forked from ttrftech/NanoVNA
-
Notifications
You must be signed in to change notification settings - Fork 1
/
si5351.c
465 lines (424 loc) · 13.7 KB
/
si5351.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
/*
* Copyright (c) 2014-2015, TAKAHASHI Tomohiro (TTRFTECH) [email protected]
* All rights reserved.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* The software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "hal.h"
#include "nanovna.h"
#include "si5351.h"
#define SI5351_I2C_ADDR (0x60<<1)
static bool si5351_bulk_read(uint8_t reg, uint8_t* buf, int len)
{
int addr = SI5351_I2C_ADDR>>1;
i2cAcquireBus(&I2CD1);
msg_t mr = i2cMasterTransmitTimeout(&I2CD1, addr, ®, 1, buf, len, 1000);
i2cReleaseBus(&I2CD1);
return mr == MSG_OK;
}
static bool si5351_write(uint8_t reg, uint8_t dat)
{
int addr = SI5351_I2C_ADDR>>1;
uint8_t buf[] = { reg, dat };
i2cAcquireBus(&I2CD1);
msg_t mr = i2cMasterTransmitTimeout(&I2CD1, addr, buf, 2, NULL, 0, 1000);
i2cReleaseBus(&I2CD1);
return mr == MSG_OK;
}
static bool si5351_bulk_write(const uint8_t *buf, int len)
{
int addr = SI5351_I2C_ADDR>>1;
i2cAcquireBus(&I2CD1);
msg_t mr = i2cMasterTransmitTimeout(&I2CD1, addr, buf, len, NULL, 0, 1000);
i2cReleaseBus(&I2CD1);
return mr == MSG_OK;
}
// register addr, length, data, ...
static const uint8_t si5351_configs[] = {
2, SI5351_REG_3_OUTPUT_ENABLE_CONTROL, 0xff,
4, SI5351_REG_16_CLK0_CONTROL, SI5351_CLK_POWERDOWN, SI5351_CLK_POWERDOWN, SI5351_CLK_POWERDOWN,
2, SI5351_REG_183_CRYSTAL_LOAD, SI5351_CRYSTAL_LOAD_8PF,
// setup PLL (26MHz * 32 = 832MHz, 32/2-2=14)
9, SI5351_REG_26_PLL_A, /*P3*/0, 1, /*P1*/0, 14, 0, /*P3/P2*/0, 0, 0,
// RESET PLL
2, SI5351_REG_177_PLL_RESET, SI5351_PLL_RESET_A | SI5351_PLL_RESET_B,
// setup multisynth (832MHz / 104 = 8MHz, 104/2-2=50)
9, SI5351_REG_58_MULTISYNTH2, /*P3*/0, 1, /*P1*/0, 50, 0, /*P2|P3*/0, 0, 0,
2, SI5351_REG_18_CLK2_CONTROL, SI5351_CLK_DRIVE_STRENGTH_2MA | SI5351_CLK_INPUT_MULTISYNTH_N | SI5351_CLK_INTEGER_MODE,
2, SI5351_REG_3_OUTPUT_ENABLE_CONTROL, 0,
0 // sentinel
};
static bool si5351_wait_ready(void)
{
uint8_t status = 0xff;
systime_t start = chVTGetSystemTime();
systime_t end = start + MS2ST(1000); // 1000 ms timeout
while (chVTIsSystemTimeWithin(start, end))
{
if(!si5351_bulk_read(0, &status, 1))
status = 0xff; // comm timeout
if ((status & 0x80) == 0)
return true;
}
return false;
}
static void si5351_wait_pll_lock(void)
{
systime_t start = chVTGetSystemTime();
uint8_t status = 0xff;
if(!si5351_bulk_read(0, &status, 1))
status = 0xff; // comm timeout
if ((status & 0x60) == 0)
return;
systime_t end = start + MS2ST(100); // 100 ms timeout
while (chVTIsSystemTimeWithin(start, end))
{
if(!si5351_bulk_read(0, &status, 1))
status = 0xff; // comm timeout
if ((status & 0x60) == 0)
return;
chThdSleepMilliseconds(10);
}
pll_lock_failed = true;
}
bool si5351_init(void)
{
if (!si5351_wait_ready())
return false;
const uint8_t *p = si5351_configs;
while (*p) {
uint8_t len = *p++;
if (!si5351_bulk_write(p, len))
return false;
