From 34f6ae50a422a930ff4e1c8d2bfaa7d55f99282d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Can=20=C3=96zkan?= <128815525+canozkan42@users.noreply.github.com> Date: Thu, 28 Mar 2024 10:02:07 +0000 Subject: [PATCH 1/2] changed plotting options --- AA1000_simulation_10MC_50exp_1batch.png | Bin 61511 -> 0 bytes can_baybe-inhibitor.ipynb | 1832 ++++++++--------- img/AA2024_simulation_10MC_50exp_1batch.png | Bin 0 -> 35636 bytes ...4_simulation_10MC_50exp_1batch_first10.png | Bin 0 -> 39573 bytes ...4_simulation_10MC_50exp_1batch_first25.png | Bin 0 -> 35734 bytes .../AA2024_simulation_10MC_50exp_1batch.xlsx | Bin 0 -> 76614 bytes 6 files changed, 879 insertions(+), 953 deletions(-) delete mode 100644 AA1000_simulation_10MC_50exp_1batch.png create mode 100644 img/AA2024_simulation_10MC_50exp_1batch.png create mode 100644 img/AA2024_simulation_10MC_50exp_1batch_first10.png create mode 100644 img/AA2024_simulation_10MC_50exp_1batch_first25.png create mode 100644 results/AA2024_simulation_10MC_50exp_1batch.xlsx diff --git a/AA1000_simulation_10MC_50exp_1batch.png b/AA1000_simulation_10MC_50exp_1batch.png deleted file mode 100644 index 4e7e4296ce0b63df720aafc46bb3478f087c365b..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 61511 zcmeEtIKdqfTn2Z7dvJFP?(XjH?iyTz!(c%Nch}(V?mKzk-|io<&wktw z(|xP&>3RC;Ik#@rshS7{ISFJ0d;|yx2xKWqQ6&fnD1QhD$iJUq!B^O)*LJ}tZf7wK zXJtE6XE#Gf69`#DXM1ZqXKRa}q^>58P8N2ytPETXtn{Sj&d&BuJdBJs{|CTe=V-E;!#(ZMckSo1<8>^%EW<2J9u<;mJu+N5|_MKk|Q>coCSJOFS|%vT-r% zu8#%=NXpB@MN=t=ix0kdbNrW~ab z@-R04i~e-L+zWy5Kg+`GGc@&o$S-K0`xPnwKaT~~;}Oc_|G&X_|1ZFvka@_$1sEUW z#!&5VyN&foD4_P)(7ybWSt|;7C8doV4s=La-Ybvdk}h5wHiQaK(?%MaK@aHupZU~g z;wSdF53GXUQ6l;?rdQ4eZ?;vMB7zG9zHktvkC)b{V(xTteNm&+pa+jtcj|b*U`G`Q zs8*NYO*XL>uxG`*Kt(T#a(SCJmRG zH&2uwJ?@p+?~dc_Nli2~R13CCOqy9~Za>c=v67lnQm7UtvN$z)?KUF7Mp6@d@)q2mGm!Y{j&0O<#tZufz!4YfK zeUp>X)b1K%<#!pB(PY=jUh`J_k*WFedb6{#`R;0ZRumU&MdIUZdS>UxTjTTol+pBY zr@yn(vH=DKkwja$oq-2A7tvM(1ZE4qca=LUv9TFVc~4`luIA>ZXFd-xRzW=(O)VQ0 z@;@o7-Q$=Tw)uX(I;L)tg+eR79d>_Mi=WwbU49(tyB7<6T(oH24)w*2mH9j>e-wW_ zXahW%GN&FswhQo@2uNOIiK8iRIWu8zFX?J0%VOSEyHD)ckPmyzh5b%()sOg@(KV95u&{vQuglDuh&1w3%|FpKQc*DDFOK z$%YwWH108nG-8-T#>z~kieng$<@53Um5^ut7CeyfNt4w)3l6$0(%}SA#KF;Ysu=}F zaw+Wp%xSP(09`{n47RZ&O_iPP3cC3DQc!-?4{s2y)%UyN4I@cde_JH)B)N?VG2e zq4Y~vvJy8rUAq4{L~m{$&=}}0Mo_2}c0tqyi<8%&h0}=(uKG& zS$Z)K&HZa)x>U&jkQc?~1_cMxpmQMQvyF2Pv1IzZx-f>B`NpLe$BexK7YS)Dr1<_8e7Y(sU=9Y`!53QHS6TL`KLNZ2os@Y5?dBmP7_jj-SI4f-I zo9Z;}rRgK+KUL&RR)gGCRU=!xoMQ(AK|VSSWx*HxUg^~nq?y(o66q>1QJIp*xoao8 z`zF7<@9LnfZHT_wHs_B}lIKquZa;gpc^_SSqVROmGmP$MymdOq;!e^G{1oHN$Vf>W z0YpV|O>r=Zv4&bUE2t(907gfa7MaIp0+TIVAh5(V*E%XPefWq|Q;jdjVw){oRNKne zTI(Zyg1)Avn%&HuGXS4;s56C4YI3yGCb!3pa&(mRhhr!77AC8ESne~p#xXD91-d86 zf+4>n_hU$sKAwQxFQ%*nQK!u7`qIJ_+m4f7;vaJ9p+w_X2E6Xk#9;a$lzw#l>EIuv zseecm!)a*Y2f~*iHDp;#lcGNjC4L%=W9C=7=0ZoW|8#wL^@&91dZt=*2ft@Y1v^pV}Whx2JU5P_GpWwCbtio!18f^kfZBkW*Q^*P7yY<#)u;)>ts(wmLmOg;W2H-f{fO80Fqd!f=bB9*bh^aiNf*4L6I<$ zZ7aHN@yxq^W}~YoK%(HMKvXthO`IGBenM%Tg_taBGrO)tm@%8>Eu4=^tr0Fx1HB>h zaJp>KVm;eVSa6|bziLcyA%?Oldc_wCL=YCaR4>c(hpDD`DsrDmBKhvLl@v<}1ZYBi z+PP7&Ar+TMTQO#nYJJ1Pw%b8laNb2lmUVDiX!e%I)44A_X8pXbd(^1J=9ZE!@=Fct zC^|W&}GkWQUJAs;Qgans)$u+ZB+gh>3_hs1U#!jM&Ogg$Nt=+4jQB-<0sp4|h!E zp|N(f2-qczLg57QoA`GI&0iVO4OpboDd1}@Kh?j4k_t{1<{#o zs*BSuM4E|AadLg+lV*uq_^TX+h7~1LWM)Qc|1C9tIV>|S- zM-`hRC{Hx}{PpaD*Hq|C#Eu9L?^)3C_2EuX1~gPs2ZT!N{CL)f%_)yjxH^#@3yYV> z=5R``UITn%Z(raCFaw!W6m$wG8B-?pw4~*g)4di|uAe0Cr;iY>%I_LleI1w^qFBs{ z?*B#v!-IC5JuzW}Xz1w}3kpi(whYo=8!=6BQht|KrfvOw_*>ETTPvQQ>c8OY73+&^*<%sB_tq!ya!}9_nsz=l%}~k8$i_U;WR*=M zH)NL5kTElPlmaos=ebNc)`&0nI)n`B3BYCRRhdTE>GH+_su|Q&4=(FAFHD`HtVV3w z${6DEHk*?9+P&n;c=5(X*EbkY-KyvhF#MKStIydJgPh4O8wktmM)4}rO~-9)L^$e z$wT2JTS{j4E;8Q(d}|W~Q;n6zXm+`;nPMpGse!_po_G`aNebVBORTI<*2UXvbL^_# zVf9yU*&R>0y)B;7T5T6xxPs(XylsqE8-^QAx+Xb~*Tl&KvSELIDgSHD)a=WUirbAc zh$-w4BB?`xt{!g!A2uLUG4DLVu!NoMvk^zVx^yop;`(~u|KUZo-cB@Xn@~O^yH#+e z`@L>a>PBHogM(?Lzc`Gf)A2O;VN1O>a~!m&I{DwX(#H#Y?5;lJszP@~T%yM}Z3vt% ztS@8BimTNeOenC$##a5^b^;M3gj#PbEH0iZ;~&kLoKMahGLqf6yE1!|q9RReVqwxT z{RS&w@d&?nwD)TNhWb=$^C22R7MEqVE~t7=m|a5_{EY#&H;A4=S3=M92_A%*xA_f< z8m*(2xjm3t1OD4_Ygn(#)NBk96m060?Sc-Dpw%|KR=s*%e zOd2gxNY$1nhYS*G`YMqebON!W`!(~qQ-`HAenCwDXJPk7-;TqnbrTvG8(Md+EMcUl z2%FdC&M!OOXI;j)CsBKLppfS^bEc({*muC7H?*~H$iN?9T4*c3gQh+P*u&_~BQzP6 zO)973aJmbGI@i$?YN$-}Vx%^5)l4slw;OSXDbJ{)rOQ%uW66{P8d9~?P#2K;g%fW= zKu`_`i#02yDvrVIIW5nwj@S=L=%{MwgPAL57Z;BIH91|2 zfnq)}vTyefmP?Kz5mU{y^AzTk>J+9@^%2(?icXj9^^9~xzjv^(NdBOZEK_qT7kd+0 z7$4%|5c9R88AgOBd*J;PrO4rsRgm$o8J=#jN@IeuRvx?AKY~%}}m4SW*Lx1jC2a48`765K_k9iGi?hA2@Rnw zu_;AqR+^elH>TmlCLAu}(+f>y2d>%TYA}?~4r)DFT45sAtM?+Rd-0hC`m;M92+L;D z{v+_^h=l9UPpg`QRL0@fS3c6wvU2X|{ATu`?@)oC;}>g?(2cT8LueyC`MfVt~asg-iQ4o*d8`J`B$35kW2W60i#Fk z_v8BGCDv9rb>r77{Lje0s|@gvMUYzqMRvIz%SJ0q5MhUo7is8 z2KOu|7@e?PoNP_yXN_9D&;0xSyOT^B?1~GXJahtVuj@?}IZx2<8@mJP{<6(nK<6Me zc8}C+s?SWl)7A*0dK~S|soLVs-{Dg2+n5N()LAd2oLcy0$aZE)X%K$rdcY?3eu=Wa zSVa*`Aj?y2Lu{>g=CeAn{lh*ZPzso;ijl&equtbBs>UVh>ADKN#AbBN-h_v7m&?de=6J5(j(DnrKADhUYS~cPTDU7tZ0Q|sst%VR8BMHD)B@-T!9fuaI{2%Iz#{#0Ss!vI|X~*GbP2=-AU&N4;%}$OW`bY+K$QQfu>! zFOqBfUUE&jUvV@B&=DQTmKI7pwD8S}ugxVf#xBS*d$H=++gtDv^zj=ENYY< z*moEaJhbcw_a7oL!K)fkqZN%}^^(Z`{hcn=qWwE#aw54ugM;P3F(Z!EV=QT0DW+eA z)=?SkY_ZFQhfEH!f0}MQvvxF_Tk7bzg`cU_}Gx$ znWfZfv=t`b?@3=)QE$rcZkFd}K!t_qzK_R3D#)}>j_%fWRGf_E#wT9{uj8m(dK$q!=qSj2w-lWmabgvOI|w&) zK5xs?Ch9#N^Yjs~drB}VCWiY>+z0Oa=1Z0CJ7 zBL3JsB8vO;+OpDp4DtE4N3>e^XWy2b(Rk4W3t7=j&J(d3Pe}+y<<`Li!X*&{6`bUJ zR$S&-k1|M5oso0gC(RB|qODk0aq-Y83V2lF`vdF)Ru0N@ASn+LEtR7bGex$=Nu-gl+gDd+DQ22quT% z=nL&0GJ{!6Ds`ABBd5uIcN4kX_NE$(a#kpIQNlhg<+Ek&+xi|x4d4f}CzFxbtbT(q zV4REq`NmkzUSu8M?XZ(p!Y;r1(tKkb#SC~J+6v=d@QWu@Vx|S2L|1q6F0{wtXy>v! z$Dle?xe0I^5oIMYNNsCuLh4!j*gAIzI96Qr=AhZ`3*GcDxlhd3SZ<(jc8tDm4-)M`CkjRj6wZaMiyhAH-6B!nkC>#Wm*t9#Bw z)`Lr<#!8W4CSbTDleWjDKI)x)WJF9-hbW4%RIQL}bTIS>BIqllA%&z0{OlJ=Gu=I5 zAoSTSOel@yu#vAKpnIi0ttGY%_p&!02NRjpAAM3%eCqw+tj6L-3^ zMYN;XT;vn6`z~&lZ5>9{_BK>QOuVGf_hD^G#;dxoZ>QCJ;YPS0Fv_B#SALa3mljat zWbh(xZndRhhnLs2OB?_9Z&odY{kn;I01Diu_ZQ_wMXmOcr#aOYsHw-}q_uBu`KXde zgeq<4y~vFh%h5Bf7^PjAZKI5ZHj|VcXD`gqj$`sKxiKn?TC%ORFm85K+`m*+CNtz; zHe%AJ>d1A5EW__Z!P6SDOS1u9`AOM@v=un?C7p(3*XFAk#e?$!?X^kSiL@05fc(xL z+|epvLKBk>a#p$C@5Cv4obxUQ$4I*JT-Lm1zO004rk7`U_ZJHUq=wxY0`AwrS$81s z5JUCP_g51_-zVm8d_=_%hWX_UDSPT`GP73l+eb&Fl~tKfI65O+>LgTCn=q6agXwW% z1T{NT3pfs_+`}{#23whQT#auOYq_@e{;RVS1!s(Pm)n)x;7iXhT2h$BPFujc*V#e4 zOY4uyB)wW*FSkqa8|k&~OJ6;%N3JbmD#TkQW6eR+gal)Fm)5*9n_4GuSmkju#EKd7 zsco_=(Ro-rbeB}OIpOOv4NbO)>Kk&amaCKYI-ttoBp7x@;ssBu#~5;1#!?T)3Y1KWCjx29m^?hFzUR?nF&JY7Ry1ioasYvU} zeWH59ckTs>5=}4~w0!C4I5yYeIFhChjo!L~-|90#w8sB};(6c2<-2C#EPbGZ(%=Hy z!iUuNGE6QbzCaIE`%X}g|Lc0hE|Ke&JQZd!|GO)RDPS|d&$O$n^ofu}lj2*X1VWgcY_!;5{W0xVsL?~DFo+mP06p^K) zZLj^RA&FI(wmK@~WbN(dr*4W#X~UaU8KB7xo*~H6s9;OXdNmadh0MOi8jb#qbD^4S z{lS*p^}gKmt?57Eb@y`LMzXNrp2AQ82S;ym3*$6vcJthVN6NYTB#At~e<%*!CzXB~O1 zv%~!U(6tA_#^u%KXM?3MU~7iB2g9r|UJN43w~*wKyyE)difw7iGn6V1-U;ZU{5tv07S&dK@C=k@Fwvq6B)#&2{eu69+8Yy`A=+%NGnkiTG{ zWD#q)B3YVkani9r9F_v^rygi%x()0a#rk9-_e9FBJ}&HS?)(B@)pM&ZAXsMaB1bp) zq-MR+(^B(FETNriq`B@AI?;qkUzEwOQRl$AxndCARB^7<)pm73xi+E5V<`3t=xW;X zBDB16P+lMRwwO&@-mnuri@bB*kC*Sv1sx|MYAE?Z^M!FZ?VVatJ3ix`+x#M(w;e;5 zL@y6%pswtMRUegGSkxJ&cZ;4<02ParV5=xLU&Cg%=TWfDN!gc0)z7!cvHUbhuc|j8 z`Eibl;wHZ$o*Mp1Ct2SfT5_rZ#AG4lC$NXJ@tH?zXWw#FdMg_d&vqsH;c!*5M+gDO z=d*qv#u5Pul`6cUny|(WVtkq|WTxEx6vJ-4C&b7KiO9uL@^{X1PrmD!QOF^@wNM>3 zI6XmrugC7zui^)(KXqS7t>5rcQ`4e-Z0riNl&1g|hkd$|5_;l#FQlFy%*ETw zpXH+eIe!bZa7ug6-rJ|bL;T&6m5nqG!*}z*7*JqUZpvtCsG+Tf(g@CbM_kUCGR{nG zZc1PGdPn$pb>EshtP4R_SgVBvP2S@=@rG@#PQL5Ugf&Dfr>93=%-Qvp_Jd;Q7q1TM z^c;a-grEN)!mYi&*8C#JB>1OcDf?w-jzLUKaZ6f=%d_A=9ON)iawf5sWX9ejD<$v| zH}M`iv)0ZDTf}D66S78CvUNHBGF)=y)ee{DM?n#Fzf24n_E}_f@;}}8uM80LK$Kj{ zR2bUxLwU~xoS%s{;#On|Mo=s*6gW`VXWQvr0#IHy3n@Q5yBf}T!D&N4iG^flD1Fux z0h=0D?Y{oP2c2y7WPOP%jlSoJ^eO&QN;Ln;IDTcM+BG9V*CZEVJ zuwZ*#MxOe>8{+vvOHB73%t7$yh2ZwRU+*pHtJlU#4@w`}v(0;64u~EM%*mJ-BE=Ie)-LZD}nE6Ph2PQ`+0*lL`Keu_>b9Bf& zMOs}xG)=i(j$eV)7Ny|t4Tv^EL>$R1)W1Q7bk=^YRIE~cDD1xCLs;<5g}U%9>xS5P zWYDzghLA-Ka>AI?K~VR@d3Qt|1AdwB7tuRN*_i^u^Q6%73djMm(+iP$5iI7n1oJM!L>oAGQ%;*X~|qF z$k8~cPJbqar~Fr=wvUXy>ma%nbMWjH#Y)M>B)D&w`nHp^&|v|bxM+5{eohd2_L-J4 z;nw5gVmeD_BqTIYv{=xbC9->maBYmcG!|j}SEp;y=3Uy{p;+g?Is=svw6v@aU?B4q z!FaDO&9X=L@nA<0nAxR8QAxOTZ!Szs_k4+L*qxT6K&MRVms|p6fu7wBM35(m4@Hv# zt<$YQ^wR0Fz%wQ^k`8yg!_6S)#~7;jMrw@ z+!MN!(*dQ6opU#{rh&Wi#`)?{5{Askst-YF^quR+zEmckPx}x>jPtM%EXoW8Tn3kh zPJOoavF(B2?CP4T8=P1WLgyPmd5{iJvy%wq1$Ydr1s7jM|Au>`H8UYxxLMgN$xgILzxY^ zOEsnW+nxyOYY`tyYAkB+0KO7O^cQ^)%ZDD2zTvl|DMHk7xt1?-z+kn8HzfM8Ue#!= znB7XmJ|5KIxPFHPRb6Ox`b`uQmTKF_l+x% za+r(-Iup=UIvwJ}D`sSQ4m$IlGhuPl5T4&)MAHRNVUp?C4W5#gU|d`rUYC1{dM6Y=rh3wtT$B=yv3@OCwUFqCQs?fFO^uP*if5vH$2)CRQ_B zf8seseQL!cePzVMdi9p6CO4>z5^>p|m&LLVjNUA|=c=ETB zLVNbyniBdnTE>72l@8s(iCw|R->l)!2J(Hw$Rv({!OTfM_r(4%ug65;I~lNf5gIrJj?4R+t4Qtu~A;dmW=8)0Y- zN~jTcq{ETnS-=J5ft(LqIwpAMBKT^9x#{dmTpk*zb0O=;ER3;LlDh1PuHa2kDGB&V zpW65FzD-XHj|^}c)Z}vRbs8ao>#X1W18;&2WD0z^!fS%&twkfNC^0CLf~EeI@Juy@ zQz@ptW-ELa$LdJ6UqA653~etp2BgwffYivRK3TU*?1UV3*pbAk9!@kN~wAS>!Zu7yBrCf z+XCIm6k(wd8W0i9A4q<|x|iH#%Nw}7QJ5>xu@ zgtUao#2L*~yXDwX&S0trf2^j;H@u%b=?y=DvP@+kilQ~Gb zY~6+p$JOcJnSkqcVbb}vTu`2UUePd+HhVid0w{Ql^ zA<&RRO=n_jd~)mDM%+eV2q=BNf0^pM7Q|;PZoHs(%^XjT&nXb(l^?YvD1f-Q`57p; zlWGRpcRHr!{pAdfgNjW3Jb(chcPe)-KmdH$Nx#@@YdYJEF0^RmJTo1BCO9OqpE59!xfUc16?;gcH3E;_l$25Id z$J_J1vaE@@+QQF|)|eiS=f%%-C9EBOj!j3@9*bIYWu^dclS;;9^$(Arsnv~d){Lad zN;1^H!VP{fr$)}tF?42hrRHGLw|I0LxIuX z7V5{61Cs-3z{$1f!n21Rgu&lgvSq;7k^l}KPL?a1pJNaez}V>E@ozg!S;LMU z0=nGJx@K0DQTIeb#2rxyyP$;3A0BcPHtW^yBK&N+RQ_^Y$x=R=fN?%P_aJ_jSr%%#iXF*C=I>ug zz^RsS-{d_n$1WK!YnNPW1NEyz@c)=-fc#%o zJ*Er|@03u^yi)TkG1_5!dW;C~xiy;~c~FSliCfwU+FD_y7MVjr>ps0Ck>J*^M-~TV zhZ~@v3XAjjt=zL>YVOBk`Hec+Ogb8l!+d|d-vyd-jHwK9>u5SMyUnl5-So7y7QOe; z+eU03@gQhrpI#&F)3*f|O}@n%$g`Rz!ROh9lPL<^)V5}k)qcRs+tDqX+>LeKQf6*= ze!4IqSo*^{BQrbL&E(g2#%AMk z-t4x6s@ODJ=7UYK=ey-vjj#AKZ|R}G+nfxqnm*OCSZIyIWR^KFlo$KY&UewD%E78> zYdzCBljuZ8C8V|C*I0|JjYo^ct`{ZF8(8KdFX8;%G2H4Otj7To%z!S0yN+-NphA!*c)S91(rB z=2VDwDzd^|h}iXTV%g|J_JUDuir5f- z9jT&)EN$idTZ0ij#Dx+Mf75-w{BXNzHI1gGULT*E=n9uirr`m5>`}_kunNE|=CpZq zfr(ql{BrRqZVFge0u2Celm?^($I?sy#8N})d#wTbPlQJ{w6D8PdFh3Y#gmi%0za;J zG4&T*a_aQ1&3J9E%eDmLaAaqb){y* zm-zMldy(J*G%#!1agu703mLY7KZF;D#uzBr`Qr9tbLP})dv`8M?TT$0^XQ^$&`PP@ zu$S?~2#=Nq*NzddU||p4n&cJy$)zw47UGi>KS@492epa=<0;_b;VX^BQ_1U{DkLYV zi~Bs{k0VVUd-cRSf|R@34otBVwuTBDd<5qA5I?(zUf#NrN*JN33v$*QG)PxSO#;X( zThZcrH)B7N=(OGw)YdG3dn z9EggiUC8IZ{<4cG5XNu+8DcifFQoZGen?s%5IjG)quq#Rv+4&f4cm*y(a26^P#q@Y z4e}<~Znx#QSLKoEKYBDO=Ir%#3$H&=$rSOx$4BB6+P(M<;rOD!62yFTKH*GVqRp7I zq4*byG1;RHqEndaLSdj&bMXiK#Lro1AUG=d5cb*;P~;O)aQT|5+5*=7dz6?7esyCw zIbcPc8)?v*QjuAeTzk?tV8@$-1p*5>{xHh(G$M<1gpqKP4Q3Zw*LRpQ5jpg6?J&1OkFb(s2sSKkI+BxK#0Zk5V2-tzY~^5=Ba?mtJqagnNW3wQ z-QFKnhzsa;yik;M3&&d9a#UJOqCfNVk_V!g4-Vu#bfdrWcZ+>exP+uEuxvzv#k-WC z8F4?DAOJU$c*X^KQ&pImC6Xhs+Wc$L>u?{E1pdx2;rEjQJk(a3a-kXdT8KOHs7_<8 zNOY6|11spr=RP?ADXB8z-Ts2kJ^*> z+ZPkjTO8KoF_qX9YY=i{ibYbz7dp_lvFy_mX-lK-Cp*&j+0wr;I5)t{uskpA&_X7P z(xVqUF7rTj8LqwM45Qh}IbfxXGW;yt`3&h4NCe%kP#NXn0kY-y94_Tvy2j*OSntQ- zkYxbUL8cs~=wvo!@><&M{CQV@8p`HvrB)FdNJQlBxWZer;MkqRtdJ;$(hc}JBx%yW zY9|B3uqyZxFwPZsX7avrlBih4JXok{^rd}v9&7(ViQNqE{h(V)%R0V8+ZR&87a6%* zJ`<)P*B?;;G0qQ3GfLR6ueIFVojRk_VgY0Lt%S7-dLzk5i<0=p*oBI#W!Pw-B-$ib zu2ekV?t+}iibQnt*@>yNSM~$-EajpwZ2R|BTKc(ne|m)Za;(KX^zUOx^!8j~d3_jZ zHN45uQ1#zyPi7Ev3w-Hneh3zKrN}|4Kr|&tm_v&Uw6?|B^x&-F`Cus!;|KcAL&2 z4-;_yP2TmuE&^xX^L6_R8cGEfFhdvWS+?bhf})M_D)-2^zI=mn#}BtdJ7B0Nnf-oPYDF$11bpLT z94|CSFr*OV`XZcaLSK)SWIXsyyKV?uCXqV>cbXNwz=T@xM$q4D;a?Y5^t0nK4R(!A z{Al%Pq=u4S|9cn1^J|}RY4LBMH;Oh8Wg7{p&|>hppZS7Tic+QsN0a5NG>fUMiLDyP z7dNWD_pi>5Rcp};uiIiF~l6I%$WpBE)m zTyx#15{k^6wIAB=FMk-_uMc-VHC`4w;YFRk6ww4LD)JWsR|N*vO51WYWxlYBKJD>p%;Zr^Tbz3+wq##(*c6ut0E zELsVWO*w_%UWcgYU6Jb6zC{~M7VL8WiaEa^UeDtx@wzL0^g@B+!RI;Ji%NId!#Q%_ z1Ep*0|7vZ;e;NN^Ck8;xWzxmle((Xwr~S;yU>X*`X;%}v@A=vD#u@Ym(`OAa=7F+D zFGQk1S52p6m9{jA^Wqn)aTw=T^10eShUtGWc46@m_bt}Pjm=Kw9BXKOAG}QH+?~{n zwQiWc*)KZmTL<^eszt$jDPmdRtc7F8VVrPF7(s4rc z{4U=520_z+O{Qt{*dh?ZvJ~-2BeFuO{V(OMd$z_4WEB=7(=V>iHlFBBEzp{?Q|wsE zhU_$Hn{rh}L83SO^i5H93v+0`Px91!)x)a>47C({A|zioR>T_}IQJ9rmDK1#H(?)S z^|g=yOmXS5r2|IF4@CVx4`Z{&8}?*xACE-BtIfUUoahkb8FPq>O0Scf0}o@Y#v5EQ za)}9J*o32Lir3(V{kc1zn=H|Lj(oZZDWj4qJ=x)IA3vRkm|BdDI-?mYioHO@5=+-3%Pf!VCiLX!Wuc`s zI&JRz4ZWt@Mu2sb9QOw9_KmhE1PqBFn`~(xRc8OArEwb^jdcA2#ms`=W%PNRt8TM6 z_J)bFpWb{MZBtxQqL%ioP02CSnehfNZw%pY(G)xBb=(0jSuHXw#%&p5^fmgRfPH|! z;nHC9WUwvecuyYzb6ZFBrw1i(2N*=gj#MK<#(*AE7U|=%?p=;}XKx}eNyW9t6<0+K z&BI>cuggVb>PYL^z!OG!oRxbO+gq9ea`4+?F(F{R-ul%8>0T&nx*!8=(hm-R zbw4edTYn}P8VxXcDCB#0__pBvQ~fnLw$F=6jIPZ6T#Tir0|E5TFT;-CssBh%qunA~ z5rb4a)9#A%OW>VZNrX=6?x$z>C7v*NMk&O9qsdO`d55IW;&@|RqdDko$VK|-?ba+j z`nV9IvD`|(;1(o6S${*_T>r#HlFdUbXmECt{Qd~)cVkad>ay3;Jzi0dsdFXjQ|t22 zm6sJzJ6?(THy_+=OJ?FjGcoDy>bc&ajl3R9RLrOoe&dvvR~U6F5dEt-crDH^JK^I+ z0IIfw#e~rR4_)nFjmAqNm!8GVKkd#IN;uwcF-IKX1^I{+VuP^nan^#;W23;-iahn)S zJ{J#);3h6|($Q323j}sXiX5c&pcXCOrFDE0eY0=_=T8sw*#By@`uB~Bs@vNmCX{28 z7^cH=4xV4UyjCM9$sJF3PBguzalzJ*L-7s@oV>kRnTD{4hHz*836faVsoe(4aJ(#= zl@Y8>Kj)tS*5XQr90>`#*++gml7U#~{l)5@`AhowI*4CkAK|*Fg{`@u>n(jWUAC~? zAg}Prnqu*|hMi?N+*20p^@mnNu1i=Poew(L%4d}r5B!B#fCoPQg;08Ko!Gtk*?#xX zulLAtUB)og`bED793VSmkqNwip^>)XxmaQ$*bOUstu5rw0` zyF-V(0HjuS6|ZfWJDRdBalP1}mZIFsJST?Lio`vin^7%;U{r8|GE3sgW8-g<<%B?^ zGpzp1d--{8ZK0^33IhfPki+nJKgt>TOKzM&?T|R0Yrp`<3d;miJ&cnfb1a2)M3Y;* z&qe1F4nWu;Mg}M_=F!H5&6ulr<9js7me3bgH<`hDX2gIiAp@BQ`z_e}eEKBDzIal; zV%%Hp_~r;GCyI=L$L`Y;99M=vK%VhCONn}t+StV7EjiN(ui05GZSm^N4CS(aqi6S> zZh!A4&yD`qJbQmfVK2r)XV$)G^!_1GTvrdi%Rb&Pk3fp^UdobC+TB0!Rz=B))|`Z` zq`;V6E=9A{blFBUuEXDGg56#J#cX?mPZ`A!pe?k3^&z=Cgvhn87xj_iCwjCIP+TFI z8R#=0F%26>T24#D`JUeY4*E^s7PF+BCm}4skR8Uq6u!6r5e7W#X4ZYgGk+wTsrQ;{ ze#P`z$6300EnQyg&LLBylc-X|POjbiPqz}dJ4t#Splo>yHWVq#3awrOWMZG zI};dHHLs@Io?b+jpf7wgFDo8GsTjdl@Y+&+b-EP$qRc zU)=A-AmhaH4SPH?0BDF$4o;>LZ|$9fL$fzE1-a8kgU)g~ke@sWesvpBifgqldHkEJ z0Rgb$Td7GQmo{@+4mS~#=ImO(QEiFjv&#g+C04}+{o`Y-ppyiSeIpKR>p=I3=Rjp=OPhT&Pi#7$}- z&Fh7p^?iWuMf{BEzV7}`gIn~~vyXXTvR_(PCWdoxv|j~*wdR|{v*R0^)4 z$vbH7?KMWTIT=4xE=dTdQ;=~fx5E*fj%8(!{XS*cMz)h-U3m26uD!*KdxFh0gW#_1WpV+_2TvUa z&3LAaWCSOt1N~X9MQw2LtWI?dI!5W;TY5(JNgi{j)ubD)NB}~iiID*6}&(PqsjB4trppq6?m`{a1NWt$)B!Vb0Rrp0gMdbVRi&Wy5w;#cR@Ip%> z)VL*+7{W?yN@IUCp3vdrW2_a8@t6uuSa?`~#w^hrhfT5YK67Zamf7jp6cr)x6+%BP z33V5kMosBW5!IHXi!1V}L$7AB6kLpDVPyMszGsD~Z}yP2=d9J$XHN>$$KA&=FgPOF z7Z}AKSJ3Y3IB`no`{K&GN!O#Axr*^Q@v}95;O3L4V~Gi;F^!dzQ(UA~U3>29-G7Pg zxHE&|i%G`bRdAROqL%0PZ`vD>dhqJF#~&kk$LbQXi?6$Mgw6fZ<(duadXVwezTyOQ6_I910<;D9u=2zgU1Hh0KASYn882RE zwY;aaJhx0qeD21~=-$s z`OjK=XX%61C2#zs2oTqF0MIS0OCFp9s2NDgVPKMLG-NMwbArP_MIAIxA;WKfcrAPT zf|Q$MaH4Hb_1iKx)_Fg3x7VFo3VNK$f|IDg?ic(vk{4XEEKc-WFPipkk=yePNXg`y z4g=?^g6V_r#k)8PKx>LluJ%}uLo>98cvLgM2Sy9L6Sv? zEJlZu%-jN#i0ojA><0&VRu3qV{tkad`fFj|^*z8@Oz7@uYR92Z!$O>xC^NJMPmxhq z71ZM5bDK!`wTM(9yg2^R2mm>DhJ3^2M*H0)tbi9RT1uiYljJ%2;|lilHpr|-r~ls{vn&q2KHqo$Na4$l{;5Xa8lUe4;pPVlw&vVP zRMwHzlKZ+Y%L{tQ6a8|$*2{uj(+O*FaWQxj)zle5n{mZM3yx1SezT`-hu}>9FPgqG zDz2vK7J^HF;O-hcxVyUt2tK%baCdiim=IioYjAgW3-0dR^Ss}>KW2W+S!-sxySl2o zYVTc3b%@dUPA2Q0TQl9Lnov30d#Whxx5)kF9(L<3)l()9Zbpf-9akD@OX8UsUKtk0 zTQYnqb)|=gs9j3GT;zXY%mhtI7P(wl>`@=tK@b6TGzF1=Hi%#MXPS=?)_l(VV~gqb zu(jAO68Z3st#%G$)94JEA^o~X!$(8D>Z-WFV8JLX4oxzXv$3U74BoT4-=nYT{@6vbHVk@ZPdbax*Ty@WgDE< ziP6_Gt(o~hSuh-jH$L3 z3NghAf>y8>jIOT!jInic?Zo}X_`SqkMOk02k8f-{R_y2Vid3H3w^phU5&Q7Ii6-eu zI?7yaG2OVNV0@ag{;4@q?4)tpd5UFtuOLcqgh;hfgxlvD8Mm*q)~qsSyW|A+IU-H= zI=wEf(cEx!c?NQnEX(mFROEX&X0s1(7vxXvv^*Z^#IK0|ntnvp|Nh)VCTaWyyDELq z!I@8`+UU8?e{8LGMu;~dI8vx=>(sS?H;i=@Jz;^^#w=<2v$_256KE5}-U%ZowTdyO z5mJs*p=}TAzsfUPV<0o?z-#=vmZ0Ox}thZ=u1pY`=rJk_D z-^Cd-(Qe|u!oj^JZ!qmUBmW9p`QKkCRYI{kcTuN@Ps$-5D{ad5*eu`nf^t`a(2`iXJLL07e z0uZ`Sw!8Mrb4_>%5udD4v=Qj%c^dXg-S&&;ofOuITsY76Qd_e!1V90##VJ^yaQE%c zWl`)sP#%Qga^E%gtJ@;Z2P%urK|3ec=r^}c&9=-N?TV z)UcOjGpTZ1tf^7dzG5#2x*!gCkxv_@Uq3b66591&To+nM`ZPqZF^n86&UlnA(|+x! z$*mG&4Ccp()>EYZcVm6TI~Q1H`BRTLIcQv+xvc2TknR1Rsg5sJ^=de7_NAX0eXRrM z>=`x5??Q?;T}$atTbO7)BA(k625pBTqWNTIot+hVB=}2Ac`(LT0LW-4-%k)xbj*vb zJz$)OFo;FS$<_d4`9GkeTR6aXJ|zYFD+Qsd!fR_`s>g-(ZIMP=L+i#T;)$Pf$UkPGYnV5 zK$TmNYDl_AOg$#S*vT+S=?A+Dbx+wCbDNwca?4n8_CppgPw_|5C56Ppo}X%Zzm`5(ZhQpwM42+$)=d_T6s-N zft$rm(cSwrhtCf|Adxi2!@A)^#A_ynr3hvAkY;?cf_~OvY{Gra8Ak2m^x2w`Mm4Wk zrJ$-4O7+jWlDze4M)6cB?--WV?Pn6ax+D1aEmNvs~M3+A6N? z+uXec+z1j>>t-_dJpv`G<<`)1Ea%N(@%RH@R~@p0AxqQSBJ<51B0UJgwU>=_BxQV= zx|Zigs_lko_-5EDhezqkC>h&WS|-jx+|!P>2qbbgZ^iqmK*f7*^}QR|L4dCxz`TLv z)dp((ZI5m!_MU-NohJN)WNyYTnvW~j)mPInB&Mqgi_1P+uHQ=7zx`8Jt)-Ab=Ls=o z(DC7cbMK7xn(|m{OmMY0ZHo@#+w2yw0PR=`D~jMnF*ip;@okU_(39kuLoXUK<0nps zh$N~|A;E<7gG~QTc~?Z#>O&8p%bDbqP|6JOK23MYpi2sEPje)htnR)HOuOa;W7AYg zsBpk&b8g404cD0NvivekI;Cwj^4y6GEwmmMoHCQ?VHizUKnFB3v{S)8z80CRDfk-d z?0SP%i88LJ@g&!(uL*pY9gpN0i$BCZg#6+za|MPu;CbWgjA5uYpEx@Y3`lQQtPkI= z)0DoKS8Z7va99lpyhHQ0o8OIND)chMRVrY?zk32|NPB1oCle;>d2!#Z=|_gbS;w;s z{6V}iLvla+!uLw{{K2@AEMEe*EU1~$(-}#1qYw4@Z9tQm6$7_b6xJj0t+4OuJr1O@ z+*La)S<-SmuFhpg_+J=9X}0^zp;?T`d$R>g7SAH!Jz;-|U*bdkCj7&+E!D(ya1wXE zPh!_k3>j3#`TW=F9HtU{?R-%?%brbD@mLo z5`5UF8inW5KOINdqpLCS@a!uajSJzPw%$*4*EBmb(-)Z;H6=v}3kMesf+X##2@fe> zto0ehhJ|ex#y=Ni4zShzUcZmnXumnuZ7B4F*Kf1l7!nZhg_O#2$vcRcoUbV{M^ALO zmYO1_e~;yx1gk7r7L`LA>{TqXQT@o!5JqYoen(Uc+(ay20?vz+nXvWwn4gn zVlD^vM{+r%@vD<{QTF*pyKKQ;D8{2-L&wlRS>ju#>Gx}K`lOustkQ8{T`iX>In9?5 zEY(}nLy5g%Vq?}i&GX)$Z;V_{LDW&I=nBR8Zw9S$gfj%lB*udfFwmDhLW)g6(~I-j z6`~X|lDh-Q`Cl3c6mBzc`;!K&c#eSreIcFXekEA-hhUttA#_~ZKfL1Sg0Lkj|mUSf5u8LAZaO_mldeZ>o$ zE^&*f>3fv=j8m_Rk}V`u^o!#G9X$z)1I6UO1u}76Ej9jg^W_olZbs!*;b|ocwZp-dHxgSdB@KaZY@N+IH%s24*}Iqe5ZR$zI^DBrZ2|IO~9j22qJdJ z^m+I6{h%{edehUwhH z%RlEV?aZY(3BkLx>Gb6j?;EbEcWgRSB)Zn)QRI$S3UYzZ(ygII-Uv@xA5Z}TaS64r zy+fb7!b~4_Hg32r%g>EA2h0&r9+ZEmD7+n8JDht*R$0WuzQB{{-r;pN9$B-a5N^e; z(Ki?DSdExh_bs=l<(uQ$-j?Jg=m{^M{^QPiK)*)GTX=IOSJ$IThR4t{ksgv{1}#TR zG#YX(4^Pm6^X>pXREM!+4>Ss8Nn`x z@8OZMH$O(PF&jf1Nvh4bR91dvzbyN>#A;(|3exk%3*g$IoLBPLuU%ZsapMX}Voaoe+$t>p>d6pVbuxeh zz&g?k68^dWs4KM2RI#$I7+YAn$P5L2BhzM(#0s4@ex#{~<G6w!cx8D8MV^b6^Z|%JN^=)6kigUBjmMulL7dB zqumWLS}6mblG44aIgo|A{(TdG+>tL`=h9|haV+wocy1>+vR@Xp`{%@I>zAIoEe0L2 zHBXLtpyB+{+O<2p@T^;b~6E6wMF2-X-1xIFJ%E8;R(#)@mu?eTb0f6uCeol zfbFvil`QQSNm26gOvzjdoVMiv?QbTW8LV=*;2<_~tRP#@RTLv(b- zRR(b-rH9dOYG@q06U?{bpBRa`kPXP~T%HpYq&dr3%L~hfb;?UKjS#7*=M^~+McIfg zxnl4bF%st^K}{6em4^xNI+Tg*&Xkw~yzQh}$R^Y>p?}pdP56melvrZj`09ECK((>^ zuEV=j-IDY{1X@L=e=uQePn)Ng9PbPUV|LR2N~8{spD*2&B5>L@3)-I7})#@EIe)wR2i##joqKD zhCYfy$%oQh7Hy@&nw6ujYBV#M%tYJwJS;6Idn;8bnAvVy% zKrF|u&nfHm`@MYxu^pxDI1IPYO9tL}IwyHMGjc;qzQ(?hHEu>+IYke?(HcOFM|r`1JX4m(ak#rM0#2KsX}v2x%t{yIaUNuS}HO z?kDGe`Gwx(gjhNX3?2@cWjikUECzyIy2vkBglEFVa#wo|*fE76qWNV*zki1g*XzVM4pcFw&g#%tS!WtS494b2cc(+-y;ym7!L1t^KHY@eav_Rv?pexZo5EiMz3c|ikW;5PPXHB-1GHZC45Az z9Fnwlw`U3s#j1&#qODX=ZOekYA9Td1orA;_m(M4X1RZNXdZPvI*hj(%R@t?yN5ZqZ zb?uX0uHrC$-Y77nXzVfSh0@Ugq-d1=Y{D^^r|+X9(#UN??e{u_Q8;-lg>GfMs};v| zlIQZ+ID$Z-EAsfENQ$D!07A;3+Jt#^??lUZ=3DG8-!owsDws8nEqkbVSAjb$;({b8 zmTen%HfPl3fQ?!vmQjgQg2vJ~G1PkJZt1qn$^`>p^xN?kG14duYsSocSGr;qoxjudXM4Dng+3b@+DubRlkEluS;I_f1^wUOL@VCiHtDvu6oB|j9 zh{dgQ;8T*6+9-9VsJ5?r3d01O;1uj7M&2WIOiT>_?UYz@a`NS%(0jrtb5}MPOf4%X z_w*Olw|mm}o(%{ln`(M`<4s*}wpFdiUo$f^YgWzQr=G2a;|3#KT@wzEMP(IwlarkH zQPHnN=gdLxxsb*PF$so*Z65oSkUAUY6poqstiwrmE5eVVtlgL7`!2aIv`xhacdc7ExSDp!ACR2)o@*KJriS!?=Wc zFO`MP-xUd?u$5CZ#z%9QZ^Bz+;us%ssm@L2R%9Qg-_Bf`PPaCm+nQI@m3+@+z26uq z1BqQYBsa2Mxw8nQe}*}R?j+AM56-Vf27h_uTc+Dmn+^#i4*ikShY8%_(-HxNuc(S_ zV|kR_@i%d`jKqG?_VT38t{1Oc3rzphu9mn{uXEP1rMt!L@2z`8#g{3|IV_i=yJ8d@GRI|txXi>82kc!oThM;LS_>yqQe+|&nW;E{pStn8r73$b zl=%O$P4f3X-AETNlyDAt_e&SD#A{SxP<;gjEq#XU@ zQx4#M*mOM{3NngTbF+-82jvZQ+{ggp1^~KKQRWE)KzGua-4#8x?+sJyuIXzDixDWW zwM@;B3L3bHJMC4(qVt|liu(ji)9b?+f z#2RX~;^?52Z?#!O7tQ+$TA0R_m7pJvFk(WFA5%pt6%7rT-go82mAYOlW;U%2KTXss z%+=hh3i^#p^{c1Byfip+GOYXA*$-7klRV*7mIJ(PDr%*J7#2n*BWiWaiE7|<`QhKQ zpt_!=i%);yf>BTFwN)_HHFD60ow*5Zmg_=dV^LsXVVhsCN0awB-ix zpbW~?PIz~o2gA9q$+gni4)FS7P`JeC=9=esWu5kX-LLFOwIwhpZfYWtsGpt|3}<`B zPc!foh--i4{Mf)X*H9o6>awPr?7HVY`9lpGH|`*aas1K(*J`o$ihRS|8u0A8c)7GK z^_}Ad(U{izE{3_b$UTeoWcrN~r=7Puj_FNFv$`cC*95U?qVu!=rri^smfUE|D0@_- zG`u=#P126~1tVtu!@Vj$ zq}RfiB%Sel6e24Qj>*Uf@0+R;2?V9Kq!V}dwr~X+M)rlb;b%inPhRVVifymW7h>mw ziISR{cqw9!;Iq{xHC^4&?rsPOU}q)0SJ%|AJT>h`^c(jX*X}iL`t5)ZFJKu7fiGh* zH&Rp^)q^`)#2M~5P!2P0ji>^y&32%=s#52k4;h<*E9ubvv81B5z3er>jU`3MM~*+X*OCf2KE7jh!qCKVPDF6iKa zIuou=g@rI7`AH~Ld6^+xxs`ZI+UEhT!YJmV1+QZ)HdxCMw$|Aj5@QxlS+KYuWjhWqMFN1IQo+Lqef zFWT@gUN%1jH{Z_PCoi?}4>LoFV-)!MNpmdpCSGLt;f)sY=wHyo>3;S)&YaP3CIO`z z!?h5ZZ$@cKcCvhhBd@cX&8sW_U(B`f53)&u%UEKp1ZUNFqM}z*Qrd(0Rd?tzkWQC$ zZpgWPvTmJV>PQ*i5LkOP3y#Wk@lF_|cK1vVom#N{nfG%i`tZNH!p&M>7FUw_n#Kk$>h<;7W#Z-DUS;-H5L91AAm_QMMu6VrYy-#IBR z^7T#LM|Nf={{7kNU?P=V;>u?N&Kl4#y6^LBo+6%kE4-nH#}nRfisF9bVD}5jy5-3q zKArUuO-SwQ@ovv02AH2)r9{Os@Q?0~x{~@DpgX1^MRk%Z@D|<_C<|m>&82vrs8U`R z_2iCh`NZ|!`0<y?VC(xgH3e17SY?N~p*f){@@yWt z{7rx~wu&xAmzd>Xpr)4y;YeoI5%acy_cHoYyTCbTS-1g?Mz(3-pbQPG-8)b!Czz$R z;{rUcv)lTb0R|9F_Z@@gBTJfbX-Xjj33m5uvE7~gKc+eF&Q&PZ~5 zE7B-spBzR&1J`FzVr_D&F&$&SORld!0(7AJB%G%Pph@1|0~}1{rKI4h0R(H>4<`iY z{ju%$mkX&x%Ff4r=4+almN>oBXp)p2l8MuRTtxZq4VDjy|T zlbS+Cf};{Yt6Hn6UgYuIofwFHYn;=B&(mgD$J7RK(mrn?Qq8)7;G!c5sV&D$dHz5? zigx2ktKSft9BADA{ewI4(r|ooH}K9Kh(T2KZqAWkX<|6A{~|TRJ*gRxb+Gaov{`W~ zgyGlx)PXQjFnmZ@2Pmj2PLcw|pH=v+A$unlWQGZQCp06?8A*vhZ#y-TW{olY@WaRm z!Lm__tCh0;7aQ~&G&do#;v6rY8Fc#b_(A*nym(}_BB7*3Z+e9?g8GKc`GL!TLdZjv z4Em+a=LK0uIbC}qahf0^TSrK{q3?O$4v!8>#ciOC4?j zhUPc=Bgbh;nWo~FG{^ksf|7+4KP5en>^CL@CDLm1jj84{>W407EF)oth z$$pjOCQCXv9YzLzC8_jOWU-^pE_-8!$n@6*4B64-p=IH&_j4zKiAGNO}X z>Xo@*I{K)&R-I4G0--b0$Yy-4Zpd<8sFqrr@>?x~GA<29zbnXm?hs#G0P(Ltn_yx~dH5%+!pwa`tZw z^RdPYMB%C@?#h=zN>eut)!Qn1;ve_ljA1le3G@q$-#v}rV&*P<@PF^C{&6)hJ3Qp1 zB<&|JlJLGg^+{+RjOb^7PY?ScaC_?UMG9=RLYVQCG-jX*s9(-z22yn48?Fd;nov(A zWXcTjMN@EK04w{N3;C)-LS;#X3C1>_uB6QFSW;zEA+KV~BtoKDd=h05kko=M5`&81 z2DkH9n3|?LIcDVC_KK&9 z!lI*;)KL9_N`f}eZ=C9_u>uM5!`h|d3DjXvXL`(NtJc<51kEwBc`It{d$rtu>6!{$sDnO*0@bHG7d{y@nM`D2f!n884D!M5qk$tmSYBWjXrj+qNRPZjLuQf8O9J6p!$y1$9$ zHUfrN#f>J$F}Ljg-696V5amApr24!oQQnT!_;~(%Apzii6o&7(rqU>A77xbtU9mz^ z>W_HagHBuM|9iCU%2mf^`z5cnI95Q4F9Fb)Fu6;?R38JETbiqCIlX;`wu&sx>_V(O z^7#3TLD;ChyzLNQzn!$!x`&POnZ)>A!Tqv6QY6>L#Fg}b2qu7$Dm4~+sW(D@^%)@`bI@^?1J zVb%v--#S%LPt)AU1Ig`aJ4WK(AK$|pDv+Js?)QAbgAYkWXZBw+iW}xwkYj5 z*?h6P{AOT$|BI)VL*Dm;+}@ihv10w^(3!l~xglr`teqIX8m6}F$AtByvGw%dQCw%@ zH^>DZur#(L)ltM7GVazi;Cm)3rq=X#JzXHo7aifB2jd8EMWx`Z%g#FDwG3<8u1nFC zWsg_%<4pS+vgs0_Y#qz|qt_azN>!G2KkKFWtNg%!n-Tx`m=nHB#-V zzZI8a8f==uL1q28-OlGxdBRau)*2}`(cx`(bkMA*FAId4Jxq-{hYq9n6;vBw>Tv+V zEvxmF#DC%Cg-cKYh#x$33&l@zW@muzl+51G#Xd2^N$AnvR7%k3kn)KUkR6**spkq=5%$%39|r`Cu@h{uM6X^pTtMPpG*HZq-bj0YW+v)sGU_7<%67H6`H>tz!?Du%5sMK?m1@`J zj(C*Q=5=@{K0zGUXj3rB6o$V~|Zp`nWPL8&ko|I2gn z>9TY^Cu?2*@@X0x4`sJ;N`$u~2uv}Fd0Mlw`BUU|Q2?0CLxUj9kw1oZZR zpaZDwQGbZ2kz#X4NGZa3VS}`CT(r`gQ%TW~loRw7jjX0+-X`G?^k$=xUut38O&Bqy z{G?Kqcy9Fn1J1xr#e5nw{Z|N44+NP|=}!O(?+>?{5^4V#bzKvrn##17D(wE_ip|xA zerV^1j}1pX?OWUj>7OH4hFEA?BV}}d6l$cUnO_xed>TEhDH923C{YOYGSp>2db#D2 zUSvkW5;J)$lYN~}Qc;D)>w%N3 z_?w{|ly2yk<)i^}=|o4o)l^EB)#$+;N@Z6pr9Lqk9fXpj5^0hx|E{W&VR;<^VkxD* zgaP@y`AEv)!&Wm~5d}EOYN>}KUbVt9Hi1lVyLScFzx2BL$&48Vz=Za`z$yccop$5} z0??tL#0dyCXVF^qh~%|Q44kTg%@588)Gv+ztAagbz%f{(uxJp zYSVG{SS7zNp&49bjWaTxmn}XvwK0o`O07PM zc}7+jy4)k~v<6bjc$@5Q-gs`VLV&Vno(3B}`ua@?4s8MbwRPhuSKuP(rE0q|z#HX4 zl7XLq+^;@HO*>X&!q%nhTq4$IEq+I+ec=@SJ37T{xamMGK|A26nsV2jp%qMzKq+H9 zmKM_?BNJ_=6K9qeXSyH@p&6y}jfx6J%@fusk|IMQYMDPXpu8XsPe_67-C$8FreL7B zsaNJAdY2%PfneZ*@OwQy8vF(kz)^$xsgwPiX6i))iiMS5{Cy8Hn#i~7puLDva zh56j20&i~N>^UMC6avqPu=jr!x}F^B{R6WF99&B7N5=`D0 zi2Lfc(|o3Nm>3Z&w#wt_g0oS^P^Ih0Ww3s$(fD9XlcjDqw$W`~{VFv^jTDoWC!=`A z)Opha zB-V52kEwEwc8rAJ1Dl+y21lJm3N(0)pMk1hvZIZ)Hcq2ysPQF;NnKSkn+3Jb-^}}8}4baslRjb zS{oz*(Ja=$5A=_;vU>j6X`_$cw9$^;efuEqH z#mS2Hh)6z4(Sd4rg3-9}G!{_!E}&HAz|vSu$E8qHk>UEKlA!N6ktL+3q4MSnq|Kcb zIaBML0QOhmQY{d0vrPd=0NfOL0x&2;iyO0wf2N>yPx`CWpzme-`7b|ashzW#R5${J zh<9qd(Co>hiSXKnL-leyv2zLosJcS=G*j!XHzDoxR3-!c`zk_(wv@g59zH_$Lk#*o zDgr9+AwS`0TCyj050(*5nm-xd$9`|~YwCNe%=*#%2OO?eJF)A&cZ6`_WTatgF%DuYccp5Ef* zFo#tuxB%u8fTaMRGE}%WNTwlu=>RT8fe+AEb}xb^a}d#;zev1w_!TQEV`fM`a5pJF z!c5$#JeRm^&pO?s$}FMh;WxfRRHOId#Oy?s?=8*Nc8Zb9kXoY%wY%_qTprrlHP{>s zUHW3X0hk6s(Yb69vA>n#>-vD`P*rtXf)qZ<{z9uRH$UjFz*LC+)KGVh-TKCVpe41~ zce+eT`RO6I@54^nqK%DUJOnt5YK?K}ca~p)T%SBG*z4V|@&AP5Q&siR$}v)F!BMfK zpAs7-cC)XRy+x%vK(IPHwDhxE&O<re9(=W6PCfg0e<-o&+WQCtmHzFU!&sjA+&BhIJkW7*OF#m*`vDJd zkXo3OS#JV-W~WQ6kzF@&w|)mC!=25<#lsCRiv7^U2C&p+eV0_CfN=kJ=O`Ka+^7;; zk_KlcBa522p>XFBTnr4x{fgGa(`z2@>$sO1uN4*?D%#BliehOl02*+`?CpQpc?QDK ztaDn|@HU;*qQeab#P4{W2hJ@Et#|>|F2%^0?71X%dIT7L5tdO>xgts1+ZE$aW6H`X z8Bd0+CZN|?$rDO=>cGA^Xbrp+%#v8M@VE?tB>rU!BKMd=Tp!b2$J_77jQA2rA=9EF zCVaRo$9%_torxK^zu(cl705M-xVg6vWrUmU+i-A@dpz^z# z&GQ`*DF*s~y#U(}fEv7@31)z1{OpA9n-ByCuDI*x|CmXJ)guya#Z(`hW}p83sYv4V z2a-&<|)?%&v_w<`6Du_*` zZ(*4o4}2dSj&&(o(1+oAixhXK=aEPm)AnLSwRc@|3Mp5Bk?jAlM>}n$UXz@X=spT#m`muvuG5n9idh2)wXHROetAWLe_W9! zIV!4ifrO#2GPhV2vw&hu-$9&yH{;ddLSlNNJ+ps<^t)jFCTq@Sea7*p>y9sZ!vq8Y zG{iIKWlOz@YOA8Y>d6~Ax0R@DA$)7xoN4Z7al>-fx|&tkH22zcTab1wmX*Y`9D@d% z;^eYIl^&r*(ig8*?16PybE02nT`!?Y`G{n1x_M(-l*CEPopf#vVmtw$*)mT(9dB=c z7L^P@v)vL1Z_PaU4J zhuf=_1ulo-hbufhvQC$9YI;Sg7L$=YNe-q5reQA{z9I<=S??CnQSrrTy_< z)+WSPp9@b0g+;trkE5vOsVUl%l~~F)qqCq=KHrezHMm9__Vskp6w2Ytmh~5w3qQ=! z6*w824=mXS!5UCpEJ9VYQMyy>y%FCf^g=`4uO`a}O0^~pzR*y`N_FvwWFP#8A>>1} zX!<3FZyuJMV>H(9Jt`)8dZuK>*@k-N3>N7^t9$6&RpChWATzfK8=%wIFW2Y)^|2fS z`nFuKU1)sn{^`#3H--RmsPl!XxYT~+_F@=a4dYho2XcRVak_1By6Uh}LrH;@@4KYbOu9HV}a4JJudx$&5h>BcFc1MsG-&i0^!*US{#TPvY<^ zL+nIL-ouk2!Oh`&jX;aEyQPp!BmMG?JXi-)4Fs*72$%=Z2gz026|`JGF`$6{pM@Br z_ds;U9hN=k0`ZNLF~`=RP^w`KD)qYR70m==v<-%XL#ue*3`oru7o@F_p$&b4LDeHc zV<;#*=FO}km{*FAry8amHBXgh&8W#VWuVTOQ?tC@C;PI_@Re z%7_uSRj1%CVGUJ6y=d#S0bO0+Kkm=@1P(gEqPNsf*v~ThYD>Tn&wW| z0>M5HRfG=}(~w+Qn!buM`ldyTZ{~|H5XiH!NX6^%o(LbxFgw!^(6=_)p7gUfQ9(ognq@pk%T!DuqnkSr1Ew9sG5 z=Ue?XD0^}ba-m3_XDA7Ic+e_BrSqq$r0+Y>zV-^rLj9Wyw!Y$B198vdcd)m4(?M`( zchrs@_Q93pQ{(=fx}#>yY!}!9Id{ht(1n`MvwJF}l$mBkHX_Dy+-JQStxik5DPqBu zqWW2agHZ68vSWVCs=AT-3n?q;rSUsC@lMe(;=kgbWomMYi^i*n&uS)Oi^7xX#6fpc z&SWdzt_`$(x^rP}T@?d8*bx%(8p0jd_`I9xY2BQ+iOb4Ov#||#?4d_jFpv|B3Tr#W zzx{+tATrLpXR;YsBP>%^`C4uYq z#xM!gtWPmt#S(G-cg~fKH)o-3Yn!kgTKcpq4ixsXB8}3`hMo;CMt^VtGSn(dX#?X7 ze-#DxyN!*gX0Tx?ikA|H<$BvpM=>+ek7aI@hC#=RQDxUG+-)#gN^mxbV-U=XV=6@{AHI2%kZz?jBDBHaAMLVbqYLxlKuN+q=RLTObJ zNvbeT8Tu31vDIs_HGWHDNXxIxCH*!qBnn0AN0rej(w`V*TG4INzlQ$Or2g2oj)h6* z4oP0>e%D@iy_TFt_FIOZT@F8+?c96+w|*#+pA6Bpz3$OA^dk=rA!{9){7TDFy&5N# zEKU}hcV7(5H5UDCG3cs=VZ?y(hFrX%*3i=rzy3uX5xDYC*k8Or{JxeVLd#sJ3cIyN{I-DyCg%AWu4j4@Yokp(3Kkc3WDbEoN|{BN5>uQmWY#5N z|2jTn6+uap>F6kDmu0&7`_%>8!#tu z9KqSN+~dso-fIV)%*OJ?D!Ok<{0k#V^toTQdGh-}{TRF{iZB=2m>!%xLiK}KB|q4S zdI%YIuyuJgSn0Go$oVT^QyF#sMsRXoiGwVq``WrEW@Pv0Zp>6P6-QuEVW93Xa4f}V zAmBPsNI1U^ah2rnuB&ktih3x{KTZ`CxDlg#dAJc5@xc>I{5;=(kcJK_&{Bi)6_TC5 zVCLl@xS3AUVUv_miZRs}V1^wsFb{q@aMZ=-sUp&&lVidghXe)(iJTfj9E%>hx^lBP zn3_(L@x|TVGPG|n@H3%?5(mT!wE{_O|5n6OwXF&0S+C1lpMWxp#cKI?U{55F1MV`S zjzOIzeBZ(F<@HhUHGEBu3H&-tbJg{rUsMge6Q?kDh;RH$ld66>+#RUay+lX>ik!d) z7#j`N22GC5*vhq6e(%!$Gr~MzvmF5kO$SFL$_dIO`1;vumRvN z2*JyGnlj%lp*zkkxK7BH5IdK!^{cxs5m*tnT)(#2BUOD}O6Db$0@ ziYkL;jgCw)^Ig*V2o51T5}1x^b?>N>K@X>ch=`9hT#v ztB8z*t!8y{mLXt|-x^TZ(|5zmHIXvZ&?vxzJ@hZi7qGbYE ze!Z_Gi`x|ryf3^el&)QH_@J)!<*n++(R8g>?y1Egp969p7pmy`-!6i(#sGVoe2JiZ zHb&m3Ub-ZqU^LNUYy^LqLQyhx?&zXYcmO4k3}8;wJ1><8`*Vi)U0=y)yq5%p3T#&| zZ!aEl7MFbuZlA!PmqZL0x&i;Kf>%bi>d}oK`~~T&k8(1B?VB~_D^Izc481|zj7wQ- z%%}WzPVp9I>DE#Hx$H>ps76WMk5H@-6Z+<4mt&=d>cH!=Z&u{KsV|+7hVu6g*L8@) z@{^{$jVV`~|28hu&Yi@2H+}hj&S{GP{-qU+<&@m?xW(pr20y1M{&DLTjPf*%b}+(! z7=7ep5YF{HbWF%t1V(=4Du(-k%>D~eA4PFHF*vZiex}3tesC7*NfFsFZl#h=K=j}qZ>n~z z`{6AC74fsK6eW0Bo2c7_mnExtPIf7GZNj zpFc_v-kKM3+gJBpRLN2V@zN?JH4PkaA?K3Cnu%cJJzQ565?Juc#VG`->t>mYP z?MP_SA5o~ZpVhYLH=xy+hP-jlt!YjY^MrW6uY$XcI5GYZ`sj z`nVcBI!V2qZaS#{R{L|}PJq^XBj9w7%SeiJ%j%V%wc}+1@fPzA|ie;ysyEv?qO|XFPkK91z^29 zJl|s^W;?Tv6XsIyd2GuHIFL7tnkTgR3QeLjeT^FmjnkzWf7o)=xh)3n- z^zYq>I6edRRALK4fRJ|+VxGO~>BK!!irdwfX95ns`xa-P%jC)T7wwF;H!r-6JqNjr z7tU%f#_Ki@gInNh6}5UvtJfnANFE2r$cAyxee$Tv*_Y3HUzA$mgJUdwdHT%Rbr+GQ z7aAP~O?h)+#JhU(-kd$n+SOsXldmkvkVUxXB#kn#!=jXgc4KE!f1BXVPO+yDKsF95 z!j+c)BZo;FDy|Nz3&>^WQM63$R`zGxYElX`k1u=wWXY)7Qm|~kUXPMpiR}SW6w1^r z6)cWhaBoK|KzMNyzv-PV&+aV#v1UDu1$@6xOufSDql96N1C`W9?R@X^Iz1yh#xeW2 zMl7+mV)(JEy<%hw+juXNv(qTtUjuAt49jAVi&jZBR1Wl+ih z+riq=mDtAT;)2)7MmI?X3Hri~1hhEuwmqfms+~C_8a~@_2y!zsllj1T`6$YQ?Ao_w zG!r>SCnC?y;Rg~XvNZnHRMP+m`O0f4wlXESwX!`8GPG-vq_1)1cM~{TsVzL+-}+hk zg9l@-pUMnT_H#lGH6v+JK!=gsW7~ZZCi2S4V8NlH18(?J*O2QV5A3gR#y@~x{DSSB z>@v7BG7KXt`Wk-GX~nOxigJHvKa-F ziudIB+e%5XD8+ZCuA}=mi#t55?$qxSzrNiaT6drN7@7O~y_4cY!n(g*Uu=r8u>`rP zFAvyU*VVmbzTs^qKB*Q|2#)WZ$YuJIH}NorN<-U6IMn{nvaztcmGk!s&gZnH`c)hR z?zvD-L>@v?|D?dwRByVjz~LPk{xtGhHj|OjviKmKF4rvnpX{k>m`%8dL&$u0qE`lr zi6QyTTNZHoR^QYRK3#ncUwi(*(mrD?+5_Xq?P2=z(BpF6psHuxY}$>dvoUMW_k683 z;*3{c5s}_Ja^Ea-j+p<!K*S&|I;pDIXGaX)f1x&_o<$s253PVP4bJx2g^<#^q zvR1+0Rge(>(U%yZr)>aIGm}Kq0TNMPoT>4FmLGBJh08M1(@(lg#LFENNY?htEAu{+ z#!19BC~eoBZLWGVh?Na8JbU5O?_u>iyOLVWH%Xpq zVBixt9{#~m8hBYPC~kYQ33w)M`0@wH|#amm?9V~S>CGrQ)n{CHy4v4$+Z^Y7n zf8k$$zt<;ao$o>5d2qyfhM_GwQ25$lvn&F>0p~Kf=|q2QrMzq(uW`jdiuYU6o3p*L zrgu3wVOolpDOhOw*tLYkixYimKVZnG+3t9UhI%vDm)3ua>u_!p$Hz5f8gFv`8=*db zG5)4Icml%hP}F)?f){f3 zCF&(MQe2O!22)tP9@9`(9Cc~kn9s@=?lEHfYGT$-vmeQCDd#mSE5BKeYaFRU>iF6nEzAbk1nTB>RVU0 zDv@OE8ujQVD}RqB^&OM43s>^mLz(Gh)o zL>_Wq=bsq3{AI-{?qt3TAs&J^BlzKN%Q@7(jpRLo;ts#ehUAX z5B^l+%sm-&PBc6^P_6%9#7_6~l_0?dHIZQBRcFf_&-Xu=uNnD+wF9ddS(#ZU{|5My zvd+)r_#TWdyx%7uk;(F4NN(Tbv*O~pVN*d_7n_rPN|@QSxEC@X-jd)A{6l02?3WHk z9+FBODz0aIWxiN8$CjSMAAjl9hEt3ngnvOAraI3TKQVTFqB7z#|JpA>vNDf;2g z=wLSm3HUqsj+F8A5loOva|F}ceR4@bb(`U$!5~4NR3OtHR4`B;5Q6rY>+7?x@;WKW z9uxjT&9sysM9sVd1A~G@f>{$5{3eB){A9^MKXIw~Y`iyPuAjAT|54qX)e}j;L1?M^ zCYhdH3F_VF;4xEw$UC!pIOv@-&{?6^9e1^|s67C9_;Oz!~%b7RDUm2#y*M2M^PLqYk;2J^Vk#MY!Uc59XtY?&kv`baC!R^;j zJei=w^29P68{w`+*NKiPiiSm$KJILa*uqo{$#dCXw-b%QEp=n@B`1pxYVzdr_43O7 zbuZUs-VPYc|fl|8|2ft$|Bm;y{fZ&?*mD2u9N@s&zw-W^%%Q~`C#Y~>wMKc zc|pi$vzOV8Z84u5s;OG#MpbQ2xuXBY^rOg~>aY0^t*2)m*=6 zzsQdNw)o5Ey`?WqRWsV=6_L_L^je2=nu}17;Nt?bnhNswC->^mb?ne!k&`mbMVYoA z@6$^M4U~MR=}A*1;SZI8ZS`(?^l!R`s@*7EV0%|;@|BNOx|ZB%wnoLa9#}Q~Zh+y8 z?&x&vuxN1SVK7OS7gpQvHWT2P`BF^IqZeT*d^7YtMQfD9b4Cz+dB#EIzE^#cXSqgO zrI3X85N(*(7M<=*m65%Kpr}I;wA%PG$U4X^qp+zuw1Of^&w{Q%n{SBwdGwl=X`?KY z=xOcQsu=Y<_}An$Ib0QCm6O`Z;Oe^_3KyDP_hZY!ujE}QhZNGdndNj--r7`?-nV&( z_OqL~OstWDF6|NHb4lL9Sb9EAztm+tb)qXnJn?ueXBcwCfTlFTb94HqT8LOK_v? zuw~Q^cXui*XeQl!h@^;{G9FiB{5)im3L8UY{t*KoxlL8m%sZBw0vZUVNWb3Nh1Slv zPo5Pf8^aSAU2~uAWcBp&H;=j6z0dHaKX;Kw*u8ON05nhPNo_p{H7uDKq*r5*4k{%U z@2lrs`(&m!n>-}RIFo%A&OKqzN^OOuhb>;{+JnsOVXpD;(sCL-BucUUyI1h)Y9HG_ z53(NdPU}R~WvM=9C;M)3yONUtOE#T5^5o^M%AMBwV&#b+k5A@I$LS6HBj$iUBPlGw zY2_g}E=^9EpPjvE>2awJjSP__cl9MCSWX5`RqsiGOUYNFgv+ZNFx4;4aQXA-yF-iG zexv=jRfoTC(wLfS^mavXzI9|j-y8eL1*%ty4*`t(@ydE>|2AH;^QyF(Z+Xpakz`Xu zC-Snojl+i}K>9RE{iV4Y{&xVAsqu88oV2!W-It$IXBF+~d z+^9OSwnLNt;})VU@Rd7DV1`CUVKFfQ=_W@z(=oBJv4|8AUwmn>kn2Mkyp=DyiYk^P z)fpHW8y5HbQzQs>{vOJPPn6^N%KNKZ)1iR#WZhkR!w9@jM3v@$f><&*iv z#_Dk4E)$g4S!=t+uS7T*B2TvkkrQ8UJsk@RF!|;CSN0Ckuo$SpW<74*!sTOK4?6yW zBbZAoJCo}T>+r!`bzc8~fEbOLm#0%rDZ#Hgp%b>ANGN9u0c^hn?4GHrs%p4wm%^r8 zc59$BYcCGFIid3@T`cA7x{atxc^VJLke#0VdHciyuRf%XJfV-k&kw?;#Zg#J-jrCN zL6{OLo~NUlgSI+o|G`^fd0j_bI|6TKU6|5ZEwVYh=S+;3SZ4S>#q^3h{aNCE$BJ?G z?0O9{A}BIfoh%5UZ$KkpHYT=VB{-ETXmA3-AnPZo(xg^3irGqqIt^bDhy1oHR^89r ztOmqL3yu2X>7#6~_S-;xY`4g;ha48krrmpWe)yZunwAhR+Q7iz2hHnOC($`M%;G_m z9T^Gk&fi}3yn06IV+F^nmrIPydbxaN=S_`?tm6`Nl}B@F>y!PCU`I5m@Z~ClBo#Nb zx#P7jxMIrlKEs`&M4XIj0{n6Z=(2-;CjU4a?~y5W@D&VpTJ!K77XRE~4>Uj}7H^@F z&_qBuj%Tr9PqOpwAOn+9j?PN=?^x^BhtQP&<}~7|jHR&r8;ZkP;aTf;`6-%S#0OWm z^~XaE*Zme)c!ZdG6*e~Zf|jzJ9HF2?q7M68J3G6nl+2F|-#~j7n3Cdl1I-^=!u^!( zZM)K!EEFPRPeL*IPn2L;MOB3ZR4XUX>z0Gg%ZC{6#VNWJaNm$G5}3G_JSSIq8o7m} z+(nXyFK!m=6SOMWdMlQL=@kE$qz063K%y%7n|02ag2yb;<93b2fUWL|BaB{VA+LJp zQ^(JLpz+JFuC|bBFO3@|ELX0^>(zTAF{_vTc*toer=iik)DfosvAlY>HfHwbq@2as z{F>ZTw<|gM6KN?b)|gn7XQ516ZO7wWAsn%GJWF&PlbsLWV#$kNMT=>VVAE8!9_`bMULiBxPbU6((0o>xNZf3~XK)JfISZJQl_WwLL+{MZ z;rsIrGfuukvVwS?Q&Urhr4>EV+)Sg`d{%QptTjjS-~j}7YA-Ed*f=S<8iMv)elFlH z1;J0N_;7GC?1Q2ru?sj;oz`(&=rxcx^ODHTNsKi5sXvo{Ym|(WquOR@Haz7O|(fY;xy_ zeVAHm^&{!u>8*tE8FrHy_QrO^Im~pdCU{WCG#7$>E8ws*wPf?z)O6tZEZB$)y^Ja@ zTTNbGSXcM)E*STgEAZMlq^$bGe?A08uG>_$cX$7A;fl!0ZW_exJpD*m@C@s-n%Sti zY4B|qX5^;{q?@qN9^UylJ}wL+JIdQ>HnZj{8P==EaX}^|O$TlW7W3Z<1K;^(ORuEZ z@1=TWH0i#_z6Uly^D7XpXq=XaDDg4aYL4y&zq(+E6A&Z)$NjK}mmeJekJ0E&eHV6i zz3b8EadSw+V=>j9onPBYb9*My%fCtq+xTk7p>FYbOxvi%pIF0w+~5HzsqM+Q z5zT&|!MSN>5W}-<`?;~}RQ|u;f5SeFFR7^SnS!gG#oI39Vr?la4eg5qu+`Zu-AeNA z2OT8Eure1LEZz!71`g@YJtv@s(b=Oa@TOfVLzt~m-U3%=EKk#EF_4#>(qrxmMzmsY z6T$0lmh!2_+e?qz;5b1Cd9XJXl{H&(%V)@|S9~Ze>UU3Vmm`$rRaHBFJ=b&G%q>?l zz^i}D-kvwXo;1fp8y%$VkUS=alK8m=_Q$(%$%l7e#hzrjigv7fr8#y{?c?aGdfZ2J zc+nJ38)>B8?@ET0G#sJH3K^=?$56azGj)E)Yj92q?b5fBl`zZ#_iN{s-ncH%Y~g$; z;YQTm{gq|yIlX4Jy#X*GnP+r#bY2)Vt|8!iFLBH`x|PadssVgkfBQVcM~ttasUYE9 z7aKAm63s;MhyfNKz2Ni{YYtw2FlHiedY6T&cI~p&((in)~EuDhEQFn)7cizWKSnD*B#zKNvu9b*0I+?aadg@9NwE&un&uKN69y_-ARV_&cW}R|+-ndF1 zZnEzJ1*Bwauoy(mG{Kc4!R+)R zZ+z}Z8*G9{n|xDs$$If4`Rgr5$uMoT?QFkXtUnL_mhzCRdGOH3=v@YBWo-{$jZNd2zE#S3(Ix+X(dKcX5ENG@NvX$SjW)Fr~EPE$EYg(&7vVcpf0tNrdw z+&6Nn+5+MRnu+gC*g9L~hFS`3F#B!ZuTzZ{f$?1|TjFExbmTRxgjvh`KLlWT+c$bX zcCTwY>}EW4jcMW#YUWlp2`}MI9DDizvcS*?8zgo?!I;6pLG-pLR!#C4qARyWoJ+uIh2-%I&5mVda$Dmj zTK3_i|G0VMMfgh{5r~xH;c3|yB%bdwb`d*`A4jtiJl8l-{O3fGD|-fTAIut+oN+CuPJ6VmpQYK{G+a-Qe@1=6|VQ%?s9s z76~A0Evp8!s}1G4md)PP7kj72UwQv9Ob*WpD2B8Nu8@cm2QQR`-LxNYA`R+vRuh2Mua(>ctV_{J_Nf6>)R`)^Ys zq$ymeI7b`bJI9NRKYcH^^XllPHqgmDBIfTFZSU(coUS@eu{ze5dr|p@66}KjAzR#7_Qvw2YiMw7#_8MzcDq zZfO8~=9%j&AKZt+`C2tUHA_i`8r|WQIpRN{x`+D2CY_S;U4&xb0#mt6s6w(9w|j@vO&{B@`A{mxv?GROTV z;l&v?82qZ|s3@gy+1+Ne8u#YjKI){!5GiZ7YBJK0-|;T(Ztk1rc^qe>vk|^*l#N3) ztf`ixO0Z|0y!*?YFcEa=xd8Lc@#TElPrjMB5n(1PgZwpu>xNe+j*51=v}H24$;?!Z_9Z31$Q%Syihjn}2=TWg5@A3yEUt7g}D`Ryxb}{4kc}6cXOc;#l zrV~Rkee&_qwlb%il39@~1TSRW%jfXLV^Gc}E`DS-<%=h&lwIg`#uz*N^6FcbYF9>6Hd;sNy|Da-=>Cq_v37RoqD4c6HpOR+>aD{m z83&u^b%w$dI{prMbVD#1Rbyj)MRVcF(je)tYoBp-!Zb^XJU6=YmJ<7;3k(AcnijPk zGye=ZEeDiN@s0Y{&USGb=vEek>0X$88B-80M!NgqK`L?&a=TkLd%V9?|B5`W@s0J`Z}cW((-5+} zrT1Zr69GSdkh0c0&I?b4Q47U6Kb;nrH5}gvR;{|A;~26fP|YB%J18id`ZAexHjeq) zB;7x5Xp2yi_dA)zGi1R5Zj66^yD=Qtn-Jc779q+)(RE&SS&tn$m=?bC8v^p_XjY(! z&J}2_Av(lG|31F^y~l+@YcLIspvQzs#&dvcmK66ehc+CLtar;3@?>wm)tD?!Ak`=N2$O+jR3K9f8PzUqIx^TynL2Jr>aA@mF9R!K z8A5>~S=k+Z`rxm5dY2YtnNsrfu#0PV4vyr>)b*;Mw#COR=GvQ~;3pX_eYUeitQM&z za%+3ic_TlDS!^;N5 z92KWzfX957aYenA#~fIlm#W~Af1aNl#%n>gxiUO6ZZ>r!rjcQt zOPt7&i{fn($9Q1hGEBj$sWufkJ@WpJ>)9z6Hz&^jOuzrhN#kFS(tc_M9C0(E8vP!BHdw{J^{i5q2c2q?q~hWD;Z zaFgFW5?H6}T1-v#BGt64K7}&*vs$U&BtmHqYFti(ylXFxZ{eE3ah6gWD09>vXei>h zo+C6hqHQv4KNCj2mt$x(7AMT$*BkIZC8RvpyV$|AyL4C`^{u{GL~;I+%8*YXrR*_0 zSM}JfRbH+3d;S<(>ffv%Y1t|HZr0ubSwh6GU(hGS^iejFPL38bks%wExQx-{JvMV* z`)SKX_0m^MdV*E+%?> zUgGm8k6LR48@zCx$Gotc>1=7U)7>w#+d5Eg(OM)JBUE}^Wq6d>Y|6fX?Y`ehz@P4j>Opym(a9vKs#xh4 zI9aC)NaK%}Obfy~T1t=qiMuFv?QwCf+nDZ-~s z^H9HZePt%-PEp+5-R-4ueJxJ|JMNZ74+71rv8)d3*wPtJ8Fpw~UN=~U#4W3P`b^gd zo`%mKJg|l5FP>jY;HVbV{?v45tG*JbHr*r}(R)as?f9a)NuBQ&!K!gMB~OwwDHg>X z@RKqi#fCOqAA`S2PXGnOPH%f>8{XAn6jc|kdGpM5{xdVNiOpGY1g#k(HpjHN^He&7 zMwC)DU{eLUC}SG7cmUcXfrB6R8jRlQCMuB;%@b7o7c;DL2U+qqxEQ)P&ZjqzS5E|@ z(xu${6SM`j|JmsKi&1Hi6%OyIJ0KMS#@`)7I9|vx`=B`&NW3SZt8(?&d0eN?6)p|^ajT_!|7^_bu;sRyB8Iw#*ulqv6}Yq?K&`vuVyM@pHHI~Ik&NL zjaUWNd1d1J@Mn3EmYcYqwt&%nds_vNNLLh_(f&fq(fZKSaYYkFAjX)@Q~$~|rh}+R zU_Z^SjGbMj)yhBr>U*QyOMtE)nrZ&ew8^5~Gjw?8YPX(X@#i5)R*Dg?1}6$Yi;sIe z`~`$__R5j1FEQGWRtgrfdB@XU%mty>M_Un(JZ_1Ot6u*V-?bAh7xqd5QS_WE@GpGK zL7N$>B!!3AAnhUaf(^PNSv`b3W;gi0V!bBea3!ekp(Y&JA(r#gt~@Kn z?_u7HpT-3g#5gvuw3~Dsbk4k5qXNb&oEWR9T01FVqD?dmRR%|>laot(7;^XhLLv-* zE{FbGJh`M@MxKLO_KhfO_mr7W@?ET@JnuQvd2ZaF_+(_OeE|6qdDK(ELs-9O@^9s$ zElkPvkozCHYL3)C1j5-}2G9QYdZqQ)aCRLJ=gTPY#7A$bBAF-*`1XBGVPa!P@kwN;! zQ$91immgb-MrdpSHe%T7&sA-(0IEX_x4wg{BE%-Q;Me6|aYnKFgQ1rx@4Fhcfe@X1 zsdEBCYt5&UV7r+Nr9aniCye*FIp-0?dO`xLF>&R-wJST5d`$XRmw-A$7SP>YN*>Zc ztsoTUrKwE0c#&VO*j;9IT2g_Yynt@7+G_dU&PAjIPHD_N|!Rq7LN$gLRwwMSc z4WDW;%{o}E&NtlhclOcnTL>S4myaRynG8OGI4GqYm4^B+C=}Aj=TJ+W)MzUH<4f2i zHEDDagM(-rca>sS)u$L~RZkyt=gh#fb_dc$>(tUe3?2;9eL)ZTs2EQzA!jV?>I>`u zU`1{ipa>+qY|YK@`E6Uz`+ro}@MBGk)h)4r4b#3c^NmT=O;#tenWj?zD9i9^ksU73 z{@=vQgNa8uy)h2}3B66Vm2Wm;#c#%kws^hTvSiJT&Q5gjAhU3z-F{`xPQT<&Y_!lX zv*33=g3C9DL}1}W@4vm(yk~q_3KO7pK^Tat!>Yk`e6VNU>1K`Tq-kacQ!FvMx#6^g zg$&&XiCzEuncVYSqsP^CfV$^?!)@~N(gA4~Yq#~pn9nSb^lVS?@Oa@Gvr0j^TiFN}|I4?tM~s zTgd9WyQSR$CvF2M{3q4VB)*l+3V0H$!SRF~p3s$H9uZ~GBBEuf$f>5he>rzmS(+lx zuT6Nwk8Wl`G_mOBr537?XI9p;tgNh`nt@Fj!|ph51T)ziVHMk3N;sa*Pdv4Uo=;cm zSE|(x|9Jf%iJ>d7>1^i8hz@c<;;9;>dm;ocADn71ikX-&dVuz(7h^ew8^)1QoNw13Y7;9u4;}yu*%KakLY(p)K{drD)t_aJz27~GCQd~U=q`~>aUZ>( z6>#B+ydm`+c&1rzkMLcVe%dx!DK?**#VT!%NPe%2e*UoNI0hODNvbsL3N!%hEioCg z5}*ir&M6ZH9M1lfZQnmhh7ys~h%w}fE`Qn29hidq0>%-nIv&mMoz*}pgU z3o#g|V+dodG#R{rTuTWN<9!$?mb}ZWyK%-%nMZEI_w}N%sQ6NMbDaO~&v+;?5Exk( zN{EfYj?}1yyy#0{6P<<*6<-gm{&CNa^ee)5&MiXz#uYeqw6msmXkk~$=9l~6I-rQ5 z*J8Yx2r}-}^zer$70$<>L9f3GulUy|2tC!(&x**V!vZHXC>0U`_72s#xZ#=HnP>&H z8e(O?ze_kM5buAW%50D)0cQh7HTmqGUd-5h7KupZw|)D5b2vv}=LBuQZcRCyG2j*C z*v;iSQHAPe-`m+8zv&wr9+p#AkEtgw#do_EOALH8*I4X;SHC-f)l8b%k`@EECtctk z1ZiL#aq4JZ3WtVBu3`Y2e1JT5@DA;RlYxJX*zr?Lq{Ig@j}@9SGxU)Zvx{JUVFR({~&3V8}t`|+D>!%9ltz`wSRagE*$(w>IW3U_Z!7 zZRIgaV(x>8(9hVhRPCI_r-DS{IAfnsv#o}AXlu%1gWk|gvyd6vry89I;r2P?UmG#C z1VzKvEifcVjsDHrCn~~CkpAveZ8`#i{2`AS87M|(SkBhMT*2>u4|@fFP```@tteSL zN?*9DF~fWqC#x~x%01qLd}~iavfgt44ubn@qLGEdf^^^~1%p(HF$kagT@ha9&V^JK z;X9%aS%GfgNM!btI%8)R%2MiYFuhNPST3)i;9{-`)^UjIeD?OH4Ta!Ey=~viHVGQH zZ}R>#H7+sA{-j863It(E*N@|rEGpD}sW*Bu|Ez;1W+Kc&cP(XvKH5`!Dhgg7w` zB6TWl3#eGb=Y`jMNmw4=$5ao$^n$;27$|25gO4vmF2a~peuKBxBznrK2@m?7b=n3c z!amR)SmdvkCGuzcB@kq>CE&tRhRt7;6%c{aFrdZpXzu$UPVbZ?Kx=aTjiXw((v~0_ zUy|`;*au6MXZr9je0Q$JoQGQIu3UbS+D%r!QnitljVRQUD9Ro%Q+rf(|E)Ju6{@sz zGoEA;<$k#^qnLpXX-lM7Z86Fhdy->MJLm(-Iw7p?Xf|!C)pz0&CCQvB(VO4=w2w90s3T@-=M5GjMJf%(?@c7eXYf zTaZr+I=-`Yx3sK-fHA(;6HnBvSqv2ua>18x>c2=Bq>N+ZQiTf#pJDlC`TbglcfO`( zDaP1fFW13Q=c)eu)lm~&!l5&neJF4S`w}0rx`oR(kdmY9i!E^Qrbrm;YOD-sRY62K zPm(FNWH*I$cL+H+f&{isbFy$2aeNqiPpm$+!GEtoP5~3k^LuK`36j11il04_5&wal zuF%+kS-^B2oTKWUgU4O;l;3Y27MX?1H;cb{#*T~U zo1U~u?vtlWPTn$3UA2b(9 za&k(|$grJpS}nb(`g*JfyWUxo2RD?E!mzyug-rY{sEWv(K2o>Ad(tJ`1;EoE3~D-R z;@>fi-}q?dSwH+enJ_h*EDKDy-ZFxiqg0pE9qCxU&?qhE?^b-Eq({P{CTe10vISK& zVD49oG$;c#zPF%!c9`#R9YFBPejsD{lz z(C7yRZx8?%@gQJ<&b_Z~4mzH4njzSsQWPk!G#VwijebtZuEnY7ypQK;Vs8k?B1;n* z_YBfa*U0}1t<1!)a9q#h4fUOso)}+UGN=Tcqf+?w=KAswKn1SKSUHB~*EjnF=`t}s z=_brte}7r=b%VLr8#~&bi~{0`R_qU(qlHs^Y4cWxG7|Yp5qy1 z*W8&GYULaM6cZ@RG1y->Xx5Qji^W9Y_XZb`ZqRCE6|$B!3s ziEt`)M%poAHzlZFU0krvvCJ4ZnTFB{P8?^Oh=zOTQT)O;L4xWyqMKm7 zAUL(R2>QH~PrCJ+78Mtd7wC$FbxxL;+~56sh@b!WKyph3)OeHR{J=w0JgU@d!^g(K zAy6BY;hk>o{>`b^mz|xx4lZK|+d#TR*6~)BQ1G{qC1t>YQ3#U5(r{Fu@#iuxx594r zd|#)Qm6bK@`}_MFI#eQe#|cJ(LRK%3m>>#un|ySm>F-L(h>el#@xM--DdK?w#;UAQ z0f0BDkO&*ceo07$vSuq1nHIL*-ybf#P9ABP^iWp1$@s(wdZ2H{K>#+BYFHt${oNDx zT4bv|qXoacDef#XkEyg>h2SD(kXv9Jq;Uau+#Smwb~@{k&=Nq(X}9rFJdnJ_x{b;K zk&yIUobTS{_^wZP`%L63_3drsvgh!p>7h1(MRy;g2MSKCpc)w_E0Ec+4|3j6ZyZvd z>>Q}V-xC9Pp@|aoRcgmMB=;8N4UawZa`IB@9J!yS-Un?L6#rQ6Ktg@u>g{N zNPyK*YFc?gQcwQAM2usoJuqGl`^TDqCu>`S(H&wFreuWjNarKtSJy`hpcc~@z*gH1 zUTEojvegl#?cRa)G&W>wqg2HWN5}i=M9XADcR+kW3X5l%e1$ZY=iSV@fw#bf#4~%K z4nki|E)h=TpLeQU$_ul%bxwX7K2d!ilaI=rD5iuG zflFZxT96=28j=0rk14{dMt^(}wh)iN6+6O$gO zh5s^i%|-zC^YdeIQ}HcXJ%Zd*hzt1{S5L^hNB{ert8ot0LQ^+2(dkLy7c;WRA0%6l z6KC-%gZ{d$!fk0LUwfO@`=U)UJDPZgy{P*gCjPA1A!N@TIWH0g57e!9*$ck`^qzDHjSE5`e2AyQkYUh zpp&)~O2g0QeVu^ts`7j#=J^jdmQPK-1d!U}UCy{JA|H*t>10PR@4*^*q`%IF#SfmM zwY!g&R|jhidX=;5w}+s&X|j^K*S*H#7C=4;LOQDE<~UJDAyh{qFH5)j#R~t=jUodE zm6?%Icf7~|FR1Q#RQ+gkjBTG-;NA(kasmcN=@vp4cy}vQ@2+s}e;1yNk#`#o9!)yo zRh-ZxPkH~o*SE1iY7-9$lb*&q(t-*w(efeE0PCCvr)AxJY%V-+`T!vaq0#C>#ct~s zV#gQMPznL^qAoE~O;Ky>=N_Qrcg5USoS&LCBv`xSf$!j?At@SoD2Zv0|DV?)Ljo@7 zdw6to;qbh@ukXEm1isXCyp8mu1^K0|y3)8$+Bk`fNOunDd+1N30xdN)a)1yz@>+F^ zT}NPRhF2j{J!OS>_5IfGNDH6^yZ7WD*(mvZ4Y^D?5l!r03=yhIpaj~ z6n;1BFXlFt65)7h>tsG9u)9@yE>8=Kw;NTh&=?>oDDHbDSQ%l0W~fO9n?7nzki+Kc zXJ|yZI)M5HOAoV$`g^+wvjd>KIl7$)JO1 zMM1+p@W=;12L?zJUkPtvz7#x9zL)$Mu^&~Uk$b*~M6v2XyYz`TSZx5eiUB{0-d1it z*$Oz@Fu9Z_Jw=J9o(Q3IUV#{=z3;2wB8-Hj@c|Mc5l(i4$HsRreG6V1!KBOqU+YJ2 z^TmDG2reRmUV48|5lL>-2l>4OdV(W$rPy@lcroV$S`H)EbTgNHGA~pWBisfqMJTGP z1&|ozlx!?4E%RqL-cKx7EgU6if@kp-WoyExl6O9aTj-x-u%*D%$JeU9n~-(nWkIt& z@f~=Wj5vF8-f8%KMMcFzy@-ei(003S1ze3J^QlM8@Yp54AG9e*oXweBY^3o_f0WFK z>nnwvc(+#c%hAI-b+_)VK~z%Z7Sm)L`j{|452qw1dIE2~`z}xOFjwt{y3&OiySFan zE#Cti516qI6OQk^`1?u*R>-)^Bo&~9WkJZjE&(94$mOo6#eGLIE@MJcEl1tX+z4e& zO&KL65->P@LqqB#fwTvqR)oIm{-#J=&$7ltDH;ckRowYDC@FnXAs3rm%6)w5pbpAo zo-nQaD9}Nj131J_S0luKuiKerW1VrpJU(`3+alZq|K&S%b0?Jr z;-~L0N1*&tP*M_icfWaD{&k28udC>ua-otO4KkgmYMTj z*s7Oac||ppJ?FxcLh%h%)1$ac4$IP-bG)XeG=Mkc_1iN6o%_9{Bd`hWBa#J{9{7QCzaw@iDvb!99$adaHKm+x0X-FaRhR@SkQw4 zmx2d3?ZKFq3k!8{#(-&p^F}7>SY8B!Tr~1@efaZ#15Y9t+bzJ*jzD9kQs@2>2BzP< zmRL>!+Z(y3`SHINjTL?msQ@hXc(D&mIzy}DhS?5ib zuMIj|=b8@FV&H4b>B&7^P(1JWqn6ztPMbW=C(Y~JIfVw9atQ__#mjJczy)r~V@nMs zYu5i47EvX~VF+qOm5)g4zaFar)H^>%``8OfA-?oY-Ya!@NH)Yid9->5r#IexSFI<+ z6IDo;Zdmqb^{2!{tpFLpzH<%CdJ$z38BZ?Shw&12x3rM~jxr0}AG|A{sWX@Gt>k@#XU_wzq=@(Vf+9)T8( z0_`uwyZzM*4zi%9)hmHBYGnUCOY=|IFI+HDJkf^jWdFh%jTn4Ska;ft1Xl&Ju@MBf zH38=T9O%G5twzXCIdA5IJ0<3US-*CF0q~6Zwg2`shRP5X-;@6)W5NtJRcu6%A`#rm zB{SoCCC38F)y%@CATNLKQkAjAi{MqerTZa8ufQfV49IosKFG<{o95TFqLFI! zf3_P6Z)_B|t$2=?GBP6pIo0In=4EJmkf`%)Z~h7x0{!dP36Dj5_RbcA+j=d5uDPg) z<4!IS84=Oa9!ht9H1wW=g_8_dUQ?6m)R-tuuCvvuV!(jr-{7DU11|b;zhr?VrVvB8 zT|T>F1lmSJX4v=Q5Ell-+pq@@9)NR(iHVQwcZ8tC3*;7s5a=Spy_|NO>_4iHyp{r@EfQ(8MnCw;|h(?jbsrACTe478W ze5j_yPzLA+(%Lqv&9Qu%7+y>C#DW4sPbxwCX3b)~wje|$N~H!X2PfwuHA~VsPgy#9 z57+KQGU4zR~*!Id_&FQ%3zL zoYF_(KbUG|ZcnmjH>TMJHbB}8Wn7RSf)*RZYs&wR`qiph z-N{2Mt-y|Ih+X~E4cg_8$&(nCnsfYJ374+CG5A$J&6uaMd0TK9>StHZr0L!?RBxW{>l| zd-Og1L0QrBZZ6z)0bqr@RO=_#?je_O;79MvFh0O;niq|-)P`o^-6NtW0}oUXzwp_7 zSZ@WON4Af1T=?Go>v@V|=gv%xAi=9Mo$T;wYT$Ud3{v|0;{ZI42hc4P2HfGBA+EgI ziw*SE^!EusH75O=Kb|S{%@ZQCXe|DCy~_U^Syvhoho3f5B1|^NF#&6gtCJpIccC?_V=KZsZbA)7TAz( z8KBTYy#}2S;4&fs&oE`d3lvhi03jA0LQ03|^nIZI;s9im1}o{|YF`_WTm!XeXnefv zhYv&^XH7KZ!%2WGgYJ`qB;o+c*Z@g3GP}o(t1RCI!3XzQ;jALuo{ z#aL8*2L*4W0-XkAEysDZS7&o5uq*f1kavCm`kL$hQ(4qG;9`ts{yM!lUkd96=OdIx zA(eS%Mm)A>-|8Z$a4!KFKSoBZ4K@sNz#!?jkn;tFo8Q_u2T_Hq%HV!GQf*gjv!b^^ znCiHet%rE9)drueg>ZH z=MotH`D*gr=}3=rE4Sh%Z7I7gL?}2a6$TFIkf%L>4k1y2+k4``d%T>t`ZbUu(H8VO zy~B@)P6brLG*m&d8SJ9T@Zb~3?+f)RD=R@_k@1G=#Dl6HFr()OU2Kb0c7P5q>+!*( zP$@RV14TMOfwlCW0#b5oYiq>=i5B#1OU}fU5rc?j?qynSzug(l zZK`(kYM~!^r(fo(E+~l**la$HOE>A+@tICA5pDZgtxmS0wg5uo(+Ai|Cgk_&n|;Tq zUpmjh1yl=kkN}^KlB}M|qE@mNvUz^IHh?n31&Cfbn7HD|9vM zI>4DJtCuI+QUHGeO-v!{+(@>v0$@O!-!qd#9>5HTl3q50bDSIUD)P^rQg*0s#u(4sFhtqi9OHkB;E1byqfqJ<(!XTGYVnO@VsWnhfFq zh`=w1K~SND6iv{M00{+@rvZAK8XOw|qU$C=`1V4lEx_?N|E75za2&+(MSRmG?F2t4 zK%|@DfF4`8cZAeWI!?~R#8tz-_(1bX4d?YVa3+!6^~`F<{n8wO9DLOkx6^6gzE!=! z)OY&&`g>j4H$MSX-OcF&+|1ct69Gg%@Xvp{FDD6h2tn`b+baY&xMFYFpD9lVoNoi* zVXu1jI!N83GHsnkg)1>LvYU<+_EA|mEFwZoQE}w)Ek~}_1(NplspV4m(bFPR3YWo} zAFo!$1y<9a7L-ATDDj9;2T(WQjNY7m7vIiDhd-Ai!?UyIzjIK28JD5qKTQ`Q*S-TF z0HNRSRw9WOIYGLs>>ohRT1uD9;y<_zIphXrW_X6ge}6Ct{(wF0flrgneZy7=w+feF ze}9Z+$VB10{`0>KIuNz~8{~-pr5>MvUqux_gb+qJ-( z`;lli?mny5uP@2ffsnpcS(!hhz8qzZ{;TtU_D`ej#Usx04IU?fVnFU_;Y&zJXhpUB zp>I^@`0*m5Zu$s6EJ3T;nba8~=nu6PmX?&DNW0@Fp6!ibB`q?AV#^%W>CO-|)2Wg7BfL-<5`IC08e_qUhAXa$b}KRJ+1y7#d8US9aRon_@FLe-P)o0>N( zKk~i2y*)_T0x88Vb=mDglHdsAizpEgz%3(PH%g@8k=x4C*Fm8(!O#sP8!>b8eXQJF zqwBv_zXhYY+Mkpl>6=fnIjxtOb5zvw;#XX9be8>q#H|hDH%AAhQvFSAS>rQKN@R81 zJ(}4Q7g-BQfx^bQvjsUG$w`TV7N-$dv4;_9_CUL!@VQUhLBlCVJTJwrKV#mA+As=8 zmx5h4gzq>6ON8A=(Rhla)4(ZTzxKSy8PA445A(i%;#6pwM9`;kv1@vH>Zdw z#QazV&8rnctCqIVjxv7?7F;BGJv42f(`j{*iC@|FHT!wxRn@$^aXW&4*5Elx=%_2- zACMztMV`sxl|7ZQg}E1!O|)fsEWlyX&EhO~pD9|Zn{2RNuNn{6Oxb!1KyxEMhwluwx zSL@pn7-s91Yx>a&rN>OOpQK7fRViyajg*~l9lXoXR*wEdL=|88-OXioT~~i~UuX23 zEx56SZiYMuE#Up@O5X10PXgaj%QH&_fmiUXw*8)tw9Sou^Ck)_&i>sp;mQo#=FDXR zf^>{Mx*lqNAcED1wun?}LSCjt+4d_7y%oCtp8)UgzXBF_9v35YqGdGFxU*A=4TiF5 zKYY=M(t4Z!JMhDIkn(LPWG=qt*v@{$fU@?;K}n5_d3I6l1zb6bonRiPIO_Fi7J4=s;?d&f_l;Qb}BCcpO?|Ik`! zYkJI}ChP@p(QfY7%TV(~%R9EglTf(Xki)Pnc0li#yL*QD-%Fy@K7MF*FjFI>s<*TS z0uCi5vNy;0zAT_kC`E+$st)NYo4 z|AWfK$2-C!TaY15u<s~8)YvEV7opewjvhO1m%PRgzngcce8K#_7#u8?xqL;M2&RcYVXB= zsN;W|t~GtRt@Gmj=qz@`IE3I!(x&FVL~O_LtB9u?oTiDj3Drgv^hvDux%1R%pD$l6 z2CG46e8#Yc`b@KHlfPQAgBOwZ7*fO#7FMcF6=)B{Oh(c6x$tUt{FNOWJlO zKry_(&F@x%2QN3)U~fn#<%FlH+I$pudSo*fO0Ix(6@9GJL;I#d+tU!OGmv9IJKe#} zCgLt4z?(r=qiaXoujlATLv$cwJ=rPAIwn=wbr;zLVAVYD;ID#CYi*?op$f$@9`Za^ z@!qLRHBnZY>fb}mZo1C{0&TedUIKHqwRdr=Y3o6@$QgMw&utWcryDNH9CyjInT>w0 zv46~lJ+ZuC#(K+TanK+vKCf1 zz5GRxT8cC;1qI1bs5&+{i|@%HI|wU`*H(I*62=+`&5&s6R-~xLFA)-pV-v-*0JESa zf4>2EE_JM;@|H{5bz5gwoxr|dugQq`y3$2};hnOgl_o@s{KKeb0-amss0p&VANvhC zv-52OB32>Xk=wcbzh2Jar#KIVFt4+C{*pEgnbj%Tvis{UZrUh!S%|Z$g1g|E7U333QM4^{T2W%?(~D*XG^w zsyn8B2D$s2a^XURX-R2mckvd|)^$a1u8fRV1-TUww-}1_x)!Hxss~!kf)qcPhZ%j? zcrFS9A6)NbatN>=jkI1A1wUzjmx?C~*}`PgLU?vAaqr>z_@5qyNIoX1m5mOuR`V>e z(4)fEmI$kq)+U$1PD1KY0J)ds|DZ7vjtK)06he;sj3SZ40E7iDkJYF~4kf{S6Sx0{ zbqVq1Ecwh3BpEqQw$;go#lWcQBI_RG`Ugy?Xy2FZ$W|2(OYC%+xWMAY5Sy2V*9;(` z*!&tN&>er4R(6=1Ywi76#8Pu1;=`7py=!E)jGyl0{X8tyR$}?mD4%tB!Zpbx?;*-L zfJ86Lh&NLMIrNc4y;KX7aD=Km(PR>`P=`PDmab=Vh6=I=QH9(CY?dsvNK3BpWRrMv z2h%0y(bDIrBQ`eTFsn>YcPXEPxR6X`=Au%0K69qeE2sN;RKQZ&G-lr;uL8v`PwOv1 z5j+k#zPpybg~G9Sh?1Q`3`y_B7B?DD8}l7rU+kZs9Z(ef#e%s7ue($-f>nzt7)9l7 z7fwV3_Gt7|-3fZ|{_rYtm&cKFvX|5s$iU^8%_ShuA|Cb+dUymNAW3CzbSV2ru3rYo zk{{Xh!2eTIx7UCCQss)ZouBe0JNg!Y%n`vOs|qXU%_gcj7$}2tcMZ}KH?w2Vw+i*Z z0?asqRI-k$d4NIHU_1pwLoBiT1n%^|@DZ|n*++@nWV8qN9^^*EaRo=@jXkI`-?d8m zZIG})TM;_mF)<~C{Q8}335%;%@HTFqC-c?V!^#fAAw#$z+$FL%KSj!5;@U) zcH;&Ur}!x~gi@qYZx@ri<_csIF4S2_n`dx1^(hG0r;r0ltxfO47F5J|iBIr_7Ts9F zmWg}_{zscjfwmJ9B|6}^5GEu>{KKo;3FA}cRM~_yzpAlv7tgRG+h$e6$GyG!iVpfO zO}com?Tv;2vE9V&LI22Sv%X(F;~QN6PTD=W^Q8a%`_&zN&CcyB|7I|JR0S7%syG;R z1s~>H6oajQ%6(>(ZiRsnk4Api+l~-ewCV;yQpg-@ za!E)|?nHW%q7W$;Z6FrNe5cULUOw5R8Y*;mah0Rde2quR&udvrzSWyDiFiz9kNhXg zwZS9-_K`TsAYo}k%K(-%vuwd)@^wrC6EoJe1%DYOEb>*gYV{afK;2tvl zg%kvf&KgL&a9R20xP5(b0wkd<=Pcz=5Ff~nB;&X8oD|j-TplTdQ_&|Oyx@~~U2M2m zpuy3{ILm=sRGt!dR~=t@du+ws_vP-U*D`EnH3nW;cARpxdztOt*PJ8w##jOtz{M?y zk7tHj3J9@BtXBeGipVe^GTwH1F1hM};|e9i z_nc#g1at-k9R?~1CmFoBTW4H^ayF3y+y6guQWy>@1*>fi6cz=heH|y~ zWvJ9LiF=J|uE2SkkeFyzl9n^xobJ#N&n)g-JIWG{-uzERIs)F@cE=J|UB1 zgV%L@QGO#htkuu?BDiQsviqvTQgdD1`_tyyX?Q^vtLVOg1H+|?YD!tGr8S{0l}+3> zXV-Yo1FiqO+0I;0CkXx(58Hue!i)~Sr!4>dNsk&l;~2+X9x@Xh74+#5QWKK|_J2LD zo9E97QPL};IU$P>nGKEOSI%l(Z(musP(s z7lW!E!oa&NKF#_Ic&u_zE=La?VgdI`5)z3R0}+sIz;u_Em4S(gMsq?d?NAe(oFFeqhhnsV+nRRvYxymf_ z5F5fEpAaOR%ZSDFv!!cTIQTvxpFr(8mzG# zK1KcLQL~_lk*?y;rHbd7wnkWEvt9uAOz*mHp3v5I#t{X*FkSZtYm70B`(xs@8xC zLyhh9o?H7j15wPop^F`i&Y^U1Md5QK>EzUF#01zZ+6Iom#-F!yN9E_yJV=U4TtzMJGbxzcb8YY7qhDd*1vZ0R@AD^_ zh>C=x5*Uj~;3-YXA1fbd%%Sh}yK&=2W;@z>3FUF*#fd4PZkEb!#RO&Hz@7E!51=oD zocRvIkmd0h2HD+>j^=erZn(Y03Z6dH!oK?i_FcUyk3hSf&^17RxQY^7Q$C1M!r^+_ z5044#A~V)NacLs|A`^6G2$Kd|8M>bqyBNl9e(D7R!Q42r| zdt(Xpen}`zF^KFOnb6O$G3uWn5?T7iji{a+e$?GV!_d5F0(J=3@(yFP_5&wFaHS1z zZ^RkKO3~Q3fpb%NbC_ARMfyHc9vfU+r0NSZ%J`xZv0RUsLS=C=`;_ z7Ba~^u4*IM-8Fte+(ES)s4xquCDzj5?uGTwEDfFnfp*%QF#19dj9rn>TKFk2lf@F; z8UBXBId{nJTmw~xjIIQ;e%I(8%L0vO+0c%du5}@Lf9xs>5LM=>l&973Z?FsDVyc8l z#~V}_xNCE&M({ipih1lc8qh@RdIzzm_@VZL-M7G=N0Pc3*aaV$)gGwettto&+7DTu zfDpf$4~?X=UQfr=dI0ISV1L@ZmyHGnZot zaE$CNM`D4#VF?tRH)UEm-aWDk(&vYLypB%Wgs#%*nWz92OETlCF z(L~ZP!^YZ94yl!|KEt*PnY=B?eR>O7?}Rrmf#Da{p;O3XryReYxIM}@ ziI0s`$mf7?2xcZ*jm$K)>x5&ioWMRZ9um!n_Sm>SMiBzP981LZj?LfSe)M?C@Z<%zFz zwjJs9Hpe_!IRaf8K|#mh>NxeZ5Hmu}PtpnT`X>_5e&SF3(>PU6ac+7<^96TIgH6Wp z)wgy*(DdJ@5HuWW8PR*+(B@C}+Xt?JwxrvGc>BX6LeT}SC9*ua$N;+FMuYINU^`E6hv6tjR{VYg zq~D9#nSMLQK${+)Z^Ov~QU03g%Zn3J2e>c@L^MnBm8jj zNN^P7w4@`Wyr{$ayRgeBEbKg7PD!&PQ!{SWsU{V$(tOs2OTJbrSnVe2de8fY|0r?T zJho3pWx-&OtbLf*aUE9$AXGnO z>FV|5^r-2x*10m}-ZXjg3oBpZ+_cgo4i7BlC{*Vk?wN6YaJujEd~g>=Fk;DLaqY08opJ6lbu{JZ&^u6e%~kw69j)4U+vinUZR`~@pSv? zX97Z6Hc-CzdF?2)n^?V6W3*fZk#&T-EoogxrNC(R88P@XwC0k3h_=4!uH;p=J(&^aKA%F%go`_Y3u~ zm895oYq%30>CWuk@7+OYMpZu&CF~mgW+q450bBOq`bUl@0S**b zLh0h>AEnWxiBpcK9OP<&=GsvsoWr!wjmA!5?M7y)dX|R|41qPp`j|*NT z!>tRgP7CQ@^&`Mjj+(Z%?XTeFQ+>-}C%Q*mMLN0%4=!21etp2h5$C-QyP?Z$qu{?I2enjF_Mg7-U$?5A?*IS* diff --git a/can_baybe-inhibitor.ipynb b/can_baybe-inhibitor.ipynb index 271be05..72a77ae 100644 --- a/can_baybe-inhibitor.ipynb +++ b/can_baybe-inhibitor.ipynb @@ -30,9 +30,19 @@ }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 1, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/vscode/.local/lib/python3.10/site-packages/baybe/telemetry.py:222: UserWarning: WARNING: BayBE Telemetry endpoint https://public.telemetry.baybe.p.uptimize.merckgroup.com:4317 cannot be reached. Disabling telemetry. The exception encountered was: ConnectionError, HTTPConnectionPool(host='verkehrsnachrichten.merck.de', port=80): Max retries exceeded with url: / (Caused by NameResolutionError(\": Failed to resolve 'verkehrsnachrichten.merck.de' ([Errno -2] Name or service not known)\"))\n", + " warnings.warn(\n", + "/home/vscode/.local/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + }, { "data": { "text/html": [ @@ -65,48 +75,48 @@ " \n", " \n", " 0\n", - " C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O\n", - " 0.0\n", - " 2.0\n", - " 5.000000e-07\n", - " 2\n", - " 53.85\n", + " C(=O)(C(=O)[O-])[O-]\n", + " 24.0\n", + " 4.0\n", + " 0.0010\n", + " 0.10\n", + " 20.00\n", " \n", " \n", " 1\n", - " C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O\n", - " 0.0\n", - " 2.0\n", - " 1.000000e-06\n", - " 2\n", - " 58.55\n", + " C(=O)(C(=O)[O-])[O-]\n", + " 24.0\n", + " 7.0\n", + " 0.0005\n", + " 0.05\n", + " 12.35\n", " \n", " \n", " 2\n", - " C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O\n", - " 0.0\n", - " 2.0\n", - " 5.000000e-06\n", - " 2\n", - " 67.40\n", + " C(=O)(C(=O)[O-])[O-]\n", + " 24.0\n", + " 10.0\n", + " 0.0010\n", + " 0.10\n", + " 20.00\n", " \n", " \n", " 3\n", " C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O\n", - " 0.0\n", - " 2.0\n", - " 1.000000e-05\n", - " 2\n", - " 86.65\n", + " 24.0\n", + " 4.0\n", + " 0.0010\n", + " 0.10\n", + " 30.00\n", " \n", " \n", " 4\n", " C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O\n", - " 0.0\n", - " 2.0\n", - " 5.000000e-05\n", - " 2\n", - " 73.90\n", + " 24.0\n", + " 7.0\n", + " 0.0005\n", + " 0.05\n", + " -23.95\n", " \n", " \n", " ...\n", @@ -118,86 +128,86 @@ " ...\n", " \n", " \n", - " 303\n", - " S=c1sc2c([nH]1)cccc2\n", - " 384.0\n", - " -0.6\n", - " 4.200000e-03\n", - " 0\n", - " 70.60\n", + " 510\n", + " c1ccc2c(c1)[nH]nn2\n", + " 24.0\n", + " 7.0\n", + " 0.0005\n", + " 0.05\n", + " 97.95\n", " \n", " \n", - " 304\n", - " S=c1sc2c([nH]1)cccc2\n", - " 384.0\n", - " -0.6\n", - " 5.300000e-03\n", - " 0\n", - " 79.77\n", + " 511\n", + " c1ccc2c(c1)[nH]nn2\n", + " 24.0\n", + " 10.0\n", + " 0.0010\n", + " 0.10\n", + " 90.00\n", " \n", " \n", - " 305\n", - " S=c1sc2c([nH]1)cccc2\n", - " 384.0\n", - " -0.6\n", - " 6.500000e-03\n", - " 0\n", - " 76.72\n", + " 512\n", + " c1ccc2c(c1)[nH]nn2\n", + " 672.0\n", + " 7.0\n", + " 0.0010\n", + " 0.10\n", + " 98.00\n", " \n", " \n", - " 306\n", - " S=c1sc2c([nH]1)cccc2\n", - " 384.0\n", - " -0.6\n", - " 7.500000e-03\n", - " 0\n", - " 75.44\n", + " 513\n", + " c1ncn[nH]1\n", + " 24.0\n", + " 4.0\n", + " 0.0010\n", + " 0.10\n", + " 30.00\n", " \n", " \n", - " 307\n", - " S=c1sc2c([nH]1)cccc2\n", - " 384.0\n", - " -0.6\n", - " 8.500000e-03\n", - " 0\n", - " 77.22\n", + " 514\n", + " c1ncn[nH]1\n", + " 24.0\n", + " 10.0\n", + " 0.0010\n", + " 0.10\n", + " 90.00\n", " \n", " \n", "\n", - "

308 rows × 6 columns

\n", + "

515 rows × 6 columns

\n", "" ], "text/plain": [ - " SMILES Time_h pH Inhib_Concentrat_M \\\n", - "0 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O 0.0 2.0 5.000000e-07 \n", - "1 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O 0.0 2.0 1.000000e-06 \n", - "2 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O 0.0 2.0 5.000000e-06 \n", - "3 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O 0.0 2.0 1.000000e-05 \n", - "4 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O 0.0 2.0 5.000000e-05 \n", - ".. ... ... ... ... \n", - "303 S=c1sc2c([nH]1)cccc2 384.0 -0.6 4.200000e-03 \n", - "304 S=c1sc2c([nH]1)cccc2 384.0 -0.6 5.300000e-03 \n", - "305 S=c1sc2c([nH]1)cccc2 384.0 -0.6 6.500000e-03 \n", - "306 S=c1sc2c([nH]1)cccc2 384.0 -0.6 7.500000e-03 \n", - "307 S=c1sc2c([nH]1)cccc2 384.0 -0.6 8.500000e-03 \n", + " SMILES Time_h pH Inhib_Concentrat_M \\\n", + "0 C(=O)(C(=O)[O-])[O-] 24.0 4.0 0.0010 \n", + "1 C(=O)(C(=O)[O-])[O-] 24.0 7.0 0.0005 \n", + "2 C(=O)(C(=O)[O-])[O-] 24.0 10.0 0.0010 \n", + "3 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O 24.0 4.0 0.0010 \n", + "4 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O 24.0 7.0 0.0005 \n", + ".. ... ... ... ... \n", + "510 c1ccc2c(c1)[nH]nn2 24.0 7.0 0.0005 \n", + "511 c1ccc2c(c1)[nH]nn2 24.0 10.0 0.0010 \n", + "512 c1ccc2c(c1)[nH]nn2 672.0 7.0 0.0010 \n", + "513 c1ncn[nH]1 24.0 4.0 0.0010 \n", + "514 c1ncn[nH]1 24.0 10.0 0.0010 \n", "\n", " Salt_Concentrat_M Efficiency \n", - "0 2 53.85 \n", - "1 2 58.55 \n", - "2 2 67.40 \n", - "3 2 86.65 \n", - "4 2 73.90 \n", + "0 0.10 20.00 \n", + "1 0.05 12.35 \n", + "2 0.10 20.00 \n", + "3 0.10 30.00 \n", + "4 0.05 -23.95 \n", ".. ... ... \n", - "303 0 70.60 \n", - "304 0 79.77 \n", - "305 0 76.72 \n", - "306 0 75.44 \n", - "307 0 77.22 \n", + "510 0.05 97.95 \n", + "511 0.10 90.00 \n", + "512 0.10 98.00 \n", + "513 0.10 30.00 \n", + "514 0.10 90.00 \n", "\n", - "[308 rows x 6 columns]" + "[515 rows x 6 columns]" ] }, - "execution_count": 114, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -218,29 +228,31 @@ "from baybe.targets import NumericalTarget\n", "\n", "df_AA2024 = pd.read_excel('data/averaged_filtered_AA2024.xlsx')\n", + "df_AA5000 = pd.read_excel('data/averaged_filtered_AA5000.xlsx')\n", + "df_AA7075 = pd.read_excel('data/averaged_filtered_AA7075.xlsx')\n", "df_AA1000 = pd.read_excel('data/averaged_filtered_AA1000.xlsx')\n", "df_Al = pd.read_excel('data/averaged_filtered_Al.xlsx')\n", "\n", - "df_active = df_AA1000\n", - "df_active" - ] - }, - { - "cell_type": "code", - "execution_count": 115, - "metadata": {}, - "outputs": [], - "source": [ - "# SMOKE_TEST = \"SMOKE_TEST\" in os.environ\n", + "# change this for campaigns on different datasets\n", + "df_active = df_AA2024\n", + "\n", + "if df_active is df_AA2024:\n", + " exp_dataset_name = 'AA2024'\n", + "elif df_active is df_AA5000:\n", + " exp_dataset_name = 'AA5000'\n", + "elif df_active is df_AA7075:\n", + " exp_dataset_name = 'AA7075'\n", + "elif df_active is df_AA1000:\n", + " exp_dataset_name = 'AA1000'\n", + "elif df_active is df_Al:\n", + " exp_dataset_name = 'Al'\n", "\n", - "# N_MC_ITERATIONS = 2 if SMOKE_TEST else 5\n", - "# N_DOE_ITERATIONS = 2 if SMOKE_TEST else 5\n", - "# BATCH_SIZE = 1 if SMOKE_TEST else 3" + "df_active" ] }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -249,7 +261,7 @@ }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -264,7 +276,7 @@ }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -363,9 +375,508 @@ }, { "cell_type": "code", - "execution_count": 119, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('C(=O)(C(=O)[O-])[O-]')\n", + "_______________________________________smiles_to_mordred_features - 0.3s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('C1=CC(=C(C=C1O)O)C=NNC(=S)N')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]')\n", + "_______________________________________smiles_to_mordred_features - 0.4s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('C1=CC(=CC(=C1)S)C(=O)O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('C1=CC2=NNN=C2C=C1Cl')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('C1=CC=C(C(=C1)C=NNC(=S)N)O')\n", + "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('C1COCCN1CCCS(=O)(=O)O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('C1N2CN3CN1CN(C2)C3')\n", + "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('C=CC(=O)OCCOC(=O)OCCSc1ncccn1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CC(=O)O')\n", + "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CC(=O)SSC(=O)C')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C')\n", + "_______________________________________smiles_to_mordred_features - 0.3s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CCCCCCCC/C=C\\\\CCCCCCCC(=O)O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CCCCCCCCCCCCCCCCCC(=O)O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CCCCCCCCCCCCOS(=O)(=O)O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CCCCCCCCCCCCc1ccccc1S([O])([O])O')\n", + "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O')\n", + "_______________________________________smiles_to_mordred_features - 0.3s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CCCCOP(=O)(OCCCC)O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CCN(C(=S)S)CC')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CCOc1ccc2c(c1)nc([nH]2)S')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CCSc1nnc(s1)N')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CN1C=NC2=C1C(=O)N(C(=O)N2C)C')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CNCC(C1=CC(=CC=C1)O)O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('COC(=O)CCCC1=CNC2=CC=CC=C21')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('COC(=O)n1nnc2ccccc12')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('COCCOC(=O)OCSc1nc2c(s1)cccc2')\n", + "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('COc1ccc2c(c1)[nH]c(=S)[nH]2')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('COc1cccc(c1)c1n[nH]c(=S)[nH]1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CS[C]1N[N]C(=N1)N')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CSc1[nH]c2c(n1)cc(c(c2)C)C')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('CSc1nnc(s1)N')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Cc1cc(C)nc(n1)S')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Cc1ccc(c(c1)n1nc2c(n1)cccc2)O')\n", + "_______________________________________smiles_to_mordred_features - 0.3s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Cc1ccc2c(c1)nc([nH]2)S')\n", + "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Cc1n[nH]c(=S)s1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Cc1nsc(c1)N')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('ClC([C]1N[N]C=N1)(Cl)Cl')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Clc1cc2[nH]c(=S)[nH]c2cc1Cl')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O')\n", + "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Clc1ccc2c(c1)[nH]c(n2)S')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Clc1cccc(c1)c1n[nH]c(=S)[nH]1')\n", + "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Cn1cnnc1S')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Cn1nnnc1S')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]')\n", + "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('NCC(=O)O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('NO')\n", + "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Nc1cc(N)nc(n1)S')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Nc1cc(S)nc(n1)N')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Nc1ccc2c(c1)sc(=S)[nH]2')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Nc1ccnc(n1)S')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Nc1n[nH]c(=S)s1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Nc1n[nH]c(n1)S')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Nc1n[nH]cn1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Nc1nc([nH]n1)C(=O)O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Nc1ncncc1N')\n", + "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Nn1c(NN)nnc1S')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Nn1c(S)nnc1c1ccccc1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Nn1cnnc1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('O/N=C(/C(=N/O)/C)\\\\C')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1')\n", + "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC(=O)/C=C/c1ccccc1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC(=O)CCCCC(=O)O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC(=O)CCCCCCCCCCCCCCC(=O)O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC(=O)CCS')\n", + "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC(=O)CS')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC(=O)Cn1nnnc1S')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC(=O)c1ccc(=S)[nH]c1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC(=O)c1ccc(cc1)N')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC(=O)c1ccc(cc1)S')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC(=O)c1ccc(cc1)c1ccccc1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC(=O)c1ccccc1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC(=O)c1ccccc1O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC(=O)c1ccccc1S')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC(=O)c1ccccn1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC(=O)c1cccnc1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC(=O)c1cccnc1S')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC(=O)c1ccncc1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC(=O)c1n[nH]c(n1)N')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OCC(CO)O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('O[C@H]1C(=O)OCC1(C)C')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Oc1ccc(cc1)C(=O)O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Oc1ccc(cc1)S([O])([O])O')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Oc1cccc2c1nccc2')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Oc1ccccc1c1nnc([nH]1)S')\n", + "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('On1nnc2c1cccc2')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('S=c1[nH]c2c([nH]1)c(=O)n(cn2)C')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('S=c1[nH]c2c([nH]1)cncn2')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('S=c1[nH]c2c([nH]1)nccn2')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('S=c1[nH]nc([nH]1)c1cccnc1')\n", + "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('S=c1[nH]nc([nH]1)c1ccco1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('S=c1[nH]nc([nH]1)c1ccncc1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('S=c1sc2c([nH]1)cccc2')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('SC#N')\n", + "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('S[C]1NC2=C[CH]C=NC2=N1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Sc1n[nH]cn1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Sc1nc(N)c(c(n1)S)N')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Sc1nc(N)c2c(n1)[nH]nc2')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Sc1nc2c([nH]1)cccc2')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Sc1ncc[nH]1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Sc1ncccn1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('Sc1nnc(s1)S')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('[Cl-].[Cl-].[Cl-].[Ce+3]')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]')\n", + "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('[O-]S(=O)[O-].[Na+].[Na+]')\n", + "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('c1ccc(nc1)c1ccccn1')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('c1ccc2c(c1)[nH]nn2')\n", + "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", + "________________________________________________________________________________\n", + "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", + "_smiles_to_mordred_features('c1ncn[nH]1')\n", + "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n" + ] + } + ], "source": [ "df_no_target = lookup.drop('Efficiency', axis=1)\n", "\n", @@ -392,172 +903,159 @@ }, { "cell_type": "code", - "execution_count": 120, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "SearchSpace(discrete=SubspaceDiscrete(parameters=[NumericalDiscreteParameter(name='Time_h', encoding=None, _values=[0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 24.0, 48.0, 72.0, 96.0, 120.0, 144.0, 168.0, 192.0, 240.0, 288.0, 336.0, 384.0], tolerance=0.0), NumericalDiscreteParameter(name='pH', encoding=None, _values=[-0.6, -0.4771212547196624, -0.3979400086720376, -0.3010299956639812, -0.1760912590556812, 0.0, 0.3, 0.45, 1.0, 2.0, 7.0, 13.0], tolerance=0.0), NumericalDiscreteParameter(name='Inhib_Concentrat_M', encoding=None, _values=[1e-07, 5e-07, 1e-06, 2e-06, 4e-06, 5e-06, 6e-06, 8e-06, 1e-05, 1.2e-05, 2e-05, 4e-05, 5e-05, 6e-05, 8e-05, 0.0001, 0.0001958863858961802, 0.0002, 0.0003, 0.0003566333808844508, 0.0003917727717923605, 0.0004, 0.0005, 0.0005876591576885406, 0.0006, 0.0007132667617689017, 0.0007835455435847209, 0.0008, 0.0009794319294809011, 0.001, 0.0011, 0.0012, 0.0013, 0.0014, 0.0015, 0.0016, 0.001783166904422254, 0.0018, 0.0019, 0.002, 0.002139800285306705, 0.0025, 0.0026, 0.003, 0.0032, 0.003566333808844508, 0.0039, 0.004, 0.0042, 0.00427960057061341, 0.005, 0.0053, 0.005706134094151214, 0.0065, 0.0075, 0.0085, 0.01, 0.015, 0.02, 0.04, 0.06, 0.08, 0.1], tolerance=0.0), NumericalDiscreteParameter(name='Salt_Concentrat_M', encoding=None, _values=[0.0, 1.0, 2.0], tolerance=0.0), SubstanceParameter(name='SMILES', data={'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O': 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O', 'C(C(CO)([N+](=O)[O-])Br)O': 'C(C(CO)([N+](=O)[O-])Br)O', 'C(CC=O)CC=O': 'C(CC=O)CC=O', 'C1=CC(=C(C=C1F)F)C(CN2C=NC=N2)(CN3C=NC=N3)O': 'C1=CC(=C(C=C1F)F)C(CN2C=NC=N2)(CN3C=NC=N3)O', 'C1=CC(=CN=C1)C=NNC(=S)N': 'C1=CC(=CN=C1)C=NNC(=S)N', 'C1=CC(=NC(=C1)N)N': 'C1=CC(=NC(=C1)N)N', 'C1=CC=C(C=C1)C(C2=CC=CC=C2)(C3=CC=CC=C3Cl)N4C=CN=C4': 'C1=CC=C(C=C1)C(C2=CC=CC=C2)(C3=CC=CC=C3Cl)N4C=CN=C4', 'C1=CC=NC(=C1)C=NNC(=S)N': 'C1=CC=NC(=C1)C=NNC(=S)N', 'C1=CN=C(C=N1)C(=O)N': 'C1=CN=C(C=N1)C(=O)N', 'C1=CN=C(N=C1)N': 'C1=CN=C(N=C1)N', 'C1=CN=CC=C1C=NNC(=S)N': 'C1=CN=CC=C1C=NNC(=S)N', 'C1CCC(=NO)CC1': 'C1CCC(=NO)CC1', 'C1N2CN3CN1CN(C2)C3': 'C1N2CN3CN1CN(C2)C3', 'C=CC1=C(N2C(C(C2=O)NC(=O)C(=NOCC(=O)O)C3=CSC(=N3)N)SC1)C(=O)O': 'C=CC1=C(N2C(C(C2=O)NC(=O)C(=NOCC(=O)O)C3=CSC(=N3)N)SC1)C(=O)O', 'CC(=NO)C': 'CC(=NO)C', 'CC(C)(C)NCC(COC1=CC=CC2=C1CC(C(C2)O)O)O': 'CC(C)(C)NCC(COC1=CC=CC2=C1CC(C(C2)O)O)O', 'CC(C)(C)NCC(COC1=NSN=C1N2CCOCC2)O': 'CC(C)(C)NCC(COC1=NSN=C1N2CCOCC2)O', 'CC(C)NCC(COC1=CC=C(C=C1)CC(=O)N)O': 'CC(C)NCC(COC1=CC=C(C=C1)CC(=O)N)O', 'CC(C)NCC(COC1=CC=CC2=CC=CC=C21)O': 'CC(C)NCC(COC1=CC=CC2=CC=CC=C21)O', 'CC(OC(=O)C)OC(=O)C1=C(CSC2N1C(=O)C2NC(=O)C(=NOC)C3=CC=CO3)COC(=O)N': 'CC(OC(=O)C)OC(=O)C1=C(CSC2N1C(=O)C2NC(=O)C(=NOC)C3=CC=CO3)COC(=O)N', 'CC1=CC=C(C=C1)[N]2N=NC=C2O': 'CC1=CC=C(C=C1)[N]2N=NC=C2O', 'CC1=CN=C(C=N1)C(=O)N': 'CC1=CN=C(C=N1)C(=O)N', 'CC1=NC(=CC=C1)C': 'CC1=NC(=CC=C1)C', 'CCC(=NO)C': 'CCC(=NO)C', 'CCOC(=O)C1=C(C)N=C(S)NC1C2=CC=C(C=C2)Cl': 'CCOC(=O)C1=C(C)N=C(S)NC1C2=CC=C(C=C2)Cl', 'CN(C)CC1CCCCC1(C2=CC(=CC=C2)OC)O': 'CN(C)CC1CCCCC1(C2=CC(=CC=C2)OC)O', 'COC(=O)C1=CC=C(C=C1)[N]2N=NC=C2O': 'COC(=O)C1=CC=C(C=C1)[N]2N=NC=C2O', 'COC1=NC=C(N=C1)C(=O)N': 'COC1=NC=C(N=C1)C(=O)N', 'NC(N)=S': 'NC(N)=S', 'NC1=CCNC(=S)N1': 'NC1=CCNC(=S)N1', 'OC1=C(C=CC=C1)C=NC2=CC=C(C=C2)N=NC3=C(C=CC=C3)N=CC4=C(C=CC=C4)O': 'OC1=C(C=CC=C1)C=NC2=CC=C(C=C2)N=NC3=C(C=CC=C3)N=CC4=C(C=CC=C4)O', 'OC1=CN=N[N]1C2=CC=C(C=C2)Cl': 'OC1=CN=N[N]1C2=CC=C(C=C2)Cl', 'S=c1sc2c([nH]1)cccc2': 'S=c1sc2c([nH]1)cccc2'}, decorrelate=0.7, encoding=)], exp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M \\\n", - "0 0.0 2.0 5.000000e-07 2 \n", - "1 0.0 2.0 1.000000e-06 2 \n", - "2 0.0 2.0 5.000000e-06 2 \n", - "3 0.0 2.0 1.000000e-05 2 \n", - "4 0.0 2.0 5.000000e-05 2 \n", - ".. ... ... ... ... \n", - "303 384.0 -0.6 4.200000e-03 0 \n", - "304 384.0 -0.6 5.300000e-03 0 \n", - "305 384.0 -0.6 6.500000e-03 0 \n", - "306 384.0 -0.6 7.500000e-03 0 \n", - "307 384.0 -0.6 8.500000e-03 0 \n", + "SearchSpace(discrete=SubspaceDiscrete(parameters=[NumericalDiscreteParameter(name='Time_h', encoding=None, _values=[0.5, 1.0, 2.0, 3.0, 6.0, 24.0, 48.0, 72.0, 96.0, 120.0, 144.0, 168.0, 192.0, 240.0, 288.0, 336.0, 360.0, 384.0, 432.0, 480.0, 528.0, 576.0, 600.0, 624.0, 672.0], tolerance=0.0), NumericalDiscreteParameter(name='pH', encoding=None, _values=[0.0, 3.3, 4.0, 4.4, 5.4, 5.5, 5.6, 7.0, 10.0], tolerance=0.0), NumericalDiscreteParameter(name='Inhib_Concentrat_M', encoding=None, _values=[1e-05, 5e-05, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0008, 0.001, 0.0012, 0.0018, 0.0024, 0.003, 0.005, 0.01, 0.011, 0.021, 0.022, 0.031, 0.033, 0.042, 0.044, 0.05, 0.1], tolerance=0.0), NumericalDiscreteParameter(name='Salt_Concentrat_M', encoding=None, _values=[0.0, 0.01, 0.05, 0.1, 0.5, 0.6], tolerance=0.0), SubstanceParameter(name='SMILES', data={'C(=O)(C(=O)[O-])[O-]': 'C(=O)(C(=O)[O-])[O-]', 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O': 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]', 'C1=CC(=C(C=C1O)O)C=NNC(=S)N': 'C1=CC(=C(C=C1O)O)C=NNC(=S)N', 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]': 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]', 'C1=CC(=CC(=C1)S)C(=O)O': 'C1=CC(=CC(=C1)S)C(=O)O', 'C1=CC2=NNN=C2C=C1Cl': 'C1=CC2=NNN=C2C=C1Cl', 'C1=CC=C(C(=C1)C=NNC(=S)N)O': 'C1=CC=C(C(=C1)C=NNC(=S)N)O', 'C1COCCN1CCCS(=O)(=O)O': 'C1COCCN1CCCS(=O)(=O)O', 'C1N2CN3CN1CN(C2)C3': 'C1N2CN3CN1CN(C2)C3', 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1': 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1', 'CC(=O)O': 'CC(=O)O', 'CC(=O)SSC(=O)C': 'CC(=O)SSC(=O)C', 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C': 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C', 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O': 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O', 'CCCCCCCCCCCCCCCCCC(=O)O': 'CCCCCCCCCCCCCCCCCC(=O)O', 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCOS(=O)(=O)O': 'CCCCCCCCCCCCOS(=O)(=O)O', 'CCCCCCCCCCCCc1ccccc1S([O])([O])O': 'CCCCCCCCCCCCc1ccccc1S([O])([O])O', 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O': 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O', 'CCCCOP(=O)(OCCCC)O': 'CCCCOP(=O)(OCCCC)O', 'CCN(C(=S)S)CC': 'CCN(C(=S)S)CC', 'CCOc1ccc2c(c1)nc([nH]2)S': 'CCOc1ccc2c(c1)nc([nH]2)S', 'CCSc1nnc(s1)N': 'CCSc1nnc(s1)N', 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C': 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C', 'CNCC(C1=CC(=CC=C1)O)O': 'CNCC(C1=CC(=CC=C1)O)O', 'COC(=O)CCCC1=CNC2=CC=CC=C21': 'COC(=O)CCCC1=CNC2=CC=CC=C21', 'COC(=O)n1nnc2ccccc12': 'COC(=O)n1nnc2ccccc12', 'COCCOC(=O)OCSc1nc2c(s1)cccc2': 'COCCOC(=O)OCSc1nc2c(s1)cccc2', 'COc1ccc2c(c1)[nH]c(=S)[nH]2': 'COc1ccc2c(c1)[nH]c(=S)[nH]2', 'COc1cccc(c1)c1n[nH]c(=S)[nH]1': 'COc1cccc(c1)c1n[nH]c(=S)[nH]1', 'CS[C]1N[N]C(=N1)N': 'CS[C]1N[N]C(=N1)N', 'CSc1[nH]c2c(n1)cc(c(c2)C)C': 'CSc1[nH]c2c(n1)cc(c(c2)C)C', 'CSc1nnc(s1)N': 'CSc1nnc(s1)N', 'Cc1cc(C)nc(n1)S': 'Cc1cc(C)nc(n1)S', 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O': 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O', 'Cc1ccc2c(c1)nc([nH]2)S': 'Cc1ccc2c(c1)nc([nH]2)S', 'Cc1n[nH]c(=S)s1': 'Cc1n[nH]c(=S)s1', 'Cc1nsc(c1)N': 'Cc1nsc(c1)N', 'ClC([C]1N[N]C=N1)(Cl)Cl': 'ClC([C]1N[N]C=N1)(Cl)Cl', 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl': 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl', 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O': 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O', 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1': 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1', 'Clc1ccc2c(c1)[nH]c(n2)S': 'Clc1ccc2c(c1)[nH]c(n2)S', 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1': 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1', 'Cn1cnnc1S': 'Cn1cnnc1S', 'Cn1nnnc1S': 'Cn1nnnc1S', 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]': 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]', 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O': 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O', 'NCC(=O)O': 'NCC(=O)O', 'NO': 'NO', 'Nc1cc(N)nc(n1)S': 'Nc1cc(N)nc(n1)S', 'Nc1cc(S)nc(n1)N': 'Nc1cc(S)nc(n1)N', 'Nc1ccc2c(c1)sc(=S)[nH]2': 'Nc1ccc2c(c1)sc(=S)[nH]2', 'Nc1ccnc(n1)S': 'Nc1ccnc(n1)S', 'Nc1n[nH]c(=S)s1': 'Nc1n[nH]c(=S)s1', 'Nc1n[nH]c(n1)S': 'Nc1n[nH]c(n1)S', 'Nc1n[nH]cn1': 'Nc1n[nH]cn1', 'Nc1nc([nH]n1)C(=O)O': 'Nc1nc([nH]n1)C(=O)O', 'Nc1ncncc1N': 'Nc1ncncc1N', 'Nn1c(NN)nnc1S': 'Nn1c(NN)nnc1S', 'Nn1c(S)nnc1c1ccccc1': 'Nn1c(S)nnc1c1ccccc1', 'Nn1cnnc1': 'Nn1cnnc1', 'O/N=C(/C(=N/O)/C)\\\\C': 'O/N=C(/C(=N/O)/C)\\\\C', 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1': 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1', 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]': 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]', 'OC(=O)/C=C/c1ccccc1': 'OC(=O)/C=C/c1ccccc1', 'OC(=O)CCCCC(=O)O': 'OC(=O)CCCCC(=O)O', 'OC(=O)CCCCCCCCCCCCCCC(=O)O': 'OC(=O)CCCCCCCCCCCCCCC(=O)O', 'OC(=O)CCS': 'OC(=O)CCS', 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O': 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O', 'OC(=O)CS': 'OC(=O)CS', 'OC(=O)Cn1nnnc1S': 'OC(=O)Cn1nnnc1S', 'OC(=O)c1ccc(=S)[nH]c1': 'OC(=O)c1ccc(=S)[nH]c1', 'OC(=O)c1ccc(cc1)N': 'OC(=O)c1ccc(cc1)N', 'OC(=O)c1ccc(cc1)S': 'OC(=O)c1ccc(cc1)S', 'OC(=O)c1ccc(cc1)c1ccccc1': 'OC(=O)c1ccc(cc1)c1ccccc1', 'OC(=O)c1ccccc1': 'OC(=O)c1ccccc1', 'OC(=O)c1ccccc1O': 'OC(=O)c1ccccc1O', 'OC(=O)c1ccccc1S': 'OC(=O)c1ccccc1S', 'OC(=O)c1ccccn1': 'OC(=O)c1ccccn1', 'OC(=O)c1cccnc1': 'OC(=O)c1cccnc1', 'OC(=O)c1cccnc1S': 'OC(=O)c1cccnc1S', 'OC(=O)c1ccncc1': 'OC(=O)c1ccncc1', 'OC(=O)c1n[nH]c(n1)N': 'OC(=O)c1n[nH]c(n1)N', 'OCC(CO)O': 'OCC(CO)O', 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O', 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O', 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O': 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O', 'O[C@H]1C(=O)OCC1(C)C': 'O[C@H]1C(=O)OCC1(C)C', 'Oc1ccc(cc1)C(=O)O': 'Oc1ccc(cc1)C(=O)O', 'Oc1ccc(cc1)S([O])([O])O': 'Oc1ccc(cc1)S([O])([O])O', 'Oc1cccc2c1nccc2': 'Oc1cccc2c1nccc2', 'Oc1ccccc1c1nnc([nH]1)S': 'Oc1ccccc1c1nnc([nH]1)S', 'On1nnc2c1cccc2': 'On1nnc2c1cccc2', 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C': 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C', 'S=c1[nH]c2c([nH]1)cncn2': 'S=c1[nH]c2c([nH]1)cncn2', 'S=c1[nH]c2c([nH]1)nccn2': 'S=c1[nH]c2c([nH]1)nccn2', 'S=c1[nH]nc([nH]1)c1cccnc1': 'S=c1[nH]nc([nH]1)c1cccnc1', 'S=c1[nH]nc([nH]1)c1ccco1': 'S=c1[nH]nc([nH]1)c1ccco1', 'S=c1[nH]nc([nH]1)c1ccncc1': 'S=c1[nH]nc([nH]1)c1ccncc1', 'S=c1sc2c([nH]1)cccc2': 'S=c1sc2c([nH]1)cccc2', 'SC#N': 'SC#N', 'S[C]1NC2=C[CH]C=NC2=N1': 'S[C]1NC2=C[CH]C=NC2=N1', 'Sc1n[nH]cn1': 'Sc1n[nH]cn1', 'Sc1nc(N)c(c(n1)S)N': 'Sc1nc(N)c(c(n1)S)N', 'Sc1nc(N)c2c(n1)[nH]nc2': 'Sc1nc(N)c2c(n1)[nH]nc2', 'Sc1nc2c([nH]1)cccc2': 'Sc1nc2c([nH]1)cccc2', 'Sc1ncc[nH]1': 'Sc1ncc[nH]1', 'Sc1ncccn1': 'Sc1ncccn1', 'Sc1nnc(s1)S': 'Sc1nnc(s1)S', '[Cl-].[Cl-].[Cl-].[Ce+3]': '[Cl-].[Cl-].[Cl-].[Ce+3]', '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]': '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]', '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]': '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]', '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]': '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]', '[O-]S(=O)[O-].[Na+].[Na+]': '[O-]S(=O)[O-].[Na+].[Na+]', 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]': 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]', 'c1ccc(nc1)c1ccccn1': 'c1ccc(nc1)c1ccccn1', 'c1ccc2c(c1)[nH]nn2': 'c1ccc2c(c1)[nH]nn2', 'c1ncn[nH]1': 'c1ncn[nH]1'}, decorrelate=0.7, encoding=)], exp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M \\\n", + "0 24.0 4.0 0.0010 0.10 \n", + "1 24.0 7.0 0.0005 0.05 \n", + "2 24.0 10.0 0.0010 0.10 \n", + "3 24.0 4.0 0.0010 0.10 \n", + "4 24.0 7.0 0.0005 0.05 \n", + ".. ... ... ... ... \n", + "510 24.0 7.0 0.0005 0.05 \n", + "511 24.0 10.0 0.0010 0.10 \n", + "512 672.0 7.0 0.0010 0.10 \n", + "513 24.0 4.0 0.0010 0.10 \n", + "514 24.0 10.0 0.0010 0.10 \n", "\n", " SMILES \n", - "0 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O \n", - "1 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O \n", - "2 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O \n", + "0 C(=O)(C(=O)[O-])[O-] \n", + "1 C(=O)(C(=O)[O-])[O-] \n", + "2 C(=O)(C(=O)[O-])[O-] \n", "3 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O \n", "4 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O \n", ".. ... \n", - "303 S=c1sc2c([nH]1)cccc2 \n", - "304 S=c1sc2c([nH]1)cccc2 \n", - "305 S=c1sc2c([nH]1)cccc2 \n", - "306 S=c1sc2c([nH]1)cccc2 \n", - "307 S=c1sc2c([nH]1)cccc2 \n", + "510 c1ccc2c(c1)[nH]nn2 \n", + "511 c1ccc2c(c1)[nH]nn2 \n", + "512 c1ccc2c(c1)[nH]nn2 \n", + "513 c1ncn[nH]1 \n", + "514 c1ncn[nH]1 \n", "\n", - "[308 rows x 5 columns], metadata= was_recommended was_measured dont_recommend\n", + "[515 rows x 5 columns], metadata= was_recommended was_measured dont_recommend\n", "0 False False False\n", "1 False False False\n", "2 False False False\n", "3 False False False\n", "4 False False False\n", ".. ... ... ...\n", - "303 False False False\n", - "304 False False False\n", - "305 False False False\n", - "306 False False False\n", - "307 False False False\n", + "510 False False False\n", + "511 False False False\n", + "512 False False False\n", + "513 False False False\n", + "514 False False False\n", "\n", - "[308 rows x 3 columns], empty_encoding=False, constraints=[], comp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M \\\n", - "0 0.0 2.0 5.000000e-07 2 \n", - "1 0.0 2.0 1.000000e-06 2 \n", - "2 0.0 2.0 5.000000e-06 2 \n", - "3 0.0 2.0 1.000000e-05 2 \n", - "4 0.0 2.0 5.000000e-05 2 \n", - ".. ... ... ... ... \n", - "303 384.0 -0.6 4.200000e-03 0 \n", - "304 384.0 -0.6 5.300000e-03 0 \n", - "305 384.0 -0.6 6.500000e-03 0 \n", - "306 384.0 -0.6 7.500000e-03 0 \n", - "307 384.0 -0.6 8.500000e-03 0 \n", + "[515 rows x 3 columns], empty_encoding=False, constraints=[], comp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M \\\n", + "0 24.0 4.0 0.0010 0.10 \n", + "1 24.0 7.0 0.0005 0.05 \n", + "2 24.0 10.0 0.0010 0.10 \n", + "3 24.0 4.0 0.0010 0.10 \n", + "4 24.0 7.0 0.0005 0.05 \n", + ".. ... ... ... ... \n", + "510 24.0 7.0 0.0005 0.05 \n", + "511 24.0 10.0 0.0010 0.10 \n", + "512 672.0 7.0 0.0010 0.10 \n", + "513 24.0 4.0 0.0010 0.10 \n", + "514 24.0 10.0 0.0010 0.10 \n", "\n", " SMILES_RDKIT_MaxAbsEStateIndex SMILES_RDKIT_MinAbsEStateIndex \\\n", - "0 10.148889 1.357824 \n", - "1 10.148889 1.357824 \n", - "2 10.148889 1.357824 \n", + "0 8.925926 2.185185 \n", + "1 8.925926 2.185185 \n", + "2 8.925926 2.185185 \n", "3 10.148889 1.357824 \n", "4 10.148889 1.357824 \n", ".. ... ... \n", - "303 4.975926 0.848333 \n", - "304 4.975926 0.848333 \n", - "305 4.975926 0.848333 \n", - "306 4.975926 0.848333 \n", - "307 4.975926 0.848333 \n", + "510 3.813148 0.914352 \n", + "511 3.813148 0.914352 \n", + "512 3.813148 0.914352 \n", + "513 3.555556 1.444444 \n", + "514 3.555556 1.444444 \n", "\n", " SMILES_RDKIT_MinEStateIndex SMILES_RDKIT_qed SMILES_RDKIT_SPS \\\n", - "0 -2.974537 0.454904 10.846154 \n", - "1 -2.974537 0.454904 10.846154 \n", - "2 -2.974537 0.454904 10.846154 \n", + "0 -2.185185 0.287408 7.333333 \n", + "1 -2.185185 0.287408 7.333333 \n", + "2 -2.185185 0.287408 7.333333 \n", "3 -2.974537 0.454904 10.846154 \n", "4 -2.974537 0.454904 10.846154 \n", ".. ... ... ... \n", - "303 0.848333 0.596343 10.400000 \n", - "304 0.848333 0.596343 10.400000 \n", - "305 0.848333 0.596343 10.400000 \n", - "306 0.848333 0.596343 10.400000 \n", - "307 0.848333 0.596343 10.400000 \n", + "510 0.914352 0.560736 10.222222 \n", + "511 0.914352 0.560736 10.222222 \n", + "512 0.914352 0.560736 10.222222 \n", + "513 1.444444 0.458207 8.000000 \n", + "514 1.444444 0.458207 8.000000 \n", "\n", - " SMILES_RDKIT_MolWt ... SMILES_RDKIT_fr_allylic_oxid \\\n", - "0 189.099 ... 0 \n", - "1 189.099 ... 0 \n", - "2 189.099 ... 0 \n", - "3 189.099 ... 0 \n", - "4 189.099 ... 0 \n", - ".. ... ... ... \n", - "303 167.258 ... 0 \n", - "304 167.258 ... 0 \n", - "305 167.258 ... 0 \n", - "306 167.258 ... 0 \n", - "307 167.258 ... 0 \n", + " SMILES_RDKIT_MolWt ... SMILES_RDKIT_fr_nitro \\\n", + "0 88.018 ... 0 \n", + "1 88.018 ... 0 \n", + "2 88.018 ... 0 \n", + "3 189.099 ... 0 \n", + "4 189.099 ... 0 \n", + ".. ... ... ... \n", + "510 119.127 ... 0 \n", + "511 119.127 ... 0 \n", + "512 119.127 ... 0 \n", + "513 69.067 ... 0 \n", + "514 69.067 ... 