|
| 1 | +/* |
| 2 | +https://www.techiedelight.com/find-minimum-cuts-needed-palindromic-partition-string/ |
| 3 | +https://youtu.be/WPr1jDh3bUQ |
| 4 | +*/ |
| 5 | + |
| 6 | +//Bottom Up Dynamic Programming |
| 7 | + |
| 8 | +//Pre Computation - Bottom Up DP to find if substring is a palindrome or not |
| 9 | +public void findAllPlindromes(String s, boolean isPalin[][]){ |
| 10 | + //We only use the values above the principal diagonal |
| 11 | + //isPalin[i][j] stores if s[i..j] is a palindrome or not |
| 12 | + |
| 13 | + //we start from the end because we require the value of (i+1). |
| 14 | + for(int i = s.length() - 1 ; i >= 0 ; i--){ |
| 15 | + for(int j = i ; j < s.length() ; j++){ |
| 16 | + |
| 17 | + //single character is always a palindrome |
| 18 | + if(i == j) isPalin[i][j] = true; |
| 19 | + |
| 20 | + //if the border characters match --> check the inner string |
| 21 | + else if(s.charAt(i) == s.charAt(j)){ |
| 22 | + //if the length of the substring being considered is 2 --> directly put true |
| 23 | + //else check if the inner string [i+1 ... j-1] is a palindrome or not |
| 24 | + isPalin[i][j] = (j-i == 1) ? true : isPalin[i+1][j-1]; |
| 25 | + } |
| 26 | + |
| 27 | + //when the border characters don't match --> not possible to be a palindrome |
| 28 | + else isPlain[i][j] = false; |
| 29 | + } |
| 30 | + } |
| 31 | + |
| 32 | +} |
| 33 | + |
| 34 | +public int minCutsPlainPartition(String s, boolean isPlain[][]){ |
| 35 | + int n = s.length(); |
| 36 | + |
| 37 | + //cuts[i] indicates the minimum cuts required in s[0...i] to form palindrome partition |
| 38 | + int cuts[] = new int[n]; |
| 39 | + |
| 40 | + for(int i=0;i<n;i++){ |
| 41 | + //check if the current substring is partition --> if it is a palindrome we need 0 cuts |
| 42 | + if(isPlain[0][i]) cuts[i] = 0; |
| 43 | + else{ |
| 44 | + int minCuts = Integer.MAX_VALUE; |
| 45 | + |
| 46 | + //we partition the substring s[0...i] at j into two substrings --> s[0...j] and s[j+1...i] |
| 47 | + //since we need to make palindromic partitions, we check if the 2nd substring s[j+1...i] is a palindrome or not |
| 48 | + //we are basically CHOOSING A PARTITION(j) WHICH KEEPS THE 2nd SUBSTRING AS IT IS(bacuse it is a palindrome) AND |
| 49 | + //DECOMPOSES THE 1ST SUBSTRING INTO SUBPROBLEMS TO FIND MINIMUM CUTS |
| 50 | + for(int j=0;j<i;j++){ //j creates the partition |
| 51 | + |
| 52 | + //1. Check if 2nd substring is a palindrome |
| 53 | + //2. solve the subproblem --> we are using the bottom up appraoch, subproblem is already solved |
| 54 | + // subproblem is s[0...j] --> we solve it by considering cuts[j] |
| 55 | + //3. Consider all valid partitions and chose the cheapest |
| 56 | + if(isPalin[j+1][i] && minCuts > cuts[j]+1){ |
| 57 | + minCuts = cuts[j] + 1; |
| 58 | + } |
| 59 | + } |
| 60 | + cuts[i] = minCuts; |
| 61 | + } |
| 62 | + } |
| 63 | + |
| 64 | + //result for minimum cuts of s[0...n-1] |
| 65 | + return cuts[n-1]; |
| 66 | +} |
| 67 | + |
| 68 | +/* |
| 69 | +Time Complexity - O(n^2) |
| 70 | +Space Complexity - O(n^2) [n^2 to store isPlain and n to store cuts --> isPlain is more] |
| 71 | +*/ |
| 72 | + |
0 commit comments