/9LAcOHOCmm6wKoXPnzrFo0dyN8S43TAMwQU9Nih0D2WFDks2pmVjTK7FMsCkzn3Jv97j1n/IpARMPDbFo7Y1488rwDx1DMTX0QCmUb4bsxaDObuY4A5GvIxAIBAJBhlctdr761a9is9l48MEH+frXv05paSkAv/vd77jxxhsX7AAvZQzdBEnKjIqQZA1FtiFhMpS6oMeOCUigTBM7hq5R1JcEIKticWZ7dLiL7iOPsWjtjeQFPdbdt/wN5FTCWLs18Xw+RL6OQCAQCAQzeNU5O+Xl5Tz88MOztv/nf/7nazqgNxOGYQmLyeRkSdJAtoNkTgtjXTAAdFoUa7C/i5IUJOxQUFw+Y+3ocBfDu79L0Tu+hHl0Dcr69///27vz8KjKs/Hj33PmzJKFbCxZJEAEJKBA2Y0IKEQjInVB2yoqmy/iD0RAQakKihXQtoJawKoI1AooClZrQREFFQHZZC8KRqBCiApJyDKTmTnP748hI2NYMpOETML9ua5zvZmzPOeec+Sdu8967kQHpL+OEEII8SuVWvV8//79PPbYY9x+++3k5uYCvpqdXbt2VUlw4U6Zvk7JZcPONc2DRbfgVorjbl/NTkO7r89O2bBzyyl9dvK//x6AIyl2dEtg3lnv+C4aff4obHkd7Yr70UqOnTvRAemvI4QQQvxKyMnOmjVraNu2LRs2bGDp0qUUFvoWsty2bRuTJ0+usgDDmcej0LRTa3a8KDSOeX2JS4TupZ7Fd8xrglXXAoadq0NHAShuHBtQbsLRL0ndvxj94p6YHQfhPP49RNavWNOU9NcRQgghAoSc7DzyyCP86U9/YuXKldhsv6zT1Lt3b9avX18lwYU70+1b8dxd4muq0k4mNrkeX61OI3upf5i5VynsRuACoDH/841aM5qcXF5DmSQd/IDkQ/9Ba3415q0L+GbvpxhFP/masOKbnT3hkf46QgghRDkhJzs7duzg5ptvLre/UaNG/PTTT5UKqrbwnlwXy+n0JTu6rkDBT+6TMyefMuxcKYVxSoed0lInSbkeAOo3vRjNW0rq/kXUz10HzXtj3vYPdq9ZgtX0YOgWXxPWuRIe6a8jhBBClBNyshMXF8eRI0fK7d+6dat/ZFZdZ7pNdF3DdbJmRzdM0DR+PNlfJ/HUYecaGPovyU7Owe8wTMiP0mhQL5Jm37xGTN4eTM1CXps7ObDuA44fP0hs3ClLg5YlPGfqjyP9dYQQQohyQk52/vCHP/Dwww+Tk5ODpmmYpsnatWt56KGHuPvuu6syxrBkmgrTVGiahq77mqcsBqDwJzuN7KUkJDUlNb0LGhptrxlEcjvfcg9FBw8C8GOKnebfvEJkn0cwR23mwCVD+OHIYX7+bhf2+gnE2n5VS+M6AYW5pw9K+usIIYQQ5YSc7EydOpX09HRSU1MpLCykTZs29OzZkyuuuILHHnusKmMMS76lInwrnhcX+GaSjk6IAQ1yTyY7HdMSubT7DeQdy8GiaxQfO0J8ahuS2/XGcsjX1GeJL8SW9RSqw52cOJFPcb1mYJqUmh5i4xpi1Ss4O4D01xFCCCFOK+R5dmw2G6+88gqTJk1ix44dFBYW0qFDB1q2bFmV8YWtsqUiNF2jKO8EYND00nTM4hL6HP2Clq0uoW+fOzj80fPYD2yjqQbOT3ZT3H0Y8S170LpxJ9SOT2lzy32oDneSf2A7P+z60le204nHYRAf17DiAUl/HSGEEOK0Qk52yqSmppKamloVsdQqyqtQSqHrGm6XBzDIyd7L9UOuoWvSYeh4Gyy5iyb7P6FsukCvgi+/+oSEmBtJnzyV45e9Q/3fDiHvwE4O7/zMX7a7qARbozhiI2JOe+/TcheDI1b66wghhBC/ElIz1rfffss777xDdnY2AB988AE9e/akS5cuPP300yilqjTIcFRWswMmUbG+fjJFBT9TuvVN6D6a3C3/5secQziveZbSQR+y4semfL4yhQafRqP/axXH3n2XBsOG4Skt4fDO1b8UrBROj5PY+IbYLbbT3vu03E7pryOEEEKcRtA1O8uWLeN3v/sduq6jaRovv/wy9957L1dddRUxMTE88cQTGIbBww8/XB3xhg3Tq1AmeD2llJxwApDetRP2Dsmw9gWiOg6n8KIu2JLT+OaRsTRd5RuGXuQAY+QQGtx9N25nEYY9kuR2vTmy/RMAlKsUr1UnPi6IxMXjBMMGkQlV/j2FEEKI2i7omp2nn36aCRMm4HQ6mTNnDiNGjGDatGksX76cf//738yaNYv58+dXQ6jhRZkKpYG7tPRknx1o0DgZbc+/ObF8MrveeoUGCSn87//9P9TyTymI1Nh5TRMav/kP2t8znuP/28M3H7/G8UO7/Z2WAUqLi7HG1COmXhCJS8lxiG7ka8YSQgghRICgk529e/cydOhQNE1j0KBBlJaWkpmZ6T9+7bXXcuDAgSoNMhyZpkID3M5i0HzNTcXHD2Ne9jucl8yk04138cPYsRzauYFt/S9FPTKIPuOfI/GSzhw/tNtfk3Nk+ycBCY/LVUJU/YZEWuwVDMQDSkHMRXDKUhRCCCGE8Am6GauoqIh69XzDm3VdJyIigsjISP/xiIgIXC5X1UUYpsoWAXUWFWB6fTlj9hfvEXOoGYl3DyJ38UI+i/+J5pMfpkNiKqWHdxCVkByQ6JQp+xwVn4xHh4RgRmE58yEiwbd2lhBCCCHKCTrZ0TQN7ZQahF9/vlB4vSagcBUXYnp937/VFVfQ4NIO/Dx3Lg0HDaJ3l7Zs+fw/FB0/SnKsnX2r3zhjeUe2f0Jpfj5GZCQxsRVMXJSC0hJo0Ap0y7nPF0IIIS5AQSc7SikuueQSf4JTNr+Oruv+4xcCr8e3CGjR8TwgDoCLOl3JoZH3UvL5Wo62u5jWna+irdfkwJaPK1Smq6SYiGaNibZGnvtkAFeBbxLBqCBqgoQQQogLTNDJzrx586ojjlrH6zbRNY3iwkIgDt2icXTjvyj5fC0A+7Z/QVxCA5q0bIfDqvPTrtVnL9A0cSsvKQlJFa8pc52ABulgdVTquwghhBB1WdDJzqBBg6ojjlrH9Ci8pht3ka9/ksUKuz+aR2Og1IAou53/rv+QUq9JYnIq51oH3lNSgiXCTmxMBUdhuYvBcEC9RpX6HkIIIURdF/LaWKcqLCykoKAgYKsqzZo18/cLOnUbOXIkAE6nk5EjR1K/fn2io6MZMGAAR48erbL7n45SCtNr4vW4cZf4kh1lunCVFAJQGAGaruNVih1fLmfPqtfPWaazqBBHfAL1Iiq4tlVJPkQnynBzIYQQ4hxCTnays7Pp168fUVFRxMbGEh8fT3x8PHFxccTHx1dZgBs3buTIkSP+beXKlQDcdtttAIwdO5b333+fJUuWsGbNGg4fPswtt9xSZfc/HdNUmAq8HhelLg8Amm7icZUAUOTwPVavaWLRNAz9HM1SSuHxlJJQPwldq8Ar8fomKKRecsjfQQghhLhQhLw21p133olSitdee43ExMRqG5HVsGFg59vp06fTvHlzevXqRX5+PnPnzmXhwoX07u2blG/evHm0bt2a9evXc/nll1dLTMqrML0Kt7PYn3foFhN1skmrOMJCDL61sKwWDcs5kh2vqxTsNmLiKjgKy5nnmy1ZZkwWQgghzinkZGfbtm1s3ryZVq1aVWU8Z1VaWso///lPxo0bh6ZpbN68GbfbHTCpYXp6Ok2aNGHdunXVluyYpgKlcDtP+OfY0XUTXL7Mp8Rh+JIdUxFlP/eQcFfRCRz1YoiJrkCNmDLB44JGjWW4uRBCCFEBITdjdenShUOHDlVlLOf07rvvkpeXx+DBgwHIycnBZrMRFxcXcF5iYiI5OTlnLMflclWqj5EyFaapcBblY5q+hEOzmODyAuB0+GZUVpjYjHM/4lKXk7iGyRgVSV5cBWCPkeHmQgghRAWFXLPz6quvMmLECH744Qcuu+wyrFZrwPF27dpVOrhfmzt3Ln379iUlJaVS5UybNo0nn3wy5OvLVjx3FuWhlO8R6hYTi8sEdFyOsqHgGsY5mvdMjxsMnZj4Ci786SyExEvBqOByEkIIIcQFLuRk58cff2T//v0MGTLEv0/TNJRSaJqG1+utkgDLHDhwgI8//pilS5f69yUlJVFaWkpeXl5A7c7Ro0dJSko6Y1kTJ05k3Lhx/s8FBQWkpqZWOBbT66vZcbsKUfiSPF33Yjm5SoY7MgpTgYaGRT97zY6rqBBbZHTFhpyXFvvm1ImWWh0hhBCiokJOdoYOHUqHDh1YtGhRtXZQLjNv3jwaNWpEv379/Ps6deqE1Wpl1apVDBgwAPAtVHrw4EEyMjLOWJbdbsduD71mRJkKT6kLb3ExSvPVyFj0Ugyn77g7sp5vJJauYVjO/lxcRcU0aHEJNsN27hs78yCuqW/WZCGEEEJUSMjJzoEDB3jvvfdo0aJFVcZzWqZpMm/ePAYNGoRh/BJybGwsw4YNY9y4cSQkJBATE8P9999PRkZGtXVO9sWjcLtLcZcUofAN/7ZpTmxOX2KjR0bjNRUWDSxnSQJN04PSFPEVacLylgKaDDcXQgghghRystO7d2+2bdt2XpKdjz/+mIMHDzJ06NByx2bMmIGu6wwYMACXy0VWVhazZ8+u1niUqfC4ivF4nKB8zVhWrZiIEl9i44iMxKvAYbVwtgovV1Extsioii38WZLn65QcUXVzGAkhhBAXgpCTnf79+zN27Fh27NhB27Zty3VQ/u1vf1vp4Mpce+21Z1xg1OFwMGvWLGbNmlVl9zsXj0fhcRajTK+/g7JVKyLKN6cgUdFRmMrEZjn743UVF5KQ0gSH4xwLfyrTN5Fg7EVwjj5AQgghhAgUcrIzYsQIAKZMmVLuWHV0UA4nptvE6SxEeb2ok0PPTU8+huk7HhcVgalMDMuZExOlTPCaxNWvwNpWzgLfshCRFRyxJYQQQgi/kJMd0zSrMo5axesxKS0qwNTwJztudz4ATivEUEJRKRiuUlAW0CxgMUD3bco0OfHTj9iioomJq0ACU1oIiZdBRToxCyGEECJAyMnOhcztNnG7ToBmQZ2cQdnrzgOgyAFepeGJTkKvXw/wgqfEN+uxx4V54mcKThzHVj+eZhc3JQonFDrPfDPlBWukTCIohBBChCjkZOd0zVenmjRpUqhFhzXf/DouvM5CsFj8MyirUt8szEUROjoaWCMxohKgbF0spwvvT7nkR1qpl96eixu3IsaiwRn6IgWwx4I9urq+khBCCFGnhZzsLFu2LOCz2+0mOzsbwzBo3rx5nU12lFdRWurC6yoGi4EyT/bLOZnslDgsOJSGYdV9C4CaJuQV4Ha7yGsUTcPm3WiechkOw3GWuwghhBCiqoSc7GzdurXcvoKCAgYPHszNN99cqaDCmWkq3CVOvKUl6PZfRlFprhMAlEQYWE2IsFqhqBhOFFMSY+VEagMaN7mMZnHNsOrWMxUvhBBCiCpWpeOYY2JiePLJJ3n88cerstiwYpqK0qIiPKYb9JOzMGsK3elbK8Jlt2F6vNjzC8DtpSA1jqLmKbS4uDPN45tLoiOEEEKcZ1XeQTk/P5/8/PyqLjZsKFPhKi70zXsTsC6WCWi4HA6shSVoLerzU5MYjJhYWse3pFFkBYaYCyGEEKLKhZzsvPDCCwGflVIcOXKE119/nb59+1Y6sHBlehXOohOAAuUbCq5ZTAyXAjRKIyIw0fg5QScpviEt41oS54iryZCFEEKIC1rIyc6MGTMCPuu6TsOGDRk0aBATJ06sdGDhyvSauEoKUJqOfnIklkX3YpxcF8vriKJIc9E4MpFL619KpPUcsyMLIYQQolqFnOxkZ2dXZRy1RmmpB4+zGCy6f9i5RfdgPzlVjoqIQll0UuKaSKIjhBBChIGgOyh7vV62b99OSUlJuWMlJSVs3769Ts+u7HI5MZ0lYBj+CQUteql/EVC7w4GuGxjnWBdLCCGEEOdH0MnO66+/ztChQ7HZyi9dYLVaGTp0KAsXLqyS4MKRq7gYr8uJZrVinpxjx6I5/YuARtttYLFis8qoKyGEECIcBJ3szJ07l4ceegiLxVLumGEYTJgwgZdffrlKggtHroJCvF4nutWKebJmB1WM5eREyNEOHU03MKz2mgtSCCGEEH5BJzt79+7l8ssvP+PxLl26sGfPnkoFFc6cJ05gmh50yy/JjjILASixQYSuo1kMrFKzI4QQQoSFoJOdoqIiCgoKznj8xIkTFBcXVyqocFZYUAjKi26x+JeKMD1FABQ5NEzlRTOsWA1JdoQQQohwEHSy07JlS7788sszHv/iiy9o2bJlpYIKV0opnCfyQFfo6L80Y3l9NTtFEb61sDTDKh2UhRBCiDARdLJzxx138Nhjj7F9+/Zyx7Zt28akSZO44447qiS4cFPq9uIuPoHSNHTtl6Hn2smanRKHBVOZ6DYbulalK3EIIYQQIkRBVz+MHTuW5cuX06lTJzIzM0lPTwfgv//9Lx9//DHdu3dn7NixVR5oOHCVOPEUF6MZJ/vqnKzZ0dy+ZMfpMIgyFYbVjqZpNRanEEIIIX4RdLJjtVr56KOPmDFjBgsXLuSzzz5DKcUll1zC008/zZgxY+ps51xnSQleVwma1VejUzb0XHf7+ig5HTaiTFNGYgkhhBBhJKSOJVarlQkTJjBhwoRznrto0SJ++9vfEhUVFcqtwkrpiUI8nlL0KN9jK+uzY5T6JtkpdTjwmiY2R0SNxSiEEEKIQNXeseTee+/l6NGj1X2b88JVVIjX7UGz+iZULGvGsjp9yY7bEQlKYbVLsiOEEEKEi2pPdpRS1X2L88ZdWODrgGwENmPZnC4APBH1MAHDJs1YQgghRLiQIUNBcLuKUaaJRbOgFKiTo7Eiin01OyoiBgVYrY4ajFIIIYQQp5JkJwhulwsTE51fJhQEiCoqBcARGQ2ajmEtv26YEEIIIWqGJDtBcHs9oGlo2i+dk8EkusQNQFRkJEoDvY6ORhNCCCFqI0l2guBVHv/f/mHnutu/CGhsVCSYYEgzlhBCCBE2qj3Zadq0aZ2Zd8c8pbO1f0JBfJ2Ti23gsFjQdAuGIR2UhRBCiHARcrIzaNAgPvvss3Oet3PnTlJTU0O9Tdgqq9kpS3aKIgDTg6nrGDbpsyOEEEKEi5CTnfz8fDIzM2nZsiVTp07lhx9+qMq4wp7p9Y3EQvlGYhVH6JheL7pFxypDz4UQQoiwEXKy8+677/LDDz9w33338eabb9KsWTP69u3L22+/jdvtrsoYw5K/Gcv0JTslDgsoL1isWA2p2RFCCCHCRaX67DRs2JBx48axbds2NmzYQIsWLbjrrrtISUlh7NixfPvtt1UVZ9jxN2OVJTt2A9PrRtetGEZIq3AIIYQQohpUSQflI0eOsHLlSlauXInFYuH6669nx44dtGnThhkzZlTFLcJO2dBzi8eX7LgcNlAmWA1JdoQQQogwEnKy43a7eeedd7jhhhto2rQpS5YsYcyYMRw+fJgFCxbw8ccf89ZbbzFlypSqjDdslE0qqJ9MdkrtDjDdoBnYZNVzIYQQImyEXAWRnJyMaZrcfvvtfPXVV/zmN78pd87VV19NXFxcJcILX/4Vz91OANyOKF8HZcNaZ4baCyGEEHVByMnOjBkzuO2223A4zjyBXlxcHNnZ2aHeIqyV9dmxlvqSHa8jBqVMLFY7Ft1Sk6EJIYQQ4hQhN2P99re/pbi4uNz+Y8eOUVBQUKmgTvXDDz9w5513Ur9+fSIiImjbti2bNm3yH1dKMWnSJJKTk4mIiCAzM/O8dIxWJ4ee20p98+yYEXEovFjs0oQlhBBChJOQk50//OEPLF68uNz+t956iz/84Q+VCqrM8ePH6d69O1arleXLl7N7927++te/Eh8f7z/n2Wef5YUXXuCll15iw4YNREVFkZWVhdPprJIYzqSsGctR4ruPNSIO5VVYpL+OEEIIEVZCTnY2bNjA1VdfXW7/VVddxYYNGyoVVJlnnnmG1NRU5s2bR9euXUlLS+Paa6+lefPmgK9WZ+bMmTz22GPceOONtGvXjn/84x8cPnyYd999t0piOJOyZqzIk0lVdEQ9TOXFJjU7QgghRFgJOdlxuVx4PJ5y+91uNyUlJZUKqsx7771H586due2222jUqBEdOnTglVde8R/Pzs4mJyeHzMxM/77Y2Fi6devGunXrzhp7QUFBwBasskkFrR5fslMvIgqUF6s9MuiyhBBCCFF9Qk52unbtyssvv1xu/0svvUSnTp0qFVSZ7777jjlz5tCyZUs+/PBD7rvvPkaPHs2CBQsAyMnJASAxMTHgusTERP+x05k2bRqxsbH+LZS1u8pqdgyviyI72AwrCrDaZMVzIYQQIpyEPBrrT3/6E5mZmWzbto0+ffoAsGrVKjZu3MhHH31UJcGZpknnzp2ZOnUqAB06dGDnzp289NJLDBo0KORyJ06cyLhx4/yfCwoKgk54/JMKep0URmhomgloGLIulhBCCBFWQq7Z6d69O+vWrSM1NZW33nqL999/nxYtWrB9+3Z69OhRJcElJyfTpk2bgH2tW7fm4MGDACQlJQFw9OjRgHOOHj3qP3Y6drudmJiYgC0YSv0yqaDhcVIcoaGhUBoY0kFZCCGECCuVWtfgN7/5DW+88UZVxVJO9+7d2bt3b8C+b775hqZNmwKQlpZGUlISq1at8k9qWFBQwIYNG7jvvvuqLS5foqMBvpqdEocFu+b1fTZkQkEhhBAinFQq2TFNk3379pGbm4tpmgHHevbsWanAAMaOHcsVV1zB1KlT+d3vfsdXX33Fyy+/7O8rpGkaY8aM4U9/+hMtW7YkLS2Nxx9/nJSUFG666aZK3/9MyvrroLzophunPQIHJigdi6x4LoQQQoSVkJOd9evXc8cdd3DgwAGUUgHHNE3D6/VWOrguXbqwbNkyJk6cyJQpU0hLS2PmzJkMHDjQf86ECRMoKipi+PDh5OXlceWVV7JixYqzzuxcWWX9dTTlQgNK7VY0TaE0HatdOigLIYQQ4STkZGfEiBF07tyZDz74gOTkZDRNq8q4/G644QZuuOGGMx7XNI0pU6ac1wVHy4ad68o37LzUEYHyeNB0DcOQZEcIIYQIJyEnO99++y1vv/02LVq0qMp4aoWyZizde3IRUHsUCi9YLFhs0mdHCCGECCchj8bq1q0b+/btq8pYao1Th50DeB31wPSiWwxsVumzI4QQQoSTkGt27r//fh588EFycnJo27YtVmtgjUa7du0qHVy48g87d59cf8sRj1Je0CxYJdkRQgghwkrIyc6AAQMAGDp0qH+fpmkopaqsg3K4Mk+ueG51+1Y81x0JKNMDhg1Dkh0hhBAirISc7GRnZ1dlHLWKf8XzUl/NTlRELHiPo9kNrEalRvMLIYQQooqF/MtcNrHfhaisGcvidWIC0Y56mN6f0C0R0owlhBBChJmQOygDvP7663Tv3p2UlBQOHDgAwMyZM/nXv/5VJcGFq7KaHcPjpNgBNouBMt1oViuGRWp2hBBCiHAScrIzZ84cxo0bx/XXX09eXp6/j05cXBwzZ86sqvjCknlKzU5RBIBCYWLIiudCCCFE2Ak52XnxxRd55ZVXePTRR7FYLP79nTt3ZseOHVUSXLgqm1TQ8DopcZx8hF4li4AKIYQQYSjkZCc7O5sOHTqU22+32ykqKqpUUOHOX7PjcfmSHQ0UXgxZKkIIIYQIOyEnO2lpaXz99dfl9q9YsYLWrVtXJqawVzb03OJ14nIYgMI0TWzSjCWEEEKEnZB7044bN46RI0fidDpRSvHVV1+xaNEipk2bxquvvlqVMYYd/6SCXielDhuRGijTi80RWcORCSGEEOLXQk527rnnHiIiInjssccoLi7mjjvuICUlheeff54//OEPVRlj2PEvF+FxUmp3oKHQNCUTCgohhBBhqFLjpAcOHMjAgQMpLi6msLCQRo0aVVVcYc08pYOyxxEFmChNQ5MOykIIIUTYqZJJYSIjI4mMvDCacJQ6dVJBF6YjCQBNA6shNTtCCCFEuAkq2enYsSOrVq0iPj6eDh06oGnaGc/dsmVLpYMLTxbA970NTwnKEYeGiQIsdkl2hBBCiHATVLJz4403Yrf7mmpuuumm6ogn7Cl1ck4hZaKbboyI+oCJUmAxpBlLCCGECDdBJTuTJ08+7d8XEmX6kh3D60QDIiLjwDTRDYs0YwkhhBBhKOR5djZu3MiGDRvK7d+wYQObNm2qVFDhTClffmjxODE1iLZFoZQXTdNluQghhBAiDIWc7IwcOZJDhw6V2//DDz8wcuTISgUVzsqasQyviyIHGBYrSnnQdB2rzKAshBBChJ2Qk53du3fTsWPHcvs7dOjA7t27KxVUWDuZ7Fg8Jb5FQBWYpgcMA6shK54LIYQQ4SbkZMdut3P06NFy+48cOYJRh3/0/c1YXpd/EVBNmaBbsRjWmgxNCCGEEKcRcrJz7bXXMnHiRPLz8/378vLy+OMf/8g111xTJcGFo1+asZw4HTpKaaDc6LqB1SrJjhBCCBFuQq6C+ctf/kLPnj1p2rSpf/Xzr7/+msTERF5//fUqCzDcKH8zlm8R0Ah8zViGYWCTGZSFEEKIsBNysnPRRRexfft23njjDbZt20ZERARDhgzh9ttvr9M1HGXNWIbXRVGUjQgATDBsdfp7CyGEELVVpTrXREVFMXz48KqKpVbw1+x4S3Db7YAGpgeLVUZiCSGEEOEoqGTnvffeo2/fvlitVt57772znvvb3/62UoGFK3/NjseFxxEJCpTplWHnQgghRJgKKtm56aabyMnJoVGjRmddLkLTNLxeb2VjC0/+mh0nZkS0b5kspbDYpL+OEEIIEY6CSnZM0zzt3xeSU0djaY44NMBUXqyS7AghhBBhKaih5wkJCfz0008ADB06lBMnTlRLUGFN+R6ZxePEEhmPQqGUid0RVcOBCSGEEOJ0gkp2SktLKSgoAGDBggU4nc5qCSqcKdP3yAyvk8iI+vjasUwMqdkRQgghwlJQzVgZGRncdNNNdOrUCaUUo0ePJiIi4rTnvvbaa1USYLgxTzZjaV4X9SKjUKUKTB2LDDsXQgghwlJQyc4///lPZsyYwf79+wHIz8+/4Gp3ykZjlVqd6JqOF4WmKyyG1OwIIYQQ4SioZCcxMZHp06cDkJaWxuuvv079+vWrJbBwpBSArwbHaS1L8hRKA0NmTxZCCCHCUsgdlK+++mpsNlu1BBWuTC+UPTK3tRQUoJkoFBbrhfUshBBCiNoi7DsoP/HEE2iaFrClp6f7jzudTkaOHEn9+vWJjo5mwIABp12NvSqYXs33hzJx2T0oNF91j6ZLB2UhhBAiTNWKDsqXXnopH3/8sf+zYfwS9tixY/nggw9YsmQJsbGxjBo1iltuuYW1a9dW2f3LmB5fsmN4nbgdBjYA5cHQNQxDanaEEEKIcBRyB2VN085bB2XDMEhKSiq3Pz8/n7lz57Jw4UJ69+4NwLx582jdujXr16/n8ssvr9I4vCeTHYvHRandSpTSfJMrGlKzI4QQQoSrWtFB+dtvvyUlJQWHw0FGRgbTpk2jSZMmbN68GbfbTWZmpv/c9PR0mjRpwrp1686Y7LhcLlwul/9zWdPcuZTV7Fi8TtwOX3KjTA+aZsFqk7WxhBBCiHAUVJ8dgOuvv578/Hyys7OpX78+06dPJy8vz3/8559/pk2bNlUWYLdu3Zg/fz4rVqxgzpw5ZGdn06NHD06cOEFOTg42m424uLiAaxITE8nJyTljmdOmTSM2Nta/paamVigW7ynNWF5HJOrkIqCaRccmHZSFEEKIsBR0srNixYqAWpGpU6dy7Ngx/2ePx8PevXurJjqgb9++3HbbbbRr146srCz+85//kJeXx1tvvRVymRMnTiQ/P9+/HTp0qELX+Wt2PE6UIxrQUMqLZhhYjKAqyYQQQghxngSd7Pya8k0+c97ExcVxySWXsG/fPpKSkigtLQ2oWQI4evToafv4lLHb7cTExARsFXFqzY4eEesbeq5MNMOKTTooCyGEEGGp0snO+VZYWMj+/ftJTk6mU6dOWK1WVq1a5T++d+9eDh48SEZGRpXf2/T4EjuL14UR4eurZJoedM2KYZPlIoQQQohwFHTbS9lcN7/eV10eeugh+vfvT9OmTTl8+DCTJ0/GYrFw++23Exsby7Bhwxg3bhwJCQnExMRw//33k5GRUeUjsQBKi0uAehgeJ/aoBBQamvJgscWg67UubxRCCCEuCEEnO0opBg8ejN3uG43kdDoZMWIEUVFRAAH9earC//73P26//XZ+/vlnGjZsyJVXXsn69etp2LAhADNmzEDXdQYMGIDL5SIrK4vZs2dXaQxlXCW+76aZTuo5GmJ6QCkTi12GnQshhBDhKuhkZ9CgQQGf77zzznLn3H333aFH9CuLFy8+63GHw8GsWbOYNWtWld3zTNwlbgBMzYlV1zEBhVfWxRJCiFrK6/XidrtrOgxxBlarFYvFUulygk525s2bV+mb1lZet6/PjsfixAoopaGZXgz76WeRFkIIEZ6UUuTk5JQb4CLCT1xcHElJSZXqMiPjpYOgvL5+OV7LL011pjKxS7IjhBC1Slmi06hRIyIjI6u176kIjVKK4uJicnNzAUhOTg65LEl2guE1QAOvpfTUnRjSZ0cIIWoNr9frT3TOxyoAInRl62/m5ubSqFGjkJu0ZAhREJTyDS/3Wn3tuxoaulIYMnuyEELUGmV9dCIjI2s4ElERZe+pMn2rJNkJhvLV4HgNj++jUqBrWKSDshBC1DrSdFU7VMV7kmQnCEo7mez45w9UgCajsYQQQtRpV111FWPGjKmWsps1a8bMmTOrpewykuxUkFIKpflWNjcdvsemKYXSFBZZKkIIIcR5MHjwYDRNY8SIEeWOjRw5Ek3TGDx48PkPLMxJslNBHrcJ2snH5fBV7ShMACw2qdkRQghxfqSmprJ48WJKSkr8+5xOJwsXLqRJkyYhl6uUwuPxhHRtaWnpuU+qQZLsVJDb6fX9oUw0R8TJP73ouoZVOigLIYQ4Tzp27EhqaipLly7171u6dClNmjShQ4cO/n0ul4vRo0fTqFEjHA4HV155JRs3bvQfX716NZqmsXz5cjp16oTdbueLL76gqKiIu+++m+joaJKTk/nrX/9aLoZmzZrx1FNPcffddxMTE8Pw4cMB+OKLL+jRowcRERGkpqYyevRoioqK/Nfl5ubSv39/IiIiSEtL44033qiOR1SOJDsVVFLom1vH4nVhj0oAwDRN0HUsNkdNhiaEEKKSlFIUl3qC2pxuL0opnG7vaT9XZFNKhRTv0KFDAyb5fe211xgyZEjAORMmTOCdd95hwYIFbNmyhRYtWpCVlcWxY8cCznvkkUeYPn06e/bsoV27dowfP541a9bwr3/9i48++ojVq1ezZcuWcjH85S9/oX379mzdupXHH3+c/fv3c9111zFgwAC2b9/Om2++yRdffMGoUaP81wwePJhDhw7x6aef8vbbbzN79mz/PDrVSebZqaCfDx8CwPA6sUc1QClfM5au6xiGNGMJIURtVuL20mbSh0Ff16NlA168vQNvbjzE77uk8n//2MTn3/5U4et3T8ki0hb8T/Gdd97JxIkTOXDgAABr165l8eLFrF69GoCioiLmzJnD/Pnz6du3LwCvvPIKK1euZO7cuYwfP95f1pQpU7jmmmsAKCwsZO7cufzzn/+kT58+ACxYsIDGjRuXi6F37948+OCD/s/33HMPAwcO9HdkbtmyJS+88AK9evVizpw5HDx4kOXLl/PVV1/RpUsXAObOnUvr1q2D/v7BkmSngo5k7wOi0b1OIuz1fDu9JrqhY5VJBYUQ4oL0+bc/8ebGQ9zbqzl/X7M/qESnMho2bEi/fv2YP38+Sin69etHgwYN/Mf379+P2+2me/fu/n1Wq5WuXbuyZ8+egLI6d+4ccF1paSndunXz70tISKBVq1blYjj1OoBt27axffv2gKYppRSmaZKdnc0333yDYRh06tTJfzw9PZ24uLjgH0CQJNmpoLwjR4CWaKYLXddRJijlAd3AaljPeb0QQojwFWG1sHtKVtDX6ZqG3dBxe02G97yYQVc0wwyiaSrCGvoil0OHDvU3EVVmMeyoqKgqua6wsJB7772X0aNHlzu3SZMmfPPNNyHdpypIslNBxcfzT/7lBECh0fvuu4htUB+vN7Q2VyGEEOFB07SQmpPKWC2+ie8clUhegnXddddRWlqKpmlkZQUmas2bN8dms7F27VqaNm0K+GYg3rhx41nny2nevDlWq5UNGzb4R3YdP36cb775hl69ep01no4dO7J7925atGhx2uPp6el4PB42b97sb8bau3fveVmMVZKdCrqk/eWsP+LBl+zY6THgVmIbNiTvxx+oF59U0+EJIYS4wFgsFn+T1K/XjIqKiuK+++5j/PjxJCQk0KRJE5599lmKi4sZNmzYGcuMjo5m2LBhjB8/nvr169OoUSMeffRRdP3c45kefvhhLr/8ckaNGsU999xDVFQUu3fvZuXKlfztb3+jVatWXHfdddx7773MmTMHwzAYM2aMf/2r6iSjsSqo/fXdSW2dgNJcdL/Zl+gcO3KYte/+A8MqOaMQQojzLyYmhpiYmNMemz59OgMGDOCuu+6iY8eO7Nu3jw8//JD4+PizlvnnP/+ZHj160L9/fzIzM7nyyisD+tmcSbt27VizZg3ffPMNPXr0oEOHDkyaNImUlBT/OfPmzSMlJYVevXpxyy23MHz4cBo1ahTclw6BpkId91aHFBQUEBsbS35+/hn/o/ny9Y/peEsvjuz+gWadm5L/44+seGk2san16DvkwdNeI4QQIvw4nU6ys7NJS0vD4ZCpQ8Ld2d5XRX6/QZqxKmzvuk+IbdycS69Ow/R6+WzJOyjTi80u/1CEEEKIcCbNWBU0ZPZU2lzVDK/Xi6br9Lh1AGDKUhFCCCFEmJNkJwgnjh9n8eQnyf8xl7hGDbn2/0ZgOw8dq4QQQggROkl2grD981UArF32NnlHfyQhpTHtuvet4aiEEEIIcTaS7ITos7eXceyHQ0REn7lDlBBCCCFqniQ7oVKw8uUX2PXVJzUdiRBCCCHOQpKdUCmFpisMq3RQFkIIIcKZJDuVYKKwGLaaDkMIIYQQZyHJToiUUmhoGDL0XAghhAhrkuyESCkTTdOwWGXFcyGEECKcSbITItNrolvAsMkMykIIIc6PwYMHo2kaI0aMKHds5MiRaJrG4MGDz39gYU6SnRApZYJuwSrNWEIIIc6j1NRUFi9eTElJiX+f0+lk4cKFNGnSJORylVJ4PJ6qCDHsSLITKtOLrmtYrTKDshBCiPOnY8eOpKamsnTpUv++pUuX0qRJEzp06ODf53K5GD16NI0aNcLhcHDllVeyceNG//HVq1ejaRrLly+nU6dO2O12vvjiC06cOMHAgQOJiooiOTmZGTNmcNVVVzFmzBj/ta+//jqdO3emXr16JCUlcccdd5Cbm1uu7FWrVtG5c2ciIyO54oor2Lt3b/U+nDOQZCdEXtMEi44ho7GEEKL2UwpKi4Lb3E7fdW7n6T9XZFMqpHCHDh3KvHnz/J9fe+01hgwZEnDOhAkTeOedd1iwYAFbtmyhRYsWZGVlcezYsYDzHnnkEaZPn86ePXto164d48aNY+3atbz33nusXLmSzz//nC1btgRc43a7eeqpp9i2bRvvvvsu33///Wmbzx599FH++te/smnTJgzDYOjQoSF938qSVc9DpUx0i4HVJh2UhRCi1nMXw9SU4K9r3htufQ22vA4d74LFt8P+ICab/eNhsEUFfds777yTiRMncuDAAQDWrl3L4sWLWb16NQBFRUXMmTOH+fPn07evb1mjV155hZUrVzJ37lzGjx/vL2vKlClcc801AJw4cYIFCxawcOFC+vTpA8C8efNISQl8NqcmLRdffDEvvPACXbp0obCwkOjoaP+xp59+ml69egG+pKpfv344nU4cjvPb31WSnVCZvmTHMOQRCiHEBWv/J75Ep/toWPtCcIlOJTRs2JB+/foxf/58lFL069ePBg0a/BLW/v243W66d+/u32e1WunatSt79uwJKKtz587+v7/77jvcbjddu3b174uNjaVVq1YB12zevJknnniCbdu2cfz4cUzTBODgwYO0adPGf167du38fycnJwOQm5tbqb5FoZBf6hCZJ5Mdi1UeoRBC1HrWSF8tS7A0Cxh28JbCFfdD1+GgvMHdN0RDhw5l1KhRAMyaNSvkcqKigqtZKioqIisri6ysLN544w0aNmzIwYMHycrKorS0NOBc6ynTs2iaBuBPjM4n6bMTAqVAM00Mqw1dl0cohBC1nqb5mpOC3awO37UWm+//Wh3BXX8yAQjFddddR2lpKW63m6ysrIBjzZs3x2azsXbtWv8+t9vNxo0bA2pefu3iiy/GarUGdGTOz8/nm2++8X/+73//y88//8z06dPp0aMH6enpAZ2Tw1Gt+qWePn06mqYF9Ah3Op2MHDmS+vXrEx0dzYABAzh69Gi1x2LixWKXYedCCCFqhsViYc+ePezevRuLxRJwLCoqivvuu4/x48ezYsUKdu/ezf/93/9RXFzMsGHDzlhmvXr1GDRoEOPHj+fTTz9l165dDBs2DF3X/TUzTZo0wWaz8eKLL/Ldd9/x3nvv8dRTT1Xrd62sWpPsbNy4kb///e8B7X8AY8eO5f3332fJkiWsWbOGw4cPc8stt1R7PMo0Mewy7FwIIUTNiYmJISYm5rTHpk+fzoABA7jrrrvo2LEj+/bt48MPPyQ+Pv6sZT733HNkZGRwww03kJmZSffu3WndurW/U3HDhg2ZP38+S5YsoU2bNkyfPp2//OUvVf7dqpKmVIjj3s6jwsJCOnbsyOzZs/nTn/7Eb37zG2bOnEl+fj4NGzZk4cKF3HrrrYCveq1169asW7eOyy+/vELlFxQUEBsbS35+/hn/owH44l9LOLBxB7EXJZGfk0OT9i3pcctdVfIdhRBCnB9Op5Ps7GzS0tLO+6ig2qioqIiLLrqIv/71r2etFaouZ3tfFf39rhU1OyNHjqRfv35kZmYG7N+8eTNutztgf3p6Ok2aNGHdunVnLM/lclFQUBCwBUMBKIVhkzl2hBBC1C1bt25l0aJF7N+/ny1btjBw4EAAbrzxxhqOLHRhP5Ro8eLFbNmyJaCzVJmcnBxsNhtxcXEB+xMTE8nJyTljmdOmTePJJ58MPSgFKBOrXf4XgRBCiLrnL3/5C3v37sVms9GpUyc+//zzgKHttU1YJzuHDh3igQceYOXKlVVa1Thx4kTGjRvn/1xQUEBqamoQJWhoysSQDspCCCHqmA4dOrB58+aaDqNKhXUz1ubNm8nNzaVjx44Yhm8CvzVr1vDCCy9gGAaJiYmUlpaSl5cXcN3Ro0dJSko6Y7l2u93fqetsnbvOSgPDKs1YQgghRLgL65qdPn36sGPHjoB9Q4YMIT09nYcffpjU1FSsViurVq1iwIABAOzdu5eDBw+SkZFRbXEpU4ECiy2sH58QQgghCPNkp169elx22WUB+6Kioqhfv75//7Bhwxg3bhwJCQnExMRw//33k5GRUeGRWKFQmGgWDZtNhp4LIYQQ4S6sk52KmDFjBrquM2DAAFwuF1lZWcyePbta76kUoMCwSp8dIYQQItzVumSnbEXXMg6Hg1mzZlVqXZBgKY8XdA2L9NkRQgghwl5Yd1AOV0opdF3DMKRmRwghhAh3kuyEwFQmukWToedCCCFELSDJTghMr4mma1htMqmgEEKI82fw4MFomoamaVitVtLS0pgwYQJOp9N/TtlxTdOIioqiZcuWDB48uNzcOatXr0bTtIDpWw4fPkzbtm3p2bMn+fn5Aeeceu/Tbc2aNTtPTyF4kuyEQHlNkGRHCCFEDbjuuus4cuQI3333HTNmzODvf/87kydPDjhn3rx5HDlyhF27djFr1iwKCwvp1q0b//jHP85Y7v79+7nyyitp2rQpH374IbGxsQHHn3/+eY4cOeLfTr3PkSNHTrvSQbiodR2Uw4PCYjGwWCRXFEIIcX7Z7Xb/xLmpqalkZmaycuVKnnnmGf85cXFx/nOaNWvGtddey6BBgxg1ahT9+/cvt/L59u3bycrKonfv3ixYsADDKJ8exMbGlkuATr1POJNf6xCYXhOL1YrlNP8xCCGEqH2UUhS7i4PanB4nSimcHudpP1dkU0pVKu6dO3fy5ZdfYqvAwtRjx47lxIkTrFy5MmD/l19+Sa9evRgwYAD//Oc/T5vo1HZ17xudB0qZWCx2DKs8PiGEqAtKPCV0W9gt6OsyUjL4c88/s/TbpdzS8hZGfzqadYfXVfj6DXdsINIaGdQ9//3vfxMdHY3H48HlcqHrOn/729/OeV16ejoA33//fcD+m2++md///vcVKqO2kpqdEChTYZEJBYUQ4oK37vA6ln67lCGXDWHpt0uDSnRCdfXVV/P111+zYcMGBg0axJAhQ/xLJp1NWS2SpmkB+2+88UaWLVvG559/Xi3xhgOpmgiFrHguhBB1SoQRwYY7NgR9na7p2C123F43gy8dzO3pt2MqM6j7BisqKooWLVoA8Nprr9G+fXvmzp3LsGHDznrdnj17AEhLSwvY//e//50JEybQt29f/vOf/9CzZ8+gYwp3kuyEwjQxZCSWEELUGZqmBd2cdCqrxQqAwzi/vw26rvPHP/6RcePGcccddxARcebkaebMmcTExJCZmRmwX9M0Xn75ZXRd5/rrr+eDDz6gV69e1R36eSXNWKFQCksFOoMJIYQQ1e22227DYrEELJuUl5dHTk4OBw4cYOXKldx6660sXLiQOXPmEBcXV64MTdN46aWXuPvuu7n++uvLLc1U20nNTiiUwmqXZEcIIUTNMwyDUaNG8eyzz3LfffcBMGTIEMC3fuRFF13ElVdeyVdffUXHjh3PWI6macyaNQtd1+nXrx///ve/y/Xvqa00Vdlxb3VAQUEBsbGx5OfnExMTc8bzvvjXEg5s3AFAes+udLr2hvMVohBCiCridDrJzs4mLS0Nh0O6JIS7s72viv5+SzNW0DRAYbFJB2UhhBCiNpBkJ0hl1WAWw1qjcQghhBCiYiTZCZJSvrodq3RQFkIIIWoFSXaCpRSgyWgsIYQQopaQZCdISoGmaxgyg7IQQghRK0iyEySlfMPzrDKDshBCCFErSLITLGWi6Ro2e/BTfAshhBDi/JNkJ1hKga5jyNBzIYQQolaQZCdYyrcWiU3WxhJCCCFqBUl2gqUUuq5j2GWeHSGEEKI2kGQnBLrFwGKx1HQYQgghLkCHDh1i6NChpKSkYLPZaNq0KQ888AA///yz/5yrrrqKMWPGlLt2/vz5AQuBzp8/H03Tym11bRkNWQg0BLrFgm7IoxNCCHF+fffdd2RkZHDJJZewaNEi0tLS2LVrF+PHj2f58uWsX7+ehISEoMqMiYlh7969AfvqygKgZeQXOwQWm4HFIpViQgghzq+RI0dis9n46KOPiIjwjQpu0qQJHTp0oHnz5jz66KPMmTMnqDI1TSMpKak6wg0bkuyEwGKtW9V7QghxoVNKoUpKgrtI19HsdpTLBaZZ/nMFaBERFa5FOXbsGB9++CFPP/20P9Epk5SUxMCBA3nzzTeZPXt2cN/jAiDJTggMuywVIYQQdYkqKWFvx05BXxfV/Qou+utfyXvnHeIGDOB/I0dStPbLCl/fastmtMjICp377bffopSidevWpz3eunVrjh8/zo8//gjA7NmzefXVVwPO8Xg85frj5OfnEx0dHbCvR48eLF++vKJfI+xJshMkDQ2LTUZiCSGEgKK1X5L3zjvUHzaMn+fODSrRCZVSqkLnDRw4kEcffTRg39KlS5k6dWrAvnr16rFly5aAfb+uOartJNkJmobNIRMKCiFEXaJFRNBqy+bgLyxrunK7SRg6lPiBAyvchFV234pq0aIFmqaxZ88ebr755nLH9+zZQ3x8PA0bNgQgNjaWFi1aBJzTqFGj03wFvdx5dY0kO0HSAMMqzVhCCFGXaJpW4eak07L6avy1ahyyXb9+fa655hpmz57N2LFjA2pfcnJyeOONN7j77rvr3EiqqiBDioKk6RpWmyQ7Qgghzr+//e1vuFwusrKy+Oyzzzh06BArVqzgmmuu4aKLLuLpp58OukylFDk5OeU2M4gaqnAnyU6wdA1danaEEELUgJYtW7Jp0yYuvvhifve739G8eXOGDx/O1Vdfzbp164KeYwegoKCA5OTkcltubm41fIOaoamK9nSqwwoKCoiNjSU/P5+YmJgznvfFv5ZwYP1O2l2fSdsePc5jhEIIIaqK0+kkOzubtLS0OjdTcF10tvdV0d9vqdkJkqZpWK3SQVkIIYSoLcI+2ZkzZw7t2rUjJiaGmJgYMjIyAsb+O51ORo4cSf369YmOjmbAgAEcPXq02uLRdA2LNGMJIYQQtUbYJzuNGzdm+vTpbN68mU2bNtG7d29uvPFGdu3aBcDYsWN5//33WbJkCWvWrOHw4cPccsst1RaPrulYrDLPjhBCCFFbhP3Q8/79+wd8fvrpp5kzZw7r16+ncePGzJ07l4ULF9K7d28A5s2bR+vWrVm/fj2XX3551Qek69hs0sYrhBBC1BZhX7NzKq/Xy+LFiykqKiIjI4PNmzfjdrvJzMz0n5Oenk6TJk1Yt25d9QShgVWWixBCCCFqjbCv2QHYsWMHGRkZOJ1OoqOjWbZsGW3atOHrr7/GZrMRFxcXcH5iYiI5OTlnLM/lcuFyufyfCwoKKhyLZmhYHXVrGm0hhBCiLqsVNTutWrXi66+/ZsOGDdx3330MGjSI3bt3h1zetGnTiI2N9W+pqakVvlbXDCyG9NkRQgghaotakezYbDZatGhBp06dmDZtGu3bt+f5558nKSmJ0tJS8vLyAs4/evQoSUlJZyxv4sSJ5Ofn+7dDhw5VOBbdYsGw1YoKMSGEEEJQS5KdXzNNE5fLRadOnbBaraxatcp/bO/evRw8eJCMjIwzXm+32/1D2cu2itJ1Q0ZjCSGEELVI2FdRTJw4kb59+9KkSRNOnDjBwoULWb16NR9++CGxsbEMGzaMcePGkZCQQExMDPfffz8ZGRnVMxIL0C0GFqNW5ohCCCFEyDRNY9myZdx00001HUrQwv5XOzc3l7vvvptWrVrRp08fNm7cyIcffsg111wDwIwZM7jhhhsYMGAAPXv2JCkpiaVLl1ZLLFbNwG5zYLGE/WMTQghRBw0ePNi3QrumYbVaSUtLY8KECTidzpoOLayFfc3O3Llzz3rc4XAwa9YsZs2aVe2xxNpi8ESYaJpW7fcSQgghTue6665j3rx5uN1uNm/ezKBBg9A0jWeeeaamQwtbUkURBKVZ0GwONF2SHSGEEDXDbreTlJREamoqN910E5mZmaxcuRKAn3/+mdtvv52LLrqIyMhI2rZty6JFiwKuv+qqqxg9ejQTJkwgISGBpKQknnjiiYBzvv32W3r27InD4aBNmzb+8k+1Y8cOevfuTUREBPXr12f48OEUFhb6jw8ePJibbrqJqVOnkpiYSFxcHFOmTMHj8TB+/HgSEhJo3Lgx8+bNq/qH9CuS7ATBG9EQrV7Dmg5DCCFEFVNK4XZ5g9o8pV6UUnhKT/+5IptSqlJx79y5ky+//BKbzTfZrdPppFOnTnzwwQfs3LmT4cOHc9ddd/HVV18FXLdgwQKioqLYsGEDzz77LFOmTPEnNKZpcsstt2Cz2diwYQMvvfQSDz/8cMD1RUVFZGVlER8fz8aNG1myZAkff/wxo0aNCjjvk08+4fDhw3z22Wc899xzTJ48mRtuuIH4+Hg2bNjAiBEjuPfee/nf//5XqedwLpqq7JOuAyq6RPzOz3ZRUlhKl+s7nMfohBBCVCWn00l2djZpaWk4HL7lf9wuLy8/sCboslJbJ3DtPZeyZ+1hWndP4aNXd3Foz7EKXz/8+V5Y7ZYKnz948GD++c9/4nA48Hg8uFwudF3nrbfeYsCAAae95oYbbiA9PZ2//OUvgK9mx+v18vnnn/vP6dq1K71792b69Ol89NFH9OvXjwMHDpCSkgLAihUr6Nu3r7+D8iuvvMLDDz/MoUOHiIqKAuA///kP/fv35/DhwyQmJjJ48GBWr17Nd999h6776lbS09Np1KgRn332GeBbGSE2NpZXX32VP/zhD6eN/3Tvq0xFf7/Dvs9OOIlLakBEibumwxBCCBEmDu05xp61h+lwbVO2fnQgqEQnVFdffTVz5syhqKiIGTNmYBiGP9Hxer1MnTqVt956ix9++IHS0lJcLheRkZEBZbRr1y7gc3JyMrm5uQDs2bOH1NRUf6IDlJvOZc+ePbRv396f6AB0794d0zTZu3cviYmJAFx66aX+RAd8Kxxcdtll/s8Wi4X69ev7711dJNkJQr34etgjvDUdhhBCiCpm2HSGP98r6Os0DSxWHa/H5DfXNKHtVY0Jpr3EsAXfmyQqKooWLVoA8Nprr9G+fXvmzp3LsGHD+POf/8zzzz/PzJkzadu2LVFRUYwZM4bS0tKAMqy/mi9O0zRM0ww6lnM53X3O171PJclOkHTp5SSEEHWOpmlBNSf9msXwDVwxbKGXEQpd1/njH//IuHHjuOOOO1i7di033ngjd955J+Drf/PNN9/Qpk2bCpfZunVrDh06xJEjR0hOTgZg/fr15c6ZP38+RUVF/tqdtWvXous6rVq1qqJvV3XkpztIusyxI4QQIozcdtttWCwWZs2aRcuWLVm5ciVffvkle/bs4d577+Xo0aNBlZeZmckll1zCoEGD2LZtG59//jmPPvpowDkDBw7E4XAwaNAgdu7cyaeffsr999/PXXfd5W/CCifyyx0Ew2bBapfKMCGEEOHDMAxGjRrFs88+y4MPPkjHjh3JysriqquuIikpKegZj3VdZ9myZZSUlNC1a1fuuecenn766YBzIiMj+fDDDzl27BhdunTh1ltvpU+fPvztb3+rwm9WdWQ0FhXvzS2EEKL2O9voHhF+qmI0ltTsCCGEEKJOk2RHCCGEEHWaJDtCCCGEqNMk2RFCCCFEnSbJjhBCCCHqNEl2hBBCXJBkMHLtUBXvSZIdIYQQF5Sy5QqKi4trOBJREWXv6dfLTARDZsgTQghxQbFYLMTFxfkXn4yMjETTtBqOSvyaUori4mJyc3OJi4vDYgl9KQ5JdoQQQlxwkpKSAKp9tW1ReXFxcf73FSpJdoQQQlxwNE0jOTmZRo0a4Xa7azoccQZWq7VSNTplJNkRQghxwbJYLFXyYyrCm3RQFkIIIUSdJsmOEEIIIeo0SXaEEEIIUadJnx1+mbCooKCghiMRQgghREWV/W6fa+JBSXaAn3/+GYDU1NQajkQIIYQQwTpx4gSxsbFnPC7JDpCQkADAwYMHz/qwRPUpKCggNTWVQ4cOERMTU9PhXJDkHYQHeQ81T95BzavoO1BKceLECVJSUs5aniQ7gK77ui7FxsbKf9g1LCYmRt5BDZN3EB7kPdQ8eQc1ryLvoCKVFNJBWQghhBB1miQ7QgghhKjTJNkB7HY7kydPxm6313QoFyx5BzVP3kF4kPdQ8+Qd1LyqfgeaOtd4LSGEEEKIWkxqdoQQQghRp0myI4QQQog6TZIdIYQQQtRpF3yyM2vWLJo1a4bD4aBbt2589dVXNR1SnfbZZ5/Rv39/UlJS0DSNd999N+C4UopJkyaRnJxMREQEmZmZfPvttzUTbB01bdo0unTpQr169WjUqBE33XQTe/fuDTjH6XQycuRI6tevT3R0NAMGDODo0aM1FHHdM2fOHNq1a+efQyQjI4Ply5f7j8vzP/+mT5+OpmmMGTPGv0/eQ/V64okn0DQtYEtPT/cfr8rnf0EnO2+++Sbjxo1j8uTJbNmyhfbt25OVlUVubm5Nh1ZnFRUV0b59e2bNmnXa488++ywvvPACL730Ehs2bCAqKoqsrCycTud5jrTuWrNmDSNHjmT9+vWsXLkSt9vNtddeS1FRkf+csWPH8v7777NkyRLWrFnD4cOHueWWW2ow6rqlcePGTJ8+nc2bN7Np0yZ69+7NjTfeyK5duwB5/ufbxo0b+fvf/067du0C9st7qH6XXnopR44c8W9ffPGF/1iVPn91AevatasaOXKk/7PX61UpKSlq2rRpNRjVhQNQy5Yt8382TVMlJSWpP//5z/59eXl5ym63q0WLFtVAhBeG3NxcBag1a9YopXzP3Gq1qiVLlvjP2bNnjwLUunXrairMOi8+Pl69+uqr8vzPsxMnTqiWLVuqlStXql69eqkHHnhAKSX/Ds6HyZMnq/bt25/2WFU//wu2Zqe0tJTNmzeTmZnp36frOpmZmaxbt64GI7twZWdnk5OTE/BOYmNj6datm7yTapSfnw/8skbc5s2bcbvdAe8hPT2dJk2ayHuoBl6vl8WLF1NUVERGRoY8//Ns5MiR9OvXL+B5g/w7OF++/fZbUlJSuPjiixk4cCAHDx4Eqv75X7BrY/300094vV4SExMD9icmJvLf//63hqK6sOXk5ACc9p2UHRNVyzRNxowZQ/fu3bnssssA33uw2WzExcUFnCvvoWrt2LGDjIwMnE4n0dHRLFu2jDZt2vD111/L8z9PFi9ezJYtW9i4cWO5Y/LvoPp169aN+fPn06pVK44cOcKTTz5Jjx492LlzZ5U//ws22RFC+P5X7c6dOwPaycX50apVK77++mvy8/N5++23GTRoEGvWrKnpsC4Yhw4d4oEHHmDlypU4HI6aDueC1LdvX//f7dq1o1u3bjRt2pS33nqLiIiIKr3XBduM1aBBAywWS7me3UePHiUpKamGorqwlT13eSfnx6hRo/j3v//Np59+SuPGjf37k5KSKC0tJS8vL+B8eQ9Vy2az0aJFCzp16sS0adNo3749zz//vDz/82Tz5s3k5ubSsWNHDMPAMAzWrFnDCy+8gGEYJCYmyns4z+Li4rjkkkvYt29flf87uGCTHZvNRqdOnVi1apV/n2marFq1ioyMjBqM7MKVlpZGUlJSwDspKChgw4YN8k6qkFKKUaNGsWzZMj755BPS0tICjnfq1Amr1RrwHvbu3cvBgwflPVQj0zRxuVzy/M+TPn36sGPHDr7++mv/1rlzZwYOHOj/W97D+VVYWMj+/ftJTk6u+n8HIXairhMWL16s7Ha7mj9/vtq9e7caPny4iouLUzk5OTUdWp114sQJtXXrVrV161YFqOeee05t3bpVHThwQCml1PTp01VcXJz617/+pbZv365uvPFGlZaWpkpKSmo48rrjvvvuU7GxsWr16tXqyJEj/q24uNh/zogRI1STJk3UJ598ojZt2qQyMjJURkZGDUZdtzzyyCNqzZo1Kjs7W23fvl098sgjStM09dFHHyml5PnXlFNHYykl76G6Pfjgg2r16tUqOztbrV27VmVmZqoGDRqo3NxcpVTVPv8LOtlRSqkXX3xRNWnSRNlsNtW1a1e1fv36mg6pTvv0008VUG4bNGiQUso3/Pzxxx9XiYmJym63qz59+qi9e/fWbNB1zOmeP6DmzZvnP6ekpET9v//3/1R8fLyKjIxUN998szpy5EjNBV3HDB06VDVt2lTZbDbVsGFD1adPH3+io5Q8/5ry62RH3kP1+v3vf6+Sk5OVzWZTF110kfr973+v9u3b5z9elc9fVj0XQgghRJ12wfbZEUIIIcSFQZIdIYQQQtRpkuwIIYQQok6TZEcIIYQQdZokO0IIIYSo0yTZEUIIIUSdJsmOEEIIIeo0SXaEEEIIUadJsiOEEBWgaRrvvvtuTYchhAiBJDtCXEAGDx6MpmlMnz49YP+7776Lpmk1FJWPpmmn3RYvXlyjcZU5cuQIffv2rekwmD9/PnFxcTUdhhC1iiQ7QlxgHA4HzzzzDMePH6/pUMqZN28eR44cCdhuuummGo2ptLQUgKSkJOx2e43GIoQIjSQ7QlxgMjMzSUpKYtq0aac9/sQTT/Cb3/wmYN/MmTNp1qyZ//PgwYO56aabmDp1KomJicTFxTFlyhQ8Hg/jx48nISGBxo0bM2/evKBii4uLIykpKWBzOBwADB06lHbt2uFyuQBfEtKhQwfuvvtuAL7//nt/TdAVV1yBw+HgsssuY82aNQH32LlzJ3379iU6OprExETuuusufvrpJ//xq666ilGjRjFmzBgaNGhAVlYWENiMVXavt956ix49ehAREUGXLl345ptv2LhxI507dyY6Opq+ffvy448/Btz/1VdfpXXr1jgcDtLT05k9e7b/WFm5S5cu5eqrryYyMpL27duzbt06AFavXs2QIUPIz8/313w98cQTAMyePZuWLVvicDhITEzk1ltvDerZC1GXSbIjxAXGYrEwdepUXnzxRf73v/+FXM4nn3zC4cOH+eyzz3juueeYPHkyN9xwA/Hx8WzYsIERI0Zw7733Vuoep3rhhRcoKirikUceAeDRRx8lLy+Pv/3tbwHnjR8/ngcffJCtW7eSkZFB//79+fnnnwHIy8ujd+/edOjQgU2bNrFixQqOHj3K7373u4AyFixYgM1mY+3atbz00ktnjGny5Mk89thjbNmyBcMwuOOOO5gwYQLPP/88n3/+Ofv27WPSpEn+89944w0mTZrE008/zZ49e5g6dSqPP/44CxYsCCj30Ucf5aGHHuLrr7/mkksu4fbbb8fj8XDFFVcwc+ZMYmJi/DVfDz30EJs2bWL06NFMmTKFvXv3smLFCnr27Fmp5y1EnVI1C7ULIWqDQYMGqRtvvFEppdTll1+uhg4dqpRSatmyZars/x1MnjxZtW/fPuC6GTNmqKZNmwaU07RpU+X1ev37WrVqpXr06OH/7PF4VFRUlFq0aFGFYgOUw+FQUVFRAduBAwf853z55ZfKarWqxx9/XBmGoT7//HP/sezsbAWo6dOn+/e53W7VuHFj9cwzzyillHrqqafUtddeG3DfQ4cOKUDt3btXKaVUr169VIcOHU4b37JlywLu9eqrr/qPL1q0SAFq1apV/n3Tpk1TrVq18n9u3ry5WrhwYUC5Tz31lMrIyDhjubt27VKA2rNnj1JKqXnz5qnY2NiAMt555x0VExOjCgoKysUthFDKqLEsSwhRo5555hl69+7NQw89FNL1l156Kbr+S+VwYmIil112mf+zxWKhfv365ObmVrjMGTNmkJmZGbAvJSXF/3dGRgYPPfQQTz31FA8//DBXXnlluTIyMjL8fxuGQefOndmzZw8A27Zt49NPPyU6Orrcdfv37+eSSy4BoFOnThWKt127dv6/ExMTAWjbtm3AvrLvX1RUxP79+xk2bBj/93//5z/H4/EQGxt7xnKTk5MByM3NJT09/bRxXHPNNTRt2pSLL76Y6667juuuu46bb76ZyMjICn0PIeo6SXaEuED17NmTrKwsJk6cyODBg/37dV1HKRVwrtvtLne91WoN+Kxp2mn3maZZ4ZiSkpJo0aLFGY+bpsnatWuxWCzs27evwuWWKSwspH///jzzzDPljpUlFQBRUVEVKu/U71s2mu3X+8q+f2FhIQCvvPIK3bp1CyjHYrGcs9yzPcd69eqxZcsWVq9ezUcffcSkSZN44okn2Lhxo4zcEgLpsyPEBW369Om8//77/g6wAA0bNiQnJycg4fn6669rILry/vznP/Pf//6XNWvWsGLFitN2gF6/fr3/b4/Hw+bNm2ndujUAHTt2ZNeuXTRr1owWLVoEbBVNcEKVmJhISkoK3333Xbl7p6WlVbgcm82G1+stt98wDDIzM3n22WfZvn0733//PZ988klVfgUhai2p2RHiAta2bVsGDhzICy+84N931VVX8eOPP/Lss89y6623smLFCpYvX05MTEy1x5OXl0dOTk7Avnr16hEVFcXWrVuZNGkSb7/9Nt27d+e5557jgQceoFevXlx88cX+82fNmkXLli1p3bo1M2bM4Pjx4wwdOhSAkSNH8sorr3D77bczYcIEEhIS2LdvH4sXL+bVV18tV8NS1Z588klGjx5NbGws1113HS6Xi02bNnH8+HHGjRtXoTKaNWtGYWEhq1aton379kRGRvLJJ5/w3Xff0bNnT+Lj4/nPf/6DaZq0atWqWr+PELWF1OwIcYGbMmVKQBNJ69atmT17NrNmzaJ9+/Z89dVXIffrCdaQIUNITk4O2F588UWcTid33nkngwcPpn///gAMHz6cq6++mrvuuiugpmP69OlMnz6d9u3b88UXX/Dee+/RoEEDwNf/Z+3atXi9Xq699lratm3LmDFjiIuLC+h/VF3uueceXn31VebNm0fbtm3p1asX8+fPD6pm54orrmDEiBH8/ve/p2HDhjz77LPExcWxdOlSevfuTevWrXnppZdYtGgRl156aTV+GyFqD039unFeCCFqoe+//560tDS2bt1abp4gIcSFTWp2hBBCCFGnSbIjhKh2U6dOJTo6+rRbOKw3JYSo26QZSwhR7Y4dO8axY8dOeywiIoKLLrroPEckhLiQSLIjhBBCiDpNmrGEEEIIUadJsiOEEEKIOk2SHSGEEELUaZLsCCGEEKJOk2RHCCGEEHWaJDtCCCGEqNMk2RFCCCFEnSbJjhBCCCHqtP8PwSq+/mMXYlQAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAG6CAYAAADZHEiPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5gcV5W//1Z1DtM9OSfNaGY0QWGUoyVZspyxjTM2Zh3AmAVMXtgvu+QlLSwYMGEJXnYBAzYmOAdZOWdpcs6hw3TOVfX7oyZoFGwZhC3zq/d5+umu6lO3blV3V3363HPPERRFUdDQ0NDQ0NDQ0Pi7I77VHdDQ0NDQ0NDQ+P8LmvDS0NDQ0NDQ0HiT0ISXhoaGhoaGhsabhCa8NDQ0NDQ0NDTeJDThpaGhoaGhoaHxJqEJLw0NDQ0NDQ2NNwlNeGloaGhoaGhovElowktDQ0NDQ0ND401CE14aGhoaGhoaGm8SmvDS0NDQ0NDQ0HiT0ISXhoaGhoaGhsabhCa8NDQ0NDQ0NDTeJDThpaGhoaGhoaHxJqEJLw0NDQ0NDQ2NNwlNeGloaGhoaGhovElowktDQ0NDQ0ND401C/1Z3QENDQ0NDQ0PjonDi83//fSz42/ahCS9AlmWGh4dJS0tDEIS3ujsaGhoaGhoaF4CiKASDQQoLCxHFt8cgnia8gOHhYUpKSt7qbmhoaGhoaGj8FQwMDFBcXPxWd+OC0IQXkJaWBqgfnMPheIt7o6GhoaGhoXEhBAIBSkpKpu/jbwc04QXTw4sOh0MTXhoaGhoaGm8z3k5hQm/pgOiOHTu4/vrrKSwsRBAE/vjHP856X1EU/v3f/52CggIsFgubN2+mo6Njlo3X6+Wuu+7C4XCQnp7O/fffTygUehOPQkNDQ0NDQ0PjwnhLhVc4HGbhwoX84Ac/OOf73/jGN3jkkUf40Y9+xP79+7HZbFx55ZXEYrFpm7vuuoumpiZeeuklnn76aXbs2MH73ve+N+sQNDQ0NDQ0NDQuGEFRFOWt7gSobsKnnnqKG2+8EVC9XYWFhXz84x/nE5/4BAB+v5+8vDwee+wx7rjjDlpaWqirq+PgwYMsXboUgOeff55rrrmGwcFBCgsLL2jfgUAAp9OJ3++fPdSYSr1Wh0GnuzBbAP1po7r/yLaSBK/1lboUbHU69fMDkGX1cSnbiqL6uFRsFUU9x5ey7Rv5fV4KtnDp/Za1a4T6WrtGvHHbv+fv/owhxbPu3yc+f/62Lhb/qOkkenp6GB0dZfPmzdPrnE4nK1asYO/evdxxxx3s3buX9PT0adEFsHnzZkRRZP/+/dx0003nbDsejxOPx6eXA4HAuTvx85+fv4OlpXDVVTPLv/zl+S8+BQVw/fUzy7/+NZzmtZtFTg6c3u/f/Q7ON3SakQG33jqz/NRTMDFxblu7Hd71rpnlv/wFXK5z25rNcM89M8vPPQcjI+e21evhvvtmll96Cfr7z20LcLo38tVXobv7/Lb33Tdzsdy5E9rbz297zz1qvwH27oXm5vPb3nknTAViHjgAJ06c3/bWW9XzDHD0KBw+fH7bm25SPz+Akydh//7z2153HUz9MWhpgd27z2971VXq9w2gsxO2bTu/7ebNUFGhvu7thZdfPr/thg1QXa2+HhyE558/v+2aNVBfr74eGYGnnz6/7YoVsHCh+trtVr+X52PJEvUB4PPB739/ftsFC2DlSvV1KAS/+c1ZJsrUjaGuDtauVV/HYurv83xUV6vnAtTf8Gv97isq1HM8xU9/en7bM68Rjz124deI//u/C79GPP74hV8jnnzywq8Rf/rThV8jnnnmwq8RL7xwYdcIQYBXXpm5RggCiqxMv6UoCsq99yGajMiSDNu2IXS0I4giiiyrukqWQRQRRAHhPe9BEgQUSUZ3YD9CezuyJKEgTNuJooAgCMg334JisyGIIuKRwyjHj4OiqPf9SRtFkkCWkW++GV1+PrIsIx84iHD48Ky2lJSEoijqdrfcgpyVhSLJiMeOIRw5jILqeFCSycn2RQS9Dvmaa1Dy8lVR0taKuG/f9H4VWRUgol4V9qnLN0FxMaLRgNjZifTiS9PHpDMaUBQFOSWBJCFs2QLV1YiigNTcirj1FRAEhDPs0OkQNl2OOG8eqUgUpacX8dWt6IwGAKSk+l0W9ToEQUBavBS5uhpBr0Pvm0D5y19mtTVlJyeSsHQpLFyIaDEjj40hPPkHkCRkUZxpL5FEZ9AjLFs2+xoxdT1+G3PJCq/R0VEA8vLyZq3Py8ubfm90dJTc3NxZ7+v1ejIzM6dtzsVXv/pVvvCFL1zkHmtovL1QZBklHlcfXq96UTvPP1plZARlSqyOjSFOTKgXZp0OQacH/eTrvzHAVb2pyCBJ6uvJmxuShDQwgJKRAbKMEgiiGxpSbRVFtVEUmHRiyIKAbDSpC/E4+t6+8+5TlmVkq01dSKVe2zaRRHY4p5dfy1aJxmBOBaaqucQ7OhF6eqf/2YsWC/rcHFLjqrDR5+cTb2tH8vsB0HV3I4g6DHm5JEbHkcJRRIsFU2Eu0b4hwq/uVw9XAXvfMNbMNKKDYyTDUSwFORgcNiIDY8QH3EQd+wAwZTvJkhUSvhDRYReWwhyMThuh/jGSoSiK2Uw0cy+m7HSyG2uIewMIvhBGp43wwBipUGTmuDPTsUky0VEPvqZOsjwBjIpymp36PdDbLdjmFBEZcuE71UV6QyUWWSHcN0oyFJ1uz2C3YC/NI+EPM7GvmaQjD0+Pm3pBJuXyY85y0LZ/hNGeIHNrrVj0SYZGYffRHRTX57DlgXoGjrooN0PzrkG8I+Hptm0OPcuur2S4qZ+s2gpa947RIELU7eXIy25kabbnK7PARs0NAi07x6hdU8jB33VQKnkx6Lx4RhXcQwoVjdkUz8vAOzJBmqTj2UeOM9DiJcfVTo6ra1ZbdWsLGenyU1SdjpKSeOJrh3EPhFjsOEJZop8JbwapuDxp56OgMp3mrYMc2bWXiC1bbcfbS1Wqn8VXlKAgMNTpp6AyHUGWUYDHv3iQgE0Vs/OyglyWr2OkJ0hBZTonts6cj4zMGEeT7aTtvg5jOJ+rrrAwON5NcUEVTVtnnzeAoV12HKvibHmgns5jPmrQkYil6Bo8yugRPULSSmmNQMWSKmRRR9N+L7VrCtn6syaML5/9RzmzwEbdukK6+5qYs6SRZx45jvdEN/NSLzEkesjsXgyKOH3e4pEI5ukfnwTJGMRDICfVZSkJk7+ZtxOXrPD6e/KZz3yGj33sY9PLU9NRz+L0f2lncuYN5vR/f6/H6f8qX4/bbrtw2/N4+M7J6f+uX4+rr75w2yuueG0X/uls3DjjaTgXpw8NrFs348F4PdtVq2Y8I+fi9OGf5cvVf18XYtvYOOPJeT3b+fNnPESvZ1tbCzU157c9PSng3LkzHq3Xsy0vh/vuQ5Fl5FAIJZFAiceR43HkcBh5YgLF7Vb/aSeSsOA1jk2SoW3yQqoosGgRMDmTSKdD0OvVh9mMaDIhDgwgGAyq7dVXM6US1K+GctqygtLZiRKLI0ejKA0N06KLlISi+gPUbXR6hOGR6d9eav0GEASMxcXIkTCSPzDzu1RdIuicTkSbjeS112IoLEQOh6fFzTSCgJiWhmC1IcsQvfkOIi4/yaRCKqU2JQhgzUnHlGEnPDBKWkUxyWCI5Iarz7oUGDOcGBx2Iv3DMDyBMdaOo6GawE23kfD6MKQ7cc6vxnuinZjbhyyDMSOd7MpKJg61Ex7zYbn8ZvKXVzO0v51wxgSKApnVRSgIZM8rwnWwi/CoD3t+Ojkf+RDjrUMIyxQ87UPY8tIpXj0PiwLeva2EPSFseelkLqxBaahkfE8b4XEftrx0ilbVYAOG9rYRGfdhtaeT1ViDArgqFuNYn4WxNAerrNC/t4nAiBd7fjrlq+eDIBCJJxlxhzCsWkvWnEKsskz7ziP4RzykF2RTta4RRRSJDo4z5g1iiiexXnEFtss30bvnJMFRL9Y8JznzapAyLRz4QxvNv3YhpcbVk3lDNY2f2czEwDAnXQO4TRGc16QjREcYHMhA6Uoy0OKlZfcwjR+7laMv9rL3ZDfMaGPMaXHSGrMoKC1R7baUMTicomjdWpoHX0WRzv6zIB8P0HhlOUdf7ONEpBB/Qx5fsn2GeZnrWJF2HfKCHArvriZHZ+ToK4MMtHgBcGXPxZ1VObutuRU0PlRGNBxHtigMB4Yw4qTTKfFQwVZuHXqYjIHyabujL/Wx92Q3ijDzW/ZmlNLkLKDhn9YixaHUbuH41gHmrcnmW098BIf1VqaOotVtI3PtllltTZ2P3Kxevpf1fda36pnrfwfDl9VR/vlv4hvys/v4kVnnDUARBPxT5/ddKzn6Qh7Kgd9i+fMuhhZ/kmBaKYaTj2JIeZFX3kTjljyOvthH55AOYd657xvmhTXUrCkmFogy0OJFh4md1SZ+VeDlvYYrESZliVA7lwUbStQfn7cXfH0gpcAvq8/K5PBkNHHO/VzKXLLCKz8/H4CxsTEKCgqm14+NjbFo8qKfn5/P+Pj4rO1SqRRer3d6+3NhMpkwmUyv3wn9Gzg9mq3K6YLi7WB7evzAP5itHIshTUyQHB1FCgZRkilVwwiiKpKMRoxl5ciJuOqdOXNXdhui2ULK7UafnY0ciyKHZv8jVmQZ0WJBNJtIDAyiz8gkFfCTHBycsQFAQJeVic5uRwBSgSCS1zutaqaEmy47B53dru4zPx8lHjtrn2f2DYMec309icHBWbai3YaxuJjE4CC6jAx0GRkYy8uI9g6Q8AWRUgqSBILVRlZNOcHhCRQR0hYVEzjURdwTRDAIoIAlK42cpRUEhrwEEz5sJivpFcUMHewiPB5UxZcC1pw0shdXEhzy4o35SM824d1ziMChYxS960Z8IwEcpdkMPvkC8Z2voDPqEYB4IkV8fyVFD91HYDSAoziL0cefInlgH2ajHrmyAWt+A7a8DLxPP0/JFRsI7NqHY9kcJl54mZwrNxFs7SItPx1bto3xX/ySvPvuoWjNPMKjPmzFOQiyzNgvfonS1YUhGEVJszDeWqnaXdaAf2AUZ2EOSCmG//vnSHod8cqrUPQ6kCRKV9cx/upWctc0gAATv/41YasJjylJvqkS/5/+iPOGG6i+bDED7a0U19UDAr7fPM7EseOEPWEGD+1FbKwk/bZbIbOE7pNJrBEbpavtPPfTpmkBY3UYqGowsWBzGYHeHtIrK1mz4BBJqQnFlc1AmZFFK6pZ/NI+yHVSuLkE39goi66sILcmSeInv8YVGEaOREiPZtL8nWOk3vFuFt3+PmLhCEUFFTT/9ifkT/ye2ux6jlxdwbdGf8WmwXQerr6Pwis2Ee3pY9HmEnLdu/Ef2QeLdBwv3sGDikC5cRF640KSEz4WbSkjK7uDPd//BkG/lyIxjXLHHAYjwziuvpZFV24mJcmYHVYO/d9/kdf9exY56hgpKUBSBA4bf8z31j9M4ZWbiPYNsOjKOWR4dhLc+ir/cUWY9kg/X4xupGx/H11PdFF39z+TSsksuKKcvv/+Pjd9ew9J/dHp77199UrKNn+HlCKw8MpyzE9/i/iOfYiCiP+eZSxJr8WS3cZVE09SWrsG9HoceXau5I+E9u7n6H+8k+Puo1wzWkzur3diX7WCORv+i5SksHBLOS1HfMg6kQWnvo8g6BClOLJuOaV1GaSSEgs3F8PWbyM8swtBEIhct5D9awpxewa5d5eVOcu+DaKI0aLnKvlJQgf2M7LxGtYrEbKWb6P2u6+o+1z3bfXeo8gQ84E1E4xpEBoFUQfi5Hvhngu6Hl5KXLLCa86cOeTn5/PKK69MC61AIMD+/ft56KGHAFi1ahU+n4/Dhw+zZHIMeOvWrciyzIoVK96qrmtovGUoySSS30/K5SLl8SBHIghmCzpnuuqBOtNeSmEqK3tN0QIgx6LTy6fb6RxpM+LG4QBRwNrQ8LrtWRcueE0bwWBANJnQ5eaQGBg4266kRPVwAaLZQnJ0FENhIcGtW0l096AvLsa55QomXngZw7x6QhNJGG7BbgPrksW4j7QTNGRgy3FSUltCeP9+PAebSF+6kHjIRlFjJUMv7SMq2rFmOShYUEqsrRVpIgxBN4ilIMsUNZYy9IfniJxsxpqXRdGmu/H95tfoVq3HYAaTIUXiyHbCu/fgswlkvetOfL1jpI7sxRT3Y66oAyDW0kz4v7+Pr6KErJvegbdnlPCLz2E2CZjL6/D29+Ab9mLNzSBj41oC23aiLF7H8Av7yN+8gZP//n0mMuYSs+ehpAJEd7qobv8m9V//FJI5jVRS4cRv9mB/5L8IpJXRMfdmCALDkB/YzrqHL8ft0mHLE9j1na2MnDQgOJ2U5B4mq7CAg488x+J/voa0VZsQRIHDn/sZbX0GlAwLcWsaQ0c6MA5EKOjaytqPbCYWyUdKChz6YyuZ//EfRCy5nFzxOXTBKOb/+ATh7dsoeuRHBNxxatcU8vJPjhHZs5dKxhBvWEr5VfXMtRYTeuUlHFddReD558nfeDlDTz9DoOckLVvy6IoPcqXbQN5tNxJ88UXSr7oK12gPhXNqGHANkbZ7j/odB5auWU3RVbfjGeoku7gK33Av8666nbSXDhDauQ1hmYWP5N/IhqxK8jdcSfDFF2f2e801CO3tfD3j3eSXLyRL6CHz+hsJvvACjquuQpJSFC7cwNrclwnu/TMQAcaYt2Y1RTfcQ3ywH3NpGVIqyeLr7yNvWxPh3XsIL7yO327+EflRPc7Kmln7LLnuRoZ27uNzje/n+P5nqIpbMBttFF1/N5FDh7AtW4YkpSi+615Ge4YIDvSiLyok+4qrcaxfj6jT4/OOkJ5VSPUjj4AsM9bXRvDgK3xlwRayrqtSY8lEkYjXhSUjmzk/fARFkSnu72bx4VyKbl9H+ie+MW2X8LqwZOZQ++mvonzqK/gG1CHV9JLKs2wWfuXbKF+S8fV3MnRoJ++et4700rkId03u0zOOJTNH3acsUzzQReGhEorWrCP9PV+ebi8Z9GGwO6Fggeolj05A7AKcJpc4b2k6iVAoxLFjxzh27BigBtQfO3aM/v5+BEHgIx/5CF/+8pf585//zMmTJ7nnnnsoLCycnvlYW1vLVVddxXvf+14OHDjA7t27+eAHP8gdd9xxwTMaNTTe7iiKghQMEu/rI97VhTQxAQYD+uwcDIVF6DMzZ4ku0W5Dn63GjohmC0m3G2NxMaLdNv2+sbiYpNuNaLZcdLsLbUsKqEOCxpISBIsZOZFAMZowFBQQ3LqV4S99heDAGGG3n3hvH4MPPYR95UpEkxHHZesY/Od/ZuzjH2Ws28XwSIyRHQcYvP9+hv75nym8ahX2mgKKl1fg/d//Y/D++4n/6NuEfvFjTEVFeB59lMKNyzCW5lGwqAL/H57CVFRE+Bc/Zvz4STpah1AQ8Dz6KEXXbCRnbj5F/3QHnp/8hPTrr6fv4El6Rtz0DXgo/M53KPjmN3DeeAN9TT3Yi7IofP/9FD7yPbyiFY9opfCR71H03/+N86otdJ3qxlGcTdFnPk7hI99jWLDRaijg4PEmdr+4m22/7cKyYRN9J93kXHkZz/2ii93hpTQPptPdGqenM8VowSq8hYtBEMnIt9G8cwhX0IT/8g2MzqvF76ycfrT1GmjeOUz18nyadw3T2m/G76zERza9XZ387I//Sc+EheZdI9gzzAg6kU59On5nJQE5k3jITnTChN9eRmu/meZdI8xbVUDzrmF6WwLsXJfDs4ujoCQQRYmjl5XTsjSX0W4/jVvKSMaS6I1P4U1/HCHNjd/iJy8tj71H/ox9wwbGd+zAtmE9R3f+gYJHHmFs1WX8MnmEvaYhsj7yMOGTJ7FvWE9r536y88pJJZPkPfIdjr7/cnaumYP7/n+i4JFHiHR0kFVYwejoKM78UqKdnRR873v47r0Xn7+YjGQDBVffSKyrC+v69XQ9/yLW9euJdXWR++lPE5Zr8QftZN1117RNy659KArodHoKv/QlUp/4FzrXbyb1iX+h+NFHiXV1oc8v4PixJhQEYl1dFD/6KNIn/gU31YSCZjIWLZ3Z54svT++z+JHvEvAZ8UerCc5bNt2eaf58tT0FRIuVov/4KoEPfhLvTXeRvmkzot5A26lWnnjsT7SfakUUdYh6A0PDEdqGLPQNBRH1egRRpP1UG4///A+0n2pVJxLo9HQP+jjUJ9E96Jtt99gfaT/Vptrp9XQP+eke8r+2zXCAQ4PQPRx43bYODSiz2ms71cYzL+2EiAcQQBBBmpwUZ88F09snU/2ZvKUer0OHDrFx48bp5am4q/e85z089thjfOpTnyIcDvO+970Pn8/H2rVref755zGbp8Pt+NWvfsUHP/hBNm3ahCiK3HzzzTzyyCNv+rG8FSQlmWhSIpqQSKReY5rvaQgC6EURnSigFwV0uslnUZhe/0aRZYWUrCDJCilZnnxWSEnq8sVOWCKKp/dZQK8TMelFBEA3OZPo9L5Jk0HX0ZSEXhRIpGRiSfmsvpn0Ika9SDCWwqQXybKb8ITixE87t2euvxA74A23FYvEIJkERcZsNJCVk45n3Es0HMNsMZKdn4V72EUsGEbxelF8E5gznOQuW4yrrQtbbhbWrExcbV3EJiYQZHWY0ZSRSU5xCRGPF08ghlnw49SDd/tOcq69msDgMI6aGiYGRwl99ctEu3tQZBlBFNGbjBgbGij8/OcIuTzY83MZ+uy/ET91EikWx/jQ+7GmKrCmJMb/6zsU/L9/xbdvH+nXXMPgpz9D/NRJHF/9CggChu5egtt3UvTFzzNxoon0q7Yw1tKN9H8/J/DqtumgeUEnkrZmDQVf/hKBUIys8jKGP/1pgs8+C4DL7CRRMgdHmgX98RNMvPgy2fffz/iTTyGnJMIV1bx68AQh0cjmZQtRYu/E3dRM+omTlK1ZTSIpsfVoD2XX3oKjqoJjv3mSoS99i6Wf/xShvmGMhmy841HSr7+efZ/7OoPDBg7rnQxsHWBhX5iPvfdBhvc1I657J6NNQ2Q/+AH+5ycv8NxoFJ/ZiDUpcpPYwz3vuI5ESmL3UJQNthB5ZWX879OneHosH1C49qUO7rluNWODAXadCqBIXioX1PHT546T6KhGQUG3OguXXsA2GJmOVWraOUQkmEDIMaAYBbo8fuaWZiAYRGpuWIpg0NPc7WLB5SUU1Wfwp6YPIMVk9uzuZW1tEdlpZtYsLCav3EFTyzjzNxaTV+Hk5ePHCAftHE9zEHQc4XPve5D84gwS8RSCHjZ+4Er+9GIPMgrPer+DKIhsyXiQ61fVUlDhxO+KsmBTCWWLs/nO0Xexx/U8kYFDmCK1zG+4la/ecAdmveq5sGWaWffez/L7v+TwjYPV/Ki2hl+d+iN3L7uZlM5A7mWXsXdoH3VbbuXJE6PkbboNz4t7WJK9lt83dXPj8lW0hbqonbuCoeAoTmM2TzdPUHD157h39CC/eMcydg+GWb90KbGkxJ/awtyTKWNbsoTt7S6Uq9/F139xkD/etBpJ1CPOX0RMlnnZUsldgh7d/EVIAhQtWkrraJBFiFgXLyaWlNgh5VAuq9ENSUFH08LL+XRnDl9bOJ9qUT9tt89vploG6+LFJFIyLQs38uMnd/ApMYOFk+vjrm5GXPsp8eZiXbyYZEpiSJfO13oz+I8l82g4R3tmnXo969HlkO9Q74uJlExxdRXyhImiqlISKRmjXiScN4cvut08ljdn2q6oqpKk1/DX2eXOmb6WvZbNF11uHst9/bb+0zXIz3OLZo6hqpLmgR41mN6SoQovox0Yh2QUMsrB+xqz4i9h3lLhtWHDBl4rjZggCHzxi1/ki1/84nltMjMz+fWvf/336N4lhSQrRBKpaaFl0IlMhBOMBmOkpMmbuaIKjiy7EYfZQI87zJxsG4FYEk/otADESV2SbTPisBoY8kYpzbISTUgE4ymMegHdaYGddpMei1GNm4omJELx1FTsMglJJpVSSLPosBr19HrClGRY8UcTeMNJpmKpp3jdvr2OnSCAok4AR0Egx27CYdETiUvUFjpoGQkSSaQQBUjIKWwGA/MKnJwY9uAKxciwmGgsyaJ11Mt4KKJO30Ygx25hSVkOR/o9eEIxEikFh9XImspcnjkxRJcrRGmmjRsWFfGbAz10jAWRFVXUVWTbedeKOTy1r5v2sQDVeQ7evbKCn+7qoH1MHQ6bWndOmxE/pJIIqRQ1uWnctbGev7zcREfvGFVlOdx5zQr+5w+76Ogbmz4/VWV53HHdSp7Z1077gIu5lUW8a0kjjz1/iM7+UaqKs7nrmpWkV5Xzuz9309U7SGVZEbctW0YqlWL7k89wICaiCAKbju4g78AuDKEAWfffz8mOfipL8uhtasXiVvepAAkg0dlJ31XXUrFhLU1t3Yh/+tP0ZIrfH+si3O1mkRSl5k9/wlJdRdb99+P52c8IPf00iiDwyPPHkGWR1Z5eKl94Ht+CBrLvv5+jTX1Uzy1jf0svBQE/p8v/4HPP4bjlFnLXrCaWlNjdHyBU0MCgPYeXA0UM9GeAovDQl37JJ6+ax/EBH/PfeSPftNXyw21dMJktpttt5Xtf/Bw/3tHNsuVVAMhA7/V3ceVlFXzu/44x2FhAVIH1u4f4xOZqerYOULe2iP/a0cnPdSv4cJmFMqBsAjgU5/lwB1seWETL7mFq11Tzwk+biLalEbSa6BAk/q0wn/Dzbh4LnuJdd9RxRW0JaZlmnvnBCcItXjZORjNHnvfwTN8JtjxQz4LMDIrnZvDN51r5wKYG/vfl3XhjSQxhHZ+4pYEnjb3UrlaLAVeuzOeUWeL9S0v45gtt/GGbn4fqMvnklTXEkzLPnhzh2gWFPHNimMvn5XH/FQ1884VWdouwIN/OA1dUIikySSVFfW0usWSCzHIzt5Wt5Luv9JLOfL604R5EQY+EgmhQ51lk5Dp573uW8M0X2jjZejsPbajmoStrSErqLDtnjoVESsKWbubzmx/kmy9s4IcnuvjazfO5YWHR5DUNdCKkJAURE9+//sP8qXSI4/0RPnnlPfzxcB/XLlQnPS3OXcbLJ/q5fWkFP3npJLnjN4JrHndd0cCzR3rYvGCuek0z5/DSiV5uX1rBj186QZkhQjQU5urF5Tx3tI9gNMmD66v47Z4O0swGrm4s47mjfVSakyRicYx6kZ++0ozDYlTtdncQiCZ4YFMdiVicDDGBIqfY8cpLrF23kQcLOpHkPDpf+R1z1t3BOrGZSnMChygjyTKnXnmcurU38GBuC7Kcg/+Vn+Bc935uFbdzq/lDnBSfR5JL+Okrrdy7bg5ry9MgswRe+QLGdR/nJnE37zB/mKT4Q/TyO/jpK73cs34eD66bg5SI0Pny75hz2R2s0zVjErPo3PoMwZFOFt7yGR5cYieuF/m3J45wTa6HhpIsfmr9AQ3iF2bbFXSQEgr41yebqMp3sLjEcV47iTyO//ardBXdSFlpOQB7Xn0ay/C+s2zSCubSUNrAp+zPYdUv56fb23GP9POpm1bxYF4rMjmMPf4JHAWVrCtbQrP5PhCf4Ffb3RwfTfKlWxbzztIoWJzwq1ugdBWUr4Nd/wWOAihdDfU3gWUmnvTtwiUb46WherRG/TF80QShqEQslSIhqd6bPIeZhiIHRr1ILDnjRbGb9JRkWRjwRClMt2DQiSwqTWfAEyUUT822y7TQ6w5jN+tJpGRq8tNoHQ3iCSVQFNU2w2qkNMtK85B696orctA8FMAbVsWSKApk2YzU5KfR5QqRbjEiCgKLSjPOvc8L7dvr2KXkFFaTQEW2g6aRUUZDAUL9HpaUlPFq1yk63KMUpmVxTe1Cfn/sMK3jbpIpSEhwaDCbf1q+kEd39HOo301NbjafuGIRn3zyENva3ETikJycMLOuKpvv3dmIOzTAVQ0FvO9/D7Ozw33WZ7W93cv37mzktwcHuH1pCQ+eZTfGro6J17EBWoLsGE7wvTuX8duDA9y8rIQHf32UnR1BwDpj5w7yauAo37tzJb89OMAty0p48FdH2dnhBYwwGOBVzxF+ePcSbtywnK0/7WflxCD6eIzhj32Uon0H+fW1XyIl6mkXqvjozWXU3HUXTa0D1NeoN/GtdbdhkpKzuvfO9bXcs26VKm6q5/DLz3yHP2xvAaA1VkYiacCeiPCJf/0u99y5kZbjHdTc8x7+ZCzn9ztaafHn8/71FTzdN4fFyzbywK1rOdU2xMK6Ur75QhuDVz5Aw70OHn/xOP9x7zpOdI/TOR7iy8uWT/fh6asfoKHIyWVzMvnFLw7yi3uXMR6IcWV9Ps9NCo3nTw7x/ssqqM8xkesw84VfbWdLWSHH2vv41JU1BP0xnnvhFJV5+Xx0/Vye/+kpqptCVGPElCXy7o0VJBIpGreU0XF4jI9cXsEC/QSDL8aIRGNYLap3IeiN0n3MReOWMpp3DxP0RjE6BB5clMaxwZPMyStjxGPBFPahQyGnJI3m3cOMDU2QnmdBmvzTpNOJjA1NTLfVfdzFIsGHUVC49uEa/vf//sg7G6vp6R7glvXlJJMp9u49ycLGGm5bWkJX1wA3z7USP9zDu+YvRpZkdMisr3Ly+21/5vKla9Ehk5Ikaira2ND6AlfmVyHJEh/e9mHuqLqVy8uvIBQe5c8Dr3DXvHdxZb6MUbFiEoyIOh0p/xgnD+6jYdlK9M48JEniqrw4sbQ+rsivRJYkjJN2h44cYcHq9RhNViRJ5op8iVhaH0syGjAbRCRJRpIk9h04ReOSWow6EVGn47KcGN54L/3NIW5asgQplaTj8B7mVM/jmsXlDLXuYUO6h7KKPZRnWRnoinLN4uVIwXGO9/VTV76QaxdXMNZ1lOty/Kyp6qQst5GJtiNc2VAP3j5c2x7nluXXgN6Mq7WZtVlGSrP2k+0yM+aC+9ZtgIluJp79L24pLEBYegMDh/ZToChUJoYx/+6TrO/aCpYvwZoPo9v9CFW7/g1G/kJR/gK+WpBDQTKP/peOUXPi39FZPLDmw4i7HyF915dgZDfkL0BBpDjcTf9LY6wDxHAarPkwyoknSBx6HN1IK/r8GnQo6LytxJ94gXXOGzEINSDq0B3+OVW7/w1G1f3y5++QPfUjOZwHaz6MQZL4pwYdGfv/h+wdz7IZ4Febz7LTnfg9/9RQid83AD0eNsu7z223+xEWd34fQ3oBoRE1FKCm7Udkj+06y4ZOddM7cpbTNnKcBj3kFXvRHf759Pko6PotdAG7VFv513dQt/JbNDYsQC8ADe+EfT+Crq3q43QOPwbBEai/+6zr8aWOJrwuUaIJiY7xICO+KAadDpNexGE2YtTPeKIGvFHm5NimBcmUYOl1hRkNxAnFUoQTKTrHg6yrzuHPx4boGA8xJ9vGTY3F/O7QAD3umaDlqfUnBgenPU0rKrL4/Wl2TSN+bmos5qmjMzbLyjPP29bpdjc1FvO7gxdod2CADpcfWZGRFImKbBt3LKvk+X2dHBkcpzIrnX9ev5DPP32I3V0ubl1cyakhFz9LufnWrY30jaaxaW4J7/ulOtunvrCcH+3u5v3rK9jXHmBf+1G+d2cjDuMAty8r4Z9/pdrduayCH21X7ZpHAhztc/OX44M8uL6S3+zvZsDj5bYluVTlOfj9wR5uXz6HHneQYwMetrYO8eD6Sp460kMg4uM9K/OoyFErIXS7AhzrcbHtZB8Prq/ij3vaCA/080/1+cwpyOCpvR38252rae5388SeTl49rto9tbeDwMgoX9wyl/rSbL74+D7+/Y6VNPe7+cPOZrYdTePB9XX8cXcLoYEevrS5lrqyXE71uugZ9fGLn/2ZD9y1iXU5OtJvvpmhj32UwL4DJCqqWY2LTZuWIwql1K+pYW/XGGvqS9jdNMAH1ldQqE8iKwpP7W7jpjU1CMBNa2rY0zrE2vpSdjX1c/Mt6xEL81EUJu0qEAWBG9fUsLd9lDULq9jd1M+tt6zFUJgNChRkGvno5rVIsszetmHW1Jeyr7mfD2+sQLdpLkeau+maoycr28b7lq1DkmRkSeLIoSM0LGjgsfcsQdTpGOzr49/zO2lwLiG7uoThvj42V+fTeuQQG+sa8I4Oc+3icjwjY7wne5SKVAOjuyK8eLCJ9e+qoTwjl+pl+Tz/k1MMtHgxWkQyC83MWViAXiciCzJtRw5RMX8Boihy1aaVjM3tY9fTf2TtdTeSV1aGLEnIskz7kcNULZtPzYocRJ2e8e5udP27MOtbuf2zN6DT65EkieaWE1SvqKN2dQEjwRH+svuPZBuyuGHDzQiiQFJKsqd5J8vrV1E2fzk/OPoDOvrbWFu1kqFAJ431S/nFqV/w7nnvJiPDQFJI8JMjP+bDjR/m5Klj7Cx5irTRJJv0m6jNrAWdQijbg9VoQRDgme5n6Qn2YHAOkBc5zsCzP+Vuew5rSjfC0GGyCht5t+1uWppPIKBQRQc6aS5s+xaGNQ/TaO0H03p45Qvo132cQqOPynI7DrsRQU4hbPsyhjUPs9TUCcoqlFe/i27Nh6mljXTj70jJm5FlGZ1OpG/7/yG1bMcTqaNg/QdRUikygqdIH/oTliXfQfZ2g7MEMS8N0WhGeOULFK95GJ64j5q+raDvg1t+Dq98Ad3aj5FptyMKIkrYTX7RHHjiPoq7t0L319SLTeXlcMvPyTGMIxvNIIjoTTLGFz5Eg2cvvPioatel2mU4dVBzJcqBH2Ev20Ii7AdvEHm0CWHNw7D0PpIdr2JY9gBKeinRvsNIoTClqzcBErm5leirHkWZs45E+zaMy9+HMmcDgdFe4pKAcuOTIIjkFmWSXq5Osgi7BrDU34ih/kZ8fS0kAi7EaxYjxn0YqhqoXnKdaucexDq533j/EaRIFBY/iM5gxlS6GKFqC7HRDky5FcyrXUgkci2h7JmUSTrjjF2yYxuG2uuZJxrwD7WR9AsEG9UktjqDGXPZkhm7yX2W6DKIYwTAtOAm5PT3nmUT7z+ClIihsxcwN9eOwerEkdGIYrCQ7NyBYfn7UMrWEHb3k5RFZJMT9GYqbOmkFVSBACn/KPrl74VFd0D3DvB0QmAYgsMQGAEpAf6hv+VW+5agCa9LEH80SfuY6nnKTTNj0J17DkQonuJgj5cFxensP+7h6vkFPPjLw7zSOn6W7ZTnZiIywDXzC3jf/x46p+fmuVOj016Z89ldiM3FtHv/+gpebfXzausRvndnI6Ji5/ZlJXxgUixdVVvJvq4A37tzMR/6zVF+e3CAB9dX8pMdXRh1At++fRH/9qfjlGXr8cciPHrXYr7zykl2d43w4PpKtrb1s6newu1Lanm+qZV/vdJJmTPFRzct5kTbIPNrijne1s9NjSVUWBQWzivllb3N3FJqJl+Ocde1Czne2s/Ceard1fXFFBpkFtaodmIyyR1XLaD5wEnqFpTSdKiZqxdXUiLGaVhUw46X9vLOnASCe5S7Ny5gZaGZ0vJimo63cE1jBQ0ZInNrKjh64AS35EQRXYPcvXExa3OSFFZV0Hr4CFcvqWOBKUz5/Hn0fOUrVJtM3PHxj9N24AD+vzxN1v33EzpwgMDKlcz91rc4sP1Vrh/oZ54tSMOq1fQ2N7OsspK2I4dZVlfPUFcHd29q4NTePdizR6ixF1K/cjV9rc0sr6yk49gRls+rY7i7k3dvms+pvXuwZY9QYys8T3ud3H35Ak7t3QOxEEZ9BbIEy6vyaTtymCUN8xFF1ethC7tYZQuRHO+HOcXodCKjXe14T+zHlWahsHoeAAnPKHMcRhITHpLpmRSWltF94BSje3eRbjKRU1XH8z8+hd0Zo8BsIB6U6DvlASC3LI3GLWW07+9l7tJs1t1RhRx3IwiQUaxWCRg4tA/3oYOYYlHKVqk55IyCQgEKRkEdXhV1OgYO7MV15CDGWGTazmA1MVSToMl6nMXKdejQk5Dj7JcOM5d56NDxbO8zfH/8h9xdeDOCAJIiISkSQV1wekj9lPcUY8lhinOvID8nn0/s+ASHRw9zfc6VzJtXz/80/Q8/O/Uz7p53F9npWehFHT8/9XOWZC9GEGBPzy7ubbiX/d17WFK6jGWykboXvsaHEjH0fTuh8nKqtvwcueUZqL8BuflphKorqa2bz759O1HkEZQ/fgC5cxuCLR9xzYeR9/4I9v8MwdOFveFeVhXVkWN1InS9grz/ZzBpx+5HEHZ8HYYOYslfQIk8SjzDiYBCYLibitXvoNLsh8XvhsfvRAAs+QsgsxyeuA957maE+puoLF6E3P4CytH/A9+AOsQ0ckJ9fuYT0LMDoWAhJfU3QWgMXG1w+H/U90dPAKKafmD0FJx8QvW2uNpBFMksr4X0PPBnn9OO5j8jCJBZXAMTvZCbC6tUDy8TPRht6RAcRqi9Hlvt9TDRgyMeVAO/M+YAdTDRg8nuhMAgQn496fn1MNEDs+zU9mzJIPjikDGHzPK60+zqZ9slghCMIdRej2Vyv8AsG4scUtdnzMG+9E6YWHnOfRptk33LmENGcQ3YjJD1rnPbTR5r+uQ6AKrvPafNdL/OtU9rmrrPwkWkFS46r50YD0IqpK6bd+2M3RRGG+gyz7qnXOpcMrUa30rOW6vxLWA8ECOcSDERTqITBcQzsjPaTXr0osDvDg/wQtMo7WMhPnP1PB5cX8mPt3fx1edap20tBh12kx6rScRiFHjwsgpuaizjqWO9/M/etsnklJwWZ6euuXdVDe9srOQPR7v4xd5WzsW9q+a9rs3pdk/OspvJMK5M5j+6b3UtN0/aPba3FQERQRAREGgsyeJjmxfwrZdOsKg4ixsby3nuZB+d4xPcv7ae3x1qYcjnY15+BtcvrAUBOsfHqMpVc7kd6G9jPOxHnMx/lW11sLykGkVR6JkYZ05GDgICLx4+xdCwDzmpoBcFGutKWVw7h+befnqGRqksLmBeWQmtfQN0DarlUQRBoKIof3p999AolUX51JSV0NrRTe+xk1SWl2K12ymqraL9eBO9rR2UzqukZmEDA909xINRmlpOEFYirFi2lrlza+ju6uDlA8+xdulG6qrm09fdzQv7/4IuEWFOzMS89VsonNfAiRM7GT50gvlrN1FYUsbghz5EePceIvOqCX36AVYvuwpBVhhsaaaorg4Egd0HniPZPMQEQbIXzMNhTWdJ3TqaDu7kL01P0lC9gutW38lIRxsdwU4OnHqFdzbcis2ZSdacSl7Y/1v0HWPUNaylcNESDrVuxxIR8J1swzG/mqhFYXndBroPHeTYiR0Yawu5duUdjHV2Egh4GMWLxWpnec16ZFnm+KFm5i+upePgOBNDo+iqXOw99iq18o2kZ+aw7IYyEAS6jw9RUVfMoee66TjcjhwXkcIJ4rIVBT0ltZlseaCe8cFxCubm0r5/jG2/bKfatptQ4WMkU8VU6K5gzm0P4Sxy0tO/ncryjSgpib0H/kzf4LOsF5IU3fAosiCyf3Q/5o5tNK79BLKgQ0Zhf/tO9K2jFDYuoaCkAhDQKxK+gz/jqTQLd9bejVlRkJ96iNXxUywsXMYPNn6f4MlnOZRuZsucq+jxdlBy7ElSq9/PV1/9BJfHJC67+jts79yLISONNUVrUJIx3Du+iXPNh2h75mFqWrciiTq6dQJZS+4j7/LPEg76sKU5cR1+nPSXPoNOEAgrkprxXlEwrHwIcf2nSLna0efUMDzcTHKkifKn30vClI685F6MGz7FaPchcipXMDDcQXFhFQNDLZSX1BP2jaOTUuiTcQQBDHkVyEEPYloWKZd60xWNVuTAGKIjDyWpZrbXZc9BCbkR7FkwdBghMAyJEMT86tBRMgrBUdVTsfB2aHka2p+HtHz1Yc1Wb6jOIsiuVme1WbNU4QNgsEBoXJ3ZlpzMfp9R/ubY6UxqoPeZAmBKMEQnwD8AzpI33w7+cfbp7VbP/1S+rjPtprctJ9CyA2fDpotXq/FvrMN4IWger0sEWVYYnIjQ4QqRYzOxoMR5VuxTIJakIsfGh39zdNqrtb46h7tWlHF8wMe9a+awtCyDcCIBYoyEEsGfmCCaCpFtdbJxTgFN4z1c01CMI83DWGgCQRAQEBEnRU5+WgYriktpdw1x3fxScjJijId8s/qaa09/TZvq7CJ80RCKBCvLS2kdHuT6+aXk2mMgQIbNTqdnhKqcQvwx9WK9tLiMDvcw188vI9+ZAAmcZiut/UPI8TiHT7bz/65eiKJAS+cQm+YVsbm2iBcPHKJn9CBWwYEjnsEJ13GqM6tomtjP3Ox34IqO8/4dt2PEzIMZ3wRB4XPeB1leuJzvbfwBiaBE3BHj4zs+zhL9RoqzKvi956ccDuzjY9LHyRk1M6c4lwPhrWwsbGBgdIRBpY3PdH2MSttcvrr4PzE5Uzz48oN887Jv4rSayM3I5AMvf4Bdw7v4Ye7nMVuMOOcW8N0j3+Wh+e8nzW7BUZLHI0ce4aGFDzHW3s1h8SB/ir3MzaMDPNh/GXPWrOHq3gqKK+tx9Q+QCgxS9JMfY00IFKTsBH/8KwYWN9Lw7W9TVjAXZ04Bz/zhPxE792C+ehkN73mYQ2mjJOQEekWHUS8gyTKSIJHMN7MwZyNP7n2MIbGLeDBG7jEz1QuXkW/t4rKqaxk4sIeixmX87uTz/JKXudV0FzmlFXz+1c/yiXX/Sp/tKIU1C3l0x39yKtXN3Xk3YEokmDBFeHzkLxxzH+V9Kz9ExBhlTu0Svrrt8/y/dZ8j1h7kK9t+Qr1nNSe9sOzaSpZuWcjRF/vY84cuckrt/DL1bbypBHcdvQqd2M1R0w944KqvU7NYzSR+5IVBZuLdZmY497e6aT84yoINJcRTcX46/l0+UXyc/ORhlmYVkBK87NAfJSPPSESKsyvczxwphSAIHEi28YvYAWor7qT4d+/mBauVNdc9yimdEUE0cOKp9/DDDCdrclZSk5NFUI7x5e0fxSopfGfT93Cs+RA3J0I8vP2jfHXcQ1ZuAytHx1iXv5H9x1+m2tvN5oaHiKfilKeVIAztR//7/XwhfwHYIf6nj5BX+15q8tX8gwKQM3wEfn8v8/MXQFKNsayvvBxWf5Dw2Cns+fPxBwbJnv8OxJbfQ9dWpv82Vl4OKx6E5j9jqL8Rf2CQvPwqBlNeTl7zFQLmNPKy68B1irK5K+ga3IUhESXqkagobUAIjeEwAHEvmNUbHBO96OJBkIIYcueogiQ2js4oQGx8+kbIRC/ClKeieKlqN3WzDU1649PyoXSl6qGquQpy553jhlw+s208OLM81UZo/M23s+eeLR5AXZ7oUcUZqGkP3kw7vQVQ1KG4eEBNLAog6P7+fZvogViA6YoUgnjhbcUC4G4HvUkVWnqzegxht7pOSqjtGu1qWTDTZGmvqc/J2w1RL283NOF1CZCUZLpdYXrdIRxmI4IgMOCJUpJloXMsxF+Oj+AOx/nM1fN4//+pAdkFTjMf2FDJHctL6feEiElhWsZCzC/JZ1fvSfoCQyiKgkE0UuosYFVJHYeGOnGF/fijcdaVLeTgYCejIR8oUJVdAArU5Bayp6+dkaCPQb+PNeXVNI+pY+gKIChQl1/E9u42RoI+BiZ8rK2opmV4CBRoHRjCkwqzpmEeigJ7DrUx4vIxmu1n9dIaBAF2HGol6EkyHPWzobEWBXj1RAvD7gm60jxcvqQWgK37WnCPhfDhRmcsQ1EgRYqmxEHKuQqdomeb7yWeD/2OxY41fGTpu/jZ7ic4mXOCexvupaOzl+bhNkBNM1Fk0pGdlYngE9g7vJfugQHmV1TwRMuT7B3ey7svfzfZiSz0PtUz5p7wMiyP0R/v5d6Ge3mp82XSghmMxCdnF8oKNoOBrr4u9g7v5c+df+bd9e9muKmZvUN7QABrQR7odHxzz9f4+KpPMTTeT8Xcag71H+De+nvZ+vRPqG4JUyL7eP/VD2KMing/9S8YP/AQpfffT3/rIYZPdmB3Glh+3QN4fvpTsh64XU24uXsPvieeUIcR3eM8GdpDyedu5K45t2E0ZnF14WJ+feQx6swVNNav53DTNtpjvdyx+D34hwdIw0ooEuXDyx+m7/nnGRQk7l10L8+efIo5ASMIavb7Bt0cFIsJRIF8fTY7urdy/cKbGO5tI8Pg5Ntrvs2hzl1QXoCsE/n2+m/z5wO/Ynykl0WLLucvzU9RkMpHkgU69xp45yk1bUx+bSZ1awsZaPZSd1kBE2NdpIIeGhzzGI12UOh8noJUEJ9Jjd0Z6fIxf2MxY8njPNP5IuUmG2ttRfQL4/xFOs7lczcyf/UmAERBpCQ3F0/j9Xjlq5kffIm6/Ebsaz/LcPdRetPg3oZ7cYXHiY65eGj1R4gR54jLi5i+mVHDBPtH9rGl/EpkKUV/+lqCo89z2HuAMts1jLW0EgwMoZjTkEU9OkHHcHCIdakKmg11mH0Gbk37J1J9NtKyM8jc8CEUFLxdTeRW1MMdv6Vz7/MExtR/72mFy6mqW44sywz1dFNYVgZ3/paBE88RDfaju+JL2DJLya+6ionhw2QULsXtaSc9vRz36HGy7vwNox3PE/X3Y3Gqdt6hQ2TWXIV77ASZWTX0jh6jrGgZbakY5pgHmyyTV7CYuKedKkM6OmOmenOb6J0RG2cKEZi8qfbOXn+hdvDa4uaNtPVm2Xm6IbNCHcJ0d4KcmnxIMwLnTALDZ5ROm3TtTy+qFRFmxScJTG5zjpQ+/uHTtj+jralVCIA4XZ0CmKxhKp3RtyH1fUGnepSm2lNkVVwqsrp81jGcD2WyVJc42ZZ89nZTxylM5uNSJvcnCKpHS2cCk0Ptk7MYsuaqIiwVVwVZcEQVaIKgfk62nNmf09sMbaiRt3aoMZJI0TEWYsQfI8tmxGyYKXfTPhZkU22uOgtuWQkfefwYkqKwpS6XxeU2qnOzODLUTY9vgLgcQ5IlShx5XFbeyN5J8bSsaC6lmVls7WhhKDAx3XaRI4PLq2rp9brY29/J/LwSGovKODbcR4trSP3tIlCbW8iCgjJOjvYhCAINeaU0jQ3QMT5MKiiTisrUFBfRWFPO4aZeTrT1U5CXwaYVdSDAS4dOMez1U5SdwebFdaDAy4dOMe4OUJCTwcK6XDIsGew81ILbE8Sf3svdy28imAjR3uXmGy3/Tl+8nS+t+hKZ0Spi1nG2VG3kxY6tZKQKCViGeeTw91mRs5zrndciRQPUNi5hpKOd4qoa2nbsJCRFsGVmEGoforC+lhHPAHqdiQWrL8PV00fOnDJO7N2BUdHjzMymu+UkRfNqiPmC6NExd9Vyhro7KaqYS+fefaTkFOYMJwOnmphbv5Cg10NMSbDgso24OrrJrZ7L8YNq1uzs9FwEQcAz4cKW7mRudR3+7dtxrFjB4Ec+ioCCubaOkSNHMH7oQ1QtWYz3mWfJvnILgWPHcK5YgauzmcyyuXT/7tf4B/pJq65h7vU34e1qJ6d2PmGvG1tWDq6uNjJLyunYtRVbRjYIUNSwCBQY62whb646DDt0/AikUgwfOgB6Hc6KCqo3XgUojA33klekxli0Nx/EP6EWcS4sUafrF5VWAzA20kteQTkAQ/1qDcfhgc5Zdsm4RG9bN1ULqpBleO6HakkYnQHqN2Sx8vo6QME13ENesVp/cqzrMBnuo1he+jQAyQ3/D/36TyLLEmPDPeQVzkEUdQz0NDM80Dn9fS4smUvJnLrXtHutYxjoaUeWBPo7O8nMzaZu8TIEwOXqJSdXtenqOEDA75q+ZzicOVTVLD+rrY62AwSDLgRBtamsWo6CQlPbTrz+YdId+cyvWQ+CwLFWdabWoprLAYVj7Vvx+obIyipi4dzLATjZ+wrewBBleQsAKMtdwKm+rXiDQ2SmFdFQdjl9YydBUOgfP0Fp7gIEBEpzF9DS9yrB8Dj5znLKi1cS8w9gEA0Ywm6EtDzV4xAaVYsPn34rsGaDefJaGPND5PTYTOU0Gyd4uiCrUrULu6frZKIzqA9brtpW2K0+nyluYLboMVjU3E1Rr1oEWZZm9mvJVL0fvj5IL1O9O1MeD0Vh2utiyVTb9HZC5ml9OxPb5DF4J8XVuewEEex5ql1gCHRGVRQYLKA3oib3FGY/wxnruLD3p47ztPCP6eM6/RinEopOCZmpds5cnhKIs55TqqBJxVWPkiLPDOmJOhD0py2Lk/sRz7PP05eZ+eynRKky+SxL6mtJUgtcC4I6nKy3gMGsnk/d2ZU1ppGS6jBjyAXhcUiE1b4Z7QQ84ziX3aoNNWpcGL5IgvaxIN5wgrw0M/rJIHpJVnhsTy9/PDY0Hb+1s2OMdy6zI+pjhJI9xJRCXunuYjTkRZL0pFIm9KKBfk+UbXIrOVY7I0EfOj2ICOQ5TFgsdvSCqAYQm63oBIF0q5GGQid5dhPDoTHmFxTjtEEkGSaailCbW8hgaJA8h4XB4CDHXF7m58xHCCdodXXiyNTTUFlE39Aw40IHzZZXEcz1NPeYGY4Nc1njEnb27eaKijXsbTvKR4+8H1HQ8V/1P6I4L5Nr/3QNS/KX8P2NP8A9MUGaYyEf3f5R1mdsYl3ROkoHCvHKIwy4hqkpmE9F6RoO9R9lw5y1dPX1YQ/n8b35X2P46An0sXFq16+lY98B/D4f0WCEmvWX0XHwEP4hF1jNDHd148zNoWrFcjr27sc/Oop/dJSFq9bTsXcfwy2tmDGQ8oWpW7MGFGjfsxf/6DjRcS/Vq1eDAO37DmC1OAhHwsxbfxkA7QcO4fd48AcDLFq+BgSB9oOHQFZYsGI1KAoTr75K1pYteH72MwQUiv7rv+j77ndJVVQSdblxD4+Qe8MN9J3oYKzrBBVZaWTNrafrQAu9fhM4qpgYlRGPdlO5bD4d+1ro3H+ckgULqd9Yh7u7jZ7jfsJRG7mlOorqQVZgbDCdzDKBF3/axEBLZPIbuEh9OgYdLU1seaAeWVa/g9t/00nL7hirbi8lIfaz/0kX410yJbVJtjxQz1iLkcxMJtubcvWn0VU4zh3/upagN47ZZiIZUocEFVlB1EHt5QbmLMqkvEoVSe1NqrgLTIxQ3bCKguoVCAPPIwt6gtf8AMfS2yftDuCfcOGfcFFdv5ySOeossCmxNyW6XssuHPJTXbcMgNZTB/GOuXENualfuozi8mramw9QODeLyirVZmBoP+HIOLHkGCVFK6isWj69zmbNpaRo+Sy7xLBqVzVvGa392xkP9FOQXYuCQlvfdlKKh6x0C3qCjIwcorBwGTXFdQiosZwTYycoMRsozVeFb3C8CWfufGpyFhAQDBjQkZG3gImxE+SiJzetDBGBoKuFivxFBFxNpDvnYhTN2HNqibrbKNfbMWVkYNIZYaIPW0a5GjweHFE9GjqjKiCcJeqNFmaLA1BjbiyZM++dXogcIG+yGHyaBdIm6+rKEiSCqoAKuVTBIiXVfQ0eUgWOzggo6vrAyKQwc8J462k3fgPo9Ex7U5JR9WG0TYpBQfWUwGlenCkBIUJOrfqcZgVH4YxgUL+VM8eYr4pajDbVDtS2dIZJj4xB7UvmnEkvkcabis6gDvPacyFZqdZuDI2r35nXEmyXKJrwushEEil8keRr2iiKQjyVoMsTIJ5MkmEzEJbiyCmJUDzJD7eOcHIwwrqqbO5eWUrzeB/L5xTwak83oyEvJp0Zo2jCLDpIJRJYjHqynaq3TC+KZFmtpJnMGEzpRGQ3g+Eo8/MrGAwNEk6GsRlsFNuL2TqwlYHgACsKVtDha+MLe7/A/Oz5fHvDt/HFfRhFIx/c+kHeWfVOStJK+PrBr9PibeGLC/+D6+qvZoR+lhUv4dcnfss8w3yOjB/lBdfTeJIuao0NjAWHeKKjh3sb7mXYNU40FiYhJxBQs86Pul3YdWmcHD9Fn2uAqoIK9vbuJ1vOxyqnMewa510l7+Ee4X6c9jSqSsvo6Osl5Y7T5Wmmqr6Oju27GB4aoWLdKrJKS2g/dBi/3w+CgN/lpuPwEaqXL8MzPEL38RNULFxAVmEBbQcP4/P7wGJmwu+n7fARataswjM8Qtex42TOKQdBQAEkvZGE3kRKNKAIAqmEhD23ENeYF3tOIcmEjN6oQxYEEnGFRFxN7iqHQpgHPIz/+DE8P/kBmaWZJCuXcuQXL+JcdC2ld93Dse1DtCnrEM0xVs4pQK/P5OnvHWfLA/UYxSVklFfx7KMn6G/yAjNlsDqaxmg9oIqgcMhO1cpCjr1yksbN8xEdY4y3S2SW5NJ1YBeIGTRuaeToi32niaTZDLR4J7Ohz6W7t4n+VtXTFZeT+KQgKcUOCKfZlZ2zPUlWE2gm4il6jnlo3FLO8GAnuXmlXPX+Oo4feQGDJQtZTqHICoFkGE/CT03vq4h1SyApEc1fzL7GT7OoehOyLHHo2Kt4vCMgS3hGvATiAZYu3kRaZi6e9n3UZK5GllMcOvIKbo86JOOJuvFHAyxbuom0jFzcxw5SWFqLosCRfduYcA0jGGQSwTGaWtzU111JZkE6qj9B4VTH03j8fepBBQbwRdw0VF2D0ZJJn/skmdl1KCi09LyCLzSCpEiMRMbxxf00VFxBrqMMY9RPmiIRHT1BpaLDZClQqyooCiQTMN5EmjFNXR49QVZ0YsajIYgQ9sLYKaymNKyCEcyZ4G4nK5UAg2PGu5CMg6eDdFM6xMJqIWFXK7ap4OdEQPVuCILqZbJmqQLDlKY+G21/PzGhKKpXZdrDEp8UUyZIhgAdmDMmvR9GVYyVrpwUO8YZr5mGxhQGMxgmJ2IkIuAafqt79IbRhNdFxhNKcGrYjyhM1tBTkiTlBEklQVKOE09FiclhknISg07BahRx+WU1/iMAj+8WcAcENtRk8ehdjezuP4Y7EsATCXF5xTIODXYy6JtgyBdk49xa7GY9gi4+PUQ5JaoGQ4OIIsiKTDgZZu/wXhpzG+nz91FTVMO+kX18bNvHyLZks6JgBU6TE0/Uw6sDrzIWGaPIXsST7U/S5m1DJ6ht23VppOszGBwdw1XoYXPl5TzR+gQjvlHm5cynzFrO5TlXUG5Vh40W5i6grrya5uE2qnMrKQ4U8dW6b2MSZ4qcfr3hOzjtaczJKWV4dIRlxUtIj9jxeycgGkAvSzidGVQVl9Jx6DD+4VGIRPEmE7R6PdSsX0vTgQOYMpwgCISTYfxx/3T7+qQFBAGT3Yo/7sdkt4IgEEmFCSZmhjqMKRuCIGC2WwkmgiSlBGO9AVr29rPmnUto2T1M1eJCnn301Gliw8bJl3uAHi77p0zmLW2kJTlM9dJijm8/waJllZx6aZD+qoc49M1T07PuRopqKJqXxXM/nvEWGc0pbE4bo10HGWyVads3wMJNy+g9dZjx3hHSMm3oDAaiwQCWNAdSMomrf5j2Aw4at1TQvKOD8aNHGLAHqV6QR5rZRVq2n8oVa0EQGO9oYsHGauatzGGstwtF1OEe7SM7twBBTpBb0YDJYsDdfYzykloK/6Uc38kX0Zkj9Iad1FyfR9zVT3n0FObNG0j2HmXR5oXUyr9GHjoJuXVw4Cd43/F/dLccwWJ1sGhzDcrgYQqLGuGVL8LIcZbkLwD/Idh2grCzmiVXf5mJsSEcubeReOohvIVXIBcuIcNhIuKewN3Tiy6QJDeuR9GZERVgPEjX4X3Y0tIpSGUQGRnD3dqGwRWlQMlEURRkQYCxKB0H92HNSCfbYQYlTGfbDlL6UdJKRXQGHXrRgEKA/oHd2CxZ6BAYGzyAQxHJcFQgigKylECWErgG9mA0OckX09Anwgz3vIrgH8Qpy5hEA2kGG5ZEHGnoCNmWTHKM6eAfYXrY5/ShvKmg53h4ZijH7ESN0REmh2VSk16jgLrtRO9kG5MxNIoy43VKhJgM7gFv7+w4H3O6KrZMdlXgGKynDW/9nREENUhaf47Cxqf3X0Pjr8FohbTct7oXbxgtxouLG+PVNubm8NAADotCNBUiISdIyQmkyQBHUdBhEA3oRQM6QY+IgCCIdI2l+Pm2IJGEwrdvW8B1Cwqmg+GnyDCnsbKsmj6vi3bvAHOzs6jMKJv2ZBlEAxVO1bP1fM/z/L799yzKWcR98+/j8NhhJFni3oZ7cUfddEx08JX9X6HAVsCHF38YURDp8nUxN30u1RnV+OI+0k3p020nQhKh0RRyUiGnwEl1WTnjE15yMzLp6O/DH5od5DjtoZp878xlAGQZp9FEVVU1HXv24R8cxpmXQ9W6NbRv38XE0CCSLFE0v4GAx4VreBBEEcVoQDAZEdGRnZdPWkYmMX+QeSuWgwK9B44SPXkKe2kxJVdsBAEGdx4g0tqOraSIois3gCAwfLyN8MkmrDkZFF2xHhSBg48fxNM9TmWdnlRGMdv/4GX1OyunPTx7/tB1zs/9tk83Yoq5ccyr4uhLfdicBsz7/8yJvX7GcpZgtFuRU0mWXFNOw/oyWnf10LW3i9x55SRGOxETE2RmKyiKgDUrm6J1l+FrayW9pobhV7YRGx5GnIztSF+4gKRH9WbkbLyMYHsHaTVVuPfuR2c2Y8zOIjo2isUaJ61hNcgphEM/h6Vqvp3woWcImyoBsLX+HJsyCrf9Uj2QQ7+YtuN395B0DzKxTk0sabQYSK8og+7tUH8jNP0RKtbDE/dNZ5X2rv4uYvkqHBWVKH370VWuOacdQDRnNfHrfkZ6WSH+/hF8Xb0znpfTw2KSEfUYsioR9EYQBDWMWCcgiCCK4rR20YkiOqMOnUGHzqhHb9ChM6hFdxFn8uHJiozA7Lqer8lUYNd07MoZDzgtZke8gNfChYsO+Rz7mwqAnhVfdEb7U8/a0JjGPzBn3b9PfP5va1CL8Xr74Yl5GQp3kBDsGEQDRY5csi1OurxjzM0qwB+LzBJTALvaooxNWLhn1Ryea+qnocQ464aQkhQCsSQWvYSIgNNqpBgTbb4m4nKYuqw69o/spyG7gf9t/l+WFyxHJ+gYj4zT5VOFwrK8ZZQ7y2mfaKfCWUGBvYCvX/b1Wf1YkLNg2lsWToYJJUMU24vpHuvHM+wDBXIL02cJKH8weJagOlNkKYqCN+Cnra+b6rIKWlqbmRgcoKpqHrklJTS9/DJu1ziyUcTvHiK8dxeLNq5jbHCA9qNHEG02LBLkyWZ0Oh06dIiiDr2gx2ZLx2S2ERxN4npuO7mb11C+qA5f6wnS169GEATcp3pJ/uVZ5Oeewi8akFveR8lHHiStpBzX3m7M8+sgmaTtM1/jcGIj+qRIdeQQ1quK2HBrKbUbSogcP8GizQ2UpgcIBVJIA31Ev/H/ps+dXH0/aR/5CJGTJ1m0uQF/5yCBygYWVqZIKy8k4fWApJC1Mp9A8ymqllWRmeoB3QiG0kL8xz0QTGEuLiTnssvwHDxMMhhgIpGg6IrL8R4/TtytJv9UBIXczRtAEPAePUbCH0AWIWfdGgAS236IzXMM3fXfhMfvhIqNaimSPY+i9GzHcutjJHv7SQQCiIUNKKv+A+WJBxDmrEdY82Hkg48hDTejv/WXpPb9CgCjw4GjopJwXxuWmmuJjgxjqbmOyMgw1jt/T6Crk0TAj9HhxFFRSWR0BGvZCsJn2Pk7Owi7/cRjMva8DHKKckn5RnEU5WA1hlBiwekJWuovQAZ/ACGvDrLL1PQnAhcumM6DeFot0gtCEJiZBfYmI4qoMU4aGhr/CGjC6yITT6XQi3oyTFnk2JwsLZ7LoUF1VpXdaKY6u4iDgx24wn4kWeGpg2GQ7fzwrsXs6xmnsshJi6sXd2SCpUVz2dbVwlDYR75Tx7qKKk66T2DUG/nR8R+xa2gXt9XcRqG9kDVFa/jFqV+wZ3gPywuW05DTwL+u+FcqnBWzhh+TcpLB0OAsgQWzhyin1oUSIbqG+6jIKyPuk9CbxLNElj8UpKO/j7mlZbT2deLyeck0OjjSeQqXz8PUTGVdPEl4ZIBE/wAOuwPv4AhCZTUIAqLDgTmewCAaMOlNOG05CIJImjGNOc4KrEkzpUtr8DT1EffOeNZMmWlk1Zfhenk3kc9/hpDfh2fLLdR+4/+Rdf/9JKMJXv7vk/Q3TyAlN6CsV2eJ0QUlj55kywP1CNULKJiXy9BnPw1HDlNY6CQj3I1QNAdzloOi+jJCu3fjuGwdga2vkr5mDVLLANExPbqsbEDBumwZ2Q88QHD7DhwbNxDu7SWttIBEfyvxkUGC3h5MhcVkrbkMz/69xEbdREfcZK9dg2vrDvxd/QhmI7Z51WQ2LsLf2QFmAwZzFjIQ6O0hs7GRQHcXiUAAvcMx7b3RO9MQwn2I+rzp86IL9qDLKEJ58kGSmfPRL3sv0eFBLMvfRyB7E/T2o7daSQQCSNXvwD8wDsu+OC2YLI13E3Z2Qf8w+rnXwugoeqt1UkzVTPcjGQxOb6O32UgEg+htNtUuv+Asu8DgMLLehkyQ3IoM7GWVCL5eNTu1FJrJDXX6bLfwBDgyIatEraisoaGh8TZHE14XGbvRhE4UZomuKQ/XUMBLoSOLZcVV7Oxp42tPD5KX5uSHdy1GrxNQDMPoJAnQ82THH3h10MLHV/wznogPp9nKw69+mKr0Kq6puIYKZwXHxo9R7ign3ZTOSHiEu+vuZmPpRsLJMA6jgwU5C84pqMLJ8Fniy6KzMBgaJJgIEpfiSJJE1CMRdU8Q9EdwplnJsDno7ulkoKMVojGIxVEUBb8ooAv4KMjNx3P0BNnFlViUJCafqA6pJmWIJBFSejIbSrHmZ6Pzi5gFK6H+ceqWr5gWVVNiKtg3rgo2QYfRbiHYP05WfRmepj6inb0Y/CNkrbmNQN8YxtISlGCApvnvZTyxkKyhKPmVJtxDEbqPT8Vjzb5pD3dM0H5glMYtZQy1T2C46/2kXR9iqSwDGzBl2NV+9AyStnIlge4BbGvXEuzsIauuHE9gCPGDD2LKyyVr9TqCzSdJW72KQPMpbJVVBNtayVq3Hs+BgwBkLVuGa8dOon2DCKJALDGK99ARcjdvwNfWRjIWwZyfT6Cnm2Q4PKuviUCAQHfXtFjSW60EujoREgGcc6sRXC8gV1xLoEsV+KbaW4i07kBZ8m84qmpnBFAorAqg7i4io6MAREZHp71Z03aBwFl2qUhkls3p/Zpafy47RVEIjPmIhDvJa5hLdLAL59wM9GeKrHPlVZoKys5rOHeMkIaGhsbbEE14XWTqcktpGoD63BIefvwo+7pPzwnjZWVFkP+8ZRFJ3QjZpa/wg2u+hEEv8C87PskrAy/zUO3nMJFDu/8ovUOtXD13A4vzGtk/sh9fzIdjcur0lvIt3Fp9K8VpM+IpLsXPEllTgmpqeYpwMkx/oB+DzoAv5mMsPIaiKIiCiCEJqWGJmDuFUUwQ8YwRT6RI5ORQc9la5J4h/NE4Or0Dg96AMy+PkroFjB48RZk+F9wRiuuqsckGAm39IIoIaZk4q4pxVhTg7x5BJ+pIenxkLZw7LapCzR3YK/LwPv47Mm98ByPf+g7RYycQli+j4JMfVe1qCvEd3o685mqO/WY/DbetpH1bJ2kf+3dKzHOxhfRkFdsJ9I2TW5bFuz6/HG/rIFIogk4HOr2AJTuN7Plz1Jpx7R0UzClHUWx49uwhPj4CKBiz5xFsOkFabT2ena8SHxkiVlBI1toNBJtPYnSkER8RMWblqjFW9QvwHDhIfNxFzOsna/kyAk0t6E1mUMC1YycJrw9jcT6i2YxoMaHodAR6ujGmO0mNRqdFzrlIBALTgmfKznHkKwj+y2HNh0m1biMRUrM6J9BjrL3xnELJ39WJs3Iuvs5O4v7AtOjytqnLigIJl59kspOs6rm42zqJ+wIYsyy4WzqJ+WYPk8eiPhLxTgx2K7GoD8NpdooMKQlMJgGbIQjeHuxZdnXDcyU/nBJfBov6OuRSy8bY89DQ0ND4R0ETXheZxw/2c/9atW7icydnF6sWdGGeOykTTu7ke3cuZTjcj8UgcnCwk2ZPOwIiY2EvywpK2Fy+gWzrjTRk1+OOulmSt4RvrP/GtIBympwX5Mlyx9zIikxKTpGUkySkBAkpgYKiepNEI1bRSrWjBikukxjyEO8ZI+KTsZp06A12LAU5mDIdBAdceFsGqdq4/iwPlaepDzkuoHekEx7zI5pHyKibQ1Ix0HNomMzyTNLK8unY1YOnaYD4M0+Cf4KMZfU0fPXjxLwh/Ppcxp49RMU7rmPoIw8zeGqcsK0AZdcQnvkd1F1Rxannm2keqsf2whhbHljJC//dRMwbYMNNS1g8rwS9Xof7ZA/R8QmirglyFs3FsbYKz/EuYp4A5kwHWZOiy719O7GhXmIDvWRftoGs1avx7NxJbGyMxISfrNWrce/dS8zlA2MaUU8Q974DZK9cgXvffmRBT3zCry7v3U9sZBQlkSDs9SOHIuRsvAzvoSMkoxF0VjOmjBKEM7JSTwkqRVHUvIPyVAy3Mj1xTYFZORUVBUyBFswWAWXxuwl1NGGtXIvU1EnE60cAnOkWxk51EvXOCCUFEIJ+4rFOjHYbiVgAc44NV4sqroTpuCqI+wJ42jsx2W0kAwHCI6rY0+tPM5okFQ6QCgfQGwSiY5N2BjUWKyNNxGYX0ekFkEIQCr32D2gqk3kipHq5MspnBcVraGhovN3RhNdFRJIVbl5cwo+3d3HPqlLyMtWCq1lWC18/8jkGo03cXvwlanNy6Zjo4N6GewknwiRSEtcVfoAcm4OSDDsZNiMNhdeeM9D9zKHBKdE1Ja7CyTDhZBizzsxoaHQySFlQs1WLBqyijVxdAUbFhE4yIMR0kBSRgjI55ZkMHB1Eiok4C7PQ6XUzwupkD0rAR6S/Wz2m+jKCx5tIq8xj5KvfIB6IYrzmZgDiT/+eaF83iRvfQfrNt2AalildVsgzPzgxk4qh6EYoAsKQfaCNwjX1DHQNU37dGrpfOox+7iLcGQUMhNTEjR3PjNDXHVeTfFqHqV1TyOG/dJDrjJNXm4Ylx4ler2N870miIy4Eg4FoNMJ4PEbu8nrMWXYifcOYqwsRFIXxl18h1tcJJgeR/lHGt24n9/L1mEtKiQyMoE9z4tq+i9jwbC9UtKcfVzyBMTOTaKQfg82Oa/tO1U4AjEb0WVmkDHp8HV2YiotJDI2QVECJgaLIMxPkZFCzRqlKRp14J6jPOkF9nJYYempinoBCWuAI3PJzUjsfhZKriI90kz9/LrGhbuRoECQXZgs4ivUzwerTE+nCCEIEe6keQXAhOEBw6mcn0QYEIQJEcJTp/+Zg9jeEIkNkAnLmqck7NTQ0NP6B0ITXRUQU4COPH2Vbu5vinCA5mWGW56/g4GAniBEkJYXeOsC1dVcD0O4aZk5mLqvLa7CbDej1cQx68ay4LFmRmYhNEE/FqUyvpNXbSutEK5IsoSjKWeIqKSXRi3qqM6sx6UzoJD1KXCQRkpFiICVlZElGRkDUKRCeIDE2gmvEQsmGhWocVXsXoneYrLtvYfiz/07o2WfUpI8mE+K3f0F42Ev60oV4fvYzgr/+X3QLlk6fB7mvG6npGM0uHc681TRuKaNtWxfh5lay89QkoEosCgYDOrMZe3U5EZefeauLaNs7hG1eFcbyHDIOukiNJREEAb1Jj9muZ7jFTeOWMoLDE6y8uRr34TYig6MkPXZcA6OkJAFTVRWixTrtmPGPhNBbHZjr6hAsZnxtbSCEMNfN53Q3j6+tFYPNjnluOYlYBMFmxlhRRjw2KZIUdUZhSAbcIYT8UryuEGCEvFJVnBj1KKKAgEDIG4KJEOLkLtTqGwKiKKA3gF6vCiydTlATdYtTz5O25xM7nk648gvw1IMYlr8Pg1UEwuDrxVJc8bauYQaopUEsGZBe+lb3RENDQ+Oiowmvi8xUUrSd43/kM5UfZcfgTuR4Dpfl3UxhZTa3zd8EKGzraqXf58UVDrCitIrGgko6JjrwxD1Y9BZOuU/hiXnUAHNRh07QEU1GUVDINGdi0Bkwi2aMOiN6UY9BNGDUGTHoVPElpWRi4SQRf4JwIEkqnkDQCRhMOsw2PaJORInFSI6MknKNIxqMJFIinqY+Nd5KTGEvXc7Qww8T3q3WHUTUIaRnYbYZsBVm4m/uIv1dd5GwZhLzzcSQGTZdg37JSjIqV1GzppDB48NUr68gr9hMsN81aeWYCaTvH8dcmkugb5y5S/MI9o+TVllGDVDuDaqB7g3lBHtGSZuTg79zEHtpHv7WXrIXV+O124lLAmJ2JkbD2VmukwokozKi2Ux0ZAB8vYiZhTMlUiZJxWKkYjFEs4lkQiEeUxBEsKSLmMyqMJpJjyTMeJAmhdWUZ0o4/X1xxtN0MdIgkIqrwuqJ+9RhOGvWzHtnxki9HZGSat3AnFo1Q7WGhobGPxia8LqIRBIJvntHI789OMDdqy7ns7s+S6F1LtfMqSScnMuiwjkICBwYaGc4PIAjDSIM0uSOU59dT6Y5k0gqQjKVJMOUQb4tf1pUTT304vmHfSRJJh5KEQiHifjjJGMSggAGsw5bhml6O0WBlNdLcmgYORJGdDgRjUYURSHa0U04Iw3nghomnnuJZG455vevQswrQsjOwZyTMR3TFZvMx5R7y/V4TvYQm0z1oKuux1GWx5y5hYyfGiA+OI7PnCK9ugQllSLQMYgiSehzHfhb+3BWl+Lae4LoqJdIfiY5K+fjb+1FLypEPG70OXbVrqYU14Em4oEoyaRCZm0FYX8US1EekUDi9T+gsAsCA2qhXvHsr76iqOV+EnEZvUEkLV3E7hAxW95Aos2/NxO9sPsRtajs+n85+/2pGKm3K2G3Wu8vLf+t7omGhobG3wVNeF1EIqkkf27Zx4PrN9Pp7eef5t+DXtQDQary7ViMCkPhASS9i3l5mZQ4SlQvlWhAUiSyLFnk2t54+YNEJEFw0EM4JJFMqnXejFYDVqcJUZwtGJR4nOToKKnxcdAb0GVlT4sK6dgBdC2HsV2zBn/XEI5NG4g78oiNepBlGYtJJKtOFUmxMS8IIhGfDzkcJmdFPa79TcTGvDhqyrCX5zN6qIN43yA6AfwtYUhJpNeVAxAccJFKKWTXl+HtHEWyODFVpiOLIr5+Lxm1c5jo92CaNw8lzUxGcSa+YR9kFWAuNCKLIgFPFEe2lYA7wusSC8BEn1r/TT/bkyLLqncrlQSjSSArV4fVrsNoukTE1unk1MAdv1ILHP+jpVhIRFRBrBUi1tDQ+AdGKxnExSsZ5AmH0Osl/tDxB+6qvZvh8NBZaRz8cT+yIlOXVUemOfNv7TrRUIKxI52EekYxGkBvEtDpdVMBRaDXIxr0CDo9GPRIk0Jpyss1hSLL8NzjFP3bvzLy2G+Q5i7EnJdJ9qK5eFsHSITi2IuzSUWTxCMJBP1sz5vRZsJgMRB2hzCm29n1RDfDHRNcc99cjBYDgiCCXoc1w4LRYsDvimJ1GEklJBIx6azjMpp16I06IoHEBdudC0VRUBIxcLWjxMMolsxZswOTCXX2oNkqkObUYbEJ6sw9jTcXRQH/IGRXQ+68t7o3GhoabxMuWsmgN6FU0BSax+sikm6x8sCTP2F3fxMLs1ewILf6rHQPCSnBvMx5f7PoUmSF4EQMd8cY8YEx7FlmRLMZRZLUm9jUcyKBFIuBpAbiC3r9LC/XFCa9TPbnPsvQpz+DvPFGLPPmIRj0BL1xsurKCbgjxGMSmIzoTbaz+pMCUjEQ7XZcg2FikSRFNRmYs5yz7KKhFNFQCuA1hwcTsRmhdaF2oAqtWCiJlJRRBBAUGcHfhxAJIFizIDk75sqapg4nWqzCWd7BSwp3B7S/AEveA6a0t7o3F5/ohFokOqPsre6JhoaGxt8VTXhdRIb8Pl49XAKUkJRSs3JqeWNegvEgVRlV5Nv+tvgVKSXjGwszMRxEGR/DYgad1QqgFgP+KzAVF+JpHyE5bzmmvAIEg/rVSMQkAu4IeqPunB6nc5GRb2PDu2qQJfmv6stfSzIuEQsnMdsMZBXZ0ekEhIkeBMYQivNAb1BnGJ5eP/hSFltTKArsexSGj0IyAus/9db1RZZAiqvPU31TX6iPqaRjU4h6dUhUZ+S8yClIRqFwkToxQENDQ+MfGE14XUR80SiG9P2AQFLOm05oahSNTEQnKHOUUZxW/DftIxFN4R0NE5qIoQ96UGIBxMys19/wNVBCQYL9qrdIzC9CdMz2qJzpVXotmnYOYzTrmLMwG73xzYnTkWWFaCCBIApk5NtwZJvRG3Tq0FW0GzKzwPAaN/5Lnb7dqujSGWDxPX9dG4qsDj2/0W1SMXUmZTI22YagxsidPjlBEJguySROqdrJ5VQcoj51tiKKGrulM82IMZ0BQm41mD6t4K87Ng0NDY23EZrwuojEUynMBU8BkJCuACwEE0HGwmMU2Ysod5YjvtGb32mE/XEmRsIkYhJmJULK60J0OP9qLxeAEo8R+fInEcvnYrz5HkSzBZ3t7KHECyEWStK6dwRZUkjPs5JT+vcfEktEU8QjKaxOE+l5Fiz2SYEV8YKrTfWgGKx/93783ZCSsO+H6uv5t73x2X7JiCp8plPfn+7hmxRCgm7mGWVSZEmTMYJm0FvAnq8OcRpt6jkVDbNdhzA7++rp/U9GJwVcDOIhiPnVfcRDqrdLZ4QMLaBeQ0Pj/x9owusikkilSAbqQVAw6gwoisJ4eJwcSw4V6RWTMxzfOLKsEHBH8Y1F1Lgkk0y8a1gNnDf+bZ6c5LYXUAJ+5KEBFAR0aWkIf2WbHYfGkCWFzEIb2SX2N7axlFSHsE4fqjp93oeizKxHQUpKRINJdAaBrEwdac4IuuQEeCdTwodG1SLLb/e0BE1PQWBITSi66K4L3y4ehKhfzYWVXjZ5HgRV6Jz+SCVAnixGLcUBcUZkGaxgtKri669Np6EzqA/OmLSSiqtCLBkDFLD9bV5bDQ0NjbcLmvC6iMRSErGhdwNgN9lwR904TU6qMqow6f66qf+ppMTEaISgO4rRqsdgFEn0DCJHo+j+1iHGSJjEi38BwHjdLYCCzvnXzepMxiW6jqjJUeetzL/wvFcKEPWAb0D1ziinv3Fa/NBpWiweh1RSxJ4m47QqmJICuJkRaoKgDoW93Yor23NV79BUHq6YD478j/r6yq9AZjmExs+39eTJCaipM4x2yK4CR4EatH6hKMpfL7LeCPrJ4cY30jcNDQ2NfwA04XURiaYS6Cw9gIA3asNiMFGVUYX1rxjqUhSFSCCB3xUlGlRTKuj0IslxFym3G116+t+c1DPx8tMQDSMWFCMuXAaJOKLtDXqqJuk+5iIZl0jLNFNYnT69XpYVUnFpclRqKpv7ZAZ4KYEQGEIIjYJOD5Z0FFlBlgW1YLQiTNc0VJh8VhRMdpGcLB12xyWU2PRikIyq2einSv4cegwSYdXTteB2df25UGR1ODEZAWMa5DWoIs70V3yW/0jnU0NDQ+MSRBNeF5FwPIa1/McAJOX/ZEFGA07TG/9HH48kCbijBCfiiKKAfTLrvBwKkRoeQrRaEfR/20cnB3wkX30OAOP1t0EiobZrfuNlWmRJpv3AGAA1K/NmiaFYKImoExFEUCRFrS2pKCiRCRT/MEo8hGJyIOiMkJisZSgIalFoQdVjBr2AXg86Hej0AhariMF4iQiEM71Up2NKm5ml93o2ofGZkj8Z5eDpBl8/VF4O1/3X+esvRrxq4lFLOmTNVfujzQzU0NDQuGTRhNdFJCbFkePZIChUZ1aTbcl+Q9unEhJBT4yAJ4aUkrGkGdDp1cB5JZUiMTyCnEyhT/vrk7xOoYSCiHlFIAjoFi5F8njQFRX9VQ6PviYvsVASs91Aaf3s4U8ppZBZYMGWYQIZlEQE2d0D0gBKvh7FnIeCMD3CJYhq4eipQtGXfLqHM71UU5jSZtbDhdnIKRg5roqposVw5+OqoPIPnFt0SQk1RqtggTojUP82nrmpoaGh8f8TNOF1EUmlRMLdn0AUoNxRfsHbyZJM2J/APx4hHk1htuqxpM2OCUuNjSN5Peiy3piYOx+6whIs//JlCAVBkhD0OnTWN+4pURSFtn2jAFQvy5sWiqAOMwoCGM16dKIAkTE1EWh0AtKz/zE8M6d7qaaE1emCakownWljsIGzFE4+oSZGdber50aKw8I71USiaXkQGjt/7cV4UBVmzhJVpWpoaGhoXPJowusiIcsKiVQSxAjCBXppFEUhGkyqcVyBOHqTbnpY8XQkv5/k6AhimuNvSh0x3d5AD2JxubqfNAdyMIhgsSD8FWkkhjt8BD0x9CYdFY05s/eTkDCYdBjEBIy1g69PHTt0Fr3xnFIXiwsZGgyNX7gdqPnCOl6Gxrtg+BhUXwkvfU7NvTXFkveozxnl0P4ilK2C39wOXVtnt22wqGVzrFmq6LJmnb/wdSKqDi9qoktDQ0PjbYMmvC4SkqIQTPpIq/kiAArvROD8AiwRS+F3RQl5YyCANf3sgtYASiJBYmgIEBBPi79KK80lEYoS9559QzZlpmG0Wwj2j59lJ48NE/3a/0MsqyDjS9/EmOFk4qgbY17uXxWo7upX261szMFgmp2HKZmQsRji6Mab1eEz2yXg5brQocFz2SmKmgYhZx4c+w0UNarrBRGe/xd16G/Nh2H3I7D3+7P3W3eD2k7EA/OuUW369kD+fMiugZxqtQB2bh1kVszsNx48d39TcTVNgzn9Yp8hDQ0NDY2/I5rwukhIskJMSk0vv5boAvCPRQh4YlgcBjXL+jlQFEiOjCAHg2eljkiEomTVl+Fp6pslvkyZadPrz2WX+MvvQVGwrV1L1qIqPCd7EAQB0f76M+DOVax60eZSSuuyyCy0YXUYZ9VVlCUZi9Griq630st1OqcPDXZvh6Y/qEJq6X3Q8vRMrcDxFmh7Tl3f+iy0Pat6n274Pjz+LujfC+95Wk36aUqDTZ+HZQ+oYmr5e1Vbb/fMfjPKVTtrFni6YMX7ofoqOL2I+rmGKM81lAmQCKnDjKa/Pd5PQ0NDQ+PNQxNeF4mULGHAQrDlPzAblNf1HiXiEkaL7ryiC0AJh0i5PefMTh/3BvE09c0SVaeLrikxNsvuRDdRKYVtzRoKPvkxPE19RIddCGYLouX1PVGphIQj20rAHSERkxhqnyCv3EF+hWN6/XTfFQXkFIaEG2zOS0N0TREPQterULwUxpqg8W747d1qwtDLPqHaBEfgxc+qQ4G3/Fxdt/jd8If3qkOMte9QvU5GqyqY1nxIFUYGi5rwdOHts4XSmaLK3w9ZFbNtDJZzz16cEl8Gy2nCK6INM2poaGi8DdGE10UiIaVIoQAi4uuILlmS1cDz14kFk/wBlFQS3XkyyZ8uqsLDXmyFmXgOtuD//rdn2cWA5Px68j/+MOZvfAtbfjqelgHi3iByLIohP/+C0lNMFcx2ZFsZ6fKx58kuKhblcOV766fF2BSphIxejmAgDKZLrAZf1Ad/fD+sflgdGmx7Ts0Mn1s3Y2PPhYab1df9+1S78Wa47FOTmdgnuRAvFVyYJ+u1kqOeHueViqvJRy0Zf8NJ0NDQ0NB4K9CE10UiKUlEkj5sVd9DUIzANee1lSUFWVIwGM/vrVCSKVJeD6L1tQPeY24//j/9icxbbibQNUR0aJTUkX1n2QWO7MN+0y0455UT6Bsn7g2iyDLICjr7hddUnBJfBZVONtxVQ9WyPALu6FlFtFMJCZPsQ28ULy1vlyzB1i9D/gI14N0/BFVXqFneT/c0pZfB6g/NCKvQmBr0fqZH6kK8VHDhnqwLYWo2ozbMqKGhofG2QxNeF4mkJBGXkoj6EMiG17SVJAVFVhB15/d4ScEgciSKLjPzNdsyBsdxbt6E55f/S/qddxJz+0jd+p6z7CyV5dgrigj0jWMrzCQ2ESQ6NI5oNiHaL2w2YyKa4tjLAxTPy6BqWR7164rwjUfOEl0AqWgUp+C/9MRBy5/B7FCHD0dPqkWfUxcQcH++QPcL9VL9LTZnkoyqIlDLMq+hoaHxtkMTXheJpJzCJNoJdz+MzXQBQ42SfN6hRkWBlNeDoNO9ZvoIU2YaWcvnMvTwwyRM6UgLVpO1uAZM5vMG3Me9QWITQbLqy3AFg6QkAcHw2kIRYKTTx6Hn+oiFkuhNIgs2FhP2x3FkWc4aZlQUBSEZwmiMgOESGw5beKc6XNj6jDqTEC48F9f5At3fTFIxtWi1NsyooaGh8bZEE14XiZQko6BDjheg050/YB7UoUbgvAH4SjSCHAi8Zl6taTF1qIVkfiWGhsY3FnB/qpec5fX4BjxInHvGIkAylmKw3YeUlImFklQvz+Pyd9dODy8mY6lZAfcAUkJGl5jA4DReel4ZswNCozOia4ozh/3eSKD7m0k8qIou04UPD2toaGhonMGCz79lu76Egm/e3iRliUjSi6X0v5Fz/uc1bVXh9RrDjH4/SjKJeJ6gegCj3aKKqaiEcdM1iHlqAPuU+DLaLbPtzsj3FR314DrUitGhppGYmrFoNM+IxtFuPyd3DLHw8hLcAyFW3ljBpvfUEvTOxHSdHnA/tW0yHMSohNC/gdixvytyCvY+qqa1mKqJeC5OD3C/ULs3m2RczWh/qQlaDQ0NDY0LQhNeF4mklCIhJ9HbulBM3a9pK0vyed9TUik1hYT5tdM7BHpGCPzPz5BHh856L+4NEuxXhUGwf/ycSVaVWIxENEkkovbldAEl6gQOP9dL7wkPG941jx2PtzN3SQ41K/LPGUg/ta3eqAovKRLEYkwgvNXJUqc48BM4+Tt4+qNqcP3blWQUDGYtaaqGhobG2xhtqPEikZBSmMU0okN34DC/dsxUKiGd12GhBtVHXjeoXmo+TvK5p0jueAnb136IoHtjH6WSSKBPd87qRyImMdjmnczN5aR2TSGndgzRcFkheqNuVnLUM0nE1GFKRZYg7MGQZz6v7ZtKz0448Tv19bIH1ISnb1fiQbBkasOMGhoaGm9jNOF1kUikUugFM6nAIgyvc1pTSfm8MxqliQkQxdetyZjc+QoAhpWXvWHRJSeTCAYD4jliyPzjETxDIRq3lOEaCFJa99oC8EykcBCdHMFov4jB3xdSNxHOtgkMwbavQeXlsOhuNWHp2xkpAWn52jCjhoaGxtsYbajxIpGQUsTkAKa8P5N0vPCatlLi3DMa5WgUye8/pyCaZef1IDWpBZgNaze94b4q0SiC1Yowma1elmSadw+TjEuU1GYyf0MxQW+MrEL7rJivCyEV8GHQS+hfx+sHqILqfN4bU5r6PszUTTzTdmrmYTJ6tk0qDi99HkpXwK3/A/kNb+g4LjmS0cnZjOlvdU80NDQ0NP4GNOF1kUhIMkkljDFzDynrofPaTWWtP1dBbMnvR0kkEE2m19xXcs+roCjoquoQ8wrfcF+VZAJ9evr0rMr9f+mhaccwfac8OLKthLwxosHEWUHzr4ucQgp6sDgtF1Zw+0IEFcxO4zBle64cW6fb7Pk+pJfALb8AdzskI7ytmRpmNL5+TU0NDQ0NjUsXbajxIhFNxjGKDuLuy3Earee1kyUF6RxZ6xVJIuV5/aB6RZJI7XkVAP3ay99wPxVJQhBERLsNWZIRdSLVy/IwmvQsv37OrLQQpwfcn5mr65zEgyiJKEZ79oV15nSx5OkG/4Dq1cmtUwtWyynIqlRte3bC4cfUHFwDB2DedfDsJ2Hw4Ex77/ie2l56GZSvgYV3qEWrHZdYyaK/hpQ2m1FDQ0PjHwFNeF0EFEUhkUphEdNJuLZgyTp/Ggh5Mmv9mUONcjCIEg4jZrxeTJWC8frbSB3ei37R8tftW1ppLolQdHpmoxKNIljM9HVGCXp9LLtuDllFdoqq0wl5Y685Y/H1hJcU8P5/7N15fFTl9fjxz72zZychKyTsu2wuIIK4oWitdaFara2itvqzLlUrttTdurf9aqlba13Q1qWtS1tbdwWVTRQVUWRH1iQsSSaZZGbu8vz+uMkkQxYSmCQTOO/Xa14k996582SizOF5znMOLreGx9+B/6wi1VC+CrL6wOo3nEbUz5/rNKce8wPIudy5LlwFC/8IqXlO38QFc+CTJ1u+X91uOPJyWPvugRF0GbVOM27ZzSiEED2eBF4JYNkKA5OIXYMn62ui/gzgxBavbejTuGdyvVVRgdL2nlSvudx4Jh1D9g/OjguomvJlp+NNC1C9qZxoTV1cAVUrHGHlllQsVw0n/WQUq5dsp2BQFuGQ2eprNuxYbJMZwQxW4E4N4Gk97mzZmjdBdzsB1eJHYcc3kDsCUprMnOUOhe89BKO/D1s/hQmXOkuJlZv2+OHTISUHdqyCgcd0X4X5RIpUOwGnT5YZhRCip5PAKwFMW2FYUWqtXfgLXyVs5gGzWrzWsmxQKi4HStWFMSvbkVRfVYHatQN9wJBmAVWDppXqgbhq9ts+Wc/iT3eRVuTnpJ+MYtWS7RQMzNz/NwAgUo0RDpPZu3f78ruaitY4DalXvwUTfuo0rd4zWOo9FIb0dwIpTYfgFhhxWnxg1TTvy6jt/vY+iaAUmAak5Xf3SIQQQiSABF4JYCuFYRn49DSM6pH4Pa0vFza0C2rKrA6iIhFcGW03lDY+fAfjfy/jnnwc2vmXxrUHCpUF0VJSyR7pfL97UyWrv66jrs4mXFdJ75JqTrhoFCOqfYyYXMTW1RUUDsra3x+9Ue1OlObC18FdkHhSnKDrnxfDqDNaDpba0zcRkrO34v4y6pxlRtnNKIQQBwQJvBLAsCwsZZHhLiK85QKK81vflbhnuyBl25i7dqPtZSejsizMBU5SvWuYUxohNps1sh9Rawu9h/fhw2e/pH/GbowQbN7Y+Do1K3azcsE2xp/Uj8qyEOnZCSxwatRihapw+QN4vB2Y7fKlQ1Z/+Pw5J5E+b1TLwVJ7+iZCcvZW3F/Rame2y9v2bKgQQoieQQKvBDAtC8u2MewwrsAWLHfrM1emaaM1SeOyq6tRNdXomVltvoaqrkLPK8S2LNxjj3COKcWWlbvxBtz0Paw/y9/bTMWOKMMPG4LbsBlpVxJIdRNIc5PTN53CUQWEdofav0uxvcJBzHAUd1pmx/K7PAGo3AiFo51Hgz2Dpbb6IjaUkmhLe65JRkqBJcuMQghxIJHAKwGitoVp21Ram0np/2cqzb7ABS1ea0WtuMR6q6ICBWiutpfo9KxsAtfejKqtQfN4UErx5We1WJ5URpcUUVNaySHH9KVkVDbRsIULGHWCs+Tp9bvigi3D6ECJiL1RCkI7MZWXjFStxfpkrdrfgOpAZ9Q6S7Gym1EIIQ4YUkA1AQzLAmxc+LAjvXGr1nO8TKOxar0Kh7EqK9EDrdf9AqfgqVJObpiW4uxsW/llHZYn1dmZ+PZX1Oyua7Hg6Z5BF8TX5+poZfpmojUQqcZ2BfD6OvifU+W3MO8ep9aWaC5S7ezsbKMunBBCiJ5FAq8EMCwThSLHPYTQ+uvJq7ukxetsW2GbdmxWyKquxg6H0fxt51tF3/gXtbf/AvOzJQCsWVlHREvhpJ+MYs2735Cm16L5/S0GVG6vq8WZrab1ufZLOIhtmOgeD96209Sa2/gRrH4Tvv7X/o3hQKQUWCak5Xb3SIQQQiSQBF4JYNgWFiaWMsEVAj3a4nVOuyDQXRrKtjF27kLz+dssv9BQqV6Vb0fZNhvWhFn5ZR29i9P45r01pEV34MpIjy1V7hlQ1QajrS4nRsMWtcGWx9outgWhHZhaAI9H61hiPTTOdPU7at/HcKAyQk5CfSCBzcaFEEJ0O8nxSgDTskBBmfEV6UOfoMwaCJzc7DqneKqN5nNjh0Komhr0FkpINK02b634DFVVgZaWwfassXz5qdNzMLSlnOJDUrDqrGb1v9pV8DQRItUQDWGQSVqgg/ldtbuh7Gvn62QOvMwI1FYACtw+8PjB5QN9P2cK96QUWFEww85rGnWQPbBxx6YQQojEWX5by8fHtHI8gSTwSoCo5VR9t1VDja6WJxKbVq03KipQykZzN/8VuFN8pPfPZ9eKjdR99C4AOyeewxfLwhSPyGb4ETn463aiTBPcbvRAN304hytB2Sjlwh/o4OTppsWAgtxhkJqEy2mWAbU7QWlO2yGXF+oqnYCortIJlDTdCcbcfufP9gZjynaCKytS/6fp9GB0eZ37pOY5dbuS8X0RQgixXyTwSgDDMtE1jQL3eKpX3sXg/i3XXLIt5Xxgo2HV1KD7Ws7tqi2vJCUvi5xR/QhnpbIpeyTL1XiKh2dz8mWHULlyI5Gwhh2Nonl9aN0ReJlRCO3CdqegQcfbBH27wPmz3+REj2z/2KYzG2cZkF7gNNxO7e0ERko5M1JGnbPjMFJdH4zV1gehTYvjaoBq4WuaBFl+SO8N/gxn96In4DwSPZsmhBAiaUjglQBhy6wviaoBLlxayx+ctmU7X0QjqEi01aT6yO5qdq7YSO8RxfT5wx+oeHYexWY2039yCJVfbyRSWePcLxzGk5e71/6OnaK6DIwQpicXt7uD+V1mGLZ84nydLMuMyoa6CojWOYFWr/6QlhcfBGlaY3BE/c7VuGCsLv7ahkK5e36tuZwlS3cAuuN3J4QQotsk/d/61dXVXHPNNfTr149AIMBRRx3F0qVLY+eVUtxyyy0UFhYSCASYNm0aa9as6dIxRgwTTYNt0WWkDrmT7Z6nW7yuoWq9HY2CabS4zBi75+5qdq7cjBbwM/byU/nO/xtNxcrGoAtAsy30tG5onByphppt4M/ANMDn13C5OhB4bV3mLLOl5UP2oM4bZ3so5cxWVW11crf6jIe+RzjLi+2ZeWoIxlKyIbNP4yOjyLlHRqEzc5ae7zzS8iA1x0mcl6BLCCEOOkn/N/9PfvIT3n77bZ599lm+/PJLTjrpJKZNm8bWrVsBuP/++5kzZw6PPfYYS5YsITU1lenTpxMOh7tsjFHbWWo0VQTdXYOt1bV4nVPDC1QkglJqrzNVX39aybrPdgKg6Vqs/hfQmN+1l1IUCadsJ0ixDHAHsG2FP6WDuxmzB8Dhl8Ah36+fDeomRi1UbXHyuApGQ/EEyOwLLpkIFkII0TmSOvCqq6vjpZde4v7772fq1KkMHjyY2267jcGDB/Poo4+ilOLBBx/kpptu4vTTT2fMmDE888wzbNu2jVdffbVLxqiUImIYuHSdXNcYQut/TqF1dovXmlELTddQ4TBxfYNa4C7bgDcrneIR2WxZvg2UIueQ/viy053X7a78rtBOCO2AQC+UrUDT8Ha0jER6IRz6YxjT8vvUJcywk8vVe5gTcGUPcBLbhRBCiE6U1IGXaZpYloV/j1mdQCDARx99xIYNGygtLWXatGmxc5mZmUycOJFFixa1et9IJEIwGIx77CvLVhi2gUt34SIFO1JIQMtr+ecxbHSXk1jf1jKjLzudvNOnM+Hkvqx+/j1qNm5n54qNaBALvuxw2Knf1ZXLVUbYmSFy+0F3Y5rg3pf6Xd3NMqBmB/QaCL2HSGV4IYQQXSapA6/09HQmTZrEb37zG7Zt24ZlWfz1r39l0aJFbN++ndLSUgDy8+ObCOfn58fOteSee+4hMzMz9iguLt7nMVrKCbx0NMrNLwmUPE65/t9m16n6qvWaZaEiETSPp9V7BjL9oBTbrr6azN4+UtNcsYR7DUjJzer6/C4FVG93WgT5nVk301D4fBoudwcCrxUvwcKHYNe6zhnn3tgWVJdCVjHkDpU8KyGEEF0q6T91nn32WZRS9OnTB5/Px5w5czjvvPPQ9+MDc/bs2VRVVcUemzdv3ud72TYYtolbdxG2K3CnriOsbW9+naWwbcCKogwDzdt6/QWzLsq6595kiftYvi1rnO1rCL6MUF3X1+8KVzqBlz+Lhh16pqUIdDS/a+VrsOKfsHt9oke4d0pBTamT5J47HFytB79CCCFEZ0j6wGvQoEHMnz+fmpoaNm/ezMcff4xhGAwcOJCCggIAysrK4p5TVlYWO9cSn89HRkZG3GNfWUphWFFcuotMbRh1W88ln+OaX2fZKNsGw0BZVqzFT0tqSqvYZhVRrhWxo9yIOxfZXU1w1bdOfldXJdbbJgS3OF/X50EppdDo4DJjcBtUbHDy24ondsJA96KmDHyZkDdSKsILIYToFkkfeDVITU2lsLCQiooK3nzzTU4//XQGDBhAQUEB7777buy6YDDIkiVLmDRpUpeMK2qaWErh0nUCeh5mcByZ+pBm1zVUrdeMaNu9GWtD2DvKCFY61fAzMpsHaHYkgisjo+vyu2rKnUT0QFbsUF1I4fVpeHwdCLwaejMWjnWKhnal2l1OuYj8UeBL79rXFkIIIeol/b75N998E6UUw4YNY+3atcyaNYvhw4dz0UUXoWka11xzDXfeeSdDhgxhwIAB3HzzzRQVFXHGGWd0yfgM28K2Ldz4qLBW48tfxi41FJgSd51tKZQCVRcCd+tLXOani4g8/wRVR98Brhwyspr/ipz8rpar4ydcNARV25y6U5oLpRS1NQqPRyMn34W7I/ld3dUUOxx02vIUjXPqbQkhhBDdJOkDr6qqKmbPns2WLVvIzs5mxowZ3HXXXXjqk9NvuOEGQqEQl156KZWVlUyZMoU33nij2U7IzmJYJpay0XSdansz3uyFVGnNG1Tblo2ybOy6cJuJ9ebnS1Fo1LiygOYzXl3an1EpJ+gy6yAtD6UUoWqFz+8EXR3qzxiphu2fO193ZeDV0Nqn4BCnkKkQQgjRjZI+8DrnnHM455xzWj2vaRp33HEHd9xxRxeOqpFpW4BC13TS6Edk53Hk5A9udp1tKVQ0ijKiaCktz1ap2hqsVV9RG8jFxoXLBamp8cGNikS6Lr+rdheEymI1u2qqFYFUjd75brwdWWIE2PyxU3y1V3/I6NPxsSjlBIBGHegep+WOay8NIs0IhHY7jbiz+nX8NYUQQogES/rAK9kZloWNjYZOujaI6I4i8op6NbvOMmwwDTDNVmt4mcs/BduitngMAOmZrrhq9eDkd3ny8jo/v8uMOjW7XB5szU1ttU1Kmk7vfPe+1e3al6bYtuUsdUZDTtDm8YMnzWk3VFvhJP1rmlNXzBNw/mzIn7NNJzet1wDIGdS9FfKFEEKIehJ47SfDMrGx0DVnqdGTtY6gGgTEL6eZho0yDRS0mlxvfu70oAyVjAMTMjK7Mb+ruhQiQexALqFqRVqmi5xcF27PPgYwh8yA1FwYeGzb15kRJ9Ay6pxgyZvmzFalZDsJ+Z4UJyAz6gOySI0zM2eEnA0ASoHb6wSOGX2c2a729FwUQgghuoAEXvvJtC2wQdd0KtRX+Atfp9yeClwYf13UQouG0VoJApRSqLpaAEIZxbC7G/O7wkGo3oblTqe2BjKydLJzXR0rlLqn/FHOozV1lU4Q5faCN91ZkvRngi/DOdaUyw2uTOc8OMGWUVcfsDUEYDbkjWj+XCGEEKIbSeC1n8KmGZvB8ql8jOqRZGTHV8JXtsI0bVS4ttXEek3TSLn2FuyKXVQvdAE2GVl7BF5dkd+lgOA2zKhFHX4ys3V69XbhcnXyUl00BHnDIS3PCbw6spSqaU7bH28KkOsEbUIIIUQSksBrP0VNM9bvuhfjCG8ZTnF+Ttw1tqWwwxEwopDadtCkZWVT2LeOYKXZbMarS/K7zFqMmirCVipZeU7QpesdDLrS8pwZqEi1Mxv15q+dJb9DZkBGkZOPVVPeeL2ynWL4gezGWSwhhBAikcbc1t0jAHpQAdVkFbEsGsKjOrULV2AjYbUj7hrLsrHCEXTLbHHGS0Wj1P7+NqJvvAqmyaixKUw6JgOvL/7Xoym70/O7zJpqIjVRsgsCZOfuQ9AFTtDVq79TqHT3eti0CD5/HlJ7O8eNuvjrLcMpblpfFV8IIYQ4UHU48Lr11lv59ttvO2MsPVLUNGM75naykJT+j7HZfC/uGmfGK4qG3eJslbVyOfa6VRgfvUtFELZujlAbiq8FpkwTXK5Oze+yLZu6XRVkZrvIynG1WWG/TZFqqNjoBFmhnc6xCT+F3kOd45Hq+OutqFMawt1FLZCEEEKIbtLhwOtf//oXgwYN4oQTTuC5554jEol0xrh6DMM2aZgU0lUqdqQ3fj1+ucy2FFY40mp/RvPzjwFwjzuCLRujfLooxMa18e9rZ+d3KVsR2h0iw19Dr8KUfQ+6GjQEX+POgxN/A8ff1HLQBU7g5fY5SfNCCCHEAazDgdfnn3/O0qVLGTVqFD//+c8pKCjg8ssvZ+nSpZ0xvqRm2YqoZeDWnIAqVx1PaP31DPF/J+4621LYtaFW63d5p5+O97SzcU+YQkqqTq9sF1nZ8dd2Zn9GpRShqigpPoNemXXovgQtZ9buhmXPwOSrIbi95aALnMDL18W9G4UQQohusE+f4uPHj2fOnDls27aNJ554gi1btjB58mTGjBnDH/7wB6qqqhI9zqTUEHjp9cGQaYdBr0URjb8uHEFFjVZ3NOoFffCechaukoEMHh7g6GmZFBXvUQahE+t31QWjeANucrJqcbsUsd0C+8uog/E/gsWPQa+S1ptT27bTC1IIIYQ4wO3XJ6xSCsMwiEajKKXo1asXDz30EMXFxbz44ouJGmPSsmyFYRu46gOVUv010ofdwZrIf+OuM2vrwDDQvM1rSpmrvsKu2AVANGJTvj1KuM6Ou0bVV7vvjPyucMhAc+nkFPjxmjshUbNdvnQongD/vBiWv9CY89Va8CX5XUIIIQ4C+xR4ffrpp1x55ZUUFhZy7bXXMn78eFauXMn8+fNZs2YNd911F1dffXWix5p0LKUwbRNXLHdLAaDv8bZGa8KA3SzHS9k2kSfnUHvjlVjrV7N7l8niD2tY9EH8klxn5XcZYRPLsMkpSiPgqXMKmHrT9v/GvvoCqIsegnXvQc6Q+IT7psGXbYLmkkKnQgghDgodDrxGjx7NkUceyYYNG3jiiSfYvHkz9957L4MHNzaGPu+889ixY0cbdzkwNMx4NeR45ZkzqF55F6NSTo+7zqipo6WqDPa6VajqIKSkovcbSLDS2cnYUv0uV2Zi87tMwyJSZ9GrMJW0Xj4IVzmtePQEJLh7Ak6Q5cuAQ77vzHxBY/DlaTJzZ0WdoEtmvIQQQhwEOvwpe84553DxxRfTp0+fVq/p3bs3tm23ev5AYVgmlq1w1y81KqUBLlxNAiSlFEZ1Lbqn+Vttfla/m3HMYWguN8GqMECzivXYFnpq4nKgbMumrtogKy+FzN4Bp8hpdSl4E7SU2VActXhCY9DVIFIdn2TfUErCJTW8hBBCHPg6HHjdfPPNnTGOHsmwLWzbis1ElblfIXXIZ6wNnw4cDoAVNbFr69C98Yn1yrablJFwgpNglQlAZpMZLye/y5Ow/C6lFLXBKOnZfrIKUtB0zenNGKl2mlB3NcuAlMyOtQgSQggheqgOf9rNmDGD++67r9nx+++/n7PPPjshg+opTMtEaXYsp8umDt1djdVkV6MVqsOKGuheN+klefiynfwme9N6VOVu8PlxjRiNOyONULUzS5ie2RgPq0gEzedtM79LKUU0bGJELMyohWXa2JaNUqrZdbVVUfxpXrILU3G56n/94Soww4mtHF/2FXzxApR/0/Z1UkpCCCHEQaTDgdcHH3zAd77znWbHTznlFD744IOEDKqnMGwLpRRa/VJjVvQUQut/zuDA0bFrzNowdsRE93qI1tSRM6ofvux0VLgOvagY9yHj8efnoGf3RinweDX8gcaEsL3V71JKUVMZQdlOvTAjahOtswiHTGqrotRURKjZHaZmd4Saiggen4ucPmm4vU2WM0M7Et+u59sFsOQx+Oa/bV+nAI/kdwkhhDg4dHipsaamBm8LZRE8Hg/BYDAhg+opoqaFjULHCZRcdhZ2JIUUd+MMjhmqw1YKl0snsruaXV99S86ofgC4h4/Gl+EnZ1Q/Pn35K8BJrI+rGm9b6Gkt7zRUShGqjBJI89K7bxout46yFbatUMqpRh/73nau9/pd+AJNfu3RWqirSHwdrZ1rnD97D279moYZOUmsF0IIcZDYp12NLdXoeuGFFxg5cmRCBtVTmLaJjRWb8arwvE2g5HG2RD5tvKYmFFdGomnwlTmoiJyxg9n11bfs2hoC4hPr7WjUye9qZZmxNmjgS3HTu08aXr8bl1vH7XXh9bvxBdz4Uz0E0r2kZvpI6+UjPduPL2WPIq6RoFPo1JOSqLfFCah2rXW+7j2k9etsA1weJ7leCCGEOAjsU3L9WWedxbp16zj++OMBePfdd3n++ef5xz/+kfABJrOIaaIBen3gFdW34U5dR61dATgzTGZVNbjjg53axUtwb/yK7DO+R/DbciK7q6muT6xvWkpC1dWhp6WiBZoHRbXBKB6vTk6fNLyB/SgBEdrlVKrf396McYPb5cyiaTpkD2z9OmmOLYQQ4iDT4U/s0047jVdffZW7776bf/7znwQCAcaMGcM777zDMccc0xljTFpRy6JpuJIWOZrd5SMoLhgNOInxZjjSrFWQL9VD5rFT2f3v/5J5ynTCFdXUhioByGiSWI8RxZ1d3CwmqquJorucoMuf2nIbonaxDKjdmfhlxobZrqyStoMqM+rMtEnxVCGEEAeJfZoqOfXUUzn11FMTPZYeJ2KacYVRveYAzGBfenkLAbDr6jDrDHRv44yVLzudnImnsvXqq4i60zBLhpMzqh+nnK+o3FKF31+/QzISAa8P1x75XZFaAxTk9E0lkL6fAUs4CNEaSMvbv/vsqSG/K6eN/C5wlhpbayEkhBBCHID2eY0qGo1SXl7erFBqSUnJfg+qp4haJnqT6agazyJ8+dvYET0RGOfMeJkKV30w5ctOJ2dUP3a8vxijz1BchX2J7K5mx/KN9B7dD03bRGS3U1zUDoVw52SjBRpnjKJ1JqZh07tvOqmZCdiFGK508rESUa2+qV3tDLwsU5pjCyGEOKh0+BN3zZo1XHzxxSxcuDDuuFNWQcOyrIQNLtlFLMspQFov7Pkab+rXVJqjALBCISxbj9UG9aYF2PXVtxjuNLzHTo8975uPd7Jq7maGjc9mUD+nuCq2jSurV+waI2IRjVjkFKWSnp2AnCjbhuqy+PY9iZJe4Cwz5g7b+7WS3yWEEOIg0uHAa+bMmbjdbl577TUKCwvjSx8cRCxbYVlW3LZQX3QswWA+uX2cchFGZRDlcseWI6s3Oa10VF0t+AOx9646aGJGFUZ1CEhBhcPoKQFc6c4ynBm1iNSaZBekkNE7QYFSJOg8AlmJuV9TR/7MebTFtpzk+0TXDxNCCCGSWIcDr88//5xPP/2U4cOHd8Z4egynQXYUl9YYevkihxHdYVLgL0FFo5g1teByx82KKaUI/fpnYCtSbvkdek4uYw5NZeAQP26Pc51dV4unsBDN48YybepqDLIKUsnMS0lcoBsJOjlW3RX4NJSSkMBLCCHEQaTDgdfIkSPZuXNnZ4ylR7GVImoZuPTG8g9hz1d4sioJGl7sSH/sSBRcqfFtCMN1EIkAoKU7hVZ1l0ZGlvOrUJZTF8yVmRlr8ZOZF6BXfkpcALffaso7p35W5bfObFZWSdu5Y6aUkhBCCHHw6XAB1fvuu48bbriBefPmsWvXLoLBYNzjYGHZCtM2cWmNgVed/wP8ha9QHt2AXVeHZVgozRVXDsKu2OV8kZqG5vVRHbR46z+VfLKwBnBqd2kpAfTUVGxT4fa6yOgdQE9k0BUNOYn1vpYr4u+Xz/4G/7zY+bMtVtRJrG8SuAohhBAHug7PeE2bNg2AE044Ie74wZZcbylF1DbxeRpjV5cxgLqIj8zi3qhwGFW/4bPp8qCq3A2AnpUNQLDKJFxnU1frvG92uA5vST80lwvbdJL3Y82sEyVc5VSrD2Qn9r7QWMNrrzsapTm2EEKIg0+HA6/333+/M8bR49i2wrQMUpo0m/bXTGfnbou+R/THClZjuzwQX20DVeEEXlp94FVd6QRc6ZlubMNAc7txZThJ9UopdN3JQU+o2t3OTFOiN0aYEajY6HzdVqsgcMpYSHNsIYQQB5kOB14HW3X61kQsExsbl95YOd50bcUVqCNqZmPXaNi6G7XH81Sls9SoxWa8nMArI8uFqq1FT0tDS3FqWykbdGWiNbvLfjAjENoJ3k5YZqzY4AzalwGpuXu/XvK7hBBCHGT2qXLmhx9+yJ/+9CfWr1/PP/7xD/r06cOzzz7LgAEDmDJlSqLHmJRMy8JWdqxBNkBdxsuk9N7E1pprsQODsV3++MR6wHPMSbhGjkXzO2UhYoFXpqtZiyAVrkGv3oCW4oKUHCeg8aU5QdO+5kY1VKtPL9i357dlZ5PG2G3NplmGk3gvOxqFEEIcZDq8iPXSSy8xffp0AoEAy5YtI1K/Q6+qqoq777474QNMVoZtYisbvclbqFlZ2JHe+G03RKLYeJolxWtpGbgGDEEv7IthKGpDzlpkWsCKbxFkmaiqLeh2jROo7F4PW5fBt4tg40dQugIqNzvLhpbR/oHXVeJ09u6EpPZYxfq9LDNaBrh8MuMlhBDioNPhwOvOO+/kscce4/HHH8fTpPnz5MmTWbZsWUIHl8wMywLiZ7y8u39MaP31DHAPwQYsSzWb+LHWrcbevhVlmlRXmQD4AxpuoxZ3ZobTIkgBwW2oUAV6eo5T5DSjCLL6QkovQEHVZtj+BWxaAhsXOEHZ7g1ONfpItVPSYU+2BTWlTmPqztDQo3Fv+V1WFNyezilnIYQQQiSxDi81rlq1iqlTpzY7npmZSWVlZSLG1COYlo2FQqcxsrKpBd1ChX2Q4kKZNFtqrHv0fqgNEbjpfoK1Th5URqYL7Ch6Q4ugut1QtQXlTcfl3mNmyuV1Hv7M+hc1nR2KoR0Q3Aao+tkkn3NNIMsJtDwpTn5XtMZZtkw0pZwxAPRux47GlOzEJ/cLIYQQSa7DgVdBQQFr166lf//+ccc/+ugjBg4cmKhxJb2IaaDtMeMVzX2U9D6lbK79CSrjcOwwsWr0ACoagdoQAHqvHILb63c0pqrGFkFGGCq+BZcL5fLhcu0lONHd4Et3HuAEQFYUzDDUlEHVFue4uz4Ys0ynYnyiaRr88O/OjFpqXtvXWgZ40xM/BiGEECLJdTjw+ulPf8rPf/5znnzySTRNY9u2bSxatIjrr7+em2++uTPGmJQitgko9CaBl9Kc3Ye6aaPcXmwVP+OlQjVoObmocB34AwSrqgFI8xu4snqjuXXYudmZlUrLhajd8VISmtYYZMVeuEkwltZ7H3/idr52emH7rpXEeiGEEAehDgdev/rVr7BtmxNOOIHa2lqmTp2Kz+fj+uuv56qrruqMMSaliGGi77FUpm+7lqpai4EjIyiXB2VbccVT9V45pP5mTqzY7KBhfnJ6G2RnRnBlZkJ1qTNjlNILJwNeS0zF+paCsUSzou3L2VK286NJYr0QQoiDUIcDL03TuPHGG5k1axZr166lpqaGkSNHkpbWCXWhkljUNltIUXKmp9yA0nTAarGpdcOxwj5e8jOj4A6guyzYvbm+jY6nybWdM/6Ee2O206dx6g1QPKH162I7GmXGSwghxMFnn+p4AXi9XkaOHJnIsfQoUcNqNuNlF/yRVFcl27Vzse1h7Fn31FzxGdaGtbiGjSKYM5Ttm6Nk+esoHleEVr0VLAv8WXHP2TM5Pykp5exojATBv5c2QJY0xxZCCHHwalfgddZZZ/H000+TkZHBWWed1ea1L7/8ckIGlsxsW2HZdrPZLKXXoLurUbpzzZ715q2vPseY/xYom52DB7BudZiiAhf9VY2zk7FJtXdnObIT2gV1htAOJ+jSdOg1oO1rrahTANa1zzG/EEII0WO169MvMzMzFmRkZmZ26oB6AkspopbRbMZLlV5MrWFQODIL01TNZqsyp06izqzBzMqmV46b/iUa2b0sNGMX3vz+uNMzqS0tde6lnCXJlpYqk05D/a5e/fe+hCjNsYUQQnSH5bc1fj3mtlYu6nztCryeeuqpFr8+WFm2IqoMXHvUn1XRPOyoIuB1qjbsmRgfXvElfX7/e3a8vxhPpodsFcKbYeHrXUzGkOEE169rvJft5Hf1iKXG9lasB7BtJ49NCCGEOAh1+GN9w4YNrFmzptnxNWvWsHHjxkSMKenZSmFaBi5X/Nun5f2VQMlfqNAqMS27WWJ86N132fqLX5D7neMpr3BRWhrGn9+bjOFjCK5fRzQYjF2rlLNy1yOWGmMV6/dSOBWcH0zyu4QQQhykOvyxPnPmTBYuXNjs+JIlS5g5c2YixpT0TFth2Aa6Fl9VXgtswJ26lohuoaw9aniZJipYRWjBQjZ9+A2jTh5OYMzhZI2f0CzoAmdiSNN6yK7GXfXNsfc242Wb9c2xpVWQEEKIg1OHA6/PPvuMyZMnNzt+5JFH8vnnnydiTEnPthWmbeLZYx3QKDuTuq3nkqP3cgKnpkuN0Qiu8RPQBw1jd1ktKxdsY+y0/tTt3Nks6IKGHK8esNQYrnIq5EP7WgW5ZUejEEKIg9c+1fGqrq5udryqqgrLaqEx8wHItGxM22o242XVjMS0NVI0v1O1vkncpaWkEvjptQDYUTcDJhfxzYcbGTqpL0Yw2Cz4UkrhcveA5HpvKpzxCFRucXYrtqWhlIRLangJIYQ4OHV4PmXq1Kncc889cUGWZVncc889TJkyJaGDS1aGsrCx49oFAbh6v44v/9/UqBDKVi3mZ/my0xl87DDe+stXfD1vPcH168gYOAhvRvxOP2WDvrc+jclAd0PeSBh60t6vtYz6ArHJPo0nhBBCdI4Oz3jdd999TJ06lWHDhnH00UcD8OGHHxIMBnnvvfcSPsBkZFo2topvkA3gyVqM5ooSsU9AQdxslbHkQ7xGNTmzrmP5a1+weWWQfgM1osFgLPhqmuulFLjiJ9R6PiklIYQQ4iDX4amHkSNHsnz5cs455xzKy8uprq7mggsu4JtvvuGQQw7pjDEmHcM2UcpGb/L2KcsiuvsYIjuPI5WUZlXr7c0b8Kb4KH3iWUq/cWp1eX3O8xuCL3dKSuP9FOg9IfB653b44LeNeV5tUYBH8ruEEEIcvPapfHhRURF33313osfSY0RNE8UeM16GSXTnCQCkDklp9hxVuZtdf3kd7/d/hKHnA+DxN86IRffI81I2uJN9qdEMw4b5zmAPv7jta1V9JCqJ9UIIIQ5i7Qq8li9fziGHHIKu6yxfvrzNa8eMGZOQgSWzqGWiUOg0CYwMA0/WEgDC1iR0d/ySmvvoE9EHDsU1cCDGGicIaZjxalFPaBe0e70TdAV6QSC77WttA1weJ7leCCGEOEi1K/AaN24cpaWl5OXlMW7cODRNQ6k9OxE6OU0Hw87GqGnCHjNeKmriK3gVTVNErEPRPPGzVe5ho2DYKKjdhbGyFgCfv+3IKul3NDYUTs0ZvPeCY9IcWwghhGhf4LVhwwZyc3NjXx/sIpbp1NjaY6nRrB4Fmo074IkvnmrbEAmjBVIgWotSGqDw+FoPVhQ9YPPfzvrCqb3b0SrIjIInRYqnCiGEOKi1K/A688wzeffdd+nVqxdz587l+uuvJyWleR7TwcIwreYNsqMm4a0/AiA1LyVumVAFK6n99RUQSCF11i+YNLQGV24B3j7prb6GRg9YauxIj0YrCmn5nTseIYQQIsm166N95cqVhEIhAG6//XZqamo6dVDJLmwZaHtsW1R1dbgC63EFNmKr