- official compile envionment
Cmake v3.6.3
| Bazel 0.15.0 (last official release using cmake on Windows)- MSVC 2015 update 3 | GCC 4.8
- CUDA 9, cuDNN 7
- tf 1.10.1, No new binaries will be built for Windows(???)
- official compile envionment
- Bazel 0.15.0
- MSVC 2015 update 3 | GCC 4.8
- CUDA 9, cuDNN 7
- official compile envionment
- Bazel 0.19.0-0.21.0 | Bazel 0.19.2
- MSVC 2015 update 3 | GCC 4.8
CUDA 10
, cuDNN 7.4 (1st release using CUDA 10)TensorRT 5.0
(optional)
- 1st release contraining
compat.v2
module - turn on
MKL-DNN
by default - Non-Windows system libraries are now versioned. This should be a no-op for most users as it affects only package maintainers or those building extensions to TF
- Pip packages contain one library file(Linux: libtensorflow_framework.so.1)
- 译, Windows pip 包中不含有 tf 相关 dll(Linux pip 包中含有 libtensorflow_framework.so.1), 这意味着在 Windows 下无法通过链接 lib 方式添加 custom op
- official compile envionment
- Bazel 0.24.1-0.25.2 | Bazel 0.24.1
MSVC 2017
| GCC 4.8- CUDA 10, cuDNN 7.4
- build cxx lib for Windows
last 1.x
release for TF- add
fftshift
op - auto
Mixed-Precision graph optimizer
simplifies converting models to float16.- enabled by wrapping an optimizer class with
tf.train.experimental.enable_mixed_precision_graph_rewrite()
- enabled by wrapping an optimizer class with
- should be last release has
contrib
directory in release code - some TensorRT support
- NO official compile envionment on official web
- eager, keras, ..., and all features in tf 1.x
- removed
freeze_graph
command line tool; SavedModel should be used in place of frozen graphs - still has
contrib
directory in release code, but not in branchr2.1
ormaster
- maybe tf2 can be built with cmake
- tf.contrib moved to
tensorflow/addons
ortensorflow/io
, or removed
- official compile envionment
- Bazel 0.26.1
- MSVC 2017 |
GCC 7.3.1
- CUDA 10, cuDNN 7.4
- pip package is built with
CUDA 10.1 and cuDNN 7.6
- Windows pip package is built with
VS2019
- experimental support for mixed precision
- many keras implemented models
tf.debugging.enable_check_numerics()
to help debugging the root causes of issues involving Inf and NaNTensorRT 6.0
is supported and enabled by default- from v2.1.0,
contrib
folder was removed from src
- replace
std::string
withtensorflow::tstring
, now ABI is stable - add a new
Profiler
of TF2, for CPU/GPU/TPU - export C++ using
pybind11
, SWIG is deprecated - add
SyncBatchNormalization
layer for multi-GPUs - custom training logic by overriding
Model.train_step
- XLA now builds and works on Windows
-
tf 1.10.0, CUDA 9
- 官方支持的最后一个cmake版本, 可代替目前针对 MR 发布的 tf lib
-
tf 1.12.0, CUDA 9
- 尝试cmake编译, 如成功,可成为支持 CUDA 9 的最后一个版本
-
tf 1.13.1, CUDA 10
- 尝试 cmake 编译, 如成功, 可成为支持 CUDA 10 的第一个版本
- 尝试 bazel 编译, 已有成功案例, 但有较多的不确定因素
-
tf 1.14.0, CUDA 10
- 尝试 cmake 编译, 如成功, 可成为第一个支持 vs2017 版本
- 尝试 bazel 编译, 尚无可参考的案例
-
tf 1.15.0, CUDA 10
- 尝试 cmake 编译, 如成功, 可成为最后一个 tf1.x 版本
- 尝试 bazel 编译, 尚无可参考的案例
-
tf 2.0.0, CUDA 10
- 尝试 cmake 编译, 如成功, 可成为第一个 tf2 版本
- 尝试 bazel 编译, 尚无可参考的案例
-
tf 2.1.0, CUDA 10.1
- 尝试 bazel 编译, 尚无可参考的案例
-
在无需 custom op 的情况下, 使用 cmake 构建或成为首选
- tf2 overview, 看一遍官网guide
- SavedModel
- 看fftshift具体实现
- use clion bazel to view tf code