p += len;
}
return true;
}
void si5351_disable_output(void)
{
uint8_t reg[4];
si5351_write(SI5351_REG_3_OUTPUT_ENABLE_CONTROL, 0xff);
reg[0] = SI5351_REG_16_CLK0_CONTROL;
reg[1] = SI5351_CLK_POWERDOWN;
reg[2] = SI5351_CLK_POWERDOWN;
reg[3] = SI5351_CLK_POWERDOWN;
si5351_bulk_write(reg, 4);
}
void si5351_enable_output(void)
{
si5351_write(SI5351_REG_3_OUTPUT_ENABLE_CONTROL, 0x00);
}
void si5351_reset_pll(void)
{
//si5351_write(SI5351_REG_177_PLL_RESET, SI5351_PLL_RESET_A | SI5351_PLL_RESET_B);
si5351_write(SI5351_REG_177_PLL_RESET, 0xAC);
}
void si5351_setupPLL(uint8_t pll, /* SI5351_PLL_A or SI5351_PLL_B */
uint8_t mult,
uint32_t num,
uint32_t denom)
{
/* Get the appropriate starting point for the PLL registers */
const uint8_t pllreg_base[] = {
SI5351_REG_26_PLL_A,
SI5351_REG_34_PLL_B
};
uint32_t P1;
uint32_t P2;
uint32_t P3;
/* Feedback Multisynth Divider Equation
* where: a = mult, b = num and c = denom
* P1 register is an 18-bit value using following formula:
* P1[17:0] = 128 * mult + floor(128*(num/denom)) - 512
* P2 register is a 20-bit value using the following formula:
* P2[19:0] = 128 * num - denom * floor(128*(num/denom))
* P3 register is a 20-bit value using the following formula:
* P3[19:0] = denom
*/
/* Set the main PLL config registers */
if (num == 0)
{
/* Integer mode */
P1 = 128 * mult - 512;
P2 = 0;
P3 = 1;
}
else
{
/* Fractional mode */
//P1 = (uint32_t)(128 * mult + floor(128 * ((float)num/(float)denom)) - 512);
P1 = 128 * mult + ((128 * num) / denom) - 512;
//P2 = (uint32_t)(128 * num - denom * floor(128 * ((float)num/(float)denom)));
P2 = 128 * num - denom * ((128 * num) / denom);
P3 = denom;
}
/* The datasheet is a nightmare of typos and inconsistencies here! */
uint8_t reg[9];
reg[0] = pllreg_base[pll];
reg[1] = (P3 & 0x0000FF00) >> 8;
reg[2] = (P3 & 0x000000FF);
reg[3] = (P1 & 0x00030000) >> 16;
reg[4] = (P1 & 0x0000FF00) >> 8;
reg[5] = (P1 & 0x000000FF);
reg[6] = ((P3 & 0x000F0000) >> 12) | ((P2 & 0x000F0000) >> 16);
reg[7] = (P2 & 0x0000FF00) >> 8;
reg[8] = (P2 & 0x000000FF);
si5351_bulk_write(reg, 9);
}
void
si5351_setupMultisynth(uint8_t output,
uint8_t pllSource,
uint32_t div, // 4,6,8, 8+ ~ 900
uint32_t num,
uint32_t denom,
uint32_t rdiv, // SI5351_R_DIV_1~128
uint8_t drive_strength)
{
/* Get the appropriate starting point for the PLL registers */
const uint8_t msreg_base[] = {
SI5351_REG_42_MULTISYNTH0,
SI5351_REG_50_MULTISYNTH1,
SI5351_REG_58_MULTISYNTH2,
};
const uint8_t clkctrl[] = {
SI5351_REG_16_CLK0_CONTROL,
SI5351_REG_17_CLK1_CONTROL,
SI5351_REG_18_CLK2_CONTROL
};
uint8_t dat;
uint32_t P1;
uint32_t P2;
uint32_t P3;
uint32_t div4 = 0;
/* Output Multisynth Divider Equations
* where: a = div, b = num and c = denom
* P1 register is an 18-bit value using following formula:
* P1[17:0] = 128 * a + floor(128*(b/c)) - 512
* P2 register is a 20-bit value using the following formula:
* P2[19:0] = 128 * b - c * floor(128*(b/c))
* P3 register is a 20-bit value using the following formula:
* P3[19:0] = c
*/