0 \n", "\n", - " SMILES_RDKIT_fr_aryl_methyl SMILES_RDKIT_fr_bicyclic \\\n", - "0 0 0 \n", - "1 0 0 \n", - "2 0 0 \n", - "3 0 0 \n", - "4 0 0 \n", - ".. ... ... \n", - "303 0 1 \n", - "304 0 1 \n", - "305 0 1 \n", - "306 0 1 \n", - "307 0 1 \n", + " SMILES_RDKIT_fr_nitro_arom_nonortho SMILES_RDKIT_fr_oxime \\\n", + "0 0 0 \n", + "1 0 0 \n", + "2 0 0 \n", + "3 0 0 \n", + "4 0 0 \n", + ".. ... ... \n", + "510 0 0 \n", + "511 0 0 \n", + "512 0 0 \n", + "513 0 0 \n", + "514 0 0 \n", "\n", - " SMILES_RDKIT_fr_ether SMILES_RDKIT_fr_halogen \\\n", - "0 0 0 \n", - "1 0 0 \n", - "2 0 0 \n", - "3 0 0 \n", - "4 0 0 \n", - ".. ... ... \n", - "303 0 0 \n", - "304 0 0 \n", - "305 0 0 \n", - "306 0 0 \n", - "307 0 0 \n", + " SMILES_RDKIT_fr_para_hydroxylation SMILES_RDKIT_fr_phos_acid \\\n", + "0 0 0 \n", + "1 0 0 \n", + "2 0 0 \n", + "3 0 0 \n", + "4 0 0 \n", + ".. ... ... \n", + "510 1 0 \n", + "511 1 0 \n", + "512 1 0 \n", + "513 0 0 \n", + "514 0 0 \n", "\n", - " SMILES_RDKIT_fr_morpholine SMILES_RDKIT_fr_oxime \\\n", - "0 0 0 \n", - "1 0 0 \n", - "2 0 0 \n", - "3 0 0 \n", - "4 0 0 \n", - ".. ... ... \n", - "303 0 0 \n", - "304 0 0 \n", - "305 0 0 \n", - "306 0 0 \n", - "307 0 0 \n", + " SMILES_RDKIT_fr_pyridine SMILES_RDKIT_fr_quatN SMILES_RDKIT_fr_sulfide \\\n", + "0 0 0 0 \n", + "1 0 0 0 \n", + "2 0 0 0 \n", + "3 0 0 0 \n", + "4 0 0 0 \n", + ".. ... ... ... \n", + "510 0 0 0 \n", + "511 0 0 0 \n", + "512 0 0 0 \n", + "513 0 0 0 \n", + "514 0 0 0 \n", "\n", - " SMILES_RDKIT_fr_priamide SMILES_RDKIT_fr_pyridine \\\n", - "0 0 0 \n", - "1 0 0 \n", - "2 0 0 \n", - "3 0 0 \n", - "4 0 0 \n", - ".. ... ... \n", - "303 0 0 \n", - "304 0 0 \n", - "305 0 0 \n", - "306 0 0 \n", - "307 0 0 \n", + " SMILES_RDKIT_fr_tetrazole SMILES_RDKIT_fr_thiazole \n", + "0 0 0 \n", + "1 0 0 \n", + "2 0 0 \n", + "3 0 0 \n", + "4 0 0 \n", + ".. ... ... \n", + "510 0 0 \n", + "511 0 0 \n", + "512 0 0 \n", + "513 0 0 \n", + "514 0 0 \n", "\n", - " SMILES_RDKIT_fr_thiazole \n", - "0 0 \n", - "1 0 \n", - "2 0 \n", - "3 0 \n", - "4 0 \n", - ".. ... \n", - "303 1 \n", - "304 1 \n", - "305 1 \n", - "306 1 \n", - "307 1 \n", - "\n", - "[308 rows x 79 columns]), continuous=SubspaceContinuous(parameters=[], constraints_lin_eq=[], constraints_lin_ineq=[]))" + "[515 rows x 94 columns]), continuous=SubspaceContinuous(parameters=[], constraints_lin_eq=[], constraints_lin_ineq=[]))" ] }, - "execution_count": 120, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -568,7 +1066,7 @@ }, { "cell_type": "code", - "execution_count": 121, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -595,7 +1093,7 @@ }, { "cell_type": "code", - "execution_count": 122, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -607,134 +1105,167 @@ }, { "cell_type": "code", - "execution_count": 128, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - " 0%| | 0/40 [00:00" ] @@ -773,15 +1313,77 @@ "max_yield = lookup[\"Efficiency\"].max()\n", "# plot_results = results[results['Scenario'].isin(['Mordred', 'Morgan', 'RDKIT'])]\n", "\n", + "# until 10\n", + "limit = 10\n", "sns.lineplot(\n", " data=results, x=\"Num_Experiments\", y=\"Efficiency_CumBest\", hue=\"Scenario\", marker=\"x\"\n", ")\n", - "plt.plot([0.5, N_DOE_ITERATIONS+0.5], [max_yield, max_yield], \"--r\")\n", + "plt.plot([0.5, limit+0.5], [max_yield, max_yield], \"--r\", alpha=0.4)\n", + "plt.legend(loc=\"lower right\")\n", + "import matplotlib.pyplot as plt\n", + "\n", + "plt.xlim(0, limit+1)\n", + "plt.savefig(f\"./img/{exp_dataset_name}_simulation_{N_MC_ITERATIONS}MC_{N_DOE_ITERATIONS}exp_{BATCH_SIZE}batch_first10.png\")" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGxCAYAAABoYBJuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACIdElEQVR4nOzdd3gVVfrA8e+Z29IrIQkQIHRRQIogoAiKgrpWdFUsNOvCugrK2utPwYIdZV1FXFdErGtXREEpItKRDqEnoaS32+b8/pjkkhBAElJu4vt5nvuQmTkz92Quybw55z3nKK21RgghhBBCAGDUdwWEEEIIIYKJBEdCCCGEEOVIcCSEEEIIUY4ER0IIIYQQ5UhwJIQQQghRjgRHQgghhBDlSHAkhBBCCFGOBEdCCCGEEOXY67sCDY1pmuzdu5fIyEiUUvVdHSGEEEIcB601+fn5NGvWDMM4dtuQBEdVtHfvXlJSUuq7GkIIIYSohl27dtGiRYtjlpHgqIoiIyMB6+ZGRUXVc22EEEIIcTzy8vJISUkJPMePRYKjKirrSouKipLgSAghhGhgjiclRhKyhRBCCCHKkeBICCGEEKIcCY6EEEIIIcqR4EgIIYQQohwJjoQQQgghypHgSAghhBCiHAmOhBBCCCHKkeBICCGEEKIcCY6EEEIIIcppUMHRTz/9xEUXXUSzZs1QSvHpp59WOK615qGHHiI5OZnQ0FAGDx7M5s2bK5TJysri2muvJSoqipiYGMaMGUNBQUEdfhdCCCGECGYNKjgqLCykW7duTJ069YjHn376aV566SWmTZvGkiVLCA8PZ8iQIZSUlATKXHvttfz+++/MmTOHL774gp9++ombb765rr4FIYQQQgQ5pbXW9V2J6lBK8cknn3DppZcCVqtRs2bNmDBhAnfddRcAubm5JCYmMmPGDK6++mrWr19P586dWbp0Kb169QLgm2++4YILLmD37t00a9bsD983Ly+P6OhocnNzZW01IYQQooGoyvO70Sw8m5aWRkZGBoMHDw7si46Opk+fPixevJirr76axYsXExMTEwiMAAYPHoxhGCxZsoTLLrus+hXw+Y5+TCmw2Y6vLIC93MfSmMv6/XCs2DwYytps1ucHYJrWK5jLGob1CpayWlv3OJjLVuXnMxjKQvD9LNfT7whtGGi3G+3zYYSE4M3MxMzLwwgLw5GcjDc9HbOoKHDdwP7duzELC49cDjCiog7tz8/HCA21tvem4y8qxMTEFhqOq3lzijP24i0qwBEeSWhyc4p37cBbmB+4liM8ktDmKRTv2YW3pAhHRJS1vWsH3vzcI5crzMcRFUNoi5bWdn5u4GeuUrnwSEJbtqZ4727rfU0TR2h45TJl28WFgZ8NR2i4Vec9u/AU5OGIiCKseQoFu7bjLsjFNEArRUhkDFHNW5O7YzOFuQcJj44nOqUtubu2Uph7sPSmGYTHJlj7d2ymMHv/EcuFR8cT3ao9uXvSrGtFxRHdrHXFa5WVS2lrlcvPtrZbtCF3+6Yjl9u1Fa/2k9C+S+l/jtKfe3v1wpxGExxlZGQAkJiYWGF/YmJi4FhGRgZNmzatcNxutxMXFxcoczi3243b7Q5s5+XlHbkC06cfvXItW8LQoYe2//Ofo/+CSE6Giy46tD1zJpTrFqwgIQHKB3SzZ8PR8qdiY+HKKw9tf/IJZGcfsagOD4fhwzFNjQbU//6HceCAdaz0F1XZqsba5cK8/gYUYBgKvvoKvXevdV75clqj7XYYNdoqB5jffAu7dlYuV3buLbcc2vf9XFTatiOXUwpGj0aXPlzUTz/Bpk1orSl7hNtKz/ObmsKrr8UWGkK4yw6LFuFevRaPz8RhV4TYbWigoMSH12/i++vVJDRvggJyf/yZ4uUrCXfaiQyxozUcKHBT7PXjtBs0HX09RlwsOw4Wkf3zYlK2rSM+woXWsDe3GK2heUwoSsH2M89juy2clrFhtNm7Bf3LEvbkFFPo8RHutAfK7c93s7n3QJI6taFNQjjm7+vY++X3RyyXVeQh9C8X0rJ7J0wNm35eTvKKX4gKcVQoExfmJCHShT5nMBlNmrExM582uZm0XLEIqFwOYFfX3myNa27Vt/ggfPPNEcvtz3eT1ulUmvTuQZuEcNi7l/3vfXTEcgAJgwdAt25s219I+taddFj4fYUyWUWe0u8zBNWrF+ntTmZjRj4dQ7wkf/sFWmt2ZhVT4PZhamgdH0ZkiJ2sdp34Oa4dp7eJI1F5yXvrP2zdXwilz9m2CeFEhTrIK/ayLCKZTldcQHJ0CHszs9n1wr/QpknHpuHERoaSlZ3Hxp1ZdEyOJK5fH3bFN2PBb5uwFRfTZsH3tGkRR2zb1mSv38zO7em0bJ1EbKf27M8pYJE3NPBzNeDgNmI7tSd7w2Z2bs8IlMvesJkN2W72tTuJnqedRIvBA8ieeB87t+2pUGbndut3VEl4JMnXX0HLwQPZOedHDvx7Bq2bxRN3SmeyVq5mz9btKNNE+f1ExkYRcenFxFx1Fbt/mE/KgUwKv/uOvB07KSjxoLRGaU2Yy05Ex05EvDqV9O/mkHzeuRTcdhv569dR6PECJqFOBzGt2hBx1llkbd1M7P89yYFp09i5ZB7ObWk4PF40GpuhiEltT+I5Q8nfuI7Ibj3YmJnGziXz8fr9NN2XTYjbg2EYxKV2JOmc88nfsI7ITp3J+P5rfncfxO8zMTQ0OZBDmMdHTGo7mp5/MQVrVhNxShcOfvIx7k2byI+KCdzfuNatSBg6lKLlywnr0YOsDz7As3Vb4HhOdDQoRXj/fjS/7DI8s2cfsRxAblQUYWeeQfMpUyh+5RUik5KOWM7Ztg0xs2ZRvOhXIoYNI/Pyy9FLf+NwxW3bEHvllZQYBhE33MCum2/GP/cHQg773V5Wzly+HNdDD7Hr5pspXLgIV0kJoeXKli8X0qMHe5csIW/FSqtObjdhxcWVypTVvyA8HJ/DYZX1eIhJTgqUCz3sfhSGheF1OgEo6HIKyf37Yz/s/pbl5hSFhZHndJLXvx/N77gD+4v/PmK5YqC4X1+aTp+Of+7PRPbrR9bZZ1coU1bO37YNMZMn49+0ichhw9hzww3YfvjxiOVir7ySLNMNd54Cpg9WfgWffg5XDoGoZpByGuyq/NkcTaMJjmrLpEmTePTRR+u7GkflNzVKgTY1WzLyyNhzgHCXnW4pMQD8tGk/Ow4WcdCZSZaxhgf+chIASzbso1+cgQLeW7qLLfvy0doKtlu0TOCGK6y/2P77yw6u9/qw+Uxm/rqNLftzAE27ppEMP609uf5s3vjhR67s0ZbkiGb8+8flHNh86BdIu4QYhvfqRK47h6V7smiXvZ3mkc0ZO3sOxrff0Cw3i/YJsVzT82SUgozCTFbsyqR7SlMSvF5MDWM//Azz++8426a4pntXlFLszt/N8t3pdGueQKuo1ng9Hv7+xQeAyauxLTD8Pn4/+Dur03dzclIyXZt0RQPvr57PswWL8DoV/Vt1ZmpML2yGyZbcjXRJ6IjH9DJrzRy2Zu8B4EvzB05t35OXLphAqAu2FW+lS0TlcgDZzfYx+coHSIyAbZ61nBxi4PF7mb1mDluzdgHQNi6Fv3Y5l6RIWJnzK6dHDqDE5+ajlV+xNWuXFexpaBPfgiu6nke0009+4a+c6mxGsdfg5W9eRf26EMMEhaZ1fAoX9TifKHcuGfs30aLoNEo8rfi/2U+S+evP9N6TQ+cWbejd8ZzSMhuJTOqINzSWz36cyv8yNlJU7CMxu5BLS6IY1OsCInIz2bd3IxHJHfCFJjN/6Vd8tfRtMuLCADgnsSM3hHQiIieDfembKpTbnr6djeui2fNTBL079+a2AaOtcns3EtGsY6DcjvTtALiKVnJlp5eJ37OB7cv+R8R+N76QFH5b8Dn7d2zD4dc4/JqdGpqsPYt2k1/G2PATCT37kP75RxzYuh6tNQoNaHYAsW1OIvmu++m7fRFN2p/Phocmwuf/IwxAW/c3Eyhq05HEiy6n+65VRBnnsm3sHRTOn0dKVh6GBjeQVfpLt2vBHsIie7BvyhQKt6XRHUBrYnJz8QDZpeVcuQcJa9ua7JkzKdm5i07h4YH/H56cnHLlsgLlPFu3keKwE/fbPApnwe7+/WjRvTuu7P0VyiSVXsdnt1GwcgG7+/cjZcoU4j/5gPCO7cmeORPv1m2U//PPb7Oxf9NGlNa0HjOG/JtvpvDHediA6MN+lxTs3o3//fdJGTOGg2++SfEPP2D3mxXKFe3OwBYeTsLQoRycPZvsN6cTCUTm52Mr3zq3bwVF0U2IPuMM8pcsgYWLaFl6KKKgCLuvtOy+lRRFJxB9xhkULFgAS1fSIjomcJnwQjcOrw+94neKEpoRVVrOt2ET5drZAChcv46w5GQizziDvF8Wk7NrGzgPHc8JAxTkrFhEZFJTYo9Srqxs9opFhHzxGU3/8hfypr95xHJFu7ZhfvMVCTfdwr7//of9m9YQdliZsnKO1auIm/Ic+774jD0rFhEeUrkBtqxc1BlnsP+7b9izYhGEQRigzSOXy/tlMelrl+INswKeUAX4K5cpq39eKHhK6xhiAEcpB1ZZt/W3CiXrlhMVGUHkGWeQ/8ticg+7H/khUBICuSsWET73FOKPUg4gf/1K7F98RsKYMRx8+cUjlgEo3rUN9dN84u9/gP3//Q8Za5YSd5RyztWraDJ2HJh+mPlXWDsX1nnB9oFVqO3ZcN4LlU8+ikYTHCUlWb86MjMzSU5ODuzPzMzk1FNPDZTZt29fhfN8Ph9ZWVmB8w937733Mn78+MB2Xl4eKSkplQuOHn30ypV1iZS54YZD9csrYcHm/bRPjKBL8xhW785m3a/b8Gk3Jf4C2vfpzhmp7flq42/M37qZkxObc12PM3hpwRzeW76a/KdX0791Ki9ddiVpF7bms3V5DOnYgQ6tzubOL95icfNd0MKHUj78e55i39edeeH82/Fdk4o3uR8Tvn+KxepXUH6U8oPyoZSflfMyeWbgk7ia/IzvtIuZ8PM/+SX0lwrfxq/N8nnqzKdolvYZiRG9mPDTOH7tsgi6cFi5Ip468ykObP6EMyPjmfDT31lhLsY4R7Oy9C/5Jc3cTDlrCnElJRQt+y+xnS4D7eHRr8ez8+AijG6a/2rYkOTn4aHPkpCVhW/DJyR1ugx/XByPfXcnO9Otlo9HjdN5aMSztDtwgE3rPqZDmwswm7fg5dkT2BK9lrMyFCEeCFn/G5+03cgVtzxHhxWr4NRufPPSeAr2byJJW61SY37ZgPHLRn5cvZ0hd0yhfbEHTuvFkkkTiPt9I8l+cHrB5QXn2o/Y/0MGKVOm0C0vHNtVl7Hn7rvptWgjhzpyN5JZEkfza65lwHeZOFNM9rz6L3ou3EjPCndtE5nueJo/8wynffopIdjZc9vfuXjBwsP+c20lw1xG82eeofnHHxPauQt7/vZ3rlu46FB3xO/ryciPCZRxXn45e+6+m5MXLebksv+bWgMHSMe6VvLHH+MqLdd8cRo3AajSlka9m/R+RUcs1xzovz0HVC589gmZP2XQ/Omnj1gOgO2LyNxxO82nTOHUZa1w3X0pe+6+m5gVO4k57NeTOWcxOd3fJ2nMGA6+8Qa5m3fiIJzD5W/dQ+jWrSTedBMH33wTvpwHRnRZo1Hg35ydGThDQoh/6GEOzpiB54efcGCQF1UuHDhwEMLCiJ8+nf3vvE1a+ja8UQqPDXx2xdakaLw28Nqz6J/ajObjxrHnq0/4ISYLYsPR5X72lRkDZHF2m+YVy/WMAcWhsvsWc07LoTS/dXrFMuVoQ1nlFv5A83/9i93f/o8vkrLwNY/BawNf6ctrU7Ts2o/hw6+m+Pd1uKY8w6wuPjZtWmx1mQCmAtOADh36cvO11+DeupXIa6/hI88C0jYvxq41dq0xgPbt+zFsxEu496QT1SqFn90L2LtxAQ5/CDatsaGxa+h02lV0v+pB9m/9nfjrrsP3wRNsXTITBdj8dsCOAlr3vobEax7k4LYNxF53HTtnP86OZTOt+wGgFSg7rfrcQOLlD3AwfTtxN9xA2jdPsmX5m/id+Wi7xrRBx9P+Rmr/iRwsySJu1Ci2Lnia9UtfO3TPbIUAdO49lpi+d5FVnEXsqFHs/Wkye5a8ikODS2ucGiKNXBL7jiN+0PV4vCVE9ukDPz5J8cJXUGirpRwI6TeOsHNvwm/6Sbj2esISd1KwYBp+ZcOP9dLKRlS/m4gceDt+Q5Fw7fWYzXI4uPBNSnTFvJf4viOJHDgOvzZpYnfg7aTJ/OUdfGYU2drARGEqg+S+w4kccBN+bRI5ahRNf36Dfb+8g8JEm34KTJPEvtcTOXBsoEzRvFc4uHgGIQpCjLJueifhp48LvGfkqFGUzHuF7EUzMIBoBaq0Cy769FuIOGssKEXEqFF45r1C7qK3A3WPUhBlKKL7jSLurLGg9RHLAbToP5K4c64HIG7s36GTWakMQHS/EcSefTsATa69HpJzyVr4H0wMNAoTG1op4vsOJ+Ksmw6lILQ/D3L3QjM/KNOKLA9ugfVfVHqPo2l0Cdl33XUXEyZMAKxApmnTppUSsn/77Td69rQeRd999x1Dhw6tl4Ts/GIPdoefL7fMZUibgdwz7zHm7foJZSuxApVSfZv15ZkBz/Dx5o+5vP3l3P3T3Szeu7jCtY6nTJnxPccz6pRRvLX2LZ5b9txR63e0cgqFoWzYlY3xvcYz/KThvLdhFi8tewnT7wc0aLj+lOvZdHAjv2X8xu29/8HVna7h/Q3v88rSF+nVtBcd4jsyc/U7NDug6bLNy9mxvelzz1PkfPghMcOGsWfCBAoXLqpUr/D+/Wg+ZQo5H3101HLHU6ZM07vvIr70r+V9zzx71PtRk+Wqey1tMzCV9czQNgNld6AMg2Z3TiDummvIeu899rz0HFoptNcNphelTWyOUJLvmEjcNdeQPWsWe196Gr+3AK0o7Zu0XjZXOC3+8RAxl11Gzqefsvulx/B58ivVy+6MpMXtDxFz6aUnXK5CmS+/ZNfrj1HiO4B2aEy7xnRotAMSz7yaNiMeI3f7ZqJbt2fL7CfYseR9TGXDVHZMDExstBs0ho4XjCEnbT0xbTqz/tu32fDTO2BY7Uso0AZ0HjiSkwZdR86ercQ2b8vaJR+yasGbaLvCtBlom6L7oL/R9eS/kFO4j5jwpqze9DW/LXit9L4Z1vUM6N33Nrq2H0JO0X5iwhJYvflbfv319Ur3o3fvm+nafgi5RfuJDktgw9a5rF3yBnYUDgxcKDr1u4UWrc/A7c7D5Ypi/44l7F78JoZSGChU6b/N+44mOqUXPk8hdmc4BbuXs2/J2yjDwMBAKQht2pGE00eDYccsPIAR3gRMHweX/gf3gc2BbmlXk/bE9rreKld0ECMsHkw/Wb9/gSc/A+wunLGtiGt3FigD0+fGsLtAa/J3r8ZXnIOBVS9nbEtcCa0A0O5ClMsKYH0Hd2Bm7w3cCyO2Gfb4snIFKFeEVe7AdvwHd6BNP+DHFtcKR2IHQB+qGwp/Vho6by8oG0ZMc4zo0j9avUXgsFo5df5edMG+Q//BIxIwIkv/ePYWgyMUBZCfCUWH8lgIbwIRTSuUo6xc4f7SMgkQmVjpPcnPhOIsUIb1CouDsHjrmM8N9tKmmKJscB/KOcIVDWGxlcsVZ4O7XDqHKwpCS8v5PWBzVi5Xvszxvmf5ax1v3apT7rjeU5eWizvC/cgBT751b1HgirReAKYXDMehciU5VkuS3wv2EPJs0UTHxh/X87tBBUcFBQVs2bIFgO7du/Pcc88xaNAg4uLiaNmyJU899RSTJ0/m7bffJjU1lQcffJDVq1ezbt06QkJCADj//PPJzMxk2rRpeL1eRo0aRa9evZg5c+Zx1aEmg6NP1i4lh7VHD1S0Au1C6RDu73sHV500jA83/o9nf/k3dpuB0zBw2A1cdhsRzjBu6jqKQS0H8vPun3l/zSx8Xg9OZcOODaeyER0aQ++2Z9G/eT/Wbv+VLq17s+7gOjatW4A7Nxs7Bg5tJy6uGSf3OJcmoU3Yk7aW5qld8Pg97PxtPiX7M0nq0A2loEn7LqAUedu3EN26HVprsjf9DoYie8dmwpomk9z1dOuPPyA3cxfRiSmYbjfKZif99dcoeP8D9IGswLccCAZmvM3+559Ha/PQn/qlf1krpUi4807iR47g4Ntvs/+FF0vbnNWhckrR9I5/EHfDDWS/9x4H3/4POOwYoaFoQ2GPisaICCe812nEXHopBb8uIaLP6eR9/z0l635He934DmSA9uFonkpo1x5EnnUWhYvnEd5vEMWrVuPevAb3lpUouw3lsBPWZzAh3fpgj4yg+PelhJ7cG9Ptxr1pNYVLvwcg/LTBuDp0xXC5KP79V6uM12uVWTYXhQFKEXbaObjad8Gw2yjesILQTt3BsOHeto7ipT+C8oP2E9brbJxtu4Hpx7vuRxwnDQCbAzX3MVjwvHU/2p4Nf/0P2u5C2Zxovw9MH775r+HbvhJtc4ERgr396Tj6XAWGgZmdjhGbDNrEs/I7fNtWWvdXKextuuLsdp71kMzOwIhNssqtmYc3bW3gl5a9bTdcJ/cHFGbOfoyYBEDjXrfYKqc1jjZdcHXua5XJ3Y8RbZXxbl2Gb+8mMBTKMLC3PQ170zZgmvgPbscW3xoMA//+bfh3LrO+B3sIjjZ9MMKiMd1FePNycMTEYzhcmF43voLcwP8Pe3g0hsOJ6fXgK8rHHh6FYXdg+rz43YVWAOIKx7DZMf0+TF8JhiMEw7Bjmj60rzT/Q2uUIzSw3/QWYTjCDm2XlUNh2F2l+/2YfjeGzYVh2FCmaf1SB+sXu2FYv9DLftEbtkPbZf/HA+XMcuXKbYP1OdhKHxSm38rDMOzW9cAqp7X182KUK6dNULZDCe2Ht3wL0UBV5fndoIKjefPmMWjQoEr7R4wYwYwZM9Ba8/DDD/P666+Tk5PDGWecwauvvkqHDh0CZbOyshg3bhyff/45hmEwbNgwXnrpJSIiIo6rDjUZHH218Vf6t+7Il1u/4cqOlzNv50K2Zm8nxB5ChCOScEcELpuLdrGtSYlOpMTrIcThJCs/i8Kc/Rg+HzavD6fdRWyr9gAU7t5BeIuWoCF7xa94DhxAKYg65VRCkq3OjLw1K/Hl5OCIa0LUyaeglcJ7YB8l27YR2rYd9ngrAblk61bMggJsUdG4UlsD4MvOQbvdOJolg2ni3r4Ds6AAIyoKV8sUMAy8mZn4DxxEhYfhaNIEIyyMwl9/pfCnn9HaJOG229gzfnygJUc5HIT16UPMVX8lcuBAvJkZOJKSKU2monjVMvz703GmtsPZ4ZTSB4Af77Z1ONp0tn7ZGwbutUsAcJ3S51CZrb/jaHty6eglG+5VS/BuWI6rz9k4Wne0voelP2Dm7scWl4Czx9lgGPh2bsC3ej62Nl1xdOpjPTBMH3r9N6iThljvqTXmTy/C7mWolF6oM2+3HkimHzZ/B+3PPfRgm/OI9XAa8rj14DF9sOo96HZN6bVM+N84SPsZUs+ES145dK2VM+HU4aXX8qFm3wBbfwgEPRh263q/vQW9RgW29Zd3QVxbOPMO6z01kLsbopsd+qs2cz1kbYX4dqimnaz/mPs3QFaadW5C6c/O/o2QtQ3i2kBCx3L7tpaWK9u3CbLTIDb10LkHN0P2DohtBfHtS/dZf+QQ3650eyvk7ISYVhDfpty+7ZBwkpVQqU1IX2n9hRyRCE07W9+Dz20dc4TKg1wIcVSNdij/wIEDOVYsp5Tiscce47HHHjtqmbi4uONuJaptg9udyrgfxvHbjgwGtjyTwa3Pok+zHnhNLy6bC5fNhaP0Lz9/QQF682Y8cXHEtWxJ+L5sPNt3E3LSSTiSkkBrSrZswSgswuPfhat1K+J6no4/Nxfv3nSc0XEomw1vZiYuRyiuBKuZ2HvgAI7EROyhETgjY7CFhKFKAxw8XgynC11Sgnf/fhyJiRhOJ6Zp4svKwhYZiXvTJkrWrMHepAnOq/7KgX+/QcH8+fj278fMy0N7PIEuLve6dVYX1/jxuNO2E33ZZbg6dSLy3HNxJDYFrSla9D3k7MZs2hxXr3MAhSM+Enb8huHqYAU9hoF34294t6wB04ujUy8wTWzRcdazsazM1pX4d65FOcDe5lRriGuzJOz+5hhNE0tbmzSulDhUvLb+etZ+MP04vHtxbH0Vmt8Nvi4w+wZoMwjV/3ZY+BJs+xH++h9sMcnw87dwyl+sv8RLy3FYOZJOsT50bcL71x25TJtB8PvH1r/HKtf5Mis46lw6UvH966DtOVa5Td+AtwROugj1l9KWSMNu3ZPdS61AwvRCXCqgrUDEFW4FHwCeQghvCpFJgDrUpRDfzupCcJY2X3uLrG6Hw7se4ttBVBI4Sv/Y8HkgshlElWYZ+b1Wa0Zcm0M/CKYXoltYLzjUwhGXCtHNweY6dG6CNaAAu+tQC4gj5MR+EIUQ4jANquUoGNRUy5HWmhd/+YA3Nz1OmO8UFo9+F0MdecJyf1ERxcuXo70+VGgozhYtcDRvhjczE1tYOEZkRKC1poytSTyOxETM/AI8O3dib9IEjcbRpAlFK1bgSduOLSGBiH59KfzlF/wHs/BlZ2MLD8cWF0vEgAHkffMNJWvWYktoQtx117HvmWfJnzsXf1YWmOZx5/WosDASJ04k9uqrKFz8C76cHFydOmJzOfDt2oq9eQr2xBaULPwcu60Ee1ISyhkCofHQpL3VUpC7C6JTrH707QugWXdY/xmcdBEsf8dqMdn8ndVN0GEILHkdThsFaz6CU4bBb9Ohzy2w8Sv47kE47UbYt96q4IVTSltnroEPSxPrk7rCwheg/x1WK0dkEpz7KOxcAi1Ph+WlyYNRLWDrXCs4ydtt7esxwgpEUnpb72/YreDAMKzvxbBbrT5lrS47Su9ZaKxVp6YnWeUAWvUrbYlpA3uXW+eGxkB+OkS3An+J1XoS29rKmQiLh+zt1rmGHbBZwcrBLVa/fFgTCSaEEH9KjbblqDHJzM/l03WLwA4uI+zogZHbQ8natWivD3tCgrUvJwfsNmzh4ZiFRfiLCnE0aYIuKcEsKEQ5ndjj4sj/4QdK1qzFvWULvowMvBkZhHTsQPMpUyhZvZqo885l99/+dsykZ//Bg1bg849/VCxns1GycRP5P/xI/Jgx5P/wI46UlsTf0gVbTEzgZURFYY+Pw9miBd79Bwg7rReezWsxd6zAW5iD78B+DIfCe2AHrhZJGGFhh97DV2wFBo5QKMmD3CWwZjas+xTOffxQi8qcB60AJamrdd6Kd6yWFcN2qMzcR2H7z1aZ/HT44fFD75PczSq36BWrayeuDfhK4PynrK+7X2e1YmRvtxIE89Oh983Wtjsfeo60rpPY2QpSsrdDSDTk7bUCrrJyYAVZZWV8bivoSz3zUJmmnQANMSmHynmLIXcntOh1qJwzAooPWgFPWTl3PpTkWl1au5dZSYuJp1itPE06HGppEUIIcUwSHNUDn9/PzzvW4tVWsmaIrfJwZADT48G9fj1mXh62xIpTDfgPHKzQUmQWFuFslkzOok+IvuACdt922xGDnsIDB8j57DPix4whe/YHePbsxdmmDdhs1pDN0n/9BYUU/LyA+DFjKPjpJ1ydTiKs/xnY4+Kwxcdji4rCFh0VCHoiBpyJs00qZkFhuW/AhxHqwtmiOZ6NKzEztmFGReHsNpCSzG34cgqwJ7fC3rwFhs2P8hxhAsuCfVbA8tnt4C+djPOkS+C0MbB3BfS52eoaytt7KI8mLhVO/xukDoDMdVaLUdLJkF860eelrx66fmQStDoDDmyG02+FjkMPBTJQMfgoyrK6gLzF1iiL+A5Wi4w7zwqGYltbeTnu0u/DnW+dV3Y+VAxkysqU5fIc2GKNrnBFWrk3+9Zb74lpjbxwF0DiybDvd6tlKTTWKpe51tr2eayXt8Sa8MxXAs4j/98SQghxdBIc1YNduQfYm38AP1ZwFG6PrFRG+/14tm7Fty8Te2JSYGboI/Hn5LD/0UeJGjokMOy7eOUqnO3a4UhKwp6cHPg3pGNHQjp2wLv/ADGXX0ZY79MqBjSljIjwQOAT3q8fjpYtK5QrO+7ZvRuzoBAzPxdny1Z4tqzDPJgO7nyMyGicnc7E89u3mAd2g82Bb18hvkVzCet3IY4da7GFaJTdtFo7yoIGrWHPMitoOGsi/PSMFRjFt4MBd8MpV1iJumAlGHcYWjHgKB/Q+MtaZ86qWObwcp6CQ4HM/o3WcN3S4Z/s/g0KD1jdVDYHoK3cHG+xlYNTlGUFR7tXQNF+63jZEDutrXNDSptwy65VRgEYUJxrXcOdb3V9ZfxuDWtV1jwvgNUStH+DNcTVnW/9u38DlORbZULDre678CZWK5EERkIIUS0SHNWDTQf24DP9eLW1lk+EK6zCca01nh078ezaja1JAsp29O6Q4rVrOfDCC4Sc3JmYK66gcNky4kaMIOKccyoFPZUCmsKCCtvHWy5wfOcOzIPp6IL9+Iuycacn4DrtXNz7tuLLysBo2oKSpfPw7d8P2oku9qMUOKJ96ANbsScmWS1D5VtY1n4M8yZZX18x3coB8rnhL89D6zMPdW8VZVkBTVGWFRwknQIZa6xvIKYVpK8+NG9J4X6r5SW5K+xdZW2HxUNiy8rBSmEWNO9uJUT73NYor6jmVsuO3XVoTg6tAwndVvKytkZQ0e7Q5IuV0vm0lexcNkILKBsej2GzWr2im5e2gNkOtYQZR+hyjUs96v8JIYQQJ0aCozq2vzCXbdnpJITF4sMKSKKdFRPDfOnpeLanYYuNxXAeYa50QJsmuR9/TM7s2YT3PZ3mzz9PycZNGKGheHbvrhT0HB7wAJgFhZXK/lE597ZtYPoo/m0Bvm2rUZ4i6wHuCsNfkoH+7WeMJi1ReYX4dm61cqMiI1A2ay4ge0wUtpgoFG4rMCqTsxOWvgVn3WV1f/W4Hpa+Ab1GHxrF5AyzAqPCA9a5YfFWUOF3W91b4VZOFllpVuASGlc6tLs0+MjdCzEtrVacsHjrOhGJh0Zm2V3Wy/RD05OPHJQIIYRo9CQ4qmNbD6ZT4CmiWUQTTGW1HMWEHOpW82VlUbJlK8oVghEaesRr+HNz2f/SS5SsWmUlTr/0Et49ewPljxT0KJcL97Y0fAcPor1etLd0orh9Cn9OLrbICHz79+MMDaV43Xr82dml8wxptMeD8nvwZ+zEFhGKb/WvGC6Fq0VTjMhYVEgoymG3uv5sBsowcXY7CWU7zuBi5y8w/ykrbyYq2UqOztkF7QZXLFewz+rKKjx4aG4dWzX+C5fNaiuEEEIcgQRHdajQU8z6/TuJcUWh0WijCAUkhMcA1lxG7k2brTl74uKwN2mCWVJcocurZN069r/wAiEndSL+llsI690b3/79aI8HsHKVtMeDPzcXf24eRlgovox0fJkZ4HBiOB0Y0VEY4eEopdCmaQVAPh+OpERMjxtlM7DHx1vdSt5ijEgbhteNIg9Dh+HsdSrKGXaE77CKfCXwyzRr9BlAt+HWKLCCTCtI8rsr5gh5iqwAqkl76yWjr4QQQtQCCY7q0LbsTA4W55Ea0xy3zwSjGICmEVHWMhObN2MWFmBrarVsmCXFgdYff14+uZ9+Ss6sWeW60TZihIYFgidtmvj2ZWKEhqFcTqs1x+kkpEsXlNOJ4XKhXK7KOUxaW4GKt9h6eQqttYHKtjHBFW8l+B5lyoEjimhqnV8+wClTkmuNNisLjM55GPrdbiVau/OtV/mRXZ4CK2m5SUeIbytdXkIIIWqNBEd1xOf3sWHfTlyGC7thsC8/F6WshN0EZySeLVvwHTiIvWnTwMi08t1jmU8/Tc7MmYe60Xbtwgit2Hpj5udji4wktEsXVFhYxRFuWlszD/tLwOO1RmL5iq1k5pIcKzjylRxaa6ks/8aVUDqZYDV4iysPXTf91mSGXa6EhS9aI7Mufhk6nFd5iHtZknbmOqueTTtbiciyRIQQQohaJMFRHdmVd4A9+QdIKk0aziq25sLRpovw/Vl4inOwJ1QemWYWFHLg9Wkk/O1vOJKTib3qr3h+/xmdtc8aVm5zgiMUbdjRB3JwdOyIYRZAXrY1F4+3xJoE0FcCfp81T4/ps4IUsLqm7C5r1uSQ6Jrtqjp8np8Dm2HL93D2A9YoNNMHV7xpdZEdPsy+7PzMtWALtSZYjGklgZEQQohaJ8FRHdBas2n/Lkw/hDqs0Wc5JVZwpPyhOHZnYGt3MsrhqHii6cO3exMHX/0XhiuU+DFj8O7YgM49aAUJvhKrC6zwAGZhEUorHG4H7N6FNYGOLl1w1VE6R48dHK7Slbnr6KN351uTGca3hU1zrMDok1uhxWnW/ERKVRy1Vl5RlhVANe1szRgthBBC1AEJjurA/qIctuVk0iQ8NrAvrygHAJs/BKKjK49M8xZC9k7yPv2EsD69ifnrlXh3bsTerA1mzn7M7EMBhdYasxBcbVthJNTBSKxj5RK5Iq3lPvIzYd86WP85bP3RCor63w4r37WG6ZctRHo0RQetLr6kLocWRRVCCCHqgARHdWDLwT0UuktoVtqlZuQXUJyVCS6w6zCM0PILgWprqHrODvxZB/ATSfMpT1H441c4ohyY2ftwdu6DZ92SQIBkFhZhhIfiaBJ7hHevBUfKJYJDy16snGnlE2Vttfa3PRt6joDtC6HrVUfuQiuvYJ/V2pV0sgy7F0IIUedkyE8tK3AXsunAHqJcUYDGfuAgrs1pFHitEWZ2QjDK8mj8XsjeYS0JoX2UZCmaP/0UmU9Pxh5pxbFm9j4865bg7NwHI7ZpaatRMY7EphiuI08YWePK5xK5Iq0WnuIsiEiC96+Fz2+3AiOb01ru45pZVsBTNolj2XlHUpBpnZfcVQIjIYQQ9UKCo1qWlp3BgaJ84pxhOPak49q2A2wGhXZrEkYXIRgYVsBxYCPk7ICQCPxeO6YH9kyYgCs5qsLIs7IAyYiIwSwsxggLxREfU7ffmDvfmok6qoWVNN2sB8y+HjZ9awU//W6Hm36AgfdYa5uVLSp7eGBVXn4G2EIgqau1PpgQQghRD6RbrRZ5/V42HNhJuM9OxK7d2PcfxB8ViXa5KM615jgKwYW95CCU7LEmXQxPAMMg7/vvyP32J5ytmhN63fmVrm1m78OflYlZWISrTUuMEFfdfnO5u2HRK9DpQiuXaNErVpL3xS9D4ilWonVY3NFHoWVvt3KTyhaaLcgAR7iVYxQWV7ffixBCCFGOBEe1aFfefval76HFAQ/24mJ8sTFgt4PWeChddNZnYs/ZDjHJEGG1lvgLisib9wsAMRcOqjhfUTlmUVmrUR3lGoE1Qm7Fu7BqFqSeaSVXb54DfW6BjkMrBkJHG4UGhyZ61NpK3nZGWIvHSmAkhBCinkm3Wi3RWrN14yoit+4lzOPBFxeHgRdbyQGcudvwli46G45hLZAaEhE4N2/uQrTbgzMlmdAuHY96fTO/GEdik5ptNYpoeuR8IK2tfKjtC2DFO1ZgdOXb1jD98CZWd+CxcomORGurK80VAcnSYiSEECI4SHBUS7xeL3mbtxGugHBwFuzEmZuGK38vyvTiNUoAiDBCUOUmXvQXFpH3o9VqFH3MVqMSjDBXzbcalY1EKx/k5O6GNbOhzVmwYxGcfDlc/Z6VPO0onYLgWLlER6I15KdbZZO6QGgdtn4JIYQQxyDdarVEmyb2wgzs3iKcebmYhh3THoJpWBM9mt5iFBCFDVu59cry5i5Cl7hxtEgirNtJR72+WVCEq1Xzw6YBqAHlg5z9G2Hxq1YQNOzf8NFNENkMzpoIebsPJVkffm5ZLtHRaA15eyE0xgqMQqJr9nsQQgghToAER7VFm9h8JaDAH1KxVcTUgM3KOYqx2ShrG/IXFZP3w2Jr/wVHbzXyFxZjhLhwJNRSN1RBptV91vlSSOgIQ/4P5j9lzVUU3cIatn80ZblER6NNq8UoNM7KMQqJqvHqCyGEECdCgqNaplXltcryfCbKsIbyxxo2jNKWo/wfFlutRs0SCTv1WK1Ghbhataj5VqOig7D2E1j/PyvAKcmzRqLtWQZd/nri65qVBUYhcVaOUVXyk4QQQog6IsFRPThg+sAArQ3ClR1lgFlcQt4Pi4DSEWrGkdPB/EXFGCEhh1qNjmcpj4J9xy7nKbISqj+73VqYFqDLldD7Jqv7K7nbH89q/Ud8bijcD2FNrBYjCYyEEEIEKUnIrgcH/VYAovyhGCgMpcj7cTFmUQmO5KaEde8MgD2lA0Zs0wrnmgVFOBLjMWISDgU8R0qCdkVa+73WfEqVymkN6atg9YfWivdrPrACo8STrVFol02DvD1WF1tVEq0PZ/qt4KzooNUllyQtRkIIIYKbtBzVg5zS1hnDDEUphVHiIe97q9Uo+oKBgVYjsyCnwjpqZnEJhsuFPSW14tpmmeus3KDfP4U9SyG+A3S/DpZOhwObDr1xk9L9m/8Dy2ZAVDJcMR0+HG0tXXLxK9Cqb+V108onaVelBakkB0ryrYkt41IhvCkcpUVMCCGECBYSHNWDPl37kZ2/j2XbdqHs4P55GWZRMY6kBCLPPQdbZCy+XZsqrKPmWbsA/475uNqmYktIhXmTYeNXkLML3HnW4q5XTLdaerpeaa1xtvWHym++6WurnN9jTeC45HXoOQpiUqzjjtDjm9X6WLxFUJRVOrFjF4hqDvY6WvdNCCGEOEESHNWDjft38Mx5z/Cg+3nsuzy45y0BoMlto3GdfDqedUsCZc2sDPzzXsJ5xhhcRWuhxyVHDnwyVlvrmvW/HdZ/DvYQ6HjBkSuwfYFVLmcHdDiv4rHjmdX6aPxeKDxoJW7HtoHYVtYEj0IIIUQDIsFRPVi8azVpP63g2cHPsW3aC+jCYqIuPJ/oy4cHutAA8OTj3PBvbFlrIcxpBTQr3gXDAb3GWK090S2slpmIpla3V0EmdDwfmp509CTtsnJRza2A5kQSrcEahVacDd4SiEyC2FQIjz+xawohhBD1RIKjelCk3Czeu5RnvnmVh0f9ndzIZGKHX1MhMDJyt+BY9xqGOxvd7lzoOQZ9YBdGt6ugZZ+KAU1ZwFPWHebOP3J+0PGWqwq/11obLTQGEk6ygiOj8vQFQgghREMhwVE9KMFaOiRn+QpyD35I/JgxeHdssAIjrbHv+hZ72kco7cc86XLUpa/iXrsEV2IkZLsrBjSHBzxw5ATq4y1XFb4SKNgPMS2thPCypUSEEEKIBkyGDtWD+DgrJu3T4mRihg0j+4PZ2Ju1wYiMwpm7GEdyM5T24+95G+ryaRQt/gGbzWeNYjt8DbPjSaCG4y93vNz5Vn5Rk/bW8H8JjIQQQjQS0nJUD7JK8ujbrC9X9r+DPX//B/78LMJbKJw9zkedcjp69ki87a9Hdb4Wz4oF6LwD2Fp1OnSB8gHN8SZQn0ii9eGKs8HrtoKimFYyPF8IIUSjIk+1enBSQnueGfAMOz95j8KFi3Da83BsmYVCo1F42w/H33wQvl2b8G3fhj0+DsN12FB4d/6xA57aoLX1ntqE5K7W3EUSGAkhhGhk5MlWDzoltObun+5mzzdfA+BMaY664g383zyO5/dfUAkdANBeHxgG9rggWLVem9ZSIvZQSD4VopvXd42EEEKIWiHdanXM69dM//11lDIZtd9akd7e8y/405biieoNebmYebkA+AuLsEVFYIsMr88qg+mD/AwIS4DEkyAkCII1IYQQopZIy1EdO2j6UcoEIKp0jVd7zmqM9gMx4hID5bTW6BIvjoS4oy5CWyd8bshLt+ZEatZNAiMhhBCNngRHdeyA3weAoV04PNbtN3b9EFgmpGyhWbO4BCPMhS26HhdpdedD4QGIa2stAyIj0oQQQvwJNKrg6JFHHkEpVeHVqdOhUV4lJSWMHTuW+Ph4IiIiGDZsGJmZmXVaxyy/B4CEkGj8Bw4AYIuNrbCOmhHbFLOgGHt8LEaIq07rB1jdaHkZVqtR087QtBPYHHVfDyGEEKIeNKrgCODkk08mPT098FqwYEHg2J133snnn3/OBx98wPz589m7dy+XX355ndYv17T60uwHDdCA0hgx1lIbZQGSCotCGap+ErE9BVY3WngcNO8J8W1kxmshhBB/Ko0uIdtut5OUlFRpf25uLm+++SYzZ87k7LPPBuCtt97ipJNO4pdffuH000+vk/rlaqvlKCJLAWBzmRAaFzhuZu/Dl7YFIzIcW2QdLtpq+qFwHyi71VoU20pai4QQQvwpNbqWo82bN9OsWTPatGnDtddey86dOwFYtmwZXq+XwYMHB8p26tSJli1bsnjx4jqrX35pcJRQYN16e6gf7YwJHC9LxHY2bVJ3idieQmuYfmhpa1GTdhIYCSGE+NNqVC1Hffr0YcaMGXTs2JH09HQeffRRzjzzTNauXUtGRgZOp5OYmJgK5yQmJpKRkXHUa7rdbtxud2A7Ly/vhOpYiHWtJoXWtj3ERLtiA8d1iRsjtI4SsbUJhfut7r2ETtaSJHbnH50lhBBCNGqNKjg6//zzA1937dqVPn360KpVK2bPnk1oaPVGWk2aNIlHH320pqpIcVlwVGAN57eH+tGumMBxf34RzmZNq5eI7XODt8gKepQBSgGl/6py/6KspOuiLAhPsNZHC29y4t+cEEII0Qg0um618mJiYujQoQNbtmwhKSkJj8dDTk5OhTKZmZlHzFEqc++995Kbmxt47dq164TqVEIJAAmFVpBkDwXs1iSP2ucrTcSOOb6LmT4oyYP8dMjZbX1tc4IryrqwYbcCIq3B77XWQ3MXWOW8xdCkAzTvIYGREEIIUU6jajk6XEFBAVu3buX666+nZ8+eOBwO5s6dy7BhwwDYuHEjO3fupG/fvke9hsvlwuWqueH0HmUFR3GFVu4R4Y7SFh7wFxYfOxFbm1ZQ4ykEn8cKfpxhEN0SQmPBFQnOiIrrnZmmdd7hLwBneOC9hRBCCGFpVMHRXXfdxUUXXUSrVq3Yu3cvDz/8MDabjWuuuYbo6GjGjBnD+PHjiYuLIyoqir///e/07du3zkaqAfiMYgCiy4KjCKu7z0rEduNMaYayHdagp7WVG+T3giMMwppYrT2uSOt1rORpw6CRNxAKIYQQNapRBUe7d+/mmmuu4eDBgyQkJHDGGWfwyy+/kJCQAMDzzz+PYRgMGzYMt9vNkCFDePXVV+u0jmZpcBRWFhxFWa1EusSNERJSORHb74X8TAiLhfh21vIdMlO1EEIIUWsaVXA0a9asYx4PCQlh6tSpTJ06tY5qVJHWoI1ilNY4ivzWvmhr8Vl/QRHO5KYYoSGHTvAUQdFBiEmx8oOc9bwArRBCCPEn0KiCo2BX6DdRNjcRRVC69iw6Og7t96OgYiJ2URb4PdYQ+7g2YJOPSgghhKgL8sStQwdMHyiIKSidHdvpxx8ai7+gCCMywkrE1qbVjWYPheRuEJksSdNCCCFEHZLgqA4d9PnAAXF5DsCHPdTE54g+lIitvZC735p7qGlHawSaEEIIIeqUBEd1KNu0krDj8q3bbg/x4yMc5XJhC1VQsN+apbpJe3CEHONKQgghhKgtEhzVoVztBSA+sK6aiccWjuEvROGFxJOtBV8NW31WUwghhPhTk+CoDuWZZYvOWtnYKhSM0sRs1aInRCbWV9WEEEIIUUpmB6xDBYFFZ62IyAy3o0w/OFwQ0bQ+qyaEEEKIUhIc1aHC0uAotsAHgC/chUKj7DYZkSaEEEIECQmO6lDZorPRRVZw5AkPRWmOvfyHEEIIIeqUBEd1yK3coDVhhdbs2J6IcGxao2SCRyGEECJoSHBUh7yqmFAP2K2GI4ojo1Bag11ajoQQQohgIcFRHfIZJcQUWF8bDpPiECs4UjYZui+EEEIECwmO6pBpFBFboAFrAki3IwJDA3ZX/VZMCCGEEAESHNURv6nBVkxsacuRPdSkxBZhjVZzSLeaEEIIESwkOKojOX6NUv5DwVGIH7ct3OpWs0tCthBCCBEsJDiqI/tNa+mQ2PzS+YzCbKDsGGgZyi+EEEIEEQmO6ki231o6JL7ACo50uAMF1uSPhnwMQgghRLCQ/pw6kl3achRXmpDtD3ehlMKOQslCs0IIIUTQkCaLOpKrS7vVSoMjb0QohlIoFMhQfiGEECJoSHBUR/JNa1216NJFZ90REVaPmlIgLUdCCCFE0JDgqI4U4Mbh1YRYqUcUR0ZhYKA1KEN6N4UQQohgIcFRHSnGHRjGr2wmRaFR2MoSsZWqv4oJIYQQogIJjupICSXEFlpf20NMim0R2DCsuEgWnhVCCCGChgRHdcStSojNL106JNRPkS0cQ1E6lF9yjoQQQohgIcFRHfEZh5YOsYVq3MpFWUgkC88KIYQQwUP6c+qIX5UQU2i1HKkwG6YCG8oKT6XlSAghhAga0nJUR7StKNByRLgTDdg0oGwSHAkhhBBBRIKjOlDi1yhbCTGlwZEZEQJoDA0YCmWTj0EIIYQIFvJUrgMHTB9waHZsX2Q4JmZpt5oNZJ4jIYQQImhIcFQHDvrLgiNr2x8ZCWCtq6Zk+RAhhBAimEiTRR3I9nuwoYkqtrY9UTForTGUCYaBknmOhBBCiKAhLUd1IEd7iSmdABKlcUfGggbD1KAM6yWEEEKIoCBP5TqQZ3oCydj2UD9uRxQoa/5HZRgyWk0IIYQIIhIc1YEC7Q4kY9tDTNz2SECVjlYzZPkQIYQQIohIcFQHCsstOmsLA9NwAmBoDUqhpOVICCGECBoSHNWBIg61HKmwskBIo7QuHcovH4MQQggRLOSpXAfcqiTQcqTDnaV7FUqbKLt0qQkhhBDBRIKjOuBVxeVmxw4FQGmN0gpld9RjzYQQQghxuD9tcDR16lRat25NSEgIffr04ddff6219/KpEmJLF531R4YDlK6tpkGCIyGEECKo/CmDo/fff5/x48fz8MMPs3z5crp168aQIUPYt29frbyfaRxqOfJGRoIGZSir9UhGqgkhhBBB5U8ZHD333HPcdNNNjBo1is6dOzNt2jTCwsKYPn16jb+XNSCtMDAJpCcqBlNrFAoDDZJzJIQQQgSVP11w5PF4WLZsGYMHDw7sMwyDwYMHs3jx4krl3W43eXl5FV5Vka8hqsRnzWmExhMVhwkoFGiNskm3mhBCCBFM/nTB0YEDB/D7/SQmJlbYn5iYSEZGRqXykyZNIjo6OvBKSUmp0vsd1P5DcxyFmLid0WhMFFbOkXI4j3m+EEIIIerWny44qqp7772X3NzcwGvXrl1VOj8bfWh27FA/HruVkK1QKAVIy5EQQggRVP50CS9NmjTBZrORmZlZYX9mZiZJSUmVyrtcLlwuV7XfL4dDLUdGqEIrG6bpRQEKwC6zYwshhBDB5E/XcuR0OunZsydz584N7DNNk7lz59K3b98af7887QsERyrcikWtJG2F0sjSIUIIIUSQ+dO1HAGMHz+eESNG0KtXL3r37s0LL7xAYWEho0aNqvH3ylc+Ykq71cpmxza1RhkKQytQf7r4VAghhAhq1X4yjx49mvz8/Er7CwsLGT169AlVqrZdddVVPPvsszz00EOceuqprFy5km+++aZSknZNKMJLbOkwfl06O7ZGl+YcGdbaakIIIYQIGtUOjt5++22Ki4sr7S8uLuY///nPCVWqLowbN44dO3bgdrtZsmQJffr0qZX3KTI8gZYjX9ns2NrKNzLQYJPgSAghhAgmVe5Wy8vLQ2uN1pr8/HxCQkICx/x+P1999RVNmzat0Uo2ZCXKE8g58kVGle7VGEjOkRBCCBGMqhwcxcTEWMnEStGhQ4dKx5VSPProozVSucbAo0oCs2O7o2MAMDEBa/JJZPkQIYQQIqhU+cn8448/orXm7LPP5qOPPiIuLi5wzOl00qpVK5o1a1ajlWzIXJ5iHH7ra3eUda+0tvozlaHAUPVXOSGEEEJUUuXg6KyzzgIgLS2Nli1bopQ83I8lurgIAO0y8YTEWF+jMZTChoEypOVICCGECCbVTshev349CxcuDGxPnTqVU089leHDh5OdnV0jlWsMYoqs4EiFmHiNstFqYGhQhiEJ2UIIIUSQqXZwdPfddwcWYV2zZg3jx4/nggsuIC0tjfHjx9dYBRsyr4aYIi8ARpiC0lY2U2tsaDBkKL8QQggRbKrdp5OWlkbnzp0B+Oijj7jooot48sknWb58ORdccEGNVbAhy9Ga2EJrGL8j7NCttlqOrGBJScuREEIIEVSq3XLkdDopKu0y+v777znvvPMAiIuLC7Qo/dkd1GZg0VlVOjs2AFpjV1itRjJDthBCCBFUqt1ydMYZZzB+/Hj69+/Pr7/+yvvvvw/Apk2baNGiRY1VsCHLxqRt6RxHZuns2FDaraa1lXMk3WpCCCFEUKl2s8Urr7yC3W7nww8/5LXXXqN58+YAfP311wwdOrTGKtiQ5eIPzI7tL50dG6zRajZtWDlIMs+REEIIEVSq/WRu2bIlX3zxRaX9zz///AlVqDHJwxeYHdsbFRXYryldOsQwZIZsIYQQIsicUMLL1q1beeCBB7jmmmvYt28fYLUc/f777zVSuYauEG9gdmxPVExgv6YsKpUZsoUQQohgU+3gaP78+XTp0oUlS5bw8ccfU1BgNZGsWrWKhx9+uMYq2JD5vCWEWCP5KYmOD+wvmwTSyjmShGwhhBAimFT7yXzPPffwf//3f8yZMwen89BIrLPPPptffvmlRirX0IUV5wPgc2jcYbGB/Vqb2DVWt5q0HAkhhBBBpdrB0Zo1a7jssssq7W/atCkHDhw4oUo1FlFFVnDkDdOYxqEAUiuN0shQfiGEECIIVfvJHBMTQ3p6eqX9K1asCIxc+7OLLF1XzR9Wcf05pUFpE2U3ArNmCyGEECI4VDs4uvrqq/nnP/9JRkYGSilM02ThwoXcdddd3HDDDTVZxwYrqsgNgD+s4og0jcIGYHPUfaWEEEIIcUzVDo6efPJJOnXqREpKCgUFBXTu3JkBAwbQr18/HnjggZqsY4MVWeSzvghzVtiv0BholF3yjYQQQohgU+2ns9Pp5N///jcPPfQQa9asoaCggO7du9O+ffuarF+DFlnkB0CFh1TYb62tBsruPMJZQgghhKhPJ9x0kZKSQkpKSk3UpVHJKykmunSOI3tkRIVjSinQGqTlSAghhAg61epW27x5Mx999BFpaWkAfPnllwwYMIDTTjuNJ554Aq11jVayIdqdlxVYOsRRbnZssOIim0aG8QshhBBBqMpP508++YS//vWvGIaBUorXX3+dW265hYEDBxIVFcUjjzyC3W7nn//8Z23Ut8HYk3+QpLKlQ6LjKhfQJtglIVsIIYQINlVuOXriiSeYOHEiJSUlvPbaa9x6661MmjSJr7/+mi+++IKpU6cyY8aMWqhqw5J5MINwa7Aa7iMER4ZWKAmOhBBCiKBT5eBo48aNjB49GqUUI0aMwOPxMHjw4MDx8847jx07dtRoJRui4t0bAfDaNO7w2ErHFci6akIIIUQQqnJwVFhYSGRkpHWyYRAaGkpYWFjgeGhoKG63u+Zq2ECZmVaAWBQO2igXBGlr3kdDaZRhO8rZQgghhKgvVQ6OlFLWaKujbAuLOpgBQPFhs2P7tcZAoVDSciSEEEIEoSo/nbXWdOjQIRAQlc1vZJSuLi8j1SyO3GwAisMNys9ypNFAaUBpyLpqQgghRLCpcnD01ltv1UY9Gh1XnjXJkTvUTgjQbeAwImOb8uNHr6AAQ4IjIYQQIihVOTgaMWJEbdSj0QktsPKuPGFOug0cRlxya7LSt5e1G1ndkYZ0qwkhhBDBpkaezgUFBZimWWFf1GETH/7ZnNT1HFj3NSdfOCoQGK2a9xFam1ZwpAGbJGQLIYQQwabawVFaWhrjxo1j3rx5lJSUBPZrrVFK4ff7a6SCDdUpEx4lJ+VkYi+/IRAYgXV/DFXarSbBkRBCCBF0qh0cXXfddWitmT59OomJiTJi7TBZn35Cwpgx5O/dEQiMAEytQVnTIKAkOBJCCCGCTbWDo1WrVrFs2TI6duxYk/VpNOKvuor9v8ynSZ8z6TZwWCBAMgFlagxDoSQhWwghhAg61X46n3baaezatasm69KoaMPGkt++YP/OTcQlt6bbwGGlBzSGxpoAUiaBFEIIIYJOtVuO3njjDW699Vb27NnDKaecgsNRcZ2wrl27nnDlGjKf1wPAr19Mp+9ltwUCpIXfvYuBxrAZknMkhBBCBKFqB0f79+9n69atjBo1KrBPKSUJ2Uewat5HgXmOTEyU1hjKhpIZsoUQQoigU+2n8+jRo+nevTvvvfeeJGQfh0DOkdbYwWo5koRsIYQQIuhUOzjasWMHn332Ge3atavJ+jR6GqyWI8MGNknIFkIIIYJNtZ/OZ599NqtWrarJupyw1q1bBxbCLXtNnjy5QpnVq1dz5plnEhISQkpKCk8//XSd1lEDhjbAkG41IYQQIhhV++l80UUXceedd7JmzRq6dOlSKSH74osvPuHKVcdjjz3GTTfdFNiOjIwMfJ2Xl8d5553H4MGDmTZtGmvWrGH06NHExMRw880310n9tNbYMUEZMlpNCCGECELVDo5uvfVWwApGDlefCdmRkZEkJSUd8di7776Lx+Nh+vTpOJ1OTj75ZFauXMlzzz1Xh8ER2FAoQ4G0HAkhhBBBp9rdaqZpHvVVnyPVJk+eTHx8PN27d+eZZ57B5/MFji1evJgBAwbgdDoD+4YMGcLGjRvJzs4+4vXcbjd5eXkVXidGYwMwpOVICCGECEaNquni9ttvp0ePHsTFxbFo0SLuvfde0tPTee655wDIyMggNTW1wjmJiYmBY7GxsZWuOWnSJB599NEaq6OpNYbWYBgoJQnZQgghRLCpdnB0pO608h566KHqXrqCe+65h6eeeuqYZdavX0+nTp0YP358YF/Xrl1xOp3ccsstTJo0CZfLVa33v/feeytcNy8vj5SUlGpdC8BEY6N00VlZPkQIIYQIOtUOjj755JMK216vl7S0NOx2O23btq2x4GjChAmMHDnymGXatGlzxP19+vTB5/Oxfft2OnbsSFJSEpmZmRXKlG0fLU/J5XJVO7A6Ghug7I4/LCeEEEKIulft4GjFihWV9uXl5TFy5Eguu+yyE6pUeQkJCSQkJFTr3JUrV2IYBk2bNgWgb9++3H///Xi93sDoujlz5tCxY8cjdqnVBo3GprW1tpoQQgghgk6N9utERUXx6KOP8uCDD9bkZY/L4sWLeeGFF1i1ahXbtm3j3Xff5c477+S6664LBD7Dhw/H6XQyZswYfv/9d95//31efPHFCt1mtU2jrZsuLUdCCCFEUKrxhOzc3Fxyc3Nr+rJ/yOVyMWvWLB555BHcbjepqanceeedFQKf6OhovvvuO8aOHUvPnj1p0qQJDz30UJ0N44fSliMUyt6ocuGFEEKIRqPaT+iXXnqpwrbWmvT0dN555x3OP//8E65YVfXo0YNffvnlD8t17dqVn3/+uQ5qdGRaawwU2J1/XFgIIYQQda7awdHzzz9fYdswDBISEhgxYgT33nvvCVesMVNoScgWQgghglS1g6O0tLSarMefiqElOBJCCCGCVZUTsv1+P6tXr6a4uLjSseLiYlavXo1pmjVSucZJYWjAkJwjIYQQIhhVOTh65513GD16dIUlOMo4HA5Gjx7NzJkza6RyjZVSgF2G8gshhBDBqMrB0Ztvvsldd92FzVb54W6325k4cSKvv/56jVSucdIoDJnnSAghhAhSVQ6ONm7cyOmnn37U46eddhrr168/oUo1bgpDYS0fIoQQQoigU+XgqLCw8Jgr0+fn51NUVHRClWrcNAoFSoIjIYQQIhhVOThq3749ixYtOurxBQsW0L59+xOqVGOnpOVICCGECFpVDo6GDx/OAw88wOrVqysdW7VqFQ899BDDhw+vkco1TgqlDJSq0ZVbhBBCCFFDqjye/M477+Trr7+mZ8+eDB48mE6dOgGwYcMGvv/+e/r378+dd95Z4xVtDExTo5SyIlKbDOUXQgghglGVn9AOh4PvvvuO559/npkzZ/LTTz+htaZDhw488cQT3HHHHYEV70VFJqUTQALIaDUhhBAiKFWr+cLhcDBx4kQmTpz4h2Xfe+89Lr74YsLDw6vzVo2KxgQUhk2G8gshhBDBqtYTX2655RYyMzNr+20aDENrKzCySc6REEIIEYxq/Qmtta7tt2gwtNYYWmMYhnSrCSGEEEFKmi/qkKk1hgZD2VAylF8IIYQIShIc1SGNBq0xbIYsPCuEEEIEKQmO6pDWGqWxZsc25NYLIYQQwUie0HXIBOxobIZN5jkSQgghglStB0etWrWSeY/KlCanK0PJDNlCCCFEkKr2E3rEiBH89NNPf1hu7dq1pKSkVPdtGhWNRpkaw26XliMhhBAiSFU7OMrNzWXw4MG0b9+eJ598kj179tRkvRolU2tsWmMzDAmOhBBCiCBV7eDo008/Zc+ePdx22228//77tG7dmvPPP58PP/wQr9dbk3VsNKzRamAYNpkhWwghhAhSJ5T4kpCQwPjx41m1ahVLliyhXbt2XH/99TRr1ow777yTzZs311Q9GwUN2NAom11GqwkhhBBBqkae0Onp6cyZM4c5c+Zgs9m44IILWLNmDZ07d+b555+vibdoFEw0BsgEkEIIIUQQq3Zw5PV6+eijj/jLX/5Cq1at+OCDD7jjjjvYu3cvb7/9Nt9//z2zZ8/mscceq8n6Nmy6tOXILqP3hBBCiGBV7azg5ORkTNPkmmuu4ddff+XUU0+tVGbQoEHExMScQPUaF601BgrskowthBBCBKtqP6Wff/55rrzySkJCQo5aJiYmhrS0tOq+RaOjAQONsknLkRBCCBGsqt2tdvHFF1NUVFRpf1ZWFnl5eSdUqcZKa41dAzIpphBCCBG0qh0cXX311cyaNavS/tmzZ3P11VefUKUaq0BCtiw6K4QQQgStagdHS5YsYdCgQZX2Dxw4kCVLlpxQpRorayi/AoezvqsihBBCiKOodnDkdrvx+XyV9nu9XoqLi0+oUo2VRls5RzJaTQghhAha1Q6Oevfuzeuvv15p/7Rp0+jZs+cJVaqx0pjYlQEyz5EQQggRtKqd/PJ///d/DB48mFWrVnHOOecAMHfuXJYuXcp3331XYxVsTDQaQymUktmxhRBCiGBV7ad0//79Wbx4MSkpKcyePZvPP/+cdu3asXr1as4888yarGPjoUGBLDorhBBCBLETekqfeuqpvPvuuzVVl8ZPK1AGyKKzQgghRNA6oeDINE22bNnCvn37ME2zwrEBAwacUMUaJWUN5ZdFZ4UQQojgVe3g6JdffmH48OHs2LEDrXWFY0op/H7/CVeuMbIpmedICCGECGbVbsK49dZb6dWrF2vXriUrK4vs7OzAKysrqybrCMATTzxBv379CAsLO+p6bTt37uTCCy8kLCyMpk2bcvfdd1eabmDevHn06NEDl8tFu3btmDFjRo3X9eiU9bJJy5EQQggRrKrdhLF582Y+/PBD2rVrV5P1OSqPx8OVV15J3759efPNNysd9/v9XHjhhSQlJbFo0SLS09O54YYbcDgcPPnkkwCkpaVx4YUXcuutt/Luu+8yd+5cbrzxRpKTkxkyZEgdfBcam1IylF8IIYQIYtUOjvr06cOWLVvqLDh69NFHAY7a0vPdd9+xbt06vv/+exITEzn11FN5/PHH+ec//8kjjzyC0+lk2rRppKamMmXKFABOOukkFixYwPPPP183wZEGlCHdakIIIUQQq/ZT+u9//zsTJkwgIyODLl264DhsMdWuXbuecOWqYvHixXTp0oXExMTAviFDhnDbbbfx+++/0717dxYvXszgwYMrnDdkyBDuuOOOuqmkX6MMJQnZQgghRBCrdnA0bNgwAEaPHh3Yp5RCa10vCdkZGRkVAiMgsJ2RkXHMMnl5eRQXFxMaGlrpum63G7fbHdjOy8urdh2V0hjKJkP5hRBCiCBW7eAoLS3thN/8nnvu4amnnjpmmfXr19OpU6cTfq/qmjRpUqBL74RoUKaJYbdJy5EQQggRxKodHLVq1eqE33zChAmMHDnymGXatGlzXNdKSkri119/rbAvMzMzcKzs37J95ctERUUdsdUI4N5772X8+PGB7by8PFJSUo6rTuWZWmNoa6SakhmyhRBCiKB1Qk/pd955h2nTppGWlsbixYtp1aoVL7zwAqmpqVxyySV/eH5CQgIJCQknUoWAvn378sQTT7Bv3z6aNm0KwJw5c4iKiqJz586BMl999VWF8+bMmUPfvn2Pel2Xy4XL5Trh+plolJZuNSGEECLYVbt/57XXXmP8+PFccMEF5OTkBHKMYmJieOGFF2qqfgE7d+5k5cqV7Ny5E7/fz8qVK1m5ciUFBQUAnHfeeXTu3Jnrr7+eVatW8e233/LAAw8wduzYQHBz6623sm3bNiZOnMiGDRt49dVXmT17NnfeeWeN1/dw1qKzYBhKgiMhhBAiiFU7OHr55Zf597//zf3334+t3Lw9vXr1Ys2aNTVSufIeeughunfvzsMPP0xBQQHdu3ene/fu/PbbbwDYbDa++OILbDYbffv25brrruOGG27gscceC1wjNTWVL7/8kjlz5tCtWzemTJnCG2+8USfD+DWgtIlhs0u3mhBCCBHETighu3v37pX2u1wuCgsLT6hSRzJjxow/nM26VatWlbrNDjdw4EBWrFhRgzU7TlpjaFA2GcovhBBCBLNqP6VTU1NZuXJlpf3ffPMNJ5100onUqVEytWnlHGEDaTkSQgghgla1n9Ljx49n7NixlJSUoLXm119/5b333mPSpEm88cYbNVnHRkEDBhrDZpNuNSGEECKIVfspfeONNxIaGsoDDzxAUVERw4cPp1mzZrz44otcffXVNVnHRsGvNUqDsttASbeaEEIIEaxOqAnj2muv5dprr6WoqIiCgoLAEHpxZAqNYbODUvVdFSGEEEIcRY3074SFhREWFlYTl2q8SluODJuzvmsihBBCiGOoUnDUo0cP5s6dS2xsLN27d0cdowVk+fLlJ1y5xkSjsWuNYZd8IyGEECKYVelJfckllwQmVLz00ktroz6Nll+bOEyNzSEtR0IIIUQwq1Jw9PDDDx/xa/HHrNFqYHM46rsqQgghhDiGag+bWrp0KUuWLKm0f8mSJYFZq0VFBhrlOPF12oQQQghRe6odHI0dO5Zdu3ZV2r9nzx7Gjh17QpVqjExKZ8i2S8uREEIIEcyqHRytW7eOHj16VNrfvXt31q1bd0KVaoy0BhsSHAkhhBDBrtrBkcvlIjMzs9L+9PR07DIiqzKtMZQCQ+6NEEIIEcyqHRydd9553HvvveTm5gb25eTkcN9993HuuefWSOUaE1Nr62bbbPVdFSGEEEIcQ7WbMZ599lkGDBhAq1at6N69OwArV64kMTGRd955p8Yq2FiYaGyGgTIkOBJCCCGCWbWDo+bNm7N69WreffddVq1aRWhoKKNGjeKaa67BIcPVj8iGATZZV00IIYQIZieUABMeHs7NN99cU3Vp1DQahQJpORJCCCGCWpWCo88++4zzzz8fh8PBZ599dsyyF1988QlVrLHRgN2Q4EgIIYQIdlUKji699FIyMjJo2rTpMZcPUUrh9/tPtG6NitYmCsk5EkIIIYJdlYIj0zSP+LX4Y1ppDAXYZCi/EEIIEcyqlB0cFxfHgQMHABg9ejT5+fm1UqlGydQowwAlCdlCCCFEMKvSk9rj8ZCXlwfA22+/TUlJSa1UqlEyre5GJfMcCSGEEEGtSn08ffv25dJLL6Vnz55orbn99tsJDQ09Ytnp06fXSAUbC6VNDMMBhrQcCSGEEMGsSsHRf//7X55//nm2bt0KQG5urrQeHSeFwlCGLB8ihBBCBLkqPakTExOZPHkyAKmpqbzzzjvEx8fXSsUaG639KIdNutWEEEKIIFfthOxBgwbhdDprpVKNkWFaQ/llniMhhBAiuElCdl3RYNhssvCsEEIIEeQkIbuOKG2CzJAthBBCBL1qJ2QrpSQhuyo02JRNZsgWQgghgpwkZNcFDYbWVmAkM2QLIYQQQa3Kk+5ccMEF5ObmkpaWRnx8PJMnTyYnJydw/ODBg3Tu3Lkm69jg+bRGaTBskpAthBBCBLsqB0fffPMNbrc7sP3kk0+SlZUV2Pb5fGzcuLFmatdoaBQapFtNCCGECHonPF2z1rom6tGoaTSGBpvdLjNkCyGEEEFOntR1QAOGNlEOyTcSQgghgl2VgyOlFEqpSvvE0ZmmiSprORJCCCFEUKvy01przciRI3G5XACUlJRw6623Eh4eDlAhH0lYyrrVDJurvqsihBBCiD9Q5eBoxIgRFbavu+66SmVuuOGG6teoEbLysjTK7qjvqgghhBDiD1Q5OHrrrbdqox6Nmok1z5HNJWvRCSGEEMFOErLrgtYYgGGT4EgIIYQIdg0mOHriiSfo168fYWFhxMTEHLFMWbJ4+desWbMqlJk3bx49evTA5XLRrl07ZsyYUet1t3KONDaHBEdCCCFEsGswwZHH4+HKK6/ktttuO2a5t956i/T09MDr0ksvDRxLS0vjwgsvZNCgQaxcuZI77riDG2+8kW+//bZW667RKK2xSc6REEIIEfQazNjyRx99FOAPW3piYmJISko64rFp06aRmprKlClTADjppJNYsGABzz//PEOGDKnR+pZnao0yFIZNgiMhhBAi2DWYlqPjNXbsWJo0aULv3r2ZPn16hRm8Fy9ezODBgyuUHzJkCIsXL67VOpXVQOY5EkIIIYJfo3paP/bYY5x99tmEhYXx3Xff8be//Y2CggJuv/12ADIyMkhMTKxwTmJiInl5eRQXFxMaGlrpmm63u8LcTXl5eVWul0ZjKAU2WVdNCCGECHb12nJ0zz33HDGJuvxrw4YNx329Bx98kP79+9O9e3f++c9/MnHiRJ555pkTquOkSZOIjo4OvFJSUqp8Da3BhgFGo4pFhRBCiEapXp/WEyZMYOTIkccs06ZNm2pfv0+fPjz++OO43W5cLhdJSUlkZmZWKJOZmUlUVNQRW40A7r33XsaPHx/YzsvLq3KAFGg5kkVnhRBCiKBXr8FRQkICCQkJtXb9lStXEhsbG1jqpG/fvnz11VcVysyZM4e+ffse9RoulytwfrXpsmkGpFtNCCGECHYNpp9n586dZGVlsXPnTvx+PytXrgSgXbt2RERE8Pnnn5OZmcnpp59OSEgIc+bM4cknn+Suu+4KXOPWW2/llVdeYeLEiYwePZoffviB2bNn8+WXX9Zq3U0tOUdCCCFEQ9FggqOHHnqIt99+O7DdvXt3AH788UcGDhyIw+Fg6tSp3HnnnWitadeuHc899xw33XRT4JzU1FS+/PJL7rzzTl588UVatGjBG2+8UavD+AFMNDZlSHAkhBBCNABKlx/rLv5QXl4e0dHR5ObmEhUVddRy7uIi5rz5MChFntNJm8JCTvvr7diapdZhbYUQQggBx//8hkY4z1Ew0qYfm2EHm9xuIYQQItjJ07oOaG1iGDZQcruFEEKIYCdP67rgNzFsNsk5EkIIIRoACY7qhMZQBkomgRRCCCGCngRHdcDQfpRNRqsJIYQQDYEER3VBgzIMMCQ4EkIIIYKdBEd1wdQYyoaS4EgIIYQIepIEUweUBkNajoQQokHTWuPz+fD7/fVdFXEUDocDWw2ksEhwVCdMK9/IJrdbCCEaIo/HQ3p6OkVFRfVdFXEMSilatGhBRETECV1HntZ1QOnS0WoSHAkhRINjmiZpaWnYbDaaNWuG0+lEKVXf1RKH0Vqzf/9+du/eTfv27U+oBUme1nVBm1ZgJD9MQgjR4Hg8HkzTJCUlhbCwsPqujjiGhIQEtm/fjtfrPaHgSBKy64DSGptdgiMhhGjIDEMemcGuplr05JOuZRoNWoPDUd9VEUIIIcRxkOColmlt3WSb5BsJIYT4kxg4cCB33HFHrVy7devWvPDCC7Vy7TISHNUyjcYwNcouLUdCCCHq1siRI1FKceutt1Y6NnbsWJRSjBw5su4rFuQkOKoDCjAkOBJCCFEPUlJSmDVrFsXFxYF9JSUlzJw5k5YtW1b7umXzPlWHx+Op9vvWBQmOapnWujQh21XfVRFCCPEn1KNHD1JSUvj4448D+z7++GNatmxJ9+7dA/vcbje33347TZs2JSQkhDPOOIOlS5cGjs+bNw+lFF9//TU9e/bE5XKxYMECCgsLueGGG4iIiCA5OZkpU6ZUqkPr1q15/PHHueGGG4iKiuLmm28GYMGCBZx55pmEhoaSkpLC7bffTmFhYeC8ffv2cdFFFxEaGkpqairvvvtubdyiSiQ4qmUmVsuRcjjruypCCCFqgNaaIo+vSq8Srx+tNSVe/xG3j/elta5WnUePHs1bb70V2J4+fTqjRo2qUGbixIl89NFHvP322yxfvpx27doxZMgQsrKyKpS75557mDx5MuvXr6dr167cfffdzJ8/n//973989913zJs3j+XLl1eqw7PPPku3bt1YsWIFDz74IFu3bmXo0KEMGzaM1atX8/7777NgwQLGjRsXOGfkyJHs2rWLH3/8kQ8//JBXX32Vffv2VeseVIVkCdcyU2vsWmOT0WpCCNEoFHv9dH7o2yqfd2b7Jrx8TXfeX7qLq05L4ab//MbPmw9U6RrrHhtCmLPqj+7rrruOe++9lx07dgCwcOFCZs2axbx58wAoLCzktddeY8aMGZx//vkA/Pvf/2bOnDm8+eab3H333YFrPfbYY5x77rkAFBQU8Oabb/Lf//6Xc845B4C3336bFi1aVKrD2WefzYQJEwLbN954I9dee20gcbt9+/a89NJLnHXWWbz22mvs3LmTr7/+ml9//ZXTTjsNgDfffJOTTjqpyt9/VUlwVOu0NVpNco6EEOJP7efNB3h/6S5uOast/5q/tcqB0YlISEjgwgsvZMaMGWitufDCC2nSpEng+NatW/F6vfTv3z+wz+Fw0Lt3b9avX1/hWr169apwnsfjoU+fPoF9cXFxdOzYsVIdyp8HsGrVKlavXl2hq0xrHZiRfNOmTdjtdnr27Bk43qlTJ2JiYqp+A6pIgqPaVtoEqgy51UII0RiEOmyse2xIlc8zlMJlN/D6TW4e0IYR/VpjVrGbLNRR/VmfR48eHeiymjp1arWvEx4eXiPnFRQUcMstt3D77bdXKtuyZUs2bdpUrfepCfLErmUajUJh2KTlSAghGgOlVLW6tso4bNYsziEnEOhUx9ChQ/F4PCilGDKkYnDXtm1bnE4nCxcupFWrVgB4vV6WLl16zPmK2rZti8PhYMmSJYGRb9nZ2WzatImzzjrrmPXp0aMH69ato127dkc83qlTJ3w+H8uWLQt0q23cuJGcnJzj/I6rT4KjWmZq6wfJsNftD4EQQghRns1mC3SRHb7uWHh4OLfddht33303cXFxtGzZkqeffpqioiLGjBlz1GtGREQwZswY7r77buLj42natCn333//cS218s9//pPTTz+dcePGceONNxIeHs66deuYM2cOr7zyCh07dmTo0KHccsstvPbaa9jtdu644w5CQ0NP7EYcBwmO6oBCY5OWIyGEEPUsKirqqMcmT56MaZpcf/315Ofn06tXL7799ltiY2OPec1nnnmGgoICLrroIiIjI5kwYQK5ubl/WJeuXbsyf/587r//fs4880y01rRt25arrroqUOatt97ixhtv5KyzziIxMZH/+7//48EHHzz+b7ialK7uuMA/qby8PKKjo8nNzT3mfzJ3cRFz3nyYfJ+bmBIvg664lZB23eqwpkIIIWpCSUkJaWlppKamEhISUt/VEcdwrM/qeJ/fIPMc1TqNxlCytpoQQgjRUEhwVMu01iiFrK0mhBBCNBASHNU2ra3ENEMSsoUQQoiGQIKj2qbBUAbKJsGREEII0RBIcFTLtOm38o2U3GohhBCiIZAndm3TGqWUdKsJIYQQDYQER7VMmxpls0m3mhBCCNFASHBUyxQmNmUDWVtNCCGEaBAkOKplpjZR1kRH9V0VIYQQQhwHCY5qmWFqbIYdJZNACiGEEA2CBEe1TGsrOEKp+q6KEEKIP5mRI0eilOLWW2+tdGzs2LEopRg5cmTdVyzISXBUy5TWGHYbSMuREEKIepCSksKsWbMoLi4O7CspKWHmzJm0bNmy2tfVWuPz+WqiikFHgqNaZmgwlARHQggh6kePHj1ISUnh448/Duz7+OOPadmyJd27dw/sc7vd3H777TRt2pSQkBDOOOMMli5dGjg+b948lFJ8/fXX9OzZE5fLxYIFC8jPz+faa68lPDyc5ORknn/+eQYOHMgdd9wROPedd96hV69eREZGkpSUxPDhw9m3b1+la8+dO5devXoRFhZGv3792LhxY+3enKNoEMHR9u3bGTNmDKmpqYSGhtK2bVsefvhhPB5PhXKrV6/mzDPPJCQkhJSUFJ5++ulK1/rggw/o1KkTISEhdOnSha+++qp2K680yjBQMs+REEI0DlqDp7BqL2+JdZ635Mjbx/vSulpVHj16NG+99VZge/r06YwaNapCmYkTJ/LRRx/x9ttvs3z5ctq1a8eQIUPIysqqUO6ee+5h8uTJrF+/nq5duzJ+/HgWLlzIZ599xpw5c/j5559Zvnx5hXO8Xi+PP/44q1at4tNPP2X79u1H7M67//77mTJlCr/99ht2u53Ro0dX6/s9UQ2iOWPDhg2Ypsm//vUv2rVrx9q1a7npppsoLCzk2WefBSAvL4/zzjuPwYMHM23aNNasWcPo0aOJiYnh5ptvBmDRokVcc801TJo0ib/85S/MnDmTSy+9lOXLl3PKKafUSt0NDcpuk5wjIYRoLLxF8GSzqp/X9my4Yjosfwd6XA+zroGtP1TtGvftBWd4ld/6uuuu495772XHjh0ALFy4kFmzZjFv3jwACgsLee2115gxYwbnn38+AP/+97+ZM2cOb775JnfffXfgWo899hjnnnsuAPn5+bz99tvMnDmTc845B4C33nqLZs0q3p/yQU6bNm146aWXOO200ygoKCAiIiJw7IknnuCss84CrCDswgsvpKSkhJCQkCp/zyeiQQRHQ4cOZejQoYHtNm3asHHjRl577bVAcPTuu+/i8XiYPn06TqeTk08+mZUrV/Lcc88FgqMXX3yRoUOHBj7kxx9/nDlz5vDKK68wbdq0Wqm7YWoMm6NWri2EEKIB2fqDFRj1vx0WvlT1wOgEJCQkcOGFFzJjxgy01lx44YU0adLkUNW2bsXr9dK/f//APofDQe/evVm/fn2Fa/Xq1Svw9bZt2/B6vfTu3TuwLzo6mo4dO1Y4Z9myZTzyyCOsWrWK7OxsTNMEYOfOnXTu3DlQrmvXroGvk5OTAdi3b98J5UZVR4MIjo4kNzeXuLi4wPbixYsZMGAATqczsG/IkCE89dRTZGdnExsby+LFixk/fnyF6wwZMoRPP/30qO/jdrtxu92B7by8vCrVU6ExytVJCCFEA+cIs1pwqkrZwO4Cvwf6/R163wzaX/X3rqbRo0czbtw4AKZOnVrt64SHV63lqrCwkCFDhjBkyBDeffddEhIS2LlzJ0OGDKmUHuNwHGpMUKU9LmWBVF1qEDlHh9uyZQsvv/wyt9xyS2BfRkYGiYmJFcqVbWdkZByzTNnxI5k0aRLR0dGBV0pKSpXqatNIMrYQQjQmSlldW1V9OUKsc21O619HSNWvcQIpGkOHDsXj8eD1ehkyZEiFY23btsXpdLJw4cLAPq/Xy9KlSyu07ByuTZs2OByOConbubm5bNq0KbC9YcMGDh48yOTJkznzzDPp1KlThWTsYFSvwdE999yDUuqYrw0bNlQ4Z8+ePQwdOpQrr7ySm266qdbreO+995Kbmxt47dq1q4pX0CjpVhNCCFHPbDYb69evZ926ddgOW7UhPDyc2267jbvvvptvvvmGdevWcdNNN1FUVMSYMWOOes3IyEhGjBjB3XffzY8//sjvv//OmDFjMAwj0PLTsmVLnE4nL7/8Mtu2beOzzz7j8ccfr9Xv9UTVa5PGhAkT/nDyqTZt2gS+3rt3L4MGDaJfv368/vrrFcolJSWRmZlZYV/ZdlJS0jHLlB0/EpfLhcvl+sPv5WiUBsMuLUdCCCHqX1RU1FGPTZ48GdM0uf7668nPz6dXr158++23xMbGHvOazz33HLfeeit/+ctfiIqKYuLEiezatSuQRJ2QkMCMGTO47777eOmll+jRowfPPvssF198cY1+bzVJaV3NcYF1bM+ePQwaNIiePXvy3//+t1LU+9prr3H//feTmZkZ6LO87777+PjjjwOtT1dddRVFRUV8/vnngfP69etH165djzshOy8vj+joaHJzc4/5n8xdXMScNx/Gn7mHkwdeQrtzrqrqtyyEECIIlJSUkJaWRmpqap2PmmqICgsLad68OVOmTDlmq1NtONZndbzPb2ggOUd79uxh4MCBtGzZkmeffZb9+/eTkZFRIVdo+PDhOJ1OxowZw++//87777/Piy++WCEB+x//+AfffPMNU6ZMYcOGDTzyyCP89ttvgQS12qAUGI7qtzwJIYQQwWzFihW89957bN26leXLl3PttdcCcMkll9RzzaqvQfT3zJkzhy1btrBlyxZatGhR4VhZw1d0dDTfffcdY8eOpWfPnjRp0oSHHnooMIwfrFaimTNn8sADD3DffffRvn17Pv3001qb48iisDsk50gIIUTj9eyzz7Jx40acTic9e/bk559/rjBVQEPTYLrVgkVVu9X0gXS6nX8DLfucV4e1FEIIUVOkW63h+FN1qzVkWilsNrnNQgghREMhT+1appQhM2QLIYQQDYgER7XMCo4aRGqXEEIIIZDgqPYpJfMcCSGEEA2IBEe1zVDSciSEEEI0IBIc1TKrW832xwWFEEIIERQkOKplShnYJCFbCCGEaDAkOKpthiRkCyGEqB8jR44MLOTucDhITU1l4sSJlJSUBMqUX+w9PDyc9u3bM3LkSJYtW1bhWvPmzUMpRU5OTmDf3r176dKlCwMGDCA3N7dCmfLvfaRX69at6+guVJ0ER7VNgU1myBZCCFFPhg4dSnp6Otu2beP555/nX//6Fw8//HCFMm+99Rbp6en8/vvvTJ06lYKCAvr06cN//vOfo15369atnHHGGbRq1Ypvv/2W6OjoCsdffPFF0tPTA6/y75Oens7SpUtr/putIdKkUcuUsmGTliMhhBD1xOVykZSUBEBKSgqDBw9mzpw5PPXUU4EyMTExgTKtW7fmvPPOY8SIEYwbN46LLrqI2NjYCtdcvXo1Q4YM4eyzz+btt9/GfoRR2dHR0ZUCpvLvE8yk5ai2GYYER0II0YhorSnyFlXpVeIrQWtNia/kiNvH+zrRFb/Wrl3LokWLcDqdf1j2zjvvJD8/nzlz5lTYv2jRIs466yyGDRvGf//73yMGRg1d4/uOgoxhGChDbrMQQjQWxb5i+szsU+Xz+jbryzMDnuHjzR9zefvLuf3H21m8d3GVrrFk+BLCHGFVOueLL74gIiICn8+H2+3GMAxeeeWVPzyvU6dOAGzfvr3C/ssuu4yrrrrquK7RUEnLUS0zDBvIUH4hhPjTW7x3MR9v/phRp4zi480fVzkwqq5BgwaxcuVKlixZwogRIxg1ahTDhg37w/PKWqmUUhX2X3LJJXzyySf8/PPPtVLfYCBNGrXMMAyQbjUhhGg0Qu2hLBm+pMrnGcrAZXPh9XsZefJIrul0DaY2q/zeVRUeHk67du0AmD59Ot26dePNN99kzJgxxzxv/fr1AKSmplbY/69//YuJEydy/vnn89VXXzFgwIAq1ynYyVO7lhmGHWVIy5EQQjQWSqkqd22V5yid+y7EHlJTVTpuhmFw3333MX78eIYPH05o6NGDrRdeeIGoqCgGDx5cYb9Sitdffx3DMLjgggv48ssvOeuss2q76nVKutVqmaEAJbdZCCFEcLjyyiux2WxMnTo1sC8nJ4eMjAx27NjBnDlzuOKKK5g5cyavvfYaMTExla6hlGLatGnccMMNXHDBBcybN6/uvoE6IC1HtcywO6RbTQghRNCw2+2MGzeOp59+mttuuw2AUaNGARASEkLz5s0544wz+PXXX+nRo8dRr6OUYurUqRiGwYUXXsgXX3xRKT+poVL6RMcF/snk5eURHR1Nbm4uUVFRRy3nLi5izpsPExsaQf9RD4IhrUdCCNEQlZSUkJaWRmpqKiEhdd8VJo7fsT6r431+g3Sr1TqbzSaBkRBCCNGAyFO7lsm6akIIIUTDIsFRLbPZ/3gWUiGEEEIEDwmOapksOiuEEEI0LBIc1SIDQIIjIYQQokGR4Kg2KVA2CY6EEEKIhkSCo1qklJLgSAghhGhgJDiqVUpyjoQQQogGRoKjWmQoA2WT0WpCCCFEQyLBUS1SgM0uLUdCCCH+fJRSfPrpp/VdjWqR4Kg2GQbY5RYLIYSoHyNHjrTyX5XC4XCQmprKxIkTKSkpqe+qBTWZvrkWKcPAZsgtFkIIUX+GDh3KW2+9hdfrZdmyZYwYMQKlFE899VR9Vy1oSbNGLVKGHcOw1Xc1hBBC/Im5XC6SkpJISUnh0ksvZfDgwcyZMweAgwcPcs0119C8eXPCwsLo0qUL7733XoXzBw4cyO23387EiROJi4sjKSmJRx55pEKZzZs3M2DAAEJCQujcuXPg+uWtWbOGs88+m9DQUOLj47n55pspKCgIHB85ciSXXnopTz75JImJicTExPDYY4/h8/m4++67iYuLo0WLFrz11ls1f5MOI80atUgZCiU5R0II0ahordHFxVU7yTBQLhfa7QbTrLx9nFRoKEqpKtb4kLVr17Jo0SJatWoFWKvY9+zZk3/+859ERUXx5Zdfcv3119O2bVt69+4dOO/tt99m/PjxLFmyhMWLFzNy5Ej69+/Pueeei2maXH755SQmJrJkyRJyc3O54447KrxvYWEhQ4YMoW/fvixdupR9+/Zx4403Mm7cOGbMmBEo98MPP9CiRQt++uknFi5cyJgxY1i0aBEDBgxgyZIlvP/++9xyyy2ce+65tGjRotr34Y9IcFRLDKVQyoZdgiMhhGhUdHExG3v0rPJ54f370XzKFHI++oiYYcPYPXYshQsXVekaHZcvQ4WFVemcL774goiICHw+H263G8MweOWVVwBo3rw5d911V6Ds3//+d7799ltmz55dITjq2rUrDz/8MADt27fnlVdeYe7cuZx77rl8//33bNiwgW+//ZZmzZoB8OSTT3L++ecHzp85cyYlJSX85z//ITw8HIBXXnmFiy66iKeeeorExEQA4uLieOmllzAMg44dO/L0009TVFTEfffdB8C9997L5MmTWbBgAVdffXWV7kNVSHBUS+w2Gyc1SSY+Mra+qyKEECIIFC5cRM5HHxE/ZgwH33yzyoFRdQ0aNIjXXnuNwsJCnn/+eex2O8OGDQPA7/fz5JNPMnv2bPbs2YPH48HtdhN2WADWtWvXCtvJycns27cPgPXr15OSkhIIjAD69u1bofz69evp1q1bIDAC6N+/P6ZpsnHjxkBwdPLJJ2MYhzJ+EhMTOeWUUwLbNpuN+Pj4wHvXFgmOalFMSDiGzJAthBCNigoNpePyZVU/sawrzeslbvRoYq+9tkpdamXvXVXh4eG0a9cOgOnTp9OtWzfefPNNxowZwzPPPMOLL77ICy+8QJcuXQgPD+eOO+7A4/FUuIbjsAmNlVKYVaz78TjS+9TVe5cnwVFtUoY1nF8IIUSjoZSqctdWBaUPexUSUkM1On6GYXDfffcxfvx4hg8fzsKFC7nkkku47rrrADBNk02bNtG5c+fjvuZJJ53Erl27SE9PJzk5GYBffvmlUpkZM2ZQWFgYaD1auHBhoPss2MiTu7YYBkZ4GEboCfwACSGEEDXsyiuvxGazMXXqVNq3b8+cOXNYtGgR69ev55ZbbiEzM7NK1xs8eDAdOnRgxIgRrFq1ip9//pn777+/Qplrr72WkJAQRowYwdq1a/nxxx/5+9//zvXXXx/oUgsmEhzVEmXYcLVpixERXd9VEUIIIQLsdjvjxo3j6aefZsKECfTo0YMhQ4YwcOBAkpKSuPTSS6t0PcMw+OSTTyguLqZ3797ceOONPPHEExXKhIWF8e2335KVlcVpp53GFVdcwTnnnBNIDA82Smut67sSf2T79u08/vjj/PDDD2RkZNCsWTOuu+467r//fpxOZ6BMampqpXMXL17M6aefHtj+4IMPePDBB9m+fTvt27fnqaee4oILLjjuuuTl5REdHU1ubi5RUVEn/s0JIYQIaiUlJaSlpZGamkpIPXSFieN3rM+qKs/vBpFztGHDBkzT5F//+hft2rVj7dq13HTTTRQWFvLss89WKPv9999z8sknB7bj4+MDXy9atIhrrrmGSZMm8Ze//IWZM2dy6aWXsnz58grZ8EIIIYT482oQLUdH8swzz/Daa6+xbds24FDL0YoVKzj11FOPeM5VV11FYWEhX3zxRWDf6aefzqmnnsq0adOO632l5UgIIf5cpOWo4aiplqMGm3OUm5tLXFxcpf0XX3wxTZs25YwzzuCzzz6rcGzx4sUMHjy4wr4hQ4awePHio76P2+0mLy+vwksIIYQQjVeDDI62bNnCyy+/zC233BLYFxERwZQpU/jggw/48ssvOeOMM7j00ksrBEgZGRmVsuITExPJyMg46ntNmjSJ6OjowCslJaXmvyEhhBBCBI16DY7uuecea76IY7w2bNhQ4Zw9e/YwdOhQrrzySm666abA/iZNmjB+/Hj69OnDaaedxuTJk7nuuut45plnTqiO9957L7m5uYHXrl27Tuh6QgghhAhu9ZqQPWHCBEaOHHnMMm3atAl8vXfvXgYNGkS/fv14/fXX//D6ffr0qbAycFJSUqX5GzIzM0lKSjrqNVwuFy6X6w/fSwghROPWQFN0/1Rq6jOq1+AoISGBhISE4yq7Z88eBg0aRM+ePXnrrbcqrL1yNCtXrgzM1gnWWi9z586tsFrwnDlzKq0BI4QQQpQpW76iqKiI0Gos3yHqTtmyJzab7YSu0yCG8u/Zs4eBAwfSqlUrnn32Wfbv3x84Vtbq8/bbb+N0OunevTsAH3/8MdOnT+eNN94IlP3HP/7BWWedxZQpU7jwwguZNWsWv/3223G1QgkhhPhzstlsxMTEBBY7DQsLQylVz7UShzNNk/379xMWFobdfmLhTYMIjubMmcOWLVvYsmULLVq0qHCsfBPa448/zo4dO7Db7XTq1In333+fK664InC8X79+zJw5kwceeID77ruP9u3b8+mnn8ocR0IIIY6p7A/x2l4NXpwYwzBo2bLlCQevDXaeo/oi8xwJIcSfl9/vx+v11nc1xFE4nc6jpt00uhmyhRBCiGBgs9lOOJ9FBL8GOc+REEIIIURtkeBICCGEEKIcCY6EEEIIIcqRnKMqKstflzXWhBBCiIaj7Ll9POPQJDiqooMHDwLIGmtCCCFEA5Sfn090dPQxy0hwVEVxcXEA7Ny58w9vrqg9eXl5pKSksGvXLplSoZ7IZ1D/5DOof/IZBIfj+Ry01uTn59OsWbM/vJ4ER1VUNn9CdHS0/CAEgaioKPkc6pl8BvVPPoP6J59BcPijz+F4GzUkIVsIIYQQohwJjoQQQgghypHgqIpcLhcPP/wwLpervqvypyafQ/2Tz6D+yWdQ/+QzCA41/TnI2mpCCCGEEOVIy5EQQgghRDkSHAkhhBBClCPBkRBCCCFEORIcVdHUqVNp3bo1ISEh9OnTh19//bW+q9Ro/fTTT1x00UU0a9YMpRSffvppheNaax566CGSk5MJDQ1l8ODBbN68uX4q20hNmjSJ0047jcjISJo2bcqll17Kxo0bK5QpKSlh7NixxMfHExERwbBhw8jMzKynGjc+r732Gl27dg3M39K3b1++/vrrwHG5/3Vv8uTJKKW44447Avvkc6h9jzzyCEqpCq9OnToFjtfkZyDBURW8//77jB8/nocffpjly5fTrVs3hgwZwr59++q7ao1SYWEh3bp1Y+rUqUc8/vTTT/PSSy8xbdo0lixZQnh4OEOGDKGkpKSOa9p4zZ8/n7Fjx/LLL78wZ84cvF4v5513HoWFhYEyd955J59//jkffPAB8+fPZ+/evVx++eX1WOvGpUWLFkyePJlly5bx22+/cfbZZ3PJJZfw+++/A3L/69rSpUv517/+RdeuXSvsl8+hbpx88smkp6cHXgsWLAgcq9HPQIvj1rt3bz127NjAtt/v182aNdOTJk2qx1r9OQD6k08+CWybpqmTkpL0M888E9iXk5OjXS6Xfu+99+qhhn8O+/bt04CeP3++1tq65w6HQ3/wwQeBMuvXr9eAXrx4cX1Vs9GLjY3Vb7zxhtz/Opafn6/bt2+v58yZo8866yz9j3/8Q2stPwd15eGHH9bdunU74rGa/gyk5eg4eTweli1bxuDBgwP7DMNg8ODBLF68uB5r9ueUlpZGRkZGhc8jOjqaPn36yOdRi3Jzc4FDawwuW7YMr9db4XPo1KkTLVu2lM+hFvj9fmbNmkVhYSF9+/aV+1/Hxo4dy4UXXljhfoP8HNSlzZs306xZM9q0acO1117Lzp07gZr/DGRtteN04MAB/H4/iYmJFfYnJiayYcOGeqrVn1dGRgbAET+PsmOiZpmmyR133EH//v055ZRTAOtzcDqdxMTEVCgrn0PNWrNmDX379qWkpISIiAg++eQTOnfuzMqVK+X+15FZs2axfPlyli5dWumY/BzUjT59+jBjxgw6duxIeno6jz76KGeeeSZr166t8c9AgiMhxHEZO3Ysa9eurdDHL+pGx44dWblyJbm5uXz44YeMGDGC+fPn13e1/jR27drFP/7xD+bMmUNISEh9V+dP6/zzzw983bVrV/r06UOrVq2YPXs2oaGhNfpe0q12nJo0aYLNZquU+Z6ZmUlSUlI91erPq+yey+dRN8aNG8cXX3zBjz/+SIsWLQL7k5KS8Hg85OTkVCgvn0PNcjqdtGvXjp49ezJp0iS6devGiy++KPe/jixbtox9+/bRo0cP7HY7drud+fPn89JLL2G320lMTJTPoR7ExMTQoUMHtmzZUuM/CxIcHSen00nPnj2ZO3duYJ9pmsydO5e+ffvWY83+nFJTU0lKSqrweeTl5bFkyRL5PGqQ1ppx48bxySef8MMPP5CamlrheM+ePXE4HBU+h40bN7Jz5075HGqRaZq43W65/3XknHPOYc2aNaxcuTLw6tWrF9dee23ga/kc6l5BQQFbt24lOTm55n8Wqpk0/qc0a9Ys7XK59IwZM/S6dev0zTffrGNiYnRGRkZ9V61Rys/P1ytWrNArVqzQgH7uuef0ihUr9I4dO7TWWk+ePFnHxMTo//3vf3r16tX6kksu0ampqbq4uLiea9543HbbbTo6OlrPmzdPp6enB15FRUWBMrfeeqtu2bKl/uGHH/Rvv/2m+/btq/v27VuPtW5c7rnnHj1//nydlpamV69ere+55x6tlNLfffed1lruf30pP1pNa/kc6sKECRP0vHnzdFpaml64cKEePHiwbtKkid63b5/WumY/AwmOqujll1/WLVu21E6nU/fu3Vv/8ssv9V2lRuvHH3/UQKXXiBEjtNbWcP4HH3xQJyYmapfLpc855xy9cePG+q10I3Ok+w/ot956K1CmuLhY/+1vf9OxsbE6LCxMX3bZZTo9Pb3+Kt3IjB49Wrdq1Uo7nU6dkJCgzznnnEBgpLXc//pyeHAkn0Ptu+qqq3RycrJ2Op26efPm+qqrrtJbtmwJHK/Jz0BprfUJtmwJIYQQQjQaknMkhBBCCFGOBEdCCCGEEOVIcCSEEEIIUY4ER0IIIYQQ5UhwJIQQQghRjgRHQgghhBDlSHAkhBBCCFGOBEdCCCGEEOVIcCSEEDVMKcWnn35a39UQQlSTBEdCiCMaOXIkSikmT55cYf+nn36KUqqeamVRSh3xNWvWrHqtV5n09HTOP//8+q4GM2bMICYmpr6rIUSDI8GREOKoQkL+v717DYlqa+MA/i9HG3XU0ZQZTfCSt8HLZBml5RXzAkkGUlhZajehMKnRCvOSkrdAzVIEByY/lBGlUFBDoGlmN00tEjPUjKJMSy0UMkfX+dDrft1Hfc/UOb1dzvODDXuvtfeznjUf5GHtNaMQ+fn5GB4e/tGpzKJSqfDmzRveERkZ+UNz+vz5MwBAKpVi0aJFPzQXQsi3o+KIEDKv4OBgSKVS5ObmztmfmZmJZcuW8dqKi4tha2vLXcfGxiIyMhI5OTmQSCQQi8XIysqCRqNBcnIyzMzMYG1tDZVK9VW5icViSKVS3iEUCgEA8fHx8PDwwPj4OIAvRYunpye2b98OAOjr6+NWmnx8fCAUCuHm5oaGhgbeGE+ePEF4eDhEIhEkEgliYmLw7t07rj8gIAD79+9HUlISzM3NERoaCoD/Wm16rIsXL8LX1xf6+vpYuXIlnj17hubmZnh5eUEkEiE8PByDg4O88ZVKJWQyGYRCIVxcXFBWVsb1Tcetrq5GYGAgDAwMIJfLcffuXQBAfX094uLi8OHDB25lLTMzEwBQVlYGR0dHCIVCSCQSREVFfdVnT8jvjoojQsi8dHR0kJOTg9OnT+PVq1ffHKeurg6vX7/GrVu3UFhYiIyMDKxfvx6mpqa4f/8+EhISsHfv3r81xkwlJSUYGxvDkSNHAACpqakYGRnBmTNnePclJyfj0KFDaGtrg7e3NyIiIvD+/XsAwMjICIKCguDp6YmWlhao1Wq8ffsWmzZt4sWorKyEnp4empqaUF5ePm9OGRkZOHbsGFpbWyEQCLBlyxakpKTg1KlTaGxsRHd3N9LT07n7z507h/T0dJw4cQKdnZ3IyclBWloaKisreXFTU1OhUCjQ3t4OJycnREdHQ6PRwMfHB8XFxTA2NuZW1hQKBVpaWpCYmIisrCx0dXVBrVbDz8/vb33ehPx2GCGEzGHHjh1sw4YNjDHGVq9ezeLj4xljjNXU1LDpPx0ZGRlMLpfznisqKmI2Nja8ODY2NmxycpJrc3Z2Zr6+vty1RqNhhoaGrKqqSqvcADChUMgMDQ15x4sXL7h77ty5w3R1dVlaWhoTCASssbGR63v+/DkDwPLy8ri2iYkJZm1tzfLz8xljjGVnZ7OQkBDeuC9fvmQAWFdXF2OMMX9/f+bp6TlnfjU1NbyxlEol119VVcUAsNraWq4tNzeXOTs7c9dLly5l58+f58XNzs5m3t7e88bt6OhgAFhnZydjjDGVSsVMTEx4MS5fvsyMjY3Zx48fZ+VNCPlC8MOqMkLILyM/Px9BQUFQKBTf9LyrqysWLvzvQrVEIoGbmxt3raOjg8WLF2NgYEDrmEVFRQgODua1WVlZcefe3t5QKBTIzs7G4cOHsXbt2lkxvL29uXOBQAAvLy90dnYCAB49eoSbN29CJBLNeq6npwdOTk4AgBUrVmiVr4eHB3cukUgAAO7u7ry26fmPjY2hp6cHO3fuxO7du7l7NBoNTExM5o1raWkJABgYGICLi8uceaxbtw42Njawt7dHWFgYwsLCsHHjRhgYGGg1D0L+Dag4IoT8JT8/P4SGhuLo0aOIjY3l2hcuXAjGGO/eiYmJWc/r6uryrhcsWDBn29TUlNY5SaVSODg4zNs/NTWFpqYm6OjooLu7W+u400ZHRxEREYH8/PxZfdNFCAAYGhpqFW/mfKe/7ffntun5j46OAgAqKiqwatUqXhwdHZ2/jPu/PkcjIyO0traivr4eN27cQHp6OjIzM9Hc3EzfbCPkP2jPESFEK3l5ebh69Sq34RcALCws0N/fzyuQ2tvbf0B2s508eRJPnz5FQ0MD1Gr1nBu+7927x51rNBo8fPgQMpkMALB8+XJ0dHTA1tYWDg4OvEPbguhbSSQSWFlZobe3d9bYdnZ2WsfR09PD5OTkrHaBQIDg4GAUFBTg8ePH6OvrQ11d3T85BUJ+abRyRAjRiru7O7Zu3YqSkhKuLSAgAIODgygoKEBUVBTUajWuX78OY2Pj757PyMgI+vv7eW1GRkYwNDREW1sb0tPTcenSJaxZswaFhYU4cOAA/P39YW9vz91fWloKR0dHyGQyFBUVYXh4GPHx8QCAffv2oaKiAtHR0UhJSYGZmRm6u7tx4cIFKJXKWSs4/7Tjx48jMTERJiYmCAsLw/j4OFpaWjA8PIyDBw9qFcPW1hajo6Oora2FXC6HgYEB6urq0NvbCz8/P5iamuLatWuYmpqCs7Pzd50PIb8SWjkihGgtKyuL98pGJpOhrKwMpaWlkMvlePDgwTfvS/pacXFxsLS05B2nT5/Gp0+fsG3bNsTGxiIiIgIAsGfPHgQGBiImJoa3kpKXl4e8vDzI5XLcvn0bV65cgbm5OYAv+5eampowOTmJkJAQuLu7IykpCWKxmLd/6nvZtWsXlEolVCoV3N3d4e/vj7Nnz37VypGPjw8SEhKwefNmWFhYoKCgAGKxGNXV1QgKCoJMJkN5eTmqqqrg6ur6HWdDyK9lAfvzhgFCCPnN9fX1wc7ODm1tbbN+p4kQQmjliBBCCCFkBiqOCCE/lZycHIhEojmPn+H/lRFCfn/0Wo0Q8lMZGhrC0NDQnH36+vpYsmTJ/zkjQsi/DRVHhBBCCCEz0Gs1QgghhJAZqDgihBBCCJmBiiNCCCGEkBmoOCKEEEIImYGKI0IIIYSQGag4IoQQQgiZgYojQgghhJAZqDgihBBCCJnhD2FhMSQAsex8AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# until 25\n", + "limit = 25\n", + "\n", + "sns.lineplot(\n", + " data=results, x=\"Num_Experiments\", y=\"Efficiency_CumBest\", hue=\"Scenario\", marker=\"x\"\n", + ")\n", + "plt.plot([0.5, N_DOE_ITERATIONS+0.5], [max_yield, max_yield], \"--r\", alpha=0.4)\n", "plt.legend(loc=\"lower right\")\n", "import matplotlib.pyplot as plt\n", "\n", "plt.xlim(0, N_DOE_ITERATIONS+1)\n", - "plt.savefig(\"./AA1000_simulation_10MC_50exp_1batch.png\")" + "plt.savefig(f\"./img/{exp_dataset_name}_simulation_{N_MC_ITERATIONS}MC_{N_DOE_ITERATIONS}exp_{BATCH_SIZE}batch_first25.png\")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGxCAYAAABoYBJuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACIRUlEQVR4nOzdd3wVVdrA8d+Z29IrIQkQehMFpBtQBETBthbWVWw064vrIli3yKqrsCp2VtdVwN0Vsbt2jSgqvfcOoacA6e3m3jvn/WOSSwIBSUi5ic/387mSmTl37smMyTw55znnKK21RgghhBBCAGA0dAWEEEIIIQKJBEdCCCGEEBVIcCSEEEIIUYEER0IIIYQQFUhwJIQQQghRgQRHQgghhBAVSHAkhBBCCFGBBEdCCCGEEBXYG7oCjY1pmhw6dIjw8HCUUg1dHSGEEEKcBq01+fn5tGjRAsM4dduQBEfVdOjQIZKSkhq6GkIIIYSogf3799OqVatTlpHgqJrCw8MB6+JGREQ0cG2EEEIIcTry8vJISkryP8dPRYKjairvSouIiJDgSAghhGhkTiclRhKyhRBCCCEqkOBICCGEEKICCY6EEEIIISqQ4EgIIYQQogIJjoQQQgghKpDgSAghhBCiAgmOhBBCCCEqkOBICCGEEKICCY6EEEIIISpoVMHRTz/9xJVXXkmLFi1QSvHJJ59UOq615tFHHyUxMZHg4GCGDx/Ojh07KpXJysripptuIiIigqioKCZMmEBBQUE9fhdCCCGECGSNKjgqLCykZ8+ezJw5s8rjTz/9NC+99BKvvfYay5YtIzQ0lBEjRlBSUuIvc9NNN7Fp0yZSUlL4/PPP+emnn7jjjjvq61sQQgghRIBTWmvd0JWoCaUUH3/8MVdffTVgtRq1aNGCKVOmcP/99wOQm5tLfHw8c+bM4YYbbmDLli1069aNFStW0LdvXwC+/vprLrvsMg4cOECLFi1+8XPz8vKIjIwkNzdX1lYTQgghGonqPL+bzMKzqamppKenM3z4cP++yMhIBgwYwJIlS7jhhhtYsmQJUVFR/sAIYPjw4RiGwbJly7jmmmtqXgGv9+THlAKb7fTKAtgr3JamXNbng1PF5oFQ1maz7h+AaVqvQC5rGNYrUMpqbV3jQC5bnZ/PQCgLgfez3EC/I7RhoN1utNeLERSEJyMDMy8PIyQER2IinrQ0zKIi/3n9+w8cwCwsrLocYEREHNufn48RHHxsu7AIExMjJARXi5YUpx/CU1SAIzSc4MSWFO/fi6cw338uR2g4wS2TKD64H09JEY6wCGt7/148+blVlyvMxxERRXCr1tZ2fq7/Z+6EcqHhBLduS/GhA9bnmiaO4NATy5RvFxf6fzYcwaFWnQ/up7QgD0dYBCEtkyjYvwd3QS6mAVopgsKjiGjZlty9OyjMPUpoZCyRSR3I3b+LwtyjZRfNIDQ6ztq/dweF2YerLBcaGUtkm07kHky1zhURQ2SLtpXPVV4uqYNVLj/b2m7Vntw926sut38XHu0jrlP3sv85yn7u7TULc5pMcJSeng5AfHx8pf3x8fH+Y+np6TRv3rzScbvdTkxMjL/M8dxuN26327+dl5dXdQVmzTp55Vq3hpEjj23/+98n/wWRmAhXXnlse+5cqNAtWElcHFQM6N57D06WPxUdDdddd2z7448hO7vqsmFh6NGjj/1O+t+nqCOHgWO/p8qf1doVBLfeemzfl1+iD6X5T+Uvp7H+Jx0//ti+b76FfftOLFf+3jvvOLZv/vewe3fV5RQwfjzaZv3vrH76CbZv95fRaIyyN/q0pviGmzCCgwlx2mDxYkrXb8TtM3HaDFx2Aw0UlHjx+DS+66+nWYtmKCB3wc+4V68j2GEjPMiO1nCkwE2x10eQzaDZ+FswYqLZe7SInIVLabV7M7GhTrSGQ7nFALSIDEYp2Dv4EvbawkiKDqbdwZ3opcs4lFtMUamPEKfNX+5IgZud/YcS37Ud7ZqFYm7aTNqX31VZLrvIg+uKy2h9bldMDTsWriZh9VIighyVykSHOGgW5kJfNJyMZi3YnllAu9x0klYvBk4sB3CgZ392x7Sy6lt0FL7+uspyRwrc7Onai9j+vWjXLBQOHeLIvA+rLAfQ7KLB0LMnqUcKSd+1n06LUiqVyS7ylH2fQai+fUnveDbbMvLp4vKS8M1naK3Zl1VMgdv6eWodE0J4kJ2sjl1ZGNuRAe1jiaeUvNn/YffhYz8b7eNCiQhykFfsYXV4C7qOupSEyCDSMnLY98JroDWd40KJDg8iKzuf7fuP0jkhkpiB/dgf15JFK7ZjKy6m/cIU2rWMIbpDW7K37mBfahqt2yYQ3bUzh3PyWeIN9n/mBUd2E921M9lbt7NvT7q/XPbW7WzLdpPZuRu9+3Sl1fALyX7wEfalHqJ1m/hj79lr/Y5yh0eQeON1JA2/kH3fLeDIv2bTNjGGmHO6kbV2PYd27QPThzJ9RESHE3bVVURe/zsOfP8jSUcyKExJIW/vPgqK3ShAaU2o005o1y6EzZxJ2rffkXjJcAruvpv8rVsodJcCmmCng6i27QkbPJis3TuI/ttTHHntNfYt/RHH7lScpaVoNDabQVS7jsQPG0n+ti2E9+zFtsw97F22AK/XpHlmFi63B5uhiGnXhYSLLiV/22bCu3Qjff5XbHJn4fOaGKYm9mguoW4Pke06EX/plRRsWE/YOd05+vFHuLfvID8i0n99Y9q2IW7kSIpWryakd2+y3n+f0l27/cdzIiNBKUIHDaTlNddQ+t57VZYDyI2IIOSC82k5YwbFr7xCeEJCleWcHdoTNW8exYuXEzZqFBnXXotesZLjFXdoT/R111FiGITdeiv777gD3/zvCTrud3t5OXP1alyPPsr+O+6gcNFiXCUlBFcoW7FcUO/eHFq2jLw1a606ud2EFBefUKa8/gWhoXgdDqtsaSlRiQn+csHHXY/CkBA8TicABd3PIXHQIOzHXd/y3JyikBDynE7yBg2k5aRJ2F/8V5XlioHigck0nzUL3/yfCR84kKxhwyqVKS/n69CeqOnT8W3fTvioURy89VZs3/9QZbno664jy3TDfeeA6YV1X8HHn8HvRkB4C0jqCwdWnXBvTqbJBEd1Zdq0aTz22GMNXY2TMk0NCrSp2ZmeT8ahI4S6bPRoFQXAz9sPszeriCxnJln2DfzpsrPQwPKtmQyMsf4Xm7diPzszC9BotIZWSXHcMsr6i+3tZfu4xevD8JrMXZ7KjsxclDLp2DycG/t1JM/M4c35P3Jdn/YkhCbw+verObIz1V+/jnGR3Ni3K3mleSw/kEXn7L0khrVg4nspGN98Q4vco3SMi+LGPmejFGQWZrJ6fwbnJjUnzuPB1DDxg88wU1IYZtOM7t0TpeBg/kFWH0ijZ8vmtI5ojae0lN9/NheUyT+iW2L4vGw+upn1aQc4OyGR7s26o4F31//Is/lLKXUqzm99FjOj+2AzTHYd3c45cZ0pNX3M2/Adu7IOAvCF7wfO7dSHly6/j2AnpBbtKivnqVQOIDvxCNOv/yPxEYpUzya6BSlKfR7e3fAdu7IOANAhphXXdx9OfIRiTe4K+odfSInXzQdrv2RX1kHKYj86xLTkuh4XE+HU5BavpKerJcUeGy98+w9syxajtMbQ0K5ZElf2Gkm4O5+0w9toUdSfktJiHn9vGhnLf2bAoRzOadWefp2H+cuEJ3TCExTN/358lf+lbaOw2ENCVhHXuMMY2ucyQnMzyTi0jdDELniDEliw8ku+XPlv0mJCAbgovjNjXV0JzckkI61yuT2H9rBtcxQHfgqjf7d+TBw8/oRyP678ktRDewAIKlrP7856idhDO0hd8z9CDxfjdbVixcLPObxvNw6vicOnSdXQfNMQOk57CbXlJ+L6DCDtsw85vGsLWmsU1msPENOhG4lT/sh5e5bQrONItk59ED77H0HWjwpoSNdQ1KEr8Vdcw7n71hJhDGf3PZMo+HEBrbLysJngBrLKful2zz9ISKd4MmfMoHB3KucCaE1Ubi6lQHZZOVfOUUI6tCV77tuU7NtPl9BQ//8fpTk5x8rlZvnLle7aTSuHneiVCyicCwcGDaRVr164sg9XKpNQdh6v3UbBqp85MGggSTNmEPvRu4R26UT23Ll4du0mrsLvB5/NRua2baBN2k6YQP4dd1D4/Q/YgEgqKziwH9+775I0YQJH33yT4u+/x+4zK5UrOpCGLSSEuJEjOfrue2S/MYtwIDw/H1vF1rmMNRRFNCPy/PPJX7YMFi2mTdmhsIIi7N6ysplrKYqMI/L88ylYuBCWr6VVZJT/NKGFJTg8XlizkaK4RCLKynm3bqdCOxsAhVs2E5KYSPj555O3dAk5+3eD89jxnBBAQc6axYQnNCf6JOXKy2avWUzQ55/S/IoryJv1ZpXlivbvxvz6S+Juv5PM//6bw9s3EHJcmfJyjvXriJnxHJmff8rBNYsJDTqxAba8XMT553P42685uGYxhEAIoM2qy+UtXULaxhV4QqyAJ1gBvhPLlNc/LxhKy+oYZAAnKQdWWbf1twrFm1cTER5G+Pnnk790CbnHXY/8ICgJgtw1iwmdfw6xJykHkL9lLfbPPyVuwgSOvvxilWUAivfvRv30I7F/+jOH//tv0jesIOYk5Zzr19Fs4j1g+mDu72DjfNjsAdt7VqEOw+CSF05880k0meAoIcH61ZGRkUFiYqJ/f0ZGBueee66/TGZmZqX3eb1esrKy/O8/3iOPPMLkyZP923l5eSQlJZ1YcPz4k1euvLmjXFlLC8DhvBKW7D5Kh7hQurWIZNOhXLav2YvP9FLsK6D9ef04r207Unas5cfduzireQKjzx3IK4vm886qDeQ+/SQD27bh5Wt+y94r2vHp5gJGdOlMp9YXct/nb7GkxUFo6QWVjrnvWdK/OosXLvs93tHtKU1MZkrKMyxhJSgvSvnA8ILyseaHTJ4Z+iSuZj/j6XslD/38EEuDl1b6Npa3yOPvF/ydhNRPiQvtxeSf7mF5j8XQg+PKFfH3C/7OkR0fc0FYNFN+uoc15hKMizRrdXkZNzMunEF0aSkFq/5LdNdr0ZQy9evJpGYvxuit+beGzYk+/jryWZrl5OLe8hHxZ12LLzKSqSn3kXrYavl41H4ej415lg7Z2Wzd/CGd2l+OLyGRlz6Yws7ojVyQqQgqhaBty/mg/Tauv2MGnddugJ7d+fKlyeQe3UZc2YN03IrNqBVb+H7jbkb+4Tk6lnigbx+WTp9C5JatDPSC0wNOL7ieeZ+MHw/R5pkZ9MgJxva7azj4wAP0W7yVfv6rsZWMkmhajr6JwV+n4Wzh4eA//knfRdvoW+mqbSPDHUPLZ56h3yef4OpvcPDue7hm4aLj/ufaSbpvFS2feYaWH31E8Flnc/D/fs+tixYfa17buJn0vEh/Gce113LwgQc4Z/ESzqnUFJdJmrbOlfjRR7jKyrVavJs7AFRWWdl9pA0srLJcK+D8PVmgsuF/+8n4MY2WTz9dqVzLxbtpWV79PQvJ2PN7Ws6YwbkrWuG6/2oOPvAA0Wv2Eo0NKjwCzW8Xk3PuuyRMmMDRN94gd8c+nBwLPsrl7zxA8K5dxN9+O0fffBM+XwAq0vojoqyMBnL2puEMCiL20akcnTOH0vk/4cQgP7xCOHDkKISEEDtrFof//RZ7Du3GE67w2MBjV6QmRFJqgMeexcC2LWh5zz0c/PIjfojMgh6h6Ao/+8qMArIY2v64cr2jrLqVl81YwrDWI2h516zKZSrQhrLKLZpPy3/+kwNff8IX8Vl4W0ThtVFWP/DaoHWP8xl94w0Ub9qEa8YzzOvuZdv2JZgKdNnLVNC5czJ33DQa985dhN80mg9LF5K6fQl2NDYNNq3p1Hkgo8a8hPtAGhFtk/jZvZBDWxfi8AVhQ2PXVtmu/a6n1w1/4fDOTcTefDOe958kddlcq6XKtGNo69HTtv9o4kf/haO7txB9883se+8J9qyca/3wKdBaoZSdNgNuIf7av3A0LZWYW28l9eun2LH6TUxnPqZdY9qga7//o92gBzlakkXMuHHsWvg0W1a8euya2QoB6NZ/IlHJ93O0+Cgx48Zx6OfpHFz2Dxxa49Qal6kJN7KJT76X2KG3UOopIXzAAPjhSYoXvVJWNY0BBA38PSEX347P9BF30y2ExO+jYOGr+LBhKhs+bPiUjYiBtxM+5A/4DEXcTbdgtsjm6KI3KdHhle5rbPJYwof8Hp82aWZ34OmqyVj6b3xmONnaQGNgYpAw8EbCB9+OT5uEjxtH85/fIHPpfzAw0aaPfNMkPvkWwodM9JcpWvAyR5fMIUhBkFHeTe8g9LyJ/s8MHzeOkgUvk714DgYQoUAZCoUi8rw7CbtwIihF2LhxlC54hdzFc/x1j1AQYSgiB44n5sKJoHWV5QBaDRpHzEW3ABAz8ffQ1TyujFW/yIFjiB52LwDNbroFEnPJWvhvtDLQKEwMTGXQLPlGwi68/VgKQqdLIPcgJPrA0KB9cGQHbPnshN8XJ9PkErLvv/9+pkyZAliBTPPmzU9IyF65ciV9+vQB4Ntvv2XkyJENkpCdX1KK3W7y5c7vGdF+MA8teJIF+35C2YpRhsdfLrlFMs8MfoaPdnzEtZ2u5YGfHmDJoSWVznU6ZcpN7jOZceeMY/bG2Ty36rmT1u9U5Qxs2JWNyX0nc1O3m3hnyzu8uOpFTNP0P5RvPedWth3dxsr0FdzbbxKjzxrNvK3v8PLyl+gX35fOsV2Yu+G/NM826bHLy/Cofpz34NPkfvABUaNGcXDKFAoXLT6hXqGDBtJyxgxyPvzwpOVOp0y55g/cT2zZX8uZzzx70utRm+XO5FymoayHms1A2e1gGLS4bwoxN91E1ty5HHphBlopTG8pmF4UGpvdSeJ9DxFz441kvfMOaS8+jc9bVPZQLm9SAZsrlFaT/kLUtdeS8/HHHHjxcbylhSfUy+4MpdUfHiXqmmvOuFylMp9/zr7XH6fEcxTt0JgOjekA7dDED76eDmOeIHfPdiLbdmbHu39j77J3MZUdU1kPIxODjkMm0PXy28jZtZmojt3Y8vVbbPnpP1B23QC0Ad0uHEe3i24m58BOolt1ZOOS91i7aBamXaFtCtOA3sPuoec5V5JTmElUaHPWbfuS5Yv+AcrwP8BRiv7Jd9Gz06XHyu34muXLXz/hevTvfwc9O40kp+gwUSFxbNn5HRuW/QsHBnYMHCjOHngnSe0uwF2SiysoksN7l7Jv8RsYgIGBoUBhkDRwPJGt++MtLcDuDCN//0oyls7BQJVVSxGccBbxA28Hw46v8DC20DgwvRxe+iYlR7aX3XdFUFxn4vqPt8oVHcEW0gxMH0c3fII7Px1sLlzRbYntMgyUgel1Y9hdoDX5+9biLcrCQGEohTO2Da649tb/qyX5GEFWAOA9vAcz64D//zUjJgl7M6s9SZcUoILCysrtxszaAz4voDFi22KP7wJodOFRVGgsoPAd3Y2ZdwgMG0ZUK2yR1h+t2lOEcoRYn5+XhlmQ6f/7VIU1xwgv++O5QjnyM6DwMLo8fA6Ng/CyP5g9xeAo6x7NT4fCw6cuU5AJRVlgGCgMCImxXgBeN9jLmmKKssF9LOcIVySERP9yuaBICC4r5ysFm/PEcr90rvIL4oqo+lzF2eCukEJSsVw1vwddoZzWVv1VFXXTRVlQnFtWNQ1BUaiqrltxNrjzy34GFbjCrfoBmB4wHGXlcqAk28o7Mj1gDyLPFkVkdOxpPb8bVXBUUFDAzp07AejVqxfPPfccQ4cOJSYmhtatW/P3v/+d6dOn89Zbb9GuXTv+8pe/sH79ejZv3kxQUBAAl156KRkZGbz22mt4PB7GjRtH3759mTt37mnVoTaDo483rSRHbzh1oGI6UdrFI8mTGX3Wb3l/68c8u+x17IaB3TBw2m04bQbhzhBu7zmei9oM46cDP/HO5nfxej04tA2nsuHARmRQJOe1v4DzW57Phr3L6d6mP5sOb2T7lkW4c7NxYMOhbURHJ3B2n0uIC2nOod0baNm+OyW+EvYt+4HSI4dJ6HwuhmEQ27k7oMjbu4PINp3QaLJ3bgYge+92QuISSex5HloplIac9H1EJbTG9HlRKNLefJ2Cd99HZxz2f7v+YGDWbDJnzKg6GVMpmk+ZQuz4cRydPZvMGWXXzf9HukIpRdzkycSOHUPW23PJmj0LHA5UcDDaUNgjo7CFhhLSrx/Ro0ZRsHQJYcnJ5H3zLcWbN6JL3XgPp4H24mzVnuCefQgfNoyChd8TdsEwitasxb1tI+5da1EOG9jthA64iOCeA7BHRVK8cTnB5/THLCqhZPs6ilfNBxTB/YYT1LE7RkgQxZtWEXx2X8ySEkp2bqRo5feABqUJ7TscV+eeGA4HxZtXEHx2PzSK0j2bKVoxH6UMQBPcdyiu9t3B9OHZ8hOOroOsX3DzH0MtfN66HB2Gwe/+jba7UDYn2ucB04f3x3/gTV0Dhgttc2HvNBDHeTeAYWBmHcKIaQHapHT1l3h2rfVfX0eHXjh7XWo9JLPTMKITQZu4132HZ/cGq1lGKRwde+PqcSGg8GVnYIuOBzTujYsoTV0HSuFs3xNXt4GAwsw9jBEZB2g8u1biPbgNDOte2jv2wx7fCUwT35Fd2Jp1AMPAd3g3vn2rrV+c9iDs7fpjhERiuovwFuRij4jBcLgwPW58BTll/3sY2EIjMRxOTE8pvqJ8bCERGA4HpteDz10IKGxBIRg2B6bpxfQUYziCMQy7f7vc8fsrb5dUKBdUtt+H6XNj2FwYhq0sP6gsB9GwQ9k+/y/68m1f6bGfAZuz8v7jt8HaLn/YmV7rZditF1jltGk9ZCqV85V9boXMjuNbv4VohKrz/G5UwdGCBQsYOnToCfvHjBnDnDlz0FozdepUXn/9dXJycjj//PP5xz/+QefOnf1ls7KyuOeee/jss88wDINRo0bx0ksvERYWdlp1qM3g6MttyxnUtgtf7Pqa67pcy/y9P7ErOxWXLYhQRxihjnCC7cF0imlLm8hEij2lBDucHM3PoqAgB7vpw2b6cDmCiWpu/dVUlHmIkDjrL6PsDWvwHM4E00fE2T0JSrQ6M/LWrcGbm4MjthkRZ3dHK4X3yGGKU1MJbt8BR2wsAO49ezALCjHCw3G1aQ2ALzcXs7QUR3w8mCal+/dbZcJCcSYlgWHgycjAd+QoRlgo9sREDIeDotWrKVy4CO3z0uy22zg4efKxlhybjZA+fYi6cTQRF11EaVoazhYtrF/I2qR47Up8hzNwtOuAq8s5ZaOlfHh2b8bRvpv1EDAM3OuXgNa4eg4se7iYeHZswNGpe9noJRvuNQvxbFmN67zh1ntNE/fyb9C5hzGaJeDsNdx66B7YhnfrImztzsXe/lzrIeLzorfPR3W+yPpMbaIXvYo+uBqV1BuVfLf1oDF9sHM+dBxW9sAy4fu/WX8JXzzVKqN9sP5d6HE9KJu1/dl9sHcRtBkEVz5/bP+6eVa58offB+NQO771Bz0YduuhtnI29B3n39afT4KYjjB4Stm5gLyDEJFY9leXAZlb4MhOiO0I8WdZ9+PwVlTWHohpD3FlPzuHt0P2boj+hX1HdkD2HohpC7GdrH1Hd0LOXohqY31O+T50hTI7IHsvRLepsG+X9b64s6w6axPSN0BJLoTFQ7PO1v8j3rIBE3aXPMSFECfVZIfyDxkyhFPFckopHn/8cR5//PGTlomJiTntVqK6Nrzjudzz/T2s3JvOhUnnM6LdMPJb5lNqluKyuXDZXDgMB0opfAUFsHMnnpgYYpOSCDuSi2fPAVydu+BongBaU7RxIzovH3dWHkFduxLTozfe7Bw8aWm4ImNQNhuejAxcrhBcza3mZM+RIzji47EFh+IMi8AWFOwPcHRxCcpmQxcV4Tl8GEd8PMruQGkwCwowgoJw79xFyaZN2GJiiB51LUffeovCn362htTm52Pm5/u7uErWrbO6uCZPpmTbdiKuuAJX166EjxiBs0UiaE3x0h+gII3Sw4k4e15otS40j8KTthZ7cGcr0DAMPDtW4929EfDh6NwbTBN7s7JUVNMEw4Z3zybMzJ14Q5zY21hBlaN1GxyOQlRiq7JWKU1QuyQoDgObC7CCKrsnHfu216DZJPB0hvduhfZDUYPuhUUvwe4f4Hf/RoXHwo5PoevF1l/6ZeU4rhxxXay6aR+8e1PVZdqeDxvetf7VJrx7c9Xlul4JO76FbmUjFefdaAVKg+6FrV+CpxDOvgZ15UvWccNuXZODK6G0GLwlENsB0FYA5AyBiLIsoNJCCG0O/q6HEnAEWUFNeDw4w4/tD4+3XuUBit1lnTeixbEuBp8HIltZLzjWGhLT/tgPgs9jfX55HXwesDkgpp31vvJWDW1C/NmAAluFX12OoDP6ORRCiOM1qpajQFBbLUdaa15c+gFvbn+cEO/ZLBk/F0NVPWG5r7iY4lWr0R4PKigIZ6tWOFq1xJOWji0sDCM8zN9aU87WLBZHfDxmfgGl+/Zhb9YMjcbRrBnFGzdZ+2JjCenXl6LVq/Fl5+DLzsYIDcUWGUlo8nnkz/+eks2bscfEEHX97zj84osU/LAA7+HD6JKS08/rsduJf+QRYm66kYJFi/AeOUpQ93OwBbnwHtiJLaEVjsQk3Eu/xGYUYW8ej3IEWf30zTpbfcy5+yEyyer33rcMErvD1i+gy2Wwdi70vsVqrdEaOg2HFbOgz62w6RM4+2pY9Rb0mwDbv4H5j0OfsXB4m1W/S6eXtc78Dj4oS6xP6AGLXoBBk+DwFghLgBFPwb7FVsvOijescpFJVqDS6RKrjgD9boN9S6F1snVem8N68Bs2KM6ygpVOF1stNs06we6frPeFxEDGRog/x8pZAGg/2Gplie0IB5ZbgUVwNOQesIIHr9s6b0x7KDoKIbFWyw1YZZVh5UUc3g5B4RDSzAqGhBDiV6bJthw1JZkF+XyyZTHYwGmEnjQwMktLKdm0yerKKpujyZebCw47tvAwzMIifEWFOJo1Q5eUYBYUokJCcMTGUrh4MSUbN+HeuRNPWhre9HSc7dvT8um/U7xqJeGDL+DA3XefMunZm3aIqGuv4eC9955QrnjdevJSviN2wgTyUlKwN48nZtw4jMhIbFFR2Mr+tSck4EpqhefwEUIHDKB05ybMfespzT+KefQwhmMQnvxDOFvGYwRVaAXwlkB2qtUK4SmGQ6th/Xuw4X24+IljLSopf4Ed31gBDcDqObCrLH+nYpndP1hlslPhu6nHPqf5WcfKHd4GMR2sgOzix62go9dN1r/Ze6wkzPw0SJ5obbvzYcCd1nkSe0B0W2t/SAzkH7ICtPJyAJEtj5UxPVZA1XHosTKJZd9DbLtj5XylVrnWycfKhcRY3Uuu8GPl3PlQkmdtH1hlJVQmnG21BsV1qdzaIoQQ4qTkt2UD8JmaRXu24jGLwQbBthOHIwNoj4eSbdvwZWdjj6881YDvyNFKLUVmcQnOhHhyl39OxIhL2H/XXVUGPZ4DB8j5+GNiJ0wga+47uHfuwt6iBapsRmFls4HNhvfwEfJ/WEDshAnkf/8DzrbtCO7TF1tMDPbY2LJ/Y3C2soKe8KFDcXXqhFlQeSSSERqMM6kVpTs2YKbvxgwLw9nzQooP7cAsKMLRthOOVkkYhvdYAFFRcQ6krYfP7j12vMtlVivQ/hXQ/3Yr4Mg9cCyPptMl1vGOwyFtHQy4w2qhySubk+jyGcfOH9ESOgy1cm/Ouxu6Xla5HscHH6bPCkqydh8LmNz5J5YD69/yckfKcmyi2loBWHG21U3kzrcCv7iuVuuOOweCoqxyR3ZYn6UUFB6xuptiO8GRbVCSA64oK48nc4t1Pq8bcvZDaREk9bPO6wyVPBwhhKgmCY4awKG8HA7mZ+LDGskSYj8xGVxrjXvPHrxpaVY3k1F1yxKAr7CQo08/TdiFg/3DvguXLcfeogWOhAQciYnYy/51nX02Id3PwXP4CNG/u47QgcknBDSAlWBdFviEDb4AZ/t2lcqVHy89cACzoBCzsODYdk4WeAoxgl04W3WkdNW3mJl7webAk5eNt+A7Qs6/Et/BLdgcPpThPTGwOLwNjmyHgb+HH5609ke0hAsfgnNvtBJ1bXYr4Ol2VeX3VgxUtGkFTp0urlzm+HLeEuuc0W2tQKboKJilVnBxYJU1PFdhJTaDNaS3KMsaVpt7oKzba6UVxKCwsp+1FawV5UKwNTsv6eutgE8p6xhA4VEwN1n5PAVuCHVB+jrr/GV5UaDKAqkia7isxw2hQZCx6dj5nOFWkBUaZ3W1uU5vkIEQQojKJDhqADsOp+Ex3Xi1NRw4zHliy5H30CE8e/dii4m15rI5CfeuXRyeMQNXp45E/fa3FC5dRsyttxI6ZCi6uLhS2VMGNKcb+JSPTKv4Pm3iO5KGu+Aori7n4D64Ce/BnRide1O86Gt8h9PR2MH0YQQFYQ+zobNSscfGWUGHO98KUKLbwrav4aenrdyZ386ycoCKjsIlf4NOIyC2rLUmP8PqNirIsIKDxJ5WK5FSVmtK2norvwes95fkWl1qaeug6AgEx0JUayvwKTp8bHbAwiPQsreVcFxqgrvAyvGJaGElHBvH3QutrQRmtJXPE1OW6AxWIFUeBJW/IlpW3rZOciwIimxZtt2i8n5UWQtQ2b+RrSoEWKrC50grkRBCnCkJjupZdlERu7IPEB0UhgcrIIkoHwFUxnv0KCW7dqFCwyrn4FSgtSb/22/Jmj2b0AH9afn88xRv2IgtMpLSgwdxtWldKeg5IaABzIJCSg8cOHXgc1w59959KJuNkk3r8R5IhaI8dGk+yuvGh4l5eC+2uBao7KN40/ajnA5rlJvTjnI4sIWHYQsLAbMYCioEb/kZsO5dSP4/yPqtlWC9+GVrCHv5SC9XqBUY5R2yAqrIpLIh6ibk7LMCGK2PtRgFRVqjtFTZ1MjZe60yNheENbdaf4KjIbRZ2cKfTuuYz2Pl6hh2CTaEEOJXSIKjerbraAa5JXl0iG2JqazgIzroWNa8r6AQ946doMEWHl7lOcziYo7+858ULlxoJU6/+CKl+w9gi7SWPagy6AkKpvTAAXy5eWiPB+31gtb48vMxi4oxQkPxFRRgRIRTsmOnlfQNoDW6pAi9rwDfoT3YwsNwr1mBgQ97kB1bsxBUaBIqNALlCELZDLAZOHuebX19OjI2wfdPWgnMrnArOTorFc66snK5gkyrlchbAs27WS1NNQleIn55JnQhhBC/XhIc1aMSj5dtRw4S4nJhKAOtilFAs1ArODJLS3Hv3IlZkI8tPgF7s2aYJcWVurxK9+4lc8YMXO3aEnv77QT36oXn8BFrivQy2ufDe/iIFfQEBeHJyMCTdghQVsK1w47hcJQFFhozOwszKxNlevHu3maNoiqbUVd5S7DZvBjBYPjyMNxBOLp1QIWGW8Ptz4TphTX/hdX/tlp6zr7WGvlVkAFRSZDtq5wjVHjE+jeh+7F5c4QQQohaJsFRPdqXc5TMoiO0iojF7fGBrQiAuNBItGlSmpqKNzMTe3w8SinMkuJKrT/5P/xA1r/+RUi/vrR8/nmK1q3DHh2DLrSCJ6013swMlDJQTgemz4f2lOJMaoXNZUMZuizVxYfCC95ia0ST6bVmb/Z5QHuP5d9gB3sUyhlqDae3OWrvYuQdshKtMzZZ2xdMgSGPWEnR7nzrVZ4sXZIHhZlgOK1JAMPja68eQgghxHEkOKonpqnZevgAhjJx2pykF+WhlBWFxIdGU7p/P6X79mOLjbVad6jcPXZ45kyOvvrasW60nVuxh9grLQ5oFhRgGCZBndpj2BVKeVHeIihNB48HyhYi9Sfv2srWWbLZweE6tu5SbeXZhDW3gq+KrT9aW5MmHloLHS+GrD1w5QtwzrUnDoMvT9I+sBrswdbkiKGxtVM3IYQQ4iQkOKon6fl57M/NIDbEygvKKi5r7TGdhOQVUZqfhxERgeFyVXqfWVBA1luziR0zBltYONE3XE/p+gVw9GClclprzCPZuNq0wF5g5RNZScYOK9HYEQRBESeOtqpLnuLKQ/Td+fDzc1a9fjvLmqn6t29YI82OH2YPVn5R4UprHa3gaAiOqr+6CyGE+NWS4Kie7DySTolZREtHDAA5xVYgoMxgXPsPQmxLbKHHDen3FuNL28Xhl18BDGInTMCzdxu6uAhCoisVNQuKMGIScLTuACEBsjxExdafLZ/Blw9Y+UK/nWWNTDv3Jms+noLME99reiEvHcLirNFkrqqT04UQQojaJsFRPcgpKmFH1gEiXaGosi6r3BIrOLL5glFeH/boCsGO9lnJx7kHyP/qe0L69CXquuvw7N2GvUU7zJxMzOxjAYXWGrO4BFf71hj1ERhV1V1WzhVu5ScVZFqvlbPBnQtXvAAD74U+Y+DgKmg94OTn93msYfYRLaxRabIWmBBCiHokwVE92JOdSbY7h/ZRZUuA+HwU5RwGA2xmECo25lhhd74163PhYUwveD3BtJwxjYJv/oczLgQzJxNntwGUbl7mD5DMwiKM0GAczWKq+PQ6cHx3WbnyGae3fQVL/gH7l1qj0MBaF2zQvZB70OoiOxlfqTXnUVQbaN7VmnhRCCGEqEenORGNqCm318fWwwcJttuxGXaUuxTnnv0UFWUD4CAYQymrtST3ABzeDIWHITiakqMmLaZNI/1vT+CItYbNm9mZlG5ehrPbAIzo5larUWExjvjmGC5nPX1TFbrLyru7tIbwRPjwdnj3Zmv1em1C4rkw6g3oe5s1RD88/uRdZKbXCoyi20F8NwmMhBBCNAhpOapj+3OySC88TGJ4FEZhIc59B7Hl5FFg9wLg1EHY3PlwONta7sIVDmGRmCVuzEIvB6dMIbhzi0prq5UHSEZYFJ59qRihITjiTtEaUxfKA6TI1rD1c2vx1ndvhl3fW99D55Fw1hXWCLPjk7KranUqzzGKSipbQb4Wpw0QQgghqkGCozpkmprth9MAD6F5JTj3H8Bwl+KLiaQ4w5rjKMQHjuxdEBFTtmCoFQTl/7Sc7I++wd48lmY3jjjx3NmZ+I6mYxaW4OrYGsNZT61G5UoLYPEr0OJca3HYRS9ZOUZD/gjtL7RafU62Un15q1P5fm1agVF4AsSdBfZ6/l6EEEKICiQ4qkOZBYXsyT5AYl4JwemHAA/KpbHlHabUtIKFEOzWEPuQY/lCZmkpuSkLAYi69EL/vEfHMwuKsIWH1F+uEVjdZzu/g6WvWoFRr5th40cw4C7oelnl1iBHcNVD9MsDJEewNcFjfpoVGMZ3s6YcEEIIIRqQBEd1aNfeTQRvX0V8biHKpcBloEsNTMNFqVEKQIgKwrBVbinJ/2kFZn4h9mbRhPbvWeW5tWliFrsJ6tQWw1mLXVCnGolWWgDpm6yZrTsMg+vmwJ5FENMOcved2EpU1RD9cuVdbPkZ4Iq0AiNn6MnLCyGEEPVEErLriMfjIXfZV8Qd2osOdeALC8fnisZ0RoI9CK9RAkAYNirOR22Wesj79mcAIkf+cquRPSaqliteXDnRGqC0CHYvsPKHdnwDnUbA9W9DXhpEJFplqkrS/iUFmdYw/YRzrNYzIYQQIgBIcFRHTK8Hs6QQImLQIZHWumAVjxtWzlG4smFTx25DwaKV+PIKsMVEEnbeuVWeW5smZlEJzoTmtdtqBJWDHGcY7JwPy1+HPmPhg/HWGmyXPAH5h6y12ap6ryP4lz+n6CgYDivgOtXQfiGEEKKeSbdaXatimTKtQRvFKCDKdqzlyPR4yP36J6Cs1che9e3x5RdiiwzDHltHQUVJnpVX1HqgtfTIlS9Ys1t3HgFJA8BTdPL3lneXnUpxjnUREs6WtdKEEEIEHAmOGkChD5TNDUC0smOUtRwVLF6NLzcfW1QE4cm9q3yvNk10SSnO1i1Rjlq+faYXUn+Gde/Ake1w8RPWxI27vod+t9XOvEPufPCWWMuIhMef+fmEEEKIWibBUQM4bHpAgdaKcMOOMkB7vcdajUYMPmng48svxBYRdizX6HSX8jhVObvLmoDy03utkWNg5RX1HQ9Zu6Hd4KpHnVVXaaF1jvizIbLVmZ1LCCGEqCOSc9QAsrzWBJDKDMKGwlCKgqVr8WXnYosMJ+z8PgDYkzpjRDf3v89qNXLjTGyOCos+FvBUlQRdPseQpywvqKpyxTmwdwmEt7CG5uengSsCRk6DG96GgnQoya1+ovXxtGnN+l2SB3FdraVBhBBCiAAlLUcNIMu0hvEbvmCUUhg+k9yvfwQg4pILMBxWkrVZkFNpHTVfXgG2yAjsLZIqD5vP3gNRbWH/MsjcDBEtoeNZsP1ba522chEtoeMwK8l6/btWwHTt6/DBOMjcCoMmQc/roVnnX5648XS5860gLCQWEjpAaHNQVSRiCSGEEAFCgqMG0L/HQI7mZ7AydR/KgNKVm/AeycYIDyXq6iuwRTXDu397pXXU3BuXoNMP4+rcBhXTBta8Dak/Qu5+yDkAzc+C375prXjfJhneGW3lCh2vwzD47Sw4ugt63wIpj1rdZkP/BIYNgiJ/eeLG0wmOvG4oPGKVjz8HIlvKWmlCCCEaBQmOGsD2w3t55pJn+Iv7eYw0L+6URQDE3X0brh6DKN28zF/WzM7Es+w9XH2uxFW8AdWuV9WBT/4hWPuOlUC9+t+QsxdiO5z44Tl7YctnVrn0DdBnXOWWnNOZuPFUTJ81TN/0QWQSxLS1Ai4hhBCikZDgqAEsPbCBXT+t5tnhz7Hj369iHskm7KJhRN88zt+FBoA2se/5FPvez1AqywpoFr8MR3dCm0FW8BHVyvo3oQck9oCCDDj3Rmgz8ORJ2tFtrXLNz6qdROtyJblWXlFoHMS0t3KipAtNCCFEIyPBUQMo1G52HlrGtG9n8sQNd5FriyF69A2Ubll+LDAqzcO55XVs2ZuhwzB0n3GQuR113t3Q5dLKAc3xC7y686vODzrdctXl70ILsYboR7SUxWOFEEI0WhIcNYASZc1xlLVmLbmHPyB2wgRKd2/2B0ZGznacm19DleagO14Cv52DZ9cGnNGuExOjjw94oOoE6tMtV13lQVZUG6sLraYj2oQQQogAIUP5G4Aba1215BbnEDVqFNnvzcOR1BEjKg77vq9wrn0aVZqD2e238Lv/ULziZ4yyhWpPWMPMEfzLCdRw+uWqo/CwNeKteTdr7iIJjIQQQjQB0nLUAKKiFD2bJXPDwHs5eO8kfNmHCekQi/PsAagj30PivXh3LEX3ugfPigVQnIstPO7YCSoGNKebQH2midYVmT7IT7eCoeZnWblFQgghRBMhwVED6NKsA08MfpiV/3qF2EWLCevbCUfKXajsW9AXPYpv3ed47N3RB3bhzcwiuGt7lHFcI191A5ra4iuF/Axr6Y+4syAoov7rIIQQQtQh6VZrAG2jknjgpweI2m8t1eEqXovRsgd60CS8Wxehw9uBUphFxRghQdgiA6S7qrQQ8jMhuh0k9JTASAghRJMkLUf1zGdqZm38F8rwctvOloQD9nNHoq97ltJNyzHzcwGrC0wXleBMSsRwBsDIr6Is8JZa3Wgx7awJI4UQQogmSIKjepbr0yjDWlvNefQIAPYBv8WbmVYWGFlMjwcMA3tUA0+gqE0rX8nmghY9ITxR5i4SQgjRpEm3Wj07bFqBkTZtuKwR/diy1mBPbFdpkVkzvxBbZDhGeGhDVNPi80DuIXBFQotzIaKFBEZCCCGavCYVHP31r39FKVXp1bVrV//xkpISJk6cSGxsLGFhYYwaNYqMjIx6rWO2zxqS7yIEVegBwNg737+GmhHdHG2aaI8XR1wMqqGCEXe+lXgd1coKjEJiGqYeQgghRD1rUsERwNlnn01aWpr/tXDhQv+x++67j88++4z333+fH3/8kUOHDnHttdfWa/2yTSsg6uiKRZdagZIRHVtpkVkVEo0RGowtsgESnsuH6XvdkHAOxHcHZ0j910MIIYRoIE0u58hut5OQkHDC/tzcXN58803mzp3LsGHDAJg9ezZnnXUWS5cu5bzzzquX+uVqKyBSaT4ADKeJCrVaZcoDJBUSjqNZLIbTUS918vMUQeFRa96iZp2ltUgIIcSvUpNrOdqxYwctWrSgffv23HTTTezbtw+AVatW4fF4GD58uL9s165dad26NUuWLKm3+uWbVqJR6FErOLIH+dCuaP9xb8ZBPDs3YY+ux1Yjra3ZrovzrKCoRW8JjIQQQvxqNamWowEDBjBnzhy6dOlCWloajz32GBdccAEbN24kPT0dp9NJVFRUpffEx8eTnp5+0nO63W7cbrd/Oy8v74zqWIDVrdas0MolsgebaOexOpkFhdiiIjHC6ikR2+u2AqOgKEjobLUaSdK1EEKIX7EmFRxdeuml/q979OjBgAEDaNOmDe+99x7BwTVYOwyYNm0ajz32WG1VkeKyddWaFWqgvOUoCqAsEduHIza6fhKxi3OsrrSothDbQXKLhBBCCJpgt1pFUVFRdO7cmZ07d5KQkEBpaSk5OTmVymRkZFSZo1TukUceITc31//av3//GdWppCw4iiu0co/swSY4rC40s6gYIzQYe1Qtd6lpbS37UVoEJXlQdBTyDoIGEnpYi8ZKYCSEEEIATazl6HgFBQXs2rWLW265hT59+uBwOJg/fz6jRo0CYNu2bezbt4/k5OSTnsPlcuFyuWqtTm5lBUexZcGRCrH7Z5s2i0pwtWmJcpzktmizwkuD9pX9a1Z+mT4wPVbwA6AAw2G9bHZrwdiwRGuYflADTzIphBBCBJgmFRzdf//9XHnllbRp04ZDhw4xdepUbDYbo0ePJjIykgkTJjB58mRiYmKIiIjg97//PcnJyfU2Ug3AUxYcRRVaeUwqPAgAs7QUZbdjj64iWDF9UFA2H5MyTv4yHGDYwREEjlCwO8HmLAuKHNbXNiccv4itEEIIIfyaVHB04MABRo8ezdGjR4mLi+P8889n6dKlxMXFAfD8889jGAajRo3C7XYzYsQI/vGPf9RrHX1GMQChZRNAUjYDtllQZCVihx7XveXzWPMOhcdDTAcr+DFsZQFR2b/+bUmkFkIIIc5UkwqO5s2bd8rjQUFBzJw5k5kzZ9ZTjU6kjWIU4CoLjsyICCsR2+vD0ey4GbE9xVB4BKJaQ1xXq0VICCGEEHWqSQVHga7Up8FWjKtUY3ishCAdGYVZWIwtJAR7ZPixwu5869WsE8R2tLrFhBBCCFHnJDiqR1mmD6U0UQXWtrKZ+MKiMYtLcLVtdSwRu+io1Z3WvBtEtZEcISGEEKIeSXBUj474PGCDqHw74MMebGIa4SiHHXtUpDXyrCADbC5IPBciEhu6ykIIIcSvjgRH9SirLDiKyXcCbuxBPnxGGIbDiRHkgLxD1tD6+LNl+Q4hhBCigUhwVI9yTCsJOzbf6iazB5u4bWGAF1WQDuEJ0Pwsax4iIYQQQjQISWapR3namvixWaG1bQs2USrIWsYjqo01W7UERkIIIUSDkuCoHuVra+LHZgU+AHSIHWV6UMHhEN9NhuoLIYQQAUCCo3pUiBUcxRZ6AfCFOlBaW0t6yFB9IYQQIiBIcFSPirG61SILrZYjT2gwCo2ySeqXEEIIESgkOKpHJVjrqoWVtRy5w0KwmWUtR0IIIYQICBIc1SOPKsHm0wSVWLNju8PCUXBs8kchhBBCNDgJjuqRxygmqmykGkpTHBqBMjXYnA1aLyGEEEIcI8FRPTKNYv/SIfYgkxJnOIbWKLu0HAkhhBCBQoKjeqI1aKOY6AKrS80e7KPEFlqWkC0j1YQQQohAIcFRPSkyTZTNTXR5y1GwD7ctHKUAaTkSQgghAoYER/XkiM8aoRZV1nJkBIPPcGFoZI4jIYQQIoBIcFRPssqCo/J11QixWyPVAGWzNVi9hBBCCFGZBEf1JMtnTQAZU6AAMEOdKKUwlAIJjoQQQoiAIcFRPcnVHgCiC61uNU9YMIZSGFbTUQPWTAghhBAVSXBUT3LLFp2NKjQBKA0LQSmFUgYYchuEEEKIQCFP5XpSoEtRWhNWZLUclYSGY0MBGmXIaDUhhBAiUEhwVE+KcBNeBDYTQFMUEYnNsKGQnCMhhBAikEhwVE9KODbHkc1lUmwPt4bxAxgSHAkhhBCBQoKjelKiSvxzHNmDTYpsIdgMBUqhJDgSQgghAoYER/XEo0qILlt01h7so8gIxkBZEx1Jt5oQQggRMCQ4qideo9jfrWYEK3zKjk1jjVSTliMhhBAiYEhwVE9Mo9jfrUaoAw3Y0YCBssltEEIIIQKFPJXrgc/UYBT5W450qAvQGFpJy5EQQggRYCQ4qgf5pokyfP6WIzMsGFOb2BQoCY6EEEKIgCLBUT04XLbobHnLkTc8DBTYyluObDIJpBBCCBEoJDiqB1k+D2jtH61WGhGJ1hpDmWDIUH4hhBAikEhwVA+ydSkhbnBaDUiURkQDYJgA0nIkhBBCBBIJjupBruk5NozfYVIaHGV9jbZajZTcBiGEECJQyFO5HuRrN1GF5bNj+3DbwwCFKpvnSEnLkRBCCBEwJDiqBwW6lKiyliN7kEmpLRTAWlvNUNJyJIQQQgQQeSrXgyJK/N1qKsQoC4Y0Smur1ciQ2yCEEEIECnkq14MS3ESXzXGkQhxlexUGWtZVE0IIIQKMBEf1oFSV+LvVzDAXYK03i9You+Ok7xNCCCFE/fvVBkczZ86kbdu2BAUFMWDAAJYvX15nn+VRJf45jsywYAC01thNJDgSQgghAsyvMjh69913mTx5MlOnTmX16tX07NmTESNGkJmZWSef56uw6Kw3PAytQRkK0DLHkRBCCBFgfpXB0XPPPcftt9/OuHHj6NatG6+99hohISHMmjWrTj7PNIqPLR0SEYmpNQqFoU2Uw1knnymEEEKImvnVBUelpaWsWrWK4cOH+/cZhsHw4cNZsmRJrX+eR2ucZhGhbmvbHRmNxgqOFBqkW00IIYQIKL+6Pp0jR47g8/mIj4+vtD8+Pp6tW7eeUN7tduN2u/3beXl51fq8bA3RZRNAKpuJOySqLDgqmyHb/qu7BUIIIURA+9W1HFXXtGnTiIyM9L+SkpKq9f4sbfqTse1BJm5HBGisliOtwJDgSAghhAgkv7rgqFmzZthsNjIyMirtz8jIICEh4YTyjzzyCLm5uf7X/v37q/V52Zj+ZGxbsInXCMLERClQSsnSIUIIIUSA+dUFR06nkz59+jB//nz/PtM0mT9/PsnJySeUd7lcREREVHpVRy6+Y4vOhthAKbQGA4WhkNmxhRBCiADzq2y2mDx5MmPGjKFv377079+fF154gcLCQsaNG1frn5WPlxZlLUeEWpfb1BoMhfIhM2QLIYQQAabGzRbjx48nPz//hP2FhYWMHz/+jCpV166//nqeffZZHn30Uc4991zWrl3L119/fUKSdm0owEtUWc6RDrVmx/aPVlMKDAmOhBBCiEBS4+Dorbfeori4+IT9xcXF/Pvf/z6jStWHe+65h7179+J2u1m2bBkDBgyok88pVKX+pUN8/tmxKRutplCSkC2EEEIElGo/mfPy8tBao7UmPz+foKAg/zGfz8eXX35J8+bNa7WSjVmJKvUvOusNDy/bq62cI5TkHAkhhBABptrBUVRUlDXKSik6d+58wnGlFI899litVK4pcBvHWo68ZcncJqY1Q7ZCutWEEEKIAFPt4OiHH35Aa82wYcP48MMPiYmJ8R9zOp20adOGFi1a1GolGzOvLiGiyPraHWFdK1OXTQBpGBIcCSGEEAGm2sHRhRdeCEBqaiqtW7e2korFSYWWFGEAWmncEdFle/WxnCMZrSaEEEIElBonvGzZsoVFixb5t2fOnMm5557LjTfeSHZ2dq1UrimIKi4bqhZcNjs2YAI2DcomLUdCCCFEoKlxcPTAAw/41xnbsGEDkydP5rLLLiM1NZXJkyfXWgUbu6jiEgCMYI1pOAHQWlsXXtlkniMhhBAiwNR4HHlqairdunUD4MMPP+TKK6/kqaeeYvXq1Vx22WW1VsHGrFhDVKEXAFvwsThUa7AZypoIUkarCSGEEAGlxk9mp9NJUZGVafzdd99xySWXABATE1PtleubqqPa9C8dYg+pGIdqKyo1bLLwrBBCCBFgavxkPv/885k8eTKDBg1i+fLlvPvuuwBs376dVq1a1VoFG7MsNNGF1hxHOszl329qjaFNK5ldutWEEEKIgFLjlqNXXnkFu93OBx98wKuvvkrLli0B+Oqrrxg5cmStVbAxy9E+/xxHZliIf79GY9cGGAbKJi1HQgghRCCp8ZO5devWfP755yfsf/7558+oQk1JHj7/7Ni+8DD/fg0YWoOS0WpCCCFEoDmjbOBdu3bx5z//mdGjR5OZmQlYLUebNm2qlco1dvl4/S1HpWWzY4MVHNmUkkkghRBCiABU4+Doxx9/pHv37ixbtoyPPvqIggIrCli3bh1Tp06ttQo2ZoWUElU2zVGpfwJI0JjWhZfgSAghhAg4NQ6OHn74Yf72t7+RkpKC0+n07x82bBhLly6tlco1dspdhN20vi6JbObfr/2j1QyUBEdCCCFEQKlxcLRhwwauueaaE/Y3b96cI0eOnFGlmoqwonwASoM0pa4K3Wrlk0AaVlK2EEIIIQJHjZ/MUVFRpKWlnbB/zZo1/pFrv3bhZUuHeEM0Wh1rIVIolKlRNkdDVU0IIYQQJ1Hj4OiGG27goYceIj09HaUUpmmyaNEi7r//fm699dbarGOjFV5sTZLpC658mTVgA5RdhvELIYQQgabGwdFTTz1F165dSUpKoqCggG7dujF48GAGDhzIn//859qsY6MVXlQKgBlSOa9IAcrUYJeWIyGEECLQ1Ljpwul08q9//YtHH32UDRs2UFBQQK9evejUqVNt1q9RCy+y1lXToc5K+zVWzpFMACmEEEIEnjN+OiclJZGUlFQbdWlSTNMkotAaqmYPDal0TCmF0qa0HAkhhBABqEbdajt27ODDDz8kNTUVgC+++ILBgwfTr18/nnzySbTWtVrJxuhIcQGRZeuq2cNDKx3TGgw0SoIjIYQQIuBUu+Xo448/5ne/+x2GYaCU4vXXX+fOO+9kyJAhRERE8Ne//hW73c5DDz1UF/VtNA7kHSW6bHZsFRlV+WBZ8KgclbvbhBBCCNHwqt1y9OSTT/Lggw9SUlLCq6++yl133cW0adP46quv+Pzzz5k5cyZz5sypg6o2Lun5Wf7ZsT0VZscGQClrbTUZyi+EEEIEnGoHR9u2bWP8+PEopRgzZgylpaUMHz7cf/ySSy5h7969tVrJxuhI5gGCPNbXJVHHZsemrMdRAdhkAkghhBAi0FT76VxYWEh4eLj1ZsMgODiYkJBjCcfBwcG43e7aq2EjVXJwu/WvU+MJivTv14BSYChQSoIjIYQQItBU++mslEIpddJtYdGZ+wEoCsWKhsqYWmOgMJQNbLKumhBCCBFoqp2QrbWmc+fO/oCofH4jo2yNMBmpZjGyMgEoCTGoGDpqTCjfY8g8R0IIIUSgqfbTefbs2XVRjybHkZsDWMFRcIX9Gis0MlDSciSEEEIEoGoHR2PGjKmLejQ5rnxrXbXSYDvBQM8howiPbs73H7xiBUYKlCHBkRBCCBFoaqVfp6CgANM0K+2LiIiojVM3WkGF1rpq7mAXPYeMIiaxLVlpezC1CUphwwAJjoQQQoiAU+PhUqmpqVx++eWEhoYSGRlJdHQ00dHRREVFER0d/csnaOK69bgIgO5XjPMHRusWfAhoDAWG9Z+GraQQQgghTlDjlqObb74ZrTWzZs0iPj5eRqwd5+z7Hyen9TnEXH1rhcAIfFqjsIbxK0nIFkIIIQJOjZ/O69atY9WqVXTp0qU269NkZH38EXETJpCfvt8fGEFZQrapMWxKJoEUQgghAlCNn879+vVj//79tVmXJqXZjTeRtXUdYfGt6Dlk1LEDWqO0xjBsoCTnSAghhAg0NW45euONN7jrrrs4ePAg55xzDg5H5XXCevToccaVa8xMYPF3/6V/8ATiWneh55BR/hYkGxplGDKUXwghhAhANQ6ODh8+zK5duxg3bpx/n1IKrTVKKXw+X61UsLHyeqzRass/n0XyNXcTk9iWnkNG8dM3/8EwwWazSc6REEIIEYBq/HQeP348vXr14p133pGE7F+wbsGH/nmONBoDa106yTkSQgghAk+Ng6O9e/fy6aef0rFjx9qsT5NV3qWmwco7Muxgk5YjIYQQItDUuOli2LBhrFu3rjbr8qugNdjRYCiZIVsIIYQIQDVuurjyyiu577772LBhA927dz8hIfs3v/nNGVeuutq2bcvevXsr7Zs2bRoPP/ywf3v9+vVMnDiRFStWEBcXx+9//3sefPDBequjRmOz1g6RGbKFEEKIAFTj4Oiuu+4C4PHHHz/hWEMmZD/++OPcfvvt/u3w8HD/13l5eVxyySUMHz6c1157jQ0bNjB+/HiioqK444476qV+WlvNddZoNelWE0IIIQJNjZ/Ox6+lFijCw8NJSEio8tjbb79NaWkps2bNwul0cvbZZ7N27Vqee+65+guO0NgAlIGS4EgIIYQIOE1uuNT06dOJjY2lV69ePPPMM3i9Xv+xJUuWMHjwYJxOp3/fiBEj2LZtG9nZ2VWez+12k5eXV+l1JkxtYtPaGqkmI/yEEEKIgFPjpouqutMqevTRR2t66hq799576d27NzExMSxevJhHHnmEtLQ0nnvuOQDS09Np165dpffEx8f7j1W1YO60adN47LHHaq2OGrChUDbHL5YVQgghRP2rcXD08ccfV9r2eDykpqZit9vp0KFDrQVHDz/8MH//+99PWWbLli107dqVyZMn+/f16NEDp9PJnXfeybRp03C5XDX6/EceeaTSefPy8khKSqrRucoZIPlGQgghRICq8RN6zZo1J+zLy8tj7NixXHPNNWdUqYqmTJnC2LFjT1mmffv2Ve4fMGAAXq+XPXv20KVLFxISEsjIyKhUpnz7ZHlKLperxoFVVTQauwZll5YjIYQQIhDVavNFREQEjz32GFdeeSW33HJLrZwzLi6OuLi4Gr137dq1GIZB8+bNAUhOTuZPf/oTHo/HP/VASkoKXbp0qbJLrS5oXZaQLcGREEIIEZBqPSE7NzeX3Nzc2j7tL1qyZAkvvPAC69atY/fu3bz99tvcd9993Hzzzf7A58Ybb8TpdDJhwgQ2bdrEu+++y4svvlip26yuaaVRWstINSGEECJA1fgJ/dJLL1Xa1lqTlpbGf/7zHy699NIzrlh1uVwu5s2bx1//+lfcbjft2rXjvvvuqxT4REZG8u233zJx4kT69OlDs2bNePTRR+ttGD9Y18lQSlqOhBBCiABV4+Do+eefr7RtGAZxcXGMGTOGRx555IwrVl29e/dm6dKlv1iuR48e/Pzzz/VQo5NTWqMczl8uKIQQQoh6V+PgKDU1tTbr8atiaC0J2UIIIUSAqnbOkc/nY/369RQXF59wrLi4mPXr1wfs7NmBQVlrqxlNbv5NIYQQokmo9hP6P//5D+PHj680y3Q5h8PB+PHjmTt3bq1UrulSYJNFZ4UQQohAVO3g6M033+T+++/HVsXD3W638+CDD/L666/XSuWaJo1hKJQhwZEQQggRiKodHG3bto3zzjvvpMf79evHli1bzqhSTZtCKQUSHAkhhBABqdrBUWFh4SkXX83Pz6eoqOiMKtW0aRRIt5oQQggRoKodHHXq1InFixef9PjChQvp1KnTGVWqSdNgIC1HQgghRKCqdnB044038uc//5n169efcGzdunU8+uij3HjjjbVSuSZHg1JWt5rkHAkhhBCBqdrzHN1333189dVX9OnTh+HDh9O1a1cAtm7dynfffcegQYO47777ar2iTYFPa5RSVkQq3WpCCCFEQKp2cORwOPj22295/vnnmTt3Lj/99BNaazp37syTTz7JpEmT/Iu6iso01uzYKAVKgiMhhBAiENVohmyHw8GDDz7Igw8++Itl33nnHX7zm98QGhpak49qUjQmSoPNZkPZZBJIIYQQIhDV+RP6zjvvJCMjo64/ptFQaCvfSHKOhBBCiIBU58GR1rquP6LRMLWJoa1FeiU4EkIIIQKT9O3UI63LFp1VBspW4zV/hRBCCFGHJDiqR6bWoE0Mm7QcCSGEEIFKgqN6pNHYtIEyDDDk0gshhBCBSJ7Q9UhrMDAxDDtIt5oQQggRkOo8OGrTpo3Me+SnQWtrKL90qwkhhBABqcbB0ZgxY/jpp59+sdzGjRtJSkqq6cc0KSZmWUK2kpYjIYQQIkDVODjKzc1l+PDhdOrUiaeeeoqDBw/WZr2aJLNstJp0qwkhhBCBq8bB0SeffMLBgwe5++67effdd2nbti2XXnopH3zwAR6Ppzbr2IRolAbDZrOSsoUQQggRcM7oCR0XF8fkyZNZt24dy5Yto2PHjtxyyy20aNGC++67jx07dtRWPZsEE+uCK7vkYAkhhBCBqlaaL9LS0khJSSElJQWbzcZll13Ghg0b6NatG88//3xtfESToLXGhgRHQgghRCCrcXDk8Xj48MMPueKKK2jTpg3vv/8+kyZN4tChQ7z11lt89913vPfeezz++OO1Wd9GzRrKL8GREEIIEchqnBWcmJiIaZqMHj2a5cuXc+65555QZujQoURFRZ1B9ZoabV1wmwzjF0IIIQJVjYOj559/nuuuu46goKCTlomKiiI1NbWmH9HkmFpLy5EQQggR4Grcrfab3/yGoqKiE/ZnZWWRl5d3RpVqqqzlQzTYnA1dFSGEEEKcRI2DoxtuuIF58+adsP+9997jhhtuOKNKNVUasGlQdpnjSAghhAhUNQ6Oli1bxtChQ0/YP2TIEJYtW3ZGlWqqNGAoA2Q5FSGEECJg1Tg4crvdeL3eE/Z7PB6Ki4vPqFJNlcZEoVGGtBwJIYQQgarGwVH//v15/fXXT9j/2muv0adPnzOqVFOl0diVIaPVhBBCiABW4yaMv/3tbwwfPpx169Zx0UUXATB//nxWrFjBt99+W2sVbEq01hhKoQwJjoQQQohAVeOWo0GDBrFkyRKSkpJ47733+Oyzz+jYsSPr16/nggsuqM06NikKpOVICCGECGBnlPxy7rnn8vbbb9dWXX4FFIZSoGTRWSGEECJQnVFwZJomO3fuJDMzE9M0Kx0bPHjwGVWsKVKAkpwjIYQQIqDVODhaunQpN954I3v37kVrXemYUgqfz3fGlWtqNGUzZEvOkRBCCBGwahwc3XXXXfTt25cvvviCxMRElFK1Wa8myX+NbDKUXwghhAhUNX5K79ixgw8++ICOHTvWZn2aNK01NsMAaTkSQgghAlaNM4MHDBjAzp07a7Mup/Tkk08ycOBAQkJCiIqKqrLMvn37uPzyywkJCaF58+Y88MADJ0xUuWDBAnr37o3L5aJjx47MmTOn7itfzjStZGxDErKFEEKIQFXjlqPf//73TJkyhfT0dLp3747juCUxevToccaVq6i0tJTrrruO5ORk3nzzzROO+3w+Lr/8chISEli8eDFpaWnceuutOBwOnnrqKQBSU1O5/PLLueuuu3j77beZP38+t912G4mJiYwYMaJW61slEwzDhpLgSAghhAhYSh+fTX2ajCoe8EoptNZ1mpA9Z84cJk2aRE5OTqX9X331FVdccQWHDh0iPj4esGbrfuihhzh8+DBOp5OHHnqIL774go0bN/rfd8MNN5CTk8PXX399Wp+fl5dHZGQkubm5REREnLScu7iIlDenglKERDcHDYfyMkh2hNP2qtuwxbWo/jcvhBBCiBo53ec3nEHLUWpqak3fWieWLFlC9+7d/YERwIgRI7j77rvZtGkTvXr1YsmSJQwfPrzS+0aMGMGkSZNOel63243b7fZv5+Xl1ah+GsDUGIZNhvILIYQQAazGwVGbNm1qsx5nLD09vVJgBPi309PTT1kmLy+P4uJigoODTzjvtGnTeOyxx864fqYuH8avZOFZIYQQIoCdUfLLf/7zHwYNGkSLFi3Yu3cvAC+88AL/+9//Tuv9Dz/8MEqpU762bt16JlU8Y4888gi5ubn+1/79+2t0Ho2J0qbVciQ5R0IIIUTAqnETxquvvsqjjz7KpEmTePLJJ/05RlFRUbzwwgtcddVVv3iOKVOmMHbs2FOWad++/WnVJyEhgeXLl1fal5GR4T9W/m/5voplIiIiqmw1AnC5XLhcrtOqw6lowEbZBJAyz5EQQggRsGr8lH755Zf517/+xdVXX8306dP9+/v27cv9999/WueIi4sjLi6uplWoJDk5mSeffJLMzEyaN28OQEpKChEREXTr1s1f5ssvv6z0vpSUFJKTk2ulDqeiNSitMZQhM2QLIYQQAazG/Tupqan06tXrhP0ul4vCwsIzqlRV9u3bx9q1a9m3bx8+n4+1a9eydu1aCgoKALjkkkvo1q0bt9xyC+vWreObb77hz3/+MxMnTvS3/Nx1113s3r2bBx98kK1bt/KPf/yD9957j/vuu6/W63s8ExOFwrBJQrYQQggRyGocHLVr1461a9eesP/rr7/mrLPOOpM6VenRRx+lV69eTJ06lYKCAnr16kWvXr1YuXIlADabjc8//xybzUZycjI333wzt956K48//nilOn/xxRekpKTQs2dPZsyYwRtvvFE/cxxpjaHNsuBIutWEEEKIQFXjp/TkyZOZOHEiJSUlaK1Zvnw577zzDtOmTeONN96ozToC1vxGvzSbdZs2bU7oNjvekCFDWLNmTS3W7PT4tMZAoZQkZAshhBCBrMbB0W233UZwcDB//vOfKSoq4sYbb6RFixa8+OKL3HDDDbVZxyZBA8o0Mex2WaRXCCGECGBn1L9z0003cdNNN1FUVERBQYE/EVpUQVv/MeyOXyophBBCiAZUK8kvISEhhISE1MapmjCNTSPBkRBCCBHgqhUc9e7dm/nz5xMdHU2vXr1O2T20evXqM65cU+LTJjZTY3M4G7oqQgghhDiFagVHV111lX9Y/NVXX10X9WmyNBrDAMN+5hNKCiGEEKLuVCs4mjp1apVfi1+mKZsE0i7D+IUQQohAVuMx5StWrGDZsmUn7F+2bJl/7iFxjAZsWqGk5UgIIYQIaDUOjiZOnFjlIqwHDx5k4sSJZ1SppkiXTQKp7DI7thBCCBHIahwcbd68md69e5+wv1evXmzevPmMKtUUaQ02DJRDRqsJIYQQgazGwZHL5TphhXuAtLQ07JJXcwKNRikDZNFZIYQQIqDVODi65JJLeOSRR8jNzfXvy8nJ4Y9//CMXX3xxrVSuKdFaY0NJcCSEEEIEuBo38Tz77LMMHjyYNm3a0KtXLwDWrl1LfHw8//nPf2qtgk2FicZmKJRNgiMhhBAikNU4OGrZsiXr16/n7bffZt26dQQHBzNu3DhGjx6NQ/JqqmRIy5EQQggR8M4oOSg0NJQ77rijturSpGk0NsMAo8Y9mUIIIYSoB9UKjj799FMuvfRSHA4Hn3766SnL/uY3vzmjijU1Go1CgU2S1YUQQohAVq0n9dVXX016ejrNmzc/5fIhSil8Pt+Z1q1J0WjsSqGkW00IIYQIaNUKjkzTrPJr8cu01tZCvZKQLYQQQgS0aiXAxMTEcOTIEQDGjx9Pfn5+nVSqSTI1KMN6CSGEECJgVetJXVpaSl5eHgBvvfUWJSUldVKppkhhYtgMGcovhBBCBLhqdaslJydz9dVX06dPH7TW3HvvvQQHB1dZdtasWbVSwSZDawxlgCEJ2UIIIUQgq9aT+r///S/PP/88u3btAiA3N1daj06TMrFajWQovxBCCBHQqhUcxcfHM336dADatWvHf/7zH2JjY+ukYk2O9pUFR9KtJoQQQgSyGidkDx06FKfTWSeVaqqUoVDSrSaEEEIENEnIrieGaWIYhgzlF0IIIQKcJGTXFw2GsskM2UIIIUSAq3FCtlJKErJPlwalTQybTWbIFkIIIQKcJGTXA5/WGFpZI9VktJoQQggR0Kr9pL7sssvIzc0lNTWV2NhYpk+fTk5Ojv/40aNH6datW23WsdHTAPgwDLvkHAkhhBABrtrB0ddff43b7fZvP/XUU2RlZfm3vV4v27Ztq53aNREaE0NT1q0mLUdCCCFEIDvjJ7XWujbq0eQZWqPsjoauhhBCCCF+gTRj1ANTWy1HNhmpJoQQQgS8agdHSimUUifsEyenNSg0hl0mzRRCCCECXbWbMrTWjB07FpfLBUBJSQl33XUXoaGhAJXykYTF1BqlwZAZxYUQQoiAV+3gaMyYMZW2b7755hPK3HrrrTWvUROk0WU5RxIcCSGEEIGu2sHR7Nmz66IeTZrWoDTYJCFbCCGECHiSkF0vNDatMSQ4EkIIIQKeBEf1wMQEwOZwNXBNhBBCCPFLJDiqB1qDgcJwyOzYQgghRKBrNMHRk08+ycCBAwkJCSEqKqrKMuXTDFR8zZs3r1KZBQsW0Lt3b1wuFx07dmTOnDl1XneNRqGx2SQhWwghhAh0jSY4Ki0t5brrruPuu+8+ZbnZs2eTlpbmf1199dX+Y6mpqVx++eUMHTqUtWvXMmnSJG677Ta++eabOq27BgxDoQxpORJCCCECXaOZsvmxxx4D+MWWnqioKBISEqo89tprr9GuXTtmzJgBwFlnncXChQt5/vnnGTFiRK3WtyJTawylULLorBBCCBHwGk3L0emaOHEizZo1o3///syaNavS2m9Llixh+PDhlcqPGDGCJUuWnPR8brebvLy8Sq+aUNhAWo6EEEKIgNdoWo5Ox+OPP86wYcMICQnh22+/5f/+7/8oKCjg3nvvBSA9PZ34+PhK74mPjycvL4/i4mKCg4NPOOe0adP8rVY1pbXGpgBZW00IIYQIeA3acvTwww9XmURd8bV169bTPt9f/vIXBg0aRK9evXjooYd48MEHeeaZZ86ojo888gi5ubn+1/79+6t9Dg0YGCijyTXUCSGEEE1OgzZlTJkyhbFjx56yTPv27Wt8/gEDBvDEE0/gdrtxuVwkJCSQkZFRqUxGRgYRERFVthoBuFwu/zpyNWVqE0Mp6VYTQgghGoEGDY7i4uKIi4urs/OvXbuW6Ohof3CTnJzMl19+WalMSkoKycnJdVYHAK1NlKFAWo6EEEKIgNdokmD27dtHVlYW+/btw+fzsXbtWgA6duxIWFgYn332GRkZGZx33nkEBQWRkpLCU089xf333+8/x1133cUrr7zCgw8+yPjx4/n+++957733+OKLL+q07to0sRt2yTkSQgghGoFG87R+9NFHeeutt/zbvXr1AuCHH35gyJAhOBwOZs6cyX333YfWmo4dO/Lcc89x++23+9/Trl07vvjiC+677z5efPFFWrVqxRtvvFGnw/ihrOVIGTKUXwghhGgElK441l38ory8PCIjI8nNzSUiIuKk5dzFRaS8ORWUIkeZdNMOet4wCVts/EnfI4QQQoi6cbrPb2iC8xwFJK0xbHZQqqFrIoQQQohfIMFRfdAmyrChJOdICCGECHgSHNUDhbUorgzlF0IIIQKfBEf1QJkmhs0mo9WEEEKIRkCCo3qgtMYwDGk5EkIIIRoBacqoFxqlbDKUXwghGjGtNV6vF5/P19BVESfhcDiw1cKzVoKj+lA+Wk1myBZCiEaptLSUtLQ0ioqKGroq4hSUUrRq1YqwsLAzOo8ER/XAMLXVpSbBkRBCNDqmaZKamorNZqNFixY4nU5rkI0IKFprDh8+zIEDB+jUqdMZtSBJcFQfNBiGXX6YhBCiESotLcU0TZKSkggJCWno6ohTiIuLY8+ePXg8njMKjqQpo85plDYxHI6GrogQQogzYEjrf8CrrUYIudN1zNQAWoIjIYQQopGQ4KgeGKaW2bGFEEL8agwZMoRJkybVybnbtm3LCy+8UCfnLifBUR3TaBRgOFwNXRUhhBC/MmPHjkUpxV133XXCsYkTJ6KUYuzYsfVfsQAnwVEd01pjaGk5EkII0TCSkpKYN28excXF/n0lJSXMnTuX1q1b1/i85fM+1URpaWmNP7c+SHBUxzTW2mo2p7QcCSGEqH+9e/cmKSmJjz76yL/vo48+onXr1vTq1cu/z+12c++999K8eXOCgoI4//zzWbFihf/4ggULUErx1Vdf0adPH1wuFwsXLqSwsJBbb72VsLAwEhMTmTFjxgl1aNu2LU888QS33norERER3HHHHQAsXLiQCy64gODgYJKSkrj33nspLCz0vy8zM5Mrr7yS4OBg2rVrx9tvv10Xl+gEEhzVMVNrFBrDIS1HQgjRFGitKSr1VutV4vGhtabE46ty+3RfWusa1Xn8+PHMnj3bvz1r1izGjRtXqcyDDz7Ihx9+yFtvvcXq1avp2LEjI0aMICsrq1K5hx9+mOnTp7NlyxZ69OjBAw88wI8//sj//vc/vv32WxYsWMDq1atPqMOzzz5Lz549WbNmDX/5y1/YtWsXI0eOZNSoUaxfv553332XhQsXcs899/jfM3bsWPbv388PP/zABx98wD/+8Q8yMzNrdA2qQ57YdUwDhlbY7NJyJIQQTUGxx0e3R7+p9vsu6NSMl0f34t0V+7m+XxK3/3slP+84Uq1zbH58BCHO6j+6b775Zh555BH27t0LwKJFi5g3bx4LFiwAoLCwkFdffZU5c+Zw6aWXAvCvf/2LlJQU3nzzTR544AH/uR5//HEuvvhiAAoKCnjzzTf573//y0UXXQTAW2+9RatWrU6ow7Bhw5gyZYp/+7bbbuOmm27yJ2536tSJl156iQsvvJBXX32Vffv28dVXX7F8+XL69esHwJtvvslZZ51V7e+/uiQ4qmvaBBTKLo10Qgjxa/bzjiO8u2I/d17YgX/+uKvagdGZiIuL4/LLL2fOnDlorbn88stp1qyZ//iuXbvweDwMGjTIv8/hcNC/f3+2bNlS6Vx9+/at9L7S0lIGDBjg3xcTE0OXLl1OqEPF9wGsW7eO9evXV+oq01r7ZyTfvn07drudPn36+I937dqVqKio6l+AapLgqB4YaGxKLrUQQjQFwQ4bmx8fUe33GUrhsht4fCZ3DG7PmIFtMavZTRbsqPmsz+PHj/d3Wc2cObPG5wkNDa2V9xUUFHDnnXdy7733nlC2devWbN++vUafUxvkiV3HfGhQBob9zFcJFkII0fCUUjXq2irnsFmzOAedQaBTEyNHjqS0tBSlFCNGVA7uOnTogNPpZNGiRbRp0wYAj8fDihUrTjlfUYcOHXA4HCxbtsw/8i07O5vt27dz4YUXnrI+vXv3ZvPmzXTs2LHK4127dsXr9bJq1Sp/t9q2bdvIyck5ze+45iQ4qmsaDK2x2Z0NXRMhhBC/Yjabzd9Fdvy6Y6Ghodx999088MADxMTE0Lp1a55++mmKioqYMGHCSc8ZFhbGhAkTeOCBB4iNjaV58+b86U9/Oq2lVh566CHOO+887rnnHm677TZCQ0PZvHkzKSkpvPLKK3Tp0oWRI0dy55138uqrr2K325k0aRLBwcFndiFOgwRHdUwDSlkLzwohhBANKSIi4qTHpk+fjmma3HLLLeTn59O3b1+++eYboqOjT3nOZ555hoKCAq688krCw8OZMmUKubm5v1iXHj168OOPP/KnP/2JCy64AK01HTp04Prrr/eXmT17NrfddhsXXngh8fHx/O1vf+Mvf/nL6X/DNaR0TccF/krl5eURGRlJbm7uKf8ncxcXkfLmVAq8bqLcpQz73R9wtqv7DHshhBC1q6SkhNTUVNq1a0dQUFBDV0ecwqnu1ek+v0HmOapzptYoZaAMyTkSQgghGgMJjuqY1iaGMlCSkC2EEEI0ChIc1TWtMZQCyTkSQgghGgUJjuqaaWIYdpRNWo6EEEKIxkCCozqnUQYgOUdCCCFEoyDBUR3T2sRms0twJIQQQjQSEhzVMW2aKGUDm+QcCSGEEI2BBEd1TWvsNhtKyaUWQgghGgN5YtcxpTUYhrQcCSGEEI2EBEd1TGsTu+QcCSGEEI2GBEd1zNAaQ9lkKL8QQoh6N3bsWJRS3HXXXSccmzhxIkopxo4dW/8VC3ASHNU5jWGzW11rQgghRD1LSkpi3rx5FBcX+/eVlJQwd+5cWrduXePzaq3xer21UcWAI0/suqY1hs2Q4EgIIUSD6N27N0lJSXz00Uf+fR999BGtW7emV69e/n1ut5t7772X5s2bExQUxPnnn8+KFSv8xxcsWIBSiq+++oo+ffrgcrlYuHAh+fn53HTTTYSGhpKYmMjzzz/PkCFDmDRpkv+9//nPf+jbty/h4eEkJCRw4403kpmZecK558+fT9++fQkJCWHgwIFs27atbi/OScgTu47ZNNbSIUo1dFWEEELUBq2htLB6L0+J9T5PSdXbp/vSukZVHj9+PLNnz/Zvz5o1i3HjxlUq8+CDD/Lhhx/y1ltvsXr1ajp27MiIESPIysqqVO7hhx9m+vTpbNmyhR49ejB58mQWLVrEp59+SkpKCj///DOrV6+u9B6Px8MTTzzBunXr+OSTT9izZ0+V3Xl/+tOfmDFjBitXrsRutzN+/Pgafb9nSoZQ1TFDawy7AyXBkRBCNA2eIniqRfXf12EY/HYWrP4P9L4F5o2GXd9X7xx/PATO0Gp/9M0338wjjzzC3r17AVi0aBHz5s1jwYIFABQWFvLqq68yZ84cLr30UgD+9a9/kZKSwptvvskDDzzgP9fjjz/OxRdfDEB+fj5vvfUWc+fO5aKLLgJg9uzZtGhR+fpUDHLat2/PSy+9RL9+/SgoKCAsLMx/7Mknn+TCCy8ErCDs8ssvp6SkhKCgoGp/z2eiUbQc7dmzhwkTJtCuXTuCg4Pp0KEDU6dOpbS0tFK59evXc8EFFxAUFERSUhJPP/30Ced6//336dq1K0FBQXTv3p0vv/yybiuvQdkcdfsZQgghAt+u763AaNC91r/VDYzOQFxcHJdffjlz5sxh9uzZXH755TRr1uxY1XbtwuPxMGjQIP8+h8NB//792bJlS6Vz9e3b1//17t278Xg89O/f378vMjKSLl26VHrPqlWruPLKK2ndujXh4eH+AGjfvn2VyvXo0cP/dWJiIkCl7rf60ihajrZu3Yppmvzzn/+kY8eObNy4kdtvv53CwkKeffZZAPLy8rjkkksYPnw4r732Ghs2bGD8+PFERUVxxx13ALB48WJGjx7NtGnTuOKKK5g7dy5XX301q1ev5pxzzqmTuhuAYW8Ul1kIIcTpcIRYLTjVpWxgd4GvFAb+HvrfAdpX/c+uofHjx3PPPfcAMHPmzBqfJzS0ei1XhYWFjBgxghEjRvD2228TFxfHvn37GDFixAmNHA7HscaE8h4X0zRrXNeaahRP7ZEjRzJy5Ej/dvv27dm2bRuvvvqqPzh6++23KS0tZdasWTidTs4++2zWrl3Lc8895w+OXnzxRUaOHOlvHnziiSdISUnhlVde4bXXXquTuiutwS4tR0II0WQoVaOuLT+b0/rXUb9dRSNHjqS0tBSlFCNGjKh0rEOHDjidThYtWkSbNm0AK09oxYoVlRKrj9e+fXscDgcrVqzwj3zLzc1l+/btDB48GLAaOI4ePcr06dNJSkoCYOXKlXXwHdaeRtGtVpXc3FxiYmL820uWLGHw4ME4nU7/vhEjRrBt2zays7P9ZYYPH17pPCNGjGDJkiUn/Ry3201eXl6lV3UoDYbd+csFhRBCiDpks9nYsmULmzdvxnbc3HuhoaHcfffdPPDAA3z99dds3ryZ22+/naKiIiZMmHDSc4aHhzNmzBgeeOABfvjhBzZt2sSECRMwDMPf8tO6dWucTicvv/wyu3fv5tNPP+WJJ56o0+/1TDXK4Gjnzp28/PLL3Hnnnf596enpxMfHVypXvp2enn7KMuXHqzJt2jQiIyP9r/Ko93RJt5oQQohAERERQURERJXHpk+fzqhRo7jlllvo3bs3O3fu5JtvviE6OvqU53zuuedITk7miiuuYPjw4QwaNIizzjrLn0QdFxfHnDlzeP/99+nWrRvTp0/39/oEqgZ9aj/88MP8/e9/P2WZLVu20LVrV//2wYMHGTlyJNdddx233357XVeRRx55hMmTJ/u38/LyqhUgKZS0HAkhhGgQc+bMOeXxTz75xP91UFAQL730Ei+99FKVZYcMGYKuYiqB8PBw3n77bf92YWEhjz32mD+lBWD06NGMHj260vsqnquqc5977rlVfl59aNDgaMqUKb84bXn79u39Xx86dIihQ4cycOBAXn/99UrlEhISyMjIqLSvfDshIeGUZcqPV8XlcuFyuX7xezkZhUJJy5EQQogmas2aNWzdupX+/fuTm5vL448/DsBVV13VwDWruQZ9asfFxREXF3daZQ8ePMjQoUPp06cPs2fPxjhuxunk5GT+9Kc/4fF4/NnuKSkpdOnSxd8kmJyczPz58ysll6WkpJCcnFw739BJ2KXlSAghRBP27LPPsm3bNpxOJ3369OHnn3+uNFVAY9MomjQOHjzIkCFDaNOmDc8++yyHDx/2Hytv9bnxxht57LHHmDBhAg899BAbN27kxRdf5Pnnn/eX/cMf/sCFF17IjBkzuPzyy5k3bx4rV648oRWqNinDQNll0VkhhBBNU69evVi1alVDV6NWNYrgKCUlhZ07d7Jz505atWpV6Vh5f2RkZCTffvstEydOpE+fPjRr1oxHH320Up/nwIEDmTt3Ln/+85/54x//SKdOnfjkk0/qbI4jAI3CZmsUl1kIIYQQNJLgaOzYsb+YmwTWzJo///zzKctcd911XHfddbVUs1+mDANlSMuREEII0Vg0yqH8jYqhsEnOkRBCCNFoSHBUx5QyMGxymYUQQojGQp7adU0ZGLJ8iBBCCNFoSHBUx5ShsNskOBJCCCEaCwmO6phSNgybJGQLIYQQjYUER3VNgU1ajoQQQjSAsWPHopRCKYXD4aBdu3Y8+OCDlJSU+MuUH1dKERoaSqdOnRg7duwJcxctWLAApRQ5OTn+fYcOHaJ79+4MHjyY3NzcSmUqfnZVr7Zt29bTVag+CY7qmiEtR0IIIRrOyJEjSUtLY/fu3Tz//PP885//ZOrUqZXKzJ49m7S0NDZt2sTMmTMpKChgwIAB/Pvf/z7peXft2sX5559PmzZt+Oabb4iMjKx0/MUXXyQtLc3/qvg5aWlprFixova/2VrSKOY5asyUUtjsNV+bTQghhDgTLpfLv5pEUlISw4cPJyUlpdLC71FRUf4ybdu25ZJLLmHMmDHcc889XHnllf5luMqtX7+eESNGMGzYMN566y3sVawhGhkZeULAVPFzApm0HNUxZdhk4VkhhGhCtNYUeYqq9SrxlqC1psRbUuX26b7OdJX6jRs3snjxYpzOX55/77777iM/P5+UlJRK+xcvXsyFF17IqFGj+O9//1tlYNTYNb3vKMAYSqEMucxCCNFUFHuLGTB3QLXfl9wimWcGP8NHOz7i2k7Xcu8P97Lk0JJqnWPZjcsIcYRU6z2ff/45YWFheL1e3G43hmHwyiuv/OL7unbtCsCePXsq7b/mmmu4/vrrT+scjZW0HNUxZbeBIZdZCCF+7ZYcWsJHOz5i3Dnj+GjHR9UOjGpq6NChrF27lmXLljFmzBjGjRvHqFGjfvF95a1USqlK+6+66io+/vjjX1yuqzGTJo06ZlN2kLXVhBCiyQi2B7PsxmXVfp+hDFw2Fx6fh7Fnj2V019GY2qz2Z1dXaGgoHTt2BGDWrFn07NmTN998kwkTJpzyfVu2bAGgXbt2lfb/85//5MEHH+TSSy/lyy+/ZPDgwdWuU6CT4KiOGTYDmmB/rBBC/FoppardtVWRo2x6lyB7UG1V6bQZhsEf//hHJk+ezI033khw8MmDrRdeeIGIiAiGDx9eab9Sitdffx3DMLjsssv44osvuPDCC+u66vVK+nvqmKFsJzRJCiGEEA3luuuuw2azMXPmTP++nJwc0tPT2bt3LykpKfz2t79l7ty5vPrqq0RFRZ1wDqUUr732GrfeeiuXXXYZCxYsqL9voB5Ik0YdUza75BwJIYQIGHa7nXvuuYenn36au+++G4Bx48YBEBQURMuWLTn//PNZvnw5vXv3Pul5lFLMnDkTwzC4/PLL+fzzz5tMY4DSZzou8FcmLy+PyMhIcnNziYiIOGk5d3ERKW9OJTYshvNufQglAZIQQjRKJSUlpKam0q5dO4KC6r8rTJy+U92r031+g3Sr1TnDZpfASAghhGhE5Kldxwz7L0+0JYQQQojAIcFRHZPgSAghhGhcJDiqY4ZNct6FEEKIxkSCozpkKMDhaOhqCCGEEKIaJDiqUwqbdKsJIYQQjYoER3VIGTaUXS6xEEII0ZjIk7uO2QzpVhNCCCEaEwmO6pChDJSsqyaEEEI0KhIc1SGFIUP5hRBC/Coppfjkk08auho1IsFRHVIGYLc1dDWEEEL8So0dOxalFEopHA4H7dq148EHH6SkpKShqxbQpM+nLhl27DbJORJCCNFwRo4cyezZs/F4PKxatYoxY8aglOLvf/97Q1ctYEnLUR1ShtFkVigWQgjROLlcLhISEkhKSuLqq69m+PDhpKSkAHD06FFGjx5Ny5YtCQkJoXv37rzzzjuV3j9kyBDuvfdeHnzwQWJiYkhISOCvf/1rpTI7duxg8ODBBAUF0a1bN//5K9qwYQPDhg0jODiY2NhY7rjjDgoKCvzHx44dy9VXX81TTz1FfHw8UVFRPP7443i9Xh544AFiYmJo1aoVs2fPrv2LdBxpOaojhgKn3Y7L5WroqgghhKhFWmt0cXH13mQYKJcL7XaDaZ64fZpUcPAZ/dG9ceNGFi9eTJs2bQBrFfs+ffrw0EMPERERwRdffMEtt9xChw4d6N+/v/99b731FpMnT2bZsmUsWbKEsWPHMmjQIC6++GJM0+Taa68lPj6eZcuWkZuby6RJkyp9bmFhISNGjCA5OZkVK1aQmZnJbbfdxj333MOcOXP85b7//ntatWrFTz/9xKJFi5gwYQKLFy9m8ODBLFu2jHfffZc777yTiy++mFatWtX4OvwSCY7qiGHYaBYeTGhQUENXRQghRC3SxcVs692n2u8LHTSQljNmkPPhh0SNGsWBiRMpXLS4WufosnoVKiSkWu/5/PPPCQsLw+v14na7MQyDV155BYCWLVty//33+8v+/ve/55tvvuG9996rFBz16NGDqVOnAtCpUydeeeUV5s+fz8UXX8x3333H1q1b+eabb2jRogUATz31FJdeeqn//XPnzqWkpIR///vfhIaGAvDKK69w5ZVX8ve//534+HgAYmJieOmllzAMgy5duvD0009TVFTEH//4RwAeeeQRpk+fzsKFC7nhhhuqdR2qQ4KjOmLY7LSKO5uQ8BYNXRUhhBABoHDRYnI+/JDYCRM4+uab1Q6Mamro0KG8+uqrFBYW8vzzz2O32xk1ahQAPp+Pp556ivfee4+DBw9SWlqK2+0m5LgArEePHpW2ExMTyczMBGDLli0kJSX5AyOA5OTkSuW3bNlCz549/YERwKBBgzBNk23btvmDo7PPPhvDOJbxEx8fzznnnOPfttlsxMbG+j+7rkhwVIccYc1B5jkSQogmRQUH02X1quq/sbwrzeMhZvx4om+6qVpdauWfXV2hoaF07NgRgFmzZtGzZ0/efPNNJkyYwDPPPMOLL77ICy+8QPfu3QkNDWXSpEmUlpZWOofjuHVClVKY1az76ajqc+rrsyuSJ3ddMhRIQrYQQjQpSqlqd21VUvawVw2QdmEYBn/84x+ZPHkyN954I4sWLeKqq67i5ptvBsA0TbZv3063bt1O+5xnnXUW+/fvJy0tjcTERACWLl16Qpk5c+ZQWFjobz1atGiRv/ss0MhotbpkGBIcCSGECCjXXXcdNpuNmTNn0qlTJ1JSUli8eDFbtmzhzjvvJCMjo1rnGz58OJ07d2bMmDGsW7eOn3/+mT/96U+Vytx0000EBQUxZswYNm7cyA8//MDvf/97brnlFn+XWiCR4KiuGAZGUBCGJGQLIYQIIHa7nXvuuYenn36aKVOm0Lt3b0aMGMGQIUNISEjg6quvrtb5DMPg448/pri4mP79+3Pbbbfx5JNPVioTEhLCN998Q1ZWFv369eO3v/0tF110kT8xPNAorbVu6Eo0Jnl5eURGRpKbm0tERERDV0cIIUQdKykpITU1lXbt2hEkf/AGtFPdq+o8v6XlSAghhBCigkYRHO3Zs4cJEybQrl07goOD6dChA1OnTq2UTb9nzx7/+jEVX8cnhb3//vt07dqVoKAgunfvzpdfflnf344QQgghAlijGK22detWTNPkn//8Jx07dmTjxo3cfvvtFBYW8uyzz1Yq+91333H22Wf7t2NjY/1fL168mNGjRzNt2jSuuOIK5s6dy9VXX83q1asrzaMghBBCiF+vRptz9Mwzz/Dqq6+ye/duwGo5ateuHWvWrOHcc8+t8j3XX389hYWFfP755/595513Hueeey6vvfbaaX2u5BwJIcSvi+QcNR6/+pyj3NxcYmJiTtj/m9/8hubNm3P++efz6aefVjq2ZMkShg8fXmnfiBEjWLJkyUk/x+12k5eXV+klhBBCiKarUQZHO3fu5OWXX+bOO+/07wsLC2PGjBm8//77fPHFF5x//vlcffXVlQKk9PT0E+ZTiI+PJz09/aSfNW3aNCIjI/2vpKSk2v+GhBBCBLxG2tHyq1Jb96hBg6OHH364yiTqiq+tW7dWes/BgwcZOXIk1113Hbfffrt/f7NmzZg8eTIDBgygX79+TJ8+nZtvvplnnnnmjOr4yCOPkJub63/t37//jM4nhBCicSlfvqKoqKiBayJ+SflALZvNdkbnadCE7ClTpjB27NhTlmnfvr3/60OHDjF06FAGDhzI66+//ovnHzBgACkpKf7thISEE2b+zMjIICEh4aTncLlcuFyuX/wsIYQQTZPNZiMqKsq/2GlISAhKVj8IOKZpcvjwYUJCQrCf4bqmDRocxcXFERcXd1plDx48yNChQ+nTpw+zZ8+utGrvyaxdu9a/zgtYqwTPnz+fSZMm+felpKScsHqwEEIIUVH5H9F1vRq8ODOGYdC6deszDl4bxVD+gwcPMmTIENq0acOzzz7L4cOH/cfK/4d96623cDqd9OrVC4CPPvqIWbNm8cYbb/jL/uEPf+DCCy9kxowZXH755cybN4+VK1eeViuUEEKIXy+lFImJiTRv3hyPx9PQ1REn4XQ6T6vx5Jc0iuAoJSWFnTt3snPnTlq1alXpWMXkqyeeeIK9e/dit9vp2rUr7777Lr/97W/9xwcOHMjcuXP585//zB//+Ec6derEJ598InMcCSGEOC02m+2M81lE4Gu08xw1FJnnSAghhGh8fhXzHAkhhBBC1AUJjoQQQgghKmgUOUeBpLwXUmbKFkIIIRqP8uf26WQTSXBUTUePHgWQmbKFEEKIRig/P5/IyMhTlpHgqJrK13Pbt2/fL15cUXfy8vJISkpi//79khjfQOQeNDy5Bw1P7kFgOJ37oLUmPz+fFi1a/OL5JDiqpvL5EyIjI+UHIQBERETIfWhgcg8antyDhif3IDD80n043UYNScgWQgghhKhAgiMhhBBCiAokOKoml8vF1KlTZTHaBib3oeHJPWh4cg8antyDwFDb90FmyBZCCCGEqEBajoQQQgghKpDgSAghhBCiAgmOhBBCCCEqkOCommbOnEnbtm0JCgpiwIABLF++vKGr1GT99NNPXHnllbRo0QKlFJ988kml41prHn30URITEwkODmb48OHs2LGjYSrbRE2bNo1+/foRHh5O8+bNufrqq9m2bVulMiUlJUycOJHY2FjCwsIYNWoUGRkZDVTjpufVV1+lR48e/vlbkpOT+eqrr/zH5frXv+nTp6OUYtKkSf59ch/q3l//+leUUpVeXbt29R+vzXsgwVE1vPvuu0yePJmpU6eyevVqevbsyYgRI8jMzGzoqjVJhYWF9OzZk5kzZ1Z5/Omnn+all17itddeY9myZYSGhjJixAhKSkrquaZN148//sjEiRNZunQpKSkpeDweLrnkEgoLC/1l7rvvPj777DPef/99fvzxRw4dOsS1117bgLVuWlq1asX06dNZtWoVK1euZNiwYVx11VVs2rQJkOtf31asWME///lPevToUWm/3If6cfbZZ5OWluZ/LVy40H+sVu+BFqetf//+euLEif5tn8+nW7RooadNm9aAtfp1APTHH3/s3zZNUyckJOhnnnnGvy8nJ0e7XC79zjvvNEANfx0yMzM1oH/88UettXXNHQ6Hfv/99/1ltmzZogG9ZMmShqpmkxcdHa3feOMNuf71LD8/X3fq1EmnpKToCy+8UP/hD3/QWsvPQX2ZOnWq7tmzZ5XHavseSMvRaSotLWXVqlUMHz7cv88wDIYPH86SJUsasGa/TqmpqaSnp1e6H5GRkQwYMEDuRx3Kzc0Fjq0xuGrVKjweT6X70LVrV1q3bi33oQ74fD7mzZtHYWEhycnJcv3r2cSJE7n88ssrXW+Qn4P6tGPHDlq0aEH79u256aab2LdvH1D790DWVjtNR44cwefzER8fX2l/fHw8W7dubaBa/Xqlp6cDVHk/yo+J2mWaJpMmTWLQoEGcc845gHUfnE4nUVFRlcrKfahdGzZsIDk5mZKSEsLCwvj444/p1q0ba9euletfT+bNm8fq1atZsWLFCcfk56B+DBgwgDlz5tClSxfS0tJ47LHHuOCCC9i4cWOt3wMJjoQQp2XixIls3LixUh+/qB9dunRh7dq15Obm8sEHHzBmzBh+/PHHhq7Wr8b+/fv5wx/+QEpKCkFBQQ1dnV+tSy+91P91jx49GDBgAG3atOG9994jODi4Vj9LutVOU7NmzbDZbCdkvmdkZJCQkNBAtfr1Kr/mcj/qxz333MPnn3/ODz/8QKtWrfz7ExISKC0tJScnp1J5uQ+1y+l00rFjR/r06cO0adPo2bMnL774olz/erJq1SoyMzPp3bs3drsdu93Ojz/+yEsvvYTdbic+Pl7uQwOIioqic+fO7Ny5s9Z/FiQ4Ok1Op5M+ffowf/58/z7TNJk/fz7JyckNWLNfp3bt2pGQkFDpfuTl5bFs2TK5H7VIa80999zDxx9/zPfff0+7du0qHe/Tpw8Oh6PSfdi2bRv79u2T+1CHTNPE7XbL9a8nF110ERs2bGDt2rX+V9++fbnpppv8X8t9qH8FBQXs2rWLxMTE2v9ZqGHS+K/SvHnztMvl0nPmzNGbN2/Wd9xxh46KitLp6ekNXbUmKT8/X69Zs0avWbNGA/q5557Ta9as0Xv37tVaaz19+nQdFRWl//e//+n169frq666Srdr104XFxc3cM2bjrvvvltHRkbqBQsW6LS0NP+rqKjIX+auu+7SrVu31t9//71euXKlTk5O1snJyQ1Y66bl4Ycf1j/++KNOTU3V69ev1w8//LBWSulvv/1Way3Xv6FUHK2mtdyH+jBlyhS9YMECnZqaqhctWqSHDx+umzVrpjMzM7XWtXsPJDiqppdfflm3bt1aO51O3b9/f7106dKGrlKT9cMPP2jghNeYMWO01tZw/r/85S86Pj5eu1wufdFFF+lt27Y1bKWbmKquP6Bnz57tL1NcXKz/7//+T0dHR+uQkBB9zTXX6LS0tIardBMzfvx43aZNG+10OnVcXJy+6KKL/IGR1nL9G8rxwZHch7p3/fXX68TERO10OnXLli319ddfr3fu3Ok/Xpv3QGmt9Rm2bAkhhBBCNBmScySEEEIIUYEER0IIIYQQFUhwJIQQQghRgQRHQgghxP+3d68hUW1tHMD/00w2OV6mUmasQDPThrTJLpSWmmKmkFQgRRdL7SYUJqVdsNSUdDRITxcJFMwPZUQ3CkqCLDO7WloUVlgZRRettFDIGl3nQ6/7nX3U90ydeq3O/wcL9l5r72c9az7Iw9p7RiILLI6IiIiILLA4IiIiIrLA4oiIiIjIAosjIiIiIgssjoiIvjOFQoETJ070dRpE9I1YHBFRj2JiYqBQKGAymWT9J06cgEKh6KOsvlAoFD22Q4cO9WleXV6+fImIiIi+TgP79++HVqvt6zSIfjksjoioV2q1Gjk5OWhubu7rVLopLi7Gy5cvZW3OnDl9mtOnT58AAHq9HgMGDOjTXIjo27E4IqJehYaGQq/XIzs7u8fx9PR0jBs3TtaXn58PNzc36TwmJgZz5sxBVlYWdDodtFotMjIyYDabkZycjMGDB2P48OEoLi7+qty0Wi30er2sqdVqAEBcXBzGjh2L9vZ2AF+KFl9fXyxZsgQA0NDQIO00+fv7Q61Ww9vbGxUVFbI57t69i4iICNjZ2UGn0yE6Ohpv3ryRxqdPn441a9YgMTERTk5OmDlzJgD5Y7WuuQ4fPoyAgAAMHDgQkyZNwsOHD3Hjxg1MnDgRdnZ2iIiIQFNTk2z+oqIiGAwGqNVqjB49GgUFBdJYV9xjx44hODgYtra2MBqNuHLlCgDgwoULiI2Nxfv376WdtfT0dABAQUEBRo0aBbVaDZ1Oh6ioqK/67Il+dyyOiKhXSqUSWVlZ2L17N54/f/7NccrLy/HixQtcvHgRO3fuRFpaGmbNmoVBgwbh2rVriI+Px6pVq/7RHJZ27dqFtrY2bNq0CQCQkpKClpYW7NmzR3ZdcnIy1q9fj5qaGvj5+SEyMhJv374FALS0tCAkJAS+vr6orq5GWVkZXr9+jXnz5slilJSUwMbGBlVVVdi3b1+vOaWlpWHLli24desWVCoVFi5ciA0bNuCPP/5AZWUl6uvrkZqaKl1/4MABpKamYvv27airq0NWVha2bt2KkpISWdyUlBQkJSWhtrYWnp6eWLBgAcxmM/z9/ZGfnw8HBwdpZy0pKQnV1dVISEhARkYGHjx4gLKyMgQGBv6jz5votyOIiHqwdOlSMXv2bCGEEFOmTBFxcXFCCCGOHz8uuv50pKWlCaPRKLsvLy9PuLq6yuK4urqKjo4Oqc/Ly0sEBARI52azWWg0GlFaWmpVbgCEWq0WGo1G1p4+fSpdc/nyZdG/f3+xdetWoVKpRGVlpTT25MkTAUCYTCap7/Pnz2L48OEiJydHCCFEZmamCAsLk8377NkzAUA8ePBACCFEUFCQ8PX17TG/48ePy+YqKiqSxktLSwUAce7cOakvOztbeHl5SecjR44UBw8elMXNzMwUfn5+vca9d++eACDq6uqEEEIUFxcLR0dHWYyjR48KBwcH8eHDh255E9EXqj6ryojol5GTk4OQkBAkJSV90/1jxoxBv37/3ajW6XTw9vaWzpVKJYYMGYLGxkarY+bl5SE0NFTWN3ToUOnYz88PSUlJyMzMxMaNGzFt2rRuMfz8/KRjlUqFiRMnoq6uDgBw+/ZtnD9/HnZ2dt3ue/ToETw9PQEAEyZMsCrfsWPHSsc6nQ4A4OPjI+vrWn9bWxsePXqEZcuWYcWKFdI1ZrMZjo6OvcZ1cXEBADQ2NmL06NE95jFjxgy4urrC3d0d4eHhCA8Px9y5c2Fra2vVOoj+DVgcEdHfCgwMxMyZM7F582bExMRI/f369YMQQnbt58+fu93fv39/2blCoeixr7Oz0+qc9Ho9PDw8eh3v7OxEVVUVlEol6uvrrY7bpbW1FZGRkcjJyek21lWEAIBGo7EqnuV6u77t99e+rvW3trYCAAoLCzF58mRZHKVS+bdx/9fnaG9vj1u3buHChQs4e/YsUlNTkZ6ejhs3bvCbbUT/wXeOiMgqJpMJp06dkl74BQBnZ2e8evVKViDV1tb2QXbd7dixA/fv30dFRQXKysp6fOH76tWr0rHZbMbNmzdhMBgAAOPHj8e9e/fg5uYGDw8PWbO2IPpWOp0OQ4cOxePHj7vNPWLECKvj2NjYoKOjo1u/SqVCaGgocnNzcefOHTQ0NKC8vPx7LoHol8adIyKyio+PDxYtWoRdu3ZJfdOnT0dTUxNyc3MRFRWFsrIynDlzBg4ODj88n5aWFrx69UrWZ29vD41Gg5qaGqSmpuLIkSOYOnUqdu7cibVr1yIoKAju7u7S9Xv37sWoUaNgMBiQl5eH5uZmxMXFAQBWr16NwsJCLFiwABs2bMDgwYNRX1+PQ4cOoaioqNsOzve2bds2JCQkwNHREeHh4Whvb0d1dTWam5uxbt06q2K4ubmhtbUV586dg9FohK2tLcrLy/H48WMEBgZi0KBBOH36NDo7O+Hl5fVD10P0K+HOERFZLSMjQ/bIxmAwoKCgAHv37oXRaMT169e/+b2krxUbGwsXFxdZ2717Nz5+/IjFixcjJiYGkZGRAICVK1ciODgY0dHRsp0Uk8kEk8kEo9GIS5cu4eTJk3BycgLw5f2lqqoqdHR0ICwsDD4+PkhMTIRWq5W9P/WjLF++HEVFRSguLoaPjw+CgoKwf//+r9o58vf3R3x8PObPnw9nZ2fk5uZCq9Xi2LFjCAkJgcFgwL59+1BaWooxY8b8wNUQ/VoU4q8vDBAR/eYaGhowYsQI1NTUdPudJiIi7hwRERERWWBxREQ/laysLNjZ2fXYfob/V0ZEvz8+ViOin8q7d+/w7t27HscGDhyIYcOG/Z8zIqJ/GxZHRERERBb4WI2IiIjIAosjIiIiIgssjoiIiIgssDgiIiIissDiiIiIiMgCiyMiIiIiCyyOiIiIiCywOCIiIiKy8Cdo/768w/dyhwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# all