diff --git a/can_baybe-inhibitor.ipynb b/can_baybe-inhibitor.ipynb index 72a77ae..a1d5dbd 100644 --- a/can_baybe-inhibitor.ipynb +++ b/can_baybe-inhibitor.ipynb @@ -30,19 +30,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 27, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/vscode/.local/lib/python3.10/site-packages/baybe/telemetry.py:222: UserWarning: WARNING: BayBE Telemetry endpoint https://public.telemetry.baybe.p.uptimize.merckgroup.com:4317 cannot be reached. Disabling telemetry. The exception encountered was: ConnectionError, HTTPConnectionPool(host='verkehrsnachrichten.merck.de', port=80): Max retries exceeded with url: / (Caused by NameResolutionError(\": Failed to resolve 'verkehrsnachrichten.merck.de' ([Errno -2] Name or service not known)\"))\n", - " warnings.warn(\n", - "/home/vscode/.local/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", - " from .autonotebook import tqdm as notebook_tqdm\n" - ] - }, { "data": { "text/html": [ @@ -207,7 +197,7 @@ "[515 rows x 6 columns]" ] }, - "execution_count": 1, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -221,7 +211,7 @@ "\n", "from baybe import Campaign\n", "from baybe.objective import Objective\n", - "from baybe.parameters import NumericalDiscreteParameter, SubstanceParameter\n", + "from baybe.parameters import NumericalDiscreteParameter, SubstanceParameter, CategoricalParameter\n", "from baybe.recommenders import RandomRecommender, TwoPhaseMetaRecommender\n", "from baybe.searchspace import SearchSpace\n", "from baybe.simulation import simulate_scenarios\n", @@ -252,7 +242,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -261,7 +251,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ @@ -276,7 +266,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -370,513 +360,42 @@ " encoding=\"RDKIT\", # optional\n", " decorrelate=0.7, # optional\n", " ) \n", - " ]\n" + " ]\n", + "# one-hot encoding\n", + "parameters_ohe = [\n", + "NumericalDiscreteParameter(\n", + " name=\"Time_h\",\n", + " values=df_active['Time_h'].unique(),\n", + " # tolerance = 0.004, assume certain experimental noise for each parameter measurement?\n", + "),\n", + "NumericalDiscreteParameter(\n", + " name=\"pH\",\n", + " values=df_active['pH'].unique(),\n", + " # tolerance = 0.004\n", + " ), \n", + "NumericalDiscreteParameter( # Set this as continuous, the values seem quite small?\n", + " name=\"Inhib_Concentrat_M\",\n", + " values= df_active['Inhib_Concentrat_M'].unique(),\n", + " # tolerance = 0.004\n", + " ),\n", + "NumericalDiscreteParameter(\n", + " name=\"Salt_Concentrat_M\",\n", + " values=df_active['Salt_Concentrat_M'].unique(),\n", + " # tolerance = 0.004\n", + " ),\n", + "CategoricalParameter(\n", + " name=\"SMILES\",\n", + " values=unique_SMILES,\n", + " encoding=\"OHE\",\n", + " )\n", + "]\n" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 31, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C(=O)(C(=O)[O-])[O-]')\n", - "_______________________________________smiles_to_mordred_features - 0.3s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C1=CC(=C(C=C1O)O)C=NNC(=S)N')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]')\n", - "_______________________________________smiles_to_mordred_features - 0.4s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C1=CC(=CC(=C1)S)C(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C1=CC2=NNN=C2C=C1Cl')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C1=CC=C(C(=C1)C=NNC(=S)N)O')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C1COCCN1CCCS(=O)(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C1N2CN3CN1CN(C2)C3')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C=CC(=O)OCCOC(=O)OCCSc1ncccn1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CC(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CC(=O)SSC(=O)C')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C')\n", - "_______________________________________smiles_to_mordred_features - 0.3s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCCCCCCC/C=C\\\\CCCCCCCC(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCCCCCCCCCCCCCCCCC(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCCCCCCCCCCCOS(=O)(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCCCCCCCCCCCc1ccccc1S([O])([O])O')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.3s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCCCOP(=O)(OCCCC)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCN(C(=S)S)CC')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCOc1ccc2c(c1)nc([nH]2)S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCSc1nnc(s1)N')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CN1C=NC2=C1C(=O)N(C(=O)N2C)C')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CNCC(C1=CC(=CC=C1)O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('COC(=O)CCCC1=CNC2=CC=CC=C21')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('COC(=O)n1nnc2ccccc12')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('COCCOC(=O)OCSc1nc2c(s1)cccc2')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('COc1ccc2c(c1)[nH]c(=S)[nH]2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('COc1cccc(c1)c1n[nH]c(=S)[nH]1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CS[C]1N[N]C(=N1)N')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CSc1[nH]c2c(n1)cc(c(c2)C)C')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CSc1nnc(s1)N')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Cc1cc(C)nc(n1)S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Cc1ccc(c(c1)n1nc2c(n1)cccc2)O')\n", - "_______________________________________smiles_to_mordred_features - 0.3s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Cc1ccc2c(c1)nc([nH]2)S')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Cc1n[nH]c(=S)s1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Cc1nsc(c1)N')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('ClC([C]1N[N]C=N1)(Cl)Cl')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Clc1cc2[nH]c(=S)[nH]c2cc1Cl')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Clc1ccc2c(c1)[nH]c(n2)S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Clc1cccc(c1)c1n[nH]c(=S)[nH]1')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Cn1cnnc1S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Cn1nnnc1S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('NCC(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('NO')\n", - "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nc1cc(N)nc(n1)S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nc1cc(S)nc(n1)N')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nc1ccc2c(c1)sc(=S)[nH]2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nc1ccnc(n1)S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nc1n[nH]c(=S)s1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nc1n[nH]c(n1)S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nc1n[nH]cn1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nc1nc([nH]n1)C(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nc1ncncc1N')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nn1c(NN)nnc1S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nn1c(S)nnc1c1ccccc1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nn1cnnc1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('O/N=C(/C(=N/O)/C)\\\\C')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)/C=C/c1ccccc1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)CCCCC(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)CCCCCCCCCCCCCCC(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)CCS')\n", - "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)CS')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)Cn1nnnc1S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1ccc(=S)[nH]c1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1ccc(cc1)N')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1ccc(cc1)S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1ccc(cc1)c1ccccc1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1ccccc1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1ccccc1O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1ccccc1S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1ccccn1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1cccnc1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1cccnc1S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1ccncc1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1n[nH]c(n1)N')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OCC(CO)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('O[C@H]1C(=O)OCC1(C)C')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Oc1ccc(cc1)C(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Oc1ccc(cc1)S([O])([O])O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Oc1cccc2c1nccc2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Oc1ccccc1c1nnc([nH]1)S')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('On1nnc2c1cccc2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('S=c1[nH]c2c([nH]1)c(=O)n(cn2)C')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('S=c1[nH]c2c([nH]1)cncn2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('S=c1[nH]c2c([nH]1)nccn2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('S=c1[nH]nc([nH]1)c1cccnc1')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('S=c1[nH]nc([nH]1)c1ccco1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('S=c1[nH]nc([nH]1)c1ccncc1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('S=c1sc2c([nH]1)cccc2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('SC#N')\n", - "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('S[C]1NC2=C[CH]C=NC2=N1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Sc1n[nH]cn1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Sc1nc(N)c(c(n1)S)N')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Sc1nc(N)c2c(n1)[nH]nc2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Sc1nc2c([nH]1)cccc2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Sc1ncc[nH]1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Sc1ncccn1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Sc1nnc(s1)S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('[Cl-].[Cl-].[Cl-].[Ce+3]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]')\n", - "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('[O-]S(=O)[O-].[Na+].[Na+]')\n", - "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('c1ccc(nc1)c1ccccn1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('c1ccc2c(c1)[nH]nn2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('c1ncn[nH]1')\n", - "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n" - ] - } - ], + "outputs": [], "source": [ "df_no_target = lookup.drop('Efficiency', axis=1)\n", "\n", @@ -889,12 +408,12 @@ "\n", "searchspace_mordred = SearchSpace.from_dataframe(df = df_no_target, parameters=parameters_mordred)\n", "\n", - "\n", "searchspace_morgan = SearchSpace.from_dataframe(df = df_no_target, parameters=parameters_morgan_fp)\n", "\n", - "\n", "searchspace_rdkit = SearchSpace.from_dataframe(df = df_no_target, parameters=parameters_rdkit)\n", "\n", + "searchspace_ohe = SearchSpace.from_dataframe(df = df_no_target, parameters=parameters_rdkit)\n", + "\n", "\n", "objective = Objective(\n", " mode=\"SINGLE\", targets=[NumericalTarget(name=\"Efficiency\", mode=\"MAX\")]\n", @@ -903,7 +422,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -1055,7 +574,7 @@ "[515 rows x 94 columns]), continuous=SubspaceContinuous(parameters=[], constraints_lin_eq=[], constraints_lin_ineq=[]))" ] }, - "execution_count": 6, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -1066,13 +585,14 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "campaign_mordred = Campaign(searchspace=searchspace_mordred, objective=objective)\n", "campaign_morgan = Campaign(searchspace=searchspace_morgan, objective=objective)\n", "campaign_rdkit = Campaign(searchspace=searchspace_rdkit, objective=objective)\n", + "campaign_ohe = Campaign(searchspace=searchspace_ohe, objective=objective)\n", "\n", "campaign_rand_mordred = Campaign(\n", " searchspace=searchspace_mordred,\n", @@ -1093,69 +613,64 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "scenarios = {\"Mordred\": campaign_mordred, #\"Random\": campaign_rand_mordred,\n", " \"Morgan\": campaign_morgan, #\"Morgan Random\": campaign_rand_morgan,\n", - " \"RDKIT\": campaign_rdkit, \"Random\": campaign_rand_rdkit\n", + " \"RDKIT\": campaign_rdkit,\n", + " \"OHE\": campaign_ohe, \n", + " \"Random\": campaign_rand_rdkit\n", " }" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - " 0%| | 0/40 [00:00" ] @@ -1328,12 +885,12 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 39, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGxCAYAAABoYBJuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACIdElEQVR4nOzdd3gVVfrA8e+Z29IrIQkQIHRRQIogoAiKgrpWdFUsNOvCugrK2utPwYIdZV1FXFdErGtXREEpItKRDqEnoaS32+b8/pjkkhBAElJu4vt5nvuQmTkz92Quybw55z3nKK21RgghhBBCAGDUdwWEEEIIIYKJBEdCCCGEEOVIcCSEEEIIUY4ER0IIIYQQ5UhwJIQQQghRjgRHQgghhBDlSHAkhBBCCFGOBEdCCCGEEOXY67sCDY1pmuzdu5fIyEiUUvVdHSGEEEIcB601+fn5NGvWDMM4dtuQBEdVtHfvXlJSUuq7GkIIIYSohl27dtGiRYtjlpHgqIoiIyMB6+ZGRUXVc22EEEIIcTzy8vJISUkJPMePRYKjKirrSouKipLgSAghhGhgjiclRhKyhRBCCCHKkeBICCGEEKIcCY6EEEIIIcqR4EgIIYQQohwJjoQQQgghypHgSAghhBCiHAmOhBBCCCHKkeBICCGEEKIcCY6EEEIIIcppUMHRTz/9xEUXXUSzZs1QSvHpp59WOK615qGHHiI5OZnQ0FAGDx7M5s2bK5TJysri2muvJSoqipiYGMaMGUNBQUEdfhdCCCGECGYNKjgqLCykW7duTJ069YjHn376aV566SWmTZvGkiVLCA8PZ8iQIZSUlATKXHvttfz+++/MmTOHL774gp9++ombb765rr4FIYQQQgQ5pbXW9V2J6lBK8cknn3DppZcCVqtRs2bNmDBhAnfddRcAubm5JCYmMmPGDK6++mrWr19P586dWbp0Kb169QLgm2++4YILLmD37t00a9bsD983Ly+P6OhocnNzZW01IYQQooGoyvO70Sw8m5aWRkZGBoMHDw7si46Opk+fPixevJirr76axYsXExMTEwiMAAYPHoxhGCxZsoTLLrus+hXw+Y5+TCmw2Y6vLIC93MfSmMv6/XCs2DwYytps1ucHYJrWK5jLGob1CpayWlv3OJjLVuXnMxjKQvD9LNfT7whtGGi3G+3zYYSE4M3MxMzLwwgLw5GcjDc9HbOoKHDdwP7duzELC49cDjCiog7tz8/HCA21tvem4y8qxMTEFhqOq3lzijP24i0qwBEeSWhyc4p37cBbmB+4liM8ktDmKRTv2YW3pAhHRJS1vWsH3vzcI5crzMcRFUNoi5bWdn5u4GeuUrnwSEJbtqZ4727rfU0TR2h45TJl28WFgZ8NR2i4Vec9u/AU5OGIiCKseQoFu7bjLsjFNEArRUhkDFHNW5O7YzOFuQcJj44nOqUtubu2Uph7sPSmGYTHJlj7d2ymMHv/EcuFR8cT3ao9uXvSrGtFxRHdrHXFa5WVS2lrlcvPtrZbtCF3+6Yjl9u1Fa/2k9C+S+l/jtKfe3v1wpxGExxlZGQAkJiYWGF/YmJi4FhGRgZNmzatcNxutxMXFxcoczi3243b7Q5s5+XlHbkC06cfvXItW8LQoYe2//Ofo/+CSE6Giy46tD1zJpTrFqwgIQHKB3SzZ8PR8qdiY+HKKw9tf/IJZGcfsagOD4fhwzFNjQbU//6HceCAdaz0F1XZqsba5cK8/gYUYBgKvvoKvXevdV75clqj7XYYNdoqB5jffAu7dlYuV3buLbcc2vf9XFTatiOXUwpGj0aXPlzUTz/Bpk1orSl7hNtKz/ObmsKrr8UWGkK4yw6LFuFevRaPz8RhV4TYbWigoMSH12/i++vVJDRvggJyf/yZ4uUrCXfaiQyxozUcKHBT7PXjtBs0HX09RlwsOw4Wkf3zYlK2rSM+woXWsDe3GK2heUwoSsH2M89juy2clrFhtNm7Bf3LEvbkFFPo8RHutAfK7c93s7n3QJI6taFNQjjm7+vY++X3RyyXVeQh9C8X0rJ7J0wNm35eTvKKX4gKcVQoExfmJCHShT5nMBlNmrExM582uZm0XLEIqFwOYFfX3myNa27Vt/ggfPPNEcvtz3eT1ulUmvTuQZuEcNi7l/3vfXTEcgAJgwdAt25s219I+taddFj4fYUyWUWe0u8zBNWrF+ntTmZjRj4dQ7wkf/sFWmt2ZhVT4PZhamgdH0ZkiJ2sdp34Oa4dp7eJI1F5yXvrP2zdXwilz9m2CeFEhTrIK/ayLCKZTldcQHJ0CHszs9n1wr/QpknHpuHERoaSlZ3Hxp1ZdEyOJK5fH3bFN2PBb5uwFRfTZsH3tGkRR2zb1mSv38zO7em0bJ1EbKf27M8pYJE3NPBzNeDgNmI7tSd7w2Z2bs8IlMvesJkN2W72tTuJnqedRIvBA8ieeB87t+2pUGbndut3VEl4JMnXX0HLwQPZOedHDvx7Bq2bxRN3SmeyVq5mz9btKNNE+f1ExkYRcenFxFx1Fbt/mE/KgUwKv/uOvB07KSjxoLRGaU2Yy05Ex05EvDqV9O/mkHzeuRTcdhv569dR6PECJqFOBzGt2hBx1llkbd1M7P89yYFp09i5ZB7ObWk4PF40GpuhiEltT+I5Q8nfuI7Ibj3YmJnGziXz8fr9NN2XTYjbg2EYxKV2JOmc88nfsI7ITp3J+P5rfncfxO8zMTQ0OZBDmMdHTGo7mp5/MQVrVhNxShcOfvIx7k2byI+KCdzfuNatSBg6lKLlywnr0YOsDz7As3Vb4HhOdDQoRXj/fjS/7DI8s2cfsRxAblQUYWeeQfMpUyh+5RUik5KOWM7Ztg0xs2ZRvOhXIoYNI/Pyy9FLf+NwxW3bEHvllZQYBhE33MCum2/GP/cHQg773V5Wzly+HNdDD7Hr5pspXLgIV0kJoeXKli8X0qMHe5csIW/FSqtObjdhxcWVypTVvyA8HJ/DYZX1eIhJTgqUCz3sfhSGheF1OgEo6HIKyf37Yz/s/pbl5hSFhZHndJLXvx/N77gD+4v/PmK5YqC4X1+aTp+Of+7PRPbrR9bZZ1coU1bO37YNMZMn49+0ichhw9hzww3YfvjxiOVir7ySLNMNd54Cpg9WfgWffg5XDoGoZpByGuyq/NkcTaMJjmrLpEmTePTRR+u7GkflNzVKgTY1WzLyyNhzgHCXnW4pMQD8tGk/Ow4WcdCZSZaxhgf+chIASzbso1+cgQLeW7qLLfvy0doKtlu0TOCGK6y/2P77yw6u9/qw+Uxm/rqNLftzAE27ppEMP609uf5s3vjhR67s0ZbkiGb8+8flHNh86BdIu4QYhvfqRK47h6V7smiXvZ3mkc0ZO3sOxrff0Cw3i/YJsVzT82SUgozCTFbsyqR7SlMSvF5MDWM//Azz++8426a4pntXlFLszt/N8t3pdGueQKuo1ng9Hv7+xQeAyauxLTD8Pn4/+Dur03dzclIyXZt0RQPvr57PswWL8DoV/Vt1ZmpML2yGyZbcjXRJ6IjH9DJrzRy2Zu8B4EvzB05t35OXLphAqAu2FW+lS0TlcgDZzfYx+coHSIyAbZ61nBxi4PF7mb1mDluzdgHQNi6Fv3Y5l6RIWJnzK6dHDqDE5+ajlV+xNWuXFexpaBPfgiu6nke0009+4a+c6mxGsdfg5W9eRf26EMMEhaZ1fAoX9TifKHcuGfs30aLoNEo8rfi/2U+S+evP9N6TQ+cWbejd8ZzSMhuJTOqINzSWz36cyv8yNlJU7CMxu5BLS6IY1OsCInIz2bd3IxHJHfCFJjN/6Vd8tfRtMuLCADgnsSM3hHQiIieDfembKpTbnr6djeui2fNTBL079+a2AaOtcns3EtGsY6DcjvTtALiKVnJlp5eJ37OB7cv+R8R+N76QFH5b8Dn7d2zD4dc4/JqdGpqsPYt2k1/G2PATCT37kP75RxzYuh6tNQoNaHYAsW1OIvmu++m7fRFN2p/Phocmwuf/IwxAW/c3Eyhq05HEiy6n+65VRBnnsm3sHRTOn0dKVh6GBjeQVfpLt2vBHsIie7BvyhQKt6XRHUBrYnJz8QDZpeVcuQcJa9ua7JkzKdm5i07h4YH/H56cnHLlsgLlPFu3keKwE/fbPApnwe7+/WjRvTuu7P0VyiSVXsdnt1GwcgG7+/cjZcoU4j/5gPCO7cmeORPv1m2U//PPb7Oxf9NGlNa0HjOG/JtvpvDHediA6MN+lxTs3o3//fdJGTOGg2++SfEPP2D3mxXKFe3OwBYeTsLQoRycPZvsN6cTCUTm52Mr3zq3bwVF0U2IPuMM8pcsgYWLaFl6KKKgCLuvtOy+lRRFJxB9xhkULFgAS1fSIjomcJnwQjcOrw+94neKEpoRVVrOt2ET5drZAChcv46w5GQizziDvF8Wk7NrGzgPHc8JAxTkrFhEZFJTYo9Srqxs9opFhHzxGU3/8hfypr95xHJFu7ZhfvMVCTfdwr7//of9m9YQdliZsnKO1auIm/Ic+774jD0rFhEeUrkBtqxc1BlnsP+7b9izYhGEQRigzSOXy/tlMelrl+INswKeUAX4K5cpq39eKHhK6xhiAEcpB1ZZt/W3CiXrlhMVGUHkGWeQ/8ticg+7H/khUBICuSsWET73FOKPUg4gf/1K7F98RsKYMRx8+cUjlgEo3rUN9dN84u9/gP3//Q8Za5YSd5RyztWraDJ2HJh+mPlXWDsX1nnB9oFVqO3ZcN4LlU8+ikYTHCUlWb86MjMzSU5ODuzPzMzk1FNPDZTZt29fhfN8Ph9ZWVmB8w937733Mn78+MB2Xl4eKSkplQuOHn30ypV1iZS54YZD9csrYcHm/bRPjKBL8xhW785m3a/b8Gk3Jf4C2vfpzhmp7flq42/M37qZkxObc12PM3hpwRzeW76a/KdX0791Ki9ddiVpF7bms3V5DOnYgQ6tzubOL95icfNd0MKHUj78e55i39edeeH82/Fdk4o3uR8Tvn+KxepXUH6U8oPyoZSflfMyeWbgk7ia/IzvtIuZ8PM/+SX0lwrfxq/N8nnqzKdolvYZiRG9mPDTOH7tsgi6cFi5Ip468ykObP6EMyPjmfDT31lhLsY4R7Oy9C/5Jc3cTDlrCnElJRQt+y+xnS4D7eHRr8ez8+AijG6a/2rYkOTn4aHPkpCVhW/DJyR1ugx/XByPfXcnO9Otlo9HjdN5aMSztDtwgE3rPqZDmwswm7fg5dkT2BK9lrMyFCEeCFn/G5+03cgVtzxHhxWr4NRufPPSeAr2byJJW61SY37ZgPHLRn5cvZ0hd0yhfbEHTuvFkkkTiPt9I8l+cHrB5QXn2o/Y/0MGKVOm0C0vHNtVl7Hn7rvptWgjhzpyN5JZEkfza65lwHeZOFNM9rz6L3ou3EjPCndtE5nueJo/8wynffopIdjZc9vfuXjBwsP+c20lw1xG82eeofnHHxPauQt7/vZ3rlu46FB3xO/ryciPCZRxXn45e+6+m5MXLebksv+bWgMHSMe6VvLHH+MqLdd8cRo3AajSlka9m/R+RUcs1xzovz0HVC589gmZP2XQ/Omnj1gOgO2LyNxxO82nTOHUZa1w3X0pe+6+m5gVO4k57NeTOWcxOd3fJ2nMGA6+8Qa5m3fiIJzD5W/dQ+jWrSTedBMH33wTvpwHRnRZo1Hg35ydGThDQoh/6GEOzpiB54efcGCQF1UuHDhwEMLCiJ8+nf3vvE1a+ja8UQqPDXx2xdakaLw28Nqz6J/ajObjxrHnq0/4ISYLYsPR5X72lRkDZHF2m+YVy/WMAcWhsvsWc07LoTS/dXrFMuVoQ1nlFv5A83/9i93f/o8vkrLwNY/BawNf6ctrU7Ts2o/hw6+m+Pd1uKY8w6wuPjZtWmx1mQCmAtOADh36cvO11+DeupXIa6/hI88C0jYvxq41dq0xgPbt+zFsxEu496QT1SqFn90L2LtxAQ5/CDatsaGxa+h02lV0v+pB9m/9nfjrrsP3wRNsXTITBdj8dsCOAlr3vobEax7k4LYNxF53HTtnP86OZTOt+wGgFSg7rfrcQOLlD3AwfTtxN9xA2jdPsmX5m/id+Wi7xrRBx9P+Rmr/iRwsySJu1Ci2Lnia9UtfO3TPbIUAdO49lpi+d5FVnEXsqFHs/Wkye5a8ikODS2ucGiKNXBL7jiN+0PV4vCVE9ukDPz5J8cJXUGirpRwI6TeOsHNvwm/6Sbj2esISd1KwYBp+ZcOP9dLKRlS/m4gceDt+Q5Fw7fWYzXI4uPBNSnTFvJf4viOJHDgOvzZpYnfg7aTJ/OUdfGYU2drARGEqg+S+w4kccBN+bRI5ahRNf36Dfb+8g8JEm34KTJPEvtcTOXBsoEzRvFc4uHgGIQpCjLJueifhp48LvGfkqFGUzHuF7EUzMIBoBaq0Cy769FuIOGssKEXEqFF45r1C7qK3A3WPUhBlKKL7jSLurLGg9RHLAbToP5K4c64HIG7s36GTWakMQHS/EcSefTsATa69HpJzyVr4H0wMNAoTG1op4vsOJ+Ksmw6lILQ/D3L3QjM/KNOKLA9ugfVfVHqPo2l0Cdl33XUXEyZMAKxApmnTppUSsn/77Td69rQeRd999x1Dhw6tl4Ts/GIPdoefL7fMZUibgdwz7zHm7foJZSuxApVSfZv15ZkBz/Dx5o+5vP3l3P3T3Szeu7jCtY6nTJnxPccz6pRRvLX2LZ5b9txR63e0cgqFoWzYlY3xvcYz/KThvLdhFi8tewnT7wc0aLj+lOvZdHAjv2X8xu29/8HVna7h/Q3v88rSF+nVtBcd4jsyc/U7NDug6bLNy9mxvelzz1PkfPghMcOGsWfCBAoXLqpUr/D+/Wg+ZQo5H3101HLHU6ZM07vvIr70r+V9zzx71PtRk+Wqey1tMzCV9czQNgNld6AMg2Z3TiDummvIeu899rz0HFoptNcNphelTWyOUJLvmEjcNdeQPWsWe196Gr+3AK0o7Zu0XjZXOC3+8RAxl11Gzqefsvulx/B58ivVy+6MpMXtDxFz6aUnXK5CmS+/ZNfrj1HiO4B2aEy7xnRotAMSz7yaNiMeI3f7ZqJbt2fL7CfYseR9TGXDVHZMDExstBs0ho4XjCEnbT0xbTqz/tu32fDTO2BY7Uso0AZ0HjiSkwZdR86ercQ2b8vaJR+yasGbaLvCtBlom6L7oL/R9eS/kFO4j5jwpqze9DW/LXit9L4Z1vUM6N33Nrq2H0JO0X5iwhJYvflbfv319Ur3o3fvm+nafgi5RfuJDktgw9a5rF3yBnYUDgxcKDr1u4UWrc/A7c7D5Ypi/44l7F78JoZSGChU6b/N+44mOqUXPk8hdmc4BbuXs2/J2yjDwMBAKQht2pGE00eDYccsPIAR3gRMHweX/gf3gc2BbmlXk/bE9rreKld0ECMsHkw/Wb9/gSc/A+wunLGtiGt3FigD0+fGsLtAa/J3r8ZXnIOBVS9nbEtcCa0A0O5ClMsKYH0Hd2Bm7w3cCyO2Gfb4snIFKFeEVe7AdvwHd6BNP+DHFtcKR2IHQB+qGwp/Vho6by8oG0ZMc4zo0j9avUXgsFo5df5edMG+Q//BIxIwIkv/ePYWgyMUBZCfCUWH8lgIbwIRTSuUo6xc4f7SMgkQmVjpPcnPhOIsUIb1CouDsHjrmM8N9tKmmKJscB/KOcIVDWGxlcsVZ4O7XDqHKwpCS8v5PWBzVi5Xvszxvmf5ax1v3apT7rjeU5eWizvC/cgBT751b1HgirReAKYXDMehciU5VkuS3wv2EPJs0UTHxh/X87tBBUcFBQVs2bIFgO7du/Pcc88xaNAg4uLiaNmyJU899RSTJ0/m7bffJjU1lQcffJDVq1ezbt06QkJCADj//PPJzMxk2rRpeL1eRo0aRa9evZg5c+Zx1aEmg6NP1i4lh7VHD1S0Au1C6RDu73sHV500jA83/o9nf/k3dpuB0zBw2A1cdhsRzjBu6jqKQS0H8vPun3l/zSx8Xg9OZcOODaeyER0aQ++2Z9G/eT/Wbv+VLq17s+7gOjatW4A7Nxs7Bg5tJy6uGSf3OJcmoU3Yk7aW5qld8Pg97PxtPiX7M0nq0A2loEn7LqAUedu3EN26HVprsjf9DoYie8dmwpomk9z1dOuPPyA3cxfRiSmYbjfKZif99dcoeP8D9IGswLccCAZmvM3+559Ha/PQn/qlf1krpUi4807iR47g4Ntvs/+FF0vbnNWhckrR9I5/EHfDDWS/9x4H3/4POOwYoaFoQ2GPisaICCe812nEXHopBb8uIaLP6eR9/z0l635He934DmSA9uFonkpo1x5EnnUWhYvnEd5vEMWrVuPevAb3lpUouw3lsBPWZzAh3fpgj4yg+PelhJ7cG9Ptxr1pNYVLvwcg/LTBuDp0xXC5KP79V6uM12uVWTYXhQFKEXbaObjad8Gw2yjesILQTt3BsOHeto7ipT+C8oP2E9brbJxtu4Hpx7vuRxwnDQCbAzX3MVjwvHU/2p4Nf/0P2u5C2Zxovw9MH775r+HbvhJtc4ERgr396Tj6XAWGgZmdjhGbDNrEs/I7fNtWWvdXKextuuLsdp71kMzOwIhNssqtmYc3bW3gl5a9bTdcJ/cHFGbOfoyYBEDjXrfYKqc1jjZdcHXua5XJ3Y8RbZXxbl2Gb+8mMBTKMLC3PQ170zZgmvgPbscW3xoMA//+bfh3LrO+B3sIjjZ9MMKiMd1FePNycMTEYzhcmF43voLcwP8Pe3g0hsOJ6fXgK8rHHh6FYXdg+rz43YVWAOIKx7DZMf0+TF8JhiMEw7Bjmj60rzT/Q2uUIzSw3/QWYTjCDm2XlUNh2F2l+/2YfjeGzYVh2FCmaf1SB+sXu2FYv9DLftEbtkPbZf/HA+XMcuXKbYP1OdhKHxSm38rDMOzW9cAqp7X182KUK6dNULZDCe2Ht3wL0UBV5fndoIKjefPmMWjQoEr7R4wYwYwZM9Ba8/DDD/P666+Tk5PDGWecwauvvkqHDh0CZbOyshg3bhyff/45hmEwbNgwXnrpJSIiIo6rDjUZHH218Vf6t+7Il1u/4cqOlzNv50K2Zm8nxB5ChCOScEcELpuLdrGtSYlOpMTrIcThJCs/i8Kc/Rg+HzavD6fdRWyr9gAU7t5BeIuWoCF7xa94DhxAKYg65VRCkq3OjLw1K/Hl5OCIa0LUyaeglcJ7YB8l27YR2rYd9ngrAblk61bMggJsUdG4UlsD4MvOQbvdOJolg2ni3r4Ds6AAIyoKV8sUMAy8mZn4DxxEhYfhaNIEIyyMwl9/pfCnn9HaJOG229gzfnygJUc5HIT16UPMVX8lcuBAvJkZOJKSKU2monjVMvz703GmtsPZ4ZTSB4Af77Z1ONp0tn7ZGwbutUsAcJ3S51CZrb/jaHty6eglG+5VS/BuWI6rz9k4Wne0voelP2Dm7scWl4Czx9lgGPh2bsC3ej62Nl1xdOpjPTBMH3r9N6iThljvqTXmTy/C7mWolF6oM2+3HkimHzZ/B+3PPfRgm/OI9XAa8rj14DF9sOo96HZN6bVM+N84SPsZUs+ES145dK2VM+HU4aXX8qFm3wBbfwgEPRh263q/vQW9RgW29Zd3QVxbOPMO6z01kLsbopsd+qs2cz1kbYX4dqimnaz/mPs3QFaadW5C6c/O/o2QtQ3i2kBCx3L7tpaWK9u3CbLTIDb10LkHN0P2DohtBfHtS/dZf+QQ3650eyvk7ISYVhDfpty+7ZBwkpVQqU1IX2n9hRyRCE07W9+Dz20dc4TKg1wIcVSNdij/wIEDOVYsp5Tiscce47HHHjtqmbi4uONuJaptg9udyrgfxvHbjgwGtjyTwa3Pok+zHnhNLy6bC5fNhaP0Lz9/QQF682Y8cXHEtWxJ+L5sPNt3E3LSSTiSkkBrSrZswSgswuPfhat1K+J6no4/Nxfv3nSc0XEomw1vZiYuRyiuBKuZ2HvgAI7EROyhETgjY7CFhKFKAxw8XgynC11Sgnf/fhyJiRhOJ6Zp4svKwhYZiXvTJkrWrMHepAnOq/7KgX+/QcH8+fj278fMy0N7PIEuLve6dVYX1/jxuNO2E33ZZbg6dSLy3HNxJDYFrSla9D3k7MZs2hxXr3MAhSM+Enb8huHqYAU9hoF34294t6wB04ujUy8wTWzRcdazsazM1pX4d65FOcDe5lRriGuzJOz+5hhNE0tbmzSulDhUvLb+etZ+MP04vHtxbH0Vmt8Nvi4w+wZoMwjV/3ZY+BJs+xH++h9sMcnw87dwyl+sv8RLy3FYOZJOsT50bcL71x25TJtB8PvH1r/HKtf5Mis46lw6UvH966DtOVa5Td+AtwROugj1l9KWSMNu3ZPdS61AwvRCXCqgrUDEFW4FHwCeQghvCpFJgDrUpRDfzupCcJY2X3uLrG6Hw7se4ttBVBI4Sv/Y8HkgshlElWYZ+b1Wa0Zcm0M/CKYXoltYLzjUwhGXCtHNweY6dG6CNaAAu+tQC4gj5MR+EIUQ4jANquUoGNRUy5HWmhd/+YA3Nz1OmO8UFo9+F0MdecJyf1ERxcuXo70+VGgozhYtcDRvhjczE1tYOEZkRKC1poytSTyOxETM/AI8O3dib9IEjcbRpAlFK1bgSduOLSGBiH59KfzlF/wHs/BlZ2MLD8cWF0vEgAHkffMNJWvWYktoQtx117HvmWfJnzsXf1YWmOZx5/WosDASJ04k9uqrKFz8C76cHFydOmJzOfDt2oq9eQr2xBaULPwcu60Ee1ISyhkCofHQpL3VUpC7C6JTrH707QugWXdY/xmcdBEsf8dqMdn8ndVN0GEILHkdThsFaz6CU4bBb9Ohzy2w8Sv47kE47UbYt96q4IVTSltnroEPSxPrk7rCwheg/x1WK0dkEpz7KOxcAi1Ph+WlyYNRLWDrXCs4ydtt7esxwgpEUnpb72/YreDAMKzvxbBbrT5lrS47Su9ZaKxVp6YnWeUAWvUrbYlpA3uXW+eGxkB+OkS3An+J1XoS29rKmQiLh+zt1rmGHbBZwcrBLVa/fFgTCSaEEH9KjbblqDHJzM/l03WLwA4uI+zogZHbQ8natWivD3tCgrUvJwfsNmzh4ZiFRfiLCnE0aYIuKcEsKEQ5ndjj4sj/4QdK1qzFvWULvowMvBkZhHTsQPMpUyhZvZqo885l99/+dsykZ//Bg1bg849/VCxns1GycRP5P/xI/Jgx5P/wI46UlsTf0gVbTEzgZURFYY+Pw9miBd79Bwg7rReezWsxd6zAW5iD78B+DIfCe2AHrhZJGGFhh97DV2wFBo5QKMmD3CWwZjas+xTOffxQi8qcB60AJamrdd6Kd6yWFcN2qMzcR2H7z1aZ/HT44fFD75PczSq36BWrayeuDfhK4PynrK+7X2e1YmRvtxIE89Oh983Wtjsfeo60rpPY2QpSsrdDSDTk7bUCrrJyYAVZZWV8bivoSz3zUJmmnQANMSmHynmLIXcntOh1qJwzAooPWgFPWTl3PpTkWl1au5dZSYuJp1itPE06HGppEUIIcUwSHNUDn9/PzzvW4tVWsmaIrfJwZADT48G9fj1mXh62xIpTDfgPHKzQUmQWFuFslkzOok+IvuACdt922xGDnsIDB8j57DPix4whe/YHePbsxdmmDdhs1pDN0n/9BYUU/LyA+DFjKPjpJ1ydTiKs/xnY4+Kwxcdji4rCFh0VCHoiBpyJs00qZkFhuW/AhxHqwtmiOZ6NKzEztmFGReHsNpCSzG34cgqwJ7fC3rwFhs2P8hxhAsuCfVbA8tnt4C+djPOkS+C0MbB3BfS52eoaytt7KI8mLhVO/xukDoDMdVaLUdLJkF860eelrx66fmQStDoDDmyG02+FjkMPBTJQMfgoyrK6gLzF1iiL+A5Wi4w7zwqGYltbeTnu0u/DnW+dV3Y+VAxkysqU5fIc2GKNrnBFWrk3+9Zb74lpjbxwF0DiybDvd6tlKTTWKpe51tr2eayXt8Sa8MxXAs4j/98SQghxdBIc1YNduQfYm38AP1ZwFG6PrFRG+/14tm7Fty8Te2JSYGboI/Hn5LD/0UeJGjokMOy7eOUqnO3a4UhKwp6cHPg3pGNHQjp2wLv/ADGXX0ZY79MqBjSljIjwQOAT3q8fjpYtK5QrO+7ZvRuzoBAzPxdny1Z4tqzDPJgO7nyMyGicnc7E89u3mAd2g82Bb18hvkVzCet3IY4da7GFaJTdtFo7yoIGrWHPMitoOGsi/PSMFRjFt4MBd8MpV1iJumAlGHcYWjHgKB/Q+MtaZ86qWObwcp6CQ4HM/o3WcN3S4Z/s/g0KD1jdVDYHoK3cHG+xlYNTlGUFR7tXQNF+63jZEDutrXNDSptwy65VRgEYUJxrXcOdb3V9ZfxuDWtV1jwvgNUStH+DNcTVnW/9u38DlORbZULDre678CZWK5EERkIIUS0SHNWDTQf24DP9eLW1lk+EK6zCca01nh078ezaja1JAsp29O6Q4rVrOfDCC4Sc3JmYK66gcNky4kaMIOKccyoFPZUCmsKCCtvHWy5wfOcOzIPp6IL9+Iuycacn4DrtXNz7tuLLysBo2oKSpfPw7d8P2oku9qMUOKJ96ANbsScmWS1D5VtY1n4M8yZZX18x3coB8rnhL89D6zMPdW8VZVkBTVGWFRwknQIZa6xvIKYVpK8+NG9J4X6r5SW5K+xdZW2HxUNiy8rBSmEWNO9uJUT73NYor6jmVsuO3XVoTg6tAwndVvKytkZQ0e7Q5IuV0vm0lexcNkILKBsej2GzWr2im5e2gNkOtYQZR+hyjUs96v8JIYQQJ0aCozq2vzCXbdnpJITF4sMKSKKdFRPDfOnpeLanYYuNxXAeYa50QJsmuR9/TM7s2YT3PZ3mzz9PycZNGKGheHbvrhT0HB7wAJgFhZXK/lE597ZtYPoo/m0Bvm2rUZ4i6wHuCsNfkoH+7WeMJi1ReYX4dm61cqMiI1A2ay4ge0wUtpgoFG4rMCqTsxOWvgVn3WV1f/W4Hpa+Ab1GHxrF5AyzAqPCA9a5YfFWUOF3W91b4VZOFllpVuASGlc6tLs0+MjdCzEtrVacsHjrOhGJh0Zm2V3Wy/RD05OPHJQIIYRo9CQ4qmNbD6ZT4CmiWUQTTGW1HMWEHOpW82VlUbJlK8oVghEaesRr+HNz2f/SS5SsWmUlTr/0Et49ewPljxT0KJcL97Y0fAcPor1etLd0orh9Cn9OLrbICHz79+MMDaV43Xr82dml8wxptMeD8nvwZ+zEFhGKb/WvGC6Fq0VTjMhYVEgoymG3uv5sBsowcXY7CWU7zuBi5y8w/ykrbyYq2UqOztkF7QZXLFewz+rKKjx4aG4dWzX+C5fNaiuEEEIcgQRHdajQU8z6/TuJcUWh0WijCAUkhMcA1lxG7k2brTl74uKwN2mCWVJcocurZN069r/wAiEndSL+llsI690b3/79aI8HsHKVtMeDPzcXf24eRlgovox0fJkZ4HBiOB0Y0VEY4eEopdCmaQVAPh+OpERMjxtlM7DHx1vdSt5ijEgbhteNIg9Dh+HsdSrKGXaE77CKfCXwyzRr9BlAt+HWKLCCTCtI8rsr5gh5iqwAqkl76yWjr4QQQtQCCY7q0LbsTA4W55Ea0xy3zwSjGICmEVHWMhObN2MWFmBrarVsmCXFgdYff14+uZ9+Ss6sWeW60TZihIYFgidtmvj2ZWKEhqFcTqs1x+kkpEsXlNOJ4XKhXK7KOUxaW4GKt9h6eQqttYHKtjHBFW8l+B5lyoEjimhqnV8+wClTkmuNNisLjM55GPrdbiVau/OtV/mRXZ4CK2m5SUeIbytdXkIIIWqNBEd1xOf3sWHfTlyGC7thsC8/F6WshN0EZySeLVvwHTiIvWnTwMi08t1jmU8/Tc7MmYe60Xbtwgit2Hpj5udji4wktEsXVFhYxRFuWlszD/tLwOO1RmL5iq1k5pIcKzjylRxaa6ks/8aVUDqZYDV4iysPXTf91mSGXa6EhS9aI7Mufhk6nFd5iHtZknbmOqueTTtbiciyRIQQQohaJMFRHdmVd4A9+QdIKk0aziq25sLRpovw/Vl4inOwJ1QemWYWFHLg9Wkk/O1vOJKTib3qr3h+/xmdtc8aVm5zgiMUbdjRB3JwdOyIYRZAXrY1F4+3xJoE0FcCfp81T4/ps4IUsLqm7C5r1uSQ6Jrtqjp8np8Dm2HL93D2A9YoNNMHV7xpdZEdPsy+7PzMtWALtSZYjGklgZEQQohaJ8FRHdBas2n/Lkw/hDqs0Wc5JVZwpPyhOHZnYGt3MsrhqHii6cO3exMHX/0XhiuU+DFj8O7YgM49aAUJvhKrC6zwAGZhEUorHG4H7N6FNYGOLl1w1VE6R48dHK7Slbnr6KN351uTGca3hU1zrMDok1uhxWnW/ERKVRy1Vl5RlhVANe1szRgthBBC1AEJjurA/qIctuVk0iQ8NrAvrygHAJs/BKKjK49M8xZC9k7yPv2EsD69ifnrlXh3bsTerA1mzn7M7EMBhdYasxBcbVthJNTBSKxj5RK5Iq3lPvIzYd86WP85bP3RCor63w4r37WG6ZctRHo0RQetLr6kLocWRRVCCCHqgARHdWDLwT0UuktoVtqlZuQXUJyVCS6w6zCM0PILgWprqHrODvxZB/ATSfMpT1H441c4ohyY2ftwdu6DZ92SQIBkFhZhhIfiaBJ7hHevBUfKJYJDy16snGnlE2Vttfa3PRt6joDtC6HrVUfuQiuvYJ/V2pV0sgy7F0IIUedkyE8tK3AXsunAHqJcUYDGfuAgrs1pFHitEWZ2QjDK8mj8XsjeYS0JoX2UZCmaP/0UmU9Pxh5pxbFm9j4865bg7NwHI7ZpaatRMY7EphiuI08YWePK5xK5Iq0WnuIsiEiC96+Fz2+3AiOb01ru45pZVsBTNolj2XlHUpBpnZfcVQIjIYQQ9UKCo1qWlp3BgaJ84pxhOPak49q2A2wGhXZrEkYXIRgYVsBxYCPk7ICQCPxeO6YH9kyYgCs5qsLIs7IAyYiIwSwsxggLxREfU7ffmDvfmok6qoWVNN2sB8y+HjZ9awU//W6Hm36AgfdYa5uVLSp7eGBVXn4G2EIgqau1PpgQQghRD6RbrRZ5/V42HNhJuM9OxK7d2PcfxB8ViXa5KM615jgKwYW95CCU7LEmXQxPAMMg7/vvyP32J5ytmhN63fmVrm1m78OflYlZWISrTUuMEFfdfnO5u2HRK9DpQiuXaNErVpL3xS9D4ilWonVY3NFHoWVvt3KTyhaaLcgAR7iVYxQWV7ffixBCCFGOBEe1aFfefval76HFAQ/24mJ8sTFgt4PWeChddNZnYs/ZDjHJEGG1lvgLisib9wsAMRcOqjhfUTlmUVmrUR3lGoE1Qm7Fu7BqFqSeaSVXb54DfW6BjkMrBkJHG4UGhyZ61NpK3nZGWIvHSmAkhBCinkm3Wi3RWrN14yoit+4lzOPBFxeHgRdbyQGcudvwli46G45hLZAaEhE4N2/uQrTbgzMlmdAuHY96fTO/GEdik5ptNYpoeuR8IK2tfKjtC2DFO1ZgdOXb1jD98CZWd+CxcomORGurK80VAcnSYiSEECI4SHBUS7xeL3mbtxGugHBwFuzEmZuGK38vyvTiNUoAiDBCUOUmXvQXFpH3o9VqFH3MVqMSjDBXzbcalY1EKx/k5O6GNbOhzVmwYxGcfDlc/Z6VPO0onYLgWLlER6I15KdbZZO6QGgdtn4JIYQQxyDdarVEmyb2wgzs3iKcebmYhh3THoJpWBM9mt5iFBCFDVu59cry5i5Cl7hxtEgirNtJR72+WVCEq1Xzw6YBqAHlg5z9G2Hxq1YQNOzf8NFNENkMzpoIebsPJVkffm5ZLtHRaA15eyE0xgqMQqJr9nsQQgghToAER7VFm9h8JaDAH1KxVcTUgM3KOYqx2ShrG/IXFZP3w2Jr/wVHbzXyFxZjhLhwJNRSN1RBptV91vlSSOgIQ/4P5j9lzVUU3cIatn80ZblER6NNq8UoNM7KMQqJqvHqCyGEECdCgqNaplXltcryfCbKsIbyxxo2jNKWo/wfFlutRs0SCTv1WK1Ghbhataj5VqOig7D2E1j/PyvAKcmzRqLtWQZd/nri65qVBUYhcVaOUVXyk4QQQog6IsFRPThg+sAArQ3ClR1lgFlcQt4Pi4DSEWrGkdPB/EXFGCEhh1qNjmcpj4J9xy7nKbISqj+73VqYFqDLldD7Jqv7K7nbH89q/Ud8bijcD2FNrBYjCYyEEEIEKUnIrgcH/VYAovyhGCgMpcj7cTFmUQmO5KaEde8MgD2lA0Zs0wrnmgVFOBLjMWISDgU8R0qCdkVa+73WfEqVymkN6atg9YfWivdrPrACo8STrVFol02DvD1WF1tVEq0PZ/qt4KzooNUllyQtRkIIIYKbtBzVg5zS1hnDDEUphVHiIe97q9Uo+oKBgVYjsyCnwjpqZnEJhsuFPSW14tpmmeus3KDfP4U9SyG+A3S/DpZOhwObDr1xk9L9m/8Dy2ZAVDJcMR0+HG0tXXLxK9Cqb+V108onaVelBakkB0ryrYkt41IhvCkcpUVMCCGECBYSHNWDPl37kZ2/j2XbdqHs4P55GWZRMY6kBCLPPQdbZCy+XZsqrKPmWbsA/475uNqmYktIhXmTYeNXkLML3HnW4q5XTLdaerpeaa1xtvWHym++6WurnN9jTeC45HXoOQpiUqzjjtDjm9X6WLxFUJRVOrFjF4hqDvY6WvdNCCGEOEESHNWDjft38Mx5z/Cg+3nsuzy45y0BoMlto3GdfDqedUsCZc2sDPzzXsJ5xhhcRWuhxyVHDnwyVlvrmvW/HdZ/DvYQ6HjBkSuwfYFVLmcHdDiv4rHjmdX6aPxeKDxoJW7HtoHYVtYEj0IIIUQDIsFRPVi8azVpP63g2cHPsW3aC+jCYqIuPJ/oy4cHutAA8OTj3PBvbFlrIcxpBTQr3gXDAb3GWK090S2slpmIpla3V0EmdDwfmp509CTtsnJRza2A5kQSrcEahVacDd4SiEyC2FQIjz+xawohhBD1RIKjelCk3Czeu5RnvnmVh0f9ndzIZGKHX1MhMDJyt+BY9xqGOxvd7lzoOQZ9YBdGt6ugZZ+KAU1ZwFPWHebOP3J+0PGWqwq/11obLTQGEk6ygiOj8vQFQgghREMhwVE9KMFaOiRn+QpyD35I/JgxeHdssAIjrbHv+hZ72kco7cc86XLUpa/iXrsEV2IkZLsrBjSHBzxw5ATq4y1XFb4SKNgPMS2thPCypUSEEEKIBkyGDtWD+DgrJu3T4mRihg0j+4PZ2Ju1wYiMwpm7GEdyM5T24+95G+ryaRQt/gGbzWeNYjt8DbPjSaCG4y93vNz5Vn5Rk/bW8H8JjIQQQjQS0nJUD7JK8ujbrC9X9r+DPX//B/78LMJbKJw9zkedcjp69ki87a9Hdb4Wz4oF6LwD2Fp1OnSB8gHN8SZQn0ii9eGKs8HrtoKimFYyPF8IIUSjIk+1enBSQnueGfAMOz95j8KFi3Da83BsmYVCo1F42w/H33wQvl2b8G3fhj0+DsN12FB4d/6xA57aoLX1ntqE5K7W3EUSGAkhhGhk5MlWDzoltObun+5mzzdfA+BMaY664g383zyO5/dfUAkdANBeHxgG9rggWLVem9ZSIvZQSD4VopvXd42EEEKIWiHdanXM69dM//11lDIZtd9akd7e8y/405biieoNebmYebkA+AuLsEVFYIsMr88qg+mD/AwIS4DEkyAkCII1IYQQopZIy1EdO2j6UcoEIKp0jVd7zmqM9gMx4hID5bTW6BIvjoS4oy5CWyd8bshLt+ZEatZNAiMhhBCNngRHdeyA3weAoV04PNbtN3b9EFgmpGyhWbO4BCPMhS26HhdpdedD4QGIa2stAyIj0oQQQvwJNKrg6JFHHkEpVeHVqdOhUV4lJSWMHTuW+Ph4IiIiGDZsGJmZmXVaxyy/B4CEkGj8Bw4AYIuNrbCOmhHbFLOgGHt8LEaIq07rB1jdaHkZVqtR087QtBPYHHVfDyGEEKIeNKrgCODkk08mPT098FqwYEHg2J133snnn3/OBx98wPz589m7dy+XX355ndYv17T60uwHDdCA0hgx1lIbZQGSCotCGap+ErE9BVY3WngcNO8J8W1kxmshhBB/Ko0uIdtut5OUlFRpf25uLm+++SYzZ87k7LPPBuCtt97ipJNO4pdffuH000+vk/rlaqvlKCJLAWBzmRAaFzhuZu/Dl7YFIzIcW2QdLtpq+qFwHyi71VoU20pai4QQQvwpNbqWo82bN9OsWTPatGnDtddey86dOwFYtmwZXq+XwYMHB8p26tSJli1bsnjx4jqrX35pcJRQYN16e6gf7YwJHC9LxHY2bVJ3idieQmuYfmhpa1GTdhIYCSGE+NNqVC1Hffr0YcaMGXTs2JH09HQeffRRzjzzTNauXUtGRgZOp5OYmJgK5yQmJpKRkXHUa7rdbtxud2A7Ly/vhOpYiHWtJoXWtj3ERLtiA8d1iRsjtI4SsbUJhfut7r2ETtaSJHbnH50lhBBCNGqNKjg6//zzA1937dqVPn360KpVK2bPnk1oaPVGWk2aNIlHH320pqpIcVlwVGAN57eH+tGumMBxf34RzmZNq5eI7XODt8gKepQBSgGl/6py/6KspOuiLAhPsNZHC29y4t+cEEII0Qg0um618mJiYujQoQNbtmwhKSkJj8dDTk5OhTKZmZlHzFEqc++995Kbmxt47dq164TqVEIJAAmFVpBkDwXs1iSP2ucrTcSOOb6LmT4oyYP8dMjZbX1tc4IryrqwYbcCIq3B77XWQ3MXWOW8xdCkAzTvIYGREEIIUU6jajk6XEFBAVu3buX666+nZ8+eOBwO5s6dy7BhwwDYuHEjO3fupG/fvke9hsvlwuWqueH0HmUFR3GFVu4R4Y7SFh7wFxYfOxFbm1ZQ4ykEn8cKfpxhEN0SQmPBFQnOiIrrnZmmdd7hLwBneOC9hRBCCGFpVMHRXXfdxUUXXUSrVq3Yu3cvDz/8MDabjWuuuYbo6GjGjBnD+PHjiYuLIyoqir///e/07du3zkaqAfiMYgCiy4KjCKu7z0rEduNMaYayHdagp7WVG+T3giMMwppYrT2uSOt1rORpw6CRNxAKIYQQNapRBUe7d+/mmmuu4eDBgyQkJHDGGWfwyy+/kJCQAMDzzz+PYRgMGzYMt9vNkCFDePXVV+u0jmZpcBRWFhxFWa1EusSNERJSORHb74X8TAiLhfh21vIdMlO1EEIIUWsaVXA0a9asYx4PCQlh6tSpTJ06tY5qVJHWoI1ilNY4ivzWvmhr8Vl/QRHO5KYYoSGHTvAUQdFBiEmx8oOc9bwArRBCCPEn0KiCo2BX6DdRNjcRRVC69iw6Og7t96OgYiJ2URb4PdYQ+7g2YJOPSgghhKgL8sStQwdMHyiIKSidHdvpxx8ai7+gCCMywkrE1qbVjWYPheRuEJksSdNCCCFEHZLgqA4d9PnAAXF5DsCHPdTE54g+lIitvZC735p7qGlHawSaEEIIIeqUBEd1KNu0krDj8q3bbg/x4yMc5XJhC1VQsN+apbpJe3CEHONKQgghhKgtEhzVoVztBSA+sK6aiccWjuEvROGFxJOtBV8NW31WUwghhPhTk+CoDuWZZYvOWtnYKhSM0sRs1aInRCbWV9WEEEIIUUpmB6xDBYFFZ62IyAy3o0w/OFwQ0bQ+qyaEEEKIUhIc1aHC0uAotsAHgC/chUKj7DYZkSaEEEIECQmO6lDZorPRRVZw5AkPRWmOvfyHEEIIIeqUBEd1yK3coDVhhdbs2J6IcGxao2SCRyGEECJoSHBUh7yqmFAP2K2GI4ojo1Bag11ajoQQQohgIcFRHfIZJcQUWF8bDpPiECs4UjYZui+EEEIECwmO6pBpFBFboAFrAki3IwJDA3ZX/VZMCCGEEAESHNURv6nBVkxsacuRPdSkxBZhjVZzSLeaEEIIESwkOKojOX6NUv5DwVGIH7ct3OpWs0tCthBCCBEsJDiqI/tNa+mQ2PzS+YzCbKDsGGgZyi+EEEIEEQmO6ki231o6JL7ACo50uAMF1uSPhnwMQgghRLCQ/pw6kl3achRXmpDtD3ehlMKOQslCs0IIIUTQkCaLOpKrS7vVSoMjb0QohlIoFMhQfiGEECJoSHBUR/JNa1216NJFZ90REVaPmlIgLUdCCCFE0JDgqI4U4Mbh1YRYqUcUR0ZhYKA1KEN6N4UQQohgIcFRHSnGHRjGr2wmRaFR2MoSsZWqv4oJIYQQogIJjupICSXEFlpf20NMim0R2DCsuEgWnhVCCCGChgRHdcStSojNL106JNRPkS0cQ1E6lF9yjoQQQohgIcFRHfEZh5YOsYVq3MpFWUgkC88KIYQQwUP6c+qIX5UQU2i1HKkwG6YCG8oKT6XlSAghhAga0nJUR7StKNByRLgTDdg0oGwSHAkhhBBBRIKjOlDi1yhbCTGlwZEZEQJoDA0YCmWTj0EIIYQIFvJUrgMHTB9waHZsX2Q4JmZpt5oNZJ4jIYQQImhIcFQHDvrLgiNr2x8ZCWCtq6Zk+RAhhBAimEiTRR3I9nuwoYkqtrY9UTForTGUCYaBknmOhBBCiKAhLUd1IEd7iSmdABKlcUfGggbD1KAM6yWEEEKIoCBP5TqQZ3oCydj2UD9uRxQoa/5HZRgyWk0IIYQIIhIc1YEC7Q4kY9tDTNz2SECVjlYzZPkQIYQQIohIcFQHCsstOmsLA9NwAmBoDUqhpOVICCGECBoSHNWBIg61HKmwskBIo7QuHcovH4MQQggRLOSpXAfcqiTQcqTDnaV7FUqbKLt0qQkhhBDBRIKjOuBVxeVmxw4FQGmN0gpld9RjzYQQQghxuD9tcDR16lRat25NSEgIffr04ddff6219/KpEmJLF531R4YDlK6tpkGCIyGEECKo/CmDo/fff5/x48fz8MMPs3z5crp168aQIUPYt29frbyfaRxqOfJGRoIGZSir9UhGqgkhhBBB5U8ZHD333HPcdNNNjBo1is6dOzNt2jTCwsKYPn16jb+XNSCtMDAJpCcqBlNrFAoDDZJzJIQQQgSVP11w5PF4WLZsGYMHDw7sMwyDwYMHs3jx4krl3W43eXl5FV5Vka8hqsRnzWmExhMVhwkoFGiNskm3mhBCCBFM/nTB0YEDB/D7/SQmJlbYn5iYSEZGRqXykyZNIjo6OvBKSUmp0vsd1P5DcxyFmLid0WhMFFbOkXI4j3m+EEIIIerWny44qqp7772X3NzcwGvXrl1VOj8bfWh27FA/HruVkK1QKAVIy5EQQggRVP50CS9NmjTBZrORmZlZYX9mZiZJSUmVyrtcLlwuV7XfL4dDLUdGqEIrG6bpRQEKwC6zYwshhBDB5E/XcuR0OunZsydz584N7DNNk7lz59K3b98af7887QsERyrcikWtJG2F0sjSIUIIIUSQ+dO1HAGMHz+eESNG0KtXL3r37s0LL7xAYWEho0aNqvH3ylc+Ykq71cpmxza1RhkKQytQf7r4VAghhAhq1X4yjx49mvz8/Er7CwsLGT169AlVqrZdddVVPPvsszz00EOceuqprFy5km+++aZSknZNKMJLbOkwfl06O7ZGl+YcGdbaakIIIYQIGtUOjt5++22Ki4sr7S8uLuY///nPCVWqLowbN44dO3bgdrtZsmQJffr0qZX3KTI8gZYjX9ns2NrKNzLQYJPgSAghhAgmVe5Wy8vLQ2uN1pr8/HxCQkICx/x+P1999RVNmzat0Uo2ZCXKE8g58kVGle7VGEjOkRBCCBGMqhwcxcTEWMnEStGhQ4dKx5VSPProozVSucbAo0oCs2O7o2MAMDEBa/JJZPkQIYQQIqhU+cn8448/orXm7LPP5qOPPiIuLi5wzOl00qpVK5o1a1ajlWzIXJ5iHH7ra3eUda+0tvozlaHAUPVXOSGEEEJUUuXg6KyzzgIgLS2Nli1bopQ83I8lurgIAO0y8YTEWF+jMZTChoEypOVICCGECCbVTshev349CxcuDGxPnTqVU089leHDh5OdnV0jlWsMYoqs4EiFmHiNstFqYGhQhiEJ2UIIIUSQqXZwdPfddwcWYV2zZg3jx4/nggsuIC0tjfHjx9dYBRsyr4aYIi8ARpiC0lY2U2tsaDBkKL8QQggRbKrdp5OWlkbnzp0B+Oijj7jooot48sknWb58ORdccEGNVbAhy9Ga2EJrGL8j7NCttlqOrGBJScuREEIIEVSq3XLkdDopKu0y+v777znvvPMAiIuLC7Qo/dkd1GZg0VlVOjs2AFpjV1itRjJDthBCCBFUqt1ydMYZZzB+/Hj69+/Pr7/+yvvvvw/Apk2baNGiRY1VsCHLxqRt6RxHZuns2FDaraa1lXMk3WpCCCFEUKl2s8Urr7yC3W7nww8/5LXXXqN58+YAfP311wwdOrTGKtiQ5eIPzI7tL50dG6zRajZtWDlIMs+REEIIEVSq/WRu2bIlX3zxRaX9zz///AlVqDHJwxeYHdsbFRXYryldOsQwZIZsIYQQIsicUMLL1q1beeCBB7jmmmvYt28fYLUc/f777zVSuYauEG9gdmxPVExgv6YsKpUZsoUQQohgU+3gaP78+XTp0oUlS5bw8ccfU1BgNZGsWrWKhx9+uMYq2JD5vCWEWCP5KYmOD+wvmwTSyjmShGwhhBAimFT7yXzPPffwf//3f8yZMwen89BIrLPPPptffvmlRirX0IUV5wPgc2jcYbGB/Vqb2DVWt5q0HAkhhBBBpdrB0Zo1a7jssssq7W/atCkHDhw4oUo1FlFFVnDkDdOYxqEAUiuN0shQfiGEECIIVfvJHBMTQ3p6eqX9K1asCIxc+7OLLF1XzR9Wcf05pUFpE2U3ArNmCyGEECI4VDs4uvrqq/nnP/9JRkYGSilM02ThwoXcdddd3HDDDTVZxwYrqsgNgD+s4og0jcIGYHPUfaWEEEIIcUzVDo6efPJJOnXqREpKCgUFBXTu3JkBAwbQr18/HnjggZqsY4MVWeSzvghzVtiv0BholF3yjYQQQohgU+2ns9Pp5N///jcPPfQQa9asoaCggO7du9O+ffuarF+DFlnkB0CFh1TYb62tBsruPMJZQgghhKhPJ9x0kZKSQkpKSk3UpVHJKykmunSOI3tkRIVjSinQGqTlSAghhAg61epW27x5Mx999BFpaWkAfPnllwwYMIDTTjuNJ554Aq11jVayIdqdlxVYOsRRbnZssOIim0aG8QshhBBBqMpP508++YS//vWvGIaBUorXX3+dW265hYEDBxIVFcUjjzyC3W7nn//8Z23Ut8HYk3+QpLKlQ6LjKhfQJtglIVsIIYQINlVuOXriiSeYOHEiJSUlvPbaa9x6661MmjSJr7/+mi+++IKpU6cyY8aMWqhqw5J5MINwa7Aa7iMER4ZWKAmOhBBCiKBT5eBo48aNjB49GqUUI0aMwOPxMHjw4MDx8847jx07dtRoJRui4t0bAfDaNO7w2ErHFci6akIIIUQQqnJwVFhYSGRkpHWyYRAaGkpYWFjgeGhoKG63u+Zq2ECZmVaAWBQO2igXBGlr3kdDaZRhO8rZQgghhKgvVQ6OlFLWaKujbAuLOpgBQPFhs2P7tcZAoVDSciSEEEIEoSo/nbXWdOjQIRAQlc1vZJSuLi8j1SyO3GwAisMNys9ypNFAaUBpyLpqQgghRLCpcnD01ltv1UY9Gh1XnjXJkTvUTgjQbeAwImOb8uNHr6AAQ4IjIYQQIihVOTgaMWJEbdSj0QktsPKuPGFOug0cRlxya7LSt5e1G1ndkYZ0qwkhhBDBpkaezgUFBZimWWFf1GETH/7ZnNT1HFj3NSdfOCoQGK2a9xFam1ZwpAGbJGQLIYQQwabawVFaWhrjxo1j3rx5lJSUBPZrrVFK4ff7a6SCDdUpEx4lJ+VkYi+/IRAYgXV/DFXarSbBkRBCCBF0qh0cXXfddWitmT59OomJiTJi7TBZn35Cwpgx5O/dEQiMAEytQVnTIKAkOBJCCCGCTbWDo1WrVrFs2TI6duxYk/VpNOKvuor9v8ynSZ8z6TZwWCBAMgFlagxDoSQhWwghhAg61X46n3baaezatasm69KoaMPGkt++YP/OTcQlt6bbwGGlBzSGxpoAUiaBFEIIIYJOtVuO3njjDW699Vb27NnDKaecgsNRcZ2wrl27nnDlGjKf1wPAr19Mp+9ltwUCpIXfvYuBxrAZknMkhBBCBKFqB0f79+9n69atjBo1KrBPKSUJ2Uewat5HgXmOTEyU1hjKhpIZsoUQQoigU+2n8+jRo+nevTvvvfeeJGQfh0DOkdbYwWo5koRsIYQQIuhUOzjasWMHn332Ge3atavJ+jR6GqyWI8MGNknIFkIIIYJNtZ/OZ599NqtWrarJupyw1q1bBxbCLXtNnjy5QpnVq1dz5plnEhISQkpKCk8//XSd1lEDhjbAkG41IYQQIhhV++l80UUXceedd7JmzRq6dOlSKSH74osvPuHKVcdjjz3GTTfdFNiOjIwMfJ2Xl8d5553H4MGDmTZtGmvWrGH06NHExMRw880310n9tNbYMUEZMlpNCCGECELVDo5uvfVWwApGDlefCdmRkZEkJSUd8di7776Lx+Nh+vTpOJ1OTj75ZFauXMlzzz1Xh8ER2FAoQ4G0HAkhhBBBp9rdaqZpHvVVnyPVJk+eTHx8PN27d+eZZ57B5/MFji1evJgBAwbgdDoD+4YMGcLGjRvJzs4+4vXcbjd5eXkVXidGYwMwpOVICCGECEaNquni9ttvp0ePHsTFxbFo0SLuvfde0tPTee655wDIyMggNTW1wjmJiYmBY7GxsZWuOWnSJB599NEaq6OpNYbWYBgoJQnZQgghRLCpdnB0pO608h566KHqXrqCe+65h6eeeuqYZdavX0+nTp0YP358YF/Xrl1xOp3ccsstTJo0CZfLVa33v/feeytcNy8vj5SUlGpdC8BEY6N00VlZPkQIIYQIOtUOjj755JMK216vl7S0NOx2O23btq2x4GjChAmMHDnymGXatGlzxP19+vTB5/Oxfft2OnbsSFJSEpmZmRXKlG0fLU/J5XJVO7A6Ghug7I4/LCeEEEKIulft4GjFihWV9uXl5TFy5Eguu+yyE6pUeQkJCSQkJFTr3JUrV2IYBk2bNgWgb9++3H///Xi93sDoujlz5tCxY8cjdqnVBo3GprW1tpoQQgghgk6N9utERUXx6KOP8uCDD9bkZY/L4sWLeeGFF1i1ahXbtm3j3Xff5c477+S6664LBD7Dhw/H6XQyZswYfv/9d95//31efPHFCt1mtU2jrZsuLUdCCCFEUKrxhOzc3Fxyc3Nr+rJ/yOVyMWvWLB555BHcbjepqanceeedFQKf6OhovvvuO8aOHUvPnj1p0qQJDz30UJ0N44fSliMUyt6ocuGFEEKIRqPaT+iXXnqpwrbWmvT0dN555x3OP//8E65YVfXo0YNffvnlD8t17dqVn3/+uQ5qdGRaawwU2J1/XFgIIYQQda7awdHzzz9fYdswDBISEhgxYgT33nvvCVesMVNoScgWQgghglS1g6O0tLSarMefiqElOBJCCCGCVZUTsv1+P6tXr6a4uLjSseLiYlavXo1pmjVSucZJYWjAkJwjIYQQIhhVOTh65513GD16dIUlOMo4HA5Gjx7NzJkza6RyjZVSgF2G8gshhBDBqMrB0Ztvvsldd92FzVb54W6325k4cSKvv/56jVSucdIoDJnnSAghhAhSVQ6ONm7cyOmnn37U46eddhrr168/oUo1bgpDYS0fIoQQQoigU+XgqLCw8Jgr0+fn51NUVHRClWrcNAoFSoIjIYQQIhhVOThq3749ixYtOurxBQsW0L59+xOqVGOnpOVICCGECFpVDo6GDx/OAw88wOrVqysdW7VqFQ899BDDhw+vkco1TgqlDJSq0ZVbhBBCCFFDqjye/M477+Trr7+mZ8+eDB48mE6dOgGwYcMGvv/+e/r378+dd95Z4xVtDExTo5SyIlKbDOUXQgghglGVn9AOh4PvvvuO559/npkzZ/LTTz+htaZDhw488cQT3HHHHYEV70VFJqUTQALIaDUhhBAiKFWr+cLhcDBx4kQmTpz4h2Xfe+89Lr74YsLDw6vzVo2KxgQUhk2G8gshhBDBqtYTX2655RYyMzNr+20aDENrKzCySc6REEIIEYxq/Qmtta7tt2gwtNYYWmMYhnSrCSGEEEFKmi/qkKk1hgZD2VAylF8IIYQIShIc1SGNBq0xbIYsPCuEEEIEKQmO6pDWGqWxZsc25NYLIYQQwUie0HXIBOxobIZN5jkSQgghglStB0etWrWSeY/KlCanK0PJDNlCCCFEkKr2E3rEiBH89NNPf1hu7dq1pKSkVPdtGhWNRpkaw26XliMhhBAiSFU7OMrNzWXw4MG0b9+eJ598kj179tRkvRolU2tsWmMzDAmOhBBCiCBV7eDo008/Zc+ePdx22228//77tG7dmvPPP58PP/wQr9dbk3VsNKzRamAYNpkhWwghhAhSJ5T4kpCQwPjx41m1ahVLliyhXbt2XH/99TRr1ow777yTzZs311Q9GwUN2NAom11GqwkhhBBBqkae0Onp6cyZM4c5c+Zgs9m44IILWLNmDZ07d+b555+vibdoFEw0BsgEkEIIIUQQq3Zw5PV6+eijj/jLX/5Cq1at+OCDD7jjjjvYu3cvb7/9Nt9//z2zZ8/mscceq8n6Nmy6tOXILqP3hBBCiGBV7azg5ORkTNPkmmuu4ddff+XUU0+tVGbQoEHExMScQPUaF601BgrskowthBBCBKtqP6Wff/55rrzySkJCQo5aJiYmhrS0tOq+RaOjAQONsknLkRBCCBGsqt2tdvHFF1NUVFRpf1ZWFnl5eSdUqcZKa41dAzIpphBCCBG0qh0cXX311cyaNavS/tmzZ3P11VefUKUaq0BCtiw6K4QQQgStagdHS5YsYdCgQZX2Dxw4kCVLlpxQpRorayi/AoezvqsihBBCiKOodnDkdrvx+XyV9nu9XoqLi0+oUo2VRls5RzJaTQghhAha1Q6Oevfuzeuvv15p/7Rp0+jZs+cJVaqx0pjYlQEyz5EQQggRtKqd/PJ///d/DB48mFWrVnHOOecAMHfuXJYuXcp3331XYxVsTDQaQymUktmxhRBCiGBV7ad0//79Wbx4MSkpKcyePZvPP/+cdu3asXr1as4888yarGPjoUGBLDorhBBCBLETekqfeuqpvPvuuzVVl8ZPK1AGyKKzQgghRNA6oeDINE22bNnCvn37ME2zwrEBAwacUMUaJWUN5ZdFZ4UQQojgVe3g6JdffmH48OHs2LEDrXWFY0op/H7/CVeuMbIpmedICCGECGbVbsK49dZb6dWrF2vXriUrK4vs7OzAKysrqybrCMATTzxBv379CAsLO+p6bTt37uTCCy8kLCyMpk2bcvfdd1eabmDevHn06NEDl8tFu3btmDFjRo3X9eiU9bJJy5EQQggRrKrdhLF582Y+/PBD2rVrV5P1OSqPx8OVV15J3759efPNNysd9/v9XHjhhSQlJbFo0SLS09O54YYbcDgcPPnkkwCkpaVx4YUXcuutt/Luu+8yd+5cbrzxRpKTkxkyZEgdfBcam1IylF8IIYQIYtUOjvr06cOWLVvqLDh69NFHAY7a0vPdd9+xbt06vv/+exITEzn11FN5/PHH+ec//8kjjzyC0+lk2rRppKamMmXKFABOOukkFixYwPPPP183wZEGlCHdakIIIUQQq/ZT+u9//zsTJkwgIyODLl264DhsMdWuXbuecOWqYvHixXTp0oXExMTAviFDhnDbbbfx+++/0717dxYvXszgwYMrnDdkyBDuuOOOuqmkX6MMJQnZQgghRBCrdnA0bNgwAEaPHh3Yp5RCa10vCdkZGRkVAiMgsJ2RkXHMMnl5eRQXFxMaGlrpum63G7fbHdjOy8urdh2V0hjKJkP5hRBCiCBW7eAoLS3thN/8nnvu4amnnjpmmfXr19OpU6cTfq/qmjRpUqBL74RoUKaJYbdJy5EQQggRxKodHLVq1eqE33zChAmMHDnymGXatGlzXNdKSkri119/rbAvMzMzcKzs37J95ctERUUdsdUI4N5772X8+PGB7by8PFJSUo6rTuWZWmNoa6SakhmyhRBCiKB1Qk/pd955h2nTppGWlsbixYtp1aoVL7zwAqmpqVxyySV/eH5CQgIJCQknUoWAvn378sQTT7Bv3z6aNm0KwJw5c4iKiqJz586BMl999VWF8+bMmUPfvn2Pel2Xy4XL5Trh+plolJZuNSGEECLYVbt/57XXXmP8+PFccMEF5OTkBHKMYmJieOGFF2qqfgE7d+5k5cqV7Ny5E7/fz8qVK1m5ciUFBQUAnHfeeXTu3Jnrr7+eVatW8e233/LAAw8wduzYQHBz6623sm3bNiZOnMiGDRt49dVXmT17NnfeeWeN1/dw1qKzYBhKgiMhhBAiiFU7OHr55Zf597//zf3334+t3Lw9vXr1Ys2aNTVSufIeeughunfvzsMPP0xBQQHdu3ene/fu/PbbbwDYbDa++OILbDYbffv25brrruOGG27gscceC1wjNTWVL7/8kjlz5tCtWzemTJnCG2+8USfD+DWgtIlhs0u3mhBCCBHETighu3v37pX2u1wuCgsLT6hSRzJjxow/nM26VatWlbrNDjdw4EBWrFhRgzU7TlpjaFA2GcovhBBCBLNqP6VTU1NZuXJlpf3ffPMNJ5100onUqVEytWnlHGEDaTkSQgghgla1n9Ljx49n7NixlJSUoLXm119/5b333mPSpEm88cYbNVnHRkEDBhrDZpNuNSGEECKIVfspfeONNxIaGsoDDzxAUVERw4cPp1mzZrz44otcffXVNVnHRsGvNUqDsttASbeaEEIIEaxOqAnj2muv5dprr6WoqIiCgoLAEHpxZAqNYbODUvVdFSGEEEIcRY3074SFhREWFlYTl2q8SluODJuzvmsihBBCiGOoUnDUo0cP5s6dS2xsLN27d0cdowVk+fLlJ1y5xkSjsWuNYZd8IyGEECKYVelJfckllwQmVLz00ktroz6Nll+bOEyNzSEtR0IIIUQwq1Jw9PDDDx/xa/HHrNFqYHM46rsqQgghhDiGag+bWrp0KUuWLKm0f8mSJYFZq0VFBhrlOPF12oQQQghRe6odHI0dO5Zdu3ZV2r9nzx7Gjh17QpVqjExKZ8i2S8uREEIIEcyqHRytW7eOHj16VNrfvXt31q1bd0KVaoy0BhsSHAkhhBDBrtrBkcvlIjMzs9L+9PR07DIiqzKtMZQCQ+6NEEIIEcyqHRydd9553HvvveTm5gb25eTkcN9993HuuefWSOUaE1Nr62bbbPVdFSGEEEIcQ7WbMZ599lkGDBhAq1at6N69OwArV64kMTGRd955p8Yq2FiYaGyGgTIkOBJCCCGCWbWDo+bNm7N69WreffddVq1aRWhoKKNGjeKaa67BIcPVj8iGATZZV00IIYQIZieUABMeHs7NN99cU3Vp1DQahQJpORJCCCGCWpWCo88++4zzzz8fh8PBZ599dsyyF1988QlVrLHRgN2Q4EgIIYQIdlUKji699FIyMjJo2rTpMZcPUUrh9/tPtG6NitYmCsk5EkIIIYJdlYIj0zSP+LX4Y1ppDAXYZCi/EEIIEcyqlB0cFxfHgQMHABg9ejT5+fm1UqlGydQowwAlCdlCCCFEMKvSk9rj8ZCXlwfA22+/TUlJSa1UqlEyre5GJfMcCSGEEEGtSn08ffv25dJLL6Vnz55orbn99tsJDQ09Ytnp06fXSAUbC6VNDMMBhrQcCSGEEMGsSsHRf//7X55//nm2bt0KQG5urrQeHSeFwlCGLB8ihBBCBLkqPakTExOZPHkyAKmpqbzzzjvEx8fXSsUaG639KIdNutWEEEKIIFfthOxBgwbhdDprpVKNkWFaQ/llniMhhBAiuElCdl3RYNhssvCsEEIIEeQkIbuOKG2CzJAthBBCBL1qJ2QrpSQhuyo02JRNZsgWQgghgpwkZNcFDYbWVmAkM2QLIYQQQa3Kk+5ccMEF5ObmkpaWRnx8PJMnTyYnJydw/ODBg3Tu3Lkm69jg+bRGaTBskpAthBBCBLsqB0fffPMNbrc7sP3kk0+SlZUV2Pb5fGzcuLFmatdoaBQapFtNCCGECHonPF2z1rom6tGoaTSGBpvdLjNkCyGEEEFOntR1QAOGNlEOyTcSQgghgl2VgyOlFEqpSvvE0ZmmiSprORJCCCFEUKvy01przciRI3G5XACUlJRw6623Eh4eDlAhH0lYyrrVDJurvqsihBBCiD9Q5eBoxIgRFbavu+66SmVuuOGG6teoEbLysjTK7qjvqgghhBDiD1Q5OHrrrbdqox6Nmok1z5HNJWvRCSGEEMFOErLrgtYYgGGT4EgIIYQIdg0mOHriiSfo168fYWFhxMTEHLFMWbJ4+desWbMqlJk3bx49evTA5XLRrl07ZsyYUet1t3KONDaHBEdCCCFEsGswwZHH4+HKK6/ktttuO2a5t956i/T09MDr0ksvDRxLS0vjwgsvZNCgQaxcuZI77riDG2+8kW+//bZW667RKK2xSc6REEIIEfQazNjyRx99FOAPW3piYmJISko64rFp06aRmprKlClTADjppJNYsGABzz//PEOGDKnR+pZnao0yFIZNgiMhhBAi2DWYlqPjNXbsWJo0aULv3r2ZPn16hRm8Fy9ezODBgyuUHzJkCIsXL67VOpXVQOY5EkIIIYJfo3paP/bYY5x99tmEhYXx3Xff8be//Y2CggJuv/12ADIyMkhMTKxwTmJiInl5eRQXFxMaGlrpmm63u8LcTXl5eVWul0ZjKAU2WVdNCCGECHb12nJ0zz33HDGJuvxrw4YNx329Bx98kP79+9O9e3f++c9/MnHiRJ555pkTquOkSZOIjo4OvFJSUqp8Da3BhgFGo4pFhRBCiEapXp/WEyZMYOTIkccs06ZNm2pfv0+fPjz++OO43W5cLhdJSUlkZmZWKJOZmUlUVNQRW40A7r33XsaPHx/YzsvLq3KAFGg5kkVnhRBCiKBXr8FRQkICCQkJtXb9lStXEhsbG1jqpG/fvnz11VcVysyZM4e+ffse9RoulytwfrXpsmkGpFtNCCGECHYNpp9n586dZGVlsXPnTvx+PytXrgSgXbt2RERE8Pnnn5OZmcnpp59OSEgIc+bM4cknn+Suu+4KXOPWW2/llVdeYeLEiYwePZoffviB2bNn8+WXX9Zq3U0tOUdCCCFEQ9FggqOHHnqIt99+O7DdvXt3AH788UcGDhyIw+Fg6tSp3HnnnWitadeuHc899xw33XRT4JzU1FS+/PJL7rzzTl588UVatGjBG2+8UavD+AFMNDZlSHAkhBBCNABKlx/rLv5QXl4e0dHR5ObmEhUVddRy7uIi5rz5MChFntNJm8JCTvvr7diapdZhbYUQQggBx//8hkY4z1Ew0qYfm2EHm9xuIYQQItjJ07oOaG1iGDZQcruFEEKIYCdP67rgNzFsNsk5EkIIIRoACY7qhMZQBkomgRRCCCGCngRHdcDQfpRNRqsJIYQQDYEER3VBgzIMMCQ4EkIIIYKdBEd1wdQYyoaS4EgIIYQIepIEUweUBkNajoQQokHTWuPz+fD7/fVdFXEUDocDWw2ksEhwVCdMK9/IJrdbCCEaIo/HQ3p6OkVFRfVdFXEMSilatGhBRETECV1HntZ1QOnS0WoSHAkhRINjmiZpaWnYbDaaNWuG0+lEKVXf1RKH0Vqzf/9+du/eTfv27U+oBUme1nVBm1ZgJD9MQgjR4Hg8HkzTJCUlhbCwsPqujjiGhIQEtm/fjtfrPaHgSBKy64DSGptdgiMhhGjIDEMemcGuplr05JOuZRoNWoPDUd9VEUIIIcRxkOColmlt3WSb5BsJIYT4kxg4cCB33HFHrVy7devWvPDCC7Vy7TISHNUyjcYwNcouLUdCCCHq1siRI1FKceutt1Y6NnbsWJRSjBw5su4rFuQkOKoDCjAkOBJCCFEPUlJSmDVrFsXFxYF9JSUlzJw5k5YtW1b7umXzPlWHx+Op9vvWBQmOapnWujQh21XfVRFCCPEn1KNHD1JSUvj4448D+z7++GNatmxJ9+7dA/vcbje33347TZs2JSQkhDPOOIOlS5cGjs+bNw+lFF9//TU9e/bE5XKxYMECCgsLueGGG4iIiCA5OZkpU6ZUqkPr1q15/PHHueGGG4iKiuLmm28GYMGCBZx55pmEhoaSkpLC7bffTmFhYeC8ffv2cdFFFxEaGkpqairvvvtubdyiSiQ4qmUmVsuRcjjruypCCCFqgNaaIo+vSq8Srx+tNSVe/xG3j/elta5WnUePHs1bb70V2J4+fTqjRo2qUGbixIl89NFHvP322yxfvpx27doxZMgQsrKyKpS75557mDx5MuvXr6dr167cfffdzJ8/n//973989913zJs3j+XLl1eqw7PPPku3bt1YsWIFDz74IFu3bmXo0KEMGzaM1atX8/7777NgwQLGjRsXOGfkyJHs2rWLH3/8kQ8//JBXX32Vffv2VeseVIVkCdcyU2vsWmOT0WpCCNEoFHv9dH7o2yqfd2b7Jrx8TXfeX7qLq05L4ab//MbPmw9U6RrrHhtCmLPqj+7rrruOe++9lx07dgCwcOFCZs2axbx58wAoLCzktddeY8aMGZx//vkA/Pvf/2bOnDm8+eab3H333YFrPfbYY5x77rkAFBQU8Oabb/Lf//6Xc845B4C3336bFi1aVKrD2WefzYQJEwLbN954I9dee20gcbt9+/a89NJLnHXWWbz22mvs3LmTr7/+ml9//ZXTTjsNgDfffJOTTjqpyt9/VUlwVOu0NVpNco6EEOJP7efNB3h/6S5uOast/5q/tcqB0YlISEjgwgsvZMaMGWitufDCC2nSpEng+NatW/F6vfTv3z+wz+Fw0Lt3b9avX1/hWr169apwnsfjoU+fPoF9cXFxdOzYsVIdyp8HsGrVKlavXl2hq0xrHZiRfNOmTdjtdnr27Bk43qlTJ2JiYqp+A6pIgqPaVtoEqgy51UII0RiEOmyse2xIlc8zlMJlN/D6TW4e0IYR/VpjVrGbLNRR/VmfR48eHeiymjp1arWvEx4eXiPnFRQUcMstt3D77bdXKtuyZUs2bdpUrfepCfLErmUajUJh2KTlSAghGgOlVLW6tso4bNYsziEnEOhUx9ChQ/F4PCilGDKkYnDXtm1bnE4nCxcupFWrVgB4vV6WLl16zPmK2rZti8PhYMmSJYGRb9nZ2WzatImzzjrrmPXp0aMH69ato127dkc83qlTJ3w+H8uWLQt0q23cuJGcnJzj/I6rT4KjWmZq6wfJsNftD4EQQghRns1mC3SRHb7uWHh4OLfddht33303cXFxtGzZkqeffpqioiLGjBlz1GtGREQwZswY7r77buLj42natCn333//cS218s9//pPTTz+dcePGceONNxIeHs66deuYM2cOr7zyCh07dmTo0KHccsstvPbaa9jtdu644w5CQ0NP7EYcBwmO6oBCY5OWIyGEEPUsKirqqMcmT56MaZpcf/315Ofn06tXL7799ltiY2OPec1nnnmGgoICLrroIiIjI5kwYQK5ubl/WJeuXbsyf/587r//fs4880y01rRt25arrroqUOatt97ixhtv5KyzziIxMZH/+7//48EHHzz+b7ialK7uuMA/qby8PKKjo8nNzT3mfzJ3cRFz3nyYfJ+bmBIvg664lZB23eqwpkIIIWpCSUkJaWlppKamEhISUt/VEcdwrM/qeJ/fIPMc1TqNxlCytpoQQgjRUEhwVMu01iiFrK0mhBBCNBASHNU2ra3ENEMSsoUQQoiGQIKj2qbBUAbKJsGREEII0RBIcFTLtOm38o2U3GohhBCiIZAndm3TGqWUdKsJIYQQDYQER7VMmxpls0m3mhBCCNFASHBUyxQmNmUDWVtNCCGEaBAkOKplpjZR1kRH9V0VIYQQQhwHCY5qmWFqbIYdJZNACiGEEA2CBEe1TGsrOEKp+q6KEEKIP5mRI0eilOLWW2+tdGzs2LEopRg5cmTdVyzISXBUy5TWGHYbSMuREEKIepCSksKsWbMoLi4O7CspKWHmzJm0bNmy2tfVWuPz+WqiikFHgqNaZmgwlARHQggh6kePHj1ISUnh448/Duz7+OOPadmyJd27dw/sc7vd3H777TRt2pSQkBDOOOMMli5dGjg+b948lFJ8/fXX9OzZE5fLxYIFC8jPz+faa68lPDyc5ORknn/+eQYOHMgdd9wROPedd96hV69eREZGkpSUxPDhw9m3b1+la8+dO5devXoRFhZGv3792LhxY+3enKNoEMHR9u3bGTNmDKmpqYSGhtK2bVsefvhhPB5PhXKrV6/mzDPPJCQkhJSUFJ5++ulK1/rggw/o1KkTISEhdOnSha+++qp2K680yjBQMs+REEI0DlqDp7BqL2+JdZ635Mjbx/vSulpVHj16NG+99VZge/r06YwaNapCmYkTJ/LRRx/x9ttvs3z5ctq1a8eQIUPIysqqUO6ee+5h8uTJrF+/nq5duzJ+/HgWLlzIZ599xpw5c/j5559Zvnx5hXO8Xi+PP/44q1at4tNPP2X79u1H7M67//77mTJlCr/99ht2u53Ro0dX6/s9UQ2iOWPDhg2Ypsm//vUv2rVrx9q1a7npppsoLCzk2WefBSAvL4/zzjuPwYMHM23aNNasWcPo0aOJiYnh5ptvBmDRokVcc801TJo0ib/85S/MnDmTSy+9lOXLl3PKKafUSt0NDcpuk5wjIYRoLLxF8GSzqp/X9my4Yjosfwd6XA+zroGtP1TtGvftBWd4ld/6uuuu495772XHjh0ALFy4kFmzZjFv3jwACgsLee2115gxYwbnn38+AP/+97+ZM2cOb775JnfffXfgWo899hjnnnsuAPn5+bz99tvMnDmTc845B4C33nqLZs0q3p/yQU6bNm146aWXOO200ygoKCAiIiJw7IknnuCss84CrCDswgsvpKSkhJCQkCp/zyeiQQRHQ4cOZejQoYHtNm3asHHjRl577bVAcPTuu+/i8XiYPn06TqeTk08+mZUrV/Lcc88FgqMXX3yRoUOHBj7kxx9/nDlz5vDKK68wbdq0Wqm7YWoMm6NWri2EEKIB2fqDFRj1vx0WvlT1wOgEJCQkcOGFFzJjxgy01lx44YU0adLkUNW2bsXr9dK/f//APofDQe/evVm/fn2Fa/Xq1Svw9bZt2/B6vfTu3TuwLzo6mo4dO1Y4Z9myZTzyyCOsWrWK7OxsTNMEYOfOnXTu3DlQrmvXroGvk5OTAdi3b98J5UZVR4MIjo4kNzeXuLi4wPbixYsZMGAATqczsG/IkCE89dRTZGdnExsby+LFixk/fnyF6wwZMoRPP/30qO/jdrtxu92B7by8vCrVU6ExytVJCCFEA+cIs1pwqkrZwO4Cvwf6/R163wzaX/X3rqbRo0czbtw4AKZOnVrt64SHV63lqrCwkCFDhjBkyBDeffddEhIS2LlzJ0OGDKmUHuNwHGpMUKU9LmWBVF1qEDlHh9uyZQsvv/wyt9xyS2BfRkYGiYmJFcqVbWdkZByzTNnxI5k0aRLR0dGBV0pKSpXqatNIMrYQQjQmSlldW1V9OUKsc21O619HSNWvcQIpGkOHDsXj8eD1ehkyZEiFY23btsXpdLJw4cLAPq/Xy9KlSyu07ByuTZs2OByOConbubm5bNq0KbC9YcMGDh48yOTJkznzzDPp1KlThWTsYFSvwdE999yDUuqYrw0bNlQ4Z8+ePQwdOpQrr7ySm266qdbreO+995Kbmxt47dq1q4pX0CjpVhNCCFHPbDYb69evZ926ddgOW7UhPDyc2267jbvvvptvvvmGdevWcdNNN1FUVMSYMWOOes3IyEhGjBjB3XffzY8//sjvv//OmDFjMAwj0PLTsmVLnE4nL7/8Mtu2beOzzz7j8ccfr9Xv9UTVa5PGhAkT/nDyqTZt2gS+3rt3L4MGDaJfv368/vrrFcolJSWRmZlZYV/ZdlJS0jHLlB0/EpfLhcvl+sPv5WiUBsMuLUdCCCHqX1RU1FGPTZ48GdM0uf7668nPz6dXr158++23xMbGHvOazz33HLfeeit/+ctfiIqKYuLEiezatSuQRJ2QkMCMGTO47777eOmll+jRowfPPvssF198cY1+bzVJaV3NcYF1bM+ePQwaNIiePXvy3//+t1LU+9prr3H//feTmZkZ6LO87777+PjjjwOtT1dddRVFRUV8/vnngfP69etH165djzshOy8vj+joaHJzc4/5n8xdXMScNx/Gn7mHkwdeQrtzrqrqtyyEECIIlJSUkJaWRmpqap2PmmqICgsLad68OVOmTDlmq1NtONZndbzPb2ggOUd79uxh4MCBtGzZkmeffZb9+/eTkZFRIVdo+PDhOJ1OxowZw++//87777/Piy++WCEB+x//+AfffPMNU6ZMYcOGDTzyyCP89ttvgQS12qAUGI7qtzwJIYQQwWzFihW89957bN26leXLl3PttdcCcMkll9RzzaqvQfT3zJkzhy1btrBlyxZatGhR4VhZw1d0dDTfffcdY8eOpWfPnjRp0oSHHnooMIwfrFaimTNn8sADD3DffffRvn17Pv3001qb48iisDsk50gIIUTj9eyzz7Jx40acTic9e/bk559/rjBVQEPTYLrVgkVVu9X0gXS6nX8DLfucV4e1FEIIUVOkW63h+FN1qzVkWilsNrnNQgghREMhT+1appQhM2QLIYQQDYgER7XMCo4aRGqXEEIIIZDgqPYpJfMcCSGEEA2IBEe1zVDSciSEEEI0IBIc1TKrW832xwWFEEIIERQkOKplShnYJCFbCCGEaDAkOKpthiRkCyGEqB8jR44MLOTucDhITU1l4sSJlJSUBMqUX+w9PDyc9u3bM3LkSJYtW1bhWvPmzUMpRU5OTmDf3r176dKlCwMGDCA3N7dCmfLvfaRX69at6+guVJ0ER7VNgU1myBZCCFFPhg4dSnp6Otu2beP555/nX//6Fw8//HCFMm+99Rbp6en8/vvvTJ06lYKCAvr06cN//vOfo15369atnHHGGbRq1Ypvv/2W6OjoCsdffPFF0tPTA6/y75Oens7SpUtr/putIdKkUcuUsmGTliMhhBD1xOVykZSUBEBKSgqDBw9mzpw5PPXUU4EyMTExgTKtW7fmvPPOY8SIEYwbN46LLrqI2NjYCtdcvXo1Q4YM4eyzz+btt9/GfoRR2dHR0ZUCpvLvE8yk5ai2GYYER0II0YhorSnyFlXpVeIrQWtNia/kiNvH+zrRFb/Wrl3LokWLcDqdf1j2zjvvJD8/nzlz5lTYv2jRIs466yyGDRvGf//73yMGRg1d4/uOgoxhGChDbrMQQjQWxb5i+szsU+Xz+jbryzMDnuHjzR9zefvLuf3H21m8d3GVrrFk+BLCHGFVOueLL74gIiICn8+H2+3GMAxeeeWVPzyvU6dOAGzfvr3C/ssuu4yrrrrquK7RUEnLUS0zDBvIUH4hhPjTW7x3MR9v/phRp4zi480fVzkwqq5BgwaxcuVKlixZwogRIxg1ahTDhg37w/PKWqmUUhX2X3LJJXzyySf8/PPPtVLfYCBNGrXMMAyQbjUhhGg0Qu2hLBm+pMrnGcrAZXPh9XsZefJIrul0DaY2q/zeVRUeHk67du0AmD59Ot26dePNN99kzJgxxzxv/fr1AKSmplbY/