diff --git a/can_baybe-inhibitor.ipynb b/can_baybe-inhibitor.ipynb
index a1d5dbd..4e98bce 100644
--- a/can_baybe-inhibitor.ipynb
+++ b/can_baybe-inhibitor.ipynb
@@ -30,7 +30,7 @@
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 164,
"metadata": {},
"outputs": [
{
@@ -68,16 +68,16 @@
"
C(=O)(C(=O)[O-])[O-] | \n",
" 24.0 | \n",
" 4.0 | \n",
- " 0.0010 | \n",
+ " 1.000000e-03 | \n",
" 0.10 | \n",
- " 20.00 | \n",
+ " 15.00 | \n",
" \n",
" \n",
" 1 | \n",
" C(=O)(C(=O)[O-])[O-] | \n",
" 24.0 | \n",
" 7.0 | \n",
- " 0.0005 | \n",
+ " 5.000000e-04 | \n",
" 0.05 | \n",
" 12.35 | \n",
"
\n",
@@ -86,27 +86,27 @@
" C(=O)(C(=O)[O-])[O-] | \n",
" 24.0 | \n",
" 10.0 | \n",
- " 0.0010 | \n",
+ " 1.000000e-03 | \n",
" 0.10 | \n",
- " 20.00 | \n",
+ " 30.00 | \n",
" \n",
" \n",
" 3 | \n",
" C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O | \n",
- " 24.0 | \n",
- " 4.0 | \n",
- " 0.0010 | \n",
- " 0.10 | \n",
- " 30.00 | \n",
+ " 0.0 | \n",
+ " 2.0 | \n",
+ " 5.000000e-07 | \n",
+ " 2.00 | \n",
+ " 53.85 | \n",
"
\n",
" \n",
" 4 | \n",
" C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O | \n",
- " 24.0 | \n",
- " 7.0 | \n",
- " 0.0005 | \n",
- " 0.05 | \n",
- " -23.95 | \n",
+ " 0.0 | \n",
+ " 2.0 | \n",
+ " 1.000000e-06 | \n",
+ " 2.00 | \n",
+ " 58.55 | \n",
"
\n",
" \n",
" ... | \n",
@@ -118,86 +118,86 @@
" ... | \n",
"
\n",
" \n",
- " 510 | \n",
+ " 986 | \n",
" c1ccc2c(c1)[nH]nn2 | \n",
" 24.0 | \n",
" 7.0 | \n",
- " 0.0005 | \n",
+ " 5.000000e-04 | \n",
" 0.05 | \n",
" 97.95 | \n",
"
\n",
" \n",
- " 511 | \n",
+ " 987 | \n",
" c1ccc2c(c1)[nH]nn2 | \n",
" 24.0 | \n",
" 10.0 | \n",
- " 0.0010 | \n",
+ " 1.000000e-03 | \n",
" 0.10 | \n",
- " 90.00 | \n",
+ " 60.00 | \n",
"
\n",
" \n",
- " 512 | \n",
+ " 988 | \n",
" c1ccc2c(c1)[nH]nn2 | \n",
" 672.0 | \n",
" 7.0 | \n",
- " 0.0010 | \n",
+ " 1.000000e-03 | \n",
" 0.10 | \n",
- " 98.00 | \n",
+ " 95.00 | \n",
"
\n",
" \n",
- " 513 | \n",
+ " 989 | \n",
" c1ncn[nH]1 | \n",
" 24.0 | \n",
" 4.0 | \n",
- " 0.0010 | \n",
+ " 1.000000e-03 | \n",
" 0.10 | \n",
- " 30.00 | \n",
+ " 35.00 | \n",
"
\n",
" \n",
- " 514 | \n",
+ " 990 | \n",
" c1ncn[nH]1 | \n",
" 24.0 | \n",
" 10.0 | \n",
- " 0.0010 | \n",
+ " 1.000000e-03 | \n",
" 0.10 | \n",
- " 90.00 | \n",
+ " 50.00 | \n",
"
\n",
" \n",
"\n",
- "515 rows × 6 columns
\n",
+ "991 rows × 6 columns
\n",
""
],
"text/plain": [
" SMILES Time_h pH Inhib_Concentrat_M \\\n",
- "0 C(=O)(C(=O)[O-])[O-] 24.0 4.0 0.0010 \n",
- "1 C(=O)(C(=O)[O-])[O-] 24.0 7.0 0.0005 \n",
- "2 C(=O)(C(=O)[O-])[O-] 24.0 10.0 0.0010 \n",
- "3 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O 24.0 4.0 0.0010 \n",
- "4 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O 24.0 7.0 0.0005 \n",
+ "0 C(=O)(C(=O)[O-])[O-] 24.0 4.0 1.000000e-03 \n",
+ "1 C(=O)(C(=O)[O-])[O-] 24.0 7.0 5.000000e-04 \n",
+ "2 C(=O)(C(=O)[O-])[O-] 24.0 10.0 1.000000e-03 \n",
+ "3 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O 0.0 2.0 5.000000e-07 \n",
+ "4 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O 0.0 2.0 1.000000e-06 \n",
".. ... ... ... ... \n",
- "510 c1ccc2c(c1)[nH]nn2 24.0 7.0 0.0005 \n",
- "511 c1ccc2c(c1)[nH]nn2 24.0 10.0 0.0010 \n",
- "512 c1ccc2c(c1)[nH]nn2 672.0 7.0 0.0010 \n",
- "513 c1ncn[nH]1 24.0 4.0 0.0010 \n",
- "514 c1ncn[nH]1 24.0 10.0 0.0010 \n",
+ "986 c1ccc2c(c1)[nH]nn2 24.0 7.0 5.000000e-04 \n",
+ "987 c1ccc2c(c1)[nH]nn2 24.0 10.0 1.000000e-03 \n",
+ "988 c1ccc2c(c1)[nH]nn2 672.0 7.0 1.000000e-03 \n",
+ "989 c1ncn[nH]1 24.0 4.0 1.000000e-03 \n",
+ "990 c1ncn[nH]1 24.0 10.0 1.000000e-03 \n",
"\n",
" Salt_Concentrat_M Efficiency \n",
- "0 0.10 20.00 \n",
+ "0 0.10 15.00 \n",
"1 0.05 12.35 \n",
- "2 0.10 20.00 \n",
- "3 0.10 30.00 \n",
- "4 0.05 -23.95 \n",
+ "2 0.10 30.00 \n",
+ "3 2.00 53.85 \n",
+ "4 2.00 58.55 \n",
".. ... ... \n",
- "510 0.05 97.95 \n",
- "511 0.10 90.00 \n",
- "512 0.10 98.00 \n",
- "513 0.10 30.00 \n",
- "514 0.10 90.00 \n",
+ "986 0.05 97.95 \n",
+ "987 0.10 60.00 \n",
+ "988 0.10 95.00 \n",
+ "989 0.10 35.00 \n",
+ "990 0.10 50.00 \n",
"\n",
- "[515 rows x 6 columns]"
+ "[991 rows x 6 columns]"
]
},
- "execution_count": 27,
+ "execution_count": 164,
"metadata": {},
"output_type": "execute_result"
}
@@ -219,19 +219,23 @@
"\n",
"df_AA2024 = pd.read_excel('data/averaged_filtered_AA2024.xlsx')\n",
"df_AA5000 = pd.read_excel('data/averaged_filtered_AA5000.xlsx')\n",
+ "df_AA6000 = pd.read_excel('data/averaged_filtered_AA6000.xlsx')\n",
"df_AA7075 = pd.read_excel('data/averaged_filtered_AA7075.xlsx')\n",
"df_AA1000 = pd.read_excel('data/averaged_filtered_AA1000.xlsx')\n",
"df_Al = pd.read_excel('data/averaged_filtered_Al.xlsx')\n",
"\n",
"# change this for campaigns on different datasets\n",
- "df_active = df_AA2024\n",
+ "df_active = df_Al\n",
+ "\n",
"\n",
"if df_active is df_AA2024:\n",
" exp_dataset_name = 'AA2024'\n",
- "elif df_active is df_AA5000:\n",
- " exp_dataset_name = 'AA5000'\n",
"elif df_active is df_AA7075:\n",
" exp_dataset_name = 'AA7075'\n",
+ "elif df_active is df_AA5000:\n",
+ " exp_dataset_name = 'AA5000'\n",
+ "elif df_active is df_AA6000:\n",
+ " exp_dataset_name = 'AA6000'\n",
"elif df_active is df_AA1000:\n",
" exp_dataset_name = 'AA1000'\n",
"elif df_active is df_Al:\n",
@@ -242,7 +246,7 @@
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": 165,
"metadata": {},
"outputs": [],
"source": [
@@ -251,7 +255,7 @@
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": 166,
"metadata": {},
"outputs": [],
"source": [
@@ -266,136 +270,108 @@
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": 167,
"metadata": {},
"outputs": [],
"source": [
"# parameters\n",
"\n",
- "# mordred\n",
- "parameters_mordred = [\n",
+ "basic_parameters=[\n",
"NumericalDiscreteParameter(\n",
" name=\"Time_h\",\n",
- " values=df_active['Time_h'].unique(),\n",
+ " values=df_active[\"Time_h\"].unique(),\n",
" # tolerance = 0.004, assume certain experimental noise for each parameter measurement?\n",
"),\n",
"NumericalDiscreteParameter(\n",
" name=\"pH\",\n",
- " values=df_active['pH'].unique(),\n",
- " # tolerance = 0.004\n",
+ " values=df_active[\"pH\"].unique(),\n",
" ), \n",
- "NumericalDiscreteParameter( # Set this as continuous, the values seem quite small?\n",
+ "NumericalDiscreteParameter(\n",
" name=\"Inhib_Concentrat_M\",\n",
- " values= df_active['Inhib_Concentrat_M'].unique(),\n",
- " # tolerance = 0.004\n",
+ " values=df_active[\"Inhib_Concentrat_M\"].unique(),\n",
" ),\n",
"NumericalDiscreteParameter(\n",
" name=\"Salt_Concentrat_M\",\n",
- " values=df_active['Salt_Concentrat_M'].unique(),\n",
- " # tolerance = 0.004\n",
+ " values=df_active[\"Salt_Concentrat_M\"].unique(),\n",
" ),\n",
- "SubstanceParameter(\n",
- " name=\"SMILES\",\n",
- " data=smiles_dict,\n",
- " encoding=\"MORDRED\", # optional\n",
- " decorrelate=0.7, # optional\n",
- " ) \n",
- " ]\n",
+ "]\n",
+ "\n",
+ "# mordred\n",
+ "parameters_mordred = basic_parameters + [\n",
+ " SubstanceParameter(\n",
+ " name=\"SMILES\",\n",
+ " data=smiles_dict,\n",
+ " encoding=\"MORDRED\", # optional\n",
+ " decorrelate=0.7, # optional\n",
+ " ) \n",
+ " ]\n",
"\n",
"# morgan fingerprints\n",
- "parameters_morgan_fp = [\n",
- "NumericalDiscreteParameter(\n",
- " name=\"Time_h\",\n",
- " values=df_active['Time_h'].unique(),\n",
- " # tolerance = 0.004, assume certain experimental noise for each parameter measurement?\n",
- "),\n",
- "NumericalDiscreteParameter(\n",
- " name=\"pH\",\n",
- " values=df_active['pH'].unique(),\n",
- " # tolerance = 0.004\n",
- " ), \n",
- "NumericalDiscreteParameter( # Set this as continuous, the values seem quite small?\n",
- " name=\"Inhib_Concentrat_M\",\n",
- " values= df_active['Inhib_Concentrat_M'].unique(),\n",
- " # tolerance = 0.004\n",
- " ),\n",
- "NumericalDiscreteParameter(\n",
- " name=\"Salt_Concentrat_M\",\n",
- " values=df_active['Salt_Concentrat_M'].unique(),\n",
- " # tolerance = 0.004\n",
- " ),\n",
- "SubstanceParameter(\n",
- " name=\"SMILES\",\n",
- " data=smiles_dict,\n",
- " encoding=\"MORGAN_FP\", # optional\n",
- " decorrelate=0.7, # optional\n",
- " ) \n",
- " ]\n",
+ "parameters_morgan_fp = basic_parameters + [\n",
+ " SubstanceParameter(\n",
+ " name=\"SMILES\",\n",
+ " data=smiles_dict,\n",
+ " encoding=\"MORGAN_FP\", # optional\n",
+ " decorrelate=0.7, # optional\n",
+ " ) \n",
+ " ]\n",
"\n",
"# rdkit\n",
- "parameters_rdkit = [\n",
- "NumericalDiscreteParameter(\n",
- " name=\"Time_h\",\n",
- " values=df_active['Time_h'].unique(),\n",
- " # tolerance = 0.004, assume certain experimental noise for each parameter measurement?\n",
- "),\n",
- "NumericalDiscreteParameter(\n",
- " name=\"pH\",\n",
- " values=df_active['pH'].unique(),\n",
- " # tolerance = 0.004\n",
- " ), \n",
- "NumericalDiscreteParameter( # Set this as continuous, the values seem quite small?\n",
- " name=\"Inhib_Concentrat_M\",\n",
- " values= df_active['Inhib_Concentrat_M'].unique(),\n",
- " # tolerance = 0.004\n",
- " ),\n",
- "NumericalDiscreteParameter(\n",
- " name=\"Salt_Concentrat_M\",\n",
- " values=df_active['Salt_Concentrat_M'].unique(),\n",
- " # tolerance = 0.004\n",
- " ),\n",
- "SubstanceParameter(\n",
- " name=\"SMILES\",\n",
- " data=smiles_dict,\n",
- " encoding=\"RDKIT\", # optional\n",
- " decorrelate=0.7, # optional\n",
- " ) \n",
- " ]\n",
+ "parameters_rdkit = basic_parameters + [\n",
+ " SubstanceParameter(\n",
+ " name=\"SMILES\",\n",
+ " data=smiles_dict,\n",
+ " encoding=\"RDKIT\", # optional\n",
+ " decorrelate=0.7, # optional\n",
+ " ) \n",
+ " ]\n",
+ "\n",
"# one-hot encoding\n",
- "parameters_ohe = [\n",
- "NumericalDiscreteParameter(\n",
- " name=\"Time_h\",\n",
- " values=df_active['Time_h'].unique(),\n",
- " # tolerance = 0.004, assume certain experimental noise for each parameter measurement?\n",
- "),\n",
- "NumericalDiscreteParameter(\n",
- " name=\"pH\",\n",
- " values=df_active['pH'].unique(),\n",
- " # tolerance = 0.004\n",
- " ), \n",
- "NumericalDiscreteParameter( # Set this as continuous, the values seem quite small?\n",
- " name=\"Inhib_Concentrat_M\",\n",
- " values= df_active['Inhib_Concentrat_M'].unique(),\n",
- " # tolerance = 0.004\n",
- " ),\n",
- "NumericalDiscreteParameter(\n",
- " name=\"Salt_Concentrat_M\",\n",
- " values=df_active['Salt_Concentrat_M'].unique(),\n",
- " # tolerance = 0.004\n",
- " ),\n",
- "CategoricalParameter(\n",
- " name=\"SMILES\",\n",
- " values=unique_SMILES,\n",
- " encoding=\"OHE\",\n",
- " )\n",
- "]\n"
+ "parameters_ohe = basic_parameters + [\n",
+ " CategoricalParameter(\n",
+ " name=\"SMILES\",\n",
+ " values=unique_SMILES,\n",
+ " encoding=\"OHE\",\n",
+ " )\n",
+ " ]"
]
},
{
"cell_type": "code",
- "execution_count": 31,
+ "execution_count": 168,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "________________________________________________________________________________\n",
+ "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n",
+ "_smiles_to_mordred_features('C1=CC(=C(C=C1C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O)O')\n",
+ "_______________________________________smiles_to_mordred_features - 0.3s, 0.0min\n",
+ "________________________________________________________________________________\n",
+ "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n",
+ "_smiles_to_mordred_features('C1=CC=C(C=C1)C(=O)SC(=N)N')\n",
+ "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n",
+ "________________________________________________________________________________\n",
+ "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n",
+ "_smiles_to_mordred_features('C1=CC=C(C=C1)C(=O)SC(=N)NC2=CC=C(C=C2)C')\n",
+ "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n",
+ "________________________________________________________________________________\n",
+ "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n",
+ "_smiles_to_mordred_features('C1=CC=C(C=C1)C(=O)SC(=N)NC2=CC=C(C=C2)OC')\n",
+ "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n",
+ "________________________________________________________________________________\n",
+ "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n",
+ "_smiles_to_mordred_features('N=C(NC1=CC=C(C=C1)Br)SC(O)C2=CC=CC=C2')\n",
+ "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n",
+ "________________________________________________________________________________\n",
+ "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n",
+ "_smiles_to_mordred_features('N=C(NC1=CC=C(C=C1)Cl)SC(O)C2=CC=CC=C2')\n",
+ "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n"
+ ]
+ }
+ ],
"source": [
"df_no_target = lookup.drop('Efficiency', axis=1)\n",
"\n",
@@ -422,24 +398,24 @@
},
{
"cell_type": "code",
- "execution_count": 32,
+ "execution_count": 169,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "SearchSpace(discrete=SubspaceDiscrete(parameters=[NumericalDiscreteParameter(name='Time_h', encoding=None, _values=[0.5, 1.0, 2.0, 3.0, 6.0, 24.0, 48.0, 72.0, 96.0, 120.0, 144.0, 168.0, 192.0, 240.0, 288.0, 336.0, 360.0, 384.0, 432.0, 480.0, 528.0, 576.0, 600.0, 624.0, 672.0], tolerance=0.0), NumericalDiscreteParameter(name='pH', encoding=None, _values=[0.0, 3.3, 4.0, 4.4, 5.4, 5.5, 5.6, 7.0, 10.0], tolerance=0.0), NumericalDiscreteParameter(name='Inhib_Concentrat_M', encoding=None, _values=[1e-05, 5e-05, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0008, 0.001, 0.0012, 0.0018, 0.0024, 0.003, 0.005, 0.01, 0.011, 0.021, 0.022, 0.031, 0.033, 0.042, 0.044, 0.05, 0.1], tolerance=0.0), NumericalDiscreteParameter(name='Salt_Concentrat_M', encoding=None, _values=[0.0, 0.01, 0.05, 0.1, 0.5, 0.6], tolerance=0.0), SubstanceParameter(name='SMILES', data={'C(=O)(C(=O)[O-])[O-]': 'C(=O)(C(=O)[O-])[O-]', 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O': 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]', 'C1=CC(=C(C=C1O)O)C=NNC(=S)N': 'C1=CC(=C(C=C1O)O)C=NNC(=S)N', 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]': 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]', 'C1=CC(=CC(=C1)S)C(=O)O': 'C1=CC(=CC(=C1)S)C(=O)O', 'C1=CC2=NNN=C2C=C1Cl': 'C1=CC2=NNN=C2C=C1Cl', 'C1=CC=C(C(=C1)C=NNC(=S)N)O': 'C1=CC=C(C(=C1)C=NNC(=S)N)O', 'C1COCCN1CCCS(=O)(=O)O': 'C1COCCN1CCCS(=O)(=O)O', 'C1N2CN3CN1CN(C2)C3': 'C1N2CN3CN1CN(C2)C3', 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1': 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1', 'CC(=O)O': 'CC(=O)O', 'CC(=O)SSC(=O)C': 'CC(=O)SSC(=O)C', 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C': 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C', 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O': 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O', 'CCCCCCCCCCCCCCCCCC(=O)O': 'CCCCCCCCCCCCCCCCCC(=O)O', 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCOS(=O)(=O)O': 'CCCCCCCCCCCCOS(=O)(=O)O', 'CCCCCCCCCCCCc1ccccc1S([O])([O])O': 'CCCCCCCCCCCCc1ccccc1S([O])([O])O', 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O': 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O', 'CCCCOP(=O)(OCCCC)O': 'CCCCOP(=O)(OCCCC)O', 'CCN(C(=S)S)CC': 'CCN(C(=S)S)CC', 'CCOc1ccc2c(c1)nc([nH]2)S': 'CCOc1ccc2c(c1)nc([nH]2)S', 'CCSc1nnc(s1)N': 'CCSc1nnc(s1)N', 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C': 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C', 'CNCC(C1=CC(=CC=C1)O)O': 'CNCC(C1=CC(=CC=C1)O)O', 'COC(=O)CCCC1=CNC2=CC=CC=C21': 'COC(=O)CCCC1=CNC2=CC=CC=C21', 'COC(=O)n1nnc2ccccc12': 'COC(=O)n1nnc2ccccc12', 'COCCOC(=O)OCSc1nc2c(s1)cccc2': 'COCCOC(=O)OCSc1nc2c(s1)cccc2', 'COc1ccc2c(c1)[nH]c(=S)[nH]2': 'COc1ccc2c(c1)[nH]c(=S)[nH]2', 'COc1cccc(c1)c1n[nH]c(=S)[nH]1': 'COc1cccc(c1)c1n[nH]c(=S)[nH]1', 'CS[C]1N[N]C(=N1)N': 'CS[C]1N[N]C(=N1)N', 'CSc1[nH]c2c(n1)cc(c(c2)C)C': 'CSc1[nH]c2c(n1)cc(c(c2)C)C', 'CSc1nnc(s1)N': 'CSc1nnc(s1)N', 'Cc1cc(C)nc(n1)S': 'Cc1cc(C)nc(n1)S', 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O': 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O', 'Cc1ccc2c(c1)nc([nH]2)S': 'Cc1ccc2c(c1)nc([nH]2)S', 'Cc1n[nH]c(=S)s1': 'Cc1n[nH]c(=S)s1', 'Cc1nsc(c1)N': 'Cc1nsc(c1)N', 'ClC([C]1N[N]C=N1)(Cl)Cl': 'ClC([C]1N[N]C=N1)(Cl)Cl', 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl': 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl', 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O': 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O', 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1': 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1', 'Clc1ccc2c(c1)[nH]c(n2)S': 'Clc1ccc2c(c1)[nH]c(n2)S', 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1': 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1', 'Cn1cnnc1S': 'Cn1cnnc1S', 'Cn1nnnc1S': 'Cn1nnnc1S', 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]': 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]', 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O': 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O', 'NCC(=O)O': 'NCC(=O)O', 'NO': 'NO', 'Nc1cc(N)nc(n1)S': 'Nc1cc(N)nc(n1)S', 'Nc1cc(S)nc(n1)N': 'Nc1cc(S)nc(n1)N', 'Nc1ccc2c(c1)sc(=S)[nH]2': 'Nc1ccc2c(c1)sc(=S)[nH]2', 'Nc1ccnc(n1)S': 'Nc1ccnc(n1)S', 'Nc1n[nH]c(=S)s1': 'Nc1n[nH]c(=S)s1', 'Nc1n[nH]c(n1)S': 'Nc1n[nH]c(n1)S', 'Nc1n[nH]cn1': 'Nc1n[nH]cn1', 'Nc1nc([nH]n1)C(=O)O': 'Nc1nc([nH]n1)C(=O)O', 'Nc1ncncc1N': 'Nc1ncncc1N', 'Nn1c(NN)nnc1S': 'Nn1c(NN)nnc1S', 'Nn1c(S)nnc1c1ccccc1': 'Nn1c(S)nnc1c1ccccc1', 'Nn1cnnc1': 'Nn1cnnc1', 'O/N=C(/C(=N/O)/C)\\\\C': 'O/N=C(/C(=N/O)/C)\\\\C', 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1': 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1', 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]': 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]', 'OC(=O)/C=C/c1ccccc1': 'OC(=O)/C=C/c1ccccc1', 'OC(=O)CCCCC(=O)O': 'OC(=O)CCCCC(=O)O', 'OC(=O)CCCCCCCCCCCCCCC(=O)O': 'OC(=O)CCCCCCCCCCCCCCC(=O)O', 'OC(=O)CCS': 'OC(=O)CCS', 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O': 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O', 'OC(=O)CS': 'OC(=O)CS', 'OC(=O)Cn1nnnc1S': 'OC(=O)Cn1nnnc1S', 'OC(=O)c1ccc(=S)[nH]c1': 'OC(=O)c1ccc(=S)[nH]c1', 'OC(=O)c1ccc(cc1)N': 'OC(=O)c1ccc(cc1)N', 'OC(=O)c1ccc(cc1)S': 'OC(=O)c1ccc(cc1)S', 'OC(=O)c1ccc(cc1)c1ccccc1': 'OC(=O)c1ccc(cc1)c1ccccc1', 'OC(=O)c1ccccc1': 'OC(=O)c1ccccc1', 'OC(=O)c1ccccc1O': 'OC(=O)c1ccccc1O', 'OC(=O)c1ccccc1S': 'OC(=O)c1ccccc1S', 'OC(=O)c1ccccn1': 'OC(=O)c1ccccn1', 'OC(=O)c1cccnc1': 'OC(=O)c1cccnc1', 'OC(=O)c1cccnc1S': 'OC(=O)c1cccnc1S', 'OC(=O)c1ccncc1': 'OC(=O)c1ccncc1', 'OC(=O)c1n[nH]c(n1)N': 'OC(=O)c1n[nH]c(n1)N', 'OCC(CO)O': 'OCC(CO)O', 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O', 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O', 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O': 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O', 'O[C@H]1C(=O)OCC1(C)C': 'O[C@H]1C(=O)OCC1(C)C', 'Oc1ccc(cc1)C(=O)O': 'Oc1ccc(cc1)C(=O)O', 'Oc1ccc(cc1)S([O])([O])O': 'Oc1ccc(cc1)S([O])([O])O', 'Oc1cccc2c1nccc2': 'Oc1cccc2c1nccc2', 'Oc1ccccc1c1nnc([nH]1)S': 'Oc1ccccc1c1nnc([nH]1)S', 'On1nnc2c1cccc2': 'On1nnc2c1cccc2', 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C': 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C', 'S=c1[nH]c2c([nH]1)cncn2': 'S=c1[nH]c2c([nH]1)cncn2', 'S=c1[nH]c2c([nH]1)nccn2': 'S=c1[nH]c2c([nH]1)nccn2', 'S=c1[nH]nc([nH]1)c1cccnc1': 'S=c1[nH]nc([nH]1)c1cccnc1', 'S=c1[nH]nc([nH]1)c1ccco1': 'S=c1[nH]nc([nH]1)c1ccco1', 'S=c1[nH]nc([nH]1)c1ccncc1': 'S=c1[nH]nc([nH]1)c1ccncc1', 'S=c1sc2c([nH]1)cccc2': 'S=c1sc2c([nH]1)cccc2', 'SC#N': 'SC#N', 'S[C]1NC2=C[CH]C=NC2=N1': 'S[C]1NC2=C[CH]C=NC2=N1', 'Sc1n[nH]cn1': 'Sc1n[nH]cn1', 'Sc1nc(N)c(c(n1)S)N': 'Sc1nc(N)c(c(n1)S)N', 'Sc1nc(N)c2c(n1)[nH]nc2': 'Sc1nc(N)c2c(n1)[nH]nc2', 'Sc1nc2c([nH]1)cccc2': 'Sc1nc2c([nH]1)cccc2', 'Sc1ncc[nH]1': 'Sc1ncc[nH]1', 'Sc1ncccn1': 'Sc1ncccn1', 'Sc1nnc(s1)S': 'Sc1nnc(s1)S', '[Cl-].[Cl-].[Cl-].[Ce+3]': '[Cl-].[Cl-].[Cl-].[Ce+3]', '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]': '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]', '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]': '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]', '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]': '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]', '[O-]S(=O)[O-].[Na+].[Na+]': '[O-]S(=O)[O-].[Na+].[Na+]', 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]': 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]', 'c1ccc(nc1)c1ccccn1': 'c1ccc(nc1)c1ccccn1', 'c1ccc2c(c1)[nH]nn2': 'c1ccc2c(c1)[nH]nn2', 'c1ncn[nH]1': 'c1ncn[nH]1'}, decorrelate=0.7, encoding=)], exp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M \\\n",
- "0 24.0 4.0 0.0010 0.10 \n",
- "1 24.0 7.0 0.0005 0.05 \n",
- "2 24.0 10.0 0.0010 0.10 \n",
- "3 24.0 4.0 0.0010 0.10 \n",
- "4 24.0 7.0 0.0005 0.05 \n",