+MBMVVYAoPl8aJjYmgfd44qvbN/0XkqBFl+ANSmk5YGvPli0TSfHC5wZL1+6c741tiXNsYUQQhz02p3jddFFFzFlyhSUUvzud78jLa3lKuW33HJLQgeYbJRSmKYdP+OlFHZdHSn9/wxAVN0XP+NVuRsALTMLZZm8uawfbg+cfI7C528eXTW0C2otMOs2Rh306g8VG2H7F84slicFcoc1Hm+L5HcJIYQ4yLUr8Hr66ae59dZbee2119A0jddffx23u/lTNU074AMvy1YYWPGJ76aFZRpYkVw0FC6vHpefZVfsAkDLyMAw3dhKIxoFj6fl11A26JqWfEuNkWonuOrVH+oq4dALIWcQZA90jkeat5ICnNkuTQe3tAoSQghxcGtX4DVs2DBeeOEFAHRd59133yUvr41lpQOYaStM04wLvDTTwGPp1K7/BQD+cf648w0zXnpaCh6/i+PHbIP8olZbAikF6EmaXN8QfBWNg6xiSMlpO+iCxlISEngJIYQ4yLXro/3QQw+losLJU7r11ltbXWY8GNhKYSgDT5OoSDNMbMsEVwhNr21WaiO21JiWguZ24/daZGW3saOxvsF20laTiFRD7S4nWb52V9tBFzg7GqWUhBBCCNHx5Po77rjjoE6ut2yFaRvoTfr56IZJrR0hfehvSBt2B0qz457jPet8AlfNwj18CLuqfHz0dT7LPmn9NWzbCbqScsYLnGVGTyqUfeXMePla350JOLlg3tQe0gNJCCGE6DxJnVxvWRa33XYbf/3rXyktLaWoqIiZM2dy0003xZbylFLceuutPP7441RWVjJ58mQeffRRhgxpR4mDfWDbYJgmbm9jEKEZBnaTXY4ud/xUlZ7ZC9wGVG0lXKkTrPXibWOSSCmFy60lZwFVXzr0Hgov/sjJ2zrlvsbE+tZmvqzo3oMzIYQQ4iCQ1Mn19913H48++ihz585l1KhRfPLJJ1x00UVkZmZy9dVXA3D//fczZ84c5s6dy4ABA7j55puZPn06X3/9NX5/4pe2LKWI2ib+pjsOo1G8eirVK+/Go9l4JjSpaK8U1uqv0PU6tDQv0ahz3NtW8VRFq/lf3cqX7gRZL10C696Dk+6KT7hvLfhSCjyBrh2rEEIIkYSSOrl+4cKFnH766Zx66qkA9O/fn+eff56PP/4YcIKaBx98kJtuuonTTz8dgGeeeYb8/HxeffVVzj333ISPybRsbCw0miw11oVBd0N998a4Ga9QNeE/3AVA6s03YRjO4Tar1tvgSsZlRk8A1r0PX73qLDX2Pdw53hB8eQKtz3pJfpcQQgjRvhyvpmzb7rIdjUcddRTvvvsuq1evBuCLL77go48+4pRTTgGc9kWlpaVMmzYt9pzMzEwmTpzIokWLWr1vJBIhGAzGPdrLsJw+jbF2QZaNHolS5aojdcideAfdF7dEaFfUJ9anpqD5/BiGc66tBtlK1cdxyaamHL543vm6/+T4XYqRauf8nizD+WFkR6MQQgjR/sDrZz/7WVxS/fPPPx9LuAeorKzkO9/5TkIH96tf/Ypzzz2X4cOH4/F4GD9+PNdccw3nn38+AKWlpQDk58e3osnPz4+da8k999xDZmZm7FFcXNzuMUVtC0tZsQbZmmk4dbx00N014ArFPyESRsvMQsvMAN3VGHi1UDi1gVLgSsalRmXD+vnO1wOPbd9zpDm2EEIIEdPuwOtPf/oTtbW1se8vu+wyysrKYt9HIhHefPPNhA7u73//O3/729947rnnWLZsGXPnzuV3v/sdc+fO3a/7zp49m6qqqthj8+bN7X6uaVmgFHr9W6cZJppl4iOT0PprsDZdHne9a/BwUn91I4GLLwAg2hB4effSIDsJ4y7KVkDtzvhlxr2xDKcxtkuaYwshhBDtXtBqVptqj+87w6xZs2KzXgCjR4/m22+/5Z577uHCCy+koKAAgLKyMgoLC2PPKysrY9y4ca3e1+fz4fPt29JX1DJQTZYaNcNAs21webEjWWi6hUbTdkI2RENo9UtthumcayvHy2mQnYSR17p5zp/9p7Q/kLKi4M9K4qJkQgghRNdJxhTumNraWvQ9ilm5XC5s26mTNWDAAAoKCnj33Xdj54PBIEuWLGHSpEmdMibDsgAalxoN03lds5pAyZ/R+/w1/vqF7xJ9712scqdtkGE6z2tzVyNJWsNr2Ckw5lwYdnL7nyPNsYUQQoiYZEzhjjnttNO46667KCkpYdSoUXz22Wf83//9HxdffDHglK+45ppruPPOOxkyZEisnERRURFnnHFGp4wpbNYn19M444WmUWdGcaeuByu+bIK5dCHW6m/w5Rbg6lvcGHi1sdTozHh1yvD3T+8hzqMjlO0sNQohhBCiY4HXLbfcQkpKCgDRaJS77rqLzMxMgLj8r0T54x//yM0338zPfvYzysvLKSoq4rLLLourFXbDDTcQCoW49NJLqaysZMqUKbzxxhudUsMLIGJaoKnYzkU9HMZ2ufHXpVJXdh4BHWiy6TO2q7H+fSrMrsXwpBFIba1PowItSXO89pXeSjdwIYQQ4iDT7sBr6tSprFq1Kvb9UUcdxfr165tdk0jp6ek8+OCDPPjgg61eo2kad9xxB3fccUdCX7s1UctszL9SCj0cwdbcuKwAZvVYXG4z7npVVQmAnpkBwIi+VXj7Z+BOa3lKSyknHSqpZrxsC/57HRSOgzE/AG9Kx54vifVCCCEE0IHAa968eZ04jJ5BKYVhmbHEOM00wTCxNC/VBPHlL8BWPtDOca6vqaKhVL2WkYllwdbdAVJToDBTtdgSSNmga1pyJdeXLoftX8Du9TD+R+1/nm05EaQrqVe0hRBCiC6TTPMqSc9pkG2h1wdFDaUkbDzUUoM3exEqY1nserW7vpaY34/m9VJXB5+v783ihbTah1EpQE+ypcb185w/+x8Nrg4sG9qmc70sNQohhBBAkifXJxtLKSxl1TcGqi8lYdpYLhcB0ojsOJ4UzQMNlS1sA9ewwWgNS3NKkZ0ewZ3Wev6ZUk7QlTRLjbYFGz5wvm5v0dTYc03Q3B0L1oQQQogDmAReHWDbTo6XrjXOeCnb2eOYomUQ3XkSmR4jdr2elU7gB2eD38nvSvGbTDpkN4EhA1p9DWU7OV5JU06idDnUVYAvA/oc2rHn2ia4XJLjJYQQQtRLlo/3HsFSCsM2cOlOg2zNNLFtHWVphPRqPFmLsdKXOzNitgXR2rhltmhEURP2EIm21S5IoeutL0V2uXXvO38OOLrjDSRt02kVlCw/ixBCCNHNOhx4bdq0qcWq9UopNm3alJBBJSvLVpiWiat+OkoLh7Fwo5RGtb4Lf+GrmL3ecy42I0Tnz6Puhb9jfvMNANvLvcz/rDefLIy2+hq2IpZD1u1ss8ky43H79nx3YO/XCSGEEAeJDi81DhgwgO3bt5OXlxd3fPfu3QwYMACrvrL7gciynRmvQEPx1LoIpnKj6eBVKRjBUQRUmnOxGcbavAVr7XrcI0YCNDbIbqtqvUqiTYDbv4BwpbPMWDSu48+3TfBI4CWEEKIbjbmtu0cQp8Mf8Uq1XAahpqam04qWJgtnV6OJputgWWhRA0v50HRFup1HeOuPyfZFYRBghlHBagC0+hpe0fYEXjbUr2R2v4IxcPJ9EK7o+DIjOL2PpGq9EEIIEdPuT9PrrrsOcHKPbr755lgFewDLsliyZEmbjakPBJZt1zfIdjuJ9VELW7nQXIoIYVyBLdhuF6jeEK3Ge/yx2FUh9HynmXdDg+y22gUp5eSjJwWXB0om7t89pJSEEEIIEdPuwOuzzz4DnBmvL7/8Eq+3cSbD6/UyduxYrr/++sSPMIkYlomNhYYXzTBQEYWtu3HrsNO1lZT+z1AXKUBTw8GK4h41Oq6UQnuWGiFJcryUvX81LRryAKWUhBBCCBHT7sDr/fed3W0XXXQRf/jDH8jIyOi0QSUrw7KwlY2u6WhGFGUBLg1NU+i2GyuSi8fshWZFUdEI4ENrMnvV0CDbs5fAKymq1n/4AFR+C4dfBEXjO/58ZTlrpvuyRCmEEEIcoDr8qfjUU0/FfR8MBnnvvfcYPnw4w4cPT9jAkpGhLCfHDQ3NNLAMF3r9xF9vuz+13/6CXH8Ucp3E+vBfX0Tv04eUK650nm85gdfeZ7w69cfYO9uEDfMhEmycudqXe+huqeElhBBCNNHhj/hzzjmHhx56CIC6ujoOP/xwzjnnHEaPHs1LL72U8AEmk4hhgKbQNR3CRn1+l3POVCaaK4TS6sAIoUJ1AGi+xg0HDTNebeV4QTeVvUrLA1+68/XWZU7QFegFhWOc42l5bT9/T7bp5HfJUqMQQggR0+HA64MPPuDoo48G4JVXXkEpRWVlJXPmzOHOO+9M+ACTScQ0AYWm6VATwcaNpjszQtvdq0kb+huqC/6KZoZR1SGgcUcjNM54eXwt37+hPlq3zHgZddCrvxNkNfRmHDDVCb569XfOd4RlOnUxZKlRCCGEiOnwR3xVVRXZ2dkAvPHGG8yYMYOUlBROPfVU1qxZk/ABJpOIZQE2ug3UGti6Hss/bwiaNDSwTVR1jfN9ZiYAtmVjWm3PeCnl5LN3S5/GSDVUbHSCrIYpt3E/dL6v2Oic7wipWi+EEEI00+HpiOLiYhYtWkR2djZvvPEGL7zwAgAVFRUHfB2vqGk6fRQtCzuiwNUYIeWbo6heeTeD/SHoV4ld7QQqeoYTeKEUk0eVQ34hXn/rgZeuad3XLihSDavfgtMfhgHHwOBp+xZ0QX3x1JS9XyeEEEIcRDoceF1zzTWcf/75pKWlUVJSwrHHHgs4S5CjR49O9PiSStS2nAbZUQM7rNDiAigN0NEVoOmoqirnaMNSo7LJyrAI9PW0umtR2c5tujW5fvUbsGstTL4aasr2LegCp1el58AOxIUQQoiO6nDg9bOf/YwJEyawefNmTjzxRPT6KGHgwIEHdI6X06fRctZm6ywwQfM0RkhbXV+ROuQ1KsPFoH8H/w/PR1VWouc7Sek1NRpfr+1FRqXJ+MktJ5wr5QRd3bLU2MDth0N/DBsXOMVTI9X7HnxJ8VQhhBAizj5lPh9++OGMGTOGDRs2MGjQINxuN6eeemqix5ZUGtoF6TrOjkYLNFfjzJWlGejuGpQeBt2N3isNevWKna+r0yiv8BPGbvU1lO2kRHVbWpQvHabfBd/81+mx2JDzta/LjbKjUQghhIjT4bmV2tpaLrnkElJSUhg1ahSbNm0C4KqrruLee+9N+ACTha0Ulm2hoWHXmrBHgNTbGEZo/TVk7zgRLAtr/Xrs3btj59P8BmOGVjNiXOt1rZw+mN1Uud6X7gRZld9Cr35O+YimCfcNpSbaQyln5VVqeAkhhBBxOhx4zZ49my+++IJ58+bFJdNPmzaNF198MaGDSyamrTBsE13XUSETPPENFd0qgB0pwGtlQlk5dX95nLon/hI77/dY9CuxKBnU+iyQ06exm6a7Gma49pzZagi+PIH236uhhpeUkhBCCCHidPiT8dVXX+XFF1/kyCOPjNt9N2rUKNatW5fQwSUTy1YYlolu61BrxLUCAihzryJQspDKaAHsdPK6GkpJAOyo8LC7NIUCl0lhcctvu62cLjvdoqYcFsyB4BYYe158m6CO5nnZRn3VellqFEIIIZrq8IzXjh07yMtrXsU8FAp1XxmELmIqE1dUoaI27FGLK6xV4k5dT9S7AywLLT0dPSsrdn5nlZe1G7yUbTVbvb+ynZqj3WbzEtj8MVjR/buPbUm7ICGEEKIFHf6YP/zww/nvf//LVVddBRALtv7yl78wadKkxI4uyVi2gTeswFRoafFvXa/IAOoqz6NI12DsQFKPmBArqgpgGHtvF9Swq7Fb1FVCcKvzdd7I/buXbYLL343Td0IIIURy6nDgdffdd3PKKafw9ddfY5omf/jDH/j6669ZuHAh8+fP74wxJg0bC2oVekMOUxMBKxMz2IeUQEVsGrHpDGBju6A2ZgUV6N2V41X2lfNnRxPpW2IZ4O+19+uEEEKIg0yH51emTJnC559/jmmajB49mrfeeou8vDwWLVrEYYcd1hljTApKKUzbQq+z0XSr2dRUhWs9vvx/UZ32Jeqjj4i+/z52RUXsfLsaZHfXjkaA8vrAK3/U/t/LtjqWjC+EEEJ0luW3dfcI4uxTRtGgQYN4/PHHEz2WpGYpC2XYaFHQdIVqelJB0LUNb+YiamtGwscbiQaDuAYPitXyapjx8rY140U31vBqmPHKS0DgpWypWi+EEEK0YL9SuZVSvP/++9TV1XHUUUfRq9eBu7xkKxtMGy1iwZ6zUnaUjGgBkZ3H08dKhZoVAGj1fRqVbbdvqZFuyvGyTSj/xvm6IAGBF0jVeiGEEKIF7f6Yr6ys5MILL2T06NH89Kc/JRgMcvTRRzNt2jROO+00RowYwfLlyztzrN3KVhZ2VKFHTTR3fNK4ZhtkRIqI7jiJPhXFYDsl6LW0NOcCpZosNbZ8/4ZE/G5pF7RrLVgRJ7crszgx95RSEkIIIUQz7f6Yv/7661m0aBHnnnsuX375JSeffDKWZbFo0SKWLFnCiBEjuPHGGztzrN3KVjZ2rYXLNlCu5oFX0FOGJ2sxXnO1cyw9Ha3+OtuyMS1npqu1pUalnKCrW5Ya0wtg6g1w6IX7H/nZlnMPKZ4qhBBCNNPuT8fXX3+d5557jmOOOYaZM2dSXFzMe++9x8SJEwG47777+N73vtdpA+1uUcNEjyhcmo3aYzZHN8Ls8m/En7kAd3kJEF881YgqnB46rS81Ol12tO5JrvdnwfDvJOZetik1vIQQQohWtDvwKisrY+jQoQD06dMHv99PcXHjslRJSQk7duxI/AiThG3Y6FEL3TacGlUNlIlmR/CbORjBUdguHwx148rPb3yuCakBE+XytNoSKDbj1V11vBLFtpz8LllqFEIIIZppd+Bl2zauJktsLpcrrk7VgV61HgDLcvr6NHkfNMtk0LhDmfKtxbIvjqIqcyf6+QF8HmfGx5eXS1r/FI4LrCEwZECrt1Z2/QpdVwdetbtg8aNQMBpGnr7/97MN5/2R5HohhBCimQ4l4vzlL38hrT5h3DRNnn76aXr37g1AdXUHevn1ULplNzum2QbBHaVcesYZfGG+QXhrJeDUsPLl5ZIz4QhK3/sQAw9+W6G1spSolLNZssvj19IVsPYdpxF2QgIvE7xp3ViCXwghhEhe7Q68SkpK4mp3FRQU8Oyzzza75kCmW1ZDqlaMZkXZtbmMO996jDnnXMRH99+B/fw8PDNnkjPhCHZ9vJRNX+1m2Zoceq+q47jvprR4b2UrdFc35HiVJbBwKtQXT235ZxRCCCEOdu0OvDZu3NiJw+ghDBOluxpjLwWaWYetufn824384p27ePTqWwj+859kTZ/Oro+XEinfgWHW72jcW5/G7mhtmMiK9eDMeEngJYQQQrRI9vy3k1LgNgwINMldsk1028TWXeRVTuSdDzPYXf4q+ZdcQtUXXxApdzYblOSEGDA6HT0rrc37t5Z432nMCOxwyl8kLPBSShLrhRBCiFZIIk57mSZYVlwNL01F0ZQJmhtDi3L0sDQyz/4+u95/n7Thw/Hl5QKgAJdbx9PGjJdtd8OM1841TjJ8oBekFyXuvhJ4CSGEEC2SwKu9jCi6peIDL8twoipNo++onTz0w3Hc/u6f2Fm+k11LPyFnwhH48nL5elMWr//Pxbqvo63eXsVvluwaDcuMeSMTm9UvNbyEEEKIFkng1V62DcpGNdmtp5thlAa9+xZz8/TLmPXBLD7b9DWaBpHyHez6eCk5E47AcKcRDjuVKNqid/VSY2lDftchibmfbTrTdlK1XgghhGiRfELuK2WDFcHW3WTk9OaPLy/lreWn8d9//RJLW4T9y18RAXYt+RgTN2C1mVwPqutLSZRMcP4sGpeY+8Wq1stSoxBCCNGSfZrxWrduHTfddBPnnXce5eXlgNNS6Kuvvkro4JKZZhnotgm6h/VffMYX68tBaehKxZpkA4RLy6irrANa79MIoLqjXdDw78JJd0DeiMTcryHwkuKpQgghRIs6HHjNnz+f0aNHs2TJEl5++WVqamoA+OKLL7j11lsTPsBkpdkGOhZoTmJWaebbpA++s/F8/ZKksm0My/m6tT6N4JQH6/ntgmTGSwghhGhLh5caf/WrX3HnnXdy3XXXkZ6eHjt+/PHH89BDDyV0cMlMsw1Uk2qqlh7Grdc0XtCQC2bbmKbztbeNnHNFFxd7Xz/PKXba51BnV2Mi2Bb407uh/L4QQgjRxJjbunsErerwR/2XX37JmWee2ex4Xl4eO3fuTMigegLNrMNu8vblVB1LeP2VTS5wgg9lKQyrvoBqKzNeylboehfHK58/B+/9BrZ9nrh7Wga4A4m7nxBCCHGA6XDglZWVxfbt25sd/+yzz+jTp09CBpX0bBPNiqKaLKnpZgaEcxuvqZ++MgxFQ5+h1pYabQVaV+Z4GXWwa63zdaIKp0J9uyB/4u4nhBBCHGA6HHide+65/PKXv6S0tBRN07BtmwULFnD99ddzwQUXdMYYk45mm/WFUxsLb+3O+BB9wFye/e4kXBdcGCvKZUSdYMrlbr0yvVJOfleX5Xjt+MbZlZmaC2l5ib231PASQgghWtXhj/q7776b4cOHU1xcTE1NDSNHjmTq1KkcddRR3HTTTZ0xxqSj2VFnDqtJpBT17kBP38CqkgD64MGx5HrDcM632afRdm7VZZsayxJcv6spSawXQgghWtXh5Hqv18vjjz/OzTffzIoVK6ipqWH8+PEMGTKkM8aXlHQrwp61UNODE9i9+xAGRcLgr4TevQHwuExGDDPwZLbdp1GnC2e8YoHXyMTdUylnRVVKSQghhBCt6nDg9dFHHzFlyhRKSkooKSnpjDElN6XADKP2qM7uiRSTWmFy0Rt3YGgavrvuBiDFYzFsAHh6t74Ep5RC17WuSa5XqnNmvGynZ6XMeAkhhBCt6/Acy/HHH8+AAQP49a9/zddff90ZY0pqum2gW0azwKs6bRmBnDfqL2p8WytDHtatd1G+zWz1nqq+QbbWFZFX1RaIBJ1crJzBibuvbdYnskngJYQQQrSmw4HXtm3b+MUvfsH8+fM55JBDGDduHL/97W/ZsmVLZ4wv+dgGGjZ7ThaGA2vwZn6KrRFXF2JX0M+Xy3U2rjFavaVSdN2ORrMOCsc6j0QGSfVV/GWpUQghhGhdhwOv3r17c+WVV7JgwQLWrVvH2Wefzdy5c+nfvz/HH398Z4wxqehWfQC1R5zkD41im3ECD/30fDy3NFbwT/Gb9C2GnDwXrVHKmSzqEr2Hwml/gFPuT+x9Y1Xrpf2nEEII0Zr9+pQcMGAAv/rVrxg7diw333wz8+fPT9S4kpZmh1EtxKv+0BiiYT+9srfGlgyVbVOYXceAwW701NZzvGw7Vn2i6yR6WdM2wZ+V2HsKIYQQB5h93ke3YMECfvazn1FYWMgPf/hDDjnkEP773/8mcmzJRyk0K4qtN49X6wKryAp8QL9Vi7E++yx2fUWtj/IdinCd3eat9VZqfCWUUQubP4ZIdeLvbZvgSUn8fYUQQogDSIdnvGbPns0LL7zAtm3bOPHEE/nDH/7A6aefTkrKgf+hq9kmmm2A3rw6e23GYopc65m6wMJKSYHDD0fZNqu3ZLLzK4sJx1j0G9JanKs6b0djWp5TqT5SDaUr4PUbIKMIzn0OfOngCUBN+f6/jm2D27f/9xFCCCEOYB0OvD744ANmzZrFOeecQ+/6WlUHC01ZaA1l5vfgCffDrtaA1XENso2GBtmttAsCUJ3ZLsiog179oWJjYxmJvJFO0NVwPFFkR6MQQgjRpg4HXgsWLOiMcfQIumq9JIS/4jiM8h3A6sb8KVthWE7g1VqfRnDy9DuteGqk2gmuevUHd/1M3YjTG4OuRC47SrsgIYQQok3tCrz+/e9/c8opp+DxePj3v//d5rXf+973EjKwpKMUuu3U72ophIp6txPw1jcPj5vxcq727iUm6dRqEpFq2LUejpsNmX1h7A8SG3Qp2wk2W8h9E0IIIUSjdn1SnnHGGZSWlpKXl8cZZ5zR6nWapmFZVqLGllzMCNgmtu5vcUdCXe5/KdQ3Od/Uz3jZlmoMvFqZ8VK2k9/V6e2CNi+BugqYfDVUb0/sTJdlOPW7ZKlRCCGEaFO7Pu5t2yYvLy/2dWuPAzboAmfXnrKdtjgt0IwsonYWFVlpaNnZAJimoqHgV2tLjUo5AWunF1Ctq4RDfwxfvQqpuU6OV6LYljPbJcVThRBCiDZ1eJ7lmWeeIRKJNDsejUZ55plnEjKonshfdjYrambz/vcvxnvRxQBEo845lwtcrZSLaMjV79RuQb50OOwC+OfFsHN1Y85XooIv23R6HkmOlxBCCNGmDgdeF110EVVVVc2OV1dXc9FFFyVkUE31798fTdOaPa644goAwuEwV1xxBTk5OaSlpTFjxgzKysoSPo69sfQ6cIVAa0zAN429J9bbDelRnbXU6EuHrP7w9s2wfj4UT4hPuE9E8GWbTimJTvshhBBCiA5YflvjI8l0+JNSKdViM+ctW7aQmZmZkEE1tXTpUrZv3x57vP322wCcffbZAFx77bX85z//4R//+Afz589n27ZtnHXWWQkfx96E+zzF0Jw7GPTxm1j1Oz+jVjtKSSgnsb7Tcrw8AajcCIddBBe8Cv7631FD8OUJ7P9r2GZi7iOEEEIc4Nq9DW38+PGx2aYTTjgBt7vxqZZlsWHDBk4++eSEDzA3Nzfu+3vvvZdBgwZxzDHHUFVVxRNPPMFzzz0X6xP51FNPMWLECBYvXsyRRx6Z8PG0TpFXpRj7xTqsshBMnYrZUMPL21bgpdB1rfOWGpsWR91zditSnZgke9sEtwReQgghxN60O/Bq2M34+eefM336dNLS0mLnvF4v/fv3Z8aMGQkfYFPRaJS//vWvXHfddWiaxqeffophGEybNi12zfDhwykpKWHRokWtBl6RSCQuTy0YDO732NybriCyZQ3wVGzJLTerjpO/C3pq80r3DZTt5KW3NIuYEGbEKZxaOKbzyj0oJVXrhRBCiHZo9yfxrbfeCjg5Vz/4wQ/w+1sPJjrLq6++SmVlJTNnzgSgtLQUr9dLVlZW3HX5+fmUlpa2ep977rmH22+/PaFjU0qnLCWHDaPGMKRPIcq2cbvAn+5GT219HVGpTu7TuG0ZvDEbeg2As5/qvNeRUhJCCCHEXnU4s+jCCy/slqAL4IknnuCUU06hqKhov+4ze/ZsqqqqYo/Nmzfv99jM4j+x67C/8MExw/AcPRWUYl1ZBu+9abFuZbTV5zmB136/fOu+XeT8WTimE18EKSUhhBBCtEOH154sy+KBBx7g73//O5s2bSIajQ8qdu/enbDBNfXtt9/yzjvv8PLLL8eOFRQUEI1GqaysjJv1Kisro6CgoNV7+Xw+fL4EL425QujuGjScbYrKsqgNe6nYrSiqU60+TSlwd1bBd6VgU33gVTKpc17DNkFzgUuq1gshhBB70+EZr9tvv53/+7//4wc/+AFVVVVcd911nHXWWei6zm233dYJQ3Q89dRT5OXlceqpp8aOHXbYYXg8Ht59993YsVWrVrFp0yYmTeqkQKM1Wy9k+ILvccbz7xF95WWwbQb2qeWoE3z0Hdh6UKIUnVc8dfd6CO0Alw+KxnfOa9iWE3RJDS8hhBBirzo8TfG3v/2Nxx9/nFNPPZXbbruN8847j0GDBjFmzBgWL17M1VdfnfBB2rbNU089xYUXXhi3mzIzM5NLLrmE6667juzsbDIyMrjqqquYNGlSF+9oBBXtTUrtNjIqKlAVu8FWpKVq+Pt79pI4rzqvlETDbFefQzsv+d02pWq9EEII0U4dDrxKS0sZPXo0AGlpabFiqt/97ne5+eabEzu6eu+88w6bNm3i4osvbnbugQceQNd1ZsyYQSQSYfr06TzyyCOdMo42FT2Pv6Y+oV/Twbb5+tsM7LIww8Z4yejVWiJXJ7YL2rTY+bOzlhkBbMMJvCS5XgghhNirDs+19O3bl+3btwMwaNAg3nrrLcApdJrwvKl6J510Ekophg4d2uyc3+/n4YcfZvfu3YRCIV5++eU287s6TeBbPJ76mlm6jrIVpbt8bFxjEo20nuMFndQuKFzplJEAKOnE2T/bcmbTOrXnkRBCCHFg6HDgdeaZZ8Zyqq666ipuvvlmhgwZwgUXXNDijNTBwio9A3P3RAA0XQNlYxh7r1wPndRpp6YcsoohZxCk5XXCC9SzTfCkdN79hRBCiANIh5ca77333tjXP/jBD2LFSocMGcJpp52W0MH1JFbNCKirrwKv6dimjVHftrG1wMtpv9RJ7YJ6D4VznoFoqBNu3oS0CxJCCCHabb9rAEyaNKnrdxAmIVfu66xzV7EydQLjBgzDMjXACbhaa5KtbGJtmDqNN7Xz7g2gkPwuIYQQop3aFXj9+9//bvcNv/e97+3zYHoyV9ZSSnPCrMs7h8OLRlBX6sw0uVzgaqUyvVJOalTClxqD2yFaAzmDuyb3SnY0CiGEEO3SrsCroU/j3miahmVZ+zOeHiu6ayroJgGvFw0t1iC7tdkuqA+89E5Yavz6VVj+Iow8A6Zck+CbN6EUoKSGlxBCCNFO7Qq8bNvu7HH0eNFdx/O9dR9y3NfPEh47jujh3wXaTqy3nSL3iZ+UaqjfVTg2wTfeg7Kc2S6pWi+EEEK0S2eV7jyo2Ao8WYvx+dajWxbYFqZVv6PR2/aMl64neKkxuBUqNzltfPoensAbt8AynKBLlhqFEEKIdunwVMUdd9zR5vlbbrllnwfTUynAV/BvfBvrtzFqGobtFEz1tFHaTCmFpic4ub6haGrBaPClJ+6+LbFN0KRdkBBCCNFeHQ68XnnllbjvDcNgw4YNuN1uBg0adFAGXjZgVh/CG4MiDC8awuSCwXhqoHeeRlZ2axXrnV2NeiuJ9/usIfDq1wU7TW3L2dEoS41CCCFEu3T4E/Ozzz5rdiwYDDJz5kzOPPPMhAyqp1FKI7z1h4QB+qxGT0+jKBBh4FEBNHcbgZdydj0mTLQWtn3ufN2ZbYIa2Ab4Mzv/dYQQQogDREKyizIyMrj99ts7rVdjsrNQuFLWU2h9Qeq2rdg7dxGKeAhWgxFtvV2QUqAnMvDa+qkTDGUUQWZxAm/cCtsEt7/zX0cIIYQ4QCRsjaiqqirWMPtgY2GT0u/PnDrfYvhChXn4EXwz4Dy2f1LLuCN9DDmk5RwoZYM7kUuNRggC2c5sV1fU77Jt8EjgJYQQQrRXhwOvOXPmxH2vlGL79u08++yznHLKKQkbWE+ilIYVyQOzCgih0HC5NDw+8PrbCIAS3S5o6Mkw5CQwwwm86V5IYr0QQgjRbh0OvB544IG473VdJzc3lwsvvJDZs2cnbGA9iYaL2vXXYVe8BsxD0+CwcVG8fXP2/txEz0xpetc2rZZSEkIIIUS7dTjw2rBhQ2eMo0ezUWiuGnSiACg0LM1V3wS7jTpeJLCGV/lKJ9E9oyhBN9wLVV/9Vfo0CiGEEO0mBVQToE4ZpA29E3+WUzFe0zTefMfPS0/WUF3ZetV/jVaWGtPyWq/B5Ut3zu95zYIH4YUfwrr3Gq/pTLYJulsCLyGEEKIDOjzjFQ6H+eMf/8j7779PeXl5s3ZCy5YtS9jgegqFs3NRr38rbF3HMJyv3a2kQCmlQAO9pQkxow569YeKjRCpbjzuS288Do1fV2yEHaucYwOPi7+ms5gR0L2y1CiEEEJ0QIcDr0suuYS33nqL73//+0yYMCHxOUo9kA8/1Svv4ZG+JiWT1jFGz4HlzvvSWssgpUDXNLSWIq9ItRM49eoP5d9ATamzW7FpMFZXCeGgU6F+40fO8w69EArHNA/YOkM4CL0GyK5GIYQQogM6HHi99tpr/O9//2Py5MmdMZ4eyVYaoKHpLjTdhaGct1V3gcvdSuDV0CC7tcXeSDUsewZGneksHx76Yyj7ynkiwOs3wM7VMOh4+P6TTiB0xCVdE3RZUacXZHpB576OEEIIcYDpcODVp08f0tM7uQdgD1Oj1ZI65DeM3GSRteJQonmjgSK8vrYbZNNWg+zVb8K8eyBSA5OvhoV/dGa3GirFa7rzWD8PPvurc82udZ0fdIEz25aaDYFenf9aQgghxAGkw4HX73//e375y1/y2GOP0a9fv84YU49jYqO7Qxz3tU3Rlx9QdUwhaOw18NK1VuqcbloE8+9zZrOOuARqyuDIy+Nns858zPmzIe+rpgx69ev8GS9lgxmFjL4J3JIphBBCHBw6HHgdfvjhhMNhBg4cSEpKCh5PfHL17t27Eza4niJgBwituxat+jVgJYbmZNS3lt8FTtF3TWshdildAW/fBgOPhXOeheBWiIacYGrPhPumyfaR6pavSbRIEPwZkNq7c+4vhBBdyLIsjIbdUCLpeDweXAltatz9Ohx4nXfeeWzdupW7776b/Px8Sa4HNNzY0Xy2pJYQKqrESsmEWvD4Wn+OUgqXW4t//2wT3r8L+k+Gc+Y6QZdR65xrmnC/567GhiBrz2s6I/iK1EDuCHC38cMJIUSSU0pRWlpKZWVldw9F7EVWVhYFBQUHTLzR4cBr4cKFLFq0iLFjx3bGeHqkoFZDoORP/KvYywTjFNLCxbCxHUuNe/Zp1N1w0p1OwFS52Ulib6ohsPIEnO9bCq6aXpPowMuoc5pip+Um9r5CCNHFGoKuvLw8UlJSDpgP9QOJUora2lrKy8sBKCws7OYRJUaHA6/hw4dTV1fXGWPpsaIYuFM3gOWHyBEYlrN+2NZSo7LB1bDMaBmNhUhzBtUfi7b4vNiSYlvac82+qKuEjD6NCf5CCNEDWZYVC7pycvbe2k10n0DAmWgoLy8nLy/vgFh27HB29L333ssvfvEL5s2bx65duwgGg3GPg1HATqNuyw857d2hFLwzjwJzI4dN8dF3QOtxrVLOBBdGHfzn57Ds2fqtjknKNgEFGQfGvziEEAevhpyulJQu7Gsr9lnD7+lAycXr8IzXySefDMAJJ5wQd7yhL6FlWYkZWQ/iwYtZPYYR25aSsX0jvrHbKRo+sdl1KQUFmLW1RINBZ8ZLs+CdW6H8a8ge6CTLR2u64Sdoh3AV+HtBivzrUAhxYJDlxZ5hv35PY25L2DgSpcOB1/vvv98Z4+jRqqnBl/8quttZh/42Woy9NEK/wW4yejVOi5q1tWQMHERw/TpU1W5SPvktbP4Yhk53iqBWbe6uH6FtSjkzc72HOlVhhRBCCLFPOhx4HXPMMZ0xjh6tVg/jzVwci0m2Rgqo+iJKTr6LjCY1RqPBIMH168gYOAj32tfwbnoXBk2Dc55xgq6uKH66L6I14EmDFCkhIYQQB6Njjz2WcePG8eCDDyb83v379+eaa67hmmuuSfi9k1GHA68PPvigzfNTp07d58H0VH47hciOE3BFPwF20Sewg9ziHNIzm6fQRYNBalZ8RMZxF0OmByb8FKq2JG/QBU47opzB4JV8CCGE6E4zZ85k7ty5XHbZZTz22GNx56644goeeeQRLrzwQp5++unuGaDYqw4HXscee2yzY03XXw/GHK+AnUp054m4jDXALvqnlZJ61LjWn7D+Awgtd9r81JQld9BlRpxdAGl53T0SIYQQQHFxMS+88AIPPPBAbNdfOBzmueeeo6SkZJ/vq5TCsizc7g6HBkSjUbxe7z6/9sGkw7saKyoq4h7l5eW88cYbHHHEEbz11ludMcakF9Jq8fRaxKcDMqgaNpRN2mA2rTOwrZZ3KXrTU+DQH2OvfMNJVvclce/LcCWk5kpfRiGESBKHHnooxcXFvPzyy7FjL7/8MiUlJYwfPz52LBKJcPXVV5OXl4ff72fKlCksXbo0dn7evHlomsbrr7/OYYcdhs/n46OPPiIUCnHBBReQlpZGYWEhv//975uNoX///vzmN7/hggsuICMjg0svvRSAjz76iKOPPppAIEBxcTFXX301oVAo9rzy8nJOO+00AoEAAwYM4G9/+1tnvEVJrcOBV2ZmZtyjd+/enHjiidx3333ccMMNnTHGpBfUq/AX/IvXjt5K+aSjWbEtnyXvh1usDuHNyMB77FUEF7yEUVnaWGk+GYMv23JqjGUUtdJUUgghDgxKKWqjZrsfYcNCKUXYsFr8vr0PtY9lhC6++GKeeuqp2PdPPvkkF110Udw1N9xwAy+99BJz585l2bJlDB48mOnTpzdr7ferX/2Ke++9l5UrVzJmzBhmzZrF/Pnz+de//sVbb73FvHnzWLZsWbMx/O53v2Ps2LF89tln3Hzzzaxbt46TTz6ZGTNmsHz5cl588UU++ugjrrzyythzZs6cyebNm3n//ff55z//ySOPPBIrkHqw6Ph8Yivy8/NZtWpVom7Xo3