69//YuJEydy/vnn89VXXzFgwIAq1ynYyVO7lhmGHWVIy5EQQjQWSqkqd22V5yid+y7EHlJTVTpuhmFw3333MX78eIYPH05o6NGDrRdeeIGoqCgGDx5cYb9Sitdffx3DMLjgggv48ssvOeuss2q76nVKutVqmaEAJbdZCCFEcLjyyiux2WxMnTo1sC8nJ4eMjAx27NjBnDlzuOKKK5g5cyavvfYaMTExla6hlGLatGnccMMNXHDBBcybN6/uvoE6IC1HtcywO6RbTQghRNCw2+2MGzeOp59+mttuuw2AUaNGARASEkLz5s0544wz+PXXX+nRo8dRr6OUYurUqRiGwYUXXsgXX3xRKT+poVL6RMcF/snk5eURHR1Nbm4uUVFRRy3nLi5izpsPExsaQf9RD4IhrUdCCNEQlZSUkJaWRmpqKiEhdd8VJo7fsT6r431+g3Sr1TqbzSaBkRBCCNGAyFO7lsm6akIIIUTDIsFRLbPZ/3gWUiGEEEIEDwmOapksOiuEEEI0LBIc1SIDQIIjIYQQokGR4Kg2KVA2CY6EEEKIhkSCo1qklJLgSAghhGhgJDiqVUpyjoQQQogGRoKjWmQoA2WT0WpCCCFEQyLBUS1SgM0uLUdCCCH+fJRSfPrpp/VdjWqR4Kg2GQbY5RYLIYSoHyNHjrTyX5XC4XCQmprKxIkTKSkpqe+qBTWZvrkWKcPAZsgtFkIIUX+GDh3KW2+9hdfrZdmyZYwYMQKlFE899VR9Vy1oSbNGLVKGHcOw1Xc1hBBC/Im5XC6SkpJISUnh0ksvZfDgwcyZMweAgwcPcs0119C8eXPCwsLo0qUL7733XoXzBw4cyO23387EiROJi4sjKSmJRx55pEKZzZs3M2DAAEJCQujcuXPg+uWtWbOGs88+m9DQUOLj47n55pspKCgIHB85ciSXXnopTz75JImJicTExPDYY4/h8/m4++67iYuLo0WLFrz11ls1f5MOI80atUgZCiU5R0II0ahordHFxVU7yTBQLhfa7QbTrLx9nFRoKEqpKtb4kLVr17Jo0SJatWoFWKvY9+zZk3/+859ERUXx5Zdfcv3119O2bVt69+4dOO/tt99m/PjxLFmyhMWLFzNy5Ej69+/Pueeei2maXH755SQmJrJkyRJyc3O54447KrxvYWEhQ4YMoW/fvixdupR9+/Zx4403Mm7cOGbMmBEo98MPP9CiRQt++uknFi5cyJgxY1i0aBEDBgxgyZIlvP/++9xyyy2ce+65tGjRotr34Y9IcFRLDKVQyoZdgiMhhGhUdHExG3v0rPJ54f370XzKFHI++oiYYcPYPXYshQsXVekaHZcvQ4WFVemcL774goiICHw+H263G8MweOWVVwBo3rw5d911V6Ds3//+d7799ltmz55dITjq2rUrDz/8MADt27fnlVdeYe7cuZx77rl8//33bNiwgW+//ZZmzZoB8OSTT3L++ecHzp85cyYlJSX85z//ITw8HIBXXnmFiy66iKeeeorExEQA4uLieOmllzAMg44dO/L0009TVFTEfffdB8C9997L5MmTWbBgAVdffXWV7kNVSHBUS+w2Gyc1SSY+Mra+qyKEECIIFC5cRM5HHxE/ZgwH33yzyoFRdQ0aNIjXXnuNwsJCnn/+eex2O8OGDQPA7/fz5JNPMnv2bPbs2YPH48HtdhN2WADWtWvXCtvJycns27cPgPXr15OSkhIIjAD69u1bofz69evp1q1bIDAC6N+/P6ZpsnHjxkBwdPLJJ2MYhzJ+EhMTOeWUUwLbNpuN+Pj4wHvXFgmOalFMSDiGzJAthBCNigoNpePyZVU/sawrzeslbvRoYq+9tkpdamXvXVXh4eG0a9cOgOnTp9OtWzfefPNNxowZwzPPPMOLL77ICy+8QJcuXQgPD+eOO+7A4/FUuIbjsAmNlVKYVaz78TjS+9TVe5cnwVFtUoY1nF8IIUSjoZSqctdWBaUPexUSUkM1On6GYXDfffcxfvx4hg8fzsKFC7nkkku47rrrADBNk02bNtG5c+fjvuZJJ53Erl27SE9PJzk5GYBffvmlUpkZM2ZQWFgYaD1auHBhoPss2MiTu7YYBkZ4GEboCfwACSGEEDXsyiuvxGazMXXqVNq3b8+cOXNYtGgR69ev55ZbbiEzM7NK1xs8eDAdOnRgxIgRrFq1ip9//pn777+/Qplrr72WkJAQRowYwdq1a/nxxx/5+9//zvXXXx/oUgsmEhzVEmXYcLVpixERXd9VEUIIIQLsdjvjxo3j6aefZsKECfTo0YMhQ4YwcOBAkpKSuPTSS6t0PcMw+OSTTyguLqZ3797ceOONPPHEExXKhIWF8e2335KVlcVpp53GFVdcwTnnnBNIDA82Smut67sSf2T79u08/vjj/PDDD2RkZNCsWTOuu+467r//fpxOZ6BMampqpXMXL17M6aefHtj+4IMPePDBB9m+fTvt27fnqaee4oILLjjuuuTl5REdHU1ubi5RUVEn/s0JIYQIaiUlJaSlpZGamkpIPXSFieN3rM+qKs/vBpFztGHDBkzT5F//+hft2rVj7dq13HTTTRQWFvLss89WKPv9999z8sknB7bj4+MDXy9atIhrrrmGSZMm8Ze//IWZM2dy6aWXsnz58grZ8EIIIYT482oQLUdH8swzz/Daa6+xbds24FDL0YoVKzj11FOPeM5VV11FYWEhX3zxRWDf6aefzqmnnsq0adOO632l5UgIIf5cpOWo4aiplqMGm3OUm5tLXFxcpf0XX3wxTZs25YwzzuCzzz6rcGzx4sUMHjy4wr4hQ4awePHio76P2+0mLy+vwksIIYQQjVeDDI62bNnCyy+/zC233BLYFxERwZQpU/jggw/48ssvOeOMM7j00ksrBEgZGRmVsuITExPJyMg46ntNmjSJ6OjowCslJaXmvyEhhBBCBI16DY7uuecea76IY7w2bNhQ4Zw9e/YwdOhQrrzySm666abA/iZNmjB+/Hj69OnDaaedxuTJk7nuuut45plnTqiO9957L7m5uYHXrl27Tuh6QgghhAhu9ZqQPWHCBEaOHHnMMm3atAl8vXfvXgYNGkS/fv14/fXX//D6ffr0qbAycFJSUqX5GzIzM0lKSjrqNVwuFy6X6w/fSwghROPWQFN0/1Rq6jOq1+AoISGBhISE4yq7Z88eBg0aRM+ePXnrrbcqrL1yNCtXrgzM1gnWWi9z586tsFrwnDlzKq0BI4QQQpQpW76iqKiI0Gos3yHqTtmyJzab7YSu0yCG8u/Zs4eBAwfSqlUrnn32Wfbv3x84Vtbq8/bbb+N0OunevTsAH3/8MdOnT+eNN94IlP3HP/7BWWedxZQpU7jwwguZNWsWv/3223G1QgkhhPhzstlsxMTEBBY7DQsLQylVz7UShzNNk/379xMWFobdfmLhTYMIjubMmcOWLVvYsmULLVq0qHCsfBPa448/zo4dO7Db7XTq1In333+fK664InC8X79+zJw5kwceeID77ruP9u3b8+mnn8ocR0IIIY6p7A/x2l4NXpwYwzBo2bLlCQevDXaeo/oi8xwJIcSfl9/vx+v11nc1xFE4nc6jpt00uhmyhRBCiGBgs9lOOJ9FBL8GOc+REEIIIURtkeBICCGEEKIcCY6EEEIIIcqRnKMqKstflzXWhBBCiIaj7Ll9POPQJDiqooMHDwLIGmtCCCFEA5Sfn090dPQxy0hwVEVxcXEA7Ny58w9vrqg9eXl5pKSksGvXLplSoZ7IZ1D/5DOof/IZBIfj+Ry01uTn59OsWbM/vJ4ER1VUNn9CdHS0/CAEgaioKPkc6pl8BvVPPoP6J59BcPijz+F4GzUkIVsIIYQQohwJjoQQQgghypHgqIpcLhcPP/wwLpervqvypyafQ/2Tz6D+yWdQ/+QzCA41/TnI2mpCCCGEEOVIy5EQQgghRDkSHAkhhBBClCPBkRBCCCFEORIcVdHUqVNp3bo1ISEh9OnTh19//bW+q9Ro/fTTT1x00UU0a9YMpRSffvppheNaax566CGSk5MJDQ1l8ODBbN68uX4q20hNmjSJ0047jcjISJo2bcqll17Kxo0bK5QpKSlh7NixxMfHExERwbBhw8jMzKynGjc+r732Gl27dg3M39K3b1++/vrrwHG5/3Vv8uTJKKW44447Avvkc6h9jzzyCEqpCq9OnToFjtfkZyDBURW8//77jB8/nocffpjly5fTrVs3hgwZwr59++q7ao1SYWEh3bp1Y+rUqUc8/vTTT/PSSy8xbdo0lixZQnh4OEOGDKGkpKSOa9p4zZ8/n7Fjx/LLL78wZ84cvF4v5513HoWFhYEyd955J59//jkffPAB8+fPZ+/evVx++eX1WOvGpUWLFkyePJlly5bx22+/cfbZZ3PJJZfw+++/A3L/69rSpUv517/+RdeuXSvsl8+hbpx88smkp6cHXgsWLAgcq9HPQIvj1rt3bz127NjAtt/v182aNdOTJk2qx1r9OQD6k08+CWybpqmTkpL0M888E9iXk5OjXS6Xfu+99+qhhn8O+/bt04CeP3++1tq65w6HQ3/wwQeBMuvXr9eAXrx4cX1Vs9GLjY3Vb7zxhtz/Opafn6/bt2+v58yZo8866yz9j3/8Q2stPwd15eGHH9bdunU74rGa/gyk5eg4eTweli1bxuDBgwP7DMNg8ODBLF68uB5r9ueUlpZGRkZGhc8jOjqaPn36yOdRi3Jzc4FDawwuW7YMr9db4XPo1KkTLVu2lM+hFvj9fmbNmkVhYSF9+/aV+1/Hxo4dy4UXXljhfoP8HNSlzZs306xZM9q0acO1117Lzp07gZr/DGRtteN04MAB/H4/iYmJFfYnJiayYcOGeqrVn1dGRgbAET+PsmOiZpmmyR133EH//v055ZRTAOtzcDqdxMTEVCgrn0PNWrNmDX379qWkpISIiAg++eQTOnfuzMqVK+X+15FZs2axfPlyli5dWumY/BzUjT59+jBjxgw6duxIeno6jz76KGeeeSZr166t8c9AgiMhxHEZO3Ysa9eurdDHL+pGx44dWblyJbm5uXz44YeMGDGC+fPn13e1/jR27drFP/7xD+bMmUNISEh9V+dP6/zzzw983bVrV/r06UOrVq2YPXs2oaGhNfpe0q12nJo0aYLNZquU+Z6ZmUlSUlI91erPq+yey+dRN8aNG8cXX3zBjz/+SIsWLQL7k5KS8Hg85OTkVCgvn0PNcjqdtGvXjp49ezJp0iS6devGiy++KPe/jixbtox9+/bRo0cP7HY7drud+fPn89JLL2G320lMTJTPoR7ExMTQoUMHtmzZUuM/CxIcHSen00nPnj2ZO3duYJ9pmsydO5e+ffvWY83+nFJTU0lKSqrweeTl5bFkyRL5PGqQ1ppx48bxySef8MMPP5CamlrheM+ePXE4HBU+h40bN7Jz5075HGqRaZq43W65/3XknHPOYc2aNaxcuTLw6tWrF9dee23ga/kc6l5BQQFbt24lOTm55n8Wqpk0/qc0a9Ys7XK59IwZM/S6dev0zTffrGNiYnRGRkZ9V61Rys/P1ytWrNArVqzQgH7uuef0ihUr9I4dO7TWWk+ePFnHxMTo//3vf3r16tX6kksu0ampqbq4uLiea9543HbbbTo6OlrPmzdPp6enB15FRUWBMrfeeqtu2bKl/uGHH/Rvv/2m+/btq/v27VuPtW5c7rnnHj1//nydlpamV69ere+55x6tlNLfffed1lruf30pP1pNa/kc6sKECRP0vHnzdFpaml64cKEePHiwbtKkid63b5/WumY/AwmOqujll1/WLVu21E6nU/fu3Vv/8ssv9V2lRuvHH3/UQKXXiBEjtNbWcP4HH3xQJyYmapfLpc855xy9cePG+q10I3Ok+w/ot956K1CmuLhY/+1vf9OxsbE6LCxMX3bZZTo9Pb3+Kt3IjB49Wrdq1Uo7nU6dkJCgzznnnEBgpLXc//pyeHAkn0Ptu+qqq3RycrJ2Op26efPm+qqrrtJbtmwJHK/Jz0BprfUJtmwJIYQQQjQaknMkhBBCCFGOBEdCCCGEEOVIcCSEEEIIUY4ER0IIIYQQ5UhwJIQQQghRjgRHQgghhBDlSHAkhBBCCFGOBEdCCCGEEOVIcCSEEDVMKcWnn35a39UQQlSTBEdCiCMaOXIkSikmT55cYf+nn36KUqqeamVRSh3xNWvWrHqtV5n09HTOP//8+q4GM2bMICYmpr6rIUSDI8GREOKoQkL+v717DYlqa+MA/i9HG3XU0ZQZTfCSt8HLZBml5RXzAkkGUlhZajehMKnRCvOSkrdAzVIEByY/lBGlUFBDoGlmN00tEjPUjKJMSy0UMkfX+dDrft1Hfc/UOb1dzvODDXuvtfeznjUf5GHtNaMQ+fn5GB4e/tGpzKJSqfDmzRveERkZ+UNz+vz5MwBAKpVi0aJFPzQXQsi3o+KIEDKv4OBgSKVS5ObmztmfmZmJZcuW8dqKi4tha2vLXcfGxiIyMhI5OTmQSCQQi8XIysqCRqNBcnIyzMzMYG1tDZVK9VW5icViSKVS3iEUCgEA8fHx8PDwwPj4OIAvRYunpye2b98OAOjr6+NWmnx8fCAUCuHm5oaGhgbeGE+ePEF4eDhEIhEkEgliYmLw7t07rj8gIAD79+9HUlISzM3NERoaCoD/Wm16rIsXL8LX1xf6+vpYuXIlnj17hubmZnh5eUEkEiE8PByDg4O88ZVKJWQyGYRCIVxcXFBWVsb1Tcetrq5GYGAgDAwMIJfLcffuXQBAfX094uLi8OHDB25lLTMzEwBQVlYGR0dHCIVCSCQSREVFfdVnT8jvjoojQsi8dHR0kJOTg9OnT+PVq1ffHKeurg6vX7/GrVu3UFhYiIyMDKxfvx6mpqa4f/8+EhISsHfv3r81xkwlJSUYGxvDkSNHAACpqakYGRnBmTNnePclJyfj0KFDaGtrg7e3NyIiIvD+/XsAwMjICIKCguDp6YmWlhao1Wq8ffsWmzZt4sWorKyEnp4empqaUF5ePm9OGRkZOHbsGFpbWyEQCLBlyxakpKTg1KlTaGxsRHd3N9LT07n7z507h/T0dJw4cQKdnZ3IyclBWloaKisreXFTU1OhUCjQ3t4OJycnREdHQ6PRwMfHB8XFxTA2NuZW1hQKBVpaWpCYmIisrCx0dXVBrVbDz8/vb33ehPx2GCGEzGHHjh1sw4YNjDHGVq9ezeLj4xljjNXU1LDpPx0ZGRlMLpfznisqKmI2Nja8ODY2NmxycpJrc3Z2Zr6+vty1RqNhhoaGrKqqSqvcADChUMgMDQ15x4sXL7h77ty5w3R1dVlaWhoTCASssbGR63v+/DkDwPLy8ri2iYkJZm1tzfLz8xljjGVnZ7OQkBDeuC9fvmQAWFdXF2OMMX9/f+bp6TlnfjU1NbyxlEol119VVcUAsNraWq4tNzeXOTs7c9dLly5l58+f58XNzs5m3t7e88bt6OhgAFhnZydjjDGVSsVMTEx4MS5fvsyMjY3Zx48fZ+VNCPlC8MOqMkLILyM/Px9BQUFQKBTf9LyrqysWLvzvQrVEIoGbmxt3raOjg8WLF2NgYEDrmEVFRQgODua1WVlZcefe3t5QKBTIzs7G4cOHsXbt2lkxvL29uXOBQAAvLy90dnYCAB49eoSbN29CJBLNeq6npwdOTk4AgBUrVmiVr4eHB3cukUgAAO7u7ry26fmPjY2hp6cHO3fuxO7du7l7NBoNTExM5o1raWkJABgYGICLi8uceaxbtw42Njawt7dHWFgYwsLCsHHjRhgYGGg1D0L+Dag4IoT8JT8/P4SGhuLo0aOIjY3l2hcuXAjGGO/eiYmJWc/r6uryrhcsWDBn29TUlNY5SaVSODg4zNs/NTWFpqYm6OjooLu7W+u400ZHRxEREYH8/PxZfdNFCAAYGhpqFW/mfKe/7ffntun5j46OAgAqKiqwatUqXhwdHZ2/jPu/PkcjIyO0traivr4eN27cQHp6OjIzM9Hc3EzfbCPkP2jPESFEK3l5ebh69Sq34RcALCws0N/fzyuQ2tvbf0B2s508eRJPnz5FQ0MD1Gr1nBu+7927x51rNBo8fPgQMpkMALB8+XJ0dHTA1tYWDg4OvEPbguhbSSQSWFlZobe3d9bYdnZ2WsfR09PD5OTkrHaBQIDg4GAUFBTg8ePH6OvrQ11d3T85BUJ+abRyRAjRiru7O7Zu3YqSkhKuLSAgAIODgygoKEBUVBTUajWuX78OY2Pj757PyMgI+vv7eW1GRkYwNDREW1sb0tPTcenSJaxZswaFhYU4cOAA/P39YW9vz91fWloKR0dHyGQyFBUVYXh4GPHx8QCAffv2oaKiAtHR0UhJSYGZmRm6u7tx4cIFKJXKWSs4/7Tjx48jMTERJiYmCAsLw/j4OFpaWjA8PIyDBw9qFcPW1hajo6Oora2FXC6HgYEB6urq0NvbCz8/P5iamuLatWuYmpqCs7Pzd50PIb8SWjkihGgtKyuL98pGJpOhrKwMpaWlkMvlePDgwTfvS/pacXFxsLS05B2nT5/Gp0+fsG3bNsTGxiIiIgIAsGfPHgQGBiImJoa3kpKXl4e8vDzI5XLcvn0bV65cgbm5OYAv+5eampowOTmJkJAQuLu7IykpCWKxmLd/6nvZtWsXlEolVCoV3N3d4e/vj7Nnz37VypGPjw8SEhKwefNmWFhYoKCgAGKxGNXV1QgKCoJMJkN5eTmqqqrg6ur6HWdDyK9lAfvzhgFCCPnN9fX1wc7ODm1tbbN+p4kQQmjliBBCCCFkBiqOCCE/lZycHIhEojmPn+H/lRFCfn/0Wo0Q8lMZGhrC0NDQnH36+vpYsmTJ/zkjQsi/DRVHhBBCCCEz0Gs1QgghhJAZqDgihBBCCJmBiiNCCCGEkBmoOCKEEEIImYGKI0IIIYSQGag4IoQQQgiZgYojQgghhJAZqDgihBBCCJnhD2FhMSQAsex8AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGxCAYAAABoYBJuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJ10lEQVR4nOzdd3xUVdrA8d+5d0omPYEUShJCL9IRRGwoAsqquK67dhD7i+sq9rJiWZW1YWN1XQuua6/r2iN2mkrvNdQ0ICSTNiUz5/3jJgMhAUlImcTn+/mMZu595s6ZuYTzcKrSWmuEEEIIIQQARksXQAghhBAinEhyJIQQQgixH0mOhBBCCCH2I8mREEIIIcR+JDkSQgghhNiPJEdCCCGEEPuR5EgIIYQQYj+SHAkhhBBC7MfW0gVobYLBIDk5OcTExKCUauniCCGEEOIwaK0pKSmhY8eOGMah24YkOaqnnJwc0tLSWroYQgghhGiA7du307lz50PGSHJUTzExMYD15cbGxrZwaYQQQghxONxuN2lpaaF6/FAkOaqn6q602NhYSY6EEEKIVuZwhsTIgGwhhBBCiP1IciSEEEIIsR9JjoQQQggh9iPJkRBCCCHEfiQ5EkIIIYTYjyRHQgghhBD7keRICCGEEGI/khwJIYQQQuxHkiMhhBBCiP20quTo+++/54wzzqBjx44opfjwww9rnNdac/fdd9OhQwdcLhdjxoxhw4YNNWIKCwu58MILiY2NJT4+nssuu4zS0tJm/BRCCCGECGetKjkqKytj4MCBzJo1q87zDz/8ME899RTPPfccCxcuJCoqinHjxuHxeEIxF154IatWrSIrK4uPP/6Y77//niuvvLK5PoIQQgghwpzSWuuWLkRDKKX44IMPmDhxImC1GnXs2JEbb7yRm266CYDi4mJSUlKYPXs25513HmvWrKFv3778/PPPDBs2DIDPP/+c008/nR07dtCxY8dffV+3201cXBzFxcWyt5oQQgjRStSn/m4zG89mZ2eTl5fHmDFjQsfi4uIYMWIE8+fP57zzzmP+/PnEx8eHEiOAMWPGYBgGCxcu5Oyzz254ASorD35OKTDNw4sFsO13W9pybCAAh8rNwyHWNK37BxAMWo9wjjUM6xEusVpb33E4x9bn9zMcYiH8fpdb6O8IbZhUVgYJBoI4bIqyIg/e8krsTpPoxAhKCz34vYHQdUPHd5Xh9xwkDrBHOfcdL/dhdxhEJ0bg3lOO31NJMFCJM8JObHIMRXtKKS8txxUdRUJSDHtz91JRWha6lis6ioSUOPbmF1NR4cEVE209z91Lhbuk7rjSMlxxsSSkxlvP3SWh37lacdFRJHRMZG+B23rfYBBXpKt2TPXz8orQ74Yr0mWVOb+YcncpkdFRJHSIp3DnbkqKiggCGk1MQiJJnZPYtXkne3cXkNA+maQuHdi1JZe9uwusD2AYJCSnWsc372RvQV6dcQntk0nq2old2/Kta7VLIiktuea1quO6dLDiCndbzzNS2bVpR91xW3Lx+MrJOKp31R+Oqt97W8PSnDaTHOXl5QGQkpJS43hKSkroXF5eHsnJyTXO22w2EhMTQzEH8nq9eL3e0HO32113AV566eCFS0+H8eP3Pf/3vw/+F0SHDnDGGfuev/467NctWENSEuyf0L39Nhxs/FRCApx77r7nH3wAe/fWGaqjouCCCwgENRow/vtfjN27rXNVf1FV72ocdDoJXnwJCjANBZ9+is7JIYjVZxuK0xpts8GlU6w4IPj5F+jt22rHAQowrroq9J7Br+ZgZG+uO04pmDIFXVW5qO+/h/XrrZiqv1er3zOgNWV/vBAjMoJopw3mzcO/YiUV/iARNgOHzfpLo8RTiS8QpPLcP5HcOQkFlH4/l9KfFxMbYSfSYaKBXSVePP4ADptBymUXoxISyHd7yf36R7puXUusy47WkFNcgdbQKd6FUpB/ymmsCUTQKyWGDlvWoRcsZGdRBWW+SqIctlBccYWfVUNOIHNADzrERaBXrWbnJ1/VGZfn9pBw9pkkH9UDrWHdD4vpsGQBsS47in0xqbERxLns6DFjyGvXkXX5JXQtzid9yTyoIw5g+4DhbErsRHpCJF0r9sDnn9cZt6vES3bvQbQfPoSuSVGQk0PxOx/UGQeQNOYEGDiQ3GIPm9dkc9TCr2vEFJb7qj5nBGrYMAp792f5jmIGRAVI/PQjtNZsKyynxBtAa+ieFIXLYeLu2Zev4zM5sWcSCQEv5a+8yrq8fb8bvVKiiXTaKPdWsjAylYHn/Y7EKAd79hSz8ZF/ENRwVIdYYiLtFJV4WbGtiH4d40gYPoAtGYP4fPFOlLeS3t+8T+9OsaR0iCZnewkbthXTIz2ODmkxbA0m8qm9R+g9J275ig5pMeQeEJe7vYTFpS62HTWKEwd3oM+gZPLue5oN2XtqxGzYVowGymLbkTHpj/Qd0oFVi3aSP+t5eqW66Nw1ke3r97BpW6FVMQQ1MSkdsP/hT/Q7vhMrf9nBgI0/sOOXbezOdeOuqPp7TUN0hJO4bp3pcv/VrPppJ/2Gd2LLXc9StH4rZR4PaE1khIP2nduRcVQ7duaU0eGuv/DLZ1vY/PM62i/NwlXuBjQGiqSMZHqMyGTXtr0k9ezAd5U92PzLWoJBTca2ZURWFKOA9l1S6TGyK7u27iUpI4H1C7fxo6NX1e+tQdrOFUSX7aFdehI9j+1CQfZekjMTWPPjdvbklLG671mh73ewsZ6j+2gKNxXRoVs8K37MoTB3X5KypvdpaMMkrU8i43vupuiLn+uMA1jXcywd+6cy9vJ+5P37EzLtu+qMS+wQRa8nb2BrdiV9RkUx9+bXqFy0lAMldoii73Ed2dlxFD3Hp/Dx08vwfL+ApF3r64wr21RE1PWT+PjprWxfU0i7PZtIyV9TZ1xst3iy9nZjY45VnScWbiE1b2WtmOryb0s7mtIYq56MK9pOf72xzjiAHZ2H4I7tCOTRK6mcE5O3491URGId39vOjgMpji8irU8BY8fF4H07q864XIBjRzHyr2eSs9FPl8RKVlx8X63vNrfqc/a+4Sxy3El06ZfElzO+xfnFx3XG9T2uIztcnaBfLwgGYOkn8OH/4NyxENsJ0o6G7b/UujcH02aSo6by0EMPce+997Z0MQ4qENQYCoJBzcY8N7k7dxPttDEoLR7TUCzdXsSSbUXsceTTLjWbS4/rgtcfZN7aAo5rZ2A3DbLW5PPdul2A9XfqMQMzOOMC8AeCvPLjJiZ5fURozZwV25i/fgcGAY7tlsqJg3pQXLCT1179DxOPGUCn7kfx5dzFrPplWah8R3dP47hBfSjelcOSLTvpMXIQnXsN4qV3P2PLa2+QUlpEekoSpx8/AtNQ7Nm6nlWbt9IvM532gQD+QIBHn3sRsr5kcKSLU088DtMwKNiwkrWbN9E7PYOU3gOp9Hp54dmnMHWAKYNGYAYC5P7yA1s2r6NLRnc6Dj+RoNYs/+Ij5n/yHzAUGQOHMf7ECdh0EL1xNfbefQn6A6z79D2KtmUDkP3ZbJKHH8vou/5OpAoS2LYeV+++BP3+GnEAa3NXcvwDT9LOBmrLcqJsDoJ+P2s//YDiqjh3eia9Tz+bdjZNjzULaN9pDAGvh3UfvVMVoygE3Old6H36RKKUJmPDIhL6d6WyooKfn56Jmj8PjcFeoDQtgx6nn47d4yduy2acZV4qKzx8+9BDlP7wI+69e2iXkU6XseOwe/zEbtmMrWcPAjZY+vQsNmzeRqVWFJWVURHpoPv4MSi3l8iNm6F7NwI22Pj516x963+URMeyA8jrms6I7p2hjrii7TsoSPyC9TFxbB08gOMvOdeK27AZetSMA9iyYRODZ85A5ZcSO28RAbeHgE2xPmsee3fsBmVnt7Kx1bARsUUxYPogUgvKiekexdpvN7J7az6EGhY0i7Aq3O69+9Hb7SfaMPnm2QXY3/8ZK5UGjWKRUiSmtafXcV3IKAsSbRh8+vQv7FiaQ8+NBYDBInaH/tLtYtiJjXIw//1NLK2sesNgADaUsnZDKQVVccHySlI6RLPy251sKStBdW4f+vOxYXUuezq4a8UV5pahopNRvr18v3gv2X3yOK1jNMEST40Yqj6BERnBDy+vY8uCXYy9vB/xqQl0THeF4vYNJFXsrvCQ/d4m0DBkbBe2fPwR2cv3VJ3dF1lW5qewdDflP+QwZGwXlny5lfzle3B6NQonABU+2L56L44IG12GZ7Dkx1yWZu0Aomin26OrqpMAkLe1kqh2RaT3bc/WdXtZW+IDW1frvC2fgOkAIG97gKgkK27b6j3kba/E3zt9399vZg4BI0DBDj8xG/fF7cnxAPu1tAG7t+4lz6lJ79ueHWt2U7xjT40Iu8+NNkzylrnZXumhW992dcZVx+Yt87B+fjwDhqey4731dcYV7/Cw8accBp95FMu/2sKeDbkkBmr/Y7Z4h4f8zS4GXJTG8vk7yVu2hfb+MswDYqvj0vu2Z9UvueQt244dsPlLa8TuH7djzW525e7AHpkI+8UeGFNdfpu/FLvPZX1OfynFeXvqjCMUazUI7FqbR37p3oN/v1WxecvcZCcl0ecQ32/+up2sn7+TwWO7sPrNhXXGVH/OrcsKGHzVMJZ/tYWCVdvpcojvN/Oi4VYl9vq5sHIOrPaD+Y4V1O1kGPtEHe9StzYz5mjz5s1069aNJUuWMGjQoFDciSeeyKBBg3jyySd56aWXuPHGG9m7X4tJZWUlERERvPPOO3V2q9XVcpSWlla7z7KBTeaFZT6+XpPH4PQEuiZFs3lXCT9t20ul101lST7DUuI5qv8gFn//JT/8vIBh/QZy7Ngz+Pa/7/DRN9/gqwwy5piRTJw0hVUf/psF87/jmCHH0O/sSXz93BMsnf819kAQezCATQc5aviJjLjxLnZnfUr7k05lxQN/JX/et9gCQWwBjb3q0e6Y48l4+FGK3n2X+LPOYufNN1M2b36NjxV17Eg6PfIIRf/9L/HnnMPOG2+k7Me5tT5+KO7994n/4x+tuLnzajSXRx07kk5PPEGlL0Demx+SOPEMIhMj2XzTXZTM/ykUG3PM0XR9+D7K3T4KP/wfiWedQWScg0233UvJ/J9BKWKGD6Xbw/dQVuRlz4efEDfhdGKTXKz56+MULl5Hpc1FwHQSMJ0kDO3L0NsvIndLCaldYvjpkXfZtdRKUrRSaGWAMkgelMmImyayc91eOvWI48cns9i5qoCg6SBgOAiYDgJmBB37d2DsFf1Z88MO+oxMJevFVWxfW7OFLq13AqdeOYA183LpM6ojXz6/gh1r9tT63tJ6J3DqZf1YsyCfPsd14ssXVrF99W7UAb+yobh5OfQ5rjNfvrSG7WsKQQdDsTViju1I1our2LauCFR115MVW1fc9rV70UrViE3vFV9nHFAjNq13AmMv7V1nXHVsWt/2jL28H2t+3EmfY1Lq/M6qY489pweDx2aw5IstzH9vQ62YaiN/353B4zNZ8uVW5r23EaXr7gYceXZXBo/twpI5O5j3/iYAVDBQO+bUDJbN2cJPbyxDoTGCfoxgJWalt+pnP8OuGUePE7ux4buNLJn1MVT/+alSfd3BU39HjxO774uDWrFDrjmtdsz+34Vh/X0y5M9n0GNUFzZ+v5HlT7yDEazECAZQ2vq/Eayk3bAeDL77cop2eUhIsLHs3mcp/GV11XeiUWiUDpIwtC/9H5yGu6iS2Hg7i+9+hF1LVhE0QBsQNKDdkH6MvO0G3Hv9xCa5+PGRx8lfuRx0sCpzAxT0HPd7BvzxLHZtzCGpe0dWfPgx67PeQQEqGKzOU+k+5o/0//2Z7M7Oo33XVFZ/8CEb57yBlfFqCAYwCNB93CX0PuscirfnEZ+eysaP32DTx0+AUYmBD4WP3hPvIG38ZDy784lon8K2z2ez7v0H9/vOrDftfc5dpI+9BM+uPCLap7Bzzitk//c+TFPjMILYDLDbNJ3OnkHcsRcT8FRg2uyULXyNko9vQSld1WIN0Wc8QsSIS9A6iDJMyn96Dff/biOAaT2USRCT9hPuJW7o79EKlGlj7+IPyP3onv0Se0uHCX8lYchEdDCAsjvYs+Qjtv/vAYJaobUiiEEQg8wJN5M8ZIIVZ5jsWvYpWz+eYZ3VAet3ecLtJA45KxSzd/GH5H5yv/XdV3fTa02H0/d7T8OkaPGH5H9yv/UZDTCq6q6k0/9KzIAzUEqhtaZk6Ufs+uT+6j/doDQYiqTfTbfitK4jzpJ0xt3EDDnbulYwSMmiD2rFACRN+CsxQyaiTBOtNcVL/0veRw+isb6L6v93mnALiQNPQ1UPQVj7Mcz5m9WtpoLWn08dwD3oauJGX3tYY47aTHJUPSD7pptu4sYbbwSsRCY5ObnWgOxffvmFoUOHAvDll18yfvz4FhmQXebx4dIBCr78lKSTx7L+7tso+eYbIr0ac7+7EjXqWDo99hhF7723LwmZO6/GtQ4nplryzTfR7rLL2PPiixQ88uhBy3ewuEoDAgYETEi/6XaSLr6EXa+9ysbHH6rx+o6TLqNs3RqKF8yj+7TbSbrwYgpef5UNT8wgdsRIonr1Zet/XsTj6kBJ7FHEHXsqJ147ljVzc6yk4YVVViV/gLQ+iVZleoi4w4mpduzvu1kV7pdbQxVkU8c17Fobrb+AdBAIopTGMBSGaXLsOX046sTOrPxuB/PfX00wWImurAQdAILYHFEcc85RVsz3O1n4/nKCniKguoK0/u+IjGP4ucPpPbIjaxfk8vM7C/CX1U7c7FHtOPrcY+h9TIcjjts/ZsMveSx571v8ezdi4MHAi0EFBl66jf4d/c85g8KtBSRmJLPmvx+x/qs3CWKiMQkqkyAG/U67gH6njaZwSx6JXVJZ/fk3LPv0LaoTAdCgNIN+dwF9xp5M8c584jqlsOHrr1jy4T9BBVAEgADD/3QtXY47Dc+eAiLaJbN17mcsevvxqpJX/ZIqGHrujWSM2j/uUxa98yiqOguoih1y7k1kjDodT+EuIhKT2PnzVyx9fyaGaWDaDEzTxoA/3EJSnxFUVpRhc0Wxd9MSNvzvSQzDsK5nKJQy6XHGX4hJ70vQ78WwOynfuY5tnz0DhtXVrJQmqmNvOo65GgwT7StHOSIhGKDgm3/iyV1r1WkoIjr0JumkK604fwXK7gIdZNfCd6gozEGZTiKSupI0eJyVyFVVpGjN3o2/ECjbizJMlGEQ1akPzoRUAILeMgxnFACV7l1UFmQT1Fb9bE/OxBaXZMV5yjAiquKK8/HnbUDpAAQD2Dr0wpbQCdDoskJUVCKgCLrzCO7ZBMrEaN8NI9q6Fr5ycERa1y3bjS7aFvrHlUpIx4iqjisDR5R1h8oLoXj7vqQhtjNUtcTgrwC71dJC+V4oybF+jukIkQm1YzzF6NJ8qrIQdEwKyhljnav0gs1qidPeElT5vt8FFdkOquMCPqhqXcNbChX7/d3lSgRn9KHjDhpTUse16nrPQ8Tt9xnqdb3qz7r/5zzwWuW7CWXOB/s+fGXoir1V90qhXfEoe2RVnB9l2vd9H+W7rRbeYCXYInAbscQltGt7yVFpaSkbN24EYPDgwTz++OOMHj2axMRE0tPT+fvf/86MGTN45ZVXyMzM5K9//SvLly9n9erVREREAHDaaaeRn5/Pc889h9/v59JLL2XYsGG8/vrrh1WGxkyOPv3kfUbk7T1oohJQUO6EcqdBn5v/SsofziPvw3dZ8Mzf0Ib1LyFtAKZC2e2MumY6KaeeTv43X/D9KzOoDAbQNhNts6FNE0dUDP1POJNe4/7IrtXLSOo3iOyf5rB8/rd4yipQdieGzUFsUirDxoynXedu7M3NJaFDByrKSlk9dxHugmIyBvTCUCbp/bphmAalRSVEx8cQDATZuW4bKMjL3klsUhw9hvQBpTAMwxrwFxuN31uJMhQL/ruatfP34Cvf90ewOhlYNmcbC/67GR20/vWB2jcuSSnFMWd1ZeAp6Sybs50F/62dXBiGYviZXRl4chorv9vJsq+3YRhgcxhAkIhoJ85IOx26JdB7ZAd2rN1N5z7tyV66iz07iqn0eKgoLIRgJbGdO9E+ox1d+rdj54qtdOrfhfwtbty5uyncsBbT0JimptPRg0lIT8XpslG4cSOJ3btT6Q9SmpdP3i8LAYPU4UcTnZyCzW5QuHkLiV27EKgMUrprN7mLloTK32nYYKKTk1CmYu/mrSR2zQClKN+1m7zFi1Daj9IBUoccTURKR9BBKtYtwNVzOBg21JL/wEfXWhc77gY45W50MIgybehgAJSBb8WnlK34Bm1EoG0uogaOIaLHcAD8xXuwx7UDoGLrakrWLa6qYDQxvYfhyuhbFbcbe5zVdVS+fR0l65ejsVrbYnsNJLKT1ZXiLynGHhNnxeVsw71hFSiI7XEUkR3SasV487dRvnWVlQACkT2HYotLgWAQ/56t2NtlgGFQWZyPd9NCsEWAw0lE5tGYzkgCfh+ekhIiYuMwbTYClZV43MWh73ffcT9edzERsfEYNhvBykp8FWUoBXZXNIZpEgwGCPg8mI4IDMN6HvTva9o37Psd95ZjOCP3e75vHIXhjLKOBwJobxkqwnqugkEI+qsvZv1zPRiEoA8Mx37P/fv9AbfXPH7g68BqvauuUIKBfRVMVasTAV9Vi8/+cUHQlaBs+wa0W790tX7HhGht6lN/t6rk6Ntvv2X06NG1jk+aNInZs2ejtWb69Ok8//zzFBUVcdxxx/GPf/yDnj17hmILCwu59tpr+d///odhGJxzzjk89dRTREdHH1YZGjM5WvLt5wwYdAx7PvuY9n/4E2u+/4hVi7/B7ooiIjIeZ3Q8dlcUvY4+iaSUNCor/dhsdkrchRQW5GBiYqBwuKJI7NAJwzDwVXhwuCIIBoPsXL+T0uIKdCV06JZKXHI0hmGwa2shhQVuEjvGkdQpgWBQU15Uwe6dbtp3jiUyzoVhKNx7yikv9hGV4CImwYkOarzllQQqg0TFW9l+WZGXcrePyFhHrWN2h4Er1onDZSN3YxHZy6xxTcNOz6zRkmPaFJ16JXDUCZ3IOKod7j0VxLaPRCkIBoPs2lBARVEpcR3iSEi3/tWngxr3znxiOyWjqv4S37t5K0pDfLeMqpggpTt2Et25UyimcMNmirO3kzKkP5HtE0Frdq9YQWVxIc6EOBL6DQKl8BbuonjlEmJ69MHVIa2qcqmkct1X2HqdAqYNDBvBZe8SXPEhxoCJGAP+YP0LJVAJG7Kgxxgw7WDY0D+9ADqAGnEVBPxWxbTsDRh4vlUxmTb44XFY8Cwccw0cP826TsAHS1+DQRdUxdlRc+6DH2eGkp7Q9X55GYZdGopj3jMQ2xGOOgeNtpIb906I6Vj1fSjrX8u5y6HDAIizkhR2rYU9m6BdN0iqmvlRvB3yVkJqf4jrbB3bswH2boWEDGhXNfDYvRMK1kByX+u9AfZshKKtEJ9eMw6sgZLV1yrcAold9ovJscrSYZD1r3gdhLwVUFEEManQvqdVaQf8gN73L1AhhKhDm02OwkFjJkdBn48d11zDL1sWc+J/PiAxNYPykkLKS/bidEUT4YrF4bKaCyt9AYp3leOKceKKsVNW7GXPzjISO0QSGefEMBSFOWUUF1QQn+IioUMUwaDGU+rHvbuCdp2isDtteEr9lBTu+1dvTGIEEdF2/N4ARfnlxKdEYneah4yr9FkzgyKi7GxaUkDBFjeRcU6OOqETiz/fypYVuykr9uEtr0QHdZ1dXMUF5XTuk0Bix2i6D0kiMs5KvgpWb8Is3UFEQjzRPQaAYeDfu4uS1T8T0/do7AlWclS+dT2enC1EdMwkMsOqTH1796ABZ4LV4lGyZTOl27YRnZFOTIbVglFZUohvywpcvY9B2R3Wv5TzV1nN24YN0o+x/iW9NxtenQh//LdV0b95AXQdDaOug7lPweZv4LzXoWA1/OtkuOLrX4+DxrvW/nFvX2INNjzmGlj/Bfg90Od3VqIGVqIUDMLOX6xm7NhOkJhpfc5gpZX4xKVbLQpet9UtoQwr8XBEgT3SSky8bnDGWucqvdZrq5q2MWzW+2gNlR6rJac6cQnuNx5v/ziwYip9NVtFqpM7rSHgBdNpxQUrrWPKsJJJIYSoB0mOmlBjJUdaa+b+5znaPfAUi7rFcP5H8zAP8hd+wB8gd1MxvopKTLtBu87RRMU5KXd7sTvNw0p64pJcBAMaZ6SNnA1FFOWXExnnIL1fO3auL8JT4qO0yIsr2o4z2k5G33Zs+CU/lPgMPDmNue9tJHvZLipKrIrscMf12CNMRp3TnX7Hd2LHukK8ZZUkd4nBEWGjaHs+8R0TsUc62btiEZGBAiLio1A2h9V/3b6nVdnvWW/9bIuA7B+g0xBY/V/oeyYs+jcMv8JqfQCr5WHBP2DYFFjxLvT/A/z8AoycCrs3wH/OgeFX7ktYfjdzX+vMu1OsY6kDYO4TMOp6qxUlpgOcOh22/wRpI2Dxq1ZcXCfY9LWVnBRXtYYMuRh2/GJNHV35vpUQxHayuikqiqwkpOtoKNwMiV1hW9VAd1eC1VKS1BsqqgYkp4+EvVusZGbnUmtgf0Q8lOZZLTF+j5U4JHSx+vQj21nxYHWNKANiO1ifwRkDUe2lhUUI8Zv0m1wEsrUp3LuL+Vn/5XdAhct58MQoEKBgWyk+T4CoBCdKKcqLfZimgdNlJ1AZxFPqxxlpx1vux+cJYJgKh8vG1hW7yd/iZvf2Ukr3eind6yUpPYaxl/dj17YSOvZI4NN/rDjkoGdPqZ8+ozry+fMra8QZpqIwt5Qty3czeGwGW5bvIi7ZRUpmFyKibERE2XFG2UM/x7aPpKzYS8fuCbjziqjI2U5J0S48xaU4VTqVyktCIhi2TvsKUemxWnDsLiup2Pg1rHgb1nwEp96/r0Ul66+w+WsroQHIW24lLIZtX8zX98PWuVZMWQF887d979NxsBU37xko3mElLAE/nP6o9fOQi63kY+8WK4EpyYXhl1vPvSUw5BLrOsl99sVFxFrdQgPP2xcHEJ2yL6bSY7XadDluX0z7nlYrTVznfXH+cijaBp2HVMW5rdacst1WwlMd5y0BTzEkZMKOReAvhZSjrNe371lzDIkQQoiDkuSoBXgqPfz43ce4qpYI8FYNFj9QMKgpzCmn3O0lOt4ZGpAM1GglAqgo8xOTEMG2eTn0HJ7KJ7OW15n0bF9TyLqFeQwem8HqH3Mo3eshsWMUylAoZQ1kVobC7wuwbfUeBo/NYOuqPSRlxJDeL5HIWAeuGDsOlw2nyxZKetL7tSc+JRKfp+Y0aIfTJLa9C3fObnxuN357JbGZXSnYvh5faTlxKdHEtI/F1BX7Eoj9leRC0Xb433VVY0uAfhPh6MshZymMuBLadbfiqqbd0647jLzWSjoK1sCIq6ykqLRqoc+z/7nv+tGpkDHSGhdzzNXQa3zNchyYfAQDVgJSmG215lQfPzAOrP9Xx+3eCGiIz4CCtdYMDx0ETxH4SiG5HxSsslqMXIlWXP6qfS1InmJrdk1yX6vFq6LQStTiMyB/pRVX6bO+I7/HarWq9IZm7QghhDh8khy1gG07N1OSn4fLa80q8btctWK01hQXlFOyu4LIWAfKOPhskYoSHwv+s5meR6eEpn0XbHXTrlMU0QkRRCdYS+FHJzhp1zGKdp1iKCv20ntkBzr2iKuV0AA4IsxQ4pPWO5G49hE14qrPu3eX4/ME8HsqrSQoby8+dwkEvDgcBrGduuBeswzfnjx0MIjbb1JR4iNl2FD8+ZtxUIrSFTUTCx20uq8Ks2H07dZA5YDf6m464Sbod3ZV15G2Wnp6jq2ZlOyfqFS3zmQeVzPmwDhvifX/hC5WF1T5bmuQsyPKaoUpswaTh9b6KcmzurEiYq3utHbdrK60suqpqPuNqSkvAlec9XPeSishUgaoqllDnhKrO80ZZ/3sjLWee9z7YsB6vmutdd7jtuJ3rbVeo2wQGWMNgo5sb3XdSWIkhBANIslRM/MH/GRvXInhV0RWJUc6KqpWXFmRl6KCcpxRdkzbwbtD8rOLWfhRNskZsfQZ1ZHcTUUMPCWNzIHta7fi1JnQ7Ht+uHGh87vK8bmLwVOEL68I9+5IYnv2o3jXRrx7dqMyerB7xSrKC0sIEo/GwBmpiI70wd5snDFRUFpWMzFZ/g58+6DV+vOHl+Ddy6zWmjOftsbfVLfWlO22Xle2y2pVSR1gdaeB1ZqSs3TfuhqlBVa3XIcBkLMMyndZCUR8upX4lO+uWjtIWdftNMQalBwMWmtluBKscTu2CKurrlr1cL2oZOvnyHZWl1b1xibKsJKU6hat0M/mfj8fkPQmZta+/v6q4/ePE0II0agkOWpmeXt2smfrFlxx7TErrG4iFRVTI8ZT6mdPThmmzcDurGtRdWsq+6ofc1gzN5e0PomMu+Io9uSUYrMbuHdX1Ep6Dkx4AHyeAO7d5XUnPoeIM03N3q05ePO2EywvJlhZSVA5KS32U+FZjyOuA54ihS+3CNOEyDgXdgfY7AYRkQq7XVnjYfz77QO3d4s1aPrEW62EZ8jF8Mtsa2xPTAcrxhFpxZXkQkWxNX6nes2WvVusLjKwppcr05ruHWJAcY6VEDmirIHJJflWF1Zku6pVzB3WYOVKH6QeVZXEtOA4HVlbRgghWoQkR82oMljJpuxVUFaJMz2GCI81xdkRHReK8XsD7MkpJRgIkpQWQ6UvUKsFqKLUx5ble4iIslubKF51FCWFHmx2qyKvK+kx7QZFBWV4Sv0EA5pgUIO2ruWtqMQRYaOixIfd6WLXdjeeUitx0xqCAY0OBinf68ZpD7J3wzqMYAXKZsOIiMYWbcduV9gdYNo8mNpDTIYNs7qB5Ncq+ewf4PtHrIHGsZ2twdHFO6HbSTXjqluA/BXW2JuELg1LXmJSfj1GCCHEb5YkR81oT+kuCjZvwuGKQylFTFXSExlvJUeByiCFOaV4yv1Exzup9AVqteLkZ7vZsXYvoy/uzZxXVjNkXDrlxV4C/mDoGpW+ABUlPjylfuwuG6WF1kw1w7QGW5umwu4wQ+OYtAZvRSUR0XZ8VQmbK9ph9QxVerAFijErCjBK3BhGgKj0GIyIVAybsvbeOcR4qEPylcP8Z2Ddp9bzQRdZU+xL860EpvKAQdpluwBldY/FdpKWFSGEEE1CkqNmEtRBsreuIbi3DFdKGh5/JZFVE87iE5LQQU1Rfhmle72hKfv7twAV7ypnadY2Sgq9jL28H3Pf3UDvYzrgcNlCiVMwqCl3+4iIsuNwGdicNux2g+QusZg2hWEzME3r/7USmkqflYxUeq2WGW+p1ZKjy6CyHCJdkNjOWpzvcEUnV12rjllo5YXWuKB1nwIKTr0Pjvk/KNpixXtL9g2W9ritLjC7C1L6QfUeSkIIIUQTkOSomRRWFJK/ZROmcmF32NlTWEh1h1B8YjLFuyso3uXBFWuvkbj4PAH25JQQ2z6S+JRIRv6+Oyu+2U7fUR0x7TW7lDylfiJjHKRkxmKYdXQ3BSqtFYe93qop3xXW9HBPsTWrq3rVY7C6q0wn2FzWuJyGtNL4K2pPbw9WwvafYdD5VqtRdAqc+Qx0P7n2NPjqQdo7foGIOEjpYw2OFkIIIZqQJEfNQGvNjtxNePIKccQnA1DqLgKg3AEmURTll+OIMLHZDxiArWHRxxtI6daewWMzyF21lYzEbbAnzxo8bHOBaSOIjWAZxCbHYvjc1jT0gM9KeHzl1lo61ccC1bu1s18S5LAGKtenZejX7J/g7N0C+ath41dw6r3WStTKhD+8aC20eOA0e7Bmm5XushZEjEy0yieEEEI0MUmOmkGxt5icLRswvDacKdbaM94Sa4fwEpeB321DdQKH64DbUemlIncH/kqDPqM6smvDDlJ6dcS9rgjf3t3gK6nab0rhKYPISI1rrw32BvclPxDa/BTTDs5o62ejmW69t8Ra26d9T2vfr1PvhQ//DzJGQfdTrJjSgtqv81dY0+rjM6zuOdnyQgghRDOR5KgZ5BZupXxHAUZMLNU9ZoEyNwClETYc2rAGQFfTWGvvFO9gV14kp04ZyIL319Cntwf35jJie/XDvXkTPrd1jUDV7LOYjiZGZNDqAmvK5OdQY4mcMdbYoJI8yFkCa/4HW36EU6Zbs9CWvQlDJ1vXOBhviTXOqH0Pa5802WRUCCFEM5Jap4m5fW52bN2IKgvi6LCvW0iXWmv8lDltxETvNz7I77FWfS7NQ0encNRpA/jyhVVkdqlAKRs+txv35k3Edu0WSpA85ZqoWIPIaKPmispNpa6xRGAlRvEZsGg2/DgT3FUbsXY7GYZOgm0LrE1g6+pCq+YtsQaDH8lUfSGEEOIISHLUxPLduZRtzyFoc2G3WYlLpcdAlZYBUB7hwDRMa4Xmst3WPmL+cnAlUOxJZOELqygvLCb52H1bjFQnSLbISCoKre65mDjj19cTaiwHjiXyFFtjg9p1hzfOs8YVAdij4LgbYNRfoHib1TW2/+sOTJB85VaLUUo/K0am6gshhGgBkhw1oTJ/GTk7N6CL/Nji2wNWYuR1mzi85QBUOJ2ooBd2b7DG3thdEJ1ERblmzlvZBANwwnhXrcTH53ZbrUYVmqgYA1dkMycS1ZuqxnWG7O+t/c7evgQ2fQ1JfaDPGdYGsUm9Dj4Lbf/jlV5ren9Sb0mMhBBCtChJjppQQXkBJdtzCQYdREY4qaww8LrB0F4iPFZy5HPYsRdvhchka0ZW1Vihdcu9BAPQLtkguVPdXWWVlRoUxMQ3Y6tRtT2bYO6T0P9cayzR/H9Y3Wq//5c1VgjAFV93C1F1gmR3WT8H/FZimNgN2nWVxEgIIUSLkuSoiQR1kIK8Tei8QpTDCXuLCBRrHHixGV5cHmsFSL/dYU2jj9o3QNlTHmTzGmv7jr5DnAdNfDzlmph4gwhXMyYTvlL45WVY9QF0PcnaA23TNzD8Cug5tmYiVNcstGrVCz0GK63B2/EZkNRz315pQgghRAuR0a5NRAeD+NYtg11bcJUXU7m7HCNYjmELErS5iPRayU/QGYFhd9V47boVPgIBSEwySDlYq5FfYxiq8ccaRSdbLUC1PxDsWgdb5sLK96zE6I//hj0brRaioq1Wd1hdrz0YHQR3HsR2hOTejbvGkhBCCNFAkhw1ER2oxJu7iwqVgC/YAR0RgeFyWju/K4Poqj3McLpQat9t8FQE2bT68FqNouMUEa5GvoXVM9H2T3J2b4DF/4Ge42D7Quj/Jzj/DWsPtOolA/YfS3Q4CZLWVotRVHtI7iPrGAkhhAgb0q3WRIKBIO4SJzoQjWELYJjBGuejq/ZDs9mcmPttF7J+hZ9AABLaG6R2rrvVyO/TmDar1ajR7Z/kFKyBHx6zZpD94UX44Cpr3aFj/2wtN/BrY4kOpTQfnLGQ0ldWvhZCCBFWJDlqIoGgJlAZUWdiFNQQU2Edczr3zUTzeoJsXO0DfqXVyBMkPtHEGdFEDX/F22FDFgw8HzoOscYV/fgkDLvM6nYr333w11aPJTqU8j1gRlhT9iPiGrfsQgghxBGS5KjJ6VpHSnw+nFW9ai67C1U1CHn9Cj+BSqvVqEPawVuNbDaDmLiq84ezWnVpweHF7VwMK96FdZ9ZG9QG/NZMtNzl0O+sBn36WjxFEAxCh/7W7DwhhBAizMiYoxZQUmElKJUGRNhdGAq8Hr2v1WjwIVqNKoLExisczqrzdY0RAut5Qhfr/K/FxaXBgn/CWxfD6g+txGjwxdYMtJJcq+urPgOtD8ZbAr4K63oxKUd+PSGEEKIJSHLUAirKreSoNEKhDANlGqxf4aPSD/HtDDqkW61CkampOGJjQ6/zeTV2h0FUrGklK9HJdQ+Erk6MDrb4ojPGmim2d6u1hMAb58G8JwENacfABW/BGU9Y23+U5NVvoHVd/BXgzgFfmTX4OrZTw64jhBBCNAPpVmsBfo+1r1qJy8RQioDf2K/VyBFqNaosLw/toeYtLsbrCdIu2cQRE7sv+QlWWgOnC9ZYu9xn/wjte8K8Z6Bgde03T+5rtQhl/2CtYP3OJGuF656nwYA/QocBh06sDrUv2oF8pVBRbM3Qi0uzkqLIRFnkUQghRFiT5KgFHD3qJKJ2+yjPXgQKdmwwqfRDXKJBl/6J2KOiKM/Lq7HJbOGKpcSULSXG54KY38OX02HNf60WGW3NfOPU+60xQnOfgq+mH7wAyrDiFjwLMalw/pvWlHqwxh4dzqrWB6M1eIvBU2LNQmvXDWI6WGshCSGEEK2AJEctoGDzeo5/7DE2PPJXKoJ2tm+0ejdHjE8irlt33Js3hWJ9RYX4vvmEdsddiiqfB33PhbcusvYwq2Y6rd3uh10K67+Aoy+zus0K1tR+8+Q+1vktc+Hoy63FG+u7qnVdggFrsLWvvGqK/lFVC0pG1+ObEUIIIVqeJEctYPuSBexcsYVRT8zk27cXULgdeg9vR7dje+HevAmf2w2AUZFP3KK/YS9aA5E2q7VnxTsQ2c7a7T6us9VdlZgJiV2tlp3oZGsQ9bHX1m4B2n8skiNy36rW9ekqq0v5HvB7rNah9j2tcUz2iIZfTwghhGhBkhy1AKe3grKF8/ji6RmM+8u9pKTl0P+kjjUSI0f+AmKX/h3DX0Kwx+lw9JWoknxUv7Oh4+B9ycyvDb6uPn64cfWhNZQVgOGEjoMgOkW2ABFCCNHqSXLUAiI8XgA2b8hnzdwcBo/NoCw310qMggGi1r1E1Ka3AKjsfxHqjJn487cQYZaBr6RmMnO4Y4SOdCzRgXTQmsnmiIHUo2TNIiGEEG2GTOVvAQlBawB1+sAR9BnVkdU/bMOVlITTCQk5bxGV2gEAz7F3os58gsL1m7FjzXCrNSW/tODgSY23ZN8YosONOxzBALhzISIBOg6UxEgIIUSbIi1HLcBR5iVq1LFMuPJivvzXKirLikh3LiN24GhUz/sIvncFJUP+itn3TxSu2ojLKMU097tVDW3taQzBSisxiukg+6IJIYRok6TlqAV0PupoOj32GL98spjtawqJ9a0nat1LKDRaGZQe9We8HU+kZEcuvqISXFF13Kb6tvY0hkqvlRjFp0Fqf0mMhBBCtEmSHLWAdl17sfPGG1nzy1YA4lNiUH94Ce83syjevAUjMR2wthRxRSqcEWGwaKK/Asp2WbPiUo6S2WhCCCHaLOlWa2beYJCS517A0KDHngRA5IAT8e5YT3H7U6C0HF9pOVprAgGIijUOus9as/GVgscN7XpC++5g1L0prhBCCNEWSMtRM3OXl2Fo62eHPR4AV8GP2DOH1thHze8Fh1MREdnCiZGnCLylkNQH2veQxEgIIUSbJ8lRMyutsGadVTggqOIAcGZ/EtompDpB8nk1kTEKm60Fk6Oy3VDpt7rREjPBkD8uQggh2r42Vdvdc889KKVqPHr37h067/F4mDp1Ku3atSM6OppzzjmH/Pz8Zi2jryo5Kou0U1HqB8AZ7aixj5oZHYMyIaqugdjNIRiw9mwz7NBhoDUAu6W79oQQQohm0qaSI4B+/fqRm5sbevz444+hczfccAP/+9//eOedd/juu+/Iycnh97//fbOWr9JjJUfF0fGAQhHAEW3tP1adIBmOSCJcCqerBRKSgM9KjCLbQafBEJPS/GUQQgghWlCbG5Bts9lITU2tdby4uJgXX3yR119/nZNPPhmAl19+mT59+rBgwQKOOeaYZimf9pZZ5YlIACDSKEK72oXOe4uLKS0pIrmDrfkHYvvKoaIQ4jMgqZfMSBNCCPGb1OZajjZs2EDHjh3p2rUrF154Idu2bQNg0aJF+P1+xowZE4rt3bs36enpzJ8//6DX83q9uN3uGo8jYXoqAKhwVSdHewlEtA+d9/vA7lC4mnsgdsVe8LqhfW9I6SeJkRBCiN+sNpUcjRgxgtmzZ/P555/z7LPPkp2dzfHHH09JSQl5eXk4HA7i4+NrvCYlJYW8vLyDXvOhhx4iLi4u9EhLSzuiMtqqkiOf00qOosy9BCP2tRz5vJqoaIXN3kzJkdbWHmlaQ+oAa6q+2eYaFIUQQojD1qZqwdNOOy3084ABAxgxYgQZGRm8/fbbuFyuBl3z9ttvZ9q0aaHnbrf7iBKkCK8HgIAjHgOINAoJRgwHIBjQKAWR0fXMWXXQ2tYjWGkNplYGmA4wbIceSB2shJJ8cMVDcl/ZI00IIYSgjSVHB4qPj6dnz55s3LiRU089FZ/PR1FRUY3Wo/z8/DrHKFVzOp04nc5GK5PL4wVA2awp+y7TjbZZ23B4vRqn6yArYld6rcUYgwErqdF63zmlrESo+hHwW2sTBSv3xZj2/R4O6zpluyG2EyT3lq1AhBBCiCptOjkqLS1l06ZNXHzxxQwdOhS73c6cOXM455xzAFi3bh3btm1j5MiRzVamSI8PAMOIRgNOuzfUulPph4T2BoZxQHLkL4eyQohKAocLbC6wOayp9qZ9X1Jk2q1jOmAlUwEfVHr2JVbeUuuYr9xqbWrfA9p1t14nhBBCCKCNJUc33XQTZ5xxBhkZGeTk5DB9+nRM0+T8888nLi6Oyy67jGnTppGYmEhsbCx//vOfGTlyZLPNVAOI8litOcqIQgfBbrfWOvL7NDaHwhV5QJda9dYdSb2gXbfDXKHaBrY6Wru0tlqVAl6rVckZJws7CiGEEAdoU8nRjh07OP/889mzZw9JSUkcd9xxLFiwgKSkJABmzpyJYRicc845eL1exo0bxz/+8Y9mLWO0J2D9oK1uLHuE1T3m82qi4wzsjv1ajTxu8JVZW3ckdDnyREYpq8XJ5jiy6wghhBBtWJtKjt58881Dno+IiGDWrFnMmjWrmUpUk9YQ4wmiUQR1JABmhEkwqNEaomL2S34qiqwusZS+1rpDskK1EEII0SzaVHIU7sr8fiL84LNHASYQxHA58Hk0zghFRPWK2OV7IBiE1P4Q17kliyyEEEL85siAk2bkLrcWkKxwWhvOugw3AUc8fr8mOlZZA7FLCwAFHQZIYiSEEEK0AEmOmlF51aazxTHxgLU6ts+WiM1uWAOxS3KtafapAyDm4MsLCCGEEKLpSLdaM/JXbTpbGhkPQFRVcmQaQezeXRARa23dIYsxCiGEEC1GWo6aUdBjbTpb7ooHINLci8+WgKrYg3IlWF1pkhgJIYQQLUpajpqTpxwAn8Mac+Q03CgNyu6CDv3BGdOSpRNCCCEE0nLUrGxVyVGlw9o6xGaUYyhQpgGO6JYsmhBCCCGqSHLUjBwea9PZYNW+aqbpBRTKVLKOkRBCCBEmJDlqRk6vtemsNqzkSJl+lKEwDmtLECGEEEI0B0mOmlGk14cGtLLGFmkziNIKZUpyJIQQQoQLSY6aUZTHR6UtEpQ1Dl7bQCHJkRBCCBFOJDlqRtGeSrzVM9VUCR4jEqWUNSBbCCGEEGFBauVmFO0J4nNa440izb14jGgUyJgjIYQQIoxIctRMKoNBoit0qOUoythLhRGDUmDYJDkSQgghwoUkR83E7SnH1OCrWuMo0tiLV0VhAMqUtTiFEEKIcCHJUTMpLbf2VSt3WS1HDrMUDBNDKZBuNSGEECJsSHLUTDyeEgDKI6zkyG7zoACUQhlyG4QQQohwIbVyM6mssFqOvE4rOTJNLygD01AoQ1bHFkIIIcKFJEfNJOipAKDSbo05wqzEQGEqQ1qOhBBCiDAitXIzMao2nQ3YrJYjbBoMrMRIkiMhhBAibEit3Ezs3goqTSfacAIQsGmUAQqk5UgIIYQII1IrNxOnx4Ovao0juyrHZ0ZgYkMrSY6EEEKIcCK1cjNxeb2hwdhRxl7KiUGbhrQcCSGEEGFGauVmEunx4d1vAUiPjsI0DJQCuQ1CCCFE+JBauZlEefyhbjWXWYwXO8owUdKtJoQQQoQVqZWbSbQnEEqOnGYZoDEwqhaBlHWOhBBCiHAhyVEziakI4nVa3Wp2uxetQZkmSlbIFkIIIcKK1MrNoMLvx+Un1HJks/lBa0xrODZK9lYTQgghwoYkR82guMLaV616QLZhD6DRYFpdasqUbjUhhBAiXEhy1AzKymvuq4ZDgdbYlGmNN1JyG4QQQohwIbVyM/B5SgkYdgK2SAC0wwR01VR+Q7rVhBBCiDAiyVEzCHrK8FV1qZl4qbS7IKjQoTFHchuEEEKIcCG1cnPwlOOtGowdZe7Fa8YCGkMpa381U1qOhBBCiHAhyVEzsHnK8VWNN4o09uI1Y6p2nKVqjSMZkC2EEEKEC0mOmoHd4wnNVIswSwgqGygwtJIB2UIIIUSYkVq5GUR4PftWx7aVWQc1aKqm8cuYIyGEECJsSK3cDFweX2gav93mCR03DTCk1UgIIYQIK1IzN4NIrz80W81mq9x3QimUKbdACCGECCe/2Zp51qxZdOnShYiICEaMGMFPP/3UZO8V7akMzVZT9qB1UIPSCmWTmWpCCCFEOPlNJkdvvfUW06ZNY/r06SxevJiBAwcybtw4CgoKmuT9YioCoZYj5aiamWaAkn3VhBBCiLDzm0yOHn/8ca644gouvfRS+vbty3PPPUdkZCQvvfRSo79XIBgk0mvgd8QAVatja6yWI6UwTFujv6cQQgghGu43lxz5fD4WLVrEmDFjQscMw2DMmDHMnz+/VrzX68Xtdtd41EeZ30fQZiVGBn4qHREEdRCUgYHCkG41IYQQIqz85pKj3bt3EwgESElJqXE8JSWFvLy8WvEPPfQQcXFxoUdaWlq93q/cV4bXEQ9ApFGE14xBY3WpoYKydYgQQggRZqRm/hW33347xcXFocf27dvr9Xqvrxyf0xpvFGnuxWdEobU1KNswFBjSrSaEEEKEk99czdy+fXtM0yQ/P7/G8fz8fFJTU2vFO51OnE5ng9+v0lcRmqkWYZaCcoEOYhoKQxkylV8IIYQIM7+5mtnhcDB06FDmzJkTOhYMBpkzZw4jR45s9PfTnvLQTDWHWW4dCwbRBhgo6VYTQgghwsxvruUIYNq0aUyaNIlhw4YxfPhwnnjiCcrKyrj00ksb/b1MnyfUcmS3e6kENBqFgTIkORJCCCHCTYNr5ilTplBSUlLreFlZGVOmTDmiQjW1P/3pTzz66KPcfffdDBo0iKVLl/L555/XGqTdGOw+T2jMkWnzA6C1Bqyp/LKvmhBCCBFeGlwzv/LKK1RUVNQ6XlFRwb///e8jKlRzuPbaa9m6dSter5eFCxcyYsSIJnkfx36bzpoOayC2NZPfsMYcKdUk7yuEEEKIhql3t5rb7UZrjdaakpISIiIiQucCgQCffvopycnJjVrI1szl9eGNtpIj7NWJUNDaV01Jt5oQQggRbuqdHMXHx1uVulL07Nmz1nmlFPfee2+jFK4tiPT42bP/6tgA2lrpyJAxR0IIIUTYqXdy9M0336C15uSTT+a9994jMTExdM7hcJCRkUHHjh0btZCtWUTABcoAglRWLQmgq5Ij01CgZIVsIYQQIpzUOzk68cQTAcjOziY9PV3GzPwKZyASADvF+ExrYHZQawxlSMuREEIIEYYaXDOvWbOGuXPnhp7PmjWLQYMGccEFF7B3795GKVxbYNdWl1qEUUylUTU+q2q2mmmaKEOSSyGEECKcNDg5uvnmm0ObsK5YsYJp06Zx+umnk52dzbRp0xqtgK2ZNxBAGdZgbJdt34a1Go1S1ow1SY6EEEKI8NLgRSCzs7Pp27cvAO+99x5nnHEGDz74IIsXL+b0009vtAK2ZqW+MrxVq2NH2suAeMAac2QYJqBQhow5EkIIIcJJg1uOHA4H5eXWdhhfffUVY8eOBSAxMTHUovRbV+GrwOeIB8Bh94WOKw1KGSgD2VtNCCGECDMNbjk67rjjmDZtGqNGjeKnn37irbfeAmD9+vV07ty50QrYmvm95XidGQDYbJVUp0c6aG08qwyjaiabEEIIIcJFg2vmZ555BpvNxrvvvsuzzz5Lp06dAPjss88YP358oxWwNQv4ykOrYyuHDh0PosEwq9aLkuRICCGECCcNbjlKT0/n448/rnV85syZR1SgtkT5PKExR9j3O641hjUiW6byCyGEEGHmiGrmTZs2cdddd3H++edTUFAAWC1Hq1atapTCtXY2bwW+quRIO/ZlR1qDYZjWjDVTBmQLIYQQ4aTBydF3331H//79WbhwIe+//z6lpaUALFu2jOnTpzdaAVszh1+hDatxLuhwhI5rrTFQKIWMORJCCCHCTINr5ttuu42//e1vZGVl4div4j/55JNZsGBBoxSutYvwW61Fhi7Ba4/e74yuWh1bSXIkhBBChJkG18wrVqzg7LPPrnU8OTmZ3bt3H1Gh2gpnwFoR20YxWu03vEsHMZRpTeOX7VeEEEKIsNLg5Cg+Pp7c3Nxax5csWRKaufZbZw9GAWCqklrnDENhGEqSIyGEECLMNDg5Ou+887j11lvJy8tDKUUwGGTu3LncdNNNXHLJJY1ZxlbLxOpKsxmlNU8EFRgKZZPB2EIIIUS4aXBy9OCDD9K7d2/S0tIoLS2lb9++nHDCCRx77LHcddddjVnGVkspa6aazV5xwAmN0obMVBNCCCHCUIPXOXI4HPzrX//i7rvvZsWKFZSWljJ48GB69OjRmOVrtQKBANqwkiOnw1/rvKEUhqxxJIQQQoSdBidH1dLS0khLS2uMsrQphYW78Vetjh0ZAcH9TyrQaGk5EkIIIcJQg5ouNmzYwHvvvUd2djYAn3zyCSeccAJHH300DzzwAFrrX7lC25eTsxVvVXLkcB2QBGkwlIFhHnFuKoQQQohGVu/a+YMPPuCPf/wjhmGglOL555/nqquu4qSTTiI2NpZ77rkHm83Grbfe2hTlbTV25e3E52gPgI6w1zqvpOVICCGECEv1bjl64IEHuOWWW/B4PDz77LNcffXVPPTQQ3z22Wd8/PHHzJo1i9mzZzdBUVsXd24+QdNaHDPgcNY6r5QBhiRHQgghRLipd3K0bt06pkyZglKKSZMm4fP5GDNmTOj82LFj2bp1a6MWsjXyFVgLYRqBciptrgPOKgzZV00IIYQIS/VOjsrKyoiJibFebBi4XC4iIyND510uF16vt/FK2EoFi63p+0bQXXuLEKUxlELJApBCCCFE2Kl3cqQOqNQPfC6qlFv/M3RxjcNaAxqUoVAylV8IIYQIO/UekK21pmfPnqGEqHp9o+o1e2SmmkX57BABihIgKnRc66A13kgZIMmREEIIEXbqnRy9/PLLTVGOtidQ1dWoSoEoRp39B6LjE/j0xecAhYG0HAkhhBDhqN7J0aRJk5qiHG2O0ta+atqsYNTZfyAuKZniXQVorVGAMiU5EkIIIcJRo6xCWFpaSjBYYw1oYmNjG+PSrVb6McNZuzLAsDMmhBKjuR+8iw4CSmEqJDkSQgghwlCDk6Ps7GyuvfZavv32WzweT+i41hqlFIFAoFEK2FodN+VYEn/MYeApaaHECAAdBEOhlCHJkRBCCBGGGpwcXXTRRWiteemll0hJSZEZawdYO28ng8d2oWRX0b7ECIAgCgPDajpqsfIJIYQQom4NTo6WLVvGokWL6NWrV2OWp80YcHIGxXmFxKYkMOrsP4QSpGDVZD5DpvILIYQQYanBtfPRRx/N9u3bG7MsbUpQB/ly9j/Zm5tLXFIyo87+A0DVmCMDU5koQ1rbhBBCiHDT4JajF154gauvvpqdO3dy1FFHYbfX3Fx1wIABR1y41sxXNQ5rzquvcOqlU0IJ0levvYKBwjANa70jIYQQQoSVBidHu3btYtOmTVx66aWhY0opGZBdh7kfvBta50gBKGvrFWVKciSEEEKEmwYnR1OmTGHw4MG88cYbMiD7MFSPOdJag1aYNlNWyBZCCCHCUINr561bt/L3v/+dESNG0KVLFzIyMmo8WkKXLl1Ce71VP2bMmFEjZvny5Rx//PFERESQlpbGww8/3KxlDGK1rBnKQCmzWd9bCCGEEL+uwS1HJ598MsuWLaN79+6NWZ4jdt9993HFFVeEnsfExIR+drvdjB07ljFjxvDcc8+xYsUKpkyZQnx8PFdeeWWzlE8HgxiYGDZTZqsJIYQQYajBydEZZ5zBDTfcwIoVK+jfv3+tAdlnnnnmEReuIWJiYkhNTa3z3GuvvYbP5+Oll17C4XDQr18/li5dyuOPP95syRFYK2MbSsYcCSGEEOFIaa11Q15oHKLVo6UGZHfp0gWPx4Pf7yc9PZ0LLriAG264AZvNygEvueQS3G43H374Yeg133zzDSeffDKFhYUkJCT86nu43W7i4uIoLi4+5BYpFWVlfPz0U6AgMn5fXElxEU7lZMTRQ+h4/PFg2g96DSGEEEI0jsOtv+EIWo4O3EstHFx33XUMGTKExMRE5s2bx+23305ubi6PP/44AHl5eWRmZtZ4TUpKSuhcXcmR1+vF6/WGnrvd7iMqo9KgTMNa40im8gshhBBhJ+xr59tuu63WIOsDH2vXrgVg2rRpnHTSSQwYMICrr76axx57jKeffrpGclNfDz30EHFxcaFHWlraEX0erYMYykTJ9iFCCCFEWGpwy9F99913yPN33313Qy9dw4033sjkyZMPGdO1a9c6j48YMYLKykq2bNlCr169SE1NJT8/v0ZM9fODjVO6/fbbmTZtWui52+0+ogRJo1GGwjAUyPIHQgghRNhpcHL0wQcf1Hju9/vJzs7GZrPRrVu3RkuOkpKSSEpKatBrly5dimEYJCcnAzBy5EjuvPNO/H5/aAB5VlYWvXr1Ouh4I6fTidPpbFjh66C1RqFQpkzjF0IIIcJRg5OjJUuW1DrmdruZPHkyZ5999hEVqiHmz5/PwoULGT16NDExMcyfP58bbriBiy66KJT4XHDBBdx7771cdtll3HrrraxcuZInn3ySmTNnNl9BNZiGIcmREEIIEaYanBzVJTY2lnvvvZczzjiDiy++uDEv/aucTidvvvkm99xzD16vl8zMTG644YYaXWJxcXF8+eWXTJ06laFDh9K+fXvuvvvuZp3Gr7UGpTAkORJCCCHCUqMmRwDFxcUUFxc39mV/1ZAhQ1iwYMGvxg0YMIAffvihGUp0MBpTyQKQQgghRLhqcHL01FNP1XiutSY3N5dXX32V00477YgL1mbpIIahMGyNnpcKIYQQohE0uIY+cJyOYRgkJSUxadIkbr/99iMuWFumDCUtR0IIIUSYanBylJ2d3Zjl+O0IgoECU1qOhBBCiHBU7+aLQCDA8uXLqaioqHWuoqKC5cuXh+Xq2WFDAYZGGTIgWwghhAhH9U6OXn31VaZMmYLD4ah1zm63M2XKFF5//fVGKVxbZSjpVhNCCCHCVb1r6BdffJGbbroJs46p6DabjVtuuYXnn3++UQrXJilQyGw1IYQQIlzVu4Zet24dxxxzzEHPH3300axZs+aICtWmaTAMwJCtQ4QQQohwVO/kqKys7JA705eUlFBeXn5EhWrTlLWnmrQcCSGEEOGp3jV0jx49mDdv3kHP//jjj/To0eOICtWmaY1hGJIcCSGEEGGq3jX0BRdcwF133cXy5ctrnVu2bBl33303F1xwQaMUri3SWFP5ZbaaEEIIEZ7qvdjODTfcwGeffcbQoUMZM2YMvXv3BmDt2rV89dVXjBo1ihtuuKHRC9omaAAli0AKIYQQYazeyZHdbufLL79k5syZvP7663z//fdorenZsycPPPAA119/PXa7vSnK2uppNGiFYSisBY+EEEIIEW4atEyz3W7nlltu4ZZbbvnV2DfeeIMzzzyTqKiohrxVm6K1RimFYSAtR0IIIUSYavIa+qqrriI/P7+p36ZVCFaNODIMEyVT+YUQQoiw1OTJkda6qd+i9dAapQFDBmQLIYQQ4Ur6dpqRDlrdajbDhjLlqxdCCCHCkdTQzUijQYFhKlkhWwghhAhTkhw1Jx3EGnNkoJR0qwkhhBDhSJKjZqS11WCkTNl4VgghhAhXTV5DZ2RkyLpHVXTQWgfSRKFMaTkSQgghwlGDk6NJkybx/fff/2rcypUrSUtLa+jbtClaBzBQGA4TlLQcCSGEEOGowTV0cXExY8aMoUePHjz44IPs3LmzMcvVRmk0CpthICtkCyGEEOGpwcnRhx9+yM6dO7nmmmt466236NKlC6eddhrvvvsufr+/McvYdmhQKEzTJi1HQgghRJg6oho6KSmJadOmsWzZMhYuXEj37t25+OKL6dixIzfccAMbNmxorHK2CUE0hqEwbQbIgGwhhBAiLDVKDZ2bm0tWVhZZWVmYpsnpp5/OihUr6Nu3LzNnzmyMt2gbgkFAYdplMLYQQggRrhqcHPn9ft577z1+97vfkZGRwTvvvMP1119PTk4Or7zyCl999RVvv/029913X2OWt1WzdlZTmPYG7fcrhBBCiGbQ4Fq6Q4cOBINBzj//fH766ScGDRpUK2b06NHEx8cfQfHamKBGyb5qQgghRFhrcHI0c+ZMzj33XCIiIg4aEx8fT3Z2dkPfou3RGqUMDNlXTQghhAhbDa6lzzzzTMrLy2sdLywsxO12H1Gh2iqtgxhKoUxZFFMIIYQIVw1Ojs477zzefPPNWsfffvttzjvvvCMqVFulwdpXTVqOhBBCiLDV4Fp64cKFjB49utbxk046iYULFx5RodoqrTUKBbJ1iBBCCBG2Gpwceb1eKisrax33+/1UVFQcUaHaKmvjWQOlJDkSQgghwlWDk6Phw4fz/PPP1zr+3HPPMXTo0CMqVJulNYaBdKsJIYQQYazBs9X+9re/MWbMGJYtW8Ypp5wCwJw5c/j555/58ssvG62AbUsQw2aiZHVsIYQQImw1uJYeNWoU8+fPJy0tjbfffpv//e9/dO/eneXLl3P88cc3Zhnbjqq91WTrECGEECJ8HdFSzYMGDeK1115rrLK0fVpjGoa0HAkhhBBh7IiSo2AwyMaNGykoKCAYDNY4d8IJJxxRwdomhTIVSqmWLogQQgghDqLBydGCBQu44IIL2Lp1K1rrGueUUgQCgSMuXFujtUYp2T5ECCGECGcN7t+5+uqrGTZsGCtXrqSwsJC9e/eGHoWFhY1ZRgAeeOABjj32WCIjIw+6X9u2bduYMGECkZGRJCcnc/PNN9dabuDbb79lyJAhOJ1OunfvzuzZsxu9rAenqvZWk241IYQQIlw1uOVow4YNvPvuu3Tv3r0xy3NQPp+Pc889l5EjR/Liiy/WOh8IBJgwYQKpqanMmzeP3NxcLrnkEux2Ow8++CAA2dnZTJgwgauvvprXXnuNOXPmcPnll9OhQwfGjRvX9B9CKWv7EEmOhBBCiLDV4ORoxIgRbNy4sdmSo3vvvRfgoC09X375JatXr+arr74iJSWFQYMGcf/993Prrbdyzz334HA4eO6558jMzOSxxx4DoE+fPvz444/MnDmzeZIjrVEGWP8RQgghRDhqcHL05z//mRtvvJG8vDz69++P3V5zM9UBAwYcceHqY/78+fTv35+UlJTQsXHjxnHNNdewatUqBg8ezPz58xkzZkyN140bN47rr7/+oNf1er14vd7Q8yPbVFdhKBNlyIBsIYQQIlw1ODk655xzAJgyZUromFIqNOi4uQdk5+Xl1UiMgNDzvLy8Q8a43W4qKipwuVy1rvvQQw+FWq2OmAbDJt1qQgghRDhrcC2dnZ1d67F58+bQ/w/HbbfdZs3eOsRj7dq1DS1io7j99tspLi4OPbZv335E11OYsn2IEEIIEcYa3HKUkZFxxG9+4403Mnny5EPGdO3a9bCulZqayk8//VTjWH5+fuhc9f+rj+0fExsbW2erEYDT6cTpdB5WGQ5Fa1C6anFsaTkSQgghwtYRLQL56quv8txzz5Gdnc38+fPJyMjgiSeeIDMzk7POOutXX5+UlERSUtKRFCFk5MiRPPDAAxQUFJCcnAxAVlYWsbGx9O3bNxTz6aef1nhdVlYWI0eObJQyHJpGo1CmTdY5EkIIIcJYg5swnn32WaZNm8bpp59OUVFRaIxRfHw8TzzxRGOVL2Tbtm0sXbqUbdu2EQgEWLp0KUuXLqW0tBSAsWPH0rdvXy6++GKWLVvGF198wV133cXUqVNDLT9XX301mzdv5pZbbmHt2rX84x//4O233+aGG25o9PIeSOsgSilMs2p/NSGEEEKEpQYnR08//TT/+te/uPPOOzHNfS0hw4YNY8WKFY1SuP3dfffdDB48mOnTp1NaWsrgwYMZPHgwv/zyCwCmafLxxx9jmiYjR47koosu4pJLLuG+++4LXSMzM5NPPvmErKwsBg4cyGOPPcYLL7zQLNP4g4ChFYZhQ5nSciSEEEKEqwZ3q2VnZzN48OBax51OJ2VlZUdUqLrMnj37V1ezzsjIqNVtdqCTTjqJJUuWNGLJDpPWoKzZarLOkRBCCBG+GlxLZ2ZmsnTp0lrHP//8c/r06XMkZWqTdFADClNJciSEEEKEswa3HE2bNo2pU6fi8XjQWvPTTz/xxhtv8NBDD/HCCy80ZhnbBE0QAMNuk+RICCGECGMNTo4uv/xyXC4Xd911F+Xl5VxwwQV07NiRJ598kvPOO68xy9g2aI3CwDQMmcovhBBChLEjmsp/4YUXcuGFF1JeXk5paWloCr2oLaitBiPTdkRfuRBCCCGaWKPU1JGRkURGRjbGpdquoDUg27RLciSEEEKEs3rV1EOGDGHOnDkkJCQwePBglDr4ej2LFy8+4sK1JVoHQRvY7DKNXwghhAhn9UqOzjrrrNCCihMnTmyK8rRhGgCbaW/hcgghhBDiUOqVHE2fPr3On8Wv01pjoDDtkhwJIYQQ4azB06Z+/vlnFi5cWOv4woULQ6tWi300VYtAmjLmSAghhAhnDU6Opk6dyvbt22sd37lzJ1OnTj2iQrVJQY2hwJCWIyGEECKsNTg5Wr16NUOGDKl1fPDgwaxevfqICtUWaa1RysCwSXIkhBBChLMGJ0dOp5P8/Pxax3Nzc7HJWj61aA2GAmXKApBCCCFEOGtwTT127Fhuv/12iouLQ8eKioq44447OPXUUxulcG2KtlaBPNTyB0IIIYRoeQ1u4nn00Uc54YQTyMjIYPDgwQAsXbqUlJQUXn311UYrYJuhg7J1iBBCCNEKNDg56tSpE8uXL+e1115j2bJluFwuLr30Us4//3zsMui4liCglIGS5EgIIYQIa0c0OCgqKoorr7yyscrStmmNMpUkR0IIIUSYq1dy9NFHH3Haaadht9v56KOPDhl75plnHlHB2ppgUGMaBsqQ7UOEEEKIcFav5GjixInk5eWRnJx8yO1DlFIEAoEjLVvboqlKjmRAthBCCBHO6pUcBYPBOn8Wh0FrDEO61YQQQohwV6+aOjExkd27dwMwZcoUSkpKmqRQbZOqWuhIkiMhhBAinNWrpvb5fLjdbgBeeeUVPB5PkxSqTQpqTFNmqwkhhBDhrl7daiNHjmTixIkMHToUrTXXXXcdLperztiXXnqpUQrYlihJjoQQQoiwV6/k6D//+Q8zZ85k06ZNABQXF0vrUT2YSgZkCyGEEOGuXslRSkoKM2bMACAzM5NXX32Vdu3aNUnB2pygBlPJCtlCCCFEmGvwgOzRo0fjcDiapFBtkVbWTDVZ50gIIYQIbzIguxkZhoGS2WpCCCFEWJMB2c1FKwxloExpORJCCCHCWYMHZCulZEB2PSgdxLQZss6REEIIEeZkQHZz0IAyMAwFSmarCSGEEOGs3s0Yp59+OsXFxWRnZ9OuXTtmzJhBUVFR6PyePXvo27dvY5ax1dNolAbTNKXlSAghhAhz9a6pP//8c7xeb+j5gw8+SGFhYeh5ZWUl69ata5zStREaQCmUKduHCCGEEOHuiGtqrXVjlKNN0zqI0mAzTelWE0IIIcKcNGM0Fw3KVq8hXkIIIYRoAfVOjpRSqANaPw58LmrSWoMBpl2SIyGEECLc1bu21lozefJknE4nAB6Ph6uvvpqoqCiAGuORhCUY1ChlWAOyhRBCCBHW6p0cTZo0qcbziy66qFbMJZdc0vAStUlB0GCz21u6IEIIIY5AIBDA7/e3dDHEQTgcDoxG2MO03snRyy+/fMRv+lujtNVyJGOOhBCiddJak5eXV2PpGhF+DMMgMzPziPd+ldq6GQQ0gMZmk5YjIYRojaoTo+TkZCIjI2WsbRgKBoPk5OSQm5tLenr6Ed2jVpMcPfDAA3zyyScsXboUh8NRZ/Ze1xfxxhtvcN5554Wef/vtt0ybNo1Vq1aRlpbGXXfdxeTJk5uw5EBQoxQYZqv5uoUQQlQJBAKhxEh2hQhvSUlJ5OTkUFlZif0IhrK0mqn8Pp+Pc889l2uuueaQcS+//DK5ubmhx8SJE0PnsrOzmTBhAqNHj2bp0qVcf/31XH755XzxxRdNWvagDqAA035kzXxCCCGaX/UYo8jIyBYuifg11d1pgUDgiK7Tapoy7r33XgBmz559yLj4+HhSU1PrPPfcc8+RmZnJY489BkCfPn348ccfmTlzJuPGjWvU8u5PARgGprQcCSFEqyVdaeGvse5Rq2k5OlxTp06lffv2DB8+nJdeeqnGCt7z589nzJgxNeLHjRvH/PnzD3o9r9eL2+2u8agvrTVaa0yZrSaEEOI34KSTTuL6669vkmt36dKFJ554okmuXa1NJUf33Xcfb7/9NllZWZxzzjn83//9H08//XTofF5eHikpKTVek5KSgtvtpqKios5rPvTQQ8TFxYUeaWlp9S6XBgxlYhjyrw4hhBDNZ/LkySiluPrqq2udmzp1Kkqpph932wq1aHJ02223hVbcPthj7dq1h329v/71r4waNYrBgwdz6623csstt/DII48cURlvv/12iouLQ4/t27fX+xrBQNAakC0rZAshhGhmaWlpvPnmmzUaATweD6+//jrp6ekNvq7WmsrKyga91ufzNfh9m0OLJkc33ngja9asOeSja9euDb7+iBEj2LFjR2jV7tTUVPLz82vE5OfnExsbi8vlqvMaTqeT2NjYGo/60lpjGApT1jkSQgjRzIYMGUJaWhrvv/9+6Nj7779Peno6gwcPDh3zer1cd911JCcnExERwXHHHcfPP/8cOv/tt9+ilOKzzz5j6NChOJ1OfvzxR8rKyrjkkkuIjo6mQ4cOoXG9++vSpQv3338/l1xyCbGxsVx55ZUA/Pjjjxx//PG4XC7S0tK47rrrKCsrC72uoKCAM844A5fLRWZmJq+99lpTfEW1tGhtnZSURFJSUpNdf+nSpSQkJIS2Ohk5ciSffvppjZisrCxGjhzZZGUAQGuUoVCNsGqnEEKIlqW1psJfv9lQhlI4bQbeyiBBrWs9P1wuu9mgQcdTpkzh5Zdf5sILLwTgpZde4tJLL+Xbb78Nxdxyyy289957vPLKK2RkZPDwww8zbtw4Nm7cSGJiYijutttu49FHH6Vr164kJCRw880389133/Hf//6X5ORk7rjjDhYvXsygQYNqlOHRRx/l7rvvZvr06QBs2rSJ8ePH87e//Y2XXnqJXbt2ce2113LttdeGFpyePHkyOTk5fPPNN9jtdq677joKCgrq/fnrq9U0ZWzbto3CwkK2bdtGIBBg6dKlAHTv3p3o6Gj+97//kZ+fzzHHHENERARZWVk8+OCD3HTTTaFrXH311TzzzDPccsstTJkyha+//pq3336bTz75pMnLbyhJjoQQoi2o8Afoe3f9l4A5vkd7nj5/MG/9vJ0/HZ3GFf/+hR827K7XNVbfN45IR/2r7osuuojbb7+drVu3AjB37lzefPPNUHJUVlbGs88+y+zZsznttNMA+Ne//kVWVhYvvvgiN998c+ha9913H6eeeioApaWlvPjii/znP//hlFNOAeCVV16hc+fOtcpw8sknc+ONN4aeX3755Vx44YWhgds9evTgqaee4sQTT+TZZ59l27ZtfPbZZ/z0008cffTRALz44ov06dOn3p+/vlpNcnT33XfzyiuvhJ5XNwV+8803nHTSSdjtdmbNmsUNN9yA1pru3bvz+OOPc8UVV4Rek5mZySeffMINN9zAk08+SefOnXnhhReadBo/gA5oTLsBMg1UCCF+s37YsJu3ft7OVSd245/fbap3YnQkkpKSmDBhArNnz0ZrzYQJE2jfvn3o/KZNm/D7/YwaNSp0zG63M3z4cNasWVPjWsOGDavxOp/Px4gRI0LHEhMT6dWrV60y7P86gGXLlrF8+fIaXWVaa4LBINnZ2axfvx6bzcbQoUND53v37k18fHz9v4B6ajXJ0ezZsw+5xtH48eMZP378r17npJNOYsmSJY1Ysl+nwepWU9JyJIQQrZ3LbrL6vvr/o7q6K80fCHLlCV2ZdGyXenWpVb93Q02ZMoVrr70WgFmzZjX4OlFRUY3yutLSUq666iquu+66WrHp6emsX7++Qe/TGFpNctSqaY0yTelWE0KINkAp1aCurWp20+pFiDiCRKchxo8fj8/nQylVq8ekW7duOBwO5s6dS0ZGBmCtDP7zzz8fcr2ibt26YbfbWbhwYWjm2969e1m/fj0nnnjiIcszZMgQVq9eTffu3es837t3byorK1m0aFGoW23dunXNsvmvJEfNQAet2WrKlORICCFEyzBNM9RFZpo1E7OoqCiuueYabr75ZhITE0lPT+fhhx+mvLycyy677KDXjI6O5rLLLuPmm2+mXbt2JCcnc+edd2IcRmPArbfeyjHHHMO1117L5ZdfTlRUFKtXryYrK4tnnnmGXr16MX78eK666iqeffZZbDYb119//UFnlzcmSY6agdIam2GCtBwJIYRoQYdajmbGjBkEg0EuvvhiSkpKGDZsGF988QUJCQmHvOYjjzxCaWkpZ5xxBjExMdx4440UFxf/alkGDBjAd999x5133snxxx+P1ppu3brxpz/9KRTz8ssvc/nll3PiiSeSkpLC3/72N/76178e/gduIKV1PTs8f+PcbjdxcXEUFxcf8g9ZRVkZHz/9FCjweHx0SknmpEkXYbhimrG0QgghjpTH4yE7O5vMzEwiIiJaujjiEA51rw63/oY2tn1I2NIaw2zY2hRCCCGEaF6SHDUHrTEME2U27+A7IYQQQtSfJEfNQGmNshkgU/mFEEKIsCe1dTPQSmEaWpIjIYQQohWQ2roZKK0wTFOSIyGEEKIVkNq6WeiqNY5kQLYQQggR7iQ5ag7awDQNWedICCGEaAWktm4GGl1rNVIhhBBChCdJjpqB0hrDJouRCyGEEK2BJEdNTVuz1AybfNVCCCFEayA1dhPTWC1Hps3e0kURQgjxGzN58mSUUlx99dW1zk2dOhWlFJMnT27+goU5SY6anAalMEzpVhNCCNH80tLSePPNN6moqAgd83g8vP7666Snpzf4ulprKisrG6OIYUeSoyYW1FTtrSbJkRBCiOY3ZMgQ0tLSeP/990PH3n//fdLT0xk8eHDomNfr5brrriM5OZmIiAiOO+44fv7559D5b7/9FqUUn332GUOHDsXpdPLjjz9SUlLChRdeSFRUFB06dGDmzJmcdNJJXH/99aHXvvrqqwwbNoyYmBhSU1O54IILKCgoqHXtOXPmMGzYMCIjIzn22GNZt25d0345ByHJURNTGgylZEC2EEK0FVqDr6x+D7/Hep3fU/fzw31o3aAiT5kyhZdffjn0/KWXXuLSSy+tEXPLLbfw3nvv8corr7B48WK6d+/OuHHjKCwsrBF32223MWPGDNasWcOAAQOYNm0ac+fO5aOPPiIrK4sffviBxYsX13iN3+/n/vvvZ9myZXz44Yds2bKlzu68O++8k8cee4xffvkFm83GlClTGvR5j5TU2E1MowGNKcmREEK0Df5yeLBj/V/X7WT4w0uw+FUYcjG8eT5s+rp+17gjBxxR9X7riy66iNtvv52tW7cCMHfuXN58802+/fZbAMrKynj22WeZPXs2p512GgD/+te/yMrK4sUXX+Tmm28OXeu+++7j1FNPBaCkpIRXXnmF119/nVNOOQWAl19+mY4da34/+yc5Xbt25amnnuLoo4+mtLSU6Ojo0LkHHniAE088EbCSsAkTJuDxeIiIiKj3Zz4SUmM3Ma2rxhxJciSEEL9tm762EqNR18Hcp+qfGB2BpKQkJkyYwOzZs9FaM2HCBNq3b7+vaJs24ff7GTVqVOiY3W5n+PDhrFmzpsa1hg0bFvp58+bN+P1+hg8fHjoWFxdHr169arxm0aJF3HPPPSxbtoy9e/cSDAYB2LZtG3379g3FDRgwIPRzhw4dACgoKDiisVENITV2U9MapRQ2u6OlSyKEEKIx2COtFpz6UibYnBDwwbF/huFXgg7U/70baMqUKVx77bUAzJo1q8HXiYqqX8tVWVkZ48aNY9y4cbz22mskJSWxbds2xo0bh8/nqxFrt++b2a2UteVWdSLVnGTMUZPTKAwM2XRWCCHaBqWsrq36PuwR1mtNh/V/e0T9r6Eavkfn+PHj8fl8+P1+xo0bV+Nct27dcDgczJ07N3TM7/fz888/12jZOVDXrl2x2+01Bm4XFxezfv360PO1a9eyZ88eZsyYwfHHH0/v3r1rDMYOR9Jy1MSCQY2hNKZd1jkSQgjRckzTDHWRHbilVVRUFNdccw0333wziYmJpKen8/DDD1NeXs5ll1120GvGxMQwadKk0OuSk5OZPn06hmGEWn7S09NxOBw8/fTTXH311axcuZL777+/6T5oI5DmjCamtUIpZIVsIYQQLS42NpbY2Ng6z82YMYNzzjmHiy++mCFDhrBx40a++OILEhISDnnNxx9/nJEjR/K73/2OMWPGMGrUKPr06RMaRJ2UlMTs2bN555136Nu3LzNmzODRRx9t9M/WmJTWDZwX+BvldruJi4ujuLj4oH/AACrKyvj46afwerw4DZNTLz6P+MwezVhSIYQQjcHj8ZCdnU1mZmazz5pqjcrKyujUqROPPfbYIVudmsKh7tXh1t8g3WpNT2uUoWT7ECGEEG3SkiVLWLt2LcOHD6e4uJj77rsPgLPOOquFS9Zwkhw1MatZTmHazF+JFEIIIVqnRx99lHXr1uFwOBg6dCg//PBDjaUCWhtJjpqatgZ2KVnnSAghRBs0ePBgFi1a1NLFaFQySrgZKENh2iU5EkIIIVoDSY6amg5iGAamKV+1EEII0RpIjd3EtMZatMuQMUdCCCFEayDJURPTQTBMA2XIVy2EEEK0BlJjNzmNYZqSHAkhhBCthNTYTUxrrGXUpVtNCCGEaBUkOWpiSlvdatDwzQKFEEII0XwkOWpqGkybAUq+aiGEEM1r8uTJKKVQSmG328nMzOSWW27B4/GEYqrPK6WIioqiR48eTJ48udbaRd9++y1KKYqKikLHcnJy6N+/PyeccALFxcU1YvZ/77oeXbp0aaZvof6kxm5qumr3Y0mOhBBCtIDx48eTm5vL5s2bmTlzJv/85z+ZPn16jZiXX36Z3NxcVq1axaxZsygtLWXEiBH8+9//Puh1N23axHHHHUdGRgZffPEFcXFxNc4/+eST5Obmhh77v09ubi4///xz43/YRtIqauwtW7Zw2WWXkZmZicvlolu3bkyfPh2fz1cjbvny5Rx//PFERESQlpbGww8/XOta77zzDr179yYiIoL+/fvz6aefNmnZFWCYSpIjIYQQLcLpdJKamkpaWhoTJ05kzJgxZGVl1YiJj48nNTWVLl26MHbsWN59910uvPBCrr32Wvbu3VvrmsuXL+e4445j5MiRfPjhh7hcrloxcXFxpKamhh77v09qaipJSUlN84EbQauosdeuXUswGOSf//wnq1atYubMmTz33HPccccdoRi3283YsWPJyMhg0aJFPPLII9xzzz08//zzoZh58+Zx/vnnc9lll7FkyRImTpzIxIkTWblyZdMVXoMyDZDZakII0SZorSn3l9fr4an0oLXGU+mp8/nhPrTWR1T2lStXMm/ePBwOx6/G3nDDDZSUlNRKpObNm8eJJ57IOeecw3/+8x9sbXB7rFbxicaPH8/48eNDz7t27cq6det49tlnefTRRwF47bXX8Pl8vPTSSzgcDvr168fSpUt5/PHHufLKKwGriW/8+PHcfPPNANx///1kZWXxzDPP8NxzzzVJ2bUG0y4z1YQQoq2oqKxgxOsj6v26kR1H8sgJj/D+hvf5fY/fc9031zE/Z369rrHwgoVE2iPr9ZqPP/6Y6OhoKisr8Xq9GIbBM88886uv6927N2D13uzv7LPP5k9/+tNhXaO1arXNGcXFxSQmJoaez58/nxNOOKFGNjxu3DjWrVsXahKcP38+Y8aMqXGdcePGMX9+/f5w1odCYbbBrFoIIUT9zM+Zz/sb3ufSoy7l/Q3v1zsxaqjRo0ezdOlSFi5cyKRJk7j00ks555xzfvV11a1UStWcbX3WWWfxwQcf8MMPPzRJecNBq6y1N27cyNNPPx1qNQLIy8sjMzOzRlxKSkroXEJCAnl5eaFj+8fk5eUd9L28Xi9erzf03O1217u8khwJIUTb4bK5WHjBwnq/zlAGTtOJP+Bncr/JnN/7fII6WO/3rq+oqCi6d+8OwEsvvcTAgQN58cUXueyyyw75ujVr1gDUqlv/+c9/csstt3Daaafx6aefcsIJJ9S7TOGuRVuObrvttkNO81NKsXbt2hqv2blzJ+PHj+fcc8/liiuuaPIyPvTQQ8TFxYUeaWlp9buAQhaAFEKINkQpRaQ9st6PCFuENaXetKOUIsIWUe9rHNiKU1+GYXDHHXdw1113UVFRccjYJ554gtjY2Fo9Lkopnn/+eS688EJOP/10vvvuuyMqUzhq0eToxhtvZM2aNYd8dO3aNRSfk5PD6NGjOfbYY2sMtAZITU0lPz+/xrHq59Wj5A8WU32+LrfffjvFxcWhx/bt2+v1GQ0FhinJkRBCiPBw7rnnYpoms2bNCh0rKioiLy+PrVu3kpWVxR/+8Adef/11nn32WeLj42tdQynFc889xyWXXMLpp5/Ot99+23wfoBm0aH9PUlLSYU/l27lzJ6NHj2bo0KG8/PLLGAfM/ho5ciR33nknfr8fu90OQFZWFr169SIhISEUM2fOHK6//vrQ67Kyshg5cuRB39fpdOJ0Ouv5yfZRCpR0qwkhhAgTNpuNa6+9locffphrrrkGgEsvvRSAiIgIOnXqxHHHHcdPP/3EkCFDDnodpRSzZs3CMAwmTJjAxx9/fMQtW+FC6SOdF9gMdu7cyUknnURGRgavvPKKtahilepWn+LiYnr16sXYsWO59dZbWblyJVOmTGHmzJmh2WrV0w9nzJjBhAkTePPNN3nwwQdZvHgxRx111GGVxe12ExcXR3FxMbGxsQeNqygr4+Onn8K3t4wBY46h/6m/O4JvQAghREvxeDxkZ2eTmZlJRERESxdHHMKh7tXh1t/QSgZkZ2VlsXHjRjZu3Ejnzp1rnKvO7eLi4vjyyy+ZOnUqQ4cOpX379tx9992hxAjg2GOP5fXXX+euu+7ijjvuoEePHnz44YeHnRg1iAJltoqvWQghhBC0kuRo8uTJTJ48+VfjBgwY8KtTC88991zOPffcRirZ4ZHZakIIIUTr0WrXOWotlFIoWR1bCCGEaDWk1m5qSlqOhBBCiNZEkqMmZhhgSHIkhBBCtBqSHDUxDZgyIFsIIYRoNSQ5amKGUhimfM1CCCFEayG1dlNTsvGsEEII0ZpIctTUDDBssn2IEEII0VpIctTUlMJmc7R0KYQQQghxmCQ5amIKWSFbCCFEy9m+fTtTpkyhY8eOOBwOMjIy+Mtf/sKePXtCMSeddFKNfUerzZ49u8bGs7Nnz7bW7zvg0da2VZFau4kppbDb7C1dDCGEEL9BmzdvZuTIkfTs2ZM33niDzMxMVq1axc0338xnn33GggULSExMrNc1Y2NjWbduXY1jbWXD2WqSHDUxZShMSY6EEEK0gKlTp+JwOPjyyy9xuVwApKenM3jwYLp168add97Js88+W69rKqVCm763VZIcNTWlMO0yIFsIIdoKrTW6oqJ+LzIMlNOJ9nohGKz9/DApl+uwW2kKCwv54osveOCBB0KJUbXU1FQuvPBC3nrrLf7xj3/U66P8Fkhy1MSUYchsNSGEaEN0RQXrhgyt9+uiRh1Lp8ceo+i994g/5xx2TJ1K2dx59bpGr8WLUJGRhxW7YcMGtNb06dOnzvN9+vRh79697Nq1C4B//OMfvPDCCzViKisra40nKi4uJjo6usax448/ns8+++xwP0bYk+SoiSkl3WpCCCGgbO48it57j3aXXcaeF1+sd2LUUFrrw4q78MILufPOO2sce//993nwwQdrHIuJiWHx4sU1jh3YMtXaSXLUxEylZLaaEEK0IcrlotfiRfV/YXVXmt9P4pQpJFx4Yb261Krf+3B1794dpRRr1qzh7LPPrnV+zZo1JCQkkJSUBEBcXBzdu3evEZOcnFzHxzBqxbU1Ums3MWXI3mpCCNGWKKUOu2urTnarN0E18fT3du3aceqpp/KPf/yDG264oUbrTl5eHq+99hqXXHJJm5tp1hhknaMmZpgmyB88IYQQLeCZZ57B6/Uybtw4vv/+e7Zv387nn3/OqaeeSqdOnXjggQfqfU2tNXl5ebUewXq2goUzSY6amGEqq/lICCGEaGY9evTgl19+oWvXrvzxj3+kW7duXHnllYwePZr58+fXe40jALfbTYcOHWo9CgoKmuATtAylD3eklgCsPxRxcXEUFxcTGxt70LiKsjI+fvopYqIdjJ86TVqPhBCilfJ4PGRnZ5OZmdnmVoJuaw51rw63/gZpOWpyhs2QxEgIIYRoRSQ5amKmKdP4hRBCiNZEkqMmJgtACiGEEK2LJEdNSmPaZBq/EEII0ZpIctSEDKTlSAghhGhtJDlqYkpajoQQQohWRZKjpqSUdKsJIYQQrYwkR01JaQy7s6VLIYQQQoh6kOSoCRlKYRgy5kgIIYRoTSQ5akJKGTIgWwghxG+SUooPP/ywpYvRIJIcNSFlVG08K4QQQrSAyZMno5RCKYXdbiczM5NbbrkFj8fT0kULazJauCkZSpIjIYQQLWr8+PG8/PLL+P1+Fi1axKRJk1BK8fe//72lixa2pOWoiSiqutUkORJCCNGCnE4nqamppKWlMXHiRMaMGUNWVhYAe/bs4fzzz6dTp05ERkbSv39/3njjjRqvP+mkk7juuuu45ZZbSExMJDU1lXvuuadGzIYNGzjhhBOIiIigb9++oevvb8WKFZx88sm4XC7atWvHlVdeSWlpaej85MmTmThxIg8++CApKSnEx8dz3333UVlZyc0330xiYiKdO3fm5Zdfbvwv6QCSHDURZSicLg9OlzTOCSFEW6K1xu8N1OtR6QugtabSV/fzw31orY+o7CtXrmTevHk4HA7A2sV+6NChfPLJJ6xcuZIrr7ySiy++mJ9++qnG61555RWioqJYuHAhDz/8MPfdd18oAQoGg/z+97/H4XCwcOFCnnvuOW699dYary8rK2PcuHEkJCTw888/88477/DVV19x7bXX1oj7+uuvycnJ4fvvv+fxxx9n+vTp/O53vyMhIYGFCxdy9dVXc9VVV7Fjx44j+h5+jdTcTcQ0TOJcLqIc0S1dFCGEEI2o0hfk+b98V+/XpfVJZOzl/VgzN4c+ozry6bMr2L6msF7XuPLJE7E769cj8fHHHxMdHU1lZSVerxfDMHjmmWcA6NSpEzfddFMo9s9//jNffPEFb7/9NsOHDw8dHzBgANOnTwegR48ePPPMM8yZM4dTTz2Vr776irVr1/LFF1/QsWNHAB588EFOO+200Otff/11PB4P//73v4mKigLgmWee4YwzzuDvf/87KSkpACQmJvLUU09hGAa9evXi4Ycfpry8nDvuuAOA22+/nRkzZvDjjz9y3nnn1et7qA9JjppQnC0em93R0sUQQggRBravKWTN3BwGj81gyZdb650YNdTo0aN59tlnKSsrY+bMmdhsNs455xwAAoEADz74IG+//TY7d+7E5/Ph9XqJjIyscY0BAwbUeN6hQwcKCgoAWLNmDWlpaaHECGDkyJE14tesWcPAgQNDiRHAqFGjCAaDrFu3LpQc9evXD8PY16mVkpLCUUcdFXpumibt2rULvXdTkeSoKRkGSsYcCSFEm2JzGFz55In1fp1SYNoNApVBBp2aTv+TOlPfXjKbo/6jYaKioujevTsAL730EgMHDuTFF1/ksssu45FHHuHJJ5/kiSeeoH///kRFRXH99dfj8/lqXMNutx/wWRTBYLDeZfk1db1Pc733/iQ5akqGIYtACiFEG6OUqnfX1v5MmwLA5mj++sEwDO644w6mTZvGBRdcwNy5cznrrLO46KKLAGv80Pr16+nbt+9hX7NPnz5s376d3NxcOnToAMCCBQtqxcyePZuysrJQ69HcuXND3WfhRgZkNxXDwDRNlGn/9VghhBCimZx77rmYpsmsWbPo0aMHWVlZzJs3jzVr1nDVVVeRn59fr+uNGTOGnj17MmnSJJYtW8YPP/zAnXfeWSPmwgsvJCIigkmTJrFy5Uq++eYb/vznP3PxxReHutTCSatIjrZs2cJll11GZmYmLpeLbt26MX369BrNflu2bAktdLX/48Ds9Z133qF3795ERETQv39/Pv300yYps2mzYRw1kogO6U1yfSGEEKIhbDYb1157LQ8//DA33ngjQ4YMYdy4cZx00kmkpqYyceLEel3PMAw++OADKioqGD58OJdffjkPPPBAjZjIyEi++OILCgsLOfroo/nDH/7AKaecEhoYHm6UPtJ5gc3g888/56233uL888+ne/furFy5kiuuuIKLL76YRx99FLCSo8zMTL766iv69esXem27du1C/ZXz5s3jhBNO4KGHHuJ3v/sdr7/+On//+99ZvHhxjQFfh+J2u4mLi6O4uJjY2NjG/7BCCCHCisfjITs7m8zMTCIiIlq6OOIQDnWv6lN/t4rkqC6PPPIIzz77LJs3bwb2JUdLlixh0KBBdb7mT3/6E2VlZXz88cehY8cccwyDBg3iueeeO6z3leRICCF+WyQ5aj0aKzlqFd1qdSkuLiYxMbHW8TPPPJPk5GSOO+44Pvrooxrn5s+fz5gxY2ocGzduHPPnzz/o+3i9Xtxud42HEEIIIdquVpkcbdy4kaeffpqrrroqdCw6OprHHnuMd955h08++YTjjjuOiRMn1kiQ8vLyag38SklJIS8v76Dv9dBDDxEXFxd6pKWlNf4HEkIIIUTYaNHk6LbbbqtzEPX+j7Vr19Z4zc6dOxk/fjznnnsuV1xxReh4+/btmTZtGiNGjODoo49mxowZXHTRRTzyyCNHVMbbb7+d4uLi0GP79u1HdD0hhBBChLcWXefoxhtvZPLkyYeM6dq1a+jnnJwcRo8ezbHHHsvzzz//q9cfMWJEjc3vUlNTa01RzM/PJzU19aDXcDqdOJ3OX30vIYQQQrQNLZocJSUlkZSUdFixO3fuZPTo0QwdOpSXX365xvLiB7N06dLQglRgLWc+Z84crr/++tCxrKysWsucCyGEEAdqpfOXflMa6x61ihWyd+7cyUknnURGRgaPPvoou3btCp2rbvV55ZVXcDgcDB48GID333+fl156iRdeeCEU+5e//IUTTzyRxx57jAkTJvDmm2/yyy+/HFYrlBBCiN+m6uVgysvLcblcLVwacSjV6x+aR7h1V6tIjrKysti4cSMbN26kc+fONc7tnyXef//9bN26FZvNRu/evXnrrbf4wx/+EDp/7LHH8vrrr3PXXXdxxx130KNHDz788MPDXuNICCHEb49pmsTHx4c2O42MjEQp1cKlEgcKBoPs2rWLyMhIbLYjS29a7TpHLUXWORJCiN8erTV5eXkUFRW1dFHEIRiGQWZmJg6Ho9a5+tTfraLlSAghhGhJSik6dOhAcnIyfr+/pYsjDsLhcBzWmORfI8mREEIIcZhM0zzi8Swi/LXKRSCFEEIIIZqKJEdCCCGEEPuR5EgIIYQQYj8y5qieqif3yQa0QgghROtRXW8fziR9SY7qac+ePQCyAa0QQgjRCpWUlBAXF3fIGEmO6ikxMRGAbdu2/eqXK5qO2+0mLS2N7du3y3pTLUTuQcuTe9Dy5B6Eh8O5D1prSkpK6Nix469eT5KjeqpePyEuLk5+EcJAbGys3IcWJveg5ck9aHlyD8LDr92Hw23UkAHZQgghhBD7keRICCGEEGI/khzVk9PpZPr06TidzpYuym+a3IeWJ/eg5ck9aHlyD8JDY98H2XhWCCGEEGI/0nIkhBBCCLEfSY6EEEIIIfYjyZEQQgghxH4kOaqnWbNm0aVLFyIiIhgxYgQ//fRTSxepzfr+++8544wz6NixI0opPvzwwxrntdbcfffddOjQAZfLxZgxY9iwYUPLFLaNeuihhzj66KOJiYkhOTmZiRMnsm7duhoxHo+HqVOn0q5dO6KjoznnnHPIz89voRK3Pc8++ywDBgwIrd8ycuRIPvvss9B5+f6b34wZM1BKcf3114eOyX1oevfccw9KqRqP3r17h8435j2Q5Kge3nrrLaZNm8b06dNZvHgxAwcOZNy4cRQUFLR00dqksrIyBg4cyKxZs+o8//DDD/PUU0/x3HPPsXDhQqKiohg3bhwej6eZS9p2fffdd0ydOpUFCxaQlZWF3+9n7NixlJWVhWJuuOEG/ve///HOO+/w3XffkZOTw+9///sWLHXb0rlzZ2bMmMGiRYv45ZdfOPnkkznrrLNYtWoVIN9/c/v555/55z//yYABA2ocl/vQPPr160dubm7o8eOPP4bONeo90OKwDR8+XE+dOjX0PBAI6I4dO+qHHnqoBUv12wDoDz74IPQ8GAzq1NRU/cgjj4SOFRUVaafTqd94440WKOFvQ0FBgQb0d999p7W2vnO73a7feeedUMyaNWs0oOfPn99SxWzzEhIS9AsvvCDffzMrKSnRPXr00FlZWfrEE0/Uf/nLX7TW8nvQXKZPn64HDhxY57nGvgfScnSYfD4fixYtYsyYMaFjhmEwZswY5s+f34Il+23Kzs4mLy+vxv2Ii4tjxIgRcj+aUHFxMbBvj8FFixbh9/tr3IfevXuTnp4u96EJBAIB3nzzTcrKyhg5cqR8/81s6tSpTJgwocb3DfJ70Jw2bNhAx44d6dq1KxdeeCHbtm0DGv8eyN5qh2n37t0EAgFSUlJqHE9JSWHt2rUtVKrfrry8PIA670f1OdG4gsEg119/PaNGjeKoo44CrPvgcDiIj4+vESv3oXGtWLGCkSNH4vF4iI6O5oMPPqBv374sXbpUvv9m8uabb7J48WJ+/vnnWufk96B5jBgxgtmzZ9OrVy9yc3O59957Of7441m5cmWj3wNJjoQQh2Xq1KmsXLmyRh+/aB69evVi6dKlFBcX8+677zJp0iS+++67li7Wb8b27dv5y1/+QlZWFhERES1dnN+s0047LfTzgAEDGDFiBBkZGbz99tu4XK5GfS/pVjtM7du3xzTNWiPf8/PzSU1NbaFS/XZVf+dyP5rHtddey8cff8w333xD586dQ8dTU1Px+XwUFRXViJf70LgcDgfdu3dn6NChPPTQQwwcOJAnn3xSvv9msmjRIgoKChgyZAg2mw2bzcZ3333HU089hc1mIyUlRe5DC4iPj6dnz55s3Lix0X8XJDk6TA6Hg6FDhzJnzpzQsWAwyJw5cxg5cmQLluy3KTMzk9TU1Br3w+12s3DhQrkfjUhrzbXXXssHH3zA119/TWZmZo3zQ4cOxW6317gP69atY9u2bXIfmlAwGMTr9cr330xOOeUUVqxYwdKlS0OPYcOGceGFF4Z+lvvQ/EpLS9m0aRMdOnRo/N+FBg4a/0168803tdPp1LNnz9arV6/WV155pY6Pj9d5eXktXbQ2qaSkRC9ZskQvWbJEA/rxxx/XS5Ys0Vu3btVaaz1jxgwdHx+v//vf/+rly5frs846S2dmZuqKiooWLnnbcc011+i4uDj97bff6tzc3NCjvLw8FHP11Vfr9PR0/fXXX+tffvlFjxw5Uo8cObIFS9223Hbbbfq7777T2dnZevny5fq2227TSin95Zdfaq3l+28p+89W01ruQ3O48cYb9bfffquzs7P13Llz9ZgxY3T79u11QUGB1rpx74EkR/X09NNP6/T0dO1wOPTw4cP1ggULWrpIbdY333yjgVqPSZMmaa2t6fx//etfdUpKinY6nfqUU07R69ata9lCtzF1ff+Afvnll0MxFRUV+v/+7/90QkKCjoyM1GeffbbOzc1tuUK3MVOmTPn/9u48JKqujwP4d3KycUmnRUYz0FYbyibLKC21fMwFkgwisdVsEwqLsg1LTUlHA60sCRpQ/ygjWqSgJMhssU3TisQMNaNI00oLhZbR8/zR633npr7PtL1Wz/cDF+49597f+d07ID/OPTMKFxcXYWlpKRwcHMRff/0lFUZC8Pn3lS+LI34OP194eLhwcnISlpaWwtnZWYSHh4uamhqp/0d+BgohhPjOmS0iIiKiPwbXHBERERGZYHFEREREZILFEREREZEJFkdEREREJlgcEREREZlgcURERERkgsURERERkQkWR0REREQmWBwREf1gCoUCBQUFfZ0GEX0jFkdE1KPIyEgoFAro9XpZe0FBARQKRR9l9ZlCoehxO378eJ/m1aWhoQEhISF9nQZyc3OhVqv7Og2i3w6LIyLqlUqlQlpaGlpaWvo6lW5ycnLQ0NAg28LCwvo0p48fPwIAHB0dMWDAgD7NhYi+HYsjIupVQEAAHB0dkZqa2mN/YmIiJk2aJGvbt28fXF1dpePIyEiEhYUhJSUFGo0GarUaSUlJMBqN2LJlCwYPHozhw4cjJyfnq3JTq9VwdHSUbSqVCgAQFRWFiRMn4sOHDwA+Fy0eHh5YtmwZAKC+vl6aafL29oZKpcKECRNw5coV2RgPHz5ESEgIbG1todFosHTpUrx69UrqnzVrFtavX4+NGzdi6NChCAoKAiB/rdY11okTJ+Dj4wMrKytMnToVjx8/RmlpKTw9PWFra4uQkBA0NzfLxjcYDNBqtVCpVBg3bhyys7Olvq64p0+fxuzZs2FtbQ2dToebN28CAIqLi7FixQq8fftWmllLTEwEAGRnZ2PMmDFQqVTQaDRYsGDBVz17oj8diyMi6pWFhQVSUlKQlZWF58+ff3OcoqIivHjxAlevXkVGRgYSEhIwd+5cDBo0CLdv30Z0dDTWrl37XWOYOnDgANrb27F9+3YAQFxcHFpbW3Hw4EHZeVu2bMHmzZtRUVEBLy8vhIaG4vXr1wCA1tZW+Pv7w8PDA2VlZSgsLMTLly+xcOFCWYy8vDxYWlqipKQEhw8f7jWnhIQE7Ny5E+Xl5VAqlVi0aBG2bt2K/fv349q1a6ipqUF8fLx0/tGjRxEfH489e/agqqoKKSkp2LVrF/Ly8mRx4+LiEBsbi3v37mHs2LGIiIiA0WiEt7c39u3bBzs7O2lmLTY2FmVlZYiJiUFSUhKqq6tRWFgIX1/f73reRH8cQUTUg+XLl4t58+YJIYSYPn26iIqKEkIIcebMGdH1pyMhIUHodDrZdZmZmcLFxUUWx8XFRXR0dEhtbm5uwsfHRzo2Go3CxsZG5Ofnm5UbAKFSqYSNjY1se/r0qXTOjRs3RP/+/cWuXbuEUqkU165dk/qePHkiAAi9Xi+1ffr0SQwfPlykpaUJIYRITk4WgYGBsnGfPXsmAIjq6mohhBB+fn7Cw8Ojx/zOnDkjG8tgMEj9+fn5AoC4dOmS1Jaamirc3Nyk41GjRoljx47J4iYnJwsvL69e41ZWVgoAoqqqSgghRE5OjrC3t5fFOHXqlLCzsxPv3r3rljcRfabss6qMiH4baWlp8Pf3R2xs7DddP378ePTr99+Jao1GgwkTJkjHFhYWGDJkCJqamsyOmZmZiYCAAFnbsGHDpH0vLy/ExsYiOTkZ27Ztw8yZM7vF8PLykvaVSiU8PT1RVVUFALh//z4uX74MW1vbbtfV1tZi7NixAIApU6aYle/EiROlfY1GAwBwd3eXtXXdf3t7O2pra7Fy5UqsXr1aOsdoNMLe3r7XuE5OTgCApqYmjBs3rsc85syZAxcXF4wcORLBwcEIDg7G/PnzYW1tbdZ9EP0bsDgion/k6+uLoKAg7NixA5GRkVJ7v379IISQnfvp06du1/fv3192rFAoemzr7Ow0OydHR0eMHj261/7Ozk6UlJTAwsICNTU1Zsft0tbWhtDQUKSlpXXr6ypCAMDGxsaseKb32/Vtvy/buu6/ra0NAHDkyBFMmzZNFsfCwuIf4/6v5zhw4ECUl5ejuLgYFy9eRHx8PBITE1FaWspvthH9B9ccEZFZ9Ho9zp07Jy34BQAHBwc0NjbKCqR79+71QXbd7d27F48ePcKVK1dQWFjY44LvW7duSftGoxF3796FVqsFAEyePBmVlZVwdXXF6NGjZZu5BdG30mg0GDZsGOrq6rqNPWLECLPjWFpaoqOjo1u7UqlEQEAA0tPT8eDBA9TX16OoqOhH3gLRb40zR0RkFnd3dyxevBgHDhyQ2mbNmoXm5makp6djwYIFKCwsxIULF2BnZ/fT82ltbUVjY6OsbeDAgbCxsUFFRQXi4+Nx8uRJzJgxAxkZGdiwYQP8/PwwcuRI6fxDhw5hzJgx0Gq1yMzMREtLC6KiogAA69atw5EjRxAREYGtW7di8ODBqKmpwfHjx2EwGLrN4Pxou3fvRkxMDOzt7REcHIwPHz6grKwMLS0t2LRpk1kxXF1d0dbWhkuXLkGn08Ha2hpFRUWoq6uDr68vBg0ahPPnz6OzsxNubm4/9X6IfiecOSIisyUlJcle2Wi1WmRnZ+PQoUPQ6XS4c+fON69L+lorVqyAk5OTbMvKysL79++xZMkSREZGIjQ0FACwZs0azJ49G0uXLpXNpOj1euj1euh0Oly/fh1nz57F0KFDAXxev1RSUoKOjg4EBgbC3d0dGzduhFqtlq2f+llWrVoFg8GAnJwcuLu7w8/PD7m5uV81c+Tt7Y3o6GiEh4fDwcEB6enpUKvVOH36NPz9/aHVanH48GHk5+dj/PjxP/FuiH4vCvHlggEioj9cfX09RowYgYqKim6/00RExJkjIiIiIhMsjojol5KSkgJbW9set1/h/5UR0Z+Pr9WI6Jfy5s0bvHnzpsc+KysrODs7/58zIqJ/GxZHRERERCb4Wo2IiIjIBIsjIiIiIhMsjoiIiIhMsDgiIiIiMsHiiIiIiMgEiyMiIiIiEyyOiIiIiEywOCIiIiIy8TcKOOcUwMdYygAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1359,12 +916,12 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 40, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGxCAYAAABoYBJuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACIRUlEQVR4nOzdd3wVVdrA8d+Z29IrIQkQehMFpBtQBETBthbWVWw064vrIli3yKqrsCp2VtdVwN0Vsbt2jSgqvfcOoacA6e3m3jvn/WOSSwIBSUi5ic/387mSmTl37smMyTw55znnKK21RgghhBBCAGA0dAWEEEIIIQKJBEdCCCGEEBVIcCSEEEIIUYEER0IIIYQQFUhwJIQQQghRgQRHQgghhBAVSHAkhBBCCFGBBEdCCCGEEBXYG7oCjY1pmhw6dIjw8HCUUg1dHSGEEEKcBq01+fn5tGjRAsM4dduQBEfVdOjQIZKSkhq6GkIIIYSogf3799OqVatTlpHgqJrCw8MB6+JGREQ0cG2EEEIIcTry8vJISkryP8dPRYKjairvSouIiJDgSAghhGhkTiclRhKyhRBCCCEqkOBICCGEEKICCY6EEEIIISqQ4EgIIYQQogIJjoQQQgghKpDgSAghhBCiAgmOhBBCCCEqkOBICCGEEKICCY6EEEIIISpoVMHRTz/9xJVXXkmLFi1QSvHJJ59UOq615tFHHyUxMZHg4GCGDx/Ojh07KpXJysripptuIiIigqioKCZMmEBBQUE9fhdCCCGECGSNKjgqLCykZ8+ezJw5s8rjTz/9NC+99BKvvfYay5YtIzQ0lBEjRlBSUuIvc9NNN7Fp0yZSUlL4/PPP+emnn7jjjjvq61sQQgghRIBTWmvd0JWoCaUUH3/8MVdffTVgtRq1aNGCKVOmcP/99wOQm5tLfHw8c+bM4YYbbmDLli1069aNFStW0LdvXwC+/vprLrvsMg4cOECLFi1+8XPz8vKIjIwkNzdX1lYTQgghGonqPL+bzMKzqamppKenM3z4cP++yMhIBgwYwJIlS7jhhhtYsmQJUVFR/sAIYPjw4RiGwbJly7jmmmtqXgGv9+THlAKb7fTKAtgr3JamXNbng1PF5oFQ1maz7h+AaVqvQC5rGNYrUMpqbV3jQC5bnZ/PQCgLgfez3EC/I7RhoN1utNeLERSEJyMDMy8PIyQER2IinrQ0zKIi/3n9+w8cwCwsrLocYEREHNufn48RHHxsu7AIExMjJARXi5YUpx/CU1SAIzSc4MSWFO/fi6cw338uR2g4wS2TKD64H09JEY6wCGt7/148+blVlyvMxxERRXCr1tZ2fq7/Z+6EcqHhBLduS/GhA9bnmiaO4NATy5RvFxf6fzYcwaFWnQ/up7QgD0dYBCEtkyjYvwd3QS6mAVopgsKjiGjZlty9OyjMPUpoZCyRSR3I3b+LwtyjZRfNIDQ6ztq/dweF2YerLBcaGUtkm07kHky1zhURQ2SLtpXPVV4uqYNVLj/b2m7Vntw926sut38XHu0jrlP3sv85yn7u7TULc5pMcJSeng5AfHx8pf3x8fH+Y+np6TRv3rzScbvdTkxMjL/M8dxuN26327+dl5dXdQVmzTp55Vq3hpEjj23/+98n/wWRmAhXXnlse+5cqNAtWElcHFQM6N57D06WPxUdDdddd2z7448hO7vqsmFh6NGjj/1O+t+nqCOHgWO/p8qf1doVBLfeemzfl1+iD6X5T+Uvp7H+Jx0//ti+b76FfftOLFf+3jvvOLZv/vewe3fV5RQwfjzaZv3vrH76CbZv95fRaIyyN/q0pviGmzCCgwlx2mDxYkrXb8TtM3HaDFx2Aw0UlHjx+DS+66+nWYtmKCB3wc+4V68j2GEjPMiO1nCkwE2x10eQzaDZ+FswYqLZe7SInIVLabV7M7GhTrSGQ7nFALSIDEYp2Dv4EvbawkiKDqbdwZ3opcs4lFtMUamPEKfNX+5IgZud/YcS37Ud7ZqFYm7aTNqX31VZLrvIg+uKy2h9bldMDTsWriZh9VIighyVykSHOGgW5kJfNJyMZi3YnllAu9x0klYvBk4sB3CgZ392x7Sy6lt0FL7+uspyRwrc7Onai9j+vWjXLBQOHeLIvA+rLAfQ7KLB0LMnqUcKSd+1n06LUiqVyS7ylH2fQai+fUnveDbbMvLp4vKS8M1naK3Zl1VMgdv6eWodE0J4kJ2sjl1ZGNuRAe1jiaeUvNn/YffhYz8b7eNCiQhykFfsYXV4C7qOupSEyCDSMnLY98JroDWd40KJDg8iKzuf7fuP0jkhkpiB/dgf15JFK7ZjKy6m/cIU2rWMIbpDW7K37mBfahqt2yYQ3bUzh3PyWeIN9n/mBUd2E921M9lbt7NvT7q/XPbW7WzLdpPZuRu9+3Sl1fALyX7wEfalHqJ1m/hj79lr/Y5yh0eQeON1JA2/kH3fLeDIv2bTNjGGmHO6kbV2PYd27QPThzJ9RESHE3bVVURe/zsOfP8jSUcyKExJIW/vPgqK3ShAaU2o005o1y6EzZxJ2rffkXjJcAruvpv8rVsodJcCmmCng6i27QkbPJis3TuI/ttTHHntNfYt/RHH7lScpaVoNDabQVS7jsQPG0n+ti2E9+zFtsw97F22AK/XpHlmFi63B5uhiGnXhYSLLiV/22bCu3Qjff5XbHJn4fOaGKYm9mguoW4Pke06EX/plRRsWE/YOd05+vFHuLfvID8i0n99Y9q2IW7kSIpWryakd2+y3n+f0l27/cdzIiNBKUIHDaTlNddQ+t57VZYDyI2IIOSC82k5YwbFr7xCeEJCleWcHdoTNW8exYuXEzZqFBnXXotesZLjFXdoT/R111FiGITdeiv777gD3/zvCTrud3t5OXP1alyPPsr+O+6gcNFiXCUlBFcoW7FcUO/eHFq2jLw1a606ud2EFBefUKa8/gWhoXgdDqtsaSlRiQn+csHHXY/CkBA8TicABd3PIXHQIOzHXd/y3JyikBDynE7yBg2k5aRJ2F/8V5XlioHigck0nzUL3/yfCR84kKxhwyqVKS/n69CeqOnT8W3fTvioURy89VZs3/9QZbno664jy3TDfeeA6YV1X8HHn8HvRkB4C0jqCwdWnXBvTqbJBEd1Zdq0aTz22GMNXY2TMk0NCrSp2ZmeT8ahI4S6bPRoFQXAz9sPszeriCxnJln2DfzpsrPQwPKtmQyMsf4Xm7diPzszC9BotIZWSXHcMsr6i+3tZfu4xevD8JrMXZ7KjsxclDLp2DycG/t1JM/M4c35P3Jdn/YkhCbw+verObIz1V+/jnGR3Ni3K3mleSw/kEXn7L0khrVg4nspGN98Q4vco3SMi+LGPmejFGQWZrJ6fwbnJjUnzuPB1DDxg88wU1IYZtOM7t0TpeBg/kFWH0ijZ8vmtI5ojae0lN9/NheUyT+iW2L4vGw+upn1aQc4OyGR7s26o4F31//Is/lLKXUqzm99FjOj+2AzTHYd3c45cZ0pNX3M2/Adu7IOAvCF7wfO7dSHly6/j2AnpBbtKivnqVQOIDvxCNOv/yPxEYpUzya6BSlKfR7e3fAdu7IOANAhphXXdx9OfIRiTe4K+odfSInXzQdrv2RX1kHKYj86xLTkuh4XE+HU5BavpKerJcUeGy98+w9syxajtMbQ0K5ZElf2Gkm4O5+0w9toUdSfktJiHn9vGhnLf2bAoRzOadWefp2H+cuEJ3TCExTN/358lf+lbaOw2ENCVhHXuMMY2ucyQnMzyTi0jdDELniDEliw8ku+XPlv0mJCAbgovjNjXV0JzckkI61yuT2H9rBtcxQHfgqjf7d+TBw8/oRyP678ktRDewAIKlrP7856idhDO0hd8z9CDxfjdbVixcLPObxvNw6vicOnSdXQfNMQOk57CbXlJ+L6DCDtsw85vGsLWmsU1msPENOhG4lT/sh5e5bQrONItk59ED77H0HWjwpoSNdQ1KEr8Vdcw7n71hJhDGf3PZMo+HEBrbLysJngBrLKful2zz9ISKd4MmfMoHB3KucCaE1Ubi6lQHZZOVfOUUI6tCV77tuU7NtPl9BQ//8fpTk5x8rlZvnLle7aTSuHneiVCyicCwcGDaRVr164sg9XKpNQdh6v3UbBqp85MGggSTNmEPvRu4R26UT23Ll4du0mrsLvB5/NRua2baBN2k6YQP4dd1D4/Q/YgEgqKziwH9+775I0YQJH33yT4u+/x+4zK5UrOpCGLSSEuJEjOfrue2S/MYtwIDw/H1vF1rmMNRRFNCPy/PPJX7YMFi2mTdmhsIIi7N6ysplrKYqMI/L88ylYuBCWr6VVZJT/NKGFJTg8XlizkaK4RCLKynm3bqdCOxsAhVs2E5KYSPj555O3dAk5+3eD89jxnBBAQc6axYQnNCf6JOXKy2avWUzQ55/S/IoryJv1ZpXlivbvxvz6S+Juv5PM//6bw9s3EHJcmfJyjvXriJnxHJmff8rBNYsJDTqxAba8XMT553P42685uGYxhEAIoM2qy+UtXULaxhV4QqyAJ1gBvhPLlNc/LxhKy+oYZAAnKQdWWbf1twrFm1cTER5G+Pnnk790CbnHXY/8ICgJgtw1iwmdfw6xJykHkL9lLfbPPyVuwgSOvvxilWUAivfvRv30I7F/+jOH//tv0jesIOYk5Zzr19Fs4j1g+mDu72DjfNjsAdt7VqEOw+CSF05880k0meAoIcH61ZGRkUFiYqJ/f0ZGBueee66/TGZmZqX3eb1esrKy/O8/3iOPPMLkyZP923l5eSQlJZ1YcPz4k1euvLmjXFlLC8DhvBKW7D5Kh7hQurWIZNOhXLav2YvP9FLsK6D9ef04r207Unas5cfduzireQKjzx3IK4vm886qDeQ+/SQD27bh5Wt+y94r2vHp5gJGdOlMp9YXct/nb7GkxUFo6QWVjrnvWdK/OosXLvs93tHtKU1MZkrKMyxhJSgvSvnA8ILyseaHTJ4Z+iSuZj/j6XslD/38EEuDl1b6Npa3yOPvF/ydhNRPiQvtxeSf7mF5j8XQg+PKFfH3C/7OkR0fc0FYNFN+uoc15hKMizRrdXkZNzMunEF0aSkFq/5LdNdr0ZQy9evJpGYvxuit+beGzYk+/jryWZrl5OLe8hHxZ12LLzKSqSn3kXrYavl41H4ej415lg7Z2Wzd/CGd2l+OLyGRlz6Yws7ojVyQqQgqhaBty/mg/Tauv2MGnddugJ7d+fKlyeQe3UZc2YN03IrNqBVb+H7jbkb+4Tk6lnigbx+WTp9C5JatDPSC0wNOL7ieeZ+MHw/R5pkZ9MgJxva7azj4wAP0W7yVfv6rsZWMkmhajr6JwV+n4Wzh4eA//knfRdvoW+mqbSPDHUPLZ56h3yef4OpvcPDue7hm4aLj/ufaSbpvFS2feYaWH31E8Flnc/D/fs+tixYfa17buJn0vEh/Gce113LwgQc4Z/ESzqnUFJdJmrbOlfjRR7jKyrVavJs7AFRWWdl9pA0srLJcK+D8PVmgsuF/+8n4MY2WTz9dqVzLxbtpWV79PQvJ2PN7Ws6YwbkrWuG6/2oOPvAA0Wv2Eo0NKjwCzW8Xk3PuuyRMmMDRN94gd8c+nBwLPsrl7zxA8K5dxN9+O0fffBM+XwAq0vojoqyMBnL2puEMCiL20akcnTOH0vk/4cQgP7xCOHDkKISEEDtrFof//RZ7Du3GE67w2MBjV6QmRFJqgMeexcC2LWh5zz0c/PIjfojMgh6h6Ao/+8qMArIY2v64cr2jrLqVl81YwrDWI2h516zKZSrQhrLKLZpPy3/+kwNff8IX8Vl4W0ThtVFWP/DaoHWP8xl94w0Ub9qEa8YzzOvuZdv2JZgKdNnLVNC5czJ33DQa985dhN80mg9LF5K6fQl2NDYNNq3p1Hkgo8a8hPtAGhFtk/jZvZBDWxfi8AVhQ2PXVtmu/a6n1w1/4fDOTcTefDOe958kddlcq6XKtGNo69HTtv9o4kf/haO7txB9883se+8J9qyca/3wKdBaoZSdNgNuIf7av3A0LZWYW28l9eun2LH6TUxnPqZdY9qga7//o92gBzlakkXMuHHsWvg0W1a8euya2QoB6NZ/IlHJ93O0+Cgx48Zx6OfpHFz2Dxxa49Qal6kJN7KJT76X2KG3UOopIXzAAPjhSYoXvVJWNY0BBA38PSEX347P9BF30y2ExO+jYOGr+LBhKhs+bPiUjYiBtxM+5A/4DEXcTbdgtsjm6KI3KdHhle5rbPJYwof8Hp82aWZ34OmqyVj6b3xmONnaQGNgYpAw8EbCB9+OT5uEjxtH85/fIHPpfzAw0aaPfNMkPvkWwodM9JcpWvAyR5fMIUhBkFHeTe8g9LyJ/s8MHzeOkgUvk714DgYQoUAZCoUi8rw7CbtwIihF2LhxlC54hdzFc/x1j1AQYSgiB44n5sKJoHWV5QBaDRpHzEW3ABAz8ffQ1TyujFW/yIFjiB52LwDNbroFEnPJWvhvtDLQKEwMTGXQLPlGwi68/VgKQqdLIPcgJPrA0KB9cGQHbPnshN8XJ9PkErLvv/9+pkyZAliBTPPmzU9IyF65ciV9+vQB4Ntvv2XkyJENkpCdX1KK3W7y5c7vGdF+MA8teJIF+35C2YpRhsdfLrlFMs8MfoaPdnzEtZ2u5YGfHmDJoSWVznU6ZcpN7jOZceeMY/bG2Ty36rmT1u9U5Qxs2JWNyX0nc1O3m3hnyzu8uOpFTNP0P5RvPedWth3dxsr0FdzbbxKjzxrNvK3v8PLyl+gX35fOsV2Yu+G/NM826bHLy/Cofpz34NPkfvABUaNGcXDKFAoXLT6hXqGDBtJyxgxyPvzwpOVOp0y55g/cT2zZX8uZzzx70utRm+XO5FymoayHms1A2e1gGLS4bwoxN91E1ty5HHphBlopTG8pmF4UGpvdSeJ9DxFz441kvfMOaS8+jc9bVPZQLm9SAZsrlFaT/kLUtdeS8/HHHHjxcbylhSfUy+4MpdUfHiXqmmvOuFylMp9/zr7XH6fEcxTt0JgOjekA7dDED76eDmOeIHfPdiLbdmbHu39j77J3MZUdU1kPIxODjkMm0PXy28jZtZmojt3Y8vVbbPnpP1B23QC0Ad0uHEe3i24m58BOolt1ZOOS91i7aBamXaFtCtOA3sPuoec5V5JTmElUaHPWbfuS5Yv+AcrwP8BRiv7Jd9Gz06XHyu34muXLXz/hevTvfwc9O40kp+gwUSFxbNn5HRuW/QsHBnYMHCjOHngnSe0uwF2SiysoksN7l7Jv8RsYgIGBoUBhkDRwPJGt++MtLcDuDCN//0oyls7BQJVVSxGccBbxA28Hw46v8DC20DgwvRxe+iYlR7aX3XdFUFxn4vqPt8oVHcEW0gxMH0c3fII7Px1sLlzRbYntMgyUgel1Y9hdoDX5+9biLcrCQGEohTO2Da649tb/qyX5GEFWAOA9vAcz64D//zUjJgl7M6s9SZcUoILCysrtxszaAz4voDFi22KP7wJodOFRVGgsoPAd3Y2ZdwgMG0ZUK2yR1h+t2lOEcoRYn5+XhlmQ6f/7VIU1xwgv++O5QjnyM6DwMLo8fA6Ng/CyP5g9xeAo6x7NT4fCw6cuU5AJRVlgGCgMCImxXgBeN9jLmmKKssF9LOcIVySERP9yuaBICC4r5ysFm/PEcr90rvIL4oqo+lzF2eCukEJSsVw1vwddoZzWVv1VFXXTRVlQnFtWNQ1BUaiqrltxNrjzy34GFbjCrfoBmB4wHGXlcqAk28o7Mj1gDyLPFkVkdOxpPb8bVXBUUFDAzp07AejVqxfPPfccQ4cOJSYmhtatW/P3v/+d6dOn89Zbb9GuXTv+8pe/sH79ejZv3kxQUBAAl156KRkZGbz22mt4PB7GjRtH3759mTt37mnVoTaDo483rSRHbzh1oGI6UdrFI8mTGX3Wb3l/68c8u+x17IaB3TBw2m04bQbhzhBu7zmei9oM46cDP/HO5nfxej04tA2nsuHARmRQJOe1v4DzW57Phr3L6d6mP5sOb2T7lkW4c7NxYMOhbURHJ3B2n0uIC2nOod0baNm+OyW+EvYt+4HSI4dJ6HwuhmEQ27k7oMjbu4PINp3QaLJ3bgYge+92QuISSex5HloplIac9H1EJbTG9HlRKNLefJ2Cd99HZxz2f7v+YGDWbDJnzKg6GVMpmk+ZQuz4cRydPZvMGWXXzf9HukIpRdzkycSOHUPW23PJmj0LHA5UcDDaUNgjo7CFhhLSrx/Ro0ZRsHQJYcnJ5H3zLcWbN6JL3XgPp4H24mzVnuCefQgfNoyChd8TdsEwitasxb1tI+5da1EOG9jthA64iOCeA7BHRVK8cTnB5/THLCqhZPs6ilfNBxTB/YYT1LE7RkgQxZtWEXx2X8ySEkp2bqRo5feABqUJ7TscV+eeGA4HxZtXEHx2PzSK0j2bKVoxH6UMQBPcdyiu9t3B9OHZ8hOOroOsX3DzH0MtfN66HB2Gwe/+jba7UDYn2ucB04f3x3/gTV0Dhgttc2HvNBDHeTeAYWBmHcKIaQHapHT1l3h2rfVfX0eHXjh7XWo9JLPTMKITQZu4132HZ/cGq1lGKRwde+PqcSGg8GVnYIuOBzTujYsoTV0HSuFs3xNXt4GAwsw9jBEZB2g8u1biPbgNDOte2jv2wx7fCUwT35Fd2Jp1AMPAd3g3vn2rrV+c9iDs7fpjhERiuovwFuRij4jBcLgwPW58BTll/3sY2EIjMRxOTE8pvqJ8bCERGA4HpteDz10IKGxBIRg2B6bpxfQUYziCMQy7f7vc8fsrb5dUKBdUtt+H6XNj2FwYhq0sP6gsB9GwQ9k+/y/68m1f6bGfAZuz8v7jt8HaLn/YmV7rZditF1jltGk9ZCqV85V9boXMjuNbv4VohKrz/G5UwdGCBQsYOnToCfvHjBnDnDlz0FozdepUXn/9dXJycjj//PP5xz/+QefOnf1ls7KyuOeee/jss88wDINRo0bx0ksvERYWdlp1qM3g6MttyxnUtgtf7Pqa67pcy/y9P7ErOxWXLYhQRxihjnCC7cF0imlLm8hEij2lBDucHM3PoqAgB7vpw2b6cDmCiWpu/dVUlHmIkDjrL6PsDWvwHM4E00fE2T0JSrQ6M/LWrcGbm4MjthkRZ3dHK4X3yGGKU1MJbt8BR2wsAO49ezALCjHCw3G1aQ2ALzcXs7QUR3w8mCal+/dbZcJCcSYlgWHgycjAd+QoRlgo9sREDIeDotWrKVy4CO3z0uy22zg4efKxlhybjZA+fYi6cTQRF11EaVoazhYtrF/I2qR47Up8hzNwtOuAq8s5ZaOlfHh2b8bRvpv1EDAM3OuXgNa4eg4se7iYeHZswNGpe9noJRvuNQvxbFmN67zh1ntNE/fyb9C5hzGaJeDsNdx66B7YhnfrImztzsXe/lzrIeLzorfPR3W+yPpMbaIXvYo+uBqV1BuVfLf1oDF9sHM+dBxW9sAy4fu/WX8JXzzVKqN9sP5d6HE9KJu1/dl9sHcRtBkEVz5/bP+6eVa58offB+NQO771Bz0YduuhtnI29B3n39afT4KYjjB4Stm5gLyDEJFY9leXAZlb4MhOiO0I8WdZ9+PwVlTWHohpD3FlPzuHt0P2boj+hX1HdkD2HohpC7GdrH1Hd0LOXohqY31O+T50hTI7IHsvRLepsG+X9b64s6w6axPSN0BJLoTFQ7PO1v8j3rIBE3aXPMSFECfVZIfyDxkyhFPFckopHn/8cR5//PGTlomJiTntVqK6Nrzjudzz/T2s3JvOhUnnM6LdMPJb5lNqluKyuXDZXDgMB0opfAUFsHMnnpgYYpOSCDuSi2fPAVydu+BongBaU7RxIzovH3dWHkFduxLTozfe7Bw8aWm4ImNQNhuejAxcrhBcza3mZM+RIzji47EFh+IMi8AWFOwPcHRxCcpmQxcV4Tl8GEd8PMruQGkwCwowgoJw79xFyaZN2GJiiB51LUffeovCn362htTm52Pm5/u7uErWrbO6uCZPpmTbdiKuuAJX166EjxiBs0UiaE3x0h+gII3Sw4k4e15otS40j8KTthZ7cGcr0DAMPDtW4929EfDh6NwbTBN7s7JUVNMEw4Z3zybMzJ14Q5zY21hBlaN1GxyOQlRiq7JWKU1QuyQoDgObC7CCKrsnHfu216DZJPB0hvduhfZDUYPuhUUvwe4f4Hf/RoXHwo5PoevF1l/6ZeU4rhxxXay6aR+8e1PVZdqeDxvetf7VJrx7c9Xlul4JO76FbmUjFefdaAVKg+6FrV+CpxDOvgZ15UvWccNuXZODK6G0GLwlENsB0FYA5AyBiLIsoNJCCG0O/q6HEnAEWUFNeDw4w4/tD4+3XuUBit1lnTeixbEuBp8HIltZLzjWGhLT/tgPgs9jfX55HXwesDkgpp31vvJWDW1C/NmAAluFX12OoDP6ORRCiOM1qpajQFBbLUdaa15c+gFvbn+cEO/ZLBk/F0NVPWG5r7iY4lWr0R4PKigIZ6tWOFq1xJOWji0sDCM8zN9aU87WLBZHfDxmfgGl+/Zhb9YMjcbRrBnFGzdZ+2JjCenXl6LVq/Fl5+DLzsYIDcUWGUlo8nnkz/+eks2bscfEEHX97zj84osU/LAA7+HD6JKS08/rsduJf+QRYm66kYJFi/AeOUpQ93OwBbnwHtiJLaEVjsQk3Eu/xGYUYW8ej3IEWf30zTpbfcy5+yEyyer33rcMErvD1i+gy2Wwdi70vsVqrdEaOg2HFbOgz62w6RM4+2pY9Rb0mwDbv4H5j0OfsXB4m1W/S6eXtc78Dj4oS6xP6AGLXoBBk+DwFghLgBFPwb7FVsvOijescpFJVqDS6RKrjgD9boN9S6F1snVem8N68Bs2KM6ygpVOF1stNs06we6frPeFxEDGRog/x8pZAGg/2Gplie0IB5ZbgUVwNOQesIIHr9s6b0x7KDoKIbFWyw1YZZVh5UUc3g5B4RDSzAqGhBDiV6bJthw1JZkF+XyyZTHYwGmEnjQwMktLKdm0yerKKpujyZebCw47tvAwzMIifEWFOJo1Q5eUYBYUokJCcMTGUrh4MSUbN+HeuRNPWhre9HSc7dvT8um/U7xqJeGDL+DA3XefMunZm3aIqGuv4eC9955QrnjdevJSviN2wgTyUlKwN48nZtw4jMhIbFFR2Mr+tSck4EpqhefwEUIHDKB05ybMfespzT+KefQwhmMQnvxDOFvGYwRVaAXwlkB2qtUK4SmGQ6th/Xuw4X24+IljLSopf4Ed31gBDcDqObCrLH+nYpndP1hlslPhu6nHPqf5WcfKHd4GMR2sgOzix62go9dN1r/Ze6wkzPw0SJ5obbvzYcCd1nkSe0B0W2t/SAzkH7ICtPJyAJEtj5UxPVZA1XHosTKJZd9DbLtj5XylVrnWycfKhcRY3Uuu8GPl3PlQkmdtH1hlJVQmnG21BsV1qdzaIoQQ4qTkt2UD8JmaRXu24jGLwQbBthOHIwNoj4eSbdvwZWdjj6881YDvyNFKLUVmcQnOhHhyl39OxIhL2H/XXVUGPZ4DB8j5+GNiJ0wga+47uHfuwt6iBapsRmFls4HNhvfwEfJ/WEDshAnkf/8DzrbtCO7TF1tMDPbY2LJ/Y3C2soKe8KFDcXXqhFlQeSSSERqMM6kVpTs2YKbvxgwLw9nzQooP7cAsKMLRthOOVkkYhvdYAFFRcQ6krYfP7j12vMtlVivQ/hXQ/3Yr4Mg9cCyPptMl1vGOwyFtHQy4w2qhySubk+jyGcfOH9ESOgy1cm/Ouxu6Xla5HscHH6bPCkqydh8LmNz5J5YD69/yckfKcmyi2loBWHG21U3kzrcCv7iuVuuOOweCoqxyR3ZYn6UUFB6xuptiO8GRbVCSA64oK48nc4t1Pq8bcvZDaREk9bPO6wyVPBwhhKgmCY4awKG8HA7mZ+LDGskSYj8xGVxrjXvPHrxpaVY3k1F1yxKAr7CQo08/TdiFg/3DvguXLcfeogWOhAQciYnYy/51nX02Id3PwXP4CNG/u47QgcknBDSAlWBdFviEDb4AZ/t2lcqVHy89cACzoBCzsODYdk4WeAoxgl04W3WkdNW3mJl7webAk5eNt+A7Qs6/Et/BLdgcPpThPTGwOLwNjmyHgb+HH5609ke0hAsfgnNvtBJ1bXYr4Ol2VeX3VgxUtGkFTp0urlzm+HLeEuuc0W2tQKboKJilVnBxYJU1PFdhJTaDNaS3KMsaVpt7oKzba6UVxKCwsp+1FawV5UKwNTsv6eutgE8p6xhA4VEwN1n5PAVuCHVB+jrr/GV5UaDKAqkia7isxw2hQZCx6dj5nOFWkBUaZ3W1uU5vkIEQQojKJDhqADsOp+Ex3Xi1NRw4zHliy5H30CE8e/dii4m15rI5CfeuXRyeMQNXp45E/fa3FC5dRsyttxI6ZCi6uLhS2VMGNKcb+JSPTKv4Pm3iO5KGu+Aori7n4D64Ce/BnRide1O86Gt8h9PR2MH0YQQFYQ+zobNSscfGWUGHO98KUKLbwrav4aenrdyZ386ycoCKjsIlf4NOIyC2rLUmP8PqNirIsIKDxJ5WK5FSVmtK2norvwes95fkWl1qaeug6AgEx0JUayvwKTp8bHbAwiPQsreVcFxqgrvAyvGJaGElHBvH3QutrQRmtJXPE1OW6AxWIFUeBJW/IlpW3rZOciwIimxZtt2i8n5UWQtQ2b+RrSoEWKrC50grkRBCnCkJjupZdlERu7IPEB0UhgcrIIkoHwFUxnv0KCW7dqFCwyrn4FSgtSb/22/Jmj2b0AH9afn88xRv2IgtMpLSgwdxtWldKeg5IaABzIJCSg8cOHXgc1w59959KJuNkk3r8R5IhaI8dGk+yuvGh4l5eC+2uBao7KN40/ajnA5rlJvTjnI4sIWHYQsLAbMYCioEb/kZsO5dSP4/yPqtlWC9+GVrCHv5SC9XqBUY5R2yAqrIpLIh6ibk7LMCGK2PtRgFRVqjtFTZ1MjZe60yNheENbdaf4KjIbRZ2cKfTuuYz2Pl6hh2CTaEEOJXSIKjerbraAa5JXl0iG2JqazgIzroWNa8r6AQ946doMEWHl7lOcziYo7+858ULlxoJU6/+CKl+w9gi7SWPagy6AkKpvTAAXy5eWiPB+31gtb48vMxi4oxQkPxFRRgRIRTsmOnlfQNoDW6pAi9rwDfoT3YwsNwr1mBgQ97kB1bsxBUaBIqNALlCELZDLAZOHuebX19OjI2wfdPWgnMrnArOTorFc66snK5gkyrlchbAs27WS1NNQleIn55JnQhhBC/XhIc1aMSj5dtRw4S4nJhKAOtilFAs1ArODJLS3Hv3IlZkI8tPgF7s2aYJcWVurxK9+4lc8YMXO3aEnv77QT36oXn8BFrivQy2ufDe/iIFfQEBeHJyMCTdghQVsK1w47hcJQFFhozOwszKxNlevHu3maNoiqbUVd5S7DZvBjBYPjyMNxBOLp1QIWGW8Ptz4TphTX/hdX/tlp6zr7WGvlVkAFRSZDtq5wjVHjE+jeh+7F5c4QQQohaJsFRPdqXc5TMoiO0iojF7fGBrQiAuNBItGlSmpqKNzMTe3w8SinMkuJKrT/5P/xA1r/+RUi/vrR8/nmK1q3DHh2DLrSCJ6013swMlDJQTgemz4f2lOJMaoXNZUMZuizVxYfCC95ia0ST6bVmb/Z5QHuP5d9gB3sUyhlqDae3OWrvYuQdshKtMzZZ2xdMgSGPWEnR7nzrVZ4sXZIHhZlgOK1JAMPja68eQgghxHEkOKonpqnZevgAhjJx2pykF+WhlBWFxIdGU7p/P6X79mOLjbVad6jcPXZ45kyOvvrasW60nVuxh9grLQ5oFhRgGCZBndpj2BVKeVHeIihNB48HyhYi9Sfv2srWWbLZweE6tu5SbeXZhDW3gq+KrT9aW5MmHloLHS+GrD1w5QtwzrUnDoMvT9I+sBrswdbkiKGxtVM3IYQQ4iQkOKon6fl57M/NIDbEygvKKi5r7TGdhOQVUZqfhxERgeFyVXqfWVBA1luziR0zBltYONE3XE/p+gVw9GClclprzCPZuNq0wF5g5RNZScYOK9HYEQRBESeOtqpLnuLKQ/Td+fDzc1a9fjvLmqn6t29YI82OH2YPVn5R4UprHa3gaAiOqr+6CyGE+NWS4Kie7DySTolZREtHDAA5xVYgoMxgXPsPQmxLbKHHDen3FuNL28Xhl18BDGInTMCzdxu6uAhCoisVNQuKMGIScLTuACEBsjxExdafLZ/Blw9Y+UK/nWWNTDv3Jms+noLME99reiEvHcLirNFkrqqT04UQQojaJsFRPcgpKmFH1gEiXaGosi6r3BIrOLL5glFeH/boCsGO9lnJx7kHyP/qe0L69CXquuvw7N2GvUU7zJxMzOxjAYXWGrO4BFf71hj1ERhV1V1WzhVu5ScVZFqvlbPBnQtXvAAD74U+Y+DgKmg94OTn93msYfYRLaxRabIWmBBCiHokwVE92JOdSbY7h/ZRZUuA+HwU5RwGA2xmECo25lhhd74163PhYUwveD3BtJwxjYJv/oczLgQzJxNntwGUbl7mD5DMwiKM0GAczWKq+PQ6cHx3WbnyGae3fQVL/gH7l1qj0MBaF2zQvZB70OoiOxlfqTXnUVQbaN7VmnhRCCGEqEenORGNqCm318fWwwcJttuxGXaUuxTnnv0UFWUD4CAYQymrtST3ABzeDIWHITiakqMmLaZNI/1vT+CItYbNm9mZlG5ehrPbAIzo5larUWExjvjmGC5nPX1TFbrLyru7tIbwRPjwdnj3Zmv1em1C4rkw6g3oe5s1RD88/uRdZKbXCoyi20F8NwmMhBBCNAhpOapj+3OySC88TGJ4FEZhIc59B7Hl5FFg9wLg1EHY3PlwONta7sIVDmGRmCVuzEIvB6dMIbhzi0prq5UHSEZYFJ59qRihITjiTtEaUxfKA6TI1rD1c2vx1ndvhl3fW99D55Fw1hXWCLPjk7KranUqzzGKSipbQb4Wpw0QQgghqkGCozpkmprth9MAD6F5JTj3H8Bwl+KLiaQ4w5rjKMQHjuxdEBFTtmCoFQTl/7Sc7I++wd48lmY3jjjx3NmZ+I6mYxaW4OrYGsNZT61G5UoLYPEr0OJca3HYRS9ZOUZD/gjtL7RafU62Un15q1P5fm1agVF4AsSdBfZ6/l6EEEKICiQ4qkOZBYXsyT5AYl4JwemHAA/KpbHlHabUtIKFEOzWEPuQY/lCZmkpuSkLAYi69EL/vEfHMwuKsIWH1F+uEVjdZzu/g6WvWoFRr5th40cw4C7oelnl1iBHcNVD9MsDJEewNcFjfpoVGMZ3s6YcEEIIIRqQBEd1aNfeTQRvX0V8biHKpcBloEsNTMNFqVEKQIgKwrBVbinJ/2kFZn4h9mbRhPbvWeW5tWliFrsJ6tQWw1mLXVCnGolWWgDpm6yZrTsMg+vmwJ5FENMOcved2EpU1RD9cuVdbPkZ4Iq0AiNn6MnLCyGEEPVEErLriMfjIXfZV8Qd2osOdeALC8fnisZ0RoI9CK9RAkAYNirOR22Wesj79mcAIkf+cquRPSaqliteXDnRGqC0CHYvsPKHdnwDnUbA9W9DXhpEJFplqkrS/iUFmdYw/YRzrNYzIYQQIgBIcFRHTK8Hs6QQImLQIZHWumAVjxtWzlG4smFTx25DwaKV+PIKsMVEEnbeuVWeW5smZlEJzoTmtdtqBJWDHGcY7JwPy1+HPmPhg/HWGmyXPAH5h6y12ap6ryP4lz+n6CgYDivgOtXQfiGEEKKeSbdaXatimTKtQRvFKCDKdqzlyPR4yP36J6Cs1che9e3x5RdiiwzDHltHQUVJnpVX1HqgtfTIlS9Ys1t3HgFJA8BTdPL3lneXnUpxjnUREs6WtdKEEEIEHAmOGkChD5TNDUC0smOUtRwVLF6NLzcfW1QE4cm9q3yvNk10SSnO1i1Rjlq+faYXUn+Gde/Ake1w8RPWxI27vod+t9XOvEPufPCWWMuIhMef+fmEEEKIWibBUQM4bHpAgdaKcMOOMkB7vcdajUYMPmng48svxBYRdizX6HSX8jhVObvLmoDy03utkWNg5RX1HQ9Zu6Hd4KpHnVVXaaF1jvizIbLVmZ1LCCGEqCOSc9QAsrzWBJDKDMKGwlCKgqVr8WXnYosMJ+z8PgDYkzpjRDf3v89qNXLjTGyOCos+FvBUlQRdPseQpywvqKpyxTmwdwmEt7CG5uengSsCRk6DG96GgnQoya1+ovXxtGnN+l2SB3FdraVBhBBCiAAlLUcNIMu0hvEbvmCUUhg+k9yvfwQg4pILMBxWkrVZkFNpHTVfXgG2yAjsLZIqD5vP3gNRbWH/MsjcDBEtoeNZsP1ba522chEtoeMwK8l6/btWwHTt6/DBOMjcCoMmQc/roVnnX5648XS5860gLCQWEjpAaHNQVSRiCSGEEAFCgqMG0L/HQI7mZ7AydR/KgNKVm/AeycYIDyXq6iuwRTXDu397pXXU3BuXoNMP4+rcBhXTBta8Dak/Qu5+yDkAzc+C375prXjfJhneGW3lCh2vwzD47Sw4ugt63wIpj1rdZkP/BIYNgiJ/eeLG0wmOvG4oPGKVjz8HIlvKWmlCCCEaBQmOGsD2w3t55pJn+Iv7eYw0L+6URQDE3X0brh6DKN28zF/WzM7Es+w9XH2uxFW8AdWuV9WBT/4hWPuOlUC9+t+QsxdiO5z44Tl7YctnVrn0DdBnXOWWnNOZuPFUTJ81TN/0QWQSxLS1Ai4hhBCikZDgqAEsPbCBXT+t5tnhz7Hj369iHskm7KJhRN88zt+FBoA2se/5FPvez1AqywpoFr8MR3dCm0FW8BHVyvo3oQck9oCCDDj3Rmgz8ORJ2tFtrXLNz6qdROtyJblWXlFoHMS0t3KipAtNCCFEIyPBUQMo1G52HlrGtG9n8sQNd5FriyF69A2Ubll+LDAqzcO55XVs2ZuhwzB0n3GQuR113t3Q5dLKAc3xC7y686vODzrdctXl70ILsYboR7SUxWOFEEI0WhIcNYASZc1xlLVmLbmHPyB2wgRKd2/2B0ZGznacm19DleagO14Cv52DZ9cGnNGuExOjjw94oOoE6tMtV13lQVZUG6sLraYj2oQQQogAIUP5G4Aba1215BbnEDVqFNnvzcOR1BEjKg77vq9wrn0aVZqD2e238Lv/ULziZ4yyhWpPWMPMEfzLCdRw+uWqo/CwNeKteTdr7iIJjIQQQjQB0nLUAKKiFD2bJXPDwHs5eO8kfNmHCekQi/PsAagj30PivXh3LEX3ugfPigVQnIstPO7YCSoGNKebQH2midYVmT7IT7eCoeZnWblFQgghRBMhwVED6NKsA08MfpiV/3qF2EWLCevbCUfKXajsW9AXPYpv3ed47N3RB3bhzcwiuGt7lHFcI191A5ra4iuF/Axr6Y+4syAoov7rIIQQQtQh6VZrAG2jknjgpweI2m8t1eEqXovRsgd60CS8Wxehw9uBUphFxRghQdgiA6S7qrQQ8jMhuh0k9JTASAghRJMkLUf1zGdqZm38F8rwctvOloQD9nNHoq97ltJNyzHzcwGrC0wXleBMSsRwBsDIr6Is8JZa3Wgx7awJI4UQQogmSIKjepbr0yjDWlvNefQIAPYBv8WbmVYWGFlMjwcMA3tUA0+gqE0rX8nmghY9ITxR5i4SQgjRpEm3Wj07bFqBkTZtuKwR/diy1mBPbFdpkVkzvxBbZDhGeGhDVNPi80DuIXBFQotzIaKFBEZCCCGavCYVHP31r39FKVXp1bVrV//xkpISJk6cSGxsLGFhYYwaNYqMjIx6rWO2zxqS7yIEVegBwNg737+GmhHdHG2aaI8XR1wMqqGCEXe+lXgd1coKjEJiGqYeQgghRD1rUsERwNlnn01aWpr/tXDhQv+x++67j88++4z333+fH3/8kUOHDnHttdfWa/2yTSsg6uiKRZdagZIRHVtpkVkVEo0RGowtsgESnsuH6XvdkHAOxHcHZ0j910MIIYRoIE0u58hut5OQkHDC/tzcXN58803mzp3LsGHDAJg9ezZnnXUWS5cu5bzzzquX+uVqKyBSaT4ADKeJCrVaZcoDJBUSjqNZLIbTUS918vMUQeFRa96iZp2ltUgIIcSvUpNrOdqxYwctWrSgffv23HTTTezbtw+AVatW4fF4GD58uL9s165dad26NUuWLKm3+uWbVqJR6FErOLIH+dCuaP9xb8ZBPDs3YY+ux1Yjra3ZrovzrKCoRW8JjIQQQvxqNamWowEDBjBnzhy6dOlCWloajz32GBdccAEbN24kPT0dp9NJVFRUpffEx8eTnp5+0nO63W7cbrd/Oy8v74zqWIDVrdas0MolsgebaOexOpkFhdiiIjHC6ikR2+u2AqOgKEjobLUaSdK1EEKIX7EmFRxdeuml/q979OjBgAEDaNOmDe+99x7BwTVYOwyYNm0ajz32WG1VkeKyddWaFWqgvOUoCqAsEduHIza6fhKxi3OsrrSothDbQXKLhBBCCJpgt1pFUVFRdO7cmZ07d5KQkEBpaSk5OTmVymRkZFSZo1TukUceITc31//av3//GdWppCw4iiu0co/swSY4rC40s6gYIzQYe1Qtd6lpbS37UVoEJXlQdBTyDoIGEnpYi8ZKYCSEEEIATazl6HgFBQXs2rWLW265hT59+uBwOJg/fz6jRo0CYNu2bezbt4/k5OSTnsPlcuFyuWqtTm5lBUexZcGRCrH7Z5s2i0pwtWmJcpzktmizwkuD9pX9a1Z+mT4wPVbwA6AAw2G9bHZrwdiwRGuYflADTzIphBBCBJgmFRzdf//9XHnllbRp04ZDhw4xdepUbDYbo0ePJjIykgkTJjB58mRiYmKIiIjg97//PcnJyfU2Ug3AUxYcRRVaeUwqPAgAs7QUZbdjj64iWDF9UFA2H5MyTv4yHGDYwREEjlCwO8HmLAuKHNbXNiccv4itEEIIIfyaVHB04MABRo8ezdGjR4mLi+P8889n6dKlxMXFAfD8889jGAajRo3C7XYzYsQI/vGPf9RrHX1GMQChZRNAUjYDtllQZCVihx7XveXzWPMOhcdDTAcr+DFsZQFR2b/+bUmkFkIIIc5UkwqO5s2bd8rjQUFBzJw5k5kzZ9ZTjU6kjWIU4CoLjsyICCsR2+vD0ey4GbE9xVB4BKJaQ1xXq0VICCGEEHWqSQVHga7Up8FWjKtUY3ishCAdGYVZWIwtJAR7ZPixwu5869WsE8R2tLrFhBBCCFHnJDiqR1mmD6U0UQXWtrKZ+MKiMYtLcLVtdSwRu+io1Z3WvBtEtZEcISGEEKIeSXBUj474PGCDqHw74MMebGIa4SiHHXtUpDXyrCADbC5