diff --git a/can_baybe-inhibitor.ipynb b/can_baybe-inhibitor.ipynb
index 4e98bce..7132fe4 100644
--- a/can_baybe-inhibitor.ipynb
+++ b/can_baybe-inhibitor.ipynb
@@ -30,7 +30,7 @@
},
{
"cell_type": "code",
- "execution_count": 164,
+ "execution_count": 297,
"metadata": {},
"outputs": [
{
@@ -68,16 +68,16 @@
"
C(=O)(C(=O)[O-])[O-] | \n",
" 24.0 | \n",
" 4.0 | \n",
- " 1.000000e-03 | \n",
+ " 0.0010 | \n",
" 0.10 | \n",
- " 15.00 | \n",
+ " 20.00 | \n",
" \n",
" \n",
" 1 | \n",
" C(=O)(C(=O)[O-])[O-] | \n",
" 24.0 | \n",
" 7.0 | \n",
- " 5.000000e-04 | \n",
+ " 0.0005 | \n",
" 0.05 | \n",
" 12.35 | \n",
"
\n",
@@ -86,27 +86,27 @@
" C(=O)(C(=O)[O-])[O-] | \n",
" 24.0 | \n",
" 10.0 | \n",
- " 1.000000e-03 | \n",
+ " 0.0010 | \n",
" 0.10 | \n",
- " 30.00 | \n",
+ " 20.00 | \n",
" \n",
" \n",
" 3 | \n",
" C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O | \n",
- " 0.0 | \n",
- " 2.0 | \n",
- " 5.000000e-07 | \n",
- " 2.00 | \n",
- " 53.85 | \n",
+ " 24.0 | \n",
+ " 4.0 | \n",
+ " 0.0010 | \n",
+ " 0.10 | \n",
+ " 30.00 | \n",
"
\n",
" \n",
" 4 | \n",
" C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O | \n",
- " 0.0 | \n",
- " 2.0 | \n",
- " 1.000000e-06 | \n",
- " 2.00 | \n",
- " 58.55 | \n",
+ " 24.0 | \n",
+ " 7.0 | \n",
+ " 0.0005 | \n",
+ " 0.05 | \n",
+ " -23.95 | \n",
"
\n",
" \n",
" ... | \n",
@@ -118,86 +118,86 @@
" ... | \n",
"
\n",
" \n",
- " 986 | \n",
+ " 510 | \n",
" c1ccc2c(c1)[nH]nn2 | \n",
" 24.0 | \n",
" 7.0 | \n",
- " 5.000000e-04 | \n",
+ " 0.0005 | \n",
" 0.05 | \n",
" 97.95 | \n",
"
\n",
" \n",
- " 987 | \n",
+ " 511 | \n",
" c1ccc2c(c1)[nH]nn2 | \n",
" 24.0 | \n",
" 10.0 | \n",
- " 1.000000e-03 | \n",
+ " 0.0010 | \n",
" 0.10 | \n",
- " 60.00 | \n",
+ " 90.00 | \n",
"
\n",
" \n",
- " 988 | \n",
+ " 512 | \n",
" c1ccc2c(c1)[nH]nn2 | \n",
" 672.0 | \n",
" 7.0 | \n",
- " 1.000000e-03 | \n",
+ " 0.0010 | \n",
" 0.10 | \n",
- " 95.00 | \n",
+ " 98.00 | \n",
"
\n",
" \n",
- " 989 | \n",
+ " 513 | \n",
" c1ncn[nH]1 | \n",
" 24.0 | \n",
" 4.0 | \n",
- " 1.000000e-03 | \n",
+ " 0.0010 | \n",
" 0.10 | \n",
- " 35.00 | \n",
+ " 30.00 | \n",
"
\n",
" \n",
- " 990 | \n",
+ " 514 | \n",
" c1ncn[nH]1 | \n",
" 24.0 | \n",
" 10.0 | \n",
- " 1.000000e-03 | \n",
+ " 0.0010 | \n",
" 0.10 | \n",
- " 50.00 | \n",
+ " 90.00 | \n",
"
\n",
" \n",
"\n",
- "991 rows × 6 columns
\n",
+ "515 rows × 6 columns
\n",
""
],
"text/plain": [
" SMILES Time_h pH Inhib_Concentrat_M \\\n",
- "0 C(=O)(C(=O)[O-])[O-] 24.0 4.0 1.000000e-03 \n",
- "1 C(=O)(C(=O)[O-])[O-] 24.0 7.0 5.000000e-04 \n",
- "2 C(=O)(C(=O)[O-])[O-] 24.0 10.0 1.000000e-03 \n",
- "3 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O 0.0 2.0 5.000000e-07 \n",
- "4 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O 0.0 2.0 1.000000e-06 \n",
+ "0 C(=O)(C(=O)[O-])[O-] 24.0 4.0 0.0010 \n",
+ "1 C(=O)(C(=O)[O-])[O-] 24.0 7.0 0.0005 \n",
+ "2 C(=O)(C(=O)[O-])[O-] 24.0 10.0 0.0010 \n",
+ "3 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O 24.0 4.0 0.0010 \n",
+ "4 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O 24.0 7.0 0.0005 \n",
".. ... ... ... ... \n",
- "986 c1ccc2c(c1)[nH]nn2 24.0 7.0 5.000000e-04 \n",
- "987 c1ccc2c(c1)[nH]nn2 24.0 10.0 1.000000e-03 \n",
- "988 c1ccc2c(c1)[nH]nn2 672.0 7.0 1.000000e-03 \n",
- "989 c1ncn[nH]1 24.0 4.0 1.000000e-03 \n",
- "990 c1ncn[nH]1 24.0 10.0 1.000000e-03 \n",
+ "510 c1ccc2c(c1)[nH]nn2 24.0 7.0 0.0005 \n",
+ "511 c1ccc2c(c1)[nH]nn2 24.0 10.0 0.0010 \n",
+ "512 c1ccc2c(c1)[nH]nn2 672.0 7.0 0.0010 \n",
+ "513 c1ncn[nH]1 24.0 4.0 0.0010 \n",
+ "514 c1ncn[nH]1 24.0 10.0 0.0010 \n",
"\n",
" Salt_Concentrat_M Efficiency \n",
- "0 0.10 15.00 \n",
+ "0 0.10 20.00 \n",
"1 0.05 12.35 \n",
- "2 0.10 30.00 \n",
- "3 2.00 53.85 \n",
- "4 2.00 58.55 \n",
+ "2 0.10 20.00 \n",
+ "3 0.10 30.00 \n",
+ "4 0.05 -23.95 \n",
".. ... ... \n",
- "986 0.05 97.95 \n",
- "987 0.10 60.00 \n",
- "988 0.10 95.00 \n",
- "989 0.10 35.00 \n",
- "990 0.10 50.00 \n",
+ "510 0.05 97.95 \n",
+ "511 0.10 90.00 \n",
+ "512 0.10 98.00 \n",
+ "513 0.10 30.00 \n",
+ "514 0.10 90.00 \n",
"\n",
- "[991 rows x 6 columns]"
+ "[515 rows x 6 columns]"
]
},
- "execution_count": 164,
+ "execution_count": 297,
"metadata": {},
"output_type": "execute_result"
}
@@ -225,7 +225,7 @@
"df_Al = pd.read_excel('data/averaged_filtered_Al.xlsx')\n",
"\n",
"# change this for campaigns on different datasets\n",
- "df_active = df_Al\n",
+ "df_active = df_AA2024\n",
"\n",
"\n",
"if df_active is df_AA2024:\n",
@@ -246,7 +246,7 @@
},
{
"cell_type": "code",
- "execution_count": 165,
+ "execution_count": 298,
"metadata": {},
"outputs": [],
"source": [
@@ -255,7 +255,7 @@
},
{
"cell_type": "code",
- "execution_count": 166,
+ "execution_count": 299,
"metadata": {},
"outputs": [],
"source": [
@@ -270,7 +270,7 @@
},
{
"cell_type": "code",
- "execution_count": 167,
+ "execution_count": 300,
"metadata": {},
"outputs": [],
"source": [
@@ -338,40 +338,9 @@
},
{
"cell_type": "code",
- "execution_count": 168,
+ "execution_count": 301,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "________________________________________________________________________________\n",
- "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n",
- "_smiles_to_mordred_features('C1=CC(=C(C=C1C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O)O')\n",
- "_______________________________________smiles_to_mordred_features - 0.3s, 0.0min\n",
- "________________________________________________________________________________\n",
- "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n",
- "_smiles_to_mordred_features('C1=CC=C(C=C1)C(=O)SC(=N)N')\n",
- "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n",
- "________________________________________________________________________________\n",
- "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n",
- "_smiles_to_mordred_features('C1=CC=C(C=C1)C(=O)SC(=N)NC2=CC=C(C=C2)C')\n",
- "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n",
- "________________________________________________________________________________\n",
- "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n",
- "_smiles_to_mordred_features('C1=CC=C(C=C1)C(=O)SC(=N)NC2=CC=C(C=C2)OC')\n",
- "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n",
- "________________________________________________________________________________\n",
- "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n",
- "_smiles_to_mordred_features('N=C(NC1=CC=C(C=C1)Br)SC(O)C2=CC=CC=C2')\n",
- "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n",
- "________________________________________________________________________________\n",
- "[Memory] Calling baybe.utils.chemistry._smiles_to_mordred_features...\n",
- "_smiles_to_mordred_features('N=C(NC1=CC=C(C=C1)Cl)SC(O)C2=CC=CC=C2')\n",
- "_______________________________________smiles_to_mordred_features - 0.1s, 0.0min\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"df_no_target = lookup.drop('Efficiency', axis=1)\n",
"\n",
@@ -388,7 +357,7 @@
"\n",
"searchspace_rdkit = SearchSpace.from_dataframe(df = df_no_target, parameters=parameters_rdkit)\n",
"\n",
- "searchspace_ohe = SearchSpace.from_dataframe(df = df_no_target, parameters=parameters_rdkit)\n",
+ "searchspace_ohe = SearchSpace.from_dataframe(df = df_no_target, parameters=parameters_ohe)\n",
"\n",
"\n",
"objective = Objective(\n",
@@ -398,24 +367,24 @@
},
{
"cell_type": "code",
- "execution_count": 169,
+ "execution_count": 302,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "SearchSpace(discrete=SubspaceDiscrete(parameters=[NumericalDiscreteParameter(name='Time_h', encoding=None, _values=[0.0, 0.25, 0.33, 0.5, 0.58, 0.67, 0.75, 1.0, 1.5, 1.67, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 8.0, 10.0, 24.0, 48.0, 72.0, 96.0, 120.0, 144.0, 168.0, 192.0, 240.0, 288.0, 336.0, 360.0, 384.0, 432.0, 480.0, 528.0, 576.0, 600.0, 624.0, 672.0, 720.0], tolerance=0.0), NumericalDiscreteParameter(name='pH', encoding=None, _values=[-0.6, -0.4771212547196624, -0.3979400086720376, -0.3010299956639812, -0.3, -0.1760912590556812, -0.1367205671564068, 0.0, 0.3, 0.45, 0.7, 1.0, 1.7, 2.0, 3.3, 4.0, 4.4, 4.6, 5.4, 5.5, 5.6, 7.0, 7.6, 10.0, 11.0, 13.0, 13.7, 14.30102999566398], tolerance=0.0), NumericalDiscreteParameter(name='Inhib_Concentrat_M', encoding=None, _values=[1e-07, 5e-07, 1e-06, 2e-06, 4e-06, 5e-06, 6e-06, 8e-06, 8.271845945141117e-06, 1e-05, 1.2e-05, 1.5e-05, 1.654369189028223e-05, 2e-05, 2.481553783542335e-05, 3e-05, 3.308738378056447e-05, 4e-05, 4.135922972570559e-05, 5e-05, 6e-05, 7e-05, 8e-05, 8.271845945141118e-05, 0.0001, 0.00015, 0.0001958863858961802, 0.0002, 0.00021, 0.0003, 0.0003566333808844508, 0.0003917727717923605, 0.0004, 0.00042, 0.0005, 0.0005876591576885406, 0.0006, 0.0007, 0.0007132667617689017, 0.0007835455435847209, 0.0008, 0.00084, 0.0009, 0.0009794319294809011, 0.001, 0.0011, 0.0012, 0.0013, 0.0014, 0.0015, 0.0016, 0.001783166904422254, 0.0018, 0.0019, 0.002, 0.002139800285306705, 0.0024, 0.0025, 0.0026, 0.003, 0.0032, 0.003566333808844508, 0.0039, 0.004, 0.0042, 0.00427960057061341, 0.0045, 0.005, 0.0053, 0.005706134094151214, 0.0065, 0.007, 0.0075, 0.0085, 0.009, 0.01, 0.011, 0.015, 0.02, 0.021, 0.022, 0.025, 0.031, 0.033, 0.04, 0.042, 0.044, 0.05, 0.06, 0.08, 0.1, 0.66, 1.32, 1.97, 2.63, 3.28], tolerance=0.0), NumericalDiscreteParameter(name='Salt_Concentrat_M', encoding=None, _values=[0.0, 0.01, 0.05, 0.1, 0.5, 0.6, 1.0, 2.0], tolerance=0.0), SubstanceParameter(name='SMILES', data={'C(=O)(C(=O)[O-])[O-]': 'C(=O)(C(=O)[O-])[O-]', 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O': 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]', 'C(C(CO)([N+](=O)[O-])Br)O': 'C(C(CO)([N+](=O)[O-])Br)O', 'C(CC=O)CC=O': 'C(CC=O)CC=O', 'C1=CC(=C(C(=C1)C=NC2=CC=C(C=C2)N=CC3=CC=CC(=C3O)OC)O)OC': 'C1=CC(=C(C(=C1)C=NC2=CC=C(C=C2)N=CC3=CC=CC(=C3O)OC)O)OC', 'C1=CC(=C(C=C1C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O)O': 'C1=CC(=C(C=C1C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O)O', 'C1=CC(=C(C=C1Cl)Cl)COC(CN2C=CN=C2)C3=C(C=C(C=C3)Cl)Cl.[N+](=O)(O)[O-]': 'C1=CC(=C(C=C1Cl)Cl)COC(CN2C=CN=C2)C3=C(C=C(C=C3)Cl)Cl.[N+](=O)(O)[O-]', 'C1=CC(=C(C=C1F)F)C(CN2C=NC=N2)(CN3C=NC=N3)O': 'C1=CC(=C(C=C1F)F)C(CN2C=NC=N2)(CN3C=NC=N3)O', 'C1=CC(=C(C=C1O)O)C=NNC(=S)N': 'C1=CC(=C(C=C1O)O)C=NNC(=S)N', 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]': 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]', 'C1=CC(=CC(=C1)O)O': 'C1=CC(=CC(=C1)O)O', 'C1=CC(=CC(=C1)S)C(=O)O': 'C1=CC(=CC(=C1)S)C(=O)O', 'C1=CC(=CC=C1O)O': 'C1=CC(=CC=C1O)O', 'C1=CC(=CN=C1)C(=O)NN': 'C1=CC(=CN=C1)C(=O)NN', 'C1=CC(=CN=C1)C=NNC(=S)N': 'C1=CC(=CN=C1)C=NNC(=S)N', 'C1=CC(=NC(=C1)N)N': 'C1=CC(=NC(=C1)N)N', 'C1=CC2=NNN=C2C=C1Cl': 'C1=CC2=NNN=C2C=C1Cl', 'C1=CC=C(C(=C1)C=NC2=CC=C(C=C2)N=CC3=CC=CC=C3O)O': 'C1=CC=C(C(=C1)C=NC2=CC=C(C=C2)N=CC3=CC=CC=C3O)O', 'C1=CC=C(C(=C1)C=NNC(=S)N)O': 'C1=CC=C(C(=C1)C=NNC(=S)N)O', 'C1=CC=C(C(=C1)O)O': 'C1=CC=C(C(=C1)O)O', 'C1=CC=C(C=C1)C(=O)SC(=N)N': 'C1=CC=C(C=C1)C(=O)SC(=N)N', 'C1=CC=C(C=C1)C(=O)SC(=N)NC2=CC=C(C=C2)C': 'C1=CC=C(C=C1)C(=O)SC(=N)NC2=CC=C(C=C2)C', 'C1=CC=C(C=C1)C(=O)SC(=N)NC2=CC=C(C=C2)OC': 'C1=CC=C(C=C1)C(=O)SC(=N)NC2=CC=C(C=C2)OC', 'C1=CC=C(C=C1)C(C2=CC=CC=C2)(C3=CC=CC=C3Cl)N4C=CN=C4': 'C1=CC=C(C=C1)C(C2=CC=CC=C2)(C3=CC=CC=C3Cl)N4C=CN=C4', 'C1=CC=NC(=C1)C=NNC(=S)N': 'C1=CC=NC(=C1)C=NNC(=S)N', 'C1=CN=C(C=N1)C(=O)N': 'C1=CN=C(C=N1)C(=O)N', 'C1=CN=C(N=C1)N': 'C1=CN=C(N=C1)N', 'C1=CN=CC=C1C=NNC(=S)N': 'C1=CN=CC=C1C=NNC(=S)N', 'C1CCC(=NO)CC1': 'C1CCC(=NO)CC1', 'C1COCCN1CCCS(=O)(=O)O': 'C1COCCN1CCCS(=O)(=O)O', 'C1N2CN3CN1CN(C2)C3': 'C1N2CN3CN1CN(C2)C3', 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1': 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1', 'C=CC1=C(N2C(C(C2=O)NC(=O)C(=NOCC(=O)O)C3=CSC(=N3)N)SC1)C(=O)O': 'C=CC1=C(N2C(C(C2=O)NC(=O)C(=NOCC(=O)O)C3=CSC(=N3)N)SC1)C(=O)O', 'C=CCN(CC=C)C1=NC(=NC(=N1)S)S[Na]': 'C=CCN(CC=C)C1=NC(=NC(=N1)S)S[Na]', 'CC(=NO)C': 'CC(=NO)C', 'CC(=O)O': 'CC(=O)O', 'CC(=O)SSC(=O)C': 'CC(=O)SSC(=O)C', 'CC(C)(C)NCC(COC1=CC=CC2=C1CC(C(C2)O)O)O': 'CC(C)(C)NCC(COC1=CC=CC2=C1CC(C(C2)O)O)O', 'CC(C)(C)NCC(COC1=NSN=C1N2CCOCC2)O': 'CC(C)(C)NCC(COC1=NSN=C1N2CCOCC2)O', 'CC(C)NCC(COC1=CC=C(C=C1)CC(=O)N)O': 'CC(C)NCC(COC1=CC=C(C=C1)CC(=O)N)O', 'CC(C)NCC(COC1=CC=CC2=CC=CC=C21)O': 'CC(C)NCC(COC1=CC=CC2=CC=CC=C21)O', 'CC(OC(=O)C)OC(=O)C1=C(CSC2N1C(=O)C2NC(=O)C(=NOC)C3=CC=CO3)COC(=O)N': 'CC(OC(=O)C)OC(=O)C1=C(CSC2N1C(=O)C2NC(=O)C(=NOC)C3=CC=CO3)COC(=O)N', 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C': 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C', 'CC1=C(SC=[N+]1CC2=CN=C(N=C2N)C)CCO': 'CC1=C(SC=[N+]1CC2=CN=C(N=C2N)C)CCO', 'CC1=CC=C(C=C1)[N]2N=NC=C2O': 'CC1=CC=C(C=C1)[N]2N=NC=C2O', 'CC1=CN=C(C=N1)C(=O)N': 'CC1=CN=C(C=N1)C(=O)N', 'CC1=NC(=CC=C1)C': 'CC1=NC(=CC=C1)C', 'CCC(=NO)C': 'CCC(=NO)C', 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O': 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O', 'CCCCCCCCCCCCCCCCCC(=O)O': 'CCCCCCCCCCCCCCCCCC(=O)O', 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCOS(=O)(=O)O': 'CCCCCCCCCCCCOS(=O)(=O)O', 'CCCCCCCCCCCCc1ccccc1S([O])([O])O': 'CCCCCCCCCCCCc1ccccc1S([O])([O])O', 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O': 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O', 'CCCCN(CCCC)C1=NC(=NC(=N1)S)S[Na]': 'CCCCN(CCCC)C1=NC(=NC(=N1)S)S[Na]', 'CCCCOP(=O)(OCCCC)O': 'CCCCOP(=O)(OCCCC)O', 'CCN(C(=S)S)CC': 'CCN(C(=S)S)CC', 'CCOC(=O)C1=C(C)N=C(S)NC1C2=CC=C(C=C2)Cl': 'CCOC(=O)C1=C(C)N=C(S)NC1C2=CC=C(C=C2)Cl', 'CCOc1ccc2c(c1)nc([nH]2)S': 'CCOc1ccc2c(c1)nc([nH]2)S', 'CCSc1nnc(s1)N': 'CCSc1nnc(s1)N', 'CN(C)CC1CCCCC1(C2=CC(=CC=C2)OC)O': 'CN(C)CC1CCCCC1(C2=CC(=CC=C2)OC)O', 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C': 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C', 'CNCC(C1=CC(=CC=C1)O)O': 'CNCC(C1=CC(=CC=C1)O)O', 'COC(=O)C1=CC=C(C=C1)[N]2N=NC=C2O': 'COC(=O)C1=CC=C(C=C1)[N]2N=NC=C2O', 'COC(=O)CCCC1=CNC2=CC=CC=C21': 'COC(=O)CCCC1=CNC2=CC=CC=C21', 'COC(=O)n1nnc2ccccc12': 'COC(=O)n1nnc2ccccc12', 'COC1=C(C=CC(=C1)C2=CC(=C(C=C2)N=NC3=C(C4=C(C=C(C=C4C=C3S(=O)(=O)[O-])S(=O)(=O)[O-])N)O)OC)N=NC5=C(C6=C(C=C(C=C6C=C5S(=O)(=O)[O-])S(=O)(=O)[O-])N)O.[Na+].[Na+].[Na+].[Na+]': 'COC1=C(C=CC(=C1)C2=CC(=C(C=C2)N=NC3=C(C4=C(C=C(C=C4C=C3S(=O)(=O)[O-])S(=O)(=O)[O-])N)O)OC)N=NC5=C(C6=C(C=C(C=C6C=C5S(=O)(=O)[O-])S(=O)(=O)[O-])N)O.[Na+].[Na+].[Na+].[Na+]', 'COC1=NC=C(N=C1)C(=O)N': 'COC1=NC=C(N=C1)C(=O)N', 'COCCOC(=O)OCSc1nc2c(s1)cccc2': 'COCCOC(=O)OCSc1nc2c(s1)cccc2', 'COc1ccc2c(c1)[nH]c(=S)[nH]2': 'COc1ccc2c(c1)[nH]c(=S)[nH]2', 'COc1cccc(c1)c1n[nH]c(=S)[nH]1': 'COc1cccc(c1)c1n[nH]c(=S)[nH]1', 'CS[C]1N[N]C(=N1)N': 'CS[C]1N[N]C(=N1)N', 'CSc1[nH]c2c(n1)cc(c(c2)C)C': 'CSc1[nH]c2c(n1)cc(c(c2)C)C', 'CSc1nnc(s1)N': 'CSc1nnc(s1)N', 'Cc1cc(C)nc(n1)S': 'Cc1cc(C)nc(n1)S', 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O': 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O', 'Cc1ccc2c(c1)nc([nH]2)S': 'Cc1ccc2c(c1)nc([nH]2)S', 'Cc1n[nH]c(=S)s1': 'Cc1n[nH]c(=S)s1', 'Cc1nsc(c1)N': 'Cc1nsc(c1)N', 'ClC([C]1N[N]C=N1)(Cl)Cl': 'ClC([C]1N[N]C=N1)(Cl)Cl', 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl': 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl', 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O': 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O', 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1': 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1', 'Clc1ccc2c(c1)[nH]c(n2)S': 'Clc1ccc2c(c1)[nH]c(n2)S', 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1': 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1', 'Cn1cnnc1S': 'Cn1cnnc1S', 'Cn1nnnc1S': 'Cn1nnnc1S', 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]': 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]', 'N=C(NC1=CC=C(C=C1)Br)SC(O)C2=CC=CC=C2': 'N=C(NC1=CC=C(C=C1)Br)SC(O)C2=CC=CC=C2', 'N=C(NC1=CC=C(C=C1)Cl)SC(O)C2=CC=CC=C2': 'N=C(NC1=CC=C(C=C1)Cl)SC(O)C2=CC=CC=C2', 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O': 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O', 'NC(CO)C(=O)O': 'NC(CO)C(=O)O', 'NC(N)=S': 'NC(N)=S', 'NC1=CCNC(=S)N1': 'NC1=CCNC(=S)N1', 'NCC(=O)O': 'NCC(=O)O', 'NO': 'NO', 'Nc1cc(N)nc(n1)S': 'Nc1cc(N)nc(n1)S', 'Nc1cc(S)nc(n1)N': 'Nc1cc(S)nc(n1)N', 'Nc1ccc2c(c1)sc(=S)[nH]2': 'Nc1ccc2c(c1)sc(=S)[nH]2', 'Nc1ccnc(n1)S': 'Nc1ccnc(n1)S', 'Nc1n[nH]c(=S)s1': 'Nc1n[nH]c(=S)s1', 'Nc1n[nH]c(n1)S': 'Nc1n[nH]c(n1)S', 'Nc1n[nH]cn1': 'Nc1n[nH]cn1', 'Nc1nc([nH]n1)C(=O)O': 'Nc1nc([nH]n1)C(=O)O', 'Nc1ncncc1N': 'Nc1ncncc1N', 'Nn1c(NN)nnc1S': 'Nn1c(NN)nnc1S', 'Nn1c(S)nnc1c1ccccc1': 'Nn1c(S)nnc1c1ccccc1', 'Nn1cnnc1': 'Nn1cnnc1', 'O/N=C(/C(=N/O)/C)\\\\C': 'O/N=C(/C(=N/O)/C)\\\\C', 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1': 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1', 'O=C(O)/C=C\\\\C(=O)O': 'O=C(O)/C=C\\\\C(=O)O', 'O=C(O)C(O)C(O)C(=O)O': 'O=C(O)C(O)C(O)C(=O)O', 'O=C(O)CC(CC(=O)O)C(=O)O': 'O=C(O)CC(CC(=O)O)C(=O)O', 'O=C(O)CC(O)C(=O)O': 'O=C(O)CC(O)C(=O)O', 'O=C(O)CCC(=O)O': 'O=C(O)CCC(=O)O', 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]': 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]', 'OC(=O)/C=C/c1ccccc1': 'OC(=O)/C=C/c1ccccc1', 'OC(=O)C(CC(=O)O)(CC(=O)O)O': 'OC(=O)C(CC(=O)O)(CC(=O)O)O', 'OC(=O)CCCCC(=O)O': 'OC(=O)CCCCC(=O)O', 'OC(=O)CCCCCCCCCCCCCCC(=O)O': 'OC(=O)CCCCCCCCCCCCCCC(=O)O', 'OC(=O)CCS': 'OC(=O)CCS', 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O': 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O', 'OC(=O)CS': 'OC(=O)CS', 'OC(=O)Cn1nnnc1S': 'OC(=O)Cn1nnnc1S', 'OC(=O)c1ccc(=S)[nH]c1': 'OC(=O)c1ccc(=S)[nH]c1', 'OC(=O)c1ccc(cc1)N': 'OC(=O)c1ccc(cc1)N', 'OC(=O)c1ccc(cc1)S': 'OC(=O)c1ccc(cc1)S', 'OC(=O)c1ccc(cc1)c1ccccc1': 'OC(=O)c1ccc(cc1)c1ccccc1', 'OC(=O)c1ccccc1': 'OC(=O)c1ccccc1', 'OC(=O)c1ccccc1O': 'OC(=O)c1ccccc1O', 'OC(=O)c1ccccc1S': 'OC(=O)c1ccccc1S', 'OC(=O)c1ccccn1': 'OC(=O)c1ccccn1', 'OC(=O)c1cccnc1': 'OC(=O)c1cccnc1', 'OC(=O)c1cccnc1S': 'OC(=O)c1cccnc1S', 'OC(=O)c1ccncc1': 'OC(=O)c1ccncc1', 'OC(=O)c1n[nH]c(n1)N': 'OC(=O)c1n[nH]c(n1)N', 'OC1=C(C=CC=C1)C=NC2=CC=C(C=C2)N=NC3=C(C=CC=C3)N=CC4=C(C=CC=C4)O': 'OC1=C(C=CC=C1)C=NC2=CC=C(C=C2)N=NC3=C(C=CC=C3)N=CC4=C(C=CC=C4)O', 'OC1=CN=N[N]1C2=CC=C(C=C2)Cl': 'OC1=CN=N[N]1C2=CC=C(C=C2)Cl', 'OCC(CO)O': 'OCC(CO)O', 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O', 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O', 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O': 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O', 'O[C@H]1C(=O)OCC1(C)C': 'O[C@H]1C(=O)OCC1(C)C', 'Oc1ccc(cc1)C(=O)O': 'Oc1ccc(cc1)C(=O)O', 'Oc1ccc(cc1)S([O])([O])O': 'Oc1ccc(cc1)S([O])([O])O', 'Oc1cccc2c1nccc2': 'Oc1cccc2c1nccc2', 'Oc1ccccc1c1nnc([nH]1)S': 'Oc1ccccc1c1nnc([nH]1)S', 'On1nnc2c1cccc2': 'On1nnc2c1cccc2', 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C': 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C', 'S=c1[nH]c2c([nH]1)cncn2': 'S=c1[nH]c2c([nH]1)cncn2', 'S=c1[nH]c2c([nH]1)nccn2': 'S=c1[nH]c2c([nH]1)nccn2', 'S=c1[nH]nc([nH]1)c1cccnc1': 'S=c1[nH]nc([nH]1)c1cccnc1', 'S=c1[nH]nc([nH]1)c1ccco1': 'S=c1[nH]nc([nH]1)c1ccco1', 'S=c1[nH]nc([nH]1)c1ccncc1': 'S=c1[nH]nc([nH]1)c1ccncc1', 'S=c1sc2c([nH]1)cccc2': 'S=c1sc2c([nH]1)cccc2', 'SC#N': 'SC#N', 'S[C]1NC2=C[CH]C=NC2=N1': 'S[C]1NC2=C[CH]C=NC2=N1', 'Sc1n[nH]cn1': 'Sc1n[nH]cn1', 'Sc1nc(N)c(c(n1)S)N': 'Sc1nc(N)c(c(n1)S)N', 'Sc1nc(N)c2c(n1)[nH]nc2': 'Sc1nc(N)c2c(n1)[nH]nc2', 'Sc1nc2c([nH]1)cccc2': 'Sc1nc2c([nH]1)cccc2', 'Sc1ncc[nH]1': 'Sc1ncc[nH]1', 'Sc1ncccn1': 'Sc1ncccn1', 'Sc1nnc(s1)S': 'Sc1nnc(s1)S', '[Cl-].[Cl-].[Cl-].[Ce+3]': '[Cl-].[Cl-].[Cl-].[Ce+3]', '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]': '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]', '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]': '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]', '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]': '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]', '[O-]S(=O)[O-].[Na+].[Na+]': '[O-]S(=O)[O-].[Na+].[Na+]', 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]': 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]', 'c1ccc(nc1)c1ccccn1': 'c1ccc(nc1)c1ccccn1', 'c1ccc2c(c1)[nH]nn2': 'c1ccc2c(c1)[nH]nn2', 'c1ncn[nH]1': 'c1ncn[nH]1'}, decorrelate=0.7, encoding=)], exp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M \\\n",
- "0 24.0 4.0 1.000000e-03 0.10 \n",
- "1 24.0 7.0 5.000000e-04 0.05 \n",
- "2 24.0 10.0 1.000000e-03 0.10 \n",
- "3 0.0 2.0 5.000000e-07 2.00 \n",
- "4 0.0 2.0 1.000000e-06 2.00 \n",
+ "SearchSpace(discrete=SubspaceDiscrete(parameters=[NumericalDiscreteParameter(name='Time_h', encoding=None, _values=[0.5, 1.0, 2.0, 3.0, 6.0, 24.0, 48.0, 72.0, 96.0, 120.0, 144.0, 168.0, 192.0, 240.0, 288.0, 336.0, 360.0, 384.0, 432.0, 480.0, 528.0, 576.0, 600.0, 624.0, 672.0], tolerance=0.0), NumericalDiscreteParameter(name='pH', encoding=None, _values=[0.0, 3.3, 4.0, 4.4, 5.4, 5.5, 5.6, 7.0, 10.0], tolerance=0.0), NumericalDiscreteParameter(name='Inhib_Concentrat_M', encoding=None, _values=[1e-05, 5e-05, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0008, 0.001, 0.0012, 0.0018, 0.0024, 0.003, 0.005, 0.01, 0.011, 0.021, 0.022, 0.031, 0.033, 0.042, 0.044, 0.05, 0.1], tolerance=0.0), NumericalDiscreteParameter(name='Salt_Concentrat_M', encoding=None, _values=[0.0, 0.01, 0.05, 0.1, 0.5, 0.6], tolerance=0.0), SubstanceParameter(name='SMILES', data={'C(=O)(C(=O)[O-])[O-]': 'C(=O)(C(=O)[O-])[O-]', 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O': 'C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Fe+2]', 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]': 'C(C(C(C(C(C(=O)[O-])O)O)O)O)O.C(C(C(C(C(C(=O)[O-])O)O)O)O)O.[Zn+2]', 'C1=CC(=C(C=C1O)O)C=NNC(=S)N': 'C1=CC(=C(C=C1O)O)C=NNC(=S)N', 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]': 'C1=CC(=C(C=C1SSC2=CC(=C(C=C2)[N+](=O)[O-])C(=O)O)C(=O)O)[N+](=O)[O-]', 'C1=CC(=CC(=C1)S)C(=O)O': 'C1=CC(=CC(=C1)S)C(=O)O', 'C1=CC2=NNN=C2C=C1Cl': 'C1=CC2=NNN=C2C=C1Cl', 'C1=CC=C(C(=C1)C=NNC(=S)N)O': 'C1=CC=C(C(=C1)C=NNC(=S)N)O', 'C1COCCN1CCCS(=O)(=O)O': 'C1COCCN1CCCS(=O)(=O)O', 'C1N2CN3CN1CN(C2)C3': 'C1N2CN3CN1CN(C2)C3', 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1': 'C=CC(=O)OCCOC(=O)OCCSc1ncccn1', 'CC(=O)O': 'CC(=O)O', 'CC(=O)SSC(=O)C': 'CC(=O)SSC(=O)C', 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C': 'CC1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=C(C=C3)O)N)C(=O)O)C', 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O': 'CCCCCCCC/C=C\\\\CCCCCCCC(=O)O', 'CCCCCCCCCCCCCCCCCC(=O)O': 'CCCCCCCCCCCCCCCCCC(=O)O', 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCCCCCCCCCOS(=O)(=O)O': 'CCCCCCCCCCCCOS(=O)(=O)O', 'CCCCCCCCCCCCc1ccccc1S([O])([O])O': 'CCCCCCCCCCCCc1ccccc1S([O])([O])O', 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]': 'CCCCCCCCN(CC(=O)O[Na])CC(=O)O[Na]', 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O': 'CCCCN(CCCC)C1=NC(=NC(=N1)NC(CCSC)C(=O)O)NC(CCSC)C(=O)O', 'CCCCOP(=O)(OCCCC)O': 'CCCCOP(=O)(OCCCC)O', 'CCN(C(=S)S)CC': 'CCN(C(=S)S)CC', 'CCOc1ccc2c(c1)nc([nH]2)S': 'CCOc1ccc2c(c1)nc([nH]2)S', 'CCSc1nnc(s1)N': 'CCSc1nnc(s1)N', 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C': 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C', 'CNCC(C1=CC(=CC=C1)O)O': 'CNCC(C1=CC(=CC=C1)O)O', 'COC(=O)CCCC1=CNC2=CC=CC=C21': 'COC(=O)CCCC1=CNC2=CC=CC=C21', 'COC(=O)n1nnc2ccccc12': 'COC(=O)n1nnc2ccccc12', 'COCCOC(=O)OCSc1nc2c(s1)cccc2': 'COCCOC(=O)OCSc1nc2c(s1)cccc2', 'COc1ccc2c(c1)[nH]c(=S)[nH]2': 'COc1ccc2c(c1)[nH]c(=S)[nH]2', 'COc1cccc(c1)c1n[nH]c(=S)[nH]1': 'COc1cccc(c1)c1n[nH]c(=S)[nH]1', 'CS[C]1N[N]C(=N1)N': 'CS[C]1N[N]C(=N1)N', 'CSc1[nH]c2c(n1)cc(c(c2)C)C': 'CSc1[nH]c2c(n1)cc(c(c2)C)C', 'CSc1nnc(s1)N': 'CSc1nnc(s1)N', 'Cc1cc(C)nc(n1)S': 'Cc1cc(C)nc(n1)S', 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O': 'Cc1ccc(c(c1)n1nc2c(n1)cccc2)O', 'Cc1ccc2c(c1)nc([nH]2)S': 'Cc1ccc2c(c1)nc([nH]2)S', 'Cc1n[nH]c(=S)s1': 'Cc1n[nH]c(=S)s1', 'Cc1nsc(c1)N': 'Cc1nsc(c1)N', 'ClC([C]1N[N]C=N1)(Cl)Cl': 'ClC([C]1N[N]C=N1)(Cl)Cl', 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl': 'Clc1cc2[nH]c(=S)[nH]c2cc1Cl', 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O': 'Clc1ccc(cc1)CC[C@](C(C)(C)C)(Cn1cncn1)O', 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1': 'Clc1ccc(cc1Cl)c1n[nH]c(=S)[nH]1', 'Clc1ccc2c(c1)[nH]c(n2)S': 'Clc1ccc2c(c1)[nH]c(n2)S', 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1': 'Clc1cccc(c1)c1n[nH]c(=S)[nH]1', 'Cn1cnnc1S': 'Cn1cnnc1S', 'Cn1nnnc1S': 'Cn1nnnc1S', 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]': 'N.N.[N+](=O)(O)[O-].[N+](=O)(O)[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].O.O.O.O.[Ce+3]', 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O': 'NC(=S)NN=CC1=C(C(=C(C=C1)O)O)O', 'NCC(=O)O': 'NCC(=O)O', 'NO': 'NO', 'Nc1cc(N)nc(n1)S': 'Nc1cc(N)nc(n1)S', 'Nc1cc(S)nc(n1)N': 'Nc1cc(S)nc(n1)N', 'Nc1ccc2c(c1)sc(=S)[nH]2': 'Nc1ccc2c(c1)sc(=S)[nH]2', 'Nc1ccnc(n1)S': 'Nc1ccnc(n1)S', 'Nc1n[nH]c(=S)s1': 'Nc1n[nH]c(=S)s1', 'Nc1n[nH]c(n1)S': 'Nc1n[nH]c(n1)S', 'Nc1n[nH]cn1': 'Nc1n[nH]cn1', 'Nc1nc([nH]n1)C(=O)O': 'Nc1nc([nH]n1)C(=O)O', 'Nc1ncncc1N': 'Nc1ncncc1N', 'Nn1c(NN)nnc1S': 'Nn1c(NN)nnc1S', 'Nn1c(S)nnc1c1ccccc1': 'Nn1c(S)nnc1c1ccccc1', 'Nn1cnnc1': 'Nn1cnnc1', 'O/N=C(/C(=N/O)/C)\\\\C': 'O/N=C(/C(=N/O)/C)\\\\C', 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1': 'O/N=C(\\\\C(=N/O)\\\\c1ccco1)/c1ccco1', 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]': 'O=C([O-])C(O)C(O)C(O)C(O)CO.[Na+]', 'OC(=O)/C=C/c1ccccc1': 'OC(=O)/C=C/c1ccccc1', 'OC(=O)CCCCC(=O)O': 'OC(=O)CCCCC(=O)O', 'OC(=O)CCCCCCCCCCCCCCC(=O)O': 'OC(=O)CCCCCCCCCCCCCCC(=O)O', 'OC(=O)CCS': 'OC(=O)CCS', 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O': 'OC(=O)CN(CC(=O)O)CCN(CC(=O)O)CC(=O)O', 'OC(=O)CS': 'OC(=O)CS', 'OC(=O)Cn1nnnc1S': 'OC(=O)Cn1nnnc1S', 'OC(=O)c1ccc(=S)[nH]c1': 'OC(=O)c1ccc(=S)[nH]c1', 'OC(=O)c1ccc(cc1)N': 'OC(=O)c1ccc(cc1)N', 'OC(=O)c1ccc(cc1)S': 'OC(=O)c1ccc(cc1)S', 'OC(=O)c1ccc(cc1)c1ccccc1': 'OC(=O)c1ccc(cc1)c1ccccc1', 'OC(=O)c1ccccc1': 'OC(=O)c1ccccc1', 'OC(=O)c1ccccc1O': 'OC(=O)c1ccccc1O', 'OC(=O)c1ccccc1S': 'OC(=O)c1ccccc1S', 'OC(=O)c1ccccn1': 'OC(=O)c1ccccn1', 'OC(=O)c1cccnc1': 'OC(=O)c1cccnc1', 'OC(=O)c1cccnc1S': 'OC(=O)c1cccnc1S', 'OC(=O)c1ccncc1': 'OC(=O)c1ccncc1', 'OC(=O)c1n[nH]c(n1)N': 'OC(=O)c1n[nH]c(n1)N', 'OCC(CO)O': 'OCC(CO)O', 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@@H](CO)O)O)O)O', 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O': 'OC[C@H]([C@H]([C@@H]([C@H](C(=O)O)O)O)O)O', 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O': 'OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O', 'O[C@H]1C(=O)OCC1(C)C': 'O[C@H]1C(=O)OCC1(C)C', 'Oc1ccc(cc1)C(=O)O': 'Oc1ccc(cc1)C(=O)O', 'Oc1ccc(cc1)S([O])([O])O': 'Oc1ccc(cc1)S([O])([O])O', 'Oc1cccc2c1nccc2': 'Oc1cccc2c1nccc2', 'Oc1ccccc1c1nnc([nH]1)S': 'Oc1ccccc1c1nnc([nH]1)S', 'On1nnc2c1cccc2': 'On1nnc2c1cccc2', 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C': 'S=c1[nH]c2c([nH]1)c(=O)n(cn2)C', 'S=c1[nH]c2c([nH]1)cncn2': 'S=c1[nH]c2c([nH]1)cncn2', 'S=c1[nH]c2c([nH]1)nccn2': 'S=c1[nH]c2c([nH]1)nccn2', 'S=c1[nH]nc([nH]1)c1cccnc1': 'S=c1[nH]nc([nH]1)c1cccnc1', 'S=c1[nH]nc([nH]1)c1ccco1': 'S=c1[nH]nc([nH]1)c1ccco1', 'S=c1[nH]nc([nH]1)c1ccncc1': 'S=c1[nH]nc([nH]1)c1ccncc1', 'S=c1sc2c([nH]1)cccc2': 'S=c1sc2c([nH]1)cccc2', 'SC#N': 'SC#N', 'S[C]1NC2=C[CH]C=NC2=N1': 'S[C]1NC2=C[CH]C=NC2=N1', 'Sc1n[nH]cn1': 'Sc1n[nH]cn1', 'Sc1nc(N)c(c(n1)S)N': 'Sc1nc(N)c(c(n1)S)N', 'Sc1nc(N)c2c(n1)[nH]nc2': 'Sc1nc(N)c2c(n1)[nH]nc2', 'Sc1nc2c([nH]1)cccc2': 'Sc1nc2c([nH]1)cccc2', 'Sc1ncc[nH]1': 'Sc1ncc[nH]1', 'Sc1ncccn1': 'Sc1ncccn1', 'Sc1nnc(s1)S': 'Sc1nnc(s1)S', '[Cl-].[Cl-].[Cl-].[Ce+3]': '[Cl-].[Cl-].[Cl-].[Ce+3]', '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]': '[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+3]', '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]': '[NH4+].[NH4+].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Ce+4]', '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]': '[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[O-]S(=O)(=O)[O-].[Ce+3].[Ce+3]', '[O-]S(=O)[O-].[Na+].[Na+]': '[O-]S(=O)[O-].[Na+].[Na+]', 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]': 'c1cc(ccc1c2[nH]c(nn2)S)[N+](=O)[O-]', 'c1ccc(nc1)c1ccccn1': 'c1ccc(nc1)c1ccccn1', 'c1ccc2c(c1)[nH]nn2': 'c1ccc2c(c1)[nH]nn2', 'c1ncn[nH]1': 'c1ncn[nH]1'}, decorrelate=0.7, encoding=)], exp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M \\\n",
