Skip to content

Latest commit

 

History

History
757 lines (658 loc) · 61.9 KB

2023-CV-Surveys.md

File metadata and controls

757 lines (658 loc) · 61.9 KB

查看2022年综述文献点这里↘️2022-CV-Surveys

2023 年论文分类汇总戳这里

↘️CVPR-2023-Papers ↘️WACV-2023-Papers ↘️ICCV-2023-Papers

2022 年论文分类汇总戳这里

↘️CVPR-2022-Papers ↘️WACV-2022-Papers ↘️ECCV-2022-Papers

2021 年论文分类汇总戳这里

↘️ICCV-2021-Papers ↘️CVPR-2021-Papers

2020 年论文分类汇总戳这里

↘️CVPR-2020-Papers ↘️ECCV-2020-Papers

2023-CV-Surveys

2023 年,计算机视觉相关综述。包括目标检测、跟踪........

📗📗📗在【我爱计算机视觉】微信公众号后台回复“CV综述”,即可收到本文列出的全部论文的打包下载。至12月29日已公开 386 篇。

1月份20篇。
2月份36篇。
3月份27篇。
4月份31篇。
5月份42篇。
6月份31篇。
7月份36篇。
8月份37篇。
9月份23篇。
10月份34篇。
11月份32篇。
计349篇。

目录

🐱 🐶 🐯 🐺
1.Unkown(未分) 2.Human Pose Estimation(人体姿态估计) 3.Domain Adaptation(域适应) 4.Video(视频相关)
5.Image Processing(图像处理) 6.Image Classification(图像分类) 7.Medical Image Processing(医学影像处理) 8.Face(人脸)
9.GAN(生成对抗网络) 10.HAR(人体动作识别) 11.三维视觉&三维重建 12.Object Detection(目标检测)
13.Image segmentation(图像分割) 14.Image Retrieval(图像检索) 15.Image Captioning(图像字幕) 16.Super-resolution(超分辨率)
17.Remote Sensing(遥感) 18.Object Tracking(目标跟踪) 19.VQA(视觉问答)

Intelligent Agriculture

Graph Learning(图学习)

Multi-view Clustering

Scene Understanding

Open Set Recognition(开集识别)

Emotion Understanding

Gaze Estimation(凝视估计)

Reid(人员重识别/步态识别/行人检测)

Human Motion Prediction(人体运动预测)

Human Motion Generation(人体动作生成)

Vision-Language(视觉语言)

Sound

Smart farming(智能农业)

Neural Radiance Fields(神经辐射场)

计算成像

OCR

Diffusion Models(扩散模型)

Deep learning(深度学习)

Machine Learning(机器学习)

Model Compression

Sign Language Recognition(手语识别)

object counting

Data Augmentation(数据增强)

Continual Learning(持续学习)

Adversarial Learning(对抗学习)

Incremental Learning(增量学习)

Point Clouds(点云)

Image Generation

Few-Shot Learning

Self-supervised Learning(自监督)

Trajectory Prediction

Visual Defect Detection(视觉缺陷检测)

Biometric Recognition(生物特征识别)

NLP

SLAM

Robot

Anomaly Detection

Domain Adaptation

KD/Pruning(知识蒸馏)

Human-Machine Interaction

Vision-Language

Autonomous Driving(自动驾驶)

Neural Architecture Search(神经架构搜索)

Transformer

Person Re-Identification

  • 域适应
    • Source-Free Unsupervised Domain Adaptation: A Survey
      [2023-01-03]
      从技术角度对现有的SFUDA方法进行了系统的文献回顾。具体来说,将目前的SFUDA研究分为两类,即白盒SFUDA和黑盒SFUDA,并根据它们使用的不同学习策略进一步划分为更细的子类别。以及研究了每个子类别中方法的挑战,讨论了白盒和黑盒SFUDA方法的优势/劣势,总结了常用的基准数据集,另外还总结了在不使用源数据的情况下提高模型通用性的流行技术。
  • 域泛化

扫码CV君微信(注明:CV)入微信交流群:

image