experiments\n", + "sns.lineplot(\n", + " data=results, x=\"Num_Experiments\", y=\"Efficiency_CumBest\", hue=\"Scenario\", marker=\"x\"\n", + ")\n", + "plt.plot([0.5, N_DOE_ITERATIONS+0.5], [max_yield, max_yield], \"--r\", alpha=0.4)\n", + "plt.legend(loc=\"lower right\")\n", + "import matplotlib.pyplot as plt\n", + "\n", + "plt.xlim(0, N_DOE_ITERATIONS+1)\n", + "plt.savefig(f\"./img/{exp_dataset_name}_simulation_{N_MC_ITERATIONS}MC_{N_DOE_ITERATIONS}exp_{BATCH_SIZE}batch.png\")" ] }, { @@ -974,691 +1576,15 @@ "results" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Non - simulation stuff" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# targets \n", - "from baybe.targets import NumericalTarget\n", - "from baybe.objective import Objective\n", - "\n", - "target = NumericalTarget(\n", - " name=\"Efficiency\",\n", - " mode=\"MAX\",\n", - ")\n", - "objective = Objective(mode=\"SINGLE\", targets=[target])" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[NumericalDiscreteParameter(name='Time_h', encoding=None, _values=[0.5, 1.0, 2.0, 3.0, 6.0, 24.0, 48.0, 72.0, 96.0, 120.0, 144.0, 168.0, 192.0, 240.0, 288.0, 336.0, 360.0, 384.0, 432.0, 480.0, 528.0, 576.0, 600.0, 624.0, 672.0], tolerance=0.0),\n", - " NumericalDiscreteParameter(name='pH', encoding=None, _values=[0.0, 3.3, 4.0, 4.4, 5.4, 5.5, 5.6, 7.0, 10.0], tolerance=0.0),\n", - " NumericalDiscreteParameter(name='Inhib_Concentrat_M', encoding=None, _values=[1e-05, 5e-05, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0008, 0.001, 0.0012, 0.0018, 0.0024, 0.003, 0.005, 0.01, 0.011, 0.021, 0.022, 0.031, 0.033, 0.042, 0.044, 0.05, 0.1], tolerance=0.0),\n", - " NumericalDiscreteParameter(name='Salt_Concentrat_M', encoding=None, _values=[0.0, 0.01, 0.05, 0.1, 0.5, 0.6], tolerance=0.0),\n", - " SubstanceParameter(name='SMILES', data={'COCCOC(=O)OCSc1nc2c(s1)cccc2': 'COCCOC(=O)OCSc1nc2c(s1)cccc2', 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O': 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O', 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O': 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O', 'On1nnc2c1cccc2': 'On1nnc2c1cccc2', 'c1ncn[nH]1': 'c1ncn[nH]1', 'Sc1n[nH]cn1': 'Sc1n[nH]cn1', 'S[C]1NC2=C[CH]C=NC2=N1': 'S[C]1NC2=C[CH]C=NC2=N1', 'S=c1[nH]c2c([nH]1)nccn2': 'S=c1[nH]c2c([nH]1)nccn2', 'Sc1ncc[nH]1': 'Sc1ncc[nH]1', 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1': 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1', 'CCSc1nnc(s1)N': 'CCSc1nnc(s1)N', 'CSc1nnc(s1)N': 'CSc1nnc(s1)N', 'Cc1ccc2c(c1)nc([nH]2)S': 'Cc1ccc2c(c1)nc([nH]2)S', 'OC(=O)CS': 'OC(=O)CS', 'Sc1nc2c([nH]1)cccc2': 'Sc1nc2c([nH]1)cccc2', 'OC(=O)c1ccccc1S': 'OC(=O)c1ccccc1S', 'S=c1sc2c([nH]1)cccc2': 'S=c1sc2c([nH]1)cccc2', 'OC(=O)c1cccnc1S': 'OC(=O)c1cccnc1S', 'Sc1ncccn1': 'Sc1ncccn1', 'c1ccc(nc1)c1ccccn1': 'c1ccc(nc1)c1ccccn1', 'Sc1nnc(s1)S': 'Sc1nnc(s1)S', 'Nc1cc(S)nc(n1)N': 'Nc1cc(S)nc(n1)N', 'Nc1nc([nH]n1)C(=O)O': 'Nc1nc([nH]n1)C(=O)O', 'Nc1n[nH]cn1': 'Nc1n[nH]cn1', 'OC(=O)c1n[nH]c(n1)N': 'OC(=O)c1n[nH]c(n1)N', 'Nc1n[nH]c(n1)S': 'Nc1n[nH]c(n1)S', 'CS[C]1N[N]C(=N1)N': 'CS[C]1N[N]C(=N1)N', 'C1=CC(=CC(=C1)S)C(=O)O': 'C1=CC(=CC(=C1)S)C(=O)O', 'OC(=O)CCS': 'OC(=O)CCS', 'Oc1ccccc1c1nnc([nH]1)S': 'Oc1ccccc1c1nnc([nH]1)S', 'Nn1cnnc1': 'Nn1cnnc1', 'Nc1ccnc(n1)S': 'Nc1ccnc(n1)S', 'Nn1c(NN)nnc1S': 'Nn1c(NN)nnc1S', 'Nn1c(S)nnc1c1ccccc1': 'Nn1c(S)nnc1c1ccccc1', 'Sc1nc(N)c2c(n1)[nH]nc2': 'Sc1nc(N)c2c(n1)[nH]nc2', 'Oc1ccc(cc1)C(=O)O': 'Oc1ccc(cc1)C(=O)O', 'OC(=O)c1ccc(cc1)S': 'OC(=O)c1ccc(cc1)S', 'Cn1cnnc1S': 'Cn1cnnc1S', 'Sc1nc(N)c(c(n1)S)N': 'Sc1nc(N)c(c(n1)S)N', 'Nc1ncncc1N': 'Nc1ncncc1N', 'Nc1cc(N)nc(n1)S': 'Nc1cc(N)nc(n1)S', 'Cc1cc(C)nc(n1)S': 'Cc1cc(C)nc(n1)S', 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1': 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1', 'COc1cccc(c1)c1n[nH]c(=S)[nH]1': 'COc1cccc(c1)c1n[nH]c(=S)[nH]1', 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1': 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1', 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]': 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]', 'S=c1[nH]nc([nH]1)c1ccco1': 'S=c1[nH]nc([nH]1)c1ccco1', 'S=c1[nH]nc([nH]1)c1cccnc1': 'S=c1[nH]nc([nH]1)c1cccnc1', 'S=c1[nH]nc([nH]1)c1ccncc1': 'S=c1[nH]nc([nH]1)c1ccncc1', 'Nc1n[nH]c(=S)s1': 'Nc1n[nH]c(=S)s1', 'Cc1nsc(c1)N': 'Cc1nsc(c1)N', 'Clc1ccc2c(c1)[nH]c(n2)S': 'Clc1ccc2c(c1)[nH]c(n2)S', 'CCOc1ccc2c(c1)nc([nH]2)S': 'CCOc1ccc2c(c1)nc([nH]2)S', 'Cn1nnnc1S': 'Cn1nnnc1S', 'OC(=O)Cn1nnnc1S': 'OC(=O)Cn1nnnc1S', 'COc1ccc2c(c1)[nH]c(=S)[nH]2': 'COc1ccc2c(c1)[nH]c(=S)[nH]2', 'Cc1n[nH]c(=S)s1': 'Cc1n[nH]c(=S)s1', 'ClC([C]1N[N]C=N1)(Cl)Cl': 'ClC([C]1N[N]C=N1)(Cl)Cl', 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl': 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl', 'CSc1[nH]c2c(n1)cc(c(c2)C)C': 'CSc1[nH]c2c(n1)cc(c(c2)C)C', 'Nc1ccc2c(c1)sc(=S)[nH]2': 'Nc1ccc2c(c1)sc(=S)[nH]2', 'OC(=O)c1ccc(=S)[nH]c1': 'OC(=O)c1ccc(=S)[nH]c1', 'Oc1cccc2c1nccc2': 'Oc1cccc2c1nccc2', 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C': 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C', 'S=c1[nH]c2c([nH]1)cncn2': 'S=c1[nH]c2c([nH]1)cncn2', 'CC(=O)O': 'CC(=O)O', 'OC(=O)CCCCC(=O)O': 'OC(=O)CCCCC(=O)O', 'OC(=O)c1ccccc1': 'OC(=O)c1ccccc1', 'c1ccc2c(c1)[nH]nn2': 'c1ccc2c(c1)[nH]nn2', 'OC(=O)c1ccc(cc1)c1ccccc1': 'OC(=O)c1ccc(cc1)c1ccccc1', 'OC(=O)/C=C/c1ccccc1': 'OC(=O)/C=C/c1ccccc1', 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O': 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O', 'O[C@H]1C(=O)OCC1(C)C': 'O[C@H]1C(=O)OCC1(C)C', 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O': 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O', 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O', 'CC(=O)SSC(=O)C': 'CC(=O)SSC(=O)C', 'CCCCOP(=O)(OCCCC)O': 'CCCCOP(=O)(OCCCC)O', 'CCN(C(=S)S)CC': 'CCN(C(=S)S)CC', 'O/N=C(/C(=N/O)/C)\\\\C': 'O/N=C(/C(=N/O)/C)\\\\C', 'CCCCCCCCCCCCc1ccccc1S([O])([O])O': 'CCCCCCCCCCCCc1ccccc1S([O])([O])O', 'CCCCCCCCCCCCOS(=O)(=O)O': 'CCCCCCCCCCCCOS(=O)(=O)O', 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O': 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O', 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1': 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1', 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O', 'OCC(CO)O': 'OCC(CO)O', 'NCC(=O)O': 'NCC(=O)O', 'OC(=O)CCCCCCCCCCCCCCC(=O)O': 'OC(=O)CCCCCCCCCCCCCCC(=O)O', 'C1N2CN3CN1CN(C2)C3': 'C1N2CN3CN1CN(C2)C3', 'NO': 'NO', 'COC(=O)CCCC1=CNC2=CC=CC=C21': 'COC(=O)CCCC1=CNC2=CC=CC=C21', 'OC(=O)c1ccncc1': 'OC(=O)c1ccncc1', 'C1COCCN1CCCS(=O)(=O)O': 'C1COCCN1CCCS(=O)(=O)O', 'OC(=O)c1cccnc1': 'OC(=O)c1cccnc1', 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O': 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O', 'C(=O)(C(=O)[O-])[O-]': 'C(=O)(C(=O)[O-])[O-]', 'OC(=O)c1ccc(cc1)N': 'OC(=O)c1ccc(cc1)N', 'Oc1ccc(cc1)S([O])([O])O': 'Oc1ccc(cc1)S([O])([O])O', 'OC(=O)c1ccccn1': 'OC(=O)c1ccccn1', 'OC(=O)c1ccccc1O': 'OC(=O)c1ccccc1O', 'CCCCCCCCCCCCCCCCCC(=O)O': 'CCCCCCCCCCCCCCCCCC(=O)O', 'SC#N': 'SC#N', 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]': 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]', '[O-]S(=O)[O-].[Na+].[Na+]': '[O-]S(=O)[O-].[Na+].[Na+]', 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C': 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C', 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C': 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C', 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]': 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]', '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]': '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]', '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]': '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]', '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]': '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]', '[Cl-].[Cl-].[Cl-].[Ce+3]': '[Cl-].[Cl-].[Cl-].[Ce+3]', 'CNCC(C1=CC(=CC=C1)O)O': 'CNCC(C1=CC(=CC=C1)O)O', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]', 'C1=CC=C(C(=C1)C=NNC(=S)N)O': 'C1=CC=C(C(=C1)C=NNC(=S)N)O', 'C1=CC(=C(C=C1O)O)C=NNC(=S)N': 'C1=CC(=C(C=C1O)O)C=NNC(=S)N', 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O': 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O', 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O': 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O', 'C1=CC2=NNN=C2C=C1Cl': 'C1=CC2=NNN=C2C=C1Cl', 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]': 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]', 'COC(=O)n1nnc2ccccc12': 'COC(=O)n1nnc2ccccc12'}, decorrelate=0.7, encoding=)]" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# parameters\n", - "parameters = [\n", - "NumericalDiscreteParameter(\n", - " name=\"Time_h\",\n", - " values=df_active['Time_h'].unique(),\n", - " # tolerance = 0.004, assume certain experimental noise for each parameter measurement?\n", - "),\n", - "NumericalDiscreteParameter(\n", - " name=\"pH\",\n", - " values=df_active['pH'].unique(),\n", - " # tolerance = 0.004\n", - " ), \n", - "NumericalDiscreteParameter( # Set this as continuous, the values seem quite small?\n", - " name=\"Inhib_Concentrat_M\",\n", - " values= df_active['Inhib_Concentrat_M'].unique(),\n", - " # tolerance = 0.004\n", - " ),\n", - "NumericalDiscreteParameter(\n", - " name=\"Salt_Concentrat_M\",\n", - " values=df_active['Salt_Concentrat_M'].unique(),\n", - " # tolerance = 0.004\n", - " ),\n", - "SubstanceParameter(\n", - " name=\"SMILES\",\n", - " data=smiles_dict,\n", - " encoding=\"MORDRED\", # optional\n", - " decorrelate=0.7, # optional\n", - " ) \n", - " ]\n", - "parameters" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "SearchSpace(discrete=SubspaceDiscrete(parameters=[NumericalDiscreteParameter(name='Time_h', encoding=None, _values=[0.5, 1.0, 2.0, 3.0, 6.0, 24.0, 48.0, 72.0, 96.0, 120.0, 144.0, 168.0, 192.0, 240.0, 288.0, 336.0, 360.0, 384.0, 432.0, 480.0, 528.0, 576.0, 600.0, 624.0, 672.0], tolerance=0.0), NumericalDiscreteParameter(name='pH', encoding=None, _values=[0.0, 3.3, 4.0, 4.4, 5.4, 5.5, 5.6, 7.0, 10.0], tolerance=0.0), NumericalDiscreteParameter(name='Inhib_Concentrat_M', encoding=None, _values=[1e-05, 5e-05, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0008, 0.001, 0.0012, 0.0018, 0.0024, 0.003, 0.005, 0.01, 0.011, 0.021, 0.022, 0.031, 0.033, 0.042, 0.044, 0.05, 0.1], tolerance=0.0), NumericalDiscreteParameter(name='Salt_Concentrat_M', encoding=None, _values=[0.0, 0.01, 0.05, 0.1, 0.5, 0.6], tolerance=0.0), SubstanceParameter(name='SMILES', data={'COCCOC(=O)OCSc1nc2c(s1)cccc2': 'COCCOC(=O)OCSc1nc2c(s1)cccc2', 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O': 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O', 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O': 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O', 'On1nnc2c1cccc2': 'On1nnc2c1cccc2', 'c1ncn[nH]1': 'c1ncn[nH]1', 'Sc1n[nH]cn1': 'Sc1n[nH]cn1', 'S[C]1NC2=C[CH]C=NC2=N1': 'S[C]1NC2=C[CH]C=NC2=N1', 'S=c1[nH]c2c([nH]1)nccn2': 'S=c1[nH]c2c([nH]1)nccn2', 'Sc1ncc[nH]1': 'Sc1ncc[nH]1', 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1': 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1', 'CCSc1nnc(s1)N': 'CCSc1nnc(s1)N', 'CSc1nnc(s1)N': 'CSc1nnc(s1)N', 'Cc1ccc2c(c1)nc([nH]2)S': 'Cc1ccc2c(c1)nc([nH]2)S', 'OC(=O)CS': 'OC(=O)CS', 'Sc1nc2c([nH]1)cccc2': 'Sc1nc2c([nH]1)cccc2', 'OC(=O)c1ccccc1S': 'OC(=O)c1ccccc1S', 'S=c1sc2c([nH]1)cccc2': 'S=c1sc2c([nH]1)cccc2', 'OC(=O)c1cccnc1S': 'OC(=O)c1cccnc1S', 'Sc1ncccn1': 'Sc1ncccn1', 'c1ccc(nc1)c1ccccn1': 'c1ccc(nc1)c1ccccn1', 'Sc1nnc(s1)S': 'Sc1nnc(s1)S', 'Nc1cc(S)nc(n1)N': 'Nc1cc(S)nc(n1)N', 'Nc1nc([nH]n1)C(=O)O': 'Nc1nc([nH]n1)C(=O)O', 'Nc1n[nH]cn1': 'Nc1n[nH]cn1', 'OC(=O)c1n[nH]c(n1)N': 'OC(=O)c1n[nH]c(n1)N', 'Nc1n[nH]c(n1)S': 'Nc1n[nH]c(n1)S', 'CS[C]1N[N]C(=N1)N': 'CS[C]1N[N]C(=N1)N', 'C1=CC(=CC(=C1)S)C(=O)O': 'C1=CC(=CC(=C1)S)C(=O)O', 'OC(=O)CCS': 'OC(=O)CCS', 'Oc1ccccc1c1nnc([nH]1)S': 'Oc1ccccc1c1nnc([nH]1)S', 'Nn1cnnc1': 'Nn1cnnc1', 'Nc1ccnc(n1)S': 'Nc1ccnc(n1)S', 'Nn1c(NN)nnc1S': 'Nn1c(NN)nnc1S', 'Nn1c(S)nnc1c1ccccc1': 'Nn1c(S)nnc1c1ccccc1', 'Sc1nc(N)c2c(n1)[nH]nc2': 'Sc1nc(N)c2c(n1)[nH]nc2', 'Oc1ccc(cc1)C(=O)O': 'Oc1ccc(cc1)C(=O)O', 'OC(=O)c1ccc(cc1)S': 'OC(=O)c1ccc(cc1)S', 'Cn1cnnc1S': 'Cn1cnnc1S', 'Sc1nc(N)c(c(n1)S)N': 'Sc1nc(N)c(c(n1)S)N', 'Nc1ncncc1N': 'Nc1ncncc1N', 'Nc1cc(N)nc(n1)S': 'Nc1cc(N)nc(n1)S', 'Cc1cc(C)nc(n1)S': 'Cc1cc(C)nc(n1)S', 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1': 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1', 'COc1cccc(c1)c1n[nH]c(=S)[nH]1': 'COc1cccc(c1)c1n[nH]c(=S)[nH]1', 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1': 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1', 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]': 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]', 'S=c1[nH]nc([nH]1)c1ccco1': 'S=c1[nH]nc([nH]1)c1ccco1', 'S=c1[nH]nc([nH]1)c1cccnc1': 'S=c1[nH]nc([nH]1)c1cccnc1', 'S=c1[nH]nc([nH]1)c1ccncc1': 'S=c1[nH]nc([nH]1)c1ccncc1', 'Nc1n[nH]c(=S)s1': 'Nc1n[nH]c(=S)s1', 'Cc1nsc(c1)N': 'Cc1nsc(c1)N', 'Clc1ccc2c(c1)[nH]c(n2)S': 'Clc1ccc2c(c1)[nH]c(n2)S', 'CCOc1ccc2c(c1)nc([nH]2)S': 'CCOc1ccc2c(c1)nc([nH]2)S', 'Cn1nnnc1S': 'Cn1nnnc1S', 'OC(=O)Cn1nnnc1S': 'OC(=O)Cn1nnnc1S', 'COc1ccc2c(c1)[nH]c(=S)[nH]2': 'COc1ccc2c(c1)[nH]c(=S)[nH]2', 'Cc1n[nH]c(=S)s1': 'Cc1n[nH]c(=S)s1', 'ClC([C]1N[N]C=N1)(Cl)Cl': 'ClC([C]1N[N]C=N1)(Cl)Cl', 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl': 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl', 'CSc1[nH]c2c(n1)cc(c(c2)C)C': 'CSc1[nH]c2c(n1)cc(c(c2)C)C', 'Nc1ccc2c(c1)sc(=S)[nH]2': 'Nc1ccc2c(c1)sc(=S)[nH]2', 'OC(=O)c1ccc(=S)[nH]c1': 'OC(=O)c1ccc(=S)[nH]c1', 'Oc1cccc2c1nccc2': 'Oc1cccc2c1nccc2', 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C': 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C', 'S=c1[nH]c2c([nH]1)cncn2': 'S=c1[nH]c2c([nH]1)cncn2', 'CC(=O)O': 'CC(=O)O', 'OC(=O)CCCCC(=O)O': 'OC(=O)CCCCC(=O)O', 'OC(=O)c1ccccc1': 'OC(=O)c1ccccc1', 'c1ccc2c(c1)[nH]nn2': 'c1ccc2c(c1)[nH]nn2', 'OC(=O)c1ccc(cc1)c1ccccc1': 'OC(=O)c1ccc(cc1)c1ccccc1', 'OC(=O)/C=C/c1ccccc1': 'OC(=O)/C=C/c1ccccc1', 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O': 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O', 'O[C@H]1C(=O)OCC1(C)C': 'O[C@H]1C(=O)OCC1(C)C', 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O': 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O', 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O', 'CC(=O)SSC(=O)C': 'CC(=O)SSC(=O)C', 'CCCCOP(=O)(OCCCC)O': 'CCCCOP(=O)(OCCCC)O', 'CCN(C(=S)S)CC': 'CCN(C(=S)S)CC', 'O/N=C(/C(=N/O)/C)\\\\C': 'O/N=C(/C(=N/O)/C)\\\\C', 'CCCCCCCCCCCCc1ccccc1S([O])([O])O': 'CCCCCCCCCCCCc1ccccc1S([O])([O])O', 'CCCCCCCCCCCCOS(=O)(=O)O': 'CCCCCCCCCCCCOS(=O)(=O)O', 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O': 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O', 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1': 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1', 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O', 'OCC(CO)O': 'OCC(CO)O', 'NCC(=O)O': 'NCC(=O)O', 'OC(=O)CCCCCCCCCCCCCCC(=O)O': 'OC(=O)CCCCCCCCCCCCCCC(=O)O', 'C1N2CN3CN1CN(C2)C3': 'C1N2CN3CN1CN(C2)C3', 'NO': 'NO', 'COC(=O)CCCC1=CNC2=CC=CC=C21': 'COC(=O)CCCC1=CNC2=CC=CC=C21', 'OC(=O)c1ccncc1': 'OC(=O)c1ccncc1', 'C1COCCN1CCCS(=O)(=O)O': 'C1COCCN1CCCS(=O)(=O)O', 'OC(=O)c1cccnc1': 'OC(=O)c1cccnc1', 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O': 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O', 'C(=O)(C(=O)[O-])[O-]': 'C(=O)(C(=O)[O-])[O-]', 'OC(=O)c1ccc(cc1)N': 'OC(=O)c1ccc(cc1)N', 'Oc1ccc(cc1)S([O])([O])O': 'Oc1ccc(cc1)S([O])([O])O', 'OC(=O)c1ccccn1': 'OC(=O)c1ccccn1', 'OC(=O)c1ccccc1O': 'OC(=O)c1ccccc1O', 'CCCCCCCCCCCCCCCCCC(=O)O': 'CCCCCCCCCCCCCCCCCC(=O)O', 'SC#N': 'SC#N', 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]': 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]', '[O-]S(=O)[O-].[Na+].[Na+]': '[O-]S(=O)[O-].[Na+].[Na+]', 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C': 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C', 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C': 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C', 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]': 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]', '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]': '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]', '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]': '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]', '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]': '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]', '[Cl-].[Cl-].[Cl-].[Ce+3]': '[Cl-].[Cl-].[Cl-].[Ce+3]', 'CNCC(C1=CC(=CC=C1)O)O': 'CNCC(C1=CC(=CC=C1)O)O', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]', 'C1=CC=C(C(=C1)C=NNC(=S)N)O': 'C1=CC=C(C(=C1)C=NNC(=S)N)O', 'C1=CC(=C(C=C1O)O)C=NNC(=S)N': 'C1=CC(=C(C=C1O)O)C=NNC(=S)N', 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O': 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O', 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O': 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O', 'C1=CC2=NNN=C2C=C1Cl': 'C1=CC2=NNN=C2C=C1Cl', 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]': 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]', 'COC(=O)n1nnc2ccccc12': 'COC(=O)n1nnc2ccccc12'}, decorrelate=0.7, encoding=)], exp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M \\\n", - "0 24.0 4.0 0.0010 0.10 \n", - "1 24.0 10.0 0.0010 0.10 \n", - "2 24.0 4.0 0.0010 0.10 \n", - "3 24.0 10.0 0.0010 0.10 \n", - "4 24.0 4.0 0.0010 0.10 \n", - ".. ... ... ... ... \n", - "606 24.0 7.0 0.0005 0.05 \n", - "607 24.0 7.0 0.0005 0.05 \n", - "608 24.0 7.0 0.0005 0.05 \n", - "609 24.0 7.0 0.0005 0.05 \n", - "610 24.0 7.0 0.0005 0.05 \n", - "\n", - " SMILES \n", - "0 COCCOC(=O)OCSc1nc2c(s1)cccc2 \n", - "1 COCCOC(=O)OCSc1nc2c(s1)cccc2 \n", - "2 Cc1ccc(c(c1)n1nc2c(n1)cccc2)O \n", - "3 Cc1ccc(c(c1)n1nc2c(n1)cccc2)O \n", - "4 Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O \n", - ".. ... \n", - "606 S=c1sc2c([nH]1)cccc2 \n", - "607 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O \n", - "608 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O \n", - "609 C(=O)(C(=O)[O-])[O-] \n", - "610 C(=O)(C(=O)[O-])[O-] \n", - "\n", - "[611 rows x 5 columns], metadata= was_recommended was_measured dont_recommend\n", - "0 False False False\n", - "1 False False False\n", - "2 False False False\n", - "3 False False False\n", - "4 False False False\n", - ".. ... ... ...\n", - "606 False False False\n", - "607 False False False\n", - "608 False False False\n", - "609 False False False\n", - "610 False False False\n", - "\n", - "[611 rows x 3 columns], empty_encoding=False, constraints=[], comp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M SMILES_MORDRED_ABC \\\n", - "0 24.0 4.0 0.0010 0.10 14.211085 \n", - "1 24.0 10.0 0.0010 0.10 14.211085 \n", - "2 24.0 4.0 0.0010 0.10 13.532488 \n", - "3 24.0 10.0 0.0010 0.10 13.532488 \n", - "4 24.0 4.0 0.0010 0.10 16.206679 \n", - ".. ... ... ... ... ... \n", - "606 24.0 7.0 0.0005 0.05 7.847124 \n", - "607 24.0 7.0 0.0005 0.05 9.238929 \n", - "608 24.0 7.0 0.0005 0.05 9.238929 \n", - "609 24.0 7.0 0.0005 0.05 3.932653 \n", - "610 24.0 7.0 0.0005 0.05 3.932653 \n", - "\n", - " SMILES_MORDRED_nAcid SMILES_MORDRED_nBase SMILES_MORDRED_nAromAtom \\\n", - "0 0.0 0.0 9.0 \n", - "1 0.0 0.0 9.0 \n", - "2 0.0 0.0 15.0 \n", - "3 0.0 0.0 15.0 \n", - "4 0.0 0.0 11.0 \n", - ".. ... ... ... \n", - "606 0.0 0.0 9.0 \n", - "607 3.0 0.0 0.0 \n", - "608 3.0 0.0 0.0 \n", - "609 2.0 0.0 0.0 \n", - "610 2.0 0.0 0.0 \n", - "\n", - " SMILES_MORDRED_nBridgehead SMILES_MORDRED_nHetero ... \\\n", - "0 0.0 7.0 ... \n", - "1 0.0 7.0 ... \n", - "2 0.0 4.0 ... \n", - "3 0.0 4.0 ... \n", - "4 0.0 5.0 ... \n", - ".. ... ... ... \n", - "606 0.0 3.0 ... \n", - "607 0.0 7.0 ... \n", - "608 0.0 7.0 ... \n", - "609 0.0 4.0 ... \n", - "610 0.0 4.0 ... \n", - "\n", - " SMILES_MORDRED_JGI2 SMILES_MORDRED_JGI3 SMILES_MORDRED_JGI4 \\\n", - "0 0.053333 0.047348 0.025679 \n", - "1 0.053333 0.047348 0.025679 \n", - "2 0.074074 0.049167 0.050028 \n", - "3 0.074074 0.049167 0.050028 \n", - "4 0.104167 0.046456 0.055718 \n", - ".. ... ... ... \n", - "606 0.059259 0.071970 0.042870 \n", - "607 0.117647 0.085938 0.047059 \n", - "608 0.117647 0.085938 0.047059 \n", - "609 0.148148 0.000000 0.000000 \n", - "610 0.148148 0.000000 0.000000 \n", - "\n", - " SMILES_MORDRED_JGI5 SMILES_MORDRED_JGI6 SMILES_MORDRED_JGI7 \\\n", - "0 0.021778 0.007407 0.014227 \n", - "1 0.021778 0.007407 0.014227 \n", - "2 0.026569 0.016799 0.012762 \n", - "3 0.026569 0.016799 0.012762 \n", - "4 0.031875 0.020352 0.014901 \n", - ".. ... ... ... \n", - "606 0.040000 0.000000 0.000000 \n", - "607 0.018519 0.000000 0.000000 \n", - "608 0.018519 0.000000 0.000000 \n", - "609 0.000000 0.000000 0.000000 \n", - "610 0.000000 0.000000 0.000000 \n", - "\n", - " SMILES_MORDRED_JGI8 SMILES_MORDRED_JGI9 SMILES_MORDRED_TopoShapeIndex \\\n", - "0 0.008230 0.006734 0.857143 \n", - "1 0.008230 0.006734 0.857143 \n", - "2 0.010204 0.000000 1.000000 \n", - "3 0.010204 0.000000 1.000000 \n", - "4 0.011255 0.006063 0.833333 \n", - ".. ... ... ... \n", - "606 0.000000 0.000000 0.666667 \n", - "607 0.000000 0.000000 1.000000 \n", - "608 0.000000 0.000000 1.000000 \n", - "609 0.000000 0.000000 0.500000 \n", - "610 0.000000 0.000000 0.500000 \n", - "\n", - " SMILES_MORDRED_MWC06 \n", - "0 7.787797 \n", - "1 7.787797 \n", - "2 8.042056 \n", - "3 8.042056 \n", - "4 8.108623 \n", - ".. ... \n", - "606 7.372118 \n", - "607 7.377134 \n", - "608 7.377134 \n", - "609 5.837730 \n", - "610 5.837730 \n", - "\n", - "[611 rows x 147 columns]), continuous=SubspaceContinuous(parameters=[], constraints_lin_eq=[], constraints_lin_ineq=[]))" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# define search space\n", - "df_no_target = lookup.drop('Efficiency', axis=1)\n", - "\n", - "searchspace = SearchSpace.from_dataframe(df = df_no_target, parameters=parameters)\n", - "searchspace" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# recommenders\n", - "from baybe.recommenders import RandomRecommender, SequentialGreedyRecommender\n", - "from baybe.surrogates import GaussianProcessSurrogate\n", - "\n", - "SURROGATE_MODEL = GaussianProcessSurrogate()\n", - "ACQ_FUNCTION = \"qEI\" # q-Expected Improvement, only q-fuctions are available for batch_size > 1\n", - "\n", - "seq_greedy_recommender = SequentialGreedyRecommender(\n", - " surrogate_model=SURROGATE_MODEL,\n", - " acquisition_function_cls=ACQ_FUNCTION,\n", - " hybrid_sampler=\"Farthest\", # find more details in the documentation\n", - " sampling_percentage=0.3, # should be relatively low\n", - " allow_repeated_recommendations=False,\n", - " allow_recommending_already_measured=False,\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1mCampaign\u001b[0m\n", - " \n", - " \u001b[1mMeta Data\u001b[0m\n", - " Batches Done: 0\n", - " Fits Done: 0\n", - " \n", - " \u001b[1mSearch Space\u001b[0m\n", - " \n", - " \u001b[1mSearch Space Type: \u001b[0mDISCRETE\n", - " \n", - " \u001b[1mDiscrete Search Space\u001b[0m\n", - " \n", - " \u001b[1mDiscrete Parameters\u001b[0m\n", - " Name Type Num_Values Encoding\n", - " 0 Time_h NumericalDiscreteParameter 25 None\n", - " 1 pH NumericalDiscreteParameter 9 None\n", - " 2 Inhib_Concentrat_M NumericalDiscreteParameter 25 None\n", - " 3 Salt_Concentrat_M NumericalDiscreteParameter 6 None\n", - " 4 SMILES SubstanceParameter 123 SubstanceEncoding.MORDRED\n", - " \n", - " \u001b[1mExperimental Representation\u001b[0m\n", - " Time_h pH ... Salt_Concentrat_M SMILES\n", - " 0 24.0 4.0 ... 0.10 COCCOC(=O)OCSc1nc2c(s1)cccc2\n", - " 1 24.0 10.0 ... 0.10 COCCOC(=O)OCSc1nc2c(s1)cccc2\n", - " 2 24.0 4.0 ... 0.10 Cc1ccc(c(c1)n1nc2c(n1)cccc2)O\n", - " .. ... ... ... ... ...\n", - " 608 24.0 7.0 ... 0.05 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O\n", - " 609 24.0 7.0 ... 0.05 C(=O)(C(=O)[O-])[O-]\n", - " 610 24.0 7.0 ... 0.05 C(=O)(C(=O)[O-])[O-]\n", - " \n", - " [611 rows x 5 columns]\n", - " \n", - " \u001b[1mMetadata:\u001b[0m\n", - " was_recommended: 0/611\n", - " was_measured: 0/611\n", - " dont_recommend: 0/611\n", - " \n", - " \u001b[1mConstraints\u001b[0m\n", - " Empty DataFrame\n", - " Columns: []\n", - " Index: []\n", - " \n", - " \u001b[1mComputational Representation\u001b[0m\n", - " Time_h pH ... SMILES_MORDRED_TopoShapeIndex SMILES_MORDRED_MWC06\n", - " 0 24.0 4.0 ... 0.857143 7.787797\n", - " 1 24.0 10.0 ... 0.857143 7.787797\n", - " 2 24.0 4.0 ... 1.000000 8.042056\n", - " .. ... ... ... ... ...\n", - " 608 24.0 7.0 ... 1.000000 7.377134\n", - " 609 24.0 7.0 ... 0.500000 5.837730\n", - " 610 24.0 7.0 ... 0.500000 5.837730\n", - " \n", - " [611 rows x 147 columns]\n", - " \n", - " \u001b[1mObjective\u001b[0m\n", - " \n", - " \u001b[1mMode: \u001b[0mSINGLE\n", - " \n", - " \u001b[1mTargets \u001b[0m\n", - " Type Name Mode Lower_Bound Upper_Bound Transformation \\\n", - " 0 NumericalTarget Efficiency MAX -inf inf None \n", - " \n", - " Weight \n", - " 0 100.0 \n", - " \n", - " \u001b[1mCombine Function: \u001b[0mGEOM_MEAN\n", - " \n", - " TwoPhaseMetaRecommender(allow_repeated_recommendations=None, allow_recommending_already_measured=None, initial_recommender=RandomRecommender(allow_repeated_recommendations=False, allow_recommending_already_measured=True), recommender=SequentialGreedyRecommender(allow_repeated_recommendations=False, allow_recommending_already_measured=False, surrogate_model=GaussianProcessSurrogate(model_params={}, _model=None), acquisition_function_cls='qEI', _acquisition_function=None, hybrid_sampler='Farthest', sampling_percentage=0.3), switch_after=1)\n", - " \n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/vscode/.local/lib/python3.10/site-packages/baybe/strategies/deprecation.py:26: DeprecationWarning: 'TwoPhaseStrategy' is deprecated and will be removed in a future version. Please use 'recommenders.TwoPhaseMetaRecommender' class instead.\n", - " warnings.warn(\n" - ] - } - ], - "source": [ - "# campaign strategy\n", - "from baybe.strategies import TwoPhaseStrategy\n", - "from baybe import Campaign\n", - "\n", - "strategy = TwoPhaseStrategy(\n", - " initial_recommender = RandomRecommender(), # Initial recommender\n", - " # Doesn't matter since I already have training data, BUT CAN BE USED FOR BENCHMARKING\n", - " recommender = seq_greedy_recommender, # Bayesian model-based optimization\n", - " switch_after=1 # Switch to the model-based recommender after 1 batches = immediately\n", - ")\n", - "\n", - "# setup campaign\n", - "campaign = Campaign(searchspace, objective, strategy)\n", - "print(campaign)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Recommended experiments: \n", - "| | Time_h | pH | Inhib_Concentrat_M | Salt_Concentrat_M | SMILES |\n", - "|----:|---------:|-----:|---------------------:|--------------------:|:---------------------------------------------------------------------|\n", - "| 484 | 480 | 7 | 0.031 | 0.05 | C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2] |\n", - "| 227 | 0.5 | 7 | 0.01 | 0.6 | C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-] |\n", - "| 394 | 144 | 7 | 1e-05 | 0.01 | [N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3] |\n" - ] - } - ], - "source": [ - "# recommendations \n", - "new_rec = campaign.recommend(batch_size=3) # TEST with different batch sizes for optimal performance\n", - "print(\"\\n\\nRecommended experiments: \")\n", - "print(new_rec.to_markdown())" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Input row with index 227 has multiple matches with the search space. This could indicate that something went wrong. Matching only first occurrence.\n" - ] - } - ], - "source": [ - "new_rec[\"Efficiency\"] = [79.8, 54.1, 59.4]\n", - "campaign.add_measurements(new_rec)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Campaign(searchspace=SearchSpace(discrete=SubspaceDiscrete(parameters=[NumericalDiscreteParameter(name='Time_h', encoding=None, _values=[0.5, 1.0, 2.0, 3.0, 6.0, 24.0, 48.0, 72.0, 96.0, 120.0, 144.0, 168.0, 192.0, 240.0, 288.0, 336.0, 360.0, 384.0, 432.0, 480.0, 528.0, 576.0, 600.0, 624.0, 672.0], tolerance=0.0), NumericalDiscreteParameter(name='pH', encoding=None, _values=[0.0, 3.3, 4.0, 4.4, 5.4, 5.5, 5.6, 7.0, 10.0], tolerance=0.0), NumericalDiscreteParameter(name='Inhib_Concentrat_M', encoding=None, _values=[1e-05, 5e-05, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0008, 0.001, 0.0012, 0.0018, 0.0024, 0.003, 0.005, 0.01, 0.011, 0.021, 0.022, 0.031, 0.033, 0.042, 0.044, 0.05, 0.1], tolerance=0.0), NumericalDiscreteParameter(name='Salt_Concentrat_M', encoding=None, _values=[0.0, 0.01, 0.05, 0.1, 0.5, 0.6], tolerance=0.0), SubstanceParameter(name='SMILES', data={'COCCOC(=O)OCSc1nc2c(s1)cccc2': 'COCCOC(=O)OCSc1nc2c(s1)cccc2', 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O': 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O', 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O': 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O', 'On1nnc2c1cccc2': 'On1nnc2c1cccc2', 'c1ncn[nH]1': 'c1ncn[nH]1', 'Sc1n[nH]cn1': 'Sc1n[nH]cn1', 'S[C]1NC2=C[CH]C=NC2=N1': 'S[C]1NC2=C[CH]C=NC2=N1', 'S=c1[nH]c2c([nH]1)nccn2': 'S=c1[nH]c2c([nH]1)nccn2', 'Sc1ncc[nH]1': 'Sc1ncc[nH]1', 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1': 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1', 'CCSc1nnc(s1)N': 'CCSc1nnc(s1)N', 'CSc1nnc(s1)N': 'CSc1nnc(s1)N', 'Cc1ccc2c(c1)nc([nH]2)S': 'Cc1ccc2c(c1)nc([nH]2)S', 'OC(=O)CS': 'OC(=O)CS', 'Sc1nc2c([nH]1)cccc2': 'Sc1nc2c([nH]1)cccc2', 'OC(=O)c1ccccc1S': 'OC(=O)c1ccccc1S', 'S=c1sc2c([nH]1)cccc2': 'S=c1sc2c([nH]1)cccc2', 'OC(=O)c1cccnc1S': 'OC(=O)c1cccnc1S', 'Sc1ncccn1': 'Sc1ncccn1', 'c1ccc(nc1)c1ccccn1': 'c1ccc(nc1)c1ccccn1', 'Sc1nnc(s1)S': 'Sc1nnc(s1)S', 'Nc1cc(S)nc(n1)N': 'Nc1cc(S)nc(n1)N', 'Nc1nc([nH]n1)C(=O)O': 'Nc1nc([nH]n1)C(=O)O', 'Nc1n[nH]cn1': 'Nc1n[nH]cn1', 'OC(=O)c1n[nH]c(n1)N': 'OC(=O)c1n[nH]c(n1)N', 'Nc1n[nH]c(n1)S': 'Nc1n[nH]c(n1)S', 'CS[C]1N[N]C(=N1)N': 'CS[C]1N[N]C(=N1)N', 'C1=CC(=CC(=C1)S)C(=O)O': 'C1=CC(=CC(=C1)S)C(=O)O', 'OC(=O)CCS': 'OC(=O)CCS', 'Oc1ccccc1c1nnc([nH]1)S': 'Oc1ccccc1c1nnc([nH]1)S', 'Nn1cnnc1': 'Nn1cnnc1', 'Nc1ccnc(n1)S': 'Nc1ccnc(n1)S', 'Nn1c(NN)nnc1S': 'Nn1c(NN)nnc1S', 'Nn1c(S)nnc1c1ccccc1': 'Nn1c(S)nnc1c1ccccc1', 'Sc1nc(N)c2c(n1)[nH]nc2': 'Sc1nc(N)c2c(n1)[nH]nc2', 'Oc1ccc(cc1)C(=O)O': 'Oc1ccc(cc1)C(=O)O', 'OC(=O)c1ccc(cc1)S': 'OC(=O)c1ccc(cc1)S', 'Cn1cnnc1S': 'Cn1cnnc1S', 'Sc1nc(N)c(c(n1)S)N': 'Sc1nc(N)c(c(n1)S)N', 'Nc1ncncc1N': 'Nc1ncncc1N', 'Nc1cc(N)nc(n1)S': 'Nc1cc(N)nc(n1)S', 'Cc1cc(C)nc(n1)S': 'Cc1cc(C)nc(n1)S', 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1': 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1', 'COc1cccc(c1)c1n[nH]c(=S)[nH]1': 'COc1cccc(c1)c1n[nH]c(=S)[nH]1', 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1': 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1', 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]': 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]', 'S=c1[nH]nc([nH]1)c1ccco1': 'S=c1[nH]nc([nH]1)c1ccco1', 'S=c1[nH]nc([nH]1)c1cccnc1': 'S=c1[nH]nc([nH]1)c1cccnc1', 'S=c1[nH]nc([nH]1)c1ccncc1': 'S=c1[nH]nc([nH]1)c1ccncc1', 'Nc1n[nH]c(=S)s1': 'Nc1n[nH]c(=S)s1', 'Cc1nsc(c1)N': 'Cc1nsc(c1)N', 'Clc1ccc2c(c1)[nH]c(n2)S': 'Clc1ccc2c(c1)[nH]c(n2)S', 'CCOc1ccc2c(c1)nc([nH]2)S': 'CCOc1ccc2c(c1)nc([nH]2)S', 'Cn1nnnc1S': 'Cn1nnnc1S', 'OC(=O)Cn1nnnc1S': 'OC(=O)Cn1nnnc1S', 'COc1ccc2c(c1)[nH]c(=S)[nH]2': 'COc1ccc2c(c1)[nH]c(=S)[nH]2', 'Cc1n[nH]c(=S)s1': 'Cc1n[nH]c(=S)s1', 'ClC([C]1N[N]C=N1)(Cl)Cl': 'ClC([C]1N[N]C=N1)(Cl)Cl', 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl': 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl', 'CSc1[nH]c2c(n1)cc(c(c2)C)C': 'CSc1[nH]c2c(n1)cc(c(c2)C)C', 'Nc1ccc2c(c1)sc(=S)[nH]2': 'Nc1ccc2c(c1)sc(=S)[nH]2', 'OC(=O)c1ccc(=S)[nH]c1': 'OC(=O)c1ccc(=S)[nH]c1', 'Oc1cccc2c1nccc2': 'Oc1cccc2c1nccc2', 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C': 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C', 'S=c1[nH]c2c([nH]1)cncn2': 'S=c1[nH]c2c([nH]1)cncn2', 'CC(=O)O': 'CC(=O)O', 'OC(=O)CCCCC(=O)O': 'OC(=O)CCCCC(=O)O', 'OC(=O)c1ccccc1': 'OC(=O)c1ccccc1', 'c1ccc2c(c1)[nH]nn2': 'c1ccc2c(c1)[nH]nn2', 'OC(=O)c1ccc(cc1)c1ccccc1': 'OC(=O)c1ccc(cc1)c1ccccc1', 'OC(=O)/C=C/c1ccccc1': 'OC(=O)/C=C/c1ccccc1', 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O': 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O', 'O[C@H]1C(=O)OCC1(C)C': 'O[C@H]1C(=O)OCC1(C)C', 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O': 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O', 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O', 'CC(=O)SSC(=O)C': 'CC(=O)SSC(=O)C', 'CCCCOP(=O)(OCCCC)O': 'CCCCOP(=O)(OCCCC)O', 'CCN(C(=S)S)CC': 'CCN(C(=S)S)CC', 'O/N=C(/C(=N/O)/C)\\\\C': 'O/N=C(/C(=N/O)/C)\\\\C', 'CCCCCCCCCCCCc1ccccc1S([O])([O])O': 'CCCCCCCCCCCCc1ccccc1S([O])([O])O', 'CCCCCCCCCCCCOS(=O)(=O)O': 'CCCCCCCCCCCCOS(=O)(=O)O', 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O': 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O', 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1': 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1', 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O', 'OCC(CO)O': 'OCC(CO)O', 'NCC(=O)O': 'NCC(=O)O', 'OC(=O)CCCCCCCCCCCCCCC(=O)O': 'OC(=O)CCCCCCCCCCCCCCC(=O)O', 'C1N2CN3CN1CN(C2)C3': 'C1N2CN3CN1CN(C2)C3', 'NO': 'NO', 'COC(=O)CCCC1=CNC2=CC=CC=C21': 'COC(=O)CCCC1=CNC2=CC=CC=C21', 'OC(=O)c1ccncc1': 'OC(=O)c1ccncc1', 'C1COCCN1CCCS(=O)(=O)O': 'C1COCCN1CCCS(=O)(=O)O', 'OC(=O)c1cccnc1': 'OC(=O)c1cccnc1', 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O': 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O', 'C(=O)(C(=O)[O-])[O-]': 'C(=O)(C(=O)[O-])[O-]', 'OC(=O)c1ccc(cc1)N': 'OC(=O)c1ccc(cc1)N', 'Oc1ccc(cc1)S([O])([O])O': 'Oc1ccc(cc1)S([O])([O])O', 'OC(=O)c1ccccn1': 'OC(=O)c1ccccn1', 'OC(=O)c1ccccc1O': 'OC(=O)c1ccccc1O', 'CCCCCCCCCCCCCCCCCC(=O)O': 'CCCCCCCCCCCCCCCCCC(=O)O', 'SC#N': 'SC#N', 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]': 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]', '[O-]S(=O)[O-].[Na+].[Na+]': '[O-]S(=O)[O-].[Na+].[Na+]', 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C': 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C', 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C': 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C', 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]': 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]', '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]': '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]', '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]': '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]', '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]': '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]', '[Cl-].[Cl-].[Cl-].[Ce+3]': '[Cl-].[Cl-].[Cl-].[Ce+3]', 'CNCC(C1=CC(=CC=C1)O)O': 'CNCC(C1=CC(=CC=C1)O)O', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]', 'C1=CC=C(C(=C1)C=NNC(=S)N)O': 'C1=CC=C(C(=C1)C=NNC(=S)N)O', 'C1=CC(=C(C=C1O)O)C=NNC(=S)N': 'C1=CC(=C(C=C1O)O)C=NNC(=S)N', 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O': 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O', 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O': 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O', 'C1=CC2=NNN=C2C=C1Cl': 'C1=CC2=NNN=C2C=C1Cl', 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]': 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]', 'COC(=O)n1nnc2ccccc12': 'COC(=O)n1nnc2ccccc12'}, decorrelate=0.7, encoding=)], exp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M \\\n", - "0 24.0 4.0 0.0010 0.10 \n", - "1 24.0 10.0 0.0010 0.10 \n", - "2 24.0 4.0 0.0010 0.10 \n", - "3 24.0 10.0 0.0010 0.10 \n", - "4 24.0 4.0 0.0010 0.10 \n", - ".. ... ... ... ... \n", - "606 24.0 7.0 0.0005 0.05 \n", - "607 24.0 7.0 0.0005 0.05 \n", - "608 24.0 7.0 0.0005 0.05 \n", - "609 24.0 7.0 0.0005 0.05 \n", - "610 24.0 7.0 0.0005 0.05 \n", - "\n", - " SMILES \n", - "0 COCCOC(=O)OCSc1nc2c(s1)cccc2 \n", - "1 COCCOC(=O)OCSc1nc2c(s1)cccc2 \n", - "2 Cc1ccc(c(c1)n1nc2c(n1)cccc2)O \n", - "3 Cc1ccc(c(c1)n1nc2c(n1)cccc2)O \n", - "4 Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O \n", - ".. ... \n", - "606 S=c1sc2c([nH]1)cccc2 \n", - "607 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O \n", - "608 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O \n", - "609 C(=O)(C(=O)[O-])[O-] \n", - "610 C(=O)(C(=O)[O-])[O-] \n", - "\n", - "[611 rows x 5 columns], metadata= was_recommended was_measured dont_recommend\n", - "0 False False False\n", - "1 False False False\n", - "2 False False False\n", - "3 False False False\n", - "4 False False False\n", - ".. ... ... ...\n", - "606 False False False\n", - "607 False False False\n", - "608 False False False\n", - "609 False False False\n", - "610 False False False\n", - "\n", - "[611 rows x 3 columns], empty_encoding=False, constraints=[], comp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M SMILES_MORDRED_ABC \\\n", - "0 24.0 4.0 0.0010 0.10 14.211085 \n", - "1 24.0 10.0 0.0010 0.10 14.211085 \n", - "2 24.0 4.0 0.0010 0.10 13.532488 \n", - "3 24.0 10.0 0.0010 0.10 13.532488 \n", - "4 24.0 4.0 0.0010 0.10 16.206679 \n", - ".. ... ... ... ... ... \n", - "606 24.0 7.0 0.0005 0.05 7.847124 \n", - "607 24.0 7.0 0.0005 0.05 9.238929 \n", - "608 24.0 7.0 0.0005 0.05 9.238929 \n", - "609 24.0 7.0 0.0005 0.05 3.932653 \n", - "610 24.0 7.0 0.0005 0.05 3.932653 \n", - "\n", - " SMILES_MORDRED_nAcid SMILES_MORDRED_nBase SMILES_MORDRED_nAromAtom \\\n", - "0 0.0 0.0 9.0 \n", - "1 0.0 0.0 9.0 \n", - "2 0.0 0.0 15.0 \n", - "3 0.0 0.0 15.0 \n", - "4 0.0 0.0 11.0 \n", - ".. ... ... ... \n", - "606 0.0 0.0 9.0 \n", - "607 3.0 0.0 0.0 \n", - "608 3.0 0.0 0.0 \n", - "609 2.0 0.0 0.0 \n", - "610 2.0 0.0 0.0 \n", - "\n", - " SMILES_MORDRED_nBridgehead SMILES_MORDRED_nHetero ... \\\n", - "0 0.0 7.0 ... \n", - "1 0.0 7.0 ... \n", - "2 0.0 4.0 ... \n", - "3 0.0 4.0 ... \n", - "4 0.0 5.0 ... \n", - ".. ... ... ... \n", - "606 0.0 3.0 ... \n", - "607 0.0 7.0 ... \n", - "608 0.0 7.0 ... \n", - "609 0.0 4.0 ... \n", - "610 0.0 4.0 ... \n", - "\n", - " SMILES_MORDRED_JGI2 SMILES_MORDRED_JGI3 SMILES_MORDRED_JGI4 \\\n", - "0 0.053333 0.047348 0.025679 \n", - "1 0.053333 0.047348 0.025679 \n", - "2 0.074074 0.049167 0.050028 \n", - "3 0.074074 0.049167 0.050028 \n", - "4 0.104167 0.046456 0.055718 \n", - ".. ... ... ... \n", - "606 0.059259 0.071970 0.042870 \n", - "607 0.117647 0.085938 0.047059 \n", - "608 0.117647 0.085938 0.047059 \n", - "609 0.148148 0.000000 0.000000 \n", - "610 0.148148 0.000000 0.000000 \n", - "\n", - " SMILES_MORDRED_JGI5 SMILES_MORDRED_JGI6 SMILES_MORDRED_JGI7 \\\n", - "0 0.021778 0.007407 0.014227 \n", - "1 0.021778 0.007407 0.014227 \n", - "2 0.026569 0.016799 0.012762 \n", - "3 0.026569 0.016799 0.012762 \n", - "4 0.031875 0.020352 0.014901 \n", - ".. ... ... ... \n", - "606 0.040000 0.000000 0.000000 \n", - "607 0.018519 0.000000 0.000000 \n", - "608 0.018519 0.000000 0.000000 \n", - "609 0.000000 0.000000 0.000000 \n", - "610 0.000000 0.000000 0.000000 \n", - "\n", - " SMILES_MORDRED_JGI8 SMILES_MORDRED_JGI9 SMILES_MORDRED_TopoShapeIndex \\\n", - "0 0.008230 0.006734 0.857143 \n", - "1 0.008230 0.006734 0.857143 \n", - "2 0.010204 0.000000 1.000000 \n", - "3 0.010204 0.000000 1.000000 \n", - "4 0.011255 0.006063 0.833333 \n", - ".. ... ... ... \n", - "606 0.000000 0.000000 0.666667 \n", - "607 0.000000 0.000000 1.000000 \n", - "608 0.000000 0.000000 1.000000 \n", - "609 0.000000 0.000000 0.500000 \n", - "610 0.000000 0.000000 0.500000 \n", - "\n", - " SMILES_MORDRED_MWC06 \n", - "0 7.787797 \n", - "1 7.787797 \n", - "2 8.042056 \n", - "3 8.042056 \n", - "4 8.108623 \n", - ".. ... \n", - "606 7.372118 \n", - "607 7.377134 \n", - "608 7.377134 \n", - "609 5.837730 \n", - "610 5.837730 \n", - "\n", - "[611 rows x 147 columns]), continuous=SubspaceContinuous(parameters=[], constraints_lin_eq=[], constraints_lin_ineq=[])), objective=Objective(mode='SINGLE', targets=[NumericalTarget(name='Efficiency', mode=, bounds=Interval(lower=-inf, upper=inf), transformation=None)], weights=[100.0], combine_func='GEOM_MEAN'), recommender=TwoPhaseMetaRecommender(allow_repeated_recommendations=None, allow_recommending_already_measured=None, initial_recommender=RandomRecommender(allow_repeated_recommendations=False, allow_recommending_already_measured=True), recommender=SequentialGreedyRecommender(allow_repeated_recommendations=False, allow_recommending_already_measured=False, surrogate_model=GaussianProcessSurrogate(model_params={}, _model=None), acquisition_function_cls='qEI', _acquisition_function=None, hybrid_sampler='Farthest', sampling_percentage=0.3), switch_after=1), n_batches_done=1, n_fits_done=0, _measurements_exp= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M \\\n", - "0 480.0 7.0 0.03100 0.05 \n", - "1 0.5 7.0 0.01000 0.60 \n", - "2 144.0 7.0 0.00001 0.01 \n", - "\n", - " SMILES Efficiency BatchNr \\\n", - "0 C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[... 79.8 1 \n", - "1 C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O... 54.1 1 \n", - "2 [N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)... 59.4 1 \n", - "\n", - " FitNr \n", - "0 NaN \n", - "1 NaN \n", - "2 NaN , _cached_recommendation=Empty DataFrame\n", - "Columns: []\n", - "Index: [], numerical_measurements_must_be_within_tolerance=None, strategy=None)" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "campaign" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Recommended experiments: \n", - "| index | Time_h | pH | Inhib_Concentrat_M | Salt_Concentrat_M | SMILES |\n", - "|--------:|---------:|-----:|---------------------:|--------------------:|:-------------------------------------------------------|\n", - "| 194 | 24 | 10 | 0.001 | 0.1 | C1N2CN3CN1CN(C2)C3 |\n", - "| 297 | 24 | 0 | 0.0004 | 0 | CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C |\n", - "| 300 | 24 | 0 | 0.0004 | 0 | CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C |\n", - "| 303 | 24 | 0 | 0.0004 | 0 | CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C |\n", - "| 306 | 24 | 0 | 0.0004 | 0 | CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C |\n", - "| 586 | 3 | 0 | 0.0008 | 0 | CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O |\n", - "| 591 | 3 | 0 | 0.0008 | 0 | CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O |\n", - "| 596 | 3 | 0 | 0.0008 | 0 | CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O |\n" - ] - } - ], - "source": [ - "second_rec = campaign.recommend(batch_size=3) # TEST with different batch sizes for optimal performance\n", - "print(\"\\n\\nRecommended experiments: \")\n", - "print(second_rec.to_markdown())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Data Analysis" - ] - }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, "source": [ - "# Bayesian Optimization" + "results.to_excel(f\"./results/{exp_dataset_name}_simulation_{N_MC_ITERATIONS}MC_{N_DOE_ITERATIONS}exp_{BATCH_SIZE}batch.xlsx\")\n" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Search Space" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Objective" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Recommender" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Benchmarking" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, diff --git a/img/AA2024_simulation_10MC_50exp_1batch.png b/img/AA2024_simulation_10MC_50exp_1batch.png new file mode 100644 index 0000000000000000000000000000000000000000..ac71423b212910b92deba8cb96ddb9721d058bb8 GIT binary patch literal 35636 zcmeFYWmjBH6E-@yLvRT0!8J$-5+Dgqf=htG0t9ypZo%DxC1`>U?jAgN(7{~?cbIuM z_jA_!2hNxC;ml$dYtwY^>guYis=Moo_@Me85BoVb2n51Yke5>jfsg}0Af#1Hbl@*9 zCl)t>Ut+FrbzL;-v5c?7xWtz2ClU0(6> z+Wp^u;Bj!a8OUpva#Ja&I&}vksR$JTrU3Nw>q`1tfH-@y14?mqSQujxY_+sT~03Y zVj1gak>zKBYdE}dP@4HgJRi#7&gJX#c%S2@>zu#O&epPgM)_kmM85$a`FxY!7Gy@? zLu7y*@bo(-8u`al15-Ze1@JgI@B$PGJPQf@|IPoOQH$q>VW4b=9n^LX68P_*W;Fk4 zMJyoPAzHuF3m%@Lw^3xe+8eew8lbXZJSyS%v^4VLFF^Z%pKgmgH@883w8zVJ86*h4 zx`qbQHSY&~ef=yOCSb9B@_+sM*4o;-dwkj_544xG_)bkul7QaI$>HDLs8)wJTV!+0{Bm z09tRi@o+xI#?2iQ9gX`gj#foMK>@b|hmepk;YO4h1#E52zSQDjx!CAbN9(`)Gu(6k zcd_Tyyk&-@@2kPVL0n3KkjThLtBmt8sodN19YO0!=4GE_iFWv%4NuEqwXQD?FegSQ zGwOb)b;F2ezP^(ysDt3w8^=z&N1KT}v{_?+36Vud6i{er=;rpefYZ9%sMroQ8P6yA z*$Tr9elzrbY8PA(o$m!os&31j7sa~AzQlD{JyuJbRwD3yhV#w-=-uR_n zI)vQU!DHsGt1-@Y;A}Q<*y*(g)B58UV|Z!`r%qyS?iir2{CnVadsD>(Q$;EpSuUd{ z3$@nf=H_xebe%wJ6;~9{cAmNNP&8wM5&R~o3+&qR>({R<#b~;Y9qjrqXtLq3Mfi@? z^+O!^eA}^)QoO;~3(eiSw~RrY%Dw#hpt2{YxmHkc?XbqfzT;8YcE!kNKAA-HxHTJ! zxTmvS{^T{5eQpas%)@zLKwjmDve+`;C_71 zjTnivqZzzd@zKZT0#x|pG4QxRijM2pQSr;sU-EkMq-W_Gc` zbLX$169;FP6CdK1VD#$fS;VU5V~}tkn1~31f^_&(mfue*=dbdiKb+X|U}m>4x<5E2 zImA#qj2N?1Y-e@wFLSl8_``L_2d(;dP4cKoS5vA8{D+W@ zDozf*u4n9-_3{5|v3}OsobGIWl(fYEIf6EEmv(g+c2jX|8Gt#ajT>H>n#OuLjFW9Mw`KFNoTxHlH|JriEWJMiGtX#B#y zXZK2d_q@vVGA>y=HSrT9rZ&dl3%8D>5B@MQ=X}EMGOzWpd$kDJjK2NwoyBH@y&@ks zT0mJhpB+=g)3`L8X^9gv+znoj>Ol$g1_oQ}gZ8T7_H6MJvfcvR%zA zs7&IBWi)6#i^F(^d6pL|)rxNnnSr7WH~9&3yxUo&JdI$O+f>I7i_+2L6@+y8ma{&s z>N-mrq~a?M_dRajNnzUD=@sXM^Rz``ENt{DC2H`l1E=cl!ig7R)<5bW$5PUT*7@-8 z73A#VVskh)G7>{OJT}J0##Y?tR5`1pt*u?FYzON=_`x4`q-I@W%zB)t8S7=eL}e`W zz6n8*`b|cgY0_Up2QgFQ(^5i^wC&k@oqpK43(N^8k&{BIeg%ED#=?czMcdW1{s_r) zzD`rGxj@zb%v$YkL#feWAe;8t+I3jTa(bJnzHE`KT-L404LUskfru6I8Dr^uGNYzG zo+b)MerV<0`2`56GW_r#=%7BWrV0|Yy@yrnO08|nQz%NoTKFTqHZO8%*qpVxNpv8r z4yxDKl*KcmF}Q4`iqmhhbR{6HnKC@AocH5b&>3WeJV_@pDQWcgd!e2UQ7&k0wiZ;; zDkbIbni%CA{$KqXN{n5?h*c+BNyFOImr3N#p9aaAg~z(3Kv1aWwBsU&M}Zf;ENS#zT->4H0B;; z>wrXm-c!iZ)#9PR60qpPj#W@&V2Q_FQ*763jKvErq@HJtqV-Z?uf(ku^~cEmZV|sL z+WOK)jBdnO7S>mXtJ@Jt{7RT=xebESBwFb+l*nMjy|NONwW3LJJaMqIIeF-h1dXVuM-J^(+|?)`u^6 zO?wwETTGAaiZ?paAFr}gQf$~3+?h&o9mS5HZl@At^_PVsmU~tMP~N*9N<(`H zip_gCv@1V#nV>2hPlab3w~cMaNv;jN#evvn;?s!7&z6$+x>zQ3*s_l-)H2k$*=$R} zQO~9Bk&Q)_Tk34&)lQ}g>m>-`^s zPx5+O9u3wUR$`--cnf!f2?j(DxMqyJ*=OF$i z_{E7o$58)s$#BY8j*5DR--I)Wou${4lW9WWXOmRocnurW$U9;+l9WX9TIS-_U?B^0 z!D)B_FTXL!-JV zB0*!69gJ;e{m-{>KP;iQcn$h~&{K$-$Y*c8{XDenLr1rIKX|YG(8Cxc;TwHU1ec(T#PJUK9gK-qx*J_2o*X`pF3sv$keDM9Hy|CrL{S!L3o8aCn)Bi^{;su zf=IaIku)cP$!g&@6-yGE#@QfqVnBgmdw=zo!TiJJCuKb`ui`A3!CbhejaYzPRBrF+ z7n#h7{Q0ZheAE@6ju~f`nlvKo`9xulrQR8GBk(~_T%x|Zdj6-u!@~3r--=MspDiY< zf%|ayu3x_Jpnplo#j8teHGvXKtzb60io6==I?Ua`=YBZ1>;Ca0p_i9e3;AN5#X+&( zB(7n8?_t{E0#P{C{!kBLDrqvr&xi7$-RMow%KD*^*IbYPu#bx{Us)zp-}RDH>SX$i z8y0aueW#M%CrD1M6vfrU`JQIb!Kc1}v5H-%4bHA1W5ZXJ2v^X1eVI9RYL__{y>(8J z>LN-itG2a(Xdg|s%VgjV;wR)I4BMgUqG8Kc+h3TcUS6kw-we96Hn@?QPd||PWzWWl zzmMMTPgxQC%{9Ycef}6G=;hY2;L3Uy zQ@G>Gd;fk^#@Eih6gipKgygPL;m2ue+uyEGJl#iIvV1lXrx)aL{BDoe7sKM;->bDn zIGxWpPJCp#^`6IYwf29mHs+HN726sh-qD;gc))5p1AXw&Fs7A)6XG9C$NW}W{()Gt z)UaQ@tE|{DKs10Z;P!ZN1l~dLqs(gfrlNiWrHU7Qrv%+%XWZK<%!0rUqV{vTeyzcs zjlU1Hg6AEYv~JH+$RBdB5UqhMS3>egwz{U*TkBD@U2uE!nMDFeVS*mmR3>?GteN$e zkTTIw?vDIqONzt*D!JZ@urEBz<6$0ckF^mpIG>mc7}Z}MI! zw&iYYlXljwK>$Qm-%Ul(s+1;K?6UaMW2*G4AQpKvc=WNM%InOsAmoQNCXo!}%1k~- zFs_HzCmQLXgFb(ZzbqTBqgbq(&oWN*?Qdw^9`_cQEVOnGpc>Cq;3r_^%HVWSz$ zx39B&HLJ`YY_zmVKBtfZDVWIXSH;qB8g=JpDkZVyx(}D@Vi|SZm#DXX=AOxPm^8nz zs&79*&J@{}_4ba*Rigq!wSPsAZzfLIW{W0t?@d9bH0DRH%0=1Pg&v_Rb7zxEwg`6) zPq2-*;?Y)LoaOMJ2mlqKCHlGU+%>no9a2N0RBr#*Y+*=j249I|xsNgPC3vSie>=b_@P!=OZWe z>eDHk;tn^x<0#_vbfv=b=z-mn=0p^qmi~A*&{g!BTG8?^{cXL$t)v;%txLNj!cWI= z3^dY``zIiQ=|whw@P*6RT0ghooRH0R>c!{xSH*~zY9E`esthW?0=F(5U7~|6X&D^> zAufJnVZ{h(cx%awUq3N70F;8c&0#U;#R0#|;P3cVoy)h*c2v6f57lSJAHHdLa5gmE zwQE_p#66epFYWtqxAB^2^j4xKx7pj0GB1s>*nsX;j!&!sY_DTRAD{mI7gBA7xBpZ{ zW0u44&OamA0G!(6=yKxPW38w%L(1a}W>Im=31}gH?%c}r@wKk_(xcdN_3-g>VXn09 zX>peXN~38n_CkZhSeagp=-qC9{+8=V7P zn@9^+^Gt6@ZSQpuho@3?v?o|o6;1z|T~7WjTtBPJBY9@Z`Zu%FOpvbB$@X7DzHXx( z!<4WxwEWWwneSfWbm-~%qJ5R$$lcih7D3JKQA8~_HiV-osG_4ST?FogGECmcjd9d+ zwQ;CKXVPUrY^6a2c2h(%^cRmryl$w8cKTsB>-PXVd#`)ahqGxHiZ{sc%Gi;`SkhSn z+McN>Gr+)bh#s|=^SJA}Vn)(_j=$FvUUL^#m8>%F#f?&MbF=nlQtyHu1umACgq6Uic65LEsizZT3OIcJYT_|uW+c{Vc;(EhI&2wvX4E;B z=JRl|+J`C=hS<|p3SKPkIA)LWl+{y0_M!fy8C=E`+nar_A(7_ts)!NsiS<89of|Q! zz-YEN-i(ErscYcCD)}!n390?LaaFCFskU92lO+8W=1U^H8mS$q8*>!>tn3Xa+^Ve< zHN%&F-eVF=9uE8UQnMxaGz!3g4}X-t{2PhTtajq9*qKYQeYkt8C{o_ZPfL{PR?4v*61s_Z$&!xPBI_y_1xI6Cxg-`L~N*2%}yu? zj5fM#TA96xoAPE68yD`y=Yu6`p4Ky{j6dV=l|WI(ZnUG#N2LlUYyx@LTMrPJxOe^G z$nX^6&9A)Z)Qs|5+vOJ5FMcFUs*PclXQHj-Bm3rBF6ygqPWtg`igRG=IDJDa(FmP6S=? zCU$(WQXMG&mOUrLoG7y%gqzXv$ZcJmqc~BZaOio!O^vc;Fw?R{q#^%zv`05AS};7x z{cMoL|CS|`&JUCtUj2|lF&sbHj1w43Ge{wsm3Ul~FxkQ@4!<_;F4ZR17e=#zs<$Sn z;|jx(ER(Jfu>7y^uS9XLgYr6-6g~G3>^EwW`YBFsFtZ$K*~wSlIL-?o)4cj{Hu;F! z;YHKGeEa%)RV!*NLQ0*d)xxsLUqY@oS;UcpNi^UTO`h6On0+T^NpE{a?Stg4l<3-r zi?qP4^QNuQw$$;+lpAP6{)7M6vj>`D$b{T(YpuB0GhVJxuAwR!rl( zdk5vcqQYbcL#;rL5v3UtL#O0=4vV@v^prV+YQV`B%q&|Jl)4l%+Yn=VX!=e zJ^SHfZC6_&KdQPxd~%MCRs~7rik&rf>ZXQXJI$~z#YR_JVia3Ewy5ZuKs4{5uUZf3 zGYvun!z$E~^F z?vUEBUxUsOY%gYf#xq;$=rhx*m3`#?=aHHZCQ))si4|)?X3Y?r>Bmo zaY}MB#CBc)o9J&LzI-7HotOvlK}qVnKlF4D>HOJjb>bi{)TT#8cU zKn#N7sSF~((&Ck3YY>mE@_i>@*7MrCK{V2T zG?rZdKtpZCf;?(Yh6&%s*YVQ(3MdLRu0*}YUsVUmjZJkl8xi+BoL!2lXmJ>v{29rC zZ1JxgpRs5Zec<;;QnkR`;FrU0*ch`3PDxPhCR{oZaZv4DM`L!~SG4#@xMqRl80qoM zNC3xwjQGSu^0}I#K-cXGvFN%kwb`#vb>GJSj&)JI9??%2zZN?2WFY$KJdNCH*V2sG z4H?GrL-1eCTzXE{oY46a6>Q5CBn}K^crIKyk3rib$N$DTVmE*%t54`$UYXZB4RdG4 z7R%B#EcVg;&br0#!`j$$q1|-tGm@m-IVgt2N)WhgI{q#5?`qL`yP~sGAk}p$B5gt8 zb3|P>^S%YqnR@iY`IbPmFf{$|r&gN#Mz?yVx!YmL_qxh2EWeqntvFQISe4%izRtco z;%cxK)3(1aIZ|YdTC}HD+ksEG9K|SAefL=0(${drJ}<49_P12}TeOwFTgNC`S|qzi zru+rJ_7#~%T`o;2L%y4q7*&0xqyJ#hHgexm!@)OwLP8;I3j7Js%~qPRfYtbqrK>m! z{-6kAwslc_k7X~mF^OwxarZ-TX8_W}k%Rxn$$mmqBk>z!w`r}1V}C?XHP`5?1FjtJ zeRg$qb@vun&c7YwA9-Lb2Oi(x6^~aK9a|gy+~+T_Q&tYXp6}Q!ecyyXDu_P{ef9FX z5fH>G*9+~?vgxLpS+iM+U0pnesH>mW9ms5jX?bP}Gqt+%w8t*}T5Lr+HaWuN%~tCD zM$;sVY$b*ZO zKheXAlm`sqhfM8q3Qw_FrcrH2`P_zU=vQ~1gR|mtaI=vKvEaXG?8H-w#iQDhUh|e8 z4C{$?Lebp&?BO3p8~^VQo?0e(6Zb1D%JG7H@p2ijpFV9x+4THN+zoE*s8Nfl@vJnR zx-emB`jNJstCujupU1)Y1Rbp+iu%g1zccnq@n$_&TF*F;{GXfGmvHDHhaN1RKMdM8 zt$%GOWMn`o(O+=)>C=`gAj1v_-=&WaM8P<7X_}_!S@KvJ0lsbh0(yFS_x~0==;vd5 zVse+q{&61@{T?vUteo1-nTk;PZ1YB-t2aBekQ-W7y(3M ^Wa{hc&Ow&sAibu#^EVhGD(EwA0HmC3v#?UYkDBXxrqXZp ze*Z_3BgfF`R^1<-g+N}W?2|0s6HWUb{PKPePpQKZ&Xa~OXnkOEvQ@hYbe|qm1_)2ht7Vlj9bB9O*;}$M?B`1_n z;;u|gTSFWu_K#{23Y;--k7t-EZ$upHs8Am(1KHKOB6$}B+;2YUK1jM!Ba5Ewd)1{K z+)?Sm(Wr05J3FCivQXkB=asndX^pjLwzb`JlXKH+H8TKlWDor8o9N(J2bSIO_iJ-X z3}R3`Uz`=U;138J@Di@P9eOX-+KI+b>+q5fw5A8f;iKk+H1f)6vTBV29iM z=-+9o?sw9Xk;?B57q2|&i_c+Oc}u1Nr_xFFb;$}Y2Osl4-Rln(%E+XB-4bK2&l&MJ^if_uSKr@VQKM_pGAaO`h#m=&Lp>Q(L_CdsPzsRbK%5Vr@^pr}&X z))+a*ZWH8iI@KwJ2TO0Rzv_NxU>RbAj{R|cSpPr=dhVkAg(K&}^))4>=j4>a{!(UH z6c2NwGYb~b$Li?$VfpPdF4k%e#kFN8W$G;2gAj3^Nz>%vjhT=voVI*eo`a{l(Y_{v-5a{?PrSwvkP-MrhEEnp>O?{vZMo@$FxRK8Rp~tTU{D z@zdaiTU3`b9cWZRv9d0UIO3UpRnQQ(!O8ZfX-SSvr0u+-d6f9x7tbDa#B$ZiZ?4MW`7OV~q zb!Vo87Ap`ZdSA1iUnAb%KHQocc``)wU!g<$4h5pxQxc;)ER9si42 z4Z96V9qmz6WLWzn_`_8&r#9EM7bEJYIWg*_$+XDH;1T2oMRbd{q1R@A>f}i917zT6 z^3%0M?IGSV97$U(ur}4ciE^yxP-oG;f94T9^)6*#xelB6EpzZBS}xw8>pFD$WGt|QajtN_$3An`40+j4?^C&(a+5fYh&N0J6j8=@gI6)d&(G&!s) z`D>NJ?h5Ro$87*Myh-*IkGU|$Gh3S0nWetmKVKUjVcAO77{$ zn&ZTiFBOfJAh6y}o=P~nTCZlXbrqQ?7KRi+Iw#gGDKy!WGe4aI0+~V*496R{fu~M%Z%R9z3cdC?U)+BA3vP4#MkagD+ zTj)sFrNHzv)m-&oJChn&`|Kc=c%Kkxw@&-g(Yp~Vyi79bUi|CDNXCZDmphmPhzSWP z{wciZ1HXXkppw8?{AByk9`DYudHbf#BG{$y->|b1g*qkd#emsXD% zXP@62${37*Ex$^3Q;8)0YlG4bYaZ7qDFX34rbCNUCTgddN$Pxo_zuo=$W7%~2CAp& zOgN}2rIBMgNM86|vBu-M%bL4p<1}^=1>p7;wvhqT_hJt9`0c;F)hHPP`96Fzf z(V^SN!``bX&kWdkLbps-HSlBlg0rCdt9Sybm@cIXmcu7C&vUYqo291iGECN0rt$Wd z@GMq}T)aZ@**#`m+$hO_dNxoWp1*?;aw>t}J%MQ1&ge6p=3YBO!5IKCFQppqlQNsj zT@Kn;<}deG{d{%Rbft#v_@h$qyX@R*xG=Rx2B+7puJ2-x(77sCvK@x0=Gr)4mL82h z+wsfOii$t3ej(P#q<8&Jag;X=DCLN%;-?}tOo&i3;l!M>rczuWUQMJ2|@ zxe3}A>yfgu0Be7j_qEzmD-9PKyDp(r|2k=IK0H1c>}g-?HT?T*KZl*tGzJY-T-v$f zh+N|N7p<*j@>f%ZQ++?IeF*#7dkx#8piFGhj=wZVbDBaP+7i*VL@=>SDNaZzw#yFc z8@#F((6%*x|5*k*N@NEGEEeHeVt~TQiN$05#{6EGDE2iG8^xjoBvb~#CA{J?>f*eh zzvp92*V~y`<;ETT+ARaIGBP%^!1ixFq(^j(uWw##Y1rNju(Hw&L#zb)qUxY;G~J>W zo~^42CtwR!(?qB#OR-6!y1OcSO=Ue-;212hyAFoAZ1!Gu0^Ldq@;S{;A@E+=(Cg=Y zmeEvfi-!w(33|fAWWGaSvhfRgpz7=71t9lXIT{Iily&ZO(E0}~kWnIp%fq^KwL~jK zq^v(PJD3<3HWNucI##?HH8$9G`fkS9A7!uOo<=X9HzG``-wC3m=qSUGrIPt;u^vzD z3rE5cluweb@1RFfttTlfq^g8fBvupliI-n}uRika5Cb(TThLFUjXJ(S^Ri^J^bnG3 zug2zTCcbO88#vlE+%UYy0RdBepyG0WzX-cqGNg)z+jlr}gN{;_V`RwDV7NrIKBmTt6Dz!-H;poE93M0EhXAVTA8vC!t$e*l*td_v z2Ne~LKajN=Q$IEjOL<^e;UY3y82hk9nx<+GpTkSgqLv7o0)?#HleGf@aekwqby7sl z;YW#7_6P{WOJGxx^6Z}UUCiB)THvpq?wJ{j45ALKENG!ZloH?9)s~qa)5$1mXzFLP zoSD@%Bm0kg4+>=T@~FYS~<_ZETa=o{pa_dNS}|!e^#<3v{U{gR?dY`t6m*1yUy{|g)LoU5~C0C zlH~&#oIu;}sQxZ=XmQU_cqCZ(@%pQs_}2oxk$>2iai=_e+?j*!n}dpN|5hDY(G~jb*0?763TCxYaK${+UTDn zmn%0Y{fm%u3^I8bsj(^R@{!h(f|ARZH?4Rs-kwX|3$}Wcw|vc{ac}W1O>-EAwcdM8 zQ&U9>%P7{jY-V)l0(HJ^Kz#)stW!aB7~{4Zd^l)`0h5REe4{@0rmZM#c(Cz z`lT-@j6)=-=dq-#Sgg!qHuq!qvPAYrN+Ob`#C=-AK0bCtiec{2d2wUDD|!2Ih5PCL zEl?nE!YaLE+!cxl70e09yM)#FP47Gkp}xW=ad1sj8J19Vxr_j`An1nFFAovu23%C( z!s`^B^R&`1&f`G1o09UwCVD3qTae{25oTKR&lmhC0V5mmcYCudM7wigA+dHgpJtbh z0@~VuN==;bQxTi3ie|zohYAX9zYU&B?RJ{Gm_S5y&{3&Lr`xy*q(!}7?LE@*bK25t z@mT0lX8fA_{oQrzL-tegEFEC*dM##DnTjGV=^HF2M~Y?Z>W3F{iou~2!-m)uUcF>x zjbZCmV=B2IJ1v_ap}4G270|&(sSjLrB;r zx(ulEUQh(eIa15Y$dGB9YR9B-M@rtJb8uqSI=q!BcCRy%TDY5Sbvx8YP*ailgQjv_ za&>I|iKtzwsJ36_w)@O+{ua?*gt)j(U$^};sQ7jeLAd zyEEehl1S)HALigB*o<#L%FKju{oM;J4{swCU%R{@S}R@qs@GTZXft4@f4d)#ogd)p_cilO}KvLksRZ* zia)blEq(@wFH}oZTw#T|GEp$dp~eYI7o>mfZwCz5e|qams54)f^z8>q*Oq7vmxE)U zCn(kbjmC#gEsl&I-+FH~(_I4Ets>^@lQXzw>@6hme@Ww*`v^5VFgD@OiFR$xxO_NV zsbH{&V&9xfL97F*uHb^$(P)TkwSl8%kFl#GgBrnF5=N(MW0$&|Mbl z>qA_xx49}^SfQs4U*4=IgwJ|cXy{=PQW>AyM(==xwo~m~X7`U=zl-+{XZVN4*$47i zN=MP!XS8|MJE(PUeP~BRsOaWPcgR;H(sFH0ciFPO~P%#)L_M$o3nun=MPk z>x?~5!4iFhpS2dgaURv2-|wu`&I?PEW&g!M%HqY1SeW4{DYbaB-wbgDuFRgcmA9yQ z{gRlzE+8c?wkV?K@n;OV@& zC*qK$m5vP}I$f*6O{jK`l*~mxw0%6^rlB>2mFpKkDAcska~69R$s~UHp1gItfli_R z4b+^gCnEC&=^d@s;eZD*;wPSmNudB?p_l51?QlEZ;jb7Pr(ok-_l9ZS7GhogoLYTg zGXK!19o{U0(l>7)(Qi-5SJsntR&5ewCnpR+5GD83qV~|M$7k!=@ehn~aqsXthXMP5mWxj-h#h>`izQ@PSa57{W8g`e zHf+v-G!$mFvT1wW%r3TnMM_8*L5$WZ`enLMq)qq`e3r^mKtZ<*PR|=FLXP*{V!6@x zC~`hZ-2L7Gukghj$yDCTijyB0?)fr7E7?Rt*1ExyyFDk)OUvPs3(Y(uQTA)S!sbFO z8rn1>Uh*AtdtAmYGA)|HH=AQ%<=T2kEC!2jm`7rRE>c%dj}8o207YNQBk{#5);p{R zCONG4Ibh4{?=yJyF&os2|prR_+B) z;dtPUDmSnV`ZA1uSHC;l!}fY$NNQPe>wWIpumYpoKnBGQP;bJ>sM2h9eTS0ZH5EZp z*6%OZpH2QtDaz2-k^03vDlKA^$5`Tk4N&K}1}K`TpK5iDn0EX0m~P{cm(2{R{pGP~ zmhl=W;d4K+eFnyX&c~*FOf`LuoPW8s6-OiA7E!t?Lh`=K4~1k^#3z&9zXIku;P;W- zk@}@w;&6=d%D}(3HB}soENc&zQs2&JNJBdO35u84!Cch+U07kK7M3RXVHQ&yoQn#@ zQ~ChlVfzE-8%|LN>YJddk^KB-QfR^68Ych?6?{pqDMX2DB2{LH9AKy&m_pH+lt4DN z-^>w7uZgT8-h7VvCAkuKJHrmWmFkyPMVf}`%C>CG0Fmjq=_A{+Mf{gTVuf3tndT;F z5B!xIql%)i)%YR$O4?Ee?82#*`!jw(3#`&& zZA3B7K%$ECrzeUh@nRE(pg~X9IO!9^<-V{BPS$Zy(ZbjF&(jUIDCXUomlwou);C_D zKn&cDh#r*H02h85$_MGm`?2ZVhA`EZb(L>ma{IW7dmD@GXYA}fNvT0>FU5-7qOi$Y z#_kJ+Tyn3K1|!rY03a(^7McTLI{qPi4{_S)+qF5{9GozlHT0lC+^--2-hs%?ere?# z!~~_|@yNkUUuuH@B_2|U334z+Ws47NYYPByEjQ?|?w!$&EY%feXpdB-K|~0a(PWj{L z{hz~8EO$IeMUfM9!c2M6IEJzS#rald5R;M|z{d2F^)doG4Y+{v;9e;Tmvv5>TQ+`* zEx*v0kQ-h1)b(qv-n6(Mi6Ven+?vmLAVJGfW@>yv&y!WF`O$3gsS+*DB9+Yg{sXk& zHvkjoOY1(PX$nfb5h{aFE8&AKai9VgR5bS z_rta%j#c6D;eMUc(2040X|L(Y`(Av^RGD|2RtrcEPR|_ylVaqb0Hds`S(uwU-mHb! z0QbzQVp}9KKc4|ta=#|98?C2`^m8f8$S_ecQTL0rY@=wpC@|FibaBLizybnDjG;y1_k-|n5`TD!$cy80snK)@KCS)S%kLmvb@lGEt>LDV zZk)a8QgX@MIN)+Rx@PnhPC#!IdCljM=XX~}R7rQX<+#D*lTnY-ViXvYOFKu0XV@Mm z@9${eEulv(J=>Y9YyHCR;I*WX$z4fx^`Nk-gkHIFbau&R69RaqJkumFr>ANcO3SP_ z0P$%au-T`pM%uV=mobU7iwjqPuQf7PWi~i8#0U_$N-NvHxBK4r*`l7fLyxXT%CG~L zQK^tAL34#$sQPuCX9)8`y#ByM75nsamf(Jz&uNZ3r-4rS2w z!y7P+3WJ8&r`MDlG$dwcj|3p0++0B&21ng>mOLL$`vJleFyAOJ-#|Qr>7^-XxCp7$-uc>}$ZwGak=CJs~* zz4>ZK;DX_wZ0DAHZ{uD7z0;Z90|V2LD*?`I6rOny?M9b?C=~F)dW~z9FX&pa#vkP6 zm(E*5o(%Iozl#UW1A;>-0xC*wHtbAcSAf0tV?m3L$L4P4d~(A9q@N%PwiIo#J||4g za%3V^rJj-(LH|B^a2u(dKMjHL4ai=BEhGCDcpm2d;w7FVJ&VCq>r?1JDg@3oVo_p? zv;Go!K#9LS!#7_Q1#|f_1Kpg#>~??NDE#TtWe`v**#;>?ux?9c)~D6&o*DxHjdZ1! zxCIDCF8wxajUen^Ch<74M3a89@lF8Q!8V0dpqj`f$c_Re;%2h*$A6Snj4Wg@wQc1W zq%tFnbY>g^G73KZBiSds;sa8+7iIbwjS3OssB@}kCR&vjKgs^@a6bmzQNY^2sX&|> z$ezEw;bZx6Pb$RcDvS|*(PfAsnqPv(mz?#jA1Qi5i0?_l&L{CH862tAhZaG)If;jU z&r;D+bC7_8rvwxwBtHD1-}L;b?L#F;$(qp{;Ak{j36v*REk-IJVu&&trB-Qxu4Lw9 zh$a^XgewO534%~mfqpVYrfFKzjLANU{G#^ckcsy|C!p8lJ8HSI>;sSwvF%V9bE~EY zQYqSp|3n041}S$IP+Y2%h`?u1%WE;w`;PHnlj#2ray*Cf3_Do|gM+)Omw3ScBllvY zBZH%lzKK$py>AJ~CXo`w@2gsxk@|mROrLxgZTDLrjrln!iMW%3iz>R`xg`+TLdxOO z7sgOP$*@r3wMYSFB_Tl^`Dl$>OP=!77{C&u?HZOq=^rm~!J;qm%sN4yFOmP-i@XLz z;dGX{>Bd)pId`H?O;+(y*hcGcKM{|eSAP$(_eCB)qa=mR_Bms+79yc#utp+qvt9jMph$bc; z;=?-|=|c3MShLLNz){ufPEj@1fe)98;lPyFgXA;7lZu8PT%IYLp(Y4 z&7Ug%zSS=9|LE7$p1_$@EejEATkXDz2!7W;E^2Bnvqds#CAx5+H??Psq*FANNUX5k zLVSF@bgrcD4XouDf3D4aZf%!3U^zf#Aa@%d`S)|QG9EDCE)k*cXh6n3M=$$gX@;{s zmIn!>9;B~fOOyiUm}qEd7@K}jrnT(S0Oog?-s+B>*{BNv6R)3^g$O0)6-e@G&g_%- zUg4*&r@gL63n`YlzNrNT%s?5lzcfr|Gi0C)a27=&(Nyw&r<3QyG+256Tb;mnR3O=( z&wzBm{A9Ij!Z+1|-}3|vqyp~JFunDV{|pk(Cl)1jqj3z8@$TN~X>o90E=cwRB;{uj zaswkH3$|EsGoEhkUCR_EBwb<7Y z@pzq-lSAvfwY7CLb-Q(#g)*+H;D~Uwl;_s)HJzj3}T906R!OaaYGk7KGuS*NKUSTq4rQ&N!p$OP;YuvzpDlq>%mNW96&bJoY8Gn~Z&DCSm zVvI4Bi42r3(iVSVl>QGrBLZJxbdno?O*lI{Te?b1OFJL)hu2i3Nv&2i?*lwCBNaXh z^Sg_^i@m9xfW>|%`ux1VOPF)0DE8M?X4G654VP+$o&Qe6>eX6xEdvCsPTl{m=nw3l2ownu?2 z`%k7ry8=L|yhvX;E_OSZskNHOGvb(kM)F+t-83dRN%P#UAv*ZfyF}*6=>`JpR*+8q z5UZhrw}w(`zf2Eh_sLyZg>O0PPE!Xk-@1#LF1ky_Ri@Se{w}v~oSm5kkh}+y*){T@ z8+|bwyZLe3t>>d=_g6=5ZC`^wnr8vN=B{WOW0tzHd;26_L#376np^4 ze8e6vru3SeS~*!E4~w|KN&<%FQ0>;{Gu?rRf~%d$(7d z<-PwKWNu;c)&L!CsC>u@gj;BF=={ft9Q6u){R8Kd2BY^E4~4*;AOH%K5b(!a06094 z>SjT@)#g}$-<1JEMi0?r!Gr=d3qR0z+a!E0?W-<^>K%+6X3W%ubc&n+0W^6 zytXOv#Si&Fk`E`cVfZxqJJ`Y`gQPIb_-|tj>B)OA*G^q@YK#r7|6p?NmkSQKRJ+{s zxb4~?5q73 zMQXXD1`cg+fsj9GGMXi}=(UsWRsohx(56N1WQO5-;|rrhxPm7*{_|`mH&q%y|APLv z!^Y`C)Q5@luYy|VZ3e9-6qe(wAD-pBpV{XUM4cY~Mbcs#D_ zyw3Byu7`*8{IFkJXQ!5TZqlu{r-Skc@IJml?GlfrMB6&_%U;Q3tlRg&rP_$PfQ{i_ zq`S~bv1xRiC`&ch#b)2RYu8JIs_0;oyp^N9=pLWzK09{4=x9Ubxv%)f8?qDPB9}`k z93PkS;cW|C?EKw4F*8*pJ)gVLx-J(BTK>d|m6CR&FR+-$&S%rUj7@y-n0}&H(@xPM zyVd3WGX|FM^NWFjbF8xOabTdFy1KffTJ({){fr9{ zIuUP91^(@LZXA!oj?&<~;HV(dyv$c}TzMdKLY=GVec(y%o>}ojROkGcCGB9THM4h>+(^NYnm&k*}#DfEAz56oM_dCzF^7JNT zdAvScW<}Zk@Qlw~60(k_t%M5wVs6*TejY-8no(N!_T9U8+jIo!rnKDKld>>BGc}aI z$`&gY_@8Ud4uz*+#|>+3KZXU$U784KeVr-p3R=@GJg{P?kEt(A}C&6_vJ zZ0{dckg;XmOlL^rKWdn^O5%Q0$F1rl({;?6%`WZdHxNan;B-h}m@*<}zB?1IsAv$1 zNWlXKzLu11<>hrNDJjv&I!sg566?ElVo=U>wT1Xpu-@eJk@n{zm$sSsE$28)CYcCa zK%ipSmqIBrWs`Q2NKH-USUJ1qezwhhUl=Hwe)$>Pk*3gb77uG?%xk2O0XOn<@69Q} z2XvW%R$gC>P#8NOMyp#k@#xDRt}PQ84DT2{UNx`E$<3uvSx%C}^~fJ;IYr#|eArDN z{n8G~=NnJa)pUlQ6}jYE)EhpNlklo2a>wmT3iJq8uQy^l{5r#&L-$0d+#c(#GH>&j zYZ<9f9f-P`Y-E}Fd2>vn9w(2qBQMSVtPnhqE~%j?y;Co!mKN6O3Q>wtLq<@0aiBR8 zpWFny7V@nYqrd#?=wy+$j~c_g6!R>H17h?k__4|p^U^~iE=!<#wYa4MHx}e8IX~`M zP)n7Y9%P=|NPY2uIhI~gp^am<2=`!)^I($-f^Oyz{|4!-@ku%RUJQm zoMbWVou>q7lDG=21Ei3v9jLbc(e&{u>dM9PYxPk}W)~$@)8$R>AH(iVYg~`X#ekB&jD| z>9}8-@4*J$(ZJ?+|e{K=rC^t5`j-W<7t0wa?#t{g_`WG`<8=a z-LjgOX}meXAUf4ORMP(8lP8~lzrRR8WOa%uub<>N8)a&03LOJUg`!x5Wm=y;YH=~r zuB3HaqL5-!*9O)arTdtOaBWPLz%U*$%brUH6Z;Qu zVyPai%nvh*H5GT+xD;(pZ+uWjhrmH_VF$P!X_ml+<7B#x*N#w4Wb-KHxZC7qgQ@k! zcHhJ?@I!o1V%AAIT+UBtes(Hj{EvaeRNEsVl}YBU9-tBgUM%IOqjXV&abQLB^73db zr^42)SY|U;p_GcxSwZVYIy~^ZXxWrgXU}#%IxBUpjxpWAl72^2v;NRQprTzP`-S#Yei8hlkBuL@^Pbv$SLt!I7c zkVsQp2HUCL9gBJ6waisaq;J@ys{=}q5nPhmnpDS^O}|f_s>m>LF6TZ z2xk3M%1LsBc($gf{(5`!%tPjU!tzDn=!3tt)4S(Ac^ZUIS)3a8EWw*Q|^bhGFX8BiF54H{G zG3+C zNr+~;*XmMqz`rD*t9gNFk{i z@|sN?f5*8B+L#>frI3f^U2$sq%a0#Ac;zKQ2RtyN>etJobo(-fWS}eLT2`qQmA^UF z+j@xU9@WH@^b#VDvpd7XDQtA3{Pl^`&knBiE6VSV2>U?*DkgH-g8S_qQS^|YqhknP zfx3RqFP8IS&~&ecqtahIP=6p3P2_L(zWIhuCP{ zma{EAFSZZnBNs;+lL@%m{xUGKD zKWcQt&dA8*aTj9(7bJ^sX$_Ir;x_UXQ!fGYxXYdUnlu)ss~$gj(x2pvA!lpXtwTZ2 z^oXX=MS$CTi9agDb(dn+m^zr~`f-c!HwlkBUWX-6*VA&oLKo7T-;A_UE(ibeQk&$jO;8JcXmzh8II4B>Vmk1
  • d@Xqh*!JW*^+(oAOVM|n>H&(UNOn-7PREa3{OpYQ`eXawA;Ffyq?$Z{TQs^YO zW71p*RoBrIEES#7Lhmcu!A6RZXTrw50&k^yDsn`Xebd(lD^imHru<=qM((xQkOaHD!TC+$}pmwDI zXKA(+c+tJilGfHrr~27?|LYvtWmecf)exQn_Fh%wv8*w8dCoJTROF+)jv)sKuYjO)Jk~S!Ko&khn0ASX_5+Gp5ASN^5)V|a^*bMZ4r%GIa9=U{uo#^Wihvb(DD@=O(pGETuip{okav4I!{q3% zvtPe|ZztqOsQo~*pYtp)V&w*>>@c!Gl5W-h#XnIKIdS{h&=RurA-D8o{zx}7k)yJA zaHX;1Ay4iP@?5B8 z7EXseuLa&v=m#fQN^I4Bsu&H6Z7kUfE{&&fBW)2_txD0VS9r$WDFI~(LsHTl!jE?r907)uC=ys7yQ8XduQfMnGh&Ryp)@||>eN?+A! z&bw%qAexZFN35o%=7z3r)hDqsBkDvMGk`MGBr3L}nTSb1&Sn6-7s zjsw>VRt#Vtc8LOCw*vu_k8l0DBkZ+yaexHGXgUXaws%HU2VY!XtZtdHUJz%C`)U%b zIT?wZTn6R=F;Ee^X!i4EacI4nS2qlvWde5qA-h8B`?xQSjW^ZB{eGIHM(le8A_iDQ zP^W|qEP)A^2gwD_5bX&NCqEHn3T@HLGzR5GO=Gn^3Y0)qvz1<6UbEe2onJ*od5`=M z_glYLWe9@+%rHgrx7W2>>c73^8LqnG#Te`Rg z9ex|ExrC5{5tw7PUunPQQZW|(W6SJk)=})o`@UjV%IfHB2ThX$Rv=z_b|~LTDY{vZ zt=Q!sU6naU@1h%Ot79RR*_`iDrR&H+SCpG~VX6B5?6f>bd@v)SGDh3@@+#_oAos(_ zQN05?C7K|G)B7Peh+(3EquTz)P3*N)#pO%o*aqCKR-yN`{y(46`!%wiB=Lv$Bn!1x zD+j!FB|%{F9SY4@O)5$I@w!{ie%z9n_;>^#!!OEQ_&2ANF%)0KDtZnt3Tpuc$e&va zfYifw6?vCAksSi)TFYigeIKU;S_>->bxHC$Wo5SdWUV4*qs%cyXzGvgMz5K1S@&=; zErx87cjjw;^ZH4kk_$eJ4NpP~1uJla}w$^||DpC1yq>|tKF=zvfL1qB5v#lAe!SqgYyhIKbJCDhOOlb10Z zr$IFYD6@e;v9Qu?fB}gKuvMEU0Ng1Q%rw-mMf33c! z(nQq8khA#1A}u<6zVpZ?psKu>%BV~oEiH(vDptfaFpG~L@1y-8G*{YBx3 zYy6|uY8yTVi6tU_IIeNmjRH?rp``sOO}Fd6saljBpRu2!EzT_zl>L>1i@+%$)A|AoR^)sy%SDujUbSE)V97Pen{ysAAHol9!)bQiOJR+@LVt zl?iqnuTiyaenGMuW}*KH1f>~x6( zzWq&5gO;d6Ddw+EU!)hNN-5dZ*8~0ik01x>OOE#?l$PW1b32Znr=(eQ=e2!(MDRX@ zO!>@8YbB7n{{-dL!X7smni@C`=rDq;dSgA<;ElCgXlD5zSn+KY1_L8MZ>&BkT2V?_ z%JB|d5BIv*w_>+;fcD?AYnRtqsi`{)6ASY^+qP{}HUBO|A$#-r^Q()FBkZA_`}gk< z5HL+PpmodTSfjdO-MW7BOd|HTOVKUXkaTos7@9!ksP^XgsA-_&{L|Z84@^1=K+G*^ zHw1d!|G80`7igyx1U}MqovRCGOj~n_LgO{0DPrBX%Bx4*Bt;GbOpsi~)qbj}f^xxfK@t0dJP* zUL)pbl&2vfXRNHosnX|>7D2LlN2}Fg>q`L+acFNp^Xyn-mg9tt56Brw=WG!drhuYO z_r)L~BBDp#l%)*67jmlB_h&-Kwy;8bWFo5qGC?!aA`c>XOG>LR@8->};MPo`Lzse1 zI2L32d7aV_cA+^41p)ovJEaz8&DEXfEP=b{XcUd>$NMR5>Jlj8G-D1ew|KCQzM2GJ=E{JV;X16Z$97u;wB7*LfEO zsx_uu-u;?W4s?CoBpzfJh@}7U*)sF`-8)YZ&GZZmCr+KJ)k^)GkaeShZei;u%N_TG zKfbb#X#Fx%;mKBc36~Vv-#<9$etOlb&kx*SDrg@mO5cr-B2%#oAGEq?{|iw2;Z2C& z$Z0aP#O}4g!26a%gzgu4YEr+NABbnfi{sQQ?8627(ql|AK$`? zS~=sxX8Wd*sUaJQ;poC6sO#TyF|H4Ill>T;$}L5vUrI}Li+nc@N8g*hjp^8+Kivhk zH(VCoNv_3*iB>{Avmamis%I$h(W9dmEdFC=7#YlX9YXO1S=R9+91+#%$)^9fAGer@u-_rL>L%|qe+N>hus#T7-{kOYC6<( znV2CC($ml}xBW4Qk=#^e^y@9tS&88Ss#Ggt;5h25rSyr?b87?mD0We^t%YnT(eBmz z`mi5>YK&0n?f7}C(c@#+zs3m!$nAl35+jjA7@HjCt|Gg=oJ81;_pXsTS|g zcG%SLO7=M3Pq3#?yMQJkv|ht-`REDtIFE-R_6 zlhked;vc1!9)JS%HaKZ%0{`zTjPlLMo!A;+$m!Rf_H=DVt2NJe-{wH<-Q6u&;^OFQKGSP6r9zRnl;L0&ZZn zOL_SPqC;<22>t?&i8co+=_&-S0*3t=IT)+QmRU(gRqTogralbya(~7UHCUHy5rhRQ z0)KAS#J3w+igdqzlmdDsyq4f~#0n>iSb1zLTYyZF;es``Py|V=gCM^dVQeE26DZ`f z)Y2?!A_mp;FHpR<)#m=S;kTp38#+Iu)4g8(d0as8S;NxCY?Z9iW@Be_n z&sGseG>?N$mi60@2WcX58cKZl3?f>l{RAmOg`zD>1d4u(>|aX{7iw5n7Em2{^2Dnf ztt3|w<{NBpvTSm6t4MXycjVM75bxpk#X>ypXFX6Cg16 zaO6jA@kAduN|g$_yHsuAic9UgW98jdMQhKKZn4I3rt0}Y{on8OCVF6a9Pj0zV0`|V znK~XD*1BjFHi41$)ld4LA8tD}-YfNY1iScKp|bj!WqY@jA7;}UPvx{ylJZMeIiBa_ zo;oLB(RB{~)5Xyzm@+QR$D)sw_u)+&362Ki{1V zS&rhT0{EKY(U`57CNN_;!}_0CXDW+#1%U!+oV}k~9YQO7v(?3e%KG656N{KfKG;?w zRL?rPb4TfG%-c3^f1+dtFEvD&nZqBPuDztnlQRK4C z9iw+eMtFMf9=&3;>Io!o%%Ai`q~9=G*ZCVrw7MU!vyr zZ1ZP}?^|KxFdXd;sCm$g-X*ThrG2a@eLcy8Uyyqq-qNxa8X`?QE$~6Q0}m}`H2`&N z6jnNZW}DxO5Z&}Gg^ib4(y1Fr=(J9lpZn@m?5 zCHOfxg8X^qu6s8FBvTN%QLd)Xmyj)!Yh*~d7vp_8(CLBQF+z43#i;;weOuMlyEGzhJ|K5N*T@-}C2?d3>NU{>3 zIEf-Pfm8c43yAegUw=1nQ!6Y*;V)ijCL1{8&KNbTV&d#_5$(I`8h$Z)~UyZ0$3*l=I>Ed}rkvc$A9#I^iLUKHmY} zr3H|)jS$-i-!G1OFq3020E;SiT914e9?79u6>HKglV;gl2#->bpf)|xejjZ=(*j2o zmZj4>Qw0$&LiiEW46aZ-O65~zWppP|?m){v9?V|gh6@Nq=J=HTlQ8Qq-%rHrSL`Nv zj-WYM@o(bjj18(LRD@QVSCg$qCqN*!JRTV%B*9b^6RF*ApX;mkB1ktu+taOxyll}| z?N7(!@Bn1|oJ&Q0p61OhdaVBLysESlpQD~6Q!CE1sddhs8 zqgea@ANj%5RDh7GMCJkeDM(qf{WK0Jc{cbx`Upf)D~Yk+7rE^F;=q4Bc=&L&q!kf> zun(z?esZCvS+{Q8)~#FneogGLxB4O^w^t=`MQzd)WcME+G)a+Si}#y4R(UmC8+C&S zKI|rR2>1=!@W4BuPqo0~bUz>n)NW^}{XQaLBH1$XNCktXIbht7L8EA`#lC10_HPeM zZ;n|I8VH-=m><7rWp#*fzo3(m`(42hmnGi(6;h${|DIWnWvjy`qg*EB@dHC#&%3_`i8#A8^|DfD6@W6lyczY)nm5))f zL6tAcVDOTqLtl9PC_{gX_phP9OI#OVhcTqfx;IUUs{!F?T27f=Z5e+u>>^C@XBkcBu+yMbxY0P6$phi?Ga$xt zV#r_0PcxO%5EQ=w(6E6e#!eIjISMPM`{twWEcAEvACFC0jR&x6QDSe|XZP+-7jILc z7+h3VmWON5!XCmD@j?lu-SGhT-17N;4YE;U3G_h&Rb43lr=K6{r&N^FO6bFGbW`5j zH2vDdSoV)mOK8#|i^J_WqC67z2@890qfp|W&~e+ifH)7u7Wr^_zb|v@`kXM8Btv#kL>l3! z;Qo0CWK-+v>bl}eN={>Yh0j>+eH0d!U1X20ntx}x=!Ny@d*}9+5&PU~X>PwAe?oev zPJ|ybGZRGX&ovIq%*tJSZvp{BEY7K^~ zH0nkF)rMmnQ!2#FR$Q(EYuIXQ@YAo~ys5D30~yp5mGGklBJ*qA(omx1fI)f+i%(c) z2WmN4l%7)+F;0teZDY1Hpq3YN9gzyL&@+Y$If)k;kM4zRt4~3IY49AIoD;9712M~qfSh{vH8rcpql4uD)VXDJEdZl4h3=^p0GY@_4A+{K;fg1 zkW3}*su+z@44mvjvkt<}JJxv$8gz=`q?Z-p@|BVoTQW+lo#Q!89t&s?{bf0TE@jEa zjgk$*EGt-6^etR43Mg`UqYKy9>*gRKgY_UAUV-=k5-nq zeH33V(fCSjEvHBXE@(T#(pNk1z{s!Yh-Y(x#eZ)v(a|E}ZD}s6v;*1~cMR4hDP9HE z%PwILU4lI%)MG~jh)nIU%csCo04(abeK$8@NvAQe<0$u{Pvy&z!#B6eGSU|J`b2vz zl0N&%_hw|-C>;S%dASHwa@pKUJHwHJ>nwhqxpe8$vEoZS!i5ilgHNN*KylkUBJ1RQJW3{Xoyc^Cub>U(PIZ{31x(dJzP)|Ky5g)CUbJ8C^0m zB=C+)0HJMQ`3~2HO7%*ci2WGO^9>eAf}urV{rXZ;5@q@w15*WWd|^=#>)uLg(Ts+A zt>bof(?%~%s%GRJ-Yw^M=ZleUxXi-pZ`UTmtlb>%Xm|ONA}G;yPu6`h8tngIH}z{y zz_>x;twPAX#)abSK;r2D&>}-`8`?-n0UNFKvH2{s`gG#;g2+YAlu6E3 zThvj#JE635?Ef(a-5@K)9b?e@e+j(}6Asy`QLY~7jMNSm>m^8DO@2@9D-v*VXWOX5 zgGHtMN&m9XT=vv=<4Kr0vX!bHxcRA2v225>Yp)w{OYO3Kb=F#(zHw* z1)$f+fn>b0-c7)09k|Nr&uG8ra2C7&IY>A3D_mMYY!2p!d-l);tUeL7C@kF6Tb=23 zTH1J8DomICzRQloBCB=USb0U0M^dYOGfO8LHlRX7KBaOQZY}zSEvIhNyc|J&E}?U; zY6^=B;!tJv0*d(%!Z7|)5ch$d%w>&&$hEK@-eGiR?J3L)zp05ex>l=1$})fcaZKd3 zO}Wp{XCVV5;i72bA@bxhoXGNEnxCGiTsAA zFY)topxvu|O>6>%dfWihqI!f0wvph5jI&`;r9tYt0;?f`n${Q$M7DRS#0VohJA1lX zK3hJZKruYc1;o#RqLV${_;3$&8G-BGciYc5tY`IibF1oYkNgnb^3sF51!CYb@;GTX z0gvZ1i+f{1524&IgT5oFUc{CUoDj=*ABboeN50*x_;A$4v`5f4!++22-CHCjL-O)u za69A5M#EA2uS|Dy!c97n*z;a@D`NTa|B2-fAF$N!yINx{Jz=}V{hhfWaGiaLH}d3K z_E`S<@kL&%Z4>(B_7rMfSu*E4qb|B`JEXT)6Y)ZH1-gzrL2q~W6PkVU;uf!U#d#MN zyMeftp^`38UeCSc4H*Vo##^Xtlkv>@Dyg7Q_bBqMQa?jO)D}7_@QMP3nzoB#g3o;c zchYd#Q1Kw_94f2gzfHr_t!hl5SMI=v*Zo8G8Y5g@SO>(sbsm-BVC0G5cPDl$O3*GU z7G94~T?<~zTb9?%Pa1U~D&Ram?B-TAAuk#rO3hoh2ROknBqJT7D60Wyc1Kfd-;hjE^_CYoXva1>7IMTWV zzfO2nV+9gF@s}REetipw$L9Frec>=t*g1enA^@25LZHDH@g)VneIFIohRS{Go;~-G zM{x0Xrkx*gu;OA5KWscId!2fF1JQ)++C`WZY^Sn9Zd`eKn6iUyS#5)({r;eWW8O8{ zjeIclX!ZPlPsj)tRE5MA1`%8i%fSY2O42ubvoT8&bc}E41XdW?2Ben&z?uz2BrE`( zk1r~~i0?F0+eiv=^vd9*KSE=EG;IVY1v7&TGBr6K5FJ)T_YWtbG564`sBqx8-WG6vx}3 zO@vCMFE&4=*`4#1c1+f^K8gR}-^VzpV(~Hw1f-BkjPM<#Yxtsq=v@?KkKuV3Mt=GA z>No=h3W=10czeJV zKQ|HT<>aYTq^KIU%M2#A637qanuv^08KZF)c$|&#;piim8lXXrTKL%_Uc8{Vz@LHA zegl&;g>-A3cOrg|!3IeVpsk5PKNyPCGekHjej+U^qSTypJ32bd;MJB*mgHVV`0$3S z;~~_Vd~7t_ewE?NCcG*# zIT@DcD3`%S?oV69mT%4BA#P3%-sx&7Dgi0*N?d=l*&DVXM?|9Fw~keAm)93dqG zp@2!#H^^B2KXZHHUS3*Fqi83V6}i9!3pN)c_%kIn%XO$ z4wFNUX`$LzGT@H)0axSWVI`PQu1!&(seRQa9Y~{8lUP zRuP4aJ*MyA()gb+-=ek=cjtn?Bi#i6V%s(sswKq_It`4J4-OuUU2Xyf!kb(28KULG zr%&b4=9LQK!$9I)ntnxO*F)j-ET?I{JhXQm0S+Liw!p~V0+)^FSTc#stIa*?Ha);5 zxmJ6K1i`_CtX4RdxN zOc*&1dOFQb6HD`4%h=3lcRt?9t6Fe!wHS5suP0Pez4gDQK5V&rnAKl4uXXr=zdx&* z^Pye4R%)FNHrOVOT%)b6y>{(d{DZ699@C1R7b{(sd|HE-Ye;#Futky#m^ytvw#*$s zD8Bp7&=}r+dU%9|ApAHZ@GJTd0TZkEjiNN zwo?W^k`IIgN~Ti~YYWcI4KIq6?m|x|Yj)#V7;7jtz;1+vDV1JuNbKX8AEF~i5E0!R zg+(Fure%SSuG0R+55f9Pyi(N1%< zoDDlN+kL<@J9CZ^YFSFkQ&1KKu~u{&mgk7Q3w05blvI=MGYtp`cw5@E=|$=0`BC=EO)O2guiw)-rmstzn*Qs1e(Ab+^5DHk!tA%bHR$rd-dRXW|}Z-(C+(pUnmnD@mMJ$&};q=Eu7Hlpru%V(i)s4)5A zQ+sysrVPXm-4M(5P~-1i^x+JJ^~)X8O^)wKMJvdD(AL*RQyLbk?VDWb_zO*7XqTPn zHWwKpt#jT2Lh2#n*1p_Tx6HhFZFWWmL=lAj5p2RH%~u7l8y%PL5D%TxtM{xdjxGO&Xr81Q8H+9yC?dW+2* z#4k@M9wJ7PW3C(L$CFK?Ec46bwNH@<02$~j)^924Ng~w~7*?vxg}6f?m*?Te{6&)f z%$R6FA*&o0>9P!uK_7vfU-yA(2H(B}ke=dT?!AoUwy+W>=MPjbJVh!(+%6-y9=YUO zwN_BlJ0xJ8D|3X-WJ2xgGD50qW+6i^dU|@UoGB>GI4`=fu)P*6AV1KKTUMWv)vgSQAL$4-+9$zp!ULt4Z)Jj_j*JjIZK`t&Nh(_y&{=NX!$ z=v7u7MNI)lmH=dyX4sD4g0{i$U!#k6HMP)R?|k}lI}hEEa6|Ff z-xk>xB;}M;wxHpBr8e^<)MQ-z9aq19BHza?}0(S_~) zHe&R*(A1aqyqh*rLPA1PoaV%sd8EAC+HNE!B|Q`8yKg$&LI~V-B!vIg|CE{^r)+9! zT5e^67R|j^X*1RRK$7Pc78ZK@ON!Vq*tn~zsl7b6b9?3)i}r8px-7&F9M`VdUKnC- zX8bxLq7`igGUnz7BqSx@*o7!~fN{TWVsg$(qO-a2&4u?(y}kE;{yYcj5{70?OmE;? zuy4c8>KYs@f+G9k((ad+c9;G6195?V=aZ9qpHzOhvFjb=n4Fo(zacoB&VS}KMOXgK zh0O;KuJ!TpxllhjDZ;_YdF>#_cebGRzr(|>3K5UKfA!%MHu>9j;>Xu)`4z74#Qd(R z3V;88rIeIZ{5XER^3|)w9WT?b`toH((E_)ZuWzAsqoc=<9}4g9 z+`W4Zy&>g?I-46fIXGm_o?TT}Uq7YxbbAAJ7EMr45M)(Z7&oyD@BRI2#<*$~uaHnh z-OKMPM~@!m4?0~w52XIHre-CYglueWH}mq+5SW1-(A3)MhOROj8ynR8xeiB41@V|< zZ{6BUO#31tBJ!o>BBG*r=Cle53e{l6&^+4Q(n2jKCzmn%x0s*9M>)$OH7Go6BlKg} zloSzsd^0fdQG5gpQ$rvg%w`8!>FDUXQ>#{5Sy??5HV(a1YMU|x(8R*SvkEU2#{bR2 z!W-!CQp1NkyYF;hs>V^LbC(qr=^-}0yzssN9V?%KuuC?UM^)C<@lj6i22Ug7Su4F9 zWbfWYm5)!wt)o4Ceb?95*LN`41qA8OQh7pf>3#}dtr~Gh=GD|(sm8lRBD}2li~f!+&w$1QO9Pog7^Xz_%wKXOYLwVx)Pyc`a z^S~AyT*xJ9_q*;I3+q>W<16RK48Dy1@tkwX(XO~nie)`+v9~DvXFQcKM>0s7ID&rU(8~b`vM&|Yvtu)(_ z?Uch2zplZTuj6yqvn%E)Wp!C1?5Oz5m+#)`eH#ZML1J}$8kUlcz5S_~UAuP4%gZ0W zc5QQ_%HD$E#Ki6a^XGp4ygW2C^xgaSLFWxQd}zf&6cm5!3sE-h-OH4lo6E+| zPGur4z_4;Q ztX8LI&z_ldmv3{JpTcM_gAHiAfVt&tPE8H_jzLQ*oJ>Fv!LDpYX-Y%s zt4m$u=H_Mth<~F950QzKDPm$`ng=;pd3gNL61R@RFCyak?%mEickaB%%-qPt#FS#z zPEQUKy23-p%;j?Ojm*`noZ|!aGsyz&9UU#`1}F+Tpo^e24Em6a)Tqw17lyr<`O()q zC`!5~5lS`ykrEvHv!dcIZUa3JtR9bp^+0UP(%Wc6R!>fyGv#00$5i_%R8?fDXS!7^kQYCw9 z^PP7wF&ox6%i^ir&DDJ17#$ULx@*ktinLv(y0?$d2}>#}s_UQctt+4J>UtNOkg&$m z((>0mCKtT3JOn*Or`ch-?x$D_7Z4=xBS;}0e+Du8CJEqR1?5#rigIMSWpBXH=;&Iw zNo7`S29_x3sraDXnQ1fpin0k8it9NhD|-*r*e+N=Vgf@xq@}6o$9(v(hH^|xEBunu zrAu3>si|MjLBW&%U0L~UdhgDiEVALl#xs)E1Ht%=w6r@cGU%jU0T0X-9u$S4CKeWJ zg^lW-t`%neZget1JM`G-;oZA-9l3OAEn?b0*9d?>Ua;sw=G2P{eX`1LYP>wB*^pt2 z%o1i5hPuYn%gevQ*2YG@RyLd!#TCqhIVd6Sq3|}mz#|)e{*U7BCo32jjw&f_pfo`m zJc2aV*WbUxF*+iGZhn5A;_~z7&zqk)F~;bY!6y~U;dAF6L>aYAdw6)1{rcsGoYOMZ z85ZcvzH#H-M~{9rj`t1>FjGioLnCQ~cPkKqhk8sA`jJ>TIqz3jE5l#5J}D{bR~qvc zI}-uKA9jSa9H6#XbOOMBCqHK1QR2!XW7P*JxZSbg&mWZ}V{L6AZDhU4M6L2}i=nZx zx!UpJVbjDpwCrJ`CT;>mY-~;mdpcL~eF>x*W zBk%-h(8jk$L`EDs0qh7`#+fRW${JOop0{TvAdxtKv12 zoCyS74bT}J986v>O6$brWGzii3V_0|p8VQcPF$3pq2V2zRr>McUJ}ISXKj(nNZ`VN z0D;1yB32f-=3_iOOZ@h@9J7!^#Me&VfP8ZP^5wgrm2x!so6w+@)!MmCcejwxx`Ba# z_zPFAc%eUzh7cPeD2#Rf*LSQuG=l#e8BQB+m+ZfUvB#z>21qz&*yuWIV)p>G-= zxpV8*EjCWhd~9CUwQKLddJCXcGvaMsjNVC)o*sQ{z)d@MuE5xW>TKr)Z$%1n2)e?yg0OyN4hJTAX4nF2xD%6!#V>rMS}q#XYzNcZxd{cX!E#@BYsI z1^Z%O>^Vth&dfaX+~?jq*XDi_rLL-gjY)wC006MxzkB-u06+``01(#DQQ=1fCzdwh z8&Nm8k8YZdmTsP=E*1b4Q#U7jM>l&LGdd3o7grlc2YxOQE`AO=Yd1G1S21pG@c+4h z%hAP(yKnoWCj2HCPVYXs0sy$CFJFW|ph6n}APw>TTWKw?jKgKmFI3a5FxYHrwf1t7 z!Inb@Di#;fBt5F8j0~5t!!B8ZjK5Q3Co=k*+SgK;^aI$W4g?D-bfKZIg@dGcdUDCl zv3kiULt>UVb+4+M`Ca`3hHdNE%RZOXk6m=a57g8sRG0caWZY%^s-2;r55uFXL{`#WF`rLnOw5Qg+KIeE6P4F5$h zg8r137u41YT!~5&y$2iy7nrWLv`GA?M%@7ZpWLeyX-KOtx5AT6`M;x6!+}_V6>axy zJ6XP5zZBx+-}D&6?q{Q)^z0m3uXN;NDC9(_ELU2*znl-SkoO%f*2gJvHHN~8!omQ&x7=Q}G{3d5&29fRDPmefSDgoliHb+3v77|4T;yvv0bCvWHx7Q`=G$xyJ-g-Em|e_#qJX<0 zW08}V3qbpgF%#Mm-R5xYL6qm0=4YX^R1y&ek&Zn z7zid|mF*{_U+-W6ABJ|hGCe)LxwE6Gtv$_ehaj%H`0x{PQliovp|sW_8||X1{MFIZ zyPF7el}XqI(y0V&COb|L3pQgMJG}s-x!ExnKfkE~QN4OPIjMe(J*6EwiG!#DS=H3V{{DW}gA9Pizv0Mlqqj5FN(cm7g@GTE*ZycY9XF1QWqTq1 z^^xT#B9*OKAr?bEH~HCQet*)B@2TB zjz#CH7$2&VP+pM=fs9+ogd9ixIi!5JPuMFu3bP@8hh1SK?X||f*pkl;N9Nq^OOC=F zfAcFXRTle<-0(NI@8eeeDRs(hALd?howknwPFm5}b!z<%N!!+7cL-lj5jgZ`uB)=2 zI0T+#t&a4(Hew)gzzb#A4z|gY&&TTDN9H>tA@36&`zVFGzH!6ndsEmUjdmAT?+~_= z?f5Xa5f>qgdqsOPhcG5Fd0o{v=Ts9s-}XV`GI^0=finRH z`mfqyev5so**Gj2Yaj>vOPD`oD<|af1m!j$V)4NjWb*?CbYN&_{Bkbd6(Erkpb+UG zyo+e!?JWvml#lM8lQip&oN7BicTrSSmX@W@jCAy&9W#Zc8CU+(1#vnYejeE@uZz+1?Py3iqQuDHxoOjj+@LqwpuR zqEdQHf0+MH$8FDF_ZlsbIQw`jAzZ~8yYp-7Plvh5$5!i!72vkewGc_JAhK<7N`t@W zxvzZ5?4fIY75noWiWo!Vq0Kl?;S)9gfb>JV;a?I}G}tL;WM~1k-@5*cnEtvzxHa)5 zCU$qm{Dpv%ewarc7f`y=IkP;i470XMUtQfV2Ixm`AEe@fcjnUknA4F)`c(Cs385o2 zfCCR3A^G$;;Aa(4%OzOfaf7J_Gj3e9sTy_q%?$4#woBwp%iW&Q%Cc6cG;NZ(@RSA6 zk)uBT3Ys=1ZgGVZEU5h{P9@at?sjY2oW-v)(`l=%w67_Mjy9iKeEsR@?ah%QP|fk8 zcaUry+gHTlFVD)O8@I2H1EZ(z;%YtaoSR}~I) zNe3_k;((UaA90Hg(C}Hw{Hh#+z;#L?-n`80>==~n55h|@SI&ioC=Je76~_zl^y{;k zd$O8dQkRUGhOEAQuy)x(sh~YZvWDSy9?>Rvb$HHWp_22X{8o~OkD~TL`{Z6o8m8Pm z{>E2^41RNtq+BmMSxQ&~nGEVO-f6mH+rU{L?b!9vBDtWg)_y|(>?T0rO%Lt!DcW(< z0T+$$A@59?ezJ4Bf(Ov1HDIW`q`Y)PspbKFT5KXutUOvhpCLLnAqEj_?L zyI$xJieg}Kn>&1=o)uA;4$Vj=nUcsKAB6FLSb)CsgSstXt5c{2sp9ayF~B+!r2QrE zb$ixF{-Vk{E`cTSbm*0ui6hkLxzY@YbU5vu^Y0WpSY_z!Amjn8PEi|Cv^*uM59!gw zj4r^%z@2pEUr2E-%^jDYEU&#N$mYMJ(F?NrGbO4#i@VsTmeD^p`Vi1k_r&@9yiOr0 z?nmL;N7LsX0As9hybOt$7pN_D>%Ak+!H%&aD>{0vq9Ed2`0G}x2y+{`y0?h$?pn6;>7gDD~+I!B*Eq-SS(=N8a8va6W=jV<4 zw7%{LwT*t#RPCHjgMHa%;aFbM!OiIvBw_{av#QnKiYFKCef;U*Y@c*3M4c|?cyMyI z^q2hcaF~)8E5T~WXggydyYoV#?Rg2vv3zcH{_yjT|M1PYybons0GIyruy66*iNW@& zaasVV)=Nb{fHn<6E4f1TR=r@YwG?aZ1Skw#fQmI|X|G*g@(aSi?}dfv~d*>|{5 z$G+hnyHV-5+BS7igMk`?9MXC0=%!za^LU2UWo|fj5@Y-JqTiQY#P?oAk%95{nxFgZ zI;ku$xy7dTyjpU00N3O1^}~bP#o6FRh}n$m=eD-1I{~q)rBz|aL1hQ=J&GiI?*xA4 z%x>YN$CRGz@^@hxnTPlnAojnERztWa-JEpnb17&r~?E{EbR~A!E;|+g3 zKC4lbU7{0osQ%3I5KNZte_ZSFCMK0;|3kZzK1lbId;=w3-qH(RnSY z96nbEr98<5seg|gXTd8TYvIDl=Nk$B!!vU_vE%_*!Yxgao)pOhwhy{$6+DacH%rI$ zsSx@&cHHJ43Ob-J&=4#_%5-*Yk+6?T!k*slrfjS6sNH5_+t~R$*ELngjSRQK!FRWX z5xmTl>4#aV_#Bi z>3(NPv5Yz@va8N;N2^IB8hv2gnv`FsvmZ z2iJSFcT8qeCD~r+Hyd?VJ~U~MXu0qd?!m%8l+K;u1T3BkmrEQf(imTeuW$#%MdB+` zC!bLy-nDF*6OpOxsQUIznJ4;xxfj)w(8bIj5GiD6Q&wy>Qn9B?%0-FRf1`l-554 zx+vOY?Dc?M93fbLSE;bFR@vq-`P_1WDkvIoe4umLh#-n=pszo4e|3P6BI?QvdfHPH zy_(W|!^UQ|)ZqMh8UfnO@;zR!>Z39L*B$lcrg_z3x>&pPQ%$(~Im1%TsMxnmanEyj z(Ea1x>xT0|_Lp#2P2#K@p2DVP${yw4zy|)?QFZ)CWx2 z)RYuf3o}+EBtqF#GBUF8u&7Sn{0OIsb*pNhojxkbe{@+!ttr}z!X^}$N^p0yoN-{&f)G|SR*40{)!gAEDyAu?Ot@ZX9rB|=BR8eC$TU8;P#QwFg zy4~&B+rGO#;fRDf2ZQN0>yM5n1KT6hud}fFGH9<{0GzXS#(Q zdrLR{8IJ%4ebj-IgUP)A0;hw3@Y)sE?Oi$m{7xZzSq|+1vXR)!5bWdnl zC%Yrx^5kj2Bndh>Sm}J0oQaHX<@S@>3{ zY&?ftYsDZ(u9PTH^&mhlG?osQQB&mmWc*f5B(*r;F{D?UogN>$T+cG}0P$Lx!SnS= z{~Mqx{`ll5xk4pLfJooPZwWo?(-5(p`u_Y#^Buuy;0IHN&wf!E#MrrqSmJ*7mvvd= z5oGapy24-1!h(qrzZnP5{c!jU)G1Zz~8eiV2q z66nFvi9r~dm>54-&2*7mGgB6@4p~Zi_HBHF^ybkxvIuYX?H$rkk#R~>k5NGS%*YO3 z1U4fd^u+uR%tY|G&F>>L9A9#{q5=G|hNM1^L6A7)!^kX3eu0(x$Shsm5^7Ghy;5sI z8Qvt0>n#r`(2M4bQ~%WVfX5{dSy8Ez=iT8_RI`<1#Mt5_s#&upSoM{!yz0-62Im~2 zGiq@s&tn;JoCWu%1KUa3X0F%Sg&+ragGuwgvx=dkUAw=lV?62w(oTa~Utt$w#o4}D zE&Mw*N89N|z83H6zZh%L1uCKnGg5$YTsTh{O`}Z!#FZM57|aybA=Jbch`KMU#9>GQ zp~PoYFRrS@irkw-bD|hJr_J{!DX%5{N$U?~`TW&BBUfJ@**w&simP032aTTkdX_P& zcCrDxVctg15-V9{WY9hWk$q(ztPIWrC!N-`$MF0o_BR{eLyq=C8~tBa_S?25uZ1;8zw;zpfie)H<&)7z)np&$vAW`w}`Ow4?ki8 z^F8gRKEz~BNWR)fvdx`6={pOHQ;@uJvq$#-()rS#&JipPuc9J?_l8T+ROR zeY(2daXK)+a^!^42=WOEq|!WVu}+D#5+^(IYf+>B7Om9urZ>V)#fb z>!4V{+c84tpB~aI9Zu>6@rMoCWJzK8mAr^TDa?a>yuC3fN1c!x^sVOa#{aC6GD}Q1 z*O7bGP?{kQ7hj!#$&|*eLHUa-+Y|iHgp<4dTl33m&0I!cP9sBVRXG#~?ZnlCLP0jX z*F4SyQJLZsF}%Z%k5dOrUln;&hFc8Uh0AE+$E*u0-wXFHEO|=p%r4*(MZMkTq;YKJ zT)g&L!ez8sOf+2+6v9gpNd0H`46d^^<7g|@+v<=OQqUOm zDf@t4TBT#Cnv~H1%FZK`JO_oz$ zB&Efz3+d>dUgsefFoqXwIUm>_lHdTM~C>+7$OQk1r6mY&i{$41eG zE~nu!escF}?%7;Cuo|pxc>vfJl95X_rn16TTFiYq@*tCGol@HB&CNyJzqzXq7dnn> zL58#+v~RbsprC%oPSs9S*3p@H>~^?em+Yf=IjdA@kW$A z6yI5oy$B28SG;Mw1cQfZ2~9>6IWLab?yz?i46~I zrxg1W<=^-?wO$8{w#>mg5D4_^A>Le`V=Ml`Eok58+NcYQzpl;kPPIIv#+2xo#?i<< zTY-k!Sp3xvf5lx>_W!+!w=k|Z;7^oWZa3ns&WLr#6X{0UkJ{IkYpiZl^DkdH} zmsL5Jr;O7aOP3iBqDuF8e2%SCh+*LKC8?^8Au{wAU7vS#va_v@sLVQUo#FCwxbV9- zKMLM4*(AXe`OJJa?bwwCe!UMNNOdMSyD{!utV1};zshN%SvU*H@mTt-))K_0Txkz` zFj*vP6eU~dk!Q`obRAUnZ$H|+DQ-VEur57^E5N=e@#FvG`Lc^(tKV`T_;V|LK-R2a9An z1_Pp_bun=awy&5Eucmkty@^-#YO$sKc$rh*+xa1Z3_-+g4$B3xmH#Q0^xGY@Nl;M4 z_xj)T>|LikIh;I8>0DUFEyBBIuF-PC*AOscl{O7|<{_E|-#tg?rz*Z=cPVjoQiy)-zCL<>sBM_R zOOqtj!wRtQF8^uk7t7ICd_9`zv3l-T_Row#VT2yCuKAU#J!8Cd-fMcgEF{JBav>jZ z#0z&*y|GMiiwJ*+;lT_#t;Zi&O9=|y!VtQ{^F{%9U?&Sn6|u#u+LKFkwonzvM!1z( zlsjMa3rA3h8uRtcg-COK@T<`_%#1W2hQ5))^$}7hPcRz)CR%;Y9_~PR@E>&m6w*0} z+qjbp^6(C&xZKSQfYr3=By0i^iWr%Nohh;E$Zk^@uy+$b7dpJ-t3NvwpbvP1i8Q!T!_}RhDdmDmu?7 zr7owq&R zck)|~l194U-~P%*RdWz*ZEcQ#e)-D0#~no1#K!Kf2Q#|dnm$36$&XYZV!SF`q~T|JI$FaCWYMmLF}Q85`NJFGIVO1S9^!C??Fm55sQ z?H7M?lbI~I8j?b!#%6j_Fs{?LTYkJ)^B$R%_A$B;j2rl>Wk70xmU*cC3b}8h(gkJo zICJ0$e4BKw^wT=+iKzd&?0x8(ip7EAogCiaX+%_dus&U&sXl8>(GCAy z9IEV{?4Y9HO(=zmY)x^af_Bm7MS=RC4k!AwI12qW+Eu=#J&OL5jbgPU=_9Uylv>+w zAbY*K9$d|xM`THF1WQ9yH6vt7BL|p)M{T2Ud8-pC*QxKd*tF46gbE9)!*BoLHlvH+;*?Z7G}oBB}$t; zxsCioIE-sHwvu>2)B)*3qOV^>Avm8RS z>Ey~SO$+|yzte)hVIoI?7c$Z)%Zl)zi=+xHRMGFqxM@xnzArx;Ek?N(E*R?0E;X-v zi#)K6pCQYOM9+?Y7yO-{#ZrHl%jI{=PriMcynpfP_0t>qG&aE}`R`aE1Abz6B6S8? z0nw(n7yLd4!se_h9a^mU8uaYsgG7oaf&0rT8{ZxQR?M=Q@mOy1d{a!a1~ZjHbAmc` zINsX&Px_FR=CYwDn%a$ukgfKheQJMGxpZh{n2GzvZshf2&Q5oS&1FFEPedpx`z~6$ zI>OtCht>wB$)}aUq;Qqv6%Y5qU|y5WYj^g01K8sfAyW8`&Gk&rd`m@|+Rc%PV=0xz zOakei*Qs6g<|HofA;nKp%MYDz&t=ghg&6~5`JY`{Pt4?83C7 z;K(VJ+U@QfAAP+JrSO(PPCUDf9ent!rWNac?kh(WbJIg!o;$5S^B6Ux9ltewu6@MD z;HF1&ZE~R9NoO24X~HZ(WG*(4`uyaAbkwtvyp7$81xMrYK{Z1*3PEz%moW9n;&YMew?V%2^Ce;3d)eCX^{4FCFh zEY2oZSzHu5@+d(4cleevJO?#-Pr0HL-jD?KDKd+`hL8_v8&^M8L9*wsNq4IcZzTAN zRe{OdJUfuNlh+kCO0ONyY7rwgZzMSZ1v835X|u{p10BL7E((@70|lgCx^3x<5?XnF^H*c9 z+h!i-V@uQZIqK5wM@X=5ssR~6vLR{6QWNyC2UUeaqrI)u_Qh<4d|5P)icLh101vI6 z$a&hFKywA!5F4_$`dR=h<*^TjVfq^DxChJxtV0fhKqbfb?OE*Cdp;B^hC$W#=cAGl znV@@m!7)%=jjv<+-rISS>wbd6cz8V{!aR;F+>j5;*GqDcZ!-K2V4J&d{wGg#(?Yp; zfd-b`bS)4gK1fHRAlHSgh*|md{E;Ud)iC1gtXW(gfN{PAnU!UJ=;u3}o74fY4Nxw8 z9haP(B*o*r3Y&T4LA$zs;9a}p*<3%Lm7anicJh8Lz2?{e7I^QbJb`5C2fb?H)si5J z$QU&HQfRSW$<|5+Nk4r&40SnmakMg4M1~KmZ``e4>rGpht?N3 z)$2xJpRASWSjbQR${0z%*^D_`bqvr82laDc?Y%>n7^gQ7&uEdW#$Ep^t%jH*Lg(CP zt_F^d@hzD*&{mD9c@^!G*NLamd;nM4A8NX}r9N2P$#3p7|3vE&V27p^TD>oCf`=Np z<}oHI&+cFDP+G---&9q}4(=19y)fPh5WqgO)QxFtIGxGt?^C=Hfl)!8``pPji^kf}Ctpxr z8YAe3X-e1~StpJ^`fr~aH%p$sVxqM~YR!_IPhxdCEQ+t(q1UwO z9k{JOMqRi7J~0MO&#O_jVX$SZVQ zW@>k(y1%q+t*sz}cQ~^aaUjhws-W#COT_#!;uqv7hes!5fMTEeF>J0gJBx`xni!HL z)udmCfBtTY1!j@?u6$(;e^E>I>VUn-7e)v&Kt3mX3CNzeY_Jx8?dG{wDUcA7X$Qws z9$md!tDEtSQq+-MrcnL96qTYRJ;Ev7|3(0NJ#Bz~sig{UIG*0XxdU$MN+}4rnu{stYb%nD z1P9ivrtm96Hs^Y%as9I*T&R9-P--rIaO>N?1u2NR@er6l~-T2A-D;8$%@ z>pi3ibC>vc*}&w}-vljR+dg@IfIAp4P@q?1oi3>AS7ijT$>ya$I#`$O&p^fNiQx2i z#W=Y}XZZnCcO z?PVJPmK~1zwGBOZ4h<)Z9H_7F!0dceebk^^?Ww9?mZUL0xLkq{xc+(}8+jRTE&IRq z@KR9n{yW?BN81t#dlMt1Qfm`zQ7zI&O&nw1h@#AuD(|g=5*8LV7Y40v-wE26>4#$8 zlgbx94XqXx=Wb71OtnC$D#S!Te@@+`5)A432Fu)iV?}6OgH>ThYP98mI2rdIc*02z zZD|xmR#fnGNYTXtXSQaQ1G5gYxruk#^h2B3+9Qi>e0`zSU|uk*F}7XyS)tb5rW`Af z0!Mrm*EjbuHoKAS-5dxZqwE~>+`1idgIeBEb)Lq1H%*Zn*dWD7W-qxj06zRyf4CFAe1 z@k0&G69W$Vt3R*Z;6$814fsM)@NAp7tyf4?7cCVY*QRRU&TnewSj)gZ<|+HyB>(7s z1bcMD(!#OT(mmwDo#e)T07SaAg_&6^>_6LSb2gWF;(L1jV`4*ZKn-JyPK?YoTjZgj z)QEapO*(e9!-1q;EV`CTV#KqH)`EjGU0xEk5e||^$R0>X4UABD-5PuxC~H)0l1E5i z!E_`tRrXQkiro=^wL!2BDB?}!T{z0b=jy{|KrV{%2_8eB3%FqVyawQ;m>Tg`S|5=r zXgP#C_jUTVhjBW}c8Z8RgVr5k7}*jh5fWp2w|61lBb{Y$mh#b>F8ex{Vn<}>s*8nY zVl<20w9~DqR;p?&- zQT|ehYj~Qi7UGL5Pl2u4byK}|PDQ=^W@Je!s;socI5{eWh2r5@f`K9DKa^B#NVghq zhqN16xr1B?y&N+5o)7>LqUIRd$@rcIc@ESQY3SXI18=07gf}e+*%uYB*p-U(tD3x1 zgh9zm331Ffp}%-8#2{?%JrhigCg{(6{&3zT6WKLY*!URWL?M0L=jK~#AFVjlhWRw9 z!BEWOf{Uy^hc`ceh#a4Pqb*iqv8GwT`MQ8AbiAb6 zGRG{Br70Jg(nB^75JTH9&}FT@aE4^)5^Ml#q&>u{@J`X$D>zLy7{tV0$SzT359?if z3I~XN2uB=6kAn(c*r+>WvA^SSB>D&xZ#TA0@f^_a9{L;Z%@V_SQafzA(#8O736WAG z(h`Yzt~Lc<{i~}d`jp_5+s-C8`mUcc(K}o7A6j#PQQbl&&$?HDWXrP?&`{_h{X@RE z&a~6tf{?$rL%-{=zPMm#@9x00kvFl*?@;NG?j1&>juG1}LXKeZn<*w;`BPeP*4duZ zAG0gos^=oy{Bwe3Jh?=Asn!-b*o0*q0i%M|+-g@JMm&C=qxUKBvgrY&x?C~zNP=iG ztY_iY?YeGjs^#9}o9PO4K-}G7#&l(c8BTeB5Rq2xX77_!0;W4BqLFOR^Qv&l4qD4n z{CDxC@eoUp8Wtj4>}0>HewaYH5CxfYCT{KGZ7p8=9+qws6Exu+ z;!G{p(Xdrx)c%Ve-<|T%ZQh()_Ed@YpxR$~`o6E51R>kzWV)GZd~2nu@X7CCRyy1p zExrKp+kLA|z27ru07r%s@Jmy7cJgr)H-ziYJFBoXs3F93!Ng$_R9eFM$r&X*MxA0trqCnd-30W+ZTbsMqF_jIzM%GxYU(&Rs_*||kX zYdW(ZE*2K29+kqq<%CZ&HkUje^pKk`A6lRNg(t4PyTbgXdnnrjt7ji`CUkI({^Xnl zE2tT(&FW@+ba^KXJe7OgntFX2MK1#{+VVTAY0%uFqYMkBMFaq`G3CY&znm$gLt9v= zRgR#K;|+vwyEh%AT_33-qf4%kCOc`BSjI{Ca(g5&s%N{W4WJLj^#@%>13w zn&#Nu0BunKgVqGs#5Uz-daFTu09T{NCgtX1Fk!EU?