IPBciEhu6ykIIIcSvjgRH9SirLDiKyXcCbuxBPnxGGIbDiRHkgLxD1tD6+LNl+Q4hhBCigUhwVI9yTCsJOzbf6iazB5u4bWGAF1WQDuEJ0Pwsax4iIYQQQjQISWapR3namvixWaG1bQs2USrIWsYjqo01W7UERkIIIUSDkuCoHuVra+LHZgU+AHSIHWV6UMHhEN9NhuoLIYQQAUCCo3pUiBUcxRZ6AfCFOlBaW0t6yFB9IYQQIiBIcFSPirG61SILrZYjT2gwCo2ySeqXEEIIESgkOKpHJVjrqoWVtRy5w0KwmWUtR0IIIYQICBIc1SOPKsHm0wSVWLNju8PCUXBs8kchhBBCNDgJjuqRxygmqmykGkpTHBqBMjXYnA1aLyGEEEIcI8FRPTKNYv/SIfYgkxJnOIbWKLu0HAkhhBCBQoKjeqI1aKOY6AKrS80e7KPEFlqWkC0j1YQQQohAIcFRPSkyTZTNTXR5y1GwD7ctHKUAaTkSQgghAoYER/XkiM8aoRZV1nJkBIPPcGFoZI4jIYQQIoBIcFRPssqCo/J11QixWyPVAGWzNVi9hBBCCFGZBEf1JMtnTQAZU6AAMEOdKKUwlAIJjoQQQoiAIcFRPcnVHgCiC61uNU9YMIZSGFbTUQPWTAghhBAVSXBUT3LLFp2NKjQBKA0LQSmFUgYYchuEEEKIQCFP5XpSoEtRWhNWZLUclYSGY0MBGmXIaDUhhBAiUEhwVE+KcBNeBDYTQFMUEYnNsKGQnCMhhBAikEhwVE9KODbHkc1lUmwPt4bxAxgSHAkhhBCBQoKjelKiSvxzHNmDTYpsIdgMBUqhJDgSQgghAoYER/XEo0qILlt01h7so8gIxkBZEx1Jt5oQQggRMCQ4qideo9jfrWYEK3zKjk1jjVSTliMhhBAiYEhwVE9Mo9jfrUaoAw3Y0YCBssltEEIIIQKFPJXrgc/UYBT5W450qAvQGFpJy5EQQggRYCQ4qgf5pokyfP6WIzMsGFOb2BQoCY6EEEKIgCLBUT04XLbobHnLkTc8DBTYyluObDIJpBBCCBEoJDiqB1k+D2jtH61WGhGJ1hpDmWDIUH4hhBAikEhwVA+ydSkhbnBaDUiURkQDYJgA0nIkhBBCBBIJjupBruk5NozfYVIaHGV9jbZajZTcBiGEECJQyFO5HuRrN1GF5bNj+3DbwwCFKpvnSEnLkRBCCBEwJDiqBwW6lKiyliN7kEmpLRTAWlvNUNJyJIQQQgQQeSrXgyJK/N1qKsQoC4Y0Smur1ciQ2yCEEEIECnkq14MS3ESXzXGkQhxlexUGWtZVE0IIIQKMBEf1oFSV+LvVzDAXYK03i9You+Ok7xNCCCFE/fvVBkczZ86kbdu2BAUFMWDAAJYvX15nn+VRJf45jsywYAC01thNJDgSQgghAsyvMjh69913mTx5MlOnTmX16tX07NmTESNGkJmZWSef56uw6Kw3PAytQRkK0DLHkRBCCBFgfpXB0XPPPcftt9/OuHHj6NatG6+99hohISHMmjWrTj7PNIqPLR0SEYmpNQqFoU2Uw1knnymEEEKImvnVBUelpaWsWrWK4cOH+/cZhsHw4cNZsmRJrX+eR2ucZhGhbmvbHRmNxgqOFBqkW00IIYQIKL+6Pp0jR47g8/mIj4+vtD8+Pp6tW7eeUN7tduN2u/3beXl51fq8bA3RZRNAKpuJOySqLDgqmyHb/qu7BUIIIURA+9W1HFXXtGnTiIyM9L+SkpKq9f4sbfqTse1BJm5HBGisliOtwJDgSAghhAgkv7rgqFmzZthsNjIyMirtz8jIICEh4YTyjzzyCLm5uf7X/v37q/V52Zj+ZGxbsInXCMLERClQSsnSIUIIIUSA+dUFR06nkz59+jB//nz/PtM0mT9/PsnJySeUd7lcREREVHpVRy6+Y4vOhthAKbQGA4WhkNmxhRBCiADzq2y2mDx5MmPGjKFv377079+fF154gcLCQsaNG1frn5WPlxZlLUeEWpfb1BoMhfIhM2QLIYQQAabGzRbjx48nPz//hP2FhYWMHz/+jCpV166//nqeffZZHn30Uc4991zWrl3L119/fUKSdm0owEtUWc6RDrVmx/aPVlMKDAmOhBBCiEBS4+Dorbfeori4+IT9xcXF/Pvf/z6jStWHe+65h7179+J2u1m2bBkDBgyok88pVKX+pUN8/tmxKRutplCSkC2EEEIElGo/mfPy8tBao7UmPz+foKAg/zGfz8eXX35J8+bNa7WSjVmJKvUvOusNDy/bq62cI5TkHAkhhBABptrBUVRUlDXKSik6d+58wnGlFI899litVK4pcBvHWo68ZcncJqY1Q7ZCutWEEEKIAFPt4OiHH35Aa82wYcP48MMPiYmJ8R9zOp20adOGFi1a1GolGzOvLiGiyPraHWFdK1OXTQBpGBIcCSGEEAGm2sHRhRdeCEBqaiqtW7e2korFSYWWFGEAWmncEdFle/WxnCMZrSaEEEIElBonvGzZsoVFixb5t2fOnMm5557LjTfeSHZ2dq1UrimIKi4bqhZcNjs2YAI2DcomLUdCCCFEoKlxcPTAAw/41xnbsGEDkydP5rLLLiM1NZXJkyfXWgUbu6jiEgCMYI1pOAHQWlsXXtlkniMhhBAiwNR4HHlqairdunUD4MMPP+TKK6/kqaeeYvXq1Vx22WW1VsHGrFhDVKEXAFvwsThUa7AZypoIUkarCSGEEAGlxk9mp9NJUZGVafzdd99xySWXABATE1PtleubqqPa9C8dYg+pGIdqKyo1bLLwrBBCCBFgavxkPv/885k8eTKDBg1i+fLlvPvuuwBs376dVq1a1VoFG7MsNNGF1hxHOszl329qjaFNK5ldutWEEEKIgFLjlqNXXnkFu93OBx98wKuvvkrLli0B+Oqrrxg5cmStVbAxy9E+/xxHZliIf79GY9cGGAbKJi1HQgghRCCp8ZO5devWfP755yfsf/7558+oQk1JHj7/7Ni+8DD/fg0YWoOS0WpCCCFEoDmjbOBdu3bx5z//mdGjR5OZmQlYLUebNm2qlco1dvl4/S1HpWWzY4MVHNmUkkkghRBCiABU4+Doxx9/pHv37ixbtoyPPvqIggIrCli3bh1Tp06ttQo2ZoWUElU2zVGpfwJI0JjWhZfgSAghhAg4NQ6OHn74Yf72t7+RkpKC0+n07x82bBhLly6tlco1dspdhN20vi6JbObfr/2j1QyUBEdCCCFEQKlxcLRhwwauueaaE/Y3b96cI0eOnFGlmoqwonwASoM0pa4K3Wrlk0AaVlK2EEIIIQJHjZ/MUVFRpKWlnbB/zZo1/pFrv3bhZUuHeEM0Wh1rIVIolKlRNkdDVU0IIYQQJ1Hj4OiGG27goYceIj09HaUUpmmyaNEi7r//fm699dbarGOjFV5sTZLpC658mTVgA5RdhvELIYQQgabGwdFTTz1F165dSUpKoqCggG7dujF48GAGDhzIn//859qsY6MVXlQKgBlSOa9IAcrUYJeWIyGEECLQ1Ljpwul08q9//YtHH32UDRs2UFBQQK9evejUqVNt1q9RCy+y1lXToc5K+zVWzpFMACmEEEIEnjN+OiclJZGUlFQbdWlSTNMkotAaqmYPDal0TCmF0qa0HAkhhBABqEbdajt27ODDDz8kNTUVgC+++ILBgwfTr18/nnzySbTWtVrJxuhIcQGRZeuq2cNDKx3TGgw0SoIjIYQQIuBUu+Xo448/5ne/+x2GYaCU4vXXX+fOO+9kyJAhRERE8Ne//hW73c5DDz1UF/VtNA7kHSW6bHZsFRlV+WBZ8KgclbvbhBBCCNHwqt1y9OSTT/Lggw9SUlLCq6++yl133cW0adP46quv+Pzzz5k5cyZz5sypg6o2Lun5Wf7ZsT0VZscGQClrbTUZyi+EEEIEnGoHR9u2bWP8+PEopRgzZgylpaUMHz7cf/ySSy5h7969tVrJxuhI5gGCPNbXJVHHZsemrMdRAdhkAkghhBAi0FT76VxYWEh4eLj1ZsMgODiYkJBjCcfBwcG43e7aq2EjVXJwu/WvU+MJivTv14BSYChQSoIjIYQQItBU++mslEIpddJtYdGZ+wEoCsWKhsqYWmOgMJQNbLKumhBCCBFoqp2QrbWmc+fO/oCofH4jo2yNMBmpZjGyMgEoCTGoGDpqTCjfY8g8R0IIIUSgqfbTefbs2XVRjybHkZsDWMFRcIX9Gis0MlDSciSEEEIEoGoHR2PGjKmLejQ5rnxrXbXSYDvBQM8howiPbs73H7xiBUYKlCHBkRBCCBFoaqVfp6CgANM0K+2LiIiojVM3WkGF1rpq7mAXPYeMIiaxLVlpezC1CUphwwAJjoQQQoiAU+PhUqmpqVx++eWEhoYSGRlJdHQ00dHRREVFER0d/csnaOK69bgIgO5XjPMHRusWfAhoDAWG9Z+GraQQQgghTlDjlqObb74ZrTWzZs0iPj5eRqwd5+z7Hyen9TnEXH1rhcAIfFqjsIbxK0nIFkIIIQJOjZ/O69atY9WqVXTp0qU269NkZH38EXETJpCfvt8fGEFZQrapMWxKJoEUQgghAlCNn879+vVj//79tVmXJqXZjTeRtXUdYfGt6Dlk1LEDWqO0xjBsoCTnSAghhAg0NW45euONN7jrrrs4ePAg55xzDg5H5XXCevToccaVa8xMYPF3/6V/8ATiWneh55BR/hYkGxplGDKUXwghhAhANQ6ODh8+zK5duxg3bpx/n1IKrTVKKXw+X61UsLHyeqzRass/n0XyNXcTk9iWnkNG8dM3/8EwwWazSc6REEIIEYBq/HQeP348vXr14p133pGE7F+wbsGH/nmONBoDa106yTkSQgghAk+Ng6O9e/fy6aef0rFjx9qsT5NV3qWmwco7Muxgk5YjIYQQItDUuOli2LBhrFu3rjbr8qugNdjRYCiZIVsIIYQIQDVuurjyyiu577772LBhA927dz8hIfs3v/nNGVeuutq2bcvevXsr7Zs2bRoPP/ywf3v9+vVMnDiRFStWEBcXx+9//3sefPDBequjRmOz1g6RGbKFEEKIAFTj4Oiuu+4C4PHHHz/hWEMmZD/++OPcfvvt/u3w8HD/13l5eVxyySUMHz6c1157jQ0bNjB+/HiioqK444476qV+WlvNddZoNelWE0IIIQJNjZ/Ox6+lFijCw8NJSEio8tjbb79NaWkps2bNwul0cvbZZ7N27Vqee+65+guO0NgAlIGS4EgIIYQIOE1uuNT06dOJjY2lV69ePPPMM3i9Xv+xJUuWMHjwYJxOp3/fiBEj2LZtG9nZ2VWez+12k5eXV+l1JkxtYtPaGqkmI/yEEEKIgFPjpouqutMqevTRR2t66hq799576d27NzExMSxevJhHHnmEtLQ0nnvuOQDS09Np165dpffEx8f7j1W1YO60adN47LHHaq2OGrChUDbHL5YVQgghRP2rcXD08ccfV9r2eDykpqZit9vp0KFDrQVHDz/8MH//+99PWWbLli107dqVyZMn+/f16NEDp9PJnXfeybRp03C5XDX6/EceeaTSefPy8khKSqrRucoZIPlGQgghRICq8RN6zZo1J+zLy8tj7NixXHPNNWdUqYqmTJnC2LFjT1mmffv2Ve4fMGAAXq+XPXv20KVLFxISEsjIyKhUpnz7ZHlKLperxoFVVTQauwZll5YjIYQQIhDVavNFREQEjz32GFdeeSW33HJLrZwzLi6OuLi4Gr137dq1GIZB8+bNAUhOTuZPf/oTHo/HP/VASkoKXbp0qbJLrS5oXZaQLcGREEIIEZBqPSE7NzeX3Nzc2j7tL1qyZAkvvPAC69atY/fu3bz99tvcd9993Hzzzf7A58Ybb8TpdDJhwgQ2bdrEu+++y4svvlip26yuaaVRWstINSGEECJA1fgJ/dJLL1Xa1lqTlpbGf/7zHy699NIzrlh1uVwu5s2bx1//+lfcbjft2rXjvvvuqxT4REZG8u233zJx4kT69OlDs2bNePTRR+ttGD9Y18lQSlqOhBBCiABV4+Do+eefr7RtGAZxcXGMGTOGRx555IwrVl29e/dm6dKlv1iuR48e/Pzzz/VQo5NTWqMczl8uKIQQQoh6V+PgKDU1tTbr8atiaC0J2UIIIUSAqnbOkc/nY/369RQXF59wrLi4mPXr1wfs7NmBQVlrqxlNbv5NIYQQokmo9hP6P//5D+PHj680y3Q5h8PB+PHjmTt3bq1UrulSYJNFZ4UQQohAVO3g6M033+T+++/HVsXD3W638+CDD/L666/XSuWaJo1hKJQhwZEQQggRiKodHG3bto3zzjvvpMf79evHli1bzqhSTZtCKQUSHAkhhBABqdrBUWFh4SkXX83Pz6eoqOiMKtW0aRRIt5oQQggRoKodHHXq1InFixef9PjChQvp1KnTGVWqSdNgIC1HQgghRKCqdnB044038uc//5n169efcGzdunU8+uij3HjjjbVSuSZHg1JWt5rkHAkhhBCBqdrzHN1333189dVX9OnTh+HDh9O1a1cAtm7dynfffcegQYO47777ar2iTYFPa5RSVkQq3WpCCCFEQKp2cORwOPj22295/vnnmTt3Lj/99BNaazp37syTTz7JpEmT/Iu6iso01uzYKAVKgiMhhBAiENVohmyHw8GDDz7Igw8++Itl33nnHX7zm98QGhpak49qUjQmSoPNZkPZZBJIIYQQIhDV+RP6zjvvJCMjo64/ptFQaCvfSHKOhBBCiIBU58GR1rquP6LRMLWJoa1FeiU4EkIIIQKT9O3UI63LFp1VBspW4zV/hRBCCFGHJDiqR6bWoE0Mm7QcCSGEEIFKgqN6pNHYtIEyDDDk0gshhBCBSJ7Q9UhrMDAxDDtIt5oQQggRkOo8OGrTpo3Me+SnQWtrKL90qwkhhBABqcbB0ZgxY/jpp59+sdzGjRtJSkqq6cc0KSZmWUK2kpYjIYQQIkDVODjKzc1l+PDhdOrUiaeeeoqDBw/WZr2aJLNstJp0qwkhhBCBq8bB0SeffMLBgwe5++67effdd2nbti2XXnopH3zwAR6Ppzbr2IRolAbDZrOSsoUQQggRcM7oCR0XF8fkyZNZt24dy5Yto2PHjtxyyy20aNGC++67jx07dtRWPZsEE+uCK7vkYAkhhBCBqlaaL9LS0khJSSElJQWbzcZll13Ghg0b6NatG88//3xtfESToLXGhgRHQgghRCCrcXDk8Xj48MMPueKKK2jTpg3vv/8+kyZN4tChQ7z11lt89913vPfeezz++OO1Wd9GzRrKL8GREEIIEchqnBWcmJiIaZqMHj2a5cuXc+65555QZujQoURFRZ1B9ZoabV1wmwzjF0IIIQJVjYOj559/nuuuu46goKCTlomKiiI1NbWmH9HkmFpLy5EQQggR4Grcrfab3/yGoqKiE/ZnZWWRl5d3RpVqqqzlQzTYnA1dFSGEEEKcRI2DoxtuuIF58+adsP+9997jhhtuOKNKNVUasGlQdpnjSAghhAhUNQ6Oli1bxtChQ0/YP2TIEJYtW3ZGlWqqNGAoA2Q5FSGEECJg1Tg4crvdeL3eE/Z7PB6Ki4vPqFJNlcZEoVGGtBwJIYQQgarGwVH//v15/fXXT9j/2muv0adPnzOqVFOl0diVIaPVhBBCiABW4yaMv/3tbwwfPpx169Zx0UUXATB//nxWrFjBt99+W2sVbEq01hhKoQwJjoQQQohAVeOWo0GDBrFkyRKSkpJ47733+Oyzz+jYsSPr16/nggsuqM06NikKpOVICCGECGBnlPxy7rnn8vbbb9dWXX4FFIZSoGTRWSGEECJQnVFwZJomO3fuJDMzE9M0Kx0bPHjwGVWsKVKAkpwjIYQQIqDVODhaunQpN954I3v37kVrXemYUgqfz3fGlWtqNGUzZEvOkRBCCBGwahwc3XXXXfTt25cvvviCxMRElFK1Wa8myX+NbDKUXwghhAhUNX5K79ixgw8++ICOHTvWZn2aNK01NsMAaTkSQgghAlaNM4MHDBjAzp07a7Mup/Tkk08ycOBAQkJCiIqKqrLMvn37uPzyywkJCaF58+Y88MADJ0xUuWDBAnr37o3L5aJjx47MmTOn7itfzjStZGxDErKFEEKIQFXjlqPf//73TJkyhfT0dLp3747juCUxevToccaVq6i0tJTrrruO5ORk3nzzzROO+3w+Lr/8chISEli8eDFpaWnceuutOBwOnnrqKQBSU1O5/PLLueuuu3j77beZP38+t912G4mJiYwYMaJW61slEwzDhpLgSAghhAhYSh+fTX2ajCoe8EoptNZ1mpA9Z84cJk2aRE5OTqX9X331FVdccQWHDh0iPj4esGbrfuihhzh8+DBOp5OHHnqIL774go0bN/rfd8MNN5CTk8PXX399Wp+fl5dHZGQkubm5REREnLScu7iIlDenglKERDcHDYfyMkh2hNP2qtuwxbWo/jcvhBBCiBo53ec3nEHLUWpqak3fWieWLFlC9+7d/YERwIgRI7j77rvZtGkTvXr1YsmSJQwfPrzS+0aMGMGkSZNOel63243b7fZv5+Xl1ah+GsDUGIZNhvILIYQQAazGwVGbNm1qsx5nLD09vVJgBPi309PTT1kmLy+P4uJigoODTzjvtGnTeOyxx864fqYuH8avZOFZIYQQIoCdUfLLf/7zHwYNGkSLFi3Yu3cvAC+88AL/+9//Tuv9Dz/8MEqpU762bt16JlU8Y4888gi5ubn+1/79+2t0Ho2J0qbVciQ5R0IIIUTAqnETxquvvsqjjz7KpEmTePLJJ/05RlFRUbzwwgtcddVVv3iOKVOmMHbs2FOWad++/WnVJyEhgeXLl1fal5GR4T9W/m/5voplIiIiqmw1AnC5XLhcrtOqw6lowEbZBJAyz5EQQggRsGr8lH755Zf517/+xdVXX8306dP9+/v27cv9999/WueIi4sjLi6uplWoJDk5mSeffJLMzEyaN28OQEpKChEREXTr1s1f5ssvv6z0vpSUFJKTk2ulDqeiNSitMZQhM2QLIYQQAazG/Tupqan06tXrhP0ul4vCwsIzqlRV9u3bx9q1a9m3bx8+n4+1a9eydu1aCgoKALjkkkvo1q0bt9xyC+vWreObb77hz3/+MxMnTvS3/Nx1113s3r2bBx98kK1bt/KPf/yD9957j/vuu6/W63s8ExOFwrBJQrYQQggRyGocHLVr1461a9eesP/rr7/mrLPOOpM6VenRRx+lV69eTJ06lYKCAnr16kWvXr1YuXIlADabjc8//xybzUZycjI333wzt956K48//nilOn/xxRekpKTQs2dPZsyYwRtvvFE/cxxpjaHNsuBIutWEEEKIQFXjp/TkyZOZOHEiJSUlaK1Zvnw577zzDtOmTeONN96ozToC1vxGvzSbdZs2bU7oNjvekCFDWLNmTS3W7PT4tMZAoZQkZAshhBCBrMbB0W233UZwcDB//vOfKSoq4sYbb6RFixa8+OKL3HDDDbVZxyZBA8o0Mex2WaRXCCGECGBn1L9z0003cdNNN1FUVERBQYE/EVpUQVv/MeyOXyophBBCiAZUK8kvISEhhISE1MapmjCNTSPBkRBCCBHgqhUc9e7dm/nz5xMdHU2vXr1O2T20evXqM65cU+LTJjZTY3M4G7oqQgghhDiFagVHV111lX9Y/NVXX10X9WmyNBrDAMN+5hNKCiGEEKLuVCs4mjp1apVfi1+mKZsE0i7D+IUQQohAVuMx5StWrGDZsmUn7F+2bJl/7iFxjAZsWqGk5UgIIYQIaDUOjiZOnFjlIqwHDx5k4sSJZ1SppkiXTQKp7DI7thBCCBHIahwcbd68md69e5+wv1evXmzevPmMKtUUaQ02DJRDRqsJIYQQgazGwZHL5TphhXuAtLQ07JJXcwKNRikDZNFZIYQQIqDVODi65JJLeOSRR8jNzfXvy8nJ4Y9//CMXX3xxrVSuKdFaY0NJcCSEEEIEuBo38Tz77LMMHjyYNm3a0KtXLwDWrl1LfHw8//nPf2qtgk2FicZmKJRNgiMhhBAikNU4OGrZsiXr16/n7bffZt26dQQHBzNu3DhGjx6NQ/JqqmRIy5EQQggR8M4oOSg0NJQ77rijturSpGk0NsMAo8Y9mUIIIYSoB9UKjj799FMuvfRSHA4Hn3766SnL/uY3vzmjijU1Go1CgU2S1YUQQohAVq0n9dVXX016ejrNmzc/5fIhSil8Pt+Z1q1J0WjsSqGkW00IIYQIaNUKjkzTrPJr8cu01tZCvZKQLYQQQgS0aiXAxMTEcOTIEQDGjx9Pfn5+nVSqSTI1KMN6CSGEECJgVetJXVpaSl5eHgBvvfUWJSUldVKppkhhYtgMGcovhBBCBLhqdaslJydz9dVX06dPH7TW3HvvvQQHB1dZdtasWbVSwSZDawxlgCEJ2UIIIUQgq9aT+r///S/PP/88u3btAiA3N1daj06TMrFajWQovxBCCBHQqhUcxcfHM336dADatWvHf/7zH2JjY+ukYk2O9pUFR9KtJoQQQgSyGidkDx06FKfTWSeVaqqUoVDSrSaEEEIENEnIrieGaWIYhgzlF0IIIQKcJGTXFw2GsskM2UIIIUSAq3FCtlJKErJPlwalTQybTWbIFkIIIQKcJGTXA5/WGFpZI9VktJoQQggR0Kr9pL7sssvIzc0lNTWV2NhYpk+fTk5Ojv/40aNH6datW23WsdHTAPgwDLvkHAkhhBABrtrB0ddff43b7fZvP/XUU2RlZfm3vV4v27Ztq53aNREaE0NT1q0mLUdCCCFEIDvjJ7XWujbq0eQZWqPsjoauhhBCCCF+gTRj1ANTWy1HNhmpJoQQQgS8agdHSimUUifsEyenNSg0hl0mzRRCCCECXbWbMrTWjB07FpfLBUBJSQl33XUXoaGhAJXykYTF1BqlwZAZxYUQQoiAV+3gaMyYMZW2b7755hPK3HrrrTWvUROk0WU5RxIcCSGEEIGu2sHR7Nmz66IeTZrWoDTYJCFbCCGECHiSkF0vNDatMSQ4EkIIIQKeBEf1wMQEwOZwNXBNhBBCCPFLJDiqB1qDgcJwyOzYQgghRKBrNMHRk08+ycCBAwkJCSEqKqrKMuXTDFR8zZs3r1KZBQsW0Lt3b1wuFx07dmTOnDl1XneNRqGx2SQhWwghhAh0jSY4Ki0t5brrruPuu+8+ZbnZs2eTlpbmf1199dX+Y6mpqVx++eUMHTqUtWvXMmnSJG677Ta++eabOq27BgxDoQxpORJCCCECXaOZsvmxxx4D+MWWnqioKBISEqo89tprr9GuXTtmzJgBwFlnncXChQt5/vnnGTFiRK3WtyJTawylULLorBBCCBHwGk3L0emaOHEizZo1o3///syaNavS2m9Llixh+PDhlcqPGDGCJUuWnPR8brebvLy8Sq+aUNhAWo6EEEKIgNdoWo5Ox+OPP86wYcMICQnh22+/5f/+7/8oKCjg3nvvBSA9PZ34+PhK74mPjycvL4/i4mKCg4NPOOe0adP8rVY1pbXGpgBZW00IIYQIeA3acvTwww9XmURd8bV169bTPt9f/vIXBg0aRK9evXjooYd48MEHeeaZZ86ojo888gi5ubn+1/79+6t9Dg0YGCijyTXUCSGEEE1OgzZlTJkyhbFjx56yTPv27Wt8/gEDBvDEE0/gdrtxuVwkJCSQkZFRqUxGRgYRERFVthoBuFwu/zpyNWVqE0Mp6VYTQgghGoEGDY7i4uKIi4urs/OvXbuW6Ohof3CTnJzMl19+WalMSkoKycnJdVYHAK1NlKFAWo6EEEKIgNdokmD27dtHVlYW+/btw+fzsXbtWgA6duxIWFgYn332GRkZGZx33nkEBQWRkpLCU089xf333+8/x1133cUrr7zCgw8+yPjx4/n+++957733+OKLL+q07to0sRt2yTkSQgghGoFG87R+9NFHeeutt/zbvXr1AuCHH35gyJAhOBwOZs6cyX333YfWmo4dO/Lcc89x++23+9/Trl07vvjiC+677z5efPFFWrVqxRtvvFGnw/ihrOVIGTKUXwghhGgElK441l38ory8PCIjI8nNzSUiIuKk5dzFRaS8ORWUIkeZdNMOet4wCVts/EnfI4QQQoi6cbrPb2iC8xwFJK0xbHZQqqFrIoQQQohfIMFRfdAmyrChJOdICCGECHgSHNUDhbUorgzlF0IIIQKfBEf1QJkmhs0mo9WEEEKIRkCCo3qgtMYwDGk5EkIIIRoBacqoFxqlbDKUXwghGjGtNV6vF5/P19BVESfhcDiw1cKzVoKj+lA+Wk1myBZCiEaptLSUtLQ0ioqKGroq4hSUUrRq1YqwsLAzOo8ER/XAMLXVpSbBkRBCNDqmaZKamorNZqNFixY4nU5rkI0IKFprDh8+zIEDB+jUqdMZtSBJcFQfNBiGXX6YhBCiESotLcU0TZKSkggJCWno6ohTiIuLY8+ePXg8njMKjqQpo85plDYxHI6GrogQQogzYEjrf8CrrUYIudN1zNQAWoIjIYQQopGQ4KgeGKaW2bGFEEL8agwZMoRJkybVybnbtm3LCy+8UCfnLifBUR3TaBRgOFwNXRUhhBC/MmPHjkUpxV133XXCsYkTJ6KUYuzYsfVfsQAnwVEd01pjaGk5EkII0TCSkpKYN28excXF/n0lJSXMnTuX1q1b1/i85fM+1URpaWmNP7c+SHBUxzTW2mo2p7QcCSGEqH+9e/cmKSmJjz76yL/vo48+onXr1vTq1cu/z+12c++999K8eXOCgoI4//zzWbFihf/4ggULUErx1Vdf0adPH1wuFwsXLqSwsJBbb72VsLAwEhMTmTFjxgl1aNu2LU888QS33norERER3HHHHQAsXLiQCy64gODgYJKSkrj33nspLCz0vy8zM5Mrr7yS4OBg2rVrx9tvv10Xl+gEEhzVMVNrFBrDIS1HQgjRFGitKSr1VutV4vGhtabE46ty+3RfWusa1Xn8+PHMnj3bvz1r1izGjRtXqcyDDz7Ihx9+yFtvvcXq1avp2LEjI0aMICsrq1K5hx9+mOnTp7NlyxZ69OjBAw88wI8//sj//vc/vv32WxYsWMDq1atPqMOzzz5Lz549WbNmDX/5y1/YtWsXI0eOZNSoUaxfv553332XhQsXcs899/jfM3bsWPbv388PP/zABx98wD/+8Q8yMzNrdA2qQ57YdUwDhlbY7NJyJIQQTUGxx0e3R7+p9vsu6NSMl0f34t0V+7m+XxK3/3slP+84Uq1zbH58BCHO6j+6b775Zh555BH27t0LwKJFi5g3bx4LFiwAoLCwkFdffZU5c+Zw6aWXAvCvf/2LlJQU3nzzTR544AH/uR5//HEuvvhiAAoKCnjzzTf573//y0UXXQTAW2+9RatWrU6ow7Bhw5gyZYp/+7bbbuOmm27yJ2536tSJl156iQsvvJBXX32Vffv28dVXX7F8+XL69esHwJtvvslZZ51V7e+/uiQ4qmvaBBTKLo10Qgjxa/bzjiO8u2I/d17YgX/+uKvagdGZiIuL4/LLL2fOnDlorbn88stp1qyZ//iuXbvweDwMGjTIv8/hcNC/f3+2bNlS6Vx9+/at9L7S0lIGDBjg3xcTE0OXLl1OqEPF9wGsW7eO9evXV+oq01r7ZyTfvn07drudPn36+I937dqVqKio6l+AapLgqB4YaGxKLrUQQjQFwQ4bmx8fUe33GUrhsht4fCZ3DG7PmIFtMavZTRbsqPmsz+PHj/d3Wc2cObPG5wkNDa2V9xUUFHDnnXdy7733nlC2devWbN++vUafUxvkiV3HfGhQBob9zFcJFkII0fCUUjXq2irnsFmzOAedQaBTEyNHjqS0tBSlFCNGVA7uOnTogNPpZNGiRbRp0wYAj8fDihUrTjlfUYcOHXA4HCxbtsw/8i07O5vt27dz4YUXnrI+vXv3ZvPmzXTs2LHK4127dsXr9bJq1Sp/t9q2bdvIyck5ze+45iQ4qmsaDK2x2Z0NXRMhhBC/Yjabzd9Fdvy6Y6Ghodx999088MADxMTE0Lp1a55++mmKioqYMGHCSc8ZFhbGhAkTeOCBB4iNjaV58+b86U9/Oq2lVh566CHOO+887rnnHm677TZCQ0PZvHkzKSkpvPLKK3Tp0oWRI0dy55138uqrr2K325k0aRLBwcFndiFOgwRHdUwDSlkLzwohhBANKSIi4qTHpk+fjmma3HLLLeTn59O3b1+++eYboqOjT3nOZ555hoKCAq688krCw8OZMmUKubm5v1iXHj168OOPP/KnP/2JCy64AK01HTp04Prrr/eXmT17NrfddhsXXngh8fHx/O1vf+Mvf/nL6X/DNaR0TccF/krl5eURGRlJbm7uKf8ncxcXkfLmVAq8bqLcpQz73R9wtqv7DHshhBC1q6SkhNTUVNq1a0dQUFBDV0ecwqnu1ek+v0HmOapzptYoZaAMyTkSQgghGgMJjuqY1iaGMlCSkC2EEEI0ChIc1TWtMZQCyTkSQgghGgUJjuqaaWIYdpRNWo6EEEKIxkCCozqnUQYgOUdCCCFEoyDBUR3T2sRms0twJIQQQjQSEhzVMW2aKGUDm+QcCSGEEI2BBEd1TWvsNhtKyaUWQgghGgN5YtcxpTUYhrQcCSGEEI2EBEd1TGsTu+QcCSGEEI2GBEd1zNAaQ9lkKL8QQoh6N3bsWJRS3HXXXSccmzhxIkopxo4dW/8VC3ASHNU5jWGzW11rQgghRD1LSkpi3rx5FBcX+/eVlJQwd+5cWrduXePzaq3xer21UcWAI0/suqY1hs2Q4EgIIUSD6N27N0lJSXz00Uf+fR999BGtW7emV69e/n1ut5t7772X5s2bExQUxPnnn8+KFSv8xxcsWIBSiq+++oo+ffrgcrlYuHAh+fn53HTTTYSGhpKYmMjzzz/PkCFDmDRpkv+9//nPf+jbty/h4eEkJCRw4403kpmZecK558+fT9++fQkJCWHgwIFs27atbi/OScgTu47ZNNbSIUo1dFWEEELUBq2htLB6L0+J9T5PSdXbp/vSukZVHj9+PLNnz/Zvz5o1i3HjxlUq8+CDD/Lhhx/y1ltvsXr1ajp27MiIESPIysqqVO7hhx9m+vTpbNmyhR49ejB58mQWLVrEp59+SkpKCj///DOrV6+u9B6Px8MTTzzBunXr+OSTT9izZ0+V3Xl/+tOfmDFjBitXrsRutzN+/Pgafb9nSoZQ1TFDawy7AyXBkRBCNA2eIniqRfXf12EY/HYWrP4P9L4F5o2GXd9X7xx/PATO0Gp/9M0338wjjzzC3r17AVi0aBHz5s1jwYIFABQWFvLqq68yZ84cLr30UgD+9a9/kZKSwptvvskDDzzgP9fjjz/OxRdfDEB+fj5vvfUWc+fO5aKLLgJg9uzZtGhR+fpUDHLat2/PSy+9RL9+/SgoKCAsLMx/7Mknn+TCCy8ErCDs8ssvp6SkhKCgoGp/z2eiUbQc7dmzhwkTJtCuXTuCg4Pp0KEDU6dOpbS0tFK59evXc8EFFxAUFERSUhJPP/30Ced6//336dq1K0FBQXTv3p0vv/yybiuvQdkcdfsZQgghAt+u763AaNC91r/VDYzOQFxcHJdffjlz5sxh9uzZXH755TRr1uxY1XbtwuPxMGjQIP8+h8NB//792bJlS6Vz9e3b1//17t278Xg89O/f378vMjKSLl26VHrPqlWruPLKK2ndujXh4eH+AGjfvn2VyvXo0cP/dWJiIkCl7rf60ihajrZu3Yppmvzzn/+kY8eObNy4kdtvv53CwkKeffZZAPLy8rjkkksYPnw4r732Ghs2bGD8+PFERUVxxx13ALB48WJGjx7NtGnTuOKKK5g7dy5XX301q1ev5pxzzqmTuhuAYW8Ul1kIIcTpcIRYLTjVpWxgd4GvFAb+HvrfAdpX/c+uofHjx3PPPfcAMHPmzBqfJzS0ei1XhYWFjBgxghEjRvD2228TFxfHvn37GDFixAmNHA7HscaE8h4X0zRrXNeaahRP7ZEjRzJy5Ej/dvv27dm2bRuvvvqqPzh6++23KS0tZdasWTidTs4++2zWrl3Lc8895w+OXnzxRUaOHOlvHnziiSdISUnhlVde4bXXXquTuiutwS4tR0II0WQoVaOuLT+b0/rXUb9dRSNHjqS0tBSlFCNGjKh0rEOHDjidThYtWkSbNm0AK09oxYoVlRKrj9e+fXscDgcrVqzwj3zLzc1l+/btDB48GLAaOI4ePcr06dNJSkoCYOXKlXXwHdaeRtGtVpXc3FxiYmL820uWLGHw4ME4nU7/vhEjRrBt2zays7P9ZYYPH17pPCNGjGDJkiUn/Ry3201eXl6lV3UoDYbd+csFhRBCiDpks9nYsmULmzdvxnbc3HuhoaHcfffdPPDAA3z99dds3ryZ22+/naKiIiZMmHDSc4aHhzNmzBgeeOABfvjhBzZt2sSECRMwDMPf8tO6dWucTicvv/wyu3fv5tNPP+WJJ56o0+/1TDXK4Gjnzp28/PLL3Hnnnf596enpxMfHVypXvp2enn7KMuXHqzJt2jQiIyP9r/Ko93RJt5oQQohAERERQURERJXHpk+fzqhRo7jlllvo3bs3O3fu5JtvviE6OvqU53zuuedITk7miiuuYPjw4QwaNIizzjrLn0QdFxfHnDlzeP/99+nWrRvTp0/39/oEqgZ9aj/88MP8/e9/P2WZLVu20LVrV//2wYMHGTlyJNdddx233357XVeRRx55hMmTJ/u38/LyqhUgKZS0HAkhhGgQc+bMOeXxTz75xP91UFAQL730Ei+99FKVZYcMGYKuYiqB8PBw3n77bf92YWEhjz32mD+lBWD06NGMHj260vsqnquqc5977rlVfl59aNDgaMqUKb84bXn79u39Xx86dIihQ4cycOBAXn/99UrlEhISyMjIqLSvfDshIeGUZcqPV8XlcuFyuX7xezkZhUJJy5EQQogmas2aNWzdupX+/fuTm5vL448/DsBVV13VwDWruQZ9asfFxREXF3daZQ8ePMjQoUPp06cPs2fPxjhuxunk5GT+9Kc/4fF4/NnuKSkpdOnSxd8kmJyczPz58ysll6WkpJCcnFw739BJ2KXlSAghRBP27LPPsm3bNpxOJ3369OHnn3+uNFVAY9MomjQOHjzIkCFDaNOmDc8++yyHDx/2Hytv9bnxxht57LHHmDBhAg899BAbN27kxRdf5Pnnn/eX/cMf/sCFF17IjBkzuPzyy5k3bx4rV648oRWqNinDQNll0VkhhBBNU69evVi1alVDV6NWNYrgKCUlhZ07d7Jz505atWpV6Vh5f2RkZCTffvstEydOpE+fPjRr1oxHH320Up/nwIEDmTt3Ln/+85/54x//SKdOnfjkk0/qbI4jAI3CZmsUl1kIIYQQNJLgaOzYsb+YmwTWzJo///zzKctcd911XHfddbVUs1+mDANlSMuREEII0Vg0yqH8jYqhsEnOkRBCCNFoSHBUx5QyMGxymYUQQojGQp7adU0ZGLJ8iBBCCNFoSHBUx5ShsNskOBJCCCEaCwmO6phSNgybJGQLIYQQjYUER3VNgU1ajoQQQjSAsWPHopRCKYXD4aBdu3Y8+OCDlJSU+MuUH1dKERoaSqdOnRg7duwJcxctWLAApRQ5OTn+fYcOHaJ79+4MHjyY3NzcSmUqfnZVr7Zt29bTVag+CY7qmiEtR0IIIRrOyJEjSUtLY/fu3Tz//PP885//ZOrUqZXKzJ49m7S0NDZt2sTMmTMpKChgwIAB/Pvf/z7peXft2sX5559PmzZt+Oabb4iMjKx0/MUXXyQtLc3/qvg5aWlprFixova/2VrSKOY5asyUUtjsNV+bTQghhDgTLpfLv5pEUlISw4cPJyUlpdLC71FRUf4ybdu25ZJLLmHMmDHcc889XHnllf5luMqtX7+eESNGMGzYMN566y3sVawhGhkZeULAVPFzApm0HNUxZdhk4VkhhGhCtNYUeYqq9SrxlqC1psRbUuX26b7OdJX6jRs3snjxYpzOX55/77777iM/P5+UlJRK+xcvXsyFF17IqFGj+O9//1tlYNTYNb3vKMAYSqEMucxCCNFUFHuLGTB3QLXfl9wimWcGP8NHOz7i2k7Xcu8P97Lk0JJqnWPZjcsIcYRU6z2ff/45YWFheL1e3G43hmHwyiuv/OL7unbtCsCePXsq7b/mmmu4/vrrT+scjZW0HNUxZbeBIZdZCCF+7ZYcWsJHOz5i3Dnj+GjHR9UOjGpq6NChrF27lmXLljFmzBjGjRvHqFGjfvF95a1USqlK+6+66io+/vjjX1yuqzGTJo06ZlN2kLXVhBCiyQi2B7PsxmXVfp+hDFw2Fx6fh7Fnj2V019GY2qz2Z1dXaGgoHTt2BGDWrFn07NmTN998kwkTJpzyfVu2bAGgXbt2lfb/85//5MEHH+TSSy/lyy+/ZPDgwdWuU6CT4KiOGTYDmmB/rBBC/FoppardtVWRo2x6lyB7UG1V6bQZhsEf//hHJk+ezI033khw8MmDrRdeeIGIiAiGDx9eab9Sitdffx3DMLjsssv44osvuPDCC+u66vVK+nvqmKFsJzRJCiGEEA3luuuuw2azMXPmTP++nJwc0tPT2bt3LykpKfz2t79l7ty5vPrqq0RFRZ1wDqUUr732GrfeeiuXXXYZCxYsqL9voB5Ik0YdUza75BwJIYQIGHa7nXvuuYenn36au+++G4Bx48YBEBQURMuWLTn//PNZvnw5vXv3Pul5lFLMnDkTwzC4/PLL+fzzz5tMY4DSZzou8FcmLy+PyMhIcnNziYiIOGk5d3ERKW9OJTYshvNufQglAZIQQjRKJSUlpKam0q5dO4KC6r8rTJy+U92r031+g3Sr1TnDZpfASAghhGhE5Kldxwz7L0+0JYQQQojAIcFRHZPgSAghhGhcJDiqY4ZNct6FEEKIxkSCozpkKMDhaOhqCCGEEKIaJDiqUwqbdKsJIYQQjYoER3VIGTaUXS6xEEII0ZjIk7uO2QzpVhNCCCEaEwmO6pChDJSsqyaEEEI0KhIc1SGFIUP5hRBC/Coppfjkk08auho1IsFRHVIGYLc1dDWEEEL8So0dOxalFEopHA4H7dq148EHH6SkpKShqxbQpM+nLhl27DbJORJCCNFwRo4cyezZs/F4PKxatYoxY8aglOLvf/97Q1ctYEnLUR1ShtFkVigWQgjROLlcLhISEkhKSuLqq69m+PDhpKSkAHD06FFGjx5Ny5YtCQkJoXv37rzzzjuV3j9kyBDuvfdeHnzwQWJiYkhISOCvf/1rpTI7duxg8ODBBAUF0a1bN//5K9qwYQPDhg0jODiY2NhY7rjjDgoKCvzHx44dy9VXX81TTz1FfHw8UVFRPP7443i9Xh544AFiYmJo1aoVs2fPrv2LdBxpOaojhgKn3Y7L5WroqgghhKhFWmt0cXH13mQYKJcL7XaDaZ64fZpUcPAZ/dG9ceNGFi9eTJs2bQBrFfs+ffrw0EMPERERwRdffMEtt9xChw4d6N+/v/99b731FpMnT2bZsmUsWbKEsWPHMmjQIC6++GJM0+Taa68lPj6eZcuWkZuby6RJkyp9bmFhISNGjCA5OZkVK1aQmZnJbbfdxj333MOcOXP85b7//ntatWrFTz/9xKJFi5gwYQKLFy9m8ODBLFu2jHfffZc777yTiy++mFatWtX4OvwSCY7qiGHYaBYeTGhQUENXRQghRC3SxcVs692n2u8LHTSQljNmkPPhh0SNGsWBiRMpXLS4WufosnoVKiSkWu/5/PPPCQsLw+v14na7MQyDV155BYCWLVty//33+8v+/ve/55tvvuG9996rFBz16NGDqVOnAtCpUydeeeUV5s+fz8UXX8x3333H1q1b+eabb2jRogUATz31FJdeeqn//XPnzqWkpIR///vfhIaGAvDKK69w5ZVX8ve//534+HgAYmJieOmllzAMgy5duvD0009TVFTEH//4RwAeeeQRpk+fzsKFC7nhhhuqdR2qQ4KjOmLY7LSKO5uQ8BYNXRUhhBABoHDRYnI+/JDYCRM4+uab1Q6Mamro0KG8+uqrFBYW8vzzz2O32xk1ahQAPp+Pp556ivfee4+DBw9SWlqK2+0m5LgArEePHpW2ExMTyczMBGDLli0kJSX5AyOA5OTkSuW3bNlCz549/YERwKBBgzBNk23btvmDo7PPPhvDOJbxEx8fzznnnOPfttlsxMbG+j+7rkhwVIccYc1B5jkSQogmRQUH02X1quq/sbwrzeMhZvx4om+6qVpdauWfXV2hoaF07NgRgFmzZtGzZ0/efPNNJkyYwDPPPMOLL77ICy+8QPfu3QkNDWXSpEmUlpZWOofjuHVClVKY1az76ajqc+rrsyuSJ3ddMhRIQrYQQjQpSqlqd21VUvawVw2QdmEYBn/84x+ZPHkyN954I4sWLeKqq67i5ptvBsA0TbZv3063bt1O+5xnnXUW+/fvJy0tjcTERACWLl16Qpk5c+ZQWFjobz1atGiRv/ss0MhotbpkGBIcCSGECCjXXXcdNpuNmTNn0qlTJ1JSUli8eDFbtmzhzjvvJCMjo1rnGz58OJ07d2bMmDGsW7eOn3/+mT/96U+Vytx0000EBQUxZswYNm7cyA8//MDvf/97brnlFn+XWiCR4KiuGAZGUBCGJGQLIYQIIHa7nXvuuYenn36aKVOm0Lt3b0aMGMGQIUNISEjg6quvrtb5DMPg448/pri4mP79+3Pbbbfx5JNPVioTEhLCN998Q1ZWFv369eO3v/0tF110kT8xPNAorbVu6Eo0Jnl5eURGRpKbm0tERERDV0cIIUQdKykpITU1lXbt2hEkf/AGtFPdq+o8v6XlSAghhBCigkYRHO3Zs4cJEybQrl07goOD6dChA1OnTq2UTb9nzx7/+jEVX8cnhb3//vt07dqVoKAgunfvzpdfflnf344QQgghAlijGK22detWTNPkn//8Jx07dmTjxo3cfvvtFBYW8uyzz1Yq+91333H22Wf7t2NjY/1fL168mNGjRzNt2jSuuOIK5s6dy9VXX83q1asrzaMghBBCiF+vRptz9Mwzz/Dqq6+ye/duwGo5ateuHWvWrOHcc8+t8j3XX389hYWFfP755/595513Hueeey6vvfbaaX2u5BwJIcSvi+QcNR6/+pyj3NxcYmJiTtj/m9/8hubNm3P++efz6aefVjq2ZMkShg8fXmnfiBEjWLJkyUk/x+12k5eXV+klhBBCiKarUQZHO3fu5OWXX+bOO+/07wsLC2PGjBm8//77fPHFF5x//vlcffXVlQKk9PT0E+ZTiI+PJz09/aSfNW3aNCIjI/2vpKSk2v+GhBBCBLxG2tHyq1Jb96hBg6OHH364yiTqiq+tW7dWes/BgwcZOXIk1113Hbfffrt/f7NmzZg8eTIDBgygX79+TJ8+nZtvvplnnnnmjOr4yCOPkJub63/t37//jM4nhBCicSlfvqKoqKiBayJ+SflALZvNdkbnadCE7ClTpjB27NhTlmnfvr3/60OHDjF06FAGDhzI66+//ovnHzBgACkpKf7thISEE2b+zMjIICEh4aTncLlcuFyuX/wsIYQQTZPNZiMqKsq/2GlISAhKVj8IOKZpcvjwYUJCQrCf4bqmDRocxcXFERcXd1plDx48yNChQ+nTpw+zZ8+utGrvyaxdu9a/zgtYqwTPnz+fSZMm+felpKScsHqwEEIIUVH5H9F1vRq8ODOGYdC6deszDl4bxVD+gwcPMmTIENq0acOzzz7L4cOH/cfK/4d96623cDqd9OrVC4CPPvqIWbNm8cYbb/jL/uEPf+DCCy9kxowZXH755cybN4+VK1eeViuUEEKIXy+lFImJiTRv3hyPx9PQ1REn4XQ6T6vx5Jc0iuAoJSWFnTt3snPnTlq1alXpWMXkqyeeeIK9e/dit9vp2rUr7777Lr/97W/9xwcOHMjcuXP585//zB//+Ec6derEJ598InMcCSGEOC02m+2M81lE4Gu08xw1FJnnSAghhGh8fhXzHAkhhBBC1AUJjoQQQgghKmgUOUeBpLwXUmbKFkIIIRqP8uf26WQTSXBUTUePHgWQmbKFEEKIRig/P5/IyMhTlpHgqJrK13Pbt2/fL15cUXfy8vJISkpi//79khjfQOQeNDy5Bw1P7kFgOJ37oLUmPz+fFi1a/OL5JDiqpvL5EyIjI+UHIQBERETIfWhgcg8antyDhif3IDD80n043UYNScgWQgghhKhAgiMhhBBCiAokOKoml8vF1KlTZTHaBib3oeHJPWh4cg8antyDwFDb90FmyBZCCCGEqEBajoQQQgghKpDgSAghhBCiAgmOhBBCCCEqkOCommbOnEnbtm0JCgpiwIABLF++vKGr1GT99NNPXHnllbRo0QKlFJ988kml41prHn30URITEwkODmb48OHs2LGjYSrbRE2bNo1+/foRHh5O8+bNufrqq9m2bVulMiUlJUycOJHY2FjCwsIYNWoUGRkZDVTjpufVV1+lR48e/vlbkpOT+eqrr/zH5frXv+nTp6OUYtKkSf59ch/q3l//+leUUpVeXbt29R+vzXsgwVE1vPvuu0yePJmpU6eyevVqevbsyYgRI8jMzGzoqjVJhYWF9OzZk5kzZ1Z5/Omnn+all17itddeY9myZYSGhjJixAhKSkrquaZN148//sjEiRNZunQpKSkpeDweLrnkEgoLC/1l7rvvPj777DPef/99fvzxRw4dOsS1117bgLVuWlq1asX06dNZtWoVK1euZNiwYVx11VVs2rQJkOtf31asWME///lPevToUWm/3If6cfbZZ5OWluZ/LVy40H+sVu+BFqetf//+euLEif5tn8+nW7RooadNm9aAtfp1APTHH3/s3zZNUyckJOhnnnnGvy8nJ0e7XC79zjvvNEANfx0yMzM1oH/88UettXXNHQ6Hfv/99/1ltmzZogG9ZMmShqpmkxcdHa3feOMNuf71LD8/X3fq1EmnpKToCy+8UP/hD3/QWsvPQX2ZOnWq7tmzZ5XHavseSMvRaSotLWXVqlUMHz7cv88wDIYPH86SJUsasGa/TqmpqaSnp1e6H5GRkQwYMEDuRx3Kzc0Fjq0xuGrVKjweT6X70LVrV1q3bi33oQ74fD7mzZtHYWEhycnJcv3r2cSJE7n88ssrXW+Qn4P6tGPHDlq0aEH79u256aab2LdvH1D790DWVjtNR44cwefzER8fX2l/fHw8W7dubaBa/Xqlp6cDVHk/yo+J2mWaJpMmTWLQoEGcc845gHUfnE4nUVFRlcrKfahdGzZsIDk5mZKSEsLCwvj444/p1q0ba9euletfT+bNm8fq1atZsWLFCcfk56B+DBgwgDlz5tClSxfS0tJ47LHHuOCCC9i4cWOt3wMJjoQQp2XixIls3LixUh+/qB9dunRh7dq15Obm8sEHHzBmzBh+/PHHhq7Wr8b+/fv5wx/+QEpKCkFBQQ1dnV+tSy+91P91jx49GDBgAG3atOG9994jODi4Vj9LutVOU7NmzbDZbCdkvmdkZJCQkNBAtfr1Kr/mcj/qxz333MPnn3/ODz/8QKtWrfz7ExISKC0tJScnp1J5uQ+1y+l00rFjR/r06cO0adPo2bMnL774olz/erJq1SoyMzPp3bs3drsdu93Ojz/+yEsvvYTdbic+Pl7uQwOIioqic+fO7Ny5s9Z/FiQ4Ok1Op5M+ffowf/58/z7TNJk/fz7JyckNWLNfp3bt2pGQkFDpfuTl5bFs2TK5H7VIa80999zDxx9/zPfff0+7du0qHe/Tpw8Oh6PSfdi2bRv79u2T+1CHTNPE7XbL9a8nF110ERs2bGDt2rX+V9++fbnpppv8X8t9qH8FBQXs2rWLxMTE2v9ZqGHS+K/SvHnztMvl0nPmzNGbN2/Wd9xxh46KitLp6ekNXbUmKT8/X69Zs0avWbNGA/q5557Ta9as0Xv37tVaaz19+nQdFRWl//e//+n169frq666Srdr104XFxc3cM2bjrvvvltHRkbqBQsW6LS0NP+rqKjIX+auu+7SrVu31t9//71euXKlTk5O1snJyQ1Y66bl4Ycf1j/++KNOTU3V69ev1w8//LBWSulvv/1Way3Xv6FUHK2mtdyH+jBlyhS9YMECnZqaqhctWqSHDx+umzVrpjMzM7XWtXsPJDiqppdfflm3bt1aO51O3b9/f7106dKGrlKT9cMPP2jghNeYMWO01tZw/r/85S86Pj5eu1wufdFFF+lt27Y1bKWbmKquP6Bnz57tL1NcXKz/7//+T0dHR+uQkBB9zTXX6LS0tIardBMzfvx43aZNG+10OnVcXJy+6KKL/IGR1nL9G8rxwZHch7p3/fXX68TERO10OnXLli319ddfr3fu3Ok/Xpv3QGmt9Rm2bAkhhBBCNBmScySEEEIIUYEER0IIIYQQFUhwJIQQQghRgQRHQgghxP+3d68hUW1tHMD/00w2OV6mUmasQDPThrTJLpSWmmKmkFQgRRdL7SYUJqVdsNSUdDRITxcJFMwPZUQ3CkqCLDO7WloUVlgZRRettFDIGl3nQ6/7nX3U90ydeq3O/wcL9l5r72c9az7Iw9p7RiILLI6IiIiILLA4IiIiIrLA4oiIiIjIAosjIiIiIgssjoiIvjOFQoETJ070dRpE9I1YHBFRj2JiYqBQKGAymWT9J06cgEKh6KOsvlAoFD22Q4cO9WleXV6+fImIiIi+TgP79++HVqvt6zSIfjksjoioV2q1Gjk5OWhubu7rVLopLi7Gy5cvZW3OnDl9mtOnT58AAHq9HgMGDOjTXIjo27E4IqJehYaGQq/XIzs7u8fx9PR0jBs3TtaXn58PNzc36TwmJgZz5sxBVlYWdDodtFotMjIyYDabkZycjMGDB2P48OEoLi7+qty0Wi30er2sqdVqAEBcXBzGjh2L9vZ2AF+KFl9fXyxZsgQA0NDQIO00+fv7Q61Ww9vbGxUVFbI57t69i4iICNjZ2UGn0yE6Ohpv3ryRxqdPn441a9YgMTERTk5OmDlzJgD5Y7WuuQ4fPoyAgAAMHDgQkyZNwsOHD3Hjxg1MnDgRdnZ2iIiIQFNTk2z+oqIiGAwGqNVqjB49GgUFBdJYV9xjx44hODgYtra2MBqNuHLlCgDgwoULiI2Nxfv376WdtfT0dABAQUEBRo0aBbVaDZ1Oh6ioqK/67Il+dyyOiKhXSqUSWVlZ2L17N54/f/7NccrLy/HixQtcvHgRO3fuRFpaGmbNmoVBgwbh2rVriI+Px6pVq/7RHJZ27dqFtrY2bNq0CQCQkpKClpYW7NmzR3ZdcnIy1q9fj5qaGvj5+SEyMhJv374FALS0tCAkJAS+vr6orq5GWVkZXr9+jXnz5slilJSUwMbGBlVVVdi3b1+vOaWlpWHLli24desWVCoVFi5ciA0bNuCPP/5AZWUl6uvrkZqaKl1/4MABpKamYvv27airq0NWVha2bt2KkpISWdyUlBQkJSWhtrYWnp6eWLBgAcxmM/z9/ZGfnw8HBwdpZy0pKQnV1dVISEhARkYGHjx4gLKyMgQGBv6jz5votyOIiHqwdOlSMXv2bCGEEFOmTBFxcXFCCCGOHz8uuv50pKWlCaPRKLsvLy9PuLq6yuK4urqKjo4Oqc/Ly0sEBARI52azWWg0GlFaWmpVbgCEWq0WGo1G1p4+fSpdc/nyZdG/f3+xdetWoVKpRGVlpTT25MkTAUCYTCap7/Pnz2L48OEiJydHCCFEZmamCAsLk8377NkzAUA8ePBACCFEUFCQ8PX17TG/48ePy+YqKiqSxktLSwUAce7cOakvOztbeHl5SecjR44UBw8elMXNzMwUfn5+vca9d++eACDq6uqEEEIUFxcLR0dHWYyjR48KBwcH8eHDh255E9EXqj6ryojol5GTk4OQkBAkJSV90/1jxoxBv37/3ajW6XTw9vaWzpVKJYYMGYLGxkarY+bl5SE0NFTWN3ToUOnYz88PSUlJyMzMxMaNGzFt2rRuMfz8/KRjlUqFiRMnoq6uDgBw+/ZtnD9/HnZ2dt3ue/ToETw9PQEAEyZMsCrfsWPHSsc6nQ4A4OPjI+vrWn9bWxsePXqEZcuWYcWKFdI1ZrMZjo6OvcZ1cXEBADQ2NmL06NE95jFjxgy4urrC3d0d4eHhCA8Px9y5c2Fra2vVOoj+DVgcEdHfCgwMxMyZM7F582bExMRI/f369YMQQnbt58+fu93fv39/2blCoeixr7Oz0+qc9Ho9PDw8eh3v7OxEVVUVlEol6uvrrY7bpbW1FZGRkcjJyek21lWEAIBGo7EqnuV6u77t99e+rvW3trYCAAoLCzF58mRZHKVS+bdx/9fnaG9vj1u3buHChQs4e/YsUlNTkZ6ejhs3bvCbbUT/wXeOiMgqJpMJp06dkl74BQBnZ2e8evVKViDV1tb2QXbd7dixA/fv30dFRQXKysp6fOH76tWr0rHZbMbNmzdhMBgAAOPHj8e9e/fg5uYGDw8PWbO2IPpWOp0OQ4cOxePHj7vNPWLECKvj2NjYoKOjo1u/SqVCaGgocnNzcefOHTQ0NKC8vPx7LoHol8adIyKyio+PDxYtWoRdu3ZJfdOnT0dTUxNyc3MRFRWFsrIynDlzBg4ODj88n5aWFrx69UrWZ29vD41Gg5qaGqSmpuLIkSOYOnUqdu7cibVr1yIoKAju7u7S9Xv37sWoUaNgMBiQl5eH5uZmxMXFAQBWr16NwsJCLFiwABs2bMDgwYNRX1+PQ4cOoaioqNsOzve2bds2JCQkwNHREeHh4Whvb0d1dTWam5uxbt06q2K4ubmhtbUV586dg9FohK2tLcrLy/H48WMEBgZi0KBBOH36NDo7O+Hl5fVD10P0K+HOERFZLSMjQ/bIxmAwoKCgAHv37oXRaMT169e/+b2krxUbGwsXFxdZ2717Nz5+/IjFixcjJiYGkZGRAICVK1ciODgY0dHRsp0Uk8kEk8kEo9GIS5cu4eTJk3BycgLw5f2lqqoqdHR0ICwsDD4+PkhMTIRWq5W9P/WjLF++HEVFRSguLoaPjw+CgoKwf//+r9o58vf3R3x8PObPnw9nZ2fk5uZCq9Xi2LFjCAkJgcFgwL59+1BaWooxY8b8wNUQ/VoU4q8vDBAR/eYaGhowYsQI1NTUdPudJiIi7hwRERERWWBxREQ/laysLNjZ2fXYfob/V0ZEvz8+ViOin8q7d+/w7t27HscGDhyIYcOG/Z8zIqJ/GxZHRERERBb4WI2IiIjIAosjIiIiIgssjoiIiIgssDgiIiIissDiiIiIiMgCiyMiIiIiCyyOiIiIiCywOCIiIiKy8Cdo/768w/dyhwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGxCAYAAABoYBJuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJoklEQVR4nOzdd3xUVfr48c+5d0p6I41A6B3pCCJ2EVCs67p2Qew/XFdRWV1dXfWrYK+o61pwXV0runaN2AGR3gw91JAESJlkkimZOb8/bjIkJiAJKZP4vF+veZG599w7Z+4F7pNznnOO0lprhBBCCCEEAEZrV0AIIYQQIpxIcCSEEEIIUYMER0IIIYQQNUhwJIQQQghRgwRHQgghhBA1SHAkhBBCCFGDBEdCCCGEEDVIcCSEEEIIUYOttSvQ1gSDQXJzc4mNjUUp1drVEUIIIcQh0FpTWlpKRkYGhnHwtiEJjhooNzeXzMzM1q6GEEIIIRphx44ddO7c+aBlJDhqoNjYWMC6uHFxca1cGyGEEEIcCpfLRWZmZug5fjASHDVQdVdaXFycBEdCCCFEG3MoKTGSkC2EEEIIUYMER0IIIYQQNUhwJIQQQghRgwRHQgghhBA1SHAkhBBCCFGDBEdCCCGEEDVIcCSEEEIIUYMER0IIIYQQNUhwJIQQQghRQ5sKjr7//nvOOOMMMjIyUErxwQcf1Nqvteauu+6iY8eOREZGMm7cODZu3FirTGFhIRdffDFxcXEkJCRwxRVXUFZW1oLfQgghhBDhrE0FR263myFDhjB79ux69z/00EM89dRTPP/88yxatIjo6GgmTJiAx+MJlbn44otZu3YtWVlZfPzxx3z//fdcffXVLfUVhBBCCBHmlNZat3YlGkMpxfvvv8/ZZ58NWK1GGRkZ3Hzzzdxyyy0AlJSUkJaWxpw5c7jgggvIzs5mwIABLF68mJEjRwLw+eefc9ppp7Fz504yMjJ+83NdLhfx8fGUlJTI2mpCCCFEG9GQ53e7WXg2JyeHvLw8xo0bF9oWHx/P6NGjWbhwIRdccAELFy4kISEhFBgBjBs3DsMwWLRoEeecc07jK1BZeeB9SoFpHlpZAFuN29KeywYCcLDYPBzKmqZ1/wCCQesVzmUNw3qFS1mtrWsczmUb8u8zHMpC+P1bbqX/I7RhUlkZRAc0dhu4iz14yyuxO01ikiIoK/Tg9wZC5w1t3+PG7zlAOcAe7dy/vdyH3WGE3ns9fnQggMNpEpcaS/E+NxVlFUTGRpKQHEtxXhEVpRWhc0XGRpKQGk9xQQkV5T4i46Ks93lFVJS46y9XWkFkQgwJaQnW+xJ36N9cnXKxkSR0TKJ4j8v63GCQyGhn3TLV793e0L+NyGinVeeCEspL3URGRZHYMYHC3H2UFhURBLSC2MREUjqlsGfLLor2FpCYnEpKt47s2bqbor0F1hcwDBJT063tW3ZRVJBXb7nE5FRSenRiz/Z861wdUkjJTK19rupy3Tpa5Qr3Wu+7prNn8876y23djcdXTtcj+lX95aj6d29rXJjTboKjvLw8ANLS0mptT0tLC+3Ly8sjNTW11n6bzUZSUlKozK95vV68Xm/ovcvlqr8CL7984Mp16QITJ+5//+9/H/g/iI4d4Ywz9r9/4w2o0S1YS0oK1Azo3n4bDpQ/lZgI5523//3770NRUf1lY2LgoosINSp++CHs2VN/2YgIuOyy/e8//RR2766/rM0GU6fuf//ll7B9e/1lAWp2d379NWzZcuCyU6fu/0fw/fewYQNQ/f+qDq3CHNSaigsvQUVGEGU3YcECKlevwVMZxGkzsJvWfxpl3kr8AU3gT+eTnJEMQPkP8ylbvJxYp41Ih4kG9pV5qfAHcNoMUqZeikpMJL/US/7X8+m2bR1xETa0ht0lHjSajPhIlIKCk09lfTCSPqkxpG1dj/5pEbklFZT7AkQ5zFA5V4Wf7BHH021QL9LiI9BrfyH306/qLZdf6iXh7DNIOaI3WsPGH5eRtuwn4iLtKPaXSYt1EhdpR48bR36HDDYWlNG9JI/OyxZAPeUAdg4ZRU5SZzITI+lWvg8+/7zecvvKvGztN4wOo4bRLTkacnNxvfN+veUAOpx8HAwZQn6Jh5x1Wxnw07xaZQrL/VXfMwI1ciRF/QaxOtfFoMgAiZ/+D601OworKPVa/556JEcT6TAp7TOAbxJ7cGzvFBIDHspf/Q8b8ktDf136pMUQ5bBR7q3k5+iODD5/EknRDgr3udj06LMEg5qBGXHERtgpKfOyalsJAzvFkXjkYLZ1H8YXy3LB66ff13Pp2ymWtPQY8naWsmGHi96d40jPjGV7MIlPnX1Cn3n2lizSM2PJ21HKhp0l9OkcH3q/rDyK7UeM5fih6fQbkkrefU+zaWth6Fx5O0rZuNP6v8cdn0yXy/5E/6FpZK/YTf6z/6JvagQZ3RLYuamQLduLIKhBa6LTOuL4w3kMOLYTa5buYvDG79m5dAd781yUlnuh6p94TISDuJ6d6Xbvtaz9eRcDR3Vi69+fo3jDNtwej3Uup5Pkzkl0OSKZXblldLzzLyz9bCtblmygw/IviSwvBYIYKFK6ptL7qO7s2VZESt+OfFfZmy2L1xHUmq7bVhJVUYICkrul03tMD6tc10Q2LNrOfEcfgihAkblzNTHuQjp0SaHP0d0oyCkitXsi2T/uYF+um18GnBW6vsOMDRzZX1O4uZiOPRNY/WMuhbv3Bx/Z/U5FGyaZ/ZOY2GcvxV8srrccwPo+48kYlM74KweS9+9P6G7fU2+5pI7R9H3yJrbl+Og/Npn5t75O5dIVdf57SuoYzYBjMtiZMZY+E/vz8dMr8Xz/Eyl7NtRbrmxzMVE3Tubjp7exI7uQDvs2k5afXW+52J4JZBX1ZFOu9f9fUuFW0vPW1ClTXf/tmUdSFms9J+OLdzBIbwqVi/vV9djZeTiuuAxgN31Tyjk+dQfezcUk1XPddmUMoSShmMz+BYyfEIv37ax6y+0GOHosY/5+Jrmb/HRLqmT1pffWuba7q75nv5vOIteVQreBKXw561ucX3xcb7kBx2SwM7ITDOwLwQCs/Aw++BD+dCrEpkPnkbBrWZ17cyDtJjhqLjNnzuSee+5p7WocUHUAEwxqtuSXkrdrL9FOG4M7x2MaipU7i1m+vZhCxx6SMnKYcnQ3vP4gC9cVcEwHE5up+Co7n+837LXOozVHDe7K6RdqPP4A/164jcmVAZxA1pqdzF+fi0klx/RK44TBPXDtzeM//3mbc446go49+vH5whWs/XlVqH5H9u7McUP7UbInj6XbdtPvmCPJ6DmAF9//kpz/vEmaq4hu6clMOuZITNNg347NrN68lSN6dCE5EMAfCPDgC6/Cl18wPDqCCccejWkY7NmczS9bNtOva1fS+gyi0uvln089ihkMctWQkZiBALnL5pOzeQPdu/UkY+SxBNGs+PIj5n/2BihF9yEjOO240zB1kMCmX7D1HUDQHyD707kU79gKwJbPXyX1yDGMu2MWEQTxb19PRN8BBP3+WuUAVu9eywn/9wQpDgNz+ypibY465Yozu9H/tD+Q7FRUrv6JlM7jCHg9rPvwbYpqnKs4szv9TzubaAMyNy8hcUgPKj0VLHrmMdTCBYBCYVCS2ZW+p56G3VdJ3PYtOD1eKis8fDPzAcp++IGiokKSu3Wl2ykTsPsqid22BXvv3gRssOKZZ1i/ZRuVQdjrLqcsOoLeE8ahynxEbtqC6tWTgA02fvEV697+EFdMLDnArh5dOKpnF1Rp3XJF23exJ+kz1sbFs2XYYI679PwDlgMwN25k+GMPofa4iVm0lGCxh4BNsSFrPoW79gI2tLKz1bARsU0x+O6hpOW5iekVzbrvNrF36260hqp2NZYCyd3T6dVvIH1dfmIMg2+eX4j9vZ+g6oGrUSxF0aFrMn3GdqerO0CMYfDp00vYuWInfTbmgTJYyt7Qf7rdDBtxUQ4Wzt3Mikrr35wKBtAbSlm3oZSCqnKV7kpSO8aw5ttdbHWXQufk0D3d8Mtu9nZ0MeCYDALl+8sV7nZDTCp4CvluSSFb+udxascYgi5P7TLVopx8/1I2Of3zGX/lQOKS40jvHFm3HNZ9zXlvM1rD8PFd2fpRETkr91btVaFyZWV+9pXupfyHXIaP78byL7eRv3IfTq9G4QSg3AvbfynCHmGj26iuLP9xN8uzdgJRJOlkdNXjJADkbaskukMxXQYks21dEetKfWDrYe235RMwHQDk7QgQnWKV2/7LPvJ2VOLr1zVUr4C5m4ARpGCnn9hN+8vty/UANVragL3bishzaroMSGZn9l5Kdu6rVcLuc6ENk7yVLnZUeug5oEO95arL5q30sGFhAoNHpbPzvQ31livZ6WHTz7kMO/MIVn21lX0bd5MUqPvLbMlOD/lbIhl8SSarFu4ib+VWkv1uzF+VrS7XZUAya5fsJm/lDuyAzV9Wq2zNcjuz97Jn907sUUlQo+yvy1TX3+Yvw+6LtL6nv4ySvH31liNU1grK96zLI7+s6MDXt6ps3koXOSkp9D/I9c1fv4sNC3cxbHw3fnlzUb1lqr/ntpUFDLtmJKu+2krB2h10O8j17X7JKOs34jfOgzXz4Bc/GG9bhXqeBOOfqOdT6tduco62bNlCz549Wb58OUOHDg2VO/744xk6dChPPvkkL7/8MjfffDNFNVpMKisriYiI4J133qm3W62+lqPMzMy6fZaNbDIvqfDx48a9HNEpji5J0WzbV8aKXcUEKn1UuosYnBJJvz59Wbnge75b+hMj+w9izEkT+faT95n79fd4/ZWMP2o0515yGdmfvsmPC7/n6GFHMvCMS8h64WmWLPgGR7ASezCATQcZOuo4xtz4N/Z+/QXJx57Eigf/Qe78r7EHNPZAEFtAYw9oUo86lu4zH6bovfdIPPNMdt16K+4FC2t9reijx9Dp4Ycp/t//SDj3XHbdfDPuH+fX+fqhcnPnkvCnP1nl5i+o1VweffQYOj3xBAF/gD1vzSXxnLNxxkey9abbKFu4KFQ25qhRdHv0AbxuP4Xv/4+kc87CGW1n64y/U7rwZwBiR4+k2yP34ynzs2/u/4g/43SiEyNZf8dDFC7LptIWScB0EjCdJI44gmF3TiF/WxlpXWL4+aG32Lt8C6DQCrSyurRShvZk1Ixzyd1YTEbPOBY8/jm71uYTNB0EDAcB00HAFkHHQRmccvVQsn/YSf8x6WS9tJYd62q30GX2S+SUqweTvWA3/cdm8OULq9mZva/Odcvsl8gpVwwk+6d8+h/TiS9fXMuOX/aifvVPNlRuQS79j+nMly9nsyO7EHQwVLZWmaMzyHppLdvXF4Oq7nqyytZXbse6IrRStcp26ZtQbzmgVtnMfomMv7xfveWqy2YOSGb8lQPJ/nEX/Y9Kq/eaVZc9+tzeDBvfleVfbGXhexvrlKk25g+9GDaxO8u/3MaC9zahdP3dgGPO6cGw8d1YPm8nC+ZuBqygp06ZU7qy8qut/PzWakBjBP2YwUrMSg9G0I8KVjLy2lPoc3xPNn63ieWzPwGl0NXXrMZ5h02bRO/je+0vB3XKDr9uYt0yNa+FYf1/MvzPp9N7bDc2fb+JVU+8i9KVGMEARrASpa0/U0b0ZuhdV1BU4CEpycbKe56jaEk2SgdRaECjdJDEEQM44oGbcBVVEpdoY/ldj7Fn+VqCBgSVJmhA8oiBHHXbjbgK/cSlRvLjw4+Rv2oNEARDW0N8FPQefw5Dzj+LPZtySemVwer3P2ZD1rugQAWr2oUU9Bz3Rwb94Uz2bsknuWc6a+d+wKZ5b1bVy+q+NQjSa8Il9Dv7XIp35JHYJZ1NH/+XzR89CYYfAx8KH/3Ovp3MUy/HsyefiJQ0tn82h/VzH6hxzaxgsN+5d9JlwmV49uQRkZxG7rw55Hx4LzZDYzM0diOI3QYZ5zxI/NGXEqgox7Q7cP/8H8o+ujVUd0NpYk5/FOdRl6GDQZRpUvHzf3B9+FcCmPtfyiT59HuJH3EuGlA2G0VL57L7f3eHWu6qdTz9LhJHnIMOBFAOB/uWf8COD+9Ha4XWiiAGQWXQfdIMUoafbpUzTfas/ITtH83EIGjdd63pPOl2kqrPZZoULX2f3R/fS+gLAGhNx0k1PtM0KVn2Pnmf3GvdSgOUoTCUSfJpdxE7+AyUUmitKV3xIfs+uXd/5RVgKDqc/g+rnNb1lwM6nHE3scPPsc4VDFK69H32/qoMQPKku4gdfjbKNNFaU7L8A/I/vJ+gMtBVv+gEMciY9FeShpyGqk5BWPcxfHWv1a1maKslSQdxDb2W+JP+fEg5R+0mOKpOyL7lllu4+eabASuQSU1NrZOQvWTJEkaMGAHAl19+ycSJE1slIdvt9RGpg+TP+4LU408m+56/UfjtPKK9QaJ8+8tFjz2aTo8+SvF77+0PQuYvqHWuQylTLfXWW+hwxRXse+klCh5+5ID1O1i5oIJKAzJm/JWUyVPY8+9X2frYrFpl0qdcSfn6X3AtXEC36beRctlk9rz2bzY/MYvYo44mul9/dv77JTwRHXDFDST2mIkce8MksufnWkHDi2uth/yvZPZPsh6mByl3KGWqHf2HntYD98ttoQdkc5c7vHMFofqhZoBhKI4+tx+DT8xk1Tc7WDh3HToYQAcDoK2cDdMewVHnDmDwiZms/nYnP81dQ9BbhiIIBEMPI3tkLKP+NJIBR2eQvSCXn99ZjL+8uE697FEJjDrvSPo3QbmaZTb8nMey977HX7wFA0+tV68TT2PwuZPYu7WA5O5p/PLBh2z46h00hvXQwEYQgwGnns+gSSexLyePDt3TWfPZ16z67G3relVfNzRDJl1I/wknU7Izj4TMdDZ89SXL/vcvFJUoAigCHPmn6+l+/Gl49uYTkZzGth8+YfHbj1ptLqqqBQkY8adb6HrMpP3lfvyEZe/U/bc1/LyqcvsKiOiQyo5FWax4/1FM08A0TQzDZMh5M0gdeDT+8jLsUTEUblzK+v89gVIKK+40MZSi91k3Ed9tEEGfB8MRQdmOX9j+6ZNVzz6rbEzmQDqN/39gmGhfOcoRBcEA+V89S0VuVTeNgsiMfqSdPK12OR2gYP5bVOzbhbI5cab1JG3EqaAMdDCAMkzQmsKNS/CXFqJMA0OZxHbpjzOxIwABTxlmRAwA/pJ8vAVbqW7Bc6Z2wx6fYv2N9roxnNEAVJbk4dv1i/V3N1CJo/NAbEldQGuC7j0YMSmAIliyi0DBeut6pPbDqOoqwlcOjijrvO696OLtoV+uVGJXjOjkUDlVVY7yfVC8Y/+NSsiEqA7Wz/5ysNdT7oBliqAsz/qeSlldOhHx1r5KL9islji8pejyfft/SYxOBmdsveUo3//Lk4rqsL9cwAdVrXC6ZrmaZWqcS3tLwW19pgaIScY4ULkyq4VRqf11U/XWrbolEog6yHdwV6VmRKcctEwoJIlJAWfcga+Hsv4eqagO4Iiuuh5+MO37y5UVQLDSCo7sEbjMROITO7S/4KisrIxNmzYBMGzYMB577DFOPPFEkpKS6NKlCw8++CCzZs3i1VdfpXv37vz9739n1apV/PLLL0RERABw6qmnkp+fz/PPP4/f7+fyyy9n5MiRvPHGG4dUh6YMjj777H+Myt170EDFZ4Nyh6LHjDtJu+Ai8t99iyVP30/QtH4Tsl6g7DaO+n93kXbqmeR/9Rk/vPwAfoJo0wy97DExHHHcmfQ//WIKVi8jdfAINs//nNWLvqai3Ith2MB0EJ+azohxp5HarR+FubtI6tQZd/FeVs9fQum+UnoMPgJlmnQb2BvDNCgrdhGTEEcwEGTn+q2AZvfm7cSnJtJn5CBQCsMwKC9xERUfR6U/gAJ++mgNGxYVUlEjjavBQUPW/nKqxn6lFGPO6cnQU7qw6psdLP9yO4YJNocBKkhktANnlIOOvRMZeEwGO34pIHNAKpuWFrBvRzF+TwWewkLsURHEdepEfGoUPYYks2v1NjoP7kruphK85X6KN23AV1pETEoiGSOHEhXrIDLazt6NW0ju3QOfN0ClP8DuxYsp37eXTkeOIiY9FUeEjb0bN5Pcuyd+b4CyvAJyl/5c9T0MMo4cSUx6Gja7QeHmzST17IlGU753L7uXLA09/DqOGEZUShpojXvDYqJ7DwfDBstfR304zboYx9wEJ99V9dutzQqalIFv5ceUr8xC2yIImpFEDxtPRJ+jAfCX7Ak9uMq3rKR07SLACsniBo4mqscQq1zxXuwJVTlZW3+hOHt51Z0wSBg4gqguva1yriLscYkAuHdsoXjdajSQ2G8Q0ZlWd4vPVYwjLgGAitwtuHNWYxgKA4judyT2xI4QDOLfuxV7cjcwDCpL8vFumI82HWBGENl3DGZENAG/l/J9+4jqkIJptxPw+6koqnpwKIhM6BDa7ikpJCIhCdNmJ1jpx1NajFLgjEnAqNrmdRfhjEnEMO0EA5VUVpSE/q7ZIuMxTBvBQCWBChdmZFyN96XVfyExI2L2b/eWY0ZEYxgmOhjE0FWtycpmJcsGgxD0g2Hf/17XaJ2uWU5X1j0OrF/7qx8UwcD+B2lVqxMBH+hgVTnH/nJBPxiO2gntxv5WrVZT/ahS6uDlhDiAhjy/21Rw9O2333LiiSfW2T558mTmzJmD1pq7776bF154geLiYo455hieffZZ+vTZnxRZWFjI9ddfz0cffYRhGJx77rk89dRTxMTEHFIdmjI4WvHdFwwaMpp9n35M8h//xNqv57J22dfYIiKxR8YSGdsBR0wc/Y88mdSMrlRW+rHZ7JQU7WNP7k6UNjAwiIiKJq1bFwzDsEZNxEQSDAbZumYHZYVlKBSd+maQkBaHYRjkb93DvtwikjsnkdolmWAwSFlROXt2FpPWJYmo+EgMQ1Gyp5xyl5+YRCexSRHooMZbXkmgMkh0ghXFu4u9lLt8RMU56mxzRJjEdrDOtWdHKVtX7yUY1Aw9uUutlhxlQHqPeAad0IkeQ1Mp3VtKXEosylAEg0H2bNiFp7iMuI5JJHa1fjvUwSClO/OI7ZyOqvqPu2iLldyd2KNLqIxrVz5xndJCZQo35lCyZRtpwwcTlZIEWrNnxXJ8hXuJSEygw7AjQSm8hXspXrua2D79iEqzfgv2rfyEwJqPsA2cgH2o1QUbWPMxgV8+wTZwEsbA0wEIrn4f/cvHqL7jMYaeb9Vl2WsQDKBGTrEePgE/rHoXBv/RegCaNvSC2bD4JTjyCtTR0yBQaZVd9TYMOs96gJk2+GYW/Pgo6ug/w8l3WecK+GDJKzDy8qpydvQPj6FjO6GGXmA9WLSG0t3Wb7JGVf9H8Q5U3mroOAjiM62/mHs2QMl2SOwGHXpV/cXfBQXZkNIf4jvtL1eUA0k9ILl3Vblc2LPOKhdnXTcKc6BkB8R3tsoCuKqS9qvL7NsIRdsgsSt06F37MzOGWr+R6iDsXgHlhdZ3SB1g/eWp9FnXyR4VHg9xIURYarfBUThoyuAo6POx87rrWJazlGNfe4+kjB64S/ZSXlqIIzIGZ1QszogYDMPA7wtQnF9OVKydqHgnZUVe9mx3kZwZS3SC0wpmCsopK/YS1yGC2A6RoWCmtNBDQloUdqeJp8xPaeH+hLbYpAgiYuz4vdb5D6WcDmoMm4FpKrb/so8928uIiLHT76iOrPp2BzvWFlJW7MVXUYmnzE/nfnW7uPbsKKVzv0SSO8XQe2QqsclWfQtWrEW5c4lITCRuwAgwDPyFe3D9soTYASNxJFmtGe5tG6nYtZ3ITl2J7mo9wH3F+1CAPcFq6i7ftpGK3K1Ede5GZKb1wA2UFuLbvoaIPqNRdgcEgwT3bMDwlVpN7Cl9rQdu8Q546xI4czak9oXvHoSxf4Flr8HwS2H+k3D8X6HgF/jXSXDV19bD+mDlwCrz5kXQ40QYewPMfwq2fAMXvFH3XI0pl/0x+Nww6I9WczJYrQfBIOxcbDX/x2VAch/rewYrqwKmTlZg4S+3Wg8ME1BWK5RptwIrfznYI6sCEq8VkEFVAoYDbI6q4bNVLRRKVQ0/1tbPWled06jdChD0W4FgdQKGYd//mZUVYIu0ylV6ra4WAFvE/hYQIYQ4BBIcNaOmCo601sx//Z90+L8nWdYjlgs+WoBp1j94MOAPsHtzCT5PJTaHSYeMaKLinVSU+rE5jEMKeuJTIgkGNM4oG3t3luHaW0FkjJ30ngns2e7C5wlQWughKs6B3WmS3iOebav3sXdnKRHRdvqPzWDxJzlsW7OP8mIf3orKBuX1HHt+bwafmMm2tfsoL/HSqU8izghF8ZYcErp1wh4dTdHKJUSaZUQmRqNMu9VPn9QD/BWwd4P1QLdFWg/5tAGw/nPoMwFWvWUFIoU5gLaOWfIyDL0Ysj+E/mfC8v/AkVfAvs3w7uUw7DLYu96q3Pj/g9XvwBHnwrtVUw2kD4b5T8DYGyF/rdVCcvLdMOBM2PA5rH7XCkwSuljv+0yE4u1W4DLoj9b7TfOsfakDrFYZw7T65w079J1otbyk9IXN31ifGdUB8lZZn12dO9DzxP3ffftPVrASlWR9Vode1rUxbJDcyzomqgMUbbWONRxgKIhJt1pzHDFV/f2H1koqhBDtye9yEsi2pshVyMKs/3E6UBHpOHBgFAhSsL0MnydAdIITpRTuEh+GaeCIMAlUBvGU+XFG2fGW+/F5AtidJo4oG3lbSti7s4w920opK/JQWuQlITWKkyf3Z9f6Ijr3S+KT2asOmvTs2ltB36M68vk/19Qpl7upmM1LCxg2viublhYQGWtn0ImdiIiyExFjJyLajjPaRmyHSBJSonCXeMnsl4hrxy48m5dT5i7FUxbAGWmj0uYnIcWOaSbt/wBvKRRusVorKr2wfRGsfhtW/hdOuW9/i0rW32H9p1ZQAVaAsflrqzWiZplNX1ll9qyHL+/Y/zkdeu8vl7cGOvSwkgdP+rsVaPU/HSITrW6msnzoNc4KTLxV+SRjqnJ7OvS0gqfqcj2Ot7qJqsuBlcSZ2M0KYHTA6m7qPc567y2FTsOtcsm99pcLVlrluo3dXy4mFbwuK7Gxupy3FDwu6/2upVBRDOlHWNtS+u3PPxFCCHFQEhy1Al/Ax/yfvsTpsaYI8EY46y0XDGoKc92Uu7zEVAVG1Wq2EgF43H5ikyLYsDifHkNT+OSZ+oOe4rxysufnMmx8V1Z9s4M9O0qJinOgjOqRMArDUJQWetiyYg/Dxndly4o9xHaIYORpXYmMdVS97ETHO4mvCnp6DE0huXM0Pk/tYdAOpyIuJRLX9h34Cnbij3IQ128wBXv34NNB4rs4iekQhU1XQI0pE0K8ZZCfDR/9GSqqhnf3mQhHTrVaUkZdBbFpVjdY9RDyHifC8MlW60zuchh9NSR1h5Kd1vETa4yqi+8MvU+B/DVw1HXQ77TawQzsD0AKc8BTbAUdHXrCvi1WgFJ9X5xx+wMVjwsqSqxAa+8m67iIOEjoCgXroKLQ6jbyuKzWn5R+VtDmKYHIBEjoBns3WudHWa1CAb8VyO3bYNUhIn7/+TxFVgBZvAO8buh8pNW95oyVBFYhhGggCY5awa69OyneuYMon5Wz4Y+Mqreca28FpXsrQsHLgVT6Aiz63xY690sMjfTakV1IVJyDmCQnMYkRoaTqlC6xdOwZj7vEyxHHdabLgKQ6AQ2AI8IkLtkKfLoNSiapY1StctX7XXvL8XkC+D2V+9+XusHvxuHQxGVk4lq7FF9hAdp04qrQVKzdQtrQwfjzt+CgDKUrard+gJWcu2cdjL4G5t1jBUbRKXDCbVbgU7zNGtrp2mV1h9U8tmZrClhBUd9Ta5f5dbmA3zpnYjer6618r5U744yzus52LgH3XqtrzL0XKlzQaQjsWmGVjepgtRLtXFJjaKthBTsZQ63WLMMOeWutQEYZ+/Nwygsh/xer26uyAEwn5K20tmtr6DlgBVv+cqtO/nKITrXOV1FkDRCzRVrBU3SKVc8IWftPCCEaQ4KjFlYZrGRzzi/Y3JUYXis4CkZF1ynnLvZSlOfGGWXDtB14BI5rbwUL5m4mITWK/mMz2PHLPgaflEmXIzoQ8Nee+O6gAc2hBj6eQJ39aI3PVYKrooi4zukU5W/Ak5+Lo2sv9qxeS3mxH62T0UFwOhUxTjcU5eCMjYYytxWwFG21ApNNX8MPj1rzlPzxZSsHyLXL6uLqf4bVYlO01Zq/onoei4pi6DgEdq+0vkBCV8hdsT9vJ1RmsFXGvdca/ZTQxZpO3r0XqBrN5d5rdW35yq1k4ph0KNtTNdKqZ+2uqUovdDwC/B4rQdjvsXKDdO+qVqyqlqyAH9IGWd1j1qxq+19Q9dlB6/MTOlf9nFF7e9WcHqE/4zvXfq8UKFNGawkhRBOQ4KiF7Snbw54tW3BGxWF4rOBIRdcOjrzlfvblujFNA3vEgW/RtjX7WPr5NjJ6JTDhqoHkbSkhMtZB6b4KEtOiawU9dQIawOcJ4NpbfvDA51flSvaUY9gMCncVUbGvmGB5KcHyYoI+D+gAFQV5OBOTCDh9lO0pweZQxCXZsdkVpqmIiFTY7Ar8ZdarmnsvrP3ASpruN8lKsP7hMRhwNqRbcyXhjLECI1eu1R0Vl2ElI4PVnRTXCdBWsrJpt4Z7W1fYepXkQnwXsEdbLT2uPKsVxhlnBSo2pxXkVPqsXJ1DDTbs9bf81eU4yD4ZeSWEEOFCgqMWFAgG2LxtHbqkHGdqZ5wV1lBre3R8qEylL8C+XDcBfyA0b1Cd81QGWZG1nS0r9lqLKF59BMUF5UTGWg/f+oIem8PEtbccb0UlwYBGB7U1OttTid8XwOG04auoxBFpY++uUrxuf9XUOJpgQFO2L0BFkQuH06AkOwcjUI6pK3DYwBZnzctkOp0YJphmMXHd7FWLyR9Cvsu+zfD1fVbgYzqs5Oh9m+CIP9QuV1ZgdTUFfJA20Gppakw+TfVMukIIIUQ9JDhqQUXeIvK2b8GhnZgOOzFeq9srKiEBgGAgSFGem4pSHzGJTqLiHFT6ArW6vMqKPCx8fwuxSREMG9+FtG5xuEtqJzIHg5pylw+/N4DNaeIu8VJW6EUrbS1XaioM0wj1yHjdlXjdVqDmLvJYs/kSBO3FCHqx61JsFGOWVWCWVRKb7MCIjMaMiA9NrtgoOghr3oNFL1hz3fQ/00qeLsuvm4OktTWCzDCtLrS4317qRQghhGgMCY5aiNaabflb8OUVEROfiK8ySEyFlWgbm9DBWlSvoALXPg/R8Q6UUlT6ArVaf3atL2LxJ1tJ7xHP+CsHkruxiJjECPzeQOgz3CVeKwCyGQQDmkp/kNgOEdgdVu6SaVOYNgPDpqxWHR1EVXqg0oOqrABfGcpbYo2gqvRaQYsyrRwgR/L+bqzDVb4Pvp1lzVkEcNQ0OOUeKynaW2q9QiO/SqA0z0pYThtorfMjhBBCNBMJjlpIsbeY3J1bcHgUjuRo9pS4MKsGISV1SLUSsAvKiYi2Y5hWa8z+7rFIlmdt56cPtpDZP4kJVx9Bcb6bmMSIWp/h9wSwmZCS4cTmANPQGCoIQR/oiqp1kwLgDUJFpTX6yVdaNdux1xoUpVRV7o3TWszvcObGiUm1gqxfD43fOh+2L4SuY60E6UmPwdALa7cU1UzS3rkEIhIhfeD+BRyFEEKIZiLBUQvJc+2ifHsBjshoMBRlZcUAeOxgt8WxL9eNzW7Ndl2TzxNg7Q+7GHhsJwxDccRxnSjN24tyu0OrVlPpgYAXX5GPxMQAkYVVo5yCAetPgqAVoSHh1Uy7FQQ5Y8BMqjF6qon4fzVEv9IDC58FX5k1Eu2LO+EP/4LMI+sOswerdalsjzVxYmTi/pWXhRBCiGYkwVELcPlc7Ni5BdNViSPZWvfLU1oMQFmEgbfUTjAQJDq+bgJ2pS/ATx9sptIXZNj4rrh3bKFya/b+AkqBYeL3m5imQXS8Deym1RVWPVy8tdagqjVEfx58crO1QOkfX4alr8KIy6wE7LKCusf6K6wRbAldrXl7bPUnpwshhBBNTYKjFlDgLqB0Vx4GNkyndcn9bquVpCzCxKhURMXVM8zb72Hz/C2kdU9gwDEZuHN3EdmxC/4KPz6Xq1ZRry9IfLKBIzaMbqm3FNbMtRKpJ86EUVfD8Mtg2wJraY0D8ZVZXX7Jva1JDQ+wtIoQQgjRHOSp08zcfjc7C3Jgrxczdn+3ULDUmuPH7bSRHGPUHvIerAT3Xir37aSsPJHxVw4k56cNJMWV4y8rI65HT1xbNocCpEq/xrQpomNbaALAA+USgZU07XNbq9NvmmflMoE1CeLYG6w5iOI6HvjcvjLwlFqLtSZ2k0kNhRBCtDh58jSzgvICivPyUeUBHDHRaA0+t4EqcwNQHmHHNKu6vTTWUhAF62DvRorKkzhx8hF89/paEmKs8j6XC9eWzcT16ImjalVhr0cTFatwRrTQGlrVuUTO2Brbyq3V62NSreU+1n9qBUaJ3eCMJ/cP0Y/LqH1cTQE/lBdbK9UndZfASAghRKuQlqNm5Kn0sLtkF2q3GyIjAIWvzMTvNrF7q4IjpwPDMKzgoiTXyr8xFAFnEuVlsXz54lpSO7gxjP3dbtUBki0qiorCElAQE2cc2oSLTaFmLlHucljwtDWr9DnPwTtTYOsP0OsUa4X6LmOsQKc64brmEP2aLU9aQ2m+tXxGQldZLFUIIUSrkeCoGe0p30NRfh66xIc9MRFfqYm/3MR0BnF6KwDwOp3YygshzwOVFdaK7KaDnF98LF+wjchoxZFH1R2l5XO58LlceCo0UbEGEZEtHEyUF1rroA0+DzqNtJb7+HSGtbr82L9YQ+5rLuxa3xD9mtvde6zvntxHcoyEEEK0KnkKNZOgDpJfno8ucFPpN9CeCIIVGru9DKPST6THA0ClzYZZngspfawuKSAY0Kxbaa271m+IA9OsP/AJBjQaiG3JViOAXUvhxyegZIc1PH/sDbB7FRx1Xe0WH3tk/UP0qwMke+T+1iQUpPaX4fpCCCFanQRHzURrjbdwL96t+eCPxSjah9MsQ/krMbQm2mMlKlc6IyGyQ62gYOtGPxVuTUSUonufA0/C6KnQREUbREY3YWB0sGRrHYS8NdaQfLCW+xh1ldUdljagbiBU3xD9atVBUaXXWkRWZr4WQggRJiTjtbkEg5StySa4uxR7sAKb4UKbJkFbFJWOWKI81lpmOCJQNeYhCgb3txr1HezAtB2g1SioCQYhNr6JW43qS7YOVsKuZZDUA375wJo76aS/W/MVuXZBae7+rrIDJVvXRwetACqhKyR0abrvIIQQQhwGaTlqJsFAgLLtPgLOKGwxdScwjKkKjgxHBIaxP7jZvqkSd6nGGaHo0e/ArUbeCqtlqUlbjaBuTlDOD7BjkTVP0btTrRFnl34A3cYeWi7RwZQVQFQyJPdqvYkqhRBCiF+R4KiZVFYGCFYGMR26zj6tIdYTBMDhiMCoavnRQU32Cqu7re9gB7YDtBrpoCYQgA4JZq3Aqsl4S2HHz5A+yPp54kz43/VW4nXfiRCbfmi5RAfjKbEWsU3tZ5UXQgghwoQER82ubvBSHggQXTU3YoQjElU1n8+OLZWUuTQOp6Jn/4O0GnmslqUmbzUCa66ilf+1Foc95V4r2XrdJ9bs1hHWvEqHlEt0MJVea6LItCMgKqnp6i6EEEI0AQmOWkFZRVno5yhbJIah0Frzywor16jPEXZs9gO0GmmN3w8JyYY1iu1gCdTOWKtVpqzgN2a1jrbWMftsBuSttrb1PAlGXg4F2dBnwqF3lf2WYMCqT1IPiM88/PMJIYQQTUwSsluBu8IKMtxOMG12lFLszKmktDiI3QG9BloTPkalp4dmwa7m82qcTkV0cvz+gKe+ROjqOYb81nxK9ZYL+KzZuGPS4PuHrcDIsMHxf4UL37Lyiyo9jUu2PpCyPVa9O/SSGbCFEEKEJXk6tQJvhTU7dmmEgVJgKJPsqlaj3gMd2B1Wq1FleXmtZUK01vi8kNA5HjO5+/6WoOrgxea0Ro9Veq3RXzuXWC0/JTutP3cusbb7K2Dlm7DwWSuH6J0psH0RDLkQrvgSjp8BJdvrT7Y+nACpoghsDmt5EHtE488jhBBCNCPpVmsFAU/VorMRNpRS7N1tUFIYxGaH3kfUXSakeqHZsoISYlNjie7cHdZ/DtsXWoFPyXZI6AanPwYbv4KuY+GN82Hz13U/vOdJ1hD8nUvghNvgoxutWamPnW4tGhuTevjJ1rW+rB+8LvBVWAFRan+ITGzoJRNCCCFajARHrWD0seOILlG4d64ADHKyrQa8XgMcxKTEY4uKojwvD7ACpLI1C4jvN4zYogUYvc5G/beewGfXMsgYZiVQL3zOagmy1zPb9PZFsOJNq9z2n2DMNDBrJH8fbrI1WHlFvlLwukGZ1lIiHXpZQVFE/G8fL4QQQrQiCY5awZ6c9Rz76KMkPHY3BZ5ESosUpg0GHZscaiWqFrEzi9jVT6Lcd2COvQHmPwVbf6xKaO5sJTUnZELnUdD9OCtPaPRV0OeUAydpJ3azynUe2XSJ1lqDrwy8Zdbkjs5YSO4L0R2sgEjmMRJCCNFGSHDUCnKXLmTX2p0c/+TjzPv3Glz5HkaNTyG5Xy9cWzbjc7kg4CN27Wwit38CPU9Cj5iCb+sKnEdda+UJ+dz7T/jrBV69pfVPxnio5RqqfJ/VbeaIsWa7jkmxWonMA09HIIQQQoQrCY5agdPrwb10AZ/NfoZTr7+VdQtyGXRCp1BgZLhziV96L3bXJnTPk+BP/yE/eysJsQEo3m61GlUHNL8OeKD+2aoPtVxD6CCU5llBUaf+1pxFMqGjEEKINk5Gq7WCSI81Mm3rxt1kz89l6Cld8ezbg8/lwpE3n6QfrsPu2kSw7+no8/9L/rodKF85zghVd+SYPfK3E6jh0MsdqoAfSnZBVAfIGArxnSQwEkII0S5IcNQKEgIBALoMHkH/sRmsW7CdyOQU4op+IKHoO4zRV+FPHEDFUX+nJGcr5ftKiI6rscBszYCmrODALT7e0v0J1oda7lD4y60Wo4Su0HGIJFkLIYRoV6RbrRVEuL1Ejz2aSVdewJf/WotRUUDPgseJOPVe4Co837+Aa8xjsK8UryeIw1nPUiGHOnKsqXlKrHyn5L7QoSeY8ldICCFE+yItR60gY/BoOj36KEs+WcmO7EKSCr/AXroVDWjTiafr6dZM1VgzYsfEKWupkNaktdW6FPBbC9Km9JHASAghRLskwVELC2pI6tmPXTffzPol2wCI7jMcfd4cStevomRLDraoKAAq/RqbzSAqppWHwQcD4MoFWwR0HGrNsq1aOVgTQgghmon86t/C3D4frn++CIAePw6AqKHjKC8sxeNzgM9lDeUHvB5NTJyBw9mKgUjAB6UFEJsKKf0hIu63jxFCCCHaMGk5amGlVYvOBhQYhhVoROb/SGRq7UVmg0GN1hAd24q3yFdudaUldIH0IRIYCSGE+F2Q4KiFlVdY66qVRSr8QWt5D/uWT0JrqFUHSD6PJiJKERHVSq1GFUVW8nVyX0gbKAvFCiGE+N1oV8HRP/7xD5RStV79+vUL7fd4PEybNo0OHToQExPDueeeS35+fovW0V+16Gx5TDSVviAAztiIWovM2mNj8fshJs7AMFo4ONLaGqavtTVMP7m3JF4LIYT4XWlXwRHAwIED2b17d+j1448/hvbddNNNfPTRR7zzzjt899135Obm8oc//KFF6xfwlANQHJUAgF1VYEZbP1cHSIYzGrtDERndwrcnWGlN7OiMtRaxje8kiddCCCF+d9pdk4DNZiM9Pb3O9pKSEl566SXeeOMNTjrpJABeeeUV+vfvz08//cRRRx3VIvVTHmtNtNKIRACijCKCzg6h/T6XizJXMfFJBnZ7CwYm/gpw77UWsU3uC46olvtsIYQQIoy0u5ajjRs3kpGRQY8ePbj44ovZvn07AEuXLsXv9zNu3LhQ2X79+tGlSxcWLlx4wPN5vV5cLlet1+EwPRXWeauCo2ijiEDE/uAoENAoA6JjWvDWeIqtHKPkPpB2hARGQgghftfaVXA0evRo5syZw+eff85zzz1HTk4Oxx57LKWlpeTl5eFwOEhISKh1TFpaGnl5eQc858yZM4mPjw+9MjMzD6uOdq8HAL+zquXILCRYIzjyejSRUQbOyBZoNdIayvIhUAnpgyGlL5j25v9cIYQQIoy1q261U089NfTz4MGDGT16NF27duXtt98mMrJxi6LefvvtTJ8+PfTe5XIdVoAUWRUcaXscCogyigk6k6xtWhMMWInYqjG5PsFKa14iAGXsf6HAMOuWLc2DiARIHQDRHX59NiGEEOJ3qV0FR7+WkJBAnz592LRpE6eccgo+n4/i4uJarUf5+fn15ihVczqdOJ3OJqtTpMcKXpQZa53f5gbTAVhLhTgcisgDDd/XGoJ+awmPgN8KhIJ+0FX7DbPqXAp0wCpf/SfBqnIK6wcNsRlWa5Ezpsm+nxBCCNHWtevgqKysjM2bN3PppZcyYsQI7HY78+bN49xzzwVg/fr1bN++nTFjxrRYnaK8fgCUEYPW4LT7Qvv8Xk1SqoFp+1VwVN39FQxY3V6GA2x2q9XHGQs2p/UyHdafKNDBqsAoaB0XCpSCVS8NManSjSaEEEL8SrsKjm655RbOOOMMunbtSm5uLnfffTemaXLhhRcSHx/PFVdcwfTp00lKSiIuLo4///nPjBkzpsVGqgHEeCoBMFQUAQ12h/W+0q8xbQaR0fV1f+VDZKI155A9EkynFdTIMHshhBCiybWr4Gjnzp1ceOGF7Nu3j5SUFI455hh++uknUlJSAHj88ccxDINzzz0Xr9fLhAkTePbZZ1u0jrEVAQC0tmbHtkVYOfFejyYm1sBRswcv4LMCo7gMSO0PjugWrasQQgjxe9SugqM333zzoPsjIiKYPXs2s2fPbqEa1RYIBonxaILKJKit4fK2CDO0jlpUzURsfzm490Fid0jpU9VdJoQQQojm1q6Co3Dn8nqwBcHjtNZPM/BDZCQ+j8YZUSMR21sKHpc171CHXrJ8hxBCCNGC5KnbgsoqSgFwR8YD1jB+vyMJ7YeE5Kp11Mr3WfMOpQ2ExG6SVySEEEK0MAmOWpCnwlo6pCSmKjgyi/CbiUQ4FJGRypp3yHRaC77GdWzNqgohhBC/WxIctSC/pwwAd9Wis9FGET5bOqYKYvMUQES81WIUldSKtRRCCCF+39rV8iHhTlctOlvhtFqOIo0iArY4VPleVEwKZAyVwEgIIYRoZdJy1JKqFp31VwVHTrMMdBDljIa0QbLgqxBCCBEGpOWoBdm9VnBUabeCI9PwoABlGNbkjkIIIYRodRIctSBHVcuRtlnrqpmm11ob1lQyKk0IIYQIExIctaAIrxcAbVjBEWYlShsYpnmQo4QQQgjRkiQ4akFRHh8ahSYGAG0LYqBQEhwJIYQQYUOCoxYU7fHjt0eDMoEgAVMB2so5EkIIIURYkKdyC4r2BvA6qofxu/AaMShlSMuREEIIEUYkOGpBsRUBfM7qpUOKqDBiMEByjoQQQogwIsFRC/EFKon2gNdhLTobbRRRYcSilCRkCyGEEOFEgqMW4qqowAB81d1qZjE+FYlCo0yZi1MIIYQIFxIctRC3p9T6M9JqOXIYbgxlWDdAErKFEEKIsCFP5RbirbAWna2IsIIjm81jdakZhoxWE0IIIcKIPJVbSGWFtehsdUK2afpAgaEkOBJCCCHCiTyVW4j2WsGRv2pdNWyVKKUwDCQ4EkIIIcKIPJVbiOGpQAMB0+pW06bGMBRKGZJzJIQQQoQReSq3EJu3goAZAYYDgKBNW4ER0nIkhBBChBN5KreQCI8Hb1W+kUO58apIlGmgFShDtXLthBBCCFFNgqMWEuHx4quaADLKKKKCaAxlolChFiQhhBBCtD55KreQKK9//+zYZhHlKgZlGCilJedICCGECCPyVG4h0R5/aHbsCMOFHzuGYYACZcjyIUIIIUS4kOCohcR4AqHgyGmWo7W25jhSSnKOhBBCiDAiwVELia0I4nVa3Wp2uwcNVs6RUjJaTQghhAgj8lRuARV+P5H+/YvO2mx+0EGrxUhVvYQQQggRFiQ4agElFdais9UJ2YY9AFqH1lWTnCMhhBAifEhw1AIqqhadre5Ww6EAjaFUVUK23AYhhBAiXMhTuQV4PW4Cho2ALRoA7TBBVy06i7QcCSGEEOFEgqMWEKhwhyaANPFRaY+wdoRGq8ltEEIIIcKFPJVbgPK4Q8nYUUYxXjMOFBgolAHIUH4hhBAibEhw1AIMT0UoGTvKLMJrxgJVA9UMJd1qQgghRBiR4KgFOLyeULdapFFCUNmtHdUTQMraakIIIUTYkKdyC3B6PKFuNYet3NqoQVE1Uk3mORJCCCHChgRHLSDS69s/O7bNG9puoFCmdKkJIYQQ4USCoxYQ5fHtnx3b7qvaqgBlLT4rhBBCiLDxu30yz549m27duhEREcHo0aP5+eefm+2zYjyVNWbHDoIGlLZajmzSciSEEEKEk99lcPTWW28xffp07r77bpYtW8aQIUOYMGECBQUFzfJ5Md5AqOVI2avyizTWHEfSrSaEEEKEld9lcPTYY49x1VVXcfnllzNgwACef/55oqKiePnll5v8s4LBINEV4HNYw/e1wyQIVhJ21fpqQgghhAgfv7sns8/nY+nSpYwbNy60zTAMxo0bx8KFC+uU93q9uFyuWq+GKA9UghlrzYZNgIDDjtZBa9kQpTBstsP+TkIIIYRoOr+74Gjv3r0EAgHS0tJqbU9LSyMvL69O+ZkzZxIfHx96ZWZmNujz3N79S4dEGC58tjgrOFJgKkAmgBRCCCHCyu8uOGqo22+/nZKSktBrx44dDTre66vAW5VvFG0U4TViIFiVbyQ5R0IIIUTY+d316SQnJ2OaJvn5+bW25+fnk56eXqe80+nE6XQ2+vP8vvL9LUdmKVo5COIDA5QyZNFZIYQQIsz87p7MDoeDESNGMG/evNC2YDDIvHnzGDNmTNN/oLcCr9NqOXKabgCU1lU5R0hwJIQQQoSZRj+Zp06dSmlpaZ3tbrebqVOnHlalmtv06dP517/+xauvvkp2djbXXXcdbrebyy+/vMk/S/kqQi1HdpsHgEDQWjtEKSXBkRBCCBFmGv1kfvXVV6moqKizvaKign//+9+HVanmdv755/PII49w1113MXToUFasWMHnn39eJ0m7KdhqLDprs/utjRpQhjWMXxadFUIIIcJKg3OOXC4XWmu01pSWlhIRERHaFwgE+PTTT0lNTW3SSjaH66+/nuuvv77ZP8fp84QSspU9WLXVajkyUChDFp0VQgghwkmDg6OEhITQSKs+ffrU2a+U4p577mmSyrUHEV4vvviqpUMcVRu1xsTqUpNuNSGEECK8NDg4+uabb9Bac9JJJ/Hee++RlJQU2udwOOjatSsZGRlNWsm2LNLjw5VqtRxpuzVsP6iDgIFpSEK2EEIIEW4aHBwdf/zxAOTk5NClSxeUkm6hg4n02yk27AAEndafWmsMA0zDAAmOhBBCiLDS6CdzdnY28+fPD72fPXs2Q4cO5aKLLqKoqKhJKtceOAPRAJi48dlirI1aAwbKkNFqQgghRLhp9JP51ltvDa0ztnr1aqZPn85pp51GTk4O06dPb7IKtnUObQVETlWMz4gCrMFqhgLDNCU4EkIIIcJMo2fIzsnJYcCAAQC89957nHHGGTzwwAMsW7aM0047rckq2JYFgkFMrGTsSNO1f9i+DmJgt7okpVtSCCGECCuNbrZwOByUl5cD8NVXXzF+/HgAkpKSGrxyfXtV5vfir5rjKNJetn9HELRpgEwCKYQQQoSdRrccHXPMMUyfPp2xY8fy888/89ZbbwGwYcMGOnfu3GQVbMvKve7QHEeRdi9+rC42rTUm1cGRLDwrhBBChJNGN1s888wz2Gw23n33XZ577jk6deoEwGeffcbEiRObrIJtmc+/f9FZ0+YPbddoDGVNAKlkhmwhhBAirDS65ahLly58/PHHdbY//vjjh1Wh9qTSVxFqOTLtgf07tEaZBgoDTAmOhBBCiHByWE/mzZs3c+edd3LhhRdSUFAAWC1Ha9eubZLKtXk1Fp3FsX+z1hqFIQvPCiGEEGGo0U/m7777jkGDBrFo0SLmzp1LWZmVcLxy5UruvvvuJqtgW2Z4K/A5reBIO/bnFmnAZpogM2QLIYQQYafRT+bbbruN//u//yMrKwuHY3+zyEknncRPP/3UJJVr6+zeSiptVXMbOez7d+hgVauRJGQLIYQQ4abRwdHq1as555xz6mxPTU1l7969h1Wp9iKi0gqIlPbhs0fv36E1hjKq5jmSliMhhBAinDT6yZyQkMDu3bvrbF++fHlo5NrvnTNgtaiZuoSA4ayxR2MYCqNqriMhhBBChI9GB0cXXHABf/3rX8nLy0MpRTAYZP78+dxyyy1cdtllTVnHNssRiATAVK7aQZAGhSRjCyGEEOGo0U/nBx54gH79+pGZmUlZWRkDBgzguOOO4+ijj+bOO+9syjq2WTZtdaXZjNI6+5RhoEzJNxJCCCHCTaPnOXI4HPzrX//irrvuYvXq1ZSVlTFs2DB69+7dlPVr04yqddVstnKgRreaAqXBsElwJIQQQoSbRgdH1TIzM8nMzGyKurQ/hhUc2W2+uvuUId1qQgghRBhq1NN548aNvPfee+Tk5ADwySefcNxxx3HkkUdy//33o7Vu0kq2RRWecgKmFRw5IwK/2qtQgCHdakIIIUTYaXDL0fvvv8+f/vQnDMMaiv7CCy9wzTXXcMIJJxAXF8c//vEPbDYbf/3rX5ujvm1Gbu4ufE5r6ZCoSAN/zZ1aYygk50gIIYQIQw1uObr//vuZMWMGHo+H5557jmuvvZaZM2fy2Wef8fHHHzN79mzmzJnTDFVtWwp2b8dbvehsRH0xqEKZh92rKYQQQogm1uDgaP369UydOhWlFJMnT8bn8zFu3LjQ/vHjx7Nt27YmrWRbVJifi98eA0CwxgziFoWBkpYjIYQQIgw1ODhyu93ExsZaBxsGkZGRREVFhfZHRkbi9XqbroZtVHlegTX