+ "SearchSpace(discrete=SubspaceDiscrete(parameters=[NumericalDiscreteParameter(name='Time_h', encoding=None, _values=[0.0, 0.25, 0.33, 0.5, 0.58, 0.67, 0.75, 1.0, 1.5, 1.67, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 8.0, 10.0, 24.0, 48.0, 72.0, 96.0, 120.0, 144.0, 168.0, 192.0, 240.0, 288.0, 336.0, 360.0, 384.0, 432.0, 480.0, 528.0, 576.0, 600.0, 624.0, 672.0, 720.0], tolerance=0.0), NumericalDiscreteParameter(name='pH', encoding=None, _values=[-0.6, -0.4771212547196624, -0.3979400086720376, -0.3010299956639812, -0.3, -0.1760912590556812, -0.1367205671564068, 0.0, 0.3, 0.45, 0.7, 1.0, 1.7, 2.0, 3.3, 4.0, 4.4, 4.6, 5.4, 5.5, 5.6, 7.0, 7.6, 10.0, 11.0, 13.0, 13.7, 14.30102999566398], tolerance=0.0), NumericalDiscreteParameter(name='Inhib_Concentrat_M', encoding=None, _values=[1e-07, 5e-07, 1e-06, 2e-06, 4e-06, 5e-06, 6e-06, 8e-06, 8.271845945141117e-06, 1e-05, 1.2e-05, 1.5e-05, 1.654369189028223e-05, 2e-05, 2.481553783542335e-05, 3e-05, 3.308738378056447e-05, 4e-05, 4.135922972570559e-05, 5e-05, 6e-05, 7e-05, 8e-05, 8.271845945141118e-05, 0.0001, 0.00015, 0.0001958863858961802, 0.0002, 0.00021, 0.0003, 0.0003566333808844508, 0.0003917727717923605, 0.0004, 0.00042, 0.0005, 0.0005876591576885406, 0.0006, 0.0007, 0.0007132667617689017, 0.0007835455435847209, 0.0008, 0.00084, 0.0009, 0.0009794319294809011, 0.001, 0.0011, 0.0012, 0.0013, 0.0014, 0.0015, 0.0016, 0.001783166904422254, 0.0018, 0.0019, 0.002, 0.002139800285306705, 0.0024, 0.0025, 0.0026, 0.003, 0.0032, 0.003566333808844508, 0.0039, 0.004, 0.0042, 0.00427960057061341, 0.0045, 0.005, 0.0053, 0.005706134094151214, 0.0065, 0.007, 0.0075, 0.0085, 0.009, 0.01, 0.011, 0.015, 0.02, 0.021, 0.022, 0.025, 0.031, 0.033, 0.04, 0.042, 0.044, 0.05, 0.06, 0.08, 0.1, 0.66, 1.32, 1.97, 2.63, 3.28], tolerance=0.0), NumericalDiscreteParameter(name='Salt_Concentrat_M', encoding=None, _values=[0.0, 0.01, 0.05, 0.1, 0.5, 0.6, 1.0, 2.0], tolerance=0.0), SubstanceParameter(name='SMILES', data={'C(=O)(C(=O)[O-])[O-]': 'C(=O)(C(=O)[O-])[O-]', 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O': 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]', 'C(C(CO)([N+](=O)[O-])Br)O': 'C(C(CO)([N+](=O)[O-])Br)O', 'C(CC=O)CC=O': 'C(CC=O)CC=O', 'C1=CC(=C(C(=C1)C=NC2=CC=C(C=C2)N=CC3=CC=CC(=C3O)OC)O)OC': 'C1=CC(=C(C(=C1)C=NC2=CC=C(C=C2)N=CC3=CC=CC(=C3O)OC)O)OC', 'C1=CC(=C(C=C1C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O)O': 'C1=CC(=C(C=C1C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O)O', 'C1=CC(=C(C=C1Cl)Cl)COC(CN2C=CN=C2)C3=C(C=C(C=C3)Cl)Cl.[N+](=O)(O)[O-]': 'C1=CC(=C(C=C1Cl)Cl)COC(CN2C=CN=C2)C3=C(C=C(C=C3)Cl)Cl.[N+](=O)(O)[O-]', 'C1=CC(=C(C=C1F)F)C(CN2C=NC=N2)(CN3C=NC=N3)O': 'C1=CC(=C(C=C1F)F)C(CN2C=NC=N2)(CN3C=NC=N3)O', 'C1=CC(=C(C=C1O)O)C=NNC(=S)N': 'C1=CC(=C(C=C1O)O)C=NNC(=S)N', 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]': 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]', 'C1=CC(=CC(=C1)O)O': 'C1=CC(=CC(=C1)O)O', 'C1=CC(=CC(=C1)S)C(=O)O': 'C1=CC(=CC(=C1)S)C(=O)O', 'C1=CC(=CC=C1O)O': 'C1=CC(=CC=C1O)O', 'C1=CC(=CN=C1)C(=O)NN': 'C1=CC(=CN=C1)C(=O)NN', 'C1=CC(=CN=C1)C=NNC(=S)N': 'C1=CC(=CN=C1)C=NNC(=S)N', 'C1=CC(=NC(=C1)N)N': 'C1=CC(=NC(=C1)N)N', 'C1=CC2=NNN=C2C=C1Cl': 'C1=CC2=NNN=C2C=C1Cl', 'C1=CC=C(C(=C1)C=NC2=CC=C(C=C2)N=CC3=CC=CC=C3O)O': 'C1=CC=C(C(=C1)C=NC2=CC=C(C=C2)N=CC3=CC=CC=C3O)O', 'C1=CC=C(C(=C1)C=NNC(=S)N)O': 'C1=CC=C(C(=C1)C=NNC(=S)N)O', 'C1=CC=C(C(=C1)O)O': 'C1=CC=C(C(=C1)O)O', 'C1=CC=C(C=C1)C(=O)SC(=N)N': 'C1=CC=C(C=C1)C(=O)SC(=N)N', 'C1=CC=C(C=C1)C(=O)SC(=N)NC2=CC=C(C=C2)C': 'C1=CC=C(C=C1)C(=O)SC(=N)NC2=CC=C(C=C2)C', 'C1=CC=C(C=C1)C(=O)SC(=N)NC2=CC=C(C=C2)OC': 'C1=CC=C(C=C1)C(=O)SC(=N)NC2=CC=C(C=C2)OC', 'C1=CC=C(C=C1)C(C2=CC=CC=C2)(C3=CC=CC=C3Cl)N4C=CN=C4': 'C1=CC=C(C=C1)C(C2=CC=CC=C2)(C3=CC=CC=C3Cl)N4C=CN=C4', 'C1=CC=NC(=C1)C=NNC(=S)N': 'C1=CC=NC(=C1)C=NNC(=S)N', 'C1=CN=C(C=N1)C(=O)N': 'C1=CN=C(C=N1)C(=O)N', 'C1=CN=C(N=C1)N': 'C1=CN=C(N=C1)N', 'C1=CN=CC=C1C=NNC(=S)N': 'C1=CN=CC=C1C=NNC(=S)N', 'C1CCC(=NO)CC1': 'C1CCC(=NO)CC1', 'C1COCCN1CCCS(=O)(=O)O': 'C1COCCN1CCCS(=O)(=O)O', 'C1N2CN3CN1CN(C2)C3': 'C1N2CN3CN1CN(C2)C3', 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1': 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1', 'C=CC1=C(N2C(C(C2=O)NC(=O)C(=NOCC(=O)O)C3=CSC(=N3)N)SC1)C(=O)O': 'C=CC1=C(N2C(C(C2=O)NC(=O)C(=NOCC(=O)O)C3=CSC(=N3)N)SC1)C(=O)O', 'C=CCN(CC=C)C1=NC(=NC(=N1)S)S[Na]': 'C=CCN(CC=C)C1=NC(=NC(=N1)S)S[Na]', 'CC(=NO)C': 'CC(=NO)C', 'CC(=O)O': 'CC(=O)O', 'CC(=O)SSC(=O)C': 'CC(=O)SSC(=O)C', 'CC(C)(C)NCC(COC1=CC=CC2=C1CC(C(C2)O)O)O': 'CC(C)(C)NCC(COC1=CC=CC2=C1CC(C(C2)O)O)O', 'CC(C)(C)NCC(COC1=NSN=C1N2CCOCC2)O': 'CC(C)(C)NCC(COC1=NSN=C1N2CCOCC2)O', 'CC(C)NCC(COC1=CC=C(C=C1)CC(=O)N)O': 'CC(C)NCC(COC1=CC=C(C=C1)CC(=O)N)O', 'CC(C)NCC(COC1=CC=CC2=CC=CC=C21)O': 'CC(C)NCC(COC1=CC=CC2=CC=CC=C21)O', 'CC(OC(=O)C)OC(=O)C1=C(CSC2N1C(=O)C2NC(=O)C(=NOC)C3=CC=CO3)COC(=O)N': 'CC(OC(=O)C)OC(=O)C1=C(CSC2N1C(=O)C2NC(=O)C(=NOC)C3=CC=CO3)COC(=O)N', 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C': 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C', 'CC1=C(SC=[N+]1CC2=CN=C(N=C2N)C)CCO': 'CC1=C(SC=[N+]1CC2=CN=C(N=C2N)C)CCO', 'CC1=CC=C(C=C1)[N]2N=NC=C2O': 'CC1=CC=C(C=C1)[N]2N=NC=C2O', 'CC1=CN=C(C=N1)C(=O)N': 'CC1=CN=C(C=N1)C(=O)N', 'CC1=NC(=CC=C1)C': 'CC1=NC(=CC=C1)C', 'CCC(=NO)C': 'CCC(=NO)C', 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O': 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O', 'CCCCCCCCCCCCCCCCCC(=O)O': 'CCCCCCCCCCCCCCCCCC(=O)O', 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCOS(=O)(=O)O': 'CCCCCCCCCCCCOS(=O)(=O)O', 'CCCCCCCCCCCCc1ccccc1S([O])([O])O': 'CCCCCCCCCCCCc1ccccc1S([O])([O])O', 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O': 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O', 'CCCCN(CCCC)C1=NC(=NC(=N1)S)S[Na]': 'CCCCN(CCCC)C1=NC(=NC(=N1)S)S[Na]', 'CCCCOP(=O)(OCCCC)O': 'CCCCOP(=O)(OCCCC)O', 'CCN(C(=S)S)CC': 'CCN(C(=S)S)CC', 'CCOC(=O)C1=C(C)N=C(S)NC1C2=CC=C(C=C2)Cl': 'CCOC(=O)C1=C(C)N=C(S)NC1C2=CC=C(C=C2)Cl', 'CCOc1ccc2c(c1)nc([nH]2)S': 'CCOc1ccc2c(c1)nc([nH]2)S', 'CCSc1nnc(s1)N': 'CCSc1nnc(s1)N', 'CN(C)CC1CCCCC1(C2=CC(=CC=C2)OC)O': 'CN(C)CC1CCCCC1(C2=CC(=CC=C2)OC)O', 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C': 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C', 'CNCC(C1=CC(=CC=C1)O)O': 'CNCC(C1=CC(=CC=C1)O)O', 'COC(=O)C1=CC=C(C=C1)[N]2N=NC=C2O': 'COC(=O)C1=CC=C(C=C1)[N]2N=NC=C2O', 'COC(=O)CCCC1=CNC2=CC=CC=C21': 'COC(=O)CCCC1=CNC2=CC=CC=C21', 'COC(=O)n1nnc2ccccc12': 'COC(=O)n1nnc2ccccc12', 'COC1=C(C=CC(=C1)C2=CC(=C(C=C2)N=NC3=C(C4=C(C=C(C=C4C=C3S(=O)(=O)[O-])S(=O)(=O)[O-])N)O)OC)N=NC5=C(C6=C(C=C(C=C6C=C5S(=O)(=O)[O-])S(=O)(=O)[O-])N)O.[Na+].[Na+].[Na+].[Na+]': 'COC1=C(C=CC(=C1)C2=CC(=C(C=C2)N=NC3=C(C4=C(C=C(C=C4C=C3S(=O)(=O)[O-])S(=O)(=O)[O-])N)O)OC)N=NC5=C(C6=C(C=C(C=C6C=C5S(=O)(=O)[O-])S(=O)(=O)[O-])N)O.[Na+].[Na+].[Na+].[Na+]', 'COC1=NC=C(N=C1)C(=O)N': 'COC1=NC=C(N=C1)C(=O)N', 'COCCOC(=O)OCSc1nc2c(s1)cccc2': 'COCCOC(=O)OCSc1nc2c(s1)cccc2', 'COc1ccc2c(c1)[nH]c(=S)[nH]2': 'COc1ccc2c(c1)[nH]c(=S)[nH]2', 'COc1cccc(c1)c1n[nH]c(=S)[nH]1': 'COc1cccc(c1)c1n[nH]c(=S)[nH]1', 'CS[C]1N[N]C(=N1)N': 'CS[C]1N[N]C(=N1)N', 'CSc1[nH]c2c(n1)cc(c(c2)C)C': 'CSc1[nH]c2c(n1)cc(c(c2)C)C', 'CSc1nnc(s1)N': 'CSc1nnc(s1)N', 'Cc1cc(C)nc(n1)S': 'Cc1cc(C)nc(n1)S', 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O': 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O', 'Cc1ccc2c(c1)nc([nH]2)S': 'Cc1ccc2c(c1)nc([nH]2)S', 'Cc1n[nH]c(=S)s1': 'Cc1n[nH]c(=S)s1', 'Cc1nsc(c1)N': 'Cc1nsc(c1)N', 'ClC([C]1N[N]C=N1)(Cl)Cl': 'ClC([C]1N[N]C=N1)(Cl)Cl', 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl': 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl', 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O': 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O', 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1': 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1', 'Clc1ccc2c(c1)[nH]c(n2)S': 'Clc1ccc2c(c1)[nH]c(n2)S', 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1': 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1', 'Cn1cnnc1S': 'Cn1cnnc1S', 'Cn1nnnc1S': 'Cn1nnnc1S', 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]': 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]', 'N=C(NC1=CC=C(C=C1)Br)SC(O)C2=CC=CC=C2': 'N=C(NC1=CC=C(C=C1)Br)SC(O)C2=CC=CC=C2', 'N=C(NC1=CC=C(C=C1)Cl)SC(O)C2=CC=CC=C2': 'N=C(NC1=CC=C(C=C1)Cl)SC(O)C2=CC=CC=C2', 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O': 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O', 'NC(CO)C(=O)O': 'NC(CO)C(=O)O', 'NC(N)=S': 'NC(N)=S', 'NC1=CCNC(=S)N1': 'NC1=CCNC(=S)N1', 'NCC(=O)O': 'NCC(=O)O', 'NO': 'NO', 'Nc1cc(N)nc(n1)S': 'Nc1cc(N)nc(n1)S', 'Nc1cc(S)nc(n1)N': 'Nc1cc(S)nc(n1)N', 'Nc1ccc2c(c1)sc(=S)[nH]2': 'Nc1ccc2c(c1)sc(=S)[nH]2', 'Nc1ccnc(n1)S': 'Nc1ccnc(n1)S', 'Nc1n[nH]c(=S)s1': 'Nc1n[nH]c(=S)s1', 'Nc1n[nH]c(n1)S': 'Nc1n[nH]c(n1)S', 'Nc1n[nH]cn1': 'Nc1n[nH]cn1', 'Nc1nc([nH]n1)C(=O)O': 'Nc1nc([nH]n1)C(=O)O', 'Nc1ncncc1N': 'Nc1ncncc1N', 'Nn1c(NN)nnc1S': 'Nn1c(NN)nnc1S', 'Nn1c(S)nnc1c1ccccc1': 'Nn1c(S)nnc1c1ccccc1', 'Nn1cnnc1': 'Nn1cnnc1', 'O/N=C(/C(=N/O)/C)\\\\C': 'O/N=C(/C(=N/O)/C)\\\\C', 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1': 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1', 'O=C(O)/C=C\\\\C(=O)O': 'O=C(O)/C=C\\\\C(=O)O', 'O=C(O)C(O)C(O)C(=O)O': 'O=C(O)C(O)C(O)C(=O)O', 'O=C(O)CC(CC(=O)O)C(=O)O': 'O=C(O)CC(CC(=O)O)C(=O)O', 'O=C(O)CC(O)C(=O)O': 'O=C(O)CC(O)C(=O)O', 'O=C(O)CCC(=O)O': 'O=C(O)CCC(=O)O', 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]': 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]', 'OC(=O)/C=C/c1ccccc1': 'OC(=O)/C=C/c1ccccc1', 'OC(=O)C(CC(=O)O)(CC(=O)O)O': 'OC(=O)C(CC(=O)O)(CC(=O)O)O', 'OC(=O)CCCCC(=O)O': 'OC(=O)CCCCC(=O)O', 'OC(=O)CCCCCCCCCCCCCCC(=O)O': 'OC(=O)CCCCCCCCCCCCCCC(=O)O', 'OC(=O)CCS': 'OC(=O)CCS', 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O': 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O', 'OC(=O)CS': 'OC(=O)CS', 'OC(=O)Cn1nnnc1S': 'OC(=O)Cn1nnnc1S', 'OC(=O)c1ccc(=S)[nH]c1': 'OC(=O)c1ccc(=S)[nH]c1', 'OC(=O)c1ccc(cc1)N': 'OC(=O)c1ccc(cc1)N', 'OC(=O)c1ccc(cc1)S': 'OC(=O)c1ccc(cc1)S', 'OC(=O)c1ccc(cc1)c1ccccc1': 'OC(=O)c1ccc(cc1)c1ccccc1', 'OC(=O)c1ccccc1': 'OC(=O)c1ccccc1', 'OC(=O)c1ccccc1O': 'OC(=O)c1ccccc1O', 'OC(=O)c1ccccc1S': 'OC(=O)c1ccccc1S', 'OC(=O)c1ccccn1': 'OC(=O)c1ccccn1', 'OC(=O)c1cccnc1': 'OC(=O)c1cccnc1', 'OC(=O)c1cccnc1S': 'OC(=O)c1cccnc1S', 'OC(=O)c1ccncc1': 'OC(=O)c1ccncc1', 'OC(=O)c1n[nH]c(n1)N': 'OC(=O)c1n[nH]c(n1)N', 'OC1=C(C=CC=C1)C=NC2=CC=C(C=C2)N=NC3=C(C=CC=C3)N=CC4=C(C=CC=C4)O': 'OC1=C(C=CC=C1)C=NC2=CC=C(C=C2)N=NC3=C(C=CC=C3)N=CC4=C(C=CC=C4)O', 'OC1=CN=N[N]1C2=CC=C(C=C2)Cl': 'OC1=CN=N[N]1C2=CC=C(C=C2)Cl', 'OCC(CO)O': 'OCC(CO)O', 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O', 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O', 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O': 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O', 'O[C@H]1C(=O)OCC1(C)C': 'O[C@H]1C(=O)OCC1(C)C', 'Oc1ccc(cc1)C(=O)O': 'Oc1ccc(cc1)C(=O)O', 'Oc1ccc(cc1)S([O])([O])O': 'Oc1ccc(cc1)S([O])([O])O', 'Oc1cccc2c1nccc2': 'Oc1cccc2c1nccc2', 'Oc1ccccc1c1nnc([nH]1)S': 'Oc1ccccc1c1nnc([nH]1)S', 'On1nnc2c1cccc2': 'On1nnc2c1cccc2', 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C': 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C', 'S=c1[nH]c2c([nH]1)cncn2': 'S=c1[nH]c2c([nH]1)cncn2', 'S=c1[nH]c2c([nH]1)nccn2': 'S=c1[nH]c2c([nH]1)nccn2', 'S=c1[nH]nc([nH]1)c1cccnc1': 'S=c1[nH]nc([nH]1)c1cccnc1', 'S=c1[nH]nc([nH]1)c1ccco1': 'S=c1[nH]nc([nH]1)c1ccco1', 'S=c1[nH]nc([nH]1)c1ccncc1': 'S=c1[nH]nc([nH]1)c1ccncc1', 'S=c1sc2c([nH]1)cccc2': 'S=c1sc2c([nH]1)cccc2', 'SC#N': 'SC#N', 'S[C]1NC2=C[CH]C=NC2=N1': 'S[C]1NC2=C[CH]C=NC2=N1', 'Sc1n[nH]cn1': 'Sc1n[nH]cn1', 'Sc1nc(N)c(c(n1)S)N': 'Sc1nc(N)c(c(n1)S)N', 'Sc1nc(N)c2c(n1)[nH]nc2': 'Sc1nc(N)c2c(n1)[nH]nc2', 'Sc1nc2c([nH]1)cccc2': 'Sc1nc2c([nH]1)cccc2', 'Sc1ncc[nH]1': 'Sc1ncc[nH]1', 'Sc1ncccn1': 'Sc1ncccn1', 'Sc1nnc(s1)S': 'Sc1nnc(s1)S', '[Cl-].[Cl-].[Cl-].[Ce+3]': '[Cl-].[Cl-].[Cl-].[Ce+3]', '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]': '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]', '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]': '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]', '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]': '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]', '[O-]S(=O)[O-].[Na+].[Na+]': '[O-]S(=O)[O-].[Na+].[Na+]', 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]': 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]', 'c1ccc(nc1)c1ccccn1': 'c1ccc(nc1)c1ccccn1', 'c1ccc2c(c1)[nH]nn2': 'c1ccc2c(c1)[nH]nn2', 'c1ncn[nH]1': 'c1ncn[nH]1'}, decorrelate=0.7, encoding=)], exp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M \\\n",
+ "0 24.0 4.0 1.000000e-03 0.10 \n",
+ "1 24.0 7.0 5.000000e-04 0.05 \n",
+ "2 24.0 10.0 1.000000e-03 0.10 \n",
+ "3 0.0 2.0 5.000000e-07 2.00 \n",
+ "4 0.0 2.0 1.000000e-06 2.00 \n",
".. ... ... ... ... \n",
- "510 24.0 7.0 0.0005 0.05 \n",
- "511 24.0 10.0 0.0010 0.10 \n",
- "512 672.0 7.0 0.0010 0.10 \n",
- "513 24.0 4.0 0.0010 0.10 \n",
- "514 24.0 10.0 0.0010 0.10 \n",
+ "986 24.0 7.0 5.000000e-04 0.05 \n",
+ "987 24.0 10.0 1.000000e-03 0.10 \n",
+ "988 672.0 7.0 1.000000e-03 0.10 \n",
+ "989 24.0 4.0 1.000000e-03 0.10 \n",
+ "990 24.0 10.0 1.000000e-03 0.10 \n",
"\n",
" SMILES \n",
"0 C(=O)(C(=O)[O-])[O-] \n",
@@ -448,37 +424,37 @@
"3 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O \n",
"4 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O \n",
".. ... \n",
- "510 c1ccc2c(c1)[nH]nn2 \n",
- "511 c1ccc2c(c1)[nH]nn2 \n",
- "512 c1ccc2c(c1)[nH]nn2 \n",
- "513 c1ncn[nH]1 \n",
- "514 c1ncn[nH]1 \n",
+ "986 c1ccc2c(c1)[nH]nn2 \n",
+ "987 c1ccc2c(c1)[nH]nn2 \n",
+ "988 c1ccc2c(c1)[nH]nn2 \n",
+ "989 c1ncn[nH]1 \n",
+ "990 c1ncn[nH]1 \n",
"\n",
- "[515 rows x 5 columns], metadata= was_recommended was_measured dont_recommend\n",
+ "[991 rows x 5 columns], metadata= was_recommended was_measured dont_recommend\n",
"0 False False False\n",
"1 False False False\n",
"2 False False False\n",
"3 False False False\n",
"4 False False False\n",
".. ... ... ...\n",
- "510 False False False\n",
- "511 False False False\n",
- "512 False False False\n",
- "513 False False False\n",
- "514 False False False\n",
+ "986 False False False\n",
+ "987 False False False\n",
+ "988 False False False\n",
+ "989 False False False\n",
+ "990 False False False\n",
"\n",
- "[515 rows x 3 columns], empty_encoding=False, constraints=[], comp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M \\\n",
- "0 24.0 4.0 0.0010 0.10 \n",
- "1 24.0 7.0 0.0005 0.05 \n",
- "2 24.0 10.0 0.0010 0.10 \n",
- "3 24.0 4.0 0.0010 0.10 \n",
- "4 24.0 7.0 0.0005 0.05 \n",
+ "[991 rows x 3 columns], empty_encoding=False, constraints=[], comp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M \\\n",
+ "0 24.0 4.0 1.000000e-03 0.10 \n",
+ "1 24.0 7.0 5.000000e-04 0.05 \n",
+ "2 24.0 10.0 1.000000e-03 0.10 \n",
+ "3 0.0 2.0 5.000000e-07 2.00 \n",
+ "4 0.0 2.0 1.000000e-06 2.00 \n",
".. ... ... ... ... \n",
- "510 24.0 7.0 0.0005 0.05 \n",
- "511 24.0 10.0 0.0010 0.10 \n",
- "512 672.0 7.0 0.0010 0.10 \n",
- "513 24.0 4.0 0.0010 0.10 \n",
- "514 24.0 10.0 0.0010 0.10 \n",
+ "986 24.0 7.0 5.000000e-04 0.05 \n",
+ "987 24.0 10.0 1.000000e-03 0.10 \n",
+ "988 672.0 7.0 1.000000e-03 0.10 \n",
+ "989 24.0 4.0 1.000000e-03 0.10 \n",
+ "990 24.0 10.0 1.000000e-03 0.10 \n",
"\n",
" SMILES_RDKIT_MaxAbsEStateIndex SMILES_RDKIT_MinAbsEStateIndex \\\n",
"0 8.925926 2.185185 \n",
@@ -487,11 +463,11 @@
"3 10.148889 1.357824 \n",
"4 10.148889 1.357824 \n",
".. ... ... \n",
- "510 3.813148 0.914352 \n",
- "511 3.813148 0.914352 \n",
- "512 3.813148 0.914352 \n",
- "513 3.555556 1.444444 \n",
- "514 3.555556 1.444444 \n",
+ "986 3.813148 0.914352 \n",
+ "987 3.813148 0.914352 \n",
+ "988 3.813148 0.914352 \n",
+ "989 3.555556 1.444444 \n",
+ "990 3.555556 1.444444 \n",
"\n",
" SMILES_RDKIT_MinEStateIndex SMILES_RDKIT_qed SMILES_RDKIT_SPS \\\n",
"0 -2.185185 0.287408 7.333333 \n",
@@ -500,50 +476,50 @@
"3 -2.974537 0.454904 10.846154 \n",
"4 -2.974537 0.454904 10.846154 \n",
".. ... ... ... \n",
- "510 0.914352 0.560736 10.222222 \n",
- "511 0.914352 0.560736 10.222222 \n",
- "512 0.914352 0.560736 10.222222 \n",
- "513 1.444444 0.458207 8.000000 \n",
- "514 1.444444 0.458207 8.000000 \n",
+ "986 0.914352 0.560736 10.222222 \n",
+ "987 0.914352 0.560736 10.222222 \n",
+ "988 0.914352 0.560736 10.222222 \n",
+ "989 1.444444 0.458207 8.000000 \n",
+ "990 1.444444 0.458207 8.000000 \n",
"\n",
- " SMILES_RDKIT_MolWt ... SMILES_RDKIT_fr_nitro \\\n",
- "0 88.018 ... 0 \n",
- "1 88.018 ... 0 \n",
- "2 88.018 ... 0 \n",
- "3 189.099 ... 0 \n",
- "4 189.099 ... 0 \n",
- ".. ... ... ... \n",
- "510 119.127 ... 0 \n",
- "511 119.127 ... 0 \n",
- "512 119.127 ... 0 \n",
- "513 69.067 ... 0 \n",
- "514 69.067 ... 0 \n",
+ " SMILES_RDKIT_MolWt ... SMILES_RDKIT_fr_nitro_arom_nonortho \\\n",
+ "0 88.018 ... 0 \n",
+ "1 88.018 ... 0 \n",
+ "2 88.018 ... 0 \n",
+ "3 189.099 ... 0 \n",
+ "4 189.099 ... 0 \n",
+ ".. ... ... ... \n",
+ "986 119.127 ... 0 \n",
+ "987 119.127 ... 0 \n",
+ "988 119.127 ... 0 \n",
+ "989 69.067 ... 0 \n",
+ "990 69.067 ... 0 \n",
"\n",
- " SMILES_RDKIT_fr_nitro_arom_nonortho SMILES_RDKIT_fr_oxime \\\n",
- "0 0 0 \n",
- "1 0 0 \n",
- "2 0 0 \n",
- "3 0 0 \n",
- "4 0 0 \n",
- ".. ... ... \n",
- "510 0 0 \n",
- "511 0 0 \n",
- "512 0 0 \n",
- "513 0 0 \n",
- "514 0 0 \n",
+ " SMILES_RDKIT_fr_oxime SMILES_RDKIT_fr_para_hydroxylation \\\n",
+ "0 0 0 \n",
+ "1 0 0 \n",
+ "2 0 0 \n",
+ "3 0 0 \n",
+ "4 0 0 \n",
+ ".. ... ... \n",
+ "986 0 1 \n",
+ "987 0 1 \n",
+ "988 0 1 \n",
+ "989 0 0 \n",
+ "990 0 0 \n",
"\n",
- " SMILES_RDKIT_fr_para_hydroxylation SMILES_RDKIT_fr_phos_acid \\\n",
- "0 0 0 \n",
- "1 0 0 \n",
- "2 0 0 \n",
- "3 0 0 \n",
- "4 0 0 \n",
- ".. ... ... \n",
- "510 1 0 \n",
- "511 1 0 \n",
- "512 1 0 \n",
- "513 0 0 \n",
- "514 0 0 \n",
+ " SMILES_RDKIT_fr_phos_acid SMILES_RDKIT_fr_priamide \\\n",
+ "0 0 0 \n",
+ "1 0 0 \n",
+ "2 0 0 \n",
+ "3 0 0 \n",
+ "4 0 0 \n",
+ ".. ... ... \n",
+ "986 0 0 \n",
+ "987 0 0 \n",
+ "988 0 0 \n",
+ "989 0 0 \n",
+ "990 0 0 \n",
"\n",
" SMILES_RDKIT_fr_pyridine SMILES_RDKIT_fr_quatN SMILES_RDKIT_fr_sulfide \\\n",
"0 0 0 0 \n",
@@ -552,11 +528,11 @@
"3 0 0 0 \n",
"4 0 0 0 \n",
".. ... ... ... \n",
- "510 0 0 0 \n",
- "511 0 0 0 \n",
- "512 0 0 0 \n",
- "513 0 0 0 \n",
- "514 0 0 0 \n",
+ "986 0 0 0 \n",
+ "987 0 0 0 \n",
+ "988 0 0 0 \n",
+ "989 0 0 0 \n",
+ "990 0 0 0 \n",
"\n",
" SMILES_RDKIT_fr_tetrazole SMILES_RDKIT_fr_thiazole \n",
"0 0 0 \n",
@@ -565,16 +541,16 @@
"3 0 0 \n",
"4 0 0 \n",
".. ... ... \n",
- "510 0 0 \n",
- "511 0 0 \n",
- "512 0 0 \n",
- "513 0 0 \n",
- "514 0 0 \n",
+ "986 0 0 \n",
+ "987 0 0 \n",
+ "988 0 0 \n",
+ "989 0 0 \n",
+ "990 0 0 \n",
"\n",
- "[515 rows x 94 columns]), continuous=SubspaceContinuous(parameters=[], constraints_lin_eq=[], constraints_lin_ineq=[]))"
+ "[991 rows x 99 columns]), continuous=SubspaceContinuous(parameters=[], constraints_lin_eq=[], constraints_lin_ineq=[]))"
]
},
- "execution_count": 32,
+ "execution_count": 169,
"metadata": {},
"output_type": "execute_result"
}
@@ -585,7 +561,7 @@
},
{
"cell_type": "code",
- "execution_count": 34,
+ "execution_count": 170,
"metadata": {},
"outputs": [],
"source": [
@@ -613,7 +589,7 @@
},
{
"cell_type": "code",
- "execution_count": 35,
+ "execution_count": 171,
"metadata": {},
"outputs": [],
"source": [
@@ -627,50 +603,53 @@
},
{
"cell_type": "code",
- "execution_count": 36,
+ "execution_count": 172,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- " 0%| | 0/50 [00:00, ?it/s]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
- " stdvs = Y.std(dim=-2, keepdim=True)\n",
- "/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
- " Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 2%|2 | 1/50 [00:19<16:09, 19.79s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 0%| | 0/50 [00:00, ?it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 4%|4 | 2/50 [00:33<13:13, 16.53s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 2%|2 | 1/50 [00:15<13:02, 15.97s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 6%|6 | 3/50 [00:48<12:34, 16.05s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 4%|4 | 2/50 [00:30<12:12, 15.27s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 8%|8 | 4/50 [01:04<12:26, 16.24s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 6%|6 | 3/50 [00:44<11:41, 14.93s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 10%|# | 5/50 [01:21<12:17, 16.39s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 8%|8 | 4/50 [01:05<12:35, 16.42s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 12%|#2 | 6/50 [01:37<11:56, 16.29s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 10%|# | 5/50 [01:23<12:28, 16.64s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 14%|#4 | 7/50 [01:49<11:14, 15.69s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 12%|#2 | 6/50 [01:39<12:12, 16.64s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 16%|#6 | 8/50 [02:07<11:08, 15.91s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 14%|#4 | 7/50 [01:54<11:40, 16.30s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 18%|#8 | 9/50 [02:19<10:36, 15.52s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 16%|#6 | 8/50 [02:08<11:15, 16.09s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
@@ -684,145 +663,131 @@
" warnings.warn(\n",
"/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-04 to the diagonal\n",
" warnings.warn(\n",
- "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-03 to the diagonal\n",
- " warnings.warn(\n",
- "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-08 to the diagonal\n",
- " warnings.warn(\n",
- "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-07 to the diagonal\n",
- " warnings.warn(\n",
- "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-06 to the diagonal\n",
- " warnings.warn(\n",
- "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-05 to the diagonal\n",
- " warnings.warn(\n",
- "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-04 to the diagonal\n",
- " warnings.warn(\n",
- "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-03 to the diagonal\n",
- " warnings.warn(\n",