_$jvoF=Y2OQIya6n}v$$JXfj ziek?QZ=i7FwX;OySH*>qsJk0cMw7w4%4^3;&sI=kPwq} z7i8GJ=&?gR(Q~YZ7>Uh4q+jZdjHPvT?PW)3O>cE46>$Z(p1*G%&YP7ND*c)M9^-h{^fvX3&m-vZYM~A8G1P~?MIGv zXp-XZ;hHLv`*SCgpMs=DYW0t};Ni8uX;(4mUen|!&EhPlgK-Our1ym5#ex-`BNi3x z>IoNmo!F_Tp4&PDbla1yCi`8Uu6#9>>i?&P(Vsh$`Wlw;L3-4|=-));6PRE>bXSJ} zAeZemw2Ut0Y(}tdvaMe6i<;nJkl$yLAYGCPQWG8=kli<92McKuUQx!mppjpBS)=~K01mCFM<*89&S2& zTnLf>AkG_ubGWr!%v2p;?;8S@V~ky$@dkcXa1p(>?>>j^s-apZN^&)Lf`LNvqg7Ce4kw>a%^Kz-9hpCG5jC1mU!6-PX z#uSn4K&)<|8_%o_G$6~iTIiC%YrBO3hOeL3L#b6Alqg-mc|C%VG zt%<#)RncRI=L!X_iA*QCVr-HIlaatDR`V2-@JG}6jQ9b?d8Z3JFlm7Wfy^ZcF3Af0buhAtn;D-6 zPfdNtl>vu^`j_!|vY0CY|H}Bhq4KQxv) zxrmHrlC3Rr85!YZjmJ;y_OrI^vbuS_PC;<%>MScqP&41&!Ke5Xt(_9_l?bcFgb(i( zA*xyWL-33Zw0@ui?fH8dv9b=3^v({&3b{4Vz>%dJj}C6Did!*4(kelZzAibn)6WeD zW~r!CI%XZmy(`WCF$^(S3zz1q$Bdku7+~~E06J4 zg0v%%ky|b8tqimV$J{##*`Y`BCu+@~z>diElsj)$esAhYDJ*8BDjrihNF$3)X2w3t z4ApJzwXDJ9Rd)RPv%B}6^cd#*aY8e6cxBjU8g#(Mo9E6d+@;a^L+4?m0U7&SpiM3! z0=%dY@O`c+bv)ndE-X|JiNgE_a~PXj_-3EUcJYfEc;}9uThwil=pLPfW*jYtG;Tv@ zI``+f?jbAramC!kIid#!b6(-miCC)%%_ixs>*}ZV&DuBgja+Kz6JOzOrDSC`8qnM~(BzNL}FYUvz(cvAGirP&(uj;nIJD!1p)fXuAK3>mrd zNkSR7K=`zF9^J&)rU6H*W61irFhr4tO=KCZ$7c*%V;}Mw*0`2+eGP>tmX@(IRU_4<8Pth7z($AN(3z&GtPkx!# zgcd`!nj{6`!5v)yQq@P1yJ=tAtiUH~0(o)n; zR<8O#9I@u}IYdyoyt553H)otRaK(m(V>7a_L|lx4vf;gB*QVdl>Z|1=6(kYXE={hr z#i@==5%-Nx0P0=?Jt<>GA@wC#6{q9TbsjNYGbpdAbL)D`%KGN(a1D~zZmZtnh)0fx zRuMeEeW<;Turn7_Zzr|&keU{P>D2eFS}lARCr~VarhMXY;ED#}FlPYFccjjwzk^8f zpmcbNr!1kn?jcQRr{l7?TRo)4%E0=+%(!jO_XpnB^Hz5ow6J&n{*tpszMQaYM_4bV zW6K1o3iajlr*_K3^bSQLXY~fU173`=ToXH#m6^;xQh{B&l$Gli1QCYG6sUHXLGr57 zg+2&%JL}VeYtzCeZ=uL6iDsn4CZV#1cjw(En~fttZxupjVa}kLsdUo*_t)EU>B*9I zP06|X^lw2ze~@x4K1EZBR!?6S7qij$?9yj>{licdKN0}YcyHntsHFGmJGS<~oAVYI zRj8+G!`*v*05~%ViyQ@!zFg+3Mrcwirgw9T#$Df%{$YzVY=~5t=|(`auO(U*d|K|w zELB6-HqYjun7qM3s$b;H)SU@AgN>^H>5z}uy-^5fVNu4hKm`^x5zAnyhlm0E;mDk5 z8ep0_Yxh#4YvaRlGr6z>6}wI;T|7J+T4|Z8g3B3wqc_HU?{7XBwc{g)JO_yqu%f*D z_^iT|=i@BE;WH33WwrN|JFwA@ThwAJhX~qxAH>W1yu@|&`z1Lpk`?ady~qp2r3m|^ z6^Q>G_n2PJH&uEp>S2+tF$t{M19og`_m7tvd@^AWv5wR>h7p@r5wBNK-;;PY(;#vUh z=#0S4`~vMxTyM*clYt>Swyt+4BMD67aLiO+&Xa(|L21p0IIH25PToE$=a~s~J1gbmS1}VCmGrI>wcXo6{~zjgHjZ2`~+*pPithU8!?p=tccT zn3B`CII*>x2@JIQCRB--)a(dg^&GDMHeG4?rGeDLP0`x65L!cNT!I}`DC|!`pCUpy zsJke-wxbOG4g#b#vSa-|zg^XWYNbU*kT%)B#dcxEOn>M`%Vr0mJs6_xXrvwv4#Uf% zmSqOa%*<4qLQ%Pz5BV&|vSPrCEth|lG6J6O0Hyl%u_Nii{GP{4k`8-o=Pve?Y&lWg zeLM_lejhBfSKr;X#v!n#?yL1|M2qhP7WAGHU@R3=5MkEvWdDx`tfBS0wc|dTsqW+C zEX{}8&xZVnEG;Lbcc_9;@jU!!ydT&S=rba zxVhtCw{b9&r*y&)<9Chb!p}22c#^2(dPQ%gqDch*I1*kmVK1eTp>vJx# z)fnuc(b=q6h|m7E|ILWDjKAbvIwsa%-}%2GNqm!#PtV_f+dM3e1j3doe*|&pJMmYC zHWX~!Yn&3p{fZ;@0-(YDK!>Yom*M(&S;^U%_oac-vGt0ir>6(7q2CYId#>8*}`m6${E@;u>m+-@eQL7G8C zn9i`L8&~-E=EJw}ET*$EywH|gFHEHQSB?zqpx#o)?x8wz$pQju)^2L=FC`l-;qsu{ zdFJc>^|>A>kIOG0;p1NxfQQ*U`}_2yi)!eApuUBX2pqhK)R%)DnCHkO(G%ODz-ki9 z%ljamrEpm`4IrX6_{K*kd92LCC;L-hGs1)FaDwSs-BI=04nw?jtEsFgXI22g2``T+ zHSu?~LkawOk$!1_!mpSW%#&&E;1>n{Y^@fn^DVmhWoVw9pn2tcFzuz9mPfZPGc9fkwo{Ui!4$G5I`#LUbDBao%E zna!3)%)rMGcxBDfb6{XI^;7JXfTcCa?h2wEiST?Cs)Kikz8M{AA^>&}`BbkB2XcR*FHlN&VDn^DULqTI6GXaJYjVB5TCmc-G=Nc>(-+aG@PT01#y!J>szXljIJ}tR zP4^32vMC5Y=xD`77(tyXTbXC>USXJRRq1pRY>mQLa7^!j{AMVA+5(7|pnjm0IZUvSi!!n?1;3XDfP>C`}&*`|^f!0Q() z%!V83UjsCt7YMZ5D>!%c%T9$5dBk{8#E0;}Zu7Q3XOI=7|BRdJcT(*q%BkujjJfm5 znEr=)eJlI}PTfcw@>D1YaqXv+P03SnTYP`>0f5Z;l*YiKs`2z=?abR!lah_P8F*?NJDAiSQ6i~wJ7HAFIP`4UB%HfgYTj@XB|Fa|_3N4*U{$<;T zfTZ<$U-$L}zMZEJkHD5K^RFw8D0ftQ)H(fY32-LrX94Oir;-xT&#n^&1Xv0Gvq}HvU^*?X*kzw-=Q}wfhKP#*#|I^{Z znC%o&3HG=KSkIBL=}m1Mk-n%L!3$F)blWK{x_Jpvs2oTwk1r+ilys4J9@i9WO)HCb zMF9U6=&e73F9FOvT^|rQURWvoGOBc26TsZ4sjsp_pr;wG{V4=frn4J$@FJGZatGG8V#7@S2O;Ry%K{hS3p9kh*~Z5WKKMK z7vkJFnJ9`$e_YWE6EimxwA}`p{en|LF+|N zvDZ9_3{yHNl@>WJdSfgv82ZR^c=4raGc25%H6No_fp>IpU~bm!$k@mR7(|sEv)39R zwWMM~NkU%|gSqzZBc{~L7#esY=ax28*?IX5gfpGMf1OG!7&>zc41pF*SBv}bxOd`{ z_jLo415F7A`H-VG%)*gA02tsSFJH{Wq>kY0@%0hwG7iA(b0=a`@&UPvMd}J|7I#w zzRt%_Mtswf@}IkbItB4pxWwRU;`5U5yvYh5Nov1b#8)1iBlYve9(2YaVUCQBv^si1 za;j4j829-~${jD2dTR$zLaBV==+Wk+w%g$16)$??ue#3E_4uMAwk*1)FW750&)RQU zK2STf3OOaH&oHe~VQIeq-(zH7x-&iztRhMo*)yQn5DG@<`Ug+oL1V=>W5J)zHLh1c zeHT1GrN^uFjwYj!rx(pc{bP~wSDd1JHa$fP zFN15>1}=yx!N6an$bIy|r0xIb595vvrZL;^r$V z)BNuA^v1+~Xn1M8Aus~-e>kG~GGA0cDK9q@F|u6%g~1W;(+ zTmWkWgv$`@A^y4lnO9}F%)Te@+o^jHH%O~u6Bj~+ubzpOi+|Bqgtkr;9cA@RsLs4G zc@zvJW@96MaU^fmUYPMYwHZI~M>kRM0FBs-B3mp<+kC}Y2{vaTu1LL6T{f-zHnQ_`YLH1&dvU&85N?F@^Ew?UzUl_qcrw+3z`?ycxPL2#8 z+RHysOeDZrfOH*Oj~_S@_2%OM(?XtOnY@jP+h<0j_cY?Jg(o)>u?J?9|BJ8p0LS`$ z|A+7UHnXK7*(6j(vUgU)DhKjwzwnM3Fd+bM-87^chRyV)>^CM#97Do9`wROdX(EW)F!IyQA zP0jl z!7lD@E!?dQIuvw)H3H&`-w?@G+Fq+#k=`dC9;O}npRH}f$y5f)zr!h#3ddIcFlD*dG3ap>1{aB{Q+8LfyrEIS_}9~U zCYvi$lIw%_6xgVleAkC6ZMCcZL~iPG)zzqw87r|+N=7DTFk^hj7GeyY+8P3M3nx72 z&5cRu<~EO3za!i~wl9LMG2x9PZ?y^nJ(kBaN{$EDeDqk>DtET%>aI5uc>U&$psjpO zh&9IGsl=z0Dm&HVW;YnkzMnj=SRmy$j!ik8ri=T^VPZPUYXihm7jE3R zF6Kf_kRds{PE7I6iP*cG+-pKQdg_T&e&br;PeyTl9SMBZFpV$^y^roV zQ~$5r(=Fp@V%fr2C4TlU4%G>$Mgc2fWqwHT!mH`&u;1c>{gwj-Thg{ zc=QLpu`&0zLs83_`V3JbxdBPW0nv39O(v3%t+|z8pcS)RoIQeEF^}K?z z@H?+z6^6nQxwC1yXG{;j6ZFEk)XK%LAFaOGn9GfPkV2!&27UE?Qrc^pnjMy2y1I;{ zw7j#^Q;N(U+$H4x=GHiNBc>C;*V>Y^_-ghU?%M=S?|cyk`p< z&EZdRMOs<_DiWJRkN8e6e8+cC;({v2pEdgE5o(@?g$t>5m$cf{lDd}|aKS$O} zGsb)D*{$!|PQ4acODi4fn%6tMcW%O#+g@J+uBQABJ-27%jD;(H7uG(SNqN5gB<2Xy zwMON-$c6Uz#a%&j&5yfvu!*EU$BFi5y>!MIBe^jeh2=VZ+88Q8xiZ$4Nd%}qc4^=R zkQC7llA5~E{dg277aPo;b+~Z(gR5hbDM_3OK|YCcbu@_q+E60S?}<(3dW%0UHJr$v z_&eYyqs-*NL96dAaP;U=U8#ym)4Wr{cp9Ce@k3W`;WXSeq!Pl^C)+(}lEW~_s8)ZgqY83J&9WndQ$;~B%B2#IDwsgfrpS7RS&z=>Sx25xnXsjfc%@mxTq} z>mnY{rH`JXP7zCPkTr~LNwR0O?%=R4PQ-Br9Dm2!xnV_$+9kCK=q3}FzkM4%)scm_ z2y^B%|9--;Ti0!A{=J08NkE9ty{F%c(3BH%YOf2@HC&wG<~tit?0IQA{YV?Oigx(0{p0@HajT7`g&Q7>VQfe0K;fdbBGBnS`{5@z|1P6M%yK48-PzZC& zJJY81<&-@Y8=JG3g{nPiU|8;;SNiQl{^6=pV&OoEfDZA|Pd|MpFa2`e4Vo}G&Y2dY zSuM(|B>La!nSsZRi&TC23te80@#(3seD{9TZIP9PSk)gtI>Pi8D|e#}bevke1TcZh z3a=ufUHdi|TR#b_)ZUzVCLL}do4bd?XwTcRc!NaD-qonj&dt6nmoN7e-c`S)&ga>a z8zk>zkC#=Ecc|gKYlQqpbJT}bDWl{oJ;Wv|*cZCA_hqWq`|Bnw;^P=4T#I^l ze|s%t@B}LEtwshXY4r{*H=V}})!|(qSDEbkYcCnn4_pd_yHAf+iy2&|+(%joux(HZ@(nJmkS-_i>4EV7)=4Z2M2shZm31iE@TC$8&!i`C;Ci+LZgEyky)? zIAY?7acLZ0z6D8~IhO9%wJ;78ui$l#ssH{kUmhk;Ar{o$e$CR#Dqh-0{8WXcxl@#!J9PW3Z)Z^h zaql^TaCGE}%Fp9(e>s(cj=Sc~n}pSctAQ$m)b*?VV%v`N1EF)i z17;L`FXb$FA`?2;-#FAuh4>p%tC0Hlx?KG#f1ho?=US-r_bI08s_ikp?X46B#NW?LC|6e@T?l96}O#p=>btn_$^^|FdQzCD>nbErA> z0m;7ridLKvGc!H?`P;WubtAf)MeYW7p1e zX@A3pcD?dH*}VshDwWU64n-DiD+=++)a#R0&-Yp{>UEqvTD{Zp&Spl;#T4h?o={nr zFA(*!)Yv%k<1L*J_@5JT4SAR@x*;yDcle2D3!tGhdyGDrw+@*+S$Oz)q7r|r^rPWc zz1m8~6CQqFI;8&S9co1g;wDS6>M4dQoG8OH)_so_=`4=X1JL#BCq)}+zZSbw<>C#V zBsLPhiX!DY=5;3wA$h{%pGG8fG}q5FlNC1pzJsDHo0*blvenFlYm$7%cl7l1+$!%+ z2CB>GD9x8tgnyjo876m;qTj7f!DVvA;aS86TQ=7GH_fr-I=i=T-fR$?NR&TMe^N#! zrMC702`MQz7guV2e!fI6SNWID+ouGF3-wbAUgIQ=425d8EVTW-VjlAGz{YV92V6Xn zcNm=*^%+OX!HihFhh5L13tAkcK`x%Om${``5cP@DJ3%vdn?msgr+q#5#9woDgR&p= z)v4CE@%HJME4mc^$h1O=XAr#ae8gHP)7n%>6UH5;i^1XRhSV_}kYOy*dYIvIF3E6v z1)hC)Bi%X1I`|?&{2_Fqb5_2iz~=>@pY1Dn(qH@3R>tkZhq$j_AvEy@(k8%pPen-W;F3Re8>^HmGx&L$%av{{5+u zxEpV7It)KJb(rKn*V(gU$}*c*nTuT)9VA0i-w_|Tz2wE?z=tqc(^(eH>TA6c(C~=>K(q2n%vy9%(+_g4>`an<*T!jTVj(+iNTm*P~E>pDS$2j~qR^ zG@fAR*mSlu-?)*&7tjU{Qf)2u4`>AS1ovB@Sx0FN`279V@6gC7HLxxxM{Ro>Yt3@t z_;zH$eg3$mPrlyWSNt-%*5y}jrQ%nSstr}&^*ZJfujbxjE3whX@>)gaS1tR(j|&px z1j&{DJ5KTYt9V4*ZRs4t%pstZ|Cu!bJaVGyiju2 z7^cT@ZXnsYj$9<)peE2YGXA{9wXV5F1}8G;GUPC#gi?smiRcSzL=<7+`Mb;IUX4M1 z$B+ZpC3lJ#L#lHfcm}xBXa0@5#{YSEPFY#p@bIu&h3nYYXLP}GmmbJWEkXKhW39AG z6|5uq9X`E}aR6Ply7=eQ0fwC594fjYyG=5P!FSrsHH57Ygn`Xqc4AZ24Z<&1m{)7a zpPso>60WH(^{l^N2QA%dw|*;};pZf72uQp2I}qK1HZLLr-hyv#<&96s?1}yT<))uk z>Xv`0jF%vQ%dGbZzqZwN*#j)Nd5@Q9-&-ATrFnpFYHF$#^J(-;)D{PZ@Sa?<_n%9) zRXeUm1#~p0)J8XF@>bVD4<-QO8S$J2_d)*$jX^h8Zp5Q3D67h>+Wt+s{ z5%tpp$S(s<*?XblueQyb++4GoKmzX}QvJ#4DG5{99UoV_?rcffHiRGlxYlb`@jX55 z)2gInd+sxp8<>#veyOWfzh`sm@C;FUps+(Xxx>R4e zh{1pL`gQv2*RQkG_%^v4odll!e2wcN{^z0eojr)xX{**18=P{4BwS|)ORILy-c543 z32=;%uFg68rX|JUrq+$an-)X>psK6*>12KG}s;6E(qyqH!dd|r|6 zkrIK;KPK!H;H;*vU&~)G8a;+I`+HaXzLh*)^IQzYzagkQZ_>+lyWB3eJW5VZp0g%& z{(QdWkJoy-ClyvG54E1`w!Mmd3;5{YtMh?(*@fL=I#hcfAD8n++@{YA{u7$$(CAtw z(z)x*J?%J$(N1Lpq<27?GQ)33uY8wBttqQj^ygW>0M00%;`D_>;gaoOWI%HJERX-a zFC+#ToB21;4l{3`!ju6Bh>%+A5&p~U(s}i*?uU}XELyzBGahsR7?w`^pZ#a`l@EM8 zSTj1&{+fJ%{SKTA@>{S0kLuQCqKdujl0eGyedwt`L_M8_a{oca{c@IDR&?zdA z&mkF`YC)r-M?1}jCE__uaJsWG2Vrc5D798R_np=5<$kAD0k1Xd@ox!@tRW1zYGr1h z`Y^uAcO9FqYX@}oQYwaeSw22YEbdL1;B-r=+k7)3jnx89O(&?U1PY*8bPx@66p zyh`wkCYDM+}N3>l@mV?5EP4j2WQ_Kat;)_vod3AV%V zw|AkSYHw#@qklqL`8>}|4TawG{2%E!Q4@Lo(uL>yF#4vr54nM|4=jx7L`zb|s%v_z zM{k|1X$v+~>1WK_{rt*`V8t;^aTgq~bjo@u+AFv56L|ckTJtazU+MSxUB3=1tOl7a z@T3Wxh8y8 zi{)R9sz<}i;4<~G)}JHek<(21e5!Er7`*5qVf~pb8eXN(ff{NT#y}wxIVzvxA6*_SyIR**;iwZKKy(zV)XfS2=SiT z^pz|X=lML6*&d=)iQ^AIt)@_SDvrYs=FMMBP7LSXGt~}y&f`yWh)nZE?LVB)?9wFU z4{7W(+C`y&lT&~b6fpgI1PKP9TkbbxMNg%8w=>$YZ*nVtz<>6v4bL23^|~maw#YmC zp-N17F|kQw1mhX7+MmK`jh}O(#;zcE#dc(=PgHKr&$N^t-nrQC5~@|xY0W1-Z-9T6 z_`h@MB8K5Sd??v>(?WXdXX`oNZFguVD)VPG&o61NuXMS`IC2RHfJAf0Zm!B+ ziZY|_Oz#86)ATZ`^Uvm+uA^kuWaQi2WP{FESKX5v6=`+r`|PT|0VDTwIu1F6z`(%V z%4d^Vl9IKqP6Yh^)Fl2VHLKB@?OX*viZ(U@t&S{Lr>mX1oE#R6y{^ycHp;0?ZiDvI z{;JP(aB2rAZTA(xhLo-TiC1}fcEvsel|I*R-Ev!9Nl$Sq4!N)R*__1x9}IAV6$fX) zsxG}@@@7t5YV`>GKSMC6oA1G)aSOg6`cC}(l?HE|?!3W1?@0;%K&Qm|cviBf<(s*z zL`M?n4mShLn+)wTLtwCC{uF(6P#E?3e`&u)u&BlbbP*#(y~!6jfUN`9p(r!qPGKnF z|7`oxHS>R#X#zfnA|GVuihFkflAiNgo6SwuTX6!jDsp>v=oaR5w9S?MB-UmDul~!` zodv%XV6~Tk&0mgh^(OR>)$@EX))c#3OUmaAJddA~kix79Mn%*hkow6#XNK@HGA8XA zSGWNnW@jZ2qi#}~nJR|R`z+CY_`$C>r8aeo9PIN6_)T8|`-}f(^zEIPKnZAF=&`-j zxUpDA=>et{An3qp3q04&ZXVv- z?}Ba@no*Mx#-B4KL2nyb?7{C?9FiU0%xw_J$rFv2`Rkuayi;zPOwqcmRpl%7!F8_o zN-loe=*uXz>4?(LRFRGE2LnmtB;0r@rB;Ao%$;#;5u4z59KHD4ds!99q{d?PBW(Km zUAlEKK&LstzuH4*PaP@_ffZy)6t=+Og^mi0i|J;pyqE<$?fz96M zm^R-7t|eI4C8 zbBAr7Ed`2~jDyG2ArMtF!Y!|k*#mkqgrpm}QG)qI>!KM$CY z3q@H?*v0MTRw4s{AlWvTxr@3Od2rmkyqRTXWpBP=kxmIVv5Y}?u5NU6G$!AD$p}ze zoV1VUbe!Mz2=np0J0INzoF-c4VuZH0CbH`zEkvZf%}qJLXv2iQY! zY2N6Y5tfDix6lk5VkF!mgpBrIxw8zOb0UI8f2+3}9h^4vXhfGtEPNDPeg1&v)SubH zR!4+DfObqQFmC*lFtDwZ=`XgwN1q3sZOX$4%MzS9*gABWXj?H4{Zre3?8a({m|p_n z46V75Pe3Uf0f%7)>Aj6sH)V;f3bXF%qY>pi#Evp7A#l_;8XW#VU_ zmTG6X6YzxN5Ta+MH=8b3F)+)5O4g40M@ z?&;a4{$4wZX7P=WOKlA?*L5y7r+vW-9z<(s0jKFdI@cIHE-x=f23S*jCY;+K{4uaH zFsOP=+ZaaFVYvSKQQPu~6u)GPj&j$e_{kKVIYT14 zV4^CQlNL1e^;<#5+dSF!Vq>G#ujM|iUJs+qksXy<9W4Y)FTCD(qr4a_-@DC~`TGPU_L zuN93L1O-wxhq(Gu?2{LM&O8|3-Q^VZoNTY(9uqEiz3MT87OM4Xx!BnN!{b!VQzJJK z3pOn4!h`wk+Glf{IjpAjiYnGv67BGn5*F+C; zx%HU#F-)1+H+r*g&wp5MHOC8rhf+oUKRzgy#iXYv=6;04EB^;1K?k}Myo<0!_~}f* z^5m2(^c3JVO?TZkQ;?zR=Dm74)YRYga2zYm1&@FGkOhW<4t#09BPk?uvu$AWde7V$ z7zVC(VSoIdU{4(@Whlw|{AFzig!cg|WBV9ydCK<>GgAGv%r>n8^ z+v-EPA->$MAe$I5%c1$c$UiYQ_gOW5l0S^UEq8WIO20 z#gAh4;KVz0-M(wsCk(?F=#^S?O4-uMqUYR9DVs1l!O7Zpp@GW@6{zy-G|XeNT-F3;F%n|T0qyo zuV5f*(%^80I61nz``bR}N96K)CiB&+P${o9Ouqfl1xriI^5U!MevXon45x#XfIcfZ zh&{*@l1Ti4YXTF50fPwD@+Us*f3TR-vTrg7FEfCe%%5?7#%%w4?}-cHOS;YLv`8#S zA^~pK^O@Wa5%!{9R0!pK=#*`fao4`r9u#GTIZbn26n8T}FJa$ZQ%qmSZ2wyDZA9=i z7^)5+gnz16E!Wb)bc~a=V~tc6$H_w#vro4gVc^3IfE51rJ5gc~C4oYCs2Z5*3VyJA za!5?;>z`8rwxNdO1gvqS!I1Udj}M7l-V=`kvOY;g>}>TyVUOl711^&p)298;RPb}- zsEIg+#1z6=GSlDVL|F(}kfoC4P-GeQ=a7ti#fa<1cGMI17+l)NkA&&Gv;kZhFNsZv z?Ta~|CgPOhRsWMZ2~b_44(;K~5hB^fJyyU88eH5D%mw^iJgK`OwU7XEeYm25PS~0b zy#%txJ6?b1O+l=IpkpJLK`wS7qSWK(Y9jo9X8Xw?_?{l=0%85$_VWHE4Jh>jpe7?( zBBHL`Wv0AKyp2z^Oe-!Z2jfm(ca!St!oM|%f^hv#yS7_5>`59o$avNYlSMyyi-|co zh=3CIO&>0m?ju9%No)N4V!{q^Q2z`@HT>eUYg`%HHZ=Ft`&}MrvqnSgc%M2V@a+D* zD0HvHeU4UjJtrVNMn$%%8E{@$*bx9C%_Al3xm?OwTNx-4cZYQ8?e~r+17ulVtiQZe z!oRsSu$K&okAKx0y0)S)3{cl&$R8o|j5s$YtG}{i7LgaLl_V%K&mMRS+3qQfJ7^kA zB&$Frafi`qV=UHfZDsCZM0)S2FknEIYYCUNgWx#}r!BU<@)_Hhsd!>v&5JSX^*y%Ma0S3K`$|92a zj)h&-)lG6ZG0QM#WOVpk4shU{_-z0CoTM**;e3r2b*Ql)ey|8}%HrOR-ySn~Cmjf% zF>r|sqEy4X!$D93$CjR+{#~w(H_(4sp3EU6jV=Y`_Z}0T(L4xAtc-v?@~(*_)fuK0lL<3)yAB`VDs z69RjMeG)~WdNqNm`h;znVb#&HC{ESsl?_yXQTexGfjaCHG2uO^S9yvQGz^7K6KVhr z->vOpp>6y1AIlole{~)PV#&GzPW&@|0lqYtu&^+|m-7Y7c{=Z(*4EZu_fG)uwFiOo zxrp2Uuw;QSnL={cD1P9iJC6O-@!hww`XX1*q0#+rhci&N{{1l?4oiW@vYAe|DG;$3 z;MDIYCNk^-X^+MMyqDI6G^#LKzVX}-^TQ_w)|I9iP+|?G@ZL{lCTNw}v!Z6@D7bBv z-m+%)xv>-VMvBc9bC_O`>wxdQR|8krK(uo@5}r1_0d5fM4&n<@$oJ*jBy25IrOf12 zG35wBpg08a0{4EFATM6jfeoH`rd!`nN(K<$aS7KmRU6;zOi1F++k(wD*M6mdGks1K zy5>^24+j)4XSF_J6MqST#rC#0ECwVKXJ*D39zV<5VLqX^bK*Wt*4*Eove?x0f&iKj zbx!>c3Jnv6YEsmW%Cmoq_jw;7Dw(PecdD{+$9B~FoeIdKSm;f;!VR?k*+MKZMyiKe zSxxZsr5;i9YskgplwdaL$Ut%@d{QSQ^yo^K{~>Jyf|`F2Efq@sdPgl)>nQ@e;sQYK zaqYkT`UIq+oVTplGVkM}Eo3zgc3q8utQsD>XYv~0C z(j_Cipq-|I$Ifx38hMs`_wi+)+<=irD}KkTyY>$mK(1BsCPelo+Pg>iS^M<&x=H?< zByt$(+r!E7^<;*rJMsE~|AC3a*YMfiIZDQc9<4tQzR`#DGKGr{%EOi?^;_yTEbyiG3TTMNW2J-d%`^FyZtH;`KpQCR`* zk?mfV5IwQgeZ$k&MR}0tAPfL|kFpA2ny&Q$qVRxh8=Z))PFCxi;s%FAwF+UTNViQN zMO1@$TyoBcrvtdo+n}06H%-wk0?Jghu;BIsNUYhnyFDQzXxlFefqs1Nv9M2NaCHe6 zH#aNPjMN@FmG8arr*rq@l^DpsL$!@D2<@O`NzZS`1ui*4qK7YEz8C_N)(_M|PA|V< zEj}_-4&Yy+Vq+U`RsK1OK_6C=TvC7q0Ui^X*v=n6GW1HVx_Miq{_4Pwkskm)XyJif z+haDYhKYSqSb!WcjiC7j7G<>G)5*21rbpC5Y#$w>%@KNZNMvRiufifnqW?F@*MJR* ze3>k>y;!H?G4||uW508Us^rc}hvZt1@kfx+AVamWJW&W&T!fEQf?aTgJbymiFJ%UW zV~<3Bf3DhH<=b7@+l@r&7Qm*>(qV!&>$TtI4G>zQeME(%$hvJEK(%7eOI&wce4kTaT`S$>Q`pmc&jY7e;od`=o(3{uvrmbKQqQ1}ra@sZ_0|F#7&_pc%5PPy20@vZ-|O(~HX+fA%WttWsvDzKeDBi=|vlHD(?G zPK_I(_XJ@Z+#rm35Ev5^aQ_&X$)##M%KdAz01;ysXY}`;1FO0W1(yyZk3=$CT!0~S zgvv8K4Y-9so>HoQ!S}C(G*ESzMPN$>fTy}?BRW^qQ8pBO;#zAJcz1^{Cu3heRLoRM z`pW0KM5+dyB$N9f7I6uX_H0C5_=8qRahwZwf%ag@ z%C~PHM>?(;Q^;M+cJ3lo4PclEKRg8}YJO6)Bi_;?tajtWnh!MF{W^ZWez6!kNLZ=uez0JJzV{S=FOdfEfXbQSPN_GP*uY+jdCisk>eb*#q|7)} zaoLti6`FlB`u1E1HuT9E^nUn_4q639ik8Igzsg;%-@M5*cvP^IzK#5liGr*M2t}aJV5I#*vXd)NsmxU|eeEZHBH<0ZD?Y{&AOn^KSb&e2B z+&J7sU^E>E3}_G{EfV3XI|Sl@>DWRyYe+5fX%(eA-<|$UfcfA1~0Lz-qlWg73huUBIwJbB0;=N~j-^a1$De-9od)WLx2lpQ6v z!R&G{Pzb_CM7sImCHDr0H#c*J>uJ&Plfw)(<-wu3~gKqz?`W*yEh=;HR4W%laOoq#AFh2;F_(#qAGP63$p zM2Cjsh)y_q`sN}$ISz5CXxn5PBizs-?t>d&G%DD)~59}(6n z)24Z6LnbfJRh5^(4(=i0Sxn3yIQ8w{zd!En>goB6QmJrW#eMX0gd#?qm1z|D=ohi} zJDaQ9-F`c?XaY6+K$Hjx0EGqz)qm8vg`Y4Iw!sC4*>@}~EZlsK`+WVu8$&cCOJ$mX z05Q0t3(kdbl3}@@3mC0|&LQ4mq(Q)Gyt%VP>r4aWE|f1_I+UgnN~0zk0BN19HNM;L z@H37etz6;VR!%yyKafk%)YPm)9N&3*Q-lTJI};tha-(FgdIgX*J7?i}tRf<@0QVdr zOHpXmoqKb_7f8G~xXlK#GayNbaGB{^ofWxDJS~D<1m2hPa<;1-GZdXSSe4lHHK2up ztXnl0n=vN4k^j3UfyuA+_n>~|BF~QUx^KD= zfJ93Exj4O1M=8?`YW{eKW)K0^cc{yJGmeyM_^?pf6wR#}C*vm#SDZA7&Z9vfasdWw z3fc-3YK#1KzlQ`xD0c~63m&1#9T9q<5V+v8;Dwm3Z7@luP@sQ1BpH3q2_zeTU<(`E zK8D2gi`_iE-F7ja$k(oU?bN)y6m>1K)NY^!GGJdpxD$J|ABz%5uJirz1vyh2pP#Tp z{sR^fXkY{WvVlC)REMIFG4t9Q7A1Z#1#nU6^>n6r`d>@ks?y}U19gk@c7|Q1i=&G9 zLt_z1BX{~FB#oS4n)ii679E_J-|i#i2sp-^xs8(r$v=`mLJEuv^c%-80EF^TJP7$L zDtJ@lX&ofR%1ZGS$ADc%cnV1-yvGGou!C^u3|A(b7gRkTC!Du9Tm=OVqSLQlz#XC| zPn|kdyg($gj)g?s`(b8(_=y=OE+V+(^LJ3!pzbpfY zGoXuSjEB6&Sl_^|@B;;0-&)vl5Dhm2x36MoXgD2*P|yo2&!yo{Kvq02)Y`cQVISwC+kl9`D z6z(e#gWGOye{i*Fcn@T9l;`$TRtns-Bnm&(?1P+v7;yE1dWA-xNRWc(x8I%*9OOkw zN`F)f@3Xnm=>YP%i&9KNmPb&uG2LGLkWI7dkUxC8AXA4})Y;z^62*Dhf9D}T zJsu%3KZqPHXu8Z+r+;h%1V@?gD~wwydmAapZ6Q1j=tvBe3Va0iGRKo91lQM3s*-oB+nD6oLv5^x$00g{>yigGUR&LFGW)~aUm?1&3&;DCBoo}7xV^C~xTcyc z84tQVXa`aQ)&1DL@(Qp#cf;d~&s(%}SofK2{29yED+dZtdUxGeO?--@I;GKV;dccH zSERDpzQV4}BC5RLzyiKb2PiS@w;SgHF6ep96}v{Fq-`1eEzdT^i&ZNNs$=ydA2ev$ z)n|c0Ri9H86iT#uZq`s~e*SBB<(d#Ajg=lgd#Ip{W-}Nfc4Zoh z`}^)VI23N*1p+5>9gQ5dSMfz>Cqii0!NbHo%#-&m}o8fA%9Eq#SycoYP?+-|h-tDl?fw%vg z`6BlRg2T*?Kshq$YZ>&@XkaE93aqqw38e_~j~+dOj5SK3Wh+TxTwGir1sV)Hvh>&Q zy5#oXDc$=iF+5vhEoVMI61u1I)rR?XKEF7CXu$gppKC;tAsCtJjT=Xi4Z)IKBX}l6BSQeh?l+m9!j{vK<8WpPCpyPRdI-4=`rKdBOC($I#L9lT?VL zpe)NP(DRLcDo5Ola&w|s6rhI{7r}b$Q?|#fEiO8N0W8=)e+^rG5oJVLRX{&Yjad7C zIRm(do5C=8O+(F*LRMn1^)eqgy-?@?JxDcfN!ih+kS-U^h`Vw?tfZk%oa2_XeVPhv zz*%Gvq07DL4x=YPWr{%@zC0nm(?2Z5hJL!FkZ8aX&dC2C6~F=g8EZc(1j@3g$f8FY zY23*-z+UE#zSdLn4fL9b3xgb-3S&o+KDQz`%<0bTGg|qnKl**I#GH}iRs?)$*#}pO zia|sxHuW+Ji2SdjoI4eTzc^LmzF!$2c%lYF%pB%TyGX@O7d^8F`}VQKa8ycVQV88CDsADy$27Kos%;bXB;tv0@Oaq1xOW$4h7NB$@ogb z63IZ>U~A7FO20yp#7o<$g+h>)p7q=L3lw28l#qevNG#a-CNeMzFlrnU?h|fRTe@9~r#AUEI_T3G zbjXej`4a>%@Q)7QfWW#+u7=kr>7Wv#FXFbM$+Qr3`!^8x5OHJU zL>-J8*1!qv4IvHQ+rpM%!23i{m2xelmwht^AHFZF@sKh}f&2ldDSnCjN19HLprCVar)qCs zUx-I3DJv%@_r{4U!yN?F?}3sMgD2m9XL4!52b+H7C6PT>yZ_9SzU$aC2qXkEG`%YW znd}BczV*n$V^C@m1Kc$vE#V}n4MJI%8K`P)lEEFp-RF^pbo-7NPFPMZ?U9|xcHL}t z=3%JXg~O5s*Oq_$7;yDs!Jp#2ktn|%f}>{)pt_UaaFd!pbFQif43_u*T2sJ4Ax?hX z{~6G8_>%Y*>c(`(o}`{UV8G=c!vtUSV9I1Yyavh6-fv&{(*8m zy^%X(9k{06?r&6QQAgT853d}Tb_@sYv$><*PvOUX>=%q3QTm9=WI`bB=C^G_EhOFyd*Ub$`n-K41U{7iN2dtpku7s>8lbjswW2GNC~_y;++M5 zm*(b1K>P_!n{>d4!}U}j*4tw%>x;YfnqEXoKNp_|iJBP<{^REK8&n0V;0FsdRkX+oC<+D(M z=?8Vn%{<+5XYNKOFYDuh$sPKD;TZFZhZ;{@b#k0Kvm)nBvzkcJ!lUNa1&rTi@ z`Hc{MSBlXie_gB)Dg%Fs)IFdOI!v-r$mPDe`Zhu6L*2wfCO-z_`HI-DSt*%=+si*) z>&QDRmdrw092P&E=4T@kPU;RMAYF&FxH8v~+Ks)w4}Vi%wQP|Ow!S0f6_L|8_R62? zDi@2K9FATtBk;v}=k)BGXI~YV5whb8u<{rvzCV6cF`A1o$>MvD(klxZ`iBogMX1tF zDxO(7{E)4l6kkQ7XL+m6(C?=|;YWLezZ=bo$6LHwDksEXf{|o12^a-quz# zR2PCIcYoL8A=at;^5qbcyZS4$`zIwO0f@Vq1Cynok|0bDZ2CIPr+`)08J#L$Mrg-{ z@dx+@h=&FMC-I>}HNPvomVg{d%gv<-4vr*bgM79VJ`oYboF_E6ju4ZQ*1zTN1{ ztUTdNV4$Hv1(fjhWeN(4SJ~M$Fpv*N{l~}0^NWgR3sOMY$j-$@4CNk#7!D2&IOP}# zw|NCKv+=OLfB@OojSKKro)jFLn{;=4(-xR#%V)P1S({_d)Z`P8ZaQz2TJ`xDnwy8V zy->!(NN-NEmwotP45D9X^uP_|c{qCh*|X%fwzmA|&nuXia4<=_r*?%v*}Es<1N^Vj zuqFwIh7&taj&Iq6%M^KR3qM$mlv>ws*fXZ296=C@M#* z4!pxBD0sd;2NZ$w_3KAIR#Xg)jolv|HGyg~Du|PPGs97(-t&Zn8=AVhzXVrLJxsgl zzj4JVi-nEt$rqDz(B1==ot>=(MJWxD%#qdAvg=!0b?xnkSy@?qrqyA(-~_KjJdVOD zWMq4aETVeF2?+@y5x*M%TdlgOi4=&k8gNDhFrJCByPYTS#<>SGGdcS~#ra@HR8;g; z@=Arn2;uh5&Jt)U4fb|-EJecBIM~_oPKelECs*z3?PcTPxjaX`y1wo{IyROD$<|x( z8%L!bbz1O&g5wbeF0NXh9Jxw0^AJipFd2PCdguJVzzk{p)e?(O0qMzlGaw;I~(sT3Wu|^ttMG2J;{^)bkSClj^TuNsb*m=Dxm| z*5fcK;Oyce_UEsl7UnQD_3D%BJf;D1_vo2%tY}ux?f+6}5gDm0n&q=~UYHcQ?kk*k zw6zt~E+{A{RQz!H-8CMoScvf^1kR8U)6>%vniz!UZW_4Ddk-Ew=n+t;!7Uz-i;u@* zpep)A&JNx*C0K_1f&w{E#B}-IHTD~Hn3s|4+PT;G-jA$dHH%#57z{QwvsLlQS`S*>m;08sxK}7Ms|~$!T(CrtaG}atNu78r!+R*@ixPbiblP zYGrj5wTXcT$i1mrUiA?3_`?x+@1CKJ4LOjx0KSUH0$Esic`4u!eDCg7mX*cqf+2fI z6XSb~v^r}M(yuH$JS0m?OI&<>As;?SfGuw8>EUuc{|FLmL5qv_iBew2;LO0vvqGLZ zprk~&;DyCofUNr-R>U?D2HFA*VFZBDnw*}7P^q#Sk`~O?Ki?665|2jWxe_!!K`shR zfg03}u%A3h0OsYQx;m{yZ)$f}7onS*n~90ZN|~gP&{3$vlQlErgsMs+d3kw!Lc(Fl zy-ZHL>^$L3-mJN}wiX;4OAEB}A&dskGuRF_fPf#x#nC;5uoq}pk3Z?BKY5HK<_(ztdlaCq3L;Dvb+U>W%|4Fhm-uS-CD z!??M*iE`f@M(4gkUFPG2gs{htsW6dBdv9}c3LxHBPzJ{c1~g5BE8lO=7m^|B^+laD z5ty|$@cQ;cwFLP1_^*1Mot>$usQd-*wuHv1EDMQ<;9*bnsMxP=w9K3yeu4-w8HpTMcVR%lTc9`zu2Kb~oYVv#zz&7|D zjjcUHBO{!hon7(?BChxzEMWq;h-0uj06)jiDpY+RG)S!j58J+SnH)6+bz z43C^9zq5im>_t)0^;s_Z8K@cVfs*L-^z?j??ncMN7=bYAdq;=7x%sP}rSnQEDrDN) z+JgYWz>xvUvFstgV%~ImVx<^^tCqxdEJ^dl%f@MFDf!!(d@%6Co)C=K~=S z$M-t3qV!j?uh({T(7+MLU??dm0V%Tz3PuqOIytW|8hS(496(q=SQsgA(^SWgAF{Ht zV!E5oJalqUnjX}0FRyXi{wmMt@}22AtEH{|F#2*~4mc~MoweUycYuKC8hpnDxPJiJ z^|11+QD0c1zCeeSAYg%HIiu1F3pHm$>1)86AvxEN-o&J&C7@P9qb~~P=vB}Q2nfW9 z*fI6@_oF6Uh_1eP`SM|S%^C5%rG8QOe9SDnl#~=ynPK53sMo?7*B(H*{rdVkT43Tp ze<1T%L_}zzDC}NEMMck(^X=dQmmq6<0vg)9{sM1~qDe(Xf|u8_d#HtKVMWR-8YV%D zonKf;!~Mjp+;30X*|}5Q28{OQjB76ydTW0FW{Qc4v7Bg#i8+=i;TAE`fPEP2pK<|w z`vrOVp{c0{fRot(kJ;GRXnk}q=xIBD85RLpokgInk2W+kyxzK~qN0+Tm&fNQ{>{+Z zx__?nG90eBgoI_^rin=qe+R(79j2jyz{ze9h->IcLJ5GF9jw4%28M7b*Qx31I>yV( zTjsvRR$}|>A&5&t8Ew8>+1M!B*yLF5!hU@9>Xmy|%W7 z3>63xr!N`O8{m8LOifJ%=H%q0W@Vj%PAM7zPxXoH{vh@)!9bhYhvmk~c-F)0M2G;H#62YWZROrr{-}}8Z(&)9F z!az^YLmbEgfdH$p@J%=lwU1flg8=W7LIP+wIJ0rs3%NG%QVUq*Z2#Y03pvEli%t3a zzWD$5pFIO03j^}S`Up9Nm&g(9yv@(&zsPZz#=a%@jRqo=7KD723_!@;}i zd%c$F_-CYk?TaoRQ7_FZA2!}7Rl@ugY5 zRKLYRET$T87;;QPq||Nd1sINWy+g#r{uvo30fBnzR6?2q)wo#NK$4VB$THee`pg+J z@D8v6f-a=_XJ>N@Tle@!L{LB_6up_58Aw<;;5)XWzjbyVLE9`!hnEO*1~Q`%v&egS zN%$+@j}HkU^4;4Sz{5b;ok=eMKIc9-vo~)}Lq4IiVN|lP07ir z&@#vwlE@f;-4Cucu=O0@Gr({Fg#rdWm0t5;e{QeyC>j~D0lZ&A)wtPPVy?4vw*6%R zptvxa>BjBK3!StwxL!w)Bo0yR1Yl)kIdw_X7DBQ+<791H};zu2mK7;JRUd$?ZK z6QZmJ5bxM84J(2jU=bCi+s8EhAKWNAGF9)v+=0CNaY{-gVErM;&}+<$R0rT8;|l5M zbAp1*3EY4+;LGJbJj6`S9rp!!#}Jf(d;;eDs*X;0Z?AU!r%%~kdr)mhO-maBhcOKz zNU)%AvOWdi5p{0D8=p;o@dB#a0tAd33?L5%agje9X>fM@0DOKBTR1zPhhdha#VUAV@C}^l@-WBe8JW>_xq|HhqSbw zy_?&ut$xU1<4Z_L6#D|g4gz0rqpzpH_&x|^ZwL*vwXxFC(~}TUGR@u)#sK1>B_k*Q zkvY?y_ohqCXR|03_Dp?41If8~6+{-C{ouL!8Y6pAP3>l}l=r#@Y{r+5pFU-Sg9~9R zG2|mP`fLI2VPp|Hf^ltcZ{t%^MlvmrjgP;!Ieq%{mE!HentM1*T7JI9kC^Caj&Mea zn?ielhz^N~iCOM&!egYRr6cG5LK5pRh8R>E=$%|$OHj1d)d(qJ9x_Jp>*f{~Q!xpl z=Mz+lzD9)-W<*CHK_o_7Tbuf-2Q4k_GtGEo(?B?@9A^lDEoR8E#~2 z!)E8y7T23P#X5@1O0z|5O|s&ION4V?qP%2LTCA|R^hcDkOSKT~nl9FQ^YZ!Kan4`% z?{2s6e)~S3=lOh|&+`oZeCnVKpoqod`tqPT%F@zha4X81JMcJ=<1aMC00#$}3ML|q2*vn)xarB->Md8hx1Szy7?Ag=lYk-++ zZevrEUazM>L#B@yQ5moJIvJ7jO~O)d?~X!sD_@B5X0o7y6wD0?Ia3e@CYLt#THzoB zi(UC|>g$8gp61P5S>l!RB0To)y?aj}gfSk5LXfz8*&g`_D6X^IUmq7Y7npne#EH6{ zo5dH05h|5R*ZIXTXta*C3XNsGkF?rx#OREd(b1?l+R->7 zbs_R5qcw;E&t$QqAi$}l$h9xbPuec5ol0*M98h<0*|>VAzj=M=;jZcKLym&YL^s+me%bw zA|2^0T%m9@N~Gqu+ZIlO{E(fSn*oDY!~&AT0+^x_ialg|G zUbeI_1Ofq1Ab5(oH!_~REBfr#q&vym_Mx^-$6%*+DSjjFzX>9)`smRrn7SwMa~BUs z;B(k)dtBbu*47JKSl|O1jRr@CJIHK}tcOQZY3gmKUtcmXJm7=xThA&rVWON2Iz%c^w-=HZ)Y9CZ8)qT0tQCt+N zN0|En(f0r7??BBw5f%2xX2x_^2A4SU={n$Gbyv@&;^IX>StUdYXg%#H0fh4W$cXvj zLGOq?Q zN5;ozAtOj-S<_sOUop}D@-nIj*pIMF$)i=;%&sn@MCJB;HnjmG2nm=!^Emz4Y;Gs_ sfv`ML5IFv!vEGz1zp31RnBG5c_p@%*_?UC7ykY{cwVVy?qJYS>U+rl?G5`Po literal 0 HcmV?d00001 diff --git a/img/AA2024_simulation_10MC_50exp_1batch_first25.png b/img/AA2024_simulation_10MC_50exp_1batch_first25.png new file mode 100644 index 0000000000000000000000000000000000000000..20583fd8213f35071424d847feaeccd232aa29e5 GIT binary patch literal 35734 zcmeFZB$z-#Yh$=AQ3^AUImj)Q`(GYCXv^7uw6mMO9Zfuhh9U%&d~k-0nX?nCCf@^CaY z3_Hc-Oa$d({|F*`6NwrbvQGU8Y1 zWY%K|pup2zJGYICeil5YfNvp&3JYpaxn^cY5k79BO!m?fRS@Lc*T5?sUuc&62{AG8 z_g@+yGT_tNlnnIdaexX#_VF^?TNHKRYktIs|9|-ZD{Seb-@~OF;2ttP*%)DAV>6|C zTUYvwnVA`@0|tqVin5-mVJ)0_f$Sm!?U(>R`C@7Lu9*fH*TA9`0q3~xO#Z2O`-uZI zDQ{}ZyySz%%F6ntQ3M!wVvLN8{DnXeJ}}rv0ypP2Aw@Yk6(0exhCQAbZZA9%YyTf8 zRQ_LqV&f}*z@pCy!Dgm2A&)++haZ2z|KW}%4hb81c`+v+MZxnmCdT~NH>NU!#+tWj zK|!dz?YBLM!^?qKXB; zNLZd>#5F&D@Wq06+{viSQwO~VJs5bP!Ev?WY*HVEgPWU0NGM?-f!%q4HKhtXBiQ7& zH#pbmyfxn}3d;69r?!N;QqYRp<(m&BW4Y}8_`w{Xkif~!UDinHV7`9;9G`b8FbTuq z0A}cH#!HLadEZ7(6kfxda&m>Dlk6;+Ih0=LENL(}3p-(WiZCbI*gSFIzzbg-t+|hN zXq#Ll#xgorzn?p(-aL@@_ZMZ_H{x^pqTB4o)7aREPc6ve!!0hJChdF8?|lyDZCoR< z7|nXGq@*NvivoipuYs!0tfFWL_ z>q9q@$4&h=A{q2$itv>RSYaO%k&W|a-ON(StpMm|jT<{UBAev4}4 z*LYA9jM@3&ow$+x9Co%ZFnV{>EzmD!WIu!Y)VJ=S#`jwGVjnSugo!Vv+>Di`IHOHB zk}mjpFPb;I1}CUGwefNWP8lt_&r}$ibbvN@B5^l2osD8820i&YuBaClM|}ZW-Ud8M z{_mzYq2cuSK@hW+6T&?lCF*@!Fe@x=qdg0RJ8C0rz-Pmj3v#B zGNTPYpae2TH0nnv+sFEMWBSa@B=Q+37~4uu{3)-qBvMJqm?orGRD55s;%`KpFdtSE zipM!L|GL01!dyQ!EaKqDkYd|E_}VD+)!X0sD>0&+(=C|(93V~0)25aewljgLSPyYL zLw@0Pm#e#}cfx_{jJIu`hM&{n+X}l!^D|>231#Dm!o&6l){Cf%L-6dUQkCV| zB$iE=AHP>k&YF4?F_a@l`53K-V6DkqMpfT5tCPsI?vg0r5Uj1nP;VYMWc;}k@$uV_lMJ#}$kDtm#|-{aVQVr5n(&!XxJbwxk0QR^ z5##=M#bV5TrrQ@H>FmT4gxL_5{g{*f*5{!s1L-kU$?zTlvuUwSTRr%e+*L^Ug&uF7 ztEFjWV_3{O(rVt4KeV!K5OMJtFQt^1)ZNG3t<3P%>_J7(?s&g=Cj#1hFP&WVmJ;Ob z?2Phjc(}|_N=QiPR>#hcmztVdn8CeyKEI$KbZB=Z1c&r;$mo8oLpT;63HwfhO&EFu+b@q#ZSv7M=|HZd%`x=(;(RLrrwchPiT! zrLbkA5~*rFuIjY6CQ>h!=h+Ui#Ez<(j7*Zi%4ZlVMn4KVS^;r6Uv+=~<{=gj!rg*q<H-z2-BvM zm?D*1_Q zR^RFRb4r}mo_xR~1fK<*MTClOe{=COG}|;J0zRE`vej+@oAM$`&+^uo1}< z?c)KponLb`-#>~}E+@wFd_Cz=rzkVl{fzR?vXFQ)!o*USc+_7yD(Q+f^U3T$(!C%_ zOLZdppl%i%%9}RQb@6bwN8}@8$wM!+a^;Ksq5<))TyHb1Pa|;S?nc)C&@~X09K_Xa z^^-3byz2E6B=J4nb9=!F8#%9$v*7;RW!*f%WWd`wG$5YFqC=rSRc_iBubDa5BtF6u zwGveBb8+$(mVCK2(MAqMT7Im7;Ni&_y-6V>8j+wMowF}Wxah>1kRhWR|4AwimHb#^ zO|UarQJ7??>Xa=#d~=9q;U}GBmcr9r#Vz5st>AXBK*pEepPa-sV3Q)RfrQYHq)F6X)&s6s zlZ*4@=I7zn^!;x%mj3>6iw;>qjgOpqV%hm-O&@OCAF6#Pa0g58nYJ&yuy6OQX9>iT zPBZRh|77a2Jav8XCfoPzpGfnNpri&cE#;DA6PI-`R_zJYU4dFUGsyowVd{=VYS z%}Q;seoEtXt0*7;DI(0aviEjZ$bhL-tMP9X?+@^@+zM}dCc)Ha<*i{|77EJM*>dy3 zCWEVZ)}FH+N?xpQ>Kf6_f@Hj;I(4b3SuZ&~&NOdrC)F=U4PS}3)rDM&Kona4F+bNX z>zS%$$9T9G4V*y8V7jYj6Z6t?@Pu{-D^T$V#8V4#+?(3OG^KFsqlCR8UXs`pWpUsB zl$VL}3EpXUcg0j(mcRb*57~kvmibfPXspBCqc-wUquBO$L^b`oxY+1czE?tE|2u-?r{0+jk+`OAc>5FPVF)b)2coGHeFT!k813LwIxsIu{dV2x4_d0{TSXt8F6O;?u+*zoFv{vI>S$l42eD^$ zJpAeR=FzS(CeNKLw{~Cj1^XYpfytbsN3gOA4<>Qzgc4)__UQoKdNy8e+>=tYVUUZk z^aO0V+3|RHIBJjo6>b7~aLjvdLZj&=MSR+ei@)yf?#^Pk+t197GmQKe)*JR4+2?T- z%dPlpG%)JP3ZB*NE3__+IBROS3;~y&@U3-YWL&*>FRHg1PW1F?Zh9UKsre`BNik~V z$ILSZE_B%$41HO{88@^rBbQ-6&K7)totMwId*5=vREz2vWa>EpTxFE3D z|J8jM+JPNt;`sSoV9tA+JRf}dotH;->74H#@ea8uUz^UiJh!_)=RG0J{aG@llgE_m zq4&h63M^en-}S5N-{OW91Faj{gMnZYSCi3ToUMf;_{Q(ncfr45ZCWUef5#I)yLVM| z?w3rmPZ#+--*WiGqLa!^f~UzJ|HjklMFGdz)!|vOI6q|UW`vNPxXv+b0_!8{~CmF z4E+T7+I_gVxGd$RxJyDNl6HZform8fmuBv!K>ccBb-z7@_p_`q~n(Si??@t+-(om8vOsv0!?OGtULd-hB=MB_s{Kx ze~gg4adghQH68I-bH6VVQDkC~qONCfh-6XuP+zZhT1->)A8 ztwDk>*nAXHq%Frbhn`O|JAOpA+WeKu`Y z=W$^eA4X)kN+9};-jzT{Ga8J)Hr%4-1VC*cV%&Fm zUSwR##W?YfCJqh$m=PKkU!N?)P*aIX)M)WT+mJl?4L-GkwO=yp!`I}T zoMN)o@N$eLKZRMjjab3dvQ(BcXLJT4{??dDy2+uAJe-TdTCbl=wq;=OPG@CST{tDM zRYQ)~9K-{HN+yfuhrqs9<|1T}ekHX&kxs!(WNd@SZseYeO|o2HzT#Tj9i~hJoK%c0 zEda^5B#hm_v=lhJFE4gMq^5B_F6fhT8yoi^l3cHB8D9D&194%G5V-s2(LJBYs~dR` zzj$=D*jK$=l-2<0>J-1ZeC5(|N}{xhV7*s!Kay8MX~b*C%*@fbvy9p=5;R`JejK_Q zQ`TvL@OsKj+9{4oz+~?1y^_b)xiX!ugnk*G@`TYFH4m#PM>MXPipX5Nb4vMCe~zqh zn0Yxg;(g8ryL~|#J-AI7Y0`gCZ?GSqHjUYwBy8n4OkF<+DQ~mWoEcul{JqsDkjVR4 zZkUy_c4_x=T^MFlw{-T%J@pX!a4A@*K0^Hd$ewv)ee z<+1#3kKV<~++R902BKj(-5&Ly3=56&TaU5y#nAT0&NsaTR5BtWVtEg~xL`?nm__4+ z|LRwbr~e;ZuX<&cm%LD{B31MK!X%wf#?M;xK)wZ_qnG8#DnSXCJ#dGY3+N9hD&03m|4S9E6 znBcz7w6&t66(1_mI6p$bmDL8myAv&SYphwB7hhuf-_lD)nqv&5wtBjiJNfFLum7vd zORMX-nz|1dZj%x@6i9y9WS!l2sg)Lxor-#Uf>`XYw)i>j^t;VgCd}voU3t;(yT}`c zNp_4auRm4`cQ;~_ylLcZb~k3%j-6*}RlDW>V>YF4?BrOXl{DS(xR|`98{HmsuxXHL z)vw)|xL6_?#pULM?>@^IU^>amLmMJGl|NN_K&1cisgF|JW+a_Q%?(waL zTKukyxV9@hLB7V!Ik?egc>BCs0Zx(~c2mw6MiOtZ5+(l4UH2Cv@szW18I!>^eViu7 ze_;VgPD&T~e%`x=`w~kgcdjo5LPzy7H7=SXqb0Wee$kD$X%1=rEpDV-+7c!U=8{*x z2*vP^FD{+7D7`Ri>e^ zg%}t&gJ<2v(iRE)8B)xj2ri!y*&DB4+gGDBUuVn(s6tdXj%$rNR*yBPaStc^&2->) zn7qiIo*qa>1OL|erkCnJ=a->@a`CML+-WC#$%w4ze#|(?Qg4Tud=W|>uytWc(qgq6 zf4|_)SG$EANS&xev2s10cp0bC{jO2qfxKM|7p^d5hu#(T_WdY-BfONCO0 z3C#6ta+IN~{pcM&zNy|t&Po*8Ns_ZgU-;&>FF{=9hKPZPk&eH z()f|Z78UCSn~ok4UV9GOc3y9u3un!=JimIC?j)r4{ILV8xx~Q$yiy|>j)`<2PMP?wb;tM9O9r;AY87ju z*%dTpg2ctf=qz!u8JLPaeyE(BA92;P(SI-uBd)Q5M zT0-;gw3pHd$g5O^rJ-wJt-q47uke84Nf@ece$z~GTJ?%CTdRKN3E8r}g>=5gM|MCO z9H{N)!lHECxu-6!Us`Tt4y3gE475|KvQgnL31%9hTDnW8#7K%hS&cG(9rtH=@fNLB z?|h@ak&lFfufSDF{~o@ECIJ_Vub=SY3m1i>U={-aYZ15cDkOj zTShag)dqQ%8>wL+aMUAWPar#pLHX^)m#-i9+aEB{22VtvlyG#CXDAq0=oig3Zc5CD zjTe19o!O+aqcqRZ4z!N{UBR^wORp$?VW6~uU|SApBl9~&2|T04zL%n}HD=xaHeP=~ z??9~B?*H|;Ksn;&236$ehN!_b`=I3)>c}u0UZRD-lmz}2yW3Lj)t%pg@ly<)4|^F1 zzRu?WxDM8$6dP{O4c7~$RC}Z0Rq{+79fuwf)Q6HJyp5jPX`)#z%gvTR$c;cNW?_F%(i7#~oE?GKcJyxkDhTaO3N_i?A;UT= zYY4t*)-d9Q%$|gb8a|UhHLnp}GC8yTLQ0}N(jZ9+-!!A1rFPRgwJ=IOhb~2wVhHzp zyN3k1jNl?muNk6>+P=?#EpOS+m zCq1RbD$zxJU5Q&b^Yz8N>3Fw7)78yYdc@!V0g`<@4)+Ebz{ zi;pMKD%Zo1jbnJ}aXi3IE#<*)ZEam=Js$Rs!80WMsb6Y}kzZP7Cf)t*rcABXALe9U zLnW1ofCr&bsf3mmsm~tE7(tzk+D5*@t=<1;ZaluVMLVDszc%t88-$4Ej%)Rn%Apa+ScTg?TlWPA%myZJ276IusNC{7hDu~ zx<)f7#v3Ob!MroW+w0EQ`y3s%X=`-{5hnU||2(AZx_e_?xfCEs>Z+Oh6VvFDhYrTG z;tHy;SAY0Q6>O%6kuc8Bt*FSbcww%u)>(?R3%&v>l)YTZ8Zb9uNBUUi>W`LH+_>7j ztm=9}Ch06+HlK`hLnHU}IX}bGsiauwoVoQGyuSW`+Yqj}7Zk>OJ{T!T-?>BfwFfl>m)N%aj}bV|et%V#TNt)u;#&qNIdVrWTcMt{h$$g`X+)$AM2 z^Yizqia$NPvj_*u89ymnP0$(8--wMO+ai}*;;JLvjM;>{$9Gh$CaX*4+%?yws)_?=QBdrk-|BHF{hHKFBUCDX>GyAQW;*nWij%rQ;%r`%*Pg(_;%0tOoC)dr z$!L>CYu#?sX+Kx;CSiy!Jg`iB+y?}h|Lav& z{=Bk+NO92J9MY-TV^<1d^-$r%$wJp-`SP76K~A?SdNqFbRbw{sd>HB6hXDT}i`^PQ z14qXmH)$F)4&8=;-8~F+Jii}%j`LPX$&6$3q3Xz}qaMrU5d`K?SNl2TiV{x{t;mWk zGVHYCCC-L84{Fx1N)?=OJ{`1YO28Uq?mnwY|q7k+L*58 zirpVnH5=SOO)iCh-Xv|X^255l0RKO9!y&Jw_L?;suPEn6Y7hC+z=*iRXD?7IXw0Tu<$DP8k1rl#t$g8SLNMHX4(=w39s(M_y?=ERYzG z>l=S$t=lFL81R^N4dubhUH{OGIx)H4Ajhg&WwSx&4u45;obt*mWqz={gM1oCKX`d{ z-)%ng?UV661LuATgTkk772$u~jGG+c2U~M$*3G2`e=OK*$su8Dlg3T_dak93YpjsoxYQ9;1MVol7t zbLhfGAV#XjlQ1IeDl2v%IPFtj`B92>z$fbl^&un$VApM)m zSVSj3{_T$F(s}QS-3)F(M_-IbZS9e(m74L0o&iq8vTGVX9It!bsi_LYjW@o7=ie%t zgn@ysRbFU%<_LKLjM0oqTb;9ardgd!c zCnxJ0NTpIC9|cwob@a8D?IwtAN4V#%PO4Vq8l109?e#<15nUO3!RXnf#b7*mDVdUA zkTLV8EcCDlF1QU2B^S26A;un-{6mKEMs3xG?d3ez?{zwztI!kn4%(Ex);R&nt|ncF zxdRZ|z4x;^$r(=319P1R`pi4A(*_dUNeO=%HlG(1vzcp&`iC^&bfO{|kZ(nJgNtS6 zP^4NWCG#ZiLiMi=8>XDJ-e8a`r)V^qVeOydcAP)hLRiN6R^S40h$^#epzWx;s9fyZbE!NQCfZHcWXNpu*JN7d%^(~NVr6~n>p`V z{HfDKh6Y4=yT;#Ac?}iXuj0u31(JHk!>g=!#gr_Er)}?SVzQl^9a-5W;fZ7hoSZ#p z`){@jQb+)DM*W27la<}if1&vcXmzq3_L7PoO39VB_ml7R9csonAF)c5zm@cJ+%Kwg zMb$>$^FNUP^JE?N!MuJTz8A95-kGsy-;82WiSvEaapXCd+Zk^n(p+VmglHTAUpnUA!ax(3<`l(tA^m0cXtU$}1Y_W;`vw{kovDcASkC&(>|NxB(wvC5$QW-$-`2P@IF)5;aPrA-b3TSD{NA@0XL?eR0TBs#awln68F} zII}O%INQZD-iywE%9ET_QRx}~fq_#*$aXfS%n7}t|CwSKmX`S1_zrXPmbb`udc2T8 zv4|+w=g3r}vL$|+R1JNoZyEyD6q|<3Vdp;Se4p`k>+g5Ke(6Z!<^T*uH%)-z7`rKIe!~%ag_$Xw8R-m_J(>? z=-|!KNYf%^mmxV0v)oI637h?Ep(WBt2RCx)t3>9%wQ@h*PC z(#A*+gYT*IkWO#!6OPX31MKSYad2mMRDJ)xLH($iT**MskJWA)!9!8zp4j9mrZkc` zkV_mRRqyDUa@D2TqbSlISa}HRf!KU;H$w@ozmX(L#o|+F1mOhF=gzTo9^;AgDX$Ga zx4y2K^NIjCgglW_){)^0-5z>bypQGW?8Z~*W<#r{VR4pW0x?MqsN32c**2S2w|tD6 zT>H=9jR4qi-=$rPOneI2G`ICbxI{}{hyeQvTJ0af)3F}hqrx$>?SjD$D{lPeaiwat z&&@73L#Qz9WCvRCV3$f~%Q<9cW)|iIz5Nr`1p)KUQrMMO%L`o23H$46+s!K(pV35z zpbyVm2pkNw+mP#L`@|34`mCslr~Mt`eb(U06;T9@tUUQp-;b^p4l7yJQv4~Tn=f(L zS(#j|q$FTwdh}3}{(GZ-TGF{%*T*&8JQt|FktHf@*(%t#NC znO>+bq-Oq{vVtS1_aQJZOgzwfn#$t=kesiAB;>^!}B7q28d1b zY`^hTx+a#FG*F@=p#h5iL5>tLol&Q7z`UY$m#XV3j?Gy9G3`PR$`Cb6N;FMMp2T&sPyxr>Oq>Lipk-07sh5)J4*i#k%uIQ1FLzAsa~dM{#k;@e`{Z)4=rnViboc~tE)FSlm3 z-ylosWKAOp9#2s4!x~r<<~(0fO2=9*7Yew3x^1)=S`HX-+J!a&UkL+YLij(+5G zf;^Xx4Vq6!H6}qH3v5{V2L9 z08?cID8nllq}B=fmV1b?(B_rpvnPyH&ryha8ciLG^8fm1n2Ybu1!!uio(RCJtmnky z)%FyPx9D07Z=UE#^y37E;i*vOlE_qS=r-uD|IM6pEZ(&RKmGKc^q;D>KOnl(_n?Kc(^j=p zF|v~W^Q&{6B7XJlvXP6KJ$^_K={^4VOlRJxD}sdATD(3R-W&;C;tN#?l>t^CmQT@v ztyk|$YTn6MPGagvzT4C6NNUmebcnkj1SF3UK?7Q>WDvLHR|1AQZ5!b0)saL*=9{7B z{*X~^deo5+vNHOskVs`mR@N0&$qwN|nyxG%mlVIHkY=Wfjtp&yn{zgcS1F4fM=A1A zcFk--=t}2pzO-VyC{Bn_Z1!Z$>5ntRdvaAT>r0FW&N|K03gP%wU_&mFxNG` zhZ0RPakCoVu;kTzPaHd50 z=5xN}o3&_tr`!Rh>70~t2tp29nw;Dk>ch+LpJtwVZwh}ZU1)>Y4>j*z_Il14;hSS1 zxYvix>M1L}e*MMt14M-qs2-3+tMwbas%09CnZ!A;bYvV7w9A3S41i?he*$;sW3c3h zXE&cDSQ{gI+;)O0-w(AulEhnrjN^8b=El8H$2?(|w7r^P`sWfR)C{*0TFcas+}*SF zq%2PV_hC2Mvkp?U&S!m4srjgHYAF1uur<4U@E^f+q(DeI`!a5lS@PN{F4@OVTDXqJ zA*R))WBl&OZjsb>D8OaZZ#CJIGNt+W+8R>(b%|l6r)?G&vm#_=VSBd5fAkU6ZK7S@ zyiGQ}ih$CLMYEf8R=WFG=RW+%#|7r;b`Yy;eTr^w0NKm2F09mhL`^N1aC8XHgGF0G zsao8HCdT_Bf9em%tyOmxtKTi#Hec+kBWtP#pC4Kjih_3*7c4F)%0e+J#m(+Sd^YRG z3~%kl?)aL!p8lmn!rOJ*CX}FB>i=Q+mpYy?Iu*I(VX}SiM-vjKD{Rk%F8xyS*-%ge zw-0+y#LYMPhI zi|*o&08|III9fqZL6v*mhV|_b2PC1A#RK-P|3;;zMi>{9-PClu5i+TpbSI?3h>MaV zxN_g!;$)V|a&i7%v~vT)VfXO5WzJCP7-}e|N2l!!s{#tI>6~cLsLah_q#!e}Q3FQR zVeOW&ZV%mjVCp&K{8|bLs~)`d(6iXJxkFA>(6znZ^r-S#TnE!e!eo6geLVTf(zip} zNh``{8=sA)LA@ExuFs3ch(a?u)}1LrwSdGCafDbs=&f$(2NYTE&jy9B*3S*g{U?O{ z=V#uTB<;GK-3ANy#oKqk^l`70O*Y?J-ZV69I2`j- zozoT#oww2&&zH?o+9Qb&UUYNSs+WK`zXDa$M!~0fgg%?Gch!4_-q&mvvNnW0MYcvp zfT7}e3~WW-Wh)$vNTyapSaCcK$&xgroEbnPl}{riZ#bTd-qJ0cOd;!uIkx{0K zSMvwh+z%+;MWpx9@n;_XUJSKTM9tk#{s~9^?n`Qr#1E;1-4MB|!y}kn)7OZDRt$=o zMN2b;GN%8sI0NG9{*G!)27${_g^lcv)DAqXkm|)Tyx)qh6yU-G!fMDB=4c5gmDZEe zAx|pGd+4$F_@PKtuuh(vj^uAgZvuffd-vRcS``&jyrSlr6!j@MU_f6p%f5f{A#w7E z19WWxm7Dw~G;_Za)pIU^BgBbeKj71{^^;2L+wY@1fv|^!0Uu6>CV5UFGb#P5X&rpz2n!5zDvN=W(>^vOQL%EIyn*v#25gjgtGbpAKZ>aHmClcU5Ts z7w6-<*OCoSr&?(ONAK$Kn?CbDB=grfZUF$%nfyhidSicoNzJulG482P2(mC`F3V74 zERZ2fF(!Y&51_|20Re91pC(0SS{tk9lCqQD{Yu6gxb$Nm47*KJ#19Q5kt`M$1;{-J zZ}p#$z<7;KBHp7(VG~P``N2x&LJ=Knzh8ID`5(P%V6RY2#|}DIup$hQOni43PITzD z7o3((%xkHAdGzH4QuylG*ljO@#-DQr_%ng*eZ)EO&p((QH~Y;*-TXFlO)gs`el0(K z1PPe+{VvlLA|WB6lJ*hv^z=j#EuCgYPj~NpJ@GwJ#1^YuzBlo9PT|j@btTJ zXbuPE^Sf`JWzHu(Z`&AvHH_uZKtSkX8>wc~HRj5fB4&Njhi33OC%mVAmrVBUcOv6O zYL-CrkAcT>C~@RHT{O$fVFnyerU1}U>{zmw(eFUqEkZ&N00*IgI5KOQ>}TZaJb*&Qz;N?=#p zs2!DFz1qyS+?%b>^f?|Nqohp8$cUQS0UDnQ`kV!Yga$@N<~POJRZ?Z0oSZI`p-{uk z>lu-03u=&KfvR@ZcQT_|l{bun2{K^YsdI-d!yHW_OIRh~245(}!0;}CA}@UZ`Eq^H z>(ecHBn;vS6oY(?DM!8zlRRiis5a{lJD?;dpAbh+4guq*klsp}BeE@&oGu*!J?Y+j zc{%Vjml0i=Nqrx^`6V@ojVf#$NUT383uxH*-9pNeKecrRkoxsK55UsPg8Y1kzaQRJ z+e|!HmAP|44FpNL@0b0-O-)IGPYDE1_((sM&aQm5T{}^Nj@IJGk17IstE6{%q^>Bw zFl^B-ebtTos%p4V6B8Oivmj;}PG~gY!~@ejvCxzlt$hy75M7u-jF7GyK6VGPFsG}4 zxH&mZ&bB8EJlB&>wbQW4#zAN2i1C z^wCe*GsIJoeT$#o{!Zo?m&%#RlH=%VbSz(983-M+N{Eh=f1hFkaPThcEiK5t^-K#P zzDYL=gA8qqWHbWZSB{Ma23}hQEbQz;UZ+-lvGmG%dNhiPinq%|{yC2XGf-N_otk_z z$ic20zC8eXpQ(bfk7gedE^Z&i5crr=|vYj%-ZAndwTdC zS6;KJW>V$SOnd@s*MpM9m=N^(_1G?)X$!eBp7rLf}@Q|^;y;pr~HFWw7 z7(^Bwa?t8vra(Yv5Bl(+)9|36f(-H4Y_RgvxJTWPVvXj&Nn3B=g0zq$+#rGZEYX9w zR$9U{^2#lbfM)uki}ArUZ9P9x!icu;J)<;rci&9x`{l=l5i$X@D6RuLBz@OgnRD+A z!S+a~LiulVNi1IXn7Cp5VnRj1$tto`hC=1S9&BQqx}8J`_-1)!6nKd1vW8Em6IrXu830glL7i2p1=OzrDL32M{Xfjd6^ zZ*fk*;*2u@5r`ROR2!!;R6+2^LG_^jHd%!rDwB04+HOtaeN?uEU`VjFzH$2h^T;k( z=yMc>avPMo6<-jQx-iOX$-qYz=N16>A>|R$9o7>l`~rjy$sq!Byd(c-D%Q`saJkt* zT5wPp2`Px52hSkON>dqFK>8Dm4s5PERAVFyfKbp~!~kFik4lgH0iKZH;06$DeZf-T z#)7ZUU9cA#n;K6iTY#c~u>Ca4$FSESsKy}}!}D$^5hun-5w;~%{{Q-=*M0-=srsg?s`T@u9=g<9 z<9H4d0l~RSTmfhFz3?#^#a$~khf1aNwZE&cqvM4ERUv8)z%DufUc_H?MPRxNS?C&R zsUToWMF4i-{7(eAk4dCAK(iNmcY^Hmgm{#qi>aRfiAMq5YVs92gg}#o7GzZ5yqKLC z85(Lrl^TW;cHHpabKgrls$`0NciWpKCMA{6miE28zd0b9smGOjrBTWjkjjAP55`S~ zn3)=!FmN8F_hQ6%*L#<9EpQ0uL`` zw4>h_PzS%CxRgOoQa$#UM|@?Y1)&9kfJns*X!u<=E3_8;^6LrExazA=p$o?9GVFMp zi4(TWjSc~Y1?K8@JfZ>RJ#5qw@UtOuOn~#Yr5ha{{&ID^?(G}9c+h`v5&r0H>Hi8V z?}9irZ9z0gh_-eZft?CJ0e=RV;n7B5YpjT2ld`EWii?Z;3?UHG#hWR6FruoYCm&t^ z&fpSu7w|r+_kWYi5VemTT4(0ttL!@hioI%TYR<1SAN_h)SJxq=JB$F!bp-cz`AtrF zh}fnYvd*aQ7WmiA<&`N1#+Yi8d0W%%le8$Q7vv1EB zJv#DG#Gy0)^=A5X1Gq#FlmU)=G>@;<6IAKU`eV(3ik{Q``3zDusqaPEe(7Ul8WnBV z+wxAWIggMbQJEuWm=6myp_#>fgf;UIMXZh}zP8kIeYn%;%ZqOr8AC_?Pe(1YeYI>& z733W?lZmy3!+WwbF#}>^tdR)xCow3G%7R_&PI*}TA&-NXx5Blht}gLI-rI?b)9|?% z(S=`4t~-Y}cf)By;XrpWU5zbkN{YBq0~pnjGk_Fim};C#^?#`6EJUmVp%g%o01C1)OP$35rVDTh5s_D1j16QAAQ>wwrogK! zE>w<5`f80-P*9L2KR%|Du$!ga2K6iZWS?N^6iS^yHS})jKdoay-Od!#(9qz=N9*Pn z+b+(td1*(5>3=n3w5{3L_a)pUBqcy#)s1$?GT3@Xm9px8Fh~C@4)VJ@o0^7={4B~E z1Y{|%r>A!*0LTge70^9z9{j0BVA^_inbo*>76aV@7SQcx0kUO({67g10TNgpKy^QA zmD`@)Y@Kzm2^E3X&%WZ{b=F1`s8;Mfe?5lL@!?JWj}}{Sdw#7B=n}U;WKy@u0D%C| z9N@v*ybCDU^oPZ9Q5x1l@_kf7%{^3&k-82C@AG4BfW-GO?E{bp5(5A5=@WX#N^cak zq#O5RW4Y~Ah57Du^;w0n*#{fF{A3Bkj--f)=9i|Dh8;Hl6XH+zZ5^N=98f=uC8+zt za;7t4IX9fa^#1lL({)n!zgsP|!t_CCiUZ9rSE5l~)DdJpqD`SyAJqDp&)gh=+Hd4{ z#cG-9hzSCUbe5A}1?JE*{2w2_j3*!#ZV|4a#e|H6#7tfOs zQIty{*0!E+a&6_B*6Gm_W110!+(tBG$fBvx;-~y)^j^OOsAYTai_h7KK3t9Zd)!}b zT2GXagR=duIRTX_b;qEMTEi`R5GAuEbzv97f`HJvVFFSM#S`xV%%mrK!9g&fJ`-s6 zFP=Oq%JM2{E3*5fF_?L8#6`GU^3tCN+4ln9KqQCaKO6H6Q`gf2h+*e^FXkVk%C*f+ zG*!GMHJQ7=Pm1ix;s;R?l-11(PI#8M*wag6%)cLv4E32RJ+Oz`Y*>voLu87#0K2%v zL@`4s9wqPEg7-oB;}r927(o`d6>qg^@z6?Oe?R``b$%7QZv!_;Uba8n$P}tVBd3~e z>5z{|1Dfl!0jcA@2?Pz8BWMElFVmX?sHhqY*c$5aqaUU4wiRs&5P0KK5S|VF=&xVK z03gp^`sRJp{~%}cf3^1J;Z(lu_wbgGOi6=Tr8E+SqEHbPDk@aQka;XJQ$&-biDZgQ z5mDxu45g4E$~+|`WX$-ki=OZEJ&yN%kKaGP&+$Beh`sN(?|E4-HFwNZR$+tr|C5bA#q@ zpty#&@=?{d!!}&PNH6s?gvMd5)jf0S?c28>Dl08xYsGf7hE#sPHLnqSbtq^#I_(>E z5rKjh|I%M2$*l}!<)6v}L*#@~r01vf$>%${zhgPC%kW|ICd&sWc>7##R+|63v%f&N zsLaBgu}O`A8KOv)lB71ibZz{oH3g2a@tb4|~%3KYsik8_1_=@W(`x zl~wsPum7dHcd1sqZ}`-NH2PgUy5edO6^^~!rtr$Ru0lFKgW0JOl&r(Eqg7Xmnf3|m z6)l&Z8#_a0PoN?w@BZ+J>&+{L#0*tvGP>rUb1d}rmkAX!Edc{L`H(YZch>G?7c*Vs zttWix{R-52vfhmJGH#_DMsF-zvS{PF{e|-CzR_juX}#E$!4#PGmNxuF$RT`!%}4sV z$y|)%N=jExUJ80&TDp3Dy4ej`bMswp`T6r==F2-Pj!+s$Y{c$gMAj+hSReb}*M*ea z^>u9x&|0l1*n8LOeGp5dZs#xBh}=aGs@fkcY2NfBHuC;TpS=F@g-@@N&4Z|Z#WLPJ zw!<#ZeoHjsUz&wx`&FuV8ZtO$)5}V#VH8`YmCH`?=-la%3qz&=QwI))7%%}Q`}Z$GNh}g|J}pHcpU-r za!R>p%D$(XWsa0`JrlR!T)TE{M_1aQlI4ncMq?8BAK;wrOw3r;l=e*2Wc9OW&w}W4d`fh3k57LOF}TO8Y$&{n*}Z+&^1-6_ z*4bv}tng}VvfWmHfFh)s@xXEP$Cu12z232>BKOW---j6^e?ppW9k-O9JY0M&mGXU^ zP*c`+hWcILVWN&1* zJoVUYJFcR9JokC%{CJYP4Yt`ElUjlMQWF{nLxc39FQ!|P?`2gRR6^MmJaN)toi#4_ zZE8d&c=_+ei9i13an~r#S#~?))subzr!e#FWt4q%XyS$Ba)Ic}9u@%Fduhp?#GVQ{ zDDTU8l=$S4KE>#}DL1#?U_Vz;5W56;Vq5ho4X-bj@%tS-0=#M5kjP`vl=j-@?o)u! zo0D4;^Q6!gBldCEg?G0eosxbQ7|5RT_O0XC7X^OpQvtsJKxln7%`hk?!;YexSCQ>D z_Sc4^yTmOqcjEi-96Fwc8!)sa*rt>NGflkKYdc&oxx0R^Y27y9fQ;W+1DjN3iiHcl zZeC2*3AklfDkXd_T4vtFpIvFTDXR}!Zu>j4_v_?pyQhJH$JErmYV$b{rZ%itzDy}d zls>7ULZpnl_y!FF=>_0lM~P3rQM*T&WQ6117ESi9Cv}5nejmO6WAg)iDHRo!!@}$@ zm7j}i+J7@_wyhA%h!@b*w5vb2X6@P$Bt)OE(eVbIEB$dXs;5sMGBxc_(gxbO)!l8d zl7V3|yQk$2UrciMBlTmS`z~}%mDVgfxsvl8mjiRF{>fKO3~K=fJZ;1C^SRzS?UNeJ zoE+-tjDBtzVN?~0K@uWnUw8e^89j->UxekPKZH3G0JLJEkDfi_a5J}}sver`nw%+~ zynE+Pzt*W*VPPfp+^WUuJ^X$wlkpI;)CIN!6FGu9dE6eLsrDFGZvfIOW!l$V0JvGG zvoPJjN%dP-IZ*g|cX#)&;DH0#tw|q*8LfF#_&jl(xI6k=mN_iUO%6?tIRDO!$qQJ4 z;Wym;3iq3>o`GE%8h5}xh)qc7MhC@9)ls4y~T+T_)!VLgEC4=_08016C z^7N$&Y`j2A=(tV&54QLf6&=COVX5z%jK?k@yjA{%M4WP$nZb0{SQQI!2D*U)>`QQv z9Bmia`^}ouEuLf25=>D^wm+U3eVrWheQI%$J?(nm9udu;<>Vv#pBbWL^ae`QiV{u? zMMpDQ`U&+27;8nhF=&9FKd2+`}54?Q!VLM)zbt`XTWDjdk zPfsfE&fU9>zC;}L85G*+L(Ra&Cafi7N3~e6*Go`Pz{KC<6kD0paB)Bclp^Ymz&(a1 za(6Vuo=c^0dMgSpzNZS(0b!lfTb*_$=DyR;Y_Tl$UJc{{e3SVP5hmr-x^$yVp!4dG%a6MRAkt6?yW~E^J0cS8A7dVVzM0(WX2^YBO?&y zTo%fcx8_`ITVvYNU%p#%(s~sVgG3#ANf8 z+kSpYRa>}Nno2 z{zP5-c*Rpe9MFpznYM0SxzG=B4&j@;JPcLCh&D>fAVfJoPlG>f>ba#RMUE?VW5;3rkoFek;?(|q-U+Etgn zoLX*e*;3fFe%<9s%XA496M3(*CQTXU*`^%q%FF(9^TuZ8&LZhb@-otH2dOgD$F-dc zwVjsGe`-TDT=VwU&~kFhFO=z^xz1_4{~WG)qTY-WCm?eGN%` zHa0dh&H4^=)8oOe6W`vKl=%Dm7h0sZsF`I3nbbyqd24hEiH7HZy}_UE4?ZvRQqQJS zI0d|yGHX$Ph_qUw<_GurQ9f+*##Q4I8?GPnxGR)(E6;W2Pv_m;U!4xFS!sj30qL(K z;rv@Dj11~pc58Y4d~n`Yc%+&&*y6XOrWwYvjMS^^*nAdisE#BC#MvQAW6UW&bXl(bLYYENq|pr%v?pOrF+ixNVs}27s)r37O2_Nq(PWh$ zLL^flF^1hahfbbkK6P+pIYoibRdny=Pwm*(caBl6>g#76TuMAP$>!;ev1F6KY0U(C)==J$e0i%{_6B?%rizNKce;{_3dwn>vc5_t{g;BQk8=}mPbnOB7#MRQZ#5lzjiQNDC|l=w;CF^6noAAx z4W9~Lln)Tn;_P;^6VWU3vYx!+s?m7v!1dUr>M5y}3ZpvHm{eHE2#Iok{>h8cm^DXt zH8CLp6ISMDILi>Vi~P#mN zK(Kp=0gMfaTE&K7=^k-bJ(slGfe+Qv>*%_uKDLg(wctv(So#VP5v>Ch>4n)*5?$X` zO5P1QaLv1H7CPoIuGcU*=A7y_=d^B@Mgb@U`kO~~X}s~EVOV!sRdrbbhf(lhTqpC- z$DQXhtT%?a&r9GO?Ss}$PnW@EnQBawJ5)$rV5a)2s z&J-)5+T}}#ZjGohpMj<(H^LH=<45@qX%>u(jQ=WnN4panq?{+Z!F+EL6MKS{&}A=` zuBZ%?$*+83mcaO`b$7s0?EBNdhEfGGcKF7}-Y|DJ*{?Cj-z3{`L_fVw4o__C8A=X> z;mPS#?hRZqOx35C2&wpMeBBtpiOH5HUw2{PC;iZ;jm}^x0~r2c4H|?8Y#0>NOsV&+ zzQ4N-_eC99M7@jb(f#DFS z1#NBZ*IgIW%nJvK2l9PGNcmmEHf{AA>7%Dl4mT8rI!#2P2p zQ*HadtrMz^TGW?TuN}9%;e`1x5DbPI3L7+k*m2N?Zp_6=Wu6)}3b zC0ry5!Y<9U{?5_6>qZc7ldU_BT+-Li1cuHWt5Fblck((_hcb>2rqWQ*`5)^8R-2QcggpO?@c|8Kq0oe zWkjh|IUTdy7UV4a5{mNjrEcjr_A+{&-gdSjOYDSrB>(Vc{29u-U1mu-6^K`i z6{VueTbDyp0)hykeGwHEm2A-jBLc_+>=943S0ZoC8K{L@c!lp7t1BQw1cgh|6dc-c z2!WKcJAZZ$wldR&xYAFwN)@Gbo4(o%ol|GSyP&1Gg{@G7G8#{S0GM)5#) z_RAq{PUJ{9#a&tX_t)DhC^H>1EK*~uXlQ6UW}ZBGlAw_s;g)I!^b-)b#DIs=nt7*K z%rr32gQ?W@ctIgI_sa{n@@>}7{)Or2N~&t;oW-$rN)uH@rT-&P$|;0grt+-qIe;qJ zMcPOz`_7$}mKhzion2j2ruSGLYnd0kqgtF5efuG#5mtWrx(xS{wd!>{uGF7XuODBm zGy|g*7bgZs;41%N13ARkMVl-!M-lRm4sH6Bwo5ZQ-c*19&tu&@{@c4jp}y3~cO&@b z;lq@MJ@t>y+UMtjx)b}T^jzFGRLZ$?^zYBcWPX@@q`U3*?Gn}$5*}!t+JP^px?913 z!nk~y=G8ApNycxp$_&tUx{W~RWktfvRPsL*vln-kWS`Ib+CGUjXcm)S8t=5aDJ&ek zimcLV8U=&BbvpBZ)_dq!Br6_2zH#SHvn0RV;UWgYiM(e!MX^R)-m72ANX#PuK;Og1 zTS9JY)h~-(T4o!$GzxDlF@2$|KY4IOPCz;6tbY1Kz|g&@V>o+!;4}I4?d_zabbi|@ zP$9lehu>OgdeeVjq}3w2Z<$jaT!pwU1EpgJ4iI4qFlupfVcYiY9pHnOZP>Rj;M1p1 zoK+t_eR>Ic3Bnr!gjvXyA}{)muVs>NEn>#2>Wvq-jl?G&@z19LlFGEVTK;monCJ4B zDr^X4(cZb4$rxZFA`9H(lL;;3bxzQ>BODEhW^Ll;jn>t@!Z;UEhKoF<6Z7-Su{K?$ zpij!@o|+&(hE%ly9spWI&62&=y5HMv_UVK zr3CqyTYURwDXEaLu`yZudE~kWK|!3%*5s&z)QVFf`E_itY4Slm6{Vt7SaeY}jOcws z??I;z0K8_+nm51?M_#M~9YhI-V7htp=HU(>zJ~z;WyiOM$SEl?f)MI~2-f-aq7_qE z7vOa}xD|bn^PnK^kRU;-E*FGjpLf4$LF4~Ze}mAv-g>1|OUf0W4MrFtk^@l4x=_a-92e3pKj(v)mCahth?41MpRLIf zkK(I0lqY_N`|I zFpgu#4Rdp)Cfa`@qZ9fIVkIeA&8^1jM12SnhOr@qiduNl*RmOdy!p%1%o({D)3<&< zN8*Nn5|!``^Ib6vjgd>yftS1>IplSF-J*t~a#b#o+TrEOZn5hCDa-w1C1(u{3|6gQA7gF9o?`JlC1nqaCn{rbMUTy{I=~3Mfs2cpD`4G? zb*vJdUPoS7Pnm&;!G!Y}RxU1vLvC);n6T8(+{&Q5>~{DA3q4K&p#a--ymPeECml^q z&Btb&=pv@C)M$Lpg(qVJR{`Y=Vo&$2D9bi}PwALB{G)KKwO-&-^&my;7vIuGz0G#r zfM0aZJvaTVi#wa7KqWm#LKaitJq`%)@jG|+tgzw7HPDRD^p1W{Q#Ld- z3<>30vAo|!D~^xc0n928Ev#!20zj`v1xKiH(0j#Yt*(<=c$F-0X;B$Y*1ndjY*+$N z;lfZ~e^iEWxw+u??B0by8Yf^k0O$EBP{fls1+w~gz-EfYr9lxT_geCuS;Ku&WW^_D z-Ff+PGw^{V&O1nyu$IPZ^(k@b8xFQDE;sy)p~W>f_b-nl}o2v+z|$9KGuR1^StYJ}vRzO-X=> zHURK*0r`d5JqsOH?lTu1UKqu3DJ%GH;6IBHEds{R_lTpgT!XW;%+KDC<~RxW+;?Ab$)45M(0XGyMKLsk*)xi2*)npedNw5|m; zaKUc>c-#%A>yB( z?_-h4146gdg@kEh+N7_5io$6tQa z*RD%_bFwVcj?sGUSDr7IUDps&6UsXGU602gz%n7mGWU3-yzk0uNhgE%C!g%4-176Y zdeHmi@ndV;#VfVS`|5WzMJsc;0hUT?DNMlQb;G=(Xpyfurmx3ddiYxL@5(M)`}kXN z`hoFx0sL84EQj9qLe|W?ftg3Lecb7p#1#Ql)ilAc>u`Ls+s0=lum1EX>%vfZi4KmE z1NOh#0Rt|#7hIoteX1%{>U`GK?O;>zcmb`ft1nVg9zxB#neCyTpn;*^2Uv#JRrFI}Z4Fp^IH{5o}Q$1No# zCB##N`xRVQS2q`mnRvXBFJF2Qsp9>6IdBaMdU_p6U!$NbD1}LfkdH*H(~W7$04o_& zop*~3wVnF5Bxe5L#I8Jc`Le*mr29fy*urctwR@rJUA+cF-b~8rvuEXOZTH-~d2?n? z@4`rz=u?+JE3Z#2zpwnEv$4XeWY~dU;|zKglYl9)e-y#>h=_=MNxVOMXU$dYfD)`HhGm@{q@3 zolQ~+Xv%*tg*Ec9w_f`nV?H<=ZYTKjE5Jpuui0Ambs6LWc!KV6OYHfx_ED?~l1*_P z5hHKs{Q70y>d?jXv7(~5Y{!lr5Ij~|e18`=>S)mv4IN_Rt8J{vm4~CLEEj8amFoW+ zNdT5A^6(6xbrX^Vpd$RsaLh83pn#%4gWwS&4?*;Sos@TTb9;To9V9B*9T^$>iK_#$ z3iIIe+T}bpm_euGMjpTc;0pplk!%H&tFD6G{9}C&=v3ASCmA#IIcXHcgs-Ii%UA0s2u|7R3xC!0m#9JuuVJg#%;nt=#Vk>JVkX?l%r2mq=}U;>5}Zt!q4#x0gS6)+p{a z1p1!+u`gc_6XAm0=l^~RlL^!JlbU!?*MdT85UN{^!}5yu7flOPCkD|bgM$bxMV4$Z{Zi!w&&~MwIUeLC z)f51OT9+m!?=idQUjEF9G=^JxX-Wfu2O%*+xSnk2|D?qiCWp- z6?hho;H({l6-s$kRZ@e-(YU@_3?9yBG&GJ8OW-`JGD6V|J6#jZ+;jEkX|Ze6SjnZ-tdPj@NP$z*&j18gIW2Oy*!VM_oFYlJcfFzMY_VWBF^{GCk2 zlodWlP1qHh*$bpzUr4<}>I;$uI`lz*gF*VbP2E*y-@a@4hOhYAp3}1lJU~&BXJ}-^ zcUFt3Ad2{SI9ZCVv-DUde%!VR9rz>Z?sSQHp8H(kPhBQ1@q6H5gxL+il#B5WRKK9s zP6`0K=Iux0c^Jv^V&qNBQ-e+EWnCk6fxA>SG|G`gxbyN|{@SKlwN)0g$b2GL5|p;7 z62-q<(tKGv&$Z@`d;U#T7C2L4p>JVN!Cojmx?byjD)vnIfCDx+-iSTVqVY|KN0?co zZX>M_p{o41*=A}2hui}l*J)eN{d5g7;E?-*vt{<6xb)1gy%@xZ#{_6A{x_Mjv2lo8 zT27Lwj{BS#&^sHlY^msHYX5-nl94h|Pk`;4W2%;OO^F=)=P$b6}HO4c%`N97b zoy|imwZwt)vpC?`9mPxKPtrR-nmfPQeO^v3A_1o!90?v^6!|TdE*y?v=r<$aJAS2) z51;E@K0IiBup@UK&AV^#|Qj zb%A3eWis>rcu>=O_;E{-AJx5K{i|~cI0=B{4GsxeB75-|BuIdZjdt zXRqzl{!Q5)EbHkSXb#@~@qvSp+lKD)9XED#MT+(>lTL|ca9FsXA=J+QtYgpNC7m0? zrC1F(g@nhS663?w?Y?pk`t0=rm&_SINvR7ULkeANbpkK~`j#wNAZYPJ+>!}h8c;+8 z2Is-J(H|{9Je!z~0<16=j4gqW9Dol=CRXq3WnCK~7LdV@U{Qt6%w_1YzsD0g@D=6n zbAQNj95oF#TPhQQS&PfWty(|Xl<|~pj|o1ar>Ez;CtJtaDjlAtqd&DCv;b7yx_-Uy zk34yBSdAPB3!u*4AiffkYaWE!6{sa&w~ZptB^y?(Lz3AFN(2w+qIaDh>wt9rt=AEC zz-JFCYC>=m=>{GbF@iqD_#1x(UitvYTl4`YsLP2v89u@GQZB1*Se!SCiKUiGtQWlS9#K;Q6_g_~yiK-Q z*&QI23oooE2aa9c<}Y`L%3G2641MuPrpGiD%>8OA=dW8dojt4eYkdBCYyaCv14#6N zVrJ{Khmt0hT43iw;@k^!DrcF|=b#e!zB$maxqxp!$vNLW9Cd0Z?!(ocAO%DPdY<%* zJ*(*r4{Jy_)FJ(`ty+JD*4t-2c%GMc8)Mn|>Lh+>iu>$8)l3zzfX>Nd$Bu=kq^!bre8^qlXUu@o>FD1aP$~ zBb#it2Tt-1Z$0j_`+kKUJf~l*-z>s(E{gh6kN{CgzytK8U__O;eVg8&zL+q9?b~k? zS$03%{0mcMGQ!G_h;j&Tb0Dnuy#22fsa4indttQDBCX8KwqENhE2O&HY+Jqk2AeY< zH8*P_7L?V+o%uUxXWi0@JYiOA;Bewl5lOQ6*yMPBy zEoJzK&aQ#IemS>y?%1&jkqDM8NM;k~Eld1rHO5Pxb31>xGHIH5x8f^IKAb0x9;Jc5 zZ41tBU|_lZw~vKQ|3d3tJ1T`cw-;TJ<$CBKI>K1&t9aLd^k(T{u!$<8u-Kw8lbIS} z=29SNu$_yt11pLS_S*ML0$H)gGToQ>-C|j~$%pD+Fd36ud?Mhcl^*_=f`pnamk4|k zYLc0#i|d*M5of-{$gSS!t@ny3(Lvl;HXvt00eX^m6jCApc9V)QWC5dHS$gdw4iH53 zmK@J=*`}+voY>5IDTvlGX;BOD7cfPwngh9NIbg)+=ViB8`B9TY1K<4p+@oz6vEjw; z%}`uN3|Rj;{y6;-C~W^l02*DSX5!u__W-5I{R6-EYXkLgR`H1%uOggSSDD{dK|x=z z&cD%>%xOqW4kWsP0fr@qDa`%a-SxYFKo8m?F8=iL=OCLFy9O0i)zxk;VDAV(KR8w` z3;cweRfHRS%Fu8N0TN^uv}H>W)PuN=wwD5Of*!1>?h8-1u46S(GH)ss+AWi@^_hTo zmCxX$r(u1byT`po4aVaA<(vnILlFK65&$WXv`8``?gkKVgdE=Y|mKhWmr^SGn<+y2XpQG1Pe>Letq!hBfQ zUn}U5fu$WhBb=V^hbHxd1PHvR0GlpS?g4YfeDeh$R4U=PImb`2ANcBvaJ1gzWQgQQ z^OdSa|HyP-%qXg|6yQjh1+H93Gp8?*Ws!OhRhq+X9tSu!HntsU1rK!O_2>872>vR9s#^)H<(1q`#b&Zp{t*}=sM`h%ExyK?j@=~_|aRkul3?t0|qG14^A}dAB4DjaBi%Y z*kJ$zu3#UqtypdvT-+6x8T?F-U4!oY5Os3;fL#A~<(uefWWPX-d;Ud)u`4`F&n#}G zn7on_b^Xr*%!tN9mSAUQ{z|C`1aStm&a19zLqmCLI081Z78sFQx)-7HGhjWj3V{ls zwBrQEpSz6GlyJ!xsf^G8^}GK`xyqxn%Q572_+9xedoeIFMM7CWH)#s3$HO~cBFz)J z^!(e)$ymaFhD7Fm7Z|)c&~I=FxosDm^nhbe2_Gf)QPb^j4`IR48$nJQ_VZ`H`C&So ztB=-`NphvE>nZMkd)8y?D}z}|PENl1v-&!AUb_6=aZu2!wTEpdn?e^>JA!EILq`h& zJXtRATw8r!R?4eNCaP&Mf5?QW(qA-ae+4w$AM7pimYdjXQWgUk{;AYdk_2%ra&5N+^sktP(knWi>daK1OUMjq>ChwbJ|;`_oW z)VGAWCVD>MHx!@l>VVSU^KoZVHz6E?DS8&NJ|Vx9NfBX9q^hv2PNzDoa=Jh zf?UU6$z>!%V(ppU?4+RV@Z)x$9dUN8#FkP*q~UWNQ<-Xnp7x$J6T+8eeW;;+--BDn zYF|(s3{)u1`TU6t4ptD^k1Hz1+s)!wZvmA_awQg_&cS@**Ejg}UzR4r#JvXt9b_-4 z6D`X4K&KH^(!V0M7<_jKE;%2))d=GjybnDnr0Zep>g27Z;Mq$z;2K~Fo=pkAs}0Av5Q~?31}~RTrsYp zm{^5LfLN=pSqO4QElKj^|8l!)_p%W-&>L@RjRFy@o^8G%2ot_}Czv)Fc@GA<%}t|1 zob6I4+GiN&b5$cl!}_4k(0~91xE!UcY;asiyWj8}imsdBzXhUM8AGgAk4X%+>9J92 zYinV*mI+Tmb$V&Iy^y2`l4(lqMP^dq2pKMV+-`nq6ii)xW2_U%om4#5F{G-uxObH2 zG|y4Fmo{pxgrx9l5t zk&+IQ+LGs?<~@<{07gYPsWn*YM~&WXLHi?SYfMktp9!Ulr)aP=rCZTeTW-K>6vDxt zlKNN6H}*6o!3Xp`}2d5>vHddW=J^?YbKrf@e_l z!y3%5kzIUunXc4XtHS}o!3lg5+Z0cns4=o;ukKytI?WhyD(vtWPq|Tb9hc>jto^^A zvOQ4PJ8FY?0*gb0))N86u)>bRVX|X=dv8g*(&BRM1tz;mTOFRzy;y8+Qogrnj6KG- z#DxF%o38Y*6GiVST>A=uLZm!{4&`V6gfkT=z?M>R6Vj4)$l>1*tYjT;`y433KN~3RNv&IP_yE|FL0sHx z$mht$Y*5q_Fy%#P#79%VA+0ULt`#Z2fL3Q9zAzBCSj^z)-(LiktrRoogeY!N5Gw7O zg~taw{~mGph3f5q=4Eszi|ay?I&h)hd`$JsnL*+?bXwp~$jE5?T^ILA3SZJ0!qo&h z%S~zHS5|Gu8YZ=XAI-&bw-?0H3~!)WMn%3ErtB1zVcH42^ss;)xFcqkMN}BV+*EBw z;R4O?=Uxdf1a+!oii$G}gDqxCYt*^uhGkL`DqN423mrQYyW;GFO=q=sh3l@Zd3fp4 ziP%)lUnOf^c}2WV*7SOMk?nA7sod%@+3V~(CmufiPEl2ir+KW#R3mgEl~pd@c;mUu z;7L!t){}+l?ePgI3p#r~e3IB}6e_V*HZ=Izc?v~PP>`LS{eiD%K)`xP`}>($3ahJE zy?XVkx~+{Rvk8X#f5DK8#%L;QJ~2X}h9?uTuP; zqrvTxvGEE{UwO5}FUHmrzs^%1HEhnx&Zg4+B*GCFNoVHZz`lL^c8wGRdKVWLN;3~# zlq!Ad1;M6(u3=p?gshYdVTLq)Ay?t>vw)ywTCok$D1HE`RsDyYTvY#2!ojxk`~|+~8iI3hX|uqr+lk zWE7_vU*8F+{Bv;d$zYX@!<)w^w*2_?%+tez(%sWjSXIRW2~>CC)WfGw*TI)VoQbEm zt-=3{jg5&$ux2HVC?``{A*Ie#44g1Su6C8PUT`4gxkHC2re@^>5JT4 zp7lbS?fVbP6&Dw0xXy^rxIgsr@##W6Z){=llo`U%h&@;L8{P z$)f!uti!Iyl$DRdjJk}PnlSz#a3b^b`JifeGh2M@9~kfi9hp`YCgb<@t6Jl?Z-pf# zG`Qy^<8*X%Q0?2d56xx8A3o53`SQh^!RgNN6DN)!!jZmRjf)o*hiV$Xe=llo=1xmX z!!y`;a02y=jOe(yxQK_Sy6-9)K$5RVhH)Yo+$b+UmXVRs4)7<3x46$OaU&^zJ_!3I z;q~jNNo@s<3l}b7*;OUVIy%s-D|`0r8ci)No4%SYs6vbC>ec|V=BzKRs1DmGlZaB} z=H0t@Pw#kg3Ed8z0Oa1xCMV*PlGan?1z`$1aw}Vg=22*^9*29lTj^_Cq2A~P@uq^!oz92^231fj`$)BhiT{YBQ`(xn@yZaE|wH*F#>97}?N zsfT|=oqPT-Fr+R9MTE!x-XkKyaV756t3Ae={8?F9t2j7JehR<2Hl!U}Zz}6^Sk7++ zUMwoK*)u>REb3ZtRp2<+iaV zEal9v)$U@Bg~$LXf6|fq;p3gVcSW2h%uNoU2*v&=|NQx;eB|{DujTFS#cAp2l0nUr zE%ogi2igJH?kK-jlZ~(cxbDdb8p<&|ECAxA&CG-a>wcXxMGDLW}1m6az=N`<#= zTY--#EiH`$_8_EdtgrUgy?b7WGdN}l$#)UDPK+Zz9)+j{Af#($<%cHsWe;SQ@k%s6 z3}fZyX2e6sNx?UTD!RI^&I@NmoAr%FjFbxX}OYGSl#-f}F=wCbH zdP>f3>*B&9++Y=sqC#-P37WBt!C8j(Q-ox77b+2&F4%}V0gKUf&@;ra2fb_GeA1O! zEyR)OnVAuAHOnXv4DPhHY7+u2We%{_3$N$edMecGWDGeKs7F{Rhpeo2W6!n^4f*}} zaT&IScC^nC>x-equcmaC6H%*ueSI4dcBS+`e){wt3DyTy<)Ig+$*j5}RhMx<^TY68`!%6T~x!ZDr_zF&IQ%Ukly`!KMTRHGF4x3kwe~r=fX~ zk-;u5E?&cEf^lR)&z~pj71J6R8AT#siHV7=pr`+vKmGg`FWZeS}5$ zDG_ODYC9?_D%e6pLu)2b1#E;*!C>%5clQcBSE9DGm>ttIgWwigZV6c*wDzWFD=fT zIrAx4f=x|{%=D(m)3wVMLdwc*%7E2E@u@EAUCkW-sXSpOpPF_&owq^w*quj-d zT$FZz$s?|=QV9tO@;nV+zFY?$TSi&7Y+32rAsn(OJ70Nf%JBI3lPA8KIB7DHl9Cvh zAW1xIHPW7*o^Mi9bB(g^-@i}s2o2?RaCG$LD1!vfpsuc-k)4ftff)KVQcc&Q)3DTz zM{aED5@H#gI;(Hs*j)m&hbbxGV~p~1+Kpc3ZP%|~S1Egr%$26Bq*S_#ix+dCl`gzq z2SPs6Xl{5|n3Ic3&(w5fuC~l?dxf#_aV#r|N0I&Vs|6`<-o4{icXrQj^-qdjI4^EH z=j!T8@j%anF5Fcq_Dagi3#ly&^~hIW_uF(XCuyYEhXqC24n!WTI$5Ljc3*312dqc#>k6bG&V?##q$a*0u->EFaSJ`Ljjy;I=0x7@3%Sci?_# zMora6+xexCtoNItELqmK)ti^j+)6mXFu#oPDhg&c#`GB}(^R4RY)3`N?Gegap zY*^pni3xegT!}jQ_u*Hf90H9ChQYJ3QNz47hr{09zItFh_SLH+=g)tOeU?E7vlql= zJ!*3c3*6c3DDfgQGdUWPbQI8%pYc6V%2|ARdiwOmiwrU{G8!5h;Rs{Bl_9dnj;$b} zi;zV?B0y>`u?@0v-evfHS-WADOewpIpxT&fwjNe}dc2nO@l4Kzw##kVycw88B@Ogf zC#qft2vT6{{95VVXv1QFE=Zs}MAmL>YNF1Vk=E1K=lAyZ zesig0<<#`_rY&1&Oj9pRNOu*J77^6^j5vbW37b{>>X<2WMw}%<>`(Eu=u+&iYkfA`9eZN27Q)ZQ`%__KhCMC-|VFZQT(2 zYF6cQ!Bm@30Pop@T=>)f$@Aw7J9oy51SoVY46J6AN}O5|c#HQu=>P-ySDLVQ-@Y>3 zX#t5%n<}Y6UfS`hM;s3rPe!j=ZcIf}}*9%k!468pS-0nI_!GFh( Mo|H>GqI={20aC|yL;wH) literal 0 HcmV?d00001 diff --git a/results/AA2024_simulation_10MC_50exp_1batch.xlsx b/results/AA2024_simulation_10MC_50exp_1batch.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..f3eec57010f81398c5449874d5a612c9f773cddf GIT binary patch literal 76614 zcmaI7cRUq-^gnJ~GOnVFT)VQfubpx2Y~pgWB{Q=qWY3C_z4yE_vPYTOA-hNv5|T~! z?{($<`2Ie>@%cl;J&*G`=e%C8^LjqdIagZ^A3}+PgF}RKMbjItWY`7`1pj*re#pVk z17}O^N6s#f`7B&qcs(2)G$J)f+xf{A&QzCYoKPFg0?cE%bG^^*h>Ao%kbe?#?5*1t zH7)s#KcbPU5B=fhQ{m7Lg}xNM$~d*8N*(f}#c*X-T01l&a?mpz_QmD{O9fpwzB!dT zVlefX;dhP168$^jADqi2bs}4=m($J)5=m8nmoR zYo}6wYxi#FDX0YD;oCU{(eiCAHNV~{<>0GoA$dUE0co?* zT3twar++1?Nh7E4opFI@d_swdFJHnf9jf)*Rpm1cTO-}|RX>_?Jl5}%EyY^@Gcw7> zX*bCUad6Vuad2QDG9C_mZnjpAR{#DKz{Y0H(CG1$7^Uxe`6myXJx9_mk$~E2*kijV z)78nrYnn_U6zEqDo)2CJ`?V;GkoPB$t;J|GrbjjvT2kbnERM=+af>d=@>ejF;_1#A^uYJ>%Fqd#f2HjvNb%f-a2sTJf8X{ zZ8fwk!5|pm#7~E2_8W9AT+lRp{#~#AL#w@wjQ+#!;gLK3fxSL)1dS?txuaA>f@HTP z($RxYy!Sq=Wk&Q(xd}Pa&dqOnh}HIwguBo~=5(4e+S7L&TJmIxt8?u>J@~vgRrb07 z^Ga81bl+!oHPtqaH3v zSAtu()|5IFd;Iv)${!l=M*V}Y_!T$@LzHz+8=3;e?A^|IJ%Ut zG`xp;_cb>WO@*6CGb@A<=I)&Eh;Q92O_OART^)!cC6oH;Xdl&32h_S22b&vS?Hcyb9I2)_zV}8rR@%Jh_rPoS!HL(GDPl}T zf$U&-G(`(zsF-TXT8=9ka*|=%q0;s%u;2Qm-Zyj{;lLfauRL~5b>RwIq0F+N(52jz zd&KX9_3bk;VM5YHjDjQtn+=T8i(Vciq6uB^w95jY;hqgoiME&g4Qv(n;Q)T9tEho!-zfu3%?@>tH#;+d_#Pi&<#HrEcnumqQ< z+~c`P9jz8nCCgHO9NxFV^?~@;10z=Ae!WpE(U(^<Wa}UgUvMvRc>)>tOMVSj2 zb>ZKN&hb`{Q2gbxlxS==KO8eZU0_w?RL=Pn?s(&_c)MK^%%-I8o7LMk6vGh8Xse>x zUaFc(bLjM5X-_7ULX(>G>K)6tYXzz~+i>0HrCTZ=P+~2Lh}x@(H1FnrcDrio)?a;6 zdj(Ihp-H^h%SyneU~85KO3ZEa{NB|c8YXMwOQ~sPUN@c`CO&O5-#T&WRlc%#d&z9a zM83>-Z)X0`Dfadq^)$~;3S2iuyqod#gw)pr7qtJxL=(br2jY4aHt+%;6wv!89g@D^ zf;Mnc4VFra`zdkAK?f}PNJ;4X#*ZSmNv`HZz z$$!>k-7cGABMq7Up*PS(+stOJ*5T!p&cl8-Z8|1ZeN9SfJ2!cbu`29ws#krx;+r${ z1ml6=thmdx#5a7?pD=FuJl{5-moNP(O71r|mTMibrroZ7wi&>jdOR_mw>L8f^&TrR z%zto;LPqV9H&YCuWrWd=kXaPv{nCQBrCn13P)~pKHZY&J|Wg%&X${zm*2iL>lD za#3b_jLdeAOo;w9fvG@ptw`>ICW++N({-|n_79QY*TP$H|K|fTcmHvoEgTo8OMwK3 z=HCPI)cMiF$F^2hZjbrS|2ls~(%w%;3Vm_SKj4CtH~AJY?X}TS27J3e@xW{+>$-(C zFCKn&$}uZd$^+Mzti?xb>>a&ts;&Aj|7mhUa~r+2?CcZ!yYy%J_vG1TN7UIi-`U~r zs#eQiGr!}G%+sx>Eyt6YzK7d>r{m?PTTOl^hu!O^TZ>^bekY^P7Bl_+Zbr?X?40`f z9VeQdEDp)|p8VNg3OfB8W>(6_w`<^c{O3sKWJ|O~`fS?oY*V!5^!u#uVaLAT;o+>` zai`hoS`-lJK9g!b{T_Dqx5_7VQK zv-NUc)202{v&~gt-^mrf!_FwPvx9Zt1G9v)%FPF816D$lmA0sTX>C(}&6hha>o^J}ZKruqlff2Y@d z5B~r!H-R&qQA3kQsb*(?4*2E|elM;1CHkEe+8Cbw9gSKaU!TofFPuG|UvEBLZenUV z0|4T1d8U86zvD+tJ4-Dqhnof`d?o0egBO4IXWtzk8l3TFJb5z+ zJFR2#JwA#0Is1Fv;O*B+M>2!swH2A^TauIyXT3na>rYHPo9tuI*VWqnNqN0!Z7EBH zMD+{Z^hs8&SkZuAt-(Dbly*jJw@%A%qm$#pe(xh@ z=GC8`eKECi)J+CTA0AXvBa}Tbg{oF{vqNRaX(rjf)}d>@2a>b{dA&J7l*;KmwJzO zeIKnYEzq(S9!EZrX`p7GJhpijUxSI+PLqt>vqHqimPjdbHGq#!A3sWu(e+hs$uy3N zT|KRO-3~gjN!3q z#_OEAUl{hQj7)tmub-H?d-ZL5sQ&5Nuj{TqkTsF|ev9%-eAenu*B!p~A(m5t(GQ)w z@_Mx#%`|_u;D6-4GfEh*b4ZgsRcR;7*q~xM&KcePEjhaO(5v;iRw+}?s0rK12_zxp zg|@bLrd67dq;p zPdF~oWN*-7IZzQNwTyfsok0BQ-qjHu_jDFL;We=2d(X@#4d#VU=OJUQ$oob27|%IDtN9*{OZC!Qb>_hs{>u}>i{_}uk*iC? zSNP-`%w^m{VOdq)F@x1>sPISH+d)DdZ$-)-!qE#F3PK-4iL}@>= z)uPRWDWDuiS>=28V;?1mfqUTniQxMen(iCR3`Nz(UUwm}5|b5JW$%2WE-N%gqyv^aCYs^Gf9iH(uV#}pUn*e;^^KI(DA>eAarX9aZhw=mdT zrB7gg*IbTNlp~&TEyVbr#k9u8GN)3Kw#qj38vgxz#JqGt;d_#`#4ca1x_rs8@eaXA zADor0E_ptSioKroLR#)CTdUO(B=J?7;xoo+NWBAby~8kTjKLdw7uOTX%lke=+;ZRu z-2L)l#!8)QYWuUb6Mz37{^>vvL#`RCpD{0=p-8XgLD}zE9kIl}QaRUB>_A+MG?4*& zCR|+adpt{tj`r291xln>FdhFx*e!j8?1M+QF`FCI+H{bS&6lAPO}#}eB=bSvWZ!#i4pwUCh^YQdDu3! zsq+``+oOfJSK{ZU7CI0YB25gyJ^}$4y=4$XpG%TvxpwV8i(cUk(SvE%I z{j8lwdvfUSOVj`lIP6vL!&1%nh@HO3G+5ac z&Z07%|JepOFZnb4ymjyVHpSt1$)8M<{#PyN_WkdWy5E^!E9s`qgzA37zE-k-#rt>c zzWzA$tlr;@b~_jMD#&=DHR1xmgv?Nx-YG|t(*CAe&4-T{_?d?pqhmX zC#`WGq&|-41^3kG6~$LPWvSs!hZdU-MrVow1xGK0LS7fx=5fOA=<=WCB%FCKvp{$9UEcMP{9aoo)OGH(_G?Jzn0F5-91_Bb>Bs<+L1*aIrB09ByMUhOr zEY)TRl1gRqzL2ZYs6m}y>)=5~`$t`&?Kt9}oKnO>_Lp!JH6+XEGHETOa=HX%B^P5o zNMKsSA9UHC7t*T)>R94%*ne}KG5$JkNclCm$*|_{-N$iSS25~xhqbLb?01TqKP=0c z1d&q;UutkVPFF^meRv_g;f@!+!cL9q%E@_Kq-m~W5`)au#Qkfop;*Sy;z=S+_f)GG z_FGrxOQGPA-hi}wppSjKv~c5_t(Vwmfa&ZRj5=?9K*E)((6?RNiUva)x&ncYLqaRc z?1)Ne!$1y&mZV>w8*frA6mw-L^p(@H`c+KpwF220gLqYx6)Q^_7XG>)H9c~PIxj=o z{fC6+NpMErCtcy4G2&mv#5+ZegZy9D*AG1d8@AJnT0`%q*;%q3CJFr2TX`Td+Q*H{ z^hQ^-%B8zywOi)dWzvx^+Y$kyyD(?2`B!X3I_w(-Y#u@G1ET10e~@H6c}BcbkayKu9(GVZjSjU`|HOn= zwQ$=XR3)^g#xlN3I_OWfQd4Xj`943?EWPb$&88sD)ey5R&FSN}n9a`JZ4M_H3-ntW zvXE&=YqgfY9h6@KUp*BkDFFvMW>+GkFWg%1%UjDEJYF>s;)v%o#r{<&G_~M+fkvx_ z+8p7^7$Hsxt&_2gj*%F8#DR2@4X4ltPt&s1j@D%gGFJ_8$>GT!uckn zhTjpkF{*IeCY0%fo!+q^_c5M~cA*k3I=^;M`nbMj4M%2YS{heo4dzSRp*6ZO$~ITX zx`FR*5A#Qn0qCH-YW8G(^m5|!jK&!mH)oj8n6zCH+%Z#_tcIA@o|sHF{gBWcH5$FT zR7 zy2!6m+lG22CFBr7x*HslrTGd{fw|YSJ8z~JOz`jJr^a@Ncxst=4Vi984BP_n%agO4u&0c7(boDm zEN@gsr4X^~rXk@I=;kFSpQ|cwlp&vSucnf;LksM4~tOp74D%8A7AbRT!~tf3+Y$qK2}Si>!3h`R?PP>b92? zzsjTo1WsU<5|$CoPC|!}t{sSFmZl>?1x5hC7_+QSg5`ZHy!(+_&&4A^<>`JT@pJL3 z&w(1MR!k@jKuojEVjg6-G6du21p)-R*}Lc?1R85L#n||N-r)zQNEHV&rrNqY-*PSL zdHAkjO!~+C-SjDzk;IYWS0jN@)UBAGG?P)YKk(K* z9X$%PjMR!0PqMr`Ab^!7?gpAj0oDaUI%wYUwIONdJ9ugx_#jd%Mm*`kWeve@NH0Bc zFEV`!NW}uF;aWZ;it^b|d2~8s&USiM+I;Mz%LVi^R+jXzxW_DU;Pl@1M`?(cWiE+) z`uSext=*LFHSYjToS{u($xHZAPMH#s#B<_T=K>^lueV|d87GHw*Uh|qvnlio0r0m8 z^?1pd0hMcXJr=Vj^kid(xUcB=qf&mt2di8K$MGF=zL|GJXn6P@HL~Zv&iE^+IXr`w zVO;q663^Z!t50%qw56x&w&?DB%zEY38S$bqgDR>HDKnbHovH|3H<@Wjk~VS;TA_Xd z_121N_U1IL_qhH&{9E+j(3kxIWjC}RX0dDRcqhY`4{|n^vlMa(30JfN{{1#H&@v2a@P5`(xWMpsh>}i z2b6uyit4wyy;F`=wgZ$MZHI*VHGfn;^De$Os6z*NGxAq!a(LXXg^#4*hii+W508xi z<4$MNl|wmvIWudv;O1)XrK0P2`gRIMs~kz{WVg0#R}zVT7@B@a`gF}w^A{-@iBEDe z<>5#bcdjWBI$tNd>}Jb*NLkWuqV`J3@XO_FzOKKYuB9*?3L=m@i#<87QdrF6*`7B> z=2(`x>|IVMw{9TnF^p))=2N)W54GaqQ%PWE?g``)NLcN0exI+O$DIf-GKA>yKvCgN z{o=_Q@-qa*gYw4=MyY~pXoB<2`ovKCqXR^w1i@%DTh}A0 z19>7>l@z(6K7&!po*J5-{PZYYcbNfbgEsPGh*co(WbCuT8)ZG2M=wfr`)^d(3sk5c zF&3`)CcyQx{p(ewGAeiI*#EAp|4M6J|M+56um47ty+D@gZ6+X-0@vfj&4)kH-jE`& zoUl;IsA~S0HG1QdoxmrR3jv92|Iftz5Un!yv(wwgF;1-=TZ=*j%shn5c1!bmGg=6I z7E1E#7RltjyKb&w*UK^;1@u-*R7kxIq243q_Gy?S6`Q}oct6;=VaSFI-apYDyHz}o zRDFc)WOc)3bq`UmfH%t#1=>il5UU@Yld&yfbcsSDuD9AcB@JZtN@Vq>j>J%P+s23- zIo#`12``F`wN9z|j7L7t=R*v(DfMb-_440iLoyVB(MF;Ptn5eUo_R&OSI|A5i&;X4 z{gRlIz(qy>2cb$@G2^XVYu>;mJ8Lunp8e0PzF<^Y;nJ1Z_c9cT-hJ(li&mjl zrGb_DL6tkCa1h^mxK)6^gm{slPQq&Mx@)8wt;V2^i?~+Xy^^+jSiknSKZ=n;#)f3$ zUsM@u4T+ZQmzZr1^tBu!@@hy%49P}DzI7KjX4)tjGH0EVVbt>$yoZ{-j0OuMYmW(c_?Mv^d=n(*yBK-#Ie z+7|)B0RdXX?H~Kuwomyr_vJ%t(PFOMaW?{4M?%?U13_@i-4KCzxWeArRyQ~%bzK_0 zNcS}@4j!chW{Cu4Rd2gu{uCxtP!bg#1aZM+8!{MYv|u7St|$kO% zHggsmIYu3_=tbg`9m+atR8$8KoPwM$a}B$U3w9azu=8a`x0NvxL87^n9>zz2!!Z+4h(wy))Jyj0+ohbzzWgxdX^}HRp@ukT3Ys(W2fLW9k{)vwBY?jO zAc}ftB~(r{3*{5=j46ngBcayCX`kmL*JdI{v1L4xk}^E06npx&Eu}E>YWj7I2Kl%( zdHfR@V3PtO2iOz`Y~q@Xl~JNk%oG2C@fH{`VIFg0j(Z}lIld;e56wm*-?Qo^llSfJ z94|i|`MSv!r};Qjw&?#zod_XqD6QBtX3>K>cF7qKP46?sDMjdjTenT;W0d+IveqZrP%a5{!&QNOa@Ik52VW`VHjzC1 zi8lTkESxFVH%e7RL_kFq^pZqJCpkN((uyLKhc!!8eLMmY_mXWHlUP&4O4^>bC z$?)Ce?EFd_@i45!n+1uNhN^QgLmpP7>pyGq4RHk**QfRX} zJYoo$&L9octz3hT8+1_7qo9!^2A9AoXL1^9Cp)@>jOXZcr(`e)xPB^EUn`($#mRx8 zp+r5;>4Pf9-|QE3pvOhs=a|%SW72E8rQYkKUDTZ9NTq-x%i&Vca}OHv-ClB!Bn3mLL6uW1A+PJ+TM4C88GG*Cyvswtbm-D6y0~PYgjayU z)jbUL2lqcLxs8(Kc|nD`7`WWEV&fj+usFU#&Uy^3G3rIh3e;dcqC^{M9%6Ol)}-#v zw}?71S#18uz{qOF|0*8*q&x77m>^hdWizgzU#rc8rJ}&|8ZieiJJ;W0+GD*JnJZA4 z@rcYg|EsT>lMA;SUP;lj|ch!s(p@Y7X z=uAd=l_7pTDkzF9bR?Y;n;hJ_v^kicw+rgTt#Tg52lD70zn8$*Kp}O7vx=_@jl*p* zaG`AfBI5pFkYDE{Nw|BLbXK4ur~r-eRyH3l*Yii?Gk6EtxM5-q89BGpEe3Wpmn85t zHT-oEt;JWxYTz#RaItLv9-u=LfqzY<_|pB-f87)ZiGEQ@1kdWw0Wb%pNDC-#WnV}eicaO=Wa1>eSk zcgvjU)}sW(*ce1uI4FfyM>jRQAVCL4R8I#iM=!Jdt2O=Vnt?A4a>JJvYNCw5SSx@tZ zqIF;o#-M`s3QCTl5r#@i%yZH}haku&&0mg13yrtwe(s5MC}~vaAU+pS(AB_2?BR3) z{zpjjie~IJq{H00VirmWy3k>c)p&^at*-jPF->R@VT?j$FLXrFq zBltFYmD9_)i+k)p74H8>MeZeT7%7N4T}snb&4=|tIPFScXrrurx^2J*jwzUw0^p81i)$ zxBr7WIF9Nt?p~XeLny+%O?}3^K=b36O;WMVM+n}ZU4N_lY{2Csx`c(9S)b6PM&<%1 z@>s^30_QH@$HU$CY!#%4UF8&$zoNDUKa`eN4`VLqU}k%N=8%S&wqt|~fapt_CqD=2 z{I@=Mp=bKKp-2Y2tjqXWI|uFOPT^7#)vw{lHLL}#a(*@oSG)R^34!BI4VO4bs833w1=HJ#JO^Dyuh%d0*Do_WNm$n} z_tb;vtbyo&%i8_Oqg3V7NL#5&B-~m8f?yy-EZ^b<&~^x6$wuzd0=5(ZwzR{`I7Vg- z5$#5FM*@0hWQpvb*(%I)zQAno;3?X5MZ0}Oj$CJ6=4V!UdYkqfU$cPdNSP-y_wMe9 zCGZXM8lks1b0ux~m&uddXp-{E>#;BE5HuFq%D_~io&+v}6Hy53LFgw-yx56EEp@Nc z+l9pf%X%{!+w-zcDI8h8S1@k`diNLnCdOkVG`P()A5+-T8s`n&Kfh7I;o8U<#tQWr zMsKa5*!{iqx%vfNYT3fOW@JyPz6*j~>*V-KtbXY6Y3MsIrPJ84tW;W#`}JNaNGH`R z`A^6!ysrxW9~DYYZ)4T9@{sb|p8y)G(42c|m)v#a-NfOan^P~8JXia9A6XlEojubT zgjMfsW-%`n?c(bT-#UoQ5L&PHZDkD~KE$O;+~&TaRgk|gb9GT%R*mTj$yS7+j5(?* zX1%AyKkSzEwT-w#`)ZUz|J=^$evU1B>+-y;Y_$$M(Hnb*Ee4a{gh7Bwngf|ZjfIbQ zc2B!=)7Ya|fXv{zOx6~|LHZq6#avkNRb!2+a3Of{w=;#fpOCvgk{ovsSj)-uns1(A zU}bj<(gA|)mw(VJwtIRhhnw96t0qBb_0k*rq%8)i=6kaZqiVWk2b6a+U}QTJia6u# z$lX)r5l>zOvgRF&XQ00a2_{&#?BLa>)GCL6ax}KxG=Ws*R#|(u_6UNqmWad%N-}!Es3=46+WB`qRHqjC&puLv z+g+OgCp3Zt@el@GKru^x)-0ipJ&NW+<^8h1^D&2vX`|7n%i+3S zOCWw{tTpTtTVLck%c9C_!$tm3fL!eeOAia+_p|+JNc$o80Q+mi;Z>O=!190qba(*z z0$7rh5_|wWwFmIjeXSx^@d0>`A>;uM;e-DWAvYztl|?dt|L($UM5vmzXfEe&r;CBC zafz()Ijp?>Rrn?^CHW(Z z?px0?vmAzf^#%>e1}^|%*FEN}S_+JM+M?H1s!K7eJB%0WZ^f8>#W~~#{wCnz*1XcT zy3aYOyFphIy8ri_kR<8{C0-Dc&8tL3j=@|ozJ?4uQ$tHrLmLk}s(012?=G-wL?ROT z3QHmYNOtz?VzoP};xg0F-59aoh`ETVDIh(O+EzbU0rIE0l9<=#f$_RlNw= z9e~Bf*rjA{3hh2rTR^!2Qqj z>5mSG84bx8M@+G)$E-`9IqN5&Mv@?B%myfLUEWzqnq$kdL1Za6F%+&m2{a;U2_M3Wu@JRp&Te1dzy~5h z4|dwI8IbQLoLqbK5{fOxRjNUw%SBPs`F%nLbK(H=wKX@OVcBW{56^xJuu9%CcE1vK zUKJy$cuN_XHm=k*uBlZlzwJj8K*q)ZzeO2q;g&cElw^U=W!Y0@*)Kl-1%Zs!fzLGo z|6P4=>RbQ*`PQw;Etq5_Tr%fInAQ|q>;5vMq~H3ndFuT1Ll zBSYm+SNMMR50M5#bTRly7BoKWhi z;o&;2tHNn&8EaC}>s0aLi6qcMi4eiX-IW8k0X8}MxFxPi=W2p?A4l6mw@OlpFJuzK zPS{gsuEY)s50^0NZa)A(UhCKY;C^FCn{J}8Tf26$$LiWbCEY@fSvT0|s(~J`(PUs* zW3Z8f?B6cYb8iX^3OjuvsQXP=cj4MRHM#aaK8no=xV8XQ6BJ*ctj{NM;=B+TEPwD7 z5AV-Yf2$wVlcU?y!)?^yy&NS@c$jw=QcM}7S3L~?1$)wK5~BKU+_;ABfYs&XtjA3Z z+y`+Xb<^<=Ki!2?Q{o#|?*g&z;w-Ctv5qprzb+)(zUvOguleLXt*A1X6Yi6%UBAzX z_;9zD`&~sYuHFj+V`YOnzK*Tsy~S|*_$ubq`_UTLD>)GlboaQI&LtiiD@Tp5+xlzS zx(nfSE=m$CQwF(_yw*& zHJ5O|xPvne>c;g+9i$xV&1}KPvuFxqJt!~N2SuyUaMk`1XetddzNp9D&0Un2JM&K$ z58|2gOY^+@{CBS_aUmk~yb>ON{)U55xC3gZL`?b%H;)CYwhM?%xd{2Fe&h>ws4ezX zLZ|7F@wUD0JMYvmo=3mU2UKI-hEJuQnK>blD?4tLqn@C& zt1fFi`IQLD93@9>r}&ri(-gXJM}Djl+vD za6Q0vNcyqWFY`J?#MbXd;2PQfE+qXQbO9m5vAJ|)(OVd?m4;iyhJ%6Qpop`kpvW3%mNpU+VkO4` zGX5%A;z#TE*@utn1B+5*_2Qpn2FOwU&q)Y^^|XIZ5P*8dy_PqFO;i(-?s31M`oaOI zfmVzXdfd7KV+BfzPG#W3PI+ycm;V)o}i@%i|-{fd+ z6EmsWiq7|cJQOSRM@;k_KkVS)ii))gW+$$4)(4OLSW|Q)EKg}Iv7STSd}ojF7#Dm8 z1a7wqeve<}{AGGs&2XlF8mb_St25wVqy)-k%or)x+iORJKUI)b6<7s=$L{rs}w(hmDF*1951r49j6fY$}G`onje|8ap zP0~OO9>D%#?4)8+>lFazGv9$^u#_yI8}+B|84AmHMiE2fy^leCx$kjka-(^H6TdFI z^$OzS7{VIRUd>iP0dOJ?rcKi&aXY?Q#VtYE+yhi*TJtoM#%%bDZIS@_$_E>TC0{9& z3F=0%dvNs?yx7J7l|xZ%_`X{Mkv~=EBBR@saof6A)K;eD|5cg)CyV>jc+TQRVG{47 znj16AgKgA~{@*;!srMgG`y4}0U1Jop4}Y{0nARw(nch=86s?}#hT3S zAN|K(2LSez3)oX0xL4_%6)dyKkKTRE4`>MR{w(2G{aKpxB9T7q zezcV9rvsK!cc)R$ckZPJ*QOq>3kWx$JxQRpX?to!rSyKw$UR*}mweoUJf1N^I3hqO>Spw^MT5m{68P-oE~Lc&YCL8fzbRzx zG|fl%wq9rq`7H?vi=<AO-X+gJzZ z)GxWXeWgxPow$5m{qK%9Bn$F1a@WA)+%a9bk)sbok4G%rZv1SImpEjoVT>wCd-@u& zJ$hso{wQOvFzOP4xN<351!lSTDP?tvww7&m3KG0@;XSd$D<@G3o|@!i-9dqpxmZ2N z3%9q{`8%nqZmY-tqi}#%VJX}>ud3F0N_@_%4z6jscK&WJzH9cX_JwV7>9;de$~A}) zpl8oT>_PI=&`Htj?`R`wXl^c$7lb{ABOXu5+})X$=#&TZ`C(y~Nt0A1>=8?q^0G zXTi=PPJgEZ0hEUjx_sVha6r(=;SQ505Ql*(`pvsFEZMAaxi|#mJcQ(SRoJcI$G<^I zPGON8-Lt!}|GAa5xSKEm2rP3GF5CVSxXD0CzEae!>(9IDFnB^*|3j&c&s>T`J8R&6 z)+>?QVBc{N)jD`2{J&4^yd595N-0aHPcd&z&mNJpk~(%$?}+>}moitlqH^xTAd0)mzT;*S^&MK?3l) z95!B+Yr=1_yiPJaK=Qwa!6kwZl4!PHu2NFN)8B-{)ugSy-y_pAgFdA~R?{N$%z6MK z?l3_x%i&T`BoMyGcIAk^oONMO<-9(0Z@4L0&>0DXliB zXwGGi&t1PL_)CI<|5{ex2YFymhJL z_ni=0#Tc^k%-IRgskC6Q$TGbRMpRS>T2hjLqKgEAUZs+Y!8n&4u6_xw{sl#cz5)21 zNiVq-B)8At3tp%z=kMdu&$t3|z z@e#at`uOj5O0eaj5x7Tyf1_NHU_c_UximzL_I-`Ei|~*}#e{W5!XCCyBv}_x1D3n4 zmy8DVIIU7n&8@oPJ;=!DhX}OV#cn>tYB5i4l>3{(*xAB&X@YygM?9-Ot!S=vV2)?a z7d%NXtlxpY9%**p2P43dY(>1g&bMh}!g?d&B0AqdbV2~R;Q`Tk{i@zqq>^GhF_xOL z7EW1UHV(2#>>vjeGR6m}Ydbi3WtWU&o=BNvOY-d^LG2eOPltx6NER^Y5YW3{9GcSs}|VA4InD`;`IaMkr)Pzo`THAV?laeubDaw$+L)x^M$fX1z9z< zR?f5vo?t+;InyoF3YZ7Fis+wSTT3qAV}!!g;>!y-D;z{C)GzigA;8~Itw_)!8N7s3 zbDz^P1<*U?a(!-utxs^xn{dsi&VUby0UQv0b6{I5VAB3;0{&|V@GVlDX)>JAf6Y=t zbLK2U&=SM>=|!Rm%VE`gOj!Q}*SHDS_~KIg1Lv>`>cQjw9t|G%@R}i<30|CsqB#E@ zC3A3z)QbdhLBBfla*&$!sD-wVxG^re2^ale7q9|}JYfUNHA~1HJw(J}m` z^Ofcz{b3SAEK~1P+4LY+*@URiDlS)uts^>@AGfKo2=650wBQSA!UVLXw=hMfGNY`k{AJ7wB> zHx*~UM35mWOJ7*Kgxr1{K6cLPDsq(2JEhK?pJxfxwoYp$Ws0lEeUQ1 zI2mdG2g9<$k~JCglj;-Y^agblfd>lz9an%sI&OJNz%`QR?<&-P0Vp*{J{RK_nl(6w zqVhnIy~6|>xD%G!hZ=A&H{Xpa6gqivcXCQ_>|s--bW8?rIag~5?Hr2u-3ruW9QrQK zKPHmS9PBQmNIi=QMG@i+ir^tCsD|sUe!4|z%3Ep@qS^}eYJgNP^?6)+i|v8nI*-G@ zVFK$gZAOO+gWy8U4|tFgK#b9BKS1%_tdi$6CjEOUmq!WhJJgH16{z!gM4dLW6|@g| z0Zum|OQ>!v8HZ0{0&6iK#oVzxr#aOjcQ5pefS}N97{HVg@hw!E=|5W+VTdvIgeX)FMnoRPlgmX(t}mNRXHuV$Ba}-=a*pw_ ztd462_dZzSd{V^8E#REiRdv2gEHJ)%h56a}^ClsTpH7>tn<`tFkPX^t!vqP$>44V3 zsKEnRkpG87=Rb+I5I=Mb-*FvW(jG4=B|!PrM$y2WPCvHW{o`M^oBg?$-Th1w z)yITUDXqEIbFcqwVP_?T5Rw4rz6FHrHMWN}@%O#Byu8LIZG`O|GX)xO0#e{)0sclP z^JLqe-JQSIn@aNYDYL&|2xoLlTH#!_^@jFMMtg+hm>?q{WtdjMP0$My^L5@_^L7jk zP07l({-k}A)*c}=CP)hea$5z5qXD&k%#4zn#_Z~4|3FRt&Y z*qW=ho+t+frnn1#xdK-V@Sip?Pv!ul9rR?uLx0a3qAynn72R`+q~&#_ayiIdj=)li zfD)H{s$ek-`GcSwCs1?`%8}5~%gipy&;hhZks#p(Xd1O0#4xT$ul)ZDoD!K@y&!5C z($>31IZpO+MM1|WG{;Lxhj}i663zA!G_Z!IZ%@kqD;0b%;uXWt(T~5#J%lRnMgR(? z!BL@353bLj`PDBz-aetZjdMj#E_&>dD+u~=L?p8*mUaUgCtSwY;Ltx(JpuC;@5P){VQeOkN=?LN)=t2PBO<(=Wh6@A%-&JD>%)cCzfB8Nj zVfm2}`N&o&_6l`wV6~xNdyM|-kY#AWWm(-YS=~#+V*>KJ%1XM-b7e3zTMF=gJsl9| z@ed{vbzUDg#;$v;@O!K+=+4|pg9uHiz4AU z5`usi?x&seLQXM*R|(IxqQGw*FQeLt16lkeE zUm;g;r%}k)V#Zckha!rQttP-|>@W|bgt+5~dGFJEUnka++Dhc-#x3UJGc>VnT^9tX zQ9K0^2Q`Xi&+f9I65C~SV<~Iq6>@TS8uI)hj&p6$9Av8x&_)ilVF#?tu>)3Z8tWAs zk23(XlN1&O%+3=qy8*!LJOQ&4J;=x~E7;S5@fJtb&*~l6r-a`b#bG_kKfi}CZ8==` z3;-T7z*x^(^bb~S+899P^(O6{vgZh~^Mgj1OyNC_fue0dORSb>YxlSE7kJ2BJ-wid z-WsKkz9|ewXf;WP^8**s>cEI28G*jA3fV6eaI}pJ zmE4JayK zN9o1^T1NQl)`+kzxALYt1yk(EQD(r8ROWoZH8&N>SSv8%y-ycJAJHE$!cAg+Lz)P{0V!vpG(2k5W@GGfQfc))HIy|WU5W#>pZZYIIXF3; zI5!+UL6+vUMh4^ExWNs(3SjH(o9-XY6pJ}p*F)+}p*o)i?|+IE!IsR)5mU0b-vRM@ zYOHmwiE8ffUR_{`eSGy?dgmO&1={Pn&A~jU6IGa(+f07Vi3{}jQv1O4>PTQPbx`ns zsGpbk#Kv5lyqiLh&-{pt1`nK1@YIR9>O(4f^=qavcmAXwE4p?JWEB*Y1QW< z7jabr*me(~Xb8Zzk=f=d(xHazPV>_SviC}4?_I!K4ghaW0XwM#>_ndtOo;a7Vu#$g zYiPOun-I+htOH$=GIyR zZ_U48ZdmB=_z(II*^PWV(&sG}{oIW0f8t?8@G%!hMwW`GXc~B>2fT{)t6<4Ip0>`i zhiTWqwf`GC#vqY1z^g1ke$gjF0i$9A@VqI=T}Q&Z7ffBAi(I=7Oi1Q|r{I`>@nzZ~ zRMQc!Pz1lQdL0|OK~2>#tvoZAxh^Ea04Jkz>L??8N_HwT2Be$-y}7 z{TpB`=#}eJQ9&OtO01};ts_u$2YW}JWU%JmAa{92#0{eY$7D!?yEk)JutQPNMMt3i z&IO~r1`wG%GI?6Q9^_Lu8O?^DqK)_d(qS)KPZ7<7e>10Aic0ZYP&$RV4o;1;0!f*V zzeHL^>)y1(nDwCKTo5@c!r(se&4MRB{#+K(tH10gFQKK^4qbFgA5lNogDP+Z-?1Wm z-IuXQkCniUS>;$c1pT=g8N8SMo+Q{2PAa@SLHs-U4?IInn6gwouw#>F1;#VO6|Ujj66KkH)!ioyW}tsS{`A3Id;I0Sg0Dl)zY@IZ&DFe=Yc-{k8hH+nEM4^YqF z^g-{Pk5zI2uE{m23 z#35q`Whj&}mn2gpbD2_vW9Eotp29h%GCRmT^;?Io=eh6uxxc@^*6YQx_S$Rj&))mJ z-fM3ZpYlk}Pub+lHe6rlxynHN__`iX$$fSblb6>AxYrS$5cA^l_ckU zc|OaC@zcsVO7FgiNh z%~2gHB_G#|iNX=Kt6$jpl=N*HzPj~U(YQ5ARpUCnJ}bV+#-oEQ9|P@W>%(Ka<W01m|zgPvC->{qhK3=LPES+@6HxvFGbD zIZ31LVcnP-_MOIFyKJzIcABAhXYNVakIWv9%>Q$LA$yF8B7Vv?N0LZayVg*AEcc}R zM`j;KX8H7h8S>T<;d%fM*ig;GH8ChYQAIP-A-BELpv@syZDBR9^|B^>++L{D*n$Cj zhg@~mwe%*(xGsoyE(KT@VD*DeA_u{?!*)-3>a@XNi#@)AU;EKtK9m>myk$#NOu zc=A*Tgs%L(sKbm1xw0daDcc_bH!c8f&;Y)wdcP69x$u$sq9b8sVxW3tXHI*Xep@G? zLk2*H>IK

    _%G=M{Hh(eVYE+i;m(By=}&gYo|D`5f*H`_m)ke(xD zlL*RCB+^g_J`3Cibd(JaNz=!y<@6x$IeU4RlFO6e%ILAT>H)owrnv(p)l0iT5ABX2 zS2siIo~?}z-C52#AwNgTF>6kQr)KR!Gyp9?)to%OG*oVLX0?wMpP*jOVfE=HkKUo= zSf`AJ%20O5U_)_BR4md@G`C|}k5Rsties)()juQ@3DqxS->6N`aU2%jEw1iR(sas3+&cS_1D2Yn~(m_H^FM$8@-%#+m zTNBMJDND@CPRh#OsE(#&WyhD&$^mbOFQpx+b#0XT&Mtn>gG^GEQc^Z7G77ZC@J65{ z6mLZOK;A}D)_!n?_MQjRJr7z|yz=dPF#fARSDuBk67dZ8dU_};sSj^NQ=Vrhd_hh0 zg8EXXE$NFW$`>%j{BS9roHLcq^ty?9><7-;?^YoKs<)c7H zzJPf@?%-!KDjIw(R5`OjnaBT=)nR%i2Z*^%AgXx=3_WUz9#iHS{riyKJD2mA&~YQc&T#{-4jCzF ze}0Q$Tf=7&3eIS&XKX6bWiqFA)%b1l%4z*|*1vnQjIYz`Er*UiX8O#>Ga9pT#$HJ+ zQ7SnzL;$N@?v&XLsYP-W!%Nfx-<4BYF=8B zxJLx7LR_p;m5FwY>sGaS%`8~GIE%;+`7cYH&d8Cz+^jif#~2WvWYJa9`h$Dx`AVS@TdfDbPw06OWR(xC3smN~5nh+b05|@oFF%u#TwC&bl)J>1??@%C ze2D#qmwpEEJI6CCR0`Bea>~@-zVX|7g)7HAp_|$lPWxa^NW4;FZW+6vtbB~n7)qn` zTpKAbtkQ`qrYEHwi+U26F_Sb7J7mgetR3S=Wjz|+5m$DSpDyYUeB6u+7 z^0J%WwV25@{XO7xITWRkp0Y>mmAb^laqM0Ng&u9Q4Q+@Q@N0|5#Ow9& z{F>RAImJVFIPkSM-C3KYk11w~Nyk^4$yHN|=_$uS@`Q50U~TsON_LrLxUOrnjcW+L z`f71Y?3*${AZh&5i#Ij({RE>5Ey8uvnr+hl`E9Q-5fZ>h8Lag9LcEX0W)xyim#i7RKoo)55<2so@%bMbQ`W#i+TfO>~er!O@F z)Gy!qF7}G=tdRdSrTY2DL^Ej21c-T3FAI{?ROPFl;#?6Nn4s@1X6gOYg$P-|9)w1( zav+X=n{}~!qoGmzTf|=PNWBgVv7&?bb6g{_V31(`FI!Xt}s*mhUQ=S->Q{^uR;*|UiYZhiwfwx|BX zgWX-@Ll2S*%~J9iIae$)qKx&>j(VYg0y%e#zD)c@QswcuEL(L!hTqgH`$g$L|kfj>%~)9I1YtwhACBn z7Z3;Lqc})a3uaK$c2fHrpPPej9v3SAtEmi}(AGoS|C5bt}Wfb}o>>(Qq3zd0gTjUN!-g`;rnt-6SM z-uo{KNpnXEBlM+Bn}+|*MCHtp#?5J{5tqezMaoL5uqXXnIGiny!V#!h?rbTuG5NpY zIPzk5>d3^t$KxcWI9nyf|1=OEA?nhH$EMW>DKIEM*amvYcc2Rw5ZXvf2Lk9OuerKt(Rfy z@l|h`p&v%dda1Bi{#!SFE&hzU6sErTRz{SC9@^#K#?<6!VjXk#^?Pqyqt0IWpDnyT zYGLN3R94hJi|0a+tXHsX=>RO?=$HD($sCSXoTv9JkAFjh2tS-x|EHJVjsl6=P2OiY zoZSEE!=mVs53Usq@l!pSyApGJL9)+|y5T)}0YAH?Uf3RfB5dVxTV@)c)!EhbG(`V( z`g=cDedYbUGCqg~Q9hM)e*w*#lfm>)ET75BHZd--qC*XRgxt5vvQOO^Zr1R5>E+1~ z$kwDBb*V-FTujEj8(!npZaF7i%R}DyPnN&^h^V^xeL$bsogr9;LR90GRaD8H?I%gi z>DL;^StzJqY5JuQwLbJBlzv9Q_9P%f>zD>VSjYkkE?_|z zEz;n_LcR8+9#6k3l^U+n)rA88Yexnm35s;}SIUvyB}c#Rbfr>gowGmQQD)$^Xy6qj z{;ZDqiF57|?DAEfZ4(-~NNs$HazM`` zg3{Z;&FiIPq=^bsA6LYs$Kz4&X-e{iuX=HD)z%ho$jS|LPD&?Z9yvChUE23Hejj^k zS)Xc)kC=0ba+hz2M^kddAc}@}12!SfyQZ;9-80jU@j;jKRL&qz^uR9k;p-J*lE-IE z&z*J?+%}Brjg|jFM)Go!!PS6DI+vJtsbz=n8>J3xGeLIs^aI`EIye-$<{W{BX*F9G z*9*s(Ydi*Sy!{&1_HTm-FP&QVf!b5Vt(&pYW$Au0T7g1+$}g|YOi;gzuK(JpM$Y%u zN2q3Fw^3}VYKQM@gq@zUNU+@-<^cl+`^biO;?@-9xuhdT zL9E_?`7_v)O7U@3)QOEpI`Nl#)4rS%8P-Y&^2$?@d*OgiQR95_s*9R}%)3adYSQc( z=9Syu0(`fq4aamPma|VDlxNIjh=}j05UkL|lLy??th;)`G*;J4dD}5Tds$E1C+8&1 z=f7uyMa-L3`M9{CM)J86Ki3+$iIT3MO$ihqP#Z4mi*M!7 zaeh{v16LFY32>2Uv6bggf)gd2DKmhu>Z+mO?`FQ{7!;eRay63g3%fR_TB80*GM^gx z_@}Y3ts5+-K%+rVTf|75 zDUVL|v+X=+gg|4ZXn?4P8h?RCu#q;Gv3Sh2N9z$2)Wy*y?J*SDBlHGP%hUSN3&$$Scx;vN*%;Qc-AYGIUrkHpoJsN5qoP=Dm}CPdg33hoH3UIny$ zTpJu6X1BVEqMD>?gZWh3M>RG_d~<1Vm+vcOxpJ*DL6KJN510@+1EzClhnZLBf~qQ1 zEK^$Ybz@9AT22s;h#zaaY*~y$bP#J`!KgVAL9Mm;Mg1?|KAE zxmJ**NNeGT8Pe~=rn7eq`BYwZ?3omm0->0E)|Ni<&pX8T*C{_klcYsjEl^9WW0%e& z`=ak3KFibQonoD-0-nz5ArPQHT^`TjyjyZgl<@t2_O0H7Oz-X2$wh&6YhrQxl(C+H zw?~yrbguOC#=N_8g_Ll~6sjvp;ozXYw8Huzq^`oM$VJ4Imvo+)+QMgm&}J5`*D0>-MaCsZ$u&=W8%-R;&Kv_^hh6zq*&HmdZBMr%)(RBt$rfmd zy_ksmpVmf^6UvDZf+d9jF~o?sAPHjy5Wt=OU%3XjW9CI-G;w`UBJ7pGd_ORtl8cRw z(|_KaqFOh4i)BDG_-3ebL4$HZaLjyya=}?uAzD{m;=?Wm4fk7Jt#)2auzsg1(r+!& zuM**@CDQ*~^fXzyDq;LnLiiNhtIPiil?gTqRnBWr&I^v2OHj@`3u#r?8e)N-m72pE zHKx^DNc=rjm5zXZZsmCq<$117*>lSCEy^&0HwfB1_M1MgEn`dXt3B-aX4TIvGA|-B z&-GRIoXC8O2&mW*v^~B7N4sqPYPscv@hnx>9&6Vgl@Sju*PiE)+%BI6XOeDes)U=F z#+vtXh>v)XxyVww$c81sOD(cuE&v0qfTx6SOg1?hM=gJDFsItDr0W+}Myp*td(J+A zGuo};GQqknR4_6u3vOFa#4?zV}%3 zBrBw(6Y|Oa9?F^94ge5MZCKo;Vy%v1f%3-I-TiS_wX@f<-<1qs_KLVfGfFI#WfX%o$C7CgQsUTs?b>;6v^%t_&k; zSZ>j+h^|)sX6LKkZTYp5z*U`N3xG^vCuC&O^=3@N1(SySGxE&|n>B<_yg6+ZIp`lV ze!N$km!*d7oMhcxWfj_{vhZs_GFj0Rh*een=HaW|U0ww{wK)i|L$VXXk?AKRi911? zy24-(7I-;xQ0+uii8r3Ou+Umi}w7sR^ zRd&7S!EdPq=v~U=gXp_}vn z{Iiu-D|=s76a-0J50*H*RYF>B|1OX)2n;!cADG(mzt%~wcg&!9U2P>?{{bW}X#qY& zt-WM*WejY;-d{0hz-CtWdY-B+W~u!LJxce_d~bl;*RJL9g#Ax=UU_!G@s=y9kL#b~ zZ6g8UoC{o5VuR0bl#%|pEF98XidkCzF(9L?oI+{zDh9AyQyF^2A~D3!q>e4Wj_nWV zNgyKbeW(25sSNCZx}iOfcFtC7_PEZSPqURs`^Qg@fPfvk95EFh<9cOw$2|qI#SFs@(;+AgTh2&qgUnNC~CLfw>ZvL zs``Ji)#%oze}$oqWli3<{u`zlJqFiRkNIiVeKs(S?ReqxUw{$o!O>Cs|B0N;_x?GH zf7%-L{x7H~{0~Ue zPz;iIF8n)A^${?XBfuIkU{9hU5dV&wY@=N~k;aFB`+qUX|1lxteFX4os{UWlY2XMt zjrn0Y5DSBa`e>mXTd99VEnX#m0N#%#9+_&V-r^H;ga4K}*q=Sj98kFEs%o-f|4Tno zJr12v+MxX6ehz#GV&t&uQg9FNb~BKBh-QlzNUcoh(BP_k98@I#Mh&6R4~x7AvO z8aJ1^dZsgjX-1z+p_LdJm-vKni9hswV5k${&U#o~MsNNK`5GT7lHpRcSRhBH-O3ZW z*7R#*fbN7oz1TW;q3~S^{fIv05?>>`U69rn;sNu#z?{>Y8ug@y( zQiK67Q)cyFZb1RGBzc$l3ewRlBTfkPQ%yzBF1htLU~MatWzQh&)*Nw7FArFYu{_(q z)$h$v>mC_4qrLq(F*D$mV{L?@9KQBhKs-T(po=n|{0K%UC-0$q;MrC(g6f=>z(A+dg-<|sdY29 zVdPFdLzN*FCbv<}GsxSqS?-#$b#u~?g=Uwx{nHxpHh@r%^6HdcY-Q^#>$YzlCm~ig zJx2(Kcih*6fHZ(`Dyn^H>DMkA@jB$#UxYFZZhU?p4v+y*S4R36-#mvgQS|w7{gm2_ z#Bn-`u;?PKfGIoz8`nF9hdsyiB?7KUvEZrH1ZLXwfH1PQ$CqI*=;Xu15dO%wmJC#F zuT8%u-Fwb8$4(la41pGCKgXxiJF-N{+lnRp+2kvqP8` zB!)|XgX-&@)1v*rsD$zd4Zl&u1q&@b={+Rw*E=PLhUNJ6!P4D4hXTXBe20=XA zSIF^*Rk@dv%aQo9Ghvt+>1D35lnv8!T=xYPqBefSOvP5g3w)%ESFZJ4E!HZ6$UIE8F%7~8PC$Yvo~6zpDIhbx4q#p=yk;GLQ?FexStyQq{oM&)~2mKHHqgk(t4Woq? z@o$6t4N2R=tm9=9DC_n6asS-W(*1Ksiw=;L4zy#%3GMjf+leuhYRRRSStq|g$1DR+ zMG#rNYWeb!VSzrF=fP{H_`(qWmR#1U-lxes#4_s<$;!2(ghg6YQ)Woa_pv8W2cGeL zWtN=_imFi2NSVpe?bPp>0TxIOn$al8oMzXyOz1rRO7BBQr#_=cFO}@vWexwJD5N^j zZ#smgaJL*rX(@y}tcPDK`&~DEOApo5>|=RaP?>TQRMWWRD$e=n>W1bl zdHpQuxW^eb?-BnvOLb{@n*~(rL8WHEjgx?{a+aO&E;Z3zS?)-=2E{A5mKf5|5&CYc zS24{W8KQ0ksV$0Xa;=Cn{N>K{S4Pck4Nr{$4QBhlhzOT>fG^}3GoxT)jlbO-0*624 zmkr8{{>vBhHW-e)SkPy4>SVK!q;%#47*`y^DG zK7)zL)=d5TNkExSu&*3Ktra*kZLNK2y^knM2wJ+;*IechUzeNEi< zQ%j#~W+C+$;U|L2KSY*)aQV4q_i0$)*&-x#kqfYso$wMQ893W{vc|YAbB(x=jkJ)h z@xl_>4j(GQ#C1Vog(7~IcKGAk%o0Y!)ZpwAYyAEiaT*(GnnMm-Uy3Ye=1T$!oeEy% zIx%*e%6N_@5(ZNPoS#nv^zv9-!!d?LzgwfCzx0vJX=4t)gbV^b+@GAF^k}tvWN!*; z(0F{v4I0aL9V03WFD_NZiLTrfRKxmf?2USp7$hbjuo2rEFMbY}J>A|| z5RO48#h?S{6TE|Eu0bfoOcy4aG-V;Ja!h-H_C5#^flX^4p@a)M;m~xiXTAy}ig{gFP2AC?(N|xgz2y z-C57QQO*6Ef&yOU&>J~oy<}LlixBkm3rUGqh}(>wtPbPEzStNV^xU?z+?}7{tp(2( z5~NwEK!<1{i3P7C0XoNg|CRXq8L9qZez+hx(hOV5%9b5ym_HC%aYYJw3q;_7SKVy@lgm@C@g4iyEV{B-7?ur2%utBguGW`LSM`Lp zg?wec$~{q>5MZ2S=(Ub0L|m+{)&`-e&c3p>b2_>Z$PxTM9GH$Hpe|B+5@&--cr!+0 z8{wZJy5VdS0X7f9(1T?@5nvM@nXSM+yWfsjGx@^WpFvC#%9OFd8d-v%&sZ3ab-N

    tqWh2LScjt zdEN=m4$6HeVCvE!S>^@e}dnw_sCl^12yI z%{qV-RU#0|ClLC+;IK5f%~wNt)3sM25Oi(==ZNUvRF%h#k+%F`FnG3T^Ni5)I+11R zkFJr~U;59OtHykgL5u?QRRER6pE*t_{1_1a$vb8zF{YNp-p;PX`Qv5XiKr@GpE|L+ zaHlU=!ywJ>)RO|ox19;~B#HD&hq^|#f2lk)C*_m=m3oY%jhGKomP)3vzlMb-zMNaW zExvpiZ$}yIjFXc&AmrokBB~JlTYGuwn{ik*=^^6ed!)$@A2L4E&t&Y0N!R6W67!m# zlXep%dHEc&YY|lzm;csI`(mH=R8lTcE=aLeSe2g5SJxrP?h^fgfoo6K&zl#wTX1K> z?**wz2CLy6VqVjK$Q(WvgS4R&pbv+RWhk4*MiZ8W3zU$b9-=(mWv}5L+NrT^ClF*f z_f!qa*eBq~p;S-)!Zd1?o}q-9;SG$6PCASVA2D(1XCRg?;mO-+-j}^pXR$?WKY00W zi}M|JOcgq&Pe$gTR0%iSU^BugO>?}D-V<8=^VkSVDZeO zdqGN)!Af|KRq!6egCrZJ`S2hKAoP8*N-t}f76jv7G3#DB-kUcxtB0?REIOLtUmG!q z0i?w=B)p0i+On0}QpE>Z?Von!;_qryBKXUFCK4m>mK;d^HhDz&w68 zezk?C)DP-o_jW69O+{NQqg|Fm@iC5o7*EpBb{2RUpF4mA4?8?EITsf6uVya(F|+%} z44cwqY%*5uV36d|0_h|CXinls^Pu*@dLyKXzzWIqtVQiG&X+)Z~y)8 zuAH64y8_HI5PYWuserm?ah9L2 zaH@4`h|WOHs-68RY};MO$$T1Q;~rGjIDNsL3)3`^QYnK|(tiy;=O@M&s=mU9O|AuE(V)UGB!di_$bp z>Qfn?<}J@)8qp7v8_|c^;2VFd+?YKN7|-+oq_tX>B_5)E)u;T)*T}ZSw!>Emr4ug3 zq37uU;%zkvin=Keb?7Xsi~3~HBFb%NG8P=;Ee;K^7Nn2e6EA2Pl3`Re@(Pl8R>$(h zv>`>=bw?g>1;FS-(!fAsdW8-lwQY3G5BMf9tV0=Ei{Jh+DDWlE>6IPQI0@1 zD%debl_SQ(U~6{uI%e{Ap{k@+r}K$uLvP0XA<1P%({oiYk(3xED&kf{Am13s*c`W`Za6pG7`Ky^-Rq8AxegCt z!A`i<-M}M*(lqaDGTpI{$V6O>2Uju?NCAaxMuc%Rx_dW1=RbwRcjYX3mB`Od zsYF%mIS>k=sXgIkxoGzpV5@l~;8s=cI2%$*fqGTDD5*YjaY2Ia$vl-I{#hqw%i)*tVA{Mp7_=4oK%NHL^1BapFjJpE zhqPA8_LyG=0q7j_>mkDHct4Oo20EzCdeIP5IC#Ia*78GKTtR7rKu*X(jL${$Rzr+G z5JT>j$Kj=^YJ?A>Ic!t?EM~YdY%@!v3O`n>K8=-#Ss8)h*?R%*-<`UL#@?9OUAWSi zFo$u-^GyP=X5{@%5@W@o>j`0eJ}l?jwyx*2$mHnH6(et~ z!I~&y1zpwtm|wanVFcrFA54s3)~39u#W5Znx-QW3m*ZwtvqaOM;OQExaM3bU*T{w> zh}qAJZ1z<|3aP_O=Bqfapi?rfwr8%1enc@F4zp@IBj^o>lTyFy=rDbm)g=wX7=@a3TVT6Y<*C4dUNWaptQr@`zg^}RbSdJ&LgY`d@?b%` z18*f|enlQ{r4DK^PGsS&xQ2?xpt_X7N(^c?5O2key{(b`KzU=Vp%TrBaq8t(eK89oQ4C9|~Pbk4Sv?7y0 zti^dkh)bg&OZ%u5xjeqO61oXGbo1>@#TbW1WD2x6XjUbdQ}!_>r1o4uOncWowGydNHCt5$2gqj#L@2992}zmlWm+sYGP@Y=WE zU-Q8GbxGrj#hWOhtaskFt;lTtd4HQ$qHDXDoeu(u3>qwS?NY z(Jftf>yfV$iZJVsJ--Rzwa7uss;9!Nd$2T$LaD}L3jMX~ZZ+r>V%GgUza3iIo~!15 z?d_&EVIiWZ7NZh`-h3}kAce%BUn@H-)%l+p10^Qo!)yBIj@jh zyu^xJYtYs$$kDa029#G2zK|dxs|^t_?5|8M`8K4+I^Zj9H!3wHHK%uB6;_N^JP>s7 zNG!qdLMRmMQa*%B7HqnFp#8gH71}T>D@l z#-Ro|3}Wq}r;f0EIc8#i4pxefjH=B}6k?6C>-O&q5v4jPXAsB~+3Z7iWIeI5zu)tH zdW%py+Bi)!FbuzrnCi|Op$n>CjmF{TS+E6woS)?z-L*X>s zH{Wagwr0Peg(ww=C}|;(cVvGs;q1ki8o}(sOn2Ip$O}|4F*=o}^-FRM*7XClIquv&j}d?@&$Q zJ@5(5ZD(!1nQxj6ROaDxXf#d6IJiMqlQC-(9y%iO-!T(Sv(VK-vC^rUR-|D?((5rg zTSH`qHneAm>`CgDsabaQ4VTJ<{qzyaWUFv9QA>9@te6+ol?tu#qGlCllP!J9QBA(x zaAbL5S=zWg`u8^Z8Bxi%Qr}}Rk|0prDZft86qWg?Rv>2mH?iKH1*VsJG_LT+e_f4=!`THAx2rtYkUI^Ouh5Ithd8fEcwuX=fkXs(Hxu=ULRX{m|K>Etw zVda1odjo>Dd%tEv>5Xq?brL33kuhuRwCxLIhVh&;h@Sjjh!>Y{xJfQ#mCD*&I}z}s z?0N>@zNBIkRF~!YClIr!IR^VG6X-%8bV2HAxpYc>uW#RUJp-++zzsy{ZIm+zw*3(xSh!zDc>zB-TZr=4$rZbZyVpwO{_$*Db&LlU) zx_BEtw4o%-mv3$%8sE*U{)UbJCP9REi4^K@e<3XbmFA!g^%LKRL1ZzOx+jdUY@8N$ zfK$e!z7D3KwV;j9A|!Oo!{2B3Zxi(JNl*L%y@r2)}W$-7)A<1_b#G0fx zwYWSrcEWk7I+O3K>oK>U;Sq?K{OxyMh|=%y#d#r+AK|>g5rtTBgyWHG;qL6stZmkx z)HF{OaP5P?Fb*AH=@(`#)tf>b^9wVffUC~jEF2imBv*JeTPXv>xu(dN&2`3h(Kq8G z&KX3H6ISNi@{C{j037cy`|FjmcL`VbTKK-PpF3$jmQ+kq-F15F6Np*CWwtv$an()c zV=$u5pH@z9WtG)J7aUql$*~SRe#0QvuK7S0OtBL$mf;JSlq;Qz#vyt3ZYBghiP&F` z+-N9^++Wtlg+knHHv};>ICF}Ew5HwhBn*ubW0n=S?G3*SyA@{;J#7;(%{u+VUpDQ= z@3r0Se4a7F&0Q>2&FnkLx)=#_dol^b+MyqEeA&E83V*)kIWD+;K?WuDP)Mszx%uR_ zy5`g{h^&__Fp_S2r-h%xNJd1(OMhi2J<0kbsaU_dOMUwjh}ppFqqCZm`)&({hd2;8=I|ti4?fLZdjDpL`BhwR!I^ z-v3?7%n2(A0@a_|K*>w|*lE#U6*s)^LNC{ClC()p`BZSTeegckq0N67#9F*>lo;D- zT9?n8RQ`%6M&4`X1UL!sQlQ(tVv$IZxoOj+c|P3=MyM0J*6{5u{>o+ObqZrbe<_5NrXd&X`4wXq8upCqjSa0n_nG^fgBnBjmmd>e zf=lG|pX1+LsO#)0KY7zDEQjpOc~ZJlXU=#R`!n28zs$$=mw}S5TZI+_<{P<1`>;$K zHS;MI^(L;2OSh+7Dx=S|w_G9T>-LEXbef$$WrmRIVzqqJJUmOyeo957DJ|oYhmqt= z&TS819?uHUbAFCje1tru4Ua15PX#}v5Y->DdJ`)O3eSqP zjDT+XO>wZ*k_yQr1^1rhe6DoI7(MQjd8~gKiJ!bgkWL%_^a%VUqVHHsBvhS@pRi_Hwt=yhsJ%w(QK z^->{onNa}&$Jwl2%|OxH!_S=dohSVh>Pn#O=BOSwm-VfIxB&ryE<9HG95|vaD+@YR zzUo{-vG){0xuh?RCSof9{!gByT@HYkGhdd+V`>t2XK9cJ-NWHEFYYKQ*PZFJqHB-N z=%YHF%N!mMaEG;*jO~C1*4fL1W~+4Mc%U?s!Lp|RRBNQLw`K;?T;UiqC{?X=s;g2?gkVp}|Fu$zUgW54!Yk&o$_$x+qt3 zE^{n7?s8SfKZiWjWrFyp@;5bcKdX1rGBI7-@A0=WRvkzm7@eWh4$g;th=XBptxATVzJ;MwT!VP>dQf>WvGVPoE?R*h=%V7l71UOM!VJaLB-`k7gBi>VU116% zJnIlGU+{?>uASkptGJN}ZinYfYH(=BXo$CD&^;*EoXgk}Tdft`xXfXCZWT(nd^Za^ zRokKksxD!FD!(PCy-ON)k&w>&j(?mz>6!B0RAu5e;xphBChPR;S9jgHx{1Rs5?x*^ z8_xJFHxIUGVJc9-15{y7UzAM9*k!6@C}#;(D+0N9h;|&7ns>OWQmx4fN_i>k#H_=d z_EI|f3|oK) z0oUlU7@cDiOZn0DZO4d-{XRi`Fc&1-t6VGGUpGVxEoZQ9b&)HLIIrvbFh2|k=vcLV zwG81)CbT4@837H=*uL_ChW00& zSClX^n3*7{iaOSvpqZnFBBYdSvw_#If@?tsD;ry!I0m;p+FvzWiocU4dm6h&o!1}w z?O))gX6TghGwyF3H%C^Q_!sk7tQo`CVR=R|Sb8ll5wE82NA8vupo6h}rGwdxS6mrg zWcV#}qu#b(NwrI->&kE0%cWXpEwEWK6_ss@&#rg1Xm_bkFZV?o772xaCG`~`k;}d= z`udE0R(wH?2J5JWFK3gVy{Ja$YH{AHCaE>W5!LOyOgBExQ$22$XLNohyq*r5xH+A0 z;A!Wkj#uJumYVu4S|7EBZV}91aCy#d`?Z7q($ITbt=|`ZTzTldxYqCUH@v#iecw3-tx$bli=dK`IgT*8Z~PZ}YxQp>p0X(6{e1f` zYIhcj^TwN`rd}7Lqneq08MbC6o^$lHb+{|fzVFfe?RW#(m5zMp=(R$%&A3!_)}kEv zKnunp(FzZL;V(0{=4ZNVknt8CAsqQEH~mx(UiJ+>uYT8Dk~FI6+7|x#$24>25K6NA z$NG!g#|i6C=bZdl9;ZL#=Z>Xsld$?QVBe;GYuk~I4MA%0L!>7_2A#pGFGDQ0m1S3r_!($pyeIDaQ-@E;V10Io_vzsaUv47WVTET*t)bYpE*qwBGp7{&SH3v zFz}k5a&ub%rL#8}xm_jJqDOd5M7|SF%_fKpu}|;5sM{H7xKS+mFhkv8^uhPBD3fM( zKCWe0$$>gyDG$$L`-ABP5i?7PJxz6=Zg7 z>r7`zmBN9%&K(R1hY|=M8meMrt_ldCF3-nvc>G(V9HJZRl607AaUdr4=myqJ9hS&xCg~6L+u9{9{H9YEO@VXU zAF+BaZc9hosSj0&a3hE0_rtD}KfHBfTllX`UAzJsqoZEHggqxCn|UV}Kl`o{@dX zw-A<4nB~3^I@1(iuzTnDrx+OSv*2mMrGmmEn$V;7h$gJV-g5Zz=uyX23K^0o$)r#4 zZNZ|xCq_X)km3m?h%f_{-8y6Wmy)NV4VTe(@uXV??2JdGn>BO_=rT3jBc6x9lm1oX z`5%qDe>4hfSZWT=ZBH`nxv}6W!X+U*VYx-bh^2pIbx7{*@4LFR?j&LVdXyZbq;tqL zj-r0ynZ~gK-w7zM1~QWHK-%^|nsCB+k-abMfk8 zh|N}msWZj&E~oF4EtyNQ(ofhtdhG)Lv8j~fc{ zMQNT^r~rp_LnWoA(b$^!XIrfMgBYlsgKXA2-)QeXz}AmYJO=}ES2=AI{H6MPyv=m6 zc!5g&V@CnFq%xzk9xA#j)+xk#B94Pq~J=us}UfOIC)4vrQlXD z58&*GVK-ZS;EnQz0Ck2IJ68APZC8VsH~y7;%Wq7<5^&<`^gA2P#1C`v#>gOrh|$#) zueQy|(Nzmvyl|YQPnN=nAe5Y7c9&*S3lU{N8je`si^i2IR3ktjedX^kav0H+p?5>x z1kVk2%jR(K89gRch=^QCk!;?Kj9jrmL`;)4G|Y}S`(R^!*D5fJKp=Ubp;R3jlX_@q!RF^Okf17T z&D2{ua$~z73cPFGy~elKT#r{F__jVV%dVESm${2xw&QhZFx|%7{o#uRvEJ(aO-Me4 zqrh*IO0BT+bj?ySP=_%g#p9@+kj-ik^HexUwSgxkaAB0c(lyhU#-w65B2WBNf6S@q>A6}MH)@BFn3=e zu^`sPAib;T${}nBAv)V!#1qLB4C&@ETHBY%YzyewOXNUhFZ8VFL6s&x-*&EWg`0+N zcb1%5^m?whStdpb1nL^ZCpr2~*G&s!r7W%BKnThzy~`u0|0GQQ0= zp}$Tl;1kJCN{~q2RT%j7La8n?^xU zfuuc`BAL4xsXb?bFqkHuB>K5>4)Ts`JK@6Kz5J)?oS^6bVX5lS(rTf>C5>+`&m>Zj zq5mqmch}D{6?9ZktgO9q&Y;5z{YulBZDQ^9tx|#bRBfd3)NFiba1JAx8#PVC+zo^< zr(xC!@nJUN5Qh9X$?L6NFOO>o@MmewWkCm5DhK}P;E>+<;pC6@hD3Hy_|!OJuNg)n zjmp*&ncX+*4`Lv{2S!5qL6s~dgPHIB@EZ@!@6i;K?J_SdsApKV7BIk-UV*7$fI~iq z%iy>jWPLIPC-~c&CjXR7rq}e*k$IlMRe|T4?b_R8RL>HHi64$d~(N$y+8a!AA0< z+1vah{~E1%Pi3(Ls;3`RBvAA3XJH~spwQ-!z^`-CeXlk!yADd4p!6ShQV;D=2$iU4 zR=4zLcd9OE;hMj#>B#l$f++CL0;c=!s?QzBMo)j7Mo&Ad{Z7L6_OA*3AFpe-q>sGz znG*;%%v!-_7BHz`41uR=zLS`(4hXp?^;8ZfVK;ToqP28NO*1WD%5DvCr;1(v`JB;$nJL;u zrcs#o06lFk*zLhW$_@?J)k(> z*E6Vcir*tfjr2?HuLnWWSE7aAaA~sK_J{{ttHh~$(b{>u{w@aVBF*P*Z!d4lpJmHH zGwVl4M2gDxgB5>5U7XjBXlv@uv!7*op`wz^XNfwena7zFFkv?L?nZQxdmHzYG57$b zu+v6k;I+>u(<;eo_flVs(m(Z7RJUz3Uu&v5GrNz8U8HIt@8&nvzV59%qr9qqSGmOE zOCF`tP;`w3aXilHFJa{l@f|XL<<^4zYT1FER#+J#e@L)Ts}}L_O&HGw=E`BEj?)?o z`d1lNE<{Spauu?QoZmh%@`$5m^I8-3?$lOdyM9S*ar6GKIM*oFcWc*f@MET+Vnee| z$lIGGd2T2CXC1!^Q|4diY%_MJZ;bOvh0VS=X;{^3G4Sfu-p3`>Z$-e=7V4N-11ms z)~<2$TT&O!M_fHXZtZUQ`y>-v{3eqb^1X25s&;eiR)=^q{Ku@G3z=Cyx>W_@Qrk%r z83Rr}Lh60fhA(LC1R{USnMH z|BtOd4}`i4|Hkp8QP#@MgrpRODEqD~cgY&YKK7lEZ9++w<0zatpMtu%l3B42c^n!TpB{j%j%YgeYP2YUOz{Bl05YPdNL zjwdY`om(o_HpfAA@UFT=Z3$S{7Ll?#`*{*|ZSu|cPYt4n!JjSs(n`BFzE1hRKFE6| zj~D&<8Q3O%gY^6?-ZD_;JmzF;NLf;IoXPixu5tH9?Mjb1mj(?#Crict{PpScufVgT zZgedhLJGrTJW2xbhtTo!ni71Yeig#;@6TT)NEAuMSCexOqPo!jO{M1?qw`9eawR_A zP^L^9V|eIM@u#|Q1c`nVA4a;XJb3TY0e*|c5_8>}!?0p|lbd}4Ri1M7;hU|@9-ejZ zE~vL`IWa7TRuYIkgpPIp^PyWTKfR1g$n9M?m;=q2d4!bG1{_K-k^}A%X;;qjjd~DV z+w8Kl>Gn`MSY{|OpIGV%84K0TcKJ>vy$<5rb}-PRSkD{a(&P43F=68CKVcCc>B3od zJzh`LtjzFWvd+#9XQXs=O;gqu)hNTl8()v!e-R$~-#_CKrI^M6_lC4kPcY_0RwEem zI)W?}2gZDUkyE(5{=NE~ZGPU9-rUpMjjioO>0zPMr~6G-6wqGWh2D4jg_LumWX|a(_T;%Tj+t$Xkztc9-lJklHP6Yy5MJh9jz7c zU5d_*s>v0)dfnS_Kv;P3nUL<;ETl1gVHOVQRj8`b%Iy86{=r9IPgBL%Y6POK(b32Z z6cesK=4D_?XUL(o+mlb;*dOJg{Xoe0`Wcf}`_yLpp+7+ZZwd)W3HF=?>ElOzR)6YF zTtC39XD_$#!m9GZVv@iW3jxC61}Ile5P))rb7;B_~>Ah zP)s}`Py$OP&DC+ad5j$J_v-Ewbf=ZM{T;vxRkf$b12Wy;;HLLBo9VfW)Db)LMgFf6 z$AmUZaMsa}v?|r3y{wZePQ_Mi53oB7FkZbMUtwitPZZR`#a6(V4gbG3m~Yw8d3|i` zIZtYCp^xR-ng}Kc4j5JNEfX6L+Gw%#@PzX#=hg;w2r6)0CJo9QYLZ z+6}MAB7?MwfxkU|u4>QnDvTn*+k{)K`}KKPg+I~j4=l-k(~6`Q-mx!M9w8?nw%IoR zY5Z;%J9_;-+cch9n{aYmKMB*%uRTH$8=-JleqtS=bV|PrvSUc*uCTgzc)-KvzdhI& zt2@s>-s6xQg2RU3q-;kIhTv@7={{)qN=3(K##lz~w4-9Ezs>L;V_!fGJ?Dp*Gt1)NH z)H;9rbGGFlyFY@%j^LyMM-PtR`lTm>%o&pL6swD^<2Qah?il|=Nh$hYjnq7DZTTvd z-Ch7yv`ngA^cPKd(xs+dM-i)|;GcYAt)pDyaZ*;HZ_|ZWj=#ToF&9Djk<0w<5m&50 zfy4fHZ+Dr#`x!agFPOVt@Uzz28z|)8|7ats7Wb2Q zAxi{(k#nZ7tN|l9Eo>}qV4r!r4VLx_lV1D-n>T&aq@&A3^B@zhCv6NiDI8A>8bTf` z`Vf`mnD0-yG?XDVmzOebHlD+A2_TkBwm8ZNo zTd~cP#f`NlvO%Q0+9)Q5Q$w+?d%ODi)(k4V4~r&M#hkOc z+BO2qb&&8fis?MG;$KZ}d?1~3DfFJpASJUz`v?hrhm)a7e6eW1IMdVxkqU_ z-znI}!CX>!V;UhG=OWWjbq%=t{r(QU2dh!0qesg`ZWmepYl?rpz;KtE{94t%y{BIB zA3RM&k)2*I{+I+V_BBzU%wxZW^HI{le@!t*>7yi+>1n!7WKw6r_3u>T@#=$5`oxZt zl3Iz)PAT{zZ*dDfJPSw597~bZJ!Bu>TOxepeld2$L@>}KwnoI?Y;=O0?sq^aE{EIP z^%Lx$3`tdwY_e%y30DiTizb5COknY@BD?23y+LM?l zu`fhj8(d_qhqg_&ID@O*=5}AV``MI=U2HYciR=MyN6ioqwwqvPc1B6a)6?3m$Rr<2 z?tt?A6slNuW{VUBl9!LEjsmpt1KMx}W3i>#g}x_EhjWXL3zIC8P4Hzy49?}r zWvcdZov=ZifdP(}j3TrM^;Vp-&@(c9Dx|X)vvuy2Sq6kIoV9js^Rqrz*&x?!(5iA8 zmUP*_WEXxj$0-kZ)5T~CjFF(H#ep&3M}McD8Zmt>$64Wj(&V<)TXk~FYpU!W(&N`C zCPxQ`K5jUkx|`|UJgk)6`b~-KRp}_JtFJmY&x88yB2`wP=liqaH@@F4Wl8gO>ln6G zd(HzLAajdcL1!%%b;^JXBUOSNyfJ55)G;3%Jx^i_wI@8#J~9kY!b%LaU7~)P!ZeOb zD&+Q}O_<($O%^;AnXAR;i1FOP}Of1%Fvt6HMBSGHg>eJxTA_H=R?Y`f~Gv7sY+;SB7@IbdaFao zs3`uQQBl|$m2m$mP%zjX~8Fp|cZ18)L3L-M2aekzF-b>^=n63cbNKV$#Y2DL z4owPcNY5=iR`Z5va~~XRK4;+F#^R8R4{Juq7%L^5_lXu;)w3_@I$LpLsqMoPT~x#VM$M}YTU2+{ zwAHeT{|e?)_>2?(^-Icd?7bDdJaYeMmP_KP$}Lw|8>8LP%>N1Zx+MeM6o8&3N)ZL*ox`OS10142(egcaG8I zIK8(Ik_;s?X*xzjZ?c~~oQ?In?qx7UJNbr_gT>vz<-ETN$}!%!)3fMq(nU?tyC0p8 z4C{<*N`gDSd?G#RqaE#0|8gdME##I@U3~-L@S#@}|7(*pLHtK&i3g#(Amn|OE_qOd zYpA5--3)~(LGsm$mCfLJ-}ka3`djfV$D~06M>MWQ9)f&{-4DJr^TPa!7=ColN&mLB zvlDY7Ec9>_#@EgLFB`NFLQ3?h`Ir>XZ)F3z+adAWybZA2u{toi`SYd@jn+yA|y^iyMpIw9gc7$8lQmHW5O6 zS!iDiwR^5wJID#`PgpXevVVbD+&g`0tLvo%jn<8OTz{F&p%bmKqv z{x7XB1w#&@L*`$}!T?VShvY=e(^L&6U&?(leMty;a{y^_5of-*ZBv_#X23GCBY*R= zet!DTS5ax|f%z9mK-_8*-E6ZR5HF&b_+I2JwA+wLZtwPA(bGI6{4<~}shKUddF2B{ zkP6eu&8iI_Lg7prXkas^m zO$EM>6d z$!6lJ>~9^_G+SD%62d3*bx`|)lIVrrL6bbuZLo9`n)w%I`(#*Y zVfjvTVS<0kkt>!*{=$eO3`|+w;kc~s_cd2v)cvlcTY3EX#Ba7;idu}e`6%0=udr)t z5tdL)S#NR{SZpDf3e-Grhq=CYxe~HWLcX+TJ~~Q#Fm|svDpeaE$r)$*BF9Hb1G$Cq zptJG?qoY)J{*-UZFpWvVM&S{!yb2VLrO+0>?x(V{R|fbd^gAW6XX`U(Kl=c~>#s}4 z#G!1bLFLW{9DB`ely~`xddG5ByW!DZcm8`Zkx6^zati5I+>~A$vUj=fzq4HhU3i41OM&7)cfgX* zL+iSXH!($>$zGCLS}OVHRJMElj-H9{9@L@&@ek`IzE#!U#Dsf`{#rIk{-YzgA$9& z!q)fw0{vD=mrliALTb5xPq&(ZLwP57)g|b5pw{QBLJ<7Pw`!GD3k+JJ2i-am$c#^7 z6$^r4eaC8JrhQ1dc56%yuXL9_ps}JvOWp+bfQ%Or5CL^i##Lt=gA^zBqM=Hob zJGIF{h^VhR$|e7vvevHiWlXSC_)mE?7YTv7UHB>K{X70(aPfbUHYBmc~1OuiT`IzLx2H|L^Ak(-;V>%H?q?H>adSwEHM zv`*JY*JjSKI`*yZ^&P`%2zhH6R-QAI!@PU0W*DgTH6hwS70(S{T)D0hp@KgLfqkI> zarh|l!R>{yBg7g4e$yQI!ta;p0(+ff-ISC9C(^J3>A~Q_m>sF+@$HsJ0@>|O0Pqsx z)h~V+C@=%WT0{{mqHvQwu@(Wqb5K^=*~S7NBcF5T?)cVJcG&)|vWaL`PYo7&6JHYI zygwqsm#Iw`zT&-Pw^LSc@A2%By(YOPrCkdy&qNNonb^1&EZgnztaqADXNpc&HM>^8 zxc22xts#DXb+T!sa;< ztxU8yQ`m-iS)|{-YRDeBXflZ@T`CkmlfoJzB77z%;-?lIbJk%@ooH3;tS6mYgt*{w zPUd?na)aQ((Rha>BcHU^_TBv^(t7z5=L8(n*@PmF2>#)Sy}|VL;^4%?q%V6#xWY<0 zc1=-Y$So;Td2yLXp!r?dV>Sv|tFBKTw!VFFIgsRBo>xIp3<#Jekp$ zfsvKZ&&!BpVmMSJH4lr#UVq?SkW9y2{kwS>(Vp({he*`ssI3SmVT0n+1e(Zi&Cz=| z-uXYn2!1qAgTks!^|ef*?8aj#cqFWmt0D|{>tMf0kli85(C$7O?}Ra< zJauPATNp-eM?N78mPO;vK5id4jx0Rf(jPu1`-fo!CybeWMCkQLcVwjRWD|E+^GYIoSZi72_0_XO{HJ-zn~94$LgMN%Ws-6s;+h08MMGc_KF zbQ3Jy9({J;g&n?y!%Nj(SGQjAQ9N|G=3chm{}hl2g{91ec}5o{@eds>P8MSOku%aV z9UuD@o)xlt5u;>Nx(VLddV1Z^$`AS?sUc{kcyNF^k{+LQMEkZJwedk)5Jql^KnQ{k z&CvC6Uxp;wFUN~xhi8`vTD9)zG2@m872$GX%?Ay*jpi=i`X%tb0VJv;44>8)NN|<2ihBriL12F~ z499Q`Jm}AXbe^v_Heqz0i-eKmd5?o}?~Kj^fJ4*K+Alz7^w8-%m&=ekB#oYO6-pc{ zXFcyBd<^Qi8-{Zcfczxt#E_)XXu5pAfVd2E+DfGvveBmR{6{D*oYCCX&d)lka7>Gc z{bx3PD&J)p;~463@b^2TP-x=}v~dyIn5nuy!n+$e<@IHl^LaiP57!sopX3mVvxmvc z0PMVB$@w{8cfk5FmKPyAe}=RrRivN8#=Dcex=eK-4cAftv*%S!KI+y?Xt@-4X~62< z1XXmYCv^jsw!RDsa$}AMN;)P0AkM6VH;$ctmyh|F)I@2vk5?$V>|=gW0igUIh9aqG zK*uj^++uA>*JH~mPQ~7(_cscVqn9Xr3A+4x2hQy43i~p+9+$&+8^( z=N`+sZsM638x_j;j}VWofZcWPt_Jfr2^Mw+T6UZIC3i-PY87Dx`tUE;7;dj7zXZJP zTd#O8jkd79@TtM_88tq#e0`+Nq|Ch1T=$^}g1Gx3F0+rr)hj-QkSZj)s&9;cW=hfN zw#%sc(+;;jxvrvoHwGrhA^JY?v2x}0rsu^W1~xVuOy z9fnAn#+bfZmO}jZsdo;ZZ$W;uZ|MMTcLCOug6T{-AS+{33;>#ghK`xvpSU@jxm-eV z)%(m{IsC29{nL_NC}CezS!^sAgJW)9Q7eRV9HVDgq-nhJkSrBbO(vM_!8KdAGVzN& z)c*a0J?-1iv*#yoy59(hz5QpM`>e0=k|?9e3Ei*O&wourRHJtzAn=EUS!=#VXzLv@ zkKPv^u%zxtd1#;#@%4&{_$BM>w=64<-LUwunZ*j+_vweC(iBus;cpNvFJ93dbFWfzP!$1W(dB>H>`U7~Qk}gJvyt%^~@+hxVYEMTtf!eGA zC=ffouXw-u+!-46XT6izd}HStf5)}ih~Z_b^BBYQx^iO1cg1O>(a%0k@PW!@X!PeX zYVYfSS-;`sB;N0m@}Fj_b9HSG@_t`ylSH8$d6V&z@DqVqC-6L`+1f8iG4>MH5D3BZ$V?|`YhbsO1ca-NH-Z-YKT zX=CwR`%G@ABGfKSCkRqMyx)>|zm>`V#g$D44M%R_jsyQBU&A;&^z?y&ROUziEnpM_ zf$&omBR&ljJ$E1ewUt@J9It2FBmWXeOiqb^(<-9o$oAfEAD+4m!Ggjgq5*x2V<;z@x|I_GRt1r0VQFu z^b)YqK7Uw%Z-%8J^v)`F;9{S%Z6e0C{YXCLQkzZo#C|>^LMSjLEZbquv_v8!7kmgE zybZ&W4nQakFf15g*t+__yP?xJV}4o*UOR-oHm@lTOO7mj4X{Q?f#TCtTH9fX1eN&y z1$6MCq*}Jv+GoGOi=^~gnK_hc5d7By`_ZY6iF8dAn^6?>&qVug(?*1LK(6b6Tp^h_ zK@OoNV^k{BXvyt3%l5wj*eZKsna_N7nQt@k)5VVf$pZ!NC zi!opN+?VhF^%JyEP(5_!GIZvJDWqVFy}SE_-D%IFH>05yq&`-SB=W2kfP;4~(FxE@;Xb zcH=h1f7%o)g=opiILqX}Sq6*j3AMw-j$}Bl$d@x)SBw2)OZ8jL^PA1L*F_wR$s&x2 zIiR!aFD0RP@aCo|x-g75WCgAP*#R zkxGJ&-+;4kS||$)%!vnnTtY$5U|`@7-dPcq)k4C#CcX02+F2vIv-cB%yQBrh4VDDJ z;+^2Rk;4;R=y6owC>&MaD5BrCI}SwHW)Vn-oEyLFi1|=Xk!t-=C2-9eeQn$1GH~1^ zXa~~mM{}bH4Ba-klaMV*{omP=tf{SR$=ok5H;<4P*URCw`+rx_*za-ChJ@`^^k&3X zqBa>wQsEeqr%mhI%G0iVWR{kxyIx&6w{SlIhYk2U&t{PM^asS&`JQq$^-E2IuH|Wm zp9kln<(I|2Py~ZV(ZSnEpqN@VePzDRa8~)tsWlPbZz)kGzJ2V+{m1^yoB5eHL-95G zXP-d0!uOWWxka?UcXsC_F6MGhty1~KfvzpxO6AKZ!;McKEYrs7pCG_Z(_a<;9w@iO z831l>YzS}*UaSaObm6O!3tB{gTQ{$P3y;6bIoGC~d|z4Kg|B#Ro*FTp8hpzqR-PK2 zba& zUCQjK==C?(XbXd4jGrp@d~%7Xk=ygh+kI^LH=B^ui|VX1{avHJXS!BoU;P}x!Y5B# zeJY!M1{}3v&xT|U=nq9*^*T&G5@qeQLiz=%tIjIod8K(N8&DD#{u>1)VF{ zt*h29_Tz_ubFkIC@w2*-zf_|$|Bq?RPbb0GoXk^9kye8{s*@skMbf59I)rB7T%jfZ z$Z9UbbvoQFF%>mG$#Th=zE7L!Qh}W%=8$}EW;gG^y9+p4X!FteBJ%)3;*WSFU#;z` z-B5V^kpcv5xI;jH^b2DHMbNFT&67_XLri6V6y=57Vq%aklFET~6@H>i`f!j@g}0R` zds__3Ib9PrayEr1;LTF(GfN?5_tEzixrHwfIsV?0%$H2K>e?7WQaI`i8djokEg&NZ z_*o>7+S!J_%6Z$SS^f077jm8y66T_qTuv8Bg;bL#yLr1Hh%~H7BWceN(f*t+WJ-gT zjPogD@c{eGLfH1!_eT<14wq7ztxP1%%F{^V{#4c(qOgBXL=N*piyIpRk7xGDu5Yp$ z0Vd285e>7^Fmk#&kYL@s=Eyel9D7H^GhEhabSGIPoMc&V!d(U5IG}P=0X02cuSgGP z)>_1lbROG%@5H8v?A635tCYJW?;~b_2DU5#D%pK7hjhK9)Vtd> z<(Y}tP|x96Ujp|Mcmo1b%VDEZ`WLE{uU$ZVsVib9@;?F-14b#xNo>ZZ1e3g%O!b1nXjL#84wc-K5?$|V*)f&oB&|LV^d%FQ;)(`K zF=uG(m_kWM5$yHmB*7wT#sBN~Z11=!z;kk4QGkR5o47r@F(V5Osu7=`ey zcmYDWHV?G({IxI0n8-X91$6<82^>jGwxqx>mT;zRQis&E|Dg_9ChHY3kQrCxADdyj zw$2<(^EAI#PZgc;U;&P;%905f1&W(-$FWj^AMc_m7@Y!;4z>(uL0fpb|#$A;+eHE zq;0avw*4V)Vj6pr=Ezq#+dN@t5-n9IQOldeMF~}Gphr$D0a?dP;0P|4w>Z1Ex1pAd zv{3KIA_(I~<*ry`@Lb(&XtZ9j={{}2|3vNg=_8xIQapIjdeXGgha}~_$~v+j>RJkBhek}|ndUqcl;pNOqAWzR!ae3J^wU#P2w$P5f9$9&{4KW(LHyFJ4 zOw2=%0KJc!9eYMa*1`QP?GL!-)2(#?bKWYNP^W>NP0cRu{3Br`IJEW%tGoKS^G9KB zgsX3XV)y;e3)VH2hfohf0~F1S+h^C3sx50DkH18YZJ7^Z#!J#{MPH@a#!Z$ynhC!> zn%6>z(Yn-$;)kxW80*>M7iU2+bPvON!n=SW!(G~I>@7$BTYrMSb#zeMKGs^r)$i5d z?a@I5{#*aZmFW6RUrW!d3V(4Vvr6J*f3U6OW%}CCEcuRWhiZXsOAeIx1zEmzUB1sG z!xg;~-a#uqKiASvajKTqSstp>I}7OcE2>5Sn$e zBOtQ@sm2|t=3l$I{0YmrwUidylFUM$S+f*8&&$=XR=xz<%hm6$xw=h-@Xdg+FDlpT zB7Mm(?K%?^Fo2$A@kBK%5J%=y^sRv2)0WA|40oOs1A5PsYn8cdP+aI?XU&^hR`eFV zhu)(1bb;Qx{WGgkYGr_`sF4^mZ)Ka*V#5#*urir;DYC`J)`FaE#}z3F*#O}m$M;|R zB6oWsP~TNVYti}60D>C5?+nmVTzC??4OqEe0(zVNcU9>pYdwj^AsGBz^h?hzWNsw{ zpO^)7&u@`NsOWeg!(Y)sxu7upk%Jhf8xS__LXC$Ez;3>xNc;#^Ju@8`Ntc3LU2gzu%0{k(HSk}Q&T zi4zvhiEwA6#p!^sA#_JY`RwlO<9jfYJ#QQYysp81AdWe&j?!T7!zTgudVj>z;}9DY zhobiFv!|JFJe!9_{783sH)s1{XuTz%oymiX}Fy(uCJvO zeNJiU2aK05;TbR{=D?UJf#~7%A19_O>&==NgMH_PZ_k$er}+TsZCi4XY6C{ZIP>-^ z9A_t{zHUYtm3-4zyGH>Mt1Zw@f|TGPgQXxK7J7WGQQwyVuO^yN9~}{-@uF#NZ(vY& zoD6~%*jyB;>}JnV%~6h|;i3b{%j zHhOUkhhbad2gd1uWTM5Qg1|Rk^tWw`9QFzY)!rmZeS^fNn$!T5S2{9Ds2!8r>7J8V z0jU>{G}o9j*%NqnV#gfhgBdm)&HN|MYB!1tZe*Z0+=h{bjh}={l6Un5C*S-mvgZ9E zpkc-~`RSa$_KJeoN;d%+8_9EE?C(7$t}DLQKOJjJPrNY8dOF~*y{I6z*p0Y#fUIUl7w^aZ9#jZja|l(ir5vogTR5fxdz&e6^`+-vq* z`pmaBVUfZV$1T-{W5he0&F{?45gQ@^&pc;SsKyfS;2g_ZK+VTGQ0$PS8=O zI;*811w4pmOeWbAgZqgc25>N6F|g|m*o`EtMD1y1c7Fwi_JB&YchZ!#8v{9?2Q(2j zMZ{C&H->E@j zoCr+kx?;igH(g{8s25y>3o`Ab zMmqCxBKU z90fPUjaPe1+)jV4cAxw6WsEy3bd0^xo4L{ZR>?K`#!n~TD)F79b3QNLk5M+AY*C_n zTFU;toU_cSY}ldf0e*4JuI!h-M#3v?Rs8MtRgR6Qdn&~*e3b6J>%_7TdhH*4`|p*@ z`v$FhbU&1`8@TWRtUI>PyY_6?59uqZ0BrA$qVJCCI(=ujJ1V0m!zW7TJR{MMk=}v2 z%0qAPiIP${RXRLb`XG35Y@)R0F}?+{SbF9vQ|E$u@9&~dqZN|(1Fm2Lu1IB$9t^nh zUHStoO0p<@z33u&@}QIHFc$b>QK^i?V>Y~5- z^+RG`#|V@;?8k4Ma)S-^CFZCG>KLR7TfrXJ;UwM(5v;DMz&*~`RwgNnLA$afNk~|> zm2?