+ "0 24.0 4.0 0.0010 0.10 \n",
+ "1 24.0 7.0 0.0005 0.05 \n",
+ "2 24.0 10.0 0.0010 0.10 \n",
+ "3 24.0 4.0 0.0010 0.10 \n",
+ "4 24.0 7.0 0.0005 0.05 \n",
".. ... ... ... ... \n",
- "986 24.0 7.0 5.000000e-04 0.05 \n",
- "987 24.0 10.0 1.000000e-03 0.10 \n",
- "988 672.0 7.0 1.000000e-03 0.10 \n",
- "989 24.0 4.0 1.000000e-03 0.10 \n",
- "990 24.0 10.0 1.000000e-03 0.10 \n",
+ "510 24.0 7.0 0.0005 0.05 \n",
+ "511 24.0 10.0 0.0010 0.10 \n",
+ "512 672.0 7.0 0.0010 0.10 \n",
+ "513 24.0 4.0 0.0010 0.10 \n",
+ "514 24.0 10.0 0.0010 0.10 \n",
"\n",
" SMILES \n",
"0 C(=O)(C(=O)[O-])[O-] \n",
@@ -424,37 +393,37 @@
"3 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O \n",
"4 C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O \n",
".. ... \n",
- "986 c1ccc2c(c1)[nH]nn2 \n",
- "987 c1ccc2c(c1)[nH]nn2 \n",
- "988 c1ccc2c(c1)[nH]nn2 \n",
- "989 c1ncn[nH]1 \n",
- "990 c1ncn[nH]1 \n",
+ "510 c1ccc2c(c1)[nH]nn2 \n",
+ "511 c1ccc2c(c1)[nH]nn2 \n",
+ "512 c1ccc2c(c1)[nH]nn2 \n",
+ "513 c1ncn[nH]1 \n",
+ "514 c1ncn[nH]1 \n",
"\n",
- "[991 rows x 5 columns], metadata= was_recommended was_measured dont_recommend\n",
+ "[515 rows x 5 columns], metadata= was_recommended was_measured dont_recommend\n",
"0 False False False\n",
"1 False False False\n",
"2 False False False\n",
"3 False False False\n",
"4 False False False\n",
".. ... ... ...\n",
- "986 False False False\n",
- "987 False False False\n",
- "988 False False False\n",
- "989 False False False\n",
- "990 False False False\n",
+ "510 False False False\n",
+ "511 False False False\n",
+ "512 False False False\n",
+ "513 False False False\n",
+ "514 False False False\n",
"\n",
- "[991 rows x 3 columns], empty_encoding=False, constraints=[], comp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M \\\n",
- "0 24.0 4.0 1.000000e-03 0.10 \n",
- "1 24.0 7.0 5.000000e-04 0.05 \n",
- "2 24.0 10.0 1.000000e-03 0.10 \n",
- "3 0.0 2.0 5.000000e-07 2.00 \n",
- "4 0.0 2.0 1.000000e-06 2.00 \n",
+ "[515 rows x 3 columns], empty_encoding=False, constraints=[], comp_rep= Time_h pH Inhib_Concentrat_M Salt_Concentrat_M \\\n",
+ "0 24.0 4.0 0.0010 0.10 \n",
+ "1 24.0 7.0 0.0005 0.05 \n",
+ "2 24.0 10.0 0.0010 0.10 \n",
+ "3 24.0 4.0 0.0010 0.10 \n",
+ "4 24.0 7.0 0.0005 0.05 \n",
".. ... ... ... ... \n",
- "986 24.0 7.0 5.000000e-04 0.05 \n",
- "987 24.0 10.0 1.000000e-03 0.10 \n",
- "988 672.0 7.0 1.000000e-03 0.10 \n",
- "989 24.0 4.0 1.000000e-03 0.10 \n",
- "990 24.0 10.0 1.000000e-03 0.10 \n",
+ "510 24.0 7.0 0.0005 0.05 \n",
+ "511 24.0 10.0 0.0010 0.10 \n",
+ "512 672.0 7.0 0.0010 0.10 \n",
+ "513 24.0 4.0 0.0010 0.10 \n",
+ "514 24.0 10.0 0.0010 0.10 \n",
"\n",
" SMILES_RDKIT_MaxAbsEStateIndex SMILES_RDKIT_MinAbsEStateIndex \\\n",
"0 8.925926 2.185185 \n",
@@ -463,11 +432,11 @@
"3 10.148889 1.357824 \n",
"4 10.148889 1.357824 \n",
".. ... ... \n",
- "986 3.813148 0.914352 \n",
- "987 3.813148 0.914352 \n",
- "988 3.813148 0.914352 \n",
- "989 3.555556 1.444444 \n",
- "990 3.555556 1.444444 \n",
+ "510 3.813148 0.914352 \n",
+ "511 3.813148 0.914352 \n",
+ "512 3.813148 0.914352 \n",
+ "513 3.555556 1.444444 \n",
+ "514 3.555556 1.444444 \n",
"\n",
" SMILES_RDKIT_MinEStateIndex SMILES_RDKIT_qed SMILES_RDKIT_SPS \\\n",
"0 -2.185185 0.287408 7.333333 \n",
@@ -476,50 +445,50 @@
"3 -2.974537 0.454904 10.846154 \n",
"4 -2.974537 0.454904 10.846154 \n",
".. ... ... ... \n",
- "986 0.914352 0.560736 10.222222 \n",
- "987 0.914352 0.560736 10.222222 \n",
- "988 0.914352 0.560736 10.222222 \n",
- "989 1.444444 0.458207 8.000000 \n",
- "990 1.444444 0.458207 8.000000 \n",
+ "510 0.914352 0.560736 10.222222 \n",
+ "511 0.914352 0.560736 10.222222 \n",
+ "512 0.914352 0.560736 10.222222 \n",
+ "513 1.444444 0.458207 8.000000 \n",
+ "514 1.444444 0.458207 8.000000 \n",
"\n",
- " SMILES_RDKIT_MolWt ... SMILES_RDKIT_fr_nitro_arom_nonortho \\\n",
- "0 88.018 ... 0 \n",
- "1 88.018 ... 0 \n",
- "2 88.018 ... 0 \n",
- "3 189.099 ... 0 \n",
- "4 189.099 ... 0 \n",
- ".. ... ... ... \n",
- "986 119.127 ... 0 \n",
- "987 119.127 ... 0 \n",
- "988 119.127 ... 0 \n",
- "989 69.067 ... 0 \n",
- "990 69.067 ... 0 \n",
+ " SMILES_RDKIT_MolWt ... SMILES_RDKIT_fr_nitro \\\n",
+ "0 88.018 ... 0 \n",
+ "1 88.018 ... 0 \n",
+ "2 88.018 ... 0 \n",
+ "3 189.099 ... 0 \n",
+ "4 189.099 ... 0 \n",
+ ".. ... ... ... \n",
+ "510 119.127 ... 0 \n",
+ "511 119.127 ... 0 \n",
+ "512 119.127 ... 0 \n",
+ "513 69.067 ... 0 \n",
+ "514 69.067 ... 0 \n",
"\n",
- " SMILES_RDKIT_fr_oxime SMILES_RDKIT_fr_para_hydroxylation \\\n",
- "0 0 0 \n",
- "1 0 0 \n",
- "2 0 0 \n",
- "3 0 0 \n",
- "4 0 0 \n",
- ".. ... ... \n",
- "986 0 1 \n",
- "987 0 1 \n",
- "988 0 1 \n",
- "989 0 0 \n",
- "990 0 0 \n",
+ " SMILES_RDKIT_fr_nitro_arom_nonortho SMILES_RDKIT_fr_oxime \\\n",
+ "0 0 0 \n",
+ "1 0 0 \n",
+ "2 0 0 \n",
+ "3 0 0 \n",
+ "4 0 0 \n",
+ ".. ... ... \n",
+ "510 0 0 \n",
+ "511 0 0 \n",
+ "512 0 0 \n",
+ "513 0 0 \n",
+ "514 0 0 \n",
"\n",
- " SMILES_RDKIT_fr_phos_acid SMILES_RDKIT_fr_priamide \\\n",
- "0 0 0 \n",
- "1 0 0 \n",
- "2 0 0 \n",
- "3 0 0 \n",
- "4 0 0 \n",
- ".. ... ... \n",
- "986 0 0 \n",
- "987 0 0 \n",
- "988 0 0 \n",
- "989 0 0 \n",
- "990 0 0 \n",
+ " SMILES_RDKIT_fr_para_hydroxylation SMILES_RDKIT_fr_phos_acid \\\n",
+ "0 0 0 \n",
+ "1 0 0 \n",
+ "2 0 0 \n",
+ "3 0 0 \n",
+ "4 0 0 \n",
+ ".. ... ... \n",
+ "510 1 0 \n",
+ "511 1 0 \n",
+ "512 1 0 \n",
+ "513 0 0 \n",
+ "514 0 0 \n",
"\n",
" SMILES_RDKIT_fr_pyridine SMILES_RDKIT_fr_quatN SMILES_RDKIT_fr_sulfide \\\n",
"0 0 0 0 \n",
@@ -528,11 +497,11 @@
"3 0 0 0 \n",
"4 0 0 0 \n",
".. ... ... ... \n",
- "986 0 0 0 \n",
- "987 0 0 0 \n",
- "988 0 0 0 \n",
- "989 0 0 0 \n",
- "990 0 0 0 \n",
+ "510 0 0 0 \n",
+ "511 0 0 0 \n",
+ "512 0 0 0 \n",
+ "513 0 0 0 \n",
+ "514 0 0 0 \n",
"\n",
" SMILES_RDKIT_fr_tetrazole SMILES_RDKIT_fr_thiazole \n",
"0 0 0 \n",
@@ -541,16 +510,16 @@
"3 0 0 \n",
"4 0 0 \n",
".. ... ... \n",
- "986 0 0 \n",
- "987 0 0 \n",
- "988 0 0 \n",
- "989 0 0 \n",
- "990 0 0 \n",
+ "510 0 0 \n",
+ "511 0 0 \n",
+ "512 0 0 \n",
+ "513 0 0 \n",
+ "514 0 0 \n",
"\n",
- "[991 rows x 99 columns]), continuous=SubspaceContinuous(parameters=[], constraints_lin_eq=[], constraints_lin_ineq=[]))"
+ "[515 rows x 94 columns]), continuous=SubspaceContinuous(parameters=[], constraints_lin_eq=[], constraints_lin_ineq=[]))"
]
},
- "execution_count": 169,
+ "execution_count": 302,
"metadata": {},
"output_type": "execute_result"
}
@@ -561,7 +530,7 @@
},
{
"cell_type": "code",
- "execution_count": 170,
+ "execution_count": 303,
"metadata": {},
"outputs": [],
"source": [
@@ -589,7 +558,7 @@
},
{
"cell_type": "code",
- "execution_count": 171,
+ "execution_count": 304,
"metadata": {},
"outputs": [],
"source": [
@@ -603,53 +572,50 @@
},
{
"cell_type": "code",
- "execution_count": 172,
+ "execution_count": 305,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- " 0%| | 0/50 [00:00, ?it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 0%| | 0/50 [00:00, ?it/s]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " stdvs = Y.std(dim=-2, keepdim=True)\n",
+ "/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
+ " 2%|2 | 1/50 [00:17<13:58, 17.11s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 2%|2 | 1/50 [00:15<13:02, 15.97s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 4%|4 | 2/50 [00:29<11:58, 14.98s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 4%|4 | 2/50 [00:30<12:12, 15.27s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 6%|6 | 3/50 [00:44<11:34, 14.77s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 6%|6 | 3/50 [00:44<11:41, 14.93s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 8%|8 | 4/50 [01:00<11:35, 15.11s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 8%|8 | 4/50 [01:05<12:35, 16.42s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 10%|# | 5/50 [01:15<11:18, 15.07s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 10%|# | 5/50 [01:23<12:28, 16.64s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 12%|#2 | 6/50 [01:30<11:03, 15.08s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 12%|#2 | 6/50 [01:39<12:12, 16.64s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 14%|#4 | 7/50 [01:41<10:25, 14.55s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 14%|#4 | 7/50 [01:54<11:40, 16.30s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 16%|#6 | 8/50 [01:58<10:21, 14.80s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 16%|#6 | 8/50 [02:08<11:15, 16.09s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 18%|#8 | 9/50 [02:10<09:52, 14.46s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
@@ -663,131 +629,143 @@
" warnings.warn(\n",
"/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-04 to the diagonal\n",
" warnings.warn(\n",
- " 18%|#8 | 9/50 [02:22<10:48, 15.83s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
- " stdvs = Y.std(dim=-2, keepdim=True)\n",
- "/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
- " Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 20%|## | 10/50 [02:43<10:55, 16.38s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-03 to the diagonal\n",
+ " warnings.warn(\n",
+ "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-08 to the diagonal\n",
+ " warnings.warn(\n",
+ "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-07 to the diagonal\n",
+ " warnings.warn(\n",
+ "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-06 to the diagonal\n",
+ " warnings.warn(\n",
+ "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-05 to the diagonal\n",
+ " warnings.warn(\n",
+ "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-04 to the diagonal\n",
+ " warnings.warn(\n",
+ "/home/vscode/.local/lib/python3.10/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning: A not p.d., added jitter of 1.0e-03 to the diagonal\n",
+ " warnings.warn(\n",
+ " 20%|## | 10/50 [02:23<09:34, 14.36s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 22%|##2 | 11/50 [03:17<11:40, 17.97s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 22%|##2 | 11/50 [02:38<09:21, 14.41s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 24%|##4 | 12/50 [03:45<11:53, 18.77s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 24%|##4 | 12/50 [02:52<09:07, 14.40s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 26%|##6 | 13/50 [04:13<12:00, 19.46s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 26%|##6 | 13/50 [03:07<08:54, 14.43s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 28%|##8 | 14/50 [04:40<12:01, 20.03s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 28%|##8 | 14/50 [03:24<08:45, 14.59s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 30%|### | 15/50 [05:08<11:58, 20.54s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 30%|### | 15/50 [03:40<08:35, 14.71s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 32%|###2 | 16/50 [05:35<11:52, 20.95s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 32%|###2 | 16/50 [03:55<08:20, 14.72s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 34%|###4 | 17/50 [06:02<11:43, 21.33s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 34%|###4 | 17/50 [04:10<08:05, 14.72s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 36%|###6 | 18/50 [06:29<11:33, 21.66s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 36%|###6 | 18/50 [04:26<07:52, 14.78s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 38%|###8 | 19/50 [06:57<11:20, 21.96s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 38%|###8 | 19/50 [04:42<07:41, 14.87s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 40%|#### | 20/50 [07:24<11:06, 22.21s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 40%|#### | 20/50 [04:56<07:24, 14.83s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 42%|####2 | 21/50 [07:34<10:27, 21.64s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 42%|####2 | 21/50 [05:06<07:03, 14.61s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 44%|####4 | 22/50 [07:44<09:50, 21.11s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 44%|####4 | 22/50 [05:17<06:43, 14.42s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 46%|####6 | 23/50 [07:56<09:18, 20.70s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 46%|####6 | 23/50 [05:27<06:24, 14.26s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 48%|####8 | 24/50 [08:07<08:48, 20.32s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 48%|####8 | 24/50 [05:36<06:04, 14.00s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 50%|##### | 25/50 [08:18<08:18, 19.95s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 50%|##### | 25/50 [05:46<05:46, 13.87s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 52%|#####2 | 26/50 [08:31<07:52, 19.67s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 52%|#####2 | 26/50 [05:56<05:29, 13.72s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 54%|#####4 | 27/50 [08:41<07:23, 19.30s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 54%|#####4 | 27/50 [06:06<05:11, 13.56s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 56%|#####6 | 28/50 [08:53<06:59, 19.06s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 56%|#####6 | 28/50 [06:15<04:54, 13.40s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 58%|#####8 | 29/50 [09:08<06:37, 18.91s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ "/home/vscode/.local/lib/python3.10/site-packages/botorch/optim/fit.py:102: OptimizationWarning: `scipy_minimize` terminated with status 3, displaying original message from `scipy.optimize.minimize`: ABNORMAL_TERMINATION_IN_LNSRCH\n",
+ " warn(\n",
+ " 58%|#####8 | 29/50 [06:25<04:38, 13.29s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 60%|###### | 30/50 [09:18<06:12, 18.62s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 60%|###### | 30/50 [06:34<04:23, 13.16s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 62%|######2 | 31/50 [09:29<05:48, 18.36s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 62%|######2 | 31/50 [06:42<04:06, 13.00s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 64%|######4 | 32/50 [09:39<05:25, 18.10s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 64%|######4 | 32/50 [06:51<03:51, 12.86s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 66%|######6 | 33/50 [09:50<05:04, 17.91s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 66%|######6 | 33/50 [07:00<03:36, 12.74s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 68%|######8 | 34/50 [10:02<04:43, 17.72s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 68%|######8 | 34/50 [07:08<03:21, 12.62s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 70%|####### | 35/50 [10:13<04:22, 17.52s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 70%|####### | 35/50 [07:16<03:07, 12.48s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 72%|#######2 | 36/50 [10:26<04:03, 17.39s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 72%|#######2 | 36/50 [07:24<02:52, 12.35s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 74%|#######4 | 37/50 [10:36<03:43, 17.19s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 74%|#######4 | 37/50 [07:32<02:39, 12.24s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 76%|#######6 | 38/50 [10:48<03:24, 17.07s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 76%|#######6 | 38/50 [07:41<02:25, 12.13s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- " 78%|#######8 | 39/50 [11:03<03:07, 17.01s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
+ " 78%|#######8 | 39/50 [07:49<02:12, 12.04s/it]/home/vscode/.local/lib/python3.10/site-packages/botorch/models/transforms/outcome.py:304: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" stdvs = Y.std(dim=-2, keepdim=True)\n",
"/home/vscode/.local/lib/python3.10/site-packages/botorch/models/utils/assorted.py:194: UserWarning: std(): degrees of freedom is <= 0. Correction should be strictly less than the reduction factor (input numel divided by output numel). (Triggered internally at ../aten/src/ATen/native/ReduceOps.cpp:1760.)\n",
" Ymean, Ystd = torch.mean(Y, dim=-2), torch.std(Y, dim=-2)\n",
- "100%|##########| 50/50 [11:19<00:00, 13.58s/it]\n"
+ "100%|##########| 50/50 [08:02<00:00, 9.66s/it]\n"
]
}
],
@@ -808,7 +786,7 @@
},
{
"cell_type": "code",
- "execution_count": 173,
+ "execution_count": 306,
"metadata": {},
"outputs": [],
"source": [
@@ -817,14 +795,14 @@
},
{
"cell_type": "code",
- "execution_count": 174,
+ "execution_count": 313,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGxCAYAAACEFXd4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADcXElEQVR4nOy9d5xcd3nv/z51+sz2ql31Lstyt5HBxji2gXDpYCDBgAEDacS0kB8lXCDccBMIEAKY0FtogVwgYMAGjI1xtyyrWL1tb9Pn9O/vjzMzOyvtStu1ks/79ZqdOXWemd2d85mnSkIIQUBAQEBAQEDAeYp8tg0ICAgICAgICFhIArETEBAQEBAQcF4TiJ2AgICAgICA85pA7AQEBAQEBASc1wRiJyAgICAgIOC8JhA7AQEBAQEBAec1gdgJCAgICAgIOK8JxE5AQEBAQEDAeY16tg1YCnieR29vL4lEAkmSzrY5AQEBAQEBAdNACEEul6OjowNZntp/E4gdoLe3l66urrNtRkBAQEBAQMAsOH78OMuWLZtyeyB2gEQiAfhvVjKZPMvWBAQEBAQEBEyHbDZLV1dX9To+FYHYgWroKplMBmInICAgICDgHONMKShBgnJAQEBAQEDAeU0gdgICAgICAgLOawKxExAQEBAQEHBeE4idgICAgICAgPOaQOwEBAQEBAQEnNcEYicgICAgICDgvCYQOwEBAQEBAQHnNYHYCQgICAgICDivCcROQEBAQEBAwHnNWRU799xzDy94wQvo6OhAkiR+/OMfT9guhOADH/gA7e3tRCIRrr/+evbv3z9hn9HRUV7zmteQTCapq6vj1ltvJZ/PL+KrCAgICAgICFjKnFWxUygUuPDCC/nsZz876faPf/zjfPrTn+bzn/88DzzwALFYjBtvvBHDMKr7vOY1r2HXrl386le/4qc//Sn33HMPb37zmxfrJQQEBAQEBAQscSQhhDjbRoA/1+JHP/oRL3rRiwDfq9PR0cE73vEO3vnOdwKQyWRobW3lq1/9KjfffDN79uxh06ZNPPTQQ1x66aUA/OIXv+B5z3seJ06coKOjY1rPnc1mSaVSZDKZYDZWQEBAQEDAOcJ0r99LdhDo4cOH6e/v5/rrr6+uS6VSXHHFFdx///3cfPPN3H///dTV1VWFDsD111+PLMs88MADvPjFL5703KZpYppmdTmbzS7cC3GcqbdJEijK9PYFUGt+Xefzvq4Lp9PgS2FfRfF/fwCe59+W8r6y7N+Wyr5C+O/xUt53Jv+fS2FfWHr/y8FnhP84+IyYevsisWTFTn9/PwCtra0T1re2tla39ff309LSMmG7qqo0NDRU95mMj33sY3zoQx+aZ4un4MtfnnpbdzfcdNP48te/PvU/fHs7vOAF48vf/jbUhPMm0NwMtULve9+DqfKY6uvh5S8fX/7Rj2BsbPJ943F49avHl3/yExgamnzfcBhe+9rx5Z//HPr6Jt9XVeENbxhf/tWv4NixyfcFqA1T/uY3cOjQ1Pu+4Q3jH1C//z3s2zf1vq99rW83wP33w+7dU+/7qldBIuE/fvBBeOKJqfd9+cv99xngscfgkUem3vfFL/Z/fwA7d8IDD0y975/+KVS8l3v2wH33Tb3vTTf5f28ABw7Ab3879b7XXw+rVvmPjxyBX/966n2vvRbWrfMfnzgBv/jF1Ptu3w6bN/uP+/rgpz+det8rroALL/QfDw/7f5dTcckl/g0gnYbvf3/qfbduhSuv9B/n8/Cd70y976ZNcPXV/mPD8P8/p2LdOv+9AP9/+HT/96tW+e9xheAzwif4jPAfn8+fEWeRsy+3zgLvfe97yWQy1dvx48fPtkkBAQEBAQEBC8SSzdk5dOgQq1ev5rHHHmPbtm3V/a655hq2bdvGpz71Kb785S/zjne8g7GabxmO4xAOh/n+978/ZRjrZBY0ZydwUc9838BFPf/7BmGsme+7FEJTwWfE5PsGnxHzv+85GsY653N2Vq5cSVtbG3fddVdV7GSzWR544AHe+ta3AnDVVVeRTqd55JFHuKTsxr777rvxPI8rrrjibJk+EXUGb3Gwr0/th/u5sO9M/pmDfX0kafp/E0thX1j0fYUQCAGe6+EJ8IQAJDwh8IS/vXIvyts94frLUN1PVyQaYiGG8yYF0ymfByK6QlsyQn+2RMk6jeg7S0xlX3V9bunZfUabl+B7fa7bPDiSm9YxZ1Xs5PN5Dhw4UF0+fPgwjz/+OA0NDXR3d/P2t7+dj3zkI6xdu5aVK1fy/ve/n46Ojqr3Z+PGjdx000286U1v4vOf/zy2bfOXf/mX3HzzzdOuxAoICAiYKZ4nsFwP1xN4QiBLEhFdoWA6WI4vTgS1IuQkUeIJXCFwvfGbJ8AVHp5HdVkIgQdQew7G14vyF2qvvF6C8Xvh22g7goaYzlVrGtlxPM2x0SKddRGevaGFX+7qpyddOjtv4jSo2Pmb44OcGCvRUR/mORta+Z+dfRwfLZbfi/H3uiIAoeY9mvC+1fweysdA+f0TJ52Lib8zAVBzXGVbdT/AE7C+Nc7rt6/kvx45zJ7+HBvbErzh6pX8+28OsKd/ehfmxaZi47lo87d2DU5r/7Maxvrtb3/Ls5/97FPW33LLLXz1q19FCMEHP/hB7rjjDtLpNFdffTX//u//zrqaZKfR0VH+8i//kp/85CfIssxLX/pSPv3pTxOPx6dtR1B6HhAQUKEqElyB43rVx7bjUbJdVAVWNsbZ05dlOG9SF9XZ0pli54kMw3mzeg4kqSo6bM/DsgVOWSQ5rofj+ee3XX+9XfOctc9d2WY5nn/vejiumLBsOafe2+7Ej/Znrm3iM6+6iO8+dJxXXtbFX33nMX6/f/gsvMMz41y0O7B5cXjm2iY++vzVLG9vPuP1e8nk7JxNArETEPD0QAjhC5eKYHC9ssjwKFoupu0LGsfzBYnrgSsEIBAepEs2w3mTREjjZZcu4649Azx7Qwv/53/28sfDI1WRcbL4ONvIEuiqzHtu2sDrt6/k6384wqfu2n/mA5cIf/Octbz2GSv4xv1H+LffHEAuC0lJkpAk/17Gj0zKkgQSyEjV5eo+5fSV6rrKMQDVZX+/SqpLZR+pZrv/WIxvO2kfJHj5JSu4cUsndz7Zww8eOVJ+JZNcbsUpD07ZTTrNtknPOekmMcm6idteetlqbrywmzt3HOWHDx6cuPU0dpb9XmVxf/rnHD/N+DHVZTF+rkntF7X3Ps/b1snLrt127ubsBAQEBMyUinCxHd+bUnlcsh2MipApCx3HE7ieV72qqZKEIksULZehvMlg1qAva9CXNuhJl+jLlCZ4SwzH5bZrVvOF3x3kWw+epgy6BglfdOiqjK7491rtvSKhKbXrJHRFRi2v0xQJTZZRVf9eUyVU2T9GVWQ0Warea4qMVn4uWYLmuM7WZfUcHsrzqsu72dSRYCRvLcSvYSJClJNYXSSv9rGHcF2E55RvLsItP3YshGMjOTaNTQ1cckk7B3bv5ZUXr2RN6TCD/f0ghO9BQ1TDhuDnlgjPrYakyoEp/7EQeH5wq2Jc+VE1hkXt5VaU7Z+4ZuLFtna7KAug9s6VXLPmYp7c8SDXrr8A+eh99PYcAUCqqIHTiI5T3r+aTZMLn/F10mndF+Kkfcp2SxLty1Zx9for2f3oH7h200Woh++j//ghXwmW88WqNkjjR0s1Z5+wUN1Yec6ypxNRPl6aeExFMZbtmXDK6qI84Zi2ZSvYvPGS073gKoHYCQgIOCeohHcqYaCKh8awXYqWi2G72OXQkOPWCBkBiuyLAlWRUWUZ8Bgr2vRlSvSmS/SkS/SmDU6kixTMqZMxVVmiPRXmhs2t/NmVy7l3/xCvvWoFdVGNE6MlNEVCLQsZX5RASFFQy0JGliWksk0V7wKS73mZ6DUoeyEqHgskJNl/HRKgyrKfDy6BLMko5W2K5D+HXL5YyOX9w5pCXVQjW7KJhzWKtsPFyxvIGfYp4a4KolKtVhYnwvXv8QTCdfAcG9d18FwHz3PwHAfPsfBs/yZsC8+x/X1dF8e1/X1dG8d1EMLBdZyyUPDznBCenxMjgYdEQ8dyLrzyEnbc/zOGB04wNtjFpdufy477f85wv98ypPI+jV8zx90rEv77PfHSqZS9OFLN+13ZNn6uyY6VqtslhFQ5//j2dZdfi2UYNLQt4+Bj91Ea7ueIkefZf/JCRvtPoIcj7H/4d9QcNE6tK2mCvWdYd7pzTXr+idvWbr0KyzRoaO7g4K6HKGQGObL3Ua55/ssYG+pFD4U5sPP+2ndgknPXPpSmNOHklyJNthI/F83XeNL4Y+E/RsCaiy/HLJk0tLXx6D2/n/yJTiIQOwEBAWedSsKvn1Dr56lYjofp1AiZSj5LOaG38i1RlsY9GoosEdJVNMX/BjiQNapipqcqakoMn8Gj0ZwI0VkXoaMuTEsiTHNcpyEWoi6q0pIMs3VZHQcG89RFNYZyBi+7pIuBrIHleDVhk/GQyMlhF7kSKimLGIlx8SOfJHjGwypTXD3KiHIJcOW++lgCORLCy+eJmkZZoNgYqkaisYV8/3HM9BiuY+FZZYFiW7iug3BdHMfCcR1cz8Z1bTzHxROOX7lfvvp4QoDwcP0XUo4NyQgZkHxVJikKkiYjyQqSEkKRo2iyUn5vJCRJLr8vMhIyifoWlq27hBP7HiGiqXQtWwFAz4HH2Lb9+ZzY9wiF9BQNC88SnufQ3LWKsYFjOE6eaF0cx8mTHe2vro+mYmfbzAl4tklz+3Lf5sIIUV3BKYyQHemjqbw+rM2gOrWGatK3GBcwnocvXGrXlTW1cCU8t3KMVD224niruIsKWZP2VV30HzrOyInRadkSiJ2AgIBFoyJqDNtFkSQKlsNgzqRguliu6yftOoKmuE4irHF0pIiqjHtlorpafQy+9yFdtE8RMz3pEv0ZA8eb2qefCKtlQROhsy5CeypMSyJEXVT3AyLCQ0YipMmEVYVURKMxrtMYD2E7HutbE8jyuADpqIuc8fULzwPXLw+vChJn/NO+sl6Ue7i4ruOLE8/Fc21c28ZzbN+LYtt4ruWLD8f29ymfx/FsHMdGeC71qzZSHBsi03cUIbxy1ZCLAJKty4jWNXN878MVNxFClnyB4isvX6QoCpKqICsashwB2RcmmiT7IqXqBZGrXqW50r5yC9mRvlMETSE9RHakj/aVWzjw2G/m5bnmC9soMDZwjPrWbiyjwEjPARo711Df2s3YwDFso3C2TTyF6dpcK06q9wKENy5cPK9yXxYt3rhwobwPVNopOP7NcUDYeJ6NEA6eZ4NwEJ6NELVhTqcc9rR5Mvcoo09tYNP1LyShjkzrdQZiJyAgYN4RQmA6HqbtYTi+ZyZn2OQMX9TYjqAuqnLhsnr6MyauJ4ioKqoiURfR6G6KcnykRFvKb81ftBx6y7kzvScJm+JpeoDoikxHXbgqaCq31lSYkCr7NjoenueXj+uaRETzhU08rBHRFCKaQliTJ3hWNOEisjls0xr/WqrroCiYo8NlQWL7IR3HD/l45ZCP8LyqMPFcFyFcXNfF8fyQj+O5COHhCK+cZ+KVS58FQvKzQjwJhCRAksvi5KQsWUVBkiVkVSHTtxtJlpGbU1Uxokr+67EQ2Plh6patPKPnaLEZGzxO6/KN1QtwhcqFeODongW3wbEtLKuIbRo4ZgnHMnBMA9cy/ZttISwT17IQpoWwLIRls3rzdi7687+Co720tK7k0c99jIOP/nbB7Z0Lqy++lote/7dw5ATNLSt49F8/xOEH7kbyeyEgeQLZ85BcgeR5yJ5AdgWSEMhuebl6A6Xy2PUfKx7l9aDOU87+ie2/YPMHPzitfQOxExAQMGtqRY3puBi2R9awyJsupuOLGk94CCFVk24jqkoq7IecToyV2LIsyfGREumiheMJOusj/OeDx/j9/hFf2IyVGC1OHXaSgJZkaIKYqYibpkQIIcB03LKNfk6I5fifthFdoT0VJhZSfWGjK4TUicJG2DZevohXLOEUcpRGhjDyY5iFLIZdwhaun7NSESWyhIeHkCTKX2gniJOKx0TUiBNJV5BlBUlWkSS9XCEk14gTacE8KEuVisBpXb4RgKFje6lvW0Fr9waO7Pg9R556qCw8KuLDwLN8wVG5F7YNlg22jWS7SLaNbLtIloNiu8i2i+J4qHb55gg0W6A5At0GXYA+G+Pv3MeY0kjbrbcy8qUvEf30N7hg/t6aheHebzAWah23+QvfZfMim+DI4MngVm8SngyeIuHJEq4MXtn76CoS4ugjrL73t9M6dyB2AgICzkhV1Dgepu1iOh45wyZr+E30LMfzS7QFqIpESFUmiJqpyJsOBwbyLGuI8us9A7z80mW88esPT9rfIxXRThIzYTrro7Qlw+iqH9ZyXK9qp+W6DGQNZMkPRUVDCu11YeJhteytmUTYeB5eoYgwSnilEsbIEEZ2DLOYpWjkKDolTFVgKyB0HSWqIkvaKeJEKXtOloI46d54BYXsyATvSIXGzjXEko0c23OaYZLzhGNblAoZSvk0ViGLVcjhFvI4hTyiWIJiCblooJQs1JKFVnIYKjlkL7qa1R/9J7S77qdu63Ucf9ObMO77A20LbvFETBVsVcJWwVZlHE3CUWVcTcGt3isITWXllddT/+pX0/+7X9Py6ldzxBjgwCO/W2SLZ8aaS67xbf79XbS85tUc8cbY//i9fjd5WfbvFQVk/1YNb1aWVdXPx5JVJEX1xbuiISkKsqz6t8qyoiPLCoqqI8kqSnm7NEkHdpmph3h2rFlNqnN6DYQDsRMQEDCBioem4g3Jmw7Zkl0WEH7XYBCosl91FFJlkmHttKJmKg4O5fmnX+zldc9YwW3XrOZLvz9Ez1iJq9c0+cKmvixuUhHi4YkfVxVhkzNsLNfPd1FkmZAmEw8rpCLjHptw+VaLEAJhGLilEqJUws6kKY0OYxg5zGKOvF3ElB1MBVxdRk7ohJQkIUUnLqlLLuwzFYXsSNU7cnI4qHX5xmmHgzzXoVTMYuQzGIUMdj6HXcjjFQt4hQKiWEIqmSglE7VoopYcQoZDuOQSMQRh2/eSpGZov/vr35G+6Ac0lj0Ohfv+gCODpZXFR1l0OJo0QXh41ZuK0FSEqiJUDaHpCEUDVUdSdVBDoISQ1RCyFkJWwyhaBFWPoIXCaFoYTQ8jK3Il15oQ/m0yOtaspmvjBo7v2UtvxsA6fISL3/Zemve8mN4DB6c46uwyweaxEtahI1z8xnfQvOf5S97m3Q89PK39A7ETEPA0xXLG82kqoiZvOv6yUyNqJD/8FFJlEiG1mhw8F4QQ/PzJfv7j3kNcuaqRmy/vZk9flluesYLrNrSSNycOhbRd3z7TdstN+gSyLBNWZZJRlVRYHxc2ukxIPbV6xLMsRLGIVyrh5vOYYyOUcmlMI0/RLlASJqYCtgpEVNREiJCcIKnoKNLCDTKcCadUp9T2Wauukyas63nqII4p0bluI1ZJsO/h39PRvYKWZevY8ZNvs/+hX+OVClAqIZdKyCULpWSiGzZ6ySFkuERMj4gBCfzbXCjpUIzImGEFK6xgR3WciIYXCSMiIaRYFDkaRYnF0OIJ1my9hoYrbiQ31EvD61+Pee3ljPQcRivnf4Q8aTwx1gXXkfAcf3SD8GpKl8uVPNVKOVlUo4rV+znq1wmioSwSKvddGzdMWF4qnIs2r7/icupamjm+Zy/9hw5P65hA7AQEnOdUSrgNu9KTxiFr+MLBLJd6S5Sb05VFTVyfH1EzGQXT4TO/OcB9B4Z55tomPveaSzg6UsATcHy0RFdDhH39eQZzBma5+3AlNFYX1UlFVKIhlXA5ebgSwqpF2DaeYeAVS3jFAvboqC9sSllMq0TeLWIqAlMFT5ORwyohJUFE0UnM0WtTK0JOESZifJ9qhUplXaVSZULFiwSef+Gmsh5OETQT+szVNIwr5AfJ9uzgqe9/gU3LNnLB376PmKVRd+GVnLjtNkL3/YEtM3x9pgqlsIQRUjAiKlZIxQnrOJEQXjiMCEcgEkUOx5EjcdRIAj2SIhRJoYeSqJru9/6RIUylT45/kyRRFRySBG2r19C1fgMn9u2ld/8B2lauoXvTFsyiyvE9h2qEzPgxvnDxhYyiieq6ynuykCQaGyeIhgqV5URjIywx4XAu2qzqOp7nUchkpn/MAtoTEBCwyFQa7BUth6LpkjVsjLI3xHY8RFnUVDr4Rmt60iwGBwb9sFV/1uCadc18/s8uoa9cUTVasBBApmSxuTNFSPM7/8ZCKmHdFzaT2So8D69YqubZuOk0RnYMo5DFNAuUXJOCZGGp4KgSxBQ0JYIua9QpoWnn0njj/fUQ5dJa1xkvvfU8qoIEakRJjaChRuwAfitbMfH5J/R+k8odc2vWSWVRgDRxX8suMnpiB+bRfejHe2juybAqXVv2cpB01wYab72VoW98ncN7HsDo0LHDKnZYxwmH8CIhRMQXK1IkhhKJoUaTaJEkoUiKULQeTQuD8IVKeMJrrfmdnPx6T3rtoizeoOyBqXbnlar7d21YTdf69Rze8RTH9hxCkmWO7vIFzootG5Bk6DtwcM7emPnkqQcenHJb74GDS040wLlnsxDw+K/vJdHQzOarL6b36PQG2QZiJyDgHMawXQqmQ8F0GStaVXHjlTv0hsoVUIstak5GCMHPdvbxpXsP43iClkSId96wnv6MQdZwGCmYrGyMUR/TCesKErC65dRhvpU8G6+cZ+Nms9jpMYxiDsPIY7omBWFSUlwsVYKIjCzJ6EqcqKKhydppbBzvFeK54Ll+CMSxwbWl8voab0xNxXfFKwHjIkUGkMUp4qX6ePyZZ/x+eq7D6MBTFI7uQj52jLqeUdoHbFomOVV/o8LosjpW/OmraXjVLWSHh2n6sz9n5SWXzTo8UbV/sga/s+JUw+vbGji+Zy+Dxw4SrunD13/4ILICqaZG+g8utQtxZUBFuYfShDEUUDv7SXhe5aCJ9wiEVxujrGyrdRf697VePCY8V2VbrdKWqITyasdbVJAqh0q155zsNdY8nvqNmLg4yZ4SEpXRnBISnhC4joLnqNi2imMruLaGY6s4toprK9XHvpEFjj25mytfsXUqKyYQiJ2AgHOIWnEzUjDJGQ6m4+J6grDqJ+Em4rNLFl4o8qbDp+/az/2H/OZfV6xs4O3PWVfdNpAzaEuGWdUSP0WQTcizKRRw0mmsfAaz5AubkmuSV2xsFRwdkGQ0RSek6MRk/RSvTVXQVL00ZQ+NLeHavpehInIqyLKf3yHLoOjjeR6LSXbsOOmjOxFHDxHvGaS9t8TqSarx0zGJgWUJSsva0LvX0rB8G5FoHZedlJdRydOApZePUWG+PA4TBIgQCOHhuf4aUW7XK8rrq00dEdUO1KLsipogTiqioiJghQRCsHLbNnIjo4z19Na45vxbQ0cniaZGjj35BJSHgEycnVAeJVJRz+V11eaOklpptV2jqKWa46TyH6tf/YfitytAkpDkGltgfL0k0dndTSFfIJtJV8doVJ4/VVdPLB6n70TPSSMhasZC1Ow/bv/4PkIIHAMsA6yih1USWEWBVfJq7j3skjhZI50WLSwxOpDh6JNTpYpPJBA7AQFLGMN2/cRhw2a0aJE3/IRigSCk+H1hUhFtyfZc2TeQ4+N37mUga6LKEq/fvoIXbO2o5sSMFSxiIZXVLXFU4eHmCtU8GzeTwc5nMQs5TLuEISwKko2heNiKhNAEiqygyVFiio4q+x9nVUFjg+NKVU9NVdDUJLRWWAqCpoJpZBk5+jjW0X2ET/TT0pOlKyfoOmk/Q4O+jgi5zmak7pWkVmwlWbeMtpPKd8+VBFQhhD8XS7h4rlfumFterswQ8GpEiaiIFaoCpBIVrFyIRTUpWSpPNpcA2e98XU7mkSUZSfaFgSTJKKqGJKl+9ZWiISsysqKilMumq2XVsoQk+/2RKB8frUuy6pLLGTjSj1kwq/O1wokwTV3NDJ8YYfXlbVWbKoKj0p6g2hiyIkzk8dEhcOp9rQKZ7d+rHlboWhElO1zEMtwJ65NN/vpQd/2kvy+z6GDkbUo5C6NgU8rZ/nK+cm9iFJyyp2p6hKIq4bhGJK4RSeiEYxqRhFZdF47rhGP+70cPK6A7Zz4pgdgJCFgyCCEwylVRBdNmpGCVK5C8c0bcVBBC8JMnevnKfUeqYav33LSBda3jtTwly88l2lIfQu87QaGv308gNoqYwqIkORRkB0sRuH4jZXRFQ1d0opLu58O44DkSjgWmU67EOaOgESgqZ1XQVHAci9He3RSP7kY9foKGnjFahxxaTtrPk6CvRWOssx63q5vYik00tK6nQdVpOMNzLFYCakWsIARudYq5VxYrfhde4bm+t8TzKuVS/rd/RHkWmH+R9wWEXBYVCroaAmQUVfGFiKoiK+XxFYqKpMhlESL7xyH76yTlFGEiSTKyovhdpSUZZMU/F5XJqhN7L82U3IhB28qOqnioFQ2SFCYSC8/5vZ5PLMMlO1ys2miWHCRJItEY4fATQwwdy50kYCyMvD0rERNJaGXxoteIl1NFzHSovK8nDvdPa/9A7AQEnCWEEJRsl4Lpkjd8cVOwHAzb8xNAy71h6iKnhmOWMnnD4VN37+OPh/wBfVetauSvn7OWeGj848b1BKOZHKsooT/VT1+6nzHFxtQEVshXKLIkoxEmIulInorngWuB6UiUJhE0EmUBUxE02vyUE88XwvNIjxwhe3QnHDtM8sQI7f0GjZN8MR1JyQx1JjG7OtC719HYfSHxUJxTs5jOzHTDQbVixRPlURaeL1A84VbFiucJfxp62dPie1MEkvDDJRIgl9WkLPuiQ1d0ZE1F1jRUPeRXZKkqihZCVsrCRa6IGL/5nKr4zekURQVFBkleMr9L8N8vq+RSzFoUs2b53qKYsUg2RXjGS1ZzbPcA669o5Zf/8SQ9+9Jn2+TT0rmujmv/fAOHnxhh4zPa+dlnn+D4njMP2QzF1KpYmSheNCJxX9TMRMRMh1oBadd4o05HIHYCAhaJirjJmw4Fw/HFTbmvDUjlUmqV+sjcvlkuBJVEwlMrbsSEdU/15/i/v97HUL4ctrpyOc/d1IaEhFP5UHIdBo/1khzrxRJj7FVNSiEJXQqjOiFCnornyLgOWJ6EMYmgkRWBrPiCZpKmqwvG+isuJzcyMmnYp2PNahKNjVVxUcwPM3r0cZxjB4mc6Ketp8CK4qnfhAsh6O+Mkl/WitK9mrrlW0mk2mlfAPtNq4iZz5WTlsqhH68c7KmGU0CWVJClchdcGU1RUVQNWdVQVR1VD4Gmomg6sqqhyDViRdWQZQVV0Xyxomplj4mypMTKmfBcj1LOppi1KGQmipnKY9eeasjTGHUtES66YTmP/fIoBx9bWtPZJ+PgY0O0rkxWbR48lqWuNXqKB6Y2tBSKzq+ImS6qrpwSdjvjMQtoT0DA0xJRTl70hKBoOhRMh1zJYbRoUTQdDMsFSSKs+NO0E2G9HIMXCFfgOO74eeCkcmVx0vL4g/F+K6J6bDWMI2rPN54IWD2HVzmHGH+K2vNNeIE1r7OyyhPceWSY7z3VjyugOaLzF9u6WZmMkD1envTseYhclmz/CZzcMHZcMBLR0NU6QpaOi4TLeK8UWfYFjarV9kk5u+RGRibNc2ld0cWydWt57Nufo+cn/0nTiQztY+4pgsWRobdNJ7OsEdG1nPjyzdQ3r6FJUWlaIJvbV69ibKifgf370GWNVF0T4VAMdJ1USyORZJKxvmEURUNWx0WLIvshIlktt/FXlEUV4dGkjmO5k17Q9LCCqisUs1PPTDsdQghswz1JwJgUasSMkbenda5QVCWa0okmQ0STOtGkTuuqJKsubGa0r8DW67po7k7M2tbFIprUaV9TR2aoyIXP6WLlhU0zEhOLyWzey0DsBARMgucJrJKDVXKwTce/7vuNe8uVG6Lc0ExUqzs9ITAsF8NyKVgOOcP32liOi4SELpcHYSpSNcHQFGDCRMEC42qjcm0R0nhtaLWC1K90kMYrShFCqpZAAzWVESfVCJ9UWTFeHz3xfRi/tkmnHCuXK77ylsMdj5/gsYEsAJd3pHjjti6iNeMZRC6DOXiC/PAJ0k6RREuCeCJBSAnVPM/MS7AXm9rE3rFDj/PUt/+dTcsvovuaD3PittuI3vcHNtXsP1gvM9yRwOpoJtK+nMbWNaRUfeLIhGxv+cH8vn5XeBSNIpo1xtY/fRkJ10SxbSLJFJIsoafqSa5dR3b/XhqUnH9QJaQ2b9fl2Ysjp1hHcu0Gsvv3YmXS1fV6qo5kp7+emvW1eJ6gVIBiQVAsQDFfvi8I/5YHZxp5rbIM0ThEYxLRGETj5fvK4ygoKvhvmFW2r57k2hVk9+/CyYyRS9fTUX0dY7N+P2bPmX8HeqqO5JoNZPfvwsqkEcOTv/dLkkJhWrsFYicgoIxju1glF7NgU8xZWIaD55bDJBLVb7UVASAA0/UHYxZtl5xhY9oCy/OQwB+GqSskI1q5wGLi8f6C/+PkdUstjDUV+0YK/NuDhxku2qiyxJ9v7eT6VU1V+71cltLgUUrDPRSdIllNo7WphdZEbD6asyw6ppHlD1/6EFulJra87yMsGyhS99KX0nP77fQ9dj/9q6OUOhpQ2ztpaF9DNJKi8+STiIX9tmy6FkapiGo4RMNRwo5LetcOVj7rerL7dmGlR9ETDf7F7Sl/eSlijQ6RfcoluW7zuN11vt0jT+5i7PioL2CKlIXM+K1UnN5zhMKMi5dozeO4vxwKnyzEJxGkNb/Oin217+tkr2MpcS7aPAF3eh64QOwEPG2puLLNkoORsygVHBzL/+TSQjKRuDYhHi0EGI5LyfJ73aRLNpbtD8eUZdBVhXhYRlOWViLlQuAJwc/2DfK9Xb24AlpjIf7myhWsqIsC4BbyFIeOUho4hunk8WJxrFA9zeEQTfHQOSd0RvqfonDv//CMi5/HynSMwn13MXrBpTTfeiuDOx5i97Yuum9+Ce2NzfTu3rHo9nl4GJaJkTVRLAU93EG4sRk9nKIoNPY/6dI38BQbr9vM2K4B6la38shP9zJyLAdM3Wjx7JOjcd9eLnzuZgYf62f5yjZ+fscujuw888XX98pIRONy2SMjjz+Oy0RjEoo6v3+IaqqR7OFDWCUbQuOVh1bJJnv4EGqq0d+2hDgXbZ6APb3fYSB2Ap5WuK6HXXIxijalrO+9cWwPRZHQQgqhOn2CV8V2PbIlh6LlixvTdrE9gSyBrihEQwopZSlfLOafrOnwhYeP8li/H7a6clkdb7y4m6imYJfyFAePUBw8jmPmIRZHT7Vj2YKwBA2xpdXw8HR4rkPPrrsI338/aw76rnJP2037Jz/B4ft/TdOfvJj88CDNWy/l4liChq4V7L/37hk/j98XSMJ1ZVxHnt59zWPHlvBcGSFOHX7qux0qrodBXDVRTUB98M6lnzQLcHDPEGpsPHG2InRCYalGxEinCJlQRFp0D2mxf+oyaCubxcpmF9Ga6XGu2Ox5otzZvPy43O08X5he+DcQOwHnPbblYpUcjLxFKWdjGS5CCFRdRg+rRBKTZ78KAcdGiwzmDGT8fJtY6OyOXTjbPDWc5zMPHmG0ZKPJEq+9cBnXrWzEMguM9h/BGDyGWyogRePoTR3IkozteDieoDUVmnQa+VKjmB9m8IGf0PHAXraUZ0t5wIE1UewuuLq/l7U3vIShg09x8P7fs/zSZ9K+fj1HH99Dz94RXDc6qSg5nXA5eT7WXFBU0HQJTZPQ9PJjXaJ9TT1bntXBsR0n2PKsDiQ7x1hPet6ed6Go76xj87M66N3dwwXXdtLaXAIzizrPXpmAs4cQYnxMS0XUlKswRTldUJYlJMXvQqCFJFRNQtMglJjeZ0ogdgLOO4QnsAwHs+RQyloYRQe3XAGlhRSiKb2aXHs6RgomQzmTukgITXl6f7B6QvDTfQN8b1cfnoD2eIi/unwFrVGH4d5dmAPHEIU8SjRBqLHDr97BL/Iq2S4NMY24vrQ/boaOP4F5752s2TlIezl5NR+GQ1ubSW67ktaWNTSs3Eou28DR/36SbTesJ9waoaG7g598Zke5J8kpGTozQKAoHorqTXovqS7INsIz0FybaFgjVZ8i2VRHuC6KrsuoOpP+bevJJMlVq8keOkjYzlI4VmDrjRvIHjq4ZL65T0at3WoxS/5InrYL1ix5uwMmIsqeGLfWK+MC1XaSoCgVMSOhhXwho2oSiiKhKCBX7yf+jcu56X35XNqfPgEB08S1PcySg1n0+2LYpovneMiqjBZSCMfUGbm0DdulZ6xESFWe9kIna9p87qGj7BjwK3ae0VXPqzYncdIHGTpyAqmYRwvFUZo6T2l6UzBt4mGVuqi+JPN0HMeiZ8cvSNz/EGuOGdX1PS0aw5esoXHFVcSddrKZOD3Hw5j3FoFdAOjR8dDKib3D6BEFPaLiWTlfpJwkWOTTCBlF9ZBrhobW4uJRcgzcokHYhmQsRbKphVhDE1I0XDM6YHJqBUNFIFjZLNlDB09Zv5Q4V+1+OjJViKmCJPliRZZBVcteGR0UdXIxsxDhx0DsBJyTCCGwTT88VWljbpt+boKqy4SiKoo6u3CTENCXLlG0HJriS6u1+2KzdzjPZx44wpjhh61u3tLABbExcgf2oOaLhLQockPHpJ39DMtBU6QlmaeTy/Qx8of/R/dDB9ma92P+tgx7N6/CWncdCsvJ5+KM7NFPOlIQiVms3pZg87PaOP7ETrZcs5awsotMX8+82mgJm5JlIBk2MU8hmWgi2dxGuK4OKXSyXVOjRqOTCoOKcFCj0SUpGs5Vu883phNi8ht9SqeEmBRVrgoYRZGq92eDQOwEnDN4rodluJhFh2LGxDJcHNtDVkALKcRSenm679wYLVgM5k3qovp5X1U1FZ4Q/L+nBvj+rj4E0BZXuXmNS1NpN9JgiZgahvpWUCaPlzuuh+OxpPJ0hOfRf+RhvPvuYt2uUTo9iUK0jf0r1jKw/EJcfTWurcHIhKOIxk0SKYN4skQ8ZdDY1c7aqy9l/713kenrIT90nLVXX8f+e++es+Dx8DBdB8s2UA2HOkIk6tpINbehphJI6syT4c+VBNSTOVftriC8yZtxTng4SW7tVMdATR+uqZ5zsu2nND8/1ZBaezxxaohJliVkdeYhpqVEIHYCljSOVS4NLzqUMia26ScXK6qMFlaIJOa3Esq0PXrTRTRZedomImcMm39/6Cg7B/2w1bZmeEF9H6mhErqkI+qaQJ36o8MTULSWTp6ObRXpeeRn1P9xB525FtJ1F7J74xpGG9bgKTXTpmyQJI9YwiSeMkgkS8QSBoo6fnFItXeeImwyfT3sv/fuOQkeF4+Sa+KYFmHTpUmLkWzqJNbUgpKMVXOgApYWwhO4HniOP+/NH85embTOSc07J4qASb9InWaddKZ1k51CmrivJJ161Ml2qurih5gWg7P/SRQQUIPwBFY5PFXMmZgFF8dykSQ/PBVJaAs2i0UI6M0UyZuu3wvmacjuoRyfefAIGcNBk+H5bTm2S1lCBQURr0doZxaXSyVPJz14hOE/PkqiNw6xSzi8+hUcUCMT9pFkQTxRIhFLE6+ziaVcZGXqr8+x+qZJBU1F8MTqm2YkdizhYLgWmBZRSyIVSRBvbyLc1Igci56zF5bzCSF8EeO64LnCvy//icjSuBAIhWS0kF/9pigSijpRXJxO3JxRyJy8bpJzTXb+ydc9Pf+mArETcNZxHQ+rmlxsYxkOruP53puQQiiqL8o/6FjRYjBnkap0PH4a4XqCH+45zn/vHUEAzSGX1zWMsVxycKNxRGh64u9s5ul4LuRHJfoOnMDul7DV1XjqJjLd4/vIike8QZCod4nH0kS1IWQs0OPAmUX06RoGZvp6piV0BALTszEdE9XySDkyiVgj8bZm9IYUUuTMSccB88tkgqaakyL54RtF8fNRYiG/rF9RfUFTETZLNXwT4BOInYBFZzy52KVUsMaTiz1QQ3NLLp4tluPRM1ZClST0RX7us4kQgr58ms8/coIDI3699WVxg5sTGbRYCDccP8MZxqnk6bQsUp6O60BhTCY3qpAdFhQzCqAAa6GszWS3gBZL07S8kWSTIJIUSK4JxREwciDroCYX3FbwQ1WGa+HYFiFL0CQ04vEmYs3NaKnkjJKOA2ZObaKt644n2laoJNCqukQ05PcmUtVy+EaVUANBc04TiJ2ARcO2XErlKcNm0cGxXWTZ730TS85PcvFsEAJ60yXypn3OVl91tsXJF20yWfOUbalkiHhUo6c/X13neS4FJ8fDfYN854k8eUtClwSvSGW4vEEgIknEDNxb1TydqEZimnk6HWtWU8hkyAwNn2pzcxOxVGrCZHHHhvyoQn5UJjcqU8ye2oxPN9Mksgcwk4MktnbRvmo1klQPeP4v2sxCcRQ8C0LxRRmnbguHomuC4xI1oUmJEK9rINLUiJKMI50m/ylgZkyoHKqEnLzx+blVQaNJaDEJXa/x0JSFzdmqFgpYWIL/soBFI91fIDNsoOnl3jfxmfW+WTC7ShaDOZNUxK++mqlwWArkizbrVtez7+DYBLtTyVB1PYDjOeTtDKPGCHfuz3PvURBItKs2r28p0FqnI2aRDFs0bWIhlbrY9PN0CpkMay+5mP2PPDpB8KSam1h7ycXs+eOjjPUp5EZl8qMKpdxJmZRAuDRMXeYAdekDOBxi5KJWWm98AZHopolP5lhQHAMzDYoO+sJ6c6qhKs9CcTxSlkxCjRNvaUJrqEdJBEnHc6EqZNxygnDNMM5K5ZCqSoSjfrKtqvkl0LWhp4CnF4HYCVgUbMulmLOJxDW00NIoRQY/fHVirIRSE76arnBYSmSyJvsOjvn2HRglnTGpS4Wqy4OjWfJ2lrQ5ylAhz093SxzO+q/3qrjBiztddC3sl6BOb9RMFcNyUGSJhqiGjITwznwMQHpgmH0PPcq6yy5m30OPMnxihFC0hVXbtvHrr+zk4GNFqvGoMjJj1A3vpm1oP3XpA+jmGAfWJRi76Wo61r+dlHLSR5oQYOWgMAKuBXoMpIX7+6uGqlwbzYEmWyUeThJta0JtSE0r6VgI4ZcQi/LcLMYfV16Sv11M3F6zX+V4YFLxOdmm0+zOyX8UopJ0W9k0zRNN9dLPlLwrmETQlL0woUiNoCmLnHO9cihg/gnETsCiYBZsHMslHFs6f3JCQH/GIG9MDF9NEA5lwVMROk/tG2FszPB7aLgCzxN+IqMr/HUT1ovx9eV7r3bdpPtz+v1rHnuTrD+4rp4bbt3MnmO9rN7Sws8/+0R5jME4IeK8tHZFJsLQPPTDGznzLpNQ5MDDu7nhjZdgFnrZuL2DO+/YxfE9aQAiCQ9FH0Q59nvWPfkoiZLfWyUfhn2XdJHcfjOtzasmP7Vr+yErIw2KVp7oPH8XPyHAcyUEEo5wKTkWnusRdmQavBjRcBy9uR45EcMJh7E9ICfK3Ut8hTCZLqiUAku15cvlRNnqogSS7HeklSTJb+om+1E5SS5XCcnS+HGSVL6f+rWcaZ2YdKcJd6e2cKkIt5pzntxH5uTtp5y3/HhyD00gaAKmx9K58kxBLpfj/e9/Pz/60Y8YHBzkoosu4lOf+hSXXXYZ4P8DfvCDH+SLX/wi6XSa7du387nPfY61a9eeZcsDailkTBRVXlIfTOmSTX/WIBk+tXlgJmuy89F+Nl/Qwp77elm9qXlS4bDUOL57lD339VbHGCx1ewGO7xm3eefvjmAaA1z6vEaaUnme+ug7WFk7xqFVY/iqC2m/5PksD02RPC3wvTnFUXCMeffmCAGOreC6Eq5kYXgmCpBwJOIiRDyRJNTUgFYXQ4mE/Fb5FTEijQuYWgEi1QqaGoEyYR0n77N0/pcCApY6S17svPGNb+TJJ5/kG9/4Bh0dHXzzm9/k+uuvZ/fu3XR2dvLxj3+cT3/603zta19j5cqVvP/97+fGG29k9+7dhMPnZrLp+YZlOBh5Bz28dMJXtus3D5SQCGkTcyfskkPfw0OM7MsgvcSeWjiUe2xIcvl20mP5lPVUH5+ybdL9pYn7T1jPpOvrGyNs2tzIEwcPsfHaZYwmhjm2t4fvHfI4bPo9ci6vc3h+q4s+x5SRvGkT0RSaE6FZlZm3rVpJ57q1jPb10rK8nZ79B9lwZSehwkOsvvoqev72b1l5zMCRYf/GeqTt19K26krip8t18RwojPq5OZIyr94cz/NFjufJyJqFE0oTVVw6HYWUHCFR30iorRmlPoWsz2+zy4CAgLkhiUl9k0uDUqlEIpHgv//7v3n+859fXX/JJZfw3Oc+lw9/+MN0dHTwjne8g3e+850AZDIZWltb+epXv8rNN988refJZrOkUikymQzJ5OKUoT6dyI0aDB7JkmhcOuLz+GiRE2NFmuLhqldHeIKhPWP0PzqMa3l0bWzgxjdvoX8gT0dngr17R0hnzXFxsYS+WXe2xRFAR1uUu594hJGhDMtjKS65bBtf+O1BDCHxld8f5JUdNpfUTTOp5jQYlgMStCbDhLXZi9hVF26lubuLozsf4ZEP/w3bn/FSWv/m7Qz9679y6Fv/wZFLV9K4/X+RqDvDNHEB2AUoDINtQCgK0vx8l/NcCdv2X6MacnC1HIICLZZCk54i1tyC1tKIWpdEmmJ8RkBAwMKQzeVJbXjWGa/fS9qz4zgOruue4qGJRCLce++9HD58mP7+fq6//vrqtlQqxRVXXMH9998/bbETsHAIISikTdS5uhHmkUr4KhEebx6Y6ytw4v5BjDE/IXn15a085882sO9wmkzWJG+6bNjYdErS8lJBAMuXJXhk/35Gjw8QHc7x9f4x7iukeNeNG7njrr28c7VFS2ju3238fjqCljkKnVRzEw3tbey/66esvuxZJG56A3UvfSlHvnYHHW+5jfhll7FiLHPmE3kulMb8GxKE58eb45ZFjgSEwg5y2KBEmqghaBUxGts6CHW2o6QSQWVVQMBiEm8BuwRmbtqHLGmxk0gkuOqqq/jwhz/Mxo0baW1t5Tvf+Q73338/a9asob88KK61tXXCca2trdVtk2GaJqY5fsHKLvGBcucy/uBOGz28NP7U/PBVCQSENQUrb9Pz4CDpw/4/jRKSufAFK7j02u4JwmaypOWlhO2ZPHqgnwtWrGB4z3H+73GPju52bnvWKr53z26213sc6p+70PEEFCyHxqhOIjS336ke0XjgH99Jw3/+ivS73knjrbcycmg/A43LMHbsJNnYRP5MYscq+Lk5VhH0CMhzDx85joxjK8iyRzhiE4rYGFIewzRoMVRa6lpJdHejNTcEnpyAgLOBXYL6FTB2BHLTawOyNK5Ap+Eb3/gGb3jDG+js7ERRFC6++GJe9apX8cgjj8z6nB/72Mf40Ic+NI9WBkyFWbBxbEEksTS++fZnDTJFm/qQRv/jwwzsGMFzBEjQtKGO9kua6ViemlTQVARPPKotKbEzUirwk/uOsH+gRFv9CB95xTN5Rd1xXnlZFz/59UMks/0cmqfnKpo28Rn205mMvkMP4nz0hzRmPCLP3E79a15DbnSMhpVr6DAceg8cnLTZYBXP9ausiuU2AHP05ggBriPjOAqK6hKNm4TCDkK1yBhZYnmPznADbddcjxqSkJnk9x9KgBaB/OCs7VgQTvcteKnaDOem3YHN84/ngJUHMz/xPt4Cm14Mj/zXtE6z5MXO6tWr+d3vfkehUCCbzdLe3s4rX/lKVq1aRVtbGwADAwO0t7dXjxkYGGDbtm1TnvO9730vt99+e3U5m83S1dW1YK/h6YrwBPm0iaovjdyWbMmhL12CIYOnHj6BlbMBiLVGWHZVK9FyTtHpGgZmsuZZFzq267FvpMCTgzl2DmY5PFYqV+cqMDDK1oeOc9s1q3niiX0ks1N7OGeKYTmoskRDTJ/13CvPdTh299fYfNdeVA+k517H8v/7KY7v20/vgYN0rFlN18YNABO6J0/ALvnjHswCaGG/SeAsGa+sklE1l1jC8ENWqkfOKeGm87Q4YVrbl5PsWoaS0JEaVvrfKGsvDqHE+DfNpUbtt+BzxWY4N+0ObD4Vz/E9sJMJFjM3cXmyx44x9bl3/gBu+FfgPWc0Y8mLnQqxWIxYLMbY2Bh33nknH//4x1m5ciVtbW3cddddVXGTzWZ54IEHeOtb3zrluUKhEKFpDjYMmD1mebhnOHb2K1NsV3DoaJrBPw5Q6isBoEVVOi5vpn5VckklG5+MJwTHMiWeHMzx5GCOvcN5LHdiSKpVd9mgm9y4tZ2XXtnF/t372LB+BfmhAYb65v6tbD7ydPLZAUrf+RwXHiwAYLzuJWx794c5vvepqrCp3E8qeDwPjAyURv0pjeHpDe+cDOGBbSt4noSqeyTiBlrIQVEElmeTzmeJFTxa6tpoWbEGvbnBH+tg5f0P/9qLQ+1FYQY5BIuGmTv3bIZz0+7z0ebSmB8mPlmMnCxUphIsdml+7NSi/sDeUNy/1+Mgq3Di4WkdvuTFzp133okQgvXr13PgwAHe9a53sWHDBl7/+tcjSRJvf/vb+chHPsLatWurpecdHR286EUvOtumP+0xCjbCE4s+1PNkbNPlwbuP0fvECHh+07XmLQ20bWtC0ZZGeO1khgpW1XOzazBPznImbE+FVNY0KnTGClzkGTSbeRrWr+XSZ13Ow/c+wFDfIEN9A1x69RXV5dniz71yqJ9Dnk7P3nvo+O5P6SwITBX2Pv9SbnjdX08QOhUqy4nGRqhss00oDYORn5M3x/PAtlQEEpruEIvY6CEHWfZHPGTMPCKTp1lL0r5mNclly5AjJ1URVi4OqWWw92ew9gb45fuh99FZ2bRodFwMz/576H0M1t10btgM56bd57LNxx+CDc+DH74J9v0C7OL8nF+LjIuUWsESmmxdYuKyHvWFzcmEEqA0TOvpl7zYyWQyvPe97+XEiRM0NDTw0pe+lI9+9KNomu8tePe7302hUODNb34z6XSaq6++ml/84hdBj52zjOdVqrDOXgKnEIJju0bZcfdxzIIvFpLLYnRe2Uo4tbQmTOcth91DeXYO+N6bgcLEUFlIkdnUHGdLS4LNzXFC2hgjhR4ahg30TIGGjWu59FlXThA2Q32DPHzvA3MWPEXTIRZSqZ9Fno7rWBz/xX9wwT2HkYG+JpXin/0ZKzo2s+/Bh6Y8rvfAQV/oCAGlNBhj4Nmz9ua4roRTLh/XQw6hiIMecqrVeJZnk0uPErclWttW0bJ8NWp9amqP3yNfg1gzbP9ruO/T8Md/n7FNi86xP0Ki/dyyGc5Nu88Hm3edlAujhicXKZXHocRpBExscrEyFyrep2M7p7X7ku6zs1gEfXbmn1Leov9ghkhCQ1YW33uSHijy2C+PMXzCz79R4yrdV7WR7IotiZCV5XrsHymwsxyaOjxWnNBGX5ZgTUOMLS0JtrQkWNMQRZVlhIBRY5DBwjHqhkqEMnncZII1F2wkM5aeVNA0t7eQqq/jwO59M7bTsB0Q0JqaefgqM3Yc91t3VDsg77qoheaXvJXQVJ2PT8Yx/dwcIweq7n/YzhDXkbBtFUn2CIVdQhEbTXOrIsfDI1fMQSZPQ7KZzlXribe2Tj2JXHjw4BchPwAv+zIc/j2s/RPY9WMYOzxj+xaV+pWw+UXQtwPaLzw3bIZz0+5z2eaBXdC2BY7e74ehKoJlvsXKXKgJs2WH+6bVZycQOwRiZyEY6ysw1l8k3rC4uVFm0WHXPT0cfHwIBMiqRHxDiuUXtZzVXj+VvJuK5+apkVPzbjoT4aq42dgcJzqJuMiYo/TljxIbzhEbK+Am4jDVhXmOOK5HyXZpTYZJzLB1wPEn7mTFD39NvAQlHfa/6GqWX/rC6R0sBJhZv6Tcs0CL+7HHaTJeWSUjK4JQ2CYUdlA1b8JYENM2KYwOE1PCtHWvprV7NUo0MvWJXRt+90++4HnZl+GJ78GyyyCcXNo5GXBq3shSzyOpcC7aHdi88NRUkJ0XTQUDzk1c16OQMdHCiycuhCc49PgQT/6uB8vwxyO3ratD35gimtDPitAZKpjlvJvcpHk3dWG1Km62tCRoiJw+tJa3sgwUThAdyRFLL6zQqeTp1M0wT8e2Dfp+8nku+KM/WfR4u4776texvHWas+ocyy8nN9N+Xo4+/S8flcoqx5VRVZdowvJFjjqxY7SHRz49iiiZtLZ00rlyA9HGxtN7/KwC/OoDEE75QuepX0DX5f62yRI8lxKTXbiWus1wbtod2Lw4zKIUPhA7AfOOWXCwDJfYIuXFDB/P8divjpEe8LP+U80Rtl7fRTYskS7ZREKLkzc0Me8my0DBmrA9rMpsbPLzbi5oTdCZCE87pFZyCvQXj6ONjBEfK+LGYgsmdGA8T6dhBnk6YwP7Ub79VS7o81/3E1d20vmCt6Bq0wg/CeEP7yyMgGvNaHhn7WBOVfOIx/zycUU51WltGkWKIyNE4yk6Nm+mpXMFsnaGasHiCPz8PTByAJ75Tjh6H7RsOOnE5YuDFll6FwYtMvkFaynbDOem3YHNS5ZA7ATMO6W85U9lnmUvlmk/T87iid+c4Nguf0CnFlbY/MwOVl/cwkDOZGQkT2N05nkenW1x8kV70n46qWSIeFSjpz8/i7ybGOos3hPTNegvnEAaGSY1WsKNROBMF+g5YNgOqsyM+ukcffi/Wfvje4lYkI/AkZdez/KtN07vCR0TiumyN0eb9vDO2sGcmu4QTTjouoM8icjxPIf8yDDCE7SsXE3Xig1E4tPwGqWPwv+828/RidRD01pITjGny8wtzYvC6b4FL1Wb4dy0O7B5yRKInYB5xbU9ilkLbQG9KZ7rse+hAfbc14dj+SGKlduauOCaTkJRjbzpNw+MaSqzGVmUL9qTjoVIJnTWrKrjW/cc5kc7etk7nMf2Zp53MxNs12ageAJndID6YQMvHIIF7BHluB62O/1+OqaZZ+i/PsfWx/wPzCNdYeTXvImuhu4zP5nn+d6c4uiMvDm1gzm1kEM4YqLpzpS/azOXpZjNEG1qZtnK9TS1dCJP5w+j/0m48+/9/KFkJzzv/0Ky48zHBQQELDkCsRMwrxhFG9twidUtTAir/2CGx359jPyoL0IaOmJcdEM3De0xAFxP0Jc2sD2PZGR2oqB2Dtbje4e5c3c/ckjhL/5kLW/8+sP8fv/4GIPavJsLWpLUR+bP4+J6DoNGD6XRXhqHDQhpiAVsqTDTPJ3h3l1Ev/VNNg85eMDOZ62k66Y3oqjT+N3bJb85oJH3K61CZ/ayVAdzSv5gzlDERtNdpooEepbpe3PCGm0bN9PVvZaQfpoE5FqO3At3/W9fhDVvhJs+BpG66R0bEBCw5AjETsC8UsyVQ1jzXN6dHzPYcdcJevenAQjFVLZeu4zlF0xMLB3OmwznTRqicxNbmazJE08Ns251PY+O5HjlZV385Xce46HDo1zUlpxV3s1MEMJjqNRPfuQEDcMGyDIiMs0L9Swpmg5R3c/TOd1LEp7H0fu/x4afPULIgXRMoveVf8qKDc8685N4brkL8hgId1p9c04ezBmOOKja1CIHz8McTVNwSsQ72li2ciPNdS1ntq3C7v+G+z7lV111XwXP+YCftxAQEHDOEoidgHnDsVxKWRs9PH8hLMdy2Xt/P0890I/nCiRZYu2lLWza3o52Ujl0wXLoTRtEdQVFmbsA+dQ9B9k+3MJt16zmN0/2c11HPW/asmxWeTczQQgYNgZJjx2lfqiEjIQXj512//GFmsdlM6ejxQzbQZGhMX76PB2jlGb0e//Ohbv8AZwHVseIvOqtdCZbT/8EArBrJpRrYVCiU+8+xWBOVfOmPAbAKxTJZccgFaNj+TaWdawkNN1uy0LAw1+Cx77pL294Plz9t0urv0hAQMCsCP6LA+YNo+DgWA6hurnnlAghOLF3jB13n6CU9at7Wlck2fYnXSSbTv2W7QnoHTMwHJfm+Nyff+dAFqHLvPKyLnYeHOXqDS00SQrpjInrjF9wq0JD+D8mFR5CjGsQ4d+qa2r2F0JCkgRpc5TR9DESwybCVTDjMSiV95VqziOBhDhzLq/wzz1xP1E+h4TreZiORGM8hOyoWC5Ikm9YVShJMHTsERq/+z02pj0cGZ58zga6r70F+UxVYa5dLifP+Cc6jTdnqsGcinqGdmCWjTmWJq96JFetoGv5Ohqj9Wd4Y2rwHLjnn/32+ACXvA4uvmV6SjEgIGDJE4idgHmjmDWRZWnOYZ3MYJHHfnWcoWN+FUA0pbPtOV10rKub8tzDeYPhgkn9GXrVTAfDcdmZLvCZV13El391gEtScfbkHTZuamTPnhHGxgxfaFRskSgLj/Jrl8urKh4SWapeM/3eeOX9pPFeeZLkH5QxR8mOHqPeGiES8nDrUiA5NUJlXNxI1R/UrPDvJogryqJMSNV1FVHmeVAq2jSkdBpjsi/MhB/BEQCenxB+4t5vsOXXT6J6MJKS6X/ZS+novgLHBuzx55AAIQn/uYTwvTmlDJJjVruwSubJQkogAZ4nTTqY87R4Hl42T87MI5rqWLZiDV2N3Wgz8cbYRfj1P8DxB/1fyDNvhw1/Ov3jAwICljyB2AmYF2zTpZS3TwktzQTLcNh1Ty8HHx1ElLsfb7iynQ1Xtp12YGfRcuhJG0Q0BXUewle7MgU+8pIL+P9+uJOXrm0h2RzDkyWOjRTZtLmJo0MF8qaDL1rKB1VDRrN//qw1xmBpP6n0AHHh4bTXo0plV9C8cOp5siWb+kaFrgYNVTn1uXLpIUbv+DzbnvLHbuzblKL1DW9hbbwBhFtxaFXFVHXZLkFhFOGmIa4htCjC8xDCQgjJ9zQJ8ITkHydA1dzqzKppVdEVDMxcllxcJrVqLd3tq2mYRqLzBIqj8Iu/g+F9oITg+g/C8mfM7BwBAQFLnkDsBMwLRsHGsVwi8ZlXIwkhOLxjmJ2/7cEq+V2GO9fXceF1XcTOEBLzBPSkDQzLpTkx9/DVwdECBSH4q+88xvb2Opo6ElUPTdHxOD5aIhpRKTqnzx2ZKQU7x/HRvYSOnSCe93AaGxY8hFK0HBRZojUVnlQkHt15H3Vf+glrcgJLgf0v2saGm16JNKUSEb6rqDgCxjBgQipRznmxT2tLxdM0rZdsO7iZLDnZge4GlnetpTPROjNvDkDmhN9DJ9frd0a+6WPQsmlm5wgICDgnCMROwJwRQlDMmCjqzJvajPTkeeyXxxjrLwKQaAxz0Z9007pyet/QR/ImwzmD+ujchY7jeXzh4WOcyBk8c0UDz7ig9RRPTd50yJ/aa3BOGE6RE2P7kI8cpS4rcBrqmVWDoBnguB6W47GsIUr0pMn0nuuw9wdfZtOvDiILGGhUcG67mY2rt57+pFYBcoN+c0A17DfhmybTEjmeB9kCJdsgXxeivnsVyxuXU6cnpv08VQb3+B4dI+NPen7ux6Gua+bnCQgIOCcIxE7AnLENF6PgoEdOrcKKJnUcy63Oq6pgFGz6DqRxHcFYfxE1pLD56nbWXNIy7SnpJdulJ10irKlzDl8JIfjxzj5O5AySIZXbnrN2UaajW67J8ewBnCP7aEw7OE0NoCzseAshIGfYNCVC1J3UFyg93EPm819ky2F/9MaeixtZ/vq3EI6eRny6DhSHIT8ECAjXzWhw57QoGLjFItkoSF1trGxfQUe0eebeHIBj98OvPwSOAU3r4Kb/A9GG+bU3ICBgSRGInYA5YxRsHNslkjg1hOVYLsmmKNnhIpbh4rkeBx4ZJDNk8JxbNvLL/9jFigsaueDaZYRnEAITAnrTJUq2Q3N8bo32hCc4OlDg/x0aAuBNz1pFah6bA06F4zn0ZA9hHtxNU9rBbaxfcKEDvtBJhDWaE+EJHpVDD91Ny9d/ycqiwNDg8MuvYP1zXjL1iQRgZP1RClbe74CsznN3Z9uBTJ6S6pFvi1Df0cWKumWktPjszrf3p/D7T/gZ2Msugz/5EGhTl8AHBAScHwRiJ2BOCE9QSJuoUyQQW4ZLdrhIsinKsT0j3POdfdS1RLnhjZv5w38dYO1lLTR2zvzCNVIwGcqZ1M2yS3IFzxUYOYuv7u3F8QSXLq/nmnXNczrntJ5XePTmDpM/spPGUQuvvn5BB3tWqM3T0creMMe22P+dO9j8u+MA9LZqyG/5c9Z3r5/6RI7lz9QpjQISROuZ9sTQ6VAOWbmuS7pOQWlvZXVDN+2RJlR5FoJQCHj06/DIV/zldTfCs94V9NAJCHiaEPynB8wJy3AwSw6h6NR/SpbhMtKTo21liguu6WTj9g4O7xhi8zM7ZhUqMmyXnrESIVWpXrBng+d4WAWH+0ay7BstENEU3nrt6gUPXwkh6C8cI310J42DJUjVIRZwsGeFSp5OZ32kmqcz0neY0ue+wuYePxFp11XtrP7zN6OHpvB2CAFGGnID4JT8oZ3yPNteNKBgUIgp5JvjNLUsY3m8nZQ2dWPF0+I5cO+/+l4dgG1/BpfdGvTQCQh4GhGInYA5UcrbeK53xuTknn1phDfGRTcsJzdSmpU3B/xrbV+6RNFyaJpD+MoxXVzDpRSW+c9dfQC89qrltCQWbvZUhWFjgJGjO6gfyCIl6hALONizQm2eTn15lMb+e39G17fvodmEQhhOvPoaNm5/3tQnsUtlb86YH66KzLM3pxyycnWVsfYwaksja5OdtIcbZ+fNqdh81//283QkGbb/DWx64fzZHBAQcE4QiJ2AWeN5gmLGQtXPfCFyXY/NV3dy6PEhVlzQhOt4pyQtT4fRgsVg3qQuevr5TafDLjkIRxBpDvPv9x+iZLtsaEvwvAvaZ3fCGTBmDjN49BGSvWOo0SReZOHFFUDOtImX83Rsq8ihr32eTQ8MAHBsWYjIW17P2vaVkx/suX4/msIgeLY/tHO24mNKA4tgO+QbwuSbIrTWt9EdbSM5W28OQCkNd77Xr7xSdHjO+2HFM+fN5ICAgHOHQOwEzBqr6GAW7UkTk2vRwwpbnrWMO+94kvY1KRraoxOSlqeLaXv0potosoI2zYqtWoQQ2AUHSZaIt0V5cCDDQ0fGUGWJv7puLfIChzWyVpq+448RPTGIHk7iRRcnMbZkOSiSRFsqzGjPU4jPf5NNA37fmyev7WbdzW9C1aboPG3mfG+OkQU96ndBnm+yBVzPZbQzitbUwIZ4O23hRpS5VHRle+Hn7/Z76YQScOM/QtsF82dzQEDAOUUgdgJmTSlv4Qlx2lJxPayQbIrws88+wfE9o2x9dueEpOXpCh4hoDdTJG+6NM1i9pXwBFbeQQnJxFuilCTBF+45BMArLu2iu2FhhUfRydPbuwP9yDEiWhL3NIM95xPH9TDLeTrH7/kxq37wICEbslGJwVtuZNOlz578QNeGwrB/Q0Ckbv7LyQEyeWzhMdoRoaW9i+XRdhJzrY4a3gc/f48fbou3+j106pfPj70BAQHnJIHYCZgVnutRyFjoodOHM1Rd4eiTwxzbPUo0pRNN+UKlInhUXZmW2BkrWgzmLFIRbcbhK88VWHkbPaYSa4mihhT+7Vf7yJRsuhuivOySZTM74QwxXYOe3p3IBw8Sk2O4yVk0wZsFlTydhGIy/OUvsPHxEQAOrYpS95Y3sqqxc5KD8Bvt5Qf8uVZaHNS5zxublHQOE5d0Z4JlHatYGWufXd+cWo4/CL/+oJ+r07gabvoniDXNj70BAQHnLIHYCZgVZtHBMhyiydNfCItZi8M7/Itsc9fEi7xlnNpscDIsx6NnrIQqSegz7NJcqbgKJ3WizREUTebRo2Pc/dQgEvBX162ZVUhsutieRc/AkzgH91AnwngNdQvyPJdc/kxGR4c4fGBvdV3OsHGH9rH6yBiNl76YoR3/we4b17LhJa9DVib517dNPy+nNAKSOv8JyLWM5ShINqXljaxuW01XtAV5rp6jfXfC7z4OwoXOi+FPPuz3/gkICHjaE4idgFlRzNsgQJbPfDEcOu5PL2/qmnm+R6V5YN60Z1x95VouTskl2hAm0hhGViRKlstnf3sAgBdc2MGGthkOjpzJ83sOvUN7MQ88SZ2j4zVOf3zCTBkdHWLdBn+cw+EDeykaFoX7f8yzC/V0ffyfOfCB93L07S9i05arTj1YCL9fTn4QbAPCyYXrPyMEpHNkZQd3eQvr2tfQFm6cW7m/EPD4t+GhL/rLa66Ha94DysKX8wcEBJwbBGInYMa4jkcpY6KdIYRV2Xe0twCc6tmZDumSxWDOJBWZWfVVpeIq2hIhUh+qXky/+cBRBnMmLYkQf3bFwuVxeMKjf+wAhX2PUV+S8ZoWdrBnxaOzbsNWzEKO/R++nec0XUDnv/wzOz/7McybLmN5apJwjlUsJyCn/XLyhRybIATeaJaMaqOtXMba9rU0hVJzO6fnwh8+A7t/7C9vvRmuePPC5BcFBAQsLTzH/wybBoHYCZgxfgjLJZY6cy7HaF8BzxWEYirxhpklFluOx4mxEsoMwlfViivJr7jSE1pV6DzVn+MnO3oB+Itr1xCZRsn8bBBCMJg5SmbfI6QKAq+5eUEHe9quh+14PPbEE+TGhrnogsvp/F+3Ufeyl7Hzp19HfdZVaCc/v+v608kLgyAcf+r3QgoET+COpknrDrE1q1jbumZuZeUAjgl3fxiO3AtI8Iy/hC0vnRdzAwIClhBCgGv5//Ou6XdwB5AUcKZX0RuInYAZU8qZSBJI0whhDR/zQ1jNXYkZhSqEgP6MQd6YfvhKCIGV8yuuYs0R9Nh4GMN2PT5z934E8Oz1zVy8fOFCSiOFHsaeeoBk2oDmtnkXOq4nMB0X2xEIPFRFQVcldCdL9t0fJ/36t9N4662MHdmHtuIk75VgvJzcLJeTqwucMO0JnJEx0iGP+nXrWNO6hqgyx0aKRhbu/HsYeNLv4Hzd/werrp0XcwMCAs4inlsjagx/dAz4vbLUEESb/C9nWhS0MBTtaZ02EDsBM8KxXYpZGy08Pa/I0PE8MPMQVrpk0581SIanF74SnsDMTay4quWHj57g6GiRVETjjVevmpEtMyFdHGRk7wPERnJIze3zMtjTE2A7Lqbr4bkCWZUIyTLJuEo0pBJWFezCKPlPfJ416y+n7uUvJ917lLrlazFxGOnxc5TGy8mHAGnhysknGO9hDY2Qi8q0bNjE6uaV6HMdL5Hr93vopI/5Ccg3fBQ6ts2LuQEBAYtExVtT8dg4/sgaJBnUsC9sYq0QToAa8YWNGoGTiyvs7LSeLhA7ATPCLDjYhkOs/szfzD1PMHzCFztN3dNPTrZdv3mghERoigGjE57H8bBPqriq5fhoke8+5A+5fPMzV5FcoInmeTPNwL4/EhocRmnqmPVgTyHAdl0sV2A7HrIkoWkSqYhGLKQSUmXCmkLFsVbIjZL9539l/drL6fzkJzm09wEsu4RhFWhdvhEQjBx4xPfmWAUIxf1vSQuN51EaGqIU1+ncsIUVTcvn1igQYOSA30OnOAKxZnjuP0HDwonXgICAecBzx8NPjuEvg19EoIb9ys9wXdnTHPa9NmpoXvMcA7ETMCOKWRNJlqYVkkr3F3FtDy2skGqOTPs5+jMG2dL0wleViqtIQ4hIYwT5pMGgnhB85u791Ynmz1y7MD1XSnaB/n33o/b2oDd2zniwZyXvxnJ9l62myER1hXgiRFhTCKsyyiRDT4uFNOn/+0k2rLqMzk9+koO778d2/W9IIz0HwHVoXXUB5PoZyfbM/3TyqXA9CoMD2PVRVmy4kGX1nXMfsNrzCPzy/WAXoX6lL3TiLfNjb0BAwPxQza0pCxuBL1oq3ppok1/xqUXGhc1krTDmmUDsBEwb23Ip5mz0yPT+bKol58vi077QZcrhq0T4zM0D7ZKDZ59acVXLz3f2sac/R0RTeNu1axZkornlGPQf/CMcP0K4rh2hn9lrMjHvRqAqMiFVpj6uE1EVwvqZJ7obxSwj//xJlvdYaC+6gINP3ostHH+j50FpjJEde6A4RKxlFSNHd8/Hyz0jwnXIDfQjNdWzZuM2WlOtcz/pgV/Db/+PX33RfiHc8BF/DERAQMDZQXg1uTUmuOXPHln1RUwoCaluP9SsRcbFzQKP5ZmKQOwETBuzYOOYLuHY9P5shiv5Ot3TuyjZrkdPugQCwtrUuS5CCOyig4RfcRVKapOKmMGcwdfuPwrALc9YQXNi/qeLO55N3+EHcQ7vI5pqhSkGe1bzbhwPzxvPu0nFNSIhhbCqEFLlaTtdzFKegX/5BCuPGRRDcDyeoVM4fpWVVfAbA5bSoIUZObp70YSO59hkB/sJt7SwatNF1MfnWMouBDzxXXjg8/7yqmvh2vf63xADAgIWB9ceFzWO6f9fSvjiRQlBosFPGq7k1mjRJdfnKhA7AdNCCEEhY6Jo8rS8I0KIqmeneZrNBPuzBpmiTWNs6gtZteJKl4m1TKy4Onm/z/32ICXbZWN7kuduaZuWDTPBEy79xx7DPLibWKwRagZ7TpV3UxfViE6SdzMTLLNI7yf/hdVHSpR0GPrLl9DVvQayfX6/HNcE5MVJQK7BtS2ygwMkOtpZvfFi4tE5NmwUHtz/WXjyh/7ylpfBVW9bWj10hDhr31SfVghxti04iaVmzzxSmzDsliudZMUXNnocksv8vD+1xluzgK015otA7ARMC9t0MfIO+jSrsLJDJWzDRdFk6lrPPNgxW3LozxgkwuqU/zfCE5hZGy2mEm+Jop7Glnv2D/Pw0cpE8zXzPtFcCMFAz5MU9z9ONFIP8eR43o3jgQS6IhPVVeIJ5bR5NzPBsQ1O/Ou/sOZgEUOD/luvY3lTCkYP+t+0lDCEFrhnziRYZonC8BD13StYvX4b4fAch3k6Jvz2Y3Dot/7ylW+Fra+cs53zSmFoYgVJ9YIsUb0YSlJ5vSj/TiR/nSSVH8snPQaQa/Ypr5tw7MmPFwnhjb+WCY/LN7yTHpePqe7jjZ+ndp0knaodqu9bZXm+XkQgTE+PVE4aDkGsxf/CVJtbs1Bz8haBQOwETAujYONYLpHE9FyTlZLzps74aaeiA9iuoCddPG34qlpxlZq84qqWTMnmjnsOAnDzZV101c//RPPhgb2k9zyI6oXIaVG8klXNu2mI64SnmXczExzL5Oin/5m1+/JYKvS+5mJWdLbiv3GLL3AqGEYRY2SElpVrWLFuK7o+s7Eep2Dm4Jfvg74dfvz/2vfCmufMj7HzgRCQG/AvAp1bfDd+9QLujQuByuPKes/z53Z55Ztwy/vUrqsRAp5bFgHeRKEgvPH1iBqhMJnIqtlUEU6V/arnnuqF1pyvKtZqxFfl720y8SWp/rd9WSnvW76X1YnrZHn8XJXjq+erWVc5f8DCo4Z8r8054K2ZCYHYCTgjQgiKGQtVn/4f/3AlOXkaJeeDWYN00aIxNvlF0rVcHMMlXB8i2hQ+o3j6j3sPkTUcljdEecnF8zfR3PUEJculv38/mT33EvFk1JYmUro6q7ybaSEE2EXcQpbDX/4P1u/JYytw7DUXs2rz5Wc9pFMoZnHSWTpWrad7/QUo6gzi9PEWfzq5mRtflx/0e+g0rIJnvQsS7f5Qz6WC5/p9fiJ10Lq5PCx1vp9jGsJJ1HhRJqw/zb6e6yd4i7JwkZWy8JhMZJwsNGq8TVMJksn2DQhYIixpseO6Lv/wD//AN7/5Tfr7++no6OB1r3sd73vf+6p5I0IIPvjBD/LFL36RdDrN9u3b+dznPsfatWvPsvXnD5bhYhRsQtOswvLzdabXTDBXDl/FQ9qkXyQcw8G1BdGmMJH68Bm7Nj9ydIzfPjWELMFfP2ftnCea265HtmRjOB6qLGEX+5GPP0xXRCfZ2TXrvJvTIoQ/kNPKQymNZ+Y4+P2fsWF3HkeGI6+5jNUXXDbPTzpzMvkxlLxJ95otdKzZiKzOsIGiXYL6FTB2xBc8o4f8HjptF8DLvgL9TyytiivX9oVOoh1aNvp5CwtB9R9hYcaZBAQ8HVnSYuef/umf+NznPsfXvvY1Nm/ezMMPP8zrX/96UqkUf/3Xfw3Axz/+cT796U/zta99jZUrV/L+97+fG2+8kd27dxMOz9GdHgD4VViuI04bOqqlMGZi5G1kRaKhfer5R44n6EmXcIWYdE6VVbD9iqvWqSuuapkw0XxrB+ta53ahdD3BYM6kLRmiMR7CM0boPfoYkuyR6Fo+v99cBeCUypVUaV8ICAcPlf0/upONT+ZxJTh480Ws3Xp2hY6HRzo3RrTo0rnuAlpXrUWajcvbzPlCp34F7PsF/L+/gq4r4OVfhaF9S0voOAbkh6BuOTSv9ytOAgICzhmWtNj5wx/+wAtf+EKe//znA7BixQq+853v8OCDDwK+B+Ff//Vfed/73scLX/hCAL7+9a/T2trKj3/8Y26++eazZvv5gvAE+bSJNoMQVsWr09AeO61AGsoajBXNU8JX0624Oplv/PEIQ5WJ5lfOfaL5cN6kOaGzqSOFVUqz77F7Eek0yWUr5kfoVASOXfQFjlX0wwyqDnoUgcy+732fTY+n8STY/8oLWXfxVXN/3jngCo9MboSEKdO1fisNK1bNTuhU6H8SHvoSXPNuuObv4JLX+QJoEZqMTRsrD6UMNK2FxrVLy7aAgIBpsaT/a5/xjGdwxx13sG/fPtatW8eOHTu49957+cQnPgHA4cOH6e/v5/rrr68ek0qluOKKK7j//vunFDumaWKaZnU5m53ebI2nI2bJwSzahKcpOKCmmeBp8nXyhkNvxiCuTwxfCU9g5WzUqEq8JYIant6f6N6+LD99og+Av3j2mtP26ZkOmZKNpkqsaU7g2QUOPfobiv291HWtmnvinm2CXfAvoHbBD48omt8qXfZfr/A89v7XD9j88Age8NTLtrD+0u1ze945YguHbGaUBkena+NWkl1ds2/SWBqDR74Ke37i55QkO2D7X0O210/YXSoYaT+k2LLJ90CdZ0mbAQFPF5a02Pm7v/s7stksGzZsQFEUXNflox/9KK95zWsA6O/vB6C1dWKH1tbW1uq2yfjYxz7Ghz70oYUz/DzCKNh4rkBRZ56cPFW+jusJetMlXE8QiYyLkkrFVWiKGVdTYbsen/7NAQRw3YYWLu6eW9Ko5XgUTJv1rRE0r8DBJ35P5sQR6jpXIs12sKdjjQscKw+e7Ves6JFTwjXC89jz3z9iyx+HAdj74g1suOJZc3pNc8X0LPLZNM0iSvemrUQ722cndBwTdv4AHv+W79ECeMZfwRW3QX6gnLRcnJi0fLYo+O8/rVsgtSxIuA0IOIdZ0mLne9/7Ht/61rf49re/zebNm3n88cd5+9vfTkdHB7fccsusz/ve976X22+/vbqczWbp6uqaD5PPKzxPUEibaKHpX+CLWYtC2gIJGjtP8uyU0mAXGSm4ZNMWDfEYkgtCUnEdgVOafsVVLT945ATHyxPNb92+cqoXg+dYuOWb51q4toVwLFzHxnNNPNPANgqMZDLUaR6DhxUGXBsrnyO1bDmyNsN/F9f2c3CMrC9wHNP33GhhUKbOR9nzs//HlvsGANj1grVs3H7dzJ53nim6BmY2S7uUoGvTVkJtLTMXOsKDA3fBQ//hixqApnX+2Ic1zxlPUjZzE5OWzwZC+DaqYb/iKpi/FRBwzrOkxc673vUu/u7v/q4ajrrgggs4evQoH/vYx7jllltoa/O74g4MDNDe3l49bmBggG3btk153lAoRCgUtJs/E2bRxio50+6tA+NenfrW6ESRZBsweohSIUMuY9CIRMjSQVawLA2ERrxRJxJKQCmEkDU8RUcoOkLWquEdoFpG69k2R4ayfPfhYwDccmEcRg4y5pRFjGngmEU8q4RrG3iujXD88lvhOgjPQyDG24lIMiUPNF0jFY0jyTJqKEa0oQV5uh6disAxc2DmwTX8fiJqpNxh+fQiYffPf8KW3/UCsOt5q9h4zZ9M851fGLJOEXIFlmkNdKzbjN7WPPOT9D0Bf/x3GNrrL8da4PI3weYX+SXmtcKmNmn5bAiexSgtDwgIWHSWtNgpFovIJ8XIFUXB8/wGWytXrqStrY277rqrKm6y2SwPPPAAb33rWxfb3PMOI2cjPGbkZRmabB6WALK9uEaOIa+OomZTF9VxPQer6IJnk4xnCblFRI+F6zoIz8FxPTwBrgeO4+K44HgSjuviei6WB5882o3rRdkSzbKifyeDA+Pt+4Usg6IgKxooMrKqIulhJEVFlhUkRZ3gobAcF9X16KqLkphmmT3gD8CzimBm/Yuza5an/EZAn/6U8d2/+h+23HUcgCdvWM6m626avg3zjEAwZucI5W06Qi20rt+A1tw4s5NkTsADX4Ajv/eXtShsew1c8DK/cZkem1zQVASPFllcsePafrPARKufo7NQpeUBAQGLzpIWOy94wQv46Ec/Snd3N5s3b+axxx7jE5/4BG94wxsAkCSJt7/97XzkIx9h7dq11dLzjo4OXvSiF51d489xXNejkDHRwjNLyBw6Vk5Orp2HZaQh389QUdA/cIyI4jE25GAVQXgmeihHfriI5zkIz8VzXYTwELjg+fd+41cPSZaQJAVZVri30M0RM0pYdnht51FSIQWhhhCKBpJS9ggpCElBSOppNYfnCQqmQ2sqMj2h47rjuSVmxg9RSXL5Il7HTDsL7rn7TrbceQSAJ69bxqYbnj+j4+cTD48xM0e86NEZaaVh3Xq0phl4OIwMPPp12PVjP9lYkmHDn/qVVtGawaD5wanPUQlpLRbV0vJuaN4QlJYHBJxnLGmx85nPfIb3v//9vO1tb2NwcJCOjg5uu+02PvCBD1T3efe7302hUODNb34z6XSaq6++ml/84hdBj505YhYcLMMllpr+LBSjYJMbMQBoWlb27LgOpE9QKJkcPHAQM5/GUBVsN4KiOuixAkIBZAVZ0ZFkBUVWkGQZGXnKmVbDlsqPe1cB8PKWPpo1E8nxwM4gCaAybkcqix1ZATlUDo2p42JIUhCySrbkkorqNMVP83o9z08yNvP+Bd0xypN/I37YY5atk/fe82s2/48/3uLJa9rZ9Lz/NavzzAeucBmzctQXJTpj7aTWrUFtqJvmwRbs+hE8+g0/Rwmg60q48i1+WGqpYhX86rCG1dC8bslNaw4ICJg7khBLbpzsopPNZkmlUmQyGZLJOU5qPk8Y6cmRHTaI1U0/t+nEU2Pc/18HSTZHuPGNm/2VmR7EyEF2HR2m7+hB4s0tCCeMqtuEYway4s3YNiHgX490sTMXZ12syLtXHZ28i3G1Vb6LVJ4/JImyl8hP0kFICoYDKDItdUlC4ah/sZPV8Tk+nltONE77fXHAn4ekhuc8ruGp+37Dxh/tAWDX9hY2vPAlc+tbMwdMzyZvF2kuKrQlWkisXY1anzrzgULA4d/BA3dAzs83omG1P7xz2aULa/RcMdJglfxGgfUrg9LygIBzjOlev5e0Zyfg7ODaHsWcPaMqLIDhY5WS83IIy8xDtoehvMVQ3wn0RBLhhNFDJqGYiSTPTmf/MZ1kZy6OKnnc0tk39biG6rwetXac4TjCw3FdbCyaIyohrwSFfM0AReGXh1emOauheZ0ovu+Be1hfETpXNp1VoVNyTYp2iTZDpy3VRnTtCtTUNIT/wC744+dg4El/OdoIl94K6270heJSpjDs/17bLghKywMCznMCsRNwCkbRxjZcYnXTD2EBE+dhCQ+yPZhGkSNHe3E9m5DSgh4xCEXNWV9Xso7Cd3r9vkovaBmmPWzN7kSAQKboONTFYyTik3mwysMTayc8zxP7H/4D637wJDKw+9IGNrzkZWdN6OSdIrZns8yI0FzXSnTNCpTkGZJzs33w4B1w6Df+shqGra+EC1/pJyIvZWpLy1s2+QnJAQEB5zWB2Ak4hWLWKg8tnr4isQ2H9IDfJK6pKw6FYUR+kGPDBbLpQSJ19eBJqJo7py/Q/9nbSt5VWRY2eG7LyOxPBBQsh6iuUh+dStRJE0ve54kDjz/A6u89jixgz0V1rHv5K86K0BEIMnYBBYnuUozGxhbCq7pREqcROmYOHvsWPPlDvzEiEqy7CS67FWJNi2b7rPFcyPf7HrrWzRMTpgMCAs5bZv0J+4Y3vIFc7tRqiUKhUK2WCjj3cCyXUs5GD88whHXC9+rE60NEwh5kTpAuOPQdO4YSDqEqISTZQ5JnnqNT4YlsjD+mU0gIXr+sD3UOoslyXGRJoj4WQp33seVTc3DnQ6z69iOoHuzdmmTtza+YUWn/fOHhMWrl0FHpLkVobGglvHrF1ELHc+DJ/4L/fA088Z++0Om8GF5yB1z7nnND6Li2P44i1gwd2wKhExDwNGLWn7Jf+9rXKJVKp6wvlUp8/etfn5NRAWcPo+Bgmw7qDPN1KiGspq4EZHuxi1mO9AxhWXmi8STCk5AlMauEZICSK/P1Hr9x5J80jbIyaszqPOCPqzAcj/qYRnSaIynmg0O7HmX5Nx9C9eCpTXFWv/pm5LMwVNIVHmNWjqQcobsUIdXYQnjtCpT4JOEnIeDIvfD918MfPu33EqpbDjf9H3jev/jDMc8FHNNvFljXBW0XLq2J6gEBAQvOjD9ps9ksQgiEEORyuQkl3q7r8j//8z+0tATt1c9VilkTRZFmPA6gOg+rTYZ8L31pm7HBHkLJJLIk43gyiu7MOoT1X/3NjNoaTbrFi9uGZncSAAFF2yYZ1kmGF6/E+MhTT9D1jT+iu7B/fYyVr30Virr4QscWDhmrQKMWo62gE21qIry6GzkySauGoaf85OO+x/3lcB1c+nrY8PwFCe8tGFbBH1