- " 20%|## | 10/50 [02:34<10:16, 15.40s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 18%|#8 | 9/50 [02:22<10:48, 15.83s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 22%|##2 | 11/50 [02:51<10:08, 15.60s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 20%|## | 10/50 [02:43<10:55, 16.38s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 24%|##4 | 12/50 [03:07<09:53, 15.63s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 22%|##2 | 11/50 [03:17<11:40, 17.97s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 26%|##6 | 13/50 [03:23<09:38, 15.64s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 24%|##4 | 12/50 [03:45<11:53, 18.77s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 28%|##8 | 14/50 [03:40<09:27, 15.77s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 26%|##6 | 13/50 [04:13<12:00, 19.46s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 30%|### | 15/50 [03:57<09:15, 15.87s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 28%|##8 | 14/50 [04:40<12:01, 20.03s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 32%|###2 | 16/50 [04:13<08:57, 15.82s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 30%|### | 15/50 [05:08<11:58, 20.54s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 34%|###4 | 17/50 [04:28<08:41, 15.82s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 32%|###2 | 16/50 [05:35<11:52, 20.95s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 36%|###6 | 18/50 [04:45<08:27, 15.85s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 34%|###4 | 17/50 [06:02<11:43, 21.33s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 38%|###8 | 19/50 [05:02<08:13, 15.92s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 36%|###6 | 18/50 [06:29<11:33, 21.66s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 40%|#### | 20/50 [05:16<07:55, 15.85s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 38%|###8 | 19/50 [06:57<11:20, 21.96s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 42%|####2 | 21/50 [05:27<07:32, 15.61s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 40%|#### | 20/50 [07:24<11:06, 22.21s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 44%|####4 | 22/50 [05:38<07:10, 15.37s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 42%|####2 | 21/50 [07:34<10:27, 21.64s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 46%|####6 | 23/50 [05:49<06:50, 15.19s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 44%|####4 | 22/50 [07:44<09:50, 21.11s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 48%|####8 | 24/50 [05:57<06:27, 14.92s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 46%|####6 | 23/50 [07:56<09:18, 20.70s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 50%|##### | 25/50 [06:08<06:08, 14.74s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 48%|####8 | 24/50 [08:07<08:48, 20.32s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 52%|#####2 | 26/50 [06:18<05:49, 14.57s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 50%|##### | 25/50 [08:18<08:18, 19.95s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 54%|#####4 | 27/50 [06:28<05:31, 14.40s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 52%|#####2 | 26/50 [08:31<07:52, 19.67s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 56%|#####6 | 28/50 [06:38<05:12, 14.23s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 54%|#####4 | 27/50 [08:41<07:23, 19.30s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- "/home/vscode/.local/lib/python3.10/site-packages/botorch/optim/fit.py:102: OptimizationWarning: `scipy_minimize` terminated with status 3, displaying original message from `scipy.optimize.minimize`: ABNORMAL_TERMINATION_IN_LNSRCH\n",
- " warn(\n",
- " 58%|#####8 | 29/50 [06:48<04:55, 14.09s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 56%|#####6 | 28/50 [08:53<06:59, 19.06s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 60%|###### | 30/50 [06:58<04:39, 13.96s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 58%|#####8 | 29/50 [09:08<06:37, 18.91s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 62%|######2 | 31/50 [07:09<04:23, 13.85s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 60%|###### | 30/50 [09:18<06:12, 18.62s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 64%|######4 | 32/50 [07:20<04:07, 13.76s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 62%|######2 | 31/50 [09:29<05:48, 18.36s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 66%|######6 | 33/50 [07:31<03:52, 13.68s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 64%|######4 | 32/50 [09:39<05:25, 18.10s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 68%|######8 | 34/50 [07:39<03:36, 13.53s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 66%|######6 | 33/50 [09:50<05:04, 17.91s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 70%|####### | 35/50 [07:50<03:21, 13.44s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 68%|######8 | 34/50 [10:02<04:43, 17.72s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 72%|#######2 | 36/50 [08:01<03:07, 13.36s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 70%|####### | 35/50 [10:13<04:22, 17.52s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 74%|#######4 | 37/50 [08:11<02:52, 13.28s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 72%|#######2 | 36/50 [10:26<04:03, 17.39s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 76%|#######6 | 38/50 [08:21<02:38, 13.18s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 74%|#######4 | 37/50 [10:36<03:43, 17.19s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- "/home/vscode/.local/lib/python3.10/site-packages/botorch/optim/fit.py:102: OptimizationWarning: `scipy_minimize` terminated with status 3, displaying original message from `scipy.optimize.minimize`: ABNORMAL_TERMINATION_IN_LNSRCH\n",
- " warn(\n",
- " 78%|#######8 | 39/50 [08:31<02:24, 13.11s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 76%|#######6 | 38/50 [10:48<03:24, 17.07s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- "100%|##########| 50/50 [08:47<00:00, 10.55s/it]\n"
+ " 78%|#######8 | 39/50 [11:03<03:07, 17.01s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " stdvs = Y.std(dim=-2, keepdim=True)\n",
+ "/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
+ "100%|##########| 50/50 [11:19<00:00, 13.58s/it]\n"
]
}
],
@@ -843,7 +808,7 @@
},
{
"cell_type": "code",
- "execution_count": 37,
+ "execution_count": 173,
"metadata": {},
"outputs": [],
"source": [
@@ -852,12 +817,12 @@
},
{
"cell_type": "code",
- "execution_count": 38,
+ "execution_count": 174,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGxCAYAAABoYBJuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACcnElEQVR4nOzdd5xU1d348c9tc6dsh6UvHSlWQEXEggbFEvOY+JjYCxqjP42PYjT6JNFoYkk1zeiTRMUkGjXRNDtqjBERC4KKgJSls3S278wt5/fHnZmd2QJb2fZ9v17Dzr333Dtndpe53z3ne87RlFIKIYQQQggBgN7VFRBCCCGE6E4kOBJCCCGEyCDBkRBCCCFEBgmOhBBCCCEySHAkhBBCCJFBgiMhhBBCiAwSHAkhhBBCZJDgSAghhBAig9nVFehpfN9ny5Yt5ObmomlaV1dHCCGEEC2glKKyspIhQ4ag6/tuG5LgqJW2bNlCSUlJV1dDCCGEEG2wceNGhg0bts8yEhy1Um5uLhB8c/Py8rq4NkIIIYRoiYqKCkpKStL38X2R4KiVUl1peXl5EhwJIYQQPUxLUmIkIVsIIYQQIoMER0IIIYQQGSQ4EkIIIYTIIMGREEIIIUQGCY6EEEIIITJIcCSEEEIIkUGCIyGEEEKIDBIcCSGEEEJkkOBICCGEECJDjwqO3nzzTc466yyGDBmCpmn87W9/yzqulOL2229n8ODBRCIRZs2axapVq7LK7N69mwsvvJC8vDwKCgq44oorqKqqOoDvQgghhBDdWY8Kjqqrqzn88MN54IEHmjz+wx/+kF/84hc89NBDLFq0iFgsxuzZs6mrq0uXufDCC1m2bBnz58/nueee48033+Sqq646UG9BCCGEEN2cppRSXV2JttA0jb/+9a+cffbZQNBqNGTIEG666Sa+8Y1vAFBeXs7AgQOZN28e5513HsuXL2fSpEm89957HHnkkQC89NJLnHHGGWzatIkhQ4bs93UrKirIz8+nvLxc1lYTQggheojW3L97zcKzpaWllJWVMWvWrPS+/Px8pk2bxsKFCznvvPNYuHAhBQUF6cAIYNasWei6zqJFi/jiF7/YFVXP5rrNH9M0MIyWlQUwM368vbms58G+YvzuUNYwgp8fgO8Hj+5cVteDR3cpq1TwPe7OZVvz/7M7lIXu939ZPiOC5/IZ0fzxA6TXBEdlZWUADBw4MGv/wIED08fKysoYMGBA1nHTNCkqKkqXaSgejxOPx9PbFRUVHVntxh55pPljw4fDaafVb//+981/QAweDGedVb/9xBOQ0b2YpbgYMgPDp5+G5vKwCgvh3HPrt//6V9izp+myOTlwwQX12//8J+zY0XTZcBguuaR++8UXYevWpsuaJsyZU789fz5s2NB0WYDMbtN//QvWrm2+7Jw59R9o//kPfPZZ82UvuSSoN8DChfDpp82XPf98yM0Nnr/7Lnz0UfNlzz03+D4DfPghfPBB82W/+MXg5wfw8cewaFHzZT//eUi1ji5fDgsWNF/2tNOC3zeA1avhjTeaLztrFoweHTxftw5efTXrcGbjtDpxJhx0UPB8w0a0l14KnpN901CAOnYGHHxwcD/ZsgXjhefQkx/cnlIolYwFNA2mTcM99FB8BezYgd4gHzHr2lOmoKZODTb27EH/y1+aL3vooahjjgk2KivRn3yy+bITJ6KOOy7YqKtD/8Mf6usHeL5CodDQMCaMh5kzcX0fL+FgzHsUaHqlcDVqFOpzs9L3LP23v2u2DgwvQc2u/4zQHp2X9RmRtRj5oMGojM8I7Y9/hLo6NOpXLU/97FRxMfqXvgSA7yu0J59s9jNCFRbCf2d8RjzzDNo+PiPU+RmfEX//O9o+PiPUxRmfEc89j1ZW/xmRVWfTRF0+B10P9vkvvQwbm/+MUF+9Kv1etddehbWlzZb1L788/Rmh/fsNtM/q81obhj7+RRenPyO0BW+hLa//jDA0LV1nz1e4X/kKel4elqHDokWopUvxmgmmvHP+O/0ZoS3+AH3x4mbr6/3X2enPCG3pUvT33m2+7Blnpj8jtGXL0Be+nXU8s87OKafil5SgaxrWmuAzQimVUef6Xzb/5M/Vf0asXYv++msNStTzTzwx/RnR9P+Iepq2vxKga/XlPG8fQVkDvSY46iz33nsvd955Z1dXQ/QyKnlzhyAwUKr+g9VzPPyEG9z8Ey664wU3/VRplTwfiFfF8exaEq6C3TWY5bXBB62ncH2F7/u4PnjKZ9PHW6jY7JJwfY6o3MshyQ+yJRv2sqMqTr+YzZThBRi6xlufbeeVxeV4SlG0eR2jPt6Ir4I/fP10HYJ6LKv4iO3Fu/AV9Nu2iYnLSlGAr1T6farke/54cx6binfgK0W/3WVM+XRV8rhKXl+lt5euMFkzYBu+UhTt3clxK1cwfUw/Tp4wAOUr3l23h6NHFoKh8cd31nPfs8GNsqCqnFkrP210o0rt+OT9OMsG7wQgr7aS05Yva/CzqS++8p1qlrywF4BoXQ1nLV/W7HVXLajg/ZeqUIDtJvjSJ8F1TzyomNkHD8RXinfW7uaY0UUYwA9fXsmDb6zB8D2+/FHypql8tPQrKDRgY/5WFr5eBfhowFeWfJAuk/1VsTV3FW//awd6cvuLH7+F6fuAX19OBV93xvJZ8O9NaJqPpnxO//RdbM8BBdPGDeWEI8ZTvqOMJaWbOWzqIRT6Pv/3t9f503+WMmvFh0Sc+j8aM1WGI7yxcGN6e+aqpeTW1TZZttayefX9+j9Mj1/9MQW11U2WTZgmLy/Zmd4+du2n9Kuu/2P1qHHDOOGICZTvKOOD9VuZeOJ0Bo+ewG/++hpr//AMA6r2ZnxvU4LtFz7dnf7+TNmwmsEVu7NKZZ730rKtqOTN9vBN6xi6d1ez13196XqcZCB18JYNlOzZkb7hlwws5ozjp2HoGns2reWZRx/ilBNnMOqIY3Edl5ffeJuNZdua/F68/f5yqu0wGorRO8oYsyO7XGbI8O67H1ERiQIwYucODtq2pclromDx24vZE8tBQzFs9y7Gl2WXHTZ4IKecMAND19m0+E1eeKaUU6cdxdh+I/Fcl1f//R+2bt1K6nc3deHlb/yLnXm5aAr6V5Rz8JYtwbdIU2iq/vdXA1a9+iI78oOyoNBU6lrBV03Vl9VV/e+1plTG8+RXYNwhh3PRDbdi6jor/rKPxocGek3O0dq1axkzZgwffvghRxxxRLrciSeeyBFHHMHPf/5zHnnkEW666Sb2ZPwV47ou4XCYP//5z012qzXVclRSUtJ5OUfSZA6AchxWbdnBqx+uZOZh45hYMpDlG7bxxkfBX2nKMEl9AGmeB/jZf7ZlBBvKMBqUDQqkj/s+eC7K91CaAt9FKQfNccBzQHngeyjfRfPd5HMvON/3wHc57ogpHDnjc7z/75d5c9ECZhw1naNnnsY7r7/A6wsX4KHwlBYEDL4Pnko+T/6lpeqDg+S7geRxfL8+IPKTdU8GHr4GPnrwQeH7aPjJD5P6m6Ceer8aaGiAQvd9Tp52LF+4dA6fvvgUC95dwIwjj2XSmefx/KO/4c1FbwXfLxSG76Mrlb5u6oNIUwodhdK09IeX7vtofrA/VU5PfpjpKiibajDXfR9dgab8YF+6LMmyNFFWMWHaTI6e+7/s/M/r9D/+ZN7/yfdY9c4b2WX9jA9Jlf2BGbwvLQggfIWR/F7pivSHb/pDWAVlNUBL1gFS10yWTb6Gnryynno9v/5Y/vTjGHnfD9jz179S+MUvsvGWm6lcuDB9HXy179ExmX8h7+8ju4PKxo6dztAf/Yi9zz5LwZe+xOZvfpPqBW8f0Dq0tmxWnb/8ZTbfdFNQ5+5c35/9DC/hseMvf6PwnC9hxyzW3fBNqhbuoxU489otuYV3YNmcY45m5E/uIV7rsftv/6DoS2djRwzWzb2Nyneab5VqXR06tlstd/rRjPzpvWzfuosh40b0rZyjUaNGMWjQIF577bV0cFRRUcGiRYu45pprAJg+fTp79+7lgw8+YGqyWf3111/H932mTZvW5HVt28a27QPyHoDsYKIPlq2sq2XFyuUkEh7HHHwwuXYlAwYW8v4932HVglcpSt5AdV9hKNLPdZXcTj7Xk8/r94Hhp8qT3B/cEPUW/F/dvyfYOONYpvzkJ4zetJOC6Sex6brrKFzwNud0xOU7w6IlbPpgCRN/8hMGlysKTj2HTddfz9gFbzO2q+u2L+v+wd7hBzHwiivY9fDD5D39PFO7uk5pmb9M9TfGxH8WsPdvf6P/lVey6+GHqV2wMPvDtwXdA20t6yerogCVuj9lbNfv07KOVX/4DpEXnqf4qqvY8fvfs23xQgg3fm8tqESnlx102ZXUrPyUbe8sJPLCC0Gd//B7yhYvJO+kGUQnTGTrYw8DGT+h1PtudMnMtrtmyqa+V6mHZuGZETwzimtE8IwIvlG/7RsRPCOKlzzmGdHkvghDHl3NqV89jO1jPke/WIznf7eMjcaX4LgvteJ7cWCVzCvl1CsPZsfok+ifWecZ3bjOv1vFMV8uaXH5HhUcVVVVsXr16vR2aWkpS5YsoaioiOHDh3PDDTfw/e9/n3HjxjFq1Ci+853vMGTIkHTr0sSJEznttNP46le/ykMPPYTjOFx33XWcd955LRqpJjpPjRNnZelnrPp4MbVbN7LzP28w4dTzGZy8Aeb86e9M7qK6eRp4Ovg6QUuNBr6uJb+Cp2nBsWWLsF9+kYFXXMG2p//EihXvQn8z66aElvzgTd6Agq9a6jO50THQsrcb7dPq7xEa9TfO1Id8xjGFlnVcaaDvXY696K2gzq88z+LKlXiHFma8TvK1NC3jtbT6bUDpWuOy6e3gkbUvXe/Ufj2j7pnn6UFrV2q/rmGFwxx8zMkUnnou2z5YRPFFF7FjcIxP33uTRF0CNB0tdV1NT19L0/TgGMF+TU+9hhFcXw+OaZqO0oN2JdCS5TLKJK+rJ68XlNHRdD392ho6WsY5sYIcJk6ZTNHQkezdsoWiyy5DP2MWny1ZRk1Vbfp1g/NS1wJdM9D15HtIfo813QjK6Tp68vumaTq6EXyUGxmvqyevVZ/bWv/919KtfRn/JutfOCgfgMLBBei6Tl11Hf0vvpiiCy9kb1k5aFC+vTz4vmb+R6n/9Ui/xr40zDNrsSZOs3LCjBs+AIVC13XiNXH6X3QxRRdciIbG9o3bGfS5/66vaAOer3DjHk7cr38kfLz0toeb8Tz9NeHjxn18r+1/YW1cUc7yBVuYfOoIPpy/no0rdu//pK6S/NZtXLGb5W/X13nTit31DUP7P71Vr9Veqd/SzZ/t4bN3rZaf15O61d544w1OOumkRvsvvfRS5s2bh1KKO+64g9/85jfs3buX4447jl//+tcclEzugmASyOuuu45//vOf6LrOOeecwy9+8QtycnJaVAcZyt+x4k6CzzavZcWyxVRvKCWGiZM7iCnvvcO4O+9lx9L3GXDM8Xz090dZ8f4rwQ1TJ7hJ6AaaEdwANMNEM4zguaajmyaabqIZOrppoRsWhmWiGyFMK4RhhdCtEKZlY4TChOwwpmmjmyamFca0bMxQUFZPvpauG8HNy9DRdRNN09ANM7gBGSaWFcYw6//z+b6H7wVdiVryxqT8jJwhRXCz8utziIKDen3uTapcxp+y6f1ekFPk+6B8he8H3XAqdb1kolJmfhCpr0A4alI8Mg9d14jXuNhRE99XbF9XQU2lg6ZAJXMCslsrVDJdIHk3VCp9V0wXy4jZ6m/Imce0jJto5m9EE9dI7igYGCWSY6HpGpW7aqnemyBWaJNbFEb5irpqh4qdtdmvmf4ntbuDPnFbKLcojB210HSo3hunpiJBNC9ErMBG+RCvcajc3cxAiS6Sqh80rnPmvgMl9bvs+6nf+cbPDVOnYECU/OIIZaUV7NpUSW6/MMMm9GPtku1s+WwvdVUOibiHU+fixD0SdR5OnUci7uK77b8NahpYYRPLNgiFDaywgWWb6ech28AKm5iWjmHpRHItikfkkZNvY0dNKrZVkDcwD03X8H2f7Z9to7a8hvQHQPorpNusMj8clEqOAvMz/tP7yXKp/QTP0/tp4joNr19fJn/MKIrGjwv2+D4V69aTN3JEENADu1espHx1xoCXrIBJI5Ur1KhAw5BK00A1LFt/jUZReZMhWbA/f8xoCsePB6B8714Ki4padP/uUcFRdyDBUcdIuAnWbN/Ap58uoWLtGmIJn5z+g9BjUXLDORxz1AzW3XoL7lXnMWzsEURzC6mtKqeqfDu6bgTBia7VBy168Ne6bhgYhhn8dW0EQYum6cFf4J1EJROfdUMnXutStaeOWL5NOGZRU+lQsb0mGRRlJF43EbBkBS+pwIPkc1Sy1SnVzqSSrRj1AYSWamVJN740fzy/OEI4FgQaPeWmXTAwimUb1FVl1y23KEw4x8KJe+zdVtOFNWysO9Q59Xvne0ELR9bDb7jPJ5IbIpYfon9JHmuXbGfvthry+oUZO3Ug6z/dxZ4t1dRUJJLnJwMXb9/By36fe/UBUFPPW6pkYhGnXnkwyxdsYeKMIbzyu2VsXN7ylpggoEkGNxmBTfq5nQx0wmZWwGPZBmZIR1M+ynPxXQffcfEdD89xUJ6H8jxQLrpKoCuXAYeOxy4qAt+nds0SVOV2jNx+2GOngqbjle8gvrqZHJ5k8JC9L/VP8j99qqU0VT7dctigBbfRtp59rYzjoZIJGLGgZdHZuRl37zbMwoFY/YYC4NWU42xZ00ydW7RrPweaKLqfi5gDx6BHg3v1nvUr6TdqYt/KORI9Q8JLULp7M8tXLGHP6rVEqxIMKOyPMSgXNI2DDz+SocVD2HTddby9axnnHfILrFCQ6BDNLSCaW9C1b4BgKLOb/MszXucSjhhE820qd9Wxc1MVmg5Vu+P0G5pDTqGN8sLs3lqdDk6CnplkC0nG0Njs4KZzWzjMkIGma9RVOelWgJqKBIapE86xMKyun2ckJdVyEK9xqKmIk1sUwU341FTEieSGCEVMdmysxEv4VO5JBiAZf0xn/kVcv6my7y2pY02WrW9ta+o69a+TeZ1gZ/mOWuyIyZCDCqjcVUfFzlpihTZFg2OsWbydyt111JQn0oGJnxEsZO3L2u/vJ8BJlsm4TlukAo3qPXFGHlbMCw9+3KpAo7PpRtDtqRsahhl0le7aUsXqD7Yz+dQRrFi4Fc/1GTO5mHCOhfIVVjgz4EkGOclgyLSNxv/v/GAwRjAow00/V148CH4SDl55AicRJ+4Ggzo0pdA1D13zMXQP24JQCAwbDFPDsIzgETPRlA87VxCNuBDtH3TV7l4L/cZgRmOYQ4Z2zTc3RSlwaqFmV/DwR4AfhRXPExp7CqGydyD3IHj/UZh8IWZ1Geabt9af2/BaDbO56v+zZP8nanRewzJkl236P2Dw5b8fAXsMvPs7zLH/1eK3LsGROCDiXpxN5WV8+tnH7Fy7Bnt3DQNyCjCGD8ma8Csvvz+rvjkXf8HbxL8yIx0YdSXfS+UZeMRrHGorHVzHx/OCZt/ciYXUVCSorUqQU1ifvF9bmcC0dMIxi3Cs5X3dB4LyFXVVDnbUIl7jkKjzCIUN7KhFXZWDbtTfJJQKbrCe6+O7wVfPy3ju+k0cV/jJY54b3KzTz5Nfg2tkHk9eI/N58mum1E17W2k5wyYU8fwDH3Wrm3ZTUnWu2FnL8En9ujzQ0I0gqNB1Dd3Q67fT+3VqKxOs/3gnk08dwWfvleF7PsMmFgbn6Bpa6vwGz3Ujc1tvulwqsGnJ8+Q5DZ83JRQ2yOsfpbo8zkFHD2LQ6DwSdRkTd6pgZGpqBCp+InjueuB44DrgJcBPoNw4vpP8/XY9/OTvJgAaGHrwfTQtPQi2QjqmZWCEDAzTCLrxrSYCrpREFVTvCF7PCGXv370WrEgH/bSb4HtQV54MenZD7e7656lAqHZ3sO1mtCDPuAHKPoI1r8Mp34MZ18OCX8D878CKf8Kgw2DjPkasdYWPnq6vc1XLW2mlW62VpFutdeJenC2V2/h03adsX7UGe0c1+XYUo6iwydFrC99fzHlP/YOaEFT+6E5mzv7yAa+z5/k4dUEwVFftEK92cBIevqfQdQ0zpGOGDAyz+7SutEa8xqViVy0VO+uwbIPDZg5jzYfbGX3EAN58ciWbVu7JCkzak2zaGXRD49gvjeXwz5Ww9PWNvPvP0qw8peBLMzlNqSTirDyk7B2NcqMyr9vSa2kNegY0mHzKcCYeO4QV72zlk39vzgpEGgUnhp4OELL2ZQQXzQU1+z5HS7Za7r9lMhVo1FYliOSEqNhZkx1o7EuzeTE0sS+zxaBhngs0ajFosgVCEYqFyRtaTMWm7SSqqgnFbPKGDaZibSmJ8t3gxetnZ1ZuMEWG5+Eld/keeL6Ojw7J/ELD1NHNIOixwkEXmmFoGCZZX9skZ0DQKhOvbHzMzg2Co6rtrbumG68PcGozAp2a3dlBUO2eZN5RC1lRiBZBtB9EimDU8TDtGti6BIZMhmV/gz2lNPqP2OD/T1YXXsO+s6z/eA2/pw26ARtes1GZJq6ZP4yKgdPI7zdQutVE16lz69hWtZ3lW1ZRtnoNVlkl/X2L0IDBKDvU7Hn9lr8HwMdj8jmi/4FpUvYcP5mg6QbBUK2LG/dQvkIzNKyQQSTHQjd6TjCklAqCoJ1BEJT5NV6TPd+UYWjBqJNX1vPZu01POpdV3tIxDA3d1DHM4AZspJ6bevKmoaePG0bGc1NHz9xnZOwzkzcjI+N5an/y9XRDw46Y6daBQ08cxoiDi1p+0+4iWS0aRw1i0Ki87lVnpYI5vXwHPJdQxCSv3wAq1q0nsXc3Tm4OeaNHU7F2NYnyCtJJvukZM5MJvvsLaLLibJXxoJmgCLIDoYxrZOTdhAr7kzd2MhWfvE9izy5AkdgBFRVbyZs4mT2fVlK7qxpP6fi+iSIU5OQYBnpIw9AhZGlYNliWlvy9Bd3UME3SM213KKcWCkfCnnXZAZKdW78/9X2JVzQIehq09KSCnkTTE2g2TYNIQXbQE+1Xvx0tSu4rCoKjpupnRaBiMxx2buP30ZGa605r8ngTf8zZedBvDKxb2uKXlOBIdKhat5bt1dtZub2UsrXr0TeVU5hQ2IX9IBbZ5zDPnTUeR64JZsutHDOSaCzWKXV0E156tEpdVYJ4rYebCG5UqWbySG7PCIaUCrrHmgqC9nXzjeaHyOsXZuRh/Tl05jC2r6vg0JOGUTgkRl2lUx/oZAVALW916CypICPViuHUuVnb3VG3qLPvBt1JvoPygslNleeAE0clasBLoDwffJdQfgF5Yyaza+n7xHftRuk68T07SFRV0O/Qw9n18UfEd+/JuHj9X/rZ/78zE331jIOpss21BmhB2YyWAdWwNSCz8Qgwcwaz/dO11O0BpfrV55rtVNR9ugY7txiqXOyQhhVKBkCplp9UINQZAdC+xCuD7rPCkbDqVdj8PsT6w+RLYP4dsPq1+kDId1p+XcNKBjcNA56i7P2RAtBbGQKYESgYAVuXQkXG8k7VO2HoFNi8OHjeUKME8uZGmKVkHGuuFanR8ya2NYJcrqJRsPlD2LOPZaYakOBIdIhat5YdNTtYtXMdZRs2wqZyciscInkxKM7Z15CCtM8++YCp1YqqMBQNH0+sA4IjpRRuIqNlqCrIr3ETHkopTEvHtHTs/FCzeQzdgVKKmopEowCoYlcdbrz5G2yswCavf5i8/pH6r/3CmCEj66aNBlW76xg+sV+3DTQaBhkAiTqPip013TZAalhnpRTxWpe9O2ooKI6wZ1sNiVo3Y6QikJ7WoT6hvL7hpUG51FfXSSYMZz+UUwduPJjZPZVng5fudtQMAzQj+KpboEeIFA5m58q1JGo1iPVL326cOp89n63B7jcAp8H3udmekiaeNNsb0uB719Q9sWFXZYpfsQ0TyMkP/qAxjGTQY2oYRjWmUUPBSLPrAnunBso3wd6NsHdD8CjfGOwbcWyQNLxrNRx+Pjx9cZAf05Cd26BFp192S0+qlSfUss/b/XLjyUddcqUABcUHwbZPg9hlwEQww6Rns66rhAGTgveapaluriaONTq+r2MNL7OP65p2UP/ig8Ae1Pw1GpDgSLRLjVPD9prtrC/fzJZNm/E3lGPvriEWtdGGFGcvd7IfA5YHC6x+MrYfsUgO0Whuq+ujfIWTahmqdamtcnDiHp4TzPFhWBpmyMCOhrq0BaQ5yldUl8ebDII8p+kcAU2DnMJwoyAotyjc7Kizjg400guUZt60U/tbctPf1/nJloT8gRG2rSuntiJR33pAcLi2yiEUManc03i9r6baNBq/gWb2t+R3pNlzIX9AhLJ15dRWJtJ10TQNyhMkal1CYZNErZcunxrNmAoEdB2C9dY8NBw05aFrDhoumhdH82vR/Tia7wfHNReCeAd0DS3HRAuaR9CMSHJuMCOjUSfj9VIPdkI+aAVmo7evabVALfkju9cAg25B+UGOUHkqANoI5clAqKnWlJS1/w5ydmZcD8ufg/wSOO7GxkGP0Xw6QvvqrYKkcDcIpPEcgg/LUBD8xIohXAChaNCNZkWD1qnmhLtxLm6i5Z/5EhyJNqlxathWs42NFVso27YNd1Ml1rZKYoaGPqgfWK378Nxe5XHk2iD5sHbieArCdouCo9SweifuUVfrEq9MBDPbOh5oyZEkIZ1wrPP+aozmhXATXpPBRChsYIaMRpPm+b6iek88GQAlg6BdQRDU3IR0mq6RW2RntwL1j5BTaLc6OdwMGVTsrCFe45Koc4P5ZBTUlAfddKGISdWeuuSNXwvWWFGpMCMIWDTqAxc0VT8lQbIFLv39zrjpp3bpOqRmqk5NbaAnu+w0Iyiva1owyXVGV14obJJbFCZ9U29g0EircRNEK7Tnd6S5U6O5IQoHRDPyRTOmcVA+Obmg+Qk030XzE+A7aG4cza0Gpya5np9TP8oq1SURMoNuEd0KxonrOcF2Nwz6e5VETX0AVL6xvjWofFOQ9N2ccD4UDA+Cn8yvxeODfJiqbTD+NBgwoXNzd7wEuLXJViEn+H0xQkELS2xA0N1mZQZCfTNM6JvvWrRZtVPNtpptbKncyvY9u0lsqsTYUk6e52IV5qMibVuHbvXH73JUjaIiopE3bALhcATLbjyUteGw+rrqYLZbz/XRdQ3D0rHCOuGcA9eE7ia8JltbgtaZCFvXlFO2trw+ANpZR9XuumZHgemGRm6/Bl1h/cPkFNgdlgdVtaeOumoX3/UJRS0iESM5qSbpG3fh4FgyD6M+gIEGrRtNTD6ZmnASkoFN8pz6VUK09LndXqOZhlNNXX7G86aON3yeLO+7wc0pUQtOdbLLIhn8+E5Ga5ge3JR0K/hqhZOBUMtbYkU7KD8IVtItQBmtQTX7aAXSTcgbCgUl9cFPKhBqqkUlM7k5Xhk8mkrSbtN7UEGwltUipAVBkGlD7uAgYMsMhOT3K02CI9EiVYkqtlVvo6ymjB0VFbhba/E37iJaW0soPxdyovvruNinQSs/BODTcf2xPI9YQRG6rmcPq69xiFcl5xhKBkNmSMeOml06rL6+OyrCmg/K2PjpLuwcmyPPGMXzD3zEhk+bns/GMDXy+tnkFYXI6xdKf43lWRl//Ke+q3FIpCY4bDyMOa3JY/XHXccnXuuhgEhEJ7fAIBIzMMwmkkaa6/9P7VdQv3hbC8o3u7+t12hNsJK5pEJqYr/Ufo/0kgq+F5T3PbKWYYDsgCdz2HlTAVGTI6tS3zSCm5BhBcGPJa0+7dbWYfGJ6ozur43ZuUDePpZIiRRmtP5kBEK5g1qe5NwwMILg6551rQ+QlJ+dI+Qn/0gz7aBrLLd/EJylA6GIBEL7IcGR2KeqRBVl1WVsq9nG7uoq3B1xnI27Ce2pIJwTgcHFWZM4tsW2Socj1+wAwDtiMnpcYWiF7FhfQV2DYfWmZRCOmV0zkkyRTHRNBH/te0EXSF1FLcs+rqTOz+WkSw6maq/DxBlDePm3wdIFpqnIy4e8fBU88oKv0ZhCI55xcaBOBY+MXUAToz1ad8xJQDyuoRsQiypychVhG/Q66l+vPf1R9S9YX/GsenXU/ob7GgRQ+xoRo6X+SSb0JBeOTZ+bSiwl+TyrvJbqC6zfzhpllWpyyzxfAp0DZn/D4jd9AFs+rM8BSrUG1exq/pq6BflDIX94EAAVZHSH2a3Ph2zEijQdAKUCJCvSdHDke8kWoVQg5Ae/hmY4mSM0AMK59YGQGWn3Z3RfJMGRaFJlojLdUlRZV4OzxyOxfjf6jt3k2iba4P6tSrZuilKgXI3VS9/j6DpFeVQjr/gYqrbvwq2OUF2ROPDD6n0vY76XjIdTHfTTe6mRQA5792isWmmyYb2B72vAboa9G6xUvenjjYwsqeSwQ20iUTJGwmXcjNOa2pexv42UUiTiwcOM6OQP0Ijl6tjhrh2OL0SHSS1vUbEZ9qyHETPgk7/A+oUQ6wfH3wR/Og9WzW/+GpGiZOtPsgssFQjlDOrc1pV9TfCY6mLzvfogyI0HLUSaVh8I5QxKtoxltAjJ/+0OIcGRyFKRqAhaiqq3UZOI41drVK8vh63biWoKY0AhqpXJ1ilBb4aG72r4jobnaihXY0iyS+2TsQPIN0wMK0HBgBjRvE4YnZGe7C7V+pN87tQFH7LJ1iC85HpKkBw2FOR/KN1g61aLVZ/abN9Sn19UVKwz9XPFjD1uKNVlWxkycTA5dg2JioqOfw/74fuKeJ3CdcC2NfoN0InmGoRC8qEpeoDU0hZ1e4OZnNOPhtvJfZlJ0GNODobF1+yGKRfDny8LhsUbFuQNqw9+MluDQjld8z4b8t0GgZAKWiDNcBD85A0FOyejRSgsgVAnkuBIAFAeL093n8XdBNSFqNlYjbOxjKiTwCrMQ0XCLc4rSqd2uEEw5CU0fE8DXwv++NE1NEOx063jyNKgS80/5Eh838GwLCKR6H5eYR9SCa5eap0kN/jAcWqTCbBeMgE2Y6ZowwzGPxtW8OFjp8ZDB1xHsW6Vw6pPElRV1AdNw0aaHHRIiMHjCskbPYaKtWtIVFTgVFRkbR8Inquoqw1GnYWjGkXFBtGYlpFPJEQLdMqyFnVQswfqUkHO7gbBTsa+unL2O/VCQ2Y4yAOqLAsmT5xxPZS+CQfNhqO+Gryn7pZjk2r1SlSBmwjqZ0aCYC1vWP332ooGuUMSCB1QEhz1YUopKhIVbK3eyvaa7Tieg+ZEqNtaTe269YSrqonk50D//OwZapu6lh+0CilXw3OCh/I0lB+cp+sK3VBolkr+Hw8+/DZ98jYnxGFPTKN4xFHU1tRgWSHC4X0ER8oPPkxSAY6bCAIhtzaYgMzLmBAvlYOSHv1jghlMdhd8WO77fdVU+az+1GHtigROMj/TCsGo8RZjJ4WI5eqE8vIaBUKJigoq1q45IAGSkwhaijQdojk6OXk6kZh24Gf8Fb1DS5a1UH5ySYs9TbTwNNHKk7l4aYtowUiqSEH9bM6RwuQjY184uZ1apDVVx6ptweSKeUM6b1h8W3hOkATu1ASfTVYkmME51j+oeygWBEKiy0lw1AcppYKWopoyttdsx/M9TCLEtyWoLF2DvWcPedEwDGk62bp+wE8QAHmJoJtM+RpKJYd2GwrDVKCr5v/gUVCyegkAy8YNZADgJWoI2yFCOsFfVOmuLyfZ9VVT3xqUnveFrK4vDDP4S9IwaWvezq7tHqs+SbCp1E3HVzl5GuMODjHyIAvTqr+uGY02GQClAiQzGu3w4EgphROHRNzHsHRyC4KgKByRfCLRTpVboXwzlEyDJY/DhoVBd9SMG+Af18PKF4LWndYsXArBXDrpACcz0Ek+DxcEkx2GC4LAqLUtPZ05LL6tlJ9sHaoOPrd0M2gZKhoTvGc7N5hcUXQ7Ehz1IamgKNVS5CmPiBajblctO0tXo2/fRb6lo/XPQzP1IBfHVyhf4bsaygPP0fETwfMgCVmh6QpD89EMj3RjhRsMidYyh1CTPbx6S43L1NJgtIgxZgyhqk1YlbvJsfLRt31SPy8MJAcJGcGHi2EFwY9tZnV9tZfvKzavc/nskwS7t9d/8BcPNoKus+FGk4FHTVlZs9dMVFR0aGCkkvlEjgMhW6Ow2CCWaxCyJSASLeQ5QctKxZYgEKrYGnxNPVKBRCp/J1GdzN+5tPGyFnZe4yAnM/AJF0K0MPjamcnCHTksvr28RPA9SySX0bCiQetQTnHw/bJzu18Xn2hEgqO+wHPZu/l9NldvZmfdbjzfJUePEK+Ms2fjbti+m36+j54XRRkmqmI3vmfgezqua+C7Jr6vgx9MEmjoHrruo2leECyk4ggHSM6anJ0xoCcnWq4fRq2ATRs+5bgE7MrRKB46CV/X8XwNO7coSDwMpkemY4aYNy8RV5SudFi1LEFtdVBzXYfhY0zGHRKioF/Xf5D5nqKuTuF7YIc1CvrrRGI6liVBkWhA+UFCcuUWqCgLvlZuDfJxKrYkl7LYT05PuCA4Z+2/k/k7/4aSY2D86RktPPmtX7i0s7R1WHxHUH7Qop2oCRKpjVDw+dV/WBAgpnKHRI/STX6zRWdKONWs3L6YaqeafCufeK3O7rIyvC17CCVctJw8HCuC7xl4NSa+Z6J8I+gi030000fXg3mGAlbDRbHbpGTtCgCWjxvIEMMOLqhrhKO5QfdYJ6ss91m9LEHpZw5esoHKDmuMmWgxZqJFONr1c4O4riJeGyzYEYlq5OYbRGLBiuKiB+iM5GYIupxTLT4VW4LAJ/W8qiw5G/I+mOFghuTcwZA3uMHzQclBCZn5OzOC0VLdKX8nU0uGxXckN14fEGkamNFgDbJYcfB9k9ahHk+Coz7AVz6O72Hq/di+1aFuw27MKhcjNIC6SBTf1VFOcLPVdB/d8NEtr0ELeMfejDfXeBy1bg8AxkEHB/VMvkrY7ryERKUUO7Z6fPZJgq0b6ofi5xXqHHRIiOFjzG4xustJBEGRbmjk5OrE8nUiUckn6nFaktzcFC8Bldvqu7qa6/pqjqYHgVnukCDYyRuSDICSz8MF++7i6o75O10p3TpUHaxHZoaC5On+JRDJD7rLrHBX11J0IAmO+gDP9dm6Jo5XFseqAtOM4kUi+IZC0xS64aHr7W0Hap3NpR9yvAM78nQGDB4PgOu6GLpBKNzxwZHnKTauCfKJynfX5xMNKgnyiQYMaTqf6EDKmrQxpJPfT5dJG3u6pvJeUoHH1qWw7ZPswCf1vKVdX+lWnyGQN6j+eU5x27u8ulP+Tldy48lgqDb4UVixYNLFaL9gKY5Qrsw83YtJcNQH1FTX4q6pI+RbhApz0CzQtP00u3eyEakutbEDGZZctsF3XXTLJBLquL/A6mp91i53WL3cIV4b3GwME0aOsxh3cIjcgq7/cPP9oJXIdWXSxl7B94Lh7TW7giCnZncwW/PkS2Dz4mDunf3N2gwt6/rqDF2Zv9OVfC9oHUpNB2KEgpFl+cMzcoekdaivkOCoL/AVuvLRcnT0Tph0urU2VjtMW78XAHv8Ien9nutgWRZWqP0tR+W7PT77xGHDGie9BmMkqjH2YIvR40OEwl0feDSatHGATNrYrfluMGdPzS6o3hV8bepRu6fpYe6eGyQ3L/hFEBhpOuQMzO7uygyE9tf11VkOdP5OV0q1Djm1wXYo2TqUnndIWof6KgmOxAFXtnYJYQe25ev0Hzguvd9zXWI5uVhmG5cnUYqyjUE+UcOlPcYdEmLYKLNbTIzYLSZt7KxE4c7UWXX23aB1p2YX1CRbeqp3Jrd3J/ftCiY2bOkwBE0PhrNH+wWP0TPhqCtg/dsw7WvByC9d6z6jvfqKVOtQojr4uRt20DpUODLIGwrnySSMApDgSBxgSsHI0uUArBg3mBKt/q8y5bmEo7FWXzO9tMeyBFXlqRmxg6U9xh0Sot8AvVNzdqKDBuHWNL2OWigvDzMapXrr1kaTNubm6dhdNWljWxOFu1Jr6+wlMoKejEf1LqjNaP2p29vyOmh6MIw92i+Yu6bh81j/ZE5KQf1opcz6WZFgNfhhU/pO7k5Xc+PB6D6nNvj5pdYpixYFAVEoR1qHRCMSHIkDamN1nGPXB0FE+KBDs44p3yMaaXlwlF7aY2UCJ7n2pGnB6An1S3scCG5NTZPLhKSWFdm5fDVVFap7TNqYmt68sgziVTBwEmz6AKq3BcOQBx4MGxdB9Y6uqd/+VG2DYUfBxvdg99qgG2T8abDwQVj/n+xWn3grJt/UjPpWnli/+ucNH62duVmSmw+M1O+1UkGXppdIzrDvBS1Bdi4Ujgp+fnautA6J/ZLgSBxQ29d+SMiFrYUG/QeMTu9PLdERCu8/KWr39qDrLHNpj1hqaY9xFtYBTmRuah01MyeX3FFj2PbJavyaCooHG0RjerDsiFL1i+J6ieAv29Tzhttuoonn8ez9+7tGw+tk5sOkZkFe/B6MOhGe+ErjWZC7m1SdN38AEz8PT17YfJ11K6N1J+MRa9DqE85LTjjawfpqcvP+NAxm9vnILKuCPCzVoHtTAzCCFiBND37uecOCn29q3iEZ8SlaQYIjccAoBaPXrgRg5bghDM+4GXm+h67pDDtoEiFNb9RF5fuKitoYNfEwC/6xPr2/eJDBuEMthpSYaF2RT+TVYVZtRNu0nsTGKPkz5uB+8iHmyDNw//E/DNjwFrqfQPMaBDOtXZeqs6x7C5Y+GSQKv/MQbHo/6Grozja9D0ufCuq85Ikgd+TgLzXd6mPnde1NsbckN+83iGkY7DQVzATLDQH1wYymBS1xmg7o2cFNaqkg3QrKGKH6sqmvWsPt5HPdCuYiEqKNJDgSB8z6yjqO3xDcDKINutQ8x0G3TLy6OHkHH5JugUkt7VHjxjjxwoN45XfL0FJLexwcorD/gZmFVnNrMarWY1ZuwKhch1m1HrNqPXrNtuzFUsIaVnJEkvXxH1t2cSMUPEy7/nmT2w2f2w322w3KNDi/4TWMUNBikpoF+egrYdys7n/Dzpy5+bAvQ8nR3b/OPYXvBq2Obl3wNRXcoNh3MJOx7qFuJp+HkseNZoIZbd/HhOhCEhyJA2bX2g+wPNhcZNCv/8isY67rYloWqrYq3UX14XPLee/VHQwZV8SpVx7M679fRk64is+fF+u0pT00pwqjagNmZRD8GKmvtc23AHhWPk5sBNqkMwkddSVsfBft6KugaDRUb28+MDHt4C/crroR9MRZkHtinburVPdr6gFBgGKGgyTlvGHBGmGGnR3MpAMYCWZE7yXBkTgglIIxpasAWNWgSw3Ad1wiOWFMM0SiooIlL67g4FMmoEfzmHTcEEoXfsbkyQmMDkqk1BKVyeBnHWYyGDKq1mPU7Wz2HM8uwssZgZs7nERkBNXmcPy8EUT6F5I3MJ/QoNHBTdqwoGJTkCjcXW/aPTFRuCfWuTtQKpmnlnyk1l0zrCAQihQGDysaTHJoRSVhWfR5EhyJA6K0ooaZG6oAiI0/otFx33cJx3LQ0HASivfnb0ezc5l86giqt26lKL+GtqzvpiXKg1agynX13WJV6zHiu5s9xwv3TwZBI3BzhuPljsTNGY4K5eEkFHV1Pqapk5OnkZOnY+fn97ybdk9MFO6JdT7QfC8jEKoDP5nbZtrBI3dQch2waPD9siJBkCSEyCLBkTgg9q5djOnDhv4m/fqNaHRc+S6RSIzooEF88tZ2Bo0pYtJxQ6jeupVIcTFOZZCgbUaj1JSVNThZoSX2NgiC1mNWbUBP7G22Tl5kAG7OCLzcEbjJYMjLGY6ychqVTcQViXIPw9IpKDLIyTOwU7Ns98Sbdk9MFO6Jde5MvlufG+TGg0BI14PWIDMMsYEQzgUzUh8IyUrxQrSIBEei0ykFY9cGXWprxg2lUWikgocdDpOoqqayNsypVx7Emrc/o39BDU5lBXljxgJQuXwx1o4P6nOCkoGQ7jR/Y/Sig4LgJ2dE0AqUOzwIgsz9r02ViCvidX6wEGx/g9y8JuYokpu26Gzp/KC6YFoGSI7gapAflGoRMsOSByREO0hwJDrdmooqPrexGoDcg45odNxTPrqmYdshdm7zOP7LB/HG4yuYdugGzLVvEsrLRxv5P6AU+R/e0+ScNgoNLzoEL3d4shVoZNAiFBsW/OXcCkopnDjEEz6WpVPU1RM3ir4jnR+UDIIa5Qf1CxZBlfwgITqVBEei01WsXoyhYF2xRVFRSaPjnuOimwZ2KExNPMwrv1tGP7OUwiNmgr8GplwMT10EgBp8OF7ZqqALLHdEfbdYbFgwqqYdlFIkkkt8WLZOUX+DWJ5B6ABPKin6iIb5QZ4XtPY0mx8UBUM+soU4EOR/muhUSsH40tUArB03jJFNlPE8F8O0qK2wWfDyenQDTh5yFyzeCDOuJ/Hpq9TmHxsEQrGhcNKZHVxHFeQUxSFka/QbELQUHeiZtkUvpRT4TvbQ+dT8QQ3zg6xosG1FZb0vIbqQBEeiU63eW8Epm2oAyB8/uckynuMQCYcoXRFsjx5URs7wkagpl1CzZTORg2aizBK8JhZ2bQ+lFIk6RSKRCoo0YnkGliVBkWiD1JpeWUu1JCcINaxgbqtQDuQPh1BU8oOE6MYkOBKdqnrNYnQFawdaFBYMabKM5zloen+2rPcAmFryAfz3I9Qu+jPVOUfgVFU1ubBrWymliNcpnATYtka/gRo5uUaw7pkQ++O7Dda2S+YFaVr9BJ+RwmSXWDL4Me3kV1nSQoieoFe12373u99F07Ssx4QJE9LH6+rquPbaa+nXrx85OTmcc845bNu2rQtr3Lv5CsavDbrUSscNb7ac8jwqdw0EYNiwBP2/8m38v15LdfggIHth11Be29f9UkpRV+NTVaHQdY3+A3UGDTcpKDIlMBLZlAq6v+KVULMLKrdC+ebgUb0zOGZYQV7QwEkwdAoMnw4jjoWRx8GwI6H4ICgogZziYJkWCYyE6DF6XcvRwQcfzKuvvpreNs36t3jjjTfy/PPP8+c//5n8/Hyuu+46vvSlL7FgwYKuqGqvt3pPOadurgOg6KCmu9RQ4LsmVduDuYUmj98Mf5lDrT40a6h9KkAyo9FWtx4pP9lS5IAd0SjurxPL0TFMCYj6PN8L8oHceEZXWPJYqhUolBO0AoViDVqBbOkOE6KX6nXBkWmaDBo0qNH+8vJyHn74YZ544glOPvlkAB599FEmTpzIO++8wzHHHHOgq9rr1a55Hx1YPThEfn7jnwmADzg1Q/B9jcL8Oko+mYtvhqn53OONyiYqKloVGClfUVencB0IRzQKiw2iORqGITe0PqdhV5jvBE2bul6/zl20P4RyIdSgK0xmkBaiz+l1wdGqVasYMmQI4XCY6dOnc++99zJ8+HA++OADHMdh1qxZ6bITJkxg+PDhLFy4sNngKB6PE4/H09sVHZwU3Fv5CiasLQVg/dgRjGqmnJPwqKsaBsAROc+heVA74vOoUH7bX9tXxGsVngd2WKNIgqK+QamMPKBUEJRcPkM3gqkezBBEi4J12lIjxVKBkMweLYRI6lXB0bRp05g3bx7jx49n69at3HnnnRx//PF88sknlJWVEQqFKCgoyDpn4MCBlDVcjiLDvffey5133tnJNe99Vu3ezelbUl1qRzRbrnp3LsoPEQk7jHefROkmNaP+u02vmQqKXBciMY1+BQaRmARFrZYaYVW/o5ljDcs1d43mzm/mNfZ5fsbu1PB46QoTQnSwXhUcnX766ennhx12GNOmTWPEiBE8/fTTRCKtmyU55bbbbmPu3Lnp7YqKCkpKGk9kKLLFVy8G4LMhNvl5A5ssoxRU7y4G4NCCNzHwqC05Az/Sv1Wv5fuKulqF70E4qtFvYNBSpOu99Cao/IyHarC9j334ySBCIx1NaFryWMZ2WgueN/oWZx5r7px9/Fxa8/qGEXSF2XnBbNHSFSaE6CC9KjhqqKCggIMOOojVq1dzyimnkEgk2Lt3b1br0bZt25rMUUqxbRvblun5W8NXMCnZpbZh3AhGN1OutiKGl4ii6y6H+Y+gdJ2aMV9p+ev4iroahe8HLUV5yZaibhMUpYIUVJD4i2oQwHgNApnMfU21sGiAD5re+IEe5M9oetA9pBugW8GMyroFulm/X9NBM+rP1Q3aHby0OBDqwHN0SyZKFEJ0il4dHFVVVbFmzRouvvhipk6dimVZvPbaa5xzzjkArFy5kg0bNjB9+vQurmnv8tmunZxRFscHipsbpQZUbO8HwJjc97D1GuqGnBTMgL0fvpdsKeoOQVFq1mMvESwBkRnTaACZQYyWDEq05HYyYDHMZPBiZQQ1RuMAJh3UaE3syyzXTYJDIYTooXpVcPSNb3yDs846ixEjRrBlyxbuuOMODMPg/PPPJz8/nyuuuIK5c+dSVFREXl4eX//615k+fbqMVOtgTqpLbViY3JziJsvEa2zqqmKAzzGheQDUjD1vn9f1vKClSCmI5ujkFuhEogcoKEqPdkou/+AHE1YGMx/bQddOauZj3coIVvRmApiMgEkIIUS30quCo02bNnH++eeza9cuiouLOe6443jnnXcoLg5u0Pfffz+6rnPOOecQj8eZPXs2v/71r7u41r2Lp+DgtesA2DR2ZLNdaqlWo0HhT8gzthMfMA03b0zT13SDliIFxGLJoCgWTPLZ4VIjntKLgTrBPt2sXxA0NhDsnPrZj62I5LgIIUQv0quCoyeffHKfx8PhMA888AAPPPDAAapR3/PZjh2cuS2Br8HAcU13qbkJk+o9wUzXx8b+CED12AsalUsFRQDRXJ3c/KClqMOCIs/JWBU9kcwPIgiAjBDEiiGcn1wRPQJmREY7CSFEH9CrgiPR9bw1HwCwYliEWE6/JstU7CgENArtDQy2VlGbPwm36OCsMr6vqKlW5OYHQVG4PUGR72XkBsXBc4P9qdagUA7kFQTDvjNbg2TeGyGE6JMkOBIdxlNw6Jr1AGwZN6rJLjXf06ncVQjA0ZE/Ac21GoEV0igaYGC2dJmPzEkAU0nSSgUtPaYd5AZF+wUTAFrR5PDviKx5JYQQIosER6LDrNxexud3OHj76FKr3JWP8gyi1h7G2IsoNwfhDTq60XQ5nqcwDA2jucYb3012hyVbg3w/CIJ0KwiEIoVg5wcJ0umV0cMy9FsIIcR+SXAkOk5ylNqnw6PEooWNDisFFTuKAJgSeQZNU6wrnMVgrXHA4nvBMH0NVR8EufFgVmRFMPrLtIMWoJxBEM4NWoFSrUGG/GoLIYRoG7mDiA7hKTh07QYAysaOpqlxZzV7c/ESISyjloMj86mggMp+0xjcRFnfU4QS26FSJdfEsiE2ICNBOiwJ0kIIITqFBEeiQywv28IXdrq4OgwZN6XRcaWgPDl8/5DIS5hagmXaCdjhWJPXU14CM2zD0EOSi4RGpEtMCCHEASF3G9EhjHSXWoxIJK/R8Xh1hERNBE3zOCLyd2r0fDboEwiHGydD+75Cx8WwraC1KBSTwEgIIcQBI3cc0W6O73P42k0AbBvX9ESOqVajcZG3iBrlrA4fC5aNHQ43Kut7oONgRnIlKBJCCHHAyZ1HtNvKss0M2+3iGDB0bONRak6dRW15DgBHRv9MXI+yxjgUwzSJ2I2DI89TmJqLkdO4BUoIIYTobBIciXYzVy8BYNmIHMLh3EbHK3b0AzSGhj+i0NzMuugMEq6GZdtYlt2ovOdCyFJoVqSTay6EEEI0JsGRaJeE73NEskttx7ixjY57rkHVrnwAjoz8GUezWRc7Bs9zCEcj6I1mOApGqlm2HoxKE0IIIQ4wCY5Eu6zcupEhezwSJgwbc0Sj45U7C1FKp9DayNDQJ6yPHoOrR8DzsGPNjVRzMO3kZI5CCCHEASbBkWgXO9ml9snIXGw7J+uY72vJddSCXCNfMymNHQsKFKrJfCPlK3TlYIZDwYzWQgghxAEmwZFos4SnmLxmMwC7x45rdLx6Tx6+axIx9jIm/DYbo0eSMHLxlULTwG4yGRt0zcWI5sjCr0IIIbqEBEeizVZuLmVguU+dBUMbdKkpBRXJ4fuTo39D0xRrY8cD4Hoemmk2OYzf88DAwYzKSDUhhBBdQ4Ij0WaRNUsB+GRkPnYomnWstiKGU2djanVMisxnS+Rwas2gi813HHTDJBpqehh/KASaHW10TAghhDgQJDgSbRL3FJPXbAVgz7jGXWqpVqODIy9j6zWsiZ2QPua7LiErhBlqYnZsVxGykXwjIYQQXUaCI9EmKzetprgy6FIbPvqIrGPxGpu6qhgaPofHnqPMnkSVNTB93HUdQlEbS2+8tJ/yHUw7FCwsK4QQQnQBCY5Em8TWfAzAR6MKsBoEMqlWozHht8k1drI6Z2bWceW5hKONh/ErpdA8NzmMX4IjIYQQXUOCI9FqdZ5iSrJLrWLcQVnH3IRJ9Z4gmXpy7G/sCI2lPDQsq4xSPpFw45wizwNDdzEiMRmpJoQQostIcCRa7bONn9GvSlETgpJRh2Udq9hRBGgMtpYxwFrDmpwTs44rFXxtcsFZFwwtgRHL76yqCyGEEPslwZFotdxkl9rHowuzutR8T6dyVwEQtBrtsUrYFRqdda7nueiGQTjUxJpqnsIyQW+iVUkIIYQ4UCQ4Eq1S63pMWbMNgMpxE7KOVe7KR3kG+cZmRtofBLlGWvbaaZ7joJsG4XDjddM8TxGyFZiyppoQQoiuI8GRaJVVGz6jsFpRZUPJyEPT+5VKdanBEbF/UGkNYLs9vtH5nuthWiHCdhPrpnkupm3LmmpCCCG6lARHolXyU11qY4qwzPp5imr25uIlQoT1CiZE3ghyjbTGv16e6xIK25hG9jB+pRQoGakmhBCi60lwJFqs2vWYsnZH8HxsfZeaUlCeHL5/aOQFEmaMreFDm7yGch3CsSga2d1tvgeGcjCiMTAaz38khBBCHCgSHIkWW71+Ofk1isowDB9xSHp/vDpCoiaCgcMh0ZdYEzsBpTU9FN/HIxJuPMeR54GhyZpqQgghup4ER6LFilYvA+DjMf0xM7rUUq1G4yP/Qrd8NkWnNH0BBSgN225iTTVXYZpKRqoJIYTochIciRapchwml+4EoDZjlJpTF6K2PAcIErFLYzPwNavJa3i+h6ZrTSZje57CtgFLRqoJIYToWhIciRZZs245ebWK8qhGyfD6LrXUpI8j7ffIsXaxPjqt2Wv4jodmGISbmACS9LIhMlJNCCFE15LgSLRI/7WfAskutWTCtOcaVO0KZrM+Ivp3SmPH4unNBzeel8C0zEbBkVIKfBfDDskcR0IIIbqcBEdiv6odh8lrgi61xLhJ6f2VOwtRSqfYXMMA+zPWxY7d53W8hEvItrOmAIDkSDXNxYxEZKSaEEKILifBkdivNWuXkROHPTGN4SUTAfB9jYodhQAcEfs7G2NH4+j7TqZ2PRc7EkFvMIzf80AngRGTkWpCCCG6ngRHYr+K011qxeh60LJTvScP3zXJ0XcwKryI0thx+7+Q8gjHGg/j9z2FaSiMSE6H1lsIIYRoCwmOxD5VxhNMXrsbAHfcwUByqZDk8P3DYs+xNXoYdUb+vi+kgvPCdnNrqiEzYwshhOgWJDgS+7S29BOiCdiVU9+lVlsRw6mzsbQaJkZeY03OCfu9jq8UaGCHGydsK9fFCltgSXAkhBCi60lwJPZp0JrlAHwydiB6cq20VKvRpMh8dkdHU2P23+91PNdFNw3CoSYCIN/FDMmaakIIIboHCY5Es8rjCY4o3QOAn+xSi9fY1FXF0PA4PPYcq3NmtuhanuOgGybRBt1qnqfQcTEjYTCanjxSCCGEOJD6bHD0wAMPMHLkSMLhMNOmTePdd9/t6ip1O+vWLCXiwI5cneFDxwP1rUZjwwuojfaj0hrcomv5rksoFMKymxjGj4MRK+jQugshhBBt1SeDo6eeeoq5c+dyxx13sHjxYg4//HBmz57N9u3bu7pq3cqQtSuAoEtN03TchEn1nlwgGL7f0lYjCLrVrGgYs8GCtJ6rMAwfI9p4FJsQQgjRFfpkcPTTn/6Ur371q1x++eVMmjSJhx56iGg0yiOPPNLVVes29tbVcfi6cgC0gw4FUkuF6AyxPsGI+ewJjWjx9ZTvEok0ngcpvaaazIwthBCim+hzwVEikeCDDz5g1qxZ6X26rjNr1iwWLlzYqHw8HqeioiLr0RdsXLOUsAPb8nVKBo/F93SqdiaXCon9nTWxma26nq98IpHGrUPKc7HCpqypJoQQotvoc8HRzp078TyPgQMHZu0fOHAgZWVljcrfe++95Ofnpx8lJSUHqqpdavCalQAsGzMYTdOp3JWP75sUGJsojG1lhz2uxddSKvhq200EQL6HISPVhBBCdCN9Ljhqrdtuu43y8vL0Y+PGjV1dpU63u7aGI9YHLWTGQYehFFRuLwLgiNg/WJN7Amjavi6RxXNddMMgbGcHQL6n0HwnWFOtwXprQgghRFfpc6t89u/fH8Mw2LZtW9b+bdu2MWjQoEblbdtuusWjF9u0eilHurC1wGDYoFHU7M3FdUJE9HKG5nzCgvC1rbqe5zrolkk43HAYPxi6gylrqgkhhOhG+lzLUSgUYurUqbz22mvpfb7v89prrzF9+vQurFn3UbL2MwA+HTsE0KlIthodEnmR9bnTQWvdr43nupiWRbjBMH7PU5i6j95ELpIQQgjRVdocHM2ZM4fKyspG+6urq5kzZ067KtXZ5s6dy29/+1see+wxli9fzjXXXEN1dTWXX355V1ety+2qqeKw9cHP1TroMOLVEeI1UQzijM1ZwObIEa2+pue4WOEwpp7dUOm5YIVACzUexSaEEEJ0lTYHR4899hi1tbWN9tfW1vL73/++XZXqbF/5ylf48Y9/zO23384RRxzBkiVLeOmllxolafdFW9YsxfJgc5HB0AEjqNgWtBqNj7zB1vzDUVrre2KV5xCJxtDIzlPyXRc7bMhINSGEEN1Kq+90FRUVKKVQSlFZWUk4XJ9k63keL7zwAgMGDOjQSnaG6667juuuu66rq9HtDF+9CoDlY4dSEg9TUxFM+jgpZz4fRi5u0zV9fMKRxvMYacrFsEMyx5EQQohupdXBUUFBAZqmoWkaBx10UKPjmqZx5513dkjlxIG1o6qKqRuqALDHHU7F9kJAY6T9HnvzR+PpbRhRpoJHwwVnfV+h+S5mWEaqCSGE6F5aHRz961//QinFySefzDPPPENRUVH6WCgUYsSIEQwZMqRDKykOjLI1H2L6sKG/yaCi0Wz6JJj08ZDYC6yIndWma/q+D7qR1cIIQb6RoSUwotKVKYQQontpdXB04oknAlBaWsrw4cPRWjHfjejeRq0JutRWjhlGvx0FKGVQbK4mUZCHq7et68tLOOim3mg6BN9TGLqPEctpd72FEEKIjtTmhOzly5ezYMGC9PYDDzzAEUccwQUXXMCePXs6pHLiwNlRWcnBG2oACI+bTNWOoNXosNhzrM+Z0ebrep4TDONv2HLkQcgCzZJ8IyGEEN1Lm4Ojm2++Ob3O2Mcff8zcuXM544wzKC0tZe7cuR1WQXFgbFv9AYaCdcUWedrBuJ5Njr6DUFGCuJHb5ut6josZChFqkFfkuy6hiAGWLBsihBCie2nzDNmlpaVMmjQJgGeeeYazzjqLe+65h8WLF3PGGWd0WAXFgTFqzVoAVo4pIWd7EAwdGnuedTnHteu6nueSG42hNxjGrzwP0w7JmmpCCCG6nTa3HIVCIWpqgm6YV199lVNPPRWAoqKiPrNyfW+xrXIvB28KfpbRks8Rj+cQ0qopLCqj1ixs17V95RGJZnedKV+hKwfDtsGQkWpCCCG6lza3HB133HHMnTuXGTNm8O677/LUU08B8NlnnzFs2LAOq6DofDtXfYiuYO1Ai1DNCBxgUmQ+G3KPad+FFaBUk2uq6ZqDmTOwVQvYCiGEEAdCm1uOfvWrX2GaJn/5y1948MEHGTp0KAAvvvgip512WodVUHS+MckutVVjj6S6uhANj8GFn1FltW+Yva8UaFqjkWrBmmoeRlTWVBNCCNH9tLnlaPjw4Tz33HON9t9///3tqpA4sLaW72b6pmAZmFj+TBI1MDa8gC0FR7T72p7jopsGYbvxSDXbVLKmmhBCiG6pzS1HAGvWrOHb3/42559/Ptu3bweClqNly5Z1SOVE59uz6kN0YMWwYpyawQCMLPiA8lBJu6/tuQ66aRK1s7vVfMcLRqrJmmpCCCG6oTYHR//+97859NBDWbRoEc8++yxVVcGyE0uXLuWOO+7osAqKzjV2TSkAm0edgcJgaOhjdheN65Br+66DFbKxQqGGBzBtW0aqCSGE6JbaHBzdeuutfP/732f+/PmEMm5+J598Mu+8806HVE50ri17dzFhSx2uEcYwDwdgbN7b7AqN7pDre65LKBrG1Iz0PuWrIDgKh6TlSAghRLfU5uDo448/5otf/GKj/QMGDGDnzp3tqpQ4MMpXLQZg6fjj8ZVNgbGJ2v79O2wEme97RBokXXseGJqDEcuTkWpCCCG6pTYHRwUFBWzdurXR/g8//DA9ck10b+PWrMPXdCqKg/XyJuS+wfbwhA67vlI+kSaG8Ruaixlr+6zbQgghRGdqc3B03nnn8c1vfpOysjI0TcP3fRYsWMA3vvENLrnkko6so+gEm3Zv56Ctcbb3PwKlFRLRy6HYAq1dOfppSgVf7VB2XpHvKawQaCFZU00IIUT31OY74T333MOECRMoKSmhqqqKSZMmccIJJ3Dsscfy7W9/uyPrKDpB1aoPUcDqMbMAGB/7F9tiB3fY9T3XRTMNwuEGcxy5HratS76REEKIbqvN8xyFQiF++9vfcvvtt/Pxxx9TVVXF5MmTGTeuY0Y6ic510Jr17M0fSyI8AoM44eIa9mYkTreX5yYwTJNwOHsuI+W6mGEbTGk5EkII0T21OThKKSkpoaSk/XPiiANnw64yZm5LsPSQzwEwNrqA7XmHdOhreK6HaVmEQ1Z6n1IKTbkYtiUtR0IIIbqtNnWrrVq1imeeeYbS0mCOnOeff54TTjiBo446irvvvhuVSjgR3VLtqg+piQxgV78gICoo3o6vWfs5q3V8x8WKhDH1+vjb98DAwZSRakIIIbqxVrcc/fWvf+XLX/4yuq6jaRq/+c1v+NrXvsbMmTPJy8vju9/9LqZp8s1vfrMz6is6wIQ1G9g47BzQdIbbH7CzoONGqKV4nkskFkWjPgjyXDB0F0NGqgkhhOjGWt1ydPfdd3PLLbdQV1fHgw8+yNVXX829997Liy++yHPPPccDDzzAvHnzOqGqoiOs37mFoXtstg6aBsCA/uvw9I7v4lLKa5Rv5HkK0wRdRqoJIYToxlodHK1cuZI5c+agaRqXXnopiUSCWbNmpY+feuqprF+/vkMrKTpOfNWHbB5yPL4Ror+1hr39RnT8iyR7VRstOOt62GEDLFk2RAghRPfV6uCourqa3NygW0TXdSKRCNFofQtBJBIhHo93XA1Fhxq/Ziubhp4AwNDCT3GN2H7OaD3f88HQsRsER8GyIZasqSaEEKJba3VwpGkaWkYybcNt0X1t2r0V25yCE8ojqu+gbmBxp7yO5zjopkk4Y3ZspRR4LqYtwZEQQojurdUJ2UopDjrooHRAlJrfSNf19HHRPXnrlrFhWDB7+ciCJdSYwzrndTwH0zQJZyxInBqpZsSKZKSaEEKIbq3VwdGjjz7aGfUQnUwpGLkzny0jB6OrGrxBHd+dluI5LlZehJBZHxx5XjBSTdZUE0II0d21Oji69NJLO6MeopNtrtzGoPyTABia8wFxu3+nvZbnuuRGY+iZw/g9hW2Cbkf3caYQQgjR9do9QzYEXWu+72fty8vL64hLiw4S3rqLvYXjQXnEhmpM/eJ/k1NQyMuP/rbDX0vhEYlkD9f3XR9L1lQTQgjRA7R54dnS0lLOPPNMYrEY+fn5FBYWUlhYSEFBAYWFhR1ZR9FO+UXF5DtHABDRljD1oq+RXzyAqr17Ov7FVJB3FrYbBkcuoYgkYwshhOj+2txydNFFF6GU4pFHHmHgwIEyYq0bs0I2+dNPpXzFXj539RnkFw+gfMd2Fvz1Lx3+Wr7vg65jh+tbiJRSaL6DEQpJcCSEEKLba3NwtHTpUj744APGjx/fkfURneDt37/GKV89kXWLNzP88BGdFhhBMNGjZuhZLUe+DzoOZrQA9DY3VgohhBAHRJvvVEcddRQbN27syLqITvLZh6+w5t3NTDh+JMr3Oy0wAvDcBIZpEc2YANJzwdBcjJz8TntdIYQQoqO0ueXod7/7HVdffTWbN2/mkEMOwbKyV3U/7LDD2l050TEu/NH3sKwQnuuiGwYzvvjfnRYgKcfFjNlZvw++p7BMMMKyppoQQojur83B0Y4dO1izZg2XX355ep+maUF+iabheV6HVFC0n2WF2L1lC/9+6glOvugS8osHdFqA5LouOZF8TM1I7/Ncn5itSb6REEKIHqHN3Wpz5sxh8uTJLFy4kLVr11JaWpr1VXQfjpPg1UceBmDBX/9C+Y7t6QCpo/nKIxLNnmBSuS5WRJKxhRBC9Axtbjlav349//jHPxg7dmxH1kd0gvKd27O2F/z1L8xIznPU0ZTyiTTsPvMdWVNNCCFEj9Hm4Ojkk09m6dKlEhz1UJ3RpaYUoGnYofogyPcUOg5GJF9GqgkhhOgR2hwcnXXWWdx44418/PHHHHrooY0Ssr/whS+0u3KtNXLkSNavX5+179577+XWW29Nb3/00Udce+21vPfeexQXF/P1r3+dW2655UBXtVfyHQfNNAjb9XMceR7ouJgyUk0IIUQP0ebg6OqrrwbgrrvuanSsKxOy77rrLr761a+mt3Nz6xc6raio4NRTT2XWrFk89NBDfPzxx8yZM4eCggKuuuqqrqhur+K5LoZpEs7oVvNchSkj1YQQQvQgbQ6OGq6l1l3k5uYyaNCgJo89/vjjJBIJHnnkEUKhEAcffDBLlizhpz/9qQRHHcBzXUzbImyH6vd5iqitgSXBkRBCiJ6h1yWB3HffffTr14/Jkyfzox/9CNd108cWLlzICSecQChUf/OePXs2K1euZM+eTlhnrI/xHAczEs4axu+7TnJNNVlwVgghRM/Q5pajprrTMt1+++1tvXSbXX/99UyZMoWioiLefvttbrvtNrZu3cpPf/pTAMrKyhg1alTWOQMHDkwfa2rB3Hg8TjweT29XVFR04jvo2XzfJRKJoVG/zp7mORghGakmhBCi52hzcPTXv/41a9txHEpLSzFNkzFjxnRYcHTrrbfygx/8YJ9lli9fzoQJE5g7d25632GHHUYoFOJrX/sa9957L7bdtpaLe++9lzvvvLNN5/Y1Pn5WvpHvKzRczFgR6MY+zhRCCCG6jzYHRx9++GGjfRUVFVx22WV88YtfbFelMt10001cdtll+ywzevToJvdPmzYN13VZt24d48ePZ9CgQWzbti2rTGq7uTyl2267LSvoqqiooKSkpBXvoI9QwSPccE01XMyYjFQTQgjRc7Q5OGpKXl4ed955J2eddRYXX3xxh1yzuLiY4uLiNp27ZMkSdF1nwIABAEyfPp1vfetbOI6Tnnpg/vz5jB8/vskuNQDbttvc6tSX+K4HpkE4nDmMX2EaCl1GqgkhhOhBOjwhu7y8nPLy8o6+7H4tXLiQn/3sZyxdupS1a9fy+OOPc+ONN3LRRRelA58LLriAUCjEFVdcwbJly3jqqaf4+c9/ntUyJNrGcx100yBsZ3SreQorDJqMVBNCCNGDtLnl6Be/+EXWtlKKrVu38oc//IHTTz+93RVrLdu2efLJJ/nud79LPB5n1KhR3HjjjVmBT35+Pq+88grXXnstU6dOpX///tx+++0yjL8DeK6LblpZE0D6rkMoFgJLkrGFEEL0HG0Oju6///6sbV3XKS4u5tJLL+W2225rd8Vaa8qUKbzzzjv7LXfYYYfxn//85wDUqG/xXBcrJ0rIyJgpPTnvkYxUE0II0ZO0OTgqLS3tyHqIHs5zHXLCUfTkMP7USDUjUiAj1YQQQvQorc458jyPjz76iNra2kbHamtr+eijj7rt7Nmi8yh8otFoetv3QCeBGcvrwloJIYQQrdfq4OgPf/gDc+bMyZplOsWyLObMmcMTTzzRIZUTPYdSKisZ23MVpgFGRsAkhBBC9AStDo4efvhhvvGNb2AYjbtKTNPklltu4Te/+U2HVE70DL7rg6FjN1hTLWTJSDUhhBA9T6uDo5UrV3LMMcc0e/yoo45i+fLl7aqU6Fk810UzjOzZsR03GKkmydhCCCF6mFYHR9XV1ftcX6yyspKampp2VUr0LJ7rYJgm0YzZsZXvYsqaakIIIXqgVgdH48aN4+233272+FtvvcW4cePaVSnRsyjHwbRtLDMYxq98ha4cjGgMjA6dhF0IIYTodK0Oji644AK+/e1v89FHHzU6tnTpUm6//XYuuOCCDqmc6Bk81yUUC2NqQR6a54GOgxHN7eKaCSGEEK3X6j/rb7zxRl588UWmTp3KrFmzmDBhAgArVqzg1VdfZcaMGdx4440dXlHRfXl4RCOx+u3kmmpmREaqCSGE6HlaHRxZlsUrr7zC/fffzxNPPMGbb76JUoqDDjqIu+++mxtuuCG9qKvoG5RSRDKSsT1PYVug2RIcCSGE6HnalBBiWRa33HILt9xyy37L/ulPf+ILX/gCsVhsv2VFz6N8BZqGHapPvPYdl1CuBaa9jzOFEEKI7qnVOUet9bWvfY1t27Z19suILuK7LpppEM4cqea6mOEQmDLHkRBCiJ6n04MjpVRnv4ToQr7jYphmeo4jpYI11cxwREaqCSGE6JE6PTgSvZvrupihEOFQkGfmeWDgYMRkpJoQQoieSYIj0S6e42BEQulh/L4Lhu5jRHO6uGZCCCFE20hwJNrFVy6RaA4aGgCe52OFQA9JvpEQQoieSYIj0S4+iojdYE21sAmWLBsihBCiZ+r04GjEiBEy71Fvlcy1D4czhvF7LqYtC84KIYToudocHF166aW8+eab+y33ySefUFJS0taXEd2Y77pg6Olh/EopNOViRsJgSEAshBCiZ2pzcFReXs6sWbMYN24c99xzD5s3b+7IeokewHOy5zjy0yPV8ru4ZkIIIUTbtTk4+tvf/sbmzZu55ppreOqppxg5ciSnn346f/nLX3AcpyPrKLopz3MxTItIslvN88DQfMyozIYuhBCi52pXzlFxcTFz585l6dKlLFq0iLFjx3LxxRczZMgQbrzxRlatWtVR9RTdkOc4WJEwlh5M9ui5PqYFui0j1YQQQvRcHZKQvXXrVubPn8/8+fMxDIMzzjiDjz/+mEmTJnH//fd3xEuIbsjzPMKRCHpqGL/jYkdNScYWQgjRo7U5OHIch2eeeYbPf/7zjBgxgj//+c/ccMMNbNmyhccee4xXX32Vp59+mrvuuqsj6yu6EV95RKPR+h2eh2lbEhwJIYTo0dq8+NXgwYPxfZ/zzz+fd999lyOOOKJRmZNOOomCgoJ2VE90Wyr4J2zXr6mG72CGY2CGurRqQgghRHu0OTi6//77Offcc7PmuGmooKCA0tLStr6E6MZ8zwPDwLbt5DYYmqypJoQQoudrc7faF77wBWpqahrt3717NxUVFe2qlOj+PMdDM/R0y5Hnga7JmmpCCCF6vjYHR+eddx5PPvlko/1PP/005513XrsqJbo/z01gmCYROzWMX2FZYISj+zlTCCGE6N7aHBwtWrSIk046qdH+mTNnsmjRonZVSnR/ynUxwzYhM+iZ9R0XK2yAaXdxzYQQQoj2aXNwFI/HcV230X7HcaitrW1XpUT357kuoWgUUzMAUJ6LFQ6BKXMcCSGE6NnaHBwdffTR/OY3v2m0/6GHHmLq1KntqpTo/jx8opGgC00pBZ6LGQ7LSDUhhBA9XptHq33/+99n1qxZLF26lM997nMAvPbaa7z33nu88sorHVZB0T0p5RMJB61Evg+65mBGB3RxrYQQQoj2a3PL0YwZM1i4cCElJSU8/fTT/POf/2Ts2LF89NFHHH/88R1ZR9HNKF+BpmcP48eTYfxCCCF6hTa3HAEcccQRPP744x1VF9FD+I4Dpo4dSo5UcxWmCUZY8o2EEEL0fO0KjnzfZ/Xq1Wzfvh3f97OOnXDCCe2qmOi+fNdDN830BKCe4xKLGGDJsiFCCCF6vjYHR++88w4XXHAB69evDxJyM2iahud57a6c6J5c18WMhIhYFhAM6w9GqklwJIQQoudrc3B09dVXc+SRR/L8888zePBgNE3ryHqJbsxzHEJFMUw9+PVRvodh22DISDUhhBA9X5uDo1WrVvGXv/yFsWPHdmR9RA/gK49oJIqGhu8pDBKYOcUgAbIQQoheoM2j1aZNm8bq1as7si77dPfdd3PssccSjUYpKChossyGDRs488wziUajDBgwgJtvvrnRRJVvvPEGU6ZMwbZtxo4dy7x58zq/8r2Mj0c4uUxIsKaahxmTNdWEEEL0Dm1uOfr617/OTTfdRFlZGYceeihWMv8k5bDDDmt35TIlEgnOPfdcpk+fzsMPP9zouOd5nHnmmQwaNIi3336brVu3cskll2BZFvfccw8ApaWlnHnmmVx99dU8/vjjvPbaa1x55ZUMHjyY2bNnd2h9ey1fAVrWmmqmAbotI9WEEEL0DppqmE3dQrreuNFJ0zSUUp2akD1v3jxuuOEG9u7dm7X/xRdf5POf/zxbtmxh4MCBQDBb9ze/+U127NhBKBTim9/8Js8//zyffPJJ+rzzzjuPvXv38tJLL7Xo9SsqKsjPz6e8vJy8vLwOe1+daceWjbz+8KNYsQh2rH0Lw/qOS0XVHg49chqDCvpTXeGQG6qg/9RjIFLQMRUWQgghOlhr7t9tbjkqLS1t66mdYuHChRx66KHpwAhg9uzZXHPNNSxbtozJkyezcOFCZs2alXXe7NmzueGGGw5wbXsu33HRjPph/L7rEsqTkWpCCCF6jzYHRyNGjOjIerRbWVlZVmAEpLfLysr2WaaiooLa2loikcZdQ/F4nHg8nt6uqKjo6Kr3KK7nYFgWYSuYHVvzXIxwCEy7i2smhBBCdIw2J2QD/OEPf2DGjBkMGTKE9evXA/Czn/2Mv//97y06/9Zbb0XTtH0+VqxY0Z4qttu9995Lfn5++lFSUtKl9elqvuNiRsKEDBPfV2iagxnLlZFqQggheo02B0cPPvggc+fO5YwzzmDv3r3pHKOCggJ+9rOftegaN910E8uXL9/nY/To0S261qBBg9i2bVvWvtT2oEGD9lkmLy+vyVYjgNtuu43y8vL0Y+PGjS2qT2/leS6RaBQdDc8FAxcjKiPVhBBC9B5t7lb75S9/yW9/+1vOPvts7rvvvvT+I488km984xstukZxcTHFxcVtrUKW6dOnc/fdd7N9+3YGDAhWh58/fz55eXlMmjQpXeaFF17IOm/+/PlMnz692evatp1eYFWAj080EiR1+57CMMCItC/JWwghhOhO2txyVFpayuTJkxvtt22b6urqdlWqKRs2bGDJkiVs2LABz/NYsmQJS5YsoaqqCoBTTz2VSZMmcfHFF7N06VJefvllvv3tb3Pttdemg5urr76atWvXcsstt7BixQp+/etf8/TTT3PjjTd2eH17JQUKCKeG8bseobCBJmuqCSGE6EXaHByNGjWKJUuWNNr/0ksvMXHixPbUqUm33347kydP5o477qCqqorJkyczefJk3n//fQAMw+C5557DMAymT5/ORRddxCWXXMJdd92VVefnn3+e+fPnc/jhh/OTn/yE3/3udzLHUQv5rgeGng42/YRLKBICU+Y4EkII0Xu0uVtt7ty5XHvttdTV1aGU4t133+VPf/oT9957L7/73e86so5AML/R/mazHjFiRKNus4ZmzpzJhx9+2IE16zs81wXDIJyc8FEpF9O2ZKSaEEKIXqXNwdGVV15JJBLh29/+NjU1NVxwwQUMGTKEn//855x33nkdWUfRTfiug2FaREI2vq/QlYMRK5SRakIIIXqVNgdHABdeeCEXXnghNTU1VFVVpROhRe/kuy5WfpSQaeK7oGsuZqxnzBIuhBBCtFS7gqOUaDRKNCojlno7z3WJRiKYmkHc8zENMMKSbySEEKJ3aVVwNGXKFF577TUKCwuZPHky2j66UxYvXtzuyonuxVd+ej4oz/EIhwy0kARHQgghepdWBUf/9V//lR6pdPbZZ3dGfUQ35uMTSSZj+46LVWjJmmpCCCF6nVYFR3fccUeTz0XvpzwfdCO94Cx+aqSaBEdCCCF6lzbPc/Tee++xaNGiRvsXLVqUnntI9B6+44KhYds2ylfgO5g5sqaaEEKI3qfNwdG1117b5Dpjmzdv5tprr21XpUT347suumUStsN4Hhi6ixHN7epqCSGEEB2uzcHRp59+ypQpUxrtnzx5Mp9++mm7KiW6H891MewwEdMKgiMNzLCMUBRCCNH7tDk4sm270Qr3AFu3bsU0O2SGANGNuI6DFbExdRPP9bBsHS0k+UZCCCF6nzYHR6eeeiq33XYb5eXl6X179+7lf//3fznllFM6pHKi+/DxiUYjaGj4josdlWRsIYQQvVObm3h+/OMfc8IJJzBixAgmT54MwJIlSxg4cCB/+MMfOqyConvw8QjbMQCU72DaIQmOhBBC9EptDo6GDh3KRx99xOOPP87SpUuJRCJcfvnlnH/++ViW1ZF1FF3NV4BOxA6jlELzHIxoPuhtbngUQgghuq12JQfFYjGuuuqqjqqL6KaU64GpEw4nR6ppHmaOrKkmhBCid2pVcPSPf/yD008/Hcuy+Mc//rHPsl/4whfaVTHRfXiOi2YahO0wvguGoTAiMlJNCCFE79Sq4Ojss8+mrKyMAQMG7HP5EE3T8DyvvXUT3YTrORghi7AVwqv1sC0NXdZUE0II0Uu1Kjjyfb/J56J38x0HsyCfkGFSk4hjF0gythBCiN6rVRm1RUVF7Ny5E4A5c+ZQWVnZKZUS3Yvne0QiUXS0YNkQWVNNCCFEL9aq4CiRSFBRUQHAY489Rl1dXadUSnQvPj7RcASlFHgOZiQmI9WEEEL0Wq3qVps+fTpnn302U6dORSnF9ddfTyTSdO7JI4880iEVFF1MgQLC4TC+B4buYeTkd3WthBBCiE7TquDoj3/8I/fffz9r1qwBoLy8XFqPejnfdcHUsdMLzirMsCRjCyGE6L1aFRwNHDiQ++67D4BRo0bxhz/8gX79+nVKxUT34LsuGAZhO4Ln+dghDV0WnBVCCNGLtTkh+6STTiIUCnVKpUT34bkuhmkRDdl4idSaanZXV0sIIYToNJKQLfbJd12sSBjLMIJkbBmpJoQQopeThGyxT57rEo1GMNDBczCiRaAbXV0tIYQQotO0OSFb0zRJyO4DfOUTsYORarrmYcZkTTUhhBC9myRki+Yp8DWfiB1JjlTzZU01IYQQvV6rZ/I744wzKC8vp7S0lH79+nHfffexd+/e9PFdu3YxadKkjqyj6CLK80EzCIcj+J6PaYFhyzB+IYQQvVurg6OXXnqJeDye3r7nnnvYvXt3ett1XVauXNkxtRNdyncdMDXscAgv4RKKhGSkmhBCiF6v3WtAKKU6oh6iG/JdD90yCdsRlOtghS2wpOVICCFE7yYLZIlmeY6LYYeJGCb4LmYkKiPVhBBC9HqtDo40TUPTtEb7RO/juQ5WNIyuDHQcDBmpJoQQog9o1Wg1CLrRLrvsMmw7yD2pq6vj6quvJhaLAWTlI4mezcMjPxzB97RgTbVorKurJIQQQnS6VgdHl156adb2RRdd1KjMJZdc0vYaiW7DxydsR/FcH9MEQxacFUL0cZ7n4ThOV1dDNCMUCqHr7c8YanVw9Oijj7b7RUUP4CkUOpFwBM/xiEZDsmyIEKLPUkpRVlaWNXWN6H50XWfUqFHtXvu11cGR6BuU54GpE7ZtlOsQisiaakKIvisVGA0YMIBoNCq5tt2Q7/ts2bKFrVu3Mnz48Hb9jCQ4Ek3yEg6aaRK2wxB3MMJ5YMivixCi7/E8Lx0YyaoQ3VtxcTFbtmzBdV0sy2rzdWQov2iS6zmYtkXIsNBwMWP5XV0lIYToEqkco2hUlk/q7lLdaZ7ntes6EhyJJvmOixkJYygTQ/cxo5KMLYTo26QrrfvrqJ9RjwmO7r77bo499lii0SgFBQVNlknNwZT5ePLJJ7PKvPHGG0yZMgXbthk7dizz5s3r/Mr3QJ7yiISjKE9hGqCH5S8mIYQQLTNz5kxuuOGGTrn2yJEj+dnPftYp107pMcFRIpHg3HPP5ZprrtlnuUcffZStW7emH2effXb6WGlpKWeeeSYnnXQSS5Ys4YYbbuDKK6/k5Zdf7uTa9zwePtFwBD/hYUUsNEuSsYUQoqe57LLL0DSNq6++utGxa6+9Fk3TuOyyyw58xbq5HpNhe+eddwLst6WnoKCAQYMGNXnsoYceYtSoUfzkJz8BYOLEibz11lvcf//9zJ49u0Pr26MpBSjC4Qie62AXWGBKt5oQQvREJSUlPPnkk9x///1EIsFneV1dHU888QTDhw9v83WVUnieh2m2PpRIJBLtHm7fmXpMy1FLXXvttfTv35+jjz6aRx55JGth3IULFzJr1qys8rNnz2bhwoXNXi8ej1NRUZH16O2U66FMg5Bto/kuRiQiI9WEEKKHmjJlCiUlJTz77LPpfc8++yzDhw9n8uTJ6X3xeJzrr7+eAQMGEA6HOe6443jvvffSx9944w00TePFF19k6tSp2LbNW2+9RXV1NZdccgk5OTkMHjw43QCRaeTIkXzve9/jkksuIS8vj6uuugqAt956i+OPP55IJEJJSQnXX3891dXV6fO2b9/OWWedRSQSYdSoUTz++OOd8S1qpFcFR3fddRdPP/008+fP55xzzuH//b//xy9/+cv08bKyMgYOHJh1zsCBA6moqKC2trbJa957773k5+enHyUlJZ36HroDz3HRDAM7FAmCI1lTTQgh0pRS1CTcVj3qHA+lFHWO1+R2Sx+Zf/C3xpw5c7ImcX7kkUe4/PLLs8rccsstPPPMMzz22GMsXryYsWPHMnv2bHbv3p1V7tZbb+W+++5j+fLlHHbYYdx88838+9//5u9//zuvvPIKb7zxBosXL25Uhx//+MccfvjhfPjhh3znO99hzZo1nHbaaZxzzjl89NFHPPXUU7z11ltcd9116XMuu+wyNm7cyL/+9S/+8pe/8Otf/5rt27e36XvQGl3aHHDrrbfygx/8YJ9lli9fzoQJE1p0ve985zvp55MnT6a6upof/ehHXH/99W2u42233cbcuXPT2xUVFb0+QPJcF8OyCOshDKNW1lQTQogMtY7HpNtbn6t6/Lj+/PL8yTz13ka+clQJX/39+/xn1c5WXePTu2YTDbX+1n3RRRdx2223sX79egAWLFjAk08+yRtvvAFAdXU1Dz74IPPmzeP0008H4Le//S3z58/n4Ycf5uabb05f66677uKUU04BoKqqiocffpg//vGPfO5znwPgscceY9iwYY3qcPLJJ3PTTTelt6+88kouvPDCdOL2uHHj+MUvfsGJJ57Igw8+yIYNG3jxxRd59913OeqoowB4+OGHmThxYqvff2t1aXB000037TcRbPTo0W2+/rRp0/je975HPB7Htm0GDRrEtm3bssps27aNvLy8dD9sQ7ZtpxfZ7St818XMzUH3dQxD1lQTQoiO8J9VO3nqvY187cQx/N+/17Q6MGqP4uJizjzzTObNm4dSijPPPJP+/funj69ZswbHcZgxY0Z6n2VZHH300SxfvjzrWkceeWTWeYlEgmnTpqX3FRUVMX78+EZ1yDwPYOnSpXz00UdZXWVKKXzfp7S0lM8++wzTNJk6dWr6+IQJE5odsd6RujQ4Ki4upri4uNOuv2TJEgoLC9PBzfTp03nhhReyysyfP5/p06d3Wh16Is9ziUbDaJ4iFDZlpJoQQmSIWAaf3tX6QTy6pmGbOo7nc9UJo7n02JH4rewmi1hGq183Zc6cOekuqwceeKDN14nF2tab0PC8qqoqvva1rzXZuzN8+HA+++yzNr1OR+gxWbYbNmxg9+7dbNiwAc/zWLJkCQBjx44lJyeHf/7zn2zbto1jjjmGcDjM/Pnzueeee/jGN76RvsbVV1/Nr371K2655RbmzJnD66+/ztNPP83zzz/fRe+qe/KVTzgcxnccQnkhsKTlSAghUjRNa1PXVoplBBMVhtsR6LTFaaedRiKRQNO0RiO0x4wZQygUYsGCBYwYMQIIZgZ/77339jlf0ZgxY7Asi0WLFqVHvu3Zs4fPPvuME088cZ/1mTJlCp9++iljx45t8viECRNwXZcPPvgg3a22cuXKA7L4b48Jjm6//XYee+yx9HYqw/5f//oXM2fOxLIsHnjgAW688UaUUowdO5af/vSnfPWrX02fM2rUKJ5//nluvPFGfv7znzNs2DB+97vfyTD+TAp8zScaiqJ8FzMSBaPt69MIIYToHgzDSHeRGUZ2YBaLxbjmmmu4+eabKSoqYvjw4fzwhz+kpqaGK664otlr5uTkcMUVV3DzzTfTr18/BgwYwLe+9S10ff/jvb75zW9yzDHHcN1113HllVcSi8X49NNPmT9/Pr/61a8YP348p512Gl/72td48MEHMU2TG264odk0mI7UY4KjefPm7XOOo9NOO43TTjttv9eZOXMmH374YQfWrHdRnge6gR0Oo3suRqygq6skhBCig+TlNT/6+L777sP3fS6++GIqKys58sgjefnllyksLNznNX/0ox9RVVXFWWedRW5uLjfddBPl5eX7rcthhx3Gv//9b771rW9x/PHHo5RizJgxfOUrX0mXefTRR7nyyis58cQTGThwIN///vezBl91Fk21dVxgH1VRUUF+fj7l5eX7/CXrTnZs2cjrDz+KFYtgx/a9DIhXG6cyXskhU6dT4DoMnXowZvHIA1NRIYTohurq6igtLWXUqFGEw5KD2Z3t62fVmvt3r5rnSLSf77poIYuQYWMaYNiSbySEEKJvkeBIZPFcFyNsY/lghU20kARHQggh+hYJjkQWz3UIhcNoriIUtsCUJmQhhBB9iwRHIounfKKRYNkQMxIGs/suDCiEEEJ0BgmORD0FPj62HQPfxZQ11YQQQvRBEhyJer6P0g1sM4yh+xiyppoQQog+SIIjkaZcH0yNkBXGMBRGZN/D/oUQQojeqMdMAik6n+c4aKaJpZlYNughScYWQgjR90jLkUjzXAfDDmEpCEUtMGUYvxBCiL5HgiOR5jkOVjiC5ftYYRmpJoQQom+S4Eik+fjY4Qi68jCiuV1dHSGEEO102WWXoWkaV199daNj1157LZqmcdlllx34inVzEhyJNA+PSCgSjFSL5XR1dYQQQnSAkpISnnzySWpra9P76urqeOKJJxg+fHibr6uUwnXdjqhityPBkQgohY+GbUUxDIUZkXwjIYToDaZMmUJJSQnPPvtset+zzz7L8OHDmTx5cnpfPB7n+uuvZ8CAAYTDYY477jjee++99PE33ngDTdN48cUXmTp1KrZt89Zbb1FZWcmFF15ILBZj8ODB3H///cycOZMbbrghfe4f/vAHjjzySHJzcxk0aBAXXHAB27dvb3Tt1157jSOPPJJoNMqxxx7LypUrO/eb0wwJjgQAyvHANDB1EzNkyEg1IYRojlKQqG7dw6kLznPqmt5u6UOpNlV5zpw5PProo+ntRx55hMsvvzyrzC233MIzzzzDY489xuLFixk7diyzZ89m9+7dWeVuvfVW7rvvPpYvX85hhx3G3LlzWbBgAf/4xz+YP38+//nPf1i8eHHWOY7j8L3vfY+lS5