<`4&60E73+HZ!k|OxQHvsTQNkZzBs1sL=1^eA)uh;)M)SBT>tmSuHfgZlIrbe< zpxooGrM(g9V4f+)NCWkVrw>nsOw{G3+Qb(SO2?kv=o9lHv5yc@-cb$3-eFk123Ag8 zZv(koj#cD{Ue>OASRURh^bsvF<}I_1$Bl#{4juvn=Er4danzx1*U>T z6K1N&Bg;|M^7LFDp*UZVco_pTP)1T>q5^fVUGY|bUiOUqom-7h9UVs9lzIi=h!@;+jrcNch& zFbJTNAjx;#Z29ySJd878ZV_oR9}O!_2W5Vo`$2P8E+oHXQPlO0tJ$(LjHHEV2~GZw zme5hIqyw~sYgWy|W9z%SRujbq$Q9?T^w`aw{-^Vz5aHwfv=O-Dt2&zY3bH%48z<=9 zh@Zc1HRvxBTfK7j-X_Aplg{Or!};oRs^3IXd+*xNqm?0apiHav+evcE2vxR<^mqiq zc^e4lYak_I_Xs5|^UdO!*e8#qn)GJt_-YV$n(0&nGFSo#7YNZB|24=Jl=WAL7iqCv zLf@J{n7f%PXch-pt5kyQuQA6zsbL%^ZH605j!P6-aP@ID4Kds*=V$_^>2tlJBc$o9 z6USHO|9n6DnZfS|E97;4ptEFdyS{CF+7i?!yHxZz2&Uv2V6{$|lD)NjS!$a()yAjC zmy0Zd`nWoW7_!PaIsw%$)hm7gnJwiPeL7Fzjb~!Ym)JYgqg>Yx=4^I<8D?b1-Xf_i zF#HKeY2n=kbQbQm>*!`fa!W<|NJC*;4H*&#k})5#@_m8{IObO?>md+0<2gq8T-3YlD0^!M^Gb2}(<&9k24#c%uk4}<1MyPUCr2PLqkymSMxm9})TYpJW8&@wrWk|vn zP`S(37(7-v%D1NB5n$<%2gR+!i)c3-qvhz%;*M;poGK|l8~h;zhU6KH{qXFFv2Ut) zJ_TiI9bsCjsxy9VOSkO?XViE&jscFkA8IG@$pe9^v^DnZRbb+XyDWi;E8GAk&ct|W ziOu9h*B5KljoK37Kg*4P%TD8oD9bf51Z^8jb*ZEFf=}%Iykz||J4z*97pX_liNN5t zu56Yuujq#8D)D0(?(!53nTda`+dXVwd_G=hh^ym&iO42{5!qyZ`><+>j_q+I2>vYf zRw?7dw$xE<0(dxVz3a5%XPp_Z`oYexuY;d74Fd1=g>5#-4&Ma=#g65A@;vWepnl*^ z-NB-7$Q>kF(KmozcbXL7tskSWD$n=c=x35uDY8B(gzqeWZN+N&E4WU+A7_c6D)M_# zc-MgRGb^H(c|c0#Imk2jn{k&mc$~d>NVB%X1JGHFJnv$-^HG^`jL(0%c*!%Ecg4C7 z+TR^1e>fW>WqqO?@S-yh+c)@IVekpPSaNJn7U09^#*9SD=s#J?r=}*pV9Eukh zy-w2)g=QUL^P?ZKS-v>}QXLmr&-(V6bf%Wac9=_6F@Bta!ke;4S%lO~5=LZ^tTdKO z5YCc#Jlkxkb}B4Jk^^rX#J2-@1`U)3T#kZ^ISp=%Kurk-sO&Lnq`rwbxm}=29o3t% zP_MRjZz1x?d%yJkQ&W^FnjqbRGhK28vViUgs|urbb0e90nnL8gh7MF$`VJnVvBoWlPp`u06YTA-lEu8WYVKc9j_W1%kX%J4{1>xkOD81f6 zLv6lkk@-32?z`LkOV550uEdg#kSPk2rl%eD+DitHMtMQ5=c3|0Et|*)b<9|t+di`! zqH=2wNV7af7ia>83u226`itQv)lkO(!v$NJE&n{Qcq!|Knig07R94d@pBLiH@|aI* zsL0OnxJF;f#D~vI^@Q3c4Fp~NUswixYa7dy4#*thAWa#Tut%~nN3LifX`=y-NY#cW zapO!0FvLn9SPGgyI)aT+EgGe^jhy#ETptP$Lk;F63@|OdI*|`0%s*FhmM;h`!wbjsdi(Pv0r(+W=SQG^q z4xt&`x3HkYKB1r@z=90O?isN+_0q;U1)Vd|0uP&x9`-^GMIp==P{oxQ;Ep5kt(?`1 z`$?#d`aQ{DbcSPNx}ND!P~=%nV~~Pze30Kg z1=lVDTmA1}0qmO(*mnz5A=p<7SR$?WH8DcG={y{v9X%bw?z7L_G`C^?6#%|MK%N2c zwLc~;Q?i`#_yMNpt$TO;wu^!4PE&tNb!YwNbLw|@c7!8Jdm87j-J&4Y(p>>gz$WF) zYp|3DP^AR`-VGm6>g=A)aL&L;cDPF{Iu(B#R@c};&$erq5#o1OUhhtU?K)I=mb&|K5v30H>ikBtIcuLGIihxR6ad%zvT= zWtF;%{ATB=b*{}kJ6y_G;)1!H0N9zTL!R>KDgRqyd+gwa|HQj6c5tAsn4p0|Yok2;+yoF{eA9-P9ZO1}IPfT9ELwE1n6?l=du(pTm!!p}I z*!xx)PV2f`gqG<`D;(28!G-3v#%ZZ-45w3)Qw3i7OOGBF%0lH!J~*;fNq7#*4MIQM8_fw^&BxE<`wM=&DlD98PM z_*ejfUi%@>AeP%+b}?lUBlb)yhTY_x-0$13&E|vz z{}^v-Jx3=Vrf+IJfgcJ6e&|>U2(xyQ>Rcj|cNmN9AhM|9=)*jiRAnev5fWnun38y3 zCYOBKWN&10Jw|MzkVP3sALPNL3`DddFf*@UUpN~!xAFD9*I~g|!5uBack?Y@W4MDC z7{0vY2!^;cuwL;P*t1T<{Wz^VxSD#r__E-hN6B3nvAIGP6&(Fl4<;4RAuHQu=D=2e zu`Z&bV~TXOvqiW&-*OJaeSLvp?H$K;s3-`ul!*`xjPF#5|Nchu;G>sW9`=c$Nw76+ z=JB}b`ARwlAYJHPwf8|N=_*&=RECGIzH>+6!3+$h1JssdARbfzsHe1=K4M`u?0F~2 zpV+LBqLAA;NFT=%9-?`2GU~;cf+h&0Us0NPC{__})CbQP^#zZ4O{ipJpH=>bSVadX?pi*55 zLlp2PKhkvxL6sIA?n(aX%?j}f`CdNyI*1)%TXr@ zVvl(ZHv5_kVqDvl*4vL{-^lAp>ObYu9Cwh~jJ`f>wc!G7tW?$rM#l|_j!J9Ez0E!N z+yjxm9|0YCl*CIqnyws~HFxasI`o`%h@>s)L z3vf3X(pw|_d&#|`ZSJ}XUXgy5+6pjnvUZum;04v6d)9?^arj#vj&f1R*XnRb&(57h zlKPr>KhV?)vzohh_*!50=KC_ksM_19cYawpTsBt4+TmhlNxsCl71l-g>P=WTD3p>}W%XDPmVr`W5COK975l^KJcqv_y4QaTy!n%}B)3qL`c{$iLV)v< z$BSE~YyX?xx;g72AJA$!>QLNKM3plq{S$$Rc1Kp z@(#0$$hm_IIGj7V{5K(ypuPtY&RoaE)+zRyjb}f}>H#Wx9tLs^5y(~uP>bhTts~4U zRdvTJw)*`a7&8VsU4X690bJ=k8quX^@C)mL;)`Ez#2GU-ZOoxD>%XKzi3Jn$tVDgT znVK)-CZ#8wW2S%V+Dc+#Dbn&tCc^!^b-{!^tNE-wYaMCgn#Zb6ym4RwZ9@?*$KjC6 zaYP;KKM()>`SbnH#vg^!qgUoHTW)9y|3@*VXT#A`j4vKD&L?A(onsiBN7v{fbxjk_ za*ugm#UT2R(@(-!<>8|v0k62T{JCu;H6jZ_vsgO11c^dTC*O+mHiS9v6d5=Ep&i$G zpcvCJN4j-DG6A4HcPFM% zi{iu~Xwf6k#1Ey!zv!WCzt~^gNZL!YPcWHr>*|6c3KVIMY4cv*&5F37BAq|igA~*| z4<9;V;d;+gQY$hnG>b#OM=)Ec_5N}01dDn}x;vLee(%_2>|A?v*fYU;#!b9)v!eEY zrU$kwnp)OF9l5Q-Es*jU-kZtGNL5ofdy#SahoA6?*UPIZ(|ec*yh2h_RfIFC8ktY- zn{?iLVF~C>t5x=Nq?h;eeLl*RRRLS~r1zpIYS>^4c=iv*2Ou>uyui17$P8~OU-h>AwEKwLTDR~0SDyFTJ#5hL+ctQv@%LPwydR=!prdTO&*PGa}ku_^u1aI1u-F%peI=dMLW%)6kEwEc_Q2da1 ziDo_G-#GA$Yxbt0#Nnd6oYZp~o66?JKjdcuXiq;{0-NFzqPD|6tTzKpm~sJ zwD?te?tYQ9_>vBvsiBxN?_NxjG|V3+nk4nSIVy<6QLE+{BX!gxpzKntun+%f9@`_h zcolmr*+BBpNB;NoB@ztWhN#U}`Xl|)S z&wzdRrXucYk#Kx?#H9kqgv}F>oU3 z)fEv+U8Ta~;R&nr<`-`}=SMkjstHT8gzp2L1uT;z{t|7SHfvwipgx?Kl&ezdJ)tCc zKNEd_{uL0uSDzu}G_~w9HMM?JocW%vD7WI++o@9cKIg39LwyU$A$N)N?M5Zxf?gXm z`lz~M%xvjPRFg$ZY~U;}^}05jk{H|eAWegouN~rlHW;KE?>ed-js6&oDVX3MvcJ)1 zezQr&sZ4Xc0kjRku@rhpP!9B5ux(SyFZzTr8ge)M+nN!yW&{ZKF?11sX5d}={3DLu z25o&MG5y{|h_zPjF#7bUi)6SPCf(mR{P048UholxzFEhVj4PHIoAeXkr8alCt%W9b zWXudPjdRYh>8|Sp&xU}-o=Re#y?b4unq-V8@L-idLCN;_)$BTLQ}wtzXxZC$NLb~x#dlrX|mgxMC02JIE1fZIhhye7`Nv`YBdd1y=+7gF~ zZj#?boLb)lA>UqEM2l+7jA&6|$@szrKhD{q2(pfPzq8sV@`OqP;O-+-qLF&(BxNsM zI?s20E9`5W&J;y#Y7^}xtm-2wF)L<7B~~$3{QHV5yCdYKBc4~@q1}It!@houJRn1B zARuoKRH5F*zekgc=k#wXO;&+qHPJ+}&r9My0?V%!#gy{A;@MkS&%jH3VJ^3aldEkH zwGcEE#-nKC`CqTVc4Y^nmIQ}SMTKJ6%6MJUC+4=F2nIe zx;dy8m5k4^!hG%IjNrK zO&0?7{NrY=KqU$I>iXo(td|eVP{*M2Dxy_-$3%i z&IPrYq#NF`H@s&aUW>l*DT}~$u_{cmH}TSf|ML}^$;S7y-=%8Q4*``Gq)*;?Iw>yZ z+M`P=1=&-AUR>g)lv8M_i@L=d2lKJ6SJu-^-1pLj3gPA zUMLh7PB~;GA}pK}VaP~p*CrQF(7WG0eKy7aq%os@^UnOn3F9mEg?SSly()0E2bO@5D``sM!iaJ@Ad)z(gy!}oHqg+d%6f(kCRYXrhyTB z49~9U+h+#1m2+nHza*S5az1IwXx1D-YV%RpRDg+s~@6Vcy26B3A135UYvK6p&Uj$9nL zdSa&r#wGySj7c|(Jk(6>UlWz?m|$M3qcG?`?x(Pp`@}udy;(JW!gVJKag%BMWMHPZ z$ut_s5nQV(#@1(>Y4M&>Ju24B@AoP9>Y!57_I2rt1!~ZR(q~DTLN=YJe%AuG~dXR8^E{tQY zCGL9S5pL$ZL{yqE!7PCi?-&qnHss>Yl!ygu=9lEd{F*f=Ta!k!@(Ge;2=&kpqHqY6 z{on5ZKSQc3&OGHGH52V5rSdlp@<)TUd^tPImN-p>%8gA zQ+Ak&?I5w(;da-1Fxi1*&Dk!KuDyJfKdQGznI3t;Y)EVmiM^4CvcGz#9hP=CVIS~C zs?hI7EA0D+Pn=ZGk4BUn=P$C@XUg3;#CEfsqY+3c=(Yx&yzsG_Yx$Ac^O~9s6@Lk} zwa-(VTLi+@D8pkN%Usa8!>2#BvQqhCbBi_tyKi%u!vk4faKrE; zj`A7R^*u4UY1HA#@j;TsA~oZkr#WO#e2y%{cXrCy?a^->G8t=M69*gnV=JM2(; z+@i=rl<-*>?is4gAh*3(T9DgbmuT02hwP|v;*^DAyTsz$UYNN|F8=;xLQ*kc-Pua>GWJAOdS0bVH`ej$C8d=lx6xGX6!ih`g=Z-zX^pwaTcjfMK60uZuUYHZ`K`{yC1kv0k@pv((fVw_03h@MRo)UQDXqJ0HH2(U$GC(>`3gl!3Lp(vQgpzA$E|T=P@@b~$^PLynjB zbJ|57aR?1iH*l!6Kc+~}c=r}6IDqmJ&6}mN6(p~BfJApl7UZwVU$IJ1S0x!$cuwjAS5{7G^}I1_D5ga`tu%_!5y6-thk1xGA-p8Hk8pP* zVA}#K7psE!Llc41lChZ?X$|i#V`#8#PUVZj?}&ts7KHo50dVaXj-|0NsA1mKFQvf; zD|OsvQvMA*R}GXMVHj4mYv2}|x#avrR9eZPTVMa5+1jC13m@>ThPWiaLj$NZb(LiR zUg#hGF#lQ{MhjUDSY!t#Y&e78=|DGfWko+JqcORmo*qNE!gH2R;E|RBil84>-O{JC zrjd&I`oH?{_}hn1y5fj{D4`(7Fq;gMFeg*rF%V$_W&~Kh2UmuNOy79@d44`#XK1c7 z>Go>-WrBsGGg6ow%^_bo0s;z=R`A@z;V@*lR+-f8a&@E{y%Oc-sNt4@$ z{Ei_yXJiJl|J^k#trI4cc};PR2ON1HtgC03=0QTJF$ZKYY1Gd%b<`>f1BU z8fUUR2jNqRK%Rm0G%b)&f=8v7d0wboRXEK+3?XHNlr;JW`WpfChbkQR0oOgy)mOIM zqGX@-jrMZZ@WP@oKm%S-2j&UzwPtXJOzNJ5|4w)MLz5BGsHES3?--sK^ZnK3vHfd!)W9|0&E1|tpxQ5pO_y=@0bIZN?!fV@f_k{hHh{` z-g^Zw?}aDDY%Q+Vy(7%#OC@I57J%rRff{Bl>N?2^`|)j=KWbvPi9JsqoO}35()?{k z*_U?$*wooDkxZy>gAoc#!+_A;4D74?)Q}!8;PB_dCRMq1>?9aqF@7+T`@MYJ>&Ejr8&7_tFwP5OZHA%Aau!IC%pG2g2WhOH7$x;V` zETg5Tvn5gK603_A*he`g3SkI)NIk-!LYr^QhBsm7dw`ADP}EmQj0910TxYqHHUE0S z#F9mXu6>Q0Zhe`y!KjUX{NYXa`B`OoUI3vrfHDE57WOCQyq4SM|0bq#0HX3fXQIBc zBQeL#;;e933msSsbC|;0m({r{uU{VJCbNEjPVUdD#0>_^AT!Xr!g9U>q$&UWm(jwH zPp8a2oGKf~6qr2@1Dt2r5O$uar@swdVU|B$CHllM3i^&CF~)|+1S?|O$b z{rtL$sHH<+KCxVcgM9`aIsz9YZFeaVrs59Pc-^;}v-T4WQQyO!;Ew8_i2wV}6g}Xk zM3b$|T_!^pokQz23ag$&-|YK5MMj}$^4VUF z`Nhe!{F)nUH)GyK$2uWmop?;>IAWa=&CAvq30e7#s(FW;bf9DIyh;D~gfR>Eu*zDi;Zj?eNb}x-BJ)!^s;6|a(Bdhb;90?BRgj5t z4G#?4pR&CsByd3fa=0S2nxbU7u;FK+?=BiKS(u)Axh0)5wPR~0-qm`h^WbU23wzt< z)vxWP@4J*YhRxT9>-L=r)`oYJn+OS;ud_n7L6*+;_-o4V8{@CG-E@PV{ClHEhOb++ z^iE=v*~~et_R>Vh<)73Ko7cU?p9kZ~$y#%I5RC7+C_DvTc6D%(?TxNylXUZvw7cyM zm0il10M%$)h;sqYXdK@~cIrMzXPOxk^P^Sw%uJ=tr0a@Vl=%R-hN$`k2VLXS z;4R=tmI-l|esG)X!R@%-F3JbDl^=ix2h^AlewifIEb(2^sxMJC_-d~IwGH81p!YS- zfQCKxOHr2|7L`a)Rp`v^s@7ya>e-fQ?d6_CMBG&6q`ghk(oPr}P0^xQC-Tw>pKn-I zU==jfn+0FULn#9do9cPpDNC{6PiUIYbK=G3qO-$8c|-4!&!~vBuTQ>kaVq9qSC4R0 zZ5sn-c2w3Bg`92#PPU}hYQ37UfL7aOD@^eH$vSXGrM00(qHQkX$OzS$|s zs`ra)YV9(?6v0fT1`+D|d>kA`s!Dv&W*)GKNkRUw$KGk%vW<0#!POS_HWb20HMXOj zFfKZ(1IoPYKuHb=h3=e}`a!pGEix(-FGNyFvp8F>FnS60py$#6s7yS-?STz%9Q{=J z<(U0yGf#9$nP0KANgg(pw7T9(&{zn{Qr;=*>cFfj-+)n=y0%6=g1Pib@K-{9O>O-O zD2fN*kpZNO9+ee3Ee&CmLy{Y$8t$A;>@@irAz2KS6WIN=7smAGvoJpd3#-vTv_E)f zy$$u%9=)Z?ocScUZ!0Ms*1s+*3g&tO<{FHwaL?toh?iG^?!8cF^IwQ)GgU5uybu#7 zyiSWC6R0o=WABA{sy1cbD-&9DpK~!Nsx|afX*w1OV+ScPQ?UJ67!=nWxTW!4>e{2+ zs?4!Zh&tGP)wNHQ#{1B)hQ!e$OnKns2^|lkRDHNYizW|zB4sdmrMR6*RqYW9Q=!@L z9So)s0Ohhh)L-TYQeYrS35@egtp%-#E37clqsQ zPt?rvvdW%lo*PrpHXQ|I9bY>@6)&V?q51YWJ90tusr!7Ep*5x`OY9ufd*uS?R`!ld zOk<4PQV^3Knct2YR7K=vVu-rr(*v)c(--8cjeWB`*|XL6v`D6GkjYvwxME9W4m){J zFWS%o##;g7E%&CnJQ0u!8-9suDI$;8vYc|r0{fu8;|DE&7@x}4WxKAg_GV;|bE)q; z8hgMML-4T&RHV*T74_H0rrWfw2|mO(7MSR(87^6Hj0`F*LA)drj8q#Aw;weDPimEP z-W9R1q0}jcV(Ui<{mY{;!HH!^ql7qVwF!u8Eb*-a>*F(uOdcZ)2`xD&hLi}wh|AI? z-xnN`kGPfxd@wwPJ$V8f;-`yDp2jA>{t7lT5`~fSLPrkJk%;o6A@&Mp63fVjcx=6! zd^>~;rrym6j5PqpTIe0)b{1uacz%J_`5=IdD12mR>Zdp(^GlX)+)yJVamdY%zr%W*TZn2n(gQOkf< zZibqZb1A`w+KgqZ7Y>59>xy5V6a`vwFeP`M#JnYWD11je?aeo%Nc<>DcYDlE*TyBs zM?2?je2?$@z;NmHk4#TfsORQG8-{PK@I5^FLF|YraSGSjy%qpj;)1ua5BK*0C!d+w zGm4Toe+)SV1<3ZMqPp*#K~{>Zf4?52M10ywFOK@ljctp%-ZMQ$w6Ep0kuL2NXM^_k z9qfXLD7FvYu{PPUzV6eRJcvp6H|ER*JJ`e;f5|VH+*t#}LH1DHry; zyZ9`ci-??{yo;eBdHUuU{2a9OGFC50-g@Z^r8oVi69{e83>7|UzusnSVo??dpWp1R zW8-G*{T2L1sQ?Nys#a`cD2cwqbYzXHQ=sziYJNmdhtE+uwR^#iaa=X<91sF zDSL!>j5O3%7m%!Jv-;w4y$a{h;4l2VD#x4n1^{G#WkG>=Q`aDqmFvRI)|MJZ=4KJj zklvU-J)NiH42aod4U4)M0jkWOi@)f2W}ERL0WT?$LD?jj{H?5WzJyuSDE{WkiUR+I zt|UcFA8pGzk>rN-RLyV;@BHi=Szdg~4&L08*Q$!lNE0+3PJ3K`NWe!*WOUpGV>(5m zp-6ZA`|Z7T;_!2$I?`Pm^j#uMT_T)`y;(2{)3~273e%!4@u^Wldgj-1yN~;FSLRr~ zXZ26K7WxM3-9lleSa;vo>A^)fZW3)tP45Ug!%-abD|PlVyz|}HLgUct3x$PZor13Byx%&Bo)OF=yD8{FmGABN!xw*o7Z!B$EV3ikKjIMqITI&yRj>fZr z4si~vL$pN4Uz?#&yr3Ei}_9eMe*05`V@eC!jSRmHC=q&>Te+kc9sDO@#JGY)>GC4>n|URGTD4QX!_ z_SV{Ab|Oj3K_i&6zW^1%p&<28Avko)bRG^aYw3r;Zi3X%aeB0x#pgDuZXNa{QNOB| zOdg#K!3DTr3^osnXb@{c0^H-aa>|avmMoE4dh{>D=;^JpR;j;UxU_ugkG6BUUDMOB ztd}6@R_u*&qFL@*l!{AZn$V$Rd?;95xPb$F1gzXOV?$*RCD>D1*yAipW3f#bEZbF5 ze?U#CxvF!Y@`qPaYVIl5#P4HIWHQUrb27&cKSHz2d>&cAZvgm1CLLH%f$IDv74`(9 ze8_=6_W3QneUSG+lNe*kVc=(Nf$Y-;7Bq6iBqH`0dq@F=#Rxzc&ZEh?57$nwlDk@y z*9Z~S97BS6D5!D{a3n;s=Oft#1i5o;Wai7IwnjO(`VPUmfYXMWA>!~lu9)!NO|vhr zoCrP$1!^bwYma(@T_BW~KrH$SP(AnX&~Us$*axAHQ*cKdfu~v9vKh0BHI>UkH)eK6 zDL#tVNnBA$ssoz9gKS_rSdZYN5P?ntp3ZScYtT_3s2;Bmt5RFqf3eWSE!6fIwt@OS z0JnsPM4_75S~#rs8XS!DV`D3gxmGp2SC?SCGFziuTYV|1U^qo=uE3Vv*Gp=-|GQ#; zccPuL``3fI0|c|{GL@_O5q#Z-a=oC_WCB1|1Kt@6lWphMf(q*OOdofGPtF9o5XJwC zVubwRd9m<32+d2%^rYq#pR(3{m#^J7WYZgSi~uV@seBnz8V6iKdRv866Hcr@Ez?*o z^K+EzXJ1Mh45^ImDL^v`U;%+~5HSdwex-e-K%0Enh79{=03<7c>jgGD@JqRqHbeGA zX93-X!y`i`#iD*Fc_;}{D9Ouo zL%h(?$XRMq4==v-2+KvM-&6c+T+f$I4m8j*pQWQZyI?8@bKhN@b*tHzA+>{ZI^I<@ z{^%@0R{Zu^^;H(O6Z1tl^LjYKsyOpz=8@}br&;+AE3|=SL!kmxEXz#T41O z5wG25C#Ugp+lg8mw|*Hj+>Sy7!!LtqOv7}BQmmIuVW(K<2j>Xwu&UopQ=glPr1nv- z95h}z@cm5Wc;%4w%9qfD76qc6ih@q1mB}3XPhakcWv{)7ignP4O@FHc^P|Am1XQhq+{JqXJvo6(YMsJgwS01$M+)1Z`UU(w z)4%=w@Kx)NP14}lejRS|#2d50*JRqJ2zHgvN-nu4%KWbwtJB%+?ZYaGewl~r@2<2f zl_(UC%o**laV#k-?cBv{ARTzUdk*l^_4ANo#uwc(&cwVzLG)}Ze-|7EsjNzV_O5k9|@!!(GL%mr#5Jc63JcH-fvQ`_)sT( z$VPQUF`H6Se}{R70ZNHnDeBq>NmEkYW%h){JW_^SdKNZnUGvTduQ1wF8rcGp|Pmtu@ zy*M1K^TKup+;Naz;sIyF9*~6}{q_T~3e!o-U~fWxMRonuNWOERWF$qH;=_mig%CD2 zRO&b5)GIXE2x663?{>nI(NW&uk2?eOf^k&i6N5kgd4_vSg+O%BC%L{ySuGWr)dRB< z1H~6zVZm!YKCyju2ev+?_-*bTl|a$K`sDf%Wwjz?)(AB7J2~*0jHDnREi^qj{?ZTN znfxaAo=TwD;5`QS{3@*1us1ND^#xGR)>CWA+DRzgaklVTFH(9dhiXsdK}xlcm>^`q zQ#V{Jf>ioZ*TJ1xxpM!kl!ZsoA;fv~ga=Xke88b@;I8l6f>})s9acIW58R{mK?&p zK3UCyR0H6nkmaer%1l}5!!)5NhH)8z>KS~CY9>6n*D^|&UQVG*PN*7ww&3s@RQe3I z7Mrc_WfFQ!xw#0vLkZuY3G692~fa9b8s zt_x}V|D49nH(ye5MgEb|;~35MuLyyTC?wv{4snw7cZXmcILmf@;QpYeTY%m@2%@HC z^e`>Nhd3Gg6Bq!9wZ!8BIDZT?!w9fid}!8dDN75<>5WnsAEIs@B@8degi>Tpu%Q(6 z#dzJ1FL1G8q5>~9_X|Iq0Q~`Z2v;3JH7J<5v54d3A9L3-TUp_6>U$e+|^LG?7ag-3ZLr9Phv+}v}jy6_u6?i z)TNe-@}`PsZ>o4wRDCEVd9l$Y{Juc>n^6$H<&%SDjGN!Y1;D1u%lHb{cNIHr@$HP# z6R6W{D}0hC^K-O&3sm~X}(SIZ#|Cqdgn)AHf zZdQR@$jW14@p9zD^{S|+5j2U}7A9R_ll?;||iZ8P6?9Tl}Tu@ws z4pEaKXE@Klf(}cspMF+6mr3+gt!>q0KU{W)Cw6Jm_94w3)!3!=WMg8&2Yjsj5g@V& zSk+hFoP4q9ZhM*|a7q81`e4}RG8o3v)w4ph*8mZQR~6`#yUJ7+Eg-pd>N7bfNYppJ zHvHs2cna1LkoZ5vFh>cK8KDRzK}oL1ZB+s*QlgP#m+13LLKYzue+fhp@6fNj`CWu2 z9p8~4SUJr>v!c(N=#hsFmks_EFZWRqvRIpjj_ zZ_8217b@4!G4*Ul*f`LJlxTdb1rzeN53YlTYt=Xn@wB9p!H zzj5V}2AYw=RRG72f@^~wGzd#T_)NIdiBt#Y&S7$xux4H#Q@AeD(O)&?EV&s!pK!PcjNDrBc5W&$&@D#$4+qOR> zeS+DV3X%VTC0ejpV#q0Sd#lSh4bALE+HIU7!?+X0xKk!B>zNEI%8SI@g^&oG2*gj< z9umi2ykqb`E&je2p#fxCUCixbg!kg^5<$jrO<5ztI;%q9f+E~c8omMn!H1Z zsAFpmEQG;<&?NQ8V_L-AW7<#odTgIcnsh(?Pm^O~)q_E|!Jr|a3z;OBI7Is1s_|OO z=v7GZjB)ZD&l7|zUBsc-V=UlMvY#UZh_zxa{jV&=R;5M9OBQ4d8F;k0T?n8EYftUK zu1fGlD9|_o1hRjj9VgsJu?WzP4`LK$H*Afs3et>Y=de z7LEdiX~bJ`t2c}l>Wo=`fjXw}DlL?+JO{foV+Au~1(){-%U!Ed@#B$TCfOTmuEHc& z7qAGYPZcd>PU*cJv3#>suD+CcY=k?wc-?D|j|l*grw;B)ImLkb9_sXVx?FQQ6Z4!< zCk0GdRV22os%GJ$ZLN3KeySse!ipTSiTDS!l>ulIF6wd+262dQUoqPqRyvF=XOwHg zbtl-k0y7uLn4wN=AH)@OaVLzqx3g^B)SYz=^0iBbFqN@S!4cpq2leAba^PX*pjo4J zv5N2Vez;FM%&H#uZnu*c7RUegij~`XD0jrKb2Kt+01NQyff*%t! zb(tdD#1exvOGVV!MSZfoJ)gVZzcIb1vKgXH7H8oWm-#-f|Hl*vJXv)e)`~UeRN#Euq;>Ah4?w5 zKN;&WD-F9%$a|=x5_>v|rddn5*933g+)C98!@{}KQMuE}>b4NN)4jN8AuhW<67{J`e@ z0KV_~u*z>dI~HA>Iix;U?rFU9G*L9I@cuF9mdvdQ z?lvtWm?M*@BI!bm<_IH`!UTp~bWRKDU4hyo_nlepzf874vIj1ey^_7-Sq}bmE?Y#J zPXsZ#0~mSq&*48)&3@&|<2Vf$o=*Ro7PcoaL*kiTJ2_f~Yi3Far^LMm;j2I!Yly;? zaD)7F6%={*%lhw?y&+rHx?2V}%Bb+9=Rmcyqk-ub%@?%}Obu6~wu5hOxU<;@+9LgJ z_a>R)d$_8wF2{Cr!w3}sj_mI*=+vCUCr4Os&+9gq*KL{~U6fw8mAxeJ&eIM7{jS-I z&@{6MDHrXAMXOJus!s~Bn;E=kks8l)Q&Zb3R-sDsE=5jttTtn(I zl!`G2qkaZd6|y#oApYVt4Xis|X7D&(hXunr3`O;UuM9k$GEAb&1doth%8ihXKWs8Q z98|HC_@yPdCd_#Jiq!ogSgO;t{Mj92oWfrMGtBZFk^MnU=KiC+Mn9`)Uq~3tp7%0PZ(V{L+%w8Md8rD>Y<+=h}f~JcN))D&j z92_F5O7uXLOn^4f5W+i?-5EYvd$W^RUS|VQ>>_)Fhy7YNFkdV1Q1rm{Ti#DYt_v33 zHYtPmBk5km^08zP2i}^t?1nTob}=9aw_*zL^Q1`7YRp) zzLS501;)A0a)Jcpp~+F#=&4PLK^ZEc2yNi-0-JJ;iYQVUa{1=PC*G%71~L?=ZoT-Ug*+4CYB za+~yBb!@=QqLfKst~+6_^?_w`ua>b)#U5NjG5?DdO#aIX4l}PKpDjZjAA(z>nVrT@ zHW1}5vfXDfC#iM2A@HlNP@ED_&bXsrRd(9FaVL+ zQP%?(t!o83MJ3Cb(`Ij-qXgTGIt}NWk_}b< zD#2qB3fjXKkp}e`D5aOHDDwQuP3q!3_T*t25XuOch7C|egUdS4epNuQfUkmC*fO#! zUefgS0xG{pU1kA@w-A`mBrtA&T`=z7gE8|cDPc>hB*CoGihHJ9nWfIBiVp^yviO0d z7iM*#U^ktOz2}DLko|Y0wNJCd;T7^kl?3NF?uK|YD=mR!I#AqxQ1N*Fh9y- zMO{4Lt+Dh$&DSC3bC%?d@puM%f3mPPi%BlrfM5;SY*{>1UCLV+C4VJIV9<$M+{`$n zDvrtom(UOeWo95|UMHu85#RdgrMx?0SlniKknN|ZTm4nBR(Coeh>(6UZP8EfQ@&-< z&lN^$pl=q<9^2m;4G0;k=dS6=fyb56IHy4caJ{6{FMe0(eE1L}QNxx$^Z74I^eq(| zvqKRj0vD%SOiycha|8;>C?3oNuG&7N{3Dr^SN0o!>k7$!vexNOASA`Lj8B6v_w=Vs z?*Mp3+5MRW!Y;A_&AwmUL#qMRUlh+C?(G{s%_iE%kb47m?Lh8*a#PmNUblOJ`cAqX zo_29-d$;AM;)Qt(tjnGZf$A_XcC+3gOZED<7C2dJ88+A?gb+)cVJ(-h7mWaE7v2!Z zfM6j98ENw2!6mD`vX$?t(;h{V_?A5*a||KA+Ns6B{?)y7xKkv{Ih)|Rys~V+lv9Z7 z4sMQO9>`XUyYEm1RDU)AO7h;>IXAe^q2q>=Xx2B;yEuKWYu4X@1chA1leJ<;_Y$XZ zJpe;W^Uo18h#lNAfSD9lImyBag)GwW5;pv)X4nXo?hQ8h zuv=r|PT_1SX+Ak{FVPd&DmOQWP2X~yszK=M#(9t-_dh0-Fy#bDD(y`{{8!-?Go(pK z>nEv$c+X;(Tj9ETrMeSA1OGsRJzc3$UOxDU6>vZMHwv4~YnBi9{t+shf|1rUPtsQ z`JRj(deGUHN>HfAF>z+fCWgEynM%*RA6BJQ_5}FNpw6Z#g15^#`f!Owu@9b?@~l6K zal1@hdTa%NvI(IQfD;;k1T&-6^pcYYhvNMfB9ru#`Z19)$y8j&U73T>lL=h#7&u_| z;yx$c&cy`IA1(9v5M6E8YxSVFnxXj){%U^z*{i@^}6PYy?8RoUJO1~*x0WRzlRIj-LC#xWZ^?L2vGB>GpWPng`K-mm7 zDlG!Vb{wHLisR%MA-&g2x!n_H2+}uE0%hs~8C^Duzut@9XqV5ekb<24kiKIW@&I56U# zqrw0J<=j+OGB1jprOZA^nql5;0r4xU2lTj5(TD&NM2KzbvP3HJFhH=fLbLK1w>AkX zu8k0(Hb;oQ4{b*!_kSoR)UE~XZy!BMdt=OIJ>ifTtS4P=7bKpLNEr7W4pFHlu@>7K z5cX-a{m^84Y=AR26xZfqEj%F1LcemK%sBX$@rulTg^b4-m&Y-F+5o}n7Q9t0#O-^$ zpwQUT|G$Awr>-TQ-1b%!sdg=0-t_zNpEr(UN3{@)&;{N+0ni==iCm}5050AJu{Pv8dbp4_2P>rf4M;>XDn*kZ0CI1%c~D;AdBs7QPHV0)6RLIt(|(Fi0?4ub@uY_q8R*-r%kD1O$UoJE>A+r+GwYn~_67 zcqiOI$xdxu)MbTHvIM=Bd#z6QI}3A-oIH_@{L2IfJew{G8^t=ubYZ)2qA(H=4bSUs z|E~s7KEAS94}gOt)3OP-8*BNUUln)**_hB@pYUdVR;w=IZ!SM%xwVvosK({jbuIBR znKu0izeHsWh1k^=?oc4!6?cz>J=VUcD;C26?d>?ye-6cnG`Db^jjxL%$7g_(*UE>6g;)!*D=^5nXjqc)&Fgz(@iSp5 zr5|_k&I5@U0VLv?)`l#GQI&HUOvwho_|9RXJVw$Y%++}tpq+7n{UH!a_sb7_k^9LO z=@KL<;va}aol}qsggPaxXHfj>l@&fM9R|uC9jFqzQ*41qL}R*V8zwp$M@|Z9tm z3YpOetW`S{@4yVh1JL)*`xqvq3~uyWgb(G!g+a}Gr@*@DCwTI1s3WC^ za;VVr>!HvPB9G8e78;^q=3a;hR<$VGmdL+B^>Ys8bO>AfJ885F1EyxxOHzjfBW-86 zy~Oyv^Bbplqa>4JdE+5-4phI=5RCUmnj~W5?Pt}p08(q3yAwu9Eb2&gRCczQ2A8)-Il)rj16&>oOWjh#d{p_*XnJ+) zFyocQjCT#LfW(ZK;~uQ^l>wXM0h|A8z|C}j2b`#OPvL5FLSjGDoItR{MF)A!$;22; z`JHuqO!*ya{}#g%YvlNJBFinLdSZX9!zkfgS(F0|f*~QS z5y;qZcLFzQZmxHqqqXpe$7djw-|@}eL)VB)8A?3^xZ1<1=STK549xL!K#5A3DMWvN zH~g_ic6!?`i zXy=bD{PX>Ko$0~%qu*2Ax<~6_DYk3hJ@*ehJ!{(T9FZ!@oIFK=gM)Jhhg9AT@oOiH z0Evr(V@-sEa~A%qi`8`p$LChY4%{x*R^zH;p$RN69HZ&c2r+)F&N1YLPh} z@F`x;hgmn9H_xc{6Mx0|$R(2To#Ir#b=s7w+eV_5>C<6!bKJLBa{}0x6VZ2!zZRh@ z4H{1OJDh!Fi83IGaZWi~GlQZD&oHX^_<@73$xr@P@ozMDP##ES(=*Ot|^#rP@M$-pjW|`ebjZEy^N7x1aZo#?j7d5=@ZBV)r=kRUu1>#iX@TcZ?`;JSOKh+qwG;J8V)~%7+DPJ11 zdojbBEo9lI89>ajlXM|*Vg2!?xsZD~WLCBUL=lN*YL4Gq*`4SF3`(5xBpcpW&(Em3 zJDV$b*hIYZBzHscSp`8DZlA->W)S{;YxuEA-W^lhY904BA0#{ z`-PP09$kDrMH=(|=a1n4XF@N&TE-6FH98Yz-^MN}C$mmb#`Vc58}^Lpen zqZygZQF1a@A*n#BGp)l|rd2afqt;hd!F-$&OE$gar|%H#f->SVXE&K! zxf*PS-pe}dOKlNGpsO9qjGqxwY@hgD&=7xBT0-ONQ!jp*qt0*Lgah$Og{Y-{q~Kas z$L2O;_`8RacAQ%g8M497QH5g3L z{pXABIGxDlIe~-21}{qb_tSl5Yj0^_Yio)5cwdM2$~W*3OL}IupYE~ok&;F0#Cl1c zIVbU=TjN=IOk?zvO;O=BDK^=k{?}TDhuUg%5?_(tekZY`|9aDb`w2&1=jJyxF2r(S z_Q?w-XNw2PH74c;1Q2yWxf4Eb+%zak6YI?G+J9>5%Jbe~h*_m}T-L-XHW62UEzfl! zy;QAh<4fqN+~3M7=_Qgkcfb3Om^|F7l1Z`lE(MFZy|!Zd-{HY zT$7P(4oia`5hvmx;zsZ6hl$;cR}(c&9hvczCq@`wNL>mn^liK9H zy!M(oB5U}@o3S6CZp?C%0A{IIl4TW zwIC>#?-6!$os`E7#gHvw#Ku0OIjvQ1wIfug5y={!$%@w6E0NFe`a({29p5~xbm5Js zYv!E*?QhF!Rf63QEAub^*h2sOua``CdC%_>yx{Oj9Gvs;lA02>Hjc(Nj=Cz(?Tj6? zF;Oq&M&Ua@c3i zdvAEEL)cVQ^|=HEgTMHo*BivkGs#z-9?6p*WhK2*Dz`uV)1%7m9J>py0^at;UDtAN zjTJ8AZaUj^f=}(|5gnyS-eS`yRUy3>nFFVO{@5m!UYBI8vTvFFCOE)#WXY zNtNHOUQr=0tvJrtJZdq2SBkq}cH+yIi>B4YPSzCjsXL)E(jf#H&G=r4Tn~GjCWVMhN+0!+Gsg zQ&9)Q=ChP*2bve3lcpW4z8EUZeABFO_SK|l;hhtTGAD2;PX6mCeV|cC>;tn{4F8;i zfByNO7tAmYj*+dQqP?x1!*zW-JIuuX_ph5MeoLdF-4|$0_Rmk@Pp=b2|Nd)3TYKaG z>*sM=iC53zS2g*Rg;6pS}FIJMm9PUMF%cpZHJb;=d>0zxVBb{qzOXiGSb4 z|NDpky$}BDhepiUXa4&q`` Date: Thu, 28 Mar 2024 10:22:25 +0000 Subject: [PATCH 2/2] checkpoint --- can_baybe-inhibitor.ipynb | 699 ++++-------------- img/AA2024_simulation_10MC_50exp_1batch.png | Bin 35636 -> 36064 bytes ...4_simulation_10MC_50exp_1batch_first10.png | Bin 39573 -> 40972 bytes ...4_simulation_10MC_50exp_1batch_first25.png | Bin 35734 -> 36077 bytes .../AA2024_simulation_10MC_50exp_1batch.xlsx | Bin 76614 -> 94158 bytes 5 files changed, 128 insertions(+), 571 deletions(-) diff --git a/can_baybe-inhibitor.ipynb b/can_baybe-inhibitor.ipynb index 72a77ae..a1d5dbd 100644 --- a/can_baybe-inhibitor.ipynb +++ b/can_baybe-inhibitor.ipynb @@ -30,19 +30,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 27, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/vscode/.local/lib/python3.10/site-packages/baybe/telemetry.py:222: UserWarning: WARNING: BayBE Telemetry endpoint https://public.telemetry.baybe.p.uptimize.merckgroup.com:4317 cannot be reached. Disabling telemetry. The exception encountered was: ConnectionError, HTTPConnectionPool(host='verkehrsnachrichten.merck.de', port=80): Max retries exceeded with url: / (Caused by NameResolutionError(\": Failed to resolve 'verkehrsnachrichten.merck.de' ([Errno -2] Name or service not known)\"))\n", - " warnings.warn(\n", - "/home/vscode/.local/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", - " from .autonotebook import tqdm as notebook_tqdm\n" - ] - }, { "data": { "text/html": [ @@ -207,7 +197,7 @@ "[515 rows x 6 columns]" ] }, - "execution_count": 1, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -221,7 +211,7 @@ "\n", "from baybe import Campaign\n", "from baybe.objective import Objective\n", - "from baybe.parameters import NumericalDiscreteParameter, SubstanceParameter\n", + "from baybe.parameters import NumericalDiscreteParameter, SubstanceParameter, CategoricalParameter\n", "from baybe.recommenders import RandomRecommender, TwoPhaseMetaRecommender\n", "from baybe.searchspace import SearchSpace\n", "from baybe.simulation import simulate_scenarios\n", @@ -252,7 +242,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -261,7 +251,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ @@ -276,7 +266,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -370,513 +360,42 @@ " encoding=\"RDKIT\", # optional\n", " decorrelate=0.7, # optional\n", " ) \n", - " ]\n" + " ]\n", + "# one-hot encoding\n", + "parameters_ohe = [\n", + "NumericalDiscreteParameter(\n", + " name=\"Time_h\",\n", + " values=df_active['Time_h'].unique(),\n", + " # tolerance = 0.004, assume certain experimental noise for each parameter measurement?\n", + "),\n", + "NumericalDiscreteParameter(\n", + " name=\"pH\",\n", + " values=df_active['pH'].unique(),\n", + " # tolerance = 0.004\n", + " ), \n", + "NumericalDiscreteParameter( # Set this as continuous, the values seem quite small?\n", + " name=\"Inhib_Concentrat_M\",\n", + " values= df_active['Inhib_Concentrat_M'].unique(),\n", + " # tolerance = 0.004\n", + " ),\n", + "NumericalDiscreteParameter(\n", + " name=\"Salt_Concentrat_M\",\n", + " values=df_active['Salt_Concentrat_M'].unique(),\n", + " # tolerance = 0.004\n", + " ),\n", + "CategoricalParameter(\n", + " name=\"SMILES\",\n", + " values=unique_SMILES,\n", + " encoding=\"OHE\",\n", + " )\n", + "]\n" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 31, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C(=O)(C(=O)[O-])[O-]')\n", - "_______________________________________smiles_to_mordred_features - 0.3s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C1=CC(=C(C=C1O)O)C=NNC(=S)N')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]')\n", - "_______________________________________smiles_to_mordred_features - 0.4s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C1=CC(=CC(=C1)S)C(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C1=CC2=NNN=C2C=C1Cl')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C1=CC=C(C(=C1)C=NNC(=S)N)O')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C1COCCN1CCCS(=O)(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C1N2CN3CN1CN(C2)C3')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('C=CC(=O)OCCOC(=O)OCCSc1ncccn1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CC(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CC(=O)SSC(=O)C')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C')\n", - "_______________________________________smiles_to_mordred_features - 0.3s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCCCCCCC/C=C\\\\CCCCCCCC(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCCCCCCCCCCCCCCCCC(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCCCCCCCCCCCOS(=O)(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCCCCCCCCCCCc1ccccc1S([O])([O])O')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.3s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCCCOP(=O)(OCCCC)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCN(C(=S)S)CC')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCOc1ccc2c(c1)nc([nH]2)S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CCSc1nnc(s1)N')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CN1C=NC2=C1C(=O)N(C(=O)N2C)C')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CNCC(C1=CC(=CC=C1)O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('COC(=O)CCCC1=CNC2=CC=CC=C21')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('COC(=O)n1nnc2ccccc12')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('COCCOC(=O)OCSc1nc2c(s1)cccc2')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('COc1ccc2c(c1)[nH]c(=S)[nH]2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('COc1cccc(c1)c1n[nH]c(=S)[nH]1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CS[C]1N[N]C(=N1)N')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CSc1[nH]c2c(n1)cc(c(c2)C)C')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('CSc1nnc(s1)N')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Cc1cc(C)nc(n1)S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Cc1ccc(c(c1)n1nc2c(n1)cccc2)O')\n", - "_______________________________________smiles_to_mordred_features - 0.3s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Cc1ccc2c(c1)nc([nH]2)S')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Cc1n[nH]c(=S)s1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Cc1nsc(c1)N')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('ClC([C]1N[N]C=N1)(Cl)Cl')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Clc1cc2[nH]c(=S)[nH]c2cc1Cl')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Clc1ccc2c(c1)[nH]c(n2)S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Clc1cccc(c1)c1n[nH]c(=S)[nH]1')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Cn1cnnc1S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Cn1nnnc1S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('NCC(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('NO')\n", - "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nc1cc(N)nc(n1)S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nc1cc(S)nc(n1)N')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nc1ccc2c(c1)sc(=S)[nH]2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nc1ccnc(n1)S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nc1n[nH]c(=S)s1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nc1n[nH]c(n1)S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nc1n[nH]cn1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nc1nc([nH]n1)C(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nc1ncncc1N')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nn1c(NN)nnc1S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nn1c(S)nnc1c1ccccc1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Nn1cnnc1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('O/N=C(/C(=N/O)/C)\\\\C')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)/C=C/c1ccccc1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)CCCCC(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)CCCCCCCCCCCCCCC(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)CCS')\n", - "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)CS')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)Cn1nnnc1S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1ccc(=S)[nH]c1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1ccc(cc1)N')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1ccc(cc1)S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1ccc(cc1)c1ccccc1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1ccccc1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1ccccc1O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1ccccc1S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1ccccn1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1cccnc1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1cccnc1S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1ccncc1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC(=O)c1n[nH]c(n1)N')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OCC(CO)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('O[C@H]1C(=O)OCC1(C)C')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Oc1ccc(cc1)C(=O)O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Oc1ccc(cc1)S([O])([O])O')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Oc1cccc2c1nccc2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Oc1ccccc1c1nnc([nH]1)S')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('On1nnc2c1cccc2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('S=c1[nH]c2c([nH]1)c(=O)n(cn2)C')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('S=c1[nH]c2c([nH]1)cncn2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('S=c1[nH]c2c([nH]1)nccn2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('S=c1[nH]nc([nH]1)c1cccnc1')\n", - "_______________________________________smiles_to_mordred_features - 0.2s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('S=c1[nH]nc([nH]1)c1ccco1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('S=c1[nH]nc([nH]1)c1ccncc1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('S=c1sc2c([nH]1)cccc2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('SC#N')\n", - "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('S[C]1NC2=C[CH]C=NC2=N1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Sc1n[nH]cn1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Sc1nc(N)c(c(n1)S)N')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Sc1nc(N)c2c(n1)[nH]nc2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Sc1nc2c([nH]1)cccc2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Sc1ncc[nH]1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Sc1ncccn1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('Sc1nnc(s1)S')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('[Cl-].[Cl-].[Cl-].[Ce+3]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]')\n", - "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('[O-]S(=O)[O-].[Na+].[Na+]')\n", - "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('c1ccc(nc1)c1ccccn1')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('c1ccc2c(c1)[nH]nn2')\n", - "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n", - "________________________________________________________________________________\n", - "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n", - "_smiles_to_mordred_features('c1ncn[nH]1')\n", - "_______________________________________smiles_to_mordred_features - 0.0s, 0.0min\n" - ] - } - ], + "outputs": [], "source": [ "df_no_target = lookup.drop('Efficiency', axis=1)\n", "\n", @@ -889,12 +408,12 @@ "\n", "searchspace_mordred = SearchSpace.from_dataframe(df = df_no_target, parameters=parameters_mordred)\n", "\n", - "\n", "searchspace_morgan = SearchSpace.from_dataframe(df = df_no_target, parameters=parameters_morgan_fp)\n", "\n", - "\n", "searchspace_rdkit = SearchSpace.from_dataframe(df = df_no_target, parameters=parameters_rdkit)\n", "\n", + "searchspace_ohe = SearchSpace.from_dataframe(df = df_no_target, parameters=parameters_rdkit)\n", + "\n", "\n", "objective = Objective(\n", " mode=\"SINGLE\", targets=[NumericalTarget(name=\"Efficiency\", mode=\"MAX\")]\n", @@ -903,7 +422,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -1055,7 +574,7 @@ "[515 rows x 94 columns]), continuous=SubspaceContinuous(parameters=[], constraints_lin_eq=[], constraints_lin_ineq=[]))" ] }, - "execution_count": 6, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -1066,13 +585,14 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "campaign_mordred = Campaign(searchspace=searchspace_mordred, objective=objective)\n", "campaign_morgan = Campaign(searchspace=searchspace_morgan, objective=objective)\n", "campaign_rdkit = Campaign(searchspace=searchspace_rdkit, objective=objective)\n", + "campaign_ohe = Campaign(searchspace=searchspace_ohe, objective=objective)\n", "\n", "campaign_rand_mordred = Campaign(\n", " searchspace=searchspace_mordred,\n", @@ -1093,69 +613,64 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "scenarios = {\"Mordred\": campaign_mordred, #\"Random\": campaign_rand_mordred,\n", " \"Morgan\": campaign_morgan, #\"Morgan Random\": campaign_rand_morgan,\n", - " \"RDKIT\": campaign_rdkit, \"Random\": campaign_rand_rdkit\n", + " \"RDKIT\": campaign_rdkit,\n", + " \"OHE\": campaign_ohe, \n", + " \"Random\": campaign_rand_rdkit\n", " }" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - " 0%| | 0/40 [00:00" ] @@ -1328,12 +885,12 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 39, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGxCAYAAABoYBJuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACIdElEQVR4nOzdd3gVVfrA8e+Z29IrIQkQIHRRQIogoAiKgrpWdFUsNOvCugrK2utPwYIdZV1FXFdErGtXREEpItKRDqEnoaS32+b8/pjkkhBAElJu4vt5nvuQmTkz92Quybw55z3nKK21RgghhBBCAGDUdwWEEEIIIYKJBEdCCCGEEOVIcCSEEEIIUY4ER0IIIYQQ5UhwJIQQQghRjgRHQgghhBDlSHAkhBBCCFGOBEdCCCGEEOXY67sCDY1pmuzdu5fIyEiUUvVdHSGEEEIcB601+fn5NGvWDMM4dtuQBEdVtHfvXlJSUuq7GkIIIYSohl27dtGiRYtjlpHgqIoiIyMB6+ZGRUXVc22EEEIIcTzy8vJISUkJPMePRYKjKirrSouKipLgSAghhGhgjiclRhKyhRBCCCHKkeBICCGEEKIcCY6EEEIIIcqR4EgIIYQQohwJjoQQQgghypHgSAghhBCiHAmOhBBCCCHKkeBICCGEEKIcCY6EEEIIIcppUMHRTz/9xEUXXUSzZs1QSvHpp59WOK615qGHHiI5OZnQ0FAGDx7M5s2bK5TJysri2muvJSoqipiYGMaMGUNBQUEdfhdCCCGECGYNKjgqLCykW7duTJ069YjHn376aV566SWmTZvGkiVLCA8PZ8iQIZSUlATKXHvttfz+++/MmTOHL774gp9++ombb765rr4FIYQQQgQ5pbXW9V2J6lBK8cknn3DppZcCVqtRs2bNmDBhAnfddRcAubm5JCYmMmPGDK6++mrWr19P586dWbp0Kb169QLgm2++4YILLmD37t00a9bsD983Ly+P6OhocnNzZW01IYQQooGoyvO70Sw8m5aWRkZGBoMHDw7si46Opk+fPixevJirr76axYsXExMTEwiMAAYPHoxhGCxZsoTLLrus+hXw+Y5+TCmw2Y6vLIC93MfSmMv6/XCs2DwYytps1ucHYJrWK5jLGob1CpayWlv3OJjLVuXnMxjKQvD9LNfT7whtGGi3G+3zYYSE4M3MxMzLwwgLw5GcjDc9HbOoKHDdwP7duzELC49cDjCiog7tz8/HCA21tvem4y8qxMTEFhqOq3lzijP24i0qwBEeSWhyc4p37cBbmB+4liM8ktDmKRTv2YW3pAhHRJS1vWsH3vzcI5crzMcRFUNoi5bWdn5u4GeuUrnwSEJbtqZ4727rfU0TR2h45TJl28WFgZ8NR2i4Vec9u/AU5OGIiCKseQoFu7bjLsjFNEArRUhkDFHNW5O7YzOFuQcJj44nOqUtubu2Uph7sPSmGYTHJlj7d2ymMHv/EcuFR8cT3ao9uXvSrGtFxRHdrHXFa5WVS2lrlcvPtrZbtCF3+6Yjl9u1Fa/2k9C+S+l/jtKfe3v1wpxGExxlZGQAkJiYWGF/YmJi4FhGRgZNmzatcNxutxMXFxcoczi3243b7Q5s5+XlHbkC06cfvXItW8LQoYe2//Ofo/+CSE6Giy46tD1zJpTrFqwgIQHKB3SzZ8PR8qdiY+HKKw9tf/IJZGcfsagOD4fhwzFNjQbU//6HceCAdaz0F1XZqsba5cK8/gYUYBgKvvoKvXevdV75clqj7XYYNdoqB5jffAu7dlYuV3buLbcc2vf9XFTatiOXUwpGj0aXPlzUTz/Bpk1orSl7hNtKz/ObmsKrr8UWGkK4yw6LFuFevRaPz8RhV4TYbWigoMSH12/i++vVJDRvggJyf/yZ4uUrCXfaiQyxozUcKHBT7PXjtBs0HX09RlwsOw4Wkf3zYlK2rSM+woXWsDe3GK2heUwoSsH2M89juy2clrFhtNm7Bf3LEvbkFFPo8RHutAfK7c93s7n3QJI6taFNQjjm7+vY++X3RyyXVeQh9C8X0rJ7J0wNm35eTvKKX4gKcVQoExfmJCHShT5nMBlNmrExM582uZm0XLEIqFwOYFfX3myNa27Vt/ggfPPNEcvtz3eT1ulUmvTuQZuEcNi7l/3vfXTEcgAJgwdAt25s219I+taddFj4fYUyWUWe0u8zBNWrF+ntTmZjRj4dQ7wkf/sFWmt2ZhVT4PZhamgdH0ZkiJ2sdp34Oa4dp7eJI1F5yXvrP2zdXwilz9m2CeFEhTrIK/ayLCKZTldcQHJ0CHszs9n1wr/QpknHpuHERoaSlZ3Hxp1ZdEyOJK5fH3bFN2PBb5uwFRfTZsH3tGkRR2zb1mSv38zO7em0bJ1EbKf27M8pYJE3NPBzNeDgNmI7tSd7w2Z2bs8IlMvesJkN2W72tTuJnqedRIvBA8ieeB87t+2pUGbndut3VEl4JMnXX0HLwQPZOedHDvx7Bq2bxRN3SmeyVq5mz9btKNNE+f1ExkYRcenFxFx1Fbt/mE/KgUwKv/uOvB07KSjxoLRGaU2Yy05Ex05EvDqV9O/mkHzeuRTcdhv569dR6PECJqFOBzGt2hBx1llkbd1M7P89yYFp09i5ZB7ObWk4PF40GpuhiEltT+I5Q8nfuI7Ibj3YmJnGziXz8fr9NN2XTYjbg2EYxKV2JOmc88nfsI7ITp3J+P5rfncfxO8zMTQ0OZBDmMdHTGo7mp5/MQVrVhNxShcOfvIx7k2byI+KCdzfuNatSBg6lKLlywnr0YOsDz7As3Vb4HhOdDQoRXj/fjS/7DI8s2cfsRxAblQUYWeeQfMpUyh+5RUik5KOWM7Ztg0xs2ZRvOhXIoYNI/Pyy9FLf+NwxW3bEHvllZQYBhE33MCum2/GP/cHQg773V5Wzly+HNdDD7Hr5pspXLgIV0kJoeXKli8X0qMHe5csIW/FSqtObjdhxcWVypTVvyA8HJ/DYZX1eIhJTgqUCz3sfhSGheF1OgEo6HIKyf37Yz/s/pbl5hSFhZHndJLXvx/N77gD+4v/PmK5YqC4X1+aTp+Of+7PRPbrR9bZZ1coU1bO37YNMZMn49+0ichhw9hzww3YfvjxiOVir7ySLNMNd54Cpg9WfgWffg5XDoGoZpByGuyq/NkcTaMJjmrLpEmTePTRR+u7GkflNzVKgTY1WzLyyNhzgHCXnW4pMQD8tGk/Ow4WcdCZSZaxhgf+chIASzbso1+cgQLeW7qLLfvy0doKtlu0TOCGK6y/2P77yw6u9/qw+Uxm/rqNLftzAE27ppEMP609uf5s3vjhR67s0ZbkiGb8+8flHNh86BdIu4QYhvfqRK47h6V7smiXvZ3mkc0ZO3sOxrff0Cw3i/YJsVzT82SUgozCTFbsyqR7SlMSvF5MDWM//Azz++8426a4pntXlFLszt/N8t3pdGueQKuo1ng9Hv7+xQeAyauxLTD8Pn4/+Dur03dzclIyXZt0RQPvr57PswWL8DoV/Vt1ZmpML2yGyZbcjXRJ6IjH9DJrzRy2Zu8B4EvzB05t35OXLphAqAu2FW+lS0TlcgDZzfYx+coHSIyAbZ61nBxi4PF7mb1mDluzdgHQNi6Fv3Y5l6RIWJnzK6dHDqDE5+ajlV+xNWuXFexpaBPfgiu6nke0009+4a+c6mxGsdfg5W9eRf26EMMEhaZ1fAoX9TifKHcuGfs30aLoNEo8rfi/2U+S+evP9N6TQ+cWbejd8ZzSMhuJTOqINzSWz36cyv8yNlJU7CMxu5BLS6IY1OsCInIz2bd3IxHJHfCFJjN/6Vd8tfRtMuLCADgnsSM3hHQiIieDfembKpTbnr6djeui2fNTBL079+a2AaOtcns3EtGsY6DcjvTtALiKVnJlp5eJ37OB7cv+R8R+N76QFH5b8Dn7d2zD4dc4/JqdGpqsPYt2k1/G2PATCT37kP75RxzYuh6tNQoNaHYAsW1OIvmu++m7fRFN2p/Phocmwuf/IwxAW/c3Eyhq05HEiy6n+65VRBnnsm3sHRTOn0dKVh6GBjeQVfpLt2vBHsIie7BvyhQKt6XRHUBrYnJz8QDZpeVcuQcJa9ua7JkzKdm5i07h4YH/H56cnHLlsgLlPFu3keKwE/fbPApnwe7+/WjRvTuu7P0VyiSVXsdnt1GwcgG7+/cjZcoU4j/5gPCO7cmeORPv1m2U//PPb7Oxf9NGlNa0HjOG/JtvpvDHediA6MN+lxTs3o3//fdJGTOGg2++SfEPP2D3mxXKFe3OwBYeTsLQoRycPZvsN6cTCUTm52Mr3zq3bwVF0U2IPuMM8pcsgYWLaFl6KKKgCLuvtOy+lRRFJxB9xhkULFgAS1fSIjomcJnwQjcOrw+94neKEpoRVVrOt2ET5drZAChcv46w5GQizziDvF8Wk7NrGzgPHc8JAxTkrFhEZFJTYo9Srqxs9opFhHzxGU3/8hfypr95xHJFu7ZhfvMVCTfdwr7//of9m9YQdliZsnKO1auIm/Ic+774jD0rFhEeUrkBtqxc1BlnsP+7b9izYhGEQRigzSOXy/tlMelrl+INswKeUAX4K5cpq39eKHhK6xhiAEcpB1ZZt/W3CiXrlhMVGUHkGWeQ/8ticg+7H/khUBICuSsWET73FOKPUg4gf/1K7F98RsKYMRx8+cUjlgEo3rUN9dN84u9/gP3//Q8Za5YSd5RyztWraDJ2HJh+mPlXWDsX1nnB9oFVqO3ZcN4LlU8+ikYTHCUlWb86MjMzSU5ODuzPzMzk1FNPDZTZt29fhfN8Ph9ZWVmB8w937733Mn78+MB2Xl4eKSkplQuOHn30ypV1iZS54YZD9csrYcHm/bRPjKBL8xhW785m3a/b8Gk3Jf4C2vfpzhmp7flq42/M37qZkxObc12PM3hpwRzeW76a/KdX0791Ki9ddiVpF7bms3V5DOnYgQ6tzubOL95icfNd0MKHUj78e55i39edeeH82/Fdk4o3uR8Tvn+KxepXUH6U8oPyoZSflfMyeWbgk7ia/IzvtIuZ8PM/+SX0lwrfxq/N8nnqzKdolvYZiRG9mPDTOH7tsgi6cFi5Ip468ykObP6EMyPjmfDT31lhLsY4R7Oy9C/5Jc3cTDlrCnElJRQt+y+xnS4D7eHRr8ez8+AijG6a/2rYkOTn4aHPkpCVhW/DJyR1ugx/XByPfXcnO9Otlo9HjdN5aMSztDtwgE3rPqZDmwswm7fg5dkT2BK9lrMyFCEeCFn/G5+03cgVtzxHhxWr4NRufPPSeAr2byJJW61SY37ZgPHLRn5cvZ0hd0yhfbEHTuvFkkkTiPt9I8l+cHrB5QXn2o/Y/0MGKVOm0C0vHNtVl7Hn7rvptWgjhzpyN5JZEkfza65lwHeZOFNM9rz6L3ou3EjPCndtE5nueJo/8wynffopIdjZc9vfuXjBwsP+c20lw1xG82eeofnHHxPauQt7/vZ3rlu46FB3xO/ryciPCZRxXn45e+6+m5MXLebksv+bWgMHSMe6VvLHH+MqLdd8cRo3AajSlka9m/R+RUcs1xzovz0HVC589gmZP2XQ/Omnj1gOgO2LyNxxO82nTOHUZa1w3X0pe+6+m5gVO4k57NeTOWcxOd3fJ2nMGA6+8Qa5m3fiIJzD5W/dQ+jWrSTedBMH33wTvpwHRnRZo1Hg35ydGThDQoh/6GEOzpiB54efcGCQF1UuHDhwEMLCiJ8+nf3vvE1a+ja8UQqPDXx2xdakaLw28Nqz6J/ajObjxrHnq0/4ISYLYsPR5X72lRkDZHF2m+YVy/WMAcWhsvsWc07LoTS/dXrFMuVoQ1nlFv5A83/9i93f/o8vkrLwNY/BawNf6ctrU7Ts2o/hw6+m+Pd1uKY8w6wuPjZtWmx1mQCmAtOADh36cvO11+DeupXIa6/hI88C0jYvxq41dq0xgPbt+zFsxEu496QT1SqFn90L2LtxAQ5/CDatsaGxa+h02lV0v+pB9m/9nfjrrsP3wRNsXTITBdj8dsCOAlr3vobEax7k4LYNxF53HTtnP86OZTOt+wGgFSg7rfrcQOLlD3AwfTtxN9xA2jdPsmX5m/id+Wi7xrRBx9P+Rmr/iRwsySJu1Ci2Lnia9UtfO3TPbIUAdO49lpi+d5FVnEXsqFHs/Wkye5a8ikODS2ucGiKNXBL7jiN+0PV4vCVE9ukDPz5J8cJXUGirpRwI6TeOsHNvwm/6Sbj2esISd1KwYBp+ZcOP9dLKRlS/m4gceDt+Q5Fw7fWYzXI4uPBNSnTFvJf4viOJHDgOvzZpYnfg7aTJ/OUdfGYU2drARGEqg+S+w4kccBN+bRI5ahRNf36Dfb+8g8JEm34KTJPEvtcTOXBsoEzRvFc4uHgGIQpCjLJueifhp48LvGfkqFGUzHuF7EUzMIBoBaq0Cy769FuIOGssKEXEqFF45r1C7qK3A3WPUhBlKKL7jSLurLGg9RHLAbToP5K4c64HIG7s36GTWakMQHS/EcSefTsATa69HpJzyVr4H0wMNAoTG1op4vsOJ+Ksmw6lILQ/D3L3QjM/KNOKLA9ugfVfVHqPo2l0Cdl33XUXEyZMAKxApmnTppUSsn/77Td69rQeRd999x1Dhw6tl4Ts/GIPdoefL7fMZUibgdwz7zHm7foJZSuxApVSfZv15ZkBz/Dx5o+5vP3l3P3T3Szeu7jCtY6nTJnxPccz6pRRvLX2LZ5b9txR63e0cgqFoWzYlY3xvcYz/KThvLdhFi8tewnT7wc0aLj+lOvZdHAjv2X8xu29/8HVna7h/Q3v88rSF+nVtBcd4jsyc/U7NDug6bLNy9mxvelzz1PkfPghMcOGsWfCBAoXLqpUr/D+/Wg+ZQo5H3101HLHU6ZM07vvIr70r+V9zzx71PtRk+Wqey1tMzCV9czQNgNld6AMg2Z3TiDummvIeu899rz0HFoptNcNphelTWyOUJLvmEjcNdeQPWsWe196Gr+3AK0o7Zu0XjZXOC3+8RAxl11Gzqefsvulx/B58ivVy+6MpMXtDxFz6aUnXK5CmS+/ZNfrj1HiO4B2aEy7xnRotAMSz7yaNiMeI3f7ZqJbt2fL7CfYseR9TGXDVHZMDExstBs0ho4XjCEnbT0xbTqz/tu32fDTO2BY7Uso0AZ0HjiSkwZdR86ercQ2b8vaJR+yasGbaLvCtBlom6L7oL/R9eS/kFO4j5jwpqze9DW/LXit9L4Z1vUM6N33Nrq2H0JO0X5iwhJYvflbfv319Ur3o3fvm+nafgi5RfuJDktgw9a5rF3yBnYUDgxcKDr1u4UWrc/A7c7D5Ypi/44l7F78JoZSGChU6b/N+44mOqUXPk8hdmc4BbuXs2/J2yjDwMBAKQht2pGE00eDYccsPIAR3gRMHweX/gf3gc2BbmlXk/bE9rreKld0ECMsHkw/Wb9/gSc/A+wunLGtiGt3FigD0+fGsLtAa/J3r8ZXnIOBVS9nbEtcCa0A0O5ClMsKYH0Hd2Bm7w3cCyO2Gfb4snIFKFeEVe7AdvwHd6BNP+DHFtcKR2IHQB+qGwp/Vho6by8oG0ZMc4zo0j9avUXgsFo5df5edMG+Q//BIxIwIkv/ePYWgyMUBZCfCUWH8lgIbwIRTSuUo6xc4f7SMgkQmVjpPcnPhOIsUIb1CouDsHjrmM8N9tKmmKJscB/KOcIVDWGxlcsVZ4O7XDqHKwpCS8v5PWBzVi5Xvszxvmf5ax1v3apT7rjeU5eWizvC/cgBT751b1HgirReAKYXDMehciU5VkuS3wv2EPJs0UTHxh/X87tBBUcFBQVs2bIFgO7du/Pcc88xaNAg4uLiaNmyJU899RSTJ0/m7bffJjU1lQcffJDVq1ezbt06QkJCADj//PPJzMxk2rRpeL1eRo0aRa9evZg5c+Zx1aEmg6NP1i4lh7VHD1S0Au1C6RDu73sHV500jA83/o9nf/k3dpuB0zBw2A1cdhsRzjBu6jqKQS0H8vPun3l/zSx8Xg9OZcOODaeyER0aQ++2Z9G/eT/Wbv+VLq17s+7gOjatW4A7Nxs7Bg5tJy6uGSf3OJcmoU3Yk7aW5qld8Pg97PxtPiX7M0nq0A2loEn7LqAUedu3EN26HVprsjf9DoYie8dmwpomk9z1dOuPPyA3cxfRiSmYbjfKZif99dcoeP8D9IGswLccCAZmvM3+559Ha/PQn/qlf1krpUi4807iR47g4Ntvs/+FF0vbnNWhckrR9I5/EHfDDWS/9x4H3/4POOwYoaFoQ2GPisaICCe812nEXHopBb8uIaLP6eR9/z0l635He934DmSA9uFonkpo1x5EnnUWhYvnEd5vEMWrVuPevAb3lpUouw3lsBPWZzAh3fpgj4yg+PelhJ7cG9Ptxr1pNYVLvwcg/LTBuDp0xXC5KP79V6uM12uVWTYXhQFKEXbaObjad8Gw2yjesILQTt3BsOHeto7ipT+C8oP2E9brbJxtu4Hpx7vuRxwnDQCbAzX3MVjwvHU/2p4Nf/0P2u5C2Zxovw9MH775r+HbvhJtc4ERgr396Tj6XAWGgZmdjhGbDNrEs/I7fNtWWvdXKextuuLsdp71kMzOwIhNssqtmYc3bW3gl5a9bTdcJ/cHFGbOfoyYBEDjXrfYKqc1jjZdcHXua5XJ3Y8RbZXxbl2Gb+8mMBTKMLC3PQ170zZgmvgPbscW3xoMA//+bfh3LrO+B3sIjjZ9MMKiMd1FePNycMTEYzhcmF43voLcwP8Pe3g0hsOJ6fXgK8rHHh6FYXdg+rz43YVWAOIKx7DZMf0+TF8JhiMEw7Bjmj60rzT/Q2uUIzSw3/QWYTjCDm2XlUNh2F2l+/2YfjeGzYVh2FCmaf1SB+sXu2FYv9DLftEbtkPbZf/HA+XMcuXKbYP1OdhKHxSm38rDMOzW9cAqp7X182KUK6dNULZDCe2Ht3wL0UBV5fndoIKjefPmMWjQoEr7R4wYwYwZM9Ba8/DDD/P666+Tk5PDGWecwauvvkqHDh0CZbOyshg3bhyff/45hmEwbNgwXnrpJSIiIo6rDjUZHH218Vf6t+7Il1u/4cqOlzNv50K2Zm8nxB5ChCOScEcELpuLdrGtSYlOpMTrIcThJCs/i8Kc/Rg+HzavD6fdRWyr9gAU7t5BeIuWoCF7xa94DhxAKYg65VRCkq3OjLw1K/Hl5OCIa0LUyaeglcJ7YB8l27YR2rYd9ngrAblk61bMggJsUdG4UlsD4MvOQbvdOJolg2ni3r4Ds6AAIyoKV8sUMAy8mZn4DxxEhYfhaNIEIyyMwl9/pfCnn9HaJOG229gzfnygJUc5HIT16UPMVX8lcuBAvJkZOJKSKU2monjVMvz703GmtsPZ4ZTSB4Af77Z1ONp0tn7ZGwbutUsAcJ3S51CZrb/jaHty6eglG+5VS/BuWI6rz9k4Wne0voelP2Dm7scWl4Czx9lgGPh2bsC3ej62Nl1xdOpjPTBMH3r9N6iThljvqTXmTy/C7mWolF6oM2+3HkimHzZ/B+3PPfRgm/OI9XAa8rj14DF9sOo96HZN6bVM+N84SPsZUs+ES145dK2VM+HU4aXX8qFm3wBbfwgEPRh263q/vQW9RgW29Zd3QVxbOPMO6z01kLsbopsd+qs2cz1kbYX4dqimnaz/mPs3QFaadW5C6c/O/o2QtQ3i2kBCx3L7tpaWK9u3CbLTIDb10LkHN0P2DohtBfHtS/dZf+QQ3650eyvk7ISYVhDfpty+7ZBwkpVQqU1IX2n9hRyRCE07W9+Dz20dc4TKg1wIcVSNdij/wIEDOVYsp5Tiscce47HHHjtqmbi4uONuJaptg9udyrgfxvHbjgwGtjyTwa3Pok+zHnhNLy6bC5fNhaP0Lz9/QQF682Y8cXHEtWxJ+L5sPNt3E3LSSTiSkkBrSrZswSgswuPfhat1K+J6no4/Nxfv3nSc0XEomw1vZiYuRyiuBKuZ2HvgAI7EROyhETgjY7CFhKFKAxw8XgynC11Sgnf/fhyJiRhOJ6Zp4svKwhYZiXvTJkrWrMHepAnOq/7KgX+/QcH8+fj278fMy0N7PIEuLve6dVYX1/jxuNO2E33ZZbg6dSLy3HNxJDYFrSla9D3k7MZs2hxXr3MAhSM+Enb8huHqYAU9hoF34294t6wB04ujUy8wTWzRcdazsazM1pX4d65FOcDe5lRriGuzJOz+5hhNE0tbmzSulDhUvLb+etZ+MP04vHtxbH0Vmt8Nvi4w+wZoMwjV/3ZY+BJs+xH++h9sMcnw87dwyl+sv8RLy3FYOZJOsT50bcL71x25TJtB8PvH1r/HKtf5Mis46lw6UvH966DtOVa5Td+AtwROugj1l9KWSMNu3ZPdS61AwvRCXCqgrUDEFW4FHwCeQghvCpFJgDrUpRDfzupCcJY2X3uLrG6Hw7se4ttBVBI4Sv/Y8HkgshlElWYZ+b1Wa0Zcm0M/CKYXoltYLzjUwhGXCtHNweY6dG6CNaAAu+tQC4gj5MR+EIUQ4jANquUoGNRUy5HWmhd/+YA3Nz1OmO8UFo9+F0MdecJyf1ERxcuXo70+VGgozhYtcDRvhjczE1tYOEZkRKC1poytSTyOxETM/AI8O3dib9IEjcbRpAlFK1bgSduOLSGBiH59KfzlF/wHs/BlZ2MLD8cWF0vEgAHkffMNJWvWYktoQtx117HvmWfJnzsXf1YWmOZx5/WosDASJ04k9uqrKFz8C76cHFydOmJzOfDt2oq9eQr2xBaULPwcu60Ee1ISyhkCofHQpL3VUpC7C6JTrH707QugWXdY/xmcdBEsf8dqMdn8ndVN0GEILHkdThsFaz6CU4bBb9Ohzy2w8Sv47kE47UbYt96q4IVTSltnroEPSxPrk7rCwheg/x1WK0dkEpz7KOxcAi1Ph+WlyYNRLWDrXCs4ydtt7esxwgpEUnpb72/YreDAMKzvxbBbrT5lrS47Su9ZaKxVp6YnWeUAWvUrbYlpA3uXW+eGxkB+OkS3An+J1XoS29rKmQiLh+zt1rmGHbBZwcrBLVa/fFgTCSaEEH9KjbblqDHJzM/l03WLwA4uI+zogZHbQ8natWivD3tCgrUvJwfsNmzh4ZiFRfiLCnE0aYIuKcEsKEQ5ndjj4sj/4QdK1qzFvWULvowMvBkZhHTsQPMpUyhZvZqo885l99/+dsykZ//Bg1bg849/VCxns1GycRP5P/xI/Jgx5P/wI46UlsTf0gVbTEzgZURFYY+Pw9miBd79Bwg7rReezWsxd6zAW5iD78B+DIfCe2AHrhZJGGFhh97DV2wFBo5QKMmD3CWwZjas+xTOffxQi8qcB60AJamrdd6Kd6yWFcN2qMzcR2H7z1aZ/HT44fFD75PczSq36BWrayeuDfhK4PynrK+7X2e1YmRvtxIE89Oh983Wtjsfeo60rpPY2QpSsrdDSDTk7bUCrrJyYAVZZWV8bivoSz3zUJmmnQANMSmHynmLIXcntOh1qJwzAooPWgFPWTl3PpTkWl1au5dZSYuJp1itPE06HGppEUIIcUwSHNUDn9/PzzvW4tVWsmaIrfJwZADT48G9fj1mXh62xIpTDfgPHKzQUmQWFuFslkzOok+IvuACdt922xGDnsIDB8j57DPix4whe/YHePbsxdmmDdhs1pDN0n/9BYUU/LyA+DFjKPjpJ1ydTiKs/xnY4+Kwxcdji4rCFh0VCHoiBpyJs00qZkFhuW/AhxHqwtmiOZ6NKzEztmFGReHsNpCSzG34cgqwJ7fC3rwFhs2P8hxhAsuCfVbA8tnt4C+djPOkS+C0MbB3BfS52eoaytt7KI8mLhVO/xukDoDMdVaLUdLJkF860eelrx66fmQStDoDDmyG02+FjkMPBTJQMfgoyrK6gLzF1iiL+A5Wi4w7zwqGYltbeTnu0u/DnW+dV3Y+VAxkysqU5fIc2GKNrnBFWrk3+9Zb74lpjbxwF0DiybDvd6tlKTTWKpe51tr2eayXt8Sa8MxXAs4j/98SQghxdBIc1YNduQfYm38AP1ZwFG6PrFRG+/14tm7Fty8Te2JSYGboI/Hn5LD/0UeJGjokMOy7eOUqnO3a4UhKwp6cHPg3pGNHQjp2wLv/ADGXX0ZY79MqBjSljIjwQOAT3q8fjpYtK5QrO+7ZvRuzoBAzPxdny1Z4tqzDPJgO7nyMyGicnc7E89u3mAd2g82Bb18hvkVzCet3IY4da7GFaJTdtFo7yoIGrWHPMitoOGsi/PSMFRjFt4MBd8MpV1iJumAlGHcYWjHgKB/Q+MtaZ86qWObwcp6CQ4HM/o3WcN3S4Z/s/g0KD1jdVDYHoK3cHG+xlYNTlGUFR7tXQNF+63jZEDutrXNDSptwy65VRgEYUJxrXcOdb3V9ZfxuDWtV1jwvgNUStH+DNcTVnW/9u38DlORbZULDre678CZWK5EERkIIUS0SHNWDTQf24DP9eLW1lk+EK6zCca01nh078ezaja1JAsp29O6Q4rVrOfDCC4Sc3JmYK66gcNky4kaMIOKccyoFPZUCmsKCCtvHWy5wfOcOzIPp6IL9+Iuycacn4DrtXNz7tuLLysBo2oKSpfPw7d8P2oku9qMUOKJ96ANbsScmWS1D5VtY1n4M8yZZX18x3coB8rnhL89D6zMPdW8VZVkBTVGWFRwknQIZa6xvIKYVpK8+NG9J4X6r5SW5K+xdZW2HxUNiy8rBSmEWNO9uJUT73NYor6jmVsuO3XVoTg6tAwndVvKytkZQ0e7Q5IuV0vm0lexcNkILKBsej2GzWr2im5e2gNkOtYQZR+hyjUs96v8JIYQQJ0aCozq2vzCXbdnpJITF4sMKSKKdFRPDfOnpeLanYYuNxXAeYa50QJsmuR9/TM7s2YT3PZ3mzz9PycZNGKGheHbvrhT0HB7wAJgFhZXK/lE597ZtYPoo/m0Bvm2rUZ4i6wHuCsNfkoH+7WeMJi1ReYX4dm61cqMiI1A2ay4ge0wUtpgoFG4rMCqTsxOWvgVn3WV1f/W4Hpa+Ab1GHxrF5AyzAqPCA9a5YfFWUOF3W91b4VZOFllpVuASGlc6tLs0+MjdCzEtrVacsHjrOhGJh0Zm2V3Wy/RD05OPHJQIIYRo9CQ4qmNbD6ZT4CmiWUQTTGW1HMWEHOpW82VlUbJlK8oVghEaesRr+HNz2f/SS5SsWmUlTr/0Et49ewPljxT0KJcL97Y0fAcPor1etLd0orh9Cn9OLrbICHz79+MMDaV43Xr82dml8wxptMeD8nvwZ+zEFhGKb/WvGC6Fq0VTjMhYVEgoymG3uv5sBsowcXY7CWU7zuBi5y8w/ykrbyYq2UqOztkF7QZXLFewz+rKKjx4aG4dWzX+C5fNaiuEEEIcgQRHdajQU8z6/TuJcUWh0WijCAUkhMcA1lxG7k2brTl74uKwN2mCWVJcocurZN069r/wAiEndSL+llsI690b3/79aI8HsHKVtMeDPzcXf24eRlgovox0fJkZ4HBiOB0Y0VEY4eEopdCmaQVAPh+OpERMjxtlM7DHx1vdSt5ijEgbhteNIg9Dh+HsdSrKGXaE77CKfCXwyzRr9BlAt+HWKLCCTCtI8rsr5gh5iqwAqkl76yWjr4QQQtQCCY7q0LbsTA4W55Ea0xy3zwSjGICmEVHWMhObN2MWFmBrarVsmCXFgdYff14+uZ9+Ss6sWeW60TZihIYFgidtmvj2ZWKEhqFcTqs1x+kkpEsXlNOJ4XKhXK7KOUxaW4GKt9h6eQqttYHKtjHBFW8l+B5lyoEjimhqnV8+wClTkmuNNisLjM55GPrdbiVau/OtV/mRXZ4CK2m5SUeIbytdXkIIIWqNBEd1xOf3sWHfTlyGC7thsC8/F6WshN0EZySeLVvwHTiIvWnTwMi08t1jmU8/Tc7MmYe60Xbtwgit2Hpj5udji4wktEsXVFhYxRFuWlszD/tLwOO1RmL5iq1k5pIcKzjylRxaa6ks/8aVUDqZYDV4iysPXTf91mSGXa6EhS9aI7Mufhk6nFd5iHtZknbmOqueTTtbiciyRIQQQohaJMFRHdmVd4A9+QdIKk0aziq25sLRpovw/Vl4inOwJ1QemWYWFHLg9Wkk/O1vOJKTib3qr3h+/xmdtc8aVm5zgiMUbdjRB3JwdOyIYRZAXrY1F4+3xJoE0FcCfp81T4/ps4IUsLqm7C5r1uSQ6Jrtqjp8np8Dm2HL93D2A9YoNNMHV7xpdZEdPsy+7PzMtWALtSZYjGklgZEQQohaJ8FRHdBas2n/Lkw/hDqs0Wc5JVZwpPyhOHZnYGt3MsrhqHii6cO3exMHX/0XhiuU+DFj8O7YgM49aAUJvhKrC6zwAGZhEUorHG4H7N6FNYGOLl1w1VE6R48dHK7Slbnr6KN351uTGca3hU1zrMDok1uhxWnW/ERKVRy1Vl5RlhVANe1szRgthBBC1AEJjurA/qIctuVk0iQ8NrAvrygHAJs/BKKjK49M8xZC9k7yPv2EsD69ifnrlXh3bsTerA1mzn7M7EMBhdYasxBcbVthJNTBSKxj5RK5Iq3lPvIzYd86WP85bP3RCor63w4r37WG6ZctRHo0RQetLr6kLocWRRVCCCHqgARHdWDLwT0UuktoVtqlZuQXUJyVCS6w6zCM0PILgWprqHrODvxZB/ATSfMpT1H441c4ohyY2ftwdu6DZ92SQIBkFhZhhIfiaBJ7hHevBUfKJYJDy16snGnlE2Vttfa3PRt6joDtC6HrVUfuQiuvYJ/V2pV0sgy7F0IIUedkyE8tK3AXsunAHqJcUYDGfuAgrs1pFHitEWZ2QjDK8mj8XsjeYS0JoX2UZCmaP/0UmU9Pxh5pxbFm9j4865bg7NwHI7ZpaatRMY7EphiuI08YWePK5xK5Iq0WnuIsiEiC96+Fz2+3AiOb01ru45pZVsBTNolj2XlHUpBpnZfcVQIjIYQQ9UKCo1qWlp3BgaJ84pxhOPak49q2A2wGhXZrEkYXIRgYVsBxYCPk7ICQCPxeO6YH9kyYgCs5qsLIs7IAyYiIwSwsxggLxREfU7ffmDvfmok6qoWVNN2sB8y+HjZ9awU//W6Hm36AgfdYa5uVLSp7eGBVXn4G2EIgqau1PpgQQghRD6RbrRZ5/V42HNhJuM9OxK7d2PcfxB8ViXa5KM615jgKwYW95CCU7LEmXQxPAMMg7/vvyP32J5ytmhN63fmVrm1m78OflYlZWISrTUuMEFfdfnO5u2HRK9DpQiuXaNErVpL3xS9D4ilWonVY3NFHoWVvt3KTyhaaLcgAR7iVYxQWV7ffixBCCFGOBEe1aFfefval76HFAQ/24mJ8sTFgt4PWeChddNZnYs/ZDjHJEGG1lvgLisib9wsAMRcOqjhfUTlmUVmrUR3lGoE1Qm7Fu7BqFqSeaSVXb54DfW6BjkMrBkJHG4UGhyZ61NpK3nZGWIvHSmAkhBCinkm3Wi3RWrN14yoit+4lzOPBFxeHgRdbyQGcudvwli46G45hLZAaEhE4N2/uQrTbgzMlmdAuHY96fTO/GEdik5ptNYpoeuR8IK2tfKjtC2DFO1ZgdOXb1jD98CZWd+CxcomORGurK80VAcnSYiSEECI4SHBUS7xeL3mbtxGugHBwFuzEmZuGK38vyvTiNUoAiDBCUOUmXvQXFpH3o9VqFH3MVqMSjDBXzbcalY1EKx/k5O6GNbOhzVmwYxGcfDlc/Z6VPO0onYLgWLlER6I15KdbZZO6QGgdtn4JIYQQxyDdarVEmyb2wgzs3iKcebmYhh3THoJpWBM9mt5iFBCFDVu59cry5i5Cl7hxtEgirNtJR72+WVCEq1Xzw6YBqAHlg5z9G2Hxq1YQNOzf8NFNENkMzpoIebsPJVkffm5ZLtHRaA15eyE0xgqMQqJr9nsQQgghToAER7VFm9h8JaDAH1KxVcTUgM3KOYqx2ShrG/IXFZP3w2Jr/wVHbzXyFxZjhLhwJNRSN1RBptV91vlSSOgIQ/4P5j9lzVUU3cIatn80ZblER6NNq8UoNM7KMQqJqvHqCyGEECdCgqNaplXltcryfCbKsIbyxxo2jNKWo/wfFlutRs0SCTv1WK1Ghbhataj5VqOig7D2E1j/PyvAKcmzRqLtWQZd/nri65qVBUYhcVaOUVXyk4QQQog6IsFRPThg+sAArQ3ClR1lgFlcQt4Pi4DSEWrGkdPB/EXFGCEhh1qNjmcpj4J9xy7nKbISqj+73VqYFqDLldD7Jqv7K7nbH89q/Ud8bijcD2FNrBYjCYyEEEIEKUnIrgcH/VYAovyhGCgMpcj7cTFmUQmO5KaEde8MgD2lA0Zs0wrnmgVFOBLjMWISDgU8R0qCdkVa+73WfEqVymkN6atg9YfWivdrPrACo8STrVFol02DvD1WF1tVEq0PZ/qt4KzooNUllyQtRkIIIYKbtBzVg5zS1hnDDEUphVHiIe97q9Uo+oKBgVYjsyCnwjpqZnEJhsuFPSW14tpmmeus3KDfP4U9SyG+A3S/DpZOhwObDr1xk9L9m/8Dy2ZAVDJcMR0+HG0tXXLxK9Cqb+V108onaVelBakkB0ryrYkt41IhvCkcpUVMCCGECBYSHNWDPl37kZ2/j2XbdqHs4P55GWZRMY6kBCLPPQdbZCy+XZsqrKPmWbsA/475uNqmYktIhXmTYeNXkLML3HnW4q5XTLdaerpeaa1xtvWHym++6WurnN9jTeC45HXoOQpiUqzjjtDjm9X6WLxFUJRVOrFjF4hqDvY6WvdNCCGEOEESHNWDjft38Mx5z/Cg+3nsuzy45y0BoMlto3GdfDqedUsCZc2sDPzzXsJ5xhhcRWuhxyVHDnwyVlvrmvW/HdZ/DvYQ6HjBkSuwfYFVLmcHdDiv4rHjmdX6aPxeKDxoJW7HtoHYVtYEj0IIIUQDIsFRPVi8azVpP63g2cHPsW3aC+jCYqIuPJ/oy4cHutAA8OTj3PBvbFlrIcxpBTQr3gXDAb3GWK090S2slpmIpla3V0EmdDwfmp509CTtsnJRza2A5kQSrcEahVacDd4SiEyC2FQIjz+xawohhBD1RIKjelCk3Czeu5RnvnmVh0f9ndzIZGKHX1MhMDJyt+BY9xqGOxvd7lzoOQZ9YBdGt6ugZZ+KAU1ZwFPWHebOP3J+0PGWqwq/11obLTQGEk6ygiOj8vQFQgghREMhwVE9KMFaOiRn+QpyD35I/JgxeHdssAIjrbHv+hZ72kco7cc86XLUpa/iXrsEV2IkZLsrBjSHBzxw5ATq4y1XFb4SKNgPMS2thPCypUSEEEKIBkyGDtWD+DgrJu3T4mRihg0j+4PZ2Ju1wYiMwpm7GEdyM5T24+95G+ryaRQt/gGbzWeNYjt8DbPjSaCG4y93vNz5Vn5Rk/bW8H8JjIQQQjQS0nJUD7JK8ujbrC9X9r+DPX//B/78LMJbKJw9zkedcjp69ki87a9Hdb4Wz4oF6LwD2Fp1OnSB8gHN8SZQn0ii9eGKs8HrtoKimFYyPF8IIUSjIk+1enBSQnueGfAMOz95j8KFi3Da83BsmYVCo1F42w/H33wQvl2b8G3fhj0+DsN12FB4d/6xA57aoLX1ntqE5K7W3EUSGAkhhGhk5MlWDzoltObun+5mzzdfA+BMaY664g383zyO5/dfUAkdANBeHxgG9rggWLVem9ZSIvZQSD4VopvXd42EEEKIWiHdanXM69dM//11lDIZtd9akd7e8y/405biieoNebmYebkA+AuLsEVFYIsMr88qg+mD/AwIS4DEkyAkCII1IYQQopZIy1EdO2j6UcoEIKp0jVd7zmqM9gMx4hID5bTW6BIvjoS4oy5CWyd8bshLt+ZEatZNAiMhhBCNngRHdeyA3weAoV04PNbtN3b9EFgmpGyhWbO4BCPMhS26HhdpdedD4QGIa2stAyIj0oQQQvwJNKrg6JFHHkEpVeHVqdOhUV4lJSWMHTuW+Ph4IiIiGDZsGJmZmXVaxyy/B4CEkGj8Bw4AYIuNrbCOmhHbFLOgGHt8LEaIq07rB1jdaHkZVqtR087QtBPYHHVfDyGEEKIeNKrgCODkk08mPT098FqwYEHg2J133snnn3/OBx98wPz589m7dy+XX355ndYv17T60uwHDdCA0hgx1lIbZQGSCotCGap+ErE9BVY3WngcNO8J8W1kxmshhBB/Ko0uIdtut5OUlFRpf25uLm+++SYzZ87k7LPPBuCtt97ipJNO4pdffuH000+vk/rlaqvlKCJLAWBzmRAaFzhuZu/Dl7YFIzIcW2QdLtpq+qFwHyi71VoU20pai4QQQvwpNbqWo82bN9OsWTPatGnDtddey86dOwFYtmwZXq+XwYMHB8p26tSJli1bsnjx4jqrX35pcJRQYN16e6gf7YwJHC9LxHY2bVJ3idieQmuYfmhpa1GTdhIYCSGE+NNqVC1Hffr0YcaMGXTs2JH09HQeffRRzjzzTNauXUtGRgZOp5OYmJgK5yQmJpKRkXHUa7rdbtxud2A7Ly/vhOpYiHWtJoXWtj3ERLtiA8d1iRsjtI4SsbUJhfut7r2ETtaSJHbnH50lhBBCNGqNKjg6//zzA1937dqVPn360KpVK2bPnk1oaPVGWk2aNIlHH320pqpIcVlwVGAN57eH+tGumMBxf34RzmZNq5eI7XODt8gKepQBSgGl/6py/6KspOuiLAhPsNZHC29y4t+cEEII0Qg0um618mJiYujQoQNbtmwhKSkJj8dDTk5OhTKZmZlHzFEqc++995Kbmxt47dq164TqVEIJAAmFVpBkDwXs1iSP2ucrTcSOOb6LmT4oyYP8dMjZbX1tc4IryrqwYbcCIq3B77XWQ3MXWOW8xdCkAzTvIYGREEIIUU6jajk6XEFBAVu3buX666+nZ8+eOBwO5s6dy7BhwwDYuHEjO3fupG/fvke9hsvlwuWqueH0HmUFR3GFVu4R4Y7SFh7wFxYfOxFbm1ZQ4ykEn8cKfpxhEN0SQmPBFQnOiIrrnZmmdd7hLwBneOC9hRBCCGFpVMHRXXfdxUUXXUSrVq3Yu3cvDz/8MDabjWuuuYbo6GjGjBnD+PHjiYuLIyoqir///e/07du3zkaqAfiMYgCiy4KjCKu7z0rEduNMaYayHdagp7WVG+T3giMMwppYrT2uSOt1rORpw6CRNxAKIYQQNapRBUe7d+/mmmuu4eDBgyQkJHDGGWfwyy+/kJCQAMDzzz+PYRgMGzYMt9vNkCFDePXVV+u0jmZpcBRWFhxFWa1EusSNERJSORHb74X8TAiLhfh21vIdMlO1EEIIUWsaVXA0a9asYx4PCQlh6tSpTJ06tY5qVJHWoI1ilNY4ivzWvmhr8Vl/QRHO5KYYoSGHTvAUQdFBiEmx8oOc9bwArRBCCPEn0KiCo2BX6DdRNjcRRVC69iw6Og7t96OgYiJ2URb4PdYQ+7g2YJOPSgghhKgL8sStQwdMHyiIKSidHdvpxx8ai7+gCCMywkrE1qbVjWYPheRuEJksSdNCCCFEHZLgqA4d9PnAAXF5DsCHPdTE54g+lIitvZC735p7qGlHawSaEEIIIeqUBEd1KNu0krDj8q3bbg/x4yMc5XJhC1VQsN+apbpJe3CEHONKQgghhKgtEhzVoVztBSA+sK6aiccWjuEvROGFxJOtBV8NW31WUwghhPhTk+CoDuWZZYvOWtnYKhSM0sRs1aInRCbWV9WEEEIIUUpmB6xDBYFFZ62IyAy3o0w/OFwQ0bQ+qyaEEEKIUhIc1aHC0uAotsAHgC/chUKj7DYZkSaEEEIECQmO6lDZorPRRVZw5AkPRWmOvfyHEEIIIeqUBEd1yK3coDVhhdbs2J6IcGxao2SCRyGEECJoSHBUh7yqmFAP2K2GI4ojo1Bag11ajoQQQohgIcFRHfIZJcQUWF8bDpPiECs4UjYZui+EEEIECwmO6pBpFBFboAFrAki3IwJDA3ZX/VZMCCGEEAESHNURv6nBVkxsacuRPdSkxBZhjVZzSLeaEEIIESwkOKojOX6NUv5DwVGIH7ct3OpWs0tCthBCCBEsJDiqI/tNa+mQ2PzS+YzCbKDsGGgZyi+EEEIEEQmO6ki231o6JL7ACo50uAMF1uSPhnwMQgghRLCQ/pw6kl3achRXmpDtD3ehlMKOQslCs0IIIUTQkCaLOpKrS7vVSoMjb0QohlIoFMhQfiGEECJoSHBUR/JNa1216NJFZ90REVaPmlIgLUdCCCFE0JDgqI4U4Mbh1YRYqUcUR0ZhYKA1KEN6N4UQQohgIcFRHSnGHRjGr2wmRaFR2MoSsZWqv4oJIYQQogIJjupICSXEFlpf20NMim0R2DCsuEgWnhVCCCGChgRHdcStSojNL106JNRPkS0cQ1E6lF9yjoQQQohgIcFRHfEZh5YOsYVq3MpFWUgkC88KIYQQwUP6c+qIX5UQU2i1HKkwG6YCG8oKT6XlSAghhAga0nJUR7StKNByRLgTDdg0oGwSHAkhhBBBRIKjOlDi1yhbCTGlwZEZEQJoDA0YCmWTj0EIIYQIFvJUrgMHTB9waHZsX2Q4JmZpt5oNZJ4jIYQQImhIcFQHDvrLgiNr2x8ZCWCtq6Zk+RAhhBAimEiTRR3I9nuwoYkqtrY9UTForTGUCYaBknmOhBBCiKAhLUd1IEd7iSmdABKlcUfGggbD1KAM6yWEEEKIoCBP5TqQZ3oCydj2UD9uRxQoa/5HZRgyWk0IIYQIIhIc1YEC7Q4kY9tDTNz2SECVjlYzZPkQIYQQIohIcFQHCsstOmsLA9NwAmBoDUqhpOVICCGECBoSHNWBIg61HKmwskBIo7QuHcovH4MQQggRLOSpXAfcqiTQcqTDnaV7FUqbKLt0qQkhhBDBRIKjOuBVxeVmxw4FQGmN0gpld9RjzYQQQghxuD9tcDR16lRat25NSEgIffr04ddff6219/KpEmJLF531R4YDlK6tpkGCIyGEECKo/CmDo/fff5/x48fz8MMPs3z5crp168aQIUPYt29frbyfaRxqOfJGRoIGZSir9UhGqgkhhBBB5U8ZHD333HPcdNNNjBo1is6dOzNt2jTCwsKYPn16jb+XNSCtMDAJpCcqBlNrFAoDDZJzJIQQQgSVP11w5PF4WLZsGYMHDw7sMwyDwYMHs3jx4krl3W43eXl5FV5Vka8hqsRnzWmExhMVhwkoFGiNskm3mhBCCBFM/nTB0YEDB/D7/SQmJlbYn5iYSEZGRqXykyZNIjo6OvBKSUmp0vsd1P5DcxyFmLid0WhMFFbOkXI4j3m+EEIIIerWny44qqp7772X3NzcwGvXrl1VOj8bfWh27FA/HruVkK1QKAVIy5EQQggRVP50CS9NmjTBZrORmZlZYX9mZiZJSUmVyrtcLlwuV7XfL4dDLUdGqEIrG6bpRQEKwC6zYwshhBDB5E/XcuR0OunZsydz584N7DNNk7lz59K3b98af7887QsERyrcikWtJG2F0sjSIUIIIUSQ+dO1HAGMHz+eESNG0KtXL3r37s0LL7xAYWEho0aNqvH3ylc+Ykq71cpmxza1RhkKQytQf7r4VAghhAhq1X4yjx49mvz8/Er7CwsLGT169AlVqrZdddVVPPvsszz00EOceuqprFy5km+++aZSknZNKMJLbOkwfl06O7ZGl+YcGdbaakIIIYQIGtUOjt5++22Ki4sr7S8uLuY///nPCVWqLowbN44dO3bgdrtZsmQJffr0qZX3KTI8gZYjX9ns2NrKNzLQYJPgSAghhAgmVe5Wy8vLQ2uN1pr8/HxCQkICx/x+P1999RVNmzat0Uo2ZCXKE8g58kVGle7VGEjOkRBCCBGMqhwcxcTEWMnEStGhQ4dKx5VSPProozVSucbAo0oCs2O7o2MAMDEBa/JJZPkQIYQQIqhU+cn8448/orXm7LPP5qOPPiIuLi5wzOl00qpVK5o1a1ajlWzIXJ5iHH7ra3eUda+0tvozlaHAUPVXOSGEEEJUUuXg6KyzzgIgLS2Nli1bopQ83I8lurgIAO0y8YTEWF+jMZTChoEypOVICCGECCbVTshev349CxcuDGxPnTqVU089leHDh5OdnV0jlWsMYoqs4EiFmHiNstFqYGhQhiEJ2UIIIUSQqXZwdPfddwcWYV2zZg3jx4/nggsuIC0tjfHjx9dYBRsyr4aYIi8ARpiC0lY2U2tsaDBkKL8QQggRbKrdp5OWlkbnzp0B+Oijj7jooot48sknWb58ORdccEGNVbAhy9Ga2EJrGL8j7NCttlqOrGBJScuREEIIEVSq3XLkdDopKu0y+v777znvvPMAiIuLC7Qo/dkd1GZg0VlVOjs2AFpjV1itRjJDthBCCBFUqt1ydMYZZzB+/Hj69+/Pr7/+yvvvvw/Apk2baNGiRY1VsCHLxqRt6RxHZuns2FDaraa1lXMk3WpCCCFEUKl2s8Urr7yC3W7nww8/5LXXXqN58+YAfP311wwdOrTGKtiQ5eIPzI7tL50dG6zRajZtWDlIMs+REEIIEVSq/WRu2bIlX3zxRaX9zz///AlVqDHJwxeYHdsbFRXYryldOsQwZIZsIYQQIsicUMLL1q1beeCBB7jmmmvYt28fYLUc/f777zVSuYauEG9gdmxPVExgv6YsKpUZsoUQQohgU+3gaP78+XTp0oUlS5bw8ccfU1BgNZGsWrWKhx9+uMYq2JD5vCWEWCP5KYmOD+wvmwTSyjmShGwhhBAimFT7yXzPPffwf//3f8yZMwen89BIrLPPPptffvmlRirX0IUV5wPgc2jcYbGB/Vqb2DVWt5q0HAkhhBBBpdrB0Zo1a7jssssq7W/atCkHDhw4oUo1FlFFVnDkDdOYxqEAUiuN0shQfiGEECIIVfvJHBMTQ3p6eqX9K1asCIxc+7OLLF1XzR9Wcf05pUFpE2U3ArNmCyGEECI4VDs4uvrqq/nnP/9JRkYGSilM02ThwoXcdddd3HDDDTVZxwYrqsgNgD+s4og0jcIGYHPUfaWEEEIIcUzVDo6efPJJOnXqREpKCgUFBXTu3JkBAwbQr18/HnjggZqsY4MVWeSzvghzVtiv0BholF3yjYQQQohgU+2ns9Pp5N///jcPPfQQa9asoaCggO7du9O+ffuarF+DFlnkB0CFh1TYb62tBsruPMJZQgghhKhPJ9x0kZKSQkpKSk3UpVHJKykmunSOI3tkRIVjSinQGqTlSAghhAg61epW27x5Mx999BFpaWkAfPnllwwYMIDTTjuNJ554Aq11jVayIdqdlxVYOsRRbnZssOIim0aG8QshhBBBqMpP508++YS//vWvGIaBUorXX3+dW265hYEDBxIVFcUjjzyC3W7nn//8Z23Ut8HYk3+QpLKlQ6LjKhfQJtglIVsIIYQINlVuOXriiSeYOHEiJSUlvPbaa9x6661MmjSJr7/+mi+++IKpU6cyY8aMWqhqw5J5MINwa7Aa7iMER4ZWKAmOhBBCiKBT5eBo48aNjB49GqUUI0aMwOPxMHjw4MDx8847jx07dtRoJRui4t0bAfDaNO7w2ErHFci6akIIIUQQqnJwVFhYSGRkpHWyYRAaGkpYWFjgeGhoKG63u+Zq2ECZmVaAWBQO2igXBGlr3kdDaZRhO8rZQgghhKgvVQ6OlFLWaKujbAuLOpgBQPFhs2P7tcZAoVDSciSEEEIEoSo/nbXWdOjQIRAQlc1vZJSuLi8j1SyO3GwAisMNys9ypNFAaUBpyLpqQgghRLCpcnD01ltv1UY9Gh1XnjXJkTvUTgjQbeAwImOb8uNHr6AAQ4IjIYQQIihVOTgaMWJEbdSj0QktsPKuPGFOug0cRlxya7LSt5e1G1ndkYZ0qwkhhBDBpkaezgUFBZimWWFf1GETH/7ZnNT1HFj3NSdfOCoQGK2a9xFam1ZwpAGbJGQLIYQQwabawVFaWhrjxo1j3rx5lJSUBPZrrVFK4ff7a6SCDdUpEx4lJ+VkYi+/IRAYgXV/DFXarSbBkRBCCBF0qh0cXXfddWitmT59OomJiTJi7TBZn35Cwpgx5O/dEQiMAEytQVnTIKAkOBJCCCGCTbWDo1WrVrFs2TI6duxYk/VpNOKvuor9v8ynSZ8z6TZwWCBAMgFlagxDoSQhWwghhAg61X46n3baaezatasm69KoaMPGkt++YP/OTcQlt6bbwGGlBzSGxpoAUiaBFEIIIYJOtVuO3njjDW699Vb27NnDKaecgsNRcZ2wrl27nnDlGjKf1wPAr19Mp+9ltwUCpIXfvYuBxrAZknMkhBBCBKFqB0f79+9n69atjBo1KrBPKSUJ2Uewat5HgXmOTEyU1hjKhpIZsoUQQoigU+2n8+jRo+nevTvvvfeeJGQfh0DOkdbYwWo5koRsIYQQIuhUOzjasWMHn332Ge3atavJ+jR6GqyWI8MGNknIFkIIIYJNtZ/OZ599NqtWrarJupyw1q1bBxbCLXtNnjy5QpnVq1dz5plnEhISQkpKCk8//XSd1lEDhjbAkG41IYQQIhhV++l80UUXceedd7JmzRq6dOlSKSH74osvPuHKVcdjjz3GTTfdFNiOjIwMfJ2Xl8d5553H4MGDmTZtGmvWrGH06NHExMRw880310n9tNbYMUEZMlpNCCGECELVDo5uvfVWwApGDlefCdmRkZEkJSUd8di7776Lx+Nh+vTpOJ1OTj75ZFauXMlzzz1Xh8ER2FAoQ4G0HAkhhBBBp9rdaqZpHvVVnyPVJk+eTHx8PN27d+eZZ57B5/MFji1evJgBAwbgdDoD+4YMGcLGjRvJzs4+4vXcbjd5eXkVXidGYwMwpOVICCGECEaNquni9ttvp0ePHsTFxbFo0SLuvfde0tPTee655wDIyMggNTW1wjmJiYmBY7GxsZWuOWnSJB599NEaq6OpNYbWYBgoJQnZQgghRLCpdnB0pO608h566KHqXrqCe+65h6eeeuqYZdavX0+nTp0YP358YF/Xrl1xOp3ccsstTJo0CZfLVa33v/feeytcNy8vj5SUlGpdC8BEY6N00VlZPkQIIYQIOtUOjj755JMK216vl7S0NOx2O23btq2x4GjChAmMHDnymGXatGlzxP19+vTB5/Oxfft2OnbsSFJSEpmZmRXKlG0fLU/J5XJVO7A6Ghug7I4/LCeEEEKIulft4GjFihWV9uXl5TFy5Eguu+yyE6pUeQkJCSQkJFTr3JUrV2IYBk2bNgWgb9++3H///Xi93sDoujlz5tCxY8cjdqnVBo3GprW1tpoQQgghgk6N9utERUXx6KOP8uCDD9bkZY/L4sWLeeGFF1i1ahXbtm3j3Xff5c477+S6664LBD7Dhw/H6XQyZswYfv/9d95//31efPHFCt1mtU2jrZsuLUdCCCFEUKrxhOzc3Fxyc3Nr+rJ/yOVyMWvWLB555BHcbjepqanceeedFQKf6OhovvvuO8aOHUvPnj1p0qQJDz30UJ0N44fSliMUyt6ocuGFEEKIRqPaT+iXXnqpwrbWmvT0dN555x3OP//8E65YVfXo0YNffvnlD8t17dqVn3/+uQ5qdGRaawwU2J1/XFgIIYQQda7awdHzzz9fYdswDBISEhgxYgT33nvvCVesMVNoScgWQgghglS1g6O0tLSarMefiqElOBJCCCGCVZUTsv1+P6tXr6a4uLjSseLiYlavXo1pmjVSucZJYWjAkJwjIYQQIhhVOTh65513GD16dIUlOMo4HA5Gjx7NzJkza6RyjZVSgF2G8gshhBDBqMrB0Ztvvsldd92FzVb54W6325k4cSKvv/56jVSucdIoDJnnSAghhAhSVQ6ONm7cyOmnn37U46eddhrr168/oUo1bgpDYS0fIoQQQoigU+XgqLCw8Jgr0+fn51NUVHRClWrcNAoFSoIjIYQQIhhVOThq3749ixYtOurxBQsW0L59+xOqVGOnpOVICCGECFpVDo6GDx/OAw88wOrVqysdW7VqFQ899BDDhw+vkco1TgqlDJSq0ZVbhBBCCFFDqjye/M477+Trr7+mZ8+eDB48mE6dOgGwYcMGvv/+e/r378+dd95Z4xVtDExTo5SyIlKbDOUXQgghglGVn9AOh4PvvvuO559/npkzZ/LTTz+htaZDhw488cQT3HHHHYEV70VFJqUTQALIaDUhhBAiKFWr+cLhcDBx4kQmTpz4h2Xfe+89Lr74YsLDw6vzVo2KxgQUhk2G8gshhBDBqtYTX2655RYyMzNr+20aDENrKzCySc6REEIIEYxq/Qmtta7tt2gwtNYYWmMYhnSrCSGEEEFKmi/qkKk1hgZD2VAylF8IIYQIShIc1SGNBq0xbIYsPCuEEEIEKQmO6pDWGqWxZsc25NYLIYQQwUie0HXIBOxobIZN5jkSQgghglStB0etWrWSeY/KlCanK0PJDNlCCCFEkKr2E3rEiBH89NNPf1hu7dq1pKSkVPdtGhWNRpkaw26XliMhhBAiSFU7OMrNzWXw4MG0b9+eJ598kj179tRkvRolU2tsWmMzDAmOhBBCiCBV7eDo008/Zc+ePdx22228//77tG7dmvPPP58PP/wQr9dbk3VsNKzRamAYNpkhWwghhAhSJ5T4kpCQwPjx41m1ahVLliyhXbt2XH/99TRr1ow777yTzZs311Q9GwUN2NAom11GqwkhhBBBqkae0Onp6cyZM4c5c+Zgs9m44IILWLNmDZ07d+b555+vibdoFEw0BsgEkEIIIUQQq3Zw5PV6+eijj/jLX/5Cq1at+OCDD7jjjjvYu3cvb7/9Nt9//z2zZ8/mscceq8n6Nmy6tOXILqP3hBBCiGBV7azg5ORkTNPkmmuu4ddff+XUU0+tVGbQoEHExMScQPUaF601BgrskowthBBCBKtqP6Wff/55rrzySkJCQo5aJiYmhrS0tOq+RaOjAQONsknLkRBCCBGsqt2tdvHFF1NUVFRpf1ZWFnl5eSdUqcZKa41dAzIpphBCCBG0qh0cXX311cyaNavS/tmzZ3P11VefUKUaq0BCtiw6K4QQQgStagdHS5YsYdCgQZX2Dxw4kCVLlpxQpRorayi/AoezvqsihBBCiKOodnDkdrvx+XyV9nu9XoqLi0+oUo2VRls5RzJaTQghhAha1Q6Oevfuzeuvv15p/7Rp0+jZs+cJVaqx0pjYlQEyz5EQQggRtKqd/PJ///d/DB48mFWrVnHOOecAMHfuXJYuXcp3331XYxVsTDQaQymUktmxhRBCiGBV7ad0//79Wbx4MSkpKcyePZvPP/+cdu3asXr1as4888yarGPjoUGBLDorhBBCBLETekqfeuqpvPvuuzVVl8ZPK1AGyKKzQgghRNA6oeDINE22bNnCvn37ME2zwrEBAwacUMUaJWUN5ZdFZ4UQQojgVe3g6JdffmH48OHs2LEDrXWFY0op/H7/CVeuMbIpmedICCGECGbVbsK49dZb6dWrF2vXriUrK4vs7OzAKysrqybrCMATTzxBv379CAsLO+p6bTt37uTCCy8kLCyMpk2bcvfdd1eabmDevHn06NEDl8tFu3btmDFjRo3X9eiU9bJJy5EQQggRrKrdhLF582Y+/PBD2rVrV5P1OSqPx8OVV15J3759efPNNysd9/v9XHjhhSQlJbFo0SLS09O54YYbcDgcPPnkkwCkpaVx4YUXcuutt/Luu+8yd+5cbrzxRpKTkxkyZEgdfBcam1IylF8IIYQIYtUOjvr06cOWLVvqLDh69NFHAY7a0vPdd9+xbt06vv/+exITEzn11FN5/PHH+ec//8kjjzyC0+lk2rRppKamMmXKFABOOukkFixYwPPPP183wZEGlCHdakIIIUQQq/ZT+u9//zsTJkwgIyODLl264DhsMdWuXbuecOWqYvHixXTp0oXExMTAviFDhnDbbbfx+++/0717dxYvXszgwYMrnDdkyBDuuOOOuqmkX6MMJQnZQgghRBCrdnA0bNgwAEaPHh3Yp5RCa10vCdkZGRkVAiMgsJ2RkXHMMnl5eRQXFxMaGlrpum63G7fbHdjOy8urdh2V0hjKJkP5hRBCiCBW7eAoLS3thN/8nnvu4amnnjpmmfXr19OpU6cTfq/qmjRpUqBL74RoUKaJYbdJy5EQQggRxKodHLVq1eqE33zChAmMHDnymGXatGlzXNdKSkri119/rbAvMzMzcKzs37J95ctERUUdsdUI4N5772X8+PGB7by8PFJSUo6rTuWZWmNoa6SakhmyhRBCiKB1Qk/pd955h2nTppGWlsbixYtp1aoVL7zwAqmpqVxyySV/eH5CQgIJCQknUoWAvn378sQTT7Bv3z6aNm0KwJw5c4iKiqJz586BMl999VWF8+bMmUPfvn2Pel2Xy4XL5Trh+plolJZuNSGEECLYVbt/57XXXmP8+PFccMEF5OTkBHKMYmJieOGFF2qqfgE7d+5k5cqV7Ny5E7/fz8qVK1m5ciUFBQUAnHfeeXTu3Jnrr7+eVatW8e233/LAAw8wduzYQHBz6623sm3bNiZOnMiGDRt49dVXmT17NnfeeWeN1/dw1qKzYBhKgiMhhBAiiFU7OHr55Zf597//zf3334+t3Lw9vXr1Ys2aNTVSufIeeughunfvzsMPP0xBQQHdu3ene/fu/PbbbwDYbDa++OILbDYbffv25brrruOGG27gscceC1wjNTWVL7/8kjlz5tCtWzemTJnCG2+8USfD+DWgtIlhs0u3mhBCCBHETighu3v37pX2u1wuCgsLT6hSRzJjxow/nM26VatWlbrNDjdw4EBWrFhRgzU7TlpjaFA2GcovhBBCBLNqP6VTU1NZuXJlpf3ffPMNJ5100onUqVEytWnlHGEDaTkSQgghgla1n9Ljx49n7NixlJSUoLXm119/5b333mPSpEm88cYbNVnHRkEDBhrDZpNuNSGEECKIVfspfeONNxIaGsoDDzxAUVERw4cPp1mzZrz44otcffXVNVnHRsGvNUqDsttASbeaEEIIEaxOqAnj2muv5dprr6WoqIiCgoLAEHpxZAqNYbODUvVdFSGEEEIcRY3074SFhREWFlYTl2q8SluODJuzvmsihBBCiGOoUnDUo0cP5s6dS2xsLN27d0cdowVk+fLlJ1y5xkSjsWuNYZd8IyGEECKYVelJfckllwQmVLz00ktroz6Nll+bOEyNzSEtR0IIIUQwq1Jw9PDDDx/xa/HHrNFqYHM46rsqQgghhDiGag+bWrp0KUuWLKm0f8mSJYFZq0VFBhrlOPF12oQQQghRe6odHI0dO5Zdu3ZV2r9nzx7Gjh17QpVqjExKZ8i2S8uREEIIEcyqHRytW7eOHj16VNrfvXt31q1bd0KVaoy0BhsSHAkhhBDBrtrBkcvlIjMzs9L+9PR07DIiqzKtMZQCQ+6NEEIIEcyqHRydd9553HvvveTm5gb25eTkcN9993HuuefWSOUaE1Nr62bbbPVdFSGEEEIcQ7WbMZ599lkGDBhAq1at6N69OwArV64kMTGRd955p8Yq2FiYaGyGgTIkOBJCCCGCWbWDo+bNm7N69WreffddVq1aRWhoKKNGjeKaa67BIcPVj8iGATZZV00IIYQIZieUABMeHs7NN99cU3Vp1DQahQJpORJCCCGCWpWCo88++4zzzz8fh8PBZ599dsyyF1988QlVrLHRgN2Q4EgIIYQIdlUKji699FIyMjJo2rTpMZcPUUrh9/tPtG6NitYmCsk5EkIIIYJdlYIj0zSP+LX4Y1ppDAXYZCi/EEIIEcyqlB0cFxfHgQMHABg9ejT5+fm1UqlGydQowwAlCdlCCCFEMKvSk9rj8ZCXlwfA22+/TUlJSa1UqlEyre5GJfMcCSGEEEGtSn08ffv25dJLL6Vnz55orbn99tsJDQ09Ytnp06fXSAUbC6VNDMMBhrQcCSGEEMGsSsHRf//7X55//nm2bt0KQG5urrQeHSeFwlCGLB8ihBBCBLkqPakTExOZPHkyAKmpqbzzzjvEx8fXSsUaG639KIdNutWEEEKIIFfthOxBgwbhdDprpVKNkWFaQ/llniMhhBAiuElCdl3RYNhssvCsEEIIEeQkIbuOKG2CzJAthBBCBL1qJ2QrpSQhuyo02JRNZsgWQgghgpwkZNcFDYbWVmAkM2QLIYQQQa3Kk+5ccMEF5ObmkpaWRnx8PJMnTyYnJydw/ODBg3Tu3Lkm69jg+bRGaTBskpAthBBCBLsqB0fffPMNbrc7sP3kk0+SlZUV2Pb5fGzcuLFmatdoaBQapFtNCCGECHonPF2z1rom6tGoaTSGBpvdLjNkCyGEEEFOntR1QAOGNlEOyTcSQgghgl2VgyOlFEqpSvvE0ZmmiSprORJCCCFEUKvy01przciRI3G5XACUlJRw6623Eh4eDlAhH0lYyrrVDJurvqsihBBCiD9Q5eBoxIgRFbavu+66SmVuuOGG6teoEbLysjTK7qjvqgghhBDiD1Q5OHrrrbdqox6Nmok1z5HNJWvRCSGEEMFOErLrgtYYgGGT4EgIIYQIdg0mOHriiSfo168fYWFhxMTEHLFMWbJ4+desWbMqlJk3bx49evTA5XLRrl07ZsyYUet1t3KONDaHBEdCCCFEsGswwZHH4+HKK6/ktttuO2a5t956i/T09MDr0ksvDRxLS0vjwgsvZNCgQaxcuZI77riDG2+8kW+//bZW667RKK2xSc6REEIIEfQazNjyRx99FOAPW3piYmJISko64rFp06aRmprKlClTADjppJNYsGABzz//PEOGDKnR+pZnao0yFIZNgiMhhBAi2DWYlqPjNXbsWJo0aULv3r2ZPn16hRm8Fy9ezODBgyuUHzJkCIsXL67VOpXVQOY5EkIIIYJfo3paP/bYY5x99tmEhYXx3Xff8be//Y2CggJuv/12ADIyMkhMTKxwTmJiInl5eRQXFxMaGlrpmm63u8LcTXl5eVWul0ZjKAU2WVdNCCGECHb12nJ0zz33HDGJuvxrw4YNx329Bx98kP79+9O9e3f++c9/MnHiRJ555pkTquOkSZOIjo4OvFJSUqp8Da3BhgFGo4pFhRBCiEapXp/WEyZMYOTIkccs06ZNm2pfv0+fPjz++OO43W5cLhdJSUlkZmZWKJOZmUlUVNQRW40A7r33XsaPHx/YzsvLq3KAFGg5kkVnhRBCiKBXr8FRQkICCQkJtXb9lStXEhsbG1jqpG/fvnz11VcVysyZM4e+ffse9RoulytwfrXpsmkGpFtNCCGECHYNpp9n586dZGVlsXPnTvx+PytXrgSgXbt2RERE8Pnnn5OZmcnpp59OSEgIc+bM4cknn+Suu+4KXOPWW2/llVdeYeLEiYwePZoffviB2bNn8+WXX9Zq3U0tOUdCCCFEQ9FggqOHHnqIt99+O7DdvXt3AH788UcGDhyIw+Fg6tSp3HnnnWitadeuHc899xw33XRT4JzU1FS+/PJL7rzzTl588UVatGjBG2+8UavD+AFMNDZlSHAkhBBCNABKlx/rLv5QXl4e0dHR5ObmEhUVddRy7uIi5rz5MChFntNJm8JCTvvr7diapdZhbYUQQggBx//8hkY4z1Ew0qYfm2EHm9xuIYQQItjJ07oOaG1iGDZQcruFEEKIYCdP67rgNzFsNsk5EkIIIRoACY7qhMZQBkomgRRCCCGCngRHdcDQfpRNRqsJIYQQDYEER3VBgzIMMCQ4EkIIIYKdBEd1wdQYyoaS4EgIIYQIepIEUweUBkNajoQQokHTWuPz+fD7/fVdFXEUDocDWw2ksEhwVCdMK9/IJrdbCCEaIo/HQ3p6OkVFRfVdFXEMSilatGhBRETECV1HntZ1QOnS0WoSHAkhRINjmiZpaWnYbDaaNWuG0+lEKVXf1RKH0Vqzf/9+du/eTfv27U+oBUme1nVBm1ZgJD9MQgjR4Hg8HkzTJCUlhbCwsPqujjiGhIQEtm/fjtfrPaHgSBKy64DSGptdgiMhhGjIDEMemcGuplr05JOuZRoNWoPDUd9VEUIIIcRxkOColmlt3WSb5BsJIYT4kxg4cCB33HFHrVy7devWvPDCC7Vy7TISHNUyjcYwNcouLUdCCCHq1siRI1FKceutt1Y6NnbsWJRSjBw5su4rFuQkOKoDCjAkOBJCCFEPUlJSmDVrFsXFxYF9JSUlzJw5k5YtW1b7umXzPlWHx+Op9vvWBQmOapnWujQh21XfVRFCCPEn1KNHD1JSUvj4448D+z7++GNatmxJ9+7dA/vcbje33347TZs2JSQkhDPOOIOlS5cGjs+bNw+lFF9//TU9e/bE5XKxYMECCgsLueGGG4iIiCA5OZkpU6ZUqkPr1q15/PHHueGGG4iKiuLmm28GYMGCBZx55pmEhoaSkpLC7bffTmFhYeC8ffv2cdFFFxEaGkpqairvvvtubdyiSiQ4qmUmVsuRcjjruypCCCFqgNaaIo+vSq8Srx+tNSVe/xG3j/elta5WnUePHs1bb70V2J4+fTqjRo2qUGbixIl89NFHvP322yxfvpx27doxZMgQsrKyKpS75557mDx5MuvXr6dr167cfffdzJ8/n//973989913zJs3j+XLl1eqw7PPPku3bt1YsWIFDz74IFu3bmXo0KEMGzaM1atX8/7777NgwQLGjRsXOGfkyJHs2rWLH3/8kQ8//JBXX32Vffv2VeseVIVkCdcyU2vsWmOT0WpCCNEoFHv9dH7o2yqfd2b7Jrx8TXfeX7qLq05L4ab//MbPmw9U6RrrHhtCmLPqj+7rrruOe++9lx07dgCwcOFCZs2axbx58wAoLCzktddeY8aMGZx//vkA/Pvf/2bOnDm8+eab3H333YFrPfbYY5x77rkAFBQU8Oabb/Lf//6Xc845B4C3336bFi1aVKrD2WefzYQJEwLbN954I9dee20gcbt9+/a89NJLnHXWWbz22mvs3LmTr7/+ml9//ZXTTjsNgDfffJOTTjqpyt9/VUlwVOu0NVpNco6EEOJP7efNB3h/6S5uOast/5q/tcqB0YlISEjgwgsvZMaMGWitufDCC2nSpEng+NatW/F6vfTv3z+wz+Fw0Lt3b9avX1/hWr169apwnsfjoU+fPoF9cXFxdOzYsVIdyp8HsGrVKlavXl2hq0xrHZiRfNOmTdjtdnr27Bk43qlTJ2JiYqp+A6pIgqPaVtoEqgy51UII0RiEOmyse2xIlc8zlMJlN/D6TW4e0IYR/VpjVrGbLNRR/VmfR48eHeiymjp1arWvEx4eXiPnFRQUcMstt3D77bdXKtuyZUs2bdpUrfepCfLErmUajUJh2KTlSAghGgOlVLW6tso4bNYsziEnEOhUx9ChQ/F4PCilGDKkYnDXtm1bnE4nCxcupFWrVgB4vV6WLl16zPmK2rZti8PhYMmSJYGRb9nZ2WzatImzzjrrmPXp0aMH69ato127dkc83qlTJ3w+H8uWLQt0q23cuJGcnJzj/I6rT4KjWmZq6wfJsNftD4EQQghRns1mC3SRHb7uWHh4OLfddht33303cXFxtGzZkqeffpqioiLGjBlz1GtGREQwZswY7r77buLj42natCn333//cS218s9//pPTTz+dcePGceONNxIeHs66deuYM2cOr7zyCh07dmTo0KHccsstvPbaa9jtdu644w5CQ0NP7EYcBwmO6oBCY5OWIyGEEPUsKirqqMcmT56MaZpcf/315Ofn06tXL7799ltiY2OPec1nnnmGgoICLrroIiIjI5kwYQK5ubl/WJeuXbsyf/587r//fs4880y01rRt25arrroqUOatt97ixhtv5KyzziIxMZH/+7//48EHHzz+b7ialK7uuMA/qby8PKKjo8nNzT3mfzJ3cRFz3nyYfJ+bmBIvg664lZB23eqwpkIIIWpCSUkJaWlppKamEhISUt/VEcdwrM/qeJ/fIPMc1TqNxlCytpoQQgjRUEhwVMu01iiFrK0mhBBCNBASHNU2ra3ENEMSsoUQQoiGQIKj2qbBUAbKJsGREEII0RBIcFTLtOm38o2U3GohhBCiIZAndm3TGqWUdKsJIYQQDYQER7VMmxpls0m3mhBCCNFASHBUyxQmNmUDWVtNCCGEaBAkOKplpjZR1kRH9V0VIYQQQhwHCY5qmWFqbIYdJZNACiGEEA2CBEe1TGsrOEKp+q6KEEKIP5mRI0eilOLWW2+tdGzs2LEopRg5cmTdVyzISXBUy5TWGHYbSMuREEKIepCSksKsWbMoLi4O7CspKWHmzJm0bNmy2tfVWuPz+WqiikFHgqNaZmgwlARHQggh6kePHj1ISUnh448/Duz7+OOPadmyJd27dw/sc7vd3H777TRt2pSQkBDOOOMMli5dGjg+b948lFJ8/fXX9OzZE5fLxYIFC8jPz+faa68lPDyc5ORknn/+eQYOHMgdd9wROPedd96hV69eREZGkpSUxPDhw9m3b1+la8+dO5devXoRFhZGv3792LhxY+3enKNoEMHR9u3bGTNmDKmpqYSGhtK2bVsefvhhPB5PhXKrV6/mzDPPJCQkhJSUFJ5++ulK1/rggw/o1KkTISEhdOnSha+++qp2K680yjBQMs+REEI0DlqDp7BqL2+JdZ635Mjbx/vSulpVHj16NG+99VZge/r06YwaNapCmYkTJ/LRRx/x9ttvs3z5ctq1a8eQIUPIysqqUO6ee+5h8uTJrF+/nq5duzJ+/HgWLlzIZ599xpw5c/j5559Zvnx5hXO8Xi+PP/44q1at4tNPP2X79u1H7M67//77mTJlCr/99ht2u53Ro0dX6/s9UQ2iOWPDhg2Ypsm//vUv2rVrx9q1a7npppsoLCzk2WefBSAvL4/zzjuPwYMHM23aNNasWcPo0aOJiYnh5ptvBmDRokVcc801TJo0ib/85S/MnDmTSy+9lOXLl3PKKafUSt0NDcpuk5wjIYRoLLxF8GSzqp/X9my4Yjosfwd6XA+zroGtP1TtGvftBWd4ld/6uuuu495772XHjh0ALFy4kFmzZjFv3jwACgsLee2115gxYwbnn38+AP/+97+ZM2cOb775JnfffXfgWo899hjnnnsuAPn5+bz99tvMnDmTc845B4C33nqLZs0q3p/yQU6bNm146aWXOO200ygoKCAiIiJw7IknnuCss84CrCDswgsvpKSkhJCQkCp/zyeiQQRHQ4cOZejQoYHtNm3asHHjRl577bVAcPTuu+/i8XiYPn06TqeTk08+mZUrV/Lcc88FgqMXX3yRoUOHBj7kxx9/nDlz5vDKK68wbdq0Wqm7YWoMm6NWri2EEKIB2fqDFRj1vx0WvlT1wOgEJCQkcOGFFzJjxgy01lx44YU0adLkUNW2bsXr9dK/f//APofDQe/evVm/fn2Fa/Xq1Svw9bZt2/B6vfTu3TuwLzo6mo4dO1Y4Z9myZTzyyCOsWrWK7OxsTNMEYOfOnXTu3DlQrmvXroGvk5OTAdi3b98J5UZVR4MIjo4kNzeXuLi4wPbixYsZMGAATqczsG/IkCE89dRTZGdnExsby+LFixk/fnyF6wwZMoRPP/30qO/jdrtxu92B7by8vCrVU6ExytVJCCFEA+cIs1pwqkrZwO4Cvwf6/R163wzaX/X3rqbRo0czbtw4AKZOnVrt64SHV63lqrCwkCFDhjBkyBDeffddEhIS2LlzJ0OGDKmUHuNwHGpMUKU9LmWBVF1qEDlHh9uyZQsvv/wyt9xyS2BfRkYGiYmJFcqVbWdkZByzTNnxI5k0aRLR0dGBV0pKSpXqatNIMrYQQjQmSlldW1V9OUKsc21O619HSNWvcQIpGkOHDsXj8eD1ehkyZEiFY23btsXpdLJw4cLAPq/Xy9KlSyu07ByuTZs2OByOConbubm5bNq0KbC9YcMGDh48yOTJkznzzDPp1KlThWTsYFSvwdE999yDUuqYrw0bNlQ4Z8+ePQwdOpQrr7ySm266qdbreO+995Kbmxt47dq1q4pX0CjpVhNCCFHPbDYb69evZ926ddgOW7UhPDyc2267jbvvvptvvvmGdevWcdNNN1FUVMSYMWOOes3IyEhGjBjB3XffzY8//sjvv//OmDFjMAwj0PLTsmVLnE4nL7/8Mtu2beOzzz7j8ccfr9Xv9UTVa5PGhAkT/nDyqTZt2gS+3rt3L4MGDaJfv368/vrrFcolJSWRmZlZYV/ZdlJS0jHLlB0/EpfLhcvl+sPv5WiUBsMuLUdCCCHqX1RU1FGPTZ48GdM0uf7668nPz6dXr158++23xMbGHvOazz33HLfeeit/+ctfiIqKYuLEiezatSuQRJ2QkMCMGTO47777eOmll+jRowfPPvssF198cY1+bzVJaV3NcYF1bM+ePQwaNIiePXvy3//+t1LU+9prr3H//feTmZkZ6LO87777+PjjjwOtT1dddRVFRUV8/vnngfP69etH165djzshOy8vj+joaHJzc4/5n8xdXMScNx/Gn7mHkwdeQrtzrqrqtyyEECIIlJSUkJaWRmpqap2PmmqICgsLad68OVOmTDlmq1NtONZndbzPb2ggOUd79uxh4MCBtGzZkmeffZb9+/eTkZFRIVdo+PDhOJ1OxowZw++//87777/Piy++WCEB+x//+AfffPMNU6ZMYcOGDTzyyCP89ttvgQS12qAUGI7qtzwJIYQQwWzFihW89957bN26leXLl3PttdcCcMkll9RzzaqvQfT3zJkzhy1btrBlyxZatGhR4VhZw1d0dDTfffcdY8eOpWfPnjRp0oSHHnooMIwfrFaimTNn8sADD3DffffRvn17Pv3001qb48iisDsk50gIIUTj9eyzz7Jx40acTic9e/bk559/rjBVQEPTYLrVgkVVu9X0gXS6nX8DLfucV4e1FEIIUVOkW63h+FN1qzVkWilsNrnNQgghREMhT+1appQhM2QLIYQQDYgER7XMCo4aRGqXEEIIIZDgqPYpJfMcCSGEEA2IBEe1zVDSciSEEEI0IBIc1TKrW832xwWFEEIIERQkOKplShnYJCFbCCGEaDAkOKpthiRkCyGEqB8jR44MLOTucDhITU1l4sSJlJSUBMqUX+w9PDyc9u3bM3LkSJYtW1bhWvPmzUMpRU5OTmDf3r176dKlCwMGDCA3N7dCmfLvfaRX69at6+guVJ0ER7VNgU1myBZCCFFPhg4dSnp6Otu2beP555/nX//6Fw8//HCFMm+99Rbp6en8/vvvTJ06lYKCAvr06cN//vOfo15369atnHHGGbRq1Ypvv/2W6OjoCsdffPFF0tPTA6/y75Oens7SpUtr/putIdKkUcuUsmGTliMhhBD1xOVykZSUBEBKSgqDBw9mzpw5PPXUU4EyMTExgTKtW7fmvPPOY8SIEYwbN46LLrqI2NjYCtdcvXo1Q4YM4eyzz+btt9/GfoRR2dHR0ZUCpvLvE8yk5ai2GYYER0II0YhorSnyFlXpVeIrQWtNia/kiNvH+zrRFb/Wrl3LokWLcDqdf1j2zjvvJD8/nzlz5lTYv2jRIs466yyGDRvGf//73yMGRg1d4/uOgoxhGChDbrMQQjQWxb5i+szsU+Xz+jbryzMDnuHjzR9zefvLuf3H21m8d3GVrrFk+BLCHGFVOueLL74gIiICn8+H2+3GMAxeeeWVPzyvU6dOAGzfvr3C/ssuu4yrrrrquK7RUEnLUS0zDBvIUH4hhPjTW7x3MR9v/phRp4zi480fVzkwqq5BgwaxcuVKlixZwogRIxg1ahTDhg37w/PKWqmUUhX2X3LJJXzyySf8/PPPtVLfYCBNGrXMMAyQbjUhhGg0Qu2hLBm+pMrnGcrAZXPh9XsZefJIrul0DaY2q/zeVRUeHk67du0AmD59Ot26dePNN99kzJgxxzxv/fr1AKSmplbY/69//YuJEydy/vnn89VXXzFgwIAq1ynYyVO7lhmGHWVIy5EQQjQWSqkqd22V5yid+y7EHlJTVTpuhmFw3333MX78eIYPH05o6NGDrRdeeIGoqCgGDx5cYb9Sitdffx3DMLjgggv48ssvOeuss2q76nVKutVqmaEAJbdZCCFEcLjyyiux2WxMnTo1sC8nJ4eMjAx27NjBnDlzuOKKK5g5cyavvfYaMTExla6hlGLatGnccMMNXHDBBcybN6/uvoE6IC1HtcywO6RbTQghRNCw2+2MGzeOp59+mttuuw2AUaNGARASEkLz5s0544wz+PXXX+nRo8dRr6OUYurUqRiGwYUXXsgXX3xRKT+poVL6RMcF/snk5eURHR1Nbm4uUVFRRy3nLi5izpsPExsaQf9RD4IhrUdCCNEQlZSUkJaWRmpqKiEhdd8VJo7fsT6r431+g3Sr1TqbzSaBkRBCCNGAyFO7lsm6akIIIUTDIsFRLbPZ/3gWUiGEEEIEDwmOapksOiuEEEI0LBIc1SIDQIIjIYQQokGR4Kg2KVA2CY6EEEKIhkSCo1qklJLgSAghhGhgJDiqVUpyjoQQQogGRoKjWmQoA2WT0WpCCCFEQyLBUS1SgM0uLUdCCCH+fJRSfPrpp/VdjWqR4Kg2GQbY5RYLIYSoHyNHjrTyX5XC4XCQmprKxIkTKSkpqe+qBTWZvrkWKcPAZsgtFkIIUX+GDh3KW2+9hdfrZdmyZYwYMQKlFE899VR9Vy1oSbNGLVKGHcOw1Xc1hBBC/Im5XC6SkpJISUnh0ksvZfDgwcyZMweAgwcPcs0119C8eXPCwsLo0qUL7733XoXzBw4cyO23387EiROJi4sjKSmJRx55pEKZzZs3M2DAAEJCQujcuXPg+uWtWbOGs88+m9DQUOLj47n55pspKCgIHB85ciSXXnopTz75JImJicTExPDYY4/h8/m4++67iYuLo0WLFrz11ls1f5MOI80atUgZCiU5R0II0ahordHFxVU7yTBQLhfa7QbTrLx9nFRoKEqpKtb4kLVr17Jo0SJatWoFWKvY9+zZk3/+859ERUXx5Zdfcv3119O2bVt69+4dOO/tt99m/PjxLFmyhMWLFzNy5Ej69+/Pueeei2maXH755SQmJrJkyRJyc3O54447KrxvYWEhQ4YMoW/fvixdupR9+/Zx4403Mm7cOGbMmBEo98MPP9CiRQt++uknFi5cyJgxY1i0aBEDBgxgyZIlvP/++9xyyy2ce+65tGjRotr34Y9IcFRLDKVQyoZdgiMhhGhUdHExG3v0rPJ54f370XzKFHI++oiYYcPYPXYshQsXVekaHZcvQ4WFVemcL774goiICHw+H263G8MweOWVVwBo3rw5d911V6Ds3//+d7799ltmz55dITjq2rUrDz/8MADt27fnlVdeYe7cuZx77rl8//33bNiwgW+//ZZmzZoB8OSTT3L++ecHzp85cyYlJSX85z//ITw8HIBXXnmFiy66iKeeeorExEQA4uLieOmllzAMg44dO/L0009TVFTEfffdB8C9997L5MmTWbBgAVdffXWV7kNVSHBUS+w2Gyc1SSY+Mra+qyKEECIIFC5cRM5HHxE/ZgwH33yzyoFRdQ0aNIjXXnuNwsJCnn/+eex2O8OGDQPA7/fz5JNPMnv2bPbs2YPH48HtdhN2WADWtWvXCtvJycns27cPgPXr15OSkhIIjAD69u1bofz69evp1q1bIDAC6N+/P6ZpsnHjxkBwdPLJJ2MYhzJ+EhMTOeWUUwLbNpuN+Pj4wHvXFgmOalFMSDiGzJAthBCNigoNpePyZVU/sawrzeslbvRoYq+9tkpdamXvXVXh4eG0a9cOgOnTp9OtWzfefPNNxowZwzPPPMOLL77ICy+8QJcuXQgPD+eOO+7A4/FUuIbjsAmNlVKYVaz78TjS+9TVe5cnwVFtUoY1nF8IIUSjoZSqctdWBaUPexUSUkM1On6GYXDfffcxfvx4hg8fzsKFC7nkkku47rrrADBNk02bNtG5c+fjvuZJJ53Erl27SE9PJzk5GYBffvmlUpkZM2ZQWFgYaD1auHBhoPss2MiTu7YYBkZ4GEboCfwACSGEEDXsyiuvxGazMXXqVNq3b8+cOXNYtGgR69ev55ZbbiEzM7NK1xs8eDAdOnRgxIgRrFq1ip9//pn777+/Qplrr72WkJAQRowYwdq1a/nxxx/5+9//zvXXXx/oUgsmEhzVEmXYcLVpixERXd9VEUIIIQLsdjvjxo3j6aefZsKECfTo0YMhQ4YwcOBAkpKSuPTSS6t0PcMw+OSTTyguLqZ3797ceOONPPHEExXKhIWF8e2335KVlcVpp53GFVdcwTnnnBNIDA82Smut67sSf2T79u08/vjj/PDDD2RkZNCsWTOuu+467r//fpxOZ6BMampqpXMXL17M6aefHtj+4IMPePDBB9m+fTvt27fnqaee4oILLjjuuuTl5REdHU1ubi5RUVEn/s0JIYQIaiUlJaSlpZGamkpIPXSFieN3rM+qKs/vBpFztGHDBkzT5F//+hft2rVj7dq13HTTTRQWFvLss89WKPv9999z8sknB7bj4+MDXy9atIhrrrmGSZMm8Ze//IWZM2dy6aWXsnz58grZ8EIIIYT482oQLUdH8swzz/Daa6+xbds24FDL0YoVKzj11FOPeM5VV11FYWEhX3zxRWDf6aefzqmnnsq0adOO632l5UgIIf5cpOWo4aiplqMGm3OUm5tLXFxcpf0XX3wxTZs25YwzzuCzzz6rcGzx4sUMHjy4wr4hQ4awePHio76P2+0mLy+vwksIIYQQjVeDDI62bNnCyy+/zC233BLYFxERwZQpU/jggw/48ssvOeOMM7j00ksrBEgZGRmVsuITExPJyMg46ntNmjSJ6OjowCslJaXmvyEhhBBCBI16DY7uuecea76IY7w2bNhQ4Zw9e/YwdOhQrrzySm666abA/iZNmjB+/Hj69OnDaaedxuTJk7nuuut45plnTqiO9957L7m5uYHXrl27Tuh6QgghhAhu9ZqQPWHCBEaOHHnMMm3atAl8vXfvXgYNGkS/fv14/fXX//D6ffr0qbAycFJSUqX5GzIzM0lKSjrqNVwuFy6X6w/fSwghROPWQFN0/1Rq6jOq1+AoISGBhISE4yq7Z88eBg0aRM+ePXnrrbcqrL1yNCtXrgzM1gnWWi9z586tsFrwnDlzKq0BI4QQQpQpW76iqKiI0Gos3yHqTtmyJzab7YSu0yCG8u/Zs4eBAwfSqlUrnn32Wfbv3x84Vtbq8/bbb+N0OunevTsAH3/8MdOnT+eNN94IlP3HP/7BWWedxZQpU7jwwguZNWsWv/3223G1QgkhhPhzstlsxMTEBBY7DQsLQylVz7UShzNNk/379xMWFobdfmLhTYMIjubMmcOWLVvYsmULLVq0qHCsfBPa448/zo4dO7Db7XTq1In333+fK664InC8X79+zJw5kwceeID77ruP9u3b8+mnn8ocR0IIIY6p7A/x2l4NXpwYwzBo2bLlCQevDXaeo/oi8xwJIcSfl9/vx+v11nc1xFE4nc6jpt00uhmyhRBCiGBgs9lOOJ9FBL8GOc+REEIIIURtkeBICCGEEKIcCY6EEEIIIcqRnKMqKstflzXWhBBCiIaj7Ll9POPQJDiqooMHDwLIGmtCCCFEA5Sfn090dPQxy0hwVEVxcXEA7Ny58w9vrqg9eXl5pKSksGvXLplSoZ7IZ1D/5DOof/IZBIfj+Ry01uTn59OsWbM/vJ4ER1VUNn9CdHS0/CAEgaioKPkc6pl8BvVPPoP6J59BcPijz+F4GzUkIVsIIYQQohwJjoQQQgghypHgqIpcLhcPP/wwLpervqvypyafQ/2Tz6D+yWdQ/+QzCA41/TnI2mpCCCGEEOVIy5EQQgghRDkSHAkhhBBClCPBkRBCCCFEORIcVdHUqVNp3bo1ISEh9OnTh19//bW+q9Ro/fTTT1x00UU0a9YMpRSffvppheNaax566CGSk5MJDQ1l8ODBbN68uX4q20hNmjSJ0047jcjISJo2bcqll17Kxo0bK5QpKSlh7NixxMfHExERwbBhw8jMzKynGjc+r732Gl27dg3M39K3b1++/vrrwHG5/3Vv8uTJKKW44447Avvkc6h9jzzyCEqpCq9OnToFjtfkZyDBURW8//77jB8/nocffpjly5fTrVs3hgwZwr59++q7ao1SYWEh3bp1Y+rUqUc8/vTTT/PSSy8xbdo0lixZQnh4OEOGDKGkpKSOa9p4zZ8/n7Fjx/LLL78wZ84cvF4v5513HoWFhYEyd955J59//jkffPAB8+fPZ+/evVx++eX1WOvGpUWLFkyePJlly5bx22+/cfbZZ3PJJZfw+++/A3L/69rSpUv517/+RdeuXSvsl8+hbpx88smkp6cHXgsWLAgcq9HPQIvj1rt3bz127NjAtt/v182aNdOTJk2qx1r9OQD6k08+CWybpqmTkpL0M888E9iXk5OjXS6Xfu+99+qhhn8O+/bt04CeP3++1tq65w6HQ3/wwQeBMuvXr9eAXrx4cX1Vs9GLjY3Vb7zxhtz/Opafn6/bt2+v58yZo8866yz9j3/8Q2stPwd15eGHH9bdunU74rGa/gyk5eg4eTweli1bxuDBgwP7DMNg8ODBLF68uB5r9ueUlpZGRkZGhc8jOjqaPn36yOdRi3Jzc4FDawwuW7YMr9db4XPo1KkTLVu2lM+hFvj9fmbNmkVhYSF9+/aV+1/Hxo4dy4UXXljhfoP8HNSlzZs306xZM9q0acO1117Lzp07gZr/DGRtteN04MAB/H4/iYmJFfYnJiayYcOGeqrVn1dGRgbAET+PsmOiZpmmyR133EH//v055ZRTAOtzcDqdxMTEVCgrn0PNWrNmDX379qWkpISIiAg++eQTOnfuzMqVK+X+15FZs2axfPlyli5dWumY/BzUjT59+jBjxgw6duxIeno6jz76KGeeeSZr166t8c9AgiMhxHEZO3Ysa9eurdDHL+pGx44dWblyJbm5uXz44YeMGDGC+fPn13e1/jR27drFP/7xD+bMmUNISEh9V+dP6/zzzw983bVrV/r06UOrVq2YPXs2oaGhNfpe0q12nJo0aYLNZquU+Z6ZmUlSUlI91erPq+yey+dRN8aNG8cXX3zBjz/+SIsWLQL7k5KS8Hg85OTkVCgvn0PNcjqdtGvXjp49ezJp0iS6devGiy++KPe/jixbtox9+/bRo0cP7HY7drud+fPn89JLL2G320lMTJTPoR7ExMTQoUMHtmzZUuM/CxIcHSen00nPnj2ZO3duYJ9pmsydO5e+ffvWY83+nFJTU0lKSqrweeTl5bFkyRL5PGqQ1ppx48bxySef8MMPP5CamlrheM+ePXE4HBU+h40bN7Jz5075HGqRaZq43W65/3XknHPOYc2aNaxcuTLw6tWrF9dee23ga/kc6l5BQQFbt24lOTm55n8Wqpk0/qc0a9Ys7XK59IwZM/S6dev0zTffrGNiYnRGRkZ9V61Rys/P1ytWrNArVqzQgH7uuef0ihUr9I4dO7TWWk+ePFnHxMTo//3vf3r16tX6kksu0ampqbq4uLiea9543HbbbTo6OlrPmzdPp6enB15FRUWBMrfeeqtu2bKl/uGHH/Rvv/2m+/btq/v27VuPtW5c7rnnHj1//nydlpamV69ere+55x6tlNLfffed1lruf30pP1pNa/kc6sKECRP0vHnzdFpaml64cKEePHiwbtKkid63b5/WumY/AwmOqujll1/WLVu21E6nU/fu3Vv/8ssv9V2lRuvHH3/UQKXXiBEjtNbWcP4HH3xQJyYmapfLpc855xy9cePG+q10I3Ok+w/ot956K1CmuLhY/+1vf9OxsbE6LCxMX3bZZTo9Pb3+Kt3IjB49Wrdq1Uo7nU6dkJCgzznnnEBgpLXc//pyeHAkn0Ptu+qqq3RycrJ2Op26efPm+qqrrtJbtmwJHK/Jz0BprfUJtmwJIYQQQjQaknMkhBBCCFGOBEdCCCGEEOVIcCSEEEIIUY4ER0IIIYQQ5UhwJIQQQghRjgRHQgghhBDlSHAkhBBCCFGOBEdCCCGEEOVIcCSEEDVMKcWnn35a39UQQlSTBEdCiCMaOXIkSikmT55cYf+nn36KUqqeamVRSh3xNWvWrHqtV5n09HTOP//8+q4GM2bMICYmpr6rIUSDI8GREOKoQkL+v717DYlqa+MA/i9HG3XU0ZQZTfCSt8HLZBml5RXzAkkGUlhZajehMKnRCvOSkrdAzVIEByY/lBGlUFBDoGlmN00tEjPUjKJMSy0UMkfX+dDrft1Hfc/UOb1dzvODDXuvtfeznjUf5GHtNaMQ+fn5GB4e/tGpzKJSqfDmzRveERkZ+UNz+vz5MwBAKpVi0aJFPzQXQsi3o+KIEDKv4OBgSKVS5ObmztmfmZmJZcuW8dqKi4tha2vLXcfGxiIyMhI5OTmQSCQQi8XIysqCRqNBcnIyzMzMYG1tDZVK9VW5icViSKVS3iEUCgEA8fHx8PDwwPj4OIAvRYunpye2b98OAOjr6+NWmnx8fCAUCuHm5oaGhgbeGE+ePEF4eDhEIhEkEgliYmLw7t07rj8gIAD79+9HUlISzM3NERoaCoD/Wm16rIsXL8LX1xf6+vpYuXIlnj17hubmZnh5eUEkEiE8PByDg4O88ZVKJWQyGYRCIVxcXFBWVsb1Tcetrq5GYGAgDAwMIJfLcffuXQBAfX094uLi8OHDB25lLTMzEwBQVlYGR0dHCIVCSCQSREVFfdVnT8jvjoojQsi8dHR0kJOTg9OnT+PVq1ffHKeurg6vX7/GrVu3UFhYiIyMDKxfvx6mpqa4f/8+EhISsHfv3r81xkwlJSUYGxvDkSNHAACpqakYGRnBmTNnePclJyfj0KFDaGtrg7e3NyIiIvD+/XsAwMjICIKCguDp6YmWlhao1Wq8ffsWmzZt4sWorKyEnp4empqaUF5ePm9OGRkZOHbsGFpbWyEQCLBlyxakpKTg1KlTaGxsRHd3N9LT07n7z507h/T0dJw4cQKdnZ3IyclBWloaKisreXFTU1OhUCjQ3t4OJycnREdHQ6PRwMfHB8XFxTA2NuZW1hQKBVpaWpCYmIisrCx0dXVBrVbDz8/vb33ehPx2GCGEzGHHjh1sw4YNjDHGVq9ezeLj4xljjNXU1LDpPx0ZGRlMLpfznisqKmI2Nja8ODY2NmxycpJrc3Z2Zr6+vty1RqNhhoaGrKqqSqvcADChUMgMDQ15x4sXL7h77ty5w3R1dVlaWhoTCASssbGR63v+/DkDwPLy8ri2iYkJZm1tzfLz8xljjGVnZ7OQkBDeuC9fvmQAWFdXF2OMMX9/f+bp6TlnfjU1NbyxlEol119VVcUAsNraWq4tNzeXOTs7c9dLly5l58+f58XNzs5m3t7e88bt6OhgAFhnZydjjDGVSsVMTEx4MS5fvsyMjY3Zx48fZ+VNCPlC8MOqMkLILyM/Px9BQUFQKBTf9LyrqysWLvzvQrVEIoGbmxt3raOjg8WLF2NgYEDrmEVFRQgODua1WVlZcefe3t5QKBTIzs7G4cOHsXbt2lkxvL29uXOBQAAvLy90dnYCAB49eoSbN29CJBLNeq6npwdOTk4AgBUrVmiVr4eHB3cukUgAAO7u7ry26fmPjY2hp6cHO3fuxO7du7l7NBoNTExM5o1raWkJABgYGICLi8uceaxbtw42Njawt7dHWFgYwsLCsHHjRhgYGGg1D0L+Dag4IoT8JT8/P4SGhuLo0aOIjY3l2hcuXAjGGO/eiYmJWc/r6uryrhcsWDBn29TUlNY5SaVSODg4zNs/NTWFpqYm6OjooLu7W+u400ZHRxEREYH8/PxZfdNFCAAYGhpqFW/mfKe/7ffntun5j46OAgAqKiqwatUqXhwdHZ2/jPu/PkcjIyO0traivr4eN27cQHp6OjIzM9Hc3EzfbCPkP2jPESFEK3l5ebh69Sq34RcALCws0N/fzyuQ2tvbf0B2s508eRJPnz5FQ0MD1Gr1nBu+7927x51rNBo8fPgQMpkMALB8+XJ0dHTA1tYWDg4OvEPbguhbSSQSWFlZobe3d9bYdnZ2WsfR09PD5OTkrHaBQIDg4GAUFBTg8ePH6OvrQ11d3T85BUJ+abRyRAjRiru7O7Zu3YqSkhKuLSAgAIODgygoKEBUVBTUajWuX78OY2Pj757PyMgI+vv7eW1GRkYwNDREW1sb0tPTcenSJaxZswaFhYU4cOAA/P39YW9vz91fWloKR0dHyGQyFBUVYXh4GPHx8QCAffv2oaKiAtHR0UhJSYGZmRm6u7tx4cIFKJXKWSs4/7Tjx48jMTERJiYmCAsLw/j4OFpaWjA8PIyDBw9qFcPW1hajo6Oora2FXC6HgYEB6urq0NvbCz8/P5iamuLatWuYmpqCs7Pzd50PIb8SWjkihGgtKyuL98pGJpOhrKwMpaWlkMvlePDgwTfvS/pacXFxsLS05B2nT5/Gp0+fsG3bNsTGxiIiIgIAsGfPHgQGBiImJoa3kpKXl4e8vDzI5XLcvn0bV65cgbm5OYAv+5eampowOTmJkJAQuLu7IykpCWKxmLd/6nvZtWsXlEolVCoV3N3d4e/vj7Nnz37VypGPjw8SEhKwefNmWFhYoKCgAGKxGNXV1QgKCoJMJkN5eTmqqqrg6ur6HWdDyK9lAfvzhgFCCPnN9fX1wc7ODm1tbbN+p4kQQmjliBBCCCFkBiqOCCE/lZycHIhEojmPn+H/lRFCfn/0Wo0Q8lMZGhrC0NDQnH36+vpYsmTJ/zkjQsi/DRVHhBBCCCEz0Gs1QgghhJAZqDgihBBCCJmBiiNCCCGEkBmoOCKEEEIImYGKI0IIIYSQGag4IoQQQgiZgYojQgghhJAZqDgihBBCCJnhD2FhMSQAsex8AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGxCAYAAABoYBJuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJ10lEQVR4nOzdd3xUVdrA8d+5d0omPYEUShJCL9IRRGwoAsqquK67dhD7i+sq9rJiWZW1YWN1XQuua6/r2iN2mkrvNdQ0ICSTNiUz5/3jJgMhAUlImcTn+/mMZu595s6ZuYTzcKrSWmuEEEIIIQQARksXQAghhBAinEhyJIQQQgixH0mOhBBCCCH2I8mREEIIIcR+JDkSQgghhNiPJEdCCCGEEPuR5EgIIYQQYj+SHAkhhBBC7MfW0gVobYLBIDk5OcTExKCUauniCCGEEOIwaK0pKSmhY8eOGMah24YkOaqnnJwc0tLSWroYQgghhGiA7du307lz50PGSHJUTzExMYD15cbGxrZwaYQQQghxONxuN2lpaaF6/FAkOaqn6q602NhYSY6EEEKIVuZwhsTIgGwhhBBCiP1IciSEEEIIsR9JjoQQQggh9iPJkRBCCCHEfiQ5EkIIIYTYjyRHQgghhBD7keRICCGEEGI/khwJIYQQQuxHkiMhhBBCiP20quTo+++/54wzzqBjx44opfjwww9rnNdac/fdd9OhQwdcLhdjxoxhw4YNNWIKCwu58MILiY2NJT4+nssuu4zS0tJm/BRCCCGECGetKjkqKytj4MCBzJo1q87zDz/8ME899RTPPfccCxcuJCoqinHjxuHxeEIxF154IatWrSIrK4uPP/6Y77//niuvvLK5PoIQQgghwpzSWuuWLkRDKKX44IMPmDhxImC1GnXs2JEbb7yRm266CYDi4mJSUlKYPXs25513HmvWrKFv3778/PPPDBs2DIDPP/+c008/nR07dtCxY8dffV+3201cXBzFxcWyt5oQQgjRStSn/m4zG89mZ2eTl5fHmDFjQsfi4uIYMWIE8+fP57zzzmP+/PnEx8eHEiOAMWPGYBgGCxcu5Oyzz254ASorD35OKTDNw4sFsO13W9pybCAAh8rNwyHWNK37BxAMWo9wjjUM6xEusVpb33E4x9bn9zMcYiH8fpdb6O8IbZhUVgYJBoI4bIqyIg/e8krsTpPoxAhKCz34vYHQdUPHd5Xh9xwkDrBHOfcdL/dhdxhEJ0bg3lOO31NJMFCJM8JObHIMRXtKKS8txxUdRUJSDHtz91JRWha6lis6ioSUOPbmF1NR4cEVE209z91Lhbuk7rjSMlxxsSSkxlvP3SWh37lacdFRJHRMZG+B23rfYBBXpKt2TPXz8orQ74Yr0mWVOb+YcncpkdFRJHSIp3DnbkqKiggCGk1MQiJJnZPYtXkne3cXkNA+maQuHdi1JZe9uwusD2AYJCSnWsc372RvQV6dcQntk0nq2old2/Kta7VLIiktuea1quO6dLDiCndbzzNS2bVpR91xW3Lx+MrJOKp31R+Oqt97W8PSnDaTHOXl5QGQkpJS43hKSkroXF5eHsnJyTXO22w2EhMTQzEH8nq9eL3e0HO32113AV566eCFS0+H8eP3Pf/3vw/+F0SHDnDGGfuev/467NctWENSEuyf0L39Nhxs/FRCApx77r7nH3wAe/fWGaqjouCCCwgENRow/vtfjN27rXNVf1FV72ocdDoJXnwJCjANBZ9+is7JIYjVZxuK0xpts8GlU6w4IPj5F+jt22rHAQowrroq9J7Br+ZgZG+uO04pmDIFXVW5qO+/h/XrrZiqv1er3zOgNWV/vBAjMoJopw3mzcO/YiUV/iARNgOHzfpLo8RTiS8QpPLcP5HcOQkFlH4/l9KfFxMbYSfSYaKBXSVePP4ADptBymUXoxISyHd7yf36R7puXUusy47WkFNcgdbQKd6FUpB/ymmsCUTQKyWGDlvWoRcsZGdRBWW+SqIctlBccYWfVUNOIHNADzrERaBXrWbnJ1/VGZfn9pBw9pkkH9UDrWHdD4vpsGQBsS47in0xqbERxLns6DFjyGvXkXX5JXQtzid9yTyoIw5g+4DhbErsRHpCJF0r9sDnn9cZt6vES3bvQbQfPoSuSVGQk0PxOx/UGQeQNOYEGDiQ3GIPm9dkc9TCr2vEFJb7qj5nBGrYMAp792f5jmIGRAVI/PQjtNZsKyynxBtAa+ieFIXLYeLu2Zev4zM5sWcSCQEv5a+8yrq8fb8bvVKiiXTaKPdWsjAylYHn/Y7EKAd79hSz8ZF/ENRwVIdYYiLtFJV4WbGtiH4d40gYPoAtGYP4fPFOlLeS3t+8T+9OsaR0iCZnewkbthXTIz2ODmkxbA0m8qm9R+g9J275ig5pMeQeEJe7vYTFpS62HTWKEwd3oM+gZPLue5oN2XtqxGzYVowGymLbkTHpj/Qd0oFVi3aSP+t5eqW66Nw1ke3r97BpW6FVMQQ1MSkdsP/hT/Q7vhMrf9nBgI0/sOOXbezOdeOuqPp7TUN0hJO4bp3pcv/VrPppJ/2Gd2LLXc9StH4rZR4PaE1khIP2nduRcVQ7duaU0eGuv/DLZ1vY/PM62i/NwlXuBjQGiqSMZHqMyGTXtr0k9ezAd5U92PzLWoJBTca2ZURWFKOA9l1S6TGyK7u27iUpI4H1C7fxo6NX1e+tQdrOFUSX7aFdehI9j+1CQfZekjMTWPPjdvbklLG671mh73ewsZ6j+2gKNxXRoVs8K37MoTB3X5KypvdpaMMkrU8i43vupuiLn+uMA1jXcywd+6cy9vJ+5P37EzLtu+qMS+wQRa8nb2BrdiV9RkUx9+bXqFy0lAMldoii73Ed2dlxFD3Hp/Dx08vwfL+ApF3r64wr21RE1PWT+PjprWxfU0i7PZtIyV9TZ1xst3iy9nZjY45VnScWbiE1b2WtmOryb0s7mtIYq56MK9pOf72xzjiAHZ2H4I7tCOTRK6mcE5O3491URGId39vOjgMpji8irU8BY8fF4H07q864XIBjRzHyr2eSs9FPl8RKVlx8X63vNrfqc/a+4Sxy3El06ZfElzO+xfnFx3XG9T2uIztcnaBfLwgGYOkn8OH/4NyxENsJ0o6G7b/UujcH02aSo6by0EMPce+997Z0MQ4qENQYCoJBzcY8N7k7dxPttDEoLR7TUCzdXsSSbUXsceTTLjWbS4/rgtcfZN7aAo5rZ2A3DbLW5PPdul2A9XfqMQMzOOMC8AeCvPLjJiZ5fURozZwV25i/fgcGAY7tlsqJg3pQXLCT1179DxOPGUCn7kfx5dzFrPplWah8R3dP47hBfSjelcOSLTvpMXIQnXsN4qV3P2PLa2+QUlpEekoSpx8/AtNQ7Nm6nlWbt9IvM532gQD+QIBHn3sRsr5kcKSLU088DtMwKNiwkrWbN9E7PYOU3gOp9Hp54dmnMHWAKYNGYAYC5P7yA1s2r6NLRnc6Dj+RoNYs/+Ij5n/yHzAUGQOHMf7ECdh0EL1xNfbefQn6A6z79D2KtmUDkP3ZbJKHH8vou/5OpAoS2LYeV+++BP3+GnEAa3NXcvwDT9LOBmrLcqJsDoJ+P2s//YDiqjh3eia9Tz+bdjZNjzULaN9pDAGvh3UfvVMVoygE3Old6H36RKKUJmPDIhL6d6WyooKfn56Jmj8PjcFeoDQtgx6nn47d4yduy2acZV4qKzx8+9BDlP7wI+69e2iXkU6XseOwe/zEbtmMrWcPAjZY+vQsNmzeRqVWFJWVURHpoPv4MSi3l8iNm6F7NwI22Pj516x963+URMeyA8jrms6I7p2hjrii7TsoSPyC9TFxbB08gOMvOdeK27AZetSMA9iyYRODZ85A5ZcSO28RAbeHgE2xPmsee3fsBmVnt7Kx1bARsUUxYPogUgvKiekexdpvN7J7az6EGhY0i7Aq3O69+9Hb7SfaMPnm2QXY3/8ZK5UGjWKRUiSmtafXcV3IKAsSbRh8+vQv7FiaQ8+NBYDBInaH/tLtYtiJjXIw//1NLK2sesNgADaUsnZDKQVVccHySlI6RLPy251sKStBdW4f+vOxYXUuezq4a8UV5pahopNRvr18v3gv2X3yOK1jNMEST40Yqj6BERnBDy+vY8uCXYy9vB/xqQl0THeF4vYNJFXsrvCQ/d4m0DBkbBe2fPwR2cv3VJ3dF1lW5qewdDflP+QwZGwXlny5lfzle3B6NQonABU+2L56L44IG12GZ7Dkx1yWZu0Aomin26OrqpMAkLe1kqh2RaT3bc/WdXtZW+IDW1frvC2fgOkAIG97gKgkK27b6j3kba/E3zt9399vZg4BI0DBDj8xG/fF7cnxAPu1tAG7t+4lz6lJ79ueHWt2U7xjT40Iu8+NNkzylrnZXumhW992dcZVx+Yt87B+fjwDhqey4731dcYV7/Cw8accBp95FMu/2sKeDbkkBmr/Y7Z4h4f8zS4GXJTG8vk7yVu2hfb+MswDYqvj0vu2Z9UvueQt244dsPlLa8TuH7djzW525e7AHpkI+8UeGFNdfpu/FLvPZX1OfynFeXvqjCMUazUI7FqbR37p3oN/v1WxecvcZCcl0ecQ32/+up2sn7+TwWO7sPrNhXXGVH/OrcsKGHzVMJZ/tYWCVdvpcojvN/Oi4VYl9vq5sHIOrPaD+Y4V1O1kGPtEHe9StzYz5mjz5s1069aNJUuWMGjQoFDciSeeyKBBg3jyySd56aWXuPHGG9m7X4tJZWUlERERvPPOO3V2q9XVcpSWlla7z7KBTeaFZT6+XpPH4PQEuiZFs3lXCT9t20ul101lST7DUuI5qv8gFn//JT/8vIBh/QZy7Ngz+Pa/7/DRN9/gqwwy5piRTJw0hVUf/psF87/jmCHH0O/sSXz93BMsnf819kAQezCATQc5aviJjLjxLnZnfUr7k05lxQN/JX/et9gCQWwBjb3q0e6Y48l4+FGK3n2X+LPOYufNN1M2b36NjxV17Eg6PfIIRf/9L/HnnMPOG2+k7Me5tT5+KO7994n/4x+tuLnzajSXRx07kk5PPEGlL0Demx+SOPEMIhMj2XzTXZTM/ykUG3PM0XR9+D7K3T4KP/wfiWedQWScg0233UvJ/J9BKWKGD6Xbw/dQVuRlz4efEDfhdGKTXKz56+MULl5Hpc1FwHQSMJ0kDO3L0NsvIndLCaldYvjpkXfZtdRKUrRSaGWAMkgelMmImyayc91eOvWI48cns9i5qoCg6SBgOAiYDgJmBB37d2DsFf1Z88MO+oxMJevFVWxfW7OFLq13AqdeOYA183LpM6ojXz6/gh1r9tT63tJ6J3DqZf1YsyCfPsd14ssXVrF99W7UAb+yobh5OfQ5rjNfvrSG7WsKQQdDsTViju1I1our2LauCFR115MVW1fc9rV70UrViE3vFV9nHFAjNq13AmMv7V1nXHVsWt/2jL28H2t+3EmfY1Lq/M6qY489pweDx2aw5IstzH9vQ62YaiN/353B4zNZ8uVW5r23EaXr7gYceXZXBo/twpI5O5j3/iYAVDBQO+bUDJbN2cJPbyxDoTGCfoxgJWalt+pnP8OuGUePE7ux4buNLJn1MVT/+alSfd3BU39HjxO774uDWrFDrjmtdsz+34Vh/X0y5M9n0GNUFzZ+v5HlT7yDEazECAZQ2vq/Eayk3bAeDL77cop2eUhIsLHs3mcp/GV11XeiUWiUDpIwtC/9H5yGu6iS2Hg7i+9+hF1LVhE0QBsQNKDdkH6MvO0G3Hv9xCa5+PGRx8lfuRx0sCpzAxT0HPd7BvzxLHZtzCGpe0dWfPgx67PeQQEqGKzOU+k+5o/0//2Z7M7Oo33XVFZ/8CEb57yBlfFqCAYwCNB93CX0PuscirfnEZ+eysaP32DTx0+AUYmBD4WP3hPvIG38ZDy784lon8K2z2ez7v0H9/vOrDftfc5dpI+9BM+uPCLap7Bzzitk//c+TFPjMILYDLDbNJ3OnkHcsRcT8FRg2uyULXyNko9vQSld1WIN0Wc8QsSIS9A6iDJMyn96Dff/biOAaT2USRCT9hPuJW7o79EKlGlj7+IPyP3onv0Se0uHCX8lYchEdDCAsjvYs+Qjtv/vAYJaobUiiEEQg8wJN5M8ZIIVZ5jsWvYpWz+eYZ3VAet3ecLtJA45KxSzd/GH5H5yv/XdV3fTa02H0/d7T8OkaPGH5H9yv/UZDTCq6q6k0/9KzIAzUEqhtaZk6Ufs+uT+6j/doDQYiqTfTbfitK4jzpJ0xt3EDDnbulYwSMmiD2rFACRN+CsxQyaiTBOtNcVL/0veRw+isb6L6v93mnALiQNPQ1UPQVj7Mcz5m9WtpoLWn08dwD3oauJGX3tYY47aTHJUPSD7pptu4sYbbwSsRCY5ObnWgOxffvmFoUOHAvDll18yfvz4FhmQXebx4dIBCr78lKSTx7L+7tso+eYbIr0ac7+7EjXqWDo99hhF7723LwmZO6/GtQ4nplryzTfR7rLL2PPiixQ88uhBy3ewuEoDAgYETEi/6XaSLr6EXa+9ysbHH6rx+o6TLqNs3RqKF8yj+7TbSbrwYgpef5UNT8wgdsRIonr1Zet/XsTj6kBJ7FHEHXsqJ147ljVzc6yk4YVVViV/gLQ+iVZleoi4w4mpduzvu1kV7pdbQxVkU8c17Fobrb+AdBAIopTGMBSGaXLsOX046sTOrPxuB/PfX00wWImurAQdAILYHFEcc85RVsz3O1n4/nKCniKguoK0/u+IjGP4ucPpPbIjaxfk8vM7C/CX1U7c7FHtOPrcY+h9TIcjjts/ZsMveSx571v8ezdi4MHAi0EFBl66jf4d/c85g8KtBSRmJLPmvx+x/qs3CWKiMQkqkyAG/U67gH6njaZwSx6JXVJZ/fk3LPv0LaoTAdCgNIN+dwF9xp5M8c584jqlsOHrr1jy4T9BBVAEgADD/3QtXY47Dc+eAiLaJbN17mcsevvxqpJX/ZIqGHrujWSM2j/uUxa98yiqOguoih1y7k1kjDodT+EuIhKT2PnzVyx9fyaGaWDaDEzTxoA/3EJSnxFUVpRhc0Wxd9MSNvzvSQzDsK5nKJQy6XHGX4hJ70vQ78WwOynfuY5tnz0DhtXVrJQmqmNvOo65GgwT7StHOSIhGKDgm3/iyV1r1WkoIjr0JumkK604fwXK7gIdZNfCd6gozEGZTiKSupI0eJyVyFVVpGjN3o2/ECjbizJMlGEQ1akPzoRUAILeMgxnFACV7l1UFmQT1Fb9bE/OxBaXZMV5yjAiquKK8/HnbUDpAAQD2Dr0wpbQCdDoskJUVCKgCLrzCO7ZBMrEaN8NI9q6Fr5ycERa1y3bjS7aFvrHlUpIx4iqjisDR5R1h8oLoXj7vqQhtjNUtcTgrwC71dJC+V4oybF+jukIkQm1YzzF6NJ8qrIQdEwKyhljnav0gs1qidPeElT5vt8FFdkOquMCPqhqXcNbChX7/d3lSgRn9KHjDhpTUse16nrPQ8Tt9xnqdb3qz7r/5zzwWuW7CWXOB/s+fGXoir1V90qhXfEoe2RVnB