|
| 1 | +/* |
| 2 | +https://www.techiedelight.com/longest-repeated-subsequence-problem/ |
| 3 | +
|
| 4 | +The problem is a modification of Longest Common Subsequence Problem. Here, we take both the strings to be the same and then find the Longest Common Subsequence. |
| 5 | +
|
| 6 | +The Recurrence is almost the same as LCS - |
| 7 | +LRS[i][j] = 0 if i = 0 || j = 0 |
| 8 | + = LRS[i-1][j-1] if (i != j) && s[i] == s[j] |
| 9 | + = max(LRS[i-1][j], LRS[i][j-1]) if s[i] != s[j] |
| 10 | +i and j can not have the same index as they represent the indixes of the same string. |
| 11 | +
|
| 12 | +Normal Recursion would require exponential time and in worst case - NONE OF THE CHARACTERS REPEAT - time complexity turns out to be O(2^n). Each call further makes two other calls. |
| 13 | +
|
| 14 | +*/ |
| 15 | + |
| 16 | + |
| 17 | +//Memoized Recursion |
| 18 | + |
| 19 | +public int LRSlen(String s, int i, int j, HashMap<String, Integer> map){ |
| 20 | + if(i==0 || j==0) return 0; //nothing to check of repetition - we have exhausted the string |
| 21 | + |
| 22 | + String key = i+"|"+j; |
| 23 | + |
| 24 | + if(!map.containsKey(key)){ |
| 25 | + if(i!=j && s.charAt(i-1) == s.charAt(j-1)){ |
| 26 | + map.put(key, LRSlen(s, i-1, j-1, map) + 1); |
| 27 | + } |
| 28 | + else{ |
| 29 | + map.put(key, Math.max(LRSlen(s, i-1, j, map), LRSlen(s, i, j-1, map))); |
| 30 | + } |
| 31 | + } |
| 32 | + return map.get(key); |
| 33 | +} |
| 34 | +//Time & Space Complexity - O(n^2) |
| 35 | + |
| 36 | + |
| 37 | +//Bottom Up DP |
| 38 | + |
| 39 | +public int LRSlen(String s){ |
| 40 | + int n = s.length(); |
| 41 | + |
| 42 | + //len[i][j] indicates the length of the LRS of s[0...i-1] and s[0...j-1] |
| 43 | + int len[][] = new int[n+1][n+1]; |
| 44 | + |
| 45 | + for(int i=1 ; i < n ; i++){ |
| 46 | + for(int j=1 ; j < n ; j++){ |
| 47 | + if( i!=j && s.charAt(i-1) == s.charAt(j-1) ){ |
| 48 | + len[i][j] = len[i-1][j-1] + 1; |
| 49 | + } |
| 50 | + else len[i][j] = Math.max(len[i][j-1], len[i-1][j]); |
| 51 | + } |
| 52 | + } |
| 53 | + |
| 54 | + return len[n][n]; |
| 55 | +} |
| 56 | + |
| 57 | +/* |
| 58 | +Time Complexity - O(n^2) |
| 59 | +Space Complexity - O(n^2) --> can be further optimized to O(n) [we only require the values from the previous rows] |
| 60 | +*/ |
| 61 | + |
| 62 | +//Print the LRS --> Assuming we already have the 2D len[][] array with us |
| 63 | + |
| 64 | +public String printLRS(String s, int i, int j, int len[][]){ |
| 65 | + if(i==0 || j==0) return ""; |
| 66 | + |
| 67 | + if(i!=j && s.charAt(i-1) == s.charAt(j-1)){ |
| 68 | + return printLRS(s, i-1, j-1, len) + s.charAt(i-1); |
| 69 | + } |
| 70 | + else{ |
| 71 | + if(len[i-1][j] > len[i][j-1]){ |
| 72 | + return printLRS(s, i-1, j, len); |
| 73 | + } |
| 74 | + else{ |
| 75 | + return printLRS(s, i, j-1, len); |
| 76 | + } |
| 77 | + } |
| 78 | + |
| 79 | +} |
0 commit comments