USlJYHBDxtmfEnVl1dHZLkXwzXrVt3ynZJkoIhm+coluFQytto05w0XsGxXUb7/Hyd5kSaXMGk58RxhAZhvewtEDKKOrtp1gcKEe4e8Zva3dLZR2iWVVwAJdtFVxTqo9rUVVzzzLH9u+j46r2EHDiwJkL3616Fqi7+Bdf0LHJOiRY1RVtRJdTUSHhV16lCJz/oz7Da/0t/WdHhgpfDtlf7XY/PJYyM3926eYM/miIoLQ8IeFoyY7Hzm9/8BiEE1113HT/84Q9paBiPe+u6zvLly+no6JhXIwMWB7Po4FgukfjMLsSjPQWEJ4jEZHR5jH39aUq5MaJNDdU+ewJmFcKyPYmvnGhHILG9Ps3mRHHG56iey/VwhaApFkKfwRT3uXDi0F5av/I7wjYcXBVm2RtehabNrMptPig4BqZn0ak30JSX0ZsbCa/qRg7V2GIVYce34Ynv+Q0CAdZc78+xip+DFUvFEb8RZNsWSHUFpeUBAU9jZix2rrnmGgAOHz5Md3f3zKcfByxJhBAUMibKLETAUCWE1ewyknMY6e9BToRRy6EO4UlI0uySk3822EifGSKpOryyfWDGx1fwhO/VaYjqxEOLE4LpObqfxi/fTcSCw8tDdNz6anR98Tt7Z5wCCFiuN5PKC7SWskdHLwsdz4Gnfg4Pf9nvJAzQthWufBu0bFh0e+eMEH7FlRKB9guC0vKAgIDZJyjv2bOH++67r7r82c9+lm3btvHqV7+asbGxeTEuYPGwDRez4KBHZt4IrjIPK5kyOX5iABeTSHg8AdTzJCRZIM9Q7JwwQvxsyK/yeU1HP3F19pVcRcshpivURRcnfNR34hD1//ErYgYc7dJpfdOrCIUWV+gIBGNWDhWZFXozdQWB3trke3QqQuf4A/DDN8Lv/8UXOslOuOHD8IJPnZtCx3P9Ls56AjouDIROQEAAMAex8653vYtsNgvAzp07uf3223ne857H4cOHuf322+fNwIDFwSjYuLaLqs1M7Hiux0hPAQBHK1JID6AmkhNmWglPRlbcGfXl8wR89UQ7rpC4KJnj0tTsh0IatosiSzTEQiiLkKgz0HuExB13Ei/B8Q6NxjfdTDi8uI32XDxGzSxRJcSKUCvxvIPe1lIWOhqMHIT/eRf8/D3+hPFQEp7xV/Dyr8KKZ56bIR/PCUrLAwICJmXW/vzDhw+zadMmAH74wx/yghe8gH/8x3/k0Ucf5XnPe968GRiw8AhPUEibKLMowx49nsZzBZrukR49iggrhNWJHgzhSSgz9MrcNVLPoWKEiOzyZ539s772up7Adl2ak2HCi1BmPjhwnMgdPydZFPS0qaTe/Eqi0TN0I55nHOGStnLU60mWKfWoWQO9vYXQimVIVgb+8CXY9wu/y7WswZYXw0V/fm6XYzumn1hd11WeWh452xYFBAQsIWYtdnRdp1j0k0V//etf89rXvhaAhoaGqscn4NzAMhzMkkMoOsM/BwHDB/sA0CMlHDtHuLH+1OHfkjSj5ORhS+OHfX77gpe3D1KvOTOzq8a+guWQiugkQwsfvhoZ6kX//E+pywt6WxQSt72CeHxxB8uWXJOCa9ASqqdDTSFlSuidrYQ6GpB2fAt2fMef1g6w6lq4/M2QPMcLCqwiFEeD0vKAgIApmbXYufrqq7n99tvZvn07Dz74IN/97ncB2LdvH8uWLZs3AwMWnlLexnO9mScnG+lyM0EFWRpETkRQpYl/UkKANINmgkLA10+0YQmZdbECz2pIz8ymGgq2S1iTqY/qCx6VGR3uR/78f9OQE/Q3KUTf8nLiibqFfdIaGldfzMjocazBw3RHWmiS4ohMDr2zjVCsgHRsLzzyFX/nlk1+8nHblkWzb8EwMn4fneYN0Lhq6Q8fDQgIOCvM2q//b//2b6iqyg9+8AM+97nP0dnZCcDPf/5zbrrppnkzMGBh8TxBMW2i6jO8SLgOYvQYQ0P+n5ASSxOepAeL8GRf7EwzOfn+dJIn8/5E89ct6591LxzLdREIGmIhNGVhlU56dBDxhR/TmBEMNsjob3kpyeTi5Yu4wmNo5CjrL3sh67svpYUYIpsnHBslNPxLpA3PheN/hEQbPOcD8MLPnh9Cpzjih6/aLoCmNYHQCQgImJJZe3a6u7v56U9/esr6T37yk3MyKGBxsYp+CCuSmKHrPz/AUE8a14kiSQ7hRmlCUnIFz/ObCUrTaARYO9H8ha3DtIVmN9Hc9QSG7dIQDRGbqYibIZnMMPYX/ovWMY/hOhnlthdTV7d4c6IM1yLvlGhMQ3Hn/TRseSbmPd8iPPRtlGQ9vOzL8OO3QdM6uOY9oE423f0cozK1XAlD+xZfxAUEBASchjk1HDl48CBf+cpXOHjwIJ/61KdoaWnh5z//Od3d3WzevHm+bAxYQEp5C0+ImQ2jNPOI7AmOHffFjRrNEVYmv4j6ycnT65z8nd5WCq5KV9jgxubZTzQv2g6JkE5dbGFzN3LZMYzP/5D2EY+RpIS47YU0NC5SqbMQGKV+IsVeVtp5EsVBlMc/ibT7IsIv+zJEC3Dxn8NDX4Ir3uyPejgfCKaWBwQEzIJZi53f/e53PPe5z2X79u3cc889fPSjH6WlpYUdO3bwpS99iR/84AfzaWfAAuC5HoWMhT6ToZ/Cn2iez+UZ6PePiyTNKXeXmF5y8o5snAfKE81fN4eJ5iXbRZNl6mMaygIm6uTzGQpf+D4dQy5jcQnnLf+L5ub2hXky4RIyhgkX+wgX+wgVewkX+9DcSYahHrzbn06+/a9heD+sec7C2HQ28Bx/mGe8BZo3Qnhxk78DAgLOXWYtdv7u7/6Oj3zkI9x+++0kEuMlq9dddx3/9m//Ni/GBSwsZtHBMhyiyRmMLygMY+cG6R22KeX93jHR+OQTyIUAOHO+jj/R3A9F3DiHieaO5+F6Hi2JMKEFHAdRLOTJfOF7dA04ZGIS5lueT0tL57ycW3ItwqX+qrCJFPsIlQaQxakVaUKS8fRWvHgXcsdm5O6tSF2XQctGP8zTsNLvoWPOvkfRkqFSWp5a5r++oLQ8ICBgBsxa7OzcuZNvf/vbp6xvaWlheHh4TkYFLA7FvA0C5OlmAdsGZE4wmnMYPDaC8JqQJI9QtDTp7sKTkWSBdAbPzg/7mxmzNZp1ixfOcqK5EH6X5LqoTmKGg0xnQqmUZ/SO79DdZ5OLQOHNN9HW1j2rcyl2vipowsU+wqU+dGMEiVPzm1xZpxBpIR9uQUmuJBpaiRANaG1thLo7/GGeoQTUrxgXOGZu4vK5SrW0fJWfe6Qu/myxgICAc5tZXxXq6uro6+tj5cqVE9Y/9thj1cqsgKWL63iUMiZ6eJohLAFke8ln0/T1ZSjm/eNCsdKUnZGFJyHJHvJpkpP3FyL8Zh4mmhcsh6iuUh9duAuhYRYZ+uJ/sqLHJh+G7JtuoL1z5ZkPFB66OVb11lSEjWZPLkBsLYERaceI+rditJUBSSek6HTojcTzHugaoa529JYmJEU+VeiAfz925NwWPEYWrHxQWh4QEDAnZi12br75Zt7znvfw/e9/H0mS8DyP++67j3e+853VBoMBSxejYGMZLrHUNMWBkcbJ9jE05lIa68d0/Yt8KD71FHLPk9lw+WaMfC+j/UdP2Z5sXYHjbUAcPMrV9Wk2zXKiueW4yJJEfSyEOg/jINZc+xoKo330PXH3+HNYBv1f/A4XdF2K9vwLOKYcYFn3mlOOlTyHUGmQcKlG2BT7UbxT85oEElaosSxq2ihFOzCi7bjaeMdly7PJ2kXq9DjtJAlnHdTGOkLd7SiJms7MWmRyQVMRPFrk3BM7xRE/Ibl1C9R1n5sjLAICApYEsxY7//iP/8hf/MVf0NXVheu6bNq0Cdd1efWrX8373ve++bQxYAEw8haSBNJ0xIHrQPo46ZzJ8EA/lmLhlFIAhE8jdkAiPzrIhc/+U3bd99MJgqehbTlrn/ECPvWtx+c00dz1BIbj0ZwIEZ2ncRCF0T7qu/xRKH1P3I1tW/R86Tts7byEzk98goM7fsOyrILslMpeGr8qKlzsJ2QMIolTw3aepGJGWilFxz02ZqQVb4oqNoCCU8JwLVr1elpNDVUS6Cs60TtakNST/nXzg1O/oEpI61yhWloegrbNkFygxO+AgICnDXMaF/HFL36RD3zgA+zcuZN8Ps9FF13E2rVr59O+gAXAsV0KGRttuiGsfD+l3DADQwXs4hhuJIVra4AgFJsiX0eAhGB04Ai77vspm7ePC56GtuVs3P4C3vzNx/j9/hHe1t1PbDYTzQUUbZtkWCcZnr8y84pHp75rE65tc//f3sq2tovo/MQnOPbHH9K254uEi73oVnrS4x0lUhU0VWETbgJpeu+3h0fazqNJKiu0JpIF0FJxQt0dqPWp+XqZSxPh+RVXoWRQWh4QEDBvSEKI2SVJnEdks1lSqRSZTIZk8vwvZy2kTQYOZ4jVh5DOFBow87j9u+gZzNN/8DAFvYQodTNyrJNQrEj7ulPDUwCeKyE8hWgqj6wIGlqXs3X7jTiPfw/twpfR94N3kdl/PxHFo1GzTxmnNR08X1GhyfKcIhwFB4YMiYwB+aKEWZRwS7B865+y+a8+QPp736PuZS+j57dfovuxD0041tLrxkVNOc/G1lOzDrnYwiFjFUiqETrcGFFXQWtvQe9sQw6d54m5ldLyaDO0bgpKywMCAs7IdK/fs/Ls7N+/nyeeeIKLL76YlStX8rOf/Yx/+qd/olQq8aIXvYi///u/P/NFNOCsUcyaSLJ05t9RuadONptluD+NLYrokTjZIX8sRCg2dQjLr8Tyqp2TnSP3IYf70Lf/Ndz3aToOfo8OGT/xeXaNks+I5cGwrTFiamQNlYKhYJcURFFBLUmE8xKJgkS0nE6TLN+qPP5T0q0baLz1VjJPPUbL3s+TbtyGEWmvhqM8df5KoIuuSdExaFGStBRVQokooa5O1Kb68///yS5CYQSSnX5puR492xYFBAScR8xY7PzoRz/iFa94BbIsI0kSd9xxB7fddhvXXnstyWSSf/iHf0BVVd7znvcshL0Bc8S2XIo5Gz0yjV99YRgj08/gqIudG8KKa8QlDaPgX4hOl6/jeTJ6yOLKP309meFe1B3fgov/nPwD34CL3sS/PdXCS7a109W1nL0//viMXoMnPEZzBYRl4FkGZraImzOQchZq3iaSc4jnXBIFf/ibCjSUb1NR0iEblyklFMyEipfQWXvdK6h/5Z9THOohuW4bY6/60YSk5flCIMjYBSQkuklRb+qE2prQu9pRoud5PxmrCKUxUHR/annT2qC0PCAgYN6Zsdj56Ec/yrvf/W4+8pGP8NWvfpW3vOUtfOxjH+Ptb387AHfccQef/OQnA7GzRDELNo7lEY6d4VdvG4ix44xkHbKDAxi6S0RL4tgqjqkDgnB88nwdAISEonhkhntpX7UFuj4I3301/3x4EweffIIvvfblaKpM36EnGYutGn9ay6CYG8XKjuHkspDLI+eK6DmDSM4ikXdI5jyWTW8CBY4M2bhEPqFiJEPYyTAiGUVJJdDrUkRT9STrGolE4jTXHNe+9TrquzYxdnw3fU/cXV0G5lXwuMIlbeeJE6LNDJGIJNBX1JSUn69YBSil/Vld9Sv8ZoGRurNsVEBAwPnKjMXOU089xXe/+10kSeKWW27hTW96E9dff311+w033FAVPgFLCyEEhbSJop4hhFXuqZPNpxkezOM4WaRUGEWSKeR9T4MeMaccAyEE5Uovj8Gje2ldvh5FC1NovYSHHrT4iw2HUb1tPPm1z7Pvzu+jp/PEcg7JvEtsBs2TcxHIJVWKCQ07GcZNRpBSCbRUgkiqnnhdA4l4PXWKTN30T3uK0IGJScu1y3PBH+JZpFnEaLFDRBubCC3vmFhSfr5hFaA4BloY6ldC3TIIn+dJ1wEBAWedGYudQqFQHQ8hyzKRSIRodDy+HolEMM2pZyUFnD1s08UoOGduJGiMYaV7GBzxsNJDlCIycSnsbyqPiDhdfx0hJJA9ZMUjXt/K2H//PYlYjPAz3sHXj3+fuhtu4sTb3oZ63x/YNNnTa5CJyxQSGqWEjp0I4yZikIjjRWI0tTTT0dJGTNOJzfbNOA2xhvYJQqdCZTnWMLdSaIEg6xQRrkuXGaVRTxJe2T55Sfn5gpX3PTlaBJrWQLIjEDkBAQGLxow/WSVpolfg5OWApYtRsHFsl0jiNGXaroNIH2cka5AfGsZUDUKhWLW4qCJ2TpevIzwZWRZIssfx3fez/OA3+ENviC093TTeeisD//V9Hhl6HPPSBtx4FJJxlHgCLVlHJNFAKBRFkmUiQDVjRUDWtElFNJrjoQXtL3fgt9+acttcPTqu8EhbOaJCpd2MUNfQdn6XlJs5MDKgRaFxbVnkBFVWAQEBi8uMxY4QgnXr1lUFTqW/jizL1e0BSw8/hGWhnqnxXr6ffHqYkWETpzSKnVCJS744ch0F2/A9POHTVmJJqCEHSYKG/CE0z6Ch7WbqXvpS+v7wO9pe/DKuuHADex+4c9r2FyyXsCZTH9XP2Ua6pmeRswo0WhqtcpLE8s7zs6RciLInJwN6DJrW+40BQ4kzHxsQEBCwAMxY7HzlK19ZCDsCFhjLcDGLNqHTVWGZeeyx4wxlXOz0EIWIR0SN12z2/Sxa2ETRps4QFkJGVv3trbld5C77GzZd/Q56br+dX22q57mtDX7SMkxL8FiOi5AEDbEwmnJuKp2cU8S2TTqKIVrqW4kuX4ba1HB+eUWFGPfk6Al/nlWyHULncQ5SQEDAOcGMxc4tt9yyEHYELDBmwcZ1BMpUnp1yT510Jk9uKIPpFZBDflJyhWq+zum8On6fP2TZQ/ZsmrfdhHT1Oznxtr/giQMPs/I5f14VONMRPP44CJfGWIiYfu4NgXTxSFt5woZghRensaubUHfH+VVSLgSYWX9oZyjhdz5OtPlenYCAgIAlwLxkQ+bzeTxvYmXO06ET8bmC8AT5tImmnyaEVRimMNbHcNrFzY9QjI0nJVeYTn+d2uTkxsJ+lO5X8eQ/vAvlvj/w/7d35/FRVefjxz/3zr5kZpKQFRKIEDYFyuKCqCiCiEq1pbZVVBD9ubxABVRaal2qFdHWYlXEqgjWimhbtbb9qqVYNwREEBBFFERAIOzZM9u95/fHJANDEsgGSYbn/XqNZu76zExezJNznnPO10ML+UH1cTUJjr9D7hFjr4xESXHY8btbbjmI4yVkRigLlpNaqZHjzcTXpTP2rIzkGVKuFIRKIFhWneScUp3kyISAQoi2pcn/6m7evJmLL74Yj8eD3+8nNTWV1NRUAoEAqampLRZgly5d4kXQhz4mTpwIQDAYZOLEiaSnp+P1ehkzZgy7djVtUclkFaqKEqo8wlpYkSDRA1vZUxoltHcvlfYIDpszoTbGNHTCldX1OkcrTtZixclZZV/w3XNjsbz+XwwNcvr1Szj2q+XvsPzf9XeLVkUMbLpOqseGpZ1195RHK6ksLyGnykqXnK6k9emNIzcrORIdpWIjq0q+B6VBdh/IPwPST5JERwjRJjW5Zeeqq65CKcXzzz9PVlbWMas9WLFiBYZxsD5k3bp1jBgxgssvvxyAKVOm8O9//5u//vWv+P1+Jk2axI9//GOWLFlyTOJpj4LlYUxDYbHW8UVbPadOSfEByvZWEo2UEfEeLEquEapwARpWexirPVrvvZSpYbFHsZoh0iu+4dPtAQqAL/LdZAUaPuIoapoYpklmihNHXXG3USYmxcEy7OVhOjvTyOjeFUduNpotCYaUKzNWjxMqjw0bz+4Ta8mxJVGXnBAiKTX5X+A1a9awcuVKevTo0ZLx1JKRkZHwfObMmXTt2pWhQ4dSUlLC3LlzWbBgAcOGDQNiBdS9evVi2bJlnHHGGcc0tvbANEwqSsLYHPW06gQPULV/O3uKQZXvp8xl4rLULihtyPw6ECtOtlgNMio2oJkGnk0OALb36kbGEc889BpQEYqS6rGT4mw/SUJERSmpKCZQoZGT2Zm0gq5Y05JgSLkyYy054YpYkpPTD7xZsYkBhRCiHWjyn8ynnnoq27Zta8lYjiocDvOXv/yFCRMmoGkaK1euJBKJJMzg3LNnT/Lz81m6dOlxja2tinVh1TORoBHFOLCVvaVBwnv3U0EVFps9oSi5RkPm16mhW0wyy77gizI3mQdikwSedMopDY65IhzF47CS6m4/Q7IrIlWU7d9HZshJQbdT6HDKKe0/0VEmVO6Dku2xtaty+sW6q1I7S6IjhGhXmvxn83PPPcdNN93E9u3bOeWUU7DZErs9+vbt2+zgDvfGG29QXFzM+PHjASgqKsJutxMIBBKOy8rKoqioqN7rhEKhhFmeS0tLWzzWtiJYFgFAr6tWpLyI0gN7Kd4fxggVU+XRSNFqf4mZpkaoQfU6GppmYlflpFV8y7JtHegKrDkpQH4DRx+Fowa6ppHmcWDV236djolJSVUptuIq8lJzyOnWA3tGh/Y9pNw0IFgMkSpwBiC3e6wlx+po7ciEEKJJmpzs7Nmzh02bNnHttdfGt2mahlIKTdMS6mxayty5cxk1ahS5uUcewXM0Dz30EL/5zW9aKKq2yzBMKkpC2Bx1JDqhcoL7trK31ISS/ZQ7DJxWV2zc+GHCFS5QOhZrBKs9Uu/9TFND0xVZVV9imCYZm2K/Xgd69yS/IfGaimDUJCPFgetokx+2AVFlUFK8j5SwTsfOPUk/qVv7HlJek+SEq8CdGpsM0Jslq5ALIdq9Jic7EyZMoH///rz88svHtEC5xpYtW/jvf//La6+9Ft+WnZ1NOBymuLg4oXVn165dZGdn13ut6dOnM3Xq1Pjz0tJS8vLyjkncrSlUESUcNPD4D/uyUiaq5Hv2l5QT3FtBUJUTtVtwanX/OtQMOXd4K484e7Eyday2KNklX7DqQAq+Sihxa/Tq1YC6LgUV4Qg+px2fs+0PM6+KVBHcv58MVyodT+lNSm5u+x1pZUZjNTnRELjSYpMBerPA0vY/ByGEaIgmJztbtmzhzTffpFu3bi0ZT73mzZtHZmYmF198cXzbwIEDsdlsLF68mDFjxgCxVdm3bt3K4MGD672Ww+HA4Uj+JvmqslD16uOHZSgVeynbt5P9xQZa1QHKnAqPXn8NRrB65mSnt+qI91OmhksrJlD1HXu2ZuEDPivMpEcDFresjBg4rRZS3Tbacu+VQlFSXoyltIqO2Z3pWNgbu7+dzillRqHqAETD4E6HzN7gzZQkRwiRdJqc7AwbNow1a9Ycl2THNE3mzZvHuHHjsB7yxen3+7nuuuuYOnUqaWlp+Hw+brnlFgYPHnzCj8QyIiaVZZHao7AiQcL7trKnJIJWXEKJNYTNakevoygZqueNa8BkggBoGjnBz6mI6nT8NnZf85S61jU/LCTDxFSKNI8DexseZm4YUUr378GtOcjt2Y+szl3b55ByMwqV+8GIgLsDZOWDJxMs7fC1CCFEAzT5X7fRo0czZcoUPv/8c/r06VOrQPmHP/xhs4Or8d///petW7cyYcKEWvtmzZqFruuMGTOGUCjEyJEjeeqpp1rs3u1VsDJCJGjgCRzShaVAle5gf/F+Kg+EMMIlBD2QotXfyhWudMYmCrQY2Jyheo9TJmiaIqficz7dk0JWBHYGLPTo0uWIcZoqNnlgmtuOx9F2v2yDwUqq9u0jNT2L/O6nkNIhs7VDaryaJMeMgqcD+PPBkyFJjhAi6WmqicuU16xyXudFj1GB8rFSWlqK3++npKQkaZa52LOtjPL9QTyBQxKZqgOUbVvL90Uh1K4i9torsNmdWOup1QEo2ZXGgR1ZuPxlZJ30fb3HGVEdd7SY4Qdm8tbSbLps0Vl0ej6njBxxxDjLQ1FcNgtZPgeWNth/pVCUHdgHoTCZnbuSd1Jv7K52VoRsRKBqPxhR8GZAoHMsydHb31pjQghxqIZ+fzf5T7rD18ISbUc0bFBVFkmcW8eIEtm3hb0lQVRxGRVaJYZVx3WERAcOmV/nCIt/QmwywY6Rz9gdspK3NZYIe/sdefqBYMTAomukee1NSHRUrI9NqdjPEGteUtX7ULHn8cPNQ44/5BjUIaebRCMRIuEI0UgYMxwGwOF20+mkwlghfng/hA8LRav+T6xAqvpnPfb80J/j22qe17W/BbvxjHCsJUeZsW6qQH6sRUeSHCHECUbar5NQsCJKJBTFkXpIq055ESX791BeHEELllDmUnj0I7dQNKZeR5kaHUNrWLbLR56Cb7LtdMnOSjzIjIIZRkNhGgozEqWDx4YzGoVo7eSjXvG8SD/4JCHRqD4oIfHQE5IK01REQmGikdjDjJqgKSx2L9aAm5SUAO5AB9wpqXgDHfB6A9UJk3lI4nTIc9OIvT5lJv7fNEBFDyZaphl7zmHXqUneMA97/TUvVh226UgJkxabI0cRKzgO5Mdqc47QGiuEEMmsycnO/ffff8T999xzT1MvLZqpsjSExaIdnA4gVEbF3q3sLVPYykvZZ49gs9jqLUquEQk6MA0Lmm5idwePeGyKsRtfpAj92xwANvbsEl/hvIYlUo5hdaGAcsPA503Bm+KKtTRoFmLDsCwHv8QPTWBqHofuQ09MbLRDj6l+bZpGNBQkXFVJNFyFEQwCCl2zYHF6sKVkkpKWgdffAafHj9Pjw+n2YbO38AzBhydHdSVMtZKfw/cdsr8muaoryVJR8GRVJznpkuQIIU54TU52Xn/99YTnkUiEzZs3Y7Va6dq1qyQ7rSQcjFJVHsHuqv5olUm0+Hv2HSjFPBAkFK0g5FJHLEquEV8Py3OU+XUUdAyv5ttKBx2LNAwNcg+fQVvFariinmxKDCcOr0ZqugfN0nJ1OqZhEAlVYQQriYaqMMIRQGGxO7E53XjSMvGkZuHy+nF5/TjcscTmSPVnLUbTYgkd0oUkhBDHW5OTnc8++6zWttLSUsaPH8+PfvSjZgUlmi5UGSUaNnB5q0fHVeyldM/3lJQpbFXFFDujuCzOOmdKPlxD18NShkan8Gd8sD2FAmBdZw+Zh69wbkYxdRtB0waaItPnwtaMRMeIhIgEq4gEK4kGgyjTQNctWJ0ubE4P3oyOeAIdcHr9ON0+nB4fdoe7yfcTQgjRfrVozY7P5+M3v/kNo0eP5uqrr27JS4sGUEpRURLCUjNXTSRI1Z7v2Ftm4igpp9gSQdMtRxx9dfBaDU92UiI7cUf3krIptozH9l7dOHxgtm6EiVjdVEQhO+Bo8GrmpmEQDQeJBquIBisxwmFQJrrDidXhxOVLw1OQhdubitPjx+FJwen2YZHh1EIIIaq1+DdCSUkJJSUlLX1Z0QCRoEGoIoLdZQEFZsl29hcfIFIchkgpFa4obt3ToGtFQ3bMqBW0o9fr5AbXsq7MTYfi2ArnhaecXOsYzYxSplwE3A7SPXWvtWREwtUtNVVEQ7HWGg0Ni9OFxeHEn9sFT2omTncKTm8Al9uP3SWtNUIIIY6sycnO448/nvBcKcXOnTt58cUXGTVqVLMDE40XrIhgRExcKXaoOkDJnm0cKAVHZQm7nFFsFjt6A9cwO1ivU4WuH2F4lDLpFF7Nu9u8dAU+65pKl8PnoVEGStOIanYCbis6qroLKtZaY4ZCoGloVitWuxO7x0daXiFufxoOdwpOTwCX1y+tNUIIIZqkyd8es2bNSniu6zoZGRmMGzeO6dOnNzsw0TjKVFQUh7DYdTCiBPduYX9JEFtpJeVaFWHdJEVr+OrV8fWwPEdeDysQ3oY1WkzmxlgXVunJPWsfZESIYMMMVhAsKsew6FgdTiwOFykZHfGkZ1UXDKfg9qbicHkb/sKFEEKIo2hysrN58+aWjEM0U6gqSqgqisNtRZVu58C+PVSVGViDJRS7DFxHmVPncMEGzq+TU7WWVftT8FdBsVujZ4/utY7RzTBVmgdLuIq8QWfjz+iI0+PD5QlgtTU8ARNCCCGaotFjbg3DYO3atVRV1f6Lv6qqirVr18rsyq0gWBHBNEwsRgWle7awv8zEWVFOsS2KpulYtYYPeY6GrRhhO6BwHGHmZE0Z5AY/Z+/WWGK0unsW9jpWONdNgyrTgtvtokOnbmR07EZKIFMSHSGEEMdFo5OdF198kQkTJmC31/6istlsTJgwgQULFrRIcKJhzOouLKtNI7x/G/sPlGEtD1EVLafSGsWtN26CvJp6Hbs7iG6pv14nLbyZSKSSTtUrnKs6CpNRBqamEQ5H8Ph8eHzpjYpFCCGEaK5GJztz587ljjvuwGKp3VJgtVqZNm0azzzzTIsEJxomXBklXBXFFt1P8Z7tlFeCXllCscPAbnEcnEm5gRo65Dy3ai0r96TgiMKOVAvdO+fXPqi6XkczDNKyO7b8zMRCCCHEUTQ62dmwYQNnnHFGvftPPfVU1q9f36ygRONUlYcxw0Eq921hX5mBu7yCUkuYqG7g0GyNvl5Dkh1NRckOfkFwc6wWaF2PTuiW2r9OuhkmrDmxapCe2bHRsQghhBDN1egC5YqKCkpLS+vdX1ZWRmXlkVsERMsxDZOK4hBacBd79x+AcoNwqIxSV7TRRckARsRCNOTgaPU6GaGNFIci5G2LJTi+w5eHqKabBpVY8LiteALShSWEEOL4a3TLTmFhIR9//HG9+z/66CMKCwubFZRouFBllHDxPiqKv6e8UsNRWUaJw0BHx9KIouQaNa06NmcIi7X+QvPcqrV8ttOHruDrHAedsw+fM5l4vU4kGsWT4sfry2h0PEIIIURzNTrZufLKK/n1r3/N2rVra+1bs2YN99xzD1deeWWLBCeOrrK4gop9OyipCOGsqKKCIJVaBJd+9IU+69KQIee6CpMV+hLrt7F7bOpZUPeB1fU6eiRKWnYuVnvTYhJCCCGao9HdWFOmTOGtt95i4MCBDB8+nJ49Y5PIffXVV/z3v/9lyJAhTJkypcUDFbUZUZOy7duoLN9NtBxsleUccEVx6I0vSq7RkHqdzOAGvqvQyN2lEdWhY98+dR6nmyEqNS8WLUJaVm6T4hFCCCGaq9HJjs1m4z//+Q+zZs1iwYIFfPDBByil6N69Ow8++CCTJ0/GZmt8UaxovOC+vez7fhvlYYW3opx99iiGiuLSmjbiyYjqRKpirS+OIyQ7ucG1rPo+hZOAdZ29ZPl9dR6nKZNKZcXrtuINSBeWEEKI1tGkGZRtNhvTpk1j2rRpRz325Zdf5oc//CEeT8MWoBQNZBrs/XYjpeWVOEMRgmYlZbYQLr3pC2OGKtyAhtURwmoz6jzGagbpULUB/6ZYjc6OnoVk1XWgMjDRiEYjeDt0wJMixclCCCFaR6NrdhrrxhtvZNeuXcf6Niec0N7v2bVtJ0ZUYa0opdgexaJZsGhN/0gb0oWVFfySL0vtpJdAlQ261TWRIIARIYoNzYySlpWL1SHz6wghhGgdxzzZUeoIK2aLJtu5fRclJRG8VZWUWSNUEsbZxO6rGg1JdnKDa9m2LbZQ52dd00hx1V10rJshgpoTGxppWTK/jhBCiNZzzJMdcWzsLw5jKavAiJRTbIvgtDhoYk0yAKahEa6MJUv1JTs2swJf5UayNsV6P0t61tOqQ6xep0pZ8bqcePzShSWEEKL1SLLTXpVWQHk5xQ4DwzSwN2Gm5EOFKlyAhsUWwWqP1nlMTtU6Vu334q2CAx6NnoW1VzgHDtbrRAzcKQE8vg7Nik0IIYRoDkl22ilVUUHQDFOuBXFZGj9T8uEaMr9ObnAtB7bG7vVZt2xstnp+fYwwUWzoZkTqdYQQQrQ6SXbaqagZoVwFsWjWZhUl1zhavY7DKMVauZVOm2OzMkcK+6Nb6p5hWTfDBDUndjSZX0cIIUSrO+bJTufOnWXenWOgLFpOWEWaXZQMoEytuhur/vl1coKfs2p3CvYobE+z0DW3S701QpppUmVa8LicePzShSWEEKJ1NTnZGTduHB988MFRj1u3bh15eXlNvY2oR8SMomNpVlFyjVClE5SObo1ic4TrPCa3ai2h72KJ1efd8rHa6xllpwwMTScaNXB5fXh8UpwshBCidTU52SkpKWH48OEUFhYyY8YMtm/f3pJxiePo0C6supInV3Q/ofIi8rbGfl0c3U6rtwsrVq9jRTejpGdLvY4QQojW1+Rk54033mD79u3cfPPNvPLKK3Tp0oVRo0bxt7/9jUgk0pIximMsVJPseOruwsoNfs6anSnowIZcBx1Tc45Sr+PCrmmkyvw6Qggh2oBm1exkZGQwdepU1qxZw/Lly+nWrRtXX301ubm5TJkyhW+++aal4hTHiFIQPEq9Tm7VmvgK599064qmK3S97mQnXq/jlHodIYQQbUOLFCjv3LmTRYsWsWjRIiwWCxdddBGff/45vXv3ZtasWS1xC3GMhKucKNOCZjGwu0K19nsju9hdcoDc3bEVzjO6nY5uMalzAFh1vY4RNXCn+PFKvY4QQog2oMnJTiQS4e9//zuXXHIJnTt35q9//SuTJ09mx44dvPDCC/z3v//l1Vdf5f7772/JeEULCx7ShVVXvU5O8HM2bE8B4PPOXgLOABZr3YuEYoTi9TodsnKxSL2OEEKINqBJq54D5OTkYJomV1xxBZ988gk/+MEPah1z3nnnEQgEmhGeONZCR5pfRymyKtewe2OsC2t7YU8KlVZ/vY4RIaj5sBPGL/PrCCGEaCOanOzMmjWLyy+/HKez/r/eA4EAmzdvbuotxDGmFATL66/X8UV3sHl/kPRSB5V26NytP5p2hHodTCpNjTSXS4acCyGEaDOa3I31wx/+kMrK2l+Q+/fvp7S0tFlBHWr79u1cddVVpKen43K56NOnD59++ml8v1KKe+65h5ycHFwuF8OHD5fC6AaKBO2YhhVNN3G4grX251at5fttHiC2wrnL6kLTFFpdLTumgYGOaZi4U3x4pThZCCFEG9HkZOfnP/85CxcurLX91Vdf5ec//3mzgqpx4MABhgwZgs1m46233uLLL7/k0UcfJTU1NX7MI488wuOPP87TTz/N8uXL8Xg8jBw5kmCw9pe3SFRTr+NwV9UuOFYm6eVrya5Z4bx7H0wz1oWl63VMKGiGiGBDNw3SM6ReRwghRNvR5GRn+fLlnHfeebW2n3vuuSxfvrxZQdV4+OGHycvLY968eZx22mkUFBRwwQUX0LVrVyDWqvPYY4/x61//mksvvZS+ffvy5z//mR07dvDGG2+0SAzJ7Ej1OqmRbXyxV+EJwn6PRrfOvVCmjsVa94rouhEmpLlwYBLIkfl1hBBCtB1NTnZCoRDRaO0vvkgkQlVVVbOCqvHmm28yaNAgLr/8cjIzM+nfvz/PPvtsfP/mzZspKipi+PDh8W1+v5/TTz+dpUuXtkgMySo2v051y04dyU5u1RqKt1SvcF6Yg9ViRUNDt9ZXr6OoULrMryOEEKLNaXKyc9ppp/HMM8/U2v70008zcODAZgVV49tvv2XOnDkUFhbyzjvvcPPNN3PrrbfywgsvAFBUVARAVlZWwnlZWVnxfXUJhUKUlpYmPE400bANI2IDTeHwJCanmjJwl30RX+Fc9fgBSgHUU5xcU68TNfD4/FKcLIQQok1p8mis3/72twwfPpw1a9Zw/vnnA7B48WJWrFjBf/7znxYJzjRNBg0axIwZMwDo378/69at4+mnn2bcuHFNvu5DDz3Eb37zmxaJsb06tF7n8BqctPBm1hVZyDFgW7qVLtldUKaOpiu0OpOdEGGs6KZJmtTrCCGEaGOa3LIzZMgQli5dSl5eHq+++ir//Oc/6datG2vXruXss89ukeBycnLo3bt3wrZevXqxdetWALKzswHYtWtXwjG7du2K76vL9OnTKSkpiT+2bdvWIvG2J0eq18mtWku4eoXzLwrz0XUdZWpouolWR3GyboQJax7cmiKQLfU6Qggh2pYmt+wA/OAHP+Cll15qqVhqGTJkCBs2bEjY9vXXX9O5c2cACgoKyM7OZvHixfFJDUtLS1m+fDk333xzvdd1OBw4HI5jFnd7EG/ZOSzZ0VQUVfIVedt8AHh7xLokTVPH7gjVOcuyhqJSWUh3WvD4pF5HCCFE29KsZMc0TTZu3Mju3bsxzcTujXPOOadZgQFMmTKFM888kxkzZvDTn/6UTz75hGeeeSZeK6RpGpMnT+a3v/0thYWFFBQUcPfdd5Obm8tll13W7Psnq2jYSjRsBxTOw+p1MkLfsH67nc7AV7kOctNq6qE0LHXOrxPFQMcwIngC6bj9Uq8jhBCibWlysrNs2TKuvPJKtmzZglKJXRuapmEY9ayf1Ainnnoqr7/+OtOnT+f++++noKCAxx57jLFjx8aPmTZtGhUVFdxwww0UFxdz1lln8fbbbx9xZucTXU2rjt0VrLX0Q27VWsqqVzjfWNiN3sRGbmnUPZmgZoYJYcNimKRn5mKVeh0hhBBtTJOTnZtuuolBgwbx73//m5ycHLS6+jdawCWXXMIll1xS735N07j//vtlwdFGCFXUXa+jqzClezeRs8dHVIec6i4sZWqg1z0SSzPCVOHHpUXwZ8p6WEIIIdqeJic733zzDX/729/o1q1bS8YjjoP66nWygl/x7XYnJwFru6SQ6onV7ShTR6+nOFlDEdIsdHBaZX4dIYQQbVKTR2OdfvrpbNy4sSVjEceBEbEQCca6qZzexHqdzMrVBDbaAdjRvWd8u1IaFqtRuzjZjGJgwTSiuFN8uCXZEUII0QY1uWXnlltu4fbbb6eoqIg+ffpgs9kS9vft27fZwYmWVzNrss0ZxGI9WFdlNYMU7d5OWlkKlXYo6PqD+D5l6nXOnFxTr6NFTTpk5GI5wUe4CSGEaJuanOyMGTMGgAkTJsS3aZqGUqrFCpRFywuVx5aAOLxVJyv4Jd9vddEVWNUtnVx7LHFRCjSNeut1KrUAbj2CL0vqdYQQQrRNTU52Nm/e3JJxiOOkvnqdtPLVRKtXOC/t3oea1EUpDXSz1qgtAE0pwmh0sDukXkcIIUSb1eRkp2ZiP9F+mIZOuCo2NNzpOZjs2MwKtuzcQ4eQh31ejW75h9TrmDq6VscyEWYEQ7Ngmgae1HTcsh6WEEKINqrJBcoAL774IkOGDCE3N5ctW7YA8Nhjj/GPf/yjRYITLStY7gI0rPYwVvvBFetzqtZRVr3C+eruuVgtB3NgZWrodRQna2aYMDZ006RDh1wsMq+REEKINqrJyc6cOXOYOnUqF110EcXFxfEanUAgwGOPPdZS8YkWVN/8Ou7S1XT6rvpXofsPEvYppScUMtfQjQiVmgsXihSp1xFCCNGGNTnZeeKJJ3j22We56667sFgs8e2DBg3i888/b5HgRMuqq17HYZSw+ftSbNUrnHfOOtg9WTMxdl31OgAhNLwOp6yHJYQQok1rcrKzefNm+vfvX2u7w+GgoqKiWUGJlmeaGqHKmpFYB5OdnOA6jO9iI6/Wde+Mrh/8lVCqZqXz2vU6UXSUaeLx+WU9LCGEEG1ak5OdgoICVq9eXWv722+/Ta9evZoTkzgGQhUuUBoWWwSrPRLfru1fQ/73sV8DX8+BCecoU0PXVK2WnVi9jhXdMEjvkC31OkIIIdq0Jo/Gmjp1KhMnTiQYDKKU4pNPPuHll1/moYce4rnnnmvJGEULCFV3YTk9lfFiY1d0P1u3VdEZB191dJATyEw4R5k6Fnu0VnGybkSo0gK4ieDL6nQ8whdCCCGarMnJzvXXX4/L5eLXv/41lZWVXHnlleTm5vLHP/6Rn//85y0Zo2gBddXr5AbXsnNTbHmITYWF1GqPq6s4WSk0FEHNSrbDIkPOhRBCtHlNTnYAxo4dy9ixY6msrKS8vJzMzMyjnySOO2VWd2ORWK9TvutzsvdqRCyQ031g7fOgdr2OihDBgmZEcaelSb2OEEKINq9Z8+zUcLvdkui0YaEqJ0rp6JYoNmcYAG9kF7u2xuba+byLl4AnJeEcZYKm1Z45WTMisfWwjCjp6VKvI4QQou1rVMvOgAEDWLx4MampqfTv3x+t1jLYB61atarZwYmWEa/X8VbF628yK1dj2xRbvHVH994EDjvHNHU0XdVaE0s3IwS1AB4tgi9b6nWEEEK0fY1Kdi699FIc1StbX3bZZcciHnEM1KrXUYp9O74ivcxChQMKTupX65zYZIJRND1hIyhFULcScFhwp6Qdh+iFEEKI5mlUsnPvvffW+bNou5SC4GEzJ/uiOyjeqkgHPut6cIXzhPNMDYu1jnodzYpmRPH606VeRwghRLvQ5JqdFStWsHz58lrbly9fzqefftqsoETLCVc5UIYFTTewu4IApJV+Rk71Cudl3fvWc6ZWZ71OGBsW04jV67hcxzJ0IYQQokU0OdmZOHEi27Ztq7V9+/btTJw4sVlBiZZzcH6d6nodZVL0/Te4Q7AvRaNr59oTQCoFWh2TCepmmKDmwo3Ck5lzPMIXQgghmq3Jyc6XX37JgAEDam3v378/X375ZbOCEi2npgurpl4nNbKV0HextcxWF+Zg1Wv/CihTR9NU4rBzpWJdYpqO2+HAG8g49sELIYQQLaDJyY7D4WDXrl21tu/cuROrtVnT94gWotTB4uSaeh1n8So6ban+2HvUTlYhNhJLt5joujrkYhGimhXNMEhJ8ePySXGyEEKI9qHJyc4FF1zA9OnTKSkpiW8rLi7mV7/6FSNGjGiR4ETzREJ2zKgVTTNxuINoymDXli2xFc47WCjI7lLnebHi5GjCNs2IEFaxep209Byp1xFCCNFuNLkJ5ve//z3nnHMOnTt3jq9+vnr1arKysnjxxRdbLEDRdDX1Og5PFZquSA99S/Hm2Ef+RWFnutdznoaGbq1jfh09BY+KSL2OEEKIdqXJyU7Hjh1Zu3YtL730EmvWrMHlcnHttddyxRVXYLPZWjJG0USHz69j7l1J/nYNE/D1HFTnOUoBHDaZoFIopQhZdFItUq8jhBCifWlWcY3H4+GGG25oqVhECzq8XkdXUfZ9t5MANr7pZCc7UPfyHqp65mTt0JFYKkwEKxhRvKnpuFJSj8dLEEIIIVpEo5KdN998k1GjRmGz2XjzzTePeOwPf/jDZgUmmicatmFEbIDC4a4irWoDVdVz62ws7F57hfNqytTQdBNNO1icrBkRwpodi2mSnp6NLvU6Qggh2pFGJTuXXXYZRUVFZGZmHnG5CE3TMAyjubGJZojX67ir0C2Kyl2ryN4XW+E8t3vdXVgQG4lld4Q4dNkz3YwQ0nx4ieDOzDnimmhCCCFEW9OoZMc0zTp/Fm3PofPrWMww5Zv3AVbWdXHjd3uPcKaGxZJYr2MqjaBFJ83qxOvvcEzjFkIIIVpao4aep6WlsXfvXgAmTJhAWVnZMQlKNF+wPNbV5PRWkVb5JR2qu7B2dO9T7zlKgUbtep2oZgHTJCXFL+thCSGEaHcaleyEw2FKS0sBeOGFFwgGg8ckKNE80YiVaMgBKByeSvZvX0WgnNgK511rr3BeQ5ka6IkjsWLrYdmxmlHS0rLQnM7j8AqEEEKIltOobqzBgwdz2WWXMXDgQJRS3HrrrbjqKVZ9/vnnWyRA0Xih6lYduyuEQ68kvLkMsLC2W4Asm73e85Spo+sm2iEzJ+tmhKDmw2tGcGdIvY4QQoj2p1HJzl/+8hdmzZrFpk2bACgpKZHWnTbo0Pl1fGVrcWyKrYVV3L0/WUc4TykNqzV6sDhZmSgFYYtOulXm1xFCCNE+NSrZycrKYubMmQAUFBTw4osvkp4uNRxtzaHz6+z5bjWFYdibotE1v74B5zHK1LEcOnOyGSGiWVGmic+fhssv62EJIYRof5pcoHzeeedht9ffJSJahxHViQRjdTUprj1YN8da3r4ozKxzhfMaSoGmkbDSuWaECWPHpgxSpV5HCCFEOyUFykkmVD3k3OoI4S7/hLzqFc6Nnqcf8TylNNBN9ENGYunKIKi58KKkXkcIIUS71eYLlO+77z5+85vfJGzr0aMHX331FQDBYJDbb7+dhQsXEgqFGDlyJE899RRZWUeqTkleh3Zh7f/2SzJN2Jah0yUr/4jnxYqT1cGWHWViVtfrdNAdeAIyv44QQoj2qVEtO3/5y1+46KKLKC8vR9M0SkpKOHDgQJ2PlnTyySezc+fO+OOjjz6K75syZQr//Oc/+etf/8r777/Pjh07+PGPf9yi929PapKdFPc+PN9GAPiqMO+o5ylTw2IxDhYnmxGiWECp2Pw6PqnXEUII0T61iwJlq9VKdnZ2re0lJSXMnTuXBQsWMGzYMADmzZtHr169WLZsGWecccYxj60tMQ2dcGWsrsZR9QF5O2IrnHt7Dj7quUrp6NaDS3xoRpiQZsdmRklNzUKT9bCEEEK0U41q2QG46KKLKCkpYfPmzaSnpzNz5kyKi4vj+/ft20fv3r1bMka++eYbcnNzOemkkxg7dixbt24FYOXKlUQiEYYPHx4/tmfPnuTn57N06dJ6rxcKhSgtLU14JINQhQvQsNjDhLZ8BsDGPCtZR1niQVVPq1O7XseNByXrYQkhhGjXGp3svP3224RCofjzGTNmsH///vjzaDTKhg0bWiY64PTTT2f+/Pm8/fbbzJkzh82bN3P22WdTVlZGUVERdrudQCCQcE5WVhZFRUX1XvOhhx7C7/fHH3l5R+/maQ9qurA8rgOkb4q10nzbrfCo5ylVvdJ5HfU6bpvMryOEEKJ9a1Q3Vl2UUkc/qBlGjRoV/7lv376cfvrpdO7cmVdffbXe4uijmT59OlOnTo0/Ly0tTYqEpybZsURWkblfI2yBrB5HHoUFsXodXVMHW3bMCBEsaMokJSUVly/1WIYthBBCHFONbtlpbYFAgO7du7Nx40ays7MJh8MJ3WgAu3btqrPGp4bD4cDn8yU82jvT1AhV1+vYdn4CwFcFTvyuI61wHqPMWL1OTU9VrF7Hgc2Ikpou9TpCCCHat0YnO5qm1arfOJ71HOXl5WzatImcnBwGDhyIzWZj8eLF8f0bNmxg69atDB589KLcZBKudILSsVhCdPp6NwA7Ck9u2MlKx3JIcbKuooTi8+tkS72OEEKIdq3R3VhKKcaPH4/D4QBi89zcdNNNeDwegIR6npZwxx13MHr0aDp37syOHTu49957sVgsXHHFFfj9fq677jqmTp1KWloaPp+PW265hcGDB59wI7FqurCsbCRQAeVOyO82sEHnKg4pTlYGptKIWHU8mgNvIPMYRSyEEEIcH41OdsaNG5fw/Kqrrqp1zDXXXNP0iA7z/fffc8UVV7Bv3z4yMjI466yzWLZsGRkZsaLZWbNmoes6Y8aMSZhU8ERTk+y4DnwBwPpuXtKtR1/OQ5kamnZIcbIZJVI9v47XH8CVEjhWIQshRKszDINIJNLaYYh62Gw2LBZLs6/T6GRn3rx5zb5pYyxcuPCI+51OJ7Nnz2b27NnHKaK2R6mDy0Tkf/sNAMWFA2nIDEimqaHpCr062dGNMEHNgV0ZpKZmo7ndxypsIYRoNUopioqKatV8irYnEAiQnd28kopmj8YSrS9c6USZOhpVpBfvZK8POuc3rF5HmToWWxStunpLUwYh3UWKGcGVkSX1OkKIpFST6GRmZuJ2u+XfujZIKUVlZSW7d8fqUHNycpp8LUl2kkB8PazKb9BQfF2YRvYRVjg/lDI1LNaD9TqGgqim47HL/DpCiORkGEY80TkeqwCIpquZYmb37t1kZmY2uUur3Q09F7UFq7uwsos2AhDp0YiRaJp2yPw6UaJYUJikpARwpcj8OkKI5FNTo+OWbvp2oeZzak5tlSQ77ZxSEKpu2Uk/sJFtmRp5WQUNPlc7ZDJB3QgTxIFTmQQCmVKvI4RIatJ11T60xOckyU47Fwk6MA0LmhnCW76N77rVP5ni4ZSpx5Kd6uJkzYwSsrhxK0Pm1xFCCBF37rnnMnny5GNy7S5duvDYY48dk2vXkGSnnaup1wkUfwuY2Hqc0+BzzZqZk3UVq9dBI6preK0OvKkyv44QQrQ148ePR9M0brrpplr7Jk6ciKZpjB8//vgH1sZJstPOxZOdko1syrOQ2YiiYmVqWCzVMycbEcLKAipWr+OU+XWEEKJNysvLY+HChVRVVcW3BYNBFixYQH5+fpOvq5QiGo026dxwONzk+x4Pkuy0Y7F6nVileqB4Izu6Nu6XXENDrx6JpZthwroThzLwBzJkPSwhhGijBgwYQF5eHq+99lp822uvvUZ+fj79+/ePbwuFQtx6661kZmbidDo566yzWLFiRXz/e++9h6ZpvPXWWwwcOBCHw8FHH31ERUUF11xzDV6vl5ycHB599NFaMXTp0oUHHniAa665Bp/Pxw033ADARx99xNlnn43L5SIvL49bb72VioqK+Hm7d+9m9OjRuFwuCgoKeOmll47FW1SLJDvtmGk4MaI2NDOCq/I7/N0b3oUVW6z+kMkEzdj8Oh4F7swctAYOXRdCiGSglKIyHG3UIxgxUEoRjBh1Pm/IQ8X+MW60CRMmJEzy+/zzz3PttdcmHDNt2jT+/ve/88ILL7Bq1Sq6devGyJEj2b9/f8Jxv/zlL5k5cybr16+nb9++3Hnnnbz//vv84x//4D//+Q/vvfceq1atqhXD73//e/r168dnn33G3XffzaZNm7jwwgsZM2YMa9eu5ZVXXuGjjz5i0qRJ8XPGjx/Ptm3b+N///sff/vY3nnrqqfg8OseSzLPTjkUjfgB8pVvY1EXD505p8LnK1NF0hWYxQRlE0YhadDyaXebXEUKccKoiBr3veafR551d2IEnrujPKyu28bNT8/h/f/6UD7/Z2+Dzv7x/JG5747+Kr7rqKqZPn86WLVsAWLJkCQsXLuS9994DoKKigjlz5jB//nxGjRoFwLPPPsuiRYuYO3cud955Z/xa999/PyNGjABii23PnTuXv/zlL5x//vkAvPDCC3Tq1KlWDMOGDeP222+PP7/++usZO3ZsvJC5sLCQxx9/nKFDhzJnzhy2bt3KW2+9xSeffMKpp54KwNy5c+nVq1ejX39jSbLTjkXCXgACJd/wfc9C8hpxrjI1NN1E1xVEI4SVFZTC50/FIfPrCCFEg3z4zV5eWbGNG4d25U/vb2pUotMcGRkZXHzxxcyfPx+lFBdffDEdOnSI79+0aRORSIQhQ4bEt9lsNk477TTWr1+fcK1BgwYlnBcOhzn99NPj29LS0ujRo0etGA49D2DNmjWsXbs2oWtKKYVpmmzevJmvv/4aq9XKwIEHF6nu2bMngUCg8W9AI0my045FQ7HiZEfVRjK6nt2oc01Tx+6IrVCvm2FCugenMvD7O6C7pV5HCHFicdksfHn/yEafp2saDqtOxDC54ZyTGHdmF8xGdE25bE1f5HLChAnxLqLmrA/p8Xha5Lzy8nJuvPFGbr311lrH5ufn8/XXXzfpPi1Bkp12KhqyogigKYM9GTvx2xyNvIKGxXKwXidsceBTUdzpUq8jhDjxaJrWpO6kGjZLbF4yZzOSl8a68MILCYfDaJrGyJGJiVrXrl2x2+0sWbKEzp07A7EZiFesWHHE+XK6du2KzWZj+fLl8ZFdBw4c4Ouvv2bo0KFHjGfAgAF8+eWXdOvWrc79PXv2JBqNsnLlyng31oYNG47LYqyS7LRTZftiQ8a9Zduo6NaDi370E7yBVN6Z9+xRz1UKNA6p11Gxeh2v7sCbJvPrCCFEe2CxWOJdUoevGeXxeLj55pu58847SUtLIz8/n0ceeYTKykquu+66eq/p9Xq57rrruPPOO0lPTyczM5O77roLvQF/BP/iF7/gjDPOYNKkSVx//fV4PB6+/PJLFi1axJNPPkmPHj248MILufHGG5kzZw5Wq5XJkyfH1786liTZaafKtpcBsS6sS257GH9GJiV7GlbRHqvXqR6JZUQIE6vXSfEGsMv8OkII0W74fL56982cORPTNLn66qspKytj0KBBvPPOO6SmHrku83e/+x3l5eWMHj2alJQUbr/9dkpKSo4aS9++fXn//fe56667OPvss1FK0bVrV372s5/Fj5k3bx7XX389Q4cOJSsri9/+9rfcfffdDX/BTaSppo57SyKlpaX4/X5KSkqO+IvTlrz95FI2ravizPMq+MFPL6Fkz26WvP63Bp1rRCxousLtr8ASKaHE9GLabAzo3JP8sy6UbiwhRFILBoNs3ryZgoICnE5na4cjjuJIn1dDv7+lZacd2rd9B+deO4isJTv4wfD8RiU6UFOcHEbTQFMmYYsDv9TrCCGESFLyzdYOffDKX9iwdDv9L+iMUmajEh0AVHVxsjIwTA3DouOxSr2OEEKI5CTJTjv0o6nT6Ht+ZyqLy9B0nSE/+kmDz1WKWIvOIfU6CoXf68ee4j+GUQshhBCtQ5Kddqpkzx7e+MMfKNmzG39GZoMTHqU00E10i4luhgjpLlwY+AIZ6G73MY5aCCGEOP4k2Wmnlv7rdQCWvP63RiU8ytTRdYWmm/F6Hbdp4krPlnodIYQQSUm+3ZJATcLjDRx9mQdlalisBhoGUVPDsFhi9Tqpsh6WEEKI5CSjsZJEQ4uUldLRrQYY4Vi9jjLxp6Rh9wWObYBCCCFEK5GWnRNIbOZk0HWzej0sF25MfP4OUq8jhBAiaUmycwKpKU7WdBNMg4jFgds0cHeQeh0hhBDJS7qxTiDK1NE1ha5HMJSOYbXgwYInTep1hBBCJC/5c/4EokwN3WqgmSHCygaqZn6dQGuHJoQQogHGjx+PpmncdNNNtfZNnDgRTdMYP3788Q+sjZNk5wSilI7FaqCbEYIWJy4VJcWfgX4cVpwVQgjRMvLy8li4cCFVVVXxbcFgkAULFpCfn9/k6yqliEajLRFimyPJzglGt5hgmkR0Bx5T4U7PQrNYWjssIYQQDTRgwADy8vJ47bXX4ttee+018vPz6d+/f3xbKBTi1ltvJTMzE6fTyVlnncWKFSvi+9977z00TeOtt95i4MCBOBwOPvroI8rKyhg7diwej4ecnBxmzZrFueeey+TJk+PnvvjiiwwaNIiUlBSys7O58sor2b17d61rL168mEGDBuF2uznzzDPZsGHDsX1z6iHJzglCmRqaZqJpEaKmhmmz4rHZpV5HCCEgNlw1XNG4RyQYOy8SrPt5Qx5KNSncCRMmMG/evPjz559/nmuvvTbhmGnTpvH3v/+dF154gVWrVtGtWzdGjhzJ/v37E4775S9/ycyZM1m/fj19+/Zl6tSpLFmyhDfffJNFixbx4YcfsmrVqoRzIpEIDzzwAGvWrOGNN97gu+++q7P77K677uLRRx/l008/xWq1MmHChCa93uaSAuUThGlqaLpCp4oQNjQUAU+q1OsIIQRApBJm5Db+vK7D4CfPw6oXYcDVsPAK2PRuw8//1Q6wexp926uuuorp06ezZcsWAJYsWcLChQt57733AKioqGDOnDnMnz+fUaNGAfDss8+yaNEi5s6dy5133hm/1v3338+IESMAKCsr44UXXmDBggWcf/75AMybN4/c3MT35tCk5aSTTuLxxx/n1FNPpby8HK/XG9/34IMPMnToUCCWVF188cUEg0GcTmejX3NzSLJzglCmjtUWxWJGCFm8uFQUjy9N5tcRQojm2PRuLNEZcissebxxiU4zZGRkcPHFFzN//nyUUlx88cV06NDhYFibNhGJRBgyZEh8m81m47TTTmP9+vUJ1xo0aFD852+//ZZIJMJpp50W3+b3++nRo0fCOStXruS+++5jzZo1HDhwANM0Adi6dSu9e/eOH9e3b9/4zzk5OQDs3r27WbVFTSHJzolCaehWE5RJxOokxYji6iD1OkIIAYDNHWtlaSzNAlYHGGE48xY47QZQRuPu20QTJkxg0qRJAMyePbvJ1/F4GteyVFFRwciRIxk5ciQvvfQSGRkZbN26lZEjRxIOhxOOtdls8Z81TQOIJ0bHk9TsnCAUGnp1vY5hteCxOfCmZbZ2WEII0TZoWqw7qbEPmzN2rsUe+7/N2bjzqxOAprjwwgsJh8NEIhFGjhyZsK9r167Y7XaWLFkS3xaJRFixYkVCy8vhTjrpJGw2W0Ihc0lJCV9//XX8+VdffcW+ffuYOXMmZ599Nj179kwoTm6LpGXnBKBM0DSFrlURxoauKQLugNTrCCFEO2axWOJdUpbDWuk9Hg8333wzd955J2lpaeTn5/PII49QWVnJddddV+81U1JSGDduXPy8zMxM7r33XnRdj7fM5OfnY7fbeeKJJ7jppptYt24dDzzwwLF7oS2gXbXszJw5E03TEoa/BYNBJk6cSHp6Ol6vlzFjxrBr167WC7INMk0dTVNYVJCg7sStonj86VKvI4QQ7ZzP58Pn89W5b+bMmYwZM4arr76aAQMGsHHjRt555x1SU1OPeM0//OEPDB48mEsuuYThw4czZMgQevXqFS8qzsjIYP78+fz1r3+ld+/ezJw5k9///vct/tpakqZUE8e9HWcrVqzgpz/9KT6fj/POO4/HHnsMgJtvvpl///vfzJ8/H7/fz6RJk9B1PaHp7mhKS0vx+/2UlJTU+0vT1rz1/J848F0R/o4djnpsNGLFYjXw2r9ntzWLNN2k3w/OIeOUgcchUiGEaFuCwSCbN2+moKDguI8Kao8qKiro2LEjjz766BFbhY6VI31eDf3+bhctO+Xl5YwdO5Znn302ISMtKSlh7ty5/OEPf2DYsGEMHDiQefPm8fHHH7Ns2bJWjLhtUaaGRQ8TUTqm1YrXYsObltXaYQkhhGiDPvvsM15++WU2bdrEqlWrGDt2LACXXnppK0fWdO0i2Zk4cSIXX3wxw4cPT9i+cuVKIpFIwvaePXuSn5/P0qVLj3eYbZaGhq4FiSgbumbi96Ri97aPFiwhhBDH3+9//3v69evH8OHDqaio4MMPP0wY2t7etPkC5YULF7Jq1aqEyvAaRUVF2O12AoFAwvasrCyKiorqvWYoFCIUCsWfl5aWtli8bY1SgKawEqTC4salDLy+NPRGDjUUQghxYujfvz8rV65s7TBaVJtu2dm2bRu33XYbL730Uov2qz700EP4/f74Iy8vr8Wu3dao6uJkTYtgWB24TYUzPVPm1xFCCHHCaNPJzsqVK9m9ezcDBgzAarVitVp5//33efzxx7FarWRlZREOhykuLk44b9euXWRnZ9d73enTp1NSUhJ/bNu27Ri/ktZjmhq6HsbQqufXkXodIYQQJ5g23Y11/vnn8/nnnydsu/baa+nZsye/+MUvyMvLw2azsXjxYsaMGQPAhg0b2Lp1K4MHD673ug6HA4fDcUxjbyuUqWOxxup1LJrC70nDniL1OkIIIU4cbTrZSUlJ4ZRTTknY5vF4SE9Pj2+/7rrrmDp1Kmlpafh8Pm655RYGDx7MGWec0Roht0EaVoKUWTy4lIk3JVXm1xFCCHFCadPJTkPMmjULXdcZM2YMoVCIkSNH8tRTT7V2WG2CUqChQItiWG24TIUrPQvN2u4/diGEEKLB2t23Xs3y9TWcTiezZ89u1iJoyUqZGpoWxdTAtFrw6hoeqdcRQghxgmnTBcqieZSpoxMiolnQNfC5/FKvI4QQ4oQjyU4SM00dqx4kbHPjUtHY/DpSryOEEO3W+PHj0TQNTdOw2WwUFBQwbdo0gsFg/Jia/Zqm4fF4KCwsZPz48bXmznnvvffQNC1hRPOOHTvo06cP55xzDiUlJQnHHHrvuh5dunQ5Tu9C40myk+R0LUzUYsetkHodIYRIAhdeeCE7d+7k22+/ZdasWfzpT3/i3nvvTThm3rx57Ny5ky+++ILZs2dTXl7O6aefzp///Od6r7tp0ybOOussOnfuzDvvvIPf70/Y/8c//pGdO3fGH4feZ+fOnXVO/ttWyDdfklIKNGVgahrKZsGLVebXEUKIJOBwOOJzyeXl5TF8+HAWLVrEww8/HD8mEAjEj+nSpQsXXHAB48aNY9KkSYwePbrWyudr165l5MiRDBs2jBdeeAFrHX8Y10zEe6hD79OWSctOklKmhkaYiK6jawqfx4/Nm9LaYQkhRJuklKIyUtmoRzAaRClFMBqs83lDHkqpZsW9bt06Pv74Y+x2+1GPnTJlCmVlZSxatChh+8cff8zQoUMZM2YMf/nLX+pMdNq75HtFAqieTJAwQbsTlzLwpKTKelhCCFGPqmgVpy84vdHnDc4dzO/O+R2vffMaPy78Mbf+71aW7mj4QtTLr1yO29a4Wsp//etfeL1eotEooVAIXdd58sknj3pez549Afjuu+8Stv/oRz/iZz/7WYOu0V5Jy06SUkpD1yIYNjseU+FOy5R6HSGEaGFLdyzltW9e49pTruW1b15rVKLTVOeddx6rV69m+fLljBs3jmuvvTa+isCR1LQiaZqWsP3SSy/l9ddf58MPPzwm8bYF8u2XpJRhomwKZbXg0ax40tp+n6oQQrQWl9XF8iuXN/o8XdNxWBxEjAjjTx7PFT2vwFRmo+7bWB6Ph27dugHw/PPP069fP+bOnct11113xPPWr18PQEFBQcL2P/3pT0ybNo1Ro0bxf//3f5xzzjmNjqmtk2QnCcWKk6NEdB1NV/hcfmwpUq8jhBD10TSt0d1Jh7JZbAA4rc6WCqlBdF3nV7/6FVOnTuXKK6/E5ao/eXrsscfw+XwMHz48YbumaTzzzDPous5FF13Ev//9b4YOHXqsQz+upBsrCSmlYSFMxO7ErQw8XlkPSwghktXll1+OxWJJWEmguLiYoqIitmzZwqJFi/jJT37CggULmDNnDoFAoNY1NE3j6aef5pprruGiiy6qtVpBeyctO0lIGTpgYNhteE1wp2eh2WytHZYQQohjwGq1MmnSJB555BFuvvlmAK699logtqRSx44dOeuss/jkk08YMGBAvdfRNI3Zs2ej6zoXX3wx//rXv2rV97RXmmruuLckUFpait/vp6SkBJ+vfSyn8Nbzf+LAd0X4O3aotS8a0kCVEczychLQ56xLcXbqdPyDFEKINigYDLJ582YKCgpwOo9vt5NovCN9Xg39/pZurGQUNTCtoOvg8wSweb2tHZEQQgjRaiTZSUKaMojanLhVFLdX5tcRQghxYpNkJ8mYhoZSBoZdx2NquNMypF5HCCHECU0KlJOMMk2UDth1vDoyv44QQogTniQ7ySZqErVoWG0aKU6ZX0cIIYSQbqxkY0Qx7LZYvY4nIPU6QgghTniS7CQTBaYJymHBbYAnTebXEUIIISTZSSLKNDA0HWXX8VpseDpIvY4QQgghyU4SUVGTqKZhtZn4nD6sMr+OEEIIIclOMtEME2W349EiuLwBWQ9LCCGEQJKd5KEgGgXToeM29Vi9jt3e2lEJIYRoYdu2bWPChAnk5uZit9vp3Lkzt912G/v27Ysfc+655zJ58uRa586fPz9hIdD58+ejaVqtR7ItoyFDz5NGhCgWNIeGV7NKvY4QQiShb7/9lsGDB9O9e3defvllCgoK+OKLL7jzzjt56623WLZsGWlpaY26ps/nY8OGDQnbkmUB0BqS7CSLaBRDc2GzK/wuHxYZci6EEEln4sSJ2O12/vOf/+ByuQDIz8+nf//+dO3albvuuos5c+Y06pqappGdndx/IEuykyQ0w8Sw2fDqIVwpqZLsCCFEIyilUFVVjTtJ19EcDlQoFJv34/DnDaC5XA1uRdm/fz/vvPMODz74YDzRqZGdnc3YsWN55ZVXeOqppxr3Ok4AkuwkAwURQ0c5dTwK3KkZUq8jhBCNoKqq2DBgYKPP8ww5k46PPkrx3/9OYMwYvp84kYolHzf4/B6rVqI1cDDJN998g1KKXr161bm/V69eHDhwgD179gDw1FNP8dxzzyUcE41Ga9XjlJSU4D1s9O7ZZ5/NW2+91dCX0eZJspMUIkQNK5pTkSL1OkIIcdxULPmY4r//nfTrrmPf3LmNSnSaSinVoOPGjh3LXXfdlbDttddeY8aMGQnbUlJSWLVqVcK2w1uO2jtJdpKAZkSJaC5sDvA5fVg8Mr+OEEI0huZy0WPVysafWNN1FYmQNmECqWPHNrgLq+a+DdWtWzc0TWP9+vX86Ec/qrV//fr1pKamkpGRAYDf76dbt24Jx2RmZtbxEvRaxyUbSXaSgGZGMXQnXi2Eyyf1OkII0ViapjW4O6lO1UvzaMdwyHZ6ejojRozgqaeeYsqUKQmtL0VFRbz00ktcc801STeSqiXIPDvtnVJEI4BNx4OSeh0hhEhiTz75JKFQiJEjR/LBBx+wbds23n77bUaMGEHHjh158MEHG31NpRRFRUW1HmYjWqjaOkl22jsVJaLsKAf4LBap1xFCiCRWWFjIp59+ykknncRPf/pTunbtyg033MB5553H0qVLGz3HDkBpaSk5OTm1Hrt37z4Gr6B1aKqhlU5JrLS0FL/fT0lJCT6fr7XDaZC3nv8TB74rIpDppizohgwnA9KcFJx1EdbU1NYOTwgh2qxgMMjmzZspKChIupmCk9GRPq+Gfn9Ly047pymDqO7ErUdweVPRpV5HCCGESCDJTrumMAyFabHE6nUCHdClXkcIIYRIIMlOO6ZhEFF2sGv4rBpuqdcRQgghamnzyc6cOXPo27cvPp8Pn8/H4MGDE2Z1DAaDTJw4kfT0dLxeL2PGjGHXrl2tGPHxoymTsLJjsyl8nhSs3pTWDkkIIYRoc9p8stOpUydmzpzJypUr+fTTTxk2bBiXXnopX3zxBQBTpkzhn//8J3/96195//332bFjBz/+8Y9bOerjQwFRXDgtYTxSryOEEELUqc1PKjh69OiE5w8++CBz5sxh2bJldOrUiblz57JgwQKGDRsGwLx58+jVqxfLli3jjDPOaI2QjxsTC8piJUUP4ZJ6HSGEEKJObb5l51CGYbBw4UIqKioYPHgwK1euJBKJMHz48PgxPXv2JD8/n6VLl9Z7nVAoRGlpacKjPTKwoKw6XquOJyOntcMRQggh2qR2kex8/vnneL1eHA4HN910E6+//jq9e/emqKgIu91OIBBIOD4rK4uioqJ6r/fQQw/h9/vjj7y8vGP8Co4NU7Njsyp8bi8Wr6yHJYQQQtSlXSQ7PXr0YPXq1Sxfvpybb76ZcePG8eWXXzb5etOnT6ekpCT+2LZtWwtGe5xoOprFjU2LkuLzozdnTRchhBAiibX5mh0Au90eX5F14MCBrFixgj/+8Y/87Gc/IxwOU1xcnNC6s2vXLrKz6x+G7XA4cDgcxzrsY8pwpGJYIqRYFe7UDujt/PUIIYRo2zRN4/XXX+eyyy5r7VAarV207BzONE1CoRADBw7EZrOxePHi+L4NGzawdetWBg8e3IoRHgcWO5oFfDZN6nWEEOIEMX78+NgK7ZqGzWajoKCAadOmEQwGWzu0Nq3Nt+xMnz6dUaNGkZ+fT1lZGQsWLOC9997jnXfewe/3c9111zF16lTS0tLw+XzccsstDB48OOlHYmkaOGwKr8uLRYacCyHECePCCy9k3rx5RCIRVq5cybhx49A0jYcffri1Q2uz2nzLzu7du7nmmmvo0aMH559/PitWrOCdd95hxIgRAMyaNYtLLrmEMWPGcM4555Cdnc1rr73WylEfe36nDa+ukeLzyfw6QghxAnE4HGRnZ5OXl8dll13G8OHDWbRoEQD79u3jiiuuoGPHjrjdbvr06cPLL7+ccP65557LrbfeyrRp00hLSyM7O5v77rsv4ZhvvvmGc845B6fTSe/evePXP9Tnn3/OsGHDcLlcpKenc8MNN1BeXh7fP378eC677DJmzJhBVlYWgUCA+++/n2g0yp133klaWhqdOnVi3rx5Lf8mHabNt+zMnTv3iPudTiezZ89m9uzZxymitsFu1XBbdDypqVKvI4QQzaSUIho2G3WOpoHFpmNETJSq/bwhrHYdTdOaEHHMunXr+Pjjj+ncuTMQW1Vg4MCB/OIXv8Dn8/Hvf/+bq6++mq5du3LaaafFz3vhhReYOnUqy5cvZ+nSpYwfP54hQ4YwYsQITNPkxz/+MVlZWSxfvpySkhImT56ccN+KigpGjhzJ4MGDWbFiBbt37+b6669n0qRJzJ8/P37cu+++S6dOnfjggw9YsmQJ1113HR9//DHnnHMOy5cv55VXXuHGG29kxIgRdOrUqcnvw9G0+WRH1M9ht5CSldvaYQghRLsXDZs8c9v7jT4vr1caF1x/MuuX7KDXkFz+b87nbFu/v8Hn3/DHodgclkbd81//+hder5doNEooFELXdZ588kkAOnbsyB133BE/9pZbbuGdd97h1VdfTUh2+vbty7333gtAYWEhTz75JIsXL2bEiBH897//5auvvuKdd94hNzf2HTNjxgxGjRoVP3/BggUEg0H+/Oc/46nuXXjyyScZPXo0Dz/8MFlZWQCkpaXx+OOPo+s6PXr04JFHHqGyspJf/epXQKxUZebMmXz00Uf8/Oc/b9T70BiS7LRTmq7h86fI/DpCCNGKtq3fz/olO+h/QWc++8+WRiU6TXXeeecxZ84cKioqmDVrFlarlTFjxgCxyXdnzJjBq6++yvbt2wmHw4RCIdyHTU/St2/fhOc5OTns3r0bgPXr15OXlxdPdIBag37Wr19Pv3794okOwJAhQzBNkw0bNsSTnZNPPhldP1gxk5WVxSmnnBJ/brFYSE9Pj9/7WJFkp53KSUvFYrFKvY4QQrQAq13nhj8ObfR58a6rqMkPRuTT59xODe7CqrlvY3k8nvh0LM8//zz9+vVj7ty5XHfddfzud7/jj3/8I4899hh9+vTB4/EwefJkwuFwwjVsNtthr0PDNBvXjdcQdd3neN37UJLstFMdfD5Mu0PqdYQQogVomtbo7qRDWayxuhurvenXaApd1/nVr37F1KlTufLKK1myZAmXXnopV111FRCbquXrr7+md+/eDb5mr1692LZtGzt37iQnJza1ybJly2odM3/+fCoqKuKtO0uWLIl3V7U1bX40lqiHrmNNT2vtKIQQQrSyyy+/HIvFwuzZsyksLGTRokV8/PHHrF+/nhtvvJFdu3Y16nrDhw+ne/fujBs3jjVr1vDhhx9y1113JRwzduxYnE4n48aNY926dfzvf//jlltu4eqrr453YbUlkuy0U/aOHbG2wV8oIYQQx5fVamXSpEk88sgj3H777QwYMICRI0dy7rnnkp2d3egZj3Vd5/XXX6eqqorTTjuN66+/ngcffDDhGLfbzTvvvMP+/fs59dRT+clPfsL5558fL5RuazSlGtO7mJxKS0vx+/2UlJTg8/laOxwhhBDHUDAYZPPmzRQUFOB0Ols7HHEUR/q8Gvr9LS07QgghhEhqkuwIIYQQIqlJsiOEEEKIpCbJjhBCCCGSmiQ7QgghhEhqkuwIIYQ4Iclg5PahJT4nSXaEEEKcUGqWK6isrGzlSERD1HxOhy8z0RiyXIQQQogTisViIRAIxBefdLvdaJrWylGJwymlqKysZPfu3QQCASyWpi/FIcmOEEKIE052djbAMV9tWzRfIBCIf15NJcmOEEKIE46maeTk5JCZmUkkEmntcEQ9bDZbs1p0akiyI4QQ4oRlsVha5MtUtG1SoCyEEEKIpCbJjhBCCCGSmiQ7QgghhEhqUrPDwQmLSktLWzkSIYQQQjRUzff20SYelGQH2LdvHwB5eXmtHIkQQgghGqusrAy/31/vfkl2gLS0NAC2bt16xDdLNE9paSl5eXls27YNn8/X2uEkLXmfjw95n48fea+Pj/b4PiulKCsrIzc394jHSbID6HqsdMnv97ebD7g98/l88j4fB/I+Hx/yPh8/8l4fH+3tfW5II4UUKAshhBAiqUmyI4QQQoikJskO4HA4uPfee3E4HK0dSlKT9/n4kPf5+JD3+fiR9/r4SOb3WVNHG68lhBBCCNGOScuOEEIIIZKaJDtCCCGESGqS7AghhBAiqZ3wyc7s2bPp0qULTqeT008/nU8++aS1Q0o6Dz30EKeeeiopKSlkZmZy2WWXsWHDhtYOK6nNnDkTTdOYPHlya4eSlLZv385VV11Feno6LpeLPn368Omnn7Z2WEnFMAzuvvtuCgoKcLlcdO3alQceeOCoywKII/vggw8YPXo0ubm5aJrGG2+8kbBfKcU999xDTk4OLpeL4cOH880337ROsC3ohE52XnnlFaZOncq9997LqlWr6NevHyNHjmT37t2tHVpSef/995k4cSLLli1j0aJFRCIRLrjgAioqKlo7tKS0YsUK/vSnP9G3b9/WDiUpHThwgCFDhmCz2Xjrrbf48ssvefTRR0lNTW3t0JLKww8/zJw5c3jyySdZv349Dz/8MI888ghPPPFEa4fWrlVUVNCvXz9mz55d5/5HHnmExx9/nKeffprly5fj8XgYOXIkwWDwOEfawtQJ7LTTTlMTJ06MPzcMQ+Xm5qqHHnqoFaNKfrt371aAev/991s7lKRTVlamCgsL1aJFi9TQoUPVbbfd1tohJZ1f/OIX6qyzzmrtMJLexRdfrCZMmJCw7cc//rEaO3ZsK0WUfAD1+uuvx5+bpqmys7PV7373u/i24uJi5XA41Msvv9wKEbacE7ZlJxwOs3LlSoYPHx7fpus6w4cPZ+nSpa0YWfIrKSkBDq5JJlrOxIkTufjiixN+r0XLevPNNxk0aBCXX345mZmZ9O/fn2effba1w0o6Z555JosXL+brr78GYM2aNXz00UeMGjWqlSNLXps3b6aoqCjh3w+/38/pp5/e7r8XT9i1sfbu3YthGGRlZSVsz8rK4quvvmqlqJKfaZpMnjyZIUOGcMopp7R2OEll4cKFrFq1ihUrVrR2KEnt22+/Zc6cOUydOpVf/epXrFixgltvvRW73c64ceNaO7yk8ctf/pLS0lJ69uyJxWLBMAwefPBBxo4d29qhJa2ioiKAOr8Xa/a1VydssiNax8SJE1m3bh0fffRRa4eSVLZt28Ztt93GokWLcDqdrR1OUjNNk0GDBjFjxgwA+vfvz7p163j66acl2WlBr776Ki+99BILFizg5JNPZvXq1UyePJnc3Fx5n0WjnbDdWB06dMBisbBr166E7bt27SI7O7uVokpukyZN4l//+hf/+9//6NSpU2uHk1RWrlzJ7t27GTBgAFarFavVyvvvv8/jjz+O1WrFMIzWDjFp5OTk0Lt374RtvXr1YuvWra0UUXK68847+eUvf8nPf/5z+vTpw9VXX82UKVN46KGHWju0pFXz3ZeM34snbLJjt9sZOHAgixcvjm8zTZPFixczePDgVows+SilmDRpEq+//jrvvvsuBQUFrR1S0jn//PP5/PPPWb16dfwxaNAgxo4dy+rVq7FYLK0dYtIYMmRIrakTvv76azp37txKESWnyspKdD3xK8pisWCaZitFlPwKCgrIzs5O+F4sLS1l+fLl7f578YTuxpo6dSrjxo1j0KBBnHbaaTz22GNUVFRw7bXXtnZoSWXixIksWLCAf/zjH6SkpMT7fv1+Py6Xq5WjSw4pKSm1aqA8Hg/p6elSG9XCpkyZwplnnsmMGTP46U9/yieffMIzzzzDM88809qhJZXRo0fz4IMPkp+fz8knn8xnn33GH/7wByZMmNDaobVr5eXlbNy4Mf588+bNrF69mrS0NPLz85k8eTK//e1vKSwspKCggLvvvpvc3Fwuu+yy1gu6JbT2cLDW9sQTT6j8/Hxlt9vVaaedppYtW9baISUdoM7HvHnzWju0pCZDz4+df/7zn+qUU05RDodD9ezZUz3zzDOtHVLSKS0tVbfddpvKz89XTqdTnXTSSequu+5SoVCotUNr1/73v//V+e/xuHHjlFKx4ed33323ysrKUg6HQ51//vlqw4YNrRt0C5BVz4UQQgiR1E7Ymh0hhBBCnBgk2RFCCCFEUpNkRwghhBBJTZIdIYQQQiQ1SXaEEEIIkdQk2RFCCCFEUpNkRwghhBBJTZIdIYQQQiQ1SXaEEKIBNE3jjTfeaO0whBBNIMmOECeQ8ePHo2kaM2fOTNj+xhtvoGlaK0UVo2lanY+FCxe2alw1du7cyahRo1o7DObPn08gEGjtMIRoVyTZEeIE43Q6efjhhzlw4EBrh1LLvHnz2LlzZ8KjtRcgDIfDAGRnZ+NwOFo1FiFE00iyI8QJZvjw4WRnZ/PQQw/Vuf++++7jBz/4QcK2xx57jC5dusSfjx8/nssuu4wZM2aQlZVFIBDg/vvvJxqNcuedd5KWlkanTp2YN29eo2ILBAJkZ2cnPJxOJwATJkygb9++hEIhIJaE9O/fn2uuuQaA7777Lt4SdOaZZ+J0OjnllFN4//33E+6xbt06Ro0ahdfrJSsri6uvvpq9e/fG95977rlMmjSJyZMn06FDB0aOHAkkdmPV3OvVV1/l7LPPxuVyceqpp/L111+zYsUKBg0ahNfrZdSoUezZsyfh/s899xy9evXC6XTSs2dPnnrqqfi+muu+9tprnHfeebjdbvr168fSpUsBeO+997j22mspKSmJt3zdd999ADz11FMUFhbidDrJysriJz/5SaPeeyGSmSQ7QpxgLBYLM2bM4IknnuD7779v8nXeffddduzYwQcffMAf/vAH7r33Xi655BJSU1NZvnw5N910EzfeeGOz7nGoxx9/nIqKCn75y18CcNddd1FcXMyTTz6ZcNydd97J7bffzmeffcbgwYMZPXo0+/btA6C4uJhhw4bRv39/Pv30U95++2127drFT3/604RrvPDCC9jtdpYsWcLTTz9db0z33nsvv/71r1m1ahVWq5Urr7ySadOm8cc//pEPP/yQjRs3cs8998SPf+mll7jnnnt48MEHWb9+PTNmzODuu+/mhRdeSLjuXXfdxR133MHq1avp3r07V1xxBdFolDPPPJPHHnsMn88Xb/m64447+PTTT7n11lu5//772bBhA2+//TbnnHNOs95vIZJKay+7LoQ4fsaNG6cuvfRSpZRSZ5xxhpowYYJSSqnXX39d1fxzcO+996p+/folnDdr1izVuXPnhOt07txZGYYR39ajRw919tlnx59Ho1Hl8XjUyy+/3KDYAOV0OpXH40l4bNmyJX7Mxx9/rGw2m7r77ruV1WpVH374YXzf5s2bFaBmzpwZ3xaJRFSnTp3Uww8/rJRS6oEHHlAXXHBBwn23bdumALVhwwallFJDhw5V/fv3rzO+119/PeFezz33XHz/yy+/rAC1ePHi+LaHHnpI9ejRI/68a9euasGCBQnXfeCBB9TgwYPrve4XX3yhALV+/XqllFLz5s1Tfr8/4Rp///vflc/nU6WlpbXiFkIoZW21LEsI0aoefvhhhg0bxh133NGk808++WR0/WDjcFZWFqecckr8ucViIT09nd27dzf4mrNmzWL48OEJ23Jzc+M/Dx48mDvuuIMHHniAX/ziF5x11lm1rjF48OD4z1arlUGDBrF+/XoA1qxZw//+9z+8Xm+t8zZt2kT37t0BGDhwYIPi7du3b/znrKwsAPr06ZOwreb1V1RUsGnTJq677jr+3//7f/FjotEofr+/3uvm5OQAsHv3bnr27FlnHCNGjKBz586cdNJJXHjhhVx44YX86Ec/wu12N+h1CJHsJNkR4gR1zjnnMHLkSKZPn8748ePj23VdRymVcGwkEql1vs1mS3iuaVqd20zTbHBM2dnZdOvWrd79pmmyZMkSLBYLGzdubPB1a5SXlzN69GgefvjhWvtqkgoAj8fToOsd+nprRrMdvq3m9ZeXlwPw7LPPcvrppydcx2KxHPW6R3ofU1JSWLVqFe+99x7/+c9/uOeee7jvvvtYsWKFjNwSAqnZEeKENnPmTP75z3/GC2ABMjIyKCoqSkh4Vq9e3QrR1fa73/2Or776ivfff5+33367zgLoZcuWxX+ORqOsXLmSXr16ATBgwAC++OILunTpQrdu3RIeDU1wmiorK4vc3Fy+/fbbWvcuKCho8HXsdjuGYdTabrVaGT58OI888ghr167lu+++4913323JlyBEuyUtO0KcwPr06cPYsWN5/PHH49vOPfdc9uzZwyOPPMJPfvIT3n77bd566y18Pt8xj6e4uJiioqKEbSkpKXg8Hj777DPuuece/va3vzFkyBD+8Ic/cNtttzF06FBOOumk+PGzZ8+msLCQXr16MWvWLA4cOMCECRMAmDhxIs8++yxXXHEF06ZNIy0tjY0bN7Jw4UKee+65Wi0sLe03v/kNt956K36/nwsvvJBQKMSnn37KgQMHmDp1aoOu0aVLF8rLy1m8eDH9+vXD7Xbz7rvv8u2333LOOeeQmprK//3f/2GaJj169Dimr0eI9kJadoQ4wd1///0JXSS9evXiqaeeYvbs2fTr149PPvmkyXU9jXXttdeSk5OT8HjiiScIBoNcddVVjB8/ntGjRwNwww03cN5553H11VcntHTMnDmTmTNn0q9fPz766CPefPNNOnToAMTqf5YsWYJhGFxwwQX06dOHyZMnEwgEEuqPjpXrr7+e5557jnnz5tGnTx+GDh3K/PnzG9Wyc+aZZ3LTTTfxs5/9jIyMDB555BECgQCvvfYaw4YNo1evXjz99NO8/PLLnHzyycfw1QjRfmjq8M55IYRoh7777jsKCgr47LPPas0TJIQ4sUnLjhBCCCGSmiQ7QohjbsaMGXi93jofbWG9KSFEcpNuLCHEMbd//372799f5z6Xy0XHjh2Pc0RCiBOJJDtCCCGESGrSjSWEEEKIpCbJjhBCCCGSmiQ7QgghhEhqkuwIIYQQIqlJsiOEEEKIpCbJjhBCCCGSmiQ7QgghhEhqkuwIIYQQIqn9f9f5kPfO/DBQAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAG6CAYAAADZHEiPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd4AkV3Wvv4qduyfHnZnNebVa5RxXSEJgBDJIgEkCCzAyyTY2tsGYZBsbP0x4Fn7YGIQBEUwSQoCEkJBQzlrtanOcHDqHSvf9cbt7enZnNk7aVX1Sb1e4VXWnurrq1+ece44ihBD4+Pj4+Pj4+PjMOOpcd8DHx8fHx8fH5+WCL7x8fHx8fHx8fGYJX3j5+Pj4+Pj4+MwSvvDy8fHx8fHx8ZklfOHl4+Pj4+Pj4zNL+MLLx8fHx8fHx2eW8IWXj4+Pj4+Pj88s4QsvHx8fHx8fH59ZwhdePj4+Pj4+Pj6zhC+8fHx8fHx8fHxmCV94+fj4+Pj4+PjMEr7w8vHx8fHx8fGZJXzh5ePj4+Pj4+MzS/jCy8fHx8fHx8dnlvCFl4+Pj4+Pj4/PLOELLx8fHx8fHx+fWUKf6w74+Pj4+Pj4+EwLz31i5o9x2okdwxdegOd59Pb2EovFUBRlrrvj4+Pj4+PjcxQIIchkMnR0dKCqJ4cTzxdeQG9vL11dXXPdDR8fHx8fH5/jYN++fSxYsGCuu3FU+MILiMVigPzg4vH4HPfGx8fHx8fH52hIp9N0dXVVn+MnA77wgqp7MR6P+8LLx8fHx8fnJONkChOaU4foAw88wKtf/Wo6OjpQFIUf//jHE9YLIfj4xz9Oe3s7oVCIjRs3sm3btgltRkdHefOb30w8Hqeuro53vvOdZLPZWfwrfHx8fHx8fHyOjjkVXrlcjvXr1/OVr3xl0vWf+9zn+OIXv8htt93Go48+SiQS4eqrr6ZYLFbbvPnNb2bTpk38+te/5s477+SBBx7glltuma0/wcfHx8fHx8fnqFGEEGKuOwHSTPijH/2I66+/HpDWro6ODv7sz/6MP//zPwcglUrR2trKf//3f3PTTTexefNmVq9ezeOPP85ZZ50FwN13380rX/lK9u/fT0dHx1EdO51Ok0gkSKVS0+9qdJyp1ykKaNrRtQXQazzDp3Jb14XDXZbzoa2myc8PwPPkaz63VVX5mi9thZDneD63PZbv53xoC/Pvu+zfI+S0f4+Yev0Jcsjz+7lPzNixqpyq6SR27dpFf38/GzdurC5LJBKce+65PPzww9x00008/PDD1NXVVUUXwMaNG1FVlUcffZTXvva1k+67VCpRKpWq8+l0eub+kP/6r6nXdXfDNdeMz3/zm1PffNrb4dWvHp//9rehxvI3geZmqP3bv/c9mMr9Wl8Pr3/9+PyPfgRjY5O3jUbhTW8an//Zz2BoaPK2wSC89a3j87/4BfT1Td5W1+Hmm8fnf/1r2Lt38rYAtRbN++6DnTunbnvzzeM3y9/9DrZunbrtW98q+w3w8MPw4otTt33jG6ESzPnYY/Dcc1O3ff3r5XkGePppePLJqdu+9rXy8wN4/nl49NGp277qVVD5cbF5Mzz00NRtr7lGXm8A27fDb387dduNG2HxYjm9ezfcc8/UbS+7DJYvl9P798Pdd0/d9sILYc0aOd3XB3feOXXbc8+F9evl9PCwvC6n4swz5QsgmYTvf3/qtqedBuedJ6ezWfjOd6Zuu3o1XHSRnC4W5fdzKpYvl+cC5Hf4cN/7xYvlOa7g3yMk/j1CTp/K9wgfYB5nru/v7wegtbV1wvLW1tbquv7+flpaWias13WdhoaGapvJ+Id/+AcSiUT15aeS8PHx8fHx8ZkN5q2r8fe//z0XXnghvb29tLe3V9u94Q1vQFEU7rjjDj772c/yjW98g5deemnCvlpaWvj7v/973vve9056rMksXl1dXb6rcb609d0I09/WdzUee9v54D707xGTt/XvEdPf1nc1Hj2nqquxra0NgIGBgQnCa2BggNNPP73aZnBwcMJ2juMwOjpa3X4yAoEAgUBg+js9GfoxnGK/raT2QXMytD2WG4vfVqIoR39NzIe24LedT23nw/fev0cce1sfYB67GhctWkRbWxv33ntvdVk6nebRRx/l/PPPB+D8888nmUzyZI0//De/+Q2e53HuuefOep99fHx8fHx8fA7HnFq8stks27dvr87v2rWLZ555hoaGBrq7u/ngBz/Ipz/9aZYtW8aiRYv42Mc+RkdHR9UduWrVKq655hr++I//mNtuuw3btrn11lu56aabjnpEo4+Pj4+Pj4/PbDGnwuuJJ57g8ssvr85/+MMfBuBtb3sb//3f/81HPvIRcrkct9xyC8lkkosuuoi7776bYGVUCfA///M/3HrrrVx55ZWoqsoNN9zAF7/4xVn/W3x8fCSeJ3CFwBMCIcATAtcTeEKmiamd9gSyrTceK6MoMuZTqZ1HKb8DB88z3r7SFoXq+qn2Nem+D97XCWbDroTQCgGiPC+q82JCiFDtsoPbUm431XqBXCgOt695Ec378qT2mp7sepZvyiHX7MHXc6X5ZPuqHOew+zqJsrufysyb4Pq5ZEbzePn4zEMqoqciiqoCSQiEJ6er85O0c1yB43m4nsDxKtNIUeUJvMoxKttQFlvlfYNgUXOEdMFhJFeiIo2kgFBojJrEQzq7hvPAuCiSbap/hHyaiEMfQJWNqg8fah5gNTuc+ABUDmlbXoxafmi1x4MUHIdc0aseqyJyIgGNsKHTly7Kv5tx0SQoz1c2gMlFU03b2jZV4VUr2GrEYqW9gqj+W1mzqClKpmAznLVAkee3QmPUJB402DWcO/wFM8ssaoqQLtqMZK1D1p1UfVYmXs+7y9dz+eNDfpo1F1LNjwQ46Jqe7HquLK++H3o9w8RrurJeVeX69kSQou2RLcnBDbXfoWhAJ2RqDGXGB6PNB8XQHAtQsFyyJYdsJs1Fa3r84HofH5/ZxfMEJcejaLsUHRfbkcLJ8TxsV+CWhZHjeTjuuOiqCDBRFloe4+Jo/GHOhGn5rpQFiVIVJbXvmqKgqgqqXttufBrAUDVO746yb6RQvemDvNl3NYbYN1KgIxE66nMwwUJUM0/tshorU1X0VKfH/1CBFKDioH2P5SxWdsTZ3JtmNDf+gG2ImCxqirKlL03RcidYFirWBrX64FMmWCaACRaLCRYMJlopaq0YR4uhqqzvrjv8ea47+vM8GxiayumnYJ/bp+l6hkOtprXX8/g8VTFfsUBX9lVexWhWXtMvHkgzlh+/puvDJl0N4UOWzwsErO6UfU7m7bnuzTHjCy8fn5MMy/EoOi5Fy6Voe6SLFpmii+W4WI7AK5tPKq4FlfFft7XiR1UUFHWiIDpYTM0k2ZLDvpFC9aGULTkTHlK1D6/DMe7KLL974+7LWjdnbZvKelccuu5I223pz/Cq9R38+OkD7BzOsqgpwrmLG/n+E/vmnRWmwqKmCK/dsIAfPb2fXcO56vz3Hvf7PJ2cjH0GeL43dUi/T+Sargi7inW7+gOnat09eFntXKWNV7UQV9cJDw/5g3HZnjrecu5K7n3xhRP++2cbX3j5+MxTXE9IC5btUnQ88iWHVMGuzjuuQFEEhqph6iphU6curFYtSvMFTwiyRdn3ZMEmVbBJ5a3qfHdDmFuvWMqju0d45dp2/uL7z/HIzpGq8JkohKT4qRVFc8FPn+vlS2/cwB2P7+OV69q55fYn+N224Tnpy9Hyixf6/T7PAidjn+Hk6vd7Ll3Mg1vTPLj1KT5z3Ur+bK47dIz4wsvHZ44RQroJS7a0ZOVLDumiQ67kYDkelushEKiKSkBTMXWVhrCOoY1ng2mKmRQtb1IrUTSgEzRVhjPT5y4o2q4UUXmbVMGqTleFVcEmWRZXqYLNkfRRQ8Tk3Zcu4av37+BHTx+Ytn5qqlJ2e5bdn4qCVrbyqWrZLaqOL9NqltW2rSxXFWk9tByXB7cN8e5Ll3DncwdwhcMFS+vkQWvclYciapscshwOjqGZrL2YMCkOaTfue6qN9crZGX67tZd3X7qEHz+zm5ydZsNC8zBnb5K/YsrP8XB/0WE3PCxpa4z7th7g3Zcu4X+f2UnKGuW07iNlQZrqHJ9IW3HIW9UFX+MWFgLGikPc+9I+3n3pEn749A5Gi0Osma/FUWr+8NHCEPduKff7qR2MFoZYs+DQTSZEoSkT52vjzg5qKeeVmg1r/j3W34olN8//ffMZ/Os9z/Hg9inKTB0vJxi/dTT4wsvHZxZxXI+CLV2ERVsGh6YLNiXHw3I8POEhUDA1lYCuEg3qmJp6RLdf0fImddHVuu6O1K+qYKoRT1JY2SQLZQtVeb7kHCZT9RREAhp1IZNEyCARMqgLy/fTu+q4fkMnLxxI8fYLF7K8NcZgplQWSlOIILUmjuwgwQQCVRGglGPYKJ9X4ZVjXbyyy8Irr3fH23kernBwhYcnHFzh4gkXVzh4wi3H1Ahao/Vc1NPCpsFdXLW6k0Ckl97MUG3kf02AvKh5YJcnlPEHdXVBed0hAfOKcpCIGm+tVPepHBRsrXDww60j1sQlCzvYNLiLa9d2Eo0N0ZcZqTnixP0fuvDgx+hkc4c8aifb0yS7nrxdW7SBC7oXsHloD9et7aIhnqY/OzbxSEr18X3YY48fo/a8TDJ/hP1N1delje2kijJ4/qwFPWwb7uXVp/XQ3iBjkBLBMNtHxkWCqA45ZcLgiYkjKw5aPh6sOH7t1OxDlAfHyGDNmnZezXTtMYCVizoYS0l34vlru9m84wCvWttNo10EBerjEbbsrPkxdPCff6yqabLmkyxTlMmXy0u7xFNbtvLX16yf2VrLM4QvvHx8ZoCDg93zJZdM0SFnOZQcF9vxAAVdVTB1KbLiQaMsHI6dg+Ol0kUbXVXorA/xu63DvNSfKVulrIOsUvL9aOOpajE1tSqexoWUSV3IIFFeXldeFw8ZEyx0IB8SkYBKT2OUncNpCnaBXcMOFy9r5KWhEZL5fFmIlsVSVUAJHOFQ8hw818P1XFxcXM8tiyivPDhAPnHktFcVV0KIsmJRUA4RSBXxoqIIeeeXg81UEHK6M9HERT3ruG/HJnrTY+wbS3H5ktP57Y4X6c0kD/n9P/6rvuazPRYD0LEaiw5qv6a1E1BY29bJAztfoi+TpDeZ45LFp/NC/wFAsGngwOF2MetM1uf9YxkuWbxmyj4fP7XWRnGo8JlEDE0mkA7YKS5fswoB3PfcZnqHx9jZMMLl61cB8JunNzMyWJp8XxO7MekxgRp9Lsana5X6wfpXqdFFU7z3jaW54qzVIOA3T71I7/AYe4ZHuOKM1aDAb558kZxwDn9RHMM6IUT1u5Dz0rjCIaIk0BSNYfcARZGnUW0npEbpc3Yx5g7Soi2gSeukz9nFHmcLjVo7lwYu50BmP6Y3S1VophFfePn4nCDVYHfbpWjJYPdsyaVkjwe7q4ocXRbQNRJBE0NTpiV43fUEfakCe0by7BrJEQ/q3HrFMu7ZPMDrz1rAO7/x+FHHaagKxGvEUiJkTiKsDOpCJvGgjqkLhCJFkXy5VeuSJ1w8YeOJEg4uw0UXx7NxcHA9F8dzaI7EWNG+hvt3P0NfdqicdsJlX7aRSxZu4L5dO+nNDKEoSnlEVzkvVcW/I6BafENRx+dFZfC8gkAru+OU8f9qfkof/LxQy8MG1eoeQFErgw7gnK6ldNU18ujerRScEg3hMCW3xJMHdnDF0rX0pkd4pm/XCX+u00nQ0Fjd0sWLg/vIOzkSIYO8k2P7SB9ndPbw4uA+EiFjrrs5gcn6nLOzbB8u97l/H3FDn2jBKV8bE6xDB1t5BIhyihPKlqFai1C1DRP3AYdamGp1DoBhVkQ6mCWFYEnFtNWqZTMgVMKKVrm4JLUCqTI/qXhSJggWR9gIIdAVHUVRKXlFXOFgqgF0xaDo5bG8EqYaJKiGKIk8OTeDqQSI6XVYXpFRZwhdMQiHmvA8B0VRyWmDxCJhwkEND5enBp5CNQxiEYPnc4+RdIZZHT6TRqOV57OPsqe0jeWh9SwPr2NL/mmezDxAT3A5FyWuZU9xG3eO3E6D0cIbW24l7Yzx5d6PAfDX3V8G4Ct7/x5LlLi149PUGc18r++7HLB2cWPzn9ASXs99w4/wTOEhrqi7nkWJhbyQ3sPDuZ9zdv1FXHHOn/Bfj3wfz0ge/4U2R/jCy8fnKDlcsHvJlcHuINDLAits6iRC6nFbsQ4mVbDZPZJjz0iO3cNSaO0dzWMd5PZrigaq8VJP7R2jsy40UTwFDeIhjXhIJxbSiAVVYkGVUED+hJaiqSygcPE8F8fLVUVT0nMYzTllkSUQuOWh6uPuO5j4UBKAqqiUx1giBCwyW7lvx3PsS40ihIbwFBTFYHepgONsoSnSwoExq7w/ZTxlhTqeUmHCaMxKiouKKxJVvqvSsjghpYU6cRtFUWpGc04c4Vk5lqooNERMNFWhqzFMQ3xctkWMIKoqhevS1ui0fN4nSuVBHdZctiW3saJ5MZGQR1+2D0VRWN7UzkB+gHDARQsOYaomnbFOHM9hX2YfAAvjC1EUhb3pvbjCpTPaiamZ9GX7KLpFmkPNRM0ow4VhMlaGukAd9cF60qU0I8URIkaElnALBadAf67/iMdwHIf2UCf1AYPnezexsnU5ViZDPlmCkMfSxlae3fkiCaMOkhn6SweIaQm6zB4yTppthc2YSoA14fVYXoknco/g4XFR/HIAHkjdiyVKnB+/hJgR5ffpBxhxhjgrfh4dwQU8lXmU7fmtrI2extr46WzOvcCjyYdYGF7CFU0b2V/cy08HfkSD2cAbF7yVnJPltl1fQiD414VfYMe+PfzgwHf54DnvZ2A0ysLmBXzp8a/wi3138d5V72Phgm5+1Pt9Hhl9iKtarmFjyzX8bvi3/G/vHaxPnMHbe/6YlzKb+eLOf6E90MnfrvwkKTvJX7zwfgD+Y8M3Afjgc+8l52b55Kp/oj3Ywee2/ivbci/xnkXv58y6s7l97x08MPIb/qDtdby6/bXcO/Qg3+29nbPrzuWWRbeyObOL/9j3j3QGF3Dd2v/k6Z0v8PV9/8E/X/LP5NIlWuob+PD9H+a+/ffx1Qu/RlwP8+3h37E9t5WV9T101S3it9ndPJX9HQuizXQ1nMtWN8eOoRepD8boagiTzeiMDAwQ0HW6GsKkbRvngHS7LqgPoSgKgQMmwvVoSRi0B8N0pFpxlRLt8Shd8TArnIXYaprFiXa5T2MpJfUKzmg7nR379nJ6ywoWNi3gfbxvlr9dJ4YvvHxmjbGcRcF257obx4QAbMclVXDIl1xKjjtpsHvY1A9xpR0vtuuxfyzPruE8u0dy8jWcY2yKfDWmrrCgPkhXg8nlK5q56eweXhoc5h0X9XDWYpWB7FiNpSmPJyaKpqwQZIoeXtGrutuqKTirCUrlaEkVtTwtRZShqiiYcl5RUYSKh4wZcz1RTqoqj+WWbQSVmCxNMQnqQZojcUxdIaBrZREEjaEQ0UCAFa0xKXrKMVxQDnBXlHHhVZNTTJnh6rO9uV5SVooF0QXsz+4nZ+eIGBEWRBewL7OPnD1x6L3lWliuRUgPoakag/lBcnauKlj2pvfSn+unPdpOV6yLPek9vDD8Aq3hVs5qO4u+bB+/3P1LYmaMG5bfQNbK8n+f+b84wuGvz/1rAD7+0MdJl9L81bl/RVukjc888hleHHmRD5zxAc5pP4d/e/rfuHfvvfzl2X/JTStvYjg/zLL6ZXzpmS9x9cKreXHkRT758CfpjHby+cs+T97O89HffRSA71z3HQA+/cinSVtp/vnSf6Yr1sX/e/7/VY9xfsf5/HT7T/nVnl9xw7IbeP2K1/NI3yP81wv/xbnt5/KhMz/ErtSu6jH+5dJ/IVvMVY/x9Qu+hWcLPvXUp8i4Gf6m+zPkdMG/9f4jTQ31fPHSLzIcTlHfFOVPf/unNNqtvKrldbxQfJo7+m7nzMQ5vLvnVoZyB/ivwf9Le7CTMzvOwLJtvrPn6wBcueBKFEXhF3t+RNbNckbLGTSGEjze/xBbsy/RE++hJ9TN9uGX+O3YvcQCMdabGxhK9fNI8iFsLK7UriLn5Xgm9STtwU4AXOGyJfsiAAcGB1AUhbv2/pwF9R28Y+076B0a5MHeB+kr9HJgtI/2+m7ybo5Re4S8K+PBHGGTdbMUveL4deNZWEIOhql1iFfEdMXyVf2RU52XP8I0RStbw+RyQzEIaWEM1azOJ/QEUT1G79AgOafA9uEd3L3zl9y46g30Dg0ymkmxKrqGkbEUzYEW1sbX0xpoo95oBGB9YgP1Zj3LoysBWB1by80976bZbAGgJ7SQv1j2N4RUmbssqsf4xzX/B0MZt65+fu1XJlj+b1k0UUBtLIvTCqtia1gVW1OdP2vJep7e5KeT8PGZFM8TbB/KMpwtMU0GoFlEBrubmkokoNOgTx7sfnAAdzV4uxyUPR6v5FaXj2Rt9o4V2T9SYt9Yif2jNgMpZ8pRgA1RaKtTaElAa52gNQGJsIei5uiMhbls0SLu2/UEfZkhdqebuWzhGYzsHmI4O3JE0STXH+bDEeAIgVtOyOq4Ml+W41WieT0UFDQNNEVFVxUCQYWgbhDUNXRNQVfV8rtCPAjr2ldUBUyFipDZn91PffRIo+6OH9u1KbpFwnoYTdU4kDlAspSkM9pJXbCOLaNb2JXaxeLEYlY0rGDzyGZ+t/93dMe7uWH5DXREOrhr511sXLiR/dn99Of6+fP7/xzbtfna1V9DVVRuvffWCYLltmdvmyBY7tlzD7/a8ytet+x1dK3o4qXRl7j9xds5u+1szmo7i2Qpyd2776Y90s4Ny28A4KnBpwBwPbcq5pKlJCW3VP6YBK5wsTz54DZUA03R2JHaQbKU5Ky2s/jOlu+wN70XAF3VaQg2kAgkAPkQbwg2TDhXdYE6dFVHUzQAYmaMhmADpiY/n7ARpiHYQEiXD9mAFqAh2EBEi2LnPURBpd6sJ0qc1G6LdMmhTqsHINNno6oKca0OTdExgzpmWCU+GmPz0BZeGtzG+gXreGDXg2wf3kF38xI0U6EukKA71ENToAlFU4jqUZZHV9JkNgNgqibrE2egoiLKzuaz6s+l5JUIarKfZyTOZkGom+ZAKwBr46cR0aIsi64AYElkGX/YcROtwXYA2oLt/FHXO4hoEQBCWph39fwJao3i/7v1n+KyFRexd6CXjsYWPrD6Q+we20d7UNYPvqb1VVzUeKm02gHn1J/Piujqap8WRZbw2dWfx1ClQInqMT6/9ssTgv3/YfXnAQWzLKQ+vPSvqq50gDd1vZU3db212v6Spsu5pOny6vzS6HL+Ze2XwPPAsoi6Jl85/UssW7qM3gMHaGlp4W+WfYRUMgkWYOW4LnIlRMsu/mye07TlnBZdLneYzdNOHe2BM+R8Lk8YheVKt2yfy6MCjYTleksO9jmaQRyTkUgkWNbdw7ZtW0kPz8+UF4fDLxmEXzJoNsiWHO7fthtddwjoM2yWmGYqI9kqsUtuebRbJajbE3Ik3OGCuou2YCDlMZCCwaTCYAoGklC0J7/JBA0psNrqFNrrVdrrNNrqNIKGWo5TUsuWHjm/oWMxHfFGHt+/jaFcqrqf5kiCsxcsO6rYI2mhKufJckVVZMlgdGkJ03SZnkFXFQxNJWiomLqGoSkYqoqujQsrXVWPaIGqFVm11qODxVjWypKzc8TMGGEjzIHsAXqzvbSEW+iJ97A7tZsnB56kJdzCxQsupjfbyx0v3UFEj3DL+lvI23n+5sG/oegU+fKVX0ZTNd7z6/eQLCX5x4v/kYWJhXzmkc/w/PDzvO/093Hxgov5xqZv8Itdv+A1S17DG1e9kd/s/Q3/8dx/cEbLGXzknI9gqibL6pdxx0t3sLZpLQWnwDvufgcA37z2m5iayfvueR8jxRE+c9FnWFK3hC88+QVeGn2Jt699O+e2n8tdO+/i0b5HuXjBxWzs2cim4U3ct+8+FicW88rFr2S4MMy9e+4lEUhwzaJrcDyHB/Y/gKmanN9xPpqq8dLoSwD0xHsI6kHGimMIIYiaUUzNrFpJKuc2WUpSF6g75BwfL54jyi857Voebglcy8NzQbgyrgoFVBUUrVzRQANVO/xDNhGNsay7h8GxUVrqG9i2dw+pbOaE+zxTVPpb6efB8zOG54Hrld9dGVTmVpa54ApwHXBccGywXblOyG0Sra0su+h8tt3/IKnePhId7Sy79KLyfP/Uxz2CRhLl8SrikNEI5fsqlUEt40uZsGx8ae1WPevWkx4ZYvTAfnL5Aq99/4emr2SQn07C51QhXbDYl92NYeZRywHRHbEmGsMJnh/YMce9m8i61iWM5FP0Ziq/pMZHvnXGmmkOJ9g0uKtsOSq7vCrWIqGQzCn0JxX6kx59SehLeoxkBNVA8BpUBVoTGu11Oh31Gh31Op31GonwkVNI1HKkX08C6cKs1FasiCyv/EAEGfekKwqapqBrClFDJ2ioGJp86ZqKpsrSKLoq46cqOJ4cFamrOslSkv7cWDW+ZzA/yIsjL5IwE2xo3cBwYZi7dt6FqZnctPImdqd30xZu45mBZ3jVklexP7ufP733T+nL9fHx8z/OkrolfPnpL/PM0DO8Z/17uKzrMn6797f8bOfPuG7xdbxl9VvYk97D97d+n/XN67l4wcUUnSKP9j1atdwYqkFfTg7lL7klwmqYoBaszgM0h5vpjHYS0OQoqUWJRZzfcT5dcZmEaUndEm5ccSMd0Y6qiHlh+AVeu/S19OZ68YTH5y75HIZqoKvy1vr5y6TlQlOlpeiDZ35wwufyysWv5JWLX1mdX9O0hjVN466UplATN668sTqvqzpXdF8xYR8rGlZMmK8P1k+YrxVdFbGVtbOTCtypEJ7Ac8siy5Yiy7U8nKJXFlwgXFENEld0BVUDzZTvinrsP7YOFi2pTGZ2RMxxMpnISmbSvLRnF8t7FrF1zy5S2UxNCpGa0ZQVWeGVxVP5JVwP4TrgCRTXBU8gXBccp/wqT7vlUQIV0eV5UPPdrh5JUxHlkSJCAaGprDz3fFq7unn+kd8zkh6CqEE2PUT+sd+z/vKL6d+/l01PPlYzcmGy4ZSMLxcc0mbCPZLxmM0KKuMDYuRQGKrtKwmhVaUcioBKIBwjaglEo0ogfPhUOfMRX3j5zAp5q0DJy9Nk1mOoJs2RBGctWMoT+7fTEGye6+5NoDncyPq25Ye1HtUF0uSKHr1Jh94xl94xh94xh76kw1RhbPGQKsVVjchqTUgX3InydO8u9o4Nc273Mn63cyv7U6O0xeo4s3MJ927bRF8mhaYqCBxcSoR0g5ZQDMvL0l88QFgPsqx+GUU3yyN9D6FrGtcsuAbXc/l/z/8/ik6R96x/D0E9yOcf/zwHcge49fRbWVy3mH994l95rP8x/njdH3Nlz5Xcvetufrz9x1yz8BrevvbtbB3bym3P3sbaprVsaN1Azs5x1667SJgJblp5EwWnwPe3fl/GxGR7ydk5LM+i5JYoOjLuJagHCWgBvHIMS2uklWX1y2gMyniTzmgnG7s3VkVSc7iZd6x9B1FDBrrrqs7fnf931f0A/OMl/zhBFN1y2i0TzuklCy7hkgWXVOd74j30xHsmiBhFUejN9Vbnu+PdE/YR1IMn/NmeKJNZEXN2jv3Z/Ycs99yJ1ivP9nCKNdYrZzzlQsVipWqghZXy6M/jv5ZrnS/xaJSl3T28tGcnqVQKPMHo6AgvOTbLFy/lpZ3bGUsnZZ+Fd8g+KlbqynR1fXl5bckauXx8+9p4KmnpLa8spyCZkMqhshyFRCLCky89y3B6dHyd5zGWGiCfTRKPRMkM9Y6LIs9DcVwUV1qpFNuV77J4KorwwAPF8ypSZby3qgqqKgWtqiAUDUXXwDDKoyblemC8aDaUB7eMx4SpKGiaDoqCqZmEjDAqCqqiEtEjKIpKQAvSFGxERYYpVP5etTw6uFJftCbT2fjgF9TqweVAlepY4apIVyvDPMv7qd3fVARsk85zzmRk0x6G901zAtVZwBdePjOO63p0N9SxsL4RhD5BdNUKm/nCgfQoHfFGzl6wjMf3b6MvncRUY5zRsRTHE/zH/fu489lRUoXJk4gaGrTViKuOOvkeDoArHFRFQ1M0cnaGpJ0jLKKE9SjJ0ggjpUGiRpzWUCfJ0ig7M5sJ6xFWJk4nbWd4bOC3CBTObroax/X4Td93cYTNZW1/SLZo8+jgV3nPGW+neUxnddMSbnvma9yx9X94zZIbuKLzCn6y/Yf8aMf/clXPVbxzwTt5pPc5vvTsF1jZsJJPtH+CVCbHt7bcTtSIcs2ia1AVlfv33Y9A8LY1byOoBxnID9Cb7SVrZwGq1p2iK0VSJf4noEuB0xRqYn3zehYmFgJQH6jnD5b8QVUUxcwYb1z5Rl4YfoGVDSuxPIuPnP0RFJSq9eYDZ3xgwkN9Y89GNvZsrM4vrV/K0vql1fmYGePqhVdX5xVFYVXjqgmf0/GIomMRMdNJJX9Zbaxgxf1dnS67tSdMIwhqQV4YfoGRwoh8lnkKnisQDgwHxogFYuzu7ccrgbAVhCMQLsgnoZCjSDVQ9PK7Wl5XFReAVZNzoSosBEp5tCseKEKUXVuiLC7K0wJpufEEiueAK1h68WXsev5ZDjz/nBQh5RitAmBmsrS1tjHw8CPVh3UFqQmUao3S8aVK9aE+Ho9VqUYgR9qiSBGgygmkbFBrd0ytdKguKwuKBYvqyGUEsb5h2QeU8t+t0FAXIxxuwBvaIXPCURm0AmgaiqJBoCykNE1ur2koqiLXc7CsqXbgoLeKhYnJ205C0DHJ7h1i5TnnMLJpD6XRDIGGGI1resjsGcQQKi3h1im3nwvMaIjM3kHZx3lo/TwSvvDymXGyJZeH927l8kVn86On9nPZogV84LtP88jO+RUUWYk4UBjlvGU7+dxrr6AlFuaFPQZnLy9geSXe/78/4bfPJlCD+wl23keARrrV62msS7OTrxPUdd675q9QVYV/efYv2VUo8qdLPkHUrOcrm/6evvw+3rb8gyxLrOWuvd/l2dFHubbrDVzY9gqeHnmEew/8iPUNF3JNx1vYltrJT/Z9nbbgQpr0VWSdNL/t/wmmGuCqrlcRMjVe3PIIjrB527qbaIsk+N7Dv6Jpa4R3rH0Hw4VhtiSfJ2UlcUSBoKERNmUAr+3JEZLxQJwF0QU0h6TVMWbGuKDjAiKGDB5WFIU3r3ozuqpXLUXvXPdOHM+hJ94DwM1rb+bmtTdXhcx1i6/jusXXVc/ryoaVfPTcj1bn44E4b1r1JoBDrEcVAQNMEDAzXbD7aAlpoUPElSc80qU0e7w9BPUgJbc0QRRVRNNUwsgT3rhXZoIVZXxeulzGXduVabU8KAIFNE9DERqKUNE8TS4XKvlRB90L0+pG8RwBDriOFF6e65HxHNrUdjlyNChQVVkDVCm7lioiSbgCxRVgewhXWmqEK2OFFM9FOOVBFmWLDV7Z/eWVI3S8sgUJVYou9HE5oJhSkMiSBBR2DLDk3NMI5lXyw2NQTv8RbmqgY91q+p/aQnfDYoDyYJ1DLSkVoVVNjjXD4cxOMk/rmmUENJP0jt5yXhKV+OJ26pZ3kdreS7R1kho800htri9veBCvkINSCbV9AUokiijkcR57EGGVEKWiXLdkIW23vIPM1n00rukhu3UX0e5WRr/7PRpe+xpGtssYL/vh+3Eef+iQY6pdCwm8Vn6frV/8L+62LQDoF16Oceb5ABS++q9QKh6yrXndDWhLViAKeYr/7wvV5cH3/DmKaeK89AL2L3966DHPO5e2P/sAmb2DNCzrOLGTNgf4wstnxhkrFLh/x272DASr+aV+8fzgLPbAQzGSKFoOryhdUWbTPSh6itLgteCFCXV9DS2yi8K+t+HmlnPf4B382QM/5v9c+m/cckmInFXgQ/d/gJ0lmzec9zbcgOBXg5toC3fzrjVxxko2Tz63B93VUcvDNvNOFssrVUWOVh5GXbCtcqZ4E1MNkrc8hrMlNC9CU6CdiB4naKosSDSxMrOW9kgHqzsSlDydSwuXE9ID1VxRr1/xhwA0RWIEDJX3n/GnXNx5Mfsy+2iPtPOude/ilYteSUNIxjpdu+harlt8XfVX/+rG1fzLZf9SPVPxQJz3n/H+CWfvVUteNWH+4JiiqHl8eatm03p0sMXoYKvRBFFUO18jjBQUBnIDVVeUUrVaSAGULCWrYgioiiJFUdBUaeVUFRVd1dEVHVVV0RU5UlBV1QntK8IKr/wS0nqCq1STfgoXPLviHgTFQw6G8OTLs12E61DXEqaYL1AYzoJjoTglVM9FUQXhhhhmfYT0tn0yAJ4ai5WoDKwoa8LasB6lHK9TFhegl91e6viy8nqlZv6oBbQNIy/upfOcdYdYYUY27cHLuwQj82sgVLZ3DMUwqFvZg6sY7HjsAPWLmogvWcC2B3cxumNoQvtYVBAVGTJJi3TSJaQUqTOyFAseqbZ1AHhDA7h7doJjo8QS6GvWA2A/8TBe7z6aky+iFrMMB7pxhE7Tqg4Sr7+R0RGHsdvvhNQoAMbGV6N1L8TLFbHue67aB93O0Xjvz7E2b2LBl/6Nvc8OsOisZaTvvpu61/wBz//Df5Ffeg4IsPsV3LHyqESlmnCGei1FM5BKOgwNmgT6CtSntmMtP5OxHVJslZJxsAPl6K0KCvpe0LwiC5pt3C3P099yJrYRozvrEGkwGex3SGZbKs2r2ysPDTC0ZitrrlrOkz9+dPo+xFnCH9WIP6pxptnUN8jvdu7gpg1n8rNn9/P6s7q4e4scidUcifDk/mMv/SGEhytcdNUgbQ/RX9xBUIvSHV7LSGk/D49+D1MN84rW95B3UvzPPjnc+uaFX0ZVVL615yMUvAyv6/wbGs0F3NX3RQ4UN3Np09tYHjuP51P3MmRv4Z8v+yTLGpbRm+3j/zz+79QZraxtOItkaYSXUs8RMxKsrj8D27PYkX4RFYOF0VW4nqA3tw8hFGJGE5qiU3ILciSgHsTUNIKGVh4VOB7AXnkdRyzyUY8QnC80BZsouIVq32qFTtSIEtSD9Of6J7UcTSakKlYjhXKW74NcMWo1lca4ONIUrZoXSVd0KYwUXaZOUDU0Vasur91eU7Vxi1NZhFRiYCrCqTJfWVb5Gz1PSLHkCoQrcF2vHLwucG0Px/FwbQ/X8aptK+uhJmZJgCo8EA6K64BbfrdK0rrgOgjHJdgYp/ncNQw98jyFwSRK2ZUVam2g6cwVDD+9jeJIeqI4OlahdBDC8xC5DFgWODai5l1bvBzFMPBGR3A3P4ewLZRgCOM8GU/nPP0ozpYXwLEJr1hG263vJnXvfSSuupKRrX2URjOU7vwB3h45KMe4+Er0084CoPDv/yyF40GYr349WvdivEyK0jdvqy4PvvcvUFQV58Vnse+7+5DtlHiC4FveA4D9+/twnn5MXjdrTse8TLqyS3d8HW9Y/pB00ci94h2s/aNL2PxQL6su7OBXX9vEvs2jh+x7ZXuaju98lD1dV7FjyfW09T3M6pe+xXDjWp5b996jOs/nP/wxQqVRHj/zI2RiPWxwHqTrTX/AU49m2b/