9l2vd9H+W7rRbeYCXYInAbscQltGt7yVFpaSkbN24EYPDgwTz++OOMHj2axMRE0tPT+fvf/86MGTN45ZVXyMzM5K9//SvLly9n9erVREREAHDaaaeRn5/Pc889h9/v59JLL2XYsGG8/vrrh1WGxkyOPv3kfUbk7T1oohJQUO6EcqdBn5v/SsofziPvw3dZ8Mzf0Ib1LyFtAKZC2e2MumY6KaeeTv43X/D9KzOoDAbQNhNts6FNE0dUDP1POJNe4/7IrtXLSOo3iOyf5rB8/rd4yipQdieGzUFsUirDxoynXedu7M3NJaFDByrKSlk9dxHugmIyBvTCUCbp/bphmAalRSVEx8cQDATZuW4bKMjL3klsUhw9hvQBpTAMwxrwFxuN31uJMhQL/ruatfP34Cvf90ewOhlYNmcbC/67GR20/vWB2jcuSSnFMWd1ZeAp6Sybs50F/62dXBiGYviZXRl4chorv9vJsq+3YRhgcxhAkIhoJ85IOx26JdB7ZAd2rN1N5z7tyV66iz07iqn0eKgoLIRgJbGdO9E+ox1d+rdj54qtdOrfhfwtbty5uyncsBbT0JimptPRg0lIT8XpslG4cSOJ3btT6Q9SmpdP3i8LAYPU4UcTnZyCzW5QuHkLiV27EKgMUrprN7mLloTK32nYYKKTk1CmYu/mrSR2zQClKN+1m7zFi1Daj9IBUoccTURKR9BBKtYtwNVzOBg21JL/wEfXWhc77gY45W50MIgybehgAJSBb8WnlK34Bm1EoG0uogaOIaLHcAD8xXuwx7UDoGLrakrWLa6qYDQxvYfhyuhbFbcbe5zVdVS+fR0l65ejsVrbYnsNJLKT1ZXiLynGHhNnxeVsw71hFSiI7XEUkR3SasV487dRvnWVlQACkT2HYotLgWAQ/56t2NtlgGFQWZyPd9NCsEWAw0lE5tGYzkgCfh+ekhIiYuMwbTYClZV43MWh73ffcT9edzERsfEYNhvBykp8FWUoBXZXNIZpEgwGCPg8mI4IDMN6HvTva9o37Psd95ZjOCP3e75vHIXhjLKOBwJobxkqwnqugkEI+qsvZv1zPRiEoA8Mx37P/fv9AbfXPH7g68BqvauuUIKBfRVMVasTAV9Vi8/+cUHQlaBs+wa0W790tX7HhGht6lN/t6rk6Ntvv2X06NG1jk+aNInZs2ejtWb69Ok8//zzFBUVcdxxx/GPf/yDnj17hmILCwu59tpr+d///odhGJxzzjk89dRTREdHH1YZGjM5WvLt5wwYdAx7PvuY9n/4E2u+/4hVi7/B7ooiIjIeZ3Q8dlcUvY4+iaSUNCor/dhsdkrchRQW5GBiYqBwuKJI7NAJwzDwVXhwuCIIBoPsXL+T0uIKdCV06JZKXHI0hmGwa2shhQVuEjvGkdQpgWBQU15Uwe6dbtp3jiUyzoVhKNx7yikv9hGV4CImwYkOarzllQQqg0TFW9l+WZGXcrePyFhHrWN2h4Er1onDZSN3YxHZy6xxTcNOz6zRkmPaFJ16JXDUCZ3IOKod7j0VxLaPRCkIBoPs2lBARVEpcR3iSEi3/tWngxr3znxiOyWjqv4S37t5K0pDfLeMqpggpTt2Et25UyimcMNmirO3kzKkP5HtE0Frdq9YQWVxIc6EOBL6DQKl8BbuonjlEmJ69MHVIa2qcqmkct1X2HqdAqYNDBvBZe8SXPEhxoCJGAP+YP0LJVAJG7Kgxxgw7WDY0D+9ADqAGnEVBPxWxbTsDRh4vlUxmTb44XFY8Cwccw0cP826TsAHS1+DQRdUxdlRc+6DH2eGkp7Q9X55GYZdGopj3jMQ2xGOOgeNtpIb906I6Vj1fSjrX8u5y6HDAIizkhR2rYU9m6BdN0iqmvlRvB3yVkJqf4jrbB3bswH2boWEDGhXNfDYvRMK1kByX+u9AfZshKKtEJ9eMw6sgZLV1yrcAold9ovJscrSYZD1r3gdhLwVUFEEManQvqdVaQf8gN73L1AhhKhDm02OwkFjJkdBn48d11zDL1sWc+J/PiAxNYPykkLKS/bidEUT4YrF4bKaCyt9AYp3leOKceKKsVNW7GXPzjISO0QSGefEMBSFOWUUF1QQn+IioUMUwaDGU+rHvbuCdp2isDtteEr9lBTu+1dvTGIEEdF2/N4ARfnlxKdEYneah4yr9FkzgyKi7GxaUkDBFjeRcU6OOqETiz/fypYVuykr9uEtr0QHdZ1dXMUF5XTuk0Bix2i6D0kiMs5KvgpWb8Is3UFEQjzRPQaAYeDfu4uS1T8T0/do7AlWclS+dT2enC1EdMwkMsOqTH1796ABZ4LV4lGyZTOl27YRnZFOTIbVglFZUohvywpcvY9B2R3Wv5TzV1nN24YN0o+x/iW9NxtenQh//LdV0b95AXQdDaOug7lPweZv4LzXoWA1/OtkuOLrX4+DxrvW/nFvX2INNjzmGlj/Bfg90Od3VqIGVqIUDMLOX6xm7NhOkJhpfc5gpZX4xKVbLQpet9UtoQwr8XBEgT3SSky8bnDGWucqvdZrq5q2MWzW+2gNlR6rJac6cQnuNx5v/ziwYip9NVtFqpM7rSHgBdNpxQUrrWPKsJJJIYSoB0mOmlBjJUdaa+b+5znaPfAUi7rFcP5H8zAP8hd+wB8gd1MxvopKTLtBu87RRMU5KXd7sTvNw0p64pJcBAMaZ6SNnA1FFOWXExnnIL1fO3auL8JT4qO0yIsr2o4z2k5G33Zs+CU/lPgMPDmNue9tJHvZLipKrIrscMf12CNMRp3TnX7Hd2LHukK8ZZUkd4nBEWGjaHs+8R0TsUc62btiEZGBAiLio1A2h9V/3b6nVdnvWW/9bIuA7B+g0xBY/V/oeyYs+jcMv8JqfQCr5WHBP2DYFFjxLvT/A/z8AoycCrs3wH/OgeFX7ktYfjdzX+vMu1OsY6kDYO4TMOp6qxUlpgOcOh22/wRpI2Dxq1ZcXCfY9LWVnBRXtYYMuRh2/GJNHV35vpUQxHayuikqiqwkpOtoKNwMiV1hW9VAd1eC1VKS1BsqqgYkp4+EvVusZGbnUmtgf0Q8lOZZLTF+j5U4JHSx+vQj21nxYHWNKANiO1ifwRkDUe2lhUUI8Zv0m1wEsrUp3LuL+Vn/5XdAhct58MQoEKBgWyk+T4CoBCdKKcqLfZimgdNlJ1AZxFPqxxlpx1vux+cJYJgKh8vG1hW7yd/iZvf2Ukr3eind6yUpPYaxl/dj17YSOvZI4NN/rDjkoGdPqZ8+ozry+fMra8QZpqIwt5Qty3czeGwGW5bvIi7ZRUpmFyKibERE2XFG2UM/x7aPpKzYS8fuCbjziqjI2U5J0S48xaU4VTqVyktCIhi2TvsKUemxWnDsLiup2Pg1rHgb1nwEp96/r0Ul66+w+WsroQHIW24lLIZtX8zX98PWuVZMWQF887d979NxsBU37xko3mElLAE/nP6o9fOQi63kY+8WK4EpyYXhl1vPvSUw5BLrOsl99sVFxFrdQgPP2xcHEJ2yL6bSY7XadDluX0z7nlYrTVznfXH+cijaBp2HVMW5rdacst1WwlMd5y0BTzEkZMKOReAvhZSjrNe371lzDIkQQoiDkuSoBXgqPfz43ce4qpYI8FYNFj9QMKgpzCmn3O0lOt4ZGpAM1GglAqgo8xOTEMG2eTn0HJ7KJ7OW15n0bF9TyLqFeQwem8HqH3Mo3eshsWMUylAoZQ1kVobC7wuwbfUeBo/NYOuqPSRlxJDeL5HIWAeuGDsOlw2nyxZKetL7tSc+JRKfp+Y0aIfTJLa9C3fObnxuN357JbGZXSnYvh5faTlxKdHEtI/F1BX7Eoj9leRC0Xb433VVY0uAfhPh6MshZymMuBLadbfiqqbd0647jLzWSjoK1sCIq6ykqLRqoc+z/7nv+tGpkDHSGhdzzNXQa3zNchyYfAQDVgJSmG215lQfPzAOrP9Xx+3eCGiIz4CCtdYMDx0ETxH4SiG5HxSsslqMXIlWXP6qfS1InmJrdk1yX6vFq6LQStTiMyB/pRVX6bO+I7/HarWq9IZm7QghhDh8khy1gG07N1OSn4fLa80q8btctWK01hQXlFOyu4LIWAfKOPhskYoSHwv+s5meR6eEpn0XbHXTrlMU0QkRRCdYS+FHJzhp1zGKdp1iKCv20ntkBzr2iKuV0AA4IsxQ4pPWO5G49hE14qrPu3eX4/ME8HsqrSQoby8+dwkEvDgcBrGduuBeswzfnjx0MIjbb1JR4iNl2FD8+ZtxUIrSFTUTCx20uq8Ks2H07dZA5YDf6m464Sbod3ZV15G2Wnp6jq2ZlOyfqFS3zmQeVzPmwDhvifX/hC5WF1T5bmuQsyPKaoUpswaTh9b6KcmzurEiYq3utHbdrK60suqpqPuNqSkvAlec9XPeSishUgaoqllDnhKrO80ZZ/3sjLWee9z7YsB6vmutdd7jtuJ3rbVeo2wQGWMNgo5sb3XdSWIkhBANIslRM/MH/GRvXInhV0RWJUc6KqpWXFmRl6KCcpxRdkzbwbtD8rOLWfhRNskZsfQZ1ZHcTUUMPCWNzIHta7fi1JnQ7Ht+uHGh87vK8bmLwVOEL68I9+5IYnv2o3jXRrx7dqMyerB7xSrKC0sIEo/GwBmpiI70wd5snDFRUFpWMzFZ/g58+6DV+vOHl+Ddy6zWmjOftsbfVLfWlO22Xle2y2pVSR1gdaeB1ZqSs3TfuhqlBVa3XIcBkLMMyndZCUR8upX4lO+uWjtIWdftNMQalBwMWmtluBKscTu2CKurrlr1cL2oZOvnyHZWl1b1xibKsJKU6hat0M/mfj8fkPQmZta+/v6q4/ePE0II0agkOWpmeXt2smfrFlxx7TErrG4iFRVTI8ZT6mdPThmmzcDurGtRdWsq+6ofc1gzN5e0PomMu+Io9uSUYrMbuHdX1Ep6Dkx4AHyeAO7d5XUnPoeIM03N3q05ePO2EywvJlhZSVA5KS32U+FZjyOuA54ihS+3CNOEyDgXdgfY7AYRkQq7XVnjYfz77QO3d4s1aPrEW62EZ8jF8Mtsa2xPTAcrxhFpxZXkQkWxNX6nes2WvVusLjKwppcr05ruHWJAcY6VEDmirIHJJflWF1Zku6pVzB3WYOVKH6QeVZXEtOA4HVlbRgghWoQkR82oMljJpuxVUFaJMz2GCI81xdkRHReK8XsD7MkpJRgIkpQWQ6UvUKsFqKLUx5ble4iIslubKF51FCWFHmx2qyKvK+kx7QZFBWV4Sv0EA5pgUIO2ruWtqMQRYaOixIfd6WLXdjeeUitx0xqCAY0OBinf68ZpD7J3wzqMYAXKZsOIiMYWbcduV9gdYNo8mNpDTIYNs7qB5Ncq+ewf4PtHrIHGsZ2twdHFO6HbSTXjqluA/BXW2JuELg1LXmJSfj1GCCHEb5YkR81oT+kuCjZvwuGKQylFTFXSExlvJUeByiCFOaV4yv1Exzup9AVqteLkZ7vZsXYvoy/uzZxXVjNkXDrlxV4C/mDoGpW+ABUlPjylfuwuG6WF1kw1w7QGW5umwu4wQ+OYtAZvRSUR0XZ8VQmbK9ph9QxVerAFijErCjBK3BhGgKj0GIyIVAybsvbeOcR4qEPylcP8Z2Ddp9bzQRdZU+xL860EpvKAQdpluwBldY/FdpKWFSGEEE1CkqNmEtRBsreuIbi3DFdKGh5/JZFVE87iE5LQQU1Rfhmle72hKfv7twAV7ypnadY2Sgq9jL28H3Pf3UDvYzrgcNlCiVMwqCl3+4iIsuNwGdicNux2g+QusZg2hWEzME3r/7USmkqflYxUeq2WGW+p1ZKjy6CyHCJdkNjOWpzvcEUnV12rjllo5YXWuKB1nwIKTr0Pjvk/KNpixXtL9g2W9ritLjC7C1L6QfUeSkIIIUQTkOSomRRWFJK/ZROmcmF32NlTWEh1h1B8YjLFuyso3uXBFWuvkbj4PAH25JQQ2z6S+JRIRv6+Oyu+2U7fUR0x7TW7lDylfiJjHKRkxmKYdXQ3BSqtFYe93qop3xXW9HBPsTWrq3rVY7C6q0wn2FzWuJyGtNL4K2pPbw9WwvafYdD5VqtRdAqc+Qx0P7n2NPjqQdo7foGIOEjpYw2OFkIIIZqQJEfNQGvNjtxNePIKccQnA1DqLgKg3AEmURTll+OIMLHZDxiArWHRxxtI6daewWMzyF21lYzEbbAnzxo8bHOBaSOIjWAZxCbHYvjc1jT0gM9KeHzl1lo61ccC1bu1s18S5LAGKtenZejX7J/g7N0C+ath41dw6r3WStTKhD+8aC20eOA0e7Bmm5XushZEjEy0yieEEEI0MUmOmkGxt5icLRswvDacKdbaM94Sa4fwEpeB321DdQKH64DbUemlIncH/kqDPqM6smvDDlJ6dcS9rgjf3t3gK6nab0rhKYPISI1rrw32BvclPxDa/BTTDs5o62ejmW69t8Ra26d9T2vfr1PvhQ//DzJGQfdTrJjSgtqv81dY0+rjM6zuOdnyQgghRDOR5KgZ5BZupXxHAUZMLNU9ZoEyNwClETYc2rAGQFfTWGvvFO9gV14kp04ZyIL319Cntwf35jJie/XDvXkTPrd1jUDV7LOYjiZGZNDqAmvK5OdQY4mcMdbYoJI8yFkCa/4HW36EU6Zbs9CWvQlDJ1vXOBhviTXOqH0Pa5802WRUCCFEM5Jap4m5fW52bN2IKgvi6LCvW0iXWmv8lDltxETvNz7I77FWfS7NQ0encNRpA/jyhVVkdqlAKRs+txv35k3Edu0WSpA85ZqoWIPIaKPmispNpa6xRGAlRvEZsGg2/DgT3FUbsXY7GYZOgm0LrE1g6+pCq+YtsQaDH8lUfSGEEOIISHLUxPLduZRtzyFoc2G3WYlLpcdAlZYBUB7hwDRMa4Xmst3WPmL+cnAlUOxJZOELqygvLCb52H1bjFQnSLbISCoKre65mDjj19cTaiwHjiXyFFtjg9p1hzfOs8YVAdij4LgbYNRfoHib1TW2/+sOTJB85VaLUUo/K0am6gshhGgBkhw1oTJ/GTk7N6CL/Nji2wNWYuR1mzi85QBUOJ2ooBd2b7DG3thdEJ1ERblmzlvZBANwwnhXrcTH53ZbrUYVmqgYA1dkMycS1ZuqxnWG7O+t/c7evgQ2fQ1JfaDPGdYGsUm9Dj4Lbf/jlV5ren9Sb0mMhBBCtChJjppQQXkBJdtzCQYdREY4qaww8LrB0F4iPFZy5HPYsRdvhchka0ZW1Vihdcu9BAPQLtkguVPdXWWVlRoUxMQ3Y6tRtT2bYO6T0P9cayzR/H9Y3Wq//5c1VgjAFV93C1F1gmR3WT8H/FZimNgN2nWVxEgIIUSLkuSoiQR1kIK8Tei8QpTDCXuLCBRrHHixGV5cHmsFSL/dYU2jj9o3QNlTHmTzGmv7jr5DnAdNfDzlmph4gwhXMyYTvlL45WVY9QF0PcnaA23TNzD8Cug5tmYiVNcstGrVCz0GK63B2/EZkNRz315pQgghRAuR0a5NRAeD+NYtg11bcJUXU7m7HCNYjmELErS5iPRayU/QGYFhd9V47boVPgIBSEwySDlYq5FfYxiq8ccaRSdbLUC1PxDsWgdb5sLK96zE6I//hj0brRaioq1Wd1hdrz0YHQR3HsR2hOTejbvGkhBCCNFAkhw1ER2oxJu7iwqVgC/YAR0RgeFyWju/K4Poqj3McLpQat9t8FQE2bT68FqNouMUEa5GvoXVM9H2T3J2b4DF/4Ge42D7Quj/Jzj/DWsPtOolA/YfS3Q4CZLWVotRVHtI7iPrGAkhhAgb0q3WRIKBIO4SJzoQjWELYJjBGuejq/ZDs9mcmPttF7J+hZ9AABLaG6R2rrvVyO/TmDar1ajR7Z/kFKyBHx6zZpD94UX44Cpr3aFj/2wtN/BrY4kOpTQfnLGQ0ldWvhZCCBFWJDlqIoGgJlAZUWdiFNQQU2Edczr3zUTzeoJsXO0DfqXVyBMkPtHEGdFEDX/F22FDFgw8HzoOscYV/fgkDLvM6nYr333w11aPJTqU8j1gRlhT9iPiGrfsQgghxBGS5KjJ6VpHSnw+nFW9ai67C1U1CHn9Cj+BSqvVqEPawVuNbDaDmLiq84ezWnVpweHF7VwMK96FdZ9ZG9QG/NZMtNzl0O+sBn36WjxFEAxCh/7W7DwhhBAizMiYoxZQUmElKJUGRNhdGAq8Hr2v1WjwIVqNKoLExisczqrzdY0RAut5Qhfr/K/FxaXBgn/CWxfD6g+txGjwxdYMtJJcq+urPgOtD8ZbAr4K63oxKUd+PSGEEKIJSHLUAirKreSoNEKhDANlGqxf4aPSD/HtDDqkW61CkampOGJjQ6/zeTV2h0FUrGklK9HJdQ+Erk6MDrb4ojPGmim2d6u1hMAb58G8JwENacfABW/BGU9Y23+U5NVvoHVd/BXgzgFfmTX4OrZTw64jhBBCNAPpVmsBfo+1r1qJy8RQioDf2K/VyBFqNaosLw/toeYtLsbrCdIu2cQRE7sv+QlWWgOnC9ZYu9xn/wjte8K8Z6Bgde03T+5rtQhl/2CtYP3OJGuF656nwYA/QocBh06sDrUv2oF8pVBRbM3Qi0uzkqLIRFnkUQghRFiT5KgFHD3qJKJ2+yjPXgQKdmwwqfRDXKJBl/6J2KOiKM/Lq7HJbOGKpcSULSXG54KY38OX02HNf60WGW3NfOPU+60xQnOfgq+mH7wAyrDiFjwLMalw/pvWlHqwxh4dzqrWB6M1eIvBU2LNQmvXDWI6WGshCSGEEK2AJEctoGDzeo5/7DE2PPJXKoJ2tm+0ejdHjE8irlt33Js3hWJ9RYX4vvmEdsddiiqfB33PhbcusvYwq2Y6rd3uh10K67+Aoy+zus0K1tR+8+Q+1vktc+Hoy63FG+u7qnVdggFrsLWvvGqK/lFVC0pG1+ObEUIIIVqeJEctYPuSBexcsYVRT8zk27cXULgdeg9vR7dje+HevAmf2w2AUZFP3KK/YS9aA5E2q7VnxTsQ2c7a7T6us9VdlZgJiV2tlp3oZGsQ9bHX1m4B2n8skiNy36rW9ekqq0v5HvB7rNah9j2tcUz2iIZfTwghhGhBkhy1AKe3grKF8/ji6RmM+8u9pKTl0P+kjjUSI0f+AmKX/h3DX0Kwx+lw9JWoknxUv7Oh4+B9ycyvDb6uPn64cfWhNZQVgOGEjoMgOkW2ABFCCNHqSXLUAiI8XgA2b8hnzdwcBo/NoCw310qMggGi1r1E1Ka3AKjsfxHqjJn487cQYZaBr6RmMnO4Y4SOdCzRgXTQmsnmiIHUo2TNIiGEEG2GTOVvAQlBawB1+sAR9BnVkdU/bMOVlITTCQk5bxGV2gEAz7F3os58gsL1m7FjzXCrNSW/tODgSY23ZN8YosONOxzBALhzISIBOg6UxEgIIUSbIi1HLcBR5iVq1LFMuPJivvzXKirLikh3LiN24GhUz/sIvncFJUP+itn3TxSu2ojLKMU097tVDW3taQzBSisxiukg+6IJIYRok6TlqAV0PupoOj32GL98spjtawqJ9a0nat1LKDRaGZQe9We8HU+kZEcuvqISXFF13Kb6tvY0hkqvlRjFp0Fqf0mMhBBCtEmSHLWAdl17sfPGG1nzy1YA4lNiUH94Ce83syjevAUjMR2wthRxRSqcEWGwaKK/Asp2WbPiUo6S2WhCCCHaLOlWa2beYJCS517A0KDHngRA5IAT8e5YT3H7U6C0HF9pOVprAgGIijUOus9as/GVgscN7XpC++5g1L0prhBCCNEWSMtRM3OXl2Fo62eHPR4AV8GP2DOH1thHze8Fh1MREdnCiZGnCLylkNQH2veQxEgIIUSbJ8lRMyutsGadVTggqOIAcGZ/EtompDpB8nk1kTEKm60Fk6Oy3VDpt7rREjPBkD8uQggh2r42Vdvdc889KKVqPHr37h067/F4mDp1Ku3atSM6OppzzjmH/Pz8Zi2jryo5Kou0U1HqB8AZ7aixj5oZHYMyIaqugdjNIRiw9mwz7NBhoDUAu6W79oQQQohm0qaSI4B+/fqRm5sbevz444+hczfccAP/+9//eOedd/juu+/Iycnh97//fbOWr9JjJUfF0fGAQhHAEW3tP1adIBmOSCJcCqerBRKSgM9KjCLbQafBEJPS/GUQQgghWlCbG5Bts9lITU2tdby4uJgXX3yR119/nZNPPhmAl19+mT59+rBgwQKOOeaYZimf9pZZ5YlIACDSKEK72oXOe4uLKS0pIrmDrfkHYvvKoaIQ4jMgqZfMSBNCCPGb1OZajjZs2EDHjh3p2rUrF154Idu2bQNg0aJF+P1+xowZE4rt3bs36enpzJ8//6DX83q9uN3uGo8jYXoqAKhwVSdHewlEtA+d9/vA7lC4mnsgdsVe8LqhfW9I6SeJkRBCiN+sNpUcjRgxgtmzZ/P555/z7LPPkp2dzfHHH09JSQl5eXk4HA7i4+NrvCYlJYW8vLyDXvOhhx4iLi4u9EhLSzuiMtqqkiOf00qOosy9BCP2tRz5vJqoaIXN3kzJkdbWHmlaQ+oAa6q+2eYaFIUQQojD1qZqwdNOOy3084ABAxgxYgQZGRm8/fbbuFyuBl3z9ttvZ9q0aaHnbrf7iBKkCK8HgIAjHgOINAoJRgwHIBjQKAWR0fXMWXXQ2tYjWGkNplYGmA4wbIceSB2shJJ8cMVDcl/ZI00IIYSgjSVHB4qPj6dnz55s3LiRU089FZ/PR1FRUY3Wo/z8/DrHKFVzOp04nc5GK5PL4wVA2awp+y7TjbZZ23B4vRqn6yArYld6rcUYgwErqdF63zmlrESo+hHwW2sTBSv3xZj2/R4O6zpluyG2EyT3lq1AhBBCiCptOjkqLS1l06ZNXHzxxQwdOhS73c6cOXM455xzAFi3bh3btm1j5MiRzVamSI8PAMOIRgNOuzfUulPph4T2BoZxQHLkL4eyQohKAocLbC6wOayp9qZ9X1Jk2q1jOmAlUwEfVHr2JVbeUuuYr9xqbWrfA9p1t14nhBBCCKCNJUc33XQTZ5xxBhkZGeTk5DB9+nRM0+T8888nLi6Oyy67jGnTppGYmEhsbCx//vOfGTlyZLPNVAOI8litOcqIQgfBbrfWOvL7NDaHwhV5QJda9dYdSb2gXbfDXKHaBrY6Wru0tlqVAl6rVckZJws7CiGEEAdoU8nRjh07OP/889mzZw9JSUkcd9xxLFiwgKSkJABmzpyJYRicc845eL1exo0bxz/+8Y9mLWO0J2D9oK1uLHuE1T3m82qi4wzsjv1ajTxu8JVZW3ckdDnyREYpq8XJ5jiy6wghhBBtWJtKjt58881Dno+IiGDWrFnMmjWrmUpUk9YQ4wmiUQR1JABmhEkwqNEaomL2S34qiqwusZS+1rpDskK1EEII0SzaVHIU7sr8fiL84LNHASYQxHA58Hk0zghFRPWK2OV7IBiE1P4Q17kliyyEEEL85siAk2bkLrcWkKxwWhvOugw3AUc8fr8mOlZZA7FLCwAFHQZIYiSEEEK0AEmOmlF51aazxTHxgLU6ts+WiM1uWAOxS3KtafapAyDm4MsLCCGEEKLpSLdaM/JXbTpbGhkPQFRVcmQaQezeXRARa23dIYsxCiGEEC1GWo6aUdBjbTpb7ooHINLci8+WgKrYg3IlWF1pkhgJIYQQLUpajpqTpxwAn8Mac+Q03CgNyu6CDv3BGdOSpRNCCCEE0nLUrGxVyVGlw9o6xGaUYyhQpgGO6JYsmhBCCCGqSHLUjBwea9PZYNW+aqbpBRTKVLKOkRBCCBEmJDlqRk6vtemsNqzkSJl+lKEwDmtLECGEEEI0B0mOmlGk14cGtLLGFmkziNIKZUpyJIQQQoQLSY6aUZTHR6UtEpQ1Dl7bQCHJkRBCCBFOJDlqRtGeSrzVM9VUCR4jEqWUNSBbCCGEEGFBauVmFO0J4nNa440izb14jGgUyJgjIYQQIoxIctRMKoNBoit0qOUoythLhRGDUmDYJDkSQgghwoUkR83E7SnH1OCrWuMo0tiLV0VhAMqUtTiFEEKIcCHJUTMpLbf2VSt3WS1HDrMUDBNDKZBuNSGEECJsSHLUTDyeEgDKI6zkyG7zoACUQhlyG4QQQohwIbVyM6mssFqOvE4rOTJNLygD01AoQ1bHFkIIIcKFJEfNJOipAKDSbo05wqzEQGEqQ1qOhBBCiDAitXIzMao2nQ3YrJYjbBoMrMRIkiMhhBAibEit3Ezs3goqTSfacAIQsGmUAQqk5UgIIYQII1IrNxOnx4Ovao0juyrHZ0ZgYkMrSY6EEEKIcCK1cjNxeb2hwdhRxl7KiUGbhrQcCSGEEGFGauVmEunx4d1vAUiPjsI0DJQCuQ1CCCFE+JBauZlEefyhbjWXWYwXO8owUdKtJoQQQoQVqZWbSbQnEEqOnGYZoDEwqhaBlHWOhBBCiHAhyVEziakI4nVa3Wp2uxetQZkmSlbIFkIIIcKK1MrNoMLvx+Un1HJks/lBa0xrODZK9lYTQgghwoYkR82guMLaV616QLZhD6DRYFpdasqUbjUhhBAiXEhy1AzKymvuq4ZDgdbYlGmNN1JyG4QQQohwIbVyM/B5SgkYdgK2SAC0wwR01VR+Q7rVhBBCiDAiyVEzCHrK8FV1qZl4qbS7IKjQoTFHchuEEEKIcCG1cnPwlOOtGowdZe7Fa8YCGkMpa381U1qOhBBCiHAhyVEzsHnK8VWNN4o09uI1Y6p2nKVqjSMZkC2EEEKEC0mOmoHd4wnNVIswSwgqGygwtJIB2UIIIUSYkVq5GUR4PftWx7aVWQc1aKqm8cuYIyGEECJsSK3cDFweX2gav93mCR03DTCk1UgIIYQIK1IzN4NIrz80W81mq9x3QimUKbdACCGECCe/2Zp51qxZdOnShYiICEaMGMFPP/3UZO8V7akMzVZT9qB1UIPSCmWTmWpCCCFEOPlNJkdvvfUW06ZNY/r06SxevJiBAwcybtw4CgoKmuT9YioCoZYj5aiamWaAkn3VhBBCiLDzm0yOHn/8ca644gouvfRS+vbty3PPPUdkZCQvvfRSo79XIBgk0mvgd8QAVatja6yWI6UwTFujv6cQQgghGu43lxz5fD4WLVrEmDFjQscMw2DMmDHMnz+/VrzX68Xtdtd41EeZ30fQZiVGBn4qHREEdRCUgYHCkG41IYQQIqz85pKj3bt3EwgESElJqXE8JSWFvLy8WvEPPfQQcXFxoUdaWlq93q/cV4bXEQ9ApFGE14xBY3WpoYKydYgQQggRZqRm/hW33347xcXFocf27dvr9Xqvrxyf0xpvFGnuxWdEobU1KNswFBjSrSaEEEKEk99czdy+fXtM0yQ/P7/G8fz8fFJTU2vFO51OnE5ng9+v0lcRmqkWYZaCcoEOYhoKQxkylV8IIYQIM7+5mtnhcDB06FDmzJkTOhYMBpkzZw4jR45s9PfTnvLQTDWHWW4dCwbRBhgo6VYTQgghwsxvruUIYNq0aUyaNIlhw4YxfPhwnnjiCcrKyrj00ksb/b1MnyfUcmS3e6kENBqFgTIkORJCCCHCTYNr5ilTplBSUlLreFlZGVOmTDmiQjW1P/3pTzz66KPcfffdDBo0iKVLl/L555/XGqTdGOw+T2jMkWnzA6C1Bqyp/LKvmhBCCBFeGlwzv/LKK1RUVNQ6XlFRwb///e8jKlRzuPbaa9m6dSter5eFCxcyYsSIJnkfx36bzpoOayC2NZPfsMYcKdUk7yuEEEKIhql3t5rb7UZrjdaakpISIiIiQucCgQCffvopycnJjVrI1szl9eGNtpIj7NWJUNDaV01Jt5oQQggRbuqdHMXHx1uVulL07Nmz1nmlFPfee2+jFK4tiPT42bP/6tgA2lrpyJAxR0IIIUTYqXdy9M0336C15uSTT+a9994jMTExdM7hcJCRkUHHjh0btZCtWUTABcoAglRWLQmgq5Ij01CgZIVsIYQQIpzUOzk68cQTAcjOziY9PV3GzPwKZyASADvF+ExrYHZQawxlSMuREEIIEYYaXDOvWbOGuXPnhp7PmjWLQYMGccEFF7B3795GKVxbYNdWl1qEUUylUTU+q2q2mmmaKEOSSyGEECKcNDg5uvnmm0ObsK5YsYJp06Zx+umnk52dzbRp0xqtgK2ZNxBAGdZgbJdt34a1Go1S1ow1SY6EEEKI8NLgRSCzs7Pp27cvAO+99x5nnHEGDz74IIsXL+b0009vtAK2ZqW+MrxVq2NH2suAeMAac2QYJqBQhow5EkIIIcJJg1uOHA4H5eXWdhhfffUVY8eOBSAxMTHUovRbV+GrwOeIB8Bh94WOKw1KGSgD2VtNCCGECDMNbjk67rjjmDZtGqNGjeKnn37irbfeAmD9+vV07ty50QrYmvm95XidGQDYbJVUp0c6aG08qwyjaiabEEIIIcJFg2vmZ555BpvNxrvvvsuzzz5Lp06dAPjss88YP358oxWwNQv4ykOrYyuHDh0PosEwq9aLkuRICCGECCcNbjlKT0/n448/rnV85syZR1SgtkT5PKExR9j3O641hjUiW6byCyGEEGHmiGrmTZs2cdddd3H++edTUFAAWC1Hq1atapTCtXY2bwW+quRIO/ZlR1qDYZjWjDVTBmQLIYQQ4aTBydF3331H//79WbhwIe+//z6lpaUALFu2jOnTpzdaAVszh1+hDatxLuhwhI5rrTFQKIWMORJCCCHCTINr5ttuu42//e1vZGVl4div4j/55JNZsGBBoxSutYvwW61Fhi7Ba4/e74yuWh1bSXIkhBBChJkG18wrVqzg7LPPrnU8OTmZ3bt3H1Gh2gpnwFoR20YxWu03vEsHMZRpTeOX7VeEEEKIsNLg5Cg+Pp7c3Nxax5csWRKaufZbZw9GAWCqklrnDENhGEqSIyGEECLMNDg5Ou+887j11lvJy8tDKUUwGGTu3LncdNNNXHLJJY1ZxlbLxOpKsxmlNU8EFRgKZZPB2EIIIUS4aXBy9OCDD9K7d2/S0tIoLS2lb9++nHDCCRx77LHcddddjVnGVkspa6aazV5xwAmN0obMVBNCCCHCUIPXOXI4HPzrX//i7rvvZsWKFZSWljJ48GB69OjRmOVrtQKBANqwkiOnw1/rvKEUhqxxJIQQQoSdBidH1dLS0khLS2uMsrQphYW78Vetjh0ZAcH9TyrQaGk5EkIIIcJQg5ouNmzYwHvvvUd2djYAn3zyCSeccAJHH300DzzwAFrrX7lC25eTsxVvVXLkcB2QBGkwlIFhHnFuKoQQQohGVu/a+YMPPuCPf/wjhmGglOL555/nqquu4qSTTiI2NpZ77rkHm83Grbfe2hTlbTV25e3E52gPgI6w1zqvpOVICCGECEv1bjl64IEHuOWWW/B4PDz77LNcffXVPPTQQ3z22Wd8/PHHzJo1i9mzZzdBUVsXd24+QdNaHDPgcNY6r5QBhiRHQgghRLipd3K0bt06pkyZglKKSZMm4fP5GDNmTOj82LFj2bp1a6MWsjXyFVgLYRqBciptrgPOKgzZV00IIYQIS/VOjsrKyoiJibFebBi4XC4iIyND510uF16vt/FK2EoFi63p+0bQXXuLEKUxlELJApBCCCFE2Kl3cqQOqNQPfC6qlFv/M3RxjcNaAxqUoVAylV8IIYQIO/UekK21pmfPnqGEqHp9o+o1e2SmmkX57BABihIgKnRc66A13kgZIMmREEIIEXbqnRy9/PLLTVGOtidQ1dWoSoEoRp39B6LjE/j0xecAhYG0HAkhhBDhqN7J0aRJk5qiHG2O0ta+atqsYNTZfyAuKZniXQVorVGAMiU5EkIIIcJRo6xCWFpaSjBYYw1oYmNjG+PSrVb6McNZuzLAsDMmhBKjuR+8iw4CSmEqJDkSQgghwlCDk6Ps7GyuvfZavv32WzweT+i41hqlFIFAoFEK2FodN+VYEn/MYeApaaHECAAdBEOhlCHJkRBCCBGGGpwcXXTRRWiteemll0hJSZEZawdYO28ng8d2oWRX0b7ECIAgCgPDajpqsfIJIYQQom4NTo6WLVvGokWL6NWrV2OWp80YcHIGxXmFxKYkMOrsP4QSpGDVZD5DpvILIYQQYanBtfPRRx/N9u3bG7MsbUpQB/ly9j/Zm5tLXFIyo87+A0DVmCMDU5koQ1rbhBBCiHDT4JajF154gauvvpqdO3dy1FFHYbfX3Fx1wIABR1y41sxXNQ5rzquvcOqlU0IJ0levvYKBwjANa70jIYQQQoSVBidHu3btYtOmTVx66aWhY0opGZBdh7kfvBta50gBKGvrFWVKciSEEEKEmwYnR1OmTGHw4MG88cYbMiD7MFSPOdJag1aYNlNWyBZCCCHCUINr561bt/L3v/+dESNG0KVLFzIyMmo8WkKXLl1Ce71VP2bMmFEjZvny5Rx//PFERESQlpbGww8/3KxlDGK1rBnKQCmzWd9bCCGEEL+uwS1HJ598MsuWLaN79+6NWZ4jdt9993HFFVeEnsfExIR+drvdjB07ljFjxvDcc8+xYsUKpkyZQnx8PFdeeWWzlE8HgxiYGDZTZqsJIYQQYajBydEZZ5zBDTfcwIoVK+jfv3+tAdlnnnnmEReuIWJiYkhNTa3z3GuvvYbP5+Oll17C4XDQr18/li5dyuOPP95syRFYK2MbSsYcCSGEEOFIaa11Q15oHKLVo6UGZHfp0gWPx4Pf7yc9PZ0LLriAG264AZvNygEvueQS3G43H374Yeg133zzDSeffDKFhYUkJCT86nu43W7i4uIoLi4+5BYpFWVlfPz0U6AgMn5fXElxEU7lZMTRQ+h4/PFg2g96DSGEEEI0jsOtv+EIWo4O3EstHFx33XUMGTKExMRE5s2bx+23305ubi6PP/44AHl5eWRmZtZ4TUpKSuhcXcmR1+vF6/WGnrvd7iMqo9KgTMNa40im8gshhBBhJ+xr59tuu63WIOsDH2vXrgVg2rRpnHTSSQwYMICrr76axx57jKeffrpGclNfDz30EHFxcaFHWlraEX0erYMYykTJ9iFCCCFEWGpwy9F99913yPN33313Qy9dw4033sjkyZMPGdO1a9c6j48YMYLKykq2bNlCr169SE1NJT8/v0ZM9fODjVO6/fbbmTZtWui52+0+ogRJo1GGwjAUyPIHQgghRNhpcHL0wQcf1Hju9/vJzs7GZrPRrVu3RkuOkpKSSEpKatBrly5dimEYJCcnAzBy5EjuvPNO/H5/aAB5VlYWvXr1Ouh4I6fTidPpbFjh66C1RqFQpkzjF0IIIcJRg5OjJUuW1DrmdruZPHkyZ5999hEVqiHmz5/PwoULGT16NDExMcyfP58bbriBiy66KJT4XHDBBdx7771cdtll3HrrraxcuZInn3ySmTNnNl9BNZiGIcmREEIIEaYanBzVJTY2lnvvvZczzjiDiy++uDEv/aucTidvvvkm99xzD16vl8zMTG644YYaXWJxcXF8+eWXTJ06laFDh9K+fXvuvvvuZp3Gr7UGpTAkORJCCCHCUqMmRwDFxcUUFxc39mV/1ZAhQ1iwYMGvxg0YMIAffvihGUp0MBpTyQKQQgghRLhqcHL01FNP1XiutSY3N5dXX32V00477YgL1mbpIIahMGyNnpcKIYQQohE0uIY+cJyOYRgkJSUxadIkbr/99iMuWFumDCUtR0IIIUSYanBylJ2d3Zjl+O0IgoECU1qOhBBCiHBU7+aLQCDA8uXLqaioqHWuoqKC5cuXh+Xq2WFDAYZGGTIgWwghhAhH9U6OXn31VaZMmYLD4ah1zm63M2XKFF5//fVGKVxbZSjpVhNCCCHCVb1r6BdffJGbbroJs46p6DabjVtuuYXnn3++UQrXJilQyGw1IYQQIlzVu4Zet24dxxxzzEHPH3300axZs+aICtWmaTAMwJCtQ4QQQohwVO/kqKys7JA705eUlFBeXn5EhWrTlLWnmrQcCSGEEOGp3jV0jx49mDdv3kHP//jjj/To0eOICtWmaY1hGJIcCSGEEGGq3jX0BRdcwF133cXy5ctrnVu2bBl33303F1xwQaMUri3SWFP5ZbaaEEIIEZ7qvdjODTfcwGeffcbQoUMZM2YMvXv3BmDt2rV89dVXjBo1ihtuuKHRC9omaAAli0AKIYQQYazeyZHdbufLL79k5syZvP7663z//fdorenZsycPPPAA119/PXa7vSnK2uppNGiFYSisBY+EEEIIEW4atEyz3W7nlltu4ZZbbvnV2DfeeIMzzzyTqKiohrxVm6K1RimFYSAtR0IIIUSYavIa+qqrriI/P7+p36ZVCFaNODIMEyVT+YUQQoiw1OTJkda6qd+i9dAapQFDBmQLIYQQ4Ur6dpqRDlrdajbDhjLlqxdCCCHCkdTQzUijQYFhKlkhWwghhAhTkhw1Jx3EGnNkoJR0qwkhhBDhSJKjZqS11WCkTNl4VgghhAhXTV5DZ2RkyLpHVXTQWgfSRKFMaTkSQgghwlGDk6NJkybx/fff/2rcypUrSUtLa+jbtClaBzBQGA4TlLQcCSGEEOGowTV0cXExY8aMoUePHjz44IPs3LmzMcvVRmk0CpthICtkCyGEEOGpwcnRhx9+yM6dO7nmmmt466236NKlC6eddhrvvvsufr+/McvYdmhQKEzTJi1HQgghRJg6oho6KSmJadOmsWzZMhYuXEj37t25+OKL6dixIzfccAMbNmxorHK2CUE0hqEwbQbIgGwhhBAiLDVKDZ2bm0tWVhZZWVmYpsnpp5/OihUr6Nu3LzNnzmyMt2gbgkFAYdplMLYQQggRrhqcHPn9ft577z1+97vfkZGRwTvvvMP1119PTk4Or7zyCl999RVvv/029913X2OWt1WzdlZTmPYG7fcrhBBCiGbQ4Fq6Q4cOBINBzj//fH766ScGDRpUK2b06NHEx8cfQfHamKBGyb5qQgghRFhrcHI0c+ZMzj33XCIiIg4aEx8fT3Z2dkPfou3RGqUMDNlXTQghhAhbDa6lzzzzTMrLy2sdLywsxO12H1Gh2iqtgxhKoUxZFFMIIYQIVw1Ojs477zzefPPNWsfffvttzjvvvCMqVFulwdpXTVqOhBBCiLDV4Fp64cKFjB49utbxk046iYULFx5RodoqrTUKBbJ1iBBCCBG2Gpwceb1eKisrax33+/1UVFQcUaHaKmvjWQOlJDkSQgghwlWDk6Phw4fz/PPP1zr+3HPPMXTo0CMqVJulNYaBdKsJIYQQYazBs9X+9re/MWbMGJYtW8Ypp5wCwJw5c/j555/58ssvG62AbUsQw2aiZHVsIYQQImw1uJYeNWoU8+fPJy0tjbfffpv//e9/dO/eneXLl3P88cc3Zhnbjqq91WTrECGEECJ8HdFSzYMGDeK1115rrLK0fVpjGoa0HAkhhBBh7IiSo2AwyMaNGykoKCAYDNY4d8IJJxxRwdomhTIVSqmWLogQQgghDqLBydGCBQu44IIL2Lp1K1rrGueUUgQCgSMuXFujtUYp2T5ECCGECGcN7t+5+uqrGTZsGCtXrqSwsJC9e/eGHoWFhY1ZRgAeeOABjj32WCIjIw+6X9u2bduYMGECkZGRJCcnc/PNN9dabuDbb79lyJAhOJ1OunfvzuzZsxu9rAenqvZWk241IYQQIlw1uOVow4YNvPvuu3Tv3r0xy3NQPp+Pc889l5EjR/Liiy/WOh8IBJgwYQKpqanMmzeP3NxcLrnkEux2Ow8++CAA2dnZTJgwgauvvprXXnuNOXPmcPnll9OhQwfGjRvX9B9CKWv7EEmOhBBCiLDV4ORoxIgRbNy4sdmSo3vvvRfgoC09X375JatXr+arr74iJSWFQYMGcf/993Prrbdyzz334HA4eO6558jMzOSxxx4DoE+fPvz444/MnDmzeZIjrVEGWP8RQgghRDhqcHL05z//mRtvvJG8vDz69++P3V5zM9UBAwYcceHqY/78+fTv35+UlJTQsXHjxnHNNdewatUqBg8ezPz58xkzZkyN140bN47rr7/+oNf1er14vd7Q8yPbVFdhKBNlyIBsIYQQIlw1ODk655xzAJgyZUromFIqNOi4uQdk5+Xl1UiMgNDzvLy8Q8a43W4qKipwuVy1rvvQQw+FWq2OmAbDJt1qQgghRDhrcC2dnZ1d67F58+bQ/w/HbbfdZs3eOsRj7dq1DS1io7j99tspLi4OPbZv335E11OYsn2IEEIIEcYa3HKUkZFxxG9+4403Mnny5EPGdO3a9bCulZqayk8//VTjWH5+fuhc9f+rj+0fExsbW2erEYDT6cTpdB5WGQ5Fa1C6anFsaTkSQgghwtYRLQL56quv8txzz5Gdnc38+fPJyMjgiSeeIDMzk7POOutXX5+UlERSUtKRFCFk5MiRPPDAAxQUFJCcnAxAVlYWsbGx9O3bNxTz6aef1nhdVlYWI0eObJQyHJpGo1CmTdY5EkIIIcJYg5swnn32WaZNm8bpp59OUVFRaIxRfHw8TzzxRGOVL2Tbtm0sXbqUbdu2EQgEWLp0KUuXLqW0tBSAsWPH0rdvXy6++GKWLVvGF198wV133cXUqVNDLT9XX301mzdv5pZbbmHt2rX84x//4O233+aGG25o9PIeSOsgSilMs2p/NSGEEEKEpQYnR08//TT/+te/uPPOOzHNfS0hw4YNY8WKFY1SuP3dfffdDB48mOnTp1NaWsrgwYMZPHgwv/zyCwCmafLxxx9jmiYjR47koosu4pJLLuG+++4LXSMzM5NPPvmErKwsBg4cyGOPPcYLL7zQLNP4g4ChFYZhQ5nSciSEEEKEqwZ3q2VnZzN48OBax51OJ2VlZUdUqLrMnj37V1ezzsjIqNVtdqCTTjqJJUuWNGLJDpPWoKzZarLOkRBCCBG+GlxLZ2ZmsnTp0lrHP//8c/r06XMkZWqTdFADClNJciSEEEKEswa3HE2bNo2pU6fi8XjQWvPTTz/xxhtv8NBDD/HCCy80ZhnbBE0QAMNuk+RICCGECGMNTo4uv/xyXC4Xd911F+Xl5VxwwQV07NiRJ598kvPOO68xy9g2aI3CwDQMmcovhBBChLEjmsp/4YUXcuGFF1JeXk5paWloCr2oLaitBiPTdkRfuRBCCCGaWKPU1JGRkURGRjbGpdquoDUg27RLciSEEEKEs3rV1EOGDGHOnDkkJCQwePBglDr4ej2LFy8+4sK1JVoHQRvY7DKNXwghhAhn9UqOzjrrrNCCihMnTmyK8rRhGgCbaW/hcgghhBDiUOqVHE2fPr3On8Wv01pjoDDtkhwJIYQQ4azB06Z+/vlnFi5cWOv4woULQ6tWi300VYtAmjLmSAghhAhnDU6Opk6dyvbt22sd37lzJ1OnTj2iQrVJQY2hwJCWIyGEECKsNTg5Wr16NUOGDKl1fPDgwaxevfqICtUWaa1RysCwSXIkhBBChLMGJ0dOp5P8/Pxax3Nzc7HJWj61aA2GAmXKApBCCCFEOGtwTT127Fhuv/12iouLQ8eKioq44447OPXUUxulcG2KtlaBPNTyB0IIIYRoeQ1u4nn00Uc54YQTyMjIYPDgwQAsXbqUlJQUXn311UYrYJuhg7J1iBBCCNEKNDg56tSpE8uXL+e1115j2bJluFwuLr30Us4//3zsMui4liCglIGS5EgIIYQIa0c0OCgqKoorr7yyscrStmmNMpUkR0IIIUSYq1dy9NFHH3Haaadht9v56KOPDhl75plnHlHB2ppgUGMaBsqQ7UOEEEKIcFav5GjixInk5eWRnJx8yO1DlFIEAoEjLVvboqlKjmRAthBCCBHO6pUcBYPBOn8Wh0FrDEO61YQQQohwV6+aOjExkd27dwMwZcoUSkpKmqRQbZOqWuhIkiMhhBAinNWrpvb5fLjdbgBeeeUVPB5PkxSqTQpqTFNmqwkhhBDhrl7daiNHjmTixIkMHToUrTXXXXcdLperztiXXnqpUQrYlihJjoQQQoiwV6/k6D//+Q8zZ85k06ZNABQXF0vrUT2YSgZkCyGEEOGuXslRSkoKM2bMACAzM5NXX32Vdu3aNUnB2pygBlPJCtlCCCFEmGvwgOzRo0fjcDiapFBtkVbWTDVZ50gIIYQIbzIguxkZhoGS2WpCCCFEWJMB2c1FKwxloExpORJCCCHCWYMHZCulZEB2PSgdxLQZss6REEIIEeZkQHZz0IAyMAwFSmarCSGEEOGs3s0Yp59+OsXFxWRnZ9OuXTtmzJhBUVFR6PyePXvo27dvY5ax1dNolAbTNKXlSAghhAhz9a6pP//8c7xeb+j5gw8+SGFhYeh5ZWUl69ata5zStREaQCmUKduHCCGEEOHuiGtqrXVjlKNN0zqI0mAzTelWE0IIIcKcNGM0Fw3KVq8hXkIIIYRoAfVOjpRSqANaPw58LmrSWoMBpl2SIyGEECLc1bu21lozefJknE4nAB6Ph6uvvpqoqCiAGuORhCUY1ChlWAOyhRBCCBHW6p0cTZo0qcbziy66qFbMJZdc0vAStUlB0GCz21u6IEIIIY5AIBDA7/e3dDHEQTgcDoxG2MO03snRyy+/fMRv+lujtNVyJGOOhBCiddJak5eXV2PpGhF+DMMgMzPziPd+ldq6GQQ0gMZmk5YjIYRojaoTo+TkZCIjI2WsbRgKBoPk5OSQm5tLenr6Ed2jVpMcPfDAA3zyyScsXboUh8NRZ/Ze1xfxxhtvcN5554Wef/vtt0ybNo1Vq1aRlpbGXXfdxeTJk5uw5EBQoxQYZqv5uoUQQlQJBAKhxEh2hQhvSUlJ5OTkUFlZif0IhrK0mqn8Pp+Pc889l2uuueaQcS+//DK5ubmhx8SJE0PnsrOzmTBhAqNHj2bp0qVcf/31XH755XzxxRdNWvagDqAA035kzXxCCCGaX/UYo8jIyBYuifg11d1pgUDgiK7Tapoy7r33XgBmz559yLj4+HhSU1PrPPfcc8+RmZnJY489BkCfPn348ccfmTlzJuPGjWvU8u5PARgGprQcCSFEqyVdaeGvse5Rq2k5OlxTp06lffv2DB8+nJdeeqnGCt7z589nzJgxNeLHjRvH/PnzD3o9r9eL2+2u8agvrTVaa0yZrSaEEOI34KSTTuL6669vkmt36dKFJ554okmuXa1NJUf33Xcfb7/9NllZWZxzzjn83//9H08//XTofF5eHikpKTVek5KSgtvtpqKios5rPvTQQ8TFxYUeaWlp9S6XBgxlYhjyrw4hhBDNZ/LkySiluPrqq2udmzp1Kkqpph932wq1aHJ02223hVbcPthj7dq1h329v/71r4waNYrBgwdz6623csstt/DII48cURlvv/12iouLQ4/t27fX+xrBQNAakC0rZAshhGhmaWlpvPnmmzUaATweD6+//jrp6ekNvq7WmsrKyga91ufzNfh9m0OLJkc33ngja9asOeSja9euDb7+iBEj2LFjR2jV7tTUVPLz82vE5OfnExsbi8vlqvMaTqeT2NjYGo/60lpjGApT1jkSQgjRzIYMGUJaWhrvv/9+6Nj7779Peno6gwcPDh3zer1cd911JCcnExERwXHHHcfPP/8cOv/tt9+ilOKzzz5j6NChOJ1OfvzxR8rKyrjkkkuIjo6mQ4cOoXG9++vSpQv3338/l1xyCbGxsVx55ZUA/Pjjjxx//PG4XC7S0tK47rrrKCsrC72uoKCAM844A5fLRWZmJq+99lpTfEW1tGhtnZSURFJSUpNdf+nSpSQkJIS2Ohk5ciSffvppjZisrCxGjhzZZGUAQGuUoVCNsGqnEEKIlqW1psJfv9lQhlI4bQbeyiBBrWs9P1wuu9mgQcdTpkzh5Zdf5sILLwTgpZde4tJLL+Xbb78Nxdxyyy289957vPLKK2RkZPDwww8zbtw4Nm7cSGJiYijutttu49FHH6Vr164kJCRw880389133/Hf//6X5ORk7rjjDhYvXsygQYNqlOHRRx/l7rvvZvr06QBs2rSJ8ePH87e//Y2XXnqJXbt2ce2113LttdeGFpyePHkyOTk5fPPNN9jtdq677joKCgrq/fnrq9U0ZWzbto3CwkK2bdtGIBBg6dKlAHTv3p3o6Gj+97//kZ+fzzHHHENERARZWVk8+OCD3HTTTaFrXH311TzzzDPccsstTJkyha+//pq3336bTz75pMnLbyhJjoQQoi2o8Afoe3f9l4A5vkd7nj5/MG/9vJ0/HZ3GFf/+hR827K7XNVbfN45IR/2r7osuuojbb7+drVu3AjB37lzefPPNUHJUVlbGs88+y+zZsznttNMA+Ne//kVWVhYvvvgiN998c+ha9913H6eeeioApaWlvPjii/znP//hlFNOAeCVV16hc+fOtcpw8sknc+ONN4aeX3755Vx44YWhgds9evTgqaee4sQTT+TZZ59l27ZtfPbZZ/z0008cffTRALz44ov06dOn3p+/vlpNcnT33XfzyiuvhJ5XNwV+8803nHTSSdjtdmbNmsUNN9yA1pru3bvz+OOPc8UVV4Rek5mZySeffMINN9zAk08+SefOnXnhhReadBo/gA5oTLsBMg1UCCF+s37YsJu3ft7OVSd245/fbap3YnQkkpKSmDBhArNnz0ZrzYQJE2jfvn3o/KZNm/D7/YwaNSp0zG63M3z4cNasWVPjWsOGDavxOp/Px4gRI0LHEhMT6dWrV60y7P86gGXLlrF8+fIaXWVaa4LBINnZ2axfvx6bzcbQoUND53v37k18fHz9v4B6ajXJ0ezZsw+5xtH48eMZP378r17npJNOYsmSJY1Ysl+nwepWU9JyJIQQrZ3LbrL6vvr/o7q6K80fCHLlCV2ZdGyXenWpVb93Q02ZMoVrr70WgFmzZjX4OlFRUY3yutLSUq666iquu+66WrHp6emsX7++Qe/TGFpNctSqaY0yTelWE0KINkAp1aCurWp20+pFiDiCRKchxo8fj8/nQylVq8ekW7duOBwO5s6dS0ZGBmCtDP7zzz8fcr2ibt26YbfbWbhwYWjm2969e1m/fj0nnnjiIcszZMgQVq9eTffu3es837t3byorK1m0aFGoW23dunXNsvmvJEfNQAet2WrKlORICCFEyzBNM9RFZpo1E7OoqCiuueYabr75ZhITE0lPT+fhhx+mvLycyy677KDXjI6O5rLLLuPmm2+mXbt2JCcnc+edd2IcRmPArbfeyjHHHMO1117L5ZdfTlRUFKtXryYrK4tnnnmGXr16MX78eK666iqeffZZbDYb119//UFnlzcmSY6agdIam2GCtBwJIYRoQYdajmbGjBkEg0EuvvhiSkpKGDZsGF988QUJCQmHvOYjjzxCaWkpZ5xxBjExMdx4440UFxf/alkGDBjAd999x5133snxxx+P1ppu3brxpz/9KRTz8ssvc/nll3PiiSeSkpLC3/72N/76178e/gduIKV1PTs8f+PcbjdxcXEUFxcf8g9ZRVkZHz/9FCjweHx0SknmpEkXYbhimrG0QgghjpTH4yE7O5vMzEwiIiJaujjiEA51rw63/oY2tn1I2NIaw2zY2hRCCCGEaF6SHDUHrTEME2U27+A7IYQQQtSfJEfNQGmNshkgU/mFEEKIsCe1dTPQSmEaWpIjIYQQohWQ2roZKK0wTFOSIyGEEKIVkNq6WeiqNY5kQLYQQggR7iQ5ag7awDQNWedICCGEaAWktm4GGl1rNVIhhBBChCdJjpqB0hrDJouRCyGEEK2BJEdNTVuz1AybfNVCCCFEayA1dhPTWC1Hps3e0kURQgjxGzN58mSUUlx99dW1zk2dOhWlFJMnT27+goU5SY6anAalMEzpVhNCCNH80tLSePPNN6moqAgd83g8vP7666Snpzf4ulprKisrG6OIYUeSoyYW1FTtrSbJkRBCiOY3ZMgQ0tLSeP/990PH3n//fdLT0xk8eHDomNfr5brrriM5OZmIiAiOO+44fv7559D5b7/9FqUUn332GUOHDsXpdPLjjz9SUlLChRdeSFRUFB06dGDmzJmcdNJJXH/99aHXvvrqqwwbNoyYmBhSU1O54IILKCgoqHXtOXPmMGzYMCIjIzn22GNZt25d0345ByHJURNTGgylZEC2EEK0FVqDr6x+D7/Hep3fU/fzw31o3aAiT5kyhZdffjn0/KWXXuLSSy+tEXPLLbfw3nvv8corr7B48WK6d+/OuHHjKCwsrBF32223MWPGDNasWcOAAQOYNm0ac+fO5aOPPiIrK4sffviBxYsX13iN3+/n/vvvZ9myZXz44Yds2bKlzu68O++8k8cee4xffvkFm83GlClTGvR5j5TU2E1MowGNKcmREEK0Df5yeLBj/V/X7WT4w0uw+FUYcjG8eT5s+rp+17gjBxxR9X7riy66iNtvv52tW7cCMHfuXN58802+/fZbAMrKynj22WeZPXs2p512GgD/+te/yMrK4sUXX+Tmm28OXeu+++7j1FNPBaCkpIRXXnmF119/nVNOOQWAl19+mY4da34/+yc5Xbt25amnnuLoo4+mtLSU6Ojo0LkHHniAE088EbCSsAkTJuDxeIiIiKj3Zz4SUmM3Ma2rxhxJciSEEL9tm762EqNR18Hcp+qfGB2BpKQkJkyYwOzZs9FaM2HCBNq3b7+vaJs24ff7GTVqVOiY3W5n+PDhrFmzpsa1hg0bFvp58+bN+P1+hg8fHjoWFxdHr169arxm0aJF3HPPPSxbtoy9e/cSDAYB2LZtG3379g3FDRgwIPRzhw4dACgoKDiisVENITV2U9MapRQ2u6OlSyKEEKIx2COtFpz6UibYnBDwwbF/huFXgg7U/70baMqUKVx77bUAzJo1q8HXiYqqX8tVWVkZ48aNY9y4cbz22mskJSWxbds2xo0bh8/nqxFrt++b2a2UteVWdSLVnGTMUZPTKAwM2XRWCCHaBqWsrq36PuwR1mtNh/V/e0T9r6Eavkfn+PHj8fl8+P1+xo0bV+Nct27dcDgczJ07N3TM7/fz888/12jZOVDXrl2x2+01Bm4XFxezfv360PO1a9eyZ88eZsyYwfHHH0/v3r1rDMYOR9Jy1MSCQY2hNKZd1jkSQgjRckzTDHWRHbilVVRUFNdccw0333wziYmJpKen8/DDD1NeXs5ll1120GvGxMQwadKk0OuSk5OZPn06hmGEWn7S09NxOBw8/fTTXH311axcuZL777+/6T5oI5DmjCamtUIpZIVsIYQQLS42NpbY2Ng6z82YMYNzzjmHiy++mCFDhrBx40a++OILEhISDnnNxx9/nJEjR/K73/2OMWPGMGrUKPr06RMaRJ2UlMTs2bN555136Nu3LzNmzODRRx9t9M/WmJTWDZwX+BvldruJi4ujuLj4oH/AACrKyvj46afwerw4DZNTLz6P+MwezVhSIYQQjcHj8ZCdnU1mZmazz5pqjcrKyujUqROPPfbYIVudmsKh7tXh1t8g3WpNT2uUoWT7ECGEEG3SkiVLWLt2LcOHD6e4uJj77rsPgLPOOquFS9Zwkhw1MatZTmHazF+JFEIIIVqnRx99lHXr1uFwOBg6dCg//PBDjaUCWhtJjpqatgZ2KVnnSAghRBs0ePBgFi1a1NLFaFQySrgZKENh2iU5EkIIIVoDSY6amg5iGAamKV+1EEII0RpIjd3EtMZatMuQMUdCCCFEayDJURPTQTBMA2XIVy2EEEK0BlJjNzmNYZqSHAkhhBCthNTYTUxrrGXUpVtNCCGEaBUkOWpiSlvdatDwzQKFEEII0XwkOWpqGkybAUq+aiGEEM1r8uTJKKVQSmG328nMzOSWW27B4/GEYqrPK6WIioqiR48eTJ48udbaRd9++y1KKYqKikLHcnJy6N+/PyeccALFxcU1YvZ/77oeXbp0aaZvof6kxm5qumr3Y0mOhBBCtIDx48eTm5vL5s2bmTlzJv/85z+ZPn16jZiXX36Z3NxcVq1axaxZsygtLWXEiBH8+9//Puh1N23axHHHHUdGRgZffPEFcXFxNc4/+eST5Obmhh77v09ubi4///xz43/YRtIqauwtW7Zw2WWXkZmZicvlolu3bkyfPh2fz1cjbvny5Rx//PFERESQlpbGww8/XOta77zzDr179yYiIoL+/fvz6aefNmnZFWCYSpIjIYQQLcLpdJKamkpaWhoTJ05kzJgxZGVl1YiJj48nNTWVLl26MHbsWN59910uvPBCrr32Wvbu3VvrmsuXL+e4445j5MiRfPjhh7hcrloxcXFxpKamhh77v09qaipJSUlN84EbQauosdeuXUswGOSf//wnq1atYubMmTz33HPccccdoRi3283YsWPJyMhg0aJFPPLII9xzzz08//zzoZh58+Zx/vnnc9lll7FkyRImTpzIxIkTWblyZdMVXoMyDZDZakII0SZorSn3l9fr4an0oLXGU+mp8/nhPrTWR1T2lStXMm/ePBwOx6/G3nDDDZSUlNRKpObNm8eJJ57IOeecw3/+8x9sbXB7rFbxicaPH8/48eNDz7t27cq6det49tlnefTRRwF47bXX8Pl8vPTSSzgcDvr168fSpUt5/PHHufLKKwGriW/8+PHcfPPNANx///1kZWXxzDPP8NxzzzVJ2bUG0y4z1YQQoq2oqKxgxOsj6v26kR1H8sgJj/D+hvf5fY/fc9031zE/Z369rrHwgoVE2iPr9ZqPP/6Y6OhoKisr8Xq9GIbBM88886uv6927N2D13uzv7LPP5k9/+tNhXaO1arXNGcXFxSQmJoaez58/nxNOOKFGNjxu3DjWrVsXahKcP38+Y8aMqXGdcePGMX9+/f5w1odCYbbBrFoIIUT9zM+Zz/sb3ufSoy7l/Q3v1zsxaqjRo0ezdOlSFi5cyKRJk7j00ks555xzfvV11a1UStWcbX3WWWfxwQcf8MMPPzRJecNBq6y1N27cyNNPPx1qNQLIy8sjMzOzRlxKSkroXEJCAnl5eaFj+8fk5eUd9L28Xi9erzf03O1217u8khwJIUTb4bK5WHjBwnq/zlAGTtOJP+Bncr/JnN/7fII6WO/3rq+oqCi6d+8OwEsvvcTAgQN58cUXueyyyw75ujVr1gDUqlv/+c9/csstt3Daaafx6aefcsIJJ9S7TOGuRVuObrvttkNO81NKsXbt2hqv2blzJ+PHj+fcc8/liiuuaPIyPvTQQ8TFxYUeaWlp9buAQhaAFEKINkQpRaQ9st6PCFuENaXetKOUIsIWUe9rHNiKU1+GYXDHHXdw1113UVFRccjYJ554gtjY2Fo9Lkopnn/+eS688EJOP/10vvvuuyMqUzhq0eToxhtvZM2aNYd8dO3aNRSfk5PD6NGjOfbYY2sMtAZITU0lPz+/xrHq59Wj5A8WU32+LrfffjvFxcWhx/bt2+v1GQ0FhinJkRBCiPBw7rnnYpoms2bNCh0rKioiLy+PrVu3kpWVxR/+8Adef/11nn32WeLj42tdQynFc889xyWXXMLpp5/Ot99+23wfoBm0aH9PUlLSYU/l27lzJ6NHj2bo0KG8/PLLGAfM/ho5ciR33nknfr8fu90OQFZWFr169SIhISEUM2fOHK6//vrQ67Kyshg5cuRB39fpdOJ0Ouv5yfZRCpR0qwkhhAgTNpuNa6+9locffphrrrkGgEsvvRSAiIgIOnXqxHHHHcdPP/3EkCFDDnodpRSzZs3CMAwmTJjAxx9/fMQtW+FC6SOdF9gMdu7cyUknnURGRgavvPKKtahilepWn+LiYnr16sXYsWO59dZbWblyJVOmTGHmzJmh2WrV0w9nzJjBhAkTePPNN3nwwQdZvHgxRx111GGVxe12ExcXR3FxMbGxsQeNqygr4+Onn8K3t4wBY46h/6m/O4JvQAghREvxeDxkZ2eTmZlJRERESxdHHMKh7tXh1t/QSgZkZ2VlsXHjRjZu3Ejnzp1rnKvO7eLi4vjyyy+ZOnUqQ4cOpX379tx9992hxAjg2GOP5fXXX+euu+7ijjvuoEePHnz44YeHnRg1iAJltoqvWQghhBC0kuRo8uTJTJ48+VfjBgwY8KtTC88991zOPffcRirZ4ZHZakIIIUTr0WrXOWotlFIoWR1bCCGEaDWk1m5qSlqOhBBCiNZEkqMmZhhgSHIkhBBCtBqSHDUxDZgyIFsIIYRoNSQ5amKGUhimfM1CCCFEayG1dlNTsvGsEEII0ZpIctTUDDBssn2IEEII0VpIctTUlMJmc7R0KYQQQghxmCQ5amIKWSFbCCFEy9m+fTtTpkyhY8eOOBwOMjIy+Mtf/sKePXtCMSeddFKNfUerzZ49u8bGs7Nnz7bW7zvg0da2VZFau4kppbDb7C1dDCGEEL9BmzdvZuTIkfTs2ZM33niDzMxMVq1axc0338xnn33GggULSExMrNc1Y2NjWbduXY1jbWXD2WqSHDUxZShMSY6EEEK0gKlTp+JwOPjyyy9xuVwApKenM3jwYLp168add97Js88+W69rKqVCm763VZIcNTWlMO0yIFsIIdoKrTW6oqJ+LzIMlNOJ9nohGKz9/DApl+uwW2kKCwv54osveOCBB0KJUbXU1FQuvPBC3nrrLf7xj3/U66P8Fkhy1MSUYchsNSGEaEN0RQXrhgyt9+uiRh1Lp8ceo+i994g/5xx2TJ1K2dx59bpGr8WLUJGRhxW7YcMGtNb06dOnzvN9+vRh79697Nq1C4B//OMfvPDCCzViKisra40nKi4uJjo6usax448/ns8+++xwP0bYk+SoiSkl3WpCCCGgbO48it57j3aXXcaeF1+sd2LUUFrrw4q78MILufPOO2sce//993nwwQdrHIuJiWHx4sU1jh3YMtXaSXLUxEylZLaaEEK0IcrlotfiRfV/YXVXmt9P4pQpJFx4Yb261Krf+3B1794dpRRr1qzh7LPPrnV+zZo1JCQkkJSUBEBcXBzdu3evEZOcnFzHxzBqxbU1Ums3MWXI3mpCCNGWKKUOu2urTnarN0E18fT3du3aceqpp/KPf/yDG264oUbrTl5eHq+99hqXXHJJm5tp1hhknaMmZpgmyB88IYQQLeCZZ57B6/Uybtw4vv/+e7Zv387nn3/OqaeeSqdOnXjggQfqfU2tNXl5ebUewXq2goUzSY6amGEqq/lICCGEaGY9evTgl19+oWvXrvzxj3+kW7duXHnllYwePZr58+fXe40jALfbTYcOHWo9CgoKmuATtAylD3eklgCsPxRxcXEUFxcTGxt70LiKsjI+fvopYqIdjJ86TVqPhBCilfJ4PGRnZ5OZmdnmVoJuaw51rw63/gZpOWpyhs2QxEgIIYRoRSQ5amKmKdP4hRBCiNZEkqMmJgtACiGEEK2LJEdNSmPaZBq/EEII0ZpIctSEDKTlSAghhGhtJDlqYkpajoQQQohWRZKjpqSUdKsJIYQQrYwkR01JaQy7s6VLIYQQQoh6kOSoCRlKYRgy5kgIIYRoTSQ5akJKGTIgWwghxG+SUooPP/ywpYvRIJIcNSFlVG08K4QQQrSAyZMno5RCKYXdbiczM5NbbrkFj8fT0kULazJauCkZSpIjIYQQLWr8+PG8/PLL+P1+Fi1axKRJk1BK8fe//72lixa2pOWoiSiqutUkORJCCNGCnE4nqamppKWlMXHiRMaMGUNWVhYAe/bs4fzzz6dTp05ERkbSv39/3njjjRqvP+mkk7juuuu45ZZbSExMJDU1lXvuuadGzIYNGzjhhBOIiIigb9++oevvb8WKFZx88sm4XC7atWvHlVdeSWlpaej85MmTmThxIg8++CApKSnEx8dz3333UVlZyc0330xiYiKdO3fm5Zdfbvwv6QCSHDURZSicLg9OlzTOCSFEW6K1xu8N1OtR6QugtabSV/fzw31orY+o7CtXrmTevHk4HA7A2sV+6NChfPLJJ6xcuZIrr7ySiy++mJ9++qnG61555RWioqJYuHAhDz/8MPfdd18oAQoGg/z+97/H4XCwcOFCnnvuOW699dYary8rK2PcuHEkJCTw888/88477/DVV19x7bXX1oj7+uuvycnJ4fvvv+fxxx9n+vTp/O53vyMhIYGFCxdy9dVXc9VVV7Fjx44j+h5+jdTcTcQ0TOJcLqIc0S1dFCGEEI2o0hfk+b98V+/XpfVJZOzl/VgzN4c+ozry6bMr2L6msF7XuPLJE7E769cj8fHHHxMdHU1lZSVerxfDMHjmmWcA6NSpEzfddFMo9s9//jNffPEFb7/9NsOHDw8dHzBgANOnTwegR48ePPPMM8yZM4dTTz2Vr776irVr1/LFF1/QsWNHAB588EFOO+200Otff/11PB4P//73v4mKigLgmWee4YwzzuDvf/87KSkpACQmJvLUU09hGAa9evXi4Ycfpry8nDvuuAOA22+/nRkzZvDjjz9y3nnn1et7qA9JjppQnC0em93R0sUQQggRBravKWTN3BwGj81gyZdb650YNdTo0aN59tlnKSsrY+bMmdhsNs455xwAAoEADz74IG+//TY7d+7E5/Ph9XqJjIyscY0BAwbUeN6hQwcKCgoAWLNmDWlpaaHECGDkyJE14tesWcPAgQNDiRHAqFGjCAaDrFu3LpQc9evXD8PY16mVkpLCUUcdFXpumibt2rULvXdTkeSoKRkGSsYcCSFEm2JzGFz55In1fp1SYNoNApVBBp2aTv+TOlPfXjKbo/6jYaKioujevTsAL730EgMHDuTFF1/ksssu45FHHuHJJ5/kiSeeoH///kRFRXH99dfj8/lqXMNutx/wWRTBYLDeZfk1db1Pc733/iQ5akqGIYtACiFEG6OUqnfX1v5MmwLA5mj++sEwDO644w6mTZvGBRdcwNy5cznrrLO46KKLAGv80Pr16+nbt+9hX7NPnz5s376d3NxcOnToAMCCBQtqxcyePZuysrJQ69HcuXND3WfhRgZkNxXDwDRNlGn/9VghhBCimZx77rmYpsmsWbPo0aMHWVlZzJs3jzVr1nDVVVeRn59fr+uNGTOGnj17MmnSJJYtW8YPP/zAnXfeWSPmwgsvJCIigkmTJrFy5Uq++eYb/vznP3PxxReHutTCSatIjrZs2cJll11GZmYmLpeLbt26MX369BrNflu2bAktdLX/48Ds9Z133qF3795ERETQv39/Pv300yYps2mzYRw1kogO6U1yfSGEEKIhbDYb1157LQ8//DA33ngjQ4YMYdy4cZx00kmkpqYyceLEel3PMAw++OADKioqGD58OJdffjkPPPBAjZjIyEi++OILCgsLOfroo/nDH/7AKaecEhoYHm6UPtJ5gc3g888/56233uL888+ne/furFy5kiuuuIKLL76YRx99FLCSo8zMTL766iv69esXem27du1C/ZXz5s3jhBNO4KGHHuJ3v/sdr7/+On//+99ZvHhxjQFfh+J2u4mLi6O4uJjY2NjG/7BCCCHCisfjITs7m8zMTCIiIlq6OOIQDnWv6lN/t4rkqC6PPPIIzz77LJs3bwb2JUdLlixh0KBBdb7mT3/6E2VlZXz88cehY8cccwyDBg3iueeeO6z3leRICCF+WyQ5aj0aKzlqFd1qdSkuLiYxMbHW8TPPPJPk5GSOO+44Pvrooxrn5s+fz5gxY2ocGzduHPPnzz/o+3i9Xtxud42HEEIIIdquVpkcbdy4kaeffpqrrroqdCw6OprHHnuMd955h08++YTjjjuOiRMn1kiQ8vLyag38SklJIS8v76Dv9dBDDxEXFxd6pKWlNf4HEkIIIUTYaNHk6LbbbqtzEPX+j7Vr19Z4zc6dOxk/fjznnnsuV1xxReh4+/btmTZtGiNGjODoo49mxowZXHTRRTzyyCNHVMbbb7+d4uLi0GP79u1HdD0hhBBChLcWXefoxhtvZPLkyYeM6dq1a+jnnJwcRo8ezbHHHsvzzz//q9cfMWJEjc3vUlNTa01RzM/PJzU19aDXcDqdOJ3OX30vIYQQQrQNLZocJSUlkZSUdFixO3fuZPTo0QwdOpSXX365xvLiB7N06dLQglRgLWc+Z84crr/++tCxrKysWsucCyGEEAdqpfOXflMa6x61ihWyd+7cyUknnURGRgaPPvoou3btCp2rbvV55ZVXcDgcDB48GID333+fl156iRdeeCEU+5e//IUTTzyRxx57jAkTJvDmm2/yyy+/HFYrlBBCiN+m6uVgysvLcblcLVwacSjV6x+aR7h1V6tIjrKysti4cSMbN26kc+fONc7tnyXef//9bN26FZvNRu/evXnrrbf4wx/+EDp/7LHH8vrrr3PXXXdxxx130KNHDz788MPDXuNICCHEb49pmsTHx4c2O42MjEQp1cKlEgcKBoPs2rWLyMhIbLYjS29a7TpHLUXWORJCiN8erTV5eXkUFRW1dFHEIRiGQWZmJg6Ho9a5+tTfraLlSAghhGhJSik6dOhAcnIyfr+/pYsjDsLhcBzWmORfI8mREEIIcZhM0zzi8Swi/LXKRSCFEEIIIZqKJEdCCCGEEPuR5EgIIYQQYj8y5qieqif3yQa0QgghROtRXW8fziR9SY7qac+ePQCyAa0QQgjRCpWUlBAXF3fIGEmO6ikxMRGAbdu2/eqXK5qO2+0mLS2N7du3y3pTLUTuQcuTe9Dy5B6Eh8O5D1prSkpK6Nix469eT5KjeqpePyEuLk5+EcJAbGys3IcWJveg5ck9aHlyD8LDr92Hw23UkAHZQgghhBD7keRICCGEEGI/khzVk9PpZPr06TidzpYuym+a3IeWJ/eg5ck9aHlyD8JDY98H2XhWCCGEEGI/0nIkhBBCCLEfSY6EEEIIIfYjyZEQQgghxH4kOaqnWbNm0aVLFyIiIhgxYgQ//fRTSxepzfr+++8544wz6NixI0opPvzwwxrntdbcfffddOjQAZfLxZgxY9iwYUPLFLaNeuihhzj66KOJiYkhOTmZiRMnsm7duhoxHo+HqVOn0q5dO6KjoznnnHPIz89voRK3Pc8++ywDBgwIrd8ycuRIPvvss9B5+f6b34wZM1BKcf3114eOyX1oevfccw9KqRqP3r17h8435j2Q5Kge3nrrLaZNm8b06dNZvHgxAwcOZNy4cRQUFLR00dqksrIyBg4cyKxZs+o8//DDD/PUU0/x3HPPsXDhQqKiohg3bhwej6eZS9p2fffdd0ydOpUFCxaQlZWF3+9n7NixlJWVhWJuuOEG/ve///HOO+/w3XffkZOTw+9///sWLHXb0rlzZ2bMmMGiRYv45ZdfOPnkkznrrLNYtWoVIN9/c/v555/55z//yYABA2ocl/vQPPr160dubm7o8eOPP4bONeo90OKwDR8+XE+dOjX0PBAI6I4dO+qHHnqoBUv12wDoDz74IPQ8GAzq1NRU/cgjj4SOFRUVaafTqd94440WKOFvQ0FBgQb0d999p7W2vnO73a7feeedUMyaNWs0oOfPn99SxWzzEhIS9AsvvCDffzMrKSnRPXr00FlZWfrEE0/Uf/nLX7TW8nvQXKZPn64HDhxY57nGvgfScnSYfD4fixYtYsyYMaFjhmEwZswY5s+f34Il+23Kzs4mLy+vxv2Ii4tjxIgRcj+aUHFxMbBvj8FFixbh9/tr3IfevXuTnp4u96EJBAIB3nzzTcrKyhg5cqR8/81s6tSpTJgwocb3DfJ70Jw2bNhAx44d6dq1KxdeeCHbtm0DGv8eyN5qh2n37t0EAgFSUlJqHE9JSWHt2rUtVKrfrry8PIA670f1OdG4gsEg119/PaNGjeKoo44CrPvgcDiIj4+vESv3oXGtWLGCkSNH4vF4iI6O5oMPPqBv374sXbpUvv9m8uabb7J48WJ+/vnnWufk96B5jBgxgtmzZ9OrVy9yc3O59957Of7441m5cmWj3wNJjoQQh2Xq1KmsXLmyRh+/aB69evVi6dKlFBcX8+677zJp0iS+++67li7Wb8b27dv5y1/+QlZWFhERES1dnN+s0047LfTzgAEDGDFiBBkZGbz99tu4XK5GfS/pVjtM7du3xzTNWiPf8/PzSU1NbaFS/XZVf+dyP5rHtddey8cff8w333xD586dQ8dTU1Px+XwUFRXViJf70LgcDgfdu3dn6NChPPTQQwwcOJAnn3xSvv9msmjRIgoKChgyZAg2mw2bzcZ3333HU089hc1mIyUlRe5DC4iPj6dnz55s3Lix0X8XJDk6TA6Hg6FDhzJnzpzQsWAwyJw5cxg5cmQLluy3KTMzk9TU1Br3w+12s3DhQrkfjUhrzbXXXssHH3zA119/TWZmZo3zQ4cOxW6317gP69atY9u2bXIfmlAwGMTr9cr330xOOeUUVqxYwdKlS0OPYcOGceGFF4Z+lvvQ/EpLS9m0aRMdOnRo/N+FBg4a/0168803tdPp1LNnz9arV6/WV155pY6Pj9d5eXktXbQ2qaSkRC9ZskQvWbJEA/rxxx/XS5Ys0Vu3btVaaz1jxgwdHx+v//vf/+rly5frs846S2dmZuqKiooWLnnbcc011+i4uDj97bff6tzc3NCjvLw8FHP11Vfr9PR0/fXXX+tffvlFjxw5Uo8cObIFS9223Hbbbfq7777T2dnZevny5fq2227TSin95Zdfaq3l+28p+89W01ruQ3O48cYb9bfffquzs7P13Llz9ZgxY3T79u11QUGB1rpx74EkR/X09NNP6/T0dO1wOPTw4cP1ggULWrpIbdY333yjgVqPSZMmaa2t6fx//etfdUpKinY6nfqUU07R69ata9lCtzF1ff+Afvnll0MxFRUV+v/+7/90QkKCjoyM1GeffbbOzc1tuUK3MVOmTPn/9u48JKqujwP4d3KycUmnRUYz0FYbyibLKC21fMwFkgwisdVsEwqLsg1LTUlHA60sCRpQ/ygjWqSgJMhssU3TisQMNaNI00oLhZbR8/zR633npr7PtL1Wz/cDF+49597f+d07ID/OPTMKFxcXYWlpKRwcHMRff/0lFUZC8Pn3lS+LI34OP194eLhwcnISlpaWwtnZWYSHh4uamhqp/0d+BgohhPjOmS0iIiKiPwbXHBERERGZYHFEREREZILFEREREZEJFkdEREREJlgcEREREZlgcURERERkgsURERERkQkWR0REREQmWBwREf1gCoUCBQUFfZ0GEX0jFkdE1KPIyEgoFAro9XpZe0FBARQKRR9l9ZlCoehxO378eJ/m1aWhoQEhISF9nQZyc3OhVqv7Og2i3w6LIyLqlUqlQlpaGlpaWvo6lW5ycnLQ0NAg28LCwvo0p48fPwIAHB0dMWDAgD7NhYi+HYsjIupVQEAAHB0dkZqa2mN/YmIiJk2aJGvbt28fXF1dpePIyEiEhYUhJSUFGo0GarUaSUlJMBqN2LJlCwYPHozhw4cjJyfnq3JTq9VwdHSUbSqVCgAQFRWFiRMn4sOHDwA+Fy0eHh5YtmwZAKC+vl6aafL29oZKpcKECRNw5coV2RgPHz5ESEgIbG1todFosHTpUrx69UrqnzVrFtavX4+NGzdi6NChCAoKAiB/rdY11okTJ+Dj4wMrKytMnToVjx8/RmlpKTw9PWFra4uQkBA0NzfLxjcYDNBqtVCpVBg3bhyys7Olvq64p0+fxuzZs2FtbQ2dToebN28CAIqLi7FixQq8fftWmllLTEwEAGRnZ2PMmDFQqVTQaDRYsGDBVz17oj8diyMi6pWFhQVSUlKQlZWF58+ff3OcoqIivHjxAlevXkVGRgYSEhIwd+5cDBo0CLdv30Z0dDTWrl37XWOYOnDgANrb27F9+3YAQFxcHFpbW3Hw4EHZeVu2bMHmzZtRUVEBLy8vhIaG4vXr1wCA1tZW+Pv7w8PDA2VlZSgsLMTLly+xcOFCWYy8vDxYWlqipKQEhw8f7jWnhIQE7Ny5E+Xl5VAqlVi0aBG2bt2K/fv349q1a6ipqUF8fLx0/tGjRxEfH489e/agqqoKKSkp2LVrF/Ly8mRx4+LiEBsbi3v37mHs2LGIiIiA0WiEt7c39u3bBzs7O2lmLTY2FmVlZYiJiUFSUhKqq6tRWFgIX1/f73reRH8cQUTUg+XLl4t58+YJIYSYPn26iIqKEkIIcebMGdH1pyMhIUHodDrZdZmZmcLFxUUWx8XFRXR0dEhtbm5uwsfHRzo2Go3CxsZG5Ofnm5UbAKFSqYSNjY1se/r0qXTOjRs3RP/+/cWuXbuEUqkU165dk/qePHkiAAi9Xi+1ffr0SQwfPlykpaUJIYRITk4WgYGBsnGfPXsmAIjq6mohhBB+fn7Cw8Ojx/zOnDkjG8tgMEj9+fn5AoC4dOmS1Jaamirc3Nyk41GjRoljx47J4iYnJwsvL69e41ZWVgoAoqqqSgghRE5OjrC3t5fFOHXqlLCzsxPv3r3rljcRfabss6qMiH4baWlp8Pf3R2xs7DddP378ePTr99+Jao1GgwkTJkjHFhYWGDJkCJqamsyOmZmZiYCAAFnbsGHDpH0vLy/ExsYiOTkZ27Ztw8yZM7vF8PLykvaVSiU8PT1RVVUFALh//z4uX74MW1vbbtfV1tZi7NixAIApU6aYle/EiROlfY1GAwBwd3eXtXXdf3t7O2pra7Fy5UqsXr1aOsdoNMLe3r7XuE5OTgCApqYmjBs3rsc85syZAxcXF4wcORLBwcEIDg7G/PnzYW1tbdZ9EP0bsDgion/k6+uLoKAg7NixA5GRkVJ7v379IISQnfvp06du1/fv3192rFAoemzr7Ow0OydHR0eMHj261/7Ozk6UlJTAwsICNTU1Zsft0tbWhtDQUKSlpXXr6ypCAMDGxsaseKb32/Vtvy/buu6/ra0NAHDkyBFMmzZNFsfCwuIf4/6v5zhw4ECUl5ejuLgYFy9eRHx8PBITE1FaWspvthH9B9ccEZFZ9Ho9zp07Jy34BQAHBwc0NjbKCqR79+71QXbd7d27F48ePcKVK1dQWFjY44LvW7duSftGoxF3796FVqsFAEyePBmVlZVwdXXF6NGjZZu5BdG30mg0GDZsGOrq6rqNPWLECLPjWFpaoqOjo1u7UqlEQEAA0tPT8eDBA9TX16OoqOhH3gLRb40zR0RkFnd3dyxevBgHDhyQ2mbNmoXm5makp6djwYIFKCwsxIULF2BnZ/fT82ltbUVjY6OsbeDAgbCxsUFFRQXi4+Nx8uRJzJgxAxkZGdiwYQP8/PwwcuRI6fxDhw5hzJgx0Gq1yMzMREtLC6KiogAA69atw5EjRxAREYGtW7di8ODBqKmpwfHjx2EwGLrN4Pxou3fvRkxMDOzt7REcHIwPHz6grKwMLS0t2LRpk1kxXF1d0dbWhkuXLkGn08Ha2hpFRUWoq6uDr68vBg0ahPPnz6OzsxNubm4/9X6IfiecOSIisyUlJcle2Wi1WmRnZ+PQoUPQ6XS4c+fON69L+lorVqyAk5OTbMvKysL79++xZMkSREZGIjQ0FACwZs0azJ49G0uXLpXNpOj1euj1euh0Oly/fh1nz57F0KFDAXxev1RSUoKOjg4EBgbC3d0dGzduhFqtlq2f+llWrVoFg8GAnJwcuLu7w8/PD7m5uV81c+Tt7Y3o6GiEh4fDwcEB6enpUKvVOH36NPz9/aHVanH48GHk5+dj/PjxP/FuiH4vCvHlggEioj9cfX09RowYgYqKim6/00RExJkjIiIiIhMsjojol5KSkgJbW9set1/h/5UR0Z+Pr9WI6Jfy5s0bvHnzpsc+KysrODs7/58zIqJ/GxZHRERERCb4Wo2IiIjIBIsjIiIiIhMsjoiIiIhMsDgiIiIiMsHiiIiIiMgEiyMiIiIiEyyOiIiIiEywOCIiIiIy8TcKOOcUwMdYygAAAABJRU5ErkJggg==", "text/plain": [ "

    " ] @@ -1359,12 +916,12 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 40, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGxCAYAAABoYBJuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACIRUlEQVR4nOzdd3wVVdrA8d+Z29IrIQkQehMFpBtQBETBthbWVWw064vrIli3yKqrsCp2VtdVwN0Vsbt2jSgqvfcOoacA6e3m3jvn/WOSSwIBSUi5ic/387mSmTl37smMyTw55znnKK21RgghhBBCAGA0dAWEEEIIIQKJBEdCCCGEEBVIcCSEEEIIUYEER0IIIYQQFUhwJIQQQghRgQRHQgghhBAVSHAkhBBCCFGBBEdCCCGEEBXYG7oCjY1pmhw6dIjw8HCUUg1dHSGEEEKcBq01+fn5tGjRAsM4dduQBEfVdOjQIZKSkhq6GkIIIYSogf3799OqVatTlpHgqJrCw8MB6+JGREQ0cG2EEEIIcTry8vJISkryP8dPRYKjairvSouIiJDgSAghhGhkTiclRhKyhRBCCCEqkOBICCGEEKICCY6EEEIIISqQ4EgIIYQQogIJjoQQQgghKpDgSAghhBCiAgmOhBBCCCEqkOBICCGEEKICCY6EEEIIISpoVMHRTz/9xJVXXkmLFi1QSvHJJ59UOq615tFHHyUxMZHg4GCGDx/Ojh07KpXJysripptuIiIigqioKCZMmEBBQUE9fhdCCCGECGSNKjgqLCykZ8+ezJw5s8rjTz/9NC+99BKvvfYay5YtIzQ0lBEjRlBSUuIvc9NNN7Fp0yZSUlL4/PPP+emnn7jjjjvq61sQQgghRIBTWmvd0JWoCaUUH3/8MVdffTVgtRq1aNGCKVOmcP/99wOQm5tLfHw8c+bM4YYbbmDLli1069aNFStW0LdvXwC+/vprLrvsMg4cOECLFi1+8XPz8vKIjIwkNzdX1lYTQgghGonqPL+bzMKzqamppKenM3z4cP++yMhIBgwYwJIlS7jhhhtYsmQJUVFR/sAIYPjw4RiGwbJly7jmmmtqXgGv9+THlAKb7fTKAtgr3JamXNbng1PF5oFQ1maz7h+AaVqvQC5rGNYrUMpqbV3jQC5bnZ/PQCgLgfez3EC/I7RhoN1utNeLERSEJyMDMy8PIyQER2IinrQ0zKIi/3n9+w8cwCwsrLocYEREHNufn48RHHxsu7AIExMjJARXi5YUpx/CU1SAIzSc4MSWFO/fi6cw338uR2g4wS2TKD64H09JEY6wCGt7/148+blVlyvMxxERRXCr1tZ2fq7/Z+6EcqHhBLduS/GhA9bnmiaO4NATy5RvFxf6fzYcwaFWnQ/up7QgD0dYBCEtkyjYvwd3QS6mAVopgsKjiGjZlty9OyjMPUpoZCyRSR3I3b+LwtyjZRfNIDQ6ztq/dweF2YerLBcaGUtkm07kHky1zhURQ2SLtpXPVV4uqYNVLj/b2m7Vntw926sut38XHu0jrlP3sv85yn7u7TULc5pMcJSeng5AfHx8pf3x8fH+Y+np6TRv3rzScbvdTkxMjL/M8dxuN26327+dl5dXdQVmzTp55Vq3hpEjj23/+98n/wWRmAhXXnlse+5cqNAtWElcHFQM6N57D06WPxUdDdddd2z7448hO7vqsmFh6NGjj/1O+t+nqCOHgWO/p8qf1doVBLfeemzfl1+iD6X5T+Uvp7H+Jx0//ti+b76FfftOLFf+3jvvOLZv/vewe3fV5RQwfjzaZv3vrH76CbZv95fRaIyyN/q0pviGmzCCgwlx2mDxYkrXb8TtM3HaDFx2Aw0UlHjx+DS+66+nWYtmKCB3wc+4V68j2GEjPMiO1nCkwE2x10eQzaDZ+FswYqLZe7SInIVLabV7M7GhTrSGQ7nFALSIDEYp2Dv4EvbawkiKDqbdwZ3opcs4lFtMUamPEKfNX+5IgZud/YcS37Ud7ZqFYm7aTNqX31VZLrvIg+uKy2h9bldMDTsWriZh9VIighyVykSHOGgW5kJfNJyMZi3YnllAu9x0klYvBk4sB3CgZ392x7Sy6lt0FL7+uspyRwrc7Onai9j+vWjXLBQOHeLIvA+rLAfQ7KLB0LMnqUcKSd+1n06LUiqVyS7ylH2fQai+fUnveDbbMvLp4vKS8M1naK3Zl1VMgdv6eWodE0J4kJ2sjl1ZGNuRAe1jiaeUvNn/YffhYz8b7eNCiQhykFfsYXV4C7qOupSEyCDSMnLY98JroDWd40KJDg8iKzuf7fuP0jkhkpiB/dgf15JFK7ZjKy6m/cIU2rWMIbpDW7K37mBfahqt2yYQ3bUzh3PyWeIN9n/mBUd2E921M9lbt7NvT7q/XPbW7WzLdpPZuRu9+3Sl1fALyX7wEfalHqJ1m/hj79lr/Y5yh0eQeON1JA2/kH3fLeDIv2bTNjGGmHO6kbV2PYd27QPThzJ9RESHE3bVVURe/zsOfP8jSUcyKExJIW/vPgqK3ShAaU2o005o1y6EzZxJ2rffkXjJcAruvpv8rVsodJcCmmCng6i27QkbPJis3TuI/ttTHHntNfYt/RHH7lScpaVoNDabQVS7jsQPG0n+ti2E9+zFtsw97F22AK/XpHlmFi63B5uhiGnXhYSLLiV/22bCu3Qjff5XbHJn4fOaGKYm9mguoW4Pke06EX/plRRsWE/YOd05+vFHuLfvID8i0n99Y9q2IW7kSIpWryakd2+y3n+f0l27/cdzIiNBKUIHDaTlNddQ+t57VZYDyI2IIOSC82k5YwbFr7xCeEJCleWcHdoTNW8exYuXEzZqFBnXXotesZLjFXdoT/R111FiGITdeiv777gD3/zvCTrud3t5OXP1alyPPsr+O+6gcNFiXCUlBFcoW7FcUO/eHFq2jLw1a606ud2EFBefUKa8/gWhoXgdDqtsaSlRiQn+csHHXY/CkBA8TicABd3PIXHQIOzHXd/y3JyikBDynE7yBg2k5aRJ2F/8V5XlioHigck0nzUL3/yfCR84kKxhwyqVKS/n69CeqOnT8W3fTvioURy89VZs3/9QZbno664jy3TDfeeA6YV1X8HHn8HvRkB4C0jqCwdWnXBvTqbJBEd1Zdq0aTz22GMNXY2TMk0NCrSp2ZmeT8ahI4S6bPRoFQXAz9sPszeriCxnJln2DfzpsrPQwPKtmQyMsf4Xm7diPzszC9BotIZWSXHcMsr6i+3tZfu4xevD8JrMXZ7KjsxclDLp2DycG/t1JM/M4c35P3Jdn/YkhCbw+verObIz1V+/jnGR3Ni3K3mleSw/kEXn7L0khrVg4nspGN98Q4vco3SMi+LGPmejFGQWZrJ6fwbnJjUnzuPB1DDxg88wU1IYZtOM7t0TpeBg/kFWH0ijZ8vmtI5ojae0lN9/NheUyT+iW2L4vGw+upn1aQc4OyGR7s26o4F31//Is/lLKXUqzm99FjOj+2AzTHYd3c45cZ0pNX3M2/Adu7IOAvCF7wfO7dSHly6/j2AnpBbtKivnqVQOIDvxCNOv/yPxEYpUzya6BSlKfR7e3fAdu7IOANAhphXXdx9OfIRiTe4K+odfSInXzQdrv2RX1kHKYj86xLTkuh4XE+HU5BavpKerJcUeGy98+w9syxajtMbQ0K5ZElf2Gkm4O5+0w9toUdSfktJiHn9vGhnLf2bAoRzOadWefp2H+cuEJ3TCExTN/358lf+lbaOw2ENCVhHXuMMY2ucyQnMzyTi0jdDELniDEliw8ku+XPlv0mJCAbgovjNjXV0JzckkI61yuT2H9rBtcxQHfgqjf7d+TBw8/oRyP678ktRDewAIKlrP7856idhDO0hd8z9CDxfjdbVixcLPObxvNw6vicOnSdXQfNMQOk57CbXlJ+L6DCDtsw85vGsLWmsU1msPENOhG4lT/sh5e5bQrONItk59ED77H0HWjwpoSNdQ1KEr8Vdcw7n71hJhDGf3PZMo+HEBrbLysJngBrLKful2zz9ISKd4MmfMoHB3KucCaE1Ubi6lQHZZOVfOUUI6tCV77tuU7NtPl9BQ//8fpTk5x8rlZvnLle7aTSuHneiVCyicCwcGDaRVr164sg9XKpNQdh6v3UbBqp85MGggSTNmEPvRu4R26UT23Ll4du0mrsLvB5/NRua2baBN2k6YQP4dd1D4/Q/YgEgqKziwH9+775I0YQJH33yT4u+/x+4zK5UrOpCGLSSEuJEjOfrue2S/MYtwIDw/H1vF1rmMNRRFNCPy/PPJX7YMFi2mTdmhsIIi7N6ysplrKYqMI/L88ylYuBCWr6VVZJT/NKGFJTg8XlizkaK4RCLKynm3bqdCOxsAhVs2E5KYSPj555O3dAk5+3eD89jxnBBAQc6axYQnNCf6JOXKy2avWUzQ55/S/IoryJv1ZpXlivbvxvz6S+Juv5PM//6bw9s3EHJcmfJyjvXriJnxHJmff8rBNYsJDTqxAba8XMT553P42685uGYxhEAIoM2qy+UtXULaxhV4QqyAJ1gBvhPLlNc/LxhKy+oYZAAnKQdWWbf1twrFm1cTER5G+Pnnk790CbnHXY/8ICgJgtw1iwmdfw6xJykHkL9lLfbPPyVuwgSOvvxilWUAivfvRv30I7F/+jOH//tv0jesIOYk5Zzr19Fs4j1g+mDu72DjfNjsAdt7VqEOw+CSF05880k0meAoIcH61ZGRkUFiYqJ/f0ZGBueee66/TGZmZqX3eb1esrKy/O8/3iOPPMLkyZP923l5eSQlJZ1YcPz4k1euvLmjXFlLC8DhvBKW7D5Kh7hQurWIZNOhXLav2YvP9FLsK6D9ef04r207Unas5cfduzireQKjzx3IK4vm886qDeQ+/SQD27bh5Wt+y94r2vHp5gJGdOlMp9YXct/nb7GkxUFo6QWVjrnvWdK/OosXLvs93tHtKU1MZkrKMyxhJSgvSvnA8ILyseaHTJ4Z+iSuZj/j6XslD/38EEuDl1b6Npa3yOPvF/ydhNRPiQvtxeSf7mF5j8XQg+PKFfH3C/7OkR0fc0FYNFN+uoc15hKMizRrdXkZNzMunEF0aSkFq/5LdNdr0ZQy9evJpGYvxuit+beGzYk+/jryWZrl5OLe8hHxZ12LLzKSqSn3kXrYavl41H4ej415lg7Z2Wzd/CGd2l+OLyGRlz6Yws7ojVyQqQgqhaBty/mg/Tauv2MGnddugJ7d+fKlyeQe3UZc2YN03IrNqBVb+H7jbkb+4Tk6lnigbx+WTp9C5JatDPSC0wNOL7ieeZ+MHw/R5pkZ9MgJxva7azj4wAP0W7yVfv6rsZWMkmhajr6JwV+n4Wzh4eA//knfRdvoW+mqbSPDHUPLZ56h3yef4OpvcPDue7hm4aLj/ufaSbpvFS2feYaWH31E8Flnc/D/fs+tixYfa17buJn0vEh/Gce113LwgQc4Z/ESzqnUFJdJmrbOlfjRR7jKyrVavJs7AFRWWdl9pA0srLJcK+D8PVmgsuF/+8n4MY2WTz9dqVzLxbtpWV79PQvJ2PN7Ws6YwbkrWuG6/2oOPvAA0Wv2Eo0NKjwCzW8Xk3PuuyRMmMDRN94gd8c+nBwLPsrl7zxA8K5dxN9+O0fffBM+XwAq0vojoqyMBnL2puEMCiL20akcnTOH0vk/4cQgP7xCOHDkKISEEDtrFof//RZ7Du3GE67w2MBjV6QmRFJqgMeexcC2LWh5zz0c/PIjfojMgh6h6Ao/+8qMArIY2v64cr2jrLqVl81YwrDWI2h516zKZSrQhrLKLZpPy3/+kwNff8IX8Vl4W0ThtVFWP/DaoHWP8xl94w0Ub9qEa8YzzOvuZdv2JZgKdNnLVNC5czJ33DQa985dhN80mg9LF5K6fQl2NDYNNq3p1Hkgo8a8hPtAGhFtk/jZvZBDWxfi8AVhQ2PXVtmu/a6n1w1/4fDOTcTefDOe958kddlcq6XKtGNo69HTtv9o4kf/haO7txB9883se+8J9qyca/3wKdBaoZSdNgNuIf7av3A0LZWYW28l9eun2LH6TUxnPqZdY9qga7//o92gBzlakkXMuHHsWvg0W1a8euya2QoB6NZ/IlHJ93O0+Cgx48Zx6OfpHFz2Dxxa49Qal6kJN7KJT76X2KG3UOopIXzAAPjhSYoXvVJWNY0BBA38PSEX347P9BF30y2ExO+jYOGr+LBhKhs+bPiUjYiBtxM+5A/4DEXcTbdgtsjm6KI3KdHhle5rbPJYwof8Hp82aWZ34OmqyVj6b3xmONnaQGNgYpAw8EbCB9+OT5uEjxtH85/fIHPpfzAw0aaPfNMkPvkWwodM9JcpWvAyR5fMIUhBkFHeTe8g9LyJ/s8MHzeOkgUvk714DgYQoUAZCoUi8rw7CbtwIihF2LhxlC54hdzFc/x1j1AQYSgiB44n5sKJoHWV5QBaDRpHzEW3ABAz8ffQ1TyujFW/yIFjiB52LwDNbroFEnPJWvhvtDLQKEwMTGXQLPlGwi68/VgKQqdLIPcgJPrA0KB9cGQHbPnshN8XJ9PkErLvv/9+pkyZAliBTPPmzU9IyF65ciV9+vQB4Ntvv2XkyJENkpCdX1KK3W7y5c7vGdF+MA8teJIF+35C2YpRhsdfLrlFMs8MfoaPdnzEtZ2u5YGfHmDJoSWVznU6ZcpN7jOZceeMY/bG2Ty36rmT1u9U5Qxs2JWNyX0nc1O3m3hnyzu8uOpFTNP0P5RvPedWth3dxsr0FdzbbxKjzxrNvK3v8PLyl+gX35fOsV2Yu+G/NM826bHLy/Cofpz34NPkfvABUaNGcXDKFAoXLT6hXqGDBtJyxgxyPvzwpOVOp0y55g/cT2zZX8uZzzx70utRm+XO5FymoayHms1A2e1gGLS4bwoxN91E1ty5HHphBlopTG8pmF4UGpvdSeJ9DxFz441kvfMOaS8+jc9bVPZQLm9SAZsrlFaT/kLUtdeS8/HHHHjxcbylhSfUy+4MpdUfHiXqmmvOuFylMp9/zr7XH6fEcxTt0JgOjekA7dDED76eDmOeIHfPdiLbdmbHu39j77J3MZUdU1kPIxODjkMm0PXy28jZtZmojt3Y8vVbbPnpP1B23QC0Ad0uHEe3i24m58BOolt1ZOOS91i7aBamXaFtCtOA3sPuoec5V5JTmElUaHPWbfuS5Yv+AcrwP8BRiv7Jd9Gz06XHyu34muXLXz/hevTvfwc9O40kp+gwUSFxbNn5HRuW/QsHBnYMHCjOHngnSe0uwF2SiysoksN7l7Jv8RsYgIGBoUBhkDRwPJGt++MtLcDuDCN//0oyls7BQJVVSxGccBbxA28Hw46v8DC20DgwvRxe+iYlR7aX3XdFUFxn4vqPt8oVHcEW0gxMH0c3fII7Px1sLlzRbYntMgyUgel1Y9hdoDX5+9biLcrCQGEohTO2Da649tb/qyX5GEFWAOA9vAcz64D//zUjJgl7M6s9SZcUoILCysrtxszaAz4voDFi22KP7wJodOFRVGgsoPAd3Y2ZdwgMG0ZUK2yR1h+t2lOEcoRYn5+XhlmQ6f/7VIU1xwgv++O5QjnyM6DwMLo8fA6Ng/CyP5g9xeAo6x7NT4fCw6cuU5AJRVlgGCgMCImxXgBeN9jLmmKKssF9LOcIVySERP9yuaBICC4r5ysFm/PEcr90rvIL4oqo+lzF2eCukEJSsVw1vwddoZzWVv1VFXXTRVlQnFtWNQ1BUaiqrltxNrjzy34GFbjCrfoBmB4wHGXlcqAk28o7Mj1gDyLPFkVkdOxpPb8bVXBUUFDAzp07AejVqxfPPfccQ4cOJSYmhtatW/P3v/+d6dOn89Zbb9GuXTv+8pe/sH79ejZv3kxQUBAAl156KRkZGbz22mt4PB7GjRtH3759mTt37mnVoTaDo483rSRHbzh1oGI6UdrFI8mTGX3Wb3l/68c8u+x17IaB3TBw2m04bQbhzhBu7zmei9oM46cDP/HO5nfxej04tA2nsuHARmRQJOe1v4DzW57Phr3L6d6mP5sOb2T7lkW4c7NxYMOhbURHJ3B2n0uIC2nOod0baNm+OyW+EvYt+4HSI4dJ6HwuhmEQ27k7oMjbu4PINp3QaLJ3bgYge+92QuISSex5HloplIac9H1EJbTG9HlRKNLefJ2Cd99HZxz2f7v+YGDWbDJnzKg6GVMpmk+ZQuz4cRydPZvMGWXXzf9HukIpRdzkycSOHUPW23PJmj0LHA5UcDDaUNgjo7CFhhLSrx/Ro0ZRsHQJYcnJ5H3zLcWbN6JL3XgPp4H24mzVnuCefQgfNoyChd8TdsEwitasxb1tI+5da1EOG9jthA64iOCeA7BHRVK8cTnB5/THLCqhZPs6ilfNBxTB/YYT1LE7RkgQxZtWEXx2X8ySEkp2bqRo5feABqUJ7TscV+eeGA4HxZtXEHx2PzSK0j2bKVoxH6UMQBPcdyiu9t3B9OHZ8hOOroOsX3DzH0MtfN66HB2Gwe/+jba7UDYn2ucB04f3x3/gTV0Dhgttc2HvNBDHeTeAYWBmHcKIaQHapHT1l3h2rfVfX0eHXjh7XWo9JLPTMKITQZu4132HZ/cGq1lGKRwde+PqcSGg8GVnYIuOBzTujYsoTV0HSuFs3xNXt4GAwsw9jBEZB2g8u1biPbgNDOte2jv2wx7fCUwT35Fd2Jp1AMPAd3g3vn2rrV+c9iDs7fpjhERiuovwFuRij4jBcLgwPW58BTll/3sY2EIjMRxOTE8pvqJ8bCERGA4HpteDz10IKGxBIRg2B6bpxfQUYziCMQy7f7vc8fsrb5dUKBdUtt+H6XNj2FwYhq0sP6gsB9GwQ9k+/y/68m1f6bGfAZuz8v7jt8HaLn/YmV7rZditF1jltGk9ZCqV85V9boXMjuNbv4VohKrz/G5UwdGCBQsYOnToCfvHjBnDnDlz0FozdepUXn/9dXJycjj//PP5xz/+QefOnf1ls7KyuOeee/jss88wDINRo0bx0ksvERYWdlp1qM3g6MttyxnUtgtf7Pqa67pcy/y9P7ErOxWXLYhQRxihjnCC7cF0imlLm8hEij2lBDucHM3PoqAgB7vpw2b6cDmCiWpu/dVUlHmIkDjrL6PsDWvwHM4E00fE2T0JSrQ6M/LWrcGbm4MjthkRZ3dHK4X3yGGKU1MJbt8BR2wsAO49ezALCjHCw3G1aQ2ALzcXs7QUR3w8mCal+/dbZcJCcSYlgWHgycjAd+QoRlgo9sREDIeDotWrKVy4CO3z0uy22zg4efKxlhybjZA+fYi6cTQRF11EaVoazhYtrF/I2qR47Up8hzNwtOuAq8s5ZaOlfHh2b8bRvpv1EDAM3OuXgNa4eg4se7iYeHZswNGpe9noJRvuNQvxbFmN67zh1ntNE/fyb9C5hzGaJeDsNdx66B7YhnfrImztzsXe/lzrIeLzorfPR3W+yPpMbaIXvYo+uBqV1BuVfLf1oDF9sHM+dBxW9sAy4fu/WX8JXzzVKqN9sP5d6HE9KJu1/dl9sHcRtBkEVz5/bP+6eVa58offB+NQO771Bz0YduuhtnI29B3n39afT4KYjjB4Stm5gLyDEJFY9leXAZlb4MhOiO0I8WdZ9+PwVlTWHohpD3FlPzuHt0P2boj+hX1HdkD2HohpC7GdrH1Hd0LOXohqY31O+T50hTI7IHsvRLepsG+X9b64s6w6axPSN0BJLoTFQ7PO1v8j3rIBE3aXPMSFECfVZIfyDxkyhFPFckopHn/8cR5//PGTlomJiTntVqK6Nrzjudzz/T2s3JvOhUnnM6LdMPJb5lNqluKyuXDZXDgMB0opfAUFsHMnnpgYYpOSCDuSi2fPAVydu+BongBaU7RxIzovH3dWHkFduxLTozfe7Bw8aWm4ImNQNhuejAxcrhBcza3mZM+RIzji47EFh+IMi8AWFOwPcHRxCcpmQxcV4Tl8GEd8PMruQGkwCwowgoJw79xFyaZN2GJiiB51LUffeovCn362htTm52Pm5/u7uErWrbO6uCZPpmTbdiKuuAJX166EjxiBs0UiaE3x0h+gII3Sw4k4e15otS40j8KTthZ7cGcr0DAMPDtW4929EfDh6NwbTBN7s7JUVNMEw4Z3zybMzJ14Q5zY21hBlaN1GxyOQlRiq7JWKU1QuyQoDgObC7CCKrsnHfu216DZJPB0hvduhfZDUYPuhUUvwe4f4Hf/RoXHwo5PoevF1l/6ZeU4rhxxXay6aR+8e1PVZdqeDxvetf7VJrx7c9Xlul4JO76FbmUjFefdaAVKg+6FrV+CpxDOvgZ15UvWccNuXZODK6G0GLwlENsB0FYA5AyBiLIsoNJCCG0O/q6HEnAEWUFNeDw4w4/tD4+3XuUBit1lnTeixbEuBp8HIltZLzjWGhLT/tgPgs9jfX55HXwesDkgpp31vvJWDW1C/NmAAluFX12OoDP6ORRCiOM1qpajQFBbLUdaa15c+gFvbn+cEO/ZLBk/F0NVPWG5r7iY4lWr0R4PKigIZ6tWOFq1xJOWji0sDCM8zN9aU87WLBZHfDxmfgGl+/Zhb9YMjcbRrBnFGzdZ+2JjCenXl6LVq/Fl5+DLzsYIDcUWGUlo8nnkz/+eks2bscfEEHX97zj84osU/LAA7+HD6JKS08/rsduJf+QRYm66kYJFi/AeOUpQ93OwBbnwHtiJLaEVjsQk3Eu/xGYUYW8ej3IEWf30zTpbfcy5+yEyyer33rcMErvD1i+gy2Wwdi70vsVqrdEaOg2HFbOgz62w6RM4+2pY9Rb0mwDbv4H5j0OfsXB4m1W/S6eXtc78Dj4oS6xP6AGLXoBBk+DwFghLgBFPwb7FVsvOijescpFJVqDS6RKrjgD9boN9S6F1snVem8N68Bs2KM6ygpVOF1stNs06we6frPeFxEDGRog/x8pZAGg/2Gplie0IB5ZbgUVwNOQesIIHr9s6b0x7KDoKIbFWyw1YZZVh5UUc3g5B4RDSzAqGhBDiV6bJthw1JZkF+XyyZTHYwGmEnjQwMktLKdm0yerKKpujyZebCw47tvAwzMIifEWFOJo1Q5eUYBYUokJCcMTGUrh4MSUbN+HeuRNPWhre9HSc7dvT8um/U7xqJeGDL+DA3XefMunZm3aIqGuv4eC9955QrnjdevJSviN2wgTyUlKwN48nZtw4jMhIbFFR2Mr+tSck4EpqhefwEUIHDKB05ybMfespzT+KefQwhmMQnvxDOFvGYwRVaAXwlkB2qtUK4SmGQ6th/Xuw4X24+IljLSopf4Ed31gBDcDqObCrLH+nYpndP1hlslPhu6nHPqf5WcfKHd4GMR2sgOzix62go9dN1r/Ze6wkzPw0SJ5obbvzYcCd1nkSe0B0W2t/SAzkH7ICtPJyAJEtj5UxPVZA1XHosTKJZd9DbLtj5XylVrnWycfKhcRY3Uuu8GPl3PlQkmdtH1hlJVQmnG21BsV1qdzaIoQQ4qTkt2UD8JmaRXu24jGLwQbBthOHIwNoj4eSbdvwZWdjj6881YDvyNFKLUVmcQnOhHhyl39OxIhL2H/XXVUGPZ4DB8j5+GNiJ0wga+47uHfuwt6iBapsRmFls4HNhvfwEfJ/WEDshAnkf/8DzrbtCO7TF1tMDPbY2LJ/Y3C2soKe8KFDcXXqhFlQeSSSERqMM6kVpTs2YKbvxgwLw9nzQooP7cAsKMLRthOOVkkYhvdYAFFRcQ6krYfP7j12vMtlVivQ/hXQ/3Yr4Mg9cCyPptMl1vGOwyFtHQy4w2qhySubk+jyGcfOH9ESOgy1cm/Ouxu6Xla5HscHH6bPCkqydh8LmNz5J5YD69/yckfKcmyi2loBWHG21U3kzrcCv7iuVuuOOweCoqxyR3ZYn6UUFB6xuptiO8GRbVCSA64oK48nc4t1Pq8bcvZDaREk9bPO6wyVPBwhhKgmCY4awKG8HA7mZ+LDGskSYj8xGVxrjXvPHrxpaVY3k1F1yxKAr7CQo08/TdiFg/3DvguXLcfeogWOhAQciYnYy/51nX02Id3PwXP4CNG/u47QgcknBDSAlWBdFviEDb4AZ/t2lcqVHy89cACzoBCzsODYdk4WeAoxgl04W3WkdNW3mJl7webAk5eNt+A7Qs6/Et/BLdgcPpThPTGwOLwNjmyHgb+HH5609ke0hAsfgnNvtBJ1bXYr4Ol2VeX3VgxUtGkFTp0urlzm+HLeEuuc0W2tQKboKJilVnBxYJU1PFdhJTaDNaS3KMsaVpt7oKzba6UVxKCwsp+1FawV5UKwNTsv6eutgE8p6xhA4VEwN1n5PAVuCHVB+jrr/GV5UaDKAqkia7isxw2hQZCx6dj5nOFWkBUaZ3W1uU5vkIEQQojKJDhqADsOp+Ex3Xi1NRw4zHliy5H30CE8e/dii4m15rI5CfeuXRyeMQNXp45E/fa3FC5dRsyttxI6ZCi6uLhS2VMGNKcb+JSPTKv4Pm3iO5KGu+Aori7n4D64Ce/BnRide1O86Gt8h9PR2MH0YQQFYQ+zobNSscfGWUGHO98KUKLbwrav4aenrdyZ386ycoCKjsIlf4NOIyC2rLUmP8PqNirIsIKDxJ5WK5FSVmtK2norvwes95fkWl1qaeug6AgEx0JUayvwKTp8bHbAwiPQsreVcFxqgrvAyvGJaGElHBvH3QutrQRmtJXPE1OW6AxWIFUeBJW/IlpW3rZOciwIimxZtt2i8n5UWQtQ2b+RrSoEWKrC50grkRBCnCkJjupZdlERu7IPEB0UhgcrIIkoHwFUxnv0KCW7dqFCwyrn4FSgtSb/22/Jmj2b0AH9afn88xRv2IgtMpLSgwdxtWldKeg5IaABzIJCSg8cOHXgc1w59959KJuNkk3r8R5IhaI8dGk+yuvGh4l5eC+2uBao7KN40/ajnA5rlJvTjnI4sIWHYQsLAbMYCioEb/kZsO5dSP4/yPqtlWC9+GVrCHv5SC9XqBUY5R2yAqrIpLIh6ibk7LMCGK2PtRgFRVqjtFTZ1MjZe60yNheENbdaf4KjIbRZ2cKfTuuYz2Pl6hh2CTaEEOJXSIKjerbraAa5JXl0iG2JqazgIzroWNa8r6AQ946doMEWHl7lOcziYo7+858ULlxoJU6/+CKl+w9gi7SWPagy6AkKpvTAAXy5eWiPB+31gtb48vMxi4oxQkPxFRRgRIRTsmOnlfQNoDW6pAi9rwDfoT3YwsNwr1mBgQ97kB1bsxBUaBIqNALlCELZDLAZOHuebX19OjI2wfdPWgnMrnArOTorFc66snK5gkyrlchbAs27WS1NNQleIn55JnQhhBC/XhIc1aMSj5dtRw4S4nJhKAOtilFAs1ArODJLS3Hv3IlZkI8tPgF7s2aYJcWVurxK9+4lc8YMXO3aEnv77QT36oXn8BFrivQy2ufDe/iIFfQEBeHJyMCTdghQVsK1w47hcJQFFhozOwszKxNlevHu3maNoiqbUVd5S7DZvBjBYPjyMNxBOLp1QIWGW8Ptz4TphTX/hdX/tlp6zr7WGvlVkAFRSZDtq5wjVHjE+jeh+7F5c4QQQohaJsFRPdqXc5TMoiO0iojF7fGBrQiAuNBItGlSmpqKNzMTe3w8SinMkuJKrT/5P/xA1r/+RUi/vrR8/nmK1q3DHh2DLrSCJ6013swMlDJQTgemz4f2lOJMaoXNZUMZuizVxYfCC95ia0ST6bVmb/Z5QHuP5d9gB3sUyhlqDae3OWrvYuQdshKtMzZZ2xdMgSGPWEnR7nzrVZ4sXZIHhZlgOK1JAMPja68eQgghxHEkOKonpqnZevgAhjJx2pykF+WhlBWFxIdGU7p/P6X79mOLjbVad6jcPXZ45kyOvvrasW60nVuxh9grLQ5oFhRgGCZBndpj2BVKeVHeIihNB48HyhYi9Sfv2srWWbLZweE6tu5SbeXZhDW3gq+KrT9aW5MmHloLHS+GrD1w5QtwzrUnDoMvT9I+sBrswdbkiKGxtVM3IYQQ4iQkOKon6fl57M/NIDbEygvKKi5r7TGdhOQVUZqfhxERgeFyVXqfWVBA1luziR0zBltYONE3XE/p+gVw9GClclprzCPZuNq0wF5g5RNZScYOK9HYEQRBESeOtqpLnuLKQ/Td+fDzc1a9fjvLmqn6t29YI82OH2YPVn5R4UprHa3gaAiOqr+6CyGE+NWS4Kie7DySTolZREtHDAA5xVYgoMxgXPsPQmxLbKHHDen3FuNL28Xhl18BDGInTMCzdxu6uAhCoisVNQuKMGIScLTuACEBsjxExdafLZ/Blw9Y+UK/nWWNTDv3Jms+noLME99reiEvHcLirNFkrqqT04UQQojaJsFRPcgpKmFH1gEiXaGosi6r3BIrOLL5glFeH/boCsGO9lnJx7kHyP/qe0L69CXquuvw7N2GvUU7zJxMzOxjAYXWGrO4BFf71hj1ERhV1V1WzhVu5ScVZFqvlbPBnQtXvAAD74U+Y+DgKmg94OTn93msYfYRLaxRabIWmBBCiHokwVE92JOdSbY7h/ZRZUuA+HwU5RwGA2xmECo25lhhd74163PhYUwveD3BtJwxjYJv/oczLgQzJxNntwGUbl7mD5DMwiKM0GAczWKq+PQ6cHx3WbnyGae3fQVL/gH7l1qj0MBaF2zQvZB70OoiOxlfqTXnUVQbaN7VmnhRCCGEqEenORGNqCm318fWwwcJttuxGXaUuxTnnv0UFWUD4CAYQymrtST3ABzeDIWHITiakqMmLaZNI/1vT+CItYbNm9mZlG5ehrPbAIzo5larUWExjvjmGC5nPX1TFbrLyru7tIbwRPjwdnj3Zmv1em1C4rkw6g3oe5s1RD88/uRdZKbXCoyi20F8NwmMhBBCNAhpOapj+3OySC88TGJ4FEZhIc59B7Hl5FFg9wLg1EHY3PlwONta7sIVDmGRmCVuzEIvB6dMIbhzi0prq5UHSEZYFJ59qRihITjiTtEaUxfKA6TI1rD1c2vx1ndvhl3fW99D55Fw1hXWCLPjk7KranUqzzGKSipbQb4Wpw0QQgghqkGCozpkmprth9MAD6F5JTj3H8Bwl+KLiaQ4w5rjKMQHjuxdEBFTtmCoFQTl/7Sc7I++wd48lmY3jjjx3NmZ+I6mYxaW4OrYGsNZT61G5UoLYPEr0OJca3HYRS9ZOUZD/gjtL7RafU62Un15q1P5fm1agVF4AsSdBfZ6/l6EEEKICiQ4qkOZBYXsyT5AYl4JwemHAA/KpbHlHabUtIKFEOzWEPuQY/lCZmkpuSkLAYi69EL/vEfHMwuKsIWH1F+uEVjdZzu/g6WvWoFRr5th40cw4C7oelnl1iBHcNVD9MsDJEewNcFjfpoVGMZ3s6YcEEIIIRqQBEd1aNfeTQRvX0V8biHKpcBloEsNTMNFqVEKQIgKwrBVbinJ/2kFZn4h9mbRhPbvWeW5tWliFrsJ6tQWw1mLXVCnGolWWgDpm6yZrTsMg+vmwJ5FENMOcved2EpU1RD9cuVdbPkZ4Iq0AiNn6MnLCyGEEPVEErLriMfjIXfZV8Qd2osOdeALC8fnisZ0RoI9CK9RAkAYNirOR22Wesj79mcAIkf+cquRPSaqliteXDnRGqC0CHYvsPKHdnwDnUbA9W9DXhpEJFplqkrS/iUFmdYw/YRzrNYzIYQQIgBIcFRHTK8Hs6QQImLQIZHWumAVjxtWzlG4smFTx25DwaKV+PIKsMVEEnbeuVWeW5smZlEJzoTmtdtqBJWDHGcY7JwPy1+HPmPhg/HWGmyXPAH5h6y12ap6ryP4lz+n6CgYDivgOtXQfiGEEKKeSbdaXatimTKtQRvFKCDKdqzlyPR4yP36J6Cs1che9e3x5RdiiwzDHltHQUVJnpVX1HqgtfTIlS9Ys1t3HgFJA8BTdPL3lneXnUpxjnUREs6WtdKEEEIEHAmOGkChD5TNDUC0smOUtRwVLF6NLzcfW1QE4cm9q3yvNk10SSnO1i1Rjlq+faYXUn+Gde/Ake1w8RPWxI27vod+t9XOvEPufPCWWMuIhMef+fmEEEKIWibBUQM4bHpAgdaKcMOOMkB7vcdajUYMPmng48svxBYRdizX6HSX8jhVObvLmoDy03utkWNg5RX1HQ9Zu6Hd4KpHnVVXaaF1jvizIbLVmZ1LCCGEqCOSc9QAsrzWBJDKDMKGwlCKgqVr8WXnYosMJ+z8PgDYkzpjRDf3v89qNXLjTGyOCos+FvBUlQRdPseQpywvqKpyxTmwdwmEt7CG5uengSsCRk6DG96GgnQoya1+ovXxtGnN+l2SB3FdraVBhBBCiAAlLUcNIMu0hvEbvmCUUhg+k9yvfwQg4pILMBxWkrVZkFNpHTVfXgG2yAjsLZIqD5vP3gNRbWH/MsjcDBEtoeNZsP1ba522chEtoeMwK8l6/btWwHTt6/DBOMjcCoMmQc/roVnnX5648XS5860gLCQWEjpAaHNQVSRiCSGEEAFCgqMG0L/HQI7mZ7AydR/KgNKVm/AeycYIDyXq6iuwRTXDu397pXXU3BuXoNMP4+rcBhXTBta8Dak/Qu5+yDkAzc+C375prXjfJhneGW3lCh2vwzD47Sw4ugt63wIpj1rdZkP/BIYNgiJ/eeLG0wmOvG4oPGKVjz8HIlvKWmlCCCEaBQmOGsD2w3t55pJn+Iv7eYw0L+6URQDE3X0brh6DKN28zF/WzM7Es+w9XH2uxFW8AdWuV9WBT/4hWPuOlUC9+t+QsxdiO5z44Tl7YctnVrn0DdBnXOWWnNOZuPFUTJ81TN/0QWQSxLS1Ai4hhBCikZDgqAEsPbCBXT+t5tnhz7Hj369iHskm7KJhRN88zt+FBoA2se/5FPvez1AqywpoFr8MR3dCm0FW8BHVyvo3oQck9oCCDDj3Rmgz8ORJ2tFtrXLNz6qdROtyJblWXlFoHMS0t3KipAtNCCFEIyPBUQMo1G52HlrGtG9n8sQNd5FriyF69A2Ubll+LDAqzcO55XVs2ZuhwzB0n3GQuR113t3Q5dLKAc3xC7y686vODzrdctXl70ILsYboR7SUxWOFEEI0WhIcNYASZc1xlLVmLbmHPyB2wgRKd2/2B0ZGznacm19DleagO14Cv52DZ9cGnNGuExOjjw94oOoE6tMtV13lQVZUG6sLraYj2oQQQogAIUP5G4Aba1215BbnEDVqFNnvzcOR1BEjKg77vq9wrn0aVZqD2e238Lv/ULziZ4yyhWpPWMPMEfzLCdRw+uWqo/CwNeKteTdr7iIJjIQQQjQB0nLUAKKiFD2bJXPDwHs5eO8kfNmHCekQi/PsAagj30PivXh3LEX3ugfPigVQnIstPO7YCSoGNKebQH2midYVmT7IT7eCoeZnWblFQgghRBMhwVED6NKsA08MfpiV/3qF2EWLCevbCUfKXajsW9AXPYpv3ed47N3RB3bhzcwiuGt7lHFcI191A5ra4iuF/Axr6Y+4syAoov7rIIQQQtQh6VZrAG2jknjgpweI2m8t1eEqXovRsgd60CS8Wxehw9uBUphFxRghQdgiA6S7qrQQ8jMhuh0k9JTASAghRJMkLUf1zGdqZm38F8rwctvOloQD9nNHoq97ltJNyzHzcwGrC0wXleBMSsRwBsDIr6Is8JZa3Wgx7awJI4UQQogmSIKjepbr0yjDWlvNefQIAPYBv8WbmVYWGFlMjwcMA3tUA0+gqE0rX8nmghY9ITxR5i4SQgjRpEm3Wj07bFqBkTZtuKwR/diy1mBPbFdpkVkzvxBbZDhGeGhDVNPi80DuIXBFQotzIaKFBEZCCCGavCYVHP31r39FKVXp1bVrV//xkpISJk6cSGxsLGFhYYwaNYqMjIx6rWO2zxqS7yIEVegBwNg737+GmhHdHG2aaI8XR1wMqqGCEXe+lXgd1coKjEJiGqYeQgghRD1rUsERwNlnn01aWpr/tXDhQv+x++67j88++4z333+fH3/8kUOHDnHttdfWa/2yTSsg6uiKRZdagZIRHVtpkVkVEo0RGowtsgESnsuH6XvdkHAOxHcHZ0j910MIIYRoIE0u58hut5OQkHDC/tzcXN58803mzp3LsGHDAJg9ezZnnXUWS5cu5bzzzquX+uVqKyBSaT4ADKeJCrVaZcoDJBUSjqNZLIbTUS918vMUQeFRa96iZp2ltUgIIcSvUpNrOdqxYwctWrSgffv23HTTTezbtw+AVatW4fF4GD58uL9s165dad26NUuWLKm3+uWbVqJR6FErOLIH+dCuaP9xb8ZBPDs3YY+ux1Yjra3ZrovzrKCoRW8JjIQQQvxqNamWowEDBjBnzhy6dOlCWloajz32GBdccAEbN24kPT0dp9NJVFRUpffEx8eTnp5+0nO63W7cbrd/Oy8v74zqWIDVrdas0MolsgebaOexOpkFhdiiIjHC6ikR2+u2AqOgKEjobLUaSdK1EEKIX7EmFRxdeuml/q979OjBgAEDaNOmDe+99x7BwTVYOwyYNm0ajz32WG1VkeKyddWaFWqgvOUoCqAsEduHIza6fhKxi3OsrrSothDbQXKLhBBCCJpgt1pFUVFRdO7cmZ07d5KQkEBpaSk5OTmVymRkZFSZo1TukUceITc31//av3//GdWppCw4iiu0co/swSY4rC40s6gYIzQYe1Qtd6lpbS37UVoEJXlQdBTyDoIGEnpYi8ZKYCSEEEIATazl6HgFBQXs2rWLW265hT59+uBwOJg/fz6jRo0CYNu2bezbt4/k5OSTnsPlcuFyuWqtTm5lBUexZcGRCrH7Z5s2i0pwtWmJcpzktmizwkuD9pX9a1Z+mT4wPVbwA6AAw2G9bHZrwdiwRGuYflADTzIphBBCBJgmFRzdf//9XHnllbRp04ZDhw4xdepUbDYbo0ePJjIykgkTJjB58mRiYmKIiIjg97//PcnJyfU2Ug3AUxYcRRVaeUwqPAgAs7QUZbdjj64iWDF9UFA2H5MyTv4yHGDYwREEjlCwO8HmLAuKHNbXNiccv4itEEIIIfyaVHB04MABRo8ezdGjR4mLi+P8889n6dKlxMXFAfD8889jGAajRo3C7XYzYsQI/vGPf9RrHX1GMQChZRNAUjYDtllQZCVihx7XveXzWPMOhcdDTAcr+DFsZQFR2b/+bUmkFkIIIc5UkwqO5s2bd8rjQUFBzJw5k5kzZ9ZTjU6kjWIU4CoLjsyICCsR2+vD0ey4GbE9xVB4BKJaQ1xXq0VICCGEEHWqSQVHga7Up8FWjKtUY3ishCAdGYVZWIwtJAR7ZPixwu5869WsE8R2tLrFhBBCCFHnJDiqR1mmD6U0UQXWtrKZ+MKiMYtLcLVtdSwRu+io1Z3WvBtEtZEcISGEEKIeSXBUj474PGCDqHw74MMebGIa4SiHHXtUpDXyrCADbC5IPBciEhu6ykIIIcSvjgRH9SirLDiKyXcCbuxBPnxGGIbDiRHkgLxD1tD6+LNl+Q4hhBCigUhwVI9yTCsJOzbf6iazB5u4bWGAF1WQDuEJ0Pwsax4iIYQQQjQISWapR3namvixWaG1bQs2USrIWsYjqo01W7UERkIIIUSDkuCoHuVra+LHZgU+AHSIHWV6UMHhEN9NhuoLIYQQAUCCo3pUiBUcxRZ6AfCFOlBaW0t6yFB9IYQQIiBIcFSPirG61SILrZYjT2gwCo2ySeqXEEIIESgkOKpHJVjrqoWVtRy5w0KwmWUtR0IIIYQICBIc1SOPKsHm0wSVWLNju8PCUXBs8kchhBBCNDgJjuqRxygmqmykGkpTHBqBMjXYnA1aLyGEEEIcI8FRPTKNYv/SIfYgkxJnOIbWKLu0HAkhhBCBQoKjeqI1aKOY6AKrS80e7KPEFlqWkC0j1YQQQohAIcFRPSkyTZTNTXR5y1GwD7ctHKUAaTkSQgghAoYER/XkiM8aoRZV1nJkBIPPcGFoZI4jIYQQIoBIcFRPssqCo/J11QixWyPVAGWzNVi9hBBCCFGZBEf1JMtnTQAZU6AAMEOdKKUwlAIJjoQQQoiAIcFRPcnVHgCiC61uNU9YMIZSGFbTUQPWTAghhBAVSXBUT3LLFp2NKjQBKA0LQSmFUgYYchuEEEKIQCFP5XpSoEtRWhNWZLUclYSGY0MBGmXIaDUhhBAiUEhwVE+KcBNeBDYTQFMUEYnNsKGQnCMhhBAikEhwVE9KODbHkc1lUmwPt4bxAxgSHAkhhBCBQoKjelKiSvxzHNmDTYpsIdgMBUqhJDgSQgghAoYER/XEo0qILlt01h7so8gIxkBZEx1Jt5oQQggRMCQ4qideo9jfrWYEK3zKjk1jjVSTliMhhBAiYEhwVE9Mo9jfrUaoAw3Y0YCBssltEEIIIQKFPJXrgc/UYBT5W450qAvQGFpJy5EQQggRYCQ4qgf5pokyfP6WIzMsGFOb2BQoCY6EEEKIgCLBUT04XLbobHnLkTc8DBTYyluObDIJpBBCCBEoJDiqB1k+D2jtH61WGhGJ1hpDmWDIUH4hhBAikEhwVA+ydSkhbnBaDUiURkQDYJgA0nIkhBBCBBIJjupBruk5NozfYVIaHGV9jbZajZTcBiGEECJQyFO5HuRrN1GF5bNj+3DbwwCFKpvnSEnLkRBCCBEwJDiqBwW6lKiyliN7kEmpLRTAWlvNUNJyJIQQQgQQeSrXgyJK/N1qKsQoC4Y0Smur1ciQ2yCEEEIECnkq14MS3ESXzXGkQhxlexUGWtZVE0IIIQKMBEf1oFSV+LvVzDAXYK03i9You+Ok7xNCCCFE/fvVBkczZ86kbdu2BAUFMWDAAJYvX15nn+VRJf45jsywYAC01thNJDgSQgghAsyvMjh69913mTx5MlOnTmX16tX07NmTESNGkJmZWSef56uw6Kw3PAytQRkK0DLHkRBCCBFgfpXB0XPPPcftt9/OuHHj6NatG6+99hohISHMmjWrTj7PNIqPLR0SEYmpNQqFoU2Uw1knnymEEEKImvnVBUelpaWsWrWK4cOH+/cZhsHw4cNZsmRJrX+eR2ucZhGhbmvbHRmNxgqOFBqkW00IIYQIKL+6Pp0jR47g8/mIj4+vtD8+Pp6tW7eeUN7tduN2u/3beXl51fq8bA3RZRNAKpuJOySqLDgqmyHb/qu7BUIIIURA+9W1HFXXtGnTiIyM9L+SkpKq9f4sbfqTse1BJm5HBGisliOtwJDgSAghhAgkv7rgqFmzZthsNjIyMirtz8jIICEh4YTyjzzyCLm5uf7X/v37q/V52Zj+ZGxbsInXCMLERClQSsnSIUIIIUSA+dUFR06nkz59+jB//nz/PtM0mT9/PsnJySeUd7lcREREVHpVRy6+Y4vOhthAKbQGA4WhkNmxhRBCiADzq2y2mDx5MmPGjKFv377079+fF154gcLCQsaNG1frn5WPlxZlLUeEWpfb1BoMhfIhM2QLIYQQAabGzRbjx48nPz//hP2FhYWMHz/+jCpV166//nqeffZZHn30Uc4991zWrl3L119/fUKSdm0owEtUWc6RDrVmx/aPVlMKDAmOhBBCiEBS4+Dorbfeori4+IT9xcXF/Pvf/z6jStWHe+65h7179+J2u1m2bBkDBgyok88pVKX+pUN8/tmxKRutplCSkC2EEEIElGo/mfPy8tBao7UmPz+foKAg/zGfz8eXX35J8+bNa7WSjVmJKvUvOusNDy/bq62cI5TkHAkhhBABptrBUVRUlDXKSik6d+58wnGlFI899litVK4pcBvHWo68ZcncJqY1Q7ZCutWEEEKIAFPt4OiHH35Aa82wYcP48MMPiYmJ8R9zOp20adOGFi1a1GolGzOvLiGiyPraHWFdK1OXTQBpGBIcCSGEEAGm2sHRhRdeCEBqaiqtW7e2korFSYWWFGEAWmncEdFle/WxnCMZrSaEEEIElBonvGzZsoVFixb5t2fOnMm5557LjTfeSHZ2dq1UrimIKi4bqhZcNjs2YAI2DcomLUdCCCFEoKlxcPTAAw/41xnbsGEDkydP5rLLLiM1NZXJkyfXWgUbu6jiEgCMYI1pOAHQWlsXXtlkniMhhBAiwNR4HHlqairdunUD4MMPP+TKK6/kqaeeYvXq1Vx22WW1VsHGrFhDVKEXAFvwsThUa7AZypoIUkarCSGEEAGlxk9mp9NJUZGVafzdd99xySWXABATE1PtleubqqPa9C8dYg+pGIdqKyo1bLLwrBBCCBFgavxkPv/885k8eTKDBg1i+fLlvPvuuwBs376dVq1a1VoFG7MsNNGF1hxHOszl329qjaFNK5ldutWEEEKIgFLjlqNXXnkFu93OBx98wKuvvkrLli0B+Oqrrxg5cmStVbAxy9E+/xxHZliIf79GY9cGGAbKJi1HQgghRCCp8ZO5devWfP755yfsf/7558+oQk1JHj7/7Ni+8DD/fg0YWoOS0WpCCCFEoDmjbOBdu3bx5z//mdGjR5OZmQlYLUebNm2qlco1dvl4/S1HpWWzY4MVHNmUkkkghRBCiABU4+Doxx9/pHv37ixbtoyPPvqIggIrCli3bh1Tp06ttQo2ZoWUElU2zVGpfwJI0JjWhZfgSAghhAg4NQ6OHn74Yf72t7+RkpKC0+n07x82bBhLly6tlco1dspdhN20vi6JbObfr/2j1QyUBEdCCCFEQKlxcLRhwwauueaaE/Y3b96cI0eOnFGlmoqwonwASoM0pa4K3Wrlk0AaVlK2EEIIIQJHjZ/MUVFRpKWlnbB/zZo1/pFrv3bhZUuHeEM0Wh1rIVIolKlRNkdDVU0IIYQQJ1Hj4OiGG27goYceIj09HaUUpmmyaNEi7r//fm699dbarGOjFV5sTZLpC658mTVgA5RdhvELIYQQgabGwdFTTz1F165dSUpKoqCggG7dujF48GAGDhzIn//859qsY6MVXlQKgBlSOa9IAcrUYJeWIyGEECLQ1Ljpwul08q9//YtHH32UDRs2UFBQQK9evejUqVNt1q9RCy+y1lXToc5K+zVWzpFMACmEEEIEnjN+OiclJZGUlFQbdWlSTNMkotAaqmYPDal0TCmF0qa0HAkhhBABqEbdajt27ODDDz8kNTUVgC+++ILBgwfTr18/nnzySbTWtVrJxuhIcQGRZeuq2cNDKx3TGgw0SoIjIYQQIuBUu+Xo448/5ne/+x2GYaCU4vXXX+fOO+9kyJAhRERE8Ne//hW73c5DDz1UF/VtNA7kHSW6bHZsFRlV+WBZ8KgclbvbhBBCCNHwqt1y9OSTT/Lggw9SUlLCq6++yl133cW0adP46quv+Pzzz5k5cyZz5sypg6o2Lun5Wf7ZsT0VZscGQClrbTUZyi+EEEIEnGoHR9u2bWP8+PEopRgzZgylpaUMHz7cf/ySSy5h7969tVrJxuhI5gGCPNbXJVHHZsemrMdRAdhkAkghhBAi0FT76VxYWEh4eLj1ZsMgODiYkJBjCcfBwcG43e7aq2EjVXJwu/WvU+MJivTv14BSYChQSoIjIYQQItBU++mslEIpddJtYdGZ+wEoCsWKhsqYWmOgMJQNbLKumhBCCBFoqp2QrbWmc+fO/oCofH4jo2yNMBmpZjGyMgEoCTGoGDpqTCjfY8g8R0IIIUSgqfbTefbs2XVRjybHkZsDWMFRcIX9Gis0MlDSciSEEEIEoGoHR2PGjKmLejQ5rnxrXbXSYDvBQM8howiPbs73H7xiBUYKlCHBkRBCCBFoaqVfp6CgANM0K+2LiIiojVM3WkGF1rpq7mAXPYeMIiaxLVlpezC1CUphwwAJjoQQQoiAU+PhUqmpqVx++eWEhoYSGRlJdHQ00dHRREVFER0d/csnaOK69bgIgO5XjPMHRusWfAhoDAWG9Z+GraQQQgghTlDjlqObb74ZrTWzZs0iPj5eRqwd5+z7Hyen9TnEXH1rhcAIfFqjsIbxK0nIFkIIIQJOjZ/O69atY9WqVXTp0qU269NkZH38EXETJpCfvt8fGEFZQrapMWxKJoEUQgghAlCNn879+vVj//79tVmXJqXZjTeRtXUdYfGt6Dlk1LEDWqO0xjBsoCTnSAghhAg0NW45euONN7jrrrs4ePAg55xzDg5H5XXCevToccaVa8xMYPF3/6V/8ATiWneh55BR/hYkGxplGDKUXwghhAhANQ6ODh8+zK5duxg3bpx/n1IKrTVKKXw+X61UsLHyeqzRass/n0XyNXcTk9iWnkNG8dM3/8EwwWazSc6REEIIEYBq/HQeP348vXr14p133pGE7F+wbsGH/nmONBoDa106yTkSQgghAk+Ng6O9e/fy6aef0rFjx9qsT5NV3qWmwco7Muxgk5YjIYQQItDUuOli2LBhrFu3rjbr8qugNdjRYCiZIVsIIYQIQDVuurjyyiu577772LBhA927dz8hIfs3v/nNGVeuutq2bcvevXsr7Zs2bRoPP/ywf3v9+vVMnDiRFStWEBcXx+9//3sefPDBequjRmOz1g6RGbKFEEKIAFTj4Oiuu+4C4PHHHz/hWEMmZD/++OPcfvvt/u3w8HD/13l5eVxyySUMHz6c1157jQ0bNjB+/HiioqK444476qV+WlvNddZoNelWE0IIIQJNjZ/Ox6+lFijCw8NJSEio8tjbb79NaWkps2bNwul0cvbZZ7N27Vqee+65+guO0NgAlIGS4EgIIYQIOE1uuNT06dOJjY2lV69ePPPMM3i9Xv+xJUuWMHjwYJxOp3/fiBEj2LZtG9nZ2VWez+12k5eXV+l1JkxtYtPaGqkmI/yEEEKIgFPjpouqutMqevTRR2t66hq799576d27NzExMSxevJhHHnmEtLQ0nnvuOQDS09Np165dpffEx8f7j1W1YO60adN47LHHaq2OGrChUDbHL5YVQgghRP2rcXD08ccfV9r2eDykpqZit9vp0KFDrQVHDz/8MH//+99PWWbLli107dqVyZMn+/f16NEDp9PJnXfeybRp03C5XDX6/EceeaTSefPy8khKSqrRucoZIPlGQgghRICq8RN6zZo1J+zLy8tj7NixXHPNNWdUqYqmTJnC2LFjT1mmffv2Ve4fMGAAXq+XPXv20KVLFxISEsjIyKhUpnz7ZHlKLperxoFVVTQauwZll5YjIYQQIhDVavNFREQEjz32GFdeeSW33HJLrZwzLi6OuLi4Gr137dq1GIZB8+bNAUhOTuZPf/oTHo/HP/VASkoKXbp0qbJLrS5oXZaQLcGREEIIEZBqPSE7NzeX3Nzc2j7tL1qyZAkvvPAC69atY/fu3bz99tvcd9993Hzzzf7A58Ybb8TpdDJhwgQ2bdrEu+++y4svvlip26yuaaVRWstINSGEECJA1fgJ/dJLL1Xa1lqTlpbGf/7zHy699NIzrlh1uVwu5s2bx1//+lfcbjft2rXjvvvuqxT4REZG8u233zJx4kT69OlDs2bNePTRR+ttGD9Y18lQSlqOhBBCiABV4+Do+eefr7RtGAZxcXGMGTOGRx555IwrVl29e/dm6dKlv1iuR48e/Pzzz/VQo5NTWqMczl8uKIQQQoh6V+PgKDU1tTbr8atiaC0J2UIIIUSAqnbOkc/nY/369RQXF59wrLi4mPXr1wfs7NmBQVlrqxlNbv5NIYQQokmo9hP6P//5D+PHj680y3Q5h8PB+PHjmTt3bq1UrulSYJNFZ4UQQohAVO3g6M033+T+++/HVsXD3W638+CDD/L666/XSuWaJo1hKJQhwZEQQggRiKodHG3bto3zzjvvpMf79evHli1bzqhSTZtCKQUSHAkhhBABqdrBUWFh4SkXX83Pz6eoqOiMKtW0aRRIt5oQQggRoKodHHXq1InFixef9PjChQvp1KnTGVWqSdNgIC1HQgghRKCqdnB044038uc//5n169efcGzdunU8+uij3HjjjbVSuSZHg1JWt5rkHAkhhBCBqdrzHN1333189dVX9OnTh+HDh9O1a1cAtm7dynfffcegQYO47777ar2iTYFPa5RSVkQq3WpCCCFEQKp2cORwOPj22295/vnnmTt3Lj/99BNaazp37syTTz7JpEmT/Iu6iso01uzYKAVKgiMhhBAiENVohmyHw8GDDz7Igw8++Itl33nnHX7zm98QGhpak49qUjQmSoPNZkPZZBJIIYQQIhDV+RP6zjvvJCMjo64/ptFQaCvfSHKOhBBCiIBU58GR1rquP6LRMLWJoa1FeiU4EkIIIQKT9O3UI63LFp1VBspW4zV/hRBCCFGHJDiqR6bWoE0Mm7QcCSGEEIFKgqN6pNHYtIEyDDDk0gshhBCBSJ7Q9UhrMDAxDDtIt5oQQggRkOo8OGrTpo3Me+SnQWtrKL90qwkhhBABqcbB0ZgxY/jpp59+sdzGjRtJSkqq6cc0KSZmWUK2kpYjIYQQIkDVODjKzc1l+PDhdOrUiaeeeoqDBw/WZr2aJLNstJp0qwkhhBCBq8bB0SeffMLBgwe5++67effdd2nbti2XXnopH3zwAR6Ppzbr2IRolAbDZrOSsoUQQggRcM7oCR0XF8fkyZNZt24dy5Yto2PHjtxyyy20aNGC++67jx07dtRWPZsEE+uCK7vkYAkhhBCBqlaaL9LS0khJSSElJQWbzcZll13Ghg0b6NatG88//3xtfESToLXGhgRHQgghRCCrcXDk8Xj48MMPueKKK2jTpg3vv/8+kyZN4tChQ7z11lt89913vPfeezz++OO1Wd9GzRrKL8GREEIIEchqnBWcmJiIaZqMHj2a5cuXc+65555QZujQoURFRZ1B9ZoabV1wmwzjF0IIIQJVjYOj559/nuuuu46goKCTlomKiiI1NbWmH9HkmFpLy5EQQggR4Grcrfab3/yGoqKiE/ZnZWWRl5d3RpVqqqzlQzTYnA1dFSGEEEKcRI2DoxtuuIF58+adsP+9997jhhtuOKNKNVUasGlQdpnjSAghhAhUNQ6Oli1bxtChQ0/YP2TIEJYtW3ZGlWqqNGAoA2Q5FSGEECJg1Tg4crvdeL3eE/Z7PB6Ki4vPqFJNlcZEoVGGtBwJIYQQgarGwVH//v15/fXXT9j/2muv0adPnzOqVFOl0diVIaPVhBBCiABW4yaMv/3tbwwfPpx169Zx0UUXATB//nxWrFjBt99+W2sVbEq01hhKoQwJjoQQQohAVeOWo0GDBrFkyRKSkpJ47733+Oyzz+jYsSPr16/nggsuqM06NikKpOVICCGECGBnlPxy7rnn8vbbb9dWXX4FFIZSoGTRWSGEECJQnVFwZJomO3fuJDMzE9M0Kx0bPHjwGVWsKVKAkpwjIYQQIqDVODhaunQpN954I3v37kVrXemYUgqfz3fGlWtqNGUzZEvOkRBCCBGwahwc3XXXXfTt25cvvviCxMRElFK1Wa8myX+NbDKUXwghhAhUNX5K79ixgw8++ICOHTvWZn2aNK01NsMAaTkSQgghAlaNM4MHDBjAzp07a7Mup/Tkk08ycOBAQkJCiIqKqrLMvn37uPzyywkJCaF58+Y88MADJ0xUuWDBAnr37o3L5aJjx47MmTOn7itfzjStZGxDErKFEEKIQFXjlqPf//73TJkyhfT0dLp3747juCUxevToccaVq6i0tJTrrruO5ORk3nzzzROO+3w+Lr/8chISEli8eDFpaWnceuutOBwOnnrqKQBSU1O5/PLLueuuu3j77beZP38+t912G4mJiYwYMaJW61slEwzDhpLgSAghhAhYSh+fTX2ajCoe8EoptNZ1mpA9Z84cJk2aRE5OTqX9X331FVdccQWHDh0iPj4esGbrfuihhzh8+DBOp5OHHnqIL774go0bN/rfd8MNN5CTk8PXX399Wp+fl5dHZGQkubm5REREnLScu7iIlDenglKERDcHDYfyMkh2hNP2qtuwxbWo/jcvhBBCiBo53ec3nEHLUWpqak3fWieWLFlC9+7d/YERwIgRI7j77rvZtGkTvXr1YsmSJQwfPrzS+0aMGMGkSZNOel63243b7fZv5+Xl1ah+GsDUGIZNhvILIYQQAazGwVGbNm1qsx5nLD09vVJgBPi309PTT1kmLy+P4uJigoODTzjvtGnTeOyxx864fqYuH8avZOFZIYQQIoCdUfLLf/7zHwYNGkSLFi3Yu3cvAC+88AL/+9//Tuv9Dz/8MEqpU762bt16JlU8Y4888gi5ubn+1/79+2t0Ho2J0qbVciQ5R0IIIUTAqnETxquvvsqjjz7KpEmTePLJJ/05RlFRUbzwwgtcddVVv3iOKVOmMHbs2FOWad++/WnVJyEhgeXLl1fal5GR4T9W/m/5voplIiIiqmw1AnC5XLhcrtOqw6lowEbZBJAyz5EQQggRsGr8lH755Zf517/+xdVXX8306dP9+/v27cv9999/WueIi4sjLi6uplWoJDk5mSeffJLMzEyaN28OQEpKChEREXTr1s1f5ssvv6z0vpSUFJKTk2ulDqeiNSitMZQhM2QLIYQQAazG/Tupqan06tXrhP0ul4vCwsIzqlRV9u3bx9q1a9m3bx8+n4+1a9eydu1aCgoKALjkkkvo1q0bt9xyC+vWreObb77hz3/+MxMnTvS3/Nx1113s3r2bBx98kK1bt/KPf/yD9957j/vuu6/W63s8ExOFwrBJQrYQQggRyGocHLVr1461a9eesP/rr7/mrLPOOpM6VenRRx+lV69eTJ06lYKCAnr16kWvXr1YuXIlADabjc8//xybzUZycjI333wzt956K48//nilOn/xxRekpKTQs2dPZsyYwRtvvFE/cxxpjaHNsuBIutWEEEKIQFXjp/TkyZOZOHEiJSUlaK1Zvnw577zzDtOmTeONN96ozToC1vxGvzSbdZs2bU7oNjvekCFDWLNmTS3W7PT4tMZAoZQkZAshhBCBrMbB0W233UZwcDB//vOfKSoq4sYbb6RFixa8+OKL3HDDDbVZxyZBA8o0Mex2WaRXCCGECGBn1L9z0003cdNNN1FUVERBQYE/EVpUQVv/MeyOXyophBBCiAZUK8kvISEhhISE1MapmjCNTSPBkRBCCBHgqhUc9e7dm/nz5xMdHU2vXr1O2T20evXqM65cU+LTJjZTY3M4G7oqQgghhDiFagVHV111lX9Y/NVXX10X9WmyNBrDAMN+5hNKCiGEEKLuVCs4mjp1apVfi1+mKZsE0i7D+IUQQohAVuMx5StWrGDZsmUn7F+2bJl/7iFxjAZsWqGk5UgIIYQIaDUOjiZOnFjlIqwHDx5k4sSJZ1SppkiXTQKp7DI7thBCCBHIahwcbd68md69e5+wv1evXmzevPmMKtUUaQ02DJRDRqsJIYQQgazGwZHL5TphhXuAtLQ07JJXcwKNRikDZNFZIYQQIqDVODi65JJLeOSRR8jNzfXvy8nJ4Y9//CMXX3xxrVSuKdFaY0NJcCSEEEIEuBo38Tz77LMMHjyYNm3a0KtXLwDWrl1LfHw8//nPf2qtgk2FicZmKJRNgiMhhBAikNU4OGrZsiXr16/n7bffZt26dQQHBzNu3DhGjx6NQ/JqqmRIy5EQQggR8M4oOSg0NJQ77rijturSpGk0NsMAo8Y9mUIIIYSoB9UKjj799FMuvfRSHA4Hn3766SnL/uY3vzmjijU1Go1CgU2S1YUQQohAVq0n9dVXX016ejrNmzc/5fIhSil8Pt+Z1q1J0WjsSqGkW00IIYQIaNUKjkzTrPJr8cu01tZCvZKQLYQQQgS0aiXAxMTEcOTIEQDGjx9Pfn5+nVSqSTI1KMN6CSGEECJgVetJXVpaSl5eHgBvvfUWJSUldVKppkhhYtgMGcovhBBCBLhqdaslJydz9dVX06dPH7TW3HvvvQQHB1dZdtasWbVSwSZDawxlgCEJ2UIIIUQgq9aT+r///S/PP/88u3btAiA3N1daj06TMrFajWQovxBCCBHQqhUcxcfHM336dADatWvHf/7zH2JjY+ukYk2O9pUFR9KtJoQQQgSyGidkDx06FKfTWSeVaqqUoVDSrSaEEEIENEnIrieGaWIYhgzlF0IIIQKcJGTXFw2GsskM2UIIIUSAq3FCtlJKErJPlwalTQybTWbIFkIIIQKcJGTXA5/WGFpZI9VktJoQQggR0Kr9pL7sssvIzc0lNTWV2NhYpk+fTk5Ojv/40aNH6datW23WsdHTAPgwDLvkHAkhhBABrtrB0ddff43b7fZvP/XUU2RlZfm3vV4v27Ztq53aNREaE0NT1q0mLUdCCCFEIDvjJ7XWujbq0eQZWqPsjoauhhBCCCF+gTRj1ANTWy1HNhmpJoQQQgS8agdHSimUUifsEyenNSg0hl0mzRRCCCECXbWbMrTWjB07FpfLBUBJSQl33XUXoaGhAJXykYTF1BqlwZAZxYUQQoiAV+3gaMyYMZW2b7755hPK3HrrrTWvUROk0WU5RxIcCSGEEIGu2sHR7Nmz66IeTZrWoDTYJCFbCCGECHiSkF0vNDatMSQ4EkIIIQKeBEf1wMQEwOZwNXBNhBBCCPFLJDiqB1qDgcJwyOzYQgghRKBrNMHRk08+ycCBAwkJCSEqKqrKMuXTDFR8zZs3r1KZBQsW0Lt3b1wuFx07dmTOnDl1XneNRqGx2SQhWwghhAh0jSY4Ki0t5brrruPuu+8+ZbnZs2eTlpbmf1199dX+Y6mpqVx++eUMHTqUtWvXMmnSJG677Ta++eabOq27BgxDoQxpORJCCCECXaOZsvmxxx4D+MWWnqioKBISEqo89tprr9GuXTtmzJgBwFlnncXChQt5/vnnGTFiRK3WtyJTawylULLorBBCCBHwGk3L0emaOHEizZo1o3///syaNavS2m9Llixh+PDhlcqPGDGCJUuWnPR8brebvLy8Sq+aUNhAWo6EEEKIgNdoWo5Ox+OPP86wYcMICQnh22+/5f/+7/8oKCjg3nvvBSA9PZ34+PhK74mPjycvL4/i4mKCg4NPOOe0adP8rVY1pbXGpgBZW00IIYQIeA3acvTwww9XmURd8bV169bTPt9f/vIXBg0aRK9evXjooYd48MEHeeaZZ86ojo888gi5ubn+1/79+6t9Dg0YGCijyTXUCSGEEE1OgzZlTJkyhbFjx56yTPv27Wt8/gEDBvDEE0/gdrtxuVwkJCSQkZFRqUxGRgYRERFVthoBuFwu/zpyNWVqE0Mp6VYTQgghGoEGDY7i4uKIi4urs/OvXbuW6Ohof3CTnJzMl19+WalMSkoKycnJdVYHAK1NlKFAWo6EEEKIgNdokmD27dtHVlYW+/btw+fzsXbtWgA6duxIWFgYn332GRkZGZx33nkEBQWRkpLCU089xf333+8/x1133cUrr7zCgw8+yPjx4/n+++957733+OKLL+q07to0sRt2yTkSQgghGoFG87R+9NFHeeutt/zbvXr1AuCHH35gyJAhOBwOZs6cyX333YfWmo4dO/Lcc89x++23+9/Trl07vvjiC+677z5efPFFWrVqxRtvvFGnw/ihrOVIGTKUXwghhGgElK441l38ory8PCIjI8nNzSUiIuKk5dzFRaS8ORWUIkeZdNMOet4wCVts/EnfI4QQQoi6cbrPb2iC8xwFJK0xbHZQqqFrIoQQQohfIMFRfdAmyrChJOdICCGECHgSHNUDhbUorgzlF0IIIQKfBEf1QJkmhs0mo9WEEEKIRkCCo3qgtMYwDGk5EkIIIRoBacqoFxqlbDKUXwghGjGtNV6vF5/P19BVESfhcDiw1cKzVoKj+lA+Wk1myBZCiEaptLSUtLQ0ioqKGroq4hSUUrRq1YqwsLAzOo8ER/XAMLXVpSbBkRBCNDqmaZKamorNZqNFixY4nU5rkI0IKFprDh8+zIEDB+jUqdMZtSBJcFQfNBiGXX6YhBCiESotLcU0TZKSkggJCWno6ohTiIuLY8+ePXg8njMKjqQpo85plDYxHI6GrogQQogzYEjrf8CrrUYIudN1zNQAWoIjIYQQopGQ4KgeGKaW2bGFEEL8agwZMoRJkybVybnbtm3LCy+8UCfnLifBUR3TaBRgOFwNXRUhhBC/MmPHjkUpxV133XXCsYkTJ6KUYuzYsfVfsQAnwVEd01pjaGk5EkII0TCSkpKYN28excXF/n0lJSXMnTuX1q1b1/i85fM+1URpaWmNP7c+SHBUxzTW2mo2p7QcCSGEqH+9e/cmKSmJjz76yL/vo48+onXr1vTq1cu/z+12c++999K8eXOCgoI4//zzWbFihf/4ggULUErx1Vdf0adPH1wuFwsXLqSwsJBbb72VsLAwEhMTmTFjxgl1aNu2LU888QS33norERER3HHHHQAsXLiQCy64gODgYJKSkrj33nspLCz0vy8zM5Mrr7yS4OBg2rVrx9tvv10Xl+gEEhzVMVNrFBrDIS1HQgjRFGitKSr1VutV4vGhtabE46ty+3RfWusa1Xn8+PHMnj3bvz1r1izGjRtXqcyDDz7Ihx9+yFtvvcXq1avp2LEjI0aMICsrq1K5hx9+mOnTp7NlyxZ69OjBAw88wI8//sj//vc/vv32WxYsWMDq1atPqMOzzz5Lz549WbNmDX/5y1/YtWsXI0eOZNSoUaxfv553332XhQsXcs899/jfM3bsWPbv388PP/zABx98wD/+8Q8yMzNrdA2qQ57YdUwDhlbY7NJyJIQQTUGxx0e3R7+p9vsu6NSMl0f34t0V+7m+XxK3/3slP+84Uq1zbH58BCHO6j+6b775Zh555BH27t0LwKJFi5g3bx4LFiwAoLCwkFdffZU5c+Zw6aWXAvCvf/2LlJQU3nzzTR544AH/uR5//HEuvvhiAAoKCnjzzTf573//y0UXXQTAW2+9RatWrU6ow7Bhw5gyZYp/+7bbbuOmm27yJ2536tSJl156iQsvvJBXX32Vffv28dVXX7F8+XL69esHwJtvvslZZ51V7e+/uiQ4qmvaBBTKLo10Qgjxa/bzjiO8u2I/d17YgX/+uKvagdGZiIuL4/LLL2fOnDlorbn88stp1qyZ//iuXbvweDwMGjTIv8/hcNC/f3+2bNlS6Vx9+/at9L7S0lIGDBjg3xcTE0OXLl1OqEPF9wGsW7eO9evXV+oq01r7ZyTfvn07drudPn36+I937dqVqKio6l+AapLgqB4YaGxKLrUQQjQFwQ4bmx8fUe33GUrhsht4fCZ3DG7PmIFtMavZTRbsqPmsz+PHj/d3Wc2cObPG5wkNDa2V9xUUFHDnnXdy7733nlC2devWbN++vUafUxvkiV3HfGhQBob9zFcJFkII0fCUUjXq2irnsFmzOAedQaBTEyNHjqS0tBSlFCNGVA7uOnTogNPpZNGiRbRp0wYAj8fDihUrTjlfUYcOHXA4HCxbtsw/8i07O5vt27dz4YUXnrI+vXv3ZvPmzXTs2LHK4127dsXr9bJq1Sp/t9q2bdvIyck5ze+45iQ4qmsaDK2x2Z0NXRMhhBC/Yjabzd9Fdvy6Y6Ghodx999088MADxMTE0Lp1a55++mmKioqYMGHCSc8ZFhbGhAkTeOCBB4iNjaV58+b86U9/Oq2lVh566CHOO+887rnnHm677TZCQ0PZvHkzKSkpvPLKK3Tp0oWRI0dy55138uqrr2K325k0aRLBwcFndiFOgwRHdUwDSlkLzwohhBANKSIi4qTHpk+fjmma3HLLLeTn59O3b1+++eYboqOjT3nOZ555hoKCAq688krCw8OZMmUKubm5v1iXHj168OOPP/KnP/2JCy64AK01HTp04Prrr/eXmT17NrfddhsXXngh8fHx/O1vf+Mvf/nL6X/DNaR0TccF/krl5eURGRlJbm7uKf8ncxcXkfLmVAq8bqLcpQz73R9wtqv7DHshhBC1q6SkhNTUVNq1a0dQUFBDV0ecwqnu1ek+v0HmOapzptYoZaAMyTkSQgghGgMJjuqY1iaGMlCSkC2EEEI0ChIc1TWtMZQCyTkSQgghGgUJjuqaaWIYdpRNWo6EEEKIxkCCozqnUQYgOUdCCCFEoyDBUR3T2sRms0twJIQQQjQSEhzVMW2aKGUDm+QcCSGEEI2BBEd1TWvsNhtKyaUWQgghGgN5YtcxpTUYhrQcCSGEEI2EBEd1TGsTu+QcCSGEEI2GBEd1zNAaQ9lkKL8QQoh6N3bsWJRS3HXXXSccmzhxIkopxo4dW/8VC3ASHNU5jWGzW11rQgghRD1LSkpi3rx5FBcX+/eVlJQwd+5cWrduXePzaq3xer21UcWAI0/suqY1hs2Q4EgIIUSD6N27N0lJSXz00Uf+fR999BGtW7emV69e/n1ut5t7772X5s2bExQUxPnnn8+KFSv8xxcsWIBSiq+++oo+ffrgcrlYuHAh+fn53HTTTYSGhpKYmMjzzz/PkCFDmDRpkv+9//nPf+jbty/h4eEkJCRw4403kpmZecK558+fT9++fQkJCWHgwIFs27atbi/OScgTu47ZNNbSIUo1dFWEEELUBq2htLB6L0+J9T5PSdXbp/vSukZVHj9+PLNnz/Zvz5o1i3HjxlUq8+CDD/Lhhx/y1ltvsXr1ajp27MiIESPIysqqVO7hhx9m+vTpbNmyhR49ejB58mQWLVrEp59+SkpKCj///DOrV6+u9B6Px8MTTzzBunXr+OSTT9izZ0+V3Xl/+tOfmDFjBitXrsRutzN+/Pgafb9nSoZQ1TFDawy7AyXBkRBCNA2eIniqRfXf12EY/HYWrP4P9L4F5o2GXd9X7xx/PATO0Gp/9M0338wjjzzC3r17AVi0aBHz5s1jwYIFABQWFvLqq68yZ84cLr30UgD+9a9/kZKSwptvvskDDzzgP9fjjz/OxRdfDEB+fj5vvfUWc+fO5aKLLgJg9uzZtGhR+fpUDHLat2/PSy+9RL9+/SgoKCAsLMx/7Mknn+TCCy8ErCDs8ssvp6SkhKCgoGp/z2eiUbQc7dmzhwkTJtCuXTuCg4Pp0KEDU6dOpbS0tFK59evXc8EFFxAUFERSUhJPP/30Ced6//336dq1K0FBQXTv3p0vv/yybiuvQdkcdfsZQgghAt+u763AaNC91r/VDYzOQFxcHJdffjlz5sxh9uzZXH755TRr1uxY1XbtwuPxMGjQIP8+h8NB//792bJlS6Vz9e3b1//17t278Xg89O/f378vMjKSLl26VHrPqlWruPLKK2ndujXh4eH+AGjfvn2VyvXo0cP/dWJiIkCl7rf60ihajrZu3Yppmvzzn/+kY8eObNy4kdtvv53CwkKeffZZAPLy8rjkkksYPnw4r732Ghs2bGD8+PFERUVxxx13ALB48WJGjx7NtGnTuOKKK5g7dy5XX301q1ev5pxzzqmTuhuAYW8Ul1kIIcTpcIRYLTjVpWxgd4GvFAb+HvrfAdpX/c+uofHjx3PPPfcAMHPmzBqfJzS0ei1XhYWFjBgxghEjRvD2228TFxfHvn37GDFixAmNHA7HscaE8h4X0zRrXNeaahRP7ZEjRzJy5Ej/dvv27dm2bRuvvvqqPzh6++23KS0tZdasWTidTs4++2zWrl3Lc8895w+OXnzxRUaOHOlvHnziiSdISUnhlVde4bXXXquTuiutwS4tR0II0WQoVaOuLT+b0/rXUb9dRSNHjqS0tBSlFCNGjKh0rEOHDjidThYtWkSbNm0AK09oxYoVlRKrj9e+fXscDgcrVqzwj3zLzc1l+/btDB48GLAaOI4ePcr06dNJSkoCYOXKlXXwHdaeRtGtVpXc3FxiYmL820uWLGHw4ME4nU7/vhEjRrBt2zays7P9ZYYPH17pPCNGjGDJkiUn/Ry3201eXl6lV3UoDYbd+csFhRBCiDpks9nYsmULmzdvxnbc3HuhoaHcfffdPPDAA3z99dds3ryZ22+/naKiIiZMmHDSc4aHhzNmzBgeeOABfvjhBzZt2sSECRMwDMPf8tO6dWucTicvv/wyu3fv5tNPP+WJJ56o0+/1TDXK4Gjnzp28/PLL3Hnnnf596enpxMfHVypXvp2enn7KMuXHqzJt2jQiIyP9r/Ko93RJt5oQQohAERERQURERJXHpk+fzqhRo7jlllvo3bs3O3fu5JtvviE6OvqU53zuuedITk7miiuuYPjw4QwaNIizzjrLn0QdFxfHnDlzeP/99+nWrRvTp0/39/oEqgZ9aj/88MP8/e9/P2WZLVu20LVrV//2wYMHGTlyJNdddx233357XVeRRx55hMmTJ/u38/LyqhUgKZS0HAkhhGgQc+bMOeXxTz75xP91UFAQL730Ei+99FKVZYcMGYKuYiqB8PBw3n77bf92YWEhjz32mD+lBWD06NGMHj260vsqnquqc5977rlVfl59aNDgaMqUKb84bXn79u39Xx86dIihQ4cycOBAXn/99UrlEhISyMjIqLSvfDshIeGUZcqPV8XlcuFyuX7xezkZhUJJy5EQQogmas2aNWzdupX+/fuTm5vL448/DsBVV13VwDWruQZ9asfFxREXF3daZQ8ePMjQoUPp06cPs2fPxjhuxunk5GT+9Kc/4fF4/NnuKSkpdOnSxd8kmJyczPz58ysll6WkpJCcnFw739BJ2KXlSAghRBP27LPPsm3bNpxOJ3369OHnn3+uNFVAY9MomjQOHjzIkCFDaNOmDc8++yyHDx/2Hytv9bnxxht57LHHmDBhAg899BAbN27kxRdf5Pnnn/eX/cMf/sCFF17IjBkzuPzyy5k3bx4rV648oRWqNinDQNll0VkhhBBNU69evVi1alVDV6NWNYrgKCUlhZ07d7Jz505atWpV6Vh5f2RkZCTffvstEydOpE+fPjRr1oxHH320Up/nwIEDmTt3Ln/+85/54x//SKdOnfjkk0/qbI4jAI3CZmsUl1kIIYQQNJLgaOzYsb+YmwTWzJo///zzKctcd911XHfddbVUs1+mDANlSMuREEII0Vg0yqH8jYqhsEnOkRBCCNFoSHBUx5QyMGxymYUQQojGQp7adU0ZGLJ8iBBCCNFoSHBUx5ShsNskOBJCCCEaCwmO6phSNgybJGQLIYQQjYUER3VNgU1ajoQQQjSAsWPHopRCKYXD4aBdu3Y8+OCDlJSU+MuUH1dKERoaSqdOnRg7duwJcxctWLAApRQ5OTn+fYcOHaJ79+4MHjyY3NzcSmUqfnZVr7Zt29bTVag+CY7qmiEtR0IIIRrOyJEjSUtLY/fu3Tz//PP885//ZOrUqZXKzJ49m7S0NDZt2sTMmTMpKChgwIAB/Pvf/z7peXft2sX5559PmzZt+Oabb4iMjKx0/MUXXyQtLc3/qvg5aWlprFixova/2VrSKOY5asyUUtjsNV+bTQghhDgTLpfLv5pEUlISw4cPJyUlpdLC71FRUf4ybdu25ZJLLmHMmDHcc889XHnllf5luMqtX7+eESNGMGzYMN566y3sVawhGhkZeULAVPFzApm0HNUxZdhk4VkhhGhCtNYUeYqq9SrxlqC1psRbUuX26b7OdJX6jRs3snjxYpzOX55/77777iM/P5+UlJRK+xcvXsyFF17IqFGj+O9//1tlYNTYNb3vKMAYSqEMucxCCNFUFHuLGTB3QLXfl9wimWcGP8NHOz7i2k7Xcu8P97Lk0JJqnWPZjcsIcYRU6z2ff/45YWFheL1e3G43hmHwyiuv/OL7unbtCsCePXsq7b/mmmu4/vrrT+scjZW0HNUxZbeBIZdZCCF+7ZYcWsJHOz5i3Dnj+GjHR9UOjGpq6NChrF27lmXLljFmzBjGjRvHqFGjfvF95a1USqlK+6+66io+/vjjX1yuqzGTJo06ZlN2kLXVhBCiyQi2B7PsxmXVfp+hDFw2Fx6fh7Fnj2V019GY2qz2Z1dXaGgoHTt2BGDWrFn07NmTN998kwkTJpzyfVu2bAGgXbt2lfb/85//5MEHH+TSSy/lyy+/ZPDgwdWuU6CT4KiOGTYDmmB/rBBC/FoppardtVWRo2x6lyB7UG1V6bQZhsEf//hHJk+ezI033khw8MmDrRdeeIGIiAiGDx9eab9Sitdffx3DMLjsssv44osvuPDCC+u66vVK+nvqmKFsJzRJCiGEEA3luuuuw2azMXPmTP++nJwc0tPT2bt3LykpKfz2t79l7ty5vPrqq0RFRZ1wDqUUr732GrfeeiuXXXYZCxYsqL9voB5Ik0YdUza75BwJIYQIGHa7nXvuuYenn36au+++G4Bx48YBEBQURMuWLTn//PNZvnw5vXv3Pul5lFLMnDkTwzC4/PLL+fzzz5tMY4DSZzou8FcmLy+PyMhIcnNziYiIOGk5d3ERKW9OJTYshvNufQglAZIQQjRKJSUlpKam0q5dO4KC6r8rTJy+U92r031+g3Sr1TnDZpfASAghhGhE5Kldxwz7L0+0JYQQQojAIcFRHZPgSAghhGhcJDiqY4ZNct6FEEKIxkSCozpkKMDhaOhqCCGEEKIaJDiqUwqbdKsJIYQQjYoER3VIGTaUXS6xEEII0ZjIk7uO2QzpVhNCCCEaEwmO6pChDJSsqyaEEEI0KhIc1SGFIUP5hRBC/Coppfjkk08auho1IsFRHVIGYLc1dDWEEEL8So0dOxalFEopHA4H7dq148EHH6SkpKShqxbQpM+nLhl27DbJORJCCNFwRo4cyezZs/F4PKxatYoxY8aglOLvf/97Q1ctYEnLUR1ShtFkVigWQgjROLlcLhISEkhKSuLqq69m+PDhpKSkAHD06FFGjx5Ny5YtCQkJoXv37rzzzjuV3j9kyBDuvfdeHnzwQWJiYkhISOCvf/1rpTI7duxg8ODBBAUF0a1bN//5K9qwYQPDhg0jODiY2NhY7rjjDgoKCvzHx44dy9VXX81TTz1FfHw8UVFRPP7443i9Xh544AFiYmJo1aoVs2fPrv2LdBxpOaojhgKn3Y7L5WroqgghhKhFWmt0cXH13mQYKJcL7XaDaZ64fZpUcPAZ/dG9ceNGFi9eTJs2bQBrFfs+ffrw0EMPERERwRdffMEtt9xChw4d6N+/v/99b731FpMnT2bZsmUsWbKEsWPHMmjQIC6++GJM0+Taa68lPj6eZcuWkZuby6RJkyp9bmFhISNGjCA5OZkVK1aQmZnJbbfdxj333MOcOXP85b7//ntatWrFTz/9xKJFi5gwYQKLFy9m8ODBLFu2jHfffZc777yTiy++mFatWtX4OvwSCY7qiGHYaBYeTGhQUENXRQghRC3SxcVs692n2u8LHTSQljNmkPPhh0SNGsWBiRMpXLS4WufosnoVKiSkWu/5/PPPCQsLw+v14na7MQyDV155BYCWLVty//33+8v+/ve/55tvvuG9996rFBz16NGDqVOnAtCpUydeeeUV5s+fz8UXX8x3333H1q1b+eabb2jRogUATz31FJdeeqn//XPnzqWkpIR///vfhIaGAvDKK69w5ZVX8ve//534+HgAYmJieOmllzAMgy5duvD0009TVFTEH//4RwAeeeQRpk+fzsKFC7nhhhuqdR2qQ4KjOmLY7LSKO5uQ8BYNXRUhhBABoHDRYnI+/JDYCRM4+uab1Q6Mamro0KG8+uqrFBYW8vzzz2O32xk1ahQAPp+Pp556ivfee4+DBw9SWlqK2+0m5LgArEePHpW2ExMTyczMBGDLli0kJSX5AyOA5OTkSuW3bNlCz549/YERwKBBgzBNk23btvmDo7PPPhvDOJbxEx8fzznnnOPfttlsxMbG+j+7rkhwVIccYc1B5jkSQogmRQUH02X1quq/sbwrzeMhZvx4om+6qVpdauWfXV2hoaF07NgRgFmzZtGzZ0/efPNNJkyYwDPPPMOLL77ICy+8QPfu3QkNDWXSpEmUlpZWOofjuHVClVKY1az76ajqc+rrsyuSJ3ddMhRIQrYQQjQpSqlqd21VUvawVw2QdmEYBn/84x+ZPHkyN954I4sWLeKqq67i5ptvBsA0TbZv3063bt1O+5xnnXUW+/fvJy0tjcTERACWLl16Qpk5c+ZQWFjobz1atGiRv/ss0MhotbpkGBIcCSGECCjXXXcdNpuNmTNn0qlTJ1JSUli8eDFbtmzhzjvvJCMjo1rnGz58OJ07d2bMmDGsW7eOn3/+mT/96U+Vytx0000EBQUxZswYNm7cyA8//MDvf/97brnlFn+XWiCR4KiuGAZGUBCGJGQLIYQIIHa7nXvuuYenn36aKVOm0Lt3b0aMGMGQIUNISEjg6quvrtb5DMPg448/pri4mP79+3Pbbbfx5JNPVioTEhLCN998Q1ZWFv369eO3v/0tF110kT8xPNAorbVu6Eo0Jnl5eURGRpKbm0tERERDV0cIIUQdKykpITU1lXbt2hEkf/AGtFPdq+o8v6XlSAghhBCigkYRHO3Zs4cJEybQrl07goOD6dChA1OnTq2UTb9nzx7/+jEVX8cnhb3//vt07dqVoKAgunfvzpdfflnf344QQgghAlijGK22detWTNPkn//8Jx07dmTjxo3cfvvtFBYW8uyzz1Yq+91333H22Wf7t2NjY/1fL168mNGjRzNt2jSuuOIK5s6dy9VXX83q1asrzaMghBBCiF+vRptz9Mwzz/Dqq6+ye/duwGo5ateuHWvWrOHcc8+t8j3XX389hYWFfP755/595513Hueeey6vvfbaaX2u5BwJIcSvi+QcNR6/+pyj3NxcYmJiTtj/m9/8hubNm3P++efz6aefVjq2ZMkShg8fXmnfiBEjWLJkyUk/x+12k5eXV+klhBBCiKarUQZHO3fu5OWXX+bOO+/07wsLC2PGjBm8//77fPHFF5x//vlcffXVlQKk9PT0E+ZTiI+PJz09/aSfNW3aNCIjI/2vpKSk2v+GhBBCBLxG2tHyq1Jb96hBg6OHH364yiTqiq+tW7dWes/BgwcZOXIk1113Hbfffrt/f7NmzZg8eTIDBgygX79+TJ8+nZtvvplnnnnmjOr4yCOPkJub63/t37//jM4nhBCicSlfvqKoqKiBayJ+SflALZvNdkbnadCE7ClTpjB27NhTlmnfvr3/60OHDjF06FAGDhzI66+//ovnHzBgACkpKf7thISEE2b+zMjIICEh4aTncLlcuFyuX/wsIYQQTZPNZiMqKsq/2GlISAhKVj8IOKZpcvjwYUJCQrCf4bqmDRocxcXFERcXd1plDx48yNChQ+nTpw+zZ8+utGrvyaxdu9a/zgtYqwTPnz+fSZMm+felpKScsHqwEEIIUVH5H9F1vRq8ODOGYdC6deszDl4bxVD+gwcPMmTIENq0acOzzz7L4cOH/cfK/4d96623cDqd9OrVC4CPPvqIWbNm8cYbb/jL/uEPf+DCCy9kxowZXH755cybN4+VK1eeViuUEEKIXy+lFImJiTRv3hyPx9PQ1REn4XQ6T6vx5Jc0iuAoJSWFnTt3snPnTlq1alXpWMXkqyeeeIK9e/dit9vp2rUr7777Lr/97W/9xwcOHMjcuXP585//zB//+Ec6derEJ598InMcCSGEOC02m+2M81lE4Gu08xw1FJnnSAghhGh8fhXzHAkhhBBC1AUJjoQQQgghKmgUOUeBpLwXUmbKFkIIIRqP8uf26WQTSXBUTUePHgWQmbKFEEKIRig/P5/IyMhTlpHgqJrK13Pbt2/fL15cUXfy8vJISkpi//79khjfQOQeNDy5Bw1P7kFgOJ37oLUmPz+fFi1a/OL5JDiqpvL5EyIjI+UHIQBERETIfWhgcg8antyDhif3IDD80n043UYNScgWQgghhKhAgiMhhBBCiAokOKoml8vF1KlTZTHaBib3oeHJPWh4cg8antyDwFDb90FmyBZCCCGEqEBajoQQQgghKpDgSAghhBCiAgmOhBBCCCEqkOCommbOnEnbtm0JCgpiwIABLF++vKGr1GT99NNPXHnllbRo0QKlFJ988kml41prHn30URITEwkODmb48OHs2LGjYSrbRE2bNo1+/foRHh5O8+bNufrqq9m2bVulMiUlJUycOJHY2FjCwsIYNWoUGRkZDVTjpufVV1+lR48e/vlbkpOT+eqrr/zH5frXv+nTp6OUYtKkSf59ch/q3l//+leUUpVeXbt29R+vzXsgwVE1vPvuu0yePJmpU6eyevVqevbsyYgRI8jMzGzoqjVJhYWF9OzZk5kzZ1Z5/Omnn+all17itddeY9myZYSGhjJixAhKSkrquaZN148//sjEiRNZunQpKSkpeDweLrnkEgoLC/1l7rvvPj777DPef/99fvzxRw4dOsS1117bgLVuWlq1asX06dNZtWoVK1euZNiwYVx11VVs2rQJkOtf31asWME///lPevToUWm/3If6cfbZZ5OWluZ/LVy40H+sVu+BFqetf//+euLEif5tn8+nW7RooadNm9aAtfp1APTHH3/s3zZNUyckJOhnnnnGvy8nJ0e7XC79zjvvNEANfx0yMzM1oH/88UettXXNHQ6Hfv/99/1ltmzZogG9ZMmShqpmkxcdHa3feOMNuf71LD8/X3fq1EmnpKToCy+8UP/hD3/QWsvPQX2ZOnWq7tmzZ5XHavseSMvRaSotLWXVqlUMHz7cv88wDIYPH86SJUsasGa/TqmpqaSnp1e6H5GRkQwYMEDuRx3Kzc0Fjq0xuGrVKjweT6X70LVrV1q3bi33oQ74fD7mzZtHYWEhycnJcv3r2cSJE7n88ssrXW+Qn4P6tGPHDlq0aEH79u256aab2LdvH1D790DWVjtNR44cwefzER8fX2l/fHw8W7dubaBa/Xqlp6cDVHk/yo+J2mWaJpMmTWLQoEGcc845gHUfnE4nUVFRlcrKfahdGzZsIDk5mZKSEsLCwvj444/p1q0ba9euletfT+bNm8fq1atZsWLFCcfk56B+DBgwgDlz5tClSxfS0tJ47LHHuOCCC9i4cWOt3wMJjoQQp2XixIls3LixUh+/qB9dunRh7dq15Obm8sEHHzBmzBh+/PHHhq7Wr8b+/fv5wx/+QEpKCkFBQQ1dnV+tSy+91P91jx49GDBgAG3atOG9994jODi4Vj9LutVOU7NmzbDZbCdkvmdkZJCQkNBAtfr1Kr/mcj/qxz333MPnn3/ODz/8QKtWrfz7ExISKC0tJScnp1J5uQ+1y+l00rFjR/r06cO0adPo2bMnL774olz/erJq1SoyMzPp3bs3drsdu93Ojz/+yEsvvYTdbic+Pl7uQwOIioqic+fO7Ny5s9Z/FiQ4Ok1Op5M+ffowf/58/z7TNJk/fz7JyckNWLNfp3bt2pGQkFDpfuTl5bFs2TK5H7VIa80999zDxx9/zPfff0+7du0qHe/Tpw8Oh6PSfdi2bRv79u2T+1CHTNPE7XbL9a8nF110ERs2bGDt2rX+V9++fbnpppv8X8t9qH8FBQXs2rWLxMTE2v9ZqGHS+K/SvHnztMvl0nPmzNGbN2/Wd9xxh46KitLp6ekNXbUmKT8/X69Zs0avWbNGA/q5557Ta9as0Xv37tVaaz19+nQdFRWl//e//+n169frq666Srdr104XFxc3cM2bjrvvvltHRkbqBQsW6LS0NP+rqKjIX+auu+7SrVu31t9//71euXKlTk5O1snJyQ1Y66bl4Ycf1j/++KNOTU3V69ev1w8//LBWSulvv/1Way3Xv6FUHK2mtdyH+jBlyhS9YMECnZqaqhctWqSHDx+umzVrpjMzM7XWtXsPJDiqppdfflm3bt1aO51O3b9/f7106dKGrlKT9cMPP2jghNeYMWO01tZw/r/85S86Pj5eu1wufdFFF+lt27Y1bKWbmKquP6Bnz57tL1NcXKz/7//+T0dHR+uQkBB9zTXX6LS0tIardBMzfvx43aZNG+10OnVcXJy+6KKL/IGR1nL9G8rxwZHch7p3/fXX68TERO10OnXLli319ddfr3fu3Ok/Xpv3QGmt9Rm2bAkhhBBCNBmScySEEEIIUYEER0IIIYQQFUhwJIQQQghRgQRHQgghxP+3d68hUW1tHMD/00w2OV6mUmasQDPThrTJLpSWmmKmkFQgRRdL7SYUJqVdsNSUdDRITxcJFMwPZUQ3CkqCLDO7WloUVlgZRRettFDIGl3nQ6/7nX3U90ydeq3O/wcL9l5r72c9az7Iw9p7RiILLI6IiIiILLA4IiIiIrLA4oiIiIjIAosjIiIiIgssjoiIvjOFQoETJ070dRpE9I1YHBFRj2JiYqBQKGAymWT9J06cgEKh6KOsvlAoFD22Q4cO9WleXV6+fImIiIi+TgP79++HVqvt6zSIfjksjoioV2q1Gjk5OWhubu7rVLopLi7Gy5cvZW3OnDl9mtOnT58AAHq9HgMGDOjTXIjo27E4IqJehYaGQq/XIzs7u8fx9PR0jBs3TtaXn58PNzc36TwmJgZz5sxBVlYWdDodtFotMjIyYDabkZycjMGDB2P48OEoLi7+qty0Wi30er2sqdVqAEBcXBzGjh2L9vZ2AF+KFl9fXyxZsgQA0NDQIO00+fv7Q61Ww9vbGxUVFbI57t69i4iICNjZ2UGn0yE6Ohpv3ryRxqdPn441a9YgMTERTk5OmDlzJgD5Y7WuuQ4fPoyAgAAMHDgQkyZNwsOHD3Hjxg1MnDgRdnZ2iIiIQFNTk2z+oqIiGAwGqNVqjB49GgUFBdJYV9xjx44hODgYtra2MBqNuHLlCgDgwoULiI2Nxfv376WdtfT0dABAQUEBRo0aBbVaDZ1Oh6ioqK/67Il+dyyOiKhXSqUSWVlZ2L17N54/f/7NccrLy/HixQtcvHgRO3fuRFpaGmbNmoVBgwbh2rVriI+Px6pVq/7RHJZ27dqFtrY2bNq0CQCQkpKClpYW7NmzR3ZdcnIy1q9fj5qaGvj5+SEyMhJv374FALS0tCAkJAS+vr6orq5GWVkZXr9+jXnz5slilJSUwMbGBlVVVdi3b1+vOaWlpWHLli24desWVCoVFi5ciA0bNuCPP/5AZWUl6uvrkZqaKl1/4MABpKamYvv27airq0NWVha2bt2KkpISWdyUlBQkJSWhtrYWnp6eWLBgAcxmM/z9/ZGfnw8HBwdpZy0pKQnV1dVISEhARkYGHjx4gLKyMgQGBv6jz5votyOIiHqwdOlSMXv2bCGEEFOmTBFxcXFCCCGOHz8uuv50pKWlCaPRKLsvLy9PuLq6yuK4urqKjo4Oqc/Ly0sEBARI52azWWg0GlFaWmpVbgCEWq0WGo1G1p4+fSpdc/nyZdG/f3+xdetWoVKpRGVlpTT25MkTAUCYTCap7/Pnz2L48OEiJydHCCFEZmamCAsLk8377NkzAUA8ePBACCFEUFCQ8PX17TG/48ePy+YqKiqSxktLSwUAce7cOakvOztbeHl5SecjR44UBw8elMXNzMwUfn5+vca9d++eACDq6uqEEEIUFxcLR0dHWYyjR48KBwcH8eHDh255E9EXqj6ryojol5GTk4OQkBAkJSV90/1jxoxBv37/3ajW6XTw9vaWzpVKJYYMGYLGxkarY+bl5SE0NFTWN3ToUOnYz88PSUlJyMzMxMaNGzFt2rRuMfz8/KRjlUqFiRMnoq6uDgBw+/ZtnD9/HnZ2dt3ue/ToETw9PQEAEyZMsCrfsWPHSsc6nQ4A4OPjI+vrWn9bWxsePXqEZcuWYcWKFdI1ZrMZjo6OvcZ1cXEBADQ2NmL06NE95jFjxgy4urrC3d0d4eHhCA8Px9y5c2Fra2vVOoj+DVgcEdHfCgwMxMyZM7F582bExMRI/f369YMQQnbt58+fu93fv39/2blCoeixr7Oz0+qc9Ho9PDw8eh3v7OxEVVUVlEol6uvrrY7bpbW1FZGRkcjJyek21lWEAIBGo7EqnuV6u77t99e+rvW3trYCAAoLCzF58mRZHKVS+bdx/9fnaG9vj1u3buHChQs4e/YsUlNTkZ6ejhs3bvCbbUT/wXeOiMgqJpMJp06dkl74BQBnZ2e8evVKViDV1tb2QXbd7dixA/fv30dFRQXKysp6fOH76tWr0rHZbMbNmzdhMBgAAOPHj8e9e/fg5uYGDw8PWbO2IPpWOp0OQ4cOxePHj7vNPWLECKvj2NjYoKOjo1u/SqVCaGgocnNzcefOHTQ0NKC8vPx7LoHol8adIyKyio+PDxYtWoRdu3ZJfdOnT0dTUxNyc3MRFRWFsrIynDlzBg4ODj88n5aWFrx69UrWZ29vD41Gg5qaGqSmpuLIkSOYOnUqdu7cibVr1yIoKAju7u7S9Xv37sWoUaNgMBiQl5eH5uZmxMXFAQBWr16NwsJCLFiwABs2bMDgwYNRX1+PQ4cOoaioqNsOzve2bds2JCQkwNHREeHh4Whvb0d1dTWam5uxbt06q2K4ubmhtbUV586dg9FohK2tLcrLy/H48WMEBgZi0KBBOH36NDo7O+Hl5fVD10P0K+HOERFZLSMjQ/bIxmAwoKCgAHv37oXRaMT169e/+b2krxUbGwsXFxdZ2717Nz5+/IjFixcjJiYGkZGRAICVK1ciODgY0dHRsp0Uk8kEk8kEo9GIS5cu4eTJk3BycgLw5f2lqqoqdHR0ICwsDD4+PkhMTIRWq5W9P/WjLF++HEVFRSguLoaPjw+CgoKwf//+r9o58vf3R3x8PObPnw9nZ2fk5uZCq9Xi2LFjCAkJgcFgwL59+1BaWooxY8b8wNUQ/VoU4q8vDBAR/eYaGhowYsQI1NTUdPudJiIi7hwRERERWWBxREQ/laysLNjZ2fXYfob/V0ZEvz8+ViOin8q7d+/w7t27HscGDhyIYcOG/Z8zIqJ/GxZHRERERBb4WI2IiIjIAosjIiIiIgssjoiIiIgssDgiIiIissDiiIiIiMgCiyMiIiIiCyyOiIiIiCywOCIiIiKy8Cdo/768w/dyhwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGxCAYAAABoYBJuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJoklEQVR4nOzdd3xUVfr48c+5d0p6I41A6B3pCCJ2EVCs67p2Qew/XFdRWV1dXfWrYK+o61pwXV0runaN2AGR3gw91JAESJlkkimZOb8/bjIkJiAJKZP4vF+veZG599w7Z+4F7pNznnOO0lprhBBCCCEEAEZrV0AIIYQQIpxIcCSEEEIIUYMER0IIIYQQNUhwJIQQQghRgwRHQgghhBA1SHAkhBBCCFGDBEdCCCGEEDVIcCSEEEIIUYOttSvQ1gSDQXJzc4mNjUUp1drVEUIIIcQh0FpTWlpKRkYGhnHwtiEJjhooNzeXzMzM1q6GEEIIIRphx44ddO7c+aBlJDhqoNjYWMC6uHFxca1cGyGEEEIcCpfLRWZmZug5fjASHDVQdVdaXFycBEdCCCFEG3MoKTGSkC2EEEIIUYMER0IIIYQQNUhwJIQQQghRgwRHQgghhBA1SHAkhBBCCFGDBEdCCCGEEDVIcCSEEEIIUYMER0IIIYQQNUhwJIQQQghRQ5sKjr7//nvOOOMMMjIyUErxwQcf1Nqvteauu+6iY8eOREZGMm7cODZu3FirTGFhIRdffDFxcXEkJCRwxRVXUFZW1oLfQgghhBDhrE0FR263myFDhjB79ux69z/00EM89dRTPP/88yxatIjo6GgmTJiAx+MJlbn44otZu3YtWVlZfPzxx3z//fdcffXVLfUVhBBCCBHmlNZat3YlGkMpxfvvv8/ZZ58NWK1GGRkZ3Hzzzdxyyy0AlJSUkJaWxpw5c7jgggvIzs5mwIABLF68mJEjRwLw+eefc9ppp7Fz504yMjJ+83NdLhfx8fGUlJTI2mpCCCFEG9GQ53e7WXg2JyeHvLw8xo0bF9oWHx/P6NGjWbhwIRdccAELFy4kISEhFBgBjBs3DsMwWLRoEeecc07jK1BZeeB9SoFpHlpZAFuN29KeywYCcLDYPBzKmqZ1/wCCQesVzmUNw3qFS1mtrWsczmUb8u8zHMpC+P1bbqX/I7RhUlkZRAc0dhu4iz14yyuxO01ikiIoK/Tg9wZC5w1t3+PG7zlAOcAe7dy/vdyH3WGE3ns9fnQggMNpEpcaS/E+NxVlFUTGRpKQHEtxXhEVpRWhc0XGRpKQGk9xQQkV5T4i46Ks93lFVJS46y9XWkFkQgwJaQnW+xJ36N9cnXKxkSR0TKJ4j8v63GCQyGhn3TLV793e0L+NyGinVeeCEspL3URGRZHYMYHC3H2UFhURBLSC2MREUjqlsGfLLor2FpCYnEpKt47s2bqbor0F1hcwDBJT063tW3ZRVJBXb7nE5FRSenRiz/Z861wdUkjJTK19rupy3Tpa5Qr3Wu+7prNn8876y23djcdXTtcj+lX95aj6d29rXJjTboKjvLw8ANLS0mptT0tLC+3Ly8sjNTW11n6bzUZSUlKozK95vV68Xm/ovcvlqr8CL7984Mp16QITJ+5//+9/H/g/iI4d4Ywz9r9/4w2o0S1YS0oK1Azo3n4bDpQ/lZgI5523//3770NRUf1lY2LgoosINSp++CHs2VN/2YgIuOyy/e8//RR2766/rM0GU6fuf//ll7B9e/1lAWp2d379NWzZcuCyU6fu/0fw/fewYQNQ/f+qDq3CHNSaigsvQUVGEGU3YcECKlevwVMZxGkzsJvWfxpl3kr8AU3gT+eTnJEMQPkP8ylbvJxYp41Ih4kG9pV5qfAHcNoMUqZeikpMJL/US/7X8+m2bR1xETa0ht0lHjSajPhIlIKCk09lfTCSPqkxpG1dj/5pEbklFZT7AkQ5zFA5V4Wf7BHH021QL9LiI9BrfyH306/qLZdf6iXh7DNIOaI3WsPGH5eRtuwn4iLtKPaXSYt1EhdpR48bR36HDDYWlNG9JI/OyxZAPeUAdg4ZRU5SZzITI+lWvg8+/7zecvvKvGztN4wOo4bRLTkacnNxvfN+veUAOpx8HAwZQn6Jh5x1Wxnw07xaZQrL/VXfMwI1ciRF/QaxOtfFoMgAiZ/+D601OworKPVa/556JEcT6TAp7TOAbxJ7cGzvFBIDHspf/Q8b8ktDf136pMUQ5bBR7q3k5+iODD5/EknRDgr3udj06LMEg5qBGXHERtgpKfOyalsJAzvFkXjkYLZ1H8YXy3LB66ff13Pp2ymWtPQY8naWsmGHi96d40jPjGV7MIlPnX1Cn3n2lizSM2PJ21HKhp0l9OkcH3q/rDyK7UeM5fih6fQbkkrefU+zaWth6Fx5O0rZuNP6v8cdn0yXy/5E/6FpZK/YTf6z/6JvagQZ3RLYuamQLduLIKhBa6LTOuL4w3kMOLYTa5buYvDG79m5dAd781yUlnuh6p94TISDuJ6d6Xbvtaz9eRcDR3Vi69+fo3jDNtwej3Uup5Pkzkl0OSKZXblldLzzLyz9bCtblmygw/IviSwvBYIYKFK6ptL7qO7s2VZESt+OfFfZmy2L1xHUmq7bVhJVUYICkrul03tMD6tc10Q2LNrOfEcfgihAkblzNTHuQjp0SaHP0d0oyCkitXsi2T/uYF+um18GnBW6vsOMDRzZX1O4uZiOPRNY/WMuhbv3Bx/Z/U5FGyaZ/ZOY2GcvxV8srrccwPo+48kYlM74KweS9+9P6G7fU2+5pI7R9H3yJrbl+Og/Npn5t75O5dIVdf57SuoYzYBjMtiZMZY+E/vz8dMr8Xz/Eyl7NtRbrmxzMVE3Tubjp7exI7uQDvs2k5afXW+52J4JZBX1ZFOu9f9fUuFW0vPW1ClTXf/tmUdSFms9J+OLdzBIbwqVi/vV9djZeTiuuAxgN31Tyjk+dQfezcUk1XPddmUMoSShmMz+BYyfEIv37ax6y+0GOHosY/5+Jrmb/HRLqmT1pffWuba7q75nv5vOIteVQreBKXw561ucX3xcb7kBx2SwM7ITDOwLwQCs/Aw++BD+dCrEpkPnkbBrWZ17cyDtJjhqLjNnzuSee+5p7WocUHUAEwxqtuSXkrdrL9FOG4M7x2MaipU7i1m+vZhCxx6SMnKYcnQ3vP4gC9cVcEwHE5up+Co7n+837LXOozVHDe7K6RdqPP4A/164jcmVAZxA1pqdzF+fi0klx/RK44TBPXDtzeM//3mbc446go49+vH5whWs/XlVqH5H9u7McUP7UbInj6XbdtPvmCPJ6DmAF9//kpz/vEmaq4hu6clMOuZITNNg347NrN68lSN6dCE5EMAfCPDgC6/Cl18wPDqCCccejWkY7NmczS9bNtOva1fS+gyi0uvln089ihkMctWQkZiBALnL5pOzeQPdu/UkY+SxBNGs+PIj5n/2BihF9yEjOO240zB1kMCmX7D1HUDQHyD707kU79gKwJbPXyX1yDGMu2MWEQTxb19PRN8BBP3+WuUAVu9eywn/9wQpDgNz+ypibY465Yozu9H/tD+Q7FRUrv6JlM7jCHg9rPvwbYpqnKs4szv9TzubaAMyNy8hcUgPKj0VLHrmMdTCBYBCYVCS2ZW+p56G3VdJ3PYtOD1eKis8fDPzAcp++IGiokKSu3Wl2ykTsPsqid22BXvv3gRssOKZZ1i/ZRuVQdjrLqcsOoLeE8ahynxEbtqC6tWTgA02fvEV697+EFdMLDnArh5dOKpnF1Rp3XJF23exJ+kz1sbFs2XYYI679PwDlgMwN25k+GMPofa4iVm0lGCxh4BNsSFrPoW79gI2tLKz1bARsU0x+O6hpOW5iekVzbrvNrF36260hqp2NZYCyd3T6dVvIH1dfmIMg2+eX4j9vZ+g6oGrUSxF0aFrMn3GdqerO0CMYfDp00vYuWInfTbmgTJYyt7Qf7rdDBtxUQ4Wzt3Mikrr35wKBtAbSlm3oZSCqnKV7kpSO8aw5ttdbHWXQufk0D3d8Mtu9nZ0MeCYDALl+8sV7nZDTCp4CvluSSFb+udxascYgi5P7TLVopx8/1I2Of3zGX/lQOKS40jvHFm3HNZ9zXlvM1rD8PFd2fpRETkr91btVaFyZWV+9pXupfyHXIaP78byL7eRv3IfTq9G4QSg3AvbfynCHmGj26iuLP9xN8uzdgJRJOlkdNXjJADkbaskukMxXQYks21dEetKfWDrYe235RMwHQDk7QgQnWKV2/7LPvJ2VOLr1zVUr4C5m4ARpGCnn9hN+8vty/UANVragL3bishzaroMSGZn9l5Kdu6rVcLuc6ENk7yVLnZUeug5oEO95arL5q30sGFhAoNHpbPzvQ31livZ6WHTz7kMO/MIVn21lX0bd5MUqPvLbMlOD/lbIhl8SSarFu4ib+VWkv1uzF+VrS7XZUAya5fsJm/lDuyAzV9Wq2zNcjuz97Jn907sUUlQo+yvy1TX3+Yvw+6LtL6nv4ySvH31liNU1grK96zLI7+s6MDXt6ps3koXOSkp9D/I9c1fv4sNC3cxbHw3fnlzUb1lqr/ntpUFDLtmJKu+2krB2h10O8j17X7JKOs34jfOgzXz4Bc/GG9bhXqeBOOfqOdT6tduco62bNlCz549Wb58OUOHDg2VO/744xk6dChPPvkkL7/8MjfffDNFNVpMKisriYiI4J133qm3W62+lqPMzMy6fZaNbDIvqfDx48a9HNEpji5J0WzbV8aKXcUEKn1UuosYnBJJvz59Wbnge75b+hMj+w9izEkT+faT95n79fd4/ZWMP2o0515yGdmfvsmPC7/n6GFHMvCMS8h64WmWLPgGR7ASezCATQcZOuo4xtz4N/Z+/QXJx57Eigf/Qe78r7EHNPZAEFtAYw9oUo86lu4zH6bovfdIPPNMdt16K+4FC2t9reijx9Dp4Ycp/t//SDj3XHbdfDPuH+fX+fqhcnPnkvCnP1nl5i+o1VweffQYOj3xBAF/gD1vzSXxnLNxxkey9abbKFu4KFQ25qhRdHv0AbxuP4Xv/4+kc87CGW1n64y/U7rwZwBiR4+k2yP34ynzs2/u/4g/43SiEyNZf8dDFC7LptIWScB0EjCdJI44gmF3TiF/WxlpXWL4+aG32Lt8C6DQCrSyurRShvZk1Ixzyd1YTEbPOBY8/jm71uYTNB0EDAcB00HAFkHHQRmccvVQsn/YSf8x6WS9tJYd62q30GX2S+SUqweTvWA3/cdm8OULq9mZva/Odcvsl8gpVwwk+6d8+h/TiS9fXMuOX/aifvVPNlRuQS79j+nMly9nsyO7EHQwVLZWmaMzyHppLdvXF4Oq7nqyytZXbse6IrRStcp26ZtQbzmgVtnMfomMv7xfveWqy2YOSGb8lQPJ/nEX/Y9Kq/eaVZc9+tzeDBvfleVfbGXhexvrlKk25g+9GDaxO8u/3MaC9zahdP3dgGPO6cGw8d1YPm8nC+ZuBqygp06ZU7qy8qut/PzWakBjBP2YwUrMSg9G0I8KVjLy2lPoc3xPNn63ieWzPwGl0NXXrMZ5h02bRO/je+0vB3XKDr9uYt0yNa+FYf1/MvzPp9N7bDc2fb+JVU+8i9KVGMEARrASpa0/U0b0ZuhdV1BU4CEpycbKe56jaEk2SgdRaECjdJDEEQM44oGbcBVVEpdoY/ldj7Fn+VqCBgSVJmhA8oiBHHXbjbgK/cSlRvLjw4+Rv2oNEARDW0N8FPQefw5Dzj+LPZtySemVwer3P2ZD1rugQAWr2oUU9Bz3Rwb94Uz2bsknuWc6a+d+wKZ5b1bVy+q+NQjSa8Il9Dv7XIp35JHYJZ1NH/+XzR89CYYfAx8KH/3Ovp3MUy/HsyefiJQ0tn82h/VzH6hxzaxgsN+5d9JlwmV49uQRkZxG7rw55Hx4LzZDYzM0diOI3QYZ5zxI/NGXEqgox7Q7cP/8H8o+ujVUd0NpYk5/FOdRl6GDQZRpUvHzf3B9+FcCmPtfyiT59HuJH3EuGlA2G0VL57L7f3eHWu6qdTz9LhJHnIMOBFAOB/uWf8COD+9Ha4XWiiAGQWXQfdIMUoafbpUzTfas/ITtH83EIGjdd63pPOl2kqrPZZoULX2f3R/fS+gLAGhNx0k1PtM0KVn2Pnmf3GvdSgOUoTCUSfJpdxE7+AyUUmitKV3xIfs+uXd/5RVgKDqc/g+rnNb1lwM6nHE3scPPsc4VDFK69H32/qoMQPKku4gdfjbKNNFaU7L8A/I/vJ+gMtBVv+gEMciY9FeShpyGqk5BWPcxfHWv1a1maKslSQdxDb2W+JP+fEg5R+0mOKpOyL7lllu4+eabASuQSU1NrZOQvWTJEkaMGAHAl19+ycSJE1slIdvt9RGpg+TP+4LU408m+56/UfjtPKK9QaJ8+8tFjz2aTo8+SvF77+0PQuYvqHWuQylTLfXWW+hwxRXse+klCh5+5ID1O1i5oIJKAzJm/JWUyVPY8+9X2frYrFpl0qdcSfn6X3AtXEC36beRctlk9rz2bzY/MYvYo44mul9/dv77JTwRHXDFDST2mIkce8MksufnWkHDi2uth/yvZPZPsh6mByl3KGWqHf2HntYD98ttoQdkc5c7vHMFofqhZoBhKI4+tx+DT8xk1Tc7WDh3HToYQAcDoK2cDdMewVHnDmDwiZms/nYnP81dQ9BbhiIIBEMPI3tkLKP+NJIBR2eQvSCXn99ZjL+8uE697FEJjDrvSPo3QbmaZTb8nMey977HX7wFA0+tV68TT2PwuZPYu7WA5O5p/PLBh2z46h00hvXQwEYQgwGnns+gSSexLyePDt3TWfPZ16z67G3relVfNzRDJl1I/wknU7Izj4TMdDZ89SXL/vcvFJUoAigCHPmn6+l+/Gl49uYTkZzGth8+YfHbj1ptLqqqBQkY8adb6HrMpP3lfvyEZe/U/bc1/LyqcvsKiOiQyo5FWax4/1FM08A0TQzDZMh5M0gdeDT+8jLsUTEUblzK+v89gVIKK+40MZSi91k3Ed9tEEGfB8MRQdmOX9j+6ZNVzz6rbEzmQDqN/39gmGhfOcoRBcEA+V89S0VuVTeNgsiMfqSdPK12OR2gYP5bVOzbhbI5cab1JG3EqaAMdDCAMkzQmsKNS/CXFqJMA0OZxHbpjzOxIwABTxlmRAwA/pJ8vAVbqW7Bc6Z2wx6fYv2N9roxnNEAVJbk4dv1i/V3N1CJo/NAbEldQGuC7j0YMSmAIliyi0DBeut6pPbDqOoqwlcOjijrvO696OLtoV+uVGJXjOjkUDlVVY7yfVC8Y/+NSsiEqA7Wz/5ysNdT7oBliqAsz/qeSlldOhHx1r5KL9islji8pejyfft/SYxOBmdsveUo3//Lk4rqsL9cwAdVrXC6ZrmaZWqcS3tLwW19pgaIScY4ULkyq4VRqf11U/XWrbolEog6yHdwV6VmRKcctEwoJIlJAWfcga+Hsv4eqagO4Iiuuh5+MO37y5UVQLDSCo7sEbjMROITO7S/4KisrIxNmzYBMGzYMB577DFOPPFEkpKS6NKlCw8++CCzZs3i1VdfpXv37vz9739n1apV/PLLL0RERABw6qmnkp+fz/PPP4/f7+fyyy9n5MiRvPHGG4dUh6YMjj777H+Myt170EDFZ4Nyh6LHjDtJu+Ai8t99iyVP30/QtH4Tsl6g7DaO+n93kXbqmeR/9Rk/vPwAfoJo0wy97DExHHHcmfQ//WIKVi8jdfAINs//nNWLvqai3Ith2MB0EJ+azohxp5HarR+FubtI6tQZd/FeVs9fQum+UnoMPgJlmnQb2BvDNCgrdhGTEEcwEGTn+q2AZvfm7cSnJtJn5CBQCsMwKC9xERUfR6U/gAJ++mgNGxYVUlEjjavBQUPW/nKqxn6lFGPO6cnQU7qw6psdLP9yO4YJNocBKkhktANnlIOOvRMZeEwGO34pIHNAKpuWFrBvRzF+TwWewkLsURHEdepEfGoUPYYks2v1NjoP7kruphK85X6KN23AV1pETEoiGSOHEhXrIDLazt6NW0ju3QOfN0ClP8DuxYsp37eXTkeOIiY9FUeEjb0bN5Pcuyd+b4CyvAJyl/5c9T0MMo4cSUx6Gja7QeHmzST17IlGU753L7uXLA09/DqOGEZUShpojXvDYqJ7DwfDBstfR304zboYx9wEJ99V9dutzQqalIFv5ceUr8xC2yIImpFEDxtPRJ+jAfCX7Ak9uMq3rKR07SLACsniBo4mqscQq1zxXuwJVTlZW3+hOHt51Z0wSBg4gqguva1yriLscYkAuHdsoXjdajSQ2G8Q0ZlWd4vPVYwjLgGAitwtuHNWYxgKA4judyT2xI4QDOLfuxV7cjcwDCpL8vFumI82HWBGENl3DGZENAG/l/J9+4jqkIJptxPw+6koqnpwKIhM6BDa7ikpJCIhCdNmJ1jpx1NajFLgjEnAqNrmdRfhjEnEMO0EA5VUVpSE/q7ZIuMxTBvBQCWBChdmZFyN96XVfyExI2L2b/eWY0ZEYxgmOhjE0FWtycpmJcsGgxD0g2Hf/17XaJ2uWU5X1j0OrF/7qx8UwcD+B2lVqxMBH+hgVTnH/nJBPxiO2gntxv5WrVZT/ahS6uDlhDiAhjy/21Rw9O2333LiiSfW2T558mTmzJmD1pq7776bF154geLiYo455hieffZZ+vTZnxRZWFjI9ddfz0cffYRhGJx77rk89dRTxMTEHFIdmjI4WvHdFwwaMpp9n35M8h//xNqv57J22dfYIiKxR8YSGdsBR0wc/Y88mdSMrlRW+rHZ7JQU7WNP7k6UNjAwiIiKJq1bFwzDsEZNxEQSDAbZumYHZYVlKBSd+maQkBaHYRjkb93DvtwikjsnkdolmWAwSFlROXt2FpPWJYmo+EgMQ1Gyp5xyl5+YRCexSRHooMZbXkmgMkh0ghXFu4u9lLt8RMU56mxzRJjEdrDOtWdHKVtX7yUY1Aw9uUutlhxlQHqPeAad0IkeQ1Mp3VtKXEosylAEg0H2bNiFp7iMuI5JJHa1fjvUwSClO/OI7ZyOqvqPu2iLldyd2KNLqIxrVz5xndJCZQo35lCyZRtpwwcTlZIEWrNnxXJ8hXuJSEygw7AjQSm8hXspXrua2D79iEqzfgv2rfyEwJqPsA2cgH2o1QUbWPMxgV8+wTZwEsbA0wEIrn4f/cvHqL7jMYaeb9Vl2WsQDKBGTrEePgE/rHoXBv/RegCaNvSC2bD4JTjyCtTR0yBQaZVd9TYMOs96gJk2+GYW/Pgo6ug/w8l3WecK+GDJKzDy8qpydvQPj6FjO6GGXmA9WLSG0t3Wb7JGVf9H8Q5U3mroOAjiM62/mHs2QMl2SOwGHXpV/cXfBQXZkNIf4jvtL1eUA0k9ILl3Vblc2LPOKhdnXTcKc6BkB8R3tsoCuKqS9qvL7NsIRdsgsSt06F37MzOGWr+R6iDsXgHlhdZ3SB1g/eWp9FnXyR4VHg9xIURYarfBUThoyuAo6POx87rrWJazlGNfe4+kjB64S/ZSXlqIIzIGZ1QszogYDMPA7wtQnF9OVKydqHgnZUVe9mx3kZwZS3SC0wpmCsopK/YS1yGC2A6RoWCmtNBDQloUdqeJp8xPaeH+hLbYpAgiYuz4vdb5D6WcDmoMm4FpKrb/so8928uIiLHT76iOrPp2BzvWFlJW7MVXUYmnzE/nfnW7uPbsKKVzv0SSO8XQe2QqsclWfQtWrEW5c4lITCRuwAgwDPyFe3D9soTYASNxJFmtGe5tG6nYtZ3ITl2J7mo9wH3F+1CAPcFq6i7ftpGK3K1Ede5GZKb1wA2UFuLbvoaIPqNRdgcEgwT3bMDwlVpN7Cl9rQdu8Q546xI4czak9oXvHoSxf4Flr8HwS2H+k3D8X6HgF/jXSXDV19bD+mDlwCrz5kXQ40QYewPMfwq2fAMXvFH3XI0pl/0x+Nww6I9WczJYrQfBIOxcbDX/x2VAch/rewYrqwKmTlZg4S+3Wg8ME1BWK5RptwIrfznYI6sCEq8VkEFVAoYDbI6q4bNVLRRKVQ0/1tbPWled06jdChD0W4FgdQKGYd//mZUVYIu0ylV6ra4WAFvE/hYQIYQ4BBIcNaOmCo601sx//Z90+L8nWdYjlgs+WoBp1j94MOAPsHtzCT5PJTaHSYeMaKLinVSU+rE5jEMKeuJTIgkGNM4oG3t3luHaW0FkjJ30ngns2e7C5wlQWughKs6B3WmS3iOebav3sXdnKRHRdvqPzWDxJzlsW7OP8mIf3orKBuX1HHt+bwafmMm2tfsoL/HSqU8izghF8ZYcErp1wh4dTdHKJUSaZUQmRqNMu9VPn9QD/BWwd4P1QLdFWg/5tAGw/nPoMwFWvWUFIoU5gLaOWfIyDL0Ysj+E/mfC8v/AkVfAvs3w7uUw7DLYu96q3Pj/g9XvwBHnwrtVUw2kD4b5T8DYGyF/rdVCcvLdMOBM2PA5rH7XCkwSuljv+0yE4u1W4DLoj9b7TfOsfakDrFYZw7T65w079J1otbyk9IXN31ifGdUB8lZZn12dO9DzxP3ffftPVrASlWR9Vode1rUxbJDcyzomqgMUbbWONRxgKIhJt1pzHDFV/f2H1koqhBDtye9yEsi2pshVyMKs/3E6UBHpOHBgFAhSsL0MnydAdIITpRTuEh+GaeCIMAlUBvGU+XFG2fGW+/F5AtidJo4oG3lbSti7s4w920opK/JQWuQlITWKkyf3Z9f6Ijr3S+KT2asOmvTs2ltB36M68vk/19Qpl7upmM1LCxg2viublhYQGWtn0ImdiIiyExFjJyLajjPaRmyHSBJSonCXeMnsl4hrxy48m5dT5i7FUxbAGWmj0uYnIcWOaSbt/wBvKRRusVorKr2wfRGsfhtW/hdOuW9/i0rW32H9p1ZQAVaAsflrqzWiZplNX1ll9qyHL+/Y/zkdeu8vl7cGOvSwkgdP+rsVaPU/HSITrW6msnzoNc4KTLxV+SRjqnJ7OvS0gqfqcj2Ot7qJqsuBlcSZ2M0KYHTA6m7qPc567y2FTsOtcsm99pcLVlrluo3dXy4mFbwuK7Gxupy3FDwu6/2upVBRDOlHWNtS+u3PPxFCCHFQEhy1Al/Ax/yfvsTpsaYI8EY46y0XDGoKc92Uu7zEVAVG1Wq2EgF43H5ikyLYsDifHkNT+OSZ+oOe4rxysufnMmx8V1Z9s4M9O0qJinOgjOqRMArDUJQWetiyYg/Dxndly4o9xHaIYORpXYmMdVS97ETHO4mvCnp6DE0huXM0Pk/tYdAOpyIuJRLX9h34Cnbij3IQ128wBXv34NNB4rs4iekQhU1XQI0pE0K8ZZCfDR/9GSqqhnf3mQhHTrVaUkZdBbFpVjdY9RDyHifC8MlW60zuchh9NSR1h5Kd1vETa4yqi+8MvU+B/DVw1HXQ77TawQzsD0AKc8BTbAUdHXrCvi1WgFJ9X5xx+wMVjwsqSqxAa+8m67iIOEjoCgXroKLQ6jbyuKzWn5R+VtDmKYHIBEjoBns3WudHWa1CAb8VyO3bYNUhIn7/+TxFVgBZvAO8buh8pNW95oyVBFYhhGggCY5awa69OyneuYMon5Wz4Y+Mqreca28FpXsrQsHLgVT6Aiz63xY690sMjfTakV1IVJyDmCQnMYkRoaTqlC6xdOwZj7vEyxHHdabLgKQ6AQ2AI8IkLtkKfLoNSiapY1StctX7XXvL8XkC+D2V+9+XusHvxuHQxGVk4lq7FF9hAdp04qrQVKzdQtrQwfjzt+CgDKUrard+gJWcu2cdjL4G5t1jBUbRKXDCbVbgU7zNGtrp2mV1h9U8tmZrClhBUd9Ta5f5dbmA3zpnYjer6618r5U744yzus52LgH3XqtrzL0XKlzQaQjsWmGVjepgtRLtXFJjaKthBTsZQ63WLMMOeWutQEYZ+/Nwygsh/xer26uyAEwn5K20tmtr6DlgBVv+cqtO/nKITrXOV1FkDRCzRVrBU3SKVc8IWftPCCEaQ4KjFlYZrGRzzi/Y3JUYXis4CkZF1ynnLvZSlOfGGWXDtB14BI5rbwUL5m4mITWK/mMz2PHLPgaflEmXIzoQ8Nee+O6gAc2hBj6eQJ39aI3PVYKrooi4zukU5W/Ak5+Lo2sv9qxeS3mxH62T0UFwOhUxTjcU5eCMjYYytxWwFG21ApNNX8MPj1rzlPzxZSsHyLXL6uLqf4bVYlO01Zq/onoei4pi6DgEdq+0vkBCV8hdsT9vJ1RmsFXGvdca/ZTQxZpO3r0XqBrN5d5rdW35yq1k4ph0KNtTNdKqZ+2uqUovdDwC/B4rQdjvsXKDdO+qVqyqlqyAH9IGWd1j1qxq+19Q9dlB6/MTOlf9nFF7e9WcHqE/4zvXfq8UKFNGawkhRBOQ4KiF7Snbw54tW3BGxWF4rOBIRdcOjrzlfvblujFNA3vEgW/RtjX7WPr5NjJ6JTDhqoHkbSkhMtZB6b4KEtOiawU9dQIawOcJ4NpbfvDA51flSvaUY9gMCncVUbGvmGB5KcHyYoI+D+gAFQV5OBOTCDh9lO0pweZQxCXZsdkVpqmIiFTY7Ar8ZdarmnsvrP3ASpruN8lKsP7hMRhwNqRbcyXhjLECI1eu1R0Vl2ElI4PVnRTXCdBWsrJpt4Z7W1fYepXkQnwXsEdbLT2uPKsVxhlnBSo2pxXkVPqsXJ1DDTbs9bf81eU4yD4ZeSWEEOFCgqMWFAgG2LxtHbqkHGdqZ5wV1lBre3R8qEylL8C+XDcBfyA0b1Cd81QGWZG1nS0r9lqLKF59BMUF5UTGWg/f+oIem8PEtbccb0UlwYBGB7U1OttTid8XwOG04auoxBFpY++uUrxuf9XUOJpgQFO2L0BFkQuH06AkOwcjUI6pK3DYwBZnzctkOp0YJphmMXHd7FWLyR9Cvsu+zfD1fVbgYzqs5Oh9m+CIP9QuV1ZgdTUFfJA20Gppakw+TfVMukIIIUQ9JDhqQUXeIvK2b8GhnZgOOzFeq9srKiEBgGAgSFGem4pSHzGJTqLiHFT6ArW6vMqKPCx8fwuxSREMG9+FtG5xuEtqJzIHg5pylw+/N4DNaeIu8VJW6EUrbS1XaioM0wj1yHjdlXjdVqDmLvJYs/kSBO3FCHqx61JsFGOWVWCWVRKb7MCIjMaMiA9NrtgoOghr3oNFL1hz3fQ/00qeLsuvm4OktTWCzDCtLrS4317qRQghhGgMCY5aiNaabflb8OUVEROfiK8ySEyFlWgbm9DBWlSvoALXPg/R8Q6UUlT6ArVaf3atL2LxJ1tJ7xHP+CsHkruxiJjECPzeQOgz3CVeKwCyGQQDmkp/kNgOEdgdVu6SaVOYNgPDpqxWHR1EVXqg0oOqrABfGcpbYo2gqvRaQYsyrRwgR/L+bqzDVb4Pvp1lzVkEcNQ0OOUeKynaW2q9QiO/SqA0z0pYThtorfMjhBBCNBMJjlpIsbeY3J1bcHgUjuRo9pS4MKsGISV1SLUSsAvKiYi2Y5hWa8z+7rFIlmdt56cPtpDZP4kJVx9Bcb6bmMSIWp/h9wSwmZCS4cTmANPQGCoIQR/oiqp1kwLgDUJFpTX6yVdaNdux1xoUpVRV7o3TWszvcObGiUm1gqxfD43fOh+2L4SuY60E6UmPwdALa7cU1UzS3rkEIhIhfeD+BRyFEEKIZiLBUQvJc+2ifHsBjshoMBRlZcUAeOxgt8WxL9eNzW7Ndl2TzxNg7Q+7GHhsJwxDccRxnSjN24tyu0OrVlPpgYAXX5GPxMQAkYVVo5yCAetPgqAVoSHh1Uy7FQQ5Y8BMqjF6qon4fzVEv9IDC58FX5k1Eu2LO+EP/4LMI+sOswerdalsjzVxYmTi/pWXhRBCiGYkwVELcPlc7Ni5BdNViSPZWvfLU1oMQFmEgbfUTjAQJDq+bgJ2pS/ATx9sptIXZNj4rrh3bKFya/b+AkqBYeL3m5imQXS8Deym1RVWPVy8tdagqjVEfx58crO1QOkfX4alr8KIy6wE7LKCusf6K6wRbAldrXl7bPUnpwshhBBNTYKjFlDgLqB0Vx4GNkyndcn9bquVpCzCxKhURMXVM8zb72Hz/C2kdU9gwDEZuHN3EdmxC/4KPz6Xq1ZRry9IfLKBIzaMbqm3FNbMtRKpJ86EUVfD8Mtg2wJraY0D8ZVZXX7Jva1JDQ+wtIoQQgjRHOSp08zcfjc7C3Jgrxczdn+3ULDUmuPH7bSRHGPUHvIerAT3Xir37aSsPJHxVw4k56cNJMWV4y8rI65HT1xbNocCpEq/xrQpomNbaALAA+USgZU07XNbq9NvmmflMoE1CeLYG6w5iOI6HvjcvjLwlFqLtSZ2k0kNhRBCtDh58jSzgvICivPyUeUBHDHRaA0+t4EqcwNQHmHHNKu6vTTWUhAF62DvRorKkzhx8hF89/paEmKs8j6XC9eWzcT16ImjalVhr0cTFatwRrTQGlrVuUTO2Brbyq3V62NSreU+1n9qBUaJ3eCMJ/cP0Y/LqH1cTQE/lBdbK9UndZfASAghRKuQlqNm5Kn0sLtkF2q3GyIjAIWvzMTvNrF7q4IjpwPDMKzgoiTXyr8xFAFnEuVlsXz54lpSO7gxjP3dbtUBki0qiorCElAQE2cc2oSLTaFmLlHucljwtDWr9DnPwTtTYOsP0OsUa4X6LmOsQKc64brmEP2aLU9aQ2m+tXxGQldZLFUIIUSrkeCoGe0p30NRfh66xIc9MRFfqYm/3MR0BnF6KwDwOp3YygshzwOVFdaK7KaDnF98LF+wjchoxZFH1R2l5XO58LlceCo0UbEGEZEtHEyUF1rroA0+DzqNtJb7+HSGtbr82L9YQ+5rLuxa3xD9mtvde6zvntxHcoyEEEK0KnkKNZOgDpJfno8ucFPpN9CeCIIVGru9DKPST6THA0ClzYZZngspfawuKSAY0Kxbaa271m+IA9OsP/AJBjQaiG3JViOAXUvhxyegZIc1PH/sDbB7FRx1Xe0WH3tk/UP0qwMke+T+1iQUpPaX4fpCCCFanQRHzURrjbdwL96t+eCPxSjah9MsQ/krMbQm2mMlKlc6IyGyQ62gYOtGPxVuTUSUonufA0/C6KnQREUbREY3YWB0sGRrHYS8NdaQfLCW+xh1ldUdljagbiBU3xD9atVBUaXXWkRWZr4WQggRJiTjtbkEg5StySa4uxR7sAKb4UKbJkFbFJWOWKI81lpmOCJQNeYhCgb3txr1HezAtB2g1SioCQYhNr6JW43qS7YOVsKuZZDUA375wJo76aS/W/MVuXZBae7+rrIDJVvXRwetACqhKyR0abrvIIQQQhwGaTlqJsFAgLLtPgLOKGwxdScwjKkKjgxHBIaxP7jZvqkSd6nGGaHo0e/ArUbeCqtlqUlbjaBuTlDOD7BjkTVP0btTrRFnl34A3cYeWi7RwZQVQFQyJPdqvYkqhRBCiF+R4KiZVFYGCFYGMR26zj6tIdYTBMDhiMCoavnRQU32Cqu7re9gB7YDtBrpoCYQgA4JZq3Aqsl4S2HHz5A+yPp54kz43/VW4nXfiRCbfmi5RAfjKbEWsU3tZ5UXQgghwoQER82ubvBSHggQXTU3YoQjElU1n8+OLZWUuTQOp6Jn/4O0GnmslqUmbzUCa66ilf+1Foc95V4r2XrdJ9bs1hHWvEqHlEt0MJVea6LItCMgKqnp6i6EEEI0AQmOWkFZRVno5yhbJIah0Frzywor16jPEXZs9gO0GmmN3w8JyYY1iu1gCdTOWKtVpqzgN2a1jrbWMftsBuSttrb1PAlGXg4F2dBnwqF3lf2WYMCqT1IPiM88/PMJIYQQTUwSsluBu8IKMtxOMG12lFLszKmktDiI3QG9BloTPkalp4dmwa7m82qcTkV0cvz+gKe+ROjqOYb81nxK9ZYL+KzZuGPS4PuHrcDIsMHxf4UL37Lyiyo9jUu2PpCyPVa9O/SSGbCFEEKEJXk6tQJvhTU7dmmEgVJgKJPsqlaj3gMd2B1Wq1FleXmtZUK01vi8kNA5HjO5+/6WoOrgxea0Ro9Veq3RXzuXWC0/JTutP3cusbb7K2Dlm7DwWSuH6J0psH0RDLkQrvgSjp8BJdvrT7Y+nACpoghsDmt5EHtE488jhBBCNCPpVmsFAU/VorMRNpRS7N1tUFIYxGaH3kfUXSakeqHZsoISYlNjie7cHdZ/DtsXWoFPyXZI6AanPwYbv4KuY+GN82Hz13U/vOdJ1hD8nUvghNvgoxutWamPnW4tGhuTevjJ1rW+rB+8LvBVWAFRan+ITGzoJRNCCCFajARHrWD0seOILlG4d64ADHKyrQa8XgMcxKTEY4uKojwvD7ACpLI1C4jvN4zYogUYvc5G/beewGfXMsgYZiVQL3zOagmy1zPb9PZFsOJNq9z2n2DMNDBrJH8fbrI1WHlFvlLwukGZ1lIiHXpZQVFE/G8fL4QQQrQiCY5awZ6c9Rz76KMkPHY3BZ5ESosUpg0GHZscaiWqFrEzi9jVT6Lcd2COvQHmPwVbf6xKaO5sJTUnZELnUdD9OCtPaPRV0OeUAydpJ3azynUe2XSJ1lqDrwy8Zdbkjs5YSO4L0R2sgEjmMRJCCNFGSHDUCnKXLmTX2p0c/+TjzPv3Glz5HkaNTyG5Xy9cWzbjc7kg4CN27Wwit38CPU9Cj5iCb+sKnEdda+UJ+dz7T/jrBV69pfVPxnio5RqqfJ/VbeaIsWa7jkmxWonMA09HIIQQQoQrCY5agdPrwb10AZ/NfoZTr7+VdQtyGXRCp1BgZLhziV96L3bXJnTPk+BP/yE/eysJsQEo3m61GlUHNL8OeKD+2aoPtVxD6CCU5llBUaf+1pxFMqGjEEKINk5Gq7WCSI81Mm3rxt1kz89l6Cld8ezbg8/lwpE3n6QfrsPu2kSw7+no8/9L/rodKF85zghVd+SYPfK3E6jh0MsdqoAfSnZBVAfIGArxnSQwEkII0S5IcNQKEgIBALoMHkH/sRmsW7CdyOQU4op+IKHoO4zRV+FPHEDFUX+nJGcr5ftKiI6rscBszYCmrODALT7e0v0J1oda7lD4y60Wo4Su0HGIJFkLIYRoV6RbrRVEuL1Ejz2aSVdewJf/WotRUUDPgseJOPVe4Co837+Aa8xjsK8UryeIw1nPUiGHOnKsqXlKrHyn5L7QoSeY8ldICCFE+yItR60gY/BoOj36KEs+WcmO7EKSCr/AXroVDWjTiafr6dZM1VgzYsfEKWupkNaktdW6FPBbC9Km9JHASAghRLskwVELC2pI6tmPXTffzPol2wCI7jMcfd4cStevomRLDraoKAAq/RqbzSAqppWHwQcD4MoFWwR0HGrNsq1aOVgTQgghmon86t/C3D4frn++CIAePw6AqKHjKC8sxeNzgM9lDeUHvB5NTJyBw9mKgUjAB6UFEJsKKf0hIu63jxFCCCHaMGk5amGlVYvOBhQYhhVoROb/SGRq7UVmg0GN1hAd24q3yFdudaUldIH0IRIYCSGE+F2Q4KiFlVdY66qVRSr8QWt5D/uWT0JrqFUHSD6PJiJKERHVSq1GFUVW8nVyX0gbKAvFCiGE+N1oV8HRP/7xD5RStV79+vUL7fd4PEybNo0OHToQExPDueeeS35+fovW0V+16Gx5TDSVviAAztiIWovM2mNj8fshJs7AMFo4ONLaGqavtTVMP7m3JF4LIYT4XWlXwRHAwIED2b17d+j1448/hvbddNNNfPTRR7zzzjt899135Obm8oc//KFF6xfwlANQHJUAgF1VYEZbP1cHSIYzGrtDERndwrcnWGlN7OiMtRaxje8kiddCCCF+d9pdk4DNZiM9Pb3O9pKSEl566SXeeOMNTjrpJABeeeUV+vfvz08//cRRRx3VIvVTHmtNtNKIRACijCKCzg6h/T6XizJXMfFJBnZ7CwYm/gpw77UWsU3uC46olvtsIYQQIoy0u5ajjRs3kpGRQY8ePbj44ovZvn07AEuXLsXv9zNu3LhQ2X79+tGlSxcWLlx4wPN5vV5cLlet1+EwPRXWeauCo2ijiEDE/uAoENAoA6JjWvDWeIqtHKPkPpB2hARGQgghftfaVXA0evRo5syZw+eff85zzz1HTk4Oxx57LKWlpeTl5eFwOEhISKh1TFpaGnl5eQc858yZM4mPjw+9MjMzD6uOdq8HAL+zquXILCRYIzjyejSRUQbOyBZoNdIayvIhUAnpgyGlL5j25v9cIYQQIoy1q261U089NfTz4MGDGT16NF27duXtt98mMrJxi6LefvvtTJ8+PfTe5XIdVoAUWRUcaXscCogyigk6k6xtWhMMWInYqjG5PsFKa14iAGXsf6HAMOuWLc2DiARIHQDRHX59NiGEEOJ3qV0FR7+WkJBAnz592LRpE6eccgo+n4/i4uJarUf5+fn15ihVczqdOJ3OJqtTpMcKXpQZa53f5gbTAVhLhTgcisgDDd/XGoJ+awmPgN8KhIJ+0FX7DbPqXAp0wCpf/SfBqnIK6wcNsRlWa5Ezpsm+nxBCCNHWtevgqKysjM2bN3PppZcyYsQI7HY78+bN49xzzwVg/fr1bN++nTFjxrRYnaK8fgCUEYPW4LT7Qvv8Xk1SqoFp+1VwVN39FQxY3V6GA2x2q9XHGQs2p/UyHdafKNDBqsAoaB0XCpSCVS8NManSjSaEEEL8SrsKjm655RbOOOMMunbtSm5uLnfffTemaXLhhRcSHx/PFVdcwfTp00lKSiIuLo4///nPjBkzpsVGqgHEeCoBMFQUAQ12h/W+0q8xbQaR0fV1f+VDZKI155A9EkynFdTIMHshhBCiybWr4Gjnzp1ceOGF7Nu3j5SUFI455hh++uknUlJSAHj88ccxDINzzz0Xr9fLhAkTePbZZ1u0jrEVAQC0tmbHtkVYOfFejyYm1sBRswcv4LMCo7gMSO0PjugWrasQQgjxe9SugqM333zzoPsjIiKYPXs2s2fPbqEa1RYIBonxaILKJKit4fK2CDO0jlpUzURsfzm490Fid0jpU9VdJoQQQojm1q6Co3Dn8nqwBcHjtNZPM/BDZCQ+j8YZUSMR21sKHpc171CHXrJ8hxBCCNGC5KnbgsoqSgFwR8YD1jB+vyMJ7YeE5Kp11Mr3WfMOpQ2ExG6SVySEEEK0MAmOWpCnwlo6pCSmKjgyi/CbiUQ4FJGRypp3yHRaC77GdWzNqgohhBC/WxIctSC/pwwAd9Wis9FGET5bOqYKYvMUQES81WIUldSKtRRCCCF+39rV8iHhTlctOlvhtFqOIo0iArY4VPleVEwKZAyVwEgIIYRoZdJy1JKqFp31VwVHTrMMdBDljIa0QbLgqxBCCBEGpOWoBdm9VnBUabeCI9PwoABlGNbkjkIIIYRodRIctSBHVcuRtlnrqpmm11ob1lQyKk0IIYQIExIctaAIrxcAbVjBEWYlShsYpnmQo4QQQgjRkiQ4akFRHh8ahSYGAG0LYqBQEhwJIYQQYUOCoxYU7fHjt0eDMoEgAVMB2so5EkIIIURYkKdyC4r2BvA6qofxu/AaMShlSMuREEIIEUYkOGpBsRUBfM7qpUOKqDBiMEByjoQQQogwIsFRC/EFKon2gNdhLTobbRRRYcSilCRkCyGEEOFEgqMW4qqowAB81d1qZjE+FYlCo0yZi1MIIYQIFxIctRC3p9T6M9JqOXIYbgxlWDdAErKFEEKIsCFP5RbirbAWna2IsIIjm81jdakZhoxWE0IIIcKIPJVbSGWFtehsdUK2afpAgaEkOBJCCCHCiTyVW4j2WsGRv2pdNWyVKKUwDCQ4EkIIIcKIPJVbiOGpQAMB0+pW06bGMBRKGZJzJIQQQoQReSq3EJu3goAZAYYDgKBNW4ER0nIkhBBChBN5KreQCI8Hb1W+kUO58apIlGmgFShDtXLthBBCCFFNgqMWEuHx4quaADLKKKKCaAxlolChFiQhhBBCtD55KreQKK9//+zYZhHlKgZlGCilJedICCGECCPyVG4h0R5/aHbsCMOFHzuGYYACZcjyIUIIIUS4kOCohcR4AqHgyGmWo7W25jhSSnKOhBBCiDAiwVELia0I4nVa3Wp2uwcNVs6RUjJaTQghhAgj8lRuARV+P5H+/YvO2mx+0EGrxUhVvYQQQggRFiQ4agElFdais9UJ2YY9AFqH1lWTnCMhhBAifEhw1AIqqhadre5Ww6EAjaFUVUK23AYhhBAiXMhTuQV4PW4Cho2ALRoA7TBBVy06i7QcCSGEEOFEgqMWEKhwhyaANPFRaY+wdoRGq8ltEEIIIcKFPJVbgPK4Q8nYUUYxXjMOFBgolAHIUH4hhBAibEhw1AIMT0UoGTvKLMJrxgJVA9UMJd1qQgghRBiR4KgFOLyeULdapFFCUNmtHdUTQMraakIIIUTYkKdyC3B6PKFuNYet3NqoQVE1Uk3mORJCCCHChgRHLSDS69s/O7bNG9puoFCmdKkJIYQQ4USCoxYQ5fHtnx3b7qvaqgBlLT4rhBBCiLDxu30yz549m27duhEREcHo0aP5+eefm+2zYjyVNWbHDoIGlLZajmzSciSEEEKEk99lcPTWW28xffp07r77bpYtW8aQIUOYMGECBQUFzfJ5Md5AqOVI2avyizTWHEfSrSaEEEKEld9lcPTYY49x1VVXcfnllzNgwACef/55oqKiePnll5v8s4LBINEV4HNYw/e1wyQIVhJ21fpqQgghhAgfv7sns8/nY+nSpYwbNy60zTAMxo0bx8KFC+uU93q9uFyuWq+GKA9UghlrzYZNgIDDjtZBa9kQpTBstsP+TkIIIYRoOr+74Gjv3r0EAgHS0tJqbU9LSyMvL69O+ZkzZxIfHx96ZWZmNujz3N79S4dEGC58tjgrOFJgKkAmgBRCCCHCyu8uOGqo22+/nZKSktBrx44dDTre66vAW5VvFG0U4TViIFiVbyQ5R0IIIUTY+d316SQnJ2OaJvn5+bW25+fnk56eXqe80+nE6XQ2+vP8vvL9LUdmKVo5COIDA5QyZNFZIYQQIsz87p7MDoeDESNGMG/evNC2YDDIvHnzGDNmTNN/oLcCr9NqOXKabgCU1lU5R0hwJIQQQoSZRj+Zp06dSmlpaZ3tbrebqVOnHlalmtv06dP517/+xauvvkp2djbXXXcdbrebyy+/vMk/S/kqQi1HdpsHgEDQWjtEKSXBkRBCCBFmGv1kfvXVV6moqKizvaKign//+9+HVanmdv755/PII49w1113MXToUFasWMHnn39eJ0m7KdhqLDprs/utjRpQhjWMXxadFUIIIcJKg3OOXC4XWmu01pSWlhIRERHaFwgE+PTTT0lNTW3SSjaH66+/nuuvv77ZP8fp84QSspU9WLXVajkyUChDFp0VQgghwkmDg6OEhITQSKs+ffrU2a+U4p577mmSyrUHEV4vvviqpUMcVRu1xsTqUpNuNSGEECK8NDg4+uabb9Bac9JJJ/Hee++RlJQU2udwOOjatSsZGRlNWsm2LNLjw5VqtRxpuzVsP6iDgIFpSEK2EEIIEW4aHBwdf/zxAOTk5NClSxeUkm6hg4n02yk27AAEndafWmsMA0zDAAmOhBBCiLDS6CdzdnY28+fPD72fPXs2Q4cO5aKLLqKoqKhJKtceOAPRAJi48dlirI1aAwbKkNFqQgghRLhp9JP51ltvDa0ztnr1aqZPn85pp51GTk4O06dPb7IKtnUObQVETlWMz4gCrMFqhgLDNCU4EkIIIcJMo2fIzsnJYcCAAQC89957nHHGGTzwwAMsW7aM0047rckq2JYFgkFMrGTsSNO1f9i+DmJgt7okpVtSCCGECCuNbrZwOByUl5cD8NVXXzF+/HgAkpKSGrxyfXtV5vfir5rjKNJetn9HELRpgEwCKYQQQoSdRrccHXPMMUyfPp2xY8fy888/89ZbbwGwYcMGOnfu3GQVbMvKve7QHEeRdi9+rC42rTUm1cGRLDwrhBBChJNGN1s888wz2Gw23n33XZ577jk6deoEwGeffcbEiRObrIJtmc+/f9FZ0+YPbddoDGVNAKlkhmwhhBAirDS65ahLly58/PHHdbY//vjjh1Wh9qTSVxFqOTLtgf07tEaZBgoDTAmOhBBCiHByWE/mzZs3c+edd3LhhRdSUFAAWC1Ha9eubZLKtXk1Fp3FsX+z1hqFIQvPCiGEEGGo0U/m7777jkGDBrFo0SLmzp1LWZmVcLxy5UruvvvuJqtgW2Z4K/A5reBIO/bnFmnAZpogM2QLIYQQYafRT+bbbruN//u//yMrKwuHY3+zyEknncRPP/3UJJVr6+zeSiptVXMbOez7d+hgVauRJGQLIYQQ4abRwdHq1as555xz6mxPTU1l7969h1Wp9iKi0gqIlPbhs0fv36E1hjKq5jmSliMhhBAinDT6yZyQkMDu3bvrbF++fHlo5NrvnTNgtaiZuoSA4ayxR2MYCqNqriMhhBBChI9GB0cXXHABf/3rX8nLy0MpRTAYZP78+dxyyy1cdtllTVnHNssRiATAVK7aQZAGhSRjCyGEEOGo0U/nBx54gH79+pGZmUlZWRkDBgzguOOO4+ijj+bOO+9syjq2WTZtdaXZjNI6+5RhoEzJNxJCCCHCTaPnOXI4HPzrX//irrvuYvXq1ZSVlTFs2DB69+7dlPVr04yqddVstnKgRreaAqXBsElwJIQQQoSbRgdH1TIzM8nMzGyKurQ/hhUc2W2+uvuUId1qQgghRBhq1NN548aNvPfee+Tk5ADwySefcNxxx3HkkUdy//33o7Vu0kq2RRWecgKmFRw5IwK/2qtQgCHdakIIIUTYaXDL0fvvv8+f/vQnDMMaiv7CCy9wzTXXcMIJJxAXF8c//vEPbDYbf/3rX5ujvm1Gbu4ufE5r6ZCoSAN/zZ1aYygk50gIIYQIQw1uObr//vuZMWMGHo+H5557jmuvvZaZM2fy2Wef8fHHHzN79mzmzJnTDFVtWwp2b8dbvehsRH0xqEKZh92rKYQQQogm1uDgaP369UydOhWlFJMnT8bn8zFu3LjQ/vHjx7Nt27YmrWRbVJifi98eA0CwxgziFoWBkpYjIYQQIgw1ODhyu93ExsZaBxsGkZGRREVFhfZHRkbi9XqbroZtVHlegTX7tQ7id0bs36EBpTEMZAJIIYQQIgw1ODhSSlnLXhzgvbBU7isBwAy40MavWo40IOuqCSGEEGGpwUkvWmv69OkTCoiq5zcyqoaly0g1iy6tBMAIumptD1IdUMpQfiGEECIcNTg4euWVV5qjHu2O8hhgB4UL2N9CpHUAsEb6KUNa3IQQQohw0+DgaPLkyc1Rj/an0mkFR6oMiA9t1lqjFBhK1lYTQgghwlGTjCUvKysjGAzW2hYXF9cUp26zVMBKUteGG4hn7Dl/JCYhkU9eeG5/YCTBkRBCCBF2Gv10zsnJYdKkSURHRxMfH09iYiKJiYkkJCSQmJjYlHVso6wRfZgexp7zR+JTUikrLiJIkKBSmCAtR0IIIUQYanTL0SWXXILWmpdffpm0tDQZsfYrnUePZMNaP6POOov4lFRK9hQw//13UVqjUBimJGQLIYQQ4ajRwdHKlStZunQpffv2bcr6tBvHXXEUyT/mMujkzFBgBBAIVo3mk5wjIYQQIiw1+ul85JFHsmPHjqasS7uydelOho3vSoXLHQqMgKpJIA1Mw5TWNiGEECIMNbrl6MUXX+Taa69l165dHHHEEdjt9lr7Bw8efNiVa8v6HNONQCBAVEIMY8/5Y40AyepWMw0lCdlCCCFEGGp0cLRnzx42b97M5ZdfHtqmlKoaqq4IBAJNUsG2KhgMMvfhhzj5sskkduy4P0DSGkNh5RwpCY6EEEKIcNPop/PUqVMZNmwYCxcuZMuWLeTk5NT68/fO5/EAMO+1VynZU0B8Sipjz/kjQR2EUEK2LB8ihBBChJtGtxxt27aNDz/8kF69ejVlfdql+e+/G5rnqHoSSNMwJSFbCCGECEONDo5OOukkVq5cKcHRIQrlHFUN5VeGAaYkZAshhBDhptHB0RlnnMFNN93E6tWrGTRoUJ2E7DPPPPOwK9dQ3bp1Y9u2bbW2zZw5k9tuuy30ftWqVUybNo3FixeTkpLCn//8Z2bMmNFiddRgJWSbNulWE0IIIcJQo4Oja6+9FoB77723zr7WTMi+9957ueqqq0LvY2NjQz+7XC7Gjx/PuHHjeP7551m9ejVTp04lISGBq6++umUqqIMYhh0MJCFbCCGECEONDo5+vZZauIiNjSU9Pb3efa+//jo+n4+XX34Zh8PBwIEDWbFiBY899ljLBUdBUDaFUgplSsuREEIIEW7aXdPFrFmz6NChA8OGDePhhx+msrIytG/hwoUcd9xxOByO0LYJEyawfv16ioqKWqR+WmsMQ6EMBdJyJIQQQoSdRrcc1dedVtNdd93V2FM32g033MDw4cNJSkpiwYIF3H777ezevZvHHnsMgLy8PLp3717rmLS0tNC++hbM9Xq9eL3e0HuXy3VYddRolDJQpgKZIVsIIYQIO40Ojt5///1a7/1+Pzk5OdhsNnr27NlkwdFtt93Ggw8+eNAy2dnZ9OvXj+nTp4e2DR48GIfDwTXXXMPMmTNxOp2N+vyZM2dyzz33NOrYeoVajqRLTQghhAhHjQ6Oli9fXmeby+ViypQpnHPOOYdVqZpuvvlmpkyZctAyPXr0qHf76NGjqaysZOvWrfTt25f09HTy8/Nrlal+f6A8pdtvv71W0OVyucjMzGzAN6hNa43CxJB8IyGEECIsNTo4qk9cXBz33HMPZ5xxBpdeemmTnDMlJYWUlJRGHbtixQoMwyA1NRWAMWPGcMcdd+D3+0NTD2RlZdG3b996u9QAnE5no1ud6qMBQxmSjC2EEEKEqSbPCC4pKaGkpKSpT/ubFi5cyBNPPMHKlSvZsmULr7/+OjfddBOXXHJJKPC56KKLcDgcXHHFFaxdu5a33nqLJ598slbLULMLBjEMa/kQIYQQQoSfRrccPfXUU7Xea63ZvXs3r732GqeeeuphV6yhnE4nb775Jv/4xz/wer10796dm266qVbgEx8fz5dffsm0adMYMWIEycnJ3HXXXS03jB8glJAtLUdCCCFEOGp0cPT444/Xem8YBikpKUyePJnbb7/9sCvWUMOHD+enn376zXKDBw/mhx9+aIEaHUh1Qra0HAkhhBDhqNHBUU5OTlPW4/dDKxQKw2b/7bJCCCGEaHENbr4IBAKsWrWKioqKOvsqKipYtWpV2M6eHR40hoG0HAkhhBBhqsFP6Ndee42pU6fWmmW6mt1uZ+rUqbzxxhtNUrl2SSkUBkhwJIQQQoSlBj+hX3rpJW655RbMehKKbTYbM2bM4IUXXmiSyrVPVQnZMgmkEEIIEZYaHBytX7+eo4466oD7jzzySLKzsw+rUu2dUtpaW00IIYQQYafBwZHb7T7o+mKlpaWUl5cfVqXaNQ1KRqsJIYQQYavBT+jevXuzYMGCA+7/8ccf6d2792FVqr1TypScIyGEECJMNfgJfdFFF3HnnXeyatWqOvtWrlzJXXfdxUUXXdQklWuXtMJARqsJIYQQ4arB8xzddNNNfPbZZ4wYMYJx48bRr18/ANatW8dXX33F2LFjuemmm5q8ou2CBgwt3WpCCCFEGGtwcGS32/nyyy95/PHHeeONN/j+++/RWtOnTx/uv/9+brzxxtCirqIuHQQl8xwJIYQQYatRM2Tb7XZmzJjBjBkzfrPsf//7X84880yio6Mb81HtShBQysBUJiCj1YQQQohw1OzNF9dccw35+fnN/TFtgtYBAJTNkJYjIYQQIkw1+xNaa93cH9FmaK2tddWQnCMhhBAiXMkTugXpIBgoDJspwZEQQggRpuQJ3YI0QWttNaVk+RAhhBAiTElw1JKCGq0UpikLzwohhBDhSp7QLSiodVWrkSFrqwkhhBBhqtmDo65du8q8R9U0KA2mzZRuNSGEECJMNTo4mjx5Mt9///1vlluzZg2ZmZmN/Zh2JohCYSoZyi+EEEKEq0Y/oUtKShg3bhy9e/fmgQceYNeuXU1Zr/ZJa5QCwzBRprQcCSGEEOGo0cHRBx98wK5du7juuut466236NatG6eeeirvvvsufr+/KevYbgS1RisDm81mrSEihBBCiLBzWE/olJQUpk+fzsqVK1m0aBG9evXi0ksvJSMjg5tuuomNGzc2VT3bBWsSSI1pU6AkIVsIIYQIR03SfLF7926ysrLIysrCNE1OO+00Vq9ezYABA3j88ceb4iPaBa01Shkos1FL2gkhhBCiBTQ6OPL7/bz33nucfvrpdO3alXfeeYcbb7yR3NxcXn31Vb766ivefvtt7r333qasb9umQWmFTUbvCSGEEGGr0U0YHTt2JBgMcuGFF/Lzzz8zdOjQOmVOPPFEEhISDqN67U0QZdhQpuQbCSGEEOGq0cHR448/znnnnUdERMQByyQkJJCTk9PYj2h/gmAaSkaqCSGEEGGs0U0YZ555JuXl5XW2FxYW4nK5DqtS7ZXWGrSSOY6EEEKIMNbop/QFF1zAm2++WWf722+/zQUXXHBYlWqvggQxTRPDJi1HQgghRLhqdHC0aNEiTjzxxDrbTzjhBBYtWnRYlWq3NGjAsElCthBCCBGuGh0ceb1eKisr62z3+/1UVFQcVqXaLa2xGbJ0iBBCCBHOGv2UHjVqFC+88EKd7c8//zwjRow4rEq1VxowDAUSHAkhhBBhq9Gj1f7v//6PcePGsXLlSk4++WQA5s2bx+LFi/nyyy+brILtSjCIMkxpORJCCCHCWKOf0mPHjmXhwoVkZmby9ttv89FHH9GrVy9WrVrFscce25R1bEc0hpLRakIIIUQ4O6x1LIYOHcrrr7/eVHX5HdAoU3KOhBBCiHB2WMFRMBhk06ZNFBQUEAwGa+077rjjDqti7ZIGpSTnSAghhAhnjQ6OfvrpJy666CK2bdtmTW5Yg1KKQCBw2JVrj5RhoJQER0IIIUS4anRwdO211zJy5Eg++eQTOnbsaLWIiINTSnKOhBBCiDDX6OBo48aNvPvuu/Tq1asp69Ouaa1RSkkgKYQQQoSxRjdhjB49mk2bNjVlXQ7q/vvv5+ijjyYqKoqEhIR6y2zfvp1JkyYRFRVFamoqt956a52JKr/99luGDx+O0+mkV69ezJkzp/krX4MpOUdCCCFEWGt0y9Gf//xnbr75ZvLy8hg0aBB2e+0lMQYPHnzYlavJ5/Nx3nnnMWbMGF566aU6+wOBAJMmTSI9PZ0FCxawe/duLrvsMux2Ow888AAAOTk5TJo0iWuvvZbXX3+defPmceWVV9KxY0cmTJjQpPWtl1Ygo9WEEEKIsKb0r7OpD5FRzwNeKRXqOmquhOw5c+Zw4403UlxcXGv7Z599xumnn05ubi5paWmANVv3X//6V/bs2YPD4eCvf/0rn3zyCWvWrAkdd8EFF1BcXMznn39+SJ/vcrmIj4+npKSEuLi4A5arcLv5+OmnQEFUglWuKD+fnl17MeLMSTgSOzTwmwshhBCisQ71+Q2H0XKUk5PT2EObxcKFCxk0aFAoMAKYMGEC1113HWvXrmXYsGEsXLiQcePG1TpuwoQJ3HjjjS1TSa0xTUO61YQQQogw1ujgqGvXrk1Zj8OWl5dXKzACQu/z8vIOWsblclFRUUFkZGSd83q9Xrxeb+i9y+VqXAU1oK2RatKtJoQQQoSvw3pKv/baa4wdO5aMjAy2bdsGwBNPPMH//ve/Qzr+tttuC43eOtBr3bp1h1PFwzZz5kzi4+NDr8zMzEadRwMKJDgSQgghwlyjn9LPPfcc06dP57TTTqO4uDiUY5SQkMATTzxxSOe4+eabyc7OPuirR48eh3Su9PR08vPza22rfp+enn7QMnFxcfW2GgHcfvvtlJSUhF47duw4pPr8WhBASXAkhBBChLtGd6s9/fTT/Otf/+Lss89m1qxZoe0jR47klltuOaRzpKSkkJKS0tgq1DJmzBjuv/9+CgoKSE1NBSArK4u4uDgGDBgQKvPpp5/WOi4rK4sxY8Yc8LxOpxOn03n4FdQBFAamoVCGefjnE0IIIUSzaHQTRk5ODsOGDauz3el04na7D6tS9dm+fTsrVqxg+/btBAIBVqxYwYoVKygrKwNg/PjxDBgwgEsvvZSVK1fyxRdfcOeddzJt2rRQcHPttdeyZcsWZsyYwbp163j22Wd5++23uemmm5q8vr9mjeLTGJKQLYQQQoS1Rj+lu3fvzooVK+ps//zzz+nfv//h1Kled911F8OGDePuu++mrKyMYcOGMWzYMJYsWQKAaZp8/PHHmKbJmDFjuOSSS7jsssu49957a9X5k08+ISsriyFDhvDoo4/y4osvtsgcRzoIaAOlbNKtJoQQQoSxRnerTZ8+nWnTpuHxeNBa8/PPP/Pf//6XmTNn8uKLLzZlHQFrfqPfms26a9eudbrNfu2EE05g+fLlTVizQ6MJolCYNll4VgghhAhnjQ6OrrzySiIjI7nzzjspLy/noosuIiMjgyeffJILLrigKevYPgQ12kDmORJCCCHCXKODI4CLL76Yiy++mPLycsrKykKJ0KKuoNYYKAybJGMLIYQQ4eywgqNqUVFRREVFNcWp2q+qRVrMX61BJ4QQQojw0qDgaPjw4cybN4/ExESGDRuGUuqAZZctW3bYlWtfgqAUNlNajoQQQohw1qDg6KyzzgoNiz/77LOboz7tl9YowCbdakIIIURYa1BwdPfdd9f7s/htQa1BG5gOR2tXRQghhBAH0ehhU4sXL2bRokV1ti9atCg095DYz5oEEkxbk6R5CSGEEKKZNDo4mjZtWr3rjO3atYtp06YdVqXaI601ylDY7E2wFIkQQgghmk2jg6NffvmF4cOH19k+bNgwfvnll8OqVLukQWmFskvLkRBCCBHOGh0cOZ3OOivcA+zevRubdB3VI4gyFMo48Ag/IYQQQrS+RgdH48eP5/bbb6ekpCS0rbi4mL/97W+ccsopTVK5diUISimUIaPVhBBCiHDW6CaeRx55hOOOO46uXbsybNgwAFasWEFaWhqvvfZak1WwvdBaYxgmHGRuKCGEEEK0vkYHR506dWLVqlW8/vrrrFy5ksjISC6//HIuvPBC7DILdB1BghiGgZJ11YQQQoiwdljJQdHR0Vx99dVNVZf2TVOVcyTdakIIIUQ4a1Bw9OGHH3Lqqadit9v58MMPD1r2zDPPPKyKtTtaYyppORJCCCHCXYOCo7PPPpu8vDxSU1MPunyIUopAIHC4dWtXNBrDUAddj04IIYQQra9BwVEwGKz3Z/HbdEBjmNJyJIQQQoS7Bj2pk5KS2Lt3LwBTp06ltLS0WSrVPmkMwwAJjoQQQoiw1qAntc/nw+VyAfDqq6/i8XiapVLtlmHIJJBCCCFEmGtQt9qYMWM4++yzGTFiBFprbrjhBiIjI+st+/LLLzdJBduNIJimIaPVhBBCiDDXoODoP//5D48//jibN28GoKSkRFqPGkAp6VYTQgghwl2DgqO0tDRmzZoFQPfu3Xnttdfo0KFDs1Ss/dEYpqytJoQQQoS7Ridkn3jiiTgcjmapVHuktEIpE6WkW00IIYQIZ5KQ3UJ0qOVIutWEEEKIcCYJ2S1IKQWmBEdCCCFEOGt0QrZSShKyG0JRtfCsdKsJIYQQ4UwSsluIDipMmynLhwghhBBhrsF9PKeddholJSXk5OTQoUMHZs2aRXFxcWj/vn37GDBgQFPWse3ToLCG8kvLkRBCCBHeGhwcff7553i93tD7Bx54gMLCwtD7yspK1q9f3zS1ayc0YGgwTFPmORJCCCHC3GE/qbXWTVGPdi2IBhSGJGMLIYQQYU+e1i1BB0EpDIdcbiGEECLcNfhprZSqk1QsScYHp4NW0pHNsLd2VYQQQgjxGxo0Wg2sbrQpU6bgdDoB8Hg8XHvttURHRwPUykcSFq2tGbINuyRjCyGEEOGuwcHR5MmTa72/5JJL6pS57LLLGl+jdkgTtFqObNJyJIQQbVkgEMDv97d2NcQBOBwOjCYY+NTg4OiVV1457A/93QlqDMBwNPhyCyGECANaa/Ly8mpNXSPCj2EYdO/e/bDXfpWndQsIao3GwFRyuYUQoi2qDoxSU1OJioqSXNswFAwGyc3NZffu3XTp0uWw7pE8rVtC1WwHplO61YQQoq0JBAKhwEhWhQhvKSkp5ObmUllZid3e+GeujC1vEUEMpbCZEhwJIURbU51jFBUV1co1Eb+lujstEAgc1nkkOGoJWlvzHJkyWk0IIdoq6UoLf011j9pMcHT//fdz9NFHExUVRUJCQr1lqudgqvl68803a5X59ttvGT58OE6nk169ejFnzpxmr3tAa5QCuyRkCyGE+B044YQTuPHGG5vl3N26deOJJ55olnNXazPBkc/n47zzzuO66647aLlXXnmF3bt3h15nn312aF9OTg6TJk3ixBNPZMWKFdx4441ceeWVfPHFF81b+argSBkSHAkhhGg5U6ZMQSnFtddeW2fftGnTUEoxZcqUlq9YmGszT+t77rkH4DdbehISEkhPT6933/PPP0/37t159NFHAejfvz8//vgjjz/+OBMmTGjS+taktUYrA1PmORJCCNHCMjMzefPNN3n88ceJjIwErAmc33jjDbp06dLo82qtCQQC2GwNDyV8Pt9hD7dvTm2m5ehQTZs2jeTkZEaNGsXLL79ca2HchQsXMm7cuFrlJ0yYwMKFCw94Pq/Xi8vlqvVqMK0xlUJJzpEQQogWNnz4cDIzM5k7d25o29y5c+nSpQvDhg0LbfN6vdxwww2kpqYSERHBMcccw+LFi0P7v/32W5RSfPbZZ4wYMQKn08mPP/6I2+3msssuIyYmho4dO4YaIGrq1q0b9913H5dddhlxcXFcffXVAPz4448ce+yxREZGkpmZyQ033IDb7Q4dV1BQwBlnnEFkZCTdu3fn9ddfb45LVEe7Co7uvfde3n77bbKysjj33HP5f//v//H000+H9ufl5ZGWllbrmLS0NFwuFxUVFfWec+bMmcTHx4demZmZDa6XrkrIVk0wa6cQQojWpbWm3FfZoJfHH0BrjccfqPf9ob5q/sLfEFOnTq01ifPLL7/M5ZdfXqvMjBkzeO+993j11VdZtmwZvXr1YsKECRQWFtYqd9tttzFr1iyys7MZPHgwt956K9999x3/+9//+PLLL/n2229ZtmxZnTo88sgjDBkyhOXLl/P3v/+dzZs3M3HiRM4991xWrVrFW2+9xY8//sj1118fOmbKlCns2LGDb775hnfffZdnn32WgoKCRl2DhmjVbrXbbruNBx988KBlsrOz6dev3yGd7+9//3vo52HDhuF2u3n44Ye54YYbGl3H22+/nenTp4feu1yuBgdISoOhDAmOhBCiHajwBxhwV8NzVY/tnczTFw7jrcU7OP/ITK769xJ+2Li3Qef45d4JRDVicM8ll1zC7bffzrZt2wCYP38+b775Jt9++y0Abreb5557jjlz5nDqqacC8K9//YusrCxeeuklbr311tC57r33Xk455RQAysrKeOmll/jPf/7DySefDMCrr75K586d69ThpJNO4uabbw69v/LKK7n44otDidu9e/fmqaee4vjjj+e5555j+/btfPbZZ/z8888ceeSRALz00kv079+/wd+/oVo1OLr55pt/MxGsR48ejT7/6NGjue+++/B6vTidTtLT08nPz69VJj8/n7i4uFA/7K85nc7QIruNFQxqDJsER0II8Xv2w8a9vLV4B9cc35N/fre5wYHR4UhJSWHSpEnMmTMHrTWTJk0iOTk5tH/z5s34/X7Gjh0b2ma32xk1ahTZ2dm1zjVy5Mhax/l8PkaPHh3alpSURN++fevUoeZxACtXrmTVqlW1usq01gSDQXJyctiwYQM2m40RI0aE9vfr1++AI9abUqsGRykpKaSkpDTb+VesWEFiYmIouBkzZgyffvpprTJZWVmMGTOm2eoAECSAYYAyZI4MIYRo6yLtJr/c2/BBPIZSOG0G/kCQq4/rweSjuxFsYDdZpL3xuatTp04NdVnNnj270eeJjo5ukuPKysq45ppr6u3d6dKlCxs2bGjU5zSFNjNabfv27RQWFrJ9+3YCgQArVqwAoFevXsTExPDRRx+Rn5/PUUcdRUREBFlZWTzwwAPccsstoXNce+21PPPMM8yYMYOpU6fy9ddf8/bbb/PJJ580b+WDVcnYShKyhRCirVNKNaprq5rdtH5RjjiMQKcxJk6ciM/nQylVZ4R2z549cTgczJ8/n65duwLWzOCLFy8+6HxFPXv2xG63s2jRotDIt6KiIjZs2MDxxx9/0PoMHz6cX375hV69etW7v1+/flRWVrJ06dJQt9r69etbZPHfNhMc3XXXXbz66quh99UZ9t988w0nnHACdrud2bNnc9NNN6G1plevXjz22GNcddVVoWO6d+/OJ598wk033cSTTz5J586defHFF5t1GD+A1gFrtJq0HAkhhGglpmmGusjMX42ejo6O5rrrruPWW28lKSmJLl268NBDD1FeXs4VV1xxwHPGxMRwxRVXcOutt9KhQwdSU1O54447MA4hjeSvf/0rRx11FNdffz1XXnkl0dHR/PLLL2RlZfHMM8/Qt29fJk6cyDXXXMNzzz2HzWbjxhtvPGAaTFNqM8HRnDlzDjrH0cSJE5k4ceJvnueEE05g+fLlTVizQ6AVhmmTnCMhhBCtKi4u7oD7Zs2aRTAY5NJLL6W0tJSRI0fyxRdfkJiYeNBzPvzww5SVlXHGGWcQGxvLzTffTElJyW/WZfDgwXz33XfccccdHHvssWit6dmzJ+eff36ozCuvvMKVV17J8ccfT1paGv/3f/9Xa/BVc1G6seMCf6dcLhfx8fGUlJQc9C9ZhdvNx08/BQq8ngrSUzpywmWXYIuJbcHaCiGEOFwej4ecnBy6d+9OREREa1dHHMTB7tWhPr+hnc1zFLa0wrSZ0nIkhBBCtAHytG4JOmj1v0pwJIQQQoQ9eVq3BAWYBsqQ0WpCCCFEuJPgqCVoUMpAKRmtJoQQQoQ7CY5aiGkzZOFZIYQQog2Q4KgFqKDCMJTkHAkhhBBtgDytW4BWWlqNhBBCiDZCgqMWoDQYplxqIYQQoi2QJ3YL+fVU7UIIIYQITxIcNTuNRmGz21u7IkIIIYQ4BBIcNbeqxVmUTVqOhBBCtKwpU6aglOLaa6+ts2/atGkopZgyZUrLVyzMSXDUzDSgtMI0peVICCFEy8vMzOTNN9+koqIitM3j8fDGG2/QpUuXRp9Xa01lZWVTVDHsSHDU3LQ1Qbay21q7JkIIIX6Hhg8fTmZmJnPnzg1tmzt3Ll26dGHYsGGhbV6vlxtuuIHU1FQiIiI45phjWLx4cWj/t99+i1KKzz77jBEjRuB0Ovnxxx8pLS3l4osvJjo6mo4dO/L4449zwgkncOONN4aOfe211xg5ciSxsbGkp6dz0UUXUVBQUOfc8+bNY+TIkURFRXH00Uezfv365r04ByDBUTPTWqOUwibdakII0T5oDT53w15+j3Wc31P/+0N9ad2oKk+dOpVXXnkl9P7ll1/m8ssvr1VmxowZvPfee7z66qssW7aMXr16MWHCBAoLC2uVu+2225g1axbZ2dkMHjyY6dOnM3/+fD788EOysrL44YcfWLZsWa1j/H4/9913HytXruSDDz5g69at9Xbn3XHHHTz66KMsWbIEm83G1KlTG/V9D5c0ZzQzra2uNdOUSy2EEO2CvxweyGj4cT1Pgj++DMteg+GXwpsXwuavG3aOv+WCI7rBH33JJZdw++23s23bNgDmz5/Pm2++ybfffguA2+3mueeeY86cOZx66qkA/Otf/yIrK4uXXnqJW2+9NXSue++9l1NOOQWA0tJSXn31Vd544w1OPvlkAF555RUyMmpfn5pBTo8ePXjqqac48sgjKSsrIyYmJrTv/vvv5/jjjwesIGzSpEl4PB4iIiIa/J0Phzyxm5kGFApDutWEEOL3bfPXVmA09gaY/1TDA6PDkJKSwqRJk5gzZw5aayZNmkRycvL+qm3ejN/vZ+zYsaFtdrudUaNGkZ2dXetcI0eODP28ZcsW/H4/o0aNCm2Lj4+nb9++tY5ZunQp//jHP1i5ciVFRUUEg0EAtm/fzoABA0LlBg8eHPq5Y8eOABQUFBxWblRjyBO7uekgygBDWo6EEKJ9sEdZLTgNpUywOSHgg6P/DKOuBh1o+Gc30tSpU7n++usBmD17dqPPEx3dsJYrt9vNhAkTmDBhAq+//jopKSls376dCRMm4PP5apW115j2pnqx9upAqiVJzlFz00HAkEkghRCivVDK6tpq6MseYR1rOqw/7RENP0dVwNAYEydOxOfz4ff7mTBhQq19PXv2xOFwMH/+/NA2v9/P4sWLa7Xs/FqPHj2w2+21ErdLSkrYsGFD6P26devYt28fs2bN4thjj6Vfv361krHDkTRnNDMNKKUxJDgSQgjRikzTDHWR/foX9ujoaK677jpuvfVWkpKS6NKlCw899BDl5eVcccUVBzxnbGwskydPDh2XmprK3XffjWEYoZafLl264HA4ePrpp7n22mtZs2YN9913X/N90SYgLUfNTGuNMgxsknMkhBCilcXFxREXF1fvvlmzZnHuuedy6aWXMnz4cDZt2sQXX3xBYmLiQc/52GOPMWbMGE4//XTGjRvH2LFj6d+/fyiJOiUlhTlz5vDOO+8wYMAAZs2axSOPPNLk360pKa0bOS7wd8rlchEfH09JSckB/4IBVLjdfPz0U3h9XhzaxsmX/IkOPfu0YE2FEEI0BY/HQ05ODt27d2/xUVNtkdvtplOnTjz66KMHbXVqDge7V4f6/AbpVmt+OghKYdpkhmwhhBDtz/Lly1m3bh2jRo2ipKSEe++9F4CzzjqrlWvWeBIcNTcNygCbTS61EEKI9umRRx5h/fr1OBwORowYwQ8//FBrqoC2Rp7YzUwHQdlkEkghhBDt07Bhw1i6dGlrV6NJSUJ2c9NBlGGgZPkQIYQQok2Q4Ki5Va2tpmQovxBCCNEmSHDU3IIKw1Ayz5EQQgjRRkhw1AKUqcCQSy2EEEK0BfLEbmZaa0zTRBnSciSEEEK0BRIcNTuNUgZKWo6EEEKINkGe2M1Ng7KZKCWXWgghhGgL5IndzHQQTENJy5EQQogWN2XKFGvEtFLY7Xa6d+/OjBkz8Hg8oTLV+5VSREdH07t3b6ZMmVJn7qJvv/0WpRTFxcWhbbm5uQwaNIjjjjuOkpKSWmVqfnZ9r27durXQVWg4eWI3uyCmYZOEbCGEEK1i4sSJ7N69my1btvD444/zz3/+k7vvvrtWmVdeeYXdu3ezdu1aZs+eTVlZGaNHj+bf//73Ac+7efNmjjnmGLp27coXX3xBfHx8rf1PPvkku3fvDr1qfs7u3btZvHhx03/ZJiLTNjc3rTBshsxzJIQQolU4nU7S09MByMzMZNy4cWRlZfHggw+GyiQkJITKdOvWjfHjxzN58mSuv/56zjjjDBITE2udc9WqVUyYMIGTTjqJV199td4lsuLj4+sETDU/J5xJc0YzUyhMmR1bCCHaDa015f7yBr08lR601ngqPfW+P9SX1vqw6r5mzRoWLFiAw+H4zbI33XQTpaWlZGVl1dq+YMECjj/+eM4991z+85//tMu1Q9vfNwpDStZVE0KIdqOisoLRb4xu8HFjMsbw8HEPM3fjXP7Q+w/c8M0NLMxd2KBzLLpoEVH2qAYd8/HHHxMTE0NlZSVerxfDMHjmmWd+87h+/foBsHXr1lrbzznnHM4///xDOkdbJS1HLUDWVRNCCLEwdyFzN87l8iMuZ+7GuQ0OjBrrxBNPZMWKFSxatIjJkydz+eWXc+655/7mcdWtVEqpWtvPOuss3n//fX744YdmqW84aBNNGlu3buW+++7j66+/Ji8vj4yMDC655BLuuOOOWk2Dq1atYtq0aSxevJiUlBT+/Oc/M2PGjFrneuedd/j73//O1q1b6d27Nw8++CCnnXZaM9ZeYUq+kRBCtBuRtkgWXbSowccZysBpOvEH/EwZOIUL+11IUAcb/NkNFR0dTa9evQB4+eWXGTJkCC+99BJXXHHFQY/Lzs4GoHv37rW2//Of/2TGjBmceuqpfPrppxx33HENrlO4axPB0bp16wgGg/zzn/+kV69erFmzhquuugq3280jjzwCgMvlYvz48YwbN47nn3+e1atXM3XqVBISErj66qsBq5/0wgsvZObMmZx++um88cYbnH322SxbtowjjjiieSqvFYa0HAkhRLuhlGpw11ZNdtMOQIQtoqmqdMgMw+Bvf/sb06dP56KLLiIy8sDB1hNPPEFcXBzjxo2rtV0pxQsvvIBhGJx22ml88sknHH/88c1d9RbVJrrVJk6cyCuvvML48ePp0aMHZ555Jrfccgtz584NlXn99dfx+Xy8/PLLDBw4kAsuuIAbbriBxx57LFTmySefZOLEidx6663079+f++67j+HDhzdrv6lhgM1oEzGoEEKI34HzzjsP0zSZPXt2aFtxcTF5eXls27aNrKws/vjHP/LGG2/w3HPPkZCQUOccSimef/55LrvsMk477TS+/fbblvsCLaBNBEf1KSkpISkpKfR+4cKFHHfccbW62SZMmMD69espKioKlfl1BDxhwgQWLjxwv6/X68XlctV6NYwCW5u9zEIIIdoZm83G9ddfz0MPPYTb7Qbg8ssvp2PHjvTr14/rrruOmJgYfv75Zy666KIDnkcpxezZs7n88suZNGkS33zzTUt9hWbXJps0Nm3axNNPPx3qUgPIy8ur0y+alpYW2peYmEheXl5oW80yeXl5B/ysmTNncs899zS6rkqBzWZv9PFCCCFEY82ZM6fe7bfddhu33XYbwCFPD3DCCSfUKauU4plnnqnVA3Og8x3uNAQtqVWbNG677baDTi2ulGLdunW1jtm1axcTJ07kvPPO46qrrmr2Ot5+++2UlJSEXjt27GjwOWS0mhBCCNF2tGrL0c0338yUKVMOWqZHjx6hn3NzcznxxBM5+uijeeGFF2qVS09PJz8/v9a26vfVs3EeqMzBZut0Op04nc7f/C4HpMBshxNkCSGEEO1Vqz61U1JSSElJOaSyu3bt4sQTT2TEiBG88sorGL9aq2zMmDHccccd+P1+7HarGysrK4u+ffuGpj0fM2YM8+bN48Ybbwwdl5WVxZgxY5rmC9VHgSFD+YUQQog2o01kCu/atYsTTjiBLl268Mgjj7Bnzx7y8vJq5QpddNFFOBwOrrjiCtauXctbb73Fk08+yfTp00Nl/vKXv/D555/z6KOPsm7dOv7xj3+wZMkSrr/++uarvDIwZLSaEEII0Wa0iad2VlYWmzZtYtOmTXTu3LnWvuoEr/j4eL788kumTZvGiBEjSE5O5q677grNcQRw9NFH88Ybb3DnnXfyt7/9jd69e/PBBx803xxHUNWtJi1HQgghRFvRJoKjKVOm/GZuEsDgwYN/czrz8847j/POO6+JavbbDAWG2SYa6IQQQghBG+lWa8u0MjBlKL8QQgjRZkhw1MwMpWW0mhBCCNGGSHDU3AyFIcGREEII0WZIcNTMFGAzJTgSQggh2goJjpqbUjJDthBCiFazY8cOpk6dSkZGBg6Hg65du/KXv/yFffv2hcqccMIJteYArDZnzpxaC8/OmTOn3tUsIiIiWuCbtBxp0mhuysBmSkK2EEKIlrdlyxbGjBlDnz59+O9//0v37t1Zu3Ytt956K5999hk//fRTrUXcD0VcXBzr16+vtU0p1ZTVbnUSHDUzw5DlQ4QQQrSOadOm4XA4+PLLL4mMjASgS5cuDBs2jJ49e3LHHXfw3HPPNeicSqmDLrvVHshTu5lpFHaHtBwJIUR7obVGV1Q07CDDQDmdaK8XgsG67w+Riow85FaawsJCvvjiC+6///5QYFQtPT2diy++mLfeeotnn322QV/l90CCo2ZmGApDutWEEKLd0BUVrB8+osHHRY89mk6PPkrxe++RcO657Jw2Dff8BQ06R99lS1FRUYdUduPGjWit6d+/f737+/fvT1FREXv27AHg2Wef5cUXX6xVprKysk4+UUlJCTExMbW2HXvssXz22WeH+jXCngRHzUwZMs+REEIIcM9fQPF779HhiivY99JLDQ6MGqt6ma3fcvHFF3PHHXfU2jZ37lweeOCBWttiY2NZtmxZrW2/bplq6+Sp3dyUiZLgSAgh2g0VGUnfZUsbfmB1V5rfT9LUqSRefHGDutSqP/tQ9erVC6UU2dnZnHPOOXX2Z2dnk5iYSEpKCmCtUdqrV69aZVJTU+v5Gkadcu2NPLWbmWEolMxzJIQQ7YZS6pC7tuplt1ItVDMPf+/QoQOnnHIKzz77LDfddFOt1p28vDxef/11LrvssnY30qwpyDxHzUwpA8OUeY6EEEK0vGeeeQav18uECRP4/vvv2bFjB59//jmnnHIKnTp14v7772/wObXW5OXl1XkFG9gKFs4kOGpmyjBQEhwJIYRoBb1792bJkiX06NGDP/3pT/Ts2ZOrr76aE088kYULFzZ4jiMAl8tFx44d67wKCgqa4Ru0DqUPNVNLANZfivj4eEpKSoiLiztguQq3m4+fforIqAhOv+GmFqyhEEKIpuTxeMjJyaF79+7tbibo9uZg9+pQn98gLUfNTtZVE0IIIdoWCY6amayrJoQQQrQtEhw1M9Mul1gIIYRoS+TJ3cwM6VYTQggh2hQJjpqZ5BwJIYQQbYsER81M2WVdNSGEEKItkeComdkckpAthBBCtCUSHDUjQymU6WjtagghhBCiASQ4ak6GwrTJJRZCCCHaEnlyNyOlAEO61YQQQvz+KKX44IMPWrsajSLBUbNS2Ey5xEIIIVrHlClTUEqhlMJut9O9e3dmzJiBx+Np7aqFNRln3oyUqWTRWSGEEK1q4sSJvPLKK/j9fpYuXcrkyZNRSvHggw+2dtXCljRrNCOlFKZN4k8hhBCtx+l0kp6eTmZmJmeffTbjxo0jKysLgH379nHhhRfSqVMnoqKiGDRoEP/9739rHX/CCSdwww03MGPGDJKSkkhPT+cf//hHrTIbN27kuOOOIyIiggEDBoTOX9Pq1as56aSTiIyMpEOHDlx99dWUlZWF9k+ZMoWzzz6bBx54gLS0NBISErj33nuprKzk1ltvJSkpic6dO/PKK680/UX6FQmOmpFCgXSrCSFEu6K1xu8NNOhV6QugtabSV//7Q31prQ+r7mvWrGHBggU4HNZIao/Hw4gRI/jkk09Ys2YNV199NZdeeik///xzreNeffVVoqOjWbRoEQ899BD33ntvKAAKBoP84Q9/wOFwsGjRIp5//nn++te/1jre7XYzYcIEEhMTWbx4Me+88w5fffUV119/fa1yX3/9Nbm5uXz//fc89thj3H333Zx++ukkJiayaNEirr32Wq655hp27tx5WNfht0izRnOyGdgMmQRSCCHak0pfkBf+8l2Dj8vsn8T4KweSPT+X/mMz+PS51ezILmzQOa5+8njszoala3z88cfExMRQWVmJ1+vFMAyeeeYZADp16sQtt9wSKvvnP/+ZL774grfffptRo0aFtg8ePJi7774bgN69e/PMM88wb948TjnlFL766ivWrVvHF198QUZGBgAPPPAAp556auj4N954A4/Hw7///W+io6MBeOaZZzjjjDN48MEHSUtLAyApKYmnnnoKwzDo27cvDz30EOXl5fztb38D4Pbbb2fWrFn8+OOPXHDBBQ26Dg0hwVEzUYDCwJScIyGEEMCO7EKy5+cybHxXln+5rcGBUWOdeOKJPPfcc7jdbh5//HFsNhvnnnsuAIFAgAceeIC3336bXbt24fP58Hq9REVF1TrH4MGDa73v2LEjBQUFAGRnZ5OZmRkKjADGjBlTq3x2djZDhgwJBUYAY8eOJRgMsn79+lBwNHDgQAxjf49LWloaRxxxROi9aZp06NAh9NnNRYKjZmIaivgoOzFRMgmkEEK0JzaHwdVPHt/g45QC024QqAwy9JQuDDqhMw3tJbM5Gp6qER0dTa9evQB4+eWXGTJkCC+99BJXXHEFDz/8ME8++SRPPPEEgwYNIjo6mhtvvBGfz1frHPZfLYWllCIYDDa4Lr+lvs9pqc+uSYKjZmLYbCR0cBAZH9faVRFCCNGElFIN7tqqybQpoHWWlzIMg7/97W9Mnz6diy66iPnz53PWWWdxySWXAFb+0IYNGxgwYMAhn7N///7s2LGD3bt307FjRwB++umnOmXmzJmD2+0OtR7Nnz8/1H0WbiRbuJkYhkn3biOIjUlp7aoIIYQQIeeddx6maTJ79mx69+5NVlYWCxYsIDs7m2uuuYb8/PwGnW/cuHH06dOHyZMns3LlSn744QfuuOOOWmUuvvhiIiIimDx5MmvWrOGbb77hz3/+M5deemmoSy2cSHDUXAwDZ3QsRkREa9dECCGECLHZbFx//fU89NBD3HzzzQwfPpwJEyZwwgknkJ6eztlnn92g8xmGwfvvv09FRQWjRo3iyiuv5P77769VJioqii+++ILCwkKOPPJI/vjHP3LyySeHEsPDjdKHOy7wd8blchEfH09JSQlxcdJlJoQQ7Z3H4yEnJ4fu3bsTIb/whrWD3auGPL+l5UgIIYQQogYJjoQQQgghamgTwdHWrVu54oor6N69O5GRkfTs2ZO777671lDDrVu3hhbXq/n6dcb8O++8Q79+/YiIiGDQoEF8+umnLf11hBBCCBHG2sRQ/nXr1hEMBvnnP/9Jr169WLNmDVdddRVut5tHHnmkVtmvvvqKgQMHht536NAh9POCBQu48MILmTlzJqeffjpvvPEGZ599NsuWLas1yZQQQgghfr/abEL2ww8/zHPPPceWLVsAq+Woe/fuLF++nKFDh9Z7zPnnn4/b7ebjjz8ObTvqqKMYOnQozz///CF9riRkCyHE74skZLcdv/uE7JKSEpKSkupsP/PMM0lNTeWYY47hww8/rLVv4cKFjBs3rta2CRMmsHDhwmatqxBCiLavjbYl/K401T1qE91qv7Zp0yaefvrpWl1qMTExPProo4wdOxbDMHjvvfc4++yz+eCDDzjzzDMByMvLqzPZVFpaGnl5eQf8LK/Xi9frDb13uVxN/G2EEEKEs+rlK8rLy4mMjGzl2oiDqc5FPtx1TVs1OLrtttt48MEHD1omOzubfv36hd7v2rWLiRMnct5553HVVVeFticnJzN9+vTQ+yOPPJLc3FwefvjhUHDUGDNnzuSee+5p9PFCCCHaNtM0SUhICC12GhUVhVKqlWslfi0YDLJnzx6ioqKw2Q4vvGnV4Ojmm29mypQpBy3To0eP0M+5ubmceOKJHH300bzwwgu/ef7Ro0eTlZUVep+enl5nWvT8/HzS09MPeI7bb7+9VtDlcrnIzMz8zc8WQgjRflQ/J5p7NXhxeAzDoEuXLocdvLZqcJSSkkJKyqGtPbZr1y5OPPFERowYwSuvvIJh/Ha61IoVK0KL4AGMGTOGefPmceONN4a2ZWVlMWbMmAOew+l04nQ6D6mOQggh2ielFB07diQ1NRW/39/a1REH4HA4Dik++C1tIudo165dnHDCCXTt2pVHHnmEPXv2hPZVR/OvvvoqDoeDYcOGATB37lxefvllXnzxxVDZv/zlLxx//PE8+uijTJo0iTfffJMlS5YcUiuUEEIIYZrmYeeziPDXJoKjrKwsNm3axKZNm+jcuXOtfTUz0++77z62bduGzWajX79+vPXWW/zxj38M7T/66KN54403uPPOO/nb3/5G7969+eCDD2SOIyGEEEKEtNl5jlqLzHMkhBBCtD2/i3mOhBBCCCGaQ5voVgsn1Q1tMt+REEII0XZUP7cPpcNMgqMG2rdvH4AM5xdCCCHaoNLSUuLj4w9aRoKjBqpesmT79u2/eXFF86meb2rHjh2S+9VK5B60PrkHrU/uQXg4lPugtaa0tJSMjIzfPJ8ERw1UPX9CfHy8/EMIA3FxcXIfWpncg9Yn96D1yT0ID791Hw61UUMSsoUQQgghapDgSAghhBCiBgmOGsjpdHL33XfLkiKtTO5D65N70PrkHrQ+uQfhoanvg0wCKYQQQghRg7QcCSGEEELUIMGREEIIIUQNEhwJIYQQQtQgwVEDzZ49m27duhEREcHo0aP5+eefW7tK7db333/PGWecQUZGBkopPvjgg1r7tdbcdddddOzYkcjISMaNG8fGjRtbp7Lt1MyZMznyyCOJjY0lNTWVs88+m/Xr19cq4/F4mDZtGh06dCAmJoZzzz2X/Pz8Vqpx+/Pcc88xePDg0PwtY8aM4bPPPgvtl+vf8mbNmoVSihtvvDG0Te5D8/vHP/6BUqrWq1+/fqH9TXkPJDhqgLfeeovp06dz9913s2zZMoYMGcKECRMoKCho7aq1S263myFDhjB79ux69z/00EM89dRTPP/88yxatIjo6GgmTJiAx+Np4Zq2X9999x3Tpk3jp59+IisrC7/fz/jx43G73aEyN910Ex999BHvvPMO3333Hbm5ufzhD39oxVq3L507d2bWrFksXbqUJUuWcNJJJ3HWWWexdu1aQK5/S1u8eDH//Oc/GTx4cK3tch9axsCBA9m9e3fo9eOPP4b2Nek90OKQjRo1Sk+bNi30PhAI6IyMDD1z5sxWrNXvA6Dff//90PtgMKjT09P1ww8/HNpWXFysnU6n/u9//9sKNfx9KCgo0ID+7rvvtNbWNbfb7fqdd94JlcnOztaAXrhwYWtVs91LTEzUL774olz/FlZaWqp79+6ts7Ky9PHHH6//8pe/aK3l30FLufvuu/WQIUPq3dfU90Bajg6Rz+dj6dKljBs3LrTNMAzGjRvHwoULW7Fmv085OTnk5eXVuh/x8fGMHj1a7kczKikpAfavMbh06VL8fn+t+9CvXz+6dOki96EZBAIB3nzzTdxuN2PGjJHr38KmTZvGpEmTal1vkH8HLWnjxo1kZGTQo0cPLr74YrZv3w40/T2QtdUO0d69ewkEAqSlpdXanpaWxrp161qpVr9feXl5APXej+p9omkFg0FuvPFGxo4dyxFHHAFY98HhcJCQkFCrrNyHprV69WrGjBmDx+MhJiaG999/nwEDBrBixQq5/i3kzTffZNmyZSxevLjOPvl30DJGjx7NnDlz6Nu3L7t37+aee+7h2GOPZc2aNU1+DyQ4EkIckmnTprFmzZpaffyiZfTt25cVK1ZQUlLCu+++y+TJk/nuu+9au1q/Gzt27OAvf/kLWVlZREREtHZ1frdOPfXU0M+DBw9m9OjRdO3albfffpvIyMgm/SzpVjtEycnJmKZZJ/M9Pz+f9PT0VqrV71f1NZf70TKuv/56Pv74Y7755hs6d+4c2p6eno7P56O4uLhWebkPTcvhcNCrVy9GjBjBzJkzGTJkCE8++aRc/xaydOlSCgoKGD58ODabDZvNxnfffcdTTz2FzWYjLS1N7kMrSEhIoE+fPmzatKnJ/y1IcHSIHA4HI0aMYN68eaFtwWCQefPmMWbMmFas2e9T9+7dSU9Pr3U/XC4XixYtkvvRhLTWXH/99bz//vt8/fXXdO/evdb+ESNGYLfba92H9evXs337drkPzSgYDOL1euX6t5CTTz6Z1atXs2LFitBr5MiRXHzxxaGf5T60vLKyMjZv3kzHjh2b/t9CI5PGf5fefPNN7XQ69Zw5c/Qvv/yir776ap2QkKDz8vJau2rtUmlpqV6+fLlevny5BvRjjz2mly9frrdt26a11nrWrFk6ISFB/+9//9OrVq3SZ511lu7evbuuqKho5Zq3H9ddd52Oj4/X3377rd69e3foVV5eHipz7bXX6i5duuivv/5aL1myRI8ZM0aPGTOmFWvdvtx22236u+++0zk5OXrVqlX6tttu00op/eWXX2qt5fq3lpqj1bSW+9ASbr75Zv3tt9/qnJwcPX/+fD1u3DidnJysCwoKtNZNew8kOGqgp59+Wnfp0kU7HA49atQo/dNPP7V2ldqtb775RgN1XpMnT9ZaW8P5//73v+u0tDTtdDr1ySefrNevX9+6lW5n6rv+gH7llVdCZSoqKvT/+3//TycmJuqoqCh9zjnn6N27d7depduZqVOn6q5du2qHw6FTUlL0ySefHAqMtJbr31p+HRzJfWh+559/vu7YsaN2OBy6U6dO+vzzz9ebNm0K7W/Ke6C01vowW7aEEEIIIdoNyTkSQgghhKhBgiMhhBBCiBokOBJCCCGEqEGCIyGEEEKIGiQ4EkIIIYSoQYIjIYQQQogaJDgSQgghhKhBgiMhhBBCiBokOBJCiCamlOKDDz5o7WoIIRpJgiMhRL2mTJmCUopZs2bV2v7BBx+glGqlWlmUUvW+3nzzzVatV7Xdu3dz6qmntnY1mDNnDgkJCa1dDSHaHAmOhBAHFBERwYMPPvj/27vXkKi2Ng7g/5rRRsfLaMqoCV7yNug4WUZpecW8QJKBFFaW2k0oTEqtMC8p6WigZimCA+aHMqIUCmoINM3spqlFYoaaUZRpqYVC5ug6H3rdr/uo75k6p7fLeX6wYe+19n7Ws+aDPKy9ZsTw8PCPTmWWiooKvHnzhndERET80Jw+f/4MALCwsMCiRYt+aC6EkG9HxREhZF5BQUGwsLBAbm7unP2ZmZlYtmwZr62oqAi2trbcdUxMDCIiIpCTkwOpVAqJRIKsrCxoNBokJyfD1NQU1tbWqKio+KrcJBIJLCwseIdIJAIAxMXFwd3dHePj4wC+FC0eHh7Yvn07AKCvr49bafL29oZIJIKbmxsaGhp4Yzx58gRhYWEwMDCAVCpFdHQ03r17x/X7+/tj//79SExMhJmZGUJCQgDwX6tNj3Xx4kX4+PhAT08PK1euxLNnz9Dc3AxPT08YGBggLCwMg4ODvPFVKhVkMhlEIhFcXFxQWlrK9U3Hra6uRkBAAPT19aFQKHD37l0AQH19PWJjY/HhwwduZS0zMxMAUFpaCkdHR4hEIkilUkRGRn7VZ0/I746KI0LIvAQCAXJycnD69Gm8evXqm+PU1dXh9evXuHXrFgoKCpCRkYH169fDxMQE9+/fR3x8PPbu3fu3xpipuLgYY2NjOHLkCAAgNTUVIyMjOHPmDO++5ORkHDp0CG1tbfDy8kJ4eDjev38PABgZGUFgYCA8PDzQ0tICtVqNt2/fYtOmTbwYlZWV0NXVRVNTE8rKyubNKSMjA8eOHUNrayuEQiG2bNmClJQUnDp1Co2Njeju7kZ6ejp3/7lz55Ceno4TJ06gs7MTOTk5SEtLQ2VlJS9uamoqkpKS0N7eDicnJ0RFRUGj0cDb2xtFRUUwMjLiVtaSkpLQ0tKChIQEZGVloaurC2q1Gr6+vn/r8ybkt8MIIWQOO3bsYBs2bGCMMbZ69WoWFxfHGGOspqaGTf/pyMjIYAqFgvdcYWEhs7Gx4cWxsbFhk5OTXJuzszPz8fHhrjUaDROLxayqqkqr3AAwkUjExGIx73jx4gV3z507d5iOjg5LS0tjQqGQNTY2cn3Pnz9nAJhSqeTaJiYmmLW1NcvLy2OMMZadnc2Cg4N54758+ZIBYF1dXYwxxvz8/JiHh8ec+dXU1PDGUqlUXH9VVRUDwGpra7m23Nxc5uzszF0vXbqUnT9/nhc3OzubeXl5zRu3o6ODAWCdnZ2MMcYqKiqYsbExL8bly5eZkZER+/jx46y8CSFfCH9YVUYI+WXk5eUhMDAQSUlJ3/S8q6srFi7870K1VCqFm5sbdy0QCLB48WIMDAxoHbOwsBBBQUG8NisrK+7cy8sLSUlJyM7OxuHDh7F27dpZMby8vLhzoVAIT09PdHZ2AgAePXqEmzdvwsDAYNZzPT09cHJyAgCsWLFCq3zd3d25c6lUCgCQy+W8tun5j42NoaenBzt37sTu3bu5ezQaDYyNjeeNa2lpCQAYGBiAi4vLnHmsW7cONjY2sLe3R2hoKEJDQ7Fx40bo6+trNQ9C/g2oOCKE/CVfX1+EhITg6NGjiImJ4doXLlwIxhjv3omJiVnP6+jo8K4XLFgwZ9vU1JTWOVlYWMDBwWHe/qmpKTQ1NUEgEKC7u1vruNNGR0cRHh6OvLy8WX3TRQgAiMVireLNnO/0t/3+3DY9/9HRUQBAeXk5Vq1axYsjEAj+Mu7/+hwNDQ3R2tqK+vp63LhxA+np6cjMzERzczN9s42Q/6A9R4QQrSiVSly9epXb8AsA5ubm6O/v5xVI7e3tPyC72U6ePImnT5+ioaEBarV6zg3f9+7d4841Gg0ePnwImUwGAFi+fDk6Ojpga2sLBwcH3qFtQfStpFIprKys0NvbO2tsOzs7rePo6upicnJyVrtQKERQUBDy8/Px+PFj9PX1oa6u7p+cAiG/NFo5IoRoRS6XY+vWrSguLuba/P39MTg4iPz8fERGRkKtVuP69eswMjL67vmMjIygv7+f12ZoaAixWIy2tjakp6fj0qVLWLNmDQoKCnDgwAH4+fnB3t6eu7+kpASOjo6QyWQoLCzE8PAw4uLiAAD79u1DeXk5oqKikJKSAlNTU3R3d+PChQtQqVSzVnD+acePH0dCQgKMjY0RGhqK8fFxtLS0YHh4GAcPHtQqhq2tLUZHR1FbWwuFQgF9fX3U1dWht7cXvr6+MDExwbVr1zA1NQVnZ+fvOh9CfiW0ckQI0VpWVhbvlY1MJkNpaSlKSkqgUCjw4MGDb96X9LViY2NhaWnJO06fPo1Pnz5h27ZtiImJQXh4OABgz549CAgIQHR0NG8lRalUQqlUQqFQ4Pbt27hy5QrMzMwAfNm/1NTUhMnJSQQHB0MulyMxMRESiYS3f+p72bVrF1QqFSoqKiCXy+Hn54ezZ89+1cqRt7c34uPjsXnzZpibmyM/Px8SiQTV1dUIDAyETCZDWVkZqqqq4Orq+h1nQ8ivZQH784YBQgj5zfX19cHOzg5tbW2zfqeJEEJo5YgQQgghZAYqjgghP5WcnBwYGBjMefwM/6+MEPL7o9dqhJCfytDQEIaGhubs09PTw5IlS/7PGRFC/m2oOCKEEEIImYFeqxFCCCGEzEDFESGEEELIDFQcEUIIIYTMQMURIYQQQsgMVBwRQgghhMxAxREhhBBCyAxUHBFCCCGEzEDFESGEEELIDH8AhLEAkcJiNVUAAAAASUVORK5CYII=", "text/plain": [ "
    " ] diff --git a/img/AA2024_simulation_10MC_50exp_1batch.png b/img/AA2024_simulation_10MC_50exp_1batch.png index ac71423b212910b92deba8cb96ddb9721d058bb8..12f3c03fcd02b87a4b29016d73dabda34a9f9384 100644 GIT binary patch literal 36064 zcmeFZ^;=Zm7e6|5BZ8E4OAjDj0!k<)-RXdIcQ;50NJy)Mbm!3BC`b<72tx=A&D_KL z^L_691MV;Phs*N}^UUnC_t|^pYpt`^#Hgz(5a2$?1%W^WN{X*FKp@m$5C~-r8x#0O z@b}Ud@Fwd1M$cW-$;#c!+!X>+F?V;icXGG4v7q;axVqUmISTNI@Cb0xe{^?ub`#^} zb@;z8;Bj)b<{jM8(*zd5aaPoK1A(5HKfX|YN*CLJKyfNcuVu8nvk#ZO{IxIEk*9N_ zUJy2Pe(dmenMTG9(3@`U2HOKn7i6`Li*DJBPR)ctgF#ue!}6J7lgrwx*B`=y4@r|j z3!6u0x0}r5vZ$yym$Lr?rD!i@jzshPCfF{C|Lq76jMj3!2L1|Wz?Q}+Pl3M}9*kGO zTau1Eiu&U~>U+>L;Ij?n8R!l0*?{u@AO8OgS+Z*?yS{Nz6Q<85tcNeHax_B|KGQIjE=0#QF@BMK3B! zS&c+3EGXz}7J8g7JTf{uJU$+ON9z<1jOSOvgjrbLJj%ls(R5~%Q^Q1p(|ftGQQK-UA6Vqa&%D2dV5lJUcyj zyv!^t5%u*id7y{<9Gsj#u8e^LMfVLbP=d-zODSG{BvO;S(E71U=YJye@Nn6AHYP9$ z_CweclaNpfJ5rle32QvA@?n3faBF+}^x^jS>|)N;Z97$0{=ksvQT{1=Yq>aQQ$OPN zg1vWhyhMN%P@osQY-~|fPHjn9j;%PswYB`UwY3>i0b;-fw4-UbeHSbi5$0`WeD1l+1S`5onQf@ zddkxu5Qhud9<%!KCa~SJ^|Ncn$aCwA$YQIXWDjhI* zmTnrEW59PXJQSRBaDQ`94dsCgIjk+Yc}WEA(!5}|X|vZLHgfJx*gbB?GHenu5#k}_ zY56dCmM9g9)@)gMh7*>+o- zZe%e>Wj4!owO_oPE{XJ4RBh~hSjW<<|9A(YH{;2MU>YaPChX^waAe4 zyM(BT6a0M$tF@;b%Wk=?-5i7kt%7taLMa72O@Z_7&5l3#E{k0q)-9*gNIv(ysO?;- z$B}yQzJw^mhd$iHtD5XXE>~9r7M?Ph{i44;aDW|lrb7knGwwkzxFdvD<^vW&(AI~T z;8mQQ>#4e)rj4f3A~zpz?W*P;u9tF5+7B;L5A)U~@0Yv|tU3ohEY6+6J$Al^%aQ4k z?Hp7+*pvo4(sdrvGQR2HkU z)DnJ#*H+9FSTUOX56{7_Xc{hUAkeU zgzN6UU{+(fDobd!@6qJ>3EBIrb^FFDSX@;RDxNt0KtIdxMmwIbO(xx?kgR=|*K|T{ zCk)zo+v^pT(QQsHIK%bu%y*u1&vZN}6`M#B%=!;eKdt(vG^gS{|H5vd`^qZaKJZ8+ zS$kAi`)u)G3+aKGD7kjd^P6M^I zBQl9e_xcy78h6u3N_JgcR;V5B8@qqQH}HKC`M7Fcb%WN;Rm+%#g3P&}leV zY^vdi{!42#eRh|)zrV?ffzjqxnUdxFmy)9#^_I?oJGO#U zYSy8u=$%8$l&v&GP{wM^NWn^;e-pEQu%7E*Q(Cn|XU2-C!``n-0`pOehv&D)eQWC2 zQ4qeMZF#c5nqa52fuHbL#XwvuQQ8iANPE-PN+QBDE!l=sbFld^(#eoD3U^|Q_L zlIJNx_JwkT+*l48wfVtX6W1NC8^kH6I@;C#nkWHcRtmX*71HIp@_%Z)$jV>hMW&QC z^ReYP&56E~ag1_-lDXJgUB4|}do;*V-O4XDu`z~L{`^SkJLLWQwp6Fi>s-Fn?f5jR zg))-UwEo$PYyXB5>x6@BC1~{nd)osZ*UJXg4?2og+JtWFB~jV3T?{;l$+4B_KOLo=L3?fYm{? zpHj{4q`*of;ZXP8tR^!4vn)u4d2IK)-Q=_{udQxhiaq(L(A{cL3oWQ~{4Jytq&@K+ zS%#W#Y=ArXjBE;GcF+GN>r+W-Ws!u9UXJizG_0i^t92U@zTJ21G zX%W7YUU+rg8j1Y+&M8lEb^4~pRh1z?Vf$o-1ka_jlRB~LyG%=M+?7i=@3qx*Ok*Y zy|!X3y1$S2sNdrH*B|G0ZBS;huUK?eNozYKe1SLHFr8yhm6#d|-PPyJoc#^T8_kB* zC}XKd7vJjmdMYj#W~a28CUTmXs(^&$RR2y+Ch}OGWixhR6ev{c8sqfCKFvQEql8UR z58bKF)rmQgI5hczCKFs|JX@THzE4Kne?^Xyb@=%SQW}yB{dAnmS1t~uSvZ;Yv>Mls z6_z4U?0IjVq;CBCW6R80WAbVX)l3YcVGK8A!vPYXhW2FpH0LKitdp~1Dn8?y({6P8 zNQ;Lyy7+r5=XTcA{P`lsSQ5|8<$k^9*YL%tihOVcX;lRyMKuM#Er^QNc>ZI{b7`(y zZ!~S1Ch%4P16SZSR^vFkZN1TOHY10hec`Ggn*eh9V$9Erd-<*BmoiSvxlWSp!axlj ze|!PDFk3v0jc)hQ_26sa)V=6^^5K!y%_&bw(9#_%b8o!za zWv!Jarn#P71-h%AoY@wu-uZqck4rH2Im(e((LYB!s?MuZAl&Gwn`HKzwdTsXCPj;) zOAvi{`EcBC<6q~_I^j%IOltM#sRG}_KV%eg#=7KT&ZB_NhuW&R?D}x`&E3i7T+$7# z%T^6_(9H2^$3J}O@rTTBrc@a@tY`h2PwLj7yx?B*R($G#Vcq3nwY~$qTL>X}>4oz3y%MYUNjJ4!*gh50q&ITwJ|l`^t9!@) zeO97VlPD~EJA7rq4pSAuoxF~!+sZA*;hlfYN>miyKk*E6DS!Z`o0fFC?f)sqA^LbG zwjX&P_p68d0|n9d?1&>F{JYK6Eu@z626-L(NIC0zH9A?_KS9CKGNu0EPd)H2*?+QR z=9K9#1{*}8ytW6erM~aQie{T3A>S7Noh;li)~bnwc8jOpuJ0!pkHe&x#$Gaw{SiQqj^D+j|9Dd#_m4zYIp3|H$62tf=I z)Q)C*`h@Wl=GPNT1s?h>PF}k7%~8@TLLHyLdR@w|7L*jC zhLv=!elhX9dV7iRKk*TynoA9~#`azdlO1xHjwE5bWP|9S*ucgAJ&@onTxnv+&lV z-Dad*p8P{jO^@DJNlI4@Ycl`Fka1~;hzX|W_iV#|7qYtN+^xFPvli;>iO}@&#QiU~ zr3@#Fnsnb^R;@)Q$WgJ^B`n~j$yrcX=Re1`)FZ?AD#>2olhGdOJTGXhce8Ck7H}zO z)kr5moxj}pCWApb!8zD7O#IhF+Un=dmQRRXw&WmW(1K8q_LfOYmJ}AfrJ`D^ksHc2 z6{k&5AR`s>#uS&loY6iMVh~QSw=9~6GDxlVFhbmF;=_?u`gXqdL%InDTJ4jAH=QZI zpF3;AQ3kiF?*~PMcx^?-I_`sM>yh^?TTZ9^YZ(apyjym|5uG~GL3=%`6l3Is+Fd&L zyACY+wR%Q~7kAUY)1XZwv8XSuw={%ehqdvku-Xr#R^BEBck4X&*a#8r&Iyt2$dt4caN$rP!eK2Z+Oh2IF#`-Kt z-xX}>He{+VnYPo8aeAuWdFW=UX(ciS>4LItri)xQ zPU^l#Pu3T|n9-z`xc>cswaUP^Dk^aY%6IZv-j zqtA5R&VMCQi@NZ?5wQO3^T*}x>gt~Bc1M8P950Hr5s4qQFJAchl1&gbhnX3C7I`!;|F8?4+TScLSl3+-P?cm}8@KzyRlc^f&msPep7PW| zb-lQ;h~}E;V0nIo!Qtbi#|lr~)_>#5zF~yz@L=UHS4-iy2B31T z? zt;a~zV(swnAZdm_9pmiW}2_-3SNJ@|70G#};(I*V@kB=v>e zSYnU-DjSXHH3smpJ_^?hN8N8@a*WC`7mDb)4l;ciE0H$JA74kKbY6}3{Hle8hrGgm zb4F(Vl}L!*=+=7RBqXkRla*sMl(|ss>qVE`GoI=y$U+cHO>lWP8l}g}?FgGTP`n1G1IOVlBXm!Fu9yfJ||j`~F4 zw%hK7(Lb6roD9~qUeNT1At%Se(Pq4pRQulPA{wd=-;_7U65;z`XAykm-oAY><;j8J zFh$_=^>6v_WQPvf>ygsv0k9A~kSGK5w zSTYEEIylA_`LnE)f0R0tlCe^-;=uiW?`Omwx`sSg)|CjCv%lJr)^fV036#|oZmt_Lemf(VMlX?trvI z_KUKbYlMuxq^GBR{kmXAJd`N?FjT$h@;Wc@hJAA|(J5Dn{+8kJQuA&VIkhv_x#BQ{ zI@ET}x@h7_3Cj!0{T@ZT0>3~sEY0roRv$S%A$F%gry+8Ej!uJVo*pLCiDc5Z&X!xp zI{tSreaxmvG5QiG3$r~a0Egv3=Y72e%8#nHlrc-y{5=@&)xT@3k8^(X4q}&E#h0dq z_rd1W_fTlY#ktl^yhPI2kHq4SJNSW_IfFx-PTL2?bQZn;_(QFp$XW@DAr7u$LyB8^ zNe)dvyND3rGlk1w7sHsP1aZ;_yYp*u_C>j3XU<~vZpK-;IF)A*aP&44BNtj?SYt0( z`G#&f=}3-WU$QegucKj9+i_LC>!6>8T)|ZyGtzwOaxcN1>PvU)8`zbPs+8IL_thA^ z)gPxzNZ?|u)4M+j?e(>lZ)x}M?(VJL;+2)?-=igLq&CZKQ-mu@{>Asr36wCLOHWx4 zjnF<0lD{5n0>^781Be9?$ zKl27I-vf?e(D06^$Of<$^UQkA!+8U2>NMkZXt|%DJth zxPm{8bCz%z#M(S(w(?}C32^wD|76<6w5-*PWu?N7>FoK2Kx?wPu4A#^O=AU{x=HxD zvss3!#MfnK@8qsp>{|}L&14W7(;nJ!LXBZxVd%6aG6(lhFy~5Ou_q6CI;N`ECdBsb zq3OIH(JGmd3u3MV_k)l-IcHdNK+@>=<<5 ziu-3wEQ(oTC7BU46CZAZLTqogO~cc6YI5!*JYkdbtWww&MZe-m9E9EN*7hTs!RJFf(So&Da|MiA>2D>f8J&C z^D5y@5!!~v3*PxxwyL@qU3$6}rrJ6>wYI6tuO&VV5zz*mzaNOBl=Jl!%MtU~s0zC0 zd?IlI;_bL%G=_R^CkEXy#gcJv0J&+#O3yCjFk7CoxjDn6#2J3btKfIM?O%Xg@7cdm z-eV8ROaTyCAmXXMrJ5D2-ljZo!`xN^Q;-(RBoVC&7BjhBFqxq#x-pXV!r*24m`v~W zX?#%4)u2Q+A<6W5pR-uB+FQ$$pVNE3e?%H9?qWP8Z<9LxdEV{#$5)NuMPf~_e^c=! zlp9Q7l46he1TSQ6QemRTuW{e;e;fO07!IT9eK`bQ#+WwO(AH71uq9qs&)~NE*A0HL zsQ%g(rqznShl-g|q@1MoUq&y|sE!XHGjZN2WczwX)OAep=gEsK#CgxvV1y;iP4UIv zy+VtgwhAh#c_Tf<{)H@B<)#V)pJkY>t=D3_G-|Dw99p+6P*ygG8+r7i&0iV$ior2y zB5g9w^tBw96g3&WlJamq0*20b|(eM0nHE|CoOB<=s;>wW8 z|4yyziaQ*pV95-5B@*YgOuW&GUp<;yUc57i3?Zct>~jKZh!b-d$(+ly-F##x!_uD7-N-6faSwFZrZ8`dG?-u;J6}`p9AJra{>bG1qD& zQ-krntD*4P2q3OqH`nUzGzzYUV+nFyFZp`RUl=|q$zj@_Z$y<)`aJd9@i$J?!Q@ZU zr!sZH>qG>>0#;*YV;Ot|32GVOkp1amOMNo0)d1m1savkX!b0kR^WS%ybjW<&<*_%1 z5&2c^2!j>BV@c)dt;4#>o#P;+xRR2RpK+oU9JR9a`}vHnjoa@xdPUu80;@kP{GO_+ zN#t&6i9MlEvh^jK(cb=}rJM5QOC*~Vp=m?nKR7A6zj-zf8{8FUmWc@y)>YTgQpqYu zU)*6PAvCmKRu8G-cm*R=VlHUrQx5wC7t~6Y z?TJd1nb;Y*!bE^X*1OAZlm*s<>q;l;@AZ^jb*S35Q<)2jHELRjq6Xi{Lf!o#+s(wp zKj)icww4mmOUq6QiZt3is3P2Ul02@|iTM}TIXQb%KkFG*qJ{jml_)9kZgME}?xtQO z6s1;!;rnGT{Syu6Xk7o8@o?6>@4xuDK@l_ zkvcM2&=W6K9B0wJ7P^Q!Q+;7Qv>uHg0}X4W{H4E?8|Gih~f9BZGNMzzRff8kAd zD~^R=MqRN+CJsnLZkJ}ucYL}^3MZfIiBOUR~Z}J+654nwSOXvAr-33&DXMe z=6GIhBwR0G2Jx#@Jv6)Yf=nUmFO-MVI6lq7>QDn_Q1GYok$g0Il2y@;VFE*b>p<3a zWo7Tua4w>Ct&X7Fus+^Vj(=!BNq+vArQMRFW5jkNnWV&skGv^})5@0Yh(``vJKg+` zXUS7sb5>@O7Y1t8Yu4FtvCWbFH_fFK_$0_$%H~^YtaW-TSIq8sJe+Ob-lXX#)<>^; zNDbjf<$|Ub=Muw58r413590F@bA-CRymip0xa6?Qu|upX6VUQN*Utm9omKPkbmx^( z^>dQD1MlXI*Z|JU+3jBrFR5KH#(W58$HN7X=21E66Crr3^>UL?TR=xZ{J8SptxT#?|EU`XA{iy|2lQP^@Fu8b>yvwkGmbd`a0E3Xk6(X{jLV8 z5Gn za{l#c8b^8cn-^wDX{lY+DdLZbV?g@`cabIoix}}$X!G+|qUnPn;wwrTR8Mlz*%p>H zC?y(6SPV-)rf0qOF~?9p3O>C$~nTj>Ef82e6`-8S2L*ab_ zS*?(9zOOiQ{qpI3%f`3bAxCytmaBNDf_VCA8qCtJ4f3n8SaL<0hmv@4CIL$P)F$8= zr~zMj%m+=%YI5wyI|s9OZzt{RvmyFl$aFLT!t%|;?^lQYp5XQ_jF?H{S=iuCeOAFa z=$`3LmpokVrCVp!t;6xoKO7Z7|Ij-8bXGaG|jRo=VjIn+CV&xb{F$1gFd=aPCnAo$cN?>sNH%Bv%Q$m>qqczFbGG`}ePpWvGU_kHEl?>^5Q z*}GGosSN~6sW*@&aw@jx;0BO-l3N&MF27Cp66Ok`Q@uM&&}sadDA!FqL}{D852k)_ z;xE6)OoqX>t&r1>GO&*4t_rUn{4*{$5^lMCdwH4;1BRZPd07{E)fo& zGw6(S7HD=h+TWFAJkn|JYyU-94oXZ3?cEB!p-w74kUc9mZH?b@e{!EV+zlqcCsCfx zSMg+Qm;aE`S^K4Tz@53yjXw>eQbeI3R+RX#QQMLNleAy(gNIU~zoEms0?4{2hLTN| z;`LwBtJr@GdSSx$8{AclmTTZ8o3a=$o%M64hA`!y1BCoZPUXZBlI!s?)f|&jv&cE; zzHRkJ9Qg<7J-3mBxpT?!hq_62=Z$uRASd4X$>^bri^sNaJj^Arl}KA3yM0j3DvxIS z?}URP#tiK6)O!X7Cu=Xi4L?sjYUP3Wyc$&3SuZQ5%X@5LV30e~lLUX1aH1rP(0}_SA zLzj6Ve-p0T8Ah6PJ|`zBUf+yg#R_eVjpY09zx6MKgwwcOjW>q(V8*27{hAdl_`oa! zX`pF-JG)?B=3TM;#;^@jeigII)Lwe>5N~kBKGCDh?iAPepecA}LGwW0a{JTVqH(h} z?C@wQ^o@E=VI%ZXLEKwZ0x?BKm`;Pv7+)Kwf;-5(XTRD(`3$~tL=rNyK=EV7$>jbPTV17_A#(YoSN3^NZhCJ8koFn3~E z|Lb};Q+OrJx~}}TsJ0+-hOhbI}I3q>Y_96 z2zfV#+0(GO^S37ty3QOU1hxNNEnY%{s5H{ptmp=gsZt1{V0!qR*Km-w{u7rNck#Y6 z)rECf+~YVh6j5#*>>VFOz$*F@>a00-FSf1RQ#dhSML5|QEYn~PH^WUEmXJZ z>Sw3#phyRHuT*Zpd;*3RnhCW3$)VY9T%F;KGRYKzzd9y5nwk;d-3PlFoyICdH6tVb zZ#@JctpQQzKb~{?=CR449HnmqK6t9KKEoEqwp_1%^Dv?TU{2H(qWgr2_4za3_ciTS zP2Cf^Bz^7~&vtdyji1s}*H-uFz!}HL1W8era8y6dX`4~%z(;K5mkIcKOvcm+tg4Bv z^QqI<`?qVI>o3-#-*vhBIX5ed?+KEfAPU?i{ax}Tvl?$t5y`BDRNr=EE}-_Dv4>Ud z+rJvg>koccXHD0oABeV+1hvFPM=Rp}08yZIJAW2DNSCuAIBJB~1lB^O%Qmu;aA+Yg z+ZU@lEDQ@OFNhp}S?Fr6Tf@IQQ2WSxNd-8v1LDVjw>6P;Vy#bx;uNh8R@N?gqXGeW zwWXA5NUx007fpBVzjR>{b!i@3taur}XrdD4Nke?-Vkbi__!%|C_aT(-m5syS`mxL5z)jvRN^*8>oyTUit^ z=BM`lXO2cuoLfClcL&N#(DN5J2VT+u`2Uc_cmoI@rlq$B{})WN>%rZN1aFXI;=!ioNk zKD^CSwA#8!Owv=hlxaCvdr>PSGqTP}cs!(GwWo?Us;M%Vi48W|a!CE~*L(C3qDl-~ zm{YQ!I~M~axLyM{_`S{s=Qp!nF(X0Dqeg^?VB%aZ`bPYjdW)o@tI>9Nd~>+=KhuBQf14DW~t=lz-tWbOnRBy=*unej@!T7#D-?T|KNws~1=?f`L@ zalP^nmp(N)u=t-vOKu{vZB9<%;Jv0_jZu=EUb^e~?H}Iyx3(|6^m|X4aMZDxX7H){03WkbAzdBLl^?)u;O z)#%&9iyhmr>oR5iJ-XMgVi-Jue#bP)bSDGjV? zn>U!&(klp_KWDPZTT$1}IrtDK3DmhJVb-&Md`7B8u3iTb*O~9yt}(opl?r?91mB9k zLeDv>hSV)E810WZi$blXlRWvW8_C`YIk;n&MtOwnxgK9kZ= zxN$PY2-z$^t0C4kmpBh=;`SLO3__cznLFoPHgk$^JUI9p9_D#vH#eONFFRoa;F0|^ z(2s&8Q`Lvrcs;{17iQRUM)z|Pr>`jmi-pG7E-@LHh_R)=aP@lp#;TrA?>16)(;iDC z?jyY!{Z3{hURlecf>1gkljrd|2XuevV7p3dp9bmN(jOw8+S0w25@1Uf-p%hHzj}d^RG% z?Alfu!1pzW>HOrV_4=kbW_DDJQEs|XtRkLLo^a8d)7d65g>iUcP*9lFEcxDqd{Wok z=||cOU0M)!FKbs;x@@KXQW3a$k`>^VFlIt* zaXA~!o@rUONTQeJpmWfOEScNN&h*V8K*b^iV-B3%7<~;WQFwWC78m?}acdJ5K~P*w zu57}vf-f(G|6&GIuR-*#_^E@^B^#Z7Qz7O%_=4v7>Y5#I8;u8X0Xpfn-8Xbj9X*WG zHs2nZKbANXV|2avNvNaQ=)w8TLRv%tfb7n_C2Lna>t<#Echa2=JRD-i}xP>qz&SM z=!X&C1a6MzVY&cD%gjMFdx>s)QlS^oAQ;T~yJx$606U@vKZV0-S;*O}IfZYNn34DF zmP?1H#O~hhxbcGbSv^=;(Q#t7Q*!)>03+Wyrah4E6;fb*EJ$`i9*R*_OB`n0(tmg-RXl^PedYrgI8YMomJ}Q)@#*cMAc%8=hN38>cj+{#{ASqk z{+*5G)VI;2y4I!vM!w-blGQj%I8 z;nK!MJc*`*LM1xDvSMYRnmzkMu1kFWwHelDE@Fgmq;8P);0~t6$}s!m2qil)yfcE` z%z2&A8X#rK$Uc9uJ!%{aToCMYxOp1ry|PlXIj)3w9bcCh7P2eU;Q^blyhZGofG7j% zf7Jn|=-JN_7F;g8>O-Y=C_kfd7thB0(+wToGm;Y-*HR_Nx#b|`j_0xAuT!qV(ZFYO zhJYFY}>RCi#D6yom@RIHTEa6%K#R}(nM*9VZ8ht}#kBr_e0hcdnW958}+u)}}v%b_d zRomQKJ#+C_MIN<}R3IjOT&t1>ZSTSxY@4pE-_8}hYL}E@@fj8{SrO!Nig_B-uC7`e3l$Qz$zX4IS9IuTD5O>!AfZ0( zE$T!$7VxygkN75s@Sqbz4L2?ecefoq6=RKa^)iOWZ-cvT4ts2`-D?y5kr)dG z0iN?`P{|C!6hTf@L~{po*n}iJkxkE7h)i3bUdBUA7A-S_JTVC@B<%)R>GQUe|0!tZoe)7CVFLAF!g3-`d4U#2&xG?T$xUXF4z&+rD`$AF8@Kc>u2a>#` zy3*j9T{QXM3kU>f$d<8+r>)(cM&`;BzFefIYu4BkmPp>3+uuHmG{LVjo(IqSB!Bzf zmD|Vn2xs~FihG0Io>%n&zQ>g`;#cEs!lp{jG9DsB)~SW&^|I3EOuIzsI43mKOWsZs zz$Or4V{}n0Hrg;ruLd#&(E5ZQRdo&_SR97nSra(vh^o0|yfvPygsq4t7I7V<^2Q2R zgZmlZ=8{j)g}KtTxrP3lt~?p@CkE$ z*p|Kcc?(J4^#wp{*DfF&SARjxDq_i+1r)eX=XxhYR>^)lX%PZGjij`cz+#;!hO;QC z`9^RrP-3<^Myt|LW$JTm{=shoG(+Q`Wd|J>+ApQ7oSa7Cv6&jsGGQs2MMS+^9$U*w z&)lOv_yPK$wSKutC^Iv5toLyLJTm)F9s!>4Q}SxGjQwT#k+xfBa^A+?Ri_8J?kSJv z@#k?L%FNARf`4Q-NrVxNODnZpfU_ASY@|aU7LBj+ zn0oG$%GV#I`;HQHu1Elb`LhHA9NB2U_^Rr?LekmL5C8KXBO$I52JV_<9tHO(XTpJl z$)}1(kwJYq=(7&_-+#tkp_8cjJEZ@u6mY%t+>m!uJ^}f;DnOnVY|YaH?6~mC(9Ih+91M8Huc-m!h>HQ{(!e{q5R~+J z0UMOg$sV{+w3-MutCkjdSQByWjf|D4v#*6Q6R?v7EPxm1y;x4_f@k6*n^Pb#4QA!c z@%v;qA?;ifE%IltM=<@#lu9rOt?|+FAq#f+s9X58hRFJ;s_5t;1_euy< zHR|WJQ*%O5I=5xac^iT*v#y@?moaK_=JU8%@c!?c)AV(8%mss$JOHnzm~Bzw7@Fn? zgHPeEAVuu*AGR{I?8~j2s!B0m&V1nQA(Ae9w)c29hmw&gb>HsIBBTKvAZHXy5FB(f zod?GMvGPMLPb%rmq$+(lg>Aag!7w>FS>*Pxj-87u&Xz_~jsf%*%>~4q$#TVE$9VhD zs;L1KQgh)Er&yl9zvjrdr7G}>It2)M&pz?Bjn6Z%T3#UUEh| zZoi~;YCFX=4Y(k^zP`S@nd?ljy(jjU0{N%WloF2-_qaF!=u)%8N^l|^{mukWEnCK@ zo-Ig^Ov|C6$$j*%srZ82?d2!HP@{AE;^$BAGmDEuyH9~`k=&pMACtgqNP_f(H^{_$ z9peT8AH7@+noLrlrA)mMu7w8PZ*O0Xj9{bFSLDRl$n$|BhQhY!9-hgrRrmQeQJq&bC@GZEI@A^-IMnieEzX81StTm zBj@|m`^!*a!$$k{T)(6B49f)b;baz|!DP)7s`Tz%*=1&VITx;{fiFZ?D({J@LlgI_ zYgGY{ONClt{9q*s^Da2fTxZ@Kqu_Gic7n!1UKMH^1o4jt?rR(H$Xl|~e$1{EH7U`5 z7hNG}lzbNGIpSVBKqn5HR3IIqb$R$tiDt`gu3u(h;Dd7pa}`7y2gV(Ilv7HIt53m- z=;-_nJT8-!89H=2<}JVX2b`8cxz3rP6gPLgNxN^2?F>h4UES&J{gFjt9CYG zd9CKF&6|yQq>y)R6H>SKAf0kOp!0=_LezE3v1RO$RFn(r zg3Pa4t{w(ORgXWbmrbhq&rwaVu?}^hVua)wj?S(0JOoCkW)WUr@URYXXmx%HfiZ)@ z%#C4jQbg&CT&r0?4;1y1fjy`Vs7?{NKcC)TY7qcrcq!m=S%jK!LK^9>p{dz&SUZ}* z55e8v-!CXAIDxL-CnPZ`$U9(G&)H#h)fNbW`m(n5To98^<{@rBHlxfon)s}Zy)3l>ncsXrv3)_wp@=)ijcn@jNWfB1O?>21QAoS=;2Ua zwUM31U>>!8i)2711bDk){%2^9&slB~V~NwlLyjKW@3aZoGu3_2R?>1jiXblWyUgBt)8up=`ugu5tU zdz0FWfJUwyM0sg*o28lM>UIM_72kvj-Ua#MDY2iQXIV=q6FdW^Hl&^99?ge zi9yYzv_j9IK)r_9<(g?00X*e?@#sW`P#%+h!z*B^#P*9!*iXhiRrKDjUs7$4RwbC- zq3@Ln`1SWEcMb2lm@`!u^S7W|TQsxpKhX08Fu2}v2S3j1 zdYq@Nf&og!@g#Q+)el`w#l*z@zlVaW239aDIaUaRY3op_5g&+p|71SujjI^|Jzfpj zd7=0Lp2&}!XxiP3!tCSVlSh}?1vtBILxNZNp7{B_=N8Wi{g9?|bifIssrBAc@tNJ& zg0N?f(CkI-GK${AP=E56JV)1KzrQ%`)~D6(P;D1KkxVP zlYp>AdozmksX&65k1ei*Tma~bzPw?IeILZVSsxL-|Fgt;3@f1UUgxfMbLcMwt zV5R8S5mWMC^vRfgdXsq8L=;%k%+2(Q+VSJ${zpN867u@mT?$4Ze_ANUFL*f$z8`+R zP4G7*`u{^HdHpvH?F89XjTpc7&%?~k-^1?9{x=A4?X|v#%Cc0KCtm(OVJHS+Z=dr| zjQ@@%VO`GoYw@bx6I4!x_K_FmV=zY101}`g5KCczM|xH`00TJj;WildfQ^raUyPdn zcx-Rn;NLqH1IMbEy?ykre{J`5f$;I;k&oj3LVY8ezqpCD7SpUvKXOvJ{t`4x3y?wcb^9d4rB9=OTwV43Rb#79Z&znHhr%#N+QyFc`Um9jyt%d*|I=;j910m)9Xc z1`qIPNuWLV8=NpnoW7UfdhGf~GXFO+7tWaSin@|skIZZhd|3IoSQ45_4AUpsb+D2N z=M?J4R?uh<7+?9nUgj8LmV_6j=RPjs-KOF=eXdky5q#abIOYF|{rmjBr*F0eNzrpo z!&S&Z=1sBH7!<5U|6?05O@)+;#Kj*?_x-7e=4PM+jH3IA^qq6p(RNu$oIBDt?k(!X zYv4(_`Evw6I1?Qp6XW||rD$t*RqX>nI|Yz#_@H#RAT4||7tuk3H2NNK(<@#7#xsgqnor6cH z32s^ovC@WQMK+-!p8u2Yj}2Lqj^b65US{!*q}K0ZFz zQp?lZWijq3(3}}>r3i3FB-#&8zK{PAyJDshbd(6RxFu(1KKI$$**Tg%FkZ>@g$9H4 z^eBpK)Ijh5$4Qwo6>6Y!wRhcFT~AN%*c+&^T3A?!@7O`WoQeU6@o&D_Wm9TdU}Cpd zmkLBvN%ZOi8934k1qg=~-Rl=Yd!A5AA$y8E0AOwD0UdH@lhW2(LrL)+1DmIxlan=$ zYj}y<9)_5SdLbx)dh}LXgY57hh5WT#84VgX7&7vVRXL;UWW85(Bbw<7w)!BitxcM4 z;=7O1V)|Y9l@FYmXsMwhAWibR@0X7Ae}b-}N}a;00(4k^?>;RpXQDj%`riOmz0byl6%c*KZQgvEMat`6G*!)k`ze3rFB~Sd=et`O;-Ocyb{=#Y z?dt0Ka|K}1r!mQ_yy)$oaD$tR1FSAXr}qB+;=GCb%hky?pEHr|FPfP~-Dy3PKmW55 z&W7SSHDEAbw(bAXGS|8k7`&*p^?5K*gcX;fDuxq$etxbvnjbvcX-Q{hB%XLtXRT3& zrw3TQ?}fwM!3uN%FM*wz|M~g;?xgog8)DH8ba!_)>3%q018k99;(FH8h`;+QXu3rAb*$!v8C=^4z zF8I;Zi)Chub=>^rBosdcKMF3)sZ#|2#vnX$o~$A8Ss5z&A^*vmKNH3~I1V z#(w~VSP+;MOU}DfUN>RuEFmC};s9$Dy!gj08{dRE`ko5pwTRJIngg=P{69`5leIVj z`27GN_M2L}y1PDO5(qT}GPN)!I}oe4=OLoCjs`$0Jqn|%ZzON5gNn}CAE*iigG+X4bS>42Ma24Ug!k&(B6 zR1E?+c=WvjO@EHp$^x~A#FlnC>89J916tE2cTumpRxH&du1>GN* zKK>R0mq}X&utX$2rR@LJ+Lu6M*|zOIC@NEp2$e74H6_I4fm|297gfi~qqHq8EUu&v^90x$f&a&*MCf<2>)0 z2&u<0u6(x&lQx!KPnq9rH>UQZg_>7U@xt;oOI5#~u{1a5$FzrP+czw`E`EKh+uBz6 zxpQS1b!a!arN&J7+S+8rFM$v^LRK2mVTWKa!T8L>rlf=a!Ai*b|&=VvwDLx%!`L7 zfBvdhwx0Z~Dr`G+QF`VZcZb`eON8Ul-dN?x4!=uMHsZIYs9R#sX^%N%zxHV8w)_i? zmST}A>Z@m`9ttwtUcG^*YkGEzq}{c?xl_BJlwr{k0KFwnR*X)G+`l`sJIQk7_@^Oi zqBDGJ8EZIq>5{Bfx>UyJgJ*hrdr!$X3l;E5OLIonH2q?GP2usSuo~Is_p$&Di?OrD z#ssP&g83XQMAY=s)%o6V{mrm-OK3j5&tU7WwN0ZduZ7Thy}q@ClUl}3Z3{B2#R-!C zmZ-5)n2S$kKa=i}`l9jgHQ(6H5~`qV)@Dy66S+K7~)3q#ci1yWJb_ zDV*$DA{#f8^w1%&+M)~$yHWH z*>HU&bfg{U>aR(9xVJO1GkFhlD4aTF`cZ@3(b@I*M+XYJo5hEctmUgKo?SCrhf`?7 zx*W#hul_8`$TVxRLT&X=NQnH^tNX6EzKTL+_w4!e+SoIX`{R4Jzl0t6jZ3}I32A?c zv1s|ciL4uwuCL} zm_;$AQl#YV3w*qG3AmkkNYho~Ngpa{&!6u!ZSFtwO6-X1Zz>Uy5j4eZE{Qt3bB;~o1Zo{J|I*BEYZ~}YF*^jNpJ$ea(q5(q@a62nUzN1dEk)a8giLhW zv!i?zc`RySROC*Tt(ojNK*z-1+@Qf;C-G}g_R>x9$TMzU7u=47Hux#ZJ+W1Kw(HZu zxc;92$zllyQ}%7EMA zESHqyFB5$IHG#g{f;@ermJ{_0o*HSfh2OpE*_OK24bLYNwC0xvvdBay;M&l`AGULI-|n0r zwf|yO#aEm7%y9S7WkejyLsyiTQo!c!G?t%L{6SL*fR+6_2A)Hc-4wx0;JjAQcT=UuP$T%7cBYI<21~NkG8$OzU6?yDrTu) zYm0RRt;_*j*`2qLd)+<|et9aXRJPsE@L`1x5cHQD>o>oO=R z^4c!J?~5F%edknE-4?y-tNz;SH3E{&1{g43`o|>wZaE9(Ay^@Bsk*>DMlO))h+d^P1cee%^6Pq z#z&>^K@}3a43lj{#3|BK&H9rOk7G~C$gLT21Y-dG}L82Zz87qG%|q5-9uvpl!gCsZZf( zU86+cof$$rYM7ccqV0D|YX$Sfo+z2W`N|UEGS$L!DOomym$$U+AjjWm-8$As_P_t( zpB3#9M}Q*L0c#et3%+KMY~3wbw0!-w8J+KAUc9*b^XJd@h?MyFr#U%}ZUUV>>ME?f zf@gOB{gz9AWn2^CJl$@eE47HTQI}y{GY{akIr+)T@0KRZxxdMEcL2fPl4E%fW$&?w zh-F!JAIEa@^JjP6TDrs%on|Mht@r(6$O?&{opRzR+G?Kd5g}rlnxday ztNx%HfmP({Mue^t8JAu?PovZy5aOVXUk1r0g)~pAzV_5BANdO0)cZB~3a054zDwtI zoE&-!VzV4{aX{7As~>Y-^Qy4c9~64R^q*v+{Lqg2#v4r%*2up?wW&v{+T93=n|ytJ z&%80br|Vh#X~!p0%g~%t;8NAH-Q?-%S)0>-tcCy`kA!i;PpvmRNADhFC_Aj;y@Fow z%!v(0affyeH7v4nBWDs~3YkcLBSnjdK%7) zlQ-1D8-nO=%yE~@C<$R&rq9;fo>Af=+Y#Sx;jNWI5HAp8RzjB9ImLRaWi)AszW{UX z#~~RMA?0KRK%8-NqQ5_0waQpsCxkWjZ#|4H4nUQAts^hgEcuOBleW`+eytqKpYL~1 zU{kMOwIVFWpYNfrj-FmfEA7&DOH`lXLI5DFFc3N!3Y!?s+$jdv-&O{d%ZnXx9Cl)iX4T-%LCaNyQrbjwEXN z1`%CLPk|PHt>_9&e=nc9LcE`bDNVcn4RHT7!NtqaR2 z)%wsR^$5gzSi(UpPn0qr5p?*`MQcd&=(aQt5_$sc>L(Lqi4>X!N=_Iq$)ii_=IVBbL8M!xc$X$ z8ArOjE*>|Ixao!SL28$O3_XRA#ZG7x6Q-^~)WB@0LRQmqnvEoC` zKh>tVyh=Z56V?)Y(41-oVJ!smf1S71d~s=&hOVHZV(DM_kz=&loisWos+_xcQAUhC z*?tt|!gYU*SG+7b?g`7EN{duqxVYeiNI>0~awWh}ee&ZLuVZ^QULE4Q9B$dnNn;Ym zx^=kp{&?kK9d#Y| z`h&+j)JdpJdS9)~E$656`NgH`bHVv`oi5Wi8lc-gcyJV(BgXL1wdSIPxQNrok5h++ zhJJCLsAgnIiV)JLJ>kvtws-tf%t>Yx7p`6VnSm>VeCxm7{Wy>Jm9ZoEbqN(Y^xlW! zW!bFj-QBvYfq`8tH6hESXl&Yg^v%Elt3G+idVgpKPDHJZi*Vcr+KPnEYc1)X3jA+Y z1XsNUb--MNEhrA!;?2xZ;?2S5!Q{TZnfqB~+F2k4A;fG-V(df2N(LtH95-^~W*E$x zLbuLVTr*%v)MZr*vMt)}p%^Ls1fe0KuCC6p{0K@Ta*%#bOuVnGr2hWolzIN7%4_rX zyU4DM8Wvx%mO4=C0-JzQZbJV0iE(sepXV{*?bMkw&y$k;{{8pg_8^Ue6ACPDzjv8F z`JQv}l8Vj@ufKG+So%r!%z(~JQsTVrSXeNBANGa%Z{o`c!w@-d4m&l#aKEjh{v^IU zR|r0UPD%)jZ=2Kfhx5(BVQRX~Pv+()*9?>nOvpw6CXQWM$wyyxKv0B+U~#>t@2OHD zQdXY}FuHX1>{)?1s=xu1)=s<^w6&GMe~piiGbV$lxQHc=;AyI%R-|EPTcYrVKJniE zv@j95D0sDD4>%^ZLRTq@+iY9s@505|!u*1F*R$HabXlF82~R2hBDd4LaNe%6vT{cN zrX7xUdL{`n#n^3OC5Ly98BhlDN;PodTO5uWWRuNXCV~+$Iv1uyKZ^DG<>!3751GBp zcf+(=tVWi(lkLmz->2=Ftm^)`Pw=Zt0||kNIA^O%o$*uGL*Vog_WVS z%;v=s{T`hHtmwNtqU*}y%x0W#9(0%->ytr87QsQX5NIUJ=Os_&Jl4fjVn!)b%bb=T4rm@S}~%T2&9W zpI~F3b~t?T(j^3t`>oJ|K|ku0dNJNPzMbIfTPx|~laf|+J$tAWjXe)95<dM-b*P>h}Tkr4^{=un<8y(A@i2@wf>>RVBlX{L&I z{?zpwb1xJ-3tT{3%C&>6VAyit4hA_sUM4I`aB07>2dON@*z*<_W+6w)`Ln;5-Kjg1<)IEi2mAj#C^fGq6&tp%e9D2YL*V#Min8tgL z%k{U1s`gD!P|QESSl5W02^~dYq1InXrUCt}?h*Ol!+78>vzt5jP zUj*Xi(XKF8V~HL7#JU8meGwdO*RNkMFE4NMQQ@_sN^``@YfEIO{I3yJ3cG~O9`MuR zsHAl(9&BgzN^47>=&x=YtIX77VOqx0e&1CohkN~mcT^>W-|P>qR*zIEUPH62p{?IA zyNNP}#4cADlyBf+DyGBC7l)X=gYNXh$4@~=m40u@*vcL$i9nMw zxrZAn`rbcm$-bd~yO&hHKl|Q;Nvkr5dbzZFjIeuLX9jnBF>$nZ{U$dGjAxkRAC`T7 zQHDBXf63u5u(tt@82v3;(pSc1sH=vWiu2OcH|$&r()W3GKLFY33!d)@W@1*P)zzI} z_~CuTvd4G#A(G0dGBt|D^|UtO+?jfYeUX_4#bo_Gt-KCQF-l@;vNJ0xD|?PC{!vCE zJHN%tL-#5RQQu^)JfzX_X5s*#UWcr-9sp&hv~&dNy#_+&3a1j)$AWF;!z;Unzftir(QbF^dQ(QBzY%)u@DoT~W zK@-2c(+cL-xRaxbpk!cVG_2A^IFDI~6r!QK@&l2aSo$M4*w{kq1cSH zK3YU|^$L8c`u@h~P+BJMsZ)d(Yc~10^MR25yDmGk!)@BAI2gjsNB$ujE)8;It&uvb zdsV_GLgA60&#}BN32{$YUc5jaWojXUfTl191j9f|8UnR-p^2p^KAcaFhn3lP(wAyQX%hHqjb1vR9@+>~c$nf``ZN2Js_Yjo7 zGYl6j^2rH#=Nh-RR1gNEVxg7{LEYtLN|=whdsUrf!)~Rr-f>FTq$5e*rxX=e#EVLw zwOdb1$5;wCD!T-TI*+5<8b3d1w|t{1cCf`NU`mpr6e1YaF#-B3{#Yn*fB_0EJ$1DZ zr458jvZ_Gnx^?T8W1@CN@m`o!kW)mmzrS;(D?)gQ5+AO;ie^}pGK%w_8`p_9GaEv+->&aI;W69?S5&!lwuzF2Eg4kbR;6mF?gdp6#^bL6_KrDbAU z#OwHYAH33*PW1Tv10fv=c5)EJ%Np+gQIMDSxpBt8qQOOpEwM%H`2!Pr&#U0zH3W88 z?Kz({7IiGLK7!+)y?un5jgRr)v3h&sv7t%WK0lP{8H5j0GxqCVq-x0i2zP1 z5_hRmay>k{ZS+{Z`|w6^TNG^%Jr0tGpz$V6>uS!bd{~r#jduMc19iCvNYVm0s|*p+ zS4-8QYQhY(;47};kyP5zI2PY2O$CSM zOa)NI`2GVPMUR!17)owiKisYSPLP2|DV%lw?x_#2zHK~k^QQr}W%;_3?8UE4>xV{E z51Tde0)A_x%t4OCJl#f*m;XM`hvKnw#>(3ICU|Rb5Wegaj`<|HK-DrWOfgeuDb}$p z)E=Imot`bIJIHs4f+qa@yoH%zj2^x*)nYucxX`)S3xMDgF0g0Mw*C7PJIoM7_Xr52 zOqZq!N7kG~Qp_(e$S94>A)gh7Kz$nAz6Fp?Uo(+b;*_4S9x#ya3#l3C1?9mF{R29* zzx0d=^1=r3Bl_EkU`wx(I%$Dxq@r6VA?up(beBx7z|<$ZD%zyjX@jp@d(PNf}^7CDvM;OSJm* z>_MA(?#o)=t&&HA1g;b`HO<23QxShI2A8;sXee1}I@^%1dvtt>N25zRUM7iJ4hoODz|f8Rt*iL5egN%` zLpnWR(Q(-E*SBKam_7Xb$*QBT+su1C=s0y+($P69_TaHaL1;?B%w2%Q#a@6uQayfn zEShqRgVXi5E-fQl8C0M@UFO$u%l!arwI#B~yS#V1q~zn0k`hPM z*YudV;LE%1O(MyadoRSwEWu;zRR>EmhbdPbbKtK`;aMBqsWmHo^G8U;h(piZ_Pj&J z+=WtygZD4Yb9W|vd9B>^d$8li&g|)trr!iY5e5_NE>(!QH4nbzKFo!nJO$N5WI>FD zutw=m^8>R@?x9pCCPedsKm8S%qxsX?N{7c~D43vq6P5KJOoXUfy*r#zgvwvO95#W5 zZX)cy+iKx=7(#E=8ysHlhq8`S-`^w0*!xS4ibbICBo!89%rX%1Mcv+9Ohw4c%0PnC zgHFLSOktFez`$d2a_^{e7m(yl>SGx>1L)jgIs1t}ZruNH8PVE1F$R=xxH-R&PVv6* z61>aH7Sa7#}-f^kBVlR#nma4sjFet^ynznzwJ?UTaRpNP;qa4a&FL7&_d^ zJn$78Sy-(40#B~ry!oWIHYbt$MB8mH^s$k;mT0tOzr!hjO11jyB3*}ZiHE55w3=GH1g zPJjC9m5o55zUc={c8^nzEGXBKd>6n~^LxD4ZCnDcFakqft(GB`5r3V^uZKAYlJ!S+ zrjySko4Vr{XZHvR1(Fh#9R6RwY$PCjWAWu}ZAF5$>{`rIP`8yC25Y^m7VT7o!T{2{ z51YE^%e_qkq@D(&DxZv@Dg1?VR+t?B2jLDCSuchFJphHL2+ z;d1=89fwdHmd#U2O8q!+&yte9Zyr8i*>#l2=vXKwfAM}+4D`pu!8s(r`~TkT_S~F} zLrGSVAZG!$KlCIVO)qQ>qGd31>kp*Ysi8(OjcWf|z!AlJMy~IBmOl={qfE=lV0cv&`NXmYo51 zFoAt2EBjkmc;Tmt^y50LVxO0cFhVdrqRY^N_PgcYCE{@D?G4pKc*Op?v^d}fOV^;B zQ4IbI2+vXcc2rRVz1g)mYrsl&G)(Nq4li9xBx6xAQKWE&QXNF?+LVwoKeSqTmWFtF zB#^>qXXXDnXQzt4*mLgL&h@e?%_TMzFOr*f=KOz2y}19xstqjpjHF($rGA`JVJNYs zf3^}Z&cG!d-q&XU@A8|jTl9PO?Yn9@QgdW69J8h#K6p?>tOIv9?PvP_xPA>;Z4Xaf z2|>mD5#X&`h8~4iJ2|OR=5yS$#s{2cQkPtRttYT;ho@($1A)myzPUi_m)UB|7AKg|I zxj1Lc!mn9@Lcc1h}vA5I8ZtyFg3#FRzYXqBc0zDeUHBf>WncQP?Qhh z;tvr~A8ipfqMW^S=`A5{U{4qS)Ax|-H}p1HTpJeYFw(Mh-(`elf!z@fJ18i-@?fnZ zcr4tqWHluZ3*Xn*;AUaRWYwNy+e@Y(d2_jnJ$m#A&yL<3X?egLF_hDDSNkvqd)FvLig9S-a(B5>f=4v~I zF9iqKyM7(5U_Lp|I@^q-6?(sfb!uf*No64SUecFmXh%e@% z%9yT9ax)~B?i#m+36EJh!+?g3n`DD7iPE0^Psm=gckkZ&5l&qmbfm-N4ffC$FgS@S zFMB{A5HEyNUOy0ZCD=IekyrJsl6Jf?a`&SxItv1Qw}R0ld@Y8)-UfL$UPQzE1B8d@ z>@<&4d1}&p$Vq+*nH(7wb{ev&x!VH@OZD78Z@FAoD}8HzBV2wa?_xXncyHE}rYck* zgRPl~MlqwFa2ZP2d@JG(IGkSISW0849NDzQ&o-=NKf?k>qFWh^LHM7EfehzARs;lr z_sqsgpaPRAtfwh#N&=v|$yP`prfCHBq9ehhZG`kGfEE{>3nLG_UL$b7r!M_l@bj%Kicc5hxJ*Ob#(D}=f_HhV zin?v)t&S0%l|~-FP%Qe(hA#i-Wjk6~I2^opAcnAg&m}&{_1EDZ*4N#_;;LOgU?L3GRce;pXG23LOr z>=Jp{O3H_i)8^l6!BX$Zr%xANS!9w{R8-b*9J1ef8bB9g$jcB&ya;20%@9d;%VZ@9 z6NJOZ%YHUoP(G)w{vHtW_jKW6e%o-ec77Oceb~n*k`n*}55mGOkIex!5f{OZfG1-a zhE*&myz1vVlje3j4>U>RWhgC)vLy+G7Bm_p0t&pa2Oxn$i~T)(Wsz+!WGa@u^(eoT zBnEd9D=Ny4DpFoOK6HIZ%eppNmYh?3Mg*aXP!05=ZrXaMt5;z@V~p z-WN2VXMg>m%~uQZ6#aJn*Pjk)-m2CyM*;QpJ0K64vfAeF8CpQmLkNPeSs`7JZhyr!6&~@49oTV^+oA(^^82Sm>7;I?9UNM z(N|eWa>;r3o!;nS*XicrpP*!<0gG4MJ_gk**7PSd`-Pt2C8ZbnVTj|%a8kza5ev6m z)usox18}J-e<^LQZa9_3-@I#bB z_sI7v&RSXuF}e+%RSSN?AG;uNbOYguZ<~BXGyK4eN;AuxgWSnKK-}JtYj|r?Gz*-?A+V9FCkpH?g&@nfn^Z}kRL9-dI_uYO$aPDR6X zw3?BDFx7!9WrBV#LtgEVs&qxyl!^C-C7yPAd+-dQYl#n<$aX!w_FO!RfSG|H0f?x> zAf5Rv!Mlh+(=jWm9R`Y>4MgyLkwU=ZCRKIgWs)aqVkIj2fm-_!p z^sXPX^DwC2Uzne@?zlN{1Ny-Dx0nFAO5*+?IGON@X;!y`5jZtd{rYw%6@KG2V5X32=hHT8!Y6J~>Wb-^pi z{VJd`{pSQfR{9^5J!Z3oEfZO$1f8@87@QDj69C-%G}SL^Jm3Q=P2o zu)nUO4Oh*&J}pHn!}>U7i(kJXa1oIU?OIipz>PV_)bX8B;SWznkBmB=Q7@1St2tIr zO?*frHxgM(1=R|iZ{{}r)%(pBwx|CxqxiYcT~cJS_e)Wq(rAnc0i7PTZD4Z&gJ#Z2_ z5N4+z+qSmolH}kH7z#S_old?^+XC8~2qqx@T>5N5fk7NgzgZ9^7vl9FJ6ziBSb7JG z>-c7<9_x|aNm7FfdivP0WBF-Ln>8(|V4tnx&-Ej591PAl_zYpg%75iUfo7+j=f=wk z@dc?c{K)*E@*MuFrqf6!UD7Ck>axqVta*DAI~-W$FD@mjWnSIHA!(OnpKPvU3R5H* z^$gaK1>{pqyZmhd@DJs%L4-g7Pdpd)+?2^f4y$c~(N9-n$ z+17J$F&|wfE?0py7(n6OgY0<+?zwA1b-Rnr;iXhU>vI3jBFLjw6uzJC@@xULP%7TyQK$ zGcUS4&BnWi;eA0 z7RVPgIP0&kZ83ggt8#mSJdX}B1;R1~0Od3o`k_Z4IIi_+2yXrN;R)cpe^Ci{e|jN_ zy3rSk`Deyl4SpxvRlOAc$U5{^6KW94=VnRVb!N}^@7dFZ+Og*!1^!xw4i!0kJ>H_F z2DviQ!s}Zzpbz2Sd495q5Tuxf9)chjh^7QfI5I{iMEI(rpFVwB%$*m&7rK5c*%Yii zOr(u2ko8+j#_l5vzqv_0CR+H1k!%O-F9T%%4=@}=Hc?i943EQhW#p8Vm8I*Fe9&*C z<|MiAA{&0cTSVj$>WK5_&)aF3*M1QAvvcEWq93W}{>F@crekisHPchN>W!{VPH?pl zgH3k3IR(WzG|}F_UKh=qUmp=e18Jj~)Sd?TgLl0Gj3Y_eZ%_ttZx>)^njmmHtF4;+ zo&bf(MvdY80&wN1fnjamN`!P`O#|9_2Mn%}@&$mKJU5d(q7vrCJ!HUg+!H%CqT|CT zr|B~JnV5R7wZ1Yf?7ZEmFF1kkaR)y_MXDf|PJA1{-U#?qU3lLC{D1$v1@OS{&|?A4 z<8fJ;3?;((=P9Kl^EL$P{`2V3%A>f&u%34coq329JOPwjs< zBuxN*Y$A6p#Xf)s+d-A;wzv?|@2^yePC;4**0ncBEyYa0=k|4^kKq7r+tnc}cbeS` zX;J=OkIiGvKfiCx&PkL~ysLI@WDx#cro?_IhkLd)X4qz|ZBH^*20{{55hOqIAW_08 zfi2!btmlYoV#I4i5d|+;8-X$kPB#1G+h}kZf*1|Q8oJH!=usLg!msN{Tf|*!mE54u*AL6 z?k*^-(XjNAC!K=cO1su_AUS7fAEc=1K}XaQ&(ZRyhymhIM1CTdTb6U!H|)1YIDw*3 zjz$x;bc5AbT>tDUoNXV=1`opBUbvoQb)DGQo(~`WZAAd{cEJA*qbVP=^zUt8J-A`6 zGekNdye7nL)FB^Saw1H_V4{?4XlSr3TX)hDu-zJ|;q!jNX<}y|zi~r|FmZtNOuNG^ zj~g7gD-)nAV#s-Ozbaf|z+3RX!nnTlbXzOR&3tXB#|ll!TE6%0-Ltjr+x&fSqHfG0 zbEz}rmBf;7XUEGA+c#61UTTzs=9eRX8xRl&3Vo@_kA0D%k;R`rIQcO^%a}WV{M}Xp z<{_Mtt~K;cmYTRBH=>2czJia2P%0RkPl`8E;SuiW?*3#Vvf-MuwOdHLAIh7P5n0#U z4*i@YeFcy>YB0cputTIq5r^Wvl-S>rjtH5{VJt$c`=Y!#dvH8po)d9zr)~zK>aU5c z=_Bs>gv%#hzhQ-8$le+dPI6)} zibTVR3@ip5yX32{G%5>tMHKN`Jc7L6LBBI^4CdUq66 zNtZM4!p~ca=Ri9S*lE}HgAo-*4^sJ{Odu**5iS zOIb&UGwsX#?pWFHOU;HmoRt6PqpGh_2b7m09KIas){~DcEeoIA_{Qj6F=VM*vlCjU{)qyqcvx6kQDg^Tb3<;qbhqy!4R1;)p zksXMl_Z~&pGPrXb;H&C^FiQ*l<6ZgBuB&QfsYPguOG1N zLRITlBIxHB0C$ee$6?{$hPdEv02}?vfA^9o2oFTSvD>sl=3m5c0`;^qS?~buyZFsG zXipKxg;enzGq|`m>7^7JqG>q;rJzO8@&BZBMw`zsh;IoJEc!Pi6 zz?I{GSxWFki2lajtEj0NAYD-mX6@+&^AUjw7EQ7xtx$$rzuRJ*YBPBL=$P9pNXFiT z0V7W9jvFpawYC3!O4AI()U92!-=UhM@+e2J-{f55nFQyi*-%4*P|~GgDm6UpTB+}* z82f7|XfM4v9rsuzy?WK~)8TL ziC<~S^=IC-|KpP?&}Q7_c*-{VxKYIH_YyJ7C;5sn6E!5JQ8K?)(-u*}Gf&1AN37U7$+NQZvUy@h2>$^9q z!76R@g{1X&U%#_jcX>tFs^gfc@6NTROf4<=RfCtt%a<%GE(^)ipUzw-n`p9qk~)0) zwr+<~aaLDiQu^YR1MfeG3mZp>?>-R`9;(jHArkAsuqMaA9Wu_mPqAo}OFH&1&J2_Dqy=o#>4-OkFpuzgBKyU}ioMQ(I9f!p5i+ zDg81IPcMCYZ!?w77ojaLW9ZBb3|8PMkOK9vloZt$4!Y;(S7%=4YYXoEq4VVM&Giyb zm_#i)?s$5xe36(q4!|1y^5y;cBeJ-lPjz*-Vq;^4Z1b37-~F>o;jFeclfAwDuc;}$ z*{P9L3=A?(PLkz1w?ZiEYoDP?kIK*2n)=9ih7o`CDl@YiFiOm_ivn8XQ*(3tSSrIi zh$LxvGCPqy&L&)(VJg=_PL?0;=;$D5CpAqST*5va7fEHtNu{#kdN1&ptIZd82#kSk&30QD>i~rLDuhJiBM(CzFHhbW&#% zKU-Q`pHNlZJm$Gtk6P>$-pJL}HU8zxN0oANa%VL(=$|OXl~*tXXJiP!y8QB*BAoXg zpkl2RIk#MCOc19TfUY-ka)v9s%ey@K7_+XQz6ErfcD%7LFg zoejq=xPJY5UC-E90Pe2olU~6|T3Xsq?d^<`l9Cf_|YbEs1AJfz2J#X)w zQ&aOn;M}=$=Qqh$re-=i6fG^Sx+$>rwT+FmTeof%laSaUF203`0)REl$f0N;F7D{y zJa_Kg483F6sne&ABLzs$|GJ=d`SR(pIyDWA(uRhOjg5_JAn{Ss>*(v#fF8|5nf7VW zMlHuCAtEM{lQcT`_^iU)_W+*D;4RqL*nXgx$XJZ?0YUt$V|b6XwKbY?H1^>ZI3qpy z`1##=_;3TiX0|(&TGp*wxp{cJrb}c7XNCL9FWtD2W@%%y@$~ca=&@I0m$Xyt+u3}`|;ZvF=u{ z;HK!97|$n9o}AtHNDrZ4hlIps8(Z5`lkB(MjCbBy>sTp8h91c?|7O}o@{)%xwLCzi zfeyAje%`{$@ZOnU`OV3Hp3nSG?kZ50A|A^XLL&2Dq-b-=hyg zIVvkl^)+tFphzt0I2y{U%X}zp5}MR}d=`9heP`q``~|h4a7zqrrA(J?wL?VO$e)RY|-s;H!dn(aO< zM8&sgE_yZt{aGJeg1nN_JDl`XOpc@cJXsVo&|2trgqns%_v+OppATGc^yu*H8XIG# zr>DpJbfM5rCoLl-rKL3c9<4#U#ZmbCE{e8};-R3VEfYJTxV)SWeVH_rr%_Q-*^Pej#Xcqi6MU#F{#-}=Cx@GmYdd}yejK+)9ARZ=F9RV;PicOAee2BZ z>^SiM`>8e{Q9?Dodj0x%T>bU~2i9Y>1|8*TVIkM{?c0A$PRd$a3!{D2aOJdPGJ`BT8^}a z*y-%<@6XiN*SC$2j}gK8VP-B0q-U|Qi0+K$=H@=WzQwq^)YR0N{Id#2-PG%#h{&eu z>S~Pq;f4+NQ%j34rU$K9xpMx>{27^m)yHIh2_TY}VNk-hJ8SjON4!Hw=-jI9GPbsv ztn-?VY#Dx5iWNhKvEJqHK1eb)B&n>{={>ZU$@dLSq&x*7b`hP#aJ zi2o(n_^;>SG^vyBbX&~F*rau+5spWl_2EA0FK>&?zlkDaZk~M6Zr~$FcURXoNKbdx z9!InFJ?x&!k4_77H>r*yvaZ>FXB86@OF=kj3Ej~$AQ`3ZtSJc(_QhZulFDG1s zudbxMU8~gTU)#R&f4gtBt?Y6s@C5~gLiP9aJ9Y* z$@VpIyzq^0VrO*ud6->}A3qLa*YQfZfM)huVWYX}?%Q%P9&vGTudZLa=7%60lagXl za-C)4#%;X3iYl1QD)4gHMgmK}LsD`pFcK4b_CtlPf3uM=)rvY>)Y-|!!NEashpMp} zkuNnhmDO6)-d+^mTnYt=XT#m5wldtM5*oo7V& z;K3DUX2VXe&5VudDBp&MOJSA7oIg-Lo(R60nwo1lIsJe9uuRg;)Wze zNwpu-=2cIZY4lG^8!vo4TR2l&SGS&zkI%%!qzERfz=#Ncpm6NN@q4<_rv76DR($R6 z?}4#3So#2kqM@OondfjWXvOQy%)#wBX=KP!xU>t~{rmUh6B4#eb3X*Fa%%X*i4$Ts zdR81he3(LkmAC|VSP(X4TzX}YFOSQ#LQHKDk|A6%Tdd8EjR#g|#a!Gcgg=kfj5>>( z#(>$4#3)%?Uw<3lkM8DbnP01V7!X0jf`d2f>Fc8lbLS(zD+TPq0$1d~QKD<>HqMGO zfNg4ey5qNTfRJ7!>huE&3JM{QAID^7ZUW~@un?>YURYZ_DAm}pUZ7B3Euy_&$Zf&d z!NCDcJp}>%1lFChZSUUIpiE>H6&cW1PK_9h#1!@7#Tq19eWM=ES19Q8VIE6;{aVh! zLCm~8$FslRNHf=t5e}LSSM@vcZnCnn9=(2@564o+$jA#}3^A4#NSK5!h@%RAett#m z?ekIE%#A&-j!p<2W8>W#=>51c z(SL?`yTE~*G%(nSHjSn$0&LB03 zIsDj$W7yT*?IGnf^)x-5bSF9csGg7spynR03AXd`VL%jQ4uA5bwzXBF-=4wOCwBkG z|4P}vDk|T<_we+5n_U(2W6{>vhf~#gg`!MA5(dWfz=+=47#bEv@W2K3b?a(>6(QfE knlAdWPVoN$1cWS7w#YvU^qGz8q2Pa~WR+x+kL%p}AKhM&7XSbN literal 35636 zcmeFYWmjBH6E-@yLvRT0!8J$-5+Dgqf=htG0t9ypZo%DxC1`>U?jAgN(7{~?cbIuM z_jA_!2hNxC;ml$dYtwY^>guYis=Moo_@Me85BoVb2n51Yke5>jfsg}0Af#1Hbl@*9 zCl)t>Ut+FrbzL;-v5c?7xWtz2ClU0(6> z+Wp^u;Bj!a8OUpva#Ja&I&}vksR$JTrU3Nw>q`1tfH-@y14?mqSQujxY_+sT~03Y zVj1gak>zKBYdE}dP@4HgJRi#7&gJX#c%S2@>zu#O&epPgM)_kmM85$a`FxY!7Gy@? zLu7y*@bo(-8u`al15-Ze1@JgI@B$PGJPQf@|IPoOQH$q>VW4b=9n^LX68P_*W;Fk4 zMJyoPAzHuF3m%@Lw^3xe+8eew8lbXZJSyS%v^4VLFF^Z%pKgmgH@883w8zVJ86*h4 zx`qbQHSY&~ef=yOCSb9B@_+sM*4o;-dwkj_544xG_)bkul7QaI$>HDLs8)wJTV!+0{Bm z09tRi@o+xI#?2iQ9gX`gj#foMK>@b|hmepk;YO4h1#E52zSQDjx!CAbN9(`)Gu(6k zcd_Tyyk&-@@2kPVL0n3KkjThLtBmt8sodN19YO0!=4GE_iFWv%4NuEqwXQD?FegSQ zGwOb)b;F2ezP^(ysDt3w8^=z&N1KT}v{_?+36Vud6i{er=;rpefYZ9%sMroQ8P6yA z*$Tr9elzrbY8PA(o$m!os&31j7sa~AzQlD{JyuJbRwD3yhV#w-=-uR_n zI)vQU!DHsGt1-@Y;A}Q<*y*(g)B58UV|Z!`r%qyS?iir2{CnVadsD>(Q$;EpSuUd{ z3$@nf=H_xebe%wJ6;~9{cAmNNP&8wM5&R~o3+&qR>({R<#b~;Y9qjrqXtLq3Mfi@? z^+O!^eA}^)QoO;~3(eiSw~RrY%Dw#hpt2{YxmHkc?XbqfzT;8YcE!kNKAA-HxHTJ! zxTmvS{^T{5eQpas%)@zLKwjmDve+`;C_71 zjTnivqZzzd@zKZT0#x|pG4QxRijM2pQSr;sU-EkMq-W_Gc` zbLX$169;FP6CdK1VD#$fS;VU5V~}tkn1~31f^_&(mfue*=dbdiKb+X|U}m>4x<5E2 zImA#qj2N?1Y-e@wFLSl8_``L_2d(;dP4cKoS5vA8{D+W@ zDozf*u4n9-_3{5|v3}OsobGIWl(fYEIf6EEmv(g+c2jX|8Gt#ajT>H>n#OuLjFW9Mw`KFNoTxHlH|JriEWJMiGtX#B#y zXZK2d_q@vVGA>y=HSrT9rZ&dl3%8D>5B@MQ=X}EMGOzWpd$kDJjK2NwoyBH@y&@ks zT0mJhpB+=g)3`L8X^9gv+znoj>Ol$g1_oQ}gZ8T7_H6MJvfcvR%zA zs7&IBWi)6#i^F(^d6pL|)rxNnnSr7WH~9&3yxUo&JdI$O+f>I7i_+2L6@+y8ma{&s z>N-mrq~a?M_dRajNnzUD=@sXM^Rz``ENt{DC2H`l1E=cl!ig7R)<5bW$5PUT*7@-8 z73A#VVskh)G7>{OJT}J0##Y?tR5`1pt*u?FYzON=_`x4`q-I@W%zB)t8S7=eL}e`W zz6n8*`b|cgY0_Up2QgFQ(^5i^wC&k@oqpK43(N^8k&{BIeg%ED#=?czMcdW1{s_r) zzD`rGxj@zb%v$YkL#feWAe;8t+I3jTa(bJnzHE`KT-L404LUskfru6I8Dr^uGNYzG zo+b)MerV<0`2`56GW_r#=%7BWrV0|Yy@yrnO08|nQz%NoTKFTqHZO8%*qpVxNpv8r z4yxDKl*KcmF}Q4`iqmhhbR{6HnKC@AocH5b&>3WeJV_@pDQWcgd!e2UQ7&k0wiZ;; zDkbIbni%CA{$KqXN{n5?h*c+BNyFOImr3N#p9aaAg~z(3Kv1aWwBsU&M}Zf;ENS#zT->4H0B;; z>wrXm-c!iZ)#9PR60qpPj#W@&V2Q_FQ*763jKvErq@HJtqV-Z?uf(ku^~cEmZV|sL z+WOK)jBdnO7S>mXtJ@Jt{7RT=xebESBwFb+l*nMjy|NONwW3LJJaMqIIeF-h1dXVuM-J^(+|?)`u^6 zO?wwETTGAaiZ?paAFr}gQf$~3+?h&o9mS5HZl@At^_PVsmU~tMP~N*9N<(`H zip_gCv@1V#nV>2hPlab3w~cMaNv;jN#evvn;?s!7&z6$+x>zQ3*s_l-)H2k$*=$R} zQO~9Bk&Q)_Tk34&)lQ}g>m>-`^s zPx5+O9u3wUR$`--cnf!f2?j(DxMqyJ*=OF$i z_{E7o$58)s$#BY8j*5DR--I)Wou${4lW9WWXOmRocnurW$U9;+l9WX9TIS-_U?B^0 z!D)B_FTXL!-JV zB0*!69gJ;e{m-{>KP;iQcn$h~&{K$-$Y*c8{XDenLr1rIKX|YG(8Cxc;TwHU1ec(T#PJUK9gK-qx*J_2o*X`pF3sv$keDM9Hy|CrL{S!L3o8aCn)Bi^{;su zf=IaIku)cP$!g&@6-yGE#@QfqVnBgmdw=zo!TiJJCuKb`ui`A3!CbhejaYzPRBrF+ z7n#h7{Q0ZheAE@6ju~f`nlvKo`9xulrQR8GBk(~_T%x|Zdj6-u!@~3r--=MspDiY< zf%|ayu3x_Jpnplo#j8teHGvXKtzb60io6==I?Ua`=YBZ1>;Ca0p_i9e3;AN5#X+&( zB(7n8?_t{E0#P{C{!kBLDrqvr&xi7$-RMow%KD*^*IbYPu#bx{Us)zp-}RDH>SX$i z8y0aueW#M%CrD1M6vfrU`JQIb!Kc1}v5H-%4bHA1W5ZXJ2v^X1eVI9RYL__{y>(8J z>LN-itG2a(Xdg|s%VgjV;wR)I4BMgUqG8Kc+h3TcUS6kw-we96Hn@?QPd||PWzWWl zzmMMTPgxQC%{9Ycef}6G=;hY2;L3Uy zQ@G>Gd;fk^#@Eih6gipKgygPL;m2ue+uyEGJl#iIvV1lXrx)aL{BDoe7sKM;->bDn zIGxWpPJCp#^`6IYwf29mHs+HN726sh-qD;gc))5p1AXw&Fs7A)6XG9C$NW}W{()Gt z)UaQ@tE|{DKs10Z;P!ZN1l~dLqs(gfrlNiWrHU7Qrv%+%XWZK<%!0rUqV{vTeyzcs zjlU1Hg6AEYv~JH+$RBdB5UqhMS3>egwz{U*TkBD@U2uE!nMDFeVS*mmR3>?GteN$e zkTTIw?vDIqONzt*D!JZ@urEBz<6$0ckF^mpIG>mc7}Z}MI! zw&iYYlXljwK>$Qm-%Ul(s+1;K?6UaMW2*G4AQpKvc=WNM%InOsAmoQNCXo!}%1k~- zFs_HzCmQLXgFb(ZzbqTBqgbq(&oWN*?Qdw^9`_cQEVOnGpc>Cq;3r_^%HVWSz$ zx39B&HLJ`YY_zmVKBtfZDVWIXSH;qB8g=JpDkZVyx(}D@Vi|SZm#DXX=AOxPm^8nz zs&79*&J@{}_4ba*Rigq!wSPsAZzfLIW{W0t?@d9bH0DRH%0=1Pg&v_Rb7zxEwg`6) zPq2-*;?Y)LoaOMJ2mlqKCHlGU+%>no9a2N0RBr#*Y+*=j249I|xsNgPC3vSie>=b_@P!=OZWe z>eDHk;tn^x<0#_vbfv=b=z-mn=0p^qmi~A*&{g!BTG8?^{cXL$t)v;%txLNj!cWI= z3^dY``zIiQ=|whw@P*6RT0ghooRH0R>c!{xSH*~zY9E`esthW?0=F(5U7~|6X&D^> zAufJnVZ{h(cx%awUq3N70F;8c&0#U;#R0#|;P3cVoy)h*c2v6f57lSJAHHdLa5gmE zwQE_p#66epFYWtqxAB^2^j4xKx7pj0GB1s>*nsX;j!&!sY_DTRAD{mI7gBA7xBpZ{ zW0u44&OamA0G!(6=yKxPW38w%L(1a}W>Im=31}gH?%c}r@wKk_(xcdN_3-g>VXn09 zX>peXN~38n_CkZhSeagp=-qC9{+8=V7P zn@9^+^Gt6@ZSQpuho@3?v?o|o6;1z|T~7WjTtBPJBY9@Z`Zu%FOpvbB$@X7DzHXx( z!<4WxwEWWwneSfWbm-~%qJ5R$$lcih7D3JKQA8~_HiV-osG_4ST?FogGECmcjd9d+ zwQ;CKXVPUrY^6a2c2h(%^cRmryl$w8cKTsB>-PXVd#`)ahqGxHiZ{sc%Gi;`SkhSn z+McN>Gr+)bh#s|=^SJA}Vn)(_j=$FvUUL^#m8>%F#f?&MbF=nlQtyHu1umACgq6Uic65LEsizZT3OIcJYT_|uW+c{Vc;(EhI&2wvX4E;B z=JRl|+J`C=hS<|p3SKPkIA)LWl+{y0_M!fy8C=E`+nar_A(7_ts)!NsiS<89of|Q! zz-YEN-i(ErscYcCD)}!n390?LaaFCFskU92lO+8W=1U^H8mS$q8*>!>tn3Xa+^Ve< zHN%&F-eVF=9uE8UQnMxaGz!3g4}X-t{2PhTtajq9*qKYQeYkt8C{o_ZPfL{PR?4v*61s_Z$&!xPBI_y_1xI6Cxg-`L~N*2%}yu? zj5fM#TA96xoAPE68yD`y=Yu6`p4Ky{j6dV=l|WI(ZnUG#N2LlUYyx@LTMrPJxOe^G z$nX^6&9A)Z)Qs|5+vOJ5FMcFUs*PclXQHj-Bm3rBF6ygqPWtg`igRG=IDJDa(FmP6S=? zCU$(WQXMG&mOUrLoG7y%gqzXv$ZcJmqc~BZaOio!O^vc;Fw?R{q#^%zv`05AS};7x z{cMoL|CS|`&JUCtUj2|lF&sbHj1w43Ge{wsm3Ul~FxkQ@4!<_;F4ZR17e=#zs<$Sn z;|jx(ER(Jfu>7y^uS9XLgYr6-6g~G3>^EwW`YBFsFtZ$K*~wSlIL-?o)4cj{Hu;F! z;YHKGeEa%)RV!*NLQ0*d)xxsLUqY@oS;UcpNi^UTO`h6On0+T^NpE{a?Stg4l<3-r zi?qP4^QNuQw$$;+lpAP6{)7M6vj>`D$b{T(YpuB0GhVJxuAwR!rl( zdk5vcqQYbcL#;rL5v3UtL#O0=4vV@v^prV+YQV`B%q&|Jl)4l%+Yn=VX!=e zJ^SHfZC6_&KdQPxd~%MCRs~7rik&rf>ZXQXJI$~z#YR_JVia3Ewy5ZuKs4{5uUZf3 zGYvun!z$E~^F z?vUEBUxUsOY%gYf#xq;$=rhx*m3`#?=aHHZCQ))si4|)?X3Y?r>Bmo zaY}MB#CBc)o9J&LzI-7HotOvlK}qVnKlF4D>HOJjb>bi{)TT#8cU zKn#N7sSF~((&Ck3YY>mE@_i>@*7MrCK{V2T zG?rZdKtpZCf;?(Yh6&%s*YVQ(3MdLRu0*}YUsVUmjZJkl8xi+BoL!2lXmJ>v{29rC zZ1JxgpRs5Zec<;;QnkR`;FrU0*ch`3PDxPhCR{oZaZv4DM`L!~SG4#@xMqRl80qoM zNC3xwjQGSu^0}I#K-cXGvFN%kwb`#vb>GJSj&)JI9??%2zZN?2WFY$KJdNCH*V2sG z4H?GrL-1eCTzXE{oY46a6>Q5CBn}K^crIKyk3rib$N$DTVmE*%t54`$UYXZB4RdG4 z7R%B#EcVg;&br0#!`j$$q1|-tGm@m-IVgt2N)WhgI{q#5?`qL`yP~sGAk}p$B5gt8 zb3|P>^S%YqnR@iY`IbPmFf{$|r&gN#Mz?yVx!YmL_qxh2EWeqntvFQISe4%izRtco z;%cxK)3(1aIZ|YdTC}HD+ksEG9K|SAefL=0(${drJ}<49_P12}TeOwFTgNC`S|qzi zru+rJ_7#~%T`o;2L%y4q7*&0xqyJ#hHgexm!@)OwLP8;I3j7Js%~qPRfYtbqrK>m! z{-6kAwslc_k7X~mF^OwxarZ-TX8_W}k%Rxn$$mmqBk>z!w`r}1V}C?XHP`5?1FjtJ zeRg$qb@vun&c7YwA9-Lb2Oi(x6^~aK9a|gy+~+T_Q&tYXp6}Q!ecyyXDu_P{ef9FX z5fH>G*9+~?vgxLpS+iM+U0pnesH>mW9ms5jX?bP}Gqt+%w8t*}T5Lr+HaWuN%~tCD zM$;sVY$b*ZO zKheXAlm`sqhfM8q3Qw_FrcrH2`P_zU=vQ~1gR|mtaI=vKvEaXG?8H-w#iQDhUh|e8 z4C{$?Lebp&?BO3p8~^VQo?0e(6Zb1D%JG7H@p2ijpFV9x+4THN+zoE*s8Nfl@vJnR zx-emB`jNJstCujupU1)Y1Rbp+iu%g1zccnq@n$_&TF*F;{GXfGmvHDHhaN1RKMdM8 zt$%GOWMn`o(O+=)>C=`gAj1v_-=&WaM8P<7X_}_!S@KvJ0lsbh0(yFS_x~0==;vd5 zVse+q{&61@{T?vUteo1-nTk;PZ1YB-t2aBekQ-W7y(3M ^Wa{hc&Ow&sAibu#^EVhGD(EwA0HmC3v#?UYkDBXxrqXZp ze*Z_3BgfF`R^1<-g+N}W?2|0s6HWUb{PKPePpQKZ&Xa~OXnkOEvQ@hYbe|qm1_)2ht7Vlj9bB9O*;}$M?B`1_n z;;u|gTSFWu_K#{23Y;--k7t-EZ$upHs8Am(1KHKOB6$}B+;2YUK1jM!Ba5Ewd)1{K z+)?Sm(Wr05J3FCivQXkB=asndX^pjLwzb`JlXKH+H8TKlWDor8o9N(J2bSIO_iJ-X z3}R3`Uz`=U;138J@Di@P9eOX-+KI+b>+q5fw5A8f;iKk+H1f)6vTBV29iM z=-+9o?sw9Xk;?B57q2|&i_c+Oc}u1Nr_xFFb;$}Y2Osl4-Rln(%E+XB-4bK2&l&MJ^if_uSKr@VQKM_pGAaO`h#m=&Lp>Q(L_CdsPzsRbK%5Vr@^pr}&X z))+a*ZWH8iI@KwJ2TO0Rzv_NxU>RbAj{R|cSpPr=dhVkAg(K&}^))4>=j4>a{!(UH z6c2NwGYb~b$Li?$VfpPdF4k%e#kFN8W$G;2gAj3^Nz>%vjhT=voVI*eo`a{l(Y_{v-5a{?PrSwvkP-MrhEEnp>O?{vZMo@$FxRK8Rp~tTU{D z@zdaiTU3`b9cWZRv9d0UIO3UpRnQQ(!O8ZfX-SSvr0u+-d6f9x7tbDa#B$ZiZ?4MW`7OV~q zb!Vo87Ap`ZdSA1iUnAb%KHQocc``)wU!g<$4h5pxQxc;)ER9si42 z4Z96V9qmz6WLWzn_`_8&r#9EM7bEJYIWg*_$+XDH;1T2oMRbd{q1R@A>f}i917zT6 z^3%0M?IGSV97$U(ur}4ciE^yxP-oG;f94T9^)6*#xelB6EpzZBS}xw8>pFD$WGt|QajtN_$3An`40+j4?^C&(a+5fYh&N0J6j8=@gI6)d&(G&!s) z`D>NJ?h5Ro$87*Myh-*IkGU|$Gh3S0nWetmKVKUjVcAO77{$ zn&ZTiFBOfJAh6y}o=P~nTCZlXbrqQ?7KRi+Iw#gGDKy!WGe4aI0+~V*496R{fu~M%Z%R9z3cdC?U)+BA3vP4#MkagD+ zTj)sFrNHzv)m-&oJChn&`|Kc=c%Kkxw@&-g(Yp~Vyi79bUi|CDNXCZDmphmPhzSWP z{wciZ1HXXkppw8?{AByk9`DYudHbf#BG{$y->|b1g*qkd#emsXD% zXP@62${37*Ex$^3Q;8)0YlG4bYaZ7qDFX34rbCNUCTgddN$Pxo_zuo=$W7%~2CAp& zOgN}2rIBMgNM86|vBu-M%bL4p<1}^=1>p7;wvhqT_hJt9`0c;F)hHPP`96Fzf z(V^SN!``bX&kWdkLbps-HSlBlg0rCdt9Sybm@cIXmcu7C&vUYqo291iGECN0rt$Wd z@GMq}T)aZ@**#`m+$hO_dNxoWp1*?;aw>t}J%MQ1&ge6p=3YBO!5IKCFQppqlQNsj zT@Kn;<}deG{d{%Rbft#v_@h$qyX@R*xG=Rx2B+7puJ2-x(77sCvK@x0=Gr)4mL82h z+wsfOii$t3ej(P#q<8&Jag;X=DCLN%;-?}tOo&i3;l!M>rczuWUQMJ2|@ zxe3}A>yfgu0Be7j_qEzmD-9PKyDp(r|2k=IK0H1c>}g-?HT?T*KZl*tGzJY-T-v$f zh+N|N7p<*j@>f%ZQ++?IeF*#7dkx#8piFGhj=wZVbDBaP+7i*VL@=>SDNaZzw#yFc z8@#F((6%*x|5*k*N@NEGEEeHeVt~TQiN$05#{6EGDE2iG8^xjoBvb~#CA{J?>f*eh zzvp92*V~y`<;ETT+ARaIGBP%^!1ixFq(^j(uWw##Y1rNju(Hw&L#zb)qUxY;G~J>W zo~^42CtwR!(?qB#OR-6!y1OcSO=Ue-;212hyAFoAZ1!Gu0^Ldq@;S{;A@E+=(Cg=Y zmeEvfi-!w(33|fAWWGaSvhfRgpz7=71t9lXIT{Iily&ZO(E0}~kWnIp%fq^KwL~jK zq^v(PJD3<3HWNucI##?HH8$9G`fkS9A7!uOo<=X9HzG``-wC3m=qSUGrIPt;u^vzD z3rE5cluweb@1RFfttTlfq^g8fBvupliI-n}uRika5Cb(TThLFUjXJ(S^Ri^J^bnG3 zug2zTCcbO88#vlE+%UYy0RdBepyG0WzX-cqGNg)z+jlr}gN{;_V`RwDV7NrIKBmTt6Dz!-H;poE93M0EhXAVTA8vC!t$e*l*td_v z2Ne~LKajN=Q$IEjOL<^e;UY3y82hk9nx<+GpTkSgqLv7o0)?#HleGf@aekwqby7sl z;YW#7_6P{WOJGxx^6Z}UUCiB)THvpq?wJ{j45ALKENG!ZloH?9)s~qa)5$1mXzFLP zoSD@%Bm0kg4+>=T@~FYS~<_ZETa=o{pa_dNS}|!e^#<3v{U{gR?dY`t6m*1yUy{|g)LoU5~C0C zlH~&#oIu;}sQxZ=XmQU_cqCZ(@%pQs_}2oxk$>2iai=_e+?j*!n}dpN|5hDY(G~jb*0?763TCxYaK${+UTDn zmn%0Y{fm%u3^I8bsj(^R@{!h(f|ARZH?4Rs-kwX|3$}Wcw|vc{ac}W1O>-EAwcdM8 zQ&U9>%P7{jY-V)l0(HJ^Kz#)stW!aB7~{4Zd^l)`0h5REe4{@0rmZM#c(Cz z`lT-@j6)=-=dq-#Sgg!qHuq!qvPAYrN+Ob`#C=-AK0bCtiec{2d2wUDD|!2Ih5PCL zEl?nE!YaLE+!cxl70e09yM)#FP47Gkp}xW=ad1sj8J19Vxr_j`An1nFFAovu23%C( z!s`^B^R&`1&f`G1o09UwCVD3qTae{25oTKR&lmhC0V5mmcYCudM7wigA+dHgpJtbh z0@~VuN==;bQxTi3ie|zohYAX9zYU&B?RJ{Gm_S5y&{3&Lr`xy*q(!}7?LE@*bK25t z@mT0lX8fA_{oQrzL-tegEFEC*dM##DnTjGV=^HF2M~Y?Z>W3F{iou~2!-m)uUcF>x zjbZCmV=B2IJ1v_ap}4G270|&(sSjLrB;r zx(ulEUQh(eIa15Y$dGB9YR9B-M@rtJb8uqSI=q!BcCRy%TDY5Sbvx8YP*ailgQjv_ za&>I|iKtzwsJ36_w)@O+{ua?*gt)j(U$^};sQ7jeLAd zyEEehl1S)HALigB*o<#L%FKju{oM;J4{swCU%R{@S}R@qs@GTZXft4@f4d)#ogd)p_cilO}KvLksRZ* zia)blEq(@wFH}oZTw#T|GEp$dp~eYI7o>mfZwCz5e|qams54)f^z8>q*Oq7vmxE)U zCn(kbjmC#gEsl&I-+FH~(_I4Ets>^@lQXzw>@6hme@Ww*`v^5VFgD@OiFR$xxO_NV zsbH{&V&9xfL97F*uHb^$(P)TkwSl8%kFl#GgBrnF5=N(MW0$&|Mbl z>qA_xx49}^SfQs4U*4=IgwJ|cXy{=PQW>AyM(==xwo~m~X7`U=zl-+{XZVN4*$47i zN=MP!XS8|MJE(PUeP~BRsOaWPcgR;H(sFH0ciFPO~P%#)L_M$o3nun=MPk z>x?~5!4iFhpS2dgaURv2-|wu`&I?PEW&g!M%HqY1SeW4{DYbaB-wbgDuFRgcmA9yQ z{gRlzE+8c?wkV?K@n;OV@& zC*qK$m5vP}I$f*6O{jK`l*~mxw0%6^rlB>2mFpKkDAcska~69R$s~UHp1gItfli_R z4b+^gCnEC&=^d@s;eZD*;wPSmNudB?p_l51?QlEZ;jb7Pr(ok-_l9ZS7GhogoLYTg zGXK!19o{U0(l>7)(Qi-5SJsntR&5ewCnpR+5GD83qV~|M$7k!=@ehn~aqsXthXMP5mWxj-h#h>`izQ@PSa57{W8g`e zHf+v-G!$mFvT1wW%r3TnMM_8*L5$WZ`enLMq)qq`e3r^mKtZ<*PR|=FLXP*{V!6@x zC~`hZ-2L7Gukghj$yDCTijyB0?)fr7E7?Rt*1ExyyFDk)OUvPs3(Y(uQTA)S!sbFO z8rn1>Uh*AtdtAmYGA)|HH=AQ%<=T2kEC!2jm`7rRE>c%dj}8o207YNQBk{#5);p{R zCONG4Ibh4{?=yJyF&os2|prR_+B) z;dtPUDmSnV`ZA1uSHC;l!}fY$NNQPe>wWIpumYpoKnBGQP;bJ>sM2h9eTS0ZH5EZp z*6%OZpH2QtDaz2-k^03vDlKA^$5`Tk4N&K}1}K`TpK5iDn0EX0m~P{cm(2{R{pGP~ zmhl=W;d4K+eFnyX&c~*FOf`LuoPW8s6-OiA7E!t?Lh`=K4~1k^#3z&9zXIku;P;W- zk@}@w;&6=d%D}(3HB}soENc&zQs2&JNJBdO35u84!Cch+U07kK7M3RXVHQ&yoQn#@ zQ~ChlVfzE-8%|LN>YJddk^KB-QfR^68Ych?6?{pqDMX2DB2{LH9AKy&m_pH+lt4DN z-^>w7uZgT8-h7VvCAkuKJHrmWmFkyPMVf}`%C>CG0Fmjq=_A{+Mf{gTVuf3tndT;F z5B!xIql%)i)%YR$O4?Ee?82#*`!jw(3#`&& zZA3B7K%$ECrzeUh@nRE(pg~X9IO!9^<-V{BPS$Zy(ZbjF&(jUIDCXUomlwou);C_D zKn&cDh#r*H02h85$_MGm`?2ZVhA`EZb(L>ma{IW7dmD@GXYA}fNvT0>FU5-7qOi$Y z#_kJ+Tyn3K1|!rY03a(^7McTLI{qPi4{_S)+qF5{9GozlHT0lC+^--2-hs%?ere?# z!~~_|@yNkUUuuH@B_2|U334z+Ws47NYYPByEjQ?|?w!$&EY%feXpdB-K|~0a(PWj{L z{hz~8EO$IeMUfM9!c2M6IEJzS#rald5R;M|z{d2F^)doG4Y+{v;9e;Tmvv5>TQ+`* zEx*v0kQ-h1)b(qv-n6(Mi6Ven+?vmLAVJGfW@>yv&y!WF`O$3gsS+*DB9+Yg{sXk& zHvkjoOY1(PX$nfb5h{aFE8&AKai9VgR5bS z_rta%j#c6D;eMUc(2040X|L(Y`(Av^RGD|2RtrcEPR|_ylVaqb0Hds`S(uwU-mHb! z0QbzQVp}9KKc4|ta=#|98?C2`^m8f8$S_ecQTL0rY@=wpC@|FibaBLizybnDjG;y1_k-|n5`TD!$cy80snK)@KCS)S%kLmvb@lGEt>LDV zZk)a8QgX@MIN)+Rx@PnhPC#!IdCljM=XX~}R7rQX<+#D*lTnY-ViXvYOFKu0XV@Mm z@9${eEulv(J=>Y9YyHCR;I*WX$z4fx^`Nk-gkHIFbau&R69RaqJkumFr>ANcO3SP_ z0P$%au-T`pM%uV=mobU7iwjqPuQf7PWi~i8#0U_$N-NvHxBK4r*`l7fLyxXT%CG~L zQK^tAL34#$sQPuCX9)8`y#ByM75nsamf(Jz&uNZ3r-4rS2w z!y7P+3WJ8&r`MDlG$dwcj|3p0++0B&21ng>mOLL$`vJleFyAOJ-#|Qr>7^-XxCp7$-uc>}$ZwGak=CJs~* zz4>ZK;DX_wZ0DAHZ{uD7z0;Z90|V2LD*?`I6rOny?M9b?C=~F)dW~z9FX&pa#vkP6 zm(E*5o(%Iozl#UW1A;>-0xC*wHtbAcSAf0tV?m3L$L4P4d~(A9q@N%PwiIo#J||4g za%3V^rJj-(LH|B^a2u(dKMjHL4ai=BEhGCDcpm2d;w7FVJ&VCq>r?1JDg@3oVo_p? zv;Go!K#9LS!#7_Q1#|f_1Kpg#>~??NDE#TtWe`v**#;>?ux?9c)~D6&o*DxHjdZ1! zxCIDCF8wxajUen^Ch<74M3a89@lF8Q!8V0dpqj`f$c_Re;%2h*$A6Snj4Wg@wQc1W zq%tFnbY>g^G73KZBiSds;sa8+7iIbwjS3OssB@}kCR&vjKgs^@a6bmzQNY^2sX&|> z$ezEw;bZx6Pb$RcDvS|*(PfAsnqPv(mz?#jA1Qi5i0?_l&L{CH862tAhZaG)If;jU z&r;D+bC7_8rvwxwBtHD1-}L;b?L#F;$(qp{;Ak{j36v*REk-IJVu&&trB-Qxu4Lw9 zh$a^XgewO534%~mfqpVYrfFKzjLANU{G#^ckcsy|C!p8lJ8HSI>;sSwvF%V9bE~EY zQYqSp|3n041}S$IP+Y2%h`?u1%WE;w`;PHnlj#2ray*Cf3_Do|gM+)Omw3ScBllvY zBZH%lzKK$py>AJ~CXo`w@2gsxk@|mROrLxgZTDLrjrln!iMW%3iz>R`xg`+TLdxOO z7sgOP$*@r3wMYSFB_Tl^`Dl$>OP=!77{C&u?HZOq=^rm~!J;qm%sN4yFOmP-i@XLz z;dGX{>Bd)pId`H?O;+(y*hcGcKM{|eSAP$(_eCB)qa=mR_Bms+79yc#utp+qvt9jMph$bc; z;=?-|=|c3MShLLNz){ufPEj@1fe)98;lPyFgXA;7lZu8PT%IYLp(Y4 z&7Ug%zSS=9|LE7$p1_$@EejEATkXDz2!7W;E^2Bnvqds#CAx5+H??Psq*FANNUX5k zLVSF@bgrcD4XouDf3D4aZf%!3U^zf#Aa@%d`S)|QG9EDCE)k*cXh6n3M=$$gX@;{s zmIn!>9;B~fOOyiUm}qEd7@K}jrnT(S0Oog?-s+B>*{BNv6R)3^g$O0)6-e@G&g_%- zUg4*&r@gL63n`YlzNrNT%s?5lzcfr|Gi0C)a27=&(Nyw&r<3QyG+256Tb;mnR3O=( z&wzBm{A9Ij!Z+1|-}3|vqyp~JFunDV{|pk(Cl)1jqj3z8@$TN~X>o90E=cwRB;{uj zaswkH3$|EsGoEhkUCR_EBwb<7Y z@pzq-lSAvfwY7CLb-Q(#g)*+H;D~Uwl;_s)HJzj3}T906R!OaaYGk7KGuS*NKUSTq4rQ&N!p$OP;YuvzpDlq>%mNW96&bJoY8Gn~Z&DCSm zVvI4Bi42r3(iVSVl>QGrBLZJxbdno?O*lI{Te?b1OFJL)hu2i3Nv&2i?*lwCBNaXh z^Sg_^i@m9xfW>|%`ux1VOPF)0DE8M?X4G654VP+$o&Qe6>eX6xEdvCsPTl{m=nw3l2ownu?2 z`%k7ry8=L|yhvX;E_OSZskNHOGvb(kM)F+t-83dRN%P#UAv*ZfyF}*6=>`JpR*+8q z5UZhrw}w(`zf2Eh_sLyZg>O0PPE!Xk-@1#LF1ky_Ri@Se{w}v~oSm5kkh}+y*){T@ z8+|bwyZLe3t>>d=_g6=5ZC`^wnr8vN=B{WOW0tzHd;26_L#376np^4 ze8e6vru3SeS~*!E4~w|KN&<%FQ0>;{Gu?rRf~%d$(7d z<-PwKWNu;c)&L!CsC>u@gj;BF=={ft9Q6u){R8Kd2BY^E4~4*;AOH%K5b(!a06094 z>SjT@)#g}$-<1JEMi0?r!Gr=d3qR0z+a!E0?W-<^>K%+6X3W%ubc&n+0W^6 zytXOv#Si&Fk`E`cVfZxqJJ`Y`gQPIb_-|tj>B)OA*G^q@YK#r7|6p?NmkSQKRJ+{s zxb4~?5q73 zMQXXD1`cg+fsj9GGMXi}=(UsWRsohx(56N1WQO5-;|rrhxPm7*{_|`mH&q%y|APLv z!^Y`C)Q5@luYy|VZ3e9-6qe(wAD-pBpV{XUM4cY~Mbcs#D_ zyw3Byu7`*8{IFkJXQ!5TZqlu{r-Skc@IJml?GlfrMB6&_%U;Q3tlRg&rP_$PfQ{i_ zq`S~bv1xRiC`&ch#b)2RYu8JIs_0;oyp^N9=pLWzK09{4=x9Ubxv%)f8?qDPB9}`k z93PkS;cW|C?EKw4F*8*pJ)gVLx-J(BTK>d|m6CR&FR+-$&S%rUj7@y-n0}&H(@xPM zyVd3WGX|FM^NWFjbF8xOabTdFy1KffTJ({){fr9{ zIuUP91^(@LZXA!oj?&<~;HV(dyv$c}TzMdKLY=GVec(y%o>}ojROkGcCGB9THM4h>+(^NYnm&k*}#DfEAz56oM_dCzF^7JNT zdAvScW<}Zk@Qlw~60(k_t%M5wVs6*TejY-8no(N!_T9U8+jIo!rnKDKld>>BGc}aI z$`&gY_@8Ud4uz*+#|>+3KZXU$U784KeVr-p3R=@GJg{P?kEt(A}C&6_vJ zZ0{dckg;XmOlL^rKWdn^O5%Q0$F1rl({;?6%`WZdHxNan;B-h}m@*<}zB?1IsAv$1 zNWlXKzLu11<>hrNDJjv&I!sg566?ElVo=U>wT1Xpu-@eJk@n{zm$sSsE$28)CYcCa zK%ipSmqIBrWs`Q2NKH-USUJ1qezwhhUl=Hwe)$>Pk*3gb77uG?%xk2O0XOn<@69Q} z2XvW%R$gC>P#8NOMyp#k@#xDRt}PQ84DT2{UNx`E$<3uvSx%C}^~fJ;IYr#|eArDN z{n8G~=NnJa)pUlQ6}jYE)EhpNlklo2a>wmT3iJq8uQy^l{5r#&L-$0d+#c(#GH>&j zYZ<9f9f-P`Y-E}Fd2>vn9w(2qBQMSVtPnhqE~%j?y;Co!mKN6O3Q>wtLq<@0aiBR8 zpWFny7V@nYqrd#?=wy+$j~c_g6!R>H17h?k__4|p^U^~iE=!<#wYa4MHx}e8IX~`M zP)n7Y9%P=|NPY2uIhI~gp^am<2=`!)^I($-f^Oyz{|4!-@ku%RUJQm zoMbWVou>q7lDG=21Ei3v9jLbc(e&{u>dM9PYxPk}W)~$@)8$R>AH(iVYg~`X#ekB&jD| z>9}8-@4*J$(ZJ?+|e{K=rC^t5`j-W<7t0wa?#t{g_`WG`<8=a z-LjgOX}meXAUf4ORMP(8lP8~lzrRR8WOa%uub<>N8)a&03LOJUg`!x5Wm=y;YH=~r zuB3HaqL5-!*9O)arTdtOaBWPLz%U*$%brUH6Z;Qu zVyPai%nvh*H5GT+xD;(pZ+uWjhrmH_VF$P!X_ml+<7B#x*N#w4Wb-KHxZC7qgQ@k! zcHhJ?@I!o1V%AAIT+UBtes(Hj{EvaeRNEsVl}YBU9-tBgUM%IOqjXV&abQLB^73db zr^42)SY|U;p_GcxSwZVYIy~^ZXxWrgXU}#%IxBUpjxpWAl72^2v;NRQprTzP`-S#Yei8hlkBuL@^Pbv$SLt!I7c zkVsQp2HUCL9gBJ6waisaq;J@ys{=}q5nPhmnpDS^O}|f_s>m>LF6TZ z2xk3M%1LsBc($gf{(5`!%tPjU!tzDn=!3tt)4S(Ac^ZUIS)3a8EWw*Q|^bhGFX8BiF54H{G zG3+C zNr+~;*XmMqz`rD*t9gNFk{i z@|sN?f5*8B+L#>frI3f^U2$sq%a0#Ac;zKQ2RtyN>etJobo(-fWS}eLT2`qQmA^UF z+j@xU9@WH@^b#VDvpd7XDQtA3{Pl^`&knBiE6VSV2>U?*DkgH-g8S_qQS^|YqhknP zfx3RqFP8IS&~&ecqtahIP=6p3P2_L(zWIhuCP{ zma{EAFSZZnBNs;+lL@%m{xUGKD zKWcQt&dA8*aTj9(7bJ^sX$_Ir;x_UXQ!fGYxXYdUnlu)ss~$gj(x2pvA!lpXtwTZ2 z^oXX=MS$CTi9agDb(dn+m^zr~`f-c!HwlkBUWX-6*VA&oLKo7T-;A_UE(ibeQk&$jO;8JcXmzh8II4B>Vmk1
