-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
run.py
52 lines (45 loc) · 2.01 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# coding: UTF-8
import time
import torch
import numpy as np
from train_eval import train, init_network
from importlib import import_module
import argparse
parser = argparse.ArgumentParser(description='Chinese Text Classification')
parser.add_argument('--model', type=str, required=True, help='choose a model: TextCNN, TextRNN, FastText, TextRCNN, TextRNN_Att, DPCNN, Transformer')
parser.add_argument('--embedding', default='pre_trained', type=str, help='random or pre_trained')
parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
args = parser.parse_args()
if __name__ == '__main__':
dataset = 'THUCNews' # 数据集
# 搜狗新闻:embedding_SougouNews.npz, 腾讯:embedding_Tencent.npz, 随机初始化:random
embedding = 'embedding_SougouNews.npz'
if args.embedding == 'random':
embedding = 'random'
model_name = args.model # 'TextRCNN' # TextCNN, TextRNN, FastText, TextRCNN, TextRNN_Att, DPCNN, Transformer
if model_name == 'FastText':
from utils_fasttext import build_dataset, build_iterator, get_time_dif
embedding = 'random'
else:
from utils import build_dataset, build_iterator, get_time_dif
x = import_module('models.' + model_name)
config = x.Config(dataset, embedding)
np.random.seed(1)
torch.manual_seed(1)
torch.cuda.manual_seed_all(1)
torch.backends.cudnn.deterministic = True # 保证每次结果一样
start_time = time.time()
print("Loading data...")
vocab, train_data, dev_data, test_data = build_dataset(config, args.word)
train_iter = build_iterator(train_data, config)
dev_iter = build_iterator(dev_data, config)
test_iter = build_iterator(test_data, config)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)
# train
config.n_vocab = len(vocab)
model = x.Model(config).to(config.device)
if model_name != 'Transformer':
init_network(model)
print(model.parameters)
train(config, model, train_iter, dev_iter, test_iter)