HOuL2CZKcH32avBZnV8dVvOJda1CsAmZdjDu/9Ax7Xxw74j5WtqdYfvEitm0usPn5Ap2RMU5r6mUovIQnNh+dO//Kq8OYWx7nob7FpK0Q51wYoq0zxJMPDHOgf+qbYdeqBs57QxetHU3+qEYfnwqW67K8pZElTfX88TefYn8yyZIOi+tWy3ibx/dvo6dpYrmSsdIwaWuM1lAnQT3Mk0MPsje7ndMbz2dRfAX3HPgxD/TexYVtr+Dqrj/kqeFd3L//GyyLr+Hi7g2YeY2+3m1E9Tg9TQauqMc4YBLR47TW24T1KBdYVyKEYElTgoRpcGPsrahoRI04uqpzVs+NnL1gGQDbhntZWN/KZy/5Ox7ft42+bJKgWseaxMW4nmAkayEQNOmrUBWFgu2iawrd8W5CpiZzWOkKhhqXaRfK4uowYRfHzPFajyqByeMlecYDjw9ZVhuULMDDO/R9kn1VBZFQyh4f6Q4ZyA4glInrK6IlVUod4k5TFKUaDF+xHGmqhs64SJpgZSqLKlVRx6drxNBkgul4EGJcSMmXrGLguS6e6+A5Hk5ZSLm2Wx6wViOmKkHgZdGoako5NlqeL11xUXAAGxwXYVt4hSJeqQi2jXBcmSqAsmdS1VB0HXQdJWhglTxGXtxL8/mnMfLMdvLPvUCwpZ6mDcsYeXEvVs5CDA/gbt8Cto3a1IK+4RwArN/8Am//HrAthG2X3y2Msy7AuOQqAPL//HG8wT5wbELv/Qja8tWIoQHyf//hSc9X+DNfRqlvxOvbR+l//gMApbWjKrzcHVtxfncPAOmH7yfYXEfjO9/J6E/vpFR2Q3t7d+FuegYAbfX66r7dzc/JUX4Hf0aXl5Nw2nZ1uwnrx0YnXa40tVSnvYG+ahuloWn8mDu3kh3OEypIi9bz4WvRFvWy4RU9bH2kl8JImvrUtqogVHuWoASDhMIq6AZB8tRndhLVCqjdiwnEmmlqluJYFAqITFJaGM0ASqJO9rdYAMch/M5bCUZNGvZGMUuCyBo54jUW12hqOfLjPRprxTzzBvRACO/RHHufH2L5eR3kBpOAQktnEFE5n0ptFNn4RHSRTCYbiWm0dhjUt3RiLF9CeNShLT0+4vDg7eRk+RoPmBjnXkzrc3liOY9QWD4TGjuiYDqHpPZSFFBNg2DcoPel+RWycjT4wstnRilaLkGzpjiZVmDTyHOc3tGDrhpkiha3bfonsk6SP1r8EUJ6lP/e9gVGSv28YeEH6ImuZMvYC2xOPUFMb6XBWIzn6nh4jBTHSBVsAjSyMLqKpkA3qYKN7tXzqgU3EzUSpArSzfeBVV9AURRsG1K2zRn15cBrV5bi0agDIFcStMcinLVgKSD47Y4tHEiPsWN4hCuWreKsrqXcv2MzA9k0uqYQMXVC5kSrla4paApo2niNQagIElmGp1hjvTh4JFatuDlYBNUuG9+noCvaxfPDzzNaHK26vyqCZqwwRsyMVYWOIpTqe8VCVLEAVQKFaxNCTkyboVRdZqqqjs+rZQtP+b3apixoKvus3Y+iSDeaa3tytJxLNT9ZbVLXylBzTdEmxkEJ+flNtNlXzktltpxVrexFcwGvuqFTXV+7+YSUQ9SMtqvNK1RZ5Apcx5OhTOWcZ57r1XRFnmNVk9n3K4JK09WywFLkA9m2EbaD59iIooMolfCKBUSxhOc6CMdBVParKCi6Li1XuoEaDJUDtKcWjoUXt9D/wK9pe9sb0Z57iLqLN3Lg/R9AuUlac9ytm7B+cDsA2mlnVoWXu/m5SQWJ17N4/Pzkc5CTAy2EXbayGOXEt4YBuoli1rxX4tbidWhrzwDDQG1orO5PW7UOgiEUwyC0agV1N76G5MNPknjFVThb9lMazWBccS36GbKPWs/4oIrAm28px49NRO2QIQZKOErgre8ZX1E+Z9qylROXV1YHxi02+pnnobZLkaG2tFeXbznjPexPRdnQtJe2cJqL1yxh0RVdFIfHWHZuOy3NkPztAGg6SiCI0lCPYhhAHM78JlFgCQBnAX9IGBjfexyYLLC94pmR/Vm/cOLaZatCLFsVmmS7Q6m4cBNtg8S6W0jvGSTS0cDF17UQ626punqPRMcCk44F4wmP6xp0zrkwdlR9qLDqtPCE+YVLgyxcemi7avD/3kFE3dyPHD5WfOHlM6OUHJvf7HyevlGDL71xA/e8VMdVq9v48G8/zJuX/ikL6uoYKfVScHOg5YkH62kMtuDhEjQU4kGD9U1n0xFZwNL4CuJBgwvbL+Pc1guJ6DE0VWd1cCWrG1fWHNWgKXLBcfd5WXMLCgoP7n6e/dkDKJpH0snw6IEi5y3YwIrWBly9H0OTQkIWioaSAMtVwKFmaHSNyGDisgpVQcJEIVT7AiZYcFRUFLVsrSkLnoZAA03Bpgn7qD3e2ua1E+KPDhZcFUtR7TYH7+N4LUNClN1otodjudiWSynv4JRcXEeRwd6UA7qpBGEfnJej8sSWwqcSY1VZVnOwg5ZNHOk1AWWSyUkaTrWtghRPqgqaoZbF1UQXnRCA4yAcG2GPv5xCEbdYlC64ck6mSskXFFWKK10HM4AajkihdRy4O16i8PlPABCMGNJ69N3vUdizn1DZ+qi2dqCfcS7oJmr3wuq2+nmXoC1bBYYpxUL5XWkdD2gO3fIhOWEYKHE5ClWpbyDylW8f9lrRuhYS+pO/OGS5vuZ09DWnj8d0vbCbYk7BenEvjesWMfL8LsTy1RO2Ea68VvRyMPfBCCHwbBtUFe2M8TbCtuUlVNcol08SeeOVSnKQQUsHWnM7QggGBz3CgzliMZVQSz2kHNKJxax6VQ91K3tIbtlDekcv8SUd1K3sQVhnk962Xx6zVEKU91np2xSdnnz+oOVH3L72+yBqr2VZiijSHCW1ZReJFQsZevg5CgOj5FsbaD5vHaktu9BVyI2OHLl/k3Hw538U2ygTv8yTttGbItU+77z34SP3Y57hCy+fGUMIwXN9fexN9bG510RTdW65cD0/3/lzdFUjGimBJnj/mbcS1IIsSsjM259s++sJ+1nWdulBe56ZIsSWa5G38zik2TTSSyhU5IL6pYSNcFWApEsp6kNxTm9dN0GUAIcIFBi3IB0swia8V6wiBwmfkxXX9XAtD9tycW2PUsHBKjjS3WZX6lxKl5qmqxgBFVOzZPLHMpVzMj4uvhzIXXtbVkTNcqrra3Yyvr56PpXJRdQJIoSQVquijVe2Xh3OJQgc5BIMSaF1PMF9B+GNjWA/+Bu0ZSvRV65DXbQMpbGF6LXXUvfmPyK1/QCJ170Oe+EaisMpBKAuXIZZYznyMhmEEKjL1sCy6h85/i4E7piM/xGBGitFJlNRxdVPYuKjc9xkOWF9xUJbPkaotYHG1d0MPfw8xUEZH5VPJvFyORmv9ugmigOjEwX3hA92YnzflOunWj3J9p6A3l6PHTs9MhlBe7vKmWcaLFqk0tFh0Hl61wTRBZDe2QsK1K3sAVUlvatvwk7lpTl+bVfE/Pi1P3G6umWl7lr12i/fb6ZYXt1QOWg9Cp4ZomFJK2M7B/DCdQQW1eEByd3D1K9azNjOAQILFx5yvo7E8UWPH91GXiBEw5I2Rnf04waPzao2H/CFl8+MUbBdhvNJAobKgiaHG89ayLde+AE3rb6eNU1rqjFHG1o2zEn/POFRdIrknTy2a2NqJhE9gqEadMe7iRkxDM2YdNuYefJ92acb4QkcR1qwHMvDKbmUCk5VcHmOh1CQBbENFcNUCYZ1cF1EsYhXLOLlstiZrAy+dqumQiYVUJWZg+ers8rE9od7EFdH45W3V8cFmoJSfrDJ9wkPQkWR1igFUFSE51VdgkyDS/BEsX59J9ZPvgOeh7f3dPSV61BUlYYvfJXG9UsZ+v2zlDIFisNJms5YzvBTWykOp+TfW026qdQIAhmLWJ0unxfl4PNRc744+HxNELuHrhtfPL4u3BwneSCJaGgh0NAyLjkUSPWmiSxfDI2t459ldfeHfuaT6akJbY+wvWO57HphlG2PD5LPlC1rhkqsq4nAqg6CZbEcbo2QHSthheoJrh2vdWkrkEuWCHe1Ywfrpvzs5opg3CQ9UsQNRNGbx3/UukB6pEiguQE3cORA/dmk0mcvGMNonqbxgbMQVF/BF14+M0a6YDFaHGN58wLedNoaPvybv+Kl4T4u6j5rzkbbOZ5D3s5TcGTQZ1AL0hRsoiHYQNSMEjEiE+KbfCRuRWDZHo7lYRUcrIKN4whc2y3HkylohrRiBcI6mq7KX71WCa+Yx8sUKaUziEIeUbIQnieTRAYCKJEIqmHUxFNN4mapWSYOmp+wzVTvMG5VER5VV6YQeFPta6pj1zBdLsHjQWQz2I8/hHHxRhRdl25Cz0NdtgrjfGkpDtRHaVzTw9CjL+DoQYIre0DXSY+WaD57FamhAnZpinILc0TRAtQAWixwyDoHcIqgRiIz2odS3mb7k4Nsf3IIqyAtlYGwzrKzW1myoRkzNPHxmRoqF36eRFjn0/NLuNRyuL5ZRRerOL+uDZjf5/No8IWXz4wxkE3TFotwcc9pfP6eF/j1/Vdxw9mxWcn0XUEIQcktkbfzlNwShmoQNsIsjC8kHogTM2PVxKA+crSdU7ZYObaHVXKxcrYUXLYrcz0JWeRY0xVpxYro4+kSPE8GhqeL2IU8TjqDKBblaDhA0Q0U00Stq5vUraZMZoWYhJPXEXviCCHwdu/AfuBXOE8+Us3xZJx1PtryNYQ//i+obTLo2rNtdE0w/PRWvFg9Rl199dTaJY/0cAEjoM074TWXWAWHTb/rZdezw7iOtF5G6gKsOLeVheua0Az/h5nPieELL58ZwfUEB9JjtMbiPHFgB4/vGQBcAoa861fEV0gLTbvwcj2XglMg7+RxPZeQHiIeiNMUaiJqRIka0Wp9vpcrQoiyFUvGXdmWW7ZiObiOqD5wFAU0XUXTFUJRA1Wb+NARtoPI5nCLRbx8DjedQdhWdQi6YpjSohWNTkv80ssd+9HfYf/mLrx9u6vL1AU9KAH540FRFJSK6MpmEaUi+UAAo6MdPXDoD4z5atGYC7KjRaINQVRNYe+mEVzHo74tzIrz2liwon48fspndqlkC5ZDh5HDi2uKgRfTc93DY8YXXj4zQs5yGMmP0ZsfpTnUzJDyW2Krfs6mwkXArbKNnZs20VUJjC+6RRQUInqEzmgndYE6okaUkB46qQPWTwTP9aouQsd2sYsOpYJbFl2urOQC1WB3M6ih6voh50sIOSLLK5VkfFYmg5fPI4olhOeCqqEGAijhCJoxeWycz7EjsmmUqEwf4O54SYou3UA/8zyMS65CXbh04ihKx8FLJVGCQczFi9EaG1+21/7RIITgoR9sp297iivfvoqG9ginX9VNMGrQ0hPzz92xIECWjfKkO194k8yXBVRFUFXmq69ybplKVfZK6Skh5L5EZb6872x+Dv/g48MXXj4zQjJfJGWlaIzIXDKOKAFg6ubhNjtqPOFJq5YtrVqGZhA1onTFuoiZMaJmFEN9eT38XdcrB7WLstByKOUd7JJbTt5ZHm2myNQHmq5ihsxqiaODEULIPFLFAiJfwM2kEcUiwjo6t6HP8SNcB+eZx3EeuAd33y4in/2KzO5+2dWoLW0Y512KEj10gIeXz+Plc2iNjZidnaiho8vl9HJDeIID25I0dkYIRU3MoA4KjOzP0tAeoWdt45F3ciohkILHsydak5jC2uR6ZVFUFkduWSxVRFFl24pQ8irTUwTCKwCVwR2AojE+WKNcOJzyAA9qBsYoCoj5V5XjSPjCy2dG6E2N4XpFAloCADNzFZk9F3DeK47/hma7NnknT9EuIhRBSAvREm6RgfGGDIw/1X+duo43/rKlS9Aqjosrr+ImLCdP1fSyFSuko0YPn6ZCOE7NaMM8bjYjcw7ZthyhV3YbqhHfbThTCM+T59Z1KX37P6GQA0XB3b4Ffe0GtI4utHIy0IO3c5NJFF3H7OlBb26e1SD/kwXX8djzwggvPdpPdrTEivPaOO3yBay5uIPVF7UTrT/5knEeNZ4Dri1fXvndscApyFdFPHk1lqqpBgzWjGiVQYPq+LSigq4jhVE56bGijosmH194+Uw/tusxkEth6OVs44DlqOCFiQeOfiSSEIKiWyRv57FcC0M1iBgR2uraiJunZmC8EKIqnmrLzNglD7vo4JZL0khxpVR//KnlTOhTuQkPPQ5gW1Jk+W7DOUV4Hu6W57Ef+DVKJEbwLe9GMQOYG69DODbGhVdOyOx+MF6phJdOodXXY3Z0osZmJs/dyYxddNjx9BDbHh+kmJPVLIyghhmU96dI3fy8j1SrWtTkOKvkGK5WsqhWUbBlLjzXQriOfHccsPMIp5zuxHPBtcerMygKQlFBMUDTEIoJKOUfVjWpQQ7pWM30YW41E29DB5WEOGL7g1dOPlvIT1M6iVnEF14+00626DCcGyFijv96zEd/RKRhKzvzr+MCrphyW8dzKDgFCnYBT3gE9SD1gXoaQ40y3YMeOekD44UnaixXFZHlYhfdsuVKiivPqWRxl8lGVU1B0xR0U5flZo7BujfBbVgo4KYncRsaBmoi4VtKZgmRzWA/fD/2g/cghgbkQsNA/OFbUEJhzGtfe/jtPQ8vkwHhYXZ1obe0ohj+Lb2WQtZi2+OD7Hh6CKc8cjMUM1h+TiuL1jdjBGbmWvc8QSln43miqjVkChSk2EGMZxkTolqnEw5tU/2eCxdFOCieU3YLSteg4hZRnCK4NoqQrj8Vr+q9UzRdVhsIaih6QKZwUbXxtGyM1wU9+I5yiKQ5OOtKdUIcNmGqEFPva7LtJiyb7Jg1yxxx8lnR/G+pz7Qzks+SdbK0h8djUFx1DDUwjKLah7SvpHuwHAtFUQgbYRbEFsjAeFMGxp9seBVxZde4Bi2PUrFcJqdsuRovKydQNXXcNRjUDyk9cyxM6ja0LIRlyxus7zacU9y9Oyn8yyfAKX8fQmGMcy+R+bhC4cNuC+BZFl46hRqLYXZ0oNXVzWh/TzYKGYtNv+tlzwsjshA5EG8KsuLcNrrXNBwyOnc68VyPXMoiHDMxQpUyX0o5hKk2Ae24qFIUpSyoLBRhg2uhuOVpOwdWHsWzym1slHJBeunBM0A35A8mLSSFlvbyebQHMyff33ry9dhn3nMglQTFwlTHzff24CtxlEtYe/oqPOGRt/PknTye52FqJjEzRmOssRoYr6vz/9KULr8a65XtYZcc7JJMNuq6QmZv96TVSlHKxZI1mcVd1bRpfwAIy8IeGMRNjsl6cJ6HUFRU00QJhtDiiWk9ns/RIYpFnCceQm3rRFu6ErWzByUak/m3LrkK/azzJxRknnI/Qkgrl2NjtLVhtLejmNMzYOVUIJcqEUkEEJ5g9/MjCE/QuCDKyvPaaF+amPEYUNfxyKctYg1BGjoi6IZWuxJcC9xiOb6qJOetLFh5Oe/Z47FWUB5ubMhi46oOWki+n+RW/5c78//p5nNSUbRdBrJjBIzx0iieJygVm4FmFNVhKD9ESA/RHm6nLlhHzIwR1sPzMjBeeEKWwKkJZrctB7vgTnAVlqMvZA1CXUGriKuwPuWowentp4c7Nobd24eXz6GGI6hx3204H7B/fx+lH9wOxQLa2jMILV2JommE/uozKLGjFwPCcXBTSdRQCKOnG62+YUbqTp6MOJbLg9/fzsiBLK987zrCiQDrr1hAfXuYpgWzU96rIrrijUEaWky0fL9MsW/lpbhyrfLLkSMBK449rSKqDDCiUmj5wuqUxhdePtNKqmAxUhwhFhx3l1iuIND2QxQtT8i8mfXN64mZMUxtfv9SF0Iw2pclO1YaD2ZHDtTRtJpgdk2f0+SKXiaLNdCPOzKKYppojU3zUsQeTKy7BStboDSaOWRdoCGGGQ2R2Ts4Bz2bmqPpc3pnL+5zT6KtP1O6feoaoVhAaW5DW7kGIYR0P8Xrjvq4Xi6HVyigNzVhdnSghE7h0XdHiecJ9m8epXN5PbqpITwZZzS8L0vX6gaWnd06a31xbJdC2ibREqI+YaENbYbsIHJocY2wCkTLFiv/0ftyxv/0faaVoWyaklugWR8fhVWyQY9uRTVShEyDxtDJkSOnlHfIjJZkWZyoMe/EjLBtnMFB7MFBhOOg1dXJmoEnCVa2QOOaHkY27ZkgZAINsery+cZh+7y6m/7/vJ381/8DkU4RfNcH0c84F23lWoIf+Fu0ZauOOZ5OpokYQzUMAosXyWSoL4OYvHDcxLEmz6qv6QqZ0RL3fWsL+ZTFGVe7LDmjhTOu7sYI6oTjs/uDzrFcilmbumaTenMAtX+XdBnG2n3Llc+knDx3aZ95j+cJDmTGUFV3QvJSyxGUBq5DN3O0h9vnsIdHjxCCzEgBzxUYwfn1NRFCSLdiXx9eJosai52UsVul0Qwjm/ZMEDK1omsyq9JcM1mfjdwwjecs5cB730vuoYcAUOJ1CEsmDVZUFX3FmmM+llco4GWzaI0NmB0dM14Uej7hWC7xpjDp4XxVfJXyDiO9WVae185DP9hBPmURCI+nTkm0HHlQwnRjl1xKeYe6hE2dtwt1eBBCCQg0zXpffE4e5tcTxeekJm+7DGfHCOkT8z6VHIGTOY1AQFAfrJubzh0jxZxNNlkiGJ1fXxEvl8PuH8AdGQbDPOktIKXRDCPPbKNxzUKyO/cTXdHDyBObSX3pXydtb77+baiJOtzefdh3/S8ASixO4MZ3AGA//hDus08csp26oAfzmusBsO65E2/3DgD0cy9GX3cGAMVv/jtY1iHbGle9Cq1nCSKfo/Ttr1EE7HVraPvzD5LrHSXSuIwDH3g/uYd+j7Z8NcYlr6i6GY8H4Xl4qRSoCmZPt0yGehJZMqcDq+iSHMqTaAqx+/lhtj85iF1y2fj21fzqa5sY7ctxxtXdc1q02io6WDmLhkiKhLMXxbIh3ua7EX2OiH+F+EwbyXyRMWuMxsjEX54FyyHQcieabmK7p89N544Bae0qgmDiqKQ5RNgOzvAQdv8AODZq4uRyK06F/eC95H7+A7Rb3kXjO99Jes8ghQODOE89Mml78zU3ASAyqWobpbGFwI1yvXdg76TbasU8cD0A7s5tuM88BoC6cAmUhZfzzONQLByyrX7OhfKYtl3dd/qpR4jd9Gbii9pJvbANy4wT/vi/oJYLVB8vnmXhpVKoiQTmgk602OwEhs8VwhN4nkDTVQb3pOndmqS+XLJn22P9DOzK8Ip3rSE9VGDVhR089MPtdC6v45w/WDQrg1amwio4WOk0DcEBEu4gim/l8jkGTv47t8+8oS89hu2VCGh1E5bn7CJm44MIQNf+ak76diwUsza5ZIlgdO4ztgshcJNJ7P4BvFQSNRpDjcfnulvThrttM+G1q6l7/etJbdpOdPlCit3tOK9/26TtK/UJ1eZ2zHIbpaYeob7uTJRE/SHbqQ3jD0XjgsvQlq0CQFu6oro8cP0bEe6hMUVquUSPEgxWjxlaspDIgmbSewaJrlhE6d23npBrdDxNhIPR2YHR1n7KJEMVQlDI2GRHi2TGSmRHi2THSmRGi+SSJdZd1snyc9oY68uz7YlBulY10LO2kWh9kKd/tY+dTw+x4RU9DO1Ns/aSjjmPtSxlSzjJAZqCA8SMIkrMt3L5HBv+1eIzLTiuR38mhalRLRNUwXbAGrmESMjCmOc3KOEJ0iPS6qHpc+vC8woFnL4+nJFR0DQ5WvEkdisCOFtfxP7NXQTfcStKIEj8Xe+h6ew1jLy4l1K6QMneQ+OG5WC+/rBCRm1oxLz8mkOWa0uWoy1Zftg+6Gs3TLrcuOSqw26nBIKYl19zSBxacSxzQnFpnm1LUR2JYCzsQaurP+nSRAghpHt+tERTVxRFUXjszl2M9efJVUYFT0F2VMbCNXVFWX5OK00LZMmjpgVRbvzbs0k0h8mlSjR2xibEfM0FxbEk3lgvTeFhYvUxCHbMWV98Tl7m91PQ56QhV3IZyA8RNg8d5i68IKXBV9Le4skMzvOYQtYml7IIzaG1S9gOzsgwTn8/wrJQ4gnUk7xeort/D9ZPvou76RkA7PvuJvamt4wLlrQUu5MFr88nJgv+P5E+e9ksolTEaGnFaG9DCU5/mojDjRA0gxq6qZFPHxrbdjBCCEp5h+xYkexoicxYkVLe4axrFyI8wZ1ffg4EvOrW0wjFTNJDBdJD8nNVVIVIwiTWECTaECBaHyRWfq+MQmzsjNLYOV5nMhDWJwTY20XnkID7WUN4FPr7INNHc32BSFurb+U62TntE3N2aP/K8ZkWhnIZck6W9tChbrB0KYWeeBovGEFRLpyD3h0dXtnapShzY+0SArxUEquvv2wBiaI1ntxuRW9kCOtn38N5/CH5B6oaxkVXoJ9/GWY0NKlQqQgZMxqad8JruvosXBcvOYYSCGAuXiwHSczQj5LJRgiCFF2V5QeTT1sM7c1I9+BoieyYdBNW6h3WcvqVXeimRrQ+gPCgVHAIxUzWXtKJAGL1AcJ1gWOKyartW6XPVtElPZyfffFl5cgf2ItaHKaxI0Skybdy+ZwYvvDymRYOpMYQwp5QJqhC0u4n1PEDsl4LqvLOOejd0VHIWORTFuH47FuXvEIRZ6AfZ2gYVPWUcCsC2Pf/CuexBwHQzzgP8w/egNoiU4ocLjlqaTQz70QXTE+fvXweL5dDa2rE7OxEDc1sLdLJBIuqQqwxxOCeFKqmsueFEbY/OUjb4gRrLu5geF+Gx362a9L9hePmBKtVpaDxNX+8dkIi4bYlx5/iRDe1ScVV5W/RTW3mhZcQiMwA+d796KJA08ImQrOcI8zn1MQXXj4nTMlxGcwlJ5QJqsXzAjjZFcRDcVTmp6vR8wTp4WK1luJsIRwHZ2QEp78fr1hEjSdQT+Lae6JUxL7vbvQLLkON12G+4g/wBvsxr70erWfJXHdvTpHJUJMouo65sEemiZjhkk5W0SE9XCA1VMQwNdZdvoC9L/ax/Jw2fv6V54g3BVl9UQd2yWW0N0cgLB8J8eYQzd1RovXSNRhrCMrp+sCU1uDprN5wONenVZzcbTqt2AXE2D7yg4MYoSBN3W0Ewyf/DyGf+YEvvHxOmHTBYrgwQjQ4eQJDw1lAYd87WLDMm9PSOoejkLYoZGbP2iUEeOkUdn8/bjKJGgqjNzXPyrFnCvvR32H96NuIdBKRGiNw4ztQojFC7/mzue7anOOVSnjpFFp9PWZHJ2oseuSNjgHX9kiPFKhrCaOoCo/+dCdDezMUMvaEdpqusOEVPTz9qz0M7k0Tb5YxZW2LE5z/2sXEm6X1ra4lzGVvXjmtfTwpEAJyw4ixPeSSRQJ1dTR1BAgEfdE1r4i2gF2A0vyzih8NvvDyOWFkmaA8zfrkeWxyTgo1OAh6ZF5avDzXIzVcQNNnx9olikXsgUGcIVnLTWs4uZOgVhC5DCKdRGlsQV36MnxoT4LwPJkmwnMxu7rQW1pPKE2E53pkx0qkhgpkR4usurADIQQ/+bdncG2Pa9+9lmhDkELGroquUNwk0RRk0fom1l22gNHeLOuv7GLR+qaq5ShaHyBaf2iYwMsKuwip/Yh0H7likGBjE01tOmZg/t2zppXDiZhADIxQue7kPMIuQP1CGNsNmexc9+aY8YWXzwkhhOBAegxV8SaUCaplRDxNZNGP6VfWoyrXz24Hj4J82qKYsQjXzeyDR7gu7ugodn8/Xj5/0rsVnZc2Yf30DoJ/9G7U9k6Mi69CMQPo5116SiR3PVE8y8JLp1FjUcyODrS6uqPeVghBLmmV3YTylR4qkB4pIjxRbbfo9GaCEYNYY5B8yqKQs4k2BFl7SQcokGgKYQT1CcHqju2RHi7M3QjB+YYA8sOQ3Iso5si6CcINJo2tOqZ5iosumChiasVXIDa+fL5Rysh+1S+EzMln9fLvjj4nRMF2GcyNEjSmFhCuq+NRRzAYRZ1nlh3X9UgPF9EMdUYzYbuZDHZfP+7YKGowJIPn53lqjalw9+3G+sl3cF98DgDrrh8SfOf7UQwD46Ir57h3c894MlQbo60Vo70d5TAC2yo4jPXnUFSFlp44g3vSPPj97bj25LmvdFMl3hQi0RzCc6UIu/zNK9AMtXpNNXWNZ7yfVyME5xt2EdIHINOHp5jkvEYiCY3GVg3DODm/n8dMrYgZ3i5FaCAOdT3Q9ywoNffs5F5wLfBcEK5891zwHDlf1y2LgwMk98DQS+NtatsLF/QArHnt+L4f/arcz2RtPVe2bVsr2265C3bcCx0b4OwPzdaZmjZ84eVzQiTzRcaKSZoiUxeoNQvnk+s/i5XngDLPXI35lEUxaxGZIWuXKJWwBwdxBocQwkOrb5jxgOqZwhseHE8NATI1xMVXYlz72sNveAoR627ByhYmHb0YaIhhhAMkn92CGgph9HTLz7t8yVsFZ4IFq74tzKL1zfRuT/L4nbtp7o7R0hMnHDNxbQ9VU4g1Bkk0h6qveHOIcNw8RLTr5tTX1LwYITjfEEBhBJL7oJTBM+vIFTSidRqNzRr6y0V0VciPwpZfwBl/BNt+BWe8Bb79Btj1ALzrnvF2d34I8iNT7+f898G618vpfY/Bw1+Zum24caLwev77UnhNRfe548Ir0wsHnpQvo/XIf988wxdePidEfyaJLYqYet2UbUpOERQP8ziLBs8UriNdLrqpTXvQv/A86VbsK7sVYzG0wMkdQ+Pu3lEVXfpZ52O++kbU5uO/6R1JxJjR0GHTN8wFVrYwaaLUQEOMxtXdDD38PCQayQcayOx3ST29T7oJhwuHBLp3LKtj0fpmEs3hcnoGeX1E6gJcfcsaovXBabHCzvkIwfmGU4KUtHKh6bihJvJZiCVUGls0NP1lJrqSe+E3n4bhrYCAC98PD30RdvwGFE0OOKgI/VBdNR8fqibXV991CNSkEIm1QedZ5bb6eNtK+8BBdUgrgq12v7XbNo2X92LRpdJCV78YOi4G/nLmzs8MML+ehD4nFZ4nOJBJYmjKIWWCaslEfkSs+Qn22tcCV8xeB49ALlWimLWJNkyvIPIyWaz+ftzRUdRAYEaTY84kolTE/s1daMtWoy1diX7GuXg7XoF+/qVo3YtPeP+HFTHl5fON4nCaoed207xuIcMv7MZKZsm5QVpXdHPgoc1o0QRPPTpG/84dk24fjpvEy9arxs4IAPVtYa5997pqG0VViDfObG6vlyUCKIxKoVFKQ6geVxjks4J4vUpDs4amnXzf0xPCysKP/0S+r7wOzrkF0r1w/p/Aimvl8lpu+M+j3/fCi+XraDn33UfftmkZdJ4hxdfe549+u3mCL7x8jpus5TCUGyJiHP4h4SJrsQX1Q10kc4Vry9guIzh57rHjQdg2zuAg9sAAwvXQ6upO2iBz59knKH3na4h0CnXhUkJ/8UkUVSVw4zum7RgHl9rJDaYx66I0ru7hwBM7yQ5k8DyB8KTI9zzwPFBVaGoxpPDfa+F50LXQRFUVdm8vYlliQntRnRbleWjtMOhaGGCgz2Lb5iL1DTprTg+TSjo88ftstf3Bx5aM0bUqyyvfu5bcvkFa2pu5+z820d4dpGdxM4mWEmP9+aprMNEcItEUIt4UxAienNfDSY9jSfdUqhc0FaItODYU8oK6RpX6Jm1GYzznLWYUTn+TnL76szIuq5QBOw8Niw4NuJ8v1Ab+l/xRjT4vI4azWTJ2jvZY7LDt3P43kbMtVm7U502MVzZZpJS3p2UIvRACd2wMu7cXL5uTbsUZqLk30wghQAgUVUWJRBHpFEpzK8YVr5yR440O2wy/OMiSrEvXuYvJ2f00rm7l5//+Avs2j065XTAIG68wcV3B049J911bXRFdV9i22aFQOPKxTdWiPZ6jOCIYHVZQPRt3JI+bhlz2yANA9m0eZWTzflrXL2Tvs/3ohkKkRZZ3WntJB6ddvuDoToLPzFNISitXMQnBOtADOLagWHiZiq69j0rL34pr5fw5fwwNiyeKrNqA+/kovozQ/OzXUeILL5/jpj8zhiesScsE1WI5CngBogF9Xli8HNslM1LEnAZrl5fLYfcP4I4Mg2GiNZ2coxWdl17A+tF3MK58JcbZF6ItXUnwPX+Otnr9tFjt8jmXsRGH0WGHhUuDxOIaO14q0nfABjFIXZPJorMX8vSv9rB/yyiaJi1biiLfVVWR8yoEAwoYOqoBzS2eXB8KoZoand3S4qWqigwPUZXy9PhLURXqGk3M1gCtdS5nt9oEQxpGW5A6R3Bxiz3evrKtrtbMq4TqQjQubiY3nGXB2lbibbFqrNRsVj7wOQyuLd1m6QPyQoq2AAq2JSgVBfVNKnWN02fxnvc4JXj0Ntj0I9BMaFkN9T1gRiYXMRXxZYTmn8CZb3nFjhFfePkcF7br0ZsZI6Crh71xuZ5A7/gapjnKiP1GFC6fxV5OTnasRCnvnFBsl7Ad6VYcHETYFlri5HQrHpwawv7VT9HPugBFUdBPO/O49ul5gnTSZXTYYbQstoqF8dQI0ZhGLK7R2mGi4NG5MER8yQJyIznWX9nFwjX1WAUHFOQDs/ICQKH2crts9cRjb1h+bH1NAIll4/MGEOo8/DYT0zN42K6flmHeUUjKEYvFMQgmQJcWaKsksEqChmaVRMPLSHQNb4P7PjOek2vVq2XwOxxexJQy8090nQKcfE8Kn3lBumAxnB8hFowctp3lCFQjiWqOomtzn07CtsrWrtDxWd+kWzGJ3d8nk2NGY2jx+Az0dGbxRkewfvKd8dQQmoZx8VUY115/3OflpU0FRoYckqMO7kH6Q1EgUadR36STqJcDMRa0OCxZnqDlvHWkRgrYJQ/bKZBoi81bEePnxJrnuA6k+yCzX85Hmqt5qEpFgWMLGltU4vUvE9ElPHjue/D412SqhlADXPZX0HXOXPfsZY0vvHyOi6FcmoJboElvPGw7yxEU9r8VRSvQua6TuQ7xyo0VsYrOccV2efk8Tn8/zsgIaLpMgjrPEsIeNXYJ58mHAdDPvhDz1a9HbTpyagghBIqi4HmC557MMzbicNEVMQxTpb/XJp2UosMwFOqbdBoadRqadOoadPTyMH0hBG4qRbClgZZzV5MaLmKXpEVsvosYPyfWPKaQgtQ+Gb8UjIM+PuinVPBwXYXGVo1Y4vBW+lOG7CD89h+h9yk5v/AiuOTPZZybz5ziCy+f46I3PYaquFOWCapQcsCzWggYEDaCc2rxsksu6ZESgWO0dgnbwRkexhnoR1gWSjyBasxOMe3pQhSL2L/5OUo0jnHJVaitHZivfxva4mVoXYum3M51BMkx6S4cHXZIjjlsfGUdmq4wPGSTz3qMjTi0tJssWR7E8wQNjQbR+OQPN+F5Mnt/KEx4cRfpkSJ26eQRMX5OrHmI50CmH1L7ZZbzGisXQDHvIYRCU5tGNH6S/lA6HlL7pOjSg3DBrbDiOng5CM6TAF94+RwzRdulLzNC8CjER9HyCHV/DR2DgvPWORVe2TH5kI8dQ2yXm05jHejFSyVRI1G0xvnpVjxcMlKjkETd+QK5O38AkSj62ReihMKYl77ikLbFglcWWTajIw6pMRchJrZJjjk0NhusWhdCUxXqG+VtpGvh4c+rcBzc5BhaIoHZ3U3RUoHJhYovYnyOimJaCoz8yCFWLoBCzgNFiq5I7GUgupySLMUD0HkmXPhB+V7XNafdmpc894nJl582xfJpxBdePsfMaL7AWDFJY+Tw8V0ABdtCj2wHQNfmzsRvFR3SI0UC4aMv1+Nlsli7dyMse967FfVwgNjCVkZe2E1pNIPwPHAcgm2NNK5ZS/rOMZTmNgKvuRGC8uEkPEGx6BEKa+SyLg/fnyGfO7Q+YCCo0NCk09Bo0NCkk6iT57Cz6+gFrCwYnUJvasbsWnDY2oU+PkfEc6WVK70fXBciTTK7eQ35rIeqKzS1aISj8/e7O230vwD3fVamh1hSHsS05vo57ZLP5PjCy+eYGcwmKYkigcOUCapguQqFA28kESkRUANzZvHKjJVwbZdQ9Ojya4likdK+vXglC72hYYZ7d+LkB5OEW+poXLuQoV/8ltSXPk/01a+hceO7UIBSpBnjo5+jYKnEFIXkqMNDv00TCKhsvK6OYEiVIw8ViCe0amxWQ5NOKHxigtnL5xGFPEZHB0ZHx0lbq9JnnlDKSLdibkgm0gxOrBMrhCCfFeiGtHSFwqe46PIceOp2ePp2GUz/zP/A4ksnFrf2mVf4wsvnmBBCcCCdxFQPXyaoguNoOOn1hAwwtLnJ42UVHLKjRQKho7vche1Q2rcPL5tFazj84IH5Qmk0w/CTW2hav4Tmy89FH7gB87obEK7g8Z++xNYnXDKpDLGExuVXJ4jENFwXLEtgWR6mqXLh5XGicQ1jGgsEu+k0eC5GTw96S8vLI6jZZ2bwXMgOSNHlWpNauSqiywgoNLVqBEOnuPhI7ZdpIgY3y/mlV8FFH/BF1zxn3n86mUyGD37wg/T09BAKhbjgggt4/PHHq+uFEHz84x+nvb2dUCjExo0b2bZt2xz2+NQmW3IYzA4RMY/OcpS0Rgm0/hQ7eh/KHF1umdECju0eVbkW4XnYB/bjjoyi1TecNELB2fwcox96D/vedyueatK37GrMeIS7bnuBJ+8dIJOS8VKeK3BdgWEoXHFNgmtfU4dpys+lvlGfNtElhMAZHUVRFczFizFaW0+ac+kzD7GyMhfVyA5ZNDnSPKnoymUEZkChuU0/tUWXELDlLvjhu6ToMiNwxcfgir+RZYB85jXz3uL1rne9ixdeeIHbb7+djo4OvvWtb7Fx40ZefPFFOjs7+dznPscXv/hFvvGNb7Bo0SI+9rGPcfXVV/Piiy8SPAnLtsx3RnI50laG9njiyI2BjD2G2fB7Sl4DmnL9zHZuEkp5m+yYRTB85IEAQoDT1489MIBaVzevY7pqEVaJ0jf+HZFOsiX0FkYf7GPDK3p45p695EdzLFkerKZ2qH0YRWMz4/KrjlyMxQgs6EKN+Q8Cn+NAeFDMyCSo2SFwSxBpPERwyaaCbEYQiig0teqYgVNc5D/wz/DSXXK6fT1c/tcQPXI6GJ/5wbwWXoVCgR/+8If85Cc/4ZJLLgHgE5/4BD/72c/493//dz71qU/xhS98gb/927/lNa95DQDf/OY3aW1t5cc//jE33XTTXHb/lKQ/O4Yj7COWCaqgODFKw5fTEjNR50DIZEaLuLZHKHZk4eUOD2P39qJGYydFughvsB+1pQ3FDBC46WYGMiFKdWtZdWEH+5/t5bTLOll3WWc14H5W+mRZeKkUWmMDga4uFP/Hj8+xYhegmJJ5qEoZQEiLTnDyEcWeJ8hlPMJRlaZWHcM8xUUXwIKzYOsv4ex3wmk3gurHTZ5MzGvh5TgOruseYrkKhUI8+OCD7Nq1i/7+fjZu3Fhdl0gkOPfcc3n44YenFF6lUolSqVSdT6fTM/MHnGI4rkdvaoygfvSxWqrXgDV0NU1RMeuupmLOJjtWIhg98mXuplJY+/ejmCbqPBcLolig9KNv4zx4L6EPfRxt6UoiV1xBJGnyirPb2PTLrbTU2Qy/UKBp7UIa1y6cFfHlFYt42QxGextGRyeKMa9vLz7zCc+RqSFyI9LC5RRl/qlQnXQtTrWZJ8hlPaIxjYbW6Y1PnFc4JTjwJPRcIOeXXAHNqyDePrf98jku5rUvJRaLcf755/OpT32K3t5eXNflW9/6Fg8//DB9fX309/cD0No60cTa2tpaXTcZ//AP/0Aikai+urr8HCdHQ7poMVgYJhYIH7lxmaTTh1H3KJa+A20WLzchBJnRIp4r0M3D/xr08nmsvftACNTo/HeLFf/zizi/uweEwN22GdcRhJvrWHNRB3se2UFzQib5LI1mGH5hNwoQbq6b0T552Swin8fs7sbo6vJFl8+REUApKwPE+1+AwRchNyjzUEVbZY3Fw4kuV8Z0xeIajW2nsOga3Qk/fi/88q+l+Krgi66TlnktvABuv/12hBB0dnYSCAT44he/yBvf+MYTclt99KMfJZVKVV/79u2bxh6fugzl0hScPBEjdOTGZVLuDoLtPyKlPYQyiyNtSjmHXPLI1i5hWVh79+IV8qjzuOaisCxEOZOped0NKM1tBD/wN6hXXc+D96U5sDPL8HO7CCvFCZbFivhyCqWpdn1i/RICN5lEeB7mooXobe0nTWyczxzhWDJma2gzDDwPo7ukxSvcKEcq6ke2OLuOIJcVxOtUGlu1ajmqUwrhwfM/gB+9W4qvYJ0c2elz0jPvf5YuWbKE+++/n1wuRzqdpr29nRtvvJHFixfT1iarqw8MDNDePq7+BwYGOP3006fcZyAQIBA49lp9L3f6MmOAh36EMkETcBLY+dVE412os3RvFEKQHikgPIFuTG3tEo6DtW8/biqF1tA4b0fdOS+9QOlb/4H5mpswzroAbeFSwh//FxRNo3efRWrM5YEf7OTSqxKT5iwqjWZmxM0oPA9vbBQlHMbs7j4pi4X7zBK1gfK5YRnHpelgxkA7tnhK1xHkc4J4vUpDs4amzc/v7QmRH5F1FveXR/B3nQeXfgTC8z+noM+RmffCq0IkEiESiTA2NsYvf/lLPve5z7Fo0SLa2tq49957q0IrnU7z6KOP8t73vnduO3yKUXJc+tIjhM1ju0nq1iqK+5fSdZo7a8H1xawtrV2RqfsqhMDu68MZGpRpI+ahlUYUi1g//jb2A78GwL7n5+hnno+iKNUkpB1dJmeKCMGQOquJImX5nyRanSz/o4aO3grq8zKiGig/BKU04Ml0B9FmOI5kyo4tKBYEdY0q9U0a6mz9mptNdv8O7v9neb40E857L6y+3q+zeAox74XXL3/5S4QQrFixgu3bt/MXf/EXrFy5kne84x0oisIHP/hBPv3pT7Ns2bJqOomOjg6uv/76ue76KcVYvsBoMUl9+MhlgmrJe0OooRSeFkdVZj6WTnjS2oWioBlTCxFnYACnrw81UYeiz7+vgbP1RUq3fxUxMgiAfvFGAq99U9Uq17vPYrDfYt0ZETq7Z9d665VKeOk0RktzOZ5r/o8A9ZlFKoHy+VEojB51oPyRsC1BqShINKrUN56iois/Avd+SiaIbVwKV/wt1C+c6175TDPz74lzEKlUio9+9KPs37+fhoYGbrjhBj7zmc9glG/2H/nIR8jlctxyyy0kk0kuuugi7r77bj+H1zQzmEtR9AqE9Ppj2i5j3E9k4cMMeZejKutmqHfjFLI2+bR1WGuXMzqGvX8/SjiCOg9rBnrJUYpf+iy4LkpDE4E/ejf6yrXV9ckxh6cfy+K6EE/oLF4+e9d6tfxPZydGR7tf/sdHIpBJTospWcqnlJHZ0wNRGSR/glREV32TSl2jNm/DAk6YcCOc9yeyDuXZN0uLl88px7wXXm94wxt4wxveMOV6RVH45Cc/ySc/+clZ7NXLCyEEB1Jj6IqCeowB8q4bwrMaCYWix7ztsSI8QWakAICmT34sN5PB3rsXNH3eucdENoMSjaHWNWBcfT0inSTwujejBMf7WSx4PPagFF3NbQYLl86etUuW//EwFi5Cb272PR8+MlC+lJZxW8UxcB0wQuVyPsf3fRdC4LlyV44r8ByZM7WhWSXRcIqJLs+FZ74tR3KeVn7OvZwKWwsBCBkDKMrvMD5PZfnB0zXb5LJz1//jZN4LL5+5J2859GeHiJrHIVTGriGXewWLLrbRZrhAdj5jkUtbhKdIlioKRTmC0bbnVeFrUSpi/fg72I8/RPhvP4da1yBHLh70gHFdweMPZSgWPKIxlbPOi8yKu0V4Hm4yiRowMRcuRKuvm/Fj+sxjhJCuxGkIlBdC4LoyYN51wPUECgqapqDpEIqoBIMKhqkQiiinlujK9MF9n4X+56ULduGFEO+c2z4J7yARJKYQPlMIpQnbeIAyHptWHpUtUWQ7BUAtt1GkWFfK75VtK8vQQVVlslhVl8tVDZTi7JybacQXXj5HZDiXJV3K0h479lFrJTcHqoKuMKMB7J4nSI8UURVQtUOPUyl8LXK5eVX4WngehX/9e7x9uwFwn3sS9ZKrDnnACCF49okcY6MuhqlwzkUxDHPmg+mF68ryP/EEga4FJ0WeM58Z4gQD5YUoiytH4DiU06MoaLoUWpGYQiCooBuVF6dmHJcQsP3X8OC/gZ0DIwwXfhBiHXPbL6cI2WEpog8WPqjyI64KIx3QykJIlyZJVRt/V8siqSqm1ImiqvKaIK4mWa/U7GOq58dJmADdF14+R2Qgm8QVFqZ2HG6ttv8mFtrDkHMjmrJm+jtXppC2KKQtwvFDf3ELz8Pevx93dBStcX6kjRCeh6KqKKqKcclVWHf9L4E334K++rRJ22/fUmT/HgtFgbPOj85YncVaZPmfJFpTkyz/46dgefnhOTJeKzdyTIHywpPiynWkRati/NB0BV1XiEUVzMC4yDIM5sX3csYpZeDB/wM7fiPnW9fC5X8z98lQhScFdcMSSHQeWQjNw1HgJxO+8PI5LJ4n2J8axdSOPbbC9QQoMot6QA/M2I3Vcz3SwwVUTTnE2iULX/fNq8LX7rbNFL/znwTf+X60zm70Cy5HP/OCKesa9h+w2Py8jF1buyFMc+vMjyL0CgW8XA6jvQOjo8PPRP9yQgB2FgoHB8pHJg2U97yDLFmAWhFZpkIkqGAGVHQDKbT0l4nIOpj+5+WIxdygPJ9nvh1Of9MJjfScNnLDMkdY4xIw/IFpM808+MR95jOpYomhwgjxwLGlkQAoOYL8rveD4tC50EJTZsZKk0/bFLI24cShI4Dc4SFZ+Doen/PC16JUxPrJHdj3/xKEwPrZ9wi958/lQ2gK0ZVOOjz5qAweXbgkwKKlM39T9LJZhGVhdnejt7W+PB+SL0cmBMonwbXLgfKN0oWELNMzwZKFNH5ouoIRUIjVKRhmWWTpMk7rZXP9RFukO7Y0SbLiQAxa10B+WMZxXfE30LJ69vs4GVZeWryalp/6ouu0T8x1DwBfePkcgaFcmrxdoCl87HFRll2O4VAMDNWZkRuwW7Z2abpySDyIm0zKwtfBEOocu8nc7Vso3n4bYmgAAP3Cywm87o+OuJ2iKAQCKuEGlbUbjr5G5vEghMBLJlF0DXPxonI2/xk9pM9cI4QUCoXRgwLlo7gY0pKVF7iuDKJWVSmmAiGVQJCqyDIMGav1ssYuyJxbY7vHxVd2EBoWjy+/6lPQuUHGdc0HPFfmDmteKYWjz6xwzMLr7/7u77j55pvp6emZif74zDP6M2MgnGMrE1Sm5AgiS/8BBci6N89IYdB8yqKYtYjUTRRWXi6HtW8fCFDDc3uTc/fsoPB/PglCoNQ1EPijW9BXrz/sNp4rsCxBLKFx8cY4CjMbaDyh/E9PD1osNmPH8pkH2EVp1coOIYoZPNfFUcK4aiOuraDY0pKl6xAM14osGfR+SpbpOVFKGSmu6hfK+pPP/A8MvAhv+Ma4GFt44Rx38iByg1Jw+UlaZ5VjFl4/+clP+MxnPsOll17KO9/5Tm644Qa/7uEpiu167E+PEDrOJKMl20M1UgBoaNNeMsh1ytYuU0WpESWiVKK0dx9esYg+hyMYhW2jGAZq92K0tRtQYgkCN/wRSujwQlAIwXNP5Rnoszj7whgNjTNrmJblf8bQ6usxu7pRQ6e4u+HlihCIQhI3PYybSeKWiniKCWYczdDRdIgEFMxQJeD9FB5ZOFOUMlJ0xdsh1ACv+6pMGbH2dXPds0MpZUA1pItR9xO1zibHfEd/5plnePrpp/n617/OBz7wAd73vvdx0003cfPNN3P22WfPRB995ojRXJ6xQpL68PGlECjZkNvxYRrjLoHFIY6nNtvhyKctijmbaI21SzgybYSXTs1Z2ghhlbB+egfu1hcJfeTTKLpO8JYPoWhH93VzHBgbdSiVBLblzWhfvVIJL5PGaGnBWLDAL/9ziuC5Hq4j5Lvt4mVTMr6olELTBHo4QrA+RiCkjqdv0H2RNS089h+Q6IIL3w+7HpifCVE9BwpJOarSL7w96xzXT+kNGzawYcMGPv/5z/Ozn/2Mr3/961x44YWsXLmSd77znbz97W8nkTjxMhE+c8tQLk3RLR5zmaAKlgue1UJQ6KhKDnUahZdre6SGChgBrWrtEkJgH+jFHR6W8UlzMIJRlIrk/+GvEYN9sp/PP4W+4ZyjFl2eJzAMhYuviDM0aNPaPnO/RL18HlEsYC5YgN7W5pf/OcmQGd4FruPhOfJdCCHzUmoKmirQrCRBZwhTSaLVa+jROrSAif5ySd8w22z7NYxsh8v/WoqungsmxnzNF7KDEO+Auu657snLkhN6MgkhsG0by7IQQlBfX8+Xv/xlurq6uOOOO6arjz5zRG96DE3luEv9JEujhHpuo1D3DZnYdBp1UC5VopS3CYTHBY3TP4Dd3y8LX8+RiFACQbQVa1AS9QT/5CPoG8456m0zaZd770ox2G+jGwrtnTMnutxUCmFbmAsXond0+qJrHuN5AsdyKeVlHdLsWInMWJFcsoRVkEMLjYBGvDlE04IYrT0hOpqzdAS20BHcSnN9jkRXC9H2VoKxAIZ5imWAny8ceBL2PQp/+F/wxH/LkYyVmK/APIqZLKZkLrbGpXIghc+sc1xn/cknn+TrX/863/nOdwgEArz1rW/lK1/5CkuXLgXgS1/6Eu9///u58cYbp7WzPrNHwXLozQweX5mgMjk7ix7eje3FEEKgTFN4vWO7pIfL1q7yA8QZHcXevx81MvuFr90dW7F+dod0J4ajBF77ZnjNTSjho0/BYZU8HnswQyHvsW1zgeZWfUYejrL8zxhqMIjZ1YVWVzftx/A5dirWK8/xcCtWLE/IZOGKgqqr6LpCIG5gBjV0U0MzVDRdRTdUmb/OykO2H5J7ZUkfMwTxNplJ3GdmKaZg+71ww9dkRvrVr5bLawPu54Ply7WhlIW2dTIJrs+ccMzCa926dWzZsoVXvOIV/Od//ievfvWr0Q76tfzGN76RD3zgA9PWSZ/ZZyiXJVXK0h47fpex6tVT2P9mFjXrMgHyNAmJ7FiJUt4h2iBjuyqFrxXDmNXC18KysH72Pezf3CXzcv38hwRe/7YpE6FOhecJnng4Sy7rEQqrnHV+dGZEV235n+4u1Mix52bzOTGEJ0VVNf7KKad0F6DqihRSpkY4YWIG9AniStMnDiKpUkzDaD+kDoCVgWAMEh3HXaTa5zgIJuCcd8N9/yAD6WvPfUV8GaG5F17ZQZmZPrFgbvvxMueYhdcb3vAGbr75Zjo7py7m2dTUhOfNbFCwz8wylE1iCwtTO37rkeeGcDLrqG8JgJKelpxQjuWSGS1ihqS1yysXvhaOi1Z/fLFox4O7cyvFb95WjeXSz7sE87objmtfm57JMzzooOlwzkVRAsHpf2BWy/80NxNYsMAv/zPDVILbZfyVh+eCUGRGd1VX0TSFYNTADOropiaFVeU1Sa3RQxBCpoNI9UKmV5byCSbkA9V3I84NoQSsv2ny81/KzL3oKoyBGZEuRt8KOqccs/D62Mc+NhP98JlHCCHYnx4hcBxlgmoZtXcTaHuIjN6FwrppCa7PJktYBYdofQBh21j79iJyOdRZHMHoPPcExa/+q8zLlagj8KY/Rl93xnHta/f2Iru2lwA449woibrpj7molv/pKJf/0f24jhNFCIEQIMpuQdeVAe5CyPWV8lW6rmLETCmwasSVPpX16sgHhvwopPZLt6JrS5dRpGla/z6fo8ApwT2fgLU3wIKz5LL5KnqdknRFd5w+v+LNXqYc8x34hhtu4JxzzuEv//IvJyz/3Oc+x+OPP873v//9aeucz9yQLloM5kaJmSeWeDTt9GPWP0qGFLD2+B40Ndgll/RwkUBIB8/D3rcPd2ysnGF9+m54se4WrGyB0ujEX6hCCIKNcaLXvoKB//0ftEXLCLz+rSjHmW5jeNDm+afzAKxaF5qRYHovk0E4NmZPN3qrX/6ngvCEFE9eWUR5ZSFVXubVrC9vIf9XlOrPB0UFVVXRdIVAyMAI6eUko1pVXKn6NAWye67MLJ/aL91FCCm4jNlzrfvUIDz47T/C3odhYBO88btwgvfLGUMIWXOzbiHEOua6Nz4ch/B64IEH+MQnPnHI8muvvZbPf/7z09EnnzlmOJcma+foDp/Yr2jd6aCU3EhrW6vMvH6CFq/sWBG75BCpC+D09WIPDaHV1U972ggrW6BxTQ8jm/ZQGs0gbAvrZ98n1N1B44f+lJFNewj/5WeOmAj1cOSyLo//PosQ0NltsnTl9CYtHS//o2MuXozecOrk6qlam2rFU2W6unx8GUKRKeQEgCi7/BQUtSyKFJm/SlFA01TUgCotVroi5zW1LLLGt5HToGpSeB1cnH3acG350Eztg+yQdBGF60H3XcVzyiO3wc77ZIHrjZ+Yv6ILZEmgQAIaF0/v0HKf4+aYhVc2m8WcZNSYYRik0+lp6ZTP3NKXGcMT7nGVCapFdTqwhptY0BMGxlBP4Je/VXTIjJYIhHTc4WHsAwdQY/EZcZuVRjOMbNpD45oehh99gbG//yjhpQtpu+VvGLr3YWwzdkKiy3EEjz6YwbYEdQ0ap58VmVZLVLX8TySC2d0978v/CCFwLA/P9SZYoLwprU1Cih9NAaUihMrCqCKEVLUsnJSycJLtpFiqFU9ymaIqVTE2L3BK0rKV3CNjczQTYq3yQe8ztzz/fXj+e3L6sr+CzuMLM5gV7IJMltq6VsZ3+cwLjmtU4x133MHHP/7xCcu/+93vsnr1PKm27nPcuJ5gf2qYkHHibq+0twOjfj95lqAoiRNKJ5EdK+FYDiGKlPbvQwmFZ7TwdUV8NZ27FuP9t5LYeCVD9z6EXdd+wvvWNOjqCbB7R4lzLoxNa3FhL5/Hy2XRGhoJdHWhzMPyP57r4Vgeji3FFooi3XO6imrKkX2qrqCp4646VTvU2qSUhZOq1Myf7K5UKw/ZgXJKiJS0pMTa/WDo+cLO38LD/1dOn3MLLN04p905LMKT7unGpRBrm+ve+NRwXMH1r3vd69ixYwdXXHEFAPfeey/f+c53/PiuU4DRXJ6RYpJE8MR/HWXV5wm2PcCwtxHEJcddjsQqOGRGixheCat3HyjqrBS+Lo1myPWO0nDDa0lv3z8tomtowKapRWfZqhCLlgbRjekRCsJxcFNJFMPE7OlBb2pGMeaHdcR1PBzLlVYtT6CqCnpAIxw3CUYMjKCGEdDQjZexuChlIN0vY7isjAyATnT6KSHmE33Pwm8+AwhYfT2sf+Nc9+jw5IYh3AQNi+dv0P/LlGO+M7/61a/mxz/+MZ/97Gf5wQ9+QCgU4rTTTuOee+7h0ksvnYk++swig/kUBadAh3HiqRmE3Y5tr6Mh1kk5lOa4yIwVsbMFjLE+vGJpVuKVvKEBjHQ/kYvWkN4zSKSnjWK2dEjA/bGwd1eJZx7P0dltcsa5kWkRXUIIRDaLVyqhNTZgtrfPaX4uIQSuPW7RAlHNQxVvCmKGDIyAhhHUji5twqlOIQmZPkgfkNYuPyXE/GXfY+DZsPBiuOBP5/dnZOVlUH3TMjDmn9X75c5x/SS+7rrruO6666a7Lz7zgN7UKJpy/GWCalGyZ1FMbWDpyigoo8cV41UqOGQHsyhjA7Na+Frfu4XWP34b/Z//At65V1Ecy0wIuD8ehBAoCkSi6rS4xDzLwkunUMMRAksWozU0zHp9Ss8TuJaLY3s4jociFDRTxQhoxBqDmCEdw9TQA5pfgLlCJSVEuleKLteSIxTDc1PU3ecoOftdUNcDiy+d365fz5UB9c0rIdo8173xmYTj9kVYlsXg4OAhiVK7u/2imycrRduhNzNENDA9bryishctXMJlUTlz/bGLgsxwnsKBPgLZkVkrfG2qNk23vJ0DH/4w3gXXojEx4P5YxVep6GGYCj2Lg9Q16MQTJ3bTFp6Hl0oBAqO9HaO1ddYSokq3oYdjuwgZnoVuagQjBsGoWbVm6cb0iMtTisoDMbmvnBLCg1C9nxJiPmPlpBs41iYv9uWvmOseHZncEERbZJkin3nJMQuvbdu2cfPNN/P73/9+wnL5a17Bdd1p65zP7DKcy5IqZWiN1k3L/pzELwiHtzNkv416lh6zxauQtUi+tB8tNYLaMHuFr7WBvRz48G0Uk3lCi5ZWl1fElxkNHbXwcmzBww9kCAZVzjwvcsIJUr18Hi+fQ0skMNrbUeOJGfN4CCHGhZblIQRouoJuqETrgwTCOmZAxwjIvFU+U+A65ZQQe2XcjaJAuMFPCTHfcW349cdgdDdc+0/SbTffKWXkyNem5aDPbs1an6PnmJ8Cb3/729F1nTvvvJP29nb/V+0pxFAuheWWCJxAmaBaPDuBKDUTMWKAckx5vIQQpLb1UurtJ9o4e4WvvYE+hj75MRCC0Ec+dcj60mjmqEWXEIKnHsuSTroUAx62LTjewaLCcfBSSRSzEjzfNO2pNCppHRzbxbVlDizd0NBNlUh9kEBQl4HwpjpzeatOJaopIfZBYRQ0AyLN8t1nfiME3P85OPBU2SIp5rpHR8ZzZMxg61op7H3mLcd8537mmWd48sknWbly5Uz0x2eOEEKwLzVMQNenRUw7rqDQ+3oAlqyPUSJ5TJaZ3IEhRl/aQzA6u4WvrV//DIRAW7sBbeHSI29wGF56oUD/ARtVhXMujBKOHLvFTgiBl8mAbaE1NmG0t03biM6p0jqYQYNQk44RlNYsw9TmT36rkwG7AJl+KbhKKfng9nNwnVw8/v9g+69B0WDj30sL0nwnMwDxDqjzw33mO8d8J1i9ejXDw8Mz0RefOSRbshjIjhCbpiR7JUeg6CkQOpoWQXWPPsbLyWQYeXY7wnYxWxLT0p+jJfDaN6Ek6tHXn3lC+9m/t8TWzUUATjsrQkPTsVs5vFIJL5NGjUQwurtk8PwJiOKjSutgaujmPA4cns+UslJwpfZJl08gKh+EfkqIk4tNP4Znvi2nL/lz6DpnTrtzVBTLAr9xKWi+wJ/vHPMn9E//9E985CMf4bOf/Szr1q3DMCY+UOLx+LR1zmf2GMqlydh5ekLTMwqmZAvCi76IqucYs/6GsB49KlejVyqRfn4ruZE84bbZN5crkSiBV7/+hPYxNurwzOM5AJasCNK98NhiearB8wqysHVrK8oxulpr0zq4jocQflqHGaOaEqK