  • d@Xqh*!JW*^+(oAOVM|n>H&(UNOn-7PREa3{OpYQ`eXawA;Ffyq?$Z{TQs^YO zW71p*RoBrIEES#7Lhmcu!A6RZXTrw50&k^yDsn`Xebd(lD^imHru<=qM((xQkOaHD!TC+$}pmwDI zXKA(+c+tJilGfHrr~27?|LYvtWmecf)exQn_Fh%wv8*w8dCoJTROF+)jv)sKuYjO)Jk~S!Ko&khn0ASX_5+Gp5ASN^5)V|a^*bMZ4r%GIa9=U{uo#^Wihvb(DD@=O(pGETuip{okav4I!{q3% zvtPe|ZztqOsQo~*pYtp)V&w*>>@c!Gl5W-h#XnIKIdS{h&=RurA-D8o{zx}7k)yJA zaHX;1Ay4iP@?5B8 z7EXseuLa&v=m#fQN^I4Bsu&H6Z7kUfE{&&fBW)2_txD0VS9r$WDFI~(LsHTl!jE?r907)uC=ys7yQ8XduQfMnGh&Ryp)@||>eN?+A! z&bw%qAexZFN35o%=7z3r)hDqsBkDvMGk`MGBr3L}nTSb1&Sn6-7s zjsw>VRt#Vtc8LOCw*vu_k8l0DBkZ+yaexHGXgUXaws%HU2VY!XtZtdHUJz%C`)U%b zIT?wZTn6R=F;Ee^X!i4EacI4nS2qlvWde5qA-h8B`?xQSjW^ZB{eGIHM(le8A_iDQ zP^W|qEP)A^2gwD_5bX&NCqEHn3T@HLGzR5GO=Gn^3Y0)qvz1<6UbEe2onJ*od5`=M z_glYLWe9@+%rHgrx7W2>>c73^8LqnG#Te`Rg z9ex|ExrC5{5tw7PUunPQQZW|(W6SJk)=})o`@UjV%IfHB2ThX$Rv=z_b|~LTDY{vZ zt=Q!sU6naU@1h%Ot79RR*_`iDrR&H+SCpG~VX6B5?6f>bd@v)SGDh3@@+#_oAos(_ zQN05?C7K|G)B7Peh+(3EquTz)P3*N)#pO%o*aqCKR-yN`{y(46`!%wiB=Lv$Bn!1x zD+j!FB|%{F9SY4@O)5$I@w!{ie%z9n_;>^#!!OEQ_&2ANF%)0KDtZnt3Tpuc$e&va zfYifw6?vCAksSi)TFYigeIKU;S_>->bxHC$Wo5SdWUV4*qs%cyXzGvgMz5K1S@&=; zErx87cjjw;^ZH4kk_$eJ4NpP~1uJla}w$^||DpC1yq>|tKF=zvfL1qB5v#lAe!SqgYyhIKbJCDhOOlb10Z zr$IFYD6@e;v9Qu?fB}gKuvMEU0Ng1Q%rw-mMf33c! z(nQq8khA#1A}u<6zVpZ?psKu>%BV~oEiH(vDptfaFpG~L@1y-8G*{YBx3 zYy6|uY8yTVi6tU_IIeNmjRH?rp``sOO}Fd6saljBpRu2!EzT_zl>L>1i@+%$)A|AoR^)sy%SDujUbSE)V97Pen{ysAAHol9!)bQiOJR+@LVt zl?iqnuTiyaenGMuW}*KH1f>~x6( zzWq&5gO;d6Ddw+EU!)hNN-5dZ*8~0ik01x>OOE#?l$PW1b32Znr=(eQ=e2!(MDRX@ zO!>@8YbB7n{{-dL!X7smni@C`=rDq;dSgA<;ElCgXlD5zSn+KY1_L8MZ>&BkT2V?_ z%JB|d5BIv*w_>+;fcD?AYnRtqsi`{)6ASY^+qP{}HUBO|A$#-r^Q()FBkZA_`}gk< z5HL+PpmodTSfjdO-MW7BOd|HTOVKUXkaTos7@9!ksP^XgsA-_&{L|Z84@^1=K+G*^ zHw1d!|G80`7igyx1U}MqovRCGOj~n_LgO{0DPrBX%Bx4*Bt;GbOpsi~)qbj}f^xxfK@t0dJP* zUL)pbl&2vfXRNHosnX|>7D2LlN2}Fg>q`L+acFNp^Xyn-mg9tt56Brw=WG!drhuYO z_r)L~BBDp#l%)*67jmlB_h&-Kwy;8bWFo5qGC?!aA`c>XOG>LR@8->};MPo`Lzse1 zI2L32d7aV_cA+^41p)ovJEaz8&DEXfEP=b{XcUd>$NMR5>Jlj8G-D1ew|KCQzM2GJ=E{JV;X16Z$97u;wB7*LfEO zsx_uu-u;?W4s?CoBpzfJh@}7U*)sF`-8)YZ&GZZmCr+KJ)k^)GkaeShZei;u%N_TG zKfbb#X#Fx%;mKBc36~Vv-#<9$etOlb&kx*SDrg@mO5cr-B2%#oAGEq?{|iw2;Z2C& z$Z0aP#O}4g!26a%gzgu4YEr+NABbnfi{sQQ?8627(ql|AK$`? zS~=sxX8Wd*sUaJQ;poC6sO#TyF|H4Ill>T;$}L5vUrI}Li+nc@N8g*hjp^8+Kivhk zH(VCoNv_3*iB>{Avmamis%I$h(W9dmEdFC=7#YlX9YXO1S=R9+91+#%$)^9fAGer@u-_rL>L%|qe+N>hus#T7-{kOYC6<( znV2CC($ml}xBW4Qk=#^e^y@9tS&88Ss#Ggt;5h25rSyr?b87?mD0We^t%YnT(eBmz z`mi5>YK&0n?f7}C(c@#+zs3m!$nAl35+jjA7@HjCt|Gg=oJ81;_pXsTS|g zcG%SLO7=M3Pq3#?yMQJkv|ht-`REDtIFE-R_6 zlhked;vc1!9)JS%HaKZ%0{`zTjPlLMo!A;+$m!Rf_H=DVt2NJe-{wH<-Q6u&;^OFQKGSP6r9zRnl;L0&ZZn zOL_SPqC;<22>t?&i8co+=_&-S0*3t=IT)+QmRU(gRqTogralbya(~7UHCUHy5rhRQ z0)KAS#J3w+igdqzlmdDsyq4f~#0n>iSb1zLTYyZF;es``Py|V=gCM^dVQeE26DZ`f z)Y2?!A_mp;FHpR<)#m=S;kTp38#+Iu)4g8(d0as8S;NxCY?Z9iW@Be_n z&sGseG>?N$mi60@2WcX58cKZl3?f>l{RAmOg`zD>1d4u(>|aX{7iw5n7Em2{^2Dnf ztt3|w<{NBpvTSm6t4MXycjVM75bxpk#X>ypXFX6Cg16 zaO6jA@kAduN|g$_yHsuAic9UgW98jdMQhKKZn4I3rt0}Y{on8OCVF6a9Pj0zV0`|V znK~XD*1BjFHi41$)ld4LA8tD}-YfNY1iScKp|bj!WqY@jA7;}UPvx{ylJZMeIiBa_ zo;oLB(RB{~)5Xyzm@+QR$D)sw_u)+&362Ki{1V zS&rhT0{EKY(U`57CNN_;!}_0CXDW+#1%U!+oV}k~9YQO7v(?3e%KG656N{KfKG;?w zRL?rPb4TfG%-c3^f1+dtFEvD&nZqBPuDztnlQRK4C z9iw+eMtFMf9=&3;>Io!o%%Ai`q~9=G*ZCVrw7MU!vyr zZ1ZP}?^|KxFdXd;sCm$g-X*ThrG2a@eLcy8Uyyqq-qNxa8X`?QE$~6Q0}m}`H2`&N z6jnNZW}DxO5Z&}Gg^ib4(y1Fr=(J9lpZn@m?5 zCHOfxg8X^qu6s8FBvTN%QLd)Xmyj)!Yh*~d7vp_8(CLBQF+z43#i;;weOuMlyEGzhJ|K5N*T@-}C2?d3>NU{>3 zIEf-Pfm8c43yAegUw=1nQ!6Y*;V)ijCL1{8&KNbTV&d#_5$(I`8h$Z)~UyZ0$3*l=I>Ed}rkvc$A9#I^iLUKHmY} zr3H|)jS$-i-!G1OFq3020E;SiT914e9?79u6>HKglV;gl2#->bpf)|xejjZ=(*j2o zmZj4>Qw0$&LiiEW46aZ-O65~zWppP|?m){v9?V|gh6@Nq=J=HTlQ8Qq-%rHrSL`Nv zj-WYM@o(bjj18(LRD@QVSCg$qCqN*!JRTV%B*9b^6RF*ApX;mkB1ktu+taOxyll}| z?N7(!@Bn1|oJ&Q0p61OhdaVBLysESlpQD~6Q!CE1sddhs8 zqgea@ANj%5RDh7GMCJkeDM(qf{WK0Jc{cbx`Upf)D~Yk+7rE^F;=q4Bc=&L&q!kf> zun(z?esZCvS+{Q8)~#FneogGLxB4O^w^t=`MQzd)WcME+G)a+Si}#y4R(UmC8+C&S zKI|rR2>1=!@W4BuPqo0~bUz>n)NW^}{XQaLBH1$XNCktXIbht7L8EA`#lC10_HPeM zZ;n|I8VH-=m><7rWp#*fzo3(m`(42hmnGi(6;h${|DIWnWvjy`qg*EB@dHC#&%3_`i8#A8^|DfD6@W6lyczY)nm5))f zL6tAcVDOTqLtl9PC_{gX_phP9OI#OVhcTqfx;IUUs{!F?T27f=Z5e+u>>^C@XBkcBu+yMbxY0P6$phi?Ga$xt zV#r_0PcxO%5EQ=w(6E6e#!eIjISMPM`{twWEcAEvACFC0jR&x6QDSe|XZP+-7jILc z7+h3VmWON5!XCmD@j?lu-SGhT-17N;4YE;U3G_h&Rb43lr=K6{r&N^FO6bFGbW`5j zH2vDdSoV)mOK8#|i^J_WqC67z2@890qfp|W&~e+ifH)7u7Wr^_zb|v@`kXM8Btv#kL>l3! z;Qo0CWK-+v>bl}eN={>Yh0j>+eH0d!U1X20ntx}x=!Ny@d*}9+5&PU~X>PwAe?oev zPJ|ybGZRGX&ovIq%*tJSZvp{BEY7K^~ zH0nkF)rMmnQ!2#FR$Q(EYuIXQ@YAo~ys5D30~yp5mGGklBJ*qA(omx1fI)f+i%(c) z2WmN4l%7)+F;0teZDY1Hpq3YN9gzyL&@+Y$If)k;kM4zRt4~3IY49AIoD;9712M~qfSh{vH8rcpql4uD)VXDJEdZl4h3=^p0GY@_4A+{K;fg1 zkW3}*su+z@44mvjvkt<}JJxv$8gz=`q?Z-p@|BVoTQW+lo#Q!89t&s?{bf0TE@jEa zjgk$*EGt-6^etR43Mg`UqYKy9>*gRKgY_UAUV-=k5-nq zeH33V(fCSjEvHBXE@(T#(pNk1z{s!Yh-Y(x#eZ)v(a|E}ZD}s6v;*1~cMR4hDP9HE z%PwILU4lI%)MG~jh)nIU%csCo04(abeK$8@NvAQe<0$u{Pvy&z!#B6eGSU|J`b2vz zl0N&%_hw|-C>;S%dASHwa@pKUJHwHJ>nwhqxpe8$vEoZS!i5ilgHNN*KylkUBJ1RQJW3{Xoyc^Cub>U(PIZ{31x(dJzP)|Ky5g)CUbJ8C^0m zB=C+)0HJMQ`3~2HO7%*ci2WGO^9>eAf}urV{rXZ;5@q@w15*WWd|^=#>)uLg(Ts+A zt>bof(?%~%s%GRJ-Yw^M=ZleUxXi-pZ`UTmtlb>%Xm|ONA}G;yPu6`h8tngIH}z{y zz_>x;twPAX#)abSK;r2D&>}-`8`?-n0UNFKvH2{s`gG#;g2+YAlu6E3 zThvj#JE635?Ef(a-5@K)9b?e@e+j(}6Asy`QLY~7jMNSm>m^8DO@2@9D-v*VXWOX5 zgGHtMN&m9XT=vv=<4Kr0vX!bHxcRA2v225>Yp)w{OYO3Kb=F#(zHw* z1)$f+fn>b0-c7)09k|Nr&uG8ra2C7&IY>A3D_mMYY!2p!d-l);tUeL7C@kF6Tb=23 zTH1J8DomICzRQloBCB=USb0U0M^dYOGfO8LHlRX7KBaOQZY}zSEvIhNyc|J&E}?U; zY6^=B;!tJv0*d(%!Z7|)5ch$d%w>&&$hEK@-eGiR?J3L)zp05ex>l=1$})fcaZKd3 zO}Wp{XCVV5;i72bA@bxhoXGNEnxCGiTsAA zFY)topxvu|O>6>%dfWihqI!f0wvph5jI&`;r9tYt0;?f`n${Q$M7DRS#0VohJA1lX zK3hJZKruYc1;o#RqLV${_;3$&8G-BGciYc5tY`IibF1oYkNgnb^3sF51!CYb@;GTX z0gvZ1i+f{1524&IgT5oFUc{CUoDj=*ABboeN50*x_;A$4v`5f4!++22-CHCjL-O)u za69A5M#EA2uS|Dy!c97n*z;a@D`NTa|B2-fAF$N!yINx{Jz=}V{hhfWaGiaLH}d3K z_E`S<@kL&%Z4>(B_7rMfSu*E4qb|B`JEXT)6Y)ZH1-gzrL2q~W6PkVU;uf!U#d#MN zyMeftp^`38UeCSc4H*Vo##^Xtlkv>@Dyg7Q_bBqMQa?jO)D}7_@QMP3nzoB#g3o;c zchYd#Q1Kw_94f2gzfHr_t!hl5SMI=v*Zo8G8Y5g@SO>(sbsm-BVC0G5cPDl$O3*GU z7G94~T?<~zTb9?%Pa1U~D&Ram?B-TAAuk#rO3hoh2ROknBqJT7D60Wyc1Kfd-;hjE^_CYoXva1>7IMTWV zzfO2nV+9gF@s}REetipw$L9Frec>=t*g1enA^@25LZHDH@g)VneIFIohRS{Go;~-G zM{x0Xrkx*gu;OA5KWscId!2fF1JQ)++C`WZY^Sn9Zd`eKn6iUyS#5)({r;eWW8O8{ zjeIclX!ZPlPsj)tRE5MA1`%8i%fSY2O42ubvoT8&bc}E41XdW?2Ben&z?uz2BrE`( zk1r~~i0?F0+eiv=^vd9*KSE=EG;IVY1v7&TGBr6K5FJ)T_YWtbG564`sBqx8-WG6vx}3 zO@vCMFE&4=*`4#1c1+f^K8gR}-^VzpV(~Hw1f-BkjPM<#Yxtsq=v@?KkKuV3Mt=GA z>No=h3W=10czeJV zKQ|HT<>aYTq^KIU%M2#A637qanuv^08KZF)c$|&#;piim8lXXrTKL%_Uc8{Vz@LHA zegl&;g>-A3cOrg|!3IeVpsk5PKNyPCGekHjej+U^qSTypJ32bd;MJB*mgHVV`0$3S z;~~_Vd~7t_ewE?NCcG*# zIT@DcD3`%S?oV69mT%4BA#P3%-sx&7Dgi0*N?d=l*&DVXM?|9Fw~keAm)93dqG zp@2!#H^^B2KXZHHUS3*Fqi83V6}i9!3pN)c_%kIn%XO$ z4wFNUX`$LzGT@H)0axSWVI`PQu1!&(seRQa9Y~{8lUP zRuP4aJ*MyA()gb+-=ek=cjtn?Bi#i6V%s(sswKq_It`4J4-OuUU2Xyf!kb(28KULG zr%&b4=9LQK!$9I)ntnxO*F)j-ET?I{JhXQm0S+Liw!p~V0+)^FSTc#stIa*?Ha);5 zxmJ6K1i`_CtX4RdxN zOc*&1dOFQb6HD`4%h=3lcRt?9t6Fe!wHS5suP0Pez4gDQK5V&rnAKl4uXXr=zdx&* z^Pye4R%)FNHrOVOT%)b6y>{(d{DZ699@C1R7b{(sd|HE-Ye;#Futky#m^ytvw#*$s zD8Bp7&=}r+dU%9|ApAHZ@GJTd0TZkEjiNN zwo?W^k`IIgN~Ti~YYWcI4KIq6?m|x|Yj)#V7;7jtz;1+vDV1JuNbKX8AEF~i5E0!R zg+(Fure%SSuG0R+55f9Pyi(N1%< zoDDlN+kL<@J9CZ^YFSFkQ&1KKu~u{&mgk7Q3w05blvI=MGYtp`cw5@E=|$=0`BC=EO)O2guiw)-rmstzn*Qs1e(Ab+^5DHk!tA%bHR$rd-dRXW|}Z-(C+(pUnmnD@mMJ$&};q=Eu7Hlpru%V(i)s4)5A zQ+sysrVPXm-4M(5P~-1i^x+JJ^~)X8O^)wKMJvdD(AL*RQyLbk?VDWb_zO*7XqTPn zHWwKpt#jT2Lh2#n*1p_Tx6HhFZFWWmL=lAj5p2RH%~u7l8y%PL5D%TxtM{xdjxGO&Xr81Q8H+9yC?dW+2* z#4k@M9wJ7PW3C(L$CFK?Ec46bwNH@<02$~j)^924Ng~w~7*?vxg}6f?m*?Te{6&)f z%$R6FA*&o0>9P!uK_7vfU-yA(2H(B}ke=dT?!AoUwy+W>=MPjbJVh!(+%6-y9=YUO zwN_BlJ0xJ8D|3X-WJ2xgGD50qW+6i^dU|@UoGB>GI4`=fu)P*6AV1KKTUMWv)vgSQAL$4-+9$zp!ULt4Z)Jj_j*JjIZK`t&Nh(_y&{=NX!$ z=v7u7MNI)lmH=dyX4sD4g0{i$U!#k6HMP)R?|k}lI}hEEa6|Ff z-xk>xB;}M;wxHpBr8e^<)MQ-z9aq19BHza?}0(S_~) zHe&R*(A1aqyqh*rLPA1PoaV%sd8EAC+HNE!B|Q`8yKg$&LI~V-B!vIg|CE{^r)+9! zT5e^67R|j^X*1RRK$7Pc78ZK@ON!Vq*tn~zsl7b6b9?3)i}r8px-7&F9M`VdUKnC- zX8bxLq7`igGUnz7BqSx@*o7!~fN{TWVsg$(qO-a2&4u?(y}kE;{yYcj5{70?OmE;? zuy4c8>KYs@f+G9k((ad+c9;G6195?V=aZ9qpHzOhvFjb=n4Fo(zacoB&VS}KMOXgK zh0O;KuJ!TpxllhjDZ;_YdF>#_cebGRzr(|>3K5UKfA!%MHu>9j;>Xu)`4z74#Qd(R z3V;88rIeIZ{5XER^3|)w9WT?b`toH((E_)ZuWzAsqoc=<9}4g9 z+`W4Zy&>g?I-46fIXGm_o?TT}Uq7YxbbAAJ7EMr45M)(Z7&oyD@BRI2#<*$~uaHnh z-OKMPM~@!m4?0~w52XIHre-CYglueWH}mq+5SW1-(A3)MhOROj8ynR8xeiB41@V|< zZ{6BUO#31tBJ!o>BBG*r=Cle53e{l6&^+4Q(n2jKCzmn%x0s*9M>)$OH7Go6BlKg} zloSzsd^0fdQG5gpQ$rvg%w`8!>FDUXQ>#{5Sy??5HV(a1YMU|x(8R*SvkEU2#{bR2 z!W-!CQp1NkyYF;hs>V^LbC(qr=^-}0yzssN9V?%KuuC?UM^)C<@lj6i22Ug7Su4F9 zWbfWYm5)!wt)o4Ceb?95*LN`41qA8OQh7pf>3#}dtr~Gh=GD|(sm8lRBD}2li~f!+&w$1QO9Pog7^Xz_%wKXOYLwVx)Pyc`a z^S~AyT*xJ9_q*;I3+q>W<16RK48Dy1@tkwX(XO~nie)`+v9~DvXFQcKM>0s7ID&rU(8~b`vM&|Yvtu)(_ z?Uch2zplZTuj6yqvn%E)Wp!C1?5Oz5m+#)`eH#ZML1J}$8kUlcz5S_~UAuP4%gZ0W zc5QQ_%HD$E#Ki6a^XGp4ygW2C^xgaSLFWxQd}zf&6cm5!3sE-h-OH4lo6E+| zPGur4z_4;Q ztX8LI&z_ldmv3{JpTcM_gAHiAfVt&tPE8H_jzLQ*oJ>Fv!LDpYX-Y%s zt4m$u=H_Mth<~F950QzKDPm$`ng=;pd3gNL61R@RFCyak?%mEickaB%%-qPt#FS#z zPEQUKy23-p%;j?Ojm*`noZ|!aGsyz&9UU#`1}F+Tpo^e24Em6a)Tqw17lyr<`O()q zC`!5~5lS`ykrEvHv!dcIZUa3JtR9bp^+0UP(%Wc6R!>fyGv#00$5i_%R8?fDXS!7^kQYCw9 z^PP7wF&ox6%i^ir&DDJ17#$ULx@*ktinLv(y0?$d2}>#}s_UQctt+4J>UtNOkg&$m z((>0mCKtT3JOn*Or`ch-?x$D_7Z4=xBS;}0e+Du8CJEqR1?5#rigIMSWpBXH=;&Iw zNo7`S29_x3sraDXnQ1fpin0k8it9NhD|-*r*e+N=Vgf@xq@}6o$9(v(hH^|xEBunu zrAu3>si|MjLBW&%U0L~UdhgDiEVALl#xs)E1Ht%=w6r@cGU%jU0T0X-9u$S4CKeWJ zg^lW-t`%neZget1JM`G-;oZA-9l3OAEn?b0*9d?>Ua;sw=G2P{eX`1LYP>wB*^pt2 z%o1i5hPuYn%gevQ*2YG@RyLd!#TCqhIVd6Sq3|}mz#|)e{*U7BCo32jjw&f_pfo`m zJc2aV*WbUxF*+iGZhn5A;_~z7&zqk)F~;bY!6y~U;dAF6L>aYAdw6)1{rcsGoYOMZ z85ZcvzH#H-M~{9rj`t1>FjGioLnCQ~cPkKqhk8sA`jJ>TIqz3jE5l#5J}D{bR~qvc zI}-uKA9jSa9H6#XbOOMBCqHK1QR2!XW7P*JxZSbg&mWZ}V{L6AZDhU4M6L2}i=nZx zx!UpJVbjDpwCrJ`CT;>mY-~;mdpcL~eF>x*W zBk%-h(8jk$L`EDs0qh7`#+fRW${JOop0{TvAdxtKv12 zoCyS74bT}J986v>O6$brWGzii3V_0|p8VQcPF$3pq2V2zRr>McUJ}ISXKj(nNZ`VN z0D;1yB32f-=3_iOOZ@h@9J7!^#Me&VfP8ZP^5wgrm2x!so6w+@)!MmCcejwxx`Ba# z_zPFAc%eUzh7cPeD2#Rf*LSQuG=l#e8BQB+m+ZfUvB#z>21qz&*yuWIV)p>G-= zxpV8*EjCWhd~9CUwQKLddJCXcGvaMsjNVC)o*sQ{z)d@MuE5xW>TKr)Z$%1n2)eB)kM@u(P6Bi4BqKTW+cSpDHHl`mvEL>b|938mX1lYJ)K3coEIk^h4v)lha1=t*2 ztk{S4wbfyjpg76txB>uJCjUKfWn!f^06?zy7b$TKuPo@Acb1;!%iG1Gfosyg^$EB9 zS^vV%`K&7P%T>wJ_&vi~pDmcm&O_LZK8xR1e7u*wuZScKMpMziR#C-)FaL;I3~ekf z_APz-dbe!#Yt?u1EI!lxmrnaX^X7?z2d|=}RbLku`fR0j;6aWnPjRvYGF2$H1UiwA zBmd|BNnW#{1pQCu`xyAo|GkTZlX;hi4a@oqpn+5QuZ(F>B7hP02AQ*04uJn(VIpH% z0P6o##DNP4`>!w}(f?n~|HpY_>ByfacIBUI4{lD(&5bXy=~^TEPljZGVtjXZcXUco zG6Tvqe-m6lhcUR>J~=h@&V&0uu}`C9@;h4ojl}6%i!r2vt3|uKy85w+RF;>Qm#Rne zpUS*f)zee(_V#{s_51h>u!K-%vb6tqwCrmSdeGbJ zU60^d=M|BtpFl>*#evwHAf!_*3hdaEZPFi(gBg*|ZG~yKP&x9c!D^C1^sa4ERYm2q zsw$3_p*P*l%?hEA-7MD$ld%+5m|UKN3_F^eQ~LTOY;A4Zt=NqhPwulyewdJH>j1dTzz33T zl?R~ifTAY}oqpukSAd^b>&;$$JH_gwyiRfOT`PMkFfB0GKcD5gD{$;mn7Wm{hek+r z17Yp;VGS$oiG8L=LqkJFQ*$6o&~;`A6%8$2(3L)#fOWedn$2{&KpOwUhvI(9UfA0y z_w1H+pJ?U4$Jvtw^5}uc0n?+QrlzK~yI6q8rQFbgOk8Nggst~8#K`km!D)#@;H)!c zNLd7qxGP^rUV-ZBDe%$e(Av7Qm58mgcJCth72fx**@%xFi><9_@51N}RoJuHXu)}N zMnR9F=lq?F;b{kfzUq$+MK zU>h&tF@7TIL#>m^kj11B^S$?b?G6G%|E8UK*Ztn5I?xLS=_cjdVJp<86!iBe=!I1e zCLduoVP8HnXDO$idfXh}>YaLStG;Pjq&v?O)BrYNE;AXY_hr@L8*kk^_3EX4C=Bp- z5XhEi52O{E%;Yrl1@yANzqw&0ORt2!j)we-aR%9Vfi>luMcqU5?mrO)GQP!O3wjPC z^j1`S0>E_Tm%HC^0@abLrlw}{@81^L{EA7xe*JPwzg=~m1g?4?WD7dfVXrAO{XTV4 zVH8=EZKG&MEK$qDuP!}LmRRIrp}EiPfiP!e;+5^g1AJJ1P@I(=C~WZ!T#)WCBIrt@ z7YhDR+hj1>(E8-x6JP}#_vXDvy|(9-^5kz!M({JrSGh;Mtp-bzYu!E;%Brv$#vM>-leouhmn|T6tj$t-qe{A6c;j|r0KSvy zC5<^XkLL<K?`pdb)smb$8tlP*;TWVTYesq z-VBTSu8JKs^M+W)-rjBKaGtI@zvZx9{oOEFXoxVK{3$0L^_u_ma|G-=h1wJ(=W2dy zBB_?kRbC*iXJIj5z=_9;9ztHGVi}`Ok(*kYi%~;0!V3R}kGl78pF;>wF*&3zilUWx zj_*84Q|-3hO}+I=e~}L7F0zfyd6Hp^2{%WX#anFOjuszuWk5K26WIY0T*P{3*mvjb zFRg#nii(@FJv)ScFoP$9r*JRQ;l-URQj(QWd=(v7v(@7Gy$?Zz^`5S>(|CB0fqSlL z)e{bj+z4(|c4KHGtj30s_5Nv&YwQyx1|_Sve!r{@Di2U+Vn=}?b|>7mq|Wn;;GNbTQSva-j-R1seNV*br{R;Va0f)+qcaj_EX4~o zBS#>yX8fGbjAg*&wucn2D*l4X6KrNp;#1Gok7f7<#j|wTq9bg0+?c!=&2)5myx>lE zdt`Xn!Hd6|DF{0pmAwl-fIo|oZ>DRFSIe^-xs%C%GJNb#d7k>(1oX;7h)>!un(EG@ zP*f0AMmYFgP4~uz-%ja=l@XlIt-K$@{>DERaEDFV`QlhY9*8O%uq9;ZeHgH=bIso9 zkFf>!$qc!sbdebM)Y~h`OF8PWg}H#W%WwRm-!8~Z^e*t7T2Z59f6w^;c~B2 zV*0E=9AU#J28+^wn5Ib)(4q1(Qq6|1u;y9M{N=iNcVPKlpVncweD@;g?pHfyqj)~f zb7#`?vVEKKO&a=6gl9uJ;G@q7mNh#$5zk)!1BH-i`?+)b%TXBk! zTu~rr)3uyUW3tW581oBU?u7zdQLlItQ_?HK@&x;Q%45>rYo4}CpAFef?AzYl=v`eL zNngaqqfp_x*YBD?=Gdx5Vl3CY3WuMbQXP*aS+ANJ=dLvNueiGD<4Z?NCr%b!YaePD zT$cRrE|!5G@TE%{_A>15@B8@g@8P~pGaClRvPQ2P_xazcwl~EU;2qTOwL=74wn)jA z!S;~hi1-F~X$0AIPfD5?+$grzpsGcKp~x^tj)E5OLY%mkf%H{W{E|;UhIr<93ZL@3 zIMJ=|9&g85T`Mw1v(Doj)x;>>rJ(wT{oNYCam4f8RA$E znI`Lai}FplqhNVCRVVWYTlif=pZ?01)I%oExR2CRVa1H_-g*n96bupb-Bo@jcAkXH z2>H0k5ZC)ch3oA<{5^XiA9|h?S@*wedha!uf0BR}WHuOMayXUW`FuHc)T^bZH>T&< z_4{-=lh=-5ety35Zr%5voZ;KmD09u`lPI^<1hlFo8r_%V_}+RTLW(E55G!{y3u9~~ zmot6b=$U$!up4x}?y%X-;v03m?GkR_P1ivgkk%&~I0;>Mn0(T0qbJ+{|Wi7H7bw!`<3!%9^W32u4|N}d9W`pPBjsZ!<3aOXVvXoo2?0vu| zXv1>1zc3c?8vCbIFmrWluvt7Xg(1glI|xkG5b07=()Q!GotWvGtb&||=Jp=eR#G=; zb2s8S?#!POpoJwm><{#w4W=5n_BR+4s&+g7WfbC~%Y{sP1_2?NA7{x27+dD3x5v%g z>`qyX?JTq$HS9Y*(`hyA^xrWF+X^{~y>LWtybxxTyz1ig|*=P@GL#v)3KlnUi!=1AUfsM8S|(NNpjDK#`@GJlqi*%(?l)L@b=Bc=ndb zOWCa;k|HN+q>KqfbhjoNS;UyIITTN?^f%$9)~drRg=S1Jrql!Ph!J=S_cEuG0?$BCnJ;JZcK(}y*B{O6s@37sgM`e@x`g3^6%rsd(&nBaXI6?8WakaY1W~M zk#uJalS7#XxaCirSo|rOXUmQ5l?gxg(n7CT`n(Aua(S}qWK-)+j+7Qy*TV?!B6&{^ zex-k{$bPNmqrCbAq)v3N?7BPw64v%nxsCm;WgVmdMsmug)|rfWEU+(!5XSG&>EmKl z)xe1iw4f9yl?@!ACLe1rr9t&Y8t< z>xU2CG$FDSDuQ=EJbcp5`OFk{hPad2UcKWh>L8Kt_q(%*zSUBx{9F7>%Fd{QQrfvD z2UVXIV{XjTrw3j0d4#HC2|CG;;BQ9#-h38j!Jq3}>VISyDB`DtGf|KX+&Xc;mgU(`dNgVSEigNh|p*==M0NKQ*+BPq* z_B1kvUJEwxJN(Z<8ECLXhUc02-S!>#v5kMt?*)d&g@~0`24?p>#cbWD8ZEb7&QN*8 z#IirdoLg!lUgtrt&!?$ywKWNVCHL5$GT$86dMiFe+bp#vzMK50E0hePk>xsBTDBhN zY<|59yiyY; zH)FZ0xZ9pleWYgOCl$$vQQt^TmWJ}Ll;c==&rc@@e*1Np$>`Ch+CG`*iKz63eOAgA zPuwED3eyS5--hLoekE&geEBO<(ZYXgiU!uwCK<%c%*&%+cC{2n3@gT&`nbNU*3j^h zp2Kw1yW1REoRYcWvf+3m;NN+}DaLHwR6SJdmKY(AlrD*g?t8@H!+=k}Vj8Ww)ndgTRiiPqv($Qalj{On~_9-94rqg_GjWf&#u$?OP;+if8VLQ z3J zH&<0#E~W@YMM$UnJR+xb)~9EXE5dAswNO9d!aD)zH|Jv5gl~7HQ@BFTY1dL6BT)sZ zmk{bMWhAE9Yjqu}HQQm6q2x^q6l;n)`QXlIlo;tv4&U@K?Pfo4k>8=) z@exUTVka%Nd(X{||C(}u{aJv(24XQI(XP`yw127Dl3g~NFSxIsBclX|srDytyS9={ zkR2=ep~(4~TWf#(kFx?(l;?JV3orBy#Z89b-0{55`245C_C6jE>JJMD=nQ_Wx7H1P z_Hzq5Pyf5|puta!6d1nz#-S3}LM+y@H}o;P&ZuK6j&`1^qCAVAcO0x&XD^$WynD>a z{t%A?8dWv<9~kT(!P_QZ1xTu%!bSLrnTNt)w=eu^T~$)JY7hF z7yEsw86Jh+Fy6(n#R)bkoNyNjggJYhLFHL^r zNM8TtQmY?-Q%8nwU+SN8k)FM7$c{Jh-7Fm2P5{?babMP%MW|4V-4Dwfu&}^Y1&wx{ zit{~mtMhz{i?7ByaILl595xE-nAk4&2vL^kMwD)Lcb}PshgY}wWPK`Zas4;NNP=tf ze9cwy$yVU_8V5f)+@>t93Dw~d4x#1cM*cwJ*s9$_i>Ab0rKj}gv@AwRb49q9j^d5aIg`**4Lf1H`VX>WG7*`y)eU^8TqQ#rLx_b!hIDDvZdUDa5N^ zIbz;Fixw8E^pKmnFAtfygD$LXz^>VQgTJU8lx1qcYq(Igq0C#_h%{jiDAE1Pp7=1@ zhh8YeWGjB_<|*F=1w9)T^157MRX2V^sbjQaD3$r3QI*a0RNit^hcndQu-G5I_?i9q z-k0>FIdUtSIr4okFD=QEzTQYh)CZ_x%a8MFqOe3pA7_(WpYSivSaVosCZ?J(smi27 zf$JCCqv5g8x?7)|+-`x+HY)K-DsgIx>xskma2rV4t*8(7BM1MMYD-7@ioy8YscnIW z7Pt2RmC`Fz>Kn`I;8sJ#)l5ywombk78%F;e$5-+-bW!7wCy-YEaBHqezHlwPJudyI*|{KO02 z&+cDE(I=g?qkRC;pplc<5eckp7&-8BeZ zQ{CYaKh8+Yc0=jMr>0}`S|(~Spb6m?bb&G$!MV~qA0^hiLoa86K|10!g*#PDAF?J< zovVCcQrjknuFSAu^hsm0{g6B6V{8pex>H~PnQ#X${zP91)O!k65p9w|f$f+PuMb+T z0Z|U~3D(96Cw$)=b;hc1NKxz^i~b>-V3MMy%x_(#*e~^!{xQ8L!6y&kNwjY4uWy4* z4A)tqJ`eItEWBWh1g%;kMJy!YSpQz-{^j=v`#a{R zJdZux?Rj6g^WSkbZl)c!KimFrUX7M*?7``Bv;m2CC7Q!6@Ipl-749~PEnNt_J)`Ck zKup}w;=YaMfm+}3ZeM7|EqtIA(r9hHq(1GA-F}@D=iyT%N;%)DeDmZoLNT7n!6)l# zB?8;C_AX5GY)6A{Cp#t(*C#KBR`@6xP=@rA!x-QroQhlYqZd%~MzgYFrMEgNRvUaw z3_aEkK@?wF4n&~r#_X-Y!3-;o*b2RJT@mHa(R~CJwuvfLjwl!*m6DQ_6yr^tQT||u zP5K?eG`lA-!|>!*d`eTbjZj2I6vju#ROeVSxeulOkF%1BF*M4=pkXFDf1$4yh~-`l zvIWcIKC6UH4&0wRmkT|#%#>DgNdBP+4RSTVUimxWF^XYUM_(G8>nD?jNTKiXg&gGj zu?ys67+|LD3^lxjSn!;b!;QZKrr}Gd>=MLWssuTbCF4mP)b&x>;eTbXW zf-0_$$>Qki6p)gHBhZpeladmP%zeGvE%v?k*||h74#w7MAg-n^#t@_vcS-F;i@gg7BK^gAI@E7-wdlRu=m;AjW2b^avsS(5ed9GO$2n z3VcNGCm$}otiJrYa@yWtq}#}>C-%_oYL?wTLeay%ie@3fRu6k70}?`E1?CJ%UrOIn zWcs-5Tf(fyEcItsO*BJo#2z&yN0?R6MqHh(m6NAOaG86z&>M7NT;f$Lf-^#w%mbF1 zl{~a`X)Bz=jjto=!<51tqcP(V_AVvH9Y?1~d2w_N?4NlO>Y6NV?xuwTCXZwklnrYX zyIssw8j9%-H67*GH_(56<6dxY*z;+3uYpgJq8_M{Sj|hJTK;Ejwd>@Pbs6H(G17a$ z5J;Ft#X-(U1Q+WYGV<}8z@aAm%-L%KO^DD6n(0x;lfdHogZ|6QZ$(5aFNfpfAzDCG zR$1(#+PuoZU>A6)sR^~II7QB#JJFgboX|?~d@0ug!hcCAynRn1HKatZrs1Muui8zW zc)VrjVpE}<5b5oOLWxh55^h5pO6{Q}hE0vY=dfzW&$Ao{+k-qA94InLSAy*4GYMB6 z@oc$5ud4W{YK&D}mJ|J#jA}G$^?!n!wV1jBOfCh?^%shD*(M7#+irtnQ`&20gw?G_ zg78?PXD>ljMOskxrxYx6PZpXpwy_@ACpmqr1Pn%RBs)p^c%5q4~Z1 zkEzzY(p(B6G}}GYp4|U1F9b{}@a4^k3cxHYQ(MJ29bDj_qRcw-E7F^XzwPhwHtn{k zVc&aJqKT&O~5z zK~P4xbTixa_!_M{noW)a4EO8!xZmX)s|cqOL;oDu1Uk;W`ZNhStA*rwPDC>}65s8_ zCRihjCd@AGwvAYoZ^rVm)GAJ$=Fe*CEE=x_uYL-+aVU%5jx8qs%Yywq4m zhMHuA7LEk;Ove*V#^TL1K1^)O)!6c76`zc4x}GWSGhCm_V=b?>3Ugh&qJP9k3EIwM zDxLub{C3xbuB(T%G*NU_gh!s4q!1K9CorUWe4VaWPyrrff{A{TG`JJ%*~K@%SjI6x ze2O`cLWpjyP*35`uDj!=T~!yPtujIUHIL&1<*7ON__)&UT4+^CKBTii<(sl0$T;Fz z9J6GtEpL(S!}q-p*DRm<9tfr-kk&Zr3DV;B3E}VDyNVBnr}TXGXN0GVC3GlXYUR$7 z6S8<$ED3Cc?;1R`4-cP3k1xA+ALdxK8Q8Raicmya=r%1dQ;#ea${PAM@e{sIbzMx{ zuzOpGW81Owgk6T*H3Z0lUDK0;!?Txx-sQDgJzYBoHa^&gYFljN*D{EUx$f6@i|gMv zZt26xST^iG+-gk8%%Z$A1esuujvX$$?pl2Zz=BmUwLjf!@@dp}1qk~>NSv56RWdzs zeh$<|p{XP~rFv-VHd_J-p9Z8{Vxtc7+zWZ>gx;wPu!Hl{aKaINH?cK@^P zkl`5TAwGBGZq-(FGbpfmQ>ZXcsal@7ZSTw&7q>o^EBlD-9yXGYdOSZynd8j5Dqh=n z649xF+}QVo71RyJy`C|dM3%_TCTyIaP`Evo4z_!sg<@Fa0tNz@ipze^t1PRG#0`?q z@$hZidw%)8^3y;oUY#gRJgkiDnTs>E3$AxGQ8hU?K8keiZ0^gP#?I3xLCMA5pBX?g zNv-l-6@8Jzwl8b({6D~7ZzhQBL@$>b#dkulhDr$^*V=9Q!@{D1C31r$q{V+Ii~pcz zSGEY;FJ13`{FgU-Z0>vJoawaiNri5V5#fU9FCGY0M0y}0wbUdcSlUncIcL^L4}omn zg&*Rzf3-qjt>+2hB3D{EEc;roWoD#j(1dB$o^z4*ZE{gBOwmA;@hNEmXf@6Y3WP_M z?M3RrAYiEea(l=Ng|T{ix}U zd`LE!_jBpzf6b3Y^-ixr z4u`Bw5*6;W$Sr&XyPM^5$W4Lq?I~Y+!Q0_`v9*F4Rrxyp=G4(gST9d#Pkp?2r)o|3 zZJ(41O5#L|iq!E$f=_sP{j~by?YtbYUz2MtrWZ8z8^Htf`PY$2HVzK7YH7-iA0wha zKNLEzcFYxh$#8ntEkKxuN)PV1-@?0 z*=t8kt0)*q1EqI{)H?#mFIHAo{V9=pT|bN~g8u0-6sW3MV*f-GCPsGt?BWbu`yqd3 zS;ybXtA!Me#;?^vW;fcp;q#Ep_lk4r~ZdJIgFecQdztL*2U7$)x~9i#JjCZK2)-YMx1Bg;fHL zgw_()R26%?v>V%1P@w+!*-E`oIpr3)3)%f}7)qmi#^T2O*b>r~Qw=l}p=s1?*-%d< zKE?EKHe5sZ>78kzc8UsdzY13jp%MK6--B2ES%YYw3`#!0dvU zoG!V8YF2zxN?16b-(EwhHx_JWhJIfqzV@S&n6qD3_`btOJw7fKb*VDF?XPsMVu*e2 z$6n|;Ij{0byG)WBzrA{jWq$ux1^uGcV|y$BnjsQ~6LhIh{cr;RncWQhiGAJW!qq2j z0d3-m7_v`n>7*EMg3$9-Qs(>~aI(Ht_t-C>$KQH1HhGE4Lr-SI?GqekV; z$F`QCULyefRs-Gmb5hREFflHSj4h&s`C9g9J4f2O0uAiX9m}j~D_v|QEM$FHrTZHC zlY$D)37~+`V}Ao)T5BZbsU0r#ff$l7^Wj$fDP$Cj`9u+8>zXTNjc1)(HphNOTeLp8F|%Q_tHmvbiNn3 ztczR4GifDARLcCI#?M#`R+=87&#-73yRfli3+G$t_3Y4CIO$h`8B6W9#1GXZe=3A3 znGN;8tXs+t;*Lhta2|4ID(T|1>`SeNks&3|#&-4X@?}-%-3ywC9io0v5A7T3uTNwm z7t8NA3ck)Z_#R~yx9bw1h3eS1Zg3-gM)jujDD{QRg(`C>NPWhuPr&gP|vHUV!BFKg_}o* zESCY>KD)D}XdG2&up4z!-RHX4dN_=<8lw;&?cw}{wV=_u2*Ni}PBF|lg)%RJ-48dzzUo>#4VK=b)4|T<0(H2R3sUd?MU&UO9to4U2cOG%-q4h#A~>AUil&y&z>GK zD89Z9Q!coW@}gnB(L!~w7@oz_{FKhHiamCXQ#D2qigl~^T+Kkf*0TB58rU(C2q3fn z`Wg9OKlu!YCI++7KanY#g(%GL8?=ILowiAIU*$;Lk=RYPpM>sxTNG_aGhn% zWQHR9Dw%p(xQwAVOmaVmZ~R~6t1ahB!fm)Cthvwlp{6}=T-nr&!^mFgcUPnJsbV(3 zq6)t2Y{-#M(itM`fPm;ZJ1yUMD8*W5tjUkdS@Iedhl)hBp~b@|QCSgpzhE1Khy~<{ zv=k1tU7%X-D1}gD9Ni8FYF{m~A{s9r`b9yJ0fyA#jHYHD>VRwgfsz|GyOe?QpK3hkevhBjqV- zxcKXoG4jf3h4_F$sN4jy2~N za^`d2I_3WFuuLq~bdb%W?o!jIv@)Jkv-3e^leIC{A7??~HW6;v=ivxIzcyrQ|1F>P z_2kn%JLFrZ=6>-r!}ZV{r)rzwsf6-l%I|;eLI4C*u9(iQBe+K-|&b_1wI5tTk6_g}X!Jdho`ri)n3a z5gXc`PYlxa8!-FDorV^?t`5`02mngZ`$QS8=bP@nx%0C$33;`CHB=SUAr#MYhhqHS znJ{vq8_e{^Zv5$rh4A7V1;58EGZ4t8gk?U#@x%N%yin9&L)g*$*Y$YvUNte_1<8kh z#xf_q@d)me-r^j8_{0RId^!3X3+&W{;RZ-U0M>$_%Kgq6b9N(fmjO5`Ox8R*mq`pw)XpQ zv#q<8hL5%&Pd+YxYV=1eGVv5yfgZ6P^}c5r9+Hw=&=W^Fz9a{6H*6`PR*dv_dkpa0 z?xp^iGLxd$J~NM8#lbyyUj9>KrJ2}K5+h5y^}Hi?51|5ozX0&NEcf=^$qWu=&HK+e zVe;vyj&?{BpgPDqwyV6;c~T9&VcyXJH^!!$a|T2y^7Q!DoJFIPM}e1?PJ<^s#NjMy zCHk93yPKR`wOSsJF_32VrOXt(?9Nh-yA;U&Dt!pYNCbfp-ljn#pS6C8q~M%OJdk7I zH0NmG)R1~5G5Lg~$~m;8WYyV82luobZf>4Q`8@mu(289YEaF!gq4(C;NuzV=_2nGU zPbnrPxEjMb-NhNFc`8W%v0sU+B?e9(*9|1D4GwzTJvX7DG7<^Lk&i9TXxHcxI84lP zy0-m|Q3LT>muHf~JbVkUI|Zsv*8{c3CS|&a77_gyM(FhPQ0>Hy+dZ|4SmvCN3atDx zGNpEuS2v8xXFF_MtmLCc*vjT~Kq0)l`gGwVx2-Ep6Goz%c-mO|#>99m5*{zK)0k@C zN!7(bl-QK;eJ0EW!)$9H;Nf5EuG=5_6Ma z?O&4v(RUeO!-VK2|5c$~_l41eP44*Krydk~dXbxl_Z!E5S~Q-SJH~r@SUSePwbFH3 zAhucmq3FnIFAL0@D6_{~x^*980fThIGY}6!w<5ZiDFNSUJ<;lQJuqERgZ0WjwgHQ< z-@(qJ4C{SnZR5(dctSU8r-#h5uU6p|=jZWrozybdd04ZQ-R86ny}t|EZ8#zZZ#?bo z1jF>xFOzSh-@5W|88}F%2dBY-<~5?9QRKj((E!c(l5n$plB;#7Kbe5#tKAZ4ypj9V zifq!a^Jv`IwC}h_vJt-|pg97(ijuj3xuSpJNW?3=R7L#(`lySg9GIgDp$mRAr2b$3!it~0^~NY^mx^xy|sm_;+$ zcQKSe)OtKU6&zO{-J#3+<2mifvH^Z%>>`a>&eL;>rIK-FW1jE*mEcI# z9!~Pxm~d9>fIrgSEpUtna1 z&Vm`rcZq90l%RqkO$I;9$_>oVSD|0*Czv-F$l^*OGzw{k)apz~Ve|^Hzt{@$YR;4S zx94$iq;@sHvn!%cKC-AeR&C`2I-K%L+`$eY*9AAjch zngwnN`2w+@=0YY!l-&JB^v?9Abqzz^Y&#Dnqh!)iluMid4(&10YO8~e(?v}wiUY@(w_H6}y! zh5%QE-ai|mIxTR8&ZHTaVE-t`(2Gmit^N4Eani6%{$G~9_^~U-EJL(CpJ{3;k^g-E zI><8l*iHWRap!O7>(c)Eeh0A$I{`Y_R+j^A&@Gtac#e7~1<&s{WG_^p2sUg1t9f{z zg{wokXngM%Jq_Fx4{E=t*G?}r&`l&#QchGzXQn%?a@a2NzcZGh=J}?1@;0za|L<`; z?S_=|n6IRVB=)y;V_;&Nqm1*F?9N{7-*L*YRKifv4JHJ|G3|b31cf$yTd6D9C=mQg z_`g);?9v5ObZIPw7!S{*BY>(mYmKuz+$MAI&^J)25MgIy1+pix%$6EZ_>X)hE}2)= zkb+Fa09Wpb)_%cDj_lNcrYz3F%rb)wIZ*2bV6Iv(^G0Oc9%d_{Iz3e6*ZM*5x{%Rqyk~PcU7XiX-`-{+gBZKD!klAbzt=Pk$x)U!qPEx((ThZ|kcU zU4vhOvI~q8cjmCGiGNY)Q^CW$C)c&^q++Hrg#~<-oPKk2d%b%h+ZJnmh;2TJiXe51S5mSD^*y(c_zdcQm{>46`NlU(;pvH)8;8Q3q_vmF0iy zo(2*KCQxfpcCq#tn8i5_9t?3WdA;v?W@%(#ga0Vx_DSQJ6VhgAjcxcUx7s;PEZIV% z>S0p4Qjtu(fDc{4ap6J4nvNtOYBT86iCmajgzzFkL_UdW%hS1c88-5??HLr&osZo3 zNJNIv!dg!Qa>f%wLUM#WXSPmKE`X^jw4*?*LE=9t;rg*mlBhM zJ?nZJny%07rAz_zIjfPI`96$S9tk3Kb-g+%KtSEKD{t!(j+&y$NnTr^!tqYR8+2~} z2|9vZjZKXN8!IUq9QtL+!07WhvH3J{)-5q=Y;j3L$8?}-0@;|2AKp+pud`Q@lY4e` zJ-<&EgKSW*I;>GG9)9Lkc!4eB4nC9sYKBg!+c?%7QZnVRE+=QFt{ie3;yzxIA>xE03l5%A)z8-(Sw zn2e@Zi_SZZ%UX)&KK?2-A;NwBD{k$`zCZU%qCH)|Qy4yRCQpmqb>u^vp)&GxKjw1V z+s5NU%M=eQgwNY$ta5gL-?F;vRu>V2M9R>Rf>7TH4i<-eHb6kR;xQyrQnP^(BxWMt zVd1w|Xs6P|xzqZ%x+q&Hc*+`<9p~XC zqRhBc>k%FZhwBi$->wRXVF8O@3=Umnsbye2X@6_;vbQho%ROVxApOvdwN)k)V8Su? z2ZH;I$gI3u734yqn^E`AO2VNq5E>JCO3%~}<#>#>s z2A$uCp^7UA-Ko$E1;n0U^Y~o&9=N}r4U##j$Z>Y?;uEzYCg9*;V``ap*-5zBb*p(8 zOplVh9?l8Y5G=$n_e&DJs*cVG3{W;Q!jSu~-eRn*qN1)vpicqn%JNn(m-xf3*5^s-Eqs6OW z3bA6CMkg5+;l;_F3!5_`1W?oL4kYzA(?;0a6E}a5h%A!4F?*}{x+bT2Dwv7^hlyRdZIHsfGWk+W~kMivBfjoJ65mL5G zDUSfzIkLpQtVG_$z-SgvGSQ<7wcbg<2&($<;RC1hw$wtk!Pt=4tMm4S04$hWr|ZAy ze#g5EP%_w|BR12ao#~|&2DO6)T%LaS=xHe&vG5r%1jPK5_0X;k@WheV3C)%ne3;zP z!^w~dyv#Eka}CKi43g_s3NV@4S#%6BvSb`Xx4qwdA~w=XRX>4eW@Svx_?u@#Y;*%9 z)xDja@oa>KWGvXKZpZ8#)eukGT;1il>o?!j#Tm-Z0)W~|blis{wN=;>(AglAAQ(uo zQm-YB-ERx+UmEB8v3jqEz0|hNU^IYslkJC0K6}%JN*(eA9Mmx6FmvaHkUH-dQzg0H ziFeug{q)UxGE8M_I`4X?z1a)wL@^3Qf7V}O9`eqBltZk!?ghKZpF4NmEl+N0n=oC; z-Ggla#8irlKQvTkKXZe)Lh=>H(NplIV>bUd(B_(%hYA-K=kN`2jsAf0!BC?St&)6z zfSW%?d!1JkW^-k#-@(nX!l$k8`#DkH)sIkM8>@X{E8~n0x(hf?oKibqP+6na)xPPGV zs@vtY;&j3r`H8@H=;5NxMcnSjy<>?0Qsmb|s9pH+)lRI)CLG-Y21!0_gwf@&Tpt$A z-krAA;i;~xJNkto`){UW_ZJ%*CcxcBpjdmgD+qxQJ9;2Z*pp4{X?fD8Z9XEUVo-pa zZw_Frc5wU39z4&8*;e~Ss; zV$m@@oND{ThZX#Po2bL2@bZ_66d-*@+7>_uV5Ud6GDqs~X%Y@z@3|cIm5Q~^zsDx2!wdtjUUR`#QF
    zux0W}vck!-@8_*aPi}hizq$nP_$ogh3QB{{tH|w9d`oB+4^d!{a~0S;@4)Hv@(J)w zk!Yd}Hg*HGN&}Q}0NmL_a7)fh3`{nqY{frpnn_MIE9iFH>SC(8Vp6^kPg8+jtJ1rC zWEPu$|0fwt1lZPO!oJ+jbfH8D(1%yjtXJZo#W}jjRNJENz+NIx`qPN3SW$3~*$qE@ z0}wmH+MSGKO)Or+bGY1~*5H`b-@?Tt2?GvWr@~wXuEL8w@q3^Yam$YWp3%iJ1-56u z@Ao!57~hr}h{$a_PBIUEoX(pR{K!T^kY4`ZzY4&dY|<0420bJ}^E+5(Zo&tUJA%zN zdaA;lpA$XH#gv2VQ`+<^_6!DIIeoNooYvIIiihjrXfTex57mEQbFp=`r;)X{1$=be zo`!8y=IgJ=rW36=c~awJcIs%TzBZh^$%vQ$Gz{y;iOK#r~}vfj(IKq4cFea-TfK^QqT(dh>myQGw0n18`S{209+ zf}o}y*+#t*`sF8n!AmZxu0(h5((N4_kAf4eV+IaM5019~_<}7+1q);Ox8E)lw@QZo zw%@}2OzMa_t)Gf?{}t;kU8XS2KELoYg5FhAi626DG;w_q(tpauppT8Yx6X6X0eY~X*$ z@I-D{qp3^?cuD;|5QavB$6}cJc3UMlo*KIy8t_S3Z5@fn=N_~PB+7Lt^fGP?xIvBe z_+bo{*oEEAFl|9vap!WsUTMR5q4E zYcJn}iQ{iC9n3}gWng{n>pDR{5@Jin3s|3$et}4QXm5BJ?fd`5+E+(a6>i@iIwT~N z1_33M7U_~yT2Tb)M(OU776BC$q(K1#DG>yuK@g-w0qL%Tbmv;deFPe>|5)q(Y;rMh?U^$smI-~ZGgpjPh};_&Z*VRW|UdTuz+uf3VP_`wt}wNx&)>GK#R!nQ}{9>R9Zir7XkXqh~+r0N@QBF3Vrh{-DqE_j5lSP%)d z;vY5iIba*F?-c3IF1Vk2?VEbt5{Gq>bnx$CuWiN- z$iSsW*h8V4UeKtH4E<<)^dn6}&8xv`wP*>Ys=MDhx^+$Neo;cBUxE^i-eZ%bd|WHR}83n1d8PT z$kqOP^xcPWOM_?Ft&aWgFka#vDE_3RR=mBuvLby$hwOa{t5{xxi-D|3ZaX<&HK`bn zWj{v4LRc>n3uQ4gL^!G+z3#Qg%@8o#5gwt=D(4|3PJhiBKHfK zdR15F`E@YxJW(HEoItks-ludqW{N8%D;C_@7znrhAYpqdhUK zvQY|^R|6$AOa@y>F2Kv=g&|&$B+l;Bf40AZ8f=c$U@92YB~rFZ+$2-z&=v}h9ki0H zUe27y&D0#chI)ZE4ORPtr30TgrwCRI3@|giAoJ0mz@-X?V=g+?QR`~2HcgOFt!O4>o{aV`tF zjgZ6MxD|cXo`)1DKaI=}@`ZSX<;!O|kw@PFL4za$y{~FeLk!-9M?iHmghY2I6X!nJ zK4y&luzWlqDLrl)%Efin=M_~amVrtOW9`YeL|)jk&>BrNiY5~_nfme?!}=uJh}`F% zY$zyV7TXV8SOXcLr0S9}WzLeByg8{cJi{z;;vLjZEfy)C_l7lnvkCB*uZLTMRl{$j zzTdB;3?x;e8Vgy|Bz)*jggMsI5_Lx*mc??4NzF;`)VNf=^o3)U_hmN zFL2sd%(E?hnIstrIQEN?+Ovk)9c?iT;@*`H{2rtC>ElukD{T(sQKrNu6VWEFt?X^4dSC|Ygae3SZecCnJjUF1oo#qr!OqYiV|zf92m z7uOb5VwX&F)pBL6jW;)Tx4N^9x8_Hl?xz7ibq>m`jEoCtcaErisph;7m>J#&=J5r$ z%0A)WFx*cF7^u6qP${3)?M_nJ&y27!>axMagt#?Rx9gyENAnGVE{^&Pzy>EX1abZtsf`%8P zWy?#+6ZpW`HO*M-wLWv}-o3sVPdPcP^_h0`!_DD^Pw9tTqcGE^9G1W6Orn|2S5JQ4 z>K)VMNM@|NuEPSTmrt(L3EC~VW2;oDMoVcZ9C2nm*!T9Pt1ghi8+0F_C*4Ak1Tp_h z{!6{ns2vz3)BWq$uNhA*EefQgu=2iNS>;j%y8nw4Ymv?qWReSv$k}p_+Y3pY6|ggK z^fUjv^Ih<_LZonbQ3;#kbU^J^*HmzRkB6jS&&8pK#4^%Vc#h-O!Qz2C7cR`Pz(9R%@5Yukc2$5@{h9uh z010cn;{d$AXftXyb&g6rzJ9F!2J6{@llfCqhPhbAFr)|CVjs{_u&dj;81@J*0n6mM zroNGO@VN~`N6h`~rB&agh4t>0#HYu!%b~pJJE_%Zll$l0-)@rgjp-1!Kdh8S00Ogf z0o1S4j}O?DIXgrqiH<9*%Lmu!k-yiIo$v0NLd zaq6I3P9;q_;Xt?nx%kBI4s8g`@kXBf|apLEcy@`gEYaemo42mi7AqA+AvmTk{#5SBlpL{nVfsngq=D>XEkr#0-iklYZ~`)+VA)q ze0BzW2ZMa}mx(JM*^S1u`UFKk>*#!{O{h6mav!Tpr2{3Dg(L7U|1cXE;#Xv4At4X7 z0;0*Y^$zjaW#3uxug6FGFrG-%z&>M67cG=O7Ge1|#+oQ5MMf=JEwhODuIc1_>T>3~ zBxyTe;on8KBMA)?YaUC%nh$D7`fbEma3;;L8x#~0!d!v=*5Iq1MDF1noSZkei5?%l zz9_oy@%@WHlKVM~y82GKHTA{YRsJkN_OyU-S8GeJf3om5;^@Re__<>EvDwTu@lyxL-4LW?W!zQG^%&uSNoub z+Ats$&uZHYKq4I}T-O*3H_}q=nIa9?!6KE~xe(6aPL1OIx`Jty>ZYAQ$Kl;k@z`Rj z$=Kr#>nO4No(RjDhtPC-*L1~UNYr$Hzvb3N^6831b$r!%3}jZCw{n6HN(n?in9|cX zvvasTI{N#)0x4aIJr0UVJt=5Z|H<`~>%pbPgCfOkZcxj5`qMY2p}2I5LqNQF-9}6)Y1Xhu z8rf(vm~s0+UKG_3b+5~sWXXH_^4wn+**^_mtIveZn6?m|q;4fQQPhYx`r`q#+Vh?{ z&((5&V)Dt=jf^dMmV(#k+UeV*RspSpQa*Ge*N8-O3EJ>fhSpH+jR<8 zURThgqz_i)q+nQ9nW&+*_P2b4%8L6{a~PYe)XjOLD)mpYWSdcZ6)S!ZKMpNUFP8Hp znUv~c4|qu04x&^_0})#9eLLYKY`l2!!Y(FYr4DbNrY_52@QXd?ICdVRj{sqE-Hg~n z+=SUY|4udIM9V>DW8P~R@+YJ2y5ryqcq`^us<%ED+`4-=H0Qxibteeey9@VfTC)=j zlcIzk+Y6ZwEBm&aH+N}aBxD`HK<$NG z`3^=Dw8nF$IJa`9cuqw6!c%Nfpi>ZjA9ao2O^*1kT#Vd2&eVKmM8dhLjcXFZ*INk8 zthuG_tMPCNo=E)5?i(dM1z6UDLNy1|yhwW3U1=ai-gltnfodWjGu2;;VcVX8Y*jUx zrnkoP2?V>xmStB(a|<%#l|+)N;v!~)GAk3w{`+2dwef3f&aG`O9>a-qG!4BUO*Ot# znvRd_+^4Xl5nX{nLMQc)7e2kXd} zqK97gA;0Zmj%??jH@YPsCegmCD0->J`n)ROSzkX*YJ5-MiXTo=n4Q(~#(23Dv(nZH z1@o56#TrXL+F;L7eN}%cLBAeCR!2d=p^en~tIo60iZlY|_((xyXUU@`xvlgu{a~>@ ze^HmoBDW|#aqQev?=I(JQPrg73gd+kxsPn#r%STWb+6}Wsd9PdrJj9edHE|mCf}zY z3aXQQmdeAa3_XJY#Khn+dIs*U&(0RUW9bVk&}*1ki^bp@@JcYiDX+2bQMt%Re1@GB zbve6M!#K?L-w-?AIaicENUo5p<$45pDi;MnKX#eYZSO;mOiU~aNIlxHv$nnqnaKA!tU89V>7Za!4f!gmh`~7eVH}EDz*92KetDKAb#mXS9+Vw!X}YxB zLM}e~Q+`35%DAqj461me>zvBR<6QRe4Rc(_(Ywjkma3+geLmuoRXyMPX)?TZUzro~ z&28Rlv{|TN`H=hvLN-@D#{x$zsAHy3#n6e)&QCB*f zoXs&KkZqwS#(?6jTrAcvmD|WzlidA9MDrwnL1Zt9S4&eYzD9blEu|)Aw%j@_XtIQe z_eyr{f0zYt>wHP)-k!JbXs4LA=F>qx3x&Qre+NRDq;LXX&5~q#dWv2X_i$~q*(IQA z7jTs2?%Ugyn!Cuy8hV<>E*TtQ=f8bB27}Tr(MI3a(YfK|#NX7^1Y_-P>FcM!-lnJ3 zx~*w_Jig*5n(W-0+$bczkZz->~ zu*UL1HRTn-P&30(QP1kfkMv#(CchRJs#oyFF6pOyBo%P$~u?$R4w;sFuiWg$qGy zu4O#is3VAF6AK>-EFqK7drdvldHKT4f8p0V13!XitYIdaMpX#`lA9_W4Bp(K*%l{n zm&>jhBs<>!N7AoV&A9*cZmJoO1d4ksnGaXE={q%@n>T}%7cbi*DA9>tP>G zL|;=OQOc7))oHnW#GyR@@UP+T>6;gj5}?XUuI~zZjm(X(ujQC+Ur#4#cHZs(FKzfx zF@)tg;x+3u87;hqpr&89ls>=0Ui+@$U;Kf$oAb3&tmWjlXx(O*^vGymwb{Ed2{UAz z|9kwbogz7@TVPAk#8+X};s}||aYBc%d5Pm^PbYiMQ@Fj{9H3hkD&&}WWupFT_ z`dPGZFir+AI8QZ<|HxsQot@2H1`zE$^U6xVs)L@z=@BgxQg4-@_ZS~@a&$2~V#&u+Z&a&UK&zJmUsWR(s z7Io2SO4~|{SI^5`W{V&GzPzO^d7pvYHtG>$+Pl}&cSiet_-P4lKQV;q29lLPkq%=wbuoiZ76k5 zf5`noJQAhFm%o16ryK3u%|DZKUF4U*FSHL~1B#X9^kyQwCRh596Ya$EEF&umvqz9d z*j`^9YwTm$NbB+8=<(lAKOUdEk|^ONAUy1DU}OwG4F<4zZx3`l#5 zoCL!903sTgw_%@!^`AvL=Zvz|xPBc2nVvVB>cMEVQ%~ir?EqD(?Ck7R?M5l+>3eQqsx6>z|0Ub8aif(x@6bQQ!R<98+Od`;kK1zuUqQRpSO{G3kpGLzV;|*Pp-x+ z;L9P0a;Pn@4cHWH%0%Iw#mOLRO~gnU!0N|8y}i6}d-LADZBYGyZ_OLX%5SewfD|$zqTb6dZX3jT z^(~@_S7!j36t3AN1{lybaFeyEm<#r4GlhmkclNi)qvlP0)wb6A*t8(a*z#H6pJ;ez zAnh^v@0e8Y{Vp)2w%c~QrWU7XUmj|7FhOPTFl8>_t0(55Q{l$g0_OA;O-S!t{{om) zRu6{b@Ar389P0@f(xgGnf+4XARv)Mi?jM?5E^Njhte z_RxSMGe7-~I=X=qAfgMQLPyBDRR5SA$vo%aofGt(2}XCm3F}n2K1gM*JDOTcLzB~+`AW=>c&u)3EurSe*55&& zg=u--6@vs#k;j?y-}#~qrHV%s=7x$%O?_sygD z+hdpbQuz|ydCL$*>g+4fbyHS`uyY>d^r1E+5oUMiU*z3OVmuQFg2r<<3{sOcw225a zz4+YUbqPMfQ>Yh(FdW!MM_|)gE*kR?pvzS&^BSQqd_a&%$it6I8p-%P{ z8+#w><;$0dWKm@Pog6qNH)Qxus_GS-FjA(DXyK8Tq-!?Ls{&aCw^6j2n%{_wN1O0P zPZ3G5vlzjf;^OBJ7z>T-Fo_z*K${qEAeA-;-Zd0(d|2+w*&V(E`6MV#AFFHodLMb> z=}QsfM-hn)p^Ry_kzK0p?XA~4aECgHg@A8Z`PzK8{d~TovlCIgGk?oQLB5N5pf$76qmlde?b{E$m-gO< zB-9FW*Smv=7HaW`>^b@v!8Fxx;iet!FVDgrQRPJqrDbKYT)up{V()fV?AioR=7BGl zc85znT)a23lDT^yuSmPQ) zlDP#Uii0>2>$hlzLIyH|4k-S0w< z1Tf`t>&2XvMBgQPcfOLT<4f^TWW{wvoAwRx*zmhEQ?O-5w{BMr+3x_xwGIwL&7MXu)RFz3pe%uKxQdb&h#51gcr9_ z-4#hk>>unuI(H8Ti5mxIaDU zVe63G)@ON!Z((6E7|85YPy))!+SAJJJbW-^ zTOt-vSwf~<_!^)RO#p`=w>-Ac1(9(S1MuA=({0yREr|7u(!TZf0(ZO%fcH(5$)Z{pS|BaKG=}bp3dFPoWfD|f$3-I;iqT*0!d_~({<**}dNw^E&7$pPcDhHm0@W=8gLd!}dCC+R z!JK;lG7uRlDJiEG_ZQS1s#mzsh5-p#&*Uof?;Umwi!|Ul)&H8*loI?q(pGrWLc}b0 zIwKpli~ROnZ2D+BI+U?F2tQCG;6o4K?&##o0z!o?p#t74MXDbQzV=mfduRbW~_2+ zC3Tn+ZV@Vd;qc4*_Yc!89@^Ld#$lni_hA^6+#YHGW8fdPk4pi*l+QGsiEF2bj87BA zK4{X|V+hEBq4}1ekJ}D?AqzyR9-uu1h>nQ?3DOo+8=SS9ZhcX1ZJ#^rK4=F;hBppy zNWjwXt&Ph@nO*o6ix{?pxJle62T07Jfn@EB1(P}hEpTZd7Ixeo_Q);Ry>j{TM7Z<; zbNb$|T#~nG1-{c)^!<0I_qndRFZN@-w?SsGg4m_oTl{TZJ=j)x)=}=`8_B%lK(g&l%1&ls0 zg(*LH@ZerDRxK>VFZ)ZCFxeLmmOP3}r!WxAYM@Cy=UFeSIpjurfv#x`E<4c&4VfLW z>|O0IFB!)>^V|K?g#x;!na3VKCd^T@5l3I8B<$|$>iWGf_!&0Rd0xXGIcmu(60uED zRG&OoO&8E;3=vR^UI|zbB3NGs5P87y{^;&E;p)22eTKw{W>Xh7Gf%|=#%Ffp8=wNq$_%q@Yv1r-aI>&N*J&}nUJJB3t5U^O1hDM=&8610MZ$~1K)-H{`aYqDG_ z^J$FbsfG`a1ckp+-su<9>9^zpC5GEZM(Jsu%p|u6<8vIJ+Z=&RRH^wdTO2B=V;U=8 zBxfdnW>PDcx?BM=&$~-bU$Jw{R8CIw*o#!hsh#i1U5A>YmcIUvk_SCqTm0+mAmcB) zPRfr?Re}^fCSn3ejh(L{w5y}K>*Ndgh@C@8Z@$yWPS6qsoz&$IV>hWM^mg4BDGdfO z){ENf)cauMdKoq1)XeaAgbFKoxkAV5mhEtDbdU+hlR~0Hq-J`kkkGsc0tEvive3Ci8lOJwjb84dLb^uwx(C6=G(1^<0R{^jgLWTQh?`}M=osc-a zTKMYXr$ibF6)Ue}rA&dI+r?-=%mFd)?T6n{)rvv4rO4Q+*EXxLwQsx(B!e%s7srEF ztI5#_Sa^`WATO^`(50gF$sAVvY_R=VLQ#(Ft^;hvit}2UTkH$wk3@i;Fw>K` zK#A57HiMb2HqQXZ-dWyp6Uq=rRSMxHiekZyr(77w(Ip$~qUASuX`|P&dHp!4?nX*= zxEQ3|Aj`2ltI|j?t!EtOU8##aQ4#!9!oW_ceJ-nXKOrC`i=R4|J}t6K?|xUmrn;df z#c0C*C=AygQ|q5Zc&MI>IR=Sa15zNwmHi>Yf9c+KP@ZXOl7ax@BRwa^@Z4X^6D{ll ztb)Dj(Ir2ph;_;g3PREEG_@c%o?`oCb#5%J+qdhXDuPNBc3^}QCTbTym+ad~{4$Ur zbVZ`;S}3Q_NrfHxTw@8w+|ttXfymtBnVFdsA>|D=_lW%qgzJf2XA6qJ%90?ppbep?>)b2?o%>X(j)j~i-y`@6 zTL9$=8Zn=vtjX6z6~TvX=N;jN^3s>$WEwG6^{E<)@drr^%_I^rxc()s1Ti<_3$>!N zDRR(Q07VZXTEPfNCJ74*3md!OF1~8f8n0h+YXbv(P+}&w!zkXM`H;G~U&l-*D6tK= zzme~%f@zV?-YRlx0u(9Z{1+>DK4^bjxQ~`kANS(Pj0m2wnfpTR1^eJ4LcLsXL;c%E z`JMjVOM4fXVhbrqwotu(KS#q_AWxa}LzlqA}GAdFxYAT4IfJg>|>mSKLu)b&HcdgsH>uS80U&h?% zLC6_UYMoc08?G5sD-6sESP8RU7s(?>?8D{)Ep(~FZ0}a^rh*n=;I7*{iR28sRwQer z0_bP1PR4&3=v3d;|Ag#&9B60}7&kc;0E6_tr^<2wN@EJyTtMtkkb1ylX*g%6+%|l! zLBFqw!?jS5;U02@M8@w{?rCc)UL=3!*p0`T4ME?$Ifem6L?@J&p!ZAorf^I@Z>O76 zy@_CFZI>UC`uHz+r6rIA6z^UieL0Zk4!;d2qkMOC6gNL#*w1UU8-S*3TBn?PJo4 z-CPudB$@j>iiWowgl{53Ujk zoQBj*EiJ7*9axJ<%MLgx7G0~9IraPg{&JaI^~^Q8=h_Yq_hpdF)BN`yoafT1MMh#D z?*|;mrXNhP&#%J@Bcc(wh!&L#BgzD5jAl~G(cx0Gv$N~{t2x^gY+^Jle8LJg%-~_= ze*Kz)WG27GS5|3AcMjwjZa=Q`QBH@OeOlVuaGO(Hf8In$=KMPHfZ5WSA80sB{PV30EBcS&-v^Gq@>{my4+yN`2Ogz6ap5Rd{;0= z4`zgQ%j_AzEpZ-cT2o2jnFb|jVzbX^wgR26B0UQM$O;7115lt(OcqE7#?Ld7Q62MF z&s+}xef`h!CZ1Vy%wN|-(AK90M~{S{>;UMaD^m^z_WNkR`a4*rrK$PUP^S3v|L)q^ zdP*8Jf5}*%s@i`&Q@q?uPYh&LjaM$Caa#w$eC+{vgP5Z9)Ew2qE8Q|S* zR`O`SWXd$uyaVTlc_BVD7}|$l3&nr0weRd+@Fg*h2OtZY*FD0K z0F;f8xV$Na~u`hY%cq!ZhT~Q{p2pJy_?+Gt?6ZO-9hJp#*XlQ2x76fA0vz#OnSMU1<-mV&r-Me=TlEJ7aZ+0 z8EXY*C0#cLpT#2G&Zy?eA1R_&{qmr{2fEEZKaiVQN4@0Itp_>%Q<&R}+dI`75ZON5 zEBGd;X89xWnUu8G+7wAb5CvXNCw6Uc5pX2PhYkPbNLYLjN1^d*2W@oR3P@9QJcPoL zJ{-Q&iTqdq-A40b`PF+5{r7s(Vda+bIgCgcdQG20LPHv07{k5%J;rHobcmc8c3e}gR`L(2^% z|2lQ>e97iI(6wDe|AmD+nzPvQj8(VF+b!2nX;BZ3o+}&m7mtr(aeZV=6&j5VT^tK;C^!FSEtEu zCWAs}sCdi)CCe1P7(hy9otp>WqUpjdbdlrg=4qOIwwEk67k;OBFTC5g?cA8}*`0eG zOD*m1TRF?Fk@f^#fix!0GmqWiA1(SnTum-& zmW_{#PLI@NPA$>oMEl$mZ{YjcP#*S-LE?2c2V^&5;ZfhKmo8m;LNEG!8E7EzFX!nO z_uO@?potYZcMtjZU|iy?yu2r%%c1A?j%Jhmk@yxup*{uyViHmx3*d1$rK1SMT;y2` zJotIBLk!JT4GP3M$OxuMY{Em1a^ZdGD6Ae{tc*FDRuJ*myA96$K$Th`ZUcHkLPD|X zH?vUNY})p#UJ2#Zymzk|qFfsoEIl4aMQ!WOZdY$h!ZSt=5Nzq}oJGodKvwqc+Mr;# z3)QxhikrIBu6g|JCv?Iwo&H;&<^_;`(t8GO=W^4$FGI!|4>;Zq*qsrs@fsT~w3gFK zeWk<`2tNLQ64Cxa^RI-jyY-*)d=3pBE0X+i__LQ<8S#X%mCPcJlXHzD$^W@3CYdae zPJ4ShoWREiyCg3)TYj{ppr+txXE)Wx&yqo=d)sp-M2;+e)-;TP0CA}`GK25kI{o%r zbJVW`Y%tZ8>0LwsApJ8Nu%5@GU%O(p5t&#^DGC;pC7=Eaqf9r?s9J_DZt1)+wemke zNW%ORi(_EAlBdGL1kLtxI_n?4pLohF8JJ}N#s?8*)y`&;LF1bz+Md%}7)LNLUCxu~ zNZp|IKdLePWx!GHyR8ibq1|^_`muC+yen@al&OUbIv%)js&nx5Oo)b?=cd9=j)0s? zhTkuhV9G}8ybR9dRQ;!r(%*)k3dN%{X~bUIn~33hpO~pOtU&S;P0DeCFkB|;0c1Ao z0WJKVoZ7o!`z1*1o*UgtJ+Vw)Q)Ky&-17tw2?;4{ zctHsRsio3L`%8exh#Xy|JB?^~OI6#3+Ic#4u-wb%bCPwwI5H#r7UZrm&~gws(CMwt z@@x#rzev3gDece+*;;$d?LvSSLxiE_>V2M^2LcWwUxSYfo2tL7U&tc9=QR~tuagve zLP+JC$)i_N$MKH8I$70PF$Qf1VD;3XGz^K*hN54@j;!eV@ye7N{=Xz%*xz8${sv&Z zu32h}AI0dmaVw0p)89cLc&NX~Y!_h8571eZKnC;j;!YR#81)lIcJW#4b|m3Jw>`ZQ z&&}3z$f7dZmCwVk$mFYkHew$G(ZsvAiaey|PhUel6O-=_`py3CtwVfTMGEDYR9+T(EF1cc z;u!+~P<O*z-tUDv~QV1heffMRCT@?oe&&N5;7H_2PB^P3i(DO z16MnKe!xixecboEP-}40K?E0)0;&NO~^AqY}GS^Q=r+O0Z#oj!q<6Ep7;bQm9 zH^DRFo*hHaO>O=`u->X?3Vc6!r%xTxbiyQqrMh1nP4;wP0U>;3A=AcgvA+mBN7r=U z#2ur+Ya^5ovpH(VZYJ0{p>)~bR~p?><2|E!e~y&E4~x{WeyII znlpx7AWiZjKo*f~6QK@b)0aOD)Jz-zl--@yhypa~!v1g_0T(t(Ks zX~ahy{qR6T5!nD@0wz29UAmh=9iZ?c;YM@hUObDd(3ts zvQoDn*8UE{N{GTS44&K@>-waUQ)h()Rdpw15cSO*-sV9X+H{av_GKjF^AnFwW2Q3l zo0=k)_~H*=>;7v(lY4I!SL=(yB8oalWl*Q1PJePU?s$rXekS5pwOiR;daW7MBq34N~Yu zPALXpucZA77*l*}t1@zwFu+C`2uujwL3}>poB05}kwkOrwc;wAFPvImU!S)wz1JQ4 zHZMiuU=Q0wV&eFXllv$i6DrFLy)}d~US6We!UVo@ zFnWAwRG|t&M#Yc0?$@G_;>s6`+mIju$Mmjq@bGlJcYz`)5*@B~hy;UxNYrCXcLfdv z9t^4f(MMJ#=Z(TSn}=bYNb>Ay=y(faWD+^6%n65{;JMkjC*M-;UKA?Z-;r@pey3jM z^QYM2D|mnUORGkUp@P8*x+Tk7IH-Kp_Ieg)OVC^e<3p(F^xTt0;HlFL?8Y-M(lCT;a>;IO}h!7=vY4l9<1QUSO>O>QQ%k|*^FvK*e?^uVk z?`QZv_m<6P$+=vqP0pi@T;NnV9IdM$WE0?5MfD@xc#c=L`;c zP-$+xx+(Byz8RRk1ppigC;-i)c7Rk;#5RK+RjJS}nKee_5eWVWZ@K_ocN?#noO*Sw zoYvcgu~tBEPDZF;Px?`OIHUL5*_xt}sr{X~5IZc^`(1+{f$jUt^^^qDhS{|XaG_Ed z8NI+g2Zz=kk3)ON1eA}M>6b)QK_`=blaUb!d%~OnHacR%g4F^NZv#{cJ7HDAF(Fi< z&No~)Aw+6ItC0WKe{RV5yePd{=p%f8_d|cBheL%bnrY@l;kvc$(Xf53b+eYwk)FbZ zsRkRsIK3Fp*A-cCqCiv64WHa0dctK1u6yyHRkWbU%mF()w)E9gOzzQ?eeFVy9bGBd{5<16{7S|@rE z@kKs$vH6Qg(Jn_LeZ)i(6fbDT%s`7Fk|YRC`pIYOvGTB^!fZP9{`Qd(xR~o z-O$3v(5fU!!RoH!*x@|XXT2CB;n)A*mq z67P;Xc%hM_`5*)YLpY|a`knV1W|XXM76hcqvjkb-Q1$abMHu9b?0fv_aQ-K6&4B>I zJ@@`o7G|in=b&VvBxIQK=-n=FWj9BQc;RHwRSnahX!+22L|~452*?8`lo$}e;!t@U zJhMETZJzQea@)ZfBnUy>A8B1e%A2hVRr}CT<6sDt0}vRcwDa}9msM|akN9mH(OsFAF~CaR5OPisNYvT*e(@zHF+(TUFsf#PEyG3KsFWRtmbo%(`^@L>ZRB9-|n z?X$*!OZN>@4?q^3fe;GB9H~ z5RPV+D{JYDeRN3<@xnLCz{uf17Xuj3(9)LhzkUyX)F$MZrBF3YiQL7FvoJg~1y7!y z;tDTNTEsyY!N`K)ctML$<9eghX_<$_0t^V25Cn;sr054rX|6q_L>xrzOT(2t7V1!P z&Lbwj4GNbADO8GO2=Zyne0aFGiPXg-DcIM* zn;rx4tC7n|KOo|lb!NM-0IP-Rg9nY<5&w$gP*KO5eq>%i26O_ywk^J z9<$ePrR>txri%uSSI5(=$X~xMFMkWGkxt=C($i>KVp`3~ThpNtxYr(cM+B}$u+Uz* zUeq>yJj-{1?{L4t)SspfpHWa%I{kfq*65P|{;M$4 z>dmd}ZtJu3^iNX7Jy@8TGwsuZX|MUCRdf_~&03hJ6mRZKlIkz~{M<44 zYJWfT&*O8RUwnjZM|?Wp-JejlDUn(p6z6=cyGmtV$ z)B-ucKoJlS+)!2hrI(wPl{K*G2Y9*Aa{;$LP10wgHVDgYm--_4`9SiVk6rcsw+UX9 zXZPQVh`5-2@h>Ig(g^YX>ZH^1hk^zDgDU*%XCHnxbado{HBiu3YSqaoucUS#Q(4wl=Err$}7S0pNJjYG!6)*kkl#sf4gFRcUFd^*{+Hs&-(2mWPMO8!aLt@@s``>UZz! zZ^1YjcL)MC2@+p@xF9@Ed_i8GSC%dA_k!T!RT>&NQ2LsbRMW@^BNi@^jI1oCWkRrKXMmj~lcq(201i zT)-uw4g}Y@37|Q*C9SjAQ?s-8l1tp^zh87JM8$Jt>YsT<&-bYalTy*NnVBW4ujTje zbFW^#vhK+tR(wJo1lC8>iN?se!7^U;bSZ;bD-@;-bR*C+FnmzM!NDmQr|9~?M)A<+ zF2`N1J9n@l=}?|OUk_k*QRK7pOs&*`s{qAJsWt}>w?d}}R#)pJagiAr*)>n#L|@$h z(x#-Q?tY6>94qiQieBB{zdMPaA^+gYD?XzT;O_Vwb zBQP}j+A@lbh2{ALclpBj4?QFV#env7J?b(zrXVogYD%vK7mq7>yUa5vnO_>*&b!ovhKa<5h zqoUICM72>J-eB{Bpdh8dDqN1XsyZbk2^@o;`%kF~Yk+&C77ctAvTMD@atO~=u zF$7Um_V#UZ=ooZb8WIf&36WuoV-^z9UbMc58G}-OI&=f~jNbV`dHLI>rly$DioxI> zyTHMLkAZ=4z?C7qN1WAZVQx8qN6cTup;ILK3_p>$*k<`c;M`A1TyBh zwWwS5x779zri+Wqo7`Mh9v%`XjrN}Ny8rP!(qL|EYx`tl!xfM{22;R6(a07^&iF(` zAs;_-3kV3TK!d>8%6LPfnA`giZ)m=)gDvEEu;Y}cUrr9;ALb+A+uGSZOG}IS9>;F> z^Ucj2knW6jsBbW6V5mH;Z^YOBij^2Kmwi{F*L3oUncGNyXe9%#|5VUWiJs%ON4*C+ zpf-AF-)+Hcf~v~IJnQY|-v0J-cxWgNP;*UfZQOGGn4KL@lngwKvt(qMdLB^46LFn8 z3&zV(NJ!`bakqt#w{JO6fge6xnV6h>mX!1u0}B_q=r5kDEF=tK*zD}=C>glxFsdnU z&>wgw2RC;UB3~yaCu5=DHTJ*z+SE+|AjRs<(P^-(`2|=nP4!;ZNgRw|2#vT=Y(F)kWIw>|NopIqe!N@W z(KH%`Z2sN?qgc>b^6q~oRL&+xTGmh*#l_^^-QE44ZK&)=zD733GQG~rBeJx#^!9UI z_;u4^q`R98LIf&sXh^@rx?A?%0Y+d!LBYsgd3pKD+S<=^0jRO%Wzvt@QBWD2CzK&2 zC2g5L4tRe1qxNf{1{GeRvKX-ZhO6H#!G?PBEbh`BWgBW5J>)vyc5BhL@vlaWxQ(c@ zVNohN-_f@2_L5QY+|!rvpQJ>`P&!V zKsr_4*CZq*P3-Ms3Jdup{10>rNLg7Ax0~C{1*|_0RNxeZCT(dM?Y|_12w`Ss@>tnA z<7wYf2?j(URfyK}f{Q(r$}}jM2l_R~ansJCaF@eZRvdky<@kn*N(0nlg1cWUVR<@B zjzWWWH|(za+w)6HF<|>0gQ}LJt1C7N;y})T7~mDfn>QovDfzg$)jZxOERZ^2KBGQU zIio4==6m#5Uf#S5-0vizvO#X>-a3fToSdA<#&LFW;fIn4Xl=Rbhd9{S83vW^_yh!X zp=YQZCmIPrbuw~D9UC)#d*?EQkqfY`lwuj1z`6zn2I}E?qxVb@>%P^=2EP>QFm1lT z!t#vsg|cd@*g04?i2!mdT<0Iv*2+N52#+=z_xkngZVMVb31%>p0N9#zSCx;4FNn=x zwt6=r1`i%t*Gr={vG&6iCg4+^8?C8XvZQ=3Eii7e#G3F09PK)Kdanx$&uVLH|I0RS zOG+qVJZbQ!Pgn0;e$nqVCwjE7-L&iwgM#o)c9Z0c3=8}x@_{SP*e1FUu~&$Qi#PoG zMF}iG;m)1-k&g>~1x9^U8+)BSJszxnKoA{WT!NLeALZtI}(BTEx(!HEr~k= zuE?&3pLd|_JU%h;C?$m+T3s+8UhEvKcW(Ad`tI;aNJzM@Z*6T=q-&&#g@Wc{0@4K% zBp?rl!Qc>c3yXP4+vgDx5iMQRjcOO#5_p^UHqlO-3wKc(im24oRHvf@FINy&zu6%p zXQ189`1t6sq7+mQEPzPgpcL@%vyq{^viwDcyTa#6?1yP{a&kbi+?z3z|e{C)KM(ViZMvzhF)!<=KeK!QwQD2#V*05=y`p=lH0&i=j}Jk0H- zVI-1bLEwmUqNp7znNUKEhp>LIf6 zL&K4QPaK=tSw_bE@uo!^ODoV{>!(czAeF?TKOtPpfNbiC_)r?1sw+Y@P)r zpU?NVVOt{+u)_WC<2P?EwoG@{#Pf@b>uozfM6GOYDm;9688kUpJJ^!&*N-mlfHKa9 z%GO~9(|*R)LiP5-Ae-)74W^QZzX{U=jzpJ6sy^sxU-K@rXgg0$N7pboNQWu}4C)KU z69nFV6bFTMV`-S~igsSDo)K21mn|N2!z&|yU1 z;ZJ(H^(W|-Ie>MndHDt0?S_t2am1D~>?|!U4c>O*bl)`sBn#ZTckd!Q`#KGv2YK@q zq6yJJ({Yy&SkJUf{sF@EWVK;$-n&EjJ`#Qs`+nJuGd8FQ|TSJfwX4|TFFeJZs%?fWqcJ?fy^hHp-OpC%9JA*VJ z)HgJcojVtrm&XO!iJmD`+0X0m#!7W2tFsW>(~X=-t@d%nF1B znusEzq8bK1+cd@W&b^3_uWf5P1B%55Cog?{dT@sZ6VnM@kd$NqD=8o>dGO6kvS$yB znHd|(z#Z)Rs3#2XgoP@(&ke1nL9lt41q5zSxrU(u=O7WR$gH{R!#&=jN$M2vtGLep z!~sUP1OC~rau+L@)N+4O2bWbqfE?af#Aza={}$1}Q)amg?GLL^sF@#ts)A%<`>{o3eo5}s3zOFnT>U9tQ zFqlF(NGWBhj#9D}m6Ott(n8tpSkpojQAR0SqasFh+D^j;&Yw`l~0_+ z{m5?g7qIwD4p{8zbB_o1@|n0)mF?|wVdtu=k}639LQzpsa!QIeOO+i8&yw#|KBuFj zgB1LN(i%p5Jp|m)oi~pmKKy;Z0R6=2SzTX)?7{^DkJIq@yv&(*$H$LR*@O3a{xg>? zUQFdUT*9-3goF?R$jh8@1vJDPN)RwI29yqe`K3R9U~q6Pm?l*LR027N6PJ>!aPh-K zHJ63z!wJfOrS0co=(tJ{$+JpUiG-6RC4&7Vn#a zQ@LUpHHV}MAShMCe$~{~kp$Ul7S-Rn3{Um&*|TX&+=>~lt}|ATiA_q&%BosgW+KHO z4M_g5Wrx2vEnFK3O*MSlLR>F7C@$(~xzlCMV@svi!ntk0pDYaf___)eOw~y{4hSc{ zxLpTNKOP?+|K{!61>aX?D}ydaTf}WA>x*{VA*7tLzxA#%be5&4$BozIzF39Xew@kQ z*I8N7)+*7s&ia7MHTHRpo-l-H#qUBK-E{Lr6K-^#2o#8yOje_u~i2k9O%~g%kb7yuX>ZuEE_Y zuwBRja3*L^5Q3*Fyeqiy?e35Y-bQP5@_#hDbl#OlzEp94k!w6!#gX#FZ_TegCTK?3OH#mSeb#BFflPv9yht7s!EbAt5}O`@%c;IrAzd% zurNdwrT6Y>YiqA9$eJXzQ_IPqzzqe_+a;+%CE{oxIs%vNukI%pDv8vk2`aw$t?)V1PNoFrCBO^ zd3nieu2lU_WGs%2C_&d{mz0ZaGpQi``3=5Xo8x1{&Z%Ny!>c-MX+H zE7H}`k!)#c0gh^70R9QIi4mHLqP*KhMK3wYHVg(Bo(js6>ky&@gK^BZIIJWH{~Vsv zwVA<*UBeifjcu+%M5#+Zu0>L*RWNf{P^{qS@KmQs8z`c*rAwCz`k_J32h-eGn1=7B z08-0};l<=|I1Nu-93AQK-BoxY;JiX~`nDVzLS#W7$`M7}gYOy^g8tgN-u8|GG@roJ z^g;^G*cd6q*7b@V7D zgtXFlE?8D&Yb&$x3@)4;_#r8}=f7g?YCf0YbdAxVS5sS?;Z+_9D?fa_|2GQ@t&5YB zk7VIiG2HXrTeYduKu`yJd;9mRUAW8>@cDw}U|wy{g+d|TQ-S3VpaQ20@=(6$6jX^1 zzQ8K@dPumE-(5QB9cX<NoVO*Fpmcom5RddGf^n z^NP6aK_9?N=u7Y;nv9GO0!X@oLL>jLo)G%+^pe0MM~?9OIf;owZ+9F2gR`H>Ef)P@ zs-fWS?tbl_dtRf?k|hd=%*bzjDA|aaMqrw!5smr(l{<9_WoTwr=oA(8?SWI6gJqlZ z=h1|O1PKc3AjEg*tAn2E^Zwz&q|B_W`5+zxp!Z#tlcS2$4cz0f9je4Z$BDRZ4{K_ygL3!37|s9`T)A@P0PMkkjKyLVgj!-`1?n5} zMFozF2r(`#H6KUuLk%>5VASfnj4H=vOLWq;lpFs5A2`lt^B{S7xTUR*I57Odqq?Ss z$PYyQ2I-~r_4Asp{S8b&ac5J&9WZ-1SU|!Vs3e_aAmsSO1TUm#BWZksIoV)i4!uXk z^R$A3f&*b;bx899L8VaoIgK*h{aAHh>)k1kSF0f1c>DU2APn_PQn>1kHl3b)G-;~B zkWcaX%kU3dVo`atYtNoecoVv!VxiMqL>x9apKaT>cl7i~o0ymoKH^g7X(`U9jCJGBYz@ z-$lmn+=UBd(gN;I4f0456s(xhE{rgO+#^s%@H+#xOlUm{f2%QbwH~~U+FJ1ICOf-z z;EpoWX49b-6Fyp7Yx6O@wy6hwfmS{~I%m(GeS;_me0wKk-cSt*_!%<7V-N_R38s(0 zfz9D40B_lm6JINlwLwiq1%L*;bx^}nL3tU?xT7zDg&3|IdI?d$0gHLR)g{OMX&+4c z>8%~uYMPn~a&ie8w@wa3dgx@-p1u_wpIuoNHMttfl2?~8x?yg0OyN4hJTAX4nF2xD%6!#V>rMS}q#XYzNcZxd{cX!E#@BYsI z1^Z%O>^Vth&dfaX+~?jq*XDi_rLL-gjY)wC006MxzkB-u06+``01(#DQQ=1fCzdwh z8&Nm8k8YZdmTsP=E*1b4Q#U7jM>l&LGdd3o7grlc2YxOQE`AO=Yd1G1S21pG@c+4h z%hAP(yKnoWCj2HCPVYXs0sy$CFJFW|ph6n}APw>TTWKw?jKgKmFI3a5FxYHrwf1t7 z!Inb@Di#;fBt5F8j0~5t!!B8ZjK5Q3Co=k*+SgK;^aI$W4g?D-bfKZIg@dGcdUDCl zv3kiULt>UVb+4+M`Ca`3hHdNE%RZOXk6m=a57g8sRG0caWZY%^s-2;r55uFXL{`#WF`rLnOw5Qg+KIeE6P4F5$h zg8r137u41YT!~5&y$2iy7nrWLv`GA?M%@7ZpWLeyX-KOtx5AT6`M;x6!+}_V6>axy zJ6XP5zZBx+-}D&6?q{Q)^z0m3uXN;NDC9(_ELU2*znl-SkoO%f*2gJvHHN~8!omQ&x7=Q}G{3d5&29fRDPmefSDgoliHb+3v77|4T;yvv0bCvWHx7Q`=G$xyJ-g-Em|e_#qJX<0 zW08}V3qbpgF%#Mm-R5xYL6qm0=4YX^R1y&ek&Zn z7zid|mF*{_U+-W6ABJ|hGCe)LxwE6Gtv$_ehaj%H`0x{PQliovp|sW_8||X1{MFIZ zyPF7el}XqI(y0V&COb|L3pQgMJG}s-x!ExnKfkE~QN4OPIjMe(J*6EwiG!#DS=H3V{{DW}gA9Pizv0Mlqqj5FN(cm7g@GTE*ZycY9XF1QWqTq1 z^^xT#B9*OKAr?bEH~HCQet*)B@2TB zjz#CH7$2&VP+pM=fs9+ogd9ixIi!5JPuMFu3bP@8hh1SK?X||f*pkl;N9Nq^OOC=F zfAcFXRTle<-0(NI@8eeeDRs(hALd?howknwPFm5}b!z<%N!!+7cL-lj5jgZ`uB)=2 zI0T+#t&a4(Hew)gzzb#A4z|gY&&TTDN9H>tA@36&`zVFGzH!6ndsEmUjdmAT?+~_= z?f5Xa5f>qgdqsOPhcG5Fd0o{v=Ts9s-}XV`GI^0=finRH z`mfqyev5so**Gj2Yaj>vOPD`oD<|af1m!j$V)4NjWb*?CbYN&_{Bkbd6(Erkpb+UG zyo+e!?JWvml#lM8lQip&oN7BicTrSSmX@W@jCAy&9W#Zc8CU+(1#vnYejeE@uZz+1?Py3iqQuDHxoOjj+@LqwpuR zqEdQHf0+MH$8FDF_ZlsbIQw`jAzZ~8yYp-7Plvh5$5!i!72vkewGc_JAhK<7N`t@W zxvzZ5?4fIY75noWiWo!Vq0Kl?;S)9gfb>JV;a?I}G}tL;WM~1k-@5*cnEtvzxHa)5 zCU$qm{Dpv%ewarc7f`y=IkP;i470XMUtQfV2Ixm`AEe@fcjnUknA4F)`c(Cs385o2 zfCCR3A^G$;;Aa(4%OzOfaf7J_Gj3e9sTy_q%?$4#woBwp%iW&Q%Cc6cG;NZ(@RSA6 zk)uBT3Ys=1ZgGVZEU5h{P9@at?sjY2oW-v)(`l=%w67_Mjy9iKeEsR@?ah%QP|fk8 zcaUry+gHTlFVD)O8@I2H1EZ(z;%YtaoSR}~I) zNe3_k;((UaA90Hg(C}Hw{Hh#+z;#L?-n`80>==~n55h|@SI&ioC=Je76~_zl^y{;k zd$O8dQkRUGhOEAQuy)x(sh~YZvWDSy9?>Rvb$HHWp_22X{8o~OkD~TL`{Z6o8m8Pm z{>E2^41RNtq+BmMSxQ&~nGEVO-f6mH+rU{L?b!9vBDtWg)_y|(>?T0rO%Lt!DcW(< z0T+$$A@59?ezJ4Bf(Ov1HDIW`q`Y)PspbKFT5KXutUOvhpCLLnAqEj_?L zyI$xJieg}Kn>&1=o)uA;4$Vj=nUcsKAB6FLSb)CsgSstXt5c{2sp9ayF~B+!r2QrE zb$ixF{-Vk{E`cTSbm*0ui6hkLxzY@YbU5vu^Y0WpSY_z!Amjn8PEi|Cv^*uM59!gw zj4r^%z@2pEUr2E-%^jDYEU&#N$mYMJ(F?NrGbO4#i@VsTmeD^p`Vi1k_r&@9yiOr0 z?nmL;N7LsX0As9hybOt$7pN_D>%Ak+!H%&aD>{0vq9Ed2`0G}x2y+{`y0?h$?pn6;>7gDD~+I!B*Eq-SS(=N8a8va6W=jV<4 zw7%{LwT*t#RPCHjgMHa%;aFbM!OiIvBw_{av#QnKiYFKCef;U*Y@c*3M4c|?cyMyI z^q2hcaF~)8E5T~WXggydyYoV#?Rg2vv3zcH{_yjT|M1PYybons0GIyruy66*iNW@& zaasVV)=Nb{fHn<6E4f1TR=r@YwG?aZ1Skw#fQmI|X|G*g@(aSi?}dfv~d*>|{5 z$G+hnyHV-5+BS7igMk`?9MXC0=%!za^LU2UWo|fj5@Y-JqTiQY#P?oAk%95{nxFgZ zI;ku$xy7dTyjpU00N3O1^}~bP#o6FRh}n$m=eD-1I{~q)rBz|aL1hQ=J&GiI?*xA4 z%x>YN$CRGz@^@hxnTPlnAojnERztWa-JEpnb17&r~?E{EbR~A!E;|+g3 zKC4lbU7{0osQ%3I5KNZte_ZSFCMK0;|3kZzK1lbId;=w3-qH(RnSY z96nbEr98<5seg|gXTd8TYvIDl=Nk$B!!vU_vE%_*!Yxgao)pOhwhy{$6+DacH%rI$ zsSx@&cHHJ43Ob-J&=4#_%5-*Yk+6?T!k*slrfjS6sNH5_+t~R$*ELngjSRQK!FRWX z5xmTl>4#aV_#Bi z>3(NPv5Yz@va8N;N2^IB8hv2gnv`FsvmZ z2iJSFcT8qeCD~r+Hyd?VJ~U~MXu0qd?!m%8l+K;u1T3BkmrEQf(imTeuW$#%MdB+` zC!bLy-nDF*6OpOxsQUIznJ4;xxfj)w(8bIj5GiD6Q&wy>Qn9B?%0-FRf1`l-554 zx+vOY?Dc?M93fbLSE;bFR@vq-`P_1WDkvIoe4umLh#-n=pszo4e|3P6BI?QvdfHPH zy_(W|!^UQ|)ZqMh8UfnO@;zR!>Z39L*B$lcrg_z3x>&pPQ%$(~Im1%TsMxnmanEyj z(Ea1x>xT0|_Lp#2P2#K@p2DVP${yw4zy|)?QFZ)CWx2 z)RYuf3o}+EBtqF#GBUF8u&7Sn{0OIsb*pNhojxkbe{@+!ttr}z!X^}$N^p0yoN-{&f)G|SR*40{)!gAEDyAu?Ot@ZX9rB|=BR8eC$TU8;P#QwFg zy4~&B+rGO#;fRDf2ZQN0>yM5n1KT6hud}fFGH9<{0GzXS#(Q zdrLR{8IJ%4ebj-IgUP)A0;hw3@Y)sE?Oi$m{7xZzSq|+1vXR)!5bWdnl zC%Yrx^5kj2Bndh>Sm}J0oQaHX<@S@>3{ zY&?ftYsDZ(u9PTH^&mhlG?osQQB&mmWc*f5B(*r;F{D?UogN>$T+cG}0P$Lx!SnS= z{~Mqx{`ll5xk4pLfJooPZwWo?(-5(p`u_Y#^Buuy;0IHN&wf!E#MrrqSmJ*7mvvd= z5oGapy24-1!h(qrzZnP5{c!jU)G1Zz~8eiV2q z66nFvi9r~dm>54-&2*7mGgB6@4p~Zi_HBHF^ybkxvIuYX?H$rkk#R~>k5NGS%*YO3 z1U4fd^u+uR%tY|G&F>>L9A9#{q5=G|hNM1^L6A7)!^kX3eu0(x$Shsm5^7Ghy;5sI z8Qvt0>n#r`(2M4bQ~%WVfX5{dSy8Ez=iT8_RI`<1#Mt5_s#&upSoM{!yz0-62Im~2 zGiq@s&tn;JoCWu%1KUa3X0F%Sg&+ragGuwgvx=dkUAw=lV?62w(oTa~Utt$w#o4}D zE&Mw*N89N|z83H6zZh%L1uCKnGg5$YTsTh{O`}Z!#FZM57|aybA=Jbch`KMU#9>GQ zp~PoYFRrS@irkw-bD|hJr_J{!DX%5{N$U?~`TW&BBUfJ@**w&simP032aTTkdX_P& zcCrDxVctg15-V9{WY9hWk$q(ztPIWrC!N-`$MF0o_BR{eLyq=C8~tBa_S?25uZ1;8zw;zpfie)H<&)7z)np&$vAW`w}`Ow4?ki8 z^F8gRKEz~BNWR)fvdx`6={pOHQ;@uJvq$#-()rS#&JipPuc9J?_l8T+ROR zeY(2daXK)+a^!^42=WOEq|!WVu}+D#5+^(IYf+>B7Om9urZ>V)#fb z>!4V{+c84tpB~aI9Zu>6@rMoCWJzK8mAr^TDa?a>yuC3fN1c!x^sVOa#{aC6GD}Q1 z*O7bGP?{kQ7hj!#$&|*eLHUa-+Y|iHgp<4dTl33m&0I!cP9sBVRXG#~?ZnlCLP0jX z*F4SyQJLZsF}%Z%k5dOrUln;&hFc8Uh0AE+$E*u0-wXFHEO|=p%r4*(MZMkTq;YKJ zT)g&L!ez8sOf+2+6v9gpNd0H`46d^^<7g|@+v<=OQqUOm zDf@t4TBT#Cnv~H1%FZK`JO_oz$ zB&Efz3+d>dUgsefFoqXwIUm>_lHdTM~C>+7$OQk1r6mY&i{$41eG zE~nu!escF}?%7;Cuo|pxc>vfJl95X_rn16TTFiYq@*tCGol@HB&CNyJzqzXq7dnn> zL58#+v~RbsprC%oPSs9S*3p@H>~^?em+Yf=IjdA@kW$A z6yI5oy$B28SG;Mw1cQfZ2~9>6IWLab?yz?i46~I zrxg1W<=^-?wO$8{w#>mg5D4_^A>Le`V=Ml`Eok58+NcYQzpl;kPPIIv#+2xo#?i<< zTY-k!Sp3xvf5lx>_W!+!w=k|Z;7^oWZa3ns&WLr#6X{0UkJ{IkYpiZl^DkdH} zmsL5Jr;O7aOP3iBqDuF8e2%SCh+*LKC8?^8Au{wAU7vS#va_v@sLVQUo#FCwxbV9- zKMLM4*(AXe`OJJa?bwwCe!UMNNOdMSyD{!utV1};zshN%SvU*H@mTt-))K_0Txkz` zFj*vP6eU~dk!Q`obRAUnZ$H|+DQ-VEur57^E5N=e@#FvG`Lc^(tKV`T_;V|LK-R2a9An z1_Pp_bun=awy&5Eucmkty@^-#YO$sKc$rh*+xa1Z3_-+g4$B3xmH#Q0^xGY@Nl;M4 z_xj)T>|LikIh;I8>0DUFEyBBIuF-PC*AOscl{O7|<{_E|-#tg?rz*Z=cPVjoQiy)-zCL<>sBM_R zOOqtj!wRtQF8^uk7t7ICd_9`zv3l-T_Row#VT2yCuKAU#J!8Cd-fMcgEF{JBav>jZ z#0z&*y|GMiiwJ*+;lT_#t;Zi&O9=|y!VtQ{^F{%9U?&Sn6|u#u+LKFkwonzvM!1z( zlsjMa3rA3h8uRtcg-COK@T<`_%#1W2hQ5))^$}7hPcRz)CR%;Y9_~PR@E>&m6w*0} z+qjbp^6(C&xZKSQfYr3=By0i^iWr%Nohh;E$Zk^@uy+$b7dpJ-t3NvwpbvP1i8Q!T!_}RhDdmDmu?7 zr7owq&R zck)|~l194U-~P%*RdWz*ZEcQ#e)-D0#~no1#K!Kf2Q#|dnm$36$&XYZV!SF`q~T|JI$FaCWYMmLF}Q85`NJFGIVO1S9^!C??Fm55sQ z?H7M?lbI~I8j?b!#%6j_Fs{?LTYkJ)^B$R%_A$B;j2rl>Wk70xmU*cC3b}8h(gkJo zICJ0$e4BKw^wT=+iKzd&?0x8(ip7EAogCiaX+%_dus&U&sXl8>(GCAy z9IEV{?4Y9HO(=zmY)x^af_Bm7MS=RC4k!AwI12qW+Eu=#J&OL5jbgPU=_9Uylv>+w zAbY*K9$d|xM`THF1WQ9yH6vt7BL|p)M{T2Ud8-pC*QxKd*tF46gbE9)!*BoLHlvH+;*?Z7G}oBB}$t; zxsCioIE-sHwvu>2)B)*3qOV^>Avm8RS z>Ey~SO$+|yzte)hVIoI?7c$Z)%Zl)zi=+xHRMGFqxM@xnzArx;Ek?N(E*R?0E;X-v zi#)K6pCQYOM9+?Y7yO-{#ZrHl%jI{=PriMcynpfP_0t>qG&aE}`R`aE1Abz6B6S8? z0nw(n7yLd4!se_h9a^mU8uaYsgG7oaf&0rT8{ZxQR?M=Q@mOy1d{a!a1~ZjHbAmc` zINsX&Px_FR=CYwDn%a$ukgfKheQJMGxpZh{n2GzvZshf2&Q5oS&1FFEPedpx`z~6$ zI>OtCht>wB$)}aUq;Qqv6%Y5qU|y5WYj^g01K8sfAyW8`&Gk&rd`m@|+Rc%PV=0xz zOakei*Qs6g<|HofA;nKp%MYDz&t=ghg&6~5`JY`{Pt4?83C7 z;K(VJ+U@QfAAP+JrSO(PPCUDf9ent!rWNac?kh(WbJIg!o;$5S^B6Ux9ltewu6@MD z;HF1&ZE~R9NoO24X~HZ(WG*(4`uyaAbkwtvyp7$81xMrYK{Z1*3PEz%moW9n;&YMew?V%2^Ce;3d)eCX^{4FCFh zEY2oZSzHu5@+d(4cleevJO?#-Pr0HL-jD?KDKd+`hL8_v8&^M8L9*wsNq4IcZzTAN zRe{OdJUfuNlh+kCO0ONyY7rwgZzMSZ1v835X|u{p10BL7E((@70|lgCx^3x<5?XnF^H*c9 z+h!i-V@uQZIqK5wM@X=5ssR~6vLR{6QWNyC2UUeaqrI)u_Qh<4d|5P)icLh101vI6 z$a&hFKywA!5F4_$`dR=h<*^TjVfq^DxChJxtV0fhKqbfb?OE*Cdp;B^hC$W#=cAGl znV@@m!7)%=jjv<+-rISS>wbd6cz8V{!aR;F+>j5;*GqDcZ!-K2V4J&d{wGg#(?Yp; zfd-b`bS)4gK1fHRAlHSgh*|md{E;Ud)iC1gtXW(gfN{PAnU!UJ=;u3}o74fY4Nxw8 z9haP(B*o*r3Y&T4LA$zs;9a}p*<3%Lm7anicJh8Lz2?{e7I^QbJb`5C2fb?H)si5J z$QU&HQfRSW$<|5+Nk4r&40SnmakMg4M1~KmZ``e4>rGpht?N3 z)$2xJpRASWSjbQR${0z%*^D_`bqvr82laDc?Y%>n7^gQ7&uEdW#$Ep^t%jH*Lg(CP zt_F^d@hzD*&{mD9c@^!G*NLamd;nM4A8NX}r9N2P$#3p7|3vE&V27p^TD>oCf`=Np z<}oHI&+cFDP+G---&9q}4(=19y)fPh5WqgO)QxFtIGxGt?^C=Hfl)!8``pPji^kf}Ctpxr z8YAe3X-e1~StpJ^`fr~aH%p$sVxqM~YR!_IPhxdCEQ+t(q1UwO z9k{JOMqRi7J~0MO&#O_jVX$SZVQ zW@>k(y1%q+t*sz}cQ~^aaUjhws-W#COT_#!;uqv7hes!5fMTEeF>J0gJBx`xni!HL z)udmCfBtTY1!j@?u6$(;e^E>I>VUn-7e)v&Kt3mX3CNzeY_Jx8?dG{wDUcA7X$Qws z9$md!tDEtSQq+-MrcnL96qTYRJ;Ev7|3(0NJ#Bz~sig{UIG*0XxdU$MN+}4rnu{stYb%nD z1P9ivrtm96Hs^Y%as9I*T&R9-P--rIaO>N?1u2NR@er6l~-T2A-D;8$%@ z>pi3ibC>vc*}&w}-vljR+dg@IfIAp4P@q?1oi3>AS7ijT$>ya$I#`$O&p^fNiQx2i z#W=Y}XZZnCcO z?PVJPmK~1zwGBOZ4h<)Z9H_7F!0dceebk^^?Ww9?mZUL0xLkq{xc+(}8+jRTE&IRq z@KR9n{yW?BN81t#dlMt1Qfm`zQ7zI&O&nw1h@#AuD(|g=5*8LV7Y40v-wE26>4#$8 zlgbx94XqXx=Wb71OtnC$D#S!Te@@+`5)A432Fu)iV?}6OgH>ThYP98mI2rdIc*02z zZD|xmR#fnGNYTXtXSQaQ1G5gYxruk#^h2B3+9Qi>e0`zSU|uk*F}7XyS)tb5rW`Af z0!Mrm*EjbuHoKAS-5dxZqwE~>+`1idgIeBEb)Lq1H%*Zn*dWD7W-qxj06zRyf4CFAe1 z@k0&G69W$Vt3R*Z;6$814fsM)@NAp7tyf4?7cCVY*QRRU&TnewSj)gZ<|+HyB>(7s z1bcMD(!#OT(mmwDo#e)T07SaAg_&6^>_6LSb2gWF;(L1jV`4*ZKn-JyPK?YoTjZgj z)QEapO*(e9!-1q;EV`CTV#KqH)`EjGU0xEk5e||^$R0>X4UABD-5PuxC~H)0l1E5i z!E_`tRrXQkiro=^wL!2BDB?}!T{z0b=jy{|KrV{%2_8eB3%FqVyawQ;m>Tg`S|5=r zXgP#C_jUTVhjBW}c8Z8RgVr5k7}*jh5fWp2w|61lBb{Y$mh#b>F8ex{Vn<}>s*8nY zVl<20w9~DqR;p?&- zQT|ehYj~Qi7UGL5Pl2u4byK}|PDQ=^W@Je!s;socI5{eWh2r5@f`K9DKa^B#NVghq zhqN16xr1B?y&N+5o)7>LqUIRd$@rcIc@ESQY3SXI18=07gf}e+*%uYB*p-U(tD3x1 zgh9zm331Ffp}%-8#2{?%JrhigCg{(6{&3zT6WKLY*!URWL?M0L=jK~#AFVjlhWRw9 z!BEWOf{Uy^hc`ceh#a4Pqb*iqv8GwT`MQ8AbiAb6 zGRG{Br70Jg(nB^75JTH9&}FT@aE4^)5^Ml#q&>u{@J`X$D>zLy7{tV0$SzT359?if z3I~XN2uB=6kAn(c*r+>WvA^SSB>D&xZ#TA0@f^_a9{L;Z%@V_SQafzA(#8O736WAG z(h`Yzt~Lc<{i~}d`jp_5+s-C8`mUcc(K}o7A6j#PQQbl&&$?HDWXrP?&`{_h{X@RE z&a~6tf{?$rL%-{=zPMm#@9x00kvFl*?@;NG?j1&>juG1}LXKeZn<*w;`BPeP*4duZ zAG0gos^=oy{Bwe3Jh?=Asn!-b*o0*q0i%M|+-g@JMm&C=qxUKBvgrY&x?C~zNP=iG ztY_iY?YeGjs^#9}o9PO4K-}G7#&l(c8BTeB5Rq2xX77_!0;W4BqLFOR^Qv&l4qD4n z{CDxC@eoUp8Wtj4>}0>HewaYH5CxfYCT{KGZ7p8=9+qws6Exu+ z;!G{p(Xdrx)c%Ve-<|T%ZQh()_Ed@YpxR$~`o6E51R>kzWV)GZd~2nu@X7CCRyy1p zExrKp+kLA|z27ru07r%s@Jmy7cJgr)H-ziYJFBoXs3F93!Ng$_R9eFM$r&X*MxA0trqCnd-30W+ZTbsMqF_jIzM%GxYU(&Rs_*||kX zYdW(ZE*2K29+kqq<%CZ&HkUje^pKk`A6lRNg(t4PyTbgXdnnrjt7ji`CUkI({^Xnl zE2tT(&FW@+ba^KXJe7OgntFX2MK1#{+VVTAY0%uFqYMkBMFaq`G3CY&znm$gLt9v= zRgR#K;|+vwyEh%AT_33-qf4%kCOc`BSjI{Ca(g5&s%N{W4WJLj^#@%>13w zn&#Nu0BunKgVqGs#5Uz-daFTu09T{NCgtX1Fk!EU?_$jvoF=Y2OQIya6n}v$$JXfj ziek?QZ=i7FwX;OySH*>qsJk0cMw7w4%4^3;&sI=kPwq} z7i8GJ=&?gR(Q~YZ7>Uh4q+jZdjHPvT?PW)3O>cE46>$Z(p1*G%&YP7ND*c)M9^-h{^fvX3&m-vZYM~A8G1P~?MIGv zXp-XZ;hHLv`*SCgpMs=DYW0t};Ni8uX;(4mUen|!&EhPlgK-Our1ym5#ex-`BNi3x z>IoNmo!F_Tp4&PDbla1yCi`8Uu6#9>>i?&P(Vsh$`Wlw;L3-4|=-));6PRE>bXSJ} zAeZemw2Ut0Y(}tdvaMe6i<;nJkl$yLAYGCPQWG8=kli<92McKuUQx!mppjpBS)=~K01mCFM<*89&S2& zTnLf>AkG_ubGWr!%v2p;?;8S@V~ky$@dkcXa1p(>?>>j^s-apZN^&)Lf`LNvqg7Ce4kw>a%^Kz-9hpCG5jC1mU!6-PX z#uSn4K&)<|8_%o_G$6~iTIiC%YrBO3hOeL3L#b6Alqg-mc|C%VG zt%<#)RncRI=L!X_iA*QCVr-HIlaatDR`V2-@JG}6jQ9b?d8Z3JFlm7Wfy^ZcF3Af0buhAtn;D-6 zPfdNtl>vu^`j_!|vY0CY|H}Bhq4KQxv) zxrmHrlC3Rr85!YZjmJ;y_OrI^vbuS_PC;<%>MScqP&41&!Ke5Xt(_9_l?bcFgb(i( zA*xyWL-33Zw0@ui?fH8dv9b=3^v({&3b{4Vz>%dJj}C6Did!*4(kelZzAibn)6WeD zW~r!CI%XZmy(`WCF$^(S3zz1q$Bdku7+~~E06J4 zg0v%%ky|b8tqimV$J{##*`Y`BCu+@~z>diElsj)$esAhYDJ*8BDjrihNF$3)X2w3t z4ApJzwXDJ9Rd)RPv%B}6^cd#*aY8e6cxBjU8g#(Mo9E6d+@;a^L+4?m0U7&SpiM3! z0=%dY@O`c+bv)ndE-X|JiNgE_a~PXj_-3EUcJYfEc;}9uThwil=pLPfW*jYtG;Tv@ zI``+f?jbAramC!kIid#!b6(-miCC)%%_ixs>*}ZV&DuBgja+Kz6JOzOrDSC`8qnM~(BzNL}FYUvz(cvAGirP&(uj;nIJD!1p)fXuAK3>mrd zNkSR7K=`zF9^J&)rU6H*W61irFhr4tO=KCZ$7c*%V;}Mw*0`2+eGP>tmX@(IRU_4<8Pth7z($AN(3z&GtPkx!# zgcd`!nj{6`!5v)yQq@P1yJ=tAtiUH~0(o)n; zR<8O#9I@u}IYdyoyt553H)otRaK(m(V>7a_L|lx4vf;gB*QVdl>Z|1=6(kYXE={hr z#i@==5%-Nx0P0=?Jt<>GA@wC#6{q9TbsjNYGbpdAbL)D`%KGN(a1D~zZmZtnh)0fx zRuMeEeW<;Turn7_Zzr|&keU{P>D2eFS}lARCr~VarhMXY;ED#}FlPYFccjjwzk^8f zpmcbNr!1kn?jcQRr{l7?TRo)4%E0=+%(!jO_XpnB^Hz5ow6J&n{*tpszMQaYM_4bV zW6K1o3iajlr*_K3^bSQLXY~fU173`=ToXH#m6^;xQh{B&l$Gli1QCYG6sUHXLGr57 zg+2&%JL}VeYtzCeZ=uL6iDsn4CZV#1cjw(En~fttZxupjVa}kLsdUo*_t)EU>B*9I zP06|X^lw2ze~@x4K1EZBR!?6S7qij$?9yj>{licdKN0}YcyHntsHFGmJGS<~oAVYI zRj8+G!`*v*05~%ViyQ@!zFg+3Mrcwirgw9T#$Df%{$YzVY=~5t=|(`auO(U*d|K|w zELB6-HqYjun7qM3s$b;H)SU@AgN>^H>5z}uy-^5fVNu4hKm`^x5zAnyhlm0E;mDk5 z8ep0_Yxh#4YvaRlGr6z>6}wI;T|7J+T4|Z8g3B3wqc_HU?{7XBwc{g)JO_yqu%f*D z_^iT|=i@BE;WH33WwrN|JFwA@ThwAJhX~qxAH>W1yu@|&`z1Lpk`?ady~qp2r3m|^ z6^Q>G_n2PJH&uEp>S2+tF$t{M19og`_m7tvd@^AWv5wR>h7p@r5wBNK-;;PY(;#vUh z=#0S4`~vMxTyM*clYt>Swyt+4BMD67aLiO+&Xa(|L21p0IIH25PToE$=a~s~J1gbmS1}VCmGrI>wcXo6{~zjgHjZ2`~+*pPithU8!?p=tccT zn3B`CII*>x2@JIQCRB--)a(dg^&GDMHeG4?rGeDLP0`x65L!cNT!I}`DC|!`pCUpy zsJke-wxbOG4g#b#vSa-|zg^XWYNbU*kT%)B#dcxEOn>M`%Vr0mJs6_xXrvwv4#Uf% zmSqOa%*<4qLQ%Pz5BV&|vSPrCEth|lG6J6O0Hyl%u_Nii{GP{4k`8-o=Pve?Y&lWg zeLM_lejhBfSKr;X#v!n#?yL1|M2qhP7WAGHU@R3=5MkEvWdDx`tfBS0wc|dTsqW+C zEX{}8&xZVnEG;Lbcc_9;@jU!!ydT&S=rba zxVhtCw{b9&r*y&)<9Chb!p}22c#^2(dPQ%gqDch*I1*kmVK1eTp>vJx# z)fnuc(b=q6h|m7E|ILWDjKAbvIwsa%-}%2GNqm!#PtV_f+dM3e1j3doe*|&pJMmYC zHWX~!Yn&3p{fZ;@0-(YDK!>Yom*M(&S;^U%_oac-vGt0ir>6(7q2CYId#>8*}`m6${E@;u>m+-@eQL7G8C zn9i`L8&~-E=EJw}ET*$EywH|gFHEHQSB?zqpx#o)?x8wz$pQju)^2L=FC`l-;qsu{ zdFJc>^|>A>kIOG0;p1NxfQQ*U`}_2yi)!eApuUBX2pqhK)R%)DnCHkO(G%ODz-ki9 z%ljamrEpm`4IrX6_{K*kd92LCC;L-hGs1)FaDwSs-BI=04nw?jtEsFgXI22g2``T+ zHSu?~LkawOk$!1_!mpSW%#&&E;1>n{Y^@fn^DVmhWoVw9pn2tcFzuz9mPfZPGc9fkwo{Ui!4$G5I`#LUbDBao%E zna!3)%)rMGcxBDfb6{XI^;7JXfTcCa?h2wEiST?Cs)Kikz8M{AA^>&}`BbkB2XcR*FHlN&VDn^DULqTI6GXaJYjVB5TCmc-G=Nc>(-+aG@PT01#y!J>szXljIJ}tR zP4^32vMC5Y=xD`77(tyXTbXC>USXJRRq1pRY>mQLa7^!j{AMVA+5(7|pnjm0IZUvSi!!n?1;3XDfP>C`}&*`|^f!0Q() z%!V83UjsCt7YMZ5D>!%c%T9$5dBk{8#E0;}Zu7Q3XOI=7|BRdJcT(*q%BkujjJfm5 znEr=)eJlI}PTfcw@>D1YaqXv+P03SnTYP`>0f5Z;l*YiKs`2z=?abR!lah_P8F*?NJDAiSQ6i~wJ7HAFIP`4UB%HfgYTj@XB|Fa|_3N4*U{$<;T zfTZ<$U-$L}zMZEJkHD5K^RFw8D0ftQ)H(fY32-LrX94Oir;-xT&#n^&1Xv0Gvq}HvU^*?X*kzw-=Q}wfhKP#*#|I^{Z znC%o&3HG=KSkIBL=}m1Mk-n%L!3$F)blWK{x_Jpvs2oTwk1r+ilys4J9@i9WO)HCb zMF9U6=&e73F9FOvT^|rQURWvoGOBc26TsZ4sjsp_pr;wG{V4=frn4J$@FJGZatGG8V#7@S2O;Ry%K{hS3p9kh*~Z5WKKMK z7vkJFnJ9`$e_YWE6EimxwA}`p{en|LF+|N zvDZ9_3{yHNl@>WJdSfgv82ZR^c=4raGc25%H6No_fp>IpU~bm!$k@mR7(|sEv)39R zwWMM~NkU%|gSqzZBc{~L7#esY=ax28*?IX5gfpGMf1OG!7&>zc41pF*SBv}bxOd`{ z_jLo415F7A`H-VG%)*gA02tsSFJH{Wq>kY0@%0hwG7iA(b0=a`@&UPvMd}J|7I#w zzRt%_Mtswf@}IkbItB4pxWwRU;`5U5yvYh5Nov1b#8)1iBlYve9(2YaVUCQBv^si1 za;j4j829-~${jD2dTR$zLaBV==+Wk+w%g$16)$??ue#3E_4uMAwk*1)FW750&)RQU zK2STf3OOaH&oHe~VQIeq-(zH7x-&iztRhMo*)yQn5DG@<`Ug+oL1V=>W5J)zHLh1c zeHT1GrN^uFjwYj!rx(pc{bP~wSDd1JHa$fP zFN15>1}=yx!N6an$bIy|r0xIb595vvrZL;^r$V z)BNuA^v1+~Xn1M8Aus~-e>kG~GGA0cDK9q@F|u6%g~1W;(+ zTmWkWgv$`@A^y4lnO9}F%)Te@+o^jHH%O~u6Bj~+ubzpOi+|Bqgtkr;9cA@RsLs4G zc@zvJW@96MaU^fmUYPMYwHZI~M>kRM0FBs-B3mp<+kC}Y2{vaTu1LL6T{f-zHnQ_`YLH1&dvU&85N?F@^Ew?UzUl_qcrw+3z`?ycxPL2#8 z+RHysOeDZrfOH*Oj~_S@_2%OM(?XtOnY@jP+h<0j_cY?Jg(o)>u?J?9|BJ8p0LS`$ z|A+7UHnXK7*(6j(vUgU)DhKjwzwnM3Fd+bM-87^chRyV)>^CM#97Do9`wROdX(EW)F!IyQA zP0jl z!7lD@E!?dQIuvw)H3H&`-w?@G+Fq+#k=`dC9;O}npRH}f$y5f)zr!h#3ddIcFlD*dG3ap>1{aB{Q+8LfyrEIS_}9~U zCYvi$lIw%_6xgVleAkC6ZMCcZL~iPG)zzqw87r|+N=7DTFk^hj7GeyY+8P3M3nx72 z&5cRu<~EO3za!i~wl9LMG2x9PZ?y^nJ(kBaN{$EDeDqk>DtET%>aI5uc>U&$psjpO zh&9IGsl=z0Dm&HVW;YnkzMnj=SRmy$j!ik8ri=T^VPZPUYXihm7jE3R zF6Kf_kRds{PE7I6iP*cG+-pKQdg_T&e&br;PeyTl9SMBZFpV$^y^roV zQ~$5r(=Fp@V%fr2C4TlU4%G>$Mgc2fWqwHT!mH`&u;1c>{gwj-Thg{ zc=QLpu`&0zLs83_`V3JbxdBPW0nv39O(v3%t+|z8pcS)RoIQeEF^}K?z z@H?+z6^6nQxwC1yXG{;j6ZFEk)XK%LAFaOGn9GfPkV2!&27UE?Qrc^pnjMy2y1I;{ zw7j#^Q;N(U+$H4x=GHiNBc>C;*V>Y^_-ghU?%M=S?|cyk`p< z&EZdRMOs<_DiWJRkN8e6e8+cC;({v2pEdgE5o(@?g$t>5m$cf{lDd}|aKS$O} zGsb)D*{$!|PQ4acODi4fn%6tMcW%O#+g@J+uBQABJ-27%jD;(H7uG(SNqN5gB<2Xy zwMON-$c6Uz#a%&j&5yfvu!*EU$BFi5y>!MIBe^jeh2=VZ+88Q8xiZ$4Nd%}qc4^=R zkQC7llA5~E{dg277aPo;b+~Z(gR5hbDM_3OK|YCcbu@_q+E60S?}<(3dW%0UHJr$v z_&eYyqs-*NL96dAaP;U=U8#ym)4Wr{cp9Ce@k3W`;WXSeq!Pl^C)+(}lEW~_s8)ZgqY83J&9WndQ$;~B%B2#IDwsgfrpS7RS&z=>Sx25xnXsjfc%@mxTq} z>mnY{rH`JXP7zCPkTr~LNwR0O?%=R4PQ-Br9Dm2!xnV_$+9kCK=q3}FzkM4%)scm_ z2y^B%|9--;Ti0!A{=J08NkE9ty{F%c(3BH%YOf2@HC&wG<~tit?0IQA{YV?Oigx(0{p0@HajT7`g&Q7>VQfe0K;fdbBGBnS`{5@z|1P6M%yK48-PzZC& zJJY81<&-@Y8=JG3g{nPiU|8;;SNiQl{^6=pV&OoEfDZA|Pd|MpFa2`e4Vo}G&Y2dY zSuM(|B>La!nSsZRi&TC23te80@#(3seD{9TZIP9PSk)gtI>Pi8D|e#}bevke1TcZh z3a=ufUHdi|TR#b_)ZUzVCLL}do4bd?XwTcRc!NaD-qonj&dt6nmoN7e-c`S)&ga>a z8zk>zkC#=Ecc|gKYlQqpbJT}bDWl{oJ;Wv|*cZCA_hqWq`|Bnw;^P=4T#I^l ze|s%t@B}LEtwshXY4r{*H=V}})!|(qSDEbkYcCnn4_pd_yHAf+iy2&|+(%joux(HZ@(nJmkS-_i>4EV7)=4Z2M2shZm31iE@TC$8&!i`C;Ci+LZgEyky)? zIAY?7acLZ0z6D8~IhO9%wJ;78ui$l#ssH{kUmhk;Ar{o$e$CR#Dqh-0{8WXcxl@#!J9PW3Z)Z^h zaql^TaCGE}%Fp9(e>s(cj=Sc~n}pSctAQ$m)b*?VV%v`N1EF)i z17;L`FXb$FA`?2;-#FAuh4>p%tC0Hlx?KG#f1ho?=US-r_bI08s_ikp?X46B#NW?LC|6e@T?l96}O#p=>btn_$^^|FdQzCD>nbErA> z0m;7ridLKvGc!H?`P;WubtAf)MeYW7p1e zX@A3pcD?dH*}VshDwWU64n-DiD+=++)a#R0&-Yp{>UEqvTD{Zp&Spl;#T4h?o={nr zFA(*!)Yv%k<1L*J_@5JT4SAR@x*;yDcle2D3!tGhdyGDrw+@*+S$Oz)q7r|r^rPWc zz1m8~6CQqFI;8&S9co1g;wDS6>M4dQoG8OH)_so_=`4=X1JL#BCq)}+zZSbw<>C#V zBsLPhiX!DY=5;3wA$h{%pGG8fG}q5FlNC1pzJsDHo0*blvenFlYm$7%cl7l1+$!%+ z2CB>GD9x8tgnyjo876m;qTj7f!DVvA;aS86TQ=7GH_fr-I=i=T-fR$?NR&TMe^N#! zrMC702`MQz7guV2e!fI6SNWID+ouGF3-wbAUgIQ=425d8EVTW-VjlAGz{YV92V6Xn zcNm=*^%+OX!HihFhh5L13tAkcK`x%Om${``5cP@DJ3%vdn?msgr+q#5#9woDgR&p= z)v4CE@%HJME4mc^$h1O=XAr#ae8gHP)7n%>6UH5;i^1XRhSV_}kYOy*dYIvIF3E6v z1)hC)Bi%X1I`|?&{2_Fqb5_2iz~=>@pY1Dn(qH@3R>tkZhq$j_AvEy@(k8%pPen-W;F3Re8>^HmGx&L$%av{{5+u zxEpV7It)KJb(rKn*V(gU$}*c*nTuT)9VA0i-w_|Tz2wE?z=tqc(^(eH>TA6c(C~=>K(q2n%vy9%(+_g4>`an<*T!jTVj(+iNTm*P~E>pDS$2j~qR^ zG@fAR*mSlu-?)*&7tjU{Qf)2u4`>AS1ovB@Sx0FN`279V@6gC7HLxxxM{Ro>Yt3@t z_;zH$eg3$mPrlyWSNt-%*5y}jrQ%nSstr}&^*ZJfujbxjE3whX@>)gaS1tR(j|&px z1j&{DJ5KTYt9V4*ZRs4t%pstZ|Cu!bJaVGyiju2 z7^cT@ZXnsYj$9<)peE2YGXA{9wXV5F1}8G;GUPC#gi?smiRcSzL=<7+`Mb;IUX4M1 z$B+ZpC3lJ#L#lHfcm}xBXa0@5#{YSEPFY#p@bIu&h3nYYXLP}GmmbJWEkXKhW39AG z6|5uq9X`E}aR6Ply7=eQ0fwC594fjYyG=5P!FSrsHH57Ygn`Xqc4AZ24Z<&1m{)7a zpPso>60WH(^{l^N2QA%dw|*;};pZf72uQp2I}qK1HZLLr-hyv#<&96s?1}yT<))uk z>Xv`0jF%vQ%dGbZzqZwN*#j)Nd5@Q9-&-ATrFnpFYHF$#^J(-;)D{PZ@Sa?<_n%9) zRXeUm1#~p0)J8XF@>bVD4<-QO8S$J2_d)*$jX^h8Zp5Q3D67h>+Wt+s{ z5%tpp$S(s<*?XblueQyb++4GoKmzX}QvJ#4DG5{99UoV_?rcffHiRGlxYlb`@jX55 z)2gInd+sxp8<>#veyOWfzh`sm@C;FUps+(Xxx>R4e zh{1pL`gQv2*RQkG_%^v4odll!e2wcN{^z0eojr)xX{**18=P{4BwS|)ORILy-c543 z32=;%uFg68rX|JUrq+$an-)X>psK6*>12KG}s;6E(qyqH!dd|r|6 zkrIK;KPK!H;H;*vU&~)G8a;+I`+HaXzLh*)^IQzYzagkQZ_>+lyWB3eJW5VZp0g%& z{(QdWkJoy-ClyvG54E1`w!Mmd3;5{YtMh?(*@fL=I#hcfAD8n++@{YA{u7$$(CAtw z(z)x*J?%J$(N1Lpq<27?GQ)33uY8wBttqQj^ygW>0M00%;`D_>;gaoOWI%HJERX-a zFC+#ToB21;4l{3`!ju6Bh>%+A5&p~U(s}i*?uU}XELyzBGahsR7?w`^pZ#a`l@EM8 zSTj1&{+fJ%{SKTA@>{S0kLuQCqKdujl0eGyedwt`L_M8_a{oca{c@IDR&?zdA z&mkF`YC)r-M?1}jCE__uaJsWG2Vrc5D798R_np=5<$kAD0k1Xd@ox!@tRW1zYGr1h z`Y^uAcO9FqYX@}oQYwaeSw22YEbdL1;B-r=+k7)3jnx89O(&?U1PY*8bPx@66p zyh`wkCYDM+}N3>l@mV?5EP4j2WQ_Kat;)_vod3AV%V zw|AkSYHw#@qklqL`8>}|4TawG{2%E!Q4@Lo(uL>yF#4vr54nM|4=jx7L`zb|s%v_z zM{k|1X$v+~>1WK_{rt*`V8t;^aTgq~bjo@u+AFv56L|ckTJtazU+MSxUB3=1tOl7a z@T3Wxh8y8 zi{)R9sz<}i;4<~G)}JHek<(21e5!Er7`*5qVf~pb8eXN(ff{NT#y}wxIVzvxA6*_SyIR**;iwZKKy(zV)XfS2=SiT z^pz|X=lML6*&d=)iQ^AIt)@_SDvrYs=FMMBP7LSXGt~}y&f`yWh)nZE?LVB)?9wFU z4{7W(+C`y&lT&~b6fpgI1PKP9TkbbxMNg%8w=>$YZ*nVtz<>6v4bL23^|~maw#YmC zp-N17F|kQw1mhX7+MmK`jh}O(#;zcE#dc(=PgHKr&$N^t-nrQC5~@|xY0W1-Z-9T6 z_`h@MB8K5Sd??v>(?WXdXX`oNZFguVD)VPG&o61NuXMS`IC2RHfJAf0Zm!B+ ziZY|_Oz#86)ATZ`^Uvm+uA^kuWaQi2WP{FESKX5v6=`+r`|PT|0VDTwIu1F6z`(%V z%4d^Vl9IKqP6Yh^)Fl2VHLKB@?OX*viZ(U@t&S{Lr>mX1oE#R6y{^ycHp;0?ZiDvI z{;JP(aB2rAZTA(xhLo-TiC1}fcEvsel|I*R-Ev!9Nl$Sq4!N)R*__1x9}IAV6$fX) zsxG}@@@7t5YV`>GKSMC6oA1G)aSOg6`cC}(l?HE|?!3W1?@0;%K&Qm|cviBf<(s*z zL`M?n4mShLn+)wTLtwCC{uF(6P#E?3e`&u)u&BlbbP*#(y~!6jfUN`9p(r!qPGKnF z|7`oxHS>R#X#zfnA|GVuihFkflAiNgo6SwuTX6!jDsp>v=oaR5w9S?MB-UmDul~!` zodv%XV6~Tk&0mgh^(OR>)$@EX))c#3OUmaAJddA~kix79Mn%*hkow6#XNK@HGA8XA zSGWNnW@jZ2qi#}~nJR|R`z+CY_`$C>r8aeo9PIN6_)T8|`-}f(^zEIPKnZAF=&`-j zxUpDA=>et{An3qp3q04&ZXVv- z?}Ba@no*Mx#-B4KL2nyb?7{C?9FiU0%xw_J$rFv2`Rkuayi;zPOwqcmRpl%7!F8_o zN-loe=*uXz>4?(LRFRGE2LnmtB;0r@rB;Ao%$;#;5u4z59KHD4ds!99q{d?PBW(Km zUAlEKK&LstzuH4*PaP@_ffZy)6t=+Og^mi0i|J;pyqE<$?fz96M zm^R-7t|eI4C8 zbBAr7Ed`2~jDyG2ArMtF!Y!|k*#mkqgrpm}QG)qI>!KM$CY z3q@H?*v0MTRw4s{AlWvTxr@3Od2rmkyqRTXWpBP=kxmIVv5Y}?u5NU6G$!AD$p}ze zoV1VUbe!Mz2=np0J0INzoF-c4VuZH0CbH`zEkvZf%}qJLXv2iQY! zY2N6Y5tfDix6lk5VkF!mgpBrIxw8zOb0UI8f2+3}9h^4vXhfGtEPNDPeg1&v)SubH zR!4+DfObqQFmC*lFtDwZ=`XgwN1q3sZOX$4%MzS9*gABWXj?H4{Zre3?8a({m|p_n z46V75Pe3Uf0f%7)>Aj6sH)V;f3bXF%qY>pi#Evp7A#l_;8XW#VU_ zmTG6X6YzxN5Ta+MH=8b3F)+)5O4g40M@ z?&;a4{$4wZX7P=WOKlA?*L5y7r+vW-9z<(s0jKFdI@cIHE-x=f23S*jCY;+K{4uaH zFsOP=+ZaaFVYvSKQQPu~6u)GPj&j$e_{kKVIYT14 zV4^CQlNL1e^;<#5+dSF!Vq>G#ujM|iUJs+qksXy<9W4Y)FTCD(qr4a_-@DC~`TGPU_L zuN93L1O-wxhq(Gu?2{LM&O8|3-Q^VZoNTY(9uqEiz3MT87OM4Xx!BnN!{b!VQzJJK z3pOn4!h`wk+Glf{IjpAjiYnGv67BGn5*F+C; zx%HU#F-)1+H+r*g&wp5MHOC8rhf+oUKRzgy#iXYv=6;04EB^;1K?k}Myo<0!_~}f* z^5m2(^c3JVO?TZkQ;?zR=Dm74)YRYga2zYm1&@FGkOhW<4t#09BPk?uvu$AWde7V$ z7zVC(VSoIdU{4(@Whlw|{AFzig!cg|WBV9ydCK<>GgAGv%r>n8^ z+v-EPA->$MAe$I5%c1$c$UiYQ_gOW5l0S^UEq8WIO20 z#gAh4;KVz0-M(wsCk(?F=#^S?O4-uMqUYR9DVs1l!O7Zpp@GW@6{zy-G|XeNT-F3;F%n|T0qyo zuV5f*(%^80I61nz``bR}N96K)CiB&+P${o9Ouqfl1xriI^5U!MevXon45x#XfIcfZ zh&{*@l1Ti4YXTF50fPwD@+Us*f3TR-vTrg7FEfCe%%5?7#%%w4?}-cHOS;YLv`8#S zA^~pK^O@Wa5%!{9R0!pK=#*`fao4`r9u#GTIZbn26n8T}FJa$ZQ%qmSZ2wyDZA9=i z7^)5+gnz16E!Wb)bc~a=V~tc6$H_w#vro4gVc^3IfE51rJ5gc~C4oYCs2Z5*3VyJA za!5?;>z`8rwxNdO1gvqS!I1Udj}M7l-V=`kvOY;g>}>TyVUOl711^&p)298;RPb}- zsEIg+#1z6=GSlDVL|F(}kfoC4P-GeQ=a7ti#fa<1cGMI17+l)NkA&&Gv;kZhFNsZv z?Ta~|CgPOhRsWMZ2~b_44(;K~5hB^fJyyU88eH5D%mw^iJgK`OwU7XEeYm25PS~0b zy#%txJ6?b1O+l=IpkpJLK`wS7qSWK(Y9jo9X8Xw?_?{l=0%85$_VWHE4Jh>jpe7?( zBBHL`Wv0AKyp2z^Oe-!Z2jfm(ca!St!oM|%f^hv#yS7_5>`59o$avNYlSMyyi-|co zh=3CIO&>0m?ju9%No)N4V!{q^Q2z`@HT>eUYg`%HHZ=Ft`&}MrvqnSgc%M2V@a+D* zD0HvHeU4UjJtrVNMn$%%8E{@$*bx9C%_Al3xm?OwTNx-4cZYQ8?e~r+17ulVtiQZe z!oRsSu$K&okAKx0y0)S)3{cl&$R8o|j5s$YtG}{i7LgaLl_V%K&mMRS+3qQfJ7^kA zB&$Frafi`qV=UHfZDsCZM0)S2FknEIYYCUNgWx#}r!BU<@)_Hhsd!>v&5JSX^*y%Ma0S3K`$|92a zj)h&-)lG6ZG0QM#WOVpk4shU{_-z0CoTM**;e3r2b*Ql)ey|8}%HrOR-ySn~Cmjf% zF>r|sqEy4X!$D93$CjR+{#~w(H_(4sp3EU6jV=Y`_Z}0T(L4xAtc-v?@~(*_)fuK0lL<3)yAB`VDs z69RjMeG)~WdNqNm`h;znVb#&HC{ESsl?_yXQTexGfjaCHG2uO^S9yvQGz^7K6KVhr z->vOpp>6y1AIlole{~)PV#&GzPW&@|0lqYtu&^+|m-7Y7c{=Z(*4EZu_fG)uwFiOo zxrp2Uuw;QSnL={cD1P9iJC6O-@!hww`XX1*q0#+rhci&N{{1l?4oiW@vYAe|DG;$3 z;MDIYCNk^-X^+MMyqDI6G^#LKzVX}-^TQ_w)|I9iP+|?G@ZL{lCTNw}v!Z6@D7bBv z-m+%)xv>-VMvBc9bC_O`>wxdQR|8krK(uo@5}r1_0d5fM4&n<@$oJ*jBy25IrOf12 zG35wBpg08a0{4EFATM6jfeoH`rd!`nN(K<$aS7KmRU6;zOi1F++k(wD*M6mdGks1K zy5>^24+j)4XSF_J6MqST#rC#0ECwVKXJ*D39zV<5VLqX^bK*Wt*4*Eove?x0f&iKj zbx!>c3Jnv6YEsmW%Cmoq_jw;7Dw(PecdD{+$9B~FoeIdKSm;f;!VR?k*+MKZMyiKe zSxxZsr5;i9YskgplwdaL$Ut%@d{QSQ^yo^K{~>Jyf|`F2Efq@sdPgl)>nQ@e;sQYK zaqYkT`UIq+oVTplGVkM}Eo3zgc3q8utQsD>XYv~0C z(j_Cipq-|I$Ifx38hMs`_wi+)+<=irD}KkTyY>$mK(1BsCPelo+Pg>iS^M<&x=H?< zByt$(+r!E7^<;*rJMsE~|AC3a*YMfiIZDQc9<4tQzR`#DGKGr{%EOi?^;_yTEbyiG3TTMNW2J-d%`^FyZtH;`KpQCR`* zk?mfV5IwQgeZ$k&MR}0tAPfL|kFpA2ny&Q$qVRxh8=Z))PFCxi;s%FAwF+UTNViQN zMO1@$TyoBcrvtdo+n}06H%-wk0?Jghu;BIsNUYhnyFDQzXxlFefqs1Nv9M2NaCHe6 zH#aNPjMN@FmG8arr*rq@l^DpsL$!@D2<@O`NzZS`1ui*4qK7YEz8C_N)(_M|PA|V< zEj}_-4&Yy+Vq+U`RsK1OK_6C=TvC7q0Ui^X*v=n6GW1HVx_Miq{_4Pwkskm)XyJif z+haDYhKYSqSb!WcjiC7j7G<>G)5*21rbpC5Y#$w>%@KNZNMvRiufifnqW?F@*MJR* ze3>k>y;!H?G4||uW508Us^rc}hvZt1@kfx+AVamWJW&W&T!fEQf?aTgJbymiFJ%UW zV~<3Bf3DhH<=b7@+l@r&7Qm*>(qV!&>$TtI4G>zQeME(%$hvJEK(%7eOI&wce4kTaT`S$>Q`pmc&jY7e;od`=o(3{uvrmbKQqQ1}ra@sZ_0|F#7&_pc%5PPy20@vZ-|O(~HX+fA%WttWsvDzKeDBi=|vlHD(?G zPK_I(_XJ@Z+#rm35Ev5^aQ_&X$)##M%KdAz01;ysXY}`;1FO0W1(yyZk3=$CT!0~S zgvv8K4Y-9so>HoQ!S}C(G*ESzMPN$>fTy}?BRW^qQ8pBO;#zAJcz1^{Cu3heRLoRM z`pW0KM5+dyB$N9f7I6uX_H0C5_=8qRahwZwf%ag@ z%C~PHM>?(;Q^;M+cJ3lo4PclEKRg8}YJO6)Bi_;?tajtWnh!MF{W^ZWez6!kNLZ=uez0JJzV{S=FOdfEfXbQSPN_GP*uY+jdCisk>eb*#q|7)} zaoLti6`FlB`u1E1HuT9E^nUn_4q639ik8Igzsg;%-@M5*cvP^IzK#5liGr*M2t}aJV5I#*vXd)NsmxU|eeEZHBH<0ZD?Y{&AOn^KSb&e2B z+&J7sU^E>E3}_G{EfV3XI|Sl@>DWRyYe+5fX%(eA-<|$UfcfA1~0Lz-qlWg73huUBIwJbB0;=N~j-^a1$De-9od)WLx2lpQ6v z!R&G{Pzb_CM7sImCHDr0H#c*J>uJ&Plfw)(<-wu3~gKqz?`W*yEh=;HR4W%laOoq#AFh2;F_(#qAGP63$p zM2Cjsh)y_q`sN}$ISz5CXxn5PBizs-?t>d&G%DD)~59}(6n z)24Z6LnbfJRh5^(4(=i0Sxn3yIQ8w{zd!En>goB6QmJrW#eMX0gd#?qm1z|D=ohi} zJDaQ9-F`c?XaY6+K$Hjx0EGqz)qm8vg`Y4Iw!sC4*>@}~EZlsK`+WVu8$&cCOJ$mX z05Q0t3(kdbl3}@@3mC0|&LQ4mq(Q)Gyt%VP>r4aWE|f1_I+UgnN~0zk0BN19HNM;L z@H37etz6;VR!%yyKafk%)YPm)9N&3*Q-lTJI};tha-(FgdIgX*J7?i}tRf<@0QVdr zOHpXmoqKb_7f8G~xXlK#GayNbaGB{^ofWxDJS~D<1m2hPa<;1-GZdXSSe4lHHK2up ztXnl0n=vN4k^j3UfyuA+_n>~|BF~QUx^KD= zfJ93Exj4O1M=8?`YW{eKW)K0^cc{yJGmeyM_^?pf6wR#}C*vm#SDZA7&Z9vfasdWw z3fc-3YK#1KzlQ`xD0c~63m&1#9T9q<5V+v8;Dwm3Z7@luP@sQ1BpH3q2_zeTU<(`E zK8D2gi`_iE-F7ja$k(oU?bN)y6m>1K)NY^!GGJdpxD$J|ABz%5uJirz1vyh2pP#Tp z{sR^fXkY{WvVlC)REMIFG4t9Q7A1Z#1#nU6^>n6r`d>@ks?y}U19gk@c7|Q1i=&G9 zLt_z1BX{~FB#oS4n)ii679E_J-|i#i2sp-^xs8(r$v=`mLJEuv^c%-80EF^TJP7$L zDtJ@lX&ofR%1ZGS$ADc%cnV1-yvGGou!C^u3|A(b7gRkTC!Du9Tm=OVqSLQlz#XC| zPn|kdyg($gj)g?s`(b8(_=y=OE+V+(^LJ3!pzbpfY zGoXuSjEB6&Sl_^|@B;;0-&)vl5Dhm2x36MoXgD2*P|yo2&!yo{Kvq02)Y`cQVISwC+kl9`D z6z(e#gWGOye{i*Fcn@T9l;`$TRtns-Bnm&(?1P+v7;yE1dWA-xNRWc(x8I%*9OOkw zN`F)f@3Xnm=>YP%i&9KNmPb&uG2LGLkWI7dkUxC8AXA4})Y;z^62*Dhf9D}T zJsu%3KZqPHXu8Z+r+;h%1V@?gD~wwydmAapZ6Q1j=tvBe3Va0iGRKo91lQM3s*-oB+nD6oLv5^x$00g{>yigGUR&LFGW)~aUm?1&3&;DCBoo}7xV^C~xTcyc z84tQVXa`aQ)&1DL@(Qp#cf;d~&s(%}SofK2{29yED+dZtdUxGeO?--@I;GKV;dccH zSERDpzQV4}BC5RLzyiKb2PiS@w;SgHF6ep96}v{Fq-`1eEzdT^i&ZNNs$=ydA2ev$ z)n|c0Ri9H86iT#uZq`s~e*SBB<(d#Ajg=lgd#Ip{W-}Nfc4Zoh z`}^)VI23N*1p+5>9gQ5dSMfz>Cqii0!NbHo%#-&m}o8fA%9Eq#SycoYP?+-|h-tDl?fw%vg z`6BlRg2T*?Kshq$YZ>&@XkaE93aqqw38e_~j~+dOj5SK3Wh+TxTwGir1sV)Hvh>&Q zy5#oXDc$=iF+5vhEoVMI61u1I)rR?XKEF7CXu$gppKC;tAsCtJjT=Xi4Z)IKBX}l6BSQeh?l+m9!j{vK<8WpPCpyPRdI-4=`rKdBOC($I#L9lT?VL zpe)NP(DRLcDo5Ola&w|s6rhI{7r}b$Q?|#fEiO8N0W8=)e+^rG5oJVLRX{&Yjad7C zIRm(do5C=8O+(F*LRMn1^)eqgy-?@?JxDcfN!ih+kS-U^h`Vw?tfZk%oa2_XeVPhv zz*%Gvq07DL4x=YPWr{%@zC0nm(?2Z5hJL!FkZ8aX&dC2C6~F=g8EZc(1j@3g$f8FY zY23*-z+UE#zSdLn4fL9b3xgb-3S&o+KDQz`%<0bTGg|qnKl**I#GH}iRs?)$*#}pO zia|sxHuW+Ji2SdjoI4eTzc^LmzF!$2c%lYF%pB%TyGX@O7d^8F`}VQKa8ycVQV88CDsADy$27Kos%;bXB;tv0@Oaq1xOW$4h7NB$@ogb z63IZ>U~A7FO20yp#7o<$g+h>)p7q=L3lw28l#qevNG#a-CNeMzFlrnU?h|fRTe@9~r#AUEI_T3G zbjXej`4a>%@Q)7QfWW#+u7=kr>7Wv#FXFbM$+Qr3`!^8x5OHJU zL>-J8*1!qv4IvHQ+rpM%!23i{m2xelmwht^AHFZF@sKh}f&2ldDSnCjN19HLprCVar)qCs zUx-I3DJv%@_r{4U!yN?F?}3sMgD2m9XL4!52b+H7C6PT>yZ_9SzU$aC2qXkEG`%YW znd}BczV*n$V^C@m1Kc$vE#V}n4MJI%8K`P)lEEFp-RF^pbo-7NPFPMZ?U9|xcHL}t z=3%JXg~O5s*Oq_$7;yDs!Jp#2ktn|%f}>{)pt_UaaFd!pbFQif43_u*T2sJ4Ax?hX z{~6G8_>%Y*>c(`(o}`{UV8G=c!vtUSV9I1Yyavh6-fv&{(*8m zy^%X(9k{06?r&6QQAgT853d}Tb_@sYv$><*PvOUX>=%q3QTm9=WI`bB=C^G_EhOFyd*Ub$`n-K41U{7iN2dtpku7s>8lbjswW2GNC~_y;++M5 zm*(b1K>P_!n{>d4!}U}j*4tw%>x;YfnqEXoKNp_|iJBP<{^REK8&n0V;0FsdRkX+oC<+D(M z=?8Vn%{<+5XYNKOFYDuh$sPKD;TZFZhZ;{@b#k0Kvm)nBvzkcJ!lUNa1&rTi@ z`Hc{MSBlXie_gB)Dg%Fs)IFdOI!v-r$mPDe`Zhu6L*2wfCO-z_`HI-DSt*%=+si*) z>&QDRmdrw092P&E=4T@kPU;RMAYF&FxH8v~+Ks)w4}Vi%wQP|Ow!S0f6_L|8_R62? zDi@2K9FATtBk;v}=k)BGXI~YV5whb8u<{rvzCV6cF`A1o$>MvD(klxZ`iBogMX1tF zDxO(7{E)4l6kkQ7XL+m6(C?=|;YWLezZ=bo$6LHwDksEXf{|o12^a-quz# zR2PCIcYoL8A=at;^5qbcyZS4$`zIwO0f@Vq1Cynok|0bDZ2CIPr+`)08J#L$Mrg-{ z@dx+@h=&FMC-I>}HNPvomVg{d%gv<-4vr*bgM79VJ`oYboF_E6ju4ZQ*1zTN1{ ztUTdNV4$Hv1(fjhWeN(4SJ~M$Fpv*N{l~}0^NWgR3sOMY$j-$@4CNk#7!D2&IOP}# zw|NCKv+=OLfB@OojSKKro)jFLn{;=4(-xR#%V)P1S({_d)Z`P8ZaQz2TJ`xDnwy8V zy->!(NN-NEmwotP45D9X^uP_|c{qCh*|X%fwzmA|&nuXia4<=_r*?%v*}Es<1N^Vj zuqFwIh7&taj&Iq6%M^KR3qM$mlv>ws*fXZ296=C@M#* z4!pxBD0sd;2NZ$w_3KAIR#Xg)jolv|HGyg~Du|PPGs97(-t&Zn8=AVhzXVrLJxsgl zzj4JVi-nEt$rqDz(B1==ot>=(MJWxD%#qdAvg=!0b?xnkSy@?qrqyA(-~_KjJdVOD zWMq4aETVeF2?+@y5x*M%TdlgOi4=&k8gNDhFrJCByPYTS#<>SGGdcS~#ra@HR8;g; z@=Arn2;uh5&Jt)U4fb|-EJecBIM~_oPKelECs*z3?PcTPxjaX`y1wo{IyROD$<|x( z8%L!bbz1O&g5wbeF0NXh9Jxw0^AJipFd2PCdguJVzzk{p)e?(O0qMzlGaw;I~(sT3Wu|^ttMG2J;{^)bkSClj^TuNsb*m=Dxm| z*5fcK;Oyce_UEsl7UnQD_3D%BJf;D1_vo2%tY}ux?f+6}5gDm0n&q=~UYHcQ?kk*k zw6zt~E+{A{RQz!H-8CMoScvf^1kR8U)6>%vniz!UZW_4Ddk-Ew=n+t;!7Uz-i;u@* zpep)A&JNx*C0K_1f&w{E#B}-IHTD~Hn3s|4+PT;G-jA$dHH%#57z{QwvsLlQS`S*>m;08sxK}7Ms|~$!T(CrtaG}atNu78r!+R*@ixPbiblP zYGrj5wTXcT$i1mrUiA?3_`?x+@1CKJ4LOjx0KSUH0$Esic`4u!eDCg7mX*cqf+2fI z6XSb~v^r}M(yuH$JS0m?OI&<>As;?SfGuw8>EUuc{|FLmL5qv_iBew2;LO0vvqGLZ zprk~&;DyCofUNr-R>U?D2HFA*VFZBDnw*}7P^q#Sk`~O?Ki?665|2jWxe_!!K`shR zfg03}u%A3h0OsYQx;m{yZ)$f}7onS*n~90ZN|~gP&{3$vlQlErgsMs+d3kw!Lc(Fl zy-ZHL>^$L3-mJN}wiX;4OAEB}A&dskGuRF_fPf#x#nC;5uoq}pk3Z?BKY5HK<_(ztdlaCq3L;Dvb+U>W%|4Fhm-uS-CD z!??M*iE`f@M(4gkUFPG2gs{htsW6dBdv9}c3LxHBPzJ{c1~g5BE8lO=7m^|B^+laD z5ty|$@cQ;cwFLP1_^*1Mot>$usQd-*wuHv1EDMQ<;9*bnsMxP=w9K3yeu4-w8HpTMcVR%lTc9`zu2Kb~oYVv#zz&7|D zjjcUHBO{!hon7(?BChxzEMWq;h-0uj06)jiDpY+RG)S!j58J+SnH)6+bz z43C^9zq5im>_t)0^;s_Z8K@cVfs*L-^z?j??ncMN7=bYAdq;=7x%sP}rSnQEDrDN) z+JgYWz>xvUvFstgV%~ImVx<^^tCqxdEJ^dl%f@MFDf!!(d@%6Co)C=K~=S z$M-t3qV!j?uh({T(7+MLU??dm0V%Tz3PuqOIytW|8hS(496(q=SQsgA(^SWgAF{Ht zV!E5oJalqUnjX}0FRyXi{wmMt@}22AtEH{|F#2*~4mc~MoweUycYuKC8hpnDxPJiJ z^|11+QD0c1zCeeSAYg%HIiu1F3pHm$>1)86AvxEN-o&J&C7@P9qb~~P=vB}Q2nfW9 z*fI6@_oF6Uh_1eP`SM|S%^C5%rG8QOe9SDnl#~=ynPK53sMo?7*B(H*{rdVkT43Tp ze<1T%L_}zzDC}NEMMck(^X=dQmmq6<0vg)9{sM1~qDe(Xf|u8_d#HtKVMWR-8YV%D zonKf;!~Mjp+;30X*|}5Q28{OQjB76ydTW0FW{Qc4v7Bg#i8+=i;TAE`fPEP2pK<|w z`vrOVp{c0{fRot(kJ;GRXnk}q=xIBD85RLpokgInk2W+kyxzK~qN0+Tm&fNQ{>{+Z zx__?nG90eBgoI_^rin=qe+R(79j2jyz{ze9h->IcLJ5GF9jw4%28M7b*Qx31I>yV( zTjsvRR$}|>A&5&t8Ew8>+1M!B*yLF5!hU@9>Xmy|%W7 z3>63xr!N`O8{m8LOifJ%=H%q0W@Vj%PAM7zPxXoH{vh@)!9bhYhvmk~c-F)0M2G;H#62YWZROrr{-}}8Z(&)9F z!az^YLmbEgfdH$p@J%=lwU1flg8=W7LIP+wIJ0rs3%NG%QVUq*Z2#Y03pvEli%t3a zzWD$5pFIO03j^}S`Up9Nm&g(9yv@(&zsPZz#=a%@jRqo=7KD723_!@;}i zd%c$F_-CYk?TaoRQ7_FZA2!}7Rl@ugY5 zRKLYRET$T87;;QPq||Nd1sINWy+g#r{uvo30fBnzR6?2q)wo#NK$4VB$THee`pg+J z@D8v6f-a=_XJ>N@Tle@!L{LB_6up_58Aw<;;5)XWzjbyVLE9`!hnEO*1~Q`%v&egS zN%$+@j}HkU^4;4Sz{5b;ok=eMKIc9-vo~)}Lq4IiVN|lP07ir z&@#vwlE@f;-4Cucu=O0@Gr({Fg#rdWm0t5;e{QeyC>j~D0lZ&A)wtPPVy?4vw*6%R zptvxa>BjBK3!StwxL!w)Bo0yR1Yl)kIdw_X7DBQ+<791H};zu2mK7;JRUd$?ZK z6QZmJ5bxM84J(2jU=bCi+s8EhAKWNAGF9)v+=0CNaY{-gVErM;&}+<$R0rT8;|l5M zbAp1*3EY4+;LGJbJj6`S9rp!!#}Jf(d;;eDs*X;0Z?AU!r%%~kdr)mhO-maBhcOKz zNU)%AvOWdi5p{0D8=p;o@dB#a0tAd33?L5%agje9X>fM@0DOKBTR1zPhhdha#VUAV@C}^l@-WBe8JW>_xq|HhqSbw zy_?&ut$xU1<4Z_L6#D|g4gz0rqpzpH_&x|^ZwL*vwXxFC(~}TUGR@u)#sK1>B_k*Q zkvY?y_ohqCXR|03_Dp?41If8~6+{-C{ouL!8Y6pAP3>l}l=r#@Y{r+5pFU-Sg9~9R zG2|mP`fLI2VPp|Hf^ltcZ{t%^MlvmrjgP;!Ieq%{mE!HentM1*T7JI9kC^Caj&Mea zn?ielhz^N~iCOM&!egYRr6cG5LK5pRh8R>E=$%|$OHj1d)d(qJ9x_Jp>*f{~Q!xpl z=Mz+lzD9)-W<*CHK_o_7Tbuf-2Q4k_GtGEo(?B?@9A^lDEoR8E#~2 z!)E8y7T23P#X5@1O0z|5O|s&ION4V?qP%2LTCA|R^hcDkOSKT~nl9FQ^YZ!Kan4`% z?{2s6e)~S3=lOh|&+`oZeCnVKpoqod`tqPT%F@zha4X81JMcJ=<1aMC00#$}3ML|q2*vn)xarB->Md8hx1Szy7?Ag=lYk-++ zZevrEUazM>L#B@yQ5moJIvJ7jO~O)d?~X!sD_@B5X0o7y6wD0?Ia3e@CYLt#THzoB zi(UC|>g$8gp61P5S>l!RB0To)y?aj}gfSk5LXfz8*&g`_D6X^IUmq7Y7npne#EH6{ zo5dH05h|5R*ZIXTXta*C3XNsGkF?rx#OREd(b1?l+R->7 zbs_R5qcw;E&t$QqAi$}l$h9xbPuec5ol0*M98h<0*|>VAzj=M=;jZcKLym&YL^s+me%bw zA|2^0T%m9@N~Gqu+ZIlO{E(fSn*oDY!~&AT0+^x_ialg|G zUbeI_1Ofq1Ab5(oH!_~REBfr#q&vym_Mx^-$6%*+DSjjFzX>9)`smRrn7SwMa~BUs z;B(k)dtBbu*47JKSl|O1jRr@CJIHK}tcOQZY3gmKUtcmXJm7=xThA&rVWON2Iz%c^w-=HZ)Y9CZ8)qT0tQCt+N zN0|En(f0r7??BBw5f%2xX2x_^2A4SU={n$Gbyv@&;^IX>StUdYXg%#H0fh4W$cXvj zLGOq?Q zN5;ozAtOj-S<_sOUop}D@-nIj*pIMF$)i=;%&sn@MCJB;HnjmG2nm=!^Emz4Y;Gs_ sfv`ML5IFv!vEGz1zp31RnBG5c_p@%*_?UC7ykY{cwVVy?qJYS>U+rl?G5`Po diff --git a/img/AA2024_simulation_10MC_50exp_1batch_first25.png b/img/AA2024_simulation_10MC_50exp_1batch_first25.png index 20583fd8213f35071424d847feaeccd232aa29e5..76fcf9d912d8af81a47e3c4d11d55b74a882f7c9 100644 GIT binary patch literal 36077 zcmeFZWm{a$6FxXN1c%@d9D-YL53V7&GlK>h+}#2p!3pkxKyV-26WpEP5ZvA2e|Ubo z`vvyRzSy}K=9=m5bE>PW%ew9pp{6Q_`HJ)v2n51Zke5~mf#3r{Ah=ajWZ)Ox@x_0@ zhoGyBuB(QFrK<J zJ2+c$^ls^D02e`Xl-F|sfv_PjZ@6FLh1MWYq`rc*q^4)a!IFosrbXA)>58D0qIbwU zDv7rfuMuBMzwVTgG}1AgwK}Ak@pJQgJ$s}-TRk&fS7zI}R9CU7*Szx;2?yN>jw!bg zM4ej8lqz^k$w=}A4V7+4!rAXJ(tM;-mn}ns%V)nRZ)3w82Kn7A1gupx zy4^xSaq(Anqb6_~MGc!WTqVIv7fDIUmJ({9gAaJA$<1|thHZKJ3p!GVw!Df8QbxOk zwY9ZV`HMIlyviPx1A1R%y43a0AwU6 zBrw3K?wcgD8#U||m)vwyK7k}GEa)2>8^qv(~AI2~6d+HSYVumu0%fW&TA z5u(MPJZCCQJ^;hqcN_i0D0g>vHMO<*me3p8{H+L(2mjVpgUSzKw)UeI-H^F?lRtjB zr51wOloE97i&vY~1-pw^iPf;fmfm~k`K88v9|crz zA7cghdr*~Ub5sW~F*EF;G;7$pFtg`izNWvg?@O3?Akb=- z#^ACwwDvFIgZ=5>Ac;T;DxB8i^IQG$-!-F04Z%yz-M=Fij-EFtg`XHwvauPn8V;Yn zadf$trKp%&bzfcjUuw;LOm??q$nf5S-8;0Q8PvlJ`RI{G1k4s5>sP{5()HQXV?o;) zHHT04$5KvCgBC{YDclwdkGqqQ!@o&`@OCRg_q&CaHq+6As;Sk7=~qN19WmlZ4F`hT z0++}sqGbLzkY0-q;uPu{nHB9%q=f8?PV*Wc+?K5Zz0OygkKGNg{v~9NVuQzNQh2O- zEdp+pK0P2=^y8%ny7XEws=7Y4!IkR5@mL--9Ne6al_Z~E?oFSZ_6oBLyR(uz2A*Hu zU7mEJ0AIb|VUYgwH8R9FZmHR*rj_f8r5>40=NAs(@G!q|+(uUW2v^Yx+o%pf>4t<0 zn&{|sD{&k)9CQRZ{>B}d^>05vc9Fvp=$gH*bTkFDsp%=)i~Cd0 zR=Rw;k2+-e4>u-|g%OS`k`+G{n_+DmW}9CnMco^h@iR=H%YJH2Y0i9fKPU>_r^Tu2 zGZ4)#FE7)yFQyh1PMx5koHnqnf--)29V3X=ohh*$jB$6L{E^FrokWo7JE4~P$Ld6I zC6+LG&*2qV`8I%@vjByq-AFZCg5>A%Fl2D=@@Bs{gTFg0^!IBa0>W6A!_TF<)mdV+ z$dy-(*S}Jq#$nD9?@gIAz1> z39ry=9A=qat+@QCK8Bs=h|?-dso1`#&nN!K;q2|^G*J4s%cSOT8*-WR@tQDs=C^*BfOnk7V52&k5ca5+O=sd-jcQ7Pch&D~gJA@8@8*XW@0P z9m*Iucs|pjxc72n_!{t?&d1miPgV%;#-Xk`rf~S{D)oODn4Z=={gcrcDbPiir-5~u z>)mEp89Y%YhIP0QWo%S^I;&ab>WB8&ycq{x7&5NSNESDdaNm`cO=PuleSSknS17bO zLonG+l^yy|vlwQ#o+|iFuk~kG=cSlxMFkxfZ)Q`mVp92v{Ik8$k82YzAE9&6m5CY+ zJdHaK`eB#>E5Gfo4WIVSt(H5(?)>cyUvlMHIAvPmydg!t%hzyRKXipUC^J97`DSD) z`C-W?WA^!O2+9SOps7Z+Gh6nk!9YrvuQM%Q+ps}ujVs$`ouusLvFi0v;|(9wa#`46 zl7seJOPinG#pQLWe>3&sU&oV@@p-i_` zp)JdqdaYm{3tPUA+a6C*GYl4$n=T1r-S?d9I-kF@F3Tq$S(o0xB2{b$iz=|qz@{ne z@%Nf8V^x=|sf}@PdCirp-E}wG{LdEbEaItf?c{x59h68oo6sGe-Qco3lGZUbd0F^R zzOcWpIE%9)X?dJQDm747g^Y9K?K7t(vlP=gsF~K1ON>sJC=|2BB+a*!M?Wm1vEI3g z8Yn)p-a1)a2rbQ)|M0QFM2Okxnu!Oc3ih+6RRx``lY;zzEnE#+)?e;(-c3#Vff;9> zDnBQ>q_>UGmzT{IAbnpuY>j9$nha1Mk=cmpwWuhk3k}ch#ai!0Nv>Q==k7po{c2nR zLmuEyuCmZZlVZSxEX&#I3i^p=!stL~3j@>dZV`XB`q zk3ai-jn8=&BDeF*m9)D1dyN7vZ*<-Sa4v~Xx6II|D|BOZzdh)6sc0V!*b4Z(fW@_2 znVa#nZ!&o~c&&G}xs4&}in#S#q2+OLCAIE`$1n~xiK2)3mCMwcnZVh@ipzzEOP>M^qmZAfaPmoH%&zMchwka!w+n%5 zS9p(Q`7Qn$RBZ9c$n;~#(l@1Dp-u9k`e&&bjt}`al#_je+lI^)ZE54r55gcaIZD;p z@HamOB~juo_DakjMxSxGF!&6ekos#Z5s=9S`6mu5Vqy;zbL9L`&xg*x&^73~4VN{v z8_5$*s?42L|5gPD^2dF(FzA2sB}k8cBh$4TUUd>(_{*d=!j7t?EgETg1mkH##?Dw< zVPyN;{CYoQ<1-wq@0!LQQSv0ouNAeC;7~*46<0AbLMX%Sq{IAoe7en5s&nHknWZz% zB3Wjofs(hB;$K1nJlIoLUatw&##UrM#HwWb_i|*kvrhfpRW>n^JR0{SzG`;q|MZrB zyFX^mvp3w8pS6jMfsgNa9@)$66|qx)W4?bY>Fk%Rp@)US*Q18g)gK2xb)!8~{vF)q zzLStO>Bl5cQ%mpX(!uOXtBWfgH}bl!`uw6_7_rR# zV&Fif*HV&3484m&UsP)N;(a`cmVK^JX4qI55w=l2easHib|aI$Jo+=H?}dK9*+=% zMzP`c&kdIL<~voQDc9qqTXf{`j{)i((O{6fs!7~gE_bv$J-w0=#P{rc2~uceJf=*HJ*Hg|Y{^~RIeWcVH~FFA@uGYYa0sABC- zIq(I1Mb;zPzTc0XO<3i)WtHMZT`C_tlD=go^FAdGXI`o)K48gVzM(DYVKQOPb5?ww z+e7A}v8lqPjoK90pKVs?hcok3b=B=_fi%ZH)_uZGWE-x?X=;%)V+EyG^qTdw$b;ghs zFg?%aXoHy7o1b}KY=}Fw^$+RsoFLl*e+sBGT;4ZtWsMz?EVBLHkEG1kw$r_P*MXqf@+3r3 zn9&thQvSnotCZpLZz6Y;bNLfO=7@MU+o*`tyx%py;OuTN`U%HvP+DqDTB6b$KLIoZ z{Yvj z$8RiESCRGo9Z}73V{$waI?SjKv=F#R9YW%FST}XkMOUad)O77WuoVy`DH>*kEi2lH zLfHkGUB(VW5Akkmy65H_e#WZ|LX8rCQ-duQ95*W-w0nhv_W5S7P3f(H2>Jqd$Gb`u z1lEMyXBRfn7{QQ^88%NI;i{wafST2^doC4(!FRyF`a$!t{@HlZ2Sl1&oPq_F+hAu=CE*0uTp7AjESp%r&ab;}sdl$A_Kp)m?W^ynUQ9(rkI z^o2_K9d9ZxIg?ifGIY8jy9#0QDN#IG1u*kejfxh3R}vq%6hik(0%w)ACuNFH@=A7 z?a(r)X3X&=NL)$K;p9A+Jk!(=P}_bOurP7q%`8-gOp0e&{pk)USPrfn%vt6}H9*F# z|5G{Wz;ONBMC0x$Amwt(XbQiRPuXrTXC=Re$)qOuqE;0{G=MpM%U|ZIvO9(U5ErHm zr7n>(X$!a}IKw6%iF-blo$_2Kbzol-Gsdh4%3 zMkIuDf4-AiH_zZDY;Kds6=p+wd{ns0hF11?o(V@UHslzVoa-@iZMM1J6MAG-RYmM9 zwEwO*ROPAYg;BaWcLF?#yfOO=K6NrAjj;DHymzxklMJB93YDHXJMZM&73a>*3K6cc zJhjvwV(WgFW7;i*F`1(gb7bzOkh{|7`&B0?VMX{GW&5&(g&xJzW{o3M@2l`ZcL#&t zMgPU^rsu$ncHE?BV&bt%;ohJQS41EL0a@36qBl!6#w60h)`>0kw!ifL!Ug7k>OixA z*}}*6ZHP8NsuM`%v6VXw4By0`aV)#`q(Q(9BCez^cuT#JUz7CiZ*}Z$&!AnGm*cCD zCPP=Db?K%U!N{-G`rIxFa~GGa#ce5JA5B6QFxI&d=om=yDLn`*kMn+r+tL2~Hveuz zrnqG97k|RZ)@8wcm6ci3qV(QAmk~Qn9BN5hnu3;|wJTMCjVgPqEJcuY+IS^SgtYGY zFl#Y?vLNOaL%#dSPw?EYFlUJJAPrtbC1g!!Dk(YmygY9H98~QiX!fRCQaq`5_i3Tp zhRa}<6^W`wE zy+job|JLUk;!GYQrlqYXPC@k%=IAyrsF+5r@gk>CIE_Z?Y?PAm=N37yW;jpW_axQr zkHefLhr%3RzcrEj<&7V<*2T%zlIdgWl>nFirJakQs)D`#2xrHcgy|Nn*DgRbu;~>l3fX|gK}!Zi z!0lVoX^1eyfF$52J~OKa`X*l9vn;BnU~ac_2;=84evbv0G)xMoT>b429uqL`OMgdt zJDmco15V-@*!Gtx;p3peX7o+>OK)+u+4oEO#Q}5&u2oNVjo#b-W{r-0f=8;(%Y_t) zwng@9Ip>AbIR9vIso?GS(daa{zt_-?Y_u@lD9*-bnfw9~A1fY|@9o)WmpZ2X49B7v z0IYUjgVRRez`zfm>!XKTAoj@eIa<5j&MvI1j1_-6jbSxxh^6$u2?`B^d+w$1ApiOE zr^xNUgwXfYBf`fbFX>-n-_t)v<#Gnd9TPDtj2;h8c4>T37BMSwWwXDJ>rQ+O5lQV) zq95sL3k)Uauh07h9pA3B-jaW7zb787<}_l*7^D#tO`r~cj(^kLTmADBNv6+bq4}n1 z((rSuA?i{;ehKZWVx8#OjAjEcTW%-^KTt@f*60#Dap$m3~RdG#w`WW3*?H)w& z>IuKfiY+z~{L!1k+JwC~)I&MQWMFXU zJ6S^;YO^Q5oAKUMmPXHLLcae*z0ICQ4=ELKf3Ik{Hc>(bNz#N~5Cywuv&zv&nfdEX z!bjae2&pu1;4x|v8n91@SHrz4VvZVS9Sqf|hhRn+HHSb{}2aU4$8 z$8E6r6`lG6!rHC}II0n&Wc!ouDO!u8;)P$`2QNab2VUttG^k-%vr@n|nftG#rn*72 z`~6Dw33=9?W8d>gY1BlA-L_GD3l{w}?8??J_PdwI%nuK4cNOLXaX=RupwNgQxM~L4ftpq~;_>j*CdtFuWhs~k4db05gcLKSHS5A;OK;scbAc8rjgzfo~bx z^70`=S(ux98QXoVuKJJzRLw+zV}mc}5e^Ssj0h9zpwCG5`%r9;} zxWv!xJ&`&GQ}KHnIC%KS&aS5i?PL0^4sI!WLTa|OjW)d2raxarNrAz$@}lv#uM_&k z^>e$ll5&8ZUk^B9bASBFn^z{&cIIy2%FJiONK(S)u@ z)|0%65t=+2XuJWw*yKFN)xBiOxcY(r<;nk@;mt}mQ$1oqCTP1Ad;W1%JXva#HiJ{} zno<=cye7%`y44*k;|`mVyj6G_&9ZwW=$50a$II~`8@x|?Lf2V9xwc@HK{a8(?^(6@=?P&~;-TI%#3u${U18K9Xln$kden!_OY9C&a^ z?X*eGw5?9%UI0U!3GPW>Ue7zs2_eQch03=a<#J8mFVyw9cxCq_kMy)C>E!~%`$d+$E;eo5p&XeP$4&^ ztx5$yUBUWDW2u_ko#SRP{}Ja@&jcenx@Iza_Op9)&QHoZ%>2{wiOG=;E)<=l;_gOB zL2R21_-xMDVzFa?WjvR1!??r+;OJ`#Cto4PjwAR#fV|)AA{Iidx`)Cc7tdYog&hOW z?~n7=_($!9m*=>zCY|#t0^`FZ@7lfG4H^UZhqgw<=g_|RQ|508ZZq>s$X-KZ&I|Zz z)h=E2D?n$+Ar1)nZf@|I)`F1IrXg!DbU`Jr*m-=LdI|MHXvJt|gU==`AO^;C3g^()C%g~eWN^R zO;Ebr1Rb9RWV|r3+y(Dv3Cnz?9gBU%pTKdWl+$%?ZC@Qi=#uU0qWZjC=+lMUa8|vi z1-*49UY^Aa8&fYQCZ5I;-A`|MWw(TsJ?i!kLXX&kR_Axj$dpDBogJ)Qm$+7}kdU6H zTfSL5w3&^C%G6qRz3<7ah0epWEfEa!C^3O)DxUZ%9nEDlLCn9{-QcIbepq|l2mf&u z*upAIgpO#aIxaLJdq;*<|5O$5eb(3I@7)z5_Y?HJ#=cn-SN*idJHyoe?+`j#^AB3M zcovhH)L3d9yIclYJ#nXgr-npeOBK)uyYHV@Mc04tJ?R|hy|XymxI#QrJeX#}p;mYJ zbd+>&o%*+Itf+nxGjg{Uk-10jOmq?92s>^ZjW%61FOPL=2jn$RLz7ICDNt+1p%dC@m9 zD*D^zzWaPQtScCBl>Py{PwOM**koTB>4T(o*vi!!@y)y37W5|$P;dBz%$AIWXRYfH ztdtkNpyw77V`akoMK52ah_yRD9f)E@H}y1Hx-nshB6z=PD>Gb6fjStQeJN)Dylh5Y zvJG>N+J=>erVZnu3GrYfOsh69-*+}VDpr_&m|M_acA`qf9Ci+P zrOS^hT`@^C;S&LLUKB7PR18&m2NruO#D@jY$v1A!z9!265 z{ujGb*Y=%5<|Z{MBUqPx+l!wK$suiWX-~na%LHn+3d^i=c~Z2>Fm{$gcd!w=QKTy3 z$^R#0@q_Y4duMT!X+y>3sBlY|pESvOzRhrBw#aJ)GsBzCl8-ec=Y)}lMg@?;@xPcX zMeJ<3PPN8SMCu|DDg%gndrT|3QIL1a19L&c`z5z~Wr_JoGCb2<9&R_qx?K-&n}SAC3W8YBs(IMrH87R)kc(|$t;Frvge@440lSeF!t1X*_n!sVc58_;kEVKX zbPTX~(=%}D{YrEbW@?TzxIx4!gVXlz?{zId=&m@faCR0W(~NC`e=)o1Psa-h+otJZ z;xqaSQPb2|b>BI=Pl{tsk~qxjisgM?GSiRGZ)K5@Ha}JaMJ7lHNQ@60SG_09jjc&_ z(+XDj>%P={najCJR*Z(!HNL6iKLCUJXJ`!kAla{i3V@~A<+6DKi`m?O8NYwJvy>d! ztV&ySm?Azgd{dZM^^^PQuXh(cZ-WR!&{xHWKLpangAs@}Ra_m3p=+vLwXE;!R$tlC z3-XZEqp&7NY{DlGb~p!F)N$t3+Ozn&Q$(sSP_rd%^Qt3 zkOh7D(kG@0$Em8wSCMBrEQB{HjL&3@AfXbBUIMYSq$7veI$_pnQ9FC*<6z08eXf## zirNx7^f;%_@nNKog~YWpyIRih+14qU+bUoJBn7A9PsZC2L$&(y3bqJt-mMS&8M399N zJ6yj$(6`!6+(RTPurOWVOSEvif!!!5p1%-Zw+@|G8%{eOB=M0IFA%>M?Pj=I?cg%{ zvBrTHt)@fJ6+H(gzA2INOjw%ZYcOOeH%G7U?Q%{}Ns=_1vW=g{pjxcFRP_V#R1(y{ zUQZVPQFb$9_z7vi*MAP1x?d|{Tn&GAIl>l1Q1vBdp5==?F0mJ~uPE=b?i?i9A?NoH zVUh(XPSXHIh73Z1F{O3%>1@!NHQI<6{qcoKsbLmbL7QEl#(| ze!VT*OkoPSSx=!uxT%_A8em}nbtE8NfX;@0ViD+;$RAkU1J}L9d^aShrr?GS4 zHD=9iWkb|yp?l@95LGH=MT8IjlM3j~Kb%CH4;eoN@&uXwDIDQu1GP8&NnQO|vXV|NCsc)4NP z$3!eNLwg*|P?bkc;^Wsg$M9dJ-aoxU#`@5cX)a7X>>L8Y!;>#-(EOoc62@4r#-j`?$tPksNI^J4Ceovxbnv1$n?bD&~!jarp;&?ayoMnlh& z8mh+o9VtV*1spXwK!o<5u69XRd=f1>Y9WZ;?XPf|%|iWpSvLBy@ow#_r!76J(FLgj z0m&LC$i|_}US?HbL}msBD;}?~wzPCUFF@5>Q#svwC&3^UvBllYyk7iARS<@E0xAks z)!>I2XbHB27FYW0EYCxJi0qperEqG#>nKdG26lL`uiuyj{ylh-5Oz8~xx(X^ zL%C9{KjD4ZQ*T2rnLTO^hxqV>S|rG@OwPhb?I34%-(mgn9c#*cOU<9ZNdzNKAHLSK z3?^yCE;;nhmR~y~QhZ4kv1#^4cM~jS z(*iJudkY=A1-$`!dTgMrXDkuz-0Gt)vXj+*=EWZNQafo3Pyqy5tT!WRQJ zVL1g)OiK{->g#M-Fe%xGtePuB0dt%ay?-~EpdD4^&RQrVxmLMH&k?<)`f>kONMW1R zQoM7tsD;5G#0=Gyo*wt&_E!l|?Z>Sk9|{#JRU|wZ1Bmz{9B7~1EJDi=;|&Sda`2zJ zE*Xmatz>0?@Z*-4@=6zHE-|TB!-b?elw10J6kU2{lyAj{DJ7X5lQSy!_S1$lNq+tx zYSvp8$QsMoF{1oX@c1*jgW-;=((@i}pJ-p|>gi-A&8oMf+Y|e1*f6IVJ2={is zc#XJ6lkWjLVfgLo+*|PTWV5@{8jai~oCj91<3fDt!+61Kv)Fc6Xof^4l_NZk7OzDg zn}#xvkm2X?A^^jH_(^n_$P5=#a_tw(SH2G|Zq;2wwf6|DE`9~tQ#qkC2j_1|cT;x6 zdyOE*m5TzCty?4|#F*24lQ5+Vd%9&=+b@Ld3I}4Mkk3}S8E{<)w0O z>QE82bZNcTdkZW0cO=Y@0=U&gWK*D74vayWDn+#zEvdP!zfs-@6U2)~NDO{g3%X3MFid9Nu04Xsu^yg>EU6nEolbT z?w^BhpO6D5oyW41AW)=h&GRad3nu~u`@D(8FKmTq1NZB+Nr6upBZF#I;HqL!RsT5{ zjx5H5W8{HNuNJx;eUz7xDQqc@Ov~;FGY>H$Td1e)Bt@NhzZ?{sv;uP@0&EC{Iw+E- zz8x!2s3Kf*(E72YII_~6sOJd@VN7tgW7GcA<9(x%;9`U-ctKC_!`DgX>+z_{s}g9h ztjUop+_iYF8%M*(R?0o*jKie~^uJqaFML;ehs-%5f(bWvd};b_=*fs%9K`pJNY~um zzR`_iwf>ZWl+I!0Zg!$U)bYsb%5~)Umtp?$ycZokidbt6^#h6H&F07m#q`e+7_^zE z%1kb}Zp3sv(_6|Ca&S#gh>N?s3g`