/* Set the main PLL config registers */
if (div == 4) {
div4 = SI5351_DIVBY4;
P1 = P2 = 0;
P3 = 1;
} else if (num == 0) {
/* Integer mode */
P1 = 128 * div - 512;
P2 = 0;
P3 = 1;
} else {
/* Fractional mode */
P1 = 128 * div + ((128 * num) / denom) - 512;
P2 = 128 * num - denom * ((128 * num) / denom);
P3 = denom;
}
/* Set the MSx config registers */
uint8_t reg[9];
reg[0] = msreg_base[output];
reg[1] = (P3 & 0x0000FF00) >> 8;
reg[2] = (P3 & 0x000000FF);
reg[3] = ((P1 & 0x00030000) >> 16) | div4 | rdiv;
reg[4] = (P1 & 0x0000FF00) >> 8;
reg[5] = (P1 & 0x000000FF);
reg[6] = ((P3 & 0x000F0000) >> 12) | ((P2 & 0x000F0000) >> 16);
reg[7] = (P2 & 0x0000FF00) >> 8;
reg[8] = (P2 & 0x000000FF);
si5351_bulk_write(reg, 9);
/* Configure the clk control and enable the output */
dat = drive_strength | SI5351_CLK_INPUT_MULTISYNTH_N;
if (pllSource == SI5351_PLL_B)
dat |= SI5351_CLK_PLL_SELECT_B;
if (num == 0)
dat |= SI5351_CLK_INTEGER_MODE;
si5351_write(clkctrl[output], dat);
}
#define XTALFREQ 26000000L
#define PLL_N 32
#define PLLFREQ (XTALFREQ * PLL_N)
void
si5351_set_frequency_fixedpll(int channel, int pll, int pllfreq, int freq,
int rdiv, uint8_t drive_strength, int mul)
{
int denom = freq;
int div = (pllfreq * mul) / denom; // range: 8 ~ 1800
int num = (pllfreq * mul) - denom * div;
// cf. https://github.com/python/cpython/blob/master/Lib/fractions.py#L227
int max_denominator = (1 << 20) - 1;
if (denom > max_denominator) {
int p0 = 0, q0 = 1, p1 = 1, q1 = 0;
while (denom != 0) {
int a = num / denom;
int q2 = q0 + a*q1;
if (q2 > max_denominator)
break;
int p2 = p0 + a*p1;
p0 = p1; q0 = q1; p1 = p2; q1 = q2;
int new_denom = num - a * denom;
num = denom; denom = new_denom;
}
num = p1;
denom = q1;
}
si5351_setupMultisynth(channel, pll, div, num, denom, rdiv, drive_strength);
}
void
si5351_set_frequency_fixeddiv(int channel, int pll, int freq, int div,
uint8_t drive_strength, int mul)
{
int denom = XTALFREQ * mul;
int64_t pllfreq = (int64_t)freq * div;
int multi = pllfreq / denom;
int num = pllfreq - denom * multi;
// cf. https://github.com/python/cpython/blob/master/Lib/fractions.py#L227
int max_denominator = (1 << 20) - 1;
if (denom > max_denominator) {
int p0 = 0, q0 = 1, p1 = 1, q1 = 0;
while (denom != 0) {
int a = num / denom;
int q2 = q0 + a*q1;
if (q2 > max_denominator)
break;
int p2 = p0 + a*p1;
p0 = p1; q0 = q1; p1 = p2; q1 = q2;
int new_denom = num - a * denom;
num = denom; denom = new_denom;
}
num = p1;
denom = q1;
}
si5351_setupPLL(pll, multi, num, denom);
si5351_setupMultisynth(channel, pll, div, 0, 1, SI5351_R_DIV_1, drive_strength);
}
/*
* 1~100MHz fixed PLL 900MHz, fractional divider
* 100~150MHz fractional PLL 600-900MHz, fixed divider 6
* 150~200MHz fractional PLL 600-900MHz, fixed divider 4
*/
void
si5351_set_frequency(int channel, int freq, uint8_t drive_strength)
{
if (freq <= 100000000) {
si5351_setupPLL(SI5351_PLL_B, 32, 0, 1);
si5351_set_frequency_fixedpll(channel, SI5351_PLL_B, PLLFREQ, freq, SI5351_R_DIV_1, drive_strength, 1);
} else if (freq < 150000000) {