3nBIi7qeEOFnZ/Tt46N/k9Fk3w4pr57Y/R4NrS9Hftk6OjvWZ9xyz8Nq4UWbqvfLKKycs94PrT24GskmE56JP068lyxEoihzxqismlDOOHw7hOJS2bSO1bxQlXoeuz54g8PoPYP/2lxhXvwa1vmZYv6xhc9TDxwt5j8cezOC50NpusHrdsblJZeb5HFp9HUZ7O9px/JAp5myckjee1qGhnNYh4Kd1mDbsgrRqZQZqUkIk/Niak5nhbXDvpwABK18FG94y1z06OrIDUugnFsx1T3yOkmN+yt53330z0Q+fOcTzBHuTQ4SnoUxQhZIjyG79O+oigtiaCBb5w+YGE0JQ2r2b9M4+SmaCUGR2zeXWXf+L88Tv8dIpQrd8qNwpT7qNrJyslWeEQA/K4GhVL7+PW3xdR/D4QxlKRUEsrnHGedGjjo3ybBuRTqGYAcxFC9EbG48reF4IgV1yaVoQI5ww/bQO04XnSqFVSsuRiYUkOAW5LlQHhp8v6aSnrhu6zpNJUi/64MlhscyPghmTLsb5nFvMZwLHfGf3s9OfeowW8owWk8SnoUxQBcuRo4CCug4KqEcYFGTt34+1czcFPY6iaGja7N30vL4DOE8+DIB57fXjKwoj8samB8EtgpWVYgxFxu1ohnzpITACvLhJJzkmME0456IIxlFkpheeh5fNgm2hNzWht7ef0GAC1/bQTY1QzMDwY7VOjIpVq5CE3KB053i2FOFmRFq4/PitUwc9ABv/To4OPBkGQjgleY12bJAlpnxOGo7r6vrd737HV7/6VXbu3Mn3v/99Ojs7uf3221m0aBEXXXTRdPfRZ4YZyqXI20XaoideJqhCspQkuuIT5EUI4X0SRZ3a8mIPDmLt2ElJj1As6gRDs/swU5paCLzh7Xh9+9G6FsmFVk6a8PUAmJMIIc+VN2jXKpfn8FjapJIcbmHVkiyR4hA4YTACoJrjIk0zqBRPksHzGdRoBKOnB62+7oStU1bRJRSV8Vs+x8hUVi0hZLHqcL0UXT6nDnYeHvl3mZU+mJBWo5PBciSEzA1Xt1AWUfc5qThm4fXDH/6Qt7zlLbz5zW/mqaeeolQqAZBKpfjsZz/LXXfdNe2d9JlZetNjqIqYljJBFfJ2EUW1wFMRCqgoKJME17upFKVt2/AUlbwXRFG8WbV2ASiGgXFpTUZqz4FsPzgOhOsm36h6gw4wMKQTCnrE6z0uOiePIjz5EC+OQr5S2UEB3QBFR6g6btFD0U2MlnaMjk6UUHRaXBuu4xGKm7578WjxrVovXzwH7vmErME4thte/cWTw70IsgJCsA4al8AslwnzOXGOWXh9+tOf5rbbbuOtb30r3/3ud6vLL7zwQj796U9Pa+d8Zh7LcdmfHiI6mVXnBNC9RrLb/4Jl7Qp4AkXnEDHg5fMUt27FK5VwIk0Ukjah8OzeRKx77/r/7J13fF11/f+f55x77sreadqmmy466QBaSmVYhgxBVESggIIKIiIgyBQFEUUUWYpIi8rwq8BPUZZsSimFQssotLSlM6OZN7nrrM/vj5Pc5DYduelNcpN+no/HbXM/Z9x3kpt73uc9Xm+08ZPRho1oW2m7k4w1gX/fEcDmFpV3VgdAgflzwuTlAOzmjtmxQVg4rWGccAQtN4Cem4/mqYP6kBsJ0wOgZ7tRNs3rKk97fN2+8NuWg+ZR8QWlQOcekVEtCbi/79fucJ0uzQeHfnfgOF1m1HUai8e571nJgCNlx+vTTz9lwYIFXdbz8vJoampKh02SPqQu0kIo1kJpdnr1skxLRZhFZKteHMCzS5G5MAxi69djNzejFpfSstNuCyL13YefvWMrxhN/BSD4s7tQC4shFnLVxr3Z3bqTDPgEBfk2igI5Wc4e93NsgdMSQ/X58Y4diqcw3507KRy3HdwxXWevdad7gILrAKjtDlkW6P4Oh0zzdUmJmDEbb8CDV6YZk5FRLcmuvLsE1j3j/t6PuRFKJ/W3Rd1DOO4NQ/E4yC7rb2skPSRlx6u8vJzPPvuMkSNHJq2/8cYbjB49Ol12SfqI2tZm4k76xgS1s9P4jODIJ6j3DgfOQFXURKpR2DbxjRuxamrxlJURiUIs4hDI6uNo13/+6arUz5jrOl224Qpgquo+5+jZDrS0quTnOhw6M4Lt7N5Pc4vno2Bb6MX5eIqLUP2dzq20v9auryfcGX+24UZnIvXuXTp0dFPqftdx8PjB48cKC3IL86XKvIxqSfbGJ0/DqqXu1/N/CCMO7197UiFcB8FiKBg1cCJ0ki6k7Hh9+9vf5gc/+AF//vOfURSFHTt2sHz5cq644gquv/763rBR0otsb65H17S01wSF7Wa0wFYMvAgECqCgIITA2LwFY+tWtOJihKLSGjJQtX3rfKUTe9tm7PdWgKLgPfF0906ypQbMMAT2rsUkBKz+yM+Oap3pB0cZNsTardPlxOM44ShqVhC9dAhaXvZu69x2j9KpGD/p1V2HzDHdBoBoEwgHxwEl7sEf1MEMui3m7REyrb24v9P/g+1DW0a1JN1hy1vw+m/cr2ecDRNP6l97UsEIux8+xePcv23JgCVlx+vqq6/GcRyOPvpoIpEICxYswOfzccUVV/D973+/N2yU9BLhuEFVax25aRoT1BmfNYro9rOZNCIPget0oYBVVYXx+Sa0vHxUr5dwq00sKvo+2vXfJwDwzJiLVjHcjShF6sGXy758ow2bvWyr8qIoAq+3q06GcGzsUBhFVfGWl+ApLkDxpKvuqpND1umUZtTB67XxBi1X9iLW5DpoicNUt0Ve1d2RInoA9KD7/65OmeZ1981k52yvUa0sGdWSdEU4bopROHDQIleZfqDg2K60TckEyJaacQOdlB0vRVG49tprufLKK/nss89obW1l0qRJZGdn94Z9kl6kNtxMyIhQmZv+P2Rh5WK1TqbEG0QIE01VsesbMD/bgOLzowaDOLagJWShefo42rVjK/b7b4OioJ9wmttS3lrdVju19z+Jmp0ePl7npgUnj49RWpQ8qcGJRHFicbT8XPTiIrTsvil+NU0oKNZR/XtokkjUkrVFy6KNbhOB08l+RXO//3ZxWD3Y9vC3OWy7OGd9PRNORrUk+4OiwvG3w+pHYfYFmX1jsSutO91B6wUj+9sSSRro8Sen1+tl0qQBUpAo2S21rU04jo3eCxfQBvEBviFraGAygimohom5YRM4Dlqhm8qLRBxiUUFWH0e71PKh+C+8HHvrJrTyCmjaDJbhRkn2QqhV5d01AUBhxDCDUcPNxDbHtHBaWlH9PnzDK9AK8tzi+T5AOG7Uzbc3/bM91pJ1ol2bzDFdJ82sc6NmolPTgKq5zpfSyTnzZrV1Yu4ucrYfhf4yqiVJB/EW932qau4czbkX9bdFqRFvcW9yisa5N4eSAU+3rrinnXYaS5YsITc3l9NOO22v+z7xxBNpMUzSuwgh2NK8k2Av/SGH2YI3/x1aRRbCmYyvpg7bo+AdMhQAuy3a5fEofV4Mrqgqnumz8Uyf7dZ1xRpdTZy9YBgKb78XxLIVigospkyIoSjtxfMRcBz04gL0kmIUX99+OJoG6F4Fn38/f46dtMn2iGO1CceaYMfdtGaL1VH4D53GKXnaolFBtyvT49195KyzgyqjWpJ0YsXgmavcus2jr3cbUQYSjgWxZiidLOeADiK65Xjl5eUliq/z8tIrOyDpH5qiUeojTeT4eycVpsXHEW/WqBg3Fr2xGV9NA/rUSYn3UTTsEI8JsrL79iIa/3+Po42bgDZxKorZCuGaNumIjshMzkHjMJqaiNe60g6OAytXB4hEVcZOz+eQQ31EN67vKJ7PzsJbWoSam0rxfPowTUFugdo3wrNqWypyTxcwITqcM8dy07jxkOs8tftmCq4Dpuruz93jcx0zx5RRLUn6cCz4381Qu9at3QzXDbxB0i01rjJ9fmV/WzI4WHNTx9dTb9rDTr1Ptxyvhx56aLdfSwYuteFmwmaEsjSOCeqMiI7GaBjByMkBAjUfge5B9bkXa8tyo126rvSpwrq9ZRPmc09hPq8QvOF2FC0CiC7SEUZTE0VzZlP/9kpiNTv54BM/9Y0eRkwu4OjzJtPw9gqsxmYUzYO3vLSteL5/ZrsJIRCCPh+ztEeUPXVjdkKItnRmm3PW3gyAIqNakvQgBCz7HWx503XcF9068JyuWJObIi0a2/f1lJJeJeXf5qZNm7Asi3HjxiWtr1+/Hl3Xu+h7STKTqlAjCkpaxwR1Jur5AL2ggVjjcLRwBGdExzyxSNh2o105fa3b9Q8APLMOR/UD4ZbdSkfEa3dS//ZKiubM5vOXVrF5W4ThEws47tuTqX/9DSKfb0XLz8VbUoSalV7F/1SxTPDoaUgz9iWK0pFmlEh6g/f+Cmv/DShw1PVQfnB/W5QatuGm2YdMg0B+f1sjSTMpX/kWL17Mm2++2WV9xYoVLF68OB02SXoZy3bY0lRLVprHBHXGCKzEX/40ocg6jJxsNMVN5VmWoDVko3v7NtoF4F10CtqkaXi/cLSbdvDl7rGzqd35GnnUTE69cATHXziZupdfJVZdg6+yAl/l0H53ugBMQ+APKHj0AeR4SSS9ybpn4Z0H3a8P/z6MOqJ/7UkVIdzpGXnDIHdof1sj6QVSdrzee+895s2b12X90EMP5f3330+HTZJeZme4hSajhVx/+vW72rEjozCbp1GsFWHrWkIuItxqEY87eH197yhoow8i8J0foAaFO7B6b+kwoGVbHa2bPmfozDFEPluPZcTwj6psG/eTGY6ObdPnGmgSScaybSW8+iv362lnwsF7bwbLSKKNrgBy0dj96wqWZCw90vFqaWnpst7c3Ixt27s5QpJp7Aw3Y1hxAtrex+L0FGHbxHYegYPC6FmtROMNqIqKZQpaWxx8PrVva7u2bsLZtgXPrMNQWqrBiu9TOgJgW3QYQ4eNouq99ZQdfBCOT8MMdX3v9xeWKfB4BliaUSLpTQIF7qNiOsz5dn9bkzpW3O3srZgBvpz+tkbSS6TseC1YsIBf/OIXPProo2ia643bts0vfvEL5s+fn3YDJelnW3Mdnl4YE5SgrgkluAENgVBdB0dRFFpbLUzDISu7b+/ijH/9Hfuj93G2rMN3xCHg33dnrrekhLmLpvL8nz5iwuhmAlkOeaPHEtq4ASMU6gOr941pCHx+FV2WSkkkLkVj4cv3ufIwA61BQwhX1Dh/pNvJKBm0pOx4/fKXv2TBggWMHz+eI45wc+evv/46oVCIl156Ke0GStJL2Ii7Y4J8vZNmVKIx7O01+Cv+D1VvpoXz8QgfTlylxeqHaNem9dgfvQ+qij51fIeQ4l7wlZZQNGc2Na+8xlBviNyyCoxQiNDGDeSOHpMxzpdlCQpy+r5WTiLJKGIh2PgyTDzZrdnMGqAjdSL1rsNYNIbdDn+VDBpS/u1OmjSJNWvW8NWvfpXa2lpaWlo455xz+OSTTzj44AHWOXIAUhduoSUeIacX5jPiOOg7ajAjBk68DCdeTlD1IwTEWzWEEOjefupknD4dNT+3W8Nlvfn5VC97h9jmbZSPDKK2fQi2O1+eYN+MAdobti3QNFWmGSUHNlYcnr8W3rgT3h3AUkdm1BUlLh7nCg5LBjU9EgepqKjg1ltvTbctkj6gtrUJ07Hw9oIujKehEb2ujnAwn+iH55PtERSVh9kWCWF7NQLBvnW67I3rsD9eA6qK97CZbhdjN2j+ZD3PvZKNrg3hyOG+zrOoMUKhjIh2mXGB16/0S5OCRJIRODa8fAtUf+Dqv41e2N8W9QzhuF3WxeMgu6y/rZH0Ad26+q5Zs4aDDz4YVVVZs2bNXvedOnVqWgyTpB8hBJubawn0wpggJRpF316F4/cRczwoeh26rmPFPIiYF2+u6POUmPFfd3yVZ+rBqOXDux2+r2/UMC0VRYFgQWaOGDEtyC2QaUbJAYoQ8Na9sOk1dwLCF38OhaP726qeEd4JwWIoGDWwBndLeky3HK/p06dTXV1NaWkp06dPR1EUROfZbG0oiiI7GzOY5liU+nBT+uu7bAfvjmrUaByrpIiWxjjZY3+NBUTD14HqoHn6/gPF95WzMP6l4F1weEpindU73T+L8gpQtcyrtXAcgarsYyi2RDKYWfM4fPhP9+uFV7tdgAMRI+yO0ioe160yCMngoFuO16ZNmygpKUl8LRmY1LQ20WpEKM1K75ggT0MjnroGrAK3WzDiWAjHh6LYqJYXPC0oqZcT7h/CQfU7+L907G7V6fd4mIDqGvfPYujIvet89RemIdIzFFsiGYh89iKsuN/9+tDvwtij+9eenuLYEGmAkomQPUAbAiQ9oluO15e//GVefPFFCgoKWLp0KVdccQXBDCgwlqRGTUsTKEqiWDwdqJH2FKMf2uYVak4uret+ytiAjWeUCXYPujj2A3vDOuyP30E/eDRKXgmpzK0OtahE4xqqKigblZl3oKYBeUVKQpRWIjlgiDXD6792vz74dJjy1f61Z39o3Qk5ZVAwor8tkfQx3boerl27lnA4DMBPf/pTWltbe9UoSfqxbYfNzbVk62kcc2M76FXVqPE4TnZH+jJmuA6BX+uQ0lH6UFPH+NejGM/8G+O15SkrP7enGcvKQPdkXiqvPcUfkGlGyWAmu3T3AqL+PPjKEjj1Pjjs4oFbExVvcQdfF42DXqi5lWQ23a7xOu+885g/fz5CCH7961+TnZ29231vuOGGtBooSQ87IyGa4y0UBbrX2dcdPPX1booxv0OQVNiwzdhM9viHqbEqgPMBp8+KwO11H2Kv/8TV7TryCykfX9WWZqwYmf6uz3RgGsg0o2TwY0ahYCQ0fu46KY4Fqsd1xsqndKwPRBzLjdyVHQzB7pdBSAYP3bq6LFmyhBtvvJGnn34aRVF45pln8Hi6HqooinS8MpSd4WZiZpxgbnrSZ2o4gr6jBifQkWIUAoyIRtQxUFQLhfZGCyWVbN/+2ZXrRz98Lqg6an5+SsdGogqhVg8gqBidqWlGQXae2i/NChJJnxFvcZ2rgpFQuxb++W1YcAVM+crAdroAWmogpwLyhve3JZJ+oluO1/jx43nssccAUFWVF198kdLS0l41TJJetofq8aRr4Kpto++oRo0bWMUdd2x2XMWKqGSZY2ldfzUHF5gQAIFA7YtUYzyEIsL4jjsePKnPoayudf8ciorAn4GpPCEEQtDnemgSSb8Qb4H1/4MRh8LMc+Cg46D2U3CM/ras58Sa3OkZxWPdVKPkgKRbn+AzZ86ksbERgBtvvHGPaUZJZhI1DbaH6sjxpachwrOzHk99A1Z+R9rSscBoVVFUsIUHYeWTS3v3pOj1mJew4hjPPYHT2tojpwugXRe1YkRmfiBaJmi6TDNKDgDiLfDq7fDo1+Ddh2HepdBaM7CdLtuAeKvrdHVjXqxk8JJycf3NN98si+sHGHXhEK3xSFr0u9RwGL2qBicYTEoxmq0ajqmg6oIa3/sER/6eHcH22Z1KSp2FKSMc7NVvYjz7HJH7/oSIx3t0mimV9RxzRCujJmVumtEfUNC90vGSDFKEgI2vwN/PgU//C2OOglnnQ/N2d4bh7gruBwJCuF2MecMhd2h/WyPpZzK6uN62bW666Sb++te/Ul1dTUVFBYsXL+a6665LFGsLIbjxxht54IEHaGpqYt68edx3332MGzcubXYMdGpamzGFhVfbT10q20bfXo1qmFjFHR+AZkTFjGl4/A6KAjGlCS2wHTNentinN5UPRKQB4/n/AqBPn4HiSz3iFYmCakDO8Cw8/sxM5dk2BLMy0zaJJC28dS988H/u11O/Bif/Hpq3uhEwa5eC+4FEtBG82VA0NuVOa8ngI6OL63/5y19y3333sXTpUiZPnsw777zDeeedR15eHpdeeikAt99+O3fddRdLly5l1KhRXH/99SxatIiPP/4Yvz8zIxd9zdamWvw9TL91Rq+tw9PYhFWQn1izDQUzrKF5REI6wheeRqR5OGML23/+ovcEVM0I9pq3cLZuA48HfeHCHp3m40+8VNcPZWbQy6j8tFqYFmxL4PHINKNkkDNyPnz0FBz7U5hzETR93uFkdS64H0jOlxV3uzQrZoBPlulIMry4/s033+SUU07hxBNPBGDkyJE8+uijvP3224Ab7frtb3/LddddxymnnALAww8/TFlZGU899RRf//rXe93GTKc5FqE20kTufk68V1vDeKpqcYIB0Nw7NuG4dV0IBVV3EvvaZhF2pISSQsPdCbV3arwcGxGqwnj5FQD02XNQc1OXyxACWsMqjqOQW5SZavWG4Q7F1qXkj2Qw0bQVPnsBDjnP1eQaMg2+8RiUTkx2utppd770wMBwvISA1lp3jmTOkP62RpIhpByGcBynzzoaDz/8cF588UXWrVsHwOrVq3njjTc4/vjjAXd8UXV1Ncccc0zimLy8PObOncvy5cv3eN54PE4oFEp6DFZqW5sJGxGy98fxsiz0HVWolunWdtEmHRHWsA0Nzeck7d6S9Rb+IX+nwfMZAre8q1dkvCJ12GtX42zb7ka7jjyyZ+cRDvMm1nD0F6GwJDNTebYpyMpW5VBsyeDAseC9v8E/z4dVD8PGlzu2BYtcZ2VPjlW8xd0+EIjUQaDAdbzSODFEMrDp9jvhe9/7XlJR/aOPPpoouAdoamrihBNOSKtxV199NV//+teZMGECuq4zY8YMLrvsMs466ywAqqurASgrK0s6rqysLLFtd/ziF78gLy8v8Rg+fPDqqdS2NCEEaPvxR6/vrMfT0JQklNouHaF5nS5OleHfiJ6/irBWh6uz3gtdjYb74auNOQjvl07C+4WjehTtAmhpdFB8Xgoq/Bnp2Di2QNEUvDLNKBkM7PwEnrwIVj4AtgnDZrsRrsGGGQXbguKDYD8zDpLBRbevxn/4wx+IRCKJ5xdddBE1NTWJ5/F4nOeeey6txv3973/nb3/7G4888girVq1i6dKl/PrXv2bp0qX7dd5rrrmG5ubmxGPr1q1psjizcByHz5tryNqPMUFqSyueqhqcrKxEitGxwAirKMru60Sd0EziNccznEqgPeKVRqfBNiBUBTgogWy8hx+O9wupq9SDG7l7a00uz79dSlNTZt6RGobA61Xw+qTjJRnAWDF46z546ntQvwF8ubDwGjj+9sGXhhMOhOugcJQ7/kgi6US3BYvaZ8Tt6XlvcOWVVyaiXgBTpkxh8+bN/OIXv+Dcc8+lvNztmqupqWHIkI4/3JqaGqZPn77H8/p8Pnw96HwbaNRFWmiKtVDg72ELtmW5Qqm2jZXnRpOEADOs4RgKnsDu3wNGy0QMZxJDi+IgHDfelTafwa2ZEPEQxhvv4Jk2Ha28fN+H7YGmZoWY6UHzQG5+ZjpelgE5JXIotmQAU/8ZPH8DtOxwn485Cg7/vpuGG4xEG93vrWDUwJ0nKek1MvNK00YkEkHdJUWmaRqO49YUjRo1ivLycl588cXE9lAoxIoVKzjssMP61NZMZGe4magVJ8vbs4iX28XYnHC6AKyoihnR8PjFbj9PhAAndwV64avE1Ua3xiudRV7RJgjXYW+pwXz1VaL334eIxXp8uuoq9/1VPlTLyDE8jiNAyUwlfYmk2wSLwWiFrBJYdCscfcPgdbocy00zFo4GXXbWS7qSmRLdbZx00knccsstVFZWMnnyZN577z1+85vfcP755wNu+uqyyy7j5z//OePGjUvISVRUVHDqqaf2r/EZwI7mejR6phmjtrSiV9VgZwcTKUbbVDBaVVS9QzpiV0wB3sI3UH11RCgH8lAQqOmo8bKi0FKF0LSOTsY5c1H2Qzakus7tYqwYmZndjKaBm2aU9V2SgYQQsPkNqDjErW8K5MPxt0H+CPDuv5BzRhOpd9OLOT2PxEsGNyk5XjfccAPBtq42wzC45ZZbyMtzC64713+li9///vdcf/31fO9736O2tpaKigouuuiiJK2wq666inA4zIUXXkhTUxPz58/n2WefPeA1vOKWybaejgkyLfTt1eA4iIAbLeuQjlDRdGePhxoOmC1TUKPNFBbk0FZdv/9ul3DckSFWHPz5eI9YgPHG6+gLFvT4lOGwoCXqdbvYh2fmPYhlCnILVDRNOl6SAUK4Dpb9Fj5/AyZ/Geb9wF0vndSvZvUJVhwcx00xSqFUyR5QRDeLtRYuXNitAumXX355n/tkGqFQiLy8PJqbm8ntYWdcprG1qY4n1r7BkOxifCkq1uvbq/Bu3YFVVJBogY63aJitGp5A1y7GztQbCjev8+FVBL+aHMeyHRpjTcweOo7CYH7Pv6FwLTRvc2ecpekD7bP1Ch9vyqGkXGXhlzLvLlwIQbhFUDbMQ1a2TDVKMhzhwCf/gbfuBzMMigYzvgmHLD5w6pxCOyC3AsqnSfmIPqLL9XvNTd07cGo39+sFun2b/8orr/SiGZJ0UxtpxrSslJ0uNdSCXl2DnZOV+OCw4soepSN2JeYIPDlr8Co6lhhORxnhfnwIGa1utEsPYm/ZirAstDFj9rtTMtPTjJYJHq9Uq5cMAJq2wuu/hqrV7vOSiXDklW6d04GCGQHV46ZTpdMl2QuZmV+R7Ddbm2rxeVKUOTctvNurQIBoS9U6Nhitmisd0Y13S9SxCAx7BACLq/Hg3T8BVceElra0p9dH/Ol/4+zYge/kk9EP7XkDRTzu0NjidrYOHZGZfwZGXJCdq+LJwKJ/iQRwC8lXPw6rlriaXB4/zL4AJp924KXawg2uoxks7G9LJBlOZl5xJPtFSzxKbWsjub7U0md6TS1aUwir2P3gEALMVg3HVPD4uycfEnUcrPAovJ443oAXB0DpqeMloHUnxJvBX4C9di3Ojh3g9eKZMrUnJ0xQs8OVdc0rUMnKyby7UyEEjgMBORRbkskoKmxd0SGEesTlg0+TqzvEW9wmgoLK/rZEMgCQjtcgpLa1mVYjSlGw++3aWlMIvboWOzenI8UYUzGjGh7fvlOM7QjHT3TLRZQFHNQxBrZwQFF6plwfa3YdL182QlEwXvwfAPphh6Nk7V9NViQMqiqoyNBol22BR5fdjJIMxIq5si455a7jteAKqF0L47544NRydUYI9+dROgl8PdRMlBxQZOZVR7Jf1LY24QCebtYZKKaJXuWOWBJ+N/2WkI7w7Fk6YndEHAPV24Sme4AgAscdkZ1q4MaOQ6gaNBU0H/ZHH+FUVYHPh/eI+SmeLBlh24wbFmHC4UXgz8yp04Yh8AdU9MwsP5McqGx/F167A3zZcOq9bTVNle7jQCXW7Db95A3tb0skA4SU8xhbtmzZrWq9EIItW7akxShJzxFC8HlzdffHBAmBp6oWrTmE3a5O3y4dYatoemoTCuqUWrLG/IaGsgeS1pVU3mrCceu6rAh4cxBCYLzkiuTqhx2OEty/aFdro0lMDeLNC2Rs4bptQTBbycjZkZIDkHgLvHo7/OdHrvp8tNH9Gz3QcWz3Z1MwEvZjNJvkwCLliNeoUaOoqqqitDR5/lRDQwOjRo3Ctu20GSdJnfpICw2RFvJ93ZPF0JpD6DU7k1KMZkTDjrnSEaliOA7CCqI5bfpfbesppRqjjRBpcO8iFfdY38knY7z2Gt75+xftAvhsS5CtddkcbBpMnJF5o6NsS6BpCj6/rO+S9DNCwKZXYdnv3L9LgEmnwpxvD34h1O4QbXRV+Q/EuraBRD9KR+yOlB0vIcRu78JbW1sPeNHSTKAm3ETUjDMsZ9+/C8Uw0HfUgKog2mZXWnEFM9w96YjdETBH0Lr+BqYWWDDUckcGkUJo1QhDazV4fEldUdqIkQTOHpm6QbvgWBZmm1NYUJKZXVemIfD6FbyZ5xNKDiQ6C6GCm05ccCWUT+lXszIGxwLbgLLJkGoHueSAptuO1+WXXw64Y3quv/76hII9gG3brFixYq+DqSV9Q1WoHlXR9i0VLwSe6p1ooRBWkdvF2C4dQTelI3ZH3BGAwNfuaYk2U7rjxDm263RZJrSJrVrr1iHCrXimTkPR9t9RErE4s6cpiCFF+HyZGVEyLVetXqYZJf3K2n+5TpeiwYyzYPpZ7g2RxCVcB1mlkF3W35ZIBhjdvry+9957gBvx+uCDD/B6Ozx8r9fLtGnTuOKKK9JvoaTbGJbJtuY6cruRAtCamtFrOroYE9IRhoInkFpdV2eqfO+QPeHffG4cDJzu1mt1t6sxXAuxJvDnAyAcB+OZ/+LU1CBaw3iPOKLHdrXT1KSQNzKHrGBmRrscR6AqihyKLekfrJirxQWuo9W8zVWfP5CEULuDFXfTsAUjDzy9Msl+023Hq30U0Hnnncfvfve7QTNaZzCxM9xMyAhTnlW81/2UuIF3R7XrcLWlGO2YihVV8fjEfnWEm5goikBrc7QcBKCiqvs4aTwErbXgzU58kFkffohTUwN+P/qsWT03qg3HNFm9qYjwWg/zF1mUD8u8pl4zLtB9UkZC0sc4Fqx5HD74B5z2R8gqcaNbR9+w72MPRCL1kDsM9vFZK5HsjpSvPA899FDS81AoxEsvvcSECROYMGFC2gyTpE5tuBnDMvF59qJBIAR6dQ1qS2sixWibCvFWFUVzswr7Q6BlLq01Mziq1IEgiRqvvXY12ga0VLkaQJ1SGdrQCjwzZqAWFaME9r9jqLXBpjWqoyhQmKn1XSYU5Cn7dlQlknSx81N47VdQ/5n7/NNnYOY5/WtTJmNEQNVdsVRZDiDpASk7Xl/96ldZsGABl1xyCdFolFmzZvH5558jhOCxxx7j9NNP7w07Jd1ga3MtXm3vNRhaYzOe2jpXOkJVEQ6YYRVhqz3qYtwVy9ERlp8cxaA93rXXLKNwoKXGnccYSB61oRYV4z/jq7uVL+kJ1fWuQ1oyRMPry7wPTOG436dPphkl6SS7FMyoK3vQGSsGW1a46f36z8CXC4dd7AqhSvZMtAGKxkKg+wLVEklnUv6Ef+211ziirdbmySefRAhBU1MTd911Fz//+c/TbqCke7TEI9S0NpHrC+5xHyUex1tVBZqGaKvRMyMqVps6fTpoyHmR4Kjfss33rrsgQHVDXrsn2gSROvDlJe4eheNgvvUWIh537U7DXaVjmNQ0u7VvmapWb5qgy6HYknRjRt1apM6q6tvfhbf/BIec6w62HnMUfHUpHLRIRnH2RiwEehbkDe9vSyQDmJQdr+bmZgoL3cjEs88+y+mnn04wGOTEE09k/fr1aTdQ0j12ht0xQdnePTheQqBX1aKGwm5BPWDHFcyw5kpHpCnIYmmNaP5qHCXa/sLssbTejLRJR3hB63CGrA/WEP/X/yNyzz0IJz0OYazFoLHFjXhVVGao42UI/EEFTZMXPkkaibdA4+cdzlf9BvjkP3Dir+HpH8LYY9xaLhnB2TtCuCr1BSNd5X6JpIekfAUaPnw4y5cvp7CwkGeffZbHHnsMgMbGRqnj1Y9UtzRhC4G+B8kFrbEJvXYndn4uKEqHdAQ9l47YLY0LiTTMZFx52911W5FXF9fLsd0UoxWHTjMlheNgvPQSAPqMGSjdHHu0N4QQ1NT7AIX8oswdii0EBOVQbElvsKvzddAieOt+mP0tKYTaXaKNbsd1bkV/WyIZ4KR8yb3ssss466yzyM7OprKykoULFwJuCnLKFCms1x84wmFrqJbgHkZWKPE43u3VCF1HeL2udERYwzbSU9fVGTNeim2VUaTGAYEDaOpuYl6ROog1JKQj2rHWrEbs3AmBAPphh6XFJmGa1IbcO9RMjXZZphyKLelFWqqgYaPrdGWXueN+xh3T31YNHBzbLaqvmA66DDBI9o+Ur0Lf+973mDNnDlu3buXYY49FbYtIjB49WtZ49RMNUXdMUK53N+FvIdB3VKOGI1jFbV2MMRUroqL5eqZOvzeswmfwe0I0K4cylPLEkOykIi+jxZWO0LOSNHCEbSeiXd4jFqCkKYJqhWPUNRUBMHRkZjpepiEIZqvounS8JGmmeRs8fTlUHgoTT4LWGlcGwWjtWnAv2T2RevdnllPe35ZIBgE9ugrNmjWLqVOnsmnTJsaMGYPH4+HEE09Mt22SbrKztZmwGWNIdkmXbZ6GJvSd9R0pRlPBaJOOSLfunyNAyVqHx1+NKQ5OrCcp19uGe7ctnC53jtaa1Yi6OggG0xftEoKdjT5sRyGYrZBXmJmpPNuGgEwzStJNwyZ3sHXFdDjlbqj+ABS1Y7Bz4+fS+doXtuk+CkeBthepHomkm6T8SR+JRLjgggsIBoNMnjyZLVu2APD973+f2267Le0GSvZNVUs9qtC6RK+UWBx9exWOrrtpRgeMsIpjq2je9Eg0dMYUYNQdRaz6SwxRXCfQfZX2RKNwI13xEPi7CvB6xh2EvuBIvEcdheJLz2gSYRhY6Pj8bpoxE8fwWJbA45HdjJI0U7cO/v0D1+k6Y4nrhLV30exa8yXZM5F6dwh2Vml/WyIZJKTseF1zzTWsXr2aV155JamY/phjjuHxxx9Pq3GSfWPYBltDdeTsWiDrOOhV1aiRCE6Om4JMt3TErsQdsFqmYjXOo1jNS6yriuJGuiIN7nwzX+5uW9aV7Gx8xx2H9/B5abPJicYYOVbjpG9kc/CszJwzZ8YFXj/ocs6uJF3UfOR2LMZDMOZoaNxM+21Qgnbnaw+1oRJcrTOAghGQhkYfiQR6kGp86qmnePzxxzn00EOTogeTJ09mw4YNaTVOsm/qwi00x8KUBouS1j0NTei19Vj5rj6WbSiYEQ3NK9ImHbErhqPgLX4BDQ3DmUZAKHhiIXQrBvXCDdd7vF3C9cK2MV95Gc+cuag56bv7Fo5DJKohzBxKFFcjKxOxbEFBjpaR0TjJAGTHe/DsNa7TUD7FjXgJe/f7xltkqnFvhOshfwTs8vkqkewPKTteO3fupLS0a8g1HA7LC0c/sDPcjGHbBDwd4RIlGkPfUYXj84Kud0hHCAXV0zvRLoRN3LDwlbzoPg8XoDs6nngUFS+K6nHb1nfzHrHefw/jxRcx332X4BVXpkVCAkDETbY05LHxAxg9Ic4h8zOvG8m2BZqqZqSSvmSA8sl/XKdr6CHwxZ/LiFZPMcLuCLP84VJUVpJWUr7CzZo1i//85z+J5+3O1p/+9CcOS1NBtKT7bGuuxat4O4rXHQd9Rw1qNIaTneVKR0Q07LjbxZg2hECx4qhGC57oTvSW7ZjhWoyGeWjNM/Hhw/EEsTw5CE8QxePf7YdX505G/dDD0uZ0ATixOKpXx6NDaUWGzmaMC7w+ZH2XJH0c+WOYdQEsulU6XT1FCLc0Im84BPL72xrJICPliNett97K8ccfz8cff4xlWfzud7/j448/5s033+TVV1/tDRsleyBsRKlubSS705ggT0Mjel1dR4oxXdIRAhTHQLENFDuGYkVRbRMFG4GCo3ow1TziNSdR7DXQh+5IHKiqyp5HBgmBfvg8rFXvoh966H4YuMtpHQdFCKbO9jF1YdZex0X2J6YFuQWKjBZL9o/Nb0LZZPDnuan8mWf3t0UDm3jIbTrIl6OBJOkn5fDC/Pnzef/997EsiylTpvD8889TWlrK8uXLOeSQQ3rDRskeqA03EzKi5Pjcu1olGnW7GP0+8HhwLFzpCLWH0hG2hWqE0WKNeMLb0Fu2oUeq8cSbUISN4/Fh6zk4ejZoflqw8OS+D8FPk06ztzeZ4vHgnTePwCXfR/Gmr7pcxA2ajCxaDR+apqBm4BgexxEoihyKLdlPPn0GnrsW/nulK/Ip2T+E0yG3IVX9BwdrbupvC5LokY7XmDFjeOCBB9JtiyRFalobsR2BV9PAdvDuqEaNxbGKi9wUY6uGYyp4At2UjnCsRFRLNSOotoEiLEDgKDqOxwt49hi9aiJEYOhjtNpZYHa6495DNb+1YQNqdjZqWVnaIz5ONM7HW4ppXBNj9pEwclzm6e+YBni9iqzvkvScj56EZb9zvy4ZL1XV04EcDSTpZfZLxlsIwcsvv0w0GuXwww+noEAOWe0rHOGwpbmGgMf9oPXUN+Cpa3BTjLjSEWZMw+PfS4pR2Ci2iWLHUa0oihVDERYK4KDiaDoovm4XllpCxwqPJQ8PtEXYHJzdRryEZRH/5z8Qzc34zz4Hz4QJqf0A9oJwbOKWSmOT+8plGVrfZZmC3EJVDsWW9IzVj8GK+92vp5wBh35PFoHvL44FRhSGTnAL6yWSXqDbjldTUxM/+MEPWLVqFYceeih33HEHJ5xwAm+++SYApaWlPP/880ydOrXXjJV00BRrpSESJteXhRqJou+oxvH7weNxpSPCGpq+i3SEECh2HMUxOxwtx0BBtNVpeRFacI8Rqn3htYqJbvkWU7JboaQusa7u5nzWqlWIpiaUnBy0MWN69Hp7QsQMaltdgdaCYjUjFeHbh2IHZJpRkipCwKql8O4S9/mMb7rF9NLp2n8iDZBdAtlyNJCk9+j2p/4VV1zB8uXL+frXv84HH3zAcccdh23bLF++nBUrVjBx4kSuvfba3rRV0ona1mbCRoxszecKpcYNt4vRduu6EAqqJty0odGKFq3D07oNvXUHeqQa1QghcHA8wU51Wt4eO10ArSKO6qtC0ZoTa2JX0UbcaJfxyssA6AuORNHTmwYUMYPakNtwUDEiU2czurpisptRkhJCwIo/dDhds7/lPqTTtf/YhhvxKhgFWmZ+bkgGB91+dz3zzDM88sgjHHnkkSxevJjhw4fz0ksvMXfuXAB++ctfcvLJJ/eaoZJkqlsaUISKt6E+kWIUAswWgQgbePUIamsY1TZQO3UeOh4fKL2Teqv1biCr/Gm2x0YBixLryi5FYda77yaiXfqcOWm1QTg2llDZWe9+j0Mz1vESZOepaB55wZSkgBmFrSvcrw+72E0xStJDuN6NdGV1nXkrkaSTbl+VampqOOiggwAYOnQofr+f4cM7Wm0rKyvZuXNn+i2U7Jaa1mayLQfv9u3gsdHMJpymODR58GtxVMfBUTw4Hi/OXgri04mFimNl4xWBpNfrfDOeFO06cmH6o13ROHWxbBwbsnIUcgsyL5UnhMBxIBDMPNskGY43CCfeATtWwdhj+tuawYMZdaP9haPkaCBJr9Ntx8txHDStI1KiackjTqQOUR/TWkvBxg/wtURx8rw4cY14OA+hqQhvALsffh/B1qmEaw5nWmED5IUAmHzIXJTWFoi0jSxRVbzHn4D1zkpyvvQlvMVFtKxbnzYbnLhBbci9Y60YkaFDsU3w6DLNKOkmjgUfPQWTTwXVA8FC6XSlm0i9m2IMyAYxSe+TUh7mT3/6E9nZ7sBly7JYsmQJxcXFALS0yHlffUlw22dotVVY5cMQuo+4kY2lePF4jT6Jbu2OuHAAB5/SoZDfsLOGhSecQuPKd4nX7kRRVfSpU8k+5miK5sym/u2VaXt9YdsIRaOmxr1BqKjM3DRjIEvN2NmRkgzCNuB/P4XNy6B+PSy8pr8tGnwYra7Cf36lrJWT9AndvjJVVlYmaXeVl5fzl7/8pcs+kr7B0xzG9AXBF8SIejHiXjy62a+fGzvzXyJnxFusj8zhCGYCsGPLJj56+UWmHHUsO//xD6Lbq8g67NCE0xWvTV962onGaDKzMQzw+qC4PDNlJGwHgtkynSHZB1YMnr8etq101ehHL+xviwYfQkCkEUomgD+3v62RHCB02/H6/PPPe9EMScoIEKqCbWoYUR+qZqOo3RRK7SUsxQTAR2eHR6Fpxzbq33yLkhNPpOkf/yD/kJlpd7oAhGGBP4u8ApX8YtUdVZRh2JbAo8k0o2QfGBF47hqoWg0ePyy6xR16LUkv8Wbw5ULesP62RHIAkZm5GEm3EEIhHvEjHAWPz+pvc/DUnkhr9QlMKamDhFq+QFEVIqvfR9uwnqILLiD0yadpd7ocy0LRVCrG+Bl2cADH7l8ndE8YhsDrV9DTNx1JMtiIt8AzP4baj0EPwvG3QbnUR0w7woFYC5RPcZsWJJI+QuY7BihCgGkEsUwPHq/Z3+YAYAgdYWeRoyR7FQoq/pGjyP/qV2n897/JGj0KX2l6W7ZFNE5MzWZHtQfLEhk5mxHANgWBLDkUW7IHYk3w9OWu0+XLgRN/I52u3iLa6DYq5A7tb0skBxjS8Rqg2JYX28hC81gZUw8aL/s/gqPvoErflFgTCAoqhlFy/CLqV6+h1bSpf3slRXNmp9X5EqbFjuZslr8YY8XLsbSdN504tkDRFPxSrV6yJyKN0Frjzgr80m+hNH2jtCSdcCwwY24no0eGnyV9i0w1DlAswweKjao5+965jxB6I5pvJ6rTkfasqBzFhCO/kFTTFa/dmXC+0lHr5ZgmikfDG9QJZguGDM/MonrDEHIotmTvFI6CE37lDrvOH9Hf1gxeIvXuaKAcORpI0vdIx2uAIhwFRckcp8sREK06HUULM6rYSgzJLiwpZd1rLxNc/g7mmtV4xo5DnzMn4Xx58/P32/ESUQM1K8C4UUHGTXPTsJmIZUBOiZKRRf+SfiS0HbasgINPc5+XjO9fewY7Vhwcx412qZl5kyYZ3PQo57Fhwwauu+46zjzzTGprawF3pNBHH32UVuMkAwdDKDjxcuzIGAoUf2L9g3ffIrSjCqemGvvDD7F37Ehsi9fuTIt4qrBMmq1cdu6wEYKMdGyEI0BBphklyTRthn/9AN68Cz55ur+tOTCI1EPuEDkaSNJvpHwVePXVV5kyZQorVqzgiSeeoLW1FYDVq1dz4403pt1AycAg7qj4Kx4hMPSvRJQOMV1FuFMNRDzuPvf70vq6jmGi6Dqfrvfw6n+jrP8wMxoNdsU0cNOMUkZC0k79BtfpitRBwUioPKy/LRr8mBFX/T9/hBRLlfQbKacar776an7+859z+eWXk5OTk1g/6qijuPvuu9NqnGTgEBcKnpy1KKqJE58KiXSfOyJbxNocL59/T6foESIWw/Fns7PafcFMre8yTUFugYqWod2Wkj6m9hN45kpXOqL4IDjhdregXtK7hBugcLTbzSgZ3Ey9qb8t2CMpO14ffPABjzzySJf10tJS6urq0mKUZOARd1Ri1acQ9MTIzg0k1gW4d5bxtk5DX/oiXkIIhOVQH8vBcSA7VyEnP/NSeUIIhJBpRkkb1Wvgmavd6EvpJDj+l650hKR3ibe4el0FcsKKpH9J+UqQn59PVVVVl/X33nuPoUOlHsqBSlwoWM2z8DXPxYvuLgr3HxV6JdUoTBPVq1Nd494/yKHYkoxn+7vw36tcp2vIdDjh19Lp6guEgGiTm2KUP29JP5Oy4/X1r3+dH//4x1RXV6MoCo7jsGzZMq644grOOeec3rBRMgBoFXF8pf9FFL6ctK6goijgmTABz5y5qKWlaXtNEY1BMIuq7W5359ARmdmka8QFgYCCR5eO1wGPEXYHXw+b7SrSS8X0viHWBP48yJPBAUn/k/KV6tZbb+Xiiy9m+PDh2LbNpEmTsG2bb3zjG1x33XW9YaNkABAijrfoNQzHB8ZBQHuZl0BBQT/0sPY4WFoQQiBsh2YjG9MAn1+hqDQz67scAQE5FFsCMGoBnHgHlE0GTQp39gmO7Tq8Q6aBHtj3/hJJL5Oy4+X1ennggQe4/vrr+fDDD2ltbWXGjBmMGzeuN+yTDBAc24dRfwSFHhs6ZRN7K8YjDAPV66V6pwewGVKpoWSgjIRlCjwe2c14QLPueTeyNXK++7xiRv/ac6ARbYRAEWRLsVRJZpCy4/XGG28wf/58KisrqayURYoSF9XJIV5/ImXBMJS5gqiCjuL6yN2/B8D/zbNR8/P3+/WcaAxPQT471rhpxooMTTOahsAXUNHTGe6TDBzW/hte/40rYfDl+6FoTH9bdGDhWG5qt2yyHA0kyRhSzn8cddRRjBo1ip/85Cd8/PHHvWGTZADSRAhP3rtYgY1J64oCihA4VVU4O3aAuv8pN+E44ECrk0OkVaBpUDY0Mx0v24JgthyKfUDywf/B63cAAiae5I4DkvQt4TrIKoXssv62RCJJkPJVcMeOHfzoRz/i1Vdf5eCDD2b69On86le/Ytu2bb1hn2SA0KDXEKj4P+rzXuuyTTXNxBwfxb//Ol4ibqL6veDzUTZMY0ilB48n8xwb2xKomuxmPCBZ9RdYfo/79bQz4fDvgyLr/PoUK+6G3AtGytFAkowi5U+C4uJiLrnkEpYtW8aGDRs444wzWLp0KSNHjuSoo47qDRslAwBhBbFaDyLHrOiyTfHo+M87D/+Z3yAdOTcnFkfLyaao3MuC44IcelR6RVnThWkIvH7kUOwDCSHg7T/BOw+6zw85D+ZcKFXS+4NIPeRWQFZxf1sikSSxX/mZUaNGcfXVVzNt2jSuv/56Xn311XTZJRlg+OKjiNZN5aD8Riho7rRFAU3DM+6gtLyOcBwUITA8WWz92KBihIdAVmZGEkzLVauXacYDBCHgrXvdFCPA3O/AtK/3r00HKkbE7RotqJROryTj6PEVa9myZXzve99jyJAhfOMb3+Dggw/mP//5TzptkwwgWpUQqn8beDrmNAoECqBYJk5TEyIW2+/XETEDxe+jqlZn1Ztxlr+0/+fsDRxHoCqKVKs/kFCUDrmCeZdJp6s/iTZA3jAIFPS3JRJJF1KOeF1zzTU89thj7Nixg2OPPZbf/e53nHLKKQSDUgjwQKY+632yhr7O5sgMYG6nLQJ16zYif/kbank5wUt/sF+v48Ti6GXF+KMaRaV2xoqmmoZAl0OxBx/ZpWBG3fEzu+LLgSOvdoddl07se9skLrEQ6FmQN7y/LZFIdkvKV63XXnuNK6+8kq9+9asUF8vcucTFcXQcM4+g2EWgUFFQ2sYF7e+cRuHYKApoOVkMH6IzfLSOEGLfB/YDpgEFxQpqBmqLSfYDM+oWazd+7jpftgnL7oJDvwvlU9x16XT1H0JArBnKDgZfdn9bI5HslpQdr2XLlvWGHZIBjrfpSMI1X2R6aQ1kRQEQjgAUiBsAKPvreMUMFL+fhhYvkSqTIcM9GRlRcr9v8Mk04+Aj3uI6VwUjoW49PHs16EFXJ6ruM7Ci/W3hgU20Efz5blG9RJKhdMvx+te//sXxxx+Pruv861//2uu+J598cloMkwwsYsIARcOrOom1NrcL2gdk+/av+1DEDPTyEjZ8bLF1o8X4qV6mzknf0O10YZqgexV8sptxcBJvgR3vQ/FBMP5EmHk2bF4mL/b9jWO7RfUV00HPzE5niQS66XideuqpVFdXU1payqmnnrrH/RRFwbbtdNkmGUBEyv5BTvanbIoczQTc8VHtjpfSFvHC33MnSTg2qAoEAlRttYDMHYptGoLsPBUtA7XFJGng8zfg1dthwZUw71Ko/kA6XZlApN6VjsiRo4EkmU23rlyO4+z2a4mkHUcxUYBA57eUEKCAYrRFvPZDPFVE4ygBP3UhH5YZwxdQKCzNvFSeEAIhIJihEheS/cCKw1v3wcdPwZij4JBzoX6DW9PVXvMl6R9s030UjgJNzueSZDYpXx0efvhh4u3F0p0wDIOHH344LUZJBh7xrefR8ulNTLRHJq0rCigLFhD80Y/Q583v8fmduIEnP5eqLW5EtaLSk5H6WJYJmi67GQcl65/vcLq+9lcIVUE81FHz5cvpZwMPYML1kDPEHQ8kkWQ4KTte5513Hs3NzV3WW1paOO+889JiVGdGjhyJoihdHhdffDEAsViMiy++mKKiIrKzszn99NOpqalJux2SPeMIMIUOjp+spNEcbWOCAn7UomLU3NwenV9YNoqqoQYC7NjiphkzeSi2P6Cg69LxGnRMOBGO+BGc+Si0VHUU0ncuuJfOV99jxdyahoKRaZkFKxkkrLmp45FhpPwuFULsNtKwbds28vLy0mJUZ1auXElVVVXi8cILLwBwxhlnAPDDH/6Qf//73/zf//0fr776Kjt27OC0005Lux2SPRMXCsGRvydrzK9oUusT6w6goMDWbVgbNyLC4R6d34nFUIJ+mqNeomGB5oGyisycvWbbMs04aDBa4eVfQMMm97miwuwLoHlb17Riu/OlB7qcRtLLhOshdxgEC/vbEomkW3Q7bDBjxoxEtOnoo4/G4+k41LZtNm3axHHHHZd2A0tKSpKe33bbbYwZM4YjjzyS5uZmHnzwQR555JHEnMiHHnqIiRMn8tZbb3HooYem3R5JV+KOihpoQNGi6J2F5IVbXi+ef57Y5i34z/wGnilTUj6/MCz0kmJ2tKUZy4d6MrJw3bIEHo8cij0oqPkIXvoZtFRDw0Y47Q+u49Vau+dj4i2yzquvMcLg8UH+cDkaSDJg6Lbj1d7N+P7777No0SKyszvE6bxeLyNHjuT0009Pu4GdMQyDv/71r1x++eUoisK7776LaZocc8wxiX0mTJhAZWUly5cv36PjFY/Hk+rUQqFQr9o92IkLhcjmC/F5YhSWdnS1JuQkYm0/6x50NTqWhaKpaNkBdmzO8DRjXOD1K+je/rZE0mOEA6sfhZV/BmG7HXJH/NB1uiSZhRAQaXBlPQL5/W2NRNJtun0Fu/HGGwG35uprX/sa/v3oUOspTz31FE1NTSxevBiA6upqvF4v+fn5SfuVlZVRXV29x/P84he/4Kc//WkvWnpgYTgqTnwIXstCZ1vSNgUgNwclHkcJpD5WSkTjqMEgEdNLc0MEFBhSmZmOl2ULCrK1jCz6l3SDSD28fCtsf9d9PvoLsOBH4JUK6BlJPOTW1OXL0UCSgUXKV7Bzzz23N+zoFg8++CDHH388FRX7p5lzzTXXcPnllyeeh0Ihhg+Xf7w9pUUYBIb/CfDgsAC1rXTQjXgp6Oeei1ftmbMkTAutPAdLKIw8yINpkJGpPNsWqKrsZhywbF3h1nPFmkDzufpc40+Q6atMRTjuTMbyKeDN6m9rJJKUSPlqaNs2d955J3//+9/ZsmULhmEkbW9oaEibcZ3ZvHkz//vf/3jiiScSa+Xl5RiGQVNTU1LUq6amhvLyPYvo+Xw+fPs5vkbSQSsWnuzPcISGGl/YaUu769Wzi5djmigeDS0rQLZfZfaCzC1cNuMCr1fBK9XqBybbV7lOV+EYOPoGKBjR3xZJ9ka0EQIFUrhWMiBJuXDhpz/9Kb/5zW/42te+RnNzM5dffjmnnXYaqqpy00039YKJLg899BClpaWceOKJibVDDjkEXdd58cUXE2uffvopW7Zs4bDDDus1WyTJCNtPdPvXydn5paR1B1BtG+s//yH+wvOIFKcaiKiBmhXAVLx8+E6chp2ZOxXBtCArRw7FHlDYZsfXs78Fcy6CU++VTlem41hgxlyxVI+8gZYMPFJ2vP72t7/xwAMP8KMf/QiPx8OZZ57Jn/70J2644Qbeeuut3rARx3F46KGHOPfcc5O6KfPy8rjgggu4/PLLefnll3n33Xc577zzOOyww2RHYx/iOH6s0HTyI9O6bNPMOPby5ZivvJJy2kZYJp68XKq32Kx932Dla7F9H9QPOI5AUeRQ7AHF+hfg8W9Ca5vmn6bD9DPlhXwgEGmA7BLIlqOBJAOTlFON1dXVTGmTBMjOzk6IqX7pS1/i+uuvT691bfzvf/9jy5YtnH/++V223Xnnnaiqyumnn048HmfRokXce++9vWKHZPfUq434ypYTJRsY1WmLwGO4nYh4vSgpiBs6hoGi62hZQYJxhaEjPRQUZ6ZjYxrINONAwYzAst/Buufc52v+Dw6/pH9tknQf23AjXvkjQcvMJhuJZF+k/M4dNmwYVVVVVFZWMmbMGJ5//nlmzpzJypUre61u6otf/CJCiN1u8/v93HPPPdxzzz298tqSfRNSm/AWLCMcHwKik+MlQGurAUx1TqOIxVGzs1F8XkqGQMmQzP2QtUxBboGKpknHK6OpWw8v3gzNW115iJnnwIyz+9sqSSqE6926rqySfe8rkWQoKV/NvvzlL/Piiy8yd+5cvv/97/PNb36TBx98kC1btvDDH/6wN2yUZDiaVUC8biHDPDok+VcCzXQjXoqv+46XEAJhOXjyc6ivtdlZZTF0pE5OXuZFvNqHYvuDmWebpA0h4MN/woo/gGNCVjEcdT0M6Zoal2QwZtR1mPNHyNFAkgFNyo7Xbbfdlvj6a1/7WkKsdNy4cZx00klpNU4yMNCMEozQWIbnNYG/KbHuAGp712sK4qnCNFG9OlogwOcfmmz8xCTcIjhkft9rx+0L0wCPV6rVZyy2CS/cAFuWu89HzIMjrwJ/+sebSXqZSIM7jzFQ0N+WSCT7xX7nbw477DDZQXiA06TVoud/SswbADoNCRbg+P1oEyailnQ/NSCiMbS8PPDq7Njiznccmqlq9YYgO0/Fk4EjjCS4RfP+PPf/Q78Hk06V2lwDkXgL6H7Ir5S/P8mAp1tXs3/961/dPuHJJ5/cY2MkA5NG/wb8+a9QG5kKHJ5YdwTEhw4hMP0wuivlJYRA2A5abjaNOx1iEYFHh5IMHIothMBxICDTjJmFY7kzFvOGuc/nXQpTvwqFo/vXLknPEAKiTVAyEfy5/W2NRLLfdMvxap/TuC8URcFOUatJMvBRzEKslokUULKLQElbQ0QKN6jCMFB9XrSsANvXu/Vh5cM8GVm4blvg0WWaMaNoqYaXfu7+/5U/gT8f9KB0ugYqVhzCdW56MW9of1sjkaSFbjlejuP0th2SAYzeOoVo3RwmlOwEPZy0Le+DtUS3v4pnylT0GTP2eS4nGkMvLEDRO9KMmToU2zAEgaCK7pWOV0aw8VV47VdgtIKeBQ2fQ8X0/rZK0hOE487OtC3IGw5Fo8Gb+qxXiSQTycwrmmRAEdHqUP0CodnsGt7y19Vhf/IJasW+71aF44ADak42rSGHUKODosCQ4Zn5NrVtCGRJp6vfseKw/G5Y+2/3eelEOOoGyB3Sv3ZJeobRCpFGCBZC+VjIKpVdjJJBRcpXtJtvvnmv22+44YYeGyMZmLQWvEJWzkdsjyxkNhOStqlxdyyL0o2uRhE3Uf1umnHHWjfNWDJEy0hhUtsSeDQFn19eEPqVhk3w4k+h8XP3+bQzYfYF0MOh7JJ+xDYhvBM0r1vPVVApJwlIBiUpfzo9+eSTSc9N02TTpk14PB7GjBkjHa8DEMfOwjEKyU4W8cLBofXgiRSNHY82ctQeju60fyyGXlyI4vGwfXMEgIrKzLyAGoZA9yl45XWh/2jYCE9+x1UzDxTAF66FYbP62ypJqgjhDr02o5AzxE0rSskIySAm5avae++912UtFAqxePFivvzlL6fFKMnAwq45hbCjcfDQ7eA1k7aZIyrxFnUvzagI0HKyiccc6mrcJo1Mre+yTUFeoYoiW9v7j4JRMHSWK4q68Bo3NSUZWJgRCDe43YoV013HS828DmaJJJ2k5aqWm5vLT3/6U0466STOPluO4DjQiCtRUHV0NbmjVSDcItluIGIGit+HGgwgTJg4zUtLs0NWTual8hxboGgKfjkUu++p/tBNPxWPc/Wcjr4OPH5X0VwycHAst1sRBYrHumr0snhecoCQtnBCc3NzYmC25MDBFuAbcT8BXx210VMpojxpe8WDf6U1EiXwrW+jDR++x/OIuIGntAjFo+H3wMGzMjeHZxpCDsXuaxwb3n8E3n3IndX35T+6F2pdXqwHHLEmiLdCdikUjnFHOEkkBxApO1533XVX0nMhBFVVVfzlL3/h+OOPT5thkoFB3FHB46YXs5SubyfFMMA0Qdf3eA7h2IBAy8nCtgTvLY9TUelhyHANRc0858Y0oSBPQc1A2wYl4Tp4+RbY0VbmUDJh7/tLMpN2TS49C8qnQO4w0DKzlEAi6U1SftffeeedSc9VVaWkpIRzzz2Xa665Jm2GSQYGcaEQ/uxqVMVk2MhtXba3z2pU/Hues+imGf2owQBV22w2fWpSvc3ixK9n9ZrdPUU4riisTDP2EZvfhFdug3jITSnO+wEcdJwcGzOQEI7rcAnHTSkWjgRfzj4Pk0gGKyk7Xps2beoNOyQDFMNRAAWfoqEmy9aj2DaK7dZ47cvx0stLUFSVrBzB2Ek6voCSkYXrpoGbZpRq9b2LbcCKP8CH/3SfF42Fo29wZ/VJBg7xFnfcT7AYisa46cUM/LuWSPoSGeeV7Bdh4ZA17mZU4SVun46PjpSianTqcPR6d3u8cGxQFdRsN7qVV6Ax4/DM7WoyTUFugZp5I4yyS912/HhL122+HNAD0Frb93btjb3ZXPuJq1gOcPDpMPciV99JMjCwDWjd6Q62Lpvszs2UmlwSCdADxysWi/H73/+el19+mdra2i7jhFatWpU24ySZT1hYqJ4IEEG3kx0mzYi7X3i9KHtQnhbROErATTM21tlsXm8ybJSH4vLMuydoH4qdkWlGMwoFI10h0c6OjC+nYz3T2JvNM86C//0UFt0KIw7f0xkkmYYQEG1w67nyhrqSH4H8/rZKIskoUr66XXDBBTz//PN85StfYc6cORmZDpL0HcIJEN7wQ8p9YdTiZIfEDAZp/MYZDPFl7/F4J27gLS5EURW2brRY/5FJLCYy0vGyTNC9GToUO97iOjAFI6FuPYR2QMGIDsdmX46XN8utoQIwImBF97yvonVcTNsvtHs9d3ZHtMNodS/K4M7ii4XcQusd78Oy38Lh33efN34OB5+29/NKMgsj4v5OAwWu8nzOEDnqRyLZDSlf3Z5++mn++9//Mm/evN6wRzLAMB0NxyglS40B1UnbHN2DVTkET27Rbo8Vlo2iamhBVxJgx2Z3TNDQDFWrNw1BVraKR88wxyveAtUfuA9PAI65ATa9CqOP7IgmPXYWWLE9n+PIH8P4tq7kNY/DqqV73jd/BHy1bbsdh7+evnf7jvsFVB7mfv32n+Djp5K3jzkKvvJnGD7XnbPYsMl10CQDg3ZNLkWF4oNch18P9LdVEknGkvIVbujQoeTkyI4UictOtZ5A5ZO0OHnAoUnb1HgcT0MDQvOjZHXtUHRiMZSgHyXop6XJoaXZQVGhPFOHYjsQyM6QO/iGjfDx/4OqNdC4S8NL4SiYdym01nSk8BR17yKjnSPX+9xX3fvzrgckv86u+298Bd77q2tzzYfuzD7JwCDa5Gpy5ZRD4WjI2v1NlkQi6SDlK9wdd9zBj3/8Y+6//35GjBjRGzZJBhCtShRP1iZMowR2EanP37yVgheXERs7lsD5F3Q5VhgWekkxiqKwfbMrO1E6REP3ZlhECbBMgcfTD92MwoGmLa6D5ct2o0PgXvA+/n