fyt7/9jXXr1jXZnfetb32Ln/zkJ7z//vuYpsmcOXPa9H7bS4byCwA8x0UzDUK6jh0JgSUtR0II0SSnBu4Z0vrzxpwM//0ILP4DTLkYnjwf1rzeumv87xYItX6C3osuuojbbruN9evXA7BgwQKefPJJ3njjDQCqq6t58MEHmTdvHqeffjoAv/3tb5k/fz4PP/wwN998c/pad911F6eccgoAlZWVPPbYYzzxxBN87nOfA+DRRx9lyJDs709mkDN69Gh+8YtfcNRRR1FVVUVOTn0ax913382JJ54IBEHYmWeeSV1dHeHwgf2DXYIjAQTD+PWwha3pmBEbDBmpJoQQHWrN60FgNON6WPCL1gdG7VBcXMyZZ57JvHnzUEpx5pln0r9///qqrVmD4zjMmDEjvc+yLI4++miWL1+eda0jjzwy/Xzt2rU4jsPRRx+d3pefn8/48eOzzvnggw/47ne/y9KlS9mzZw++7wOwYcMGJk2alC532GGHpZ8PHjwYgO3bt7crN6otJDgSACjXQ7dzsPCCNdU0raurJIQQ3ZMVDVpwWkszwLTBS8CxX4ejrwLltf6122jOnDlcd911ADzwwANtvk4s1rqWq+rqambPns3s2bN5/PHHKS4uZsOGDcyePZtEIpFV1rKs9HMteR9KBVIHkuQcCQBc3yUciWDrGkYrf/GFEKJP0bSga6u1DyscnGuEgq9WuPXXaMcfrqeddhqJRALHcZg9e3bWsTFjxhAKhViwYEF6n+M4vPfee1ktOw2NHj0ay7KyErfLy8v57LPP0tsrVqxg165d3HfffRx//PFMmDAhKxm7O5KWIwGAr3xCZhhDV5hhyTcSQojexjCMdBeZYRhZx2KxGNdccw0333wzRUVFDB8+nB/+8IfU1NRwxRVXNHvN3NxcLr300vR5AwYM4I477kDX9XTLz/DhwwmFQvzyl7/k6quv5pNPPuF73/te573RDiAtRyIYxq/5RIwIZthAtyU4EkKI3igvL4+8vLwmj913332cc845XHzxxUyZMoXVq1fz8ssvU1hYuM9r/vSnP2X69Ol8/vOfZ9asWcyYMYOJEyemk6iLi4uZN28ef/7zn5k0aRL33XcfP/7xjzv8vXUkTak2jgvsoyoqKsjPz6e8vLzZX7DuZseWjbz+8KNYsQh2rIn+asdjb+VuRo49nAkl+fSbemzQ3CuEEIK6ujpKS0sZNWrUAR811RNVV1czdOhQfvKTn+yz1akz7Otn1Zr7t3SrCTzXQZk6lqlhRUJBwqAQQgjRAh9++CErVqzg6KOPpry8nLvuuguA//qv/+rimrWdBEcC5XpoZoiwrmPGcmWkmhBCiFb58Y9/zMqVKwmFQkydOpX//Oc/WVMF9DQSHAlc18GIRokYYEZlTTUhhBAtN3nyZD744IOurkaHkoRsgee6WHYE2zQwIm2fQ0MIIYToDSQ4Enj4hM0wVsjAkGRDIYQQfZwER32dAh+FbYQIRUNgyjB+IYQQfZsER32d56F0HdswscKWjFQTQgjR50lw1Mcp1wdDI2TpmLEcGakmhBCiz5PgqI/zXAcMi7CpY8R6xqSWQgghRGeS4KiP81wH3YoQtQxMScYWQgghJDjq63zXwwiFiNimDOMXQohe5rLLLkPTNDRNw7IsRo0axS233EJdXV26TOq4pmnEYjHGjRvHZZdd1mjuojfeeANN09i7d29635YtWzj00EM54YQTKC8vzyqT+dpNPUaOHHmAvgutJ8FRH+cqj7AVIhwNgyktR0II0ducdtppbN26lbVr13L//ffzf//3f9xxxx1ZZR599FG2bt3KsmXLeOCBB6iqqmLatGn8/ve/b/a6a9as4bjjjmPEiBG8/PLL5OfnZx3/+c9/ztatW9OPzNfZunUr7733Xse/2Q4iM2T3cb7yCJsWoYglwZEQQvRCtm0zaNAgAEpKSpg1axbz58/nBz/4QbpMQUFBuszIkSM59dRTufTSS7nuuus466yzKCwszLrmRx99xOzZszn55JN57LHHMM3G4UR+fn6jgCnzdbozaTnqy3wfX9MImyZGjqypJoQQLaGUosapadWjzq1DKUWdW9fkdksfSql21f2TTz7h7bffJhQK7bfsjTfeSGVlJfPnz8/a//bbb3PiiSdyzjnn8Mc//rHJwKin633vSLSYcnyUYRKyDFlTTQghWqjWrWXaE9Nafd70IdP50Qk/4tlVz/KlcV/i+n9dz8ItC1t1jUUXLCJqtS4/9LnnniMnJwfXdYnH4+i6zq9+9av9njdhwgQA1q1bl7X/i1/8Il/5yldadI2eSlqO+jDPddEMk2jYxAjLzNhCCNGZFm5ZyLOrnuXyQy7n2VXPtjowaquTTjqJJUuWsGjRIi699FIuv/xyzjnnnP2el2ql0hr0KvzXf/0Xf/3rX/nPf/7TKfXtDnpEy9G6dev43ve+x+uvv05ZWRlDhgzhoosu4lvf+lZW0+BHH33Etddey3vvvUdxcTFf//rXueWWW7Ku9ec//5nvfOc7rFu3jnHjxvGDH/yAM84440C/pW4hmOPIJhoJSXAkhBAtFDEjLLpgUavP0zUd27BxPIfLDr6M8yecj6/8Vr92a8ViMcaOHQvAI488wuGHH87DDz/MFVdcsc/zli9fDsCoUaOy9v/f//0ft9xyC6effjovvPACJ5xwQqvr1N31iOBoxYoV+L7P//3f/zF27Fg++eQTvvrVr1JdXc2Pf/xjACoqKjj11FOZNWsWDz30EB9//DFz5syhoKCAq666Cgj6Sc8//3zuvfdePv/5z/PEE09w9tlns3jxYg455JCufItdQrkeZjiHnKiNZklwJIQQLaFpWqu7tjJZhgVAuAsGwei6zv/+7/8yd+5cLrjgAiKR5j/7f/azn5GXl8esWbOy9muaxm9+8xt0XeeMM87g+eef58QTT+zsqh9QPaJb7bTTTuPRRx/l1FNPZfTo0XzhC1/gG9/4Bs8++2y6zOOPP04ikeCRRx7h4IMP5rzzzuP666/npz/9abrMz3/+c0477TRuvvlmJk6cyPe+9z2mTJnSq/tN98X1XSxLJxqLykg1IYToI84991wMw+CBBx5I79u7dy9lZWWsX7+e+fPn89///d888cQTPPjggxQUFDS6hqZpPPTQQ1xyySWcccYZvPHGGwfuDRwAPSI4akp5eTlFRUXp7YULF3LCCSdkdbPNnj2blStXsmfPnnSZhhHw7NmzWbiw+X7feDxORUVF1qO38JVPxLIwIzHQe+yvghBCiFYwTZPrrruOH/7wh1RXVwNw+eWXM3jwYCZMmMA111xDTk4O7777LhdccEGz19E0jQceeIDLL7+cM888k3/9618H6i10uh7RrdbQ6tWr+eUvf5nuUgMoKytr1C86cODA9LHCwkLKysrS+zLLlJWVNfta9957L3feeWcH1r6bUAoPiJpGMIxfCCFErzNv3rwm9996663ceuutAC2eHmDmzJmNymqaxq9+9ausHpjmrtfeaQgOpC5tLrj11lv3ObW4pmmsWLEi65zNmzdz2mmnce655/LVr3610+t42223UV5enn5s3Lix01/zgHA90E3CERtTlg0RQggh0rq05eimm27isssu22eZ0aNHp59v2bKFk046iWOPPZbf/OY3WeUGDRrEtm3bsvaltlOzcTZXZl+zddq2jW3b+30vPY3vuvi6TjhqyUg1IYQQIkOXBkfFxcUUFxe3qOzmzZs56aSTmDp1Ko8++ih6gxyZ6dOn861vfQvHcbCsYCTA/PnzGT9+fHra8+nTp/Paa69xww03pM+bP38+06dP75g31IP4rouuW+TmRmWkmhBCCJGhR2Thbt68mZkzZzJ8+HB+/OMfs2PHDsrKyrJyhS644AJCoRBXXHEFy5Yt46mnnuLnP/85c+fOTZf5n//5H1566SV+8pOfsGLFCr773e/y/vvvc91113XF2+pSruuih0zyciIyUk0IIYTI0CMSsufPn8/q1atZvXo1w4YNyzqWSvDKz8/nlVde4dprr2Xq1Kn079+f22+/PT3HEcCxxx7LE088wbe//W3+93//l3HjxvG3v/2tT85x5LkuoVyLcDRPRqoJIYQQGXpEcHTZZZftNzcJ4LDDDtvvdObnnnsu5557bgfVrOdylSLfMrFy8/dfWAghhOhDpMmgL1LgK4jYsqaaEEII0ZAER32R6+FhEInKMH4hhBCiIQmO+iDleei6QSwnjBaSZGwhhBAikwRHfZDnuGi6Tk5BjoxUE0IIIRqQ4KgP8lwHPWSSm5MPutHV1RFCCNGJNm7cyJw5cxgyZAihUIgRI0bwP//zP+zatStdZubMmVlzAKbMmzcva+HZefPmNbmaRTjcu/7Q7hGj1UTH8lwPK6oTzSvs6qoIIYToRGvXrmX69OkcdNBB/OlPf2LUqFEsW7aMm2++mRdffJF33nknaxH3lsjLy2PlypVZ+zRN68hqdzkJjvog11fEbJNQNKerqyKEEKITXXvttYRCIV555RUikWB08vDhw5k8eTJjxozhW9/6Fg8++GCrrqlp2j6X3eoNJDjqaxR4ShGL2BhhGakmhBCtpZRC1da27iRdR7NtVDwOvt94u4W0SKTFrTS7d+/m5Zdf5u67704HRimDBg3iwgsv5KmnnuLXv/51q95KXyDBUV/j+yh0orEIuoxUE0KIVlO1taycMrXV58VmHMvQn/yEvc88Q8E557Dp2mupXvB2q64xfvEHaNGW/WG7atUqlFJMnDixyeMTJ05kz5497NixA4Bf//rX/O53v8sq47puo3yi8vJycnKyex6OP/54XnzxxZa+jW5PgqM+RrleEBwVREEWnBVCiAOmesHb7H3mGfpdcQW7Hn641YFRW6WW2dqfCy+8kG9961tZ+5599lnuueeerH25ubksXrw4a1/DlqmeToKjPsZzPDQDcgtkpJoQQrSFFokwfvEHrT8x1ZXmOBTNmUPhhRe2qkst9dotNXbsWDRNY/ny5Xzxi19sdHz58uUUFhZSXFwMBGuUjh07NqvMgAEDmngbeqNyvY0ER32M5yQwTIPc/H5dXRUhhOiRNE1rcddWkywruE4nD3/v168fp5xyCr/+9a+58cYbs1p3ysrKePzxx7nkkkt63UizjiDzHPUxnqswIgaxHFlwVgghertf/epXxONxZs+ezZtvvsnGjRt56aWXOOWUUxg6dCh33313q6+plKKsrKzRw29lK1h3JsFRH+P6inDYJBzN6+qqCCGE6GTjxo3j/fffZ/To0Xz5y19mzJgxXHXVVZx00kksXLiw1XMcAVRUVDB48OBGj+3bt3fCO+gammppppYAgl+K/Px8ysvLycvrGQHGji0bef3hR7FiEWr31jJgXDGnfPlisGWeIyGE2J+6ujpKS0sZNWpUr5sJurfZ18+qNfdvaTnqQzRf4WkaufkxWVNNCCGEaIYER32I8n00TRHJzwVDcvGFEEKIpkhw1IcoxwdDI6eo8dBMIYQQQgQkOOpDfM/HsDRy82WkmhBCCNEcCY76ENfxMcImubmFXV0VIYQQotuS4KgPUa6PFbWwIzJKTQghhGiOBEd9iKtBbn4Y3WrHzK5CCCFELyfBUR+iNIjl5YNhdXVVhBBCiG5LgqO+RPeIFciaakIIIcS+SHDUhxgmRAv7d3U1hBBC9AGapvG3v/2tq6vRJhIc9SFayJRh/EII0YdcdtllaJqGpmlYlsWoUaO45ZZbqKur6+qqdWsyTXIfokct8nIlOBJCiL7ktNNO49FHH8VxHD744AMuvfRSNE3jBz/4QVdXrduSlqM+Qmlg54SwbQmOhBCiL7Ftm0GDBlFSUsLZZ5/NrFmzmD9/PgC7du3i/PPPZ+jQ/9/enQdFcaZ/AP/OwTAwXII6AyKIioKIiKIGMIJKREtJ2KwmMeqCGo8qjBC8NYrByGW8L6Ju0K0KGrNR17iJBtGgoiIquCGLGqImRkVMPFBcUZj+/eGPzkzACB60M3w/VV01/fbbbz/9atFPvf12dytYW1vD19cXmzdvNto/NDQUkydPxvTp0+Ho6AidTof58+cb1fnhhx/Qp08fqNVqdOrUSWzf0HfffYd+/frBysoKTk5OGD9+PO7cuSNuj46ORmRkJJKSkqDVauHg4IDExERUVVVh2rRpcHR0hKurKzIyMp59J/0Bk6MmQpDLYWVnDYUFPzhLRPQ0BEHAg8rqBi1V96shCAKq7te9Xt9FEISnir2oqAiHDx+GSqUC8PAr9t27d8e///1vFBUVYfz48Rg1ahSOHTtmtN+mTZug0WiQl5eHtLQ0JCYmigmQXq/H66+/DpVKhby8PKSnp2PGjBlG+1dUVCA8PBzNmjVDfn4+Pv/8c+zduxeTJk0yqrdv3z5cvnwZBw4cwJIlS5CQkIAhQ4agWbNmyMvLw8SJEzFhwgT88ssvT9UPj8Pbak2ETCnA1oGTsYmInlbVfT3WxeY0eL/W3o4Y8I4PinMvwzvYBV+t/Q4Xi683qI3xy0NgYalo0D67du2CjY0NqqqqUFlZCblcjlWrVgEAWrVqhalTp4p13333XezZswdbt25Fz549xfIuXbogISEBAODp6YlVq1YhOzsbr7zyCvbu3YvTp09jz549cHFxAQAkJSVh0KBB4v6ZmZm4d+8e/vGPf0Cj0QAAVq1ahYiICKSmpkKr1QIAHB0dsWLFCsjlcnTs2BFpaWm4e/cuZs+eDQCYNWsWUlJScOjQIbz11lsN6oeGYHLUFMgAuUoBjYOj1JEQETVZF4uvozj3MvwHuKPgm58anBg9qb59+2Lt2rWoqKjA0qVLoVQq8de//hUAUF1djaSkJGzduhWXLl3C/fv3UVlZCWtr45cFd+nSxWjd2dkZZWVlAIDi4mK0bt1aTIwAIDAw0Kh+cXEx/Pz8xMQIAIKDg6HX63HmzBkxOfLx8YFc/vtNLa1Wi86dO4vrCoUCTk5O4rGfFyZHTYDSWg25qx1stRw5IiJ6WkqVHOOXhzR4P5kMUFjIUV2lR9dX3OAb6oqG3iVTqho+G0aj0aB9+/YAgE8++QR+fn74+9//jrFjx2LRokVYvnw5li1bBl9fX2g0GsTFxeH+/ftGbVhYGL88WCaTQa/XNziWx6nrOI11bENMjpoAC4UcNi42sLN1kDoUIiKTJ5PJGnxry5BCKQMAKFVP3saTksvlmD17NuLj4/H2228jNzcXr732GkaOHAng4fyhs2fPolOnTvVu09vbGxcvXsSVK1fg7OwMADh69GitOhs3bkRFRYU4epSbmyvePnvRcEJ2E6C0tIZrKw9orPl2bCKipm7YsGFQKBRYvXo1PD09kZWVhcOHD6O4uBgTJkzA1atXG9ReWFgYOnTogKioKJw6dQoHDx7EnDlzjOqMGDECarUaUVFRKCoqwv79+/Huu+9i1KhR4i21FwmToyZAbWGF1rqu0FjaSh0KERFJTKlUYtKkSUhLS8OUKVPQrVs3hIeHIzQ0FDqdDpGRkQ1qTy6XY/v27fjf//6Hnj174p133sHChQuN6lhbW2PPnj24fv06evTogaFDh6J///7ixPAXjUx42ucCm5jy8nLY29vj1q1bsLOzkzocIiJ6zu7du4fz58/Dw8MDajVfh/Ii+7N/q4ZcvzlyRERERGSAyRERERGRAZNIji5cuICxY8fCw8MDVlZWaNeuHRISEoweNbxw4YL4cT3D5Y8z5j///HN4eXlBrVbD19cXX331VWOfDhEREb3ATOJR/tOnT0Ov1+Pjjz9G+/btUVRUhHHjxqGiogIfffSRUd29e/fCx8dHXHdy+v0JrcOHD2P48OFITk7GkCFDkJmZicjISJw8edLoJVNERETUdJnshOxFixZh7dq1OHfuHICHI0ceHh4oKChA165d69znzTffREVFBXbt2iWWvfTSS+jatSvS09PrdVxOyCYialo4Idt0NPkJ2bdu3YKjY+3PYbz66qto2bIlevfujZ07dxptO3LkCMLCwozKwsPDceTIkecaKxERmT4THUtoUp7Vv5FJ3Fb7o5KSEqxcudLolpqNjQ0WL16M4OBgyOVyfPHFF4iMjMSOHTvw6quvAgBKS0trvWxKq9WitLT0kceqrKxEZWWluF5eXv6Mz4aIiF5kNZ+vuHv3LqysrCSOhv5MzVxkheLp3j4uaXI0c+ZMpKam/mmd4uJieHl5ieuXLl3CwIEDMWzYMIwbN04sb968OeLj48X1Hj164PLly1i0aJGYHD2J5ORkfPDBB0+8PxERmTaFQgEHBwfxY6fW1taQyWQSR0V/pNfrce3aNVhbW0OpfLr0RtLkaMqUKYiOjv7TOm3bthV/X758GX379kVQUBDWrVv32PZ79eqFrKwscV2n09V6LfrVq1eh0+ke2casWbOMkq7y8nK0bt36sccmIiLzUXOdeN5fg6enI5fL4ebm9tTJq6TJUYsWLdCiRYt61b106RL69u2L7t27IyMjA3L546dLFRYWih/BA4DAwEBkZ2cjLi5OLMvKykJgYOAj27C0tISlpWW9YiQiIvMkk8ng7OyMli1b4sGDB1KHQ4+gUqnqlR88jknMObp06RJCQ0Ph7u6Ojz76CNeuXRO31WTzmzZtgkqlgr+/PwBg27Zt+OSTT7BhwwaxbmxsLEJCQrB48WIMHjwYW7ZswfHjx+s1CkVERKRQKJ56Pgu9+EwiOcrKykJJSQlKSkrg6upqtM1wZvqCBQvw008/QalUwsvLC5999hmGDh0qbg8KCkJmZibef/99zJ49G56entixYwffcUREREQik33PkVT4niMiIiLT0yTec0RERET0PJjEbbUXSc1AG993REREZDpqrtv1uWHG5KiBfvvtNwDg4/xEREQm6Pbt27C3t//TOkyOGqjmkyU///zzYzuXnk7NO6UuXrzI+V3PEfu5cbCfGwf7uXGYYj8LgoDbt2/DxcXlsXWZHDVQzfsT7O3tTeY/hKmzs7NjXzcC9nPjYD83DvZz4zC1fq7voAYnZBMREREZYHJEREREZIDJUQNZWloiISGBnxRpBOzrxsF+bhzs58bBfm4c5t7PfAkkERERkQGOHBEREREZYHJEREREZIDJEREREZEBJkcNtHr1arRp0wZqtRq9evXCsWPHpA7JrCQnJ6NHjx6wtbVFy5YtERkZiTNnzkgdltlLSUmBTCZDXFyc1KGYpUuXLmHkyJFwcnKClZUVfH19cfz4canDMivV1dWYO3cuPDw8YGVlhXbt2mHBggX1+lQEPdqBAwcQEREBFxcXyGQy7Nixw2i7IAiYN28enJ2dYWVlhbCwMPzwww/SBPsMMTlqgM8++wzx8fFISEjAyZMn4efnh/DwcJSVlUkdmtnIyclBTEwMjh49iqysLDx48AADBgxARUWF1KGZrfz8fHz88cfo0qWL1KGYpRs3biA4OBgWFhb4+uuv8d///heLFy9Gs2bNpA7NrKSmpmLt2rVYtWoViouLkZqairS0NKxcuVLq0ExaRUUF/Pz8sHr16jq3p6WlYcWKFUhPT0deXh40Gg3Cw8Nx7969Ro70GROo3nr27CnExMSI69XV1YKLi4uQnJwsYVTmraysTAAg5OTkSB2KWbp9+7bg6ekpZGVlCSEhIUJsbKzUIZmdGTNmCL1795Y6DLM3ePBgYcyYMUZlr7/+ujBixAiJIjI/AITt27eL63q9XtDpdMKiRYvEsps3bwqWlpbC5s2bJYjw2eHIUT3dv38fJ06cQFhYmFgml8sRFhaGI0eOSBiZebt16xaA379pR89WTEwMBg8ebPT/mp6tnTt3IiAgAMOGDUPLli3h7++P9evXSx2W2QkKCkJ2djbOnj0LADh16hQOHTqEQYMGSRyZ+Tp//jxKS0uN/n7Y29ujV69eJn9d5LfV6unXX39FdXU1tFqtUblWq8Xp06clisq86fV6xMXFITg4GJ07d5Y6HLOzZcsWnDx5Evn5+VKHYtbOnTuHtWvXIj4+HrNnz0Z+fj4mT54MlUqFqKgoqcMzGzNnzkR5eTm8vLygUChQXV2NhQsXYsSIEVKHZrZKS0sBoM7rYs02U8XkiF5YMTExKCoqwqFDh6QOxexcvHgRsbGxyMrKglqtljocs6bX6xEQEICkpCQAgL+/P4qKipCens7k6BnaunUrPv30U2RmZsLHxweFhYWIi4uDi4sL+5kajLfV6ql58+ZQKBS4evWqUfnVq1eh0+kkisp8TZo0Cbt27cL+/fvh6uoqdThm58SJEygrK0O3bt2gVCqhVCqRk5ODFStWQKlUorq6WuoQzYazszM6depkVObt7Y2ff/5ZoojM07Rp0zBz5ky89dZb8PX1xahRo/Dee+8hOTlZ6tDMVs21zxyvi0yO6kmlUqF79+7Izs4Wy/R6PbKzsxEYGChhZOZFEARMmjQJ27dvx759++Dh4SF1SGapf//++O6771BYWCguAQEBGDFiBAoLC6FQKKQO0WwEBwfXeh3F2bNn4e7uLlFE5unu3buQy40vaQqFAnq9XqKIzJ+Hhwd0Op3RdbG8vBx5eXkmf13kbbUGiI+PR1RUFAICAtCzZ08sW7YMFRUVGD16tNShmY2YmBhkZmbiX//6F2xtbcX71vb29rCyspI4OvNha2tbax6XRqOBk5MT53c9Y++99x6CgoKQlJSEN954A8eOHcO6deuwbt06qUMzKxEREVi4cCHc3Nzg4+ODgoICLFmyBGPGjJE6NJN2584dlJSUiOvnz59HYWEhHB0d4ebmhri4OHz44Yfw9PSEh4cH5s6dCxcXF0RGRkoX9LMg9eNypmblypWCm5uboFKphJ49ewpHjx6VOiSzAqDOJSMjQ+rQzB4f5X9+vvzyS6Fz586CpaWl4OXlJaxbt07qkMxOeXm5EBsbK7i5uQlqtVpo27atMGfOHKGyslLq0Eza/v376/ybHBUVJQjCw8f5586dK2i1WsHS0lLo37+/cObMGWmDfgZkgsDXhxIRERHV4JwjIiIiIgNMjoiIiIgMMDkiIiIiMsDkiIiIiMgAkyMiIiIiA0yOiIiIiAwwOSIiIiIywOSIiIiIyACTIyKiZ0wmk2HHjh1Sh0FET4jJERHVKTo6GjKZDCkpKUblO3bsgEwmkyiqh2QyWZ3Lli1bJI2rxpUrVzBo0CCpw8DGjRvh4OAgdRhEJofJERE9klqtRmpqKm7cuCF1KLVkZGTgypUrRovUH7u8f/8+AECn08HS0lLSWIjoyTE5IqJHCgsLg06nQ3Jycp3b58+fj65duxqVLVu2DG3atBHXo6OjERkZiaSkJGi1Wjg4OCAxMRFVVVWYNm0aHB0d4erqioyMjAbF5uDgAJ1OZ7So1WoAwJgxY9ClSxdUVlYCeJi0+Pv7429/+xsA4MKFC+JIU1BQENRqNTp37oycnByjYxQVFWHQoEGwsbGBVqvFqFGj8Ouvv4rbQ0NDMWnSJMTFxaF58+YIDw8HYHxbreZYW7duxcsvvwwrKyv06NEDZ8+eRX5+PgICAmBjY4NBgwbh2rVrRsffsGEDvL29oVar4eXlhTVr1ojbatrdtm0b+vbtC2tra/j5+eHIkSMAgG+//RajR4/GrVu3xJG1+fPnAwDWrFkDT09PqNVqaLVaDB06tEF9T2TumBwR0SMpFAokJSVh5cqV+OWXX564nX379uHy5cs4cOAAlixZgoSEBAwZMgTNmjVDXl4eJk6ciAkTJjzVMQytWLECFRUVmDlzJgBgzpw5uHnzJlatWmVUb9q0aZgyZQoKCgoQGBiIiIgI/PbbbwCAmzdvol+/fvD398fx48exe/duXL16FW+88YZRG5s2bYJKpUJubi7S09MfGVNCQgLef/99nDx5EkqlEm+//TamT5+O5cuX4+DBgygpKcG8efPE+p9++inmzZuHhQsXori4GElJSZg7dy42bdpk1O6cOXMwdepUFBYWokOHDhg+fDiqqqoQFBSEZcuWwc7OThxZmzp1Ko4fP47JkycjMTERZ86cwe7du9GnT5+n6m8isyMQEdUhKipKeO211wRBEISXXnpJGDNmjCAIgrB9+3ah5k9HQkKC4OfnZ7Tf0qVLBXd3d6N23N3dherqarGsY8eOwssvvyyuV1VVCRqNRti8eXO9YgMgqNVqQaPRGC0//fSTWOfw4cOChYWFMHfuXEGpVAoHDx4Ut50/f14AIKSkpIhlDx48EFxdXYXU1FRBEARhwYIFwoABA4yOe/HiRQGAcObMGUEQBCEkJETw9/evM77t27cbHWvDhg3i9s2bNwsAhOzsbLEsOTlZ6Nixo7jerl07ITMz06jdBQsWCIGBgY9s9/vvvxcACMXFxYIgCEJGRoZgb29v1MYXX3wh2NnZCeXl5bXiJqKHlJJlZURkMlJTU9GvXz9MnTr1ifb38fGBXP77QLVWq0Xnzp3FdYVCAScnJ5SVldW7zaVLlyIsLMyozMXFRfwdGBiIqVOnYsGCBZgxYwZ69+5dq43AwEDxt1KpREBAAIqLiwEAp06dwv79+2FjY1Nrvx9//BEdOnQAAHTv3r1e8Xbp0kX8rdVqAQC+vr5GZTXnX1FRgR9//BFjx47FuHHjxDpVVVWwt7d/ZLvOzs4AgLKyMnh5edUZxyuvvAJ3d3e0bdsWAwcOxMCBA/GXv/wF1tbW9ToPoqaAyRERPVafPn0QHh6OWbNmITo6WiyXy+UQBMGo7oMHD2rtb2FhYbQuk8nqLNPr9fWOSafToX379o/crtfrkZubC4VCgZKSknq3W+POnTuIiIhAampqrW01SQgAaDSaerVneL41T/v9sazm/O/cuQMAWL9+PXr16mXUjkKheGy7f9aPtra2OHnyJL799lt88803mDdvHubPn4/8/Hw+2Ub0/zjniIjqJSUlBV9++aU44RcAWrRogdLSUqMEqbCwUILoalu0aBFOnz6NnJwc7N69u84J30ePHhV/V1VV4cSJE/D29gYAdOvWDd9//z3atGmD9u3bGy31TYielFarhYuLC86dO1fr2B4eHvVuR6VSobq6ula5UqlEWFgY0tLS8J///AcXLlzAvn37nuUpEJk0jhwRUb34+vpixIgRWLFihVgWGhqKa9euIS0tDUOHDsXu3bvx9ddfw87O7rnHc/PmTZSWlhqV2draQqPRoKCgAPPmzcM///lPBAcHY8mSJYiNjUVISAjatm0r1l+9ejU8PT3h7e2NpUuX4saNGxgzZgwAICYmBuvXr8fw4cMxffp0ODo6oqSkBFu2bMGGDRtqjeA8ax988AEmT54Me3t7DBw4EJWVlTh+/Dhu3LiB+Pj4erXRpk0b3LlzB9nZ2fDz84O1tTX27duHc+fOoU+fPmjWrBm++uor6PV6dOzY8bmeD5Ep4cgREdVbYmKi0S0bb29vrFmzBqtXr4afnx+OHTv2xPOSGmr06NFwdnY2WlauXIl79+5h5MiRiI6ORkREBABg/Pjx6Nu3L0aNGmU0kpKSkoKUlBT4+fnh0KFD2LlzJ5o3bw7g4fyl3NxcVFdXY8CAAfD19UVcXBwcHByM5k89L++88w42bNiAjIwM+Pr6IiQkBBs3bmzQyFFQUBAmTpyIN998Ey1atEBaWhocHBywbds29OvXD97e3khPT8fmzZvh4+PzHM+GyLTIhD9OGCAiMnMXLlyAh4cHCgoKar2niYiII0dEREREBpgcEdELJSkpCTY2NnUuL8L3yojI/PG2GhG9UK5fv47r16/Xuc3KygqtWrVq5IiIqKlhckRERERkgLfViIiIiAwwOSIiIiIywOSIiIiIyACTIyIiIiIDTI6IiIiIDDA5IiIiIjLA5IiIiIjIAJMjIiIiIgP/B8mPNUqxqF+1AAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGxCAYAAACEFXd4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADcXElEQVR4nOy9d5xcd3nv/z51+sz2ql31Lstyt5HBxji2gXDpYCDBgAEDacS0kB8lXCDccBMIEAKY0FtogVwgYMAGjI1xtyyrWL1tb9Pn9O/vjzMzOyvtStu1ks/79ZqdOXWemd2d85mnSkIIQUBAQEBAQEDAeYp8tg0ICAgICAgICFhIArETEBAQEBAQcF4TiJ2AgICAgICA85pA7AQEBAQEBASc1wRiJyAgICAgIOC8JhA7AQEBAQEBAec1gdgJCAgICAgIOK8JxE5AQEBAQEDAeY16tg1YCnieR29vL4lEAkmSzrY5AQEBAQEBAdNACEEul6OjowNZntp/E4gdoLe3l66urrNtRkBAQEBAQMAsOH78OMuWLZtyeyB2gEQiAfhvVjKZPMvWBAQEBAQEBEyHbDZLV1dX9To+FYHYgWroKplMBmInICAgICDgHONMKShBgnJAQEBAQEDAeU0gdgICAgICAgLOawKxExAQEBAQEHBeE4idgICAgICAgPOaQOwEBAQEBAQEnNcEYicgICAgICDgvCYQOwEBAQEBAQHnNYHYCQgICAgICDivCcROQEBAQEBAwHnNWRU799xzDy94wQvo6OhAkiR+/OMfT9guhOADH/gA7e3tRCIRrr/+evbv3z9hn9HRUV7zmteQTCapq6vj1ltvJZ/PL+KrCAgICAgICFjKnFWxUygUuPDCC/nsZz876faPf/zjfPrTn+bzn/88DzzwALFYjBtvvBHDMKr7vOY1r2HXrl386le/4qc//Sn33HMPb37zmxfrJQQEBAQEBAQscSQhhDjbRoA/1+JHP/oRL3rRiwDfq9PR0cE73vEO3vnOdwKQyWRobW3lq1/9KjfffDN79uxh06ZNPPTQQ1x66aUA/OIXv+B5z3seJ06coKOjY1rPnc1mSaVSZDKZYDZWQEBAQEDAOcJ0r99LdhDo4cOH6e/v5/rrr6+uS6VSXHHFFdx///3cfPPN3H///dTV1VWFDsD111+PLMs88MADvPjFL5703KZpYppmdTmbzS7cC3GcqbdJEijK9PYFUGt+Xefzvq4Lp9PgS2FfRfF/fwCe59+W8r6y7N+Wyr5C+O/xUt53Jv+fS2FfWHr/y8FnhP84+IyYevsisWTFTn9/PwCtra0T1re2tla39ff309LSMmG7qqo0NDRU95mMj33sY3zoQx+aZ4un4MtfnnpbdzfcdNP48te/PvU/fHs7vOAF48vf/jbUhPMm0NwMtULve9+DqfKY6uvh5S8fX/7Rj2BsbPJ943F49avHl3/yExgamnzfcBhe+9rx5Z//HPr6Jt9XVeENbxhf/tWv4NixyfcFqA1T/uY3cOjQ1Pu+4Q3jH1C//z3s2zf1vq99rW83wP33w+7dU+/7qldBIuE/fvBBeOKJqfd9+cv99xngscfgkUem3vfFL/Z/fwA7d8IDD0y975/+KVS8l3v2wH33Tb3vTTf5f28ABw7Ab3879b7XXw+rVvmPjxyBX/966n2vvRbWrfMfnzgBv/jF1Ptu3w6bN/uP+/rgpz+det8rroALL/QfDw/7f5dTcckl/g0gnYbvf3/qfbduhSuv9B/n8/Cd70y976ZNcPXV/mPD8P8/p2LdOv+9AP9/+HT/96tW+e9xheAzwif4jPAfn8+fEWeRsy+3zgLvfe97yWQy1dvx48fPtkkBAQEBAQEBC8SSzdk5dOgQq1ev5rHHHmPbtm3V/a655hq2bdvGpz71Kb785S/zjne8g7GabxmO4xAOh/n+978/ZRjrZBY0ZydwUc9838BFPf/7BmGsme+7FEJTwWfE5PsGnxHzv+85GsY653N2Vq5cSVtbG3fddVdV7GSzWR544AHe+ta3AnDVVVeRTqd55JFHuKTsxr777rvxPI8rrrjibJk+EXUGb3Gwr0/th/u5sO9M/pmDfX0kafp/E0thX1j0fYUQCAGe6+EJ8IQAJDwh8IS/vXIvyts94frLUN1PVyQaYiGG8yYF0ymfByK6QlsyQn+2RMk6jeg7S0xlX3V9bunZfUabl+B7fa7bPDiSm9YxZ1Xs5PN5Dhw4UF0+fPgwjz/+OA0NDXR3d/P2t7+dj3zkI6xdu5aVK1fy/ve/n46Ojqr3Z+PGjdx000286U1v4vOf/zy2bfOXf/mX3HzzzdOuxAoICAiYKZ4nsFwP1xN4QiBLEhFdoWA6WI4vTgS1IuQkUeIJXCFwvfGbJ8AVHp5HdVkIgQdQew7G14vyF2qvvF6C8Xvh22g7goaYzlVrGtlxPM2x0SKddRGevaGFX+7qpyddOjtv4jSo2Pmb44OcGCvRUR/mORta+Z+dfRwfLZbfi/H3uiIAoeY9mvC+1fweysdA+f0TJ52Lib8zAVBzXGVbdT/AE7C+Nc7rt6/kvx45zJ7+HBvbErzh6pX8+28OsKd/ehfmxaZi47lo87d2DU5r/7Maxvrtb3/Ls5/97FPW33LLLXz1q19FCMEHP/hB7rjjDtLpNFdffTX//u//zrqaZKfR0VH+8i//kp/85CfIssxLX/pSPv3pTxOPx6dtR1B6HhAQUKEqElyB43rVx7bjUbJdVAVWNsbZ05dlOG9SF9XZ0pli54kMw3mzeg4kqSo6bM/DsgVOWSQ5rofj+ee3XX+9XfOctc9d2WY5nn/vejiumLBsOafe2+7Ej/Znrm3iM6+6iO8+dJxXXtbFX33nMX6/f/gsvMMz41y0O7B5cXjm2iY++vzVLG9vPuP1e8nk7JxNArETEPD0QAjhC5eKYHC9ssjwKFoupu0LGsfzBYnrgSsEIBAepEs2w3mTREjjZZcu4649Azx7Qwv/53/28sfDI1WRcbL4ONvIEuiqzHtu2sDrt6/k6384wqfu2n/mA5cIf/Octbz2GSv4xv1H+LffHEAuC0lJkpAk/17Gj0zKkgQSyEjV5eo+5fSV6rrKMQDVZX+/SqpLZR+pZrv/WIxvO2kfJHj5JSu4cUsndz7Zww8eOVJ+JZNcbsUpD07ZTTrNtknPOekmMcm6idteetlqbrywmzt3HOWHDx6cuPU0dpb9XmVxf/rnHD/N+DHVZTF+rkntF7X3Ps/b1snLrt127ubsBAQEBMyUinCxHd+bUnlcsh2MipApCx3HE7ieV72qqZKEIksULZehvMlg1qAva9CXNuhJl+jLlCZ4SwzH5bZrVvOF3x3kWw+epgy6BglfdOiqjK7491rtvSKhKbXrJHRFRi2v0xQJTZZRVf9eUyVU2T9GVWQ0Warea4qMVn4uWYLmuM7WZfUcHsrzqsu72dSRYCRvLcSvYSJClJNYXSSv9rGHcF2E55RvLsItP3YshGMjOTaNTQ1cckk7B3bv5ZUXr2RN6TCD/f0ghO9BQ1TDhuDnlgjPrYakyoEp/7EQeH5wq2Jc+VE1hkXt5VaU7Z+4ZuLFtna7KAug9s6VXLPmYp7c8SDXrr8A+eh99PYcAUCqqIHTiI5T3r+aTZMLn/F10mndF+Kkfcp2SxLty1Zx9for2f3oH7h200Woh++j//ghXwmW88WqNkjjR0s1Z5+wUN1Yec6ypxNRPl6aeExFMZbtmXDK6qI84Zi2ZSvYvPGS073gKoHYCQgIOCeohHcqYaCKh8awXYqWi2G72OXQkOPWCBkBiuyLAlWRUWUZ8Bgr2vRlSvSmS/SkS/SmDU6kixTMqZMxVVmiPRXmhs2t/NmVy7l3/xCvvWoFdVGNE6MlNEVCLQsZX5RASFFQy0JGliWksk0V7wKS73mZ6DUoeyEqHgskJNl/HRKgyrKfDy6BLMko5W2K5D+HXL5YyOX9w5pCXVQjW7KJhzWKtsPFyxvIGfYp4a4KolKtVhYnwvXv8QTCdfAcG9d18FwHz3PwHAfPsfBs/yZsC8+x/X1dF8e1/X1dG8d1EMLBdZyyUPDznBCenxMjgYdEQ8dyLrzyEnbc/zOGB04wNtjFpdufy477f85wv98ypPI+jV8zx90rEv77PfHSqZS9OFLN+13ZNn6uyY6VqtslhFQ5//j2dZdfi2UYNLQt4+Bj91Ea7ueIkefZf/JCRvtPoIcj7H/4d9QcNE6tK2mCvWdYd7pzTXr+idvWbr0KyzRoaO7g4K6HKGQGObL3Ua55/ssYG+pFD4U5sPP+2ndgknPXPpSmNOHklyJNthI/F83XeNL4Y+E/RsCaiy/HLJk0tLXx6D2/n/yJTiIQOwEBAWedSsKvn1Dr56lYjofp1AiZSj5LOaG38i1RlsY9GoosEdJVNMX/BjiQNapipqcqakoMn8Gj0ZwI0VkXoaMuTEsiTHNcpyEWoi6q0pIMs3VZHQcG89RFNYZyBi+7pIuBrIHleDVhk/GQyMlhF7kSKimLGIlx8SOfJHjGwypTXD3KiHIJcOW++lgCORLCy+eJmkZZoNgYqkaisYV8/3HM9BiuY+FZZYFiW7iug3BdHMfCcR1cz8Z1bTzHxROOX7lfvvp4QoDwcP0XUo4NyQgZkHxVJikKkiYjyQqSEkKRo2iyUn5vJCRJLr8vMhIyifoWlq27hBP7HiGiqXQtWwFAz4HH2Lb9+ZzY9wiF9BQNC88SnufQ3LWKsYFjOE6eaF0cx8mTHe2vro+mYmfbzAl4tklz+3Lf5sIIUV3BKYyQHemjqbw+rM2gOrWGatK3GBcwnocvXGrXlTW1cCU8t3KMVD224niruIsKWZP2VV30HzrOyInRadkSiJ2AgIBFoyJqDNtFkSQKlsNgzqRguliu6yftOoKmuE4irHF0pIiqjHtlorpafQy+9yFdtE8RMz3pEv0ZA8eb2qefCKtlQROhsy5CeypMSyJEXVT3AyLCQ0YipMmEVYVURKMxrtMYD2E7HutbE8jyuADpqIuc8fULzwPXLw+vChJn/NO+sl6Ue7i4ruOLE8/Fc21c28ZzbN+LYtt4ruWLD8f29ymfx/FsHMdGeC71qzZSHBsi03cUIbxy1ZCLAJKty4jWNXN878MVNxFClnyB4isvX6QoCpKqICsashwB2RcmmiT7IqXqBZGrXqW50r5yC9mRvlMETSE9RHakj/aVWzjw2G/m5bnmC9soMDZwjPrWbiyjwEjPARo711Df2s3YwDFso3C2TTyF6dpcK06q9wKENy5cPK9yXxYt3rhwobwPVNopOP7NcUDYeJ6NEA6eZ4NwEJ6NELVhTqcc9rR5Mvcoo09tYNP1LyShjkzrdQZiJyAgYN4RQmA6HqbtYTi+ZyZn2OQMX9TYjqAuqnLhsnr6MyauJ4ioKqoiURfR6G6KcnykRFvKb81ftBx6y7kzvScJm+JpeoDoikxHXbgqaCq31lSYkCr7NjoenueXj+uaRETzhU08rBHRFCKaQliTJ3hWNOEisjls0xr/WqrroCiYo8NlQWL7IR3HD/l45ZCP8LyqMPFcFyFcXNfF8fyQj+O5COHhCK+cZ+KVS58FQvKzQjwJhCRAksvi5KQsWUVBkiVkVSHTtxtJlpGbU1Uxokr+67EQ2Plh6patPKPnaLEZGzxO6/KN1QtwhcqFeODongW3wbEtLKuIbRo4ZgnHMnBMA9cy/ZttISwT17IQpoWwLIRls3rzdi7687+Co720tK7k0c99jIOP/nbB7Z0Lqy++lote/7dw5ATNLSt49F8/xOEH7kbyeyEgeQLZ85BcgeR5yJ5AdgWSEMhuebl6A6Xy2PUfKx7l9aDOU87+ie2/YPMHPzitfQOxExAQMGtqRY3puBi2R9awyJsupuOLGk94CCFVk24jqkoq7IecToyV2LIsyfGREumiheMJOusj/OeDx/j9/hFf2IyVGC1OHXaSgJZkaIKYqYibpkQIIcB03LKNfk6I5fifthFdoT0VJhZSfWGjK4TUicJG2DZevohXLOEUcpRGhjDyY5iFLIZdwhaun7NSESWyhIeHkCTKX2gniJOKx0TUiBNJV5BlBUlWkSS9XCEk14gTacE8KEuVisBpXb4RgKFje6lvW0Fr9waO7Pg9R556qCw8KuLDwLN8wVG5F7YNlg22jWS7SLaNbLtIloNiu8i2i+J4qHb55gg0W6A5At0GXYA+G+Pv3MeY0kjbrbcy8qUvEf30N7hg/t6aheHebzAWah23+QvfZfMim+DI4MngVm8SngyeIuHJEq4MXtn76CoS4ugjrL73t9M6dyB2AgICzkhV1Dgepu1iOh45wyZr+E30LMfzS7QFqIpESFUmiJqpyJsOBwbyLGuI8us9A7z80mW88esPT9rfIxXRThIzYTrro7Qlw+iqH9ZyXK9qp+W6DGQNZMkPRUVDCu11YeJhteytmUTYeB5eoYgwSnilEsbIEEZ2DLOYpWjkKDolTFVgKyB0HSWqIkvaKeJEKXtOloI46d54BYXsyATvSIXGzjXEko0c23OaYZLzhGNblAoZSvk0ViGLVcjhFvI4hTyiWIJiCblooJQs1JKFVnIYKjlkL7qa1R/9J7S77qdu63Ucf9ObMO77A20LbvFETBVsVcJWwVZlHE3CUWVcTcGt3isITWXllddT/+pX0/+7X9Py6ldzxBjgwCO/W2SLZ8aaS67xbf79XbS85tUc8cbY//i9fjd5WfbvFQVk/1YNb1aWVdXPx5JVJEX1xbuiISkKsqz6t8qyoiPLCoqqI8kqSnm7NEkHdpmph3h2rFlNqnN6DYQDsRMQEDCBioem4g3Jmw7Zkl0WEH7XYBCosl91FFJlkmHttKJmKg4O5fmnX+zldc9YwW3XrOZLvz9Ez1iJq9c0+cKmvixuUhHi4YkfVxVhkzNsLNfPd1FkmZAmEw8rpCLjHptw+VaLEAJhGLilEqJUws6kKY0OYxg5zGKOvF3ElB1MBVxdRk7ohJQkIUUnLqlLLuwzFYXsSNU7cnI4qHX5xmmHgzzXoVTMYuQzGIUMdj6HXcjjFQt4hQKiWEIqmSglE7VoopYcQoZDuOQSMQRh2/eSpGZov/vr35G+6Ac0lj0Ohfv+gCODpZXFR1l0OJo0QXh41ZuK0FSEqiJUDaHpCEUDVUdSdVBDoISQ1RCyFkJWwyhaBFWPoIXCaFoYTQ8jK3Il15oQ/m0yOtaspmvjBo7v2UtvxsA6fISL3/Zemve8mN4DB6c46uwyweaxEtahI1z8xnfQvOf5S97m3Q89PK39A7ETEPA0xXLG82kqoiZvOv6yUyNqJD/8FFJlEiG1mhw8F4QQ/PzJfv7j3kNcuaqRmy/vZk9flluesYLrNrSSNycOhbRd3z7TdstN+gSyLBNWZZJRlVRYHxc2ukxIPbV6xLMsRLGIVyrh5vOYYyOUcmlMI0/RLlASJqYCtgpEVNREiJCcIKnoKNLCDTKcCadUp9T2Wauukyas63nqII4p0bluI1ZJsO/h39PRvYKWZevY8ZNvs/+hX+OVClAqIZdKyCULpWSiGzZ6ySFkuERMj4gBCfzbXCjpUIzImGEFK6xgR3WciIYXCSMiIaRYFDkaRYnF0OIJ1my9hoYrbiQ31EvD61+Pee3ljPQcRivnf4Q8aTwx1gXXkfAcf3SD8GpKl8uVPNVKOVlUo4rV+znq1wmioSwSKvddGzdMWF4qnIs2r7/icupamjm+Zy/9hw5P65hA7AQEnOdUSrgNu9KTxiFr+MLBLJd6S5Sb05VFTVyfH1EzGQXT4TO/OcB9B4Z55tomPveaSzg6UsATcHy0RFdDhH39eQZzBma5+3AlNFYX1UlFVKIhlXA5ebgSwqpF2DaeYeAVS3jFAvboqC9sSllMq0TeLWIqAlMFT5ORwyohJUFE0UnM0WtTK0JOESZifJ9qhUplXaVSZULFiwSef+Gmsh5OETQT+szVNIwr5AfJ9uzgqe9/gU3LNnLB376PmKVRd+GVnLjtNkL3/YEtM3x9pgqlsIQRUjAiKlZIxQnrOJEQXjiMCEcgEkUOx5EjcdRIAj2SIhRJoYeSqJru9/6RIUylT45/kyRRFRySBG2r19C1fgMn9u2ld/8B2lauoXvTFsyiyvE9h2qEzPgxvnDxhYyiieq6ynuykCQaGyeIhgqV5URjIywx4XAu2qzqOp7nUchkpn/MAtoTEBCwyFQa7BUth6LpkjVsjLI3xHY8RFnUVDr4Rmt60iwGBwb9sFV/1uCadc18/s8uoa9cUTVasBBApmSxuTNFSPM7/8ZCKmHdFzaT2So8D69YqubZuOk0RnYMo5DFNAuUXJOCZGGp4KgSxBQ0JYIua9QpoWnn0njj/fUQ5dJa1xkvvfU8qoIEakRJjaChRuwAfitbMfH5J/R+k8odc2vWSWVRgDRxX8suMnpiB+bRfejHe2juybAqXVv2cpB01wYab72VoW98ncN7HsDo0LHDKnZYxwmH8CIhRMQXK1IkhhKJoUaTaJEkoUiKULQeTQuD8IVKeMJrrfmdnPx6T3rtoizeoOyBqXbnlar7d21YTdf69Rze8RTH9hxCkmWO7vIFzootG5Bk6DtwcM7emPnkqQcenHJb74GDS040wLlnsxDw+K/vJdHQzOarL6b36PQG2QZiJyDgHMawXQqmQ8F0GStaVXHjlTv0hsoVUIstak5GCMHPdvbxpXsP43iClkSId96wnv6MQdZwGCmYrGyMUR/TCesKErC65dRhvpU8G6+cZ+Nms9jpMYxiDsPIY7omBWFSUlwsVYKIjCzJ6EqcqKKhydppbBzvFeK54Ll+CMSxwbWl8voab0xNxXfFKwHjIkUGkMUp4qX6ePyZZ/x+eq7D6MBTFI7uQj52jLqeUdoHbFomOVV/o8LosjpW/OmraXjVLWSHh2n6sz9n5SWXzTo8UbV/sga/s+JUw+vbGji+Zy+Dxw4SrunD13/4ILICqaZG+g8utQtxZUBFuYfShDEUUDv7SXhe5aCJ9wiEVxujrGyrdRf697VePCY8V2VbrdKWqITyasdbVJAqh0q155zsNdY8nvqNmLg4yZ4SEpXRnBISnhC4joLnqNi2imMruLaGY6s4toprK9XHvpEFjj25mytfsXUqKyYQiJ2AgHOIWnEzUjDJGQ6m4+J6grDqJ+Em4rNLFl4o8qbDp+/az/2H/OZfV6xs4O3PWVfdNpAzaEuGWdUSP0WQTcizKRRw0mmsfAaz5AubkmuSV2xsFRwdkGQ0RSek6MRk/RSvTVXQVL00ZQ+NLeHavpehInIqyLKf3yHLoOjjeR6LSXbsOOmjOxFHDxHvGaS9t8TqSarx0zGJgWUJSsva0LvX0rB8G5FoHZedlJdRydOApZePUWG+PA4TBIgQCOHhuf4aUW7XK8rrq00dEdUO1KLsipogTiqioiJghQRCsHLbNnIjo4z19Na45vxbQ0cniaZGjj35BJSHgEycnVAeJVJRz+V11eaOklpptV2jqKWa46TyH6tf/YfitytAkpDkGltgfL0k0dndTSFfIJtJV8doVJ4/VVdPLB6n70TPSSMhasZC1Ow/bv/4PkIIHAMsA6yih1USWEWBVfJq7j3skjhZI50WLSwxOpDh6JNTpYpPJBA7AQFLGMN2/cRhw2a0aJE3/IRigSCk+H1hUhFtyfZc2TeQ4+N37mUga6LKEq/fvoIXbO2o5sSMFSxiIZXVLXFU4eHmCtU8GzeTwc5nMQs5TLuEISwKko2heNiKhNAEiqygyVFiio4q+x9nVUFjg+NKVU9NVdDUJLRWWAqCpoJpZBk5+jjW0X2ET/TT0pOlKyfoOmk/Q4O+jgi5zmak7pWkVmwlWbeMtpPKd8+VBFQhhD8XS7h4rlfumFterswQ8GpEiaiIFaoCpBIVrFyIRTUpWSpPNpcA2e98XU7mkSUZSfaFgSTJKKqGJKl+9ZWiISsysqKilMumq2XVsoQk+/2RKB8frUuy6pLLGTjSj1kwq/O1wokwTV3NDJ8YYfXlbVWbKoKj0p6g2hiyIkzk8dEhcOp9rQKZ7d+rHlboWhElO1zEMtwJ65NN/vpQd/2kvy+z6GDkbUo5C6NgU8rZ/nK+cm9iFJyyp2p6hKIq4bhGJK4RSeiEYxqRhFZdF47rhGP+70cPK6A7Zz4pgdgJCFgyCCEwylVRBdNmpGCVK5C8c0bcVBBC8JMnevnKfUeqYav33LSBda3jtTwly88l2lIfQu87QaGv308gNoqYwqIkORRkB0sRuH4jZXRFQ1d0opLu58O44DkSjgWmU67EOaOgESgqZ1XQVHAci9He3RSP7kY9foKGnjFahxxaTtrPk6CvRWOssx63q5vYik00tK6nQdVpOMNzLFYCakWsIARudYq5VxYrfhde4bm+t8TzKuVS/rd/RHkWmH+R9wWEXBYVCroaAmQUVfGFiKoiK+XxFYqKpMhlESL7xyH76yTlFGEiSTKyovhdpSUZZMU/F5XJqhN7L82U3IhB28qOqnioFQ2SFCYSC8/5vZ5PLMMlO1ys2miWHCRJItEY4fATQwwdy50kYCyMvD0rERNJaGXxoteIl1NFzHSovK8nDvdPa/9A7AQEnCWEEJRsl4Lpkjd8cVOwHAzb8xNAy71h6iKnhmOWMnnD4VN37+OPh/wBfVetauSvn7OWeGj848b1BKOZHKsooT/VT1+6nzHFxtQEVshXKLIkoxEmIulInorngWuB6UiUJhE0EmUBUxE02vyUE88XwvNIjxwhe3QnHDtM8sQI7f0GjZN8MR1JyQx1JjG7OtC719HYfSHxUJxTs5jOzHTDQbVixRPlURaeL1A84VbFiucJfxp62dPie1MEkvDDJRIgl9WkLPuiQ1d0ZE1F1jRUPeRXZKkqihZCVsrCRa6IGL/5nKr4zekURQVFBkleMr9L8N8vq+RSzFoUs2b53qKYsUg2RXjGS1ZzbPcA669o5Zf/8SQ9+9Jn2+TT0rmujmv/fAOHnxhh4zPa+dlnn+D4njMP2QzF1KpYmSheNCJxX9TMRMRMh1oBadd4o05HIHYCAhaJirjJmw4Fw/HFTbmvDUjlUmqV+sjcvlkuBJVEwlMrbsSEdU/15/i/v97HUL4ctrpyOc/d1IaEhFP5UHIdBo/1khzrxRJj7FVNSiEJXQqjOiFCnornyLgOWJ6EMYmgkRWBrPiCZpKmqwvG+isuJzcyMmnYp2PNahKNjVVxUcwPM3r0cZxjB4mc6Ketp8CK4qnfhAsh6O+Mkl/WitK9mrrlW0mk2mlfAPtNq4iZz5WTlsqhH68c7KmGU0CWVJClchdcGU1RUVQNWdVQVR1VD4Gmomg6sqqhyDViRdWQZQVV0Xyxomplj4mypMTKmfBcj1LOppi1KGQmipnKY9eeasjTGHUtES66YTmP/fIoBx9bWtPZJ+PgY0O0rkxWbR48lqWuNXqKB6Y2tBSKzq+ImS6qrpwSdjvjMQtoT0DA0xJRTl70hKBoOhRMh1zJYbRoUTQdDMsFSSKs+NO0E2G9HIMXCFfgOO74eeCkcmVx0vL4g/F+K6J6bDWMI2rPN54IWD2HVzmHGH+K2vNNeIE1r7OyyhPceWSY7z3VjyugOaLzF9u6WZmMkD1envTseYhclmz/CZzcMHZcMBLR0NU6QpaOi4TLeK8UWfYFjarV9kk5u+RGRibNc2ld0cWydWt57Nufo+cn/0nTiQztY+4pgsWRobdNJ7OsEdG1nPjyzdQ3r6FJUWlaIJvbV69ibKifgf370GWNVF0T4VAMdJ1USyORZJKxvmEURUNWx0WLIvshIlktt/FXlEUV4dGkjmO5k17Q9LCCqisUs1PPTDsdQghswz1JwJgUasSMkbenda5QVCWa0okmQ0STOtGkTuuqJKsubGa0r8DW67po7k7M2tbFIprUaV9TR2aoyIXP6WLlhU0zEhOLyWzey0DsBARMgucJrJKDVXKwTce/7vuNe8uVG6Lc0ExUqzs9ITAsF8NyKVgOOcP32liOi4SELpcHYSpSNcHQFGDCRMEC42qjcm0R0nhtaLWC1K90kMYrShFCqpZAAzWVESfVCJ9UWTFeHz3xfRi/tkmnHCuXK77ylsMdj5/gsYEsAJd3pHjjti6iNeMZRC6DOXiC/PAJ0k6RREuCeCJBSAnVPM/MS7AXm9rE3rFDj/PUt/+dTcsvovuaD3PittuI3vcHNtXsP1gvM9yRwOpoJtK+nMbWNaRUfeLIhGxv+cH8vn5XeBSNIpo1xtY/fRkJ10SxbSLJFJIsoafqSa5dR3b/XhqUnH9QJaQ2b9fl2Ysjp1hHcu0Gsvv3YmXS1fV6qo5kp7+emvW1eJ6gVIBiQVAsQDFfvi8I/5YHZxp5rbIM0ThEYxLRGETj5fvK4ygoKvhvmFW2r57k2hVk9+/CyYyRS9fTUX0dY7N+P2bPmX8HeqqO5JoNZPfvwsqkEcOTv/dLkkJhWrsFYicgoIxju1glF7NgU8xZWIaD55bDJBLVb7UVASAA0/UHYxZtl5xhY9oCy/OQwB+GqSskI1q5wGLi8f6C/+PkdUstjDUV+0YK/NuDhxku2qiyxJ9v7eT6VU1V+71cltLgUUrDPRSdIllNo7WphdZEbD6asyw6ppHlD1/6EFulJra87yMsGyhS99KX0nP77fQ9dj/9q6OUOhpQ2ztpaF9DNJKi8+STiIX9tmy6FkapiGo4RMNRwo5LetcOVj7rerL7dmGlR9ETDf7F7Sl/eSlijQ6RfcoluW7zuN11vt0jT+5i7PioL2CKlIXM+K1UnN5zhMKMi5dozeO4vxwKnyzEJxGkNb/Oin217+tkr2MpcS7aPAF3eh64QOwEPG2puLLNkoORsygVHBzL/+TSQjKRuDYhHi0EGI5LyfJ73aRLNpbtD8eUZdBVhXhYRlOWViLlQuAJwc/2DfK9Xb24AlpjIf7myhWsqIsC4BbyFIeOUho4hunk8WJxrFA9zeEQTfHQOSd0RvqfonDv//CMi5/HynSMwn13MXrBpTTfeiuDOx5i97Yuum9+Ce2NzfTu3rHo9nl4GJaJkTVRLAU93EG4sRk9nKIoNPY/6dI38BQbr9vM2K4B6la38shP9zJyLAdM3Wjx7JOjcd9eLnzuZgYf62f5yjZ+fscujuw888XX98pIRONy2SMjjz+Oy0RjEoo6v3+IaqqR7OFDWCUbQuOVh1bJJnv4EGqq0d+2hDgXbZ6APb3fYSB2Ap5WuK6HXXIxijalrO+9cWwPRZHQQgqhOn2CV8V2PbIlh6LlixvTdrE9gSyBrihEQwopZSlfLOafrOnwhYeP8li/H7a6clkdb7y4m6imYJfyFAePUBw8jmPmIRZHT7Vj2YKwBA2xpdXw8HR4rkPPrrsI338/aw76rnJP2037Jz/B4ft/TdOfvJj88CDNWy/l4liChq4V7L/37hk/j98XSMJ1ZVxHnt59zWPHlvBcGSFOHX7qux0qrodBXDVRTUB98M6lnzQLcHDPEGpsPHG2InRCYalGxEinCJlQRFp0D2mxf+oyaCubxcpmF9Ga6XGu2Ox5otzZvPy43O08X5he+DcQOwHnPbblYpUcjLxFKWdjGS5CCFRdRg+rRBKTZ78KAcdGiwzmDGT8fJtY6OyOXTjbPDWc5zMPHmG0ZKPJEq+9cBnXrWzEMguM9h/BGDyGWyogRePoTR3IkozteDieoDUVmnQa+VKjmB9m8IGf0PHAXraUZ0t5wIE1UewuuLq/l7U3vIShg09x8P7fs/zSZ9K+fj1HH99Dz94RXDc6qSg5nXA5eT7WXFBU0HQJTZPQ9PJjXaJ9TT1bntXBsR0n2PKsDiQ7x1hPet6ed6Go76xj87M66N3dwwXXdtLaXAIzizrPXpmAs4cQYnxMS0XUlKswRTldUJYlJMXvQqCFJFRNQtMglJjeZ0ogdgLOO4QnsAwHs+RQyloYRQe3XAGlhRSiKb2aXHs6RgomQzmTukgITXl6f7B6QvDTfQN8b1cfnoD2eIi/unwFrVGH4d5dmAPHEIU8SjRBqLHDr97BL/Iq2S4NMY24vrQ/boaOP4F5752s2TlIezl5NR+GQ1ubSW67ktaWNTSs3Eou28DR/36SbTesJ9waoaG7g598Zke5J8kpGTozQKAoHorqTXovqS7INsIz0FybaFgjVZ8i2VRHuC6KrsuoOpP+bevJJMlVq8keOkjYzlI4VmDrjRvIHjq4ZL65T0at3WoxS/5InrYL1ix5uwMmIsqeGLfWK+MC1XaSoCgVMSOhhXwho2oSiiKhKCBX7yf+jcu56X35XNqfPgEB08S1PcySg1n0+2LYpovneMiqjBZSCMfUGbm0DdulZ6xESFWe9kIna9p87qGj7BjwK3ae0VXPqzYncdIHGTpyAqmYRwvFUZo6T2l6UzBt4mGVuqi+JPN0HMeiZ8cvSNz/EGuOGdX1PS0aw5esoXHFVcSddrKZOD3Hw5j3FoFdAOjR8dDKib3D6BEFPaLiWTlfpJwkWOTTCBlF9ZBrhobW4uJRcgzcokHYhmQsRbKphVhDE1I0XDM6YHJqBUNFIFjZLNlDB09Zv5Q4V+1+OjJViKmCJPliRZZBVcteGR0UdXIxsxDhx0DsBJyTCCGwTT88VWljbpt+boKqy4SiKoo6u3CTENCXLlG0HJriS6u1+2KzdzjPZx44wpjhh61u3tLABbExcgf2oOaLhLQockPHpJ39DMtBU6QlmaeTy/Qx8of/R/dDB9ma92P+tgx7N6/CWncdCsvJ5+KM7NFPOlIQiVms3pZg87PaOP7ETrZcs5awsotMX8+82mgJm5JlIBk2MU8hmWgi2dxGuK4OKXSyXVOjRqOTCoOKcFCj0SUpGs5Vu883phNi8ht9SqeEmBRVrgoYRZGq92eDQOwEnDN4rodluJhFh2LGxDJcHNtDVkALKcRSenm679wYLVgM5k3qovp5X1U1FZ4Q/L+nBvj+rj4E0BZXuXmNS1NpN9JgiZgahvpWUCaPlzuuh+OxpPJ0hOfRf+RhvPvuYt2uUTo9iUK0jf0r1jKw/EJcfTWurcHIhKOIxk0SKYN4skQ8ZdDY1c7aqy9l/713kenrIT90nLVXX8f+e++es+Dx8DBdB8s2UA2HOkIk6tpINbehphJI6syT4c+VBNSTOVftriC8yZtxTng4SW7tVMdATR+uqZ5zsu2nND8/1ZBaezxxaohJliVkdeYhpqVEIHYCljSOVS4NLzqUMia26ScXK6qMFlaIJOa3Esq0PXrTRTRZedomImcMm39/6Cg7B/2w1bZmeEF9H6mhErqkI+qaQJ36o8MTULSWTp6ObRXpeeRn1P9xB525FtJ1F7J74xpGG9bgKTXTpmyQJI9YwiSeMkgkS8QSBoo6fnFItXeeImwyfT3sv/fuOQkeF4+Sa+KYFmHTpUmLkWzqJNbUgpKMVXOgApYWwhO4HniOP+/NH85embTOSc07J4qASb9InWaddKZ1k51CmrivJJ161Ml2qurih5gWg7P/SRQQUIPwBFY5PFXMmZgFF8dykSQ/PBVJaAs2i0UI6M0UyZuu3wvmacjuoRyfefAIGcNBk+H5bTm2S1lCBQURr0doZxaXSyVPJz14hOE/PkqiNw6xSzi8+hUcUCMT9pFkQTxRIhFLE6+ziaVcZGXqr8+x+qZJBU1F8MTqm2YkdizhYLgWmBZRSyIVSRBvbyLc1Igci56zF5bzCSF8EeO64LnCvy//icjSuBAIhWS0kF/9pigSijpRXJxO3JxRyJy8bpJzTXb+ydc9Pf+mArETcNZxHQ+rmlxsYxkOruP53puQQiiqL8o/6FjRYjBnkap0PH4a4XqCH+45zn/vHUEAzSGX1zWMsVxycKNxRGh64u9s5ul4LuRHJfoOnMDul7DV1XjqJjLd4/vIike8QZCod4nH0kS1IWQs0OPAmUX06RoGZvp6piV0BALTszEdE9XySDkyiVgj8bZm9IYUUuTMSccB88tkgqaakyL54RtF8fNRYiG/rF9RfUFTETZLNXwT4BOInYBFZzy52KVUsMaTiz1QQ3NLLp4tluPRM1ZClST0RX7us4kQgr58ms8/coIDI3699WVxg5sTGbRYCDccP8MZxqnk6bQsUp6O60BhTCY3qpAdFhQzCqAAa6GszWS3gBZL07S8kWSTIJIUSK4JxREwciDroCYX3FbwQ1WGa+HYFiFL0CQ04vEmYs3NaKnkjJKOA2ZObaKt644n2laoJNCqukQ05PcmUtVy+EaVUANBc04TiJ2ARcO2XErlKcNm0cGxXWTZ730TS85PcvFsEAJ60yXypn3OVl91tsXJF20yWfOUbalkiHhUo6c/X13neS4FJ8fDfYN854k8eUtClwSvSGW4vEEgIknEDNxb1TydqEZimnk6HWtWU8hkyAwNn2pzcxOxVGrCZHHHhvyoQn5UJjcqU8ye2oxPN9Mksgcwk4MktnbRvmo1klQPeP4v2sxCcRQ8C0LxRRmnbguHomuC4xI1oUmJEK9rINLUiJKMI50m/ylgZkyoHKqEnLzx+blVQaNJaDEJXa/x0JSFzdmqFgpYWIL/soBFI91fIDNsoOnl3jfxmfW+WTC7ShaDOZNUxK++mqlwWArkizbrVtez7+DYBLtTyVB1PYDjOeTtDKPGCHfuz3PvURBItKs2r28p0FqnI2aRDFs0bWIhlbrY9PN0CpkMay+5mP2PPDpB8KSam1h7ycXs+eOjjPUp5EZl8qMKpdxJmZRAuDRMXeYAdekDOBxi5KJWWm98AZHopolP5lhQHAMzDYoO+sJ6c6qhKs9CcTxSlkxCjRNvaUJrqEdJBEnHc6EqZNxygnDNMM5K5ZCqSoSjfrKtqvkl0LWhp4CnF4HYCVgUbMulmLOJxDW00NIoRQY/fHVirIRSE76arnBYSmSyJvsOjvn2HRglnTGpS4Wqy4OjWfJ2lrQ5ylAhz093SxzO+q/3qrjBiztddC3sl6BOb9RMFcNyUGSJhqiGjITwznwMQHpgmH0PPcq6yy5m30OPMnxihFC0hVXbtvHrr+zk4GNFqvGoMjJj1A3vpm1oP3XpA+jmGAfWJRi76Wo61r+dlHLSR5oQYOWgMAKuBXoMpIX7+6uGqlwbzYEmWyUeThJta0JtSE0r6VgI4ZcQi/LcLMYfV16Sv11M3F6zX+V4YFLxOdmm0+zOyX8UopJ0W9k0zRNN9dLPlLwrmETQlL0woUiNoCmLnHO9cihg/gnETsCiYBZsHMslHFs6f3JCQH/GIG9MDF9NEA5lwVMROk/tG2FszPB7aLgCzxN+IqMr/HUT1ovx9eV7r3bdpPtz+v1rHnuTrD+4rp4bbt3MnmO9rN7Sws8/+0R5jME4IeK8tHZFJsLQPPTDGznzLpNQ5MDDu7nhjZdgFnrZuL2DO+/YxfE9aQAiCQ9FH0Q59nvWPfkoiZLfWyUfhn2XdJHcfjOtzasmP7Vr+yErIw2KVp7oPH8XPyHAcyUEEo5wKTkWnusRdmQavBjRcBy9uR45EcMJh7E9ICfK3Ut8hTCZLqiUAku15cvlRNnqogSS7HeklSTJb+om+1E5SS5XCcnS+HGSVL6f+rWcaZ2YdKcJd6e2cKkIt5pzntxH5uTtp5y3/HhyD00gaAKmx9K58kxBLpfj/e9/Pz/60Y8YHBzkoosu4lOf+hSXXXYZ4P8DfvCDH+SLX/wi6XSa7du387nPfY61a9eeZcsDailkTBRVXlIfTOmSTX/WIBk+tXlgJmuy89F+Nl/Qwp77elm9qXlS4bDUOL57lD339VbHGCx1ewGO7xm3eefvjmAaA1z6vEaaUnme+ug7WFk7xqFVY/iqC2m/5PksD02RPC3wvTnFUXCMeffmCAGOreC6Eq5kYXgmCpBwJOIiRDyRJNTUgFYXQ4mE/Fb5FTEijQuYWgEi1QqaGoEyYR0n77N0/pcCApY6S17svPGNb+TJJ5/kG9/4Bh0dHXzzm9/k+uuvZ/fu3XR2dvLxj3+cT3/603zta19j5cqVvP/97+fGG29k9+7dhMPnZrLp+YZlOBh5Bz28dMJXtus3D5SQCGkTcyfskkPfw0OM7MsgvcSeWjiUe2xIcvl20mP5lPVUH5+ybdL9pYn7T1jPpOvrGyNs2tzIEwcPsfHaZYwmhjm2t4fvHfI4bPo9ci6vc3h+q4s+x5SRvGkT0RSaE6FZlZm3rVpJ57q1jPb10rK8nZ79B9lwZSehwkOsvvoqev72b1l5zMCRYf/GeqTt19K26krip8t18RwojPq5OZIyr94cz/NFjufJyJqFE0oTVVw6HYWUHCFR30iorRmlPoWsz2+zy4CAgLkhiUl9k0uDUqlEIpHgv//7v3n+859fXX/JJZfw3Oc+lw9/+MN0dHTwjne8g3e+850AZDIZWltb+epXv8rNN988refJZrOkUikymQzJ5OKUoT6dyI0aDB7JkmhcOuLz+GiRE2NFmuLhqldHeIKhPWP0PzqMa3l0bWzgxjdvoX8gT0dngr17R0hnzXFxsYS+WXe2xRFAR1uUu594hJGhDMtjKS65bBtf+O1BDCHxld8f5JUdNpfUTTOp5jQYlgMStCbDhLXZi9hVF26lubuLozsf4ZEP/w3bn/FSWv/m7Qz9679y6Fv/wZFLV9K4/X+RqDvDNHEB2AUoDINtQCgK0vx8l/NcCdv2X6MacnC1HIICLZZCk54i1tyC1tKIWpdEmmJ8RkBAwMKQzeVJbXjWGa/fS9qz4zgOruue4qGJRCLce++9HD58mP7+fq6//vrqtlQqxRVXXMH9998/bbETsHAIISikTdS5uhHmkUr4KhEebx6Y6ytw4v5BjDE/IXn15a085882sO9wmkzWJG+6bNjYdErS8lJBAMuXJXhk/35Gjw8QHc7x9f4x7iukeNeNG7njrr28c7VFS2ju3238fjqCljkKnVRzEw3tbey/66esvuxZJG56A3UvfSlHvnYHHW+5jfhll7FiLHPmE3kulMb8GxKE58eb45ZFjgSEwg5y2KBEmqghaBUxGts6CHW2o6QSQWVVQMBiEm8BuwRmbtqHLGmxk0gkuOqqq/jwhz/Mxo0baW1t5Tvf+Q73338/a9asob88KK61tXXCca2trdVtk2GaJqY5fsHKLvGBcucy/uBOGz28NP7U/PBVCQSENQUrb9Pz4CDpw/4/jRKSufAFK7j02u4JwmaypOWlhO2ZPHqgnwtWrGB4z3H+73GPju52bnvWKr53z26213sc6p+70PEEFCyHxqhOIjS336ke0XjgH99Jw3/+ivS73knjrbcycmg/A43LMHbsJNnYRP5MYscq+Lk5VhH0CMhzDx85joxjK8iyRzhiE4rYGFIewzRoMVRa6lpJdHejNTcEnpyAgLOBXYL6FTB2BHLTawOyNK5Ap+Eb3/gGb3jDG+js7ERRFC6++GJe9apX8cgjj8z6nB/72Mf40Ic+NI9WBkyFWbBxbEEksTS++fZnDTJFm/qQRv/jwwzsGMFzBEjQtKGO9kua6ViemlTQVARPPKotKbEzUirwk/uOsH+gRFv9CB95xTN5Rd1xXnlZFz/59UMks/0cmqfnKpo28Rn205mMvkMP4nz0hzRmPCLP3E79a15DbnSMhpVr6DAceg8cnLTZYBXP9ausiuU2AHP05ggBriPjOAqK6hKNm4TCDkK1yBhZYnmPznADbddcjxqSkJnk9x9KgBaB/OCs7VgQTvcteKnaDOem3YHN84/ngJUHMz/xPt4Cm14Mj/zXtE6z5MXO6tWr+d3vfkehUCCbzdLe3s4rX/lKVq1aRVtbGwADAwO0t7dXjxkYGGDbtm1TnvO9730vt99+e3U5m83S1dW1YK/h6YrwBPm0iaovjdyWbMmhL12CIYOnHj6BlbMBiLVGWHZVK9FyTtHpGgZmsuZZFzq267FvpMCTgzl2DmY5PFYqV+cqMDDK1oeOc9s1q3niiX0ks1N7OGeKYTmoskRDTJ/13CvPdTh299fYfNdeVA+k517H8v/7KY7v20/vgYN0rFlN18YNABO6J0/ALvnjHswCaGG/SeAsGa+sklE1l1jC8ENWqkfOKeGm87Q4YVrbl5PsWoaS0JEaVvrfKGsvDqHE+DfNpUbtt+BzxWY4N+0ObD4Vz/E9sJMJFjM3cXmyx44x9bl3/gBu+FfgPWc0Y8mLnQqxWIxYLMbY2Bh33nknH//4x1m5ciVtbW3cddddVXGTzWZ54IEHeOtb3zrluUKhEKFpDjYMmD1mebhnOHb2K1NsV3DoaJrBPw5Q6isBoEVVOi5vpn5VckklG5+MJwTHMiWeHMzx5GCOvcN5LHdiSKpVd9mgm9y4tZ2XXtnF/t372LB+BfmhAYb65v6tbD7ydPLZAUrf+RwXHiwAYLzuJWx794c5vvepqrCp3E8qeDwPjAyURv0pjeHpDe+cDOGBbSt4noSqeyTiBlrIQVEElmeTzmeJFTxa6tpoWbEGvbnBH+tg5f0P/9qLQ+1FYQY5BIuGmTv3bIZz0+7z0ebSmB8mPlmMnCxUphIsdml+7NSi/sDeUNy/1+Mgq3Di4WkdvuTFzp133okQgvXr13PgwAHe9a53sWHDBl7/+tcjSRJvf/vb+chHPsLatWurpecdHR286EUvOtumP+0xCjbCE4s+1PNkbNPlwbuP0fvECHh+07XmLQ20bWtC0ZZGeO1khgpW1XOzazBPznImbE+FVNY0KnTGClzkGTSbeRrWr+XSZ13Ow/c+wFDfIEN9A1x69RXV5dniz71yqJ9Dnk7P3nvo+O5P6SwITBX2Pv9SbnjdX08QOhUqy4nGRqhss00oDYORn5M3x/PAtlQEEpruEIvY6CEHWfZHPGTMPCKTp1lL0r5mNclly5AjJ1URVi4OqWWw92ew9gb45fuh99FZ2bRodFwMz/576H0M1t10btgM56bd57LNxx+CDc+DH74J9v0C7OL8nF+LjIuUWsESmmxdYuKyHvWFzcmEEqA0TOvpl7zYyWQyvPe97+XEiRM0NDTw0pe+lI9+9KNomu8tePe7302hUODNb34z6XSaq6++ml/84hdBj52zjOdVqrDOXgKnEIJju0bZcfdxzIIvFpLLYnRe2Uo4tbQmTOcth91DeXYO+N6bgcLEUFlIkdnUHGdLS4LNzXFC2hgjhR4ahg30TIGGjWu59FlXThA2Q32DPHzvA3MWPEXTIRZSqZ9Fno7rWBz/xX9wwT2HkYG+JpXin/0ZKzo2s+/Bh6Y8rvfAQV/oCAGlNBhj4Nmz9ua4roRTLh/XQw6hiIMecqrVeJZnk0uPErclWttW0bJ8NWp9amqP3yNfg1gzbP9ruO/T8Md/n7FNi86xP0Ki/dyyGc5Nu88Hm3edlAujhicXKZXHocRpBExscrEyFyrep2M7p7X7ku6zs1gEfXbmn1Leov9ghkhCQ1YW33uSHijy2C+PMXzCz79R4yrdV7WR7IotiZCV5XrsHymwsxyaOjxWnNBGX5ZgTUOMLS0JtrQkWNMQRZVlhIBRY5DBwjHqhkqEMnncZII1F2wkM5aeVNA0t7eQqq/jwO59M7bTsB0Q0JqaefgqM3Yc91t3VDsg77qoheaXvJXQVJ2PT8Yx/dwcIweq7n/YzhDXkbBtFUn2CIVdQhEbTXOrIsfDI1fMQSZPQ7KZzlXribe2Tj2JXHjw4BchPwAv+zIc/j2s/RPY9WMYOzxj+xaV+pWw+UXQtwPaLzw3bIZz0+5z2eaBXdC2BY7e74ehKoJlvsXKXKgJs2WH+6bVZycQOwRiZyEY6ysw1l8k3rC4uVFm0WHXPT0cfHwIBMiqRHxDiuUXtZzVXj+VvJuK5+apkVPzbjoT4aq42dgcJzqJuMiYo/TljxIbzhEbK+Am4jDVhXmOOK5HyXZpTYZJzLB1wPEn7mTFD39NvAQlHfa/6GqWX/rC6R0sBJhZv6Tcs0CL+7HHaTJeWSUjK4JQ2CYUdlA1b8JYENM2KYwOE1PCtHWvprV7NUo0MvWJXRt+90++4HnZl+GJ78GyyyCcXNo5GXBq3shSzyOpcC7aHdi88NRUkJ0XTQUDzk1c16OQMdHCiycuhCc49PgQT/6uB8vwxyO3ratD35gimtDPitAZKpjlvJvcpHk3dWG1Km62tCRoiJw+tJa3sgwUThAdyRFLL6zQqeTp1M0wT8e2Dfp+8nku+KM/WfR4u4776texvHWas+ocyy8nN9N+Xo4+/S8flcoqx5VRVZdowvJFjjqxY7SHRz49iiiZtLZ00rlyA9HGxtN7/KwC/OoDEE75QuepX0DX5f62yRI8lxKTXbiWus1wbtod2Lw4zKIUPhA7AfOOWXCwDJfYIuXFDB/P8divjpEe8LP+U80Rtl7fRTYskS7ZREKLkzc0Me8my0DBmrA9rMpsbPLzbi5oTdCZCE87pFZyCvQXj6ONjBEfK+LGYgsmdGA8T6dhBnk6YwP7Ub79VS7o81/3E1d20vmCt6Bq0wg/CeEP7yyMgGvNaHhn7WBOVfOIx/zycUU51WltGkWKIyNE4yk6Nm+mpXMFsnaGasHiCPz8PTByAJ75Tjh6H7RsOOnE5YuDFll6FwYtMvkFaynbDOem3YHNS5ZA7ATMO6W85U9lnmUvlmk/T87iid+c4Nguf0CnFlbY/MwOVl/cwkDOZGQkT2N05nkenW1x8kV70n46qWSIeFSjpz8/i7ybGOos3hPTNegvnEAaGSY1WsKNROBMF+g5YNgOqsyM+ukcffi/Wfvje4lYkI/AkZdez/KtN07vCR0TiumyN0eb9vDO2sGcmu4QTTjouoM8icjxPIf8yDDCE7SsXE3Xig1E4tPwGqWPwv+828/RidRD01pITjGny8wtzYvC6b4FL1Wb4dy0O7B5yRKInYB5xbU9ilkLbQG9KZ7rse+hAfbc14dj+SGKlduauOCaTkJRjbzpNw+MaSqzGVmUL9qTjoVIJnTWrKrjW/cc5kc7etk7nMf2Zp53MxNs12ageAJndID6YQMvHIIF7BHluB62O/1+OqaZZ+i/PsfWx/wPzCNdYeTXvImuhu4zP5nn+d6c4uiMvDm1gzm1kEM4YqLpzpS/azOXpZjNEG1qZtnK9TS1dCJP5w+j/0m48+/9/KFkJzzv/0Ky48zHBQQELDkCsRMwrxhFG9twidUtTAir/2CGx359jPyoL0IaOmJcdEM3De0xAFxP0Jc2sD2PZGR2oqB2Dtbje4e5c3c/ckjhL/5kLW/8+sP8fv/4GIPavJsLWpLUR+bP4+J6DoNGD6XRXhqHDQhpiAVsqTDTPJ3h3l1Ev/VNNg85eMDOZ62k66Y3oqjT+N3bJb85oJH3K61CZ/ayVAdzSv5gzlDERtNdpooEepbpe3PCGm0bN9PVvZaQfpoE5FqO3At3/W9fhDVvhJs+BpG66R0bEBCw5AjETsC8UsyVQ1jzXN6dHzPYcdcJevenAQjFVLZeu4zlF0xMLB3OmwznTRqicxNbmazJE08Ns251PY+O5HjlZV385Xce46HDo1zUlpxV3s1MEMJjqNRPfuQEDcMGyDIiMs0L9Swpmg5R3c/TOd1LEp7H0fu/x4afPULIgXRMoveVf8qKDc8685N4brkL8hgId1p9c04ezBmOOKja1CIHz8McTVNwSsQ72li2ciPNdS1ntq3C7v+G+z7lV111XwXP+YCftxAQEHDOEoidgHnDsVxKWRs9PH8hLMdy2Xt/P0890I/nCiRZYu2lLWza3o52Ujl0wXLoTRtEdQVFmbsA+dQ9B9k+3MJt16zmN0/2c11HPW/asmxWeTczQQgYNgZJjx2lfqiEjIQXj512//GFmsdlM6ejxQzbQZGhMX76PB2jlGb0e//Ohbv8AZwHVseIvOqtdCZbT/8EArBrJpRrYVCiU+8+xWBOVfOmPAbAKxTJZccgFaNj+TaWdawkNN1uy0LAw1+Cx77pL294Plz9t0urv0hAQMCsCP6LA+YNo+DgWA6hurnnlAghOLF3jB13n6CU9at7Wlck2fYnXSSbTv2W7QnoHTMwHJfm+Nyff+dAFqHLvPKyLnYeHOXqDS00SQrpjInrjF9wq0JD+D8mFR5CjGsQ4d+qa2r2F0JCkgRpc5TR9DESwybCVTDjMSiV95VqziOBhDhzLq/wzz1xP1E+h4TreZiORGM8hOyoWC5Ikm9YVShJMHTsERq/+z02pj0cGZ58zga6r70F+UxVYa5dLifP+Cc6jTdnqsGcinqGdmCWjTmWJq96JFetoGv5Ohqj9Wd4Y2rwHLjnn/32+ACXvA4uvmV6SjEgIGDJE4idgHmjmDWRZWnOYZ3MYJHHfnWcoWN+FUA0pbPtOV10rKub8tzDeYPhgkn9GXrVTAfDcdmZLvCZV13El391gEtScfbkHTZuamTPnhHGxgxfaFRskSgLj/Jrl8urKh4SWapeM/3eeOX9pPFeeZLkH5QxR8mOHqPeGiES8nDrUiA5NUJlXNxI1R/UrPDvJogryqJMSNV1FVHmeVAq2jSkdBpjsi/MhB/BEQCenxB+4t5vsOXXT6J6MJKS6X/ZS+novgLHBuzx55AAIQn/uYTwvTmlDJJjVruwSubJQkogAZ4nTTqY87R4Hl42T87MI5rqWLZiDV2N3Wgz8cbYRfj1P8DxB/1fyDNvhw1/Ov3jAwICljyB2AmYF2zTpZS3TwktzQTLcNh1Ty8HHx1ElLsfb7iynQ1Xtp12YGfRcuhJG0Q0BXUewle7MgU+8pIL+P9+uJOXrm0h2RzDkyWOjRTZtLmJo0MF8qaDL1rKB1VDRrN//qw1xmBpP6n0AHHh4bTXo0plV9C8cOp5siWb+kaFrgYNVTn1uXLpIUbv+DzbnvLHbuzblKL1DW9hbbwBhFtxaFXFVHXZLkFhFOGmIa4htCjC8xDCQgjJ9zQJ8ITkHydA1dzqzKppVdEVDMxcllxcJrVqLd3tq2mYRqLzBIqj8Iu/g+F9oITg+g/C8mfM7BwBAQFLnkDsBMwLRsHGsVwi8ZlXIwkhOLxjmJ2/7cEq+V2GO9fXceF1XcTOEBLzBPSkDQzLpTkx9/DVwdECBSH4q+88xvb2Opo6ElUPTdHxOD5aIhpRKTqnzx2ZKQU7x/HRvYSOnSCe93AaGxY8hFK0HBRZojUVnlQkHt15H3Vf+glrcgJLgf0v2saGm16JNKUSEb6rqDgCxjBgQipRznmxT2tLxdM0rZdsO7iZLDnZge4GlnetpTPROjNvDkDmhN9DJ9frd0a+6WPQsmlm5wgICDgnCMROwJwRQlDMmCjqzJvajPTkeeyXxxjrLwKQaAxz0Z9007pyet/QR/ImwzmD+ujchY7jeXzh4WOcyBk8c0UDz7ig9RRPTd50yJ/aa3BOGE6RE2P7kI8cpS4rcBrqmVWDoBnguB6W47GsIUr0pMn0nuuw9wdfZtOvDiILGGhUcG67mY2rt57+pFYBcoN+c0A17DfhmybTEjmeB9kCJdsgXxeivnsVyxuXU6cnpv08VQb3+B4dI+NPen7ux6Gua+bnCQgIOCcIxE7AnLENF6PgoEdOrcKKJnUcy63Oq6pgFGz6DqRxHcFYfxE1pLD56nbWXNIy7SnpJdulJ10irKlzDl8JIfjxzj5O5AySIZXbnrN2UaajW67J8ewBnCP7aEw7OE0NoCzseAshIGfYNCVC1J3UFyg93EPm819ky2F/9MaeixtZ/vq3EI6eRny6DhSHIT8ECAjXzWhw57QoGLjFItkoSF1trGxfQUe0eebeHIBj98OvPwSOAU3r4Kb/A9GG+bU3ICBgSRGInYA5YxRsHNslkjg1hOVYLsmmKNnhIpbh4rkeBx4ZJDNk8JxbNvLL/9jFigsaueDaZYRnEAITAnrTJUq2Q3N8bo32hCc4OlDg/x0aAuBNz1pFah6bA06F4zn0ZA9hHtxNU9rBbaxfcKEDvtBJhDWaE+EJHpVDD91Ny9d/ycqiwNDg8MuvYP1zXjL1iQRgZP1RClbe74CsznN3Z9uBTJ6S6pFvi1Df0cWKumWktPjszrf3p/D7T/gZ2Msugz/5EGhTl8AHBAScHwRiJ2BOCE9QSJuoUyQQW4ZLdrhIsinKsT0j3POdfdS1RLnhjZv5w38dYO1lLTR2zvzCNVIwGcqZ1M2yS3IFzxUYOYuv7u3F8QSXLq/nmnXNczrntJ5XePTmDpM/spPGUQuvvn5BB3tWqM3T0creMMe22P+dO9j8u+MA9LZqyG/5c9Z3r5/6RI7lz9QpjQISROuZ9sTQ6VAOWbmuS7pOQWlvZXVDN+2RJlR5FoJQCHj06/DIV/zldTfCs94V9NAJCHiaEPynB8wJy3AwSw6h6NR/SpbhMtKTo21liguu6WTj9g4O7xhi8zM7ZhUqMmyXnrESIVWpXrBng+d4WAWH+0ay7BstENEU3nrt6gUPXwkh6C8cI310J42DJUjVIRZwsGeFSp5OZ32kmqcz0neY0ue+wuYePxFp11XtrP7zN6OHpvB2CAFGGnID4JT8oZ3yPNteNKBgUIgp5JvjNLUsY3m8nZQ2dWPF0+I5cO+/+l4dgG1/BpfdGvTQCQh4GhGInYA5UcrbeK53xuTknn1phDfGRTcsJzdSmpU3B/xrbV+6RNFyaJpD+MoxXVzDpRSW+c9dfQC89qrltCQWbvZUhWFjgJGjO6gfyCIl6hALONizQm2eTn15lMb+e39G17fvodmEQhhOvPoaNm5/3tQnsUtlb86YH66KzLM3pxyycnWVsfYwaksja5OdtIcbZ+fNqdh81//283QkGbb/DWx64fzZHBAQcE4QiJ2AWeN5gmLGQtXPfCFyXY/NV3dy6PEhVlzQhOt4pyQtT4fRgsVg3qQuevr5TafDLjkIRxBpDvPv9x+iZLtsaEvwvAvaZ3fCGTBmDjN49BGSvWOo0SReZOHFFUDOtImX83Rsq8ihr32eTQ8MAHBsWYjIW17P2vaVkx/suX4/msIgeLY/tHO24mNKA4tgO+QbwuSbIrTWt9EdbSM5W28OQCkNd77Xr7xSdHjO+2HFM+fN5ICAgHOHQOwEzBqr6GAW7UkTk2vRwwpbnrWMO+94kvY1KRraoxOSlqeLaXv0potosoI2zYqtWoQQ2AUHSZaIt0V5cCDDQ0fGUGWJv7puLfIChzWyVpq+448RPTGIHk7iRRcnMbZkOSiSRFsqzGjPU4jPf5NNA37fmyev7WbdzW9C1aboPG3mfG+OkQU96ndBnm+yBVzPZbQzitbUwIZ4O23hRpS5VHRle+Hn7/Z76YQScOM/QtsF82dzQEDAOUUgdgJmTSlv4Qlx2lJxPayQbIrws88+wfE9o2x9dueEpOXpCh4hoDdTJG+6NM1i9pXwBFbeQQnJxFuilCTBF+45BMArLu2iu2FhhUfRydPbuwP9yDEiWhL3NIM95xPH9TDLeTrH7/kxq37wICEbslGJwVtuZNOlz578QNeGwrB/Q0Ckbv7LyQEyeWzhMdoRoaW9i+XRdhJzrY4a3gc/f48fbou3+j106pfPj70BAQHnJIHYCZgVnutRyFjoodOHM1Rd4eiTwxzbPUo0pRNN+UKlInhUXZmW2BkrWgzmLFIRbcbhK88VWHkbPaYSa4mihhT+7Vf7yJRsuhuivOySZTM74QwxXYOe3p3IBw8Sk2O4yVk0wZsFlTydhGIy/OUvsPHxEQAOrYpS95Y3sqqxc5KD8Bvt5Qf8uVZaHNS5zxublHQOE5d0Z4JlHatYGWufXd+cWo4/CL/+oJ+r07gabvoniDXNj70BAQHnLIHYCZgVZtHBMhyiydNfCItZi8M7/Itsc9fEi7xlnNpscDIsx6NnrIQqSegz7NJcqbgKJ3WizREUTebRo2Pc/dQgEvBX162ZVUhsutieRc/AkzgH91AnwngNdQvyPJdc/kxGR4c4fGBvdV3OsHGH9rH6yBiNl76YoR3/we4b17LhJa9DVib517dNPy+nNAKSOv8JyLWM5ShINqXljaxuW01XtAV5rp6jfXfC7z4OwoXOi+FPPuz3/gkICHjaE4idgFlRzNsgQJbPfDEcOu5PL2/qmnm+R6V5YN60Z1x95VouTskl2hAm0hhGViRKlstnf3sAgBdc2MGGthkOjpzJ83sOvUN7MQ88SZ2j4zVOf3zCTBkdHWLdBn+cw+EDeykaFoX7f8yzC/V0ffyfOfCB93L07S9i05arTj1YCL9fTn4QbAPCyYXrPyMEpHNkZQd3eQvr2tfQFm6cW7m/EPD4t+GhL/rLa66Ha94DysKX8wcEBJwbBGInYMa4jkcpY6KdIYRV2Xe0twCc6tmZDumSxWDOJBWZWfVVpeIq2hIhUh+qXky/+cBRBnMmLYkQf3bFwuVxeMKjf+wAhX2PUV+S8ZoWdrBnxaOzbsNWzEKO/R++nec0XUDnv/wzOz/7McybLmN5apJwjlUsJyCn/XLyhRybIATeaJaMaqOtXMba9rU0hVJzO6fnwh8+A7t/7C9vvRmuePPC5BcFBAQsLTzH/wybBoHYCZgxfgjLJZY6cy7HaF8BzxWEYirxhpklFluOx4mxEsoMwlfViivJr7jSE1pV6DzVn+MnO3oB+Itr1xCZRsn8bBBCMJg5SmbfI6QKAq+5eUEHe9quh+14PPbEE+TGhrnogsvp/F+3Ufeyl7Hzp19HfdZVaCc/v+v608kLgyAcf+r3QgoET+COpknrDrE1q1jbumZuZeUAjgl3fxiO3AtI8Iy/hC0vnRdzAwIClhBCgGv5//Ou6XdwB5AUcKZX0RuInYAZU8qZSBJI0whhDR/zQ1jNXYkZhSqEgP6MQd6YfvhKCIGV8yuuYs0R9Nh4GMN2PT5z934E8Oz1zVy8fOFCSiOFHsaeeoBk2oDmtnkXOq4nMB0X2xEIPFRFQVcldCdL9t0fJ/36t9N4662MHdmHtuIk75VgvJzcLJeTqwucMO0JnJEx0iGP+nXrWNO6hqgyx0aKRhbu/HsYeNLv4Hzd/werrp0XcwMCAs4inlsjagx/dAz4vbLUEESb/C9nWhS0MBTtaZ02EDsBM8KxXYpZGy08Pa/I0PE8MPMQVrpk0581SIanF74SnsDMTay4quWHj57g6GiRVETjjVevmpEtMyFdHGRk7wPERnJIze3zMtjTE2A7Lqbr4bkCWZUIyTLJuEo0pBJWFezCKPlPfJ416y+n7uUvJ917lLrlazFxGOnxc5TGy8mHAGnhysknGO9hDY2Qi8q0bNjE6uaV6HMdL5Hr93vopI/5Ccg3fBQ6ts2LuQEBAYtExVtT8dg4/sgaJBnUsC9sYq0QToAa8YWNGoGTiyvs7LSeLhA7ATPCLDjYhkOs/szfzD1PMHzCFztN3dNPTrZdv3mghERoigGjE57H8bBPqriq5fhoke8+5A+5fPMzV5FcoInmeTPNwL4/EhocRmnqmPVgTyHAdl0sV2A7HrIkoWkSqYhGLKQSUmXCmkLFsVbIjZL9539l/drL6fzkJzm09wEsu4RhFWhdvhEQjBx4xPfmWAUIxf1vSQuN51EaGqIU1+ncsIUVTcvn1igQYOSA30OnOAKxZnjuP0HDwonXgICAecBzx8NPjuEvg19EoIb9ys9wXdnTHPa9NmpoXvMcA7ETMCOKWRNJlqYVkkr3F3FtDy2skGqOTPs5+jMG2dL0wleViqtIQ4hIYwT5pMGgnhB85u791Ynmz1y7MD1XSnaB/n33o/b2oDd2zniwZyXvxnJ9l62myER1hXgiRFhTCKsyyiRDT4uFNOn/+0k2rLqMzk9+koO778d2/W9IIz0HwHVoXXUB5PoZyfbM/3TyqXA9CoMD2PVRVmy4kGX1nXMfsNrzCPzy/WAXoX6lL3TiLfNjb0BAwPxQza0pCxuBL1oq3ppok1/xqUXGhc1krTDmmUDsBEwb23Ip5mz0yPT+bKol58vi077QZcrhq0T4zM0D7ZKDZ59acVXLz3f2sac/R0RTeNu1axZkornlGPQf/CMcP0K4rh2hn9lrMjHvRqAqMiFVpj6uE1EVwvqZJ7obxSwj//xJlvdYaC+6gINP3ostHH+j50FpjJEde6A4RKxlFSNHd8/Hyz0jwnXIDfQjNdWzZuM2WlOtcz/pgV/Db/+PX33RfiHc8BF/DERAQMDZQXg1uTUmuOXPHln1RUwoCaluP9SsRcbFzQKP5ZmKQOwETBuzYOOYLuHY9P5shiv5Ot3TuyjZrkdPugQCwtrUuS5CCOyig4RfcRVKapOKmMGcwdfuPwrALc9YQXNi/qeLO55N3+EHcQ7vI5pqhSkGe1bzbhwPzxvPu0nFNSIhhbCqEFLlaTtdzFKegX/5BCuPGRRDcDyeoVM4fpWVVfAbA5bSoIUZObp70YSO59hkB/sJt7SwatNF1MfnWMouBDzxXXjg8/7yqmvh2vf63xADAgIWB9ceFzWO6f9fSvjiRQlBosFPGq7k1mjRJdfnKhA7AdNCCEEhY6Jo8rS8I0KIqmeneZrNBPuzBpmiTWNs6gtZteJKl4m1TKy4Onm/z/32ICXbZWN7kuduaZuWDTPBEy79xx7DPLibWKwRagZ7TpV3UxfViE6SdzMTLLNI7yf/hdVHSpR0GPrLl9DVvQayfX6/HNcE5MVJQK7BtS2ygwMkOtpZvfFi4tE5NmwUHtz/WXjyh/7ylpfBVW9bWj10hDhr31SfVghxti04iaVmzzxSmzDsliudZMUXNnocksv8vD+1xluzgK015otA7ARMC9t0MfIO+jSrsLJDJWzDRdFk6lrPPNgxW3LozxgkwuqU/zfCE5hZGy2mEm+Jop7Glnv2D/Pw0cpE8zXzPtFcCMFAz5MU9z9ONFIP8eR43o3jgQS6IhPVVeIJ5bR5NzPBsQ1O/Ou/sOZgEUOD/luvY3lTCkYP+t+0lDCEFrhnziRYZonC8BD13StYvX4b4fAch3k6Jvz2Y3Dot/7ylW+Fra+cs53zSmFoYgVJ9YIsUb0YSlJ5vSj/TiR/nSSVH8snPQaQa/Ypr5tw7MmPFwnhjb+WCY/LN7yTHpePqe7jjZ+ndp0knaodqu9bZXm+XkQgTE+PVE4aDkGsxf/CVJtbs1Bz8haBQOwETAujYONYLpHE9FyTlZLzps74aaeiA9iuoCddPG34qlpxlZq84qqWTMnmjnsOAnDzZV101c//RPPhgb2k9zyI6oXIaVG8klXNu2mI64SnmXczExzL5Oin/5m1+/JYKvS+5mJWdLbiv3GLL3AqGEYRY2SElpVrWLFuK7o+s7Eep2Dm4Jfvg74dfvz/2vfCmufMj7HzgRCQG/AvAp1bfDd+9QLujQuByuPKes/z53Z55Ztwy/vUrqsRAp5bFgHeRKEgvPH1iBqhMJnIqtlUEU6V/arnnuqF1pyvKtZqxFfl720y8SWp/rd9WSnvW76X1YnrZHn8XJXjq+erWVc5f8DCo4Z8r8054K2ZCYHYCTgjQgiKGQtVn/4f/3AlOXkaJeeDWYN00aIxNvlF0rVcHMMlXB8i2hQ+o3j6j3sPkTUcljdEecnF8zfR3PUEJculv38/mT33EvFk1JYmUro6q7ybaSEE2EXcQpbDX/4P1u/JYytw7DUXs2rz5Wc9pFMoZnHSWTpWrad7/QUo6gzi9PEWfzq5mRtflx/0e+g0rIJnvQsS7f5Qz6WC5/p9fiJ10Lq5PCx1vp9jGsJJ1HhRJqw/zb6e6yd4i7JwkZWy8JhMZJwsNGq8TVMJksn2DQhYIixpseO6Lv/wD//AN7/5Tfr7++no6OB1r3sd73vf+6p5I0IIPvjBD/LFL36RdDrN9u3b+dznPsfatWvPsvXnD5bhYhRsQtOswvLzdabXTDBXDl/FQ9qkXyQcw8G1BdGmMJH68Bm7Nj9ydIzfPjWELMFfP2ftnCea265HtmRjOB6qLGEX+5GPP0xXRCfZ2TXrvJvTIoQ/kNPKQymNZ+Y4+P2fsWF3HkeGI6+5jNUXXDbPTzpzMvkxlLxJ95otdKzZiKzOsIGiXYL6FTB2xBc8o4f8HjptF8DLvgL9TyytiivX9oVOoh1aNvp5CwtB9R9hYcaZBAQ8HVnSYuef/umf+NznPsfXvvY1Nm/ezMMPP8zrX/96UqkUf/3Xfw3Axz/+cT796U/zta99jZUrV/L+97+fG2+8kd27dxMOz9GdHgD4VViuI04bOqqlMGZi5G1kRaKhfer5R44n6EmXcIWYdE6VVbD9iqvWqSuuapkw0XxrB+ta53ahdD3BYM6kLRmiMR7CM0boPfoYkuyR6Fo+v99cBeCUypVUaV8ICAcPlf0/upONT+ZxJTh480Ws3Xp2hY6HRzo3RrTo0rnuAlpXrUWajcvbzPlCp34F7PsF/L+/gq4r4OVfhaF9S0voOAbkh6BuOTSv9ytOAgICzhmWtNj5wx/+wAtf+EKe//znA7BixQq+853v8OCDDwK+B+Ff//Vfed/73scLX/hCAL7+9a/T2trKj3/8Y26++eazZvv5gvAE+bSJNoMQVsWr09AeO61AGsoajBXNU8JX0624Oplv/PEIQ5WJ5lfOfaL5cN6kOaGzqSOFVUqz77F7Eek0yWUr5kfoVASOXfQFjlX0wwyqDnoUgcy+732fTY+n8STY/8oLWXfxVXN/3jngCo9MboSEKdO1fisNK1bNTuhU6H8SHvoSXPNuuObv4JLX+QJoEZqMTRsrD6UMNK2FxrVLy7aAgIBpsaT/a5/xjGdwxx13sG/fPtatW8eOHTu49957+cQnPgHA4cOH6e/v5/rrr68ek0qluOKKK7j//vunFDumaWKaZnU5m53ebI2nI2bJwSzahKcpOKCmmeBp8nXyhkNvxiCuTwxfCU9g5WzUqEq8JYIant6f6N6+LD99og+Av3j2mtP26ZkOmZKNpkqsaU7g2QUOPfobiv291HWtmnvinm2CXfAvoHbBD48omt8qXfZfr/A89v7XD9j88Age8NTLtrD+0u1ze945YguHbGaUBkena+NWkl1ds2/SWBqDR74Ke37i55QkO2D7X0O210/YXSoYaT+k2LLJ90CdZ0mbAQFPF5a02Pm7v/s7stksGzZsQFEUXNflox/9KK95zWsA6O/vB6C1dWKH1tbW1uq2yfjYxz7Ghz70oYUz/DzCKNh4rkBRZ56cPFW+jusJetMlXE8QiYyLkkrFVWiKGVdTYbsen/7NAQRw3YYWLu6eW9Ko5XgUTJv1rRE0r8DBJ35P5sQR6jpXIs12sKdjjQscKw+e7Ves6JFTwjXC89jz3z9iyx+HAdj74g1suOJZc3pNc8X0LPLZNM0iSvemrUQ722cndBwTdv4AHv+W79ECeMZfwRW3QX6gnLRcnJi0fLYo+O8/rVsgtSxIuA0IOIdZ0mLne9/7Ht/61rf49re/zebNm3n88cd5+9vfTkdHB7fccsusz/ve976X22+/vbqczWbp6uqaD5PPKzxPUEibaKHpX+CLWYtC2gIJGjtP8uyU0mAXGSm4ZNMWDfEYkgtCUnEdgVOafsVVLT945ATHyxPNb92+cqoXg+dYuOWb51q4toVwLFzHxnNNPNPANgqMZDLUaR6DhxUGXBsrnyO1bDmyNsN/F9f2c3CMrC9wHNP33GhhUKbOR9nzs//HlvsGANj1grVs3H7dzJ53nim6BmY2S7uUoGvTVkJtLTMXOsKDA3fBQ//hixqApnX+2Ic1zxlPUjZzE5OWzwZC+DaqYb/iKpi/FRBwzrOkxc673vUu/u7v/q4ajrrgggs4evQoH/vYx7jllltoa/O74g4MDNDe3l49bmBggG3btk153lAoRCgUtJs/E2bRxio50+6tA+NenfrW6ESRZBsweohSIUMuY9CIRMjSQVawLA2ERrxRJxJKQCmEkDU8RUcoOkLWquEdoFpG69k2R4ayfPfhYwDccmEcRg4y5pRFjGngmEU8q4RrG3iujXD88lvhOgjPQyDG24lIMiUPNF0jFY0jyTJqKEa0oQV5uh6disAxc2DmwTX8fiJqpNxh+fQiYffPf8KW3/UCsOt5q9h4zZ9M851fGLJOEXIFlmkNdKzbjN7WPPOT9D0Bf/x3GNrrL8da4PI3weYX+SXmtcKmNmn5bAiexSgtDwgIWHSWtNgpFovIJ8XIFUXB8/wGWytXrqStrY277rqrKm6y2SwPPPAAb33rWxfb3PMOI2cjPGbkZRmabB6WALK9uEaOIa+OomZTF9VxPQer6IJnk4xnCblFRI+F6zoIz8FxPTwBrgeO4+K44HgSjuviei6WB5882o3rRdkSzbKifyeDA+Pt+4Usg6IgKxooMrKqIulhJEVFlhUkRZ3gobAcF9X16KqLkphmmT3gD8CzimBm/Yuza5an/EZAn/6U8d2/+h+23HUcgCdvWM6m626avg3zjEAwZucI5W06Qi20rt+A1tw4s5NkTsADX4Ajv/eXtShsew1c8DK/cZkem1zQVASPFllcsePafrPARKufo7NQpeUBAQGLzpIWOy94wQv46Ec/Snd3N5s3b+axxx7jE5/4BG94wxsAkCSJt7/97XzkIx9h7dq11dLzjo4OXvSiF51d489xXNejkDHRwjNLyBw6Vk5Orp2HZaQh389QUdA/cIyI4jE25GAVQXgmeihHfriI5zkIz8VzXYTwELjg+fd+41cPSZaQJAVZVri30M0RM0pYdnht51FSIQWhhhCKBpJS9ggpCElBSOppNYfnCQqmQ2sqMj2h47rjuSVmxg9RSXL5Il7HTDsL7rn7TrbceQSAJ69bxqYbnj+j4+cTD48xM0e86NEZaaVh3Xq0phl4OIwMPPp12PVjP9lYkmHDn/qVVtGawaD5wanPUQlpLRbV0vJuaN4QlJYHBJxnLGmx85nPfIb3v//9vO1tb2NwcJCOjg5uu+02PvCBD1T3efe7302hUODNb34z6XSaq6++ml/84hdBj505YhYcLMMllpr+LBSjYJMbMQBoWlb27LgOpE9QKJkcPHAQM5/GUBVsN4KiOuixAkIBZAVZ0ZFkBUVWkGQZGXnKmVbDlsqPe1cB8PKWPpo1E8nxwM4gCaAybkcqix1ZATlUDo2p42JIUhCySrbkkorqNMVP83o9z08yNvP+Bd0xypN/I37YY5atk/fe82s2/48/3uLJa9rZ9Lz/NavzzAeucBmzctQXJTpj7aTWrUFtqJvmwRbs+hE8+g0/Rwmg60q48i1+WGqpYhX86rCG1dC8bslNaw4ICJg7khBLbpzsopPNZkmlUmQyGZLJOU5qPk8Y6cmRHTaI1U0/t+nEU2Pc/18HSTZHuPGNm/2VmR7EyEF2HR2m7+hB4s0tCCeMqtuEYway4s3YNiHgX490sTMXZ12syLtXHZ28i3G1Vb6LVJ4/JImyl8hP0kFICoYDKDItdUlC4ah/sZPV8Tk+nltONE77fXHAn4ekhuc8ruGp+37Dxh/tAWDX9hY2vPAlc+tbMwdMzyZvF2kuKrQlWkisXY1anzrzgULA4d/BA3dAzs83omG1P7xz2aULa/RcMdJglfxGgfUrg9LygIBzjOlev5e0Zyfg7ODaHsWcPaMqLIDhY5WS83IIy8xDtoehvMVQ3wn0RBLhhNFDJqGYiSTPTmf/MZ1kZy6OKnnc0tk39biG6rwetXac4TjCw3FdbCyaIyohrwSFfM0AReGXh1emOauheZ0ovu+Be1hfETpXNp1VoVNyTYp2iTZDpy3VRnTtCtTUNIT/wC744+dg4El/OdoIl94K6270heJSpjDs/17bLghKywMCznMCsRNwCkbRxjZcYnXTD2EBE+dhCQ+yPZhGkSNHe3E9m5DSgh4xCEXNWV9Xso7Cd3r9vkovaBmmPWzN7kSAQKboONTFYyTik3mwysMTayc8zxP7H/4D637wJDKw+9IGNrzkZWdN6OSdIrZns8yI0FzXSnTNCpTkGZJzs33w4B1w6Df+shqGra+EC1/pJyIvZWpLy1s2+QnJAQEB5zWB2Ak4hWLWKg8tnr4isQ2H9IDfJK6pKw6FYUR+kGPDBbLpQSJ19eBJqJo7py/Q/9nbSt5VWRY2eG7LyOxPBBQsh6iuUh+dStRJE0ve54kDjz/A6u89jixgz0V1rHv5K86K0BEIMnYBBYnuUozGxhbCq7pREqcROmYOHvsWPPlDvzEiEqy7CS67FWJNi2b7rPFcyPf7HrrWzRMTpgMCAs5bZv0J+4Y3vIFc7tRqiUKhUK2WCjj3cCyXUs5GD88whHXC9+rE60NEwh5kTpAuOPQdO4YSDqEqISTZQ5JnnqNT4YlsjD+mU0gIXr+sD3UOoslyXGRJoj4WQp33seVTc3DnQ6z69iOoHuzdmmTtza+YUWn/fOHhMWrl0FHpLkVobGglvHrF1ELHc+DJ/4L/fA088Z++0Om8GF5yB1z7nnND6Li2P44i1gwd2wKhExDwNGLWn7Jf+9rXKJVKp6wvlUp8/etfn5NRAWcPo+Bgmw7qDPN1KiGspq4EZHuxi1mO9AxhWXmi8STCk5AlMauEZICSK/P1Hr9x5J80jbIyaszqPOCPqzAcj/qYRnSaIynmg0O7HmX5Nx9C9eCpTXFWv/pm5LMwVNIVHmNWjqQcobsUIdXYQnjtCpT4JOEnIeDIvfD918MfPu33EqpbDjf9H3jev/jDMc8FHNNvFljXBW0XLq2J6gEBAQvOjD9ps9ksQgiEEORyuQkl3q7r8j//8z+0tATt1c9VilkTRZFmPA6gOg+rTYZ8L31pm7HBHkLJJLIk43gyiu7MOoT1X/3NjNoaTbrFi9uGZncSAAFF2yYZ1kmGF6/E+MhTT9D1jT+iu7B/fYyVr30Virr4QscWDhmrQKMWo62gE21qIry6GzkySauGoaf85OO+x/3lcB1c+nrY8PwFCe8tGFbBH1USlJYHBDxtmfEnVl1dHZLkXwzXrVt3ynZJkoIhm+coluFQytto05w0XsGxXUb7/Hyd5kSaXMGk58RxhAZhvewtEDKKOrtp1gcKEe4e8Zva3dLZR2iWVVwAJdtFVxTqo9rUVVzzzLH9u+j46r2EHDiwJkL3616Fqi7+Bdf0LHJOiRY1RVtRJdTUSHhV16lCJz/oz7Da/0t/WdHhgpfDtlf7XY/PJYyM3926eYM/miIoLQ8IeFoyY7Hzm9/8BiEE1113HT/84Q9paBiPe+u6zvLly+no6JhXIwMWB7Po4FgukfjMLsSjPQWEJ4jEZHR5jH39aUq5MaJNDdU+ewJmFcKyPYmvnGhHILG9Ps3mRHHG56iey/VwhaApFkKfwRT3uXDi0F5av/I7wjYcXBVm2RtehabNrMptPig4BqZn0ak30JSX0ZsbCa/qRg7V2GIVYce34Ynv+Q0CAdZc78+xip+DFUvFEb8RZNsWSHUFpeUBAU9jZix2rrnmGgAOHz5Md3f3zKcfByxJhBAUMibKLETAUCWE1ewyknMY6e9BToRRy6EO4UlI0uySk3822EifGSKpOryyfWDGx1fwhO/VaYjqxEOLE4LpObqfxi/fTcSCw8tDdNz6anR98Tt7Z5wCCFiuN5PKC7SWskdHLwsdz4Gnfg4Pf9nvJAzQthWufBu0bFh0e+eMEH7FlRKB9guC0vKAgIDZJyjv2bOH++67r7r82c9+lm3btvHqV7+asbGxeTEuYPGwDRez4KBHZt4IrjIPK5kyOX5iABeTSHg8AdTzJCRZIM9Q7JwwQvxsyK/yeU1HP3F19pVcRcshpivURRcnfNR34hD1//ErYgYc7dJpfdOrCIUWV+gIBGNWDhWZFXozdQWB3trke3QqQuf4A/DDN8Lv/8UXOslOuOHD8IJPnZtCx3P9Ls56AjouDIROQEAAMAex8653vYtsNgvAzp07uf3223ne857H4cOHuf322+fNwIDFwSjYuLaLqs1M7Hiux0hPAQBHK1JID6AmkhNmWglPRlbcGfXl8wR89UQ7rpC4KJnj0tTsh0IatosiSzTEQiiLkKgz0HuExB13Ei/B8Q6NxjfdTDi8uI32XDxGzSxRJcSKUCvxvIPe1lIWOhqMHIT/eRf8/D3+hPFQEp7xV/Dyr8KKZ56bIR/PCUrLAwICJmXW/vzDhw+zadMmAH74wx/yghe8gH/8x3/k0Ucf5XnPe968GRiw8AhPUEibKLMowx49nsZzBZrukR49iggrhNWJHgzhSSgz9MrcNVLPoWKEiOzyZ539s772up7Adl2ak2HCi1BmPjhwnMgdPydZFPS0qaTe/Eqi0TN0I55nHOGStnLU60mWKfWoWQO9vYXQimVIVgb+8CXY9wu/y7WswZYXw0V/fm6XYzumn1hd11WeWh452xYFBAQsIWYtdnRdp1j0k0V//etf89rXvhaAhoaGqscn4NzAMhzMkkMoOsM/BwHDB/sA0CMlHDtHuLH+1OHfkjSj5ORhS+OHfX77gpe3D1KvOTOzq8a+guWQiugkQwsfvhoZ6kX//E+pywt6WxQSt72CeHxxB8uWXJOCa9ASqqdDTSFlSuidrYQ6GpB2fAt2fMef1g6w6lq4/M2QPMcLCqwiFEeD0vKAgIApmbXYufrqq7n99tvZvn07Dz74IN/97ncB2LdvH8uWLZs3AwMWnlLexnO9mScnG+lyM0EFWRpETkRQpYl/UkKANINmgkLA10+0YQmZdbECz2pIz8ymGgq2S1iTqY/qCx6VGR3uR/78f9OQE/Q3KUTf8nLiibqFfdIaGldfzMjocazBw3RHWmiS4ohMDr2zjVCsgHRsLzzyFX/nlk1+8nHblkWzb8EwMn4fneYN0Lhq6Q8fDQgIOCvM2q//b//2b6iqyg9+8AM+97nP0dnZCcDPf/5zbrrppnkzMGBh8TxBMW2i6jO8SLgOYvQYQ0P+n5ASSxOepAeL8GRf7EwzOfn+dJIn8/5E89ct6591LxzLdREIGmIhNGVhlU56dBDxhR/TmBEMNsjob3kpyeTi5Yu4wmNo5CjrL3sh67svpYUYIpsnHBslNPxLpA3PheN/hEQbPOcD8MLPnh9Cpzjih6/aLoCmNYHQCQgImJJZe3a6u7v56U9/esr6T37yk3MyKGBxsYp+CCuSmKHrPz/AUE8a14kiSQ7hRmlCUnIFz/ObCUrTaARYO9H8ha3DtIVmN9Hc9QSG7dIQDRGbqYibIZnMMPYX/ovWMY/hOhnlthdTV7d4c6IM1yLvlGhMQ3Hn/TRseSbmPd8iPPRtlGQ9vOzL8OO3QdM6uOY9oE423f0cozK1XAlD+xZfxAUEBASchjk1HDl48CBf+cpXOHjwIJ/61KdoaWnh5z//Od3d3WzevHm+bAxYQEp5C0+ImQ2jNPOI7AmOHffFjRrNEVYmv4j6ycnT65z8nd5WCq5KV9jgxubZTzQv2g6JkE5dbGFzN3LZMYzP/5D2EY+RpIS47YU0NC5SqbMQGKV+IsVeVtp5EsVBlMc/ibT7IsIv+zJEC3Dxn8NDX4Ir3uyPejgfCKaWBwQEzIJZi53f/e53PPe5z2X79u3cc889fPSjH6WlpYUdO3bwpS99iR/84AfzaWfAAuC5HoWMhT6ToZ/Cn2iez+UZ6PePiyTNKXeXmF5y8o5snAfKE81fN4eJ5iXbRZNl6mMaygIm6uTzGQpf+D4dQy5jcQnnLf+L5ub2hXky4RIyhgkX+wgX+wgVewkX+9DcSYahHrzbn06+/a9heD+sec7C2HQ28Bx/mGe8BZo3Qnhxk78DAgLOXWYtdv7u7/6Oj3zkI9x+++0kEuMlq9dddx3/9m//Ni/GBSwsZtHBMhyiyRmMLygMY+cG6R22KeX93jHR+OQTyIUAOHO+jj/R3A9F3DiHieaO5+F6Hi2JMKEFHAdRLOTJfOF7dA04ZGIS5lueT0tL57ycW3ItwqX+qrCJFPsIlQaQxakVaUKS8fRWvHgXcsdm5O6tSF2XQctGP8zTsNLvoWPOvkfRkqFSWp5a5r++oLQ8ICBgBsxa7OzcuZNvf/vbp6xvaWlheHh4TkYFLA7FvA0C5OlmAdsGZE4wmnMYPDaC8JqQJI9QtDTp7sKTkWSBdAbPzg/7mxmzNZp1ixfOcqK5EH6X5LqoTmKGg0xnQqmUZ/SO79DdZ5OLQOHNN9HW1j2rcyl2vipowsU+wqU+dGMEiVPzm1xZpxBpIR9uQUmuJBpaiRANaG1thLo7/GGeoQTUrxgXOGZu4vK5SrW0fJWfe6Qu/myxgICAc5tZXxXq6uro6+tj5cqVE9Y/9thj1cqsgKWL63iUMiZ6eJohLAFke8ln0/T1ZSjm/eNCsdKUnZGFJyHJHvJpkpP3FyL8Zh4mmhcsh6iuUh9duAuhYRYZ+uJ/sqLHJh+G7JtuoL1z5ZkPFB66OVb11lSEjWZPLkBsLYERaceI+rditJUBSSek6HTojcTzHugaoa529JYmJEU+VeiAfz925NwWPEYWrHxQWh4QEDAnZi12br75Zt7znvfw/e9/H0mS8DyP++67j3e+853VBoMBSxejYGMZLrHUNMWBkcbJ9jE05lIa68d0/Yt8KD71FHLPk9lw+WaMfC+j/UdP2Z5sXYHjbUAcPMrV9Wk2zXKiueW4yJJEfSyEOg/jINZc+xoKo330PXH3+HNYBv1f/A4XdF2K9vwLOKYcYFn3mlOOlTyHUGmQcKlG2BT7UbxT85oEElaosSxq2ihFOzCi7bjaeMdly7PJ2kXq9DjtJAlnHdTGOkLd7SiJms7MWmRyQVMRPFrk3BM7xRE/Ibl1C9R1n5sjLAICApYEsxY7//iP/8hf/MVf0NXVheu6bNq0Cdd1efWrX8373ve++bQxYAEw8haSBNJ0xIHrQPo46ZzJ8EA/lmLhlFIAhE8jdkAiPzrIhc/+U3bd99MJgqehbTlrn/ECPvWtx+c00dz1BIbj0ZwIEZ2ncRCF0T7qu/xRKH1P3I1tW/R86Tts7byEzk98goM7fsOyrILslMpeGr8qKlzsJ2QMIolTw3aepGJGWilFxz02ZqQVb4oqNoCCU8JwLVr1elpNDVUS6Cs60TtakNST/nXzg1O/oEpI61yhWloegrbNkFygxO+AgICnDXMaF/HFL36RD3zgA+zcuZN8Ps9FF13E2rVr59O+gAXAsV0KGRttuiGsfD+l3DADQwXs4hhuJIVra4AgFJsiX0eAhGB04Ai77vspm7ePC56GtuVs3P4C3vzNx/j9/hHe1t1PbDYTzQUUbZtkWCcZnr8y84pHp75rE65tc//f3sq2tovo/MQnOPbHH9K254uEi73oVnrS4x0lUhU0VWETbgJpeu+3h0fazqNJKiu0JpIF0FJxQt0dqPWp+XqZSxPh+RVXoWRQWh4QEDBvSEKI2SVJnEdks1lSqRSZTIZk8vwvZy2kTQYOZ4jVh5DOFBow87j9u+gZzNN/8DAFvYQodTNyrJNQrEj7ulPDUwCeKyE8hWgqj6wIGlqXs3X7jTiPfw/twpfR94N3kdl/PxHFo1GzTxmnNR08X1GhyfKcIhwFB4YMiYwB+aKEWZRwS7B865+y+a8+QPp736PuZS+j57dfovuxD0041tLrxkVNOc/G1lOzDrnYwiFjFUiqETrcGFFXQWtvQe9sQw6d54m5ldLyaDO0bgpKywMCAs7IdK/fs/Ls7N+/nyeeeIKLL76YlStX8rOf/Yx/+qd/olQq8aIXvYi///u/P/NFNOCsUcyaSLJ05t9RuadONptluD+NLYrokTjZIX8sRCg2dQjLr8Tyqp2TnSP3IYf70Lf/Ndz3aToOfo8OGT/xeXaNks+I5cGwrTFiamQNlYKhYJcURFFBLUmE8xKJgkS0nE6TLN+qPP5T0q0baLz1VjJPPUbL3s+TbtyGEWmvhqM8df5KoIuuSdExaFGStBRVQokooa5O1Kb68///yS5CYQSSnX5puR492xYFBAScR8xY7PzoRz/iFa94BbIsI0kSd9xxB7fddhvXXnstyWSSf/iHf0BVVd7znvcshL0Bc8S2XIo5Gz0yjV99YRgj08/gqIudG8KKa8QlDaPgX4hOl6/jeTJ6yOLKP309meFe1B3fgov/nPwD34CL3sS/PdXCS7a109W1nL0//viMXoMnPEZzBYRl4FkGZraImzOQchZq3iaSc4jnXBIFf/ibCjSUb1NR0iEblyklFMyEipfQWXvdK6h/5Z9THOohuW4bY6/60YSk5flCIMjYBSQkuklRb+qE2prQu9pRoud5PxmrCKUxUHR/annT2qC0PCAgYN6Zsdj56Ec/yrvf/W4+8pGP8NWvfpW3vOUtfOxjH+Ptb387AHfccQef/OQnA7GzRDELNo7lEY6d4VdvG4ix44xkHbKDAxi6S0RL4tgqjqkDgnB88nwdAISEonhkhntpX7UFuj4I3301/3x4EweffIIvvfblaKpM36EnGYutGn9ay6CYG8XKjuHkspDLI+eK6DmDSM4ikXdI5jyWTW8CBY4M2bhEPqFiJEPYyTAiGUVJJdDrUkRT9STrGolE4jTXHNe+9TrquzYxdnw3fU/cXV0G5lXwuMIlbeeJE6LNDJGIJNBX1JSUn69YBSil/Vld9Sv8ZoGRurNsVEBAwPnKjMXOU089xXe/+10kSeKWW27hTW96E9dff311+w033FAVPgFLCyEEhbSJop4hhFXuqZPNpxkezOM4WaRUGEWSKeR9T4MeMaccAyEE5Uovj8Gje2ldvh5FC1NovYSHHrT4iw2HUb1tPPm1z7Pvzu+jp/PEcg7JvEtsBs2TcxHIJVWKCQ07GcZNRpBSCbRUgkiqnnhdA4l4PXWKTN30T3uK0IGJScu1y3PBH+JZpFnEaLFDRBubCC3vmFhSfr5hFaA4BloY6ldC3TIIn+dJ1wEBAWedGYudQqFQHQ8hyzKRSIRodDy+HolEMM2pZyUFnD1s08UoOGduJGiMYaV7GBzxsNJDlCIycSnsbyqPiDhdfx0hJJA9ZMUjXt/K2H//PYlYjPAz3sHXj3+fuhtu4sTb3oZ63x/YNNnTa5CJyxQSGqWEjp0I4yZikIjjRWI0tTTT0dJGTNOJzfbNOA2xhvYJQqdCZTnWMLdSaIEg6xQRrkuXGaVRTxJe2T55Sfn5gpX3PTlaBJrWQLIjEDkBAQGLxow/WSVpolfg5OWApYtRsHFsl0jiNGXaroNIH2cka5AfGsZUDUKhWLW4qCJ2TpevIzwZWRZIssfx3fez/OA3+ENviC093TTeeisD//V9Hhl6HPPSBtx4FJJxlHgCLVlHJNFAKBRFkmUiQDVjRUDWtElFNJrjoQXtL3fgt9+acttcPTqu8EhbOaJCpd2MUNfQdn6XlJs5MDKgRaFxbVnkBFVWAQEBi8uMxY4QgnXr1lUFTqW/jizL1e0BSw8/hGWhnqnxXr6ffHqYkWETpzSKnVCJS744ch0F2/A9POHTVmJJqCEHSYKG/CE0z6Ch7WbqXvpS+v7wO9pe/DKuuHADex+4c9r2FyyXsCZTH9XP2Ua6pmeRswo0WhqtcpLE8s7zs6RciLInJwN6DJrW+40BQ4kzHxsQEBCwAMxY7HzlK19ZCDsCFhjLcDGLNqHTVWGZeeyx4wxlXOz0EIWIR0SN12z2/Sxa2ETRps4QFkJGVv3trbld5C77GzZd/Q56br+dX22q57mtDX7SMkxL8FiOi5AEDbEwmnJuKp2cU8S2TTqKIVrqW4kuX4ba1HB+eUWFGPfk6Al/nlWyHULncQ5SQEDAOcGMxc4tt9yyEHYELDBmwcZ1BMpUnp1yT510Jk9uKIPpFZBDflJyhWq+zum8On6fP2TZQ/ZsmrfdhHT1Oznxtr/giQMPs/I5f14VONMRPP44CJfGWIiYfu4NgXTxSFt5woZghRensaubUHfH+VVSLgSYWX9oZyjhdz5OtPlenYCAgIAlwLxkQ+bzeTxvYmXO06ET8bmC8AT5tImmnyaEVRimMNbHcNrFzY9QjI0nJVeYTn+d2uTkxsJ+lO5X8eQ/vAvlvj/w/7d35/FRVefjxz/3zr5kZpKQFRKIEDYFyuKCqCiCiEq1pbZVVBD9ubxABVRaal2qFdHWYlXEqgjWimhbtbb9qqVYNwREEBBFFERAIOzZM9u95/fHJANDEsgGSYbn/XqNZu76zExezJNznnPO10ML+UH1cTUJjr9D7hFjr4xESXHY8btbbjmI4yVkRigLlpNaqZHjzcTXpTP2rIzkGVKuFIRKIFhWneScUp3kyISAQoi2pcn/6m7evJmLL74Yj8eD3+8nNTWV1NRUAoEAqampLRZgly5d4kXQhz4mTpwIQDAYZOLEiaSnp+P1ehkzZgy7djVtUclkFaqKEqo8wlpYkSDRA1vZUxoltHcvlfYIDpszoTbGNHTCldX1OkcrTtZixclZZV/w3XNjsbz+XwwNcvr1Szj2q+XvsPzf9XeLVkUMbLpOqseGpZ1195RHK6ksLyGnykqXnK6k9emNIzcrORIdpWIjq0q+B6VBdh/IPwPST5JERwjRJjW5Zeeqq65CKcXzzz9PVlbWMas9WLFiBYZxsD5k3bp1jBgxgssvvxyAKVOm8O9//5u//vWv+P1+Jk2axI9//GOWLFlyTOJpj4LlYUxDYbHW8UVbPadOSfEByvZWEo2UEfEeLEquEapwARpWexirPVrvvZSpYbFHsZoh0iu+4dPtAQqAL/LdZAUaPuIoapoYpklmihNHXXG3USYmxcEy7OVhOjvTyOjeFUduNpotCYaUKzNWjxMqjw0bz+4Ta8mxJVGXnBAiKTX5X+A1a9awcuVKevTo0ZLx1JKRkZHwfObMmXTt2pWhQ4dSUlLC3LlzWbBgAcOGDQNiBdS9evVi2bJlnHHGGcc0tvbANEwqSsLYHPW06gQPULV/O3uKQZXvp8xl4rLULihtyPw6ECtOtlgNMio2oJkGnk0OALb36kbGEc889BpQEYqS6rGT4mw/SUJERSmpKCZQoZGT2Zm0gq5Y05JgSLkyYy054YpYkpPTD7xZsYkBhRCiHWjyn8ynnnoq27Zta8lYjiocDvOXv/yFCRMmoGkaK1euJBKJJMzg3LNnT/Lz81m6dOlxja2tinVh1TORoBHFOLCVvaVBwnv3U0EVFps9oSi5RkPm16mhW0wyy77gizI3mQdikwSedMopDY65IhzF47CS6m4/Q7IrIlWU7d9HZshJQbdT6HDKKe0/0VEmVO6Dku2xtaty+sW6q1I7S6IjhGhXmvxn83PPPcdNN93E9u3bOeWUU7DZErs9+vbt2+zgDvfGG29QXFzM+PHjASgqKsJutxMIBBKOy8rKoqioqN7rhEKhhFmeS0tLWzzWtiJYFgFAr6tWpLyI0gN7Kd4fxggVU+XRSNFqf4mZpkaoQfU6GppmYlflpFV8y7JtHegKrDkpQH4DRx+Fowa6ppHmcWDV236djolJSVUptuIq8lJzyOnWA3tGh/Y9pNw0IFgMkSpwBiC3e6wlx+po7ciEEKJJmpzs7Nmzh02bNnHttdfGt2mahlIKTdMS6mxayty5cxk1ahS5uUcewXM0Dz30EL/5zW9aKKq2yzBMKkpC2Bx1JDqhcoL7trK31ISS/ZQ7DJxWV2zc+GHCFS5QOhZrBKs9Uu/9TFND0xVZVV9imCYZm2K/Xgd69yS/IfGaimDUJCPFgetokx+2AVFlUFK8j5SwTsfOPUk/qVv7HlJek+SEq8CdGpsM0Jslq5ALIdq9Jic7EyZMoH///rz88svHtEC5xpYtW/jvf//La6+9Ft+WnZ1NOBymuLg4oXVn165dZGdn13ut6dOnM3Xq1Pjz0tJS8vLyjkncrSlUESUcNPD4D/uyUiaq5Hv2l5QT3FtBUJUTtVtwanX/OtQMOXd4K484e7Eyday2KNklX7DqQAq+Sihxa/Tq1YC6LgUV4Qg+px2fs+0PM6+KVBHcv58MVyodT+lNSm5u+x1pZUZjNTnRELjSYpMBerPA0vY/ByGEaIgmJztbtmzhzTffpFu3bi0ZT73mzZtHZmYmF198cXzbwIEDsdlsLF68mDFjxgCxVdm3bt3K4MGD672Ww+HA4Uj+JvmqslD16uOHZSgVeynbt5P9xQZa1QHKnAqPXn8NRrB65mSnt+qI91OmhksrJlD1HXu2ZuEDPivMpEcDFresjBg4rRZS3Tbacu+VQlFSXoyltIqO2Z3pWNgbu7+dzillRqHqAETD4E6HzN7gzZQkRwiRdJqc7AwbNow1a9Ycl2THNE3mzZvHuHHjsB7yxen3+7nuuuuYOnUqaWlp+Hw+brnlFgYPHnzCj8QyIiaVZZHao7AiQcL7trKnJIJWXEKJNYTNakevoygZqueNa8BkggBoGjnBz6mI6nT8NnZf85S61jU/LCTDxFSKNI8DexseZm4YUUr378GtOcjt2Y+szl3b55ByMwqV+8GIgLsDZOWDJxMs7fC1CCFEAzT5X7fRo0czZcoUPv/8c/r06VOrQPmHP/xhs4Or8d///petW7cyYcKEWvtmzZqFruuMGTOGUCjEyJEjeeqpp1rs3u1VsDJCJGjgCRzShaVAle5gf/F+Kg+EMMIlBD2QotXfyhWudMYmCrQY2Jyheo9TJmiaIqficz7dk0JWBHYGLPTo0uWIcZoqNnlgmtuOx9F2v2yDwUqq9u0jNT2L/O6nkNIhs7VDaryaJMeMgqcD+PPBkyFJjhAi6WmqicuU16xyXudFj1GB8rFSWlqK3++npKQkaZa52LOtjPL9QTyBQxKZqgOUbVvL90Uh1K4i9torsNmdWOup1QEo2ZXGgR1ZuPxlZJ30fb3HGVEdd7SY4Qdm8tbSbLps0Vl0ej6njBxxxDjLQ1FcNgtZPgeWNth/pVCUHdgHoTCZnbuSd1Jv7K52VoRsRKBqPxhR8GZAoHMsydHb31pjQghxqIZ+fzf5T7rD18ISbUc0bFBVFkmcW8eIEtm3hb0lQVRxGRVaJYZVx3WERAcOmV/nCIt/QmwywY6Rz9gdspK3NZYIe/sdefqBYMTAomukee1NSHRUrI9NqdjPEGteUtX7ULHn8cPNQ44/5BjUIaebRCMRIuEI0UgYMxwGwOF20+mkwlghfng/hA8LRav+T6xAqvpnPfb80J/j22qe17W/BbvxjHCsJUeZsW6qQH6sRUeSHCHECUbar5NQsCJKJBTFkXpIq055ESX791BeHEELllDmUnj0I7dQNKZeR5kaHUNrWLbLR56Cb7LtdMnOSjzIjIIZRkNhGgozEqWDx4YzGoVo7eSjXvG8SD/4JCHRqD4oIfHQE5IK01REQmGikdjDjJqgKSx2L9aAm5SUAO5AB9wpqXgDHfB6A9UJk3lI4nTIc9OIvT5lJv7fNEBFDyZaphl7zmHXqUneMA97/TUvVh226UgJkxabI0cRKzgO5Mdqc47QGiuEEMmsycnO/ffff8T999xzT1MvLZqpsjSExaIdnA4gVEbF3q3sLVPYykvZZ49gs9jqLUquEQk6MA0Lmm5idwePeGyKsRtfpAj92xwANvbsEl/hvIYlUo5hdaGAcsPA503Bm+KKtTRoFmLDsCwHv8QPTWBqHofuQ09MbLRDj6l+bZpGNBQkXFVJNFyFEQwCCl2zYHF6sKVkkpKWgdffAafHj9Pjw+n2YbO38AzBhydHdSVMtZKfw/cdsr8muaoryVJR8GRVJznpkuQIIU54TU52Xn/99YTnkUiEzZs3Y7Va6dq1qyQ7rSQcjFJVHsHuqv5olUm0+Hv2HSjFPBAkFK0g5FJHLEquEV8Py3OU+XUUdAyv5ttKBx2LNAwNcg+fQVvFariinmxKDCcOr0ZqugfN0nJ1OqZhEAlVYQQriYaqMMIRQGGxO7E53XjSMvGkZuHy+nF5/TjcscTmSPVnLUbTYgkd0oUkhBDHW5OTnc8++6zWttLSUsaPH8+PfvSjZgUlmi5UGSUaNnB5q0fHVeyldM/3lJQpbFXFFDujuCzOOmdKPlxD18NShkan8Gd8sD2FAmBdZw+Zh69wbkYxdRtB0waaItPnwtaMRMeIhIgEq4gEK4kGgyjTQNctWJ0ubE4P3oyOeAIdcHr9ON0+nB4fdoe7yfcTQgjRfrVozY7P5+M3v/kNo0eP5uqrr27JS4sGUEpRURLCUjNXTSRI1Z7v2Ftm4igpp9gSQdMtRxx9dfBaDU92UiI7cUf3krIptozH9l7dOHxgtm6EiVjdVEQhO+Bo8GrmpmEQDQeJBquIBisxwmFQJrrDidXhxOVLw1OQhdubitPjx+FJwen2YZHh1EIIIaq1+DdCSUkJJSUlLX1Z0QCRoEGoIoLdZQEFZsl29hcfIFIchkgpFa4obt3ToGtFQ3bMqBW0o9fr5AbXsq7MTYfi2ArnhaecXOsYzYxSplwE3A7SPXWvtWREwtUtNVVEQ7HWGg0Ni9OFxeHEn9sFT2omTncKTm8Al9uP3SWtNUIIIY6sycnO448/nvBcKcXOnTt58cUXGTVqVLMDE40XrIhgRExcKXaoOkDJnm0cKAVHZQm7nFFsFjt6A9cwO1ivU4WuH2F4lDLpFF7Nu9u8dAU+65pKl8PnoVEGStOIanYCbis6qroLKtZaY4ZCoGloVitWuxO7x0daXiFufxoOdwpOTwCX1y+tNUIIIZqkyd8es2bNSniu6zoZGRmMGzeO6dOnNzsw0TjKVFQUh7DYdTCiBPduYX9JEFtpJeVaFWHdJEVr+OrV8fWwPEdeDysQ3oY1WkzmxlgXVunJPWsfZESIYMMMVhAsKsew6FgdTiwOFykZHfGkZ1UXDKfg9qbicHkb/sKFEEKIo2hysrN58+aWjEM0U6gqSqgqisNtRZVu58C+PVSVGViDJRS7DFxHmVPncMEGzq+TU7WWVftT8FdBsVujZ4/utY7RzTBVmgdLuIq8QWfjz+iI0+PD5QlgtTU8ARNCCCGaotFjbg3DYO3atVRV1f6Lv6qqirVr18rsyq0gWBHBNEwsRgWle7awv8zEWVFOsS2KpulYtYYPeY6GrRhhO6BwHGHmZE0Z5AY/Z+/WWGK0unsW9jpWONdNgyrTgtvtokOnbmR07EZKIFMSHSGEEMdFo5OdF198kQkTJmC31/6istlsTJgwgQULFrRIcKJhzOouLKtNI7x/G/sPlGEtD1EVLafSGsWtN26CvJp6Hbs7iG6pv14nLbyZSKSSTtUrnKs6CpNRBqamEQ5H8Ph8eHzpjYpFCCGEaK5GJztz587ljjvuwGKp3VJgtVqZNm0azzzzTIsEJxomXBklXBXFFt1P8Z7tlFeCXllCscPAbnEcnEm5gRo65Dy3ai0r96TgiMKOVAvdO+fXPqi6XkczDNKyO7b8zMRCCCHEUTQ62dmwYQNnnHFGvftPPfVU1q9f36ygRONUlYcxw0Eq921hX5mBu7yCUkuYqG7g0GyNvl5Dkh1NRckOfkFwc6wWaF2PTuiW2r9OuhkmrDmxapCe2bHRsQghhBDN1egC5YqKCkpLS+vdX1ZWRmXlkVsERMsxDZOK4hBacBd79x+AcoNwqIxSV7TRRckARsRCNOTgaPU6GaGNFIci5G2LJTi+w5eHqKabBpVY8LiteALShSWEEOL4a3TLTmFhIR9//HG9+z/66CMKCwubFZRouFBllHDxPiqKv6e8UsNRWUaJw0BHx9KIouQaNa06NmcIi7X+QvPcqrV8ttOHruDrHAedsw+fM5l4vU4kGsWT4sfry2h0PEIIIURzNTrZufLKK/n1r3/N2rVra+1bs2YN99xzD1deeWWLBCeOrrK4gop9OyipCOGsqKKCIJVaBJd+9IU+69KQIee6CpMV+hLrt7F7bOpZUPeB1fU6eiRKWnYuVnvTYhJCCCGao9HdWFOmTOGtt95i4MCBDB8+nJ49Y5PIffXVV/z3v/9lyJAhTJkypcUDFbUZUZOy7duoLN9NtBxsleUccEVx6I0vSq7RkHqdzOAGvqvQyN2lEdWhY98+dR6nmyEqNS8WLUJaVm6T4hFCCCGaq9HJjs1m4z//+Q+zZs1iwYIFfPDBByil6N69Ow8++CCTJ0/GZmt8UaxovOC+vez7fhvlYYW3opx99iiGiuLSmjbiyYjqRKpirS+OIyQ7ucG1rPo+hZOAdZ29ZPl9dR6nKZNKZcXrtuINSBeWEEKI1tGkGZRtNhvTpk1j2rRpRz325Zdf5oc//CEeT8MWoBQNZBrs/XYjpeWVOEMRgmYlZbYQLr3pC2OGKtyAhtURwmoz6jzGagbpULUB/6ZYjc6OnoVk1XWgMjDRiEYjeDt0wJMixclCCCFaR6NrdhrrxhtvZNeuXcf6Niec0N7v2bVtJ0ZUYa0opdgexaJZsGhN/0gb0oWVFfySL0vtpJdAlQ261TWRIIARIYoNzYySlpWL1SHz6wghhGgdxzzZUeoIK2aLJtu5fRclJRG8VZWUWSNUEsbZxO6rGg1JdnKDa9m2LbZQ52dd00hx1V10rJshgpoTGxppWTK/jhBCiNZzzJMdcWzsLw5jKavAiJRTbIvgtDhoYk0yAKahEa6MJUv1JTs2swJf5UayNsV6P0t61tOqQ6xep0pZ8bqcePzShSWEEKL1SLLTXpVWQHk5xQ4DwzSwN2Gm5EOFKlyAhsUWwWqP1nlMTtU6Vu334q2CAx6NnoW1VzgHDtbrRAzcKQE8vg7Nik0IIYRoDkl22ilVUUHQDFOuBXFZGj9T8uEaMr9ObnAtB7bG7vVZt2xstnp+fYwwUWzoZkTqdYQQQrQ6SXbaqagZoVwFsWjWZhUl1zhavY7DKMVauZVOm2OzMkcK+6Nb6p5hWTfDBDUndjSZX0cIIUSrO+bJTufOnWXenWOgLFpOWEWaXZQMoEytuhur/vl1coKfs2p3CvYobE+z0DW3S701QpppUmVa8LicePzShSWEEKJ1NTnZGTduHB988MFRj1u3bh15eXlNvY2oR8SMomNpVlFyjVClE5SObo1ic4TrPCa3ai2h72KJ1efd8rHa6xllpwwMTScaNXB5fXh8UpwshBCidTU52SkpKWH48OEUFhYyY8YMtm/f3pJxiePo0C6supInV3Q/ofIi8rbGfl0c3U6rtwsrVq9jRTejpGdLvY4QQojW1+Rk54033mD79u3cfPPNvPLKK3Tp0oVRo0bxt7/9jUgk0pIximMsVJPseOruwsoNfs6anSnowIZcBx1Tc45Sr+PCrmmkyvw6Qggh2oBm1exkZGQwdepU1qxZw/Lly+nWrRtXX301ubm5TJkyhW+++aal4hTHiFIQPEq9Tm7VmvgK599064qmK3S97mQnXq/jlHodIYQQbUOLFCjv3LmTRYsWsWjRIiwWCxdddBGff/45vXv3ZtasWS1xC3GMhKucKNOCZjGwu0K19nsju9hdcoDc3bEVzjO6nY5uMalzAFh1vY4RNXCn+PFKvY4QQog2oMnJTiQS4e9//zuXXHIJnTt35q9//SuTJ09mx44dvPDCC/z3v//l1Vdf5f7772/JeEULCx7ShVVXvU5O8HM2bE8B4PPOXgLOABZr3YuEYoTi9TodsnKxSL2OEEKINqBJq54D5OTkYJomV1xxBZ988gk/+MEPah1z3nnnEQgEmhGeONZCR5pfRymyKtewe2OsC2t7YU8KlVZ/vY4RIaj5sBPGL/PrCCGEaCOanOzMmjWLyy+/HKez/r/eA4EAmzdvbuotxDGmFATL66/X8UV3sHl/kPRSB5V26NytP5p2hHodTCpNjTSXS4acCyGEaDOa3I31wx/+kMrK2l+Q+/fvp7S0tFlBHWr79u1cddVVpKen43K56NOnD59++ml8v1KKe+65h5ycHFwuF8OHD5fC6AaKBO2YhhVNN3G4grX251at5fttHiC2wrnL6kLTFFpdLTumgYGOaZi4U3x4pThZCCFEG9HkZOfnP/85CxcurLX91Vdf5ec//3mzgqpx4MABhgwZgs1m46233uLLL7/k0UcfJTU1NX7MI488wuOPP87TTz/N8uXL8Xg8jBw5kmCw9pe3SFRTr+NwV9UuOFYm6eVrya5Z4bx7H0wz1oWl63VMKGiGiGBDNw3SM6ReRwghRNvR5GRn+fLlnHfeebW2n3vuuSxfvrxZQdV4+OGHycvLY968eZx22mkUFBRwwQUX0LVrVyDWqvPYY4/x61//mksvvZS+ffvy5z//mR07dvDGG2+0SAzJ7Ej1OqmRbXyxV+EJwn6PRrfOvVCmjsVa94rouhEmpLlwYBLIkfl1hBBCtB1NTnZCoRDRaO0vvkgkQlVVVbOCqvHmm28yaNAgLr/8cjIzM+nfvz/PPvtsfP/mzZspKipi+PDh8W1+v5/TTz+dpUuXtkgMySo2v051y04dyU5u1RqKt1SvcF6Yg9ViRUNDt9ZXr6OoULrMryOEEKLNaXKyc9ppp/HMM8/U2v70008zcODAZgVV49tvv2XOnDkUFhbyzjvvcPPNN3PrrbfywgsvAFBUVARAVlZWwnlZWVnxfXUJhUKUlpYmPE400bANI2IDTeHwJCanmjJwl30RX+Fc9fgBSgHUU5xcU68TNfD4/FKcLIQQok1p8mis3/72twwfPpw1a9Zw/vnnA7B48WJWrFjBf/7znxYJzjRNBg0axIwZMwDo378/69at4+mnn2bcuHFNvu5DDz3Eb37zmxaJsb06tF7n8BqctPBm1hVZyDFgW7qVLtldUKaOpiu0OpOdEGGs6KZJmtTrCCGEaGOa3LIzZMgQli5dSl5eHq+++ir//Oc/6datG2vXruXss89ukeBycnLo3bt3wrZevXqxdetWALKzswHYtWtXwjG7du2K76vL9OnTKSkpiT+2bdvWIvG2J0eq18mtWku4eoXzLwrz0XUdZWpouolWR3GyboQJax7cmiKQLfU6Qggh2pYmt+wA/OAHP+Cll15qqVhqGTJkCBs2bEjY9vXXX9O5c2cACgoKyM7OZvHixfFJDUtLS1m+fDk333xzvdd1OBw4HI5jFnd7EG/ZOSzZ0VQUVfIVedt8AHh7xLokTVPH7gjVOcuyhqJSWUh3WvD4pF5HCCFE29KsZMc0TTZu3Mju3bsxzcTujXPOOadZgQFMmTKFM888kxkzZvDTn/6UTz75hGeeeSZeK6RpGpMnT+a3v/0thYWFFBQUcPfdd5Obm8tll13W7Psnq2jYSjRsBxTOw+p1MkLfsH67nc7AV7kOctNq6qE0LHXOrxPFQMcwIngC6bj9Uq8jhBCibWlysrNs2TKuvPJKtmzZglKJXRuapmEY9ayf1Ainnnoqr7/+OtOnT+f++++noKCAxx57jLFjx8aPmTZtGhUVFdxwww0UFxdz1lln8fbbbx9xZucTXU2rjt0VrLX0Q27VWsqqVzjfWNiN3sRGbmnUPZmgZoYJYcNimKRn5mKVeh0hhBBtTJOTnZtuuolBgwbx73//m5ycHLS6+jdawCWXXMIll1xS735N07j//vtlwdFGCFXUXa+jqzClezeRs8dHVIec6i4sZWqg1z0SSzPCVOHHpUXwZ8p6WEIIIdqeJic733zzDX/729/o1q1bS8YjjoP66nWygl/x7XYnJwFru6SQ6onV7ShTR6+nOFlDEdIsdHBaZX4dIYQQbVKTR2OdfvrpbNy4sSVjEceBEbEQCca6qZzexHqdzMrVBDbaAdjRvWd8u1IaFqtRuzjZjGJgwTSiuFN8uCXZEUII0QY1uWXnlltu4fbbb6eoqIg+ffpgs9kS9vft27fZwYmWVzNrss0ZxGI9WFdlNYMU7d5OWlkKlXYo6PqD+D5l6nXOnFxTr6NFTTpk5GI5wUe4CSGEaJuanOyMGTMGgAkTJsS3aZqGUqrFCpRFywuVx5aAOLxVJyv4Jd9vddEVWNUtnVx7LHFRCjSNeut1KrUAbj2CL0vqdYQQQrRNTU52Nm/e3JJxiOOkvnqdtPLVRKtXOC/t3oea1EUpDXSz1qgtAE0pwmh0sDukXkcIIUSb1eRkp2ZiP9F+mIZOuCo2NNzpOZjs2MwKtuzcQ4eQh31ejW75h9TrmDq6VscyEWYEQ7Ngmgae1HTcsh6WEEKINqrJBcoAL774IkOGDCE3N5ctW7YA8Nhjj/GPf/yjRYITLStY7gI0rPYwVvvBFetzqtZRVr3C+eruuVgtB3NgZWrodRQna2aYMDZ006RDh1wsMq+REEKINqrJyc6cOXOYOnUqF110EcXFxfEanUAgwGOPPdZS8YkWVN/8Ou7S1XT6rvpXofsPEvYppScUMtfQjQiVmgsXihSp1xFCCNGGNTnZeeKJJ3j22We56667sFgs8e2DBg3i888/b5HgRMuqq17HYZSw+ftSbNUrnHfOOtg9WTMxdl31OgAhNLwOp6yHJYQQok1rcrKzefNm+vfvX2u7w+GgoqKiWUGJlmeaGqHKmpFYB5OdnOA6jO9iI6/Wde+Mrh/8lVCqZqXz2vU6UXSUaeLx+WU9LCGEEG1ak5OdgoICVq9eXWv722+/Ta9evZoTkzgGQhUuUBoWWwSrPRLfru1fQ/73sV8DX8+BCecoU0PXVK2WnVi9jhXdMEjvkC31OkIIIdq0Jo/Gmjp1KhMnTiQYDKKU4pNPPuHll1/moYce4rnnnmvJGEULCFV3YTk9lfFiY1d0P1u3VdEZB191dJATyEw4R5k6Fnu0VnGybkSo0gK4ieDL6nQ8whdCCCGarMnJzvXXX4/L5eLXv/41lZWVXHnlleTm5vLHP/6Rn//85y0Zo2gBddXr5AbXsnNTbHmITYWF1GqPq6s4WSk0FEHNSrbDIkPOhRBCtHlNTnYAxo4dy9ixY6msrKS8vJzMzMyjnySOO2VWd2ORWK9TvutzsvdqRCyQ031g7fOgdr2OihDBgmZEcaelSb2OEEKINq9Z8+zUcLvdkui0YaEqJ0rp6JYoNmcYAG9kF7u2xuba+byLl4AnJeEcZYKm1Z45WTMisfWwjCjp6VKvI4QQou1rVMvOgAEDWLx4MampqfTv3x+t1jLYB61atarZwYmWEa/X8VbF628yK1dj2xRbvHVH994EDjvHNHU0XdVaE0s3IwS1AB4tgi9b6nWEEEK0fY1Kdi699FIc1StbX3bZZcciHnEM1KrXUYp9O74ivcxChQMKTupX65zYZIJRND1hIyhFULcScFhwp6Qdh+iFEEKI5mlUsnPvvffW+bNou5SC4GEzJ/uiOyjeqkgHPut6cIXzhPNMDYu1jnodzYpmRPH606VeRwghRLvQ5JqdFStWsHz58lrbly9fzqefftqsoETLCVc5UIYFTTewu4IApJV+Rk71Cudl3fvWc6ZWZ71OGBsW04jV67hcxzJ0IYQQokU0OdmZOHEi27Ztq7V9+/btTJw4sVlBiZZzcH6d6nodZVL0/Te4Q7AvRaNr59oTQCoFWh2TCepmmKDmwo3Ck5lzPMIXQgghmq3Jyc6XX37JgAEDam3v378/X375ZbOCEi2npgurpl4nNbKV0HextcxWF+Zg1Wv/CihTR9NU4rBzpWJdYpqO2+HAG8g49sELIYQQLaDJyY7D4WDXrl21tu/cuROrtVnT94gWotTB4uSaeh1n8So6ban+2HvUTlYhNhJLt5joujrkYhGimhXNMEhJ8ePySXGyEEKI9qHJyc4FF1zA9OnTKSkpiW8rLi7mV7/6FSNGjGiR4ETzREJ2zKgVTTNxuINoymDXli2xFc47WCjI7lLnebHi5GjCNs2IEFaxep209Byp1xFCCNFuNLkJ5ve//z3nnHMOnTt3jq9+vnr1arKysnjxxRdbLEDRdDX1Og5PFZquSA99S/Hm2Ef+RWFnutdznoaGbq1jfh09BY+KSL2OEEKIdqXJyU7Hjh1Zu3YtL730EmvWrMHlcnHttddyxRVXYLPZWjJG0USHz69j7l1J/nYNE/D1HFTnOUoBHDaZoFIopQhZdFItUq8jhBCifWlWcY3H4+GGG25oqVhECzq8XkdXUfZ9t5MANr7pZCc7UPfyHqp65mTt0JFYKkwEKxhRvKnpuFJSj8dLEEIIIVpEo5KdN998k1GjRmGz2XjzzTePeOwPf/jDZgUmmicatmFEbIDC4a4irWoDVdVz62ws7F57hfNqytTQdBNNO1icrBkRwpodi2mSnp6NLvU6Qggh2pFGJTuXXXYZRUVFZGZmHnG5CE3TMAyjubGJZojX67ir0C2Kyl2ryN4XW+E8t3vdXVgQG4lld4Q4dNkz3YwQ0nx4ieDOzDnimmhCCCFEW9OoZMc0zTp/Fm3PofPrWMww5Zv3AVbWdXHjd3uPcKaGxZJYr2MqjaBFJ83qxOvvcEzjFkIIIVpao4aep6WlsXfvXgAmTJhAWVnZMQlKNF+wPNbV5PRWkVb5JR2qu7B2dO9T7zlKgUbtep2oZgHTJCXFL+thCSGEaHcaleyEw2FKS0sBeOGFFwgGg8ckKNE80YiVaMgBKByeSvZvX0WgnNgK511rr3BeQ5ka6IkjsWLrYdmxmlHS0rLQnM7j8AqEEEKIltOobqzBgwdz2WWXMXDgQJRS3HrrrbjqKVZ9/vnnWyRA0Xih6lYduyuEQ68kvLkMsLC2W4Asm73e85Spo+sm2iEzJ+tmhKDmw2tGcGdIvY4QQoj2p1HJzl/+8hdmzZrFpk2bACgpKZHWnTbo0Pl1fGVrcWyKrYVV3L0/WUc4TykNqzV6sDhZmSgFYYtOulXm1xFCCNE+NSrZycrKYubMmQAUFBTw4osvkp4uNRxtzaHz6+z5bjWFYdibotE1v74B5zHK1LEcOnOyGSGiWVGmic+fhssv62EJIYRof5pcoHzeeedht9ffJSJahxHViQRjdTUprj1YN8da3r4ozKxzhfMaSoGmkbDSuWaECWPHpgxSpV5HCCFEOyUFykkmVD3k3OoI4S7/hLzqFc6Nnqcf8TylNNBN9ENGYunKIKi58KKkXkcIIUS71eYLlO+77z5+85vfJGzr0aMHX331FQDBYJDbb7+dhQsXEgqFGDlyJE899RRZWUeqTkleh3Zh7f/2SzJN2Jah0yUr/4jnxYqT1cGWHWViVtfrdNAdeAIyv44QQoj2qVEtO3/5y1+46KKLKC8vR9M0SkpKOHDgQJ2PlnTyySezc+fO+OOjjz6K75syZQr//Oc/+etf/8r777/Pjh07+PGPf9yi929PapKdFPc+PN9GAPiqMO+o5ylTw2IxDhYnmxGiWECp2Pw6PqnXEUII0T61iwJlq9VKdnZ2re0lJSXMnTuXBQsWMGzYMADmzZtHr169WLZsGWecccYxj60tMQ2dcGWsrsZR9QF5O2IrnHt7Dj7quUrp6NaDS3xoRpiQZsdmRklNzUKT9bCEEEK0U41q2QG46KKLKCkpYfPmzaSnpzNz5kyKi4vj+/ft20fv3r1bMka++eYbcnNzOemkkxg7dixbt24FYOXKlUQiEYYPHx4/tmfPnuTn57N06dJ6rxcKhSgtLU14JINQhQvQsNjDhLZ8BsDGPCtZR1niQVVPq1O7XseNByXrYQkhhGjXGp3svP3224RCofjzGTNmsH///vjzaDTKhg0bWiY64PTTT2f+/Pm8/fbbzJkzh82bN3P22WdTVlZGUVERdrudQCCQcE5WVhZFRUX1XvOhhx7C7/fHH3l5R+/maQ9qurA8rgOkb4q10nzbrfCo5ylVvdJ5HfU6bpvMryOEEKJ9a1Q3Vl2UUkc/qBlGjRoV/7lv376cfvrpdO7cmVdffbXe4uijmT59OlOnTo0/Ly0tTYqEpybZsURWkblfI2yBrB5HHoUFsXodXVMHW3bMCBEsaMokJSUVly/1WIYthBBCHFONbtlpbYFAgO7du7Nx40ays7MJh8MJ3WgAu3btqrPGp4bD4cDn8yU82jvT1AhV1+vYdn4CwFcFTvyuI61wHqPMWL1OTU9VrF7Hgc2Ikpou9TpCCCHat0YnO5qm1arfOJ71HOXl5WzatImcnBwGDhyIzWZj8eLF8f0bNmxg69atDB589KLcZBKudILSsVhCdPp6NwA7Ck9u2MlKx3JIcbKuooTi8+tkS72OEEKIdq3R3VhKKcaPH4/D4QBi89zcdNNNeDwegIR6npZwxx13MHr0aDp37syOHTu49957sVgsXHHFFfj9fq677jqmTp1KWloaPp+PW265hcGDB59wI7FqurCsbCRQAeVOyO82sEHnKg4pTlYGptKIWHU8mgNvIPMYRSyEEEIcH41OdsaNG5fw/Kqrrqp1zDXXXNP0iA7z/fffc8UVV7Bv3z4yMjI466yzWLZsGRkZsaLZWbNmoes6Y8aMSZhU8ERTk+y4DnwBwPpuXtKtR1/OQ5kamnZIcbIZJVI9v47XH8CVEjhWIQshRKszDINIJNLaYYh62Gw2LBZLs6/T6GRn3rx5zb5pYyxcuPCI+51OJ7Nnz2b27NnHKaK2R6mDy0Tkf/sNAMWFA2nIDEimqaHpCr062dGNMEHNgV0ZpKZmo7ndxypsIYRoNUopioqKatV8irYnEAiQnd28kopmj8YSrS9c6USZOhpVpBfvZK8POuc3rF5HmToWWxStunpLUwYh3UWKGcGVkSX1OkKIpFST6GRmZuJ2u+XfujZIKUVlZSW7d8fqUHNycpp8LUl2kkB8PazKb9BQfF2YRvYRVjg/lDI1LNaD9TqGgqim47HL/DpCiORkGEY80TkeqwCIpquZYmb37t1kZmY2uUur3Q09F7UFq7uwsos2AhDp0YiRaJp2yPw6UaJYUJikpARwpcj8OkKI5FNTo+OWbvp2oeZzak5tlSQ77ZxSEKpu2Uk/sJFtmRp5WQUNPlc7ZDJB3QgTxIFTmQQCmVKvI4RIatJ11T60xOckyU47Fwk6MA0LmhnCW76N77rVP5ni4ZSpx5Kd6uJkzYwSsrhxK0Pm1xFCCBF37rnnMnny5GNy7S5duvDYY48dk2vXkGSnnaup1wkUfwuY2Hqc0+BzzZqZk3UVq9dBI6preK0OvKkyv44QQrQ148ePR9M0brrpplr7Jk6ciKZpjB8//vgH1sZJstPOxZOdko1syrOQ2YiiYmVqWCzVMycbEcLKAipWr+OU+XWEEKJNysvLY+HChVRVVcW3BYNBFixYQH5+fpOvq5QiGo026dxwONzk+x4Pkuy0Y7F6nVileqB4Izu6Nu6XXENDrx6JpZthwroThzLwBzJkPSwhhGijBgwYQF5eHq+99lp822uvvUZ+fj79+/ePbwuFQtx6661kZmbidDo566yzWLFiRXz/e++9h6ZpvPXWWwwcOBCHw8FHH31ERUUF11xzDV6vl5ycHB599NFaMXTp0oUHHniAa665Bp/Pxw033ADARx99xNlnn43L5SIvL49bb72VioqK+Hm7d+9m9OjRuFwuCgoKeOmll47FW1SLJDvtmGk4MaI2NDOCq/I7/N0b3oUVW6z+kMkEzdj8Oh4F7swctAYOXRdCiGSglKIyHG3UIxgxUEoRjBh1Pm/IQ8X+MW60CRMmJEzy+/zzz3PttdcmHDNt2jT+/ve/88ILL7Bq1Sq6devGyJEj2b9/f8Jxv/zlL5k5cybr16+nb9++3Hnnnbz//vv84x//4D//+Q/vvfceq1atqhXD73//e/r168dnn33G3XffzaZNm7jwwgsZM2YMa9eu5ZVXXuGjjz5i0qRJ8XPGjx/Ptm3b+N///sff/vY3nnrqqfg8OseSzLPTjkUjfgB8pVvY1EXD505p8LnK1NF0hWYxQRlE0YhadDyaXebXEUKccKoiBr3veafR551d2IEnrujPKyu28bNT8/h/f/6UD7/Z2+Dzv7x/JG5747+Kr7rqKqZPn86WLVsAWLJkCQsXLuS9994DoKKigjlz5jB//nxGjRoFwLPPPsuiRYuYO3cud955Z/xa999/PyNGjABii23PnTuXv/zlL5x//vkAvPDCC3Tq1KlWDMOGDeP222+PP7/++usZO3ZsvJC5sLCQxx9/nKFDhzJnzhy2bt3KW2+9xSeffMKpp54KwNy5c+nVq1ejX39jSbLTjkXCXgACJd/wfc9C8hpxrjI1NN1E1xVEI4SVFZTC50/FIfPrCCFEg3z4zV5eWbGNG4d25U/vb2pUotMcGRkZXHzxxcyfPx+lFBdffDEdOnSI79+0aRORSIQhQ4bEt9lsNk477TTWr1+fcK1BgwYlnBcOhzn99NPj29LS0ujRo0etGA49D2DNmjWsXbs2oWtKKYVpmmzevJmvv/4aq9XKwIEHF6nu2bMngUCg8W9AI0my045FQ7HiZEfVRjK6nt2oc01Tx+6IrVCvm2FCugenMvD7O6C7pV5HCHFicdksfHn/yEafp2saDqtOxDC54ZyTGHdmF8xGdE25bE1f5HLChAnxLqLmrA/p8Xha5Lzy8nJuvPFGbr311lrH5ufn8/XXXzfpPi1Bkp12KhqyogigKYM9GTvx2xyNvIKGxXKwXidsceBTUdzpUq8jhDjxaJrWpO6kGjZLbF4yZzOSl8a68MILCYfDaJrGyJGJiVrXrl2x2+0sWbKEzp07A7EZiFesWHHE+XK6du2KzWZj+fLl8ZFdBw4c4Ouvv2bo0KFHjGfAgAF8+eWXdOvWrc79PXv2JBqNsnLlyng31oYNG47LYqyS7LRTZftiQ8a9Zduo6NaDi370E7yBVN6Z9+xRz1UKNA6p11Gxeh2v7sCbJvPrCCFEe2CxWOJdUoevGeXxeLj55pu58847SUtLIz8/n0ceeYTKykquu+66eq/p9Xq57rrruPPOO0lPTyczM5O77roLvQF/BP/iF7/gjDPOYNKkSVx//fV4PB6+/PJLFi1axJNPPkmPHj248MILufHGG5kzZw5Wq5XJkyfH1786liTZaafKtpcBsS6sS257GH9GJiV7GlbRHqvXqR6JZUQIE6vXSfEGsMv8OkII0W74fL56982cORPTNLn66qspKytj0KBBvPPOO6SmHrku83e/+x3l5eWMHj2alJQUbr/9dkpKSo4aS9++fXn//fe56667OPvss1FK0bVrV372s5/Fj5k3bx7XX389Q4cOJSsri9/+9rfcfffdDX/BTaSppo57SyKlpaX4/X5KSkqO+IvTlrz95FI2ravizPMq+MFPL6Fkz26WvP63Bp1rRCxousLtr8ASKaHE9GLabAzo3JP8sy6UbiwhRFILBoNs3ryZgoICnE5na4cjjuJIn1dDv7+lZacd2rd9B+deO4isJTv4wfD8RiU6UFOcHEbTQFMmYYsDv9TrCCGESFLyzdYOffDKX9iwdDv9L+iMUmajEh0AVHVxsjIwTA3DouOxSr2OEEKI5CTJTjv0o6nT6Ht+ZyqLy9B0nSE/+kmDz1WKWIvOIfU6CoXf68ee4j+GUQshhBCtQ5Kddqpkzx7e+MMfKNmzG39GZoMTHqU00E10i4luhgjpLlwY+AIZ6G73MY5aCCGEOP4k2Wmnlv7rdQCWvP63RiU8ytTRdYWmm/F6Hbdp4krPlnodIYQQSUm+3ZJATcLjDRx9mQdlalisBhoGUVPDsFhi9Tqpsh6WEEKI5CSjsZJEQ4uUldLRrQYY4Vi9jjLxp6Rh9wWObYBCCCFEK5GWnRNIbOZk0HWzej0sF25MfP4OUq8jhBAiaUmycwKpKU7WdBNMg4jFgds0cHeQeh0hhBDJS7qxTiDK1NE1ha5HMJSOYbXgwYInTep1hBBCJC/5c/4EokwN3WqgmSHCygaqZn6dQGuHJoQQogHGjx+PpmncdNNNtfZNnDgRTdMYP3788Q+sjZNk5wSilI7FaqCbEYIWJy4VJcWfgX4cVpwVQgjRMvLy8li4cCFVVVXxbcFgkAULFpCfn9/k6yqliEajLRFimyPJzglGt5hgmkR0Bx5T4U7PQrNYWjssIYQQDTRgwADy8vJ47bXX4ttee+018vPz6d+/f3xbKBTi1ltvJTMzE6fTyVlnncWKFSvi+9977z00TeOtt95i4MCBOBwOPvroI8rKyhg7diwej4ecnBxmzZrFueeey+TJk+PnvvjiiwwaNIiUlBSys7O58sor2b17d61rL168mEGDBuF2uznzzDPZsGHDsX1z6iHJzglCmRqaZqJpEaKmhmmz4rHZpV5HCCEgNlw1XNG4RyQYOy8SrPt5Qx5KNSncCRMmMG/evPjz559/nmuvvTbhmGnTpvH3v/+dF154gVWrVtGtWzdGjhzJ/v37E4775S9/ycyZM1m/fj19+/Zl6tSpLFmyhDfffJNFixbx4YcfsmrVqoRzIpEIDzzwAGvWrOGNN97gu+++q7P77K677uLRRx/l008/xWq1MmHChCa93uaSAuUThGlqaLpCp4oQNjQUAU+q1OsIIQRApBJm5Db+vK7D4CfPw6oXYcDVsPAK2PRuw8//1Q6wexp926uuuorp06ezZcsWAJYsWcLChQt57733AKioqGDOnDnMnz+fUaNGAfDss8+yaNEi5s6dy5133hm/1v3338+IESMAKCsr44UXXmDBggWcf/75AMybN4/c3MT35tCk5aSTTuLxxx/n1FNPpby8HK/XG9/34IMPMnToUCCWVF188cUEg0GcTmejX3NzSLJzglCmjtUWxWJGCFm8uFQUjy9N5tcRQojm2PRuLNEZcissebxxiU4zZGRkcPHFFzN//nyUUlx88cV06NDhYFibNhGJRBgyZEh8m81m47TTTmP9+vUJ1xo0aFD852+//ZZIJMJpp50W3+b3++nRo0fCOStXruS+++5jzZo1HDhwANM0Adi6dSu9e/eOH9e3b9/4zzk5OQDs3r27WbVFTSHJzolCaehWE5RJxOokxYji6iD1OkIIAYDNHWtlaSzNAlYHGGE48xY47QZQRuPu20QTJkxg0qRJAMyePbvJ1/F4GteyVFFRwciRIxk5ciQvvfQSGRkZbN26lZEjRxIOhxOOtdls8Z81TQOIJ0bHk9TsnCAUGnp1vY5hteCxOfCmZbZ2WEII0TZoWqw7qbEPmzN2rsUe+7/N2bjzqxOAprjwwgsJh8NEIhFGjhyZsK9r167Y7XaWLFkS3xaJRFixYkVCy8vhTjrpJGw2W0Ihc0lJCV9//XX8+VdffcW+ffuYOXMmZ599Nj179kwoTm6LpGXnBKBM0DSFrlURxoauKQLugNTrCCFEO2axWOJdUpbDWuk9Hg8333wzd955J2lpaeTn5/PII49QWVnJddddV+81U1JSGDduXPy8zMxM7r33XnRdj7fM5OfnY7fbeeKJJ7jppptYt24dDzzwwLF7oS2gXbXszJw5E03TEoa/BYNBJk6cSHp6Ol6vlzFjxrBr167WC7INMk0dTVNYVJCg7sStonj86VKvI4QQ7ZzP58Pn89W5b+bMmYwZM4arr76aAQMGsHHjRt555x1SU1OPeM0//OEPDB48mEsuuYThw4czZMgQevXqFS8qzsjIYP78+fz1r3+ld+/ezJw5k9///vct/tpakqZUE8e9HWcrVqzgpz/9KT6fj/POO4/HHnsMgJtvvpl///vfzJ8/H7/fz6RJk9B1PaHp7mhKS0vx+/2UlJTU+0vT1rz1/J848F0R/o4djnpsNGLFYjXw2r9ntzWLNN2k3w/OIeOUgcchUiGEaFuCwSCbN2+moKDguI8Kao8qKiro2LEjjz766BFbhY6VI31eDf3+bhctO+Xl5YwdO5Znn302ISMtKSlh7ty5/OEPf2DYsGEMHDiQefPm8fHHH7Ns2bJWjLhtUaaGRQ8TUTqm1YrXYsObltXaYQkhhGiDPvvsM15++WU2bdrEqlWrGDt2LACXXnppK0fWdO0i2Zk4cSIXX3wxw4cPT9i+cuVKIpFIwvaePXuSn5/P0qVLj3eYbZaGhq4FiSgbumbi96Ri97aPFiwhhBDH3+9//3v69evH8OHDqaio4MMPP0wY2t7etPkC5YULF7Jq1aqEyvAaRUVF2O12AoFAwvasrCyKiorqvWYoFCIUCsWfl5aWtli8bY1SgKawEqTC4salDLy+NPRGDjUUQghxYujfvz8rV65s7TBaVJtu2dm2bRu33XYbL730Uov2qz700EP4/f74Iy8vr8Wu3dao6uJkTYtgWB24TYUzPVPm1xFCCHHCaNPJzsqVK9m9ezcDBgzAarVitVp5//33efzxx7FarWRlZREOhykuLk44b9euXWRnZ9d73enTp1NSUhJ/bNu27Ri/ktZjmhq6HsbQqufXkXodIYQQJ5g23Y11/vnn8/nnnydsu/baa+nZsye/+MUvyMvLw2azsXjxYsaMGQPAhg0b2Lp1K4MHD673ug6HA4fDcUxjbyuUqWOxxup1LJrC70nDniL1OkIIIU4cbTrZSUlJ4ZRTTknY5vF4SE9Pj2+/7rrrmDp1Kmlpafh8Pm655RYGDx7MGWec0Roht0EaVoKUWTy4lIk3JVXm1xFCCHFCadPJTkPMmjULXdcZM2YMoVCIkSNH8tRTT7V2WG2CUqChQItiWG24TIUrPQvN2u4/diGEEKLB2t23Xs3y9TWcTiezZ89u1iJoyUqZGpoWxdTAtFrw6hoeqdcRQghxgmnTBcqieZSpoxMiolnQNfC5/FKvI4QQ4oQjyU4SM00dqx4kbHPjUtHY/DpSryOEEO3W+PHj0TQNTdOw2WwUFBQwbdo0gsFg/Jia/Zqm4fF4KCwsZPz48bXmznnvvffQNC1hRPOOHTvo06cP55xzDiUlJQnHHHrvuh5dunQ5Tu9C40myk+R0LUzUYsetkHodIYRIAhdeeCE7d+7k22+/ZdasWfzpT3/i3nvvTThm3rx57Ny5ky+++ILZs2dTXl7O6aefzp///Od6r7tp0ybOOussOnfuzDvvvIPf70/Y/8c//pGdO3fGH4feZ+fOnXVO/ttWyDdfklIKNGVgahrKZsGLVebXEUKIJOBwOOJzyeXl5TF8+HAWLVrEww8/HD8mEAjEj+nSpQsXXHAB48aNY9KkSYwePbrWyudr165l5MiRDBs2jBdeeAFrHX8Y10zEe6hD79OWSctOklKmhkaYiK6jawqfx4/Nm9LaYQkhRJuklKIyUtmoRzAaRClFMBqs83lDHkqpZsW9bt06Pv74Y+x2+1GPnTJlCmVlZSxatChh+8cff8zQoUMZM2YMf/nLX+pMdNq75HtFAqieTJAwQbsTlzLwpKTKelhCCFGPqmgVpy84vdHnDc4dzO/O+R2vffMaPy78Mbf+71aW7mj4QtTLr1yO29a4Wsp//etfeL1eotEooVAIXdd58sknj3pez549Afjuu+8Stv/oRz/iZz/7WYOu0V5Jy06SUkpD1yIYNjseU+FOy5R6HSGEaGFLdyzltW9e49pTruW1b15rVKLTVOeddx6rV69m+fLljBs3jmuvvTa+isCR1LQiaZqWsP3SSy/l9ddf58MPPzwm8bYF8u2XpJRhomwKZbXg0ax40tp+n6oQQrQWl9XF8iuXN/o8XdNxWBxEjAjjTx7PFT2vwFRmo+7bWB6Ph27dugHw/PPP069fP+bOnct11113xPPWr18PQEFBQcL2P/3pT0ybNo1Ro0bxf//3f5xzzjmNjqmtk2QnCcWKk6NEdB1NV/hcfmwpUq8jhBD10TSt0d1Jh7JZbAA4rc6WCqlBdF3nV7/6FVOnTuXKK6/E5ao/eXrsscfw+XwMHz48YbumaTzzzDPous5FF13Ev//9b4YOHXqsQz+upBsrCSmlYSFMxO7ErQw8XlkPSwghktXll1+OxWJJWEmguLiYoqIitmzZwqJFi/jJT37CggULmDNnDoFAoNY1NE3j6aef5pprruGiiy6qtVpBeyctO0lIGTpgYNhteE1wp2eh2WytHZYQQohjwGq1MmnSJB555BFuvvlmAK699logtqRSx44dOeuss/jkk08YMGBAvdfRNI3Zs2ej6zoXX3wx//rXv2rV97RXmmruuLckUFpait/vp6SkBJ+vfSyn8Nbzf+LAd0X4O3aotS8a0kCVEczychLQ56xLcXbqdPyDFEKINigYDLJ582YKCgpwOo9vt5NovCN9Xg39/pZurGQUNTCtoOvg8wSweb2tHZEQQgjRaiTZSUKaMojanLhVFLdX5tcRQghxYpNkJ8mYhoZSBoZdx2NquNMypF5HCCHECU0KlJOMMk2UDth1vDoyv44QQogTniQ7ySZqErVoWG0aKU6ZX0cIIYSQbqxkY0Qx7LZYvY4nIPU6QgghTniS7CQTBaYJymHBbYAnTebXEUIIISTZSSLKNDA0HWXX8VpseDpIvY4QQgghyU4SUVGTqKZhtZn4nD6sMr+OEEIIIclOMtEME2W349EiuLwBWQ9LCCGEQJKd5KEgGgXToeM29Vi9jt3e2lEJIYRoYdu2bWPChAnk5uZit9vp3Lkzt912G/v27Ysfc+655zJ58uRa586fPz9hIdD58+ejaVqtR7ItoyFDz5NGhCgWNIeGV7NKvY4QQiShb7/9lsGDB9O9e3defvllCgoK+OKLL7jzzjt56623WLZsGWlpaY26ps/nY8OGDQnbkmUB0BqS7CSLaBRDc2GzK/wuHxYZci6EEEln4sSJ2O12/vOf/+ByuQDIz8+nf//+dO3albvuuos5c+Y06pqappGdndx/IEuykyQ0w8Sw2fDqIVwpqZLsCCFEIyilUFVVjTtJ19EcDlQoFJv34/DnDaC5XA1uRdm/fz/vvPMODz74YDzRqZGdnc3YsWN55ZVXeOqppxr3Ok4AkuwkAwURQ0c5dTwK3KkZUq8jhBCNoKqq2DBgYKPP8ww5k46PPkrx3/9OYMwYvp84kYolHzf4/B6rVqI1cDDJN998g1KKXr161bm/V69eHDhwgD179gDw1FNP8dxzzyUcE41Ga9XjlJSU4D1s9O7ZZ5/NW2+91dCX0eZJspMUIkQNK5pTkSL1OkIIcdxULPmY4r//nfTrrmPf3LmNSnSaSinVoOPGjh3LXXfdlbDttddeY8aMGQnbUlJSWLVqVcK2w1uO2jtJdpKAZkSJaC5sDvA5fVg8Mr+OEEI0huZy0WPVysafWNN1FYmQNmECqWPHNrgLq+a+DdWtWzc0TWP9+vX86Ec/qrV//fr1pKamkpGRAYDf76dbt24Jx2RmZtbxEvRaxyUbSXaSgGZGMXQnXi2Eyyf1OkII0ViapjW4O6lO1UvzaMdwyHZ6ejojRozgqaeeYsqUKQmtL0VFRbz00ktcc801STeSqiXIPDvtnVJEI4BNx4OSeh0hhEhiTz75JKFQiJEjR/LBBx+wbds23n77bUaMGEHHjh158MEHG31NpRRFRUW1HmYjWqjaOkl22jsVJaLsKAf4LBap1xFCiCRWWFjIp59+ykknncRPf/pTunbtyg033MB5553H0qVLGz3HDkBpaSk5OTm1Hrt37z4Gr6B1aKqhlU5JrLS0FL/fT0lJCT6fr7XDaZC3nv8TB74rIpDppizohgwnA9KcFJx1EdbU1NYOTwgh2qxgMMjmzZspKChIupmCk9GRPq+Gfn9Ly047pymDqO7ErUdweVPRpV5HCCGESCDJTrumMAyFabHE6nUCHdClXkcIIYRIIMlOO6ZhEFF2sGv4rBpuqdcRQgghamnzyc6cOXPo27cvPp8Pn8/H4MGDE2Z1DAaDTJw4kfT0dLxeL2PGjGHXrl2tGPHxoymTsLJjsyl8nhSs3pTWDkkIIYRoc9p8stOpUydmzpzJypUr+fTTTxk2bBiXXnopX3zxBQBTpkzhn//8J3/96195//332bFjBz/+8Y9bOerjQwFRXDgtYTxSryOEEELUqc1PKjh69OiE5w8++CBz5sxh2bJldOrUiblz57JgwQKGDRsGwLx58+jVqxfLli3jjDPOaI2QjxsTC8piJUUP4ZJ6HSGEEKJObb5l51CGYbBw4UIqKioYPHgwK1euJBKJMHz48PgxPXv2JD8/n6VLl9Z7nVAoRGlpacKjPTKwoKw6XquOJyOntcMRQggh2qR2kex8/vnneL1eHA4HN910E6+//jq9e/emqKgIu91OIBBIOD4rK4uioqJ6r/fQQw/h9/vjj7y8vGP8Co4NU7Njsyp8bi8Wr6yHJYQQQtSlXSQ7PXr0YPXq1Sxfvpybb76ZcePG8eWXXzb5etOnT6ekpCT+2LZtWwtGe5xoOprFjU2LkuLzozdnTRchhBAiibX5mh0Au90eX5F14MCBrFixgj/+8Y/87Gc/IxwOU1xcnNC6s2vXLrKz6x+G7XA4cDgcxzrsY8pwpGJYIqRYFe7UDujt/PUIIYRo2zRN4/XXX+eyyy5r7VAarV207BzONE1CoRADBw7EZrOxePHi+L4NGzawdetWBg8e3IoRHgcWO5oFfDZN6nWEEOIEMX78+NgK7ZqGzWajoKCAadOmEQwGWzu0Nq3Nt+xMnz6dUaNGkZ+fT1lZGQsWLOC9997jnXfewe/3c9111zF16lTS0tLw+XzccsstDB48OOlHYmkaOGwKr8uLRYacCyHECePCCy9k3rx5RCIRVq5cybhx49A0jYcffri1Q2uz2nzLzu7du7nmmmvo0aMH559/PitWrOCdd95hxIgRAMyaNYtLLrmEMWPGcM4555Cdnc1rr73WylEfe36nDa+ukeLzyfw6QghxAnE4HGRnZ5OXl8dll13G8OHDWbRoEQD79u3jiiuuoGPHjrjdbvr06cPLL7+ccP65557LrbfeyrRp00hLSyM7O5v77rsv4ZhvvvmGc845B6fTSe/evePXP9Tnn3/OsGHDcLlcpKenc8MNN1BeXh7fP378eC677DJmzJhBVlYWgUCA+++/n2g0yp133klaWhqdOnVi3rx5Lf8mHabNt+zMnTv3iPudTiezZ89m9uzZxymitsFu1XBbdDypqVKvI4QQzaSUIho2G3WOpoHFpmNETJSq/bwhrHYdTdOaEHHMunXr+Pjjj+ncuTMQW1Vg4MCB/OIXv8Dn8/Hvf/+bq6++mq5du3LaaafFz3vhhReYOnUqy5cvZ+nSpYwfP54hQ4YwYsQITNPkxz/+MVlZWSxfvpySkhImT56ccN+KigpGjhzJ4MGDWbFiBbt37+b6669n0qRJzJ8/P37cu+++S6dOnfjggw9YsmQJ1113HR9//DHnnHMOy5cv55VXXuHGG29kxIgRdOrUqcnvw9G0+WRH1M9ht5CSldvaYQghRLsXDZs8c9v7jT4vr1caF1x/MuuX7KDXkFz+b87nbFu/v8Hn3/DHodgclkbd81//+hder5doNEooFELXdZ588kkAOnbsyB133BE/9pZbbuGdd97h1VdfTUh2+vbty7333gtAYWEhTz75JIsXL2bEiBH897//5auvvuKdd94hNzf2HTNjxgxGjRoVP3/BggUEg0H+/Oc/46nuXXjyyScZPXo0Dz/8MFlZWQCkpaXx+OOPo+s6PXr04JFHHqGyspJf/epXQKxUZebMmXz00Uf8/Oc/b9T70BiS7LRTmq7h86fI/DpCCNGKtq3fz/olO+h/QWc++8+WRiU6TXXeeecxZ84cKioqmDVrFlarlTFjxgCxyXdnzJjBq6++yvbt2wmHw4RCIdyHTU/St2/fhOc5OTns3r0bgPXr15OXlxdPdIBag37Wr19Pv3794okOwJAhQzBNkw0bNsSTnZNPPhldP1gxk5WVxSmnnBJ/brFYSE9Pj9/7WJFkp53KSUvFYrFKvY4QQrQAq13nhj8ObfR58a6rqMkPRuTT59xODe7CqrlvY3k8nvh0LM8//zz9+vVj7ty5XHfddfzud7/jj3/8I4899hh9+vTB4/EwefJkwuFwwjVsNtthr0PDNBvXjdcQdd3neN37UJLstFMdfD5Mu0PqdYQQogVomtbo7qRDWayxuhurvenXaApd1/nVr37F1KlTufLKK1myZAmXXnopV111FRCbquXrr7+md+/eDb5mr1692LZtGzt37iQnJza1ybJly2odM3/+fCoqKuKtO0uWLIl3V7U1bX40lqiHrmNNT2vtKIQQQrSyyy+/HIvFwuzZsyksLGTRokV8/PHHrF+/nhtvvJFdu3Y16nrDhw+ne/fujBs3jjVr1vDhhx9y1113JRwzduxYnE4n48aNY926dfzvf//jlltu4eqrr453YbUlkuy0U/aOHbG2wV8oIYQQx5fVamXSpEk88sgj3H777QwYMICRI0dy7rnnkp2d3egZj3Vd5/XXX6eqqorTTjuN66+/ngcffDDhGLfbzTvvvMP+/fs59dRT+clPfsL5558fL5RuazSlGtO7mJxKS0vx+/2UlJTg8/laOxwhhBDHUDAYZPPmzRQUFOB0Ols7HHEUR/q8Gvr9LS07QgghhEhqkuwIIYQQIqlJsiOEEEKIpCbJjhBCCCGSmiQ7QgghhEhqkuwIIYQ4Iclg5PahJT4nSXaEEEKcUGqWK6isrGzlSERD1HxOhy8z0RiyXIQQQogTisViIRAIxBefdLvdaJrWylGJwymlqKysZPfu3QQCASyWpi/FIcmOEEKIE052djbAMV9tWzRfIBCIf15NJcmOEEKIE46maeTk5JCZmUkkEmntcEQ9bDZbs1p0akiyI4QQ4oRlsVha5MtUtG1SoCyEEEKIpCbJjhBCCCGSmiQ7QgghhEhqUrPDwQmLSktLWzkSIYQQQjRUzff20SYelGQH2LdvHwB5eXmtHIkQQgghGqusrAy/31/vfkl2gLS0NAC2bt16xDdLNE9paSl5eXls27YNn8/X2uEkLXmfjw95n48fea+Pj/b4PiulKCsrIzc394jHSbID6HqsdMnv97ebD7g98/l88j4fB/I+Hx/yPh8/8l4fH+3tfW5II4UUKAshhBAiqUmyI4QQQoikJskO4HA4uPfee3E4HK0dSlKT9/n4kPf5+JD3+fiR9/r4SOb3WVNHG68lhBBCCNGOScuOEEIIIZKaJDtCCCGESGqS7AghhBAiqZ3wyc7s2bPp0qULTqeT008/nU8++aS1Q0o6Dz30EKeeeiopKSlkZmZy2WWXsWHDhtYOK6nNnDkTTdOYPHlya4eSlLZv385VV11Feno6LpeLPn368Omnn7Z2WEnFMAzuvvtuCgoKcLlcdO3alQceeOCoywKII/vggw8YPXo0ubm5aJrGG2+8kbBfKcU999xDTk4OLpeL4cOH880337ROsC3ohE52XnnlFaZOncq9997LqlWr6NevHyNHjmT37t2tHVpSef/995k4cSLLli1j0aJFRCIRLrjgAioqKlo7tKS0YsUK/vSnP9G3b9/WDiUpHThwgCFDhmCz2Xjrrbf48ssvefTRR0lNTW3t0JLKww8/zJw5c3jyySdZv349Dz/8MI888ghPPPFEa4fWrlVUVNCvXz9mz55d5/5HHnmExx9/nKeffprly5fj8XgYOXIkwWDwOEfawtQJ7LTTTlMTJ06MPzcMQ+Xm5qqHHnqoFaNKfrt371aAev/991s7lKRTVlamCgsL1aJFi9TQoUPVbbfd1tohJZ1f/OIX6qyzzmrtMJLexRdfrCZMmJCw7cc//rEaO3ZsK0WUfAD1+uuvx5+bpqmys7PV7373u/i24uJi5XA41Msvv9wKEbacE7ZlJxwOs3LlSoYPHx7fpus6w4cPZ+nSpa0YWfIrKSkBDq5JJlrOxIkTufjiixN+r0XLevPNNxk0aBCXX345mZmZ9O/fn2effba1w0o6Z555JosXL+brr78GYM2aNXz00UeMGjWqlSNLXps3b6aoqCjh3w+/38/pp5/e7r8XT9i1sfbu3YthGGRlZSVsz8rK4quvvmqlqJKfaZpMnjyZIUOGcMopp7R2OEll4cKFrFq1ihUrVrR2KEnt22+/Zc6cOUydOpVf/epXrFixgltvvRW73c64ceNaO7yk8ctf/pLS0lJ69uyJxWLBMAwefPBBxo4d29qhJa2ioiKAOr8Xa/a1VydssiNax8SJE1m3bh0fffRRa4eSVLZt28Ztt93GokWLcDqdrR1OUjNNk0GDBjFjxgwA+vfvz7p163j66acl2WlBr776Ki+99BILFizg5JNPZvXq1UyePJnc3Fx5n0WjnbDdWB06dMBisbBr166E7bt27SI7O7uVokpukyZN4l//+hf/+9//6NSpU2uHk1RWrlzJ7t27GTBgAFarFavVyvvvv8/jjz+O1WrFMIzWDjFp5OTk0Lt374RtvXr1YuvWra0UUXK68847+eUvf8nPf/5z+vTpw9VXX82UKVN46KGHWju0pFXz3ZeM34snbLJjt9sZOHAgixcvjm8zTZPFixczePDgVows+SilmDRpEq+//jrvvvsuBQUFrR1S0jn//PP5/PPPWb16dfwxaNAgxo4dy+rVq7FYLK0dYtIYMmRIrakTvv76azp37txKESWnyspKdD3xK8pisWCaZitFlPwKCgrIzs5O+F4sLS1l+fLl7f578YTuxpo6dSrjxo1j0KBBnHbaaTz22GNUVFRw7bXXtnZoSWXixIksWLCAf/zjH6SkpMT7fv1+Py6Xq5WjSw4pKSm1aqA8Hg/p6elSG9XCpkyZwplnnsmMGTP46U9/yieffMIzzzzDM88809qhJZXRo0fz4IMPkp+fz8knn8xnn33GH/7wByZMmNDaobVr5eXlbNy4Mf588+bNrF69mrS0NPLz85k8eTK//e1vKSwspKCggLvvvpvc3Fwuu+yy1gu6JbT2cLDW9sQTT6j8/Hxlt9vVaaedppYtW9baISUdoM7HvHnzWju0pCZDz4+df/7zn+qUU05RDodD9ezZUz3zzDOtHVLSKS0tVbfddpvKz89XTqdTnXTSSequu+5SoVCotUNr1/73v//V+e/xuHHjlFKx4ed33323ysrKUg6HQ51//vlqw4YNrRt0C5BVz4UQQgiR1E7Ymh0hhBBCnBgk2RFCCCFEUpNkRwghhBBJTZIdIYQQQiQ1SXaEEEIIkdQk2RFCCCFEUpNkRwghhBBJTZIdIYQQQiQ1SXaEEKIBNE3jjTfeaO0whBBNIMmOECeQ8ePHo2kaM2fOTNj+xhtvoGlaK0UVo2lanY+FCxe2alw1du7cyahRo1o7DObPn08gEGjtMIRoVyTZEeIE43Q6efjhhzlw4EBrh1LLvHnz2LlzZ8KjtRcgDIfDAGRnZ+NwOFo1FiFE00iyI8QJZvjw4WRnZ/PQQw/Vuf++++7jBz/4QcK2xx57jC5dusSfjx8/nssuu4wZM2aQlZVFIBDg/vvvJxqNcuedd5KWlkanTp2YN29eo2ILBAJkZ2cnPJxOJwATJkygb9++hEIhIJaE9O/fn2uuuQaA7777Lt4SdOaZZ+J0OjnllFN4//33E+6xbt06Ro0ahdfrJSsri6uvvpq9e/fG95977rlMmjSJyZMn06FDB0aOHAkkdmPV3OvVV1/l7LPPxuVyceqpp/L111+zYsUKBg0ahNfrZdSoUezZsyfh/s899xy9evXC6XTSs2dPnnrqqfi+muu+9tprnHfeebjdbvr168fSpUsBeO+997j22mspKSmJt3zdd999ADz11FMUFhbidDrJysriJz/5SaPeeyGSmSQ7QpxgLBYLM2bM4IknnuD7779v8nXeffddduzYwQcffMAf/vAH7r33Xi655BJSU1NZvnw5N910EzfeeGOz7nGoxx9/nIqKCn75y18CcNddd1FcXMyTTz6ZcNydd97J7bffzmeffcbgwYMZPXo0+/btA6C4uJhhw4bRv39/Pv30U95++2127drFT3/604RrvPDCC9jtdpYsWcLTTz9db0z33nsvv/71r1m1ahVWq5Urr7ySadOm8cc//pEPP/yQjRs3cs8998SPf+mll7jnnnt48MEHWb9+PTNmzODuu+/mhRdeSLjuXXfdxR133MHq1avp3r07V1xxBdFolDPPPJPHHnsMn88Xb/m64447+PTTT7n11lu5//772bBhA2+//TbnnHNOs95vIZJKay+7LoQ4fsaNG6cuvfRSpZRSZ5xxhpowYYJSSqnXX39d1fxzcO+996p+/folnDdr1izVuXPnhOt07txZGYYR39ajRw919tlnx59Ho1Hl8XjUyy+/3KDYAOV0OpXH40l4bNmyJX7Mxx9/rGw2m7r77ruV1WpVH374YXzf5s2bFaBmzpwZ3xaJRFSnTp3Uww8/rJRS6oEHHlAXXHBBwn23bdumALVhwwallFJDhw5V/fv3rzO+119/PeFezz33XHz/yy+/rAC1ePHi+LaHHnpI9ejRI/68a9euasGCBQnXfeCBB9TgwYPrve4XX3yhALV+/XqllFLz5s1Tfr8/4Rp///vflc/nU6WlpbXiFkIoZW21LEsI0aoefvhhhg0bxh133NGk808++WR0/WDjcFZWFqecckr8ucViIT09nd27dzf4mrNmzWL48OEJ23Jzc+M/Dx48mDvuuIMHHniAX/ziF5x11lm1rjF48OD4z1arlUGDBrF+/XoA1qxZw//+9z+8Xm+t8zZt2kT37t0BGDhwYIPi7du3b/znrKwsAPr06ZOwreb1V1RUsGnTJq677jr+3//7f/FjotEofr+/3uvm5OQAsHv3bnr27FlnHCNGjKBz586cdNJJXHjhhVx44YX86Ec/wu12N+h1CJHsJNkR4gR1zjnnMHLkSKZPn8748ePj23VdRymVcGwkEql1vs1mS3iuaVqd20zTbHBM2dnZdOvWrd79pmmyZMkSLBYLGzdubPB1a5SXlzN69GgefvjhWvtqkgoAj8fToOsd+nprRrMdvq3m9ZeXlwPw7LPPcvrppydcx2KxHPW6R3ofU1JSWLVqFe+99x7/+c9/uOeee7jvvvtYsWKFjNwSAqnZEeKENnPmTP75z3/GC2ABMjIyKCoqSkh4Vq9e3QrR1fa73/2Or776ivfff5+33367zgLoZcuWxX+ORqOsXLmSXr16ATBgwAC++OILunTpQrdu3RIeDU1wmiorK4vc3Fy+/fbbWvcuKCho8HXsdjuGYdTabrVaGT58OI888ghr167lu+++4913323JlyBEuyUtO0KcwPr06cPYsWN5/PHH49vOPfdc9uzZwyOPPMJPfvIT3n77bd566y18Pt8xj6e4uJiioqKEbSkpKXg8Hj777DPuuece/va3vzFkyBD+8Ic/cNtttzF06FBOOumk+PGzZ8+msLCQXr16MWvWLA4cOMCECRMAmDhxIs8++yxXXHEF06ZNIy0tjY0bN7Jw4UKee+65Wi0sLe03v/kNt956K36/nwsvvJBQKMSnn37KgQMHmDp1aoOu0aVLF8rLy1m8eDH9+vXD7Xbz7rvv8u2333LOOeeQmprK//3f/2GaJj169Dimr0eI9kJadoQ4wd1///0JXSS9evXiqaeeYvbs2fTr149PPvmkyXU9jXXttdeSk5OT8HjiiScIBoNcddVVjB8/ntGjRwNwww03cN5553H11VcntHTMnDmTmTNn0q9fPz766CPefPNNOnToAMTqf5YsWYJhGFxwwQX06dOHyZMnEwgEEuqPjpXrr7+e5557jnnz5tGnTx+GDh3K/PnzG9Wyc+aZZ3LTTTfxs5/9jIyMDB555BECgQCvvfYaw4YNo1evXjz99NO8/PLLnHzyycfw1QjRfmjq8M55IYRoh7777jsKCgr47LPPas0TJIQ4sUnLjhBCCCGSmiQ7QohjbsaMGXi93jofbWG9KSFEcpNuLCHEMbd//372799f5z6Xy0XHjh2Pc0RCiBOJJDtCCCGESGrSjSWEEEKIpCbJjhBCCCGSmiQ7QgghhEhqkuwIIYQQIqlJsiOEEEKIpCbJjhBCCCGSmiQ7QgghhEhqkuwIIYQQIqn9f9f5kPfO/DBQAAAAAElFTkSuQmCC",
"text/plain": [
"