7tQ7id0bs36EBpTEMZAJIIYQQIgw1ODhSSlnLXhzgvbBU7isBwAy40MavWo40IOuqCSGEEGGpwUkvWmv69OkTCoiq5zcyqoaly0g1iy6tBMAIumptD1IdUMpQfiGEECIcNTg4euWVV5qjHu2O8hhgB4UL2N9CpHUAsEb6KUNa3IQQQohw0+DgaPLkyc1Rj/an0mkFR6oMiA9t1lqjFBhK1lYTQgghwlGTjCUvKysjGAzW2hYXF9cUp26zVMBKUteGG4hn7Dl/JCYhkU9eeG5/YCTBkRBCCBF2Gv10zsnJYdKkSURHRxMfH09iYiKJiYkkJCSQmJjYlHVso6wRfZgexp7zR+JTUikrLiJIkKBSmCAtR0IIIUQYanTL0SWXXILWmpdffpm0tDQZsfYrnUePZMNaP6POOov4lFRK9hQw//13UVqjUBimJGQLIYQQ4ajRwdHKlStZunQpffv2bcr6tBvHXXEUyT/mMujkzFBgBBAIVo3mk5wjIYQQIiw1+ul85JFHsmPHjqasS7uydelOho3vSoXLHQqMgKpJIA1Mw5TWNiGEECIMNbrl6MUXX+Taa69l165dHHHEEdjt9lr7Bw8efNiVa8v6HNONQCBAVEIMY8/5Y40AyepWMw0lCdlCCCFEGGp0cLRnzx42b97M5ZdfHtqmlKoaqq4IBAJNUsG2KhgMMvfhhzj5sskkduy4P0DSGkNh5RwpCY6EEEKIcNPop/PUqVMZNmwYCxcuZMuWLeTk5NT68/fO5/EAMO+1VynZU0B8Sipjz/kjQR2EUEK2LB8ihBBChJtGtxxt27aNDz/8kF69ejVlfdql+e+/G5rnqHoSSNMwJSFbCCGECEONDo5OOukkVq5cKcHRIQrlHFUN5VeGAaYkZAshhBDhptHB0RlnnMFNN93E6tWrGTRoUJ2E7DPPPPOwK9dQ3bp1Y9u2bbW2zZw5k9tuuy30ftWqVUybNo3FixeTkpLCn//8Z2bMmNFiddRgJWSbNulWE0IIIcJQo4Oja6+9FoB77723zr7WTMi+9957ueqqq0LvY2NjQz+7XC7Gjx/PuHHjeP7551m9ejVTp04lISGBq6++umUqqIMYhh0MJCFbCCGECEONDo5+vZZauIiNjSU9Pb3efa+//jo+n4+XX34Zh8PBwIEDWbFiBY899ljLBUdBUDaFUgplSsuREEIIEW7aXdPFrFmz6NChA8OGDePhhx+msrIytG/hwoUcd9xxOByO0LYJEyawfv16ioqKWqR+WmsMQ6EMBdJyJIQQQoSdRrcc1dedVtNdd93V2FM32g033MDw4cNJSkpiwYIF3H777ezevZvHHnsMgLy8PLp3717rmLS0tNC++hbM9Xq9eL3e0HuXy3VYddRolDJQpgKZIVsIIYQIO40Ojt5///1a7/1+Pzk5OdhsNnr27NlkwdFtt93Ggw8+eNAy2dnZ9OvXj+nTp4e2DR48GIfDwTXXXMPMmTNxOp2N+vyZM2dyzz33NOrYeoVajqRLTQghhAhHjQ6Oli9fXmeby+ViypQpnHPOOYdVqZpuvvlmpkyZctAyPXr0qHf76NGjqaysZOvWrfTt25f09HTy8/Nrlal+f6A8pdtvv71W0OVyucjMzGzAN6hNa43CxJB8IyGEECIsNTo4qk9cXBz33HMPZ5xxBpdeemmTnDMlJYWUlJRGHbtixQoMwyA1NRWAMWPGcMcdd+D3+0NTD2RlZdG3b996u9QAnE5no1ud6qMBQxmSjC2EEEKEqSbPCC4pKaGkpKSpT/ubFi5cyBNPPMHKlSvZsmULr7/+OjfddBOXXHJJKPC56KKLcDgcXHHFFaxdu5a33nqLJ598slbLULMLBjEMa/kQIYQQQoSfRrccPfXUU7Xea63ZvXs3r732GqeeeuphV6yhnE4nb775Jv/4xz/wer10796dm266qVbgEx8fz5dffsm0adMYMWIEycnJ3HXXXS03jB8glJAtLUdCCCFEOGp0cPT444/Xem8YBikpKUyePJnbb7/9sCvWUMOHD+enn376zXKDBw/mhx9+aIEaHUh1Qra0HAkhhBDhqNHBUU5OTlPW4/dDKxQKw2b/7bJCCCGEaHENbr4IBAKsWrWKioqKOvsqKipYtWpV2M6eHR40hoG0HAkhhBBhqsFP6Ndee42pU6fWmmW6mt1uZ+rUqbzxxhtNUrl2SSkUBkhwJIQQQoSlBj+hX3rpJW655RbMehKKbTYbM2bM4IUXXmiSyrVPVQnZMgmkEEIIEZYaHBytX7+eo4466oD7jzzySLKzsw+rUu2dUtpaW00IIYQQYafBwZHb7T7o+mKlpaWUl5cfVqXaNQ1KRqsJIYQQYavBT+jevXuzYMGCA+7/8ccf6d2792FVqr1TypScIyGEECJMNfgJfdFFF3HnnXeyatWqOvtWrlzJXXfdxUUXXdQklWuXtMJARqsJIYQQ4arB8xzddNNNfPbZZ4wYMYJx48bRr18/ANatW8dXX33F2LFjuemmm5q8ou2CBgwt3WpCCCFEGGtwcGS32/nyyy95/PHHeeONN/j+++/RWtOnTx/uv/9+brzxxtCirqIuHQQl8xwJIYQQYatRM2Tb7XZmzJjBjBkzfrPsf//7X84880yio6Mb81HtShBQysBUJiCj1YQQQohw1OzNF9dccw35+fnN/TFtgtYBAJTNkJYjIYQQIkw1+xNaa93cH9FmaK2tddWQnCMhhBAiXMkTugXpIBgoDJspwZEQQggRpuQJ3YI0QWttNaVk+RAhhBAiTElw1JKCGq0UpikLzwohhBDhSp7QLSiodVWrkSFrqwkhhBBhqtmDo65du8q8R9U0KA2mzZRuNSGEECJMNTo4mjx5Mt9///1vlluzZg2ZmZmN/Zh2JohCYSoZyi+EEEKEq0Y/oUtKShg3bhy9e/fmgQceYNeuXU1Zr/ZJa5QCwzBRprQcCSGEEOGo0cHRBx98wK5du7juuut466236NatG6eeeirvvvsufr+/KevYbgS1RisDm81mrSEihBBCiLBzWE/olJQUpk+fzsqVK1m0aBG9evXi0ksvJSMjg5tuuomNGzc2VT3bBWsSSI1pU6AkIVsIIYQIR03SfLF7926ysrLIysrCNE1OO+00Vq9ezYABA3j88ceb4iPaBa01Shkos1FL2gkhhBCiBTQ6OPL7/bz33nucfvrpdO3alXfeeYcbb7yR3NxcXn31Vb766ivefvtt7r333qasb9umQWmFTUbvCSGEEGGr0U0YHTt2JBgMcuGFF/Lzzz8zdOjQOmVOPPFEEhISDqN67U0QZdhQpuQbCSGEEOGq0cHR448/znnnnUdERMQByyQkJJCTk9PYj2h/gmAaSkaqCSGEEGGs0U0YZ555JuXl5XW2FxYW4nK5DqtS7ZXWGrSSOY6EEEKIMNbop/QFF1zAm2++WWf722+/zQUXXHBYlWqvggQxTRPDJi1HQgghRLhqdHC0aNEiTjzxxDrbTzjhBBYtWnRYlWq3NGjAsElCthBCCBGuGh0ceb1eKisr62z3+/1UVFQcVqXaLa2xGbJ0iBBCCBHOGv2UHjVqFC+88EKd7c8//zwjRow4rEq1VxowDAUSHAkhhBBhq9Gj1f7v//6PcePGsXLlSk4++WQA5s2bx+LFi/nyyy+brILtSjCIMkxpORJCCCHCWKOf0mPHjmXhwoVkZmby9ttv89FHH9GrVy9WrVrFscce25R1bEc0hpLRakIIIUQ4O6x1LIYOHcrrr7/eVHX5HdAoU3KOhBBCiHB2WMFRMBhk06ZNFBQUEAwGa+077rjjDqti7ZIGpSTnSAghhAhnjQ6OfvrpJy666CK2bdtmTW5Yg1KKQCBw2JVrj5RhoJQER0IIIUS4anRwdO211zJy5Eg++eQTOnbsaLWIiINTSnKOhBBCiDDX6OBo48aNvPvuu/Tq1asp69Ouaa1RSkkgKYQQQoSxRjdhjB49mk2bNjVlXQ7q/vvv5+ijjyYqKoqEhIR6y2zfvp1JkyYRFRVFamoqt956a52JKr/99luGDx+O0+mkV69ezJkzp/krX4MpOUdCCCFEWGt0y9Gf//xnbr75ZvLy8hg0aBB2e+0lMQYPHnzYlavJ5/Nx3nnnMWbMGF566aU6+wOBAJMmTSI9PZ0FCxawe/duLrvsMux2Ow888AAAOTk5TJo0iWuvvZbXX3+defPmceWVV9KxY0cmTJjQpPWtl1Ygo9WEEEKIsKb0r7OpD5FRzwNeKRXqOmquhOw5c+Zw4403UlxcXGv7Z599xumnn05ubi5paWmANVv3X//6V/bs2YPD4eCvf/0rn3zyCWvWrAkdd8EFF1BcXMznn39+SJ/vcrmIj4+npKSEuLi4A5arcLv5+OmnQEFUglWuKD+fnl17MeLMSTgSOzTwmwshhBCisQ71+Q2H0XKUk5PT2EObxcKFCxk0aFAoMAKYMGEC1113HWvXrmXYsGEsXLiQcePG1TpuwoQJ3HjjjS1TSa0xTUO61YQQQogw1ujgqGvXrk1Zj8OWl5dXKzACQu/z8vIOWsblclFRUUFkZGSd83q9Xrxeb+i9y+VqXAU1oK2RatKtJoQQQoSvw3pKv/baa4wdO5aMjAy2bdsGwBNPPMH//ve/Qzr+tttuC43eOtBr3bp1h1PFwzZz5kzi4+NDr8zMzEadRwMKJDgSQgghwlyjn9LPPfcc06dP57TTTqO4uDiUY5SQkMATTzxxSOe4+eabyc7OPuirR48eh3Su9PR08vPza22rfp+enn7QMnFxcfW2GgHcfvvtlJSUhF47duw4pPr8WhBASXAkhBBChLtGd6s9/fTT/Otf/+Lss89m1qxZoe0jR47klltuOaRzpKSkkJKS0tgq1DJmzBjuv/9+CgoKSE1NBSArK4u4uDgGDBgQKvPpp5/WOi4rK4sxY8Yc8LxOpxOn03n4FdQBFAamoVCGefjnE0IIIUSzaHQTRk5ODsOGDauz3el04na7D6tS9dm+fTsrVqxg+/btBAIBVqxYwYoVKygrKwNg/PjxDBgwgEsvvZSVK1fyxRdfcOeddzJt2rRQcHPttdeyZcsWZsyYwbp163j22Wd5++23uemmm5q8vr9mjeLTGJKQLYQQQoS1Rj+lu3fvzooVK+ps//zzz+nfv//h1Kled911F8OGDePuu++mrKyMYcOGMWzYMJYsWQKAaZp8/PHHmKbJmDFjuOSSS7jsssu49957a9X5k08+ISsriyFDhvDoo4/y4osvtsgcRzoIaAOlbNKtJoQQQoSxRnerTZ8+nWnTpuHxeNBa8/PPP/Pf//6XmTNn8uKLLzZlHQFrfqPfms26a9eudbrNfu2EE05g+fLlTVizQ6MJolCYNll4VgghhAhnjQ6OrrzySiIjI7nzzjspLy/noosuIiMjgyeffJILLrigKevYPgQ12kDmORJCCCHCXKODI4CLL76Yiy++mPLycsrKykKJ0KKuoNYYKAybJGMLIYQQ4eywgqNqUVFRREVFNcWp2q+qRVrMX61BJ4QQQojw0qDgaPjw4cybN4/ExESGDRuGUuqAZZctW3bYlWtfgqAUNlNajoQQQohw1qDg6KyzzgoNiz/77LOboz7tl9YowCbdakIIIURYa1BwdPfdd9f7s/htQa1BG5gOR2tXRQghhBAH0ehhU4sXL2bRokV1ti9atCg095DYz5oEEkxbk6R5CSGEEKKZNDo4mjZtWr3rjO3atYtp06YdVqXaI601ylDY7E2wFIkQQgghmk2jg6NffvmF4cOH19k+bNgwfvnll8OqVLukQWmFskvLkRBCCBHOGh0cOZ3OOivcA+zevRubdB3VI4gyFMo48Ag/IYQQQrS+RgdH48eP5/bbb6ekpCS0rbi4mL/97W+ccsopTVK5diUISimUIaPVhBBCiHDW6CaeRx55hOOOO46uXbsybNgwAFasWEFaWhqvvfZak1WwvdBaYxgmHGRuKCGEEEK0vkYHR506dWLVqlW8/vrrrFy5ksjISC6//HIuvPBC7DILdB1BghiGgZJ11YQQQoiwdljJQdHR0Vx99dVNVZf2TVOVcyTdakIIIUQ4a1Bw9OGHH3Lqqadit9v58MMPD1r2zDPPPKyKtTtaYyppORJCCCHCXYOCo7PPPpu8vDxSU1MPunyIUopAIHC4dWtXNBrDUAddj04IIYQQra9BwVEwGKz3Z/HbdEBjmNJyJIQQQoS7Bj2pk5KS2Lt3LwBTp06ltLS0WSrVPmkMwwAJjoQQQoiw1qAntc/nw+VyAfDqq6/i8XiapVLtlmHIJJBCCCFEmGtQt9qYMWM4++yzGTFiBFprbrjhBiIjI+st+/LLLzdJBduNIJimIaPVhBBCiDDXoODoP//5D48//jibN28GoKSkRFqPGkAp6VYTQgghwl2DgqO0tDRmzZoFQPfu3Xnttdfo0KFDs1Ss/dEYpqytJoQQQoS7Ridkn3jiiTgcjmapVHuktEIpE6WkW00IIYQIZ5KQ3UJ0qOVIutWEEEKIcCYJ2S1IKQWmBEdCCCFEOGt0QrZSShKyG0JRtfCsdKsJIYQQ4UwSsluIDipMmynLhwghhBBhrsF9PKeddholJSXk5OTQoUMHZs2aRXFxcWj/vn37GDBgQFPWse3ToLCG8kvLkRBCCBHeGhwcff7553i93tD7Bx54gMLCwtD7yspK1q9f3zS1ayc0YGgwTFPmORJCCCHC3GE/qbXWTVGPdi2IBhSGJGMLIYQQYU+e1i1BB0EpDIdcbiGEECLcNfhprZSqk1QsScYHp4NW0pHNsLd2VYQQQgjxGxo0Wg2sbrQpU6bgdDoB8Hg8XHvttURHRwPUykcSFq2tGbINuyRjCyGEEOGuwcHR5MmTa72/5JJL6pS57LLLGl+jdkgTtFqObNJyJIQQbVkgEMDv97d2NcQBOBwOjCYY+NTg4OiVV1457A/93QlqDMBwNPhyCyGECANaa/Ly8mpNXSPCj2EYdO/e/bDXfpWndQsIao3GwFRyuYUQoi2qDoxSU1OJioqSXNswFAwGyc3NZffu3XTp0uWw7pE8rVtC1WwHplO61YQQoq0JBAKhwEhWhQhvKSkp5ObmUllZid3e+GeujC1vEUEMpbCZEhwJIURbU51jFBUV1co1Eb+lujstEAgc1nkkOGoJWlvzHJkyWk0IIdoq6UoLf011j9pMcHT//fdz9NFHExUVRUJCQr1lqudgqvl68803a5X59ttvGT58OE6nk169ejFnzpxmr3tAa5QCuyRkCyGE+B044YQTuPHGG5vl3N26deOJJ55olnNXazPBkc/n47zzzuO66647aLlXXnmF3bt3h15nn312aF9OTg6TJk3ixBNPZMWKFdx4441ceeWVfPHFF81b+argSBkSHAkhhGg5U6ZMQSnFtddeW2fftGnTUEoxZcqUlq9YmGszT+t77rkH4DdbehISEkhPT6933/PPP0/37t159NFHAejfvz8//vgjjz/+OBMmTGjS+taktUYrA1PmORJCCNHCMjMzefPNN3n88ceJjIwErAmc33jjDbp06dLo82qtCQQC2GwNDyV8Pt9hD7dvTm2m5ehQTZs2jeTkZEaNGsXLL79ca2HchQsXMm7cuFrlJ0yYwMKFCw94Pq/Xi8vlqvVqMK0xlUJJzpEQQogWNnz4cDIzM5k7d25o29y5c+nSpQvDhg0LbfN6vdxwww2kpqYSERHBMcccw+LFi0P7v/32W5RSfPbZZ4wYMQKn08mPP/6I2+3msssuIyYmho4dO4YaIGrq1q0b9913H5dddhlxcXFcffXVAPz4448ce+yxREZGkpmZyQ033IDb7Q4dV1BQwBlnnEFkZCTdu3fn9ddfb45LVEe7Co7uvfde3n77bbKysjj33HP5f//v//H000+H9ufl5ZGWllbrmLS0NFwuFxUVFfWec+bMmcTHx4demZmZDa6XrkrIVk0wa6cQQojWpbWm3FfZoJfHH0BrjccfqPf9ob5q/sLfEFOnTq01ifPLL7/M5ZdfXqvMjBkzeO+993j11VdZtmwZvXr1YsKECRQWFtYqd9tttzFr1iyys7MZPHgwt956K9999x3/+9//+PLLL/n2229ZtmxZnTo88sgjDBkyhOXLl/P3v/+dzZs3M3HiRM4991xWrVrFW2+9xY8//sj1118fOmbKlCns2LGDb775hnfffZdnn32WgoKCRl2DhmjVbrXbbruNBx988KBlsrOz6dev3yGd7+9//3vo52HDhuF2u3n44Ye54YYbGl3H22+/nenTp4feu1yuBgdISoOhDAmOhBCiHajwBxhwV8NzVY/tnczTFw7jrcU7OP/ITK769xJ+2Li3Qef45d4JRDVicM8ll1zC7bffzrZt2wCYP38+b775Jt9++y0Abreb5557jjlz5nDqqacC8K9//YusrCxeeuklbr311tC57r33Xk455RQAysrKeOmll/jPf/7DySefDMCrr75K586d69ThpJNO4uabbw69v/LKK7n44otDidu9e/fmqaee4vjjj+e5555j+/btfPbZZ/z8888ceeSRALz00kv079+/wd+/oVo1OLr55pt/MxGsR48ejT7/6NGjue+++/B6vTidTtLT08nPz69VJj8/n7i4uFA/7K85nc7QIruNFQxqDJsER0II8Xv2w8a9vLV4B9cc35N/fre5wYHR4UhJSWHSpEnMmTMHrTWTJk0iOTk5tH/z5s34/X7Gjh0b2ma32xk1ahTZ2dm1zjVy5Mhax/l8PkaPHh3alpSURN++fevUoeZxACtXrmTVqlW1usq01gSDQXJyctiwYQM2m40RI0aE9vfr1++AI9abUqsGRykpKaSkpDTb+VesWEFiYmIouBkzZgyffvpprTJZWVmMGTOm2eoAECSAYYAyZI4MIYRo6yLtJr/c2/BBPIZSOG0G/kCQq4/rweSjuxFsYDdZpL3xuatTp04NdVnNnj270eeJjo5ukuPKysq45ppr6u3d6dKlCxs2bGjU5zSFNjNabfv27RQWFrJ9+3YCgQArVqwAoFevXsTExPDRRx+Rn5/PUUcdRUREBFlZWTzwwAPccsstoXNce+21PPPMM8yYMYOpU6fy9ddf8/bbb/PJJ580b+WDVcnYShKyhRCirVNKNaprq5rdtH5RjjiMQKcxJk6ciM/nQylVZ4R2z549cTgczJ8/n65duwLWzOCLFy8+6HxFPXv2xG63s2jRotDIt6KiIjZs2MDxxx9/0PoMHz6cX375hV69etW7v1+/flRWVrJ06dJQt9r69etbZPHfNhMc3XXXXbz66quh99UZ9t988w0nnHACdrud2bNnc9NNN6G1plevXjz22GNcddVVoWO6d+/OJ598wk033cSTTz5J586defHFF5t1GD+A1gFrtJq0HAkhhGglpmmGusjMX42ejo6O5rrrruPWW28lKSmJLl268NBDD1FeXs4VV1xxwHPGxMRwxRVXcOutt9KhQwdSU1O54447MA4hjeSvf/0rRx11FNdffz1XXnkl0dHR/PLLL2RlZfHMM8/Qt29fJk6cyDXXXMNzzz2HzWbjxhtvPGAaTFNqM8HRnDlzDjrH0cSJE5k4ceJvnueEE05g+fLlTVizQ6AVhmmTnCMhhBCtKi4u7oD7Zs2aRTAY5NJLL6W0tJSRI0fyxRdfkJiYeNBzPvzww5SVlXHGGWcQGxvLzTffTElJyW/WZfDgwXz33XfccccdHHvssWit6dmzJ+eff36ozCuvvMKVV17J8ccfT1paGv/3f/9Xa/BVc1G6seMCf6dcLhfx8fGUlJQc9C9ZhdvNx08/BQq8ngrSUzpywmWXYIuJbcHaCiGEOFwej4ecnBy6d+9OREREa1dHHMTB7tWhPr+hnc1zFLa0wrSZ0nIkhBBCtAHytG4JOmj1v0pwJIQQQoQ9eVq3BAWYBsqQ0WpCCCFEuJPgqCVoUMpAKRmtJoQQQoQ7CY5aiGkzZOFZIYQQog2Q4KgFqKDCMJTkHAkhhBBtgDytW4BWWlqNhBBCiDZCgqMWoDQYplxqIYQQoi2QJ3YL+fVU7UIIIYQITxIcNTuNRmGz21u7IkIIIYQ4BBIcNbeqxVmUTVqOhBBCtKwpU6aglOLaa6+ts2/atGkopZgyZUrLVyzMSXDUzDSgtMI0peVICCFEy8vMzOTNN9+koqIitM3j8fDGG2/QpUuXRp9Xa01lZWVTVDHsSHDU3LQ1Qbay21q7JkIIIX6Hhg8fTmZmJnPnzg1tmzt3Ll26dGHYsGGhbV6vlxtuuIHU1FQiIiI45phjWLx4cWj/t99+i1KKzz77jBEjRuB0Ovnxxx8pLS3l4osvJjo6mo4dO/L4449zwgkncOONN4aOfe211xg5ciSxsbGkp6dz0UUXUVBQUOfc8+bNY+TIkURFRXH00Uezfv365r04ByDBUTPTWqOUwibdakII0T5oDT53w15+j3Wc31P/+0N9ad2oKk+dOpVXXnkl9P7ll1/m8ssvr1VmxowZvPfee7z66qssW7aMXr16MWHCBAoLC2uVu+2225g1axbZ2dkMHjyY6dOnM3/+fD788EOysrL44YcfWLZsWa1j/H4/9913HytXruSDDz5g69at9Xbn3XHHHTz66KMsWbIEm83G1KlTG/V9D5c0ZzQzra2uNdOUSy2EEO2CvxweyGj4cT1Pgj++DMteg+GXwpsXwuavG3aOv+WCI7rBH33JJZdw++23s23bNgDmz5/Pm2++ybfffguA2+3mueeeY86cOZx66qkA/Otf/yIrK4uXXnqJW2+9NXSue++9l1NOOQWA0tJSXn31Vd544w1OPvlkAF555RUyMmpfn5pBTo8ePXjqqac48sgjKSsrIyYmJrTv/vvv5/jjjwesIGzSpEl4PB4iIiIa/J0Phzyxm5kGFApDutWEEOL3bfPXVmA09gaY/1TDA6PDkJKSwqRJk5gzZw5aayZNmkRycvL+qm3ejN/vZ+zYsaFtdrudUaNGkZ2dXetcI0eODP28ZcsW/H4/o0aNCm2Lj4+nb9++tY5ZunQp//jHP1i5ciVFRUUEg0EAtm/fzoABA0LlBg8eHPq5Y8eOABQUFBxWblRjyBO7uekgygBDWo6EEKJ9sEdZLTgNpUywOSHgg6P/DKOuBh1o+Gc30tSpU7n++usBmD17dqPPEx3dsJYrt9vNhAkTmDBhAq+//jopKSls376dCRMm4PP5apW115j2pnqx9upAqiVJzlFz00HAkEkghRCivVDK6tpq6MseYR1rOqw/7RENP0dVwNAYEydOxOfz4ff7mTBhQq19PXv2xOFwMH/+/NA2v9/P4sWLa7Xs/FqPHj2w2+21ErdLSkrYsGFD6P26devYt28fs2bN4thjj6Vfv361krHDkTRnNDMNKKUxJDgSQgjRikzTDHWR/foX9ujoaK677jpuvfVWkpKS6NKlCw899BDl5eVcccUVBzxnbGwskydPDh2XmprK3XffjWEYoZafLl264HA4ePrpp7n22mtZs2YN9913X/N90SYgLUfNTGuNMgxsknMkhBCilcXFxREXF1fvvlmzZnHuuedy6aWXMnz4cDZt2sQXX3xBYmLiQc/52GOPMWbMGE4//XTGjRvH2LFj6d+/fyiJOiUlhTlz5vDOO+8wYMAAZs2axSOPPNLk360pKa0bOS7wd8rlchEfH09JSckB/4IBVLjdfPz0U3h9XhzaxsmX/IkOPfu0YE2FEEI0BY/HQ05ODt27d2/xUVNtkdvtplOnTjz66KMHbXVqDge7V4f6/AbpVmt+OghKYdpkhmwhhBDtz/Lly1m3bh2jRo2ipKSEe++9F4CzzjqrlWvWeBIcNTcNygCbTS61EEKI9umRRx5h/fr1OBwORowYwQ8//FBrqoC2Rp7YzUwHQdlkEkghhBDt07Bhw1i6dGlrV6NJSUJ2c9NBlGGgZPkQIYQQok2Q4Ki5Va2tpmQovxBCCNEmSHDU3IIKw1Ayz5EQQgjRRkhw1AKUqcCQSy2EEEK0BfLEbmZaa0zTRBnSciSEEEK0BRIcNTuNUgZKWo6EEEKINkGe2M1Ng7KZKCWXWgghhGgL5IndzHQQTENJy5EQQogWN2XKFGvEtFLY7Xa6d+/OjBkz8Hg8oTLV+5VSREdH07t3b6ZMmVJn7qJvv/0WpRTFxcWhbbm5uQwaNIjjjjuOkpKSWmVqfnZ9r27durXQVWg4eWI3uyCmYZOEbCGEEK1i4sSJ7N69my1btvD444/zz3/+k7vvvrtWmVdeeYXdu3ezdu1aZs+eTVlZGaNHj+bf//73Ac+7efNmjjnmGLp27coXX3xBfHx8rf1PPvkku3fvDr1qfs7u3btZvHhx03/ZJiLTNjc3rTBshsxzJIQQolU4nU7S09MByMzMZNy4cWRlZfHggw+GyiQkJITKdOvWjfHjxzN58mSuv/56zjjjDBITE2udc9WqVUyYMIGTTjqJV199td4lsuLj4+sETDU/J5xJc0YzUyhMmR1bCCHaDa015f7yBr08lR601ngqPfW+P9SX1vqw6r5mzRoWLFiAw+H4zbI33XQTpaWlZGVl1dq+YMECjj/+eM4991z+85//tMu1Q9vfNwpDStZVE0KIdqOisoLRb4xu8HFjMsbw8HEPM3fjXP7Q+w/c8M0NLMxd2KBzLLpoEVH2qAYd8/HHHxMTE0NlZSVerxfDMHjmmWd+87h+/foBsHXr1lrbzznnHM4///xDOkdbJS1HLUDWVRNCCLEwdyFzN87l8iMuZ+7GuQ0OjBrrxBNPZMWKFSxatIjJkydz+eWXc+655/7mcdWtVEqpWtvPOuss3n//fX744YdmqW84aBNNGlu3buW+++7j66+/Ji8vj4yMDC655BLuuOOOWk2Dq1atYtq0aSxevJiUlBT+/Oc/M2PGjFrneuedd/j73//O1q1b6d27Nw8++CCnnXZaM9ZeYUq+kRBCtBuRtkgWXbSowccZysBpOvEH/EwZOIUL+11IUAcb/NkNFR0dTa9evQB4+eWXGTJkCC+99BJXXHHFQY/Lzs4GoHv37rW2//Of/2TGjBmceuqpfPrppxx33HENrlO4axPB0bp16wgGg/zzn/+kV69erFmzhquuugq3280jjzwCgMvlYvz48YwbN47nn3+e1atXM3XqVBISErj66qsBq5/0wgsvZObMmZx++um88cYbnH322SxbtowjjjiieSqvFYa0HAkhRLuhlGpw11ZNdtMOQIQtoqmqdMgMw+Bvf/sb06dP56KLLiIy8sDB1hNPPEFcXBzjxo2rtV0pxQsvvIBhGJx22ml88sknHH/88c1d9RbVJrrVJk6cyCuvvML48ePp0aMHZ555Jrfccgtz584NlXn99dfx+Xy8/PLLDBw4kAsuuIAbbriBxx57LFTmySefZOLEidx6663079+f++67j+HDhzdrv6lhgM1oEzGoEEKI34HzzjsP0zSZPXt2aFtxcTF5eXls27aNrKws/vjHP/LGG2/w3HPPkZCQUOccSimef/55LrvsMk477TS+/fbblvsCLaBNBEf1KSkpISkpKfR+4cKFHHfccbW62SZMmMD69espKioKlfl1BDxhwgQWLjxwv6/X68XlctV6NYwCW5u9zEIIIdoZm83G9ddfz0MPPYTb7Qbg8ssvp2PHjvTr14/rrruOmJgYfv75Zy666KIDnkcpxezZs7n88suZNGkS33zzTUt9hWbXJps0Nm3axNNPPx3qUgPIy8ur0y+alpYW2peYmEheXl5oW80yeXl5B/ysmTNncs899zS6rkqBzWZv9PFCCCFEY82ZM6fe7bfddhu33XYbwCFPD3DCCSfUKauU4plnnqnVA3Og8x3uNAQtqVWbNG677baDTi2ulGLdunW1jtm1axcTJ07kvPPO46qrrmr2Ot5+++2UlJSEXjt27GjwOWS0mhBCCNF2tGrL0c0338yUKVMOWqZHjx6hn3NzcznxxBM5+uijeeGFF2qVS09PJz8/v9a26vfVs3EeqMzBZut0Op04nc7f/C4HpMBshxNkCSGEEO1Vqz61U1JSSElJOaSyu3bt4sQTT2TEiBG88sorGL9aq2zMmDHccccd+P1+7HarGysrK4u+ffuGpj0fM2YM8+bN48Ybbwwdl5WVxZgxY5rmC9VHgSFD+YUQQog2o01kCu/atYsTTjiBLl268Mgjj7Bnzx7y8vJq5QpddNFFOBwOrrjiCtauXctbb73Fk08+yfTp00Nl/vKXv/D555/z6KOPsm7dOv7xj3+wZMkSrr/++uarvDIwZLSaEEII0Wa0iad2VlYWmzZtYtOmTXTu3LnWvuoEr/j4eL788kumTZvGiBEjSE5O5q677grNcQRw9NFH88Ybb3DnnXfyt7/9jd69e/PBBx803xxHUNWtJi1HQgghRFvRJoKjKVOm/GZuEsDgwYN/czrz8847j/POO6+JavbbDAWG2SYa6IQQQghBG+lWa8u0MjBlKL8QQgjRZkhw1MwMpWW0mhBCCNGGSHDU3AyFIcGREEII0WZIcNTMFGAzJTgSQggh2goJjpqbUjJDthBCiFazY8cOpk6dSkZGBg6Hg65du/KXv/yFffv2hcqccMIJteYArDZnzpxaC8/OmTOn3tUsIiIiWuCbtBxp0mhuysBmSkK2EEKIlrdlyxbGjBlDnz59+O9//0v37t1Zu3Ytt956K5999hk//fRTrUXcD0VcXBzr16+vtU0p1ZTVbnUSHDUzw5DlQ4QQQrSOadOm4XA4+PLLL4mMjASgS5cuDBs2jJ49e3LHHXfw3HPPNeicSqmDLrvVHshTu5lpFHaHtBwJIUR7obVGV1Q07CDDQDmdaK8XgsG67w+Riow85FaawsJCvvjiC+6///5QYFQtPT2diy++mLfeeotnn322QV/l90CCo2ZmGApDutWEEKLd0BUVrB8+osHHRY89mk6PPkrxe++RcO657Jw2Dff8BQ06R99lS1FRUYdUduPGjWit6d+/f737+/fvT1FREXv27AHg2Wef5cUXX6xVprKysk4+UUlJCTExMbW2HXvssXz22WeH+jXCngRHzUwZMs+REEIIcM9fQPF779HhiivY99JLDQ6MGqt6ma3fcvHFF3PHHXfU2jZ37lweeOCBWttiY2NZtmxZrW2/bplq6+Sp3dyUiZLgSAgh2g0VGUnfZUsbfmB1V5rfT9LUqSRefHGDutSqP/tQ9erVC6UU2dnZnHPOOXX2Z2dnk5iYSEpKCmCtUdqrV69aZVJTU+v5Gkadcu2NPLWbmWEolMxzJIQQ7YZS6pC7tuplt1ItVDMPf+/QoQOnnHIKzz77LDfddFOt1p28vDxef/11LrvssnY30qwpyDxHzUwpA8OUeY6EEEK0vGeeeQav18uECRP4/vvv2bFjB59//jmnnHIKnTp14v7772/wObXW5OXl1XkFG9gKFs4kOGpmyjBQEhwJIYRoBb1792bJkiX06NGDP/3pT/Ts2ZOrr76aE088kYULFzZ4jiMAl8tFx44d67wKCgqa4Ru0DqUPNVNLANZfivj4eEpKSoiLiztguQq3m4+fforIqAhOv+GmFqyhEEKIpuTxeMjJyaF79+7tbibo9uZg9+pQn98gLUfNTtZVE0IIIdoWCY6amayrJoQQQrQtEhw1M9Mul1gIIYRoS+TJ3cwM6VYTQggh2hQJjpqZ5BwJIYQQbYsER81M2WVdNSGEEKItkeComdkckpAthBBCtCUSHDUjQymU6WjtagghhBCiASQ4ak6GwrTJJRZCCCHaEnlyNyOlAEO61YQQQvz+KKX44IMPWrsajSLBUbNS2Ey5xEIIIVrHlClTUEqhlMJut9O9e3dmzJiBx+Np7aqFNRln3oyUqWTRWSGEEK1q4sSJvPLKK/j9fpYuXcrkyZNRSvHggw+2dtXCljRrNCOlFKZN4k8hhBCtx+l0kp6eTmZmJmeffTbjxo0jKysLgH379nHhhRfSqVMnoqKiGDRoEP/9739rHX/CCSdwww03MGPGDJKSkkhPT+cf//hHrTIbN27kuOOOIyIiggEDBoTOX9Pq1as56aSTiIyMpEOHDlx99dWUlZWF9k+ZMoWzzz6bBx54gLS0NBISErj33nuprKzk1ltvJSkpic6dO/PKK680/UX6FQmOmpFCgXSrCSFEu6K1xu8NNOhV6QugtabSV//7Q31prQ+r7mvWrGHBggU4HNZIao/Hw4gRI/jkk09Ys2YNV199NZdeeik///xzreNeffVVoqOjWbRoEQ899BD33ntvKAAKBoP84Q9/wOFwsGjRIp5//nn++te/1jre7XYzYcIEEhMTWbx4Me+88w5fffUV119/fa1yX3/9Nbm5uXz//fc89thj3H333Zx++ukkJiayaNEirr32Wq655hp27tx5WNfht0izRnOyGdgMmQRSCCHak0pfkBf+8l2Dj8vsn8T4KweSPT+X/mMz+PS51ezILmzQOa5+8njszoala3z88cfExMRQWVmJ1+vFMAyeeeYZADp16sQtt9wSKvvnP/+ZL774grfffptRo0aFtg8ePJi7774bgN69e/PMM88wb948TjnlFL766ivWrVvHF198QUZGBgAPPPAAp556auj4N954A4/Hw7///W+io6MBeOaZZzjjjDN48MEHSUtLAyApKYmnnnoKwzDo27cvDz30EOXl5fztb38D4Pbbb2fWrFn8+OOPXHDBBQ26Dg0hwVEzUYDCwJScIyGEEMCO7EKy5+cybHxXln+5rcGBUWOdeOKJPPfcc7jdbh5//HFsNhvnnnsuAIFAgAceeIC3336bXbt24fP58Hq9REVF1TrH4MGDa73v2LEjBQUFAGRnZ5OZmRkKjADGjBlTq3x2djZDhgwJBUYAY8eOJRgMsn79+lBwNHDgQAxjf49LWloaRxxxROi9aZp06NAh9NnNRYKjZmIaivgoOzFRMgmkEEK0JzaHwdVPHt/g45QC024QqAwy9JQuDDqhMw3tJbM5Gp6qER0dTa9evQB4+eWXGTJkCC+99BJXXHEFDz/8ME8++SRPPPEEgwYNIjo6mhtvvBGfz1frHPZfLYWllCIYDDa4Lr+lvs9pqc+uSYKjZmLYbCR0cBAZH9faVRFCCNGElFIN7tqqybQpoHWWlzIMg7/97W9Mnz6diy66iPnz53PWWWdxySWXAFb+0IYNGxgwYMAhn7N///7s2LGD3bt307FjRwB++umnOmXmzJmD2+0OtR7Nnz8/1H0WbiRbuJkYhkn3biOIjUlp7aoIIYQQIeeddx6maTJ79mx69+5NVlYWCxYsIDs7m2uuuYb8/PwGnW/cuHH06dOHyZMns3LlSn744QfuuOOOWmUuvvhiIiIimDx5MmvWrOGbb77hz3/+M5deemmoSy2cSHDUXAwDZ3QsRkREa9dECCGECLHZbFx//fU89NBD3HzzzQwfPpwJEyZwwgknkJ6eztlnn92g8xmGwfvvv09FRQWjRo3iyiuv5P77769VJioqii+++ILCwkKOPPJI/vjHP3LyySeHEsPDjdKHOy7wd8blchEfH09JSQlxcdJlJoQQ7Z3H4yEnJ4fu3bsTIb/whrWD3auGPL+l5UgIIYQQogYJjoQQQgghamgTwdHWrVu54oor6N69O5GRkfTs2ZO777671lDDrVu3hhbXq/n6dcb8O++8Q79+/YiIiGDQoEF8+umnLf11hBBCCBHG2sRQ/nXr1hEMBvnnP/9Jr169WLNmDVdddRVut5tHHnmkVtmvvvqKgQMHht536NAh9POCBQu48MILmTlzJqeffjpvvPEGZ599NsuWLas1yZQQQgghfr/abEL2ww8/zHPPPceWLVsAq+Woe/fuLF++nKFDh9Z7zPnnn4/b7ebjjz8ObTvqqKMYOnQozz///CF9riRkCyHE74skZLcdv/uE7JKSEpKSkupsP/PMM0lNTeWYY47hww8/rLVv4cKFjBs3rta2CRMmsHDhwmatqxBCiLavjbYl/K401T1qE91qv7Zp0yaefvrpWl1qMTExPProo4wdOxbDMHjvvfc4++yz+eCDDzjzzDMByMvLqzPZVFpaGnl5eQf8LK/Xi9frDb13uVxN/G2EEEKEs+rlK8rLy4mMjGzl2oiDqc5FPtx1TVs1OLrtttt48MEHD1omOzubfv36hd7v2rWLiRMnct5553HVVVeFticnJzN9+vTQ+yOPPJLc3FwefvjhUHDUGDNnzuSee+5p9PFCCCHaNtM0SUhICC12GhUVhVKqlWslfi0YDLJnzx6ioqKw2Q4vvGnV4Ojmm29mypQpBy3To0eP0M+5ubmceOKJHH300bzwwgu/ef7Ro0eTlZUVep+enl5nWvT8/HzS09MPeI7bb7+9VtDlcrnIzMz8zc8WQgjRflQ/J5p7NXhxeAzDoEuXLocdvLZqcJSSkkJKyqGtPbZr1y5OPPFERowYwSuvvIJh/Ha61IoVK0KL4AGMGTOGefPmceONN4a2ZWVlMWbMmAOew+l04nQ6D6mOQggh2ielFB07diQ1NRW/39/a1REH4HA4Dik++C1tIudo165dnHDCCXTt2pVHHnmEPXv2hPZVR/OvvvoqDoeDYcOGATB37lxefvllXnzxxVDZv/zlLxx//PE8+uijTJo0iTfffJMlS5YcUiuUEEIIYZrmYeeziPDXJoKjrKwsNm3axKZNm+jcuXOtfTUz0++77z62bduGzWajX79+vPXWW/zxj38M7T/66KN54403uPPOO/nb3/5G7969+eCDD2SOIyGEEEKEtNl5jlqLzHMkhBBCtD2/i3mOhBBCCCGaQ5voVgsn1Q1tMt+REEII0XZUP7cPpcNMgqMG2rdvH4AM5xdCCCHaoNLSUuLj4w9aRoKjBqpesmT79u2/eXFF86meb2rHjh2S+9VK5B60PrkHrU/uQXg4lPugtaa0tJSMjIzfPJ8ERw1UPX9CfHy8/EMIA3FxcXIfWpncg9Yn96D1yT0ID791Hw61UUMSsoUQQgghapDgSAghhBCiBgmOGsjpdHL33XfLkiKtTO5D65N70PrkHrQ+uQfhoanvg0wCKYQQQghRg7QcCSGEEELUIMGREEIIIUQNEhwJIYQQQtQgwVEDzZ49m27duhEREcHo0aP5+eefW7tK7db333/PGWecQUZGBkopPvjgg1r7tdbcdddddOzYkcjISMaNG8fGjRtbp7Lt1MyZMznyyCOJjY0lNTWVs88+m/Xr19cq4/F4mDZtGh06dCAmJoZzzz2X/Pz8Vqpx+/Pcc88xePDg0PwtY8aM4bPPPgvtl+vf8mbNmoVSihtvvDG0Te5D8/vHP/6BUqrWq1+/fqH9TXkPJDhqgLfeeovp06dz9913s2zZMoYMGcKECRMoKCho7aq1S263myFDhjB79ux69z/00EM89dRTPP/88yxatIjo6GgmTJiAx+Np4Zq2X9999x3Tpk3jp59+IisrC7/fz/jx43G73aEyN910Ex999BHvvPMO3333Hbm5ufzhD39oxVq3L507d2bWrFksXbqUJUuWcNJJJ3HWWWexdu1aQK5/S1u8eDH//Oc/GTx4cK3tch9axsCBA9m9e3fo9eOPP4b2Nek90OKQjRo1Sk+bNi30PhAI6IyMDD1z5sxWrNXvA6Dff//90PtgMKjT09P1ww8/HNpWXFysnU6n/u9//9sKNfx9KCgo0ID+7rvvtNbWNbfb7fqdd94JlcnOztaAXrhwYWtVs91LTEzUL774olz/FlZaWqp79+6ts7Ky9PHHH6//8pe/aK3l30FLufvuu/WQIUPq3dfU90Bajg6Rz+dj6dKljBs3LrTNMAzGjRvHwoULW7Fmv085OTnk5eXVuh/x8fGMHj1a7kczKikpAfavMbh06VL8fn+t+9CvXz+6dOki96EZBAIB3nzzTdxuN2PGjJHr38KmTZvGpEmTal1vkH8HLWnjxo1kZGTQo0cPLr74YrZv3w40/T2QtdUO0d69ewkEAqSlpdXanpaWxrp161qpVr9feXl5APXej+p9omkFg0FuvPFGxo4dyxFHHAFY98HhcJCQkFCrrNyHprV69WrGjBmDx+MhJiaG999/nwEDBrBixQq5/i3kzTffZNmyZSxevLjOPvl30DJGjx7NnDlz6Nu3L7t37+aee+7h2GOPZc2aNU1+DyQ4EkIckmnTprFmzZpaffyiZfTt25cVK1ZQUlLCu+++y+TJk/nuu+9au1q/Gzt27OAvf/kLWVlZREREtHZ1frdOPfXU0M+DBw9m9OjRdO3albfffpvIyMgm/SzpVjtEycnJmKZZJ/M9Pz+f9PT0VqrV71f1NZf70TKuv/56Pv74Y7755hs6d+4c2p6eno7P56O4uLhWebkPTcvhcNCrVy9GjBjBzJkzGTJkCE8++aRc/xaydOlSCgoKGD58ODabDZvNxnfffcdTTz2FzWYjLS1N7kMrSEhIoE+fPmzatKnJ/y1IcHSIHA4HI0aMYN68eaFtwWCQefPmMWbMmFas2e9T9+7dSU9Pr3U/XC4XixYtkvvRhLTWXH/99bz//vt8/fXXdO/evdb+ESNGYLfba92H9evXs337drkPzSgYDOL1euX6t5CTTz6Z1atXs2LFitBr5MiRXHzxxaGf5T60vLKyMjZv3kzHjh2b/t9CI5PGf5fefPNN7XQ69Zw5c/Qvv/yir776ap2QkKDz8vJau2rtUmlpqV6+fLlevny5BvRjjz2mly9frrdt26a11nrWrFk6ISFB/+9//9OrVq3SZ511lu7evbuuqKho5Zq3H9ddd52Oj4/X3377rd69e3foVV5eHipz7bXX6i5duuivv/5aL1myRI8ZM0aPGTOmFWvdvtx22236u+++0zk5OXrVqlX6tttu00op/eWXX2qt5fq3lpqj1bSW+9ASbr75Zv3tt9/qnJwcPX/+fD1u3DidnJysCwoKtNZNew8kOGqgp59+Wnfp0kU7HA49atQo/dNPP7V2ldqtb775RgN1XpMnT9ZaW8P5//73v+u0tDTtdDr1ySefrNevX9+6lW5n6rv+gH7llVdCZSoqKvT/+3//TycmJuqoqCh9zjnn6N27d7depduZqVOn6q5du2qHw6FTUlL0ySefHAqMtJbr31p+HRzJfWh+559/vu7YsaN2OBy6U6dO+vzzz9ebNm0K7W/Ke6C01vowW7aEEEIIIdoNyTkSQgghhKhBgiMhhBBCiBokOBJCCCGEqEGCIyGEEEKIGiQ4EkIIIYSoQYIjIYQQQogaJDgSQgghhKhBgiMhhBBCiBokOBJCiCamlOKDDz5o7WoIIRpJgiMhRL2mTJmCUopZs2bV2v7BBx+glGqlWlmUUvW+3nzzzVatV7Xdu3dz6qmntnY1mDNnDgkJCa1dDSHaHAmOhBAHFBERwYMPPvj/27vXkKi2Ng7g/5rRRsfLaMqoCV7yNug4WUZpecW8QJKBFFaW2k0oTEqtMC8p6WigZimCA+aHMqIUCmoINM3spqlFYoaaUZRpqYVC5ug6H3rdr/uo75k6p7fLeX6wYe+19n7Ws+aDPKy9ZsTw8PCPTmWWiooKvHnzhndERET80Jw+f/4MALCwsMCiRYt+aC6EkG9HxREhZF5BQUGwsLBAbm7unP2ZmZlYtmwZr62oqAi2trbcdUxMDCIiIpCTkwOpVAqJRIKsrCxoNBokJyfD1NQU1tbWqKio+KrcJBIJLCwseIdIJAIAxMXFwd3dHePj4wC+FC0eHh7Yvn07AKCvr49bafL29oZIJIKbmxsaGhp4Yzx58gRhYWEwMDCAVCpFdHQ03r17x/X7+/tj//79SExMhJmZGUJCQgDwX6tNj3Xx4kX4+PhAT08PK1euxLNnz9Dc3AxPT08YGBggLCwMg4ODvPFVKhVkMhlEIhFcXFxQWlrK9U3Hra6uRkBAAPT19aFQKHD37l0AQH19PWJjY/HhwwduZS0zMxMAUFpaCkdHR4hEIkilUkRGRn7VZ0/I746KI0LIvAQCAXJycnD69Gm8evXqm+PU1dXh9evXuHXrFgoKCpCRkYH169fDxMQE9+/fR3x8PPbu3fu3xpipuLgYY2NjOHLkCAAgNTUVIyMjOHPmDO++5ORkHDp0CG1tbfDy8kJ4eDjev38PABgZGUFgYCA8PDzQ0tICtVqNt2/fYtOmTbwYlZWV0NXVRVNTE8rKyubNKSMjA8eOHUNrayuEQiG2bNmClJQUnDp1Co2Njeju7kZ6ejp3/7lz55Ceno4TJ06gs7MTOTk5SEtLQ2VlJS9uamoqkpKS0N7eDicnJ0RFRUGj0cDb2xtFRUUwMjLiVtaSkpLQ0tKChIQEZGVloaurC2q1Gr6+vn/r8ybkt8MIIWQOO3bsYBs2bGCMMbZ69WoWFxfHGGOspqaGTf/pyMjIYAqFgvdcYWEhs7Gx4cWxsbFhk5OTXJuzszPz8fHhrjUaDROLxayqqkqr3AAwkUjExGIx73jx4gV3z507d5iOjg5LS0tjQqGQNTY2cn3Pnz9nAJhSqeTaJiYmmLW1NcvLy2OMMZadnc2Cg4N54758+ZIBYF1dXYwxxvz8/JiHh8ec+dXU1PDGUqlUXH9VVRUDwGpra7m23Nxc5uzszF0vXbqUnT9/nhc3OzubeXl5zRu3o6ODAWCdnZ2MMcYqKiqYsbExL8bly5eZkZER+/jx46y8CSFfCH9YVUYI+WXk5eUhMDAQSUlJ3/S8q6srFi7870K1VCqFm5sbdy0QCLB48WIMDAxoHbOwsBBBQUG8NisrK+7cy8sLSUlJyM7OxuHDh7F27dpZMby8vLhzoVAIT09PdHZ2AgAePXqEmzdvwsDAYNZzPT09cHJyAgCsWLFCq3zd3d25c6lUCgCQy+W8tun5j42NoaenBzt37sTu3bu5ezQaDYyNjeeNa2lpCQAYGBiAi4vLnHmsW7cONjY2sLe3R2hoKEJDQ7Fx40bo6+trNQ9C/g2oOCKE/CVfX1+EhITg6NGjiImJ4doXLlwIxhjv3omJiVnP6+jo8K4XLFgwZ9vU1JTWOVlYWMDBwWHe/qmpKTQ1NUEgEKC7u1vruNNGR0cRHh6OvLy8WX3TRQgAiMVireLNnO/0t/3+3DY9/9HRUQBAeXk5Vq1axYsjEAj+Mu7/+hwNDQ3R2tqK+vp63LhxA+np6cjMzERzczN9s42Q/6A9R4QQrSiVSly9epXb8AsA5ubm6O/v5xVI7e3tPyC72U6ePImnT5+ioaEBarV6zg3f9+7d4841Gg0ePnwImUwGAFi+fDk6Ojpga2sLBwcH3qFtQfStpFIprKys0NvbO2tsOzs7rePo6upicnJyVrtQKERQUBDy8/Px+PFj9PX1oa6u7p+cAiG/NFo5IoRoRS6XY+vWrSguLuba/P39MTg4iPz8fERGRkKtVuP69eswMjL67vmMjIygv7+f12ZoaAixWIy2tjakp6fj0qVLWLNmDQoKCnDgwAH4+fnB3t6eu7+kpASOjo6QyWQoLCzE8PAw4uLiAAD79u1DeXk5oqKikJKSAlNTU3R3d+PChQtQqVSzVnD+acePH0dCQgKMjY0RGhqK8fFxtLS0YHh4GAcPHtQqhq2tLUZHR1FbWwuFQgF9fX3U1dWht7cXvr6+MDExwbVr1zA1NQVnZ+fvOh9CfiW0ckQI0VpWVhbvlY1MJkNpaSlKSkqgUCjw4MGDb96X9LViY2NhaWnJO06fPo1Pnz5h27ZtiImJQXh4OABgz549CAgIQHR0NG8lRalUQqlUQqFQ4Pbt27hy5QrMzMwAfNm/1NTUhMnJSQQHB0MulyMxMRESiYS3f+p72bVrF1QqFSoqKiCXy+Hn54ezZ89+1cqRt7c34uPjsXnzZpibmyM/Px8SiQTV1dUIDAyETCZDWVkZqqqq4Orq+h1nQ8ivZQH784YBQgj5zfX19cHOzg5tbW2zfqeJEEJo5YgQQgghZAYqjgghP5WcnBwYGBjMefwM/6+MEPL7o9dqhJCfytDQEIaGhubs09PTw5IlS/7PGRFC/m2oOCKEEEIImYFeqxFCCCGEzEDFESGEEELIDFQcEUIIIYTMQMURIYQQQsgMVBwRQgghhMxAxREhhBBCyAxUHBFCCCGEzEDFESGEEELIDH8AhLEAkcJiNVUAAAAASUVORK5CYII=", "text/plain": [ "
" ] diff --git a/img/AA2024_simulation_10MC_50exp_1batch.png b/img/AA2024_simulation_10MC_50exp_1batch.png index ac71423..12f3c03 100644 Binary files a/img/AA2024_simulation_10MC_50exp_1batch.png and b/img/AA2024_simulation_10MC_50exp_1batch.png differ diff --git a/img/AA2024_simulation_10MC_50exp_1batch_first10.png b/img/AA2024_simulation_10MC_50exp_1batch_first10.png index a4cde39..08c4f70 100644 Binary files a/img/AA2024_simulation_10MC_50exp_1batch_first10.png and b/img/AA2024_simulation_10MC_50exp_1batch_first10.png differ diff --git a/img/AA2024_simulation_10MC_50exp_1batch_first25.png b/img/AA2024_simulation_10MC_50exp_1batch_first25.png index 20583fd..76fcf9d 100644 Binary files a/img/AA2024_simulation_10MC_50exp_1batch_first25.png and b/img/AA2024_simulation_10MC_50exp_1batch_first25.png differ diff --git a/results/AA2024_simulation_10MC_50exp_1batch.xlsx b/results/AA2024_simulation_10MC_50exp_1batch.xlsx index f3eec57..02a72cb 100644 Binary files a/results/AA2024_simulation_10MC_50exp_1batch.xlsx and b/results/AA2024_simulation_10MC_50exp_1batch.xlsx differ