si5351_set_frequency_fixeddiv(channel, SI5351_PLL_B, freq, 6, drive_strength, 1);
} else {
si5351_set_frequency_fixeddiv(channel, SI5351_PLL_B, freq, 4, drive_strength, 1);
}
si5351_wait_pll_lock();
}
static int current_band = -1;
#define DELAY_NORMAL 3
#define DELAY_BANDCHANGE 10
#define DELAY_LOWBAND 2
/*
* configure output as follows:
* CLK0: frequency + offset
* CLK1: frequency
* CLK2: fixed 8MHz
*/
#define CLK2_FREQUENCY 8000000L
int
si5351_set_frequency_with_offset(uint32_t freq, int offset, uint8_t drive_strength)
{
int band;
int delay = DELAY_NORMAL;
uint32_t ofreq = freq + offset;
int mul = 1, omul = 1;
uint32_t rdiv = SI5351_R_DIV_1;
if (freq >= config.harmonic_freq_threshold * 3) {
mul = 5;
omul = 7;
} else if (freq >= config.harmonic_freq_threshold) {
mul = 3;
omul = 5;
}
if ((freq / mul) < 100000000) {
band = 0;
} else if ((freq / mul) < 150000000) {
band = 1;
} else {
band = 2;
}
if (freq <= 500000) {
rdiv = SI5351_R_DIV_64;
} else if (freq <= 4000000) {
rdiv = SI5351_R_DIV_8;
}
#if 1
if (current_band != band)
si5351_disable_output();
#endif
switch (band) {
case 0:
// fractional divider mode. only PLL A is used.
if (current_band == 1 || current_band == 2)
si5351_setupPLL(SI5351_PLL_A, 32, 0, 1);
// Set PLL twice on changing from band 2
if (current_band == 2)
si5351_setupPLL(SI5351_PLL_A, 32, 0, 1);
if (rdiv == SI5351_R_DIV_8) {
freq *= 8;
ofreq *= 8;
} else if (rdiv == SI5351_R_DIV_64) {
freq *= 64;
ofreq *= 64;
}
si5351_set_frequency_fixedpll(0, SI5351_PLL_A, PLLFREQ, ofreq,
rdiv, drive_strength, omul);
si5351_set_frequency_fixedpll(1, SI5351_PLL_A, PLLFREQ, freq,
rdiv, drive_strength, mul);
//if (current_band != 0)
si5351_set_frequency_fixedpll(2, SI5351_PLL_A, PLLFREQ, CLK2_FREQUENCY,
SI5351_R_DIV_1, SI5351_CLK_DRIVE_STRENGTH_2MA, 1);
break;
case 1:
// Set PLL twice on changing from band 2
if (current_band == 2) {
si5351_set_frequency_fixeddiv(0, SI5351_PLL_A, ofreq, 6, drive_strength, omul);
si5351_set_frequency_fixeddiv(1, SI5351_PLL_B, freq, 6, drive_strength, mul);
}
// div by 6 mode. both PLL A and B are dedicated for CLK0, CLK1
si5351_set_frequency_fixeddiv(0, SI5351_PLL_A, ofreq, 6, drive_strength, omul);
si5351_set_frequency_fixeddiv(1, SI5351_PLL_B, freq, 6, drive_strength, mul);
si5351_set_frequency_fixedpll(2, SI5351_PLL_B, freq / mul * 6, CLK2_FREQUENCY,
SI5351_R_DIV_1, SI5351_CLK_DRIVE_STRENGTH_2MA, 1);
break;
case 2:
// div by 4 mode. both PLL A and B are dedicated for CLK0, CLK1
si5351_set_frequency_fixeddiv(0, SI5351_PLL_A, ofreq, 4, drive_strength, omul);
si5351_set_frequency_fixeddiv(1, SI5351_PLL_B, freq, 4, drive_strength, mul);
si5351_set_frequency_fixedpll(2, SI5351_PLL_B, freq / mul * 4, CLK2_FREQUENCY,
SI5351_R_DIV_1, SI5351_CLK_DRIVE_STRENGTH_2MA, 1);
break;
}
if (current_band != band) {
si5351_reset_pll();
si5351_reset_pll();
si5351_wait_pll_lock();
#if 1
si5351_enable_output();
#endif
delay += DELAY_BANDCHANGE;
}
//if (band == 0)
// delay += DELAY_LOWBAND;
current_band = band;
return delay;
}