|
| 1 | +/* |
| 2 | +https://www.techiedelight.com/counting-paths-on-grid-to-reach-destination-cell/ |
| 3 | +https://www.geeksforgeeks.org/number-of-paths-with-exactly-k-coins/ |
| 4 | +
|
| 5 | +
|
| 6 | +pathCount(m, n, k): Number of paths to reach mat[m][n] from mat[0][0] |
| 7 | + when cost = k |
| 8 | +
|
| 9 | +If (m == 0 and n == 0) |
| 10 | + return 1 if mat[0][0] == k else return 0 |
| 11 | +Else: |
| 12 | + pathCount(m, n, k) = pathCount(m-1, n, k - mat[m][n]) + |
| 13 | + pathCount(m, n-1, k - mat[m][n]) |
| 14 | + |
| 15 | +Normal Recursion |
| 16 | +*/ |
| 17 | + |
| 18 | +public int pathCount(int A[][], int row, int col, int cost){ |
| 19 | + //Base Case |
| 20 | + if(cost<0) return 0; |
| 21 | + //Base Case --> Valid path |
| 22 | + else if(row==0 && col==0 && cost == A[0][0]) return 1; |
| 23 | + //Base Case |
| 24 | + else if(row==0 && col==0 && cost != A[0][0]) return 0; |
| 25 | + |
| 26 | + //First row --> Only one move --> Go left |
| 27 | + else if(row == 0) return pathCount(A, row, col-1, cost-A[row][col]); |
| 28 | + |
| 29 | + //First col --> Only one move --> Go up |
| 30 | + else if(col == 0) return pathCount(A, row-1, col, cost-A[row][col]); |
| 31 | + |
| 32 | + //Cosider both --> up and left |
| 33 | + else return pathCount(A, row-1, col, cost-A[row][col]) + pathCount(A, row, col-1, cost-A[row][col]); |
| 34 | +} |
| 35 | + |
| 36 | +//Memoized Recursion - using a hashmap |
| 37 | + |
| 38 | +public int pathCount(int A[][], int row, int count, int cost, HashMap<String, Integer> map){ |
| 39 | + if(cost<0) return 0; |
| 40 | + |
| 41 | + else if(row==0 && col==0 && cost == A[0][0]) return 1; |
| 42 | + |
| 43 | + else if(row==0 && col==0 && cost != A[0][0]) return 0; |
| 44 | + |
| 45 | + String key = row+"|"+col+"|"+cost; |
| 46 | + |
| 47 | + if(!map.containsKey(key)){ |
| 48 | + else if(row == 0) map.put(key, pathCount(A, row, col-1, cost-A[row][col])); |
| 49 | + |
| 50 | + else if(col == 0) map.put(key, pathCount(A, row-1, col, cost-A[row][col])); |
| 51 | + |
| 52 | + else map.put(key, pathCount(A, row-1, col, cost-A[row][col]) + pathCount(A, row, col-1, cost-A[row][col])); |
| 53 | + } |
| 54 | + return map.get(key); |
| 55 | +} |
| 56 | + |
| 57 | +//Memoized recursion - using an 3d array |
| 58 | + |
| 59 | +public int pathCount(int A[][], int row, int col, int cost, int dp[][]){ |
| 60 | + if(cost<0) return 0; |
| 61 | + |
| 62 | + else if(row==0 && col==0 && cost == A[0][0]) return 1; |
| 63 | + |
| 64 | + else if(row==0 && col==0 && cost != A[0][0]) return 0; |
| 65 | + |
| 66 | + else if(dp[row][col][cost] != -1) return dp[row][col][cost]; |
| 67 | + else{ |
| 68 | + dp[row][col][cost] = pathCount(A, row-1, col, cost-A[row][col]) + pathCount(A, row, col-1, cost-A[row][col]); |
| 69 | + |
| 70 | + return dp[row][col][cost]; |
| 71 | + } |
| 72 | +} |
| 73 | + |
| 74 | +//Time Complexity of DP solution - O(n*m*cost) |
| 75 | +//This is Psedo-Polynomial Time |
0 commit comments