8d++UNd1N0k05xU3QtNe5FMN7iPs77b/df85Bz3Ud38Pjh2y91/9zzfuA+OtNeh9Za42p07VrzJck8rBi01rnvyYppkFMhNbkkkm6S8l/KrFmziMVijB49mmAwiL6LMGZDwz7qPSSDCp9ZSnTbN6j0mbBLIFRr72r0dZWScCwLxaOhZbspifY0Y6bOZjQNgS+g7k0HNj3YJtSt60gdVn/galiB2x3W7niVTYKDvwJDproOV6AguZA+3gJGy+6L1zOJXW2ODwCbD2Qc263jchw3slow0nW+BjC2bWOaMsqaqei6jqZlbqd7T0j5KnfmmWeyfft2br31VsrKymRx/QGOsLKxWoZRooSAZKdbsR2EoqD4u7aRi2gcNRBACfiJRRzqa91wWaY6XrYFwexe1hb76El46363bqozms91tCpmdqx5/HD4JR3Pd3VgILngPhMdmYFo84FMuyZXVomryZVVMqA1uYQQVFdX09TU1N+mSPZBfn4+5eXlg8bfSPkq9+abb7J8+XKmTZvWG/ZIBhh1+lZ8Za/QrBQBybMYq6dOpODIo6gI5nY5TpgWWnkOCgpVW927zYJilWBWhtRQdcK2BKqWpm7GaGOnaNYaGP0FmPZ1d1uwyHW6fLluFKt8ihvRKj4I1H38qeqB3Tsq7Y6MHsg8J2Yg2nwgYhsQ3uk2bpQd3KbJNfA11dqdrtLSUoLB4KC5qA8mhBBEIhFqa10NwiFDhvSzRekhZcdrwoQJRKN7aTWXHFCEPDV4C94iFJ3Ero4XuBEiZZcwsWOabpoxy00zbh8AaUavv4dDsVuqoep9t0ar+gNo3pq83V/Q4XgNnQVnLHHV2fdZsL4LexNHbU/hZRoD0eYDCeG4NwpmzNXkKhwN/rz+tiot2LadcLqKimRDQCYTCLjXidraWkpLSwdF2jHlK91tt93Gj370I2655RamTJnSpcYrN7drdEMyeNHjw4jvPJohehbsUsqVv3kr+qYqnAmTUcvKEusiGkfNCqD4fVimoGa7DUBFpspIWJBb0I00o2O7HYbB4g6dq3eXwLpnk/crGNVRm1U+tWPdGwTvyDRaLpH0ECMMkQa3drB0EmSXDypNrvaarmCblI0ks2n/PZmmeWA6XscddxwARx99dNK6EAJFUbBtOz2WSQYEaqwSIzqBEcV14O+kvSSgdO1nBD7fih3ITnK8sGw8ebkoKIBg2lwf9bU2eYWZ8cEeLC/HikQwQiEcR6AqndTqO4/fseJQ9ylUtaUNaz50L1jzf+h2F4Jbl9W81XWwyqe4qRq/vDmRZCiO5XYrqprbYZpf6Y79GaTI9OLAYL9+T1NvSpsd6SJlx+vll1/uDTskA5SQbxO6r4WoJxtI7m7q6GrsKK53DAN0D1qWewfj0RXGTvIydlJfWbxvrEiE3NFjCG3cQEttE3r7UOz2YvB3HnIFRnd+0lVzSg8ki38e9EX3IZFkMkJArMlVn2/X5AoW9rdVEsmgJGXH68gjj+wNOyQDlHD2Gvw5q6mLHAFMTtrmaQvnd+5qFLE4anY2is+LcARvvRyjtEJj5DgdzZMZd59GKERo4wZyR4/Brn2OrA2Po468rKPT7qMn3XotcFMx7SnDIVPdC9a+CuElkkzCjLoSEd4cGDLNHfUjNbkku7Bw4UKmT5/Ob3/727Sfe+TIkVx22WVcdtllaT93JpLyX9drr7221+0LFizosTGSgYeIDcUUFsVqPnTKFApAM1xRVKVNx0sIgTBtPPmu4Fddrc22TRY1OyxGje9tgazUMEIhIiufouiQo0HZ4I6yae/Am3QKjJjnOlq5Qwd0S73kAMaxIVIHjoCC0VA40p3ZKcloFi9ezNKlS7nooou4//77k7ZdfPHF3HvvvZx77rksWbKkfwyU7JOUHa+FCxd2Weucf5U1XgcWTuPhxOwFjKvYAR4jaduuqUZhmqg+L1pbl0p2jsqU2V4cB1Q1s5wXT/N6gm/+EJxr3VE2Oz9xIwMAw+f0r3ESyf4SC0GsGbJK2zS5iuUNxABi+PDhPPbYY9x5552Jrr9YLMYjjzxCZWVlj88rhMC2bTye1COehmHg9Q58mZG+IOVq5sbGxqRHbW0tzz77LLNnz+b555/vDRslGYzh24oW2ISjJEuMCCCWl4tTWIjS9sEgojHU7CwUn/vHGchSmTDNx6QZXQVW+xMl3kjeyhtQRx6OOGQxIlQFRWPdGi+JZCDjWNC83f2/fAoMOwSyB7YQ6oHIzJkzGT58OE888URi7YknnqCyspIZM2Yk1uLxOJdeeimlpaX4/X7mz5/PypUrE9tfeeUVFEXhmWee4ZBDDsHn8/HGG28QDoc555xzyM7OZsiQIdxxxx1dbBg5ciQ/+9nPOOecc8jNzeXCCy8E4I033uCII44gEAgwfPhwLr30UsLhcOK42tpaTjrpJAKBAKNGjeJvf/tbb/yIMpqUHa+8vLykR3FxMcceeyy//OUvueqqq3rDRkkGo5T9i+DIP9CgV3fZtvbLx2Fe/B3U/HwAhC3QctxURqjJZvmLUbZuzLBRHbZB/js3og2dgvjKElo2b0Rpre5QU5fOl2SgIoQ7wzNnCAyb7Y780TIrxd+fCCGIGFa3HzHTRghBzLR3+7y7DyFEj+w9//zzeeihhxLP//znP3Peeecl7XPVVVfxz3/+k6VLl7Jq1SrGjh3LokWLuoz2u/rqq7nttttYu3YtU6dO5corr+TVV1/l//2//8fzzz/PK6+8wqpVq7rY8Otf/5pp06bx3nvvcf3117NhwwaOO+44Tj/9dNasWcPjjz/OG2+8wSWXdEzZWLx4MVu3buXll1/mH//4B/fee29CIPVAIW0VlGVlZXz66afpOp1kAGAJsK0CUExy2X3USukkBKpAQhh0++cW2zZZWJZg+OgM+fAXgpwPfodeWI74yp/ZuXoNwfwgoMpRNpKBT7TBvXEoGT/g5yv2BlHTZtINz6V0zBHjivn9mTN4fOVWvjZ7ON9++B1eX1+X0jk+vnkRQW/ql+JvfvObXHPNNWzevBmAZcuW8dhjj/HKK68AEA6Hue+++1iyZAnHH388AA888AAvvPACDz74IFdeeWXiXDfffDPHHnssAK2trTz44IP89a9/TchGLV26lGHDhnWx4aijjuJHP/pR4vm3vvUtzjrrrESR/Lhx47jrrrs48sgjue+++9iyZQvPPPMMb7/9NrNnzwbgwQcfZOLEiSl//wOZlH/ba9asSXouhKCqqorbbruN6dOnp8suyQAg7qjEtp0DwKiRnydt0yIRRr6+HK1oA5zwJQCEQpv31TEUe2gGqdUrRhPe+vcQM8+iZfUbRGJl5Hk7pWDkKBvJQMWKubpzFZOk05VGXl9fx+Mrt3LRkWP4w6sbUna69oeSkhJOPPFElixZghCCE088keLi4sT2DRs2YJom8+bNS6zpus6cOXNYu3Zt0rlmzZqVdJxhGMydOzexVlhYyPjx47vY0Pk4gNWrV7NmzZqk9KEQAsdx2LRpE+vWrcPj8XDIIYcktk+YMIH8tqzIgULKV73p06ejKEqX8Oihhx7Kn//857QZJsl8DKGgeJrRHA+KIkh4VYAaDlO6dj0iuyrheCHcUpJoxKFhpzsUe0gGqdULXwEN8+/BW/8BoUAZHh30XWtF5SgbyUBDONC605U6yRkcs+56g4Cu8fHNi1I6RlUUfB4V03a4cMFozj18JE6KqcOA3nMl9vPPPz+Rxrvnnnt6fJ6srJ51s+56XGtrKxdddBGXXnppl30rKytZt25dj15nsJHyVW/Tpk1Jz1VVpaSkBL9/8KobS3ZPzFHIGnsbiiIIx84hh47xG2qblAS+XT0XJRHtKixRCQT7X61eiTchvHmgKAhfAfGKBVgtDtl5asZ1W0okKROuc8VQi8bIIvq9oChKj1J+ALrm/lz9++FE9YTjjjsOwzBQFIVFi5KdxjFjxuD1elm2bBkjRowA3JE7K1eu3Kte1pgxY9B1nRUrViQ6JBsbG1m3bt0+dTxnzpzJxx9/zNixY3e7fcKECViWxbvvvptINX766ac0NTV18zseHKT8Lmv/BUokYWGDUEGx8ZFcp2VnBamacTBlhaWJNaXtnx0ZNBRbMUIULLsUq2Aioak/As11FIXTaUyQRDJQMcJuUX3xeDdFLhlUaJqWSBvuOsMwKyuL7373u1x55ZUUFhZSWVnJ7bffTiQS4YILLtjjObOzs7ngggu48sorKSoqorS0lGuvvRa1G7M6f/zjH3PooYdyySWX8K1vfYusrCw+/vhjXnjhBe6++27Gjx/Pcccdx0UXXcR9992Hx+PhsssuS0hiHCh0+8ry0ksvMWnSJEKhUJdtzc3NTJ48mddffz2txkkyG8fx0frpLQQ/uxF9Fx/eyM1j22Gz4Ij5SeumBbU7XK23fq/vcizyVv0MT2QHesOHKFbEXXYEirqbNKNEMpBwLHfQdeEYVzJCMijJzc0lN3f3819vu+02Tj/9dM4++2xmzpzJZ599xnPPPUdBQcFez/mrX/2KI444gpNOOoljjjmG+fPnJ9Vl7YmpU6fy6quvsm7dOo444ghmzJjBDTfcQEVFRWKfhx56iIqKCo488khOO+00LrzwQkpLS/dy1sGHIrrZy3ryySfzhS98gR/+8Ie73X7XXXfx8ssv8+STT6bVwL4gFAqRl5dHc3PzHt/AmcYTd/wKM2aQXZzfbzZ8EAlwf00ZI7xxrhpalbTNsB1arQiHlFaS4w24BZaNIep8laxYJsjOVTjujKx+HVKb/cHvCW7+fzian8Z5d2HnjnZtjwuEcCNymiZTM5IBSqjKFUatmCFlI3YhFouxadMmRo0aJctkBgB7+311uX6vuSn54Awckt3tiNfq1as57rjj9rj9i1/8Iu+++25ajJIMDGqVerIPupHQsHu7bMtf8wFT/vpPlJdecReEcNOM29ynFSM8/ep0+Tc/TXDz/wMgNOOahNMFYFkCr1+RTpdk4BJrBo8XisdJp0siyTC67XjV1NSg63v+A/Z4POzcuTMtRkkGBhFMFC0OqtFlmyccwRdqgVgsseYIheoqN8Dan/Vdet375Hz4ewBax5+HUT4vabtjCwIB6XRJBii2CbEWN8UY2HtKSSKR9D3ddryGDh3Khx9+uMfta9asYcgQ2ap8IBEwymn97AqG7fxal21q3HXGik45GV9pCe4QIYVDDlUZPUGnuFTDm5tLsLy8T21WwzvIe/enKMImVvEFImO/kbTdzbwr6F7peEkGIEJAaw3kD4P8ns/sk0gkvUe3Ha8TTjiB66+/nlinCEY70WiUG2+8kS996UtpNU6S2VjCizCLybGLumzTjDgAsepqiubMxl9WiqrC0OEah8z348vPI3f0GKxIpE9tVo0mUFTMvIMITbuiS3u9ZYJHl46XZIASbQBvjjtbVO1baQOJRNI9up3vue6663jiiSc46KCDuOSSSxIqtp988gn33HMPtm1z7bXX9pqhksyjWt9AcMRKdtpDgalJ2xTDncEY2bSJ+rdXUjRnLp+s82GuiTB1YQ65o8cQ2rgBYzddsr2JVTCJhvn3gOIBreuYI8sSeH0KHl06XpIBRrs6/ZCJcqaoRJLBdNvxKisr48033+S73/0u11xzTUK5vl247Z577qGsrKzXDJVkHmGtBS24GTPa1YFpF1BVfH7itTvZ9spK5nx9Dp8s30HR+KF97nR5mj7FyndvFpzgntObtgmBAul0SQYYndXpcyv2vb9EciCQgR2NkKKA6ogRI/jvf/9LY2Mjn332GUIIxo0bt09NEMngxB8ZS7S1hBEBAbtMnKibOZ3GsSMYPdwdrBqrrab2w01MP+YgwtVVfep0+bb9j7z3byMy6jRaJ313j+rdoq3zUvdJ4VTJAEOq00skA4YetZYVFBQk5P4lBy7CKsQKD6fUWw8kzy8MVw7DphylbWhr/vBSiqePILx9O4GyMsxQqE+cL0/jWnLX3OHaq/n2elGyLdA8sr5LMsCQ6vQSyYCi/2e2SAYsDYEP8eVsp1EdCiSnmRXDpH2KkK+0hMJZs3n/n++gqjajZrb2SY2XGt1J3js3ojgm8bLDCI8/b6/7W6ZA9yrsRTVFIsks2tXpSyZIdXqJZIAgcyqSHhP1bcFb8DatenWXbeMfepgp9/yZQCBI0ZzZfPjvVbz1Woytm22MUIjQxg3kjh6Dt7cmBdgx8t65ES3egJUzktCMa0DZ+9vdtsEXUPpV2FUiSYnWnZBTBgUj+9sSiUTSTaTjJekxautE4rXHMtQalrzBcdBMCwXwlZdR//ZKaj+rA0ik8dqdL08wmH7DhCB39R3ozetw9FyaZv8M4dn36zgO+P3yT0IyQIiF2tTpD3L/lxwQLF68GEVR+M53vtNl28UXX4yiKCxevLjvDZN0G3mVkfQYJzIeo/5ohtvJXVRqm5QEQGj9Z8Rrd2JZrsPVuX7KCIWIVHeNlu0vwc8ewb/jZYSi0TzrRpzgvoV9bUugabK+SzJAsE3X8ZLq9Ackw4cP57HHHiMajSbWYrEYjzzyCJWVPRfOFUJgWVY6TJTsBel4SXpMLGsNesEyYp7GpHXH5+WjC77JunO+iuJxywjN3ThevYWVOxpHC9By8Pcxi6Z17xhL4NHBI+u7JJmOENBaK9XpD2BmzpzJ8OHDeeKJJxJrTzzxBJWVlcyYMSOxFo/HufTSSyktLcXv9zN//nxWrlyZ2P7KK6+gKArPPPMMhxxyCD6fjzfeeIOWlhbOOusssrKyGDJkCHfeeScLFy7ksssuSxz7l7/8hVmzZpGTk0N5eTnf+MY3qK2t7XLuF198kVmzZhEMBjn88MP59NNPe/eHMwCQjpekxzj5b+Ev/zctnrrkDYqC7Q9gFeQlljocr963yyg7jIYvLCE2ovuTFCwT/EEFVZURL0mGE20Ab7ZUp+8tjPDeH3aniJAQYMbcdTOW/NwIgxlN3nfXc+0H559/Pg899FDi+Z///GfOOy+5geiqq67in//8J0uXLmXVqlWMHTuWRYsW0dDQkLTf1VdfzW233cbatWuZOnUql19+OcuWLeNf//oXL7zwAq+//jqrVq1KOsY0TX72s5+xevVqnnrqKT7//PPdpjivvfZa7rjjDt555x08Hg/nn3/+fn3fgwHZ1SjpEUKA2ToOxSigSM+GTv6KGomQu2UrIjeIUjISIJFq9PaSRpYSb0Rv+hSj7FAAHH/XMUZ7wxHgk/VdkkxHqtP3PrfuQ4D2jCUw+cvu16uWwqRTYNVfYObZ8NiZsOGljn0rZsCFr7hfR+rhV2OSz3VTc4/N/OY3v8k111zD5s2bAVi2bBmPPfYYr7zivl44HOa+++5jyZIlHH/88QA88MADvPDCCzz44INceeWViXPdfPPNHHvssQC0tLSwdOlSHnnkEY4++mgAHnroISoqkn8unR2o0aNHc9dddzF79mxaW1vJzs5ObLvllls48sgjAdfBO/HEE4nFYvj9/h5/7wMd6XhJeoQlFOJ1XwSgcsRm3CHYLr6anQx55gViJUUwdS7Qy6lG2yDv3Z/ibfiQ0JQfEBtxUkqHO45AVfsmGieR9BjhQGsdFI6S6vSZQv1nrtM171JYdley09XLlJSUcOKJJ7JkyRKEEJx44okUt+kmAmzYsAHTNJk3b15iTdd15syZw9q1a5PONWvWrMTXGzduxDRN5syZk1jLy8tLjAls59133+Wmm25i9erVNDY24jgOAFu2bGHSpEmJ/aZO7RgnN2SIW29bW1u7X7VoAx3peEl6RFwoaFmfgtBAESREu+gYF+R4vYlAmGm50aS0O15CkPPhXXgbPsTxBLtd09UZywSPFE6VZDrhOggWSHX63uYnO/a+vfOM16NvBNUDtgGHfx/mXAjC7tjeWcImWLTvc6fI+eefzyWXXALAPffc0+PzZGVl7XunToTDYRYtWsSiRYv429/+RklJCVu2bGHRokUYbZ//7eidhBHbpXranbQDFZlbkfSIuKMQGPZXgiP+RFSNJm1LOF4+L0qb62XZbREvX3ovGIFNTxDY+iwCldDM67CzU7+LskyB36+gafJiJslQEur0B0l1+t7Gm7X3h9YpXqHprhOsed3/dX/yvp1/V4rS9Vz7yXHHHYdhGJimyaJFi5K2jRkzBq/Xy7JlyxJrpmmycuXKpIjUrowePRpd15OK8Jubm1m3bl3i+SeffEJ9fT233XYbRxxxBBMmTEgqrJfsHRnxkvSImFBw4uWoahy/SM7RdUS8dFDc64VHEwjh4E2j4+WtXUn2x38AoHXShRilc/ZxxO5xHIEvKJ0uSYaSpE5f2t/WSDIITdMSaUNNS260yMrK4rvf/S5XXnklhYWFVFZWcvvttxOJRLjgggv2eM6cnBzOPffcxHGlpaXceOONqKqaiFhVVlbi9Xr5/e9/z3e+8x0+/PBDfvazn/XeNzrIkI6XpEeYQiXy+cUUeiyCw7clbVPjHalGcG/0jp61EzweAsG8LufqCVrrVnJX/RwFh+iwRURHnd6j8whHgCLTjJIMRqrTS/ZC7l6mf9x22204jsPZZ59NS0sLs2bN4rnnnqOgYO/ab7/5zW/4zne+w5e+9CVyc3O56qqr2Lp1a6IgvqSkhCVLlvCTn/yEu+66i5kzZ/LrX/+ak08+Oa3f22BFOl6SHhF1BIpej76H9Jyt6wifWwshBNgOaOmqS7EN8lZej2qFMQom0zLlBz2uebEs8OjS8ZJkKO3q9EXjpDq9BIAlS5bsdftTTz2V+Nrv93PXXXdx11137XbfhQsXIoTosp6Tk8Pf/va3xPNwOMxPf/pTLrzwwsTamWeeyZlnnpl0XOdz7e7c06dP3+3rHWhkfI3X9u3b+eY3v0lRURGBQIApU6bwzjvvJLYLIbjhhhsYMmQIgUCAY445hvXr1/ejxQcG9bSQPfZXREf8rsu2xsPn8v63zqZxvivt0NKq8szycv63PE0K25qXyNgzsbKG0jzrJre+oodYpsDrVfB4pOMlyTA6q9MHC/vbGskBxHvvvcejjz7Khg0bWLVqFWeddRYAp5xySj9bNjjIaMersbGRefPmoes6zzzzDB9//DF33HFHUpj09ttv56677uL+++9nxYoVZGVlsWjRImKxWD9aPviJ4yAcL4qzZ6dHaRMjbZeS0NT03enEhi+i4cg/IXz758xZNvhlrbIkE5Hq9JJ+5Ne//jXTpk3jmGOOIRwO8/rrryfJVUh6TkanGn/5y18yfPjwJHXeUaNGJb4WQvDb3/6W6667LuGJP/zww5SVlfHUU0/x9a9/vc9tPlDwm6W0fnozBwfDULYzaVv22k/RQ01oE8ZDERTm23xxdnWbh5Pf89fc9gK2vwSzeLq7oO7ffB8hBAq9J+oqkfSYiFSnl/QfM2bM4N133+1vM/afNTfte5+p3dgnzWT0Fedf//oXs2bN4owzzqC0tJQZM2bwwAMPJLZv2rSJ6upqjjnmmMRaXl4ec+fOZfny5Xs8bzweJxQKJT0kqREX7lvHr3SNYuWuXsPwN1eit42lUBTQNVeyoafo9R+Qs/oO8lf8GE/Tun0f0A1sCzSp3yXJNKy4O2qmeJxUp5dIBiEZ7Xht3LiR++67j3HjxvHcc8/x3e9+l0svvZSlS5cCUF1dDUBZWVnScWVlZYltu+MXv/gFeXl5icfw4cN775sYpGzzfkr2+OvZUfJYl21q3ARAeN3i+i3bdV5+v4SP1/u67Nsd1Eg1ee/ehCIs4uXzsfLG9dzwTlimQPfKwdiSDEI4boqxYKRUp5dIBikZ7Xg5jsPMmTO59dZbmTFjBhdeeCHf/va3uf/++/frvNdccw3Nzc2Jx9atW9Nk8YFDDAtFNVGVrgrE0RHDaRw5HJHjzuuKxRUiMQ+GmXpkSbEi5K+8HtVoxswbR2j6lWlT7bYsCASVhDaNRNLvhOvcQnqpTi+RDFoyusZryJAhXRR2J06cyD//+U8AysvLAaipqUnMgGp/Pn369D2e1+fz4fP1LPoiccmJTKK1fjKzc1ohL9n5ql94BPWxVipyXH2ZxJzGVCNLwiH3vdvwtGzC9hXSPOtm0NI7WFXWd0kyBiPiRrykOr1EMqjJ6KvOvHnz+PTTT5PW1q1bx4gRIwC30L68vJwXX3wxsT0UCrFixQoOO+ywPrX1QMN0fAizkFyRvfsdBChtby/L7JnjlfXpEnw1byJUneZZN+EESvbH5CRsS6Bpsr5LkiE4NkTqXekIqU4vkQxqMjri9cMf/pDDDz+cW2+9la9+9au8/fbb/PGPf+SPf/wj4A7cvOyyy/j5z3/OuHHjGDVqFNdffz0VFRWceuqp/Wv8IKc2ayXB4o/YYR0EHJRYVwyD8if/TaFHI3bGl4GeRbw8jR+T9dkjALRMvRyrYM+zxXqCZYo24dS0nlYi6RlSnV4iOWDIaMdr9uzZPPnkk1xzzTXcfPPNjBo1it/+9rcJMTeAq666inA4zIUXXkhTUxPz58/n2WefTYw2kPQOMa0JLbANK5JcAKzGDQI7qvCpCkbb7LCE45WCk2PlT6Rl4kWoRjOxYcemze7E+S3IzZH1XZIMIBZyBy9LdXqJ5IAgo1ONAF/60pf44IMPiMVirF27lm9/+9tJ2xVF4eabb6a6uppYLMb//vc/DjrooD2cTZIuvKHZRLaeyxhjQtJ6YkC27oV2AdVEqjEFJ0dRiI45g/DEb6XH4F1wHPD5M/7tLxnstKvTF42V6vSSbrF48WIUxb1p1HWdUaNGcdVVVyWJhrdvVxSFrKwsxo0bx+LFi7toc73yyisoikJTU1NibceOHUyZMoUFCxbQ3NyctE/n197dY+TIkX30UxjYyCuPpEfYRgl260RKnKKk9XbHy/bqKLRHvNxt+r76Gew4ue/chKe5d0c+ObZA1VKLwEkkvYJUp5f0gOOOO46qqio2btzInXfeyR/+8AduvPHGpH0eeughqqqq+Oijj7jnnntobW1l7ty5PPzww3s874YNG5g/fz4jRozgueeeIy8vL2n77373O6qqqhKPzq9TVVXFypUr0//NDkIyOtUoyVzCeW/g9zTQpI0GOpyvdsfL8uq0x7es9lTj3t5tQpC7+tf4q99Ab/qU+i8s3a8ZjHvDMkGXwqmS/kaq02ckETMCQMATQFEUolYUIQQ+zYemasTtOLZj49W8eFQPlm1hOAa6qqNrOrZjE7fjqIqK3+PHEQ4xy41GBfVg0mu0P08Vn8+X6OofPnw4xxxzDC+88AK//OUvE/vk5+cn9hk5ciRf/OIXOffcc7nkkks46aSTkkbvAaxZs4ZFixZx1FFHsXTpUjyerh/Y7dqXnen8OpLuISNekh5hBT9Dz3+XuNaStK7G2yJeup54c3Wnxiu44VH8O15GKBqh6T/uNacLwLIEvqCCqkrHS9JPSHX6jGXuI3OZ+8hcGuONAJz59JnMfWQuq2pXAXDN69cw95G5/N+6/wPAEhaPf/o4lnBD+//b8j/mPjKX7/7vuwBsbNrI3Efmctw/j+vyGungww8/5M0338Tr3fdn5g9/+ENaWlp44YUXktbffPNNjjzySE4//XT++te/7tbpkqQP+dOV9Air8VDs1vFUZCWnGo3CAhoPnU2jT6NAURACxowwMMIGXu/uGx681W+S9Yk7j7N18sUdsxh7Cbe+Szpdkn6iXZ2+cDTkDNn3/pKMZm3DWs47+DyW71jOYRV9I2P09NNPk52djWVZxONxVFXl7rvv3udxEya4Nbmff/550vqXv/xlvva1r3XrHJL9RzpekpQRAmKhqQgUhgS3AnZim1lcRGNxEbXRZgoVBUWBiePiWI3NePSuFxkttJHc936BgiAy4iSiI0/uVdsdR6Ao4JVpRkl/0VmdXpVJh0xjxTdWAG6qEeDRLz2aSDUC/OKIX/DzeT9H11x9nOkl0zFtk0OHHArA0ZVHs+IbK1AV93c7On904py7vkZP+cIXvsB9991HOBzmzjvvxOPxcPrpp+/zOCHc2bq7dnOfcsopPPnkk7z++uscccQR+2WbZN/Iv3pJyphCwVP4Bnrha1hqeI/7KSgYhsLmbTo1DX52dXWUeBP5K29AtaMYRdNpnXxx7xqOOxjb1e+SjpekH5Dq9BlPUA8S1IMJ5yTgCRDUg2htdXg+zUdQD6KrruOlKAq6pif296gegnoQv8eN8KuKmjjnrq/RU7Kyshg7dizTpk3jz3/+MytWrODBBx/c53Fr164FXPHxzvzhD3/g61//OscffzyvvfZaj+2SdA/peElSJi4UfEUv4y/7L6YaTdpWsOwtKv/4EEPe/wgFCEdUVn8c4OOtBV1mzwU/fwotWo0VrKD5kOtB7f0ArGUKvD4FzSMdL0kfI9XpJb2Aqqr85Cc/4brrriMaje5139/+9rfk5uZyzDHHJK0risIf//hHzjrrLE444QReffXV3jT5gEc6XpKUiTsqZmg6dvN0skmu29IiETzhMKrtph81TVBeYlKUE+vieIUPOpvwuG/SPPtnCG9yp0xvYdngD0qnS9IPSHV6SS9xxhlnoGka99xzT2KtqamJ6upqNm/ezAsvvMBXvvIVHnnkEe677z7y8/O7nENRFO6//37OOeccTjjhBF555ZW++wYOMGSNlyRlDKEQrzmZbNUme8TWpG2qYQJge70oisLQmWMoGdNE5JNqUNpC68IGRcObV4A48mrs6uo+sVsIgQIyzSjpe6Q6vaQX8Xg8XHLJJdx+++1897tuN+V5550HgN/vZ+jQocyfP5+3336bmTNn7vE8iqJwzz33oKoqJ554Ik8//bSc7tELSMdLkjJhx8GT8wG6oiEIoHSq3mqYdyihaVNo9CkUA03bG9FHTsCpiQAK+s53yfn4PiLH3kv26DGENm7oM7ttCzRZ3yXpa9rV6csPlur0kv1myZIlu12/+uqrufrqq4GOIvp9sXDhwi77KorC3XffndThuKfzdfd1JMlIx0uSMiFiBIb9DUtoKPHkEU5Wfh5WXh5GLISqKGz8MMTaJ9dw0OxyZg2tJe/Fn6FWziFn/DSaN27ACIX6zG6zrb5LStRI+hSpTi+R9C9Tb+pvC5KQlyBJyhhCwYqMxK8Idm1V1OvqEIqG0pZNaVett+uqyZ82B8X+MeKQc2netBmjNdKndtsW+PPlYGxJHxJpAG+WVKeXSCQJpOMlSRnNziO6+TuM8EdhSE3StvKn/oPe0kLLaSdC+YiEar0nvA1l1VqYdynRbZv63OlqD4l75WBsSV/Rrk5fMUOq00skkgTyKiRJmbAwUbw70Txd04QdQ7I9KAqYput4BQuyYObZ2O/8BX/5cLy5uX1qs22Dpsn6LkkfIYSbYiwYKdXpJRJJEjLiJUmZas82ssc8QW18CIhTOjYI0cnx8qICpju+jLwZs+Ef52M3NxHJnUNuW2F9X9V4WaZwhVP1Pnk5yYFOeCcECqQ6vUQi6YL8RJCkjCVA2H48IlnDS7EslLaUnhvxUrHbir2ctS/Bhpdw9GyMUIjQxg3kjh7TZ5EvywR/lqzvkvQB7er0JeOlOr1EIumCjHhJUiY7Np7WmjnMzW2GosbEuhp3o11CUXDaWgctWwVsPPXuqArhyQJIOF+eYLBPol4C8PnkfYakl2lXpy+ZAFkl/W2NRCLJQKTjJUmZmAMg8KrJGi7taUbH60VRVBQF4mETUInnTKN20l9QsjrmkxmhUJ84XbYt0FRZ3yXpAzqr08voqkQi2Q3S8ZKkzI7s5WQPfY3PI9OAuYl1syCfTRdfiDAMBA4KJLoadV3F8eWjevs+9WKZ4NFBl4Lhkt5EqtNLJJJuIHMvkpQxFRNFcfAou7x9FAXh9WJnZblq9kLBttscL40uml99hWUKfAEFVZURCEkv0a5OXzRWqtNLJJK9Ih0vScoEm46kdf01TIrMSVr3NIfI+nQdvh1VoLiF7EfNa2X+7BDlzUspXPkj9Lr3+9xe4YA/IN/qkl6ktRZyK6Q6vaRP2Lp1K+effz4VFRV4vV5GjBjBD37wA+rr6xP7LFy4kMsuu6zLsUuWLEkakr1kyRKUts/rzg+/39/lWEl6kFcjScqYthdh5ZGrJKcN/du2U/bf5ylc8Q4KbolLdpZDQa6Nz9qON7QOxTH61FbHESiaTDNKepF2dfqSg6Q6vaTX2bhxI7NmzWL9+vU8+uijfPbZZ9x///28+OKLHHbYYTQ0NKR8ztzcXKqqqpIemzdv7gXrJSBrvCQ9oLnwWYL+zVSZM5nO8MR6R3G9jgJEwh7WvB8ky29zguYq1Tt63yp4WyZ4PLKwXtJLJNTpp0t1+kGCE9n9VA3F50PRNITjIGIxUFV3ra2JQlgWaBoiHgfH6XSgghpwb1IdwwCrTdzQ40H1pn5HePHFF+P1enn++ecJtJ23srKSGTNmMGbMGK699lruu+++lM6pKArl5eUp2yLpGdLxkqSMpTeg+avAiSetO34/sfIyjIJ8UMA0NBqaPBhBBTUvCoDQs/vWVksQyFLRNOl4SdJMuzp94WjIqehvayRp4tOZh+x2vXLpUrLmzsHcsoUNxx0PQNaCI6j84x8BELbNtosuIrzszaTjvGPHMObppwGo/fWvaXz4LwAUnHM25T/5SUq2NTQ08Nxzz3HLLbcknK52ysvLOeuss3j88ce59957UzqvpG+RjpckZZydi4jUz2dUvoBON2ytE8fTOnE8hmWhiBjZORazpkbAsVDrXMfL6WPHy7EFgYB0uiS9QGuNVKc/wAm/uTzxdXzDhi5OV7pZv349QggmTpy42+0TJ06ksbGRnTt3AnDvvffypz/9KWkfy7K61G81NzeTnZ382XzEEUfwzDPPpNF6STvS8ZKkjBEbgi1Uigq2AVaX7e3qXj6voKDcglgT1LVt60PHyx2MLdOMkl4gXAeaH0onSXX6Qcb4Ve/udl3x+QDQKys79unkcPsnTmT8++8lpxkhSc+t9IorKG0vePf0/PIrhNj3TsBZZ53Ftddem7T2xBNPcOuttyat5eTksGrVqqS1XSNqkvQhHS9JSjgCKP0Xfi1OWJtICR0jf3LfW423rp6Gg8YSqyiivt7LZ/V+ioMawwGh+UDtu2GJrn6XdLwkaSba5P5fNgmyivrVFEn6UYPBvW5XVBVlN/soioKyj05A1euFHtR1tTN27FgURWHt2rV8+ctf7rJ97dq1FBQUUFLiTk3Iy8tj7NixSfuUlpZ2tUtVu+wn6T1kfFySEqZQ8OR8jJ73HkJJ7lAMbN5C7ocf421qBiDUrPP5Ni/1TW3zGj19XN9lCnSv63xJJGkh3gJmDEonugr1EkkfUlRUxLHHHsu9995LNBpN2lZdXc3f/vY3vva1r8mZtBmOdLwkKWEIhfjORcRqTqSYrKRtqmECYHu9KChtcxrBo6s0FZxApPKkPrXVtiAQlB9AkjRhRFyR1NIJkDu0v62RHKDcfffdxONxFi1axGuvvcbWrVt59tlnOfbYYxk6dCi33HJLyucUQlBdXd3l4eyaNh2ITL2pvy3ogkw1SlIi7qhYzYfgVRxy8rYkbWuXk7C9uut4tY0L0rw+motOxj92VJ+J1wshQAFdDsaWpAMr7up1lYyXcxgl/cq4ceN45513uPHGG/nqV79KQ0MD5eXlnHrqqdx4440UFqY+OSEUCjFkyJAu61VVVVJmoheQjpckJSLCwVvyHD6hYzMCjQ7BSDXe7nh5k+c0am2FoH14sbIt0DwKXlnfJdlfbLNNNmKM28EonS5JPzNixAiWLFmy131eeeWV3a4vXryYxYsX7/G5pPeR4QBJSrQKC1/xy1DyvDuPsROdBVTpFPHyO7Vkhd7C07yhz+zsqO/qs5eUDEYcC1qqIX+EVKaXSCRpQUa8JClhChWj4XCyPHFUb7Lf3jp+HFoshhHwg0LC8coxP6W4dgmRYBOtBeP6xE7bhpygIotMJT1HOBCqdmcwlk4ATXrxEolk/5GOlyQlhB0kXnsyQ30xqKhO2lZ/1JEA2KaBipNINfqUFqBvxVMdB7yyvkvSU4SAlirIKnG1ujy+/rZIIpEMEqTjJUmJkIjiyV2NUHVgT3o3AqVTxMtHk7vaR46XbQk0Tep3SfaDlhrw5blaXd696zpJJBJJKkjHS5IS9Vo9gaF/p9koAef0xLqnOUTpf57Fzsqi9fhjQKiYZluNF40AiD4akG1ZAo+uyPouSc9orXXV6Msmgz933/tLJBJJCkjHS5ISjuPFCo8mT+QkvXvUWAx/TS1WdjYgUFDJy7WxLAW/cB2vvko1Wibk5Cuoqox4SVIk0uAW0JdNhmDqbfkSiUSyL6TjJUkJvzGMaO2FjMoJQXFDYr2jo9GLAyia4Ii5YVRFwbs2BPRdqtER4PPL+i5JisRCrnTEkKmQXdLf1kgkkkGKdLwkKdFKBNUXQ/EkKxqbhYXUnLAIoWnulGxHJRpV8OqgOhGgbxwvxxGoKug9H4cmORAxwu6jbLLbxSiRSCS9hHS8JClRE/iIrCEvsi06CViQWLezgoTHu1IRIhbDigR4cU0uWUGbbxaoCNQ+STVaJugeWVgvSQEz6g6+Lp0I+ZX9bY1EIhnkyHyMJCUsR8OxsvAJf9K6YpoocQOEQCAQQkVVBboHtlXeyrbJD+L4S3vfPlPg8ytomnS8JN3AikO4zlWkLxglVeklkr2gKApPPfVUf5sx4JGOlyQlslvmEl5/PdNaj05az3tvNaPu/SPFL7wEQCA3zJeOaWH+nLCbetTUPrmoOY7AJwdjS7qDY7kdjAWjoGgcqPLjUJL5LF68GEVxxaF1XWfUqFFcddVVxGKx/jZN0k1kqlGSEjFHAA4+NbnGS2krrhdet7hKbRsnpKpgI6APxmMLR4Ai04ySbuDYEKqCvGHu4GtNfhRKBg7HHXccDz30EKZp8u6773LuueeiKAq//OUv+9s0STeQt3iSlKgv/jc5E3/CpsA7SeuqYQLg+LwIBM01JfznxRzWfhilcvPllG64pddtsyzw6NLxkuwD4bjzF3PK3Louj+zEkHRgxu1uPWzbvfm0bcd9brnPnbbn3Xn0FJ/PR3l5OcOHD+fUU0/lmGOO4YUXXgCgvr6eM888k6FDhxIMBpkyZQqPPvpo0vELFy7k0ksv5aqrrqKwsJDy8nJuuummpH3Wr1/PggUL8Pv9TJo0KXH+znzwwQccddRRBAIBioqKuPDCC2ltbU1sX7x4Maeeeiq33norZWVl5Ofnc/PNN2NZFldeeSWFhYUMGzaMhx56qMc/i4GIvM2TpIStuA6WT0n22dV4h5wEgLA1bFtBESaqiKMIo9dts0yBL6Di8UjHS7IHhHCdrkAhlE52hVIlkk788Qevdmu/BV8/iCkLhyFswYevbuPgI4eheWDj+3U898CH3TrHxfcftT+mAvDhhx/y5ptvMmLECABisRiHHHIIP/7xj8nNzeU///kPZ599NmPGjGHOnDmJ45YuXcrll1/OihUrWL58OYsXL2bevHkce+yxOI7DaaedRllZGStWrKC5uZnLLrss6XXD4TCLFi3isMMOY+XKldTW1vKtb32LSy65hCVLliT2e+mllxg2bBivvfYay5Yt44ILLuDNN99kwYIFrFixgscff5yLLrqIY489lmHDhu33z2MgICNekpRQqr9C67rrmGhMSFpP1vFyELYGgFd1pSQcLavXbbNs8MvrqGRvhGvBm+2OAvL13exQyeBl55YWZnxxBNUbm/vsNZ9++mmys7Px+/1MmTKF2tparrzySgCGDh3KFVdcwfTp0xk9ejTf//73Oe644/j73/+edI6pU6dy4403Mm7c15h/3gAAGzdJREFUOM455xxmzZrFiy++CMD//vc/PvnkEx5++GGmTZvGggULuPXWW5OOf+SRR4jFYjz88MMcfPDBHHXUUdx999385S9/oaamJrFfYWEhd911F+PHj+f8889n/PjxRCIRfvKTnzBu3DiuueYavF4vb7zxRi//1DIHGfGSpIRp+xCORrbaDJiJddWIAx0RL6fN8fIpbY6Xp3cdLyEECnIwtmQvROpB9ULZwRDI729rJBnKhb87slv7qW2R9fIxediWw7AJBQCMnl7c7XP0lC984Qvcd999hMNh7rzzTjweD6ef7o5ws22bW2+9lb///e9s374dwzCIx+MEg8kzR6dOnZr0fMiQIdTW1gKwdu1ahg8fTkVFh6bdYYcdlrT/2rVrmTZtGllZHZ/t8+bNw3EcPv30U8rKygCYPHkyaqfGlbKyMg4++ODEc03TKCoqSrz2gYB0vCQpYQ9dSlBvot5awFCKE+s7v3gMajSKlZcL2Di2+4fmU8IACK13Bw3bFmgeBd0n04yS3RBrAseBIQdDVlF/WyPJYHSfltL+iqKgdSpvUDUVNbVTpExWVhZjx44F4M9//jPTpk3jwQcf5IILLuBXv/oVv/vd7/jtb3/LlClTyMrK4rLLLsMwkss9dD15mK2iKDhOctNUOtjd6/TVawOw5iaYelPvnLuHyPCApNs4AhRvPZqvFo+aXBhq5eVilJfhBNxcX0fEq8V97undtI5lCnQveOSthGRX4i1gxNz0Yk55f1sjkaQVVVX5yU9+wnXXXUc0GmXZsmWccsopfPOb32TatGmMHj2adevWpXTOiRMnsnXrVqqqqhJrb731Vpd9Vq9eTTgcTqwtW7YMVVUZP378/n1TgxzpeEm6jSEUotu+QWTztxgmCpK2+XZU4a3dCbbrkNntNV64cxp7O9VoWRAIuto2EkkCM+LOYCydALlD+9saiaRXOOOMM9A0jXvuuYdx48bxwgsv8Oabb7J27VouuuiipJqr7nDMMcdw0EEHce6557J69Wpef/11rr322qR9zjrrLPx+P+eeey4ffvghL7/8Mt///vc5++yzE2lGye6Rjpek28QdFSc+FCcyhhwluQV/yD+eYtjfHkcLR0CQSDX6lSYARC9HvEDWd0l2wYpDuAGKD4KCkVKVXjJo8Xg8XHLJJdx+++386Ec/YubMmSxatIiFCxdSXl7OqaeemtL5VFXlySefJBqNMmfOHL71rW9xyy3JkkDBYJDnnnuOhoYGZs+ezVe+8hWOPvpo7r777jR+Z4MTRQgh+tuI/iYUCpGXl0dzczO5ubn9bU63eOKOX2HGDLKL8/vsNWtMjV/xIqrQudk7Gz9tzpdlM/r39wHw+Xe/TS0m4U8OQQiVE2a+R27kE6zKQ1Eqp+7l7D3HtgRGHIZUevDKGi8JgG26shGFY9xoV28X3UgGFLFYjE2bNjFq1Cj8fv++D5D0K3v7fXW5fq+5qesJMqzGS1bESLpN2HHw5H0CgBLr0INRLRMrOxvViON4dUTMRAg3+iTyxhBSi/FmDUHf7Vn3H8sUbcKpvfQCkoGFY7lOV/4IKDlIOl0SiSSjkI6XpNtYQiW64yvkeKLouR1vHcfvZ8u3FyftO2REHbmebDwesOndgUGWBbk5sr5LgqtKH6qG3Ao30qX1lrsvkUgkPUM6XpJuYzk6VvMssrxx1NyqPe6nqILiISFG5XrJrX4CO+YQt78CFOzxmP3BccDnl/VdBzztqvRZJVA6CTy+/rZIIpFIuiAdL0m3aVTCeEuewVL8wKjEuqepmZyPP8HMy6V18kRsU2fntgI8eRqH1/8/AKrFl3vFJscWqBoyzSiB1hrw5bqyEd7e1Y2TSCSSniLDBJJu00wLvuJXieW+nbTubWigYMVKcte488mceIDqbQVs2NzhDTl671wILRN0ORhbEt4JHj+UTQb/wGiQkfQ/srdsYDDYfk8y4iXpNoqTjVE/nzJNg06NJYqRPCBb8RgUlbZQEjAhDo7idUe19AKWJcjKVVFV6XgdsEQaQFHdUUDBwv62RjIAaFdOj0QiBAJywGumE4m4o+d2VbwfqEjHS9JtPP+/vTsPivK84wD+3X2X3cUVWM4FghyNXCJXJCCHEZWKTkJrzMjUEkRN70U51KptKUiKHC2eJRq1g5lORNNpsbaOZghRU4kcomhsI1FixChHVA65Fth9+gdh4woeKO4LL7/PzM7wPu+773732XXfn+/xvH1W0LS8BofJHYD8tr5drBm4ZyOTDvyjEMu64OJwF27iVuAqoBOZ4nmdXj9wfhcVXRNWT/vA0BEOfsBkW77TkHGC4zgolUr9/QEnTZpEF+eMQYwxdHV1obm5GUqlEhwnjCuUqfAiT6xV3AqJ+VfoM5EB+G4k+iE3yNaYou3OJHTIWwamxZOeS92l0zGIRICUDjNOTL2dQG/HwJ4uc8fHL0/IfeztB24fNZFuzjxeKZVK/eclBFR4kSd22+Q6TO0+xJ1uTwBz9O3iBw419rdbo+6OLcSqHkwVATqx6XMZNFzbj2/H76LCa8Lp6wa6WwE7b0DpzHcaMg6JRCI4ODjAzs4OfX19fMchD2FiYiKYPV2DqPAiT05rhv4Od5gzW9w/Gmr/ZDN0v+CIPqtvh4vQDnytpOJvbx8kfj6HGvv7GOSTxOAkVHhNKNpeoPM2YOMOWLrRrYDIM+E4TnAbdjK2jemrGjMyMiASiQweXl5e+vk9PT1Qq9WwtrbG5MmT8cYbb4z4ZqDkycm7vNB94y24d4UZtN/zn46G2MVo9/cFADDdQOFlImHolTuhT2L7XA419msZ5JNoozuh6PqBe00DBZe1OyAe0z9hhBAyxJjf4+Xj44OPPvpIPy2RfBc5JSUFR48exd/+9jdYWFggMTERixcvRllZGR9RBa+Ta4NY3gaI+x++EAOYduB/j8zMBU1OWdC2tEE2ynslGGMQgQ4zTig6LdDeAJi/ANh6AtyY//kihJAhxvwvl0QiGfakura2NvzlL3/BgQMHMHfuXABAYWEhvL29UV5ejpkzZxo7quDdNfsUCvNq3OwMA/DdDa8tPy2HpO0e2gL90KtSAbqBwsvE5NuxV57DECz9fQBH53dNHEw3MCq9mWpggFQJjZhLCBmfxnzhdeXKFTg6OkIulyM0NBTZ2dlwdnZGdXU1+vr6EBUVpV/Wy8sLzs7OOHPmzCMLL41GA41Go59ua2sDMHCX8/Giq6cHfT29EHd3G+01+zQi9GESOI0IXZLvXtf86pcwaf4GPa7O6DY3R1d3L1hvJ3p77uBeuxba7l70dnaBG8UKrLubQSoDurolEPVQ8SVojAEdzYDMApBPAbr7Bh6EkAlvcLs9ngZZHdOFV0hICPbv3w9PT080NDRg06ZNmDVrFi5duoTGxkZIpVIolUqD56hUKjQ2Nj5yvdnZ2di0adOQ9ilTpoxmfMGqRSWKhpux/YqxoxBCCCG4d+8eLCwshp95MWNkK/Mb4fIjNKYLr4ULF+r/9vPzQ0hICFxcXPDBBx8802jDGzduRGpqqn66tbUVLi4uqK+vf/gHR55Ze3s7pkyZghs3bsDcnG7r8rxQPxsH9bNxUD8bz3jsa8YY7t27B0fH8TOW35guvB6kVCrh4eGBq1ev4vvf/z56e3vR2tpqsNerqanpsQOtyWQyyGSyIe0WFhbj5ss2npmbm1M/GwH1s3FQPxsH9bPxjLe+Hm87TMbVtdgdHR2oq6uDg4MDZsyYARMTE5SWlurn19bWor6+HqGhoTymJIQQQggZ3pje47V27VrExMTAxcUFt27dQnp6OjiOw9KlS2FhYYG33noLqampsLKygrm5OVatWoXQ0FC6opEQQgghY9KYLry+/vprLF26FHfu3IGtrS0iIiJQXl4OW9uBm+Fu3boVYrEYb7zxBjQaDaKjo/HOO++M+HVkMhnS09OHPfxIRg/1s3FQPxsH9bNxUD8bjyD6+jmfGD8aRGw8XYNJCCGEEDKOjatzvAghhBBCxjMqvAghhBBCjIQKL0IIIYQQI6HCixBCCCHESCZ84VVQUABXV1fI5XKEhISgsrKS70iCkp2djZdffhlmZmaws7PDokWLUFtby3cswcvJyYFIJEJycjLfUQTp5s2bePPNN2FtbQ1TU1P4+vri7NmzfMcSFK1Wi7S0NLi5ucHU1BQvvvgi3n777XF1T76x6JNPPkFMTAwcHR0hEolw+PBhg/mMMfz+97+Hg4MDTE1NERUVhStX6HZwo2lCF16HDh1Camoq0tPTce7cOfj7+yM6OhrNzc18RxOMU6dOQa1Wo7y8HCUlJejr68P8+fPR2dnJdzTBqqqqwrvvvgs/Pz++owhSS0sLwsPDYWJigmPHjuF///sf8vPzYWlpyXc0QcnNzcWuXbvw5z//GZ9//jlyc3ORl5eHnTt38h1tXOvs7IS/vz8KCgqGnZ+Xl4cdO3Zg9+7dqKiogEKhQHR0NHp6eoycVMDYBBYcHMzUarV+WqvVMkdHR5adnc1jKmFrbm5mANipU6f4jiJI9+7dY+7u7qykpITNnj2bJSUl8R1JcNavX88iIiL4jiF4r776Klu5cqVB2+LFi1lcXBxPiYQHACsuLtZP63Q6Zm9vz/74xz/q21pbW5lMJmNFRUU8JBSmCbvHq7e3F9XV1YiKitK3icViREVF4cyZMzwmE7a2tjYAgJWVFc9JhEmtVuPVV181+F6T0XXkyBEEBQVhyZIlsLOzQ2BgIPbu3ct3LMEJCwtDaWkpvvjiCwDAhQsXcPr0aSxcuJDnZMJ17do1NDY2Gvx+WFhYICQkhLaLo2hMj1z/PN2+fRtarRYqlcqgXaVS4fLlyzylEjadTofk5GSEh4dj+vTpfMcRnIMHD+LcuXOoqqriO4qgffnll9i1axdSU1Pxm9/8BlVVVVi9ejWkUikSEhL4jicYGzZsQHt7O7y8vMBxHLRaLbKyshAXF8d3NMFqbGwEgGG3i4PzyLObsIUXMT61Wo1Lly7h9OnTfEcRnBs3biApKQklJSWQy+V8xxE0nU6HoKAgbN68GQAQGBiIS5cuYffu3VR4jaIPPvgA77//Pg4cOAAfHx/U1NQgOTkZjo6O1M9kXJuwhxptbGzAcRyampoM2puammBvb89TKuFKTEzEv//9b5w4cQJOTk58xxGc6upqNDc346WXXoJEIoFEIsGpU6ewY8cOSCQSaLVaviMKhoODA6ZNm2bQ5u3tjfr6ep4SCdO6deuwYcMG/OhHP4Kvry/i4+ORkpKC7OxsvqMJ1uC2j7aLz9eELbykUilmzJiB0tJSfZtOp0NpaSlCQ0N5TCYsjDEkJiaiuLgYH3/8Mdzc3PiOJEjz5s3DZ599hpqaGv0jKCgIcXFxqKmpAcdxfEcUjPDw8CFDonzxxRdwcXHhKZEwdXV1QSw23ERxHAedTsdTIuFzc3ODvb29wXaxvb0dFRUVtF0cRRP6UGNqaioSEhIQFBSE4OBgbNu2DZ2dnVixYgXf0QRDrVbjwIED+Oc//wkzMzP9eQIWFhYwNTXlOZ1wmJmZDTlvTqFQwNrams6nG2UpKSkICwvD5s2bERsbi8rKSuzZswd79uzhO5qgxMTEICsrC87OzvDx8cH58+exZcsWrFy5ku9o41pHRweuXr2qn7527RpqampgZWUFZ2dnJCcn4w9/+APc3d3h5uaGtLQ0ODo6YtGiRfyFFhq+L6vk286dO5mzszOTSqUsODiYlZeX8x1JUAAM+ygsLOQ7muDRcBLPz7/+9S82ffp0JpPJmJeXF9uzZw/fkQSnvb2dJSUlMWdnZyaXy9n3vvc99tvf/pZpNBq+o41rJ06cGPY3OSEhgTE2MKREWloaU6lUTCaTsXnz5rHa2lp+QwuMiDEaBpgQQgghxBgm7DlehBBCCCHGRoUXIYQQQoiRUOFFCCGEEGIkVHgRQgghhBgJFV6EEEIIIUZChRchhBBCiJFQ4UUIIYQQYiRUeBFCHuqrr76CSCRCTU0N31H0Ll++jJkzZ0IulyMgIIDvOE9l+fLlNBI4IRMUFV6EjGHLly+HSCRCTk6OQfvhw4chEol4SsWv9PR0KBQK1NbWGtxT7n6D/fbgY8GCBUZOO7zt27dj//79fMcAAIhEIhw+fJjvGIRMGFR4ETLGyeVy5ObmoqWlhe8oo6a3t/epn1tXV4eIiAi4uLjA2tr6ocstWLAADQ0NBo+ioqKnft3RoNVqodPpYGFhAaVSyWsWQgg/qPAiZIyLioqCvb09srOzH7pMRkbGkMNu27Ztg6urq3568PDW5s2boVKpoFQqkZmZif7+fqxbtw5WVlZwcnJCYWHhkPVfvnwZYWFhkMvlmD59Ok6dOmUw/9KlS1i4cCEmT54MlUqF+Ph43L59Wz8/MjISiYmJSE5Oho2NDaKjo4d9HzqdDpmZmXBycoJMJkNAQACOHz+uny8SiVBdXY3MzEyIRCJkZGQ8tE9kMhns7e0NHpaWlgCAkydPQiqV4j//+Y9++by8PNjZ2aGpqckgc2JiIiwsLGBjY4O0tDTcf5c1jUaDtWvX4oUXXoBCoUBISAhOnjypn79//34olUocOXIE06ZNg0wmQ319/ZBDjZGRkVi1ahWSk5NhaWkJlUqFvXv3orOzEytWrICZmRmmTp2KY8eOjbjfV69ejV//+tewsrKCvb29QZ8Nfj9ef/11iEQi/fSFCxcwZ84cmJmZwdzcHDNmzMDZs2cf2teEkCdHhRchYxzHcdi8eTN27tyJr7/++pnW9fHHH+PWrVv45JNPsGXLFqSnp+O1116DpaUlKioq8Itf/AI///nPh7zOunXrsGbNGpw/fx6hoaGIiYnBnTt3AACtra2YO3cuAgMDcfbsWRw/fhxNTU2IjY01WMd7770HqVSKsrIy7N69e9h827dvR35+Pv70pz/h4sWLiI6Oxg9+8ANcuXIFANDQ0AAfHx+sWbMGDQ0NWLt27VP1Q2RkJJKTkxEfH4+2tjacP38eaWlp2LdvH1QqlUFmiUSCyspKbN++HVu2bMG+ffv08xMTE3HmzBkcPHgQFy9exJIlS7BgwQJ9XgDo6upCbm4u9u3bh//+97+ws7MbNtN7770HGxsbVFZWYtWqVfjlL3+JJUuWICwsDOfOncP8+fMRHx+Prq6uEfe7QqFARUUF8vLykJmZiZKSEgBAVVUVAKCwsBANDQ366bi4ODg5OaGqqgrV1dXYsGEDTExMnqqvCSEP4Pkm3YSQR0hISGA//OEPGWOMzZw5k61cuZIxxlhxcTG7/59veno68/f3N3ju1q1bmYuLi8G6XFxcmFar1bd5enqyWbNm6af7+/uZQqFgRUVFjDHGrl27xgCwnJwc/TJ9fX3MycmJ5ebmMsYYe/vtt9n8+fMNXvvGjRsMAKutrWWMMTZ79mwWGBj42Pfr6OjIsrKyDNpefvll9qtf/Uo/7e/vz9LT0x+5noSEBMZxHFMoFAaP+9et0WhYQEAAi42NZdOmTWM//elPDdYxe/Zs5u3tzXQ6nb5t/fr1zNvbmzHG2PXr1xnHcezmzZsGz5s3bx7buHEjY4yxwsJCBoDV1NQMyTf4uQ6+VkREhH568HOIj4/XtzU0NDAA7MyZM4yxJ+/3+9fL2EB/rl+/Xj8NgBUXFxssY2Zmxvbv388IIaNPwmPNRwgZgdzcXMydO/ep9/IAgI+PD8Ti73Z0q1QqTJ8+XT/NcRysra3R3Nxs8LzQ0FD93xKJBEFBQfj8888BDByWOnHiBCZPnjzk9erq6uDh4QEAmDFjxiOztbe349atWwgPDzdoDw8Px4ULF57wHX5nzpw52LVrl0GblZWV/m+pVIr3338ffn5+cHFxwdatW4esY+bMmQYXMYSGhiI/Px9arRafffYZtFqt/v0N0mg0BueeSaVS+Pn5PTbv/csMfg6+vr76tsE9cYOfzZP2+4Ov7eDgMOTzfVBqaip+8pOf4K9//SuioqKwZMkSvPjii499D4SQx6PCi5Bx4pVXXkF0dDQ2btyI5cuXG8wTi8UG5x4BQF9f35B1PHi4SCQSDdum0+meOFdHRwdiYmKQm5s7ZJ6Dg4P+b4VC8cTrHA0KhQJTp0595DKffvopAODu3bu4e/fuiDJ2dHSA4zhUV1eD4ziDefcXQ6ampk90BerjPpvBdQx+Nk/a70/z+WZkZODHP/4xjh49imPHjiE9PR0HDx7E66+//tj3QQh5NCq8CBlHcnJyEBAQAE9PT4N2W1tbNDY2gjGm30CP5thb5eXleOWVVwAA/f39qK6uRmJiIgDgpZdewt///ne4urpCInn6nxRzc3M4OjqirKwMs2fP1reXlZUhODj42d7AMOrq6pCSkoK9e/fi0KFDSEhIwEcffWSwR7CiosLgOeXl5XB3dwfHcQgMDIRWq0VzczNmzZo16vkeZ7T63cTEBFqtdki7h4cHPDw8kJKSgqVLl6KwsJAKL0JGAZ1cT8g44uvri7i4OOzYscOgPTIyEt988w3y8vJQV1eHgoKCIVfAPYuCggIUFxfj8uXLUKvVaGlpwcqVKwEAarUad+/exdKlS1FVVYW6ujp8+OGHWLFixbAb9EdZt24dcnNzcejQIdTW1mLDhg2oqalBUlLSiDNrNBo0NjYaPAav+NNqtXjzzTcRHR2NFStWoLCwEBcvXkR+fr7BOurr65Gamora2loUFRVh586d+iweHh6Ii4vDsmXL8I9//APXrl1DZWUlsrOzcfTo0RHnHanR6ndXV1eUlpaisbERLS0t6O7uRmJiIk6ePInr16+jrKwMVVVV8Pb2fo7vhpCJgwovQsaZzMzMIYeKvL298c4776CgoAD+/v6orKx8pnPBHpSTk4OcnBz4+/vj9OnTOHLkCGxsbABAv5dKq9Vi/vz58PX1RXJyMpRKpcHeoyexevVqpKamYs2aNfD19cXx48dx5MgRuLu7jzjz8ePH4eDgYPCIiIgAAGRlZeH69et49913AQwcmtuzZw9+97vfGZxPtmzZMnR3dyM4OBhqtRpJSUn42c9+pp9fWFiIZcuWYc2aNfD09MSiRYtQVVUFZ2fnEecdqdHq9/z8fJSUlGDKlCkIDAwEx3G4c+cOli1bBg8PD8TGxmLhwoXYtGnTc3w3hEwcIvbgiSGEEEIQGRmJgIAAbNu2je8ohBABoT1ehBBCCCFGQoUXIYQQQoiR0KFGQgghhBAjoT1ehBBCCCFGQoUXIYQQQoiRUOFFCCGEEGIkVHgRQgghhBgJFV6EEEIIIUZChRchhBBCiJFQ4UUIIYQQYiRUeBFCCCGEGAkVXoQQQgghRvJ/Eg4L5RuOYaAAAAAASUVORK5CYII=",
"text/plain": [
- "