htP0ZwNAHbj207Gfa6C1zu+GDFm5FBxsBBVK5dS9A9hsJ8d9e0+dlXkSD4s6QvoxDigFdnWIy85c0OPefoIb3543njeXHpZn5wRDE/feYTPlyzs0P3+PqO6aR4O/5R/KMf/YjZs2fz7bffArBgwQJeeOEF5s2bB0AoFOLRRx/l6aef5pRTTgHg8ccf5+233+aJJ55g1qxZsXvdcccdnHjiiQDU1NTwxBNP8Ne//jVWNmru3Ln07du32RiOP/54fvGLX8S+/8lPfsL5558fS5IfMmQIc+bM4ZhjjuHRRx9l06ZNvP7663z88cccccQRADzxxBOMGDGiwz9/T9bh3/by5cvjvldKsX37du69917GjRuXqHH1KOl2DuHt53PDsmfpbS1k65CxLbYLcqekEFy/jkhlEE0DrWG+sTPb/OyPSA0UjG6sqi+EECLmwzU7eXHpZi47ZhB/mr+uw0HX/sjNzeXUU0/l6aefRinFqaeeSu/ejf9IXrduHYZhMHny5Ngxj8fDhAkTWLlyZdy9Dj/88LjnRaNRJk5srEWZnZ3NsGHDmo2h6fMAvvjiC5YvXx63fKiUwrZtNmzYwOrVq3G73Rx22GGx88OHDycrK6vjb0AP1uHAa9y4cWia1mx69Mgjj+TJJ59M2MB6krAWxpWyjoKabWh2NtByu6Da0lLcld+QvukdajPHoPc/rvFkZ7X52VfRWmcXo8x2CSEOAgGPi6/vmN6h5+iahs+tY1g2l04dyIVH9cfu4NJhwLPvtREvvvji2DLeww8/vM/3SU1NTcjzampquOyyy7j66qubXVtSUsLq1av36XUONB0OvDZs2BD3va7r5Obm4vf7EzaonmaXq4yUfi+DC0yXMx3raaVBtmfXctI2vYqetxtNP67Fa5JCuBKy+iVn7pkQQiSYpmn7tOQH4HE5f9/79yOI2hcnn3wy0WgUTdOYPj0+aBw0aBBer5cFCxbQr18/wGm5s3Tp0jbrZQ0aNAiPx8OSJUtiOyQrKipYvXr1Xut4HnrooXz99dcMHjy4xfPDhw/HNE0+/fTT2FLjqlWrqKysbOdPfGDo8H9lDb9A0UhXHqxILs9N9nJW1ThQ0NquWndwPQBG2kD8yZqvbhmABukF3T0SIYQQrXC5XLFlwz2bR6empnL55Zcza9YssrOzKSkp4f7776e2tpZLLrmk1XumpaVxySWXMGvWLHJycsjLy+PGG29E1/e+F++Xv/wlRx55JFdeeSU/+clPSE1N5euvv+btt9/moYceYtiwYZx88slcdtllPProo7jdbq655ppYSYyDRbt3Nb733nuMHDmyxUbYVVVVjBo1ig8//DChg+spept9qF3/CzZ7LyHcKx8AbytRlbvamTE0MwYk70bBcCWkZEMgu7tHIoQQog0ZGRlkZGS0eO7ee+9lxowZ/PjHP+bQQw9l7dq1vPnmm/Tq1XZ5oN/+9rccffTRnHbaaUybNo0pU6bE5WW1ZsyYMcyfP5/Vq1dz9NFHM378eG655RaKiopi1zz11FMUFRVxzDHHcNZZZ3HppZeSl3dw1YnUVDv3sn7ve9/juOOO49prr23x/Jw5c3j//fd55ZVXEjrArhAMBsnMzKSqqqrV/4DXf7WcRS+8RFp+Nm5P/ETh0pCXubsyGGZX8mPTT2V1MUNGeRg3aY/lV9sk943T0GyDsqnPkD983wvddarKLdBnPGQ238UihBA9XTgcZsOGDQwYMOCgTpPpKdr6fTX7/F5+W/yTk7BJdrtnvL744gtOPvnkVs+fdNJJfPrppwkZVE+z3bORtKF38sv3HiJl1Uag5RwvV2gLmm1gu1JQaUm6jGeb4HKDN627RyKEEEIccNodeJWVleHxtF5WwO12s2PHjoQMqqex6//UFVguH9DyrkZ30FlmjKb2x+XqcO3armFGweUDt/wrUAghhEi0dn/69+nThxUrVrR6fvny5RQWFiZkUD3N2WPPZJz5OG4zhVEr5/Kd0WsZONwJUr0ZGaQUOLNb7monsT6aOqCxhleysaLg9oLb190jEUIIIQ447f74/853vsPNN99MOBxudq6uro5bb72V7373uwkdXE+xrWw3fzzvUHpNnAA4Fetdbi1Wqd6srQXASu1LJPdwwhmjcHXtruP2s6JOCYmkzfwXQggheq52l5O46aabePnllxk6dChXXnllrIrtN998w8MPP4xlWdx4442dNtBkNn/7fBZ88BqP3nsn7z/6PTatUJx0aBq9Bw4iuH4d0fqdoOHi6YSLp1MTtMnRkzSwsQ2p3SWEEEJ0knYHXvn5+SxcuJDLL7+c2bNnxyrXNxRue/jhh8nPz++0gSYzSzP5pOx91v5qFkf/7iFWLthO0bg+cUFXPJW8S40Kye8SQgjR8yXhjkboYAHVfv368b///Y+KigrWrl2LUoohQ4bstSbIgS43MpDQ+mv4Tep2fvPJJ4w/6Shqtm2PC7r0unLc1RsxMwYC2WjJuJSnbGeJUQIvIYQQolPsU3+EXr16xcr9C3CrAHYkh/5jB1I8YTzV69eTWlKCWROMBV++ssWkr5hDJG8CweF30o4iwF3PioJLEuuFEEKIzpKMH/89Tql3HSdMXsLsGUfw/l+W8L8n1rHzm7VkDByEt74gq6t+R6OZPhBI0tx1syHwkhkvIYQQojNI4JUAQ/sV8X8n/YKyn1/DmhUmO3e5qNtdRXD9uljw1VDDy8wYiILkzPGyouBNBT1Zt1wKIYQQPVsyfvz3OCOzD+HnL/2P0ILFsYhK1yAaDBJcvw53ICXWo9FI74+uJemMlxUFX8stk4QQQnS/mTNnomka/+///b9m56644go0TWPmzJldPzDRbhJ4JcAHi9czb3kGNYHGNjsNyfPRYJDwhs/RzVqU5sZMKUbTtCRNrlfgObi6xAshRE9TXFzMCy+8QF1dXexYOBzmueeeo6Rk33sAK6UwTTMRQxRtkMArAXZ7NuHL/xe3nHtc7FjTpcSG2S4zrQSFG01LwqXGhl7pEngJIURSO/TQQykuLubll1+OHXv55ZcpKSlh/PjxsWORSISrr76avLw8/H4/U6ZMYenSpbHz8+bNQ9M0Xn/9dQ477DB8Ph8fffQR1dXVnH/++aSmplJYWMgDDzzAscceyzXXXBN77rPPPsvhhx9Oeno6BQUF/PCHP6S8vLzZvd99910OP/xwUlJSOOqoo1i1alXnvjk9QLJ9/PdI1e4deLMXEfZ/GzvWdELLHXQS662MgU58ozlLkUnFNsDlkR2NQoiDWzTU9sNqMiOkFBhh57gRjv8+GgKjLv7aPe+1Hy6++GKeeuqp2PdPPvkkF110Udw1N9xwAy+99BJz585l2bJlDB48mOnTp7N79+646371q19x7733snLlSsaMGcN1113HggUL+Pe//83bb7/Nhx9+yLJly+KeYxgGv/nNb/jiiy949dVX2bhxY4tLnDfeeCO///3v+eSTT3C73Vx88cX79XMfCPapnISIl2YUYpQdx1mflUGmc6xp4KUb1SjNhZkxAKWc2a6km/GyZEejEEJwd1Hb589+Gkad6Xy9bC6MPB2WPQuH/hheOA/Wvdd4bdF4uHSe83XtLvjtoPh73Va1z8P80Y9+xOzZs/n2W+cf/AsWLOCFF15g3jzn9UKhEI8++ihPP/00p5xyCgCPP/44b7/9Nk888QSzZs2K3euOO+7gxBNPBKC6upq5c+fy3HPPccIJJwDw1FNPUVQU/740DaAGDhzInDlzOOKII6ipqSEtrTHt5q677uKYY44BnADv1FNPJRwO4/cfvJ81yfbx3yNlRPtg7zieaV+ujR1rGljVjPx/7DjlNer6fQ+lnDc96VK8zKizzOjydPdIhBCiZ9i11gm6Jl/t/Nk06Opkubm5nHrqqTz99NM89dRTnHrqqfTu3Tt2ft26dRiGweTJk2PHPB4PEyZMYOXKlXH3Ovzww2Nfr1+/HsMwmDBhQuxYZmZmrE1gg08//ZTTTjuNkpIS0tPTY8HVpk2b4q4bM2ZM7OvCwkKAuCXJg5HMeCVAlbsMX+YKVJNoq1lgpXtQugdlKnQ9CQMvKwK+wu4ehRBCdK9fb2v7vKtJOsYJt4LudlYMjroKJlwKymo83/Rf4Ck5e793B1188cVceeWVADz88MP7fJ/U1NQOXR8KhZg+fTrTp0/nb3/7G7m5uWzatInp06cTjUbjrvV4Gv8x37CpzLbtfR7rgUBmvBKgwreeQO5rTQIv1bhr0Yo4/1M2nFFOn8ak29Vo204NLyGEOJh5U9t+uJrMV7g8zr+iXV7nT48//tqmm5U0rfm99tPJJ59MNBrFMAymT58ed27QoEF4vV4WLFgQO2YYBkuXLmXkyJGt3nPgwIF4PJ64JPyqqipWr14d+/6bb75h165d3HvvvRx99NEMHz78oJ/F6giZ8UoAv5mNHR6Bbq8nd8dnuJtMrfq3zSN9+f8R7juN6rGznKVGV5IFXQ0kv0sIIXoMl8sVWzZ0ueILX6empnL55Zcza9YssrOzKSkp4f7776e2tpZLLrmk1Xump6dz4YUXxp6Xl5fHrbfeiq7rsQmDkpISvF4vf/zjH/l//+//sWLFCn7zm9903g96gJEZrwTIDg/H2PZ9PGYto7/6CxMmNE41u6s3oCkL5XL+5aMUyden0TadavWyo1EIIXqUjIwMMjJaLnx97733MmPGDH784x9z6KGHsnbtWt5880169erV5j3/7//+j0mTJvHd736XadOmMXnyZEaMGBFLiM/NzeXpp5/mH//4ByNHjuTee+/ld7/7XcJ/tgOVzHglQK2rClJCrCsoJj1QiFmhk5/rnGsoJWFmOD0alZ2EgZcZdfIWZMZLCCGS2tNPP93m+VdffTX2td/vZ86cOcyZM6fFa4899lhUQw3HJtLT0/nb3/4W+z4UCnH77bdz6aWXxo6dd955nHfeeXHPa3qvlu49bty4Fl/vYJNsIUAzW7du5Uc/+hE5OTkEAgFGjx7NJ598EjuvlOKWW26hsLCQQCDAtGnTWLNmTZeOsTzwBfbQZ/jTaUNZ0e9CFi5snPJ1NRRPTR9QP15wJVsrRCsKbq/MeAkhhOCzzz7j+eefZ926dSxbtozzzz8fgNNPP72bR3ZgSOrAq6KigsmTJ+PxeHj99df5+uuv+f3vfx83TXr//fczZ84cHnvsMZYsWUJqairTp08nHA532TjddgpWJBfd9uH1hElLcyJ6LVKBK1KBQsNK7x+7Xk+26qlWFHzpSbjVUgghRHf43e9+x9ixY5k2bRqhUIgPP/wwrlyF2HdJvdR43333UVxcHFedd8CAAbGvlVI8+OCD3HTTTbFI/JlnniE/P59XX32Vc889t0vGmRuawNaNE/nxyr/T3/dnCi+/HGhSsT6lCOVu3N2SfMVTDfCmd/cohBBCJIHx48fz6aefdvcw9t/y2/Z+zZh2XJNgyRYCxPn3v//N4Ycfztlnn01eXh7jx4/n8ccfj53fsGEDpaWlTJs2LXYsMzOTiRMnsmjRolbvG4lECAaDcY/9YRIlzapgxLercG0qwzCdmaNYj8aMAXHXJ10pCXC2QQshhBCiUyV14LV+/XoeffRRhgwZwptvvsnll1/O1Vdfzdy5cwEoLS0FID8/P+55+fn5sXMtueeee8jMzIw9iouL92uc2zI+IK3/w9Sk9WXhxLt4710nicsddAIvKz0+8Eqq5HplO0uMklgvhBBCdLqkXmq0bZvDDz+cu+++G3CmP1esWMFjjz3GhRdeuM/3nT17Ntddd13s+2AwuJ/Bl6I6AB+NKsBPY6pUaPjFRIqOwUqJrwifVBNesR6NklgvhBBCdLZkmntpprCwsFmF3REjRsR6QRUUFABQVlYWd01ZWVnsXEt8Pl+s9klbNVDaPc7Kk9j27b1sLHGajDYEVrY/h2jeBKy0xqBOkWSBlynNsYUQQoiuktSB1+TJk1m1alXcsdWrV9OvXz/ASbQvKCjg3XffjZ0PBoMsWbKESZMmddk4na5TGrpyIqrWAiulFLqWZMn1VtRpXaEnW40LIYQQ4sCTTCFAM9deey2LFy/m7rvvZu3atTz33HP8+c9/5oorrgCcJPVrrrmGO++8k3//+998+eWXXHDBBRQVFXHGGWd02Ti3Z77LyMzb+N78l+rHBd6yJWQu+RWBjf+KXaeUM+akSq63ouDbvxk/IYQQQrRPUud4HXHEEbzyyivMnj2bO+64gwEDBvDggw/GirkB3HDDDYRCIS699FIqKyuZMmUKb7zxRqy1QVew9DBe6vAb9fW7NPBUrsS34xNsf27suoY89qSa8VIqvpGrEEIIITpNMoUALfrud7/Ll19+STgcZuXKlfz0pz+NO69pGnfccQelpaWEw2Heeecdhg4d2qVj7F11DNEtP0DVR1Sa1rxVEDgxDhokTf3UhtYNkt8lhBA9wsyZM2MrJx6PhwEDBnDDDTfEFQ1vOK9pGqmpqQwZMoSZM2c2q801b948NE2jsrIydmzbtm2MHj2aqVOnUlVVFXdN09du6dG/f/8uehd6tqQPvHoCl5WBFu2FwomodB3c1fWBV3rTgq/ObFfSzHjZBrg8sqNRCCF6kJNPPpnt27ezfv16HnjgAf70pz9x6623xl3z1FNPsX37dr766isefvhhampqmDhxIs8880yr9123bh1TpkyhX79+vPnmm2RmZsad/8Mf/sD27dtjj6avs337dpYuXZr4H/YAlNRLjT3FzvSP6J27EqVlA6Bh46p16og1LZ6qlBPpJk2KlyU7GoUQoqlaoxaAgDuApmnUmXUopfC5fLh0FxErgmVbeF1e3Lob0zKJ2lE8ugePy4NlW0SsCLqm43f7sZVN2HRmo1I8KXGv0fB9R/l8vtjO/eLiYqZNm8bbb7/NfffdF7smKysrdk3//v056aSTuPDCC7nyyis57bTT4lrvASxfvpzp06dz/PHHM3fuXNzu5uFBQ+3Lppq+jmifZJl76dGi3h14fNtQ9RGVriIAWL4clLfxP9LYjFeyBF5m1Am63N7uHokQQiSFic9NZOJzE6mIVABw3mvnMfG5iSwrXwbA7A9nM/G5ifxj9T8AMJXJi6texFQmAO9seoeJz03k8nec1nHrK9cz8bmJnPzSyc1eIxFWrFjBwoUL8Xr3/vf4tddeS3V1NW+//Xbc8YULF3LMMccwY8YM/vrXv7YYdInEkXc3AdKDE1hrDOHjQ6oZ6fmEgUUKdjdvFaSUQtOTaFejFYU0+ZeKEELsq5W7V3LRIRexaNsiJhV1TRmj1157jbS0NEzTJBKJoOs6Dz300F6fN3z4cAA2btwYd/zMM8/kBz/4QbvuIfafBF4J4Iv2Zac5lM39NjPBV0eJdzEAZvrAuOuUAj1pMusB2wJfanePQgghksaSHy4BnKVGgOe/+3xsqRHgnqPv4c7Jd+JxeQAYlzsOwzI4svBIAE4oOYElP1yCXp/MOzBrYOyee77GvjruuON49NFHCYVCPPDAA7jdbmbMmLHX5ynVsPM+/nPo9NNP55VXXuHDDz/k6KOP3q+xib2TpcYECKZ+Smrvl9HCu9lWWsiXtdOp7X8m0dzD4q5TKgnrlEp+lxBCxKR4UkjxpMSCk4A7QIonBVf9X94+l48UTwoe3Qm8NE3D4/LErnfrblI8Kfjr/27VNT12zz1fY1+lpqYyePBgxo4dy5NPPsmSJUt44okn9vq8lStXAk7x8ab+9Kc/ce6553LKKafwwQcf7PO4RPtI4JUAdYG1TKhYzOnzVrM7mMeWqn7UHHIFxp6Bl51EDbJtEzSX7GgUQogeTNd1fv3rX3PTTTdRV1fX5rUPPvggGRkZTJs2Le64pmn8+c9/5vzzz+c73/kO8+fP78whH/SSJQzo0fyhQ7AqR5MW2krxjg/oW6xavdaVLDNeVtRJqpcZLyGE6NHOPvtsXC4XDz/8cOxYZWUlpaWlfPvtt7z99tt8//vf57nnnuPRRx8lKyur2T00TeOxxx7jggsu4Dvf+Q7z5s3ruh/gICM5XglwwbgZlO2YR3rNI6TseodiTyVWxaGYvUbgzcjAnZJCbWlpcuV4NZSScMmMlxBC9GRut5srr7yS+++/n8svd3ZTXnTRRQD4/X769OnDlClT+Pjjjzn00ENbvY+maTz88MPous6pp57Ka6+9ljybwQ4gmmrItjuIBYNBMjMzqaqqIiOj5b6F679azqIXXiItPxu3Jz5e/WcAjjkkjYoFJuM2b2Swaz65A7IJH3sfGQMHEVy/jmgwSHXQJrfARUZWEkx71ZRDah70Gd/dIxFCiC4VDofZsGEDAwYM6NL2cmLftPX7avb5vfy2jt18TAevTwCZ8UqA5aG3+eTLdczqfQ9ffzWAqN/D1KF5cUEXgEbz3STdxjLAL82xhRBCHOC6IbhqiwReCeAOl5C6W6d29zpgNFrBIfiO+k5c0NUgaZLrQfK7hBBCiC6WTGFAj5VSeQzDV4xmwPI1AOj5w4mUbmoWdAGQDBNeynbGIYGXEEII0aUk8EqAqLcUt6ccVf92ajtX4ivsj7eFfLGkyK23DCepXkpJCCGEEF1KAq8ECOX8D3+vD1D1lYr1bZ9Q/c1nZAwcFAu+lFKgOb0au500xxZCCCG6RTKEAT1ebqCA3t7sWOClYWNU7Sa4fl0s+FLKaY6dFMn1VhQ8AXBJip8QQgjRlSTwSoAzC68lNTQ9Fnjh8qA0N9FgkOD6dbhTUpyq9ZqWHDNeZhR8sqNRCCGE6GrJEAb0eM8u+IJVFVWYbqd3V7jgOJQvC4BoMBgrnoqWJDleygbvvvcJE0IIIcS+kbWmBKgtmsuHA7eTu+pq8nbjrCnuQSknvysZVhoBye8SQgghuoHMeCWA0pzi/5pyoqqWgiulnDe725caLQN0t+xoFEIIIbpBd4cBBwTfpiso/uhSRn/7HhfY5zGt6mwngb2JhqXGbp/xsqL1pSRkxksIIXqizZs3c/HFF1NUVITX66Vfv378/Oc/Z9euXbFrjj32WK655ppmz3366afjmmQ//fTTaJrW7CGtlDqPLDUmgALG7ljHyG8+o2agj/SiMGjx/RiVUrjcWvfvarSiTtDl8nbvOIQQQnTY+vXrmTRpEkOHDuX5559nwIABfPXVV8yaNYvXX3+dxYsXk52d3aF7ZmRksGrVqrhj3f5ZdQCTwCsBon3/jH/bNtYOPIOyPhM4LPQKffZYU1TK2dXY7cyI0xw7GcYihBBJxq6tbfG45vOhuVwo20aFw6DrzrH6v0uVaYLLhYpEwLabPFFDDwSce0ejYJrOcbcb3dvxfwBfccUVeL1e3nrrLQL19y0pKWH8+PEMGjSIG2+8kUcffbRD99Q0jYKCgg6PRewbCbwSQLlq2ZxvMCCaTcSVial8zQIbpUB3tXKDrmRb4E3t7lEIIURSWnXoYS0eL5k7l9SJEzA2bWLdyacAkDr1aEr+/GcAlGWx5bLLCC1YGPc87+BBDHrtNQDKf/c7Kp55FoBeF/yYgl//ukNj2717N2+++SZ33XVXLOhqUFBQwPnnn8+LL77II4880qH7iq4lgVcCaFsv4D2vYuTIrVwY+jl+V4gQl8ZflCyBF0ryu4QQIgFCCxfFvo6sW9cs6Eq0NWvWoJRixIgRLZ4fMWIEFRUV7NixA4BHHnmEv/zlL3HXmKbZLH+rqqqKtLS0uGNHH300r7/+egJHLxpI4JUIRg625SaQ8i05nk3YupfQHpcoBa7uDrxs08k9kx2NQgjRomHLPm3xuOZz/t70lJQ0XqM3ppT4R4xg2OefxS8zQtzqR97115PXkPDu3vePX6VUu647//zzufHGG+OOvfzyy9x9991xx9LT01m2bFncsT1n1ETiSOCVAHbBC5zx1TZy1xzFP7PvZGzu22TucY2yQe/u6qlW1Am6PPI/lBBCtERPabu4tKbraC1co2ka2l52AupeL+xDXleDwYMHo2kaK1eu5Mwzz2x2fuXKlfTq1Yvc3FwAMjMzGTx4cNw1eXl5zcel682uE51HykkkQuBb+oZ2gJ1FmWsUNVZOs0tUMjTIbmiO7ZIZLyGE6GlycnI48cQTeeSRR6irq4s7V1payt/+9jd+8IMfyI7EJNfdocABwS47HTs4FFVfQiKSN6XZNRpJsD3XjDqJ9br82oUQoid66KGHiEQiTJ8+nQ8++IDNmzfzxhtvcOKJJ9KnTx/uuuuuDt9TKUVpaWmzh73nsmlPNOa27h5BM/IJnAB2zUiI5qDqAysrfUCL13V33IVlSHNsIYTowYYMGcInn3zCwIEDOeeccxg0aBCXXnopxx13HIsWLepwDS+AYDBIYWFhs0d5eXkn/ARCcrwSQMt9HY9/PUo7xPm+lQCr25caQZpjCyFED9evXz+efvrpNq+ZN29ei8dnzpzJzJkzW/1edL5kCAV6PFfWJ3i8Zaj6yMpfuazF67o1t942nXoWklgvhBBCdBsJvBLA3HUMi/PGUpfhFCb1VS2PO6+Ucvo0due7bYad+l0eKZ4qhBBCdBdZakyA6K5j+ChV4xhXNYSbLzUq5Rzr1uR6M+Lkd7mlR6MQQgjRXWTGKwFcWUvwZC3Gxilqp2nxxe0a+jR2a3K9EQZ/r24cgBBCCCFkxms/KQW+/P/wk7eipGglBDPym+VyKUX3LzUqBT5ZZhRCCCG6kwRe+0kBZvUhpAXXkW2tJiOwi1R3MP4a2wm6ui253jZBd0tivRBCCNHNJPDaTzYQ3nYeqnYuA7e/RkFOJakpRVQ2uaY+t777ZrxiifVSSkIIIYToThJ47SdbgStlHX899BAKzWxS3V/isuLf1sbk+m4apBkBX7o0xxZCCCG6mSTX7ycLRUq/x9k95h9sUdP4T+g3lKlxcdcopdD1btzVaEYksV4IIYRIAhJ47ScbsCJ5ZO/ohdKi+DxhIgNOj79Igd6d1VOVcno0CiGEEPtI0zReffXV7h5GjyeB137SlIva9dfx03/34tg3f8M467/k5MW/rUo5ReO7hW2C5pJWQUIIcQCYOXMmmqahaRoej4cBAwZwww03EA6Hu3toop0kx2s/2Sg0Vw26MjHcqdgKVLQWaJxh6tbAy4xIYr0QQhxATj75ZJ566ikMw+DTTz/lwgsvRNM07rvvvu4emmgHmfHaT2EM0obeiSewgaWHzWKpmoGx7IW4a5QCvTt3NHoDklgvhBDtYESsdj0sywbAsmzne9P53q7/vj2PfeXz+SgoKKC4uJgzzjiDadOm8fbbbwOwa9cuzjvvPPr06UNKSgqjR4/m+eefj3v+sccey9VXX80NN9xAdnY2BQUF3HbbbXHXrFmzhqlTp+L3+xk5cmTs/k19+eWXHH/88QQCAXJycrj00kupqamJnZ85cyZnnHEGd999N/n5+WRlZXHHHXdgmiazZs0iOzubvn378tRTT+3ze9ETyYzXfmqoVq8rFasXoe9Zud4Gl6u7EuvDkFnSPa8thBA9zJ9/Pr9d1009dyijj+2LshQr5m/hkGP64nLD+s938ubjK9p1jyseO35/hgrAihUrWLhwIf369QMgHA5z2GGH8ctf/pKMjAz++9//8uMf/5hBgwYxYcKE2PPmzp3Lddddx5IlS1i0aBEzZ85k8uTJnHjiidi2zVlnnUV+fj5LliyhqqqKa665Ju51Q6EQ06dPZ9KkSSxdupTy8nJ+8pOfcOWVV/L000/Hrnvvvffo27cvH3zwAQsWLOCSSy5h4cKFTJ06lSVLlvDiiy9y2WWXceKJJ9K3b9/9fj96Apnx2k9e5ad65T0Q6oeqD7y0PRLpVXeWkpDEeiGE6DQ7NlUz/qR+lK6v6rLXfO2110hLS8Pv9zN69GjKy8uZNWsWAH369OH6669n3LhxDBw4kKuuuoqTTz6Zv//973H3GDNmDLfeeitDhgzhggsu4PDDD+fdd98F4J133uGbb77hmWeeYezYsUydOpW777477vnPPfcc4XCYZ555hkMOOYTjjz+ehx56iGeffZaysrLYddnZ2cyZM4dhw4Zx8cUXM2zYMGpra/n1r3/NkCFDmD17Nl6vl48++qiT37XkITNe+6m+OyO6UqiGOHaPIMspntoNkVdDYr1UrBdCiHa59A/HtOs63e38nV4wKBPLtOk73CnZM3Bc73bfY18dd9xxPProo4RCIR544AHcbjczZswAwLIs7r77bv7+97+zdetWotEokUiElJT4PN8xY8bEfV9YWEh5eTkAK1eupLi4mKKiotj5SZMmxV2/cuVKxo4dS2pq4z/sJ0+ejG3brFq1ivz8fABGjRqF3iTXJj8/n0MOOST2vcvlIicnJ/baBwOZ8dpPNdSROuQ33POjSuyAB2i5dES3zHiZEXAHJLFeCCHayeNztevhctWvcGgaLrceq9Oou/R232NfpaamMnjwYMaOHcuTTz7JkiVLeOKJJwD47W9/yx/+8Ad++ctf8v777/P5558zffp0otFo/M/p8cR9r2katm3v85ha09LrdNVrA7D8ts65736QwGs/Wdjo7hC1qeHYjFdLMVa3tAtqSKz3+LvhxYUQQnQ2Xdf59a9/zU033URdXR0LFizg9NNP50c/+hFjx45l4MCBrF69ukP3HDFiBJs3b2b79u2xY4sXL252zRdffEEoFIodW7BgAbquM2zYsP37oQ5wEnjtJ58KEFp3LSMWf8+ppgotdsPulvqpUrFeCCEOeGeffTYul4uHH36YIUOG8Pbbb7Nw4UJWrlzJZZddFpdz1R7Tpk1j6NChXHjhhXzxxRd8+OGH3HjjjXHXnH/++fj9fi688EJWrFjB+++/z1VXXcWPf/zj2DKjaJkEXvtJVy7saD4/+fQDsOqnmptMb6n6DtndMuOlFPgksV4IIQ5kbrebK6+8kvvvv59f/OIXHHrooUyfPp1jjz2WgoICzjjjjA7dT9d1XnnlFerq6pgwYQI/+clPuOuuu+KuSUlJ4c0332T37t0cccQRfP/73+eEE07goYceSuBPdmDSlFJq75cd2ILBIJmZmVRVVZGRkdHiNeu/Ws6iF14iLT8bt6dxT8JaI8Jj+jz++My3rBlzP7bu4dQTykgZMBgA21bU1SqKStz4/F0YfdkW1JRDyZGQkt11ryuEEEkuHA6zYcMGBgwYgN8vqRjJrq3fV7PP7+W3Nb/BmBaOdSPZ1bifopi4UzewrbeKlZOwUwtj55UCvb69Q5eSivVCCCFE0pHAaz8FVAp1W37IbycrrjbW0ldPw+stjp1Xiu5ZajTrwJMqFeuFEEKIJCI5XvvJrXyY1WPQa0Yx2L+Qw11PkrZ7Qey8sp1SEl2eXG9GINCrGyu3CiGEEGJPMuO1n2q0GnwFr/KDxVuo9Ezmq6x8xuesj51Xyol9unzGy7bBl9bFLyqEEEKItsiM136q1cJ4ey1m6tqtbEs9iq+M72BrjfFsLPDqyokn2wLdJfldQgjRBtlb1jMcaL8nCbz2k99OIbJjGrrlpv/G/zLO9U/0pu+qUug6XZtcH0usl1ZBQgixp4bK6bW1td08EtEeDb+nPSve91Sy1Lif/CqV6M5peKz5DNz4PwaOKMdwnR07r1TLLYQ6lRl2Zrvcsk1aCCH25HK5yMrKivUHTElJ6fqd52KvlFLU1tZSXl5OVlYWLte+t1lKJhJ47aeQFsLTayFK19jS5xjCZiWDaPyPQyln1a9LmRHIKJLEeiGEaEVBQQHAQdWcuafKysqK/b4OBBJ47aegVo2/4N8oPcDqIeew2oBB2iux890SeCkbfOld/KJCCNFzaJpGYWEheXl5GIbR3cMRrfB4PAfMTFcDCbz2k1f5MYKj+aKkEgANKy7ScpYau3BAtuXMdElivRBC7JXL5TrgPthFckvq5PrbbrsNrb7qe8Nj+PDhsfPhcJgrrriCnJwc0tLSmDFjRoebge6vdLsX4a3n849RlwKgobACjQ1ClQ26qwuX/CxJrBdCCCGSVVIHXgCjRo1i+/btscdHH30UO3fttdfyn//8h3/84x/Mnz+fbdu2cdZZZ3Xp+MKEcaWsQ3lLnQOaTiR/cuMFXV081QiDOyCJ9UIIIUQSSvqlRrfb3WJSXVVVFU888QTPPfccxx9/PABPPfUUI0aMYPHixRx55JFdMr6drh2klPyTS/6ez+6SG4E9640otK6MvMwIpBdKYr0QQgiRhJI+8FqzZg1FRUX4/X4mTZrEPffcQ0lJCZ9++imGYTBt2rTYtcOHD6ekpIRFixa1GXhFIhEikUjs+6qqKsDpct6a6poaaiMR9LowbrMxH8CMmhhWNoVbwmwtCOHSDGoqq9CsHOd5IYU/5EJ1VaJXdTWkAG38LEIIIcSBoOFzuycVWU3qwGvixIk8/fTTDBs2jO3bt3P77bdz9NFHs2LFCkpLS/F6vWRlZcU9Jz8/n9LS0jbve88993D77bc3O15cXNzC1e1zHMCX3wPguif3+TZCCCGE6KDq6moyMzNbPrn8to7dbEwHr++gpA68TjnllNjXY8aMYeLEifTr14+///3vBAL7njw+e/Zsrrvuutj3lZWV9OvXj02bNrX+ixOdKhgMUlxczObNm8nIyOju4RyU5HfQ/eR3kBzk99D92vs7UEpRXV1NUVFRF45u/yR14LWnrKwshg4dytq1aznxxBOJRqNUVlbGzXqVlZXttdCaz+fD5/M1O56ZmSn/k3WzjIwM+R10M/kddD/5HSQH+T10v/b8DnrahEnS72psqqamhnXr1lFYWMhhhx2Gx+Ph3XffjZ1ftWoVmzZtYtKkSd04SiGEEEKIliX1jNf111/PaaedRr9+/di2bRu33norLpeL8847j8zMTC655BKuu+46srOzycjI4KqrrmLSpEldtqNRCCGEEKIjkjrw2rJlC+eddx67du0iNzeXKVOmsHjxYnJzcwF44IEH0HWdGTNmEIlEmD59Oo888kiHX8fn83Hrrbe2uPwouob8Drqf/A66n/wOkoP8HrrfPv8OOjkxPhE01ZP2YAohhBBC9GA9KsdLCCGEEKInk8BLCCGEEKKLSOAlhBBCCNFFJPASQgghhOgiB33g9fDDD9O/f3/8fj8TJ07k448/7u4hHdA++OADTjvtNIqKitA0jVdffTXuvFKKW265hcLCQgKBANOmTWPNmjXdM9gD0D333MMRRxxBeno6eXl5nHHGGaxatSrumnA4zBVXXEFOTg5paWnMmDGDsrKybhrxgenRRx9lzJgxseKQkyZN4vXXX4+dl99B17v33nvRNI1rrrkmdkx+D53rtttuQ9O0uMfw4cNj5w/U9/+gDrxefPFFrrvuOm699VaWLVvG2LFjmT59OuXl5d09tANWKBRi7NixPPzwwy2ev//++5kzZw6PPfYYS5YsITU1lenTpxMOh7t4pAem+fPnc8UVV7B48WLefvttDMPgpJNOIhQKxa659tpr+c9//sM//vEP5s+fz7Zt2zjrrLO6cdQHnr59+3Lvvffy6aef8sknn3D88cdz+umn89VXXwHyO+hqS5cu5U9/+hNjxoyJOy6/h843atQotm/fHnt89NFHsXMH7PuvDmITJkxQV1xxRex7y7JUUVGRuueee7pxVAcPQL3yyiux723bVgUFBeq3v/1t7FhlZaXy+Xzq+eef74YRHvjKy8sVoObPn6+Uct5vj+f/t3evMVGcXRzA/+vCgl2UBdEFpICtQkG5iQVXRVCIaFqrflBjKaCmtSqroEjFpAalUYEUFI29SbKYphF7w5oaaalc2lIEXEGwFaKEgq2LVMULQlF2z/vBMK8jeMHCrsL5JZPsPM/sM2ee48jJzOyuOX311VfCNufOnSMAVFpaaqowhwQbGxvKysriHBjZrVu3aMKECZSfn0/BwcEUGxtLRHwuGENSUhL5+Pj02jeY53/IXvG6c+cOtFotwsLChLZhw4YhLCwMpaWlJoxs6GpoaEBzc7MoJ9bW1ggMDOScDJAbN24AAGxtbQEAWq0Wd+/eFeXglVdegbOzM+dggOj1euTk5OD27dtQqVScAyOLiYnBa6+9JppvgM8FYzl//jwcHR3x0ksvISIiAk1NTQAG9/w/099cP5CuXLkCvV4PpVIpalcqlaitrTVRVENbc3MzAPSak+4+1n8MBgPi4uIwffp0TJo0CcC9HMhkMtEPzwOcg4FQU1MDlUqFf//9F1ZWVsjNzYWnpyeqqqo4B0aSk5OD06dPo6KiokcfnwsDLzAwENnZ2XB3d4dOp8P27dsRFBSEs2fPDur5H7KFF2NDXUxMDM6ePSt6poIZj7u7O6qqqnDjxg18/fXXiI6ORnFxsanDGjIuXryI2NhY5Ofnw9LS0tThDEnz5s0TXnt7eyMwMBAuLi748ssvMXz4cBNGNrCG7K1GOzs7SKXSHp+QuHz5Muzt7U0U1dDWPe+ck4GnVqvx/fffo7CwEE5OTkK7vb097ty5g+vXr4u25xz0P5lMhvHjx8Pf3x+7du2Cj48PMjMzOQdGotVq0dLSgsmTJ8PMzAxmZmYoLi7G3r17YWZmBqVSyXkwMoVCATc3N1y4cGFQnwdDtvCSyWTw9/fHiRMnhDaDwYATJ05ApVKZMLKha9y4cbC3txfl5ObNmygrK+Oc9BMiglqtRm5uLgoKCjBu3DhRv7+/P8zNzUU5qKurQ1NTE+dggBkMBnR2dnIOjCQ0NBQ1NTWoqqoSlilTpiAiIkJ4zXkwrra2NtTX18PBwWFwnwemfrrflHJycsjCwoKys7Ppjz/+oFWrVpFCoaDm5mZThzZo3bp1iyorK6myspIAUEZGBlVWVlJjYyMREaWkpJBCoaDvvvuOqquracGCBTRu3Djq6OgwceSDw5o1a8ja2pqKiopIp9MJS3t7u7DN6tWrydnZmQoKCujUqVOkUqlIpVKZMOrBJzExkYqLi6mhoYGqq6spMTGRJBIJ/fjjj0TEOTCV+z/VSMR5GGjx8fFUVFREDQ0NVFJSQmFhYWRnZ0ctLS1ENHjnf0gXXkRE+/btI2dnZ5LJZBQQEEAnT540dUiDWmFhIQHosURHRxPRva+U2Lp1KymVSrKwsKDQ0FCqq6szbdCDSG9zD4A0Go2wTUdHB61du5ZsbGzohRdeoEWLFpFOpzNd0IPQypUrycXFhWQyGY0ePZpCQ0OFoouIc2AqDxZenIeBtXTpUnJwcCCZTEZjx46lpUuX0oULF4T+wTr/EiIi01xrY4wxxhgbWobsM16MMcYYY8bGhRdjjDHGmJFw4cUYY4wxZiRceDHGGGOMGQkXXowxxhhjRsKFF2OMMcaYkXDhxRhjjDFmJFx4McYe6s8//4REIkFVVZWpQxHU1tZi6tSpsLS0hK+vr6nDeSrLly/HwoULTR0GY8wEuPBi7Bm2fPlySCQSpKSkiNqPHDkCiURioqhMKykpCXK5HHV1daLfcbtf97w9uMydO9fI0fYuMzMT2dnZpg4DACCRSHDkyBFTh8HYkMGFF2PPOEtLS6SmpqK1tdXUofSbO3fuPPV76+vrMWPGDLi4uGDUqFEP3W7u3LnQ6XSi5dChQ0+93/6g1+thMBhgbW0NhUJh0lgYY6bBhRdjz7iwsDDY29tj165dD91m27ZtPW677dmzB66ursJ69+2tnTt3QqlUQqFQIDk5GV1dXUhISICtrS2cnJyg0Wh6jF9bW4tp06bB0tISkyZNQnFxsaj/7NmzmDdvHqysrKBUKhEZGYkrV64I/SEhIVCr1YiLi4OdnR3Cw8N7PQ6DwYDk5GQ4OTnBwsICvr6+yMvLE/olEgm0Wi2Sk5MhkUiwbdu2h86JhYUF7O3tRYuNjQ0AoKiobKzG1gAACCRJREFUCDKZDL/88ouwfVpaGsaMGYPLly+LYlar1bC2toadnR22bt2K+39lrbOzE5s2bcLYsWMhl8sRGBiIoqIioT87OxsKhQJHjx6Fp6cnLCws0NTU1ONWY0hICNatW4e4uDjY2NhAqVTiwIEDuH37NlasWIERI0Zg/PjxOH78eJ/nff369Xjvvfdga2sLe3t70Zx1//tYtGgRJBKJsH7mzBnMmjULI0aMwMiRI+Hv749Tp049dK4ZY0+OCy/GnnFSqRQ7d+7Evn378Ndff/2nsQoKCnDp0iX8/PPPyMjIQFJSEl5//XXY2NigrKwMq1evxrvvvttjPwkJCYiPj0dlZSVUKhXmz5+Pq1evAgCuX7+O2bNnw8/PD6dOnUJeXh4uX76MJUuWiMY4ePAgZDIZSkpK8Mknn/QaX2ZmJtLT0/Hhhx+iuroa4eHheOONN3D+/HkAgE6nw8SJExEfHw+dTodNmzY91TyEhIQgLi4OkZGRuHHjBiorK7F161ZkZWVBqVSKYjYzM0N5eTkyMzORkZGBrKwsoV+tVqO0tBQ5OTmorq7G4sWLMXfuXCFeAGhvb0dqaiqysrLw+++/Y8yYMb3GdPDgQdjZ2aG8vBzr1q3DmjVrsHjxYkybNg2nT5/GnDlzEBkZifb29j7Pu1wuR1lZGdLS0pCcnIz8/HwAQEVFBQBAo9FAp9MJ6xEREXByckJFRQW0Wi0SExNhbm7+VHPNGHuAiX+kmzH2CNHR0bRgwQIiIpo6dSqtXLmSiIhyc3Pp/tM3KSmJfHx8RO/dvXs3ubi4iMZycXEhvV4vtLm7u1NQUJCw3tXVRXK5nA4dOkRERA0NDQSAUlJShG3u3r1LTk5OlJqaSkREH3zwAc2ZM0e074sXLxIAqqurIyKi4OBg8vPze+zxOjo60o4dO0Rtr776Kq1du1ZY9/HxoaSkpEeOEx0dTVKplORyuWi5f+zOzk7y9fWlJUuWkKenJ73zzjuiMYKDg8nDw4MMBoPQtnnzZvLw8CAiosbGRpJKpfT333+L3hcaGkpbtmwhIiKNRkMAqKqqqkd83Xnt3teMGTOE9e48REZGCm06nY4AUGlpKRE9+bzfPy7RvfncvHmzsA6AcnNzRduMGDGCsrOziTHW/8xMWPMxxvogNTUVs2fPfuqrPAAwceJEDBv2/wvdSqUSkyZNEtalUilGjRqFlpYW0ftUKpXw2szMDFOmTMG5c+cA3LstVVhYCCsrqx77q6+vh5ubGwDA39//kbHdvHkTly5dwvTp00Xt06dPx5kzZ57wCP9v1qxZ+Pjjj0Vttra2wmuZTIYvvvgC3t7ecHFxwe7du3uMMXXqVNGHGFQqFdLT06HX61FTUwO9Xi8cX7fOzk7Rs2cymQze3t6Pjff+bbrz4OXlJbR1X4nrzs2TzvuD+3ZwcOiR3wdt3LgRb7/9Nj7//HOEhYVh8eLFePnllx97DIyxx+PCi7HnxMyZMxEeHo4tW7Zg+fLlor5hw4aJnj0CgLt37/YY48HbRRKJpNc2g8HwxHG1tbVh/vz5SE1N7dHn4OAgvJbL5U88Zn+Qy+UYP378I7f57bffAADXrl3DtWvX+hRjW1sbpFIptFotpFKpqO/+Ymj48OFP9AnUx+Wme4zu3DzpvD9Nfrdt24Y333wTx44dw/Hjx5GUlIScnBwsWrToscfBGHs0LrwYe46kpKTA19cX7u7uovbRo0ejubkZRCT8ge7P7946efIkZs6cCQDo6uqCVquFWq0GAEyePBnffPMNXF1dYWb29P+ljBw5Eo6OjigpKUFwcLDQXlJSgoCAgP92AL2or6/Hhg0bcODAARw+fBjR0dH46aefRFcEy8rKRO85efIkJkyYAKlUCj8/P+j1erS0tCAoKKjf43uc/pp3c3Nz6PX6Hu1ubm5wc3PDhg0bsGzZMmg0Gi68GOsH/HA9Y88RLy8vREREYO/evaL2kJAQ/PPPP0hLS0N9fT3279/f4xNw/8X+/fuRm5uL2tpaxMTEoLW1FStXrgQAxMTE4Nq1a1i2bBkqKipQX1+PH374AStWrOj1D/qjJCQkIDU1FYcPH0ZdXR0SExNRVVWF2NjYPsfc2dmJ5uZm0dL9iT+9Xo+33noL4eHhWLFiBTQaDaqrq5Geni4ao6mpCRs3bkRdXR0OHTqEffv2CbG4ubkhIiICUVFR+Pbbb9HQ0IDy8nLs2rULx44d63O8fdVf8+7q6ooTJ06gubkZra2t6OjogFqtRlFRERobG1FSUoKKigp4eHgM4NEwNnRw4cXYcyY5ObnHrSIPDw989NFH2L9/P3x8fFBeXv6fngV7UEpKClJSUuDj44Nff/0VR48ehZ2dHQAIV6n0ej3mzJkDLy8vxMXFQaFQiK4ePYn169dj48aNiI+Ph5eXF/Ly8nD06FFMmDChzzHn5eXBwcFBtMyYMQMAsGPHDjQ2NuLTTz8FcO/W3GeffYb3339f9DxZVFQUOjo6EBAQgJiYGMTGxmLVqlVCv0ajQVRUFOLj4+Hu7o6FCxeioqICzs7OfY63r/pr3tPT05Gfn48XX3wRfn5+kEqluHr1KqKiouDm5oYlS5Zg3rx52L59+wAeDWNDh4QefDCEMcYYQkJC4Ovriz179pg6FMbYIMJXvBhjjDHGjIQLL8YYY4wxI+FbjYwxxhhjRsJXvBhjjDHGjIQLL8YYY4wxI+HCizHGGGPMSLjwYowxxhgzEi68GGOMMcaMhAsvxhhjjDEj4cKLMcYYY8xIuPBijDHGGDMSLrwYY4wxxozkf6UoGqsyDUdVAAAAAElFTkSuQmCC",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -897,20 +926,48 @@
],
"source": [
"# all experiments\n",
+ "\n",
+ "# until 50\n",
+ "limit = 50\n",
+ "\n",
+ "# Create a figure and axis object\n",
+ "fig, ax1 = plt.subplots()\n",
+ "\n",
+ "# Plot the lineplot\n",
"sns.lineplot(\n",
- " data=results, x=\"Num_Experiments\", y=\"Efficiency_CumBest\", hue=\"Scenario\", marker=\"x\"\n",
+ " data=results, x=\"Num_Experiments\", y=\"Efficiency_CumBest\", hue=\"Scenario\", marker=\"x\", ax=ax1, style = 'Scenario'\n",
")\n",
- "plt.plot([0.5, N_DOE_ITERATIONS+0.5], [max_yield, max_yield], \"--r\", alpha=0.4)\n",
- "plt.legend(loc=\"lower right\")\n",
- "import matplotlib.pyplot as plt\n",
"\n",
- "plt.xlim(0, N_DOE_ITERATIONS+1)\n",
- "plt.savefig(f\"./img/{exp_dataset_name}_simulation_{N_MC_ITERATIONS}MC_{N_DOE_ITERATIONS}exp_{BATCH_SIZE}batch.png\")"
+ "# Set legend\n",
+ "ax1.legend(loc=\"lower right\")\n",
+ "\n",
+ "# Add a horizontal line\n",
+ "ax1.plot([0.5, limit+0.5], [max_yield, max_yield], \"--r\", alpha=0.4)\n",
+ "\n",
+ "# Set x-axis limit\n",
+ "ax1.set_xlim(0, limit+1)\n",
+ "ax1.set_ylim(50, 101)\n",
+ "\n",
+ "# Create a new axis for the histogram on the right side\n",
+ "ax2 = fig.add_axes([0.905, 0.1, 0.05, 0.8])\n",
+ "ax2.hist(df_active['Efficiency'], bins=2000, color='orange', alpha=0.5, orientation='horizontal') \n",
+ "ax2.set_ylim(ax1.get_ylim()) \n",
+ "ax2.set_axis_off() # Hide axis ticks and labels\n",
+ "\n",
+ "# Set x and y titles\n",
+ "ax1.set_xlabel('Number of Experiments')\n",
+ "ax1.set_ylabel('Cumulative Best Efficiency')\n",
+ "\n",
+ "# Save the plot\n",
+ "plt.savefig(f\"./img/{exp_dataset_name}_simulation_{N_MC_ITERATIONS}MC_{N_DOE_ITERATIONS}exp_{BATCH_SIZE}batch_first{limit}.png\", bbox_inches='tight')\n",
+ "\n",
+ "# Show the plot\n",
+ "plt.show()"
]
},
{
"cell_type": "code",
- "execution_count": 177,
+ "execution_count": 310,
"metadata": {},
"outputs": [
{
@@ -950,9 +1007,9 @@
" 1337 | \n",
" 0 | \n",
" 1 | \n",
- " [91.5] | \n",
- " 91.500000 | \n",
- " 91.500000 | \n",
+ " [10.0] | \n",
+ " 10.000000 | \n",
+ " 10.000000 | \n",
" \n",
" \n",
" 1 | \n",
@@ -960,9 +1017,9 @@
" 1337 | \n",
" 1 | \n",
" 2 | \n",
- " [66.66499999999999] | \n",
- " 66.665000 | \n",
- " 91.500000 | \n",
+ " [96.43666666666667] | \n",
+ " 96.436667 | \n",
+ " 96.436667 | \n",
"
\n",
" \n",
" 2 | \n",
@@ -970,9 +1027,9 @@
" 1337 | \n",
" 2 | \n",
" 3 | \n",
- " [65.0] | \n",
- " 65.000000 | \n",
- " 91.500000 | \n",
+ " [25.25] | \n",
+ " 25.250000 | \n",
+ " 96.436667 | \n",
"
\n",
" \n",
" 3 | \n",
@@ -980,9 +1037,9 @@
" 1337 | \n",
" 3 | \n",
" 4 | \n",
- " [96.43666666666667] | \n",
- " 96.436667 | \n",
- " 96.436667 | \n",
+ " [99.21666666666665] | \n",
+ " 99.216667 | \n",
+ " 99.216667 | \n",
"
\n",
" \n",
" 4 | \n",
@@ -990,9 +1047,9 @@
" 1337 | \n",
" 4 | \n",
" 5 | \n",
- " [98.13333333333333] | \n",
- " 98.133333 | \n",
- " 98.133333 | \n",
+ " [93.8] | \n",
+ " 93.800000 | \n",
+ " 99.216667 | \n",
"
\n",
" \n",
" ... | \n",
@@ -1010,9 +1067,9 @@
" 1346 | \n",
" 45 | \n",
" 46 | \n",
- " [10.0] | \n",
- " 10.000000 | \n",
+ " [99.9] | \n",
" 99.900000 | \n",
+ " 100.000000 | \n",
"
\n",
" \n",
" 2496 | \n",
@@ -1020,9 +1077,9 @@
" 1346 | \n",
" 46 | \n",
" 47 | \n",
- " [65.0] | \n",
- " 65.000000 | \n",
- " 99.900000 | \n",
+ " [40.0] | \n",
+ " 40.000000 | \n",
+ " 100.000000 | \n",
"
\n",
" \n",
" 2497 | \n",
@@ -1030,9 +1087,9 @@
" 1346 | \n",
" 47 | \n",
" 48 | \n",
- " [53.85] | \n",
- " 53.850000 | \n",
- " 99.900000 | \n",
+ " [10.0] | \n",
+ " 10.000000 | \n",
+ " 100.000000 | \n",
"
\n",
" \n",
" 2498 | \n",
@@ -1040,9 +1097,9 @@
" 1346 | \n",
" 48 | \n",
" 49 | \n",
- " [64.0] | \n",
- " 64.000000 | \n",
- " 99.900000 | \n",
+ " [91.7] | \n",
+ " 91.700000 | \n",
+ " 100.000000 | \n",
"
\n",
" \n",
" 2499 | \n",
@@ -1050,9 +1107,9 @@
" 1346 | \n",
" 49 | \n",
" 50 | \n",
- " [72.378] | \n",
- " 72.378000 | \n",
- " 99.900000 | \n",
+ " [0.0] | \n",
+ " 0.000000 | \n",
+ " 100.000000 | \n",
"
\n",
" \n",
"\n",
@@ -1074,22 +1131,22 @@
"2499 Random 1346 49 50 \n",
"\n",
" Efficiency_Measurements Efficiency_IterBest Efficiency_CumBest \n",
- "0 [91.5] 91.500000 91.500000 \n",
- "1 [66.66499999999999] 66.665000 91.500000 \n",
- "2 [65.0] 65.000000 91.500000 \n",
- "3 [96.43666666666667] 96.436667 96.436667 \n",
- "4 [98.13333333333333] 98.133333 98.133333 \n",
+ "0 [10.0] 10.000000 10.000000 \n",
+ "1 [96.43666666666667] 96.436667 96.436667 \n",
+ "2 [25.25] 25.250000 96.436667 \n",
+ "3 [99.21666666666665] 99.216667 99.216667 \n",
+ "4 [93.8] 93.800000 99.216667 \n",
"... ... ... ... \n",
- "2495 [10.0] 10.000000 99.900000 \n",
- "2496 [65.0] 65.000000 99.900000 \n",
- "2497 [53.85] 53.850000 99.900000 \n",
- "2498 [64.0] 64.000000 99.900000 \n",
- "2499 [72.378] 72.378000 99.900000 \n",
+ "2495 [99.9] 99.900000 100.000000 \n",
+ "2496 [40.0] 40.000000 100.000000 \n",
+ "2497 [10.0] 10.000000 100.000000 \n",
+ "2498 [91.7] 91.700000 100.000000 \n",
+ "2499 [0.0] 0.000000 100.000000 \n",
"\n",
"[2500 rows x 7 columns]"
]
},
- "execution_count": 177,
+ "execution_count": 310,
"metadata": {},
"output_type": "execute_result"
}
@@ -1100,13 +1157,20 @@
},
{
"cell_type": "code",
- "execution_count": 178,
+ "execution_count": 311,
"metadata": {},
"outputs": [],
"source": [
"results.to_excel(f\"./results/{exp_dataset_name}_simulation_{N_MC_ITERATIONS}MC_{N_DOE_ITERATIONS}exp_{BATCH_SIZE}batch.xlsx\")\n"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
{
"cell_type": "markdown",
"metadata": {},
diff --git a/img/AA1000_simulation_10MC_50exp_1batch_first10.png b/img/AA1000_simulation_10MC_50exp_1batch_first10.png
index 4727192..7aa3d1c 100644
Binary files a/img/AA1000_simulation_10MC_50exp_1batch_first10.png and b/img/AA1000_simulation_10MC_50exp_1batch_first10.png differ
diff --git a/img/AA1000_simulation_10MC_50exp_1batch_first25.png b/img/AA1000_simulation_10MC_50exp_1batch_first25.png
index 8a6a1f2..62b8636 100644
Binary files a/img/AA1000_simulation_10MC_50exp_1batch_first25.png and b/img/AA1000_simulation_10MC_50exp_1batch_first25.png differ
diff --git a/img/AA1000_simulation_10MC_50exp_1batch_first50.png b/img/AA1000_simulation_10MC_50exp_1batch_first50.png
new file mode 100644
index 0000000..23ff607
Binary files /dev/null and b/img/AA1000_simulation_10MC_50exp_1batch_first50.png differ
diff --git a/img/AA2024_simulation_10MC_50exp_1batch_first10.png b/img/AA2024_simulation_10MC_50exp_1batch_first10.png
index df8f492..b2eb984 100644
Binary files a/img/AA2024_simulation_10MC_50exp_1batch_first10.png and b/img/AA2024_simulation_10MC_50exp_1batch_first10.png differ
diff --git a/img/AA2024_simulation_10MC_50exp_1batch_first25.png b/img/AA2024_simulation_10MC_50exp_1batch_first25.png
index 838725c..ca39a1c 100644
Binary files a/img/AA2024_simulation_10MC_50exp_1batch_first25.png and b/img/AA2024_simulation_10MC_50exp_1batch_first25.png differ
diff --git a/img/AA2024_simulation_10MC_50exp_1batch_first50.png b/img/AA2024_simulation_10MC_50exp_1batch_first50.png
new file mode 100644
index 0000000..1d0a672
Binary files /dev/null and b/img/AA2024_simulation_10MC_50exp_1batch_first50.png differ
diff --git a/img/AA5000_simulation_10MC_50exp_1batch_first10.png b/img/AA5000_simulation_10MC_50exp_1batch_first10.png
index a556806..871b5aa 100644
Binary files a/img/AA5000_simulation_10MC_50exp_1batch_first10.png and b/img/AA5000_simulation_10MC_50exp_1batch_first10.png differ
diff --git a/img/AA5000_simulation_10MC_50exp_1batch_first25.png b/img/AA5000_simulation_10MC_50exp_1batch_first25.png
index 0c73670..53f70dc 100644
Binary files a/img/AA5000_simulation_10MC_50exp_1batch_first25.png and b/img/AA5000_simulation_10MC_50exp_1batch_first25.png differ
diff --git a/img/AA5000_simulation_10MC_50exp_1batch_first50.png b/img/AA5000_simulation_10MC_50exp_1batch_first50.png
new file mode 100644
index 0000000..5b2eb46
Binary files /dev/null and b/img/AA5000_simulation_10MC_50exp_1batch_first50.png differ
diff --git a/img/AA6000_simulation_10MC_50exp_1batch_first10.png b/img/AA6000_simulation_10MC_50exp_1batch_first10.png
index d1699cd..10436b5 100644
Binary files a/img/AA6000_simulation_10MC_50exp_1batch_first10.png and b/img/AA6000_simulation_10MC_50exp_1batch_first10.png differ
diff --git a/img/AA6000_simulation_10MC_50exp_1batch_first25.png b/img/AA6000_simulation_10MC_50exp_1batch_first25.png
index 176e87d..fcccae7 100644
Binary files a/img/AA6000_simulation_10MC_50exp_1batch_first25.png and b/img/AA6000_simulation_10MC_50exp_1batch_first25.png differ
diff --git a/img/AA6000_simulation_10MC_50exp_1batch_first50.png b/img/AA6000_simulation_10MC_50exp_1batch_first50.png
new file mode 100644
index 0000000..8f3d3d6
Binary files /dev/null and b/img/AA6000_simulation_10MC_50exp_1batch_first50.png differ
diff --git a/img/AA7075_simulation_10MC_50exp_1batch_first10.png b/img/AA7075_simulation_10MC_50exp_1batch_first10.png
index 64fe527..972f2e6 100644
Binary files a/img/AA7075_simulation_10MC_50exp_1batch_first10.png and b/img/AA7075_simulation_10MC_50exp_1batch_first10.png differ
diff --git a/img/AA7075_simulation_10MC_50exp_1batch_first25.png b/img/AA7075_simulation_10MC_50exp_1batch_first25.png
index a9ba5ba..c923c2f 100644
Binary files a/img/AA7075_simulation_10MC_50exp_1batch_first25.png and b/img/AA7075_simulation_10MC_50exp_1batch_first25.png differ
diff --git a/img/AA7075_simulation_10MC_50exp_1batch_first50.png b/img/AA7075_simulation_10MC_50exp_1batch_first50.png
new file mode 100644
index 0000000..8cb16b5
Binary files /dev/null and b/img/AA7075_simulation_10MC_50exp_1batch_first50.png differ
diff --git a/img/Al_simulation_10MC_50exp_1batch.png b/img/Al_simulation_10MC_50exp_1batch.png
index bc029a6..ab01cbc 100644
Binary files a/img/Al_simulation_10MC_50exp_1batch.png and b/img/Al_simulation_10MC_50exp_1batch.png differ
diff --git a/img/Al_simulation_10MC_50exp_1batch_first10.png b/img/Al_simulation_10MC_50exp_1batch_first10.png
index 00fbcd3..7d1def6 100644
Binary files a/img/Al_simulation_10MC_50exp_1batch_first10.png and b/img/Al_simulation_10MC_50exp_1batch_first10.png differ
diff --git a/img/Al_simulation_10MC_50exp_1batch_first25.png b/img/Al_simulation_10MC_50exp_1batch_first25.png
index f9645f7..2c9aefe 100644
Binary files a/img/Al_simulation_10MC_50exp_1batch_first25.png and b/img/Al_simulation_10MC_50exp_1batch_first25.png differ
diff --git a/img/Al_simulation_10MC_50exp_1batch_first50.png b/img/Al_simulation_10MC_50exp_1batch_first50.png
new file mode 100644
index 0000000..0f306d1
Binary files /dev/null and b/img/Al_simulation_10MC_50exp_1batch_first50.png differ
diff --git a/results/AA1000_simulation_10MC_50exp_1batch.xlsx b/results/AA1000_simulation_10MC_50exp_1batch.xlsx
index 24e781a..408bfdd 100644
Binary files a/results/AA1000_simulation_10MC_50exp_1batch.xlsx and b/results/AA1000_simulation_10MC_50exp_1batch.xlsx differ
diff --git a/results/AA2024_simulation_10MC_50exp_1batch.xlsx b/results/AA2024_simulation_10MC_50exp_1batch.xlsx
index 954135f..3ccec51 100644
Binary files a/results/AA2024_simulation_10MC_50exp_1batch.xlsx and b/results/AA2024_simulation_10MC_50exp_1batch.xlsx differ
diff --git a/results/AA5000_simulation_10MC_50exp_1batch.xlsx b/results/AA5000_simulation_10MC_50exp_1batch.xlsx
index 18c0664..c92f24f 100644
Binary files a/results/AA5000_simulation_10MC_50exp_1batch.xlsx and b/results/AA5000_simulation_10MC_50exp_1batch.xlsx differ
diff --git a/results/AA6000_simulation_10MC_50exp_1batch.xlsx b/results/AA6000_simulation_10MC_50exp_1batch.xlsx
index e6a5f71..7395d38 100644
Binary files a/results/AA6000_simulation_10MC_50exp_1batch.xlsx and b/results/AA6000_simulation_10MC_50exp_1batch.xlsx differ
diff --git a/results/AA7075_simulation_10MC_50exp_1batch.xlsx b/results/AA7075_simulation_10MC_50exp_1batch.xlsx
index afafa8c..606f6bd 100644
Binary files a/results/AA7075_simulation_10MC_50exp_1batch.xlsx and b/results/AA7075_simulation_10MC_50exp_1batch.xlsx differ
diff --git a/results/Al_simulation_10MC_50exp_1batch.xlsx b/results/Al_simulation_10MC_50exp_1batch.xlsx
index 973abef..5f273c9 100644
Binary files a/results/Al_simulation_10MC_50exp_1batch.xlsx and b/results/Al_simulation_10MC_50exp_1batch.xlsx differ